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Instability in Models Connected with Fluid Flows I, II

Two volumes of the International Mathematical Series present various top-
ics on control theory, free boundary problems, the Navier–Stokes equations,
attractors, first order linear and nonlinear equations, partial differential
equations of fluid mechanics, etc. with the focus on the key question in the
study of mathematical models simulating physical processes:

Is a model stable (or unstable) in a certain sense?

An answer provides us with understanding the following issue, extremely
important for applications:

Does the model adequately describe the physical process?

Recent advantages in this area, new results, and current approaches to the
notion of stability are presented by world-recognized experts.
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viii Main Topics
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Justifying Asymptotics

for 3D Water–Waves

David Lannes

University of Bordeaux, 1
Bordeaux, France

The main steps of a general method to fully justify asymptotic models for 3D

water-waves are sketched. The key step is to prove a large time existence result

for the nondimensionalized water-waves equations written in terms of the water

elevation and the velocity potential at the surface. The theorem also furnishes

a bound on a special energy introduced to have uniform control on the solution

(with respect to the nondimensionalization parameters). We then describe a sys-

tematic way to provide asymptotic expansions on the Dirichlet–Neumann operator

involved in the water-waves equations, and deduce asymptotic models in differ-

ent physical regimes. Full justification of 2DH Boussinesq systems, 2DH shallow

water equations, and the Kadomtsev–Petviashvili approximation are presented as

an illustration. Bibliography: 32 titles.

1. Introduction

1.1. General setting.

The motion of a perfect incompressible and irrotational fluid under the
influence of gravity is described by the free surface Euler (or water-waves)

Instability in Models Connected with Fluid Flows. II. Edited by Claude Bardos and Andrei

Fursikov / International Mathematical Series, Vol. 7, Springer, 2008 1
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equations. These equations have a very rich structure, and many famous
equations of mathematical physics can be obtained as asymptotic limits:
the Korteweg-de Vries (KdV) and Kadomtsev–Petviashvili (KP) equations,
the Boussinesq systems, the shallow water equations, deep water models,
etc. Each of these asymptotic limits corresponds to a very specific physical
regime which determines its range of validity as a tool in oceanography.

While the derivations of these models goes back to the XIXth cen-
tury, their mathematical justification is a much more recent concern (by
mathematical justification, we mean a rigorous proof that the solution of
the water-waves equations is well approximated by the solution of the as-
ymptotic model corresponding to the physical regime under consideration).
So far, the only asymptotic models fully justified are the KdV equations
and 1DH-Boussinesq systems (see [8, 24, 4]) and some variants in pres-
ence of surface tension [25], bottom topography [13], or higher order terms
[27]. Note also that Kano and Nishida [15] gave a justification of the
1DH-shallow water equations under some restrictions (analytic and small
data). For the 2DH-case and other regimes mentioned above, there is no
full rigorous justification; one of the reasons for this is the complexity of
the water-waves equations for which local well-posedness and error esti-
mates are nontrivial. Following the pioneer works in 1DH of Ovsjannikov
[23] and Nalimov [22] (see also Yosihara [30, 31]), Craig [8] and Kano
and Nishida [15, 16] managed to give the first justification of the KdV and
1DH Boussinesq and shallow water approximations, but the comprehension
of the well-posedness theory for the water-waves equations hindered the per-
spective of justifying the other asymptotic regimes until the breakthroughs
of Wu ([28] and [29] respectively for the 1DH and 2DH case, in infinite
depth, and without restrictive assumptions). Since when, the literature on
free surface Euler equations has been very active: the case of finite depth
was proved in [17], and in the related case of the study of the free surface of
a liquid in vacuum with zero gravity, Lindblad [19, 20] and more recently
Coutand and Shkoller [7] and Shatah and Zeng [26] managed to remove the
irrotationality condition and/or took into account surface tension effects.

Though quite numerous now, the results on the well-posedness of the
water-waves equations cannot be directly applied to justify rigorously as-
ymptotic models because the estimates they give on the existence time are
far too rough and only provide existence over an interval of time asymp-
totically shrinking to zero (relatively to the pertinent time scale). This
difficulty is well illustrated by the early works of Kano and Nishida [15]
and Kano [14] where the KdV and KP approximations are justified (for
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analytic and small data) for times t = O(1) while the relevant time scale
for the asymptotics is t = O(1/ε) (with the notation used in the present
paper). In [8], this confusion is not made, and the proof relies on a large
time (i.e., O(1/ε)) existence theorem for the water-waves equations in the
particular “long-waves” scaling. It was recently shown in [4] that the 2DH
Boussinesq systems are justified with sharp error estimates if solutions to
the water-waves equations in the long-waves regime exist over the time scale
t = O(1/ε) and are bounded in regular enough Sobolev spaces. Similarly,
it is proved in [18] that the rigorous justification of the KP approxima-
tion follows from such a large time existence theorem and from (unexpected
enough) bounds on the solution.

Regardless of the physical regime investigated, the key steps in the
process of justification of asymptotic equations is thus the following:

(1) Formally derive the asymptotic equations and identify the relevant
time scale of their dynamics.

(2) Prove an existence result for the water-waves equations for this time
scale (this is what we call here “large time” existence) and bounds on
the solution.

(3) Perform error estimates to control the error between the exact solu-
tion of the water-waves equations and the solution furnished by the
asymptotic model.

The first step of this procedure can be done at the formal level, while
the third one can be done assuming the second one (as in [4, 6, 18]).
Therefore, it turns out that the proof of a large time existence theorem is
the key step of the process. Before explaining the approach developed here,
let us review quickly existing results for the main physical regimes. In order
to do this, denote by a the typical amplitude of the waves, by h the mean
depth, and by λ the wavelength of the waves.

• Shallow-water equations (i.e., h2/λ2 ≪ 1). In 1DH , steps 1 to 3 of
the above procedure are done in [15], with some restrictions in Step 2
(analytic and small data). In 2DH , Steps 2 and 3 remain open.

• Long-wave regime (i.e., h2/λ2 ∼ a/h ≪ 1). The justification process
is complete in 1DH [8, 24, 4, 13]; in 2DH , Steps 1 and 3 are done
in [4] (flat bottom) and [6] (uneven bottom), but Step 2 is open.

• KP or weakly transverse regime (this regime is the same as the 2DH
long-wave regime, but with a wavelength in the transverse direction
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much larger than in the longitudinal direction). As said above, [18]
shows that only Step 2 remains to be done.

• Serre approximation (i.e., h/λ ∼ a/h ≪ 1). These equations are
commonly used in oceanography (see, for instance, [12, Chs. 5 and
7]), but no mathematical justification exists.

• Deep water models. In deep water (h2/λ2 ≫ 1), the asymptotic expan-
sions are commonly made in terms of the slope of the waves (a/λ ≪ 1).
For instance, Matsuno [21] proposed (without justification) a model
with full dispersion valid for deep water in 1D.

Instead of developing an existence theory for each physical scaling, we
develop here a global method which allows us one to justify all the asymptot-
ics mentioned above at once. In order to do that, we nondimensionalize the
water-waves equations, and keep track of the four physical quantities which
characterize the dynamics of the water-waves: amplitude, depth, wavelength
in the longitudinal direction and wavelength in the transverse direction (for
the sake of simplicity, we only consider in this note flat bottoms; in the case
of uneven bottoms, a fifth parameter must be introduced, the amplitude of
the bottom variations).

Our main theorem gives an estimate of the existence time of the so-
lution of the water-waves equations in terms of these four parameters. It
is worth remarking that this estimate is uniform with respect to these pa-
rameters (though they may grow to infinity or decay to zero, depending
on the physical regime investigated). In order to prove this theorem we
introduce an energy which involves the aforementioned parameters and use
it to construct our solution by an iterative scheme. This energy provides
moreover bounds on the solution which appear to be exactly those needed
for the error estimates of Step 3.

Having proved such a large time existence result, we derive the asymp-
totic models for the regimes mentioned above in a systematic way, and use
the bounds on the solution provided by the energy to proceed with Step 3.

1.2. Presentation of the results.

Parameterizing the free surface by z = ζ(t, X) (with X = (x, y) ∈ R2) and
the bottom by z = −h (with h > 0 constant – uneven bottoms are consid-
ered in [1]), one can use the incompressibility and irrotationality conditions
to write the water-waves equations under Bernouilli’s formulation, in terms
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of a velocity potential Φ (i.e., the velocity field is given by v = ∇X,zΦ):

∂2
xΦ + ∂2

yΦ + ∂2
zΦ = 0, −h � z � ζ,

∂nΦ = 0, z = −h,

∂tζ + ∇ζ · ∇Φ = ∂zΦ, z = ζ,

∂tΦ +
1

2

(
|∇Φ|2 + (∂zΦ)2

)
+ ζ = 0, z = ζ,

(1.1)

where ∇ = (∂x, ∂y)T and ∂nΦ is the normal derivative.

The qualitative study of the water-waves equations is made easier by
the introduction of dimensionless variables and unknowns. This requires the
introduction of various orders of magnitude linked to the physical regime
under consideration. As said in the introduction, a is the order of amplitude
of the waves, h is the mean depth, λ is the wavelength of the waves in the
x direction, and λ/γ is the wavelength of the waves in the y direction.

We also introduce the following dimensionless parameters

ε =
a

h
, μ =

λ2

h2
, ν =

1

1 +
√

μ
; (1.2)

the parameter ε is often called the nonlinearity parameter, while μ is the
shallowness parameter. The parameter ν is the transition parameter which
takes into account the fact that different nondimensionalizations are used
in shallow and deep water.

Zakharov [32] remarked that the system (1.1) could be written in the
Hamiltonian form in terms of the free surface elevation ζ and the trace of the
velocity potential at the surface ψ = Φ|z=ζ

. Craig, Sulem, and Sulem [11]
and Craig, Schanz, and Sulem [10] used the fact that (1.1) could be reduced
to a system of two evolution equations on ζ and ψ to prove the consistency
of the Schrödinger and Davey–Stewartson approximation; this formulation
has commonly been used since when. In Section 2, we derive the follow-
ing dimensionless form of this formulation which involves the parameters
introduced in (1.2):

∂tζ − 1

μν
Gμ,γ [εζ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇γψ|2 − εμ

ν

( 1
μGμ,γ [εζ]ψ + ε∇γζ · ∇γψ)2

2(1 + ε2μ|∇γζ|2) = 0,
(1.3)
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where ∇γ = (∂x, γ∂y)
T and Gμ,γ [εζ]ψ = (∂zΦ − με∇γζ · ∇γΦ)|z=εζ

, with Φ
solving the boundary value problem

∂2
zΦ + μ∂2

xΦ + γμ∂2
yΦ = 0, −1 < z < εζ

Φ|z=εζ
= ψ, ∂zΦ|z=−1

= 0.
(1.4)

Section 3 is devoted to the asymptotic expansion of the Dirichlet–
Neumann operator Gμ,γ [εζ]ψ in terms of the parameters ε, γ, and μ. We
show how to get explicit expansions in the cases mentioned above.

Section 4 is devoted to the study of the well-posedness of the water-
waves equations for large times. With the above notation, we show that
solutions to (1.3) exist and are unique over times t = O( 1

ε/ν ). We also

prove that the energy

|ζ|Hs +

∣∣∣∣
ν−1/2|Dγ |

(1 +
√

μ|Dγ |)1/2
ψ

∣∣∣∣
Hs

(with |Dγ | =
√

D2
x + γ2D2

y)

remains bounded over this time scale. It turns our that this existence time
and this bound on the solution are exactly those needed to justify rigorously
all the models described above. This is sketched in Section 5 for three
asymptotic models: the shallow water equations, Boussinesq system, and
Kadomtsev–Petviashvili (KP) approximation.

1.3. Notation.

When we want to insist on the dependence of some constant C on various
parameters p1, p2, . . . , we write C = C(p1, p2, . . . ), and always assume that
the dependence on the parameters is nondecreasing.

For all tempered distribution u ∈ S′(Rd) we denote by û its Fourier
transform.

Fourier multipliers: For all rapidly decaying u ∈ S(Rd) and all f ∈
C(Rd) with tempered growth, f(D) is the distribution defined by

∀ξ ∈ Rd, f̂(D)u(ξ) = f(ξ)û(ξ) (1.5)

(this definition can be extended to wider spaces of functions).

We write 〈ξ〉 = (1 + |ξ|2)1/2, Λ = 〈D〉, and ξγ = (ξ, γξ2).

For all 1 � p � ∞, | · |p denotes the classical norm of Lp(Rd) while
‖ · ‖p stands for the canonical norm of Lp(S), with S = Rd × (−1, 0).
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For all s ∈ R, Hs(Rd) is the classical Sobolev space defined as

Hs(Rd) = {u ∈ S′(Rd), |u|Hs := |Λsu|2 < ∞}.

For all γ > 0 we write ∇γ = (∂x, γ∂y)T so that ∇γ coincides with the
usual gradient when γ = 1. We also use the Fourier multiplier |Dγ | defined

as |Dγ | =
√

D2
x + γ2D2

y, as well as the anisotropic divergence operator

divγ = (∇γ)T . We write X = (x, y) and ∇X,z = (∂x, ∂y, ∂z)
T .

The notation a � b means that a � Cb for some nonnegative constant
C whose exact expression is of no importance (in particular, it is indepen-
dent of the small parameters involved).

We use the condensed notation

As = Bs + 〈Cs〉s>s (1.6)

to say that As = Bs if s � s and As = Bs + Cs if s > s.

When the notation ∂nu|∂Ω
is used for boundary conditions of an elliptic

equation of the form ∇X,z · P∇X,zu = h in some open set Ω, it stands for
the conormal derivative associated to this operator, namely,

∂nu|∂Ω
= n · P∇X,zu|∂Ω

, (1.7)

n standing for the outward unit normal vector to ∂Ω.

2. Nondimensionalization(s) of Equations

Depending on the value of μ, two distinct nondimensionalizations are com-
monly used in oceanography (see, for instance, [12]). Namely, with dimen-
sionless quantities denoted with a prime:

Shallow-water, i.e., μ ≪ 1, one writes

x = λx′, y = λ
γ y′, z = hz′, t = λ√

gh
t′,

ζ = aζ′, Φ = a
hλ

√
ghΦ′.

Deep-water, i.e., μ ≫ 1, one writes

x = λx′, y = λ
γ y′, z = λz′, t = λ√

gλ
t′,

ζ = aζ′, Φ = a
√

gλΦ′.

Remarking that when μ ∼ 1, i.e, λ ∼ h, both nondimensionalizations
are equivalent, we introduce the following general nondimensionalization,
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which is valid for all μ > 0:

x = λx′, y = λ
γ y′, z = hνz′, t = λ√

ghν
t′,

ζ = aζ′, Φ = a
hλ
√

gh
ν Φ′, b = Bb′,

where ν =
1

1 +
√

ν
is a smooth function of μ such that ν ∼ 1 when μ ≪ 1

and ν ∼ μ−1/2(= λ/h) when μ ≫ 1 (in [21], the parameter κ plays a similar
role).

The equations of motion (1.1) then become (after dropping the primes
for the sake of clarity):

ν2μ∂2
xΦ + ν2γ2μ∂2

yΦ + ∂2
zΦ = 0, −1

ν
� z �

ε

ν
ζ,

−ν2μ∇γ(
β

ν
b) · ∇γΦ + ∂zΦ = 0, z = −1

ν
,

∂tζ − 1

μν2

(
− ν2μ∇γ(

ε

ν
ζ) · ∇γΦ + ∂zΦ

)
= 0, z =

ε

ν
ζ,

∂tΦ +
1

2

( ε
ν
|∇γΦ|2 +

ε

μν3
(∂zΦ)2

)
+ ζ = 0, z =

ε

ν
ζ

(2.1)

with ∇γ = (∂x, γ∂y)T .

In order to reduce this set of equations into a system of two evolution
equations, define the Dirichlet–Neumann operator Gν

μ,γ [ ε
ν ζ]· as

Gν
μ,γ [

ε

ν
ζ]ψ =

√
1 + |∇(

ε

ν
ζ)|2∂nΦ|z= ε

ν
ζ

with Φ solving the boundary value problem

ν2μ∂2
xΦ + ν2γ2μ∂2

yΦ + ∂2
zΦ = 0, −1

ν
� z �

ε

ν
ζ,

Φ|z= ε
ν

ζ
= ψ, ∂nΦ|

z= 1
ν

(−1+βb)
= 0

(as always in this paper, ∂nΦ stands for the outward conormal derivative as-
sociated to the elliptic equation). As remarked in [32, 11, 10], the equations
(2.1) are equivalent to a set of two equations on the free surface parame-
trization ζ and the trace of the velocity potential at the surface ψ = Φ|z=ε/νζ
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involving the Dirichlet–Neumann operator Gν
μ,γ [ ε

ν ζ]. Namely,

∂tζ − 1

μν2
Gν

μ,γ [
ε

ν
ζ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇γψ|2 − εμ

ν3

( 1
μGν

μ,γ [ ε
ν ζ]ψ + ν∇γ(εζ) · ∇γψ)2

2(1 + ε2μ|∇γζ|2) = 0.
(2.2)

In order to derive the system (1.3), let Gμ,γ [εζ]· be the Dirichlet–Neumann
operator Gν

μ,γ [εζ]· corresponding to the case ν = 1. One will easily check
that

∀ν > 0, Gμ,γ [εζ]· =
1

ν
Gν

μ,γ [
ε

ν
ζ]·,

so that plugging this relation into (2.2) yields

∂tζ − 1

μν
Gμ,γ [εζ]ψ = 0,

∂tψ + ζ +
ε

2ν
|∇γψ|2 − εμ

ν

( 1
μGμ,γ [εζ]ψ + ∇γ(εζ) · ∇γψ)2

2(1 + ε2μ|∇γζ|2) = 0.

3. Asymptotic Expansion of Gµ,γ[εζ]ψ

Throughout this section, we assume that the water height is always positive,
i.e.,

∃h0 > 0, inf
Rd

(1 + εζ) � h0. (3.1)

3.1. The case of small amplitude waves (ε ≪ 1).

Expansions of the Dirichlet–Neumann operator for small amplitude waves
has been developed in [11, 10]. This method is very efficient to compute
the formal expansion, but instead of adapting it in the present case to give
uniform estimates on the truncation error, we rather propose a very simple
method based on the following explicit formula for the derivative of the
mapping ζ �→ Gμ,γ [εζ]ψ, which is a particular case of Theorem 3.20 of [17].

Theorem 3.1. Let t0 > 1, s � t0, and ζ ∈ Hs+3/2(R2) be such that

(3.1) is satisfied for some h0 > 0. For all ψ ∈ Hs+3/2(R2) the mapping

ζ �→ Gμ,γ [εζ]ψ ∈ Hs+1/2(R2)

is well defined and differentiable in a neighborhood of ζ in Hs+3/2(R2), and

∀h ∈ Hs+3/2(R2), dζGμ,γ [ε·]ψ · h = −εGμ,γ [εζ](hZ) − εμ∇γ · (hv)
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with

Z =
1

1 + ε2μ|∇γζ|2 (Gμ,γ [εζ]ψ + εμ∇γζ · ∇γψ),

v = ∇γψ − εZ∇γζ.

We can now state the following proposition, which gives an expansion
of the Dirichlet–Neumann operator Gμ,γ [εζ]ψ in terms of ε, and uniform
with respect to γ ∈ (0, 1] and μ > 0.

Proposition 3.1. Let s � t0 > 1, ψ ∈ Hs+4(R2), and ζ ∈ Hs+9/2(R2)
be such that (3.1) is satisfied for some h0 > 0. Then

∣∣Gμ,γ [εζ]ψ −
[
Gμ,γ [0] − εGμ,γ [0]

(
ζ(Gμ,γ [0]ψ)

)
− εμ∇γ · (ζ∇γψ)

]∣∣
Hs

� ε2μ3/2C
( 1

h0
, ε
√

μ, |ζ|Hs+9/2 ,

∣∣∣∣
ν−1/2|Dγ |

(1 +
√

μ|Dγ |)1/2
ψ

∣∣∣∣
Hs+7/2

)
.

Proof. An order two expansion of Gμ,γ [εζ]ψ gives

Gμ,γ [εζ]ψ = Gμ,γ [0]ψ + d0Gμ,γ [ε·]ψ · ζ +

1∫

0

(1 − z)d2
zζG[ε·]ψ · (ζ, ζ)dz.

Using Theorem 3.1, one computes

d0Gμ,γ [ε·]ψ · ζ = −εGμ,γ [0]
(
ζ(Gμ,γ [0]ψ)

)
− εμ∇γ · (ζ∇γψ),

and, with some more work, one also gets an explicit expression for the second
derivative d2

zζG[ε·]ψ · (ζ, ζ). It appears that one can write

d2
zζG[ε·]ψ · (ζ, ζ) = ε2μ3/2F (z, ε, μ, γ, ζ, ψ)

and

|F (z, ε, μ, γ, ζ, ψ)|Hs � C
(
ε
√

μ,
1

h0
, |ζ|Hs+9/2 ,

∣∣∣∣
ν−1/2|Dγ |

(1 +
√

μ|Dγ |)1/2
ψ

∣∣∣∣
Hs+7/2

)
,

uniformly with respect to all the parameters; an important step in the above
estimate is the following estimate on the operator norm of Gμ,γ [εζ]:

∀s � t0 > 1,

∣∣∣∣
1√
μ
Gμ,γ [εζ]ψ

∣∣∣∣
Hs−1/2

� C
( 1

h0
, |ζ|Hs+1

)∣∣∣∣
ν−1/2|Dγ |

(1 +
√

μ|Dγ |)1/2
ψ

∣∣∣∣
Hs

.

�
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We can now give asymptotic expansions of Gμ,γ [εζ]ψ in the different
regimes mentioned in the introduction. The first one is the long-waves
regime (see also [4] for a different proof based on a BKW expansion of the
velocity potential).

Corollary 3.1 (long-waves regime). Let ε0 > 0, s � t0 > 1, ψ ∈
Hs+6(R2), and ζ ∈ Hs+9/2(R2) be such that (3.1) is satisfied for some
h0 > 0. If γ = 1, then for all 0 < ε = μ < ε0

∣∣∣Gμ,γ [εζ]ψ −
[
− ε∆ψ − ε2

(1

3
∆2ψ + ∇ · (ζ∇ψ)

)]∣∣∣
Hs

� ε3C
( 1

h0
, ε0, |ζ|Hs+9/2 , |∇ψ

∣∣
Hs+5

)
.

Proof. Under the long-waves regime, one can compute explicitly
Gμ,γ [0]ψ = Gε,1[0]ψ (see Proposition 4.1 below for the computation):

Gε,1[0]ψ =
√

ε|D| tanh(
√

ε|D|)ψ,

and a second order Taylor expansion of the function ε �→ √
εz tanh(

√
εz) at

the origin gives therefore
∣∣∣ Gε,1[0]ψ −

[
− ε∆Ψ − ε2 1

3
∆2Ψ

]∣∣∣
Hs

� ε3|∇ψ|Hs+5 .

Since μ = ε, γ = 1 and ν ∼ 1 in the present scaling, one also deduces that
∣∣∣∣

ν−1/2|Dγ |
(1 +

√
μ|Dγ |)1/2

ψ

∣∣∣∣
Hs

�
∣∣∇ψ|Hs

uniformly with respect to ε, and the corollary follows therefore from Propo-
sition 3.1. �

In the case of the KP regime (or weakly transverse long-waves), which
is the same as the long-wave regime described above, but with γ =

√
ε, one

has (see also [18]):

Corollary 3.2 (KP regime). Let ε0 > 0, s � t0 > 1, ψ ∈ Hs+6(R2),
and ζ ∈ Hs+9/2(R2) be such that (3.1) is satisfied for some h0 > 0.

Then for all 0 < ε = μ = γ2 < ε0

∣∣∣Gμ,γ [εζ]ψ −
[
− ε∂2

xψ − ε2
(1

3
∂4

xψ + ∂x(ζ∂xψ) + ∂2
yψ
)
− ε3∂y(ζ∂yψ)

]∣∣∣
Hs

� ε3C
( 1

h0
, ε0, |ζ|Hs+9/2 , |∇ψ

∣∣
Hs+5

)
.
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Proof. In this regime, μ = ε = γ2 so that Gμ,γ [0]ψ = Gε,
√

ε[0]ψ, which
can be explicitly computed (see Proposition 3.1):

Gε,
√

ε[0]ψ =
√

ε|D
√

ε| tanh
(√

ε|D
√

ε|
)
ψ,

where we recall that |D
√

ε| =
√

D2
x + εD2

y. An order 3 Taylor expansion at

the origin of this expression gives
∣∣∣Gε,

√
ε[0]ψ −

[
− ε(∂2

x + ε∂2
y)Ψ − ε2 1

3
(∂2

x + ε∂2
y)2Ψ

]∣∣∣
Hs

� ε3
∣∣|D

√
ε
∣∣ψ|Hs+5 .

(3.2)
Remarking that under the present scaling,

∣∣∣∣
ν−1/2|Dγ |

(1 +
√

μ|Dγ |)1/2
ψ

∣∣∣∣
Hs

�
∣∣|D

√
ε|ψ|Hs � |∂xψ|Hs + |√ε∂yψ|Hs ,

the corollary follows from Proposition 3.1 and (3.2). �

Remark 3.1. (i) The method used above to give an expansion of the
Dirichlet–Neumann operator Gμ,γ [εζ]ψ is general and can be used for other
scalings, and in particular for the Serre approximation mentioned in the
introduction, and for which γ = 1, μ = ε2 ≪ 1.

(ii) The two corollaries given above concern shallow–water models
(μ ≪ 1), but Proposition 3.1 is also valid in deep water. In this case,
ν ∼ μ−1/2 and the quantity one has to expand in the first equation of
(1.3) is therefore 1√

μGμ,γ [εζ]ψ. Remarking also that 1√
μGμ,γ [0] is uniformly

bounded (as an operator of order 1), Proposition 3.1 furnishes an expan-
sion of 1√

μGμ,γ [εζ]ψ in terms of ε
√

μ. Going back to the definition of ε and

μ, one can check that ε
√

μ = a/λ. This is the slope of the wave, used in
oceanography as small parameter in deep water.

3.2. The case of large amplitude waves (ε = 1).

The shallow–water regime (for instance) assumes that μ ≪ 1, but deals
with waves of large amplitude for which ε = 1. In this kind of situation, we
cannot use Proposition 3.1 to obtain an expansion of Gμ,γ [εζ]ψ = Gμ,1[ζ]ψ.
However, one can quite easily construct by a standard BKW procedure
an (explicit) approximation Φapp of the velocity potential Φ (which solves
(1.4)). We then write

Gμ,1[ζ]ψ =
√

1 + |∇ζ|2∂nΦ|z=0

=
√

1 + |∇ζ|2∂nΦapp|z=0 +
√

1 + |∇ζ|2∂n

(
Φ − Φapp

)
|z=0.
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The first component of the last equality gives the asymptotic expansion on
Gμ,1[ζ]ψ since the formula giving Φapp is explicit. The second term of the
equality is the truncation error and can be controlled by elliptic estimates
(see [6] for such estimates within a quite general framework). With this
method, one obtains the following assertion.

Proposition 3.2 (shallow water regime). Let μ0 > 0, ε = γ = 1,
s � t0 > 1, ψ ∈ Hs+4(R2), and ζ ∈ Hs+1(R2) be such that (3.1) is satisfied
for some h0 > 0. Then for all 0 < μ < μ0

∣∣Gμ,γ [εζ]ψ−μ
(
−(1+ζ)∆ψ−∇ψ·∇ζ

)∣∣
Hs � μ2C

( 1

h0
, μ0, |ζ|Hs+1 , |∇ψ

∣∣
Hs+3

)
.

4. A Large Time Existence Result
for the Water–Waves Equations

This section is devoted to the proof of the main theorem of this article. We
state it below and refer to [1] for full details on the proof. We just hint
here at the main steps of the proof. Section 4.1 explains the structure of
the linearized equations (we do it in Section 4.1.1 with elementary tools
when the reference state is zero, and explain how to treat the general case
in Section 4.2). The main steps of the proof of the theorem are given in
Section 4.3.

Before stating the theorem, let us introduce the energy Es:

∀s � 0, Es
(
(ζ, ψ)

)
:= |ζ|Hs +

∣∣∣∣
ν−1/2|Dγ |

(1 +
√

μ|Dγ |)1/2
ψ

∣∣∣∣
Hs

. (4.1)

Theorem 4.1. Let s � 0 and U0 = (ζ0, ψ0) be such that Es(U0) < ∞
for some s = s(s) large enough. If moreover infRd(1 + εζ0) = h0 > 0, then
there exists T = T (Es(U0), 1

h0
, ε
√

μ) > 0 and a unique solution U = (ζ, ψ)

to (1.3) with (ζ, ψ − ψ0) ∈ C([0, T
ε/ν ]; Hs × Hs+1/2(Rd)); moreover,

sup
0�t� T

ε/ν

Es(U(t)) � C
(
T, Es(U0),

1

h0
, ε
√

μ
)
.

Remark 4.1. (i) The “large time” evoked in the title of this section
is thus O( 1

ε/ν ). In the shallow–water regime, ε/ν = 1 so that the existence

time furnished by the theorem is O(1). It is however “large” in the sense
that it is uniform with respect to μ ≪ 1 (and, in particular, it does not
shrink to zero as μ → 0).



14 David Lannes

(ii) The scale O( 1
ε/ν ) appears to be the pertinent scale of the dynamics

of the asymptotics in all the regimes mentioned in the introduction.

(iii) The theorem requires that ε
√

μ remains bounded in order to have
a useful control of the energy. As remarked previously, ε

√
μ = a/λ is the

slope of the waves and it is not restrictive at all to assume that it remains
bounded (in all the regimes considered here, ε

√
μ ≪ 1).

4.1. The linearized equations.

Let us rewrite the water-waves equations (1.3) in condensed form as

∂tU + Fε,μ,γ [U ] = 0

with U = (ζ, ψ)T and Fε,μ,γ [U ] given by

Fε,μ,γ [U ] =
(
− 1

μν
Gμ,γ [εζ]ψ, ζ+

ε

2ν
|∇γψ|2−εμ

ν

( 1
μGμ,γ [εζ]ψ +ε∇γζ ·∇γψ)2

2(1 + ε2μ|∇γζ|2)
)T

.

By definition, the linearized operator L(ζ,ψ) around some reference state

(ζ, ψ)T is given by

L(ζ,ψ) = ∂t + dUFε,μ,γ .

The goal of this section is to give energy estimates on the initial value
problem

L(ζ,ψ)U =
ε

ν
G, U|t=0

= U0. (4.2)

4.1.1. The linearized equations around the rest state. We assume
that U is the rest state: U = (0, 0)T . In this particular case, L(ζ,ψ) can be

directly computed:

L(0,0) = ∂t +

(
0 − 1

μνGμ,γ [0]·
1 0

)
;

moreover, one has an explicit expression for Gμ,γ [0]·.
Proposition 4.1. The operator Gμ,γ [0]· is given by the Fourier mul-

tiplier

Gμ,γ [0]· =
√

μ|Dγ | tanh(
√

μ|Dγ |) · .

Proof. By the definition of the operator Gμ,γ [0]·, one has Gμ,γ [0]ψ =
∂zΦ|z=0

, where Φ solves the Laplace equation

∂2
zΦ2 + μ∂2

xΦ + γ2μ∂2
yΦ = 0,

Φ|z=0
= ψ, ∂zΦ|z=−1

= 0.
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One can take the Fourier transform in the horizontal variables, which yields

the second order ODE on Φ̂:

∂2
z Φ̂ − μ|ξγ |2Φ̂ = 0,

which can be explicitly solved thanks to the boundary conditions. Taking
the inverse Fourier transform of the solution then yields

Φ(·, z) =
cosh(

√
μ(z + 1)|Dγ |)

cosh(
√

μ|Dγ |) ψ,

so that one gets by direct computation ∂zΦ|z=0
=

√
μ|Dγ | tanh(

√
μ|Dγ |)ψ,

which proves the proposition. �

From the proposition it follows that L(0,0) takes the explicit form

L(0,0) = ∂t +

(
0 − 1√

μν |Dγ | tanh(
√

μ|Dγ |)·
1 0

)
.

Quite obviously, this operator is non strictly hyperbolic (0 is a double eigen-
value of the principal symbol, and there is a Jordan block), and any sym-
metrizer, if it exists will be non-homogeneous (thus inducing a shift of deriv-
atives in the energy – see, for instance, [9] for a discussion on this point).
Here, a symmetrizer is obviously given by

S =

(
1 0
0 1√

μν |Dγ | tanh(
√

μ|Dγ |)·

)
,

which motivates the following choice of the energy

Es(U)2 = (ΛsU, SΛsU)

= |ζ|2Hs +
(
Λsψ,

1√
μν

|Dγ | tanh(
√

μ|Dγ |)ΛsΨ
)
.

It worth noticing that Es(U) ∼ Es(U) (and the equivalence is uniform with
respect to the parameters μ and γ). This shows in particular that this
energy controls the truncation error in Proposition 3.1.

Remark 4.2. It is true that one has the following equivalence:

Es(U) ∼ |U |Hs×Hs+1/2 .

However, this equivalence is completely useless because the equivalence is
not uniform with respect to γ and μ. The fact that one cannot use such an
equivalence complicates considerably the proof and compels us to use more
structural properties of the water-waves equations than in [17] for instance.

By very standard techniques, one then obtains the following assertion.
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Proposition 4.2. Assume that U = (0, 0) and s � 0. Assume also
that G ∈ C([0, T

ε/ν ]; Hs × Hs+1/2(R2)) and U0 ∈ Hs × Hs+1/2(R2). Then

there exists a unique solution U ∈ C([0, T
ε/ν ]; Hs×Hs+1/2(R2)) to (4.2) and

∀t ∈ [0,
ν

ε
T ], Es(U(t)) � Es(U0) + T sup

t∈[0,νT/ε]

Es(G(t)).

Remark 4.3. One could of course have solved (4.2) explicitly and
deduce the estimates, but our purpose here is to introduce the methods
used in the study of (4.2) when U is not necessarily zero.

4.2. The linearized equations in the general case.

In the general case, i.e., when U is not zero, the computation of L(ζ,ψ) is not

straightforward. However, assuming that U is such that the assumptions of
Theorem 3.1 are satisfied, one obtains, as in [17], the explicit expression

L(ζ,ψ) =

∂t+

(
ε

μνGμ,γ [εζ](Z·) + ε
ν∇γ · (·v) − 1

μνGμ,γ [εζ]·
ε2

μν ZGμ,γ [εζ](Z·) + (1 + ε2

ν Z∇γ · v) ε
ν v · ∇γ · − ε

μν ZGμ,γ [εζ]·

)
,

where v and Z are the same as in the statement of Theorem 3.1.

The study of the principal symbol of this operator shows that, as for
the linearization around zero, L(ζ,ψ) is not strictly hyperbolic (the double

eigenvalue is now ε
ν v · ξγ). As was shown in [17, Proposition 4.2], a simple

change of basis can be used to put the principal symbol of L(ζ,ψ) under a

canonical trigonal form. This result is generalized to the present case. More
precisely, with

a = 1 +
ε

ν
b, and b = εv · ∇γZ + ν∂tZ, (4.3)

and defining the operator M(ζ,ψ) = ∂t + M(ζ,ψ) with

M(ζ,ψ) =

( ε
ν∇γ · (·v) − 1

μνGμ,γ [εζ]·
a ε

ν v · ∇γ ·

)
, (4.4)

one reduces the study of (4.2) to the study of the initial value problem

M(ζ,ψ)V =
ε

ν
H, V|t=0

= V 0, (4.5)

as shown in the following proposition (whose proof relies on simple compu-
tations and is omitted).

Proposition 4.3. The following assertions are equivalent:
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(1) The pair U = (ζ, ψ)T solves (4.2).
(2) The pair V = (ζ, ψ − εZζ)T solves (4.5) with H = (G1, G2 − εZG1)

T

and V 0 = (ζ0, ψ0 − εZ |t=0
ζ0)T .

In view of this proposition, it is a key step to understand (4.5), and
the rest of this subsection shows the way to prove energy estimates for this
initial value problem.

The first remark that a symmetrizer for M(ζ,ψ) is given by

S =

(
a 0

0 ε2

ν2 + 1
μνGμ,γ [εζ]·

)
, (4.6)

so that (provided that a is nonnegative), a natural energy for the ivp (4.5)
is given by

Es(V )2 = (ΛsV, SΛsV )

= |√aΛsV1|22 +
ε2

ν2
|V2|2Hs +

(
ΛsV2,

1

μν
Gμ,γ [εζ]ΛsV2

)
. (4.7)

Remark 4.4. The term ε2

ν2 |V2|2Hs in (4.7) is due to the ε2

ν2 in the
second coefficient of the diagonal of (4.6). Removing this term would not
affect the energy estimate given below; however, thanks to it, the energy
controls the low frequencies of V2, which is very important in the iterative
scheme used to solve to full water-waves equations.

The energy (4.7) is the right one to obtain energy estimates on (4.5),
but the reference state U must be admissible in the following sense.

Definition 4.1. Let t0 > 1 and T > 0. We say that U = (ζ, ψ) is

admissible on [0, T
ε/ν ] if

• (ζ,∇ψ) ∈ C2([0, T
ε/ν ]; H∞(Rd)1+2),

• the surface parametrization ζ satisfies (3.1) for some h0 > 0, uniformly

on [0, T
ε/ν ],

• there exists c0 > 0 such that a � c0 uniformly on [0, T
ε/ν ].

We can now give the energy estimate associated to (4.5); it can be seen
as a generalization of Proposition 4.2. We refer to [1] for the proof (in the
statement of the proposition, Es

T (H) stands for Es
T (H) = sup

0�νT/ε

Es(H(t))).
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Proposition 4.4. Let t0 > 1, T > 0. Assume that U = (ζ, ψ) is

admissible on [0, T
ε/ν ] for some h0 > 0 and c0 > 0. Then, for all H ∈

C([0, T
ε/ν ]; H∞(R2)2), there exists a unique solution V∈C([0, T

ε/ν ]; H∞(R2)2)

to (4.5) and for all s � 0 and 0 � t � T
ε/ν

Es(V (t)) � C×[Es(V 0)+TEs
T (H)+〈(Et0+1(V 0)+TEt0+1

T (H))Ds〉s>t0+1],

where Ds = Es+7/2
T (U) + Es+2

T (∂tU) and

C = C
(
T,

1

h0
,

1

c0
,
ε

ν
, Et0+9/2

T (U), Et0+2
T (∂tU), Et0+3/2

T (∂2
t U)
)
.

4.3. Main steps of the proof of Theorem 4.1.

The energy estimate given in Proposition 4.4 concerns the initial value prob-
lem (4.5). Using Proposition 4.3 once again, but with the other side of the
equivalence, we deduce an energy estimate for the initial value problem
(4.2). This energy estimate does not allow us a standard Picard iterative
scheme because it exhibits losses of derivatives (in Proposition 4.4 for in-
stance, one needs an energy of order s + 7/2 on U to control an energy
of order s on V ). However, this energy is tame in the sense that the s-
dependent terms on the right hand side are all linear. This allows us, as
in [17], to use a Nash–Moser type iterative scheme. The order O( 1

ε/ν ) of

the existence time furnished by the Nash–Moser fixed point theorem follows
from the fact that the energy estimate of Proposition 4.4 depends only on
T for times T

ε/ν (note that we use here a special Nash–Moser theorem with

parameters for evolution equations developed in [2]).

The last points to comment on are the two conditions required in the
definition of an admissible reference state. Quite obviously, the condition
on the water depth will remain true for T small enough (but uniformly
with respect to the parameters) if it is initially true. The second condition,
on the sign of a, is not that clear. In fact, it follows from the works of
Wu [28, 29], generalized in [17] for the case of finite depth, that one has
necessarily a > 0 for exact solutions of the water-waves equations. Choosing
the first term of the iterative scheme in such a way that it solves the water-
waves equations at t = 0, there exists c0 such that a(t = 0) > 2c0; it is then
possibly to maintain the condition a(t) > c0 on [0, T

ε/ν ] (taking a smaller T

if necessary).
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5. Asymptotics for 3D Water–Waves

As an illustration of the methods developed in this note, we sketch here how
to give a full justification of asymptotic models for 3D water-waves in three
different regimes: shallow water, long waves, and KP regime.

5.1. Shallow-water equations.

We recall that the so-called “shallow–water” regime corresponds to the con-
dition μ ≪ 1 (so that ν ∼ 1) and that ε = γ = 1. It follows therefore from
Theorem 4.1 that there exists T > 0 independent of μ such that solutions to
(1.3) exist on [0, T ]. Moreover, the energy bound provided by the theorem
ensures that ζ and V := ∇ψ are uniformly bounded on [0, T ] in Sobolev
spaces. Plugging the expansion furnished by Proposition 3.2 into (1.3) and
taking the gradient of the second equations in order to obtain a system of
equations on ζ and V = ∇ψ, one gets

∂tV + ∇ζ + 1
2∇|V |2 = μRμ

1 ,

∂tζ + ∇ · (1 + ζV ) = μRμ
2

(5.1)

with Rμ
1 and Rμ

2 uniformly bounded in Sobolev spaces on the time interval
[0, T ]. An energy estimate on (5.1) thus shows that the error made by using
exact solutions of the shallow water equations (namely, (5.1) with zero on
the right-hand side) instead of (1.3) is O(μ) on [0, T ]. In other words, the
2DH shallow water model is fully justified.

5.2. Long-waves regime.

The long-wave regime is characterized by the scaling γ = 1, μ = ε ≪ 1 so
that ν ∼ 1. From Theorem 4.1 it follows that there exists T > 0 independent
of ε and a unique solution U = (ζ, ψ) to (1.3) on the time interval [0, T/ε]
such that the energy

|ζ(t)|Hs +

∣∣∣∣
|D|

(1 +
√

ε|D|)1/2
ψ(t)

∣∣∣∣
Hs

remains bounded on [0, T/ε]. Defining V = ∇ψ, this implies that ζ and V
remain bounded on [0, T/ε] in Sobolev spaces. This is exactly the condition
that was needed in [4] to fully justify the 2DH Boussinesq systems. For the
sake of completeness, we recall briefly the strategy of [4].
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Plugging the asymptotic expansion of the Dirichlet–Neumann operator
given by Corollary 3.1 into (1.3) and taking the gradient of the equation on
ψ, one gets

∂tV + ∇ζ + ε 1
2∇|V |2 = ε2Rε

1,

∂tζ + ∇ · V + ε
(

1
3∆∇ · V + ∇ · (ζV )

)
= ε2Rε

2,
(5.2)

where, as a consequence of Corollary 3.1 and Theorem 4.1, Rε
j = Rε

j(ζ, ψ)

(j = 1, 2) are uniformly bounded on the time interval [0, T/ε] in Sobolev
spaces. The Boussinesq system (5.2), however, is not well-posed, and one
cannot directly conclude as in the shallow–water regime. Using linear ma-
nipulations (set forth in a systematic way in [5]) and a nonlinear change
of variables introduced in [4], one can construct an infinity of Boussinesq
systems, formally equivalent to (5.2), some of which being well-posed. Mak-
ing the energy estimates on such a well-posed system, one can show that
the approximations furnished by the Boussinesq systems have a precision of
order O(ε2t) on [0, T/ε].

5.3. The Kadomtsev–Petviashvili approximation.

We recall that the KP regime is the same as the long-waves regime, but
with γ =

√
ε. Theorem 4.1 then furnishes a solution of (1.3) on a time

interval [0, T/ε]; moreover, the energy bound shows that ζ, ∂xψ and
√

ε∂yψ
are bounded on [0, T/ε] in Sobolev spaces. This was exactly the assumption
made in [18] to justify the Kadomtsev–Petviashvili equations which states
that the water elevation ζ is approximated on [0, T/ε] by

ζ(t, x) ∼ ζ+(εt, x − t,
√

εy) + ζ−(εt, x + t,
√

εy),

where ζ±(τ, x̃) solves

∂τ ζ± ± 1

2
∂−1

x ∂2
yζ± ± 1

6
∂3

xζ± +
3

2
ζ±∂xζ± = 0.

The strategy of [18] to justify the KP approximation from the large time
existence theorem and the bounds on ζ, ∂xψ, and

√
ε∂yψ consists in justi-

fying first a class of weakly transverse Boussinesq systems along the lines
described in Section 5.2. The KP approximation is then justified from these
systems with nonlinear optics methods, as in [3].
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The well-posedness theory of the Cauchy problem for linear transport equations

with only bounded measurable coefficients is presented. In the case of one spatial

variable, the existence and uniqueness of generalized and renormalized solutions

are established, the notion of generalized characteristics is introduced. This theory

is also applied to prove the existence and uniqueness of strong entropy solutions of

the Cauchy problem for systems of Keyfitz–Kranzer type. Bibliography: 20 titles.

1. Introduction

Transport equations are linear first order partial differential equations of
the form

Aut + (B,∇xu) = f, u = u(t, x), (t, x) ∈ Π = R+ × Rn. (1.1)

Hereinafter, R+ = (0, +∞),(·, ·) denotes the inner product in Rn, A =
A(t, x), B = B(t, x) = (B1(t, x), . . . , Bn(t, x)) ∈ Rn, and f = f(t, x, u) is
the source function. We study the Cauchy problem for Equation (1.1) with
initial condition

u(0, x) = u0(x). (1.2)
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If A, B, f , and u0 are smooth, there exists a unique solution of the problem
(1.1), (1.2), and this solution can be constructed by the method of charac-
teristics (see, for example, [8]). More exactly, suppose that A, Bi ∈ C1(Π),
i = 1, . . . , n, f(t, x, u) ∈ C1(Π × R), |A| > δ > 0. Dividing by A, we reduce
Equation (1.1) to the form

ut + (C,∇xu) = g, C = B/A, g = f/A (1.3)

with the smooth vector of coefficients C = (C1, . . . , Cn) and source function
g = g(t, x, u). For the sake of simplicity we suppose that C and g are
bounded. The characteristics of Equation (1.3) are integral curves x =
x(t) ∈ Rn of the system of ordinary differential equations

ẋ = C(t, x), (1.4)

which are well defined for all t � 0 since the vector C is bounded. A smooth
function u(t, x) satisfies Equation (1.3) if and only if for any characteris-
tic x(t)

d

dt
u(t, x(t)) = [ut + (ẋ,∇xu)](t, x(t)) = [ut + (C,∇xu)](t, x(t))

= g(t, x(t), u(t, x(t))).

Thus, along any characteristic x = x(t), the solution u = u(t, x) must satisfy
the ordinary differential equation u̇ = g = g(t, x, u). This, together with
(1.4), leads to the system

ẋ = C(t, x),

u̇ = g(t, x, u).
(1.5)

Denote by x(t; t0, x0) the characteristic passing through the point (t0, x0) ∈
Π, i.e., the solution of (1.4) satisfying the Cauchy condition x(t0) = x0.
Let y(t0, x0) = x(0; t0, x0) be the source point of this characteristic. By
the known properties of ordinary differential equations, y(t, x) ∈ C1(Π).
Denote by x(t; y0), u(t; y0, u0) the solution of the Cauchy problem for the
system (1.5) with initial data x(0) = y0, u(0) = u0. It is obvious that
x(t; y0) = x(t; t0, x0) for y0 = y(t0, x0). If u(t, x) is a solution of the prob-
lem (1.3), (1.2) with u0(x) ∈ C1(R), then u(t, x(t; y0)) = u(t; y0, u0(y0)).
From this relation it follows that the solution of the problem (1.3), (1.2)
is uniquely determined by the equality u(t, x) = u(t; y(t, x), u0(y(t, x))). In
the particular case g = g(t, x), we have

u(t, x) = u0(y(t, x)) +

t∫

0

g(s, x(s; t, x))ds, (1.6)
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and for homogeneous equation (with g ≡ 0) the equality (1.6) takes the
simple form u(t, x) = u0(y(t, x)) showing that the solution is constant along
the characteristics.

In the classical case of smooth input data, the method of character-
istics allows us to reduce the problem (1.1), (1.2) to the Cauchy problem
for some system of ordinary differential equations. But this method cannot
be applied to equations with nonsmooth (and even discontinuous) coeffi-
cients which actually arises in various applications. We give an interesting
example in the following section.

2. Hyperbolic Systems of Keyfitz–Kranzer Type

Consider the system of Keyfitz–Kranzer type

ut + (ϕ(|u|)u)x = 0, (2.1)

u = u(t, x) ∈ Rn, |u| = (u2
1 + · · · + u2

n)1/2.

Such systems arise in numerous applications and are widely investigated
(see, for example, [3, 9, 15]). The system (2.1) is a nonstrictly hyperbolic
system of conservation laws. We consider the Cauchy problem for (2.1) with
initial condition

u(0, x) = u0(x) ∈ L∞(R, Rn). (2.2)

Assume that ϕ(r) ∈ C(R+) satisfies the condition

rϕ(r) → 0 as r → 0+. (2.3)

From this relation it follows that the function

f(r) =

{
ϕ(|r|)r, r �= 0,

0, r = 0

is continuous. Suppose for a moment that ϕ(r) ∈ C1([0, +∞)), u = u(t, x) ∈
Rn is a smooth solution of (2.1) and r = |u| > 0. Then (ϕ(r)u)x = ϕ(r)ux +
ϕ′(r)(u/r, ux)u. This implies that

(
u/r, (ϕ(r)u)x

)
= (ϕ(r) + rϕ′(r))(u/r, ux) = f ′(r)(u/r, ux)

and

rt + (f(r))x = (u/r, ut) + f ′(r)(u/r, ux) = (u/r, ut + (ϕ(r)u)x) = 0.

This relation justifies the notion of a strong generalized entropy solution of
the problem (2.1), (2.2) introduced in [15].



26 Evgenii Panov

Definition 1. A bounded measurable vector-function u = u(t, x) is
called a strong generalized entropy solution of the problem (2.1), (2.2) if
ut + (ϕ(r)u)x = 0 in the sense of distributions on Π (in D′(Π, Rn)), while
the function r = |u(t, x)| is a generalized entropy solution (in the sense of
Kruzhkov [10]) of the scalar problem

rt + (f(r))x = 0, r(0, x) = r0 = |u0(x)| (2.4)

and

ess lim
t→0+

u(t, ·) = u0 in L1
loc(R, Rn), (2.5)

i.e., there exists a set E ⊂ (0, +∞) of full Lebesgue measure such that for
t ∈ E u(t, ·) ∈ L1

loc(R, Rn), and u(t, ·) → u0 in L1
loc(R, Rn) as t → 0, t ∈ E.

The notion of a strong generalized entropy solution coincides with
that of a renormalized solution introduced in [3]. As was shown in [15],
any strong generalized entropy solution of the problem (2.1), (2.2) is also a
generalized entropy solution of this problem, i.e., it satisfies the Kruzhkov–
Lax entropy relations for all convex entropies of (2.1) (these entropies are
completely described in [15]). As was shown in [15], the strong generalized
entropy solutions generate the natural correctness class for the problem
(2.1), (2.2).

If u = u(t, x) is a strong generalized entropy solution of the problem
(2.1), (2.2) then, by Definition 1, the function r = |u(t, x)| is a unique
generalized entropy solution of the scalar problem (2.4). Note that the flux
function f(r) is here only continuous, and the unconditional uniqueness of a
generalized entropy solution is valid only in the case of one spatial variable
(see [11, 12, 16] for details). We see that if u is a generalized solution of
the problem (2.1), then the functions vi = ui/r, i = 1, . . . , n (for r = 0 the
values of these functions are not essential) must satisfy in D′(Π) the linear
transport equation

(Av)t + (Bv)x = 0 (2.6)

with, in general, discontinuous coefficients A = A(t, x) = r(t, x), B =
B(t, x) = f(r(t, x)) and initial condition

v(0, x) = v0i = u0i/r0. (2.7)

Based on the theory of generalized solutions of the problem (1.1), (1.2)
developed in [13, 14, 15], we can prove the existence and uniqueness of a
strong generalized entropy solution of the problem (2.1), (2.2) (see [15] and
Theorem 4 below).
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3. Homogeneous Transport Equations.
Generalized Solutions of the Cauchy Problem

3.1. Preliminaries.

Let Π = R+ × Rn be a half-space, and let a vector (A, B) ∈ L∞(Π, Rn+1)
be such that

∀ε > 0 |B| � N(ε) · (A + ε) a.e. on Π, εN(ε) → 0 as ε → 0+, (3.1)

At + divxB = 0 in D′(Π). (3.2)

In the condition (3.1), |B| is the Euclidean norm of a vector B = (B1, . . . , Bn).

As is known (see, for example, [8]), for a piecewise smooth field v =
(A, B) of coefficients the condition divv = At + divxB = 0 in D′(Π) is
satisfied if and only if divv = 0 in the classical sense in domains where
v is smooth and, on any discontinuity surface S, the Rankine–Hugoniot
condition

([v], ν) = [A]νt + ([B], νx) = 0 (3.3)

is satisfied. In (3.3), [v] = v+ − v− denotes the jump of the vector v on S,
v± are one-sided limits of v on the surface S, and ν = (νt, νx) ∈ Rn+1 is the
normal vector on S. In the one-dimensional case n = 1, the condition (3.3)
on the discontinuity curve x = x(t) can be written in the form ẋ = [B]/[A].

We show that the condition (3.1) can be written in the form

A(t, x) � 0 a.e. on Π, |B(t, x)| � Φ(A(t, x)) a.e. on Π (3.4)

for some Φ(r) ∈ C([0, +∞)), Φ(0) = 0.

Proposition 1. The conditions (3.1) and (3.4) are equivalent.

Proof. Suppose that the condition (3.1) is satisfied. If A(t, x) < 0
on a set of positive measure, then there is a positive constant ε such that
A(t, x) < −ε on a set of positive measure. But this contradicts the condition
N(ε)(A+ ε) � |B(t, x)| � 0 a.e. on Π. Thus, A(t, x) � 0 a.e. on Π. Let Q+

be the set of positive rational numbers, and let Φ(r) = inf
ε∈Q+

N(ε)(r + ε),

r � 0. The function Φ(r) is nonnegative and concave since it is the infimum
of a family of affine functions r → N(ε)(r + ε), ε ∈ Q+. Therefore, it is
continuous for r > 0. We show that Φ(r) is also continuous at r = 0. It is
clear that Φ(0) = inf

ε∈Q+

N(ε)ε = 0 in view of (3.1). By (3.1), for any positive
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δ there is ε0 ∈ Q+ such that N(ε0)ε0 < δ/2. Then for all r ∈ [0, ε0) we have

Φ(r) < N(ε0)(r + ε0) < 2N(ε0)ε0 < δ.

Hence lim
r→0

Φ(r) = 0 = Φ(0). We conclude that Φ(r) ∈ C([0, +∞)), Φ(0) =

0. Further, since Q+ is countable, for all ε ∈ Q+ we can choose the same
set of full Lebesgue measure, where the inequality (3.1) holds. On this set,
we have

|B(t, x)| � inf
ε∈Q+

N(ε)(A(t, x) + ε) = Φ(A(t, x)),

i.e., the condition (3.4) is satisfied.

Conversely, assume that (3.4) is satisfied. We set

M = ‖A‖∞, C = max
r∈[0,M ]

Φ(r), N(ε) = sup
r∈[0,M ]

Φ(r)

r + ε
, ε > 0.

It is obvious that for a.e. (t, x) ∈ Π we have A(t, x) ∈ [0, M ] and

|B(t, x)| � Φ(A(t, x)) �
Φ(A(t, x))

A(t, x) + ε

(
A(t, x) + ε

)
� N(ε)

(
A(t, x) + ε

)
.

To complete the proof, it remains to verify that εN(ε) → 0 as ε → 0+.
By assumption, lim

r→0
Φ(r) = 0 and for any δ > 0 there is r0 > 0 such

that Φ(r) < δ for all r ∈ [0, r0]. Therefore,
Φ(r)

r + ε
<

δ

ε
for r ∈ [0, r0] and

Φ(r)

r + ε
�

C

r0 + ε
for r ∈ [r0, M ]. . Hence

N(ε) � max

(
δ

ε
,

C

r0 + ε

)
�

δ

ε
+

C

r0 + ε
,

which implies that lim sup
ε→0

εN(ε) � δ. Since δ > 0 is arbitrary we conclude

that lim
ε→0

εN(ε) = 0. �

Remark 1. For Equation (2.6) the conditions (3.1) and (3.2) are sat-
isfied. Indeed, A = r is a generalized entropy solution of the problem (2.4)
with nonnegative initial data. By the maximum principle [11, 12, 16], this
solution is also nonnegative: A � 0. Since B = f(A) and f(0) = 0, the con-
dition (3.1) in the form (3.4) is satisfied. Finally, At + Bx = rt + (f(r))x = 0
by the assumption that r is a generalized entropy solution of the scalar prob-
lem (2.4).

We need the following simple result.
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Lemma 1. Suppose that A = A(t, x) ∈ L∞(Π), B = B(t, x) ∈
L∞(Π, Rn), and At + divxB = 0 in D′(Π). Then A(t, ·) is weakly-∗ con-
tinuous in L∞(Rn) with respect to t up to the point t = 0 (after a correction
of A on a set of zero measure, if necessary).

Proof. Since At + divxB = 0 in D′(Π), for every h(x) ∈ C∞
0 (Rn)

∂

∂t

∫
A(t, x)h(x)dx =

∫
(B(t, x),∇h(x))dx in D′(R).

We see that the function

Ih(t) =

∫
A(t, x)h(x)dx

has the bounded derivative in the sense of distributions. Therefore, this
function, well-defined on the set of full measure

E = {t > 0|(t, x) is a Lebesgue point of A(t, x) for a.e. x ∈ Rn}, (3.5)

is Lipschitz continuous. This implies that there exists a unique extension
of Ih(t) as a continuous function on the whole ray [0, +∞). It is clear that
|Ih(t)| � ‖A‖∞ · ‖h‖1 and for every t � 0 the correspondence h → Ih(t) is
extended as a continuous linear functional on L1(Rn). Since the dual space
(L1(Rn))∗ is L∞(Rn), for all t ∈ [0, +∞) there exists a function F (t, ·) ∈
L∞(Rn) such that Ih(t) =

∫
h(x)F (t, x)dx. It is clear that F (t, x) = A(t, x)

a.e. on Rn for all t ∈ E and the mapping t → F (t, ·) ∈ L∞(Rn) is weakly-
∗ continuous, which easily follows from the boundedness of ‖F (t, ·)‖∞ and
continuity of the functions Ih(t) = 〈F (t, ·), h〉 for each h = h(x) in the dense
subspace C∞

0 (Rn). of L1(Rn)

If we correct A(t, x) on a set of zero measure t /∈ E by setting A(t, x) =
F (t, x) for such t, we obtain the desired property of continuity. �

In particular, from Lemma 1 it follows that A(0, x) can be defined in
such a way that for some set E ⊂ R+ of full Lebesgue measure

A(t, x) → A(0, x) weakly-∗ in L∞(Rn) as t → 0, t ∈ E. (3.6)

3.2. Definition of a generalized solution.

We consider the Cauchy problem for the transport equation Aut+(B,∇xu) =
0 written in the divergence form (by the condition (3.2))

(Au)t + divxBu = 0, (3.7)
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with initial condition

u(0, x) = u0(x) ∈ L∞(Rn). (3.8)

Definition 2. A function u = u(t, x) ∈ L∞(Π) is called a general-
ized solution of the Cauchy problem (3.7), (3.8) if for any test function
h = h(t, x) in the space C∞

0 (Π̄) of infinitely differentiable functions with
compact support in Π̄ = [0, +∞)× Rn we have

∫

Π

[Auht + (Bu,∇xh)]dtdx +

∫

Rn

A(0, x)u0(x)h(0, x)dx = 0. (3.9)

Below we give one useful equivalent definition of a generalized solution.

Proposition 2. A function u = u(t, x) ∈ L∞(Π) is a generalized solu-
tion of the problem (3.7), (3.8) if and only if (Au)t + divxBu = 0 in D′(Π)
and

ess lim
t→0+

A(t, x)u(t, x) = A(0, x)u0(x) weakly-∗ in L∞(Rn). (3.10)

Proof. Let u = u(t, x) be a generalized solution of the problem
(3.7), (3.8). Taking h ∈ C∞

0 (Π) in (3.9), we find (Au)t + divxBu = 0 in
D′(Π). Let g(x) ∈ C∞

0 (Rn). Choose γ(s) ∈ C∞
0 (R) such that γ(s) � 0,

supp γ ⊂ [0, 1],

∫
γ(s)ds = 1. For ν ∈ N we set δν(s) = νγ(νs). It is clear

that δν ∈ C∞
0 (R), δν � 0, supp δν ⊂ [0, 1/ν],

∫
δν(s)ds = 1. Therefore, the

sequence δν converges to the Dirac δ-function in the space of distributions

D′(R) as ν → ∞. Let χν(t) =

t∫

−∞

δν(s)ds. Then χν(t) converges pointwise

to the Heaviside function as ν → ∞. Then hν(t, x) = g(x)χν(t0 − t) ∈
C∞

0 (Π̄) for t0 > 0 and, by Definition 2,
∫

Π

[Au(hν)t + (Bu,∇xhν)]dtdx +

∫

Rn

A(0, x)u0(x)g(x)dx = 0

for sufficiently large ν. We transform this equality as follows:
∫

Π

A(t, x)u(t, x)g(x)dxδν (t0 − t)dt −
∫

Rn

A(0, x)u0(x)g(x)dx
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=

∫

Π

(B(t, x)u(t, x),∇g(x))χν (t0 − t)dtdx. (3.11)

We can find a set of full measure E ⊂ R+ consisting of common Lebesgue

points of the functions t →
∫

Rn

A(t, x)u(t, x)g(x)dx for all g(x) ∈ C∞
0 (Rn).

For example, the set E can be defined similarly to (3.5):

E = {t > 0|(t, x) is a Lebesgue point of A(t, x)u(t, x) for a.e. x ∈ Rn}.

Let t0 ∈ E. Passing to the limit as ν → ∞ in (3.11), we find
∫

Rn

A(t0, x)u(t0, x)g(x)dx −
∫

Rn

A(0, x)u0(x)g(x)dx

=

∫

(0,t0]×Rn

(B(t, x)u(t, x),∇g(x))dtdx → 0, t0 → 0.

Thus, for all g(x) ∈ C∞
0 (R)

∫

Rn

A(t, x)u(t, x)g(x)dx →
∫

Rn

A(0, x)u0(x)g(x)dx

as t → 0, t ∈ E. Since A(t, ·)u(t, ·) are bounded uniformly in t ∈ E and
C∞

0 (Rn) is dense in L1(Rn), we conclude that A(t, ·)u(t, ·) → A(0, ·)u0

weakly-∗ in L∞(Rn) as t → 0, t ∈ E.

Conversely, assume that u(t, x) satisfies (3.7) in D′(Π) and A(t, x)u(t, x)
→ A(0, x)u0(x) weakly-∗ in L∞(Rn) as t → 0, belonging to some set
E1 ⊂ R+ of full measure. Assume that h = h(t, x) ∈ C∞

0 (Π̄). Then fν(t, x) =
h(t, x)χν(t− t0) belongs to C∞

0 (Π) for t0 > 0 and, since (Au)t + (Bu)x = 0
in D′(Π), we have the equality

∫

Π

[Au(fν)t + (Bu,∇xfν)]dtdx = 0

which can be transformed as follows:
∫

Π

A(t, x)u(t, x)h(t, x)dxδν (t − t0)dt

+

∫

Π

[Auht + (Bu,∇xh)]χν(t − t0)dtdx = 0.
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This implies

∫

[t0,∞)×Rn

[Auht + (Bu,∇xh)]dtdx +

∫

Rn

A(t0, x)u(t0, x)h(t0, x)dx = 0

as ν → ∞ if t0 ∈ E. Passing to the limit as t0 → 0, t0 ∈ E ∩ E1, and tak-
ing into account the weak-∗ convergence A(t, x)u(t, x) → A(0, x)u0(x), we
derive (3.9). Thus, u(t, x) is a generalized solution of (3.7), (3.8). �

Remark 2. If u = u(t, x) ∈ L∞(Π) is a generalized solution of (3.7),
then it always has a weak trace, i.e., there exists a function u0 ∈ L∞(Rn)
such that

ess lim
t→0+

A(t, x)u(t, x) = A(0, x)u0(x) weakly-∗ in L∞(Rn).

Indeed, applying Lemma 1 to the divergence free field (Au, Bu), we conclude
that there exists a weak trace v of Au(t, ·) at t = 0. Let M = ‖u‖∞.
Passing to the weak limit as t → 0 in the inequality −MA � Au � MA,
we find that −MA(0, x) � v(x) � MA(0, x) a.e. on Rn. Then v(x) =
A(0, x)u0(x) for some function u0(x) ∈ L∞(Rn) such that ‖u0‖∞ � M .
Thus, any bounded generalized solution of (3.7) is a generalized solution of
some Cauchy problem (3.7), (3.8).

In the case of smooth coefficients, any generalized solution must be
constant along the characteristics, as in the classical case. More exactly,
suppose that Ω ⊂ R × Rn is an open domain, A ∈ C1(Ω), A > 0, B ∈
C1(Ω, Rn), At + divxB = 0 in Ω. Consider Equation (3.7) in Ω. We call
a function u = u(t, x) ∈ L1

loc(Ω) a generalized solution of this equation if
(Au)t + divxBu = 0 in D′(Ω) (no initial conditions are prescribed).

Proposition 3. A function u = u(t, x) ∈ L1
loc(Ω) is a generalized

solution of (3.7) if and only if u(t, x) is constant along the characteristics,
upon a correction on a set of null Lebesgue measure.

Proof. The statement has local character, and we can assume that
the domain Ω = {(t, x)|t = t(τ ; y), x = x(τ ; y), |τ | < h, |y − x0| < r},
where (t0, x0) ∈ R × Rn is a fixed point and t = t(τ ; y), x = x(τ ; y), is
the characteristic passing through the point (t0, y) at τ = 0, i.e., it is the
integral curve of the solution to the Cauchy problem for the characteristic
system

ṫ = A(t, x), ẋ = B(t, x); t(0) = t0, x(0) = y,
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which is written in the parametric form. We assume that h, r > 0 are
chosen so small that any solution of this system is determined in the inter-
val (−h, h).

Introduce the cylinder Ω̃ = (−h, h) × Vr(x0) with Vr(x0) = {y ∈
Rn||y−x0| < r} and the mapping F : Ω̃ → Ω, F (τ, y) = (t(τ ; y), x(τ ; y)). It

is clear that F is a diffeomorphism from Ω̃ onto Ω and, since At+divxB = 0,
this mapping conserves the Lebesgue measure. For u(t, x) ∈ L1

loc(Ω) we set

ũ = (u ◦ F )(τ, y) ∈ L1
loc(Ω̃). If h̃ = h̃(τ, y) ∈ C1

0 (Ω̃) is a test function, then

h̃ = (h ◦ F )(τ, y), where h = h(t, x) = (h̃ ◦ F−1)(t, x) ∈ C1
0 (Ω). Since

h̃τ (τ, y) = [httτ + (∇xh, xτ )](τ, y) = [Aht + (B,∇xh)](τ, y),

we have
∫

Ω̃

ũ(τ, y)h̃τ (τ, y)dτdy =

∫

Ω̃

ũ(τ, y)[Aht + (B,∇xh)](τ, y)dτdy

=

∫

Ω

u(t, x)[Aht + (B,∇xh)](t, x)dtdx. (3.12)

In the last equality, we make the change of variables (τ, y) → (t, x) = F (τ, y)
and take into account that the mapping F conserves the Lebesgue measure.
In (3.12), h̃ ∈ C1

0 (Ω̃) and, respectively, h ∈ C1
0 (Ω) can be arbitrary. Hence

(Au)t + divxBu = 0 in D′(Ω) if and only if ũτ = 0 in D′(Ω̃). The last
identity means that, after a correction on a set of null Lebesgue measure, ũ is
independent of τ , i.e., u(t, x) is constant along each characteristic t = t(τ ; y),
x = x(τ ; y). �

In the case of smooth coefficients, from Proposition 3 it follows that a
generalized solution u = u(t, x) satisfies the renormalization property, i.e.,
the function p ◦ u is also a generalized solution for any p (z) ∈ C(R).

4. Existence, Uniqueness, and
Renormalization Property

4.1. Existence and nonuniqueness
in multi-dimensional case.

We prove the existence of a generalized solution in the case of an arbitrary
dimension n by using the regularization of coefficients.
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Theorem 1. There exists a generalized solution u(t, x) of the problem
(3.7), (3.8).

Proof. Let γ(x) ∈ C∞
0 (R) be such that γ(x) � 0, supp γ ⊂ [−1, 0],
∫

γ(x)dx = 1.

For ν ∈ N, (τ, ξ) ∈ R × Rn we set

δν(τ, ξ) = νn+1γ(ντ) ·
n∏

i=1

γ(νξi).

It is clear that δν ∈ C∞
0 (Rn+1), δν � 0, supp δν ⊂ [−1/ν, 0]n+1,

∫
δν(τ, ξ)dτdξ = 1

(therefore, δν converges to the Dirac δ-function in D′(Rn+1) as ν → ∞).
Introduce the following approximation sequences for the coefficients A(t, x),
B(t, x):

Aν(t, x) = (A ∗ δν)(t, x) +
1

ν
=

∫
A(t − τ, x − ξ)δν(τ, ξ)dτdξ +

1

ν
;

Bν(t, x) = (B ∗ δν)(t, x) =

∫
B(t − τ, x − ξ)δν(τ, ξ)dτdξ ∈ Rn.

Note that the convolutions are well defined for (t, x) ∈ Π because
t − τ � 0 for (τ, ξ) ∈ supp δν . By the known properties of averaged func-
tions, Aν , Bν ∈ C∞(Π), Aν � 1/ν (since A � 0 a.e. on Π) and Aν → A,
Bν → B in L1

loc(Π) as ν → ∞. From (3.1), (3.2) it follows that

|Bν(t, x)| �

∫
|B(t − τ, x − ξ)|δν(τ, ξ)dτdξ

� N(1/ν)

∫
(A(t − τ, x − ξ) + 1/ν)δν(τ, ξ)dτdξ

= N(1/ν)Aν(t, x), (4.1)

(Aν)t + divxBν = (At + divxB) ∗ δν = 0. (4.2)

Let Cν(t, x) = Bν(t, x)/Aν (t, x) ∈ C∞(Π, Rn) (recall that Aν � 1/ν). By
(4.1), we have |Cν | � N(1/ν). Choose a sequence u0ν(x) ∈ C1(Rn) such
that u0ν → u0 in L1

loc(R
n) as ν → ∞ and ‖u0ν‖∞ � M = ‖u0‖∞. We

consider the classical solution uν(t, x) ∈ C1(Π) of the Cauchy problem

ut + (Cν ,∇xu) = 0, u(0, x) = u0ν(x). (4.3)
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The solution uν(t, x) of the problem (4.3) is uniquely determined by the
condition that it remains constant along the characteristics (see Section 1):
uν(t, x) = u0ν(yν(t, x)), where yν(t, x) is the source point of the characteris-
tic of (4.3) passing through the point (t, x). It is obvious that the solutions
uν satisfy the following “maximum principle:”

∀(t, x) ∈ Π |uν(t, x)| � ‖u0ν‖∞ � M. (4.4)

Multiplying the equality (uν)t + (Cν ,∇xuν) = 0 by Aν , we find that

Aν(uν)t + (Bν ,∇xuν) = 0

pointwise. Taking into account (4.2), we can write this equality in the
divergence form:

(Aνuν)t + divx(Bνuν) = 0 pointwise and in D′(Π). (4.5)

From (4.5) we obtain the following identity for all h = h(t, x) ∈ C∞
0 (Π̄):

∫

Π

[Aνuνht + (Bνuν ,∇xh)]dtdx +

∫

Rn

Aν(0, x)u0ν(x)h(0, x)dx = 0. (4.6)

By (4.4), the sequence uν is bounded in L∞(Π). Therefore, extracting a
subsequence, we can assume that uν → u weakly-∗ in L∞(Π) as ν → ∞,
where u = u(t, x) ∈ L∞(Π), ‖u‖∞ � M . Passing to the limit in (4.6) as
ν → ∞ and taking into account the relations Aν → A in L1

loc(Π), Bν → B
in L1

loc(Π, Rn); u0ν → u0 in L1
loc(R

n); Aν(0, x) → A(0, x) weakly-∗ in L∞(R)
(the latter easily follows from (3.6)), we derive that the limit function u(t, x)
satisfies (3.9), i.e., it is a generalized solution of the problem (3.7), (3.8). �

Unfortunately, the uniqueness of a generalized solution and the impor-
tant renormalization property (see Theorem 3 below) do not hold in general
for n > 1 (see recent examples in [5], [6]). Below we give a construction
based on a modification of the example from [6].

Example 1. Let n = 2. We first introduce the field of coefficients v =
(A, B1, B2) in the layer 2 � t � 4. Assume that it is 4-periodic with respect
to the spatial variables, i.e., v(t, x1 + 4, x2) = v(t, x1, x2 + 4) = v(t, x1, x2).
To define the field v in the domain x1 ∈ [0, 4), x2 ∈ [0, 4), we set

v =

⎧
⎪⎨
⎪⎩

(5 − t, 0, x2), x1 ∈ [0, 2), (5 − t)x2 ∈ [0, 4),

(5 − t, 0, x2 − 4), x1 ∈ [2, 4), (5 − t)(4 − x2) ∈ (0, 4],

0 otherwise



36 Evgenii Panov

in the strip 3 � t � 4 and

v =

⎧
⎪⎨
⎪⎩

(t − 1,−x1, 0), x2 ∈ [0, 2), (t − 1)x1 ∈ [0, 4),

(t − 1, 4 − x1, 0), x2 ∈ [2, 4), (t − 1)(4 − x1) ∈ (0, 4],

0, otherwise

in the strip 2 � t � 3.

It is directly verified that the field v is piecewise smooth, is diver-
gence free in the domains of smoothness, and is tangent to the surfaces of
discontinuity. This implies that the Rankine–Hugoniot relations hold on
these surfaces. Hence divv = 0 in D′((2, 4) × R2). Note also that either
A = B1 = B2 = 0 or A = A(t) � 1, |B| � 4, B = (B1, B2). Thus, |B| � 4A
and the condition (3.1) is satisfied with N(ε) ≡ 4.

The characteristics corresponding to the field v in the domains of its
smoothness are easily computed. In the region t ∈ [3, 4], x1 ∈ [0, 4), x2 ∈
[0, 4), they are the hyperbolas defined by (5 − t)x2 = const, x1 = const ∈
[0, 2), and (5 − t)(4 − x2) = const, x1 = const ∈ [2, 4). The flow along
characteristics transforms the rectangles V1 and V2 in Fig. 1 into the squares
S1 and S2 sqeezing the rectangles in the x2 direction. Similarly, for t ∈
[2, 3] the characteristics starting for t = 3 at points of the squares S1 and
S2 are the hyperbolas (t − 1)x1 = const, x2 = const ∈ [0, 2), and (t −
1)(4 − x1) = const, x2 = const ∈ [2, 4) respectively. The flow along these
characteristics expand the squares S1, S2 in the x1-direction producing two
horizontal rectangles H1 and H2 as in Fig. 1.

Now we define the field v for all t > 0 by setting v(t, x) = v(2kt, 2kx) if

t = 4 t = 3 t = 2

Figure 1. The flow along the characteristics.

t ∈ [2 · 2−k, 4 · 2−k], k = 0, 1, 2, . . ., and v(t, x) = (1, 0, 0) if t � 4. Since
A(2, ·) = A(4, cdot) = 1, the coefficient A(t, ·) is weakly-∗ continuous in
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L∞(R2) with respect to t > 0, which implies that the field v remains di-
vergence free in the whole half-space t > 0. We see also that the condition
|B| � 4A is satisfied. Since the map t → A(t, ·) is weakly-∗ continuous and
A(2−k, ·) = 1, k ∈ N, we have A(0, ·) ≡ 1.

Let ϕ(s) be a 4-periodic function such that ϕ(s) = −1 for s ∈ [0, 2),

t = 4 t = 3 t = 2

Figure 2. The generalized solution u(t, x).

and ϕ(s) = 1 for s ∈ [2, 4). Using the method of characteristics and the
properties of the corresponding flow, we can construct a generalized solution
of the equation Aut + B1ux1 + B2ux2 = 0 satisfying the Cauchy condition
u(4, x) = ϕ(x2). This generalized solution is weakly-∗ continuous in L∞(R2)
with respect to t up to the boundary t = 0, and Au(4 · 2−k, x) = ϕ(2kx2),
k ∈ N (see Fig. 2). Thus, the weak trace of Au(t, ·) coincides with the
weak limit of the sequence ϕ(2kx2), which is equal to zero. We conclude
that u is a nontrivial generalized solution of our equation with zero initial
data. Therefore, the generalized solution of the Cauchy problem under
consideration is not unique.

4.2. One-dimensional case.

The above example shows that additional regularity assumptions are neces-
sary to guarantee the well-posedness of the Cauchy problem for the multi-
dimensional transport equation. For example, in the famous paper by
DiPerna and Lions [7], the uniqueness of a generalized solution and renor-
malization property were established under the condition that the coeffi-
cients belong to the Sobolev space. Similar results were obtained in [1, 2]
for coefficients in the BV -space. Some other regularity assumptions were
considered in [4, 6, 17, 18]. It turns out that in the one-dimensional situ-
ation n = 1, no regularity assumptions are required. Apparently, this fact
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was first observed in [19] (see also [20]), where the existence of a gener-
alized solution satisfying the renormalization property was established for
the transport equations arising in the study of plane electromagnetic waves.
The theory of generalized solutions in the one-dimensional case was also
developed in [13]–[15] as a technical tool for the study of some nonstrictly
hyperbolic systems of conservation laws. Below we present some results
(including many new results) of this theory.

We restrict ourselves to the one-dimensional case n = 1 where the
problem (3.7), (3.8) has the simple form

(Au)t + (Bu)x = 0, (t, x) ∈ Π = R+ × R, (4.7)

u(0, x) = u0(x), (4.8)

where A, B ∈ L∞(Π) satisfy the conditions (3.1), (3.2), i.e.,

∀ε > 0 |B| � N(ε) · (A + ε) a.e. on Π , εN(ε) → 0 as ε → 0+, (4.9)

At + Bx = 0 in D′(Π). (4.10)

4.2.1. Preliminaries. We need some technical assertions.

Lemma 2. Suppose that

αt + βx � 0 in D′(Π), α = α(t, x), β = β(t, x) ∈L∞(Π),

ess lim
t→0+

α(t, x) = α(0, x) weakly-∗ in L∞(R)

and for all ε > 0

|β(t, x)| � C(ε)(α(t, x) + ε) a.e. in Π,

where C(ε) � 1. Let c > 0. Then for a.e. t > 0
∫

α(t, x)e−c|x|dx � ect · inf
ε>0

( ∫
α(0, x)e−c|x|/C(ε)dx + 2εC(ε)/c

)
.

Proof. Let ε > 0. Multiplying the inequality (α + ε)t + βx � 0 by
the nonnegative function gε(x) = e−c|x|/C(ε) and integrating over x ∈ R, we
find

d

dt

∫
(α(t, x) + ε)gε(x)dx �

∫
β(t, x)g′ε(x)dx in D′(R+).

Since |β(t, x)| � C(ε)(α(t, x) + ε) a.e. on Π and |g′ε(x)| = cgε(x)/C(ε), we
have ∫

β(t, x)g′ε(x)dx � c

∫
(α(t, x) + ε)gε(x)dx for a.e. t > 0
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and

H ′
ε(t) � cHε(t) in D′(R+),

where

Hε(t) =

∫
(α(t, x) + ε)gε(x)dx.

By the Gronwall lemma, for a.e. t > 0 we have

Hε(t) � ect · Hε(0),

where

Hε(0) = ess lim
t→0+

Hε(t) =

∫
(α(0, x) + ε)gε(x)dx.

Further, by the condition C(ε) � 1, we have gε(x) � e−c|x| and, conse-
quently, for a.e. t > 0

∫
α(t, x)e−c|x|dx � Hε(t) � ect · Hε(0)

= ect

( ∫
α(0, x)gε(x)dx + ε

∫
gε(x)dx

)
.

Since ∫
gε(x)dx =

∫
e−c|x|/C(ε)dx = 2C(ε)/c, for a.e. t > 0,

we have∫
α(t, x)e−c|x|dx � ect

( ∫
α(0, x)e−c|x|/C(ε)dx + 2εC(ε)/c

)
.

To complete the proof, it remains to observe that ε > 0 is arbitrary. �

Lemma 3. Suppose that A = A(t, x), B = B(t, x) ∈ Lp
loc(Π), 1 � p �

+∞, At + Bx = 0 in D′(Π), 1 � q � +∞,
1

p
+

1

q
= 1, and u = u(t, x)

belongs to the Sobolev space W 1
q,loc. Then (Au)t + (Bu)x = Aut + Bux in

D′(Π).

Proof. Let γ(x) ∈ C∞
0 (R) be such that γ(x) � 0, supp γ ⊂ [−1, 0],

and

∫
γ(x)dx = 1. As in the proof of Theorem 1, for ν ∈ N, (τ, ξ) ∈ R2 we

set δν(τ, ξ) = ν2γ(ντ) · γ(νξ). Then

δν ∈ C∞
0 (R2), δν � 0, supp δν ⊂ [−1/ν, 0]× [−1/ν, 0],

∫
δν(τ, ξ)dτdξ = 1
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(thus, the sequence δν converges to the Dirac δ-function in D′(R2)). Intro-
duce the sequence of averaged functions

uν(t, x) = (u ∗ δν)(t, x) =

∫
u(t − τ, x − ξ)δν(τ, ξ)dτdξ.

By the known properties of averaged functions, uν ∈ C∞(Π), uν → u in
W 1

q,loc as ν → ∞ if q < ∞. For q = ∞ the sequence uν is bounded in

W 1
∞,loc, and uν → u in W 1

1,loc as ν → ∞. In any case,

Auν → Au, Buν → Bu, A(uν)t → Aut, B(uν)x → Bux in L1
loc(Π) (4.11)

as ν → ∞ (in the case q = ∞, we can use the Lebesgue theorem on domi-
nated convergence).

Now, we choose a test function h ∈ C∞
0 (Π). Then huν ∈ C∞

0 (Π) for
all ν ∈ N and applying the equality At + Bx = 0 to these test functions, we
get, after simple transformations

∫

Π

[Auνht + Buνhx]dtdx +

∫

Π

[A(uν)t + B(uν)x]hdtdx = 0.

Passing to the limit in this relation as ν → ∞ and taking into account
(4.11), we derive that

∫

Π

[Auht + Buhx]dtdx = −
∫

Π

[Aut + Bux]hdtdx.

Since a test function h ∈ C∞
0 (Π) is arbitrary, we conclude that (Au)t +

(Bu)x = Aut + Bux in D′(Π). �

4.2.2. Uniqueness of a generalized solution. Now, we are ready to
prove the uniqueness of a generalized solution of the problem (4.7), (4.8).

Theorem 2 (uniqueness). If A(0, x)u0(x) = 0 almost everywhere on
R, then A(t, x)u(t, x) = 0 almost everywhere on Π.

Proof. Let A(0, x)u0(x) = 0 a.e. on R. Since (Au)t + (Bu)x = 0
in D′(Π), there exists a Lipschitz function Q(t, x) ∈ W 1

∞(Π) (a potential)
which is uniquely determined by the conditions

Qt = −Bu, Qx = Au in D′(Π), Q(0, 0) = 0. (4.12)

Let r(z) ∈ C1(R), 0 < r(z) � 1, for z �= 0, r(0) = 0; |r′(z)| � 1 (for example,
we can take r(z) = z2/(1 + z2). It is clear that r(Q) ∈ W 1

∞(Π) and

r(Q)t = r′(Q)Qt = −r′(Q)Bu, r(Q)x = r′(Q)Qx = r′(Q)Au.
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Then A(r(Q))t + B(r(Q))x = r′(Q) · (−ABu +ABu) = 0 and, by Lemma 3
(with arbitrary p and q),

(Ar(Q))t + (Br(Q))x = 0 in D′(Π). (4.13)

We need to prove that Q ≡ 0. We first show that Q(0, x) ≡ 0. For this
purpose, we choose functions g(x) ∈ C∞

0 (R), f(t) ∈ C∞([0, +∞)), f(0) = 1,
f(t) = 0, t � 1, and set h(t, x) = f(νt)g(x), ν ∈ N in (3.9).

Since A(0, x)u0(x) = 0 a.e. on R, we obtain the equality

ν

∫

Π

A(t, x)u(t, x)g(x)f ′(νt)dtdx = −
∫

Π

B(t, x)u(t, x)g′(x)f(νt)dtdx.

By the equality Au = Qx in D′(Π), we can transform the first integral by
integrating by parts. Then

ν

∫

Π

Q(t, x)g′(x)f ′(νt)dtdx =

∫

Π

B(t, x)u(t, x)g′(x)f(νt)dtdx.

Taking into account the continuity of Q and properties of f , we see that

the left-hand side of the above equality converges to −
∫

R

Q(0, x)g′(x)dx

as ν → ∞ while the modulus of the right integral is bounded by const/ν

and therefore converges to zero. Thus,

∫

R

Q(0, x)g′(x)dx = 0 and, since

g(x) ∈ C∞
0 (R) is arbitrary,

d

dx
Q(0, x) = 0 in D′(R). Consequently, Q(0, x) ≡

Q(0, 0) = 0.

To prove the identity Q ≡ 0, we note that

|Br(Q)| � N(ε)(A + ε)r(Q) � N(ε)(Ar(Q) + ε) ∀ε > 0

in view of (4.9) and the estimate r(Q) � 1. We can assume that N(ε) � 1.
Thus, α(t, x) = A(t, x)r(Q(t, x)) and β(t, x) = B(t, x)r(Q(t, x)) satisfy the
assumptions of Lemma 2 (we also should take into account (4.13)) with
α(0, x) = A(0, x)r(Q(0, x)) ≡ 0 and C(ε) = N(ε). By Lemma 2 (with c = 1)
and (4.9), for a.e. t > 0

∫
A(t, x)r(Q(t, x))e−|x|dx � 2et inf

ε>0
εN(ε) = 0.

This means that A(t, x)r(Q(t, x)) = 0 a.e. on Π, which implies Aur(Q) =
Bur(Q) = 0 a.e. on Π (we take into account that B = 0 a.e. on the set,
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where A = 0). Let R(z) be a primitive for r(z) so that R′(z) = r(z). It is
obvious that R(z) strictly increases. Then, in the sense of distributions,

R(Q)t = r(Q)Qt = −Bur(Q) = 0, R(Q)x = r(Q)Qx = Aur(Q) = 0,

which implies R(Q) = const. Using the strict monotonicity of R(z), we
conclude that Q ≡ Q(0, 0) = 0. This implies Au = Qx = 0 a.e. on Π. �

Let ρ(x) = e−|x|. We introduce finite measures μ = A(0, x)ρ(x)dx
and m = A(t, x)ρ(x)e−tdtdx on R and Π respectively. By Definition 2, in
the setting of the problem (4.7), (4.8), the behavior of u0(x) and u(t, x) is
essential only on the sets where A(0, x) �= 0 and A(t, x) �= 0 respectively. We
also should take into account the implication A(t, x) = 0 ⇒ B(t, x) = 0 for
a.e. (t, x), which directly follows from Proposition 1. Thus, we can suppose
that u0 ∈ L∞(R, dμ), u ∈ L∞(Π, dm). In such a setting, Theorems 1 and 2
can be formulated as the existence and uniqueness of a generalized solution
in L∞(Π, dm).

Remark 3. In the proof of Theorem 1, we also obtain the maximum
principle: ‖u‖L∞(Π,dm) � ‖u0‖L∞(R,dμ). This implies that, if a � u0(x) � b
μ-a.e. on R, a, b ∈ R, then a � u(t, x) � b m-a.e. on Π. Indeed, it suffices
to apply the maximum principle to the generalized solution u − (a + b)/2.
Suppose that u = u(t, x) and v = v(t, x) are two generalized solutions of the
problem (4.7), (4.8) with initial data u0(x), v0(x), and u0 � v0 μ-a.e. on R.
Then v − u is a generalized solution of the problem (4.7), (4.8) with initial
function v0−u0 � 0. Therefore, u � v m-a.e. on Π. We see that generalized
solutions satisfy the comparison principle, i.e., they depend monotonically
on their initial data.

4.2.3. The renormalization property.

Lemma 4. Let D be the set of absolutely continuous functions u(x)
on R such that u′(x) = A(0, x)v(x) with v(x) ∈ L∞(R) ∩ L1(R). Then D is
dense in L2(R, dμ).

Proof. It suffice to prove that there are no nontrivial linear contin-
uous functionals l = l(u), u ∈ L2(R, dμ), such that l(u) = 0 on D. By the
Riesz theorem, the functional l can be represented as follows:

l(u) = lh(u) =

∫
u(x)h(x)dμ(x), (4.14)

where h(x) ∈ L2(R, dμ).
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Let

H(x) =

x∫

−∞

h(y)dμ(y) =

x∫

−∞

h(y)A(0, y)ρ(y)dy.

Note that h(y) ∈ L2(R, dμ) ⊂ L1(R, dμ) because the measure μ is finite.
Thus, the function H(x) is well defined. The equality (4.14) can be written

in the form l(u) =

∫
u(x)dH(x). If u = u(x) ∈ D, then u′(x) = A(0, x)v(x),

where v(x) ∈ L∞(R) ∩ L1(R), and integrating by parts, we find

0 = l(u) =

∫
u(x)dH(x) = −

∫
H(x)A(0, x)v(x)dx. (4.15)

The absence of the term
[
u(x)H(x)

]+∞
−∞ in (4.15) follows from the relations

lim
x→−∞

H(x) = 0 and lim
x→+∞

H(x) =

∫
dH(x) = l(1) = 0 (note that the con-

stants belong to D) and the boundedness of u(x) in view of the integrability
of its derivative.

Since a function v(x) ∈ L∞(R) ∩ L1(R) is arbitrary in (4.15), we see
that H(x)A(0, x) = 0 a.e. on R. This implies that A(0, x) = 0 for a.e. x
from the open (in view of the continuity of H) set E = {x ∈ R|H(x) �= 0}.
Therefore, H ′(x) = h(x)A(0, x)ρ(x) = 0 a.e. in E, which implies that H is
constant on connected components of E. Since the set of these components
is at most countable and H ≡ 0 on R \ E, the continuous function H takes
at most countable set of values on connected domain R, and we conclude
that H ≡ const. Thus, dH(x) = h(x)dμ(x) = 0 and l = 0 by (4.14). �

Theorem 3. Let u(t, x) be a generalized solution of the problem (4.7),
(4.8). Then the following assertions hold.

(i) For each function p (z) ∈ C(R) the function (p ◦ u)(t, x) is a gen-
eralized solution of the problem (4.7), (4.8) with initial data p (u0(x)) (the
renormalization property).

(ii) If uk
0(x), k ∈ N is a bounded in L∞(R, dμ) sequence such that

A(0, x)(uk
0(x) − u0(x)) → 0 in L1

loc(R) as k → ∞ and uk(t, x) is the corre-
sponding sequence of generalized solutions of the problem (4.7), (4.8) with
initial functions uk

0(x), then A(t, x)(uk(t, x) − u(t, x)) → 0 in L1
loc(Π) as

k → ∞.

Proof. Since u0(x) ∈ L∞(R, dμ) ⊂ L2(R, dμ), from Lemma 4 if
follows that for all k ∈ N there exists an absolutely continuous function
uk

0(x) ∈ D, (uk
0)

′(x) = A(0, x)vk
0 (x), vk

0 (x) ∈ L∞(R) ∩ L1(R) such that
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‖u0−uk
0‖2 � 1/k (hereinafter, ‖·‖2 denotes the norm in the space L2(R, dμ)).

We also assume that ‖uk
0‖∞ � M = ‖u0‖∞, which can be always achieved

by making the change uk
0 with p (uk

0), where p (z) = max(−M, min(M, z))
is a cut-off function. It is easy to see that the above properties of uk

0 remain
true under such a replacement. By Theorem 1, there exists a generalized
solution vk(t, x) of the problem (4.7), (4.8) with initial data vk

0 . From the
equality (Avk)t + (Bvk)x = 0 in D′(Π) it follows that there exists the Lip-
schitz potential uk(t, x) determined by the relations

(uk)t = −Bvk, (uk)x = Avk in D′(Π), uk(0, 0) = uk
0(0). (4.16)

Using the Lipschitz continuity of the function uk and Lemma 3, we see that
for any p (z) ∈ C1(R)

(Ap (uk))t + (Bp (uk))x = −ABp′(uk)vk + ABp′(uk)vk = 0 in D′(Π).

By the Lipschitz continuity of uk and relations

(uk)x(0, x) = A(0, x)vk(0, x) = (uk
0)′(x), uk(0, 0) = uk

0(0)

(see (4.16)), we have uk(t, ·) → uk
0 in L1

loc(R) as t → 0. This, together with
(3.6), implies that for bounded p (z) ∈ C1(R)

ess lim
t→0+

A(t, x)p (uk(t, x)) = A(0, x)p (uk
0(x)) weakly-∗ in L∞(R).

By Proposition 2, we conclude that p (uk) is a generalized solution of the
problem (4.7), (4.8) with initial data p (uk

0(x)). Taking p (z) = arc tan z and
applying the maximum principle (see Remark 3), we find

| arc tanuk| � ‖ arc tanuk
0‖∞ � arc tanM m-a.e. on Π,

which implies uk ∈ L∞(Π, dm) and ‖uk‖∞ � M . Therefore, in the above
arguments, the functions p (z) ∈ C1(R) can be arbitrary, and we conclude
that

∀p (z) ∈ C1(R) the function p (uk(t, x)) is a generalized solution

of the problem (4.7), (4.8) with initial data p (uk
0(x)). (4.17)

In particular, uk(t, x) is a generalized solution of the problem (4.7), (4.8)
with initial data uk

0 .

Now, we take k, r ∈ N and multiply A(uk − ur)t + B(uk − ur)x = 0
by 2(uk − ur). Taking into account that uk − ur ∈ W 1

∞(Π) and

A(uk − ur)2t + B(uk − ur)2x = 2(uk − ur)[A(uk − ur)t + B(uk − ur)x] = 0

a.e. on Π, we derive the relation

(A(uk − ur)2)t + (B(uk − ur)2)x = A(uk − ur)2t + B(uk − ur)2x = 0 (4.18)
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in D′(Π) (according to Lemma 3). Further, by (4.9), for k, r ∈ N and all
ε > 0

|B|(uk − ur)2 �N(ε)(A+ε)(uk − ur)2 �N(ε)(A(uk − ur)2 + ε · (uk − ur)2)

� N(ε)(A(uk − ur)2+4M2ε)�C(ε)(A(uk − ur)2+ε)

a.e. in Π, where C(ε) = max(4M2, 1)N(ε) + 1 (we added 1 to satisfy the
condition C(ε) � 1).

