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Preface

The fascinating field of shape optimization problems has received a lot of attention
in recent years, particularly in relation to a number of applications in physics and
engineering that require a focus on shapes instead of parameters or functions. The
goal of these applications is to deform and modify the admissible shapes in order
to comply with a given cost function that needs to be optimized. In this respect the
problems are both classical (as the isoperimetric problem and the Newton problem
of the ideal aerodynamical shape show) and modern (reflecting the many results
obtained in the last few decades).

The intriguing feature is that the competing objects are shapes, i.e., domains of
RN , instead of functions, as it usually occurs in problems of the calculus of vari-
ations. This constraint often produces additional difficulties that lead to a lack of
existence of a solution and to the introduction of suitable relaxed formulations of
the problem. However, in certain limited cases an optimal solution exists, due to the
special form of the cost functional and to the geometrical restrictions on the class of
competing domains.

This volume started as a collection of the lecture notes from two courses given in
the academic year 2000–2001 by the authors at the Dipartimento di Matematica Uni-
versit di Pisa and at Scuola Normale Superiore di Pisa respectively. The courses were
mainly addressed to Ph.D. students and required as background the topics in func-
tional analysis that are typically covered in undergraduate courses. Subsequently,
more material has been added to the original base of lecture notes. However, the
style of the work remains quite informal and follows, in large part, the lectures as
given.

We decided to open the volume by presenting in Chapter 1 some relevant exam-
ples of shape optimization problems: the isoperimetric problem, the Newton problem
of optimal aerodynamical profiles, the optimal distribution of two different media in
a given region, and the optimal shape of a thin insulator around a given conduc-
tor. In Chapter 2 we consider the important case where the additional constraint of
convexity is assumed on the competing domains: this situation often provides the
extra compactness necessary to prove the existence of an optimal shape. A prototype
for this class is the Newton problem, where the convexity of the competing bodies
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permits the existence of an optimal shape, together with some necessary conditions
of optimality.

Many shape optimization problems can be seen in the larger framework of op-
timal control problems: indeed an admissible shape plays the role of an admissible
control, and the corresponding state variable is usually the solution of a partial dif-
ferential equation on the control domain. This point of view is developed in large
generality in Chapter 3, together with the corresponding relaxation theory, which
provides a general way to construct relaxed solutions through �-convergence meth-
ods. In Chapter 4 we study variational problems where the Dirichlet region is seen
as one of the unknowns, and the corresponding optimization problems are consid-
ered. It must be pointed out that, due to the nature of the problem, in general an
optimal Dirichlet region does not exist, and a relaxed formulation is needed to better
understand the behavior of minimizing sequences.

Contrarily in Chapter 5 we present some particular cases where, due to the pres-
ence of suitable geometrical constraints and the monotonicity of the cost functional,
a classical unrelaxed optimal solution does exist, admitting a solution in the family
of classical admissible domains. Some relevant examples of problems that fulfill the
required assumptions are also shown. Chapter 6 deals with the very special case of
cost functionals that depend on the eigenvalues of an elliptic operator with Dirichlet
conditions on the free boundary; we collected some classical and modern results to-
gether with several problems that are still open. Finally, we devote Chapter 7 to the
case of shape optimization problems governed by elliptic equations with Neumann
conditions on the free boundary. In this case several additional difficulties arise pre-
cluding the development of a complete theory; however, we made an effort to treat
completely at least the so called problem of optimal cutting, where the existence of
an optimal cut can be deduced in full generality.

The work also contains a substantial, yet hardly exhaustive, bibliography. The
compilation of a more complete list of references would be prohibitive due to the
rapid development of the field and the tremendous volume of associated papers that
are regularly published on the subject.

This study can serve as an excellent text for a graduate course in variational
methods for shape optimization problems, appealing to both students and instructors
alike.

Dorin Bucur and Giuseppe Buttazzo
Metz and Pisa, March 31, 2005



1

Introduction to Shape Optimization Theory and
Some Classical Problems

In this chapter we introduce a shape optimization problem in a very general way and
we discuss some of the features that will be considered in the following chapters. We
also present some classical problems like the isoperimetric problem and some of its
variants, which can be viewed in the framework of shape optimization.

A shape optimization problem is a minimization problem where the unknown
variable runs over a class of domains; then every shape optimization problem can be
written in the form

min
{

F(A) : A ∈ A
}

where A is the class of admissible domains and F is the cost function that one has
to minimize over A.

It must be noticed that the class A of admissible domains does not have any
linear or convex structure, so in shape optimization problems it is meaningless to
speak of convex functionals and similar notions. Moreover, even if several topologies
on families of domains are available, in general there is not an a priori choice of
a topology in order to apply the direct methods of the calculus of variations, for
obtaining the existence of at least an optimal domain.

We want to stress that, as it also happens in other kinds of optimal control prob-
lems, in several situations an optimal domain does not exist; this is mainly due to
the fact that in these cases the minimizing sequences are highly oscillating and con-
verge to a limit object only in a “relaxed” sense. Then we may have, in these cases,
only the existence of a “relaxed solution” that in general is not a domain, and whose
characterization may change from problem to problem.

We shall introduce in the next chapters a general procedure to relax optimal con-
trol problems and in particular shape optimization problems. A case which will be
considered in detail is when a Dirichlet condition is imposed on the free boundary:
we shall see that in general one should not expect the existence of an optimal so-
lution. However, the existence of an optimal domain occurs in the following cases:
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i) when severe geometrical constraints on the class of admissible domains are im-
posed (see Section 5.1);

ii) when the cost functional fulfills some particular qualitative assumptions (see
Section 5.4);

iii) when the problem is of a very special type, involving only the eigenvalues of the
Laplace operator, where neither geometrical constraints nor monotonicity of the
cost are required (see Section 6.4).

Far from being an exhaustive classification, this is simply the state of the art at
present.

The case when Neumann conditions are considered on the free boundary is dis-
cussed in this volume only in Chapter 7. We refer the reader to books [4], [111],
[140], [176], [186] or to the many available papers (see References) for some topics
related to this subject.

In this chapter we present some problems of shape optimization that can be found
in the classical literature. In all the cases we consider here, the existence of an op-
timal domain is due to the presence either of geometrical constraints in the class of
admissible domains or of geometrical penalizations in the cost functional. The stan-
dard background of functional analysis and of function spaces (as Sobolev or BV
spaces) is assumed to be known.

Among the classical questions which can be viewed as shape optimization prob-
lems we include the isoperimetric problem which will be presented in great gener-
ality and with several variants. In order to set the problem correctly, the notion of
perimeter of a set is required; this will be introduced by means of the theory of BV
functions. The main properties of BV functions will be recalled and summarized
without entering into details; the reader interested in finer results and deeper dis-
cussions will be referred to one of the several books available in the field (see for
instance [8], [12], [108], [131]), [161].

Another classical question which can be considered as a shape optimization prob-
lem is the determination of the best aerodynamical profile for a body in a fluid stream
under some constraints on its size. The Newton model for the aerodynamical resis-
tance will be considered and various kinds of constraints on the body will be dis-
cussed.

The Newton problem of optimal aerodynamical profiles gives us the opportu-
nity to consider in the next chapter a larger class of shape optimization problems:
indeed we shall take those whose admissible domains are convex. This geometrical
constraint allows us in several cases to obtain the existence of an optimal solution.

In Section 1.4 we consider a problem of optimal interface between two given me-
dia; either a perimeter constraint on the interface, or a perimeter penalization, gives
in this case enough compactness to guarantee the existence of an optimal classical
solution. This problem gives us the opportunity to discuss some properties of �-
convergence, which plays an important role in several shape optimization problems.

In Section 1.5 we deal with the problem of finding the optimal shape of a thin
insulating layer around a thermally conducting body. The problem will be set as an
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optimal control problem, where the thickness function of the layer will be the control
variable and the temperature will be the state variable.

1.1 General formulation of a shape optimization problem

As already said above, a shape optimization problem is a minimization problem of
the form

min
{

F(A) : A ∈ A
}

(1.1)

where A is the class of admissible domains and F is the cost functional. We shall
see that, unless some geometrical constraints on the admissible sets are assumed or
some very special cases for cost functionals are considered, in general the existence
of an optimal domain may fail. In these situations the discussion will then be focused
on the relaxed solutions, which always exist.

We shall see that, in order to give a qualitative description of the optimal solutions
of a shape optimization problem, it is important to derive the so-called necessary
conditions of optimality. These conditions, as it usually happens in all optimization
problems, have to be derived from the comparison of the cost of an optimal solution
A to the cost of other suitable admissible choices, close enough to A. This procedure
is what is usually called a variation near the solution. The difficulty in obtaining
necessary conditions of optimality for shape optimization problems consists in the
fact that, being the unknown domain, the notion of neighbourhood is not a priori
clear; the possibility of choosing a domain variation could then be rather wide. The
same method can be applied, when no classical solution exists, to relaxed solutions,
and this will provide qualitative information about the behaviour of minimizing se-
quences of the original problem.

Finally, for some particular problems presenting special behaviours or symme-
tries, one would like to exhibit explicit solutions (balls, ellipsoids, . . . ). This could
be very difficult, even for simple problems, and often, instead of having established
results, we can only give conjectures.

In general, since the explicit computations are difficult, one should develop ef-
ficient numerical schemes to produce approximated solutions; this is a challenging
field we will not enter; we refer the interested reader to some recent books and papers
(see for instance references [4], [128], [176], [185]).

1.2 The isoperimetric problem and some of its variants

The first and certainly most classical example of a shape optimization problem is the
isoperimetric problem. It can be formulated in the following way: find, among all ad-
missible domains with a given perimeter (this explains the term “isoperimetric”), the
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one whose Lebesgue measure is as large as possible. Equivalently, one could mini-
mize the perimeter of a set among all admissible domains whose Lebesgue measure
is prescribed.

The first difficulty consists in finding a definition of perimeter general enough
to be applied to nonsmooth sets and to allow us to apply the direct method of the
calculus of variations. The definition below goes back to De Giorgi (see [108]) and
is now considered classical; we assume the reader is familiar with the spaces of
functions with bounded variation and with their properties.

Given a set A ⊂ RN we denote by 1A the characteristic function of A, defined
by

1A(x) =
{

1 if x ∈ A,

0 otherwise.
(1.2)

Definition 1.2.1 We say that a set A with finite Lebesgue measure is a set of finite
perimeter in RN if its characteristic function 1A belongs to BV (RN ). This means
that the distributional gradient ∇1A is a vector-valued measure with finite total vari-
ation. The total variation |∇1A| is called the perimeter of A.

The admissible domains A we consider are constrained to be contained in a given
closed subset K of RN . Instead of fixing their Lebesgue measure, more generally we
impose the constraint ∫

A
f (x) dx = c

where c is a given constant and f is a given function in L1
loc(R

N ). Note that when
f is a constant function, the class of admissible domains is simply the class of all
subsets of K with a given volume.

With this notation the isoperimetric problem can be then formulated in the fol-
lowing way:

Given a closed subset K of RN and a function f ∈ L1
loc(R

N ) find the subset of K
whose perimeter is minimal, among all subsets A of K whose integral

∫
A f (x) dx is

prescribed.

We then have a minimization problem of the form (1.1) with

F(A) = Per(A) =
∫
|∇1A|,

A =
{

A ⊂ K :
∫

A
f (x) dx = c

}
.

Note that all subsets of K with infinite perimeter are ruled out by the formulation
above, because the cost functional evaluated on them takes the value +∞.

Theorem 1.2.2 With the notation above, if K is bounded and if the class of admis-
sible sets is nonempty, then the minimization problem
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min
{

F(A) : A ∈ A
}

(1.3)

admits at least a solution.

Proof The proof follows the usual scheme of the direct methods of the calculus
of variations. Taking a minimizing sequence (An), the perimeters Per(An) are then
equi-bounded; since An ⊂ K and since K is bounded, the measures of An are equi-
bounded as well. Therefore the sequence 1An is bounded in BV (Q) where Q is a
large ball containing K ; we may then extract a subsequence (which we still denote
by the same indices) which converges weakly* to some function u ∈ BV (Q) in the
sense that {

1An → u strongly in L1(Q),

∇1An → ∇u weakly* in the sense of measures.

The function u has to be of the form 1A for some set A with finite perime-
ter. Moreover, we obtain easily that A ⊂ K (up to a set of measure zero) and∫

A f (x) dx = c, which shows that A is an admissible domain. This domain A
achieves the minimum of the cost functional since (as it is well known) the perimeter
is a weakly* lower semicontinuous function on BV .

Example 1.2.3 When K is not bounded, the existence of an optimal domain may
fail. In fact, take K = RN and f (x) = |x |. It is clear that a ball Bx0,r with |x0| →
+∞ and r → 0, suitably chosen, may fulfill the integral constraint; on the other
hand the perimeter of such a Bx0,r goes to zero. Then the infimum of the problem is
zero, which is clearly not attained.

Example 1.2.4 If K is unbounded, the existence of an optimal domain for problem
(1.3) may fail even if f ≡ 1. In fact, let c be the measure of the unit ball in RN and
let

K =
⋃
n∈IN

Bxn ,rn

where (rn) is a strictly increasing sequence of positive numbers converging to 1 (for
instance rn = 1−1/n) and (xn) is a sequence of points in RN such that |xn−xm | ≥ 2
if n 	= m. Then it is easy to see that the infimum of problem (1.3) is given by the
value Per

(
B0,1

)
which is not attained, since the set K does not contain any ball of

radius 1 (see Figure 1.1 below).

The case K = RN and f ≡ 1 is the classical isoperimetric problem. It is well
known that in this case the optimal domains are the balls of measure c, even if the
proof of this fact is not trivial. In the case N = 2 the proof can be obtained in an
elementary way by using the Steiner symmetrization method; in higher dimensions
the proof is more involved. It is not our goal to enter into this kind of detail and we
refer the interested reader to the wide literature on the subject.

A variant of the isoperimetric problem consists in counting in the cost functional
only the part of the boundary of A which is interior to K . More precisely, we consider
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Figure 1.1. The set K .

an open subset D of RN with a Lipschitz boundary and we define the perimeter
relative to D of a subset A as

PerD(A) = |∇1A|(D).

In this way a set A will be of finite perimeter in D if the function 1A belongs to the
space BV (D).

Again, we have a minimization problem of the form (1.1) with

FD(A) = PerD(A) =
∫

D
|∇1A|,

A =
{

A ⊂ D :
∫

A
f (x) dx = c

}
.

Theorem 1.2.5 With the notation above, if D is bounded and if the class of admis-
sible sets is nonempty, then the minimization problem

min
{

FD(A) : A ∈ A
}

(1.4)

admits at least a solution.

Proof The proof can be obtained by repeating step by step the proof of Theorem
1.2.2.

Example 1.2.6 If the assumptions on the domain D are dropped, it is easy to con-
struct counterexamples to the existence result above, even if the datum f is identi-
cally equal to 1. In fact, if we define the function

φ(x) = −8x + 8 if x ∈]1/2, 1],
φ(x) = −32x + 16 if x ∈]1/4, 1/2],
......

φ(x) = −22n+3x + 2n+3 if x ∈]2−n−1, 2−n],
......
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Figure 1.2. The constraint D.

and we take c = 1 and

D = {(x, y) ∈ R2 : x ∈]0, 1[, y < φ(x)
}
,

an optimal domain for the constrained isoperimetric problem does not exist. To see
this fact it is enough to consider the minimizing sequence

An =
{
(x, y) ∈ R2 : x ∈]2−n−1, 2−n[, 0 < y < φ(x)

}
.

All the sets An are admissible and their Lebesgue measure is equal to 1 for all n;
however, we have PerD(An) = 2−n−1 → 0, so that the infimum of the problem is
zero. No optimal domain may then exist, because for every admissible set A we have
PerD(A) > 0. A picture of the set D is in Figure 1.2 above.

The results above still hold for more general cost functionals. Instead of consid-
ering the cost given by the perimeter |∇1A|, take a function j : RN × RN → R
which satisfies the following properties:

i) j is lower semicontinuous on RN × RN ;

ii) for every x ∈ RN the function j (x, ·) is convex;

iii) there exists a constant c0 > 0 such that

j (x, z) ≥ c0|z| ∀(x, z) ∈ RN × RN .

Consider now the cost functional

F(A) =
∫

j (x,∇1A) .
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The integral above must be intended in the sense of functionals over measures; more
precisely, if µ is a measure and if µ = µa dx + µs is the Lebesgue–Nikodym de-
composition of µ into absolutely continuous and singular parts (with respect to the
Lebesgue measure), the integral

∫
j (x, µ) stands for∫

j
(
x, µa(x)

)
dx +

∫
j∞
(
x,

dµs

d|µs |
)

dµs

where |µs | is the total variation of µs , dµs

d|µs | is the Radon–Nikodym derivative of µs

with respect to |µs |, and j∞ is the recession function of j defined by

j∞(x, z) = lim
t→+∞

j (x, t z)

t
.

When µ = ∇1A the expression above may be simplified; indeed, if A is a smooth
domain it is easy to see that

∇1A = −ν(x)HN−1 ∂A

with ν being the exterior unit normal vector to A and HN−1 the N − 1 dimensional
Hausdorff measure. When A is not smooth, the correct way to represent the measure
∇1A is to introduce the so-called reduced boundary ∂∗A.

Definition 1.2.7 Let A be a set of finite perimeter; we say that x ∈ ∂∗A if

i) for every r > 0 we have 0 < meas
(

A ∩ Bx,r
)
< meas

(
Bx,r

)
;

ii) there exists the limit

νA(x) = lim
r→0

−∇1A
(
Bx,r

)
|∇1A|

(
Bx,r

)
and |νA(x)| = 1.

The vector νA(x) is called an exterior unit normal vector to A and the set ∂∗A is
called the reduced boundary of A.

In this way, for every set A of finite perimeter we still have

∇1A = −νA(x)HN−1 ∂∗A,

so that the cost functional above, dropping the constant term
∫

D j (x, 0) dx , can be
written as

F(A) =
∫
∂∗A

j∞(x,−νA) dHN−1.

It has to be noticed that the integrand j∞(x, z) is positively homogeneous of degree
1 with respect to z. In an analogous way we may consider the functional

FD(A) =
∫

D∩∂∗A
j∞(x,−νA) dHN−1.
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Theorem 1.2.8 With the notation above, if the classes of admissible sets are non-
empty, then the minimization problems

min
{

F(A) : A ⊂ K ,
∫

A f (x) dx = c
}
,

min
{

FD(A) : A ⊂ D,
∫

A f (x) dx = c
}

both admit at least a solution, provided K is a bounded set and D is a bounded open
set.

Proof The proof in this more general framework is similar to the previous ones of
Theorem 1.2.2 and Theorem 1.2.5. In fact, thanks to assumption iii) we still have
the coercivity in the space BV , and thanks to assumptions i) and ii) the functionals
F and FD are lower semicontinuous with respect to the weak* convergence on BV
(see for instance [62], [63]).

The cases when K and D are unbounded can be treated by assuming that the
function f is integrable. More precisely, we can prove the following result.

Proposition 1.2.9 If the set K (respectively D) is unbounded, then the minimization
problems of Theorem 1.2.8 still have a solution, provided f ∈ L1(K ) (respectively
L1(D)).

Proof By the same argument of Theorem 1.2.8 we can prove that a minimizing
sequence (An) is such that the functions 1An are bounded in BV (B0,R) for every
R > 0. Then by a diagonalization procedure we can extract a subsequence (still
denoted by (An)) which converges in L1

loc(R
N ) to some function of the form 1A. The

L1
loc-lower semicontinuity of the functional F (respectively FD) concludes the proof,

provided we can show that the set A is still admissible, that is
∫

A f (x) dx = c. This
last fact follows by the dominated convergence theorem using the a.e. convergence
of 1An to 1A and the integrability of the function f .

We can now see how the boundary variation method works in the isoperimetric
problem and how this allows us to obtain necessary conditions of optimality. Assume
A is a solution of the isoperimetric problem

min
{

PerD(A) : A ⊂ D, meas(A) = c
}

(1.5)

and let x0 ∈ D ∩ ∂A; we assume that near x0 the boundary ∂A is regular enough
to perform all necessary operations. Actually, the regularity of ∂A does not need to
be assumed as a hypothesis but is a consequence of some suitable conditions on the
datum f ; this is a quite delicate matter which goes under the name of regularity
theory. We do not enter this field and we refer the interested reader to the various
books available in the literature (see for instance references [8], [131], [161]).

We can then assume that in a small neighbourhood of x0 the boundary ∂A can be
written as the graph of a function u(x), where x varies in an open subset ω of RN−1.
The corresponding part of PerD(A) can then be written in the Cartesian form as
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ω

√
1+ |∇u|2 dx .

The boundary variation method consists in perturbing ∂A, hence u(x), by taking a
comparison function of the form u(x) + εφ(x), where ε > 0 and φ is a smooth
function with support in ω. We also want the measure constraint to remain fulfilled,
which turns out to require that the function φ satisfies the equality∫

ω

φ(x) dx = 0.

Since A is optimal we obtain the inequality∫
ω

√
1+ |∇u + ε∇φ|2 dx ≥

∫
ω

√
1+ |∇u|2 dx .(1.6)

The integrand on the left-hand side of (1.6) gives, as ε→ 0,√
1+ |∇u + ε∇φ|2 =

√
1+ |∇u|2 + ε ∇u · ∇φ√

1+ |∇u|2
+ o(ε)

so that (1.6) becomes ∫
ω

∇u · ∇φ√
1+ |∇u|2

dx ≥ 0.

Integrating by parts we obtain

−
∫
ω

div
( ∇u√

1+ |∇u|2
)
φ dx ≥ 0,

and recalling that φ was arbitrary and with zero average in ω, we finally obtain that
the function u must satisfy the partial differential equation

− div
( ∇u√

1+ |∇u|2
)
= constant in ω.(1.7)

The term − div
(∇u/

√
1+ |∇u|2) represents the mean curvature of ∂A written in

Cartesian coordinates; therefore we have found the following necessary condition of
optimality for a regular solution A of the isoperimetric problem (1.5):

the mean curvature of D ∩ ∂A is locally constant.

A more careful inspection of the proof above actually shows that the constant is
the same on all D ∩ ∂A. Indeed, if x1 and x2 are two points with neighbourhoods ω1
and ω2, and u(x) is a function whose graph is ∂A in ω1 ∪ω2, the computation above
gives

− div
( ∇u√

1+ |∇u|2
)
= c1 in ω1, − div

( ∇u√
1+ |∇u|2

)
= c2 in ω2
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with c1 and c2 constants. Take as a perturbation the function u + ε(φ1 + φ2) where
φ1, φ2 are smooth and with support in ω1, ω2 respectively. The measure constraint
gives ∫

ω1

φ1 dx +
∫
ω2

φ2 dx = 0.(1.8)

By repeating the argument used above we obtain

0 ≤
∫
ω1

∇u · ∇φ1√
1+ |∇u|2

dx +
∫
ω2

∇u · ∇φ2√
1+ |∇u|2

dx

= c1

∫
ω1

φ1 dx + c2

∫
ω2

φ2 dx .

Since φ1 and φ2 are arbitrary, with the only constraint (1.8), we easily obtain that
c1 = c2, and so the mean curvature of D ∩ ∂A is globally a constant.

When the measure constraint is replaced by the more general constraint∫
A f (x) dx = c, we may easily repeat all the previous steps and we obtain the partial

differential equation

− div
( ∇u√

1+ |∇u|2
)
= λ f

(
x, u(x)

)
(1.9)

where λ is a constant.
Finally, when the perimeter is replaced by the more general functional∫

D∩∂∗A
j∞(x,−νA) dHN−1,

then the exterior unit normal vector νA, when ∂A is the graph of a smooth function
u, is given by

νA =
(
− ∇u√

1+ |∇u|2
,

1√
1+ |∇u|2

)
,

so that the cost functional takes the form∫
ω

j∞(x, u(x),∇u(x),−1) dx .

In this case the partial differential operator − div
(∇u/

√
1+ |∇u|2) has to be re-

placed by the new one obtained through the function j∞(x, s, z,−1) that is

− div
(
∂z j∞(x, u,∇u,−1)

)+ ∂s j∞(x, u,∇u,−1).

1.3 The Newton problem of minimal aerodynamical resistance

The problem of finding the shape of a body which moves in a fluid with minimal
resistance to motion is one of the first problems in the calculus of variations (see for
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instance Goldstine [134]). This can be again seen as a shape optimization problem,
once the cost functional and the class of admissible shapes are defined.

In 1685 Newton studied this problem, proposing a very simple model to describe
the resistance of a profile to the motion in an inviscid and incompressible medium.
Here are his words (from Principia Mathematica):

If in a rare medium, consisting of equal particles freely disposed at equal dis-
tances from each other, a globe and a cylinder described on equal diameter move
with equal velocities in the direction of the axis of the cylinder, (then) the resistance
of the globe will be half as great as that of the cylinder. . . . I reckon that this propo-
sition will be not without application in the building of ships.

The Newtonian pressure law states that the pressure coefficient is proportional
to sin2 θ , with θ being the inclination of the body profile with respect to the stream
direction. The deduction of this pressure law can be easily obtained from the as-
sumption that the fluid consists of many independent particles with constant speed
and velocity parallel to the stream direction, the interactions between the body and
the particles obey the usual laws governing elastic shocks, and tangential friction and
other effects are neglected (see Figure 1.3 below).

Suppose that the profile of the body is described by the graph of a nonnegative
function u defined over the body cross section D (orthogonal to the fluid stream). A
simple calculation gives that the effect due to the impact of a single particle, which
slows the body down, that is the momentum in vertical direction, is proportional to
the mass of the particle times sin2 θ . Since

sin2 θ = 1

1+ tan2(π/2− θ) =
1

1+ |∇u|2 ,

the total resistance of the body turns out to be proportional to the integral

F(u) =
∫

D

1

1+ |∇u|2 dx .(1.10)

Figure 1.3. The Newtonian pressure law.
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We may also define the relative resistance of a profile u, dividing the resistance F(u)
by the measure of D:

C0(u) = F(u)

|D| .

In particular, if the body is a half-sphere of radius R we have u(x) =
√

R2 − |x |2
and an easy calculation gives the relative resistance

C0(u) = F(u)

πR2
= 0.5

as predicted by Newton in 1685. Other bodies with the same value of C0 are illus-
trated in Figures 1.4 and 1.5 below.

If we assume the total resistance to be our cost functional, it remains to determine
the class of admissible shapes, that is the class of admissible functions u, over which
the functional F has to be minimized.

Note that the integral functional F above is neither convex nor coercive. There-
fore, obtaining an existence theorem for minimizers via the usual direct methods of
the calculus of variations may fail.

If we do not impose any further constraint on the competing functions u, the
infimum of the functional in (1.10) turns out to be zero, as it is immediate to see by
taking for instance

un(x) = n dist(x, ∂D)

for every n ∈ N and by letting n →+∞. Therefore, no function u can minimize the
functional F , because F(u) > 0 for every function u.

One may think that the nonexistence of minimizers for F is due to the fact that
the sequence {un} above is unbounded in the L∞ norm; however, even a constraint
of the form

0 ≤ u ≤ M(1.11)

Figure 1.4. (a) half-sphere, (b) cone.
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Figure 1.5. (c) pyramid 1, (d) pyramid 2.

does not help a lot for the existence of minimizers. Indeed, a sequence of functions
like

un(x) = M sin2(n|x |)
satisfies the constraint (1.11) but we still have

lim
n→+∞ F(un) = 0,

and by the same argument used before we may conclude that again the cost functional
F does not possess any minimizer, even in the more restricted class (1.11).

We shall take as admissible bodies only convex bounded domains, that is we
restrict our analysis to functions u which are bounded and concave on D. More
precisely, we study the minimization problem

min
{

F(u) : 0 ≤ u ≤ M, u concave on D
}
.(1.12)

We shall see in Chapter 2 that the concavity constraint on u is strong enough to
provide an extra compactness which implies the existence of a minimizer. On the
other hand, from the physical point of view, a motivation for this constraint is that,
thinking of the fluid as composed by many independent particles, each particle hits
the body only once. If the body is not convex, it could happen that a particle hits the
body more than once, but since F(u) was constructed to measure only the resistance
due to the first shock, it would no longer reflect the total resistance of the body.

Other kinds of constraints different from (1.11) can be imposed on the class of
nonnegative concave functions: for instance, instead of (1.11) we may consider a
bound on the surface area of the body, like∫

D

√
1+ |∇u|2 dx +

∫
∂D

u d Hn−1 ≤ c,

or on its volume, like ∫
D

u dx ≤ c.
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For a source of applications in aerodynamics, we refer for instance to Miele’s book
[163] and to some more recent papers ([27], [142], [192]).

Other classes of functions u, even if less motivated physically, can be consid-
ered from the mathematical point of view. A possibility could be the class of quasi-
concave functions, that is of functions u whose upper level sets {x ∈ D : u(x) ≥ t}
are all convex. Note that in the radially symmetric case a function u = u(|x |) is
quasi-concave if and only if it is decreasing as a function of |x |. Another class of
admissible functions for which the problem can be studied is the class of superhar-
monic functions. Also the class of functions u with the property that the incoming
particles hit the body only once deserves some interest. It is not the purpose of these
notes to develop all details of these cases; thus we limit ourselves to the case of
convex bodies, and we refer the interested reader to several papers where different
situations are considered (see for instance [68], [72], [77], [87], [88], [153], [154]).

The most studied case of the Newton problem of a profile with minimal resistance
is when the competing functions are supposed a priori with a radial symmetry, that is
D is a (two-dimensional) disk and the functions u only depend on the radial variable
|x |. In this case, after integration in polar coordinates, the functional F can be written
in the form

F(u) = 2π
∫ R

0

r

1+ |u′(r)|2 dr

so that the resistance minimization problem becomes

min
{ ∫ R

0

r

1+ |u′(r)|2 dr : u concave, 0 ≤ u ≤ M
}
.(1.13)

Several facts about the radial Newton problem can be shown; we simply list them by
referring to [68], [70], [77] for all details.

• It is possible to show that the competing functions u(r) must satisfy the condi-
tions u(0) = M and u(R) = 0; moreover the infimum does not change if we
minimize over the larger class of decreasing functions. Therefore problem (1.13)
can also be written as

min
{ ∫ R

0

r

1+ |u′(r)|2 dr :

u decreasing, u(0) = M, u(R) = 0
}
.

(1.14)

Notice that, when the function u is not absolutely continuous, the symbol u′
under the integral in (1.14) stands for the absolutely continuous part of u′.

• By using the functions v(t) = u−1(M − t), problem (1.14) can be rewritten in
the more traditional form

min
{ ∫ M

0

vv′3

1+ v′2 dr : v increasing, v(0) = 0, v(M) = R
}
.(1.15)

Again, when v is a general increasing function, v′ is a nonnegative measure, and
(1.14) has to be intended in the sense of BV functions, as
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0

vv′a
3

1+ v′a2
dt +

∫
[0,M]

vv′s(1.16)

where v′a and v′s are respectively the absolutely continuous and singular parts of
the measure v′ with respect to Lebesgue measure. The second integral in (1.16)
has the product vv′s which may have some ambiguity in its definition: it is then
better to add and subtract vv′a so that the functional in (1.16) can be written in a
simpler way as

R2

2
−
∫ M

0

vv′a
1+ v′a2

dt.

• The minimization problem (1.14) admits an Euler–Lagrange equation which is,
in its integrated form,

ru′ = C
(
1+ u′2

)2 on {u′ 	= 0}(1.17)

for a suitable constant C < 0. From (1.17) the solution u can actually be explic-
itly computed. Indeed, consider the function

f (t) = t

(1+ t2)2

(
−7

4
+ 3

4
t4 + t2 − ln t

)
∀t ≥ 1;

we can easily verify that f is strictly increasing so that the following quantities
are well defined:

T = f −1(M/R),

r0 = 4RT

(1+ T 2)2
.

Then we obtain
u(r) = M ∀r ∈ [0, r0]

and the solution u can be computed in the parametric form⎧⎨⎩ r(t) = r0

4t
(1+ t2)2

u(t) = M − r0

4

(
− 7

4
+ 3

4
t4 + t2 − ln t

) ∀t ∈ [1, T ].

Notice that |u′(r)| > 1 for all r > r0 and that |u′(r+0 )| = 1; in particular, the
derivative |u′| never belongs to the interval ]0, 1[.

• The optimal radial shape for M = R is shown in Figure 1.6.

• It is possible to show that the optimal radial solution is unique.

• The optimal relative resistance C0 of a radial body is then given by

C0 = 2

R2

∫ R

0

r

1+ u′2
dr
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Figure 1.6. The optimal radial shape for M = R.

where u is the optimal solution above. We have C0 ∈ [0, 1] and it is easy to see
that C0 depends on M/R only. Some approximate calculations give

M/R = 1 M/R = 2 M/R = 3 M/R = 4

r0/R 0.35 0.12 0.048 0.023

C0 0.37 0.16 0.082 0.049

• Moreover we obtain the following asymptotic estimates as M/R →+∞:

r0/R ≈ 27
16 (M/R)−3 as M/R →+∞,

C0 ≈ 27
32 (M/R)−2 as M/R →+∞.

(1.18)

Some more optimal radial shapes for different values of the ratio M/R are shown
in Figure 1.7 below.

• It is interesting to notice that the optimal frustum cone, that is the frustum cone
with height M , cross section radius R, and minimal resistance, is only slightly
less performant than the optimal radial body computed above. Indeed, its top
radius r̂0 and its relative resistance Ĉ0 can be easily computed, and we find

Ĉ0 = r̂0

R
= 1− (M/R)2

2

(√
1+ 4(M/R)−2 − 1

)
,

with asymptotic behaviour

Ĉ0 ≈ (M/R)−2 as M/R →+∞.
In the nonradial case, we shall see in the next chapter that it is still possible to

show the existence of an optimal profile, even if little is known about its qualitative
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Figure 1.7. (a) the case M = 2R, (b) the case M = R/2.

behaviour. We shall see that a necessary condition of optimality is that the optimal
profile must be flat, in the sense that det D2u identically vanishes where u is of class
C2. In particular, when D is a disk, this excludes the radial Newton solution and so
the optimal solution cannot be radial. This also shows that the solution is not unique
in general. Up to now it is not known if optimal solutions always have a flat nose and
if they always assume the value zero at the boundary.

1.4 Optimal interfaces between two media

In this section we study the problem of finding the minimal energy configuration
for a mixture of two conducting materials when a constraint (or penalization) on the
measure of the unknown interface between the two phases is added.

If D denotes a given bounded open subset of RN (the prescribed container),
denoting by α and β the conductivities of the two materials, the problem consists in
filling D with the two materials in the most performant way according to some given
cost functional. The volume of each material can also be prescribed. It is convenient
to denote by A the domain where the conductivity is α and by aA(x) the conductivity
coefficient

aA(x) = α1A(x)+ β1D\A(x).

In this way the state equation becomes{− div
(
aA(x)∇u

) = f in D,

u = 0 on ∂D,
(1.19)

where f is the (given) source density, and we denote by u A its unique solution.
It is well known (see for instance Kohn and Strang [148], Murat and Tartar [169])

that if we take as a cost functional an integral of the form∫
D

j (x, 1A, u A,∇u A) dx
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in general an optimal configuration does not exist. However, the addition of a perime-
ter penalization is enough to imply the existence of classical optimizers. In other
words, if we take as a cost the functional

J (u, A) =
∫

D
j (x, 1A, u,∇u) dx + σ PerD(A)

where σ > 0, the problem can be written as an optimal control problem in the form

min
{

J (u, A) : A ⊂ D, u solves (1.19)
}
.(1.20)

A volume constraint of the form meas(A) = m could also be present. The main in-
gredient for the proof of the existence of an optimal classical solution is the following
result.

Theorem 1.4.1 Let an(x) be a sequence of N × N symmetric matrices with measur-
able coefficients such that the uniform ellipticity condition

c0|z|2 ≤ an(x)z · z ≤ c1|z|2 ∀x ∈ D, ∀z ∈ RN(1.21)

holds with 0 < c0 ≤ c1. Given f ∈ H−1(D) denote by un the unique solution of the
problem {− div

(
an(x)∇u

) = f,

u ∈ H1
0 (D).

(1.22)

If an(x)→ a(x) a.e. in D then un → u weakly in H1
0 (D), where u is the solution of

(1.22) with an replaced by a.

Proof By the uniform ellipticity condition (1.21) we have

c0

∫
D
|∇un|2 dx ≤

∫
D

f un dx,

and by the Poincaré inequality we have that un are bounded in H1
0 (D) so that a

subsequence (still denoted by the same indices) converges weakly in H1
0 (D) to some

v. All we have to show is that v = u or equivalently that

− div
(
a(x)∇v) = f.(1.23)

This means that for every smooth test function φ we have∫
D

a(x)∇v∇φ dx = 〈 f, φ〉.

Then it is enough to show that for every smooth test function φ we have

lim
n→+∞

∫
D

an(x)∇un∇φ dx =
∫

D
a(x)∇v∇φ dx .
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This is an immediate consequence of the fact that φ is smooth, ∇un → ∇v weakly
in L2(D), and an → a a.e. in D remaining bounded.

Another way to show that (1.23) holds is to verify that v minimizes the functional

F(w) =
∫

D
a(x)∇w∇w dx − 2〈 f, w〉 w ∈ H1

0 (D).(1.24)

Since the function α(s, z) = sz · z, defined for z ∈ RN and for s, a symmetric
positive definite N × N matrix that is convex in z and lower semicontinuous in s, the
functional

�(a, ξ) =
∫

D
a(x)ξ · ξ dx

is sequentially lower semicontinuous with respect to the strong L1 convergence on
a and the weak L1 convergence on ξ (see for instance [62], [106],[143]). Therefore
we have

F(v) = �(a,∇v)− 2〈 f, v〉 ≤ liminf
n→+∞�(an,∇un)− 2〈 f, un〉 = liminf

n→+∞ F(un).

Since un minimizes the functional Fn defined as in (1.24) with a replaced by an , we
also have for every w ∈ H1

0 (D),

Fn(un) ≤ Fn(w) =
∫

D
an(x)∇w∇w dx − 2〈 f, w〉

so that taking the limit as n →+∞ and using the convergence an → a we obtain

liminf
n→+∞ Fn(un) ≤

∫
D

a(x)∇w∇w dx − 2〈 f, w〉 = F(w).

Thus F(v) ≤ F(w) which shows what is required.

Remark 1.4.2 The result above can be rephrased in terms of G-convergence by
saying that for uniformly elliptic operators of the form − div

(
a(x)∇u

)
, the G-

convergence is weaker than the L1-convergence of coefficients. Analogously, we
can say that the functionals

Gn(w) =
∫

D
an(x)∇w∇w dx

�-converge to the functional G defined in the same way with a in the place of an .

Corollary 1.4.3 If An → A in L1(D), then u An → u A weakly in H1
0 (D).

A more careful inspection of the proof of Theorem 1.4.1 shows that the following
stronger result holds.

Theorem 1.4.4 Under the same assumptions of Theorem 1.4.1 the convergence of
un is actually strong in H1

0 (D).
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Proof We have already seen that un → u weakly in H1
0 (D), which gives ∇un →

∇u weakly in L2(D). Denoting by cn(x) and c(x) the square root matrices of an(x)
and a(x) respectively, we have that cn → c a.e. in D remaining equi-bounded. Then
cn(x)∇un converge to c(x)∇u weakly in L2(D). Multiplying equation (1.22) by un

and integrating by parts we obtain∫
D

a(x)∇u∇u dx = 〈 f, u〉 = lim
n→+∞〈 f, un〉

= lim
n→+∞

∫
D

an(x)∇un∇un dx .

This implies that

cn(x)∇un → c(x)∇u strongly in L2(D).

Multiplying now by
(
cn(x)

)−1 we finally obtain the strong convergence of ∇un to
∇u in L2(D).

We are now in a position to obtain an existence result for the optimization prob-
lem (1.20). On the function j we only assume that it is nonnegative, Borel measur-
able, and such that j (x, s, z, w) is lower semicontinuous in (s, z, w) for a.e. x ∈ D.

Theorem 1.4.5 Under the assumption above the minimum problem (1.20) admits at
least a solution.

Proof Let (An) be a minimizing sequence; then PerD(An) are bounded, so that, up
to extracting subsequences, we may assume (An) is strongly convergent in the L1

loc
sense to some set A ⊂ D. We claim that A is a solution of problem (1.20). Let us
denote by un a solution of problem (1.19) associated to An ; by Theorem 1.4.4 (un)

converges strongly in H1
0 (D) to some u ∈ H1

0 (D). Then by the lower semicontinuity
of the perimeter and by Fatou’s lemma we have

J (u, A) ≤ liminf
n→+∞ J (un, An)

which proves the optimality of A.

Remark 1.4.6 The same proof works when volume constraints of the form
meas(A) = m are present. Indeed this constraint passes to the limit when An → A
strongly in L1(D).

The existence result above shows the existence of a classical solution for the
optimization problem (1.20). This solution is simply a set with finite perimeter and
additional assumptions have to be made in order to prove further regularity. For in-
stance in [11] Ambrosio and Buttazzo considered the similar problem

min
{

E(u, A)+ σPerD(A) : u ∈ H1
0 (D), A ⊂ D

}
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where σ > 0 and

E(u, A) =
∫

D

[
aA(x)|∇u|2 + 1A(x)g1(x, u)+ 1D\Ag2(x, u)

]
dx .

They showed that every solution A is actually an open set provided g1 and g2 are
Borel measurable and satisfy the inequalities

gi (x, s) ≥ γ (x)− k|s|2 i = 1, 2

where γ ∈ L1(D) and k < αλ1, with λ1 being the first eigenvalue of −� on D.

1.5 The optimal shape of a thin insulating layer

In this section we study the optimization problem for a thin insulating layer around
a conducting body; we have to put a given amount of insulating material on the
boundary of a given domain in order to minimize a cost functional which describes
the total heat dispersion of the domain. We consider the framework of a stationary
heat equation, but the same model also applies to similar problems in electrostatics
or in the case of elastic membranes.

Let D be a regular bounded open subset of RN that, for simplicity, we suppose
connected and let f ∈ L2(D) be a given function which represents the heat sources
density. We assume that the boundary ∂D is surrounded by a thin layer of insulator,
with thickness d(σ ), with σ being the variable which runs over ∂D. The limit prob-
lem, when the thickness of the layer goes to zero and simultaneously its insulating
coefficient goes to infinity (i.e., the conductivity in the layer goes to zero too), has
been studied in [38] through a PDE approach (called reinforcement problem) and in
[1] through a �-limit approach, and the model obtained is the following. If u denotes
the temperature of the system, then the family of approximating problems is

min
{ ∫

D
|∇u|2 dx + ε

∫
�ε

|∇u|2 dx − 2
∫

D
f u dx : u ∈ H1

0 (D ∪�ε)(1.25)

where �ε is the thin layer of variable thickness d(σ ),

�ε =
{
σ + tν(σ ) : σ ∈ ∂D, 0 ≤ t < εd(σ )

}
.(1.26)

In terms of PDE the Euler–Lagrange equation associated to problem (1.25) is an
elliptic problem with a transmission condition along the interface ∂D⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−�u = f in D,

−�u = 0 in �ε,

∂u−
∂ν
= ε ∂u+

∂ν
on ∂D,

u = 0 on ∂(D ∪�ε),
where u− and u+ respectively denote the traces of u in D and in �ε.
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Notice that the conductivity coefficient in the insulating layer �ε has been taken
equal to ε, as well as the size of the layer thickness. Passing to the limit as ε→ 0 (in
the sense of �-convergence) in the sequences of energy functionals we obtain (see
[1]) the limit energy which is given by

E(u, d) =
∫

D
|∇u|2 dx − 2

∫
D

f u dx +
∫
∂D

u2

d
dHN−1(1.27)

so that the temperature u solves the minimum problem

E(d) = min
{

E(u, d) : u ∈ H1(D)
}
.(1.28)

Equivalently, problem (1.28) can be described through its Euler–Lagrange equation{−�u = f in D,

d ∂u
∂ν
+ u = 0 on ∂D.

(1.29)

We denote by ud the unique solution of (1.28) or of (1.29). Equation (1.29) can be
seen as the state equation of an optimal control problem whose state variable is the
temperature of the system and whose control variable is the thickness function d(σ ).
Given a fixed amount m of insulating material the control variables we consider are
(measurable) thickness functions d defined on ∂D such that

d ≥ 0 on ∂D,
∫
∂D

d dHN−1 = m.

We denote by �m such a class of functions. Therefore, the optimization problem we
are going to consider is

min
{

E(d) : d ∈ �m
} = min

{
E(u, d) : u ∈ H1(D), d ∈ �m

}
.(1.30)

Remark 1.5.1 The energy E(d) in (1.28) can be written in terms of the solution ud ;
indeed, multiplying equation (1.29) by ud and integrating by parts, we obtain

E(d) = E(ud , d) = −
∫

D
f ud dx .(1.31)

Therefore, when the heat sources are uniformly distributed, that is f is (a positive)
constant, the optimization problem (1.30) turns out to be equivalent to determining
the function d ∈ �m for which the averaged temperature

∫
D ud dx is maximal. Other

criteria, different from the minimization of the energy E(d), could be also investi-
gated, as for instance obtaining a temperature as close as possible to a desired state
a(x),

min
{ ∫

D
|ud − a(x)|2 dx : d ∈ �m

}
or more generally
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min
{ ∫

D
f (x, ud) dx +

∫
∂D

g(x, d, ud) dHN−1 : d ∈ �m

}
.

For further details we refer to the chapters of this volume where we consider the
general theory of shape optimization for problems with Dirichlet condition on the
free boundary.

Proposition 1.5.2 For every u ∈ L2(∂D) the minimum problem

min
{ ∫

∂D

u2

d
dHN−1 : d ∈ �m

}
(1.32)

admits a solution. This solution is unique if u is not identically zero.

Proof If u = 0, then any function d ∈ �m solves the minimization problem (1.32).
Assume that u is nonzero; then we claim that the function

du = m|u|
( ∫

∂D
|u| dHN−1

)−1

solves the minimization problem (1.32). In fact, by Hölder inequality we have, for
every d ∈ �m ,( ∫

∂D
|u| dHN−1

)2 ≤
( ∫

∂D

u2

d
dHN−1

)( ∫
∂D

d dHN−1
)
= m

∫
∂D

u2

d
dHN−1

so that ∫
∂D

u2

du
dHN−1 = 1

m

( ∫
∂D
|u| dHN−1

)2 ≤
∫
∂D

u2

d
dHN−1

which proves the optimality of du . The uniqueness of the solution follows from the
strict convexity of the mapping d �→ 1/d and from the fact that every solution of
(1.32) must vanish on the set

{
x ∈ ∂D : u(x) = 0

}
.

Interchanging the order of the minimization in problem (1.30) we can perform
first the minimization with respect to d , so that, thanks to the result of Proposition
1.5.2, problem (1.30) reduces to

min
{ ∫

D
|∇u|2 dx − 2

∫
D

f u dx

+ 1

m

( ∫
∂D
|u| dHN−1

)2
: u ∈ H1(D)

}
.

(1.33)

It is immediate to see that the variational problem above is convex; then it can equiv-
alently be seen in terms of its Euler–Lagrange equation which has the form{−�u = f in D,

0 ∈ m ∂u
∂ν
+ H(u)

∫
∂D |u| dHN−1 on ∂D,
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where H(t) denotes the multimapping

H(t) =

⎧⎪⎨⎪⎩
1 if t > 0,

−1 if t < 0,

[−1, 1] if t = 0.

The following Poincaré-type inequality will be useful.

Proposition 1.5.3 There exists a constant C such that for every u ∈ H1(D),∫
D

u2 dx ≤ C
[ ∫

D
|∇u|2 dx +

( ∫
∂D
|u| dHN−1

)2]
.(1.34)

Proof If we assume by contradiction that (1.34) is false we may find a sequence
(un) in H1(D) such that∫

D
u2

n dx = 1,
∫

D
|∇un|2 dx +

( ∫
∂D
|un| dHN−1

)2 → 0.

Possibly passing to subsequences we may then assume that un converge weakly in
H1(D) to some u ∈ H1(D) with

∫
D u2 dx = 1. Since

∫
D |∇un|2 dx → 0 the

convergence is actually strong in H1(D) and since un → u strongly in L2(∂D) we
have that

∇u ≡ 0 in D, u ∈ H1
0 (D).

The proof is then concluded because this implies u ≡ 0 which is in contradiction
with the fact that

∫
D u2 dx = 1.

Proposition 1.5.4 For every f ∈ L2(D) the minimization problem (1.33) admits a
unique solution.

Proof Let (un) be a minimizing sequence of problem (1.33); by comparison with
the null function we have∫

D
|∇un|2 dx − 2

∫
D

f un dx + 1

m

( ∫
∂D
|un| dHN−1

)2 ≤ 0.

Therefore, by using Hölder inequality, for every ε > 0 we have∫
D
|∇un|2 dx + 1

m

( ∫
∂D
|un| dHN−1

)2 ≤ 2
∫

D
| f un| dx

≤ 2‖ f ‖L2(D)‖un‖L2(D) ≤
1

ε

∫
D
| f |2 dx + ε

∫
D
|un|2 dx

for every n ∈ N. By using the Poincaré-type inequality of Proposition 1.5.3 we obtain∫
D
|∇un|2 dx + 1

m

( ∫
∂D
|un| dHN−1

)2 ≤ 1

ε

∫
D
| f |2 dx

+εC
[ ∫

D
|∇un|2 dx + 1

m

( ∫
∂D
|un| dHN−1

)2]
,
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so that, by taking ε sufficiently small, (un) turns out to be bounded in H1(D). Pos-
sibly passing to subsequences, we may assume un → u weakly in H1(D) for some
function u ∈ H1(D), and the weak H1(D)-lower semicontinuity of the energy func-
tional

G(u) =
∫

D
|∇u|2 dx − 2

∫
D

f u dx + 1

m

( ∫
∂D
|u| dHN−1

)2

gives that u is a solution of problem (1.33).
In order to prove the uniqueness, assume u1 and u2 are two different solutions of

problem (1.33); a simple computation shows that

G
(u1 + u2

2

)
− G(u1)+ G(u2)

2
= −1

4

∫
D
|∇u1 − ∇u2|2 dx

+ 1

4m

( ∫
∂D
|u1 + u2| dHN−1

)2 − 1

2m

( ∫
∂D
|u1| dHN−1

)2

− 1

2m

( ∫
∂D
|u2| dHN−1

)2
.

Moreover, the right-hand side is strictly negative whenever u1 − u2 is nonconstant,
which gives in this case a contradiction to the minimality of u1 and u2.

It remains to consider the case u1 − u2 = c with c constant. If u1 and u2 have a
different sign on a subset B of ∂D with HN−1(B) > 0, we have

|u1 + u2| < |u1| + |u2| HN−1-a.e. on B

which again contradicts the minimality of u1 and u2. If finally u1 and u2 have the
same sign on ∂D we have( ∫

∂D
|u1 + u2| dHN−1

)2 − 2
( ∫

∂D
|u1| dHN−1

)2 − 2
( ∫

∂D
|u2| dHN−1

)2

= −
( ∫

∂D
|u1 − u2| dHN−1

)2 = −c2HN−1(∂D)

which gives again a contradiction and concludes the proof.

We are now in a position to prove an existence result for the optimization problem
(1.30).

Theorem 1.5.5 Let f ∈ L2(D) be fixed. Then the optimization problem (1.30) ad-
mits at least one solution dopt . Moreover, denoting by uopt the unique solution of
(1.33), if uopt does not vanish identically on ∂D we have that dopt is unique and is
given by

dopt (σ ) = m|uopt (σ )|
( ∫

∂D
|uopt | dHN−1

)−1
for HN−1-a.e. σ ∈ ∂D.

Proof The proof follows straightforwardly from Proposition 1.5.2 and Proposition
1.5.4.
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Remark 1.5.6 It is clear that, when uopt identically vanishes on ∂D, any function
d ∈ �m can be taken as a solution of the optimization problem (1.30). However, this
does not occur, at least if f is a nonnegative (and not identically zero) function, as it
is easy to see by comparing the energy of the Dirichlet solution u0 to the energy of
the function u0+ εφ with φ > 0 and ε > 0 small enough. Moreover, problem (1.30)
does not change if we replace the constraint

∫
∂D d dHN−1 = m by the constraint∫

∂D d dHN−1 ≤ m. Finally, all the previous analysis still holds if the heat sources

density f is taken in the dual space
(
H1(D)

)′.
Even if uopt cannot vanish identically on ∂� (if f ≥ 0, f 	= 0) it may happen

that uopt , and so dopt , vanishes somewhere on ∂�. This is for instance the case when
D is the annulus

D = {x ∈ R2 : r < |x | < R},
f ≡ 1, and m is small enough. In this case an explicit calculation (see [61]) gives
that the most performant choice is to use all the insulator on the internal boundary
(with a constant thickness) leaving the exterior boundary unprotected, as in Figure
1.8 below (where r = 1, R = 2)

Figure 1.8. a) m = 0.25|∂D|, b) m = 0.15|∂D|, c) m = 0.0379|∂D|.

