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Preface

This book examines a system of parabolic-elliptic partial differential equa-
tions proposed in mathematical biology, statistical mechanics, and chemical
kinetics.

In the context of biology, this system of equations describes the chemotactic
feature of cellular slime molds and also the capillary formation of blood vessels
in angiogenesis. There are several methods to derive this system. One is the
biased random walk of the individual, and another is the reinforced random
walk of one particle modelled on the cellular automaton.

In the context of statistical mechanics or chemical kinetics, this system of
equations describes the motion of a mean field of many particles, interacting
under the gravitational inner force or the chemical reaction, and therefore this
system is affiliated with a hierarchy of equations: Langevin, Fokker–Planck,
Liouville–Gel’fand, and the gradient flow. All of the equations are subject to
the second law of thermodynamics — the decrease of free energy. The mathe-
matical principle of this hierarchy, on the other hand, is referred to as the quan-
tized blowup mechanism; the blowup solution of our system develops delta
function singularities with the quantized mass.

The aim of this book is to prove the original result — Theorem 1.2 stated
in the first chapter — but several motivations are also described in detail, be-
cause they are quite important in creating mathematical techniques, and fur-
thermore, are obtained from statistical mechanics, field theory, nonequilibrium
thermodynamics, system biology, and so forth. We have made every effort to
keep the discussion self-contained, and any special knowledge concerning re-
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cent mathematical research is not assumed; for example, we have provided the
complete proof of our previous result, Theorem 1.1. We have also described
several mathematically open problems concerning this system.

The main result, Theorem 1.2, assures that if the solution to this system
blows up in finite time, then it develops delta function singularities with the
quantized mass, called collapses, as the measure-theoretical singular part. If
such a collapse has an envelope, the region containing the whole blowup mech-
anism in space-time, then mass and entropy are exchanged at the wedge of this
envelope.

In the context of biology, this means the birth of the quantized “clean” self,
while technical motivations result from the above-mentioned hierarchy of the
mean field of particles: the quantized blowup mechanism of the stationary state
and the existence of the weak solution of the associated kinetic equation global
in time.

Thus, this quantization of the nonstationary blowup state is a consequence
of the nonlinear quantum mechanics; more precisely, it comes from the quanti-
zation of both mass and location of the singularity that appears in the singular
limit of the stationary solution, with the stationary state realized as a nonlin-
ear elliptic eigenvalue problem with nonlocal terms, where total mass acts as
the principal parameter because it is preserved in the nonstationary state. Mass
quantization of the collapse, on the other hand, is proved if the nonstationary
solution under consideration has a post-blowup continuation, while the weak
solution always exists globally in time in the kinetic equation.

However, all of these facts are just support for the proof of Theorem 1.2, and
we have to prove it rigorously within this level of hierarchy, that is, our system.

We prove the above-mentioned quantized blowup mechanism, describing
the following: physical principles and derivation of a series of affiliated equa-
tions, biological modelling based on the random walk, mathematical study of
the stationary state via the variational structure, blowup analysis of the sta-
tionary problem using the symmetry of the Green’s function, existence and
nonexistence of the nonstationary solution globally in time, and details of the
quantized blowup mechanism of nonstationary solutions and their proofs by
several analytical tools — localization, symmetrization, and rescaling.

Chapters 1 and 2 are the summary and description of modelling, respec-
tively. The proof of Theorem 1.2 is carried out in Chapter 15, using the bound-
ary behavior of the Green’s function and the generation of the weak solution
established in Chapters 5 and 13, respectively.

Chapters 12 and 14 describe technical motivations — the quantization of the
collapse formed in infinite time and that of subcollapses formed in the scaled
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limit of the blowup solution in finite time, respectively. Thus, the reader can
skip these chapters to follow the proof. Theorem 1.1, on the other hand, is
a preparatory result of our previous work, the formation of collapses and the
estimate of their masses from below, and the proof is described in Chapter 11
for completeness.

Chapters 3–5 are devoted to the classical theory for this system. First, the
fundamental theorem, the unique existence of the solution locally in time, is
proved in Chapter 3. Then the threshold for the existence of the solution glob-
ally in time, which is eventually explained in a unified way by the quantized
blowup mechanism, is established in Chapters 4 and 5. The results described
in these three chapters are more or less known, but we adopt a general setting
and new arguments.

Chapters 6–10 are devoted to the stationary problem. We have provided them
to describe the quantized blowup mechanism of the nonstationary state. Thus,
the reader can skip these chapters, but this methodology of classifying station-
ary solutions is quite efficient in the study of nonlinear problems. We mention
also that this stationary problem arises in many areas: semiconductors, gauge
theory, turbulence, astrophysics, chemical kinetics, combustion, geometry, and
so forth.

First, we describe a survey on this stationary problem in Chapter 6. Then
we show more or less known results in Chapters 7 and 8, but here we use a
new argument, called symmetrization, motivated by the study of nonstationary
problems. Chapter 9 is original and describes the effect of these (unstable) sta-
tionary solutions to the local dynamics. Chapter 10 is the application obtained
by this study to the global dynamics. Chapters 11–15 are devoted to the proof
of Theorems 1.1 and 1.2 as we mentioned.

Finally, in Chapter 16 we develop the abstract theory of dual variation, and
the results of Chapter 6 are extended in the context of convex analysis. We
show that this stationary problem has two equivalent variational formulations,
where the cost functionals are associated with the particle density and the
field distribution. These two functionals have the duality through the Legen-
dre transformation, and furthermore, are combined with a functional, called
the Lagrange function. We also add a result concerning the stability of the sta-
tionary solution.

This story of dual variation is widely observed in mean field theories, par-
ticularly in the ones associated with the particles having self-interaction with
their creating field. This book, we hope, will provide a new point of view for
these theories.
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Recently, nonequilibrium statistical mechanics has been discussed in the
context of self-organization, particularly the formation of the cascade of cyclic
reactions against the increase of global entropy. In this system, as we have de-
scribed, the blowup mechanism is controlled by the stationary solution, and in
this sense our study is referred to as that of simple systems. However, the total
set of stationary solutions, particularly the unstable ones, is associated with this
phenomenon of quantization, and in this sense our study is strongly influenced
by the theory of complex systems.

We hope that this book provides some theoretical inspiration and technical
suggestions to researchers or Ph.D. students in mathematics and applied mathe-
matics who are interested in statistical physics, physical chemistry, mathemat-
ical biology, nonlinear partial differential equations, or variational methods.
We also hope this book helps the researcher in other fields such as physics,
chemistry, biology, engineering, and medical science, to realize the benefit and
necessity of the methods of mathematical science, analytical techniques, phys-
ical principles, and so forth, in studying their own problems.

In conclusion, we caution the reader that in spite of these wide applica-
tions, the mathematical analysis in this book is limited to a very special sys-
tem of equations. In addition, we employ numerous mathematical models us-
ing the sensitivity function, activator-inhibitor factors, cross-diffusion, and so
forth, that involve significant mathematical analysis as well. This book is far
from being a complete overview, but fortunately we can mention the survey of
Horstmann [67, 68] concerning the biologically motivated study, where several
mathematical models of chemotaxis, mathematical studies, and their relations
are discussed.

We also mention some other monographs to access related concepts in this
book. First, breaking down the construction or continuation of the solution fol-
lows from the blowup of approximated solutions in nonlinear problems. Con-
trol of its blowup mechanism can then guarantee the existence of an actual so-
lution. Several examples of this new argument are described in Evans [44]. The
quantized blowup mechanism in variational problems and their mathematical
treatments are mentioned in Struwe [159]. Physical, chemical, and biological
motivations are obtained by Risken [138], Doi and Edwards [40], and Murray
[105], respectively. Finally, many suggestions are obtained from Tanaka [170]
on system biology.

Takashi Suzuki
Osaka, Japan
October 30, 2004
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Summary

Our study is concerned with the system of elliptic-parabolic partial differential
equations arising in mathematical biology and statistical mechanics. A typical
example is

ut = ∇ · (∇u − u∇v)
0 = �v − av + u

}
in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) in �, (1.1)

where � ⊂ Rn is a bounded domain with smooth boundary ∂�, a > 0 is
a constant, and ν is the outer unit vector on ∂�. This system was proposed
by Nagai [106] in the context of chemotaxis in mathematical biology. Here,
u = u(x, t) and v = v(x, t) stand for the density of cellular slime molds and
the concentration of chemical substances secreted by themselves, respectively,
at the position x ∈ � and the time t > 0.

In this case, the first equation is equivalent to the equality

d

dt

∫
ω

u dx = −
∫
∂ω

j · νd S

for any subdomain ω � � with smooth boundary ∂ω, where d S denotes the
surface element. Namely, it describes the conservation of mass, where the flux
of u is given by j = −∇u + u∇v.
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Figure 1.1.

The first term −∇u of j is the vector field with the direction parallel to the
one where u decreases mostly, and with the rate equal to its derivative toward
that direction, that is, u is involved by the process of diffusion.

The second term u∇v of j , on the other hand, indicates that u is carried by
the vector field ∇v toward the direction where v increases mostly, with the rate
equal to its derivative to that direction. In other words, this term represents the
chemotactic aggregation of slime molds with v acting as a carrier, and in this
way, the effect of diffusion −∇u and that of chemotaxis u∇v are competing
for u to vary. See Figure 1.1.

Actually, this system describes the motion of cellular slime molds. They are
a kind of amoeba usually, but when foods become rare, they begin to secrete
chemical substances on their own and create a chemical gradient attracting
themselves. Eventually spores are formed by this process. The actual mech-
anism is much more complicated, involving chemical and biological actions
and reactions, and the derivation of (1.1) from the biased random walk has
been done [3, 128].

In 1970, Keller and Segel [81] proposed a system of parabolic equations to
describe such a phenomenon. If the second equation is replaced by

τvt = �v − av + u in �× (0, T ) (1.2)

in (1.1), then a closer form to that original system is obtained, where τ > 0 is
a small constant. In this system, the density of the chemical substances, v, is
subject to the linear diffusion equation, provided with the dissipative term −av
and the growth term u. Thus, v diffuses and is destroyed with the rate a > 0
by itself, and is created proportionally to u.
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Writing τvt as ∂v/∂(τ−1t), we can see that the parameter τ represents the
relaxation time, that is, the rate of the time scale of v relative to u. Since the
biological time scale is much slower than the chemical one, the assumption 0 <
τ � 1 is reasonable. Then, putting τ = 0 gives (1.1), where the initial layer
takes a role in this process of singular perturbation and the initial condition of
v is lost in (1.1).

This form, system (1.1) with the second equation replaced by (1.2), is called
the full system in this book. We have two parameters, a and τ , and actually,
we can regard this system as a normal form, where other possible constant
coefficients have been reduced to one by suitable transformations of variables.

In the context of statistical mechanics, the bounded domain� under consid-
eration is sometimes replaced by the whole space Rn . In this case, boundary
conditions are replaced by the requirement that u(·, t) and v(·, t) are in appro-
priate function spaces, and the second equation of (1.1) takes the form

v(x, t) =
∫

Rn
�(x − y)u(y, t) dy, (1.3)

with

�(x) =

⎧⎪⎪⎨⎪⎪⎩
1
2 |x | (n = 1),
1

2π log 1
|x | (n = 2),

1
4π |x | (n = 3),

(1.4)

standing for (−1) times potential driven by gravitational force. This system
of equations is concerned with the motion of a mean field of many particles,
subject to the self-interaction caused by the gravitational force of their own,
namely, while the first equation of (1.1) describes mass conservation of many
particles, the second equation replaced by (1.3) comes from the formation of
the gravitational field made by these particles. Here, the diffusion term �u of
the right-hand side of the first equation is to be noted, and it comes from the
fluctuation of particles as we shall see.

Equation (1.3) is regarded as a form of the second equation of (1.1), naturally
extended to the whole space Rn . In fact, the latter is equivalent to

v(x, t) =
∫
�

G(x, x ′)u(x ′, t) dx ′, (1.5)

where G = G(x, x ′) denotes the Green’s function in � of the differential
operator −�+ a under the Neumann boundary condition, and it holds that

G(x, x ′) = K (x, x ′)+
{
�(x − x ′) (x ′ ∈ �),
2�(x − x ′) (x ′ ∈ ∂�), (1.6)
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with K = K (x, x ′) standing for the regular part of G(x, x ′).
Coupled with

ut = ∇ · (∇u + u∇v) in �× (0, T )

and
∂u

∂ν
= 0 on ∂�× (0, T ),

equation (1.5) can cast the semiconductor device equation in the DD (drift-
diffusion) model, of which mathematical study has been done by several au-
thors. See [15, 76] and the references therein. In this case the system is dissi-
pative, and the long-term behavior of the solution is quite different from the
one described in this book, equation (1.1) for instance.

Other forms of the second equation to (1.1) are also proposed [38, 73]. Each
of them is written as

τ
dv

dt
+ Av = u in L2(�) (1.7)

in an abstract manner, where A is a positive definite self-adjoint operator with
the compact resolvent and τ ≥ 0. Following the earlier terminology, we call
(1.1) with the second equation replaced by (1.7) for τ > 0 the full system also.
There, similarly, the additional initial condition v|t=0 = v0(x) is imposed. If
τ = 0, the initial value is provided only for u as in (1.1). This case is called the
simplified system in this book. Thus, (1.1) is regarded as a simplified system of
chemotaxis.

As might be suspected from the above description, the field generated by
particles is physical in the simplified system. This means that it is formed at
once from each particle. The relaxation time τ of the full system, on the other
hand, suggests that some intermediate process, such as the chemical reaction
inside the biological media, is involved when the field is created from particles.
Thinking thus that the full system describes such an intermediate process in a
very simple way, we say that (1.2) indicates the formation of the chemical in
this book.

In the other case, the second and third equations of (1.1) are replaced by the
ordinary differential equation

τ
∂v

∂t
= u in �× (0, T ) (1.8)

and the boundary condition

∂u

∂ν
− u

∂v

∂ν
= 0 on ∂�× (0, T ), (1.9)
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respectively. It is derived from the statistical model of the reinforced random
walk developed on the lattice of a cellular automaton, where the effect of trans-
missive action of control species is restricted to each cell. We call this case the
biological field in this book, although the interaction particle is restricted to
adjacent cells and the field is not formed in the classical sense. Recently, much
attention has been paid to the final form in medical science, in the context
of self-organization such as angiogenesis, especially for the growth of tumors
[34, 158, 188].

Thus, we have distinguished three kinds of fields — physical, chemical, and
biological — which make the second equation of (1.1) appear in slightly dif-
ferent forms. Although several variations of the first and second equations of
(1.1) are proposed — using the sensitivity function, activator-inhibitor factors,
cross-diffusion, and so forth [67, 68, 127] — this slight difference in the forma-
tion of the field from particles makes the solution quite different. Our study is
mostly concerned with the first case. Some results are still valid for the second
case.

The long-term behavior of the solution to (1.1), on the other hand, depends
on the space dimension n, and most of our study of the blowup mechanism
is restricted to the case n = 2. Then the blowup solution develops a delta
function singularity with the quantized mass, while quite different profiles of
the blowup solution are obtained for n = 3 [62, 63].

We think that these features are related to the structures of the set of station-
ary solutions. In fact, this set is also sensitive to the space dimension, and only
for n = 2, is the quantized blowup mechanism observed. Furthermore, several
suggestions are obtained from this set concerning the long-term behavior of
nonstationary solutions.

Before describing this any further, we confirm that the classical solution to
(1.1) exists locally in time if the initial value is smooth. It becomes positive
if the initial value is nonnegative and not identically zero. These fundamental
theorems were established by [14, 187]. See also [152].

To control the long-term behavior, it is important to determine whether in-
variant quantities or Lyapunov functions exist or not. However, this system of
(1.1) is provided with the total mass conservation and the decrease of free en-
ergy, following physical requirements to describe the motion of the mean field
of many particles. Thus, we have one invariant and one Lyapunov function.
The total mass is given by

λ = ‖u(t)‖1 ,

and the free energy is the total energy minus entropy so that is equal to
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F(u) =
∫
�

u(log u − 1) dx − 1

2

∫∫
�×�

G(x, x ′)u ⊗ u dx dx ′. (1.10)

Here and henceforth, u ⊗ u stands for u(x)u(x ′) and the standard L p norm is
denoted by ‖ ·‖p for p ∈ [1,∞].

These facts are valid even for the full system and we can confirm them math-
ematically. In fact, first, positivity of the solution is preserved. Precisely,

u0(x) ≥ 0 and u0(x) �≡ 0

imply u(x, t) > 0 for (x, t) ∈ � × (0, T ) by the strong maximum principle.
This gives the total mass conservation,

‖u(t)‖1 = ‖u0‖1 ≡ λ, (1.11)

by

d

dt

∫
�

u dx =
∫
�

ut dx =
∫
�

∇ · (∇u − u∇v) dx

=
∫
∂�

(
∂u

∂ν
− u

∂v

∂ν

)
d S = 0. (1.12)

Next, in the full and simplified systems, the Lyapunov function is provided by

W(u, v) =
∫
�

(
u(log u − 1)− uv + 1

2
|∇v|2 + a

2
v2

)
dx . (1.13)

In fact, writing the first equation of (1.1) as

ut = ∇ · u∇ (log u − v) ,
we have ∫

�

ut (log u − v) dx = −
∫
�

u |∇ (log u − v)|2 dx

from the boundary condition. Here, the left-hand side is equal to

d

dt

∫
�

(u(log u − 1)− uv) dx +
∫
�

uvt dx,

and (1.2) is applicable to the second term. This gives∫
�

uvt dx =
∫
�

(τvt −�v + av) vt dx

= τ ‖vt‖2
2 + 1

2

d

dt

(
‖∇v‖2

2 + a ‖v‖2
2

)
.
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Thus, we obtain

d

dt
W (u, v)+ τ ‖vt‖2

2 +
∫
�

u |∇ (log u − v)|2 dx = 0, (1.14)

and hence W(u, v) is nonincreasing:

d

dt
W(u, v) ≤ 0.

This argument is also applicable to the biological field, that is, system (1.1)
with the second and the third equations replaced by (1.8) and (1.9), respec-
tively:

d

dt

∫
�

(u(log u − 1)− uv) dx + τ ‖vt‖2
2

+
∫
�

u |∇(log u − v)|2 dx = 0.

In the simplified system (1.1), the Lyapunov function W(u, v) defined by
(1.13) is equal to F(u) of (1.10):

F(u) =
∫
�

(u(log u − 1)) dx − 1

2

∫∫
�×�

G(x, x ′)u ⊗ u dx dx ′.

In fact, by (1.5) it holds that∫
�

uv dx =
∫
�

∫
�

G(x, x ′)u(x)u(x ′) dx dx ′,

while we also have∫
�

(
|∇v|2 + av2

)
dx =

∫
�

(−�v + av)v dx =
∫
�

uv dx,

and therefore from (1.13) it follows that

W(u, v) = F(u)

in this case. Thus, system (1.1) is subject to the second law of thermodynamics,
the decrease of free energy, as well as of mass conservation.

In 1981, Childress and Percus [33] tried a semianalysis of the full system of
chemotaxis, and conjectured that in the case of n = 2 there is a threshold in
the L1 norm of the initial value for the blowup of the solution to occur.
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To make the description simple, let Tmax ∈ (0,+∞] be the blowup time,
that is, the supremum of the existence time of the solution. Thus, the solu-
tion exists globally in time if Tmax = +∞, while Tmax < +∞ means the
blowup of the solution. Under this notation, their conjecture is that in the case
of n = 2, ‖u0‖1 < 8π implies Tmax = +∞, while Tmax < +∞ can happen
if ‖u0‖1 > 8π . Their other conjecture is that such a threshold for the blowup
of the solution does not exist if the space dimension is not two. This work is
actually based on the method referred to as nonlinear quantum mechanics in
this book, of which details will be described later.

It should be noted that Childress and Percus were motivated also by Nanjun-
diah [119], who had conjectured that u will develop a delta function singularity
in finite time. This singularity was expected to explain the formation of spores
of cellular slime molds when their food become rare, and is called the (chemo-
tactic) collapse. See Figure 1.2.

Figure 1.2.

To examine this conjecture of [119], [33] first applied the dimensional anal-
ysis, under the observation that if u is concentrated in Rn in a narrow area of
radius δ > 0, then it holds that ∇ ∼ δ−1 and the magnitude of u is O(δ−n)

because of the conservation of total mass (1.11). Sometimes, such δ > 0 is
called the dimension.
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If we put v = O(δ1−(n/2)) and t = O(δ1+(n/2)), then the dimensions of

ut − ∇ · (u∇v)−�u = 0

and

τvt − u + av −�v = 0 (1.15)

balance as

δ−(1+3n/2)
(
δ0, δ0, δn/2−1

)
= 0 (1.16)

and

δ−n
(
δ0, δ0, ·, δn/2−1

)
= 0,

where the term av is neglected in (1.15). From these relations, we can observe
that according to n = 1 and n = 3, the diffusion, compared with the chemo-
taxis, dominates and is negligible for 0 < δ � 1, respectively. In the former
case, collapses may not be formed, while in the latter case the concentration
will be enforced. This suggests a stronger singularity than the delta-function
in the case n = 3 and also the nonexistence of the collapse for n = 1. It also
suggests that the actual blowup of the solution is not controlled by the total
mass in the case of n = 3. Figure 1.3 illustrates such a situation, which is
an overview of the radially symmetric blowup solution of n = 3 constructed
by [62].

In this case of n = 3, there is also a self-similar blowup, distinguished from
the above profile, such as

u(r, Tmax) ∼ (8π + δ)(4πr2)−1

for r ↓ 0 [63]. In contrast with these cases of n = 1 and n = 3, the effect
of diffusion and that of chemotaxis compete in the case of n = 2, and the
formation of collapses [119] is expected only for n = 2.

Then how did [33] get the idea of a threshold total mass for the blowup in
the case of n = 2, particularly the threshold value 8π? Actually, this is done
by the study of the stationary problem of (1.1):

∇ · (∇u − u∇v) = 0 in �,

�v − av + u = 0 in �,

∂u/∂ν = ∂v/∂ν = 0 on ∂�, (1.17)
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Figure 1.3.

and we call this part of their study nonlinear quantum mechanics.
First, we introduce the equilibrium state in the following way. In fact, the

principal system to u is written as

�u = ∇v · ∇u + (�v)u in �,

∂u/∂ν = 0 on ∂�.

Since we are interested in the nontrivial case of u ≥ 0 and u �≡ 0, it follows
that u > 0 on � from the strong maximum principle again. Now, writing the
first equation of (1.17) as

∇ · u∇ (log u − v) = 0,

we have ∫
�

u |∇ (log u − v)|2 dx = 0

similarly to (1.14), and hence

log u − v = log σ (1.18)
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follows in � with a constant σ > 0. This unknown constant σ can be pre-
scribed if we take into account the equality (1.11) valid for the nonstationary
problem (1.1). Namely, in terms of λ = ‖u‖1, relation (1.18) implies

u = λev∫
�

ev dx
.

Substituting this into the second equation of (1.1), we reach the elliptic eigen-
value problem with the nonlocal term,

−�v + av = λev∫
�

ev dx
in �

∂v

∂ν
= 0 on ∂�. (1.19)

Here, the parameter λ = ‖u‖1 > 0 is regarded as an eigenvalue.
The stationary problem, (1.17), admits a constant solution (u, v) =

(λ/ |�| , λ/(a |�|) with ‖u‖1 = λ. This trivial solution generates the branch
of (constant) solutions to (1.19),

Cc = {
(λ, λ/ (a |�|)) ∣∣ λ > 0

}
in λ− v space, which bifurcates nontrivial solutions to (1.19).

Before proceeding to this bifurcation analysis, we want to mention a differ-
ent problem very close to (1.19), that is,

−�v = λev∫
�

ev dx
in �

v = 0 on ∂�. (1.20)

This arises in the theory of combustion [51] for n = 3 and in statistical mechan-
ics for vortex points [20, 21, 82] for n = 2. Analogous problems are also found
in self-dual gauge theory [189]. For n ≥ 3, the structure of radially symmetric
solutions is studied by [45, 51, 75, 117]. Two-dimensional radially symmetric
solutions, on the other hand, are easier to handle because they are given ex-
plicitly. These elliptic problems are related also to the complex function theory
and the theory of surfaces, and our previous monograph [166] is mostly de-
voted to these elliptic problems. There are other monographs [5, 9, 96], from
the viewpoints of geometry, combustion, and hydrodynamics. In many cases,
if the problem is involved with the exponential nonlinearity against the two-
dimensional diffusion, then we obtain the quantized blowup mechanism.
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Taking these works into account, [33] studied (1.19) as follows. First, they
applied the bifurcation analysis to the branch of trivial solutions Cc by restrict-
ing the problem to the radially symmetric case, namely, � is put to be the unit
disc,

D = {
x ∈ R2

∣∣ |x | < 1
}
,

and the solution v is supposed to be radially symmetric as v = v(|x |). Then,
(1.19) is reduced to the two-point boundary value problem of an ordinary dif-
ferential equation.

Note that problem (1.20) can be treated similarly. Although the constant
solution does not exist in this case, all radially symmetric solutions to this
problem are given explicitly and form a branch

Crd = {
(λ, vλ(x))

∣∣ λ ∈ (0, 8π)}
satisfying limλ↓0 vλ(x) = 0 and

lim
λ↑8π

vλ(x) = 4 log
1

|x | , (1.21)

and, moreover, any λ ∈ (0, 8π) admits a unique solution vλ = vλ(x), and there
is no solution for λ ≥ 8π . See Figure 1.4.

Figure 1.4.

In (1.17), on the contrary, a branch Cr of radially symmetric solutions bi-
furcates from that of constant solutions, Cc, at some λ = λ∗ > 8π . From the
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bifurcation theory it is confirmed also that Cr is in λ < λ∗ near the bifurcation
point. Then, it is natural to ask whether or not Cr reaches or exceeds λ = 8π .

Under these conditions, [33] tried using the numerical computation to follow
Cr toward the direction where λ decreases. What they observed is that it does
not exist beyond λ = 8π , which led them to another conjecture concerning
(1.17) when � is a disc, that is, only a constant stationary solution exists if
λ is in 0 < λ < 8π , while a very spiky stationary solution exists for each
λ in 0 < λ − 8π � 1. See Figure 1.5. (Later, [144] showed that this extra
conjecture holds in the affirmative.)

Figure 1.5.

Taking into account that the nonstationary solution lies in the manifold
‖u‖1 = λ of function spaces, [33] arrived at the original conjecture by this
extra conjecture — that is, in (1.1), with n = 2, ‖u0‖1 < 8π will imply
Tmax = +∞, while Tmax < +∞ can occur if ‖u0‖1 > 8π , because the
“blowup solution should have the radially symmetric profile around the blowup
point.”

It is interesting but difficult to approach these conjectures rigorously. How-
ever, in 1992 Jäger and Luckhaus [73] introduced a simplified system as the
limiting state of τ ∼ a ↓ 0. There, the second equation of (1.1) is replaced by

−�v = u − 1

|�|
∫
�

u dx in � (1.22)

with the side condition∫
�

v dx = 0 and
∂v

∂ν
= 0 on ∂�. (1.23)
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For this system [73] showed that if n = 2, then the condition ‖u0‖1 � 1
implies Tmax = +∞, and Tmax < +∞ occurs if u0(x) is sufficiently concen-
trated on a point in � and ‖u0‖1 � 1. Then, in 1995, Nagai [106] showed that
the threshold conjecture holds exactly true for radially symmetric solutions to
(1.1). Thus, ‖u0‖1 = 8π is the actual threshold of the blowup of the solution
in this case. However, this was not the end of the story.

Meanwhile, several tools to treat these systems were proposed mathemat-
ically. They are summarized as the use of the Lyapunov function, the Trud-
inger–Moser inequality, and the second moment of total mass. Based on these
methods, it was proven that ‖u0‖1 < 4π implies Tmax = +∞ in (1.1) for
the general case [14, 50, 110]. (Here, we confirm that the bounded domain
� ⊂ R2 is supposed to have the smooth boundary, consisting of a finite number
of smooth Jordan curves. In fact, if ∂� has corners, then this constant 4π must
be reduced more. We shall see that the quantized blowup mechanism explains
completely what this means.)

Thus, around 1997, we were very close to a complete the proof of the con-
jecture [33], except for the discrepancy of the constant, 4π and 8π . This dif-
ference is due to Moser–Onofri-type inequalities in H1

0 (�) and H1(�), but is
not technical. In fact, the structure of the set of solutions to (1.20) and (1.17)
are rather different.

Before describing this difference, we point out that the above-mentioned in-
equalities of real analysis were discovered in the study of Nirenberg’s problem
in differential geometry. Actually, these inequalities are associated with a vari-
ational functional. A key tool to approach our problem, the 4π -8π discrepancy,
called the concentration lemma, was proposed by [22, 23]. It focuses on the be-
havior of a family of functions defined on S2, and using them we can show that
if the blowup occurs in (1.1) with 4π < ‖u0‖1 < 8π , then the solution must
concentrate on the boundary [108].

This means that we have to take into account the nonradially symmetric
stationary solution to (1.17) to understand the whole blowup mechanism of
(1.1). This is nothing but the methodology of [33], that is, the singular limit
of stationary solutions controls the blowup mechanism of nonstationary solu-
tions. However, we added a new motivation for unifying these two phenomena,
threshold and collapse, by the blowup mechanism in this book. Another new
viewpoint is the spectral equivalence of the variational structures of the equi-
librium state, induced by the free energy and the standard elliptic theory. We
call this part the theory of dual variation.
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Now we describe what is known for (1.20). First, the blowup can occur only
at quantized values of λ [114, 115], namely, if{

(λk, vk(x))
}

is a sequence of solutions to (1.20) with λ = λk and v(x) = vk(x), satisfying
λk → λ0 ∈ [0,∞) and ‖vk‖∞ → +∞, then it holds that λ0 ∈ 8πN. Fur-
thermore, λ0/(8π) coincides with the number of blowup points of {uk} and we
have

−�vk(x) dx ⇀
∑
x0∈S

8πδx0(dx),

∗-weakly in the sense of measures on �, where S denotes the blowup set with
the location controlled by the Green’s function for −� in� under the Dirichlet
boundary condition. This phenomenon of concentration is already described by
(1.21) in the radially symmetric case.

To approach (1.17) in comparison with (1.20), examining the role of sym-
metry is essential. More precisely, the general theory of Gidas et al. [52] guar-
antees that any classical positive solution to a semilinear elliptic problem

−�u = f (u) in � with u = 0 on ∂�

with � equal to the unit ball,

B = {
x ∈ Rn

∣∣ |x | < 1
}
,

must be radially symmetric, provided that f : R → R is Lipschitz continuous.
This theorem is applicable to (1.20), and the set of solutions for � = D, two-
dimensional unit ball, coincides with the branch Crd mentioned before. (Bandle
[5] gave a different proof of the radial symmetry of the solution to (1.20) on
the two-dimensional disc.)

Now, we describe how (1.17) is different from (1.20). Actually, there are
nonradially symmetric solutions to (1.17) even for � = D [144], and these
solutions play essential roles in the long-term behavior of the nonstationary
solution. For instance, a family of solutions to (1.17) blows up only at λ0 ∈
4πN and this λ0 is equal to 8π times the number of interior blowup points
plus 4π times that of boundary blowup points. In this connection, it is worth
mentioning that any family of solutions to (1.20) takes no boundary blowup
point at all. See Figure 1.6. Thus, the 4π -8π discrepancy is a consequence of



16 Free-Energy and Self-Interacting Particles

Figure 1.6.

the boundary blowup point in the equilibrium state, and this is actually the case
in the nonequilibrium state.

Here is a theorem [145] concerning the formation of collapses in the blowup
solution to (1.1). There, M(�) denotes the set of measures on �, ⇀ the
∗-weak convergence, and

m∗(x0) ≡
{

8π (x0 ∈ �) ,
4π (x0 ∈ ∂�) . (1.24)

Theorem 1.1 If Tmax < +∞ in (1.1), then there exists a finite set

S ⊂ �

and a nonnegative f = f (x) ∈ L1(�) ∩ C(� \ S) such that

u(x, t) dx ⇀
∑
x0∈S

m(x0)δx0(dx)+ f (x) dx (1.25)

in M(�) as t ↑ Tmax with

m(x0) ≥ m∗(x0) (x0 ∈ S) . (1.26)
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We have also

lim
t↑Tmax

‖u(t)‖∞ = +∞ (1.27)

and S coincides with the blowup set of u, namely, x0 ∈ S if and only if there
exist xk → x0 and tk ↑ Tmax such that u(xk, tk)→ +∞. Since

‖u(t)‖1 = ‖u0‖1

holds for t ∈ [0, Tmax), we thus obtain

2 · � (� ∩ S)+ � (∂� ∩ S) ≤ ‖u0‖1 /(4π) (1.28)

by (1.25) and (1.26). This inequality is regarded as a refinement of the previous
work concerning the criterion of Tmax = +∞, as it assures that ‖u0‖1 < 4π
implies S = ∅ and therefore Tmax = +∞.

Each collapse

m(x0)δx0(dx)

stands for the spores made by cellular slime molds, and if the equality holds
in (1.24), then the quantized value of the mass of collapses on the boundary is
counted as half of the one in the interior.

Inequality (1.26) indicates that the mass of collapses made by the blowup
solution cannot be under the fundamental level. If this estimate is optimal, then
conjecture [33] follows with the value 8π replaced by 4π . More precisely, any
λ > 4π admits u0(x) ≥ 0 such that ‖u0‖1 = λ and Tmax < +∞. This is
actually the case, and if

‖u0‖1 > 4π

and u0(x) is sufficiently concentrated at a point on the boundary, then we ob-
tain Tmax < +∞ [107, 146]. Thus, conjecture [33] holds in the affirmative if
the threshold value is reduced to a half of the expected one.

This sharp blowup criterion, on the contrary, means the existence of a fam-
ily of blowup solutions to (1.1), each of which has one blowup point on the
boundary of their own with the collapse mass as close as possible to 4π . The
next question is the mass quantization of each collapse, m(x0) = m∗(x0) in
(1.25). Actually, Herrero and Velázquez [64] constructed a family of radially
symmetric solutions to the system studied by [73], satisfying

u(x, t) dx ⇀ 8πδ0(dx)+ f (x) dx (1.29)
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as t ↑ Tmax < +∞ with nonnegative f = f (x) ∈ L log L(D), where D ⊂ R2

is the unit disc and L log L denotes the Zygmund space. Thus, the equality
holds in (1.26) in this example, and we have also the stability of this blowup
pattern [181].

What we call mass quantization of collapses in this book is the equality
m(x0) = m∗(x0) in (1.25). This is actually the case if the solution is continued
after the blowup time as a weak solution [147], and if the solution blows up in
infinite time [148]. In this context, we know that the Fokker–Planck equation
admits a weak solution globally in time, provided that the initial value has a
finite second moment, is bounded, and is summable [182]. This Fokker–Planck
equation is derived from the Langevin equation, and describes the kinetic mean
field of many self-interacting particles. Since system (1.1) arises as its adia-
batic limit, we can expect that (1.1) admits a weak solution globally in time,
and this implies the equality in (1.26).

Unfortunately, this question of post blowup continuation is open; maybe it
will not be true, because the Fokker–Planck equation is valid only when the dis-
tribution of particles is thin, and its physical scale is different from that of (1.1).
However, we can prove the mass quantization using the scaling argument, the
success of which may be promised by the dimensional analysis stated above;
that is, the concentration of the rescaled mass, called subcollapse, dominates
the aggregation of the residual term, excluding the possibility of the formation
of multicollapses [149].

In more detail, this question of mass quantization of collapses is related to
the control of the blowup rate of the solution. Actually, the asymptotics (1.29)
of Herrero–Velázquez’s solution are derived from its local behavior,

u(x, t) = 1

r(t)2
u
( x

r(t)

)
{1 + o(1)} + O

(e−√
2|log(T−t)|1/2

|x |2 · 1{|x |≥r(t)}
)

(1.30)

as t ↑ T = Tmax uniformly in |x | ≤ C(T − t)1/2, where

r(t) = (T − t)1/2 · e−√
2/2 |log(T−t)|1/2∣∣ log(T − t)

∣∣ 1
4 log−1/2(T−t)− 1

4
(
1 + o(1)

)
and u(y) = 8 · (1 + |y|2)−2

. This u(y) is nothing but the stationary solution
on the whole space R2, but the rate r(t) is also important.