Using (4.18), we conclude that

α(t, x) = A · (uk − ur)2, β(t, x) = B · (uk−ur)2

satisfy the assumptions of Lemma 2 with α(0, x) = A(0, x)·
(
uk

0(x)−ur
0(x)

)2
.

By Lemma 2 with parameter c = 1, we have∫
A(t, x) ·

(
uk(t, x) − ur(t, x)

)2
ρ(x)dx � etωk,r (4.19)

for almost all t > 0, where

ωk,r = inf
ε>0

( ∫
A(0, x) ·

(
uk

0(x) − ur
0(x)

)2
e−|x|/C(ε)dx + 2εC(ε)

)
. (4.20)

The sequence uk
0 converges in L2(R, dμ) to u0 as k → ∞. Since ‖uk

0‖∞ � M ,
we also have uk

0 → u0 in L2(R, dμε), dμε = A(0, x)e−|x|/C(ε)dx for all ε > 0.
Therefore,

Fk,r =

∫
A(0, x) ·

(
uk

0(x) − ur
0(x)

)2
e−|x|/C(ε)dx → 0 as k, r → ∞.

Formula (4.20) implies that

lim sup
k,r→∞

ωk,r � lim
k,r→∞

Fk,r + 2εC(ε) = 2εC(ε)

for all ε > 0. By (4.9), εC(ε) → 0 as ε → 0+. Hence lim
k,r→∞

ωk,r = 0.

Formula (4.19) implies that the sequence uk(t, x) is fundamental in the
spaces L2([0, T ] × R, dm), T > 0. By the Cauchy criterion, this sequence
converges in these spaces to some function ū = ū(t, x). It is clear that ū(t, x)
is independent of T if T > t. We show that ū = u in L∞(Π, dm). By the
maximum principle (see Remark 3), the sequence uk(t, x) is bounded in
L∞(Π, dm). Hence ū(t, x) ∈ L∞(Π, dm). We can assume (“correcting” ū
on a set of m-measure zero, if necessary) that ū(t, x) ∈ L∞(Π). Passing to
the limit as k → ∞ in (3.9) with u = uk, u0 = uk

0 , we conclude that ū(t, x)
is a generalized solution of the problem (4.7), (4.8) with initial data u0(x).
Since a generalized solution is unique, ū = u in L∞(Π, dm), as was to be
shown.
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Further, for any p (z) ∈ C1(R) we have A · (p (uk) − p (u)) → 0, B ·
(p (uk) − p (u)) → 0 in L1

loc(Π) as k → ∞ (the second limit relation follows
from the first one since uk is bounded and A = 0 ⇒ B = 0 a.e. on Π). This
enables us to prove assertion (i) for p (z) ∈ C1(R) by passing to the limit
in the integral identity corresponding to (4.17). Finally, every continuous
function p (z) ∈ C(R) can be approximated by a sequence pk(z) ∈ C1(R),
k ∈ N, so that pk(z) → p (z) uniformly on compact sets of R. As was
established above, for all k ∈ N functions pk(u(t, x)) are generalized solution
s of (4.7), (4.8) with initial data pk(u0(x)). Since pk(u(t, x)) → p (u(t, x)) in
L1

loc(Π), pk(u0(x)) → p (u0(x)) in L1
loc(R) as k → ∞, we conclude, passing

to the limit in the integral identity corresponding to the generalized solution
pk(u(t, x)) as k → ∞, that p (u(t, x)) is a generalized solution of the problem
(4.7), (4.8) with initial data p (u0(x)).

To prove assertion (ii), we note that the function (uk − u)2 is a gen-
eralized solution of the problem (4.7), (4.8) with initial data (uk

0 − u0)
2,

which follows from assertion (i) and the obvious fact that generalized solu-
tions form a linear space. Repeating the arguments of the proof of (4.19),
(4.20), we obtain the bound

∫
A(t, x) ·

(
uk(t, x) − u(t, x)

)2
ρ(x)dx � etωk, (4.21)

where

ωk = inf
ε>0

( ∫
A(0, x) ·

(
uk

0(x) − u0(x)
)2

e−|x|/C(ε)dx + 2εC(ε)

)
,

C(ε) = const ·N(ε) + 1. By assumption, A(0, x)(uk
0(x) − u0(x)) → 0 in

L1
loc(R) as k → ∞. Hence

lim
k→∞

∫
A(0, x) ·

(
uk

0(x) − u0(x)
)2

e−|x|/C(ε)dx = 0.

This implies that lim
k→∞

ωk = 0 (see the above arguments concerning ωk,r).

From (4.21) we obtain the desired relation A(t, x)(uk(t, x) − u(t, x)) → 0 in
L1

loc(Π). �

Corollary 1. Let u1 = u1(t, x) and u2 = u2(t, x) be generalized solu-
tions of (4.7), (4.8) with initial data u0

1 = u0
1(x), u0

2 = u0
2(x) respectively.

Then their product u1u2 is also a generalized solution of the same problem
with initial function u0

1u
0
2.
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Proof. By assertion (i) of Theorem 3, the function u1u2 = [(u1 +
u2)

2 − (u1)
2 − (u2)

2]/2 is a generalized solution of the problem (4.7), (4.8)
with initial data u0

1u
0
2 = [(u0

1 + u0
2)

2 − (u0
1)

2 − (u0
2)

2]/2. �

By Corollary 1, the generalized solutions form a subalgebra of the
algebra L∞(Π, dm).

Corollary 2. If u(t, x) is a generalized solution of (4.7), (4.8), then
the initial condition (4.8) is satisfied in the following strong sense:

ess lim
t→0

A(t, ·)|u(t, ·) − u0| = 0 in L1
loc(R).

In particular, if A(t, x) has the strong trace at t = 0, i.e., ess lim
t→0

A(t, x) =

A(0, x) in L1
loc(R), then Au(t, ·) has a strong trace A(0, ·)u0 at t = 0 :

ess lim
t→0

A(t, ·)u(t, ·) = A(0, ·)u0 in L1
loc(R).

Proof. By assertion (i) of Theorem 3, u2 is a generalized solution
of the problem (4.7), (4.8) with initial function u2

0. From Proposition 2 it
follows that

ess lim
t→0

A(t, ·)u(t, ·) = A(0, ·)u0, ess lim
t→0

A(t, ·)u2(t, ·) = A(0, ·)u2
0

weakly-∗ in L∞(R). Let ρ(x) = e−|x|. Then, by (3.6) and the above rela-
tions, we have
∫

R

A(t, x)[u(t, x) − u0(x)]2ρ(x)dx=

∫

R

[A(t, x)u2(t, x) − A(0, x)u2
0(x)]ρ(x)dx

− 2

∫

R

[A(t, x)u(t, x) − A(0, x)u0(x)]u0(x)ρ(x)dx

+

∫

R

(A(t, x) − A(0, x))u2
0(x)ρ(x)dx → 0

essentially as t → 0. Hence, by the Cauchy–Schwartz inequality,
∫

R

A(t, x)|u(t, x) − u0(x)|ρ(x)dx

� const ·
( ∫

R

A(t, x)[u(t, x) − u0(x)]2ρ(x)dx

)1/2

→ 0,
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as required. If, in addition, A(t, x) has the strong trace at t = 0, then
∫

R

|A(t, x)u(t, x) − A(0, x)u0(x)|ρ(x)dx

�

∫

R

A(t, x)|u(t, x)−u0(x)|ρ(x)dx+

∫

R

|A(t, x)−A(0, x)||u0(x)|ρ(x)dx → 0

essentially as t → 0. �

Corollary 3. Suppose that u0 = u0(x) ∈ L∞(R), A(0, x)u0(x) ∈
L1(R), and u(t, x) is a generalized solution of (4.7), (4.8) with initial func-
tion u0. Then for a.e. t > 0

A(t, ·)u(t, ·) ∈ L1(R), ‖A(t, ·)u(t, ·)‖1 = ‖A(0, x)u0(x)‖1.

Proof. By Theorem 3, |u(t, x)| is a generalized solution of the problem
(4.7), (4.8) with initial data |u0(x)|. We see that α = A(t, x)|u(t, x)| and β =
B(t, x)|u(t, x)| satisfy the assumptions of Lemma 2 with α0 = A(0, x)|u0(x)|,
C(ε) = ‖u‖∞ · N(ε) + 1. By this lemma, for a.e. t > 0
∫

A(t, x)|u(t, x)|e−c|x|dx

� ect · inf
ε>0

( ∫
A(0, x)|u0(x)|e−c|x|/C(ε)dx + 2εC(ε)/c

)

� ect

∫
A(0, x)|u0(x)|dx + 2ect inf

ε>0
εC(ε)/c = ect

∫
A(0, x)|u0(x)|dx.

It is clear that the set of full measure E ⊂ R+ such that for t ∈ E the above
relation holds can be chosen the same for rational values of c. Then, passing
to the limit in this relation as c → 0, c ∈ Q, and using the Levy theorem
on monotone convergence, we find that for a.e. t > 0

∫
A(t, x)|u(t, x)|dx �

∫
A(0, x)|u0(x)|dx. (4.22)

By Lemma 1, without loss of generality, we can assume that the mappings
t → A(t, ·), t → (Au)(t, ·), t � 0, are weakly-∗ continuous in L∞(R). It is
obvious that the estimate (4.22) becomes valid for all t > 0. Let τ > 0,

Ã(t, x) = A(|τ − t|, x), B̃(t, x) = sign(t − τ)B(|τ − t|, x). It is easy to

verify that the coefficients Ã and B̃ satisfy the conditions (4.9), (4.10) and
v = v(t, x) = u(|τ − t|, x) is a generalized solution of the Cauchy problem

(Ãv)t + (B̃v)x = 0, v(0, x) = v0(x) = u(τ, x).
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Applying the estimate (4.22) to this solution with t = τ , we find
∫

A(0, x)|u0(x)|dx =

∫
Ã(τ, x)|v(τ, x)|dx

�

∫
Ã(0, x)|v0(x)|dx =

∫
A(τ, x)|u(τ, x)|dx

and, since τ > 0 is arbitrary, we derive the inequality∫
A(0, x)|u0(x)|dx �

∫
A(t, x)|u(t, x)|d, x

inverse to (4.22). �

Assertion (i) of Theorem 3, known as the renormalization property, was
introduced for generalized solutions of multi-dimensional transport equa-
tions by DiPerna and Lions [7]. This property can be extended in the
following way.

Proposition 4. The renormalization property is satisfied by any bound-
ed Borel function p (z).

Proof. Let C > 0. Denote by FC the space of Borel functions p (z)
on R satisfying the renormalization property and such that |p (z)| � C.
Let us show that FC is a Borel family, i.e., FC contains pointwise limits
of sequences in FC . Suppose that pn(z) ∈ FC , n ∈ N, and pn(z) → p (z)
pointwise as n → ∞. It is clear that p (z) is a Borel function and |p (z)| � C.
If u(t, x) is a generalized solution of the problem (4.7), (4.8) with initial data
u0(x), then, in view of the condition pn(z) ∈ FC , for any n ∈ N pn(u(t, x)) is
a generalized solution of the problem (4.7), (4.8) with initial data p (u0(x)).
Therefore, for all h = h(t, x) ∈ C∞

0 (Π̄)
∫

Π

pn(u)[Aht + Bhx]dtdx +

∫

R

A(0, x)pn(u0(x))h(0, x)dx = 0.

Since pn(u(t, x)) → p (u(t, x)) and pn(u0(x)) → p (u0(x)) pointwise as n →
∞ and these sequences are bounded, we can pass to the limit as n → ∞ in
the last relation (using the Lebesgue theorem on dominated convergence)
and derive that∫

Π

p (u)[Aht + Bhx]dtdx +

∫

R

A(0, x)p (u0(x))h(0, x)dx = 0.

This means that p (u(t, x)) is a generalized solution of the problem (4.7),
(4.8) with initial data p (u0(x)). Since u is an arbitrary generalized solution,
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the renormalization property is satisfied and p (z) ∈ FC . Since FC is a Borel
family, FC contains all Borel functions p (z), |p (z)| � C. To complete the
proof, it remains to note that C > 0 is arbitrary. �

By Proposition 4, we can establish the strict maximum principle.

Proposition 5. Assume that u0(x) ∈ L∞(R), u0(x) < M μ-a.e. on
R, and u(t, x) is a generalized solution of (4.7), (4.8) with initial data u0(x).
Then u(t, x) < M m-a.e. on Π.

Proof. Introduce the Heaviside function

θ(s) =

{
1, s � 0,

0, s < 0.

By Proposition 4, θ(u(t, x) − M) is a generalized solution of the problem
(4.7), (4.8) with initial function θ(u0(x) − M) = 0 μ-a.e. on R. By the
uniqueness of a generalized solution, θ(u(t, x) − M) = 0 m-a.e. on Π. �

Remark 4. In the multi-dimensional case n > 1, it may happen that
the renormalization property fails even if any generalized solution of the
problem (3.7), (3.8) is unique. Indeed, suppose that n = 2, x = (x1, x2),

(A, B1, B2) is the divergence free field constructed in Example 1, Ã = A(4−
t, x), B̃1 = −B1(4 − t, x), B̃2 = −B2(4 − t, x), 0 < t < 4, Ã = 1, B̃1 =

B̃2 = 0, t � 4. Since A(0, x) ≡ 1, the field (Ã, B̃1, B̃2) is divergence free.

Moreover, |B̃| � 4A, where B̃ = (B̃1, B̃2). Consider the Cauchy problem

(Ãu)t + (B̃1u)x1 + (B̃2u)x2 = 0, u(0, x) = u0(x) ∈ L∞(R2). (4.23)

In the layer 0 < t < 4, the field of coefficients is piecewise smooth and
tangent to discontinuity surfaces. Using Proposition 3, we see that a gen-
eralized solution u = u(t, x) of (4.23) is uniquely determined for 0 < t < 4
under the condition that it remains constant along the characteristics. By
Lemma 1, there exists the weak trace Ãu(4, x) = A(0, x)v(x) = v(x) at the
plane t = 4. Hence u(t, x) = v(x) for t > 4 because the equation takes the
form ut = 0 in this domain. We conclude that a generalized solution of
(4.23) is unique for any initial data u0. Now choose u0(x) = ϕ(x2), where
the function ϕ(s) is defined in Example 1. Let ũ(t, x) be the corresponding
generalized solution. Then ũ(t, x) = u(4 − t, x) in the layer 0 < t < 4,
where u(t, x) is the generalized solution constructed in Example 1. As was

shown in Example 1, Ãũ(4, x) = Au(0, x) = 0. In particular, ũ(t, x) = 0
for t > 4. Since (u0(x))2 ≡ 1, we see that ũ2 = 1 for 0 < t < 4, whereas
ũ2 = 0 for t > 4. Therefore, ũ2 has a jump at the plane t = 4 and it is not
a generalized solution. Thus, the renormalization property fails.
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4.2.4. Application to the Keyfitz–Kranzer system. Now we can use
the above results to prove the existence and uniqueness of a strong general-
ized entropy solution of the problem (2.1), (2.2). Suppose that r = r(t, x)
is a unique generalized entropy solution of the scalar problem (2.4).

Theorem 4. Suppose that A = r, B = f(r), and vi = vi(t, x) be
generalized solutions of the problem (2.6), (2.7) (such solutions exist by
Theorem 1) with initial data v0i = u0i/r0, i = 1, . . . , n (for r0 = 0 we can
take v0i = 0). Then the vector-function u = rv, v = (v1, . . . , vn) is a unique
strong generalized entropy solution of the problem (2.1), (2.2).

Proof. Since ‖r‖∞ = M < ∞, we have u = rv ∈ L∞(Π, Rn). By our
assumptions, the vector v(t, x) satisfies Equation (2.6). Therefore,

ut + (ϕ(r)u)x = (rv)t + (f(r)v)x = 0 in D′(Π). (4.24)

Recall that r = r(t, x) is a generalized entropy solution of (2.4). Taking into
account the renormalization property in Theorem 3, we see that the function
|v|2 = v2

1 + · · ·+ v2
n is a generalized solution of the transport equation (2.6)

with initial function |v0|2. Since r0|v0|2 ≡ r0 · 1, we conclude that v ≡ 1
is another generalized solution of the same problem. By uniqueness (see
Theorem 2), r|v|2 = r a.e. on Π. We see that |u|2 = r2|v|2 = r2 and |u| = r
a.e. on Π. We conclude that |u| is a generalized entropy solution of (2.4).
Moreover, since r = |u| in (4.24), we see that u satisfies (2.1) in the sense
of distributions. By Corollary 2, the initial condition (2.5) is also satisfied.
Thus, u = u(t, x) is a strong generalized entropy solution of (2.1), (2.2).

To prove the uniqueness, suppose that u1 = u1(t, x), u2 = u2(t, x) are
two solutions of the problem (2.1), (2.2). Then |u1| = |u2| = r is a unique
solution of the scalar problem (2.4). But then v1 = u1/r, v2 = u2/r are two
(vector-valued) solutions of the problem (2.6), (2.7) with the same initial
data. By uniqueness, u1 = rv1 = rv2 = u2 a.e. on Π. �

5. Generalized Characteristics

Generally speaking, a generalized solution of (4.7), (4.8) is not continuous
even if u0(x) ∈ C∞(R). We confirm this by the following example.

Example 2. Let us take in (4.7) the field of coefficients (A, B) such
that B = A2/2 and
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A(t, x) =

{
max(x/t, 0), γ(t) < x < t,

1 otherwise ,

where (see Fig. 3)

γ(t) =

{
(t − 2)/2, 0 � t � 2,

t −
√

2t, t > 2.

It is clear that the coefficients A and B satisfy the assumption (3.6),

the coefficient A
the map of characteristics
and the solution u(t, x)

Figure 3

where A(0, x) is the characteristic function of the set, where |2x + 1| � 1.
They also satisfy (4.9) since B = A2/2 (see Proposition 1). To verify the
divergence free condition (4.10), we note that this condition is satisfied in the
classical sense inside the domains of smoothness of A and B, whereas, on the
single discontinuity line x = γ(t), we have the Rankine–Hugoniot condition

γ̇(t) = [B]/[A] = 1/2, t � 2, γ̇(t) = (t−
√

2t)′ = [B]/[A] = (x + t)/2t, t > 2.

We consider the problem (4.7), (4.8) with initial function u0(x) ∈
C∞(R) such that u0(x) = 1 for x � 0 and u0(x) = −1 for x � −1. We
show that this problem has no continuous generalized solutions. Assuming
the contrary, we can find a continuous generalized solution u(t, x). By
Proposition 3, this solution must be constant along the characteristics in
the regions, where the coefficients are smooth and A > 0. On the set, where
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A = 1, the characteristics are the lines 2x − t = const (see Fig. 3). This
and the continuity of u imply that u(t, x) = 1 for x � t and u(t, x) = −1
for 2x + 2 � t. In the domain D, where max(γ(t), 0) < x < t, A(t, x) = x/t
and the characteristics are computed as solutions of the differential equation
ẋ = B/A = x/2t. Solving this equation, we obtain x(t) = C

√
t, where C > 0

is an arbitrary constant. By the condition (t, x(t)) ∈ D, the characteristic

x(t) = C
√

t is defined for t ∈ (C2, (C +
√

2)2). By the continuity of u,

we have u(t, C
√

t) = u(C2, C2) = 1 for all t ∈ [C2, (C +
√

2)2]. Taking

t = (C +
√

2)2, we have u(t, γ(t)) = 1 for all t � 2. In the domain, where
(t − 2)/2 < x < γ(t), the characteristics are the lines 2x − t = const > −2.
Therefore, for some function v(s), s > −2, we have u(t, x) = v(2x − t).

Taking x = γ(t), we derive that v(t − 2
√

2t) = u(t, γ(t)) = 1 for all t > 2,
which implies v ≡ 1. Hence u(t, x) = 1 for 2x + 2 > t > 2. As was shown
above, u(t, x) = −1 for 2x + 2 � t. We see that the line 2x + 2 = t > 2
is a discontinuity line, which contradicts our assumption. Observe that the
Rankine–Hugoniot condition ẋ = 1/2 = [Bu]/[Au] is really satisfied on the
line 2x + 2 = t > 2. Hence the constructed above solution, which can be
written in the form u(t, x) = sign(2x + 2 − t) (we put u = 1 on the set,
where A = 0), is the unique generalized solution of our problem, and it is
not continuous.

In the above example A(t, x) = 0 on a nontrivial open set. Now we
consider the case where

∀t � 0 the set {x ∈ R|A(t, x) > 0} has positive measure

on any nondegenerate interval. (5.1)

We assume that A(t, ·) is weakly-∗ continuous in L∞(R), which can be
always attained by correcting A on a set of zero measure (see Lemma 1).

Let R̂ = [−∞, +∞] be the two-point compactification of R, and let C(R̂)

be the space of continuous functions on R̂. It is clear that C(R̂) is identified
with the space of continuous functions on R with finite limits at ±∞. We

wish to show that, under the condition (5.1), for initial data u0 ∈ C(R̂) the
generalized solution u(t, x) of the problem (4.7), (4.8) remains continuous
for t > 0. For this purpose, we need the following analog of Lemma 4.

Lemma 5. Let D be the subset of the space of absolutely continuous

functions, introduced in Lemma 4. Then D is dense in C(R̂).

Proof. Since the functions u(x) ∈ D have finite total variations, they

have finite limits at ±∞ and therefore belong to C(R̂). If u1, u2 ∈ D,
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then (ui)
′(x) = A(0, x)vi(x) in D′(R), where vi ∈ L∞(R) ∩ L1(R), i = 1, 2.

It follows that (u1u2)
′(x) = A(0, x)(v1(x)u2(x) + v2(x)u1(x)) and, since

v1u2 + v2u1 ∈ L∞(R)∩L1(R), we conclude that u1u2 ∈ D. The established

property means that D is a subalgebra of C(R̂). It is clear that 1 ∈ D. Let
y < x. We can choose a function v ∈ L∞(R) ∩ L1(R) such that v(x) > 0
on the interval (y, x). Then the function u(x) ∈ D such that u′(x) =
A(0, x)v(x) separates the points x and y, as it follows from the equality

u(x) − u(y) =

x∫

y

A(0, s)v(s)ds

and condition (5.1). By the Stone–Weierstrass theorem, the set D is dense

in C(R̂). �

Theorem 5. Let u0 ∈ C(R̂). Then the generalized solution u = u(t, x)

of the problem (4.7), (4.8) is continuous on Π̄. Moreover, u(t, ·) ∈ C(R̂) for

all t � 0, and Ttu0 = u(t, ·) are isomorphisms of the algebra C(R̂).

Proof. Let u0 ∈ C(R̂). By Lemma 5, we can find a sequence u0k ∈ D,
k ∈ N, uniformly convergent to u0. By the definition of D, we have
(u0k)′(x) = A(0, x)v0k(x), v0k(x) ∈ L∞(R) ∩ L1(R). Let uk = uk(t, x) be
a generalized solution of the problem (4.7), (4.8) with initial function u0k.
As was shown in the proof of Theorem 3, the solutions uk are Lipschitz
continuous on Π̄. Moreover, (uk)′(t, ·) = (Avk)(t, ·), where vk = vk(t, x) is a
generalized solution of the problem (4.7), (4.8) with initial function v0k. By
Corollary 3, we have (Avk)(t, ·) ∈ L1(R) and ‖(Avk)(t, ·)‖1 � const for al-
most all t > 0. This implies that uk(t, x) has a bounded total variation with
respect to x for all t � 0 (because of the continuity of uk(t, x)). Therefore,

uk(t, ·) ∈ C(R̂).

It is clear that uk−u is a generalized solution of the problem (4.7), (4.8)
with initial data u0k − u0. By the maximum principle, |uk(t, x)− u(t, x)| �

‖u0k − u0‖∞ → 0 as k → ∞. Thus, uk → u as k → ∞ uniformly on Π̄.
Therefore, the limit function u(t, x) is continuous on Π̄. Moreover, since

uk(t, ·) ∈ C(R̂), the same is true for the limit function: u(t, ·) ∈ C(R̂).
By the maximum principle, ‖u(t, ·)‖∞ � ‖u0‖∞. Thus, the mappings Tt,
defined by the equality Ttu0 = u(t, ·), are bounded linear operators on

C(R̂). By Corollary 1, they satisfy the condition Tt(uv) = TtuTtv, i.e.,

the operators Tt are homomorphisms of the algebra C(R̂). To prove that
Tt are isomorphisms, we fix t0 > 0 and consider the backward Cauchy
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problem for Equation (4.7) in the half-plane t < t0 with the initial condition

u|t=t0 = v(x) ∈ C(R̂). It is obvious that this problem can be reduced to
the canonical form by the change of the time variable t0 − t → t. Thus, the
analogs of our main results remain true. In particular, there exists a unique
continuous generalized solution u(t, x) of the backward problem. We set

Sv = u(0, x) ∈ C(R̂). By the uniqueness of a generalized solution, STt0u =

u, Tt0Sv = v for all u, v ∈ C(R̂), i.e., Tt0 is invertible and S = (Tt0)
−1.

Since t0 is arbitrary, the operators Tt are isomorphisms. �

As is known, any isomorphism T of the algebra C(R̂) is generated

by a unique homeomorphism F of the compact set R̂ such that (Tu)(x) =

u(F (x)). Since every homeomorphism of R̂ corresponds to a unique home-
omorphism of R, we can consider F as a mapping F : R → R of an “usual”
line into itself. The above equality can be written in the equivalent form
(Tu)(G(x)) = u(x), where G = F−1 is the inverse homeomorphism. In par-
ticular, from Theorem 5 it follows that there exists a one-parameter family
G(t, ·) of homeomorphisms of R such that (Ttu0)(G(t, x)) = u0(x). Hence

for any u0 ∈ C(R̂) the corresponding generalized solution satisfies the equal-
ity u(t, G(t, x)) = u0(x). We see that generalized solutions are constant
along the curves x = x(t; x0) = G(t, x0), x0 ∈ R. Therefore, these curves can
be considered as the characteristics of our equations. In other words, they
are trajectories of the ordinary differential equation ẋ = B(t, x)/A(t, x). It
is obvious that x(0; x0) = x0. Therefore, the characteristic x(t; x0) starts
at the point x0 and the function x(t) = x(t; x0) is a generalized solution of
the Cauchy problem

ẋ = B(t, x)/A(t, x), x(0) = x0.

By construction, this solution exists and is unique. We do not discuss here,
in what sense the characteristics x(t) satisfy the above equation, but indicate
several important properties of characteristics.

Theorem 6. The functions x(t; y) are continuous with respect to both
variables and depend on source point as an increasing function: x(t; y1) >
x(t; y2) for y1 > y2.

Proof. Suppose that t0 > 0, y0 ∈ R, x0 = x(t0; y0) and v(x) ∈ C(R̂)
is a function such that v(x0) = 0 and v′(x) = A(t0, x)w(x), where w(x) ∈
L∞(R) ∩ L1(R), w(x) > 0. As follows from this condition and (5.1), the
function v(x) is strictly increasing. By Theorem 1, there exists a unique
generalized solution w(t, x) ∈ L∞(Π) of (4.7) such that w(t0, x) = w(x).
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Indeed, to prove this fact, we have to solve the Cauchy problems in the
domains t < t0 and t > t0 with initial data w(x) at the time t = t0. By the
maximum principle, w � 0 a.e. in Π. Consider the Lipschitz function u(t, x)
uniquely determined by the conditions ux = Aw, ut = −Bw, u(t0, x0) = 0.
Then u is a continuous generalized solution of (4.7) and

u(t0, x) =

x∫

x0

A(t0, x)w(x)dx = v(x).

Since v(x) ∈ C(R̂), from Theorem 5 it follows that u(t, ·) ∈ C(R̂) for all
t � 0. Note that ux = Aw � 0. Therefore, u increases with respect to
x. We fix ε > 0 and set c = min(v(x0 + ε),−v(x0 − ε)) > 0 (recall that
v(x) strictly increases and v(x0 − ε) < v(x0) = 0 < v(x0 + ε)). Then
u(t0, x0 + ε) = v(x0 + ε) � c and u(t0, x0 − ε) = v(x0 − ε) � −c. By the
continuity of u(t, x), we can find a value δ1 > 0 such that u(t, x0 + ε) > c/2,
u(t, x0 − ε) < −c/2 for all t ∈ (t0 − δ1, t0 + δ1). Since u(t, x) increases with
respect to x, we see that

|u(t, x)| > c/2, |x − x0| � ε, |t − t0| < δ1. (5.2)

Let x(t; y0) be a characteristic passing through the point (t0, x0) so that
x(t0; y0) = x0. Since the functions y → x(t0, y) = G(t0, y) and v(x) are
continuous and v(x0) = 0, there exists δ2 > 0 such that |v(x(t0; y))| < c/2
for |y − y0| < δ2. Since the solution u(t, x) remains constant along the
characteristic x(t; y), we conclude that |u(t, x(t; y))| = |v(x(t0; y))| < c/2 for
all |y−y0| < δ2, |t−t0| < δ1. By (5.2), |x(t; y)−x(t0; y0)| = |x(t; y)−x0| < ε
in the neighborhood |y − y0| < δ2, |t − t0| < δ1 of the point (t0, y0). This
completes the proof of the continuity of characteristics.

To prove the last assertion, suppose that y1 > y2 and set h(t) =
x(t; y1)−x(t; y2). As follows from the continuity of x(t; y), h(t) is continuous
for t � 0 and h(t) �= 0 because the mapping y → x(t; y) = G(t, y) is
invertible. This, together with the obvious relation h(0) = y1 − y2 > 0,
implies that h(t) > 0 for all t � 0, i.e., x(t; y1) > x(t; y2). �

Using the above theorem, we derive the following property.

Theorem 7. Let a, b ∈ R, a < b, and u(t, x) be a generalized solution
of (4.7), (4.8) with initial data u0(x) ∈ L∞(R). Then for almost all t > 0

x(t;b)∫

x(t;a)

A(t, x)u(t, x)dx =

b∫

a

A(0, x)u0(x)dx. (5.3)
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Proof. We choose a function v0(x) ∈ C(R) such that v0(x) > 0
in the interval x ∈ (a, b) and v0(x) = 0 for x �∈ (a, b). Let v(t, x) be a
generalized solution of the problem (4.7), (4.8) with initial function v0(x).

Since v(x) ∈ C(R̂), from Theorem 5 it follows that v(t, x) ∈ C(Π̄) and
v(t, x) is constant along characteristics. As follows from Theorem 6, the
characteristics x(t; y) started at points y ∈ (a, b) fill for t > 0 the whole
domain Ω(a, b) = {(t, x)|t > 0, x(t; a) < x < x(t; b)}. This implies that
v(t, x) > 0 in Ω(a, b) and v(t, x) = 0 outside Ω(a, b). Choosing a sequence
of initial functions v0n ∈ C(R) with the above properties converging to
the indicator function w0 of the interval (a, b) as n → ∞, we see that the
corresponding sequence vn(t, x) of generalized solutions converges pointwise
to the indicator function w of the domain Ω(a, b). By Theorem 3, w is a
generalized solution of the problem (4.7), (4.8) with initial function w0. By
Corollary 1, the product uw is a generalized solution of the problem (4.7),
(4.8) with initial function u0w0. Suppose that T > 0, m = min

t∈[0,T ]
x(t; a),

M = max
t∈[0,T ]

x(t; b), h = h(x) ∈ C∞
0 (R) are such that h(x) = 1 on [m, M ].

Multiplying (Auw)t + (Buw)x = 0 by a test function h, we find

∂

∂t

x(t;b)∫

x(t;a)

A(t, x)u(t, x)h(x)dx =
∂

∂t

∫
A(t, x)u(t, x)w(t, x)h(x)dx

= −
∫

B(t, x)u(t, x)w(t, x)h′(x)dx = 0

in D′((0, T )) because h′(x) = 0 on [m, M ] and w = 0 for x /∈ [m, M ]. This
implies the desired identity (5.3) (we also take into account that T > 0 is
arbitrary). �

From Theorem 7 we obtain an important property of a finite domain
of dependence of a generalized solution on its initial data.

Corollary 4. Suppose that u(t, x) is a generalized solution of the prob-
lem (4.7), (4.8) and A(0, x)u0(x) = 0 a.e. on (a, b). Then A(t, x)u(t, x) = 0
a.e. on Ω(a, b).

It suffices to note that, by Theorem 3, |u(t, x)| is a generalized solution
of the problem (4.7), (4.8) with initial data |u0(x)| and to apply (5.3) to
this generalized solution.
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6. Unbounded Solutions.
Notion of a Renormalized Solution

Note that the identity (3.9) makes sense even for unbounded functions
u(t, x), u0(x) such that A(0, x)u0(x) ∈ L1

loc(R), Au, Bu ∈ L1
loc(Π̄). This

enables us to extend Definition 2 of a generalized solution of the problem
(4.7), (4.8) to this general case. These solutions are referred to as L1

loc-
generalized solutions. Many properties of generalized solutions remain valid
in the unbounded case. In particular, the following assertion holds.

Theorem 8. Let u = u(t, x) be an L1
loc-generalized solution of the

problem (4.7), (4.8) with initial function u0(x). Then the following asser-
tions hold.

(i) The generalized solution u is unique: if u0(x)A(0, x) = 0 a.e. on
R, then u(t, x)A(t, x) = 0 a.e. on Π.

(ii) If p (z) ∈ C(R), |p (z)| � const(|z| + 1), then p (u(t, x)) is an L1
loc-

generalized solution of the problem (4.7), (4.8) with initial function p (u0(x))
(the renormalization property).

Proof. The uniqueness is proved in the same way as in the corre-
sponding part of the proof of Theorem 2. Namely, assume that Au, Bu ∈
L1

loc(Π̄) and A(0, x)u0(x) = 0 a.e. on R. From the relation (Au)t +(Bu)x =
0 in D′(Π) it follows that there exists a potential Q(t, x) in the Sobolev
space W 1

1,loc(Π) which is uniquely determined by the conditions

Qt = −Bu, Qx = Au in D′(Π),

1∫

−1

Q(0, x)dx = 0.

Here, the function Q(0, x) ∈ L1
loc(R) is well defined by the trace property

for functions in the Sobolev space. By the initial condition (3.10), for the
solution u(t, x) we have

d

dx
Q(0, x) = A(0, x)u0(x) = 0 in D′(R)

(to prove this assertion, it suffices to repeat arguments of the proof of The-

orem 2). This and the condition

1∫

−1

Q(0, x)dx = 0 imply Q(0, x) = 0. Let

r(z) ∈ C1(R), 0 < r(z) � 1 for z �= 0, r(0) = 0, |r′(z)| � 1 for all z ∈ R.
Then, using the assertion of Lemma 3 with p = ∞, we derive the following
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equality similar to (4.13):

(Ar(Q))t + (Br(Q))x = A(r(Q))t +B(r(Q))x = r′(Q) · (−ABu +ABu) = 0

in D′(Π) and r(Q)(0, x) = r(0) = 0. We see that r(Q) is a bounded general-
ized solution of (4.7), (4.8) with zero initial data. By Theorem 2, Ar(Q) = 0
a.e. on Π. From Proposition 1 it follows that Br(Q) = 0 a.e. on Π. Let
R(z) be a primitive of r(z), i.e., R′(z) = r(z). It is clear that R(z) strictly
increases and

R(Q)x = Ar(Q)u = 0, R(Q)t = Br(Q)u = 0 in D′(Π).

By these relations, R(Q) = C = const a.e. on Π. Taking into account that
R(z) strictly increases, we conclude that Q = R−1(C) a.e. on Π, which
implies the desired result u(t, x)A(t, x) = Qx = 0 a.e. on Π.

To prove the second assertion, we put

v0
k(x) =

{
1, |u0(x)| � k,

0, |u0(x)| > k,
k ∈ N.

Let vk(t, x) ∈ L∞(Π) be a generalized solution of the problem (4.7), (4.8)
with initial data v0

k(x). By the maximum principle, we can assume that
|vk(t, x)| � 1. (Applying assertion (i) of Theorem 3 with p (z) = z(1 − z),
we see that A(t, x)vk(t, x)(1 − vk(t, x)) = 0 a.e. on Π and can suppose
that vk(t, x) is the characteristic function of some set.) Since v0

k(x) → 1 in
L1

loc(R) as k → ∞ and ũ(t, x) ≡ 1 is a generalized solution of the problem
(4.7), (4.8) with initial data ũ0(x) ≡ 1, assertion (ii) of Theorem 3 implies

A(t, x)(vk(t, x) − 1) → 0 in L1
loc(Π) (6.1)

as k → ∞. If v = v(t, x) is a bounded generalized solution of the problem
(4.7), (4.8), then uv is also a generalized solution of this problem with initial
data u0v0 (cf. Corollary 1). Indeed, if v(t, x) is Lipschitz continuous, this
follows from Lemma 3 applied for the vector of coefficients (Au, Bu):

(Auv)t + (Buv)x = (Avt + Bvx)u = 0 in D′(Π).

In the general case, we can use the approximation of v(t, x) in L1
loc(Π) by

a sequence of Lipschitz continuous generalized solutions which is bounded
in L∞(Π). The sequence is constructed in a similar way as in the proof of
Theorem 3.

Thus, the functions uk = vku are generalized solutions of the prob-
lem (4.7), (4.8) with bounded initial data u0

k = v0
ku0, |u0

k| � k, k ∈ N.
By uniqueness, uk coincides with the unique bounded generalized solution.
Hence uk ∈ L∞(Π, dm), and ‖uk‖∞ � k by the maximum principle.
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Let p (z) ∈ C(R), |p (z)| � const(|z| + 1). By assertion (i) of Theo-
rem 3, p (uk) is a generalized solution of (4.7), (4.8) with initial function
p (u0

k) for any k ∈ N. Further, by the relation (6.1), Auk → Au in L1
loc(Π̄)

as k → ∞. Passing to a subsequence (if necessary), we can assume that
Auk → Au as k → ∞ almost everywhere on Π. Then

Ap (uk) → Ap (u) Bp (uk) → Bp (u) as k → ∞ a.e. on Π;

|Ap (uk)| � cA · (|uk| + 1) � cA · (|u| + 1) ∈ L1
loc(Π̄),

|Bp (uk)| � c|B| · (|u| + 1) ∈ L1
loc(Π̄), c = const > 0.

It is also clear that

A(0, ·)p (u0
k) → A(0, ·)p (u0)as k → ∞ a.e. on R,

|A(0, ·)p (u0
k)| � cA(0, ·)(|u0

k| + 1) � cA(0, ·)(|u0| + 1) ∈ L1
loc(R).

By the Lebesgue theorem on dominated convergence, we can pass to the
limit as k → ∞ in the identity (3.9) corresponding to the generalized solu-
tion p (uk). Thus, p (u) is an L1

loc-generalized solution of the problem (4.7),
(4.8) with initial data p (u0). �

In the case where u0(x) is not bounded, it may happen that the prob-
lem (4.7), (4.8) has no generalized solutions (even if A(0, x)u0(x) ∈ L∞(R)).
Let us confirm this by the following example.

Example 3. In the half-plane, we consider the field of coefficients

A(t, x) =

⎧
⎪⎨
⎪⎩

(1 − t)2/x2, t < 1, x < t − 1,

1, t < 1, x � t − 1,

θ(x + 2 − 2t), t � 1,

B(t, x) = 2
√

A(t, x),

where

θ(r) =

{
1, s � 0,

0, s < 0

is the Heaviside function. One can directly verify that the coefficients A
and B satisfy the conditions (4.9), (4.10). To prove (4.10), we should take
into account that on the single discontinuity line x = 2t − 2 the Rankine–
Hugoniot condition ẋ = [B]/[A] = [2 − 0]/[1 − 0] is satisfied. Consider the
Cauchy problem for the equation

(Au)t + (Bu)x = 0, u = u(t, x), (t, x) ∈ Π, (6.2)
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with initial data

u(0, x) = u0(x) =

{
x2, x < −1,

1, x � −1.
(6.3)

Figure 4. The coefficient A and the mapping of characteristics.

We see that A(0, x)u0(x) ≡ 1 ∈ L∞(R). Let us show that the problem
under consideration has no generalized solutions. Assuming the contrary, we
can find an L1

loc-generalized solution u(t, x) of (6.2), (6.3). In the domain
D = {(t, x)| 0 � t < 1, x < t − 1}, where A, B are smooth and A > 0,
the solution u(t, x) is uniquely determined by the requirement that it is
constant along the characteristics (by Proposition 3). These characteristics
are solutions of the ordinary differential equation ẋ = B/A = −2x/(1−t). A
direct computation shows that x(t; t0, x0) = y(1− t)2, where y = y(t0, x0) =
x0/(1−t0)

2, (t0, x0) ∈ D, 0 � t < 1+(1−t0)
2/x0 (note that 1+(1−t0)

2/x0 >
t0). The mapping of characteristics is indicated in Fig. 4. By the initial
condition (6.3), we have u(t, x) = (y(t, x))2 = x2/(1 − t)4 for (t, x) ∈ D.
Then Au = (1−t)−2, Bu = 2|x|(1−t)−3 � 2(1−t)−2. Since these functions
are not integrable in neighborhoods of points (1, x), x < 0, we conclude that
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Au, Bu /∈ L1
loc(Π), which contradicts our assumption. Thus, the problem

(6.2), (6.3) has no L1
loc-generalized solutions.

We introduce the notion of a renormalized solution.

The above example shows that for studying the case of unbounded
solutions we need to extend the class of solutions. As in [7], we introduce
the class of renormalized solutions. Suppose that u0(x) is measurable.

Definition 3. A measurable function u(t, x) on Π is called a renor-
malized solution of the problem (4.7), (4.8) if for any bounded continuous
function p (z) the function p (u(t, x)) is a generalized solution of the problem
(4.7), (4.8) with initial function p (u0(x)).

By Theorem 8(ii), any L1
loc-generalized solution is renormalized.

Theorem 9. There exists a unique renormalized solution of the prob-
lem (4.7), (4.8). Moreover, for every Borel function p (z) the function
p (u(t, x)) is a renormalized solution of the problem (4.7), (4.8) with ini-
tial data p (u0(x)).

Proof. Consider a strictly increasing continuous function h(z) such
that lim

z→−∞
h(z) = 0 and lim

z→+∞
h(z) = 1 (for example, we can take h(z) =

(π + 2 arc tan z)/2π). By Theorem 1, there exists a bounded generalized
solution v(t, x) with initial data v0 = h(u0(x)) ∈ L∞(R). It is clear that
0 < v0 < 1 and, applying the strict maximum principle (see Proposition 5)
to the generalized solution ±v, we see that 0 < v(t, x) < 1 m-a.e. on Π.
“Correcting” v(t, x) on a set of zero m-measure, we can assume that the last
relation holds for all (t, x) ∈ Π. Thus, we can define u(t, x) = h−1(v(t, x)),
where h−1 : (0, 1) → R is the inverse function to h. It is obvious that
u(t, x) is measurable. Now, we choose a bounded Borel function p (z) and
set q(v) = p (h−1(v)) if v ∈ (0, 1) and q(v) = 0 if v /∈ (0, 1). It is easy
to see that q(v) is a bounded Borel function and p (u(t, x)) = q(v(t, x)),
p (u0(x)) = q(v0(x)). From Proposition 4 it follows that p (u(t, x)) is a gen-
eralized solution of the problem (4.7), (4.8) with initial function p (u0(x)).
In particular, the above property is satisfied for all bounded continuous func-
tions p (z) which means that u(t, x) is a renormalized solution. Moreover,
we also proved the last assertion of the theorem. Indeed, for all bounded
continuous functions f(z) functions (f ◦ p)(v) are bounded and Borel and,
as was shown above, f(p (u(t, x))) is a generalized solution of the problem
(4.7), (4.8) with corresponding initial data. Hence p (u(t, x)) is a renormal-
ized solution of the problem (4.7), (4.8) with initial function p (u0).
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To prove uniqueness, we assume that u1 = u1(t, x), u2 = u2(t, x) are
two renormalized solutions of (4.7), (4.8). Then for any bounded function
p (z) ∈ C(R) we have p (u1) = p (u2) m-a.e. on Π by the uniqueness of
bounded generalized solutions. Hence u1 = u2 m-a.e. on Π. �

7. Nonhomogeneous Transport Equations
and Renormalization Property

In this section, we study the Cauchy problem for the linear nonhomogeneous
transport equation

(Au)t + (Bu)x = f, (7.1)

with initial condition

u(0, x) = u0(x). (7.2)

We suppose that A(0, x)u0(x) ∈ L1
loc(R), f = f(t, x) ∈ L1

loc(Π̄). The de-
finition of a generalized solution of the problem (7.1), (7.2) is similar to
Definition 2.

Definition 4. A measurable function u = u(t, x) such that Au, Bu ∈
L1

loc(Π̄) is called a generalized solution of the Cauchy problem (7.1), (7.2)
if for any test function h = h(t, x) ∈ C∞

0 (Π̄)
∫

Π

[Auht + Buhx + fh]dtdx +

∫

R

A(0, x)u0(x)h(0, x)dx = 0. (7.3)

It is clear that a generalized solution of the problem (7.1), (7.2) is
unique since the difference of two solutions u1 and u2 is a generalized so-
lution of the homogeneous problem (4.7), (4.8) with zero initial data. By
Theorem 8, A(u1 − u2) = 0 a.e. on Π, i.e., u1 = u2 m-a.e. on Π. To prove
the existence of a generalized solution and analogs of the renormalization
property, we need auxiliary results.

Proposition 6. Let u = u(t, x) be a generalized solution of the problem
(7.1), (7.2), and let v = v(t, x) ∈ L∞(Π) be a generalized solution of the
homogeneous problem (4.7), (4.8) with initial function v0 = v0(x). Then
w = uv is a generalized solution of the problem (7.1), (7.2) with initial data
w0 = u0v0 and source function fv.
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Proof. As was shown in the proof of Theorem 3, there exists a
bounded in L∞(Π) sequence vk = vk(t, x) of Lipschitz continuous gener-
alized solutions of the problem (4.7), (4.8) such that A(vk)t + B(vk)x = 0
a.e. on Π, and vk → v, vk(0, x) → v0 as k → ∞ in the spaces L1

loc(Π, dm)
and L1

loc(R, dμ) respectively. Let h = h(t, x) ∈ C∞
0 (Π̄). Then hvk is a func-

tion with compact support in Π̄ and hvk ∈ W 1
∞(Π). It is clear that one can

choose test functions of such a kind in Definition 4. By (7.3), we have
∫
Π

[Auvkht + Buvkhx + fvkh]dtdx

+
∫
Π

[A(vk)t + B(vk)x]uhdtdx +
∫
R

A(0, x)u0(x)vk(0, x)h(0, x)dx = 0.

Since A(vk)t + B(vk)x = 0 a.e. on Π¡ we have
∫

Π

[Auvkht + Buvkhx + fvkh]dtdx +

∫

R

A(0, x)u0(x)vk(0, x)h(0, x)dx = 0.

Passing to the limit in this equality as k → ∞ (using, for example, the
Lebesgue theorem on dominated convergence), we conclude that for all h ∈
C∞

0 (Π̄)
∫

Π

[Auvht + Buvhx + fvh]dtdx +

∫

R

A(0, x)u0(x)v0(x)h(0, x)dx = 0,

i.e., uv is a generalized solution of the problem (7.1), (7.2) with initial data
u0v0 and source function fv. �

Corollary 5. For the existence of a generalized solution of (7.1), (7.2)
it is necessary that f(t, x) = 0 a.e. on the set, where A = 0.

Proof. Let E = A−1(0) be the set, where A = 0 and v = v(t, x) be
the indicator function of E. Then Av = Bv = 0 a.e. on Π, which implies
that v is a generalized solution of the problem (7.1), (7.2) with zero initial
data A(0, x)v(0, x). Suppose that u = u(t, x) is a generalized solution of
the problem (7.1), (7.2). By Proposition 6, uv is a generalized solution of
the problem (7.1), (7.2) with zero initial data and source function fv. In
particular, (Avu)t + (Bvu)x = fv in D′(Π). But Avu = Bvu = 0 a.e. on
Π, and we conclude that fv = 0 a.e. on Π. �

We see that the problem (7.1), (7.2) can be well-posed only if

f(t, x) = A(t, x)g(t, x) (7.4)
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with some measurable function g(t, x). Hereinafter, we assume that the
condition (7.4) is satisfied.

7.1. The Duhamel principle and properties
of generalized solutions.

As was shown in Example 3, for unbounded initial data u0 a generalized
solution of the problem (7.1), (7.2) does not necessarily exist (even if f ≡
0). But for bounded u0 and g a generalized solution exists and can be
constructed by approximation arguments in a similar way as in the proof
of Theorem 1. Another method for proving the existence is the Duhamel
principle. Let us describe the construction. Without loss of generality, we
can assume that g = 0 on the set, where A(t, x) = 0. Then g ∈ L∞(Π).
Denote by E the set of t > 0 such that for a.e. x ∈ R (t, x) is a Lebesgue
point of g. It is clear that E is a set of full Lebesgue measure. We also can
assume that the mapping t → A(t, ·) is weakly-∗ continuous in L∞(R) (see
Lemma 1). Let τ ∈ E, g(t, x) be the function from (7.4), and let v(t, x; τ) be
a generalized solution of the Cauchy problem for the homogeneous equation
(4.7) in the half-plane t > τ with initial function g(τ, x) (for t = τ). By
Theorem 1, such a generalized solution exists, and for fixed τ the function
v(t, x; τ) ∈ L∞(Π′

τ ), where Π′
τ = (τ, +∞)× R. We first show that v(t, x; τ)

can be chosen to be measurable as a function of all variables (t, x, τ). Denote
by D the set of (t, x, τ) ∈ Π × R+ such that t > τ .

Lemma 6. There exists a function ṽ(t, x; τ) ∈ L∞(D) such that for
almost all τ v(t, x; τ) = ṽ(t, x; τ) almost everywhere on Π′

τ .

Proof. We consider the two-dimensional transport equation

Ãwt + B̃1wx + B̃2wτ = 0, t > 0, (x, τ) ∈ R2, (7.5)

with coefficients Ã = A(t + |τ |, x), B̃1 = B(t + |τ |, x), B̃2 ≡ 0. One

can directly verify that the coefficients Ã, B̃ = (B̃1, B̃2) satisfy the con-
ditions (3.1) and (3.2). By Theorem 1, there exists a generalized solution
w(t, x, τ) ∈ L∞(R+ × R2) of the Cauchy problem for Equation (7.5) with
initial data

w(0, x, τ) = g(|τ |, x). (7.6)

Since B̃2 ≡ 0 then the function w(t, x, τ) is a generalized solution of the
one-dimensional Cauchy problem

A(t + τ, x)wt + B(t + τ, x)wx = 0, w(0, x) = g(τ, x)
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for all positive τ from some subset E1 ⊂ E of full measure. By the unique-
ness of this generalized solution, w(t, x, τ) = v(t + τ, x; τ) a.e. on Π (we
agree that both functions vanish on the set, where A(t + τ, x) = 0). To
complete the proof, we can set ṽ(t, x; τ) = w(t − τ, x, τ). �

Now we can prove the following result.

Theorem 10. Suppose that u0(x) ∈ L∞(R, dμ), g(t, x) ∈ L∞(Π, dm),
where g(t, x) is the function from (7.4). Then there exists a generalized
solution u = u(t, x) ∈ L∞

loc(Π, dm) of the problem (7.1), (7.2). Moreover,
for any p (z) ∈ C1(R) the function p (u) is a generalized solution of the
problem (7.1), (7.2) with initial function p (u0) and source function p′(u)f
(the renormalization property).

Proof. Since v(t, x; τ) ∈ L∞(D), for a.e. (t, x) ∈ Π the function
v(t, x; τ) is bounded and measurable with respect to τ ∈ (0, t). Therefore,
we can define the function

I(t, x) =

t∫

0

v(t, x; τ)dτ.

It is clear that I(t, x) ∈ L∞ in any layer (0, T ) × R. According to the
Duhamel principle, we show that I(t, x) is a generalized solution of the
problem (7.1) with zero initial data. Let h = h(t, x) ∈ C∞

0 (Π̄) be a test
function. Using the fact that for a.e. τ > 0 the function v(t, x; τ) is a
generalized solution of the homogeneous equation (4.7) in the half-plane
t > τ with initial function g(τ, x), we derive that

∫

Π

[AIht + BIhx]dtdx

=

∫

D

[A(t, x)v(t, x; τ)ht(t, x) + B(t, x)v(t, x; τ)hx(t, x)]dtdxdτ

=

+∞∫

0

( ∫

t>τ

[A(t, x)v(t, x; τ)ht(t, x) + B(t, x)v(t, x; τ)hx(t, x)]dtdx

)
dτ

= −
+∞∫

0

∫

R

A(τ, x)g(τ, x)h(τ, x)dτdx = −
∫

Π

f(t, x)h(t, x)dtdx.
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Thus, for all h ∈ C∞
0 (Π̄)
∫

Π

[AIht + BIhx + fh]dtdx = 0,

and, according to Definition 4, I(t, x) is a generalized solution of the problem
(7.1), (7.2) with zero initial data. Let ũ(t, x) ∈ L∞(Π, dm) be a generalized
solution of the homogeneous problem (4.7), (4.8). The solution exists by
Theorem 1. Then the sum

u(t, x) = ũ(t, x) + I(t, x) = ũ(t, x) +

t∫

0

v(t, x; τ)dτ (7.7)

is a locally bounded generalized solution of the problem (7.1), (7.2). The
existence is proved.

To prove the last assertion of the theorem, we suppose that u(t, x) is
a generalized solution of the problem (7.1), (7.2). Denote by w(t, x; τ) the
generalized solution of the Cauchy problem for the homogeneous equation
(4.7) considered in Π′

τ with initial condition w(τ, x) = u(τ, x). Then the
difference u(t, x) − w(t, x; τ) is a generalized solution of the problem (7.1),
(7.2) in the half-plane t > τ with zero initial data. By formula (7.7) with
the initial “time” 0 replaced with τ , we have

u(t, x) − w(t, x; τ) =

t∫

τ

v(t, x; s)ds.

Therefore,

w(t, x; τ) = u(t, x) −
t∫

τ

v(t, x; s)ds. (7.8)

In view of Theorem 3 and Corollary 1, for any p (z) ∈ C1(R) the function
p′(w(t, x; τ))v(t, x; τ) is a generalized solution of (4.7) in Π′

τ with initial data
p′(u(τ, x))g(τ, x). By (7.7), the function

q(t, x) = p (w(t, x; 0)) +

t∫

0

p′(w(t, x; τ))v(t, x; τ)dτ (7.9)

is a generalized solution of the problem (7.1), (7.2) with source p′(u(t, x))f(t, x)
and initial data p (u0(x)). From (7.8) it follows that
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p′(w(t, x; τ))v(t, x; τ) = p′
(

u(t, x) −
t∫

τ

v(t, x; s)ds

)
v(t, x; τ)

=
∂

∂τ
p

(
u(t, x) −

t∫

τ

v(t, x; s)ds

)

in the sense of distributions on D. This implies that for a.e. (t, x) ∈ Π

t∫

0

p′(w(t, x; τ))v(t, x; τ)dτ

= p (u(t, x)) − p

(
u(t, x) −

t∫

0

v(t, x; s)ds

)
= p (u(t, x)) − p (w(t, x; 0)).

From this and (7.9) we obtain the equality p (u(t, x)) = q(t, x). We conclude
that p (u(t, x)) is a generalized solution of the problem (7.1), (7.2) with the
source p′(u(t, x))f(t, x) and initial data p (u0(x)). �

Remark 5. It is clear that Theorem 10 remains valid for source func-
tions Ag, where g is bounded in any layer ΠT = (0, T )×R, T > 0. By (7.7),
the corresponding generalized solution is also bounded in any layer ΠT .

Remark 6. For a generalized solution of (7.1) the same trace proper-
ties (see Remark 2 and Corollary 2) are satisfied as in the homogeneous case.
For instance, let us show that any bounded generalized solution u = u(t, x)
of (7.1) in a layer ΠT with f = Ag, g ∈ L∞(Π) is a generalized solution
of the Cauchy problem (7.1), (7.2) with some initial function u0. For this
purpose, we take the generalized solution v = v(t, x) of the problem (7.1),
(7.2) with zero initial data. Then v ∈ L∞(ΠT , dm) (see Remark 5) and the
difference u− v is a generalized solution of homogeneous equation (4.7). By
Remark 2, it admits a weak trace u0 ∈ L∞(R, dμ). Hence u = u − v + v is
a generalized solution of the problem (7.1), (7.2) with initial function u0.

Remark 7. Suppose that the coefficient A satisfies the condition (5.1)

and u0, g(t, ·) ∈ C(R̂). Then the functions ũ(t, x) and v(t, x; τ) from (7.7)
must be constant along generalized characteristics (see Section 5): ũ(t, x) =
u0(y(t, x)), where y(t, x) = x(0; t, x) is a source point of the characteristic
passing through the point (t, x), and similarly v(t, x; τ) = g(τ ; x(τ ; t, x)).
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Hence (7.7) reduces to the form (1.6):

u(t, x) = u0(y(t, x)) +

t∫

0

g(τ ; x(τ ; t, x))dτ.

Corollary 6. Let u1, u2 be a generalized solution of the problem (7.1),
(7.2) with initial data u01 ∈ L1

loc(R, dμ), u02 ∈ L∞(R, dμ) and source
functions f1 = Ag1, f2 = Ag2 such that f1 ∈ L1

loc(Π̄), g2 ∈ L∞(Π, dm).
Then the product u1u2 is a generalized solution of the problem (7.1), (7.2)
with initial function u01u02 and source function u1f2 + u2f1.

Proof. In the case u01, u02 ∈ L∞(R, dμ), g1, g2 ∈ L∞(Π, dm), the
conclusion of Corollary 6 easily follows from the equality u1u2 = [(u1 +
u2)

2 − (u1)
2 − (u2)

2]/2 and the renormalization property with p (z) = z2.
In the general situation, from (7.7) it follows that

u1u2 = u1(t, x)ũ(t, x) +

t∫

0

u1(t, x)v(t, x; τ)dτ,

where ũ(t, x) ∈ L∞(Π, dm) is a generalized solution of the homogeneous
problem (4.7), (4.8) with initial data u02(x), and v(t, x; τ) is a generalized
solution of (4.7) in the half-plane t > τ with initial function g2(τ, x) at
t = τ . By Proposition 6, u1(t, x)ũ(t, x) is a generalized solution of the
problem (7.1), (7.2) with initial data u01u02 and source function F1 = f1ũ.
By Proposition 6, w(t, x; τ) = u1(t, x)v(t, x; τ) is a generalized solution of
(7.1), (7.2) in the domain t > τ with initial data u1(τ, x)g2(τ, x) and source
function f1v. Let

J = J(t, x) =

t∫

0

u1(t, x)v(t, x; τ)dτ,

h = h(t, x) ∈ C∞
0 (Π̄). Then, using the identity (7.3) for the generalized

solution w(t, x; τ), which is written as
∫

t>τ

[A(t, x)w(t, x; τ)ht(t, x) + B(t, x)w(t, x; τ)hx(t, x)

+ f1(t, x)v(t, x; τ)]dtdx +

∫

R

A(τ, x)u1(τ, x)g2(τ, x)h(τ, x)dx = 0,

for any test function h ∈ C∞
0 (Π̄), we find
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∫

Π

[AJht + BJhx]dtdx

=

+∞∫

0

(∫

t>τ

[A(t, x)w(t, x; τ)ht(t, x) + B(t, x)w(t, x; τ)hx(t, x)]dtdx

)
dτ

= −
+∞∫

0

(∫

t>τ

f1(t, x)v(t, x; τ)h(t, x)dtdx

)
dτ

−
+∞∫

0

∫

R

A(τ, x)u1(τ, x)g2(τ, x)h(τ, x)dτdx

= −
∫

Π

( t∫

0

v(t, x; τ)dτ

)
f1(t, x)h(t, x)dtdx −

∫

Π

u1(t, x)f2(t, x)h(t, x)dtdx.

Thus, for all h ∈ C∞
0 (Π̄)
∫

Π

[AJht + BJhx + F2h]dtdx = 0,

where we denote

F2 = f1(t, x)

t∫

0

v(t, x; τ)dτ + u1(t, x)f2(t, x)

and, according to Definition 4, J(t, x) is a generalized solution of the prob-
lem (7.1), (7.2) with zero initial data and source F2. We conclude that
u1u2 = u1ũ + J is a generalized solution of the problem (7.1), (7.2) with
initial data u01u02 and source function F1 + F2 = f1u2 + u1f2. �

Now, we establish one useful growth estimate for a generalized solution
of the problem (7.1), (7.2).

Proposition 7. Suppose that u0 ∈ L∞(R, dμ), g ∈ L∞(ΠT , dm) for
any T > 0, and u = u(t, x) is a generalized solution of the problem (7.1),
(7.2) with initial data u0 and source function f = Ag. Then for a.e. t > 0

‖u(t, ·)‖∞ � ‖u0‖∞ +

t∫

0

‖g(τ, ·)‖∞dτ. (7.10)
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To simplify the formulation, we agree that the functions u0 and u, g vanish
on the sets, where A(0, ·) = 0 and A = 0 respectively.

Proof. Consider the set E = {t > 0|(t, x) is a Lebesgue point of
A(t, x), A(t, x)u(t, x) for a.e. x ∈ R} similar to (3.5). It is clear that
E ⊂ R+ is a set of full measure. Suppose that t0 ∈ E and a function
v̄(x) ∈ L∞(R) ∩ L1(R, A(t0, x)dx) is such that ‖A(t0, x)v̄‖1 � 1.

Take a unique generalized solution v = v(t, x) of the backward Cauchy
problem (Av)t + (Bv)x = 0, v(t0, x) = v̄(x) in the strip Πt0 . Taking into
account Remark 2, we see that v(t, x) satisfies the initial condition v(0, x) =
v0(x) for some v0 ∈ L∞(R). By Lemma 1, we can assume that the mapping
t → A(t, ·)v(t, ·) is weakly-∗ continuous on [0, t0]. By Corollary 3, for all
t ∈ [0, t0] we have ‖A(t, ·)v(t, ·)‖1 � ‖A(t0, ·)v̄‖1 � 1. By Proposition 6,
the product uv is a generalized solution of the problem (7.1), (7.2) with
initial data u0v0 and source function fv. Moreover, uv takes the Cauchy
data u(t0, x)v̄ at t = t0. Indeed, from the condition t0 ∈ E and weak
continuity of A(t, ·)u(t, ·) it follows that A(t, ·)u(t, ·) → A(t0, ·)u(t0, ·) as
t → t0 weakly-∗ in L∞(R) while (see Corollary 2) A(t, x)(v(t, ·)− v̄) → 0 in
L1

loc(R). Choose a function ρ(x) ∈ C∞
0 (R) such that ρ(x) = 1 for |x| � 1.

Multiplying (Auv)t +(Buv)x = fv = Agv by ρ(αx), α > 0, and integrating
over x ∈ R, we find

∂

∂t

∫
(Auv)(t, x)ρ(αx)dx = α

∫
(Buv)(t, x)ρ′(αx)dx

+

∫
(Agv)(t, x)ρ(αx)dx in D′(R). (7.11)

Now we pass to the limit in this equality as α → 0. Taking into account
that ‖Av(t, ·)‖1 � 1, ρ(αx) → 1 as α → 0, and for a.e. t ∈ (0, t0)

α

∣∣∣∣
∫

(Buv)(t, x)ρ′(αx)dx

∣∣∣∣ � αN(α)

∫
((A + α)|uv|)(t, x)ρ′(αx)dx

� αN(α)(‖u‖∞ · ‖Av‖1 · ‖ρ′‖∞ + ‖uv‖∞ · ‖ρ′‖1) → 0 as α → 0

(here, the condition (4.9) and the simple equality

α

∫
|ρ′(αx)|dx =

∫
|ρ′(y)|dy

are used), from (7.11) we obtain the relation

∂

∂t

∫
(Auv)(t, x)dx =

∫
(Agv)(t, x)dx � ‖g(t, ·)‖∞ · ‖Av(t, ·)‖1 � ‖g(t, ·)‖∞



72 Evgenii Panov

in D′(R). This, together with the weak continuity of Auv(t, ·) at the points
t = 0, t0 and the inequality ‖A(0, ·)v0‖1 � 1, implies the inequality

∫
A(t0, x)u(t0, x)v̄(x)dx �

∫
A(0, x)u0(x)v0(x) +

t0∫

0

‖g(t, ·)‖∞dt

� ‖u0‖∞ +

t0∫

0

‖g(t, ·)‖∞dt.

Since

sup

{ ∫
A(t0, x)u(t0, x)v̄(x)dx

∣∣v̄(x) ∈ L∞(R) ∩ L1(R, A(t0, x)dx),

‖A(t0, x)v̄‖1 � 1

}
= ‖u(t0, ·)‖L∞(R,A(t0,x)dx),

the proof is complete. �

7.2. Approximate solutions and renormalized solutions.

Suppose that u0(x) is an arbitrary measurable function and f = Ag ∈
L1

loc(Π̄). We construct a “solution” of the problem (7.1), (7.2) using ap-
proximation of the input data by sequences of bounded functions. Suppose
that u0n = u0n(x) and gn = gn(t, x) are sequences of bounded functions
such that u0n → u0 in measure μ = e−|x|dx on R, Agn → f = Ag in
L1

loc(Π̄) as n → ∞. By Theorem 10, there exists a unique generalized so-
lution un = un(t, x) of the problem (7.1), (7.2) with initial data u0n and
source functions Agn. The following assertion justifies the limit procedure.

Theorem 11. The sequence un converges to a measurable function
u = u(t, x) in measure m = Ae−t−|x|dtdx. This limit function is indepen-
dent of the choice of sequences u0n, gn and for all p (z) ∈ C1(R) such that
p (z) and p′(z) are bounded the function p (u(t, x)) is a generalized solution
of the problem (7.1), (7.2) with initial data p (u0) and source function p′(u)f
(the renormalization property).

Proof. Take p (z) =
2

π
arc tan z. It is clear that for all u1, u2 ∈ R
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p (u1) − p (u2)| =
2

π

∣∣∣∣
u2∫

u1

du

1 + u2

∣∣∣∣ �
2

π

|u1−u2|/2∫

−|u1−u2|/2

du

1 + u2

= 2p (|u1 − u2|/2). (7.12)

The function q(z) = 2p (|z|/2) is Lipschitz continuous and the function
q′(z) = p′(|z|/2) sign(z) is piecewise continuous and bounded with only one
jump point z = 0. Let us show that q(un − um) → 0 in L1(Π, dm) as
n, m → ∞. Assuming the contrary, we can choose ε > 0 and sequences
nk, mk → ∞ such that for vk = unk

− umk∫
q(vk)dm(t, x) > ε. (7.13)

The function vk is a generalized solution of the problem (7.1), (7.2) with
initial data v0k = u0nk

− u0mk
and source function Fk = Agnk

− Agmk
.

By Theorem 10, q(vk) is a generalized solution of this problem with initial
data q(v0k) and source term q′(vk)Fk. More exactly, q(z) /∈ C1(R) and
we cannot directly use the renormalization property. To verify that this
property nevertheless holds, we should approximate q(z) by a sequence of
smooth functions qr(z), r ∈ N, such that qr(z) → q(z) uniformly on R

while q′r(z) → q′(z) = p′(|z|/2) sign(z) pointwise, and then pass to the limit
as r → ∞ in the integral identities (7.3) corresponding to the generalized
solution qr(vk).

Extracting a subsequence, if necessary, we can assume that the se-
quence q(vk) converges to some function w ∈ L∞(Π) weakly-∗ in L∞(Π) as
k → ∞. Passing to the limit as k → ∞ in the identity

∫

Π

[Aq(vk)ht + Bq(vk)hx + q′(vk)Fkh]dtdx

+

∫

R

A(0, x)q(v0k)h(0, x)dx = 0, h ∈ C∞
0 (Π̄)

and taking into account the limit relations q(v0k) → 0 in L1
loc(R) (which

easily follows from the condition that v0k → 0 in measure μ and the bound-
edness and continuity of q), Fk → 0 in L1

loc(Π̄), we derive that for all
h = h(t, x) ∈ C∞

0 (Π̄)
∫

Π

[Awht + Bwhx]dtdx = 0,
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i.e., w = w(t, x) is a generalized solution of the problem (7.1), (7.2) with
zero input data. By uniqueness, we have Aw = 0. However, this contradicts
(7.13), which implies

∫
w(t, x)dm(t, x) > ε as k → ∞.

Thus, q(un − um) → 0 in L1(Π, dm) as n, m → ∞. From the esti-
mate (7.12) it follows that the sequence p (un) is fundamental in L1(Π, dm).
Therefore, it converges to a function p̄ = p̄ (t, x) ∈ L∞(Π) in this space.
Let ū0n, ḡn be another pair of sequences possessing the limit properties
described before the theorem, and let ūn = ūn(t, x) be the correspond-
ing sequence of generalized solutions to the problem (7.1), (7.2) with input
data ūn, Aḡn. Then we can generate new sequences ũ0n and g̃n by setting
ũ02k = uk, ũ02k−1 = ūk, g̃2k = gk, and g̃2k−1 = ḡk for k ∈ N. It is clear
that this sequence satisfies the required approximation properties. There-
fore, for the corresponding sequence ũn = ũn(t, x) of generalized solutions
of the problem (7.1), (7.2) with input data ũn, Ag̃n the sequence p (ũn(t, x))
converges in L1(Π, dm). Since ũ2k = uk and ũ2k−1 = ūk, the limit functions
for p (ūn(t, x)) must coincide with p̄ (t, x) m-a.e. on Π and, consequently,
they are independent of the choice of approximation sequences u0n and gn.

It is obvious that |p̄| � 1 and, extracting a subsequence, we can as-

sume that p (un) → p̄ m-a.e. on Π. Since p (z) ∈ C(R̂) strictly increases,
p (±∞) = ±1, we see that un(t, x) → u(t, x) a.e. on Π, where u(t, x) =
p−1(p̄ (t, x)), p−1(v) = tan(πv/2) and we agree that tan(±π/2) = ±∞.
We show that u(t, x) is finite a.e. on Π. Indeed, by Theorem 10, for any
α > 0 the function p (αun) is a generalized solution of the problem (7.1),
(7.2) with initial data p (αu0n(x)) and source function αp′(αun)f . Passing
to the limit as n → ∞ and then as α → 0, we conclude that a function
that is equal to ±1 on the sets, where u = ±∞, is a generalized solution of
the problem (7.1), (7.2) with zero initial and source functions. Therefore,
this function must coincide with zero, i.e., u(t, x) is finite a.e. on Π and
p̄ = p (u(t, x)). From the condition p (un) → p (u) in L1(Π, dm) it follows
that un → u in measure m. Since p̄ = p (u) is independent of the choice of
the approximation sequence, the same is true for the function u.

Finally, if p (z) ∈ C1(R) is such that p (z) and p′(z) are bounded,
then p (un) → p (u) in L1(Π, dm) and p (un) are generalized solutions of the
problem (7.1), (7.2) with initial data p (u0n) and source functions p′(un)fn.
Taking into account that p (u0n) → p (u0) in L1

loc(R), p′(un)fn → p′(u)f in
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L1
loc(Π̄) as n → ∞, we can pass to the limit in the identities
∫

Π

[Ap (un)ht+ Bp (un)hx + p′(un)fnh]dtdx +

∫

R

A(0, x)p (u0n)h(0, x)dx = 0.

We find that for all h ∈ C∞
0 (Π̄)

∫

Π

[Ap (u)ht + Bp (u)hx + p′(u)fh]dtdx +

∫

R

A(0, x)p (u0)h(0, x)dx = 0,

i.e., p (u(t, x)) is a generalized solution of the problem (7.1), (7.2) with initial
data p (u0) and source function p′(u)f . �

The solutions constructed in Theorem 11 are referred to as approxi-
mate solutions of the problem (7.1), (7.2).

Based on the renormalization property, one can naturally expand the
notion of a renormalized solution to the nonhomogeneous case.

Definition 5. A measurable function u(t, x) is called a renormalized
solution of the problem (7.1), (7.2) if for any function p (z) ∈ C1(R) such
that |p (z)| + |p′(z)| is bounded p (u(t, x)) is a generalized solution of the
problem (7.1), (7.2) with source p′(u(t, x))f(t, x) and initial data p (u0(x)).

As follows from Theorem 11, any approximate solution is a renormal-
ized solution. In particular, a renormalized solution always exists. To prove
the uniqueness, we need the following assertion.

Lemma 7. Let u be a renormalized solution of the problem (7.1),
(7.2) with measurable initial data u0 and source f1 = Ag1 ∈ L1

loc(Π̄). Let
v = v(t, x) be a unique generalized solution of the problem (7.1), (7.2) with
input data v0, f2 = Ag2, where v0 and g2 are bounded. Then u − v is a
renormalized solution of the problem (7.1), (7.2) with corresponding initial
data u0 − v0 and source function f1 − f2.

Proof. We first assume that u0 and u are bounded. In this case, the
renormalization property holds for all p (z) ∈ C1(R) (since the values of
p (z) and p′(z) are not essential for large |z|). In particular, all the powers
uk, k = 0, 1, 2, . . ., are generalized solutions of the problem (7.1), (7.2) with
the corresponding input data. By Theorem 10, the same is true for v: all
the powers vl, l = 0, 1, 2, . . ., are generalized solutions of the problem (7.1),
(7.2). By Corollary 6, ukvl is a generalized solution of the problem (7.1),
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(7.2) with initial data (u0)
k(v0)

l and source kuk−1vlf1+ lukvl−1f2. In turn,

(u − v)m =

m∑

l=0

Cl
m(−1)lum−lvl

(Cl
m =

m!

l!(m − l)!
are binomial coefficients) is a generalized solution of the

problem (7.1), (7.2) with initial data (u0 − v0)
m and source function

f1

m−1∑

l=0

Cl
m(−1)l(m − l)um−l−1vl + f2

m∑

l=1

Cl
m(−1)llum−lvl−1

= mf1

m−1∑

l=0

Cl
m−1(−1)lum−1−lvl − mf2

m−1∑

k=l−1=0

Ck
m−1(−1)kum−1−kvk

= m(u − v)m−1(f1 − f2).

Thus, u − v satisfies the renormalization properties for p (z) = zm, m =
0, 1, 2, . . .. Then this property is satisfied for any polynomial p (z). Since
polynomials are dense in C1(R), for any p (z) ∈ C1(R) we can choose a
sequence of polynomials pn(z), n ∈ N, such that pn(z) → p (z) and p′n(z) →
p′(z) as n → ∞ uniformly on any compact subset of R. Passing to the limit
as n → ∞ in the integral identities (7.3) corresponding to the generalized
solution pn(u− v) and taking into account that u− v is locally bounded, we
conclude that p (u − v) is a generalized solution of the problem (7.1), (7.2)
with the corresponding input data. Since p (z) ∈ C1(R) is arbitrary, u − v
is a renormalized solution.

For an arbitrary renormalized solution u(t, x) we consider a sequence
qn(z) ∈ C1(R) ∩ L∞(R) such that |q′n(z)| � 1 and qn(z) → z, q′n(z) → 1
pointwise as n → ∞. Then for u = u(t, x) the functions qn(u) are bounded
renormalized solutions and, as was proved, the difference qn(u)− v is also a
renormalized solution. Therefore, for any p (z) ∈ C1(R) such that |p (z)| +
|p′(z)| � const the function p (qn(u) − v) is a generalized solution of the
problem (7.1), (7.2) with initial data p (qn(u0) − v0) and source function
p′(qn(u)−v)(q′n(u)f1−f2). It is clear that p (qn(u)−v) → p (u−v), p′(qn(u)−
v)(q′n(u)f1−f2) → p′(u−v)(f1−f2) in L1

loc(Π̄) and p (qn(u0)−v0) → p (u0−
v0) in L1

loc(R) as n → ∞. Taking into account these limit relations, we can
pass to the limit as n → ∞ in the integral identities (7.3) corresponding to
the generalized solution p (qn(u)−v) and derive that p (u−v) is a generalized
solution of the problem (7.1), (7.2) with initial data p (u0 − v0) and source
function p′(u − v)(f1 − f2). Thus, u − v is a renormalized solution. �



Cauchy Problem for a Transport Equation 77

Theorem 12. A renormalized solution of the problem (7.1), (7.2) co-
incides with the unique approximate solution of this problem.

Proof. Let u = u(t, x) and ū = ū(t, x) be a renormalized solution
and an approximate solution of the problem (7.1), (7.2) respectively. We
show that the difference u− ū is a renormalized solution. For this purpose,
we choose sequences u0n ∈ L∞(R), gn ∈ L∞(Π), n ∈ N, approximating
the input data u0, Ag in the above sense. Let un = un(t, x) be a unique
generalized solution of the problem (7.1), (7.2) with input data u0n, Agn.
By Theorem 11, un → ū as n → ∞ in measure m. By Lemma 7, u − un

is a renormalized solution which means that for any function p (z) ∈ C1(R)
such that |p (z)|+ |p′(z)| � const the composition p (u−un) is a generalized
solution of the problem (7.1), (7.2) with initial data p (u0−u0n) and source
term p′(u − un)(f − fn). Passing to the limit as n → ∞, we see that
p (u − ū) is a generalized solution of the problem (7.1), (7.2) with constant
initial function p (0) and zero source term. Thus, u − ū is a renormalized
solution of the problem (7.1), (7.2) with zero input data. Applying the
renormalization property with the function p (z) = z2/(1 + z2), we derive
that Ap (u − ū) = 0 is a unique generalized solution of the problem (7.1),
(7.2) with zero input data. This implies that Au = Aū. �

Corollary 7. Let u1 = u1(t, x), u2 = u2(t, x) are renormalized solu-
tions of the problem (7.1), (7.2) with initial data u01, u02 and source func-
tions f1 = Ag1, f2 = Ag2. Then the following assertions hold.

(i) For any α, β ∈ R the function αu1 +βu2 is a renormalized solution
of the problem (7.1), (7.2) with input data αu01+βu02 and αf1+βf2. Thus,
renormalized solutions generate a linear space.

(i) If u01 � u02, f1 � f2, then u1 � u2 m-a.e. on Π (comparison
principle).

Proof. It is clear that (i) and (ii) hold for the generalized solution for
bounded input data. In particular, the comparison principle follows from
Remark 3 and formula (7.7). By Theorem 12, any renormalized solution can
be constructed as a limit in measure of such a generalized solution. This
implies (i) and (ii) in the general case. �

7.3. Renormalized solutions and generalized solutions.

If u = u(t, x) is a renormalized solution of the problem (7.1), (7.2) and
Au, Bu ∈ L1

loc(Π̄), A(0, x)u0(x) ∈ L1
loc(R), then u is also a generalized
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solution of the same problem. To prove this assertion, we can use the
renormalization property with p = pn(z) = nz/(n + z2) and pass to the
limit as n → ∞ in the corresponding integral identity. Now, we prove the
converse assertion.

Theorem 13. Any generalized solution of the problem (7.1), (7.2) is
a renormalized solution.

Proof. Suppose that u = u(t, x) is a generalized solution of the
problem (7.1), (7.2), ū = ū(t, x) is a unique renormalized solution of the
same problem, and v = v(t, x) is a renormalized solution of the problem
(7.1), (7.2) with input data |u0|, |f |. We need to prove that u = ū m-a.e.
on Π. Introduce the cut-off functions u0n = max(−n, min(u0(x), n)) and
gn = max(−n, min(g(t, x), n)), n ∈ N, and consider the corresponding se-
quences of generalized solutions un = un(t, x), vn = vn(t, x) of the problem
(7.1), (7.2) with input data u0n, fn = Agn and |u0n|, |fn| respectively. Since
the input data are bounded, un, vn are also bounded in any layer ΠT , T > 0.

By Theorems 11 and 12, the sequences un and vn converge to the
renormalized solution ū, v in measure m as n → ∞. Since −|u0n| � u0n �

|u0n| and −|fn| � fn � |fn|, by the comparison principle, we have −vn �

ūn � vn, i.e., |un| � vn m-a.e. on Π. By Corollary 6, the functions

w1n =
un(t, x)

1 + vn(t, x)
, w2n =

u(t, x)

1 + vn(t, x)

are generalized solutions of (7.1), (7.2) with initial data

u0n

1 + |u0n|
,

u0

1 + |u0n|

and source functions

fn

1 + vn
− |fn|

(1 + vn)2
un =

fn

1 + vn
− |fn|

1 + vn
w1n,

f

1 + vn
− |fn|

(1 + vn)2
u =

f

1 + vn
− |fn|

1 + vn
w2n

respectively. Note that the difference wn = w1n − w2n is a generalized
solution of the problem (7.1), (7.2) with initial data

w0n(x) =
u0n − u0

1 + |u0n|
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and source function qn − pnwn, where

qn = qn(t, x) =
fn(t, x) − f(t, x)

1 + vn(t, x)
, pn = pn(t, x) =

|fn(t, x)|
1 + vn(t, x)

.

Let T > 0 and ρn = ρn(t, x) be a generalized solution of the backward
Cauchy problem

(Aρ)t + (Bρ)x = pn, ρ(T, x) = 0.

It is obvious that ρn(T − t,−x) is a generalized solution of the equation

(A(T − t,−x)ρ)t + (B(T − t,−x)ρ)x = −pn(T − t,−x) � 0

with zero initial data. By the comparison principle, ρn � 0. Let ρ0n =
ρn(0, x) in the sense of the trace property in Remark 6. Using Corollary 6
again, we see that wneρn is a generalized solution of the problem (7.1), (7.2)
with initial data w0neρ0n and source function (qn − pnwn)eρn + wneρnpn =
qneρn . By Theorems 11 and 12, ρn → ρ as n → ∞ in measure m, where
ρ = ρ(t, x) is a renormalized solution of the problem

(Aρ)t + (Bρ)x = p =
|f(t, x)|

1 + v(t, x)
, ρ(T, x) = 0.

Since ρn � 0, we see that eρn � 1. Therefore, eρn → eρ in L1
loc(Π̄T , dm) as

n → ∞. Here, Π̄T = [0, T ) × R. Taking into account the above property
and estimates

1

1 + vn
� 1,

un

1 + vn
� 1,

we find

qneρn =
fn − f

1 + vn
eρn → 0 as n → ∞ in L1

loc(Π̄T ),

wneρn =
un − u

1 + vn
eρn =

(
un

1 + vn
− u

1 + vn

)
eρn → ū − u

1 + v
eρ

as n → ∞ in L1
loc(Π̄T , dm),

w0neρ0n =
u0n − u0

1 + |u0n|
eρ0n → 0 as n → ∞ in L1

loc(R, dμ).

These relations allow us to pass to the limit in the identity (7.3) corre-

sponding to the generalized solution wneρn and derive that
ū − u

1 + v
eρ is a

generalized solution of the problem (7.1), (7.2) with zero input data. By
uniqueness, this generalized solution must be trivial, i.e., u = ū m-a.e. on
ΠT . Since T > 0 is arbitrary, this completes the proof. �
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7.4. Transport equations with linear source term.

We consider the Cauchy problem for the general linear equation

(Au)t + (Bu)x = f1u + f2, (7.14)

with initial condition (7.2). A generalized solution of this problem is natu-
rally defined as a generalized solution of the problem (7.1), (7.2) with source
function f = f1u + f2. In accordance with the condition (7.4), we assume
that f1 = Ag1 and f2 = Ag2. For the sake of simplicity, we suppose that
u0 ∈ L∞(R, dμ) and g1, g2 ∈ L∞(Π, dm). The main result concerning the
problem (7.14), (7.2) is formulated as follows.

Theorem 14. There exists a unique generalized solution of the prob-
lem (7.14), (7.2).

Proof. Let u1 = u1(t, x) be a generalized solution of the problem

(Au)t + (Bu)x = f1, u(0, x) = 0. (7.15)

By Theorem 10 and Remark 5, this generalized solution exists and is bounded
in any layer ΠT . Taking into account Remark 5 again, we see that there
exists a generalized solution u2 = u2(t, x) of the problem

(Au)t + (Bu)x = f2e
−u1 , u(0, x) = u0(x).

By Theorem 10 and Corollary 6, the locally bounded function u = u2e
u1

is a generalized solution of the problem (7.1), (7.2) with initial data u0(x)
and source function u2e

u1f1 + f2e
−u1eu1 = f1u + f2, i.e., u = u(t, x) is a

generalized solution of the problem (7.14), (7.2).

To prove the uniqueness of this generalized solution, we consider two
generalized solutions u1 = u1(t, x), u2 = u2(t, x) and set ũ = u1(t, x) −
u2(t, x). Then ũ is a generalized solution of the homogeneous problem
(Au)t + (Bu)x = f1u, u(0, x) = 0. Let u be a generalized solution of the
problem (7.15). Then u is locally bounded, and, by Theorem 10 and Corol-
lary 6, the product ũe−u is a generalized solution of the problem (7.1), (7.2)
with zero initial data and the source e−uf1ũ− ũe−uf1 = 0. By uniqueness,
we conclude that this solution is trivial, i.e., Au1 = Au2 a.e. on Π. �

We give one application of the above results to the system of Keyfitz–
Kranzer type with a linear tangential source term

ut + (ϕ(|u|)u)x = S(t, x)u, u = u(t, x) ∈ Rn, (7.16)



Cauchy Problem for a Transport Equation 81

where S(t, x) is a skew-symmetric n × n-matrix with bounded measurable
components. In particular, the Euclidean norm

‖S(t, x)‖ � C = const a.e. on Π. (7.17)

We consider the Cauchy problem for the system (7.16) with initial condition

u(0, x) = u0(x) ∈ L∞(R, Rn). (7.18)

The notion of a strong generalized entropy solution of (7.16), (7.18) is de-
fined similarly to the homogeneous case. Namely, the strong generalized
entropy solution of (7.16), (7.18) is a vector u = u(t, x) ∈ L∞

loc(Π̄, Rn) satis-
fying (7.16) in the sense of distributions, and the conditions (2.4), (2.5).

Theorem 15. There exists a unique strong generalized entropy solu-
tion of the problem (7.16), (7.18).

Proof. Let r = r(t, x) be a unique generalized entropy solution of the
scalar problem (2.4). Then the coefficients A = r, B = f(r) = rϕ(|r|) satisfy
all our assumptions (see Remark 1). We consider the Cauchy problem for
the linear system of transport equations

(Av)t + (Bv)x = ASv (7.19)

with initial data

v(0, x) = v0(x) =

{
u0(x)/r0(x), r0(x) > 0,

0, r0(x) = 0.
(7.20)

Let us show that this problem admits a unique generalized solution v =
v(t, x) ∈ X , where X is a Banach space of vector-valued functions v such
that e−2Ctv ∈ L∞(Π) with the norm ‖v‖X = ‖e−2Ctv‖∞, where C is the
constant from the estimate (7.17). It is obvious that a generalized solution
of the problem (7.19), (7.20) is a fixed point of the mapping F : X → X ,
defined by the requirement that v = F (w) is a generalized solution of the
Cauchy problem for the system

(Av)t + (Bv)x = ASw (7.21)

with initial data (7.20). Since this problem is decoupled into n independent
scalar problems like (7.1), (7.2), there exists a unique generalized solution
v = v(t, x) of this problem and it is bounded in any layer ΠT , T > 0 (see
Theorem 10 and Remark 5). As we show later, v ∈ X and the mapping F
is well defined.

We prove that F is a contraction. Suppose that w1, w2 ∈ X and
v1 = F (w1), v2 = F (w2). Then v = v1−v2 is a generalized solution of (7.21)
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with zero initial data and w = w1 − w2. By the renormalization property,

from Theorem 10 it follows that |v|2 =

n∑

i=1

v2
i is a generalized solution of

the scalar problem (7.1), (7.2) with zero initial data and source function

f = 2A

n∑

i,j=1

Sijwjvi = 2A(Sw, v). By (7.10) and the bound |(Sw, v)| �

‖S‖ · |v| · |w| � C|v| · |w|, for almost all t > 0 we have

‖|v|2(t, ·)‖∞ � 2C

t∫

0

‖v(τ, ·)‖∞ · ‖w(τ, ·)‖∞dτ

� 2C

t∫

0

e4Cτ‖e−2Cτv(τ, ·)‖∞ · ‖e−2Cτw(τ, ·)‖∞dτ.

By the above inequality, for M(t) = ‖e−2Ctv‖L∞(Πt) we derive

(M(t))2 � 2Ce−4Ct‖w‖XM(t)

t∫

0

e4Cτdτ �
1

2
M(t)‖w‖X ,

which implies that v = v1 − v2 ∈ X and

‖v1 − v2‖X �
1

2
‖w1 − w2‖X . (7.22)

If we apply this estimate to w1 = w ∈ X , w2 = 0 and take into account
that v2 = F (0) ∈ L∞(Π) ⊂ X (as a generalized solution of the homo-
geneous problem) we find v1 = F (w) = (v1 − v2) + v2 ∈ X . By (7.22),
F is a contraction of X . By the Banach theorem, there exists a unique
fixed point v ∈ X of F , i.e., the problem (7.19), (7.20) has a unique gen-
eralized solution v = v(t, x). Using again the renormalization property
from Theorem 10, we find that |v|2 is a generalized solution of (7.1), (7.2)
with initial data |v0|2 and source function 2A(Sv, v) = 0. By the identity
A(0, x)|v0(x)|2 = A(0, x) and Theorem 2, A(t, x)|v(t, x)|2 = A(t, x) = r(t, x)
a.e. on Π, which implies r2|v|2 = r2, i.e., |u| = r ∈ L∞(Π) for u = rv. Since
Av = u, Bv = ϕ(r)rv = ϕ(|u|)u, and ASv = Srv = Su, we see that
ut +(ϕ(|u|)u)x = Su in D′(Π, Rn) and the vector u = u(t, x) satisfies (7.16)
in the sense of distributions. By construction, r = |u| satisfies the con-
dition (2.4). Finally, the initial condition (2.5) holds, which easily follows
from Corollary 2 (obviously, the assertion of this corollary remains true for
generalized solutions of nonhomogeneous problems, see Remark 6). Thus,
u(t, x) is a strong generalized entropy solution of (7.16), (7.18). To prove
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the uniqueness of this solution, we only need to repeat arguments from the
corresponding part of the proof of Theorem 4. �
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Problems of Navier–Stokes approximations of kinetic equations are studied in

terms of irreducible Chapman–Enskog projections. Properties of the Chapman–

Enskog projection for the Cauchy problem for moment approximations of kinetic

equations and, in particular, the Boltzmann equation and the Boltzmann–Peierls

equation are described. The existence conditions for Chapman–Enskog projec-

tions are formulated in terms of the solvability of the Riccati matrix equations for

which necessary and sufficient existence conditions are obtained. Bibliography:

25 titles.

1. Introduction

In this paper, we consider mathematical aspects arising in the study of the
system of conservation laws with relaxation [4]

∂tu + ∂xf(u, v) = 0, (1.1)

∂tv + ∂xg(u, v) + b(u)v = 0,
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where x ∈ Rn, u ∈ Rdc , v ∈ Rd⊥

, d = dc + d⊥, b is the relaxation
d⊥ × d⊥-matrix, f(u, v) and g(u, v) are flow dc × d-matrix and d⊥ × d-
matrix respectively, and dc is the number of conservative variables.

The initial goal was to treat the so-called ultraviolet catastrophe (see,
for example, [2], [9]), which turned out to be a banal mathematical fact
caused by “bad” uniform polynomial approximations of internal layer func-
tions (kink type solutions). However, the analysis of the instability of post-
Navier–Stokes approximations for moment approximations of kinetic equa-
tions highlights rigid structural singularities of moment approximations (in
general, hyperbolic systems with relaxation [4, 18]). This effect is con-
nected with “basic” dynamics of the processes under consideration at large
times and the role of conservative and nonequillibrium variables.

The leading part of the system (1.1) is nonstrictly hyperbolic in the
sense of the following definition.

Definition 1.1. We say that (1.1) is a nonstrictly hyperbolic system
if the characteristic matrix

τ E + ξ ·
(

fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

)
(1.2)

has only real roots τ = τj(ξ, u, v), j = 1, . . . , n, where E is the identity
matrix.

The nonstrict hyperbolicity condition is satisfied if the system (1.1) is
simmetrizable (see [8]).

Let U = (u(t), v(t)) be a homogeneous solution to (1.1) depending only
on t. Then some dependent variables are conservative, i.e., u = u0 = const.

Definition 1.2. We say that (1.1) is a system with relaxation if the
origin is an asymptotically stable equilibrium point of the system of ordinary
differential equations

∂tv(t) + b(t, u0)v(t) = 0

relative to the nonequillibrium variables v(t).

For an example of a system with relaxation we can take moment sys-
tems of kinetic equations, which is the simplest hyperbolic regularization of
the Euler isentropic gas dynamics model [19]. In particular, moment ap-
proximations of the Boltzmann kinetic equation describing nonequillibrium
processes in hydrodynamics, the Fokker–Planck equation describing dynam-
ics of Brownian particles, the Boltzmann–Peierls equation describing heat
transfer processes in crystals can be regarded as systems with relaxation.
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As in problems with viscosity, the system (1.1) regularizes discontin-
uous solutions to the locally equilibrium limit

∂tu + ∂xf(u, 0) = 0.

But, unlike the viscous regularization, sufficiently small discontinuities are
removed in this case.

The difficulties arising in the study of nonequillibrium processes are
mostly caused by the behavior of nonequillibrium variables v at large times.
Comparing exact solutions to the Cauchy problem for kinetic equations with
their moment approximations, we see that for a reasonably small residue a
large number of nonequilibrium variables is required. However, a number
of boundary conditions, that could be reasonable from the physical point of
view, is not sufficient for worthy formulations of boundary-value problems.
Therefore, it is necessary to understand how the initial and boundary condi-
tions should be interpreted.

The Chapman–Enskog conjecture [3] reads: for well-posed models in
continuum mechanics the influence of higher order moments is inessential.
We do not list different versions of the notion of “well-posedness” from the
physical point of view, but discuss the expression “the influence of higher
order moments is inessential.” Following Chapman and Enskog, this means
the following.

1. Projection. Nonequilibrium variables are expressed in terms of con-
servative variables, i.e., there exist an operator correspondence

v = ΠChEns(u) (1.3)

such that the system of projections

∂tw + ∂xf(w, ΠChEns(w)) = 0, w
∣∣
t=0

= w0 (1.4)

into the phase space of conservative variables remains in the class of hyper-
bolic systems with relaxation.

2. Separation of dynamics. There is an operator connecting the initial
data of the original system with those of the system of projections

w0 = τ(u0, v0) (1.5)

in such a way that special solutions UChEns = (w, ΠChEns(w)) to the Cauchy
problem for (1.1) determined by solutions to the Cauchy problem (1.4),
(1.5) form an attracting invariant manifold (the definition can be found, for
example, in [1, 6].
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In other words, the dynamics of the process must be divided into the
dynamics in the phase space of conservative variables and the (inessential)
dynamics in the phase space of all variables (u, v) corresponding to the
attracting invariant set of special solutions.