It is then interesting to study the asymptotic behaviour of the optimal thickness
dm(σ ) as m → 0. We denote by u0 the solution of the Dirichlet problem{−�u0 = f on D,

u0 = 0 on ∂D,

and we assume for simplicity that D and f are regular enough to have ∂u0
∂ν

contin-
uous on ∂D (we refer to [114] for more details). It is convenient to use the rescaled
variables

v(x) = u(x)− u0(x)

m
, δ(x) = d(σ )

m
(1.35)

so that the functional G can be written in the form
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G(u) =
∫

D
|∇u0 + m∇v|2 dx − 2

∫
D

f (u0 + mv) dx

+ 1

m

( ∫
∂D
|u0 + mv| dHN−1

)2

= −
∫

D
f u0 dx + 2m

∫
D
∇u0∇v dx + m2

∫
D
|∇v|2 dx

−2m
∫

D
f v dx + m

( ∫
∂D
|v| dHN−1

)2

= −
∫

D
f u0 dx + m

[
m
∫

D
|∇v|2 dx

+2
∫
∂D

∂u0

∂ν
v dHN−1 +

( ∫
∂D
|v| dHN−1

)2]
.

Denoting by um the optimal solutions of (1.33) and by dm the optimal thickness

dm = m|um(σ )|
( ∫

∂D
|um | dHN−1

)−1
,

we have that the rescaled solutions vm and δm given by (1.35) are obtained by solving
the minimum problems

min
{

m
∫ ∫

D
|∇v|2 dx + 2

∫
∂D

∂u0

∂ν
v dHN−1

+
( ∫

∂D
|v| dHN−1

)2
: v ∈ H1(D)

}(1.36)

and by taking

δm(σ ) = |vm(σ )|
( ∫

∂D
|um | dHN−1

)−1
.

Since the functions vm are involved only through their values on ∂D, it is convenient
to denote, for every ϕ ∈ H1/2(∂D), by wϕ the harmonic function on D having ϕ
as boundary datum, and to write problem (1.36) as the minimization problem of the
functional Jm defined on the space M(∂D) of signed measures on ∂D by

Jm(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
m
∫

D
|∇wϕ |2dx + 2

∫
∂D

∂u0

∂ν
ϕ dHN−1 +

( ∫
∂D
|ϕ| dHN−1

)2

if ϕ ∈ H1/2(∂D),
+∞ elsewhere.

If ϕm is a minimum point of Jm we have

2
∫
∂D

∂u0

∂ν
ϕm dHN−1 +

( ∫
∂D
|ϕm | dHN−1

)2 ≤ J (0) = 0

so that, setting

M = max
{
|∂u0

∂ν
(σ )| : σ ∈ ∂D

}
,

we have
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∂D
|ϕm | dHN−1

)2 ≤ 2M
∫
∂D
|ϕm | dHN−1

which implies that ∫
∂D
|ϕm | dHN−1 ≤ 2M.

The measures ϕm dHN−1 ∂D are then bounded and converge (up to subsequences)
to a measure µ on ∂D. It is also possible to show (see [114]) that the functional Jm

converge in the sense of the �-convergence with respect to the weak* topology of
M(∂D) to the functional J defined on M(∂D) by

J (λ) = (|λ|(∂D)
)2 + 2

∫
∂D

∂u0

∂ν
dλ.

By the general theory of the �-convergence (see [35], [91]) we have that the limit
measure µ minimizes the functional J . It is now easy to show that (see [114]) µ =
µ+ − µ− where

• µ+ is nonnegative and supported by K− = {x ∈ ∂D : ∂u0
∂ν
(x) = −M};

• µ− is nonnegative and supported by K+ = {x ∈ ∂D : ∂u0
∂ν
(x) = +M};

• |µ|(∂D) = M ;

• ∫
∂D

∂u0
∂ν

d µ = −M2;

• the rescaled functions δm(σ ) converge weakly* in M(∂D) to |µ|/M .
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Optimization Problems over Classes
of Convex Domains

In this chapter we deal with optimization problems whose class of admissible do-
mains is made of convex sets. This geometrical constraint is rather strong and suffi-
cient in many cases to guarantee the existence of an optimal solution.

In Section 2.1 the cost functional will be an integral functional of the form∫
D f (x, u,∇u) dx where D is fixed and u varies in a class of convex (or concave,

as in the case of the Newton problem) functions on D. We shall see that the convex-
ity conditions provide an extra compactness which gives the existence of an optimal
domain under very mild conditions on the integrand f .

In Section 2.2 we consider the case of cost functionals which are boundary inte-
grals of the form

∫
∂A f (x, ν) dHN−1. Again, the convexity hypothesis on the admis-

sible domains A will enable us to obtain the existence of an optimal solution.
Section 2.3 deals with some optimization problems governed by partial differen-

tial equations of higher order; the situations considered are such that the convexity
condition is strong enough to provide the existence of a solution.

In all these cases it would be interesting to enlarge the class of convex domains
by imposing some weaker geometrical conditions but still strong enough to give the
existence of an optimal solution.

2.1 A general existence result for variational integrals

Starting from the discussion about the Newton problem of an optimal aerodynamical
profile made in Section 1.3, we consider in this section the general case of cost
functionals of the form

F(u) =
∫

D
f (x, u,∇u) dx

where D is a given convex subset of RN (N = 2 in the physical case) and the
integrand f satisfies the very mild assumptions:

A1 the function f : D × R × RN → R is nonnegative and measurable for the
σ -algebra LN ⊗ B ⊗ BN ;
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A2 for a.e. x ∈ D the function f (x, ·, ·) is lower semicontinuous on R× RN .

The case of a Newton resistance functional is described by the integrand

f (z) = 1

1+ |z|2 .

Note that no convexity assumptions on the dependence of f (x, s, z) on z are made.
This lack of convexity in the integrand does not allow us to apply the direct methods
of the calculus of variations in its usual form, with a functional defined on a Sobolev
space endowed with a weak topology (see [62], [90]).

The class of admissible functions u we shall work with is, as in the Newton
problem, the class

CM = {u concave on D : 0 ≤ u ≤ M
}

where M > 0 is a given constant. Other kinds of classes are considered in the litera-
ture (see for instance [26], [68], [87], [88], [153], [154]).

The minimum problem we deal with is then

min
{

F(u) : u ∈ CM
}
.(2.1)

Note that, since every bounded concave function is locally Lipschitz continuous
in D, the functional F in (2.1) is well defined on CM . Moreover, as a consequence
of Fatou’s lemma, conditions A1 and A2 imply that the functional F is lower semi-
continuous with respect to the strong convergence of every Sobolev space W 1,p(D)
or also W 1,p

loc (D).
The result we want to prove is the following.

Theorem 2.1.1 Under assumptions A1 and A2, for every M > 0 the minimum prob-
lem

min
{

F(u) : u ∈ CM
}

(2.2)

admits at least a solution.

The proof of the existence Theorem 2.1.1 relies on the following compactness
result for the class CM (see [160]).

Lemma 2.1.2 For every M > 0 and every p < +∞ the class CM is compact with
respect to the strong topology of W 1,p

loc (D).

Proof Let (un) be a sequence of elements of CM ; since all un are concave, they are
locally Lipschitz continuous on D, that is

∀D′ ⊂⊂ D ∀x, y ∈ D′ |un(x)− un(y)| ≤ Cn,D′ |x − y|
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where Cn,D′ is a suitable constant. Moreover, from the fact that 0 ≤ un ≤ M , the
constants Cn,D′ can be chosen independent of n; in fact it is well known that we can
take

Cn,D′ = 2M/ dist(D′, ∂D).

Therefore the sequence (un) is equi-bounded and equi-Lipschitz continuous on every
subset D′ which is relatively compact in D. Thus, by the Ascoli–Arzelà theorem,
(un) is compact with respect to the uniform convergence in D′ for every D′ ⊂⊂ D.
By a diagonal argument we may construct a subsequence of (un) (that we still denote
by (un)) such that un → u uniformly on all compact subsets of D, for a suitable u ∈
CM . Since the gradients ∇un are equi-bounded on every D′ ⊂⊂ D, by the Lebesgue
dominated convergence theorem, in order to conclude the proof it is enough to show
that

∇un(x)→ ∇u(x) for a.e. x ∈ D.(2.3)

Let us fix an integer k ∈ [1, n] and a point x ∈ D where all un and u are differentiable
(since all un and u are locally Lipschitz continuous, almost all points x ∈ D are of
this kind). Now, the functions t �→ un(x + tek) are concave, so that we get for every
ε > 0,

un(x + εek)− un(x)

ε
≤ ∇kun(x) ≤ un(x − εek)− un(x)

−ε ,(2.4)

where we denoted by ek the k-th vector of the canonical orthogonal basis of RN .
Passing to the limit as n →+∞ in (2.4) we obtain for every ε > 0,

u(x + εek)− u(x)

ε
≤ liminf

n→+∞∇kun(x)

≤ limsup
n→+∞

∇kun(x) ≤ u(x − εek)− u(x)

−ε .
(2.5)

Passing now to the limit as ε→ 0 we finally have

∇ku(x) ≤ liminf
n→+∞∇kun(x) ≤ limsup

n→+∞
∇kun(x) ≤ ∇ku(x),

that is (2.3), as required.

Proof of Theorem 2.1.1 The existence result follows from the direct methods of the
calculus of variations. As we already noticed, thanks to assumptions A1 and A2 the
functional F is lower semicontinuous with respect to the strong convergence of the
Sobolev space W 1,p

loc (D). By Lemma 2.1.2 the class CM is also compact for the same
convergence. This is enough to conclude that the minimum problem (2.2) admits at
least a solution.

In particular, the problem of minimal Newtonian resistance

min
{ ∫

D

1

1+ |∇u|2 dx : u ∈ CM
}

(2.6)
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admits a solution for every M ≥ 0.
A class larger than CM that could be considered is the class of superharmonic

functions

EM = {u ∈ H1
loc(D) : 0 ≤ u ≤ M, �u ≤ 0 in D

}
.(2.7)

Here �u is intended in the sense of distributions; then instead of requiring, as in the
case CM , that the N × N matrix D2u is negative (as a measure), here we simply
require that its trace �u is negative. Nevertheless, we still have a compactness result
as the following lemma shows.

Lemma 2.1.3 Let (un) be a sequence of functions in EM . Then for every α > 0
there exists an open set Aα ⊂ D with meas(Aα) < α and a subsequence (unk ) such
that ∇unk converge strongly in L2

loc(D \ Aα).

Proof For every δ > 0 let us denote by Dδ the set

Dδ = {x ∈ D : dist(x, ∂D) > δ}.
Consider a smooth cut-off function ηδ with compact support in D and such that

0 ≤ ηδ ≤ 1, ηδ = 1 on Dδ, |∇ηδ| ≤ 2

δ
,

and set φn,δ = η2
δ (M − un). Since un are superharmonic we have

0 ≤
∫

D
∇un∇φn,δ dx =

∫
D

[
2ηδ(M − un)∇un∇ηδ − η2

δ |∇un|2
]

dx

so that ∫
D
η2
δ |∇un|2 dx ≤

∫
D

2ηδ(M − un)|∇un||∇ηδ| dx

≤ 1

2

∫
D
η2
δ |∇un|2 dx + 2

∫
D
(M − un)

2|∇ηδ|2 dx .
(2.8)

Hence ∫
Dδ
|∇un|2 dx ≤

∫
D
η2
δ |∇un|2 dx

≤ 4
∫

D
(M − un)

2|∇ηδ|2 dx

≤ 16M2 meas(D)

δ2
= C(δ).

(2.9)

Therefore (un) is bounded in H1(Dδ) and so it has a subsequence weakly conver-
gent to some u ∈ EM in H1(Dδ). Possibly passing to subsequences, and by us-
ing a diagonal argument, we may assume that (un) converges strongly in L2

loc(D).
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Using Egorov’s theorem, for every α > 0 there exists an open set Aα ⊂ D with
meas(Aα) < α such that (un) converges uniformly on D \ Aα .

Fix now ε > 0 and define

vn = (ε + u − un)
+;

since �un ≤ 0 we obtain

0 ≤
∫

D
∇un∇(η2

δ vn) dx

=
∫
{un−u≤ε}

[
2ηδvn∇un∇ηδ + η2

δ∇un∇vn
]

dx

=
∫
{un−u≤ε}

[
2ηδ(ε + u − un)∇un∇ηδ − η2

δ∇un∇(un − u)
]

dx

(2.10)

so that ∫
{un−u≤ε}

η2
δ∇un∇(un − u) dx ≤ 2

∫
{un−u≤ε}

ηδ(ε + u − un)∇un∇ηδ.(2.11)

Since un − u ≤ ε on D \ Aα , for n large enough, we have by (2.11)∫
Dδ\Aα

|∇un − ∇u|2 dx ≤
∫

D\Aα
η2
δ |∇un − ∇u|2 dx

≤
∫
{un−u≤ε}

[
η2
δ∇un∇(un − u)− η2

δ∇u∇(un − u)
]

dx

≤ 2
∫
{un−u≤ε}

ηδ(ε + u − un)|∇un||∇ηδ| dx

−
∫
{un−u≤ε}

η2
δ∇u∇(un − u) dx .

(2.12)

Since ∇un → ∇u weakly, the second integral in the last line tends to 0 as n →+∞,
while ∫

{un−u≤ε}
ηδ(ε + u − un)|∇un||∇ηδ| dx

≤
( ∫

D
η2
δ |∇un|2 dx

)1/2( ∫
D
|ε + u − un|2|∇ηδ|2 dx

)1/2

≤ 2C(δ)1/2

δ

( ∫
D
|ε + u − un|2 dx

)1/2
.

(2.13)

Passing to the limit as n →+∞ we get for every δ > 0 and α > 0

lim
n→+∞

∫
Dδ\Aα

|∇un − ∇u|2 dx ≤ 4ε

δ

[
meas(D)C(δ)

]1/2
,

and, since ε > 0 is arbitrary, the proof is concluded.
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The compactness result above allows us to obtain an existence result for opti-
mization problems on the class EM .

Theorem 2.1.4 Let f : D × R × RN → R be a bounded function which satisfies
conditions A1, A2. Then the optimization problem

min
{ ∫

D
f (x, u,∇u) dx : u ∈ EM

}
(2.14)

admits a solution for every M ≥ 0.

Proof Let (un) be a minimizing sequence for problem (2.14); by the argument used
in the first part of Lemma 2.1.3, passing to subsequences we may assume that un →
u weakly in H1(Dδ), hence strongly in L2(Dδ), for every δ > 0, for a suitable
u ∈ EM . Moreover, always by Lemma 2.1.3, for every α > 0 there exists an open
set Aα ⊂ D with meas(Aα) < α and a subsequence (which we still denote by (un))
such that

∇un → ∇u a.e. in D \ Aα.

Since f is bounded, possibly adding a constant we may reduce ourselves to the
case f ≥ 0. We may now apply Fatou’s lemma to f (x, un,∇un) on D \ Aα and we
obtain ∫

D
f (x, u,∇u) dx

=
∫

D\Aα
f (x, u,∇u) dx +

∫
Aα

f (x, u,∇u) dx

≤ liminf
n→+∞

∫
D\Aα

f (x, un,∇un) dx +
∫

Aα
f (x, u,∇u) dx

≤ liminf
n→+∞

∫
D

f (x, un,∇un) dx + Cα.

(2.15)

Finally, by letting α→ 0 we get that u is a solution of problem (2.14).

Remark 2.1.5 A more careful inspection of the proof above shows that the result of
Theorem 2.1.4 still holds under the weaker growth assumption:

A3 there exist a constant C and a function a(x, t) from D ×R into R, increasing in
t and with a(·, t) ∈ L1

loc(D) such that

0 ≤ f (x, s, z) ≤ a(x, |s|)+ C |z|2 ∀(x, s, z) ∈ D × R× RN .

Indeed, by repeating the proof above we have for every δ > 0 and α > 0,∫
Dδ\Aα

f (x, u,∇u) dx ≤ liminf
n→∞

∫
Dδ\Aα

f (x, un,∇un) dx

≤ liminf
n→∞

∫
D

f (x, un,∇un) dx,
(2.16)
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Dδ∩Aα

f (x, u,∇u) dx ≤
∫

Dδ∩Aα
[a(x, M)+ C |∇u|2] dx .(2.17)

Summing (2.16) to (2.17) and passing to the limit as α→ 0 we obtain∫
Dδ

f (x, u,∇u) dx ≤ liminf
n→∞

∫
Dδ

f (x, u,∇u) dx

and the proof is achieved by taking δ→ 0.

Other constraints than prescribing the maximal height M of the body are possi-
ble. For instance, in the case of convex bodies, we can prescribe a bound V on the
volume of the body, so that we deal with the admissible class

CV = {u : D → R : u concave , u ≥ 0,
∫

D
u dx ≤ V

}
.

Alternatively, we can prescribe a bound S on the side surface of the body, so that the
admissible class becomes

C(S) = {u : D → R : u concave , u ≥ 0,
∫

D

√
1+ |∇u|2 dx ≤ S

}
.

In both cases we have an existence result similar to the one of Theorem 2.1.1. Indeed,
if u is concave its sup-norm can be estimated in terms of its integral, as it is easily
seen by comparing the body itself with the cone of equal height:

V ≥
∫

D
u dx ≥ (sup u)meas(D)

N + 1
.

Then the volume class CV is included in the height class CM where M = V (N +
1)/meas(D) and the corresponding compactness result follows from the one of
Lemma 2.1.2.

The case of surface bound is similar: indeed, the sup-norm of a concave function
can be estimated in terms of the surface of its graph, as it is easily seen by comparing
again the body itself with the cone of equal height and by using Lemma 2.2.2:

S ≥
∫

D

√
1+ |∇u|2 dx ≥ (sup u)HN−1(∂D)

N
.

Then the surface class C(S) is included in the height class CM where M =
SN/HN−1(∂D) and the corresponding compactness result again follows from the
one of Lemma 2.1.2.

2.2 Some necessary conditions of optimality

Coming back to the Newton problem of minimal resistance, it is interesting to note
that all solutions (we shall see that there is not uniqueness of the solution) of (2.6)
verify a necessary condition of optimality, given by the following result.
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Theorem 2.2.1 Let u be a solution of problem (2.6). Then for a.e. x ∈ D we have
that |∇u|(x) /∈]0, 1[.

In the proof of Theorem 2.2.1 we shall use the following lemma.

Lemma 2.2.2 Let A, B be two N-dimensional closed convex subsets of RN with
A ⊂ B. Then HN−1(∂A) ≤ HN−1(∂B) and equality holds if and only if A = B.

Proof Let P : ∂B → ∂A be the projection on the closed convex set A, which
maps every point of ∂B in the point of ∂A of least distance. It is well known (see for
instance Brezis [37], Proposition V.3) that P is Lipschitz continuous with Lipschitz
constant equal to 1. Therefore, by the general properties of Hausdorff measures (see
for instance Rogers [182], Theorem 29), we obtain the inequality

HN−1(∂A) = HN−1(P(∂B)
) ≤ HN−1(∂B)

which proves the desired inequality.
In order to conclude the proof, if by contradiction HN−1(∂A) = HN−1(∂B) and

A 	= B, we can find a hyperplane S tangent to A such that, denoting by S+ the half
space bounded by S and containing A, it is

B \ S+ 	= ∅.

It is easy to see that B \ S+ contains an open set, so that

HN−1(∂A) ≤ HN−1
(
∂(B ∩ S+)

)
= HN−1(∂B)+HN−1(B ∩ S)−HN−1(∂B \ S+)

< HN−1(∂B)

(2.18)

which contradicts the assumption H N−1(∂A) = H N−1(∂B) and achieves the proof.

Proof of Theorem 2.2.1 Let u ∈ CM be a solution of problem (2.6) and let v be
defined as the infimum of M and of all tangent planes to the convex set

{
(x, y) ∈

D × R : 0 ≤ y ≤ u(x)
}

having slope not belonging to ]0, 1[. It is easy to see that
v ∈ CM , v ≥ u on D, |∇v|(x) /∈]0, 1[ for a.e. x ∈ D, and that on the set {v 	= u} it
is

|∇v| ∈ {0, 1} and |∇u| ∈]0, 1[.

Consider now the function f̃ : R+ → R+ given by

f̃ (t) =
{

1− t/2 if 0 ≤ t ≤ 1,

1/(1+ t2) if t > 1
(2.19)

and the functional
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F̃(u) =
∫

D
f̃ (|∇u|) dx .

The function f̃ is convex on R+ and we have

f̃ (t) ≤ 1

1+ t2
∀t ≥ 0.

Therefore,

F(u) ≥ F̃(u) =
∫
{u=v}

f̃ (|∇u|) dx +
∫
{u 	=v}

f̃ (|∇u|) dx .

Since ∇u = ∇v a.e. on the set {u = v}, we get

F(u) ≥
∫
{u=v}

f̃ (|∇v|) dx +
∫
{u 	=v}

f̃ (|∇u|) dx

= F̃(v)+
∫
{u 	=v}

[
f̃ (|∇u|)− f̃ (|∇v|)] dx .

(2.20)

Since |∇v| /∈]0, 1[ on D we have

f̃ (|∇v|) = f (|∇v|) a.e. on D;
moreover, since on {u 	= v} it is |∇v| ∈ {0, 1} and |∇u| ∈]0, 1[, we have on {u 	= v},

f̃ (|∇u|) = 1− |∇u|
2
, f̃ (|∇v|) = 1− |∇v|

2
.

Therefore,

F(u) ≥ F(v)+ 1

2

∫
{u 	=v}

[|∇v| − |∇u|] dx

= F(v)+ 1

2

∫
D

[|∇v| − |∇u|] dx .
(2.21)

By the coarea formula we obtain∫
�

[|∇v| − |∇u|] dx =
∫ M

0

[
HN−1({v = t})−HN−1({u = t})] dt;(2.22)

moreover, for every t the sets {u ≥ t} and {v ≥ t} are convex and

{u ≥ t} ⊂ {v ≥ t}.
Then, by Lemma 2.2.2 we get

HN−1({u = t}) ≤ HN−1({v = t})
so that, by (2.21) and (2.22)

F(v) ≤ F(u)

and equality holds if and only if u = v. Therefore, |∇u| must be outside the interval
]0, 1[ and the proof is achieved.

For a problem of the form (2.2) let u be a solution; we assume that in an open set
ω the function u
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i) is of class C2;

ii) does not attain the maximal value M ;

iii) is strictly concave in the sense that its Hessian matrix is positive definite.

Moreover, we assume that the integrand f is smooth. Then it is easy to see that for
every smooth function φ with compact support in ω we have u + εφ ∈ CM for ε
small enough. Thus we can perform the usual first variation calculation which leads
to the Euler–Lagrange equation

− div
(

fz(x, u,∇u)
)+ fs(x, u,∇u) = 0 in ω.

In the case of the Newton functional this becomes

div
( ∇u

(1+ |∇u|2)2
)
= 0 in ω.

We can also perform the second variation; this gives for every φ,∫
ω

[
fzz(x, u,∇u)∇φ∇φ + 2 fsz(x, u,∇u)φ∇φ + fss(x, u,∇u)φ2] dx ≥ 0.

In particular, for the Newton functional we obtain for every φ,∫
ω

2

(1+ |∇u|2)3
(
4(∇u∇φ)2 − (1+ |∇u|2)|∇φ|2) dx ≥ 0.(2.23)

Condition (2.23) gives, as a consequence, the following result.

Theorem 2.2.3 Let D be a circle. Then an optimal solution of the Newton problem

min
{ ∫

D

1

1+ |∇u|2 dx : u ∈ CM

}
(2.24)

cannot be radial.

Proof We follow the proof given in [40], assuming for simplicity N = 2. Let u
be the optimal radial solution of the Newton problem computed in Section 1.3; we
have seen that, outside a circle of radius r0 where u ≡ M , the function u is smooth,
strictly concave, and does not attain the maximal value M . Then, using in (2.23) a
function φ of the form η(r)ψ(θ) with spt η ⊂]r0, R[, with R being the radius of D,
we obtain∫ R

r0

r dr
∫ 2π

0

[4|u′(r)η′(r)ψ(θ)|2(
1+ |u′(r)|2)3 − |η

′(r)ψ(θ)|2 + |η(r)ψ ′(θ)|2r−2(
1+ |u′(r)|2)2

]
dθ ≥ 0.

Using ψ(kθ) instead of ψ(θ) the previous inequality becomes∫ R

r0

r dr
∫ 2π

0

[4|u′(r)η′(r)ψ(θ)|2(
1+ |u′(r)|2)3 − |η

′(r)ψ(θ)|2 + k2|η(r)ψ ′(θ)|2r−2(
1+ |u′(r)|2)2

]
dθ ≥ 0

and the contradiction follows by taking k →+∞.
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Remark 2.2.4 We may perform a similar computation for the integral∫
D

f
(|∇u|) dx

and we find the second variation inequality∫
ω

f ′
(|∇u|)
|∇u| |∇φ|2 +

( f ′′
(|∇u|)
|∇u|2 − f ′

(|∇u|)
|∇u|3

)
(∇u∇φ)2 dx ≥ 0.

Assuming that the minimizer u is radial, the choice of φ as above leads to∫ r2

r1

∫ 2π

0
r f ′′(|u′|)|η′(r)ψ(θ)|2 + k2 f ′(|u′|)

r |u′| |η(r)ψ
′(θ)|2 dr dθ ≥ 0,

with ]r1, r2[ being an interval where u is smooth, strictly concave, and strictly less
than M . Again, taking k → +∞ gives that the radial symmetry fails whenever
f ′(|u′(r)|) < 0 for some r , which implies the necessary condition of optimality for
radial solutions

f ′(|u′(r)|) ≥ 0.

Remark 2.2.5 An immediate consequence of the nonradiality of the optimal New-
ton solutions is that problem (2.24) does not have a unique solution. In fact, rotating
any nonradial solution u provides still another solution, as it is easy to verify, and
therefore the number of solutions of problem (2.24) is infinite.

A more careful inspection of the proof of Theorem 2.2.3 allows us to obtain an
additional necessary condition of optimality: all solutions of the Newton problem
(2.24) must be “flat” in the sense specified by the following result (see [153]).

Theorem 2.2.6 Let D be any convex domain and let u be a solution of the Newton
problem (2.24). Assume that in an open set ω the function u is of class C2 and does
not touch the upper bound M. Then

det∇2u ≡ 0 in ω.(2.25)

Proof Let us fix a point x0 ∈ ω and denote by a a unit vector orthogonal to ∇u(x0).
If (2.25) does not hold, then the second variation argument gives inequality (2.23)
for every smooth function φ with support in a small neighbourhood of x0. Take now

φ(x) = η(x) sin(ka · x),

where the support of η is in a small neighbourhood of x0 and k is large enough. We
have

∇φ(x) = sin(ka · x)∇η(x)+ ka cos(ka · x)η(x)

so that, passing to the limit in (2.23) as k →+∞, we obtain
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Figure 2.1. A “screwdriver” shape

∫
ω

2η2(x)

(1+ |∇u|2)3
(
4(a · ∇u)2 − (1+ |∇u|2)) dx ≥ 0

for all η. As the support of the function η shrinks to x0 this gives a contradiction,
since a · ∇u(x0) = 0.

Remark 2.2.7 The result of Theorem 2.2.6 gives, in another way, that the solutions
of the Newton problem for the case where a disc, D, cannot be radial. Moreover, the
same argument can be repeated for functionals of the form

∫
D f (∇u) dx . In this case

we obtain that every minimizer u has to satisfy the condition

fzz
(∇u(x0)

) ≥ 0 whenever u is C2 around x0, and det∇2u(x0) > 0.

Finally, the flatness of solutions can be obtained also without assuming C2 regularity,
as it can be found in [153].

Remark 2.2.8 Another, more direct proof of the nonradiality of the solutions of the
Newton problem when D is a disc, has been found by P. Guasoni in [135]. In fact,
if S is the segment joining the points (−a, 0, M) and (a, 0, M), the convex hull of
S ∪ (D × {0}) can be seen as the hypograph of a function ua,M ∈ CM which is
graphically represented in Figure 2.1 above.

If the number a ∈ [0, R] is suitably chosen, the relative resistance of ua,M can
be estimated and we obtain, after some calculations,

C0(ua,M ) = 1

πR2

∫
B0,R

1

1+ |∇ua,M |2 dx ≤ C(M/R)−2 + o
(
(M/R)−2)
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as M/R → +∞. The constant C can be computed and we find C < 27/32 which
shows (at least for large values of M/R) that the radial function of Section 1.3 cannot
be a minimizer.

The optimal solutions of the Newton problem have not yet been characterized,
even if D is a disk in R2. Starting from the considerations made in Remark 2.2.8
concerning the Guasoni example shown in Figure 2.1, Lachand-Robert and Peletier
introduced in [88] the subclass PM of CM made of all developable concave func-
tions on D with values in [0, M]. These can be characterized as the functions whose
hypograph coincides with the convex hull in RN+1 of the set

(K × {M}) ∪ (D × {0})
where K varies among all closed convex subsets of D. Therefore every function
u ∈ PM can be identified with the closed convex set

K = {x ∈ D : u(x) = M}.

By the compactness of CM in W 1,p
loc (D) for every p < +∞ (see Lemma 2.1.2) it is

easy to show that the class PM is also compact for the same topologies. Then, under
assumptions A1 and A2 on the integrand f , the minimization problem

min
{ ∫

D
f (x, u,∇u) dx : u ∈ PM

}
(2.26)

admits a solution. In particular, if f (z) = (1 + |z|2)−1 is the Newton integrand and
D is a disk in R2, problem (2.26) above provides an optimal developable function
wM which we identify with the closed convex set

KM = {x ∈ D : wM (x) = M}.
In [88] it is proved that all the functions wM are more performant than the Newton
radial function of the same height introduced in Section 1.3; moreover, all the sets
KM are regular polygons with nM sides and centered in the disk D, where the number
nm ≥ 3 of sides depends on M in a nonincreasing way.

Even if some analytical proof is not yet available, there is numerical evidence
(see [152]) that the functions wM are not optimal in the larger class CM .

Below in Figure 2.2 are two numerical outputs from [152] which suggest that the
optimal solutions are not in the developable class PM .

2.3 Optimization for boundary integrals

In this section we consider shape optimization problems of the form

min
{ ∫

∂A
f
(
x, ν(x)

)
dHN−1 : A ∈ A

}
(2.27)
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Figure 2.2. Two optimal nondevelopable Newton shapes.

where f is a nonnegative continuous function, ν is the normal unit vector exterior
to A, and the class A of admissible domains is made of convex subsets of RN . This
formulation allows us to consider convex bodies A which are not of Cartesian type,
that is we do not need the admissible domains A to be the hypographs of concave
functions u defined on a given convex set D.

The Newtonian resistance functional itself can be written in the form (2.27); in
fact, for a Cartesian domain A given by the hypograph of a function u we have

ν =
( −∇u√

1+ |∇u|2
,

1√
1+ |∇u|2

)
,

so that
1

1+ |∇u|2 = (νN )
2.

Therefore, since changing the integration on D into an integral on ∂A provides an
additional factor (1 + |∇u|2)−1/2 = νN , the Newtonian resistance functional takes
the form

F(A) =
∫

D

1

1+ |∇u|2 dx =
∫

graph u
ν3

N (x) dHN−1 =
∫
∂A

(
ν+N (x)

)3
dHN−1,

where the positive part in ν+N (x) is due to the fact that we do not want to take into
account the lower horizontal part ∂A \ graph u = D × {0}, on which νN < 0.
More generally, if a is the direction of the motion of the fluid stream, the Newtonian
resistance has the form (2.27) with

f (x, ν) = ((a · ν)+)3.
The admissible class we consider is

CK ,Q =
{

A convex subset of RN : K ⊂ A ⊂ Q
}

(2.28)
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where K and Q are two given compact subsets of RN . In the case of Newton’s
problem with prescribed height of Sections 1.3 and 2.1 we have

Q = D × [0, M], K = D × {0}.
The existence result we are going to prove is the following.

Theorem 2.3.1 Let f : RN×SN−1 → [0,+∞] be a lower semicontinuous function
and let K and Q be two given compact subsets of RN such that the class CK ,Q is
nonempty. Then the minimum problem

min
{ ∫

∂A
f
(
x, ν(x)

)
dHN−1 : A ∈ CK ,Q

}
(2.29)

admits at least one solution.

We shall use several notions about measures, collected in the following defini-
tion.

Definition 2.3.2 For every Borel measure µ on RN with values in RN we define the
variation of µ as the nonnegative measure |µ| defined for every Borel subset B of
RN by

|µ|(B) = sup
{∑

n

|µ(Bn)| : ∪n Bn = B
}
.

We denote by M the class of all measures µ such that |µ|(RN ) < +∞, and for each
µ ∈M we set

‖µ‖ = |µ|(RN ).

If µ ∈M the symbol νµ will denote the Radon–Nikodym derivative dµ/d|µ|, which
is a µ-measurable function from RN into SN−1.

Finally we say that a sequence (µh) of measures in M converges in variation to
µ if

µh → µ weakly∗ in M and lim
n→+∞‖µh‖ = ‖µ‖.

The main tool we use in the proof of Theorem 2.3.1 is the following Reshetnyak
result (see [179]) on functionals defined on measures.

Theorem 2.3.3 Let f : RN × SN−1 → R be a bounded continuous function. Then
the functional F : M→ R defined by

F(µ) =
∫

RN
f (x, νµ) d|µ|(2.30)

is continuous with respect to the convergence in variation.

Corollary 2.3.4 If f : RN × SN−1 → [0,+∞] is lower semicontinuous, then the
functional defined in (2.30) turns out to be lower semicontinuous with respect to the
convergence in variation.
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Proof It is enough to approximate the function f by an increasing sequence ( fn) of
bounded continuous functions, to apply to every functional

Fn(µ) =
∫

RN
fn(x, νµ) d|µ|

the result of Theorem 2.3.3, and to pass to the supremum as n → +∞ by using the
monotone convergence theorem.

The following lemma will be also used.

Lemma 2.3.5 Let An, A be bounded convex subsets of RN with An → A in
L1(RN ). Then

lim
n→+∞HN−1(∂An) = HN−1(∂A).

Proof As An converges to A in L1(RN ) it follows that

∀ε > 0 ∃nε : n > nε ⇒ An ⊂ A + B0,ε.

Therefore, by Lemma 2.2.2, we obtain for n > nε,

HN−1(∂An) ≤ HN−1(∂(A + B0,ε
)

so that

limsup
n→+∞

HN−1(∂An) ≤ limsup
ε→0+

HN−1(∂(A + B0,ε
) = HN−1(∂A).

On the other hand, by the L1 lower semicontinuity of the perimeter,

liminf
n→+∞HN−1(∂An) ≥ HN−1(∂A)

and the proof is complete.

Proof of Theorem 2.3.1 It is convenient to restate the problem in terms of function-
als depending on vector measures. To this aim, to every convex set A ∈ CK ,Q we
associate its characteristic function 1A defined by

1A(x) =
{

1 if x ∈ A,
0 if x /∈ A,

(2.31)

and the distributional gradient ∇1A which is a vector measure of the class M. It is
well known that, since A is convex, the measures |∇1A| and HN−1 ∂A coincide,
so that the cost functional can be written in the form∫

∂A
f
(
x, ν(x)

)
dHN−1 =

∫
Q

f
(
x, νµA (x)

)
d|µA|
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where we denote by µA the measure ∇1A. By the Reshetnyak Theorem 2.3.3 and the
related Corollary 2.3.4 the functional above is lower semicontinuous with respect to
the convergence in variation of the measures µA, so in order to apply the direct
methods of the calculus of variations it remains to show that the class

MK ,Q =
{
µ ∈M : µ = ∇1A, A ∈ CK ,Q

}
is compact for the same convergence. Let (An) be a sequence of convex domains of
CK ,Q ; by Lemma 2.2.2 we have

‖∇1An‖ = HN−1(∂An) ≤ HN−1(∂ Q̃)

where Q̃ denotes the convex envelope of Q. Hence the sequence (1An ) is bounded in
BV , so that we may assume, up to extracting a subsequence, it converges weakly*
in BV to some function of the form 1A. In particular we have An → A strongly in
L1, which implies that A is a convex domain of CK ,Q , and by Lemma 2.3.5

lim
n→+∞‖∇1An‖ = lim

n→+∞HN−1(∂An) = HN−1(∂A) = ‖∇1A‖,

which gives the required convergence in variation and concludes the proof.

Remark 2.3.6 All the arguments above work in a similar way if instead of the class
CK ,Q we work with a volume constraint and so with one of the admissible classes

AV,Q = {A convex subset of RN : A ⊂ Q, meas(A) ≥ V
}
,

AK ,V =
{

A convex subset of RN : K ⊂ A, meas(A) ≤ V
}
.

Similarly, the optimization problem above can be considered with a surface con-
straint, in one of the admissible classes

BS,Q = {A convex subset of RN : A ⊂ Q, HN−1(A) ≥ V
}
,

BK ,V =
{

A convex subset of RN : K ⊂ A, HN−1(A) ≤ V
}
.

Another possible choice for the admissible class (see Buttazzo and Guasoni [71])
is obtained if also the section of the unknown domain A, with respect to a given
hyperplane π , is involved in the optimization. We then have the class

SK ,Q,m =
{

A convex subset of RN : K ⊂ A ⊂ Q, HN−1(A ∩ π) ≥ m
}

for which all the previous analysis can be repeated.
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2.4 Problems governed by PDE of higher order

In this section we deal with optimization problems on classes of convex domains, of
a type different from the ones considered in Section 2.3. In particular, the class of
admissible domains will be similar to the one of Section 2.3, that is

Cm(K , Q) = {A convex subset of RN :

K ⊂ A ⊂ Q, meas(A) = m
}(2.32)

where K and Q are two given compact subsets of RN . The cost functional, how-
ever, is of a different type and may involve PDE of higher order as a state equation.
Problems of this type have been studied for instance in [191].

Let us start by introducing some useful notions about convex sets and by studying
their properties. A natural topology on the class of convex sets is given by the so-
called Hausdorff distance.

Definition 2.4.1 The Hausdorff distance between two closed sets A, B of RN is de-
fined by

d(A, B) = sup
x∈A

d(x, B) ∨ sup
x∈B

d(x, A)

where d(x, E) = inf{|x − y| : y ∈ E}.

Remark 2.4.2 It is well known that the class of all closed subsets of a given compact
set is compact with respect to the Hausdorff distance. Moreover, the convergence
An → A induced by the Hausdorff distance is equivalent to the so-called uniform
convergence, which occurs if for every ε > 0 there exists nε such that

An ⊂ A + B0,ε and A ⊂ An + B0,ε ∀n ≥ nε

B0,ε being the ball in RN centered at the origin and of radius ε.

We summarize here below some of the properties of convex sets.

Proposition 2.4.3 The following facts hold for convex sets.

i) If A ⊂ B then HN−1(∂A) ≤ HN−1(∂B);

ii) If An → A uniformly, then An → A in L1, hence meas(An) → meas(A) and
HN−1(∂An)→ HN−1(∂A);

iii) meas(A) < ρHN−1(∂A) where ρ is the radius of the largest ball included in A.

Proof Statement i) is proved in Lemma 2.2.2. To prove statement ii) it is enough to
notice that, by the definition of uniform convergence we have for every ε > 0,

An \ A ⊂ (A + B0,ε
) \ A for all n large enough,
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so that meas(An \ A) ≤ Cε for a suitable constant C . Analogously we have
meas(A \ An) ≤ Cε which gives the L1 convergence of An to A and the rest of
the statement follows from Lemma 2.3.5. Finally, for the proof of statement iii) we
refer to [172].

Proposition 2.4.4 The class Cm(K , Q) defined in (2.32) is compact for the uniform
convergence.

Proof Let (An) be a sequence in Cm(K , Q); since all An are contained in the con-
vex envelope co(Q) of Q, by Proposition 2.4.3 i) we obtain

HN−1(∂An) ≤ HN−1(∂co(Q))

so that by Proposition 2.4.3 iii) we have that the largest ball included in An has a
radius

ρn > m/HN−1(∂co(Q)) .

Therefore, possibly passing to a subsequence, that we still denote by (An), we may
assume that there exists a ball Bx0,ρ with ρ > 0, which is contained in every An .
Then the boundary ∂An can be described in the polar form

x − x0 = rn(θ) x ∈ ∂An, θ ∈ SN−1.

Since Bx0,ρ ⊂ An ⊂ Q it is easy to see that the functions rn have to be equi-
Lipschitz continuous, so that by the Ascoli–Arzelà theorem we may assume they
converge uniformly to some function r(θ). This function describes the boundary of
the limit set A by the polar form

x − x0 = r(θ) x ∈ ∂A, θ ∈ SN−1.

Thus we have An → A uniformly; moreover it is easy to see that A ∈ Cm(K , Q),
which achieves the proof.

Theorem 2.4.5 Let J : Cm(K , Q)→ [0,+∞] be a cost functional which is lower
semicontinuous with respect to the uniform convergence; then the optimization prob-
lem

min
{

J (A) : A ∈ Cm(K , Q)
}

admits at least a solution.

Proof The proof is a straightforward consequence of Proposition 2.4.4 and of the
direct methods of the calculus of variations.

As an application of the previous result we present here two examples taken from
[191] where the related optimization problems involve PDE of higher order.

In the first example we consider an elliptic operator L of order 2�, of the form
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Lu =
∑

|α|,|β|=�
(−1)�Dα

(
aα,β(x)D

βu
)
,(2.33)

where the coefficients aα,β are bounded and satisfy the ellipticity condition

c0

∑
|α|=�

ξ2α ≤
∑

|α|,|β|=�
aα,β(x)ξ

αξβ

for every ξ ∈ RN , where c0 is a positive constant. For every A ∈ Cm(K , Q) we de-
note by λ j (A) the j-th eigenvalue of L , counted with its multiplicity, on the Sobolev
space H �

0 (A), and by e j,A a corresponding eigenfunction which satisfies the equation

{
Lu = λ j (A)u in A,

u ∈ H �
0 (A).

(2.34)

It is well known that λ j (A) admits the following variational characterization:

λ j (A) = min
H∈� j

max
{
〈Lu, u〉 : u ∈ H,

∫
A

u2 dx = 1
}

where � j is the class of all linear subspaces of H �
0 (A) of dimension j . Therefore it

is easy to prove that all λ j (A) are monotone decreasing as functions of the domain
A, with respect to the set inclusion. Moreover, in terms of eigenfunctions we also
have

λ j (A) = min
{
〈Lu, u〉 : u ∈ H �

0 (A),
∫

A
u2 dx = 1,∫

A
uei,A dx = 0 for i < j

}
.

(2.35)

By the monotonicity of λ j we have

λ j
(
co(Q)

) ≤ λ j (A) ≤ λ j
(
Bx,ρ

)
where Bx,ρ denotes the largest ball included in A, and by Proposition 2.4.3 iii) we
have ρ ≥ m/HN−1(∂co(Q)). Since ρ is bounded from below, the previous inequal-
ity shows that for every integer j the quantity λ j (A) is bounded when A varies in
Cm(K , Q).

Proposition 2.4.6 For every integer j , the mapping λ j : Cm(K , Q)→ R is contin-
uous for the uniform convergence.

Proof Fix an integer j and take a sequence (An) in Cm(K , Q) converging to A uni-
formly. Up to extracting a subsequence, thanks to Proposition 2.4.3, we may assume
that all An and A contain a ball of radius ρ centered in a point that, without loss
of generality, we may assume to be the origin. Moreover An → A in L1. Then by
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Remark 2.4.2 and by the monotonicity of λ j , for every ε > 0 we have for n large
enough {

λ j (A) ≥ λ j
(

An + B0,ε
) ≥ λ j

(
(1+ cε)An

)
,

λ j (An) ≥ λk
(

A + B0,ε
) ≥ λ j

(
(1+ cε)A

)
,

(2.36)

where the constant c > 0 can be taken independent of n and ε. It is now easy, by
repeating the arguments already seen in Section 1.4, and by using (2.35), to show that
λ j (An)→ λ j (A) and that the corresponding eigenfunctions e j,An → e j,A strongly
in H �

0 (R
N ).

Let us consider now a cost functional of the form

F(A) = �
(
�(A)

)
where �(A) denotes the whole spectrum of the operator L over H �

0 (A). We assume
that the function � is lower semicontinuous, in the sense that

�(�) ≤ liminf
n→+∞�(�n) whenever �n → �,

where the convergence �n → � is defined by

�n → � ⇐⇒ λ j,n → λ j ∀ j = 1, . . . .

In particular, if � depends only on a finite number M of variables, then the lower
semicontinuity above reduces to the usual lower semicontinuity in RM .

Theorem 2.4.7 Let � be lower semicontinuous in the sense above. Then the opti-
mization problem

min
{
�
(
�(A)

)
: A ∈ Cm(K , Q)

}
admits at least a solution.

Proof It is enough to apply the direct methods of the calculus of variations, taking
into account the results previously obtained in Proposition 2.4.4 and in Proposition
2.4.6.

In the second example we consider again an operator of the form (2.33) and cost
functionals

F(A) =
∫

RN
j (x, u A,∇u A, . . . , D�u A) dx

where we denoted by u A the solution of{
Lu = f in A,

u ∈ H �
0 (A),

(2.37)

f being a given function in L2(RN ), or more generally in H−�(RN ).
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Theorem 2.4.8 Assume that j is a nonnegative Borel function such that j (x, ·, . . . , ·)
is lower semicontinuous. Then the optimization problem

min
{

F(A) : A ∈ Cm(K , Q)
}

admits at least a solution.

Proof It is enough to repeat the arguments used in the proof of Theorem 2.4.7,
noticing that, as before, we have u An → u A strongly in H �

0 (R
N ) whenever An → A

uniformly.



3

Optimal Control Problems: A General Scheme

Optimal control problems are minimum problems which describe the behaviour of
systems that can be modified by the action of an operator. Many problems in applied
sciences can be modeled by means of optimal control problems. Two kinds of vari-
ables (or sets of variables) are then involved: one of them describes the state of the
system and cannot be modified directly by the operator, it is called the state vari-
able; the second one, on the contrary, is under the direct control of the operator that
may choose its strategy among a given set of admissible ones, it is called the control
variable.

The operator is allowed to modify the state of the system indirectly, acting di-
rectly on control variables; only these ones may act on the system, through a link
control-state, usually called state equation. Finally, the operator, acting directly on
controls and indirectly on states through the state equation, must achieve a goal usu-
ally written as a minimization of a functional, which depends on the control that has
been chosen as well as on the corresponding state, the so-called cost functional.

Driving a car is a typical example of an optimal control problem: the driver may
only act directly on controls which are in this case the accelerator, the brakes, and
the steering-wheel; the state of the car is on the contrary described by its position and
velocity which, of course, depend on the controls chosen by the driver, but are not
directly controlled by him. The state equations are the usual equations of mechanics
which, to a given choice of acceleration and steering angle, associate the position and
velocity of the car, also taking into account the specifications of the engine (techno-
logical constraints, nonlinear behaviours, . . . ). Finally, the driver wants to achieve a
goal, for instance to minimize the total fuel consumption to run along a given path.
Then we have an optimal control problem, where the driver has to choose the best
driving strategy to minimize the cost functional, which is in this case the total fuel
consumption.

According to what was said above the ingredients of an optimal control problem
are:
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i) a space of states Y ;

ii) a set of controls U ;

iii) a the set A of admissible pairs, that is a subset of pairs (u, y) ∈ U × Y such that
y is linked to u through the state equation;

iv) a cost functional J : U × Y → R.

The optimal control problem then takes the form of a minimization problem written
as

min
{

J (u, y) : (u, y) ∈ A
}
.

We are specially interested in the study of shape optimization problems, where the
control variable runs over classes of domains. For this reason we have to consider
a framework general enough to include cases when the control variable does not
belong to a space with a linear topological structure. On the contrary, taking the
state variable as an element of a space of functions (a Sobolev space, a space of
functions with bounded variation, . . .) is the most studied case in the literature, and
covers several important situations from the applications. Notice that in the list i) –
iv) above we stressed the difference between the space Y and the set U .

The choice of a topology on Y and U is a very important matter when dealing
with the question of existence of solutions to an optimal control problem. This is
related to the use of direct methods of the calculus of variations, which require,
for the problem under consideration, suitable lower semicontinuity and compactness
assumptions.

In several cases of shape optimization problems it is known that an optimal solu-
tion does not exist; therefore minimizing sequences of domains cannot converge to
an admissible domain, in any sense which preserves the lower semicontinuity of the
cost functional. In order to study the asymptotic behaviour of minimizing sequences
we shall endow U with an ad hoc topology, mainly depending on the state equation
considered, and limits of minimizing sequences will be seen as optimal relaxed solu-
tions which then turn out to belong to a larger space. In this chapter we give a rather
general way of constructing this larger space of relaxed controls. Due to the great
generality of our framework, the relaxed controls will be characterized simply as the
elements of a Cauchy completion of a metric space; of course, when dealing with a
more specific optimization problem, a more precise characterization will be needed:
in the rest of these notes we shall see some relevant examples where this can be done.

3.1 A topological framework for general optimization problems

In this section we consider an abstract optimal control problem of the form

min
{

J (u, y) : (u, y) ∈ A
}

(3.1)

where Y is the space of states, U is the set of controls, J : U × Y → R is the
cost functional, and A ⊂ U × Y is the set of admissible pairs, determined in the
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applications by a state equation. We assume that Y is a separable metric space, while
the controls vary in a set U with no topological structure a priori given. As already
remarked in the introduction of Chapter 3 this happens in some quite important situ-
ations like shape optimization problems where the set of controls is given by suitable
classes of admissible domains. To handle this situation it is convenient to write the
set A of admissible pairs in the form

A = {(u, y) ∈ U × Y : y ∈ argmin G(u, ·)}(3.2)

where G : U×Y → R is a given functional and where argmin G(u, ·) denotes the set
of all minimum points of G(u, ·). In the case G(u, ·) is an integral functional of the
calculus of variations whose integrand depends on the control u, its Euler–Lagrange
equation provides the differential state equation. We shall call G the state functional.
It is worth noticing that the set A can be always written in the form (3.2) by choosing

G(u, y) = χA(u, y) =
{

0 if (u, y) ∈ A,

+∞ otherwise.
(3.3)

Therefore, the optimal control problem (3.1) can be written in the form

min
{

J (u, y) : y ∈ argmin G(u, ·)}.(3.4)

For instance, a state equation like{ −�y = f in A,

y ∈ H1
0 (A)

(3.5)

is provided by the state functional

G(A, y) =
∫

RN
|∇ y|2 dx − 〈 f, y〉 + χH1

0 (A)
(y) ,

where the states vary in the Sobolev space H1(RN ) and the control A varies in a
class of domains.

Let us notice that in the applications the space Y of states is usually a separable
reflexive Banach space of functions endowed with its weak topology (or the dual of
a separable Banach space, endowed with its weak* topology), which is not, unless
it is finite dimensional, metrizable. However, thanks to some growth assumptions on
the cost functional J , we may often restrict ourselves to work on a bounded subset
of Y which is, as it is well known, metrizable.

We shall endow U with a topology which is constructed by means of the func-
tional G: the natural topology on U that takes into account the convergence of min-
imizers of G is the one related to the �-convergence of the mappings G(u, ·) and
will then be denoted by γ -convergence. Clearly, as soon as the convergence of con-
trols implies the convergence of the associated states, it would be enough to have
the compactness of minimizing sequences in U and the lower semicontinuity of the
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cost functional J in U × Y to obtain, always thanks to direct methods of the cal-
culus of variation, the existence of an optimal pair (u, y). The lower semicontinuity
of the cost functional J is not a very restrictive assumption: indeed in several cases
J depends only on the state y in a continuous, or even more regular, way. On the
contrary, the compactness of the set U , once endowed with the γ -convergence, is a
rather severe requirement that in many cases does not occur: γ -limits of minimizing
sequences may not belong to U . We will then construct a larger space of relaxed
controls which is γ -compact so that the existence of an optimal relaxed solution will
follow straightforward.

3.2 A quick survey on 0-convergence theory

We recall here briefly the definition and the main properties of �-convergence. We
do not want here to enter into the details of that theory, but only to use it in order
to characterize the relaxed optimal control problem; we refer for all details to the
book by Dal Maso [91] (see also [35]). In what follows Y denotes a separable metric
space, endowed with a distance d .

Definition 3.2.1 Given a sequence (Gn) of functionals from Y into R we say that
(Gn) �-converges to a functional G if for every y ∈ Y we have:

i) ∀yn → y G(y) ≤ liminf
n→+∞Gn(yn);

ii) ∃yn → y G(y) ≥ limsupn→+∞ Gn(yn).

We list here below the main properties of �-convergence.

• Lower semicontinuity. Every �-limit is lower semicontinuous on Y .

• Convergence of minima. If (Gn) �-converges to G and is equi-coercive on Y , that
is for every t ∈ R there exists a compact set Kt ⊂ Y such that

{Gn ≤ t} ⊂ Kt ∀n ∈ N,

then G is coercive too and so it attains its minimum on Y . We have

min G = lim
n→+∞

[
inf Gn

]
.

• Convergence of minimizers. Let (Gn) be an equi-coercive sequence of functionals
on Y which �-converges to a functional G. If yn ∈ argmin Gn is a sequence with
yn → y in Y , then we have y ∈ argmin G. Moreover, if G is not identically +∞
and if yn ∈ argmin Gn , then there exists a subsequence of (yn) which converges to
an element of argmin G. In particular, if G has a unique minimum point y on Y , then
every sequence yn ∈ argmin Gn converges to y in Y .