In fact, this asymptotic behavior of the solution is quite different from the
one derived from the subcritical nonlinearity, say,

ut −�u = u p, u ≥ 0 in �× (0, T )
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with u|∂� = 0 for 1 < p < (n + 2)/(n − 2)+, where � ⊂ Rn is a bounded
domain with smooth boundary ∂�. In this case the local profile of the solution
in the parabolic region is controlled by the ODE part u̇ = u p, and, for example,
if � is convex and x0 ∈ � is a blowup point, then it holds that

u(x, t) = (T − t)−
1

p−1

(
1

p − 1

) 1
p−1 {1 + o(1)} (1.31)

as t ↑ T = Tmax < +∞ uniformly in |x − x0| ≤ C (T − t)1/2 [54, 55, 56].
Thus, the concentration is so slow that u(x, t) becomes flat in the parabolic
region in this case, and consequently, the total blowup mechanism is not enve-
loped there.

On the contrary, we have 0 < r(t) � R(t) ≡ (T − t)1/2 in (1.30), and
therefore the standard backward self-similar transformation

z(y, s) = (T − t)u(x, t) (1.32)

with

y = (x − x0)/(T − t)1/2,

s = − log(T − t), (1.33)

reproduces a collapse again, which we call the subcollapse. More precisely,

z(y, s) dy ⇀ 8πδ0(dy)

holds as s → +∞ in the sense of measures in R2, which suggests that the
nonlinearity is supercritical in the case of (1.1), and the concentration, relative
to the aggregation, is so rapid that the whole blowup mechanism is enveloped
in the parabolic region. Here, the aggregation and the concentration indicate
the growth of the local L1 norm and that of the L∞ norm of the solution,
respectively. See Figure 1.7.

From these considerations, it is natural to classify the blowup point by the
blowup rate in accordance with the standard backward self-similar transforma-
tion [165]. Namely, we say that x0 ∈ S is type (I) if

lim sup
t→T

sup
x∈�, |x−x0|≤C R(t)

R(t)2u(x, t) < +∞

holds for any C > 0 and it is type (II) for the other case:

lim sup
t→T

sup
x∈�, |x−x0|≤C R(t)

R(t)2u(x, t) = +∞
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Figure 1.7.

with some C > 0, where

T = Tmax < +∞ and R(t) = (T − t)1/2.

Then, we can show the following theorem.

Theorem 1.2 In any case, mass quantization m(x0) = m∗(x0) holds in (1.25)
for each blowup point x0 ∈ S. If it is type (II) and

lim
n→+∞ sup

x∈�, |x−x0|≤C R(tn)
R(tn)

2u(x, tn) = +∞

for tn → T , then we obtain

z(y, sn + ·) dy ⇀ m∗(x0)δ0(dy)

in C∗
(
(−∞,+∞),M(R2)

)
, where sn = − log(T − tn). Here, zero extension

of z = z(y, z) is taken in the region where it is not defined by (1.32) and (1.33).
If x0 ∈ S is type (I), on the other hand, then it holds that

lim
t→Tmax

FbR(t)(u(t)) = +∞

for any b > 0, where FR(t) is the local free energy defined by

FR(u) =
∫
�

ψx0,R,2Ru(log u − 1) dx

− 1

2

∫
�

∫
�

ψx0,R,2R(x)ψx0,R,2R(x
′)G(x, x ′)u ⊗ u dx dx ′

for smooth function ψ = ψx0,R,2R satisfying 0 ≤ ψ ≤ 1, ψ = 1 in � ∩
B(x0, R), ψ = 0 in � \ B(x0, 2R), and ∂ψ

∂ν
= 0 on ∂�.
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The above theorem says that the type (II) blowup point is hyperparabolic,
which means that the whole blowup mechanism is included in an infinitely
small parabolic region called the hyperparabola, associated with the stan-
dard self-similar transformation. Obviously, Hererro–Velázquez’s solution has
such a profile. Around this type of blowup point, a collapse with the quan-
tized mass is formed by the concentration of particles, asymptotically radially
symmetrically. However, this theorem says also that even around the type (I)
blowup point, the whole blowup mechanism is enveloped by an infinitely large
parabolic region called the parabolic envelope. If such a blowup point exists,
then it arises from the wedge of the parabolic region, not necessarily radially
symmetric, and possibly moving. Another profile of the solution around the
type (I) blowup point is that the entropy is swept away to the wedge of the
parabolic envelope, which has been shown to have a similarity of emergence
by Kauffman [78]. Although the actual existence of a type (I) blowup point
is open to discussion, even a type (II) blowup point can take such a profile
in the other space-time rescaling; for example, Herrero–Velazquez’s solution
satisfies

lim
T→Tmax

Fbr(t) (u(t)) = +∞

for any b > 0.
This quantized blowup mechanism, however, is not extended to the system

associated with the chemical field as it is. In fact, in the full system some spiral
movements are added to the blowup mechanism because of the time lag for
the creation of the field from particles, and this may make it possible for the
blowup set to be a continuum. In this way, each hierarchy of the mean field
equations has is own mathematical principle, besides the physical principle to
derive them.
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We have described that the system of self-interacting particles is subject to
the story of nonlinear quantum mechanics. First, the stationary state is realized
as a nonlinear elliptic eigenvalue problem with nonlocal terms. Next, quanti-
zation of the singular limit of the stationary state induces that of the nonequi-
librium state — its dynamics and the blowup mechanism. This hierarchy is de-
rived from the physical principle of mass conservation and the decrease of the
free energy. An important structure is the self-interaction associated with the
symmetric kernel, which is to be called compensated compactness via sym-
metrization. Finally, the equilibrium state is subject to the dual variation as-
sociated with the particle density and the field distribution being dynamically
equivalent to each other, and transformed through the Legendre transformation.

The above table indicates how the proofs of Theorems 1.1 and 1.2 are com-
pleted. In spite of several technical ingredients, it will be observed that mass
quantization is a consequence of the L1 threshold in the blowup criterion.

Now, we discuss the structure of the present monograph. The book is divided
into five parts. Chapter 2 is the introduction and presents the hierarchy of the
system of equations, one of the main themes of this monograph.

Chapters 3, 4, and 5 present the classical theory for the time-dependent prob-
lem. First, Chapter 3 establishes the unique existence of the classical solution
locally in time, and also the general criterion for the blowup of the solution.
Then the existence and the nonexistence of the classical solution globally in
time are discussed in Chapters 4 and 5, respectively.

The third part — Chapters 6, 7, 8, 9, and 10 — deals with the stationary prob-
lem. Chapter 6 formulates the problem, and then Chapter 7 shows quantization
of the mass and location of the singularities of the singular limit of the solu-
tion. This phenomenon has been already treated in our previous monograph
[166], but the mathematical tool adopted here is quite different. That is, we
make use of a delicate profile of the Green’s function, rather than the complex
function theory or the theory of surfaces. This analysis is applied to show the
existence of the nontrivial stationary solution using the variational method in
Chapter 8. Then, Chapter 9 describes the second theme, unfolding the Legen-
dre duality via the Lagrange function. This spectral theory is realized as the
dynamical and the stability equivalences. Then, in Chapter 10, the quantized
blowup mechanism is suggested from observations of the stability and the in-
stability of stationary solutions.

The main theme, the quantized blowup mechanism, is proven in the fourth
part, Chapters 11, 12, 13, 14, and 15. First, we establish the formation of col-
lapses by the space localization of the method of Chapter 4 concerning the
existence of the solution globally in time (Chapter 11). This consequence is
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discretized in the time variable to study the blowup in infinite time (Chap-
ter 12). The method of Chapter 5 for the nonexistence of the solution globally
in time, on the other hand, is also localized in the space variable, and it is shown
that the mass quantization of the collapse occurs if the solution continues after
the blowup time as a weak solution (Chapter 13). In Chapter 14 it is suggested
that the actual quantization is related to the blowup rate, and finally Chapter 15
establishes the mass quantization of collapses using the parabolic envelope and
the blowup criterion of the weak solution on the whole space generated by the
limiting process for the rescaled solution. We use also the reverse second mo-
ment and the forward self-similar transformation for this purpose. It is proven
also that the type (I) blowup point shows the profile of emergence and the type
(II) blowup point is hyperparabolic using the concentration lemma.

The final part, Chapter 16, is an epilogue, where the general variational prin-
ciple for the study of the mean field equations is presented, including the un-
folding of the Legendre duality. It is an abstract theory based on the material
discussed in the third part in the context of convex analysis, and applications
to other systems are proposed.



2

Background

Nobody has ignored living things who
has thought of entropy seriously.

— H. Tanaka

This chapter is a short description of mathematical modelling of the problem.
First, we describe the physical motivation. In fact, parabolic-elliptic systems
with drift terms are found in several areas of science involved with the transport
theory; statistical mechanics, quantum mechanics, physical chemistry, and so
forth. Here, we mention two of them, the semiconductor device equation and
the vortex equation.

The first system, referred to as the DD model, is written as

nt = ∇ · (∇n − n∇ϕ)
pt = ∇ · (∇ p + p∇ϕ)
�ϕ = n − p

⎫⎪⎬⎪⎭ in �× (0, T ),

∂n

∂ν
− n

∂ϕ

∂ν
= 0

∂p

∂ν
+ p

∂p

∂ν
= 0

ϕ = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ on ∂�× (0, T ),

(2.1)
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where n = n(x, t) and p = p(x, t) denote the densities of the electron and the
positron, respectively, and ϕ = ϕ(x, t) is the electric charge field derived from
those particles. As is described in the previous chapter, in the case of n = 0,
this system is reduced to (1.1) with the opposite sign in the second term of
the right-hand side of the first equation, if the second equation is replaced by
(1.5), where G = G(x, x ′) denotes the Green’s function for −� in � under
the Dirichlet boundary condition. Here, the formation of the electric charge
field provides the self-repulsive force to the electrons. Positrons are similar,
and therefore this system is dissipative. Its physical modelling is described in
[152], and several variants are mentioned in [6].

The second system is given by

ωt = ∇ ·
(
∇ω − ω∇⊥ψ

)
−�ψ = ω

⎫⎬⎭ in R2 × (0, T ), (2.2)

where

∇⊥ =
(−∂/∂x2

∂/∂x1

)
for x = (x1, x2) denotes the antigradient. It comes from the Navier–Stokes
system

ut −�u + u · ∇u = ∇ p
∇ · u = 0

}
in R3 × (0, T ),

where

u =
⎛⎝u1

u2

u3

⎞⎠ and ∇ =
⎛⎝∂/∂x1

∂/∂x2

∂/∂x3

⎞⎠
denote the velocity and the gradient operator, respectively, and p is the pres-
sure. If we take the two-dimensional model of x = (x1, x2, 0) and u3 = 0,
then it holds that

∇ × u =
⎛⎝0

0
ω

⎞⎠ for ω = ω(x1, x2).

This system is also dissipative, but some underlying chaotic profiles are
observed.
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The direction of the self-interacting force in these systems — chemotaxis,
semiconductor devices, and vortices — is different, that is, the particles create
the field to be attractive, repulsive, and perpendicular to themselves, respec-
tively. However, some common structures are noticed, and in particular, the
first two systems share the physical principle of the second law of thermody-
namics, that is, the decrease of the free energy. For instance, an equilibrium
state is stable if it is a local minimum of the free energy, while the transient
dynamics is controlled by the unstable equilibrium states.

We note that the free energy is given by the inner energy minus entropy. If
ρ = ρ(x) ≥ 0 denotes the density of particles, then the entropy on the domain
� ⊂ Rn in consideration is defined by

−
∫
�

ρ(log ρ − 1) dx .

On the other hand, the inner energy is composed of the kinetic and potential
energies and therefore it is defined by

−1

2

∫∫
�×�

H(x, x ′)ρ ⊗ ρ dx dx ′ +
∫
�

ρV dx, (2.3)

where −H(x, x ′) and V (x) denote the potential of the self-interaction and that
of the external force, respectively. Here, from Newton’s third law we have

H(x, x ′) = H(x ′, x),

and the modulus a half of the first term of (2.3) is a consequence of self-
interaction. If the self-interaction is due to the gravitational force, then we have
H(x, x ′) = �(x − x ′) for � = �(x) given by (1.4). In any case, the system of
equations describing these self-interactions is required to be provided with the
property of the decrease of free energy,

F(ρ) =
∫
�

ρ(log ρ − 1) dx − 1

2

∫∫
�×�

H(x, x ′)ρ ⊗ ρ dx dx ′ +
∫
�

ρV dx .

There is an approach by the inner friction and fluctuations of particles [8,
185, 186]. We shall illustrate the classical theory before following the argu-
ment. In both cases, the complete mathematical justification is hard, and here
we draw the stories only. See the above-mentioned papers and the references
therein for the actual rigorous proof.
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First, the classical theory is based on the Newton equation. Thus, if m and
N denote the mass and number of each particle, respectively, then it holds that

dxi

dt
= vi ,

m
dvi

dt
= ∇xi

{
− mV (xi )+ m2

∑
j �=i

H(x j , xi )
}

(2.4)

for i = 1, . . . , N . Making N → ∞ with M = m N preserved, we obtain the
limiting distribution f (x, v, t) dx dv:

μN ( dx, dv, t) = m
∑

δxi (t)(dx)⊗ δvi (t)(dv)

⇀ f (x, v, t) dx dv.

This f (x, v, t) is subject to the kinetic model, referred to as the Jeans–Vlasov
equation. In the normal form, it is given as

ft = −∇x · (v f )+ γ∇v · [ f ∇x (V − U )] ,

U (x, t)

with a constant γ > 0.
In the next process of (dvi )/(dt) → 0, comparable to make γ → +∞, the

distribution function f (x, v, t) is replaced by the Maxwellian ω(x, t)π−n/2·
e−v2/2. This is called the adiabatic limit. If n = 2, then ω(x, t) is subject to
the vorticity equation derived from the Euler equation,

−�ψ = ω

ωt = −∇ ·
(
ω∇⊥ (ψ + V )

)
.

In the stationary state of this system, ω = ω(x) is associated with the elliptic
problem

−�ψ = g(ψ + V )

with the nonlinearity g unknown [179, 180]. If the particles are spatially con-
centrated as

ω(x, t) =
N∑

i=1

δxi (t)(dx), (2.5)
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on the other hand, then the concentration spots are subject to the Hamiltonian
system

dxi

dt
= ∇⊥

xi
H(x1, x2, . . . , xN ) (2.6)

for i = 1, 2, . . . , N with the Hamiltonian

H(x1, x2, . . . , xN ) = −
∑

i

V (xi )+
∑
j<i

H(xi , x j ).

If the gravitational force acts as the self-interaction, then H = H(x, x ′) is
given by H(x, x ′) = �(x − x ′). If this H(x, x ′) is replaced by G(x, x ′), the
Green’s function of −� provided with the Dirichlet boundary condition, then

1

2

∑
i

R(xi )

is added to the right-hand side of the Hamiltonian, where G(x, x ′) and R(x)
denote the Green’s function and the Robin function, respectively; that is,
R(x) = K (x, x) with K = K (x, x ′) defined by

K (x, x ′) = G(x, x ′)+ 1

2π
log

∣∣x − x ′∣∣ .
However, this hierarchy of the system of equations is not subject to the second
law of thermodynamics, the decrease of free energy. Actually, it is governed by
three laws of conservation; mass, momentum, and energy. As a consequence,
the solution has the profile of chaotic motion.

Contrasted with this classical theory, the other approach assumes friction
and random fluctuations of particles, and replaces the Newton equation by the
Langevin equation:

dxi = vi dt,

m dvi = ∇xi

(
− mV (xi )+ m2

∑
j �=i

H(x j , xi )
)

− βvdt + (2βkT )1/2 dW i
t .

Here, k, T , and β are the Boltzmann constant, temperature, and friction coef-
ficient, respectively, and

(
W i

t

)
denotes the white noise. Its kinetic model be-

comes the Fokker–Planck equation, in the form of

ft = −∇x · (v f )+ ∇v · [ f ∇x (V − U )] + βkT∇v · (v f + ∇v f )

U (x, t) =
∫∫

�×Rn
H(x, x ′) f (x ′, v, t) dx ′dv, (2.7)
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where

ρ(x, t) =
∫

Rn
f (x, v, t) dv,

is the density and therefore

λ =
∫
�

ρ(x, t) dx

stands for the total mass. Then the adiabatic limit of this kinetic model is ob-
tained by β → +∞;

ρt = ∇ · (ρ∇ (V − U ))+�ρ.

If V = 0 and the kernel H = H(x, x ′) is replaced by the Green’s function
G = G(x, x ′) with −�+a under the Neumann boundary condition, the above
equation is nothing but the simplified system of chemotaxis, (1.1).

As was described in the previous chapter, the equilibrium state of this system
is given by the semilinear elliptic eigenvalue problem, (1.19), with the nonlin-
earity prescribed as the exponential function. The spatially localized solution
(2.5), on the other hand, is subject to the gradient flow with ∇⊥ replaced by ∇
in (2.6):

dxi

dt
= ∇xiH(x1, x2, . . . , xN ),

where i = 1, 2, . . . , N . If H = H(x, x ′) is replaced by the Green’s function
of −�+ a with the Neumann boundary condition, denoted by G = G(x, x ′),
then the spatially localized particles are in the interior or on the boundary ex-
clusively, and the gradient flow is defined by

χ(xi )
dxi

dt
= ∇xi

(
− χ(xi )V (xi )+

∑
j �=i

χ(x j )G(xi , x j )+ χ(xi )

2
R(xi )

)
,

where R(x) is the Robin function and

χ(x) =
{

1 (x ∈ �),
1/2 (x ∈ ∂�).

Furthermore, location of the N blowup points of the singular limit of the sta-
tionary solution, (1.17), forms a stationary point of this ODE system [166].
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The Fokker–Planck equation (2.7), on the other hand, is provided with the
free energy,

F̂( f ) =
∫∫

�×Rn
f (log f − 1) dx dv

− 1

2

∫∫
�2×R2n

H(x, x ′) f (x, v, t) f (x ′, v′, t) dx dx ′dv dv′,

and this new hierarchy is derived from the physical principle of the second law
of thermodynamics. These two hierarchies are summarized in the following
table. We are not concerned with their mathematical justification. Our interest
is in the quantized blowup mechanism observed in the second hierarchy.

ODE Newton Langevin

Kinetic Jeans–Vlasov Fokker–Planck

PDE Euler Keller–Segel

Time-localized Elliptic eigenvalue Liouville–Gel’fand

Space-localized Hamiltonian Gradient

Physics Conservation laws Free energy

Mathematics Chaos Quantization

Part of the biological background to (1.1), on the other hand, is the micro-
scopic derivation made from the biased random walk [3, 128]. Another is the
reinforced random walk [127]. The underlying structure is the movement of
many particles controlled by the other species. In this chapter we discuss the
argument for the latter. We discuss mostly the one-dimensional lattice L, but
the n-dimensional lattice Ln is treated similarly. See also [152] for more de-
tails.

First, we identify L with

Z = {
. . . ,−n − 1,−n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n, n + 1, . . .

}
.

If pn(t) ∈ [0, 1] denotes the conditional probability that the walker stayed on
site n = 0 at time t = 0, and is on site n = n at time t = t , then we obtain the
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master equation:

∂pn

∂t
= T̂ +

n−1 pn−1 + T̂ −
n+1 pn+1 − (T̂ +

n + T̂ −
n )pn, (2.8)

where T̂ ±
n denotes the transition rates that the walker staying on site n jumps

to site n ± 1 in the unit time. We consider the case that these transient rates
T̂ ±

n are controlled by the other species living in the sublattice L̂, of which the
mesh size is half that of L. Let the density of that species be

w = (
. . . , w−n−1/2, w−n, w−n+1/2, . . . , w−1/2,

w0, w1/2, . . . , wn−1/2, wn, wn+1/2, . . .
)
.

If the transition probabilities depend only on the density of the control species
at that site, then it holds that T̂ ±

n = T̂ (wn) and hence (2.8) is written as

∂pn

∂t
= T̂ (wn−1)pn−1 + T̂ (wn+1)pn+1 − 2T̂ (wn)pn. (2.9)

Therefore, writing x = nh by the mesh size h of the lattice, we obtain

∂p

∂t
= h2 ∂

2

∂x2

(
T̂ (w)p

) + O(h4). (2.10)

If we have the scaling t ′ = λt , then we can take T̂ (w) = λT (w). Under the
assumption limh↓0 λh2 = D > 0, it follows formally that

∂p

∂t
= D

∂2

∂x2 (T (w)p)

by putting t for t ′. Thus, the response function T (w) represents the micro-
scopic mechanism of the jump process. On the other hand, the variables p and
w are coupled, and w is subject to another equation involving p.

In the barrier model, the transient rate at site n is determined by the densities
of the control species at site n ± 1/2. Thus, the control species which governs
the jump process makes a barrier to the particle. We have

T̂ ±
n (w) = T̂ (wn±1/2)

and the master equation (2.9) is now reduced to

∂pn

∂t
= T̂ (wn−1/2)pn−1 + T̂ (wn+1/2)pn+1

− (
T̂ (wn+1/2)+ T̂ (wn−1/2)

)
pn.
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Here, the right-hand side is equal to

T̂ (wn+1/2)(pn+1 − pn)+ T̂ (wn−1/2)(pn−1 − pn)

= h
(

T̂ (wn+1/2)− T̂ (wn−1/2)
)(∂p

∂x
+ o(1)

)
= h2

{ ∂
∂x

(
T̂ (w)

∂p

∂x

)
+ o(1)

}
and we obtain

∂p

∂t
= D

∂

∂x

(
T (w)

∂p

∂x

)
(2.11)

under the same scaling limh↓0 λh2 = D > 0.
We note that the mean waiting time of the particle at site n is given by

(T̂ +
n + T̂ −

n )
−1 in (2.9). In the case that it is independent of w and n, it holds

that

T̂ +
n (w)+ T̂ −

n (w) = 2λ,

where λ > 0 is a constant. If the barrier model is adopted here, then T̂ ±
n (w) =

T̂ (wn±1/2) follows. These relations imply

T̂ ±
n (w) = 2λ · T̂ (wn±1/2)

T̂ (wn+1/2)+ T̂ (wn−1/2)
.

The renormalization is the procedure of introducing a new jump process by
replacing the right-hand side as

T̂ ±
n (w) = 2λ · T (wn±1/2)

T (wn+1/2)+ T (wn−1/2)

with some T (w). Writing

N+(wn+1/2, wn−1/2) = T (wn+1/2)

T (wn+1/2)+ T (wn−1/2)
,

N−(wn−1/2, wn+1/2) = T (wn−1/2)

T (wn−1/2)+ T (wn+1/2)
,

we have

T̂ ±
n (w) =

{
2λN+(wn+1/2, wn−1/2),

2λN−(wn−1/2, wn+1/2),



34 Free-Energy and Self-Interacting Particles

and the master equation (2.9) is reduced to

1

2λ

∂pn

∂t
= N+(wn−1/2, wn−3/2)pn−1 + N−(wn+1/2, wn+3/2)pn+1

− {
N+(wn+1/2, wn−1/2)+ N−(wn−1/2, wn+1/2)

}
pn. (2.12)

In this model, the sublattice is assumed to be homogeneous so that N± is inde-
pendent of n. Letting N (u, v) = N+(u, v), we have N−(v, u) = 1 − N (u, v)
and

N (u, v) = T (u)

T (u)+ T (v)
. (2.13)

Putting x = nh, we see that (2.12) has the form

1

λ

∂p

∂t
= h2 ∂

∂x

(∂p

∂x
− 2p(Nu − Nv)

∂w

∂x

)
+ o(h2).

Therefore, under the scaling limh↓0 λh2 = D > 0 we obtain

∂p

∂t
= D

∂

∂x

(∂p

∂x
− 2p

(
Nu − Nv

)∂w
∂x

)
. (2.14)

Here, we have

Nu(w,w) = T (v)T ′(u)(
T (u)+ T (v)

)2

∣∣∣∣
u=v=w

= 1

4

(
log T (w)

)′
and Nv(w,w) = −Nu(w,w) by (2.13) so that equation (2.14) is written as

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

∂

∂x
log T (w)

)
.

In the n space dimensions, we have

∂p

∂t
= D∇ · (∇ p − p∇ log T (w)) .

This is the form of the first equation of (1.1), and there the chemotactic sensi-
tivity function and the average particle velocity are given by

χ(w) = D
(

log T (w)
)′

and
v = −D∇ log p + D

(
log T (w)

)′∇w,
respectively.
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Fundamental Theorem

We study the system of chemotaxis, or the adiabatic limit of the Fokker–Planck
equation, and thus, � ⊂ Rn is a bounded domain with smooth boundary ∂�,
and V = log W stands for the potential of the outer force, where W = W (x) >
0 is a smooth function of x ∈ �.

This system is also involved with the parameter τ ≥ 0 and the self-adjoint
operator A > 0 in L2(�) with the compact resolvent, defining the relaxation
time and the field formation, respectively. Then, this system is given by

ut = ∇ · (∇u − u∇ (v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

τ
d

dt
v + Av = u for t ∈ (0, T ), (3.1)

where u = u(x, t) and v = v(x, t) are unknown functions of (x, t) ∈ � ×
[0, T ). The initial value is provided with

u|t=0 = u0(x) ≥ 0 in �, (3.2)

and if we take the full system of τ > 0, then the additional initial value

v|t=0 = v0(x) in � (3.3)

is also prescribed.
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The operator A can be −�+a with the Neumann boundary condition, where
a > 0 is a constant. It may be −�with the Neumann boundary condition under
the constraint

∫
�

· dx = 0, that is, Av = u if and only if

−�v = u − 1

|�|
∫
�

u dx in �

∂v

∂ν
= 0 on ∂�,

∫
�

v dx = 0. (3.4)

In the third case, it is −� with the Dirichlet boundary condition.
These cases are studied by [38, 73, 106], and are referred to as the (N), (JL),

and (D) fields, respectively, in this book. Excluding the boundary blowup of
the solution to the (D) field is open. Except for it, we do not have any essential
differences in these fields in the study of the quantized blowup mechanism of
the simplified systems.

Unique solvability of (3.1) with (3.2) and (3.3) locally in time is more or less
known [152]. In this chapter we follow the method of [150] and give a scheme
valid for the semiabstract system, (3.1)–(3.3). Because the simplified system is
easier to handle, we will concentrate on the full system.

We propose for A to be regarded as an operator in L p(�) for p ∈ (1,∞),
satisfying ∥∥∥A−1

∥∥∥
L p(�),W 2,p(�)

≤ A(p) (3.5)

with a constant A(p) > 0. Here and henceforth, W m,p(�) denotes the usual
Sobolev space composed of the functions defined on � whose derivatives up
to mth order belong to L p(�). The identity operator is denoted by I if it is
necessary to indicate explicitly. Putting

Aβ = A − β I

and �ω = {
z ∈ C

∣∣ 0 ≤ |arg z| ≤ ω}, we suppose the existence of β > 0,
ω ∈ (0, π/2), and M ≥ 1 such that Aβ is of type (ω,M) in L p(�), that is to
say, C \�ω ⊂ ρ(Aβ) holds with∥∥∥z

(
z I − Aβ

)−1
∥∥∥

L p(�),L p(�)
≤ M

for z ∈ C \�ω, and each ε > 0 admits Mε ≥ M satisfying∥∥∥z
(
z I − Aβ

)−1
∥∥∥

L p(�),L p(�)
≤ Mε



3. Fundamental Theorem 37

for z ∈ C \ �ω+ε. Here and henceforth, ρ(Aβ) ≡ C \ σ(Aβ) denotes the
resolvent set of Aβ , so that σ(Aβ) indicates its spectrum.

These operator-theoretic assumptions guarantee the generation of the ana-
lytic semigroup {

e−t A
}

t≥0

in L p(�), and the (N), (JL), and (D) fields actually satisfy them. (See Tanabe
[168, 169].) For these concrete cases, on the other hand, the method of Sobolev
and Morrey spaces has been proposed to show the unique solvability of (3.1)
locally in time [14, 187]. This method requires more real analytic profiles than
the assumed kernel G(x, x ′) of A−1, but reduces the assumption to initial val-
ues. Here, we use the operator-theoretic approach, because we are interested in
the classical solution mostly, and we can reduce the real analytic assumption
to A under the cost of the regularity of the initial value by this method. Thus,
we show the following theorem.

Theorem 3.1 Let (3.5) hold and Aβ = A − β I be of type (ω,M) in L p(�),
where p > max{2, n}, β > 0, ω ∈ (0, π/2), and M ≥ 1. Then, if the initial
value is taken as

(u0, v0) ∈ W 1,p(�)× A−1(L p(�)),

system (3.1) with τ > 0 admits a unique classical solution (u, v) locally
in time, that is, u = u(x, t) ≥ 0 is continuous on � × [0, T ] and C2,1

in � × (0, T ], v = v(·, t) belongs to C1
(
[0, T ], L p(�)

)
and to C

(
[0, T ],

A−1(L p(�))
)

for some T > 0, and (u, v) solves (3.1) with (3.2) and (3.3).
Furthermore, u(x, t) > 0 holds for (x, t) ∈ �× (0, T ] if u0 �≡ 0.

Proof: We put τ = 1 for simplicity. Then, by

U = u · exp (−v − log W ) ,

system (3.1) is transformed into

Ut = �U + ∇ (v + log W ) · ∇U − vt · U in �× (0, T ),

∂U

∂ν
= 0 on ∂�× (0, T ),

dv

dt
+ Av = U · exp (v + log W ) for t ∈ (0, T ) (3.6)

with the initial value

U |t=0 = U0(x) and v|t=0 = v0(x) in �, (3.7)
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where U0 = u0 ·exp (−v0 − log W ). If�N denotes the differential operator�
provided with the Neumann boundary condition, then they are reduced to the
system of integral equations

U (t) = et�N U0 +
∫ t

0
e(t−s)�N

[∇ (v(s)+ log W ) · ∇U (s)+ vt (s) · U (s)
]

ds

v(t) = e−t Av0 +
∫ t

0
e−(t−s)A [

U (s) · exp (v(s)+ log W )
]

ds. (3.8)

Here and henceforth,
{
et�N

}
t≥0 and

{
e−t A

}
t≥0 denote the semigroups gener-

ated by �N and −A, respectively.
In what follows, p > max{2, n} is fixed. Then, Sobolev’s imbedding the-

orem guarantees 0 ≤ u0 ∈ W 1,p(�) ⊂ C(�) and v0 ∈ A−1 (L p(�)) ⊂
W 2,p(�) ⊂ C1(�). This implies 0 ≤ U0 ∈ W 1,p(�).

To get the solution by the contraction mapping principle, we take

B(L , T ) =
{
(U, v) ∈ C

(
[0, T ], L p(�)× L p(�)

) ∣∣∫ T

0
‖Ut (t)‖2

2 dt ≤ L2, sup
t∈[0,T ]

‖Av(t)‖p ≤ L ,

sup
t∈[0,T ]

‖U (t)‖W 1,p(�) ≤ L , U (0) = U0,

v(0) = v0,

∫ T

0
‖vt (t)‖p

p dt ≤ L p
}

and set F(U, v) = (F1(U, v),F2(U, v)), where T, L > 0 are constants and

F1(U, v)(t) = et�N U0

+
∫ t

0
e(t−s)�N

[∇ (v(s)+ log W ) · ∇U (s)+ vt (s) · U (s)
]

ds

F2(U, v)(t) = e−t Av0

+
∫ t

0
e−(t−s)A [

U (s) · exp (v(s)+ log W )
]

ds.

Then the fixed point of F in B(L , T ) is obtained by the following lemma.

Lemma 3.1 We have L , T > 0 satisfying

F (B(L , T )) ⊂ B(L , T ) (3.9)
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and

‖F(U1, v1)− F(U2, v2)‖X (T ) ≤ 1

2
‖(U1, v1)− (U2, v2)‖X (T ) (3.10)

for (U1, v1), (U2, v2) ∈ B(L , T ), where

‖(U, v)‖X (T ) = sup
t∈[0,T ]

‖U (t)‖W 1,p(�) + sup
t∈[0,T ]

‖Av(t)‖p

+
{ ∫ T

0

∥∥Ut (t)
∥∥2

2dt
}1/2 +

{ ∫ T

0

∥∥vt (t)
∥∥p

pdt
}1/p

.

Proof: We can show that (3.9) and (3.10) are satisfied for L ≥ 1, arbitrarily if
T > 0 is taken to be sufficiently small. The proof of these relations is similar,
and we only show the former.

The operator-theoretic features of −�N necessary for the proof of this lem-
ma are well known. Thus, there is a constant M1 > 0 such that∥∥∥(−�N + 1)1/2 et�N

∥∥∥
L p(�),L p(�)

≤ M1t−1/2

for t > 0, and furthermore,

(−�N + 1)−1/2 (
L p(�)

) = W 1,p(�)

and ∥∥et�N
∥∥

L p(�),L p(�)
≤ 1

hold true. On the other hand, the relation

A−1/2 (
L p(�)

) ⊂ W 1,p(�) ⊂ C(�) (3.11)

is obtained by (3.5) and the interpolation theory.
First, we note∥∥ (−�N + 1)1/2 F1(U, v)(t)

∥∥
p ≤ ∥∥et�N (−�N + 1)1/2 U0

∥∥
p

+
∫ t

0

∥∥∥ (−�N + 1)1/2 e(t−s)�N

· [∇ (v(s)+ log W ) · ∇U (s)+ vt (s) · U (s)
] ∥∥∥

p
ds.

The first and the second terms of the right-hand side are estimated from above
by ∥∥ (−�N + 1)1/2 U0

∥∥
p
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and

M1

∫ t

0
(t − s)−1/2

∥∥∇ (v(s)+ log W ) · ∇U (s)+ vt (s) · U (s)
∥∥

pds,

respectively.
We have constants Ki > 0 (i = 1, 2) determined by � and p, that is,∥∥U

∥∥∞ ≤ K1
∥∥U

∥∥
W 1,p(�)

and ∥∥ (−�N + 1)1/2 U
∥∥

p ≤ K2
∥∥U

∥∥
W 1,p(�)

.

From the first inequality we have

‖∇v‖∞ ≤ K1 A(p) ‖Av‖p .

Therefore it holds that∥∥∇(
v(s)+ log W

) · ∇U (s)+ vt (s) · U (s)
∥∥

p

≤ ∥∥∇(
v(s)+ log W

)∥∥∞ · ∥∥∇U (s)
∥∥

p + ∥∥vt (s)
∥∥

p · ∥∥U (s)
∥∥∞

≤ K1
(

A(p)
∥∥Av(s)

∥∥
p + ∥∥∇ log W

∥∥∞ + ∥∥vt (s)
∥∥

p

)∥∥U (s)
∥∥

W 1,p(�)
.

For (U, v) ∈ B(L , T ) this implies∥∥∥(−�N + 1)1/2 F1(U, v)(t)
∥∥∥

p
≤

∥∥∥(−�N + 1)1/2 U0

∥∥∥
p

+ 2T M1K1
(

A(p)L + ‖∇ log W‖∞
)

L

+ M1K1L
∫ t

0
(t − s)−1/2 ‖vt (s)‖p ds.

Here, the last term of the right-hand side is estimated from above by

M1K1L2 ·
( ∫ t

0
(t − s)−

1
2 · p

p−1 ds
) p−1

p
,

and we end up with

‖F1(U, v)(t)‖W 1,p(�) ≤ K2 ‖U0‖W 1,p(�)

+ 2T M1K1
(

A(p)L + ‖∇ log W‖∞
)

L

+ 2(p − 1)

p − 2
· T

1
2 − 1

p M1K1L2
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for t ∈ [0, T ]. Therefore, if we take L > 0 as large as

K2
∥∥U0

∥∥
W 1,p(�)

≤ L/2,

and then take T > 0 as small as

2T M1K1
(

A(p)L + ∥∥∇ log W
∥∥∞

)
L + 2(p − 1)

p − 2
· T

1
2 − 1

p M1K1L2 ≤ L/2,

it holds that

sup
t∈[0,T ]

∥∥F1(U, v)(t)
∥∥

W 1,p(�)
≤ L .

The function W = F1(U, v) solves

Wt = �W + ∇ (v + log W ) · ∇U − vt · U in �× (0, T ),

∂W

∂ν
= 0 on ∂�× (0, T ).

Therefore, testing Wt , we get∫ T

0

∥∥Wt
∥∥2

2dt ≤ 1

2

∥∥∇U0
∥∥2

2

+
∫ T

0

(∥∥∇ (v + log W ) · ∇U
∥∥

2 + ∥∥vt · U
∥∥

2

) · ∥∥Wt
∥∥

2dt

≤ 1

2

∥∥∇U0
∥∥2

2 + 1

2

∫ T

0

∥∥Wt
∥∥2

2dt

+ 1

2

∫ T

0

(∥∥∇ (v + log W ) · ∇U
∥∥2

2 + ∥∥vt · U
∥∥2

2

)
dt.