3. Irreducible projections. Projections that are not representable as
the composition of projections must correspond to the basic (characteristic)
dynamics of the simulated process. Moreover, if relations for relaxation
times are different (i.e., the so-called time relaxation ranges are different,
see [3, 18]), then the corresponding attracting invariant manifolds are also
different.

As we will show below, the phase space of irreducible projections can
contain not only conservative variables, but also the so-called consolidated
variables, i.e., variables of the phase space of an irreducible Chapman–
Enskog Projection.

To understand the nature of the Chapman–Enskog projections, we
consider, following [3] (see also [4]), a regular asymptotics of the solution
to the system (1.1) with rigid relaxation and small parameter ε > 0. For
this purpose, we consider the system

∂tu + ∂xf(u, v) = 0,

∂tu + ∂xg(u, v) +
1

ε
b(u)v = 0,

where ε = 1/Kn, Kn is the Knudsen number. For the sake of simplicity,
we assume that the matrix b(u) is invertible for all u ∈ Rdc . Then

u = u0 + ε u1 + . . . , v = 0 + ε v1 + . . . ,

where v1 = −b−1(u0)∂xg(u0, 0). Formally, we obtain the following equation
for u0:

∂tu0 + ∂xf(u0,−ε b−1(u0)∂xg(u0, 0)) = 0.

The system

∂tu + ∂xf(u,−ε b−1(u)∂xg(u, 0)) = 0,

v = −b−1(u)∂xg(u, 0)
(1.6)

is called the Navier–Stokes approximation of (1.1). It is easy to see that
the stability condition for the linearizations of (1.1) on constants can be
expressed as follows: the system (1.6) is parabolic and the linearizations of
(1.6) are stable on constants. However, as was observed in [2], the lineariza-
tions of the so-called post-Navier–Stokes approximations on constants (ε2,
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ε3, . . . ) are unstable. We emphasize that this happens in spite of the sta-
bility of the linearizations of the original system (1.1) on constants. This
phenomenon is referred to as the ultraviolet catastrophe.

What is a reason of this phenomenon? Whether the conjecture of the
existence of a projection to the phase space of conservative variables fails
or the Navier–Stokes approximations are not sufficiently well justified?

2. Linear Analysis

We describe properties of the Chapman–Enskog projection (1.4) by consid-
ering a simple example.

2.1. Boltzmann–Peierls kinetic equation.

We begin with the simplest phonon gas model [16]. As is known, under the
assumption that interatomic potentials in crystals are harmonic, vibrations
of atoms around the equilibrium state can be represented as eigenvibrations
or eigenmodes. Then N atoms determine 3N eigenmodes with frequencies
ωs, s = 1, . . . , 3N,. The energy of each mode is given by the relation
es = (ns + 1/2)�ωs, ns = 0, 1, 2, . . . , where � is the Planck constant and
ns is the number of s-modes of the energy quantum �ωs. Based on the
classical specific heat theory for dielectric solids, Peierls [16] suggested to
use the phonon nature for describing heat transfer processes in crystals.
Within the framework of this approach, we say that there are ns phonons
with energy �ωs. The phonons behave themselves as particles subject to
the Bose statistics. Using a representation of eigenmodes, Peierls showed
that waves with neighboring wave vectors in the volume [k, k + ∆k] can
be represented as wave packets localized in the space volume [x, x + ∆x]
such that |∆k |δ x| = 2π. Such a packet contains a number of phonons with
energy �ω(k). �ω(k). The function ω(k), called a dispersion relation, is, in
general, nonisotropic and depends on the crystal structure and interatomic
interaction. Even in the case of the simplest lattices, it is not easy to
compute ω(k). Therefore, the isotropic dispersion relation ω = c |k| from
the Debye phonon model [5]) is often used for calculations; here

3

c3
=

3∑

α=1

1

c3
α

, |k|2 = k2
1 + k2

2 + k2
3 ,
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and α denotes three wave modes: one longitudinal and two transverse waves
propagating with velocities cα. As is known, wave packets propagate with
group velocity ∂ω/∂ k. The same is true for the corresponding phonons.
Based on these facts, Peierls conjectured that nonequillibrium variables of
crystals can be described by analogy with the kinetic theory of gases. The
state space for phonons is determined by the moment of a phonon �k, its
position x, t in space and time, and phase density f(x, t, k̄), which deter-
mines the number of phonons in a neighborhood of x and k at the moment
of time t. The time-wise dynamics of gas density is determined by the
Boltzmann–Peierls kinetic equation

∂tf + ∂kj ω ∂xj f = S(f).

The collision operator S(f) takes account of collisions between phonons,
between phonons and lattice defects, and between phonons and crystal
edges. We recall that there are two different mechanisms of phonon in-
teraction that contribute to the collision operator: the N - and R-processes
with which two basic dynamics of heat transfer processes in crystals are
associated. Both processes conserve energy, while the normal process also
conserves the moment. The corresponding contributions to S are denoted
by SN(f) and SR(f). In this notation, we can write

S(f) = SN (f) + SR(f),
∫

�ω SN (f)dk =

∫
� ω kjSN (f)dk = 0,

∫
� ω SR(f)dk = 0,

where it may occur ∫
� ω kjSR(f)dk �= 0.

Consequently, e and pj are conservative variables in the N -process, whereas
only e, generally speaking, is a conservative variable in the R-process.

The distribution of phonon energy and its flux is described by the
relations

e(x, t) =

∫
� ω(k)f(x, t, k) dk,

Qj(x, t) =

∫
� ω(k)∂kj ω(k)f(x, t, k) dk = c2pj .

HIgher order moments are introduced in a similar way as in the kinetic
theory of gases.
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2.2. Moment approximations of
the Boltzmann–Peierls kinetic equation.

Numerical investigations of the phonon model and their comparison with
experiment [16, 5] show that hyperbolic systems with relaxation written
in terms of systems of moments of the Boltzmann–Peierls kinetic equation
serve as a perfect tool for describing heat transfer in crystals. In partic-
ular, the number of nonequilibrium variables (the number of equations in
the moment approximation) required to obtain a satisfactory description of
experimental data was given in [5]: at least forty equations are required in
the one-dimensional case.

However, as was mentioned above, the incorporation of higher order
moments with no direct physical interpretation gives rise to the problem of
choosing the initial and boundary data. The Chapman–Enskog approach
allows us to remain within the framework of initial and boundary data only
for basic variables because the crucial point of this method is to find an
operator dependence of nonequilibrium variables on consolidated variables
of an irreducible projection

We will show that for moment approximations of phonon gas model
there are only two irreducible projections: to the phase space of the conser-
vative variable e and to the phase space of the variables (e.p). Thus, for the
Cauchy problem for the 3-moment system of phonon gas (one–dimensional
case) we have (see [5, 15])

∂t e + ∂xp = 0,

∂tp + α1∂xe + ∂xN +
1

τR
p = 0, (2.1)

∂tN + α2∂xp +
1

τNR
= 0,

1

τNR
>

1

τR

with only one conservative variable e for a diffusion process.

To pass from the wave process to a diffusion process, we need to study
the existence conditions for a diffusion Chapman–Enskog projection p =
q(∂x)e, N = μ(∂x)e, 1/τNR = 1/τR+1/τN to the phase space of conservative
variable e. Here, τR > 0 is the relaxation time of the R-normal process and
τN > 0 is the relaxation time of the N -normal process, α1 = c2/3, α2 =
4c2/(15), c is the Debye sound velocity [15], μ and q are pseudodifferential
operators of at most zero order.
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2.3. Chapman–Enskog projection.

To confirm the appearance of the ultraviolet catastrophe, we consider reg-
ular asymptotics for the Chapman–Enskog projection of the system (2.1)
with rigid relaxation at large times:

∂te + ∂xp = 0,

∂tp + α1∂xe + ∂xN +
1

ε

1

τR
p = 0, (2.2)

∂tN + α2∂xp +
1

ε

1

τNR
N = 0,

where ε > 0 is a small parameter. We look for a Chapman–Enskog projec-
tion in the form

p = q(ε∂x) = ε q1(∂x)e + ε2q2(∂x)e + . . . , (2.3)

N = N(ε∂x)ε μ1(∂x)e + ε2μ2(∂x)e + . . . .

Substituting (2.3) into (2.2) and equating terms at the same powers of ε,
we obtain

q1 = −τRα1∂x,

q3 = −τNR∂xμ2 + ∂xq2
1 = −(τ2

NRτRα2α1 + α2
1τ

2
R)∂2

x,

which imply the so-called Navier–Stokes approximation

∂te = ετRα1∂
2
xe

and post-Navier–Stokes approximation

∂te = ετRα1∂
2
xe + ε3(τ2

NRτRα2α1 + α2
1τ

2
R)∂3

xe

of the Boltzmann–Peierls kinetic equation. The first approximation is stable
and the second approximation is unstable, whereas the system of moments
(2.1) is stable. The dispersion equation of the system (2.2)

D3 = τ
(
τ− i

τNR

)(
τ− i

τR

)
−ξ2

(
(α1 + α2)τ − α1

i

τNR

)

= P0 − iγ1P1 − γ2P2 = 0, (2.4)
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where

P0 = ω
(
ω2 − (α1 + α2)ξ

2
)
,

P1 = ω2 − α1
τR

τNR + τR
ξ2, P2 = ω,

γ1 =
( 1

τNR
+

1

τR

)
, γ2 =

1

τNRτR
,

satisfies the following conditions for the stability of hyperbolic pencils [22,
23]:

(1) P0, P1, and P2 are hyperbolic,

(2) the roots of neighboring polynomials of the pencil are strictly sep-
arated.

Such a situation is often observed in quantum mechanics and statistical
physics. It is clear that we should take sufficiently many terms in (2.3).
However, the main question is: How many?

The study of the regular expansion

e = e0 + ε e1 + . . . , p = ε p1 + . . . , N = ε p1 + . . . ,

shows (see [15]), that the first terms in (2.3) can be collected into the
following groups:

pε = ∂xqN (−ε2∂2
x)eε, N = ∂2

xμN−1(−ε2∂2
x)eε, (2.5)

where qN and μN are the Taylor series of the symbols q(−∂2
x) and μ(−∂2

x) are
pseudodifferential operators of order −2 and 0 respectively. Thus, “quanti-
zation” can be observed: the order of moment ⇔ the order of Chapman–
Enskog projection. We show that (2.5) is realized.

We formally construct a Chapman–Enskog projection in the linear
case. Consider the linear system of n equations

∂tu + A∂xu + Bu = 0, (2.6)

where A and B are matrices with constant entries such that bij = 0, i =
1, . . . , mc, j = 1, . . . , n; i = 1, . . . , n, j = 1, . . . , mc, and mc, 1 � mc < n,
is the number of conservative variables. We look for a projection to m
equations (m � mc) in the form

u = Puc. (2.7)

The variables of projection uc = (u1, . . . , um, 0, . . . , 0)T including the con-
servative variables or coinciding with conservative variables are said to be



94 Evgenii Radkevich

consolidated. The matrix corresponding to the operator P has the form

P =

(
P11 P12

P21 P22

)
, (2.8)

where P11 = Em is the identity matrix of order m, P22 = 0n−m is the zero
quadratic matrix of order n−m. Let the matrix of the operator Λ = Aiξ+B
have the form

Λ =

(
Λ11 Λ12

Λ21 Λ22

)
, (2.9)

where Λij have the same size as the matrices Pij . Since P is a projection,
P 2 = P and

P∂tuc + AP∂xuc + BPuc = 0, (2.10)

P∂tuc + PAP∂xuc + PBPuc = 0. (2.11)

Subtracting (2.11) from (2.10), we find

(E − P )(A∂x + B)Puc = 0. (2.12)

We denote by Π the Fourier image of P . Then (2.12) can be written in
terms of Fourier images as follows:

(E − Π)ΛΠvc = 0, (2.13)

i.e., ΛΠvc ∈ Ker(E−Π). Representing v ∈ Ker(E−Π) as vT = (vT
m, vT

n−m),

vk ∈ Rk, we obtain the equality vn−m = Π21vm. Hence we arrive at the
system

Π21(Λ11 + Λ12Π21) = Λ21 + Λ22Π21, (2.14)

which completely determines the projection P .

A situation is interesting from the physical point of view if it is pos-
sible to pass from the system (2.14) with solutions depending on complex
parameter ξ to a system of the same form, but with real-valued solutions
depending on |ξ|2. In such a case, the system under consideration remains
in the class of hyperbolic first order systems with relaxation. Below we
discuss an algorithm allowing such a passage.

Definition 2.1. A function

d(x) =

{
1, x �= 0, ix ∈ R,

0, x ∈ R,

where i2 = −1, is called a recognizing function.
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Let Π21 = ((iξ)mklpkl)k=1,...,n−m, l=1,...,m, and let Λst = (ast
kl). Then

for mkl ∈ Z2 we obtain the following quantization system over Z2:

mkl + d(a12
lj ) + mjt = d(a21

kt ),

k=1, . . . , n − m, j=1, . . . , n − m, l=1, . . . , m, t=1, . . . , m

d(a22
ks) + mst = d(a21

kt ), (2.15)

k = 1, . . . , n − m, s = 1, . . . , n − m, t = 1, . . . , m,

mkq + d(a11
qt ) = d(a21

kt ),

k = 1, . . . , n − m, q = 1, . . . , m, t = 1, . . . , m.

The quantization system (2.15) is solvable only if a recognizing func-
tion is defined for all entries λ of the matrix A. Thus, the necessary condition
for the solvability of the quantization system (2.15) can be formulated as
follows.

Condition 2.1. aijbij = 0 for all i, j, where A and B are the matrices
of the system (2.6).

Proposition 2.1. If the system (2.6) admits projections to m1 equa-
tions and to m2 equations, k < m1, k < m2, then m1

jk = m2
jk for all j,

i.e., the solution to the quantization system (2.15) yields the same values
for mjk.

Proposition 2.2. Let the system (2.6) admit projections to one equa-
tion and to m equations, 1 < k � m. If uk = (iξ)κkpku1 in the case of
the projection to one equation, then mjk = mj1 + κk in the case of the
projection to m equations.

In the case of the projection to one equation, under some additional
restrictions, we can formulate the necessary and sufficient solvability condi-
tions for the system (2.15).

Proposition 2.3. In the case of the projection to one equation, which
corresponds to the system (2.14) with A11 = a11 �= 0, a21

j �= 0 for all j,
the quantization system (2.15) is solvable if and only if the following two
conditions hold:

∀k : a12
k �= 0 : d(a12

k ) + d(a21
k ) + d(a11) = 0(mod 2), (2.16)

∀j, k : a22
jk �= 0 : d(a22

jk) + d(a21
j ) + d(a12

k ) + d(a11) = 0(mod 2). (2.17)

Proof. In this case, the quantization system (2.15) contains the equal-
ity mj1 + d(a11) = d(a21

j ), which yields an expression for mj1. �
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Lemma 2.1. In the case of the projection to one equation, the quan-
tization system (2.15) with a11 �= 0, a21

j �= 0 for all j is solvable if and only

if a22
kkd(a22

kk) = 0 for all k.

We note that the system (2.15) is overdetermined and for the solvabil-
ity of (2.15) it is necessary to impose certain conditions on A and B.

Now, we reduce the matrix equation to the block form. Equation
(2.14) determines invariant subspaces that are smooth with respect to |ξ|2.
We find the corresponding canonical form of the system (2.6).

Lemma 2.2. Let an invertible matrix S be divided into blocks Sij,
i, j = 1, 2, where S11 and S22 are quadratic matrices. Suppose that FS =
SF = E and the matrix F is divided into blocks of the same size. If S11 = E,
then the matrix F22 is invertible.

Proof. Assume the contrary. Since FS = E, we have

F21 + F22S21 = 0. (2.18)

Since F22 is not invertible, there is a row h �= 0 such that hF22 = 0. Taking
into account (2.18), we get hF21 = 0. But, in this case, the last rows of
the matrix F are linearly dependent: there is a row v such that v �= 0 and
vF = 0. Consequently, the matrix F is not invertible. However, F is the
inverse of S, and we arrive at a contradiction. �

Theorem 2.1. If the matrix Λ is divided into blocks Λij, i, j,= 1, 2,
then the quadratic matrix equation

P21Λ12P21 − Λ22P21 + P21Λ11 − Λ21 = 0 (2.19)

is solvable if and only if there exists a matrix S satisfying the following three
conditions:

(1) S is invertible,

(2) S11 = E,

(3) (S−1Λ S)21 = 0.

Proof. Assume that there exists a matrix S satisfying conditions (1)–
(3) and introduce the notation F = S−1. Then

F21 + F22S21 = 0,

F21(Λ11 + Λ12S21) + F22(Λ21 + Λ22S21) = 0.
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Expressing F21 from the first equation and substituting the expression ob-
tained into the second equation, we find

F22(−S21(Λ11 + Λ12S21)) + F22(Λ21 + Λ22S21) = 0.

Since the matrix S satisfies the assumptions of Lemma 2.2, we have

(−S21(Λ11 + Λ12S21)) + (Λ21 + Λ22S21) = 0,

i.e., S21 satisfies (2.19).

Assume that (2.19) is solvable and set S11 = E, S12 = 0, S21 = P21,
S22 = E. It is easy to check that there exists the inverse matrix S−1 =
2E − S.

The constructed matrix S satisfies conditions (1) and (2). Computing
(S−1Λ S)21, we find

(S−1Λ S)21 = F21(Λ11 + Λ12S21) + F22(Λ21 + Λ22S21)

= (−P21)(Λ11 + Λ12P21) + (Λ21 + Λ22P21) = 0

since P21 is a solution to (2.19). Thus, condition (3) is also satisfied. �

Thus, the existence of a Chapman–Enskog projection is equivalent to
the reduction of the system to the block form, which allows us to separate
dynamics.

2.4. Examples of moment approximations
for Boltzmann–Peierls equation.

2.4.1. Projections of three equations to one equation. Making the
change of variables (t, x) → (t, x)/τNR, we reduce (2.1) to the case of a
single parameter q = τNR/τR < 1:

∂te + ∂xp = 0, (2.20)

∂tp + α1∂xe + ∂xN + q p = 0,

∂tN + α2∂xp + N = 0.

By definition,

Λ =

⎛
⎝

0 iξ 0
α1iξ q iξ

0 α2iξ 1

⎞
⎠ . (2.21)

Then

Λ11 = 0, Λ12 =
(

iξ 0
)
, Λ21 =

(
α1iξ

0

)
, Λ22 =

(
q iξ

α2iξ 1

)
.
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In this case, the quantization system has a unique solution

m11 = 1, m21 = 0.

The system (2.14) takes the form

ξ2p2
1 + q p1 + p2 + α1 = 0,

ξ2p1p2 − α2ξ
2p1 + p2 = 0.

We set Q = ξ2p1 and Y = ξ2p2. Then

(Q + q)Q = −Y − α1ξ
2, (Q + 1)Y = α2Q.

Consequently, the equation

(Q + 1)(Q + q)Q + ξ2((α2 + α1)Q + α1) = 0 (2.22)

has a real-valued monotone decreasing solution, smooth with respect to ξ2,

such that Q(0) = 0 and Q(|ξ|2) → − α1

α1 + α2
as |ξ| → ∞ if and only if

q > α1/(α1 + α2). (2.23)

Using the transformation (e, p, N)⊤ = S(ê, p̂, N̂)⊤, we reduce the sys-
tem (2.1) to the block form

∂tê − Qê + ∂xp̂ = 0,

∂tp̂ − (Q + q)p̂ + ∂xN̂ = 0,

∂tN̂ + (α2 − p2)∂xp̂ + N̂ = 0.

(2.24)

The projection equation takes the form

∂t w − Q w = 0 (2.25)

and

MChEns = {(1, 0, 0)w},
where w is a solution to the Cauchy problem for (2.25). A solution to the

Cauchy problem for (2.24) can be represented as Û = Û1 + Û2, where Û1 =
(1, 0, 0)⊤ w1 ∈ MChEns, w1 is a solution to the Cauchy problem for (2.25)

with initial condition w1

∣∣
t=0

= ê0, U0 = (e0, p0, N0)⊤ = S (ê0, p̂0, N̂0)⊤,

Û2 is a solution to the Cauchy problem for (2.24) with initial condition

Û2

∣∣
t=0

= (0, p̂0, N̂0)⊤.

Now, we construct a corrector Ucor ∈ MChEns such that

‖(U − U1 − Ucor)(t, ·)‖L2(R) = o(‖(U1 + Ucor)(t, ·)‖L2(R)). (2.26)
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Then UChEns = U1 +Ucor ∈ MChEns is the projection of U to the invariant
manifold MChEns determined by (2.25) with initial condition

w|t=0 = τ(e0, p0, N0) = ê0 + ê0
cor.

We note that the solution Q(|ξ|2) to the equation for the generating func-
tion is connected with a purely imaginary root ω(|ξ|2) = −iQ(|ξ|2) of the
dispersion equation

D3(ω, ξ2) = iω(iω + 1)(iω + q) + ξ2((α2 + α1)iω + α1)

= (ω + iQ)[(iω + q + Q)(iω + 1) + (α2 − p2)ξ
2] = 0, (2.27)

where the second factor coincides with the dispersion polynomial of the
system consisting of the last two equations in (2.24) whose roots ωb

1 and ωb
2

are of boundary-layer type and are conjugate, i.e., iω1 = −iω2. Let Rj be
the corresponding eigenvectors. Then a solution to the Cauchy problem for
the system

∂tp̂ + ∂xN̂ + (q + Q(−∆))p̂ = 0,

∂tN̂ + (α2 − p2)∂xp̂ + N̂ = 0,

p̂
∣∣
t=0

= p̂0, N̂ |t=0 = N̂0

can be written in terms of Fourier images as follows:

(˜̂p,
˜̂
N)⊤ = C1(ξ)R1(ξ) eiω1 t + C2(ξ)R2(ξ) eiω1 t.

The first component of the solution Û2 is written as

˜̂e(t, ξ) =

t∫

0

iξ (C1(ξ)R11(ξ)e
iω1τ + C2(ξ)R2,1(ξ)e

iω1τ )eQ(|ξ|2)(t−τ) dτ

= eQ(|ξ|2)tiξ
[
C1(ξ)R11(ξ)

t∫

0

ei(ω1+iQ(|ξ|2)) τ

+ C2(ξ)R2,1(ξ)

t∫

0

ei(ω1+iQ(|ξ|2)) τ dτ
]

= eQ(|ξ|2)tiξ[C1(ξ)R11(ξ)

∞∫

0

ei(ω1+iQ(|ξ|2)) taudτ
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+ C2(ξ)R2,1(ξ)

∞∫

0

ei(ω1+iQ(|ξ|2))τ dτ ]

− eQ(|ξ|2)tiξ
[
C1(ξ)R11(ξ)

∞∫

t

ei(ω1+iQ(|ξ|2))τdτ

+ C2(ξ)R2,1(ξ)

∞∫

t

ei(ω1+iQ(|ξ|2)) τ dτ
]
.

Hence

˜̂e0
cor = iξ [C1(ξ)R11(ξ)

∞∫

0

ei(ω1+iQ(|ξ|2)) τ dτ

+ C2(ξ)R2,1(ξ)

∞∫

0

ei(ω1+iQ(|ξ|2)) τ dτ ].

Furthermore, (2.26) holds provided the following integrals are finite:

∞∫

0

ei(ω1+iQ(|ξ|2)) τ dτ,

∞∫

0

ei(ω1+iQ(|ξ|2)) τ dτ,

which is true in our case since Im ωj + Q > 0 for all ξ �= 0.

2.4.2. Projection of (e, p) to the phase space. We consider the pro-
jection of (e, p) to the phase space. We have

Λ11 =

(
0 iξ

iξα1 q

)
, Λ12 =

(
0
iξ

)
,

Π21 = (p1, p2), Λ21 = (0, iξα2), Λ22 = (1)

We obtain the following system for X = ξ2p1(|ξ|2) and Q = ξ2p2(|ξ|2):

X(Q + 1) + α1ξ
2Q = 0,

Q(Q + 1 − q) + α2ξ
2 − X = 0.

Then

Q(Q + 1 − q)(Q + 1) + ξ2((α1 + α2)Q + α2) = 0.
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A smooth real-valued monotone decreasing solution to this equation such

that Q(0) = 0 and Q(|ξ|2) → − α2

α1 + α2
as |ξ| → ∞ exists if and only if

1 − q >
α2

α1 + α2
⇒ q <

α1

α1 + α2
. (2.28)

Hence we obtain the inequality opposite to (2.23). The solution Q is con-
nected with a boundary-layer purely imaginary root ω(|ξ|2) = i(1+Q(|ξ|2))
of the dispersion equation (2.27). In this case, making the change of vari-

ables (ê, p̂, N̂)⊤ = S−1 (e, p, N)⊤, we can write the system (2.1) as follows:

∂tê + ∂xp̂ − Q(−∆)ê = 0,

∂tp̂ + (α1 + p1)∂xê + (q − Q(−∆))p̂ + ∂xN̂ = 0,

∂tN̂ + (1 + Q(−∆))N̂ = 0.

We have MChEns = {(ê, p̂, 0, 0)⊤, where (ê, p̂)⊤ is a solution to the Cauchy
problem for the system

∂tê + ∂xp̂ − Q(−∆)ê = 0,

∂tp̂ + (α1 + p1)∂xê + (q − Q(−∆))p̂ = 0.
(2.29)

As above, the solution Û to the Cauchy problem for (2.4.2) can be repre-

sented as the sum Û1 + Û2, where Û1 ∈ MChEns is the solution to the

Cauchy problem for (2.4.2) with initial condition Û1|t=0 = (ê0, p̂0, 0)⊤ and

Û2 = Ûcor + Û3, Ûcor ∈ MChEns,

‖(Û − Û1 − Ûcor)(t, ·)‖L2(R) = o(‖(Û1 + Ûcor)(t, ·)‖L2(R)), t → ∞.

Consequently, the projection of the solution to the Cauchy problem for
(2.4.2) to the invariant manifold MChEns is the vector-valued function

ÛChEns = Û1 + Ûcor ∈ MChEns

determined as the solution to the Cauchy problem for (2.4.2) with initial

condition ÛChEns|t=0 = ̂τ(e0, p0, N0) = (ê0 + p̂0
cor, p̂0 + p̂0

cor, 0)⊤.

2.5. Diffusion and boundary-layer type
Chapman–Enskog projections.

By the above arguments, we obtain the following assertion.

Proposition 2.4. For

q >
α1

α1 + α2
(2.30)
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there exists a smooth bounded branch Q(|ξ|2) of a root of the equation

Q(Q + q)(Q + 1) + ξ2((α1 + α2)Q + α1) = 0 (2.31)

stabilizing at infinity as |ξ| → ∞ and satisfying the conditions Q(0) = 0 and
Q′(0) �= 0.

From Proposition 2.4 we obtain the following assertion.

Theorem 2.2. For

q >
α1

α1 + α2
(2.32)

there exists a diffusion type Chapman–Enskog projection

p = ∂xp1(−∆x)e, N = p2(−∆x)e (2.33)

of the system (2.1) to the phase space of conservative variable e. The Cauchy
problem for the projection equations (the quotient equation of the Chapman–
Enskog projection) has the form

∂tw(t, x) − Q(−∂2
x)w(t, x) = 0, w

∣∣
t=0

= w0(x) (2.34)

and is stable in view of the properties of the generating function Q.

Thus, using the Chapman–Enskog projection, we remain within the
framework of hyperbolic systems with relaxation.

The graph of the generating function Q(|ξ|2) = |ξ|2p1(|ξ|2) is pre-
sented in Fig. 1. The function Q(|ξ|2) stabilizes to the constant Q(∞) =
−α1/(α1 + α2) as |ξ| → ∞ and has a clearly expressed interior layer with
abrupt drop of the profile. Such functions are called kinks.

Let us write (2.34) in the form

∂tw(t, x) = ∂2
xp1(−∂2

x)w(t, x) (2.35)

Remark 2.1. 1. Functions Q and p1 are not well approximated by the
first terms of the Taylor expansion at the origin in the uniform norm. There-
fore, there are no satisfactory approximations of solutions even for regular
asymptotics. This situation is similar to the well-known Gibbs phenomenon
concerning the nonuniform convergence of partial sums of the Fourier series
in a neighborhood of a discontinuity point.

2. The coefficient p1(−∂2
x) in (2.35) plays the role of the operator

diffusion coefficient. The behavior of the solution to the Cauchy problem
for (2.35) at large times is the same as in the case of the Cauchy problem
for a parabolic equation. The question on separating dynamics has positive
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answer in the L2-norm over the cut-sections t = const, which justifies the
Navier–Stokes approximation at large times.

3. Making the change Q(|ξ|2) = iω(|ξ|2), we transform (2.22) to the
dispersion polynomial (2.27), and the existence of a generating function Q is
equivalent to the existence of a branch, smooth in |ξ|2, of a purely imaginary
root ω(|ξ|2) of the dispersion equation of diffusion type (2.22), i.e., ω(0) = 0
and ω′(0) �= 0.

For the inequality opposite to (2.32) the projection has the form

N = p1(−∂2
x)e + ∂xp2(−∂2

x)p. (2.36)

Proposition 2.5. In the parameter range (2.28), there exists a real-
valued smooth bounded Q(|ξ|2) branch of a root of the equation

Q(Q + 1 − q)(Q + 1) + ξ2((α1 + α2)Q + α2) = 0 (2.37)

stabilizing that stabilizes at infinity, Q(|ξ|2) → −α2/(α1 + α2) as |ξ| → ∞,
and satisfying the conditions Q(0) = 0 and Q′(0) �= 0.

Theorem 2.3. For

q <
α1

α1 + α2
(2.38)
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there exists a Chapman–Enskog projection of the second sound velocity of the
system (2.1) to the phase space of (e, p). The system of projection equations

∂te + ∂xp = 0,

∂tp + (α1 + p1)∂xe +
( 1

τR
− Q

)
p = 0

(2.39)

is a hyperbolic pseudodifferential first order system with relaxation.

Thus, in this case, we also remain in the class of hyperbolic systems
with relaxation.

Indeed, by properties of the generating function Y , the system (2.39)
is a hyperbolic pseudodifferential first order system with relaxation. The
corresponding dispersion equation

DChEns = ω(ω − i(q − Y )) − (α1 + σ)ξ2 = 0 (2.40)

determines a stable hyperbolic pencil provided that

α1 + p1(|ξ|2) > 0, q − Q(|ξ|2) > 0 ∀|ξ| � 0. (2.41)

The second condition in (2.41) holds because the generating function Q is
nonnegative. Since Q is monotone, p1 monotonnically increases to the limit
values p∞1 = α2 and p1(0) = 0. Thus, p1 is a positive kink-like function,
and the first inequality in (2.41) is obviously satisfied.

Making the change U = SV , V = (V1, V2, V3)
⊤, we reduce the system

(2.1) to the block form

∂tV1 + ∂xV2 = 0,

∂tV2 + (α1 + p1)∂xV2 + (q − Q)V2 + ∂xV3 = 0, (2.42)

∂tV3 + (1 − Q)V3 = 0.

A solution to the Cauchy problem for (2.42) has the form

V = W1 + W2,

where W1 belongs to the invariant manifold MChEns of solutions to the
Cauchy problem for (2.42) with initial condition W 0

1 = (V 0
1 , V 0

2 , 0)⊤, V 0 =
S−1 U0, and W2 is the solution to the Cauchy problem for (2.42) with initial
condition W 0

2 = (0, 0, V 0
3 )⊤.

From the Duhamel principle, in terms of Fourier images, we can write

(W̃2)3 = e−(1−Q)t V 0
3 ,
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(
(W̃2)1
(W̃2)2

)
=

t∫

0

(eiω1(t−τ)C1(τ)R1 + eiω2(t−τ)C2(τ)R2)dτ

= eiω1tR1

∞∫

0

e−iω1τC1(τ) dτ + eiω1tR2

∞∫

0

e−iω2τC2(τ) dτ

= −
∞∫

t

(eiω1(t−τ)C1(τ)R1 + eiω2(t−τ)C2(τ)R2)dτ,

where Rj are eigenvectors of the roots ωj of the dispersion equation (2.40)
of the system

C1(τ)R1 + C2(τ)R2 = (0,−iξ e−(1−Q)τ V 0
3 )⊤.

Consequently, the projection of the solution V to the manifold MChEns is
represented as the sum

VChEns = V1 + Vcor,

where Vcor is the solution to the Cauchy problem for (2.42) with

(Ṽ 0
cor)j = Rj1

∞∫

0

e−iω1τC1(τ) dτ + Rj2

∞∫

0

e−iω2τC2(τ) dτ, j = 1, 2,

(Ṽ 0
cor)3 = 0.

We say that the roots ω1, ω2, ω3 = i(1−Q) of the dispersion equation (2.27)
satisfy the gap condition if Im ω3 > Im ωj , j = 1, 2, for all |ξ| � 0. For the
polynomial (2.27) this condition is satisfied. This means the separation of
dynamics in this case.

The origin of the term “second sound velocity” could be explained as
follows. One of the roots of the dispersion equation τ(τ2− (α1 +α2)) = 0 of
the leading part of the system (2.1) determines the characteristic velocity√

α1 + α2 < c which is less than the sound velocity in the Debye phonon
model. We note that the characteristic velocity of the quotient system
satisfies the relation

√
α1 + σ(|ξ|2) <

√
α1 + α2 ∀|ξ| < ∞,

and approaches to the second sound velocity only at high frequencies.
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2.6. Chapman–Enskog projection and
Schrödinger Approximation

Following [25], we consider the following extension of the Maxwell system
(see [12]):

iα
∂U

∂t
= rotU − β∇ ̺ − γ0U,

iα1
∂ρ

∂t
= div U − γ1ρ,

(2.43)

where α, α1, β, γ0, γ1 are constants. The system (2.43) possesses a number
of remarkable properties.

We first discuss how the extended hyperbolic Maxwell system (2.43)
is connected with basic equations in quantum mechanics. Setting α1 = 0,
β = 0, and γ0 = 0 in (2.43), we obtain the Maxwell system

iα
∂U

∂t
= rot U − f,

div U = γ1ρ.

Indeed, introduce the notation α =
√

εμ/c,

U = U1 + iU2,

where U1 =
√

εE and U2 =
√

μH,

f = f1 + if2,

where f1 = −4π

c

√
ε jm and f2 =

4π

c

√
μ je,

ρ = ρ1 + iρ2,

where ρ1 =
4π√

ε
ρe and ρ2 =

4π√
μ

ρm. Then we obtain a “symmetrized”

Maxwell system which differs from the classical one by the presence of the
“magnetic” charge ρm introduced by Dirac and the “magnetic” flow jm

introduced by Schwinger.

If γ0 = α1 = 0, we have the system

iα
∂U

∂t
= rot U − β grad ρ − f,

div U = γ1ρ.
(2.44)

Applying div to the first equation in (2.44), we obtain the nonhomogeneous
Schrödinger equation

iα∂t div U +
β

γ1
∆ div U + div f = 0.
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Setting m =
1

2

√
εμ

β
γ1 and div f = 0, we obtain the so-called free Schrödinger

equation

i� ∂t div U +
�2

2m
∆div U = 0.

Thus, div U coincides in limit with the wave Schrödinger function.

The system (2.44) has the same number of equations as the Dirac
system, but these systems are not equivalent. We show that the former sys-
tem is closely connected with the Schrödinger equation, namely, the latter
appears as the limit of such systems. Depending on the ratio γ0/γ1, we intro-
duce approximations, called Schrödinger approximations, which are similar
to Navier–Stokes approximations. We use the method of regular asymptotic
expansions. Consider two cases.

Case 1. γ0 = 1/ε, ε ≪ 1, γ1 = O(1). For the longitudinal wave in
the first approximation, from the first equation in (2.43) we find

div U = −εβ∆̺. (2.45)

From the second equation in (2.43) it follows that

α1∂t̺ + εβ∆̺ + γ1̺ = 0. (2.46)

As we can see, the system (2.45), (2.46), called a Schrödinger approximation,
is similar to a Navier–Stokes approximation [15, 21].

Case 2. γ1 = 1/ε, ε ≪ 1, γ0 = O(1). From the second equation in
(2.43) we find

ε div U = γ1̺. (2.47)

From the first equation for div U in the first approximation we obtain

αγ1∂t div U + εβ∆div U − γ0γ1 div U = 0. (2.48)

In this case, the system (2.47), (2.48) is the Schrödinger approximation.

In the case α1γ0 − αγ1 �= 0, two projections are possible: to one
equation and to three equations. Making the change (̺, U)⊤ = S(r, V )⊤,
we can consider both cases. Note that the blocks of FAS satisfy the relations

(FAS)11 = A11 + A12S21,

(FAS)12 = A12,

(FAS)21 = 0,

(FAS)22 = −S21A12 + A22.

In the case of the projection to one equation, we have
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− iγ1

α1
− ξ1

α1
− ξ2

α1
− ξ3

α1

−βξ1

α
− iγ0

α

ξ3

α
−ξ2

α

−βξ2

α
−ξ3

α
− iγ0

α

ξ1

α

−βξ3

α

ξ2

α
−ξ1

α
− iγ0

α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.49)

Therefore, setting

S21 = (iξ1R1, iξ2R2, iξ3R3)
T ,

Q = −iα1A12S21 =
3∑

j=1

ξ2
j Rj

and using the above formulas, we find

(FAS)11 =
iQ − iγ1

α1
,

(FAS)22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− iγ0

α
+

iξ2
1R1

α1

ξ3

α
+

iξ1ξ2R1

α1
−ξ2

α
+

iξ1ξ3R1

α1

−ξ3

α
+

iξ1ξ2R2

α1
− iγ0

α
+

iξ2
2R2

α1

ξ1

α
+

iξ2ξ3R2

α1

ξ2

α
+

iξ1ξ3R3

α1
−ξ1

α
+

iξ2ξ3R3

α1
− iγ0

α
+

iξ2
3R3

α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From (2.19) it follows that

αQ2 − (αγ1 − α1γ0)Q − α1β|ξ|2 = 0. (2.50)

Thus, if we have the projection to one equation, the system (2.43) can be
written as

iα1∂t r = div V + (Q(−∆) − γ1) r, (2.51)

iα ∂tV = rotV − γ0V +
α

α1
B1V, (2.52)
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where the Fourier image of B1 has the form
⎛
⎝

R1 0 0
0 R2 0
0 0 R3

⎞
⎠ ξξT . (2.53)

In the new variables, the invariant manifold MChEns determined by
the Chapman–Enskog projection is written as MChEns = (1, 0, 0, 0)⊤ r(x, t),
where r(x, t) is the solution to the Cauchy problem for the equation

iα1∂t r = (Q(−∆) − γ1) r (2.54)

with initial condition r1

∣∣
t=0

= r0, (̺0, U0) = S(r0, V 0).

The second invariant manifold M is determined by the Cauchy prob-
lem for the system (2.51), (2.52) with initial condition V |t=0 = V 0, r|t=0 =
0. The direct sum of these manifolds coincides with the phase space of
variables (V, r).

We recall the dispersion equation of the system (2.43):

D4 = ((αω − γ0)
2 − |ξ|2) ((αω − γ0)(α1ω − γ1) − β|ξ|2) = 0. (2.55)

In the case of real coefficients α, α1, β, γ0, γ1, the second factor in (2.55)
does not have multiple roots, i.e.,

(α1γ0 + αγ1)
2 − 4αα1(γ1γ0 − β|ξ|2) = (α1γ0 − αγ1)

2 + 4αα1β|ξ|2 > 0

if α1γ0 − αγ1 �= 0. The factors in (2.55) have a common root for |ξ| such
that

(
ω − γ0

α

)2

+
(
ω − γ0

α

)(γ0

α
− γ1

α1

)
− β

αα1
|ξ|2

= ± |ξ|
(γ0

α
− γ1

α1

)
+
( 1

α
− β

αα1

)
|ξ|2 = 0,

i.e.,

±
(γ0

α
− γ1

α1

)
+
( 1

α
− β

αα1

)
|ξ| = 0.

Consequently, for β = α1, γ0α1 − γ1α �= 0 the factors in (2.55) have no
common roots.

The dispersion equation of the system (2.51), (2.52) has the form

D3 = ((αω − γ0)
2 − |ξ|2)

(
ω − α1γ0 − α Q

αα1

)
.

We represent the solution to the system (2.51), (2.52) in the form

(r, V ) = (r1, 0) + (r2, V2),
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where r1 is the solution to the Cauchy problem for (2.54) with initial con-
dition r1|t=0 = r0 and (r2, V2) is the solution to the Cauchy problem for
(2.51), (2.52) with initial condition r2|t=0 = 0, V |t=0 = V 0. By the Duhamel
principle,

r2(x, t) =

t∫

0

ei
γ1
α1

(t−τ) e−i
Q(−∆)

α1
(t−τ) (div V )|t=τ dτ.

In the case of the projection to three equations, we set

S21 = (iξ1P1, iξ2P2, iξ3P3),

Q′ = − iα

β
S21A12 =

3∑

j=1

ξ2
j Pj .

Further, we replace columns of the matrix A with its rows in the way cor-
responding to transfer of ̺ to the last position. Then

(FAS)11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− iγ0

α
+

iβξ2
1P1

α

ξ3

α
+

iβξ1ξ2P2

α
−ξ2

α
+

iβξ1ξ3P3

α

−ξ3

α
+

iβξ1ξ2P1

α
− iγ0

α
+

iβξ2
2P2

α

ξ1

α
+

iβξ2ξ3P3

α

ξ2

α
+

iβξ1ξ3P1

α
−ξ1

α
+

iβξ2ξ3P2

α
− iγ0

α
+

iβξ2
3P3

α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(FAS)22 = − iβ

α
Q′ − iγ1

α1
,

and the equation for Q′ takes the form

α|ξ|2 − (αγ1 − α1γ0)Q
′ − α1βQ′2 = 0,

which implies

Q′ =
|ξ|2
Q

.

In accordance with the above calculations, we transform the system (2.43)
to the form

iα ∂tV = rotV + β ∇ r − γ0V + β B2V, (2.56)

iα1∂t r = β Q′(−∆) r − γ1 r; (2.57)
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the Fourier image of B2 is written as

ξξT

⎛
⎝

P1 0 0
0 P2 0
0 0 P3

⎞
⎠ . (2.58)

Since (U, ̺)⊤ = S(V, r)⊤, we have

MChEns = {(1, 0, 0, 0)⊤ V1 + (0, 1, 0, 0)⊤ V2 + (0, 0, 1, 0)⊤ V3},
where V = (V1, V2, V3)

⊤ is the solution to the Cauchy problem

iα ∂tV = rotV − γ0V + β B2V, (2.59)

V |t=0 = V 0,

(U0, ̺0) = S(V 0, r0). A solution to the Cauchy problem for the system
(2.56), (2.57) with initial data (V 0, r0)⊤ can be represented in the form

(V, r)⊤ = (V (1), 0)⊤ + (V
(2)
1 , V

(2)
2 , V

(2)
3 , r2),

where V (1) is the solution to the Cauchy problem for (2.59) and (V (2), r2)
is the solution to the Cauchy problem for the system 2.56, 2.57 with initial
condition V (2)|t=0 = 0, r2|t=0 = r0. Thus, we obtain M.

The direct sum of M and MChEns is the entire phase space of variables
(V, r). By the Duhamel principle,

V (2)(t, x) =

t∫

0

W (t, x; τ) dτ,

where W (t, x; τ) is the solution to the Cauchy problem for the system (2.59)
with t > τ with initial condition W (t, x; τ)|t=τ = ∇ r|t=τ .

Thus, if αγ1 − α1γ0 �= 0 is an invariant manifold of solutions to the
Cauchy problem for (2.43) which are generated at large times by the solution
to the Schrödinger equation (with respect to density ̺ or div U of potential
solutions).

For the critical value qcr = γ0/γ1 = α/α1 we have γ1α−α1γ0 = 0 and
a dispersion equation of the form

D4 = ((αω − γ0)
2 − |ξ|2)

(
(αω − γ0)

2 − αβ

α1
|ξ|2
)

= 0. (2.60)

Thus, we find only wave type roots

ω =
γ0

α
± 1

α
|ξ|, αω =

γ0

α
±
√

β

αα1
|ξ|,
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and the passage at large times to the Schrödinger approximation is impos-
sible. Bifurcation of roots at the critical value qcr is expressed by passing a
boundary-layer root and a diffusion type root of the second factor in (2.60)
to two wave type roots. In this case, the generating functions have the form

Q(|ξ|2) = −
√

α1β

α
|ξ|, Q′(|ξ|2) =

√
α

α1β

1

|ξ| ,

which leads, as in the phonon gas model, to singularities of the coefficients
of the projection Π21 at |ξ| = 0.

Remark 2.2. The question concerning separating dynamics for the
system (2.43) is more delicate and is not discussed here.

3. Existence of Chapman–Enskog Projections.
Necessary and Sufficient Conditions

This section is devoted to the solvability conditions for the Riccati matrix
equation

P21Λ12P21 − Λ22P21 + P21Λ11 − Λ21 = 0 (3.1)

arising in the study of the Chapman–Enskog projection (see [15, 17, 24]) for
the Cauchy problem and the mixed problem for moment approximations of
kinetic equations. Here, P21 is a complex-valued (n−m)× m-matrix, Λ11 ∈
Mm,m(C), Λ21 ∈ Mn−m,m(C), Λ12 ∈ Mm,n−m(C), Λ22 ∈ Mn−m,n−m(C),
n > m, Ml,s(C) is a complex-valued l × s-matrix.

The solvability of the Riccati equation (3.1) is a rather complicated
question (see, for example, [7]). Even in the case of simple problems con-
sidered below, it is required to generalize some well-known results.

Let a matrix P be a solution to the projection problem formulated
in terms of Fourier images, i.e., let P consist of four blocks Pij such that
P11 = E, P12 = 0, P22 = 0, and P21 satisfies (3.1). Our study is based on
the following assertion.

Lemma 3.1. A matrix P is a solution to the projection problem if
and only if

(E − P )Λ P = 0, (3.2)

where E is the identity matrix.
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Proof. We compute explicitly the product (E−P )Λ P . Since the first
m rows of the matrix (E − P ) are zero, the first m rows of the product
(E −P )Λ P are also zero. Since the last n−m columns of the matrix P are
zero, the last n − m columns of the product (E − P )Λ P are also zero. For
((E − P )Λ P )21 we have

((E − P )Λ P )21

= (E − P )21(Λ11P11 + Λ12P21) + (E − P )22(Λ21P11 + Λ22P21)

= −P21Λ11 − P21Λ12P21 + Λ21 + Λ22P21 = 0,

where the last equality holds in view of (3.1). Thus, (E − P )Λ P = 0.
Consequently, the relation (3.2) is a necessary and sufficient condition for
the solvability of the Riccati matrix equation (3.1). �

3.1. Solvability of matrix equations.

It is very surprised that for such a classical object as a matrix equation there
is no complete theory yet! This fact was also remarked in [7]. To a single
reference on this topic indicated in [7], we can add only two references: [11]
and [20].

Here, we obtain necessary and sufficient conditions for the solvability
of a general matrix equation of the form (3.1). Thereby we generalize the
corresponding results of the above-mentioned papers. Since our goal is
to study Chapman–Enskog projections, we are interested in the case of a
singular matrix Λ12, i.e., detΛ12 = 0. This case was not considered in [7]
and [11].

To give a geometric interpretation, we introduce, following [7], two
algebraic manifolds, denoted by E and S. The manifold E is the set of
all second order equations (3.1) over matrices of second order. It consists
of pairs (B, Q) and coincides with the 8-dimensional affine space C8. The
manifold S consists of triples (X, B, Q), where X is a solution. It is nonlinear
and belongs to C12. Our goal is to describe, under the natural projection
S → E , the layers over different points or, equivalently, to find a number
of solutions to a scalar quadratic equation. In a general position, there
are exactly six preimages of the projection S → E . However, there are
points without preimages and, at the same time, there are points with
infinitely many preimages. For an example we will consider the case, where
a preimage is a cone. It is natural to try to work out an algorithm for
determining a number of solutions to a given equation. For a scalar equation
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such an algorithm is simple: there exists a unique solution provided that
the discriminant vanishes and there exist two solution otherwise.

Example 3.1 (see [7]). We consider the quadratic matrix equation

X2 + BX + Q = 0, B, Q ∈ M2,2(C). (3.3)

To illustrate the unusual character of this classical object, we consider two
special cases of (3.3).

1. A matrix

(
a b
c d

)
with ad− bc = 0 and a + d = 0 is a solution to

the equation

X2 = 0.

There are infinitely many such matrices, and they form a two-dimensional
cone in C4.

2. There are no solutions to the equation

X2 =

(
0 1
0 0

)

since a matrix has only the zero eigenvalue if the squared matrix possesses
this property, i.e., X is nilpotent and the squared nilpotent matrix of second
order vanishes.

Obviously, both cases are extraordinary. So, the question arises: What
should be understood as a general position? In the scalar case, the system
(3.3) consists of four second order equations. By the Bezout theorem, there
are 24 = 16 solutions in the general position.

Conjecture 3.1 (see [7]). The matrix equation (3.3) can have a finite
number of solutions, from 0 to 6, or infinitely many solutions forming a two-
dimensional cone or a two-dimensional hyperboloid.

3.1.1. Necessary conditions.

Proposition 3.1. Let a matrix P21 be a solution to the Riccati equa-

tion (3.1), and let X = Λ P , where P =

(
P11 P12

P21 P22

)
is a quadratic ma-

trix of order n, P11 is the identity matrix of order m, and P12, P22 are zero
matrices. Then X is a solution to the quadratic matrix equation

X2 − Λ X = 0. (3.4)
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Multiplying (3.2) from the left by Λ and making the change of variables
X = Λ P , we obtain (3.4). Thus, the question about the solvability of (3.1)
is reduced to the case of the system consisting of two equations in (3.4) and
the equation X = Λ P .

Lemma 3.2. Let det (Λ) �= 0, and let h1, . . . , hn be a Jordan basis for
a matrix X, a solution to Equation (3.4). Then there exists K � 0 such
that h1, . . . , hK are a part of a Jordan basis for the matrix Λ with preserving
the adjunction order (i.e. if hj is such that Xhj = λhj +hj−1, then Λ hj =
λhj +hj−1) and hK+1, . . . , hn are the eigenvectors corresponding to the zero
eigenvalue.

Proof. Let v be an eigenvector of the unknown matrix X correspond-
ing to an eigenvalue λ. Multiplying (3.4) from the right by v, we find
λ2v − λΛ v = 0, which implies det (λ2E − λΛ) = 0 since v �= 0. But, in this
case, only an eigenvalue of the matrix Λ or zero can be an eigenvalue of the
matrix X . Moreover, if λ �= 0, from the equation for v it follows that v is an
eignevector of the matrix Λ corresponding to the same eigenvalue. If λ = 0,
then v is arbitrary.

We show that the matrix X cannot have Jordan cells of order more
than 1 corresponding to the zero eigenvalue. Let v1 be the adjoined eigen-
vector corresponding to the zero eigenvalue. Then

Xv1 = λ v1 + v = v.

Multiplying (3.4) from the right by v1, we find

Xv − Λ v = −Λ v = 0,

i.e., v ∈ Ker(Λ). However, det (Λ) �= 0 by assumption, and we obtain a
contradiction.

Let v1 be the first adjoined eigenvector corresponding to a nonzero
eigenvalue λ of the matrix X , i.e., Xv1 = λ v1 + v, Xv = λ v. Then
λ2v1 + 2λ v − λΛ v1 − Λ v = 0, which implies Λ v1 = λ v1 + v, i.e., v1 is
also the first adjoined eigenvector of the matrix Λ. Similarly, if vk is the
kth adjoined eigenvector corresponding to an eigenvalue λ of the matrix X ,
then the same true for vk relative to the matrix Λ. �

Definition 3.1. Let A and B be quadratic matrices of the same size,
and let λ be their common eigenvalule. We say that the matrices A and B
are consistent with respect to λ up to k if there exists a bijection Φ from
the set of Jordan cells of the matrix A corresponding to λ into the set of
Jordan cells of the matrix B corresponding to the same λ such that
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1) with an h order cell of the matrix A corresponds to a cell of the
matrix B of order at least h − k,

2) if v1, . . . , vh is the Jordan chain of length h corresponding to the cell
Kh(A) of the matrix A and w1, . . . , wL is the Jordan chain corresponding
to the cell of order L of the matrix B which is the image of Kh(A) under
the mapping Φ, then w1 = v1, . . . , wh−k = vh−k.

Lemma 3.3. Let X be a solution to (3.4). If λ = 0 is a common
eigenvalue of the matrices X and Λ, then the matrices X and Λ are consis-
tent up to 1 with respect to λ.

Proof. We subsequently consider several variants. Let v0 be the eigen-
vector of the matrix X corresponding to the Jordan cell of order 1. Then
the equation for v0 implies that v0 is arbitrary. Let v1 is the first adjoined
eigenvector of the matrix X corresponding to the eigenvector v0 and the
zero eigenvalue. Multiplying (3.4) from the right by v1, we find

X2v1 − Λ Xv1 = 0, Xv0 − Λ v0 = 0,

which means that v0 is an eigenvector of the matrix Λ corresponding to the
zero eigenvalue. Further, if v0, . . . , vk+2 are a part of the Jordan chain of the
matrix X such that Xvj = vj−1 (i.e., vj correspond to the zero eigenvalue),
then, multiplying (3.4) from the right by vk+2, we find Xvk − Λ vk+1 = 0,
which means that v0, . . . , vk+1 are a part of the Jordan chain of the matrix
Λ; moreover, Λ v0 = 0 and Λ vj = vj−1 for all j > 0. �

As a consequence, we obtain the following assertion.

Lemma 3.4. Let det (Λ) �= 0. If P21 is a solution to (3.1), then the
corresponding matrix X satisfies the following conditions:

(1) X has exactly n−m zero eigenvalues with corresponding eigenvectors
ej, j > m, where ej, j > m, are basis vectors with 1 at the jth position,

(2) every nonzero eigenvalue of X is an eigenvalue of Λ,

(3) if hj is an eigenvector of X corresponding to an eigenvalue λ, then it
is an eigenvector of Λ and Λ hj = λhj ,

(4) if hj is an adjoined eigenvector of X, then it is also an adjoined eigen-
vector of Λ, and the adjunction order is preserved.

Lemma 3.5. If the matrix equation (3.1) is solvable, then there exist
two solutions X1 and X2 to the corresponding matrix quadratic equation
(3.4) such that
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X1ej = 0 ∀j > m,

eT
j X2 = eT

j Λ ∀j = 1, . . . , m,

Λ X2 = X1Λ.

(3.5)

Proof. If P21 is a solution to (3.1), then the corresponding matrix
P generates two solutions X1 = Λ P and X2 = P Λ. Indeed if P12 is a
solution to (3.1), then P satisfies (3.2). Multiplying (3.2) from the left by
Λ, we see that X1 = Λ P is a solution to (3.4). Multiplying (3.2) from
the right by Λ, we see that X2 = P Λ is a solution to (3.4). The first and
second equations in (3.5) follow from the structure of the matrix P . Further,
X1Λ = Λ PΛ = Λ X2. �

As a consequence, we obtain the following assertion.

Proposition 3.2. Let det (Λ) �= 0. If a solution to (3.1) exists, then
it can be represented in the form P21 = (Λ−1X)21, where the matrix X
satisfies conditions (1)–(4) of Lemma 3.4. Moreover, since there are finitely
many matrices satisfying these conditions, the solution (if it exists) to (3.1)
can be found by enumeration of finitely many variants.

By Proposition 3.1, if (3.1) has a solution, then the corresponding
matrix X = Λ P is a solution to (3.4). Furthermore, since the last n −
m columns of the matrix P are zero, the basis vectors ej, j > m, sat-
isfy the condition Xej = 0. Since for any column (P )j of the matrix
P and j � m we have X(P )j �= 0 (since det (Λ) �= 0) and the vectors
(P )1, . . . , (P )m, em+1, . . . , en form a basis, we conclude that codim (Ker(X)) =
m. By Lemma 3.5, we can describe all matrices X corresponding to the so-
lution P21 to the matrix equation (3.1).

3.1.2. Sufficient conditions. Using Lemmas 3.4 and 3.5, we can con-
struct all solutions to the Riccati matrix equation (3.1) with an arbitrary
matrix Λ. We describe the corresponding algorithm.

Step I. 1. Based on the coefficients of the matrix equation (3.1), we
construct an equation of the form (3.4).

2. We solve (3.4) by using the algorithm described in Lemma 3.4 and
obtain a finite number of classes of solutions X . It is convenient to consider
only the classes such that Xej = 0, j = m+1, . . . , n, because the remaining
classes do not correspond to any solution to the original problem in view of
Lemma 3.5.
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Step II. 1. For each of the obtained classes we solve the linear matrix
equation X = Λ P with respect to P and obtain a finite (possibly, empty)
set of classes of solutions P . If this set is empty, the matrix equation (3.1)
has no solutions.

2. Among the obtained classes of solutions P we select the classes
satisfying the conditions

eT
j P = eT

j ∀j = 1, . . . , m, Pej = 0 ∀j = m + 1, . . . , n.

If none of the classes P satisfies these conditions, then the matrix equation
(3.1) has no solutions.

3. With each of the selected classes of solutions P we associate a class
of submatrices P21 (we deal with classes of solutions since the Jordan basis
for the matrix X can contain arbitrary vectors). The union of all such
parameter classes is the set of all solutions to the matrix equation (3.1).

Lemma 3.6. Let det (Λ) �= 0, and let X be a solution to the ma-
trix equation (3.4). Suppose that K � 0, the matrix X has Jordan basis
h1, . . . , hn, vectors h1, . . . , hK are a part of a Jordan basis for the matrix Λ
with preserving the adjunction order, and hK+1, . . . , hn are regarded as the
eigenvectors corresponding to the zero eigenvalue with the Jordan cell of or-
der 1. Then hm+1 = em+1, . . . , hn = en implies Xej = 0, j = m + 1, . . . , n.

Proof. Let M be the matrix with columns hj , and let J(X) be the
Jordan form of the matrix X . Then X = MJ(X)M−1. Substituting this
expression for X into (3.4), we can write the left-hand side in the form
MJ2(X)M−1−Λ MJ(X)M−1. Let f(v) = (MJ2(X)M−1−Λ MJ(X)M−1)v.
Note that f(v) is a linear function. Furthermore, f(hj) = 0 for all j =
1, . . . , n. Thus, MJ2(X)M−1 − Λ MJ(X)M−1 = 0, i.e., X = MJ(X)M−1

is a solution to the matrix equation (3.4). �

Theorem 3.1. Let detΛ �= 0. Then the matrix equation (3.1) is
solvable if there exist two solutions X1, X2 to the corresponding quadratic
matrix equation (3.4) such that

X1ej = 0 ∀j > m,

eT
j X2 = eT

j Λ ∀j = 1, . . . , m, (3.6)

Λ X2 = X1Λ.

Proof. Assume that there exist two solutions X1 and X2 to the matrix
equation (3.4) satisfying (3.6). We set P = Λ−1X1. From the first equation
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in (3.6) it follows that

P =

(
P11 0
P21 0

)
.

From the second and third equations in (3.6) it follows that

eT
j P = eT

j Λ−1X1 = eT
j X2Λ

−1 = eT
j , j = 1, . . . , m,

i.e., P11 = E. Therefore, P21 = (Λ−1X1)21 is a solution to the matrix
equation (3.1). �

3.1.3. Two examples from [7]. Example 1. We consider the following
special case of the Riccati matrix equation (3.1):

P 2
21 =

(
0 0
0 0

)
. (3.7)

Then the matrix Λ has the form

Λ =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Using the above algorithm and Lemma 3.4, we can show that all the eigen-
values of the matrix X are zero. Moreover, since the Jordan form of the
matrix Λ consists of two Jordan cells of order 2, we can find the following
classes of solutions X to the corresponding quadratic matrix equation (3.4).

1. The Jordan form of X consists of four cells of order 1. Then X = 0,
and the Jordan basis is arbitrary.

2. The Jordan form of X consists of two cells of order 1 and one cell
of order 2. Then either the eigenvector e1 or the eigenvector e2 corresponds
to the cell of order 2.

3. The Jordan form of X consists of two cells of order 2. Then e1 and
e2 are eigenvectors in the Jordan basis.

4. The Jordan form of X consists of one cell of order 3 and one cell of
order 1. Then either the eigenvector e1 and the first adjoined eigenvector
e3 or the eigenvector e2 and the first adjoined eigenvector e4 correspond to
the Jordan cell of order 3.

5. The Jordan form of X cannot consist of one cell of order 4 in view
of Lemma 3.4,(3).
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According In view of Lemma 3.5, for our purpose it suffices to consider
only those classes for which Xe3 = 0 and Xe4 = 0, i.e., e3 and e4 are
eigenvectors of the matrix X . Since e3 and e4 are not eigenvectors of the
matrix Λ, they correspond to the Jordan cells of order 1 by Lemma 3.4, i.e.,
the matrix X has at least two cells of order 1. Thus, it suffices to consider
only cases 1 and 2. In case 2, we find two different classes of solutions:

X1 =

⎛
⎜⎜⎝

0 α 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

X2 =

⎛
⎜⎜⎝

0 0 0 0
α 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

where α �= 0 is an arbitrary parameter. In case 1, we have one class of a
single solution X0 = 0.

Using the above algorithm, for every class we find a set of matrices P
such that Xj = Λ Pj . We have

P0 =

⎛
⎜⎜⎝

p0
11 p0

12 p0
13 p0

14

p0
21 p0

22 p0
23 p0

24

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

for class X0

(p0
1j arbitrary)

P1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 α 0 0
0 0 0 0

⎞
⎟⎟⎠+ P0 for class X1,

P2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
α 0 0 0

⎞
⎟⎟⎠+ P0 for class X2.

Further, from the conditions eT
1 P = eT

1 , eT
2 P = eT

2 , Pe3 = 0, and Pe4 = 0
we find the coefficients p0

ij . Hence only the classes
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P0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

P1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 α 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

P2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
α 0 0 0

⎞
⎟⎟⎠

correspond to a solution to (3.7). This means that all the solutions to (3.7)
are quadratic matrices of one of the following forms:

P21 = 0,

P21 =

(
0 α
0 0

)
,

P21 =

(
0 0
α 0

)

moreover, in the last two cases, α �= 0 is arbitrary, i.e., Equation (3.7) has
infinitely many solutions.

Example 2. We consider the following special case of the Riccati
matrix equation (3.1):

P 2
21 =

(
0 1
0 0

)
. (3.8)

Then the matrix Λ has the form

Λ =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ .

As in Example 1, all the eigenvalues of the matrix Λ are zero, but, in this
case, the Jordan form of the matrix Λ consists of one cell of order 4: e1 → 0,
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e3 → e1, e2 → e3, e4 → e2. As in Example 1, all the eigenvalues of the
matrix solution X to the corresponding equation (3.4) are zero. Further-
more, it suffices to look for only those matrices X for which Xe3 = 0 and
Xe4 = 0. However, since e3 and e4 are not eigenvectors of the matrix Λ,
they correspond to Jordan cells of order 1 in view of Lemma 3.4. Thus, with
the solution to the matrix equation (3.8) only two classes can be associated.

1. X0 = 0.

2. The Jordan form of X consists of one cell of order 2 with which
the eigenvector e1 is associated and two cells of order 1 with which the
eigenvalues e3 and e4 are associated. Furthermore, the matrix X has the
form

X1 =

⎛
⎜⎜⎝

0 α 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

where α �= 0 is an arbitrary parameter.

According to the above algorithm, for the obtained classes we must
solve the matrix equations Xj = Λ Pj . We find

P0 =

⎛
⎜⎜⎝

p0
11 p0

12 p0
13 p0

14

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

for class X0

(p0
1j arbitrary)

P1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 α 0 0
0 0 0 0

⎞
⎟⎟⎠+ P0 for class X1.

The next step of algorithm is the verification of the conditions eT
1 P =

eT
1 , eT

2 P = eT
2 , Pe3 = 0, Pe4 = 0. However, for both matrices P0 and P1

we have eT
2 Pj = 0. Thus, none of the above-selected classes satisfies these

conditions. Consequently, the matrix equation (3.8) has no solutions. The
further results on the solvability conditions for the matrix equation (3.1)
were obtained by my former student Palin [14].
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3.2. Solvability of quantization system.

To discuss results concerning the quantization system (2.15), we need to
introduce some definitions and notation.

Definition 3.2. Two columns (A)k and (A)l of the matrix A are
connected if there exists s such that askasl �= 0. Similarly, two rows [A]k
and [A]l are connected if there exists s such that aksals �= 0.

Definition 3.3. The sth distance between connected columns (A)k

an (A)l is defined by the formula

dists((A)k, (A)l) = d(ask) + d(asl)(mod 2), askasl �= 0.

The sth distance between rows is defined in a similar way.

Definition 3.4. If dists1((A)k, (A)l) = dists2((A)k, (A)l) for all s1, s2,
asjkasj l �= 0, j = 1, 2, then ̺((A)k, (A)l) = dists1((A)k, (A)l) is the distance
between connected columns (A)k and (A)l. The distance between connected
rows is defined in a similar way.

Definition 3.5. 1. A path is a sequence a(j) of columns (rows) such
that a(j) and a(j+1) are connected for all j. The length of path is defined
by the formula

l(a(1), . . . , a(n)) =

n−1∑

k=1

̺(a(k), a(k+1))(mod 2).

2. If two any paths S1 and S2 connecting columns (rows) a and b have
the same length, then ̺(a, b) = l(S1) is the distance between a and b.

Definition 3.6. A set of columns (rows) M is a connection component
if for any a, b ∈ M there exists a path S connecting a and b and for any S
there exists a path connecting a ∈ M and b ∈ M .

Definition 3.7. 1. The size of a connection component is the number,
diminished by 1, of elements of the maximal path without cycles which starts
in this component.

2. The horisontal connection #(A) is the sum of sizes of all connected
components of a matrix A. The vertical connection #[A] is defined in a
similar way.

3. The columns (rows) labeled by k and l are connected in the system
of matrices A and B if they are connected in at least one of these matrices.



124 Evgenii Radkevich

Definition 3.8. Let columns labeled by k and l are connected in A
and B, and let ̺((A)k, (A)l) = ̺((B)k, (B)l). Then the distance between
the matrices A and B is consistent.

For the consistency distance we can introduce the distance between
rows (columns) of a system of matrices.

Definition 3.9. 1. A connection matrix component μ for the problem
(2.14) is a set of pairs (i, j) such that for all (i, j), (k, l) ∈ μ the rows i and
k are connected in the system of matrices A11 and A12, the columns j and
l are connected in the system of matrices A12 and A22.

2. The problem (2.14) is nondegenerate if (det (A11))
2+(det (A22))

2 >
0 for every ξ > 0, and esentially nondegenerate if for any connection matrix
component μ there are i and j such that

(1) (i, j) ∈ μ,

(2) a21
ji �= 0,

(3) there exists s such that (i, s) ∈ μ, (a22
js)2 + (a11

si )
2 > 0.

3.2.1. Necessary conditions. We prove two assertions concerning the
necessary existence conditions for the quantization system (2.15).

Theorem 3.2. Let the quantization system (2.15) for the nondegen-
erate problem (2.14) has a solution. Then it is possible to introduce the dis-
tance between the columns of the system of matrices A12, A22 and between
rows of the system of matrices A11, A12. Moreover, if mij is a solution to
the quantization system (2.15), then the following equalities hold:

mik = mjk + ̺((A22)i, (A22)j), (3.9)

mij = mik + ̺([A11]j , [A11]k), (3.10)

mik = mjk + ̺((A12)i, (A12)j), (3.11)

mij = mik + ̺([A12]j , [A12]k). (3.12)

Proof. We begin by proving that the it is possible to introduce the
consistent distance. We consider only the case of columns since the proof
for rows is the same.

Assume the contrary, i.e., it is impossible to introduce the distance
between columns of the system of matrices A12, A22. Then three cases can
happen.
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Case 1. It is impossible to introduce the distance between columns of
the matrix A12. Then there are i, j, k, and l such that

d(a12
ij ) + d(a12

il ) = 0,

d(a12
kj) + d(a12

kl ) = 1.

But (2.15) implies mri + d(a12
ij ) + mjs = mri + d(a12

il ) + mls. Hence mjs =

mls. Similarly, mrk + d(a12
kj) + mjs = mrk + d(a12

kl ) + mls, which implies
mjs + 1 = mls. Thus, mls = mjs = mjs + 1, which is impossible.

Case 2. It is impossible to introduce the distance between columns
of the matrix A22. Then there are i, j, k, and l such that

d(a22
ij ) + d(a22

il ) = 0,

d(a22
kj) + d(a22

kl ) = 1.

But from the second equation in (2.15) we find d(a22
ij )+mjs = d(a22

il )+mls,

which implies mjs = mls. Similarly, d(a22
kj) + mjs = d(a22

kl ) + mls, which
implies mjs + 1 = mls. Thus, mls = mjs = mjs + 1, which is impossible.

Case 3. The distance is not consistent for the matrices A12 and A22.
Then there are i, j, k, and l such that

d(a12
ij ) + d(a12

il ) = 0,

d(a22
kj) + d(a22

kl ) = 1.

From (2.15) we find mri +d(a12
ij )+mjs = mri +d(a12

il )+mls, which implies
mjs = mls. On the other hand, from the second equation in (2.15) it
follows that d(a22

kj) + mjs = d(a22
kl ) + mls, which implies mjs + 1 = mls.

Thus, mls = mjs = mjs + 1, which is impossible.

Thus, in each of the above cases, the quantization system (2.15) for
the problem (2.14) has no solutions. However, by the assumptions of the
theorem, there exists a solution to the quantization system. Consequently,
none of the above cases is possible, and the distance can be defined between
columns of the system of matrices A12, A22.

We prove that (3.9)–(3.12) hold. Assume that the columns in the
matrix A22 labeled by i and j are connected. Then there is s such that
a22

si a22
sj �= 0, and from (2.15) we find d(a22

si ) + mik = d(a22
sj ) + mjk, which

implies mik = d(a22
si ) + d(a22

sj ) + mjk = ̺((A22)i, (A22)j) + mjk. Hence
(3.9) holds. Let (A22)i, (A22)j be two columns in the same connection
component (i.e., the distance between them can be defined). Then there
is a path a(1), . . . , a(n) connecting these columns, i.e., a(1) = (A22)i and
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a(n) = (A22)j . For any two neighboring columns of this path the equality
(3.9) is valid. Further, summarizing all such equalities and using the fact
that the distance is additive in Z2, we conclude that (3.9) holds.

The remaining equalities are proved in a similar way. �

Theorem 3.3. Let the quantization system (2.15) for the nondegen-
erate problem (2.14) has a solution. Then for any connection matrix com-
ponent μ and all (i, j), (k, l) ∈ μ

mji + mlk = ̺([A11, A12]i, [A11, A12]k) + ̺((A12, A22)j , (A12, A22)l).
(3.13)

Proof. Note that the assumptions of Theorem 3.2 hold and, conse-
quently, the equalities (3.9)–(3.12) are valid. Since the distance for the
corresponding pairs of matrices is consistent, we have

̺((A22)i, (A22)j) = ̺((A12)i, (A12)j) = ̺((A12, A22)i, (A12, A22)j),

̺([A12]i, [A12]j) = ̺([A11]i, [A11]j) = ̺([A11, A12]i, [A11, A12]j).

Using (3.9) and (3.10), we find

mji = mli + ̺((A22)j , (A22)l),

mlk = mli + ̺([A11]i, [A11]k).

Summarizing both equalities and taking into account the consistency of
distance, we obtain the required assertion. �

3.2.2. Sufficient conditions. We prove two assertions concerning the suf-
ficient solvability conditions for the quantization system.

Theorem 3.4. Suppose that the problem (2.14) is nondegenerate,
there exist i and j such that a21

ij �= 0, and #(A12, A22) = n − m − 1,
#[A11, A12] = m−1. Let the assumptions of Theorem 3.3 be satisfied. Then
the quantization system (2.15) of the problem (2.14) has a unique solution.

Proof. From the conditions on the horizontal and vertical connection
of the corresponding systems of columns and rows it follows that there is
the distance between any two columns (rows) of the system of matrices A12,
A22 (A11, A12). Since the problem (2.14) is nondegenerate, we have either
det (A11) �= 0 or det (A22) �= 0. For the sake of definiteness, we assume that
det (A22) �= 0. Then there exists s such that a22

is �= 0. Then from the second
equation in (2.15) we find msj = d(a22

is ) + d(a21
ij ).
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We construct a solution to the quantization system (2.15) by the fol-
lowing rule:

mrt = d(a22
is )+d(a21

ij )+̺([A11, A12]j , [A11, A12]t)+̺((A12, A22)r, (A12, A22)s).

It is easy to check that {mrt} is a solution to the quantization system (2.15).
Thus, the existence of solutions is proved.

The uniqueness of a solution follows from Subsection 2.3 and the fact
that msj must be the same for all solutions.

In the case det (A11) �= 0, the arguments are similar. �

Theorem 3.5. Let the problem (2.14) be essentially nondegenerate,
and let for any connection μ-matrix component there exist (i, j) ∈ μ such
that a21

ji �= 0. Suppose that the assumptions of Theorem 3.3 are satisfied.

Then the quantization system (2.15) for the problem (2.14) has a unique
solution.

Proof. We note that any column does not belong to two connection
components simultaneously. Let μ be an arbitrary connection matrix com-
ponent. By assumption, there exists (i, j) ∈ μ such that a21

ji �= 0. Since

the problem (2.14) is essentially nondegenerate and a nonzero entry of the
matrix A21 labeled by μ is unique, there is s such that either a22

js �= 0 or

a11
si �= 0. For the sake of definiteness, we assume that a22

js �= 0. We set

msi = d(a22
js) + d(a21

ji ). Further, for all (t, r) ∈ μ we set

mrt =d(a22
js)+d(a21

ji )+̺([A11, A12]i, [A11, A12]t)+̺((A12, A22)r, (A12, A22)s).

Performing the same procedure for all connection matrix components μ, we
obtain a collection {mrt} solving the quantization system. We note that
for every connection matrix component msi is uniquely determined and,
consequently, the solution is unique on this component. Hence a solution
to the quantization system is unique. �

3.2.3. The essentially nondegenerate case.

Theorem 3.6. Let the problem (2.14) be essentially nondegenerate,
and let the following conditions hold:

(1) the distance is defined between columns of the system of matrices A12,
A22 and between rows of the system of matrices A11, A12,

(2) for any connection μ-matrix component there exists (i, j) ∈ μ such
that a21

ji �= 0,
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(3) for any connection μ-matrix components and all (i, j), (k, l) ∈ μ,
a21

ji a21
lk �= 0 we have

d(a21
ji ) + d(a21

lk )

= ̺([A11, A12]i, [A11, A12]k) + ̺((A12, A22)j , (A12, A22)l).

Then the quantization system (2.15) for the problem (2.14) has a unique
solution.

Conversely, if the essentially nondegenerate problem (2.14) has a unique
solution, then conditions (1)–(3) are satisfied.

Proof. The existence and uniqueness of a solution is established in
the same way as above. If the quantization system of an essentially nonde-
generate problem has a unique solution, the condition (1) is satisfied.

We show that condition (2) is satisfied. Assume the contrary. Let μ
be a connection matrix component such that a21

ji = 0 for all (i, j) ∈ μ. By

the strong nondegeneracy condition, there is s such that (i, s) ∈ μ, a22
js �= 0

or a11
si �= 0. For the sake of definiteness, let a22

js �= 0. Let {mrt} be a solution

to the quantization system (2.15). We set m′
si = msi + 1. Then we set

mrt = d(a22
js)+d(a21

ji )+̺([A11, A12]i, [A11, A12]t)+̺((A12, A22)r, (A12, A22)s)

for any (t, r) ∈ μ. We consider the collection {m′
rt} obtained from {mrt}

by replacing mrt with m′
rt for all (t, r) ∈ μ. It is easy to check that this

collection also yields a solution to (2.15) and does not coincide with {mrt},
i.e., the solution {mrt} is not unique. WE arrive at a contradiction.

We show that condition (3) is satisfied. We note that there exist (s, t)
such that a12

st �= 0. Let i, j, k, l be such as in condition (3). Then the first
equation in (2.15) implies

mjs + d(a12
st ) + mti = d(a21

ji ),

mls + d(a12
st ) + mtk = d(a21

lk ).

Adding the last two equalities, we find

mjs + mls + mti + mtk = d(a21
ji ) + d(a21

lk ).

We note that

mjs + mls = ̺([A11, A12]s, [A11, A12]s) + ̺((A12, A22)j , (A12, A22)l)

= ̺((A12, A22)j , (A12, A22)l).

Similarly,

mti + mtk = ̺([A11, A12]i, [A11, A12]k).
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Adding the last two equalities, we arrive at condition (3). �

3.2.4. Examples of solvable quantization systems.

Theorem 3.7. The quantization system corresponding to the projec-
tion to one equation for moment approximations of the Boltzmann–Peierls
equation has a unique solution.

Proof. For the moment system of the Boltzmann–Peierls equation the
matrix A22 is three-diagonal, i.e., a22

kka22
k,k+1a

22
k,k−1 �= 0 for all k. Con-

sequently, in the case of n equations, #(A12, A22) = n − 2. Note that
#[A11, A12] = 0 since m = 1. Moreover, det (A22) �= 0 since the matrix A22

is three-diagonal. Thus, the corresponding problem (2.14) is nondegenrate.
Furthermore, A21 = (α1iξ, 0, . . . , 0)T , i.e., there exists a pair (i, j) such that
a21

ij �= 0. Thus, the assumptions of Theorem 3.6 hold and the corresponding
quantization system has a unique solution. �

Theorem 3.8. The quantization system corresponding to the projec-
tion to two equations for moment approximations of the Boltzmann–Peierls
equation has a unique solution.

Proof. In this case, the matrix A22 is three-diagonal, which means
det (A22) �= 0 and #(A12, A22) = n − 3. Further, since

A11 =

(
0 iξ

α1iξ
1

τR

)
, (3.14)

the size of a single connection component for rows of the system of matrices
A11, A12 is equal to 1. It remains to note that a21

ij �= 0 implies i = 1, j = 2.
Thus, the assumptions of Theorem 3.6 hold and the corresponding quanti-
zation system has a unique solution. �

Theorem 3.6 provided us with necessary and sufficient conditions for
the existence of a unique solution to the quantization system for an essen-
tially nondegenerate problem. The following natural question arises: What
happens if the problem (2.14) is not essentially nondegenerate? We consider
three examples of such a situation: (1) a solution exists, but is not unique;
(2) there are no solutions, and (3) there exists a unique solution.

We consider the problem
(

p1

p2

)
M

(
p1

p2

)
+

(
0 0
iξ 1

)(
p1

p2

)
−
(

iξ
0

)
= 0. (3.15)
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In case (1), M = (iξ 0). Then the quantization system is reduced to
a single equation m2 = m1 + 1 which has two different solutions. We note
that conditions (1)–(3) of Theorem 3.6 hold.

In case (2), M = (0 iξ). Then the quantization system has the form
m1+m2 = 0, m1+1 = 1, m2 = 1 and, obviously, has no solutions. However,
conditions (1)–(3) of Theorem 3.6 hold.

In case (3), M = (iξ 1). Then the quantization system has the form
m1 +m2 = 1, m1 +1 = 0, m2 = 0 and its single solution is m1 = 1, m2 = 0.

4. Other Examples of Construction of
Chapman–Enskog Projections

4.1. Multi-dimensional case. Hierarchy of moment systems.

A multi-dimensional linearization of the M order moment system of the
Boltzmann–Peierls kinetic equation [5] can be written as follows:

∂tẽ + ∂xk
pk = 0,

∂tpj +
1

3
c2∂xj ẽ + ∂xk

N〈jk〉 +
1

τR
pj = 0,

∂tN〈ij〉 +
2

5
c2∂xj〉

p〈i +
1

τNR
N〈ij〉 = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

∂tN〈i1... in〉 +
n

2n + 1
c2∂xin〉

N〈〈i1... in−1〉 +
1

τNR
N〈i1... in〉 = 0,

(4.1)

i1 � i2 � . . . in, ik = 1, 2, 3, 1 < n � M.

Here, we used the notation ∂xj〉
p〈<i, ∂xin〉

N〈〈i1... in−1〉 for symmetric trace-

less tensors [3]; δij is the Kronecker symbol, c is the Debye sound veloc-
ity [5], and e is the distribution of phonon energy. In (4.1) and below
we adopt the rule of summation relative repeated indices. For example,
∂xj〉

p〈i = ∂xj pi + ∂xipj − 2 divx p δij/n.

As was proved in [15], this system has only three irreducible Chapman–
Enskog projections: to the phase space of conservative variable e (diffu-
sion type projection), to the phase space of moments of order less than
1 (boundary-layer type projection), and to the phase space of variables e,
p = (p1, . . . , pn)⊤ ∈ Rn (projection of the second sound velocity).



Chapman–Enskog Projections 131

Theorem 4.1. Let q = τNR/τR ∈ (0, 1). Consider a multi-dimensional
(d = 2, 3) moment system of order 2k of the Boltzmann–Peierls equation.
Then there exist the critical values of parameter q,

qb
2k+1 < qd

2k+1 (4.2)

such that the following assertions hold.

1. For q > qd
2k+1 the pencil of the dispersion equation is diffusively

connected, i.e., there exists a diffusion type Chapman–Enskog projection

pj = ∂xj qj(∇x)ẽ, j = 1, 2, 3,

Ni1,...,ik
= ∂xi1

. . . ∂xik
qi1,...,ik

(∇x)ẽ, i1, . . . , ik = 1, 2, 3, 2 � k � M,

with smooth symbols qi1,...,ik
(ξ), ξ ∈ Rd, of order −(M − k), k = 1, . . . , M .

2. For q < qb
2k+1 the pencil of the dispersion equation is boundary-layer

connected, i.e., there exists a bounded curve of stable purely imaginary roots
of the boundary-layer type dispersion equation stabilizing at infinity.

Due to this theorem, we can find a boundary-layer type Chapman–
Enskog projection.

The solvability of the system of algebraic equations for the symbols
q1, . . . , qd, . . . , qi1 , . . . , qik

, ik ∈ {1, . . . , d}, d = 1, 2, is connected with the
solvability of the equation for the generating function

Q(|ξ|2) = ξ2
1q1(|ξ|2) + . . . + ξ2

dqd(|ξ|2),
where τ = iQ is a purely imaginary root.

The question whether (4.2) may be equality remains still open. For
the system of moments of order 2k+1 = 5, 7, 9 the inequality (4.2) becomes
equality. Thus, for k = 5 we have the critical value

q5 =
α2(α3 + α4)

α3α1 + α4(α1 + α2)
.

For the system of moments of odd order the proof is similar, but more
complicated from the technical point of view. There is qc

2(k+1) < qb
2k+1 such

that for 0 < q < qc
2(k+1) there exists the Chapman–Enskog projection of the

second sound velocity

Ni1,...,ik
= ∂xi1

. . . ∂xik
qi1,...,ik

(∇x)ẽ

+ ∂xi1
. . . ∂xik

3∑

j=1

μj;i1,...,ik
(∇x)∂xj pj,

i1, . . . , ik = 1, 2, 3, 2 � k � M,

(4.3)
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with smooth symbols qi1,...,ik
(ξ), μj;i1,...,ik

(ξ), ξ ∈ Rd, of order −(M − k),
k = 1, . . . , M and −1 − (M − k), k = 1, . . . , M respectively.

4.2. Chapman–Enskog projection for mixed problem.

We consider the one-dimensional third order moment system of the Boltzmann–
Peierls kinetic equation in the quarter space R2

++ = {(x, t), x > 0, t > 0}:

∂t e + ∂xp = 0,

∂tp + α1∂xe + ∂xN + q p = 0,

∂tN + α2∂xp + ∂xN1 + N = 0,

∂tN1 + α3∂xN + N1 = 0,

(4.4)

where

αj =
j2

(4j2 − 1)
: α1 =

1

3
, α2 =

4

15
, α3 =

9

35
.

Denoting U = (e, p, N, N1)
T , we can write the system (4.4) in the form

E · ∂tU + Ax · ∂xU + B · U = 0,

where E is the identity matrix,

Ax =

⎛
⎜⎜⎝

0 1 0 0
α1 0 1 0
0 α2 0 1
0 0 α3 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0 0 0 0
0 q 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

We reduce the system (4.4) to the normal form relative to ∂x. For this
purpose, we multiply the equations from the left by A−1

x , where

A−1
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1

α1
0 − 1

α1α3

1 0 0 0

0 0 0
1

α3

−α2 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Then

B̂ = A−1
x · B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
q

α1
0 − 1

α1α3

0 0 0 0

0 0 0
1

α3

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., we obtain the system

E · ∂xU + A−1
x · ∂tU + B̂ · U

or

∂xe +
1

α1
(∂t + q)p − 1

α1α3
(∂t + 1)N1 = 0,

∂xp + ∂te = 0,

∂xN +
1

α3
(∂t + 1)N1 = 0,

∂xN1 − α2∂te + (∂t + 1)N = 0.

(4.5)

We make the Fourier transform with respect to t and set

Λb = A−1
x iτ + B̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
iτ + q

α1
0 − iτ + 1

α1α3

iτ 0 0 0

0 0 0
iτ + 1

α3

−α2iτ 0 iτ + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The dispersion equation has the form

λ4 −
((iτ)(iτ + q)

α1
+

(iτ + 1)2

α3
+ α2

(iτ)(iτ + 1)

α1α3

)
λ2

+
(iτ)(iτ + q)(iτ + 1)2

α1α3
= 0,
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λ2 =
1

2

[ (iτ)(iτ + q)

α1
+

(iτ + 1)2

α3
+ α2

(iτ)(iτ + 1)

α1α3

]

± 1

2

{[ (iτ)(iτ + q)

α1
+

(iτ + 1)2

α3
+ α2

(iτ)(iτ + 1)

α1α3

]2

− 4
(iτ)(iτ + q)(iτ + 1)2

α1α3

}1/2

.

Denote by λb
± two roots corresponding to “+” and by λ± two roots corre-

sponding to “−.” The eigenvectors take the form

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

iτ/λ

−α1 +
iτ(iτ + q))

λ2

−λ
α1α3

iτ + 1
+

α3iτ(iτ + q)

λ(iτ + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since

λ2 =
1

2

{[ 1

α3
+
( q

α1
+

2

α3
+

α2

α1α3

)
iτ
]

±
[ 1

α3
+
(
− q

α1
+

2

α3
+

α2

α1α3

)
iτ
]}

+ O(τ2)

as τ → 0, we have

λb
± = ± 1√

α3
+ O(iτ), λ± = ±

√
q

α1

√
iτ + O(iτ).

The eigenvectors corresponding to the eigenvalues λb
± as τ → 0 take the

form

Rb
± =

⎛
⎜⎜⎝

−1/α1

0
1

±√
α3

⎞
⎟⎟⎠

The eigenvectors R± corresponding to the eigenvalues λ± go to the eigenvec-
tor R1 and the adjoined eigenvector R′

1 corresponding to the two-multiple
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eigenvalue λ = 0, as τ → 0:

R1 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , R′

1 =

⎛
⎜⎜⎜⎝

0
α1

q
0
0

⎞
⎟⎟⎟⎠

Indeed,

R± →

⎛
⎜⎝

1
0

−α1 +
q

q/α1
0

⎞
⎟⎠ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ,

R+ − R−√
iτ

→

⎛
⎜⎜⎜⎜⎜⎝

0

2
√

α1/q

0

2(−
√

q
α1

α1α3 + α3q
q

α1

)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1

2
√

α1/q

0

0

⎞
⎟⎟⎟⎠ .

Proposition 4.1. In a neighborhood of τ = 0, there is only one pro-
jection to the phase space of consolidated variables (e, p).

By Theorem 3.5, for τ �= 0 in a neighborhood of τ = 0 with each pair
of eigenvectors

(R+, R−), (Rb
+, R+), (Rb

+, R−), (Rb
−, R−), (Rb

−, R+), (Rb
+, Rb

−)

we can associate the projection to the phase space of consolidated variables
(e, p). But only one projection, corresponding to the pair (R+, R−), is
continuous as τ → 0 when the pair of eigenvalues (R+, R−) goes to the
pair (R1, R

′
1), where R1 is an eigenvector and R′

1 is an adjoined eigenvector
corresponding to the eigenvalue λ = 0.

4.2.1. Projection. It is equivalent to look for the projection

N = p11 · e + p12 · p,

N1 = p21 · e + p22 · p
or a solution to the matrix equation

(E − P )ΛbP = 0,
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where

P =

(
E 0

P21 0

)
, P21 =

(
p11 p12

p21 p22

)
,

which is equivalent to the equation

P21Λ12P21 − Λ22P21 + P21Λ11 − Λ21 = 0,

where Λij , i, j = 1, 2, are the corresponding 2 × 2–blocks of the matrix Λb.

Making the change of variables U = SÛ, where

S =

(
E 0

P21 E

)

and multiplying the system

S∂xÛ + ΛbSÛ = 0

from the left by S−1, where

S−1 = 2E − S =

(
E 0

−P21 E

)
,

we find

∂xÛ + S−1ΛbSÛ,

where

S−1ΛbS =

(
Λ11 + Λ12P21 Λ12

−P21Λ11 + Λ21 − P21Λ12P21 + Λ22P21 −P21Λ12 + Λ22

)
.

Since the lower left block vanishes, we can reduce the system to the
block form

∂xÛ + MbÛ = 0,

where

M b = S−1ΛbS

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− iτ + 1

α1α3
p21

iτ + q

α1
− iτ + 1

α1α3
p22 0 − iτ + 1

α1α3

iτ 0 0 0

0 0 0
iτ + 1

α3

( 1

α1
p11 + 1

)

0 0 iτ + 1
iτ + 1

α1α3
p21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or



Chapman–Enskog Projections 137

∂xê − 1

α1α3
(∂t + 1)p21ê +

( iτ + q

α1
− iτ + 1

α1α3
p22

)
p̂

− 1

α1α3
(∂t + 1)N̂1 = 0,

∂xp̂ + (∂t)ê = 0,

∂xN̂ +
1

α3
(∂t + 1)

( 1

α1
p11 + 1

)
N̂1 = 0,

∂xN̂1 + (∂t + 1)N̂ +
1

α1α3
(∂t + 1)p21N̂1 = 0.

(4.6)

The dispersion equation has the form

det(μE − Mb) =
[
μ
(
μ +

iτ + 1

α1α3
p21

)
− iτ

( iτ + γ + q

α1
− iτ + 1

α1α3
p22

)]

×
[
μ
(
μ − iτ + 1

α1α3
p21

)
− (iτ + 1)2

α3

( 1

α1
p11 + 1

)]
= 0. (4.7)

If the matrix P21 is a solution to the quadratic matrix equation

P21Λ12P21 − Λ22P21 + P21Λ11 − Λ21 = 0,

then the matrix X = Λ P , where P =

(
P11 P12

P21 P22

)
, P is a square matrix

of order n, P11 is the identity matrix of order m, and P12, P22 are zero
matrices, is a solution to the quadratic matrix equation

X2 − Λ X = 0.

Hence

X = ΛbP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− iτ + 1

α1α3
p21

iτ + q

α1
− iτ + 1

α1α3
p22 0 0

iτ 0 0 0

iτ + 1

α3
p21

iτ + 1

α3
p22 0 0

−α2iτ + (iτ + 1)p11 (iτ + 1)p12 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We have two zero eigenvalues of the matrix X : λx
3,4 = 0. For the corre-

sponding eigenvectors e3 and e4 we have Xe3 = 0 and Xe4 = 0 . The upper
left block of the matrix X coincides with the upper left block of the matrix
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Mb, i.e., μ1,2 = λx
1,2. Since a unique correct projection is the projection to

the pair (R+, R−),, we need to choose a solution P21 to the equation

P21Λ12P21 − Λ22P21 + P21Λ11 − Λ21 = 0

such that μ1,2 = λx
1,2 = λ±, i.e.,

λ2
± +

iτ + 1

α1α3
p21λ± − iτ(

iτ + q

α1
− iτ + 1

α1α3
p22) = 0

Since λ+ = −λ−, we have p21 = 0. Thus, for pij we have the system

1

α1α3
(iτ + 1)p11p21 +

1

α3
(iτ + 1)p21 = iτp12,

1

α1α3
(iτ + 1)p11p22 +

1

α3
(iτ + 1)p22 =

1

α1
(iτ + q)p11,

1

α1α3
(iτ + 1)p2

21 − iτ p22 − iτα2 + (iτ + 1)p11 = 0,

1

α1α3
(iτ + 1)p22p21 −

1

α1
(iτ + q)p21 + (iτ + 1)p12 = 0

or

1

α3
(iτ + 1)

( 1

α1
p11 + 1

)
p21 = iτ p12,

1

α3
(iτ + 1)

( 1

α1
p11 + 1

)
p22 =

1

α1
(iτ + q)p11,

1

α1α3
(iτ + 1)p2

21 − iτ p22 − iτα2 + (iτ + 1)p11 = 0,

1

α1α3
(iτ + 1)p22p21 −

1

α1
(iτ + q)p21 + (iτ + 1)p12 = 0.

We set Z =
1

α1
p11 + 1. Then the above system can be written in the form

1

α3
(iτ + 1)Zp21 = iτ p12,

1

α3
(iτ + 1)Zp22 =

1

α1
(iτ + q)α1(Z − 1),

1

α1α3
(iτ + 1)p2

21 − iτ p22 − iτα2 + (iτ + 1)α1(Z − 1) = 0,

1

α1α3
(iτ + 1)p22p21 −

1

α1
(iτ + q)p21 + (iτ + 1)p12 = 0.
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Since p21 = 0, we have p12 = 0. Now, two equations remain:

1

α3
(iτ + 1)Zp22 =

1

α1
(iτ + q)α1(Z − 1),

p22 = −α2 +
iτ + 1

iτ
α1(Z − 1) = 0,

We obtain the quadratic equation with respect to Z:

α1(iτ + 1)2

α3iτ
Z2 −

(α1(iτ + 1)2

α3iτ
+

α2

α3
(iτ + 1) + iτ + q

)
Z + iτ + q = 0,

which implies

Z =
1

2

α3iτ

α1(iτ + 1)2

[
−
(α1(iτ + 1)2

α3iτ
+

α2

α3
(iτ + 1) + iτ + q

)

±
√(α1(iτ + 1)2

α3iτ
+

α2

α3
(iτ + 1) + iτ + q

)2

− 4
α1(iτ + 1)2

α3iτ
(iτ + q)

]
.

From the characteristic equation for the matrix Mb we find

μ3,4 = ± iτ + 1√
α3

√
Z.

Choosing the sign “+” in the expression for Z, we obtain the case of a
correct projection

μ3,4 = λb
±, μ1,2 = λ±.