It is interesting to notice (see Proposition 7.7 in [91]) that a sequence (Gn) of
functionals is equi-coercive in Y if and only if there exists a lower semicontinuous
coercive function � : Y → R such that Gn ≥ � for all n ∈ IN.
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• Compactness. From every sequence (Gn) of functionals on Y it is possible to ex-
tract a subsequence �-converging to a functional G on Y .
•Metrizability. The �-convergence, considered on the family S(Y ) of all lower semi-
continuous functions on Y , does not come from a topology, unless the space Y is
locally compact, which never occurs in the infinite dimensional case. However, if
instead of considering the whole family S(Y ), we take the smaller classes

S�(Y ) =
{
G : Y → R : G l.s.c., G ≥ �}

where � : Y → R is lower semicontinuous and coercive (and nonnegative, for
simplicity), then the �-convergence on S�(Y ) is metrizable. More precisely, it turns
out to be equivalent to the convergence associated to the distance

d�(F,G) =
∞∑

i, j=1

2−i− j
∣∣ arctan

(
Fj (yi )

)− arctan
(
G j (yi )

)∣∣
where (yi ) is a dense sequence in Y and Hj denotes the Moreau–Yosida transforms
of a functional H , defined by:

Hj (y) = inf
{

H(x)+ jd(x, y) : x ∈ Y
}
.

According to the compactness property seen above, the family S�(Y ) endowed with
the distance d� turns out to be a compact metric space.

3.3 The topology of γ-convergence for control variables

We are now in a position to introduce a “natural” topology on the set U of control
variables appearing in the general framework considered in Section 3.1 (see [25] and
[69] for further details).

Definition 3.3.1 We say that un → u in U if the associated state functionals
G(un, ·) �-converge to G(u, ·) in Y . This convergence on U will be called γ -
convergence.

We shall always assume in the following that the state functional G satisfies the
properties below:

• for every u ∈ U the function G(u, ·) is lower semicontinuous in the space Y ;

• G is equi-coercive in the sense that there exists a coercive lower semicontinuous
functional � : Y → R such that

G(u, y) ≥ �(y) ∀u ∈ U, ∀y ∈ Y.

• the mapping �G : U → S�(Y ) defined by �G(u) = G(u, ·) is one-to-one.
Otherwise, we may always reduce the space U to a smaller space which verifies
this property.
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Remark 3.3.2 By the assumptions above we have, in particular, that for every u ∈ U
the set argmin G(u, ·) is nonempty. Moreover, according to the metrizability property
of the �-convergence seen in Section 3.2, the γ -convergence on U is metrizable, and
the mapping �G is an isometry. However, even if S�(Y ) with the �-convergence is
a compact metric space, in general U with the γ -convergence may be not compact.
Indeed, a sequence G(un, ·) of functionals may �-converge to a functional F , but
this limit functional does not need to be of the form G(u, ·) for some u ∈ U . This
is why in many situations the existence of optimizers may fail and it is necessary to
enlarge by relaxation the class of admissible controls U .

3.4 A general definition of relaxed controls

In this section we give the definition of relaxed controls in a rather general frame-
work; the definition is given in the abstract scheme introduced in Section 3.1.

Definition 3.4.1 The class Û is defined as the completion of the metric space U
endowed with the γ -convergence. The elements of Û will be called relaxed controls
and we still continue to denote by γ the convergence on Û .

In order to define the relaxed optimal control problem associated to (3.1), (3.2)
we have to introduce the relaxed cost functional Ĵ as well as the relaxed state func-
tional Ĝ. For every û ∈ Û we set

Ĝ(û, ·) = � lim
u→û

G(u, ·).

In other words, we define the mapping �̂G : Û → Sψ(Y ) as the unique isometry
which extends �G ; more precisely,

�̂G(û) = � lim
n→+∞�G(un),

where (un) is any sequence γ -converging to û. Therefore we have Ĝ : Û × Y → R
defined by

Ĝ(û, ·) = �̂G(û) ∀û ∈ Û

and we have

ûn → û in Û ⇐⇒ � lim
n→+∞ Ĝ(ûn, ·) = Ĝ(û, ·).

Proposition 3.4.2 The metric space Û is compact with respect to the γ -convergence.

Proof Since �̂G is an isometry and Û is complete, �̂G(Û ) is a complete subspace
of the compact space Sψ(Y ), so that �̂G(Û ) is compact. Hence, using again the fact
that �̂G is an isometry, we get that Û is compact too.
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The definition of the relaxed state functional allows us to define the relaxed state
equation, linking a relaxed control û ∈ Û to a state y ∈ Y , which reads now

y ∈ argmin Ĝ(û, ·).
The relaxed cost functional Ĵ is defined in a similar way. Take a pair (û, y) which
verifies the state equation, i.e., such that y ∈ argmin Ĝ(û, ·); then we set

Ĵ (û, y) = inf
{

liminf
n→+∞ J (un, yn) : un → û in Û , yn → y in Y,

yn ∈ argmin G(un, ·)
}
.

Therefore the relaxed optimal control problem can be written in the form

min
{

Ĵ (û, y) : û ∈ Û , y ∈ Y, y ∈ argmin Ĝ(û, ·)}.(3.6)

In several situations the cost functional J depends only on the state y and is continu-
ous on Y ; in this case it is easy to see that Ĵ = J so that the relaxed optimal control
problem has the simpler form

min
{

J (y) : û ∈ Û , y ∈ Y, y ∈ argmin Ĝ(û, ·)}.(3.7)

By the definition of relaxed control problem and by Proposition 3.4.2 we obtain
immediately the following existence result.

Theorem 3.4.3 Under the assumptions above the relaxed problem (3.6) admits at
least a solution (û, y) ∈ Û ×Y . Moreover, the infimum of the original problem given
by (3.1) and (3.2) coincides with the minimum of the relaxed problem (3.6). Finally,
if (un, yn) is a minimizing sequence for the original problem, then there exists a
subsequence converging in Û × Y to a solution (û, y) of the relaxed problem.

Remark 3.4.4 On the one hand the result above gives the existence of an optimal
pair (û, y) for a problem “close” to the original one; on the other hand the solution
û belongs to a larger space and is only characterized as an element of an abstract
topological completion, hence as an equivalence class of Cauchy sequences of the
original control set U with respect to a quite involved distance function. In order to
obtain further properties about the asymptotic behaviour of minimizing sequences it
is then necessary, in concrete cases, to give a more explicit characterization of the
space of relaxed controls Û .

3.5 Optimal control problems governed by ODE

In this section we consider optimal control problems where the control variable
varies in a space of functions. For simplicity we consider the case of problems where
the state and the control variables are functions of one real variable; therefore the
state equation will be an ordinary differential equation.



60 3 Optimal Control Problems: A General Scheme

Example 3.5.1 A car has to go from a point A to a point B (for simplicity assume
along a straight line) in a given time T . Setting

y(t) : the position of the car at the time t ,

u(t) : the acceleration we give to the car at the time t ,
(3.8)

we have the state equation
y′′ = u .

In this problem the position y(t) plays the role of state variable and the acceleration
u(t) is the control variable; in this case we can control the acceleration but not the
speed and the position: they are given indirectly by the state equation y′′ = u. We
can assume further constraints on the control, like |u| ≤ 1 (u = −1 representing the
maximum action of brakes, u = 1 the maximum acceleration).

If we take as a cost functional the total fuel consumption, we have to consider
that this consumption may depend on several variables, as for instance:
• u (how much we push the accelerator),
• y (if we are going up or down on a hill),
• y′ (the higher is the speed the higher is the consumption),
• t (on different hours of the day the consumption may be different).

Then the optimal control problem is given by the minimization of the functional

J (u, y) =
∫ T

0
f (t, y, y′, u) dt

where the function f takes into account the variables above, with conditions

|u| ≤ 1, y′′ = u, y(0) = A, y(T ) = B, y′(0) = 0.

Remark that an optimal solution is given by a pair (u, y).

In the following we want to derive some simple conditions for the existence of a
solution.

Lemma 3.5.2 Assume that for n ∈ N ∪ {∞} the functions gn : [0, T ]× RN → RN

are measurable in t and equi-Lipschitz continuous in s, i.e.,

∃L > 0 : |gn(t, s2)− gn(t, s1)| ≤ L|s2 − s1|
for every s1, s2 ∈ RN , t ∈ [0, T ], n ∈ N ∪ {∞}. Assume further that

|gn(t, 0)| ≤ M

and fix initial data ξn ∈ RN . If for all n ∈ N ∪ {∞} we denote by yn the unique
solution of the differential equation{

y′n = gn(t, yn) in [0, T ],

yn(0) = ξn,
(3.9)
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then the conditions ξn → ξ∞ and

gn(·, s)→ g∞(·, s) weakly in L1 ∀s ∈ RN

imply that yn → y∞ uniformly as n →+∞.

Proof It is convenient to write the differential equations in the integral form

yn(t) = ξn +
∫ t

0 gn
(
τ, yn(τ )

)
dτ,

y∞(t) = ξ∞ +
∫ t

0 g∞
(
τ, y∞(τ )

)
dτ.

(3.10)

Take now piecewise constant functions yε such that ‖yε − y∞‖L∞ < ε. Then we
have

|yn(t)− y∞(t)| ≤ |ξn − ξ∞| +
∣∣∣ ∫ t

0
gn(τ, yn) dτ −

∫ t

0
g∞(τ, y∞) dτ

∣∣∣
≤ |ξn − ξ∞| +

∫ t

0
|gn(τ, yn)− gn(τ, yε)| dτ

+
∣∣∣ ∫ t

0
gn(τ, yε)− g∞(τ, yε) dτ

∣∣∣+ ∫ t

0
|g∞(τ, yε)− g∞(τ, y∞)| dτ

≤ |ξn − ξ∞| +
∫ t

0
L|yn − yε| dτ +

∣∣∣ ∫ t

0
gn(τ, yε)− g∞(τ, yε) dτ

∣∣∣
+LT ‖yε − y∞‖

≤ |ξn − ξ∞| + L
∫ t

0
|yn − y∞| dτ +

∣∣∣ ∫ t

0
gn(τ, yε)− g∞(τ, yε) dτ

∣∣∣+ Cε.

Since yε is piecewise constant we have∣∣∣ ∫ t

0
gn(τ, yε)− g∞(τ, yε) dτ

∣∣∣→ 0 uniformly as n →+∞

so that

|yn(t)− y∞(t)| ≤ L
∫ t

0
|yn(τ )− y∞(τ )| dτ + ω(n, ε)

where ω(n, ε)→ Cε as n →+∞. Applying now Gronwall’s lemma we obtain

|yn(t)− y∞(t)| ≤ ω(n, ε) exp
( ∫ 1

0
L(τ ) dτ

)
.

Thus for a suitable constant C ,

‖yn − y∞‖ ≤ Cω(n, ε)

and, as ε was arbitrary, we get that yn → y∞ uniformly.

Remark 3.5.3 The result of the lemma above holds as well if the constant L depends
on t in an integrable way.
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By using Lemma 3.5.2 we will prove an existence result for optimal control prob-
lems governed by equations of the form

y′ = a(t, y)+ b(t, y)u ,

with a : [0, T ]×RN → RN and b : [0, T ]×RN → RNm measurable in t , Lipschitz
continuous in y, and bounded at y = 0.

Let f (t, s, z) be a Borel function such that

• f ≥ 0;

• f is l.s.c in (s, z);

• f is convex in z.

Proposition 3.5.4 Under the assumptions above, the functional

F : L1([0, T ];Rm)×W 1,1([0, T ];RN )→ [0,+∞]

defined as

F(u, y) =
∫ T

0
f (t, y, u) dt + χ{y′=a(t,y)+b(t,y)u, y(0)=y0}

is sequentially lower semicontinuous with respect to thew−L1×w−W 1,1 topology.

Proof Assume un → u weakly in L1 and yn → y weakly in W 1,1. We can assume
that for n ∈ N,

y′n = a(t, yn)+ b(t, yn)un , yn(0) = y0.

Defining

gn(t, s) = a(t, s)+ b(t, s)un(t),

g∞(t, s) = a(t, s)+ b(t, s)u(t) ,
(3.11)

the assumptions of Lemma 3.5.2 are fulfilled, hence we have

y′ = a(t, y)+ b(t, y)u , y(0) = y0.

Therefore

F(u, y) =
∫ T

0
f (t, y, u) dt

and the lower semicontinuity follows from the general lower semicontinuity result
for integral functionals (see for instance [62]).

It remains to show the coercivity of the functional F . For this we need to assume
that there exist a superlinear function φ and γ ∈ L1 such that

f (t, s, z) ≥ φ(|z|)− γ (t).(3.12)
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Proposition 3.5.5 Under the assumptions above the functional F is coercive with
respect to the w − L1 × w −W 1,1 topology.

Proof Let F(un, yn) ≤ c. By the Dunford–Pettis weak L1 compactness theorem
for a subsequence we have un → u weakly in L1 and

y′n = a(t, yn)+ b(t, yn)un, yn(0) = y0.

It remains to show that yn → y weakly in W 1,1, where y is the solution of

y′ = a(t, y)+ b(t, y)u, y(0) = y = 0.

We have
|y′n| ≤ |a(t, yn)| + |b(t, yn)||un|

≤ |a(t, 0)| + A(t)|yn| + |un|
[|b(t, 0)| + B(t)|yn|

]
where A(t) and B(t) are the Lipschitz constants of a(t, ·) and b(t, ·). By Gronwall’s
lemma it follows that

|yn(t)| ≤
(
|y0| +

∫ T

0
(|a(t, 0)| + |b(t, 0)||un|) dt

)
exp

( ∫ T

0

(
A(t)+ B(t)|un|

)
dt
)
,

which implies that yn are bounded in L∞. From the relation y′n = a(t, yn) +
b(t, yn)un we get that y′n are equi-uniformly integrable. Therefore, by the Dunford–
Pettis theorem again it follows that y′n are weakly compact in L1 and hence yn are
weakly compact in W 1,1.

Remark 3.5.6 Inspecting the proof of Proposition 3.5.5 we see that the growth as-
sumption (3.12) requires that a(t, 0), b(t, 0), A(t), B(t) be bounded functions. If for
p ∈]1,+∞[ we assume the stronger growth condition

f (t, s, z) ≥ α|z|p − γ (t)
with α > 0 and γ ∈ L1(0, T ), it is then enough to require that a(t, 0), b(t, 0), A(t),
B(t) be only in L p′(0, T ). Finally, if we assume that

f (t, s, z) ≥ χ{|z|≤R} − γ (t)
with R > 0 and γ ∈ L1(0, T ), then the proof above still works with the assumption
that a(t, 0), b(t, 0), A(t), B(t) are in L1(0, T ).

As an application of the results above, consider an optimal control problem gov-
erned by an ordinary differential equation (or system), and with integral cost func-
tional, of the form

min
{ ∫ T

0
j (t, y, u)dt : y′ = g(t, y, u), y(0) = y0

}
.(3.13)

Here we have taken



64 3 Optimal Control Problems: A General Scheme

• the space Y of states as the space W 1,1(0, T ;RN ) of all absolutely continuous
functions on (0, T ) with values in RN ;

• the space U of controls as the space L1(0, T ;Rm) of all Lebesgue integrable
functions on (0, T ) with values in Rm ;

• the set A of admissible pairs as the subset of U × Y of all pairs (u, y) which
satisfy the state equation

y′ = g(t, y, u) y(0) = y0;
• the cost functional J as the integral functional

J (u, y) =
∫ T

0
j (t, y, u) dt.

In order to fulfill the conditions of Lemma 3.5.2, of Proposition 3.5.4, and of Propo-
sition 3.5.5 we make the following assumptions on the data.

On the cost integrand j :

A1 the function j : (0, T ) × RN × Rm → [0,+∞] is nonnegative and Borel
measurable (or more generally measurable for the σ -algebra L⊗ BN ⊗ Bm));

A2 the function j (t, ·, ·) is lower semicontinuous on RN × Rm for a. e. t ∈ (0, T );

A3 the function j (t, s, ·) is convex on Rm for a. e. t ∈ (0, T ) and for every s ∈ RN ;

A4 there exist α ∈ L1(0, T ) and θ : R → R, with θ superlinear (that is, θ(r)/r →
+∞ as r →+∞) such that

θ(|z|)− α(t) ≤ j (t, s, z) ∀(t, s, z).

On the function g in the state equation we assume it is of the form

g(t, s, z) = a(t, s)+ b(t, s)z,

where

A5 the function a : (0, T )×RN → RN is measurable in t and continuous in s, and
satisfies

|a(t, s2)− a(t, s1)| ≤ A(t)|s2 − s1| with A ∈ L1(0, T ),

|a(t, 0)| ≤ M(t) with M ∈ L1(0, T );
(3.14)

A6 the function b : (0, T ) × RN → Rm N is measurable in t and continuous in s,
and satisfies

|b(t, s2)− b(t, s1)| ≤ B|s2 − s1| with B ∈ R,

|b(t, 0)| ≤ K with K ∈ R.
(3.15)

The existence result is then the following.
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Theorem 3.5.7 Under assumptions A1–A6 above the optimal control problem (3.13)
admits at least one solution.

Proof In order to apply the direct methods of the calculus of variations, we en-
dow the space U of controls with the weak L1(0, T ;Rm) topology and the space
Y of states with the topology of uniform convergence, and we make the following
remarks.

• The cost functional J is sequentially lower semicontinuous on U × Y ; this follows
from the De Giorgi–Ioffe lower semicontinuity theorem for integral functionals. The
first proof has been given by De Giorgi in an unpublished paper [106]; another inde-
pendent proof was given by Ioffe [143]; for a discussion about the lower semiconti-
nuity of integral functionals we refer to the book by Buttazzo [62].

• The functional J is coercive with respect to the variable u; this is a consequence of
the Dunford–Pettis weak compactness criterion.

• For every u ∈ U the state equation

y′ = a(t, y)+ b(t, y)u, y(0) = y0

has a unique solution y ∈ Y defined on the whole interval [0, T ], thanks to the
Lipschitz assumptions made on the coefficients a(t, ·) and b(t, ·).
• The set A of admissible pairs is sequentially closed in U × Y as it can be easily
verified by writing the state equation in integral form

y(t) = y0 +
∫ t

0

(
a(s, y(s))+ b(s, y(s))u(s)

)
ds.

By the remarks above, it remains only to prove the coercivity of J on A with respect
to y. In other words, if un → u weakly in L1(0, T ;Rm) and

y′n = a(t, yn)+ b(t, yn)un , yn(0) = y0,

we have to prove that (yn), or a subsequence of it, converges uniformly. By Gron-
wall’s lemma we obtain that (yn) is uniformly bounded, so that by the state equations
we obtain

|y′n| ≤ c(t)+ C |un|(3.16)

for suitable c ∈ L1(0, T ) and C > 0. Since (un) is weakly compact in L1(0, T ;Rm),
by the Dunford–Pettis theorem again, it turns out to be equi-absolutely integrable on
(0, T ), that is,

∀ε > 0 ∃δ > 0 : E ⊂ (0, T ), |E | < δ ⇒
∫

E
|un| dt < ε ∀n ∈ N.

Therefore by (3.16), also (y′n) is equi-absolutely integrable on (0, T ), which im-
plies the weak compactness in L1(0, T ;RN ) of (y′n) and hence the compactness in
L∞(0, T ;RN ) of (yn).
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When the conditions of Theorem 3.5.7 are not fulfilled, we do not have, in gen-
eral, the existence of a solution of the optimal control problem (3.13), and in order
to study the asymptotic behaviour of minimizing sequences (un, yn) we have to con-
sider the associated relaxed formulation.

The simplest case is when we do not have to enlarge the class U of controls,
which happens for instance when a coercivity assumption like A4 is fulfilled. In this
case it is enough to take the lower semicontinuous envelope in U×Y of the mapping

(u, y) �→ J (u, y)+ χA(u, y).

In some cases, which often occur in applications to concrete problems, the lower
semicontinuous envelope above can be easily computed in terms of the envelope J
of the cost functional and of the closure A of the state equation. More precisely, the
following result can be proved.

Proposition 3.5.8 Assume that

i) |J (u, y)− J (u, z)| ≤ ω(y, z)�(u) for every u ∈ U and y, z ∈ Y with � locally
bounded in U and

lim
z→y

ω(y, z) = 0;

ii) if (u, y) ∈ A, then for every v close to u there exists yv such that (v, yv) ∈ A
and the mapping v �→ yv is continuous.

Then the relaxed problem associated to

min
{

J (u, y) : (u, y) ∈ A
}

can be written in the form

min
{

J (u, y) : (u, y) ∈ A
}
.

As an example let us consider again an optimal control problem governed by an
ordinary differential equation:

J (u, y) =
∫ T

0
j (t, y, u) dt

A = {(u, y) ∈ U × Y : y′ = a(t, y)+ b(t, y)β(t, u), y(0) = y0
}(3.17)

where the functions a and b satisfy conditions A5 and A6, and β can be nonlinear
and j nonconvex with respect to u. If the integrand j is bounded from below by

|u|p − α(t) ≤ j (t, y, u) with p > 1 and α ∈ L1,

then we may take U = L p(0, T ;Rm) and Y = W 1,1(0, T ;RN ) endowed with their
weak topologies. Introducing the auxiliary variable v = β(t, u) the new control
space is U × V where V is an Lq space, provided

|β(t, u)| ≤ β0(t)+ c|u|p/q with q > 1 and β0 ∈ Lq ,
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so that the problem can be written in an equivalent form with

J̃ (u, v, y) =
∫ T

0

(
j (t, y, u)+ χ{v=β(t,u)}

)
dt,

Ã = {(u, v, y) ∈ U × V × Y : y′ = a(t, y)+ b(t, y)v, y(0) = y0
}
.

(3.18)

In this form, we already know that the set Ã is closed, since the differential equation
is now linear in the control. So it remains to relax the cost J̃ with respect to (u, v).
If we assume the continuity condition on j ,

| j (t, y, u)− j (t, z, u)| ≤ ω(y, z)(α(t)+ |u|p)

is satisfied with α ∈ L1 and ω such that

lim
z→y

ω(y, z) = 0,

then the relaxed form of J̃ is well known and is given by the integral functional

J̃∗∗(u, v, y) =
∫ T

0

(
j (t, y, ξ)+ χ{η=β(t,ξ)}

)∗∗
(u, v) dt,

where the convexification J̃ ∗∗ is intended with respect to the pair (u, v), and in the
integrand with respect to the pair (ξ, η). Finally, eliminating the auxiliary variable v
we obtain the relaxed form of the optimal control problem:

min
{ ∫ T

0
φ(t, y, u, y′) dt : u ∈ L p(0, T ;Rm), y ∈ W 1,1(0, T ;RN ), y(0) = y0

}
,

where the function φ takes into account cost and state equation at one time, and is
defined by

φ(t, y, u, w) = inf
{(

j (t, y, ξ)+ χ{η=β(t,ξ)}
)∗∗

(u, v) : w = a(t, y)+ b(t, y)v
}
.

A case in which the computation can be made explicitly is the following (see Exam-
ple 5.3.7 of [62]):

J (u, y) =
∫ 1

0

(
u2 + 1

u2
+ |y − y0|2 + h(t)u

)
dt,

A = {(u, y) ∈ U × Y : uy′ = 1, 1/c ≤ u ≤ c, y(0) ∈ K
}
.

(3.19)

Here y0(t) and h(t) are two functions in L2(0, 1), c ≥ 1 is a constant, and K is a
closed subset of R. We obtain, after some elementary calculations, that the relaxed
problem is the minimization problem for the functional∫ 1

0

(
u2 + |y′|2 + 2(uy′ − 1)+ |y − y0(t)|2 + h(t)u

)
dt
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with the constraints

1

u
≤ y′ ≤ c + 1

c
− u,

1

c
≤ u ≤ c, y(0) ∈ K .

Consider now the case of a control problem where the control occurs on the
coefficient of a second order state equation. More precisely, given α > 0 take

U = {u ∈ L1(0, 1) : u ≥ α a.e. on (0, 1)
}
,

Y = H1
0 (0, 1) with the strong topology of L2(0, 1)

(3.20)

and consider the optimal control problem

min
{ ∫ 1

0

(
g(x, u)+ φ(x, y)

)
dx : u ∈ U, y ∈ Y, −(uy′)′ = f

}
.(3.21)

Here f ∈ L2(0, 1), and g, φ are Borel functions from (0, 1)× R into R with

B1 φ(x, ·) is continuous on R for a.e. x ∈ (0, 1),
B2 for a suitable function ω(x, t) integrable in x and increasing in t we have

|φ(x, s)| ≤ ω(x, |s|) ∀(x, s) ∈ (0, 1)× R.

Setting for any (u, y) ∈ U × Y ,

J (u, y) =
∫ 1

0

(
g(x, u)+ φ(x, y)

)
dx,

G(u, y) =
∫ 1

0

(
uy′2 − 2 f y

)
dx,

(3.22)

we obtain that problem (3.21) can be written in the form

min
{

J (u, y) : u ∈ U, y ∈ Y, y ∈ argmin G(u, ·)}.
It is well known that

� lim
n→+∞G(un, ·) = G(u, ·) ⇐⇒ 1

un
→ 1

u
weakly* in L∞(0, 1);

therefore, by applying the framework of Section 3.5 we obtain Û = U , Ĝ = G, and

Ĵ (u, y) =
∫ 1

0

(
γ (x, u)+ φ(x, y)

)
dx

where γ (x, s) = β∗∗(x, 1/s)with ∗∗ being the convexification operator (with respect
to the second variable) and

β(x, t) =
{

g(x, 1/t) if t ∈]0, 1/α],

+∞ otherwise.
(3.23)
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For instance, if α < 1 and g(x, s) = |s − 1| we have

γ (x, s) =
{

s − 1 if s ≥ 1,

α(1− s)/s if α ≤ s < 1.
(3.24)

An analogous computation can be done in the case

U =
{

u ∈ L1(0, 1) : u ≥ 0,
∫ 1

0

1

u
dx ≤ c

}
,

where c > 0. In this case, in order to satisfy the coercivity assumption required by
the abstract framework, it is better to consider

Y = BV (0, 1) with the strong topology of L1(0, 1),

G(u, y) =
∫ 1

0

(
uy′2 − 2 f y

)
dx + χ{y(0)=y0, y(1)=y1}(y)+ χ{y′<<dx}(y)

where y′ << dx denotes the constraint that y′ is a measure absolutely continuous
with respect to the Lebesgue measure. Following Buttazzo and Freddi [69] we obtain
that Û coincides with the set of positive measures µ on [0, 1] such that µ([0, 1]) ≤ c
and

Ĝ(µ, y) =
∫

]0,1[

∣∣∣dy′

dµ

∣∣∣2 dµ− 2
∫

]0,1[
f y dx

+|y
+(0)− y0|2
µ({0}) + |y

+(1)− y1|2
µ({1}) + χ{y′<<µ}(y)

where dy′/dµ is the Radon–Nikodym derivative of y′ with respect to µ. It is not
difficult to see that all assumptions required by the abstract framework are fulfilled,
with

ψ(y) = a‖y‖2
BV − b

for suitable positive constants a, b. It remains to compute the functional Ĵ . Assume
for simplicity that g(x, s) = g(s) and that B1 and B2 hold; then we obtain

Ĵ (µ, y) =
∫ 1

0
β∗∗
(
µa(x)

)
dx +

∫
[0,1]

(
β∗∗
)∞
(µs)+

∫ 1

0
φ(x, y) dx

where β(t) = g(1/t), µ = µa · dx + µs is the Lebesgue–Nikodym decomposition
of µ, and

(
β∗∗
)∞ is the recession function of β∗∗. For instance, if g(s) = |s − 1|2,

the relaxed problem has the form

min
{ ∫

{µa≤1}

∣∣∣µa − 1

µa

∣∣∣2 dx +
∫ 1

0
φ(x, y) dx : µ([0, 1]) ≤ c, y ∈ argmin Ĝ(µ, ·)

}
.
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3.6 Examples of relaxed shape optimization problems

In this section we give some applications of the abstract framework for relaxed con-
trols introduced in the previous sections, and we characterize explicitly the set Û of
relaxed controls as well as the form of the relaxed control problems.

Example 3.6.1 The first example deals with a class of shape optimization problems
with Dirichlet conditions on the free boundary, studied by Buttazzo and Dal Maso
(see [64], [65], [66], [67] and references therein), in which the initial set U of controls
is the class of all domains contained in a given open subset D of RN . We stress that
this class has no linear or convex structure, and the usual topologies on families of
domains are not suitable for the problems one would like to consider.

To set the problem more precisely, let D be a bounded open subset of RN (N ≥
2), let f ∈ L2(D) and let j : D × R → R be a Borel function. Consider the shape
optimization problem

min
{ ∫

D
j
(
x, yA(x)

)
dx : A ∈ A(D)

}
(3.25)

where A(D) is the family of all open subsets of D and where for every A ∈ A(D)
we denoted by yA the solution of the Dirichlet problem{−�y = f in A,

y ∈ H1
0 (A)

(3.26)

extended by zero to D \ A. In this way all states y belong to the Sobolev space
H1

0 (D), which will be taken as the space of states. The setting of the optimal control
problem we consider is then:

• the space of states is Y = H1
0 (D) with the strong topology of L2(D);

• the set of controls is U = A(D);
• the cost functional is taken of the integral form

J (A, y) =
∫

D
j
(
x, y(x)

)
dx ;

notice that in this case the cost does not explicitly depend on the control variable A;

• the state functional is

G(A, y) =
∫

D

(|∇ y|2 − 2 f y
)

dx + χH1
0 (A)

(y)(3.27)

which provides, via Euler–Lagrange equation, the state equation (3.26).
The shape optimization problem with Dirichlet conditions on the free boundary

can then be written as an optimal control problem, in the form

min
{

J (y) : y ∈ Y, A ∈ U, y ∈ argmin G(A, ·)}.(3.28)
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It is easy to verify that, as a consequence of Poincaré inequality, the coercivity as-
sumption required in Definition 3.3.1 ii) turns out to be fulfilled, with

�(y) = C1

∫
D
|∇ y|2dx − C2

for suitable positive constants C1 and C2.
In order to identify the relaxed problem associated with (3.28) we have first to

characterize the completion Û of U with respect to the distance induced by the �-
convergence on the functionals G(A, ·). This has been done by Dal Maso and Mosco
in [100], where it is shown that Û coincides with the space M0(D) of all nonnegative
Borel measures, possibly +∞ valued, which vanish on all sets of capacity zero. The
identification of the relaxed state functional Ĝ has also been given and, for every
µ ∈M0(D) and y ∈ H1

0 (D) we have

Ĝ(µ, y) =
∫

D

(|∇ y|2 − 2 f y
)

dx +
∫

D
y2 dµ.

The relation y ∈ argmin Ĝ(µ, ·) can also be written, via the Euler–Lagrange equa-
tion, in the form {−�y + µy = f in D,

y ∈ H1
0 (D)

(3.29)

which has to be intended in the following weak sense: y ∈ H1
0 (D) ∩ L2(D, µ) and∫

D
∇ y∇ϕ dx +

∫
D

yϕ dµ =
∫

D
f ϕ dx ∀ϕ ∈ H1

0 (D) ∩ L2(D, µ).

On the integrand j appearing in the cost functional J we make the following as-
sumptions:

i) j (x, ·) is continuous for a.e. x ∈ D;

ii) for suitable a ∈ L1(D) and b ∈ R we have | j (x, s)| ≤ a(x) + b|s|2 for a.e.
x ∈ D and for every s ∈ R.

In this way the functional J turns out to be continuous in the strong topology of L2,
so that the assumptions of the abstract scheme apply, and the corresponding relaxed
problem can be written in the form

min
{ ∫

D
j
(
x, y(x)

)
dx : µ ∈M0(D), y ∈ H1

0 (D), −�y + µy = f
}
.

Example 3.6.2 The second example we consider is the case of a control problem
where the control occurs on the coefficient of the state equation, which is of partial
differential type. More precisely, we consider a class of optimal control problems
for two-phase conductors which has been studied by Cabib and Dal Maso (see [75],



72 3 Optimal Control Problems: A General Scheme

[76]). As in the case seen in Section 3.5, also here the control occurs on the coeffi-
cients of the state equation which is actually an elliptic partial differential equation.
More precisely, let D be a bounded open subset of RN , let α, β be two real positive
numbers, f ∈ L2(D). We consider the class U of controls as the set of all functions
u : D → R with the property that there exists a Borel subset A ⊂ D such that

u = α1A + β1D\A.

In this way we can identify the class U with the family of all Borel subsets of D. The
space of states will be Y = H1

0 (D) endowed with the strong topology of L2.
Consider the optimal control problem

min
{

J (u, y) : − div
(
u∇ y

) = f in D, y = 0 on ∂D
}
.

The cost functional J is still of the form

J (u, y) =
∫

A
g(x) dx +

∫
D
ϕ(x, y) dx,

where g is a given function in L1(D), and ϕ : D × R → R is a Carathéodory
integrand which satisfies the growth condition

|ϕ(x, z)| ≤ c1(x)+ c2z2 for suitable c1 ∈ L1(D), c2 ≥ 0.

The energy functional G is now given by

G(u, y) =
∫

D

(
u|∇ y|2 − 2 f y

)
dx .

The completion Û of U with respect to the G-convergence of the state equation or,
equivalently, the �-convergence of the functionals G(u, ·) has been characterized by
Lurie and Cherkaev [158], [159] for the two-dimensional case and by Murat and Tar-
tar [169], [189] for the general case. They proved that Û is the space of all symmetric
N × N matrices a(x) = (ai j (x)) whose eigenvalues λ1(x) ≤ λ2(x) ≤ · · · ≤ λN (x)
satisfy for a suitable t ∈ [0, 1] (depending on x) the following N + 2 inequalities:

N∑
i=1

1

λi − α ≤
1

νt − α +
N − 1

µt − α ,
N∑

i=1

1

β − λi
≤ 1

β − νt
+ N − 1

β − µt
,

νt ≤ λi ≤ µt , i = 1, . . . , N ,

where µt and νt respectively denote the arithmetic and the harmonic mean of α and
β, namely

µt = tα + (1− t)β,

νt =
( t

α
+ 1− t

β

)−1
.
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Figure 3.1. The set C in dimension 2.

For instance, when N = 2, then Û consists of all symmetric 2 × 2 matrices a(x)
whose eigenvalues λ1(x), λ2(x) belong, for every x ∈ D, to the following convex
domain C of R2:

C =
{
(λ1, λ2) ∈ [α, β]× [α, β] :

αβ

β + α − λ1
≤ λ2 ≤ α + β − αβ

λ1

}
.

The picture of the set C in dimension 2 is given in Figure 3.1 above, with α = 1 and
β = 2.

The functional Ĝ can be computed and we have

Ĝ(a, y) =
∫

D

[
a(x)Dy Dy − 2 f y

]
dx .

The computation of the functional Ĵ can be found in Cabib [75] where it is shown
that

Ĵ (a, y) =
∫

D

[
ĝ(x, a)+ ϕ(x, y)

]
dx,

with

ĝ(x, a) =

⎧⎪⎪⎨⎪⎪⎩
g(x)

β − µ(a)
β − α if g(x) ≤ 0,

g(x)
β − µ(a)
β − α if g(x) ≥ 0,

(3.30)
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and

µ(a) = max
{
λN , β + (N − 1)β + α

1− β∑N
i=1

(
β − λi

)−1

}
,

µ(a) = α + (N − 1)α + β
1+ α∑N

i=1

(
λi − α

)−1
.



4

Shape Optimization Problems with Dirichlet
Condition on the Free Boundary

In this chapter we discuss shape optimization problems associated to elliptic opera-
tors of Dirichlet–Laplacian type. For simplicity, we concentrate our discussion on the
Laplace operator. Nevertheless, we point out the fact that from the shape optimiza-
tion view point this is the most important case. Further extensions to other operators
are not so difficult. In order to give the reader a hint on how to deal with nonlinear
problems, we discuss in Sections 4.8 and 4.9 the shape stability of the solution of
a partial differential equation associated to the p-Laplace operator (with Dirichlet
boundary conditions). Throughout all the chapter we assume that the dimension N is
at least 2; in fact, in the one-dimensional case most of the results either are trivially
true, or fail.

4.1 A short survey on capacities

Throughout the next chapters we shall often use the notion of Sobolev capacity of a
subset E of RN , defined by

cap(E) = inf
{∫

RN
|∇u|2 + u2 dx : u ∈ UE

}
,

where UE is the set of all functions u of the Sobolev space H1(RN ) such that u ≥ 1
almost everywhere in a neighborhood of E .

Sometimes it is more convenient to work with a local capacity. Let D be a
bounded open set. The capacity of a subset E in D is

cap(E, D) = inf
{∫

D
|∇u|2 dx : u ∈ UE

}
,

where UE is the set of all functions u of the Sobolev space H1
0 (D) such that u ≥ 1

almost everywhere in a neighborhood of E . Since the two capacities are “locally
equivalent”, there is no important difference for many of our purposes. Neverthe-
less, in order to avoid any ambiguity, in all definitions given below we consider the
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first one. The second one is used for precise estimates of the oscillations of some
harmonic functions.

If a property P(x) holds for all x ∈ E except for the elements of a set Z ⊆ E
with cap(Z) = 0, we say that P(x) holds quasi-everywhere on E (shortly q.e. on
E). The expression almost everywhere (shortly a.e.) refers, as usual, to the Lebesgue
measure.

A subset A of RN is said to be quasi-open (resp. quasi-closed) if for every ε > 0
there exists an open (resp. closed) subset Aε of Rn , such that cap(Aε�A) < ε, where
� denotes the symmetric difference of sets. The class of all quasi-open subsets of D
will be denoted by A. In fact, in the definition of a quasi-open set we can additionally
require that A ⊆ Aε.

A function f : D → R is said to be quasi-continuous (resp. quasi-lower semi-
continuous) if for every ε > 0 there exists a continuous (resp. lower semicontinuous)
function fε : D → R such that cap({ f 	= fε}) < ε, where { f 	= fε} = {x ∈ D :
f (x) 	= fε(x)}. It is well known (see, e.g., Ziemer [196]) that every function u of
the Sobolev space H1(D) has a quasi-continuous representative, which is uniquely
defined up to a set of capacity zero. We shall always identify the function u with
its quasi-continuous representative, so that a pointwise condition can be imposed on
u(x) for quasi-every x ∈ D. Notice that with this convention we have

cap(E, D) = min
{∫

D
|∇u|2dx : u ∈ H1

0 (D), u ≥ 1 q.e. on E
}

for every subset E of D.
We recall the following theorems from [3].

Theorem 4.1.1 Let u ∈ H1(RN ). Then for q.e. x ∈ RN ,

lim
ε→0

∫
Bx,ε

u(y)dy

|Bx,ε| = ũ(x),

where ũ is a quasi-continuous representative of u.

Theorem 4.1.2 Every strongly convergent sequence in H1(RN ) has a subsequence
converging q.e. in RN .

For every A ∈ A we denote by H1
0 (A) the space of all functions u ∈ H1

0 (D) such
that u = 0 q.e. on D \ A, with the Hilbert space structure inherited from H1

0 (D).
Note that H1

0 (A) is a closed subspace of H1
0 (D) as a consequence of well-known

properties of quasi-continuous representatives of Sobolev functions (see, e.g., Ziemer
[196]). If A is open, the previous definition of H1

0 (A) is equivalent to the usual one
(see Adams–Hedberg [3]). Indeed, we recall the following result.

Theorem 4.1.3 Let A ⊆ RN be an open set. A function u ∈ H1(RN ) belongs to
H1

0 (A) if and only if u = 0 q.e. on Ac (here u is supposed to be quasi-continuous).
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In the statement above, the assertion u belongs to H1
0 (A) has to be understood in the

sense that u is the strong limit in H1(RN ) of a sequence of C∞c (RN ) functions with
support in A.

Moreover, we have the following result (see [45]).

Lemma 4.1.4 If C1, C2 are two quasi-open sets with cap(C1 ∩ C2) = 0 and u ∈
H1

0 (C1 ∪ C2), then u|C1 ∈ H1
0 (C1) and u|C2 ∈ H1

0 (C2).

The fine topology on D is the coarsest topology making all super-harmonic func-
tions continuous. The relation between quasi-open sets and the fine topology is stud-
ied in [3], [126], [145]. We recall the following theorem from [145].

Theorem 4.1.5 Suppose A ⊆ RN . Then the following assertions are equivalent:

i) A is quasi-open;

ii) A is the union of a finely open set and a set of zero capacity;

iii) A = {u > 0} for some nonnegative quasi-continuous function u ∈ H1(RN ).

Since the family of quasi-open sets of RN is not a topology (only countable
unions of quasi-open sets are quasi-open) when dealing with arbitrary unions of
quasi-open sets, sometimes it is more interesting to work with the finely open sets
given by the previous theorem at point ii).

To finish, we also recall the following result.

Theorem 4.1.6 Suppose A is a quasi-open subset of RN and u is a function on A.
The following assertions are equivalent:

i) u is quasi-l.s.c.;

ii) the sets {u > c} are quasi-open for all c ∈ R;

iii) u is finely l.s.c. up to a set of zero capacity.

Remark 4.1.7 All the definitions and results presented in this section have natural
extension to the Sobolev spaces W 1,p

0 (�) with 1 < p < +∞. We refer to [141]
for a review of the main definitions and properties of the p-capacity. From the shape
optimization point of view, the most interesting case is when p ∈ (1, N ], since
for p > N the p-capacity of a point is strictly positive and every W 1,p-function
has a continuous representative. For this reason, a property which holds p-quasi-
everywhere, with p > N , holds in fact everywhere, and this makes trivial several
results concerning shape optimization problems.
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4.2 Nonexistence of optimal solutions

In this section we give an explicit example where the existence of an optimal domain
does not occur (see also Chapter 3). The shape optimization problem we consider is
with Dirichlet conditions on the free boundary, of the form

min
{

J (u A) : −�u A = f in A, u A ∈ H1
0 (A)

}
.(4.1)

Here the admissible domains A vary in the class of all open subsets of a given
bounded open subset D of RN , f ∈ L2(D) is fixed, and the solutions u A are consid-
ered extended by zero on D \ A.

The cost functional we consider is the L2(D) distance from a desired state u(x),

J (u) =
∫

D
|u − u|2 dx .(4.2)

In the thermostatic model the optimization problem (4.1) consists in finding an opti-
mal distribution, inside D, of the Dirichlet region D \ A in order to achieve a temper-
ature which is as close as possible to the desired temperature u, once the heat sources
f are prescribed.

For simplicity, we consider a uniformly distributed heat source, that is we take
f ≡ 1, and we take the desired temperature u constantly equal to c > 0. Therefore
problem (4.1) becomes

min
{ ∫

D
|u A − c|2 dx : −�u A = 1 in A, u A ∈ H1

0 (A)
}
.(4.3)

We will actually prove that for small values of the constant c no regular domain A can
solve problem (4.3) above; the proof of nonexistence of any domain is slightly more
delicate and requires additional tools like the capacitary form of necessary conditions
of optimality (see for instance [64], [65], [82]).

Proposition 4.2.1 If c is small enough, then no smooth domain A can solve the
optimization problem (4.3).

Proof Assume by contradiction that a regular domain A solves the optimization
problem (4.3). Let us also assume first that A does not coincide with the whole set
D, so that we can take a point x0 in D which does not belong to the closure A and
a small ball Bε of radius ε, centered at x0 and disjoint form A. If u A denotes the
solution of {−�u = 1 in A,

u ∈ H1
0 (A),

(4.4)

then the solution u A∪Bε , corresponding to the admissible choice A∪Bε, can be easily
identified, and we find
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u A∪Bε (x) =

⎧⎪⎨⎪⎩
u A(x) if x ∈ A,

(ε2 − |x − x0|2)/2N if x ∈ Bε,

0 otherwise.

(4.5)

Therefore, we obtain

J (u A) =
∫

A
|u A − c|2 dx +

∫
Bε

c2 dx +
∫

D\(A∪Bε)
c2 dx,

J (u A∪Bε ) =
∫

A
|u A − c|2 dx +

∫
Bε

∣∣∣ε2 − |x − x0|2
2N

− c
∣∣∣2 dx +

∫
D\(A∪Bε)

c2 dx .

Comparing the cost J (u A) to the cost J (u A∪Bε ) and using the minimality of A then
gives

c2 meas(Bε) ≤
∫

Bε

∣∣∣ε2 − |x − x0|2
2N

− c
∣∣∣2 dx

= Nε−N meas(Bε)
∫ ε

0

∣∣∣ε2 − r2

2N
− c
∣∣∣2r N−1 dr

= c2 meas(Bε)+ meas(B1)

4N

∫ ε

0
(ε2 − r2)(ε2 − r2 − 4Nc)r N−1 dr

which, for a fixed c > 0, turns out to be false if ε is small enough.
Thus all smooth domains A 	= D are ruled out by the argument above. We can

now exclude also the case A = D if c is small, by comparing for instance the full
domain D to the empty set. This gives, taking into account that u∅ ≡ 0,

J (u D) =
∫

D
|u D − c|2 dx,

J (u∅) =
∫

D
c2 dx

(4.6)

so that we have J (u∅) < J (u D) if c is sufficiently small. Hence all smooth subdo-
mains of D are excluded, and the proof is complete.

Example 4.2.2 If we take into account the identification of the class of relaxed do-
mains seen in Section 3.6, then we may produce, rather simply, other examples of
nonexistence of optimal domains. Take indeed a smooth function f in (4.1) such that
f (x) > 0 in D and let w be the solution of the problem{−�w = f in D,

w ∈ H1
0 (D).

(4.7)

It is well known, from the maximum principle, that w(x) > 0 in D. Take now the
desired state u(x) = w(x)/2 and the cost density j (x, s) = |s − u(x)|2 like in (4.2).
Then the optimization problem
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min
{ ∫

D
|u A − u|2 dx : −�u A = f in A, u A ∈ H1

0 (A)
}

admits the relaxed formulation

min
{ ∫

D
|uµ − u|2 dx : −�uµ + uµ = f in D, uµ ∈ H1

0 (D)
}
,

where the measure µ varies now in the class of relaxed controls seen in Section 3.6.
It is easy to see that the relaxed problem attains its minimum value 0 at the measure

µ = ( f/w) · dx

which corresponds to the solution uµ = w/2 of the relaxed state equation{−�uµ + uµ = f in D,

uµ ∈ H1
0 (D).

(4.8)

On the other hand, since u > 0 in D, it is clear that there are no domains A 	= D
such that u A = u in D. The case A = D has also to be excluded, because u D = w >

w/2 = u.
The assumption above that f is smooth can be weakened by simply requiring

that f (x) > 0 for a.e. x ∈ D.

4.3 The relaxed form of a Dirichlet problem

As already seen in Section 3.6 the relaxed form of a shape optimization problem
with Dirichlet conditions on the free boundary involves relaxed controls which are
measures. In this section we give more details about this topic; the reader may find a
complete discussion in [65].

We know that the definition of relaxed controls only depends on the state equa-
tion, that we take for simplicity of the form

−�u = f in A, u ∈ H1
0 (A).

Here the control variable A runs in the class of open subsets of a given bounded
subset D of RN and f is a given function in L2(D).

As already stated in Section 3.6, in order to discuss the relaxation of Dirichlet
problems we denote by M0(D) the set of all nonnegative Borel measures µ on D,
possibly +∞ valued, such that

i) µ(B) = 0 for every Borel set B ⊆ D with cap(B) = 0,

ii) µ(B) = inf{µ(U ) : U quasi-open, B ⊆ U } for every Borel set B ⊆ D.

We stress the fact that the measures µ ∈ M0(D) do not need to be finite, and may
take the value +∞ even on large parts of D.
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For every measure µ ∈ M0(D) we denote by Aµ the “set of finiteness” of µ;
more precisely Aµ is defined as the union of all finely open subsets A of D such that
µ(A) < +∞; Aµ is called the regular set of the measure µ. By its definition, the set
Aµ is finely open, hence quasi-open. We also denote by Sµ = D \ Aµ the singular
set of µ.

For example, if N − 2 < α ≤ N the α-dimensional Hausdorff measure Hα

belongs to M0(D) (and consequently every µ is absolutely continuous with respect
to Hα as well). In fact every Borel set with capacity zero has a Hausdorff dimension
which is less than or equal to N−2. Another example of measure of the class M0(D)
is, for every S ⊆ D, the measure∞S defined by

∞S(B) =
{

0 if cap(B ∩ S) = 0,

+∞ otherwise.
(4.9)

In order to write correctly the relaxed form of the state equation we introduce the
space Xµ(D) as the vector space of all functions u ∈ H1

0 (D) such that
∫

D u2 dµ <
∞. Note that, since µ vanishes on all sets with capacity zero and since Sobolev
functions are defined up to sets of capacity zero, the definition of Xµ(D) is well
posed. In other words we may think of Xµ(D) as H1

0 (D) ∩ L2(D, µ); moreover we
can endow the space Xµ(D) with the norm

‖u‖Xµ(D) =
( ∫

D
|∇u|2 dx +

∫
D

u2 dµ
)1/2

which comes from the scalar product

(u, v)Xµ(D) =
∫

D
∇u∇v dx +

∫
D

uv dµ.

It is possible to show (see [65]) that with the scalar product above the space Xµ(D)
becomes a Hilbert space.

Since Xµ(D) can be embedded into H1
0 (D) by the identity mapping i(u) = u,

the dual space H−1(D) of H1
0 (D) can be considered as a subspace of the dual space

X ′µ(D). We then write for f ∈ H−1(D),

〈 f, v〉X ′µ(D) = 〈 f, v〉H−1(D) ∀v ∈ Xµ(D)

and so, when f ∈ L2(D),

〈 f, v〉X ′µ(D) =
∫

D
f v dx ∀v ∈ Xµ(D).

Example 4.3.1 Take µ = a(x)HN where a ∈ L p(D) and{
N/2 ≤ p ≤ +∞ if N ≥ 3,

1 < p ≤ +∞ if N = 2.
(4.10)

Then, by the Sobolev embedding theorem and Hölder inequality, we have that
Xµ(D) = H1

0 (A) with equivalent norms.
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Example 4.3.2 Let A be a finely open subset of D and let S = D \ A; take µ = ∞S

as defined in (4.9). Then, by the Poincaré inequality, we have that Xµ(D) = H1
0 (A)

with equivalent norms. The same conclusion holds if µ = ∞S + a(x)HN where
a ∈ L p(D) with p satisfying the conditions of the previous example.

Consider now a measure µ ∈M0(D). By the Riesz representation theorem, for
every f ∈ X ′µ(D) there exists a unique u ∈ Xµ(D) such that

(u, v)Xµ(D) = 〈 f, v〉X ′µ(D) ∀v ∈ Xµ(D).(4.11)

By the definition of scalar product in Xµ(D) this turns out to be equivalent to∫
D
∇u∇v dx +

∫
D

uv dµ = 〈 f, v〉X ′µ(D) ∀v ∈ Xµ(D)(4.12)

that we simply write in the form

u ∈ Xµ(D), −�u + µu = f in X ′µ(D).

This is the relaxed state equation of the optimal control problem we shall consider.
In other words, the resolvent operator Rµ : X ′µ(D) → Xµ(D) which associates to
every f ∈ X ′µ(D) the unique solution u of (4.12) is well defined. Moreover it is easy
to see that the operator Rµ is linear and continuous from X ′µ(D) onto Xµ(D), it is
symmetric, that is

〈g, Rµ( f )〉X ′µ(D) = 〈 f, Rµ(g)〉X ′µ(D) ∀ f, g ∈ X ′µ(D),

and there exists a constant c, which depends only on D, such that

‖Rµ( f )‖H1(D) ≤ c‖ f ‖H−1(D) ∀ f ∈ H−1(D).

Example 4.3.3 If we take µ = a(x)HN with a ∈ L p(D) and p satisfying the
assumption of Example 4.3.1, and f ∈ H−1(D), then, according to what we saw in
Example 4.3.1, the relaxed state equation simply becomes

u ∈ H1
0 (D), −�u + au = f in H−1(D).

Notice that in this case we have au ∈ H−1(D).

Example 4.3.4 If we take µ = ∞D\A with A an open subset of D, and f ∈
H−1(D), then, according to what we saw in Example 4.3.2, the relaxed state equa-
tion simply becomes

u ∈ H1
0 (A), −�u = f A in H−1(A),

where the restriction f A is defined by

〈 f A, v〉H−1(A) = 〈 f, v〉H−1(D) ∀v ∈ H1
0 (A).
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Example 4.3.5 If we take µ = ∞D\A + a(x)HN with a and A as in the examples
above, then the relaxed state equation takes the form

u ∈ H1
0 (A), −�u + au = f A in H−1(A).

In Section 3.6 we have already stated the fact that the class M0(D) is the
class of relaxed controls obtained through the abstract relaxation procedure intro-
duced in Section 3.5. In particular, M0(D) can be endowed with the topology of γ -
convergence (see Definition 3.3.1 in Chapter 3), which can be also defined through
the resolvent operators.

Definition 4.3.6 We say that a sequence (µn) of measures in M0(D) γ -converges
to a measure µ ∈ M0(D) if and only if

Rµn ( f )→ Rµ( f ) weakly in H1
0 (D) ∀ f ∈ H−1(D).

The following compactness property follows from the abstract scheme intro-
duced in Section 3.5 and the density follows from [100].

Proposition 4.3.7 The space M0(D), endowed with the topology of γ -convergence,
is a compact metric space. Moreover, the class of measures of the form ∞D\A, with
A an open (and smooth) subset of D, is dense in M0(D).