This implies∫ T

0

∥∥Wt
∥∥2

2dt ≤ ∥∥∇U0
∥∥2

2

+
∫ T

0

(∥∥∇ (v + log W ) · ∇U
∥∥2

2 + ∥∥vt · U
∥∥2

2

)
dt

≤ ∥∥∇U0
∥∥2

2 + T
{

sup
t∈[0,T ]

∥∥∇v(t)∥∥∞ + ∥∥∇ log W
∥∥∞

}2

· sup
t∈[0,T ]

∥∥∇U (t)
∥∥2

2

+ sup
t∈[0,T ]

∥∥U (t)
∥∥2
∞ ·

(∫ T

0

∥∥vt
∥∥p

2 dt

)2/p

· T p/(p−2),
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and hence∫ T

0

∥∥Wt
∥∥2

2dt ≤ ∥∥∇U0
∥∥2

2

+T
(
K1 A(p)L + ∥∥∇ log W

∥∥∞
)2

K 2
1 L2 + T p/(p−2)K 2

1 L4

follows. Again, taking L > as large as ‖∇U0‖2
2 ≤ L/2 and then T > as small

as

T
(
K1 A(p)L + ∥∥∇ log W

∥∥∞
)2

K 2
1 L2 + T p/(p−2)K 2

1 L4 ≤ L/2,

we have ∫ T

0

∥∥Wt
∥∥2

2dt ≤ L

for any (U, v) ∈ B(L , T ).
We turn to the estimates for Z = F2(U, v). First, we note∥∥AZ(t)

∥∥
p ≤ ∥∥e−t A Av0

∥∥
p

+ ∥∥ ∫ t

0
Ae−(t−s)A

[
U (t) · ev(t)+log W

]
ds

∥∥
p

+
∫ T

0

∥∥Ae−(t−s)A
∥∥

L p(�),L p(�)

∥∥W
∥∥∞

· ∥∥ U (t)ev(t) − U (s)ev(s)
∥∥

p ds. (3.12)

Here, the second term of the right-hand side is equal to∥∥(e−t A − I
)[

W · U (t)ev(t)
]∥∥

p.

We have ∥∥e−t A
∥∥

L p(�),L p(�)
≤ M2

for t > 0 with a constant M2 > 0, and this term is estimated from above by

(M2 + 1) · ∥∥W
∥∥∞ · (∥∥U0ev0

∥∥
p + ∥∥U (t)ev(t) − U0ev0

∥∥
p

)
.

For the third term, we apply the smoothing property,∥∥Ae−t A
∥∥

L p(�),L p(�)
≤ M3t−1 (3.13)
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for t > 0, where M3 > 0 is a constant. Then, it is estimated from above by

M3 · ∥∥W
∥∥∞ ·

∫ t

0
(t − s)−1

∥∥U (t)ev(t) − U (s)ev(s)
∥∥

pds.

Now, we note∥∥U (t)ev(t) − U (s)ev(s)
∥∥

p ≤ ∥∥U (t)− U (s)
∥∥

p · exp
(∥∥v(t)∥∥∞

)
+∥∥U (s)

∥∥∞ · exp
{

sup
t∈[0,T ]

∥∥v(t)∥∥∞
}

· ∥∥ ∫ t

s
vt (ξ)dξ

∥∥
p.

From p > 2, the first term of the right-hand side is estimated from above by∥∥U (t)− U (s)
∥∥(p−2)/p
∞ · ∥∥U (t)− U (s)

∥∥2/p
2 · exp

(∥∥v(t)∥∥∞
)

≤ (∥∥U (t)
∥∥∞ + ∥∥U (s)

∥∥∞
)(p−2)/p

∣∣∣∣∫ t

s

∥∥Ut (ξ)
∥∥

2dξ

∣∣∣∣2/p

exp
(∥∥v(t)∥∥∞

)
.

This implies∥∥U (t)ev(t) − U (s)ev(s)
∥∥

p

≤ (∥∥U (t)
∥∥∞ + ∥∥U (s)

∥∥∞
)(p−2)/p ·

{ ∫ T

0

∥∥Ut
∥∥2

2dt
}1/p

· |t − s|1/p · exp
{

sup
t∈[0,T ]

K1 A(p)
∥∥Av(t)

∥∥
p

}
+ ∥∥U (s)

∥∥∞ · exp
{

K1 A(p) sup
t∈[0,T ]

∥∥Av(t)
∥∥

p

}
·
{ ∫ T

0

∥∥vt
∥∥p

pdt
}1/p · |t − s|1−1/p

and therefore for (U, v) ∈ B(L , T ), we have∥∥U (t)ev(t) − U (s)ev(s)
∥∥

p

≤ (2K1L)(p−2)/p |t − s|1/p L2/p · exp (K1 A(p)L)

+K1L · exp (K1 A(p)L) · L · |t − s|1−1/p .

These estimates are summarized by∥∥U (t)ev(t) − U (s)ev(s)
∥∥

p

≤ a1(L)(t − s)1/p + a2(L)(t − s)1−1/p,
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where ai (L) > 0 is a function of L for i = 1, 2.
Returning to (3.12), we obtain∥∥AZ(t)

∥∥
p ≤ M2

∥∥Av0
∥∥

p + (M2 + 1)
∥∥W · ev0U0

∥∥
p

+ (M2 + 1)
∥∥W

∥∥∞ ·
{

a1(L)T
1/p + a2(L)T

1−1/p
}

+ M3
∥∥W

∥∥∞
{

pa1(L)T
1/p + p

p − 1
a2(L)T

1−1/p
}
.

Therefore, the condition

sup
t∈[0,T ]

∥∥AF2(U, v)(t)
∥∥

p ≤ L

holds if L > 0 is as large as

M2
∥∥Av0

∥∥
p + (M2 + 1)

∥∥W · ev0U0
∥∥

p ≤ L/2,

and T > 0 is as small as

(M2 + 1)
∥∥W

∥∥∞
{

a1(L)T
1/p + a2(L)T

1−1/p
}

+ M3
∥∥W

∥∥∞
{

pa1(L)T
1/p + p

p − 1
a2(L)T

1−1/p
}

≤ L/2.

Finally, using

d Z

dt
+ AZ = ev+log W U,

we obtain{∫ T

0

∥∥Zt
∥∥p

pdt

}1/p

≤
{∫ T

0

∥∥AZ
∥∥p

pdt

}1/p

+
{∫ T

0

∥∥W · evU
∥∥p

pdt

}1/p

≤ T 1/p · sup
t∈[0,T ]

∥∥AZ(t)
∥∥

p + T 1/p · ∥∥W
∥∥∞

· exp
{

sup
t∈[0,T ]

∥∥v(t)∥∥∞
}

· sup
t∈[0,T ]

∥∥U (t)
∥∥

p

≤ T 1/p L + T 1/p · ∥∥W
∥∥∞ · exp (K1L) · K1L .

Thus, we have ∫ T

0

∥∥F2(U, v)
∥∥p

pdt ≤ L p

for (U, v) ∈ B(L , T ) for T > 0 sufficiently small, and the proof is complete. �
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Now we complete the following proof.

Proof of Theorem 3.1: From Lemma 3.1, we have a solution to (3.8) in (U, v)
∈ B(L , T ) for T > 0 sufficiently small. It becomes a classical solution to
(3.6) with (3.7) by U0 ∈ W 1,p(�), v0 ∈ A−1 (L p(�)), and p > n, and
consequently, the solution to (3.1) with (3.2) and (3.3) is obtained.

The positivity of u(x, t) follows from the strong maximum principle applied
to the first equation of (3.6). Finally, uniqueness of the solution to (3.8) is a
consequence of the proof of Lemma 3.1.

In fact, if (U1, v1), (U2, v2) ∈ B(L , T ) are fixed point of F for some L , T >
0, then (U1, v1)(t) = (U2, v2)(t) follows for t ∈ [0, T1] with some T1 ∈
(0, T ). Now, the continuation argument gives (U1, v1)(t) = (U2, v2)(t) for
t ∈ [0, T ]. This implies the uniqueness of the solution to (3.1), because any
solution with the required regularity is transformed into a fixed point of F on
B(L , T ) for some L , T > 0. The proof is complete. �

We proceed to the second topic of this chapter. That is, system (3.1) satisfies
the standard criterion for the blowup of the solution, and hence Tmax < +∞
implies limt↑Tmax ‖u(t)‖∞ = +∞. Moreover, it is shown that there is p > 1
such that if ∥∥u(t)

∥∥
p ≤ C

holds with a constant C > 0 independent of t ∈ [0, Tmax), then we have

Tmax = +∞ and sup
t≥0

∥∥u(t)
∥∥∞ < +∞.

Furthermore, we show that this uniform estimate assures the compactness of
the semiorbit

O = {
(u(t), v(t))

}
t≥1

in C2(�)×C2(�). The proof for these facts is given by [14, 50, 110] based on
Moser’s iteration scheme [2], but here we make use of the maximal regularity
theorem of Dore and Venni [41].

In fact, as a special case, this theorem assures that if the maximal accretive
operator A in L p(�) admits constants Bp > 0 and γ ∈ (0, π/2) such that∥∥Aıs

∥∥
L p(�),L p(�)

≤ Bpeγ |s| (3.14)

for s ∈ R, and if u = u(t) ∈ C ([0, T ), L p(�)) solves

du

dt
+ Au = f
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for t ∈ [0, T ) and

u(0) = 0,

then it holds that∫ T

0

∥∥ut (t)
∥∥p

pdt +
∫ T

0

∥∥Au(t)
∥∥p

pdt ≤ C(T, p)
∫ T

0

∥∥ f (t)
∥∥p

pdt,

where C(T, p) > 0 is a constant determined by T > 0 and p ∈ (1,∞). (This
constant C(p, T ) can be taken independently of T [57, 132], but this refined
version is not necessary in later arguments.)

We also suppose

A−α(Lq(�)) = W 2α,q(�) (3.15)

for q ∈ (1,∞)and α ∈ (0, 1/4). These conditions (3.14) and (3.15) are actu-
ally satisfied for the (N), (JL), and (D) fields [61].

Henceforth, ‖ · ‖Cm+θ (�) denotes the standard Schauder norm, where m =
0, 1, . . . and θ ∈ (0, 1). Then, we can show the following theorem.

Theorem 3.2 Assume the hypotheses of Theorem 3.1 with p > n + 2, and let
Tmax be the supremum of the existence time T > 0 of the solution to (3.1).
Suppose, furthermore, that (3.14) and (3.15) hold with p > n +2, q ∈ (1,∞),
and α ∈ (0, 1/4). Finally, take

(u0, v0) ∈ W 1,p(�)× A−1 (
L p(�)

)
for p > max{2, n}. Then, if Tmax < +∞, we have

lim
t↑Tmax

∥∥u(t)
∥∥∞ = +∞.

Conversely, if Tmax = +∞ and lim supt↑+∞
∥∥u(t)

∥∥∞ < +∞, then it holds
that

sup
t≥1

{∥∥u(t)
∥∥

C2+θ (�) +
∥∥v(t)∥∥C2+θ (�)

}
< +∞, (3.16)

where θ ∈ (
0,min

{1
2 , 1 − n+2

p

})
. On the other hand, if∥∥u(t)

∥∥
p ≤ C

holds with p > max{2, n} and C > 0 independent of t ∈ [0, Tmax), then we
have Tmax = +∞ and supt≥0

∥∥u(t)
∥∥∞ < +∞.
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Proof: We take the case τ = 1 without loss of generality. We shall show that
if T < Tmax,

� = sup
t∈[0,T ]

∥∥u(t)
∥∥∞, (3.17)

and δ ∈ (0, T ), then there is a constant C(δ, �) > 0 independent of T such that

sup
t∈(δ,T )

{∥∥u(t)
∥∥

C2+θ (�) +
∥∥v(t)∥∥C2+θ (�) +

∥∥Av(t)
∥∥

p

}
≤ C ′(δ, �). (3.18)

This implies∥∥u
∥∥

C2+θ,1+θ/2(�×(δ,T )) +
∥∥v∥∥C2+θ,1+θ/2(�×(δ,T )) ≤ C(δ, �)

from the standard theory [85].
Since the blowup time of the solution assured by Theorem 3.1 is estimated

from below by ‖u0‖W 1,p(�)+‖Av0‖p, inequality (3.18) implies the first asser-
tion of the theorem. In fact, taking a sequence tk ↑ Tmax as that of initial times,
from the above criterion we see that Tmax < +∞ cannot occur in the case of

sup
k

∥∥u(tk)
∥∥∞ < +∞.

In other words, we can exclude the possibility

lim inf
t↑Tmax

∥∥u(t)
∥∥∞ < +∞ with Tmax < +∞.

The second assertion of the theorem also follows from (3.18). In fact, if

Tmax = +∞

and lim supt↑+∞
∥∥u(t)

∥∥∞ < +∞, then inequality (3.16) follows as a conse-
quence of (3.18). The last assertion of the theorem is obtained by the proof of
(3.18). In fact, it shows that � of (3.17) is replaced by

sup
t∈[0,T ]

∥∥u(t)
∥∥

p

for p > max{2, n} in this inequality.
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Thus, the main part of the above theorem is reduced to (3.18), which we
prove by several lemmas. For the moment, the exponent p is taken in p > n+2.
First, we show the following lemma.

Lemma 3.2 The inequality

sup
t∈[0,T ]

∥∥v(t)∥∥∞ ≤ C0 (3.19)

holds with a constant C0 > 0 determined by �.

Proof: The assumptions to A imply∥∥A1/2e−t A
∥∥

L p(�),L p(�)
≤ M4t−1/2e−β1t

with some M4 > 0 and β1 ∈ (0, β). From the third equation of (3.1) this gives

∥∥A1/2v(t)
∥∥

p ≤ M2
∥∥A1/2v0

∥∥
p + M4

∫ t

0
(t − s)−1/2e−β1(t−s)

∥∥u(s)
∥∥

pds

≤ M2
∥∥A1/2v0

∥∥
p + M4

∫ ∞

0
s1/2e−β1sds |�|1/p �,

and hence

sup
t∈[0,T ]

∥∥A1/2v(t)
∥∥

p ≤ C1 (3.20)

follows with a constant C1 > 0 determined by �. This gives (3.19) by (3.11),
and the proof is complete. �

Inequality (3.19) implies

sup
t∈[0,T ]

∥∥U (t)
∥∥∞ ≤ � · exp

(
C0 + ∥∥ log W

∥∥∞
)

(3.21)

for U = u · exp (−v − log W ). Now, we show the following lemma.

Lemma 3.3 The inequality

sup
t∈[δ,T ]

∥∥∇U (t)
∥∥

p ≤ C2 (3.22)

holds with a constant C2 > 0 determined by � and δ ∈ (0, T ).
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Proof: We may suppose T > 1 and δ ∈ (0, T − 1). Then, we shall prove that

sup
t∈[t0,t0+1]

∥∥∇U (t)
∥∥

p ≤ C2 (3.23)

for t0 ∈ [δ, T − 1]. Here C2 > 0 is a constant determined by � and δ, and are
independent of T and t0. So are Ci > 0 (i = 3, . . . , 6) prescribed later, and
thus inequality (3.22) follows from (3.23).

First, we see that

v1(t) =
∫ t

t0−δ
e−(t−s)Au(s)ds

satisfies

dv1

dt
+ Av1 = u

for t ∈ [t0−δ, t0+1] with v1(t0−δ) = 0, and therefore the maximal regularity
theorem guarantees∫ t0+1

t0−δ
∥∥dv1

dt

∥∥p
pdt +

∫ t0+1

t0−δ
∥∥Av1

∥∥p
pdt ≤ C3.

On the other hand, we have

v(t) = v1(t)+ v2(t)

for t ∈ [t0 − δ, Tmax), where

v2(t) = e−(t−t0+δ)Av(t0 − δ).
Inequality (3.13) implies∥∥dv2

dt

∥∥
p = ∥∥Av2(t)

∥∥
p ≤ M3 · 2δ−1 · |�|1/p C0

for t ∈ [t0 − δ/2, T ], and hence∫ t0+1

t0−δ/2
∥∥vt

∥∥p
pdt +

∫ t0+1

t0−δ/2
∥∥Av

∥∥p
pdt ≤ C4 (3.24)

follows. This gives also∫ t0+1

t0−δ/2
∥∥∇v(t)∥∥p

∞dt ≤ (
K1 A(p)

)p
C4. (3.25)
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Let t1 = t0 − δ/2. Then, from the first and the second equations of (3.6), for
t ∈ [0, 1 + δ/2] we have∥∥( −�N + I

)1/2
U (t + t1)

∥∥
p ≤ ∥∥( −�N + I

)1/2
et�N U (t1)

∥∥
p

+
∫ t

0

∥∥(−�N + I )1/2e(t−s)�N
[∇(

v(s + t1)+ log W
)

· ∇U (s + t1)+ vt (s + t1) · U (s + t1)
]∥∥

p ds

≤ M1t−1/2 · |�|1/p · � · exp
(
C0 + ∥∥ log W

∥∥∞
)

+ M1

∫ t

0
(t − s)−1/2

∥∥∇ (v(s + t1)+ log W )
∥∥∞ · ∥∥∇U (s + t1)

∥∥
p ds

+ M1

∫ t

0
(t − s)−1/2

∥∥U (s + t1)
∥∥∞

∥∥vt (s + t1)
∥∥

pds.

Here, by (3.25) we have∫ t

0
(t − s)−1/2

∥∥∇ (v(s + t1)+ log W )
∥∥∞

∥∥∇U (s + t1)
∥∥

pds

≤
{∫ t0+1

t0−δ/2
(∥∥∇v(t)∥∥∞ + ∥∥∇ log W

∥∥∞
)p

dt

}1/p

·
{∫ t

0
(t − s)−

p
2(p−1)

∥∥∇U (s + t1)
∥∥ p

p−1
p ds

}(p−1)/p

≤
(

K1 A(p)C1/p
4 + (1 + δ/2)1/p

∥∥∇ log W
∥∥∞

)
·
{∫ t

0
(t − s)−

p
2(p−1)

∥∥∇U (s + t1)
∥∥ p

p−1
p ds

}(p−1)/p

and by (3.21) and (3.24)∫ t

0
(t − s)−1/2

∥∥U (s + t1)
∥∥∞

∥∥vt (s + t1)
∥∥

pds

≤ � · exp
(
C0 + ∥∥ log W

∥∥∞
) ·

{∫ t

0
(t − s)−

p
2(p−1) ds

}(p−1)/p

· C1/p
4 .

Furthermore, it holds that

φ(t) ≡ ∥∥∇U (t + t1)
∥∥

p ≤ K2
∥∥ (−�N + I )1/2 U (t + t1)

∥∥
p.

Therefore, for α = p/2(p − 1) ∈ (0, 1) we obtain

φ(t) ≤ C5

{
t−1/2 +

∫ t

0
(t − s)−αφ(s)2αds

}1/(2α)

.
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Then, Gronwall’s lemma implies

φ(t) ≤ C6

(
t−1/2 + 1

)
for t ∈ (0, 1+δ/2]. Restricting t in [δ/2, 1+δ/2], we get (3.23), and the proof
is complete. �

Now, we show the following lemma.

Lemma 3.4 It holds that

sup
t∈[δ,T ]

{∥∥v(t)∥∥C2+θ (�) +
∥∥Av(t)

∥∥
Cθ (�)

}
≤ C7 (3.26)

with a constant C7 > 0 determined by θ ∈ (
0,min{1

2 , 1 − n
p }), �, and δ ∈

(0, T ).

Proof: Similarly to the proof of the previous lemma, we suppose T > 1, take
δ ∈ (0, T − 1), and show

sup
t∈[t0,t0+1]

∥∥Av(t)
∥∥

Cθ (�) ≤ C7 (3.27)

for t0 ∈ [δ, T − 1]. The constants Ci > 0 (i = 8, . . . , 13) given below are
determined similarly by � and δ, and are independent of t0 and T . Therefore,
(3.26) will follow.

First, for θ1 ∈ (
0,min{1

2 , 1 − n
p }) we have

sup
t∈[t0−δ/2,t0+1]

{∥∥U (t)
∥∥

Cθ1 (�) +
∥∥v(t)∥∥Cθ1 (�)

}
≤ C8

by (3.20)–(3.22) with δ replaced by δ/2. This implies

sup
t∈[t0−δ/2,t0+1]

∥∥u(t)
∥∥

Cθ1 (�) ≤ C9

and hence

sup
t∈[t0−δ/2,t0+1]

∥∥u(t)
∥∥

W θ1,q (�)
≤ C10

follows for q > 1. For α = θ1/2 ∈ (0, 1/4) we have

sup
t∈[t0−δ/2,t0+1]

∥∥Aαu(t)
∥∥

q ≤ C11
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by (3.15). Therefore, writing

A1+γ v(t + t1) =
A1+γ e−t Av(t1)+

∫ t

0
A1−α+γ e−(t−s)A · Aαu(s + t1) ds (3.28)

with t1 = t0 − δ/2, we get

sup
t∈[t0,t0+1]

∥∥A1+γ v(t)
∥∥

q ≤ C12 (3.29)

for any γ ∈ (0, α) because∥∥Aβe−t A
∥∥

Lq (�),Lq (�)
≤ Mβ t−β

holds for β ≥ 0 with Mβ > 0.
We have

A−γ (
Lq(�)

) ⊂ W 2γ,q(�) ⊂ Cθ (�)

and

A−1−γ (
Lq(�)

) ⊂ W 2+2γ,q(�) ⊂ C2+θ (�)

if θ = 2γ − n
q > 0. This condition holds for large q , and then

sup
t∈[t0,t0+1]

{∥∥Av(t)
∥∥

Cθ (�) +
∥∥v(t)∥∥Cθ (�)

}
≤ C13

follows from (3.29). The exponent θ can be taken arbitrarily in θ ∈ (0, 2α),
and the proof of (3.26) is complete. �

Now, we proceed to the following lemma.

Lemma 3.5 We have

sup
t∈[δ,T ]

∥∥U (t)
∥∥

C1+θ (�) ≤ C14 (3.30)

for θ = 1 − n+2
p with a constant C14 > 0 determined by � and δ ∈ (0, T ).

Proof: Similarly to the proof of the previous lemma, we suppose T > 1, take
δ ∈ (0, T − 1), and show

sup
t∈[t0,t0+1]

∥∥U (t)
∥∥

Cθ (�) ≤ C14 (3.31)
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for t0 ∈ [δ, T − 1].
Letting w = ∇ (v + log W ) · ∇U − vt · U , we have∫ t0

t0−δ/2
∥∥w(t)∥∥p

pdt ≤ C15

by (3.26), (3.22) with δ replaced by δ/2, (3.24), and (3.21). Similarly to (3.28),
we have

(−�N + I )γ U (t) = (−�N + I )γ et�N U (t1)

+
∫ t

0
(−�N + I )γ e(t−s)�Nw(s + t1) ds (3.32)

for t1 = t0 − δ/2. The second term of the right-hand side is estimated as

∥∥ ∫ t

0
(−�N + I )γ e(t−s)�Nw(s + t1) ds

∥∥
p

≤ M̂γ

∫ t

0
(t − s)−γ

∥∥w(s + t1)
∥∥

p ds

≤ M̂γ

{∫ t

0
(t − s)−γ · p

p−1 ds

}(p−1)/p

· C1/p
15

with M̂γ > 0 and hence

sup
t∈[t0,t0+1]

∥∥ (−�N + I )γ U (t)
∥∥

p ≤ C16

follows for γ ∈
[
0, p−1

p

)
. This gives

sup
t∈[δ,T ]

∥∥ (−�N + I )γ U (t)
∥∥

p ≤ C16 (3.33)

and then (3.30), because W 2γ,p(�) ⊂ C1+θ (�) holds for

θ = 2(p − 1)

p
− 1 − n

p
= 1 − n + 2

p
> 0. �
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Now, we complete the proof of Theorem 3.2. First, we confirm that inequal-
ity (3.18) holds. In fact, it is a consequence of

sup
t∈[δ,T ]

∥∥U (t)
∥∥

C2+θ (�) ≤ C17 (3.34)

by (3.26).
To show (3.34), we note that

sup
t∈[δ,T ]

∥∥u(t)
∥∥

C1+θ2 (�) ≤ C18

holds for θ2 ∈ (
min{1

2 , 1 − n+2
p }) by (3.26) and (3.30). This implies

sup
t∈[δ,T ]

∥∥vt (t)
∥∥

Cθ2 (�) ≤ C19

by (3.26) and the third equation of (3.1). Therefore,

sup
t∈[δ,T ]

∥∥w(t)∥∥W θ,q (�)
≤ C20

follows for q > 1, where

w = ∇ (v + log W ) · ∇U − vt · U.

We have

sup
t∈[δ,T ]

∥∥ (−�N + I )α w(t)
∥∥

q ≤ C21

by α = θ2/2 < 1/4. Then, the second term of the right-hand side of (3.33) is
estimated as∥∥∥ ∫ t

0
(−�N + I )γ e(t−s)�Nw(s + t1) ds

∥∥∥
q

≤ M̂γ−α
∫ t

0
(t − s)−γ+α ds · C21

with M̂γ−α > 0, and hence

sup
t∈[δ,T ]

∥∥ (−�N + I )γ U (t)
∥∥

q ≤ C22

follows for γ ∈ [0, 1 + α). We have

W 2γ,q(�) ⊂ C2+θ3(�)
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for θ3 = 2α − n
q = θ2 − n

q . Taking large q , we have (3.34) for each θ ∈(
0,min{1

2 , 1 − n+2
p }). Thus, inequality (3.18) is proven.

To confirm the final part of Theorem 3.2, let us note that Lemma 3.4 holds
under the assumption of Theorem 3.1. Thus, the solution (u, v) constructed in
the previous theorem is in

(u(t), v(t)) ∈ C2 (
�
) × A−1 (

Cθ (�)
)

for t ∈ (0, Tmax). In other words, the condition p > n + 2 is only necessary to
confirm (3.14) in Theorem 3.2, and the initial values can be taken in

(u0, v0) ∈ W 1,p(�)× A−1 (
L p(�)

)
for p > max{2, n}. Furthermore, then, Lemma 3.2 holds if � is replaced by

sup
t∈[0,T ]

∥∥u(t)
∥∥

p (3.35)

for p > n, and the proof of Lemma 3.3 is valid similarly for p > 2. Thus,
we get the final assertion of the theorem because the value given by (3.35) for
p > max{2, n} can take place of �. �

So far, we have confirmed the local well-posedness and the standard blowup
criterion for (3.1). We conclude this chapter by a note on the convergence of
the full system to the simplified system. We study this problem in an abstract
setting, which is applicable to the concrete problem, say, (3.1) for the appro-
priately regular initial value u0, v0. Thus, if −L and −H are generators of
the holomorphic semigroups on a Banach space X , denoted by {e−t L}t≥0 and
{e−t H }t≥0, respectively, then this full system in the abstract form is indicated
by

ut + Lu = N (u, v), u(0) = u0,

τvt + Hu = u, v(0) = v0,

where τ > 0 and N : X × X → X is a locally Lipschitz-continuous mapping.
Let uτ = uτ (t), vτ = vτ (t) ∈ C ([0, T ], X) be its solution, that is,

uτ (t) = e−t Lu0 +
∫ t

0
e−(t−s)L N

(
uτ (s), vτ (s)

)
ds,

vτ (t) = e−τ−1t Hv0 +
∫ t

0
e−τ−1(t−s)Hτ−1uτ (s) ds, (3.36)
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for t ∈ [0, T ]. Let C > 0 be such that

max
{

sup
t∈[0,T ]

∥∥uτ (t)
∥∥, sup

t∈[0,T ]

∥∥vτ (t)∥∥} ≤ C

for 0 < τ � 1, and take L > 0 in∥∥N (u, v)− N (u′, v′)
∥∥ ≤ L

(∥∥u − v∥∥ + ∥∥u′ − v′∥∥)
for u, v, u′, v′ ∈ B(0,C) ⊂ X . We also suppose the existence of M > 0 and
δ > 0 such that ∥∥e−t L

∥∥ ≤ M and
∥∥e−t H

∥∥ ≤ Me−δt

for t ∈ [0, T ] and t ≥ 0, respectively. Finally, we assume the existence of
u = u(t), v = v(t) ∈ C ([0, T ], X) in

max
{

sup
t∈[0,T ]

∥∥u(t)
∥∥, sup

t∈[0,T ]

∥∥v(t)∥∥} ≤ C,

satisfying the simplified system in the sense that

u(t) = e−t Lu0 +
∫ t

0
e−(t−s)L N (u(s), v(s)) ds,

v(t) = H−1u(t). (3.37)

Then, from the first equations of (3.36) and (3.36) we have∥∥uτ (t)− u(t)
∥∥ ≤ M L ·

∫ t

0

{∥∥uτ (s)− u(s)
∥∥ + ∥∥vτ (s)− v(s)∥∥} ds.

Next, the second equations of (3.36) and (3.37) are written as

vτ (t) = e−τ−1t Hv0 +
∫ τ−1t

0
e−s H uτ (t − τ s) ds,

v(t) =
∫ ∞

0
e−s H u(t) ds.

Then, it holds that

vτ (t)− v(t) = e−τ−1t Hv0 +
∫ τ−1t

0

{
uτ (t − τ s)− u(t − τ s)

}
ds

+
∫ τ−1t

0
e−s H {u(t − τ s)− u(t)} ds +

∫ ∞

τ−1t
e−s H u(t) ds,
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and each term of the right-hand side is estimated as follows:∥∥e−τ−1t Hv0
∥∥ ≤ Me−τ−1tδ

∥∥v0
∥∥,

∥∥∥ ∫ τ−1t

0
e−s H {u(t − τ s)− u(t)} ds

∥∥∥
≤ M

∫ τ−1t

0
e−δs∥∥u(t − τ s)− u(t)

∥∥ ds,

∥∥∥ ∫ τ−1t

0
e−s H {

uτ (t − τ s)− u(t − τ s)
}

ds
∥∥∥

≤ M
∫ t

0

∥∥uτ (s)− u(s)
∥∥ ds,

∥∥∥ ∫ ∞

τ−1t
e−s H u(t) ds

∥∥∥ ≤ C
∫ ∞

τ−1t
e−sδ ds = Cδ−1e−τ−1δt .

Thus, we obtain∥∥uτ (t)− u(t)
∥∥ + ∥∥vτ (t)− v(t)∥∥

≤ M(L + 1)
∫ t

0

{∥∥uτ (s)− u(s)
∥∥ + ∥∥vτ (s)− v(s)∥∥} ds + Bτ (t) (3.38)

with

Bτ (t) = Me−τ−1δt
∥∥v0

∥∥ + δ−1Ce−τ−1δt

+ M
∫ τ−1t

0
e−δs∥∥u(t − τ s)− u(t)

∥∥ ds.

Here, the first two terms of Bτ (t) converges to zero locally uniformly in t ∈
(0, T ], while the last term is estimated from above by

M
∫ τ−1T

0
e−δs sup

t∈[0,T ]

∥∥u(t − τ s)− u(t)
∥∥ds.

It also converges to zero by the uniform continuity of u = u(t) ∈ C ([0, T ], X)
and the dominated convergence theorem.

On the other hand, (3.38) is written as

gτ (t) ≤ a
∫ t

0
gτ (s) ds + Bτ (s)
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with a = M(L+1) and gτ (t) = ∥∥uτ (t)−u(t)
∥∥+∥∥vτ (t)−v(t)∥∥, and therefore

Gronwall’s lemma guarantees

gτ (t) ≤ a
∫ t

0
e−(t−s)a Bτ (s) ds + Bτ (t)

for t ∈ [0, T ]. We have supt∈[0,T ] Bτ (t) ≤ C ′ with a constant C ′ > 0 inde-
pendent of 0 < τ � 1, on the other hand, and therefore the dominated conver-
gence theorem guarantees again

lim
τ↓0

∥∥uτ (t)− u(t)
∥∥ = lim

τ↓0

∥∥vτ (t)− v(t)∥∥ = 0 (3.39)

locally uniformly in t ∈ (0, T ].
Concluding the present chapter, we note that similarly, convergence of the

generators
{

Ak
}

k=1,2,... implies that of solutions. An interesting example is the
convergence of the (N) filed to (JL) field as a ↓ 0.



4

Trudinger–Moser Inequality

This chapter studies the existence of the solution to (3.1) globally in time:

ut = ∇ · (∇u − u∇(v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

τ
d

dt
v + Av = u for t ∈ (0, T ),

u
∣∣
t=0 = u0(x) in �, (4.1)

where � ⊂ Rn is a bounded domain with smooth boundary ∂� and W =
W (x) > 0 is a smooth positive function defined on �. The initial value u0 =
u0(x) is a nonnegative function not identically equal to 0, and in the case of
τ > 0, the additional initial condition v|t=0 = v0(x) is imposed. Then, we
shall show that λ = ∥∥u0

∥∥
1 < 4π implies Tmax = +∞ in the case of n = 2.

More precisely, following Theorem 3.1, we suppose sufficient regularity to
the initial value for unique existence of the classical solution locally in time.
Then, Tmax > 0 denotes the blowup time, that is, the supremum of its existence
time. Also, sometimes ‖ · ‖ and ( , ) are written in place of the L2 norm ‖ · ‖2

and the L2 inner product, respectively:

‖v‖ =
{ ∫

�

v2 dx
}1/2

, (v,w) =
∫
�

vw dx .
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We confirm that ∥∥u(t)
∥∥

1 = ∥∥u0
∥∥

1 (t ∈ [0, Tmax))

follows from ∫
�

ut dx = 0

and the positivity of the solution u = u(x, t) to (4.1), u(x, t) > 0 holds for
(x, t) ∈ �× (0, Tmax). Furthermore, the Lyapunov function is given as

W(u, v) =
∫
�

(u(log u − 1)− u log W − uv) dx + 1

2

∥∥A1/2v
∥∥2

2.

In fact, we can apply the argument of Chapter 1, and writing the first equation
of (3.1) as

ut = ∇ · u∇ (log u − v − log W ) ,

we obtain

d

dt
W(u, v)+ τ∥∥vt

∥∥2
2 +

∫
�

u
∣∣∇ (log u − v − log W )

∣∣2 dx = 0 (4.2)

for t ∈ (0, Tmax). Thus, W (u(t), v(t)) is a nonincreasing function of t .
Based on the description of Chapter 1, we study the case n = 2 mostly.

Results stated in this chapter are valid for both simplified and full systems.
Remember that in the (D) field, A is −�with the Dirichlet boundary condition.
In this case, if

∥∥u0
∥∥

1 < 8π then

Tmax = +∞ and sup
t≥0

∥∥u(t)
∥∥∞ < +∞ (4.3)

can be proven. On the other hand, in the (N) field, A is −� + a with the
Neumann boundary condition, where a > 0 is a constant. Then,

∥∥u0
∥∥

1 < 4π
implies the same conclusion (4.3). This is also the case of the (JL) field, and in
the next chapter we show that these results are optimal.

We make use of several versions of the Trudinger–Moser inequality. In fact,
the result on the (N) and (JL) fields is associated with Chang–Yang’s inequal-
ity [23],

log

(
1

|�|
∫
�

ev dx

)
≤ 1

8π

∥∥∇v∥∥2
2 + 1

|�|
∫
�

v dx + K (4.4)
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valid for v ∈ H1(�), where K is a constant determined by� ⊂ R2, a bounded
domain with smooth boundary. On the other hand that on the (D) field is a
consequence of the Moser–Onofri inequality [102],

log

(
1

|�|
∫
�

ev dx

)
≤ 1

16π

∥∥∇v∥∥2
2 + 1 (4.5)

valid for v ∈ H1
0 (�). This form (4.5) holds for any bounded domain � ⊂ R2,

and its optimality is shown by [108]. In this connection, we expect that K = 2
is optimal in (4.4). That is, (4.4) will hold with K = 2 if � ⊂ R2 is bounded
with smooth boundary ∂�, and this value will not be improved. It is also worth
mentioning that the constant 8π in the right-hand side of (4.4) must be reduced
if � has corners. See [23] for more details.

Here, we shall spend a couple of pages for the background of the Trudinger–
Moser inequality. Namely, we have

W 1,p
0 (�) ↪→

{
L

np
n−p (�) (1 ≤ p < n),

C1− n
p (�) (p > n)

for each open set � ⊂ Rn , where W 1,p
0 (�) denotes the closure of C∞

0 (�)

in W 1,p(�). The former and the latter cases are referred to as the Sobolev
and the Morrey imbeddings, respectively. In the critical case p = n, W 1,p

0 (�)

is imbedded into the Orlicz space, which was shown by Pohozaev [130] and
Trudinger [177] independently. Moser [102] gave a sharp form, one of which
is stated as follows. That is, there is a constant C > 0 such that ifw is a smooth
function defined on the two-dimensional unit sphere S2, then∫

S2
wd S = 0 and

∥∥∇w∥∥
2 ≤ 1

imply ∫
S2

e4πw2
d S ≤ C.

If v �≡ 0 satisfies
∫

S2 v d S = 0, then for w = v/
∥∥∇v∥∥2 we have∫

S2
e4πw2

d S ≤ C.