Under the choice “−,” we have

μ3,4 = λ±, μ1,2 = λb
±.

In the case p21 �= 0, from the equations relative to pij we can addition-
ally obtain four solutions corresponding to four remaining partitions of the
eigenvalues λ±, λb

± into pairs.

Let us prove that ∆ = Re (λb
+ − λ+) > 0 for all τ � 0 (the gap

condition). We have ∆ → 1√
α3

as τ → 0.

Introduce the notation

Z1 =
1

2

√√√√√ iτ + 1

α3

⎛
⎝
[√

α3iτ(iτ + q)

α1(iτ + 1)
+
√

(iτ + 1)

]2

+ iτ
α2

α1

⎞
⎠,



140 Evgenii Radkevich

Z2 =
1

2

√√√√√ iτ + 1

α3

⎛
⎝
[√

α3iτ(iτ + q)

α1(iτ + 1)
−
√

(iτ + 1)

]2

+ iτ
α2

α1

⎞
⎠.

A direct calculation shows that

(Z1 + Z2)
2 = (λb

±)2, (Z1 − Z2)
2 = (λ±)2.

Consequently,

Z1 + Z2 = λb
+, −Z1 − Z2 = λb

−,

Z1 − Z2 = λ+, −Z1 + Z2 = λ−

Hence ∆ = 2Z2. Let us show that Re ∆ > 0 as τ → ∞. We have

∆ =

√√√√√ iτ + 1

α3

⎛
⎝
[√

α3iτ(iτ + q)

α1(iτ + 1)
−
√

(iτ + 1)

]2

+ iτ
α2

α1

⎞
⎠

=
iτ + 1

α3

√
α3

iτ + 1

[
α3iτ(iτ + q)

α1(iτ + 1)
+ iτ + 1 − 2

√
iτ(iτ + q)

α3

α1
+

α2

α1
iτ

]

=
iτ + 1

α3

√√√√α3

[
α3(1 + q

iτ )

α1(1 + 1
iτ )2

+ 1 − 2

√
1 + q

iτ

(1 + 1
iτ )2

α3

α1
+

α2

α1

1

1 + 1
iτ

]

∼iτ+1

α3

√
α3

[
α3

α1

(
1+

q−2

iτ

)
+1−2

√
α3

α1

(
1+

q−2

2iτ

)
+

α2

α1

(
1− 1

iτ

)
+O
( 1

τ2

)]

=
iτ+1

α3

√√√√[
α3

(α3

α1
+1−2

√
α3

α1
+

α2

α1

)
+α3

(q−2)
(

α3

α1
−2
√

α3

α1

)
− α2

α1

iτ
+O
( 1

τ2

)]
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∼ Ciτ +

√√√√ α3

α1
+ 1 − 2

√
α3

α1
+ α2

α1

α3
+

(q − 2)
(

α3

α1
− 2
√

α3

α1

)
− α2

α1

2α2
3

(
α3

α1
+ 1 − 2

√
α3

α1
+ α2

α1

) + O
( 1

τ

)
.

Since α1 =
1

3
, α2 =

4

15
, α3 =

9

35
, 0 < q < 1, a direct calculation shows

that Re ∆ > 0 as τ → ∞.

It remains to prove that Re ∆ �= 0 for all τ . We have

∆ =

√√√√√ iτ + 1

α3

⎛
⎝
[√

α3iτ(iτ + q)

α1(iτ + 1)
−
√

(iτ + 1)

]2

+ iτ
α2

α1

⎞
⎠.

But Re
√

z = 0 only if Im (z) = 0 and Re (z) < 0. Denote by z the expression
under the root sign. Let us prove that Im(z) �= 0 for all τ . We have

α3z =
α3

α1
iτ(iτ + q) + 1 − τ2 + 2iτ − α2

α1
τ2 +

α2

α1
iτ

− 2

√
α3

α1

√
−τ2 + iτq − 2iτ

√
α3

α1

√
−τ2 + iτq

Assume that

Im (α3z) = 0 = τ(
α3

α1
q + 2 +

α2

α1
) − 2

√
α3

α1
B − 2

√
α3

α1
τA,

where A + iB =
√
−τ2 + iτq. To find A and B, we can argue as follows. If√

x + iy = A + iB, then x + iy = A2 − B2 + 2iAB. Hence

A2 − B2 = x, 2AB = y,

A =
y

2B
,

4B4 + 4B2x − y2 = 0,

B2 =

√
x2 + y2 − x

2
.

In our case, x = −τ2, y = τq. Consequently,

B4 − τ2B2 − 1

4
τ2q2



142 Evgenii Radkevich

From the equation Im (α3z) = 0 we have

B · Cτ = B2 +
1

2
τ2q,

where

C =
α3

α1
q + 2 + α2

α1

2
√

α3

α1

and A =
y

2B
=

τq

2B
. Raising to square, we have

B4 + B2(τ2q − τ2C2) +
1

4
τ4q2 = 0.

Comparing two equations for B, we conclude that

τ2q − τ2C2 = −τ2,
1

4
τ4q2 = −1

4
τ2q2

So, only the case τ = 0 is possible.

4.2.2. On boundary conditions. Thus, making the change of variables

U = SÛ, where

S =

(
E 0

P21 E

)
=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

p11 p12 1 0
p21 p22 0 1

⎞
⎟⎟⎠

p12 = p21 = 0, p11 = α1(Z − 1), p22 =
iτ + 1

iτ
α1(Z − 1) − α2

and

Z =
1

2

α3iτ

α1(iτ + 1)2

[
−
(

α1(iτ + 1)2

α3iτ
+

α2

α3
(iτ + 1) + iτ + q

)

+

√(
α1(iτ + 1)2

α3iτ
+

α2

α3
(iτ + 1) + iτ + q

)2

− 4
α1(iτ + 1)2

α3iτ
(iτ + q)

]
,

we can reduce the system under consideration to the block form

∂xÛ + MbÛ = 0,
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where

M b = S−1ΛbS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
iτ + q

α1
− iτ + 1

α1α3
p22 0 − iτ + 1

α1α3

iτ 0 0 0

0 0 0
iτ + 1

α3

( 1

α1
p11 + 1

)

0 0 iτ + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Then we have the eigenvalues

μ1 = λ+, μ2 = λ−, μ3 = λb
+, μ4 = λb

−

and the eigenvectors

R̂1,2 =

⎛
⎜⎜⎜⎜⎜⎝

1

iτ

μ1,2

0

0

⎞
⎟⎟⎟⎟⎟⎠

, R̂3,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

iτ/μ3,4

[
iτ

μ3,4

(
iτ+q
α1

− (iτ+1)p22

α1α3

)
− μ3,4

]
α1α3μ3,4

(iτ+1)2

[
iτ

μ3,4

(
iτ+q
α1

− (iτ+1)p22

α1α3

)
− μ3,4

]
α1α3

iτ+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We represent bounded solutions in the form

Û = C1R̂1e
−μ1x + C2R̂3e

−μ3x

The original boundary conditions are given by the formula

B · U = ϕ,

where

B =

(
b11 b12 b13 b14

b21 b22 b23 b24

)
, ϕ =

(
ϕ1

ϕ2

)
.

Making the change of variables U = SÛ , we find

B̂Û = ϕ

where

B̂ = B · S =

(
b11 + b13p11 + b14p21 b12 + b13p12 + b14p22 b13 b14

b21 + b23p11 + b24p21 b22 + b23p12 + b24p22 b23 b24

)

Assume that B̂ is a block matrix:

b̂21 = b21 + b23p11 + b24p21 = 0,
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b̂22 = b22 + b23p12 + b24p22 = 0.

Then

B̂Û0 =

(
ϕ1

ϕ2

)
,

where

B̂ =

(
b̂11 b̂12 b̂13 b̂14

0 0 b̂23 b̂24

)
,

Û0 = (û1, û2)
⊤∣∣

x=0
=

(
C1r̂11 + C2r̂13

C2r̂23

)
,

where R̂1 = (r̂11, 0)⊤ and R̂3 = (r̂13, r̂23)
⊤. Hence we obtain the equation

C2B̂22r̂23 = ϕ2.

We write out the Lopatinskii condition B̂22r̂23 �= 0, i.e.,
μ3

iτ + 1
b23 + b24 �= 0.

Hence

C2 = ϕ2/(B̂22r̂22),

C1B̂11r̂11 + C2(B̂11r̂13 + B̂12r̂23) = ϕ1,

i.e.,

C1B̂11r̂11 = −C2(B̂11r̂13 + B̂12r̂23) + ϕ1.

We write out the second Lopatinskii condition:

B̂11r̂11 = b11 + b13p11 + b14p21 + (b12 + b13p12 + b14p22)
iτ

μ1
�= 0

and give an example of matrix B satisfying the above conditions:

B =

(
1 0 0 0

−p11 0 1 0

)

By the gap condition Re (μ3 − μ1) > 0, we have

Û = C1R̂1e
−μ1x + C2e

−μ1x(R̂3e
(μ1−μ3)x),

where (R̂3e
(μ1−μ3)x) = o(1). Finally, we have

Û = C1R̂1e
−μ1x + C2e

−μ1x(R̂3e
(μ1−μ3)x)

=
( ϕ1

B̂11r̂11

−ϕ2(B̂11r̂13+B̂12r̂23)

B̂11r̂11B̂22r̂23

)
R̂1e

−μ1x+
ϕ2

B̂22r̂23

e−μ1x(R̂3e
(μ1−μ3)x),
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where
ϕ2

B̂22r̂23

e−μ1x(R̂3e
(μ1−μ3)x) = o(U1).

4.3. Nonlinear analysis.

In general, the construction of a nonlinear Chapman–Enskog projection is
analogous to the construction of an attracting invariant manifold of a dissi-
pative hyperbolic equation (see [1], [10]). In this paper, we do not discuss
this analogy in detail. Instead, we demonstrate difficulties arising in the
justification of Navier–Stokes approximations by considering the simplest
example.

We consider the hyperbolic regularization of the one-dimensional isen-
tropic Euler system

∂t̺ + ∂x(̺ u) = 0,

∂t(̺ u) + ∂x(̺ u2 + p(̺) + α̺ u = 0, α > 0,

̺|t=0 = ̺0, u|t=0 = u0,

̺0 > 0, ̺0, u0) → (̺±, u± t → ±∞,

(4.8)

where ̺ is a conservative variable and u is a nonequillibrium variable.

The condition p′(s) > 0 for all s � 0 is the hyperbolicity condition, and
α > 0 is the relaxation (stability) condition. The system degenerates in a
vacuum ̺ = 0. We establish the existence of a global smooth solution to the
Cauchy problem (4.8) such that the condition of the uniform nondegeneracy
of the initial distribution of density ̺0 > 0 for all x ∈ R guarantees the
nondegeneracy of density for any t > 0.

Our goal is to justify the Navier–Stokes approximation, i.e., in ac-
cordance with the Chapman–Enskog conjecture, we must show that the
Navier–Stokes approximation determines asymptotically, at large times, the
principal part of the solution to the Cauchy problem (4.8).

For simplicity, we pass to the Lagrange coordinates in (4.8):

∂tv − ∂xu = 0,

∂tu + ∂xp(v) + u = 0,

p′(v) < 0

(4.9)

with friction u in the moment equation. Here, v is a conservative variable
and u is a nonequillibrium variable. This is a model of a compressible fluid
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in a porous medium. Both systems, (4.8) and (4.9), degenerate in a vacuum
̺ = v = 0 and are equivalent outside the vacuum. We establish the existence
of a c1-solution such that v(x, t) > 0 for all t > 0 provided that v0(x) > 0
for all x ∈ R. (see [21]).

We consider the smooth initial data (u0(x), v0(x)) → (u±, v±) as
x → ±∞. As is known, the dissipation prevents the formation of shock
waves provided that the initial data are not “too sharp” (of mean force in
the sense of Lax). We are interested in the “diffusion phenomenon” caused
by wave decay.

The Navier–Stokes approximation u = ΠNS(w), v = w is found from
the system

u = ∂xp(w), (4.10)

∂tw = −∂2
xp(w), w|t=0 = w0, (4.11)

Note that the closure of the first equation in (4.9) is known as the Darcy
law. Thereby we have justify the Darcy law.

We look for an approximation of the solution to the Cauchy problem
(4.8) in the form

vas(x, t) = v(x, t) + vcor(x, t), uas(x, t) = u(x, t) + ucor(x, t)

We find v(x, t), u(x, t) by using the properties of the Navier–Stokes approx-
imation which is invariant under the transformation (x, t) → (cx, c2t),

c > 0. There exists an automodel solution v(x, t) = ϕ(x + x∗/
√

t), x∗ ∈ R,
of the nonlinear diffusion equation (4.11). Here, ϕ(ξ) is a unique monotone
bounded solution to the ordinary differential equation

ϕ”(ξ) +
−p”(ϕ)ϕ′ + 1

2ξ

p′(ϕ)
ϕ′ = 0 (4.12)

with boundary condition

ϕ(ξ) → v±, ξ → ±∞ (4.13)

with the exponential convergence rate, and

|ϕ”(ξ)| + |ϕ′(ξ)| + |ϕ(ξ) − ̺+, ξ > 0| + |ϕ(ξ) − ̺−, ξ < 0|
� C |̺+ − ̺−| e−γα ξ2

,

γ =
1

4
min(1/|p′(̺+)|, 1/|p′(̺+)|) > 0,

∞∫

−∞

ϕ′(ξ)dξ = v+ − v−.
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According to (4.10), we set

u(x, t) =
∂xp(̺(x, t))

̺(x, t)

Using the properties of automodel solutions, we obtain the exact decay
estimates for v:

‖∂xv(·, t)‖ � C |v+ − v−| t−1/2,

‖∂tv(·, t)‖ + ‖∂2
xv(·, t)‖ � C |v+ − v−| t−3/2,

‖∂x∂tv(·, t)‖ � C |v+ − v−| t−5/2.

(4.14)

We will show that the shift x∗ is uniquely determined from the consistency
condition

∞∫

−∞

(
v0(x) − ϕ(x + x∗) − vcor(x, 0)

)
dx = 0

of the initial data v0 and the smoothing wave v(x, 0).

Our next goal is to prove the estimate

‖w(·, t)‖H1 + ‖z(·, t)‖H1 � C δ (1 + t)−1/2

for the residuals

w(x, t) = v(x, t) − v(x, t) − vcor,

z(x, t) = u(x, t) − u(x, t) − ucor
(4.15)

if

|̺+ − ̺−|+ |u+−u−|+ ‖̺0− ̺(x, 0)‖H2 + ‖u0−u(x, 0)−ucor(x, 0)‖H2 � δ

with sufficiently small δ. The estimate for δ is exact. For large jumps the
solution blows up in finite time.

4.4. Estimate for residual.

Now, we introduce the correctors ucor and vcor. We study the system in
variations on the initial approximation u = u, v = v:

∂tvcor − ∂xucor = 0,

∂tucor + α ucor = −∂x[p(v + vcor) − p(v)] − ∂tu.
(4.16)
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We recall that for the leading part of approximations of v the following
exact decay estimate holds:

‖∂xv(·, t)‖ � C |v+ − v−| t−1/2,

‖∂tv(·, t)‖ + ‖∂2
xv(·, t)‖ � C |v+ − v−| t−3/2,

‖∂x∂tv(·, t)‖ � C |v+ − v−| t−5/2.

(4.17)

These estimates yield the correct decay rate of the solution at large times,
which allows us to extract lower order terms of the system (4.16).

Based on the estimates (4.17), we make several remarks.

1. The last estimate in (4.17) implies that ∂tu is a lower order term.

2. Since the limit values agree at x = ±∞, we see that vcor is a soliton
type function (i.e., a smooth function such that vcor → 0 as x → ±∞). The
same is true for ∂x[p(v + vcor) − p(v)], i.e., it belongs to H3(R) relative to
the spatial variables. To show that it is also a lower order term, it suffices
to estimate its decay as t → ∞.

3. Because of the Navier–Stokes approximation, u(x, t) is a soliton
type function. Consequently, we have a residual with initial condition which
should be removed by the corrector ucor.

We construct a corrector as follows. Consider a soliton type function

m0(x) ∈ C∞
0 ,

∞∫

−∞

m0(x)dx = 1

and define the corrector with respect to the variable v by the formula

vcor = −u+ − u−
α

m0(x) e−α t.

Then the corrector for u has the form

ucor(x, t) =
(
u− +

x∫

−∞

(u+ − u−)m0(s)ds
)

e−α t.

Then the right-hand side of (4.16) contains lower order terms. For

w(x, t) = v(x, t) − v(x, t) − vcor,

z(x, t) = u(x, t) − u(x, t) − ucor,
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we obtain the system

∂tw − ∂xz = 0,

∂tz + ∂x[p(w + v + e−α tvcor) − p(v)] + ∂tu + α z = 0.
(4.18)

We look for a solution to the system (4.18) such that w, z ∈ C1(R ×
(0,∞)) ∩ C0((0,∞); H2(R)). Now, we can uniquely determine the shift x0

by the formula

∞∫

−∞

(v0(x) − v(x + x0, 0))dx = −
∞∫

−∞

vcor(x, 0) dx =
u+ − u−

α
. (4.19)

As we will show below, this condition is connected with the existence of the
potential w(x, t) = ∂xy(x, t), z(x, t) = ∂ty(x, t).

Now, we can make the following conclusions.

1. The corrector ucor is an exponentially decaying function; moreover,
the velocity u goes exponentially rapidly to the equilibrium state at infinity
(the jump [ucor]

+
− of the limit values on x = ±∞ exponentially tends to

zero). It is a general fact for nonequillibrium variables.

2. Exponential decay of correctors of all nonequillibrium variables is
not a general fact (the soliton part decays slower). As we have shown above,
for the moment approximations of the kinetic equations of phonon gas some
higher order moments, called consolidated, give an essential contribution to
the corrector. Note that consolidated variables are select few nonequilib-
rium variables admitting the physical interpretation (can be determined by
experiments).

This means that we have to correct Navier–Stokes approximation. In
this case, we have a more complicated asymptotics in time separation of
dynamics into an inessential dynamics of the basic part of nonequillibrium
variables and dynamics of conservative variables and heat flux in the phase
space, where basic dynamics are separated.

3. For the Navier–Stokes approximation the consistency condition (4.19)
determines the initial data w0 ≍ ϕ(x+x0) for the Cauchy problem. Thus,
we have found the Navier–Stokes approximation ΠNS of the operator (1.5)

w0 = Π(u0, v0)

connecting the initial data in the Chapman–Enskog projection.
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4.5. Solvability of the system for residuals.

We prove the existence of a solution in C1 to the system for residuals

∂tw − ∂xz = 0,

∂tz + ∂x[p(w + v + e−α tvcor) − p(v)] + ∂tu + α z = 0.
(4.20)

It is easy to see that tit is a potential. We set

y(x, t) =

x∫

−∞

w(η, t)dη.

Then

∂xy = w, ∂ty =

x∫

−∞

∂tw(η, t)dη =

x∫

−∞

∂xz(η, t)dη = z

Thus, we obtain the Cauchy problem for the potential

∂2
t y + ∂x[p(∂xy + v + e−α tvcor) − p(v)] + α∂ty − 1

α
∂x∂t(p(v)) = 0,

y(x, 0) =

x∫

−∞

(v0(s) − v(s, 0) − vcor(s))ds, (4.21)

∂ty(x, 0) = u0(x) − u(x, 0) − ucor(x).

The consistency condition (4.19) is equivalent to the condition

y(x, 0) =

x∫

−∞

[v0(s) − v(s, 0) − vcor(s, 0)]ds → 0 as x → ±∞

and follows from the conservation laws. By the definition of ucor, we have
∂ty(x, 0) → 0 as x → ±∞.

Lemma 4.1. Let |u+ − u−| + |v+ − v−| be so small that

|u+ − u−|v+ − v−| + ‖y(x, 0)‖H3 + ‖∂ty(x, 0)‖H2 � δ (4.22)

for sufficiently small δ. Then there exists a solution y ∈ C0((0,∞); C2(R)),
∂ty ∈ C0((0,∞); C1(R)), to the Cauchy problem (4.21) satisfying the esti-
mate (4.22) for any t > 0

The proof of the existence of a smooth solution to the Cauchy problem
(4.21) is standard. We assume that |u+ − u−| + |v+ − v−| is so small that
(4.22) holds for sufficiently small δ. Then y(x, t) satisfies the estimate (4.22)
for any t > 0.
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As a consequence, we obtain the following result.

Proposition 4.2. Under the assumptions of Lemma 4.1, there exists
a solution to the Cauchy problem (4.21) such that v → v and u → u in the
following sense:

‖v(x, t) − v(x, t) − e−α tvcor(x, t)‖L2

+ ‖v(x, t) − v(x, t) − e−α tvcor(x, t)‖L∞ = O(t−1/2),

‖u(x, t) − u(x, t) − e−α tucor(x, t)‖L2

+ ‖u(x, t) − u(x, t) − e−α tucor(x, t)‖L∞ = O(t−1/2).

By the definition of y,

‖(u − u − e−α tucor)(·, t)‖H1(R)

+ ‖(v − v − e−α tvcor)(·, t)‖H1(R) � Cδ(1 + T )−1/2.

Using the Sobolev embedding theorem, we find the point-wise decay

sup
x

(|(u − u − e−α tucor|(x, t)

+ |v − v − e−α tvcor|(x, t)) � C′δ(1 + T )−1/2.

We note that the above constructions are rather universal in appli-
cations to the one-dimensional conservation laws with relaxation. Thus, in
the case of the one-dimensional 13-moment system of the Boltzmann kinetic
equation, there exists an automodel solution to the Navier–Stokes approxi-
mation, which allows us to justify the separation of dynamics and show that
a special solution, determined by the Chapman–Enskog projection, asymp-
totically yields the leading part of the solution to the Cauchy problem for
the 13-moment system at large times.
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We describe a coupling method that enables one to study ergodic properties of ran-

dom dynamical systems associated with stochastic partial differential equations.

A general criterion for the uniqueness of a stationary measure and an exponential

mixing property are established. The method is illustrated by an example of a

complex Ginzburg–Landau equation. Bibliography: 30 titles.

0. Introduction

The method of coupling was introduced by Doeblin [4] for studying ergodic
properties of Markov chains. We briefly describe the Doeblin approach in
the simplest situation.

Let X be a compact metric space, and let (uk, Pu) be a family of
Markov chains in X parametrized by the initial point u ∈ X . We denote
by Pk(u, Γ) the transition function associated with the Markov family, i.e.,

Pk(u, Γ) = Pu{uk ∈ Γ} for k � 0, Γ ∈ BX ,
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where BX is the Borel σ-algebra on X . Recall that a probability measure μ
on the space (X,BX) is said to be stationary for (uk, Pu) if

μ(Γ) =

∫

X

P1(u, Γ)μ(du) for any Γ ∈ BX . (0.1)

Suppose that there is a constant γ < 1 such that

‖P1(u, ·) − P1(u
′, ·)‖var � γ (0.2)

for any u, u′ ∈ X , where ‖ · ‖var denotes the total variation distance. In this
case, one can use the following argument to prove that the family (uk, Pu)
has a unique stationary measure.1)

Let (R(u, u′, ·),R′(u, u′, ·)) be a pair of random variables depending
on u, u′ ∈ X such that the laws of R and R′ coincide with P1(u, ·) and
P1(u

′, ·) respectively and

P
{
R(u, u′) �= R′(u, u′)

}
= ‖P1(u, ·)−P1(u

′, ·)‖var for all u, u′ ∈ X. (0.3)

It can be shown that such random variables exist (see [19]). Denote by Ω
the direct product of countably many independent copies of the probability
space on which R and R′ are defined and consider a family of Markov
chains {Uk} in X = X × X given by the rule

U0(ω) = U, Uk(ω) = (R(Uk−1, ωk),R′(Uk−1, ωk)) for k � 1, (0.4)

where ω = (ωj , j � 1) ∈ Ω denotes the random parameter and U ∈ X is an
initial point. Writing U = (u, u′) and Uk = (uk, u′

k), from (0.2) and (0.3)
we derive that

PU{uk+1 �= u′
k+1 | Fk} � γ for any U ∈ X , k � 0, (0.5)

where Fk denotes the σ-algebra generated by U1, . . . , Uk and the subscript U
indicates that we consider the trajectory starting from U . Iterating the
inequality (0.5), we obtain the estimate

PU{uk �= uk} � γk for any U ∈ X , k � 0, (0.6)

which implies

‖Pk(u, ·) − Pk(u′, ·)‖var � γk. (0.7)

Combining (0.7) with (0.1) and the Kolmogorov–Chapman relation, we
can easily show that there is at most one stationary measure. Moreover,

1) It would be easier to observe that the right-hand side of (0.1) defines a contraction

in the space of probability measures on X (endowed with the total variation distance)

and therefore has a unique fixed point. However, we use a longer coupling argument

whose development is applied in the paper.
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from (0.7) it follows that the sequence {Pk(u, ·)} converges to a limiting
measure μ, which is stationary for (uk, Pu).

The Doeblin argument can be used to prove the uniqueness of a sta-
tionary measure for stochastic differential equations with nondegenerate
diffusion on a compact manifold. At the same time, an application of the
above scheme to stochastic differential equations in Rn encounters an obsta-
cle related to the fact that the phase space of the problem is not compact,
and inequality (0.2) cannot be satisfied uniformly in u and u′, unless some
restrictive conditions are imposed on the drift. However, one can overcome
this difficulty with the help of the following modification of the Doeblin
approach.

Let X be a separable Banach space with a norm ‖ · ‖, and let (uk, Pu)
be a family of Markov chains in X . Retaining the above notation, suppose
that we can find a closed subset B ⊂ X for which the two properties below
are satisfied:

(i) The inequality (0.2) holds for any u, u′ ∈ B and a constant γ < 1.

(ii) The first hitting time τB of the set B is almost surely finite for any
initial point u ∈ X , and there is δ > 0 such that

Eu exp
(
δτB

)
< ∞ for all u ∈ X. (0.8)

Let (R,R′) be the family of random variables in X defined above, and
let {Uk} be the family of Markov chains given by (0.4). Denote by ρn the
nth instant when the trajectory Uk enters the set B := B × B. Then,
using (0.2), (0.3), and the strong Markov property, it can be shown that
(cf. (0.5))

P{uρn+1 �= u′
ρn+1 | Fρn} � γ for any U ∈ X , n � 1, (0.9)

where Fρn denotes the σ-algebra associated with the Markov time ρn. It-
eration of (0.9) results in (cf. (0.6))

PU{uρn+1 �= u′
ρn+1} � γn for any U ∈ X , n � 1.

Combining this with (0.8), one can prove the inequality (0.7) with a larger
constant γ < 1. Thus, the Doeblin method applies also in the case of
an unbounded phase space, provided that the inequality (0.2) is satisfied
on a subset that can be reached exponentially fast from any initial point.
However, it should be noted that the inequality (0.2) is rather restrictive for
Markov chains in an infinite-dimensional space. For instance, in the case of
stochastic partial differential equations, it is satisfied only if the diffusion is
“very rough.” The goal of this paper is to establish a general criterion for
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the uniqueness of a stationary measure and exponential mixing and to show
how to apply it to a complex Ginzburg–Landau equation. Without going
into details, let us describe our scheme in the case of discrete time.

As before, we consider a Markov family (uk, Pu) in a separable Banach
space X and denote by Pk(u, Γ) its transition function. Suppose that we can
construct a family of Markov chains (Uk, PU ), Uk = (uk, u′

k), in the product
space X such that the laws of uk and u′

k under PU , U = (u, u′), coincide
with Pk(u, ·) and Pk(u′, ·) respectively, and the following two properties hold
(cf. properties (i) and (ii) above):

(i’) Let σ = min{k � 1 : ‖uk − u′
k‖ > γk}, where γ < 1 is a positive

constant and the minimum over the empty set is +∞. Then there is
a subset B ⊂ X and positive constants C and α < 1 such that

PU{σ = +∞} � 1
2 , PU{σ = k} � Cαk for U = (u, u′) ∈ B .

(ii’) Let τB = min{k � 0 : Uk ∈ B}. Then there is δ > 0 such that

EU exp
(
δτB
)

< ∞ for any U ∈ X .

In this case, the difference Pk(u, ·)−Pk(u′, ·), regarded as a signed measure
in X , goes to zero in the dual Lipschitz norm ‖ · ‖∗L exponentially fast. (See
Notation for the definition of ‖ · ‖∗L.) Indeed, from (i’) it follows that, each
time the process is in B , with probability � 1

2 we have σ = +∞, which
means that the difference ∆k = ‖uk − u′

k‖ goes to zero exponentially fast.
Let us consider a sequence of stopping times ρk defined by the following rule.
Denote by ρ0 the first hitting time of B (i.e., ρ0 = τB). With probability � 1

2

we have σ = +∞ for the chain starting from Uρ0 , and in this case we set
ρk = +∞ for k � 2. Otherwise, we denote by ρ the first instant after σ
when Uρ0+k hits B and define ρ1 by the formula ρ1 = ρ0 + ρ. In general,
if ρk is already defined, then ρk+1 = ρk + ρ, where ρ is the first instant
after σ when the chain starting from Uρk

hits B . As in the case of ρ0, with
probability � 1

2 we have ρl = +∞ for l � k + 1.

The above construction implies that, if ρk < +∞ and ρk+1 = +∞,
then ∆ρk+m � γm for all m � 0. Using the strong Markov property and
assertions (i’) and (ii’), it can be shown that PU{ρk < +∞} � 2−k. What
has been said implies that with probability � 1 − 2−k−1 we have

‖uk − u′
k‖ � γk−ρk for all k � ρk. (0.10)

Moreover, further analysis enables one to show that

PU

{
k/2 � ρk < ∞

}
� Cβk, (0.11)
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where C and β < 1 are positive constants. Combining (0.10) and (0.11), we
see that

PU

{
‖uk − u′

k‖ > γk/2
}

� 2−k−1 + Cβk for k � 1.

Thus, the difference ‖uk−u′
k‖ converges to zero in probability exponentially

fast. This property implies the uniqueness of a stationary measure.

Let us mention that the problem of ergodicity for randomly forced
equations of mathematical physics was in the focus of attention of many
researchers during the last ten–fifteen years, and first results in this direc-
tion were obtained in [29, 8, 13, 6, 2]. We refer the reader to the review
papers [7, 17, 3, 27] and the book [18] for a detailed account of the results
obtained so far. The coupling technique described above is a modified ver-
sion of the one used in [14, 15, 25]. Related approaches were also developed
in [20, 23, 10, 24].

The paper is organized as follows. In Section 1, we give a description of
random dynamical systems studied in this work and introduce the concept of
an extension for random dynamical systems. A general criterion (in terms
of extension) for the uniqueness of a stationary measure and exponential
mixing is presented in Section 2. In Section 3, we give some simple sufficient
conditions under which one of the hypotheses of our criterion is satisfied.
The fourth section is devoted to the application of these results to complex
Ginzburg–Landau equation with random perturbation. We also formulate
an open question. Finally, in Appendix, we present two auxiliary results
used in the main text.

Notation.

Let X be a separable Banach space endowed with its Borel σ-algebra BX .
Denote by BR the ball in X of radius R centered at origin, by P(X) the
set of probability measures on (X,BX), by C(X) the space of continuous
functions f : X → R, and by L(X) the space of functions f ∈ C(X) such
that

‖f‖L := sup
u∈X

|f(u)| + sup
u�=v

|f(u) − f(v)|
‖u − v‖ < ∞,

where ‖ · ‖ stands for the norm in X . The space P(X) is endowed with
either the total variation distance,

‖μ1 − μ2‖var := sup
Γ∈BX

|μ1(Γ) − μ2(Γ)|,
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or the dual Lipschitz distance,

‖μ1 − μ2‖∗L := sup
‖f‖L�1

∣∣(f, μ1) − (f, μ2)
∣∣,

where (f, μ) denotes the integral of the function f with respect to the mea-
sure μ. The space P(X) is complete with respect to both metrics ‖ · ‖var

and ‖ · ‖∗L (see [5]).

Let D ⊂ Rn be a bounded domain with a smooth boundary ∂D, and
let T > 0 be a constant. We use the following functional spaces.

L2 = L2(D, C) is the space of complex-valued square-integrable func-
tions on D.

H1 = H1(D, C) is the Sobolev space of order 1.

H1
0 = H1

0 (D, C) is the space of functions u ∈ H1 vanishing on ∂D.

Ck(0, T ; X) is the space of continuous functions u : [0, T ] → X that are
k times continuously differentiable. In the case k = 0, we write C(0, T ; X).

L2(0, T ; X) is the space of Bochner-measurable square-integrable func-
tions on the interval [0, T ] with range in X .

If a and b are real numbers, then a∨b (a∧b) stands for their maximum
(minimum). For a random variable ξ we denote by D(ξ) its distribution.
If A is a subset in a given space, then IA stands for its indicator function
and Ac denotes its complement. We denote by R+ the half-line [0,∞).

1. Description of the Class of Problems

1.1. A class of random dynamical systems.

Let (Ω,F , P) be a complete probability space endowed with a filtration Ft,
t � 0, and a semigroup of measure-preserving transformations θt : Ω → Ω
such that θ−1

t Fs ⊂ Ft+s. We always assume that Ft is augmented with
respect to (F , P), i.e., the σ-algebra Ft contains all P-null sets of F .

We consider a random dynamical system whose trajectories form a
Markov process. More precisely, let X be a separable Banach space with
a norm ‖ · ‖, let BX be the Borel σ-algebra on X , and let St(u, ω), t � 0,
ω ∈ Ω, u ∈ X , be a continuous random dynamical system over θt (see
Definitions 1.1.1 and 1.1.2 in [1]). We always assume that the following two
properties hold.
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• For almost all ω ∈ Ω the trajectories St(u, ω), u ∈ X , are continuous
in t � 0.

• For any u ∈ X the random process St(u, ω), t � 0, is Markov with
respect to the filtration Ft, i.e., for any Γ ∈ BX and t, s � 0 we have

P
(
St+s(u, ·) ∈ Γ | Ft) = Ps(St(u, ω), Γ), (1.1)

where the equality holds for almost all ω ∈ Ω, and Ps(u, Γ) is the
transition function defined by the formula

Pt(u, Γ) = P
{
St(u, ·) ∈ Γ

}
, u ∈ X, Γ ∈ BX . (1.2)

In what follows, random dynamical systems satisfying the above properties
(in particular, the continuity condition with respect to time) will be said to
be Markov . With every Markov random dynamical system we associate a
family of Markov processes parametrized by the initial point u ∈ X . To fix
notation, let us briefly recall the corresponding construction.

We set

Ω′ = X × Ω, F ′ = BX ⊗F , F ′
t = BX ⊗Ft, Pu = δu ⊗ P,

where δu ∈ P(X) is the Dirac measure concentrated at u ∈ X and ⊗ denotes
the direct product of measures and σ-algebras. For ω′ = (u, ω) ∈ Ω′ we set

S′
t(ω

′) = St(u, ω), θ′tω
′ = (St(u, ω), θtω).

We thus obtain a Feller 2) family (S′
t, P

′
u) of homogeneous Markov processes

in the phase space X with the transition function (1.2) and the correspond-
ing Markov semigroups

Ptf(u) =

∫

X

Pt(u, dv)f(v), P∗
t μ(Γ) =

∫

X

Pt(u, Γ)μ(du), (1.3)

where f ∈ Cb(X) and μ ∈ P(X). In what follows, we drop the prime from
the notation and write ω, Ω, St,F ,Ft, θt instead of ω′, Ω′, S′

t,F ′,F ′
t, θ

′
t.

In this paper, we consider the Markov random dynamical system as-
sociated with the randomly forced complex Ginzburg–Landau equation

u̇ − (ν + i)∆u + i|u|2pu = h(x) + ζ̇(t, x), x ∈ D, (1.4)

u
∣∣
∂D

= 0, (1.5)

2) The Feller property of the transition function follows from the continuity

of St(u, ω) with respect to u and the Lebesgue theorem on dominated convergence.



162 Armen Shirikyan

where u = u(t, x) is a complex-valued unknown function, D ⊂ Rn is a
bounded domain with smooth boundary ∂D, h ∈ L2(D, C) stands for a de-
terministic function, and ζ(t, x) is a complex-valued colored Wiener process.
We show that the problem in question has a unique stationary measure and
possesses a property of exponential mixing. We refer the reader to Sec-
tion 4.2 for an exact formulation of the result.

1.2. Extension of random dynamical systems.

Let X be a separable Banach space, and let St(u, ω) be a Markov random
dynamical system in X over a semigroup θt. We define the product space
X = X × X endowed with the usual norm and denote by BX its Borel
σ-algebra. Write u = (u, u′) and denote by

ΠX : u �→ u, Π′
X : u �→ u′

the natural projections to the components of u . Let (Ω̂, F̂ , P̂) be a complete

probability space endowed with a filtration F̂t, t � 0, which is assumed to

be augmented with respect to (F̂ , P̂), and let θ̂t : Ω̂ → Ω̂ be a semigroup

of measure-preserving transformations such that θ−1
t F̂s ⊂ F̂t+s. Consider

a Markov random dynamical system S t(u , ω̂) in X over θ̂t.

Definition 1.1. A Markov random dynamical system S t in X defined
on the half-line t � 0 is called an extension of St if for any u = (u, u′) ∈
X the distributions of the random processes ΠXS t(u , ω̂) and Π′

XS t(u , ω̂)
regarded as random variables in C(R+, X) coincide with those of St(u, ω)
and St(u

′, ω) respectively.

In what follows, if St is a random dynamical system and S t is its exten-
sion, then we denote the corresponding stochastic bases by the same sym-
bol (Ω,F , P,Ft, θt). Moreover, abusing the notation, we write S t(u , ω) =
(St(u , ω), S′

t(u , ω)). Finally, we denote by (S t, Pu) the family of Markov
processes associated with S t and parametrized by the initial point u ∈ X .

We note that, if S t is an extension of St, then for any f ∈ C(X) and
u = (u, u′) ∈ X we have

Euf(ΠXS t) = Ptf(u), Euf(Π′
XS t) = Ptf(u′). (1.6)

This observation, which is a simple consequence of the definition of exten-
sion, will be important in the next section (see the proof of Theorem 2.3).

We also need an auxiliary concept of extension on a finite time inter-
val . More precisely, let Rt(u , ω) = (Rt(u , ω),R′

t(u , ω)) be a continuous



Exponential Mixing for Randomly Forced PDE’s 163

Markov random dynamical system defined for t ∈ [0, T ], where T > 0 is a
constant independent of (u , ω). (In other words, the properties entering the
definition of a Markov random dynamical system hold on the interval [0, T ];
see [1, Definitions 1.1.1 and 1.1.2].)

Definition 1.2. The random dynamical system Rt = (Rt,R′
t) in X

is called an extension of St on [0, T ] if for any u = (u, u′) ∈ X the distri-
butions of the random processes Rt(u , ·) and R′

t(u , ·) regarded as random
variables in C(0, T ; X) coincide with those of St(u, ·) and St(u

′, ·) respec-
tively.

Given an extension Rt of St on an interval [0, T ], we can iterate it to
construct an extension defined on the half-line t � 0. To this end, we denote
by (Ωk,Fk, Pk,Fk

t , θk
t ), k � 1, a countable family of independent copies of

the stochastic bases on which Rt is defined. We consider a new stochastic
basis (Ω,F , P,Ft, θt) defined by the following rules.

• The space Ω is the product of Ωk, k � 1, and its points are denoted
by ω = (ω1, ω2, . . . ).

• The σ-algebra F is the direct product of Fk, k � 1, completed with
respect to the product measure P = P1 ⊗ P2 ⊗ · · · .

• If t = (k−1)T +s, where k � 1 is an integer and 0 � s < T , then Ft is
the augmentation (with respect to (F , P)) of the σ-algebra generated
by the sets of the form

Γ =
{
ω = (ω1, ω2, . . . ) : ωm ∈ Γm for m = 1, . . . , k

}
,

where Γm ∈ Fm
T for m = 1, . . . , k − 1 and Γk ∈ Fk

s . Furthermore, the
shift operator θt is given by the formula

θtω = θt(ω1, ω2, . . . ) = (θk
s ωk, θk+1

s ωk+1, . . . ).

An extension S t on t � 0 is now defined by induction. Namely, for
0 � t � T we set

S t(u , ω) = Rt(u , ω1). (1.7)

If S t is already defined for 0 � t � kT , where k � 1 is an integer, then for
0 � s � T we set

SkT+s(u , ω) = Rs(SkT (u , ω), ωk+1). (1.8)

It is a matter of direct verification to show that S t(u , ω) is a continuous
Markov random dynamical system in X over θt and that it is an extension
of St.
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2. Coupling Hypothesis

2.1. Markov random dynamical system
satisfying a coupling condition.

Let (Ω,F , P,Ft, θt) be a stochastic basis satisfying the conditions formu-
lated in Section 1, let St(u, ω) be a Markov random dynamical system in a
separable Banach space X , and let Pt and P∗

t be the corresponding Markov
semigroups (see (1.3)). Recall that μ ∈ P(X) is called a stationary measure
for St(u, ω) if P∗

t μ = μ for all t � 0.

Definition 2.1. We say that St is exponentially mixing if it has a
unique stationary measure μ ∈ P(X) and there is a constant γ > 0 and an
increasing function V : R+ → R+ such that for any u ∈ X we have

‖Pt(u, ·) − μ‖∗L � V (‖u‖)e−γt, t � 0. (2.1)

Let S t(u , ω) be an extension of St(u, ω) (see Section 1.2). We fix
positive constants C, β and a closed subset B ⊂ X and introduce the
stopping times

τB = τB (u , ω) = inf
{
t � 0 : S t(u , ω) ∈ B

}
, (2.2)

σ = σ(u , ω) = inf
{
t � 0 : ‖St(u , ω) − S′

t(u , ω)‖ � C e−βt
}
, (2.3)

where u = (u, u′) and the infimum over the empty set is +∞. In other
words, τB is the first hitting time of the closed set B for the trajectory
S t(u , ω) and σ is the first instance when the curves St(u , ω) and S′

t(u , ω)
“stop converging” to each other exponentially fast. In particular, if σ(u , ω) =
∞, then

‖St(u , ω) − S′
t(u , ω)‖ � C e−βt for t � 0. (2.4)

Definition 2.2. We say that the random dynamical system St(u, ω)
satisfies the coupling hypothesis if it has an extension S t(u , ω) possessing
the following properties.

(i) There is a constant δ > 0, a closed set B ⊂ X , and an increasing
function g(r) � 1 of the variable r � 0 such that

Eu exp
(
δτB
)

� G(u) for all u = (u, u′) ∈ X , (2.5)

where G(u) = g(‖u‖) + g(‖u′‖).
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(ii) There are positive constants δ1, δ2, c, K, and q > 1 such that

Pu

{
σ = ∞

}
� δ1, (2.6)

Eu

{
I{σ<∞} exp

(
δ2σ
)}

� c, (2.7)

Eu

{
I{σ<∞}G(Sσ)q

}
� K (2.8)

for any u ∈ B .

Any extension of St satisfying properties (i) and (ii) will be called a mixing
extension.

Before formulating the main result of this section, we wish to make
some comments on the above definition. We take an arbitrary initial point
u ∈ B . Then, in view of (2.6), with probability � δ1 we have σ = ∞, and
therefore, with the same probability, the trajectories St(u , ω) and S′

t(u , ω)
converge to each other exponentially fast (see (2.4)). On the other hand,
if they do not, the inequality (2.7) says that the first instant σ(u , ω) when
the trajectories “stop converging” to each other is not very large. Moreover,
by (2.8), we have some control over S t(u , ω) at the instant t = σ(u , ω).
If the initial point u ∈ X does not belong to B , we cannot claim that
the above properties hold. However, we know that with probability 1 any
trajectory hits the set B , and by (2.5), the first hitting time τB has a finite
exponential moment.

These observations make it plausible that for any initial point u ∈ X

the trajectories St(u , ω) and S′
t(u , ω) converge to each other exponentially

fast. In fact, we have the following result, whose proof is given in the next
subsection.

Theorem 2.3. Let St(u, ω) be a continuous Markov random dynam-
ical system satisfying the coupling hypothesis, and let S t(u , ω) be a mixing
extension for St. Then there is a random time ℓ = ℓ(u , ω) such that

‖St(u , ω) − S′
t(u , ω)‖ � C1e

−β(t−ℓ(u,ω)) for t � ℓ(u , ω), (2.9)

Eueαℓ � C1

(
g(‖u‖) + g(‖u′‖)

)
, (2.10)

where u ∈ X is an arbitrary initial point, g(r) is the function in Defini-
tion 2.2, and C1, α, and β are positive constants independent of u and t.
If, in addition, there is an increasing function g̃(r) � 1, r � 0, such that

Eu g
(
‖St‖

)
� g̃(‖u‖) for u ∈ X, t � 0, (2.11)

then St(u, ω) is exponentially mixing, and the inequality (2.1) holds with

V (r) = 3C1

(
g(r) + g̃(0)

)
. (2.12)
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2.2. Proof of Theorem 2.3.

We first note that the inequalities (2.9), (2.10), and (2.11) imply that St(u, ω)
is exponentially mixing. Indeed, to prove this, let us show that for any
u, u′ ∈ X we have

∥∥Pt(u, ·) − Pt(u
′, ·)
∥∥∗
L � 3C1

(
g(‖u‖) + g(‖u′‖)

)
e−γt, t � 0. (2.13)

To this end, we fix an arbitrary functional f ∈ L(X) with ‖f‖L � 1 and
note that, in view of (1.6),
∣∣(f, Pt(u, ·) − Pt(u

′, ·)
)∣∣ =

∣∣Eu

(
f(St) − f(S′

t)
)∣∣ � Eu

∣∣f(St) − f(S′
t)
∣∣

� 2Pu

{
ℓ > t

2

}
+ Eu

{
I{ℓ� t

2}
∣∣f(St) − f(S′

t)
∣∣}.
(2.14)

In view of (2.10) and the Chebyshev inequality, we have

Pu

{
ℓ > t

2

}
� C1

(
g(‖u‖) + g(‖u′‖)

)
e−

αt
2 . (2.15)

Furthermore, from the condition ‖f‖L � 1 and the inequality (2.9) it follows
that the second term on the right-hand side of (2.14) does not exceed

Eu

{
I{ℓ� t

2}‖St − S′
t‖
}

� C1e
− βt

2 . (2.16)

Substituting (2.15) and (2.16) into (2.14), we obtain
∣∣(f, Pt(u, ·) − Pt(u

′, ·)
)∣∣ � 2C1

(
g(‖u‖) + g(‖u′‖)

)
e−

αt
2 + C1e

−βt
2 ,

which implies the required inequality (2.13) with γ = 1
2 (α ∧ β).

We now use (2.13) to show that St is exponentially mixing. Let us fix
arbitrary points u, u′ ∈ X and a functional f ∈ L(X) such that ‖f‖L � 1.
By the Kolmogorov–Chapman relation and the inequality (2.13), for t � s
we have
∣∣(f, Pt(u, ·) − Ps(u

′, ·)
)∣∣ =

∣∣∣∣
∫

X

Ps−t(u
′, dz)

∫

X

(
Pt(u, dv) − Pt(z, dv)

)
f(v)

∣∣∣∣

� 3C1e
−γt

∫

X

Ps−t(u
′, dz)

[
g(‖u‖) + g(‖z‖)

]

= 3C1e
−γt
[
g(‖u‖) + Eu′ g(‖Ss−t‖)

]
.

Taking into account (2.11), we conclude that
∥∥Pt(u, ·) − Ps(u

′, ·)
∥∥∗
L � 3C1

(
g(‖u‖) + g̃(‖u′‖)

)
e−γt. (2.17)

By the Prokhorov theorem (see [5, Corollary 11.5.5]), P(X) is a complete
metric space with respect to the norm ‖ · ‖∗L. Hence Pt(u, ·) converges
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as t → +∞ to a measure μ ∈ P(X), which does not depend on u and is
stationary. Setting u′ = 0 in (2.17) and passing to the limit as s → +∞,
we obtain the inequality (2.1) with V given by (2.12).

Thus, we need to establish the inequalities (2.9) and (2.10). Their
proof is divided into four steps.

Step 1. We introduce the stopping time

ρ = σ + τB ◦ θσ = σ(u , ω) + τB
(
Sσ(u,ω)(u , ω), θσ(u,ω)ω)

)
. (2.18)

In other words, we wait until the first instant σ when the trajectories St

and S′
t “stop converging” to each other and denote by ρ the first hitting time

of B after σ. Let δ, δ1, and δ2 be the constants in (2.5), (2.6), and (2.7).
We claim that for any u ∈ B

Pu{ρ = ∞} � δ1, (2.19)

Eu

{
I{ρ<∞}e

αρ
}

� a, (2.20)

where α � δ2∧δ and a < 1 are positive constants independent of u . Indeed,
the definition of ρ(u , ω) (see (2.18)) implies that {ρ = ∞} = {σ = ∞}, and
therefore (2.19) is an immediate consequence of (2.6).

To prove (2.20), we first show that

Eu

{
I{ρ<∞}e

δ3ρ
}

� M for any u ∈ B , (2.21)

where δ3 = (q−1)(δ2∧δ)
q and M > 0 is a constant independent of u . Indeed,

using the relation (2.18), the strong Markov property, and the inequal-
ity (2.5), we derive

Eu

{
I{ρ<∞}e

δ3ρ
}

= Eu

{
I{σ<∞}e

δ3σ
(
ESσ

eδ3τB
)}

� E
{
I{σ<∞}e

δ3σG(Sσ)
}
.

Combining this with (2.7) and (2.8), we conclude that

Eu

{
I{ρ<∞}e

δ3ρ
}

�
(
Eu

{
I{σ<∞}e

δ2σ
}) q−1

q
(
Eu

{
I{σ<∞}G(Sσ)q

}) 1
q

� (cq−1K)
1
q =: M.

To derive (2.20), let us set α = εδ3 and note that, in view of (2.19)
and (2.21), we have

Eu

{
I{ρ<∞}e

αρ
}

�
(
Pu{ρ < ∞}

)1−ε(
Eu

{
I{ρ<∞}e

δ3ρ
})ε

� (1 − δ1)
1−εM ε.

The right-hand side of this inequality is less than 1 if ε > 0 is sufficiently
small.
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Step 2. We now consider the iterations of ρ. Namely, we define a
sequence of stopping times ρk = ρk(u , ω) by the formulas

ρ0 = τB , ρk = ρk−1 + ρ ◦ θρk−1
, k � 1.

We claim that

Eu

{
I{ρk<∞}e

αρk
}

� akG(u) for any u ∈ X . (2.22)

Indeed, since Sρk(u ,ω)(u , ω) ∈ B , the inequality (2.20) and the strong
Markov property imply that

Eu

{
I{ρk<∞}e

αρk
}

� Eu

{
I{ρk−1<∞}e

αρk−1 sup
v∈B

Ev

(
I{ρ<∞}e

αρ
)}

� a Eu

{
I{ρk−1<∞}e

αρk−1
}

� akEueατB .

The required inequality (2.22) follows now from (2.5) and the fact that α �

δ.

Step 3. We now note that, if ρk(u , ω) < ∞ and ρk+1(u , ω) = ∞ for
an integer k � 0, then

‖St(u , ω) − S′
t(u , ω)‖ � C e−β(t−ρk(u,ω)) for t � ρk(u , ω). (2.23)

For any u ∈ X let us set

k̄ = k̄(u , ω) = sup{k � 0 : ρk(u , ω) < ∞}.
We wish to show that

k̄ < ∞ for Pu -almost every ω. (2.24)

To this end, note that, in view of (2.19) and the strong Markov property,

Pu{ρk < ∞} � (1− δ1)Pu{ρk−1 < ∞} � (1− δ1)
kPu{ρ0 < ∞} � (1− δ1)

k.

Hence the Borel–Cantelli lemma implies (2.24).

Step 4. Let us set

ℓ = ℓ(u , ω) =

{
ρk̄(u,ω)(u , ω) if k̄(u , ω) < ∞,

+ ∞ if k̄(u , ω) = ∞.

The inequality (2.9) follows immediately from (2.23), the definition of ρk,
and the fact that ρℓ+1 = ∞. To prove (2.10), we write

Eueαℓ =

∞∑

k=0

Eu

{
I{k̄=k}e

αρk
}

�

∞∑

k=0

Eu

{
I{ρk<∞}e

αρk
}

� (1 − a)−1G(u),

where we used the inequality (2.22) and the fact that ℓ(u , ω) < ∞ for Pu -
a.a. ω. This completes the proof of Theorem 2.3.
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Remark 2.4. Analyzing the proof given above, it is not difficult to
see that Theorem 2.3 remains valid if σ(u , ω) is replaced with any other
stopping time σ̃ � σ. In other word, if the inequalities (2.6)–(2.9) hold
with σ replaced by σ̃, then the conclusion of Theorem 2.3 is true. To see
this, it suffices to repeat the arguments above, replacing everywhere σ by σ̃.

3. Dissipative Random Dynamical Systems
and Their Extensions

In this section, we give sufficient conditions for the existence of an extension
satisfying the inequality (2.5). These results will be used in the next section
to prove exponential mixing for the complex Ginzburg–Landau equation.

3.1. Lyapunov function.

Let St(u, ω) be a Markov random dynamical system in a separable Banach
space X , and let F (u) � 1 be a continuous functional on X tending to +∞
as ‖u‖ → ∞. Suppose that St satisfies the following condition.

(H1) Lyapunov function. There are positive constants t∗, R∗, C∗, and a < 1
such that

EuF
(
St∗

)
� a F (u) for ‖u‖ � R∗, (3.1)

EuF
(
St

)
� C∗ for ‖u‖ � R∗, t � 0. (3.2)

In what follows, we call F a Lyapunov function for St. An important prop-
erty of a Markov random dynamical system possessing a Lyapunov function
is that the first hitting time of sufficiently large balls in the phase space
is almost surely finite for any initial condition and has a finite exponential
moment. Namely, we have the following result.

Proposition 3.1. Let St(u, ω) be a Markov random dynamical system
satisfying Hypothesis (H1), and let τR(u, ω) be the first hitting time of the
ball BR = {u ∈ X : ‖u‖ � R}, where R � R∗. Then

Pu{τR < ∞} = 1 for all u ∈ X. (3.3)

Moreover, there are positive constants δ and C independent of R and u such
that

Eu exp(δτR) � 1 + CK−1
R F (u), (3.4)
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where

KR = inf
‖v‖�R

F (v). (3.5)

Proposition 3.1 can be established by a standard argument (see [22]).
However, for the sake of completeness, we give its proof.

Proof of Proposition 3.1. Step 1. The result is trivial for ‖u‖ � R
since, in this case, τR(u, ω) = 0 for Pu-almost every ω. We fix arbitrary
u ∈ X with ‖u‖ > R and consider an auxiliary stopping time defined by
the formula

τ̄ = τ̄ (u, ω) = min
{
t = mt∗ : ‖St‖ � R, m � 0 is an integer

}
.

For any integer k � 0 and v ∈ X we set

pk(v) = Ev

{
I{τ̄>kt∗}F (Skt∗)

}
. (3.6)

We claim that

pk(u) � akF (u) for all k � 0. (3.7)

Indeed, the Markov property (1.1) and the inequality (3.1) imply that

pk+1(u) � Eu

{
I{τ̄>kt∗}Eu

(
F (S(k+1)t∗) | Fkt∗

)}

= Eu

{
I{τ̄>kt∗}ESkt∗

F (St∗)
}

� a Eu

{
I{τ̄>kt∗}F (Skt∗)

}
= apk(u), (3.8)

where we used the nonnegativity of F and the fact that ‖Skt∗‖ > R � R∗ on
the set {τ̄ > kt∗}. Iterating (3.8) and noting that Eu{I{τ̄>0}F (S0)} � F (u),
we arrive at (3.7).

Step 2. From (3.6) and (3.7) it follows that

Pu{τ̄ > kt∗} � K−1
R Eu

{
I{τ̄>kt∗}F (Skt∗)

}
� akK−1

R F (u). (3.9)

Combining this with the Borel–Cantelli lemma, we see that

Pu{τ̄ < ∞} = 1 for any u ∈ X. (3.10)

Furthermore, if δ > 0 is so small that b := eδt∗a < 1, then, by (3.9), we
have

Eueδτ̄ � 1 +
∞∑

k=1

Eu

{
I{τ̄=kt∗}e

δτ̄
}

� 1 +
∞∑

k=1

eδkt∗Pu{τ̄ > (k − 1)t∗}

� 1 + K−1
R F (u)

∞∑

k=1

eδkt∗ak−1 = 1 + CK−1
R F (u), (3.11)
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where C = eδt∗(1 − b)−1. It remains to note that τ̄ � τR, and hence (3.10)
and (3.11) imply (3.3) and (3.4). �

A result similar to Proposition 3.1 is true for any extension of St.
More precisely, let S t(u , ω) be an extension of a Markov random dynamical
system satisfying Hypothesis (H1), and let 3)

τR = min{t � 0 : ‖St(u , ω)‖ ∨ ‖S′
t(u , ω)‖ � R}. (3.12)

Let R∗ > 0 be the smallest constant such that KR∗ � 2C∗

1−a , where a and C∗
are the constants in Hypothesis (H1) and KR is defined by (3.5). The
assertion below can be established by repeating the arguments in the proof
of Proposition 3.1.

Proposition 3.2. Let St(u, ω) be a Markov random dynamical system
satisfying Hypothesis (H1), and let S t(u , ω) be its extension. Then there are
positive constants δ and C such that for any u ∈ X and R � R∗ we have

Pu{τR < ∞} = 1, (3.13)

Eu exp(δτR) � 1 + CK−1
R

(
F (u) + F (u′)

)
. (3.14)

3.2. Dissipation.

Let St(u, ω) be a continuous Markov random dynamical system in a separa-
ble Banach space X , and let Rt(u , ω) be its extension on an interval [0, T ].
Suppose that Rt = (Rt,R′

t) satisfies the following condition.

(H2) Dissipation. For any R > 0 there is a constant q ∈ (0, 1) and an
increasing function ε(d) > 0 defined for d > 0 such that for any u =
(u, u′) ∈ X with ‖u‖ ∨ ‖u′‖ � R and any d > 0 we have

Pu

{
‖RT (u , ·)‖ ∨ ‖R′

T (u , ·)‖ � {q(‖u′‖ ∨ ‖u′‖)} ∨ d
}

� ε(d). (3.15)

In other words, the dissipation condition (H2) means that for any d > 0,
with positive probability, any ball in X of radius R � d/q centered at zero
is pushed into a ball of radius qR by the maps RT and R′

T . Therefore,
it is reasonable to expect that, if S t is the extension of St constructed by
iteration of Rt (see (1.7) and (1.8)), then for any initial point u ∈ X the
trajectory S t(u , ω) will hit, in a finite time, any ball of given radius centered
at zero. We have in fact the following result which shows that the existence

3) The stopping time (3.12) is different from the one defined in Proposition 3.1 for

the original random dynamical system. However, we retained the same notation since

they play similar roles for St and St.
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of a Lyapunov function combined with the dissipation property (H2) implies
that the first hitting time of any ball centered at zero has a finite exponential
moment (cf. (2.5)).

Proposition 3.3. Let St(u, ω) be a Markov random dynamical system
possessing a Lyapunov function F (u) in the sense of (H1), and let Rt(u , ω)
be its extension defined on an interval [0, T ] and satisfying Hypothesis (H2).
Then for any d > 0 there are positive constants C and ν such that for the
extension S t constructed by iteration of Rt we have

Eu exp(ντd) � C
(
F (u) + F (u′)

)
, u = (u, u′) ∈ X , (3.16)

Proof. We first describe the main idea, which is well known; for in-
stance, see Sections 3.7 and 4.2 in [11] or Section 13 in [30]. By Proposi-
tion 3.2, the first hitting time of the set

BR = {u ∈ X : ‖u‖ ∨ ‖u′‖ � R} (3.17)

has a finite exponential moment for R � R∗, and by the dissipation prop-
erty (H2), each time the process S t is in BR, with positive probability it
hits Bd in finite (deterministic) time. Combining these two observations
with the Markov property, we can prove the required result. An accurate
proof is divided into four steps.

Step 1. Let R∗ and q be the constants in Proposition 3.2 and Hy-
pothesis (H2). We fix arbitrary d > 0 and set ld = min{l � 0 : qlR∗ � d}.
It follows from the inequality (3.15) and the Markov property that for any
u ∈ BR∗ we have

Pu

{
S ldT ∈ Bd

}
� pd := ε(d)ld > 0. (3.18)

Step 2. We set τ = τR∗ and define two sequences of stopping times by
the formulas

ρ′1 = τ, ρ1 = τ + ldT, ρ′m = ρm−1+τ ◦θρm−1 , ρm = ρ′m + ldT, m � 2.

Consider the events Γm =
{
Sρn /∈ Bd for n = 1 . . . , m

}
. Let us show that

for any u ∈ X the sequence Pm(u) = Pu(Γm) satisfies the inequality

Pm(u) = (1 − pd)
m, m � 1. (3.19)

Indeed, by the strong Markov property, for any m � 1 we have4)

Pu

{
Sρm /∈ Bd

∣∣Fρ′
m

}
= PS(ρ′

m)

{
S ldT /∈ Bd

}
� 1 − pd, (3.20)

4) We write S(ρ′m) instead of Sρ′
m

to avoid a double subscript.
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where we used the inequality (3.18) and the fact that Sρ′
m

∈ BR∗ . There-
fore, using again the strong Markov property, we derive

Pm(u) = Eu

(
IΓm−1Pu

{
Sρm /∈ Bd

∣∣Fρ′
m

})
� (1 − pd)Pm−1(u).

Iterating this inequality and using (3.20) with m = 1, we obtain (3.19).

Step 3. We now show that for any d > 0 there is a constant K � 1
such that

Eueδρm � Km
(
F (u) + F (u′)

)
, m � 1, (3.21)

where δ > 0 is the constant in (3.14). Indeed, applying the strong Markov
property and the inequalities (3.14) and (3.2) (with t = ldT ), we derive

Eueδρ′
m = Eu

{
eδρm−1ES(ρm−1)(e

δτ )
}

� C1Eu

{
eδρm−1

(
F (Sρm−1 ) + F (S′

ρm−1
)
)}

� C1e
δldT Eu

{
eδρ′

m−1ES(ρ′
m−1)

(
F (SldT ) + F (S′

ldT )
)}

� C2e
δldT Eueδρ′

m−1 ,

where we used the fact that Sρm−1 ∈ BR∗ . Iterating this inequality and
using again (3.14), we obtain (3.21).

Step 4. We can now prove the inequality (3.16) with sufficiently small
ν > 0. To this end, we define the random integer

n̂ = min{n � 1 : Sρn ∈ Bd}

and note that τd � ρn̂. Moreover, from (3.19) and the Borel–Cantelli lemma
it follows that Pu{n̂ < ∞} = 1 for any u ∈ X . Hence for any ν > 0

Eueντd � Eueνρn̂ =

∞∑

n=1

Eu

(
I{n̂=n}e

νρn
)

� Eueνρ1 +

∞∑

n=2

Eu

(
IΓn−1e

νρn
)

� Eueνρ1 +

∞∑

m=1

Pm(u)
1
2

(
Eue2νρm+1

) 1
2

� K
(
1 +

∞∑

m=1

(1 − pd)
m
2 K

νm
δ

)(
F (u) + F (u′)

)
. (3.22)

Comparing this inequality with (3.19) and (3.21), we see that for a suf-
ficiently small ν > 0 the right-hand side of (3.22) can be estimated by
C(F (u) + F (u′)). This completes the proof of Proposition 3.3. �
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4. Complex Ginzburg–Landau Equation

4.1. Cauchy problem and a priori estimates.

Let D ⊂ Rn (n = 3 or 4) be a bounded domain with smooth boundary ∂D,
and let L2 = L2(D, C) be the space of square-integrable complex-valued
functions on D. We regard L2 as a real Hilbert space and endow it with
the scalar product

(u, v) = Re

∫

D

u(x)v̄(x) dx

and the corresponding norm ‖ · ‖. Let {ej} be a complete set of L2-
normalized eigenfunctions of the Dirichlet Laplacian, and let {αj} be the
corresponding set of eigenvalues indexed in an increasing order.

We consider the problem

u̇ − (ν + i)∆u + i|u|2pu = h(x) + η(t, x), (4.1)

u
∣∣
∂D

= 0, (4.2)

u(0, x) = u0(x), (4.3)

where ν > 0 and p � 0 are some constants, h ∈ L2 is a deterministic
function, and η is an H1-valued random force. More precisely, we assume
that

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑

j=1

bjβj(t)ej(x), (4.4)

where βj(t) = βj1(t) + iβj2(t) are complex-valued independent Brownian
motions and bj � 0 are some constant satisfying the condition

B1 :=

∞∑

j=1

αjb
2
j < ∞.

In what follows, we always assume that 0 � p � 2
n . For any function u(t, x)

let us set

Eu(t) = ‖u(t)‖2 + ν

t∫

0

‖u(s)‖2
1ds. (4.5)

The theorem below establishes the well-posedness of the problem (4.1)–(4.3)
in appropriate functional spaces. We refer the reader to [12, 21, 16, 28]
for proofs of similar (and more general) results.
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Theorem 4.1. Suppose that the above-mentioned conditions are ful-
filled. Let u0 be an L2-valued random variable that is independent of ζ and
satisfies the condition E ‖u0‖2 < ∞. Then the following statements hold.

(i) There is a random process u(t) = u(t, x), t � 0, whose almost every
trajectory belongs to the space X := C(R+; L2)∩L2

loc(R+; H1
0 ) and satisfies

Equations (4.1) and (4.3) in the sense that

u(t) = u0 +

t∫

0

(
(ν + i)∆u(s) − i|u(s)|2pu(s)

)
ds + th + ζ(t), t � 0.

Moreover, the random process u(t, x) is adapted to the filtration Ft generated
by u0 and ζ.

(ii) The process u(t) constructed in (i) is unique in the sense that
if ũ(t) is another random process satisfying (i), then with probability 1 we
have u(t) = ũ(t) for all t � 0.

(iii) We have the a priori estimates

E ‖u(t)‖2 + ν

t∫

0

E ‖u(s)‖2
1ds � E ‖u0‖2 + Ct for t � 0, (4.6)

P
{

sup
t�0

(
Eu(t) − Lt

)
� ‖u0‖2 + ρ

}
� e−κρ for ρ > 0, (4.7)

where C, L, and κ are positive constants independent of u0.

4.2. Formulation of the result and an open question.

We denote by St(u0, ω) the solution of (4.1)–(4.3) constructed in Theo-
rem 4.1. Using a standard argument (see, for example, [12, 21]), it is not
difficult to show that St(u0, ω) can be regarded as a Markov random dy-
namical system in L2, and we denote by (ut, Pu) the corresponding Markov
family (cf. Section 1.1). The transition function and Markov operators asso-
ciated with (ut, Pu) will be denoted by Pt(u, Γ), Pt, and P∗

t . The following
theorem is the main result of this section.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 are sat-
isfied and

bj �= 0 for all j � 1. (4.8)

Then for any ν > 0 the Markov random dynamical system associated with
(4.1), (4.2) has a unique stationary measure μ ∈ P(L2). Moreover, there
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are positive constants C and γ such that

|Ptf(u) − (f, μ)| � C ‖f‖L(1 + ‖u‖2) e−γt for any t � 0, u ∈ L2, (4.9)

where f ∈ L(L2) is an arbitrary functional.

To prove this theorem, we construct an extension S t for St that sat-
isfies the coupling hypothesis in the sense of Definition 2.2, and the appli-
cation of Theorem 2.3 will imply the required result. Moreover, using the
regularizing property for the complex Ginzburg–Landau equation and the
associated Markov semigroup (see [28, Proposition 4]), it is not difficult
to show that the stationary measure μ is concentrated on the space H1,
and the exponential convergence to μ holds also for continuous functionals
on H1

0 . At the same time, the following question remains open.

Open Question. The complex Ginzburg–Landau equation is well
posed in the space H1

0 for n = 3 or n = 4 and p � 2
n−2 . Prove the

uniqueness of a stationary measure and exponential mixing property for
these values of p.

The rest of this section is organized as follows. In Section 4.3, we
construct an extension for St. Section 4.4 is devoted to verification of Hy-
potheses (H1) and (H2) (see Section 3). In Section 4.5, we prove the inequal-
ities (2.6) and (2.7). The proof of Theorem 4.2 is completed in Section 4.6.

4.3. Construction of an extension.

We wish to construct an extension for St that satisfies the coupling hy-
pothesis described in Definition 2.2. As was explained in Section 1.2, if we
have an extension Rt = (Rt,R′

t) on a time interval [0, T ], then its iteration
results in an extension defined on the half-line R+. Our construction of Rt

will depend on T � 1 and an integer N � 1. Both parameters will be fixed
later.

Step 1. Let HN be the 2N -dimensional subspace in L2 spanned by
the vectors ej , iej, 1 � j � N , and let H⊥

N be its orthogonal complement
in L2. Denote by PN and QN the orthogonal projections in L2 onto the
subspaces HN and H⊥

N respectively.

We set v = PNu, w = QNu and rewrite Equation (1.4) in the form

v̇ − (ν + i)∆v + FN (v + w) = PNh + ϕ̇(t), (4.10)

ẇ − (ν + i)∆w + GN (v + w) = QNh + ψ̇(t), (4.11)
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where ϕ = PNζ, ψ = QNζ, FN (u) = iPN(|u|2pu), GN (u) = iQN (|u|2pu).
Equations (4.10) and (4.11) are supplemented with the initial conditions

v(0) = v0, (4.12)

w(0) = w0, (4.13)

where v0 ∈ HN and w0 ∈ H⊥
N . Using standard arguments, it is not dif-

ficult to check that for any functions w0 ∈ H⊥
N , v ∈ C(0, T ; HN), ψ ∈

C(0, T ; H⊥
N ∩ H1

0 ) the problem (4.11), (4.13) has a unique solution w ∈
XN (T ) := C(0, T ; H⊥

N) ∩ L2(0, T ; H⊥
N ∩ H1

0 ). We denote by

W : H⊥
N × C(0, T ; HN) × C(0, T ; H⊥

N ∩ H1
0 ) → XN (T ), (w0, v, ψ) �→ w,

the resolving operator for the problem (4.11), (4.13) and byWt its restriction
to the time t. The operators W and Wt are uniformly Lipschitz with respect
to (w0, v, ψ) on bounded subsets, and it is easy to see that Wt(w0, v, ψ)
depends only on the restriction of v and ψ to the interval [0, t].

Step 2. We now fix an arbitrary function χ ∈ C∞(R) such that 0 �

χ � 1, χ(t) = 1 for t � 0, χ(t) = 0 for t � 1. Let us take any initial points
u0, u

′
0 ∈ L2 and set fN (u0, u

′
0) = PN (u′

0 − u0). Denote by λT (u0, u
′
0) and

λ′
T (u0, u

′
0) the laws of the processes

{(
PNu(t)

QNζ(t)

)
, t ∈ [0, T ]

}
,

{(
PNu′(t)−fN(u0, u

′
0)χ(t)

QNζ(t)

)
, t ∈ [0, T ]

}
(4.14)

respectively, where u(t) = St(u0, ω) and u(t) = St(u
′
0, ω). Thus, λT (u0, u

′
0)

and λ′
T (u0, u

′
0) are probability measures on the separable Banach space

C(0, T ; L2). Let (U(u0, u
′
0), U

′(u0, u
′
0)) be a maximal coupling for (λT(u0, u

′
0),

λ′
T (u0, u

′
0)).

5) By Proposition 5.2, such a pair of random variables exists and
is a measurable function of its arguments. Let

Rt(u0, u
′
0) = PNUt + Wt(QNu0, PNU, QNU), (4.15)

R′
t(u0, u

′
0) = PNUt + fN(u0, u

′
0)χ(t)

+ Wt(QNu′
0, PNU ′ + fN (u0, u

′
0)χ,QNU ′), (4.16)

where Ut stands for the restriction of U(u0, u
′
0) to the time t and U ′

t is
defined in a similar way. We claim that Rt = (Rt,R′

t) is an extension of St

on the interval [0, T ].

5) See Section 5.2 for the definition of maximal coupling.
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Indeed, we need to show that the laws of the processes {Rt(u0, u
′
0)}

and {R′
t(u0, u

′
0)} coincide with those of {St(u0, ω)} and {St(u

′
0, ω)} respec-

tively. To this end, let us set X (T ) = C(0, T ; L2) ∩ L2(0, T ; H1
0 ) and intro-

duce an operator Υ : H⊥
N ×C(0, T ; HN)×C(0, T ; H⊥

N ∩H1
0 ) → X (T ) by the

relation

Υ (w0, v, ψ) = v + W(w0, v, ψ). (4.17)

The definition of W implies that

{St(u0, ω), t ∈ [0, T ]} = Υ
(
QNu0, PNS·(u0, ω), QNζ(·)

)
. (4.18)

Thus, the law of {St, t ∈ [0, T ]} coincides with the image of the law of
the first process in (4.14) under the mapping Υ (QNu0, ·, ·). Furthermore,
from (4.15) it follows that the distribution D(R·(u0, u

′
0)) is the image of

λT (u0, u
′
0) under Υ (QNu0, ·, ·). By construction, the law of the first process

in (4.14) coincides with λT (u0, u
′
0), and we conclude that D(R·(u0, u

′
0)) =

D(S·(u0, ·)). A similar argument proves that D(R′
·(u0, u

′
0)) = D(S·(u′

0, ·)).
Our next goal is to check that Hypotheses (H1) and (H2) are satisfied

for St and Rt. In view of Propositions 3.2 and 3.3, this will imply that
property (i) of Definition 2.2 is true for the extension S t.

4.4. Lyapunov function and dissipation.

We show that St satisfies Hypothesis (H1) with F (u) = ‖u‖2 and any t∗ > 0.
Indeed, from (4.6) and the Gronwall inequality it follows that

EuF (St) � e−νtF (u) + Cν−1, t � 0.

In particular, fixing any constant a ∈ (e−νt∗ , 1), we see that (3.1) and (3.2)
hold with

R∗ =

(
C

ν(a − e−νt∗)

)1/2

, C∗ = R2
∗ + Cν−1.

We now show that the extension Rt satisfies Hypothesis (H2) for suf-
ficiently large N and T . Note that, in view of (4.8), the distribution of
{ζ(t), 0 � t � T } is a nondegenerate Gaussian measure on C(0, T ; H1

0).
Combining this with the obvious property of approximate controllability
of the complex Ginzburg–Landau equation (1.4) with a control force ζ ∈
C1(0, T ; H1

0), for any R > 0, q ∈ (0, 1), and d > 0 we can find α(R, q, d) > 0
such that (see, for example, [8, 26])

Pu{‖ST (u, ·)‖ � (q‖u‖)∨d} � α(R, q, d) for any u ∈ L2, ‖u‖ � R. (4.19)
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Moreover, using the existence of a Lyapunov function for St, the constant
α(R, q, d) can be made independent of T � 1. Since Rt is an extension
for St, we conclude from (4.19) that

Pu{‖RT (u, u′)‖ � (q‖u‖) ∨ d} � α(R, q, d),

Pu{‖R′
T (u, u′)‖ � (q‖u′‖) ∨ d} � α(R, q, d)

(4.20)

for any (u, u′) ∈ L2×L2 with ‖u‖∨‖u′‖ � R. The inequalities (4.20) would
imply (3.15) with ε(d) = α(R, q, d)2 and any T � 1, if the processes Rt

and R′
t were independent. However, this is not the case, and we have to

proceed differently.

Step 1. To prove (3.15), it suffices to show that for any δ > 0 there is
cδ > 0 such that

Pδ := Pu{‖RT (u, u′)‖ ∨ ‖R′
T (u, u′)‖ � q1(‖u‖ ∨ ‖u′‖) + δ} � cδ (4.21)

for u, u′ ∈ BR, where q1 ∈ (0, 1) is a constant and BR denotes the ball in L2

of radius R centered at origin. Indeed, suppose that (4.21) is already proved

and fix any d > 0. Setting δ = 1−q1

1+q1
d and q = 1+q1

2 , we derive

q1‖v‖ + δ = (q‖v‖) ∨ d for any v ∈ L2.

It follows that the probability on the left-hand side of (3.15) is bounded
below by Pδ. Since δ depends only on d and q1, this proves (3.15).

Step 2. We now prove (4.21). In view of the existence of a Lyapunov
function for St, we can assume that u, u′ ∈ BR∗ for some R∗ > 0. Introduce
the events

Gδ = {‖RT (u, u′)‖ � q1(‖u‖ ∨ ‖u′‖) + δ},
G′

δ = {‖R′
T (u, u′)‖ � q1(‖u‖ ∨ ‖u′‖) + δ},

Eρ = {ER(t) + ER′(t) � 2(R2
∗ + Lt) + ρ for all t � 0},

where Eu is defined by (4.5). We need to estimate from below the expression
Pu (GδG

′
δ). It follows from (4.19) that

Pu (Gδ) � κδ, Pu (G′
δ) � κδ for any u, u′ ∈ BR∗ , (4.22)

where κδ > 0 is a constant independent of u, u′, and T . Moreover, the
inequality (4.7) implies that

Pu (Eρ) � 1 − βρ for any u, u′ ∈ BR∗ , (4.23)

where βρ → 0 as ρ → ∞. Now recall that (see (4.15) and (4.16))

Rt(u, u′) = Υt(QNu, U), R′
t(u, u′) = Υt(QNu, U ′ + f̃N (u, u′)χ), (4.24)
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where (U, U ′) is a maximal coupling for the pair (λT (u, u′), λ′
T (u, u′)), the

operator Υ is defined in (4.17), Υt stands for its restriction to the time t,

and f̃N(u, u′) =
(
fN (u,u′)

0

)
. Without loss of generality, we can assume that

Pu(G′
δ/2N c) � Pu (Gδ/2N c), (4.25)

where N = {U(u, u′) �= U ′(u, u′)} and N c denotes the complement of N .
The case in which the opposite inequality is satisfied can be treated by a
similar argument.

Suppose that we already shown that

Gδ/2EρN c ⊂ GδG
′
δ for any ρ > 0 and T � Tρ, (4.26)

where Tρ � 1 depends only on ρ. In this case, we can write

Pu(GδG
′
δ) = Pu(GδG

′
δN c) + Pu(GδG

′
δN )

� Pu(GδG
′
δEρN c) + Pu(Gδ | N )Pu (G′

δ | N )Pu (N )

� Pu(Gδ/2EρN c) + Pu(GδN )Pu (G′
δN ),

where we used the inclusion (4.26) and the independence of U and U ′ con-
ditioned on N . Combining this inequality with (4.23), we derive

Pu (GδG
′
δ) � Pu (Gδ/2N c) + Pu(GδN )Pu (G′

δN ) − βρ. (4.27)

We claim that if ρ > 0 is so large that βρ � 1
8κ2

δ/2, then (4.21) holds with

cδ = 1
8κ2

δ/2. Indeed, if Pu(Gδ/2N c) � 1
4κ2

δ/2, then (4.21) follows immedi-

ately from (4.27). In the opposite case, the inequalities (4.22) and (4.25)
imply that

κ2
δ/2 � Pu(Gδ/2)Pu (G′

δ/2) � Pu(Gδ/2N )Pu (G′
δ/2N ) +

3

4
κ2

δ/2.

Hence

Pu(GδN )Pu (G′
δN ) � Pu(Gδ/2N )Pu (G′

δ/2N ) �
1

4
κ2

δ/2.

Combining this with (4.27), we obtain (4.21) with cδ = 1
8κ2

δ/2.

Step 3. It remains to prove (4.26). The construction implies that if
ω ∈ N c, then the processes Rt(u, u′) and R′

t(u, u′) belong to the space X (T )
and satisfy Equation (1.4) with some right-hand sides ζ, ζ′ ∈ C(0, T ; H1

0).
Moreover, we have the relations (cf. (5.1), (5.2))

PNRt(u, u′) = PNR′
t(u, u′) − fN(u, u′)χ(t), (4.28)

QNζ(t) = QNζ′(t) (4.29)
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for 0 � t � T . Furthermore, if ω ∈ Gδ/2Eρ, then

t∫

0

(
‖Rs(u, u′)‖2 + ‖R′

s(u, u′)‖2
)
ds � 2(R2 + Lt) + ρ, 0 � t � T, (4.30)

‖RT (u, u′)‖ � δ/2 + q1

(
‖u‖ ∨ ‖u′‖

)
. (4.31)

Applying Proposition 5.3 and using (4.28) and (4.30), we see that

‖Rt(u, u′) −R′
t(u, u′)‖ = ‖QN (Rt(u, u′) −R′

t(u, u′))‖
� C1 exp

{
−ναN+1(t − 1) + C1t + 2R2

∗ + ρ
}
‖u − u′‖,

where C1 > 0 is a constant independent of u, u′, and N . It follows that
if N is sufficiently large, then for any ρ > 0 we can choose Tρ � 1 such that

‖RT (u, u′) −R′
T (u, u′)‖ � δ

2 for u, u′ ∈ BR∗ , T � Tρ. (4.32)

Combining this with (4.31), we obtain the inequality

‖RT (u, u′)‖ ∨ ‖R′
T (u, u′)‖ � q1

(
‖u‖ ∨ ‖u′‖

)
+ δ,

which shows that Gδ/2EρN c ⊂ GδG
′
δ. This completes the verification of

Hypothesis (H2).

4.5. Squeezing: verification of (2.6) and (2.7).

We recall that the extension S t = (St, S
′
t) is obtained by the iteration of

Rt = (Rt,R′
t) and that the random processes St(u , ω) and S′

t(u , ω) satisfy
Equation (1.4) with some right-hand sides ζ = ζ(t, u, u′) and ζ = ζ(t, u, u′)
respectively. Introduce the Markov times

σ1(u , ω)= inf{t � 0 : PNSt �= PNS′
t − fN (u, u′)χ(t) or QNζ(t) �= QNζ′(t)},

σ2(u , ω)= inf{t � 0 : ES·(t) + ES′
·
(t) � ‖u‖2 + 2(L + M)t + 2ρ},

where M and ρ are positive parameters which will be chosen later. We set

σ̃(u , ω) = σ1(u , ω) ∧ σ2(u , ω).

The Foiaş–Prodi estimate (5.3) implies that if N ≫ 1 and u, u′ ∈ B1, then
(cf. the derivation of (4.32))

‖St(u , ω) − S′
t(u , ω)‖ � C e−t for 0 � t � σ̃(u , ω), (4.33)

where C > 0 does not depend on u and u′. It follows that σ̃ � σ, where σ
is defined by the relation (2.3) with β = 1. We show that if N ≫ 1, ρ ≫ 1,
and B = Bd × Bd with d ≪ 1, then σ̃ satisfies (2.6) and (2.7).
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Step 1. We set Qk = {σ̃(u , ω) ∈ Ik}, Ik = [(k − 1)T, kT ]. Suppose
that we already shown that

Pu(Qk) � 2e−2k for any k � 1, u ∈ B . (4.34)

In this case, we can write

Pu{σ̃ = ∞} = 1 −
∞∑

k=1

Pu (Qk) � 1 − 2

∞∑

k=1

e−2k =: δ1 > 0,

Eu

(
I{σ̃<∞}e

δ2σ̃
)

�

∞∑

k=1

Pu(Qk)eδ2Tk � 2

∞∑

k=1

e−(2−δ2T )k � K,

where δ2 < T−1. Thus, it suffices to prove (4.34).

Step 2. To prove (4.34), we need the following result. Recall that the
measures λT (u, u′) and λ′

T (u, u′) are defined in Section 4.3.

Proposition 4.3. There is an integer N0 � 1 such that if N � N0,
then ∥∥λT (u, u′) − λ′

T (u, u′)
∥∥

var
� Ce−c R2

+ CNdeCR2

(4.35)

for any u, u′ ∈ BR such that ‖u− u′‖ � d. Here, CN , C, and c are positive
constants independent of R and d.6)

The proof of this result is based on a well-known argument using the
Girsanov theorem (see [6, 15]). The case of the complex Ginzburg–Landau
equation is technically more complicated; however, the main ideas remain
the same, and therefore we omit the proof. We refer the reader to [28,
Proposition 3] for a weaker version of (4.35).

The inequality (4.34) is proved by induction on k. Denote by Ak the
set of ω ∈ Ω for which PNSt = PNS′

t − fN (u, u′)χ(t), QNζ(t) = QNζ′(t) for
t ∈ Ik. For k = 1 we have

Q1 = {σ2 ∈ [0, T ]} ∪ Ac
1. (4.36)

From (4.7) it follows that

Pu{σ2 ∈ [0, T ]} � 2e−κρ � e−2 for ρ � 4/κ. (4.37)

Furthermore, Proposition 4.3 and the definition of maximal coupling imply
that

Pu (Ac
1) � Ce−c R2

+ CNdeCR2

. (4.38)

The right-hand side of this inequality is smaller than e−2 if

R � c−1(lnC + 4), d � (2CN )−1e−CR2

. (4.39)

6) However, they may depend on T .
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Combining (4.36)–(4.38), we arrive at (4.34) for k = 1.

We now assume that k = l + 1 � 2 and the inequality (4.34) is es-
tablished for 1 � k � l. Denote by Āl the intersection of A1, . . . , Al. We
have

Ql+1 ⊂ {σ2 ∈ Il+1} ∪ Dl+1, (4.40)

where Dl+1 = Āl ∩Ac
l+1∩{σ2 � (l+1)T }. Let us estimate the probabilities

of the events on the right-hand side of (4.40). The inequality (4.7) implies

Pu{σ2 ∈ Il+1} � 2e−κ(ρ+Ml) � e−2(l+1), (4.41)

provided that

M � 2/κ, ρ � 4/κ. (4.42)

Furthermore, using the inequality (4.34) for 0 � k � l, we derive

Pu

(
Āl ∩ {σ2 � lT }

)
� Pu{σ̃ � lT } � 1 − 2

l∑

k=1

e−2k � 1/2 (4.43)

for u ∈ B . The Foiaş–Prodi inequality (5.3) implies that for any P > 0
and sufficiently large N we have (cf. the derivation of (4.32))

‖SlT ‖ ∨ ‖S′
lT ‖ � C1(ρ + MTl)1/2,

‖SlT − S′
lT ‖ � C2d eC2ρ−PTl

on the set Āl ∩ {σ2 � lT }, where C1 and C2 are positive constants inde-
pendent of N , d, and l. Applying now the Markov property and using the
inequalities (4.35) and (4.43), we obtain

Pu (Dl+1) � Pu

(
Ac

l+1 | Āl ∩ {σ2 � lT }
)

Pu

(
Āl ∩ {σ2 � lT }

)

� Ce−c C2
1(ρ+MTl)+CNC2d exp

{
ρ(CC2

1+ C2)+(CC2
1M − P )T l

}
. (4.44)

The right-hand side of this inequality is smaller than e−2(l+1) if

M � (2c C2
1T )−1, ρ �

lnC + 2

c C2
1

,

P � CC2
1M + 2, d � (CNC2)

−1e−ρ(CC2
1+C2)−1.

(4.45)

Note that the conditions imposed on the parameters M , ρ, P , and d by the
inequalities (4.39), (4.42), and (4.45) are compatible. Combining (4.40),
(4.41), and (4.44), we arrive at (4.34) for k = l + 1. This completes the
proof of (4.34).
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4.6. Completion of the proof of Theorem 4.2.

We have thus shown that the random dynamical system associated with
the complex Ginzburg–Landau equation (4.2) possesses an extension S t =
(St, S

′
t) that satisfies (2.5)–(2.7) with σ = σ̃, B = Bd×Bd, g(r) = r2, where

d > 0 is sufficiently small. If we show that

Eu

{
I{σ̃<∞}‖S σ̃‖2q

}
� K for any u ∈ B , (4.46)

where K and q are positive constants independent of u , then the application
of Theorem 2.3 and Remark 2.4 will prove that the problem (4.2), (4.3)
possesses a unique stationary measure μ ∈ P(L2) and the inequality (4.9)
holds.

To prove (4.46), note that if σ̃ < ∞, then

‖Sσ̃‖2 + ‖S′
σ̃‖2 � 2(d2 + Lσ̃) + ρ for u, u′ ∈ Bd.

It follows that

‖S σ̃‖2q � Cq(σ̃
2 + 1) for any q > 1,

where Cq > 0 depends only on L, d, and ρ. Multiplying this inequality
by I{σ̃<∞}, taking the mean value, and using (2.7), we arrive at (4.46). The
proof of Theorem 4.2 is complete.

5. Appendix

5.1. Maximal coupling of measures.

Let X be a Polish space, and let μ, μ′ be two probability Borel measures
on X . Recall that a pair (ξ, ξ′) of X-valued random variables defined on
the same probability space is called a coupling for (μ, μ′) if D(ξ) = μ and
D(ξ′) = μ′.

Definition 5.1. A coupling (ξ, ξ′) for (μ, μ′) is said to be maximal if

P{ξ �= ξ′} = ‖μ − μ′‖var

and the random variables ξ and ξ′ conditioned on the event N = {ξ �= ξ′}
are independent, i.e., P{ξ ∈ Γ, ξ′ ∈ Γ′ | N} = P{ξ ∈ Γ | N}P{ξ′ ∈ Γ′ | N}
for any Γ, Γ′ ∈ BX .

In Section 4.3, we have used the following result on the existence of
maximal coupling for measures depending on a parameter. Let Y be a
Polish space endowed with its Borel σ-algebra BY , and let {μy}y∈Y be a
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family of measures on X . We say that μy measurable depends on y ∈ Y if
the function y �→ μy(Γ) is (BY ,BR)-measurable for any Γ ∈ BX .

Proposition 5.2. Let {μy}, {μ′
y} ⊂ P(X) be two families that mea-

surably depend on y ∈ Y . Then there is a probability space (Ω,F , P) and
two measurable functions ξ : Y × Ω → X and ξ′ : Y × Ω → X such that
(ξ(y, ·), ξ′(y, ·)) is a maximal coupling for (μy , μ′

y) for any y ∈ Y .

In the case X = Rn, the proof can be found in [14]. In the general case,
it suffices to use the fact that any Polish space is measurably isomorphic
to (R,BR).

5.2. Foiaş–Prodi estimate.

In this section, we present an estimate for the difference between two solu-
tions of the problem (1.4), (1.5) in which ζ : R+ → H1 is a deterministic
continuous function. Recall that {ej} ⊂ H is the complete set of eigenfunc-
tions for the Dirichlet Laplacian in the domain D, HN is the 2N -dimensional
subspace in L2 generated by {ej , iej, 1 � j � N}, and H⊥

N is the orthogonal
complement of HN in L2. Denote by PN : L2 → HN and QN : L2 → H⊥

N

the corresponding orthogonal projections.

The following result provides a Foiaş–Prodi type estimate for the dif-
ference between two solutions whose projections to HN coincide (cf. [9]).
The proof can be found in [28, Section 4].7)

Proposition 5.3. Let n = 3 or 4, let p � 2
n , and let

u1, u2 ∈ X (T ) = C(0, T ; L2) ∩ L2(0, T ; H1
0 )

be two solutions of the problem (1.4), (1.5) that correspond to deterministic
functions ζ1, ζ2 ∈ C(0, T ; H1

0 ) and h ∈ L2(D, C). Suppose that

PNu1(t) = PNu2(t) for t0 � t � T , (5.1)

QN ζ1(t) = QNζ2(t) for 0 � t � T , (5.2)

where t0 ∈ [0, T ] and N � 1 is an integer. Then there is a constant C > 0
independent of u1, u2, t0, and N such that

7) The estimate established in [28] is slightly different. However, a similar argument

enables one to prove (5.3).
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‖QN(u1(t) − u2(t))‖2 � exp{−ναN+1t + q(t)}
(
‖QN (u1(0) − u2(0))‖2

+ CeναN+1t0+q(t0)

t∫

0

(‖u1(s)‖1+‖u2(s)‖1)
(4p−2)∨0‖PN (u1(s)−u2(s))‖2

1ds

)

(5.3)

for 0 � t � T , where

q(t) = C

t∫

0

(
‖u1(s)‖2

1 + ‖u2(s)‖2
1 + 1

)
ds.
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On Problem of Stability

of Equilibrium Figures of Uniformly

Rotating Viscous Incompressible Liquid
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St.-Petersburg, Russia

Recent results on the stability of a rotating capillary viscous incompressible liquid

bounded by a free surface are presented. It is established that the regime of a rigid

rotation is stable if the second variation of the energy functional is positive definite

and is instable if the second variation can take negative values. The proof is based

on the study of the spectrum of the corresponding linear problem. Extensions of

these results to the multi-dimansional case are discussed. Bibliography: 26 titles.

1. Introduction

We study the stability of some special solutions of the free boundary prob-
lem for the Navier–Stokes equations governing the evolution of an isolated
mass of a viscous incompressible liquid subjected to the capillary and self-
gravitation forces. The problem consists in the determination of a bounded
domain Ωt ∈ R3, the velocity vector field v(x, t) = (v1, v2, v3), and the
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pressure function p(x, t), x ∈ Ωt, satisfying the relations

vt + (v · ∇)v − ν∇2v + ∇p = 0,

∇ · v = 0, x ∈ Ωt, t > 0, (1.1)

T (v, p)n = (σH(x, t) + κU(x, t))n, Vn = v · n, x ∈ Γt ≡ ∂Ωt,

v(x, 0) = v0(x), x ∈ Ω0.

Here, ν and σ are positive constant coefficients of viscosity and the surface
tension respectively, κ � 0 is a gravitational constant, T (v, p) = −pI +
νS(v) is the stress tensor,

S(v) =
( ∂vj

∂xk
+

∂vk

∂vj

)
j,k=1,2,3

is the doubled rate-of-strain tensor, H is the doubled mean curvature of Γt

negative for convex domains, Vn is the velocity of evolution of Γt in the
direction of the exterior normal n, and

U(x, t) =

∫

Ωt

dz

|x − z|

is the Newtonian potential depending on the unknown domain Ωt. The
density of a liquid is assumed to be equal to one. The domain Ω0 is given.

The solvability of this problem in a finite time interval is proved in
[14]. In the present paper, we are concerned with the stability of the solu-
tion corresponding to the rigid rotation of a liquid about the x3-axis with
constant angular velocity ω. In this case, the velocity and pressure are given
by the formula

V (x) = ω(e3 × x) = ω(−x2, x1, 0),

P (x) =
ω2

2
|x′|2 + p0

(1.2)

where x′ = (x1, x2, 0), p0 = const, and e3 is a unit vector directed along the
x3-axis. The domain F occupied by the rotating liquid, called an equilibrium
figure, is determined by the equation

σH +
ω2

2
|x′|2 + κU + p0 = 0, x ∈ G = ∂F . (1.3)

where H is the doubled mean curvature of G and
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U(x) =

∫

F

dz

|x − z| .