Remark 4.3.8 It is easy to see that also the class of measures of the form a(x)HN ,
where a is a nonnegative and smooth function in D, is dense in M0(D).

Example 4.3.9 An explicit constructive way to approximate every Radon measure
µ of M0(D) by a sequence of measures of the form∞D\An is given in [99].

In the sequel we show (without proofs) how the relaxed form can be found in
a direct way. For this approach we refer to [102]. We also refer the reader to the
classical example of Cioranescu and Murat [84] which is briefly presented below.

Let f ∈ L2(D) and let (An) be a sequence of quasi-open subsets of the bounded
design region D. We denote by un the solution of the following equation on An :{−�un = f in An,

un ∈ H1
0 (An).

(4.13)

Suppose thatwn is the solution on An of the same equation, but for the right hand
side f ≡ 1. Extracting a subsequence if necessary, we may suppose that un⇀u and
wn⇀w weakly in H1

0 (D).
Let ϕ ∈ C∞0 (D). Taking as a test function wnϕ for (4.13) on An we have the

following sequence of equalities:
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∫
D

fwnϕdx = ∫D ∇un∇(wnϕ)dx

=
∫

D
∇un∇ϕwndx +

∫
D
∇un∇wnϕdx

=
∫

D
∇un∇ϕwndx −

∫
D

un∇wn∇ϕdx − 〈�wn, ϕun〉H−1(D)×H1
0 (D)

=
∫

D
∇un∇ϕwndx −

∫
D

un∇wn∇ϕdx +
∫

D
unϕdx .

Letting n →∞ we get∫
D

f ϕwdx =
∫

D
∇u∇ϕwdx −

∫
D

u∇w∇ϕdx +
∫

D
uϕdx .

Since

−
∫

D
u∇w∇ϕdx =

∫
D
∇u∇wϕdx + 〈�w, uϕ〉H−1(D)×H1

0 (D)
,

we formally write∫
D
∇u∇(ϕw)dx +

∫
D

uϕwdµ =
∫

D
f ϕwdx,(4.14)

where µ is the Borel measure defined by

µ(B) =
⎧⎨⎩
+∞ if cap(B ∩ {w = 0}) > 0,∫

B

1

w
dν if cap(B ∩ {w = 0}) = 0.

(4.15)

Here ν = �w + 1 ≥ 0 in D′(D) is a nonnegative Radon measure belonging to
H−1(D).

This formal computation needs several rigorous proofs for which we refer the
reader to [102]. We recall here the following facts:

i) u vanishes where w vanishes and u ∈ H1
0 (D) ∩ L2(D, µ);

ii) the set {ϕw : ϕ ∈ C∞0 (D)} is dense in H1
0 (D) ∩ L2(D, µ);

iii) w ∈ K := {w ∈ H1
0 (D) : w ≥ 0,−�w ≤ 1 in D};

iv) there exists a one to one mapping between K and M0(D) given by w �→ µ

where µ is defined by (4.15);

v) for every w ∈ K and every ε > 0, there exists an open set A ⊆ D such that
‖w − wA‖L2(D) ≤ ε.
Assertions i) and ii) give full sense to equation (4.14). Assertion v) proves that

the family of open sets is dense in the family of relaxed domains which are identified
with measures of M0(D).
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Remark 4.3.10 Note that for the γ -convergence of a sequence of measures, Def-
inition 4.3.6 required the convergence of the resolvent operators for every f ∈
H−1(D). In fact, it is enough to have it only for f ≡ 1 (see [102]), and this im-
plies the convergence for every f ∈ H−1(D). We will prove this fact for the special
case of open sets in Proposition 4.5.3.

Remark 4.3.11 The same construction of relaxed domains can be performed for the
p-Laplacian in W 1,p

0 (D) for 1 < p ≤ N (see [102]). Given f ∈ Lq(D) and a
sequence (An) of p-quasi-open subsets of D we denote by un the solution of the
following equation on An : {−�pun = f in An,

un ∈ W 1,p
0 (An),

(4.16)

which has to be understood in the sense

∀v ∈ W 1,p
0 (An)

∫
An

|∇un|p−2∇un∇vdx =
∫

An

f vdx .

There exists a subsequence (still denoted by the same indices) of (An)n such that for
every f ∈ Lq(D), the sequence (un) weakly converges in W 1,p

0 (D) to the solution
of the equation {−�pu + µ|u|p−2u = f,

u ∈ W 1,p
0 (D) ∩ L p

µ(D),
(4.17)

µ being the Radon measure defined by

µ(A) =

⎧⎪⎨⎪⎩
+∞ if capp(A ∩ {w = 0}) > 0,∫

A

dν

w p−1
if capp(A ∩ {w = 0}) = 0.

(4.18)

Here w is the weak limit in W 1,p
0 (D) of the solutions of (4.16) with f = 1 and

ν = 1+�pw.

Example 4.3.12 (Cioranescu and Murat) In this example, we construct a sequence
of open sets which are γ -convergent to an element of M0(D) which is not a quasi-
open set. Let D be an open set contained in the unit square of R2, S =]0, 1[×]0, 1[.

We consider, for n large enough, the sequence of sets

Cn =
n⋃

i, j=0

B(i/n, j/n),rn , An = D \ Cn,

where rn = e−cn2
, c > 0 being a fixed positive constant. Let us denote by un the

solution of (4.13) on An . For a subsequence, still denoted by the same indices, we
can suppose that un⇀u weakly in H1

0 (S).
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Instead of working with the functions wn used for finding the general form of a
relaxed problem, in this particular case it is more convenient to introduce the follow-
ing functions zn ∈ H1(S):

zn =

⎧⎪⎪⎨⎪⎪⎩
0 on Cn,

ln
√
(x − i/n)2 + (y − j/n)2 + cn2

cn2 − ln(2n)
on B(i/n, j/n),1/2n \ Cn,

1 on S \⋃n
i, j=0 B(i/n, j/n),1/2n .

We notice the following facts:

• 0 ≤ zn ≤ 1.

• ∇zn
L2

⇀ 0 as n →∞, hence zn converges weakly in H1(S) to a constant function.
Computing the limit of

∫
S zndx we find that this constant is equal to 1.

Let ϕ ∈ C∞0 (D). Then znϕ ∈ H1
0 (An), thus we can take znϕ as a test function

for equation (4.13) on An :∫
D
∇un∇znϕdx +

∫
D
∇un∇ϕzndx =

∫
D

f ϕzndx .

The second and third terms of this equality converge to
∫

D ∇u∇ϕdx and
∫

D f ϕdx ,
respectively. For the first term, the Green formula gives∫

D
∇un∇znϕdx =

n∑
i, j=0

∫
∂B(i/n, j/n),1/2n

un
∂zn

∂n
ϕdσ −

∫
D

un∇zn∇ϕdx .

The boundary term on ∂B(i/n, j/n),rn does not appear since un vanishes on it. The last
term of this identity converges to 0 when n →∞.

We compute now the boundary integral. We have

n∑
i, j=0

∫
∂B(i/n, j/n),1/2n

un
∂zn

∂n
ϕdσ =

n∑
i, j=0

∫
∂B(i/n, j/n),1/2n

2n

cn2 − ln(2n)
unϕdσ

= 2n2

cn2 − ln(2n)

n∑
i, j=0

∫
∂B(i/n, j/n),1/2n

1

n
unϕdσ.

Let us denote by µn ∈ H−1(S) the distribution defined by

〈µn, ψ〉H−1(S)×H1
0 (S)

=
n∑

i, j=0

∫
∂B(i/n, j/n),1/2n

1

n
ψdσ.

We prove that µn converges strongly in H−1(S) to πdx . Indeed, we introduce the
functions vn ∈ H1(S) defined by
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�vn = 4 in

⋃
B(i/n, j/n),1/2n,

vn = 0 on S \⋃ B(i/n, j/n),1/2n .

Therefore
∂vn

∂n
= 1

n
on
⋃

∂B(i/n, j/n),1/2n .

We notice that vn−→0 strongly in H1(S), therefore �vn−→0 strongly in
H−1(S). But,

〈−�vn, ψ〉H−1(S)×H1
0 (S)

=
n∑

i, j=0

∫
B(i/n, j/n),1/2n

∇vn∇ψdx

=
n∑

i, j=0

∫
∂B(i/n, j/n),1/2n

1

n
ψdσ −

n∑
i, j=0

∫
B(i/n, j/n),1/2n

4ψdx .

Passing to the limit as n →∞ and using the fact that 1⋃ B(i/n, j/n),1/2n
⇀π

4 1S weakly

in L2 we get that

µn
H−1(S)−→ πdx .

Consequently, the equation satisfied by u ∈ H1
0 (S) is

∀ϕ ∈ C∞0 (D)
∫

D
∇u∇ϕdx + 2π

c

∫
D

uϕdx =
∫

D
f ϕdx,

that is

−�u + 2π

c
u = f.

The following results will be extensively used throughout the next chapters. For
every quasi-open set A, we denote by wA the solution of (4.13) for f = 1.

Lemma 4.3.13 Let (An) be a sequence of quasi-open subsets of D and let w ∈
H1

0 (D) be a function such that wAn ⇀ w weakly in H1
0 (D). Let un ∈ H1

0 (D)
be such that un = 0 q.e. on D \ An and suppose that un ⇀ u in H1

0 (D). Then
u = 0 q.e. on {w = 0}.

Remark 4.3.14 A proof of this result, involving �-convergence tools, can be found
in [66]. Let us sketch here the idea of the proof.

Let fn = −�un ∈ H−1(D). Then fn⇀ f := −�u weakly in H−1(D). Con-
sequently, if vn ∈ H1

0 (An) satisfies in H1
0 (An) the equation −�vn = f , then

un − vn ⇀ 0 weakly in H1
0 (D), hence vn ⇀ u weakly in H1

0 (D). For every ε > 0,
we consider fε ∈ L∞(D) such that | fε − f |H−1(D) ≤ ε. If we denote by vεn the
solution in H1

0 (An) of −�vεn = fε, then we get from the maximum principle
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0 ≤ |vεn| ≤ | fε|∞wAn .

Consequently, any weak limit of vεn will vanish quasi-everywhere on {w = 0}. By a
diagonal procedure, making ε→ 0 we get that u ∈ H1

0 ({w > 0}).
The nonlinear version of this lemma also holds true. A proof can be found in

[102].

Lemma 4.3.15 Let there be given a sequence of quasi-open sets (An) and another
quasi-open set A such that wAn⇀w weakly in H1

0 (D) and w ∈ H1
0 (A). There exists

a subsequence (still denoted using the same indices) and a sequence of open sets
Gn ⊆ D with An ⊆ Gn and Gn γ -converges to A.

Proof Following [102] we have w ≤ wA. For each ε > 0 we define the quasi-open
set Aε = {wA > ε}. For a subsequence, still denoted by the same indices, we can
suppose that

wAn∪Aε
H1

0 (D)
⇀ wε

and by the comparison principle we have that wε ≥ wAε . But wε ∈ H1
0 (A). Indeed,

defining vε = 1 − 1
ε

min{wA, ε} we get 0 ≤ vε ≤ 1 and vε = 0 on Aε, vε = 1 on
D \ A. Taking un = min{vε, wAn∪Aε } we get un = 0 on Aε ∪ (D \ (An ∪ Aε)), and
in particular on D \ An . Moreover un⇀min{vε, wε} weakly in H1

0 (D) and hence
min{vε, wε} vanishes q.e. on {w = 0}. Since vε = 1 on D \ A we get that wε = 0
q.e. on D \ A.

Using [102, Theorem 5.1], from the fact that −�wAn∪Aε ≤ 1 in D we get
−�wε ≤ 1 and hence wε ≤ wA. Finally wAε ≤ wε ≤ wA, and by a diagonal
extraction procedure we get that

wAn∪Aεn
H1

0 (D)
⇀ wA.

Remark 4.3.16 The nonlinear version of this lemma is also true. We refer to [42]
for the proof.

4.4 Necessary conditions of optimality

In this section we consider the shape optimization problem

min
{ ∫

D
j (x, u A) dx : A open subset of D

}
(4.19)

where we denote by u A the unique solution of the Dirichlet problem

−�u = f in A, u ∈ H1
0 (A).
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Here D is a bounded open subset of RN (N ≥ 2), f ∈ L2(D), and the integrand
j (x, s) is supposed to be a Carathéodory function such that

| j (x, s)| ≤ a(x)+ c|s|2(4.20)

for suitable a ∈ L1(D) and c ∈ R.
As seen in the Sections 3.5, 3.6, 4.3 the relaxed form of the shape optimization

problem above involves measures of M0(D) as relaxed controls, and takes the form

min
{ ∫

D
j (x, uµ) dx : µ ∈M0(D)

}
(4.21)

where we denoted by uµ the unique solution of the relaxed Dirichlet problem

u ∈ Xµ(D), −�u + µu = f in X ′µ(D).

Remark 4.4.1 By using the Sobolev embedding theorem, it is easy to see that it is
possible to replace the growth condition (4.20) by the weaker one

| j (x, s)| ≤ a(x)+ c|s|p(4.22)

with a ∈ L1(D), c ∈ R, and p < 2N/(N − 2).

We have already seen examples which show that the original problem (4.19) may
have no solution; on the other hand, the relaxed optimization problem (4.21) always
admits a solution, as shown in the abstract scheme of Section 3.5. Our goal is now
to obtain some necessary conditions of optimality for the solutions µ of the relaxed
optimization problem (4.21). They will be obtained by evaluating the cost functional
on a family µε of perturbations of µ and by computing the limit

lim
ε→0+

J (uµε )− J (uµ)

ε
.

Some numerical computations for the relaxed solution can be found in [121] and
[122].

In what follows we assume for simplicity that the function j (x, ·) is continuously
differentiable and that its differential verifies the growth condition

| js(x, s)| ≤ a1(x)+ c1|s|

for suitable a1 ∈ L2(D) and c1 ∈ R.
The first perturbation we consider is of the form µε = µ + εφHN where φ is a

nonnegative function belonging to L∞(D). If (u, µ) is an optimal pair of the relaxed
optimization problem and uε = Rµε ( f ), proceeding as in [65] we obtain

d J (uε)

dε

∣∣∣
ε=0

= −
∫

D
js(x, u)Rµ(φu) dx .
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On the other hand, the optimality of µ gives that the derivative above has to be
nonnegative, so that we obtain∫

D
js(x, u)Rµ(φu) dx ≤ 0 ∀φ ∈ L∞(D), φ ≥ 0.

By the symmetry of the resolvent operator Rµ we can also write∫
D

Rµ
(

js(x, u)
)
φu dx ≤ 0 ∀φ ∈ L∞(D), φ ≥ 0

which gives, since φ is arbitrary,

Rµ
(

js(x, u)
)
u ≤ 0 a.e. in D.

It is now convenient to introduce the adjoint state equation

v ∈ Xµ(D), −�v + µv = js(x, u) in X ′µ(D)(4.23)

so that the optimality condition above reads

uv ≤ 0 a.e. in D.

Noticing that u and v are finely continuous q.e. in D, their product uv is still finely
continuous q.e. in D, and since nonempty finely open sets have positive Lebesgue
measure we obtain the following necessary condition of optimality.

Proposition 4.4.2 If (u, µ) is an optimal pair of the relaxed optimization problem
(4.21) and if v denotes the solution of the adjoint state equation (4.23), then we have

uv ≤ 0 q.e. in D.(4.24)

We consider now another kind of perturbation of an optimal measure µ by taking
the family of measuresµε = (1−ε)µ that, for ε < 1, still belong to the class M0(D).
Again, denoting by uε = Rµε ( f ) the optimal state related to µε, proceeding as in
[65] we obtain

d J (uε)

dε

∣∣∣
ε=0

=
∫

D
js(x, u)Rµ(µu) dx .

The optimality of µ gives that the derivative above has to be nonnegative, so that we
obtain ∫

D
js(x, u)Rµ(µu) dx ≥ 0

and, again by the symmetry of the resolvent operator Rµ we have∫
D

Rµ
(

js(x, u)
)
u dµ ≥ 0.

On the other hand, the optimality condition obtained in Proposition 4.4.2 gives that
the product u Rµ

(
js(x, u)

)
is less than or equal to zero q.e. in D, hence µ-a.e. in D,

which implies the following second necessary condition of optimality.
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Proposition 4.4.3 If (u, µ) is an optimal pair of the relaxed optimization problem
(4.21) and if v denotes the solution of the adjoint state equation (4.23), then we have

uv = 0 µ-a.e. in D.(4.25)

In order to obtain further necessary conditions of optimality it is convenient to
introduce, for every finely open subset A of RN , a boundary measure νA, carried
by the fine boundary ∂∗A. If we denote by wA the unique solution of the Dirichlet
problem

−�wA = 1 in A, wA ∈ H1
0 (A),(4.26)

then the following theorem gives the existence of νA.

Theorem 4.4.4 There exists a unique nonnegative measure νA belonging to H−1(RN)

and such that

−�wA + νA = 1cl∗A in H−1(RN ),(4.27)

where cl∗A denotes the fine closure of A. Moreover, we have that νA is carried by
∂∗A

(
i.e., νA(R

N \ ∂∗A) = 0
)
, and

νA(∂
∗A) = HN (cl∗A).

For the proof of the theorem above we refer to [65].

Example 4.4.5 If A is a smooth domain, then ∂∗A = ∂A and the solution wA is
smooth up to the boundary. Using (4.27), an integration by parts gives∫

RN
v dνA = −

∫
∂A
v
∂wA

∂n
dHN−1 ∀v ∈ H1(RN ),

where n is the outer unit normal vector to A. Thus

νA = −∂wA

∂n
HN−1 ∂A.

The measure νA above allows us to give a weak definition of the normal deriva-
tive for the solution u of a relaxed state equation

−�u + µu = f in X ′µ(D), u ∈ Xµ(D),(4.28)

where f ∈ L2(D) and µ ∈ M0(D). We denote by A = Aµ the set of finiteness of
µ, as defined in the previous section, and by νA the boundary measure defined above.
The following result holds (see [65] for the proof).

Proposition 4.4.6 There exists a unique α ∈ L2(D, νA) such that

−�u + µu + ανA = f 1cl∗A in H−1(D).(4.29)

Moreover we have ∫
D
α2 dνA ≤

∫
D

f 2 dx

and α ≥ 0 νA-a.e. in D whenever f ≥ 0 a.e. in D.
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Example 4.4.7 Let A be a smooth domain and let µ = a(x)HN A, with a ∈
L∞(A). Then equation (4.28) simply reads

−�u + a(x)u = f in H−1(A) u ∈ H1
0 (A)

and u ∈ H2(A), so that ∂u/∂n ∈ L2(∂A,HN−1). Using (4.29) and integrating by
parts we obtain∫

D
vα dνA = −

∫
D∩∂A

v
∂u

∂n
dHN−1 ∀v ∈ H1(RN ).

Therefore

ανA = −∂u

∂n
HN−1 D ∩ ∂A.

Since by Example 4.4.5 we have νA = − ∂wA
∂n HN−1 ∂A, we finally deduce

α = ∂u

∂n

/∂wA

∂n
HN−1 a.e. on D ∩ ∂A.

Note that by the Hopf maximum principle we have ∂wA/∂n < 0 on ∂A.

The last two necessary conditions of optimality for a solution µ of the relaxed
problem (4.21) will be obtained by considering the perturbation

µε = µ A + 1

ε

( 1

φ
HN int∗S + 1

ψ
νA

)
,

where A = Aµ, S = Sµ, and φ,ψ are two positive and continuous functions up to
D. We give a sketch of the proof by referring to [65] for all details. We denote by uε
the corresponding solution of

uε ∈ Xµε (D), −�uε + µεuε = f in X ′µε (D).

It is possible to show that uε → u strongly in H1
0 (D). Moreover, by Proposition

4.4.6 there exists a unique α ∈ L2(D, νA) such that

−�u + µu + ανA = f 1cl∗A in H−1(D);
analogously, if v is the solution of the adjoint equation

v ∈ Xµ(D), −�v + µv = js(x, u) in X ′µ(D)

there exists a unique β ∈ L2(D, νA) such that

−�v + µv + βνA = js(x, u)1cl∗A in H−1(D).

Then, for every g ∈ L2(D) it is possible to compute the limit

lim
ε→0

∫
D

uε − u

ε
g dx
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in terms of the function α, β introduced above, and, by using the fact that φ,ψ are
arbitrary, we obtain the further necessary conditions of optimality:{

f (x) js(x, 0) ≥ 0 for a.e. x ∈ int∗S;
αβ ≥ 0 νA-a.e. on D.

(4.30)

Summarizing, the four optimality conditions we have obtained are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uv ≤ 0 q.e. in D;
uv = 0 µ-a.e. in D;
f (x) js(x, 0) ≥ 0 for a.e. x ∈ int∗S;
αβ ≥ 0 νA-a.e. on D.

(4.31)

Example 4.4.8 It is interesting to rewrite the conditions above in the case when the
optimal measure µ has the form

µ = a(x)HN A +∞D\A

with a ∈ L∞(D), a(x) ≥ 0 for a.e. x ∈ D, and A is an open subset of D with a
smooth boundary. In this case the optimality conditions above become:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uv ≤ 0 q.e. on A;
uv = 0 a.e. on {x ∈ A : a(x) > 0};
f (x) js(x, 0) ≥ 0 for a.e. x ∈ D \ A;
(∂u/∂n)(∂v/∂n) ≥ 0 HN−1-a.e. on D ∩ ∂A.

(4.32)

Since the boundary of A has been assumed smooth, the optimal state u and its
adjoint state v both belong to the Sobolev space H 2(A); hence the last condition can
be written in the stronger form

(∂u/∂n)(∂v/∂n) = 0 HN−1-a.e. on D ∩ ∂A.

Indeed, using the fact that uv ≤ 0 on A, this follows by considering the one-
dimensional functions t �→ u

(
x + tn(x)

)
and t �→ v

(
x + tn(x)

)
which are con-

tinuously differentiable in a neighborhood of t = 0 for HN−1-a.e. point x ∈ D∩∂A.
Specializing the conditions above to the particular case when a ≡ 0, which

means that the original shape optimization problem has a classical solution, we ob-
tain: ⎧⎪⎨⎪⎩

uv ≤ 0 q.e. on A;
f (x) js(x, 0) ≥ 0 for a.e. x ∈ D \ A;
(∂u/∂n)(∂v/∂n) = 0 HN−1-a.e. on D ∩ ∂A.

(4.33)
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Remark 4.4.9 In general, for a shape optimization problem of the form

min
�∈Uad

J (�),

which has a classical solution �∗ ∈ Uad , one can write two types of necessary opti-
mality conditions that we briefly describe below.

Using the shape derivative. For an admissible vector field V one computes the
shape derivative

d J (�∗; V ) = lim
t→0

J ((I d + tV )�∗)− J (�∗)
t

.

Of course, the vector field V has to be chosen in such a way that (I d+ tV )�∗ ∈ Uad ,
or we could use a Lagrange multiplier. The optimality condition is then written

d J (�∗; V ) ≥ 0.

Usually, the computation of the shape derivative requires that �∗ is smooth enough
(C2 for example); the regularity of the optimum �∗ is, in general, difficult to prove.
Particular attention has to be given to the case when Uad consists of convex sets,
since the convexity constraint is “unstable” to small variations of the boundary. We
refer the reader to [111], [140], [186] for detailed discussions of the shape derivative.

Using the topological derivative. For every x0 ∈ �∗, one computes the asymptotic
development

J (�∗ \ Bx0,ε) = J (�∗)+ g(x0) f (ε)+ o( f (ε)),

where f (ε) > 0 is such that lim
ε→0

f (ε) = 0. The optimality condition then writes

g(x0) ≥ 0. We refer to [128], [185] for a detailed discussion of the topological
derivative and for several applications to concrete problems.

4.5 Boundary variation

In this section we study the continuity of the mapping

� −→ u�

where u� is the weak variational solution of the following Dirichlet problem on �:{−�u� = f,

u� ∈ H1
0 (�).

(4.34)

Here, � ⊆ D is an open subset of a bounded design region D of RN , with N ≥ 2
and f ∈ H−1(D) is a fixed distribution. Since u� ∈ H1

0 (�), extending it by zero we
can suppose that u� ∈ H1

0 (D).
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When speaking about “shape continuity” one has to endow the space of open sets
with a topology. The γ -convergence is precisely the topology making continuous the
shape functional �→ u�. The difficulty is to relate this convergence of domains to
a geometric one, which is easier to handle!

Assuming that we endow the family of open sets with a certain topology, the
shape continuity holds if the topology is strong. A typical example is to consider
a mapping T ∈ C1

c (R
N ,RN ), to define �t = (I d + tT )(�) and wonder if u�t

converges to u� when t → 0.

Figure 4.1. Perturbation given by a smooth vector field.

Figure 4.2. Nonsmooth perturbation.

On the contrary, if the topology on the space of open sets is weak, the conti-
nuity may not hold. Nevertheless, the interest to consider a weak topology is high
when dealing with shape optimization problems. Indeed, in view of applying the di-
rect methods of the calculus of variations, one needs some compactness result for
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a minimizing sequence (�n), and this is easier to be obtained working with weak
topologies.

Therefore one has to look for a kind of equilibrium: a topology weak enough in
order to have compactness but strong enough in order to get continuity. This pur-
pose is not easy to be attained; what we can do is to look for weak geometrical or
topological constraints which would make a class of domains compact (in the chosen
topology) and which are strong enough to give shape continuity.

The shape continuity of the solution of a PDE can be seen from two opposite
points of view. First, we may suppose that an open set � is given and (�n) is a
perturbation of it. We are interested to see if the solution of the PDE on � is sta-
ble for this perturbation, i.e., if u�n converges to u� (see Section 4.9). Second, we
look for continuity-compactness results, i.e., a sequence (�n) is given and we want
to find a domain � such that (for a subsequence denoted using the same indices)
we have that u�n → u�. This point of view is followed in Sections 4.2 to 4.8. In
this case, one has to endow the family of open sets with a suitable topology τ , and
the construction of � follows from compactness properties of this topology. On the
other hand, the shape continuity of the solution is deduced from the geometrical
constraints imposed on �n . The role of these constraints is double: on one side they
make the topological space (A, τ ) compact, and on the other side they provide the
γ -convergence of any τ -convergent sequence (here A denotes the class of admissible
domains). Notice that the choice of the topology is completely free, provided that the
continuity-compactness occurs.

Notice that equation (4.34) is considered in a very simple case: homogeneous
Dirichlet boundary conditions for the Laplace operator. We choose this easy linear
setting only to simplify the proofs and to avoid heavy notation. At the end of the
chapter we discuss how the results can be extended to non-linear elliptic operators
and non-homogeneous boundary conditions. Roughly speaking, the shape continuity
of the solution does not depend “so much” on the operator and on the right hand side
f ; on the other hand it “strongly” depends on the behaviour of the energy spaces
(here H1

0 ) on the moving domains.

How to prove shape continuity. The most abstract setting, which includes the relax-
ation, that we could consider for understanding the shape continuity, is to work into
the frame of the �-convergence. When no relaxation occurs, then the �-convergence
of the energy functionals can be seen through the Mosco convergence of the associ-
ated functional spaces. In the sequel, we follow this idea, with the only purpose to
give the reader a more intuitive frame.

We start by giving a general definition for the convergence of spaces. Let X be
a Banach space and (Gn)n∈N a sequence of subsets of X . The weak upper and the
strong lower limits in the sense of Kuratowski are defined as follows:

w − limsup
n→∞

Gn = {u ∈ X : ∃(nk)k, ∃unk ∈ Gnk such that unk

w−X
⇀ u},

s − liminf
n→∞ Gn = {u ∈ X : ∃un ∈ Gn such that un

s−X−→ u}.
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If (Gn)n∈N are closed subspaces in X , it is said that Gn converges in the sense of
Mosco to G if

M1) G ⊆ s − liminf
n→∞ Gn ,

M2) w − limsup
n→∞

Gn ⊆ G.

Note that in general s − liminfn→∞ Gn ⊆ w − limsupn→∞ Gn . Therefore, if Gn

converges in the sense of Mosco to G, then

s − liminf
n→∞ Gn = G = w − limsup

n→∞
Gn .

Coming back to the Dirichlet problem on varying domains, let us suppose that
(�n)n is a sequence of quasi-open sets contained in a bounded design region D. The
sequence of spaces H1

0 (�n) converges in the sense of Mosco to the space H1
0 (�) if

the following conditions are satisfied:

M1) For all φ ∈ H 1
0 (�) there exists a sequence φn ∈ H1

0 (�n) such that φn

converges strongly in H1
0 (D) to φ.

M2) For every sequence φnk ∈ H1
0 (�nk ) weakly convergent in H1

0 (D) to a func-
tion φ we have φ ∈ H1

0 (�).

For every open set � ⊆ D we denote by PH1
0 (�)

the orthogonal projection of

H1
0 (D) onto H1

0 (�) with respect to the norm
( ∫

D |∇u|2dx
)1/2. By R� we denote

the resolvent operator R� : L2(D)→ L2(D) defined by R�( f ) = u�, f .

Lemma 4.5.1 Let A be a quasi-open subset of D. There exists a constant M depend-
ing only on | f |H−1(D) and |D| such that

‖u A, f ‖H1
0 (D)

≤ M.

Proof Take u A, f as test function in the weak formulation of the equation and apply
the Cauchy inequality together with the Poincaré inequality.

We also give the following estimate for f ≡ 1 which does not depend on the
design region.

Lemma 4.5.2 Let A be a quasi-open set with finite measure. There exist two con-
stants M1, M2 which depend only on |A| such that

1. ‖u A,1‖H1(RN ) ≤ M.

2. ‖u A,1‖L∞(RN ) ≤ M.

Proof Taking u A,1 as test function gives
∫

A |∇u A,1|2 dx = ∫
A u A,1 dx . Using the

Poincaré inequality (for which the constant β = β(|A|) depends only on |A|) we get

‖u A,1‖2
H1(RN )

≤ β2
∫

A
|∇u A,1|2 dx = β2

∫
A

u A,1dx ≤ β2|A| 1
2 ‖u A,1‖H1(RN ).

For the second assertion we refer the reader to [129, Theorem 8.16].
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Proposition 4.5.3 Let (�n)n and � be open subsets of D. The following assertions
are equivalent.

1) for every f ∈ H−1(D) we have u�n , f−→u�, f strongly in H1
0 (D) (i.e., �n

γ -converges to �);

2) for f ≡ 1 we have u�n ,1−→u�,1 strongly in H1
0 (D);

3) H1
0 (�n) converges in the sense of Mosco to H1

0 (�);

4) G(�n, ·) �−→ G(�, ·) in L2(D), where G(A, ·) are the associated energy func-
tionals defined in (3.27) for f ≡ 0;

5) For every u ∈ H1
0 (D) the sequence (PH1

0 (�n)
u) converges strongly in H1

0 (D) to
PH1

0 (�)
u;

6) R�n converges in the operator norm of L(L2(D)) to R�.

Proof 1) �⇒ 2) is obvious.
2) �⇒ 1) Let f ∈ L∞(D), f ≥ 0. By Lemma 4.5.1, for a subsequence we have

u�nk , f
H1

0 (D)
⇀ u.

From the maximum principle

0 ≤ u�nk , f ≤ ‖ f ‖∞u�nk ,1
,

hence passing to the limit as k →∞ we obtain

0 ≤ u ≤ ‖ f ‖∞u�,1,

therefore u ∈ H1
0 (�). Let us now take ϕ ∈ D(�); there exists α > 0 such that

0 ≤ |ϕ| ≤ αu�,1.

We define the sequence ϕn = ϕ+n − ϕ−n , where

ϕ+n = min{ϕ+, αu�n ,1}, ϕ−n = min{ϕ−, αu�n ,1}.

On one side we have that ϕn ∈ H1
0 (�n), and on the other side ϕn−→ϕ strongly in

H1
0 (D). Writing ∫

D
∇u�nk , f∇ϕnk dx =

∫
D

f ϕnk dx

and passing to the limit as k →∞ we get∫
D
∇u∇ϕdx =

∫
D

f ϕdx .
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Consequently, u = u�, f . The convergence is strong in H1
0 (D) since the norms also

converge. Moreover, we get the convergence of the whole sequence from the unique-
ness of the limit u = u�, f .

By the linearity of the equation and the density of L∞(D) in H−1(D), the proof
of point 1) is achieved.

1) ⇐⇒ 5) Let u ∈ H1
0 (D), and set f := −�u ∈ H−1(D). Then it is easy

to see that PH1
0 (�n)

(u) = u�n , f , and so the equivalence between 1) and 5) follows
straightforwardly.

5) �⇒ 4) Let un−→u strongly in L2(D). In order to prove that G(�, u) ≤
liminf
n→∞ G(�n, un) we can suppose that liminf

n→∞ G(�n, un) < +∞. The inequality

would then follow as soon as u ∈ H 1
0 (�). For that it is enough to prove that

u = PH1
0 (�)

u. For every ϕ ∈ H1
0 (D) we have

(u, ϕ)H1
0 (D)×H1

0 (D)
= lim

n→∞(un, ϕ)H1
0 (D)×H1

0 (D)

= lim
n→∞(PH1

0 (�n)
un, ϕ)H1

0 (D)×H1
0 (D)

= lim
n→∞(un, PH1

0 (�n)
ϕ)H1

0 (D)×H1
0 (D)

.

Using 5) and the pairing (weak,strong)-convergence we get

(u, ϕ)H1
0 (D)×H1

0 (D)
= (u, PH1

0 (�)
ϕ)H1

0 (D)×H1
0 (D)

= (PH1
0 (�)

u, ϕ)H1
0 (D)×H1

0 (D)
,

hence u = PH1
0 (�)

u.

Let now u ∈ H1
0 (�). We define un := PH1

0 (�n)
u ∈ H1

0 (�n) and get by 5) that

un−→u strongly in H1
0 (D). Then G(�, u) = lim

n→∞G(�n, un).

4) �⇒ 3) Let u ∈ H1
0 (�). From the �-convergence, there exists (un)n such

that un ∈ H1
0 (�n) with un−→u strongly in L2(D) and G(�, u) = lim

n→∞G(�n, un).

This means that un ∈ H1
0 (�n) and un−→u strongly in H1

0 (D), hence the first Mosco
condition is satisfied.

For the second Mosco condition, let unk ∈ H1
0 (�nk ) such that unk⇀u weakly

in H1
0 (D). Hypothesis 4) gives G(�, u) ≤ liminf

n→∞ G(�nk , unk ) < +∞, i.e., u ∈
H1

0 (�).
3) �⇒ 1) Let ϕ ∈ H1

0 (�). From the first Mosco condition there exists ϕn ∈
H1

0 (�n) such that ϕn−→ϕ strongly in H1
0 (D). On the other hand, for a subsequence

we have

u�nk , f
H1

0 (D)
⇀ u,

and from the second Mosco condition u ∈ H1
0 (�). Writing the following chain of

equalities we get u = u�, f :∫
D
∇u∇ϕdx = lim

n→∞

∫
D
∇u�n , f∇ϕndx
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= lim
n→∞〈 f, ϕn〉H−1(D)×H1

0 (D)
= 〈 f, ϕ〉H−1(D)×H1

0 (D)
.

Classical arguments now give

u�n , f
H1

0 (D)−→ u�, f .

3) �⇒ 6) We have

|R�n − R�|L(L2(RN )) = sup
‖ f ‖L2(D)≤1

‖R�n ( f )− R�( f )‖L2(D).

Supposing that fn ∈ L2(D) is such that ‖ fn‖L2(D) ≤ 1 and

|R�n − R�|L(L2(RN )) ≤ ‖R�n ( fn)− R�( fn)‖L2(D) +
1

n
,

we can assume for a subsequence (still denoted using the same indices) that fn⇀ f
weakly in L2(D). For proving 6), is enough to show that R�n ( fn) converges strongly
in L2(D) to R�( f ). This is a consequence of 3) and of the compact embedding
H1

0 (D) ↪→ L2(D).
6) �⇒ 2) Let f ≡ 1. Then R�n ( f ) = u�n ,1 and 2) follows.

Remark 4.5.4 The γ -convergence is local, i.e.,�n
γ−→ � if and only if there exists

δ > 0 such that for every x ∈ D and for every r ∈ (0, δ) we have that�n ∩ Bx,r
γ−→

� ∩ Bx,r . This can be easily proved using the Mosco convergence and a partition of
unity.

Remark 4.5.5 The results of Proposition 4.5.3 also hold for quasi-open sets. The
only point which needs a more careful discussion is contained in the proof of the
implication 2) ⇒ 1). In that case, notice that the family D(�) is not defined! One
can use instead the following density result (see [102] and Section 4.8):

{φu�,1 : φ ∈ C∞0 (D)} is dense in H1
0 (�).

We end this section by a result that will be useful in the following (see [47] for its
proof).

Proposition 4.5.6 Let us consider two sequences of quasi-open sets An
γ→ A and

Bn
γ→ B. Then An ∩ Bn

γ→ A ∩ B.

4.6 Continuity under geometric constraints

Let D be a bounded open set. In this section we set

A = {� : � ⊆ D, � open}
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and denote by τ the Hausdorff complementary topology on A, given by the metric

dHc (�1, �2) = d(�c
1, �

c
2).

Here d is the usual Hausdorff distance introduced in Definition 2.4.1.

Proposition 4.6.1 The following properties of the Hausdorff convergence hold.

1. (A, dHc ) is a compact metric space.

2. If �n
Hc

−→�, then for every compact set K ⊆ �, there exists NK ∈ N such that
for every n ≥ NK we have K ⊆ �n.

3. The Lebesgue measure is lower semicontinuous in the Hc-topology.

4. The number of connected components of the complement of an open set is lower
semicontinuous in the Hc-topology.

Proof The proof of this proposition is quite simple; we refer to [140] for further
details. For the convenience of the reader we only recall that property 1 is a conse-
quence of the Ascoli–Arzelà theorem.

Notice that the first Mosco condition is fulfilled for every sequence �n
Hc

−→ �.
Moreover, the space (A, τ ) is compact, even if it does not turn out to be γ -compact.

Proposition 4.6.2 Suppose that �n
Hc

−→� and let f ∈ H−1(D). There exists a sub-
sequence of (�n)n∈N, still denoted using the same indices, such that

u�n , f
H1

0 (D)
⇀ u

and ∫
�

∇u∇φdx = 〈 f, φ〉H−1(D)×H1
0 (D)

(4.35)

for every φ ∈ H1
0 (�), that is u verifies the equation −�u = f in H−1(�).

Proof By Lemma 4.5.1 the sequence (u�n , f ) is bounded in H1
0 (D) so that we may

assume it converges weakly to some function u ∈ H1
0 (D). It remains to prove equal-

ity (4.35). By a density argument, we may take φ ∈ C∞c (�). Since the support of φ
is compact and �n converges in Hc to �, equality (4.35) is valid for u�n , f , when n
is large enough. The proof is then achieved by passing to the limit as n →∞.

In order to get u = u�, f it remains to prove that u ∈ H1
0 (�). This is of course

related to the second Mosco condition, which does not hold in general for sequences
converging in Hc. The geometrical constraints play a crucial role for this case.

Indeed, the following counterexample shows that, in general, Hc-convergent se-
quences are not γ -convergent.
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Example 4.6.3 Let {x1, x2, ...} be an enumeration of points of rational coordinates
of the square D =]0, 1[×]0, 1[ in R2. Defining�n = D \ {x1, x2, ..., xn} we get that

�n
Hc

−→ ∅ and �n
γ−→ D since cap(D \�n) = 0.

A non-exhaustive list of classes of domains in which the γ -convergence is equiv-
alent to the Hc-convergence is the following (from the strongest constraints to the
weakest ones).

• The class Aconvex ⊆ A of convex sets contained in D.

• The class Auni f cone ⊆ A of domains satisfying a uniform exterior cone property
(see Chenais [80], [81]), i.e., such that for every point x0 on the boundary of every
� ∈ Auni f cone there is a closed cone, with uniform height and opening, and with
vertex in x0, lying in the complement of �.

• The class Auni f f lat cone of domains satisfying a uniform flat cone condition (see
Bucur, Zolésio [56]), i.e., as above, but with the weaker requirement that the cone
may be flat, that is of dimension N − 1.

• The class Acap densi t y ⊆ A of domains satisfying a uniform capacity density
condition (see [56]), i.e., such that there exist c, r > 0 such that for every � ∈
Acap densi t y , and for every x ∈ ∂�, we have

∀t ∈ (0, r) cap(�c ∩ Bx,t , Bx,2t )

cap(Bx,t , Bx,2t )
≥ c,

where Bx,s denotes the ball of radius s centered at x .

• The class Auni f Wiener ⊆ A of domains satisfying a uniform Wiener condition
(see [55]), i.e., domains satisfying for every� ∈ Auni f Wiener and for every point
x ∈ ∂�,∫ R

r

cap(�c ∩ Bx,t , Bx,2t )

cap(Bx,t , Bx,2t )

dt

t
≥ g(r, R, x) for every 0 < r < R < 1

where g : (0, 1) × (0, 1) × D → R+ is fixed, such that for every R ∈ (0, 1)
lim
r→0

g(r, R, x) = +∞ locally uniformly on x .

Another interesting class, which is only of topological type and is not contained in
any of the previous ones, was given by Šverák [187] and consists in the following.

• For N = 2, the class of all open subsets � of D for which the number of con-
nected components of D \� is uniformly bounded.

In fact, we shall see that this last constraint is strongly related to a capacity density
type constraint: in two dimensions, any curve has a strictly positive capacity.

Roughly speaking, the following inclusions can be established:

Aconvex ⊆ Auni f cone ⊆ Auni f f lat cone ⊆ Acap densi ty ⊆ Auni f Wiener ,

hence it would be enough to prove that the γ -convergence is equivalent to the Hc-
convergence only in Auni f Wiener . The shape continuity under a uniform Wiener
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criterion was first observed by Frehse [125]. The proof of the continuity under the
uniform Wiener criterion is slightly more technical than the continuity under capac-
ity density condition. This is the main reason for which we prove in the sequel the
continuity result only in Acap densi ty which is based on a uniform Holder estimate
of the solutions (for the right-hand side f ≡ 1) on the moving domain. A uni-
form Wiener condition is in some sense the weakest reasonable constraint to obtain
a continuity result in the Hausdorff complementary topology; it is based on a local
equi-continuity-like property of the solutions on the moving domain.

The last part of this chapter is devoted to finding necessary and sufficient condi-
tions for the shape continuity. In order to introduce the reader to nonlinear equations,
the results of the last section are presented for the p-Laplacian (with 1 < p < +∞).
A careful reading of Sections 4.8 and 4.9 will give the reader an idea of how to prove
shape continuity under a uniform Wiener criterion.

Definition 4.6.4 For r, c > 0 it is said that an open set � has the (r,c) capacity
density condition if

∀x ∈ ∂�, ∀t ∈ (0, r) cap(�c ∩ Bx,t , Bx,2t )

cap(Bx,t , Bx,2t )
≥ c.(4.36)

The class of open subsets of D having the (r,c) capacity density condition is denoted
by Oc,r (D).

We recall the following result from [141] (the nonlinear version of this result will
be used in Section 4.8).

Lemma 4.6.5 Suppose that � is bounded. Let θ ∈ H1(�) ∩ C(�) and let h be the
unique harmonic function in � with θ − h ∈ H1

0 (�). If x0 ∈ ∂�, then for every
0 < r ≤ R we have

osc(h, � ∩ Bx0,r ) ≤ osc(θ, ∂� ∩ Bx0,2R)+ osc(θ, ∂�)exp(−cw(�, x0, r, R))

where

w(�, x0, r, R) =
∫ R

r

cap(�c ∩ Bx0,t , Bx0,2t )

cap(Bx0,t , Bx0,2t )

dt

t
,

osc(h, �) = | sup
�

h(x)− inf
�

h(x)|,

and c depends only on the dimension of the space.

Lemma 4.6.6 Suppose that � belongs to Oc,r (D). If θ ∈ H1(�) ∩ C(�), and if h
is the harmonic function in � with h − θ ∈ H1

0 (�), then

lim
x→x0

h(x) = θ(x0)

for any x0 ∈ ∂�.

The main continuity result can be expressed as follows:
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Theorem 4.6.7 Let (�n)n∈N be a sequence in Oc,r (D), which converges in the Hc

topology to an open set �. Then �n γ -converges to �.

Proof Let us fix f ≡ 1; it will be sufficient to prove the continuity for a subsequence
of (�n)n∈N. Since f ≡ 1, we shortly write u� instead of u�,1. From Proposition
4.6.2 there exists a subsequence of (�n)n∈N, which we still denote by (�n)n∈N, such
that u�n⇀u weakly in H1

0 (D), and u satisfies the equation −�u = 1 on �. We
prove that u ∈ H1

0 (�), which will imply that u = u�. For that it is sufficient to
prove u = 0 q.e. on D \� where u is a quasi-continuous representative.

From the Banach–Saks theorem there exists a sequence of averages:

ψn =
Nn∑

k=n

αn
k u�n

with

0 ≤ αn
k ≤ 1 ,

Nn∑
k=n

αn
k = 1

such that

ψn
H1

0 (D)−→ u.

From the strong convergence of ψn to u in H1
0 (D), we have that

ψn(x)−→u(x) q.e. on D

for a subsequence of (ψn) which we still denote by (ψn).
Let G0 be the set of zero capacity on which ψn(x) does not converge to u(x). Let

x ∈ D \ (� ∪ G0), and ε > 0 arbitrary. We prove that |u(x)| < ε. Indeed, we have

|u(x)| ≤ |u(x)− ψn(x)| + |ψn(x)|.
We consider n > Nε,x such that

|u(x)− ψn(x)| < ε

2
.

Let us consider the solution u B on a large ball B containing D. From the smooth-
ness of B and since f ≡ 1, we have that u B is continuous on B. Subtracting the
corresponding equations, we obtain

�(u B − u�n ) = 0 in �n .(4.37)

Consequently, u B − u�n is harmonic in �n and continuous on �n . We use Lemma
4.6.6 in the following way: θ is the restriction to �n of the function u B and hn =
u

B
∣∣�n

− u�n . Now hn − θ = −u�n which belongs to H1
0 (�n). From the continuity
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of u B we obtain that the continuous extension of u
B
∣∣�n

− u�n is equal to u B on the

boundary of �n , and so the extension of u�n to the boundary of �n is zero in the
classical sense. Using Lemma 4.6.5, one obtains (see [141]) that if hn is Lipschitz on
∂�n then it is Hölderian on all �n . Since u B is Lipschitz on B and is equal to hn on
∂�n we have

∀x, y ∈ ∂�n |hn(x)− hn(y)| = |u B(x)− u B(y)| ≤ M |x − y|.

There exist two constants δ1 > 0 and an M1 given by Lemma 4.6.5 which depend
only on c, r , diam B and the dimension of the space N such that

|hn(x)− hn(y)| ≤ M1|x − y|δ1 ∀x, y ∈ �n .

This inequality holds obviously in B (changing the constant M1 if necessary), since
hn is equal to u B outside �n . Therefore for every x, y ∈ B we have

|u�n (x)− u�n (y)| ≤ |hn(x)− hn(y)| + |u B(x)− u B(y)|

≤ M1|x − y|δ1 + M |x − y| ≤ M2|x − y|δ2 .

Let us choose R > 0, such that M2 Rδ2 < ε/2. From the Hc convergence of �n to �
there exists nR ∈ N, such that for every n ≥ nR we have (B \�n) ∩ Bx,R 	= ∅. Let
us take xn ∈ (B \�n) ∩ Bx,R . We have

|u�n (x)| = |u�n (x)− u�n (xn)| ≤ M2|x − xn|δ2 ≤ M2 Rδ2 ≤ ε

2

because u�n (xn) = 0. Hence

|ψn(x)| =
∣∣∣ Nn∑

k=n

αn
k u�n (x)

∣∣∣ ≤ Nn∑
k=n

αn
k
ε

2
= ε

2
, ∀n > nR .

Finally we obtain |u(x)| ≤ ε. Since ε was taken arbitrarily we have u(x) = 0 q.e.
on B \ �, which implies that u = u�. The strong convergence of u�n to u� is now
immediate, from the convergence of the norms of u�n to the norm of u�.

4.7 Continuity under topological constraints: Šverák’s result

Let us denote by

Ol(D) = {� ⊆ D : ��c ≤ l}

the family of open subsets of D whose complements have at most l connected com-
ponents. By � we denote the number of connected components.

A consequence of Theorem 4.6.7 is the following result due to Šverák [187].
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Theorem 4.7.1 Let N = 2. If �n ∈ Ol(D) and �n
Hc

−→ �, then �n γ -converges
to �.

Proof Let us fix f ≡ 1. Since the solution of equation (4.34) is unique, it is suffi-
cient to prove the continuity result for a subsequence.

There exists a subsequence of (�n)n∈N still denoted by (�n)n∈N, such that
u�n⇀u weakly in H1

0 (D), and by Proposition 4.6.2, u satisfies the equation on �.
To obtain that u ∈ H1

0 (�) we prove that u = 0 q.e. on �c.
In general, one cannot find c, r > 0 such that (�n)n∈N ⊆ Oc,r (D), therefore a

direct application of Theorem 4.6.7 is not possible. Let

D \�n = K n
1 ∪ · · · ∪ K n

l

be the decomposition of D \�n in l connected components, which are compact and
disjoint, possibly empty. According to Proposition 4.6.1 there exists a subsequence

(K
k1

n
1 )n of (K n

1 )n such that

K
k1

n
1

H−→ K1.

By the same argument we can extract a subsequence of (k1
n) which we denote by

(k2
n) such that

K
k2

n
2

H−→ K2.

Finally, continuing this procedure, we obtain a subsequence of (�n)n∈N (still denoted
using the same indices) such that

K n
j

H−→ K j ∀ j = 1, ..., l.

Obviously � = D \ (K1 ∪ · · · ∪ Kl). Since the K n
j are connected, we have that K j

is connected. There are now three possibilities. Either K j is the empty set, or it is
a point, or it contains at least two points; in the latter case any connected open set
which contains K j , also contains a continuous curve which links the two points. If
K j = ∅ we ignore K j and (K n

j )n which are also empty (for n large enough). If K j

is a point, then it has zero capacity, so K j can also be ignored. In that case we define
the new sets�+n = D\∪i 	= j K n

i which satisfy�n ⊆ �+n . We continue this procedure
for all j = 1, . . . , l and obtain that

�+n
Hc

−→ �+.

Of course u�+ = u� because the difference between �+ and � has zero capacity (it
consists only of a finite number of points).

Let us prove that there exist c, r > 0 such that for n large enough (�+n )n∈N ⊆
Oc,r . There exists δ > 0 such that diam (Ki ) ≥ δ for all remaining indices i ∈
{1, . . . , l}. For n large enough, we get that diam (K n

i ) ≥ δ/2.
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Let us set r = δ/4 and

c = cap([0, 1]× {0}, B0,2)

cap(B0,1, B0,2)
> 0.

Then we show that for n large enough�+n ∈ Oc,r . In order to prove that for every
x ∈ ∂�+n and t ∈ (0, r) we have

cap((�+n )c ∩ Bx,t , Bx,2t )

cap(Bx,t , Bx,2t )
≥ c,

we simply remark that for every x ∈ K n
i and t ∈ (0, r),

cap(K n
i ∩ Bx,t , Bx,2t ) ≥ cap([x, y], Bx,2t ).

Here y is a point belonging on ∂Bx,t . This inequality follows straightforwardly by a
Steiner symmetrization type argument. For details, we refer to [52], [39] and Section
6.3.

Using Theorem 4.6.7 we get that

u�+n −→u�+ strongly in H1
0 (D).

From the maximum principle we have u�+n ≥ u�n ≥ 0, hence u�+ ≥ u ≥ 0,

hence u ∈ H1
0 (�).

4.8 Nonlinear operators: Necessary and sufficient conditions
for the γp-convergence

In order to make the reader familiar with the nonlinear framework, in this section we
discuss the necessary and sufficient conditions for the γp-convergence in terms of
the convergence of the local capacities.

The γp-convergence is defined similarly to the case p = 2 (see Definition 4.3.6).

Definition 4.8.1 Let (�n)n∈N be a sequence of open subsets of a bounded smooth
design region D, and 1 < p < ∞. We say that �n γp-converges to � if for every

f ∈ W−1,q(D) and g ∈ W 1,p
0 (D) the solutions u�n , f,g of the equations{
−�pu�n , f,g = f in �n,

u�n , f,g = g on ∂�n,
(4.38)

extended by g on D \�n, converge weakly in W 1,p
0 (D) to the function u�, f,g of the

same equation with �n replaced by �.
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We consider the sequence of the associated Sobolev spaces (W 1,p
0 (�n))n∈N as

subspaces in W 1,p
0 (D), and study the weak upper and strong lower limits in the

sense of Kuratowski (see Section 4.5 for the definitions of the Kuratowski limits)
of this sequence in terms of the behavior of the local capacity of the complements
intersected with open and closed balls. We refer the reader to [42] for further details.

Given an open set � ⊆ D we establish necessary and sufficient conditions for
each of the inclusions

W 1,p
0 (�) ⊆ s − liminf

n→∞ W 1,p
0 (�n)(4.39)

and

w − limsup
n→∞

W 1,p
0 (�n) ⊆ W 1,p

0 (�),(4.40)

without imposing a priori any geometric convergence of �n to �.
It is easy to see (see Proposition 4.5.3 for the linear case) that the γp-convergence

of �n to � is equivalent to the Mosco convergence of the Sobolev spaces W 1,p
0 (�n)

to W 1,p
0 (�), i.e., to both relations (4.39) and (4.40).