Here, we have

v = w
∥∥∇v∥∥2 ≤ 4πw2 + 1

16π

∥∥∇v∥∥2
2
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and hence it follows that∫
S2

ev d S ≤ C · exp
( 1

16π

∥∥∇v∥∥2
2

)
.

Letting K = log (C/(4π)), we have

log
( 1

4π

∫
S2

ev d S
)

≤ 1

16π

∥∥∇v∥∥2
2 + K . (4.6)

As for general v ∈ H1(S2), we take

v − 1

4π

∫
S2
v d S

for v in (4.6), and obtain that

log
( 1

4π

∫
S2

ev d S
)

≤ 1

16π

∥∥∇v∥∥2
2 + 1

4π

∫
S2
v d S + K . (4.7)

Later, the best constant of this K is obtained as K = 0 by Onofri [126] and
Hong [66], and that is the exact form of the original Moser–Onofri inequality:

log
( 1

4π

∫
S2

ev d S
)

≤ 1

16π

∥∥∇v∥∥2
2 + 1

4π

∫
S2
v d S,

valid for any v ∈ H1(S2).
Moser [103] noticed that the term

∥∥∇v∥∥2
2/(16π) in the right-hand side of

(4.7) is replaced by
∥∥∇v∥∥2

2/(32π) in the projective space P2, and proved the
existence of the solution to Nirenberg’s problem in this case. This problem has
been studied extensively, and Chang–Yang’s inequality (4.4) was presented in
that context.

The term
∥∥∇v∥∥2

2/(8π) in the right-hand side of this inequality is directly
associated with the criterion, that

∥∥u0
∥∥

1 < 4π implies Tmax = +∞ in (1.1).
Its discrepancy to the conjecture

∥∥u0
∥∥

1 < 8π of [33] for Tmax = +∞ ac-
tually occurs by the concentration toward the boundary of the solution. More
precisely, this discrepancy is a consequence of the formation of the boundary
collapse, and in this context smoothness of the boundary ∂� is essential in
(4.4). Namely, the constant 8π in the right-hand side of this inequality must
be reduced if ∂� has corners, and so is

∥∥u0
∥∥

1 < 4π accordingly in (1.1) for
Tmax = +∞.

Coming back to system (4.1), now we describe how these Trudinger–Moser
inequalities are applied to its study. In fact, use of the free energy as a Lyapunov
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function in the study of the long-term behavior of the solution was adopted first
for the semiconductor device equation (2.1) by [11, 15, 49, 99]. However, since
(4.1) is not dissipative, the free energy is not always bounded from below in
(4.1). Its boundedness is actually achieved by Chang–Yang’s inequality (4.4)
and Jensen’s inequality under the constraint that∥∥u0

∥∥
1 < 4π.

This fact was the starting point of [14, 50, 110] to establish Tmax = +∞ in the
case of

∥∥u0
∥∥

1 < 4π . For the simplified system, we have an alternative proof
using Brezis–Merle’s inequality [18] and Young’s inequality. This method was
proposed by [108], and was adopted to the full system by [60]. In the final
chapter of this book, we shall present the third proof, based on the dual form
of the Trudinger–Moser inequality.

In this chapter, we describe the former argument for the simplified system
of the (N) field, and show the following theorem.

Theorem 4.1 If λ = ‖u0‖1 < 4π holds in

ut = ∇ · (∇u − u∇ (v + log W )
)

in �× (0, T ),

0 = �v − av + u in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

∂v

∂ν
= 0 on ∂�× (0, T ),

u|t=0 = u0(x) in �, (4.8)

then (4.3) follows, where � ⊂ R2 is a bounded domain with smooth boundary
∂�, and W = W (x) > 0 and u0 = u0(x) ≥ 0 are smooth functions defined
on �.

For the proof to perform, we set a = 1 for simplicity. Then, it holds that

W(u, v) =
∫
�

(u(log u − 1 − log W )− uv) dx + 1

2

∥∥v∥∥2
H1

for ∥∥v∥∥H1 =
√∥∥∇v∥∥2

2 + ∥∥v∥∥2
2.

We put

λ = ∥∥u0
∥∥

1 = ∥∥u(t)
∥∥

1

(
t ∈ [0, Tmax)

)
(4.9)
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and apply the L1 estimate of Brezis and Strauss [19] to Au = v, where A
denotes −�+ 1 with the Neumann boundary condition. See also Stampacchia
[156, 157] for this type of elliptic estimate. In this case of two space dimen-
sions, for each q ∈ [1, 2) we have∥∥v(t)∥∥W 1,q ≤ Cq (4.10)

with a constant Cq > 0 independent of t ∈ [0, Tmax), where∥∥v∥∥W 1,q =
(∥∥∇v∥∥q

q + ∥∥v∥∥q
q

)1/q
.

It holds also that

W (u(t), v(t)) ≤ W (u0, v0) (4.11)

for 0 ≤ t < Tmax, where v0 = A−1u0.
We take

μ = μ(t) =
∫
�

ebv dx

with the constant b > 0 prescribed later. Using∫
�

u

λ
dx = 1,

we apply Jensen’s inequality as

0 = − log
(
μ−1

∫
�

ebv dx
)

= − log
( ∫

�

λ

u
· ebv

μ
· u

λ
dx

)
≤

∫
�

[
− log

(λ
u

· ebv

μ

)]u

λ
dx

= 1

λ

∫
�

(
u log u − u log λ− buv + u logμ

)
dx .

This means

0 ≤
∫
�

(u log u − buv) dx − λ log λ+ λ logμ. (4.12)

On the other hand, we have (4.4) and hence it holds that

logμ = log
( 1

|�|
∫
�

ebv dx
)

+ log |�|

≤ b2

8π

∥∥∇v∥∥2
2 + b

|�|
∥∥v∥∥1 + K + log |�|

= b2

8π

∥∥∇v∥∥2
2 + O(1)
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by (4.10). Combining this with (4.12), we obtain

0 ≤ b2

8π

∥∥∇v∥∥2
2 · λ+

∫
�

(
u(log u − 1 − log W )− buv

)
dx + O(1)

= W (u, v)+ (1 − b)
∫
�

uv dx −
(1

2
− b2

8π
λ
)∥∥∇v∥∥2

2

− 1

2

∥∥v∥∥2
2 + O(1).

Henceforth, Ci > 0 (i = 1, 2, . . . ) denotes a sequence of constants inde-
pendent of t ∈ [0, Tmax). Then, again by (4.11) we have(1

2
− b2

8π
λ
)∥∥∇v∥∥2

2 + 1

2

∥∥v∥∥2
2 + (b − 1)

∫
�

uv dx ≤ C1.

In the case that

λ ≡ ∥∥u0
∥∥

1 = ∥∥u(t)
∥∥

1 < 4π (0 ≤ t < Tmax) ,

we can take b > 0 in

b > 1 and
1

2
− b2

8π
λ > 0.

Then, we have ∥∥v(t)∥∥H1 ≤ C2,

∫
�

(uv)(t) dx ≤ C2,

and∫
�

(u log u)(t) dx ≤ W
(
u(t), v(t)

) + (
1 + ∥∥ log W

∥∥∞
)
λ+

∫
�

(uv)(t) dx .

Hence it holds that∫
�

(u log u)(t) dx ≤ C3 for t ∈ [0, Tmax). (4.13)

Writing u = Ww in (4.8), we have

wt = ∇ · j + b · j in �× (0, T ),

0 = �v − v + Ww in �× (0, T ),

∂w

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) in �, (4.14)
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with

b = ∇ log W and j = ∇w − w∇v.

In fact, we have

∂

∂ν
log u − ∂

∂ν
log W = 0 on ∂�

and hence (∂w)/(∂ν) = 0 holds on the boundary. On the other hand, the first
equation of (4.8) is equal to

Wwt = ∇ · (∇u − u∇v − w∇W )

= ∇ · (W∇w − Ww∇v)
= W∇ · (∇w − w∇v)+ ∇W · (∇w − w∇v)

and hence (4.14) follows.
We have∫

�

(∇ · j)w dx = −
∫
�

j · ∇w dx

= −∥∥∇w∥∥2
2 +

∫
�

w∇v · ∇w dx

= −∥∥∇w∥∥2
2 − 1

2

∫
�

w2�v dx

= −∥∥∇w∥∥2
2 − 1

2

∫
�

w2(v − Ww) dx

≤ −∥∥∇w∥∥2
2 + 1

2

∥∥w∥∥2
3

∥∥v∥∥3 + 1

2

∥∥W
∥∥∞

∥∥w∥∥3
3

and ∫
�

(b · j)w dx =
∫
�

b · (w∇w − w2∇v) dx

=
∫
�

(1

2
b · ∇w2 − w2b · ∇v

)
dx

= −
∫
�

(1

2
w2∇ · b + w2b · ∇v

)
dx

≤ ∥∥w∥∥2
3

(1

2

∥∥∇ · b
∥∥

3 + ∥∥b
∥∥∞

∥∥∇v∥∥3

)
.
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Now, we apply Sobolev’s imbedding W 1,6/5(�) ⊂ L3(�) and the elliptic es-
timate. Then we obtain∥∥v∥∥W 1,3 =

(∥∥∇v∥∥3
3 + ∥∥v∥∥3

3

)1/3 ≤ C4
∥∥v∥∥W 2,6/5

≤ C5
∥∥Ww

∥∥
6/5 ≤ C5

∥∥W
∥∥∞

∥∥w∥∥
6/5.

Therefore, multiplying w to the first equation of (4.14), we obtain

1

2

d

dt

∥∥w∥∥2
2 + ∥∥∇w∥∥2

2 ≤ C6

(∥∥w∥∥3
3 + 1

)
. (4.15)

We make use of the following lemma [15]. It is derived from Gagliardo–
Nirenberg’s inequality [48, 120]. In fact, we have W 1,1(�) ⊂ L2(�) if � ⊂
R2 is a bounded domain with smooth boundary ∂�. From this fact, it is proven
that each 1 ≤ q ≤ p < +∞ admits a constant C p,q > 0 satisfying∥∥w∥∥

p ≤ C p,q
∥∥w∥∥1−a

q · ∥∥w∥∥a
H1 (4.16)

for any w ∈ H1(�), where a = 1 − q
p . Then, inequality (4.16) implies the

following lemma.

Lemma 4.1 Any ε > 0 admits Cε > 0 such that∥∥w∥∥3
3 ≤ ε∥∥w∥∥2

H1

∥∥w log |w| ∥∥1 + Cε
∥∥w∥∥

1 (4.17)

for w ∈ H1(�).

Proof: We take N > 1 and χ ∈ C∞(R) satisfying

χ(s) =
⎧⎨⎩

0 (|s| ≤ N ) ,
2 (|s| − N ) ,

|s| (|s| ≥ 2N ) .

By means of |χ(s)| ≤ |s|, we have∥∥ |w| − χ(w)∥∥p
p ≤ 2p

∫
{|w|≤2N }

|w|p ≤ 2p · (2N )p−1 · ∥∥w∥∥
1.

On the other hand, we have |χ(s)| ≤ 2 and hence it holds that∥∥χ(w)∥∥2
H1 = ∥∥∇χ(w)∥∥2

2 + ∥∥χ(w)∥∥2
2

= ∥∥χ ′(w)∇w∥∥2
2 + ∥∥χ(w)∥∥2

2

= ∥∥χ ′(w)∇w∥∥2
2 + ∥∥χ(w)∥∥2

2

≤ 4
∥∥∇w∥∥2

2 + ∥∥w∥∥2
2 ≤ 4

∥∥w∥∥2
H1 .
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This means ∥∥χ(w)∥∥H1 ≤ 2
∥∥w∥∥

H1,

and by (4.16) we have∥∥χ(w)∥∥p
p ≤ C7

∥∥χ(w)∥∥p−1
H1

∥∥χ(w)∥∥1

≤ C72p−1
∥∥w∥∥p−1

H1 (log N )−1
∥∥w log |w| ∥∥1.

Thus, we obtain∥∥w∥∥p
p ≤ 2p

{∥∥ |w| − χ(w)∥∥p
p + ∥∥χ(w)∥∥p

p

}
≤ C8

{
N p−1

∥∥w∥∥
1 + (log N )−1

∥∥w∥∥p−1
H1

∥∥w log |w| ∥∥1

}
.

Then, inequality (4.17) is obtained by making N large for the case of p = 3. �

We have Poincaré–Wirtinger’s inequality∥∥∇w∥∥2
2 ≥ μ2

∥∥w − 1

|�|
∫
�

w dx
∥∥2

2 (4.18)

with μ2 > 0 being the second eigenvalue of −� in � under the Neumann
boundary condition. This implies∥∥w∥∥

2 ≤ μ−1/2
2

∥∥∇w∥∥
2 + |�|−1

∥∥w∥∥
1

≤ μ−1/2
2

∥∥∇w∥∥
2 + |�|−1

∥∥W−1
∥∥∞λ.

By (4.13) it holds that∫
�

(w logw)(t) dx ≤ C9 for t ∈ [0, Tmax).

Therefore, using (4.17), we see that any ε > 0 admits Cε > 0 satisfying∥∥w∥∥3
3 ≤ ε∥∥∇w∥∥2

2 + Cε,

and it follows that

1

2

d

dt

∥∥w∥∥2
2 + ∥∥∇w∥∥2

2 ≤ 1

2

∥∥∇w∥∥2
2 + C10

by (4.15). Again by (4.18) we have

d

dt

∥∥w∥∥2
2 + μ2

∥∥w∥∥2
2 ≤ C11
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and hence ∥∥w(t)∥∥2 ≤ C12 (0 ≤ t < Tmax) (4.19)

holds true.
Now, we multiply w2 to the first equation of (4.14). We have∫

�

(∇ · j)w2 dx = −
∫
�

j · ∇w2 dx

= −2
∫
�

w |∇w|2 dx + 2
∫
�

w2∇v · ∇w dx

and writing w1 = w3/2, we obtain

1

3

d

dt

∫
�

w2
1 dx+8

9

∫
�

|∇w1|2 dx = 4

3

∫
�

w1∇v·∇w1 dx+
∫
�

(b· j)w dx .

Here, the first term of the right-hand side is treated similarly as before, and we
obtain∫

�

w1∇v · ∇w1 dx = 1

2

∫
�

∇v · ∇w2
1 dx

= −1

2

∫
�

�v · w2
1 dx = 1

2

∫
�

(Ww − v)w2
1 dx

≤ ∥∥W
∥∥∞

1

2

∥∥w1
∥∥8/3

8/3 + 1

2

∥∥w1
∥∥2

3

∥∥v∥∥3

≤ 1

2

∥∥W
∥∥∞

∥∥�∥∥1/9∥∥w1
∥∥8/3

3 + 1

2

∥∥w1
∥∥2

3

∥∥v∥∥3.

Similarly, for the second term we have∫
�

(b · j)w2 dx =
∫
�

b ·
(
w2∇w − w3∇v

)
dx

=
∫
�

b ·
(

1

3
∇w3 − w3∇v

)
dx

= −
∫
�

w3
(

1

3
∇ · b + b · ∇v

)
dx

= −
∫
�

w2
1

(
1

3
∇ · b + b · ∇v

)
dx

≤ ∥∥w1
∥∥2

3

(
1

3

∥∥∇b
∥∥

3 + ∥∥b
∥∥∞

∥∥∇v∥∥3

)
.
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Then, we obtain

1

3

d

dt

∥∥w1
∥∥2

2 + 8

9

∥∥∇w1
∥∥2

2 ≤ C13

(∥∥w1
∥∥3

3 + 1
)

similarly to (4.15).
Here, we recall that (4.19) is established, and hence it holds that∥∥w1(t)

∥∥
4/3 ≤ C13.

This implies∫
�

(w1 logw1)(t) dx ≤ C14 and
∥∥w1(t)

∥∥
1 ≤ C14,

and we can argue similarly. Thus, we obtain
∥∥w1(t)

∥∥
2 ≤ C15, or equivalently,∥∥w(t)∥∥3 ≤ C16 for t ∈ [0, Tmax). (4.20)

Now, Theorem 3.2 guarantees (4.3), that is, Tmax = +∞ and

sup
t≥0

∥∥u(t)
∥∥∞ < +∞,

and the proof of Theorem 4.1 is complete. �

Having proven the main result of this chapter, we mention some other tech-
nical devices. We have the following facts for the other cases than (4.8). First,
simplified system of the (JL) field is treated similarly:

ut = ∇ · (∇u − u∇ (v + log W )) in �× (0, T ),
−�v = u − 1

|�|
∫
�

u dx in �× (0, T ),∫
�
v dx = 0 for t ∈ (0, T ),

∂
∂ν

u − u ∂
∂ν
(v + log W ) = 0 on ∂�× (0, T ),

∂v
∂ν

= 0 on ∂�× (0, T ),
u|t=0 = u0(x) in �. (4.21)

If
∥∥u0

∥∥
1 < 4π holds in (4.21), then it follows that

Tmax = +∞ and sup
t≥0

∥∥u(t)
∥∥∞ < +∞,

where � ⊂ R2 is a bounded domain with smooth boundary ∂� and W =
W (x) > 0 is a smooth function defined on �.
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On the other hand, inequality (4.5) is available for the simplified system of
the (D) field,

ut = ∇ · (∇u − u∇ (v + log W )) in �× (0, T ),
−�v = u in �× (0, T ),

∂
∂ν

u − u ∂
∂ν
(v + log W ) = 0 on ∂�× (0, T )

v = 0 on ∂�× (0, T ),
u|t=0 = u0(x) in �.

(4.22)

Consequently, if
∥∥u0

∥∥
1 < 8π , then we obtain∫

�

(u log u)(t) dx ≤ C17 for t ∈ [0, Tmax).

In this case we have v > 0 in �× (0, Tmax), and therefore it holds that

∂v

∂ν
≤ 0 on ∂�.

Under the assumption

∂

∂ν
log W ≤ 0 on ∂�, (4.23)

we obtain

1

2

d

dt

∥∥u
∥∥2

2 + ∥∥∇u
∥∥2

2 =
∫
�

u∇ (v + log W ) · ∇u dx

= 1

2

∫
�

∇ (v + log W ) · ∇u2 dx

≤ −1

2

∫
�

� (v + log W ) · u2 dx

≤ 1

2

∥∥u
∥∥3

3 + 1

2

∥∥ log W
∥∥∞

∥∥u
∥∥2

2

and

1

3

d

dt

∥∥u
∥∥3

3 + 2
∫
�

u |∇u|2 dx = 2

3

∫
�

∇ (v + logw) · ∇u3 dx

≤ −2

3

∫
�

� (v + log W ) · u3 dx

≤ 2

3

∥∥u
∥∥4

4 + 2

3

∥∥� log W
∥∥∞

∥∥u
∥∥3

3.
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Then, we can argue similarly as in the (N) field. Thus, if∥∥u0
∥∥

1 < 8π,

then Tmax = +∞ and supt≥0

∥∥u(t)
∥∥∞ < +∞ hold in (4.22), where � ⊂ R2

is a bounded domain with smooth boundary ∂� and W = W (x) > 0 is a
smooth function defined on � satisfying (4.23).

The above results for a global existence of the solution are valid even to the
full system. To treat this system we make use of the parabolic L1 estimate
instead of the analogous elliptic estimate. In two space dimensions, by

τ
dv

dt
+ Av = u with v|t=0 = v0

and (4.9) we have

sup
t≥0

∥∥v(t)∥∥W 1,q ≤ Cq,ε
(∥∥A1/2+εv0

∥∥
q + ∥∥u0

∥∥
1

)
(4.24)

for each q ∈ (1, 2) and ε > 0. Therefore, we still have (4.10) for each q ∈
[1, 2) under the assumptions on the initial value stated in Theorem 3.1. Then,
we obtain (4.13) even in this case, using the Trudinger–Moser inequality and
the Lyapunov function W (u, v) similarly. On the other hand, deriving (4.20)
from energy method, we obtain∫ t

0

∥∥vt (t)
∥∥2

2dt ≤ C18 for t ∈ [0, Tmax).

Consequently, we obtain the same conclusion that the conditions
∥∥u0

∥∥
1 < 4π

for the (N), (JL) fields, and
∥∥u0

∥∥
1 < 8π for the (D) field to the full system,

respectively, imply (4.3). See [14, 50, 110] to confirm details.
Other methods to show (4.3) are the following. First, we can avoid the use of

the maximal regularity theorem, or the final part of the conclusion of Theorem
3.1, to guarantee the results stated in this chapter. In other words, it is possible
to derive (4.3) only from the energy method, if we apply Moser’s iteration
scheme to our system. This argument can be localized, and then we can obtain
the first step of the proof for the formation of collapses, Theorem 1.1. This
kind of localization is efficient also for the study of the full system [109]. Next,
use of the Trudinger–Moser inequality and Jensen’s inequality to derive (4.13)
can take the place of the Brezis–Merle type inequality and Young’s inequality.
This argument was adopted by [108] for (1.1), but here we shall describe it for
(4.22), the simplified system of the the (D) field.
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Brezis–Merle’s inequality for

−�v = u in � with v = 0 in ∂�

is indicated as ∫
�

exp
(4π − δ

‖u‖1
|v(x)|

)
dx ≤ 4π2

δ
(diam �)2, (4.25)

where � is a two-dimensional domain and δ ∈ (0, 4π). On the other hand, the
Lyapunov function W = W(u, v) is reduced to the free energy,

F(u) =
∫
�

u(log u − 1 − log W ) dx − 1

2

∫
�

uv dx,

in this case, (4.22) of the simplified system. Here, Young’s inequality is appli-
cable as

auv ≤ u log u + 1

e
eav (u, v ≥ 0),

where a > 0 is a constant. Namely, from F(u(t)) ≤ F(u0) we obtain(
a − 1

2

) ∫
�

uv dx ≤ 1

e

∫
�

eav dx + O(1).

In the case of λ = ∥∥u
∥∥

1 < 8π , we have also∫
�

eav dx = O(1)

for 0 < a − 1
2 � 1 by (4.25) and hence it holds that∫
�

uv dx = O(1) and
∫
�

u log u dx = O(1).

This means (4.13), and again we can show that
∥∥u0

∥∥
1 < 8π implies (4.3)

in (4.22) with (4.23). (Let us confirm that for the (D) field the threshold of
λ = ∥∥u0

∥∥
1 for Tmax = +∞ is 8π .)

We have several other versions of (4.25) applicable to the (N) and (JL) fields.
By them, we can show similarly that if ∂� is smooth then

∥∥u0
∥∥

1 < 4π implies
Tmax = +∞ in simplified and full systems of the (N) and (JL) fields. Use of
the Brezis–Merle inequality is also efficient to show the concentration toward
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boundary of the solution to the simplified system of the (N) and (JL) fields in
the case of

Tmax < +∞ and 4π <
∥∥u0

∥∥
1 < 8π.

Inequality (4.25) also has a parabolic version and such a phenomenon, with
concentration toward the boundary, is examined even in the full system. See
[60, 108, 109].

The fact that

T = Tmax < +∞ ⇒ lim
t→T

∥∥u(t)
∥∥∞ = +∞ (4.26)

indicated in Theorem 3.1, is also proven by the energy method. In fact, if u =
u(x, t) denotes the solution to (4.1), the standard theory [85] guarantees that
T ≤ Tmax and

lim sup
t→T

∥∥u(t)
∥∥∞ < +∞ ⇒ Tmax > T . (4.27)

On the other hand, from the proof of Theorem 4.1 we see

lim sup
t→T

∫
�

(u log u)(t) dx < +∞ ⇒ lim sup
t→T

∥∥u(t)
∥∥∞ < +∞. (4.28)

Now, we shall show

lim inf
t→T

∫
�

(u log u)(t) dx < +∞

⇒ lim sup
t→T

∫
�

(u log u)(t) dx < +∞. (4.29)

Actually, relations (4.27)–(4.29) imply

T = Tmax < +∞ ⇒ lim
t→T

∫
�

(u log u)(t) dx = +∞, (4.30)

and (4.26) follows in particular.
First, we take the case W ≡ 1 for (4.29) to prove. For this purpose we make

use of the following fact comparable to Lemma 4.1. It will be applied also in
the proof of the formation of collapses.

Lemma 4.2 We have a constant K = K (�) > 0 determined by the bounded
domain � ⊂ R2 with smooth boundary ∂�, satisfying∫

�

u2 dx ≤ 2K 2

log s

∫
�

(
u log u + e−1) dx ·

∫
�

u−1 |∇u|2 dx

+ 2K 2
∥∥u

∥∥2
1 + 3s2 |�| (4.31)

for any s > 1.
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Proof: We have W 1,1(�) ↪→ L2(�) and there is K = K (�) > 0 that admits
the estimate ∥∥w∥∥

2 ≤ K 2
(∥∥∇w∥∥2

1 + ∥∥w∥∥2
1

)
(4.32)

for any w ∈ W 1,1(�). Letting w = (u − s)+, we have
∥∥w∥∥

1 ≤ ∥∥u
∥∥

1,

∥∥w∥∥2
2 =

∫
{u>s}

(u − s)2 dx ≥
∫
{u>s}

(
1

2
u2 − s2

)
dx

≥
∫
�

1

2
u2 dx −

∫
{u≤s}

1

2
u2 dx − s2 |�|

≥ 1

2

∫
�

u2 dx − 3

2
s2 |�| ,

and ∥∥∇w∥∥2
1 ≤

{∫
{u>s}

|∇u| dx

}2

≤
∫
{u>s}

u dx ·
∫
{u>s}

u−1 |∇u|2 dx

≤ 1

log s

∫
�

(
u log u + e−1

)
dx ·

∫
�

u−1 |∇u|2 dx,

where s > 1 and u log u ≥ −e−1 for u ≥ 0 are made use of. These relations
imply (4.31) and the proof is complete. �

Dealing with the case W ≡ 1 of (4.8), i.e., (1.1), we multiply log u to the
first equation. This implies

d

dt

∫
�

u log u dx +
∫
�

u−1 |∇u|2 dx +
∫
�

uv dx =
∫
�

u2.

We also have v > 0 in �× (0, T ) in this case, and hence obtain

d

dt

∫
�

u log u dx +
(

1 − 2K 2

log s

∫
�

(
u log u + e−1) dx

)
·
∫
�

u−1 |∇u|2 dx ≤ 2K 2
∥∥u0

∥∥2
1 + 3s2 |�|

by (4.31). Then, taking

s = s(t) = exp
(

2K 2
∫
�

(
u log u + e−1

)
dx

)
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and

J = J (t) =
∫
�

(
u log u + e−1) dx,

we have

d J

dt
≤ 2K 2

∥∥u0
∥∥

1 + 3 |�| exp
(
4K 2 J

)
.

From this differential inequality, we can conclude that (4.29) holds true.
To treat the general case (4.1), we takew = W−1u and transform it to (4.14).

Then, multiplying logw to the first equation, we obtain∫
�

wt logw dx =
∫
�

(∇ · j + b · j) logw dx .

The left-hand side and the first term of the right-hand side are treated similarly,
and we obtain

d

dt

∫
�

w(logw − 1) dx +
∫
�

w−1 |∇w|2 dx +
∫
�

wv dx

=
∫
�

Ww2 dx +
∫
�

(b · j) logw dx .

The second term of the right-hand side of the above equality is equal to∫
�

(b · j) log w dx =
∫
�

b · (logw (∇w − w∇v)) dx

=
∫
�

(b · ∇ (w(logw − 1))− (w logw)b · ∇v) dx

= −
∫
�

(w(logw − 1)∇ · b + (w logw)b · ∇v) dx, (4.33)

and the first term of the right-hand side of this equality is treated similarly. For
the second term, we make use of another linear theory valid for the second
equation of (4.14). That is, if

−�v + v = f in � with
∂v

∂ν
= 0 on ∂�

holds for the two-dimensional bounded domain � with smooth boundary ∂�,
then it follows that ∥∥∇v∥∥2 ≤ C [ f ]L log L ,



4. Trudinger–Moser Inequality 77

where

[ f ]L log L =
∫
�

| f | log
(

e + | f (x)|∥∥ f
∥∥

1

)
dx

denotes the Zygmund norm of Iwaniec and Verde [72]. We also make use of
the inequality

[ f ]L log L ≤
∫
�

(
| f | log | f | + e−1

)
dx + (e − e−1) |�|

proven in Chapter 9. Then, the second term of (4.33) is estimated from above
by ∥∥w logw

∥∥
2 ·

( ∫
�

w logw dx + O(1)
)
.

Now, we take s > 0 and put (w logw)χ{w>s} for w in (4.32):∥∥(w logw)χ{w>s}
∥∥2

2 ≤ K 2
(∥∥∇(

(w logw)χ{w>s}
)∥∥2

1 + ∥∥(w logw)χ{w>s}
∥∥2

1

)
.

The left-hand side is estimated from below by∫
�

(w logw)2 dx − (
s log s + e−1)2 |�| ,

while the second and the first terms of the right-hand side are estimated from
above by ∫

�

(
w logw + e−1) dx

and { ∫
{w>s}

|logw + 1| |∇w| dx
}2

≤
∫
{w>s}

w |logw + 1|2 ·
∫
{w>s}

w−1 |∇w|2 dx

≤ 1

s

∫
�

(w(logw + 1))2 dx ·
∫
�

w−1 |∇w|2 dx,

respectively. Based on these estimates, we can argue similarly to the previous
case, and conclude that (4.29) holds true. Thus, we obtain (4.30) to (4.1):

T = Tmax < +∞ ⇒ lim
t→T

∫
�

(u log u)(t) dx = +∞.
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The Green’s Function

The criterion
∥∥u0

∥∥
1 < 4π is sharp for Tmax = +∞ in the simplified system of

the (N) field,

ut = ∇ · (∇u − u∇ (v + log W )
)

in �× (0, T ),

0 = �v − av + u in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) in �, (5.1)

and in this chapter we prove the following theorem [146].

Theorem 5.1 If � ⊂ R2 is a bounded domain with smooth boundary ∂� and∫
�∩B(x0,R)

u0(x) dx > 4π

holds for x0 ∈ ∂� and R > 0 in (5.1), then there exists η > 0 determined by
λ = ‖u0‖1 and ‖u0‖L1(�∩B(x0,R)) such that

1

R2

∫
�∩B(x0,4R)

|x − x0|2u0(x) dx < η (5.2)

implies Tmax < +∞.
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Here and henceforth, B(x0, R) denotes the open disc with the center x0 and
the radius R > 0:

B(x0, R) = {
x ∈ R2

∣∣ |x − x0| < R
}
,

and the requirements of the above theorem are satisfied if

λ = ∥∥u0
∥∥

1 > 4π

and u0(x) dx is sufficiently concentrated at x0 ∈ ∂�. Therefore, we can con-
clude that λ = 4π is the threshold for the blowup of the solution to (5.1).
This is also the case of the simplified system of the (JL) field, and is proven
similarly.

On the other hand, if ‖u0‖1 > 8π and u0(x) dx is sufficiently concentrated
on an interior point, then Tmax < +∞ follows. This blowup criterion is valid
even to the (D) field, and therefore 8π is the threshold for blowup of the solu-
tion in the simplified system of the (D) field.

We emphasize that these criteria on Tmax < +∞ are established only to
the simplified system. Actually, we have a different kind of condition for the
blowup of the solution to the full system [69, 146]. This criterion is given in
terms of the value W(u0, v0) in accordance with inf

{F(u) ∣∣ u ∈ Sλ
}
, where

Sλ denotes the set of stationary solutions for λ = ‖u0‖1. There, the possibility
of the blowup in infinite time is included but we expect that only the blowup in
finite time occurs in this case, and also that λ = 4π and λ = 8π are thresholds
of the blowup of the solution in finite time even in full systems of the (N), (JL),
and (D) fields, respectively. We further expect that the blowup in infinite time
occurs only when the total mass of the initial value λ = ‖u0‖1 is quantized,
such as λ ∈ 4πN and λ ∈ 8πN for the (N), (JL) fields and the (D) field,
respectively, and the solution converges to a singular limit of the stationary
solution in infinite time.

We note that Theorem 1.1 guarantees that if

Tmax < +∞
occurs with λ = ‖u0‖1 ∈ (4π, 8π) to (1.1), then exactly one blowup point of
the solution lies on ∂�. This is also the case of (5.1), and in this connection,
we expect that the blowup point never arises on the boundary for the simplified
system of the (D) field, if the environment function W = W (x) satisfies (4.23).

Now, we come back to (5.1). For the proof of Theorem 5.1, we make use
of a remarkable structure of the simplified system. It may be referred to as
the compensated compactness via the symmetrization. The threshold values
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4π and 8π are technically associated with this process. On the other hand, the
left-hand side of (5.2) indicates the local second moment of u(x, t) dx . The
total moments are virial quantities, and their use in the study of the blowup
of the solution was adopted by [16, 106] for radially symmetric cases. The
Green’s function fits in naturally with that process, and in that context Biler
[13, 14] introduced the method of symmetrization mentioned above. Actually,
this technique of symmetrization for the double integral operator associated
with the Green’s function has been used in the study of the weak solution to
Euler and Navier–Stokes systems in the vorticity formulation, such as (2.2)
[37, 143]. There are several studies concerning the formation of singularities,
using the second moment [95, 141, 178].

To explain the idea, here, we describe the following argument [17], where
the system

ut = ∇ · (∇u − u∇v) in �× (0, T ),

∂u

∂ν
u − u

∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) in �,

with

v(x, t) =
∫
�

G0(x, x ′)u(x ′, t) dx ′

for

G0(x, x ′) = �(x − x ′) ≡ 1

2π
log

1

|x − x ′|
is proposed to describe the motion of the mean field of many self-interacting
particles under the gravitational force. In this system, if � ⊂ R2 is star-shaped
with respect to the origin, then we have

d

dt

∫
�

|x |2 u(x, t) dx =
∫
�

|x |2 ut (x, t) dx

= −
∫
�

2x · (∇u − u∇v) dx

= −
∫
∂�

2(x · ν)u dx +
∫
�

4u dx +
∫
�

2ux · ∇v dx

≤ 4λ+
∫
�

∫
�

2u(x, t)x · ∇x G0(x, x ′)u(x ′, t)dy dx

= 4λ+ 1

2

∫
�

∫
�

ρ(x, x ′)u(x, t)u(x ′, t) dx dx ′,
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where λ = ‖u0‖1 and

ρ(x, x ′) = 2x · ∇x G0(x, x ′)+ 2x ′ · ∇yG0(x, x ′) = − 1

π
.

Thus, it holds that

d

dt
I (t) ≤ 4λ− 1

2π
λ2

for

I (t) =
∫
�

|x |2 u(x, t)

and therefore, if λ = ‖u0‖1 > 8π and Tmax = +∞, then I (t) becomes
negative in a finite time. This is a contradiction and Tmax < +∞ follows from
‖u0‖1 > 8π .

In the above case, the concentration to the origin of the initial mass is not
necessary to infer Tmax < +∞. Actually, this condition of concentration fits
in when the kernel has the additional regular part. Besides, we have to localize
these arguments near the blowup point in our case, and this process is justified
again by the method of symmetrization. Namely, it assures that the local L1

norm has a bounded variation in time, and the strong concentration implies a
contradiction before this concentration is broken. These arguments are valid
for the general simplified system, and for (5.1) we have the following lemma.

Lemma 5.1 Given the simplified system

ut = ∇ · (∇u − u∇(v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

Av = u for t ∈ (0, T ),

let A−1 be provided with the integral kernel G = G(x, x ′):

(A−1u)(x) =
∫
�

G(x, x ′)u(x ′) dx ′,

satisfying ∫
�

∫
�

∣∣∇x G(x, x ′)
∣∣ dx dx ′ < +∞. (5.3)
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Then any C2 function ψ defined on � satisfying

∂ψ

∂ν

∣∣∣∣
∂�

= 0

admits the estimate∣∣∣∣ d

dt

∫
�

uψ dx

∣∣∣∣ ≤ λ2

2

∥∥ρψ∥∥
L∞(�×�)

+ λ (∥∥�ψ∥∥∞ + ∥∥∇ log W
∥∥∞ · ∥∥∇ψ∥∥∞

)
(5.4)

for t ∈ [0, Tmax), where

ρψ(x, x ′) = ∇ψ(x) · ∇x G(x, x ′)+ ∇ψ(x ′) · ∇x ′G(x, x ′) (5.5)

and λ = ‖u0‖1.