Let N(x) be the exterior normal to G. If F is axially symmetric with
respect to the x3-axis, then

V (x) · N(x) = ω(e3 × x) · N(x) = 0, x ∈ G, (1.4)

which means that Ωt = F is independent of t and the functions (1.2) given in
F represent a stationary solution of the problem (1.1). IfF is nonsymmetric,
then equation (1.3) determines a one parameter family of equilibrium figures
Fθ obtained by rotation of one of them, F0, around the x3-axis of the angle
θ. In this case functions (1.2) given in Fωt+ϕ0 define a periodic solution of
(1.1). The function Vn = V · N |G is different from identical zero.

The problem of the stability of equilibrium figures of rotating liquid
has drawn attention of many generations of great mathematicians, begin-
ning with I.Newton. The review of results obtained in the past and of some
recent contributions can be found in [1, 7]. A generally accepted criterion
of the stability of F is the positivity of the second variation δ2R of the
energy functional

R = σ|Γ| + β2

2

∫

Ω

(x2
1 + x2

2)dx
− κ

2

∫

Ω

∫

Ω

dx

|x − y| − p0|Ω|, Γ = ∂Ω (1.5)

with respect to the normal deformation of G. By Ω we mean a domain
in R3 close to F with the same volume |Ω| and the same position of the
barycenter as F , Γ = ∂Ω, |Γ| = measΓ, and

β = ω

∫

F

(x2
1 + x2

2)dx

is the magnitude of the total angular momentum of the rotating liquid. We
show that if δ2R > 0, then the problem (1.1) with v0 close to V and Ω0

close to F is solvable in the infinite time interval t > 0 and the solution
tends to the rigid rotation as t → ∞. If δ2R can take negative values, then
for some initial data (v0, Ω0) arbitrarily close to (V , F) the solution of the
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problem (1.1) leaves sooner or later a certain neighborhood of (V , F). The
proof of these assertions, the exact form of which will be given below, rests
upon the analysis of a linearized problem.

The fact that the rigid rotation (1.2) can be the limit for the solution
of the problem (1.1) as t → ∞ was discovered in [12, 13] in the case of
a slow motion. As was shown in [10], the convergence of the solution of
the problem (1.1) to this limit is exponential. In [11], the condition of the
smallness of V was replaced with the condition of positivity of the second
variation of the functional

G = σ|Γ| − ω2

2

∫

Ω

(x2
1 + x2

2)dx − κ

2

∫

Ω

∫

Ω

dx

|x − y| − p0|Ω|, Γ = ∂Ω,

under the assumption that F and Ωt are star-shaped domains (the func-
tional G is also considered very often in the theory of equilibrium figures).
In [21], the functional R was invoked, which is more natural for the free
motion of the liquid, and the class of domains F was significantly enlarged.
This has required some modifications of the proofs. Concerning F , the axial
symmetry was always assumed. The case of nonsymmetric F was consid-
ered in [20]. In all these papers, the stability of the rigid rotation under the
assumption δ2R > 0 was established.

The instability of the solution (1.2) when the second variation of R
can take negative values was proved in [24, 22]. The proof rests upon
the analysis of the spectrum of the linearized problem that turns out to
contain a finite number of eigenvalues with positive real parts. The proof
of this fact given in [23] is based on the idea of Kopachevskii presented
in [4, Ch. 9]: at first, the existence of such eigenvalues is established for
a large viscosity coefficient ν, and then it is shown that they cannot leave
the right complex half-plane when this coefficient is changed continuously.
Another proof given in [25, 26] for σ = 0 rests upon the application of
the Pontryagin–M. Krein–Langer–Azizov theorem on the invariant spaces
of dissipative operators in the Pontryagin space with indefinite metrics.
Unfortunately, the proof in [25] contains an error; it was corrected in [26].

In what follows, a short exposition of these results is given and, in
Section 6, their possible extension to the case of higher spatial dimension
n is discussed. Some arguments are made more transparent. The proof
of stability presented in Sections 4 and 5 is different from that given in
[21, 20]; it is based on the study of the spectrum of the linearized problem.
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The results of [26] are presented for the case σ > 0. The case n > 3,
although it has no physical meaning, is interesting from the mathematical
point of view, in particular, due to the fact that the set of rigid motions is
much more rich than in the three-dimensional case. We restrict ourselves
to the extension of Theorem 4.1 on the stability of rigid motion to the case
of arbitrary n. The case, where this motion is unstable, is studied in the
forthcoming paper of the author and Padula.

We work in the Hölder spaces of functions because it is easier to esti-
mate the nonlinear terms in the Hölder norms. In this way, we also avoid
an application of embedding theorems depending on n. But the same type
of analysis could be carried out in the Sobolev spaces, as it is done, for in-
stance, in [13]. Important estimates of solutions of related linear problems
in the Hölder norms are obtained in [15, 16]. The proof of these estimates
is omitted.

2. Auxiliary Relations and Transformation

of Problem (1.1)

We start with the proof of some useful relations for the equilibrium figure
F defined by Equation (1.3). It is always assumed to be a bounded domain
in R3 with connected smooth boundary. Following Lyapunov [6], we show
that the vector of the total angular momentum of rotating liquid,

β =

∫

F

x × V (x)dx, (2.1)

is directed along the x3-axis. Multiplying (1.3) by Njx3 − N3xj , j = 1, 2,,
integrating over G, and taking into account the equations

∫

G

U(x)(Njx3 − N3xj)dS =

∫

F

∫

F

(
x3

zj − xj

|x − z|3 − xj
z3 − x3

|x − z|3
)
dxdz

=

∫

F

∫

F

(
z3

zj − xj

|x − z|3 − zj
z3 − x3

|x − z|3
)
dxdz = 0
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and ∫

G

H(x)(Njx3 − N3xj)dS =

∫

G

(x3∆Gxj − xj∆Gx3)dS = 0,

where ∆G is the Laplace–Beltrami operator on G, we find

ω2

2

∫

F

x3
∂

∂xj
|x′|2dx = ω2

∫

F

x3xjdx = 0, j = 1, 2.

Hence ∫

F

x × V dx = βe3,

where

β = ω

∫

F

|x′|2dx.

Similarly, multiplying (1.3) by Nj and integrating, we obtain the equation

ω2

∫

F

xjdx = 0,

which shows that the barycenter of F is located at the axis of rotation.
Without loss of generality, we can assume that this equation is satisfied
also for j = 3, i.e., that the barycenter coincides with the origin of the
coordinate system x1, x2, x3. Finally, the multiplication of (1.3) by x · N
and integration leads to the expression for p0:

p0 =
2σ|G|
3|F| − 5

6|F|
(
ω2

∫

F

|x′|2dx + κ

∫

F

Udx
)
.

For σ = 0 it was obtained in [6].

In fact, p0 is the Lagrange multiplier corresponding to the prescription
of the volume of F ; other multipliers corresponding to the prescription of
the position of the barycenter vanish (see [17]).

If F is axially symmetric, then

∫

F

x1x2dx = 0. (2.2)
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In the case of the absence of symmetry, this equation can be satisfied by
rotation of the equilibrium figure about the x3-axis of a certain appropriate
angle θ. Indeed, if x = Z(θ)y, where

Z(θ) =

⎛
⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞
⎠ , (2.3)

then θ is determined from

∫

Fθ

x1x2dx = cos θ sin θ

∫

F0

(y2
1 −y2

2)dy+(cos2 θ− sin2 θ)

∫

F0

y1y2dy = 0. (2.4)

Now, we go back to the problem (1.1) and recall that the solution
of this problem satisfies the following “conservation laws” which are easily
verified:

|Ωt| = |Ω0|,
∫

Ωt

v(x, t)dx =

∫

Ω0

v0(x)dx,

∫

Ωt

(x × v(x, t))dx =

∫

Ω0

(x × v0(x))dx.

Since we study the problem of stability of a given equilibrium figure F , we
should assume that

|Ω0| = |F|,
∫

Ω0

v0(x)dx =

∫

F

V (x)dx = 0,

∫

Ω0

(x × v0(x))dx =

∫

F

(x × V (x))dx = βe3.

As a consequence, we have

|Ωt| = |F|, (2.5)
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∫

Ωt

xidx = 0, i = 1, 2, 3, (2.6)

∫

Ωt

v(x, t)dx = 0, (2.7)

∫

Ωt

v(x, t) · ηi(x)dx = ω

∫

F

η3(x) · ηi(x)dx = δi3β, i = 1, 2, 3, (2.8)

where ηi(x) = ei × x, and ei is a unit vector directed along the xi-axis.

From now on until Section 5 we assume that F is axially symmetric.

It is convenient to work with the problem for the perturbations of the
velocity and pressure,

vr(x, t) = v(x, t) − V (x), pr(x, t) = p(x, t) − P (x),

written in the coordinate system rotating about the x3-axis with the angular
velocity ω. We introduce new coordinates yi and new unknown functions
(w, q) by the formulas

x = Z(ωt)y,

w(y, t) = Z−1(ωt)vr(Z(ωt)y, t),

q(y, t) = pr(Z(ωt)y, t)

and transform the problem (1.1) into

wt + (w · ∇)w + 2ω(e3 × w) − ν∇2w + ∇q = 0,

∇ · w = 0, y ∈ Ω′
t, t > 0,

(2.9)

T (w, p)n′ = (σH(y) +
ω2

2
|y′|2 + κU ′(y, t) + p0)n

′, (2.10)

V ′
n = w · n′, y ∈ Γ′

t,

w(y, 0) = v0(y) − V (y) ≡ w0(y), y ∈ Ω0,
(2.11)

where Ω′
t = Z−1(ωt)Ωt, Γ′

t = ∂Ω′
t, n′ is the exterior normal to Γ′

t, and
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U ′ =

∫

Ω′
t

|y − z|−1dz.

The conditions (2.5)–(2.8) take the form

|Ω′
t| = |F|,

∫

Ω′
t

y′
idy = 0, i = 1, 2, 3, (2.12)

∫

Ω′
t

w(y, t)dy = 0,

∫

Ω′
t

w(y, t) · ηi(y)dy + ω

∫

Ω′
t

η3 · ηi(y)dy = ω

∫

F

η3(z) · ηi(z)dz

= βδi3, i = 1, 2, 3. (2.13)

To the solution (1.2) of the problem (1.1) there corresponds the zero
solution of the problem (2.9)–(2.13) whose stability we should analyze.

In what follows, we consider only this last problem, without address-
ing to the problem (1.1) any more. Therefore, we return to the previous
notation: we omit primes and denote by x a point of Ωt = Ω′

t. Further, we
write (2.9)–(2.13) as the nonlinear problem in a fixed domain F for w, q
and one more unknown function ρ given on G. We assume that Ω0 (and Ωt,
t > 0) is sufficiently close to F and, as a consequence, Γt can be prescribed
by the equation

x = y + N (y)ρ(y, t), y ∈ G (2.14)

with a small function ρ(y, t) given on G. We extend N and ρ from G into F
with the preservation of class and so that the extended functions N ∗ and
ρ∗ satisfy the conditions

∂

∂N
N∗(x, t)|G = 0,

∂

∂N
ρ∗(x, t)|G = 0,

|ρ∗(·, t)|C1(F) � δ ≪ 1.

(2.15)
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We map F onto Ωt by the transformation

x = y + N∗(y)ρ∗(y, t) ≡ eρ(y), y ∈ F . (2.16)

If δ is small enough, then the transformation (2.16) is invertible. Let L =(∂eρ

∂y

)
be the Jacobi matrix of this transformation with entries

lij = δij +
∂

∂yj
Ni(y)ρ(y, t) (2.17)

and the determinant L. By lij and L̂ij , i.j = 1, 2, 3,, we denote the entries

of the inverse matrix L−1 and the cofactor matrix L̂ = LL−1 respectively. It

is clear that the mapping eρ transforms the operator ∇x into ∇̃ = L−T∇y,
where L−T = (L−1)T and T means transposition; moreover, we have

3∑

j=1

∂

∂yj
L̂ji = 0

and, as a consequence,

0 = LL−T∇y · w̃(y, t) = L̂T∇y · w̃ = ∇y · L̂w̃,

where w̃(y, t) = w(eρ(y), t). Since

∂w̃(y, t)

∂t
=

∂w(x, t)

∂t
+

3∑

k=1

∂w(x, t)

∂xk
N∗

k

∂ρ∗(y, t)

∂t

=
∂w(x, t)

∂t
+

∂ρ∗

∂t
(L−1N∗ · ∇y)w̃(y, t),

we can write the basic system of Equations (2.9) in the form

∂

∂t
w̃ − ∂ρ∗

∂t
(L−1N∗ · ∇)w̃ + (L−1w̃ · ∇)w̃

+ 2ω(e3 × w̃) − ν∇̃ · ∇̃w̃ + ∇̃q̃ = 0, ∇y · L̂w̃ = 0, (2.18)

where q̃(y, t) = q(eρ(y), t).

The dynamic boundary condition (2.10) can be written in the following
equivalent form (in the case n(eρ) · N(y) > 0, i.e., for small ρ):

Π0ΠS(w(x, t))n = 0,
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−q(x, t) + νn · S(w)n = σH(x) +
ω2

2
|x′|2 + κU(x, t) + p0. (2.19)

Here,

Πh = h − n(n · h), Π0h = h − N(N · h).

We also note that n(eρ(y)) is related to N(y) by

n(eρ) =
L̂T N(y)

|L̂T N(y)|
(2.20)

and that S(w) = ∇xw+(∇xw)T is transformed by the mapping (2.16) into

S̃(w(eρ(y), t)) = ∇̃w(eρ(y), t) + (∇̃w(eρ(y), t))T .

Hence we can make use of (1.3) and write (2.19) as

Π0ΠS̃(w̃(y, t))L̂T N = 0, y ∈ G,

− q̃(y, t) + νn · S̃(w̃)n =
(
σ(H(x) −H(y))

+
ω2

2
(|x′|2 − |y′|2) + κ(U(x, t) − U(y))

)∣∣∣
x=eρ(y)

,

(2.21)

where n is the vector field (2.20).

By (2.20), the kinematic boundary condition Vn = w ·n is equivalent
to the following equality:

ρt(y, t) =
w̃(y, t) · L̂T N(y)

N(y) · L̂T N(y)
, y ∈ G. (2.22)

From the calculations carried out in [17] it follows that

3∑

i=1

L̂ijNi = Nj(y)Λ(y, ρ) − ∂ρ

∂yj
(1 − ρH(y)) + ρ

n∑

m=1

∂ρ

∂ym

∂Nm

∂yj
, (2.23)

where

Λ(y, ρ) = N · L̂N = 1 − ρH(y)) + ρ2K(y) (2.24)
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and K is the Gaussian curvature of G. Hence (2.22) is equivalent to the
following equality:

ρt(y, t) = w̃ · N − Λ−1(y, ρ)

×
3∑

j=1

w̃j

( ∂ρ

∂yj
(1 − ρH(y)) − ρ

n∑

m=1

∂ρ

∂ym

∂Nm

∂yj

)
. (2.25)

Now, we pass to the conditions (2.12) and (2.13). In terms of ρ, (2.12)
can be written as

∫

G

ϕ(y, ρ)dS = 0,

∫

G

ψi(y, ρ)dS = 0, i = 1, 2, 3, (2.26)

(see [17]), where

ϕ(y, ρ) = ρ − ρ2

2
H(y) +

ρ3

3
K(y),

ψi(y, ρ) = ϕ(y, ρ)yi + Ni(y)
(ρ2

2
− ρ3

3
H(y) +

ρ4

4
K(y)

)
.

(2.27)

Finally, the orthogonality conditions (2.13) take the form
∫

F

w̃(y, t)Ldy = 0,

∫

F

Lw̃(y, t) · ηi(eρ(y))dy = −ω

∫

F

Lη3(eρ(y), t) · ηi(eρ(y))dy

+ ω

∫

F

η3(y) · ηi(y)dy, i = 1, 2, 3.

(2.28)

Hence the problem (2.9)–(2.13) is transformed into (2.18), (2.21), (2.25),
(2.26), and (2.28).

We can now write the corresponding linearized problem. For this
we should omit all the nonlinear terms with respect to (w̃, q̃, ρ) in (2.18),
(2.21), (2.25) and replace the differences H(eρ(y)) − H(y) etc. with their
first variations with respect to ρ. We use the well known formula

δ(H(eρ(y)) −H(y)) =
d

ds
H(esρ(y))

∣∣∣
s=0

= ∆Gρ(y, t) + b1(y)ρ(y, t), (2.29)
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where b1(y) = H2(y) − 2K(y) = c2(y) is the sum of squares of principal
curvatures of G, as well as

1

2
δ(|x′|2 − |y′|2)

∣∣∣
x=eρ(y)

= N (y) · y′ρ(y, t), (2.30)

δ(U(eρ(y), t) − U(y)) = ρ(y, t)
∂U(y)

∂N
+

∫

G

ρ(z, t)dSz

|z − y| , (2.31)

δ
(∫

Ωt

f(x)dx −
∫

F

f(y)dy
)

=

∫

G

f(y)ρ(y, t)dS, (2.32)

(see [17, 18]). As a result, we obtain the following linear problem for v(x, t),
p(x, t), x ∈ F , and ρ(x, t), x ∈ G:

vt + 2ω(e3 × v) − ν∇2v + ∇p = 0, ∇ · v = 0, x ∈ F ,

Π0S(v)N = 0,

N · T (v, p)N + B0ρ = 0, (2.33)

ρt = v · N , ρ(x, 0) = ρ0(x), x ∈ G,

v(x, 0) = v0(x), x ∈ F .

By B0 we mean an integro-differential operator on G defined by

B0ρ = −σ∆Gρ(x, t) − b(x)ρ(x, t) − κ

∫

G

ρ(z, t)dS

|x − z| (2.34)

with

b(x) = σ(H2(x) − 2K(x)) +
ω2

2

∂

∂N
|x′|2 + κ

∂U(x)

∂N
. (2.35)

Equations (2.33) should be supplemented with the orthogonality conditions
∫

G

ρ(y, t)dS = 0,

∫

G

ρ(y, t)yidS = 0, i = 1, 2, 3, (2.36)

∫

F

v(x, t)dx = 0,

∫

F

v(x, t) · ηi(x)dx + ω

∫

G

ρ(x, t)η3(x) · ηi(x)dS = 0, i = 1, 2, 3, (2.37)
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obtained by the linearization of (2.26), (2.28). It can be easily verified that
if these conditions hold at the initial moment t = 0 for (v0, ρ0), then they
are satisfied for all t > 0.

3. Linear Problem

We start with some important definitions and auxiliary relations. If the
surface Γ = ∂Ω in (1.5) is defined by Equation (2.4): x = y + N(y)ρ(y),
then the functional R can be considered as the functional depending on ρ
and its first and second variations are defined by

δR =
d

ds
R[sρ]

∣∣∣
s=0

, δ2R =
d2

ds2
R[sρ]

∣∣∣
s=0

.

Let us introduce the operators

Bρ = B0ρ +
ω2|η3(x)|2
‖η3‖2

L2(F)

∫

G

ρ|η3(y)|2dS (3.1)

and

B̂ρ = Bρ − 1

|G|

∫

G

BρdS. (3.2)

It is not hard to verify that

δ2R =

∫

G

ρ(y)Bρ(y)dS

(see [17, 18, 21]). Thus, if
∫

G

ρdS = 0,

then

δ2R =

∫

G

ρ(y)Bρ(y)dS =

∫

G

ρ(y)B̂ρ(y)dS. (3.3)

Moreover, due to (1.3), δR = 0, which means that (1.3) is the Euler equation
for R.
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For an arbitrary vector field η(x) = a × x + b of rigid motion with
a, b = const we have

B0(η · N) = B(η · N) = −ω2x′ · η(x), x ∈ G. (3.4)

Let

S̃ =

∫

F

(x2
1 − x2

3)dS =

∫

F

(x2
2 − x2

3)dS =

∫

F

((x1 cosϕ + x2 sinϕ)2 − x2
3)dx

for all ϕ ∈ [0, 2π). Since

∫

G

B(η1 · N)η1 · NdS = ω2

∫

G

x3x2η1 · NdS = ω2S̃,

∫

G

B(η2 · N )η2 · NdS = −ω2

∫

G

x3x1η2 · NdS = ω2S̃,

(3.5)

the condition

S̃ > 0 (3.6)

is necessary for the positivity of δ2R, and we assume that it is satisfied.

Arbitrary ρ ∈ L2(G) can be represented in the form

ρ(x) = ρ0(x) + ρ1(x) (3.7)

where

ρ0(x) = S̃−1
(
η1(x) · N(x)

∫

G

ρ(y)y3y2dS − η2(x) · N(x)

∫

G

ρ(y)y3y1dS
)

and ρ1 satisfies the orthogonality conditions

∫

G

ρ1(y)y3y1dS =

∫

G

ρ1(y)y3y2dS = 0. (3.8)

The proof of these statements can be found in [20, 23]. In particular, (3.7)
follows from the elementary formulas already used in (3.5), namely,

∫

G

η1(x) · N(x)x2x3dS = S̃,

∫

G

η2(x) · N(x)x1x3dS = −S̃,
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∫

G

η1(x) · N(x)x1x3dS =

∫

G

η2(x) · N (x)x2x3dS = 0.

Equation (3.7) defines a nonorthogonal projection Q onto the subspace of
L2(G) satisfying conditions (3.8): ρ1 = Qρ.

Let us consider the nonhomogeneous linear problem

vt + 2ω(e3 × v) − ν∇2v + ∇p = f (x, t),

∇ · v = f = ∇ · F , x ∈ F ,

Π0S(v)N = b(x, t), N · T (v, p)N + B0ρ = d(x, t),

ρt − v · N = g(x, t), ρ(x, 0) = ρ0(x), x ∈ G,

v(x, 0) = v0(x), x ∈ F .

(3.9)

The following theorem on the solvability of this problem in anisotropic
Hölder spaces is of a fundamental importance.

Theorem 3.1. Let the data of the problem (2.1)–(2.5) satisfy the
following assumptions: f(·, t) ∈ Cα(F), α ∈ (0, 1), f(·, t) ∈ C1+α(F),
F t(·, t) ∈ Cα(F) for all t ∈ [0, T ], b ∈ C1+α,(1+α)/2(GT ), GT = G × [0, T ],
d(·, t) ∈ C1+α(G), g(·, t) ∈ C2+α(G) for all t ∈ [0, T ], v0 ∈ C2+α(F),
ρ0 ∈ C3+α(G). Let the compatibility conditions

∇ · v0(x) = f(x, 0), b(x, t) · N (x) = 0,

Π0S(v0)N (x) = b(x, 0), x ∈ G (3.10)

be satisfied. Then the problem (3.9) has a unique solution v(·, t) ∈ C2+α(F)
with vt(·, t) ∈ Cα(F), p(·, t) ∈ C1+α(F), ρ(·, t) ∈ C3+α(G) for all t ∈ [0, T ],
and the inequality

Yt(v, p, ρ) � c(t)Mt (3.11)

holds for arbitrary t ∈ [0, T ], c(t) being a nondecreasing function of t,

Yt(v, p, ρ) = sup
τ�t

|vt(·, τ)|Cα(F) + sup
τ�t

|v(·, τ)|C2+α(F)

+ sup
τ�t

|p(·, τ)|C1+α(F) + sup
τ�t

|ρ(·, t)|C3+α(G) (3.12)

and

Mt = sup
τ�t

|f(·, τ)|Cα(F) + |b|C1+α,(1+α)/2(Gt) + sup
τ�t

|f(·, τ)|C1+α(F)
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+ sup
τ�t

|F t(·, τ)|Cα(F) + sup
τ�t

|d(·, τ)|C1+α(G)

+ sup
τ�t

|g(·, τ)|C2+α(G) + |v0|C2+α(F) + |ρ0|C3+α(G). (3.13)

The proof of this theorem (see [24]) relies on the analysis of the
initial-boundary value problem for the Stokes equation with the nonstan-
dard boundary conditions

Π0S(v)N = b(x, t),

N · T (v)N − σN · ∆G

t∫

0

v(x, τ)dτ = d(x, t) (3.14)

carried out in [15, 16]. Note that the orthogonality conditions (2.36), (2.37)
are not required here.

If f = 0, f = 0, b = 0, d = 0, g = 0, then (3.11) implies

|v(·, t)|C2+α(F) + |ρ(·, t)|C3+α(G)

� c(t)(|v0|C2+α(F) + |ρ0|C3+α(G)) ∀t � T. (3.15)

It turns out that in the case of positivity of δ2R the solution of the same
problem in the subspace (2.36), (2.37) satisfies (3.15) with c(t) = e−bt,
b = const > 0. To prove this, we should consider the spectral problem

λv + 2ω(e3 × v) − ν∇2v + ∇p = 0, ∇ · v = 0, x ∈ F ,

Π0S(v)N = 0,

N · T (v, p)N + B0ρ = 0,

λρ = v · N , x ∈ G, (3.16)∫

G

ρ(y)dS = 0,

∫

G

ρ(y)yidS = 0, i = 1, 2, 3, (3.17)

∫

F

v(x)dx = 0,

∫

F

v(x) · ηi(x)dx + ω

∫

G

ρ(x)η3(x) · ηi(x)dS = 0, i = 1, 2, 3. (3.17′)

We assume that the spectral parameter λ is a complex number and v, p, ρ
are complex-valued functions. Following [3, 8], we can write Equations
(3.16) in an abstract form

λϕ = Aϕ, (3.18)
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where ϕ = (v, ρ)T . We take the orthogonal in L2(F) projection PJ of the
equation

λv + 2ω(e3 × v) − ν∇2v + ∇p = 0

onto the space J of divergence-free vector fields defined in F and obtain

λv + 2ωPJ(e3 × v) − ν∇2v + ∇s = 0

where s is a harmonic function in F satisfying the same boundary condition
as p:

s(x, t) = νN (x) · S(v)N + B0ρ(x, t), x ∈ G.

We set A = (Aij)i,j=1,2 so that

Aϕ = (A11v + A12ρ, A21v)T ,

A11v = −2ωPJ(e3 × v) + ν∇2v −∇s1,

A12ρ = −∇s2,

A21v = v · N |G , A22ρ = 0.

By si we mean harmonic functions in F satisfying the conditions

s1(x, t) = νN (x) · S(v)N (x), s2 = B0ρ(x, t), x ∈ G,

so that s1 +s2 = s. Thus, the pressure is excluded. For the domain of A we

can choose a subspace of the Sobolev space W 2
2 (F)×W

5/2
2 (G) characterized

by the conditions

∇ · v(x) = 0, Π0S(v)N (x)|G = 0 (3.18′)

and the orthogonality conditions (3.17), (3.17′) . If (v, p, ρ) satisfy (3.16)–
(3.17′), then (v, ρ) satisfy (3.18) and, conversely, to every solution (v, ρ) of
(3.18) corresponds the solution (v, p, ρ) of (3.16)–(3.17′) with p = s + s′,

∇2s′(x, t) = −2ω∇ · (e3 × v), x ∈ F , s′|x∈G = 0.

The evolution problem (3.9), (3.17), (3.17′) (with f = 0, f = 0, b = 0,
d = 0, g = 0) is equivalent to

dϕ

dt
− Aϕ = 0, ϕ|t=0 = ϕ0 ≡ (v0, ρ0)

T . (3.19)

Operator A possesses the following properties.
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1. The range R(A) of A is the set of functions F = (f , g)T ⊂ L2(F)×
W

3/2
2 (G) satisfying the conditions

∇ · f(x) = 0, x ∈ F ,
∫

G

g(y)dS = 0,

∫

G

g(y)yidS = 0, i = 1, 2, 3,

∫

F

f(x)dx = 0,

∫

F

f (x) · ηi(x)dx + ω

∫

G

g(x)η3(x) · ηi(x)dS = 0, i = 1, 2, 3. (3.20)

2. If Reλ � a ≫ 1, then the equation λϕ−Aϕ = F is uniquely solvable
for arbitrary F ∈ R(A) and the solution satisfies the inequality

|λ|‖v‖L2(F) + ‖v‖W 2
2 (F) + |λ|‖ρ‖

W
3/2
2 (G)

+ ‖ρ‖
W

5/2
2 (G)

� c(a)
(
‖f‖L2(F) + ‖g‖

W
3/2
2 (G)

)
; (3.21)

moreover, if F ∈ R(A) ∩ (W l
2(F) × W

l+3/2
2 (G)) for all l > 0, then ϕ ∈

D(A) ∩ (W l+2
2 (F) × W

l+5/2
2 (G)) and

|λ|l/2+1‖v‖L2(F) + ‖v‖W l+2
2 (F) + |λ|l/2+1‖ρ‖

W
3/2
2 (G)

+ ‖ρ‖
W

l+5/2
2 (G)

� c(a)(|λ|l/2‖f‖L2(F +‖f‖W l
2(F)+ |λ|l/2‖g‖

W
3/2
2 (G)

+‖g‖
W

l+3/2
2 (G)

). (3.22)

The operator (λI − A)−1, Reλ � a, is compact.

3. The spectrum of A consists of a countable number of eigenvalues
with the only accumulation point at infinity. Purely imaginary non-zero λ
belong to a resolvent set of A. λ = 0 can be an eigenvalue; the corresponding

eigenfunctions are of the form ϕ = (d3(ρ)η3, ρ)T with ρ ∈ KerB̂, i.e., B̂ρ =
0, (d3 is defined below in (3.24)) and there are no associated eigenfunctions.

4. If the form (3.3) is positive definite on the set of functions ρ satis-
fying (2.36), then all the eigenvalues of A have the negative real part.

5. If the form (3.3) can take negative values for some ρ satisfying
(2.36), then A has a finite number of eigenvalues with the positive real part.

The proofs of these statements can be found in [23, 19]. We restrict
ourselves to the presentation of their main ideas. We concentrate on the
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properties of the spectrum of A. The properties mentioned in Assertions
3 and 4 are verified in an elementary way. Let v, p, ρ be a solution of the
problem (3.16)–(3.17′). By (3.17′),

v(x) = v⊥(x) +

3∑

j=1

dj(ρ)ηi(x),

where

dj(ρ) = − ω

‖ηi‖2
L2(F)

∫

G

ρ(x)η3(x) · ηi(x)dS (3.24)

and v⊥ is a solenoidal vector field orthogonal to arbitrary η(x) = a×x+b.
Multiplying the first equation in (3.16) by v, integrating over F , and taking
into account the boundary conditions, we obtain

λ‖v‖2
L2(F)+2ω

∫

F

(v1v̄2−v2v̄1)dx+λ̄

∫

G

ρ̄B0ρdS+
ν

2
‖S(v)‖2

L2(F) = 0, (3.25)

which implies

Reλ
(
‖v⊥‖2

L2(F) +

3∑

j=1

|dj |2‖ηj‖2
L2(F) +

∫

G

ρ̄B0ρdS
)

+
ν

2
‖S(v⊥)‖2

L2(F) = 0,

(3.26)
If Reλ > 0 and δ2R > 0, then (3.26) yields ρ = 0, v = 0. If Reλ = 0
and λ �= 0, from (3.26) it follows that S(v⊥) = 0. By the Korn inequality,
v⊥ = 0, and (3.16) reduces to

λ

3∑

j=1

djηj + 2ω(e3 ×
3∑

j=1

djηj) + ∇p = 0, x ∈ F , (3.27)

λρ =

3∑

j=1

djηj(x) · N (x), x ∈ G. (3.28)

The last equation implies

d3(ρ) = − ω

λ‖η3‖2
L2(F)

∫

G

3∑

j=1

djηj(x) · N(x)|η3|2dS = 0, (3.29)

λd1 = − ωS̃
‖η1‖2

L2(F)

d2, λd2 =
ωS̃

‖η2‖2
L2(F)

d1.

Applying the operation rot to (3.27), we obtain

λd1 = ωd2, λd2 = −ωd1. (3.30)
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From (3.29) and (3.30) we conclude that d1 = d2 = 0. Hence ρ = 0, ∇p = 0,
p|G = 0, p = 0, which is required to prove.

If λ = 0, then the same argument yields

v⊥ = 0, v =
3∑

j=1

djηj .

The condition (3.28), i.e.,

2∑

α=1

dα(ρ)ηα(x) · N(x)|G = 0

implies d1 = d2 = 0. Hence v = d3η3. Equations (3.16) yield ∇p = 2d3ωx′,
p = ωd3|x′|2 + C, and

−p + B0ρ = B0ρ − d3ω|x′|2 − C = Bρ − C = 0, x ∈ G,

i.e., B̂ρ = 0. Let ϕ1 = (v1, ρ1)
T be an associated eigenfunction, i.e., let

ϕ1 satisfy Aϕ1 = ϕ0, where ϕ0 = (d3(ρ0)η3(x), ρ0)
T is an eigenfunction

(consequently, ρ0 ∈ KerB̂). This means that (v1, p1, ρ1) satisfy the relations

2ω(e3 × v1) − ν∇2v1 + ∇p1 = d3(ρ0)η3(x), ∇ · v1 = 0, x ∈ F ,

Π0S(v1)N = 0,

N · T (v1, p1)N + B0ρ1 = 0,

v1 · N = ρ0, x ∈ G

and the orthogonality conditions (3.17), (3.17′), so

v1 = v⊥
1 +

3∑

j=1

dj(ρ1)ηj .

The functions u1 = v1 − d3(ρ1)η3, s1 = p1 − d3ω|x′|2 − C1, ρ1 satisfy

2ω(e3 × u1) − ν∇2u1 + ∇s1 = d3(ρ0)η3(x),

∇ · u1 = 0, x ∈ F ,

Π0S(u1)N = 0, N · T (u1, s1)N + B̂ρ1 = 0,

u1 · N = ρ0, x ∈ G

(3.31)
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(if the constant C1 is chosen in an appropriate way) and
∫

G

ρ1(y)dS = 0,

∫

G

ρ1(y)yidS = 0, i = 1, 2, 3,

∫

F

u1(x)dx = 0,

∫

F

u1(x) · η3(x)dx = 0,

∫

F

u1(x) · ηα(x)dx + ω

∫

G

ρ1(x)η3(x) · ηα(x)dS = 0, α = 1, 2.

We have again v⊥
1 = 0 and

u1 · N |G =

2∑

α=1

dα(ρ1)ηα · N |G = ρ0(x).

Since ρ0 ∈ KerB̂ is orthogonal to x1x3 and to x2x3, we can use (3.5)
and prove that dα(ρ1) = 0. Hence ρ0 = 0, ϕ1 satisfies Aϕ1 = 0 and belongs
to the subspace of eigenfunctions ϕ0. It follows that the dimension of the

root space of A at the point λ = 0 is equal to dim KerB̂.

Let us turn to Statement 5. We assume that the form (3.3) can take
negative values for some ρ satisfying (3.17). We should conclude that the
spectral problem (3.16)–(3.17′) (or (3.18)) has nontrivial solutions for some
λ with Reλ > 0. It is convenient to pass from (3.16)–(3.17′) to the problem

λu + 2ω(e3 × u) − ν∇2u + ∇q = −λd3(ρ)η3(x) = −d3(u · N)η3,

∇ · u = 0, x ∈ F ,

Π0S(u)N = 0,

N · T (u, q)N + B̂ρ = 0,

λρ = u · N , x ∈ G,

(3.32)

∫

G

ρ(y)dS = 0,

∫

G

ρ(y)yidS = 0, i = 1, 2, 3, (3.33)

∫

F

u(x)dx = 0,

∫

F

u(x) · η3(x)dx = 0, (3.34)
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∫

F

u(x) · ηi(x)dx + ω

∫

G

ρ(x)η3(x) · ηi(x)dS = 0, i = 1, 2, (3.35)

where u = v−d3(ρ)η3(x) and q = p−ωd3(ρ)|x′|2 +const (a similar passage
was already done; see (3.31)).

We introduce the following spaces:

H : the subspace of functions ρ ∈ L2(G) satisfying (3.33);

KerB̂: the set of functions ρ ∈ H ∩ W 2
2 (G) satisfying B̂ρ = 0;

H0 = H ⊖ KerB̂;

J̃ : the subspace of J (i.e., of the space of solenoidal vector fields
u ∈ L2(F)) whose elements satisfy (3.34);

H1: the subspace of functions ρ ∈ H0 satisfying the additional orthog-
onality conditions

∫

G

ρηj · NdS = 0, j = 1, 2,

X = J̃ × H0;

Y : subspace of elements ψ = (u, ρ)T ∈ X satisfying the conditions

∫

F

u(x) · ηjdx + ω

∫

G

ρ(x)η3(x) · N (x)dS = 0, j = 1, 2,

Z = J̃ × H1.

We denote by P̃ , P0, and P1 the orthogonal projections onto J̃ , H0,
and H1 respectively. We set

(u1, u2)F =

∫

F

u1(x) · u2(x)dx, (ρ1, ρ2)G =

∫

G

ρ1(x)ρ̄2(x)dS

and

(ψ1, ψ2)X = (u1, u2)F + (ρ1, ρ2)G

where ψj = (uj , ρj)
T , j = 1, 2. We recall that all the functions are complex-

valued and the scalar products are Hermitian.
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Since 2ωPJ(e3 × u) = 2ωP̃ (e3 × u) − d3(u · N)η3, we can write the
problem (3.32)–(3.35) in the form

λu + 2ωP̃ (e3 × u) − ν∇2u + ∇r = 0, ∇ · u = 0, x ∈ F ,

∇2r = 0, x ∈ F ,

r|G = νN · S(u)N + B̂ρ,

Π0S(u)N = 0,

λρ = u · N , x ∈ G,

(3.36)

plus the orthogonality conditions (3.33)–(3.35). Moreover, we modify the
last equation in (3.36) and consider the auxiliary spectral problem

λu + 2ωP̃ (e3 × u) − ν∇2u + ∇r = 0, ∇ · u = 0, x ∈ F ,

∇2r = 0, x ∈ F ,

r|G = νN · S(u)N + B̂ρ,

Π0S(u)N = 0,

λρ = P0u · N , x ∈ G,

(3.37)

complemented with (3.33)–(3.35). If (u, q, ρ) is a solution of the last problem
with a nonzero λ, then (u, q, ρ+λ−1(I−P0)u·N ) is a solution of the problem
(3.33)–(3.36) with the same λ.

The problem (3.33)–(3.35), (3.37) can be also written in an abstract
form similar to (3.18), namely,

λψ = A′ψ,

where ψ = (u, ρ), A′ = (A′
ij)i,j=1,2, so that

A′ψ =
(
A′

11u + A′
12ρ, A′

21u
)T

,

A′
11u = −2ωP̃ (e3 × u) + ν∇2u −∇s1, A′

12ρ = −∇s2,

A′
21u = P0u · N |G , A′

22ρ = 0

and s1, s2 are harmonic functions in F satisfying the boundary conditions

s1(x, t) = νN(x) · S(u)N(x), s2 = B̂ρ(x, t), x ∈ G.

For the domain D(A′) of A′ we take the set of elements ψ = (u, ρ)T ∈
(W 2

2 (F) ∩ J̃) × (W
5/2
2 (G) ∩ H0) satisfying the conditions

Π0S(u)N (x)|G = 0
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and the orthogonality conditions (3.35). If ψ ∈ D(A′), then A′ψ ∈ Y .

We use the decomposition (3.7) of arbitrary ρ ∈ H . If ρ ∈ H0, i.e.,
ρ = P0ρ, then ρ = P0ρ0 + P0Qρ. As was shown [26], P0Qρ is uniquely
representable as P0Qρ = P0Qr with r = P1Qρ ∈ H1. Hence

ρ = P0ρ0 + P0Qr ∀ρ ∈ H0, r = P1Qρ.

Moreover, by (3.4), we have

(B̂ρ, ρ)G = (B̂P0ρ0, P0ρ0)G + (B̂P0Qr, P0Qr)G = (B̂ρ0, ρ0)G + (B̂Qr, Qr)G

=
ω2

S̃

2∑

j=1

∣∣∣
∫

G

ρ(x)xjx3dS
∣∣∣
2

+ (B̂Qr, Qr)G .

If (3.6) holds, then the first term on the right-hand side is nonnegative,
which shows that

(B̂ρ, ρ)G � (B̂Qr, Qr)G . (3.37′)

In particular, if the form (3.3) is negative for some ρ ∈ H0, then the same

is true for (B̂Qr, Qr)G , which means that the elliptic operator

B1 = P1Q
∗B̂QP1

has a finite number of negative eigenvalues λ
(−)
k and a countable number of

positive eigenvalues λ
(+)
k . It can be shown that KerB1 = ∅ (see [26]). For

arbitrary r ∈ H1 ∩ W 2
2 (G), taking into account the multiplicity of λ

(±)
k , we

have

B1r =
m∑

k=1

λ
(−)
k (r, ϕk)Gϕk +

m∑

k=m+1

λ
(+)
k (r, ϕk)Gϕk

where ϕk(x) are eigenfunctions of B1. The spaces

H− = Span(ϕ1, . . . , ϕm), H+ = Span(ϕm+1, . . . )

are orthogonal to each other and H− ⊕ H+ = H0. We introduce the or-
thogonal projections onto these spaces P−, P+ and the operators |B1| and
|B1|1/2 defined by the standard formulas

|B1|ρ =

m∑

k=1

|λ(−)
k |(ρ, ϕk)ϕk +

m∑

k=m+1

λ
(+)
k (ρ, ϕk)ϕk,

|B1|1/2ρ =

m∑

k=1

|λ(−)
k |1/2(ρ, ϕk)ϕk +

m∑

k=m+1

λ
(+)1/2
k (ρ, ϕk)ϕk.
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It is easy to verify that

B1 = |B1|1/2S|B1|1/2, (3.38)

where S = P+ − P−. It is clear that (Sr, r)G < 0 for nonzero r ∈ H− and
(Sr, r)G > 0 for nonzero r ∈ H+.

Now, we pass to the spaces X , Y , Z. By (3.35), an arbitrary element
ψ = (u, ρ)T ∈ Y can be represented in the form

(u, ρ)T = (u, P0Qρ + P0ρ0)
T = (u, P0Qr + P0Σu)T = Lϕ,

where r = P1Qρ ∈ H1, ϕ = (u, r)T ∈ Z,

Σu = (ωS̃)−1
(
η1 · N

∫

F

u(x) · η2(x)dx − η2 · N
∫

F

u(x) · η1(x)dx
)
,

and

L =

(
I 0

P0Σ P0Q

)
.

The element ϕ ∈ Z is expressed in terms of ψ by ϕ = Mψ, where

M =

(
I 0
0 P1Q

)
.

We have LMψ = ψ, MLϕ = ϕ and

‖ψ‖2
X ≡ ‖u‖2

L2(F) + ‖ρ‖2
L2(G) � c1‖ϕ‖2

X � c2‖ψ‖2
X .

Let

B =

(
I 0

0 B̂

)
, B1 = L∗BL.

A direct computation shows that

B1 =

(
I + Σ∗P0B̂P0Σ Σ∗B̂P0Q

Q∗P0B̂Σ Q∗P0B̂P0Q

)
=

(
I + Σ∗B̂Σ Σ∗B̂Q

Q∗B̂Σ Q∗B̂Q

)

= diag(I + Σ∗B̂Σ, B1)

because Q∗B̂Σ = 0 and Σ∗B̂Q = 0. By (3.38),

B1 = DJD,
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where D = diag(I, |B1|1/2) and J = diag(I + Σ∗B̂Σ, S). This operator is
bounded, selfadjoint, invertible and

(Jϕ, ϕ)X = ‖u‖2
L2(F) + q(u) + (Sr, r)G , (3.38′)

where ϕ = (u, r)T is an arbitrary element of Z and

q(u) = (B̂Σu, Σu)G =
1

S̃

2∑

j=1

∣∣∣
∫

F

u(x) · ηjdx
∣∣∣
2

� 0.

Hence (Jϕ, ϕ)X < 0 for ϕ in a finite- dimensional space Z− = 0 × H− and

(Jϕ, ϕ)X > 0 for ϕ ∈ Z+ = J̃×H+. The spaces Z−, Z+ are orthogonal and
Z−⊕Z+ = Z. The Hilbert space with the indefinite scalar product (Jϕ, ϕ)
possessing the above properties is referred to as the Pontryagin space [4].

It is easy to check (see [26]) that for arbitrary ψ ∈ D(A′)

Re(BA′ψ, ψ)X � 0.

Let A1 = MA′L, ψ = Lϕ. We have

(BA′ψ, ψ)X = (BLMA′Lϕ,Lϕ)X = (B1A1ϕ, ϕ)X

= (DJDA1D−1Dϕ, ϕ)X = (JDA1D−1χ, χ)X ,

where χ = Dϕ ∈ Z. It follows that the operator −iDA1D−1 ≡ A2 satisfies
the inequality

Im(JA2χ, χ)X � 0

for arbitrary χ ∈ Z, i.e., it is J -dissipative in the Pontryagin space Z.
Since the spectrum of A (and of A2) is discrete, it is maximal dissipative,
and we can apply the M. Krein–Langer–Azizov theorem [5, 2]. According
to this theorem, A2 has m-dimensional invariant space L ⊂ Z and all the

eigenvalues of A2

∣∣∣
L

have nonpositive imaginary part. As a consequence,

A′ has a finite-dimensional invariant subspace L′ ⊂ Y and the eigenvalues

of A′
∣∣∣
L′

have nonnegative real part. In exactly the same way as it was

done above for the operator A, it is possible to show that they cannot be
purely imaginary, and this proves Assertion 5. We have thus shown that
the “instability index” of the operator A is equal to m.

Remark. If (3.6) does not hold and S̃ < 0, then Assertion 5 takes the

following form: If (B̂Qr, Qr)G can be negative for some r ∈ H1, then the
operator A has a finite number of eigenvalues with positive real part. The
above arguments are still valid, although the inequality (3.37′) cannot be
used any more and the form q(u) in (3.38′) is not positive. It vanishes for
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u in the space J⊥ ⊂ J̃ orthogonal to η1 and η2 and is negative for nonzero

u ∈ J̃ ⊖ J⊥. Hence the definition of Z± should be modified as follows:

Z+ = J⊥ × H+, Z− = (J̃ ⊖ J⊥) × H−.

Let us go back to the evolution linear problem (2.33), (3.36), (2.37).
Assume that δ2R > 0. Then the spectrum of A is located in the left
complex half-plane, and from semigroup theory it follows that the solution
of the problem (3.19) satisfies the inequality

‖v(·, t)‖L2(F) + ‖ρ(·, t)‖
W

3/2
2 (F)

� ce−b1t(‖v0‖L2(F) + ‖ρ0‖W
3/2
2 (F)

) (3.39)

with a certain positive b1. In [10]–[18], [20, 21], inequalities of this type
are obtained by construction of a special “generalized energy.” This method
is presented below in Section 6. With the help of a local estimate for the
problem (3.19) it is possible to deduce from (3.39) the inequality (3.15) with
c(t) = e−bt, as it was done in [17]–[21].

Theorem 3.2. If δ2R > 0 for arbitrary ρ satisfying (3.33), then the
problem (2.33), (2.36), (2.37) with v0 satisfying the compatibility conditions

∇ · v0 = 0, Π0S(v0)N |G = 0

is solvable in the infinite time interval t > 0, and

yt(v, q, ρ) ≡ |vt(·, t)|Cα(F) + |v(·, t)|C2+α(F)

+ |p(·, t)|C1+α(F) + |ρ(·, t)|C3+α(G)

� ce−bt(|v0|C2+α(F) + |ρ0|C3+α(G)) (3.40)

with the constants independent of t.

Proof. We obtain estimate (3.40) that is uniform with respect to
t. The solvability of the problem (2.33), (2.26), (2.37) in the infinite time
interval follows from this estimate and Theorem 3.1. Let t0 � 1, λ ∈ (0, 1/2)
and let ζλ(t) be a smooth cut-off function of time such that ζλ(t) = 1 for

t > t0−1+λ, ζλ(t) = 0 for t < t0−1+λ/2,
∣∣∣∂

kζλ(t)

∂tk

∣∣∣ � cλ−k. The functions

u = vζλ, r = ρζλ, q = pζλ satisfy the relations

ut + 2ω(e3 × u) − ν∇2u + ∇q = vζ′λt, ∇ · u = 0,

Π0S(u)N = 0,

N · T (u, q)N + B0r = 0,

rt − u · N = ρζ′λt, r(x, t0 − 1) = 0, x ∈ G,
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u(x, t0 − 1) = 0, x ∈ F .

Let

Yt1,t2(v, p, ρ) = sup
τ∈(t1,t2)

|vt(·, τ)|Cα(F) + sup
τ∈(t1,t2)

|v(·, τ)|C2+α(F)

+ sup
τ∈(t1,t2)

|p(·, τ)|C1+α(F) + sup
τ∈(t1,t2)

|ρ(·, t)|C3+α(G).

By (3.11),

Yt0−1+λ,t0(v, p, ρ) � Yt0−1+λ/2,t0(u, q, r)

� c( sup
τ∈(t0−1,t0)

|vζ′λt|Cα(F) + sup
τ∈(t0−1,t0)

|ρζ′λt|C2+α(F))

� c(λ−1 sup
τ∈(t0−1+λ/2,t0)

|v|Cα(F) + λ−1 sup
τ∈(t0−1,t0)

|ρ|C2+α(G))

with the constant independent of t0.

Using the interpolation inequalities, we can estimate the norms on the
right-hand side by higher order norms

|v(·, τ)|C2+α(F), |ρ(·, t)|C3+α(G)

and by the L2-norms of the same functions. We find

Yt0−1+λ,t0(v, p, ρ) � εYt0−1+λ/2,t0(v, p, ρ)

+ cλ−M ( sup
τ∈(t0−1,t0)

‖v‖L2(F) + sup
τ∈(t0−1,t0)

‖ρ‖L2(G))

with some M > 0. This implies

y(λ) � 2Mεy(λ/2) + K,

where y(λ) = λMYt0−1+λ,t0(v, p, ρ) and

K = c( sup
τ∈(t0−1,t0)

‖v‖L2(F) + sup
τ∈(t0−1,t0)

‖ρ‖L2(G)).

Choosing ε � 2−M−1, we obtain

y(λ) �
1

2
y(λ/2) + K � . . . � 2K.

Setting λ = 1/2 and using (3.31), we find

|vt(·,t0)|Cα(F) + |v(·, t0)|C2+α(F) + |p(·, t0)|C1+α(F) + |ρ(·, t0)|C3+α(G)

� cK � ce−bt0(‖v0‖L2(F) + ‖ρ0‖L2(G)).
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This inequality, together with (3.15) in the case t0 < 1, yields the desired
estimate (3.40). �

In the case considered in statement 5 above, the problem (2.33), (2.36).
(2.37) has a finite-dimensional subspace of solutions exponentially growing
as t → ∞. It is clear that they are smooth functions of x and t.

4. Stability and Instability of Zero Solution

of Problem (2.9)–(2.13)

Using (2.18), (2.21), (2.25), we can write the problem (2.9)–(2.13) in the
form (3.9), namely,

wt + 2ω(e3 × w) − ν∇2v + ∇q = f ,

∇ · w = f = ∇ · F , y ∈ F ,

Π0S(w)N = b,

N · T (w, q)N + B0ρ = d, (4.1)

ρt − w · N = g, ρ(y, 0) = ρ0(y), y ∈ G,

w(y, 0) = w0(eρ(y)), y ∈ F ,

where f , f , F , b, d, g are nonlinear functions of w, p, ρ:

f = ρ∗t (L−1N∗ · ∇)w − (L−1w · ∇)w + ν(∇̃2w −∇2w) + (∇− ∇̃)q,

f = (I − L̂T )∇ · w,

F = (I − L̂)w,

b = Π0(Π0S(w)N − ΠS̃(w)L̂T N), (4.2)

d =ν(N · S(w)N − |L̂T N |−2L̂T N · S̃(w)L̂T N) +
(
σ(H(x) −H(y))

+
ω2

2
(|x′|2 − |y′|2) + κ(U(x, t) − U(y))

)∣∣
x=eρ(y)

+ B0ρ

= ν(N · S(w)N − |L̂T N |−2L̂T N · S̃(w)L̂T N )

+ (σ(H(x) −H(y) − σδ((H(x) −H(y)))

+
ω2

2
(|x′|2 − |y′|2 − δ(|x′|2 − |y′|2))

+ κ(U(x, t) − U(y) − δ(U(x, t) − U(y))))
∣∣∣
x=eρ(y)

,
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g = −Λ−1(y, ρ)

3∑

j=1

wj

( ∂ρ

∂yj
(1 − ρH(y)) − ρ

n∑

m=1

∂ρ

∂ym

∂Nm

∂yj

)

(we omitted the tilde over w and q). The orthogonality conditions (2.26),
(2.28) can be written as

∫

G

ρ(y, t)dS = l(t),

∫

G

ρ(y, t)yidS = li(t), i = 1, 2, 3, (4.3)

∫

F

w(y, t)dy = m(t),

∫

F

w(y, t) ·ηi(y)dy +ω

∫

G

ρ(y, t)η3(y) ·ηi(y)dS = Mi(t), i = 1, 2, 3, (4.4)

where

l(t) =

∫

G

(ρ(y, t) − ϕ(y, ρ))dS,

li(t) =

∫

G

(ρ(y, t)yi − ψi(y, ρ))dS,

mi(t) =

∫

F

w(y, t)(1 − L)dx, (4.5)

Mi(t) =

∫

F

(w(y, t) · ηi(y) − Lw(y, t) · ηi(eρ(y)))dy + ω
(∫

F

η3(y) · ηi(y)dy

−
∫

F

Lη3(eρ(y)) · ηi(eρ(y))dy +

∫

G

ρ(y, t)ηi(y) · η3(y)dS
)

=

∫

F

(w(y, t) · ηi(y) − Lw(y, t) · ηi(eρ(y)))dy
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− ω
( ∫

F

Lη3(eρ(y)) · ηi(eρ(y))dy −
∫

F

η3(y) · ηi(y)dy

+ ωδ
( ∫

F

Lη3(eρ(y)) · ηi(eρ(y))dy −
∫

F

η3(y) · ηi(y)dy
))

.

The initial data (w0, ρ0) (we write w0(y) instead of w0(eρ(y))) satisfy these
conditions at t = 0; moreover, the compatibility conditions also hold:

b(y, t) · N (y) = 0, ∇ · w0 = f0, Π0S(w0)N = b0(y) (4.6)

with f0 = f |t=0 and b0 = b|t=0.

We need to estimate the nonlinear terms (4.2). We assume that the
extension ρ∗ of ρ into F is made by a linear operation such that (2.15) holds,

|ρ∗(·, t)|C3+α(F) � c|ρ(·, t)|C3+α(G),

|ρ∗t (·, t)|C2+α(F) � c|ρt(·, t)|C2+α(G)

(4.7)

and N ∗ is smooth enough.

Proposition 4.1. If (4.7) holds and

sup
t<T

|w(·, t)|C2+α(F) + sup
t<T

|ρ(·, t)|C3+α(G) � ε1, (4.8)

where ε1 is a certain sufficiently small positive number, then the functions
(4.2) satisfy the inequalities

sup
τ�t

|f(w, q, ρ)(·, τ)|Cα(F) + sup
τ�t

|f(w, ρ)|C1+α(F)

+ sup
τ�t

|F t(w, ρ)|Cα(F) + |b(w, ρ)|C1+α,(1+α)/2(Gt)

+ sup
τ�t

|d(w, ρ)|C1+α(G) + sup
τ�t

|g(w, ρ)|C2+α(G) � cY 2
t (w, q, ρ), (4.9)

where Gt = G × [0, t] and t ∈ [0, T ] is arbitrary. Moreover, if (w1, ρ1) and
(w2, ρ2) satisfy (4.8), then

sup
τ�t

|f (w1, q1, ρ1)−f (w2, q2, ρ2)|Cα(F) +sup
τ�t

|f(w1, ρ1)− f(w2, ρ2)|C1+α(F)

+ sup
τ�t

|F t(w1, ρ1)−F t(w2, ρ2)|Cα(F)+|b(w1, ρ1)−b(w2, ρ2)|C1+α,(1+α)/2(Gt)

+ sup
τ�t

|d(w1, ρ1) − d(w2, ρ2)|C1+α(G) + sup
τ�t

|g(w1, ρ1) − g(w2, ρ2)|C2+α(G)

� cYt(w1 − w2, q1 − q2, ρ1 − ρ2)(Yt(w1, q1, ρ1) + Yt(w2, q2, ρ2)). (4.10)
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The proof of (4.9), (4.10) is transparent but lengthy and is omitted
(see [18, 21, 16]). Proposition 4.1 and Theorem 3.1 allow one to prove the
local solvability of the problem (4.1). We will use the following proposition.

Proposition 4.2. For arbitrary T > 0 there exists a number ε2(T ) >
0 such that, in the case

|w0|C2+α(F) + |ρ0|C3+α(G) � ε2 (4.11)

the problem (4.1) with initial data w0 ∈ C2+α(F), ρ0 ∈ C3+α(G) satisfying
the compatibility conditions

∇ · w0 = f(w0, ρ0) ≡ f0(y), Π0S(w)N = b(w0, ρ0) ≡ b0(y), (4.12)

is uniquely solvable in the interval of time t ∈ [0, T ] and the solution satisfies
the inequality

Yt(w, q, ρ) � c(|w0|C2+α(F) + |ρ0|C3+α(G)), (4.13)

where Yt is defined in (3.12).

The conditions (4.14) are equivalent to the compatibility conditions

∇ · w0 = 0, S(w0)n0 − n0(n0 · S(w0)n0 = 0

in the problem (2.9)-(2.11) (n0 is the normal to Γ0). Along with (4.1), we
consider the problem

wt + 2ω(e3 × w) − ν∇2v + ∇q = f(w′ + w, q′ + q, ρ′ + ρ)

∇ · w = f(w′ + w, ρ′ + ρ) = ∇ · F (w′ + w, ρ′ + ρ), y ∈ F ,

Π0S(w)N = b(w′ + w, ρ′ + ρ), (4.14)

N · T (w, q)N + B0ρ = d(w′ + w, ρ′ + ρ),

ρt − w · N = g(w′ + w, ρ′ + ρ), ρ(y, 0) = ρ0(y), y ∈ G,

w(y, 0) = w0(y), y ∈ F ,

Proposition 4.3. For arbitrary T > 0 there exist numbers ε2(T ) > 0
and ε3(T ) > 0 such that, in the case

|w0|C2+α(F) + |ρ0|C3+α(G) � ε2,

Yt(w
′, q′, ρ′) � ε3
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the problem (4.14) with initial data w0 ∈ C2+α(F), ρ0 ∈ C3+α(G) satisfying
the compatibility conditions

∇ · w0 = f(w′|t=0 + w0, ρ
′|t=0 + ρ0)

Π0S(w)N = b(w′|t=0 + w0, ρ
′|t=0 + ρ0) (4.15)

is uniquely solvable in the interval of time t ∈ [0, T ] and the solution satisfies
the inequality

Yt(w, q, ρ) � c(|w0|C2+α(F) + |ρ0|C3+α(G) + Y 2
t (w′, q′, ρ′)) (4.16)

The proof can be carried out by successive approximations on the basis
of estimates (3.11), (4.9), (4.10). Note that the orthogonality conditions are
not required in the last two propositions.

The following proposition is an analog of Proposition 2.2 in [24].

Proposition 4.4. For arbitrary number l vectors l, m, M a function
f0 ∈ C1+α(F) and a tangential vector field b0 ∈ C1+α(G), i.e., such that b ·
N = 0, there exist r ∈ C3+α(G) and u ∈ C2+α(F) satisfying the conditions

∫

G

r(y)dS = l,

∫

G

r(y)yidS = li, i = 1, 2, 3, (4.17)

∫

F

u(y)dy = m,

∫

F

u(y) · ηi(y)dy + ω

∫

G

r(y)η3(y) · ηi(y)dS = Mi, i = 1, 2, 3,

∇ · u(x) = f0(x), x ∈ F (4.18)

Π0S(u)N (x) = b0(x), x ∈ G

and the inequality
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|r|C3+α(G) + |u|C2+α(F)

� c(|l| + |l| + |m| + |M | + |f0|C1+α(F) + |b0|C1+α(G)). (4.19)

Proof. We put

r(y) =
lN(y) · y

3|F| +
1

|F| l · N (y), y ∈ G.

This function satisfies (4.17). Next, we construct the vector field u1(y)
satisfying the equations

∇ · u1(y) = f0(y), y ∈ G, u1(y) · N (y) = f1(y), y ∈ G,

with

f1(y) =
N(y) · y

3|F|

∫

F

f0(z)dz +
1

|F|
(∫

F

f0(z)zdz + m
)
· N(y)

and the inequality

|u1|C2+α(F) � c(|f0|C1+α(F) + |f1|C2+α(G)) � c(|f0|C1+α(F) + |m|).
It is clear that∫

G

f1(y)dS =

∫

F

f0(y)dy,

∫

G

f1(y)yidS =

∫

F

f0(y)yidy + mi.

On the other hand,∫

G

f1(y)yidS =

∫

F

∇ · u(y)yidy +

∫

F

u1i(y)dy, i = 1, 2, 3.

Hence ∫

F

u1(y)dy = m.

Now, we argue as in Proposition 2.2 in [24] and construct u2 ∈
C2+α(F) such that

Π0S(u2)N (y) = b0(y) − Π0S(u1)N (y) ≡ b′(y).

We take it in the form u2(y) = rotΦ(y, t) with Φ ∈ C3+α(F) satisfying the
conditions

Φ(y) =
∂Φ

∂N
= 0,

∂2Φ

∂N2
= b′(y) × N(y), y ∈ G,
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and the estimate

|Φ|C3+α(F) � c|b′|C1+α(G).

It is clear that u2(y) = 0 on G and
∫

F

u2(y)dy = 0;

moreover,
∂u2(y)

∂N
= N(y) × ∂2Φ(y, t)

∂N2
, y ∈ G,

which implies N · ∂u2

∂N

∣∣∣
G

= 0 and

Π0S(u2)N =
∂u2

∂N
= N × [b′ × N ] = b′, y ∈ G.

Finally, we set

u3(y) =

3∑

i=1

M̂iroteiA(y)

where A ∈ C∞
0 (F), ∫

F

A(y)dy = 1/2

and

M̂i = Mi −
∫

F

(u1(y) + u2(y)) · ηi(y)dy − ω

∫

G

r(y)η3(y) · ηi(y)dS.

Since rotηi = 2ei, we have

∫

F

u3(y) · ηi(y)dy =

3∑

j=1

M̂jej · ei = M̂i.

We also have the estimate

|u3|C2+α(F) � c

3∑

j=1

|M̂j |.

The above-defined function r(y) and u = u1 + u2 + u3 satisfy all the
necessary requirements. �

Now, we pass to the analysis of the stability of the zero solution of the
problem (4.1)–(4.4).
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Theorem 4.1. If the form∫

G

ρB̂ρdS

is positive definite for all ρ satisfying (3.17), then the problem (4.1)–(4.4)
with the initial data satisfying the smallness condition

M0 ≡ |ρ0|C3+α(G) + |w0|C2+α(F) � ε ≪, 1 (4.19′)

as well as the orthogonality and compatibility conditions (4.3)–(4.6) for t = 0
has a unique solution w(·, t) ∈ C2+α(F) with wt(·, t) ∈ Cα(F), q(·, t) ∈
C1+α(F), ρ(·, t) ∈ C3+α(G) for all t � 0, that satisfies the inequality

yt(v, p, ρ) � e−btM0, b = const > 0 (4.20)

(yt(v, p, ρ) is defined in (3.40)).

Proof. We look for (w, q, ρ) in the form

w = w′ + w′′, q = q′ + q′′, ρ = ρ′ + ρ′′, (4.21)

where (w′, q′, ρ′) is a solution of the linear problem

w′
t + 2ω(e3 × w′) − ν∇2w′ + ∇q′ = 0,

∇ · w′ = 0, y ∈ F ,

Π0S(w′)N = 0, (4.22)

N · T (w′)N + B0ρ
′ = 0,

ρ′t − w′ · N = 0, ρ′(y, 0) = ρ′0(y), y ∈ G,

w′(y, 0) = w′
0(y), y ∈ F ,

and (w′′, p′′, ρ′′) is a solution of the nonlinear problem

w′′
t + 2ω(e3 × w′′) − ν∇2w′′ + ∇q′′ = f(w′ + w′′, q′ + q′′, ρ′ + ρ′′),

∇ · w′′ = f(w′ + w′′, ρ′ + ρ′′) = ∇ · F (w′ + w′′, ρ′ + ρ′′), y ∈ F ,

Π0S(w′′)N = b(w′ + w′′, ρ′ + ρ′′), (4.23)

N · T (w′′)N + B0ρ
′′ = d(w′ + w′′, ρ′ + ρ′′)),

ρ′′t − w′′ · N = g(w′ + w′′, ρ′ + ρ′′), ρ′′(y, 0) = ρ′′0(y), y ∈ G,

w′′(y, 0) = w′′
0 (y), y ∈ F .

We define (ρ′′(y), w′′
0(y)) as in Proposition 4.4 with l = l(0), l = l(0),

m = m(0), M = M(0), f0(x) = f0(x, 0), b0(x) = b(x, 0), where l(0),
l(0), m(0), M(0) are the same functions as in (4.3), (4.4) (with t=0) and
f0(x, t), b(x, t) are the functions in the compatibility conditions (4.6). From
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(4.19) and the definition of l(0), l(0), m(0), M(0), f0(x), b0(x) it follows
that

|ρ′′0 |C3+α(G) + |w′′
0 |C2+α(F) � c1(|ρ0|C3+α(G) + |w0|C2+α(F))

2, (4.24)

The differences

ρ′0(y) = ρ0(y) − ρ′′0(y),

w′
0(y) = w0(y) − w′′

0(y)

satisfy the homogeneous compatibility and orthogonality conditions

∇ · w′
0(y) = 0, y ∈ F , Π0S(w′

0)N
∣∣∣
G

= 0,

∫

G

ρ′0(y)dS = 0,

∫

G

ρ′0(y)yidS = 0, i = 1, 2, 3,

∫

F

w′
0(y)dy = 0, (4.25)

∫

F

w′
0(y) · ηi(y)dy + ω

∫

G

ρ′0(y)η3(y) · ηi(y)dS = 0, i = 1, 2, 3.

Hence the problem (4.22) is solvable in an infinite time interval t > 0 and
the solution satisfies the inequality

yt(w
′, q′, ρ′) � ce−bt(|ρ′0|C3+α(G) + |w′

0|C2+α(F)) � c2e
−btM0,

YT (w′, q′, ρ′) � c2M0. (4.26)

We fix T in such a way that

c2e
−bT �

1

3

and require

c2M0 � ε3(T ), c1M
2
0 � ε2.

Then

|ρ′′0 |C3+α(G) + |w′′
0 |C2+α(F) � ε2, YT (w′, q′, ρ′) � ε3,

and we can use Proposition 4.3. By this proposition, the problem (4.23) is
solvable in the time interval (0, T ) and, by (4.16), (4.24), and (4.26),

YT (w′′, q′′, ρ′′) � c3M
2
0 ,

which implies

yT (w, q, ρ) �
1

3
M0 + c3M

2
0 .
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Now, if we subject ε to one more restriction

c3ε �
1

3
,

then

yT (w, q, ρ) �
2

3
M0.

Since (w(x, t), ρ(x, t)) satisfy the conditions (4.3), (4.4) with t = T , the
equations

∇ · w(x, T ) = f(x, T ), Π0S(w(x, T ))N(x) = b(x, T, ) (4.27)

and the inequality

|ρ(·, T )|C3+α(G) + |w(·, T )|C2+α(F) �
2

3
ε,

we can repeat the above procedure in the interval t ∈ [T, 2T ] etc. and show
at the end that

ykT (w, q, ρ) �
(2

3

)k

M0, k = 1, . . . ,

which implies (4.20). �

Let us consider the case of the instability of the zero solution of the
problem (4.1)–(4.4).

Theorem 4.2. Let (3.6) be satisfied, and let the form
∫

G

ρB̂ρdS

take negative values for some ρ satisfying (3.17). Then there exist initial
data (w0, ρ0) with arbitrarily small norm (4.11) such that the corresponding
solution of (4.1)–(4.4) leaves sooner or later a certain neighborhood of zero,
i.e., for some t > 0, ε > 0

|ρ(·, t)|C3+α(G) + |w(·, t)|C2+α(F) � ε.

Proof. We again represent the solution in the form (4.21) and con-
sider the problem (4.22), (4.25) as the Cauchy problem (3.19) with the
initial condition

ϕ|t=0 = ϕ′ = (w′
0, ρ

′
0)

T .

We introduce the space H = C2+α(F) × C3+α(G) of elements ϕ = (w, ρ)
with the norm
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|ϕ|H = |w|C2+α(F) + |ρ|C3+α(G)

and the subspace H0 ⊂ H whose elements satisfy the compatibility and
orthogonality conditions (4.25). Equation

dϕ

dt
= Aϕ

has a finite-dimensional set of solutions (w′, ρ′) ∈ H0 growing exponentially
as t → ∞. For arbitrary fixed T > 0 the spectrum of the operator V = eTA,
σ(V ), consists of two parts, σ1(V ) and σ2(V ), where σ1(V ) is a finite set of
eigenvalues μ ∈ C with |μ| > 1, whereas the eigenvalues μ ∈ σ2(V ) satisfy
|μ| � 1. By the Riesz formula, V can be represented in the form V = V1+V2

where

Vk =
1

2πi

∫

γk

μ(μI − V )−1dμ, k = 1, 2,

and γk are nonintersecting contours enclosing σk(V ). Replacing V1 with

V n
1 =

1

2πi

∫

γ1

μn(μI − V )−1dμ,

if necessary (i.e., choosing T large enough), it is possible to satisfy the
inequalities

|V1ψ|H � b1|ψ|H, b1 > 1 ∀ψ ∈ V1,

‖V2‖H→H � b2 < b1.

With the above-defined decomposition of V we can associate the decompo-
sition of the space H0 into the direct sum

H0 = H1 + H2.

The operators

Pk =
1

2πi

∫

γk

(μI − V )−1dμ, k = 1, 2,

are the projections onto Hk, and the following relations hold:

P1P2 = P2P1 = 0, P 2
k = Pk,

Vk = VkPk = PkVk, P1V2 = P2V1 = 0.
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We assume that the solution of the problem (4.1)–(4.4) is defined for
all t > 0 and satisfies the inequality

|ϕ|H � cε � min(ε2(T ), ε3(T )) ∀t � 0 (4.28)

with small ε > 0 subjected to the restrictions given below, and we show that
this is not possible if the initial data ϕ0 �= 0 satisfy the additional constraint

|P1Rϕ0|H � 2|P2Qϕ0|H, (4.29)

where Rϕ0 = (w′
0, ρ

′
0)

T . From (2.24) and (4.29) it follows that

|ϕ0 − Rϕ0|H � c|ϕ0|2H,

|ϕ0|H � |P1Rϕ0|H + |P2Rϕ|H + |ϕ0 − Rϕ0|H

�
3

2
|P1Rϕ0|H + c1|ϕ0|2H �

3

2
|P1Rϕ0|H + c1ε|ϕ0|H;

(4.30)

and, if

c1ε < 1/2, (4.31)

then

|ϕ0|H � 3|P1Rϕ0|H. (4.32)

Let W and W ′ be operators making correspond to ϕ0 the solutions of
the problems (4.1)–(4.4) and (4.23) respectively at the moment t = T :

(w, ρ)T |t=T = Wϕ0, (w′′, ρ′′)T |t=T = W ′ϕ0.

It is clear that

Wϕ0 = V Rϕ0 + W ′ϕ0.

We show that if ε is sufficiently small, then ϕ1 ≡ Wϕ0 also satisfies
(4.29). Since

P1RWϕ0 = P1(R − I)Wϕ0 + P1V1Rϕ0 + P1RW ′ϕ0

= V1P1Rϕ0 + P1(R − I)Wϕ0 + P1RW ′ϕ0

and

P2RWϕ0 = V2P2Rϕ0 + P2(R − I)Wϕ0 + P2RW ′ϕ0,

we have, by (4.29) and (4.32),

|P1RWϕ0|H − 2|P2RWϕ0|H
� b1|P1Rϕ0|H − 2b2|P2Rϕ0|H − |P1RW ′ϕ0|H − 2|P2RW ′ϕ0|H
− |P1(R − I)Wϕ0|H − 2|P2(R − I)Wϕ0|H
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� (b1 − b2)|P1Rϕ0|H − c2|ϕ0|2H � (b1 − b2 − 3c2ε)|P1Rϕ0|H � 0

if

b1 − b2 − 3c2ε > 0. (4.33)

Finally, we estimate P1RWϕ0 from below, again with the help of (4.29),
(4.32):

|P1RWϕ0|H � |V1P1Rϕ0|H − |P1RW ′ϕ0|H − |P1(R − I)Wϕ0|H
� b1|P1Rϕ0|H − c3|ϕ0|2H � (b1 − 3c3ε)|P1Rϕ0|H.

We assume that

b′1 = b1 − 3c3ε > 1. (4.34)

Then

|P1RWϕ0|H � b′1|P1Rϕ0|H.

Since ϕ1 = (w(x, T ), ρ(x, T )) satisfies the conditions (4.3), (4.4), (4.27),
(4.29) for t = T , we can repeat our argument for the time interval (T, 2T )
and then for t ∈ (kT, (k + 1)T ), k > 0. Then we arrive at the follow-
ing conclusion: If (4.28) holds with ε satisfying (4.31), (4.33), (4.34), then
ϕk = ϕ|t=kT , k � 1, satisfy (4.29) and

|P1Rϕk|H � b′1|P1Rϕk−1|H,

which implies

|P1Rϕk|H � b′k1 |P1Rϕ0|H.

For large k this contradicts (4.28), which proves the theorem. �

5. Case of Nonsymmetric F

If F does not possess the property of axial symmetry with respect to the
x3-axis, then Equation (1.3) defines a one-parameter family of equilibrium
figures, Fθ, obtained by rotation of the angle θ of one of them, F0, about
the x3-axis. It is clear that θ ∈ R and Fθ+2π = Fθ. The condition δ2R > 0
cannot hold for all ρ satisfying (2.36) because B(η3 ·N ) = 0 and η3 ·N �= 0
for nonsymmetric F . In this case, (2.36) should be supplemented with one
more condition

∫

G

ρ(y)η3 · N (y)dS = 0, (5.1)
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and the main result consists in the following: The regime of rigid rotation,
where (v, p) are given by (1.2) and Ωt = Gωt+ϕ, is stable if the form (3.3)
is positive definite for all ρ satisfying (2.36), (5.1) and unstable if the form
(3.3) can take negative values for some ρ satisfying the above conditions.

If the surface Γt is close to a certain Gθ, then it is also close to Gθ′ with
θ′−θ small, and the problem arises how to choose an optimal representation
of Γt in the form (2.14), i.e.,

Γt = {x = y + N (y)ρθ(y, t), y ∈ Gθ}. (5.2)

We make such a choice minimizing the integral

∫

G

ρ2
θ(z)dS (5.3)

among all the possible representations (5.2). The following proposition is
proved in [22].

Proposition 5.1. Let Γt be represented by the equation

Γt = {x = y + N (y)ρ(y, t), y ∈ G0}, (5.4)

with ρ satisfying

|ρ(·, t)|C1(G0) � δ ≪ 1. (5.5)

Then there exists a function θ(t) such that Γt can be given by (5.2) with
θ = θ(t) and the integral (5.3) takes a minimal value. The function θ(t) is
defined for all t for which Γt stays in a certain δ1-neighborhood U of G0 and

|θt(t)| � c

∫

Gθ(t)

∣∣∣∂ρθ(y, t)

∂t

∣∣∣dS. (5.6)

We give the main ideas of the proof. Let us consider a fixed closed
surface Γ given by the equation

x = y + N (y)ρ(y)

and the rotated surface Γ(λ) = Z(λ)Γ ,where Z is the matrix (2.3). If Γ(λ)
is contained in U (which is the case for small λ), then it is prescribed by a
similar equation

Γ(λ) = {z + N (z)ρ(z, λ) ≡ X(z, λ), z ∈ G0 ≡ G} (5.7)
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where X(z, λ) = Z(λ)x and x = y + N(y)ρ(y) ∈ Γ. We look for the value
λ0 of λ such that the function

f(λ) =

∫

G

ρ(z, λ)ρλ(z, λ)dS

vanishes for λ = λ0: f(λ0) = 0. For the derivative ρλ the formula

∂ρ(z, λ)

∂λ
= η3(z) · N(z) + h(z, ρ(z, λ)) · ∇Gρ(z, λ) (5.8)

with

h(z, ρ) = −η3(X(z, λ)) − N (z)(N(z) · η3(X(z, λ)))

Λ(z, ρ)
(1 − ρH(z))

+ ρ(z, λ)
((η3(X(z, λ)) · ∇G)N (z)

Λ(z, ρ)

was obtained in [20, 22]. This allows us to conclude that for small ρ the
derivative

fλ(λ) =

∫

G

(ρ2
λ(z, λ) + ρ(z, λ)ρλλ(z, λ))dS

is bounded from below:

fλ(λ) �
1

2

∫

G

(η3 · N (z))2dS > 0.

Since

|f(0)| =

∣∣∣∣
∫

G

ρρλ|λ=0dS

∣∣∣∣ � c‖ρ‖L1(G),

the equation f(λ) = 0 has a unique solution λ = λ0 in a certain interval
|λ| � λ1, if ρ is small enough. Hence the functional

I(λ) =

∫

G

ρ2(z, λ)dS

attains the unique minimum in this interval.
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Let us consider one-parameter family of surfaces Γt given by (5.4) with
small ρ,and the family Γt(λ) = Z(λ)Γt given by (5.7) with ρ = ρ(z, t, λ).
There exists the value λ0 ≡ λ(t) such that

f(t, λ) =

∫

G

ρ(z, t, λ)ρλ(z, t, λ)dS = 0 (5.9)

for λ = λ(t). Differentiating (5.9) we obtain ft + λtfλ = 0, i.e.,

λt(t) = − ft(λ, t)

fλ(λ, t)

∣∣∣
λ=λ(t)

= −

∫

G

(ρtρλ + ρρλt)dS

∫

G

(ρ2
λ + ρρλλ)dS

∣∣∣∣∣∣∣∣∣∣
λ=λ(t)

(5.10)

where the derivatives ρt and ρλt are computed with λ fixed. The angle
θ(t) mentioned in the statement of the proposition is related to λ by θ(t) =
−λ(t), so (5.6) follows from (5.10), (5.8).

Now, we consider the free boundary problem (2.9)–(2.13) with the
initial data satisfying the assumptions of Theorem 4.1 and, in addition, the
condition (5.9), i.e.,

∫

G0

ρ0(y)(η3 · N (y) + h(y, ρ0(y)) · ∇Gρ0(y)dS = 0. (5.11)

This problem has a unique solution defined on some finite time interval
(0, T ). Let λ(t) be the function constructed in Proposition 5.1 for the family
Γt. We make the change of variables

z = Z(λ(t))x,

which maps Ωt onto Ω̃t = Z(λ(t))Ωt and Γt onto Γ̃t = ∂Ω̃t, and we introduce
the functions

w̃(z, t) = Z(λ(t))w(Z−1(λ(t))z, t),

q̃(z, t) = q(Z−1(λ(t))z, t).

An elementary calculation shows that w̃ and q̃ satisfy the relations
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w̃t + (w̃ · ∇)w̃ + 2ω(e3 × w̃) − λt(t)(e3 × w̃)

+ λt(t)(η3(z) · ∇)w̃ − ν∇2w̃ + ∇q̃ = 0,

∇ · w̃ = 0, z ∈ Ω̃t, t > 0,

T (w̃, q̃)ñ = (σH̃(z) +
ω2

2
|z′|2 + κŨ(z, t) + p0)ñ, (5.12)

Vn = w̃ · ñ + λt(t)η3(z) · ñ(z), z ∈ Γ̃t

w̃(z, 0) = v0(z), z ∈ Ω0.

Here, ñ is the exterior normal to Γ̃t, H̃(z) is the doubled mean curvature

of Γ̃t and

Ũ(y, t) =

∫

Ωt

|y − z|−1dy.

The surface Γ̃t is given by

z = y + N(y)ρ̃(y, t), y ∈ G ≡ G0 (5.13)

where ρ̃(y, t) = ρ(y, t, λ(t)). The orthogonality and compatibility conditions
remain unchanged. By the definition of λ(t), we have

∫

G0

ρ̃(z, t)(η3 · N (z) + h(z, ρ̃(z, t)) · ∇G ρ̃(z, t)dS = 0. (5.14)

The time derivative of λ(t) is expressed by formula (5.10), where ρt =
ρt(z, t, λ(t)) and ρtλ are calculated with λ fixed. In particular, due to (2.22),
we have

ρ̃t(z, t) =
w̃(z, t) · L̂T N(z)

N (z) · L̂T N(z)
, z ∈ G. (5.15)

The corresponding linearized problem has the form

vt + 2ω(e3 × v) − ν∇2v + ∇p = 0,

∇ · v = 0, x ∈ F ,

T (v, p)N + NB0ρ = 0, (5.16)

ρt = v · N − h0(x)

∫

G

h0(z)v(z) · N(z)dS, x ∈ G

ρ(x, 0) = ρ0(x), x ∈ G, v(x, 0) = v0(x), x ∈ F ,
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∫

G

ρdS = 0,

∫

G

ρxidS = 0, i = 1, 2, 3,

∫

F

vdS = 0,

∫

F

v · ηidS + ω

∫

G

ρη3 · ηidS = 0, i = 1, 2, 3, (5.17)

∫

G

ρ(x, t)h0(x)dS = 0, (5.18)

where

h0(x) =
η3(x) · N(x)

‖η3 · N‖L2(G)
.

It coincides with (2.33)–(2.37) for symmetric F . Equation (5.18) is obtained
by the linearization of (5.14). If (5.18) is satisfied at t = 0 for ρ0, then it
holds for all t > 0.

Theorem 5.1. Assume that the form∫

G

ρB̂ρdS

is positive definite for all ρ satisfying the conditions (2.36), (5.1). Then
the problem (5.12) with the initial data satisfying the smallness condition
(4.19′), the compatibility and orthogonality conditions (4.3)–(4.6), and the
condition (5.11) has a unique solution w̃(·, t) ∈ C2+α(F) with w̃t(·, t) ∈
Cα(F), q̃(·, t) ∈ C1+α(F), ρ̃(·, t) ∈ C3+α(G) for all t � 0 that satisfies the
inequality

yt(w̃, q̃, ρ̃) � e−btM0, b = const > 0. (5.19)

The surface Γt is given by Equation (5.13). The function θ(t) = −λ(t) is
defined for all t > 0 and satisfies the inequality (5.6) with ρ = ρ̃.

This theorem is proved in the same way as Theorem 4.1. We make the
transformation (2.16) (with ρ replaced by ρ̃) and write the problem (5.12)
in the form similar to (4.1), namely,

wt + 2ω(e3 × w) − ν∇2w + ∇q = f ,

∇ · w = f = ∇ · F , y ∈ F ,

Π0S(w)N = b,
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N · T (w, q)N + B0ρ = d, (5.20)

ρt = w · N − h0(x)

∫

G

h0(z)w · NdS + g,

ρ(y, 0) = ρ0(y), y ∈ G,

w(y, 0) = w0(eρ(y)), y ∈ F

(as above, we denote by w, q, ρ the transformed functions). The functions
f , f , F , b, d, and g have the form

f = ρ∗t (L−1N∗ · ∇)w − (L−1w · ∇)w + ν(∇̃2w −∇2w)

+ (∇− ∇̃)q + λt(t)(e3 × w) − λt(t)(η3(eρ(z)) · ∇̃)w,

f = (I − L̂T )∇ · w, F = (I − L̂)w,

b = Π0(Π0S(w)N − ΠS̃(w)L̂T N), (5.21)

d = ν
(
N · S(w)N − |L̂T N |−2L̂T N · S̃(w)L̂T N )

+
(
σ(H(x) −H(y) − σδ((H(x) −H(y))) +

ω2

2
(|x′|2 − |y′|2

− δ(|x′|2 − |y′|2)
)

+ κ(U(x, t) − U(y) − δ(U(x, t) − U(y))))
∣∣∣
x=eρ(y)

,

g = − Λ−1(y, ρ)

3∑

j=1

wj

( ∂ρ

∂yj
(1 − ρH(y)) + ρ

n∑

m=1

∂ρ

∂ym

∂Nm

∂yj

)

+ λt(t)η3(eρ(z)) · ñ + h0(z)

∫

G

w · Nh0dS.

The orthogonality conditions have the same form (4.3)–(4.5), but, in addi-
tion, we have

∫

G

ρh0dS =

∫

G

ρ0(h0 − ρ0λ)dS ≡ l0(t)

where ρ0λ is expressed by (5.8). The functions (5.21) satisfy the inequalities
(4.9) and (4.10).
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Propositions 4.2 and 4.3 remain true for the nonlinear problem (5.20),
(5.21). Proposition 4.4 should be slightly modified because, in addition to
(4.17) and (4.18), we should guarantee

∫

G

rh0dS = l0(0) ≡ l0.

The function r should be taken in the form

r(y) =
lN(y) · y

3|F| +
1

|F| l · N(y) + l′h0(y), y ∈ G

with

l′ = l0(0) −
∫

G

h0(y)
( lN(y) · y

3|F| +
1

|F| l · N(y)
)
dS.

The rest of the proof of this proposition is unchanged.

We look for the solution of the problem (5.20), (5.21) in the form
(4.21) where (w′, q′, ρ′) is a solution to a linear problem

w′
t + 2ω(e3 × w′) − ν∇2w′ + ∇q′ = 0,

∇ · w′ = 0, y ∈ F , (5.22)

Π0S(w′)N = 0,

N · T (w′)N + B0ρ
′ = 0,

ρ′t = w′ · N − h0

∫

G

w′ · Nh0dS,

ρ′(y, 0) = ρ′0(y), y ∈ G,

w′(y, 0) = w′
0(y), y ∈ F ,

and (w′′, p′′, ρ′′) is a solution of the nonlinear problem

w′′
t + 2ω(e3 × w′′) − ν∇2w′′ + ∇q′′ = f(w′ + w′′, q′ + q′′, ρ′ + ρ′′),

∇ · w′′ = f(w′ + w′′, ρ′ + ρ′′) = ∇ · F (w′ + w′′, ρ′ + ρ′′), y ∈ F ,

Π0S(w′′)N = b(w′ + w′′, ρ′ + ρ′′), (5.23)

N · T (w′′)N + B0ρ
′′ = d(w′ + w′′, ρ′ + ρ′′)),
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ρ′′t − w′′ · N +

∫

G

w′′ · Nh0dS = g(w′ + w′′, ρ′ + ρ′′),

ρ′′(y, 0) = ρ′′0(y), y ∈ G,

w′′(y, 0) = w′′
0 (y), y ∈ F .

We define (ρ′′(y), w′′
0(y)) as in a modified Proposition 4.4 with l = l(0),

l = l(0), m = m(0), M = M (0), f0(x) = f0(x, 0), b0(x) = b(x, 0).
l0 = l0(0). It is clear that the differences

ρ′0(y) = ρ0(y) − ρ′′0(y),

w′
0(y) = w0(y) − w′′

0(y)

satisfy the homogeneous compatibility and orthogonality conditions

∇ · w′
0(y) = 0, y ∈ F , Π0S(w′

0)N
∣∣∣
G

= 0,

∫

G

ρ′0(y)dS = 0,

∫

G

ρ′0(y)yidS = 0, i = 1, 2, 3,

∫

G

ρ′h0dS = 0,

∫

F

w′
0(y)dy = 0,

∫

F

w′
0(y) · ηi(y)dy + ω

∫

G

ρ′0(y)η3(y) · ηi(y)dS = 0, i = 1, 2, 3.

As in Section 3, it can be verified that, under the above orthogonality con-
ditions, the problem (5.22) is solvable in the infinite time interval t > 0 and
the solution satisfies (4.26). This allows us to obtain the estimate (5.19)
exactly in the same way as it was done in Section 4. From (5.19) it follows
that the solution (v, p, Ωt) of the problem (1.1) tends to the periodic solu-
tion (V , P,Gtω+ϕ), where ϕ = limt→∞ θ(t). The existence of this limit is a
consequence of (5.6) and (5.19).

Let us formulate an analog of Theorem 4.2.

Theorem 5.2. Assume that F satisfies the condition

min
|θ|�π

∫

F

((x1 cos θ + x2 sin θ)2 − x2
3)dx > 0, (5.24)
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and let the form ∫

G

ρB̂ρdS

take negative values for some ρ satisfying (3.17), (5.1). Then there exist ini-
tial data (w0, ρ0) with arbitrarily small norm M0 such that the correspond-
ing solution of (5.20), (5.21) leaves sooner or later a certain neighborhood
of zero, i.e., for some t > 0, ε > 0

|ρ̃(·, t)|C3+α(G) + |w(·, t)|C2+α(F) � ε. (5.25)

The condition (5.24) replaces (3.6) because, if F is nonsymmetric and
satisfies (2.4), then, instead of (3.5), we have

∫

G

B(η1 · N )η1 · NdS = ω2S̃2,

∫

G

B(η2 · N )η2 · NdS = ω2S̃1,

where

S̃j =

∫

F

(x2
j − x2

3)dx, j = 1, 2,

and (3.7) takes the form

ρ(x) =
η1(x) · N(x)

S̃2

∫

G

ρ(x)x2x3dS − η2(x) · N (x)

S̃1

∫

G

ρ(x)x1x3dS + ρ1(x)

with ρ1 = Qρ satisfying (3.8). Assertion 5 in Section 3 remains true, as
well as the remark after the proof of this assertion. Theorem 5.2 is proved
by the same arguments as Theorem 4.2, i.e., by representing the solution of
the problem (5.20), (5.21) in the form (4.21).

The inequality (5.25) means that either w does not tend to zero as
t → ∞ or Γt stays away from Gθ(t). Since the integral (5.3) attains the
minimal value for θ = θ(t), this means that Ωt stays away from ∪θGθ, i.e.,
the periodic solution (V , P,Gtω+ϕ) of the problem (1.1) is unstable.
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6. Multi-Dimensional Case

In this section, we discuss the extension of the above results to the case of
arbitrary space dimension n > 3. We consider the evolution free boundary
problem (1.1), where we set κ = 0 for simplicity:

vt + (v · ∇)v − ν∇2v + ∇p = 0,

∇ · v = 0, x ∈ Ωt, t > 0,

v(x, 0) = v0(x), x ∈ Ω0, (6.1)

T (v, p)n = σH(x, t)n,

Vn = v · n, x ∈ Γt ≡ ∂Ωt.

It is necessary to find a bounded domain Ωt ∈ Rn, as well as v(x, t) =
(v1, . . . , vn) and p(x, t) given in Ωt and satisfying (6.1). By H(x, t) we mean
the n−1 times mean curvature of G. All other functions in (6.1) are defined
in the same way as in the 3-dimensional case in Section 1.

We observe that the solution of the problem (6.1) is subjected to the
same “conservation laws” as in the 3-dimensional case, namely,

|Ωt| = |Ω0|,
∫

Ωt

v(x, t)dx =

∫

Ω0

v0(x)dx, (6.2)

∫

Ωt

v(x, t) · ηij(x)dx =

∫

Ω0

v0(x) · ηij(x)dx ≡ mij , i �= j, (6.3)

where ηij(x) = eixj −ejxi and ej is a unit vector in the direction of the xj-
axis. Indeed, (6.2) is easily obtained by the integration of the first equation
in (6.1) over Ωt, which leads to

0 =
d

dt

∫

Ωt

v(x, t)dx − σ

∫

Γt

H(x, t)ndS =
d

dt

∫

Ωt

v(x, t)dx,

because H(x, t)n = ∆Γtx and the surface integral vanishes. Equations (6.3)
are obtained in a similar way.

We would like to study the stability of solutions corresponding to a
rigid motion of the liquid. We say that a motion is rigid if the vector field
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of velocity V given as a function of the Eulerian coordinates x satisfies the
relations

∂Vi(x)

∂xj
+

∂Vj(x)

∂xi
= 0, i, j = 1, . . . , n.

It is easily seen that this is the case if and only if

V (x) = Cx + h, (6.4)

where C is an antisymmetric matrix. We assume that h = 0 and the entries
Cij of the matrix C are numbers. The functions

V (x) = Cx, P (x) =
1

2
|Cx|2 + p0, p0 = const, (6.5)

satisfy the Navier–Stokes equations. Substituting V and P into the bound-
ary conditions, we obtain the equation for the equilibrium figure F :

σH +
1

2
|Cx|2 + p0 = 0, x ∈ G ≡ ∂F . (6.6)

Without loss of generality, we can assume that the matrix C has the canon-
ical form

C = diag
(
C1, . . . , Cl, O

)
, (6.7)

where l � n/2, O is an n − 2l × n − 2l matrix whose entries are zeros and
Ck are 2 × 2 antisymmetric matrices of the form

Ck =

(
0 −ωk

ωk 0

)
. (6.8)

In particular, if n = 3, then l = 1 and V is the velocity of the liquid
rotating as a rigid body about the x3-axis with the angular velocity ω1. In
the n-dimensional case, there are l “angular velocities” ωk.

Passing to the Lagrangean coordinates, it is easy to calculate the tra-
jectories of particles whose velocity regarded a function of the Eulerian
coordinates is V (x). If x(0) = ξ, then

xk(t) = ξk cosωkt − ξk+1 sin ωkt,

xk+1(t) = ξk sin ωkt + ξk+1 cosωkt, k = 1, . . . , l,

xm = ξm, m = l + 1, . . . , n,

i.e., the projection of the trajectory onto the xk, xk+1-plane is a circle cen-
tered at the origin, along which the motion proceeds with a constant velocity
proportional to ωk. This complicated motion is, in general, nonperiodic.
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We say that a figure F is symmetric if it is invariant under the trans-
formation

x = Zy,

where Z = diag(Z1, . . . , Zl, In−2l), In−2l is the unit n − 2l × n − 2l matrix
and

Zk =

(
cosϕk − sinϕk

sinϕk cosϕk

)
.

It is easy to see that the velocity of liquid particles located at the
boundary G of a symmetric F is tangential to G, i.e.,

Cx · N(x)|G = 0,

This means that the functions (6.4) and (6.5) given in a symmetric F rep-
resent a stationary solution of (6.1). We consider here only symmetric F .

By symmetry, ∫

F

xjdx = 0, j = 1, . . . , 2l,

∫

F

xjxqdx = 0, j = 1, . . . , 2l, q = 1, . . . , n, q �= j

(6.9)

(some of these relations can be also deduced from Equation (6.6) in the same
way as above in the three-dimensional case). Without loss of generality, we
can assume that ∫

F

xjdx = 0, j = 1, . . . , n. (6.10)

If the matrix C has the canonical form (6.7) and the figure is symmetric,
then the corresponding matrix of momenta

mij =

∫

F

Cx · ηij(x)dx

also has the canonical form. Indeed, since

Cx = −
l∑

q=1

ωqηq(x),

where ηq(x) = η2q−1,2q(x), it is easy to verify, using (6.9), that mij can be
different from zero if and only if i = 2k − 1, j = 2k, k � l, in which case

m2k−1,2k = −ωk‖ηk‖2
L2(F).
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We do not consider the problem of existence and uniqueness of equilib-
rium figures, as well as their geometry, but we can prove the existence of a
symmertic equilibrium figure of a given volume in the case of a slow motion
(i.e., with small prescribed momenta m2k−1,2k). For n = 3 this result was
obtained in [13].