We begin by two technical results.

Lemma 4.8.2 Let An, A ⊆ B0,1 be open sets and 0 < r1 < r2 < 1. If

W 1,p
0 (A) ⊆ s − liminf

n→∞ W 1,p
0 (An),(4.41)

then

W 1,p
0 (A ∪ (B0,1 \ B0,r2)) ⊆ s − liminf

n→∞ W 1,p
0 (An ∪ (B0,1 \ B0,r1)).(4.42)

If

w − limsup
n→∞

W 1,p
0 (An) ⊆ W 1,p

0 (A),(4.43)

then

w − limsup
n→∞

W 1,p
0 (An ∪ (B0,1 \ B0,r2)) ⊆ W 1,p

0 (A ∪ (B0,1 \ B0,r1)).(4.44)

Proof Let u, v ∈ C∞(B0,1), u, v ≥ 0, u + v = 1 be a partition of unity of B0,1
such that u = 1 on B0,r1 and v = 1 on B0,1 \ B0,r2 .

Assume (4.41) and let ϕ ∈ W 1,p
0 (A∪(B0,1\B0,r2)), ϕ ≥ 0. We have ϕ = uϕ+vϕ

and uϕ ∈ W 1,p
0 (A ∩ (B0,1 \ B0,r2)). From (4.41), there exists ϕn ∈ W 1,p

0 (An) such

that ϕn → uϕ strongly in W 1,p
0 (B0,1). Then ϕ+n ∧ uϕ ∈ W 1,p

0 (An ∪ (B0,1 \ B0,r1))

and ϕ+n ∧ uϕ converges strongly to uϕ. On the other hand, vϕ ∈ W 1,p
0 (B0,1 \ B0,r1)

hence vϕ + ϕ+n ∧ uϕ ∈ W 1,p
0 (An ∪ (B0,1 \ B0,r1)) and converges strongly to ϕ.
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Assume now (4.43). Consider ϕn ∈ W 1,p
0 (Akn ∪ (B0,1 \ B0,r2)) such that ϕn ⇀ ϕ

weakly in W 1,p
0 (B0,1). Then ϕnu ∈ W 1,p

0 (Akn ), and from (4.43) any weak limit point

belongs to W 1,p
0 (A). On the other hand, ϕnv ∈ W 1,p

0 (B0,1 \ B0,r1) hence any weak

limit point belongs to W 1,p
0 (B0,1 \ B0,r1).

Lemma 4.8.3 Under the hypotheses of Lemma 4.8.2, assume that (4.41) holds. Then

capp(A
c ∩ B0,r2 , B0,1) ≥ limsup

n→∞
capp(A

c
n ∩ B0,r1 , B0,1).(4.45)

If (4.43) holds, then

capp(A
c ∩ B0,r1 , B0,1) ≤ liminf

n→∞ capp(A
c
n ∩ B0,r2 , B0,1).(4.46)

Proof Assume that (4.41) holds. Let ϕ ∈ W 1,p
0 (B0,1) be the function realizing

the capacity capp(A
c ∩ B0,r2 , B0,1). Using Lemma 4.8.2, we apply (4.41) to the

function (1−ϕ)u (u being chosen as in the proof of Lemma 4.8.2) and get a sequence
un ∈ W 1,p

0 (An ∪ (B0,1 \ B0,r1)) which strongly converges to (1− ϕ)u. We consider
the functions 1− (un+ (1−ϕ)v) which strongly converge to ϕ and are test functions
for the capacities capp(A

c
n ∩ B0,r1 , B0,1). Then (4.45) follows.

Assume that (4.43) holds, take the sequence of functions ϕn ∈ W 1,p
0 (B0,1)

realizing the capacities capp(A
c
nk
∩ B0,r2 , B0,1) and assume that ϕn weakly con-

verges to ϕ. We apply (4.44) to the functions u(1 − ϕn) and get that u(1 − ϕ) ∈
W 1,p

0 (A ∪ (B0,1 \ B0,r1))). On the other hand v(1− ϕ) ∈ W 1,p
0 (B0,1 \ B0,r1) hence

ϕ = 1−(u(1−ϕ)+v(1−ϕ)) is a test function for the capacity capp(A
c∩B0,r1 , B0,1)

and (4.46) follows.

Study of the strong lower limit. We prove the following

Theorem 4.8.4 Let (�n)n∈N, � be open subsets of D. Then

W 1,p
0 (�) ⊆ s − liminf

n→∞ W 1,p
0 (�n)

if and only if for every x ∈ RN and δ > 0,

capp(�
c ∩ Bx,δ, Bx,2δ) ≥ limsup

n→∞
capp(�

c
n ∩ Bx,δ, Bx,2δ).(4.47)

Proof (⇒) Assume

W 1,p
0 (�) ⊆ s − liminf

n→∞ W 1,p
0 (�n).

Then we also have

W 1,p
0 (� ∩ Bx,2δ) ⊆ s − liminf

n→∞ W 1,p
0 (�n ∩ Bx,2δ).
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Indeed, consider ϕ ∈ W 1,p
0 (�∩Bx,2δ), ϕ ≥ 0. If ϕn ∈ W 1,p

0 (�n) converges strongly

to ϕ, then ϕ ∧ ϕ+n ∈ W 1,p
0 (�n ∩ Bx,2δ) converges also strongly to ϕ.

We apply Lemmas 4.8.2 and 4.8.3 and get for ε > 0,

capp(�
c ∩ Bx,δ+ε, Bx,2δ) ≥ limsup

n→∞
capp(�

c
n ∩ Bx,δ, Bx,2δ).

Making ε→ 0, relation (4.47) follows.
(⇐) Let us consider u ∈ C∞c (�), supp u = K ⊂⊂ � and ε = d(K , ∂�). There

exists a finite family of k balls centered at points of K and of radius less than ε such
that K ⊆ ∪k

r=1 Bxr ,ε/2. We also have

capp(�
c ∩ Bxr ,ε/2, Bxr ,ε) = 0

and thus we get from (4.47)

lim
n→∞ capp(�

c
n ∩ Bxr ,ε/2, Bxr ,ε) = 0.

Hence the capacity of �c
n ∩ Bxr ,ε/2 vanishes as n → ∞ and we consider for

r = 1, ..., k smooth functions ψr
n ∈ D(Bx,ε) equal to 1 on �c

n ∩ Bxr ,ε/2 and which
approximate respectively the capacity of this set, namely

‖ψr
n‖W 1,p

0 (D)
≤ capp(�

c
n ∩ Bxr ,ε/2, Bxr ,ε)+

1

n
.

Moreover the functions ψr
n can be chosen such that 0 ≤ ψr

n ≤ 1. Therefore, since k
is fixed, the sequence of functions defined by

un = u
k∏

r=1

(1− ψr
n )

has the property

un ∈ W 1,p
0 (�n) and un

W 1,p
0 (D)−→ u,

so (4.39) is satisfied.
The passage from D(�) to W 1,p

0 (�) is made by using the density D(�) =
W 1,p

0 (�) and a standard diagonal procedure for extracting a convergent sequence.

Remark 4.8.5 If one replaces in the previous theorem the sequence (�n)n∈N of open
sets by p-quasi-open sets, the only technical point which does not work as above
deals with the necessity. The construction of the approximating sequence fails be-
cause the dense family in W 1,p

0 (�), which replaces D(�) for a p-quasi-open set �,
does not have the same properties. In fact, even for a p-quasi-open set�, there exists
a dense family of functions having compact support in �, but their supports cannot
be covered by balls which do not intersect the complement of � (see [145]).



4.8 Characterization of the γp-convergence 111

Study of the weak upper limit. We prove the following result.

Theorem 4.8.6 Let (�n)n∈N, � be open subsets of D. Then

w − limsup
n→∞

W 1,p
0 (�n) ⊆ W 1,p

0 (�)

if and only if for every x ∈ RN and every δ > 0

capp(�
c ∩ Bx,δ, Bx,2δ) ≤ liminf

n→∞ capp(�
c
n ∩ Bx,δ, Bx,2δ).(4.48)

Proof (⇒) Assume

w − limsup
n→∞

W 1,p
0 (�n) ⊆ W 1,p

0 (�).

Then, it is immediate to observe (using Hedberg’s result [137]) that

w − limsup
n→∞

W 1,p
0 (�n ∩ Bx,2δ) ⊆ W 1,p

0 (� ∩ Bx,2δ).

We apply Lemmas 4.8.2 and 4.8.3 and get for ε > 0,

capp(�
c ∩ Bx,δ−ε, Bx,2δ) ≤ liminf

n→∞ capp(�
c
n ∩ Bx,δ−ε/2, Bx,2δ).

Since
capp(�

c
n ∩ Bx,δ−ε/2, Bx,2δ) ≤ capp(�

c
n ∩ Bx,δ, Bx,2δ)

we have

capp(�
c ∩ Bx,δ−ε, Bx,2δ) ≤ liminf

n→∞ capp(�
c
n ∩ Bx,δ, Bx,2δ).

Making ε→ 0 we get (4.48).
(⇐) In order to reduce the study of arbitrary weak convergent sequences to

particular sequences of solutions of equation (4.38) for f ≡ 0, we give the following
lemma. We denote in the sequel v�n ,g = u�n ,0,g , and when no ambiguity occurs,
vn = v�n ,g .

Lemma 4.8.7 Let (�n)n∈N be a sequence of open subsets of B, and � an open set
such that for every g ∈ D(D) and for every W 1,p

0 (D)-weak limit v of a sequence

(v�nk ,g
) we have v − g ∈ W 1,p

0 (�). Then relation (4.40) holds.

Proof Remark first that if the conclusion holds for any g ∈ D(D), then it holds
for any g ∈ W 1,p

0 (D). Indeed, consider some g ∈ W 1,p
0 (D) and (with a re-notation

of the indices) suppose that v�n ,g⇀vg weakly in W 1,p
0 (D). There exists a sequence

gk ∈ D(D) such that gk→g strongly in W 1,p
0 (D). Following [102], one can find a

uniform bound for v�n ,gk , hence there exists a constant β such that
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‖v�n ,gk − v�n ,g‖W 1,p(D) ≤ β‖g − gk‖W 1,p
0 (D)

for all k ∈ N. Then ‖v − vk‖W 1,p(D) ≤ β‖g − gk‖W 1,p
0 (D)

and if vk − g ∈ W 1,p
0 (�)

we conclude that v − g ∈ W 1,p
0 (�).

For proving (4.40) we consider a sequence un⇀u weakly in W 1,p
0 (D), with un ∈

W 1,p
0 (�n). Following [102], for a subsequence still denoted using the same indices,

�n γp-converges to (RN , µ), µ being the measure defined by (4.18). Then we have

u ∈ W 1,p
0 (D) ∩ L p(D, µ). To prove that u ∈ W 1,p

0 (�) it suffices to verify that

W 1,p
0 (D) ∩ L p(D, µ) ⊆ W 1,p

0 (�).(4.49)

Consider some g∗ ∈ W 1,p
0 (D). For a subsequence still denoted using the same in-

dices, we have v�n ,g∗⇀v weakly in W 1,p
0 (D) and v satisfies the equation{

−�pv + µ|v − g∗|p−2(v − g∗) = 0 in W 1,p
0 (D) ∩ L p(D, µ),

v − g∗ ∈ W 1,p
0 (D) ∩ L p(D, µ).

(4.50)

Hence, on one side we obtain that v−g∗ ∈ W 1,p
0 (D)∩L p(D, µ), and on the other

side the hypothesis we assumed gives v − g∗ ∈ W 1,p
0 (�). To obtain the conclusion

it is sufficient to prove that the family of functions written in the form v − g∗ with
the properties above is dense in W 1,p

0 (D) ∩ L p(D, µ). This will provide inclusion
(4.49). Set v − g∗ = z. We have⎧⎨⎩−�p(z + g∗)+ µ|z|p−2z = 0 in W 1,p

0 (D) ∩ L p(D, µ),

z ∈ W 1,p
0 (D) ∩ L p(D, µ).

(4.51)

The family {ϕw}ϕ∈D(D), where ϕ ∈ C∞c (D), and w = u Aµ,1,0, with Aµ being
the regular set of the measure µ (i.e., the union of all finely open sets of finite µ-
measure), is dense in W 1,p

0 (D) ∩ L p(D, µ). Fix now some z = ϕw. For this z we

can prove the existence of some g ∈ W 1,p
0 (D) such that

−�p(z + g)+ µ|z|p−2z = 0.

Indeed, the existence of such a g is trivial if µ|z|p−2z ∈ W−1,q(D). This follows
immediately from the particular structure of z. Consider θ ∈ D(D). Then

〈µ|z|p−2z, θ〉
W−1,q (D)×W 1,p

0 (D)
=
∫
{w>0}

θ |z|p−2zdµ

=
∫
{w>0}

θ |z|p−2z
dν

w p−1

= 〈θ |ϕ|p−2ϕ, 1+�pw〉W−1,q (D)×W 1,p
0 (D)

.

Since �pw ∈ W−1,q(D) we get µ|z|p−2z ∈ W−1,q(D) and this concludes the
proof.
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Proof of Theorem 4.8.6, continuation. According to Lemma 4.8.7, it suffices to
study the behavior of v�n ,g . Therefore, let us consider some g ∈ D(D) and v�n ,g⇀v

weakly in W 1,p
0 (D).

It is sufficient to prove v = g p-q.e. on �c. In fact we use an estimation of the
oscillation of v�n ,g near the boundary. The lower semicontinuity of the capacity will
provide a uniform behavior. There exist convex combinations

φn =
Nn∑

k=n

αn
k vk

W 1,p
0 (D)→ v

and for a subsequence (still denoted using the same indices) it converges p-q.e. (for
p-quasi-continuous representatives). Let us denote by D \ E the set of points where
the convergence is pointwise, with capp(E) = 0. So, for x ∈ D \ E , for every ε > 0
we have

|v(x)− g(x)| ≤ |v(x)− φn(x)| + |φn(x)− g(x)|
and for n large enough we also have |v(x) − φn(x)| < ε/2. We must prove that we
have |φn(x)| < ε/2 or, even better, that |vn(x)− g(x)| < ε/2 for n large enough.

One can apply directly Lemma 4.6.5 for h = v�,g and θ = g and get for a point
x0 ∈ ∂�, for all x, y ∈ � ∩ Bx0,r ,

|v�,g(x)− v�,g(y)| ≤ cg M(4R)α + 2M exp(−cw(�, x0, r, R)),(4.52)

where α is the Hölder exponent of g. If y ∈ ∂�∩ Bx0,r is a regular point in the sense
of Wiener, i.e., ∫ 1

0

cap(�c ∩ By,t , By,2t )

cap(By,t , By,2t )

dt

t
= +∞,(4.53)

then v�,g(y) = g(y) (see also [2], [3]) and one can derive the inequality

|v�,g(x)− g(x)| ≤ 2cg M(4R)α + 2M exp(−cw(�, x0, r, R))(4.54)

for all x ∈ � ∩ Bx0,r .
This last inequality proves that if one can handle the behavior of the sequence(

w(�n, x0, r, R)
)
, then the oscillations of v�n ,g relatively to g are uniform in some

neighborhoods of x0.
We shall use the nonlinear version of Lemma 4.6.5 (see [141]).

Lemma 4.8.8 Suppose that� is bounded. Let θ ∈ W 1,p(�)∩C(�) and let h be the
unique p-harmonic function in � with θ − h ∈ W 1,p

0 (�). If x0 ∈ ∂�, then for every
0 < r ≤ R we have

osc(h, � ∩ Bx0,r ) ≤ osc(θ, ∂� ∩ Bx0,2R)+ osc(θ, ∂�)exp(−cw(�, x0, r, R)),

where
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w(�, x0, r, R) =
∫ R

r

(capp(�
c ∩ Bx0,t , Bx0,2t )

capp(Bx0,t , Bx0,2t )

)q−1 dt

t
,

osc(h, �) = | sup
�

h(x)− inf
�

h(x)|,

and c depends only on the dimension of the space.

Proof of Theorem 4.8.6, continuation. We distinguish between two assertions: x ∈
∂� and x ∈ ext (�). Let us first consider the case x ∈ ∂�. Since the set of non-
regular points in the sense of Wiener (see (4.53) belonging to the boundary of � has
zero capacity, without loss of generality one can suppose that x is regular. Let us give
two lemmas.

Lemma 4.8.9 For all x ∈ RN , and for all 0 < r < R we have

liminf
n→∞ w(�n, x, r, R) ≥ w(�, x, r, R).

Proof The proof of this lemma is immediate from the lower semicontinuity of
the local capacity, and the properties of the Lebesgue integral (Fatou’s lemma and
(4.48)).

Lemma 4.8.10 There exists a positive constant c depending only on the dimension
of the space and p, such that for all R > r > 0 and for all x1, x2 ∈ RN with
|x1 − x2| = δ ≤ r/2 we have

w(�, x1, r, R) ≥ cw(�, x2,
r

2
,

R

2
).

Proof We have�c∩Bx2,σ ⊆ �c∩Bx1,ε if σ+δ ≤ ε. Hence for any R ≥ t ≥ r ≥ 2δ
we have

�c ∩ Bx2,t/2 ⊆ �c ∩ Bx1,t

since t/2+ δ ≤ t . So we get the inclusion Bx1,2t ⊆ Bx2,4t and then we can write

capp(�
c ∩ Bx2,t/2, Bx2,4t ) ≤ capp(�

c ∩ Bx1,t , Bx1,2t ).

According to [141] there exists a constant ξ depending only on the dimension N ,
such that

ξ capp(�
c ∩ Bx2,t/2, Bx2,t ) ≤ capp(�

c ∩ Bx2,t/2, Bx2,4t )

≤ capp(�
c ∩ Bx1,t , Bx1,2t ).

Hence

ξq−1
∫ R

r

(capp(�
c ∩ Bx2,t/2, Bx2,t )

capp(Bx2,t , Bx2,2t )

)q−1 dt

t

≤
∫ R

r

(capp(�
c ∩ Bx1,t , Bx1,2t )

capp(Bx1,t , Bx1,2t )

)q−1 dt

t
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or, making a change of variables in the first integral, and using the behavior of the
capacity on homothetic sets we get

ξq−1

2(N−2)(q−1)

∫ R/2

r/2

(capp(�
c ∩ Bx2,t , Bx2,2t )

capp(Bx2,t , Bx2,2t )

)q−1 dt

t

≤
∫ R

r

(capp(�
c ∩ Bx1,t , Bx1,2t )

capp(Bx1,t , Bx1,2t )

)q−1 dt

t
.

Setting (ξ22−N )q−1 = c we get

w(�, x1, r, R) ≥ cw(�, x2,
r

2
,

R

2
)

as soon as |x1 − x2| ≤ r/2 < R/2.

Proof of Theorem 4.8.6, conclusion. Let us consider x ∈ ∂� a regular point in the
sense of (4.53). We shall fix later r, R > 0 such that w(�, x, r/2, R/2) > M . The
value of M will also be made precise. If |xn−x | ≤ r/2 we have from Lemma 4.8.10,

w(�n, xn, r, R) ≥ cw(�n, x,
r

2
,

R

2
).

From Lemma 4.8.9, for n large enough one can write

w(�n, x,
r

2
,

R

2
) ≥ 1

2
w(�, x,

r

2
,

R

2
)

which implies

w(�n, xn, r, R) ≥ cM

2

independently of the choice of xn with |xn − x | ≤ r/2.
If x ∈ �c

n , then p-quasi-everywhere we have vn(x) = g(x). Let us suppose that
x ∈ �n . Since capp(�

c ∩ Bx,δ, Bx,2δ) > 0 for any δ > 0 (the point x being regular)
we have capp(�

c
n∩Bx,δ, Bx,2δ) > 0 for n large enough. We fix δ = r/2 and consider

x ∈ �n , xn ∈ Bx,δ ∩ ∂�n and xn regular. The existence of such a point follows
from the fact that capp(∂�n ∩ Bx,δ, Bx,2δ) > 0 (see [42]).

One can then write vn(xn) = g(xn), and using relation (4.52) we get

|vn(x)− g(x)| ≤ cg M(4R)α + 2M exp(−cw(�n, xn, r, R)).

Now we fix r, R,M such that

R = 1

4

( ε

4cg M

)1/α
, M = − 2

cc
ln

ε

8M

and r < R/2 such that g(�, x, r/2, R/2) > M . We have
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cg M(4R)α + 2Mexp (−cc
M

2
) ≤ ε

2

and for n large enough, such that g(�n, xn, r, R) ≥ cM/2 for |xn − x | ≤ r/2, also
capp(�

c
n ∩ Bx,r/2, Bx,r ) > 0. Hence |vn(x)−g(x)| < ε/2 for n large enough, which

finally implies |v(x)− g(x)| ≤ ε. Since ε was arbitrarily chosen we get v(x) = g(x)
for q.e. x ∈ ∂�.

For the case x ∈ ext(�), the same proof works withw(�, x, r, R) = ∫ R
r 1/tdt =

ln(R/r).

In Theorem 4.8.6 one can replace open sets by p-quasi-open sets. For the neces-
sity the same proof follows. For the sufficiency, if (An)n∈N and A are p-quasi-open
subsets of D satisfying (4.48), we construct open sets �n such that An ⊆ �n and
capp(�n \ An) ≤ 1/n, and open sets �ε such that A ⊆ �ε and capp(�ε \ A) ≤ ε.
One sees that relation (4.48) still holds for �n and for �ε. Hence we apply Theorem
4.8.6 and get

w − limsup
n→∞

W 1,p
0 (�n) ⊆ W 1,p

0 (�ε).

Since W 1,p
0 (An) has the same Kuratowski limits as W 1,p

0 (�n) we get

w − limsup
n→∞

W 1,p
0 (An) ⊆ W 1,p

0 (�ε).

This inclusion holds for any ε > 0, therefore we can replace �ε by A.

Remark 4.8.11 Note that for some fixed x ∈ RN , the family of t ∈ R+ such that
the strict inequality

capp(�
c ∩ Bx,t , Bx,2t ) > capp(�

c ∩ Bx,t , Bx,2t )

holds, is at most countable (see [42]). Hence, we can state that �n γp-converges to
� if and only if for every x ∈ RN there exists an at most countable family Tx ⊆ R+
such that for all t ∈ R+ \ Tx we have

lim
n→∞ capp(�

c
n ∩ Bx,t , Bx,2t ) = capp(�

c ∩ Bx,t , Bx,2t ).

Remark 4.8.12 The Mosco convergence of W 1,p
0 -spaces was studied by Dal Maso

[93], [94] and by Dal Maso-Defranceschi [95]. Using the frame of the relaxation
theory, it was proved that �n γp-converges to � if and only if there exists a family
of sets A ⊆ P(D) which is rich or dense (see the exact definitions in [94]) in P(D)
such that

capp(�
c ∩ A, D) = lim

n→∞ capp(�
c
n ∩ A, D) ∀A ∈ A.(4.55)

Here P(D) denotes the family of all subsets of D.
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By considering for example monotone sequences of the family P(D), in [94] it is
shown that the convergence in the sense of Mosco is still equivalent to the following
two relations which have to be satisfied for all p-quasi-open sets A ⊆ D and p-
quasi-compacts sets F ⊆ A ⊆ D:

capp(�
c ∩ A, D) ≥ limsup

n→∞
capp(�

c
n ∩ F, D),(4.56)

and

capp(�
c ∩ A, D) ≤ liminf

n→∞ capp(�
c
n ∩ A, D).(4.57)

In Theorem 4.8.4 and 4.8.6, we respectively proved that (4.39) is equivalent to
a simpler version of (4.56) (where capacity is calculated by intersection with closed
balls) and (4.40) is equivalent to a simpler version of (4.57) (where capacity is cal-
culated on open balls).

4.9 Stability in the sense of Keldysh

In a large class of problems, the shape stability question for the solution of the elliptic
equation {−�pu� = f in �,

u� ∈ W 1,p
0 (�)

(4.58)

has the following formulation: let (�n)n∈N be a perturbation of an open set �; the
question is whether the solution u�n of equation (4.58) on�n converges in W 1,p

0 (D)
to u�.

Keldysh studied in [146] the so-called compact convergence (see also [139],
[140], [180]).

Definition 4.9.1 It is said that �n compactly converges to � if for every compact
K ⊆ � ∪�c

there exists nK ∈ N such that for all n ≥ nK , K ⊆ �n ∪�c
n.

The compact convergence implicitly contains condition (4.39). Keldysh proved
(in the linear setting) that the shape stability holds for this kind of perturbations
provided that the limit set � is stable. By definition, � is p-stable, if every function
u ∈ W 1,p(RN ) vanishing a.e on�

c
belongs to W 1,p

0 (�). Using the result of Hedberg
(see [137]), this is equivalent to

∀u ∈ W 1,p(RN ), u = 0 a.e. on �
c ⇒ u = 0 p-q.e. on �c.

Roughly speaking, open sets with cracks are not stable. Notice that the stability of
the solution depends only on�. No regularity assumption is made on the converging
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sequence (�n). This is the main reason for which it is of interest to characterize the
p-stable domains.

Using the results we obtained in Section 4.8, we are in a position to give a simple
proof of the characterization of the p-stable domains.

Proposition 4.9.2 A bounded open set � is p-stable if and only if for every x ∈
RN , r > 0 we have

capp(Bx,r \�, Bx,2r ) = capp(Bx,r \�, Bx,2r ).(4.59)

Proof The proof is an immediate consequence of the fact that �n = ∪x∈�Bx,1/n

compactly converges to�. If� is p-stable, then�n γp-converges to�. By Theorem
4.8.6 inequality (4.48) holds and we get

capp(Bx,r \�, Bx,2r ) ≤ liminf
n→∞ capp(Bx,r \�n, Bx,2r ).

The behavior of the capacity on increasing sequences gives

lim
n→∞ capp(Bx,r \�n, Bx,2r ) = capp(Bx,r \�, Bx,2r ),

hence capp(Bx,r \�, Bx,2r ) ≤ capp(Bx,r \�, Bx,2r ). The equality follows from the
monotonicity of the capacity in the first argument.

Conversely, relation (4.59) yields that �n γp-converges to �. Then any function

u ∈ W 1,p(RN ) with u = 0 a.e. on (�)c has the property that u ∈ W 1,p
0 (�n), since

u = 0 p-q.e. on �c
n . The γp-convergence of �n to � gives u ∈ W 1,p

0 (�), hence �
is p-stable.

4.10 Further remarks and generalizations

Remark 4.10.1 Generalization of Šverák’s result. In three or more dimensions a
curve has zero capacity, hence an analogue of Šverák’s result cannot be obtained for
the Laplace operator. In [52] a Šverák type result is proved for the p-Laplacian for
p ∈ (N−1, N ]. For p > N a trivial shape continuity result holds in the H c-topology,
since a point has strictly positive p-capacity.

Remark 4.10.2 Operators in divergence form. Instead of the Laplace operator, in
equation (4.34) one could consider an elliptic operator of the form −div(A(x)∇u)+
a(x)u, where A ∈ L∞(D,RN×N ) is such that α Id ≤ A ≤ β Id and a ∈ L∞(D,R+).
Theorem 4.6.7 remains true with the same hypotheses; this is a consequence of the
Mosco convergence of the Sobolev spaces. Nonhomogeneous boundary conditions
can obviously be reduced to homogeneous boundary conditions by changing the
right-hand side of the equation.
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Remark 4.10.3 Nonlinear operators. The nonlinear case was treated in [52], where
monotone operators similar to the p-Laplacian, of the form − div(A(x,∇u)) are
considered. All shape continuity results of Section 4.6 hold in similar classes of
domains: convex, uniform cone, flat cone, p-capacity density condition, p-uniform
Wiener criterion. Some extensions of these results can be found in [197].

Remark 4.10.4 Stronger convergence of solutions. If we limit ourselves to con-
sider only domains � such that for f ∈ L∞(D) the solutions u�, f are continuous
on D, the question of studying the uniform convergence of solutions under geometric
perturbations arises. We refer the interested reader to [13] (see also [104] and [105])
where this kind of problems are discussed.

Remark 4.10.5 Systems of equations. The case of elliptic systems, such as the elas-
ticity equations, is treated in [51]; the Stokes equation is discussed in [187]. New
difficulties appear when dealing with the convergence in the sense of Mosco of free
divergence spaces, mainly because for nonsmooth open sets � it may happen that

{u ∈ [H1
0 (�)]

N : div u = 0} 	= cl[H1
0 (�)]

N {u ∈ [C∞0 (�)]
N : div u = 0}.

Remark 4.10.6 Evolution equations. When studying the shape continuity of evo-
lution equations, it is common to try to prove the following type of result: if shape
continuity holds for the corresponding stationary equation, prove the shape continu-
ity for the evolution equation. For the heat equation we refer to the book by Attouch
[19], while for more general (degenerate) parabolic problems we refer to [184]. Hy-
perbolic equations were discussed by Toader in [190].



5

Existence of Classical Solutions

Let A be a class of admissible open (or, if specified, quasi-open) subsets of the design
region D and F : A → [0,+∞] be a functional such that F is γ -lower semicon-
tinuous. Our purpose is to look for the existence of a minimizer for the following
problem.

(℘) min{F(�) : |�| ≤ m, � ∈ A}.
We point out that the γ -convergence on the family of all open (or quasi-open)

subsets of D is not compact if the dimension N is greater than 1; indeed several
shape optimization problems of the form (℘) do not admit any solution, and the
introduction of a relaxed formulation is needed in order to describe the behavior of
minimizing sequences.

Even if in general problem (℘) does not admit a solution, some particular cases
of existence results are available, provided that either the cost functional F is regular
in some sense or the family of admissible domains A is smaller. This is for example
the case when the cost functional F is monotone decreasing with respect to the set
inclusion or if we search the minimizer in a class of admissible domains on which
we impose some geometrical constraints.

5.1 Existence of optimal domains under geometrical constraints

In Chapter 4 we proved the continuity in the Hc topology of the solution of (4.34)
in several classes of domains. In order to deduce that these classes are γ -compact,
it would be sufficient to prove that they are closed in the Hc-topology and that the
Lebesgue measure is lower semicontinuous in the Hc-topology. These below are
easy exercises which use the geometric properties of the Hc-convergence and of the
capacity.

Proposition 5.1.1 The following classes of domains (defined in Section 4.6) are γ -
compact: Aconvex , Auni f cone, Auni f f lat cone, Acap densi ty , Auni f Wiener ; in two di-
mensions the class Al .
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Exercise 1 Prove that if (�n) is a sequence of convex sets converging in the Hc-
topology to �, then � is also convex.

Exercise 2 Prove that the classes of domains satisfying a uniform exterior cone or
flat cone condition are compact in the Hc-topology.

Hint: Suppose that �n
Hc

→ �. For every x ∈ ∂� there exists a subsequence of
(�n) (still denoted by the same indices) and xn ∈ ∂�n such that xn → x . The
condition in x for � is satisfied by the cone obtained as the Hausdorff limit of the
sequence of cones corresponding to the points xn for �n .

Exercise 3 Prove that the classes of domains satisfying a density capacity condition
or a uniform Wiener criterion are compact in the Hc-topology.

Hint: Prove that if �n
Hc

→ �, then

cap(�c ∩ Bx,t , Bx,2t ) ≥ limsup
n→∞

cap(�c
n ∩ Bx,t , Bx,2t ),

for every x ∈ RN and every t > 0 (see the necessary and sufficient conditions for
the γ -convergence in Section 4.8).

Exercise 4 Prove that if (Kn) is a sequence of compact connected sets converging in
the Hausdorff topology to K , then K is also connected.

The direct methods of the calculus of variations and Proposition 5.1.1 give the
following.

Theorem 5.1.2 Let j : D × R × RN → R be a Carathéodory function. Then the
shape optimization problem

min
{ ∫

�

j (x, u�, f ,∇u�, f ) dx : � ∈ Uad

}
has at least one solution for Uad =Aconvex , Auni f cone, Auni f f lat cone, Acap densi t y ,
Auni f Wiener , Al (for N = 2), respectively.

Remark 5.1.3 Let us consider again the optimization problem (4.3)

min
{ ∫

D
|u A − c|2 dx : −�u A = 1 in A, u A ∈ H1

0 (A)
}
.

We have seen in Section 4.2 that if c is sufficiently small, no regular optimal solution
exists. The proof was obtained through a comparison argument between the cost of
a smooth set A and the cost of A∪ Bε, where Bε is a ball of radius ε disjoint from A.

Consider now the same shape optimization problem, in the case of dimension two
and with the additional constraint that admissible domains A only vary among simply
connected open subsets of D, or more precisely in the class O1(D), By Theorem
5.1.2 an optimal solution Aopt exists, even if the comparison argument between Aopt

and Aopt ∪ Bε (sometimes called topological derivative) still works. As a conclusion
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we obtain that Aopt must be dense in D and, if c is small enough, different from the
whole D.

In particular, if D is a disk in R2, it is easy to see that Aopt cannot be radially
symmetric, which gives a new and interesting example of break of symmetry.

5.2 A general abstract result for monotone costs

In this section we present a general framework in which the minimization problem
of a monotone functional can be set.

Consider an ordered space (X,≤) and a functional F : X → R. Suppose that X
is endowed with two convergences denoted by γ and wγ , the last convergence being
weaker than the first one and sequentially compact (it will be called weak gamma
convergence). Moreover suppose that the functional F is γ lower semicontinuous.
The relation we assume between γ and wγ is the following one:

Assumption (A) For every xn
wγ
⇀ x there exists a sequence of integers {nk} and a

sequence {ynk } in X such that ynk ≤ xnk and ynk

γ→ x .

The monotonicity of F becomes an important assumption because of the follow-
ing result.

Proposition 5.2.1 If F : X → R is monotone nondecreasing and γ lower semicon-
tinuous, then F is wγ lower semicontinuous.

Proof Let us consider xn
wγ
⇀ x , and let

{
xnk

}
be a subsequence such that

lim
k→∞

F(xnk ) = liminf
n→∞ F(xn).

Using assumption (A) above there exists a subsequence (which we still denote by

{xnk }) and ynk ≤ xnk such that ynk

γ→ x . The γ lower semicontinuity of F gives

F(x) ≤ liminf
k→∞

F(ynk )

and the monotonicity of F gives F(ynk ) ≤ F(xnk ). Therefore

F(x) ≤ liminf
k→∞

F(ynk ) ≤ liminf
k→∞

F(xnk ) = liminf
n→∞ F(xn)

which concludes the proof.

Consider now another functional � : X → R and the minimization problem

min{F(x) : x ∈ X, �(x) ≤ 0}.(5.1)

Theorem 5.2.2 Let F be a nondecreasing γ lower semicontinuous functional and
let � be wγ lower semicontinuous. Under the assumption (A) above, problem (5.1)
admits at least one solution.
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Proof The proof follows straightforwardly by the direct methods of the calculus of
variations, taking into account Proposition 5.2.1 and the fact that wγ is supposed
sequentially compact.

The general framework introduced above, even if quite trivial, applies very well
in the case of shape optimization problems, and we shall apply it also in the case of
obstacles. The main difficulty is to “identify” the wγ -convergence, and to prove that
assumption (A) is fulfilled.

5.3 The weak γ-convergence for quasi-open domains

We use the general framework introduced in Section 5.2 for monotone functionals
and introduce the weak γ -convergence for quasi-open sets.

Let us consider the admissible class

A = {A ⊆ D : A is quasi-open},

where D is a bounded open set. In the following definition we use the notation given
in (4.26).

Definition 5.3.1 We say that a sequence (An) of A weakly γ -converges to A ∈ A
if wAn converges weakly in H1

0 (D) to a function w ∈ H1
0 (D) (that we may take

quasi-continuous) such that A = {w > 0}.
We point out that, in general, the function w in Definition 5.3.1 does not coin-

cide with wA (this happens only if An γ -converges to A). Moreover, if An weakly
γ -converges to A, then the Sobolev space H1

0 (A) contains all the weak limits of se-
quences of elements of H1

0 (An). Indeed, by [66, Lemma 3.2], if un ∈ H1
0 (An) con-

verge to u weakly in H1
0 (D), then u = 0 q.e. on {w = 0}, which gives u ∈ H1

0 (A).
Finally, notice that since w has been taken quasi-continuous (see Section 4.1), the
set A = {w > 0} is always quasi-open.

Lemma 5.3.2 For every A ∈ A we have cap
{

A�{wA > 0}} = 0.

Proof Since wA = 0 q.e. on D \ A, the inclusion {wA > 0} ⊆ A q.e. is obvious.
In order to show the inclusion A ⊆ {wA > 0} q.e., by using [92, Lemma 1.5] we
may find an increasing sequence (vn) of nonnegative functions in H1

0 (D) such that
sup vn = 1A q.e.; moreover, by [102, Proposition 5.5] for every vn there exists a
sequence (φn,k) in C∞c (D) such that φn,kwA tends to vn strongly in H1

0 (D) and q.e.
too. Therefore, since φn,kwA = 0 on {wA = 0}, we also have vn = 0 q.e. on {wA =
0} and so 1A = 0 q.e. on {wA = 0}, which shows the inclusion A ⊆ {wA > 0} q.e.

Proposition 5.3.3 If (An) is a sequence in A which γ -converges to A, then (An)

also weakly γ -converges to A.
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Proof It follows from the definitions of γ -convergence and weak γ -convergence,
by using Lemma 5.3.2

Proposition 5.3.4 The weak γ -convergence on A is sequentially compact.

Proof If (An) is a sequence in A, by the boundedness of D we obtain that wAn

is bounded in H1
0 (D); hence we may extract a subsequence weakly converging in

H1
0 (D) to some function w. Defining A = {w > 0} we get that a subsequence of An

weakly γ -converges to A.

Assumption (A) for the γ and the wγ convergences of quasi-open sets is contained
in the following lemma.

Lemma 5.3.5 Let (An), A, B in A be such that An weakly γ -converge to A and
A ⊆ B. Then there exists a subsequence {Ank } of (An) and a sequence {Bk} in A
such that Ank ⊆ Bk and Bk γ -converge to B.

Proof This is a consequence of Lemma 4.3.15.

Proposition 5.3.6 The Lebesgue measure is weakly γ -lower semicontinuous on A.

Proof If An → A in the weak γ -sense, we have wAn → w weakly H1
0 (�), with

A = {w > 0}, and for a subsequence the convergence is pointwise a.e. If x ∈ A is
such that wA(x) > 0 and wAn (x) → w(x), then wAn (x) > 0 for n large enough,
which implies that x ∈ An for n large enough. Therefore, by Fatou’s lemma,

|A| ≤ liminf
n→+∞ |An|,

which concludes the proof.

5.4 Examples of monotone costs

Theorem 5.4.1 Let F : A → R be a function which is γ -lower semicontinuous
and monotone decreasing with respect to the set inclusion. Then the optimization
problem

min{F(A) : |A| = m, A ∈ A}

admits at least a solution in A.

Proof This is a consequence of Theorem 5.2.2 and Lemma 5.3.5.
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Example 5.4.2 (Domains with minimal kth eigenvalue) For every A∈A let λk(A)
be the kth eigenvalue of the Dirichlet Laplacian on H1

0 (A), with the convention
λk(A) = +∞ if cap(A) = 0. It is well known that the mappings A �→ λk(A)
are decreasing with respect to set inclusion (see, e.g., Courant & Hilbert [89]). They
are moreover continuous with respect to γ -convergence (see Chapter 6), so that The-
orem 5.4.1 applies and for every k ∈ N and 0 ≤ c ≤ |D|we obtain that the minimum

min
{
λk(A) : A ∈ A, |A| = c

}
is achieved. More generally, the minimum

min
{
�
(
λ(A)

)
: A ∈ A, |A| = c

}
is achieved, where λ(A) denotes the sequence

(
λk(A)

)
and the function� : R

N → R
is lower semicontinuous and nondecreasing, in the sense that

λh
k → λk ∀k ∈ N ⇒ �(λ) ≤ liminf

h→∞
�(λh) ,

λk ≤ µk ∀k ∈ N ⇒ �(λ) ≤ �(µ) .

Example 5.4.3 (Domains with minimal capacity) Since cap(E) is nondecreasing,
the mapping A �→ F(A) := cap(D \ A) is decreasing with respect to the set inclu-
sion. Since F is also γ -continuous, as we may easily verify, Theorem 5.4.1 applies,
so that the minimum

min
{

F(A) : A ∈ A, |A| = c
}

is achieved. If F(D) denotes the class of all quasi-closed subsets of D, we see im-
mediately that the problem

min
{
cap(E) : E ∈ F(D), |E | = k

}
(5.2)

admits at least a solution E0 (it is enough to take c = |D| − k in the previous
problem). Let us prove that

cap(E0) = min
{
cap(E) : E ⊆ D, |E | = k

}
.(5.3)

For every subset E of D there exists a quasi-closed set E ′ such that E ⊆ E ′ and
cap(E) = cap(E ′) (see, e.g., Fuglede [126, Section 2], or Dal Maso [94, Proposi-
tion 1.9]). If |E | = k, then |E ′| ≥ k, so that there exists E ′′ ∈ F(D) with E ′′ ⊆ E ′
and |E ′′| = k. By (5.2) we have

cap(E0) ≤ cap(E ′′) ≤ cap(E ′) = cap(E),

which proves (5.3).

Example 5.4.4 (Domains which minimize an integral functional) Let us take f ∈
H−1(D), with f ≥ 0, and let g : D × R → R be a Borel function such that
g(x, ·) is lower semicontinuous and decreasing on R for a.e. x ∈ D, and g(x, s) ≥
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−α(x) − βs2 for a suitable function α ∈ L1(D) and for a suitable constant β ∈ R.
For every A ∈ A let u A = RA( f ) and let

F(A) =
∫

D
g
(
x, u A(x)

)
dx .

Then F is lower semicontinuous with respect to γ -convergence and, since f ≥ 0, the
maximum principle and the monotonicity properties of g imply that F is decreasing
with respect to set inclusion. Therefore, by Theorem 5.4.1 the minimum problem

min
{∫

D
g
(
x, u A(x)

)
dx : A ∈ A, |A| = c

}
admits at least a solution.

5.5 The problem of optimal partitions

In this section we fix an integer k and we consider shape cost functionals F : Ak →
[0,+∞]; the optimization problems we deal with are of the form:

min
{

F(A1, . . . , Ak) : Ai ∈ A, Ai ∩ A j = ∅ for i 	= j
}
.(5.4)

In the following a family {A1, . . . , Ak} of pairwise disjoint subsets of D will be
called a partition.

We say that F is γ -lower semicontinuous if for all γ -convergent sequences
An

i → Ai for i = 1, . . . , k we have

F(A1, . . . , Ak) ≤ liminf
n→+∞ F(An

1, . . . , An
k ).(5.5)

Analogously, we say that F is weakly γ -lower semicontinuous if (5.5) holds for all
sequences An

i which weakly γ -converge to Ai for i = 1, . . . , k.
It is clear that, without imposing extra assumptions on the cost functional F , we

could not expect the existence of an optimal partition. In fact, even in the case k = 1,
we have seen in Sections 4.2 and 5.2 that the existence of an optimal domain may
fail and some monotonicity assumptions (or geometric constraints) are needed in or-
der to obtain unrelaxed solutions; otherwise, only relaxed solutions in some suitable
sense (see Section 4.3) can be obtained. Something similar happens for problems of
optimal partitions of the form (5.4).

In order to characterize the expression of the relaxed problem associated to (5.4)
we consider the case in which we have k sequences {A1

n}, . . . , {Ak
n} of pairwise

disjoint quasi-open subsets of D. If we consider the associated Dirichlet measures
µi

n = ∞D\Ai
n
, i = 1, . . . , k, of the class M0(D) introduced in Chapter 4, from the

sequential compactness property of M0(D) we deduce that, up to a subsequence,
there exist k measures µi ∈ M0(D), i = 1, . . . , k, such that µi

n γ -converge to µi

for any i = 1, . . . , k.
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Our goal is to characterize all k-tuples (µ1, . . . , µk) which are the γ -limits of
µi

n = ∞D\Ai
n
, with Ai

n pairwise disjoint (we may call such a k-tuple an admissible
or an attainable one). If we denote by Aµi the set of finiteness of the measure µi

introduced in Section 4.3 we may prove (see [73]) the following result.

Theorem 5.5.1 A k-tuple (µ1, . . . , µk) is admissible if and only if it satisfies the
following property:

cap(Aµi ∩ Aµ j ) = 0, ∀i, j = 1, . . . , k, i 	= j.(5.6)

In particular, if the property above holds, it is possible to find k sequences of pairwise
disjoint domains {Ai

n} such that the corresponding Dirichlet measures µi
n = ∞D\Ai

n
γ -converge to µi for any i = 1, . . . , k.

Remark 5.5.2 By the theorem above, the limit measures µi are not “independent”.
For example, it will not be possible to get an attainable k-tuple formed by k measures
of the Lebesgue type on D.

A particular case of problem (5.4) occurs when we consider f1, . . . , fk ∈ L2(D)
and we take an integrand j : D × Rk → R, satisfying the following conditions:

(i) the function j (·, s) is Lebesgue-measurable in D, for every s ∈ Rk ;

(ii) the function j (x, ·) is continuous in Rk , for a.e. x ∈ D;

(iii) there exist a0 ∈ L1(D) and c0 ∈ R such that, for a.e. x ∈ D and for every
s ∈ Rk , ∣∣ j (x, s)

∣∣ ≤ a0(x)+ c0|s|2.

For every k-tuple (u1, . . . , uk) ∈ L2(D)k we define

J (u1, . . . , uk) =
∫

D
j
(
x, u1(x), . . . , uk(x)

)
dx .(5.7)

If we denote by ui
A the solution of the Dirichlet problem

ui
A ∈ H1

0 (A), −�ui
A = fi in H−1(A)(5.8)

we may then consider the cost functional

F(A1, . . . , Ak) = J (u1
A1
, . . . , uk

Ak
).(5.9)

From Theorem 5.5.1 and from the assumptions made on the integrand j we ob-
tain the following relaxation result.

Theorem 5.5.3 The relaxed form of the optimization problem (5.4) with a cost func-
tional F given by (5.9) is
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min
{

J (u1
µ1
, . . . , uk

µk
) : µi ∈M0(D),

cap(Aµi ∩ Aµ j ) = 0 ∀i, j = 1, . . . , k, i 	= j
}(5.10)

where ui
µ are the solutions of the Dirichlet problems

ui
µ ∈ H1

0 (D) ∩ L2
µ, −�ui

µ + µui
µ = fi ,(5.11)

and the partial differential equation is intended in the sense seen in Chapter 4.
In particular, the relaxed optimization problem (5.10) admits an optimal solution
(µ

opt
1 , . . . , µ

opt
k ).

Proof The functional J turns out to be continuous in the strong topology of L2(D)k ;
therefore, the function (µ1, . . . , µk) �→ J (uµ1 , . . . , uµk ) is continuous on M0(D)k

with respect to the γ -convergence and the conclusion of the theorem follows imme-
diately from Theorem 5.5.1. The existence of relaxed optimal solutions now fol-
lows by the sequential compactness of the class M0(D) with respect to the γ -
convergence.

Similarly to what we did in Section 4.4 for the case k = 1, some necessary
conditions of optimality for the solutions of the relaxed optimization problem (5.10)
can be obtained. The methods used to prove these conditions are quite similar to
those used in Section 4.4 for the case of only one measure µ.

Let us suppose that, in addition to the conditions above, the function j : D ×
Rk → R satisfies:

(iv) the function j (x, ·) is of class C1 on Rk ;

(v) the functions jsi (·, s) are Lebesgue-measurable on D for every s ∈ Rk ;

(vi) there exist a1 ∈ L2(D) and c1 ∈ R such that, for a.e. x ∈ D and for every
s ∈ Rk

k∑
i=1

∣∣ jsi (x, s)
∣∣ ≤ a1(x)+ c1|s|.

From the assumptions above it follows immediately that the map J defined by (5.7)
is differentiable on L2(D)k and its differential J ′ can be written as

〈J ′(u), v〉 =
k∑

i=1

∫
D

jsi (x, u)vi dx,

for any u, v ∈ L2(D)k . Here, 〈·, ·〉 denotes the duality pairing between L2(D)k and
its dual.

The necessary conditions of optimality we obtain are similar to the ones obtained
in Section 4.4 and are described in the theorem below. We recall that if ui

µi
solve the

state equations
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ui
µi
∈ H1

0 (D) ∩ L2
µi
, −�ui

µi
+ µi u

i
µi
= fi ,(5.12)

then the corresponding adjoint state equations are

vi
µi
∈ H1

0 (D) ∩ L2
µi
, −�vi

µi
+ µiv

i
µi
= jsi (x, uµ1 , . . . , uµk ).(5.13)

Notice that, since the measures {µi } satisfy the admissibility property of Theorem
5.5.1, then ui

µi
vanish q.e. on D \⋃ j 	=i Aµ j . We also define in a way similar to the

one of Section 4.4 the measures νAµi
and the corresponding functions αi and βi .

Theorem 5.5.4 Consider f ∈ L2(D)k and an integrand j : D × Rk → R sat-
isfying the conditions (i)–(vi) above. Let (µ1, . . . , µk) be a solution of the relaxed
optimization problem (5.10) and let ui

µi
and vi

µi
be the solutions of problems (5.12)

and (5.13) respectively. Then, for every i = 1, . . . , k we have

(a) ui
µi
vi
µi
≤ 0 q.e. on D;

(b) ui
µi
vi
µi
= 0 µi -a.e. on D;

(c) fi (x) jsi (x, 0, . . . , 0) ≥ 0 for a.e. x ∈ int∗(D \ Aµi );

(d) αiβi ≥ 0 νAµi
-a.e. on ∂∗Aµi \

(⋃
j 	=i ∂

∗Aµ j

)
.

Remark 5.5.5 Assume that the original optimization problem (5.4) admits a solu-
tion (A1, . . . , Ak) with Ai of class C2. Then we have µi = ∞D\Ai and the condi-
tions (a)–(d) of Theorem 5.5.4 take the form

(a′) ui
Ai
vi

Ai
≤ 0 q.e. on D;

(c′) fi (x) jsi (x, 0, . . . , 0) ≥ 0 for a.e. x ∈ D \ Ai ;

(d′)
∂ui

Ai
∂n

∂vi
Ai
∂n = 0 HN−1-a.e. on ∂Ai \

(⋃
j 	=i ∂A j

)
;

while condition (b) is trivially satisfied in this case.

Similarly to what we have seen in the case k = 1 of shape optimization problems,
also in the case of optimal partitions problems a monotonicity assumption on the cost
functional leads to the existence of unrelaxed solutions in the original class Ak .

Definition 5.5.6 We say that F : Ak → [0,+∞] is monotonically decreasing (in
the sense of the set inclusion) if for all (A1, . . . , Ak), (B1, . . . , Bk) ∈ Ak such that
Ai ⊆ Bi for i = 1, . . . , k in the sense of capacity, i.e., cap(Ai \ Bi ) = 0, then

F(B1, . . . , Bk) ≤ F(A1, . . . , Ak).

We may formulate now our existence result for optimal partitions problems (see
[46]).

Theorem 5.5.7 Let F : Ak → [0,+∞] be a weak γ -lower semicontinuous shape
functional. Then the following optimization problem admits a solution:

min
{

F(A1, . . . , Ak) : Ai ∈ A, cap(Ai ∩ A j ) = 0
}
.(5.14)
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Proof Consider a minimizing sequence (An
1, . . . , An

k )n∈N. Since the weak γ -con-
vergence is sequentially compact, there exists a subsequence (still denoted with the
same indices) such that

An
i → Ai (i = 1, . . . , k) in the weak γ -sense.

Since F is weakly γ -lower semicontinuous we have

F(A1, . . . , Ak) ≤ liminf
n→+∞ F(An

1, . . . , An
k ).

It remains only to prove that (A1, . . . , Ak) satisfies the constraint, that is cap(Ai ∩
A j ) = 0 for i 	= j . We have that wAn

i
· wAn

j
= 0 a.e. on D and wAn

i
→ wi

strongly in L2. Therefore, wi · w j = 0 a.e. on D. Since wi and w j are quasi-
continuous functions, their product wi ·w j is quasi-continuous too. Following [137]
a quasi-continuous function which vanishes almost everywhere on an open set van-
ishes quasi-everywhere. So wi · w j = 0 q.e. on D and so cap(Ai ∩ A j ) = 0.

Corollary 5.5.8 If F : Ak → [0,+∞] is monotonically decreasing and γ -lower
semicontinuous, then the original optimization problem (5.14) admits a solution.

As an example, we may consider a cost functional J of the form

J (A1, . . . , Ak) = φ
(
λ j1(A1), . . . , λ jk (Ak)

)
where λ j (A) are the eigenvalues of the Laplace operator −� on H1

0 (A), j1, . . . , jk
are given positive integers, and φ(t1, . . . , tk) is lower semicontinuous and nonde-
creasing in each variable. Then J fulfills all the assumptions of Corollary 5.5.8, so
that the minimization problem

min
{

J (A1, . . . , Ak) : Ai ∈ A, cap(Ai ∩ A j ) = 0
}

has a solution. For instance this is the case of problem

min
{
λ1(A1)+ λ1(A2) : A1, A2 ∈ A, cap(A1 ∩ A2) = 0

}
.