Proof: Since A is self-adjoint, the kernel G = G(x, x ′) is symmetric:

G(x, x ′) = G(x ′, x). (5.6)

Furthermore, the second equation of (5.4) is replaced by (1.5):

v(x, t) =
∫
�

G(x, x ′)u(x ′, t) dx ′. (5.7)

Testing ψ ∈ C2(�) with ∂ψ
∂ν

∣∣
∂�

= 0 to the first equation of (5.1), we obtain
the weak formulation,

d

dt

∫
�

u(x, t)ψ(x) dx −
∫
�

u(x, t)�ψ(x) dx

=
∫
�

u(x, t)∇v(x, t) · ∇ψ(x) dx +
∫
�

u∇ log W · ∇ψ dx

=
∫∫

�×�
[∇ψ(x) · ∇x G(x, x ′)

]
u(x, t)u(x ′, t) dx dx ′

+
∫
�

u∇ log W · ∇ψ dx

= 1

2

∫∫
�×�

ρψ(x, x ′)u(x, t)u(x ′, t) dx dx ′

+
∫
�

u∇ log W · ∇ψ dx, (5.8)
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by (5.3), (5.6), and (5.7), with ρψ(x, y) defined by (5.5). Then, (5.4) follows
from (1.11): ∥∥u(t)

∥∥
1 = ∥∥u0

∥∥
1 ≡ λ, (5.9)

and the proof is complete. �

In the standard fields of the (N), (JL), and (D), it holds that

G(x, x ′) = 1

2π
log

1

|x − x ′| + K (x, x ′)

with K ∈ C1+θ
loc (�×�) for θ ∈ (0, 1). This implies

ρψ(x, x ′) = −
(∇ψ(x)− ∇ψ(x ′)

) · (x − x ′)
2π |x − x ′|2 + Cθloc(�×�).

Here, the first term of the right-hand side belongs to L∞(� × �), although it
is not continuous. More delicate analysis is necessary on ∂�, but the estimates
proven below induce that the local L1 norm of u has a bounded variation in
t ∈ [0, Tmax). This is also a key fact to prove the finiteness of blowup points.

Namely, we show the following lemma. Inequality (5.3) for G = G(x, x ′)
in consideration is assured also in the proof.

Lemma 5.2 Let � ⊂ R2 be a bounded domain with smooth boundary ∂�,
and let G = G(x, x ′) be the Green’s function of −� + a in � under the
Neumann boundary condition, where a > 0 is a constant. Then, the function

ρψ(x, x ′) = ∇ψ(x) · ∇x G(x, x ′)+ ∇ψ(x ′) · ∇x ′G(x, x ′)

belongs to L∞ (�×�) if ψ ∈ C2(�) satisfies

∂ψ

∂ν

∣∣∣∣
∂�

= 0,

and it holds that ∥∥ρψ∥∥
L∞(�×�) ≤ K

∥∥∇ψ∥∥
C1(�)

, (5.10)

where K = K (�) > 0 is a constant determined by� and a > 0. In particular,
we have∣∣∣∣ d

dt

∫
�

ψ(x)u(x, t) dx

∣∣∣∣ ≤ Kλ2

2

∥∥∇ψ∥∥
C1(�)

+ λ (∥∥�ψ∥∥∞ + ∥∥∇ log W
∥∥∞

∥∥∇ψ∥∥∞
)

(5.11)

for t ∈ [0, Tmax).
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Proof: Using the decomposition of the unity and the compactness of �, the
assertion is reduced to the cases that supp ψ ⊂ � and supp ψ ⊂ �∩ B(x0, R)
with x0 ∈ ∂� and 0 < R � 1.

To treat the first case, we take the fundamental solution e0(|x |) of −�+ a:

(−�+ a)e0 = δ0(dx).

Actually, it is given by the series

e0(r) = e0(r; a) = 1

2π
log

1

r
+ a

2π
· r2

4
log

1

r

+ a

2π
· a

4
· r4

16
log

1

r
+ a

2π
· a

4
· a

16
· r6

36
log

1

r
+ · · · , (5.12)

and we have

e0 (|x |) = 1

2π
log

1

|x | + C1+θ
loc (R

2) (5.13)

for θ ∈ (0, 1).
Given x ∈ �, we define K0 = K0(x, x ′) by

G(x, x ′) = e0
(∣∣x − x ′∣∣) + K0(x, x ′).

It holds that

(−�x ′ + a) K0 = 0
(
x ′ ∈ �)

and

∂

∂νx ′
K0 = − ∂

∂νx ′
e0

(∣∣x − x ′∣∣) (
x ′ ∈ ∂�)

.

Therefore, we have K0 ∈ C2+θ
loc

(
�×�)

from the elliptic regularity. This,
combined with (5.13), implies

G(x, x ′) = 1

2π
log

1

|x − x ′| + K (x, x ′)

with K ∈ C1+θ
loc

(
�×�)

.

We also have K ∈ C1+θ
loc

(
�×�)

by (5.6), and hence

ρψ(x, x ′) = −(x − x ′) · (∇ψ(x)− ∇ψ(x ′)
)

2π |x − x ′|2
+ ∇ψ(x) · ∇x K (x, x ′)+ ∇ψ(x ′) · ∇x ′ K (x, x ′)
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belongs to L∞ (�×�) because supp ψ ⊂ � is assumed.
To treat the second case of supp ψ ⊂ � ∩ B(x0, R) with x0 ∈ ∂� and

0 < R � 1, first we assume that � is simply connected.
In this case we have a smooth conformal mapping

X : � → R2,

satisfying

x0 �→ 0,

X (�) = R2+ = {
(x1, x2)

∣∣ x2 > 0
}
,

X (∂�) = ∂R2+ = {
(x1, x2)

∣∣ x2 = 0
}
. (5.14)

We also take a smooth extension, denoted by ĉ, to the whole space R2 of

c = a
∣∣X ′∣∣2 ◦ X−1

defined on R2+. Then, for

e1(ξ, ξ
′) = e0

(∣∣ξ ′ − ξ ∣∣ , ĉ(ξ)) (5.15)

with e0(r, a) given by (5.12), we have(−�ξ ′ + ĉ(ξ)
)

e1(ξ, ξ
′) = δξ (dξ

′)

for ξ ′, ξ ∈ R2.
Now, we take the cut-off function

ζ = ζ(|y|) ∈ C∞
0 (R

2)

satisfying

0 ≤ ζ(|y|) ≤ 1, ζ(|y|) =
{

1
(
y ∈ B(0, 1/2)

)
,

0
(
y ∈ R2 \ B(0, 1)

)
.

(5.16)

Then we apply the elliptic theory and take

e2 = e2(ξ, ξ
′) ∈ Cθ,2+θ (R2 × R2)

satisfying(−�ξ ′ + ĉ(ξ ′)
)

e2(ξ, ξ
′) = ζ(

∣∣ξ ′ − ξ ∣∣) · (ĉ(ξ)− ĉ(ξ ′)
)

e1(ξ, ξ
′)
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for ξ, ξ ′ ∈ R2. In this case,

e(ξ, ξ ′) = e1(ξ, ξ
′)+ e2(ξ, ξ

′)

solves (−�ξ ′ + ĉ(ξ ′)
)

e(ξ, ξ ′) = δξ (dξ
′)+ ϕ̃(ξ, ξ ′) (ξ, ξ ′ ∈ R2)

for

ϕ̃ = ϕ̃(ξ, ξ ′) = {
ζ
(∣∣ξ ′ − ξ ∣∣) − 1

} (
ĉ(ξ)− ĉ(ξ ′)

)
e1(ξ, ξ

′) ∈ C∞(R2 × R2).

Let

E(ξ, ξ ′) = e(ξ, ξ ′)+ e(ξ, ξ ′∗)

with ξ ′∗ = (ξ ′1,−ξ ′2) for ξ ′ = (ξ ′1, ξ ′2). Then, given ξ ∈ R2+, we have(−�ξ ′ + c(ξ ′)
)

E(ξ, ξ ′) = δξ (dξ
′)+ �̂(ξ, ξ ′) (

ξ ′ ∈ R2+
)
,

∂

∂νξ ′
E(ξ, ξ ′) = 0

(
ξ ′ ∈ ∂R2+

)
,

for

�̂ = �̂(ξ, ξ ′) = ϕ̃(ξ, ξ ′)+ (−�ξ ′ + c(ξ ′)
)

e(ξ, ξ ′∗)
= ϕ̃(ξ, ξ ′)+ (−�ξ ′ + c(ξ ′)

)
e2(ξ, ξ

′∗)
+ (

c(ξ ′)− ĉ(ξ∗)
)

e0
(|ξ∗ − η| , ĉ(ξ∗)

) ∈ Cθ (R2 × R2),

because δξ∗(dξ
′) = 0 holds in R2+ if ξ ∈ R2+. Here, X is conformal, and the

above relation induces

(−�x ′ + a) E
(
X (x), X (x ′)

) = δx ( dx ′)+ ϕ(x, x ′)
(
x ′ ∈ �)

,

∂

∂νx ′
E

(
X (x), X (x ′)

) = 0
(
x ′ ∈ ∂�)

,

for each x ∈ �, where

ϕ = ϕ(x, x ′) = ∣∣X ′(x ′)
∣∣2 �̂ (

X (x), X (x ′)
) ∈ Cθ (�×�).

Therefore,

K1(x, x ′) = G(x, x ′)− E
(
X (x), X (x ′)

)
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satisfies

(−�x ′ + a) K1(x, x ′) = ϕ(x, x ′) (x ′ ∈ �),
∂

∂νx ′
K1(x, x ′) = 0 (x ′ ∈ ∂�), (5.17)

for each x ∈ �, and from the elliptic regularity K1(x, x ′) is extended to an
element in Cθ,2+θ (�×�).

By (5.12), these relations,

G(x, x ′) = E
(
X (x), X (x ′)

) + K1(x, x ′),

K1 ∈ Cθ,2+θ (�×�), E = e1 + e2, e2 ∈ Cθ,2+θ (R2 × R2), and (5.15), imply

G(x, x ′) = 1

2π
log

1

|X (x)− X (x ′)|
+ 1

2π
log

1

|X (x)− X (x ′)∗| + K2(x, x ′) (5.18)

with K2 ∈ Cθ,1+θ
(
�×�)

. We also have

K2(x, x ′) = K2(x
′, x)

by (5.6) and it follows that

K2 ∈ Cθ,1+θ
(
�×�) ∩ C1+θ,θ (�×�)

. (5.19)

In this way, we obtain

∇ψ(x) · ∇x K2(x, x ′)+ ∇ψ(x ′) · ∇x ′ K2(x, x ′) ∈ Cθ (�×�).
Now, we recall that ψ ∈ C2(�) satisfies

∂ψ

∂ν

∣∣∣∣
∂�

= 0 and suppψ ⊂ � ∩ B(x0, R) (5.20)

for x0 ∈ ∂� and 0 < R � 1. To examine the first term of the right-hand side
of (5.18), we set

G1(x, x ′) = 1

2π
log

1

|X (x)− X (x ′)| .

Writing

 = ψ ◦ X−1 and g(ξ, ξ ′) = 1

2π
log

1

|ξ − ξ ′| ,
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we have

∇ψ(x) · ∇x G1(x, x ′)+ ∇ψ(y) · ∇x ′G1(x, x ′)
= c(ξ)∇ (ξ) · ∇ξ g(ξ, ξ ′)+ c(ξ ′)∇ (ξ ′) · ∇ξ ′g(ξ, ξ ′)

= −(ξ − ξ ′) · (c(ξ)∇ (ξ)− c(η)∇ (ξ ′))
2π |ξ − ξ ′|2

∈ L∞ (�×�) .

To treat the second term of the right-hand side of (5.18),

G2(x, x ′) = 1

2π
log

1

|X (x)− X (x ′)∗| ,

we make use of ∂ψ
∂ν

∣∣
∂�

= 0. In fact, this condition gives

∂ 

∂ξ2

∣∣∣∣
ξ2=0

= 0

and hence

∇ψ(x) · ∇x G2(x, x ′)+ ∇ψ(x ′) · ∇yG2(x, x ′)
= c(ξ)∇ (ξ) · ∇ξ g(ξ, ξ ′∗)+ c(ξ ′)∇ (ξ ′) · ∇ηg(ξ, ξ ′∗)

= −
{

c(ξ) ξ1(ξ)− c(ξ ′) ξ ′1(ξ
′)
}
(ξ1 − ξ ′1)

2π
∣∣ξ − ξ ′∗

∣∣2
−

{
c(ξ) ξ2(ξ)+ c(ξ ′) ξ ′2(ξ)

}
(ξ2 + ξ ′2)

2π
∣∣ξ − ξ ′∗

∣∣2
∈ L∞ (�×�)

follows. These relations are summarized as

ρ ∈ L∞ (�×�) .

We now proceed to the general case of �. In fact, it is multiply connected,
and given ψ ∈ C2(�) with (5.20) for x0 ∈ ∂� and 0 < R � 1, we can take
a Jordan curve γ ⊂ ∂� containing x0 , and obtain the domain �̂ satisfying
∂�̂ = γ and � ⊂ �̂. Either �̂ or R2 \ �̂ is simply connected in this case.
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Replacing� by this �̂, we repeat the previous argument. We obtain, instead
of (5.17),

(−�x ′ + a) K1(x, x ′) = ϕ(x, x ′) (x ′ ∈ �).
∂

∂νx ′
K1(x, x ′) = h(x, x ′) (x ′ ∈ ∂�),

with ϕ ∈ Cθ (�×�) and h ∈ C∞(�× ∂�). This h satisfies

h(x, x ′) = 0

for (x, x ′) ∈ � × γ . On the other hand, G = G(x, x ′) is extended smoothly
for (x, x ′) ∈ (�∪ γ )× (∂� \ γ ) by the elliptic regularity. This is also the case
of E

(
X (x), X (x ′)

)
, and we can assume

h ∈ C∞ ((� ∪ γ )× ∂�) .
Therefore, from the elliptic regularity again,

K1 = K1(x, x ′)

is extended to an element in Cθ,2+θ
(
(� ∪ γ )×�)

, and then (5.19) is replaced
by

K2 ∈ Cθ,1+θ
(
(� ∪ γ )×�) ∩ C1+θ,θ (�× (� ∪ γ )) .

From this relation, the conclusion

ρψ ∈ L∞(�×�)
follows similarly. �

From the proof the above lemma, we see that (5.10) is refined as∥∥ρψ∥∥
L∞(�×�) ≤ 1

2π

∥∥∇ψ∥∥
C0,1(�)

+ C(�)
∥∥∇ψ∥∥∞, (5.21)

where C(�) > 0 is a constant determined by �. Inequality (5.21) controls the
rate of variation in time of the local mass of u(x, t) dx through (5.11), and this
provides the principal motivation for the proof of mass quantization.

In what follows, we make use of the specific cut-off function, denoted by

ϕ = ϕx0,R′,R,
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where x0 ∈ � and 0 < R′ < R � 1. First, if x0 ∈ �, we assume that R > 0 is
as small as B(x0, 2R) ⊂ �, and take ϕ ∈ C∞

0 (R
2) satisfying 0 ≤ ϕ ≤ 1 and

ϕ(x) =
{

1
(
x ∈ B(x0, R′)

)
0 (x ∈ B(x0, R)) .

(5.22)

Given x0 ∈ ∂�, we take the conformal mapping X : �̂→ R2 described in the
previous lemma. This X satisfies, similarly to (5.14),

x0 �→ 0,

X
(
B(x0, 2R) ∩�) ⊂ R2+ = {

(x1, x2)
∣∣ x2 > 0

}
,

X
(
B(x0, 2R) ∩ ∂�) ⊂ ∂R2+ = {

(x1, x2)
∣∣ x2 = 0

}
for 0 < R � 1. Given R′ ∈ (0, R), we can furthermore impose

X
(
B(x0, R′) ∩�) ⊂ B(0, r ′),

X
(
(B(x0, 2R) ∩�) \ B(x0, R)

) ⊂ R2 \ B(0, r),

with 0 < r � 1 and r ′ ∈ (0, r) proportional to R and R′, respectively. Then,
we take ζr ′,r = ζr ′,r (|y|) ∈ C∞

0 (R
2), satisfying, similarly to (5.16),

0 ≤ ζr ′,r (|y|) ≤ 1, ζr ′,r (|y|) =
{

1
(
y ∈ B(0, r ′)

)
0

(
y ∈ R2 \ B(0, r)

)
,

and put ϕ(x) = ζr ′,r (X (x)). Then, it holds that

∂

∂ζ
ζ ◦ X = ∂X

∂ν
· (∇ζ ◦ X) = 0

on ∂� because X is conformal and ζ is a function of |y|. Thus, we have ϕ =
ϕx0,R′,R(x) satisfying

∂ϕ

∂ν

∣∣∣∣
∂�

= 0 (5.23)

besides (5.22) in the case of x0 ∈ ∂�. This ϕx0,R′,R satisfies∥∥Dαϕx0,R′,R
∥∥∞ = O

(
(R − R′)−|α|)

uniformly in x0 ∈ � for each multi-index α, because of∥∥DαX
∥∥∞ = O(1). (5.24)
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Returning to the proof of Theorem 5.1, we recall that x0 is given on ∂�.
This is because the blowup near the threshold value ‖u0‖1 = 4π occurs on
the boundary, and the second moment to be used for the proof of this theorem
must be localized around the boundary point x0 ∈ ∂�.

Thus, for R > 0 sufficiently small, we take

φi = ϕx0,4i−1 R,2·4i−1 R

and set

ψi = φ4
i and m(x) = |X (x)|2∣∣ ∂X

∂x (x0)
∣∣ .

for i = 1, 2. Then, it holds that

|∇ψi | = 4ψ3/4
i |∇ϕi | = O(R−1)ψ

3/4
i . (5.25)

We also have

m(x) = O
( |x − x0|2

)
, ∇m(x) = O (|x − x0|) (5.26)

by (5.24).
Regarding m(x) as the weight function, we define the moment

I1(t) =
∫
�

u(x, t)m(x)ψ1(x) dx

localized around x0 ∈ ∂�. Eliminating v = v(x) of the right-hand side of

d I1

dt
=

∫
�

ut mψ1 dx

using the second equation of (5.1), and then making the symmetrization and
cut-off process, we can show the following lemma.

Lemma 5.3 Under the assumptions of the previous lemma, if

ρ(x, x ′) = [∇(mψ1)(x) · ∇x G(x, x ′)
]
ψ2(x

′)
+ [∇(mψ1)(x

′) · ∇x ′G(x, x ′)
]
ψ2(x), (5.27)

then it holds that∣∣∣ρ(x, x ′)+ 2

π
ψ1(x)ψ2(x

′)
∣∣∣ ≤ C R−1 (|x − x0| +

∣∣x ′ − x0
∣∣)

· ψ1(x)
1/2ψ2(x

′)+ C R−1
∣∣x ′ − x0

∣∣ψ2(x
′)1/2 (5.28)

with a constant C > 0.
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Proof: From the proof of Lemma 5.2, if � is simply connected, then relation
(5.18) holds with (5.19), where (η1, η2)∗ = (η1,−η2). Even if it is not the
case, these relations are localized to each component of ∂�, and generally we
have

G(x, x ′) = 1

2π
log

1

|X (x)− X (x ′)|
+ 1

2π
log

1

|X (x)− X (x ′)∗| + K (x, x ′) (5.29)

for x, x ′ ∈ B(x0, 16R) ∩� with

K ∈
(

Cθ,1+θ ∩ C1+θ,θ) (
B(x0, 16R) ∩�× B(x0, 16R) ∩�

)
. (5.30)

First, we take the term associated with

G1(x, x ′) = g(ξ, ξ ′) = 1

2π
log

1

|ξ − ξ ′|
for ξ = X (x) and ξ ′ = X (x ′). Since X is conformal, it holds that(

∂X

∂x

)
·

t(∂X

∂x

)
=

∣∣∣∣∂X

∂x

∣∣∣∣ · I d.

Defining

c(ξ) =
∣∣ ∂X
∂x

∣∣∣∣ ∂X
∂x (x0)

∣∣ and  i (ξ) = ψi (x),

we have

ρ1(x, x ′) ≡ [∇x (mψ1)(x) · ∇x G1(x, x ′)
]
ψ2(x

′)
+ [∇x ′(mψ1)(x

′) · ∇yG1(x, x ′)
]
ψ2(x)

= c(ξ) 2(ξ
′)∇ξ

(
|ξ |2 1(ξ)

)
· ∇ξ g(ξ, ξ ′)

+ c(ξ ′) 2(ξ)∇ξ ′
(∣∣ξ ′∣∣2 1(ξ

′)
)

· ∇ξ ′g(ξ, ξ ′)

= − ξ − ξ ′
2π |ξ − ξ ′|2 ·

{
c(ξ) 2(ξ

′)(2ξ 1(ξ)+ |ξ |2 ∇ξ 1(ξ))

− c(ξ ′) 2(ξ)(2ξ
′ 1(ξ

′)+ ∣∣ξ ′∣∣2 ∇ξ ′ 1(ξ
′))

}
.
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This implies ρ1 = −(I + II + III + IV + V) with

I = 1

π
c(ξ) 1(ξ) 2(ξ

′)

II = (ξ − ξ ′) · ξ ′
π |ξ − ξ ′|2

{
c(ξ) 2(ξ

′) 1(ξ)− c(ξ ′) 2(ξ) 1(ξ
′)
}

III = (ξ − ξ ′)
π |ξ − ξ ′|2 · ∇ξ 1(ξ)c(ξ) 2(ξ

′)
(
|ξ |2 − ∣∣ξ ′∣∣2)

IV = (ξ − ξ ′)
2π |ξ − ξ ′|2 · (∇ξ 1(ξ)− ∇ξ ′ 1(ξ

′)
)

c(ξ) 2(ξ
′)

∣∣ξ ′∣∣2
V = (ξ − ξ ′)

2π |ξ − ξ ′|2 · ∇′
ξ 1(ξ

′)(c(ξ) 2(ξ
′)− c(ξ ′) 2(ξ))

∣∣ξ ′∣∣2 .
We have c(ξ) = 1 + O (|x − x0|) and hence

I = 1

π
{1 + O (|x − x0|}) ψ1(x)ψ2(x

′).

Similarly, we obtain

II = (ξ − ξ ′) · ξ ′
π |ξ − ξ ′|2 {(c(ξ)− c(ξ ′)) 2(ξ

′) 1(ξ)

+ c(ξ ′) 2(ξ
′)( 1(ξ)− 1(ξ

′))
+ c(ξ ′)( 2(ξ

′)− 2(ξ)) 1(ξ
′)}

= O
(∣∣ξ ′∣∣) 2(ξ

′) 1(ξ)+ O
(∣∣ξ ′∣∣) O(R−1) 2(ξ

′)
+ O

(∣∣ξ ′∣∣) O(R−1) 1(ξ
′)

= O
(∣∣x ′ − x0

∣∣) {ψ2(x
′)ψ1(x)+ O(R−1)ψ2(x

′)
+ O(R−1)ψ1(x

′)}
III = (ξ − ξ ′)

π |ξ − ξ ′|2 · ∇ξ 1(ξ)c(ξ) 2(ξ
′)(ξ − ξ ′) · (ξ + ξ ′)

= O
(|x − x0| +

∣∣x ′ − x0
∣∣) O(R−1)ψ1(x)

1/2ψ2(x
′)

IV = O
(∣∣ξ ′∣∣2) O(R−2) 2(ξ

′) = O
( ∣∣x ′ − x0

∣∣ R−1)ψ2(x
′)

V = O
(∣∣ξ ′∣∣2) O(R−1)

∣∣∇ξ ′ 1(ξ
′)
∣∣

= O
(∣∣x ′ − x0

∣∣ R−1
)
ψ1(x

′)1/2,
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where (5.25) is used. These relations are summarized as

∣∣∣ρ1(x, x ′)+ 1

π
ψ1(x)ψ2(x

′)
∣∣∣

+ ≤ C

R

(|x − x0| +
∣∣x ′ − x0

∣∣)ψ1(x)
1/2ψ2(x

′)

+ C

R

∣∣x ′ − x0
∣∣ψ2(x

′)1/2

by ψ2 ≥ ψ1.
We turn to the term associated with

G2(x, y) = g∗(ξ, ξ ′) = 1

2π
log

1∣∣ξ − ξ ′∗
∣∣ .

Using ∂ψi
∂ν

∣∣
∂�

= 0, we obtain

∂ i

∂ξ2

∣∣∣∣
ξ2=0

= 0

for i = 1, 2. Writing �i (ξ) = φi (x), we also have ∂�i
∂ξ2

∣∣
ξ2=0 = 0, which

implies
∣∣ ∂�i
∂ξ2

∣∣ = O
(
R−2ξ2

)
. Using  i = �4

i , we have

∣∣∣∣∂ i

∂ξ2

∣∣∣∣ = O
(
 

3/4
i R−2ξ2

)
(5.31)

similarly to (5.25).
Now, we have

ρ2(x, x ′) ≡ [∇x (mψ1)(x) · ∇x G2(x, x ′)
]
ψ2(x

′)

+ [∇x (mψ1)(x
′) · ∇x ′G2(x, x ′)

]
ψ2(x)

= c(ξ) 2(ξ
′)∇ξ (|ξ |2 1(ξ)) · ∇ξ g∗(ξ, ξ ′)

+ c(ξ ′) 2(ξ)∇ξ ′(
∣∣ξ ′∣∣2 1(ξ

′)) · ∇ξ ′g∗(ξ, ξ ′)

= − (VI + VII + VIII + IX)
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with

VI = (ξ1 − ξ ′1)
π |ξ − ξ ′∗|2

{
c(ξ)ξ1 1(ξ) 2(ξ

′)− c(ξ ′)ξ ′1 1(ξ
′) 2(ξ)

}
VII = (ξ1 − ξ ′1)

2π |ξ − ξ∗|2
{

c(ξ)|ξ |2 1ξ1(ξ) 2(ξ
′)− c(ξ ′)|ξ ′|2 1ξ ′1(ξ

′) 2(ξ)
}

VIII = (ξ2 + ξ ′2)
π |ξ − ξ ′∗|2

{
c(ξ)ξ2 1(ξ) 2(ξ

′)+ c(ξ ′)ξ ′2 1(ξ
′) 2(ξ)

}
IX = (ξ2 + ξ ′2)

2π |ξ − ξ ′∗|2
{

c(ξ)|ξ |2 1ξ2(ξ) 2(ξ
′)+ c(ξ ′)|η|2 1ξ ′2(ξ

′) 2(ξ)
}
.

Similarly to G1(x, x ′), the estimate

∣∣∣VI + VII + (ξ1 − ξ ′1)2
π |ξ − ξ ′∗|2

 1(ξ) 2(ξ
′)
∣∣∣

≤ C R−1(|x − x0| + |x ′ − x0|
)
ψ1(x)

1/2ψ2(x
′)+ C R−1|x ′ − x0|ψ2(x

′)1/2

holds. On the other hand, we have

VIII = (ξ2 + ξ ′2)2
π |ξ − ξ ′∗|2

c(ξ) 1(ξ) 2(ξ
′)

− (ξ2 + ξ ′2)ξ ′2
π |ξ − ξ ′∗|2

{
(c(ξ)− c(ξ ′)) 1(ξ) 2(ξ

′)+ c(ξ ′)( 1(ξ)− 1(ξ
′))

· 2(ξ
′)+ c

(
ξ ′) 1(ξ

′)( 2(ξ
′)− 2(ξ)

)}
= (ξ2 + ξ ′2)2
π |ξ − ξ ′∗|2

c(ξ) 1(ξ) 2(ξ
′)+ (ξ2 + ξ ′2)ξ ′2

π |ξ − ξ ′∗|2

· O
(|ξ − ξ ′|)( 1(ξ) 2(ξ

′)+ O(R−1) 2(ξ
′)+ O(R−1) 1(ξ

′)
)
.

Now, estimate (5.31) gives

 1ξ2(ξ)+ 1ξ ′2(ξ
′) = O

((
ξ2 1(ξ)

3/4 + ξ ′2 (ξ ′)3/4
)
R−2

)
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and therefore from ξ2, ξ
′
2 ≥ 0 we have

IX = (ξ2 + ξ ′2)
2π |ξ − ξ ′∗|2

{
(c(ξ)− c(ξ ′))|ξ |2 1ξ2(ξ) 2(ξ

′)

+ c(ξ ′)(|ξ |2 − |ξ ′|2) 1ξ2(ξ) 2(ξ
′)

+ c(ξ ′)|ξ ′|2( 1ξ2(ξ)+ 1ξ ′2(ξ
′)) 2(ξ

′)

− c(ξ ′)|ξ ′|2 1ξ ′2(ξ
′)( 2(ξ

′)− 2(ξ))

}
= (ξ2 + ξ ′2)

2π |ξ − ξ ′∗|2
{

O
(|ξ − ξ ′|) |ξ |2 1ξ2(ξ) 2(ξ

′)

+ c(ξ ′)O
(|ξ − ξ ′|(|ξ | + |ξ ′|)) 1ξ2(ξ) 2(ξ

′)

+ c(ξ ′)|ξ ′|2O
((
ξ2 1(ξ)

3/4 + ξ ′2 1(ξ
′)3/4

)
R−2

)
 2(ξ

′)

+ c(ξ ′)|ξ ′|2 1ξ ′2(ξ
′)O

(
R−1|ξ − ξ ′|)}

= O(R−1)|ξ |2 1/2
1 (ξ) 2(ξ

′)+ O
(
R−1(|ξ | + |ξ ′|))

· 1/2
1 (ξ) 2(ξ

′)+ O(R−2)|ξ ′|2 1/2
1 (ξ ′).

These relations are summarized as∣∣∣ρ2(x, x ′)+ 1

π
ψ1(x)ψ2(x

′)
∣∣∣

≤ C

R

(|x − x0| + |x ′ − x0|
)
ψ1(x)

1/2ψ2(x
′)

+C

R
|x ′ − x0|ψ2(x

′)1/2.

Finally, from (5.30), (5.25), and (5.26) we have[∇(mψ1)(x) · ∇x K (x, x ′)
]
ψ2(x

′)+ [∇(mψ1)(x
′) · ∇y K (x, x ′)

]
ψ2(x

′)

= ψ2(x
′)

(
O(1)|x − x0|ψ1(x)+ O(R−1)|x − x0|2ψ1/2

1 (x)
)

+ ψ2(x)
(

O(1)|x ′ − x0|ψ1(x
′)+ O(R−1)|x ′ − x0|2ψ1/2

1 (x ′)
)

= O(1)
(
|x − x0|ψ1(x)ψ2(x

′)+ |x − x0|ψ1(x)
1/2ψ2(x

′)
)

+ O(1)
(
|x ′ − x0|ψ1(x

′)ψ2(x)+ |x ′ − x0|ψ1(x
′)1/2ψ2(x)

)
.

The proof is complete. �
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Now, we give the following proof.

Proof of Theorem 5.1: We have∣∣∣∂X

∂x
(x0)

∣∣∣∂m

∂ν
= ∇ξ |ξ |2 · ∂X

∂ν
= 2

∂X

∂ν
· X

= 2
∂X2

∂ν
· X2 = 0 on ∂�.

Also, we have the following estimates similar to (5.26), where x0 = (x01, x02):

m(x) = |x − x0|2 + O
( |x − x0|3

)
,

mxi = 2 (xi − xi0)+ O
( |x − x0|2

)
,

mxi x j = 2δi j + O
( |x − x0|

)
.

Defining

Ii (t) =
∫
�

u(x, t)m(x)ψi (x) dx,

we obtain

d

dt
I1 =

∫
�

ut mψ1 dx = −
∫
�

(∇u − u∇v) · ∇(mψ1) dx

=
∫
�

u�(mψ1) dx +
∫
�

u∇v · ∇(mψ1) dx

+
∫
�

u∇ log W · ∇(mψ1) dx = I + II + III

from the first equation of (5.1). Since

|∇ψi | ≤ C R−1ψ
1/2
i and |�ψi | ≤ C R−2ψ

1/2
i

hold similarly to (5.25), we obtain

I =
∫
�

u
{
ψ1�m + 4∇m · ∇ψ1 + m�ψ1

}
dx

≤ 4
∫
�

uψ1 dx + C R−1
∫
�

|x − x0|ψ1/2
1 u dx

≤ 4M1 + C R−1λ1/2 I 1/2
1 ,
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where Mi (t) = ∫
�
ψi (x)u(x, t) dx . We also have

III =
∫
�

u
(
ψ1∇ log W · ∇m + m∇ log W · ∇ψ1

)
dx

≤ C R−1
∫
�

|x − x0|ψ1u dx + C R−1
∫
�

|x − x0|2 ψ1/2
1 u dx

≤ C R−1
∫
�

|x − x0|ψ1/2
1 u dx ≤ C R−1λ1/2 I 1/2

1 .

Now, we apply the second equation of (5.1) to II and obtain

II =
∫
�

∫
�

u(x, t)∇x G(x, x ′) · ∇x (mψ1)(x)u(x
′, t) dx dx ′

=
∫
�

∫
�

u(x, t)ψ2(x
′)∇x G(x, x ′) · ∇x (mψ1)(x)u(x

′, t) dx dx ′

+
∫
�

∫
�

u(x, t)(1 − ψ2(x
′))∇x G(x, x ′)

· ∇x (mψ1)(x)u(x
′, t) dx dx ′ = IV + V.

Here, ∫
�

∫
�

· · · dx dx ′

of V is reduced to ∫∫
|x ′−x0|>16R, |x−x0|<8R

· · · dx dx ′

and estimated from above by∫∫
|x−x ′|>8R

| · · · | dx dx ′.

Therefore, it follows that

V ≤ C R−1
∫
�

∫
�

|x − x0|ψ1(x)
1/2u(x, t)u(x ′, t) dx dx ′

= C R−1λ

∫
�

|x − x0|ψ1(x)
1/2u(x, t) dx ≤ C R−1λ3/2 I 1/2

1 .

On the other hand, we have

IV = 1

2

∫
�

∫
�

u(x, t)ρ(x, x′)u(x′, t) dx dx′
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by the symmetrization, and then Lemma 5.3 implies∣∣∣III + 1

π
M1 M2

∣∣∣ ≤
∫
�

∫
�

u(x, t)

· 1

2

∣∣∣ρ(x, y)+ 2

π
ψ1(x)ψ2(y)

∣∣∣u(y, t) dxdy

≤ C R−1λ

∫
�

|x − x0|ψ1(x)
1/2u(x, t) dx

+ C R−1λ

∫
�

|y − x0|ψ2(y)u(y, t) dx

= C R−1λ

∫
�

|x − x0| (ψ1(x)
1/2 + ψ1(x))u(x, t) dx

+ C R−1λ

∫
�

|x − x0| (ψ2(x)− ψ1(x))u(x, t) dx

≤ C R−1λ3/2 I 1/2
1 + Cλ

∫
�

(ψ2(x)− ψ1(x))u(x, t) dx .

Thus, we have

IV ≤ − 1

π
M2

1 + C R−1λ3/2 I 1/2
1 + Cλ

∫
�

(ψ2(x)− ψ1(x))u(x, t) dx .

These relations are summarized as
d

dt
I1 ≤ 4M1 − 1

π
M2

1 + C∗R−1(λ3/2 + λ1/2)I 1/2
1 + C∗λ(M2 − M1) (5.32)

for t ∈ [0, Tmax) with a constant C∗ > 0 independent of R > 0 sufficiently
small, say 0 < R ≤ 1.

Here, we have

M2(t)− M1(t) ≤
∫

R/2<|x−x0|<8R
ψ2(x)u(x, t) dx

≤ 2

R

∫
�

|x − x0|ψ2(x)u(x, t) dx ≤ 2λ1/2 R−1 I2(t)
1/2

and hence

d I1

dt
≤ 4M1 − M2

1

π
+ C1 R−1(λ3/2 + λ1/2)I 1/2

2

follows. We also have

I2(t) = I1(t)+
∫
�

|x − x0|2 (ψ2(x)− ψ1(x)) u(x, t) dx

≤ I1(t)+ 16R2
∫
�

(ψ2(x)− ψ1(x)) u(x, t) dx
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and therefore

d I1

dt
≤ 4M1 − M2

1

π
+ C2 R−1

(
λ3/2 + λ1/2

)
I 1/2
1

+ 4C2
(
λ3/2 + λ1/2){ ∫

�

(ψ2(x)− ψ1(x)) u(x, t) dx
}1/2

is obtained.
Here, from (5.11) we deduce∣∣∣ d

dt

(
4M1 − M2

1

π

)∣∣∣ ≤
(

4 + λ

π

)
· (λ+ λ2)C∗R−2

and ∣∣∣ d

dt

∫
�

(
ψ2(x)− ψ1(x)

)
u(x, t) dx

∣∣∣ ≤ C∗
(
λ+ λ2)R−2,

noting 0 < R ≤ 1. Therefore, we obtain

d I1

dt
≤ 4M1(0)− M1(0)2

π
+ C2 R−1(λ3/2 + λ1/2)I 1/2

1

+ 4C3
(
λ2/3 + λ1/2){ ∫

�

(ψ2(x)− ψ1(x)) u0(x) dx
}1/2

+ C3
(
λ1/2 + λ3)(R−2t + R−1t1/2).

Finally, we have∫
�

(ψ2(x)− ψ1(x)) u0(x) dx ≤
∫

B(x0,4R)\B(x0,R/2)
u0(x) dx

≤ 4R−2 I2(0).