Let us return to the evolution problem (6.1). As above, we assume
that F is given and

|Ωt| = |Ω0| = |F|,
∫

Ωt

xjdx = 0, j = 1, . . . , n, (6.11)

∫

Ωt

v(x, t)dx =

∫

Ω0

v0(x)dx = 0,

∫

Ωt

v(x, t) · ηij(x)dx =

∫

Ω0

v0(x) · ηij(x)dx =

∫

F

Cx · ηij(x)dx. (6.12)

We work with the evolution problem for the perturbations

vr = v − V , pr = p − P

written in the coordinate system rigidly connected with the liquid whose
velocity is given by (6.5). We make the change of variables

x = Z(t)y

and the corresponding transformation of the unknown functions

w(y, t) = Z−1(t)vr(Z(t)y, t), q(y, t) = pr(Z(t)y, t),

where Z(t) = diag(Z1(t), . . . , Zl(t), In−2l), In−2l is the unit n − 2l × n − 2l
matrix, and

Zk(t) =

(
cosωkt − sin ωkt
sinωkt cosωkt

)
.

This leads to a problem similar to (2.9)–(2.11), namely,

wt + (w · ∇)w + 2Cw − ν∇2w + ∇q = 0,

∇ · w = 0, y ∈ Ωt, t > 0,

T (w, q)n =
(
σH +

1

2
|Cy|2 + p0

)
n, (6.13)

Vn = w · n, y ∈ Γt,
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w(y, 0) = v0(y), y ∈ Ω0,

in a transformed domain denoted again by Ωt. The conditions (6.11), (6.12)
take the form

|Ωt| = |F|,
∫

Ωt

xjdx = 0, j = 1, . . . , n, (6.14)

∫

Ωt

w(x, t)dx = 0,

∫

Ωt

w(x, t) · ηij(x)dx +

∫

Ωt

Cx · ηij(x)dx =

∫

F

Cx · ηij(x)dx. (6.15)

Finally, we assume that Γt is close to G and is given by Equation
(2.14). We map Ωt onto F by the mapping (2.16) and arrive at the system

∂

∂t
w − ∂ρ∗

∂t
(L−1N∗ · ∇)w + (L−1w · ∇)w

+ 2Cw − ν∇̃ · ∇̃w + ∇̃q = 0,

∇y · L̂w = 0, y ∈ F , (6.16)

Π0ΠS̃(w(y, t))L̂T N = 0,

−q(y, t) + νn · S̃(w)n = (σ(H(x) −H(y)) +
1

2
(|Cx|2 − |Cy|2))

∣∣
x=eρ(y)

,

ρt(y, t) =
w(y, t) · L̂T N(y)

N(y) · L̂T N(y)
, y ∈ G,

w(y, 0) = w0(eρ0(y)), y ∈ F ,

ρ(y, 0) = ρ0(y) y ∈ G,

where L, L−1, L̂, ∇̃, S̃(w), ρ∗, N∗ are defined as above in the 3-dimensional
case. In terms of ρ the restrictions (6.12) can be written in the form (2.26),
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where

ϕ(y, ρ) =

1∫

0

ρΛ(y, sρ)ds,

ψ(y, ρ) =

1∫

0

(yi + sNi(y)ρ(y))ρΛ(y, sρ)ds,

Λ(y, ρ) = N (y) · L̂N (y)

(see [17, formula (2.9)]). Formulas (2.24) and (2.27) do not hold any more,

but it can be verified by analyzing the matrix L̂ that Λ, ϕ, and ψ are
independent of the first order derivatives of ρ. The conditions (6.15) are
transformed into ∫

F

w(y, t)Ldy = 0,

∫

F

Lw(y, t) · ηij(eρ(y))dy = −
∫

F

LCeρ(y) · ηij(eρ(y))dy

+

∫

F

Cy · ηij(y)dy, i = 1, 2, . . . , n.

(6.17)

The corresponding linear problem reads

vt + 2Cv − ν∇2v + ∇p = 0, ∇ · v = 0, x ∈ F ,

Π0S(v)N = 0,

N · T (v, p)N + B0ρ = 0, (6.18)

ρt = v · N , ρ(x, 0) = ρ0(x), x ∈ G,

v(x, 0) = v0(x), x ∈ F ,

where

−B0ρ = σδ(H(x) −H(y)) +
1

2
δ(|Cx|2 − |Cy|2) = σ∆Gρ + b(y)ρ,

b(y) = σc2(y) + Cy · CN(y)

and c2(y) is the sum of the squares of principal curvatures of G at y.

The linearized orthogonality conditions have the form
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∫

G

ρ(y, t)dS = 0,

∫

G

ρ(y, t)yidS = 0, i = 1, 2, . . . , n, (6.19)

∫

F

v(x, t)dx = 0,

∫

F

v(x, t) · ηij(x)dx +

∫

G

ρ(x, t)Cx · ηij(x)dS = 0, i = 1, 2, . . . , n. (6.20)

Hence

v(x, t) = v⊥(x, t) +
∑

k<m

dkm(ρ)ηkm(x), (6.21)

where v⊥ is orthogonal to all vector fields η of the rigid motion. We separate
out terms with ηkm = η1, . . . ,ηl, where ηq = η2q−1,2q and write (6.21) in
the form

v(x, t) = v⊥(x, t) + D′(ρ) + D′′(ρ),

where

D′(ρ) =

l∑

q=1

dq(ρ)ηq(x)

and

D′′ =
∑

k<m

′′
dkm(ρ)ηkm

is the sum of all other terms in (6.21). By (6.9), ηq are orthogonal in L2(F)

to all other ηkm. Hence D′ and D′′ are orthogonal to each other and to
v⊥. It is easy to see that

dq(ρ) = ‖ηq‖−2
L2(F)

∫

F

v(x, t) · ηq(x)dx

= −‖ηq‖−2
L2(F)

∫

G

ρ(x, t)Cx · ηq(x)dS

= ‖ηq‖−2
L2(F)ωq

∫

G

ρ(x, t)|ηq(x)|2dS. (6.22)

Other coefficients dkm(ρ) can be found from the linear system
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∑

k<m

′′
dkm(ρ)

∫

F

ηkm(x) · ηij(x)dx =

∫

F

v(x, t) · ηij(x)dx

= −
∫

G

ρ(x)Cx · ηij(x)dS.

Since ηkm are linearly independent, the matrix with entries

Akm,ij =

∫

F

ηkm(x) · ηij(x)dx

is nonsingular; moreover, it is positive definite. We have

dkm(ρ) = −
∑

i<j

′′
Akm,ij

∫

G

ρ(x)Cx · ηij(x)dS

where Akm,ij are the entries of the inverse matrix. The form

Q(ρ) =
∑

k<m,i<j

′′
Akm,ij

∫

G

ρ(x)Cx · ηkm(x)dS

∫

G

ρ(x)Cx · ηij(x)dS (6.22′)

is nonnegative.

The operators B and B̂ are defined by the formulas

Bρ = B0ρ +

l∑

q=1

dq(ρ)ωq|ηq(x)|2

= B0ρ +

l∑

q=1

ω2
q |ηq(x)|2‖ηq‖−2

L2(F)

∫

G

ρ(y)|ηq(y)|2dS

and

B̂ρ = Bρ − 1

|G|

∫

G

BρdS.

For the problem (6.18) and the corresponding nonhomogeneous prob-
lem Theorem 3.1 and the estimates (3.11), (3.15) hold. Our next objective
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is to establish the exponential decay of the solution of the problem (6.18)–
(6.20) in the case, where the form

∫

G

ρB̂ρdS (6.23)

is positive. We achieve this by constructing a special function, the so-called
“generalized energy” E(t) playing the role of the Lyapunov function. The
basic idea is due to Padula [9]. At first, we prove the following n-dimensional
analog of Lemma 4.1 in [21].

Proposition 6.1. Let ρ(x, t) be a function in W
1/2
2 (G) for all t ∈

(0, T ) possessing the derivative ρ2 ∈ L2(G) and satisfying the condition
∫

G

ρ(x, t)dS = 0.

Then there exists a solenoidal vector field W (x, t), x ∈ F , orthogonal to all
rigid rotations ηkm:

∫

F

W (x, t) · ηkm(x)dx = 0, (6.24)

and satisfying the boundary condition

W (x, t) · N(x) = ρ(x, t), x ∈ G (6.25)

and the inequalities

‖W (·, t)‖W 1
2 (F) � c‖ρ(·, t)‖

W
1/2
2 (G)

, (6.26)

‖W (·, t)‖L2(F) � c‖ρ(·, t)‖L2(G), (6.27)

‖W t(·, t)‖L2(F) � c‖ρt(·, t)‖L2(G). (6.28)

Proof. We find W in the form

W (x, t) = W 0(x, t) + W 1(x, t)

where W 0 is a solenoidal vector field satisfying (6.25)–(6.28) and W 1 is a
correcting term responsible for the condition (6.24). The construction of
W 0 is a quite standard problem. The vector field W 1 can be taken in the
form



Stability of Equilibrium Figures 249

W 1(x, t) =
∑

i<j

(
ei

∂

∂xj
− ej

∂

∂xi

)
cij(t)A(x),

where

cij(t) =

∫

F

W 0(x, t) · ηij(x)dx

and A(x) is a smooth function with compact support in F such that
∫

F

A(x)dx = 1/2.

We have

∫

F

W 1(x, t) · ηkm(x)dx = −
∑

i<j

cij(t)

∫

F

A(x)
(
ei

∂

∂xj
− ej

∂

∂xi

)
· ηkmdx

= −ckm(t)

which implies (6.24). It is clear that W 1 satisfies (6.26)–(6.28). �

The next proposition concerns the structure of the vector fields Cηkm(x).

Proposition 6.2. For arbitrary k, m � n, k < m the vector field
Cηkm(x) can be represented in the form

2Cηkm(x) = −∇(Cx · ηkm(x)) + Rkm(x), (6.29)

where Rkm is a linear combination of ηij .

Proof. It is clear that, in the case k, m > 2l, both expressions in
(6.29) containing C vanish and Rkm should be taken equal to zero. For
k = 2q − 1, m = 2q the equality (6.29) with Rkm = 0 is easily verified. In
other cases, the following possibilities can take place: (1) both k and m are
even, (2) both k and m are odd, (3) k is even and m is odd, (4) k is odd
and m even, (5) m > 2l and k is even or odd. We obtain (6.29) by a direct
calculation. We consider cases (1)–(4) assuming that n = 4. Hence

C = diag(C1, C2), Cα =

(
0 −ωα

ωα 0

)
, α = 1, 2,

and we verify (6.29) for ηkm = η13, η14, η23, η24. We have

2Cη13 = 2(ω1e2x3 − ω2e4x1) = ω1η23 + ω2η14 + ∇(ω1x2x3 − ω2x4x1),
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and

Cx · η13 = (−ω1η12 − ω2η34) · η13 = −ω1x3x2 + ω2x1x4,

2Cη14 = 2(ω1e2x4 + ω2e3x1) = ω1η24 − ω2η13 + ∇(ω1x2x4 + ω2x3x1),

Cx · η14 = −ω1x4x2 − ω2x1x3,

2Cη23 = 2(−ω1e1x3 − ω2e4x2) = −ω1η13 + ω2η24 −∇(ω1x1x3 + ω2x2x4),

Cx · η23 = ω1x1x3 + ω2x2x4,

2Cη24 = 2(−ω1e1x4 + ω2e3x2) = −ω1η14 − ω2η23 −∇(ω1x1x4 − ω2x3x2),

Cx · η24 = ω1x4x1 − ω2x2x3.

The last case k � 2l, n > 2l occurs when n = 3, C = diag(C1, 0),
ηkm = η13, η23. We have

2Cη13 = 2ω1e2x3 = ω1η23 + ∇ω1x3x2, Cx · η13 = −ω1x3x2,

2Cη23 = −2ω1e1x3 = −ω1η13 −∇ω1x3x1, Cx · η23 = ω1x3x1.

We see that (6.29) holds in all these cases. It is clear that the same argu-
ments are true in the general case. �

Now, we consider the evolution problem (6.18)–(6.20).

Proposition 6.3. If the form (6.23) is positive definite, i.e.,

∫

G

ρB̂ρdS � c‖ρ‖2
W 1

2 (G), (6.30)

then the solution of the problem (6.18)–(6.20) satisfies the inequality

‖v(·, t)‖2
L2(F) + ‖ρ(·, t)‖2

W 1
2 (G) � ce−bt

(
‖v0‖2

L2(F) + ‖ρ0‖2
W 1

2 (G)

)
, (6.31)

where b = const > 0.

Proof. Multiplying the first equation in (6.18) by v and integrating
over F , we obtain the energy relation

d

dt

(1

2
‖v(·, t)‖2

L2(F) +

∫

G

ρ(x, t)B0ρ(x, t)dS
)

+
ν

2
‖S(v)‖2

L2(F) = 0. (6.32)
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Further, we write the same equation in the form

v⊥
t + 2Cv⊥ + 2CD′ + 2CD′′ − ν∇2v⊥ + ∇p = −D′

t − D′′
t (6.33)

and we observe that

2CD′ = ∇p′(x, t), 2CD′′ = ∇p′′(x, t) + R(x, t),

where

p′(x, t) =

l∑

q=1

dq(ρ)ωq|ηq(x)|2, p′′(x, t) = −
∑

k,m

′′
dkm(ρ)Cx · ηkm(x)

and R is a linear combination of ηij . Multiplying (6.33) by W , integrating
over F , and taking into account (6.24), we obtain

d

dt

∫

F

v⊥ · W dx −
∫

F

v⊥ · W tdx + 2

∫

F

Cv⊥ · W dx

+
ν

2

∫

F

S(v⊥) : S(W )dx +

∫

G

(B0ρ + p′ + p′′)ρdS = 0. (6.34)

The last surface integral is equal to

∫

G

ρB̂ρdS + Q(ρ) (6.35)

where Q(ρ) is defined in (6.22′).

Now, we add (6.32) and (6.34) multiplied by a small positive number
γ. This gives

dE(t)

dt
+ E1(t) = 0 (6.36)

where

E(t) =
1

2

(
‖v‖2

L2(F) +

∫

G

ρB0ρdx
)

+ γ

∫

F

v⊥ · W dx

=
1

2

(
‖v⊥‖2

L2(F) +

∫

G

ρB̂ρdx + ‖D′′‖2
L2(F) + 2γ

∫

F

v⊥ · W dx
)
,
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E1(t) =
ν

2
‖S(v⊥)‖2

L2(F) − γ

∫

F

v⊥ · W tdx + 2γ

∫

F

Cv⊥ · W dx

+
γν

2

∫

F

S(v⊥) : S(W )dx + γ
(∫

G

ρB̂ρdS + Q(ρ)
)
.

If γ is small enough, then, by the Korn inequality and (6.26)–(6.28), (6.30),
we have

E1(t) � bE(t)

and E(t) is estimated from below and from above by

const (‖v(·, t)‖2
L2(F) + ‖ρ(·, t)‖2

W 1
2 (G)).

Hence (6.36) implies

dE(t)

dt
+ bE(t) � 0, E(t) � e−btE(0),

which completes the proof of the proposition. �

As in the case n = 3, from (6.31) we can deduce the inequality (3.15)
with c(t) = e−bt and prove the exponential stability of the zero solution of
the problem (6.13)–(6.15) by the arguments of Section 4. Thus, Theorem
4.1 is extended to the n-dimensional symmetric case.

The estimate (6.31) was obtained under apparently weaker than (6.30)
assumption of the positivity of the sum (6.35), where Q(ρ) � 0. A similar
phenomenon has occurred in the three-dimensional case, but it was proved
(see [20]) that both assumptions are equivalent.

The above theory applies to the case n = 2 (considered in [12]). In
this case, there exists only one vector field of a rigid rotation, η12,

C =

(
0 −ω
ω 0

)
, V (x) = ωη12(x),

the equilibrium figure is a disc |x| � R0,

B0ρ =
σ

R2
0

( d2ρ

dϕ2
+ ρ
)

+ ω2R0ρ, Bρ = B0ρ +
2ω2

π

∫

|x|=R0

ρdS,

where ϕ ∈ [0, 2π) is a polar angle.
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Weak Spatially Nondecaying Solutions

of 3D Navier–Stokes Equations

in Cylindrical Domains

Sergey Zelik

University of Surrey

Guildford, United Kingdom

The weighted energy theory for the Navier–Stokes equations in 3D cylindrical

domains is developed. Based on this theory, the existence of a weak solution

belonging to the uniformly local phase space (without any spatial decaying as-

sumptions), its dissipativity and existence of the so-called trajectory attractor are

verified. In particular, this phase space contains the 3D Poiseuille flows. Bibliog-

raphy: 37 titles.

1. Introduction

It is well known that the Navier–Stokes system

∂tu + (u,∇x)u = ν∆xu −∇xp + g,

div u = 0, u
∣∣
∂Ω

= 0, u
∣∣
t=0

= u0

(1.1)

in a bounded 2D domain Ω ⊂⊂ R2 is well posed and generates a dissipa-
tive semigroup S(t) in the appropriate phase space (of square integrable
divergence-free vector fields). It is also known that, in the case of bounded
3D domains, we have only the global existence of weak solutions (without
uniqueness) and local in time existence of strong solutions (with unique-
ness), see [6, 27, 28] and references therein. These results are strongly
based on the so-called energy estimate. To obtain this energy estimate, one
multiplies Equation (1.1) by u, integrate over Ω, and uses the fact that the
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nonlinear term disappears:

((u,∇x)u, u) :=

∫

x∈Ω

(u(x),∇x)u(x).u(x) dx ≡ 0 (1.2)

for every divergence-free vector field with Dirichlet boundary conditions.

The situation becomes much more difficult when the domain Ω is un-
bounded. Moreover, although there exists a highly developed theory of
dissipative PDEs in unbounded domains (mainly based on the so-called
weighted energy estimates, see [7]–[12], [20, 21, 32, 33, 34, 35] and refer-
ences therein), during the long time, it was not clear how to apply it to the
Navier–Stokes problem in unbounded domains because of several principal
obstacles.

Indeed, in contrast to bounded domains, in unbounded ones, the space
of square integrable (divergence-free) vector fields is not a convenient phase
space since the assumption u ∈ L2(Ω) imposes too restrictive decay condi-
tions on u(x) as x → ∞. So, under this choice of the phase space, many
classical hydrodynamical objects, like Poiseuille flows, Couette–Taylor flows,
Kolmogorov flows, etc. are automatically out of consideration. Thus, follow-
ing the general theory, it is reasonable to replace the assumption u ∈ L2(Ω)
by a more relevant condition: u ∈ L2

b(Ω), where the uniformly local Sobolev

spaces W l,p
b (Ω) are defined via the following standard expression:

W l,p
b (Ω) := {u ∈ D′(Ω), ‖u‖W l,p

b
(Ω) := sup

x0∈Ω
‖u‖W l,p(Ω∩B1

x0
) < ∞}.

Here, B1
x0

denotes the ball of radius one of Rn centered at x0 ∈ Rn and W l,p

means the classical Sobolev space. But then the main difficulty arises: how
to obtain a priori estimates for the solution u(t) in uniformly local spaces?

Indeed, since u(t) is not square integrable any more, we cannot simply
multiply (1.1) by u and use the identity (1.2) (the integrals do not have
sense). So, following the general strategy, we need to multiply it by ϕu,
where ϕ = ϕ(x) is an appropriate weight function. But in this case, the
nonlinear term does not vanish and produces an additional cubic term like
ϕ′u3. We note that this cubic term is not of fixed sign and the remaining
terms in the energy equality are at most quadratic with respect to u, so it
was not clear how to control this cubic term in order to produce reasonable
a priori estimate.

Another obstacle is related with the fact that ϕu is not divergence-free.
Hence the pressure p does not disappear in the weighted energy equality and
one should be able to control the term (ϕ′p, u). Of course, this problem is
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closely related with finding a reasonable extension of the Helmholtz projec-
tor (to divergence-free vector fields) to uniformly local spaces.

The above-mentioned difficulties stimulated the development of al-
ternative methods for studying the Navier–Stokes equations in unbounded
domains. In particular, in the 2D case, the following so-called vorticity
equation is very helpful:

∂tω − ∆xω + (u,∇x)ω = ∂x2g1 − ∂x1g2, (1.3)

where ω := ∂x2u1 − ∂x1u2. If Ω does not contain boundary, for example,
Ω = R2 or Ω = S1×R, where S1 is a circle (like in the Kolmogorov problem),
the maximum principle applied to (1.3) allows us to obtain a global a priori
estimate for the vorticity ω which, together with the accurate analysis of the
explicit formulas for the Helmholtz projectors, allows us to obtain global in
time a priori estimates for the solution u(t) and thereby to prove the global
solvability of the Navier–Stokes equation in uniformly local phase spaces (see
[2, 14]). Unfortunately, the a priori estimate for vorticity obtained from the
maximum principle grows linearly in time, so all the further estimates also
grow in time (to the best of our knowledge, in the case Ω = R2, it yields

double exponential (∼ eCeCt

) growth rate and polynomial (∼ t3) growth
rate for Ω = S1 × R). The other essential drawback is that this method
seems to be inapplicable to the problems with boundary (for example, for
a cylindrical domain Ω) and does not work in the 3D case.

Another attractive possibility to avoid direct weighted energy esti-
mates is to use the bifurcation analysis. Indeed, in the situation where the
basic steady state of the Navier–Stokes problem is slightly above the insta-
bility threshold, the solutions remaining close to that steady state can be
described in terms of the so-called modulation equations which are essen-
tially simpler than the initial Navier–Stokes problem (usually it is Ginzburg–
Landau or Swift–Hohenberg equations), see [1, 15, 16, 17, 19] and refer-
ences therein. Since the well-posedness and dissipativity of these modula-
tion equations is well understood, the standard perturbation methods allow
us sometimes to obtain global in time estimates for solutions of the initial
Navier–Stokes problem starting from the small neighborhood of the basic
steady state. In particular, the global existence and dissipativity of such
solutions for the 3D Couette–Taylor flow is obtained in [23] and “almost
global solvability” (on the exponentially long with respect to perturbation
parameter time interval) for the case of Poiseuille flow can be found in [24].
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It is worth to emphasize that, in the case where the domain Ω ⊂ Rn,
n = 2, 3, possesses the Friedrichs inequality

‖u‖2
L2(Ω) � λ1‖∇xu‖2

L2(Ω), u ∈ W 1,2
0 (Ω), (1.4)

with positive λ1 and under the restrictive assumption that u is square inte-
grable, all the above-mentioned obstacles disappear and the Navier–Stokes
problem (1.1) possesses a standard (unweighted) energy theory similar to
the case of bounded domains, see [5, 28]. We also mention the survey
paper [3] on the existence of spatially decaying solutions of the Navier–
Stokes problem in various domains (not necessarily satisfying (0.4)), see
also [13, 30].

Recently, the above-mentioned obstacles for applying the general
weighted energy theory to Navier–Stokes equations in unbounded domains
were overcome [37] in the case of 2D cylindrical domains. This result al-
lowed us to verify the global existence, uniqueness and dissipativity of the
2D Navier–Stokes equations in the classes of spatially nondecaying solutions.
Moreover, this result embeds the 2D Navier–Stokes problem in a strip into
the general scheme of investigating dissipative PDEs in unbounded domains,
including the study of dimension and Kolmogorov’s entropy of attractors,
topological entropies, spatial and temporal chaos, etc. (see [36]).

The main goal of this paper is to extend (up to uniqueness and further
regularity) this result to the case of 3D cylindrical domains. Although the
general strategy of the paper is similar to [37], there are several essential
differences and complications in comparison to the 2D case. Namely, in the
3D case, we do not have a scalar stream function and, consequently, we
cannot reduce the study of the Helmholtz projector and Stokes operator in
weighted spaces to simple model problems for the Laplace and bi-Laplace
equations and should use the theory of general elliptic problems.

Further, because of the lack of uniqueness for the 3D Navier–Stokes
equations, we cannot directly apply the methods of [37], but should first
consider the regularizing Leray approximations to the Navier–Stokes equa-
tions, prove the existence of spatially nondecaying solutions for these equa-
tions, and, after that, obtain the required solution by passing to the limit.
Finally, again because of the lack of uniqueness, we cannot construct a usual
global attractor for the problem considered and should use the so-called tra-
jectory approach (see [8, 25, 31, 9] and references therein).

The paper is organized as follows. In Sections 2 and 3, we recall some
basic facts on the theory of weighted spaces and the regularity of elliptic



3D Navier–Stokes Equations in Cylindrical Domains 259

boundary value problems in these spaces which will be systematically used
throughout the paper.

Section 4 is devoted to the study of the Helmholtz projector Π and
stationary Stokes equations in weighted and uniformly local Sobolev spaces.
The results of this section are somehow close to [4, 5] (and are, factually,
inspired by these papers).

In Section 5, we study the following auxiliary linear nondivergence-free
problem:

− ∂tv = ∆xv + ∇xq, Πv
∣∣
t=T

= 0,

div v = ϕ′u, v
∣∣
∂Ω

= 0,
(1.5)

where ϕ(x) is an appropriate weight function and u(t) is a solution of the
Navier–Stokes problem. This auxiliary problem is necessary in order to
overcome the obstacle related with the appearance of the term containing
pressure in the weighted energy equality. Roughly speaking, we will multiply
Equation (1.1) by ϕu(t) − v(t), where v solves (1.5). Then, since div(ϕu −
v) = 0, the pressure term disappears (and the derivative of our weights is
small, so the corrector v is also small and does not produce any essential
difficulties in its estimating, see Sections 5 and 6 for details).

It is not clear how to overcome this obstacle in a more simple way.
Indeed, the “most natural” multiplication by Π(ϕu) does not work since
Π(ϕu) has nonzero trace at the boundary, which leads to additional uncon-
trollable boundary terms under the integration by parts in (∆xu, Π(ϕu)).
Another possibility is to construct a new “projector” Q to divergence-free
vector fields which preserves the boundary conditions and multiply the equa-
tion by Q(ϕu). However, this leads to essential difficulties with the term
(∂tu, Q(ϕu)) which should be a complete time derivative from something.
We also note that the multiplication of the equation by the combination of
ϕ∂tu and ϕΠ∆xu (as in [4] and [5]) is useless for us since it works only if
the unweighted L2-norm of ∆xu is a priori known.

In Section 6, we verify the basic (uniform with respect to α → 0) a
priori estimate and prove the global existence of solutions of the Leray–
Navier–Stokes problem

∂tu + (Πw,∇x)u + c∂x1u = ∆xu −∇xp + g,

w − α∆xw = u,

div u = 0, Su1 = c,

u
∣∣
∂Ω

= w
∣∣
∂Ω

= 0, u
∣∣
t=0

= u0,

(1.6)
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where Π is a Helmholtz projector to the divergence-free vector fields, α > 0
is a small parameter, S is the averaging operator with respect to the cross
section x′ := (x2, x3):

Sv :=
1

|ω|

∫

x′∈Ω

v(x′) dx′,

and c is a given constant.

The additional projector Π is necessary since, in contrast to the spa-
tially periodic case, w is no more divergence-free and we will not have zero
integral analogous to (1.2) without this projector. The term c∂x1u appears
in order to have the classical Navier–Stokes problem as α = 0 (since, due
to our choice of projector Π, the mean flux of Πw is equal to zero and,
consequently, Πu = u − (c, 0, 0)).

To obtain the required estimate, we use, following [37], the special
weights

θε,x0(x) := (1 + ε2|x − x0|2)1/2 (1.7)

with very small ε which factually depends on the solution u. Then a careful
analysis of the obtained weighted energy inequality allows us to obtain the
globally in time bounded a priori estimate of the L2

b-norm of u(t). Based
on this a priori estimate, we then establish the existence of such a solution.
In fact, we first consider the case of zero flux c = 0 (see Theorem 6.5) and
after that reduce the general case to this particular case using the trick with
the auxiliary “energy stable” equilibrium (see Theorem 6.6).

The uniqueness of such solutions is verified in Section 7 (see Theorem
7.1). Moreover, we also verify the dissipative estimate, uniform with respect
to α → 0, for these solutions and the existence of global attractors Aα for
the approximating problems (1.6).

Finally, in Section 8, we establish the existence of a dissipative weak
solution for the classical Navier–Stokes problem by passing to the limit
α → 0. Moreover, an appropriate trajectory attractor Atr for the Navier-
stokes problem is also constructed here. Using the proper scaling, we obtain
the following estimate for the size of attractor in the L2

b-norm in terms of
the kinematic viscosity ν:

‖Atr‖L∞(R+,L2
b(Ω)) � Cν−3(|c|3ν + ‖g‖2

L2
b(Ω) + ν4), (1.8)

where the constant C is independent of ν, c, and g. We recall that, in
bounded domains (in square integrable case), the best known estimate is
the following:

‖Atr‖L∞(R+,L2(Ω)) � Cν−1‖g‖L2(Ω). (1.9)
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We see that, although the estimate (1.8) is “worse” than (1.9), but it remains
polynomial as ν → 0 (with a reasonable degree 3). Thus, our method is not
“extremely rough” and can be used for obtaining reasonable quantitative
bounds for the solutions.

2. Function Spaces

In this section, we briefly recall the definitions and basic properties of weight
functions and weighted function spaces which will be systematically used
throughout the paper (see also [11, 33] for details). We start with the class
of admissible weight functions.

Definition 2.1. A function ϕ ∈ Cloc(R
n) is a weight function of

exponential growth rate μ > 0 if the following inequalities hold:

ϕ(x + y) � Cϕϕ(x)eμ|y|, ϕ(x) > 0 ∀x, y ∈ Rn. (2.1)

The following proposition collects the evident properties of such weights.

Proposition 2.2. 1. Let ϕ be a weight function with exponential
growth rate μ. Then, for every ε > μ, ϕ is a weight function of exponential
growth rate ε (with the same constant Cϕ).

2. Let ϕ and ψ be weight functions of exponential growth rate μ. Then
the functions Ψ1 = ϕ(x)ψ(x) and Ψ2 = ϕ(x)/ψ(x) are weight functions of
exponential growth rate 2μ with the constant CΨi � CϕCψ.

3. Let ϕ be a weight function of exponential growth rate μ, and let
ψ ∈ Cloc(R

n) satisfy

C1ϕ(x) � ψ(x) � C2ϕ(x), x ∈ Rn. (2.2)

Then ψ is also a weight function of exponential growth rate μ and Cψ �

C−1
1 C2Cϕ.

4. Let ε > 0, and let ϕ(x) be a weight function of exponential growth
rate μ. Then the function ϕε(x) := ϕ(εx) is of exponential growth rate εμ
and Cϕε = Cϕ.

All the assertions of Proposition 2.2 are simple consequences of the
estimate (2.1).

A natural example of such weights is the following:

ϕμ,x0(x) := e−μ|x−x0|, x0 ∈ Rn, μ ∈ R. (2.3)
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It is obvious that they are of exponential growth rate |μ| and the constant
Cϕµ,x0

= 1 (independent of x0 ∈ Rn). However, these weights are non-
smooth at x = x0. To overcome this drawback, it is natural to use the
following equivalent weights:

ϕμ,x0(x) := e−μ
√

1+|x−x0|2 , x0 ∈ Rn. (2.4)

Since |x| �
√

x2 + 1 � |x| + 1, these weights satisfy

e−|μ|ϕμ,x0(x) � ϕμ,x0(x) � e|μ|ϕμ,x0(x), x ∈ Rn (2.5)

and, consequently, ϕμ,x0 are also weight functions of exponential growth

rate μ (with Cϕµ,x0
= e2|μ|). Moreover, in contrast to (2.3). these weights

are smooth and satisfy for μ � 1 the additional obvious inequality

|Dk
xϕμ,x0(x)| � Ck|μ|ϕμ,x0(x), x ∈ Rn, (2.6)

where k ∈ N, Dk
x denotes the collection of all x-derivatives of order k and

the constant Ck is independent of x and μ. This inequality is crucial for
obtaining the regularity estimates in weighted spaces (see [11, 12, 32, 33,
34, 35] and Section 3 below).

Another important class of weight functions is the so-called polynomial
ones:

θm
x0

(x) := (1 + |x − x0|2)−m/2, m ∈ R. (2.7)

It is not difficult to verify that these weights are of exponential growth rate
μ for every μ > 0 with the constant Cθm,x0

depending on μ and m, but
independent of x0 ∈ Ω.

We now introduce a class of weighted Sobolev spaces in a regular
unbounded domain Ω associated with weights introduced above. Since we
need below only the case where Ω := R × ω is a cylinder with regular
boundary, we do not formulate precise assumptions on the boundary ∂Ω
(which can be found, for example, in [11] or [12]) in order to avoid the
technicalities.

Definition 2.3. Let Ω be a regular domain, and let ϕ be a weight
function of exponential growth rate. Then for every 1 � p � ∞ we set

Lp
ϕ(Ω) :=

{
u ∈ Lp

loc(Ω), ‖u‖p
Lp

ϕ
:=

∫

Ω

ϕ(x)p|u(x)|p dx < ∞
}

(2.8)

and

Lp
b,ϕ(Ω) := {u ∈ Lp

loc(Ω), ‖u‖Lp
b,ϕ

:= sup
x0∈Ω

(ϕ(x0)‖u‖Lp(Ω∩B1
x0

)) < ∞}.
(2.9)
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Hereinafter, Br
x0

denotes an r-ball of Rn centered at x0 and we write Lp
b

instead of Lp
b,1.

Moreover, for every l ∈ N, we define the weighted Sobolev spaces

W l,p
ϕ (Ω) and W l,p

b,ϕ(Ω) as spaces of distributions whose derivatives up to

order l belong to Lp
ϕ(Ω) and Lp

b,ϕ(Ω) respectively.

Furthermore, the weighted Sobolev spaces W l,p
ϕ (∂Ω) and W l,p

b,ϕ(∂Ω) on
the boundary ∂Ω can be defined in a similar way; only the integral over
Ω (respectively, supremum in (2.9)) in (2.8) should be replaced with the
integral (respectively, supremum) over the boundary ∂Ω (see [11, 12]).

Remark 2.4. In the sequel, we also use functions u(t) with the values
in the weighted Sobolev spaces defined above. In slight abuse the notations,

we denote by Lp
b(R, W l,p

b ) the space generated by the norm

‖u‖Lp
b(R,W l,p

b ) := sup
x0∈Ω

sup
T∈R

‖u‖Lp([T,T+1],W l,p(Ω∩B1
x0

)). (2.10)

The following proposition presents some useful facts on the spaces
introduced above.

Proposition 2.5. Let Ω be a regular domain, and let ϕ be a weight
of exponential growth rate μ. Then the following assertions hold.

1) For any r > 0 and u ∈ Lp
ϕ(Ω), 1 � p < ∞,

C−1
r ‖u‖Lp

ϕ(Ω) �
( ∫

x0∈Ω

ϕp(x0)‖u‖p
Lp(Ω∩Br

x0
) dx0

)1/p

� Cr‖u‖Lp
ϕ(Ω), (2.11)

where the constant Cr depends on r, μ, and the constant Cϕ from (2.1), but
is independent of ϕ and of the choice of ϕ.

2) For any α > μ, q ∈ [1,∞], and u ∈ L1
ϕ(Ω)

( ∫

x0∈Ω

ϕ(x0)
q
( ∫

x∈Ω

e−α|x−x0||u(x)| dx
)q

dx0

)1/q

� Cα‖u‖L1
ϕ(Ω), (2.12)

where Cα depends on α, μ, and Cϕ, but is independent of u and the choice
of ϕ and q.

3) For any α > μ and u ∈ Lp
b,ϕ(Ω)

C−1
α ‖u‖p

Lp
b,ϕ(Ω)

� sup
x0∈Ω

{ϕ(x0)
p

∫

x∈Ω

e−αp|x−x0||u(x)|p dx}

� Cα‖u‖p
Lp

b,ϕ
(Ω)

, (2.13)
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where the constant Cα depends on α, μ, and Cϕ, but is independent of u
and the choice of ϕ.

The proof of the estimates is given in [11] (see also [12, 30]).

Remark 2.6. As we will see below, the estimate (2.11) allows us
to reduce the proof of embedding and interpolation theorems for weighted
Sobolev spaces to the classical unweighted case in a bounded domain. Esti-
mates (2.12) and (2.13) allow us, in turns, to obtain the elliptic regularity in
weighted spaces with arbitrary weights of exponential growth rate if analo-
gous result for the special weights e−α|x−x0| (or, which is the same, for the
equivalent smooth weights (2.4)) is known (see Section 3). Moreover, these
estimates allow us to control the dependence of the constants in embed-
ding, interpolation, and regularity theorems on the choice of weights, which
is crucial in our study of the nondecaying solutions of the NS equations.

We introduce the weighted Sobolev spaces with fractional derivatives.
We first recall that, in the unweighted case, the space W l+s,p(Ω) for s ∈
(0, 1) and l ∈ Z+ is usually defined via

‖u‖p
W l+s,p(Ω)

:= ‖u‖p
W l,p(Ω)

+

∫

x∈Ω

∫

y∈Ω

|Dl
xu(x) − Dl

xu(y)|p
|x − y|n+sp

dx dy (2.14)

and, for negative l the space W l,p(Ω) is defined as the conjugate space of

W−l,q
0 (Ω), 1/p + 1/q = 1 (see [18, 29]). Then the estimate (2.11) justifies

the following definition.

Definition 2.7. Let Ω be a regular domain, and let ϕ be a weight
function of exponential growth rate. For any 1 < p � ∞ and l ∈ R we
define the space W l,p

ϕ (Ω) as a subspace of distributions with finite norm

‖u‖p

W l,p
ϕ (Ω)

:=

∫

x0∈Ω

ϕ(x0)
p‖u‖p

W l,p(Ω∩Br
x0

)
dx0, (2.15)

where r is a positive number (it is not difficult to verify that this space is

independent of r). Similarly, the norm in W l,p
b,ϕ is defined via

‖u‖p

W l,p
b,ϕ

(Ω)
:= sup

x0∈Ω
{ϕ(x0)

p‖u‖p
W l,p(Ω∩Br

x0
)
}. (2.16)

For the sake of simplicity, we fix below r = 1 in the definitions (2.15) and
(2.16) of weighted norms.

According to (2.11), we see that for l ∈ Z+ the spaces thus defined
coincide with the spaces from Definition 2.1. Moreover, it is not difficult to
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verify, using the explicit formula (2.14) that, in the unweighted case ϕ = 1,
the norm (2.15) is equivalent to (2.14).

The following proposition describes the weighted negative Sobolev
spaces in terms of conjugate spaces.

Proposition 2.8. Let Ω be a regular domain, and let ϕ be a weight
function of exponential growth rate μ. Then for any l > 0 and 1 < p, q < ∞,
1/p + 1/q = 1,

W−l,p
ϕ (Ω) = [W l,q

0,ϕ−1(Ω)]∗, (2.17)

where W l,q
0,ϕ(Ω) denotes the closure of C∞

0 (Ω) in the W l,q
ϕ -norm and ∗ means

the conjugate space (with respect to the standard inner product in L2(Ω)).
Moreover,

C1‖u‖W−l,p
ϕ (Ω) � ‖u‖[W l,q

0,ϕ−1(Ω)]∗ � C2‖u‖W−l,p
ϕ (Ω) (2.18)

where the constants C1 and C2 depend on μ, l, p, and Cϕ, but are indepen-
dent of the choice of u and Cϕ.

Proof. In order to avoid the technicalities, we give below the proof
of (2.18) only in the case of a cylindrical domain Ω := R × ω, where ω
is a smooth bounded domain of Rn−1 (only this case will be used in the
sequel), although a slightly modified proof works for a general regular do-
main. In this particular case, we can restrict ourselves to consider only
one-dimensional weights ϕ ∈ Cloc(R). Since ω is bounded, (2.1) implies
that

C1ϕ(s, ξ0) � ϕ(s, ξ) � C2ϕ(s, ξ0), s ∈ R, ξ ∈ ω, (2.19)

where ξ0 ∈ ω is some fixed point and, consequently, the weight ϕ(s, ξ) is
equivalent to ϕξ0(s) := ϕ(s, ξ0). Moreover, it is more convenient to use,
instead of balls Br

x0
, the finite cylinders Ωs := (s, s + 1) × ω, i.e., to define

the norm in W l,p
ϕ (Ω) via

‖u‖p

W l,p
ϕ (Ω)

=

∫

s∈R

ϕ(s)p‖u‖p
W l,p(Ωs)

ds (2.20)

(since the norms (2.15) are equivalent for different r and ω is bounded,
(2.15) and (2.20) are also equivalent).

We first verify the right inequality of (2.18). To this end, we introduce
a partition of unity {ψy}y∈R ∈ C∞

0 (R) such that
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1) suppψy ⊂ (y, y + 1),

2)

∫

y∈R

ψy(s) dy ≡ 1,

3) |Dk
sψy(s)| � Ck,

(2.21)

where the constant Ck is independent of s ∈ R (such a partition of unity
exists and can be chosen in a smooth way with respect to y ∈ R).

Let u ∈ [W l,q
0,ϕ−1(Ω)]∗ be a functional over W l,q

0,ϕ−1(Ω), and let v be

an arbitrary test function from this space. Using (2.21) and the Hölder
inequality, we find

| 〈u, v〉 | �

∫

y∈R

| 〈u, ψyv〉 | dy �

∫

y∈R

‖u‖W−l,p(Ωy)‖ψyv‖W l,q(Ωy) dy

� C

∫

y∈R

ϕ(y)‖u‖W−l,p(Ωy) · ϕ(y)−1‖v‖W l,q(Ωy) dy

� C‖u‖W−l,p
ϕ (Ω)‖v‖W l,q

ϕ−1(Ω), (2.22)

which, together with the definition of the norm in the conjugate space gives
the right inequality in (2.18).

We verify the left inequality. Let u ∈ W−l,p
ϕ (Ω). We fix a family of

functions vy ∈ W l,q
0 (Ωy) such that

〈u, vy〉 = ‖u‖W−l,p(Ωy)‖vy‖W l,q(Ωy) (2.23)

and normalize these functions as follows:

‖vy‖W l,q(Ωy) = ϕ(y)p‖u‖p−1
W−l,p(Ωy)

. (2.24)

Since the spaces W l,q(Ωy) are uniformly convex, these families are uniquely
defined and, moreover, continuous with respect to y ∈ R.

We define the function v(x) as follows:

v(x) :=

∫

y∈R

vy(x) dy. (2.25)

We claim that v ∈ W l,q
0,ϕ−1(Ω). Since vy ∈ W l,q

0 (Ωy), it can be naturally

continued by zero to a function vy ∈ W l,q
0 (Ω) with supp vy ⊂ Ωy. Thus, the

integral (2.25) is well posed and defines a function v ∈ W l,q
loc(Ω) vanishing at
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the boundary ∂Ω. So, we only need to estimate the W l,q
ϕ−1(Ω)-norm of this

function.

Since ‖vy‖W l,q(Ωs) = 0 if |s − y| � 1, we have

‖v‖W l,q(Ωs) �

∫

|s−y|�1

‖vy‖W l,q(Ωy) dy =

∫

|s−y|�1

ϕ(y)p‖u‖p−1
W−l,p(Ωy)

dy

� Cϕ(s)p

∫

|s−y|�1

‖u‖p−1
W−l,p(Ωy)

dy

� C1ϕ(s)p

∫

y∈R

e−α|s−y|‖u‖p−1
W−l,p(Ωy)

dy (2.26)

where the constant α > 2pμ/q can be arbitrary (we implicitly used (2.1) in
order to estimate ϕ(y) via ϕ(s)). Taking the qth power of both sides of the
relation, applying the Hölder inequality, and using that q(p − 1) = p, we
arrive at the inequality

ϕ(s)−q‖v‖q
W l,q(Ωs)

� Cϕ(s)p

∫

y∈R

eαq|s−y|/2‖u‖p
W−l,p(Ωy)

dy.

Integrating over s ∈ R and using (2.12), we finally infer

‖v‖q

W l,q

ϕ−1 (Ω)
� C2‖u‖p

W−l,p
ϕ (Ω)

. (2.27)

We are now ready to complete the proof of the proposition. By (2.23)–
(2.25), we have

〈u, v〉 =

∫

y∈Ω

‖u‖W−l,p(Ωy)‖vy‖W l,q(Ωy) dy = ‖u‖p

W−l,p
ϕ (Ω)

and, consequently, due to (2.27),

‖u‖[W l,q

0,ϕ−1(Ω)]∗ �
〈u, v〉

‖v‖W l,q

ϕ−1 (Ω)

� C‖u‖p(1−1/q)

W−l,p
ϕ (Ω)

. (2.28)

Since p(1 − 1/q) = 1, (2.28) implies the left inequality in (2.18). �

Remark 2.9. Proposition 2.8 shows, in particular, that in the case
ϕ = 1, the spaces W l,p(Ω) introduced in Definition 2.7, coincide with the
standard Sobolev spaces for any l ∈ R. Moreover, arguing Similarly, to the
proof of Proposition 2.8, one can verify the interpolation representation of
the weighted spaces W l+α,p

ϕ (Ω) with fractional derivatives (l ∈ Z, α ∈ (0, 1))

W l+α,p
ϕ (Ω) =

(
W l,p

ϕ (Ω), W l+1,p
ϕ (Ω)

)
α,p

(2.29)
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in a complete analogy with the unweighted case (see, for example, [29]).

For the sake of convenience, we will show how to obtain weighted
analogs of the interpolation and embedding inequalities.

Proposition 2.10. Let Ω be a regular domain, and let ϕ1 and ϕ2

be two weight functions of exponential growth rate μ, 0 � l1, l2 < ∞, 1 <
p1, p2 < ∞. Let θ ∈ [0, 1] be arbitrary and

l := θl1 + (1 − θ)l2,
1

p
:=

θ

p1
+

1 − θ

p2
, ϕ := ϕθ

1 · ϕ1−θ
2 .

Then W l,p
ϕ (Ω) ⊂ W l1,p1

ϕ1
(Ω) ∩ W l2,p2

ϕ2
(Ω) and

‖u‖W l,p
ϕ

� C‖u‖θ

W
l1,p1
ϕ1

· ‖u‖1−θ

W
l2,p2
ϕ2

,

where the constant C depends on li, pi, μ, Cϕi and on some regularity
constant of the domain Ω, but is independent of the choice of weights ϕi

and of the form of domain Ω. Moreover, similar estimate holds for the

spaces W l,p
b,ϕ.

Proof. As in the proof of Proposition 2.8, we restrict ourselves to the
case of a cylindrical domain Ω := R × ω, one-dimensional weights, and the

equivalent norms (2.20). Moreover, we consider only the spaces W l,p
ϕ (W l,p

b,ϕ

can be considered in a similar way).

According to the standard unweighted interpolation inequality for do-
mains Ωs, we have

‖u‖p
W l,p(Ωs)

� c1‖u‖pθ
W l1,p1 (Ωs)

‖u‖p(1−θ)

W l2,p2 (Ωs)

where the constant C1 is independent of s, see [29]. Multiplying this in-
equality by the weight ϕp(s), integrating over s ∈ R and using (2.11), we
get

‖u‖p

W l,p
ϕ (Ω)

� C2

∫

s∈R

(
ϕ1‖u‖W l1,p1 (Ωs)

)pθ (
ϕ2‖u‖W l2,p2(Ωs)

)p(1−θ)
ds.

Applying the Hölder inequality with exponents
p1

pθ
and

p2

p(1 − θ)
to the

right-hand side of this inequality and using the estimate (2.11) once more,
we deduce the required weighted interpolation inequality and finish the proof
of the proposition. �

The following proposition gives a weighted analog of embedding and
trace inequalities.
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Proposition 2.11. Let Ω be a regular domain, and let ϕ be a weight
function of exponential growth rate μ. Then the following assertions hold.

1) For any 1 < p1 � p2 < ∞ and 0 � l2 � l1 satisfying

1

p2
− l2

n
�

1

p1
− l1

n
(2.30)

there is a continuous embedding W l1,p1
ϕ (Ω) ⊂ W l2,p2(Ω) and the norm of

the embedding operator depends on li, pi, μ, and Cϕ, but is independent of
the form of weight function ϕ. If the inequality (2.30) is strict, we can take
also p2 = ∞.

2) For every m ∈ Z+, 1 < p < ∞, and l > m + 1/p the trace operator
Πm

∂Ω

Πm
Ω u := (u

∣∣
∂Ω

, ∂nu
∣∣
∂Ω

, · · · , ∂m
n u
∣∣
∂Ω

) (2.31)

(where ∂nu denotes the normal derivative of u at ∂Ω) maps W l,p
ϕ (Ω) to

m
⊗

k=0
W

l−k−1/p,p
ϕ (∂Ω) and there exists the associated extension operator [Πm

∂Ω]−1

(the right inverse of Πm
∂Ω) with the norm depending on l, m, p, μ and Cϕ,

but independent of the choice of weight ϕ.

The above results also hold for the family of spaces W l,p
b,ϕ(Ω).

Proof. As above, we restrict ourselves to the case of a cylindrical
domain Ω := R × ω, one-dimensional weights, and the equivalent norms

(2.20). Moreover, we consider only the spaces W l,p
ϕ (the spaces W l,p

b,ϕ can be

considered in a similar way).

Let u ∈ W l1,p1
ϕ (Ω). According to the classical Sobolev embedding

theorem (see [29]), we have

‖u‖W l2,p2 (Ωs) � C‖u‖W l1,p1 (Ωs), (2.32)

where the constant C is independent of s. Taking the power p2 of both
sides of the inequality, we transform it to the following form (for the sake
of simplicity, we consider only the case p2 < ∞):

‖u‖p2

W l2,p2(Ωs)
� Cp2‖u‖p2

W l1,p1(Ωs)

� C1

( ∫

s∈R

e−αp1|s−y|‖u‖p1

W l1,p1(Ωy)
dy
)p2/p1

,

where α > μ is arbitrary and C1 is independent of u. Multiplying by ϕ(s)p2 ,
integrating by s ∈ R, and using (2.12), we infer

‖u‖p2

W
l2,p2
ϕ (Ω)

� C2‖u‖p2

W
l1,p1
ϕ (Ω)

,
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which proves the first assertion of the proposition.

Now, we verify the second assertion. The existence and boundedness
of the trace operator Πm

∂Ω can be verified by using an analogous property for
domains Ωs as above. Thus, we only need to construct an extension operator

[Πm
∂Ω]−1. Let U := {uk}m

k=0 ∈
m
⊗

k=0
W

l−k−1/p,p
ϕ (∂Ω) be arbitrary. Using the

partition of unity (2.21), we construct the family Us := ψsU = {ψsuk}m
k=0.

Since all these functions vanish at the origin of Ωs, there exists an extension
operator [Πm

∂Ωs
]−1 for bounded domain Ωs which maps Us to W l,p(Ωs) and

whose norm is independent of U and s (see [29]). The required extension
operator [Πm

∂Ω]−1 can be constructed as follows:

[Πm
∂Ω]−1U :=

∫

s∈R

[Πm
∂Ωs

]−1Us ds. (2.33)

The fact that this operator is well defined and the uniform (with respect

to ϕ) estimate for its norm regarded as a map from
m
⊗

k=0
W

l−k−1/p,p
ϕ (∂Ω) to

W l,p
ϕ (Ω) can be proved in the same way as in the estimate (2.27) for the

function (2.25) in the proof of Proposition 2.8. �

Our following task is formulate trace theorems for classes of less smooth
functions which are closely related with the theory of NS equations. For this
purpose, we need the following definition.

Definition 2.12. Let Ω be a regular domain of Rn, and let ϕ be a
weight function of exponential growth rate μ, 1 < p < ∞. Define the space
Ep

ϕ(Ω) of vector-valued functions u := (u1, · · · , un) ∈ [D′(Ω)]n by the norm

‖u‖p
Ep

ϕ(Ω)
:= ‖u‖p

[Lp
ϕ(Ω)]n

+ ‖ div u‖p
Lp

ϕ(Ω)
. (2.34)

The spaces Ep
b,ϕ(Ω) are defined in a similar way. Moreover, for every suf-

ficiently smooth vector-valued function u := (u1, · · · , un), we denote by
lnu := (�u, �n)

∣∣
∂Ω

the normal component of this function at the boundary.

Proposition 2.13. Let Ω be a regular domain, and let ϕ be a weight
function of exponential growth rate μ. Then the operator ln : Ep

ϕ(Ω) →
W

−1/p,p
ϕ (∂Ω) is well defined and

‖lnu‖
W

−1/p,p
ϕ (∂Ω)

� C‖u‖Ep
ϕ(Ω), (2.35)

where the constant C depends on μ and Cϕ, but is independent of the choice
of weight function ϕ. A similar result holds for Ep

b,ϕ(Ω).
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Proof. As above, we verify the estimate (2.35) only for cylindrical
domains. Let u and vs be smooth functions in Ωs. By the Green formula,

(lnu, v)∂Ωs := (div u, v)Ωs + (u,∇xv)Ωs . (2.36)

As usual, we see that the right-hand side of (2.36) is well defined for all
u ∈ Ep(Ωs) and v ∈ W 1,q(Ωs) where 1/p + 1/q = 1. Moreover, due to
the classical trace theorems, there exists an extension operator [Πs]

−1 :
W 1−1/q,q(∂Ωs) → W 1,q(Ωs) whose norm is independent of s. Thus, (2.36)
shows that the functional lnu is well defined and satisfies

‖lnu‖W−1/p,p(∂Ωs) = ‖lnu‖[W 1−1/q,q(∂Ωs)]∗ � C‖u‖Ep(Ωs). (2.37)

Multiplying this relation by ϕ(s)p and integrating over s ∈ R, we deduce
(2.35) and complete the proof of the proposition.

Here, we implicitly used that

‖lnu‖W−1/p,p((s,s+1)×∂ω) � ‖lnu‖W−1/p,p(∂Ωs).

The estimate for Ep
b,ϕ(Ω) can be obtained in a similar way by using the

supremum instead of the integral over s ∈ R. �

As was already mentioned, the estimates of Proposition 2.5 allow us
to reduce the proofs of elliptic regularity in arbitrary weighted spaces to the
particular case of special weights (2.4). The following evident proposition
will be useful in order to reduce the case of special weights to the classical
unweighted case ϕ = 1.

Proposition 2.14. Let Ω be a regular domain, and let Tμ,x0 be the
multiplication by weight ϕμ,x0(x) (i.e., (Tμ,x0u)(x) := ϕμ,x0(x)u(x)). Then
for any l ∈ R and 1 � p � ∞ this operator realizes an isomorphism between
the spaces W l,p

ϕµ,x0
(Ω) and W l,p(Ω). Moreover,

C−1‖u‖W l,p
ϕµ,x0

(Ω) � ‖Tμ,x0u‖W l,p(Ω) � C‖u‖W l,p
ϕµ,x0

(Ω) (2.38)

where the constant C depends on l, p, and μ, but is independent of u and
x0 ∈ Rn.

This estimate is an immediate consequence of the inequalities (2.6)
and Definition 2.7 of the corresponding weighted spaces.

We conclude by formulating some useful results on the weighted and

local topologies on bounded sets of W l,p
b (Ω).
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Proposition 2.15. Suppose that Ω is a bounded domain l ∈ R,

p ∈ [1,∞], and B is a bounded subset of W l,p
b (Ω). Then, for every weight

function ϕ of exponential growth rate μ satisfying

‖ϕ‖Lp(Rn) < ∞ (2.39)

the set B belongs to W l,p
ϕ (Ω) and the topology generated on B by this em-

bedding is independent of the weight ϕ and coincides with the local topology

on B generated by embedding to W l,p
loc(Ω).

Proof. By (2.39), we have

‖u‖p

W l,p
ϕ (Ω)

=

∫

x0∈Ω

ϕp(x0)‖u‖p
W l,p(Ω∩B1

x0
)
dx0 � ‖ϕ‖p

Lp(Rn)‖u‖
p

W l,p
b (Ω)

,

which shows that W l,p
b (Ω) ⊂ W l,p

ϕ (Ω). Let un → u in W l,p
loc(Ω). This means

that for any x0 ∈ Ω and R ∈ R+

lim
n→∞

‖un − u‖W l,p(Ω∩BR
x0

) = 0. (2.40)

Assume that un, u ∈ B and ϕ is an integrable (in the sense of (2.39)) weight.

Since the set B is assumed to be bounded in W l,p
b (Ω),

lim
R→∞

‖un‖W l,p
ϕ (Ω\BR

0 ) = 0 (2.41)

uniformly with respect to n ∈ N. Formulas (2.40) and (2.41) imply that

un → u in W l,p
ϕ (Ω). The embedding W l,p

ϕ (Ω) ⊂ W l,p
loc(Ω) is obvious, and

Proposition 2.15 is proved. �

3. Elliptic Regularity in Weighted Spaces

In this section, we recall some standard elliptic regularity results in weighted
Sobolev spaces which are necessary to deals with the Navier–Stokes equa-
tions in unbounded domains. For the sake of simplicity, we restrict ourselves
to the case of a 3D cylinder Ω := R × ω, where ω is a bounded smooth do-
main in R2 (x := (x1, x2, x3) ∈ Ω, x1 ∈ R, x′ := (x2, x3) ∈ ω). although
some of the results of this section remain true for general regular domains
(see [11, 12, 32, 33, 34, 35] for details).

We start with a weighted regularity estimate for the Laplacian with
Dirichlet boundary conditions.
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Proposition 3.1. Consider the Dirichlet problem in a cylinder Ω

∆xu = h, u
∣∣
∂Ω

= 0. (3.1)

For every 1 < p < ∞ and l = −1, 0, 1 there exists positive μ0 = μ0(p) such
that for any weight function ϕ with sufficiently small exponential growth
rate μ (μ � μ0) and h ∈ W l,p

ϕ (Ω) Equation (2.1) possesses a unique solution

u ∈ W l+2,p
ϕ (Ω) and the following estimate holds:

‖u‖W l+2,p
ϕ (Ω) � C‖h‖W l,p

ϕ (Ω), (3.2)

where the constant C depends on Cϕ, but is independent of the choice of

weight ϕ. Moreover, an analogous estimate holds for W l,p
b,ϕ(Ω).

Proof. We restrict ourselves to the a priori estimate (3.2) (the exis-
tence and uniqueness of a solution can be then verified in a standard way;
see, for example, [11, 12]).

As was already mentioned, by the estimates (2.12) and (2.13), it suf-
fices to verify the estimate (3.2) only for the special class of weights ϕμ0,x0(x)
introduced in (2.4). If we have the estimate (3.2) for such weights with the
constant C independent of x0, then

‖u‖p
W l+2,p(Ωs)

� Cμ0‖u‖p

W l+2,p
ϕµ0,s (Ω)

� C1‖h‖p

W l,p
ϕµ0,s (Ω)

� C2

∫

y∈R

e−pμ0|s−y|‖h‖p
W l,p(Ωy)

dy, (3.3)

where the constant C2 is also independent of s ∈ R. Multiplying the esti-
mate (3.3) by ϕ(s)p (where ϕ is a weight function with exponential growth
rate μ < μ0), integrating over s ∈ R, and using the estimate (2.12), we infer

the required estimate (2.2). Similarly, the estimate (3.2) for the spaces W l,p
b,ϕ

can be obtained by multiplying (3.3) by ϕ(s)p, taking the supremum over
s ∈ R, and using the estimate (2.13).

Thus, it remains to verify (3.2) for the special weights ϕμ0,s with a
sufficiently small positive μ0 and any s ∈ R. In turns, by Proposition 2.14
and the estimates (2.6), the case of special weights ϕμ0,s can be reduced to
the unweighted case ϕ ≡ 1. The function u ∈ W l+2,p

ϕµ0
(Ω) solves (3.1) if and

only if the function v := ϕμ0,su ∈ W l+2,p(Ω) solves the following perturbed
version of the problem (3.1):

∆xv = ϕμ0,sh + 2ϕ′
μ0,s∂x1(ϕ−μ0,sv) + ϕ′′

μ0,sϕ−μ0,sv

:= Tμ0,sh + hμ0(v), v
∣∣
∂Ω

= 0.
(3.4)
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We recall that, due to (2.6),

‖hμ0(v)‖W l,p(Ω) � Cμ0‖v‖W l+2,p(Ω), (3.5)

where the constant C is independent of s and μ0. Thus, if the estimate (3.2)
for ϕ ≡ 1 is known, then applying it to Equation (3.4) and using (3.5), we
infer

‖Tμ0,su‖W l+2,p(Ω) � C(‖Tμ0,sh‖W l,p(Ω) + μ0‖v‖W l+2,p(Ω))

with the constant C independent of μ0 and s. Fixing μ0 to be small enough
such that Cμ0 < 1/2, from the last estimate we deduce that

‖v‖W l+2,p(Ω) � 2C‖T−μ0,sh‖W l,p(Ω) (3.6)

which, together with Proposition 2.14, implies the estimate (3.2) for special
weights ϕμ0,s.

Thus, we reduced the proof of the regularity estimate (3.2) in weighted
spaces to the unweighted case ϕ ≡ 1. It remains to note that (3.2) with ϕ ≡
1 is a classical Lp-regularity estimate for solutions of the Laplace operator
(see, for example, [18, 29]). Proposition 3.1 is proved. �

Remark 3.2. The regularity estimate (3.2) holds not only for l =
−1, 0, 1, but we need it in the sequel only for these values of l. We also note
that the estimate (3.2) holds for the unweighted space since the spectrum
of the Laplacian in a cylinder with Dirichlet boundary conditions is strictly
negative.

The following proposition providing some uniform estimate for the
singular perturbed Laplace equation will be useful for approximating the
3D Navier–Stokes problem.

Proposition 3.3. Suppose that α > 0 is small, ϕ is a weight function
with exponential growth rate μ, and u solves the problem

u − α∆xu = h, u
∣∣
∂Ω

= 0 (3.7)

for some h ∈ Lp
ϕ(Ω). Then the following estimate holds:

α‖u‖W 2,p
ϕ (Ω) + ‖u‖Lp

ϕ(Ω) � C‖h‖Lp
ϕ(Ω), (3.8)

where the constant C depends only on μ and Cϕ, but is independent of α

and the form of weight ϕ. A similar result holds for W l,p
b,ϕ.

Proof. Indeed, after the scaling x̄ := α−1/2x, Equation (3.7) reads

ū − ∆x̄ū = h̄, ū
∣∣
∂Ω̄

= 0, Ω̄ := α−1/2Ω



3D Navier–Stokes Equations in Cylindrical Domains 275

and the weight ϕ should be replaced by ϕ̄(s̄) := ϕ(α1/2x̄). It is clear that
the regularity constant of the domain Ω̄ is at least not worse than for Ω
(if α is small enough) and the weight ϕ̄ will be of exponential growth rate
α1/2μ � μ with Cϕ̄ = Cϕ. By this reason, the estimate (3.2) of Proposition
3.1 hold for the scaled equation uniformly with respect to α, i.e.,

‖ū‖W 2,p
ϕ̄ (Ω̄) � C‖h̄‖Lp

ϕ̄(Ω)

(see. for example, [12, 30] for details). Returning back to the variable x, we
obtain the desired estimate (3.8) and complete the proof of the proposition.

�

Remark 3.4. An analog of Proposition 3.3 for more regular external
forces h ∈ W l,p

ϕ (Ω), l > 0, is not true since boundary layer terms may
appear. In the simplest 1D case, we have

y(x) − α2y′′(x) = 1, x ∈ [0, 1], y(0) = y(1) = 0,

the external force belongs to C∞, and the associated solution

y(x) = 1 − sinh(α−1x)

sinh(α−1)
− sinhα−1(1 − x)

sinh(α−1)

is a typical boundary layer solution which does not uniformly bounded in
any Cβ , β > 0, as α → 0.

Consider the Neumann type boundary value problems for the Lapla-
cian in a cylinder Ω. The main difficulty here is the fact that, in contrast
to the Dirichlet problems considered above, the Neumann problem for the
Laplacian has an essential spectrum at λ = 0, which makes the situation
much more delicate. We however start with the regularized Neumann type
problem, where the spectrum remains strictly negative.

Proposition 3.5. Let Ω be a cylinder. Consider the following bound-
ary value problem in Ω :

∆xu − u = 0, ∂nu
∣∣
∂Ω

= h0, (3.9)

Then for every 1 < p < ∞ and l = 0, 1, 2 there exists μ0 = μ0(p) such
that for every weight function of sufficiently small exponential growth rate

μ (μ � μ0) and every h0 ∈ W
l−1/p,p
ϕ (∂Ω) the problem (3.9) has a unique

solution u ∈ W l+1,p
ϕ (Ω) and the following estimate holds:

‖u‖W l+1,p
ϕ (Ω) � C‖h0‖W

l−1/p,p
ϕ (∂Ω)

, (3.10)

where the constant C depends on Cϕ, but is independent of the choice of

weight function ϕ. A similar result holds for W l,p
b,ϕ.
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Proof. In the case l = 1, 2, the estimate (3.10) can be verified ex-
actly as in Propositions 3.1 and 3.3 (by reducing to the homogeneous and
unweighted case). In the case l = 0, the situation is slightly more delicate

since we do not formulate the extension theorem f or the space W
−1/p,p
ϕ (∂Ω)

in Proposition 2.11 and, consequently, we need to work with a nonhomo-
geneous boundary value problem. Nevertheless, the reduction to the un-
weighted case based on introducing the function v := ϕμ0,su works in this
case as well. Indeed, this function satisfies

∆xv − v = hμ0(v), ∂nv
∣∣
∂Ω

:= T−μ0,sh0 (3.11)

and

‖hμ0(v)‖Lp(Ω) � Cμ0‖v‖W 1,p(Ω) (3.12)

Thus, we can represent the solution v of (3.11) as the sum v = v1 + v2,
where v1 solves the homogeneous problem

∆xv1 − v1 = hμ0(v), ∂nv1

∣∣
∂Ω

= 0 (3.13)

and v2 solves an analog of (3.9) with h0 replaced by T−μ0,sh0. We see that
the right-hand side of (3.11) belongs to Lp(Ω) and, consequently, due to the
classical Lp-regularity, we have

‖v1‖W 2,p(Ω) � C‖hμ0(v)‖Lp(Ω) � C1μ0‖v‖W 1,p(Ω). (3.14)

Assuming that the estimate (3.10) for the unweighted case ϕ = 1 and l = 0
is known and using (3.14), we infer

‖v‖W 1,p(Ω) � ‖v1‖W 1,p(Ω) + ‖v2‖W 1,p(Ω)

� C‖Tμ0,sh0‖W−1/p.p(∂Ω) + Cμ0‖v‖W 1,p(Ω),

which implies the estimate

‖v‖W 1,p(Ω) � 2C‖Tμ0,sh0‖W−1/p,p(∂Ω) (3.15)

if μ0 is small. Thus, the case of a general weight naturally reduces to the
case of ϕ ≡ 1 for l = 0. It remains to recall that for ϕ ≡ 1 the estimate (3.10)
is a classical Lp-regularity result for the Laplacian (see [29]). Proposition
3.5 is proved. �

To treat the Neumann problem without the regularizing term −u, we
introduce the following averaging operator with respect to the variable x′

((x1, x
′) ∈ R × ω := Ω):

(Su)(x1) :=
1

|ω|

∫

s∈ω

u(x1, s) ds. (3.16)
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The following proposition gives the solvability of the Neumann problem for
some natural closed subspace of the space of external forces h.

Proposition 3.6. Let Ω be a cylinder. Consider the boundary value
problem in Ω

∆xu = h, ∂nu
∣∣
∂Ω

= 0. (3.17)

Then for every 1 < p < ∞ and l = 0, 1, 2 there exists μ0 = μ0(p) such that
for every weight function of a sufficiently small exponential growth rate μ
(μ � μ0) and every h ∈ W l,p

ϕ (Ω) satisfying

Sh ≡ 0,

the problem (3.17) has a unique solution u ∈ W l+2,p
ϕ (Ω), Su ≡ 0 and the

following estimate holds:

‖u‖W l+2,p
ϕ (Ω) � C‖h‖W l,p

ϕ (Ω), (3.18)

where the constant C depends on Cϕ, but is independent of the choice of

weight function ϕ. A similar result holds for W l,p
b,ϕ.

Proof. Note that the operator S commutes with the multiplication
operator Tμ0 and with the x1-derivatives ∂x1 . Arguing as above, we can
reduce the proof of (3.18) to the unweighted case ϕ ≡ 1. Therefore, we will
prove (3.18) only in the case ϕ ≡ 1.

We begin with the case p = 2. We can multiply Equation (3.17) by u
and, integrating by parts, find

‖∇xu‖2
L2(Ω) � ‖h‖L2(Ω)‖u‖L2(Ω). (3.19)

Since we additionally assumed that Su ≡ 0, we have the Friedrichs inequality

‖u‖W 1,2(Ω) � C‖∇xu‖L2(Ω) (3.20)

which, together with (3.19), implies

‖u‖W 1,2(Ω) � C‖h‖L2(Ω). (3.21)

To prove the estimate (3.18) for p = 2 and ϕ ≡ 1, we use the following
standard interior regularity estimate:

‖u‖2
W l+2,2(Ωs) � C(‖u‖2

W 1,2(Ωs−1∪Ωs∪Ωs+1)
+ ‖h‖2

W l,2(Ωs))

� C1

∫

y∈Ω

e−α|s−y|(‖u‖2
W 1,2(Ωy) + ‖h‖2

W l,2(Ωy)) dy. (3.22)

Integrating this estimate over s ∈ R and using (2.12) and (3.21), we infer
the unweighted estimate (3.18) for p = 2. Thus, due to the trick with the
multiplication operator Tμ0,s, the estimate (3.18) is verified for p = 2 and
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all weights with sufficiently small exponential growth rate. Moreover, we

also have an analog of the estimate (3.18) with p = 2 for W l,p
b,ϕ(Ω).

Consider the case p �= 2. We first consider the case p > 2 and prove

the estimate (3.18) for the spaces W l,p
b (Ω). Since W l,p

b (Ω) ⊂ W l,2
b (Ω), we

already have the estimate

‖u‖W 1,2
b (Ω) � C‖h‖L2

b(Ω) � C1‖h‖Lp
b(Ω). (3.23)

Using the interior regularity estimate

‖u‖W l+2,p(Ωs) � C(‖u‖W 1,2(Ωs−1∪Ωs∪Ωs+1) + ‖h‖W l,p(Ωs))

� C1 sup
y∈R

{e−α|s−y|(‖u‖W 1,2(Ωy) + ‖h‖W l,p(Ωy))},

taking the supremum over s ∈ R of both sides of this inequality, and using
(2.3) and (3.23), we finally get

‖u‖W l+2,p
b (Ω) � C‖h‖W l,p

b (Ω). (3.24)

Let 1 < p < 2. We split the solution u of (3.17) as u = u1 + u2, where u1

solves the problem

∆xu1 − u1 = h, ∂nu1

∣∣
∂Ω

= 0 (3.25)

and u2 solves the problem

∆xu2 = −u1, ∂nu2

∣∣
∂Ω

= 0. (3.26)

By the Lp-regularity (see Proposition 3.5), for Equation (3.25) we have

‖u1‖W l+2,p
b (Ω) � C‖h‖W l,p

b (Ω). (3.27)

Moreover, applying the operator S to both sides of Equation (3.25) and
using Sh ≡ 0, we find

(Su1)
′′ − Su1 ≡ 0 and, consequently, Su1 ≡ 0. (3.28)

Furthermore, by the embedding theorem (see Proposition 2.11),

‖u1‖W l,2(Ω) � C‖u1‖W l+2,p
b (Ω) (3.29)

for every 1 < p < 2. Thus, we can apply the estimate (3.23) to Equation
(3.26) which, together with (3.27), yields (3.24) for 1 < p < 2.

Thus, the estimate (3.24) is verified for all 1 < p < ∞. Due to the
above described trick with the multiplication operator Tμ0,s, we can deduce

the estimate (3.18) for the spaces W l+2,p
b,ϕ (Ω) for all weight functions of

sufficiently small exponential growth rate.
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It remains to obtain the estimate for the spaces W l,p
ϕ (Ω). Note that

(3.18) for the spaces W l,p
b,ϕµ0,s

(Ω) implies, in particular, that

‖u‖p
W l+2,p(Ωs)

� C sup
y∈R

{e−μ0p|s−y|‖h‖p
W l,p(Ωy)

}

� C1

∫

y∈Ω

e−μ0p|s−y|‖h‖p
W l,p(Ω)

dy. (3.30)

Multiplying (3.30) by ϕ(s)p, integrating over s ∈ R, and using (2.12), we
finally obtain the estimate (3.18) and complete the proof of Proposition
3.6. �

Remark 3.7. As we see from the proof of Proposition 3.6, the weighted
regularity estimates can be deduced not only from the unweighted estimates

in W l,p(Ω), but also from their analogs in the spaces W l,p
b (Ω). The last

scale of spaces is sometimes (for example, in the proof of Proposition 3.6)
more convenient since, in contrast to spaces Lp(Ω), the spaces Lp

b(Ω) have
usual (for bounded domains) embedding properties (Lp1

b (Ω) ⊂ Lp2

b (Ω) for
p1 � p2).

Note that the assumption Sh ≡ 0 in Proposition 3.6 is essential for
the weighted estimate (3.18). In the general case Sh �= 0, for Su = (Su)(x1)
we have the following equation:

(Su)(x1)
′′ = (Sh)(x1), x1 ∈ R, (3.31)

whose solution Su does not possess any weighted regularity estimates for
general h. Fortunately, for problems arising in the weighted regularity the-
ory for the Helmholtz operator, the function Sh has a special structure,
which allows us to take one primitive of it remaining in weighted Sobolev
classes. To be more precise, the following proposition holds.

Proposition 3.8. Let Ω be a cylinder. Consider the Neumann bound-
ary value problem in Ω

∆xu = 0, ∂nu
∣∣
∂Ω

= lng, (3.32)

where g ∈ [Lp(Ω)]2 is a divergence-free vector field

div g ≡ 0. (3.33)

Then for every 1 < p < ∞ and l = 0, 1, 2 there exists μ0 = μ0(p) such that,
for every weight function of a sufficiently small exponential growth rate μ
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(μ � μ0) and every g ∈ W l,p
ϕ (Ω) satisfying (3.33), the problem (3.32) has a

unique solution (up to adding a constant) satisfying ∇xu ∈ W l,p
ϕ (Ω), and

(Su)(x1)
′ = (Sg1)(x1), x1 ∈ R (3.34)

and the following estimate holds:

‖∇xu‖W l,p
ϕ (Ω) � C‖g‖W l,p

ϕ (Ω), (3.35)

where the constant C depends on Cϕ, but is independent of the choice of

weight function ϕ. A similar result holds for W l,p
b,ϕ.

Proof. For the sake of simplicity, we deduce only the a priori estimate
(3.35). The existence and uniqueness of a solution can be established in a
standard way (see also [4]).

We first define an auxiliary function v as a solution of the problem

∆xv − v = 0, ∂nv
∣∣
∂Ω

= lng. (3.36)

By Propositions 3.5 and 2.13,

‖v‖W l+1,p
ϕ (Ω) � C‖lng‖

W
l−1/p,p
ϕ (∂Ω)

� C2‖g‖W l,p
ϕ (Ω). (3.37)

Applying the x′-averaging operator S to Equation (3.36), we find

(Sv)(x1)
′′ − (Sv)(x1) = − 1

|ω|

∫

s∈∂ω

(�n, g(x1, s)) ds, x1 ∈ R. (3.38)

Furthermore, since the vector field g is divergence free, we have

1

|ω|

∫

s∈∂ω

(�n, g(x1, s)) ds = (S[∂x2g2 + ∂x3g3])(x1) = −(Sg1)(x1)
′

and, consequently,

(Sv)(x1)
′′ − (Sv)(x1) = (Sg1)(x1)

′. (3.39)

Consider the remainder w := u − v which satisfies the problem

∆xw = −v, ∂nw
∣∣
∂Ω

= 0. (3.40)

By Proposition 3.6, the function w̄ := w−Sw satisfies the following estimate:

‖w̄‖W l+1,p
ϕ (Ω) � C‖v̄‖W l,p

ϕ (Ω) � C1‖g‖W l,p
ϕ (Ω). (3.41)

It remains to consider the equation for Sw, i.e.,

(Sw)(x1)
′′ = −(Sv)(x1)

which, together with (3.39), yields

(Su)(x1)
′′ = (Sg1)(x1)

′. (3.42)
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This relation shows that we can take one primitive and satisfy the condition
(3.34). It remains to note that the function (Su)(x1) is independent of x′

and, consequently,

∇xu = ∇xū + ((Su)′, 0, 0). (3.43)

Thus, the estimates (3.37), (3.41), together with the obvious fact that

‖Sg‖W l,p
ϕ (R) � C‖g‖W l,p

ϕ (Ω), (3.44)

imply (3.35), which completes the proof of Proposition 3.8. �

4. The Helmholtz Projector and
Stationary Stokes Problem

In this section, we discuss a weighted analog of the classical Helmholtz
decomposition of the space [L2(Ω)]2 to divergence-free and gradient vector
fields, which is necessary for excluding the pressure from Navier–Stokes
equations. We need to define the corresponding spaces of divergence-free
vector fields.

Definition 4.1. Let Ω be a cylinder. For any l � 0, 1 < p < ∞
and weight function ϕ of exponential growth rate we define the space of
divergence-free vector fields

Hl,p
ϕ (Ω) := {v ∈ [W l,p

ϕ (Ω)]3, div v ≡ 0, lnv
∣∣
∂Ω

= 0, Sv1 ≡ 0} (4.1)

which is considered as a closed subspace of W l,p
ϕ (Ω) and is endowed by

the norm induced by this embedding. Here, the normal component lnv of
the trace on the boundary is well defined due to Proposition 2.13 and the

x′-averaging operator S is defined by (3.16). The spaces Hl,p
b,ϕ(Ω) can be

defined in a similar way. For the sake of simplicity, we write Hp
ϕ(Ω) and

Hp
b,ϕ(Ω) instead of H0,p

ϕ (Ω) and H0,p
b,ϕ(Ω) respectively.

We define the space Vp
ϕ(Ω) as follows:

Vp
ϕ(Ω) := {v ∈ H1,p

ϕ (Ω), v
∣∣
∂Ω

= 0}.
The space Vp

b,ϕ(Ω) is defined in a similar way.

The following natural proposition clarifies the additional conditions
lnv
∣∣
∂Ω

= 0 and Sv1 ≡ 0 in formula (4.1).
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Proposition 4.2. Let Ω be a cylinder, and let ϕ be a weight function
of exponential growth rate μ, 1 < p < ∞. Then the space Hp(Ω) coincides
with the closure of all divergence-free vector fields v ∈ [D(Ω)]3 in the topology
of [Lp

ϕ(Ω)]3 :

Hp
ϕ(Ω) =

[
v ∈ [D(Ω)]3, div v = 0

]
[Lp

ϕ(Ω)]2
, (4.2)

where [·]V denotes the closure in the topology of the space V .

Proof. Let v be a divergence-free vector field in [D(Ω)]3. It is obvious
that lnv

∣∣
∂Ω

= 0. Integrating the relation ∂x1v1 = −∂x2v2 − ∂x3v3, we infer
that Sv1 ≡ const = 0 (since v1 has finite support). Since all these properties
are preserved under taking the closure (see Proposition 2.13), the right-hand
side of (4.2) is a subset of the left one.

It remains to approximate every function in u ∈ Hp
ϕ(Ω) by divergence-

free vector fields in [D(Ω)]3. Since the assertion is well known for bounded
domains (see, for example, [27]), it suffices to approximate u by functions
un ∈ Hp

ϕ(Ω) with bounded support. For this purpose, we introduce a family
of cut-off functions θn such that θn(s) ∈ [0, 1], θn(s) = 1 for s ∈ [−n, n],
θn(s) = 0 for s /∈ [−n − 1, n + 1], and ϕ′

n(s) is uniformly bounded with
respect to s and n.

Consider the vector-field ũn(x) := θn(x1)u(x). It is obvious that
ũn → u in [Lp

ϕ(Ω)]3, the support of ũn is bounded, is contained in the
subdomain Ω[−n−1,n+1] := [−n − 1, n + 1] × ω, and has zero trace of the
normal component on the boundary and zero mean flux. The only problem
is that vector field is not divergence-free:

div ũn = ϕ′
nu1 := hn(x) = hn(x)χΩ−n−1 (x) + hn(x)χΩn(x)

:= hn
+(x) + hn

−(x)

(we implicitly used the fact that supp θ′n ⊂ [−n− 1,−n]∪ [n, n + 1]). More-
over, since u1 has the zero mean, we conclude that

∫

Ω−n−1

hn
−(x) dx =

∫

Ωn

hn
+(x) dx = 0.

Thus, there exist vector fields un
− ∈ [W 1,2

0 (Ω−n−1)]
3 and un

+ ∈ [W 1,2
0 (Ω)]3

such that

div un
± = hn

±, ‖un
−‖W 1,p(Ω−n−1) � C‖u1‖Lp(Ω−n−1),

‖un
+‖W 1,p(Ωn) � C‖u1‖Lp(Ωn),

(4.3)
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where the constant C is independent of n (see [27]). Extending the vector
fields un

± by zero outside Ω−n−1∪Ωn, we obtain the vector fields un
± defined

in the entire cylinder Ω and satisfying (4.3) (we used the zero boundary
conditions). Finally, the estimates (4.3) show that un

± ∈ Lp
ϕ(Ω) (and even

W 1,p
ϕ (Ω)) tend to zero as n → ∞ in these spaces. Setting

un := ũn − un
+ − un

−, (4.4)

we obtain the desired converging sequence of divergence-free vector fields
with finite support and thereby complete the proof. �

Remark 4.3. Arguing as above, one can verify the description for
Vp

ϕ(Ω):

Vp
ϕ(Ω) =

[
v ∈ [D(Ω)]3, div v = 0

]
[W 1,p

ϕ (Ω)]2
(4.5)

As usual, we define an operator Π : [L2(Ω)]3 → H2(Ω) as the orthopro-
jector to the divergence-free vector fields. As is known (see, for example,
[27] or [28]), every vector field u ∈ [L2(Ω)]3 can be uniquely split into
the sum of a divergence-free vector field v ∈ H2(Ω) and a potential field
∇xp ∈ [L2(Ω)]3 for an appropriate p ∈ H1

loc(Ω):

u = v + ∇xp, div v = 0, v := Πu. (4.6)

The following theorem shows that an analogous splitting holds in weighted
spaces.

Theorem 4.4. Let Ω be a cylinder, and let Π be the orthoprojector
defined above. Then, for every 1 < p < ∞ and l = 0, 1, 2, there exists a suffi-
ciently small positive μ0 such that for every weight function with exponential
growth rate μ � μ0 this projector can be uniquely extended by continuity to
a bounded operator from [W l,p

ϕ (Ω)]3 to Hl,p
ϕ (Ω) and the following estimate

holds:

‖Πu‖Hl,p
ϕ (Ω) � C‖u‖[W l,p

ϕ (Ω)]3 , (4.7)

where the constant C depends only on p, l, and Cϕ, but is independent of
the choice of weight ϕ. Thus, for every u ∈ [W l,p

ϕ (Ω)]3 there is a unique

decomposition in the form of (4.6) with v ∈ Hl,p
ϕ (Ω) and p ∈ W l+1,p

loc (Ω). In

this formula, v = Πu. A similar result holds for W l,p
b,ϕ.

Proof. Let u ∈ [W l,p
ϕ (Ω)]3. We construct the pressure p in the de-

composition (4.6). Taking formally the divergence of both sides of (4.6), we
get

∆xp = div u. (4.8)
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Using lnv
∣∣
∂Ω

= 0, we infer the boundary condition for p:

∂np
∣∣
∂Ω

= lnu
∣∣
∂Ω

. (4.9)

We however note that the right-hand side of (4.9) is ill-posed for arbitrary
u ∈ [Lp(Ω)]3. To overcome this difficulty, we (following [4]) introduce an
auxiliary function p1 which solves the problem

∆xp1 = div u, p1

∣∣
∂Ω

= 0 (4.10)

and then the remainder p̄ := p − p1 solves the problem

∆xp̄ = 0, ∂np̄
∣∣
∂Ω

= ln(u −∇xp)
∣∣
∂Ω

. (4.11)

Note that div(u − ∇xp1) = 0 and, consequently, by Proposition 2.13, the
trace ln(u−∇xp1) on the boundary is well defined and we can apply Propo-
sition 3.8 which provides the unique solvability (up to a constant) of (4.11)
and the estimate (3.35) for the gradient of p̄. It remains to note that the
condition (3.34) now reads

∂x1Sp̄ = Su1 − ∂x1Sp1 and, thus S∂x1p = Su1,

which shows that p is well defined (Sv1 = Su1 − S∂x1p = 0, div v = 0
and lnv = 0). From the estimates (3.35) for ∇xp̄ and (3.2) for ∇xp1, we
immediately obtain an analog of the estimate (4.7) for ∇xp. Since Πu :=
v = u −∇xp, we have the estimate (4.7) for Π. �

Corollary 4.5. Let the assumptions of Theorem 4.4 hold, and let
v ∈ Hp

ϕ(Ω). Then for every potential vector field w = ∇xp such that w ∈
[Lq

ϕ−1(Ω)]3

(v, w)[L2(Ω)]3 = 0. (4.12)

By Proposition 4.2, the function v can be approximated (in the metric
of Lp

ϕ(Ω)) by a sequence of smooth divergence-free vector fields with com-
pact support. Since for such vector fields (4.12) is obvious, we can pass to
the limit and obtain (4.12) for all v ∈ Hp

ϕ(Ω).

The following proposition gives the estimate for the weighted norms
of the commutator of Π and the multiplication operator Tμ,x0 introduced
in Proposition 2.14.

Proposition 4.6. Let Ω be a cylinder, 1 < p < ∞, l = 0, 1, 2 and
Tμ,x0 is a multiplication by the special weight ϕμ,x0(x1). Then there exists
μ0 = μ0(p) > 0 such that, for every weight function of exponential growth
rate ε � μ0, every μ � μ0 and every x0 ∈ R, we have

‖(Tμ,x0 ◦ Π − Π ◦ Tμ,x0)u‖W l+1,p

ϕ(ϕµ,x0 )−1 (Ω) � Cμ‖u‖W l,p
ϕ (Ω) (4.13)
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where the constant C depends on Cϕ, but is independent of μ, u, x0 and on

the choice of the weight ϕ. Moreover, a similar result holds for W l,p
b,ϕ(Ω).

Proof. Let u ∈ W l,p
ϕ (Ω) be arbitrary, and let

u = v + ∇xp, ϕu = vϕ + ∇xpϕ (4.14)

be decompositions (4.6) for functions u and ϕu respectively (which exist
due to Theorem 4.4) and ϕ := ϕμ,x0 . Then

∆xpϕ = div(ϕu), ∆xp = div u, ∂np = lnu, ∂npϕ = ϕlnu.

Let Pϕ := pϕ − ϕp. Then this function solves the problem

∆xPϕ = ϕ′u1 − 2ϕ′∂x1p − ϕ′′p, ∂nPϕ = 0. (4.15)

However, from Proposition 3.6 we obtain the weighted estimate of P̄ϕ :=
Pϕ − SPϕ only. Moreover, from Theorem 4.4 we are able to extract the
weighted estimate only for p̄ := p − Sp. To overcome this difficulty, we
recall that for proving (4.13) we only need that

‖vϕ − ϕv‖W l+1,p

ϕϕ−1 (Ω) = ‖∇xpϕ − ϕ∇xp‖W l+1,p

ϕϕ−1 (Ω) � Cμ‖u‖W l,p
ϕ (Ω) (4.16)

We claim that for estimating this quantity it suffices to have the proper
estimates for P̄ϕ and p̄ only. Indeed,

∇xpϕ − ϕ∇xp =

(
∂x1P̄ϕ + ϕ′p̄ − ∂x1SPϕ − ϕ′Sp

∇x′P̄ϕp

)
.

Furthermore, since the mean flux of v and vϕ are equal to zero, from (4.14)
we conclude that

∂x1Spϕ = ϕSu1, ∂x1Sp = Su1 (4.17)

and, consequently,

∂x1SPϕ + ϕ′Sp = ∂x1(Spϕ − ϕSp) + ϕ′Sp = ∂x1Spϕ − ϕ∂x1Sp

= ϕSu1 − ϕSu1 = 0.

Thus, to complete the proof, we need only estimates for P̄ϕ and p̄.

As in the proof of Theorem 4.4, we have the estimate

‖p̄‖W l+1,p
ϕ (Ω) � C‖u‖W l,p

ϕ (Ω) (4.18)

which, together with the estimate (2.6) for ϕ′, give the required estimate
for ϕ′p̄. So, we only need to estimate ∇xP̄ϕ. For this purpose, applying the
operator (Id−S) to Equation (4.15), we get

∆xP̄ϕ = Hu(x) := ϕ′ū1 − 2ϕ′∂x1 p̄ − ϕ′′p̄, ∂nP̄ϕ = 0. (4.19)
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Using the estimate (4.18), together with the inequality (2.6) for weights ϕ,
we conclude that

‖Hu‖W l,p

ϕ−1ϕ
(Ω) � Cμ‖u‖W l,p

ϕ (Ω),

where C is independent of μ. Applying the result of Proposition 3.6 to
Equation (4.19) (SP̄ϕ = 0!), we finally find

‖P̄ϕ‖W l+2,p

ϕ−1ϕ
(Ω) � Cμ‖u‖W l,p

ϕ (Ω)

which completes the proof of Proposition 4.6 for the spaces W l,p
ϕ . The case

of spaces W l,p
b,ϕ is treated in a similar way. �

Now, we start to study the Stokes operator A := Π∆x in weighted
spaces. For this purpose, we need to define the spaces of distributions
associated with divergence-free vector fields. the corresponding function
spaces.

Definition 4.7. Let Ω be a cylinder, and let Ddiv(Ω) be the space
of all smooth divergence-free vector fields in Ω with compact support. As
usual, we denote by D′

div(Ω) the space of all linear continuous functionals
on Ddiv(Ω). We denote also by H−1,p(Ωs) ⊂ D′

div(Ωs) the conjugate space
to Vq(Ωs) equipped with the standard norm.

Finally, for every weight function ϕ of exponential growth rate μ we
define the spaces H−1

ϕ (Ω) and H−1
b,ϕ(Ω) as subspaces of D′

div(Ω) with the
following finite norms

‖u‖p

H−1,p
ϕ (Ω)

:=

∫

s∈Ω

ϕ(s)p‖u‖p
H−1,p(Ωs) ds < ∞,

‖u‖H−1,p
b,ϕ

(Ω) := sup
s∈R

{ϕ(s)‖u‖H−1,p(Ωs)} < ∞.

Arguing as in Proposition 2.8, one can show that

H−1,p
ϕ (Ω) = [Vq

ϕ−1(Ω)]∗. (4.20)

We however note that the spaces H−1,p
ϕ (Ω) are not subspaces of usual distri-

butions D′(Ω) and, in fact, larger than the corresponding spaces [W−1,p
ϕ (Ω)]2

of distributions. Nevertheless, there is a natural map from [W−1,p
ϕ (Ω)]2 to

H−1,p
ϕ (Ω) (which is usually considered as an extension of the projector Π to

the negative Sobolev spaces and is also denoted by Π)

〈Πu, v〉div := 〈u, v〉 , div v = 0, (4.21)
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where, on the left-hand side, we have the pairing in D′
div(Ω) × Ddiv(Ω)

and, on the right-hand side, there is the standard pairing in the sense of
distributions.

Thus, the Stokes operator A = Π∆x can be naturally extended to the
operator from Vp

ϕ(Ω) to H−1,p
ϕ (Ω) (and, analogously, in the spaces Vp

b,ϕ(Ω)).

We will study the linear Stokes equation in a cylinder Ω:

∆xu + ∇xp = g, u
∣∣
∂Ω

= 0, div u = 0 (4.22)

or, in the equivalent operator form,

Au = Πg.

We first recall one standard regularity result for the unweighted case.

Proposition 4.8. For any g ∈ W l,p(Ω), where l � −1 is integer and
1 < p < ∞, there exists a unique solution (u, p) (up to adding a constant
to p; in the sense of distributions) such that u ∈ Vp(Ω) ∩ Hl+2,p(Ω), p̄ :=
p − Sp ∈ W l+1,p(Ω) such that

‖u‖W l+2,p(Ω) + ‖∇xp‖W l,p(Ω) + ‖p̄‖W l+1,p(Ω) � C‖g‖W l,p(Ω), (4.23)

where the constant C is independent on u.

Indeed, at least for bounded domains, this assertion is well known (see,
for example, [27, Proposition I.2.3]) even for the nonhomogeneous Stokes
problem. In the Hilbert case p = 2, l = −1, the result follows immediately
from the energy estimate. For other l and p it can be easily verified by
reducing the problem to the case of bounded domains via the standard
localization technique (see also [3] and references therein).

Note that, in contrast to the case of bounded domains, we are now
able to control the Lp-norms of pressure function p̄ := p−Sp and ∂x1Sp and
the mean pressure Sp may even grow as |x1| → ∞.

Our goal is to obtain a weighted analog of Proposition 4.8. For this
purpose, it is convenient to consider a more general nonhomogeneous analog
of this equation:

∆xu + ∇xp = g, Su1 ≡ 0, u
∣∣
∂Ω

= 0,

div u = h
(4.24)

for a function h such that

Sh ≡ 0. (4.25)
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Theorem 4.9. For any integer l � −1 and 1 < p < ∞ there exists
μ0 = μ0(p, ω) > 0 such that for any weight function ϕ of exponential growth
rate μ � μ0, g ∈ W l,p

ϕ (Ω), and h ∈ W l+1,p
ϕ (Ω) satisfying the zero flux

condition (4.25) the problem (4.24) possesses a unique solution (u, p) such
that u ∈ W l+2,p

ϕ (Ω), p̄ ∈ W l+1,p
ϕ (Ω) and the following estimate holds:

‖u‖W l+2,p
ϕ (Ω) + ‖∇xp‖W l,p

ϕ (Ω) + ‖p̄‖W l+1,p
ϕ (Ω)

� C(‖g‖W l,p
ϕ (Ω) + ‖h‖W l+1,p

ϕ (Ω)), (4.26)

where the constant C depends on Cϕ, but is independent of the form of ϕ

and g and h. A similar result holds for W l,p
b,ϕ.

Proof. We first consider the unweighted nonhomogeneous case ϕ = 1
and h �= 0. In the case l = −1, it can be easily reduced to the homogeneous
case h = 0 by substructing a function ũ ∈ W 1,p

0 (Ω) satisfying div ũ = h. To
construct such a function, it suffices to solve the problem

div us = h, u
∣∣
∂Ωs

= 0, x ∈ Ωs.