Using the wγ -l.s.c. of the Lebesgue measure, we obtain existence results for
shape optimization problems like

min
{

J (A)+ |A| : A ∈ A
}

with J : A→ [0,+∞] weakly γ -semicontinuous, or more generally for

min
{

J
(

A, |A|) : A ∈ A
}

with J : A × R → [0,+∞] lower semicontinuous with respect to the {weak γ } ×
{Euclidean}-convergence and nondecreasing in the second variable.
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5.6 Optimal obstacles

Only to simplify the comprehension of the topic, we discuss the obstacle problem in
the linear setting. Nevertheless, we point out the fact that all results we present here
hold for obstacle problems associated to p-Laplacian operators (see [47]).

We consider a bounded open set D of RN (for N ≥ 2), a function ψ ∈ H 1
0 (D),

the family of admissible obstacles

Xψ(D) = {g : D → R : g ≤ ψ, g quasi upper semicontinuous},

and a cost functional F : Xψ(D) → R which is monotone nondecreasing, i.e., for
all g1, g2 ∈ Xψ(D) with g1 ≤ g2 we have F(g1) ≤ F(g2). Suppose that F is
lower semicontinuous for the �-convergence of obstacle energy functionals (see the
definition of the energy in relation (5.16) below).

The result we are going to prove is the following (see [47], for the nonlinear
version of this theorem).

Theorem 5.6.1 Under the assumptions above, for any constant c ∈ R, the problem

min{F(g) : g ∈ Xψ(D),
∫

D
g dx = c}(5.15)

admits a solution.

In order to prove Theorem 5.6.1, we use the general framework of monotone
functionals introduced in Section 5.2. Consequently we have to specify the γ and
wγ -convergences and study their properties.

For a quasi-upper semicontinuous function g : D → R we define the set

Kg = {u ∈ H1
0 (D) : u ≥ g q.e.}

so that, for every h ∈ L2(D) the solution of the obstacle problem associated to h and
g is given by minimizing the associated energy

min{
∫

D

1

2
|∇u|2dx −

∫
D

hu dx : u ∈ Kg}.(5.16)

The choice of obstacles as quasi-upper semicontinuous functions is natural, since
one can replace an arbitrary obstacle by a suitable upper quasi semicontinuous one
(see [22], [93]) such that the solution of problem (5.15) does not change.

For some fixed h the study of the solution of problem (5.16) when the obstacle
g varies is done by the classical tool of the �-convergence related to the energy
functional (see [22], [98]).

If (gn) is a sequence of admissible obstacles and if {Kgn } converges in the sense
of Mosco to Kg in H1

0 (D), then it easy to see that the solutions un of problem (5.16)
associated to gn converge weakly in H1

0 (D) to the solution of (5.16) corresponding
to g. It is also well known that the Mosco convergence of the convex sets Kgn to Kg

is equivalent to the �-convergence of the energy functionals associated to gn and g.
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Definition 5.6.2 It is said that a sequence (gn) of obstacles γo-converges to an ob-
stacle g if the sequence of convex sets (Kgn ) converges to the convex set Kg in the
sense of Mosco.

In order to use the abstract framework of Section 5.2 we have to introduce a
second convergence wγo on the class of admissible obstacles, and to prove that as-
sumption (A) is fulfilled. The definition of thewγo-convergence for the obstacles will
be given by means of the wγ -convergence of the level sets introduced in Definition
5.3.1.

Definition 5.6.3 We say that a sequence of obstacles (gn)n∈N weak γo-converges to

g (and we write gn
wγo
⇀ g) if there exists a dense set T ⊆ R such that

{gn < t} wγ⇀ {g < t} ∀t ∈ T .

The relation between the γo-limit and thewγo-one, is not so simple to establish. Nev-
ertheless, the γo-convergence of obstacles is stronger than the wγo-convergence (see
Proposition 5.6.7 below), and the wγo-convergence is sequentially compact. More-
over, assumption (A) of the general framework is satisfied for the pair of topologies
(γo, wγo) and the classical order relation between functions in Xψ(D). Indeed, we
split the proof into the following steps.

Step 1. Sequential compactness of the wγo-convergence. For every sequence
(gn)n∈N of elements of Xψ(D) there exist a subsequence {gnk } and an obstacle

g ∈ Xψ(D) such that gnk

wγo
⇀ g.

Step 2. Assumption (A) for obstacles. Consider a sequence of obstacles (gn)n∈N ∈
Xψ(D) such that gn

wγo
⇀ g. There exist a subsequence (gnk )k and a sequence ( fk)k

with fk ≤ gnk such that fnk

γo→ g.

Step 3. Lower semicontinuity of the constraint. Let gn, g ∈ Xψ(D), such that

gn
wγo
⇀ g. Then ∫

D
g dx ≥ limsup

n→∞

∫
D

gndx .

Assuming Steps 1,2 and 3 we can give the proof of the main result.

Proof of Theorem 5.6.1. Consider a minimizing sequence (gn)n∈N of admissible
obstacles. According to Step 1. we may extract a subsequence (still denoted for sim-
plicity by the same indices) which wγo-converges to some obstacle g in the sense of
Definition 5.6.3. Since assumption (A) is fulfilled, by Proposition 5.2.1 we deduce

F(g) ≤ liminf
n→∞ F(gn),

and by Step 3 on the upper semicontinuity of the constraint, we have
∫

D g dx ≥ c.
If
∫

D g dx = c, then the obstacle g is admissible and gives the minimum we are
looking for. If

∫
D g dx > c, then the new obstacle g̃ defined by
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g̃(x) = g(x)− 1

|D|
( ∫

D
g(y)dy − c

)
is admissible (i.e., g̃ ∈ Xψ(D) and

∫
D g̃ dx = c) and using the monotonicity of F

we get F(g̃) ≤ F(g), which shows that g̃ is optimal.

In order to prove Steps 1, 2 and 3 we begin by the following result which is a very
useful characterization of the γo-convergence of a sequence of obstacles in terms of
the behavior of the level sets.

Lemma 5.6.4 Let gn, g ∈ Xψ(D). Then gn
γo→ g if and only if there exists a family

T ⊆ R such that R \ T is at most countable and

{gn < t} γ→ {g < t} ∀t ∈ T .

Proof Following [93], if gn and g are quasi-upper semicontinuous functions from
D into R, a necessary and sufficient condition for having

Kg 	= ∅ and gn
γo→ g

is that the following assertions hold:

1. there exists T ⊆]0,+∞[ with 0 ∈ T such that for every t ∈ T ,

lim
n→∞ cap({gn > t}) = cap({g > t});

2. there exist a dense set T ⊆ R and a family B of subsets of D such that for every
t ∈ T , and every B ∈ B,

lim
n→∞ cap({gn > t} ∩ B) = cap({g > t} ∩ B);

the family B can be chosen dense in the sense of [94];

3. lim
t→∞ limsup

n→∞

∫ +∞

t
cap({gn > s})(s − t)ds = 0;

4. lim
t→0

limsup
n→∞

∫ t

0
cap({gn > s})sds = 0.

Following this result, if gn
γo→ g, there exists a dense set T ⊆ R with R \ T at most

countable, and a countable dense family B of subsets of D such that

lim
n→∞ cap({gn > t} ∩ B) = cap({g > t} ∩ B)

for every t ∈ T and every B ∈ B.
At this point, we observe that for every B ⊆ D and for every function g quasi-

upper semicontinuous there exists an at most countable set T (B) in R such that

cap({g > t} ∩ B) = cap({g ≥ t} ∩ B) ∀t ∈ R \ T (B).
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Indeed, set for all t ∈ R,

Ut =
{
g > t

} ∩ B, Ũt =
{
g ≥ t

} ∩ B.

We have Ut ⊆ Ũt , from which it follows that

cap(Ut ) ≤ cap(Ũt ) ∀t ∈ R.(5.17)

The function t �→ cap(Ũt ) is decreasing in t , so it is continuous on N = R \ T (B),
with T (B) ⊆ R at most countable. Let us fix τ ∈ N . For each t ∈ R such that τ < t ,
we have cap(Uτ ) ≥ cap(Ut ). Making t → τ we have

cap(Uτ ) ≥ cap(Ũτ ) ∀τ ∈ N .(5.18)

Now from (5.17) and (5.18) we deduce cap(Uτ ) = cap(Ũτ ).
Using this fact, for any Bk ∈ B and for any n ∈ N the family of t ∈ R such that

cap({gn > t} ∩ Bk) 	= cap({gn ≥ t} ∩ Bk)

is at most countable. Therefore, eliminating all t ∈ T for all k, n ∈ N such that the
previous relation holds, one can find a set T ′ such that R \ T ′ is at most countable
and such that

lim
n→∞ cap({gn ≥ t} ∩ B) = cap({g ≥ t} ∩ B)

for every t ∈ T ′ and every B ∈ B. Using relation (4.55) we have that for all t ∈ T ′

{gn < t} γ→ {g < t}. Since T ′ is dense in R we conclude the proof of the necessity.

Suppose now that for a dense family T ⊆ R we have {gn < t} γ→ {g < t}. We
prove that conditions 1), 2), 3), 4) above are satisfied. From the fact that gn, g ≤ ψ

conditions 3) and 4) are satisfied. Following relation (4.55) condition 2) is also
satisfied, by eliminating again an at most countable family of t ∈ R such that
cap({gn > t} ∩ Bk) 	= cap({gn ≥ t} ∩ Bk). It remains to prove 1).

Let us fix some t > 0 and set Kt = {ψ ≥ t} which is a quasi-closed subset of D.
Since gn ≤ ψ we get

cap({gn ≥ t} ∩ Kt ) = cap({gn ≥ t}).

The idea is to find a set B ∈ B “between” Kt and D; this is not immediately possible
since Kt is not closed but only quasi-closed. Nevertheless, for any ε > 0 there exists
a closed set Kε ⊆ Kt such that cap(Kt \ Kε) < ε. Then

| cap({gn ≥ t} ∩ Kt )− cap({gn ≥ t} ∩ Kε)| ≤ cap(Kt \ Kε) < ε.

Choosing a set B ∈ B such that Kε ⊆ B ⊆ D and for which

cap({gn > t} ∩ B)→ cap({g > t} ∩ B),



136 5 Existence of Classical Solutions

we have
| cap({g > t})− cap({gn > t})|

= | cap({g > t} ∩ Kt )− cap({gn > t} ∩ Kt )|
≤ | cap({g > t} ∩ Kt )− cap({g > t} ∩ B)|
+| cap({g > t} ∩ B)− cap({gn > t} ∩ B)|
+| cap({gn > t} ∩ Kt )− cap({gn > t} ∩ B)|.

The first and the last term of the right-hand side are less than ε by the choice of B,
and the middle term vanishes as n →∞. Hence we get

lim
n→+∞ cap({gn > t} = cap({g > t}).

Therefore, condition 1) of the lemma also holds, and so the proof is concluded.

Remark 5.6.5 The family T in Lemma 5.6.4 can be simply replaced by a a dense set

in R. Indeed, let gn, g ∈ Xψ(D). Then gn
γo→ g if and only if there exists a countable

dense family T0 ⊆ R such that

{gn < t} γ→ {g < t} ∀t ∈ T0.(5.19)

The necessity is like in the first step of Lemma 5.6.4. Conversely, suppose that (5.19)
holds for a set T0 ⊆ R countable and dense. We prove that (5.19) holds for t ∈ T

where R \ T is at most countable (which implies, by Lemma 5.6.4, that gn
γo→ g).

For every t ∈ R, possibly passing to subsequences, we have w{gnk<t} ⇀ ut

weakly in H1
0 (D) for a suitable function ut . It will be enough to prove that ut =

w{g<t} up to an at most countable set. By assumption, T0 is dense in R and so we can
find t1, t2 ∈ T0 with t1 ≤ t ≤ t2. Then

w{g<t1} ≤ ut ≤ w{g<t2}.(5.20)

Let us define

Aτ =
{
g < τ

}
for any τ ∈ T0, τ ≤ t,

Bτ =
{
g < τ

}
for any τ ∈ T0, τ ≥ t.

The sets Aτ and Bτ are quasi-open and we have that
{

Aτ
}
τ∈T0,τ≤t is nondecreas-

ing and
{

Bτ
}
τ∈T0,τ≥t is decreasing with respect to the set inclusion. Now, from the

theory of the γ -convergence (see [94], [145]), we have

Aτ
γ→

⋃
τ∈T0,τ≤t

Aτ = At as τ → t(5.21)

and

w{g<t} = sup
{
w{g<τ } : τ ∈ T0, τ ≤ t

}
.(5.22)
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One has to pay attention to the fact that an arbitrary union of quasi-open sets is
not generally quasi-open. In this case, the monotonicity plays an essential role. In
fact any nondecreasing sequence of quasi-open sets is γ -convergent to their union.
Moreover {

g < t
} ⊆ Bτ ∀τ ∈ T0, τ ≥ t,(5.23)

so that

w{g<t} ≤ w{g<τ } ∀τ ∈ T0, τ ≥ t,(5.24)

from which it follows that

w{g<t} ≤ inf
{
w{g<τ } : τ ∈ T0, τ ≥ t

}
.(5.25)

Now from (5.20), . . . ,(5.25) we have

w{g<t} = sup
{
w{g<τ } : τ ∈ T0, τ ≤ t

}
(5.26)

≤ ut ≤ inf
{
w{g<τ } : τ ∈ T0, τ ≥ t

}
.

Let us consider the mapping t �→ ‖w{g<t}‖L2(D) which is nondecreasing, and hence
it has an at most countable set of points of discontinuity. If t is a point where this
mapping is continuous we have

sup
{
w{g<τ } : τ ∈ T0, τ ≤ t

} = inf
{
w{g<τ } : τ ∈ T0, τ ≥ t

}
and so from (5.26) we have ut = w{g<t}, which concludes the proof.

Proposition 5.6.6 Let gn, g ∈ Xψ(D). The following conditions are equivalent:

(i) there exists a dense family T ∈ R such that {gn < t} wγ⇀ {g < t} for all t ∈ T ;

(ii) there exists an at most countable family N ∈ R such that {gn < t} wγ⇀ {g < t}
for all t ∈ R \ N.

Proof If (ii) is true, obviously (i) follows. Conversely, let us suppose that (i) is true.
For all s ∈ T we have w{gn<t} ⇀ ws weakly in H1

0 (D), {ws > 0} = {g < s} and,
from the upper semicontinuity of g, for all t ∈ R,

{g < t} =
⋃

s∈T ,s≤t

{g < s}.

We define for any t ∈ R wt := sup
s∈T ,s≤t

ws . From the monotonicity of the mapping

s �→ ws the definition above is consistent and we have

{wt > 0} =
⋃

s∈T ,s≤t

{ws > 0} =
⋃

s∈T ,s≤t

{g < s} = {g < t}.
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From the boundedness of w{gn<t}, possibly passing to a subsequence still denoted by
the same indices, we have

w{gn<t} ⇀ ut .

It is sufficient to prove that there exists an at most countable set N such that ut (x) =
wt (x) q.e. for t ∈ R \ N . We observe that, by monotonicity, for every s ∈ T with
s ≤ t we have

w{gn<s} ≤ w{gn<t},(5.27)

so passing to the limit in (5.27) as n →+∞ we obtain

ws ≤ ut ∀s ∈ T , s ≤ t,

from which

ut ≥ sup
s∈T ,s≤t

ws = wt .(5.28)

On the other hand, again by the monotonicity, we also have

ut ≤ ws ∀ s ∈ T , s ≥ t,

from which

ut ≤ inf
s∈T ,s≥t

ws .(5.29)

Now, denoting by w̃t the right-hand side of (5.29), for t ∈ R \ N , with N at most
countable, we have wt = w̃t since the mapping t �→ ‖wt‖L2(D) is monotone nonde-
creasing and it only has at most countable points of discontinuity. So we obtain from
(5.28) and (5.29) that ut = wt for every t ∈ R \ N which ends the proof.

Proposition 5.6.7 Suppose that gn
γo→ g. Then gn

wγo
⇀ g.

Proof It is an immediate consequence of Lemma 5.6.4 and Definition 5.6.3.

Proof of Step 1. Consider an enumeration {r1, r2, ...} of the set Q of rational num-
bers. For the level r1 there exists a subsequence of (gn)n∈N (still denoted by the
same indices) such that w{gn<r1}⇀wr1 weakly in H1

0 (D). For the level r2 there ex-
ists a subsequence of the previous one such that w{gn<r2}⇀wr2 weakly in H1

0 (D).
In such a way for any rk ∈ Q one can extract a subsequence (of the sequence estab-
lished for rk−1) such that w{gn<rk }⇀wrk weakly in H1

0 (D). By a diagonal procedure
we can choose an element of the first sequence such that

‖w{gn1<r1} − wr1‖L2(D) < 1,

then a second element of the second sequence such that
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‖w{gn2<r1} − wr1‖L2(D) <
1

2
and ‖w{gn2<r2} − wr2‖L2(D) <

1

2
,

and continuing this procedure, one constructs a subsequence (gni )i such that

∀k ∈ N w{gni<rk }
L2(D)→ wrk as i →∞.

This means exactly that for all t ∈ Q,

{gni < t} wγ⇀ {wt > 0} for i →∞.
We define then the limit obstacle through its level sets

{g < t} = {wt > 0} for all t ∈ Q.(5.30)

If t1, t2 ∈ Q with t1 < t2, then obviously {g < t1} ⊆ {g < t2}. The function g is
defined by

g(x) = inf{t ∈ Q : x ∈ {g < t}}.
Hence for every t ∈ R \Q we have

{g < t} =
⋃

s∈Q,s<t

{g < s}.(5.31)

One can see that:

(i) g is correctly defined.

(ii) g is quasi-upper semicontinuous, because its level sets {g < t} are quasi-open,
being by definition, countable unions of quasi-open sets (see (5.30) and (5.31)).

(iii)g ∈ Xψ(D), because {ψ < t} ⊇ {g < t} for every t ∈ R. Indeed, let us consider
first the case t ∈ Q. By assumption we have gni ≤ ψ , for all i , hence

{ψ < t} ⊇ {gni < t} ∀i ∈ N,

from which
w{gni<t} ≤ w{ψ<t}.

Passing to the limit as i →+∞, we get

wt ≤ w{ψ<t},

so that {
w{ψ<t} > 0

} = {ψ < t} ⊇ {wt > 0} = {g < t}.
Fix now t ∈ R \Q. We have

{g < t} =
⋃

s<t,s∈Q

{g < s} ⊆
⋃

s<t,s∈Q

{ψ < s} ⊆ {ψ < t}

which shows that g ∈ Xψ(D).
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It remains to prove that gni

wγo
⇀ g, or equivalently, that there exists a dense set T ⊆ R

such that
w{gni<t} ⇀ wt , {wt > 0} = {g < t}, ∀t ∈ T .

If t ∈ Q the above facts are true by the definition of g, which concludes the proof.

In order to prove assumption (A) for the wγo and γo-convergences, we give a
technical result for domains, necessary for the construction of the γo-convergent se-
quence deriving from the wγo-convergent one.

Proof of Step 2. This will be obtained in two steps. We first consider the particular
case of obstacles whose ranges are in a finite set. Let us consider the numbers

−∞ = l1 < l2 < · · · < lq

and the special family of obstacles

A[l1, . . . , lq ] = {g ∈ Xψ(D) : g(x) ∈ {l1, . . . , lq}}.
We construct the sets

A1(g) = {g < l2}, A2(g) = {g < l3}, . . . , Aq−1(g) = {g < lq}
which are quasi-open and such that A1 ⊆ A2 ⊆ · · · ⊆ Aq−1. Consider now a
sequence (gn)n∈N ∈ A[l1, . . . , lq ] which weakly γo-converges to a function g. To
every function gn we associate as before the sets A1(gn), . . . , Aq−1(gn) and, using
the compactness of the weak γ -convergence for sets, we can write (for a subsequence
still denoted by the same indices)

Ai (gn)
wγ
⇀ Ai ∀i = 1, . . . , q − 1.

By the definition of the weak γo-convergence we have

g = l1 on A1, g = l2 on A2 \ A1, . . . , g = lq on D \ (A1 ∪ · · · ∪ Aq−1).

Moreover, g is quasi-upper semicontinuous and g ≤ ψ . For this last inequality it is
sufficient to prove for any i = 2, . . . , q that {g < li } ⊆ {ψ < li }. This follows from
the fact that {gn < li } ⊆ {ψ < li } and from the properties of the weak γ -convergence
of sets.

We construct now the sequence fn of admissible obstacles such that fn
γo→ g with

fn ≤ gn . Using Lemma 4.3.15 for subsequences (still denoted by the same indices)

there exist sets Gn
i ⊇ Ai (gn) such that Gn

i
γ→ Ai . For fixed n, the sets Gn

1, . . . ,Gn
q−1

are not ordered. Therefore one applies Proposition 4.5.6 and considers

G̃n
1 = Gn

1 ∩ Gn
2 ∩ · · · ∩ Gn

q−1,

G̃n
2 = Gn

2 ∩ Gn
3 ∩ · · · ∩ Gn

q−1,

. . .

G̃n
q−1 = Gn

q−1.
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Then G̃n
1 ⊆ G̃n

2 ⊆ · · · ⊆ G̃n
q−1 and G̃n

i
γ→ Ai . Moreover, G̃n

i ⊇ Ai (gn). We define

now the obstacle fn by means of G̃n
1, . . . , G̃n

q−1 in the following way: fn = l1 on

G̃n
1, fn = l2 on G̃n

2 \ G̃n
1, . . . , fn = lq on D \ G̃n

q−1. We get that fn is quasi-upper

semicontinuous, fn ≤ gn and fn
γ→ g.

In a second step of the proof, a general obstacle is approached by obstacles with
a finite range. We define for any k ∈ N the family of levels

Rk = {l1, . . . , lk} ∪ −∞
where (lk)k is a dense set in R with the property that the weak γ -convergence holds
on levels li . We have Rk1 ⊆ Rk2 if k1 ≤ k2. Set now R =⋃k∈N Rk .

For some obstacle g ∈ Xψ(D) we define the truncation on Rk of g in the fol-
lowing way:

Tk(g)(x) = sup{l ∈ Rk : g(x) ≥ l}.
Obviously Tk(g) ∈ A[Rk] and Tk(g) ≤ g. Moreover, if l ∈ Rk , then for all k′ ≥ k
we have

{Tk′(g) < l} = {g < l}.
As in the first step, for k = 1 there exists a subsequence, still denoted by the same
indices, such that

T1(gn)
wγo
⇀ T1(g);

we consider a subsequence and a sequence f 1
n ≤ T1(gn) with f 1

n
γo→ T1(g). For

k = 2 there exists (as in step one) a subsequence such that

T2(gn)
wγo
⇀ T2(g),

and again, we consider a subsequence and a sequence f 2
n ≤ T2(gn) with f 2

n
γo→

T2(g). We continue this procedure for any k ∈ N and we choose a diagonal sequence
( f k

nk
)k with the property that dγ ( f k

nk
, Tk(g)) ≤ 1/k. Here by dγ one denotes the

distance which generates the same topology of the γo-convergence (see [91] for the
metrizability of the γo-convergence). On the other hand, using Lemma 5.6.4 we have

Tk(g)
γo→ g and therefore we have found a subsequence ( f k

nk
)k which satisfies the

desired properties.

Since assumption (A) is fulfilled, the general framework presented in Section
5.2 and in particular Theorem 5.2.2 could be applied. Nevertheless, in the case of
obstacles the integral constraint plays a very important role.

Proof of Step 3. Let gn, g ∈ Xψ(D), with gn
wγo
⇀ g. Then

g(x) ≥ limsup
n→∞

gn(x) for a.e. x ∈ D.(5.32)
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Indeed, consider some x ∈ D and l ∈ R with g(x) < l. From the weak γo-
convergence, there exists some l ′ between g(x) and l, such that

{gn < l ′} wγ⇀ {g < l ′};
then 1{g<l ′} ≤ liminf

n→∞ 1{gn<l ′}, where we denote by 1C the function such that 1C (x) =
1 if x ∈ C and and 1C (x) = 0 otherwise. In particular, this means that gn(x) < l ′
for n large enough, that is

limsup
n→∞

gn(x) ≤ l ′.

Since l was arbitrary, and g(x) < l ′ < l we get (5.32).
The conclusion now follows by Fatou’s lemma.

Remark 5.6.8 The nonlinear frame. All the results of Section 5.6 hold in the non-
linear frame, i.e., for energy functionals associated to the p-Laplacian, into W 1,p

0 -
spaces. In this case, the γ0 and wγo convergences are defined with the help of the
γp-convergence of p-quasi open sets. We refer to [47] for a detailed description of
the problem.

Remark 5.6.9 Bilateral obstacles. By analogy, the previous results can be extended
to the bilateral obstacle problem. In order to consider bilateral problems, we define
the family

X̃ψ(D) = {g : D → R : g quasi-l.s.c. g ≥ ψ}

with ψ fixed in W 1,p
0 (D); the associated convex sets are

K̃g = {u ∈ W 1,p
0 (D) : u ≤ g p-q.e.}.

In this case, the γo-convergence, respectively wγo-convergence, are defined as in
Definitions 5.6.2 and 5.6.3 (naturally extended in W 1,p

0 ) by using the upper level
sets: {g > t}. We denote them by γ̃o, respectively wγ̃o.

Then a nonlinear version of Theorem 5.6.1 can be formulated, under the assump-
tions:

1. F is lower semicontinuous with respect to the γ̃o-convergence;

2. F is monotone decreasing with respect to the usual order of functions.

We can now consider the case of bilateral problems. Fix first a function ψ ∈
W 1,p

0 (D); the admissible set is now

Yψ(D) = {(g1, g2) : gi : D → R, i = 1, 2,
g1 p-quasi-u.s.c., g2 p-quasi-l.s.c., g1 ≤ ψ ≤ g2}.

We define
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Kg1,g2 = {u ∈ W 1,p
0 (D) : g1 ≤ u ≤ g2 p-q.e.}

and consider a functional F : Yψ(D) → R. Then Theorem 5.6.1 still holds under
the assumptions:

1. F(·, ·) is lower semicontinuous with respect to the (γo, γ̃o)-convergence;

2. F(·, ·) is monotone nondecreasing with respect to the first variable and decreas-
ing with respect to the second one.

In this case, the constraint is of the form∫
D

g1dx = c,
∫

D
g2dx = c̃,

with, of course, c ≤ c̃.

Remark 5.6.10 Nonlinear shape optimization problems. The shape optimization
problem solved in Section 5.3 for p = 2 can be deduced as a particular case of the
result mentioned in Remark 5.6.9. It follows by considering the family of obstacles
that

O(D) = {(g1, g2) : g1 = −∞ · 1A, g2 = +∞ · 1A, A ⊆ D, A p- quasi-open}.

It is sufficient to see that the family O(D) is closed with respect to the p-(wγo, ˜wγo)-
convergence. In fact, a bilateral obstacle (−∞ · 1A,+∞ · 1A) is identified with the
quasi-open set A. In this case, the bilateral obstacle problem becomes a Dirichlet
problem with homogeneous boundary condition associated to the p-Laplacian on
the quasi-open set A.
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Optimization Problems for Functions of Eigenvalues

6.1 Stability of eigenvalues under geometric domain perturbation

For the convenience of the reader, we start by recalling some basic facts about eigen-
values of operators in Hilbert spaces. For simplicity, we limit ourselves to consider a
Hilbert space H and a linear operator

R : H → H

which is compact, self-adjoint and nonnegative. Further details, as well as the analy-
sis of more general situations, can be found in [112].

Under the previous hypotheses, the spectrum of R consists only of eigenvalues,
which can be ordered (counting their multiplicities) as

0 ≤ · · · ≤ �n+1(R) ≤ �n(R) ≤ · · · ≤ �1(R).

For every integer n ≥ 0, the eigenvalue �n+1(R) is given by the formula

�n+1(R) = min
φ1,...,φn∈H

max
|φ| = 1

(φ, φ1) = · · · = (φ, φn ) = 0

|Rφ|,

where | · | is the norm and (·, ·) the scalar product of H .

Theorem 6.1.1 (Courant–Fischer) For every n ≥ 1 the following equality holds:

�n(R) = max
E∈Sn

min
φ∈E,|φ|=1

|Rφ|,

where Sn denotes the family of all subspaces of H of dimension n.

Theorem 6.1.2 (Rayleigh min-max formula) For every n ≥ 0 the following equal-
ity holds:

�n+1(R) = min
φ1,...,φn∈H

max
|φ| = 1

(φ, φ1) = · · · = (φ, φn ) = 0

(Rφ, φ)

|φ|2 .
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We recall the following general results from [112, Corollaries XI.9.3 and XI.9.4].

Theorem 6.1.3 Let R1, R2 be compact, self-adjoint and nonnegative operators on
H. For every m, n ≥ 1 we have

1. �m+n−1(R1 + R2) ≤ �m(R1)+�n(R2),

2. �m+n−1(R1 R2) ≤ �m(R1)�n(R2),

3. |�n(R1)−�n(R2)| ≤ |R1 − R2|L(H).
In Theorem 6.1.3, by |R|L(H) we denoted the usual operator norm

|R|L(H) = sup{|Rφ| : |φ| ≤ 1}.

We are interested in the study of optimization problems for functions of eigenval-
ues of some elliptic operators. Consider a measureµ belonging to the space M0(R

N )

introduced in Chapter 4, and assume that the Lebesgue measure of its regular set Aµ
(i.e., the union of all finely open sets of finite µ-measure, see Section 4.3) is finite.
We define the resolvent operator associated to µ in the following way:

Rµ : L2(RN )→ L2(RN ), Rµ( f ) = u

where u is the solution of {−�u + µu = f,

u ∈ H1(RN ) ∩ L2
µ(R

N )
(6.1)

in the sense defined in Chapter 4.
Since |Aµ| < +∞, then H1

0 (Aµ) is compactly embedded in L2(Aµ) (see [194]).
Consequently, Rµ is well defined, compact, nonnegative and self-adjoint. Notice that
we implicitly identify Rµ with PL2(Aµ) ◦ Rµ ◦ PL2(Aµ), where PL2(Aµ) : L2(RN )→
L2(Aµ) is the orthogonal projector.

We define the eigenvalues λk associated to the measure µ as the eigenvalues of
the elliptic operator −�+ µI (in the sense of equation (6.1)), by setting

λk(µ) = 1

�k(Rµ)
,

and we obtain the following sequence (as soon as Rµ 	= 0)

0 < λ1(µ) ≤ · · · ≤ λn(µ) ≤ λn+1(µ) ≤ · · · → +∞.

For every n ≥ 1 there exists u ∈ H1(RN ) ∩ L2
µ(R

N ) \ {0} such that

−�u + µu = λn(µ)u,

in the sense defined in Chapter 4. Moreover, the Rayleigh formula can be used, and
we obtain
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λn(µ) = max
φ1,...,φn−1∈L2(Aµ)

min
φ ∈ L2(Aµ) \ {0}

(φ, φ1) = · · · = (φ, φn−1) = 0

∫
RN
|∇φ|2 dx +

∫
RN
φ2dµ∫

RN
φ2dx

= min
E∈Sn

max
φ∈E\{0}

∫
RN
|∇φ|2dx +

∫
RN
φ2dµ∫

RN
φ2dx

.

Here (·, ·) is the scalar product in L2(RN ) and Sn denotes the family of subspaces of
H1(RN ) ∩ L2

µ(R
N ), of dimension n.

Remark 6.1.4 If A is an open (or quasi-open) set of finite Lebesgue measure in RN ,
considering the measure µ = ∞RN \A, we have

λn(µ) = λn(A),

where λn(A) is the usual n-th eigenvalue (counted with its multiplicity) of the
Dirichlet–Laplacian on A.

Proposition 6.1.5 Let µ1, µ2 ∈ M0(R
n) with |Aµ1 |, |Aµ2 | < +∞. If µ1 ≤ µ2 in

the usual sense of measures, then for every n ≥ 1, λn(µ1) ≤ λn(µ2).

Proof It is a direct consequence of the Rayleigh formula.

Corollary 6.1.6 Let A1, A2 be two open (or quasi-open) sets of finite Lebesgue mea-
sure. If A2 ⊆ A1, then for every n ≥ 1, λn(A1) ≤ λn(A2).

Proof It follows from Proposition 6.1.5 by noticing that if A1⊆ A2, then∞RN \A1
≤

∞RN \A2
.

Notice, that in Corollary 6.1.6, it is enough that the inclusion A2 ⊆ A1 holds up
to a set of zero capacity.

Let us now fix a bounded open design region D ⊆ RN .

Proposition 6.1.7 Let µn ∈M0(D), and µn
γ−→ µ. Then

|Rµn − Rµ|L(L2(D)) → 0.

Proof Let
|Rµn − Rµ|L(L2(D)) = |Rµn fn − Rµ fn|L2(D),

where | fn|L2(D) = 1.
By weak compactness, we get that fn ⇀ f weakly in L2(D). It is clear

that Rµ fn ⇀ Rµ f weakly in H1
0 (D), since Rµ is continuous on L2(D) and
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|Rµ fn|H1
0 (D)

≤ C , where the constant C depends only on the measure of D. Conse-

quently, Rµ fn → Rµ f strongly in L2(D).
On the other hand, note that Rµn fn ⇀ Rµ f weakly in H1

0 (D). It is enough
to observe that Rµn fn ⇀ Rµ f weakly in L2(D); this is a consequence of the γ -
convergence and the fact that Rµn and Rµ are self-adjoint. Indeed, for every φ ∈
L2(D), we have

(Rµn fn, φ)L2(D) = ( fn, Rµnφ)L2(D) → ( f, Rµφ)L2(D) = (Rµ f, φ)L2(D).

Therefore Rµn fn → Rµ f strongly in L2(D) and we get that

|Rµn fn − Rµ fn|L(L2(D)) → 0

as required.

Corollary 6.1.8 Let µn ∈ M0(D), and µn
γ−→ µ. Then, for every k ≥ 1,

λk(µn)→ λk(µ) and the following uniform estimate holds:∣∣∣ 1

λk(µn)
− 1

λk(µ)

∣∣∣ ≤ |Rµn − Rµ|L(L2(D)).

Proof We apply Theorem 6.1.3 and Proposition 6.1.7 to Rµn and Rµ.

Remark 6.1.9 Let An be a sequence of uniformly bounded open sets such that

An
Hc

−→ A. If all An belong to one of the classes introduced in Section 4.5, i.e.,
Aconvex , Auni f cone, Auni f f lat cone, Acap densi ty , Auni f Wiener or, in two dimensions
of space, the number of connected components of R2\An is uniformly bounded, then
for every k ≥ 1 we have λk(An) → λk(A) and the uniform estimate of Corollary
6.1.8 holds. Indeed, in these cases the measures µn = ∞RN \An

γ -converge to the
measure µ = ∞RN \A, as seen in Chapter 4.

Remark 6.1.10 Let An be a sequence of uniformly bounded open (or quasi-open)
sets and A another open (or quasi-open) set.

If the first Mosco condition M1 holds (see the definition in Chapter 4), then for
every k ≥ 1,

limsup
n→∞

λk(An) ≤ λk(A).

If the second Mosco condition M2 holds, then for every k ≥ 1,

liminf
n→∞ λk(An) ≥ λk(A).

For open sets, if An
Hc

−→ A, then the first Mosco condition holds without any
further assumption on the sequence (An)n . In other words, the eigenvalues λk(·)
are upper semicontinuous with respect to the Hausdorff complementary conver-
gence Hc.
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Remark 6.1.11 If the design region D is unbounded, for example D = RN , Propo-
sition 6.1.7 fails to be true. The γ -convergence of measures implies only pointwise
convergence of the resolvent operators and, in general, no convergence of eigenval-
ues. For example, take the sequence of open sets An = B(xn, 1) where |xn| → +∞.
Then RAn converges pointwise to 0, while the eigenvalues of An do not change
with n. We refer to Section 6.5 of this chapter for a detailed discussion of the case
D = RN .

Remark 6.1.12 To conclude this section, we recall that finer behavior of the eigen-
values can be observed as soon as the variation of the domain is more particular. For
example, if A is smooth and At is the deformation of A by a smooth vector field V ,
i.e., At = (Id + tV )A, one gets even differentiability of the mapping t �→ λk(At ),
provided that λk(A) is simple. We refer the reader to [85], [140], [186].

Moreover, the asymptotic behaviour of λk(Aε) as ε → 0 can be obtained in the
case Aε = A\B(x0, ε), provided that λk(A) is simple, and x0 ∈ A (see [174], [175]).

6.2 Setting the optimization problem

Minimization problems for eigenvalues are not new in the literature; since the first
result by Krahn [150], [151] and Faber [119] concerning the minimality of a disk
in R2 for the first eigenvalue of the Laplace operator −� with Dirichlet boundary
conditions, among domains with equal area, many other results have been obtained.

Denoting by B1 the ball of measure c, and by B2 the union of two disjoint balls of
measure c/2, for every bounded open set � of measure c the following inequalities
hold:

• λ1(�) ≥ λ1(B1) (proved by Faber [119] and Krahn [150], [151]);
• λ2(�) ≥ λ2(B2) = λ1(B2) (we refer to Krahn [151]; see also [177] for a proof

by P. Szegö);
• λ2(B1)/λ1(B1) ≥ λ2(�)/λ1(�) ≥ 1 (proved by Ashbaugh and Benguria

[17]);

Notice that by density arguments and γ -continuity properties, in the previous
inequalities the set� can be replaced by an arbitrary (not necessarily bounded) quasi-
open set of measure less than or equal to c.

We are concerned with problems of the form

min{�(λ(�)) : |�| ≤ c, � ∈ A}(6.2)

where λ(�) denotes the sequence (λ j (�)) j of all eigenvalues of the Laplace operator
with Dirichlet boundary conditions on ∂�, � : RN → [0,+∞] is a given function,
c > 0 is given and A is the class of admissible domains. A choice we can make is to
take A = {� ⊆ D} where the domain D (the so-called “design region”) is either a
given, bounded open subset of RN , or D = RN . We shall see that the two cases are
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quite different, and most of the results obtained for the first cannot be easily extended
to the second.

Following Theorem 5.4.1, a general existence result can be adapted for function-
als depending on eigenvalues. Let us note that the first assumption of Theorem 5.4.1
is verified for a large number of situations; for instance, by Proposition 6.1.7 and
Corollary 6.1.8 we have (see also Buttazzo and Dal Maso [66])

�n
γ−→ � �⇒ λ j (�n)→ λ j (�) for all j ∈ N.

Therefore the cost functions

F(�) = �(λ(�))

are γ -lower semicontinuous as soon as the function � : RN → [0,+∞] is lower
semicontinuous, in the sense that

zn
j → z j for all j ∈ N �⇒ �(z) ≤ liminf

n→∞ �(zn).(6.3)

The monotonicity assumption is, on the contrary, much more restrictive. However, in
the case of problems involving eigenvalues, of the form (6.2), Theorem 5.4.1 includes
the case of functions � which are monotone increasing, that is

z1
j ≤ z2

j for all j ∈ N �⇒ �(z1) ≤ �(z2).(6.4)

This relies on the well-known fact that all the eigenvalues of an elliptic operator with
Dirichlet boundary conditions are decreasing functions of the domain (see Proposi-
tion 6.1.5 and Corollary 6.1.6). Therefore, summarizing, from Theorem 5.4.1 we can
deduce the following result.

Corollary 6.2.1 Let � : RN → [0,+∞] be a function which is lower semicontinu-
ous in the sense of (6.3), and monotone increasing in the sense of (6.4). Assume also
that the design region D is bounded and take A = {� ⊆ D, � quasi-open}. Then
the optimization problem

min{�(λ(�)) : |�| = c, � ∈ A}
admits at least a solution in A.

In this chapter, we discuss two directions in which we weaken the hypotheses
of the previous corollary. We consider non-monotone functionals � and unbounded
design regions.

6.3 A short survey on continuous Steiner symmetrization

An important tool often used in shape optimization is the continuous Steiner sym-
metrization, often denoted by CSS (see Brock [39]).
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For N ≥ 1 denote by M(RN ) the class of Lebesgue measurable subsets of RN .
Let us begin by the one-dimensional case. A family of mappings

Et : M(R)→ M(R), 0 ≤ t ≤ +∞,

is called a continuous symmetrization if it satisfies:

1. m(Et (M)) = m(M);

2. If M ⊆ N , then Et (M) ⊆ Et (N );

3. Et (Es(M)) = Es+t (M);

4. If I = [a, b] is a closed interval, then Et (I ) = [at , bt ] where

at = 1

2
(a − b + e−t (a + b)),

bt = 1

2
(b − a + e−t (a + b)).

In [39] the existence of such a family is proved. In the sequel, we will denote by
Mt = Et (M), the continuous symmetrization of a set M . If M is a finite union of
intervals, M = (a1, b1) ∪ (a2, b2) ∪ · · · ∪ (ak, bk) such that a1 < b1 < a2 < b2 <

· · · < ak < bk , then for t “small” we have

Mt = (at
1, bt

1) ∪ (at
2, bt

2) ∪ · · · ∪ (at
k, bt

k),

where at , bt are defined by the rule 4) above. There exists a first moment t0 > 0 such
that two intervals meet, i.e., bt0

s = at0
s+1. In this case, we define the set

N = (at0
1 , bt0

1 ) ∪ (at0
2 , bt0

2 ) ∪ · · · ∪ (at0
s , bt0

s+1) · · · ∪ (at0
k , bt0

k )

as union of k − 1 intervals. For t > 0 the set Mt0+t is defined as N t up to the mo-
ment when two intervals of N t meet. Then, the same procedure is continued. Since
at each step the number of intervals diminishes by one, at some moment we get only
one interval, and from this time on, the set Mt can be defined by the rule 4) above.
An arbitrary open set is decomposed in a countable union of intervals, and the sym-
metrization is defined by interior approximation. Every measurable set is approached
by open sets, the symmetrization being defined by exterior approximation.

For N ≥ 2, the CSS is defined with respect to a hyperplane. For example, let
us suppose that H is the hyperplane defined by H = {xN = 0}. If M ⊆ RN is a
polyhedron with all its faces parallel to the coordinate hyperplanes, then by definition

Mt =
{⋃

(M ∩ l(x ′,0))
t : x ′ ∈ RN−1

}
.

Here x = (x ′, 0) and lx denotes the line orthogonal to H passing through the point x ;
the set (M ∩ l(x ′,0))t is the one-dimensional continuous symmetrization of M ∩ l(x ′,0)
introduced above. For an open set, the CSS is defined by interior approximation with
a sequence of polyhedra and for a measurable set the CSS is defined by exterior
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approximation with open sets. It is possible to see that the symmetrized sets At are
open whenever the set A is open.

For a bounded quasi-open set A, the previous construction only provides a mea-
surable set defined up to a set of zero Lebesgue measure. On the contrary, for our
purposes we need that the symmetrized sets be still quasi-open and defined quasi-
everywhere. For this reason it is convenient, for a bounded quasi-open set A, to
define (by an abuse of notation) the symmetrized set At in the following way: con-
sider a decreasing sequence of bounded open sets (An)n∈N with cap(An \ A) → 0
and A ⊆ An . For any t ∈ [0, 1] the set At

n is well defined, and by monotonicity we
define At

n ⊇ At
n+1. Then (At

n)n∈N is γ -convergent and we define

At = γ − lim
n→∞ At

n .

In this way, the set At is quasi-open and we do not know if it is independent of the
sequence An and if the Lebesgue measure is preserved. However, for our purposes
this definition of At is convenient, as we shall see in Section 6.4.

For any positive measurable function u we define the continuous Steiner sym-
metrization of u by symmetrizing its level sets:

∀s > 0 {ut > s} := {u > s}t .

In [39] the following is proved.

Theorem 6.3.1 Let u ∈ H1(RN ), u ≥ 0. Then ut ∈ H1(RN ), ‖u‖L2 = ‖ut‖L2

and ‖u‖H1 ≥ ‖ut‖H1 . Moreover, if � is an open set and u ∈ H1
0 (�), u ≥ 0, then

ut ∈ H1
0 (�

t ).

For other properties concerning the continuous Steiner symmetrization we refer
to [39].

We recall from [50] some useful results (without proofs). Consider a measurable
set A and a hyperplane H ⊆ RN . For t ∈ [0, 1] denote by At the Steiner symmetriza-
tion of A at time t in the orthogonal direction to H.

Proposition 6.3.2 For every bounded quasi-open set A ⊆ RN and every positive
integer i , the mapping t �→ λi (At ), is lower semicontinuous on the left and upper
semicontinuous on the right.

For a compact set K ∈ RN the existence is known of a sequence of hyperplanes
(Hn)n∈N such that denoting K0 = K and Kn the symmetrization of Kn−1 with
respect to Hn we have that m(Kn�K #) → 0, where by C# we denote the closed
ball of measure m(C) (see [36]). If the convergence in measure is replaced by the
Hausdorff convergence, a similar type of result can be found in the book of Federer
[120].

For quasi-open sets we can formulate the following.
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Proposition 6.3.3 Let A be a bounded quasi-open set of RN . There exists a sequence
of Steiner symmetrizations of A, denoted by (An)n∈N, such that m(An \ A#)→ 0 as
n →∞.

Proof This result appears to be weaker than the similar one for compact sets, but
nevertheless it is still sufficient for our forthcoming purposes.

Suppose first that A is open. Consider K1 ⊂⊂ A such that m(A \ K1) ≤ ε1/2.
We perform a finite number of Steiner symmetrizations given by the result of [36]
for K1 such that

m
(
(K1)n1�K #

1

)
≤ ε1

2
.

Then, by monotonicity,

m
(

An1 \ A#
)
≤ ε1

2
+ ε1

2
= ε1.

Choosing now another set K2 ⊂⊂ An1 with m(An1 \ K2) ≤ ε2/2 we continue the
process and obtain

m
(
(K2)n2 \ K #

2

)
≤ ε2

2

and so on. Choosing a sequence εn → 0 we conclude the proof in the case of open
sets.

If A is quasi-open, consider a sequence of bounded open sets (Cr )r∈N such that

A ⊆ Cr+1 ⊆ Cr

and cap(Cr \ A) → 0, and we apply the previous result to Cr . We make a finite
number of symmetrizations to C1 such that

m
(
(C1)n1 \ C#

1

)
≤ ε1.

Then m(An1 \ C#
1) ≤ ε1. Making now a finite number of symmetrizations for C2

we get m((C2)n2 \ C#
2) ≤ ε2, and so on. Finally we get m(An \ A#) → 0, since

m(C#
n�A#)→ 0.

Corollary 6.3.4 For every bounded quasi-open set A ⊆ RN there exists a sequence
(An)n∈N of successive Steiner symmetrizations of A such that any weak γ -limit point
of (An)n∈N is contained in A#.

Proof Indeed, from the previous proposition we have m(An \ A#)→ 0. If U is the
weak γ -limit of {Ank }, then wnk ⇀ w weakly in H1

0 (B) and U = {w > 0}. Since
m(An \ A#) → 0, and wnk → w in L2(B) we get w = 0 a.e. on RN \ A#, hence
w ∈ H1

0 (A
#), which means U ⊆ A#.

Corollary 6.3.5 For the sequence (An)n∈N given by Corollary 6.3.4 we have

λk(A
#) ≤ liminf

n→∞ λk(An).
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6.4 The case of the first two eigenvalues of the Laplace operator

Let B ⊆ RN be a fixed ball and let c > 0 be a positive number. We denote by

Ac(B) =
{

A ⊆ B : A quasi-open, m(A) ≤ c
}

the family of all quasi-open subsets of B having Lebesgue measure less than or equal
to c and by s : Ac(B)→ R2 the spot function defined by

s(A) = (λ1(A), λ2(A)),

where λ1(A), λ2(A) are the first two eigenvalues (counted with their multiplicity) of
the Laplace operator −� on the Sobolev space H1

0 (A).
The purpose of this section is to prove that the range of s is closed in R2, if for a

given c, the ball B is large enough (for more details see [45]). This will immediately
imply the existence of a solution for problems of the form

min
{
�(λ1(A), λ2(A)) : A ∈ Ac(B)

}
for a large class of cost functions � (in particular no monotonicity will be required).

Let us denote by E = s(Ac(B)) the image of s in R2. The set E is conical with
respect to the origin, that is (t x, t y) ∈ E whenever (x, y) ∈ E and t ≥ 1. This is
easily seen by considering the homothetical sets At = A/

√
t , where A is such that

s(A) = (x, y). Moreover, following the results of Faber and Krahn, and of Ashbaugh
and Benguria, recalled at the beginning of Section 6.2, one has already an idea where
the set E lies. Indeed, we have for all (x, y) ∈ E ,

• x ≥ λ1(Bc) with Bc being the ball of measure c;

• y ≥ λ1(Bc/2) with Bc being the ball of measure c/2;

• 1 ≤ y/x ≤ λ2(Bc)/λ1(Bc).

For a numerical study of the set E in the case N = 2 we refer the interested
reader to the paper by Wolf and Keller [195] where the following picture for E is
obtained.

Unfortunately, we are not able to prove the convexity of the set E , which Fig-
ure 6.1 seems to show; this would imply the closure result quite straightforward.
However, we can prove that

• E is convex horizontally, that is for every (x, y) ∈ E we have
(
(1−t)x+t y, y

) ∈
E for every t ∈ [0, 1],

• E is convex vertically, that is for every (x, y) ∈ E we have
(
x, (1 − t)y +

t xλ2(Bc)/λ1(Bc)
) ∈ E for every t ∈ [0, 1],

and this is enough to imply that the set E is closed.
Let c > 0 be given and let B ⊆ RN be a ball large enough to contain two disjoint

balls of mass c/2. We shall prove the following result.
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Figure 6.1. The set E for N = 2 and c = 1.

Theorem 6.4.1 The set E is closed in R2.

The proof of the theorem above is based on the following lemma.

Lemma 6.4.2 If the set E is convex on the vertical and horizontal directions, then
E is closed in R2.

Proof Consider (x, y) ∈ Ē . There exists a sequence of sets (An)n∈N ⊆ Ac(B)
such that s(An) → (x, y). From the weak γ -compactness of the set Ac(B), for a
subsequence still denoted by the same indices we can write An → A in the weak
γ -sense. Then A ∈ Ac(B) and since the eigenvalues of the Laplacian are weakly
γ -lower semicontinuous we get

λ1(A) ≤ liminf
n→∞ λ1(An) = x and λ2(A) ≤ liminf

n→∞ λ2(An) = y.

From the vertical convexity of E , the vertical segment joining s(A) with the half
line {ts(B1) : t ≥ 1} is contained in E . If y < λ2(B1) we can find the point
(λ1(A), y) on this segment and using now the horizontal convexity, the segment
joining (λ1(A), y) to {ts(B2) : t ≥ 1} is in E . But this segment contains the point
(x, y) since λ1(A) ≤ x .

If y ≥ λ2(B1), then the horizontal convexity gives directly (x, y) ∈ E .

Following Lemma 6.4.2 it suffices to prove the convexity of E on vertical and
horizontal directions. For this purpose, we split the proof in two steps:
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Step 1 E is convex on horizontal lines, namely if A ∈ Ac(B), then the segment
joining (λ1(A), λ2(A)) to (λ2(A), λ2(A)) is contained in E .

Step 2 E is convex on vertical lines, namely if A ∈ Ac(B), then the segment joining
(λ1(A), λ2(A)) to (λ1(A),

λ2(B1)
λ1(B1)

λ1(A)) is contained in E .

In the proof of Step 2, the idea is to make a sequence of CSS to transform a
given quasi-open set A ∈ Ac(B) into a ball. Here, one can see that the choice of B
is important since if A ∈ Ac(B) for any hyperplane H we still have At ∈ Ac(B).

We proceed now with the proofs of Steps 1 and 2. It is convenient to indicate by
d1 the half line {ts(B1) : t ≥ 1} and by d2 the half line {ts(B2) : t ≥ 1} = {(x, x) ∈
R2 : x ≥ λ1(B2)}.

We give first a general result which establishes the existence of a γ -continuous
and decreasing homotopy between two quasi-open sets A1 ⊆ A0.

Proposition 6.4.3 Let A1 ⊆ A0 be two quasi-open sets. There exists a γ -continuous
mapping h : [0, 1] → A(RN ) such that for t1 < t2, h(t1) ⊇ h(t2) and h(0) = A0,
h(1) = A1.

Proof Denote by K a closed cube containing A0. We shall divide the cube in 2N

equal closed cubes K0, . . . , K2N−1; each cube Ki is analogously divided in 2N

closed cubes Ki0, . . . , Ki2N−1, and so on. Then to each real number t ∈ [0, 1] writ-
ten in the 2N -basis by 0.α1α2 . . . we associate the set

�t = (A0 \ Ft ) ∪ A1,

where

Ft = ∪∞n=1 ∪αn−1
i=0 Kα1...αn−1i .

Remark first that �t is quasi-open since Ft is quasi-closed. Indeed, let’s denote by

Ft,k = ∪k
n=1 ∪αn−1

i=0 Kα1...αn−1i

the closed set consisting of the first k-blocks of Ft . Set also

�t,k = (A0 \ Ft,k) ∪ A1

which is obviously quasi-open, and remark that

∩k≥1�t,k = �t .