Thus, writing

B = C2
(
λ3/2 + λ1/2),

a(s) = C3
(
λ1/2 + λ3)(s2 + s),

J (t) = 4M1(t)− M1(t)2

π
+ 8B R−1 I2(t)

1/2,

and I (t) = I1(t), we obtain

d I

dt
≤ J (0)+ a

(
R−1t1/2) + B R−1 I (t)1/2. (5.33)
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Under the assumption of M1(0) > 4π , we can take η > 0 so small that
inequality (5.2) implies the existence of T > satisfying

J (0)+ a
(
R−1T 1/2) + B R−1 I (0)1/2 = −2δ < 0

and

I (0)− 2δT < 0.

Then, the standard continuation argument guarantees that

d I

dt
≤ 0 and I (t) ≤ I (0)

for t ∈ [0, T ). This implies

d I

dt
≤ −2δ (0 ≤ t < T )

and

I (T ) ≤ I (0)− 2δT < 0,

in turn. Then it is a contradiction and the proof is complete. �

The case x0 ∈ � is treated similarly, where the second moments Ii (t)
(i = 1, 2) can be localized without using the conformal mapping. Namely,
we replace the weight function by

m(x) = |x − x0|2 .
Then, the second term of the right-hand side of (5.29) is not involved in the
proof of the analogous fact to Lemma 5.3. Therefore, the inequality∣∣∣ρ(x, x ′)+ 1

π
ψ1(x)ψ2(x

′)
∣∣∣ ≤ C R−1 (|x − x0| +

∣∣x ′ − x0
∣∣)

· ψ1(x)
1/2ψ2(x

′)+ C R−1
∣∣x ′ − x0

∣∣ψ2(x
′)1/2

takes the place of (5.28) with ρ(x, y) kept in the right-hand side of (5.27).
Consequently, inequality (5.32) is replaced by

d I1

dt
≤ 4M1 − M2

1

2π
+ C∗R−1(λ3/2 + λ1/2)I 1/2

1 + C∗λ (M2 − M1) , (5.34)

and the following theorem is obtained.
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Theorem 5.2 If � ⊂ R2 is a bounded domain with smooth boundary ∂� and∫
B(x0,R)

u0(x) dx > 8π

holds for x0 ∈ � and 0 < R � 1 in (5.1), then there exists η > 0 determined
by λ = ‖u0‖1 and ‖u0‖L1(B(x0,R) such that

1

R2

∫
B(x0,4R)

|x − x0|2 u0(x) dx < η

implies Tmax < +∞.

Inequality (5.33) has a general form including the case of x0 ∈ �. In details,
taking

m(x) =
{
|x − x0|2 (x0 ∈ �)
|X (x)|2 / ∣∣ ∂X

∂x (x0)
∣∣ (x0 ∈ ∂�)

and ψR = ϕ4
x0,R,2R , we put

IR(t) =
∫
�

m(x)u(x, t)ψR(x) dx

MR(t) =
∫
�

u(x, t)ψR(x) dx

JR(t) = 4MR(t)− 4MR(t)2

m∗(x0)
+ 8B R−1 I4R(t)

1/2

for 0 < R � 1. Then it holds that

d IR

dt
(t) ≤ JR(0)+ a

(
R−1t1/2) + B R−1 IR(t)

1/2 (5.35)

for t ∈ [0, Tmax), where

B = C∗
(
λ3/2 + λ1/2)

and

a(s) = C∗
(
λ1/2 + λ3)(s2 + s)

with C∗ > 0 determined by �.
Inequality (5.35) will provide a motivation for the proof of Theorem 1.2.
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Equilibrium States

Self-assembly is the beginning of the selfness of life.
— H. Tanaka

In this chapter, we begin the study of the stationary problem to (3.1):

ut = ∇ · (∇u − u∇ (v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

τ
d

dt
v + Av = u for t ∈ (0, T ), (6.1)

where� ⊂ Rn is a bounded domain with smooth boundary ∂�, W = W (x) >
0 is a smooth function of x ∈ �, and A > 0 is a self-adjoint operator in
L2(�) with compact resolvent. This study provides several heuristic supports
Theorems 1.1 and 1.2, although it does not bring any rigorous proof or tool to
them.

In the nontrivial case u0(x) �≡ 0 of

u|t=0 = u0(x) ≥ 0,

we have u(x, t) > 0 for (x, t) ∈ � × (0, Tmax), and system (6.1) is provided
with the mass conservation ∥∥u(t)

∥∥
1 = ∥∥u0

∥∥
1 (6.2)
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and decrease of the Lyapunov function,

W(u, v) =
∫
�

(u log u − u log W − uv) dx + 1

2

∥∥A1/2v
∥∥2 (6.3)

satisfying (4.2):

d

dt
W(u, v)+ τ∥∥vt

∥∥2 +
∫
�

u |∇ (log u − v − log W )|2 dx = 0. (6.4)

We recall that Tmax > 0 denotes the supremum of the existence time of the
solution and ‖ · ‖ and ( , ) indicate ‖ · ‖2 and L2 inner product, respectively:

∥∥v∥∥ =
{∫
�

v2 dx

}1/2

, (v, w) =
∫
�

vw dx .

If

d

dt
W (u(t), v(t)) = 0

holds at some t = t0 ∈ (0, Tmax), then it follows that

log u − v − log W = constant in �

for u = u(t0) and v = v(t0) from the third term of the left-hand side of (6.4).
Thus, we obtain

u = λW ev∫
�

W ev dx
(6.5)

for λ = ‖u0‖1. In the case of τ > 0, (6.4) implies also vt (t0) = 0. Therefore,
in both cases of τ > 0 and τ = 0, we have

u = Av

by (6.1), and hence

v ∈ dom(A) and Av = λW ev∫
�

W ev dx
(6.6)

follow, where dom(A) denotes the domain of A. If v = v(x) solves (6.6)
conversely, then (u, v) with u = u(x) defined by (6.5) is a stationary solution
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to (6.1) satisfying (6.2). Thus, the stationary problem for (6.1) with ‖u0‖1 = λ

is formulated as (6.6), which is equivalent to

log u − A−1u − log W = constant,
∥∥u

∥∥
1 = λ (6.7)

in terms of u = u(x) > 0.
Problem (6.6) with n = 2 arises in several areas — geometry, fluid dynam-

ics, field theory, combustion theory, chemical reaction theory, and so on — and
we can use the method of complex variables, spectral analysis combined with
isoperimetric inequalities on surfaces, the bubbled Harnack principle, and so
forth [166]. Another device is the method of rescaling, often called the blowup
analysis [88].

An example of (6.6) is

−�v = λW ev∫
�

W ev dx
in �,

v = 0 on ∂�, (6.8)

where � ⊂ R2 is a bounded domain with smooth boundary ∂�, and W =
W (x) > 0 is a smooth function defined on �. This problem is related to the
complex function theory and the theory of surfaces, but if W ≡ 1 it arises also
in statistical mechanics as the mean field equation of many vortex points in
Onsagar’s formulation [82, 20, 21].

Another example is the prescribed Gaussian curvature equation studied by
Kazdan and Warner [80],

−�gv = λ
( W ev∫

M W ev dvg
− V

)
on M, (6.9)

where (M, g) is a compact Riemannian surface, and V = V (x) and W =
W (x) are smooth functions on M satisfying W (x) > 0 somewhere and∫

M
V dvg = 1.

This problem is relative to the stationary problem of chemotaxis associated
with the (JL) field, and here,� is replaced by the two-dimensional Riemannian
surface M without boundary and �g and dvg indicate the Laplace–Beltrami
operator and volume element, respectively.

The constant case of V = V (x) often arises in (6.9):

−�gv = λ
( W ev∫

M W evdvg
− 1

vol (M)

)
on M. (6.10)
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In fact, the solution of Tarantello [171], describing the limiting state in the
relativistic Abelian Chern-Simons gauge theory concerning superconductivity
in high temperature, solves (6.10), where (M, g) is a flat torus, λ = 4π , and
W = exp u0 with u0 = u0(x) satisfying

−�u0 = 4πN

vg(M)
− 4π

N∑
j=1

δp j (dx) on M

and ∫
M

u0 dvg = 0

for p1, . . . , pN ∈ M. On the other hand, Nirenberg’s problem is nothing but
(6.10) in the case of M = S2 and λ = 8π [4, 22, 26, 86, 103].

Finally, we note that (6.6) in the (N) field is described as

−�v + av = λW ev∫
�

W ev dx
in �,

∂v

∂ν
= 0 in ∂�, (6.11)

where � ⊂ R2 is a bounded domain with smooth boundary ∂�, a > 0 is a
positive constant, W = W (x) > 0 is a smooth function defined on �, and ν is
the outer unit normal vector on ∂�.

Variational structures of these problems have their own real analytic profiles.
For instance, v = v(x) is a solution to (6.8) with W (x) ≡ 1 if and only if it is
a critical point of the functional

Jλ(v) = 1

2

∥∥∇v∥∥2
2 − λ log

( ∫
�

ev dx
)

defined for v ∈ H1
0 (�). Then, the Trudinger–Moser inequality [102] assures its

global minimizer for λ ∈ (0, 8π), and hence the solution to (6.8). If � ⊂ R2

is simply connected and λ ∈ (0, 8π), then this problem has a unique solu-
tion [113, 162]. It is proven by the bifurcation theory, spectral analysis, and
an isoperimetric inequality on surfaces [5]. If � has genus g ≥ 1, on the
contrary, then the mini-max principle is applicable, and there is a solution for
λ ∈ (8π, 16π) [39]. It is proven by the concentration behavior of blowup func-
tions associated with the Trudinger–Moser inequality. (See [25] concerning the
nontriviality of this type of solution applied to the mean field equation (6.9)
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with constants W (x) and V (x).) If W (x) is not constant in (6.8), on the other
hand, then the associated functional

Jλ(v) = 1

2

∥∥∇v∥∥2
2 − λ log

( ∫
�

W (x)ev dx
)

defined for v ∈ H1
0 (�) may have the minimizer for λ = 8π [121].

If W = W (x) is constant, then problems (6.10) and (6.11) admit constant so-
lutions. Nonconstant solutions to these problems are obtained by the mountain
pass lemma [161, 144], where the blowup analysis is applied. In more detail,
the blowup of a family of solutions can occur only at the quantized value of
λ in 8πN or 4πN [18, 88], and therefore, first, existence of the solution is as-
sured for almost every λ by Struwe’s argument [74], and then the solution for
the nonquantized value of λ is obtained by this quantization.

In general, the quantized blowup mechanism for the family of solutions
plays a fundamental role in the study of this kind of elliptic problem [155].
This quantization was observed first in (6.8) with W (x) ≡ 1 using complex
variables [114, 115]. Then, [18, 88] introduced the method of the Green’s func-
tion and that of the blowup analysis using sup + inf inequality [140], and after
that, some refinements were done [87, 94, 190]. If the boundary condition is
not imposed, then the multiblowup points can occur to the solution sequence
[18, 32, 88]. On the contrary, extra constraints on the family such as the bound-
ary condition make any blowup point simple, and furthermore, their locations
are controlled by the Green’s function [87, 94, 115, 190].

The quantized blowup mechanism stated above induces a related, but dif-
ferent approach to (6.6) from the variational method, that is, the topological
degree [87]. The advantage of this method is its stability under rough pertur-
bations, and we shall describe this situation in more detail for the Gaussian
curvature equation (6.9). A related topic is the reverse theory of the classi-
fication of the singular limit as λ → λ0 ∈ 8πN, that is, singular pertur-
bation, constructing classical solutions close to each singular limit for (6.8)
with W (x) ≡ 1 [100, 184]. After several refinements and generalizations
[101, 163, 183], Baraket and Pacard [7] showed that the classification of [115]
is optimal; the generic singular limit of [115] generates a family of classical
solutions converging to it.

Describing the topological degree approach, we recall that the blowup of
the solution sequence occurs only at the quantized values of λ, and there-
fore we have local uniform boundedness of the solution associated with λ
in each connected component of R \ 8πN. In particular, the total degree of
the solution, denoted by d(λ), is constant in each connected component of
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λ ∈ [0,∞) \ 8πN. The quantized blowup mechanism admits even continuous
perturbation of W = W (x) > 0 in the uniform norm. In more details, d(λ)
does not depend on the continuous function W = W (x) > 0, nor on the
conformal deformation of M, and therefore we can take suitable representa-
tives in calculating d(λ). In a serious papers, C.-C. Chen and C.-S. Lin used
this structure, and applied the methods of moving plane and moving sphere
[27, 28, 29, 89, 90, 91]. Then, using the blowup analysis, they succeeded in
calculating d(λ) precisely, and the total degree d(λ) is determined by the topol-
ogy of M [30, 31]. In more detail, by the study of the linearized operator using
the scaling argument, they calculated the discrepancy of d(λ) at each quantized
value λ ∈ 8πN .

Actually, for (6.10) we have

d(λ) =
(

m − χ(M)

m

)
if λ ∈ (8πm, 8π(m + 1)) with m = 0, 1, . . . , where χ(M) denotes the Euler
characteristics of M and(

m1

m2

)
=

⎧⎨⎩
m2(m2 − 1) · · · (m2 − m1 + 1)

m1!
(m1 > 0),

1 (m1 = 0).

If g denotes the genus of M, then it holds that χ(M) = 2 − 2g. In particular,
χ(S2) = 2 and hence we have

d(λ) = (m − 2)(m − 3) · · · (−1)

m!
=

⎛⎝ 0 (m ≥ 2)
−1 (m = 1),
1 (m = 0),

⎞⎠ (6.12)

for λ ∈ (8πm, 8π(m + 1)) whenever M is homeomorphic to S2. In the case
that M is homeomorphic to the torus T 2, we have χ(M) = 0, and it holds
that

d(λ) = 1 (6.13)

for any λ ∈ [0,∞) \ 8πN.
In the (JL) field defined by (3.4), if � ⊂ R2 is simply connected, then the

domain � is conformally equivalent to the chemisphere. Attaching two copies
of them, we obtain (6.9) on S2 by the boundary condition of (9.5). Therefore,
the latter problem is transformed into the former problem with even symmetry.
Similarly, if � is doubly connected, then we reach the problem on the torus.
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Therefore, if we can find W = W (x) such that any solution to (6.10) has such
a symmetry, then formula (6.12) is transformed into a form valid for this prob-
lem, that is, λ replaced by 2λ. (So far, this argument is not justified, although
there is K = K (x) such that any solution to (6.10) for M = S2 is rotation
invariant [89].)

Concerning (6.8) with 0 < W = W (x) ∈ C1(�), we have

d(λ) =
(

m + 1 − g
m

)
for λ ∈ (8πm, 8π(m + 1)), where g denotes the genus of �, and in particular,
if � is not simply connected, then any λ �∈ 8πN admits a solution [31]. Using
the quantized blowup mechanism again, this existence result is valid for all
λ �∈ 8πN and 0 < W = W (x) ∈ C(�), and in this way we have an extension
of the result of [39] concerning the existence of the solution in the case of
g ≥ 1.

In this book, problem (6.6) is regarded as a stationary state of (6.1), and the
effect that these profiles of the stationary problem suggest for the dynamics
of the nonstationary problem is studied. In fact, we call τ > 0 and τ = 0
the full and simplified systems, respectively. In the simplified system, we have
v = A−1u, and therefore the Lyapunov function W(u, v) defined by (6.3),

W(u, v) =
∫
�

(u log u − u log W − uv) dx + 1

2

∥∥A1/2v
∥∥2
,

is reduced to the free energy:

F(u) = W(u, A−1u)

=
∫
�

(u log u − u log W ) dx − 1

2
(A−1u, u).

Since the stationary state is regarded as a critical point of the free energy, this
F(u) induces a variational structure to (6.1), that is, in the stationary state,
u = u(x) > 0 is a critical function of the functional F defined on

Pλ = {
u : measurable

∣∣ u ≥ 0 a.e.,
∥∥u

∥∥
1 = λ

}
, (6.14)

and a similar variational structure is adopted for (6.8) [20, 21].
On the other hand, problem (6.6) has a variational structure of its own; it is

not hard to see, at least formally, that v = v(x) is a solution to (6.6) if and only
if it is a critical point of the functional

Jλ(v) = 1

2

∥∥A1/2v
∥∥2 − λ log

( ∫
�

W ev dx
)
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defined for v ∈ V ≡ D(A1/2). Furthermore, the linearized operator around the
stationary solution v = v(x) is associated with the bilinear form defined on
V × V ,

A(ϕ, ϕ) = ∥∥A1/2ϕ
∥∥2 −

∫
�

pϕ2 dx + 1

λ

{ ∫
�

pϕ dx
}2
,

where

p = λW ev∫
�

W ev dx
,

and the abstract theory of Friedrichs-Kato [77] concerning the self-adjoint op-
erator and associated bilinear form is applicable.

In this way we have two structures of variation to the stationary problem of
(6.1). Actually, they are equivalent to each other. Here is the key identity for
the proof:

W
( λW ev∫
�

W ev dx
, v

)
= Jλ(v)+ λ log λ. (6.15)

This means that the functionals F(u) and Jλ(v) + λ log λ are nothing but the
restrictions of W(u, v) to the manifolds

M =
{
(u, v)

∣∣ v = A−1u,
∥∥u

∥∥
1 = λ

}
and

N =
{
(u, v)

∣∣ u = λW ev∫
�

W ev dx

}
,

respectively. Then, we can see that the intersection of these manifolds coin-
cides with the set of stationary solutions. However, these manifolds M and N
meet transversally, and the spectral equivalence described above is never triv-
ial. Here, an algebraic property of W(u, v) takes a role and we have the vanish-
ing of Wv and Wu on the tangential bundles of M and N , respectively. Nev-
ertheless, this spectral equivalence is still reasonable, because F(u), W(u, v),
and Jλ(v) + λ log λ are regarded as the free energies for (6.1) with τ = 0,
0 < τ < +∞, and τ = +∞, respectively.

Actually, the Lyapunov function W(u, v) defined by (6.3) has a remarkable
structure. The first term, ∫

�

u(log u − 1) dx,
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indicates physically (−1) times entropy, but is associated with the Zygmund
norm mathematically. This structure is described at the end of Chapter 4; the
Orlicz space L log L(�) is provided with the norm

[ f ]L log L =
∫
�

| f | log

(
e + | f |∥∥ f

∥∥
1

)
dx .

We note that L log L(�) and exp(�) form a duality, which is regarded as a
local version of the one between Hardy and BMO spaces valid in a two-space
dimension [135]. In this context, the third term of W(u, v),∫

�

uv dx,

is nothing but the paring of this duality, and the fourth term,

1

2

∥∥A1/2v
∥∥2

is usually equivalent to the square of the H1 norm. Actually, in the concrete
cases of the (N), (JL), and (D) fields, we have V = D(A1/2) for V = H1(�),
V = H1(�) ∩ L2

0(�), and V = H1
0 (�), respectively, where

L2
0(�) =

{
v ∈ L2(�)

∣∣ ∫
�

v dx = 0

}
.

In the case of n = 2, furthermore, we have a fine real analytic structure of
H1 ⊂ BMO, which guarantees

W(u, v) ≈ [u]L log L + ∥∥v∥∥2
V − 〈v, u〉L log L ,exp

provided with the inclusion and the duality

V ↪→ exp ∼= (L log L)′.

These structures are useful for the construction of the local dynamical theory
around the equilibrium point of (6.1).

Equivalence of these variations can be extended to the general system pos-
sessing the Lyapunov function. The underlying structure is nothing but the
Toland duality in a convex analysis, where the Lyapunov function acts as the
Lagrange function. This formulation covers many mathematical models pro-
posed in mean field theories, and especially their local dynamics around the
equilibrium point is described in a unified way. See the final chapter.



7

Blowup Analysis for Stationary
Solutions

This chapter studies the quantized blowup mechanism of the stationary system
of chemotaxis. Actually, Ma and Wei [94] took

−�v = λW (x)ev∫
�

W (x)ev dx
in �,

v = 0 on ∂� (7.1)

and showed the following theorem, where � ⊂ R2 is a bounded domain with
smooth boundary ∂�, and W = W (x) > 0 is a C1 function of x ∈ �.

Theorem 7.1 If {(λk, vk)} is a family of solutions to (7.1) satisfying

λk → λ0 ∈ [0,+∞) and
∥∥vk

∥∥∞ → +∞,
then λ0 ∈ 8πN. Furthermore, passing through a subsequence, we have

λ0 = 8π · � S
with S being the blowup set:

S =
{

x0 ∈ � ∣∣ vk(xk)→ +∞, xk → x0 for some {xk} ⊂ �
}
.

We have S ⊂ � and

vk(x) →
∑
x0∈S

8πG(x, x0) (7.2)
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locally uniformly in � \ S, and the location of blowup points is controlled by

∇x
(
8πK (x, x0)+

∑
x ′

0∈S\{x0}
8πG(x, x ′

0)
)∣∣

x=x0
+ ∇x log W (x)

∣∣
x=x0

= 0, (7.3)

which is valid for any x0 ∈ S. Here, G = G(x, x ′) denotes the Green’s func-
tion for −� under the Dirichlet boundary condition, and

K (x, x ′) = G(x, x ′)+ 1

2π
log

∣∣x − x ′∣∣
is its regular part.

This theorem is a generalization of [115] for the case W (x) = 1, where
the method of complex variables is applied. The idea is roughly described as
follows [166].

First, we take

z = x1 + ı x2 and z = x1 − ı x2

for x = (x1, x2) ∈ �, and put

s = vzz − 1

2
v2

z (7.4)

for the solution v = v(x) to (7.1). Then, the equation

−�v = λev∫
�

ev dx

reads

vzz = −σ
4

ev

for σ = λ/
∫
�

ev dx , and hence it follows that

sz = vzzz − vzvzz = 0,

and therefore s = s(z) is a holomorphic function of z. On the other hand, (7.4)
is regarded as the Riccati equation of v and hence φ = e−v/2 satisfies

φzz + 1

2
sφ = 0. (7.5)
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Now, we take the fundamental system of solutions to (7.5), denoted by
{φ1, φ2}, satisfying

φ1
∣∣
z=z∗ = ∂

∂z
φ2

∣∣
z=z∗ = 1

and

∂

∂z
φ1

∣∣
z=z∗ = φ2

∣∣
z=z∗ = 0,

where z∗ = x∗
1 + ı x∗

2 is obtained by the maximum point x∗ = (x∗
1 , x∗

2 ) of v(x).
Then it holds that

e−v/2 = f1(z)φ1(z)+ f2(z)φ2(z)

with some functions f1 and f2 of z. Here, we have

f1(z) = C1φ1(z), f2(z) = C2φ2(z)

C1 = e−v/2∣∣
x=x∗, C2 = σ

8
ev/2

∣∣
x=x∗,

where f1(z) = f 1(z) and f2(z) = f 1(z), and therefore

e−v/2 = C1 |φ1|2 + C2 |φ2|2 . (7.6)

Next, given a family
{(
λk, vk(x)

)}
satisfying

−�vk = λkevk∫
�

evk dx
in �, vk = 0 on ∂� (7.7)

and

lim
k→∞ λk = λ0 ∈ [0,+∞), lim

k→∞
∥∥vk

∥∥∞ = +∞,

we apply the arguments of reflection and the boundary estimate [36, 52], and
show that {vk(x)} is uniformly bounded near the boundary up to its derivatives
of any order. Thus, we obtain S ⊂ �, and hence the uniform boundedness
of the holomorphic functions {sk(z)} near ∂�. This implies ‖sk‖∞ = O(1)
by the maximum principle, and then Montel’s theorem assures the existence
of a subsequence, still denoted by {sk(z)}, and that of a holomorphic function
s0 = s0(z) of z ∈ � such that

sk(z) → s0(z) (7.8)
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locally uniformly in �.
The holomorphic function s = sk(z), on the other hand, induces the analytic

functions φ1 = φk1(z) and φ2 = φk2(z) of z ∈ � similarly, and the above
convergence (7.8) implies the existence of their limiting functions denoted by
φ01(z) and φ02(z), that is,

lim
k→∞φk1(z) = φ01(z), lim

k→∞φk2(z) = φ02(z),

locally uniformly in z ∈ �. Then, making k → ∞ in (7.6) for (v, φ1, φ2) =
(vk, φk1, φk2), we obtain

e−v0/2 = C02 |φ02|2

with C02 ∈ [0,+∞], because Ck1 = e−‖vk‖∞/2 → 0. Here, v0(x) is the
limiting function of {vk(x)} in the weak topology of W 1,q(�) for q ∈ (1, 2),
which is assured by the L1 estimate [19]. We can show also that λ0 < +∞
implies C02 < +∞, and that the blowup set of {vk}, denoted by S, coincides
with the set of zeros of φ02. Therefore, S is discrete in � from the theorem
of identity, because the analytic function φ02 cannot be identically zero. This
implies the finiteness of S by S ⊂ �. We can show also∫

�

evk dx → +∞ (7.9)

and therefore v0 = v0(x) is a harmonic function of x ∈ � \ S. However, each
x0 ∈ S is a removable isolated singular point of

s0 = v0zz − 1

2
v2

0z,

and then the residue analysis of vanishing coefficients of poles of the first and
the second orders guarantees the mass quantization in the form of

−�v0(x) dx =
∑
x0∈S

8πδx0(dx),

and also the control of the location of the blowup point (7.3), respectively.
In this argument, relation (7.9) takes an important role. In this connection,

we mention that first, the above problem was formulated by

−�vk = σkevk in �, vk = 0 in ∂�,

with σk ↓ 0 [115]. This formulation includes the case

λk = σk

∫
�

evk dx → +∞,
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where vk(x) → +∞ occurs for any x ∈ �. (Radially symmetric solutions on
annulus have such a profile. See [92, 111, 116].)

To treat the general nonlinearity, [115] used the estimate of [53] derived from
Obata’s identity [122], and consequently some technical conditions about the
nonlinearity were assumed. Then, using another argument, [190] eliminated
these assumptions, and thus the asymptotic behavior of the solution presented
in Theorem 7.1 is valid for any exponentially dominated nonlinearity, homoge-
neous in space. On the other hand, [7] constructed a family of solutions for the
homogeneous case W (x) = 1 under the nondegeneracy of the blowup points.
In fact, (7.3) in this case means that (x∗

1 , . . . , x∗
m) is a critical point of

H(x1, . . . , xm) = 1

2

∑
i

R(xi )+
∑
i �= j

G(xi , x j ),

where S = {
x∗

1 , . . . , x∗
m

}
. If this critical point is nondegenerate, then there

is a family of solutions {(λ, v(x))} for (7.1) satisfying (7.2) locally uniformly
on � \ S. In this connection, we have the previous work [155, 183] on the
rectangular domain. See also [166] for their background and motivations.

To treat the inhomogeneous case of (7.1), [18] made use of a rough estimate
to derive (7.9). Later, [125] proposed the method of symmetrization stated
below. It assures mass quantization first, and then derives (7.9) as its conse-
quence. Actually, [18] proposed a real analytic argument based on the linear
theory. More precisely, we can show the following theorem, using Brezis–
Merle’s inequality (4.25), although the proof is not provided here.

Theorem 7.2 Let � ⊂ R2 be a bounded domain, and suppose that vk =
vk(x) ∈ C2(�) solves

−�vk = Vk(x)e
vk in �

with Vk(x) satisfying

0 ≤ Vk(x) ≤ b in � and
∫
�

evk dx = O(1),

where b > 0 is a constant independent of k = 1, 2, . . . . Then, passing through
a subsequence, we have the following alternatives.

1. {vk(x)} is locally uniformly bounded in �.

2. For any compact set K ⊂ �, it holds that

supK vk → −∞.
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3. There is a set of finite points
{

y1, . . . , yp
}

and sequences
{

xi
k

}
for i =

1, . . . , p in � satisfying

xi
k → yi and vk(x

i
k)→ +∞.

Furthermore, for any compact set K ⊂ � \ {
y1, . . . , yp

}
we have

supK vk → −∞
and

Vk(x)e
vk(x) dx ⇀

p∑
i=1

ĉiδyi (dx)

in M(�) with some ĉi ≥ 4π .

Li and Shafrir [88] then introduced the blowup analysis to this problem and
refined the above theorem as follows.

Theorem 7.3 If {Vk(x)} converges locally uniformly in �, then in the third
alternative of the above theorem it holds that ĉi ∈ 8πN for i = 1, . . . , p.

The first fundamental technique of the blowup analysis is the scaling. More
precisely, if

−�v = V (x)ev (7.10)

holds, then ṽ(x) = v(δx + x0)+ 2 log δ with δ = e−v(x0)/2 satisfies

−�ṽ = V (δx + x0)e
ṽ (7.11)

and therefore any result valid for (7.10) is applicable to (7.11). The next tech-
nique is to “envelope” the blowup mechanism inside this transformation, and
to show the vanishing of the residual term other than the collapses. For this
purpose, sup + inf inequality or asymptotic symmetry is used [87, 88]. Later,
we shall follow this story for the nonstationary problem (1.1), by different tools
and structures.

As described above, generally, the multiblowup of ĉi �= 8π can occur, al-
though it is not the case if the boundary condition is provided. Actually, it is
indicated in [88] that the following theorem is obtained by G. Wolansky, and
we can see the proof in [87, 118].
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Theorem 7.4 In addition to the assumptions of the previous theorem, if
{Vk(x)} are C1 functions satisfying∥∥∇Vk

∥∥∞ ≤ C1

and it holds that

max
k
vk − min

k
vk ≤ C2

with the constants C1, C2 independent of k, then in the third alternative of
Theorem 7.2 we have ĉi = 8π for i = 1, . . . , p.

Now, we return to [94]. In fact, problem (7.1) reads:

−�v = V (x)ev in �,

v = 0 on ∂�,

with

V (x) = λW (x)∫
�

W (x)ev dx
.

First, we show that the blowup set is contained in � by the argument of [52].
Namely, given x0 ∈ ∂�, we take B(x1, r) ⊂ �c such that B(x1, r)∩� = {x0}.
Then, using the Kelvin transformation

y = r2 x − x1

|x − x1|2
and w(y) = v(x)

we obtain

−�w = f (y, w) in �′,
w = 0 on ∂�′,

where x ∈ � �→ y ∈ �′ ⊂ B(0, r) and

f (y, w) = r4

|y|4 V
(

x1 + r2 y

|y|2
)

ew.

Now, we take the outer normal derivative from �′ at

y0 = x0 − x1 ∈ ∂�′,
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putting y = ρ(x0 − x1)/r with ρ = |y| ∈ (0, r):
∂

∂ρ
f (y, w)

∣∣∣
ρ=r

= ∂

∂ρ

{ r4

ρ4
V
(

x1 + r

ρ
(x0 − x1)

)}∣∣∣
ρ=r

· ew

=
{
−4r−1V (x0)+ ∇V (x0) · νx0

}
· ew. (7.12)

Here,

νx0 = x1 − x0

r

denotes the outer unit normal vector on ∂� at x0. The right-hand side of (7.12)
is negative for 0 < r � 1 by

∇ log V = ∇ log W

and W (x0) > 0, and therefore the moving plane method [52] is applicable.
Consequently, we have r > 0 and δ ∈ (0, 1) such that for any x0 ∈ ∂� and the
unit vector ξ satisfying

∣∣ξ · νx0

∣∣ < 1 − δ, it holds that

d

ds
v(x0 + sξ) < 0

for s ∈ (−r, 0). The L1 estimate [19] guarantees∥∥vk
∥∥

W 1,q (�)
= O(1)

for q ∈ [1, 2), and therefore we can show that the blowup set S of {vk} is
contained in � by the method of [36]. On the other hand, we have vk(x) > 0
from the maximum principle and also ‖vk‖∞ → +∞ from the assumption.
Therefore, the first and the second alternatives of Theorem 7.2 are excluded,
and now Theorem 7.4 implies

Vk(x)e
vk dx ⇀ 8π

∑
x0∈S

δx0(dx) (7.13)

in M(�). Then, convergence (7.2) in W 1,q(�) follows from the L1 estimate
for q ∈ [1, 2), and also it is locally uniform on � \ S by the elliptic regularity.

To show (7.3), we make use of the Pohozaev-type identity [79, 80].

Lemma 7.1 If D ⊂ R2 is a domain with C3 boundary ∂D, and v ∈ C3(D)
and V ∈ C1(D) satisfy

−�v = V (x)ev in D,
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then it holds that∫
D

∇V (x)ev dx =
∫
∂D

(∂v
∂ν

∇v − 1

2
|∇v|2 ν + V (x)evν

)
dσ, (7.14)

where ν denotes the outer unit normal vector on ∂D.

Proof: The proof is elementary. In fact, we have

−
∫

D
�v∇v dx =

∫
D

V (x)ev∇v dx

=
∫
∂D

V (x)evνdσ −
∫

D
∇V (x)ev dx,

which means ∫
D

∇V (x)ev dx =
∫
∂D

V (x)evνdσ +
∫

D
�v∇v.

Here, we have

Ii j =
∫

D
vi iv j =

∫
∂D
νiviv j dσ −

∫
D
vivi j dx

=
∫
∂D

(
νiviv j − νivvi j

)
dσ +

∫
D
vvi i j dx

=
∫
∂D

(
νiviv j − νivvi j + ν jvvi i

)
dσ − Ii j

and hence

Ii j = 1

2

∫
∂D

(
νiviv j − νivvi j + ν jvvi i

)
dσ

follows. This implies∫
D
�v∇v dx = 1

2

∫
∂D

(
∂v

∂ν
∇v − v ∂

∂ν
(∇v)+ νv�v

)
dσ

=
∫
∂D

∂v

∂ν
∇vdσ + 1

2

∫
∂D

(
− ∂

∂ν
(v∇v)+ νv�v

)
dσ

=
∫
∂D

∂v

∂ν
∇vdσ − 1

2

∫
D
(�(v∇v)− ∇(v�v)) dx

=
∫
∂D

∂v

∂ν
∇v − 1

2

∫
D

∇ |∇v|2 dx

=
∫
∂D

(
∂v

∂ν
∇v − 1

2
|∇v|2 ν

)
dσ,

and then (7.14) is obtained. �
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Now, we complete the following proof.

Proof of Theorem 7.1: Taking x0 ∈ S and small r > 0, we apply (7.14) for

Vk(x) = λW (x)∫
�

W (x)evk dx

and D = B(x0, r). From

−�vk = Vk(x)e
vk in D,

this implies∫
D

[∇ log W
]

Vk(x)e
vk dx =

∫
D

[∇ log Vk
]

Vkevk dx

=
∫

D
∇Vkevk dx =

∫
∂D

{∂vk

∂ν
∇vk − 1

2

∣∣∣∣∇vk

∣∣∣2 + Vkevkν

}
dσ,

where the left-hand side converges to

8π∇ log W (x0)

by (7.13).
To treat the right-hand side, we make use of convergence (7.2), which holds

locally uniformly in � \ S, and the elliptic regularity. We also apply (7.13) for
the third term, and in this way we see that the right-hand side converges to∫

∂D

(∂v0

∂ν
∇v0 − 1

2
|∇v0|2 ν

)
dσ,

where v0(x) = 8π
∑

x ′
0∈S G(x, x ′

0). Then, letting

v1(x) = 8πG(x, x0)

and

v2(x) = 8π
∑

x ′
0∈S\{x0}

G(x, x0),

we obtain

lim
r↓0

∫
∂D

(∂v0

∂ν
∇v0 − 1

2
|∇v0|2 ν

)
dσ = lim

r↓0

(
I + II

)
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with

I =
∫
∂D

(∂v1

∂ν
∇v1 − 1

2
|∇v1|2 ν

)
dσ

and

II =
∫
∂D

(∂v1

∂ν
∇v2 + ∂v1

∂ν
∇v2 − ∇v1 · ∇v2ν

)
dσ.

Furthermore, we have

v1(x) = v11(x)+ v12(x)

with

v11(x) = 8π · 1

2π
log

1

|x − x0|
and

v12(x) = K (x, x0),

and hence it follows that

lim
r↓0

II = lim
r↓0

∫
∂D

(
∂v11

∂ν
∇v2 + ∂v2

∂ν
∇v11 − ∇v11 · ∇v2ν

)
dσ.

Here, we have

lim
r↓0

∫
∂D

∂

∂ν

( 1

2π
log

1

|x − x0|
)

f (x) dσx = − f (x0),

lim
r↓0

∫
∂D

∇
( 1

2π
log

1

|x − x0|
)

f (x) dσx = 0,

lim
r↓0

∫
∂D

∇
( 1

2π
log

1

|x − x0|
)

j (x)ν dσx = 0,

for continuous f (x) and j (x). Thus, we obtain

lim
r↓0

II = lim
r↓0

∫
∂D

∂v11

∂ν
∇v2dσ = −8π∇v2(x0)

= −64π2
∑

x ′
0∈S\{x0}

∇x G(x0, x ′
0).
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On the other hand, we have

lim
r↓0

I = lim
r↓0
(III + IV)

with

III =
∫
∂D

(
∂v11

∂ν
∇v11 − 1

2
|∇v11|2 ν

)
dσ

and

IV =
∫
∂D

(
∂v11

∂ν
∇v12 + ∂v12

∂ν
∇v11 − ∇v11 · ∇v12ν

)
dσ.