Since Sh ≡ 0, the mean value of h in Ωs is also equal to zero and, conse-
quently, this problem has a solution us such that

‖us‖W 1,p(Ωs) � C‖h‖Lp(Ωs),

where C is independent of s. The required function ũ can be defined as
follows:

ũ(x) := ũn(x), x ∈ Ωn.

Thus, the assertion of the theorem is verified in the case l = −1 and ϕ =
1. Using this estimate and the localization technique, one can verify the
estimate for every integer l � −1.

Consider the weighted case ϕ �= 0. As usual, it suffice to verify the
estimate (4.26) for special exponential weights ϕμ,x0(x1) (a general result
follows then from the representations (2.11) and (2.13)). We restrict our-
selves to the a priori estimate (4.26) (the existence of a solution follows then
in a standard way, for example, by approximating g and h by functions with
finite support and passing to the limit).

Let (u, p) be a desired solution of the problem (4.24), and let ϕ :=
ϕμ,x0(x1) for some x0 ∈ R. We set

uϕ := ϕu, pϕ := ϕp −
x1∫

0

ϕ′(y)(Sp)(y) dy.
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In the new variables, the problem (4.24) takes the form

∆xuϕ + ∇xpϕ = gϕ := ϕg + 2ϕ′∂x1u1 + ϕ′′u1 + ϕ′p̄�e1,

div uϕ = hϕ := ϕh + ϕ′u1,
(4.27)

where �e1 := (1, 0, 0). We see that Shϕ ≡ 0 (since Su1 ≡ 0). Moreover, using
the inequalities (2.6) and the obvious fact that p̄ϕ = ϕp̄, we find

‖gϕ‖W l,p(Ω) + ‖hϕ‖W l+1,p(Ω) � C(‖g‖W l,p
ϕ (Ω) + ‖h‖W l+1,p

ϕ (Ω))

+ Cμ(‖uϕ‖W l+2,p(Ω) + ‖p̄ϕ‖W l+1,p(Ω)), (4.28)

where the constant C is independent of μ (we implicitly used Proposition
2.14). Applying the unweighted estimate (4.26), which is already proved,
to Equation (4.27), we find

‖uϕ‖W l+2,p(Ω) + ‖∇xpϕ‖W l,p(Ω) + ‖p̄ϕ‖W l+1,p(Ω)

� C(‖gϕ‖W l,p(Ω) + ‖hϕ‖W l+1,p(Ω)).

Combining this estimate with (4.28) and fixing μ = μ0 small enough, we
arrive at the inequality

‖uϕ‖W l+2,p(Ω) + ‖∇xpϕ‖W l,p
ϕ (Ω) + ‖p̄ϕ‖W l+1,p(Ω)

� C(‖g‖W l,p
ϕ (Ω) + ‖h‖W l+1,p

ϕ (Ω))

which, together with Proposition 2.14, yields (4.26) and completes the proof
of the theorem. �

We conclude the section by formulating several useful corollaries of
the theorem.

Corollary 4.10. Let Ω be a cylinder, and let A := Π∆x. Then for
every 1 < p < ∞ and l = 0,−1 there exists positive μ0 = μ0(p) such that for
every weight function of a sufficiently small exponential growth rate (μ � μ0)
operator A realizes an isomorphism between the spaces Vp

ϕ(Ω) ∩ Hl+2,p
ϕ (Ω)

and Hl,p
ϕ (Ω) and the following estimate holds:

C−1‖u‖Hl+2,p
ϕ (Ω) � ‖Π∆xu‖Hl,p

ϕ (Ω) � C‖u‖Hl+2,p
ϕ (Ω), (4.29)

where the constant C depends on Cϕ, but is independent of the choice of the

weight function ϕ. A similar result holds for Hl,p
b,ϕ(Ω).

Proof. The right estimate in (4.29) follows from Theorem 4.4 (in the
case l = 0) and the definition of Π for Sobolev spaces with negative exponent
(l = −1). The left one immediately follows from Theorem 4.9 with h ≡ 0
by applying the projector Π to both sides of (4.22) (in the case l = −1, we
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use the obvious fact that for every g ∈ H−1,p
ϕ (Ω) there exists an extension

g̃ ∈ W−1,2
ϕ (Ω) such that Πg̃ = g). �

Corollary 4.11. Let the assumptions of Corollary 4.10 hold, and let
p = 2. Then, for every weight function with a sufficiently small growth
rate μ

C−1(ϕ∆xu, ϕ∆xu) � (ϕΠ∆xu, ϕΠ∆xu) � C(ϕ∆xu, ϕ∆xu), (4.30)

where (·, ·) denotes the standard inner product in [L2(Ω)]3 and the constant
C is independent of the choice of weight ϕ and u ∈ V2

ϕ(Ω) ∩H2,2
ϕ (Ω).

Indeed, the estimate (4.30) is an immediate consequence of (4.29) with
p = 2 and the following elliptic regularity estimate for the Laplacian in Ω
with Dirichlet boundary conditions (see Proposition 3.1):

C−1‖u‖W 2,2
ϕ (Ω) � ‖∆xu‖L2

ϕ(Ω) � C‖u‖W 2,2
ϕ (Ω). (4.31)

5. Auxiliary Nonstationary Stokes Problem

In this section, we study the following nonstationary linear Stokes problem
in a cylindrical domain Ω:

∂tw = ∆xw −∇xq,

div w = h(t), Sw1 ≡ 0,

w
∣∣
∂Ω

= 0, Πw
∣∣
t=0

= 0,

(5.1)

where h(t) = h(t, x) is a given function such that

Sh(t)(x1) ≡ 0, t ∈ [0, T ], x1 ∈ R. (5.2)

This auxiliary problem is essentially used in the following section for ob-
taining the weighted energy estimates for weak solutions of the nonlinear
Navier–Stokes system.

The following theorem yields a priori estimates and the solvability
result for the problem (5.1).

Theorem 5.1. There exists a positive μ0 such that for any weight
function ϕ of sufficiently small exponential growth rate μ (μ � μ0) and

h ∈ L2([0, T ], W 1,2
ϕ (Ω)) ∩ C([0, T ], L2

ϕ(Ω)) (5.3)
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for which (5.2) is satisfied the problem (5.1) possesses a unique solution w
belonging to the class

w ∈ L2([0, T ], W 2,2
ϕ (Ω)) ∩ C([0, T ], W 1,2

ϕ (Ω)),

∂tΠw ∈ L2([0, T ], L2
ϕ(Ω)), q ∈ D′([0, T ]× Ω) (5.4)

and satisfying the estimates

T∫

0

e−α|t−s|(‖∂tΠw(s)‖2
L2

ϕ(Ω) + ‖w(s)‖2
W 2,2

ϕ (Ω)
) ds

� C

T∫

0

e−α|t−s|‖h(s)‖2
W 1,2

ϕ (Ω)
ds,

‖w(t)‖2
W 1,2

ϕ (Ω)
� C

(
‖h(t)‖2

L2
ϕ(Ω) +

T∫

0

e−α|t−s|‖h(s)‖2
W 1,2

ϕ (Ω)
ds
)
,

(5.5)

where α is a sufficiently small positive constant depending only on μ0 and
the constant C depends on Cϕ, but is independent of the choice of weight ϕ.

Proof. To solve (5.1), we will reduce it to the divergence-free case.
For this purpose, for every t ∈ [0, T ] we introduce v(t) = Kh(t) as a solution
of the stationary Stokes problem

∆xv −∇xr = 0, div v = h(t), v
∣∣
∂Ω

= 0. (5.6)

By Theorem 4.9, there exists positive μ0 such that, for every weight function
of sufficiently small exponential growth rate μ (μ � μ0) and every h ∈
W l,2

ϕ (Ω), l = 0, 1 satisfying (5.2), Equation (5.6) possesses a unique solution

v ∈ W l+1,2
ϕ (Ω), Sv1 ≡ 0, so the operator Kh(t) is well defined. Moreover,

the following estimate holds:

‖v‖W l+1,2
ϕ (Ω) � C‖h‖W l,2

ϕ (Ω), (5.7)

where the constant C depends on Cϕ, but is independent of the choice of
weight ϕ.

Introduce a new dependent variable w̄(t) := w(t)−v(t). This function
satisfies the equation

∂t(w̄ + v) = ∆xw̄ −∇xq̄, div w̄ = 0, w̄
∣∣
∂Ω

= 0, w̄
∣∣
t=0

= −Πv
∣∣
t=0

. (5.8)

Applying the projector Π to both sides of (5.8), we infer

∂t(w̄ + Πv) = Π∆xw̄, div w̄ = 0, w̄
∣∣
∂Ω

= 0, w̄
∣∣
t=0

= −Πv
∣∣
t=0

. (5.9)
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To obtain a priori estimate for solutions of (5.9), we multiply it by the
expression

ϕ2μ,x0(x1)(∂
2
x2

+ ∂2
x3

)(w̄ + Πv) + ∂x1 [ϕ2μ,x0(x1)∂x1(w̄ + Πv)],

where x0 ∈ R is arbitrary, μ > 0 is small enough, and the weight ϕ is defined
by (2.4). Then

1/2∂t(ϕ2μ,x0 , |∇x(w̄ + Πv)|2) + (ϕ2μ,x0Π∆xw̄, ∆xw̄)

= (ϕ′
2μ,x0

Π∆xw̄, ∂x1w̄) − (ϕ2μ,x0Π∆xw̄, ∆xΠv)

− (ϕ′
2μ,x0

Π∆xw̄, ∂x1Πv). (5.10)

We estimate the second term on the left-hand side of (5.10) using the esti-
mates (4.13), (4.7), and (4.30) in the following way:

(ϕ2μ,x0Π∆xw̄, ∆xw̄)

= (ϕ2μ,x0 , |Π∆xw̄|2) − (Π∆xw̄, (ϕ2μ,x0 ◦ Π − Π ◦ ϕ2μ,x0)∆xw̄)

� C(ϕ2μ,x0 , |∆xw̄|2) − C1(ϕ−2μ,x0 , |(ϕ2μ,x0 ◦ Π − Π ◦ ϕ2μ,x0)∆xw̄|2)
� (C2 − C3μ)‖∆xw̄‖2

L2
ϕµ,x0

(Ω), (5.11)

where the constants Ci are independent of μ and x0. Fixing μ small enough,
estimating the right-hand side of (5.10) by the Hölder inequality, and using
(4.7) and (4.29), we find

∂t(‖∇x(w̄ + Πv)‖2
L2

ϕµ,x0
(Ω)) + α(‖∆xw̄‖2

L2
ϕµ,x0

(Ω)

+ ‖∇x(w̄ + Πv)‖2
L2

ϕµ,x0
(Ω)) � C‖v‖2

W 2,2
ϕµ.x0

(Ω)
, (5.12)

where the positive constants α and C are independent of x0 ∈ R. Here, we
implicitly used the inequality

‖∇x(w̄ + Πv)‖L2
ϕµ,x0

(Ω) � C(‖∇xw̄‖L2
ϕµ,x0

(Ω) + ‖v‖W 2,2
ϕµ,x0

(Ω)).

Applying the Gronwall inequality to (5.12) and using the estimate
(5.7) with l = 1 (for every fixed t), we get

‖∇x(w̄(t) + Πv(t))‖2
L2

ϕµ,x0
(Ω) +

t∫

0

e−α(t−s)‖w̄(s)‖2
W 2,2

ϕµ,x0
(Ω)

ds

� C

t∫

0

e−α(t−s)‖h(s)‖2
W 1,2

ϕµ,x0
(Ω)

ds (5.13)
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(we used the equality w̄(0) + Πv(0) = Πu(0) = 0). Since the constant C in
(5.13) is independent of x0 ∈ R, multiplying (5.13) by ϕ2(x0), integrating
over x0 ∈ R and using (2.12), we obtain (exactly as in Section 3) an analog
of the estimate (5.13) not only for the special weights ϕμ,x0 , but also for an
arbitrary weight ϕ of exponential growth rate ε < μ.

To deduce the a priori estimate (5.5) from (5.13), it remains to recall
that w = w̄ + v and (due to (5.7) with l = 0)

‖w(t)‖W 1,2
ϕ (Ω) � C(‖∇x(w̄(t) + Πv(t))‖L2

ϕ(Ω) + ‖h(t)‖L2
ϕ(Ω)).

This estimate, together with (5.13), yields the required estimate for the
W 1,2

ϕ -norm of w(t); the estimate for the W 2,2
ϕ -norm of w is also an immediate

consequence of (5.13) and (5.7) with l = 1. Finally, the required estimate
for ∂tΠw = ∂t(w̄ + Πv) can be obtained from Equation (5.9). Thus, the a
priori estimate (5.5) is proved.

We also note that,

(Id−Π)∂tw(t) = ∂t(Id − Π)Kh(t) = (Id − Π)K∂th(t), (5.14)

and we see that, in contrast to the divergence free component of ∂tw its
potential component does not belong to L2

ϕ(Ω) for general external forces

h, but if, in addition, we have ∂th ∈ L2
ϕ(Ω), then (5.14) shows that ∂tu

belongs to L2
ϕ(Ω) and Equation (5.1) can be naturally understood as an

equality in L2([0, T ], L2
ϕ(Ω)).

The above observation gives a natural way for constructing the re-
quired solution w(t) of (5.1) based on the obtained a priori estimate.

Indeed, let us approximate the external force h ∈ C([0, T ], L2
ϕ(Ω)) ∩

L2([0, T ], W 1,2
ϕ (Ω)) by a sequence of smooth (with respect to t and x) func-

tions hn with compact support in x1 and satisfying (5.2). Having such hn,
we construct the associated functions vn ∈ C1([0, T ], W 2,2(Ω)) by Theo-
rem 4.9. Then the associated equation (5.8) for w̄n will be the standard
nonstationary Stokes equation with external forces ∂tv(t) belonging to the
unweighted space C([0, T ], W 2,2(Ω)).

As is well known, for such external forces the nonstationary Stokes
equation possesses a unique solution

w̄n ∈ W 1,2([0, T ], L2(Ω)) ∩ L2([0, T ], W 2,2(Ω))

(see, for example, [4] or [5]). Thus, the approximating sequence of solu-
tions wn is constructed. Note that, since wn(t) belongs to L2(Ω) and is
divergence-free,

Sw̄n
1 ≡ 0 and, consequently, Swn

1 ≡ 0. (5.15)
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Moreover, since hn have compact support in x1, then the a priori estimate
(5.5) holds for wn uniformly with respect to n → ∞. Passing now to the
limit n → ∞ and using (5.15) we construct the required solution w(t).
Theorem 5.1 is proved. �

Remark 5.2. Condition Sw1 ≡ 0 is essential for the uniqueness part
of Theorem 5.1. As we will see below, for every function c(t) ∈ Cb(R),
Equation (5.1) possesses a solution w satisfying Sw1(t) ≡ c(t).

We conclude this section by preparing some technical tools for ob-
taining the energy estimates for the nonlinear Navier–Stokes equation in a
cylindrical domain. For this purpose, we introduce function spaces.

Definition 5.3. Let Ω be a cylinder, and let Wb([0, T ] × Ω) consist
of vector fields u ∈ L2

b([0, T ],V2
b (Ω)) (see Remark 2.4) such that the t-

derivative ∂tu belongs to D′
div(Ω) a.e. and satisfies the condition

∂tu ∈ L2
b([0, T ],H−1,2

b (Ω)). (5.16)

Consider also an arbitrary weight function θ of a sufficiently small
exponential growth rate μ and a smooth nonnegative function ϕ satisfying
the following assumptions:

|ϕ′(s)| + ϕ(s) � Cθ(s), s ∈ R,

∫

s∈R

θ2(s) ds < ∞. (5.17)

To obtain the weighted energy estimates for the solution u ∈ Wb([0, T ]×Ω)
of the Navier–Stokes equation in L2

ϕ(Ω) (which contains L2
b(Ω) due to the

integrability assumption on ϕ), it would be natural to multiply it by the
function ϕ2u and integrate over Ω. However, unfortunately, this function
is no more divergence-free and, consequently, this way does not allow us to
exclude the pressure. Instead of that, we multiply, following [37]), by the
function ϕ2u − v, where v(t) := (Pϕu)(t) is an appropriate corrector which
makes this multiplier divergence-free. To this end, the function v(t) should
satisfy

div v(t) ≡ hu(t) := 2ϕϕ′u1(t) (5.18)

(here we have used that div u = 0). Due to the integrability assumption on

ϕ, the function h ∈ L2([0, T ], W 1,2
θ−1(Ω)); moreover, since Su1 ≡ 0, we have

Sh ≡ 0 and (5.2) is satisfied.
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Furthermore, it is convenient for us to fix the corrector v(t) := (Pϕu)(t)
as a solution of the following auxiliary nonstationary Stokes problem in Ω:

− ∂tv = ∆xv −∇xq, div v(t) = hu(t),

v
∣∣
∂Ω

= 0, Πv
∣∣
t=T

= 0.
(5.19)

This equation can be reduced to (5.1) by the time change t → T − t. Thus,
Theorem 5.1 and the estimate (5.5) hold for this equation as well. The
following theorem justifies our choice of the corrector Pϕ and gives the
main technical tool for the weighted energy estimates of the Navier–Stokes
equations.

Theorem 5.4. Let Ω be a cylinder, and let ϕ be a smooth nonnegative
function, satisfying (5.17) for some square integrable weight θ of sufficiently
small exponential growth rate μ. Then

Wb([0, T ]× Ω) ⊂ C([0, T ], L2
θ(Ω)). (5.20)

Let also Pϕ be defined as the solving operator for the problem (5.19). Then

d

dt

[
1/2(ϕ2u(t), u(t)) − (u(t), (Pϕu)(t))

]
+ (∇xu(t),∇x(ϕ2u(t)))

= (∂tu(t) − Π∆xu(t), ϕ2u − (Pϕu)(t)), (5.21)

which means that the function 1/2(ϕ2u, u)−(u, Pϕu) is absolutely continuous
as a scalar function on [0, T ] and (5.21) holds almost everywhere.

Proof. We give below only the formal derivation of (5.21) which can
be justified in a standard way (see [37]; the detailed proof of embedding
(5.20) also can be found there).

Since ∂tΠv+Π∆xv ≡ 0 and div u = div(ϕ2u−v) = 0, we can integrate
by parts and find

(∂tu − Π∆xu, ϕ2u − v) = (∂tu − ∆xu, ϕ2u − v)

= ∂t[1/2(ϕ2u, u) − (u, v)] + (∇xu,∇x(ϕ2u)) + (u, ∂tv + ∆xv)

= ∂t[1/2(ϕ2u, u) − (u, v)] + (∇xu,∇x(ϕ2u)). (5.22)

Theorem 5.4 is proved. �
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6. Leray Approximations to
Navier–Stokes Equations

The goal of this section is to verify the existence of spatially nondecaying
solutions for the following Leray–Navier–Stokes equation in a cylindrical
unbounded domain Ω:

∂tu + (Πw,∇x)u + Su1∂x1u = ∆xu −∇xp + g,

w − α∆xw = u, w
∣∣
∂Ω

= u
∣∣
∂Ω

= 0, div u = 0,

u
∣∣
t=0

= u0,

(6.1)

where α > 0 is a small regularizing parameter which is now fixed. To obtain
the unique solvability, we endow the problem by the additional mean flux
assumption

Su1(t) ≡ c, (6.2)

where c is a given constant which plays the role of a “boundary” condition
at x1 = ±∞.

The additional term Su1∂x1u = c∂x1u is related with the fact that, in
the case α = 0, on one hand, we should have the classical Navier–Stokes
problem and, on the other hand, w(t) = u(t) and Πw(t) = u(t) − (c, 0, 0).

For the sake of simplicity, we start with the case of zero flux

Su1(t) ≡ 0. (6.3)

The case of general flux c will be considered at the end of this section. We
assume that

g ∈ L2
b(R+, L2

b(Ω)), u0 ∈ H2
b(Ω), (6.4)

and the solution u satisfies the condition

u ∈ Wb([0, T ]× Ω) (6.5)

(see Definition 5.3) and Equation (6.1) in the sense of distributions D′
div(Ω)

over the divergence-free vector fields.

Remark 6.1. Due to Theorem 5.4,

u ∈ L∞([0, T ],H2
b(Ω)) ∩ C([0, T ],H2

ϕ(Ω))

for every square integrable weight function of exponential growth rate.
Hence the initial condition u

∣∣
t=0

= u0 is well defined. Moreover, since

u ∈ L∞([0, T ], L2
b(Ω)) ∩ L2

b([0, T ],V2
b (Ω)), we conclude that, due to Propo-

sition 3.3, Theorem 4.4, and the embedding W 2,2 ⊂ L∞,

Πw ∈ L∞([0, T ]× Ω). (6.6)
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Then the inertial term (Πw,∇xu) satisfies the condition

(Πw,∇x)u ∈ L2
b([0, T ] × Ω) ⊂ L2

b([0, T ],H−1,2
b (Ω)). (6.7)

Thus,

Π[(Πw,∇x)u] ∈ L2
b([0, T ],H−1,2

b (Ω)), (6.8)

where Π is the projector on the divergence-free vector fields introduced in
Section 4. Applying this projector to Equation (6.1), we obtain

∂tu = Π∆xu − Π[(Πw,∇x)u] + Πg, (6.9)

which shows that the derivative ∂tu satisfies the condition

∂tu ∈ L2
b([0, T ],H−1,2

b (Ω)) (6.10)

(see Corollary 4.10 for Π∆xu). This shows that the definition of a solution
u in the form (6.5) is not contradictory and Equation (6.1) can be under-
stood as the equality (6.9) in the space (6.10). We also note that the zero
flux assumption (6.3) is now incorporated into the definition of the space
Wb([0, T ]× Ω).

Introduce a special family of polynomial weight functions θε(s) =
θε,x0(s) by the formula

θε,x0(s) :=
(
1 + ε2|s − x0|2

)−1/2
, ε > 0, s, x0 ∈ R. (6.11)

It is obvious that these functions are weight functions of exponential growth
rate μ for every μ > 0 with a constant Cθε that depends on μ, but is
independent of x0 ∈ Ω and ε ∈ [0, 1]. This means that all the weighted
estimates formulated in the previous sections hold for the weights (6.11)
with constants independent of ε → 0, which is crucial for our method.
Moreover, these weights satisfy the following improved version of (5.17):

|ϕ′
ε,x0

(s)| � ε[ϕε,x0(s)]
2, ‖ϕε‖L2(R) < ∞. (6.12)

Thus, Theorem 5.4 holds for these weights.

The following proposition gives a basic uniform with respect to α a
priori estimate for the solutions of (6.1).
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Proposition 6.2. Let the above assumptions hold, and let u ∈ Wb([0, T ]×
Ω) be a solution of the Leray–Navier–Stokes problem (6.1). Then the fol-
lowing estimate holds:

sup
s∈[0,T ]

{e−β|t−s|‖u(s)‖2
L2

θε
(Ω)}

+ (C1 − C2ε‖u‖L∞([0,T ],L2
θε

(Ω)))

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds

� C3e
−βt‖u(0)‖2

L2
θε

(Ω) + C3

T∫

0

e−β|t−s|‖g(s)‖2
L2

θε
(Ω) ds, (6.13)

where the positive constants β and Ci, i = 1, 2, 3, are independent of small
α > 0, u, u0, g, ε → 0, T , and x0 (we recall that we write θε instead of
θε,x0 for brevity).

Proof. Let u be a solution of (6.9) in the above class. By Theorem
5.4, we have

d

dt
[1/2(θ2

εu(t), u(t)) − (u(t), v(t))] + (∇xu(t),∇x(θ2
εu(t)))

= −(θ2
εu(t) − v(t), (Πw(t),∇x)u(t) − g(t))), (6.14)

where v := Pθεu solves the auxiliary problem (5.19). Using (6.12) and the
inequality ‖u‖L2

θε
(Ω) � C‖∇xu‖L2

θε
(Ω), we transform (6.14) as follows:

d

dt
Ru(t) + βRu(t) + 1/2‖u(t)‖2

W 1,2
θε

(Ω)

� |(θ2
εu(t), (Πw(t),∇xu(t))| + |(v(t), (Πw(t),∇x)u(t))|

+ C‖g(t)‖2
L2

θε
(Ω) + C‖v‖2

L2
[θε]−1(Ω) := Hu(t), (6.15)

where Ru(t) := 1/2‖u(t)‖2
L2

θε
(Ω)

− (u(t), v(t)). Applying the Gronwall in-

equality to (6.15), we infer

Ru(t) +

t∫

0

e−β(t−s)‖u(s)‖2
W 1,2

θε
(Ω)

ds

� Ce−βtRu(0) + C

t∫

0

e−α(t−s)Hu(s) ds. (6.16)
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Now, we need to estimate the auxiliary function v(t). Note that, due to
(6.11), the function hu(t) := 2θεθ

′
εu(t) satisfies the estimate

‖hu(t)‖W l,2

[θε]−2 (Ω) � Cε‖u(t)‖W l,2
θε

(Ω), (6.17)

where the constant C is independent of ε → 0. Applying Theorem 5.1 to
the auxiliary equation (5.19), we deduce the estimate

‖v(t)‖2
W 1,2

[θε]−2(Ω)
� Cε2‖u(t)‖2

L2
θε

(Ω) + Cε2

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds,

T∫

0

e−β|t−s|‖v(s)‖2
W 2,2

[θε]−2(Ω)
ds � Cε2

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds,

(6.18)
where β > 0 is small enough and the constant C are independent of α and
ε → 0. Inserting these estimates into (6.16), after simple transformations,
we get

‖u(t)‖2
L2

θε
(Ω) +

t∫

0

e−β(t−s)‖u(s)‖2
W 1,2

θε
(Ω)

ds � Ce−βt‖u0‖2
L2

θε
(Ω)

+ Cε2

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds +

T∫

0

e−β|t−s|Hu(s) ds. (6.19)

In turns, this estimate, implies in a standard way that for sufficiently small
ε > 0

sup
s∈[0,T ]

{e−β|t−s|‖u(t)‖2
L2

θε
(Ω)} + C′

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds

� Ce−βt‖u0‖2
L2

θε
(Ω) + C

T∫

0

e−β|t−s|‖g(s)‖2
L2

θε
(Ω) ds



300 Sergey Zelik

+ C

T∫

0

e−β|t−s||(θ2
εu(s), (u(s),∇x)u(s))| ds

+ C

T∫

0

e−β|t−s||(v(s), (u(s),∇x)u(s))| ds

:= Iu0 + Ig + I1 + I2. (6.20)

To estimate the first term on the left-hand side of (6.20), it suffices to
multiply (6.19) by e−γ|t1−t|, where γ < β, take the supremum over t ∈ [0, T ],
and use Proposition 2.5. Similarly, to estimate the second term, we need
to integrate over t ∈ [0, T ] instead of taking the supremum (rigorously
speaking, we obtain (6.20) for some new exponent γ which is less than β
(say, γ = β/2), but, in order to simplify the notation, we denote this new
exponent by β as well).

Thus, to complete the proof of Proposition 6.2, we only need to esti-
mate the integrals I1 and I2 on the right-hand side of (6.20) uniformly with
respect to α → 0. For this purpose, we use the uniform (with respect to α)
estimate

‖Πw(t)‖L2
θε

(Ω) � C‖u(t)‖L2
θε

(Ω) (6.21)

which is an immediate consequence of Proposition 3.3 and Theorem 4.4.

For I1, integrating by parts in (θ2
εu, (Πw,∇x)u) and using the fact

that div u = 0, (6.21), and the inequality (6.12), we have

|(θ2
εu, (Πw,∇x)u)| = |(θεθ

′
ε(Πw)1, |u|2)| � Cε([θε]

3|Πw|, |u|2)
� C1ε‖Πw‖L2

θε
(Ω)‖u‖2

L4
θε

(Ω) � C2ε‖u‖L2
θε

(Ω)‖u‖2
W 1,2

θε
(Ω)

, (6.22)

where the constant C2 is independent of ε and α (we implicitly used the em-

bedding W 1,2
θε

(Ω) ⊂ L4
θε

(Ω), where the embedding constant is independent

of ε, see Proposition 2.11).

Inserting this estimate into the expression for I1, we obtain

I1 � C3ε‖u‖L∞([0,T ],L2
θε

(Ω))

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds. (6.23)

To estimate the integral I2, we use the following embedding estimate of
Proposition 2.11:

‖v‖L∞
[θε]−2(Ω) � C‖v‖W 2,2

[θε]−2(Ω),
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where again the constant C is independent of ε. Thus, we can estimate I2

as follows:

I2 � C

T∫

0

e−β|t−s|‖Πw(s)‖L2
θε

(Ω)‖∇xu(s)‖L2
θε

(Ω)‖v(s)‖W 2,2

[θε]−2(Ω) ds

� C‖Πw(s)‖L∞([0,T ],L2
θε

(Ω))

T∫

0

e−β|t−s|(ε‖u(t)‖2
W 1,2

θε
(Ω)

+ ε−1‖v(s)‖2
W 2,2

[θε]−2(Ω)
) ds. (6.24)

Using (6.18) and (6.21), we finally obtain

I2 � C3ε‖u‖L∞([0,T ],L2
θε

(Ω))

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds. (6.25)

Inserting the estimates (6.23) and (6.25) into the right-hand side of (6.20),
we obtain (6.13) and complete the proof of Proposition 6.2. �

To deduce the existence of a solution u ∈ Wb([0, T ] × Ω) of the prob-
lem (6.1) from the a priori estimate (6.13), we need the following simple
proposition.

Proposition 6.3. Let w ∈ L2
b(Ω), and let θε = θε,x0 be the weight

function defined by (6.11). Then the following estimate holds:

‖w‖L2
θε

(Ω) � Cε−1/2‖w‖L2
b(Ω), (6.26)

where the constant C is independent of ε → 0 and x0 ∈ R.

Proof. According to (2.11), we have

‖w‖2
L2

θε
(Ω) � C

∫

s∈R

θε(s)
2‖w‖2

L2(Ωs) ds

� C‖w‖2
L2

b(Ω)

∫

s∈R

(1 + ε2|s − x0|2)−1 ds

= C‖w‖2
L2

b(Ω)ε
−1

∫

s∈R

(1 + |s|2)−1 ds = C1ε
−1‖w‖2

L2
b(Ω),

and Proposition 6.3 is proved. �
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Proposition 6.3 allows us to simplify the basic a priori estimate (6.13)
as follows.

Corollary 6.4. Let the assumptions of Proposition 6.2 hold, and let
u ∈ Wb([0, T ]×Ω) be a solution of (6.1). Then the following estimate holds:

‖u‖2
L∞([0,T ],L2

θε
(Ω)) + (C1 − C2ε‖u‖L∞([0,T ],L2

θε
(Ω)))‖u‖2

L2
b([0,T ],W 1,2

θε
(Ω))

� C3ε
−1(‖u(0)‖2

L2
b(Ω) + ‖g‖2

L2
b([0,T ],L2

b(Ω))), (6.27)

where the positive constants α and Ci, i = 1, 2, 3, are independent of u, u0,
g, ε → 0, T , and x0 (we recall that we write θε instead of θε,x0 for brevity).

To deduce (6.27) from (6.13), it suffices to use (6.26), take the supre-
mum over t ∈ [0, T ], and use (2.13).

We are now ready to prove the existence of a bounded solution of the
Leray–Navier–Stokes problem (6.1).

Theorem 6.5. Let the above assumptions hold. Then the problem
(6.1) possesses at least one solution u ∈ Wb([0, T ] × Ω) which satisfies the
following estimate:

‖u‖L∞([0,T ],L2
b(Ω))∩L2

b([0,T ],W 1,2
b (Ω))

� C(1 + ‖u0‖2
L2

b(Ω) + ‖g‖2
L2

b([0,T ]×Ω)), (6.28)

where the constant C is independent of small α > 0 T , g, and u0.

Proof. The idea based on the following observation. Let

Ku0,g := (1 + ‖u0‖2
L2

b(Ω) + ‖g‖2
L2

b([0,T ]×Ω))
1/2. (6.29)

Then the a priori estimate (6.27) gives the following conditional result. Let
the solution u a priori satisfy the estimate

‖u‖L∞([0,T ],L2
θε

(Ω)) �
C1

2C2ε
. (6.30)

Then

‖u‖L∞([0,T ],L2
θε

(Ω) + C1/2‖u‖L2
b([0,T ],W 1,2

b (Ω)) � C
1/2
3 ε−1/2Ku0,g. (6.31)

We fix ε ≪ 1 such that

C
1/2
3 ε−1/2Kg,u0 <

C1

2C2ε
(6.32)

or, which is the same,

ε ∼ [Ku0,g]
−2. (6.33)
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In this case, from the estimates (6.30) and (6.31) we can deduce estimate of
the form (6.28) using the standard continuation by parameter arguments.
Let us, s ∈ [0, 1], be a continuous curve of solutions of (6.1) such that

Kus
0,gs � Ku1

0,g1 (6.34)

and the estimate (6.31) is satisfied for s = 0. Then it is satisfied for s = 1 as
well since, due to (6.32), we cannot achieve the bound (6.30) before crossing
the bound (6.31) and, consequently, the continuity arguments show that
(6.31) holds for every s ∈ [0, 1].

Let us proceed in a more rigorous way. For this purpose, we first prove
the estimate (6.28) in the square integrable case:

u0 ∈ H2(Ω), g ∈ L2([0, T ], L2(Ω)). (6.35)

In this case, the Leray–Navier–Stokes problem has a unique square inte-
grable solution u,

u ∈ C([0, T ], L2(Ω)) ∩ L2([0, T ], W 1,2(Ω)), (6.36)

which can be obtained in the same way as in the case of bounded domains.
Moreover, this solution depends continuously (in the metric of (6.36)) on
the initial data u0 and external forces g, which can be verified in a standard
way since the α-regularization makes the inertial term subordinated to the
linear part of the equation (see, for example, [4, 5, 28]).

Thus, the solutions us, s ∈ [0, 1], associated with the initial data
us

0 := su0, gs := sg generate a continuous curve in the space (6.36) and,
evidently, (6.31) is satisfied for u0 ≡ 0. Therefore, by the above continuity
arguments, we have the estimate (6.31) for s = 1. Taking into account
(6.33), we can write it as follows:

‖u‖L∞([0,T ],L2
θε,x0

(Ω))∩L2
b([0,T ],W 1,2

θε,x0
(Ω)) � C[Ku0,g]

2, (6.37)

where the constant C is independent of x0 ∈ R. Using the obvious estimate

‖v‖W l,2
b (Ω) � C sup

x0∈R

‖v‖W l,2
θε,x0

(Ω), l = 0, 1,

where C is independent of ε ≪ 1, we deduce the required estimate (6.28).

Thus, the assertion of the theorem is verified in the square integrable
case (6.35). Consider the general case of u0 and g satisfying only the as-
sumption (6.4). For this purpose, we approximate u0 and g by a sequence
of square integrable functions un

0 and gn satisfying (6.35). Moreover, we
assume that

‖un
0‖H2

b(Ω) + ‖gn‖L2
b([0,T ]×Ω) � C, (6.38)
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where C is independent of n and

un
0 → u0 in L2

loc(Ω), gn → g in L2
loc([0, T ]× Ω). (6.39)

Then, due to already proved part of the estimate (6.28), the associated
solution un of the Navier–Stokes equation (belonging to the class (6.36))
satisfies the estimate

‖un‖L∞([0,T ],L2
b(Ω)) + ‖un‖L2

b([0,T ],W 1,2
b (Ω)) � C1, (6.40)

where C1 is independent of n. Moreover, from Equation (6.9), we infer

‖∂tu
n‖L2

b([0,T ],H−1,2
b (Ω)) � C. (6.41)

Passing to a subsequence if necessary, we can assume without loss of gen-
erality that the sequence un converges weakly to some u ∈ Wb([0, T ] × Ω)
in the local topology, i.e., for every square integrable weight ϕ satisfying
(5.17)

un → u weakly in Wϕ([0, T ] × Ω). (6.42)

Moreover, due to the embedding Wϕ([0, T ] × Ω) ⊂ C([0, T ], L2
ϕ(Ω)) (see

Theorem 5.4), the limit function u satisfies the initial condition u(0) = u0.

Thus, we only need to verify that the constructed function u satisfy
Equation (6.1) (or, which is the same, Equation (6.9)) in the sense of dis-
tributions, i.e., we need to verify that for every U ∈ C∞

0 ((0, T ) × Ω) with
div U = 0

−〈u, ∂tU〉 = 〈u, ∆xU〉 − 〈(Πw,∇x)u, U〉 + 〈g, U〉 (6.43)

(the passage to the limit in the linear equation wn−α∆xwn = un is obvious).
Since un solves the Leray–Navier–Stokes equations, we have

−〈un, ∂tU〉 = 〈un, ∆xU〉 − 〈(Πwn,∇x)un, U〉 + 〈gn, U〉 . (6.44)

The passage to the limit n → ∞ in all the linear terms of (6.44) is evident,
and we only need to pass to the limit in the inertial term (Πwn,∇x)un. It
suffices to show that

un → u strongly in the space L2
loc([0, T ]× Ω) (6.45)

since ∇xun → ∇xu weakly in L2
loc([0, T ]×Ω). By Proposition 3.1, Theorem

4.4, and the convergence (6.45), we have the analogous strong convergence
of ΠwN to Πw. This implies the weak convergence

(Πwn,∇x)un → (Πw,∇x)u in L1
loc([0, T ]× Ω).

To prove (6.45), we note that, by (6.42), for every integrable weight ϕ

∂tu
n → ∂tu weakly in L2([0, T ],H−1,2

ϕ2 (Ω)). (6.46)
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Furthermore, by (6.42), we have

un → u weakly in L2([0, T ],V2
ϕ(Ω)). (6.47)

Since we have the standard embeddings

V2
ϕ(Ω) ⊂⊂ H2

ϕ2(Ω) ⊂ H−1,2
ϕ2 (Ω)

and the first embedding is compact, by the compactness theorem (see, for
example, [27]), we have the strong convergence

un → u in L2([0, T ],H2
ϕ2(Ω)).

Thus, the convergence (6.45) holds and, consequently, Theorem 6.5 is proved.
�

We now return to the general case of nonzero flux c �= 0 in (6.2). Then
the Leray–Navier–Stokes equation (6.1) with g = 0 possesses the classical
Poiseuille solution

�vc(x) := c

( |ω|
‖vc‖L1(ω)

vc(x
′), 0, 0

)
, (6.48)

where the scalar function vc = vc(x
′) solves the Laplace equation in ω:

∆x′vc = 1, vc

∣∣
∂ω

= 0. (6.49)

Indeed, the associated vector field �wc has the form �wc(x) = (wc(x
′), 0, 0),

where wc(x
′) solves the problem

wc − α∆x′wc = vc, wc

∣∣
∂ω

= 0. (6.50)

In particular, the vector field �wc is divergence-free and, consequently,

Π�wc = �wc − (Swc, 0, 0) = (w̄c, 0, 0). (6.51)

Using (6.51), one can immediately verify that �vc solves the Leray–Navier–
Stokes problem (6.1), (6.2) with g ≡ 0.

Therefore, the difference u − �vc has zero flux and, consequently, it is
natural to define a weak solution of (6.1) as a function u ∈ �vc+Wb([0, T ]×Ω)
which satisfies (6.1) in the sense of distributions over the divergence-free
vector fields. Moreover, the assumption on u0 should be also naturally
replaced with u0 ∈ �vc + H2

b(Ω). The following assertion is an analog of
Theorem 6.5 in the case of nonzero flux.

Theorem 6.6. Let the above assumptions hold. Then for every c ∈ R,
u0 ∈ �vc + H2

b(Ω), and g ∈ L2
b([0, T ] × Ω) the Navier–Stokes problem (6.1),
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(6.2) possesses at least one weak solution u ∈ vc + Wb([0, T ] × Ω) which
satisfies the following estimate:

‖u‖L∞([0,T ],L2
b(Ω))∩L2

b([0,T ],W 1,2
b (Ω))

� C(1 + |c|3 + ‖u0‖2
L2

b(Ω) + ‖g‖2
L2

b([0,T ]×Ω)), (6.52)

where the constant C is independent of α, T , u0, g, and c.

Proof. We want to reduce the general case to the particular case of
zero flux considered above. The most natural way to do so is to make the
change of variables ū := u−�vc, where �vc is the Poiseuille flow. However, this
scheme does not work since the Poiseuille flow can be unstable. Instead, we
construct a special solution of the stationary Navier–Stokes problem (6.1),
(6.2) of the form Vc(x) := (Vc(x

′), 0, 0), Vc

∣∣
∂ω

= 0 (with the appropriate

nonzero external force gc) and introduce a new unknown ū := u−Vc. Then
this function belongs to Wb([0, T ]× Ω) and solves the problem

∂tū + (Πw̄,∇x)ū = ∆xū + LVc ū −∇xp + g − gc,

w̄ − α∆xw̄ = ū, w̄
∣∣
∂ω

= 0,

div ū = 0, ū
∣∣
∂Ω

= 0, Sū1 ≡ 0,

ū
∣∣
t=0

= ū0 := u0 − Vc,

(6.53)

which differs from (6.1) by the presence of the linear operator LVc ,

LVcz := (ΠWc,∇x)z + (Πw,∇x)Vc − c∂x1z, w − α∆xw = z. (6.54)

The following assertion specifies the choice of the special function Vc.

Lemma 6.7. Let c ∈ R be arbitrary. Then there exists a vector field
Vc(x) = (Vc(x

′), 0, 0), Vc

∣∣
∂ω

= 0 such that

(LVcz, z) � 1/2‖z‖2
W 1,2(Ω), ∀w ∈ W 1,2

0 (Ω) (6.55)

and

‖Vc‖C(ω) � κ|c|, ‖∇x′V ′
c‖L2(ω) � κ(|c|3/2 + |c|), (6.56)

where the constant κ is independent of c and α, and gc = −∆x′Vc.

Proof. Suppose that δ > 0 is small and ωδ := {x′ ∈ ω, dist(x′, ∂ω) <
δ}. As is known, ωδ is a smooth subdomain of ω if δ is small enough.

We seek for the required function Vc(x
′) ∈ W 1,2

0 (ω) in the form

Vc(z) =

{
λ, z ∈ ω\ωδ,

λδ−1 dist(z, ∂ω), z ∈ ωδ,
(6.57)
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where δ ≪ 1 is a small positive constant and λ is some parameter. To
satisfy the flux condition, we need

|ω|c =

∫

ω

Vc(z) dz = λ(|ω| − |ωδ| + δ2/2|∂ω|). (6.58)

We fix below δ ∼ |c|−1. Then formula (6.58) shows that λ = c + o(c−1).

So, we need to fix δ such that (6.55) is satisfied. Let w ∈ [W 1,2
0 (Ω)]2.

A direct calculation gives

(LVcz, z) = ((Πw)2∂x2Vc + (Πw)3∂x3Vc, z1)

= λδ−1(Πw.�n, z1)L2(R×ωδ), (6.59)

where �n(x′) := ∇x′ dist(x′, ∂ω). Since �n
∣∣
∂ω

coincides with a normal vector

to ∂ω, the function Z := Πw.�n has zero trace at ∂ω: Z
∣∣
∂ω

= 0 (we implicitly

used that lnu = 0 for every u ∈ H2(Ω)). Thus, (6.59) can be written in the
form

|(LVcz, z)| � λδ−1

∫

R

∫

ωδ

|Z(x1, x
′)|2 + |z(x1, x

′)|2 dx′ dx1. (6.60)

Using the standard estimate
∫

ωδ

|u(x′)|2 dx′ � Cδ2

∫

ωδ

|∇x′u(x)|2 dx′

which holds for every u ∈ W 1,2(ωδ) such that u
∣∣
∂ω

= 0, we transform (6.60)
as follows:

|(LVcw, w)| � Cλδ(‖Z‖2
W 1,2(Ω) + ‖z‖2

W 1,2
0 (Ω)

), (6.61)

where C is independent of λ and δ.

Furthermore, according to Theorem 4.4, we have

‖Z‖W 1,2(Ω) � C‖w‖W 1,2(Ω).

We now recall that w solves the Laplace equation

w − α∆xw = z, z
∣∣
∂Ω

= 0. (6.62)

Therefore, multiplying (6.62) by ∆xw and using that u
∣∣
∂Ω

= 0, we infer

‖w‖W 1,2(Ω) � C‖z‖W 1,2(Ω).

where the constant C is independent of α. Finally,

|(LVcz, z)| � C′λδ‖z‖2
W 1,2

0 (Ω)
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with C′ independent of α, λ and δ. So, it remains to fix δ such that C′λδ �

1/2. Since λ should be close to c, this gives the following estimate for the
desired δ:

δ ∼ C|c|−1 (6.63)

with some constant C independent of c and λ. It is not difficult to verify that
the function Vc thus defined satisfies also the inequalities (6.56). Lemma
6.7 is proved. �

We are now ready to complete the proof of Theorem 6.6. The argu-
ments repeat with minor modifications the proof of Theorem 6.5 in the case
of zero flux. The only difference is that we now have the additional linear
term LVc ū in Equation (6.53), which is not essential because of the estimate
(6.55).

Indeed, proving an analog of the basic a priori estimate (6.13), we have
the additional terms

(LVc ū, θ2
ε ū) − (LVc ū, v) − (∇x′Vc,∇x′(θ2

ε ū − v)) (6.64)

on the right-hand side of (6.15). To estimate the first term in (6.64), we
use the commutation relation

|(θεLVc ū − LVc(θεū), θεū)| � κ|c|ε‖ū‖2
W 1,2

θε
(Ω)

(6.65)

for some κ independent of α, ε and c. We begin with the most complicated
second term in the expression (6.54) for LVc . Let wθ solve the problem

wθ − α∆xwθ = θεū, wθ

∣∣
∂Ω

= 0.

Then the difference θεw − wθ solves the equation

(θεw − wθ) − α∆x(θε − wε) = Hε := −2αθ′ε∂x1w − αθ′′ε w. (6.66)

Using the estimate (6.12) for the derivatives of θε and Proposition 3.3 for
estimating w, we infer

‖Hε‖W 1,2(Ω) � κε‖ū‖2
L2(Ω),

where κ is independent of α and ε. Moreover, since Hu

∣∣
∂Ω

= 0, multiplying

Equation (6.66) by ∆x(θε − wθ), we can write

‖θεw − wθ‖W 1,2(Ω) � C‖Hε‖W 1,2(Ω) � κ1ε‖ū‖L2
θε

(Ω).

Furthermore, using this estimate together with Theorem 4.4 and an analog
of Proposition 4.6 for θε, we find

‖θεΠw − Πwθ‖W 1,2(Ω) � κ2ε‖ū‖L2
θε(Ω). (6.67)
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Thus, for the commutator of the second term in the expression (6.54), we
get

|((θεΠw − Πwθ,∇xVc, θεū)|
� 2‖Vc‖L∞‖‖θεΠw − Πwθ‖W 1,2(Ω)‖ū‖W 1,2

θε
(Ω) � κ|c|ε‖ū‖2

W 1,2
θε (Ω)

where we integrated by parts in order to avoid the terms ∇xVc and used
the estimate (6.56). Thus, the estimate (6.66) is verified for the second
term in (6.54). This estimate is obvious for the third term. Regarding the
first term, it suffices to note that ‖ΠWc‖L∞(ω) � κ|c| by (6.56) and the
maximum principle applied to the equation for Wc. Thus, the estimate
(6.66) is proved.

Using the estimate (6.66) and Lemma 6.7, we estimate the first addi-
tional term in (6.64) as follows:

|(LVc ū, θ2
ε ū)| � |(LVc(θεū), θεū)| + κ|c|ε‖ū‖2

W 1,2
θε

(Ω)

� 1/2‖∇x(θεū)‖2
L2(Ω) + κ|c|ε‖u‖2

W 1,2
θε

(Ω)
, (6.68)

where the constant κ is independent of ū, c, ε, and α.

The second additional term of (6.64) can be then estimated in the
following way:

|LVc ū, v)| � |((Πw,∇x)Vc, v)| + |((ΠWc,∇x)ū, v)| + |c(∂x1u, v)|
� 2‖Vc‖L∞‖Πw‖W 1,2

θε
(Ω)‖v‖W 1,2

[θε]−1(Ω)

+ ‖ΠWc‖L∞‖ū‖W 1,2
θε

(Ω)‖v‖W 1,2

[θε]−1(Ω) + |c|‖ū‖W 1,2
θε

(Ω)‖v‖W 1,2

[θε]−1(Ω)

� κ(|c| + 1)(ε‖ū‖2
W 1,2

θε
(Ω)

+ ε−1‖v‖2
W 1,2

[θε]−1(Ω)
). (6.69)

where the constant κ is independent of ε, c, α, u, and v.

Finally, the third additional term of (6.64) can be estimated with the
help of (6.56) and the Hölder inequality:

|(∇x′Vc,∇x′(θ2
ε ū − v))|

� Cβ‖∇x′Vc‖2
L2

θε
(Ω) + β(‖ū‖2

W 1,2
θε

(Ω)
+ ‖v‖2

W 1,2

[θε]−1(Ω)
)

� κβ(c3 + 1)ε−1 + β(‖ū‖2
W 1,2

θε
(Ω)

+ ‖v‖2
W 1,2

[θε]−1(Ω)
), (6.70)

where β > 0 is arbitrary and the constant κβ depends on δ, but is indepen-
dent of c, ε, α, u, and v.
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The estimates (6.68)–(6.70) show that, under the additional assump-
tion

|c|ε � κ, (6.71)

where κ > 0 is a sufficiently small number independent of c, α, and ε (we
recall that v ∼ ε[θε]

2ū by (6.18)), we can repeat word-by-word the proof of
(6.13) to obtain the following analog of (6.27):

‖ū‖2
L∞([0,T ],L2

θε
(Ω)) + (C1 − C2ε‖ū‖L∞([0,T ],L2

θε
(Ω)))‖ū‖2

L2
b([0,T ],W 1,2

θε
(Ω))

� C3ε
−1(1 + |c|3 + ‖ū(0)‖2

L2
b(Ω) + ‖g‖2

L2
b([0,T ],L2

b(Ω))), (6.72)

where the positive constants and Ci, i = 1, 2, 3, are independent of u, u0, g,
α ε → 0, T , c, and x0.

Furthermore, arguing exactly as in the proof of estimate (6.28), we
deduce the a priori estimate (6.52) (see (6.29)–(6.33)). The existence of a
solution can be than verified exactly as in the case of zero flux c. Theorem
6.6 is proved. �

Remark 6.8. Arguing in the same way as above, we can establish the
existence of a solution of the following more general Leray–Navier–Stokes
problem with the nonautonomous flux

Su1(t) ≡ c(t), (6.73)

where c ∈ C1([0, T ]) is an arbitrary given function. Moreover, the assump-
tion on the external force g is also can be relaxed till

g ∈ L2
b([0, T ],H−1,2

b (Ω)). (6.74)

Furthermore, the weighted theory developed in this section allows us to
consider not only bounded with respect to x1 → ∞ solutions, but also slowly
growing solutions of the NS equation (growing not faster than |x1|1/2−δ,
where δ > 0 is arbitrary). We however will not use these facts in the sequel
and, by this reason, do not give their rigorous proofs here.

7. Leray–Navier–Stokes Equations:
Uniqueness and Dissipativity

In this section, we prove the uniqueness of a spatially nondecaying solution
of the Leray approximations and verify the dissipativity of this system in



3D Navier–Stokes Equations in Cylindrical Domains 311

H2
b(Ω). We start with the uniqueness which is now almost obvious (due to

the regularization of the inertial term).

Theorem 7.1. Let the assumptions of Theorem 6.6 hold. Then there
exists positive μ such that for any two solutions u1, u2 ∈ �vc + Wb([0, T ] ×
Ω) of the problem (6.1) and every weight function ϕ of sufficiently small
exponential growth rate ε � μ the following estimate holds:

‖u1(t) − u2(t)‖L2
ϕ(Ω) � CeKt‖u1(0) − u2(0)‖L2

ϕ(Ω), (7.1)

where the constants K and C depend on the L2
b-norms of u1(0) and u2(0),

g, α > 0, and the constant Cϕ, but are independent of the choice of u1, u2,
and ϕ.

In particular, the energy solution of the Leray–Navier–Stokes is unique.
Moreover, a similar estimate holds for L2

b,ϕ.

Proof. The arguments are based on the solvability result for the linear
Stokes problem

∂tv − ∆xv + ∇xq = h(t), v
∣∣
∂Ω

= 0, div v = 0,

Sv1 = 0, v
∣∣
t=0

= v0.
(7.2)

Lemma 7.2. Let Ω be a cylindrical domain. Then there exists μ0 > 0
such that for any weight function ϕ of exponential growth rate μ � μ0,
v0 ∈ H2

ϕ(Ω), and h ∈ L2
loc(R+,H−1,2

ϕ (Ω)) Equation (7.2) has a unique
weighted energy solution v and the following estimate holds:

‖v(T )‖2
L2

ϕ(Ω) +

T∫

0

e−β(T−s)‖v(s)‖2
W 1,2

ϕ (Ω)
ds

� Ce−βT ‖v(0)‖2
L2

ϕ(Ω) + C

T∫

0

e−β(T−s)‖h(s)‖2
H−1,2

ϕ (Ω)
ds, (7.3)

where the positive constants C and β depend on Ω and Cϕ, but are inde-
pendent of v and h.

Proof. The a priori estimate (7.3) can be verified on the basis of the
energy identity of Theorem 5.4 in the same way as in the proof of (6.19).
The existence of a solution can be proved in the same way as in Theorem
6.5. Thus, Lemma 7.2 is proved. �
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Now, we are ready to complete the proof of the theorem. Let u1 and
u2 be two solutions of Equation (6.1) in �vc+Wb(R×Ω). Then the difference
v := u1 − u2 belongs to Wb(R × Ω) and solves Equation (7.2) with

h(t) := −(Πw1,∇x)v − (Πw,∇x)u2 − c∂x1v, (7.4)

where wi − α∆xwi = ui, i = 1, 2, w := w1 − w2. Now, we estimate the
function h in the W−1,2

ϕε
(Ω)-norm with ϕε = ϕε,x0 . Integrating by parts

and using the Hölder inequality and embedding W 1,2 ⊂ L6, we infer

|((Πw1,∇x)v, ϕ2
εW )| � |∇xΠw1‖W 1,3

b (Ω)‖v‖L2
ϕε

(Ω)‖W‖W 1,2
ϕε (Ω)

+ ‖Πw1‖L∞(Ω)‖v‖L2
ϕε

(Ω)‖Z‖W 1,2
ϕε (Ω),

which holds for every Z ∈ W 1,2(Ω) and, consequently,

‖(Πw1,∇x)v‖W−1,2
ϕε (Ω) � (‖Πw1‖W 1,3

b (Ω) + ‖Πw1‖L∞(Ω))‖v‖L2
ϕε

(Ω).

Moreover, since u1 is bounded in L∞(R, L2
b(Ω)) (we recall that u1 ∈ �vc +

W(R+), see Theorem 5.4), w1 is bounded in L∞(R+, W 2,2
b (Ω)) and, conse-

quently, by Theorem 4.4,

‖Πw1‖W 1,3
b

(Ω) + ‖Πw‖L∞(Ω) � C‖u1‖L2
b
(Ω) � C1, (7.5)

where C1 depends on α. Thus,

‖(Πw1,∇x)v‖W−1,2
ϕε (Ω) � C1‖v‖L2

ϕε
(Ω). (7.6)

The second term in (7.4) can be estimated in a similar way; the only differ-
ence is that one should use a weighted analog of (7.5) and the unweighted
estimate for u2. This gives us the estimate (7.6) for the second term. Fi-
nally, a similar estimate for the third term is immediate, and we have

‖h(t)‖W−1,2
ϕε (Ω) � C‖v‖L2

ϕε
(Ω).

Using this estimate together with (7.3), we find

‖v(T )‖2
L2

ϕε
(Ω) � C‖v(0)‖2

L2
ϕε

(Ω) + C

T∫

0

e−β(T−s)‖v(s)‖2
L2

ϕε
(Ω) ds.

Applying the Gronwall inequality to this estimate, we complete the proof.
�

We recall the uniformly-local analog of the smoothing property for
solutions of the Leray–Navier–Stokes equations.
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Theorem 7.3. Let the assumptions of Theorem 6.6 be satisfied, and
let u ∈ vc + Wb([0, T ] × Ω) be a weak solution of (6.1) constructed in this
theorem. Then

t1/2u(t) ∈ L∞([0, T ], W 1,2
b (Ω)) ∩ L2

b([0, T ], W 2,2
b (Ω)) (7.7)

and the following estimate holds:

t‖u(t)‖2
W 1,2

b (Ω)
� Q(‖u0‖L2

b(Ω) + ‖g‖L2
b([0,T ]×Ω)), t ∈ [0, 1], (7.8)

where the monotone function Q depends on α, but is independent of u.

The proof of this theorem is more or less standard and is based on the
multiplication of Equation (6.1) by the expression

tΠ
(
∂x1(ϕ

2
ε∂x1u) + ϕ2

ε∂
2
x2

u + ϕ2
ε∂

2
x3

u
)

(7.9)

(see the proof of Theorem 5.1). Therefore, we omit a rigorous proof of this
result.

Our goal is to verify that the Leray–Navier–Stokes problem (6.1) gen-
erates a dissipative dynamical system in the corresponding phase space and
obtain a dissipative estimate for the solutions of the problem which will
be uniform with respect to α → 0. This dissipative estimate will be used
in the following section in order to prove the dissipativity of the classical
Navier–Stokes problem with α = 0.

For the sake of simplicity, we restrict ourselves to the autonomous
case:

g(t) ≡ g ∈ [L2
b(Ω)]2. (7.10)

By Theorems 6.6 and 7.1, the Leray–Navier–Stokes problem (6.1) generates
(for all α > 0) semigroups Sα(t) = Sc,α(t) in the phase spaces

Φb := Φb(c) = �vc + H2
b(Ω) (7.11)

via the standard expression

Sα(t)u0 := u(t), Sα(t1 + t2) = Sα(t1) ◦ Sα(t2), t1, t2 � 0. (7.12)

The following theorem, which gives a dissipative estimate for the solutions
of the Leray–Navier–Stokes problem, can be considered as the main result
of the section.

Theorem 7.4. Suppose that the assumptions of Theorem 6.6 hold
and, in addition, (7.10) is satisfied. Then there exist positive constants β
and K and a monotone function Q such that for every weak energy solution
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u(t) of the Leray–Navier–Stokes problem (6.1)–(6.2) the following uniform
estimate holds:

‖u(t)‖L2
b(Ω) � Q(‖u(0)‖L2

b(Ω) + ‖g‖L2
b(Ω))e

−βt

+ K(1 + |c|3 + ‖g‖2
L2

b(Ω)) (7.13)

(we emphasize that the constant K in (7.13) is independent of α, t, ‖u(0)‖L2
b(Ω),

and the flux c = Su1(0)).

Proof. To verify (7.13), it suffices to prove that the ball

B := {u0 ∈ [L2
b(Ω)]3, ‖u0‖L2

b(Ω) � K(1 + |c|3 + ‖g‖2
L2

b(Ω))} (7.14)

is an absorbing set for the Leray–Navier–Stokes problem (6.1), i.e., for every
bounded subset B ⊂ Φ there exists T = T (‖B‖Φ, ‖g‖L2

b(Ω)) such that

S(t)B ⊂ B ∀t � T. (7.15)

For the sake of simplicity, we restrict ourselves to the case of zero flux c = 0.
The general case can be reduced to this particular case in the same way as
in Theorem 6.6.

The proof of the embedding (7.15) requires a little more detailed analy-
sis of the basic a priori estimate (6.13) which can be written in the following
more convenient way:

‖u(t)‖2
L2

θε
(Ω) + (C1 − C2ε‖u‖L∞([0,T ],L2

θε
(Ω)))

T∫

0

e−β|t−s|‖u(s)‖2
W 1,2

θε
(Ω)

ds

� C2
3 (e−βt‖u(0)‖L2

θε
(Ω) + ‖g‖L2

θε
(Ω))

2, (7.16)

where the positive constants β and Ci, i = 1, 2, 3, are independent of α, u,
u0, g, ε → 0, T , and x0 (in order to deduce (7.16) from (6.13), it suffices to
take s = t on the left-hand side).

Lemma 7.5. Let the assumptions of Theorem 6.5 hold and let the
initial data u(0) for the problem (6.1) satisfy the following conditions:

C1 − 2C2C3ε(‖u(0)‖L2
θε,x0

(Ω) + ‖g‖L2
θε,x0

(Ω)) � 0, (7.17)

where all the constants are the same as in (7.16). Then the associated
energy solutions u(t) of the Leray–Navier–Stokes problem (with zero flux
c = 0) satisfies the estimate

‖u(t)‖L2
θε,x0

(Ω) � C3(‖u(0)‖L2
θε,x0

(Ω)e
−βt + ‖g‖L2

θε,x0
(Ω)) (7.18)

for all t � 0.
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Proof. The estimate (7.16) implies (7.18) under the additional as-
sumption that

C1 − C2ε‖u‖L∞(R+,L2
θε,x0

(Ω)) � 0. (7.19)

On the other hand, (7.18) yields

‖u‖L∞(R+,L2
θε,x0

(Ω)) � C3(‖u(0)‖L2
θε,x0

(Ω) + ‖g‖L2
θε,x0

(Ω)), (7.20)

which formally implies (7.19). Thus, using the continuity arguments (simi-
lar to the proof of Theorem 6.5), we can verify that (7.18) holds if the initial
data satisfies (7.17), and Lemma 7.5 is proved. �

Note that, although (7.18) looks like a dissipative estimate (in the
phase space L2

θε,x0
(Ω)), it is not sufficient to complete the proof of the

theorem since the exponent ε > 0 depends on ‖u(0)‖L2
b(Ω) (through the

assumption (7.17)); namely,

ε � ε0 := C(‖u(0)‖L2
b(Ω) + ‖g‖L2

b(Ω) + 1)−2 (7.21)

for some positive C (see the proof of Theorem 6.5).

Thus, we need to be able to increase the exponent ε as t → ∞ which
is guaranteed by the following assertion.

Lemma 7.6. Let the above assumptions hold. Then for every bounded
subset B ⊂ Φ there exists T = T (‖B‖, ‖g‖) such that for every x0 ∈ R

C1 − 2C2C3ε(‖u(T )‖L2
θε,x0

(Ω) + ‖g‖L2
θε,x0

(Ω)) � 0 (7.22)

with ε � ε̄ := L(1 + ‖g‖L2
b(Ω))

−2 (where the constant L is independent of α,

u0, and g) if u(0) ∈ B.

Proof. We proceed by an iteration procedure. Let T0 = 0, and let
ε = ε0 be given by (7.21). Then the estimate (7.22) is satisfied with ε = ε0

and T = T0. Assume that (7.22) is already proved for some Tk > 0 and
εk := 2kε0 < ε̄. Then we need to prove the existence of Tk+1 > Tk such that
(7.22) is satisfied with ε = εk+1 := 2εk and T = Tk+1. For this purpose, we
note that

θ2ε,x0(x) := (1 + 4ε2|x − x0|2)−1/2 � 2(1 + ε2|x − x0|2)1/2 = 2θε,x0(x)

and, consequently,

‖v‖L2
θ2ε,x0

(Ω) � 2‖v‖L2
θε,x0

(Ω). (7.23)

We fix Tk+1 > Tk such that

‖u(Tk+1)‖L2
θεk,x0

(Ω) � 2C3‖g‖L2
θεk,x0

(Ω) (7.24)
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for all u(t) such that u(0) ∈ B (it is possible because of our assumptions on
εk and the “dissipative” estimate (7.18)). The estimates (7.23) and (7.24),
together with (6.26), yield

εk+1(‖u(Tk+1)‖L2
θεk+1,x0

(Ω) + ‖g‖L2
θεk+1,x0

(Ω))

� 4εk(‖u(Tk+1)‖L2
θεk,x0

(Ω) + ‖g‖L2
θεk,x0

(Ω))

� 4(2C3 + 1)εk‖g‖L2
θεk,x0

(Ω) � 4(2C3 + 1)Cε
1/2
k ‖g‖L2

b(Ω)

� 4(2C3 + 1)CL1/2‖g‖L2
b(Ω)(1 + ‖g‖L2

b(Ω))
−1 � 4C(2C3 + 1)L1/2.

Thus, if the constant L is small enough to satisfy C1 − 8C2CC3(2C3 +
1)L1/2 � 0, then the estimate (7.22) is satisfied with T = Tk+1 and ε =
εk+1 = 2εk. Thus, the iteration completes the proof of the lemma. �

Now, it is not difficult to complete the proof of the theorem. By
Lemma 7.6 and the estimate (7.18), there exists T = T (‖B‖, ‖g‖) such that

‖u(t)‖L2
θε,x0

(Ω) � 2C3‖g‖L2
θε,x0

(Ω), t � T, (7.25)

where ε � ε̄ := L(1+‖g‖L2
b(Ω))

−2, uniformly with respect to x0 ∈ R. Taking

the supremum over x0 ∈ R of both sides of the inequality (7.25) and using
again (6.26), we arrive at the estimate

‖u(t)‖L2
b(Ω) � 2C3CL−1/2‖g‖L2

b(Ω)(1 + ‖g‖L2
b(Ω)), t � T, (7.26)

which shows that the ball (7.14) is an absorbing set if K � 2C3CL−1/2.
Theorem 7.4 is proved. �

Remark 7.7. The intermediate estimate (7.25) gives a slightly more
information on the solutions than the final estimate (7.26). Assume that
c = 0 and g is square integrable g ∈ [L2(Ω)]3. Then, instead of (6.26), we
have ‖g‖L2

θε,x0
(Ω) � C‖g‖L2(Ω), where the constant C is independent of ε.

Thus, instead of (7.26), we have the following better estimate:

‖u(t)‖L2
b(Ω) � 2C3C‖g‖L2(Ω), t � T,

for the radius of the absorbing set (which grows linearly with respect to g,
in contrast to the quadratic growth rate in the general case).

Now, we are in a position to prove the existence of a global attractor for
semigroups (7.12) associated with the Leray–Navier–Stokes equation. Note
that, in contrast to the dissipative systems in bounded domains, in the
unbounded case, the global attractor is usually not compact in the initial
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phase space (Φb in our case). That is reason why one needs to use the
following weaker definition of a global attractor (following [6, 11, 20]).

Definition 7.8. A set A = Aα ⊂ Φb is a locally compact (global)
attractor for a semigroup Sα(t) : Φb → Φb if the following assumptions are
satisfied.

1) A is bounded in Φb and compact in Φloc := �vc + H2
loc(Ω), i.e., the

restriction A
∣∣
Ω1

of the attractor A to any bounded sub-domain Ω1 of Ω is

compact in L2(Ω1).

2) A is strictly invariant: Sα(t)A = A.

3) A is an attracting set for the semigroup Sα(t), i.e., for any neigh-
borhood O(A) (in the local topology of the space Φloc) and bounded (in
Φb) subset B there exists T = T (O, B) such that

Sα(t)B ⊂ O(A) ∀t � T. (7.27)

Corollary 7.9. Under the assumptions of Theorem 7.4, the semigroup
(7.12) associated with the Leray–Navier–Stokes problem (6.1), (6.2) pos-
sesses a locally compact attractor Aα = Ac

α which is bounded in �vc +V2
b (Ω).

Moreover, the following uniform estimate holds:

‖Aα‖L2
b(Ω) � K(1 + |c|3 + ‖g‖2

L2
b(Ω)), (7.28)

where the constant K is independent of α, c, and g.

Proof. As usual, to verify the attractor existence, we need to check
the standard conditions; namely, the existence of a compact absorbing set
and the continuity (see, for example, [6]).

By Theorem 7.4, the semigroup (7.11) possesses an absorbing set B ⊂
Φ which is, however, not compact in the space Φloc. But, by Theorem 7.3,
the set Sα(1)B is bounded in �vc + V2

b (Ω) and, consequently, is compact in
Φloc. Thus, a compact absorbing set B1 := Sα(1)B for the semigroup (7.11)
is constructed. Moreover, due to Theorem 7.1, the operators Sα(t) : B1 → Φ
are continuous (in the topology of Φloc) for every fixed t > 0. Thus, due
to the standard attractor existence theorem, the semigroup Sα(t) possesses
a global attractor Aα ⊂ B1 ∩ B. Now, the estimate (7.28) is an immediate
consequence of Theorem 7.4. �
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8. Classical Navier–Stokes Problem

In this concluding section, we construct (by passing to the limit α → 0)
a dissipative weak solution of the classical 3D Navier–Stokes equation in a
cylindrical domain Ω:

∂tu + (u,∇x)u = ∆xu −∇xp + g, div u = 0, Su1 = c, u
∣∣
t=0

= u0. (8.1)

The following theorem can be considered as the main result of the
paper.

Theorem 8.1. For any c ∈ R, g ∈ L2
b(Ω), and u0 ∈ �vc +H2

b(Ω) there
exists at least one weak solution u = u(t),

u ∈ Ψb := L∞(R+,H2
b(Ω)) ∩ L2

b(R+,V2
b (Ω)), (8.2)

satisfying the Navier–Stokes equation (8.1) in the sense of distributions over
the divergence-free vector fields, which satisfies the dissipative estimate

‖u(t)‖L2
b(Ω) + ‖u‖L2

b([t,t+1],W 1,2
b (Ω))

� Q(‖u0‖L2
b(Ω))e

−βt + K(1 + |c|3 + ‖g‖2
L2

b(Ω)), (8.3)

where the monotone function Q and positive constants β and K are inde-
pendent of c, g, and u0.

Proof. Let uα(t), α > 0, α → 0, be the unique solutions of the Leray
approximations (6.1) to the Navier–Stokes equations (with fixed c, g, and
u0), constructed above. By Theorems 6.6 and 7.4, these functions satisfy
the estimate (8.3) uniformly with respect to α → 0. In particular, uα are
uniformly bounded in Ψb. Thus, we can extract a subsequence un := uαn

converging to some function u ∈ Ψb in the following sense:

un → u weakly star in L∞
loc(R+, L2

loc(Ω))

and weakly in L2
loc(R+, W 1,2

loc (Ω))
(8.4)

(see, for example, [22]). Moreover, passing to the weak limit in the estimates
(8.3) for un, we see that the limit function u also satisfies this estimate.
Thus, it suffices to show that u solves the limit Navier–Stokes equation.
As usual, for this purpose, we need the strong convergence un → u in the
appropriate space, which, in turns, requires to control ∂tu in some negative
Sobolev space. Let us obtain such a control.

For the sake of simplicity, we consider the case c = 0 (the general
case can be easily reduced to this case by making the change of variable
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ū := u − �vc, see the proof of Theorem 6.6). Applying the projector Π to
Equation (6.1), we have

∂tun = Π∆xun − Π(Πwn,∇x)un + Πg, (8.5)

where wn solves the problem

wn − αn∆xwn = un, wn

∣∣
∂Ω

= 0. (8.6)

We see that the first term on the right-hand side of (8.5) belongs to

L2
b(R+,H−1,2

b (Ω)) and is uniformly bounded in this space since un are

bounded in Ψb. To estimate the second term, we note that Ψb ⊂ L
10/3
b (R+×

Ω) due to the standard interpolation theorem (see, for example, [29]). Con-

sequently, un are uniformly bounded in L
10/3
b (R+ ×Ω) and, by Proposition

3.3, wn are uniformly bounded in L
10/3
b .

In turns, Theorem 4.4 guarantees that Πwn are uniformly bounded

in L
10/3
b (R+ × Ω). Therefore, using the Hölder inequality, we see that

(Πwn,∇x)un are uniformly bounded in L
5/4
b (R+ × Ω) (since 4/5 = 3/10 +

1/2). Using Theorem 4.4 again, we infer that the second term in (8.5)

belongs to L
5/4
b (R+ × Ω). Finally, since L5/4 ⊂ W−1,2, we have

‖∂tun‖L
5/4
b (R+,H−1,2

b (Ω))
� C‖un‖Ψb

� C1, (8.7)

where the constants C and C1 are independent of n.

Arguing in the same way as in the proof of Theorem 6.6, we conclude
that

un → u strongly in L2
loc(R+ × Ω). (8.8)

We claim that (8.8) implies the analogous strong convergence

wn → u strongly in L2
loc(R+ × Ω). (8.9)

We split wn as wn = w0
n + w1

n, where w0
n − αn∆xw0

n = un − u and w1
n −

αn∆xw1
n = u. By (8.8) and Proposition 3.3, the functions w0

n converge
strongly to zero as n → ∞ in the space L2

loc(R+ ×Ω). Therefore, it suffices
to study w1

n. Multiplying the equations for w1
n by ϕ2

ε,x0
∆xw1

n, using that

u ∈ L2
b(W

1,2
b (Ω)), u

∣∣
∂Ω

= 0, and arguing in a standard way, it is easy to
check that

αn‖∆xw1
n‖2

L2
b(R+×Ω) � C‖u‖L2

b(R+,W 1,2
b (Ω)) � C1

and, consequently, αn∆xw1
n tends to zero in L2

b(R+ × Ω). Thus, w1
n → u

strongly even in L2
b(R+ × Ω) and the convergence (8.9) is established.
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We are now ready to complete the proof of the theorem. According
to Theorem 4.4 and the convergence (8.9), Πwn → Πu = u strongly in
L2

loc(R+ × Ω). Since ∇xun → ∇xu weakly in L2
loc(R+ × Ω),

(Πwn,∇x)un → (u,∇x)u weakly in L1
loc(R+ × Ω).

As usual, the limit passage (in the sense of distributions) in linear terms of
the equations for un is obvious, and thereby u solves the classical Navier–
Stokes problem (8.1). �

Remark 8.2. As usual, it is not difficult to verify that the space

Θb := {u ∈ Ψb, ∂tu ∈ L5/4(R+,H−1,2
b (Ω))}

is compactly embedded, for example, in C([0, T ],H−1,2
ϕ (Ω)) for any T > 0

and square integrable weight ϕ. Thus, the above-constructed solution u
satisfies the initial condition u(0) = u0.

Our next goal is to construct an attractor for the classical Navier–
Stokes equation in a cylindrical domain. However, in contrast to the previ-
ous section, the uniqueness of a solution u is still out of reach of the theory
(even in the case of bounded domains) and, consequently, the limit semi-
group S0(t) can be defined only as a semigroup of multi-valued maps. To
overcome this difficulty, we use the so-called trajectory approach which al-
lows us to restore the uniqueness by changing the phase space of the problem
and to construct a global attractor for the so-called trajectory dynamical
system related with the problem under consideration (see [8, 25, 31, 9] for
details).

We start by constructing the trajectory phase space and trajectory
semigroup for the Navier–Stokes problem (8.1).

Definition 8.3. Let Ktr = Ktr(c) be a set of all weak solutions u ∈ Ψb

of Equation (8.1) (for all initial data u0 ∈ �vc + H−1,2
b (Ω)) which satisfy,

additionally, the dissipative estimate

‖u(t)‖L2
b(Ω)+‖u‖L2

b([t,t+1],W 1,2
b (Ω) � Cue−βt+K(|c|3+1+‖g‖2

L2
b(Ω)), (8.10)

where the positive constants K and β are the same as in Theorem 8.1 and
Cu is an arbitrary constant depending on u. By Theorem 8.1, Ktr is not
empty. Moreover, since our equation is autonomous, and the estimate (8.10)
is invariant under translations, the semigroup of temporal translations acts
on Ktr:

T (t) : Ktr → Ktr, (T (t)u)(s) := u(t + s), t, s � 0. (8.11)
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The translation semigroup (T (t), Ktr) acting on the trajectory phase space
Ktr will be referred to as a trajectory dynamical system associated with
Equation (8.1).

Finally, we endow the trajectory phase space Ktr with the topology
induced by the embedding

Ktr ⊂ Ψloc := [L∞
loc(R+, L2

loc(Ω))]w
∗ ∩ [L2

loc(R+, W 1,2
loc (Ω))]w , (8.12)

where the symbols w∗ and w mean weak-star and weak topology respec-
tively. We recall that a sequence un converges to u in Ψloc if for any
T > 0 and N > 0 the restrictions of this sequence to the domain t ∈ [0, T ],
x ∈ Ω−N,N := [−N, N ] × ω converge weakly in L2([0, T ], W 1,2(ΩN )) and
weakly-star in L∞([0, T ], L2(ΩN )).

Remark 8.4. (i) If we assume that the uniqueness theorem holds,
then the solution operator S : u0 → Ktr generates a one-to-one map between
the usual phase space Φb = �vc +H2

b(Ω) and the trajectory phase space Ktr.
Moreover, the translation semigroup T (t) on Ktr is conjugated with the
usual semigroup S0(t) (S0(t)u0 := u(t)) by this map:

T (t) = S ◦ S0(t) ◦ S−1, S−1u := u(0). (8.13)

Thus, in the case of uniqueness, the trajectory dynamical system
(T (t), Ktr) is formally equivalent to the classical system (S0(t), Φb) and, if
the uniqueness fails, can be considered as a natural generalization allowing
us to avoid the usage of theory of multi-valued maps.

(ii) We need to include some form of dissipative estimate into the
definition of a solution in Ktr since it is not still known, whether or not
there exist other “pathological” weak solutions u ∈ Ψb that do not satisfy
energy inequalities and are, possibly, nondissipative. Including the estimate
(8.10) into the definition, we automatically exclude such solutions. We
also emphasize that the estimate (8.10) is slightly weaker than the estimate
(8.3) obtained in the proof of Theorem (8.1); namely, we have an arbitrary
constant Cu instead of Q(‖u(0)‖L2

b(Ω)). This is related with the fact that

the estimate (8.3) is not translation-invariant (since it was proved only on
the time interval [0, t], but not on [τ, t + τ ], the weak convergence un(τ)
to u(τ) obtained in the proof of Theorem 8.1 is not sufficient to pass to
the limit in Q(‖un(τ)‖L2

b(Ω))). By this reason, we cannot use the dissipative

estimate with Cu = Q(‖u(0)‖L2
b
) for defining Ktr (otherwise, the translation

semigroup may not act on it) and, following [9] use the slightly different
estimate (8.10) for which this translation invariance is immediate.
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(iii) The rather unusual choice of topology on Ktr is motivated, on
one hand, by the necessity to have some kind of compactness / asymptotic
compactness for the attractor theory and, on the other hand, by the fact that
no additional regularity and / or compactness is known for the 3D Navier–
Stokes equations even in the case of bounded domains. So, we may speak
only about weak attractors (i.e., attractors in a weak topology of the phase
space, where the proper bounded subsets are automatically precompact).
In contrast to that, the choice of a local topology on the trajectory phase
space Ktr is unavoidable for the trajectory approach since, even in the case
of uniqueness and continuous dependence on the initial data, the solution
map S : Φb → Ktr is a homeomorphism only under such a choice of the
topology on Ktr.

Our next task is to define properly the class of bounded sets in the
trajectory phase space Ktr (which will be attracted by our trajectory at-
tractor as t → ∞). We first note that the most natural way is to use the
topology of the Banach space Ψb for defining bounded sets. However, this
choice is incompatible with the dissipative estimate (8.10). Since we do not
have the relation Cu = Q(‖u(0)‖L2

b(Ω)), the constant Cu may be, in general,

not bounded on bounded subsets of Ψb. Therefore, under such a choice of
bounded sets, we are not able establish the dissipativity (= the existence of
a bounded absorbing set), which is crucial for the attractor theory.

This obstacle is overcome by using the abstract class of “bounded” sets
(not related with any Banach or metric space); namely, a subset B ⊂ Ktr is
“bounded” if the constant Cu in the estimate (8.10) is uniformly bounded
on B

Cu � CB < ∞ ∀u ∈ Ktr.

On one hand, this class of “bounded” sets satisfies the property

if B “bounded” and B1 ⊂ B, then B1 is also “bounded”. (8.14)

On the other hand, since for “reasonable” solutions (for example, con-
structed in Theorem 8.1) we expect that Cu = Q(‖u(0)‖L2

b(Ω)), this de-

finition is naturally related with bounded subsets of the classical phase
space Φb.

We are now ready to introduce a concept of a trajectory attractor
associated with the Navier–Stokes equation and to formulate the existence
theorem. .
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Definition 8.5. A set Atr = Atr(c) ⊂ Ktr is a trajectory attractor
of the Navier–Stokes system (8.1) (= a global attractor of the trajectory
dynamical system (T (s), Ktr)) if

(i) it is “bounded” and compact in Ktr (in the topology of Ψloc),
(ii) it is strictly invariant: T (t)A = A, t � 0,
(iii) it attracts the images of all “bounded” subsets of Ktr in the topology

of Ψloc, i.e., for any “bounded” subset B ⊂ Ktr and neighborhood
O(A) of A in the topology of Ψloc there exists T = T (B,A) such that
T (t)B ⊂ O(A) if t � T .

Theorem 8.6. Let the above assumptions hold. Then for any c ∈
R and g ∈ L2

b(Ω) the Navier–Stokes problem (8.1) possesses a trajectory
attractor Atr(c) in the sense of Definition 8.5. Moreover,

‖Atr(c)‖Ψb
� K(|c|3 + 1 + ‖g‖2

L2
b(Ω)), (8.15)

where the constant K is the same as in (8.3).

Proof. According to the attractor existence theorem for abstract classes
of “bounded” sets (see [26] and also [9]), it is required to verify the following
assertions.

1. There exists a “bounded” compact metrizable absorbing set B for
the semigroup T (t) acting on Ktr.

2. T (t) is continuous on B for every fixed t.

The second condition is obvious since T (t) is continuous on the whole
Ktr considered as a translation semigroup. Let us verify the first condition.

According to the estimate (8.10),

Bε = {u ∈ Ktr, Cu � ε} (8.16)

are “bounded” absorbing sets for every ε > 0. By the estimate (8.3), the
sets Bε are bounded in Ψb and, consequently, precompact and metrizable
in Ψloc (see [22]). So, we only need to check that Bε are closed in Ktr.
The fact that the limit point u solves again the Navier–Stokes equation can
be verified exactly in the same way as in the proof of Theorem 8.1 (using
the additional control of ∂tu provided by the equation and compactness
arguments, see (8.7)). Finally, passing to the limit in the estimates (8.10),
wee see that the limit point u should satisfy this estimate. Thus, u ∈ Ktr,
Bε is closed and Theorem 8.6 is proved. �

Remark 8.7. (i) Using the fact that the attractor Atr is bounded in
a stronger space Θb, see Remark 8.2 and compactness arguments, one can
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verify that the weak attraction in Ψloc implies the following strong local
attraction: for any “bounded” subset B ⊂ Ktr, T > 0, and N ∈ R+

lim
t→∞

dist(T (t)B
∣∣
[0,T ]×Ω−N,N

,Atr

∣∣
[0,T ]×Ω−N,N

) = 0,

where the distance is understood in the space

C([0, T ], �vc + H−δ,2(Ω−N,N)) ∩ L2([0, T ], W 1−δ,2(Ω−N,N)),

δ > 0 is arbitrary.

(ii) One can define also a “global” attractor Agl by projecting the
trajectory attractor Atr to the classical phase space Φb:

Agl := Atr

∣∣
t=0

.

Then it is not difficult to show that the global attractors Aα of Leray ap-
proximations tend to the limit attractor Agl as α → 0 in the sense of upper
semicontinuity in [L2

loc(Ω)]w. Alternatively, lifting global attractors Aα,
α > 0 to the equivalent trajectory attractors Aα,tr by the solution map,
one has the upper semicontinuity of trajectory attractors Aα,tr as α → 0 in
the topology of Ψloc.

To conclude the paper, we restore the physical parameters in the
Navier–Stokes system (6.1), i.e., consider the problem

∂tu + (u,∇x)u = ν∆xu −∇xp + g, div u = 0 (8.17)

in a cylindrical domain Ω and study the dependence of the size of attractor
on ν.

Corollary 8.8. The trajectory attractor Atr = Atr(c, g, ν) of the prob-
lem (8.17) satisfies the estimate

‖Atr‖L∞(R+,L2
b
(Ω)) � Cν−3(|c|3ν + ‖g‖2

L2
b(Ω) + ν4), (8.18)

where the constant C is independent of c, g, and ν.

By scaling t′ = νt, u′ = ν−1u, we can reduce Equation (8.18) to
Equations (6.1)–(6.2) with c′ = ν−1c and g′ = ν−2g. Since A′ = ν−1A,
(7.28) implies (8.18).
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We consider symmetric self-gravitating flows of a viscous compressible barotropic

gas/fluid around a hard core with a free outer boundary in a vacuum; the density is

degenerating at the free boundary. For large discontinuous initial data and general

state function (including increasing and non-strictly increasing ones) we prove a

collection of the global-in-time bounds for solutions and study their large-time

behavior both in the Lagrangian mass and Eulerian coordinates. The results on

the existence, nonexistence and uniqueness of the corresponding static solutions

are also included. Bibliography: 29 titles.

1. Introduction

We consider symmetric self-gravitating flows of a layer of a viscous com-
pressible barotropic gas/fluid around a hard core with a free outer boundary
in a vacuum. These are described by the compressible barotropic Navier–
Stokes-Poisson equations. The cases of the planar, cylindrical and spherical
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symmetry are studied simultaneously; the spherical case is the most impor-
tant but the cylindrical one is also of interest in astrophysics. Our aim is
to derive global-in-time bounds for solutions and to study their large-time
behavior (a stabilization to stationary solutions). The latter problem (to-
gether with the stability of the corresponding rest states) is interesting in
astrophysics (see, in particular, [5, 7, 14, 6]).

The paper is closely connected to [9] (see also [29]) and develops the
corresponding technique. In contrast to the previous study, we treat the
case of flows with the density ρ degenerating at the free boundary and in
the absence of an outer pressure. This case is clearly more complicated
mathematically but much well adopted in astrophysics. In addition, now
initial data can be discontinuous (Lebesgue’s versus Sobolev’s) so that we
deal with global weak (rather than strong) solutions. We emphasize that
the initial data can be arbitrarily large, and no other smallness conditions
on data are exploited.

We take general state function p and general (strictly positive) vis-
cosity coefficient μ depending on ρ. Though the particular power law
p(ρ) = p1ρ

γ with p1 > 0 and γ � 1 is widespread, the case of general
increasing p allows us to investigate much broader applications (including
those in astrophysics; see [13]). Note that in particular, we cover the power
law for γ > 1 in the cases of the planar and cylindrical symmetries or for
γ > 4/3 in the case of the spherical symmetry. The borderline exponent
4/3 is well-known in astrophysics; some results on the necessity of the re-
strictions on γ are also contained in the paper. On the other hand, the
cases of non-strictly increasing piecewise smooth and nonmonotone p are
invoked to consider phase transition phenomena; in particular, the former
one is involved in some astrophysical models (see, for example, [11, 19]).
In these cases, few results on global behavior of solutions are available in
the literature since they are much more delicate mathematically.

The Poisson equation is excluded from the system by allowing for a
specific body force depending both on the Eulerian and Lagrangian mass
coordinates. Actually, we analyze general body force of such a kind to cover
broader possible applications.

The Lagrangian mass treatment of the problem is the basic one in the
paper (in contrast to [9]). On the other hand, we present global-in-time
bounds and stabilization results in the Eulerian coordinates as well.
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The content of the paper is as follows. In Section 2, we present the
Eulerian free boundary statement of the evolutionary problem and the cor-
responding free boundary static problem together with their Lagrangian
fixed boundary versions. We define weak solutions to the Lagrangian evo-
lutionary statement and state the corresponding global existence result in
Proposition 2.1.

Sections 3, 4, and 6 are devoted to the Lagrangian evolutionary prob-
lem. In Section 3, we give the energy conservation law and prove the
uniform-in-time energy bound, the uniform upper bound for ρ, the uniform-
in-time Lα-bound for the specific volume η := 1/ρ and the stabilization of
kinetic and potential energies respectively in Propositions 3.1–3.4. The
bound for η essentially complements the study in [9].

In Section 4, we first study an auxiliary functional involving the differ-
ence between the true and quasistationary pressures and prove an auxiliary
energy-type equality for the difference between the true and quasistationary
stresses (in Lemma 4.1, Proposition 4.1 and Lemma 4.2). Both are crucial
to derive the main results on the stabilization of solutions. In Theorem
4.1, we prove a stronger than W 1,1-stabilization of the velocity v to zero
(together with its strong bounds, for positive time and globally in time).
We outline that all the above-listed results concern general nonmonotone
state functions.

In Theorem 4.2, the Lλ-stabilization of η and ρ to solutions of the cor-
responding static problem is studied, for both increasing and nondecreasing
state function. The corresponding ω-limit sets are analyzed in Proposi-
tion 4.2.

The static problem, both in the Lagrangian mass and Eulerian state-
ments, is considered in Section 5. We prove the existence, nonexistence
and uniqueness results respectively in Propositions 5.1–5.3. We outline the
uniqueness result in the astrophysical context provided that the first adi-
abatic exponent Γ1 of the state function is greater than or equal to 1 or
4/3 respectively in the case of the cylindrical or spherical symmetry (see
Corollary 5.2). This solves the problem posed by Kuan and Lin [15].

In Section 6, some additional bounds for ρ are proved (including its
curious Hölder continuity in time and bounds for its difference in space in
Propositions 6.1 and 6.2). The proof of Proposition 2.1 is also put here.

Section 7 is devoted to the Eulerian evolutionary statement of the
problem: Proposition 7.1 collects the uniform-in-time bounds for solutions
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(and auxiliary stabilization results) and Theorem 7.1 contains the stabi-
lization results for v (together with its additional bounds) and for ρ and
the free radius R; the latter stabilization result differs from the preceding
Lagrangian one. Proposition 4.2 treats the corresponding ω-limit sets.

To complete this brief introduction, we only list some related papers
in the field of mathematical astrophysics: [20, 21, 8, 15, 17, 24, 25, 10];
other related papers on viscous compressible flows are listed in [9].

2. The Eulerian and Lagrangian
Mass Statements of the Problem

We consider a system of quasilinear differential equations describing sym-
metric flows of a viscous compressible barotropic fluid consisting in the
continuity and the impulse equations

ρt +
1

κ
(κρv)r = 0, (2.1)

ρ(vt + vvr) = σr + ρf [m], σ :=
μ(ρ)

κ
(κv)r − p(ρ) (2.2)

in a domain Q := {(r, t); r0 < r < R(t), t > 0} and the free boundary
equation

R′(t) = v
∣∣
r=R(t)

, t > 0. (2.3)

The system is supplemented with the fixed left-hand and free right-hand
boundary conditions

v
∣∣
r=r0

= 0, σ
∣∣
r=R(t)

= 0, t > 0, (2.4)

and the initial conditions

ρ
∣∣
t=0

= ρ0, v
∣∣
t=0

= v0 on Ω0 := (r0, R
0), R

∣∣
t=0

= R0 > r0. (2.5)

The unknown functions ρ > 0, v, and R are the density and the
velocity of the gas and the radius of the exterior free boundary, σ, p(ρ),
and μ(ρ) are the stress, the pressure (s → p(s) is the corresponding state
function), and the viscosity coefficient.

Hereinafter, κ(r) := rk with k = 0, 1 or k = 2 respectively for the
planar, cylindrical or spherical symmetry, and ν(r) := rk+1/(k + 1), ν0 :=

rk+1
0 /(k + 1) and V := Rk+1/(k + 1); r0 > 0 is the radius of the hard core,

and V is the gas volume (up to a constant multiplier).
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The function f is a body force of the form f(r, χ, t) = fS(r, χ) +
∆f(r, χ, t), where fS is the static contribution and ∆f is its perturbation
(of any nature) tending to zero as t → ∞ in a weak sense; also f [m](r, t) :=
f(r, m(r, t), t). The function

m(r, t) :=

r∫

r0

ρ(r1, t)κ(r1) dr1 (2.6)

is the mass of the gas layer around the hard core, with the external radius
r; thus f depends both on the Eulerian and Lagrangian mass coordinates.
The mass conservation law

m(R(t), t) ≡ M :=

∫

Ω0

(ρ0κ)(r) dr for t � 0

holds for solutions to the problem; M is the total mass of the gas.

In the astrophysical context, the function fS has the specific form

fS(r, χ) = fG(r, χ) := −G
M0 + i0χ

rk
,

where G > 0, M0 � 0 (the mass of the hard core) and i0 = 0, 1. For i0 = 1
the most interesting case with self-gravitation is covered, whereas for i0 = 0
the self-gravitation is neglected (but this case was also of interest in the
literature). In the latter case, we suppose that M0 > 0.

The corresponding static problem consists in finding a pair {ρS, RS}
of static density ρS > 0 and free radius RS ∈ (r0,∞) such that the following
integro-differential equation holds:

p(ρS)r = ρSfS [mS ], mS(r) :=

r∫

r0

(ρSκ)(r1) dr1 in ΩS := (r0, RS), (2.7)

under the free boundary condition and the mass constraint

p(ρS)(RS) = 0,

∫

ΩS

ρSκ dr = M. (2.8)

Here, fS [mS ](r) = fS(r, mS(r)) and mS(r) is the mass of the static gas
layer around the hard core, with the external radius r.
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Throughout the paper, we assume that p and μ satisfy the conditions
p, μ ∈ W 1,∞

loc (R̄+) and

p(0) = 0, p(s) > 0, s > 0,

1∫

0

p(s)

s2
ds < ∞,

p(+∞) := lim
s→+∞

p(s) = +∞,

(2.9)

0 < μ � μ(s), s � 0. (2.10)

Recall that ϕ ∈ Lλ
loc(R̄

+) means that ϕ ∈ Lλ(0, T ) for any T > 0, and

ϕ ∈ W 1,λ
loc (R̄+) means that ϕ, ϕ′ ∈ Lλ

loc(R̄
+), where λ ∈ [1,∞]. We impose

a more restrictive condition than the third condition (2.9) on p in the main
results (see (3.16) below). For comparison, we introduce the power law
pγ(s) = p1s

γ , p1 > 0, γ > 1 and set γ′ := γ/(γ − 1).

One can pass to the Lagrangian mass coordinates by considering χ =
m(r, t) (see formula (2.6)) as a new independent variable together with t.
Taking into account the mass conservation law, one can transform the free
boundary problem (2.1)–(2.3) to the problem

Dtρ̌ = −ρ̌2D(κ̌v̌), (2.11)

Dtv̌ = κ̌Dσ̌ + f̌ [ř], σ̌ := μ(ρ̌)ρ̌D(κ̌v̌) − p(ρ̌), (2.12)

ν̌ :=
1

k + 1
řk+1 = ν0 +

χ∫

0

dξ

ρ̌(ξ, t)
(2.13)

in the fixed domain Q̌ := J × R+, J := (0, M). The original unknown
functions ρ(r, t), v(r, t), m(r, t) and the new ones ρ̌(χ, t), v̌(χ, t), ř(χ, t) are
related by the equalities

ρ(r, t) ≡ ρ̌(m(r, t), t), v(r, t) ≡ v̌(m(r, t), t), r ≡ ř(m(r, t), t) in Q̄,

where ρ̌ > 0 and ř � r0. Moreover, D and Dt denote the partial derivatives
with respect to the new variables χ and t as well as κ̌ = řk and f̌ [ř](χ, t) =
f(ř(χ, t), χ, t).