Since cap(�t,k \ �t ) → 0 for k → ∞ we get that �t is quasi-open. Moreover,
the mapping t → �t is continuous in capacity. Indeed, fix t ∈ [0, 1] and consider
tn → t . We have to distinguish two situations: either t has an infinite number of
digits and is not finishing by aa . . . aa . . . , or t has a finite number of digits or it
finishes by aa . . . aa . . . (by a it is denoted the greatest digit in the basis 2N , namely
a = 2N − 1). In the first case, if tn → t , then for every k ∈ N there exists nk ∈ N
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such that for every n ≥ nk the numbers tn and t have the same first k digits. In this
case

cap(At�Atn ) ≤ cap(Kα1...αk )

and we derive the continuity in capacity.
If t has a finite number of digits, that is t = 0.α1α2 . . . αk , then the number t

written as

t = 0.α1α2 . . . αk0000 . . .

is identified with

t ′ = 0.α1α2 . . . (αk − 1)aaaa . . .

The difference between At and At ′ is a point, hence of zero capacity. Consider tn →
t . If tn ≥ t , the first k digits of tn and t coincide for n ≥ nk . If tn < t , then the first k
digits of tn and t ′ coincide for n ≥ nk and the conclusion follows.

Since the mapping t �→ �t is obviously decreasing and γ -continuous, taking

h(t) = �t

achieves the proof.

Proof of Step 1. Let A ∈ Ac(B). If there exists a subset A∗ of A, such that λ1(A∗) =
λ2(A∗) = λ2(A), then one can apply directly Proposition 6.4.3, and Step 1 is
proved since there exists a decreasing and γ -continuous homotopy from A to A∗.
Since λ2(A) = λ2(A∗), then by monotonicity λ2(�t ) = λ2(A). Since the first eigen-
value is γ -continuous, for each α ∈ [λ1(A), λ2(A)] there exists some tα such that
λ1(�tα ) = α.

Let’s prove now the existence of the set A∗. Denote by ϕ1, ϕ2, a first and second
eigenfunctions, respectively. If λ1(A) = λ2(A), there is nothing to prove. Hence we
suppose λ1(A) < λ2(A). We give then the following lemma.

Lemma 6.4.4 Let A be a quasi-open set such that λ1(A) < λ2(A). Then the fine
interior of A1 is finely connected and there are two possibilities: either A2 ⊆ A1 or
cap(A1 ∩ A2) = 0 for a convenient second eigenfunction ϕ2.

Proof If A is open the result is immediate. If A is quasi-open, the proof is similar
and based on Lemma 4.1.4 and the following assertion (see [126]): any nonnegative
superharmonic function on a finely open and connected set is either strictly positive
or equal to zero. In particular, this will be the case of the first eigenfunction.

Indeed, if A1 is not finely connected (we denoted here by A1 its fine interior) then
it can be decomposed in a union of disjoint finely connected components (Ci )i∈I and
since ϕ1|Ci ∈ H1

0 (Ci ) ⊆ H1
0 (A) we have that

∀i ∈ I

∫
Ci
|∇ϕ1|Ci |2 dx∫

Ci
|ϕ1|Ci |2 dx

= λ1(A) .
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So, if I contains at least two indices this would mean that λ1(A) is at least double,
since we have two independent eigenfunctions (defined by the restriction of ϕ1 on
each set). Therefore A1 has only one finely connected component.

Suppose now that cap(A1∩A2) 	= 0. Decomposing A2 = ∪i∈I C ′i , C ′i being finely
connected, then for any component for which cap(A1 ∩ C ′i ) 	= 0 we have C ′i ⊆ A1;
indeed, otherwise C ′i ∪ A1 would be finely connected and u1 could not vanish on
C ′i \ A1. So the finely connected components of A2 are of two types: C ′i ⊆ A1 or
cap(C ′j ∩ A1) = 0. In this case we can see that ϕ

2
∣∣∪C ′i

and u
2
∣∣∪C ′j

are both orthogonal

to ϕ1 and they are still second eigenfunctions. Then A2 can be chosen as ∪C ′i or ∪C ′j .

Proof of Theorem 6.4.1 (continuation). From Lemma 6.4.4, we have two possi-
bilities: either A2 = {ϕ2 	= 0} ⊆ {ϕ1 > 0} = A1 and in this case A∗ = A2, or
cap(A1 ∩ A2) = 0 and denoting by Pt the open half space

Pt = {(x1, . . . , xN ) ∈ RN : t < x1}
there exists some t0 ∈ R such that λ1(A1 ∩ Pt0) = λ2(A). Choosing

A∗ = (A1 ∩ Pt0) ∪ A2

the conclusion follows.

Proof of Step 2. Let’s consider A ∈ Ac(B) and denote by A# the closed ball of
measure m(A). The idea to prove the convexity in the vertical direction is to make a
sequence of continuous Steiner symmetrizations transforming A, such that m(An \
A#)→ 0, and to use the horizontal convexity. If λ2(A) ≥ λ2(A#), then the segment{

(λ1(A), γ ) : γ ∈ [λ2(A), λ1(A)
λ2(B1)

λ1(B1)
]
}

is contained in E . This follows immediately from the convexity on the horizontal
lines since all the half line supported by d1 and having B1 as extreme point is in E .

So let’s suppose λ2(A) < λ2(A#), and choose α ∈]λ2(A), λ2(A#)[. We intend
to prove that (λ1(A), α) ∈ E . We use Corollary 6.3.4 and we find a sequence of
continuous Steiner symmetrizations (An)n∈N such that

liminf
n→∞ λ2(An) ≥ λ2(A

#).

In order to underline the evolution of the set A “toward” the ball, we say that the
CSS from An to An+1 is parametrized by t ∈ [n, n + 1], by simple translation of the
interval [0, 1]. In this way we can define the set At for every t ≥ 0, and the set An

can also be written as An .
On the other hand, λ1(An) ≤ λ1(A). There exists some n0 ∈ N such that

λ2(An0) ≥ α and denote

t∗ = sup
{

t ∈ [0, n0] : λ2(A
t ) ≤ α

}
.
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From the upper semicontinuity on the right we have λ2(At∗) ≥ α and from the lower
semicontinuity on the left we get λ2(At∗) ≤ α which give λ2(At∗) = α.

Using now the convexity on the horizontal lines, the segment joining (λ1(At∗), α)
with (α, α) ∈ d2 is contained in E . But since λ1(At∗) ≤ λ1(A) the point (λ1(A), α)
belongs to E .

We remark that the previous result can be applied to prove the existence of so-
lutions for some classes of shape optimization problems, for which the shape func-
tional is not monotone with respect to the set inclusion (see [66]). We can consider
problems of the form

min
{
�(λ1(A), λ2(A)) : A ∈ Ac(B)

}
(6.5)

where � : E → R is lower semi-continuous and goes to +∞ at infinity. This is the
case for instance of

�(x, y) = (x − α)2 + (y − β)2

where (α, β) is any element in R2. Therefore by Theorem 6.4.1 the minimization
problem (6.5) admits at least a solution.

A typical example of functional � for which problem (6.5) does not have a solu-
tion is �(x, y) = x − y.

Remark 6.4.5 Actually, the minimization problem (6.5) admits a solution under the
sole assumption that � : E → [0,+∞] is lower semicontinuous. Indeed, take a
minimizing sequence (xn, yn) in E , and assume that it is bounded; then the direct
methods of the calculus of variations give the existence of an optimal domain, thanks
to Theorem 6.4.1. Otherwise, one sequence between (xn) and (yn) goes to +∞.
Then, due to the shape of the set E , both (xn) and (yn) go to +∞. In this case, it
is easy to see that taking as A the empty set we obtain an element of Ac(B) which
solves the optimization problem (6.5).

Remark 6.4.6 An interesting question is to study the boundary of the set E . We can
provide only some information on it. For a set A ∈ Ac(B) we denote by Rinf(A) the
rectangle

Rinf(A) = {(x, y) ∈ R2 : x ≤ λ1(A), y ≤ λ2(A)}.
For every A ∈ Ac(B), there exists a set Ã ∈ Ac(B) which is either finely connected
or coincides with two balls, such that s( Ã) ∈ Rinf(A).

Indeed, let us fix A ∈ Ac(B) and set A1 = {ϕ1 > 0} and A2 = {ϕ2 	= 0}. If
λ1(A) = λ2(A) the assertion is obvious since s(A) ∈ d2. If λ1(A) < λ2(A) there
are two possibilities. If A2 ⊆ A1, then A1 is finely connected and s(A1) ∈ Rinf(A).
If cap(A2 ∩ A1) = 0 we make the Schwarz rearrangements of A1 and A2 into the
disjoint balls C1 and C2, and we get s(C1 ∪ C2) ∈ Rinf(A) and C1 ∪ C2 ∈ Ac(B).

The argument above gives that any A whose s(A) is on ∂E \ (d1 ∪ d2) is either
finely connected or two balls. An open question is to study if these sets are simply
connected and regular.
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6.5 Unbounded design regions

The aim of this section is to give a variational method for proving global existence
results for shape optimization problems depending on eigenvalues, if the design re-
gion is the entire space RN . In order to develop the method presented in Sections
6.2 and 6.4 to unbounded design regions, one has to relate the γ -convergence to the
concentration-compactness principle, since the injection H1(RN ) ↪→ L2(RN ) fails
to be compact, and the γ -convergence (which is still compact) does not yield the
convergence of the eigenvalues. A detailed description of this subject can be found
in [43]. To begin, let us give an example of a typical behavior in unbounded design
regions.

Example 6.5.1 Let us consider the problem of minimizing λ1(�) among all open
subsets of RN of measure c. Of course, the ball B(0, R) is a solution (for the suitable
value of R), but from a variational point of view one might search a minimizing
sequence. An example of such minimizing sequence is

�n = B(xn, R),

where |xn| → +∞. Note that this sequence can not lead to a direct construction
by means of geometric convergence of the optimal set, unless it is subject to some
transformations (see also Remark 6.1.11).

For functions, this kind of behavior is understood via the concentration-com-
pactness principle which describes the behavior in L2(RN ) of a bounded sequence
(un)n∈N of H1(RN ) (see [156]). More precisely, three situations may occur for a
subsequence: compactness (possibly making some translations), vanishing or di-
chotomy.

Given a sequence of open (or quasi-open) sets (An)n∈N of RN , with uniformly
bounded measure (|An| ≤ c, for all n ∈ N), a natural question is to see whether
all bounded sequences (un)n∈N of H1(RN ), such that un belongs to H1

0 (An) for
every n ∈ N, have the same behavior in L2(RN ) with respect to the concentration-
compactness principle. This is particularly important from the point of view of shape
optimization problems. It is of interest to know whether for a suitable sequence
(yn)n∈N ⊆ RN the injection⋃

n∈N

H1
0 (yn + An) ↪→ L2(RN )(6.6)

is compact, i.e., a bounded subset of
⋃

n∈N H1
0 (yn + An) for the H1(RN )-norm is

relatively compact in L2(RN ) (by yn + An , one denotes the translation of An by
the vector yn). Notice that if A is a quasi-open set of finite measure, then H1

0 (A) is
compactly embedded in L2(A) (see [194]).

Let (An)n∈N be a sequence of open (or quasi-open) subsets of RN . It is said that
(An)n∈N γ -converges to a measure µ if for any bounded open set �, the sequence of
functionals
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Fn(u, �) =
∫

RN
|∇u|2 dx + χH1

0 (An∩�)(u)

�-converges to

F(u, �) =
∫

RN
|∇u|2 dx +

∫
RN

u2 dµ+ χH1
0 (�)

(u)

in L2(RN ). We will denote

Fn(u) =
∫

RN
|∇u|2 dx + χH1

0 (An)
(u)

and

F(u) =
∫

RN
|∇u|2 dx +

∫
RN

u2 dµ.

Following [24], [100] the γ -convergence is sequentially compact in RN . Al-
though several results are valid without any further assumption, in all this section
we will work only with quasi-open sets with finite Lebesgue measure and with mea-
sures µ for which the regular set Aµ has finite Lebesgue measure.

Using our previous notation and denoting by RAn the resolvent operator of the
Laplace equation with homogeneous Dirichlet boundary conditions and respectively
by Rµ the resolvent operator associated to the measure µ (which are well defined
since |An|, |Aµ| < +∞), a consequence of the γ -convergence is the following point-
wise convergence of the resolvent operators:

∀ f ∈ L2(RN ) RAn ( f )
L2(RN )−→ Rµ( f ).(6.7)

If the design region is RN , the γ -convergence does not involve the convergence of the
resolvent operators in the operator norm; in bounded design regions the convergence
in the operator norm is a consequence of the compact embedding H1

0 (D) ↪→ L2(D)
(see Proposition 6.1.7). We prove that the injection (6.6) is compact, if and only
if the convergence (6.7) is uniform in the unit ball of L2(RN ). Consequently, the
convergence of the resolvent operators will hold in the operator norm.

Proposition 6.5.2 Let us suppose that (An)n∈N is a sequence of quasi-open sets of
uniformly bounded measure which γ -converges toµ. Then Fn �-converges to F both
in the L2(RN )-strong convergence and in the L2(RN )-weak convergence.

Proof First, one has to prove that for every sequence un⇀u weakly in L2(RN ) we
have F(u) ≤ liminf

n→∞ Fn(un). Without loss of generality we assume liminf
n→∞ Fn(un) <

+∞. From the structure of the functionals we get that un ∈ H1
0 (An) and∫

RN |∇un|2 dx ≤ M . Moreover, we have un⇀u weakly in H1(RN ).
Take a function ρR ∈ C∞0 (RN ), with ρR = 1 on B0,R and ρR = 0 on RN \ B0,2R .

Then ρRun⇀ρRu weakly in H1(RN ), the convergence being strong in L2(RN )

(from the compact injection H1
0 (B0,2R) ↪→ L2(RN )).
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From the �-convergence we get

liminf
n→∞

∫
RN
|∇(ρRun)|2 dx ≥

∫
RN
|∇(ρRu)|2 dx +

∫
RN
|ρRu|2 dµ

so that

liminf
n→∞

∫
RN
|∇un|2ρ2

R dx

= liminf
n→∞

∫
RN

[|∇(ρRun)|2 − 2ρRun∇ρR∇un − u2
n|∇ρR |2

]
dx

≥
∫

RN
|∇(ρRu)|2 dx +

∫
RN
|ρRu|2dµ

−2
∫

RN
ρRu∇ρR∇u dx −

∫
RN

u2|∇ρR |2 dx

=
∫

RN
|∇u|2ρ2

R dx +
∫

RN
|ρRu|2 dµ.

We get for R →+∞,

liminf
n→∞

∫
RN
|∇un|2dx ≥

∫
RN
|∇u|2dx +

∫
RN

u2 dµ.

Second, for every u ∈ L2(RN ) such that F(u) < +∞, there exists a sequence
un ∈ L2(RN ) strongly convergent in L2(RN ) to u such that Fn(un)→ F(u).

Indeed, let us consider u ∈ L2(RN ) with F(u) < +∞. The sequence ρRu
converges in L2(RN ) to u for R →+∞. Moreover F(ρRu)→ F(u) since

F(ρRu) =
∫

RN
|∇(ρRu)|2 dx +

∫
RN
|ρRu|2 dµ

=
∫

RN
|∇u|2ρ2

R dx + 2
∫

RN
∇u∇ρRuρR dx

+
∫

RN
|∇ρR |2u2 dx +

∫
RN
|ρRu|2 dµ.

Making R →+∞, from the Lebesgue dominated convergence theorem, we have∫
RN
|∇u|2ρ2

Rdx →
∫

RN
|∇u|2dx and

∫
RN
|ρRu|2dµ→

∫
RN

u2dµ.

The functions ρR can be chosen such that ‖∇ρR‖L∞(RN ) → 0 (for example ρR(x) =
ρ1(x/R)). Then∫

RN
∇u∇ρRuρR dx → 0 and

∫
RN
|∇ρR |2u2 dx → 0 for R →+∞.

But, for all R > 0 there exists a sequence u R
n−→ρRu strongly in L2(RN ) such

that Fn(u R
n ) = Fn(u R

n , B0,2R) → F(ρRu, B0,2R) = F(ρRu). Then by a diagonal
construction we find a sequence (un)n∈N such that un−→u strongly in L2(RN ) and
Fn(un) −→ F(u).
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Proposition 6.5.3 Assume that (An)n∈N is a sequence of quasi-open sets of uni-
formly bounded measure which γ -converges toµ andwAn−→w strongly in L2(RN ).
Setting A = {w > 0}, the sequence of functionals

Gn(u) =
∫

RN
|∇u|2 dx + χH1

0 (An)
(u)− 2

∫
An

udx

�-converges in L2(RN ) to

G(u) =
∫

RN
|∇u|2dx +

∫
RN

u2dµ− 2
∫

A
udx .

Moreover, w is a minimizer for G.

Proof Let un ∈ H1
0 (An) such that un−→u strongly in L2(RN ). It is enough to

prove that
∫

An
un dx → ∫

A udx .

First, one gets that u ∈ H1
0 (A) and then∣∣∣ ∫

An

un dx −
∫

A
u dx

∣∣∣ ≤ ∫
An∪A

|un − u|dx

≤ |An ∪ A|1/2
( ∫

An∪A
|un − u|2 dx

)1/2 → 0.

Since wAn−→w strongly in L2(RN ), w is the minimizer of G as the limit of the
minimizers, hence it satisfies the equation

−�w + µw = 1 in H1(RN ) ∩ L2
µ(R

N ),

and the proof is achieved.

As usual, we denote in the sequel RAn (1) = wAn .

Theorem 6.5.4 Let (An)n∈N be a sequence of open (or quasi-open) sets with uni-
formly bounded measure. If wAn−→w strongly in L2(RN ), then for any sequence
(un)n∈N such that un ∈ H1

0 (An) and un⇀u weakly in H1(RN ) we have un−→u
strongly in L2(RN ), i.e., injection (6.6) is compact.

Proof Let us suppose un ∈ H1
0 (An) and un⇀u weakly in H1(RN ). We prove that

‖un − u‖L2(RN ) → 0, as n → ∞. Performing the Fourier transform, we have for
every R > 0,

‖un − u‖2
L2(RN )

=
∫

RN
| ̂un(y)− u(y)|2 dy

=
∫
|y|>R

(1+ |y|2)−1(1+ |y|2)| ̂un(y)− u(y)|2 dy

+
∫
|y|<R

| ̂un(y)− u(y)|2 dy

≤ 1

1+ R2
‖un − u‖2

H1(RN )
+
∫
|y|<R

| ̂un(y)− u(y)|2 dy.
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Let us fix ε > 0. Since the sequence (un)n∈N is bounded in H1(RN ), there exists
R > 0, such that 1

1+R2 ‖un − u‖2
H1(RN )

≤ ε/2 for any n ∈ N. With a fixed R, it
remains to prove the existence of n = n(R, ε) ∈ N such that for all n ≥ n(R, ε) we
have ∫

|y|<R
| ̂un(y)− u(y)|2dy ≤ ε

2
.

In fact, it is sufficient to prove that
∫
|y|<R | ̂un(y)− u(y)|2 dy → 0, for which we

use the Lebesgue dominated convergence theorem. Fix y ∈ B0,R and consider the
function gy(x) = e2iπ〈x,y〉. Since un ∈ H1

0 (An) and |An| ≤ c we have ungy ∈
H1

0 (An). By definition, we have

ûn(y) =
∫

An

un(x)gy(x)dx

and

û(y) =
∫

A
u(x)gy(x)dx .

Therefore |ûn(y)− û(y)| → 0, if we prove that∫
An

un(x)gy(x)dx →
∫

A
u(x)gy(x)dx .(6.8)

On the other hand, we have ungy⇀ugy weakly in H1(RN ). This does not imply
relation (6.8) immediately, since 1RN /∈ L2(RN ), but it is a consequence of Lemma
6.5.5 below. Hence applying the Lebesgue dominated convergence theorem in B0,R
we conclude the proof.

Lemma 6.5.5 Let (An)n∈N be a sequence of quasi-open sets with uniformly bounded
measure which γ -converges to a measure µ, and suppose thatwAn−→w in L2(RN ).
Then for any sequence vn ∈ H1

0 (An) such that vn⇀v weakly in H1(RN ) we have∫
RN
vndx →

∫
RN
vdx .

Proof Let us denote by A the quasi-open set {w > 0}. Then∫
An

∇wAn∇vndx =
∫

An

vndx

and ∫
A
∇wA∇vdx +

∫
A
wvdµ =

∫
A
vdx .

We have the estimate
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RN
∇wAn∇vn dx −

∫
A
∇wA∇v dx +

∫
A
wv dµ

∣∣∣
≤
∣∣∣ ∫

RN
(∇wAn − ∇w̃An )∇vndx

∣∣∣
+
∣∣∣ ∫

RN
∇w̃An∇vn dx −

∫
A
∇wA∇v dx −

∫
A
wv dµ

∣∣∣
where w̃An denotes the solution of{−�w̃An = 1An∩A,

w̃An ∈ H1
0 (An).

(6.9)

Usual �-convergence arguments give that w̃An converges weakly in H1(RN ) to w.
But ∣∣∣ ∫

RN
∇w̃An∇vn dx −

∫
A
∇wA∇v dx −

∫
A
wv dµ

∣∣∣
=
∣∣∣ ∫

RN
1An∩Avn dx −

∫
RN

1Av dx
∣∣∣

=
∣∣∣ ∫

RN
1Avn dx −

∫
RN

1Av dx
∣∣∣→ 0.

On the other side∣∣∣ ∫
RN
(∇wAn − ∇w̃An )∇vn dx

∣∣∣2 ≤ (∫
RN
|∇vn|2 dx)(

∫
RN
|∇wAn − ∇w̃An |2 dx).

Since the first term of the product in the right hand side is bounded, it remains to
prove that

∫
RN |∇wAn − ∇w̃An |2dx → 0. But∫
RN
|∇wAn − ∇w̃An |2dx

=
∫

RN
|∇wAn |2dx − 2

∫
RN
∇wAn∇w̃An dx +

∫
RN
|∇w̃An |2dx

=
∫

RN
wAn dx − 2

∫
RN
w̃An dx +

∫
RN
w̃An 1A dx .

(6.10)

Since wAn converges strongly in L2(RN ) to w and since wAn are uniformly bounded
(from Lemma 4.5.2), we get

∫
RN wAn dx → ∫

RN wdx . Of course, we used the fact
that |An|, |A| ≤ c. If we prove that w̃An converges strongly in L2(RN ) to w, we get
that the expression in (6.10) goes to zero.

In order to prove the strong L2-convergence of w̃An to w, let us denote by w̃r
An

the weak solution of the problem{−�w̃r
An
= 1An∩A∩B0,r ,

w̃r
An
∈ H1

0 (An ∩ B0,r ).
(6.11)
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The maximum principle yields w̃An ≥ w̃r
An

. But∫
RN
|w̃r

An
|2dx −→

∫
RN
|wr |2dx,

where by wr we denoted the solution of{−�wr + µwr = 1A∩B0,r ,

w̃r ∈ H1
0 (B0,r ) ∩ L2

µ(B0,r ).
(6.12)

Hence

liminf
n→∞

∫
RN
|w̃An |2dx ≥

∫
RN
|wr |2dx .

Making r →+∞ and using the fact that wr → w strongly in L2(RN ) we get

limsup
n→∞

∫
RN
|w̃An |2dx ≥

∫
RN
w2dx .

On the other side wAn ≥ w̃An ≥ 0, and wAn−→w strongly in L2(RN ), hence

lim
n→∞

∫
RN
|w̃An |2dx =

∫
RN
w2dx,

which gives w̃An−→w strongly in L2(RN ).

The following theorem is a sort of “uniform” concentration-compactness result,
which is described in terms of the resolvent operators.

Theorem 6.5.6 Let (An)n∈N be a sequence of open (or quasi-open) sets with uni-
formly bounded measure. Then there exists a subsequence (still denoted by the same
indices) such that one of the following situations occurs.

Compactness: there exists a sequence of vectors (yn)n∈N ⊆ RN and a positive
Borel measure µ, vanishing on sets of zero capacity, such that yn + An γ -converges
to the measure µ and Ryn+An converges in the uniform operator topology of L2(RN )

to Rµ. Let us denote further by ‖R‖2 the operator norm of R.

Dichotomy: there exists a sequence of subsets Ãn ⊆ An, such that

‖RAn − RÃn
‖2 → 0, and Ãn = A1

n ∪ A2
n

with d(A1
n, A2

n)→+∞ and liminf
n→∞ |Ai

n| > 0 for i = 1, 2.

For the convenience of the reader, we also recall the concentration-compactness
principle. (See [115], [144], [156].)
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The concentration-compactness principle. Let (un)n∈N be a bounded sequence in
H1(RN ) with

∫
RN u2

ndx → λ > 0. There exists a subsequence (nk)k∈N satisfying
one of the following three possibilities:

i) (compactness) there exists yk ∈ RN such that

∀ε > 0, ∃R < +∞,
∫

yk+B0,R

u2
nk

dx ≥ λ− ε;(6.13)

ii) (vanishing)

lim
k→∞

sup
y∈RN

∫
y+B0,R

u2
nk

dx = 0, for all R < +∞;(6.14)

iii) (dichotomy) there exist α ∈ (0, λ), k0 ≥ 1, u1
k, u2

k bounded in H1(RN ) satis-
fying for k ≥ k0:

‖unk − (u1
k + u2

k)‖L2(RN ) ≤ δ(ε)→ 0 for ε→ 0+,∣∣∣ ∫
RN
(u1

k)
2 dx − α

∣∣∣ ≤ ε and
∣∣∣ ∫

RN
(u2

k)
2 dx − (λ− α)

∣∣∣ ≤ ε,
dist

(
supp u1

k, supp u2
k

)→+∞ as k →∞,

liminf
k→∞

∫
RN

[|∇unk |2 − |∇u1
k |2 − |∇u2

k |2
]

dx ≥ 0.

(6.15)

Notice that the vanishing situation does not appear in Theorem 6.5.6. Vanish-
ing is, roughly speaking, covered by compactness, since if vanishing occurs for the
sequence (RAn (1)) we prove that RAn−→0 in the norm operator of L(L2(RN )).

Proof of Theorem 6.5.6. Let (An)n∈N be a sequence of open (or quasi-open and
not necessarily bounded) sets in RN of uniformly bounded measure (say |An| ≤ c).
We apply the concentration-compactness principle to the sequence (wAn )n∈N which
from Lemma 4.5.2 is bounded in H1(RN ). Without loss of generality, we can sup-
pose that

∫
RN w

2
An

dx → λ ≥ 0. We study separately each situation. The com-
pactness and the vanishing cases will give uniform convergence for the sequence of
operators (RAn )n∈N, while dichotomy of (wAn )n∈N will give a dichotomy behavior
for (RAn )n∈N.

Compactness Let us suppose that for a subsequence (still denoted by the same
indices) and some translations (again we re-note yn + An by An) we have the L2-
strong convergence of the sequence (wAn )n∈N. Following γ -convergence arguments,
if wAn−→w in L2(RN ), then An γ -converges to a measure µ and w = wµ. In order
to conclude the compactness case, we give the following version of Proposition 6.1.7.

Lemma 6.5.7 Let (An)n∈N be a sequence of quasi-open sets of uniformly bounded
measure and suppose thatwAn−→w in L2(RN ). Then RAn converges in L(L2(RN ))

to Rµ.



168 6 Functions of Eigenvalues

Proof We have to prove that

lim
n→∞

[
sup

‖ f ‖L2(RN )≤1
‖RAn ( f )− Rµ( f )‖L2(RN )

]
= 0.

This is equivalent to

lim
n→∞‖RAn ( fn)− Rµ( fn)‖L2(RN ) = 0,

where ‖ fn‖L2(RN ) ≤ 1. It is enough to consider a subsequence which weakly con-
verges in L2(RN ) to f . Hence

limsup
n→∞

‖RAn ( fn)− Rµ( fn)‖L2(RN )

= limsup
n→∞

‖RAn ( fn)− Rµ( f )+ Rµ( f )− Rµ( fn)‖L2(RN )

≤ limsup
n→∞

‖RAn ( fn)− Rµ( f )‖L2(RN )

+ limsup
n→∞

‖Rµ( f )− Rµ fn‖L2(RN ).

We have RAn ( fn)⇀Rµ( f ) weakly in H1(RN ), hence applying Theorem 6.5.4, this
convergence is strong in L2(RN ). On the other side, Rµ( fn)⇀Rµ( f ) weakly in
H1(RN ). Denoting again by A the regular set of the measure µ (we have |A| ≤ c),
the compact injection H1

0 (A) ↪→ L2(A) proves that this convergence is also strong
in L2(RN ).

Proof of Theorem 6.5.6 (continuation).
Vanishing Let us suppose that (wAn )n∈N is in the vanishing case, i.e., for all R > 0,

lim
n→∞ sup

y∈RN

∫
By,R

w2
An

dx = 0.(6.16)

Assume that λ1(An) → +∞. The inequality ‖un‖L2(An)
≤ 1

λ1(An)
‖∇un‖L2(An ,RN )

yields that every H1(RN )-bounded sequence of elements un ∈ H1
0 (An) converges

strongly in L2(RN ) to 0. In particular this will be the case of wAn and, following
Lemma 6.5.7, RAn converges to 0 in L(L2(RN )).

In order to prove that λ1(An)→+∞, we use a result of Lieb from [155], namely
that for any ε > 0, there exists some R > 0 and yn ∈ RN such that

λ1(An ∩ Byn ,R) ≤ λ1(An)+ ε.(6.17)

The maximum principle yields wAn ≥ wAn∩Byn ,R
≥ 0, hence relation (6.16) gives

lim
n→∞

∫
An∩Byn ,R

w2
An∩Byn ,R

dx = 0.
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Translating An by the vector −yn , we can suppose (possibly extracting a subse-
quence, still denoted by the same indices), that the sequence of sets (−yn+An)∩B0,R
γ -converges to the empty set, which implies

λ1((−yn + An) ∩ B0,R)→+∞.

Hence, relation (6.17) gives that λ1(An) → +∞ (see for example [66]). Then
wAn−→0 in L2(RN ) and from Lemma 6.5.7 we get RAn−→0 in L(L2(RN )).

Dichotomy Supposing that (wAn )n∈N is in the dichotomy case, by a diagonal pro-
cedure we find a subsequence (still denoted by the same indices) such that there
exists α > 0 and u1

n, u2
n ∈ H1(RN ) with

‖wAn − (u1
n + u2

n)‖L2(RN ) → 0,(6.18)

∫
RN
(u1

n)
2 dx → α and

∫
RN
(u2

n)
2dx → λ− α,(6.19)

dist(supp u1
n, supp u2

n)→+∞,(6.20)

liminf
n→∞

∫
RN

[|∇wAn |2 − |∇u1
n|2 − |∇u2

n|2
]

dx ≥ 0.(6.21)

It is easy to see that u1
n, u2

n can be chosen positive, and belonging to H1
0 (An) (see the

construction of u1
n, u2

n in [156]). We define

Ãn = A1
n ∪ A2

n where A1
n = {u1

n > 0} and A2
n = {u2

n > 0},

which is a quasi-open set contained in An . Let us assume that

‖wAn − w Ãn
‖H1(RN ) → 0.(6.22)

In order to conclude, one can use [43, Lemma 3.6] and the fact that there exist two
constants K , α depending only on the measure of An and the dimension of the space,
such that

‖RAn − RÃn
‖2 ≤ K‖wAn − w Ãn

‖αL2(RN )
.(6.23)

The proof of this inequality is trivial in 2 and 3 dimensions, and needs an interpola-
tion argument related to the Riesz–Thorin theorem for N ≥ 4.

In order to prove (6.22) notice that w Ãn
= PH1

0 ( Ãn)
wAn , where PH1

0 ( Ãn)
denotes

the orthogonal projection from H1
0 (An) onto H1

0 ( Ãn). Then
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RN
|∇wAn − ∇w Ãn

|2 dx ≤
∫

RN
|∇wAn − ∇u1

n − ∇u2
n|2 dx

=
∫

RN
|∇wAn |2 dx − 2

∫
RN
∇wAn∇(u1

n + u2
n) dx

+
∫

RN
|∇(u1

n + u2
n)|2 dx

=
∫

RN
wAn dx − 2

∫
RN
(u1

n + u2
n) dx

+
∫

RN
|∇(u1

n + u2
n)|2 dx

= 2
( ∫

RN
wAn dx −

∫
RN
(u1

n + u2
n) dx

)
+
∫

RN
|∇(u1

n + u2
n)|2 dx −

∫
RN
|∇wAn |2 dx .

But

0 ≤ lim
n→∞

∣∣∣ ∫
RN
wAn dx −

∫
RN
(u1

n + u2
n) dx

∣∣∣
≤ lim

n→∞ |An|1/2‖wAn − (u1
n + u2

n)‖L2(An)
= 0

and

limsup
n→∞

[ ∫
RN
|∇(u1

n + u2
n)|2 dx −

∫
RN
|∇wAn |2 dx

]
≤ 0,

hence relation (6.22) follows by the Poincaré inequality.

Example 6.5.8 The first two eigenvalues of the Dirichlet Laplacian.

Let us consider, as in Section 6.4, the problem of minimizing functionals depending
on the first and the second eigenvalues, taking as the design region the entire space
RN . We define the set

E = {(λ1(A), λ2(A)) : A ∈ Ac(R
N )} ⊆ R2,(6.24)

where Ac(RN ) is the family of all quasi-open sets of RN of measure less than
or equal to c. Using the same arguments as in Section 6.4 and the concentration-
compactness principle for the γ -convergence, we prove the following result.

Theorem 6.5.9 The set E is closed in R2.

Proof Let (x, y) ∈ R2 be such that

x = lim
n→∞ λ1(An), y = lim

n→∞ λ2(An), with (An)n∈N ⊆ Ac(R
N ).
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In order to prove the closedness of the set E , we have to prove the existence of a set
A ∈ Ac(R

N ) such that x = λ1(A), y = λ2(A). Using Lemma 6.5.6 we distinguish
between two situations. We begin with the dichotomy.

There exists a sequence Ãn = A1
n∪A2

n given by Lemma 6.5.6, which in particular
satisfies λ1(A1

n ∪ A2
n)→ x and λ2(A1

n ∪ A2
n)→ y. There are two possibilities (up to

a re-notation of the indices).

1. λ1(A1
n)→ x and λ2(A1

n)→ y;

2. λ1(A1
n)→ x and λ1(A2

n)→ y.

If the first situation occurs, there exists ε > 0 such that for every n ≥ nε, we have
|A1

n| ≤ c − ε. For every δ > 0, there exists nδ ∈ N such that for every n ≥ nδ we
have |λ1(A1

n) − x | + |λ2(A1
n) − y| ≤ δ. For every δ′ > 0, there exists r > 0 large

enough such that

λ1(A
1
n ∩ Br )− λ1(A

1
n) ≤ δ,

λ2(A
1
n ∩ Br )− λ2(A

1
n) ≤ δ,

|A1
n \ (A1

n ∩ Br )| ≤ δ′.

Choosing δ > 0 and δ′ > 0 such that(c − ε + δ′
c

)2/n
<

y

y + 2δ

we make a homothety of ratio
( c

c−ε+δ′
)1/n of A1

n ∩ Br for some n ≥ max{nε, nδ} and

find a bounded quasi-open set A∗ = ( c
c−ε+δ′

)1/n
(A1

n ∩ Br ) such that |A∗| ≤ c and
λ1(A∗) ≤ x , λ2(A∗) ≤ y.

If the second situation occurs, we replace A1
n by the ball of mass |A1

n| denoted B1
n

and A2
n by the ball of mass |A2

n| denoted B2
n . For a subsequence (still denoted by the

same indices) we find two balls B1, B2, such that |B1|+|B2| ≤ c, and the γ -limits of
(B1

n )n∈N, (B2
n )n∈N are respectively B1 and B2. Then λ1(B1∪B2) ≤ x, λ2(B1∪B2) ≤

y and the same arguments as in the bounded case can be applied.
If compactness occurs when applying Lemma 6.5.6, there are two possibilities:

either Aµ is quasi-connected, or not. If Aµ is not quasi-connected, then we write
Aµ = A1 ∪ A2 and repeat the same arguments as in the dichotomy situation. If Aµ
is quasi-connected, two more possibilities may occur.

1. λ1(Aµ) = λ1(µ),

2. λ1(Aµ) < λ1(µ).

If the first situation occurs, we get µ = ∞RN \Aµ . Indeed, let us denote by uµ a first

eigenvector associated to λ1(µ). Since uµ ∈ H1
0 (Aµ) we get

λ1(µ) =
∫
RN |∇uµ|2 dx + ∫RN u2

µ dµ∫
RN u2

µdx
=
∫
RN |∇uµ|2 dx∫

RN u2
µ dx

= λ1(Aµ).
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Consequently,
∫
RN u2

µ dµ = 0 and uµ is a first eigenvector for Aµ. Since Aµ is
quasi-connected, we get that uµ(x) > 0 for q.e. x ∈ Aµ. Then from

∫
RN u2

µ dµ = 0
we get µ(Aµ) = 0, hence µ = ∞RN \Aµ . Thus, λ1(Aµ) = x, λ2(Aµ) = y.

If the second situation occurs, there are still two possibilities: either λ2(Aµ) < y,
or λ2(Aµ) = y. If λ2(Aµ) < y we can consider a ball Br large enough such that
λ1(Aµ∩Br ) < x, λ2(Aµ∩Br ) < y and follow the same arguments as in the bounded
case.

If λ2(Aµ) = y, let us denote by u2 an eigenvector associated to the second
eigenvalue, and Ãµ = {u 	= 0}. It follows, as in the bounded case, that

λ1( Ãµ) = λ2( Ãµ) = y.

There exists a mapping, as in the bounded case (see Section 6.4)

[0,+∞] # t �→ A(t) ∈ Ac(R
N )

with the properties A(0) = Aµ, A(+∞) = Ãµ, for every t1 < t2, cap(A(t2) \
A(t1)) = 0, the mapping t �→ λ1(A(t)) is continuous and increasing, and the map-
ping t �→ λ2(A(t)) is constant. The idea to prove this assertion is to “delete” con-
tinuously in capacity the nodal line of u2. We do not give the proof here, since the
passage from bounded to unbounded sets can be done by classical arguments.

Then, there exists some t ∈ (0,+∞) such that λ1(A(t)) = x, λ2(A(t)) = y and
A(t) ∈ Ac(RN ).

Example 6.5.10 The buckling load of a clamped plate.

Let � ⊆ R2 be an open set (bounded or unbounded) with |�| < +∞. The
buckling load of the clamped plate � is defined as:

�1(�) = min
u∈W 2,2

0 (�),u 	=0

∫
�
|�u|2dx∫

�
|∇u|2dx

.(6.25)

It is an open question to prove that the disk minimizes the buckling load among all
open sets of given measure. Willms and Weinberger proved that the conjecture could
be solved provided there exists a smooth bounded simply connected open set � of
class C2 which minimizes �1 among all open domains of measure equal to c in
R2 (see [18] for a detailed description of the problem). Concentration-compactness
arguments, similar to the one presented into this chapter, were used in [18] to prove
the existence of a simply connected minimizer. Up to our knowledge, the conjecture
is still open, since the regularity of the minimizer was not yet proved.

6.6 Some open questions

• Concerning Theorem 6.4.1, there are many other questions which can be raised.
Is the set E convex? Is E still closed if the pair (λ1, λ2) is replaced by (λi , λ j ),
or more generally if we consider the set
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EK =
{
(λi (A))i∈K : A ∈ Ac(B)

}
where K is a given subset of positive integers? Are the sets A on the boundary
of E smooth? When are they convex? If the design region is an open set D, is
the set s(Ac(D)) still closed? Or if the Laplace operator is replaced by another
elliptic operator of the form

L = −∂i (ai j∂ j )+ bi∂i + c ?

• In [49] it was proved that the problem

min{λk(�) : � ⊆ RN , |�| = c}(6.26)

has a solution for k = 3. In two dimensions, the disk is suspected to be the
solution (see [16]); up to now, as far as we know, this is still a conjecture. The
existence for (6.26) in the case k ≥ 4 is not solved. Roughly speaking, if one
proves the existence of bounded minimizers for λ3, . . . , λk (under the volume
constraint) then the existence of a minimizer (bounded or unbounded) for λk+1
follows.

• An important question deals with the regularity of the optimal shape. Is there a
smooth solution for Problem (6.26) (even for k = 3)? For the first eigenvalue
only, it was proved by variational methods that the minimizer among all quasi-
open subsets A ⊆ D of prescribed measure is in fact an open set (see [136]).
We refer the reader to [44] for a C1-regularity result for functionals depending
on eigenvalues, provided that the class of admissible domains consists only of
open convex sets.

• For every k ≥ 2, prove that if A∗ is a solution of

min{λk(A) : A ⊆ RN , |A| ≤ c},

then λk(A∗) = λk−1(A∗), i.e., on the optimal set, the k-th eigenvalue is not
simple, and equals the one of lower order. This happens for k = 2 and in view
of the conjectured optimum for λ3, this should also hold for k = 3. Moreover,
the numerical computations of Oudet [173] for several values of k support the
conjecture.

For a more detailed list of open problems related to eigenvalues we refer the
reader to [16].
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Shape Optimization Problems with Neumann
Condition on the Free Boundary

In this chapter we are concerned with shape optimization problems with Neumann
boundary conditions on the unknown part of the boundary. We will consider only
the case of homogeneous boundary conditions: on the one hand, this is the situa-
tion which is very often encountered in different physical models (cracks, free parts
of structures, image segmentation, etc.); on the other hand, nonhomogeneous Neu-
mann boundary conditions are unnatural on free boundaries and not well defined on
irregular boundaries (even not in a weak sense).

In order to study the existence question for shape optimization problems with
Neumann conditions on the free boundary, the first step is to understand the stability
of the solution of a partial differential equation for nonsmooth perturbations of the
geometric domain.

As for the Dirichlet problem, it is quite clear that the stability of the solution is
strictly related to the convergence in the sense of Mosco of the corresponding vari-
ational spaces. The choice of the differential operator and the fact that the problem
is scalar or vectorial is also of interest, since, via the Mosco convergence, a lot of
problems may be reduced to the scalar case and to the Laplace operator. There are
two spaces which are of interest for the scalar problems: the usual Sobolev space
H1(�) and the Dirichlet space L1,2(�) (see the precise definition below). For other
problems, e.g., arising in elasticity, the variational spaces are related to the previous
ones.

As for the Dirichlet problem, the difficult part of the question is to exhibit sit-
uations when the Mosco convergence holds; to precisely answer this question, we
restrict ourselves to the case of dimension 2, even if most of the general results are
presented in N dimensions, N ≥ 2. For N ≥ 3, up to our knowledge, all shape
stability results in the literature involve (too) strong geometrical constraints. Either
one assumes a certain regularity of the boundary (uniform Lipschitz condition [80]
or equicontinuity [157]) or the boundaries are allowed to move into a fixed manifold
and satisfy a capacity condition [57].

It is worth noticing that for Neumann boundary conditions, the general form of a
relaxed problem is not known. By relaxed problem we mean the problem solved by
a weak limit of a sequence of solutions on arbitrarily varying domains.
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7.1 Some examples

Example 7.1.1 Optimal cutting in a membrane. This can be seen as the scalar
version of the well-known cantilever problem. In a simplified form, the question is
to find one or more “optimal cuts or holes” in a membrane which leave it as strong as
possible (see [48]). Typical constraints are that the cut connects two or more points,
or that the holes have a minimal measure.

Figure 7.1. Three admissible cuts � in the membrane D.

Let D be a two-dimensional bounded open set with a smooth boundary (say the
rectangle in Figure 7.1), u0 ∈ H1(D), K a compact subset of D. An admissible
cut in D will simply be a compact subset � of D containing K and satisfying some
connectedness assumptions. We denote by Uad the class of admissible cuts, that is

Uad =
{
� ⊆ D : K ⊆ �, � is compact, �� ≤ l, |�| ≥ c

}
,

where �� denotes the number of connected components of �, and |�| is the Lebesgue
measure of �. In Figure 7.1 we took K1 = {A, B}, l1 = 1, c1 = 0, K2 = {A, B,C},
l2 = 1, c2 = 0, K3 = ∅, l3 = 3, c3 = 10%, respectively.

For every � ∈ Uad the energy E(�) associated to � will be

E(�) = min
{ ∫

D\�
|∇u|2 dx : u ∈ H1

loc(D \ �), u = u0 on ∂D \ �
}
,

so that the optimization problem we deal with can be written as

max
{
E(�) : � ∈ Uad

}
.(7.1)

For fixed � ∈ Uad , the function u� ∈ H1
loc(D \ �) minimizing the energy of the

membrane is the weak variational solution of the problem{−�u� = 0 in D \ �,
∂u�
∂n = 0 on ∂�, u� = u0 on ∂D \ �.(7.2)

We prove the existence of a solution to problem (7.1) in Section 7.3.

In Figure 7.1 there are some examples of admissible cuts or holes. Notice that, in
general, even if c = 0 admissible cuts � do not need to be curves; for instance if we
want to connect three points we have to expect the optimal cut has a triple junction
shape.
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Example 7.1.2 The image segmentation problem. A similar situation occurs in the
so-called image segmentation problem, where the question is to transform an image
g by introducing a family of suitable contours �. Given a function g ∈ L2(D), the
energy of a segmentation � is

E(�) = min
{ ∫

D\�
|∇u|2 dx +

∫
D\�

(u − g)2 dx : u ∈ H1(D \ �)
}
.

The optimal segmentation of the image g is then obtained by minimizing the
Mumford–Shah functional, i.e., by solving the optimization problem

min
{
E(�)+H1(�) : � ∈ Uad

}
(7.3)

where Uad is the family of compact sets contained in D and H1(�) is the one-
dimensional Hausdorff measure of �. For a given �, the minimizer u� of the energy
satisfies the equation {−�u� + u� = g in D \ �,

∂u�
∂n = 0 on � ∪ ∂D.

(7.4)

Let us observe that problems (7.1) and (7.3) are somehow similar, in the sense
that for a given � the minimizer of the energy solves an elliptic equation with homo-
geneous Neumann boundary conditions on �.

Problems (7.1) and (7.3) are nevertheless deeply different. First of all, in problem
(7.1) one has to maximize the energy, while in problem (7.3) one has to minimize it.
This is the main reason for which problem (7.3) can be seen as a minimum problem
in the space SBV (see [7], [21]), the “crack” � being seen as the “jump set” of the
SBV function u.

A second difference is that the elliptic equation (7.4) has a zero order term, there-
fore the solution belongs to the Sobolev space H 1(D \ �). The solution of problem
(7.2) belongs only to the Dirichlet space (see [141]) L1,2(D \ �). By definition, for
every open set A ⊆ RN ,

L1,2(A) = {u ∈ L2
loc(A) : ∇u ∈ L2(A,RN )

}
,(7.5)

which coincides with H1(A) only if A is smooth enough, for instance if ∂A is Lips-
chitz continuous (see [130]).

Another main difference between problems (7.1) and (7.3) is the presence of the
penalty term given by the Hausdorff measure. Without this term the minimizer of the
Mumford–Shah functional would not exist in general, the infimum being equal to
zero. The presence of this term in functional (7.1) is not necessary for the existence
of a solution. From an intuitive point of view, since one looks for the strongest mem-
brane, the length of the crack should be not “too big,” hence the constraint on the
Hausdorff measure is somehow redundant. One could add in problem (7.1) a penalty
term given by the Hausdorff measure, by considering

max{E(�)− αH1(�) : � ∈ Uad},(7.6)
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where E(�) is the energy appearing in (7.1) and α > 0 is fixed. In this case, the
existence of an optimal crack could be derived as a consequence of the result of
Chambolle and Doveri [79].

Example 7.1.3 The quasi-static growth of brittle fracture. An approach by dual-
ity, close to the one we will present below, was followed by Dal Maso and Toader
in [103], where they studied a model for the quasi-static growth of a brittle fracture
proposed by Francfort and Marigo [123]. Given a crack �0 in an open set D, at the
next time step when a new condition u0 on the boundary ∂D is imposed, they deal
with an optimization problem of the form

min
�∈Uad , �0⊆�

min
{ ∫

D\�
|∇u|2 dx + αH1(�) : u ∈ H1

loc(D \ �),

u = u0 on ∂D \ �
}
,

for which they proved the existence of an optimum. It is clear that the minimizer
u is the solution of an elliptic equation and, on the unknown crack �, the natural
conditions are of homogeneous Neumann type.

Example 7.1.4 The cantilever problem. A celebrated and very classical shape op-
timization problem arising in elasticity is the so-called cantilever problem (see [5],
[6], [28] and [78]). This is similar to the optimal cutting problem but it is formulated
within the elasticity framework.

Figure 7.2. The Cantilever problem.

Let D be a rectangle and let the rectangles U and V be as in Figure 7.3. The force
f is supposed supported by V . The admissible cantilevers are

Uad =
{
� ⊆ D : U ∪ V ⊆ �, � is open, ��c ≤ l, |�| ≤ c

}
.

For every � ∈ Uad the energy E(�) associated to � is
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E(�) = inf
{1

2

∫
�

ε(u) : ε(u) dx −
∫

V
f udx :

u ∈ L2
loc(�,R

2), u = 0 on U
}
,

where the strain tensor ε(u) is defined as the symmetrized gradient (t∇u + ∇u)/2.
The optimization problem we deal with can be written as

max
{
E(�) : � ∈ Uad

}
.(7.7)

The proof of the existence result relies on the first condition of the Mosco conver-
gence for the “natural” elasticity spaces

{u ∈ L2
loc(�,R

2) : ε(u) ∈ L2(�,R4)}.(7.8)

Chambolle proved in [78] that L1,2(�,R2) is dense into the elasticity space (7.8) for
every � ∈ Uad and consequently the proof is reduced to the first condition of the
Mosco convergence for the scalar Dirichlet spaces L1,2(�,R) (which is discussed
in Section 7.2 below).

Remark 7.1.5 The admissibility condition ��c ≤ l is crucial in the formulation
above. Indeed, this assumption provides the necessary compactness property to ob-
tain the existence of an optimal solution in Problem (7.7).

On the other hand, removing this admissibility condition would lead to non-
existence phenomena and some suitable relaxed formulation would be necessary to
have a well posed minimization problem. We refer to the pioneering works by Mu-
rat and Tartar [168], [169] where the homogenization method to shape optimization
has been applied, and to the book by Allaire [4, Section 4.1]. We do not enter into
this very interesting field, also important for many industrial applications, and refer
the reader further reading to one of the several books available on the subject [4],
[29], [83].

In Figure 7.3 there is a numerical solution for a the Cantilever problem with
f = −1 and c = |D|/2 (see Bendsøe and Sigmund [29], and also Allaire [4] for
other numerical computations of optimal shapes). The figure has been obtained by
using the TOPOPT source code available at http://www.topopt.dtu.dk (see
also the paper [183]).

Figure 7.3. Numerical solution to the Cantilever problem.
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7.2 Boundary variation for Neumann problems

The purpose of this section is to give a quite general method, based on duality, for
the study of the shape stability of the weak solution of a linear elliptic problem with
homogeneous Neumann boundary conditions in two dimensions of the space. Shape
stability is influenced by the presence of the zero order term (compare equations
(7.2) and (7.4)). For example, equation (7.4) is related to the Mosco convergence of
H1-spaces, while equation (7.2) is related to the Mosco convergence of L1,2-spaces.

We concentrate our discussion only on purely homogeneous boundary conditions
(over all the boundary), but we keep in mind that shape stability for mixed boundary
conditions or non-homogeneous Neumann boundary conditions on a fixed part of the
boundary (like ∂� in equation (7.2)) is a straightforward consequence of the results
we present here.

Let us fix a bounded open set D ⊆ RN , and h ∈ L2(D). For every open set
� ⊆ D, we consider the problem{−$ u�,h + u�,h = h in �,

∂u�,h
∂n = 0 on ∂�.

(7.9)

We study the stability of the solution u�,h for perturbations of the geometric
domain � inside D, i.e., the “continuity” of the mapping � �→ u�,h . The family of
domains is endowed as in Chapter 4 with the Hausdorff complementary topology. In
order to compare two solutions on two different domains we extend u�,h and ∇u�,h
by zero on D \ �. More precisely, we embed L1,2(�) and H1(�) into two fixed
space as follows:

L1,2(�) ↪→ L2(D,RN ),(7.10)

H1(�) ↪→ L2(D)× L2(D,RN )(7.11)

respectively, by means of the mappings

u �→ 1�∇u,(7.12)

u �→ (1�u, 1�∇u).(7.13)

According to these conventions and to the definition of the Mosco conver-
gence (see Section 4.5), the Mosco convergence of H1-spaces is seen in L2(D) ×
L2(D,RN ) while the Mosco convergence of L1,2-spaces is seen in L2(D,RN ).

Roughly speaking, shape stability for Neumann problems can be split in two
situations. The easy case is when the “limit” domain � is smooth enough such that
C∞(�) is dense in H1(�). The difficult case is when the “limit” domain � is not
smooth, and this density property fails. In this case, as far as we know, the only
available results are those of [53], [54], [79] which hold in two dimensions of the
space and require a uniformly finite number of holes for the perturbation. Recently,
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the results of [54] were extended in [96] to nonlinear operators of p-Laplacian type
(still in two dimensions of the space).

Concerning equation (7.9), we recall the result obtained in [80], where continuity
is obtained under geometric constraints on the variable domains (uniform Lipschitz
boundary), which in particular imply the existence of uniformly bounded extension
operators from H1(�) to H1(R2); the existence of extension operators across the
boundary is the key result for the shape continuity. In [171] the shape continuity is
established for the same equation in a class of domains satisfying weaker geometrical
constraints which still provide the existence of a dense set of functions for which the
extension property holds (hence the first Mosco condition).