Similarly to the case of II, we obtain

lim
r↓0

IV = −64π2∇xK(x0, x0).

Finally, we have∫
∂D

∂

∂ν
log |x − x0| ∇ log |x − x0| − 1

2
|∇ log |x − x0||2 ν dσ

=
∫
∂D

(
1

|x − x0| · x − x0

|x − x0| − 1

2

x − x0

|x − x0|2
)

dσ

= 1

2

∫
∂D

x − x0

|x − x0|2
dσ → 0

as r ↓ 0. Then, (7.3) follows and the proof is complete. �

Problem (7.1) is the stationary state for the (D) field. For the (N) and (JL)
fields, there arise boundary blowup points, which are hard to control by the
above-stated methods. However, the method of symmetrization is efficient even
for this problem, and the following theorem is a special case of [124]. Thus,
several techniques are available for this kind of problem: Brezis–Merle’s in-
equality, blowup analysis, sup + inf inequality, Kazdan–Warner’s inequality,
complex variables, symmetrization, and so forth.

The rest of this chapter is devoted to the following theorem [124, 125].

Theorem 7.5 Let � ⊂ R2 be a bounded domain with smooth boundary ∂�,
W = W (x) > 0 be a C1 function on �, and the C2 function vk = vk(x) solve
(6.11) for λ = λk ≥ 0:

−�vk + avk = λk W (x)evk∫
�

W (x)evk dx
in �,

∂vk

∂ν
= 0 on ∂�. (7.15)
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Suppose λk → λ0 ∈ [0,+∞) and set

μk(dx) = λk W (x)evk∫
�

W (x)evk dx
.

Since {μk(dx)} is bounded in M(�), we may assume without loss of gen-
erality that

μk(dx) ⇀ μ(dx) (7.16)

in M(�) for some μ(dx) ∈ M(�). Then the following alternatives hold:

1. There exist smooth v = v(x) and further subsequences of {vk}, still
denoted by the same symbol, such that vk → v uniformly on � and

μ(dx) = λ0W (x)ev∫
�

W (x)ev dx
dx .

We note that this v(x) is always a solution for (7.15).

2. We have λ0 ∈ 4πN and there is a nonempty S ⊂ � satisfying

2 · � (S ∩�)+ � (S ∩ ∂�) = λ0/(4π).

For this S, it holds that

μ(dx) =
∑
x0∈S

m∗(x0)δx0(dx)

with m∗(x0) defined by (1.24):

m∗(x0) ≡
{

8π (x0 ∈ �, )
4π (x0 ∈ ∂�).

Furthermore, we have

∇x

(
m∗(x0)K (x, x0)+

∑
x ′

0∈S\{x0}
m∗(x ′

0)G(x, x ′
0)

)∣∣∣
x=x0

+ ∇x log W (x)
∣∣∣
x=x0

= 0 (7.17)

for each x0 ∈ S, where G(x, y) denotes the Green’s function of −�+a
under the Neumann boundary condition and

K (x, y) = G(x, y)+
{ 1

2π log |x − y| (y ∈ �),
1
π

log |x − y| (y ∈ ∂�).
In (7.17), ∇x takes only the tangential derivative in the case of x0 ∈ ∂�.
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Let us note that only tangential derivatives are taken for the boundary blowup
point to control, and system (7.17) is well-posed under this agreement.

For the proof, we employ the argument of symmetrization, introducinguk(x)
by uk(x) dx = μk(dx). Then it holds that

−�vk + avk = uk in �,
∂vk

∂ν
= 0 on ∂�

and

�uk = ∇ · (uk∇ (vk + log W )) in �

with

∂

∂ν
uk − uk

∂

∂ν
(vk + log W ) = 0 on ∂�.

Testing ψ ∈ C2(�) with ∂ψ
∂ν

= 0 on ∂�, we obtain the weak formulation

−
∫
�

�ψ(x)μk(dx) = 1

2

∫∫
�×�

ρψ(x, x ′)μk ⊗ μk( dx dx ′)

+
∫
�

∇ log W (x) · ∇ψ(x)μk(dx) (7.18)

with

ρψ(x, x ′) = ∇ψ(x) · ∇x G(x, x ′)+ ∇ψ(x ′) · ∇x ′G(x, x ′).

First, we show that the limit measure μ(dx) is a finite sum of delta functions.
Then, we take the second moment of μk(dx) to control their masses and loca-
tions. These processes are called the rough and fine estimates, respectively.

First, rough estimate is a consequence of the following lemma.

Lemma 7.2 If the first case does not occur in the previous theorem, then the
second case holds with m∗(x0) replaced by m(x0) in m(x0) ≥ m∗(x0)/2.

For the proof, we take wk = vk + a�−1
D vk with −�D being the Laplace

operator in � under the Dirichlet boundary condition. Then, it holds that

−�wk = Vk(x)e
wk in � (7.19)

for

Vk(x) = λk W (x)e−a�−1
D vk∫

�
W (x)evk dx

.
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At this moment, direct application of [88] has an obstruction for the boundary
blowup point, and we adopt a different approach based on Brezis–Merle’s in-
equality. This argument is valid for rougher cases than the ones that [88] treats,
such as the lack of uniform convergence of {Vk(x)}. Actually, Corollary 4 of
[18] is stated as follows.

Lemma 7.3 Let {wk} be a sequence of solutions to (7.19), and suppose the
existence of C1, C2, and ε0 independent of k such that∥∥Vk

∥∥
p ≤ C1,

∥∥wk+
∥∥

1 ≤ C2,

and ∫
�

|Vk | ewk dx ≤ ε0 < 4π/p′,

where p ∈ (1,∞], and (1/p)+(1/p′) = 1. Then {wk+} is bounded in L∞
loc(�).

Here and henceforth, w+ = max{0, w}.
Now, we give the following proof.

Proof of Lemma 7.2: Given {(λk, vk)} as in Theorem 7.5, we apply the L1

estimate of [19] to (7.15). This implies∥∥vk
∥∥

W 1,q (�)
= O(1)

for each q ∈ [1, 2), and especially∥∥vk
∥∥

p = O(1) (7.20)

follows for each p ∈ [1,∞) by Sobolev’s embedding theorem.
The maximum principle guarantees vk(x) ≥ 0, and hence it follows that∫

�

W (x)evk dx ≥
∫
�

W (x) dx . (7.21)

The right-hand side of the first equation of (7.15) is represented as Vk(x)ev
1
k ,

where

Vk(x) = λk W (x)

and

v1
k (x) = vk(x)− log

(∫
�

W (x)evk dx

)
.
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Under this notation, we have

−�v1
k + avk = Vk(x)e

v1
k in �,

∂v1
k

∂ν
= 0 on ∂�, (7.22)

with ∥∥Vk
∥∥

p = O(1) (7.23)

for each p ∈ [1,∞). Actually, (7.23) is valid even for p = +∞. Now, we
claim the following lemma.

Lemma 7.4 If

lim sup
k→∞

∫
B(x0,2R)

Vk(x)e
v1

k dx < 4π (7.24)

holds with B(x0, 2R) ⊂ �, then it follows that∥∥v1
k+

∥∥
L∞(B(x0,R))

= O(1).

Lemma 7.5 For each x0 ∈ ∂� and each sufficiently small R > 0, there exists
σ ∈ (0, 2) satisfying the following properties: if

lim sup
k→∞

∫
B(x0,2R)

Vk(x)e
v1

k dx < 2π,

then it holds that ∥∥v1
k+

∥∥
L∞(B(x0,σ R)) = O(1).

Proof of Lemma 7.4: We take v2
k by

−�v2
k + avk = 0 in B(x0, 2R)

v2
k = 0 on ∂B(x0, 2R).

Then ‖v2
k‖W 2,p(B(x0,2R)) = O(1) follows from (7.20). Especially, we obtain∥∥v2

k

∥∥
L∞(B(x0,2R)) = O(1). (7.25)

Regarding

−�(v1
k − v2

k ) = Vk(x)e
v2

k ev
1
k −v2

k ,



7. Blowup Analysis for Stationary Solutions 131

we shall apply Lemma 7.3 to wk = v1
k − v2

k with Vk(x) replaced by Vkev
2
k .

In fact, first, the relation∥∥Vkev
2
k
∥∥

L p(B(x0,2R)) = O(1)

holds for every p ∈ [1,∞) by (7.23) and (7.25). Next, we have

v1
k = vk − log

( ∫
�

W (x)evk dx
)

≤ vk − log
( ∫

�

W (x) dx
)

by (7.21), and hence∥∥wk+
∥∥

L1(B(x0,2R)) ≤ ∥∥v1
k+

∥∥
L1(B(x0,2R)) +

∥∥v2
k

∥∥
L1(B(x0,2R))

= O(1)

follows from (7.20) and (7.25). Finally, from the assumption (7.24) there are
p ∈ (1,∞) and ε0 > 0 such that∫

B(x0,2R)

∣∣∣Vkev
2
k

∣∣∣ ewk dx =
∫

B(x0,2R)
Vkev

1
k dx

≤ ε0 <
4π

p′ < 4π.

Therefore, the desired conclusion follows from Lemma 7.3. �

Proof of Lemma 7.5: We make use of the argument of Chapter 5 and extend
v1

k outside � by reflection. More precisely, we take the conformal mapping

X : B(x0, 2R) ∩�→ R2

satisfying the following properties:

X
(
B(x0, 2R) ∩�) ⊂ R2+ := {(X1, X2)|X2 > 0},

X
(
B(x0, 2R) ∩ ∂�) ⊂ ∂R2+,

X
(
B(x0, 2R) ∩�) ⊃ B(0, 1) ∩ R2+,

X
(
B(x0, σ R) ∩�) ⊂ B(0, 1/2) ∩ R2+, (7.26)

where σ ∈ (0, 2).
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Henceforth, we will write f ∗ = f ◦ X−1 for each function f defined on
B(x0, 2R) ∩�. Then we obtain

−�Xv
1∗
k + a

∣∣g′∣∣2 v∗k = ∣∣g′∣∣2 V ∗
k ev

1∗
k in B(0, 1) ∩ R2+,

∂v1∗
k

∂X2
= 0 on B(0, 1) ∩ ∂R2+,

where g′ is the derivative of g as a function of the complex variable X1 +
i X2. Furthermore, f̂ denotes the even extension of a function f defined on
B(0, 1) ∩ ∂R2+:

f̂ (X1, X2) =
{

f (X1, X2)
(
X ∈ B(0, 1) ∩ R2+

)
,

f (X1,−X2)
(
X ∈ B(0, 1)\R2+

)
.

To simplify the writing, we abbreviate f̂ ∗ to f̂ . From the Neumann condition
of v1∗

k on B(0, 1) ∩ ∂R2+, we see that v̂1
k satisfies

−�X v̂
1
k + a |̂g′|2v̂k = |̂g′|2V̂kev̂

1
k in B(0, 1).

Here we have |̂g′|2 ∈ L∞(B(0, 1)), and therefore similarly to Lemma 7.4 the
condition

lim sup
k→∞

∫
B(0,1)

|̂g′|2V̂kev̂
1
k d X < 4π

implies ∥∥v̂1
k

∥∥
L∞(B(0,1/2)) = O(1).

This means

lim sup
k→∞

∫
B(x0,2R)

Vkev
1
k dx < 2π

implies ∥∥v1
k

∥∥
L∞(B(x0,σ R)) = O(1)

and the proof is complete. �

Now, we give the following proof.
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Proof of Lemma 7.2: Recalling

μk(dx) = λk W (x)evk∫
�

W (x)evk dx
dx = Vk(x)e

v1
k dx ⇀ μ(dx)

in M(�), we put

S = {
x0 ∈ � ∣∣ μ({x0}) ≥ 4π

} ∪ {
x0 ∈ ∂� ∣∣ μ({x0}) ≥ 2π

}
.

We have �S < ∞ by μ(�) = λ0 < ∞. Now, we divide the proof into the
following two steps:

1. If S = ∅, then the first case of Theorem 7.5 holds.

2. If S �= ∅, then the second case of Theorem 7.5 holds with m∗(x0) re-
placed by m(x0) ≥ m∗(x0)/2.

Moreover, we divide the second step into the following two substeps:

1. The case when S ∩� �= ∅.

2. The case when S ∩� = ∅.

Step 1. (S = ∅): In this case we have ‖v1
k+‖L∞(�) = O(1) by Lemmas 7.4

and 7.5. Especially it holds that∥∥Vk(x)e
v1

k
∥∥

p ≤ ∥∥Vk(x)e
v1

k+
∥∥

p = O(1)

for each p ∈ (1,∞) from (7.23). Combining this estimate, (7.20), and the
standard elliptic estimate to (7.22), we obtain∥∥vk

∥∥
W 2,p(�) = O(1).

Thus, we obtain the first case of Theorem 7.5 by Morrey’s theorem.

Step 2. (S �= ∅): In this case, we have λ0 ≥ 2π . This step is reduced to the
proof of ∫

�

W (x)evk dx → +∞. (7.27)

In fact, similarly to the case S = ∅, we have from Lemmas 7.4 and 7.5 that∥∥v1
k+

∥∥
L∞(ω) = O(1) (7.28)
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for each subdomain ω in ω ⊂ � \ S. Taking smaller ω, denoted by the same
symbol, we obtain ∥∥vk

∥∥
L∞(ω) = O(1)

from (7.20) and the local elliptic estimate to (7.22). Therefore, if (7.27) holds,
then (7.23) gives

λk W (x)evk∫
�

W (x)evk dx
= Vk(x)evk∫

�
W (x)evk dx

→ 0 (7.29)

in L p
loc(� \ S) for every p ∈ (1,∞). This implies suppμ = S and then the

conclusion of Lemma 7.2 follows.
For (7.27) to prove, we distinguish two cases.

Step 2.1. (S ∩ � �= ∅): In this case, we take x0 ∈ S ∩ � and R > 0
satisfying B(x0, 2R) ⊂ � and B(x0, 2R) ∩ S = {x0}. Given ε ∈ (0, 2R), we
set

ωε = B(x0, 2R) \ B(x0, ε).

Let v3
k be the solution to

−�v3
k + avk = Vk(x)e

v1
k in ωε

v3
k = 0 on ∂ωε.

Then, v1
k − v3

k is harmonic:

−�
(
v1

k − v3
k

)
= 0 in ωε.

On the other hand, from Lemma 7.4, Lemma 7.5, (7.28), and (7.23), we have∥∥Vk(x)e
v1

k
∥∥

L p(ωε)
≤ ∥∥Vk(x)e

v1
k+

∥∥
L p(ωε)

= O(1)

for each p ∈ (1,∞). Therefore, by (7.20) we have∥∥v3
k

∥∥
W 2,p(ωε)

= O(1),

and hence it follows that ∥∥v3
k

∥∥
L∞(ωε) = O(1). (7.30)

Combining this estimate with (7.28), we see that{
v1

k − v3
k

}
is a sequence of harmonic functions uniformly bounded from above. Therefore,
the classical Harnack principle guarantees either
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(a) v1
k → −∞ locally uniformly in ωε as n → ∞, or

(b) there exists a subsequence of {v1
k } that is locally uniformly bounded in

ωε.

The case (a) implies (7.27) and we finish the proof of Lemma 7.2. Indeed, in
this case we have

v1
k (x) = vk(x)− log

( ∫
�

K (x)evk dx
)

≥ − log
( ∫

�

K (x)evk dx
)

→ −∞

for any x ∈ ωε by vk(x) ≥ 0. On the other hand, if (b) holds for any ε ∈
(0, 2R), then we obtain a contradiction. In fact, if this is the case, each subdo-
main ω in ω ⊂ B(x0, 2R) \ {x0} admits a subsequence of

{
v1

k

}
, denoted by the

same symbol, such that ‖v1
k‖L∞(ω) = O(1). We now apply the interior elliptic

estimate to (7.22) similarly to Step 1, and obtain for smaller ω, denoted by the
same symbol, ∥∥v1

k

∥∥
W 2,p(ω)

= O(1)

for each p ∈ (1,∞). The standard diagonal argument now guarantees the
existence of v2 ∈ C(B(x0, 2R) \ {x0}) and that of a subsequence of {v1

k },
denoted by the same symbol, satisfying

v1
k → v1 (7.31)

locally uniformly in B(x0, 2R) \ {x0}. In particular, we have

v1
k ≥ −C4 on ∂B(x0, R) (7.32)

with a constant C4 independent of k.
Let

Nk(x) =
∫

B(x0,R/2)

1

2π
log

1

|x − y| · Vk(y)e
v1

k (y)dy.

Then, there exists a constant C5 such that

v1
k − Nk ≥ −C5 in B(x0, R). (7.33)

In fact, we have

Nk(x) ≤ 1

2π

(
log

2

R

) ∫
B(x0,R/2)

Vk(y)e
v1

k (y)dy = O(1)
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for every x ∈ ∂B(x0, R), and it holds that

−�(v1
k − Nk)+ avk ≥ 0 in B(x0, R),

v1
k − Nk ≥ −C6 on ∂B(x0, R)

with a constant C6. If N 1
k denotes the solution to

−�N 1
k + avk = 0 in B(x0, R),

N 1
k = −C6 on ∂B(x0, R),

then we have

−�(v1
k − Nk − N 1

k ) ≥ 0 in B(x0, R),

v1
k − Nk − N 1

k ≥ 0 on ∂B(x0, R). (7.34)

Since ∥∥N 1
k

∥∥
L∞(B(x0,R))

= O(1)

follows from (7.20), we obtain (7.33) from the maximum principle for (7.34).
Taking nonnegative ϕ ∈ C(�) in ϕ(x0) = 1, we have

v1
k (x) ≥ Nk(x)− C5

≥
∫

B(x0,R/2)
min

{
tϕ(y),

1

2π
log

1

|x − y|
}

Vk(y)e
v1

k (y)dy − C5

for any x ∈ B(x0, R/2) and t > 0. Since

y ∈ � �→ min
{

tϕ(y),
1

2π
log

1

|x − y|
}

is continuous, from (7.31) we get

v1(x) ≥ 4π · min
{

tϕ(x0),
1

2π
log

1

|x − x0|
}

− C5

for any x ∈ B(x0, R) \ {x0}. Making t → ∞, we obtain

ev1(x) ≥ e−C5

|x − x0|2
. (7.35)

On the other hand, we have

Vk(x) = λk W (x)→ λ0W (x)
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in L1(�) (actually uniformly), and therefore it holds that

λk ≥
∫

B(x0,R)\B(x0,ε)

Vk(x)e
v1

k dx →
∫

B(x0,R)\B(x0,ε)

λ0K (x)ev1 dx

for each ε ∈ (0, R). Since λ0 ≥ 2π and (7.35) holds for any x ∈ B(x0, R) \
{x0}, this implies{

min
x∈�

W (x)
}−1 ≥ e−C5

∫
B(x0,R)\B(x0,ε)

dx

|x − x0|2
.

However, this gives a contradiction when ε ↓ 0.
In this way, (a) holds with some ε ∈ (0, 2R), and we have (7.27) in the case

of S ∩� �= ∅.

Step 2.2. (S �= ∅ and S ∩ � = ∅): We take x0 ∈ S ⊂ ∂� and apply the
reflection argument as in the proof of Lemma 7.5. Thus, we have

−�X v̂
1
k + a |̂g′|2v̂k = |̂g′|2V̂kev̂

1
k in B(0, 1).

Similarly to Step 2.1, relation (7.27) is proven if we get a contradiction, as-
suming a subsequence of {v̂1

k }, denoted by the same symbol, locally uniformly
bounded in B(0, 1) \ B(0, ε) for every ε ∈ (0, 1). As we did in Step 2.1, if
this is the case, we may assume furthermore that there is v̂1 ∈ C(B(0, 1) \ {0})
satisfying

v̂1
k → v̂1

locally uniformly in B(0, 1) \ {0}. This implies

v̂1
k ≥ −C7 on ∂B(0, 1/2) (7.36)

with a constant C7.
This time, we have

|̂g′|2V̂kev̂
1
k d X ⇀ 2m(x0)δ0(d X)

in M(B(0, 1)), and hence it holds that

ev̂1(X) ≥ e−C8

|X |2
for any X ∈ B(0, 1/2) \ {0}. This implies a contradiction similarly to Step 2.1,
and the proof is complete. �
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Now, we give the following proof.

Proof of Theorem 7.5: We divide the proof into two cases:

1. x0 ∈ S ∩�,

2. x0 ∈ S ∩ ∂�.

Case 1. (x0 ∈ S ∩�): For

uk = λk W (x)evk∫
�

W (x)evk dx
(7.37)

we have proven

uk(x) dx ⇀
∑
x0∈S

m(x0)δx0(dx) (7.38)

in M(�) with m(x0) ≥ m∗(x0)/2. We have proven also

uk → 0 (7.39)

in L p
loc(� \ S) for every p ∈ [1,∞). See (7.29). Actually, this convergence is

locally uniform because W (x) is continuous.
The left-hand side of (7.15) is denoted by uk and hence we have

vk(x) =
∫
�

G(x, x ′)uk(x
′) dx ′

with G = G(x, x ′) being the Green’s function of −�+ a in � with Neumann
boundary condition. From (7.37) we have

∇uk = uk (∇vk + ∇ log W ) , (7.40)

and hence it follows that

�uk = ∇ · (uk∇vk)+ ∇ · (uk∇ log W ).

Testing ψ ∈ C2(�) with ∂ψ
∂ν

= 0 on ∂�, we have

−
∫
�

uk�ψ dx =
∫
�

uk∇ log W · ∇ψ dx

+
∫
�

∫
�

∇x G(x, x ′) · ∇ψ(x)uk(x)uk(x
′) dx dx ′. (7.41)



7. Blowup Analysis for Stationary Solutions 139

Now, we take the limit k → ∞ in this equality. For this purpose, we take a
small R > 0 satisfying B(x0, 2R) ⊂ � and B(x0, 2R) ∩ S = {x0} and always
assume that the test function ψ satisfies

supp ψ ⊂ B(x0, R).

First, from (7.38) we have∫
�

uk�ψ dx → m(x0)�ψ(x0),∫
�

uk∇ log W · ∇ψ dx → m(x0)∇ log W (x0) · ∇ψ(x0),

as k → ∞. Let ξ ∈ C2(�) be a cut-off function around x0 satisfying 0 ≤
ξ(x) ≤ 1, ξ(x) = 1 in B(x0, R), and supp ξ ⊂ B(x0, 2R). Then it holds that

ψ = ξψ and ∇ψ = ξ∇ψ.
We also have

u0
k dx ≡ ξ(x)uk(x) dx ⇀ m(x0)δx0(dx),

(1 − ξ(x))uk(x) dx ⇀
∑

x ′
0∈S\{x0}

m(x ′
0)δx ′

0
(dx),

in M(�), and∫
�

∫
�

∇x G(x, x ′) · ∇ψ(x)uk(x)uk(x
′) dx dx ′

=
∫
�

∫
�

∇x G(x, x ′) · ∇ψ(x)u0
k(x)uk(x

′) dx dx ′

=
∫
�

∫
�

∇x G(x, x ′) · ∇ψ(x)u0
k(x)u

0
k(x

′) dx dx ′,

+
∫
�

∫
�

∇x G(x, x ′) · ∇ψ(x)u0
k(x)(1 − ξ(x ′))uk(x

′) dx dx ′

=I + II. (7.42)

Here, we have

II → m(x0)
∑

x′
0∈S\{x0}

m(x′
0)∇ψ(x0) · ∇xG(x0, x

′
0) (7.43)

because G(x, x ′) is smooth on suppψ × supp (1 − ξ).
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In Chapter 5, we have proven

G(x, x ′) = 1

2π
log

1

|x − x ′| + K (x, x ′)

with K (x, y) ∈ C1+θ (�×�) for every θ ∈ (0, 1). This implies

I =
∫
�

∫
�

∇x

( 1

2π
log

1

|x − x ′|
)

· ∇ψ(x)u0
k(x)u

0
k(x

′) dx dx ′

+
∫
�

∫
�

∇x K (x, x ′) · ∇ψ(x)u0
k(x)u

0
k(x

′) dx dx ′

= I1 + I2 (7.44)

with

I2 → m(x0)
2∇ψ(x0) · ∇x K (x0, x0). (7.45)

To treat I1, we apply the symmetrization technique developed in Chapter 5.
Thus, we have

I1 = 1

2

∫
�

∫
�

ρ0
ψ(x, x ′)u0

k(x)u
0
k(x

′) dx dx ′

with

ρ0
ψ(x, x ′) = ∇x

( 1

2π
log

1

|x − x ′|
)

· ∇ψ(x)

+ ∇x ′
( 1

2π
log

1

|x − x ′|
)

· ∇ψ(x ′)

= − 1

2π
·
(∇ψ(x)− ∇ψ(x ′)

) · (x − x ′)
|x − x ′|2 .

It is easy to see that ρ0
ψ(x, x ′) is continuous in � × �\{x = x ′} and ρ0

ψ =
ρ0
ψ(x, x ′) ∈ L∞(�×�). For general ψ , we do not know what (I1) converges,

but taking appropriate ψ makes it possible.
Namely, we take

ψ(x) = ϕ(x) |x − a|2

for a ∈ R2 and ϕ ∈ C2
0(�), satisfying supp ϕ ⊂ B(x0, R) and ϕ = 1 on

B(x0, R/2). Then it holds that

∇ψ(x) = 2(x − a)
�ψ(x) = 4

}
in B(x0, R/2), (7.46)
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and hence

ρ0
ψ(x, x ′) = − 1

π
(7.47)

follows for (x, x ′) ∈ B(x0, R/2)× B(x0, R/2). Here, we have

I1 = 1

2

∫
�

∫
�

ρ0
ψ(x, x ′)ϕ(x)u0

k(x)ϕ(x
′)u0

k(x
′) dx dx ′

+ 1

2

∫
�

∫
�

ρ0
ψ(x, x ′)

(
1 − ϕ(x))u0

k(x)ϕ(x
′)u0

k(x
′) dx dx ′

+ 1

2

∫
�

∫
�

ρ0
ψ(x, x ′)u0

k(x)
(
1 − ϕ(x ′)

)
u0

k(x
′) dx dx ′

= I1,1 + I1,2 + I1,3. (7.48)

First, from (7.47) we obtain

I1,1 → − 1

2π
m(x0)

2.

Next, we have∣∣I1,2 + I1,3
∣∣ ≤ λk

∥∥ρ0
ψ

∥∥
L∞(�×�)

∥∥(1 − ϕ)u0
k

∥∥
L1(�)

≤ λk
∥∥ρ0
ψ

∥∥
L∞(�×�)

∥∥uk
∥∥

L1(B(x0,2R)\B(x0,R/2)
→ 0

by (7.39). Consequently, it holds that

I1 → − 1

2π
m(x0)

2. (7.49)

Combining (7.41)–(7.46) and (7.49), we get

0 = 4m(x0)− 1

2π
m(x0)

2 + 2m(x0) (x0 − a)

·
(

m(x0)∇x K (x0, x0)+
∑

x ′
0∈S\{x0}

m(x ′
0)∇x G(x0, x ′

0)
)

+ 2m(x0) (x0 − a) · ∇x log W (x0)

for every a ∈ R2.
First, letting a = x0, we have

m(x0) = 8π

because Lemma 7.2 assures m(x0) > 0. Then, taking

a = x0 − m(x0)∇x K (x0, x0)+
∑

x ′
0∈S\{x0}

m(x ′
0)∇x G(x0, x ′

0)+ ∇x log W (x0),

we get (7.17).
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Case 2. (x0 ∈ S∩∂�): We apply the reflection argument near x0 as in the proof
of Lemma 7.5. First, we take R > 0 sufficiently small so that B(x0, R/2)∩S =
{x0} and the conformal mapping X satisfies (7.26). Letting

Nx0 = X−1(B(0, 1) ∩ R2+
)

and fk = vk
∣∣
∂Nx0∩�,

we have

−�X v̂k + a |̂g′|2v̂k = |̂g′|2 λk Ŵ ev̂k∫
�

W evk dx
in B(0, 1),

v̂k = f̂k on ∂B(0, 1),

under the notation of the proof of Lemma 7.5.
Using the Neumann boundary condition of vk , we get∥∥ f̂k

∥∥
W

2− 1
p ,p(∂B(0,1))

= O(1)

for each p ∈ (1,∞) from (7.20), (7.29), the local elliptic estimate, and the
trace theorem of Sobolev functions. If F̂k denotes the solution of

−�X F̂k + a |̂g′|2 F̂k = 0 in B(0, 1),

F̂k = f̂k on ∂B(0, 1),

then we obtain ∥∥F̂k
∥∥

W 2,p(B(0,1)) = O(1)

for each p ∈ (1,∞) from the elliptic estimate. We also have

F̂k(X1, X2) = F̂k(X1,−X2)

for every X = (X1, X2) ∈ B(0, 1) from the uniqueness of F̂k . We also have

−�X (v̂k − F̂k)+ a |̂g′|2(v̂k − F̂k) = |̂g′|2λk Ŵ ev̂k∫
�

W evk
in B(0, 1),

v̂k − F̂k = 0 on ∂B(0, 1).

Letting

ûk = |̂g′|2 λk Ŵ ev̂k∫
�

W evk dx
,
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we have

ûk(X) d X ⇀ 2m(x0)δ0(d X)

in M(B(0, 1)) and

ûk → 0 in L p
loc(B(0, 1) \ {0})

for every p ∈ (1,∞) from the proof of Lemma 7.2. We also have

v̂k = (−�X + a |̂g′|2)−1
D ûk + F̂k,

where (−�X + a |̂g′|2)−1
D is the inverse operator of −� + a |̂g′|2 under the

Dirichlet boundary condition on ∂B(0, 1). Without loss of generality, we may
assume

F̂k ⇀ F̂ weakly in W 2,p(B(0, 1)

as k → ∞ for some F̂ ∈ W 2,p(B(0, 1)). This implies

F̂k → F̂ in C1 (B(0, 1)) .

We have
∇ûk = ûk∇

(
v̂k + log(|̂g′|2 K̂ )

)
.

Similarly to Case 1, we obtain

−
∫

B(0,1)
ûk∇

(
F̂k + log(|̂g′|2 K̂ )

) · ∇ψ d X =
∫

B(0,1)
ûk�Xψ d X

+
∫

B(0,1)

∫
B(0,1)

∇X G B(X, X ′) · ∇ψ(X)ûk(X)ûk(X
′) d X d X ′

for each test function ψ ∈ C2
0(B(0, 1)), where G B(X, X ′) denotes the Green’s

function for −�+ a |̂g′|2 in B(0, 1) under the Dirichlet boundary condition.
Here, we have

G B(X, X ′) = 1

2π
log

1

|X − X ′| + K B(X, X ′),

with K B(X, X ′) ∈ C1+θ (B(0, 1) × B(0, 1)) for every θ ∈ (0, 1). If
f ∈ W 1,p

(
B(0, 1) ∩ R2+

)
, then it holds that f̂ ∈ W 1,p (B(0, 1)) and

2
∂ f̂

∂X1
= ∂̂ f

∂X1
,

∂ f̂

∂X2
=

⎧⎨⎩
∂ f
∂X2
(X1, X2) (X2 > 0) ,

− ∂ f
∂X2
(X1,−X2) (X2 < 0) ,
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as distributions. Thus, for every test function ψ ∈ C2
0 (B(0, 1)), we have∫

B(0,1)
ûk∇ f̂ · ∇ψ d X

=
∫

B(0,1)∩R2+
ûk

[
∂ f

∂X1

{ ∂ψ
∂X1

(X1, X2)+ ∂ψ

∂X1
(X1,−X2)

}
+ ∂ f

∂X2

{ ∂ψ
∂X2

(X1, X2)− ∂ψ

∂X2
(X1,−X2)

}]
d X.

Consequently, if f ∈ C1
(

B(0, 1) ∩ R2+
)

, we obtain∫
B(0,1)

ûk∇ f̂ · ∇ψ d X → 2m(x0)
∂ f

∂X1
(0) · ∂ψ

∂X1
(0)

as k → ∞.
Using these calculations and a similar argument to Case 1, we obtain the

limiting equation

−2m(x0) · 2(−a1) ·
{ ∂

∂X1
F̂(X)+ ∂

∂X1
log |g′(X)|2 + ∂

∂X1
log Ŵ (X)

}∣∣∣
X=0

= 4 · 2m(x0)− 1

2π

{
2m(x0)

}2+ 2m(x0) · 2(−a) · ∇X
{
2m(x0)K B(X, 0)

}∣∣
X=0

for every a = (a1, a2)∈R2. Here we have K B(X1,−X2; Y )= K B(X1, X2; Y ),
and hence

∂

∂X2
K B(X, 0)

∣∣∣
X=0

= 0

follows. This implies m(x0) = 4π and

∂

∂X1

{
F̂(X)+ log |g′(X)|2 + log Ŵ (X)+ 2m(x0)K B(X, 0)

}∣∣
X=0 = 0.

We have

vk → m(x0)G(·, x0)+
∑

x ′
0∈S\{x0}

m(x ′
0)G(·, x ′

0)

= F0,1 + F0,2

in W 2,p(ω) for every subdomain ω in ω ⊂ � \ S with F0,1 = F0,1(x) and
F0,2 = F0.2(x) satisfying

−�X F̂0,1 + a |̂g′|2 F̂0,1 = 2m(x0)δ0(d X)
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as distributions in B(0, 1) and

−�X F̂0,2 + a |̂g′|2 F̂0,2 = 0 in B(0, 1), (7.50)

F̂0,1 + F̂0,2 = F̂ on ∂B(0, 1). (7.51)

Here, we have

F̂0,1(X) = m(x0)
( 1

π
log |X |−1 + K̂ (X, 0)

)
with K̂ (· , ·) ∈ C1+θ (B(0, 1)× B(0, 1)) satisfying

K̂ (X1,−X2; 0) = K̂ (X1, X2; 0)

and hence it follows that

F̂(X) = F̂0,1(X)− 2m(x0)G B(X, 0)+ F̂0,2(X)

= −2m(x0)K B(X, 0)+ m(x0)K̂ (X, 0)+
∑

x ′
0∈S\{x0}

m(x ′
0)Ĝ(X, x ′

0),

where Ĝ
(
X (x), x ′) = G(x, x ′). This means

∂

∂τ

[
m(x0)K̂ (X (x), 0)+

∑
x ′

0∈S\{x0}
m(x ′

0)G(x, x ′
0)

+ log
∣∣X ′(x)

∣∣−2 + log W (x)
]∣∣∣

x=x0
= 0,

where τ denotes the unit tangential vector on ∂�.
We have

K̂ (X (x), 0) = G(x, x0)− 1

π
log

1

|X (x)|
= K (x, x0)+ 1

π
log

1

|x − x0| − 1

π
log

1

|X (x)|
and

∇
[

log
1

|X (x)| − log
1

|x − x0|
]

x=x0
= 1

4
∇ log

1

|X ′(x)|2
∣∣∣
x=x0

.

Since m(x0) = 4π , we obtain

∂

∂τx

(
m(x0)K (x, x0)+

∑
x ′

0∈S\{x0}
m(x ′

0)G(x, x ′
0)

)∣∣∣
x=x0

∂

∂τx
log W (x)

∣∣∣
x=x0

= 0.

Relation (7.17) holds with ∇x replaced by ∂/∂τx for x0 ∈ ∂�, and the proof is
complete. �



8

Multiple Existence

In this chapter we study the existence of the solution for

−�v + av = λev∫
�

ev dx
in �,

∂v

∂ν
= 0 on ∂�, (8.1)

where � ⊂ R2 is a bounded domain with smooth boundary ∂�. It is the sta-
tionary problem of (3.1), that is, (7.15) with W (x) = 1, and we will obtain
several suggestions to the nonstationary problem. In this special case of W (x),
problem (8.1) admits a constant solution, and this trivial solution generates
nontrivial ones.

As is described in Chapter 1, [33] studied radially symmetric solutions to
(8.1) for

� = B ≡
{

x ∈ R2
∣∣ |x | < 1

}
,

and obtained the conjecture that problem (1.1) will admit the solution global in
time if n = 2 and ‖u0‖1 < 8π . More precisely, from the branch of the constant
solution to (8.1) denoted by

Cc = {
(λ, λ/(aπ))

∣∣ 0 < λ < +∞}
,
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another branch of nonconstant radially symmetric solutions, denoted by Cr ,
bifurcates from Cc in λ − v space. Then, it was suspected from the numer-
ical computation that Cr is absorbed into the hyperplane λ = 8π . This fact
was proven later by [144] using a lemma of [162]. On the other hand, the
discrepancy of the threshold value for Tmax = +∞ in (1.1) between that of
the conjecture, ‖u0‖1 = 8π , and that actually proven, ‖u0‖1 = 4π , led us
to recognize the role of the boundary blowup point [108]. More precisely, the
boundary blowup is observed even in the stationary problem, and the structure
of the set of solutions to (8.1) on disc has more varieties than the one suspected
by [33].