The following boundary and initial conditions supplement the equa-
tions:

v̌
∣∣
χ=0

= 0, σ̌
∣∣
χ=M

= 0 on R+, (2.14)

ρ̌
∣∣
t=0

= ρ̌ 0, v̌
∣∣
t=0

= v̌0 on J, (2.15)
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where ρ̌ 0(m0(r)) = ρ0(r) and v̌0(m0(r)) = v0(r) on Ω0 with

m0(r) :=

r∫

r0

ρ0κ dr1.

The continuity equation (2.11) can be written in the form

Dtη̌ = D(κ̌v̌), (2.16)

where η̌ := 1/ρ̌ is the specific volume. By applying Dt to (2.13) and using
(2.16), together with v̌

∣∣
χ=0

= 0, we get the standard equation

Dtř = v̌ (2.17)

connecting ř and v̌. It is clear that (2.13) implies the following formula for
the gas volume:

V (t) = ν0 +

∫

J

η̌(χ, t) dχ, t � 0. (2.18)

It is convenient to introduce the function

h(ν, χ) :=
fS(r, χ)

rk

∣∣∣
r=[(k+1)ν]1/(k+1)

and set ȟ[ν̌](χ, t) := h(ν̌(χ, t), χ). Let ∆f̌ [ř](χ, t) := ∆f(ř(χ, t), χ, t).

For Q̌T := J × (0, T ) let Lλ,s(Q̌T ) be the anisotropic Lebesgue space
[16] equipped with the norm ‖ϕ‖Lλ,s(Q̌T ) = ‖ ‖ϕ‖Lλ(J) ‖Ls(0,T ), λ, s ∈
[1,∞]. The similar space is used for Q̌ replacing Q̌T as well. In the proofs,
we also adopt the abbreviation ‖·‖G = ‖·‖L2(G). For an unbounded domain

G we denote by Cb(Ḡ) the space of continuous and bounded functions on
Ḡ equipped with the norm ‖ϕ‖Cb(Ḡ) := supḠ |ϕ|.

We impose the following conditions on the initial data and h

ρ̌ 0 ∈ L∞(J), ess inf(0,χ1) ρ̌ 0 > 0 for any χ1 ∈ J,
1

ρ̌ 0
∈ L1(J), (2.19)

v̌0 ∈ L2(J), h ∈ Cb([ν0,∞) × J̄), h � 0. (2.20)

Let ∆f(r, χ, t) be measurable on (r0,∞)×J ×R+, continuous with respect
to χ ∈ J̄ for almost all (r, t) ∈ (r0,∞) × R+, continuous with respect to
r ∈ [r0,∞) for almost all (χ, t) ∈ J × R+ and satisfy the bound

|∆f | � f̄ , ‖f̄‖L1(R+) � N, f̄ ∈ L2
loc(R

+).

Hereinafter, N > 1 is an (arbitrarily large) parameter.
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We study weak solutions possessing the following properties in Q̌T for
any T > 0:

ρ̌ ∈ L∞(Q̌T ), ess inf(0,χ1)×(0,T )ρ̌ > 0 for any χ1 ∈ J,
1

ρ̌
∈ L1,∞(Q̌T ),

(2.21)

Dtρ̌ ∈ L2(Q̌T ), v̌ ∈ C([0, T ]; L2(J)),
√

ρ̌ Dv̌ ∈ L2(Q̌T ) (2.22)

and the following internal regularity for any 0 < t0 < T :

σ̌√
ρ̌
∈ L2,∞(Q̌T \Q̌t0), Dtv̌, Dσ̌ ∈ L2(Q̌T \Q̌t0). (2.23)

The solutions satisfy the continuity equation (2.11) in L2(Q̌T ), the equality
(2.13) in L∞(Q̌T ), and the impulse equation (2.12) in the weak form

∫

Q̌T

(−v̌Dtϕ + σ̌Dϕ)dχdt =

∫

J

v̌0ϕ|t=0 dχ +

∫

Q̌T

f̌ [ř]ϕdχdt, (2.24)

for any ϕ ∈ H1(Q̌T ) such that ϕ|χ=0 = 0 and ϕ|t=T = 0, as well as in

L2(Q̌T \Q̌t0). The boundary conditions (2.14) and the initial condition
ρ̌|t=0 = ρ̌ 0 are understood in the sense of traces.

We mention the useful inequality

‖Dv̌‖L1,2(Q̌T ) � ‖1/ρ̌‖1/2

L1,∞(Q̌T )
‖
√

ρ̌ Dv̌‖L2(Q̌T ). (2.25)

The properties (2.21) and (2.23) imply the additional internal regularity
√

ρ̌ Dv̌ ∈ L2,∞(Q̌T \Q̌t0). (2.26)

Note that formally we do not suppose that necessarily ρ̌0(M) = 0 and
ρ̌|χ=M = 0 (in a suitable weak sense) though namely this case is the most
interesting and, accordingly, the boundary condition σ̌|χ=M = 0 (neglecting
the second viscosity coefficient) is the most relevant.

Proposition 2.1. 1. Let the conditions (2.19), (2.20) hold, and let
hν ∈ L1(J ; C[ν0, ν]) for any ν > ν0. Then there exists a solution to the
initial-boundary value problem (2.11)–(2.15) having the properties (2.21)–
(2.23) and

C(T )−1ρ̌ 0(χ) � ρ̌(χ, t) � C(T )ρ̌ 0(χ) in Q̌T , (2.27)

where C(T ) > 0 for any T > 0.

2. Under the additional conditions
√

ρ̌ 0 Dv̌0 ∈ L2(J), v̌0(0) = 0, and
f̄ ∈ L2

loc(R̄
+), the result holds for (2.23) (and (2.26)) with t0 = 0, i.e., for

Q̌T replacing Q̌T \Q̌t0 .
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3. If, in addition to the assumptions of Claim 1, ρ̌ 0 ∈ C(J̄), then
ρ̌ ∈ C(J̄ × [0, T ]).

The proof is given at the end of Section 6 below.

The static problem corresponding to (2.11)–(2.15) has the form

Dp(ρ̄S) = ȟ[νS ], νS(χ) := ν0 +

χ∫

0

dξ

ρ̄S(ξ)
in J, (2.28)

p(ρ̄S)(M) = 0, (2.29)

where the unknown function ρ̄S > 0 is the Lagrangian static density and
ȟ[νS ](χ) = h(νS(χ), χ). We consider static solutions ρ̄S such that

ρ̄S ∈ L∞(J), p(ρ̄S) > 0 on [0, M),
1

ρ̄S
∈ L1(J), p(ρ̄S) ∈ C1(J̄). (2.30)

For increasing p it is clear that ρ̄S ∈ C(J̄), ρ̄S > 0 on [0, M), and ρ̄S(M) = 0.

This problem arises also from the Eulerian static problem (2.7), (2.8)
after the change of variable χ = mS(r) with the relation ρS(r) ≡ ρS(mS(r))
for r ∈ ΩS (see Section 5 below for details).

3. Global in Time Bounds
in the Lagrangian Mass Coordinates

The energy conservation law for the problem (2.11)–(2.15) in the Lagrangian
mass coordinates has the form

(E + F)′ +

∫

J

μ(ρ̌)ρ̌[D(κ̌v̌)]2 dχ =

∫

J

∆f̌ [ř]v̌ dχ, (3.1)

involving (·)′ = d/dt, the kinetic and potential energies

E :=
1

2

∫

J

v̌2 dχ, F :=

∫

J

(P (0)(ρ̌) − Ȟ [ν̌])dχ

with Ȟ [ν̌](χ, t) = H(ν̌(χ, t), χ), and the primitive functions

P (0)(s) :=

s∫

0

p(s1)

s2
1

ds1, H(ν, χ) :=

ν∫

ν0

h(ν1, χ) dν1;

the derivation of the law is recalled in the next proof.
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We introduce the integration operations

Ǐϕ(χ) :=

χ∫

0

ϕ(χ1) dχ1, Ǐ∗ϕ(χ) :=

M∫

χ

ϕ(χ1) dχ1.

Proposition 3.1. Let
∥∥∥1

2
(v̌0)2 + P (0)(ρ̌ 0)

∥∥∥
L1(J)

� N, h � 0.

Then the following uniform-in-time energy bound holds:

sup
t�0

∥∥∥
(1

2
v̌2 + P (0)(ρ̌)

)
(·, t)

∥∥∥
L1(J)

+
∥∥∥
√

ρ̌ D(κ̌v̌)
∥∥∥

L2(Q̌)
� K. (3.2)

Hereinafter, we denote by K, possibly with indices, some nondecreas-
ing functions of N that can depend also on p, μ, fS , M , etc.

Proof of Proposition 3.1. To simplify the notation, we omit “checks”
over the functions ρ̌, v̌, ř, κ̌, ν̌, η̌, and their initial values in the proofs.

The impulse equation (2.12), together with the boundary conditions
(2.14), implies

1

2

d

dt

∫

J

v2 dχ +

∫

J

[μ(ρ)ρD(κv) − p(ρ)]D(κv) dχ

=

∫

J

(ȟ[ν]κv + ∆f̌ [r]v)dχ. (3.3)

Using the continuity equation (2.11), we get −p(ρ)D(κv) = DtP
(0)(ρ).

Using the continuity equation in the form (2.16), we get

Dtν = DtǏη = κv. (3.4)

Hence ȟ[ν]κv = DtȞ [ν]. Thus, we obtain the energy conservation law (3.1).

Taking into account the condition (2.10) and the estimate
∣∣∣
∫

J

∆f̌ [r]v dχ
∣∣∣ � f̄M1/2‖v‖J = f̄M1/2(2E)1/2, (3.5)

we derive the bound (3.2) from the energy conservation law. �

Proposition 3.2. Let

ρ̌ 0 � N, ‖v̌0‖L2(J) � N, (3.6)

−N � h � 0 in [ν0,∞) × J̄ . (3.7)
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Then the following pointwise upper bound for ρ̌ holds:

ρ̌(χ, t) � Kρ (3.8)

for almost all χ ∈ J and any t � 0.

Proof. Since Dtr = v and thus Dtκ = (k/r)κv, we have

1

κ
Dtv = Dt

v

κ
+

k

rκ
v2.

Therefore, dividing the impulse equation (2.12) by κ, we get

Dt
v

κ
+

k

rκ
v2 = Dσ̌ + ȟ[ν] +

∆f̌ [r]

κ
. (3.9)

The equality μ(ρ)ρD(κv) = −DtA(ρ) holds with the primitive function

A(s) :=

s∫

s0

μ(ζ)

ζ
dζ, s > 0 (3.10)

with some fixed s0 > 0 (in this proof, one can simply set s0 := 1). Apply-
ing the operator −Ǐ∗ to Equation (3.9), we obtain the following important
equation

DtA(ρ) + p(ρ) = DtǏ
∗ v

κ
+ p̌R[ρ] + kǏ∗

v2

rκ
− Ǐ∗

∆f̌ [r]

κ
, (3.11)

where p̌R[ρ] := −Ǐ∗ȟ[ν] is the so-called quasistationary pressure.

By the energy bound and the condition (3.7) on h, we have
∥∥∥Ǐ∗ v

κ

∥∥∥
C(J̄)

� r−k
0 M1/2‖v‖J � K, (3.12)

‖p̌R[ρ]‖C(J̄) � M‖h‖Cb([ν0,∞)×J̄) � MN, (3.13)

∥∥∥∥Ǐ∗
v2

rκ

∥∥∥∥
C(J̄)

� r
−(k+1)
0 ‖v‖2

J � K, (3.14)

∥∥∥∥Ǐ∗
∆f̌ [r]

κ

∥∥∥∥
C(J̄)

� M

∥∥∥∥
∆f̌ [r]

κ

∥∥∥∥
L∞(J)

� r−k
0 Mf̄. (3.15)

We can consider (3.11) as an ordinary differential equation with re-
spect to t for almost all fixed χ ∈ J (such that Dtρ(χ, ·) ∈ L1

loc(R̄
+)). Using

the properties p(∞) = +∞, μ � μ and the estimates (3.12)–(3.15) and

applying Lemma 1.3 in [26], we derive the bound

A(ρ(χ, t)) � max {A(ρ0(χ)), K1} + K2 � K3 on R̄+.



340 Alexander Zlotnik

The bound (3.8) is proved. �

Proposition 3.3. Let p satisfy the upper bound

p � pγ on [0, 1] with some γ > γ(k), (3.16)

where γ(0) = γ(1) = 1, γ(2) = 4/3, and let

ρ̌ 0 � N, ‖1/ρ̌ 0‖Lα(J) � N for some α ∈ (1, γ), ‖v̌0‖L2(J) � N, (3.17)

− N � h(ν, χ) � − α0(χ)

ν2k/(k+1)
in [ν0,∞) × J̄ (3.18)

for some α0 ∈ C(J̄) such that α0 � 0 and α0(M) > 0. Then the following
uniform-in-time bound holds:

sup
t�0

∥∥∥ 1

ρ̌(·, t)
∥∥∥

Lα1(J)
� Kα1 for any α1 ∈ [1, α) (3.19)

and, consequently, the following uniform upper bound for V holds:

sup
t�0

V (t) � KV . (3.20)

In the particular case μ(s) ≡ const, one can take α1 = α; moreover,
the result remains valid for α = α1 = 1 when the second condition (3.17)
reduces to V 0 − ν0 � N , where V 0 := (R0)k+1/(k + 1) (see R0 in (2.5)).

Proof. We divide the proof in four steps.

1. We begin by passing from the ordinary differential equation (3.11)
to the simpler inequality

−DtA(ρ) + a � p(ρ), a := DtǏ
∗ v

κ
− Ǐ∗

∆f̌ [r]

κ
+ p̌R[ρ]. (3.21)

By the estimates (3.12) and (3.15), we get

t∫

τ

a(χ, θ) dθ � −K1 + (t − τ)λ(χ, t) for any 0 � τ � t (3.22)

provided that

min
0�θ�t

p̌R[ρ](χ, θ) � λ(χ, t) > 0. (3.23)

Consequently, for any number c > 0

t∫

0

e
−c

t

τ

a(χ,θ) dθ
dτ � ecK1

1

cλ(χ, t)
. (3.24)
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2. For the sake of clarity, we first consider the particular case μ(s) ≡
μ0 > 0. In this case, for any γ > 0

−DtA(ρ) =
μ0

γ

Dt(η
γ)

ηγ
,

and the inequality (3.21) is transformed to the following:

Dt(η
γ) +

γ

μ0
aηγ �

γ

μ0
p(ρ)ηγ .

By the condition (3.16) and the bound ρ � Kρ, we get

p(s) � K2s
γ , 0 � s � Kρ. (3.25)

Consequently,

Dt(η
γ) +

γ

μ0
aηγ �

γ

μ0
K2.

For almost all χ ∈ J such that Dtρ(χ, ·) ∈ L1
loc(R̄

+), solving this inequality
and applying the estimates (3.22) and (3.24), we have

ηγ(χ, t) � (η0(χ))γe
−(γ/μ0)

t

0

a(χ,θ) dθ
+

γ

μ0
K2

t∫

0

e
−(γ/μ0)

t

τ

a(χ,θ) dθ
dτ

� e(γ/μ0)K1

(
(η0(χ))γ + K2

1

λ(χ, t)

)
(3.26)

with η0 := 1/ρ0 and, after taking the (α/γ)th power of the result,

ηα(χ, t) � K3

[
(η0(χ))α +

1

λα/γ(χ, t)

]
. (3.27)

3. Using the condition (3.18), we get

min
0�θ�t

p̌R[ρ](χ, θ) �
α 0(M − χ)

V2k/(k+1)(t)
=: λ(χ, t), (3.28)

where

V(t) := max
0�θ�t

V (θ), α 0 := inf
0�χ<M

1

M − χ

M∫

χ

α0(χ1) dχ1

and α 0 > 0 by the assumptions on α0. Note that for δ > 1

∥∥∥ 1

λ1/δ

∥∥∥
L1(J)

=
δ

δ − 1

M1−1/δ

α
1/δ
0

V2k/[δ(k+1)].
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Integrating (3.27) over J and using the second condition (3.17) and the last
formula with δ := γ/α > 1, we find

‖η‖α
Lα(J) � K3

(
N +

∥∥∥ 1

λα/γ

∥∥∥
L1(J)

)
� K4(1 + V2kα/[γ(k+1)]).

Consequently,

max
0�θ�t

‖η(·, θ)‖Lα(J) � K4(1 + V2k/[γ(k+1)](t))

for any t � 0. By (2.18), we have

V = ν0 + ‖η‖L1(J) � ν0 + M1−(1/α)‖η‖Lα(J).

Therefore,

max
0�θ�t

‖η(·, θ)‖Lα(J) � K5(1 + max
0�θ�t

‖η(·, θ)‖2k/[γ(k+1)]
Lα(J) ) (3.29)

for any t � 0. Since 2k/[γ(k+1)] < 1 in view of (3.16), the Young inequality
leads to the bound

sup
t�0

‖η(·, t)‖Lα(J) � K6.

This technique goes back to [21].

4. The case of general μ is more delicate. For given ε ∈ (0, 1) we choose
sε ∈ (0, 1) so small that

∣∣∣μ(s)

μ(0)
− 1
∣∣∣ < ε, 0 � s � sε.

We set s0 := sε in the definition of A (see (3.10)), zε := e−A(ρ)/με , and
με := (1 − ε)μ(0). Then

με log(sε/s) � −A(s) � (1 + ε)μ(0) log(sε/s)

for 0 < s � sε. Thus,

sεη � zε � (sεη)(1+ε)/(1−ε) for η � s−1
ε . (3.30)

We set γε := (1− ε)γ/(1 + ε) < γ, αε := (1− ε)α/(1 + ε) < α and choose ε
so small that γε > γ(k) and αε > 1.

Since

−DtA(ρ) = μεDt log zε =
με

γε

Dt(z
γε
ε )

zγε
ε

,

the inequality (3.21) can be transformed to the form

Dt(z
γε
ε ) +

γε

με
azγε

ε �
γε

με
p(ρ)zγε

ε . (3.31)

We consider almost all χ ∈ J such that Dtρ(χ, ·) ∈ L1
loc(R̄

+). Thus, ρ(χ, t) is
continuous on R̄+. The set Sε := {t > 0; η(χ, t) > s−1

ε } is open. Hence it is
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an at most countable collection of disjoint intervals Jl = (t1l, t2l) (depending
on χ). Moreover, η(χ, t1l) = η0(χ) � s−1

ε provided that t1l = 0; otherwise,
η(χ, t1l) = s−1

ε . By the right-hand estimate (3.30) and condition (3.16), we
have p(ρ(χ, t))zγε

ε (χ, t) � p(ρ(χ, t))(sεη(χ, t))γ � p1s
γ
ε on J̄l. As in the case

(3.27), from (3.31) we derive

zαε
ε (χ, t) � K3ε

[
zαε

ε (χ, t1l) +
1

λαε /γε(χ, t)

]
on J̄l, (3.32)

where K3ε � 1. Using the two-sided estimate (3.30), we find

sαε
ε ηαε(χ, t) � K3ε

[
(sεη

0(χ))α + 1 +
1

λαε/γε(χ, t)

]
on J̄l (3.33)

since zε(χ, t1l) � sεη
0(χ) provided that t1l = 0 or zε(χ, t1l) = 1 otherwise.

Since K3ε � 1, the inequality (3.33) is also valid on R̄+\Sε and, finally,
on R̄+.

The argument of the previous step of the proof leads from the estimate
(3.33) on R̄+ to the bound supt�0 ‖η(·, t)‖Lαε (J) � K6ε. Since ε > 0 is
arbitrarily small, the proof is complete. �

Note that the condition (3.18) holds for fS = fG, i.e., h = hG(ν, χ) :=

−G̃(M0 + i0χ)/ν2k/(k+1) with G̃ := G/(k + 1)2k/(k+1).

The bound (3.20) leads to the following useful inequalities:

rk
0‖v̌‖C(J̄) � ‖D(κ̌v̌)‖L1(J) � K

1/2
V ‖

√
ρ̌ D(κ̌v̌)‖L2(J). (3.34)

Remark 3.1. Under the hypotheses of Proposition 3.3,

‖ř‖L∞(Q̌) + ‖Dř‖Lα1,∞(Q̌) + ‖Dtř‖L2,∞(Q̌)∩L∞,2(Q̌) + ‖
√

ρ̌ DDtř‖L2(Q̌) � K.

Consequently, ř ∈ Cb(J̄ × R̄+).

Proposition 3.4. Let the hypotheses of Proposition 3.3 be valid. Then
the following bounds for the kinetic and potential energies hold:

‖E‖L1(R+) � K, ‖E ′‖L1(R+)+L2(R+) � K, ‖(E + F)′‖L1(R+) � K (3.35)

and, consequently, they stabilize

E(t) → 0, F(t) → F (S) as t → ∞. (3.36)

Here, L1(R+)+L2(R+) is the sum of Banach spaces (see, for example, [3]).

Proof. Using (3.3), we get

E ′ = −
∫

J

μ(ρ)ρ(D(κv))2 dχ +

∫

J

(p(ρ) − p̌R[ρ])D(κv) dχ +

∫

J

∆f̌ [r]v dχ.
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Using the bounds ρ � Kρ, (3.13), (3.5), and the energy bound, we find

|E ′| � ‖μ‖C[0,Kρ]‖
√

ρ D(κv)‖2
J

+ (‖p‖C[0,Kρ] + MN)‖D(κv)‖L1(J) + Kf̄. (3.37)

By (3.34) and the energy bound,

E � r−2k
0 M‖D(κv)‖2

L1(J). (3.38)

Then we obtain the first and second bounds (3.35) which imply that E(t) →
0 as t → ∞ (see [23, Lemma 2.1]).

From the energy conservation law, simpler than (3.37) we derive the
third bound (3.35). Thus, (E + F)(t) has a limit as t → ∞ and so F(t)
does. �

4. Stabilization of Velocity and Density
in the Lagrangian Mass Coordinates

We define the functional

P̌ [ρ̌] :=

∫

J

1

ρ̌
(p(ρ̌) − p̌R[ρ̌])2dχ =

∫

J

1

ρ̌
(∆p[ρ̌])2dχ,

where ∆p[ρ̌] := p(ρ̌)− p̌R[ρ̌] is the difference between the true and quasista-
tionary pressures.

Lemma 4.1. Let the hypotheses of Proposition 3.3 be valid, and let

‖hν‖L1(J; C[ν0,KV ]) � C1(N). (4.1)

Then

P̌ [ρ̌] = R′
0 + R, (4.2)

where

R0 :=

∫

J

1

ρ̌
(∆p[ρ̌]) Ǐ∗

v̌

κ̌
dχ, (4.3)

R := −
∫

J

{
(∆p[ρ̌] − ρ̌p′(ρ̌))D(κ̌v̌) − 1

ρ̌
Dtp̌R[ρ̌]

}
Ǐ∗

v̌

κ̌
dχ

+

∫

J

{
μ(ρ̌)D(κ̌v̌) +

1

ρ̌

(
kǏ∗

v̌2

řκ̌
− Ǐ∗

∆f̌ [ř]

κ̌

)}
∆p[ρ̌] dχ (4.4)
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with

Dtp̌R[ρ̌] = −Ǐ∗(κ̌v̌hν [ν̌]). (4.5)

Moreover, the following formula for the derivative holds:

(P̌ [ρ̌])′ =

∫

J

{
(∆p[ρ̌] − 2ρ̌p′(ρ̌))D(κ̌v̌) − 2

ρ̌
Dtp̌R[ρ̌]

}
∆p[ρ̌] dχ. (4.6)

Proof. We write (3.11) as follows:

∆p[ρ] = DtǏ
∗ v

κ
+ μ(ρ)ρD(κv) + kǏ∗

v2

rκ
− Ǐ∗

∆f̌ [r]

κ
.

Consequently,

P̌[ρ] =

∫

J

(∆p[ρ]) η∆p[ρ] dχ

=
d

dt

∫

J

(
Ǐ∗

v

κ

)
η∆p[ρ] dχ −

∫

J

(
Ǐ∗

v

κ

)
Dt(η∆p[ρ]) dχ

+

∫

J

{
μ(ρ)D(κv) +

1

ρ

(
kǏ∗

v2

rκ
− Ǐ∗

∆f̌ [r]

κ

)}
∆p[ρ] dχ.

Further,

Dt(η∆p[ρ]) = (Dtη)∆p[ρ] + η(p′(ρ)Dtρ − Dtp̌R[ρ])

= (Dtη)(∆p[ρ] − ρp′(ρ)) − ηDtp̌R[ρ]. (4.7)

These two formulas and the equations Dtη = D(κv) and Dtν = κv imply
(4.2)–(4.5).

It is easy to see that

(P̌ [ρ̌])′ =

∫

J

{(Dtη)(∆p[ρ])2 + 2η(∆p[ρ])Dt∆p[ρ]}dχ

=

∫

J

{2Dt (η∆p[ρ]) − (Dtη)∆p[ρ]}∆p[ρ] dχ.

Using formula (4.7) once again, we obtain formula (4.6). �

Proposition 4.1. Let the hypotheses of Proposition 3.3 and the con-
dition (4.1) be valid. Then

|R0| � KE1/2, ‖R‖L1(R+)+L2(R+) � K, ‖(P̌[ρ̌])′‖L2(R+) � K (4.8)



346 Alexander Zlotnik

and, consequently,

P̌[ρ̌(·, t)] → 0 as t → ∞. (4.9)

Proof. According to the bounds ρ � Kρ and (3.13), we get

‖∆p[ρ]‖L∞(J) � K.

By the condition (4.1),

‖Dtp̌R[ρ]‖C(J̄) � K‖κv‖C(J̄) � K‖D(κv)‖L1(J). (4.10)

Using the estimates (3.12), (3.14), (3.15), and ‖η‖L1(J) � KV , we find

|R0| � ‖η‖L1(J)‖∆p[ρ]‖L∞(J)

∥∥∥Ǐ∗ v

κ

∥∥∥
C(J̄)

� K1E1/2

and

|R| � {(‖∆p[ρ]‖L∞(J) + ‖sp′(s)‖L∞(0,Kρ))‖D(κv)‖L1(J)

+ ‖η‖L1(J)‖Dtp̌R[ρ]‖C(J̄)}
∥∥∥Ǐ∗ v

κ

∥∥∥
C(J̄)

+{‖μ‖C[0,Kρ]‖D(κv)‖L1(J)+‖η‖L1(J)(kr
−(k+1)
0 2E+r−k

0 Mf̄)}‖∆p[ρ]‖L∞(J)

� K(‖D(κv)‖L1(J) E1/2 + ‖D(κv)‖L1(J) + E + f̄).

Since E � K2 and E � K
1/2
2 E1/2 � K3‖D(κv)‖L1(J) (see (3.38)), we derive

|R| � K(‖D(κv)‖L1(J) + f̄).

Similarly,

|(P̌ [ρ̌])′| � {(‖∆p[ρ]‖L∞(J) + 2‖sp′(s)‖L∞(0,Kρ))‖D(κv)‖L1(J)

+ 2‖η‖L1(J)‖Dtp̌R[ρ]‖C(J̄)}‖∆p[ρ]‖L∞(J) � K‖D(κv)‖L1(J).

Recalling (3.34) and the energy bound, we obtain the estimates (4.8). These
estimates and the property E(t) → 0 as t → ∞ imply (4.9) (see [23, Lemma
2.1]). �

We introduce the function ∆σ̌ := σ̌ + p̌R[ρ̌], which is the difference
between the stress σ̌ and the quasistationary stress −p̌R[ρ̌].

Lemma 4.2. Let the hypotheses of Proposition 3.3 and the condition
(4.1) be valid. Then the function ∆σ̌ satisfies the following energy-type
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equality:

1

2
Y ′ +

∫

J

(κ̌D∆σ̌)2 dχ = −1

2

∫

J

(β(ρ̌) − ρ̌β′(ρ̌))(D(κ̌v̌))(∆σ̌)2 dχ

−
∫

J

k
κ̌

ř
v̌2D∆σ̌ dχ −

∫

J

{
[(βp)(ρ̌) − ρ̌(βp)′(ρ̌)

− (β(ρ̌) − ρ̌β′(ρ̌))p̌R[ρ̌]]D(κ̌v̌) − β(ρ̌)

ρ̌
Dtp̌R[ρ̌]

}
∆σ̌ dχ

−
∫

J

∆f̌ [ř]κ̌D∆σ̌ dχ =:
1

2
S1 + S2 + S3 + S4, (4.11)

where

Y :=

∫

J

β(ρ̌)

ρ̌
(∆σ̌)2 dχ ∈ W 1,1

loc (R+), β :=
1

μ
.

Proof. 1. We write the impulse equation (2.12) in the form

Dtv = κD∆σ̌ + ∆f̌ [r]. (4.12)

Multiplying by −κD∆σ̌, integrating over J , and using the formula κDtv =
Dt(κv) − k(κ/r)v2, we get

−
∫

J

(Dt(κv))D∆σ̌ dχ +

∫

J

(κD∆σ̌)2 dχ

= −
∫

J

k
κ

r
v̌2D∆σ̌ dχ −

∫

J

∆f̌ [r]κD∆σ̌ dχ. (4.13)

By the definition of σ̌, we can write

D(κv) = ηβ(ρ)(σ̌ + p(ρ)) = ηβ(ρ)(∆σ̌ + ∆p̌R[ρ]). (4.14)

We have

−
∫

J

(Dt(κv))D∆σ̌ dχ =
1

2

d

dt

∫

J

ηβ(ρ)(∆σ̌)2 dχ

+
1

2

∫

J

{Dt(ηβ(ρ))}(∆σ̌)2 dχ +

∫

J

{Dt(ηβ(ρ)∆p̌R[ρ])}∆σ̌ dχ. (4.15)
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This formula is justified at the second step of the proof. Formally, it can
be obtained by integrating by parts on its left-hand side and using for-
mula (4.14). We calculate

Dt(ηβ(ρ)) = (Dtη)β(ρ) + ηβ′(ρ)Dtρ = (β(ρ) − ρβ′(ρ))D(κv).

Similarly,

Dt(ηβ(ρ)∆p̌R[ρ]) = Dt(η(βp)(ρ) − ηβ(ρ)p̌R[ρ])

= [(βp)(ρ) − ρ(βp)′(ρ)]D(κv)

− (β(ρ) − ρβ′(ρ))(D(κv)) p̌R [ρ] − ηβ(ρ)Dtp̌R[ρ].

Substituting (4.15) into (4.13) and using the last two formulas, we obtain
(4.11).

2. To justify formula (4.15), we apply the same technique as in [27,
Lemma 1]. For the sake of brevity, we set a := ηβ(ρ) and ψ := ηβ(ρ)∆p̌R[ρ].
Introduce the following operators for 0 � t < t + τ :

S(τ)y(t) :=
1

τ

τ∫

0

y(t+θ) dθ, ∂
(τ)
t y(t) :=

y(t + τ) − y(t)

τ
, y(τ)(t) := y(t+τ).

We take 0 � t0 < t1 and set Q̃ := J × (t0, t1). Integrating by parts and
applying formula (4.14) in the form D(κv) = a∆σ̌ + ψ, we get

−
∫

Q̃

(∂
(τ)
t (κv))D

∆σ̌ + ∆σ̌(τ)

2
dχdt

=

∫

Q̃

[1
2

∂
(τ)
t (a(∆σ̌)2) +

1

2
(∂

(τ)
t a)(∆σ̌)∆σ̌(τ) + (∂

(τ)
t ψ)

∆σ̌ + ∆σ̌(τ)

2

]
dχdt

=
1

2

(
S(τ)

∫

J

a(∆σ̌)2
)∣∣∣

t=t1

t=t0

+

∫

Q̃

[1
2
(S(τ)Dta)(∆σ̌)∆σ̌(τ) + (S(τ)Dtψ)

∆σ̌ + ∆σ̌(τ)

2

]
dχdt.

Using the properties of the involved functions, we can pass to the limit as
τ → 0+ and obtain the equality
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−
∫

Q̃

(Dt(κv))D∆σ̌ dχdt

=
1

2

∫

J

a(∆σ̌)2 dχ
∣∣∣
t1

t0
+

∫

Q̃

[1
2
(Dta)(∆σ̌)2 + (Dtψ)∆σ̌

]
dχdt

for almost all 0 < t0 < t1. This equality implies that
∫

J

a(∆σ̌)2 dχ ∈ W 1,1
loc (R+),

−
∫

J

(Dt(κv))D∆σ̌ dχ =
1

2

d

dt

∫

J

a(∆σ̌)2 dχ

+

∫

J

[1
2
(Dta)(∆σ̌)2 + (Dtψ)∆σ̌

]
dχ

almost everywhere (a.e.) on R+. �

Let ζ ∈ W 1,∞(R) be a cut-off function such that

ζ(t) = 0, t � 0, ζ(t) = 1, t � t0 for some t0 > 0, 0 � ζ′ � N. (4.16)

Theorem 4.1. Let the hypotheses of Proposition 3.3, the condition
(4.1), and ‖ζf̄‖L2(R+) � N be satisfied. Then the following global bounds
and the stabilization property for velocity hold:

‖ζDtv̌‖L2(Q̌) � K, sup
t�0

‖(ζ
√

ρ̌Dv̌)(·, t)‖L2(J) � K, (4.17)

‖(
√

ρ̌ Dv̌)(·, t)‖L2(J) → 0 as t → ∞. (4.18)

If, in addition,

‖
√

ρ̌ 0 Dv̌0‖L2(J) � N, v̌0(0) = 0, ‖f̄‖L2(R+) � N, (4.19)

then the bounds (4.17) are valid for ζ ≡ 1.

Remark 4.1. It is clear that the property (4.18) implies W 1,1(J)-
and C(J̄)-stabilization of v̌(·, t) since, as in the case (3.34), we have

‖v̌‖C(J̄) � ‖Dv̌‖L1(J) � K
1/2
V ‖

√
ρ̌ Dv̌‖L2(J).
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Proof of Theorem 4.1. 1. We set ζτ (t) := ζ(t − τ), τ > 0. Multi-
plying the energy-type equality (4.11) by ζ2

τ , we get

1

2
(ζ2

τ Y )′ + ζ2
τ

∫

J

(κ̌D∆σ̌)2 dχ = ζτζ′τY + ζ2
τ

(1

2
S1 + S2 + S3 + S4

)
. (4.20)

We sequentially estimate the terms on the right-hand side. First, recalling
(4.14), we get

Y � 2(‖μ‖C[0,Kρ]‖
√

ρ D(κv)‖2
J + μ−1P̌ [ρ]), (4.21)

where P̌ [ρ] � K. Second, for any ε > 0 we derive

|S1| � ‖
√

μ(s)(β(s)−sβ′(s))‖L∞(0,Kρ)

× ‖√ρD(κv)‖J‖
√

ηβ(ρ)∆σ̌‖J‖∆σ̌‖L∞(J)

� ε‖∆σ̌‖2
L∞(J) + ε−1K‖√ρ D(κv)‖2

J Y.

Third, applying the energy bound and the inequalities (3.34), we find

|S2| � kr−1
0 ‖v‖J‖v‖L∞(J)‖κD∆σ̌‖J � ε‖κD∆σ̌‖2

J + ε−1K‖√ρ D(κv)‖2
J .

Fourth, using the regularity properties of p and μ and the estimates (3.13)
for p̌R[ρ] and (4.10) for Dtp̌R[ρ], we also get

|S3| � {[‖(βp)(s) − s(βp)′(s))‖L∞(0,Kρ)

+ ‖β(s) − sβ′(s))‖L∞(0,Kρ)‖p̌R[ρ]‖L∞(J)]K
1/2
V ‖√ρ D(κv)‖J

+ μ−1KV ‖Dtp̌R[ρ]‖L∞(J)}‖∆σ̌‖L∞(J)

� ε‖∆σ̌‖2
L∞(J) + ε−1K‖√ρ D(κv)‖2

J .

Finally,
|S4| � f̄M1/2‖κD∆σ̌‖J � ε‖κD∆σ̌‖2

J + ε−1Mf̄ 2.

Using the above estimates and the inequalities

‖∆σ̌‖L∞(J) � ‖D∆σ̌‖L1(J) � r−k
0 M1/2‖κD∆σ̌‖J , (4.22)

ζτ � ζ � 1 and choosing ε small enough, we pass from (4.20) to the in-
equality

(ζ2
τ Y )′ + ‖κζτD∆σ̌‖2

J � K(‖√ρ D(κv)‖2
J ζ2

τ Y + ‖√ρ D(κv)‖2
J

+ ζ′τ + (ζf̄)2). (4.23)

Note that
Y � μ−1KV ‖∆σ̌‖2

L∞(J) � K1‖κD∆σ̌‖2
J

(see (4.22)), (ζ2
τ Y )|t=0 = 0, and

‖‖√ρD(κv)‖2
J + ζ′τ + (ζf̄ )2‖L1(R+) � K (4.24)
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by the energy bound and the assumptions on ζτ and f̄ . Consequently,

sup
t�0

(ζ2
τ Y )(t) � K, ‖ζτκD∆σ̌‖Q̌ � K, (4.25)

(ζ2
τ Y )(t) → 0 as t → ∞ (4.26)

(see, for example, [22, Lemma 2.1]). The bounds (4.25) are uniform with
respect to τ . Therefore, passing to the limit as τ → 0+, we find

sup
t�0

(ζ2Y )(t) � K, ‖ζκD∆σ̌‖Q̌ � K. (4.27)

Applying formula (4.14) to D(κv), we have

‖√ρ D(κv)‖J � μ−1/2Y 1/2 + μ−1P̌ [ρ].

Thus, the relations (4.27) and (4.26) and Proposition 4.1 imply that

sup
t�0

‖(ζ√ρ D(κv))(·, t)‖J � K, ‖(√ρ D(κv))(·, t)‖J → 0 as t → ∞.

Moreover, since (by (2.13))

Dv =
1

κ

[
D(κv) − Dκ

κ
κv
]
, Dκ =

k

r
η,

we have (by ‖η‖L1(J) � KV )

‖√ρ Dv‖J � K‖√ρD(κv)‖J , (4.28)

which leads to the second bound (4.17) and the property (4.18).

In addition, according to Equation (4.12), the first bound (3.35), and
the second bound (4.27), we have

‖ζDtv‖Q̌ � ‖ζ′‖L∞(R+)‖2E‖1/2
L1(R+) + ‖ζκD∆σ̌‖Q̌ + M1/2‖ζf̄‖R+ � K,

which leads to the first bound (4.17).

2. In the case where (4.19) are valid, a similar (and simpler) argument

with ζ ≡ 1 can be applied since Y ∈ W 1,1
loc (R̄+) and

Y |t=0 � 2(‖μ‖C[0,Kρ]‖
√

ρ0 D(κ0v0)‖2
J + μ−1P̌ [ρ0]) � K,

similar to the estimate (4.21). �

In addition to (4.17), the bound ‖ζρ̌−3/2Dtρ̌‖L2,∞(Q̌) � K holds ac-

cording to the continuity equation (2.11). Moreover, under the condition
(4.19), one can take ζ ≡ 1.

By the moment, we did not suppose the monotonicity of p in any sense.
However, we need this for studying the stabilization of ρ̌.
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Theorem 4.2. Let the hypotheses of Proposition 3.3 (for some α ∈
(1, γ)) and the condition (4.1) be valid. Let also either

p be increasing on R̄+ (4.29)

or

p be nondecreasing on R̄+, fS(r, χ) < 0 for r � r0, 0 < χ � M. (4.30)

Then for any sequence tn → +∞ there exists a subsequence θn such that

η̌(·, θn) → η∗ weakly in Lλ(J) (4.31)

for any 1 < λ < α. Moreover, for any sequence θn → ∞, θn � 0, such that
(4.31) takes place for some λ ∈ (1, α) the following assertions hold:

(1) ρ̄S := 1/η∗ serves as a solution to the Lagrangian static problem
(2.28), (2.29); in addition,

F̄ [ρ̄S ] :=

∫

J

(P (0)(ρ̄S) − Ȟ[νS ]) dχ = F (S) (4.32)

(see F (S) in (3.36)) and, for ηS := η∗,

‖ηS‖Lλ(J) � Kλ for any 1 � λ < α; (4.33)

(2) the following strong limit relations hold:

η̌(·, θn) → ηS(·) in Lλ(J) for any 1 � λ < α, (4.34)

ρ̌(·, θn) → ρ̄S(·) in Lλ(J) for any 1 � λ < ∞. (4.35)

Proof. We divide the proof in three steps.

1. The property (4.31) follows from the uniform-in-time bound (3.19).

Let this be valid for some λ = λ0 ∈ (1, α). Then we sequentially get

ν|t=θn → ν∗ := ν0 + Ǐη∗, p̌R[ρ]|t=θn → p∗ := −Ǐ∗ȟ[ν∗] in C(J̄).

By Proposition 4.1,

‖p(ρ)|t=θn − p∗‖J � (KρP̌[ρ](θn))1/2 + ‖p̌R[ρ]|t=θn − p∗‖J → 0.

Therefore, for a subsequence τn of θn we have

p(ρ)|t=τn → p∗ a.e. in J. (4.36)

It is clear that 0 � p∗ � p(Kρ).

2. We first consider the case of increasing p. Introducing p−1, the
inverse of p, we get the pointwise convergence of ρ:

ρ|t=τn → ρ̄S := p−1(p∗) a.e. in J. (4.37)
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It is clear that ρ̄S ∈ C(J̄) and ρ̄S � 0. By Proposition 3.3 and the Fatou
lemma, we have

∫

J

1

ρ̄λ
S

dχ � Kλ, for any 1 � λ < α. (4.38)

Consequently, ρ̄S > 0 almost everywhere in J and the limit relation (4.37)
implies

η|t=τn → ηS :=
1

ρ̄S
a.e. in J. (4.39)

The bound (4.38) implies (4.33). The bound (3.19) and the well-known
Lemma 1.1.3 in [18] yield

η̌(·, τn) → ηS weakly in Lλ(J) for any 1 < λ < α. (4.40)

Comparing with (4.31) for λ = λ0, we conclude that ηS = η∗. Therefore,
recalling the first step of the proof, we get p(ρ̄S) = p∗ = −Ǐ∗ȟ[νS ] and
νS = ν0 + ǏηS . Since p(ρ̄S) is nonincreasing on J̄ and ρ̄S > 0 almost
everywhere in J , ρ̄S is also nonincreasing on J̄ and ρ̄S > 0 on [0, M). Thus,
ρ̄S is a solution to the static problem (2.28), (2.29).

According to (4.40), we get
∫

J

η
∣∣
t=τn

dχ →
∫

J

ηS dχ. (4.41)

It is clear that both sides of this relation are positive. Coupling this and
(4.39), by the Scheffé theorem (see, for example, [4]), we have

η|t=τn

‖η
∣∣
t=τn

‖L1(J)

→ ηS

‖ηS‖L1(J)
in L1(J).

Invoking the relation (4.41) once again, we find that η
∣∣
t=τn

→ ηS in L1(J).

Now the multiplicative inequality

‖w‖Lλ(J) � ‖w‖1−β
L1(J)‖w‖β

Lλ̄(J)
,

1

λ
= 1 − β +

β

λ̄
for any 1 � λ � λ̄,

implies the relation (4.34) for τn replacing θn.

By the bounds ρ � Kρ and ν � ν0 +KV and the Lebesgue dominated

convergence theorem, we have F(τn) → F̄ [ρ̄S ] = F (S) (recall that F(t) →
F (S) as t → ∞); moreover, the property (4.35) holds for τn replacing θn.

Furthermore, the limit relations (4.34) and (4.35) hold for the whole
θn. Indeed, assuming, for example, that ‖ρ

∣∣
t=θ

(1)
n

− ρ̄S‖L1(J) � δ > 0
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for a subsequence θ
(1)
n of θn, nevertheless we are able to extract a subse-

quence τ
(1)
n of θ

(1)
n such that (4.37) holds for τ

(1)
n replacing τn. Consequently,

ρ
∣∣
t=τ

(1)
n

→ ρ̄S in L1(J), which yields a contradiction. The case of increasing

p is complete.

3. Let the conditions (4.30) be valid. We go back to step 1 and note

that Dp∗ = ȟ[ν∗]. We have ν∗(χ) � ν0 + K−1
ρ χ and ȟ[ν∗] < 0 on (0, M ].

Therefore, Dp∗ < 0 in J and p∗ is decreasing on J̄ .

The set

Sp := {c > 0: the equation p(s) = c has a nonunique solution}
is at most countable. Hence

meas {χ ∈ J̄ ; p∗(χ) ∈ Sp} = 0. (4.42)

The inverse function p−1 is defined on R̄+\Sp. We set

p−1(c) := sup
c1<c, c1 �∈Sp

p−1(c1)

for c ∈ Sp (for the sake of definiteness). Let J0 be a subset of J such that
p(ρ)|t=τn → p∗ on J0, meas (J\J0) = 0 (see (4.36)). Let c := p∗(χ) �∈ Sp for
some χ ∈ J0. If c is not a limiting point of Sp, then p−1 is continuous in a
neighborhood of c (or in a right-hand one provided that c = 0). Thus,

(p−1 ◦ p)(ρ(χ, τn)) → p−1(p∗(χ)). (4.43)

Moreover, ρ(χ, τn) = (p−1 ◦ p)(ρ(χ, τn)) for sufficiently large n � n0(χ).
Hence

ρ(χ, τn)) → p−1(p∗(χ)). (4.44)

If c is a limiting point of Sp, then p−1 is discontinuous in any neighborhood of
c but is continuous at c. Thus, the property (4.43) remains valid. Moreover,
(p−1 ◦ p)(ρ(χ, τn)) − ρ(χ, τn) → 0. Therefore, the property (4.44) remains
valid. Finally, the basic property (4.37) of Step 2 holds (if we take into
account (4.42)).

After that the rest of the arguments of Step 2 is applicable, where ρ̄S

is decreasing on J̄ (instead of ρ̄S ∈ C(J̄) and ρ̄S is nonincreasing). � me

Remark 4.2. A by-product of Theorem 4.2 is the existence of so-
lutions to the Lagrangian static problem (2.28), (2.29) under the above
conditions on p and h.

Note that, firstly, the condition (4.30) on fS holds for fS = fG; sec-
ondly, the property (4.34) is stronger than (4.35) because of the equality
|ρ̌ − ρ̄S | = |η̌ − ηS |ρ̌ρ̄S and the bounds ρ̌ � Kρ and ρ̄S � Kρ.
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It is clear that the property (4.31) for λ = 1 ensures us that

V (θn) → ν0 +

∫

J

η∗ dχ. (4.45)

We define the ω-limit set for the specific volume Oη̌ as a set of η∗ ∈
Lλ(J) such that property (4.31) holds, for some 1 < λ < α, and the ω-limit
set for the density Oρ̌ as a set of ρ∗ = 1/η∗ such that η∗ ∈ Oη̌. Theorem
4.2 implies that these sets are independent of λ and consist of functions
respectively η∗ = ηS = 1/ρ̄S and ρ∗ = ρ̄S , where ρ̄S is a static solution such
that (4.32)–(4.35) hold.

Proposition 4.2. Let the hypotheses of Theorem 4.2 be valid. Then
Oη̌ and Oρ̌ are compact, attracting and connected sets in Lλ(J), respectively
for 1 � λ < α and 1 � λ < ∞.

The attracting property, say, for Oρ̌, means that

inf
ρ̄S∈Oρ̌

‖ρ̌(·, t) − ρ̄S(·)‖Lλ(J) → 0 as t → +∞.

Proof. All the properties are proved in a standard manner (see, for
example, [9, Theorem 4]). Note only that the compactness and attracting
property of Oη̌ imply the same properties of Oρ̌; also η and ρ belong to
Cb(R̄

+; Lλ(J)), respectively for 1 � λ < α and 1 � λ < ∞ (for λ = 1, this
clearly follows from the properties of Dtη and Dtρ and then, for other λ,
this holds because of the bounds (3.19) and ρ � Kρ). �

The main result of Theorem 4.2 can be essentially simplified un-
der weakened uniqueness assumptions for the static problem (concerning
uniqueness, see Proposition 5.3 and Corollary 5.2 below).

Corollary 4.1. Let, in addition to the hypotheses of Theorem 4.2, the
Lagrangian static problem (2.28), (2.29) have one of the following properties.

(i) There exists no continual family of solutions ρ̄S such that VS :=
νS(M) runs over some segment [ν, ν̄], ν0 < ν < ν̄, and F̄S [ρ̄S ] = a for some
fixed a, and the overdetermined static problem such that some νS(M) > ν0

and F̄S[ρ̄S ] = a are given, has at most one solution.

(ii) There exists an at most countable set of solutions ρ̄S such that
F̄S [ρ̄S ] = a for any fixed a.

Then there exists a static solution ρ̄S such that

η̌(·, t) → ηS(·) in Lλ(J) for any 1 � λ < α as t → ∞,

ρ̌(·, t) → ρ̄S(·) in Lλ(J) for any 1 � λ < ∞ as t → ∞,
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and the properties (4.32) and (4.33) hold with ηS = 1/ρ̄S.

Proof. By the property (4.45), Theorem 4.2, and the bounds ν0 +
MK−1

ρ � V � KV , we conclude that

OV := [ν, ν̄], ν := lim inf
t→+∞

V (t), ν̄ := lim sup
t→+∞

V (t),

is the ω-limit set for V ; moreover, for any ν ∈ [ν, ν̄] there exists a static
solution ρ̄S such that VS = ν and F̄S [ρ̄S ] = F (S). Properties (i) imply that
the set Oη̌ reduces to a point.

This reduction is induced by property (ii) as well since the set Oη̌ is
connected. �

Theorem 4.2 allows us to comment on the role of the conditions (3.16)
and (3.18) in Proposition 3.3 (see also Proposition 5.2 below).

Corollary 4.2. Let the hypotheses of Theorem 4.2 be valid, excepting
(3.16), with (3.18) weakened down to (3.7). If the Lagrangian static problem
(2.28), (2.29) has no solution, then

lim sup
t→∞

∥∥∥ 1

ρ̌(·, t)
∥∥∥

Lα1(J)
= ∞ for any α1 ∈ (1, α).

Proof. Note that (3.16) and the right-hand condition (3.18) were
explicitly used only in the proof of Proposition 3.3. If, in addition to the
hypotheses, we assume that supt�0 ‖1/ρ(·, t)‖Lα1(J) < ∞ for some α1 ∈
(1, α), then the argument of Theorem 4.2 remains valid and, in particular,
there exists a static solution, which yields a contradiction. Note that the
property 1/ρ(·, t) ∈ Lα(J) for any t � 0, is valid by Lemma 6.1. �

5. Static Problem

We set p̂(ξ) := p(1/ξ) for ξ > 0.

Lemma 5.1. Let p be any continuous increasing function on [0, s0]
for some s0 > 0, and let p(0) = 0. Then

p(s0)∫

0

dq

p−1(q)
=

p(s0)

s0
+

s0∫

0

p(s)

s2
ds, (5.1)

where both integrals are finite or equal to +∞ simultaneously (recall that
p−1 is the inverse of p).
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Proof. The inverse function of 1/p−1 is p̂ that is continuous and
decreasing on [1/s0,∞). Considering the graphs of 1/p−1 and p̂, we get

p(s0)∫

0

dq

p−1(q)
=

p(s0)

s0
+

∞∫

1/s0

p̂(ξ) dξ.

Making the change of variable s = 1/ξ, we obtain the result. �

In the case

s0∫

0

(p(s)/s2) ds < ∞, there exists lim
s→0+

p(s)/s = 0 by (5.1).

Corollary 5.1. Let p satisfy the hypotheses of Lemma 5.1.

1. Suppose that pS ∈ C1[M − ε0, M ] for some ε0 > 0, pS(M) = 0,
and DpS(M) < 0. Then for sufficiently small 0 < ε � ε1

c−1(M − χ) � pS(χ) � c(M − χ) on [M − ε, M ]

with some c > 0 and the integrals

M∫

M−ε

dχ

p−1(pS)
,

s0∫

0

p(s)

s2
ds

are finite or equal to +∞ simultaneously.

2. Suppose that p is continuous on R̄+ and h(ν, M) < 0 for ν � ν0.
If

s0∫

0

(p(s)/s2) ds = ∞

(in contrast to the third condition (2.9)), then the Lagrangian static problem
(2.28), (2.29) has no solutions.

We begin with the existence result for the static problem indepen-
dently of Theorem 4.2 (see Remark 4.2).

Proposition 5.1. Let p be increasing on R̄+, and let the conditions
(3.16) on p and (3.18) on h be valid. Then the Lagrangian static problem
(2.28), (2.29) has a solution such that K−1(M −χ) � p(ρ̄S(χ)) � N(M−χ)
on J̄ .

Proof. Since p is increasing, we can equivalently reduce the static
problem (2.28), (2.29) to the fixed point problem

pS = ApS in C(J̄) (5.2)
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for the unknown static pressure pS := p(ρS). Here, the nonlinear operator
A is given by the formula

Aϕ := −Ǐ∗ȟ[νS [ϕ]], νS [ϕ] := ν0 + Ǐ
1

p−1(ϕ)
,

and we take into account Claim 1 of Corollary 5.1.

We define the nonempty closed convex set in C(J̄)

Kε := {ϕ ∈ C(J̄); ε(M − χ) � ϕ(χ) � N(M − χ) on J̄},
where ε ∈ (0, N) is a parameter. By (3.16), we have p(s) � K1s

γ for
0 � s � p−1(NM). Consequently, p−1(q) � (q/K1)

1/γ for 0 � q � NM .
Therefore, for ϕ ∈ Kε

νS [ϕ](χ) � ν̄S,ε := ν0 +

M∫

0

[ K1

ε(M − χ)

]1/γ

dχ = ν0 +
K2

ε1/γ
on J̄

(with K2 := γ′K1/γ
1 M1/γ′

) and νS [ϕ] ∈ C(J̄). This means that for ϕ ∈ Kε

the operator Aϕ is well defined. By (3.18), we have

α 0

ν̄
2k/(k+1)
S,ε

(M − χ) � Aϕ(χ) � N(M − χ) on J̄ ,

compare with (3.28). It is easy to check that the operator A: Kε → C(J̄)
is continuous and compact (because ‖Aϕ‖C1(J̄) � K for ϕ ∈ Kε).

Since γ > 2k/(k + 1), the inequalities

α 0

ν̄
2k/(k+1)
S,ε

�
α 0

K
2k/(k+1)
2

ε2k/[γ(k+1)] � ε (5.3)

hold for sufficiently small 0 < ε � K−1
3 . For such ε it is clear that A:

Kε → Kε. Finally, by the Schauder fixed point theorem, the problem (5.2)
has a solution pS ∈ Kε. �

Remark 5.1. In the case k = 2 and the borderline value γ = γ(2) =
4/3 in the condition (3.16), it is easy to see that the inequalities (5.3) remain
valid for

c0K1M
1/3 � α 0, c0 = 28/3 (5.4)

and K1 = K1(NM) is nondecreasing with respect to NM (in particular,
K1 = p1 is independent of NM provided that p � pγ(2)). Therefore, if
infM>0 α 0 > 0, then the inequality (5.4) holds and Proposition 5.1 remains
valid at least for sufficiently small 0 < M � M̄(N).
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But other situations are also possible. For example, let α0(χ) �

G̃(M0 + i0χ) on J̄ . Thus, α 0 � G̃(M0 + i0(M/2)). Let p � pγ(2) . Then
(5.4) follows from the inequality

c0p̃1M
1/3 � M0 + i0

M

2
, p̃1 :=

p1

G̃
. (5.5)

For M0 > 0 and i0 = 1, the inequality holds both for M/M0 � M̄(q) and

M/M0 � M(q), for q := p̃1/M
2/3
0 > q0 > 0, or for any M for q � q0. On

the other hand, for M0 > 0, i0 = 0 and M0 = 0, i0 = 1, the inequality is
guaranteed respectively for M � [M0/(c0p̃1)]

3 and M � (2c0p̃1)
3/2 only.

Now we turn to the Eulerian static problem (2.7), (2.8). We consider
positive solutions such that

ρS ∈ L∞(ΩS), p(ρS) ∈ W 1,∞(ΩS), p(ρS) > 0 on [r0, RS). (5.6)

Note that the nonlinear integro-differential equations

p(ρS(r)) = −
RS∫

r

ρSh[mS ]κ dr1 on Ω̄S (5.7)

and

p(ρ̄S(χ)) = −
M∫

χ

ȟ[νS ] dχ1 on J̄ (5.8)

replace equivalently Equation (2.7) for ρS , together with the condition
p(ρS(RS)) = 0, and Equation (2.28) for ρ̄S , together with the condition
p(ρ̄S(M)) = 0. The properties p(ρS) ∈ C(Ω̄S) and p(ρ̄S) ∈ C(J̄) are able
to replace equivalently the corresponding properties in (5.6) and (2.30).
Making the change of variable χ = mS(r) and the inverse change defined
by the formula ν = νS(χ), we can transform Equations (5.7) and (5.8)
one into another; the condition RS < ∞ corresponds to 1/ρ̄S ∈ L1(J).
Thus, we have a one-to-one correspondence between solutions to the Euler-
ian and Lagrangian static problems. Consequently, the (non)existence or
the (non)uniqueness for one of the problems implies the same for another.

Proposition 5.2. Let k = 2 and p be increasing and satisfy the lower
bound p � pγ for some 1 < γ < 4/3, in contrast to the condition (3.16). Let

fS satisfy the condition − ᾱ0

r2
� fS(r, χ) on [r0,∞)× J̄ . Then the Eulerian

static problem (2.7), (2.8) can have positive solutions only if

c(γ)p1r
3(4/3−γ)
0 Mγ−1 < ᾱ0, (5.9)
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where c(γ) = γ′[(4 − 3γ)/(γ − 1)]γ−1.

Proof. We write Equation (2.7) in the form

(π0(ρS))r = fS [mS ], π0(s) :=

p(s)∫

0

dζ

p−1(ζ)
. (5.10)

The function π0 is well defined continuous increasing on R̄+ and π0(0) = 0
according to Lemma 5.1. Consequently, by (2.8), we have

π0(ρS(r)) = −
RS∫

r

fS [mS ] dr1.

Denoting by π−1
0 the inverse of π, we have

∫

ΩS

π−1
0

(
−

RS∫

r

fS [mS ] dr1

)
r2 dr = M. (5.11)

Since p � pγ , we also have π0 � π0γ by formula (5.1), where π0γ(s) :=
π0|p=pγ (s) = γ′p1s

γ−1. Therefore, the equality (5.11) implies that

M �

∫

ΩS

π−1
0γ

(
−

RS∫

r

fS [mS ] dr1

)
r2 dr �

RS∫

r0

π−1
0γ

(
ᾱ0

(1

r
− 1

RS

))
r2 dr.

The integral on the right-hand side is an increasing function of RS (in
particular, its derivative is positive). Therefore,

M <

∞∫

r0

π−1
0γ

( ᾱ0

r

)
r2 dr =

γ − 1

4 − 3γ

( ᾱ0

γ′p1r
3(4/3−γ)
0

)1/(γ−1)

.

This inequality is equivalent to (5.9). �

In the case where ᾱ0 = G(M0 + i0M), the inequality (5.9) is similar
to the inequality (5.5) from Remark 5.1 and, consequently, it holds under
similar conditions on M .

In the particular case p = pγ , 1 < γ < 4/3, and fS(r) = −ᾱ0/r2,
ᾱ0 � 0, the problem is (uniquely) solvable if and only if the condition (5.9)
is satisfied.

In both Propositions 5.1 and 5.2, the continuity of p on R̄+ is sufficient
instead of p ∈ W 1,∞

loc (R̄+) and the condition (4.1) is not imposed, compare
with Remark 4.2.
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We define the so-called first adiabatic exponent of the state function

Γ1(s) :=
sp′(s)

p(s)
= − ξp̂′(ξ)

p̂(ξ)

∣∣∣∣
ξ=1/s

, s > 0. (5.12)

Proposition 5.3. Suppose that p′ ∈ C(R+), p′ > 0, hν ∈ C([ν0,∞)×
J̄), and there exists a function h(1) such that h = hνh(1) (clearly h(1) = h/hν

on the set where hν �= 0) and

h(1), h(1)
ν , h(1)

χ ∈ L1(J ; C[ν0, ν]) for any ν > ν0, (5.13)

1

Γ1(s)
+ h(1)

ν (ν, χ) + sh(1)
χ (ν, χ) � 0 for any s > 0, ν > ν0, χ ∈ J, (5.14)

h(1)(ν0, 0) := lim
(ν,χ)→(ν+

0 , 0+)
h(1)(ν, χ) < 0. (5.15)

Then the Lagrangian static problem (2.28), (2.29) has at most one solution.

Proof. We apply shooting method and, following [29, Proposition
10], consider the auxiliary Cauchy problem

DpS = ȟ[νS ], DνS = p̂−1(pS) on (0, M), (5.16)

pS |χ=0 = λ, νS |χ=0 = ν0, (5.17)

for the unknown functions pS(χ, λ) > 0 and νS(χ, λ), with shooting para-
meter λ > 0. For any λ > 0 there exists a unique solution to the problem on
[0, M̄(λ)), where either 0 < M̄(λ) < M , pS((M̄(λ))−) = 0, or M̄(λ) = M .

It is clear that for any solution ρ̄S to the problem (2.28), (2.29) the
functions pS := p(ρ̄S) = p̂(1/ρ̄S) and νS satisfy the problem (5.16), (5.17)
for some λ > 0.

We also introduce the derivatives ṗS = ∂pS/∂λ and ν̇S = ∂νS/∂λ
which are well defined and satisfy the linear Cauchy problem

DṗS = ȟν [νS ]ν̇S , Dν̇S = (p̂−1)′(pS)ṗS on [0, M̄(λ)), (5.18)

ṗS |χ=0 = 1, ν̇S |χ=0 = 0 (5.19)

(see, for example, [12, Sec. V.3]). By (5.19) and (p̂−1)′ < 0, we have

ṗS(χ, λ) > 0, Dν̇S(χ, λ) < 0, ν̇S(χ, λ) < 0 on [0, a(λ)),

where either 0 < a(λ) < M̄(λ), ṗS(a(λ)) = 0, or a(λ) = M̄(λ).

We define the auxiliary function ψ := pSDν̇S − ṗSD(h(1)[νS ]). By the
second equations (5.16) and (5.18) and the condition (5.14), we have

ψ = −ṗSp̂−1(pS)

{
1

Γ1 (p−1(pS))
+ h(1)

ν [νS ] + p−1(pS)h(1)
χ [νS ]

}
� 0 (5.20)
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for almost all 0 < χ < a(λ) and any λ > 0. By the first equations (5.16)
and (5.18), we get −(DpS)ν̇S + (DṗS)h(1)[νS ] = 0 and, consequently, for
any 0 < χ0 < M̄(λ)

χ0∫

0

ψ dχ =
(
pS ν̇S − ṗSh(1)[νS ]

)∣∣∣
χ0

0
, (5.21)

where h(1)[νS ]|χ=0 = h(1)(ν0, 0) < 0 by the condition (5.15).

The relations (5.20) and (5.21) imply a(λ) = M̄(λ) (since, in the case
a(λ) < M̄(λ), it is not difficult to check that

a(λ)∫

0

ψ(χ, λ) dχ < 0

according to (5.21), (5.17), (5.19), and ν̇S(a(λ), λ) < 0, which yields a
contradiction).

Moreover, assume that the problem (2.28), (2.29) has two solutions
corresponding to the values λ = λ0, λ1 such that 0 < λ0 < λ1. Then
M̄(λ)|λ=λ0,λ1 = M and νS(M−, λ)|λ=λ0,λ1 < ∞. Since both pS > 0 and
ṗS > 0 on the set {(χ, t); 0 � χ < M̄(λ), λ > 0}, we have M̄(λ) ≡ M for
λ0 � λ � λ1. We have

‖ṗS(χ, ·)‖L1(λ0,λ1) = pS(χ, λ1) − pS(χ, λ0) → 0 as χ → M−.

Further, νS(χ, λ) increases with respect to 0 � χ < M̄(λ). Hence the limit
νS(M−, λ) � ∞ exists for any λ0 � λ � λ1. Since ν̇S(χ, λ) decreases in
λ0 � λ � λ1 for 0 � χ < M , we have νS(M−, λ) � νS(M−, λ0) < ∞
for λ0 � λ � λ1. Consequently, for any sequence χn → M− as n → ∞
there exists a subsequence (not relabelled) such that ṗS(χn, λ) → 0 and
νS(χn, λ) → νS(M−, λ) almost everywhere on (λ0, λ1). Therefore,

lim sup
n→∞

χn∫

0

ψ(χ, λ) dχ

� − lim
n→∞

ṗS(χn, λ)h(1)(νS(χn, λ), χn) + h(1)(ν0, 0)

= h(1)(ν0, 0) < 0,

which contradicts the inequality (5.20). �

Remark 5.2. If, in addition, h � 0 and the a priori bound ρ̄S � s0

is known, then we can take 0 < s � s0 only in condition (5.14) (since
pS(χ, λ) � λ in this case and we can consider λ � p(s0) only in the proof).



Barotropic Navier–Stokes–Poisson Flows 363

Corollary 5.2. Suppose that p′ ∈ C(R+), p′ > 0, fS = fG, k = 1, 2.
If

Γ1(s) � γ(k) =
2k

k + 1
, 0 < s � s0 := p−1

(GM

rk
0

(
M0 + i0

M

2

))
, (5.22)

then the Lagrangian static problem (2.28), (2.29) has at most one solution.

Proof. For fS = fG and k = 1, 2 it is clear that h(1)(ν, χ) = −ν/γ(k),
the inequality (5.14) reduces to Γ1(s) � γ(k), and the a priori bound p(ρ̄S) �

(GM/rk
0 )(M0 + i0(M/2)) holds. �

The condition (5.22) implies the inequality p(s) � p(s0)(s/s0)
γ on

[0, s0] for γ = γ(k), compare with (3.16).

6. Some Additional Bounds for Density
and the Existence of Global Weak Solutions

We define the difference and integration operations with respect to t

∆(τ)y(t) := y(t + τ) − y(t) for τ > 0, Ity(t) :=

t∫

0

y(τ) dτ.

Proposition 6.1. Let the hypotheses of Proposition 3.2 be valid. Then
the following generalized uniform Hölder condition in time of order 1/4
holds:

‖∆(τ)ρ̌‖L∞(Q̌) � Kρ‖∆(τ) log ρ̌‖L∞(Q̌)

� K(τ0)τ
1/4 for any 0 < τ � τ0 (6.1)

with any τ0 > 0.

Proof. By Proposition 3.2, we have

|∆(τ)ρ| � Kρ|∆(τ) log ρ| �
Kρ

μ
|∆(τ)A(ρ)|. (6.2)

We go back to Equation (3.11) and set z := Ǐ∗[(v/κ)− It(∆f̌ [r]/κ)]. Then

|∆(τ)A(ρ)| � |∆(τ)(A(ρ) − z)| + |∆(τ)z|

� τS(τ)|Dt(A(ρ) − z)| +
√

2 ‖τS(τ)|Dtz|‖1/2
J ‖D∆(τ)z‖1/2

J

� τ‖Dt(A(ρ) − z)‖L∞(Q̌) + 2τ1/4 sup
t>0

‖Dtz‖1/2
J×(t,t+τ)‖Dz‖1/2

L2,∞(Q̌)
.
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Equation (3.11) can be written in the form

Dt(A(ρ) − z) = −p(ρ) + p̌R[ρ] + kǏ∗
v2

rκ
. (6.3)

It is clear that

−Dtz = Dt(A(ρ) − z) + μ(ρ)ρD(κv), Dz = − v

κ
+ It

∆f̌ [r]

κ
. (6.4)

Using the estimates (3.13)–(3.15), ρ � Kρ, and the energy bound, we find

‖Dt(A(ρ) − z)‖L∞(Q̌) � K1,

sup
t>0

‖Dtz‖J×(t,t+τ) �
√

MτK1 + K2,

‖Dz‖L2,∞(Q̌) � K3.

Consequently, ‖∆(τ)A(ρ)‖L∞(Q̌) � K4(τ0)τ
1/4. By the inequality (6.2), we

obtain the required assertion. �

Remark 6.1. Let the hypotheses of Theorem 4.1 be valid. Then the
following generalized Hölder condition in time of order 1/2 holds:

‖ζ∆(τ)ρ̌‖L∞(Q̌) � Kρ‖ζ∆(τ) log ρ̌‖L∞(Q̌) � K(τ0)
√

τ for any 0 < τ � τ0

with any τ0 > 0. Moreover, under the condition (4.19), one can take ζ ≡ 1.

Indeed, note that the equalities (6.3) and (6.4) imply

−Dtz = ∆σ̌ + kǏ∗
v2

rκ
.

Therefore, by the first bound (4.27) and the estimate (3.14), we have

ζ‖τS(τ)|Dtz|‖1/2
J �

√
τ ‖ζDtz‖1/2

L2,∞(Q̌)
� K

√
τ

(taking into account the properties (4.16) of ζ).

Lemma 6.1. Let the hypotheses of Proposition 3.2 be valid. Then for
any T > 0 the following auxiliary pointwise two-sided bound for ρ̌ holds:

K(T )−1ρ̌ 0(χ) � ρ̌(χ, t) � K(T )ρ̌ 0(χ) (6.5)

for almost all χ ∈ J and any 0 � t � T .

Proof. Applying the operator It to the ordinary differential equation
(3.11) for almost all χ ∈ J (such that Dtρ(χ, ·) ∈ L1

loc(R̄
+)) and using the

estimates (3.12)–(3.15) and 0 � p(ρ) � ‖p‖C[0,Kρ], we get

|A(ρ(χ, t)) − A(ρ0(χ))| � K1 + K2T on [0, T ].
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Since

μ log max{ρ0/ρ, ρ/ρ0} � |A(ρ) − A(ρ0)|,
we get the bound (6.5) with K(T ) := e(K1+K2T )/μ . �

Remark 6.2. Let the hypotheses of Proposition 4.1 be valid.

1. If the bound ρ̌ � K0ρ̌
0 in Q̌ holds, then ρ̌ 0 satisfies the inequality

K−1(M − χ) � (ρ̌ 0(χ))γ on J .

2. Let c1s
γ1 � p(s) for 0 < s � 1 with some c1 > 0 and γ1 � γ. If the

bound K−1
0 ρ̌ 0 � ρ̌ in Q̌ holds, then ρ̌ 0 satisfies the inequality (ρ̌ 0(χ))γ1 �

K(M − χ) on J .

Proof. 1. Using the estimate (3.25) for p, the bounds ρ � K0ρ
0 and

K−1(M − χ) � p̌R[ρ](χ, t) (which follows from (3.28) and (3.20)), we get

(p(ρ) − p̌R[ρ])(χ, t) � K(ρ0(χ))γ − K−1(M − χ) in Q̌.

Passing to the limit as t → ∞ in L2(J) and using Proposition 4.1, we have
0 � K(ρ0(χ))γ − K−1(M − χ).

2. The proof of Claim 2 is similar with using the bound p̌R[ρ](χ, t) �

N(M − χ), compare with (3.13). �

We define the difference and mollification operations relative to χ

∆δϕ(χ) := ϕ(χ + δ) − ϕ(χ), Sδϕ(χ) :=
1

δ

χ+δ∫

χ

ϕ(χ1) dχ1, 0 < δ < M.

Proposition 6.2. Let the hypotheses of Proposition 3.2 be valid. Then
for any T > 0 the following auxiliary pointwise uniform bounds hold:

|∆δ ρ̌(χ, t)| � K(T ){|∆δρ̌
0(χ)| + δ[(Sδ|v|)(χ, t) + (Sδ|v0|)(χ) + 1]}

� K1(T )(|∆δρ̌
0(χ)| +

√
δ) (6.6)

in Q̌M−δ,T := (0, M − δ) × (0, T ) for any 0 < δ < M .

Proof. Applying the operator Sδ to Equation (3.9), we find

DtSδ
v

κ
=

1

δ
∆δσ̌ + Sδg, g := ȟ[ν] − k

rκ
v2 +

∆f̌ [r]

κ
.

We write the equality μ(ρ)ρD(κv) = −DtA(ρ) in the form

Dtwδ = −1

δ
∆δp(ρ) + Sδg, wδ := Sδ

v

κ
+

1

δ
∆δA(ρ).
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Then

|wδ| � |w0
δ | + It

(∥∥∥sp′(s)

μ(s)

∥∥∥
L∞(0,Kρ)

1

δ
|∆δA(ρ)| + Sδ|g|

)
,

where w0
δ := Sδ(v

0/κ0) + δ−1∆δA(ρ0). Taking into account the inequality

1

δ
|∆δA(ρ)| � |wδ| + r−k

0 Sδ|v| (6.7)

and the estimates ‖v‖L∞,2(Q̌) � K, (3.13) and (3.15), we derive that

‖g‖L∞,1(Q̌T ) � NT + K.

Hence |wδ| � |w0
δ |+ KIt|wδ|+ K1(T ) in Q̌M−δ,T . By the Gronwall lemma,

|wδ| � K2(T )(|w0
δ |+1) in Q̌M−δ,T . Using the inequality (6.7) again, we find

|∆δA(ρ)| � K3(T ){|∆δA(ρ0)| + δ[Sδ|v0| + Sδ|v| + 1]}
in Q̌M−δ,T . Therefore,

μ |∆δ log ρ| � K3(T ){‖μ‖C[0,N ]|∆δ log ρ0| + δ[Sδ|v0| + Sδ|v| + 1]}. (6.8)

We define the divided difference for the logarithmic function for s > 0
and s1 > 0:

log(s; s1) :=
log s − log s1

s − s1
for s �= s1, log(s; s) :=

1

s
.

It is clear that

log(s; s1) =

1∫

0

da

(1 − a)s + as1
.

We have ∆δ log ρ = log(ρ(δ); ρ)∆δρ and ∆δ log ρ0 = log(ρ0
(δ); ρ

0)∆δρ
0, where,

for example, ρ(δ)(x, t) := ρ(x + δ, t). By the right-hand bound (6.5), we get

log(ρ0
(δ); ρ

0) � K(T ) log(ρ(δ); ρ) in Q̌M−δ,T ; also K−1
ρ � log(ρ(δ); ρ). Now

estimate (6.8) yield the left-hand bound (6.6) and, by the energy bound,
the right-hand one as well. �

Corollary 6.1. Let the hypotheses of Proposition 3.2 be valid and
ρ̌ 0 ∈ C(J̄). Then ρ̌ ∈ C(J̄ × R̄+).

Proof. We consider any 0 < δ � δ0 < M , τ > 0 and T > 0. The
mollification SδS

(τ)ρ is continuous on [0, M − δ] × R̄+ and tends to ρ in
L∞((0, M − δ0)× (0, T )) as both δ → 0 and τ → 0 by Propositions 6.1 and
6.2. Consequently, ρ ∈ C([0, M − δ0] × [0, T ]). Allowing for −δ0 � δ < 0,
we similarly get ρ ∈ C([δ0, M ] × [0, T ]). �
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Proof of Proposition 2.1. In the case ess infJρ0 > 0, the existence of
weak solutions can be established by a well-developed technique (see, in
particular, [28] and [1, 2]). Thus this is omitted, and we concentrate on
the case ess infJρ0 = 0. We take ρ0

n := ρ0 + εn, with some εn > 0 and
εn → 0 as n → ∞, and consider a corresponding weak solution ρn and vn

together with rn > 0 such that rk+1
n /(k + 1) = ν0 + I(1/ρn).

We fix any T > 0 and consider the domain Q̌T . By Propositions 6.1
and 6.2 together Lemma 6.1 and Remark 3.1 we get (after passing to a
subsequence, not relabelled)

ρn → ρ, rn → r in Lq(Q̌T ) for any 1 � q < ∞ and a.e. in Q̌T ,

Dtρn → Dtρ, Dtrn → Dtr weakly in L2(Q̌T ).
(6.9)

It is clear that the function ρ satisfies the two-sided bounds (2.27). There-
fore, ‖1/ρ‖L1,∞(Q̌T ) � C(T )‖1/ρ0‖L1(J). Moreover, ρ|t=0 = ρ0. Also

r0 � r � C(T ) and

rk+1
n

k + 1
= ν0 + I

1

ρn
→ rk+1

k + 1
= ν0 + I

1

ρ
and a.e. in Q̌T

(taking account of the uniform in n bounds 1/ρn � C(T )/ρ0
n � C(T )/ρ0),

i.e., Equation (2.13) holds.

By Proposition 3.1 and Lemma 6.1 (see also inequality (4.28)), we
have (after passing to a subsequence, not relabelled)

vn → v weakly star in L2,∞(Q̌T ),

Dvn → Dv weakly in L2
ρ0(Q̌T ) (6.10)

taking account of ρ0 � ρ0
n. Here L2

ρ0(Q̌T ) is a Hilbert space (a weighted

Lebesgue one) with the norm ‖w‖L2
ρ0(Q̌T ) := ‖

√
ρ0 w‖L2(Q̌T ). The boundary

condition vn|x=0 = 0 on (0, T ) yields that v|x=0 = 0 on (0, T ) too. Passing
to the limit in the equation Dtrn = vn, we derive equation (2.17).

Property (6.10) implies that

ρ0
nDvn → ρ0Dv weakly in L1,2(Q̌T )

taking account of ρ0
n−ρ0 ≡ εn and the uniform in n bound ‖Dvn‖L1,2(Q̌T ) �

C(T ), see inequality (2.25). Furthermore, let κn := rk
n and κ = rk. Using

the formula ρD(κv) = ρκDv + (k/r)v, we get

ρnD(κnvn) − ρD(κv) =
(ρn

ρ0
n

κn − ρ

ρ0
κ
)
ρ0

nDvn +
ρ

ρ0
κ(ρ0

nDvn − ρ0Dv)
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+ k
( 1

rn
− 1

r

)
vn +

k

r
(vn − v) → 0

weakly in L1,s(Q̌T ) for any 1 � s < 2 since

ρn

ρ0
n

κn � C(T ),
ρ

ρ0
κ � C(T ),

ρn

ρ0
n

κn → ρ

ρ0
κ

in Lq(Q̌T ) for any 1 � q < ∞, and ‖ρ0
nDvn‖L2(Q̌T ) � C(T ). Applying

properties (6.9) for ρn once again, we derive that also

ρ2
nD(κnvn) → ρ2D(κv),

σ̌n := μ(ρn)ρnD(κnvn) − p(ρn) → σ̌ = μ(ρ)ρD(κv) − p(ρ) (6.11)

weakly in L1,s(Q̌T ) for any 1 � s < 2.

Passing to the limit in the equation Dtρn = −ρ2
nD(κnvn), we derive equa-

tion (2.12). Since
√

ρ Dv, 1/
√

ρ ∈ L2(Q̌T ), actually σ̌/
√

ρ ∈ L2(Q̌T ) too.
Passing to the limit in the identity

∫

Q̌T

(−v̌nDtϕ + σ̌nDϕ)dχdt =

∫

J

v̌0ϕ|t=0 dχ +

∫

Q̌T

f̌ [řn]ϕdχdt,

for any ϕ ∈ H1(Q̌T ) such that ϕ|χ=0 = 0 and ϕ|t=T = 0, we derive identity

(2.24). This implies that Dtv ∈ L2(0, T ; H∗)+L∞,1(Q̌T ), where H := {ϕ ∈
L2(J);

√
ρ0 Dϕ ∈ L2(J), ϕ(0) = 0} is a Hilbert space equipped with the

norm ‖ϕ‖H := ‖
√

ρ0 Dϕ‖L2(J) and H∗ is its conjugate one; consequently,

v ∈ C([0, T ]; L2(J)).

By the argument of Theorem 4.1, the uniform in n bound
∥∥∥ζ σ̌n√

ρn

∥∥∥
L2,∞(Q̌T )

+ ‖ζDσ̌n‖L2(Q̌T ) + ‖ζDtvn‖L2(Q̌T ) � C(T )

holds. Consequently (after passing to a subsequence, not relabelled), for
any 0 < t0 < T

σ̌n√
ρn

→ σ̌√
ρ

weakly star in L2,∞(Q̌T \Q̌t0),

Dσ̌n → Dσ̌ and Dtvn → Dtv weakly in L2(Q̌T \Q̌t0),

where properties (6.10) for ρn and (6.11) for σ̌n have been applied. The
boundary condition σ̌n|x=M = 0 on (t0, T ) yields that σ̌|x=M = 0 on (t0, T )
too. Using also properties (6.9) for rn, we pass to the limit in the equation
Dtvn = κnDσ̌n + f̌ [rn] and derive equation (2.12).
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Under the additional conditions
√

ρ̌ 0 Dv̌0 ∈ L2(J), v0(0) = 0 and
f̄ ∈ L2

loc(R̄
+), one can take ζ ≡ 1 and t0 = 0. All of that together with

Corollary 6.1 proves Proposition 2.1. �

7. Properties of Solutions in
the Eulerian Coordinates

We consider weak solutions ρ, v and R to the Eulerian problem (2.1)–(2.5)
arising from the weak solutions ρ̌ and v̌ to the Lagrangian problem (2.11)–
(2.15) after the inverse change of variable

r = ř(χ, t) =
[
(k + 1)

(
ν0 +

χ∫

0

1

ρ̌(χ1, t)
dχ1

)]1/(k+1)

so that

ρ(ř(χ, t), t) ≡ ρ̌(χ, t), v(ř(χ, t), t) ≡ v̌(χ, t), R(t) ≡ ř(M, t) in Q̌. (7.1)

On the initial data and h we impose the conditions

ρ0 ∈ L∞(Ω0), ess inf(r0,r1) ρ0 > 0 for any r1 ∈ Ω0,√
ρ0 v0 ∈ L2(Ω0), h ∈ Cb([ν0,∞) × J̄),

together with the conditions on ∆f described in Section 2.

We first collect the main bounds of Sections 3 and 4 restated in the
Eulerian coordinates.

Proposition 7.1. 1. Let
∥∥∥1

2
ρ0(v0)2 + ρ0P (0)(ρ0)

∥∥∥
L1(Ω0)

� N, h � 0.

Then the following uniform-in-time energy bound holds:

sup
t�0

∥∥∥
(1

2
ρv2 + ρP (0)(ρ)

)
(·, t)

∥∥∥
L1(Ωt)

+
∥∥∥ 1√

κ
(κv)r

∥∥∥
L2(Q)

� K.

2. Let ρ0 � N , ‖
√

ρ0 v0‖L2(Ω0) � N , −N � h � 0 in [ν0,∞) × J̄ .
Then the uniform upper bound ρ � Kρ in Q holds.

3. Let p and the data satisfy the conditions

p � pγ on [0, 1] for some γ > γ(k), (7.2)

ρ0 � N,

∫

Ω0

κ

(ρ0)α−1
dr � N, ‖

√
ρ0 v0‖L2(Ω0) � N, (7.3)
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−N � h(ν, χ) � − α0(χ)

ν2k/(k+1)
in [ν0,∞) × J̄ (7.4)

for some α ∈ (1, γ) and α0 ∈ C(J̄) such that α0 � 0 and α0(M) > 0 (recall
that γ(0) = γ(1) = 1, γ(2) = 4/3). Then the following uniform-in-time bound
holds:

sup
t�0

∫

Ωt

κ(r)

ρα1−1(r, t)
dr � Kα1 for any α1 ∈ [1, α) (7.5)

and, consequently, the uniform upper bound supt�0 R(t) � KR holds.

In the particular case μ(s) ≡ const, one can take α1 = α; moreover,
the result remains valid for α = α1 = 1 when the second condition (7.3)
automatically holds for V 0 − ν0 � N .

4. Let the hypotheses of Claim 3 be valid. Then, for the kinetic and
potential energies

E(t) =
1

2

∫

Ωt

ρv2κ dr, F(t) =

∫

Ωt

ρ(P (0)(ρ) − H [m])κ dr,

where H [m](r, t) := H(ν, m(r, t)), the following bounds hold:

‖E‖L1(R+) � K, ‖E ′‖L1(R+)+L2(R+) � K, ‖(E + F)′‖L1(R+) � K,

and, consequently, they stabilize

E(t) → 0, F(t) → F (S) as t → ∞. (7.6)

5. Let the hypotheses of Claim 3 and the condition ‖hν‖L1(J; C[ν0,KV ]) �

C1(N) with KV = Kk+1
R /(k + 1) be valid. Then

P [ρ(·, t)] =

∫

Ωt

(p(ρ) − pR[ρ])2κ dr → 0 as t → ∞,

where pR[ρ](r, t) = −
R∫

r

(ρfS [m])(r1, t) dr1.

Note that ‖R′‖L2(R+) � K in Claim 3 by (7.1), (3.34), and the energy
bound.

To study the stabilization of density and free radius, we extend ρ by
setting ρ̃ := ρ on Q̄ and ρ̃(r, t) := 0 for r > R(t) and t � 0.

Theorem 7.1. Let the hypotheses of Claim 5 of Proposition 7.1 be
valid.
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1. Let the condition ‖ζf̄‖L2(R+) � N be valid for some cut-off function

ζ ∈ W 1,∞(R) satisfying (4.16). Then the following global bounds and the
stabilization property for velocity holds:

‖ζ√ρ vt‖L2(Q) � K, sup
t�0

‖(ζv)(·, t)‖H1(Ωt) � K, (7.7)

‖v(·, t)‖H1(Ωt) → 0 as t → ∞.

If, in addition, ‖v0
r‖L2(Ω0) � N , v0(0) = 0 and ‖f̄‖L2(R+) � N , then the

bounds (7.7) hold for ζ ≡ 1.

2. Let α ∈ (1, γ) in (7.3), and let one of the conditions (4.29) or (4.30)
be valid. Then for any sequence tn → +∞ there exists a subsequence θn

such that

ρ̃(·, θn) → ρ∗ weakly star in L∞(r0, KR) and R(θn) → R∗. (7.8)

Moreover, for any sequence θn → ∞, θn � 0, such that (7.8) is valid, the
following assertions hold:

(1) the restricted pair {ρ∗
∣∣
[r0,R∗]

, R∗} =: {ρS , RS} serves as a positive

solution to the Eulerian static problem (2.7), (2.8); in addition,

FS{ρS , RS} :=

∫

ΩS

ρS(P (0)(ρS) − H [mS ])κ dr = F (S) (7.9)

(see F (S) in (7.6)) and
∫

ΩS

κ

ρλ−1
S

dr � Kλ for any 1 � λ < α; (7.10)

(2) the following strong limit relation holds:

ρ̃(·, θn) → ρS(·) in Lλ(ΩS) for any 1 � λ < ∞. (7.11)

Proof. 1. It suffices to give two comments on Claim 1. First, we can

pass from ‖vr‖Ωt to ‖v‖H1(Ωt) using the inequality ‖v‖C(Ω̄t) � K
1/2
R ‖vr‖Ωt .

Second, to prove the first bound (7.7), we use the formula Dtv̌ = vt + vvr

to get

‖ζ√ρκ vt‖Q � ‖ζ√ρκ (vt + vvr)‖Q

+ K1/2
ρ r

−k/2
0 ‖κv‖L∞,2(Q)‖ζvr‖L2,∞(Q) � K

with the help of the energy bound and the second bound (7.7).

2. In the case of Claim 2, the arguments of the proof of Theorem 3 in
[9] are applicable (exploiting the bound R � KR, but not (7.5)). The proof
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operates by the functional P [ρ], but does not address directly to the initial-
boundary value problem (2.1)–(2.5), and we do not reproduce this here (in
that proof, another extension of ρ was used; however, the present extension
can be also applied; this fact was already mentioned in [9].) Actually, the
argument leads to somewhat weaker results because, first, {ρS, RS} is not
necessarily a positive (possessing the third property (5.6)) static solution
and, second, it is required that 0 � χ � M in (4.30).

To remove the first drawback, we invoke the bound (7.5). Let p(ρS) >
0 on [r0, R1), but p(ρS) = ρS = 0 on [R1, RS ]. If R1 < RS , then R(θn) �

R2 := (R1 + RS)/2 for n � n0 since R(θn) → RS . Therefore, (7.11) implies

‖ρ(·, θn)‖Lλ(R1,R2) → 0 for any 1 � λ < ∞. (7.12)

On the other hand, by the Hölder inequality and (7.5), we have

0 <
1

k + 1
(Rk+1

2 − Rk+1
1 ) =

R2∫

R1

ρβ 1

ρβ
κ dr

�
( R2∫

R1

ρq′βκ dr
)1/q′( ∫

Ωt

1

ρqβ
κ dr

)1/q

� Kβq

( R2∫

R1

ρq′βκ dr
)1/q′

for any 0 < β < α−1, 1 < q < (α−1)/β and q′ = q/(q−1). For λ = q′β � 1
(that is valid for q sufficiently close to 1), this contradicts (7.12).

To remove the second drawback, we consider the functions (from [9])

m∗(r) =

r∫

r0

ρ∗κ dr1 � M, p∗(r) := −
R∗∫

r

ρ∗fS[m∗] dr1 on Ω̄∗,

where Ω∗ := (r0, R∗). It is clear that

p∗r = ρ∗fS [m∗] on Ω∗ (7.13)

and p∗ is nonincreasing on Ω̄∗. Let Bc := {r ∈ Ω̄∗; p∗(r) = c} = [αc, βc]
for 0 < c � max Ω̄∗

p∗. According to the same proof in [9], it suffices to
check that βc = αc. If βc > αc, then either αc = r0 and ρ∗(r) = 0 almost
everywhere on (αc, βc) or αc > r0 and ρ∗ is not equivalent to zero on (r0, αc)
(by (7.13)). In the second case, m∗ > 0 and fS [m∗] < 0 on [αc, βc] as well
as ρ∗(r) = 0 almost everywhere on (αc, βc) again (by (7.13)). As was shown
in [9], this degeneracy of ρ∗ on (αc, βc) implies measBc = 0, i.e., βc = αc.

Finally, by the property R(θn) → RS and the bound (7.5), for any
0 < ε < RS − r0 and sufficiently large n � n0(ε) we get
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RS−ε∫

r0

κ

ρλ−1|t=θn

dr �

∫

Ωθn

κ

ρλ−1|t=θn

dr � Kλ for any 1 � λ < α,

where Kλ is independent of ε. By the Fatou lemma,

RS−ε∫

r0

κ

ρλ−1
S

dr � Kλ for any 1 � λ < α,

and, consequently, (7.10) holds. �

By the ω-limit set Oρ,R for density and free radius we mean the set of
pairs {ρ∗, R∗} ∈ L∞(r0, KR) × R such that (7.8) holds. We extend ρS by
setting ρ̃S = ρS on ΩS and ρ̃S = 0 on (RS , KR).

Proposition 7.2. Let the hypotheses of Theorem 7.1 be valid. Then
the following assertions hold.

(1) Oρ,R consists of pairs {ρ∗, R∗} = {ρ̃S , RS}, where {ρS, RS} is
a positive static solution such that the properties (7.9) and (7.10) and the
strong limit relation

ρ̃(·, θn) → ρ̃S(·) in Lλ(r0, KR) for any 1 � λ < ∞ (7.14)

hold (for the same sequence θn as in the property {ρ∗, R∗} ∈ Oρ,R).

(2) Oρ,R is a compact attracting connected set in Lλ(r0, KR) × R for
any 1 � λ < ∞. The attracting property means that

inf
{ρS ,RS}∈Oρ,R

‖ρ̃(·, t) − ρ̃S(·)‖Lλ(r0,KR) + |R(t) − RS | → 0 as t → +∞.

Proof. The arguments almost repeat the proof of Theorem 4 in [9]
and will be omitted. Note only that ρ̃ ∈ Cb(R̄

+; Lλ(r0, KR)), for any 1 �

λ < ∞. For λ = 1 it is obtained with the help of the estimate

KR∫

r0

|∆(τ)ρ̃(r, t)| dr �

min{R(t),R(t+τ)}∫

r0

|∆(τ)ρ(r, t)| dr + Kρ|∆(τ)R(t)|;

for other λ one can also invoke the bound ρ � Kρ once more. �

The main result of Theorem 7.1 can be essentially simplified under
weakened uniqueness assumptions for the static problem.
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Corollary 7.1. Let, in addition to the hypotheses of Theorem 7.1, the
Eulerian static problem (2.7), (2.8) have one of the following properties:

(i) there exists no continual family of positive solutions {ρS , RS} such
that RS runs over some segment [R, R̄], r0 < R < R̄, FS{ρS, RS} = a for
some fixed a, and the overdetermined fixed domain static problem with given
RS and FS{ρS , RS} = a has at most one positive solution;

(ii) there exists an at most countable set of positive solutions {ρS, RS}
such that FS{ρS, RS} = a for any fixed a.

Then there exists a positive static solution {ρS , RS} such that ρ̃(·, t) →
ρ̃S(·) in Lλ(r0, KR) for any 1 � λ < ∞, R(t) → RS as t → +∞, and the
properties (7.9) and (7.10) hold.

The proof repeats that of Corollary 4.1 (with R replacing V ).

Remark 7.1. The static equation (2.7) can be considered as a system
of ordinary differential equations

(π0(ρS))r = fS[mS ], mSr = ρSκ on (r0, RS),

see (5.10), with π′
0(s) = p′(s)/s. Suppose that c1s � p′(s) on (0, s0), c1 =

c1(s0) > 0 for any s0 > 0 (in particular, for p = pγ with 1 < γ � 2)
and fSχ ∈ L1((r0, KR); C(J̄)). Then the corresponding backward Cauchy
problem with given π0(ρS)(RS) = 0 and mS(RS) = M (and given RS) has
at most one solution, and thus the overdetermined problem from (i) does.

We can strengthen Corollary 4.2.

Corollary 7.2. Let the hypotheses of Theorem 7.1 be valid, excluding
the condition (7.2), with the conditions (7.3) for α = 1 and the condition
(7.4) weakened down to (3.7). If the Eulerian static problem (2.7), (2.8) has
no positive solution, then lim supt→∞ V (t) = ∞.

Proof. We recall that the condition (7.2), the second condition (7.3)
for α ∈ (1, γ), and the right-hand condition (7.4) were explicitly used only
in the proof of Claim 3 of Proposition 7.1 (see the proof of Proposition
3.3). Thus, under the assumption sup

t�0
V (t) < ∞, the argument of Theo-

rem 7.1 is partially valid and, in particular, there exists a static solution
{ρS , RS} possessing the first and second properties (5.6) but, possibly, the
third property is not satisfied. Since p(ρS) is continuous and nonincreasing

on [r0, RS ], there exists r0 < R̃S � RS such that p(ρS) > 0 on [r0, R̃S) and

p(ρS)(R̃S) = 0. The pair {ρS|[r0,RS ], R̃S} is a positive solution, which yields

a contradiction. �
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