Here are the main results (see Bucur and Varchon [53], [54]), where we denote
by Ol(D) the class of all open subsets� of D with ��c ≤ l. We prefer to express the
main results in terms of Mosco convergence, which can be easily adapted to every
concrete example in which shape stability is investigated.

Theorem 7.2.1 Let N = 2 and {�n}n∈N ∈ Ol(D) be such that �n
Hc

−→ �. Then
H1(�n) converges in the sense of Mosco to H1(�) if and only if |�n| → |�|.

In particular, the Mosco convergence holds if the number of the connected com-
ponents and the Hausdorff measure of ∂�n are uniformly bounded (Chambolle and
Doveri [79]).

As an example of direct application of Theorem 7.2.1, we give a shape stability
result for the solutions of (7.9).

Proposition 7.2.2 Let N = 2 and {�n}n∈N ∈ Ol(D) be such that �n
Hc

−→ �. For
every h ∈ L2(D) we have that 1�n u�n ,h converges to 1�u�,h in L2(D) if and only
if |�n|→|�|.

The shape stability of the solution of equations with zero right-hand side, like
(7.2), is related to the following result which does not require, as Theorem 7.2.1,
the stability of the Lebesgue measure. More details will be given in the next para-
graph, but for a full comprehension of the role played by the stability of the Lebesgue
measure, we refer the reader to [54].

Theorem 7.2.3 Let N = 2 and {�n}n∈N ∈ Ol(D) be such that�n
Hc

−→ �. Then the
first Mosco condition holds for {L1,2(�n)}n and L1,2(�).

7.2.1 General facts in RN

Proposition 7.2.4 Let D be a bounded design region in RN and let �n, � ⊆ D.
Suppose that H1(�n) converges in the sense of Mosco to H1(�). Then, for every
h ∈ L2(D),

(1�n u�n ,h, 1�n∇u�n ,h)
L2(D)×L2(D,R2)−→ (1�u�,h, 1�∇u�,h).
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Proof It is clear that (1�n u�n ,h, 1�n∇u�n ,h) is bounded in L2(D)× L2(D,RN ) by
‖h‖L2(D). For a subsequence, still denoted using the same indices, we can write

(1�n u�n ,h, 1�n∇u�n ,h)
L2(D)×L2(D,R2)

⇀ (u, u1, . . . , uN ).

From the second Mosco condition we get u = u1 = · · · = uN = 0 a.e. on �c and
∇u = (u1, . . . , uN ) in the sense of distributions on �. In this way, u|� ∈ H1(�). To
prove that u|� = u�,h , we have to prove for every φ ∈ H1(�),∫

�

∇u∇φdx +
∫
�

uφdx =
∫
�

hφdx .

From the first Mosco condition, there exists φn ∈ H1(�n) such that

(1�nφn, 1�n∇φn)
L2(D)×L2(D,RN )−→ (1�φ, 1�∇φ).

We conclude by passing to the limit the equality∫
D

1�n∇u�n ,h∇φndx +
∫

D
1�n u�n ,h1�nφndx =

∫
D

h1�nφndx,

and observing that the L2(D)× L2(D,RN )-norms of u�n ,h also converge.
Since the solution of (7.9) is unique, the whole sequence (u�n ,h)n converges

strongly to u�,h (in the sense of extensions).

Corollary 7.2.5 If H1(�n) converges in the sense of Mosco to H1(�), then 1�n

converges in L1 to 1�.

Proof Take h = 1 and apply Proposition 7.2.4.

Corollary 7.2.6 Let �n
Hc

−→ �. Then H1(�n) converges in the sense of Mosco to
H1(�), if and only if, for every h ∈ L2(D),

(1�n u�n ,h, 1�n∇u�n ,h)
L2(D)×L2(D,R2)−→ (1�u�,h, 1�∇u�,h).

Proof The necessity follows by Proposition 7.2.4. Let us prove now the sufficiency.
Condition M2 follows from Corollary 7.2.5 and the properties of the Hausdorff con-
vergence (see Proposition 4.6.1). For proving M1, it is enough to observe that

Y = {u�,h : h ∈ L2(D)} ⊆ H1(�)

is dense in H1(�). Indeed, suppose by contradiction that u ∈ H1(�) is orthogonal
to Y , i.e.,

∀h ∈ L2(D)
∫
�

∇u∇u�,h + uu�,hdx = 0.
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Consequently ∫
�

uhdx = 0,

hence, u ≡ 0.

Theorem 7.2.7 Let D be a bounded design region in RN and assume that �n, � ⊆
D satisfy a uniform cone condition. If �n

Hc

−→ �, then H1(�n) converges in the
sense of Mosco to H1(�).

Proof First, as all �n satisfy a uniform cone condition, if �n
Hc

−→ � we also have
that 1�n converges in L1 to 1� (see [140]). The first Mosco condition follows by
taking un = (Eu)|�n , where Eu ∈ H1(D) is an extension of u on D \ �. The
second Mosco condition follows using the properties of the Hc-convergence and the
convergence of the characteristic functions.

For technical purposes, we introduce the equation{−$ u�,g = g in �,

∂u�,g
∂n = 0 on ∂�.

(7.14)

Here, g ∈ L2(�) has a compact support in � and
∫

C gdx = 0 for every connected
component C of �. The solution u�,g then belongs to L1,2(�) and is obtained by
the minimization of the functional

L1,2(�) # u �→ 1

2

∫
�

|∇u|2dx −
∫
�

ugdx .

One of the main ideas introduced in [54] is to consider a second equation which
is easier to study from the point of view of the shape stability, but which carries most
of the information concerning the shape stability of (7.9). Let B = B(0, r) be such
that B(0, r + δ) ⊆ � ⊆ D for some δ > 0 and let γ ∈ H 1/2(∂B) be such that∫
∂B γ dσ = 0. Note that, under this last assumption, γ is also an element of the dual

of H1/2(∂B)/R. We consider the equation⎧⎪⎪⎨⎪⎪⎩
−$ v�,γ = 0 in � \ B,

∂v�,γ
∂n = 0 on ∂�,

∂v�,γ
∂n = γ on ∂B.

(7.15)

Equation (7.15) has a unique variational solution in L1,2(� \ B) obtained by the
minimization of the energy functional

L1,2(� \ B) # v �→ F(v) = 1

2

∫
�\B

|∇v|2dx −
∫
∂B
γ vdσ.(7.16)
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This is a consequence of the Lax–Milgram theorem. Note that in L1,2(� \ B) we
implicitly assumed the equivalence relation u ≡ v if ∇u = ∇v a.e.

The main interest to relate the shape stability of the solution of problem (7.9) to
the shape stability of the solution of problem (7.15) relies on the fact that all solu-
tions of problem (7.15) (even in open sets with non-smooth boundaries) have, in two
dimensions of the space, harmonic conjugates which satisfy Dirichlet boundary con-
ditions (which are easier to handle on varying domains using the results of Chapter
4). Observe that a new difficulty (of different type) appears, since the traces of the
conjugate functions on the boundary are locally constant, but, globally, the constants
may vary. Nevertheless, in concrete examples, this seems easier to handle, rather than
investigating directly the stability of the original problem.

We give first a result which relates the shape stability of (7.14) to the shape
stability of (7.15). We recall that for a bounded open set D, we denote by O(D)
the family of all open subsets of D. Given a sequence �n

Hc

−→ �, we say that g is
admissible, if supp g is contained in a ball B, such that B ⊆ � and

∫
B gdx = 0.

This implies for n large enough that supp g ⊆ �n .

Proposition 7.2.8 Let �n, � ∈ O(D) such that �n
Hc

−→ �. The following asser-
tions are equivalent:

1. (Behavior of the solutions of (7.14)). For every admissible g, we have

1�n∇u�n ,g
L2(D,RN )−→ 1�∇u�,g.

2. (Behavior of the solutions of (7.15)). For every ball B such that B ⊆ � and for
every γ ∈ H1/2(∂B) with

∫
∂B γ dσ = 0 we have 1�n\B∇v�n ,γ−→1�\B∇v�,γ

strongly in L2(D,RN ),

3. (The first Mosco condition for the spaces L1,2(�n)). We have

L1,2(�) ⊆ s − liminf
n→∞ L1,2(�n).

In assertion 3 above, we used the notation introduced in Section 4.5. Using embed-
ding (7.10), this condition reads: for every u ∈ L1,2(�) there exists un ∈ L1,2(�n)

such that 1�n∇un−→1�∇u strongly in L2(D,RN ).

Proof 1.⇒ 3. Let us set

Y = {ψ ∈ L1,2(�) : ∃ψn ∈ L1,2(�n) such that 1�n∇ψn
L2(D,R2)−→ 1�∇ψ}.

It is sufficient to prove that Y is dense in L1,2(�); then 3 follows straightforwardly
by an usual diagonal procedure. Let � ∈ L1,2(�) such that

� ⊥L1,2(�) Y,

i.e.,
∫
�
∇�∇vdx = 0 for all v ∈ Y , and fix one of its representatives in L1,2(�).

According to Proposition 4.6.1 on the Hausdorff convergence, the equivalence class
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generated by C∞0 (�) in L1,2(�) is contained in Y . Hence, for all v ∈ C∞0 (�) we
have

∫
�
∇�∇vdx = 0, therefore −�� = 0 in D′(�). Let now B be a ball such

that B̄ ⊂ �. For every g ∈ L2(D), with supp g ⊂ B̄ and
∫

B gdx = 0 we have, by
assertion 1,

∫
B g�dx = 0, so � is constant in B, hence ∇� = 0 in the connected

component of� which contains B. Applying this argument to every connected com-
ponent of �, we deduce that ∇� = 0 in � i.e., � ≡ 0 in L1,2(�).

3 ⇒ 1. Let g ∈ L2(�) admissible. Taking u�n ,g as test function in (7.14) and
applying the Poincaré inequality in H1(B), we obtain that the sequence
‖1�n∇u�n ,g‖L2(D,RN ) is bounded. Up to a subsequence denoted by the same in-
dices we have 1�n∇u�n ,g⇀w weakly in L2(D). From the Hc-convergence, we get
that for every q ∈ C∞0 (�,R

N ), div q = 0,

〈w|�, q〉H−1(�,RN )×H1
0 (�,R

N ) = 0.

Applying successively De Rham’s theorem [130, Theorem 2.3] on an increasing se-
quence of smooth sets covering �, there exists u ∈ L2

loc(�) such that w|� = ∇u
in the distributional sense in �. Moreover, from the compact injection H1(B) ↪→
L2(B) we have u�n ,g−→u strongly in L2(U ). By assertion 3, for every v ∈ L1,2(�)

we have ∫
�

∇u∇vdx =
∫

D
〈w, 1�∇v〉dx = lim

n→∞

∫
D

1�n∇un1�n∇vndx

= lim
n→∞

∫
�n

gvndx =
∫
�

gvdx .

Hence u|� = u�,g and moreover

lim
n→∞

∫
D
|1�n∇u�n ,g|2dx = lim

n→∞

∫
U

gu�n ,gdx

=
∫

U
gu�,gdx =

∫
D
|1�∇u�,g|2dx .

(7.17)

By the uniqueness of the solution of (7.14), the whole sequence 1�n∇u�n ,g con-
verges to 1�∇u�,g in L2(D,RN ).

2 ⇒ 3. Let C be a connected component of � and denote by Y the subspace of
L1,2(C \ B) given by

Y =
{
ψ ∈ L1,2(C \ B) : ∃ψn ∈ L1,2(�n \ B) such that

1�n∇ψn
L2(D,RN )−→ 1C\B∇ψ

}
.

Let � ∈ L1,2(C \ B), � ⊥ Y i.e.,
∫

C\B ∇�∇vdx = 0 for all v ∈ Y ; let us fix a

representative of � in L1,2(C \ B). Using Proposition 4.6.1, we deduce, as above,
that −�� = 0 in D′(C \ B). Since every solution v�,γ belongs to Y , writing the
orthogonality property we get
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0 =
∫

C\B
∇�∇v�,γ dx =

∫
∂B
γ�dσ.

This relation holds for every γ ∈ H1/2(∂B) such that
∫
∂B γ dσ = 0. Since H1/2(∂B)

is dense in L2(∂B) we get that � is constant on ∂B. Let now �̄ ∈ L1,2(C) such that

�̄ = � in C \ B̄ and �̄ = c a.e. on B. Since �n
Hc

−→ �, for every function
ϕ ∈ C∞0 (C) the restriction ϕ∣∣�\B̄

belongs to Y, hence we have

∫
�

∇�̄∇ϕdx = 0.

Therefore the extension of � by the same constant on B gives a harmonic function,
constant on a set of strictly positive measure, hence ∇� = 0 on � \ B. We conclude
that Y is dense in L1,2(C \ B̄).

To prove that for every u ∈ L1,2(C) there exists un ∈ L1,2(�n) such that
1�n∇un−→1C∇u strongly in L2(D,RN ), we use an argument based on the partition
of unity of D. Let ϕ ∈ C∞0 (C) such that ϕ = 1 on B. Let un = 1C uϕ+(1−ϕ)1�\Bvn

where vn ∈ L1,2(� \ B̄) and 1�\B∇vn−→1C\B∇u strongly in L2(D,RN ). So

un ∈ L1,2(�n) and 1�n∇un−→1�∇u strongly L2(D,RN ).
Let now (Ci )i∈N be the family of all connected components of �. Since the set

{u ∈ L1,2(�) such that ∇u = 0 on Ci except for a finite number of i}
is dense in L1,2(�) assertion 3 follows.

3 ⇒ 2. The proof follows the same arguments as in the implication 3 ⇒ 1. with
the remark that every function of L1,2(� \ B) has an extension on L1,2(�).

Corollary 7.2.9 Let D be a bounded design region of RN and let {�n}n∈N be a
sequence of open subsets of D converging in the Hausdorff complementary topology
to �. Then assertions A) and B) below are equivalent.
A) H1(�n) converges in the sense of Mosco to H1(�).
B) The following three conditions hold:

B.1. s − liminf
n→∞ L1,2(�n) ⊆ L1,2(�);

B.2. for every u ∈ H1(�) such that ∇u = 0 there exist un ∈ H1(�n) such that

(1�n un, 1�n∇un)
L2(D)×L2(D,RN )−→ (1�u, 0);

B.3. |�| = lim
n→∞ |�n|.

Proof A)⇒ B) For proving B.1 take u ∈ L1,2(�) and define for every M > 0,

uM := (u∗ ∧ M) ∨ (−M),

where u∗ is a representative of u in L1,2(�). Then uM converges in L1,2(�) to
u when M → +∞ and moreover uM belongs to H1(�), hence from A) uM ∈
s − liminf

n→∞ H1(�n).
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B.2 is a direct consequence of A).
In order to prove B.3 take un, = 1�n .
B)⇒ A) It is enough to prove that the set

Y = {φ ∈ H1(�) : ∃φn ∈ H1(�n) such that
(1�nφn, 1�n∇φn)→ (1�φ, 1�∇φ) in L2(D)× L2(D,RN )}(7.18)

is dense in H1(�).
By linearity and a truncation argument, we can fix φ ∈ H1(�) such that φ ∈

L∞(�) and φ = 0 on � \C , where C is a connected component of �. According to
B.1 there exists un ∈ L1,2(�n) such that

1�n∇un
L2(D,RN )−→ 1�∇φ.

Let us fix a ball B such that B ⊆ C and choose the representative of un in L1,2(�n)

by adding a suitable constant, so that we can assume that
∫

B undx = ∫B φdx . Let M
be a positive constant such that ‖φ‖∞ < M and define

uM
n = (un ∧ M) ∨ (−M).

We notice that uM
n ∈ H1(�n) and

1�n∇uM
n

L2(D,RN )−→ 1�∇φ.
Moreover, since {1�n uM

n }n is uniformly bounded in L∞(D), we can write (for a
subsequence)

1�nk
uM

nk

L2(D)
⇀ v,

where ∇v = ∇φ on � and v = φ on C . Using the Poincaré inequality on smooth
open subsets compactly contained in C we have that the convergence above is actu-
ally strong in L2

loc(C).
According to B.2, there exists vnk ∈ H1(�nk ) such that

(1�nk
vnk , 1�nk

∇vnk )
L2(D)×L2(D,RN )−→ (1�v − 1�φ, 0).

It is obvious that vnk can be chosen such that ‖vnk‖∞ ≤ 2M . Let us define φnk :=
uM

nk
− vnk ∈ H1(�nk ). We have

1�nk
∇φnk

L2(D,RN )−→ 1�∇φ.

Let us prove that
∫

D(1�nk
φnk − 1�φ)2dx → 0. First, we have∫
�

(1�nk
φnk − 1�φ)

2dx → 0
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since on every compact set ω ⊆ � the sequence 1�nk
φnk − 1�φ weakly converges

to 0 in L2(ω), the gradients converge to zero strongly and the sequence is uniformly
bounded in L∞(D). Second,∫

D\�
(1�nk

φnk − 1�φ)
2dx ≤ 4M2

∫
D\�

1�nk
dx,

the last term converging to zero from B.3.
Notice that we found a subsequence {φnk } and not a sequence converging to φ.

Suppose by contradiction that a sequence {φn} strongly converging to φ does not
exist. For a subsequence, we would have that the distance in L2(D) × L2(D,RN )

from φ to H1(�nk ) would be bounded below by a positive number. This cannot
occur, since using the same arguments as above, we would find a sub-subsequence
which gives the contradiction.

7.2.2 Topological constraints for shape stability

The main result of this section consists in proving that the solution of equation (7.15)
is stable in the Hc-topology, provided that the number of the connected components
of �c is uniformly bounded. In this section we assume that the dimension N of the
space is 2. For a bounded design region D ⊆ R2 and for l ∈ N, we denote as in
Chapter 4,

Ol(D) = {� ⊆ D : � open, ��c ≤ l}.
Relying on the results of the previous section, we begin with the proof of Theo-

rem 7.2.3.

Proof of Theorem 7.2.3. According to Proposition 7.2.8, it is enough to prove that
for every ball B such that B ⊆ � and for every γ ∈ H1/2(∂B) with

∫
∂B γ dσ = 0

we have 1�n\B∇v�n ,γ−→1�\B∇v�,γ strongly in L2(D,RN ).
We use a duality argument to transform the Neumann problem into a Dirichlet

problem, then use a Šveràk type result, and then return to the Neumann problem,
again by duality.

Let � ∈ Ol(D) such that B ⊆ �, and denote by K1, . . . , Kl the connected
components of �c. Consider problem (7.15) on � \ B. If � is not connected, in
every connected component which does not contain B, the solution is set to be 0.

For the existence of a conjugate function of v�,γ into a smooth domain with
a finite number of (smooth) holes we refer to [130, Theorem 3.1]. By approaching
the non-smooth holes with smooth ones and applying [130, Theorem 3.1], in [54] is
proved the following result.

Lemma 7.2.10 There exists a function φ ∈ H1
0 (D) and constants c1, . . . , cl ∈ R

such that ∇v�,g = curlφ in � \ B and⎧⎨⎩−�φ = 0 in � \ B,
φ = ci q.e. on Ki i = 1, . . . , l,
φ = G on ∂B,

(7.19)
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where G ∈ H3/2(∂B) is such that G ′ = γ in the sense of distributions on ∂B with
respect to the arc length parametrization.

The equality φ = ci q.e. on Ki means that the usual restriction of a quasi-continuous
representative of φ in H1

0 (D) is equal to ci on Ki .
We recall two technical lemmas. The first one is an immediate consequence of

[41], [56] while the second one can be proved using circular rearrangements (see
[86]) and noticing that in one dimension the step functions are not in H1/2(R) (see
[54] for more details).

Lemma 7.2.11 Let {φn}n∈N ⊆ H1
0 (D), {Kn}n∈N be a sequence of compact con-

nected sets in D and {cn}n∈N be a sequence of constants such that φn(x) = cn q.e.

on Kn. If Kn
H−→ K and φn⇀φ weakly in H1

0 (D), there exists a constant c ∈ R
such that cn −→ c and φ(x) = c q.e. on K .

Lemma 7.2.12 Let φ ∈ H1
0 (D) and K1, K2 two compact connected sets in D with

positive diameter. If there exist two constants c1, c2 ∈ R such that φ(x) = c1 q.e. on
K1 and φ(x) = c2 q.e. on K2, then K1 ∩ K2 = ∅.

Let us assume that {�n}n∈N is a sequence satisfying the hypotheses of Theorem
7.2.3. As in the previous step, we denote by φn , φ the corresponding functions found
by Lemma 7.2.10 applied to v�n ,γ on �n and v�,γ on �, respectively. We denote
the connected components of D \�n by K n

1 , . . . , K n
l , some of them being possibly

empty.

Lemma 7.2.13 There exists a subsequence {φnk }k∈N such that φnk⇀φ weakly in
H1

0 (D), and a function v ∈ L1,2(� \ B) such that curlφ = ∇v in � \ B.

Proof Since the extension by constants of φn does not increase the norm of
the gradient and since we have

∫
�n\B |∇φn|2dx = ∫

�n\B |∇un|2dx , we get that

{1�n\B∇φn}n∈N is bounded in L2(D,R2). Hence for a subsequence we have φnk⇀φ

weakly in H1
0 (D). From the Hausdorff convergence we get −�φ = 0 in � \ B.

Without loss of generality, we can suppose that for a subsequence (still denoted

by the same indices) and for all i = 1, . . . , l we have K nk
i

H−→ Ki . Using Lemma
7.2.11 we also get cnk ,i → ci and φ = ci q.e. on Ki . If there exists two compact sets
with positive diameter Ki1 and Ki2 and nonempty intersection, then from Lemma
7.2.12 we get that ci1 = ci2 .

Since D \ � = ∪l
i=1 Ki we get that φ is constant q.e. on every connected com-

ponent of D \ �. From the Hc-convergence, there exists v ∈ L1,2(�) such that
1�n\B∇v�n ,γ⇀(v1, v2) weakly in L2(D,R2) and ∇v = (v1, v2) in �. The relation

∇v�n ,γ = curlφn in �n \ B gives that ∇v = curlφ in � \ B.

The result above asserts that the weak limit φ is such that−�φ = 0 in�\ B and
φ is q.e. constant on each connected component of D \ �. In the sequel we prove
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that φ is exactly the function obtained by applying Lemma 7.2.10 to v�,γ on � \ B.
We also recall from [54] the following result without proof.

Lemma 7.2.14 Let O be a smooth open connected set and K a compact connected
subset of O not reduced to a point. Let us denote by θ the capacitary potential of K
in O, i.e., the function θ ∈ H1

0 (O) such that⎧⎪⎨⎪⎩
−�θ = 0 in O \ K ,

θ = 0 on ∂O,

θ = 1 q.e. on ∂K .

(7.20)

Then, for every function ξ ∈ L1,2(O \ K ) we have curl θ 	= ∇ξ .

Lemma 7.2.15 Let � ∈ Ol(D) such that B ⊆ �. Suppose that there exists a func-
tion φ ∈ H1

0 (D) and a function u ∈ L1,2(� \ B) such that ∇u = curlφ in � \ B
and ⎧⎪⎨⎪⎩

−�φ = 0 in � \ B,

φ = ci q.e. on Ki i = 1, . . . , l,

φ = G + c on ∂B.

(7.21)

Then u is the weak solution of (7.15) on � \ B.

Proof Since u ∈ L1,2(� \ B) it suffices to prove that for any ξ ∈ L1,2(� \ B) we
have ∫

�\B
∇u∇ξdx =

∫
∂B
γ ξdσ.

Considering smooth neighbourhoods Oi of Ki , by an argument of partition of unity,
it suffices to prove that for any function ξ ∈ H1(Oi \ Ki ) vanishing q.e. on ∂Oi we
have ∫

Oi\Ki

∇u∇ξdx = 0.

It suffices actually to prove that u solves the following problem on Oi \ Ki :⎧⎪⎨⎪⎩
−�u = 0 in Oi \ Ki ,

∂u
∂n = 0 on ∂Ki ,

∂u
∂n = ∂φ

∂t on ∂Oi .

(7.22)

To the solution u∗ of this equation we associate the function φ∗ given by Lemma
7.2.10. We have that −�φ∗ = 0 in Oi \ Ki , φ∗ = φ on ∂Oi , φ∗ = c∗ on Ki .
Denoting θ = φ − φ∗, we get that ∇θ = curl (u − u∗), −�θ = 0 in Oi \ Ki , θ = 0
on ∂Oi , θ = c− c∗ on Ki . According to Lemma 7.2.14, since diam(Ki ) > 0, we get
c = c∗, hence u = u∗.



7.2 Boundary variation for Neumann problems 191

Proof of Theorem 7.2.8 (conclusion). According to Lemma 7.2.15 the conjugate
function of φ obtained in Lemma 7.2.13 is the solution of equation (7.15) on � \ B,
hence

1�n\B∇v�n ,γ

L2(D,R2)
⇀ 1�\B∇v�,γ .

The strong convergence is a consequence of the convergence of the L2-norms of the
gradients, which follows as usual by taking v�n ,γ as test function in the equation and
passing to the limit as n →∞.

Remark 7.2.16 Let�n ∈ Ol(D) such that�n
Hc

→ �. Then in general L1,2(�n) does
not converge in the sense of Mosco to L1,2(�). For example, consider a situation
when |�| < liminf

n→∞ |�n| and take un(x, y) = x . The second Mosco condition is not

satisfied in general. By Proposition 7.2.8 the first Mosco condition is automatically
satisfied.

As a consequence of Theorem 7.2.3 and Corollary 7.2.9 we can prove now Propo-
sition 7.2.2.

Proof of Proposition 7.2.2
Necessity By Corollary 7.2.9 condition B.3 holds.
Sufficiency Let us prove that B.1, B.2 and B.3 hold. Condition B.1 is a conse-

quence of Theorem 7.2.3 and condition B.3 is assumed by hypothesis. One has only
to verify condition B.2 of Corollary 7.2.9. If � is connected, this is trivial, since
every function with zero gradient in � is constant, say c1�. Therefore, the sequence
c1�n solves B.2. If � is not connected, then condition B.2 is a consequence of the
more involved geometric argument relating the Hausdorff convergence to the capac-
ity. We recall this result from [53].

Lemma 7.2.17 If {�n}n∈N is a sequence of simply connected open sets in a bounded

design region D ⊆ R2 such that �n
Hc

−→ �a ∪ �b, where �a ∩ �b = ∅, then
there exists a subsequence (still denoted by the same indices) of (�n)n, and two
sequences of simply connected open sets {�a

n}n∈N, {�b
n}n∈N, such that�a

n ∩�b
n = ∅,

�a
n ∪�b

n ⊆ �n, cap(�n \ (�a
n ∪�b

n))→ 0 and �a
n

Hc

−→ �a, �b
n

Hc

−→ �b.

Using this lemma, condition B.2 can be proved using a partition of the unity and
localizing around the boundary of ∂�, as in [79].

Proof of Theorem 7.2.1 For the necessity, use Corollary 7.2.5. For the sufficiency,
use Proposition 7.2.2 together with Corollary 7.2.9 to obtain the first Mosco con-
dition (relation (7.18) in the proof of Corollary 7.2.9). To prove the second Mosco
condition, we observe that if φn ∈ H1(�n) is such that

(1�nφn, 1�n∇φn)
L2(D)×L2(D,R2)

⇀ (φ, φ1, φ2),

we have directly from the Hc-convergence and the convergence of the Lebesgue
measures that φ = φ1 = φ2 = 0 a.e. on �c. To prove that on � we have
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∇φ = (φ1, φ2) in the sense of distributions, we simply use Proposition 4.6.1 on
the Hausdorff convergence.

Remark 7.2.18 We observe the following facts.

• For other operators in divergence form (e.g., u �→ − div(A(x)∇u)) the result
of Proposition 7.2.2 holds true. As well, those results can be directly adapted
to vector problems, where the variational spaces are of the form H1(�,Rd) or
L1,2(�,Rd).

• For the Cantilever problem, the natural space is

{u ∈ L2
loc(�,R

2) : ε(u) ∈ L2(�,R4)},

endowed with the norm |ε(u)|L2 ; in concrete examples, Dirichlet boundary con-
ditions can be imposed on some regions. When dealing with shape stability or
existence of optimal shapes, the difficult condition to prove is the first Mosco

condition for the spaces defined above. According to Theorem 7.2.3, if �n
Hc

→ �

is such that the number of connected components of �c
n is uniformly bounded,

the first Mosco condition holds true for functions belonging to

{u ∈ L2
loc(�,R

2) : ∇u ∈ L2(�,R4)}.

Chambolle proved in [78] that this set is dense in the elasticity space, hence the
first Mosco condition holds for the elasticity problem, as well.

• Nonlinear problems in R2 were discussed in [96]. The main idea is to adapt the
duality argument of Proposition 7.2.8 into a nonlinear setting. For operators of
p-Laplacian type, with 1 < p ≤ 2, the result of Proposition 7.2.2 is true.

7.3 The optimal cutting problem

In this section we treat the optimal cutting problem in detail, and show how the
continuity results presented in the previous section can be adapted in order to prove
existence of solutions for the shape optimization problem.

Let D be a two-dimensional bounded open connected set. For simplicity, we
suppose that the boundary of D is Lipschitz (see [118]). Consequently the number
of connected components of Dc is finite.

For i = 1, . . . , l let Ki be l compact sets contained in D and K ⊆ D be a
compact set such that ∪l

i=1 Ki ⊆ K . Let f ∈ L2(D) such that supp f ∩ K = ∅.

Remark 7.3.1 The assumption that supp f ∩ K = ∅ is made for technical reasons
that will be clear in the proof of Theorem 7.3.2. However, we want to stress the fact
that the most interesting case is when f ≡ 0, so that the only datum of the problem
is the boundary condition u0.
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We also notice that, when the datum K is regular enough (for instance a set with
a Lipschitz boundary), then, thanks to the equality L1,2(D \ K ) = H1(D \ K ), the
assumption supp f ∩ K = ∅ can be relaxed into the weaker one f = 0 a.e. on K .

Remark also that the optimization criterion (7.1) rules out the admissible � with
E(�) = −∞. This automatically implies that the optimization (7.1) is performed on
the class of cuts � such that the integral of f vanishes on every connected component
of � which does not touch the boundary ∂D on a set of positive capacity.

In the sequel, we denote by Uad the following admissible class of “cuts” which
is supposed to be nonempty. Let c ≥ 0, l ∈ N, and K1, . . . , Kl pairwise disjoint
compact subsets of D. We set

Uad =
{
� : � = ∪l

i=1�
i ,

∀i = 1, . . . , l Ki ⊆ �i ⊆ K , �i compact connected, |�| ≥ c
}
,

and for every � ∈ Uad we consider the energy

E(�) = min
{

E(u, �) : u ∈ H1
loc(D \ �), u = u0 on ∂D

}
(7.23)

where

E(u, �) = 1

2

∫
D\�
〈A∇u · ∇u〉 dx −

∫
D

f u dx .

Here u0 ∈ H1(D) is a given function and A ∈ L∞(D,R4) is a given symmetric
matrix satisfying for some α > 0 the ellipticity condition

〈Aξ.ξ〉 ≥ α|ξ |2 for every ξ ∈ R2.

If u ∈ H1
loc(D \ �), the trace of u on ∂D does not exist in general, even if ∂D

is smooth. Nevertheless, in our case ∇u ∈ L2(D \ �,R2), hence u belongs to the
Dirichlet space L1,2(D \ �). In that case, the trace of u on ∂D \ � is well defined,
since ∂D is supposed to be Lipschitz continuous. A second equivalent way to give a
meaning to the equality u = u0 on ∂D \ � is as follows. Let us fix an extension u∗0
of u0 outside D, say in D∗ \ D, where D∗ is a Lipschitz bounded open set such that
D ⊆ D∗. The trace of u is equal to u0 on ∂D \ � if and only if the function

u∗ =
{

u(x) if x ∈ D \ �,
u∗0(x) if x ∈ D∗ \ (D ∪ �)(7.24)

belongs to L1,2(D∗ \ �).
For every fixed � ∈ Uad problem (7.23) has a solution. This is an immediate

consequence of the fact that the support of f is compactly embedded in D \ K and
that, thanks to Remark 7.3.1, the integral of f vanishes on the connected sets of D\K
not touching ∂D on a set of positive capacity. In fact, if a connected component of
D \ � contains a part of the support of f and does not touch ∂D on a set of positive
capacity, in this region the solution is defined up to a constant, the gradient being
fixed. With this remark, the solution is unique (more precisely its gradient is unique)
and belongs to the Dirichlet space L1,2(D \ �).

The main result of this section is contained in the following theorem.
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Theorem 7.3.2 The optimization problem

max
{
E(�) : � ∈ Uad

}
(7.25)

has at least one solution.

Proof In order to prove the existence of a solution for problem (7.25), we follow
the direct methods of the calculus of variations. Let {�n}n ⊆ Uad be a maximizing
sequence for (7.25). Without loss of generality, we can suppose that for every i =
1, . . . , l,

�i
n

H→ �i ,

the convergence being understood in the Hausdorff metric (see for instance [79],
[187]). We denote � = ∪l

i=1�
i , the Hausdorff limit of �n . Our purpose is to prove

that � is a solution for problem (7.25). Notice that for every i = 1, . . . , l the set �i

is compact, connected, Ki ⊆ �i ⊆ K and |�| ≥ c, hence � ∈ Uad .
It remains to prove that for every u ∈ L1,2(D \ �) with u = u0 on ∂D there

exists a sequence {un}n such that un ∈ L1,2(D \ �n) with un = u0 on ∂D \ �n and

E(�, u) ≥ limsup
n→∞

E(�n, un).(7.26)

The construction of the sequence {un}n is strongly related to the Mosco convergence
of the spaces L1,2(D \�n). We observe that if u 	∈ L1,2(D \�), then E(u, �) = +∞
and inequality (7.26) holds trivially. For u ∈ L1,2(D \ �) we construct a sequence
un ∈ L1,2(D \ �n) with u = u0 on ∂D \ �n such that

∇̃un → ∇̃u strongly in L2(D)(7.27)

and ∫
D

un f dx →
∫

D
u f dx .

In relation (7.27) we denoted by ∇̃un = 1D\�n∇un the extension by zero of ∇un on
�n , since ∇un is only defined on D \�n . Of course, the function ∇̃un is not anymore
a gradient on D.

In order to construct the sequence {un}n we rely on condition 3. of Proposition
7.2.8 and Theorem 7.2.3.

Proposition 7.3.3 Let �n, � ∈ Uad be such that �n
H→ �. Then for every u ∈

L1,2(D \ �) such that u∣∣∂D\� = u0 there exists a sequence un ∈ L1,2(D \ �n) such

that ∇̃un −→ ∇̃u strongly in L2(D) and un
∣∣∂D\�n

= u0.

Proof Let us denote by u∗ the extension of u by u∗0 on D∗ \ D. Then we apply
condition 3 of Proposition 7.2.8 to D∗ \ Gn and D∗ \ � and we find a sequence
u∗n ∈ L1,2(D∗ \ �n) such that ∇̃u∗n −→ ∇̃u∗ strongly in L2(D∗).
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For every n ∈ N, let us denote by un the solution of the minimization problem

min{
∫

D∗\�n

|∇φ − ∇u∗n|2 dx : φ ∈ L1,2(D∗ \ �n), φ = u∗0 on D∗ \ D}.(7.28)

Since un − u∗n ∈ L1,2(D∗ \ �n) and since D∗ \ D is Lipschitz, we get that
un−u∗n ∈ H1(D∗\D). Moreover, there exists a bounded continuous linear extension
operator T from H1(D∗ \ D) to H1(D∗). Taking as a test function in (7.28) the
function φ = u∗n + T (un − u∗n) we get

min{
∫

D∗\�n

|∇φ − ∇u∗n|2 dx : φ ∈ L1,2(D∗ \ �n), φ = u∗0 on D∗ \ D}

≤
∫

D∗\�n

|∇T (un − u∗n)|2dx .

Using the Poincaré inequality on the space {u ∈ H1(D∗) :
∫
∂D∗ udx = 0} and the

boundedness of the extension operator T we get∫
D∗\�n

|∇T ((un − u∗n)|D∗\D)|2dx ≤ C
∫

D∗\D
|∇(un − u∗n)|2dx

= C
∫

D∗\D
|∇(u∗0 − u∗n)|2dx .

This last term converges to zero.
Taking the restrictions of un to D \ �n , all the requirements are satisfied and the

proof is concluded.

Proof of Theorem 7.3.2 (continuation). Back to the proof of Theorem 7.3.2, we
observe that the sequence {un}n defined in Proposition 7.3.3 satisfies relation (7.26).
Indeed, the gradients extended by zero converge strongly in L2 by construction,
hence using the boundedness of A we have∫

D
〈A∇̃un, ∇̃un〉dx →

∫
D
〈A∇̃u, ∇̃u〉dx .

It remains to prove that ∫
D

un f dx →
∫

D
u f dx .

Fix a connected component U of D \ K containing a part of the support of f . Two
possibilities may occur.

Suppose first that cap(U ∩ ∂D) > 0. Since ∂D is Lipschitz and � is closed, the
set ∂D \ � is relatively open, hence there exists an open Lipschitz set V such that
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supp f ⊆ V ⊆ U and cap(V ∩ ∂D) > 0. Then, the Poincaré inequality holds true in
H1((D∗ \ D) ∪ V ), so that un −→ u strongly in L2(V ), which implies∫

V
un f dx →

∫
V

u f dx .

Suppose now that cap(U ∩ ∂D) = 0. In this case there exists an open Lipschitz
set V such that supp f ⊆ V ⊆ U and V ∩ ∂D = ∅. By hypothesis, we have that∫

V f dx = 0, hence the Poincaré inequality holds in H1(V )/R. Consequently∫
V

un f dx →
∫

V
u f dx .

The support of f being compactly contained in D \ K , the proof is concluded.

If K does not touch ∂D, one could drop the hypothesis on the regularity of D, by
simply imposing a constraint of the type (u−u0)ϕ ∈ H1

0 (D\�), where ϕ ∈ C∞(R2)

is a fixed function such that ϕ = 0 on � and use a partition of unity.

Remark 7.3.4 The uniqueness of the optimal cut does not hold in general. Trivially,
let u0 ≡ 0, f ≡ 0, K1 = {A, B}, K = D, c = 0. Then any compact connected set
containing A and B solves problem (7.25).

In some particular situations one can make explicit at least one solution of the
problem. In a symmetric setting, there exists an optimal cut which is also symmetric.
Indeed, let f ≡ 0 and D be a rectangle; let d be a symmetry line of the rectangle.
Suppose that K1 = {A, B} are two points on d and that u0 is also symmetric with
respect to d. It can be easily seen that a solution of problem (7.25) (with K = D) is
the segment AB.

7.4 Eigenvalues of the Neumann Laplacian

Contrary to the case of Dirichlet boundary conditions, the behavior of the eigenvalues
of the Neumann Laplacian for nonsmooth variations of the boundary of the geometric
domain is (almost) uncontrollable. Several facts can explain this phenomenon, like
the following ones.

• For a nonsmooth domain�, the injection H1(�) ↪→ L2(�)may not be compact,
hence the spectrum of the Neumann–Laplacian is not necessarily discrete, and
may not consist only on eigenvalues. This means that a small geometric pertur-
bation of a smooth boundary may produce essential spectrum. Figure 7.4 shows
an example of a set for which the injection H1(�) ↪→ L2(�) is not compact.

Due to the lack of compactness of the resolvent operators, in the Neumann
case the framework introduced in Chapter 6 has to be made precise with more
details.
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Figure 7.4. A rectangle with an infinite number of cracks collapsing on the right edge.

• The resolvent operators R�n may converge pointwise, where R�n : L2(D) →
L2(D) is naturally defined by R�n ( f ) = 1�n u�n , f (see Proposition 7.2.2). Here
u�n , f is the weak solution in H1(�n) of the equation

{−$ u + u = f in �n,

∂u
∂n = 0 on ∂�n .

(7.29)

This convergence is (contrary to the Dirichlet Laplacian), in general not in
the operator norm, hence there is no a priori convergence of eigenvalues even if
all �n and � are smooth (see Example 7.4.3 and Figure 7.5).

• A “small” geometric perturbation of the boundary may produce low eigenvalues
which highly perturb the spectrum (Example 7.4.3 and Figure 7.5). In a similar
situation, for the Dirichlet–Laplacian the “new” eigenvalues produced by small
perturbations are large and do not perturb the low part of the spectrum.

• Except particular cases (like monotone cracks, for example), there is no mono-
tonicity of eigenvalues with respect to the domain inclusion.

Let � be a bounded Lipschitz domain. The injection H1(�) ↪→ L2(�) is then
compact, and the spectrum of the Neumann–Laplacian consists only on eigenvalues:

0 = µ1(�) ≤ µ2(�) ≤ · · · ≤ µk(�) ≤ · · · → +∞.
For every k ∈ N, there exists uk ∈ H1(�) \ {0} such that, in the usual weak sense,{−$ uk = µk(�)uk in �,

∂uk
∂n = 0 on ∂�,

(7.30)

i.e., for every φ ∈ H1(�),∫
�

∇uk∇φdx = µk(�)

∫
�

uφdx .

Let us observe that the resolvent operator R� is positive, self-adjoint and compact.
Denoting by �k(�) its k-th eigenvalue, we have �k(�) = (1+ µk(�))

−1.
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In view of the result of Chapter 6, if �n is a perturbation of �, in order to get
the convergence of the spectrum one can try to prove the norm-convergence of the
resolvent operators. The Mosco convergence of H1-spaces gives straightforwardly
the pointwise convergence of the resolvent operators (via extensions by zero outside
�n). As Example 7.4.3 shows, in general this convergence is not in the operator
norm. We have the following.

Theorem 7.4.1 Let H1(�n) converge in the sense of Mosco to H 1(�). A sufficient
condition for

|R�n − R�|L(L2(D)) → 0(7.31)

is that the following injection is compact:

∪n∈N H1(�n) ↪→ L2(D).(7.32)

In (7.32), H1(�n) is supposed embedded in L2(D) by the composition of the pro-
jection mapping P : L2(D)× L2(D,RN ) �→ L2(D) with mapping (7.13).

Also note that (7.32) implies that the injection H1(�n) ↪→ L2(�n) is compact
for every n ∈ N.

Proof Let |R�n − R�|L(L2(D) ≤ |(R�n − R�) fn|(L2(D)+ 1/n, where | fn|(L2(D) ≤
1. We can assume fn ⇀ f weakly in L2(D). Then R�n f → R� f strongly in
L2(D), from Proposition 7.2.4. The sequence R�n ( fn − f ) is bounded in L2(D)×
L2(D,RN ) and converges weakly to 0 in L2(D). Indeed, for every φ ∈ L2(D), we
have

〈R�n ( fn − f ), φ〉L2(D) = 〈 fn − f, R�nφ〉L2(D) → 0.

Using the compact injection (7.32), we get that R�n ( fn − f ) converges strongly to
zero in L2(D).

Corollary 7.4.2 Let D be a bounded design region in RN and �n, � ⊆ D satisfy a

uniform cone condition. If �n
Hc

−→ �, then µk(�n)→ µk(�).

Proof The pointwise convergence of the resolvent operators follows from Theorem
7.2.7. To prove that the convergence is in norm, one uses Theorem 7.4.1 relying on
the existence of uniformly bounded extension operators En : H1(�n) �→ H1(D).

If �n, � are Lipschitz (but not uniformly Lipschitz) such that �n
Hc

−→ �, then
the convergence of the spectrum does not hold in general. Either particular cases
of domains linked by channels or pieces of domain disconnecting from a fixed do-
main were considered in [14], or particular situations where the uniform Lipschitz
constraint is weakened, were discussed in [60] (see also [15]).

In fact, in [138] it is proved that a small geometric perturbation of a smooth set
may produce “a wild perturbation” of the spectrum. More precisely (see [138]), for
every closed set S ⊆ [0,+∞) and for every ε > 0, there exists an open connected
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set� ⊆ B(0, ε) such that the essential spectrum (i.e., the part of the spectrum which
does not consist of eigenvalues of finite multiplicity) of the Laplacian coincides with
the set S.

From the shape optimization point of view, when � is not smooth it is very con-
venient to introduce the relaxed values which coincide with the usual eigenvalues
as soon as � is smooth, and inherit some properties of the eigenvalues. A typical
example of such relaxed values may be the singular values defined in [112].

Several choices can be made for the definition of the relaxed values. For our
purpose, it is more suitable to consider the following, which consists in the relaxation
of the Rayleigh formula. We set for a bounded open set �,

µk(�) = inf
E∈Sk (�)

sup
φ∈E\{0}

∫
RN
|∇φ|2dx∫

RN
φ2dx

,(7.33)

where Sk(�) is the family of all linear spaces of H1(�) of dimension k.
The scheme of a shape optimization problem for eigenvalues would then be the

following:

1. consider the initial problem of eigenvalues on smooth domains;

2. relax the problem for non-smooth domains and replace the eigenvalues by the
relaxed values;

3. prove the existence of the optimal shape (which is a priori nonsmooth);

4. prove the regularity of an optimal shape, and recover true eigenvalues at the
optimum.

In general, this last step is the most difficult one. We will not be able to afford it here,
but we will give below an example supporting the introduction of the relaxed values.

Example 7.4.3 The example of Courant–Hilbert [89]. Let � be a fixed rectangle as
in Figure 7.5. By a thin channel of fixed length l and thickness ε, we join to� another
rectangle of size ν. If we take ε = ν3 and make ε → 0, one can readily observe by
taking test functions which are constant on each rectangle and affine on the channel,
that the second eigenvalue of �ε,ν converges to zero. Since the second eigenvalue of
� is not vanishing, we have an example of non-convergence of eigenvalues, despite
the pointwise convergence of resolvents.

Example 7.4.4 Examples of shape optimization problems for the eigenvalues of the
Neumann Laplacian.

We refer to Weinberger [193] and Szegö [188] for the following results:

1. The ball is the unique solution of

max{µ2(�) : � ⊆ RN , � smooth , |�| = c}.
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Figure 7.5. The example of Courant and Hilbert [89]: l is fixed and ε = ν3.

2. The ball is the unique solution of

min{ 1

µ2(�)
+ 1

µ3(�)
: � ⊆ R2, � simply connected and smooth , |�| = c}.

We refer to [16] for a list of open problems involving the eigenvalues of the
Neumann–Laplacian.

Remark 7.4.5 We note that in the first example, the smoothness assumption can be
eliminated, simply replacing for a bounded open set � the eigenvalue by the relaxed
value introduced in relation (7.33). We still have that the maximizer is the ball. In
order to apply the Weinberger idea, one has only to check that for a nonsmooth �,
we have that

µ2(�) = inf
u∈H1(�),

∫
� udx=0

∫
�
|∇u|2dx∫
�

u2dx
.

This fact supports the idea of replacing the true eigenvalues by the relaxed val-
ues introduced in (7.33) for more general shape optimization problems (see Remark
7.4.10).

Following Remark 6.1.10, for the Dirichlet boundary conditions the Mosco conver-
gence of the H1

0 -spaces implies the convergence of the full spectrum. For Neumann
boundary conditions this is not anymore true; we can only establish the following
result.

Theorem 7.4.6 Let D be a bounded design region in RN and let �n, � ⊆ D such
that H1(�n) converges in the sense of Mosco to H 1(�) (in the sense of extensions
in L2(D)× L2(D,RN )).

Then, for every k ∈ N∗, we have

µk(�) ≥ limsup
n→∞

µk(�n).(7.34)
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Proof Let ε > 0 and let Sk be a space of dimension k in H1(�) such that

µk(�) ≥ sup
u∈Sk

∫
�
|∇u|2dx∫
�

u2dx
− ε.(7.35)

Let u1, . . . , uk ∈ Sk be a basis of the space Sk , such that
∫
�

ui u j dx = δi j .

From the first Mosco condition, there exist sequences

(u1
n)n, . . . , (u

k
n)n

such that ui
n ∈ H1(�n) for every i = 1, . . . , k and n ∈ N and

ui
n −→ ui strongly in L2(D)× L2(D,RN ).

For n large enough, the vectors u1
n, . . . , uk

n are independent in L2(�n). Indeed, sup-
pose by contradiction that (up to a subsequence)

uk
n = a1

nu1
n + · · · + ak−1

n uk−1
n .

Dividing by αn = max{|a1
n |, . . . , |ak−1

n |, 1} and passing to the limit for a subse-
quence, we get that u1, . . . , uk are linearly dependent, which contradicts our as-
sumption.

We correct the sequences (u1
n)n, . . . , (u

k
n)n and transform them into an orthonor-

mal basis of k-dimensional spaces in L2(�n). We take, as usual

ũ1
n = u1

n,

ũ2
n = u2

n − ũ1
n

∫
�n

ũ1
nu2

ndx∫
�n
|̃u1

n|2dx
,

. . .

ũk
n = uk

n − ũ1
n

∫
�n

ũ1
nuk

ndx∫
�n
|̃u1

n|2dx
− · · · − ũk−1

n

∫
�n

ũk−1
n uk

ndx∫
�n
|̃uk−1

n |2dx
.

We normalize all these functions in L2(�n), and by abuse of notation we still call
them u1

n, . . . , uk
n .

Let us denote by Sk,n the space of dimension k generated by u1
n, . . . , uk

n in
L2(�n). There exists a function un ∈ Sk,n with

∫
�n

u2
ndx = 1 such that∫

�n
|∇un|2dx∫
�n

u2
ndx

= max
u∈Sk,n

∫
�n
|∇u|2dx∫
�n

u2dx
.

Writing un = a1
nu1

n+· · ·+ak
nuk

n , we get
∑k

1 |ai
n|2 = 1. Therefore, for a subsequence

we have for every i = 1, . . . , k that ai
n → ai ,

∑k
1 |ai |2 = 1 and

un −→ a1u1 + · · · + akuk := u ∈ H1(�),
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the convergence being strong in the sense of extensions in L2(D) × L2(D,RN ).
Hence ∫

�
|∇u|2dx∫
�

u2dx
= lim

n→∞

∫
�n
|∇un|2dx∫
�n

u2
ndx

= lim
n→∞ sup

φ∈Sk,n

∫
�n
|∇φ|2dx∫
�n
φ2dx

≥ limsup
n→∞

inf
S∈Sk (�n)

sup
φ∈S

∫
�n
|∇φ|2dx∫
�n
φ2dx

.

According to (7.35) we get

µk(�)+ ε ≥ limsup
n→∞

µk(�n).

Taking ε→ 0 we conclude the proof.

A somehow similar, but much weaker result than the one for Dirichlet problems
in Corollary 6.2.1, is given below.

Theorem 7.4.7 Let D ⊆ R2 be a bounded design region, c, l, M positive constants,
and let us denote

Uad = {� ⊆ D : � open, |�| = c, ��c ≤ l, H1(∂�) ≤ M}.
Let F : Rk+ �→ R be an upper semicontinuous function which is nondecreasing

in each variable. Then, the problem

max
�∈Uad

F(µ1(�), . . . , µk(�))

has at least one solution.

Proof Note that if ��c ≤ l, this does not imply that �∂� is finite. Nevertheless,
if the number of the connected components of � is less than or equal to k, then
the number of the connected components of ∂� is less than or equal to k + l − 1.
Note that, unless the functional F is trivial, it is enough to search the maximum only
among domains� which have less than k connected components. Indeed, if �� = k,
then µ1(�) = · · · = µk(�) = 0, hence F is minimal on such a set.

We use the direct methods of the calculus of variations and consider a max-
imizing sequence for F , say (�n)n . Up to a subsequence we can assume that

�n
Hc

−→ �. Since �(∂�n) ≤ k + l − 1 we get that H1(∂�) ≤ M . The prop-
erties of the Hc-convergence for sets with uniformly bounded perimeter give (see
[59]) � ∈ Uad . Theorem 7.4.6 together with Proposition 7.2.2 give that µi (�) ≥
limsupn→∞ µi (�n). The upper semicontinuity and the monotonicity of F give that
� is a maximizer.

Remark 7.4.8 A way to replace the Hausdorff measure in shape optimization prob-
lems involving Neumann boundary conditions is to use the density perimeter intro-
duced in [58] and developed in [59]. The reason to replace the Hausdorff measure is
related to its bad continuity properties for the Hausdorff convergence.
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Let H : [0,∞) → R be a given continuous function with H(0) = 0 (this is a
“corrector” of the perimeter) and γ > 0 a fixed number (which plays the role of a
scale in the problem).

Definition 7.4.9 Let γ > 0. The (γ, H)-density perimeter of the set A is

Pγ,H (A) = sup
ε∈(0,γ )

[m(Aε)

2ε
+ H(ε)

]
,(7.36)

where Aε = ∪x∈A B(x, ε).

The family

{� ⊆ D : � open, Pγ,H (∂�) ≤ k}(7.37)

is compact in the Hc-topology, and if �n
Hc

−→�, then 1�n

L1

−→1� and Pγ,H (∂�) ≤
liminf
n→∞ Pγ,H (∂�n).

It is worth noticing that in two-dimensional space, for every compact set A with at
most l connected components and for a suitable function H (e.g., H(x) = −lπx/2)
we have P1,H (A) = H1(A).

Remark 7.4.10 We end this section by pointing out an open problem. Given a
bounded open set D, and indicating by µk(�) the k-th relaxed value on an open
subset � ⊆ D, prove, or disprove, the existence of a solution for the maximization
problem

max{µk(�) : |�| = c, � ⊆ D}.
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