The following theorem is concerned with the (multiple) existence of the
solution, where

{
μ∗

j

}∞
j=1 denotes the set of eigenvalues of −� on � under the

Neumann boundary condition. Here, we recall that the isoperimetric inequality
of Polyá, Szegö, and Weinberger is indicated as

|�|μ∗
2 ≤ �2π,

where � denotes the first zero point of J ′
1, with Jν being the Bessel function

of the first kind [5]. We have � = 1.841 . . . and hence λ1 < 4π holds for
0 < a � 1, where

λ1 = |�| (a + μ∗
2

)
.

On the other hand, it is obvious that λ1 > 4π holds for a � 1.

Theorem 8.1 If� ⊂ R2 is a bounded domain with smooth boundary, then the
following facts hold for (8.1).

1. If 0 < λ� 1, then any nonconstant solution does not exist.

2. If λ1 < 4π , then any λ ∈ (λ1, 4π) admits a nonconstant solution.

3. If λ1 > 4π , then any λ ∈ (4π, λ1)\4πN admits a nonconstant solution.

The next theorem deals with the case 0 < a � 1.

Theorem 8.2 If � ⊂ R2 is a simply connected bounded domain with smooth
boundary, then there exists a constant δ > 0 with the following property.
Namely, given λ ∈ (4π, 4π + δ), any solution to (8.1) is linearized unstable,
if a > 0 is small.
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In spite of the nonlocal term, the linearized operator around the stationary
solution to (8.1) is realized as a self-adjoint operator in L2(�). The linearized
instability mentioned above indicates the negativity of its first eigenvalue. It
will be shown that this means the dynamical instability as a stationary solution
to (1.1). Therefore, Theorem 8.2 suggests that when 0 < λ− 4π � 1 and 0 <
a � 1, the set of solutions to (1.1) is very simple or otherwise the dynamics
of (1.11), including the possible blowup of the solution, is rather complicated.

In this connection, the result on topological degree described in Chapter 6
is worth remembering. In fact, the (JL) field is realized as the limit case a = 0
of the (N) field, and the quantized blowup mechanism is kept for all a > 0.
Therefore, the (total) topological degree to these systems is constant in each
component of [0,+∞)\4πN . If what we expected in Chapter 6 is correct, then
the total degree d(λ) of the solution to (8.1) will be equal to −1 if λ ∈ (4π, 8π)
and � is simply connected. Our new conjecture is that λ ∈ (4π, 8π) admits
only constant solutions if � is simply connected and

a ∈ (
0, (4 − �2)π

)
.

Namely, in this case, we expect that the dynamics of (1.1) is quite simple and
the solutions blow up generically in finite time with one blowup point on the
boundary, and that the other exceptional solutions exist globally in time and
converge to the constant stationary solution.

Beginning the proof of the above theorems, first, we confirm the following
fundamental facts.

Lemma 8.1 A function v = v(x) is a solution to (8.1) if and only if it is a
critical point of Jλ defined on H1(�) given by

Jλ(v) = 1

2

∥∥∇v∥∥2
2 + a

2

∥∥v∥∥2
2 − λ log

( ∫
�

ev dx
)
,

which means that v ∈ H1(�) satisfies

〈J ′
λ(v), ϕ

〉 ≡ d

ds
Jλ(v + sϕ)

∣∣∣
s=0

= 0

for any ϕ ∈ H1(�), where 〈 , 〉 denotes the pairing between V ′ and V =
H1(�).
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Lemma 8.2 The linearized operator around a solution v = v(x) to (8.1) is
given as

Lφ = −�φ + aφ

− λ
(

ev∫
�

ev dx
φ − ev(∫

�
ev dx

)2

∫
�

evφ dx

)
, in �

∂φ

∂ν
= 0 on ∂�. (8.2)

This means that if v is a critical function of Jλ in H1(�), then the self-adjoint
operator L defined above in L2(�) is associated with the bilinear form

A(ϕ, ϕ) = d2

ds2
Jλ(v + sϕ)

∣∣∣
s=0

defined for ϕ ∈ H1(�) through the relation

(Lϕ,ψ) = A(ϕ, ψ)
for ϕ ∈ dom(L) ⊂ H1(�) and ψ ∈ H1(�), where ( , ) denotes the L2 inner
product.

In particular, if (λ, v(x)) = (0, 0), then L is −� + a in � under the Neu-
mann boundary condition by Lemma 8.2, where this operator is invertible.
Now, we show the following proof.

Proof of Theorem 8.1 for the first case: By Theorem 7.5, we have the follow-
ing fact:

Any ε ∈ (0, 4π) admits a constant Cε > 0 such that for any solution v =
v(x) of (8.1) with 0 ≤ λ < 4π − ε it holds that ‖v‖∞ ≤ Cε.

On the other hand the linearized operator is invertible around v(x) ≡ 0 for
λ = 0. Therefore, the implicit function theorem assures local uniqueness of
the solution near from (λ, v(x)) = (0, 0) in R × C(�). Then the assertion fol-
lows from the standard argument. More precisely, there is a branch of constant
solutions denoted by Cc in λ − v space starting from (λ, v(x)) = (0, 0). If
0 < λ� 1 then no other solutions exist near Cc. Suppose that there is a family
of solutions denoted by S = {(λk, vk(x))}, satisfying (λk, vk(x)) �∈ Cc and
λk ↓ 0. Then, the above L∞ estimate applied to {vk(x)} gives compactness of
S = {(λk, vk(x))} in λ− v space from the standard elliptic estimate.

Since v(x) ≡ 0 is the only solution for (8.1) with λ = 0, vk(x) converges
uniformly to 0. Therefore, (λk, vk(x)) becomes close to Cc and this contra-
dicts to the property of the solution on Cc with 0 < λ � 1, that is, its local
uniqueness. �
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The above proof guarantees again that

d(λ) = 1

for λ ∈ (0, 4π), where d(λ) denotes the total degree of the solution for (8.1).
Now, given the solution v(x) for (8.1), we study the linearized operator in more
details. In fact, putting

p = λev∫
�

ev dx
,

we see that the linearized operator around v(x) is given by L = L∗ + a, where

L∗φ = −�φ − pφ + p

λ

∫
�

pφ dx in �

∂φ

∂ν
= 0 on ∂�. (8.3)

Provided with the domain

dom(L∗) =
{
φ ∈ H2(�)

∣∣∣ ∂φ
∂ν

= 0 on ∂�
}
, (8.4)

this L∗ is realized as a self-adjoint operator in L2(�). It is associated with the
bilinear form A∗ in H1(�)× H1(�) defined by

A∗(φ, φ) =
∫
�

( |∇φ|2 − pφ2) dx + 1

λ

( ∫
�

pφ dx
)2
. (8.5)

Here, we note that 0 is always the eigenvalue of L∗ corresponding to the con-
stant eigenfunction.

Bifurcation of nonconstant solutions and their stability from the branch of
constant solutions, especially when the space dimension is one, are studied by
Schaff [142] including the other cases of the nonlinearity. Here, we can confirm
that the following facts are valid for this problem, where

{
μ∗

j

}∞
j=1 denotes the

set of eigenvalues of −� in � under the Neumann boundary condition.

1. Each λ > 0 admits a unique constant solution for (1.1) denoted by v =
s ≡ λ/a|�|.

2. For this s, the linearized operator L is given by L = L∗ + a with

L∗φ = −�φ − pφ + p
1

|�|
∫
�

φ dx,

where p = λ/|�|.
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3. If φ∗
j denotes the L2 normalized eigenfunction of −� in � under the

Neumann boundary condition corresponding to the eigenvalue μ∗
j , then

we have

L∗φ∗
j = (

μ∗
j − p

)
φ∗

j in �

with

∂φ∗
j

∂ν
= 0 on ∂�

for j ≥ 2, where p = λ/|�|.
4. We have L∗φ∗

1 = 0, on the other hand, and therefore
{
φ∗

j

}∞
j=1 forms a

complete system of eigenfunctions of L∗.

Consequently, we have the following lemma.

Lemma 8.3 The set of eigenvalues of the linearized operator L around the
constant solution v = s (= λ/a|�|) is given by

a + {
0, μ∗

j − λ/|�| ∣∣ j ≥ 2
}
.

The eigenfunction corresponding to a + μ∗
j − λ/|�| for j ≥ 2 is φ∗

j , and that
to a is φ∗

1 .

This lemma is applicable to examine the linearized stability of the constant
stationary solution. In fact, for p = λ/|�| and φ ∈ H1(�) we have( d

ds

)2Jλ(s + sφ)
∣∣∣
s=0

= L∗(φ, φ)+ a‖φ‖2
2

=
∫
�

( |∇φ|2 − pφ2) + 1

λ

( ∫
�

pφ dx
)2 + a

∥∥φ∥∥2
2

=
∫
�

|∇φ|2 − λ

|�|
∫
�

φ2 dx + λ

|�|
( 1

|�|1/2
∫
�

φ
)2 + a

∥∥φ∥∥2
2.

Writing

φ =
∞∑
j=1

(
φ, φ∗

j

)
φ∗

j

with the standard L2 inner product ( , ), we have( d

ds

)2Jλ(s + sφ)
∣∣∣
s=0

=
∞∑
j=2

(
μ∗

j − λ

|�| + a
)∣∣(φ, φ∗

j

)∣∣2 + a
∣∣(φ, φ∗

1)
∣∣2. (8.6)

Thus, we obtain the following lemma.



8. Multiple Existence 153

Lemma 8.4 If λ < λ1 = |�| (a + μ∗
2

)
, then the constant solution v = s is

a strict local minimum. On the other hand, if λ > λ1 then it is not a local
minimum of Jλ on H1(�).

Now, we show the following proof.

Proof of Theorem 8.1 for the second case: We recall that if 0 < a � 1 then

λ1 ≡ |�| (a + μ∗
2

)
< 4π

holds. Therefore, this case actually arises. Since� ⊂ R2 has smooth boundary,
Chang–Yang’s inequality (4.4) holds true:

log
( 1

|�|
∫
�

ew dx
)

≤ 1

8π

∫
�

|∇w|2 dx + 1

|�|
∫
�

w dx + K , (8.7)

where K is a constant determined by �, and w ∈ H1(�) is arbitrary. Using∣∣∣∣ 1

|�|
∫
�

w dx

∣∣∣∣ ≤
∥∥w∥∥

2

|�|1/2 ,

we have a constant C > 0 satisfying

Jλ(v) ≥
(1

2
− λ

8π

){∥∥∇v∥∥2
2 + a

∥∥v∥∥2
2

} − C (8.8)

for any v ∈ H1(�). Actually, we can take

C = λ
( 2π

a |�| + K + log |�|
)
.

This means that Jλ is bounded from below on H1(�) in the case of λ ∈
(0, 4π), and we can take the minimizing sequence {vk} ⊂ H1(�) as

Jλ(vk) → jλ ≡ inf
v∈H1(�)

Jλ(v) ≥ −C.

Furthermore, this {vk} is bounded in H1(�) again by (8.8).
Namely, passing through a subsequence (denoted by the same symbol), we

have the weak convergence

vk ⇀ v

in H1(�). If it is shown that Jλ is weakly lower semicontinuous, then the stan-
dard argument guarantees the existence of a global minimum of Jλ on H1(�)
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for λ ∈ (0, 4π). Actually, if this is the case, v attains the global minimum of
Jλ in H1(�) by

jλ = lim inf
k→+∞Jλ(vk) ≥ Jλ(v) ≥ jλ.

Furthermore, this v = v(x) is not a constant if λ ∈ (λ1, 4π), because the
constant solution is not any local minimum in this case.

Now, to prove the weak lower semicontinuity of Jλ on H1(�), we have only
to confirm that ∫

�

evk dx →
∫
�

ev dx (8.9)

follows from vk ⇀ v in H1(�). In fact, if vk ⇀ v in H1(�), then,∥∥∇vk
∥∥

2 ≤ L and
∥∥vk

∥∥
1 ≤ C

holds for k = 0, 1, 2, . . . with some constants L > 0 and C > 0. Therefore,
we have

∣∣∣ ∫
�

evk dx −
∫
�

ev dx
∣∣∣ =

∣∣∣ ∫
�

∫ 1

0
esvk+(1−s)v(vk − v)ds dx

∣∣∣
≤

{ ∫
�

(vk − v)2 dx
}1/2{ ∫ 1

0
ds

∫
�

e2svk+2(1−s)v dx
}1/2

≤ ∥∥vk − v∥∥2 exp
( L2

4π
+ C

|�| + K

2
+ log |�|

2

)
using (8.7). This implies (8.9) because vk → v in L2(�) holds by Rellich’s
theorem, and the proof is complete. �

From the above result, if λ ∈ (λ1, 4π), then there is a nonconstant solution.
More precisely, Jλ is bounded from below on H1(�) for λ < 4π , and the
constant solution v = s is not a local minimum for λ > λ1. This nonconstant
solution, denoted by v = v(x), is a global minimum of Jλ on H1(�), and
therefore another local minimum of Jλ can be expected.

In fact, the total degree d(λ) is equal to +1 for λ ∈ (0, 4π), while the local
degree of s is −1 between the first and the second degeneracies of L , that is,
for λ ∈ (λ1,min{4π, λ2}), where

λ2 = |�| (a + μ∗
3).
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On the other hand, an abstract theorem of Rabinowitz [133] says that the local
degree of local minimum is +1 if it is isolated, and therefore we have at least
three solutions (including s and v) in the case of λ ∈ (λ1,min{4π, λ2}). If
λ2 > 4π holds furthermore, then it is expected that these two nonconstant
stationary solutions blow up, developing singular points on ∂� as λ ↑ 4π .
Furthermore, their blowup points will be the maximum and minimum of the
Robin function R(x) = K (x, x) restricted to x ∈ ∂�, respectively. In this way,
we can expect, more generally, that generic converses of Theorems 7.5 and 7.1
are true.

We have discussed the case 0 < a � 1 such that λ1 < 4π . If a > 0 becomes
as large as λ1 > 4π , then the structure of the bifurcation from Cc changes
drastically, while the quantized blowup mechanism of the family of stationary
solutions is kept. What we have examined in this case is the following. First,
if λ > 4π , then Jλ is not bounded from below on H1(�) any more. Next, if
λ < λ1, then the constant solution v = s is a local minimum. Thus, we can
expect the mountain pass type critical point for λ ∈ (4π, λ1). Furthermore, if
� is simply connected and what we expected is correct, then the total degree
will still be equal to +1 for λ ∈ (4π, 8π). If this is the case, then a theorem
of Hoffer [65] concerning the mountain pass critical point can take place of
that of [133] on the local minimum. Namely, the local degree of the mountain
pass critical point is −1 if it is isolated, and therefore we can expect at least
two nonconstant solutions for λ ∈ (4π, λ1) in this case: λ1 > 4π and simply
connected �. We expect also that these solutions blow up as λ ↓ 4π with the
blowup points equal to the maximum and the minimum of the Robin function
restricted to ∂�, respectively.

We begin with the following lemma for this case of λ1 > 4π .

Lemma 8.5 If λ > 4π , then there is v0 ∈ H1(�) satisfying

Jλ(v0) < Jλ(s). (8.10)

Proof: We note that the Moser–Onofri inequality (4.5),

log
( 1

|�|
∫
�

ev dx
)

≤ 1

16π

∥∥∇v∥∥2
2 + 1

is sharp, and the functional

Jλ(v) = 1

2

∥∥∇v∥∥2
2 − λ log

( ∫
�

ev dx
)
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defined for v ∈ H1
0 (�) does not attain the minimum if λ = 8π . Since it is

attained for λ ∈ (0, 8π), the singular limit

4 log
1

|x |
of radially symmetric solutions to (7.1) as λ ↑ 8π , will generate an unbounded
sequence to the above Jλ for λ > 8π . Here we are taking the functional asso-
ciated with Chang–Yang’s inequality, and therefore this singular limit, shifted
to the boundary, will play the same role.

More precisely, taking x0 ∈ ∂� and μ > 0, we put

wμ(x) = 2 log
( 1 + μ
|x − x0|2 + μ

)
and show

lim
μ↓0

Jλ
(
wμ

) = −∞ (8.11)

for λ > 4π . In fact, we have

Jλ
(
wμ

) = 1

2

∫
�

∣∣∇wμ∣∣2 dx − λ log
( ∫

�

ewμ dx
)

+ O(1)

= 1

2

∫
�∩Dδ

∣∣∣∇2 log
( 1 + μ
|x − x0|2 + μ

)∣∣∣2 dx

− λ log

(∫
�∩Dδ

( 1 + μ
|x − x0|2 + μ

)2
dx

)
+ O(1),

where Dδ = {
x ∈ R2

∣∣ |x − x0| < δ
}

for δ > 0. We take a cone with vertex x0

and angle π(1 − 2ε) for ε ∈ (0, π), denoted by K , satisfying K ⊂ �c. Then,
the first term of the right-hand side is estimated from above by

1

2

∫
K c∩Dδ

∣∣∇wμ∣∣2 = 1

2

∫ π(1+ε)

−πε

∫ δ

0

16r2(
μ+ r2

)2
r dr dθ

= 4π(1 + 2ε) log
1

μ
+ O(1).

Taking similar cone K ∗ satisfying Dδ ∩ K ∗ ⊂ �, we can estimate the second
term from below as

λ log
( 1

|�|
∫

K ∗∩Dδ
ewμ

)
= λ log

(∫ π(1−ε)

πε

∫ δ

0

( 1 + μ
r2 + μ

)2
r dr dθ

)
= λ log

1

μ
+ O(1).



8. Multiple Existence 157

This means

Jλ
(
wμ

) ≤ (4π(1 + 2ε)− λ) log
1

μ
+ O(1)

as μ ↓ 0. Hence (8.11) holds for λ > 4π . �

In the case of

4π < λ < λ1,

we put

� =
{
γ ∈ C

(
[0, 1], H1(�)

) ∣∣ γ (0) = s, γ (1) = v0

}
and

jλ = inf
γ∈�max

γ
Jλ, (8.12)

where v0 = v0(x) is the function given by Lemma 8.5. Since s is a strict local
minimum and (8.10) is satisfied, it holds that j > Jλ(s). Then, Ekeland’s
variational principle [42] assures the existence of a Palais–Smale sequence,
denoted by {vk}, satisfying J ′

λ(vk)→ 0 and Jλ(vk)→ j .
The problem arising here is its H1 boundedness. If this is the case, then

{vk} ⊂ H1(�) is precompact, because vk ⇀ v implies (8.9). (Details are
described below in the proof of the third case of Theorem 8.1.) One of the
motivations of [124] is to examine the quantized blowup mechanism for the
Palais–Smale sequence relative to Jλ defined on H1(�). We have a general-
ization of Theorem 7.5 in this direction, which, however, is not sufficient to
control the general Palais–Smale sequence. Here, we take the different argu-
ment of Struwe [160, 161], which guarantees the boundedness of the Palais–
Smale sequence obtained by the mini-max variational formulation for almost
every λ. Then, we apply the quantized blowup mechanism for the family of
solutions to extend the existence to any nonquantized value of λ.

The former part of the above argument has a sophisticated abstract version.
In fact, we have

Jλ = Aλ − λB

with

Aλv = 1

2

∥∥v∥∥2
H1 and Bv = log

( ∫
�

ev dx
)
,
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and it holds that Jλ ∈ C1
(
H1(�),R

)
. Here and henceforth, we set

∥∥v∥∥H1 =
(∥∥∇v∥∥2

2 + a
∥∥v∥∥2

2

)1/2

for simplicity. Now, we confirm the following lemma.

Lemma 8.6 If {(λk, vk)} ⊂ H1(�)× (4π, λ1) satisfies

λk ↑ λ0 ∈ (4π, λ1), Jλk (vk) ≤ C, and Jλ0(vk) ≥ −C,

then we have the following, where C > 0 is a constant independent of k =
1, 2, . . . .

1. In the case of ‖vk‖H1 → +∞, it holds that B(vk)→ +∞.

2. If
{‖vk‖H1

}
is bounded, then we have

lim inf
k→+∞ B(vk) > −∞.

3. There is L > 0 such that

Aλ0(vk)− Aλk (vk) ≤ L (λ0 − λk)

for any k.

Proof: We have

1

2

∥∥vk
∥∥2

H1 = Jλk (vk)+ λk

{
log

( 1

|�|
∫
�

evk dx
)

+ log |�|
}

≤ C + λ0 log
( 1

|�|
∫
�

evk dx
)

+ λk log |�|

and this implies the first assertion. The second assertion is obtained by

λ0 log
( ∫

�

evk dx
)

= −Jλ0(vk)+ 1

2

∥∥vk
∥∥2

H1

≤ C + 1
2

∥∥vk
∥∥2

H1 .

The third assertion is obvious, because Av = 1
2‖v‖2

H1 is independent of λ. �
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Now, we can apply an abstract theorem [74] stated as follows. Henceforth,
X denotes a Banach space over R, and 〈 , 〉 and ‖ · ‖∗ are the pairing between
X ′ and X and the dual norm in X ′, respectively.

Theorem 8.3 Let X and I be a Banach space over R and a nonempty interval,
respectively. Suppose that Jλ ∈ C1(X,R) is given for each λ ∈ I , satisfying
the assumptions of Lemma 8.6 for

Jλ = Aλ − λB,

and provided with the mountain pass geometry, which means that there exist
v0, v1 ∈ X such that

jλ ≡ inf
γ∈�max

γ
Jλ > max {Jλ(v0), Jλ(v1)}

for any λ ∈ I , where

� = {
γ ∈ C([0, 1], X)

∣∣ γ (0) = v0, γ (1) = v1
}
.

Then, for almost every λ0 ∈ I , Jλ0 has a bounded Palais–Smale sequence {vk}
of level jλ, which means that {vk} ⊂ X is bounded,

Jλ0(vk)→ jλ0 and
∥∥J ′

λ0
(vk)

∥∥∗ → 0.

Actually, using the above theorem we can show the following proof.

Proof of Theorem 8.1 for the third case: We note that v0 in Lemma 8.5 can be
taken locally uniformly in λ ∈ (4π, λ1). Therefore, by Lemma 8.6, Theorem
8.3 is applicable. Consequently, we have, for almost every λ ∈ (4π, λ1), a
bounded Palais–Smale sequence {vk} ⊂ H1(�) = X of level jλ. This means
that there is {wk} ⊂ H1(�) satisfying

−�(vk − wk)+ a(vk − wk) = λevk∫
�

evk dx
in �,

∂

∂ν
(vk − wk) = 0 on ∂�,

and ∥∥wk
∥∥

H1 → 0.

Since {vk} is bounded in H1(�), Chang–Yang’s inequality (8.7) guarantees the
uniform boundedness of λevk

/∫
�

evk dx in L p(�) for each p ∈ (1,∞) and
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hence {vk − wk} has a subsequence, denoted by the same symbol, converging
weakly in W 2,p(�), with the limit denoted by v ∈ W 2,p(�). This implies the
strong convergence vk → v in H1(�), and then that of

λevk∫
�

evk dx
→ λev∫

�
ev dx

in L p(�) is proven similarly to (8.9). In particular, v is a solution to (8.1) with
Jλ(v) = jλ > Jλ(s), and hence we have a nonconstant solution for almost
every λ ∈ (4π, λ1).

On the other hand, any λ ∈ (4π, λ1) \ 4πN admits a sequence λk ↑ λ

provided with a nonconstant solution v = vk to (8.1) for λ = λk satisfying

Jλk (vk) = jλk

for each k. Since

λ ∈ (4π, λ1) �→ jλ

is nonincreasing, it holds that

Jλk (vk) ≥ jλ.

If λ �∈ 4πN , then {‖vk‖∞} is bounded by Theorem 7.5. Therefore, from the
elliptic estimate we have

vk → v

in C2(�), passing through a subsequence. Then

Jλ(v) ≥ jλ > Jλ(s)

follows, and v = v(x) is a nonconstant solution to (8.1). The proof is com-
plete. �

To prove Theorem 8.3, first, we show the following lemma.

Lemma 8.7 Let X and I be a Banach space over R and a nonempty interval,
respectively. Suppose that Jλ ∈ C1(X,R) is given for each λ ∈ I , satisfying
the assumption of Lemma 8.6 with

Jλ = Aλ − λB. (8.13)
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Then, if {(λk, vk)} ⊂ I × X satisfies

λ ↑ λ0 ∈ I, −Jλ0(vk) ≤ K , Jλk (vk) ≤ K ,

and

Jλk (vk)− Jλ0(vk)

λ0 − λk
≤ K

with a constant K independent of k, this {vk} ⊂ X is bounded, and any ε > 0
admits N such that

Jλ0(vk) ≤ Jλk (vk)+ ε

for any k ≥ N.

Proof: From (8.13) we have

Jλk (vk)− Jλ0(vk) = Aλk (vk)− λk B(vk)− Aλ0(vk)+ λ0 B(vk)

≥ −C(λ0 − λk)+ (λ0 − λk)B(vk). (8.14)

This implies

Jλk (vk)− Jλ0(vk)

λ0 − λk
≥ −C + B(vk)

and hence

lim sup
k→+∞

B(vk) < +∞

follows. In particular, {vk} is bounded in X from the first assumption of Lemma
8.6, and we have

B(vk) ≥ −M

with a constant M independent of k from the second assumption. Now, in-
equality (8.14) implies

Jλ0(vk)− Jλk (vk) ≤ C(λ0 − λk)+ (λ0 − λk) · M,

and hence the conclusion. �
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We shall make use of the theorem of Denjoy–Young–Sacks to show the fol-
lowing lemma. This theorem is concerned with four Dini derivatives of each
real-valued function defined on an interval:

!± = lim sup
±h↓0

f (x + h)− f (x)

h
,

λ± = lim inf±h↓0

f (x + h)− f (x)

h
.

We say that two of these numbers are associated if they take the same side such
as λ+ and!+, and opposed for the other case such as λ+ and!−. Then, except
for x in a set of measure zero, f = f (x) admits the following properties:

1. Two associated derivatives are either equal and finite or unequal with at
least one infinite.

2. Two opposed derivatives are either finite and equal or infinite and un-
equal with the one of higher index,!, equal to ∞ and the other, λ, equal
to −∞.

See Riesz and Nagy [137] for the proof of the above fact.

Lemma 8.8 For almost every λ0 ∈ I , there is λk ↑ λ0 and M(λ0) < +∞
such that

− jλ0 − jλk

λ0 − λk
≤ M(λ0). (8.15)

Proof: Condition (8.15) is violated if and only if the left Dini derivative of
jλ is −∞ at λ0. It cannot occur except for a set of measure zero of λ0 by the
theorem of Denjoy–Young–Sacks. �

Lemma 8.9 Under the assumptions of Theorem 8.3, suppose that λ0 ∈ I sat-
isfies (8.15). Then, we have a family {γk} ∈ � and a constant K = K (λ0) > 0
provided with the following properties.

1. If

Jλ0(γk(t)) ≥ jλ0 − (λ0 − λk), (8.16)

then ∥∥γk(t)
∥∥ ≤ K

holds for t ∈ [0, 1].



8. Multiple Existence 163

2. Any ε > 0 admits N such that

max
γk

Jλ0 ≤ jλ0 + ε

for every n ≥ N.

Proof: By the definition, we have {γk} ⊂ � such that

max
γk

Jλk ≤ jλk + (λ0 − λk). (8.17)

First, if (8.16) holds, then we have

Jλk (γk(t))− Jλ0(γk(t))

λ0 − λk
≤ jλk + (λ0 − λk)− jλ0 + (λ0 − λk)

λ0 − λk

≤ M(λ0)+ 2.

Next,
{Jλ0(γk(t))

}
is bounded from below by (8.16). Finally,

{Jλk (γk(t))
}

is
bounded from above by (8.17) and (8.15). Therefore, {γk(t)} is bounded by
Lemma 8.7. This shows the first case of the assertion.

To prove the second case, we take vk ∈ γk([0, 1]) satisfying

max
γk

Jλ0 = Jλ0(vk)
(≥ jλ0

)
.

Then, it holds that

Jλ0(vk) = max
γk

Jλ0 > −∞

and

Jλk (vk) ≤ max
γk

Jλk ≤ jλk + (λ0 − λk)

≤ jλ0 + (M(λ0)+ 1) (λ0 − λk) < +∞
by (8.17) and (8.15). These inequalities also imply

Jλk (vk)− Jλ0(vk)

λ0 − λk
≤ M(λ0)+ 1

and hence Lemma 8.7 is applicable. Given ε > 0, we have

dk ≡ Jλ0(vk)− Jλk (vk) <
ε

3
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for any k ≥ N . Furthermore, we have

max
γk

Jλ0 = Jλ0(vk) = Jλk (vk)+ dk

≤ max
γk

Jλk + dk ≤ jλk + (λ0 − λk)+ dk

by (8.17). Then, (8.15) gives

jλk − jλ0 <
ε

3

for k sufficiently large, and the proof is complete. �

Lemma 8.10 For K in Lemma 8.9, we put

Fa = {
v ∈ X

∣∣ ∥∥v∥∥ ≤ K + 1,
∣∣Jλ0(v)− jλ0

∣∣ ≤ a
}
,

where a > 0. Then, we have

inf
{∥∥J ′

λ0
(v)

∥∥∗
∣∣ v ∈ Fa

} = 0

if 0 < a � 1.

Proof: If this is not the case, we have

inf
v∈Fa

∥∥J ′
λ0
(v)

∥∥∗ ≥ a

and

a ∈
(

0,
1

2

[
jλ0 − max

{Jλ0(v0),Jλ0(v1)
}] )

(8.18)

for 0 < a � 1. Then, the deformation theory [134] guarantees the existence
of α ∈ (0, a) and a homeomorphism η : X → X such that

η(v) = v if
∣∣Jλ0(v)− jλ0

∣∣ ≥ a, (8.19)

Jλ0 ◦ η ≤ Jλ0 on X, (8.20)

and

Jλ0 (η(v)) ≤ jλ0 − α (8.21)

for v ∈ X in ‖v‖ ≤ K and Jλ0(v) ≤ jλ0 + α.
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We take the family {γk} ⊂ � of Lemma 8.9. Then, for k � 1, it holds that

max
γk

Jλ0 ≤ jλ0 + α (8.22)

and

α > λ0 − λk . (8.23)

Here, we have η ◦ γk ∈ � by (8.18). Let v ∈ γk([0, 1]). Then, in the case of

Jλ0(v) ≤ jλ0 − (λ0 − λk)

we have

Jλ0(η(v)) ≤ jλ0 − (λ0 − λk)

by (8.20). In the other case of

Jλ0 > jλ0 − (λ0 − λk)

we have ‖v‖ ≤ K by Lemma 8.9. We can apply (8.21) by (8.22) and hence it
follows that

Jλ0(v) ≤ jλ0 − α ≤ jλ0 − (λ0 − λk)

from (8.23). In any case, we have

max
η◦γk

Jλ0 ≤ jλ0 − (λ0 − λk),

a contradiction, and the proof is complete. �

Now, we give the following proof.

Proof of Theorem 8.3: Suppose (8.15) at λ0 ∈ I , and apply Lemma 8.10 for
a = 1/k (k = 1, 2, . . . ). Then, there is vk ∈ X such that∥∥vk

∥∥ ≤ K + 1, Jλ0(vk)→ jλ0,

and

J ′
λ0
(vk)→ 0.

The proof is complete. �
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In the rest of this chapter we prove Theorem 8.2, supposing 0 < a � 1.
First, we show that the (JL) field is regarded as the limit case of the (N) field
of a ↓ 0 including their linearized operators.

Lemma 8.11 Let λ �∈ 4πN be fixed, and {va} be a family of solutions to (1.1)
with a ↓ 0 . Then, passing through a subsequence we have

pa = λeva∫
�

eva dx
−→ p0 (8.24)

in C2(�) with a positive function p0(x) defined on �.

Proof: We write v = va and p = pa for simplicity. First, (8.1) implies

a
∥∥v∥∥1 = λ

because v > 0 in �, and hence ∥∥v∥∥1 → +∞
follows as a ↓ 0. We take

w = v − 1

|�|
∫
�

v dx .

It satisfies

−�w = −av + λ ev∫
�

ev dx
in �,

1

|�|
∫
�

w dx = 0,

∂w

∂ν
= 0 on ∂� (8.25)

with ∥∥∥ − av + λev∫
�

ev dx

∥∥∥
1
≤ 2λ.

Therefore, the L1 estimate guarantees∥∥w∥∥
W 1,q (�)

≤ C, (8.26)

where C > 0 denotes a constant independent of a.
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Since the first equality of (8.25) is written as

−�w = −aw − λ

|�| + λew∫
�

ew dx
, (8.27)

we have

−�w + w ≥ (1 − a)w − λ

|�| in �,

∂w

∂ν
= 0 on ∂�.

Here, (8.26) implies ∥∥∥(1 − a)w − λ

|�|
∥∥∥

W 1,q
≤ C

for 1 < q < 2. Then, the elliptic regularity, Morrey’s inequality, and the
comparison theorem assure

w(x) ≥ −C

uniformly. In particular, the blowup set S of any subsequence {w′
a} ⊂ {wa}

coincides with

S = {
x0 ∈ � ∣∣ there exist ak → 0 and xk → x0 satisfying w′

ak
(xk)→ +∞}

.

Now, we can argue similarly as in the previous chapter using (8.26) and
(8.27). Thus, {w} is uniformly bounded by λ �∈ 4πN . Passing through a sub-
sequence, we have

w′
a −→ w0

in C2(�) with some w0(x) from the elliptic regularity. Therefore, (8.24) holds
for

pa = λew
′
a∫

�
ew′

a dx
and p0 = λew0∫

�
ew0 dx

,

and the proof is complete. �
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If λ = 4π� and the blowup actually occurs to {wa}, we have

� = 2� (� ∩ S)+ � (S ∩ ∂�) ,(−�w′
a + aw′

a

)
dx ⇀

∑
x0∈S

m∗(x0)δx0(dx),

∇x

[
m∗(x0)K (x, x0)+

∑
x ′

0∈S\{x0}
m∗(x ′

0)G(x, x ′
0)

]
x=x0

= 0

for each x0 ∈ S, where only the tangential derivative is taken in the last relation
if x0 ∈ ∂�, and G = G(x, x ′) denotes the Green’s function to the (JL) field:

−�x G(x, x ′) = δx ′(dx) (x ∈ �),∫
�

G(x, x ′) dx = 0,

∂G

∂νx

∣∣∣
x∈∂� = 0.

This is proven similarly as in the proof of Theorem 7.5.
We proceed to the spectral analysis of the linearized operator L defined by

(8.2). This operator is defined for any positive continuous function p = p(x)
on � by (8.3) and

L = L∗ + a.

Let
{
μ j

}∞
j=2 be the set of eigenvalues for L∗ of which eigenfunctions are dif-

ferent from the constant, and let
{
ρ j

}∞
j=1 be the set of all eigenvalues of

−�− p with
∂

∂ν
·
∣∣∣
∂�

= 0.

We set X = H1(�) for the moment.

Lemma 8.12 The valuesμ j , ρ j , and σ j−1 have the same sign for each j ≥ 2,
where

σ j = sup
X j−1⊂X

codim(X j−1)= j−2

inf

{∫
�

|∇φ|2 dx
∣∣∣ φ ∈ X j−1,

∫
�

pφ2 dx = 1,
∫
�

pφ dx = 0

}
.

(8.28)
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Proof: We recall that the bilinear form A∗ associated with L∗ is defined on
X × X and is given by (8.5). This means

A∗(φ, φ) = Bp(ψ,ψ)

with

Bp(ψ,ψ) =
∫
�

( |∇ψ |2 − pψ2) dx

and

ψ = φ − 1

λ

∫
�

pφ dx .

Here,

Q : φ ∈ X �→ ψ ∈ X

is a projection with the range and the kernel given by

ran(Q) = X0 and ker(Q) = {constant functions} ,
respectively, where

X0 =
{
ψ ∈ X

∣∣ ∫
�

pψ dx = 0
}
.

The bilinear form Bp defined on X0 × X0 is associated with a self-adjoint
operator in L2(�). If its eigenvalues are denoted by

{
μ̂ j

}
j≥2, then μ̂ j and μ j

have the same sign. Furthermore, the mini-max principle guarantees

μ̂ j = sup
X j−1⊂X

codim(X j−1)= j−2

inf

{∫
�

(
|∇ψ |2 − pψ2

)
dx

∣∣∣ψ ∈ X j−1,

∫
�

pψ dx = 0,
∫
�

ψ2 dx = 1

}
and hence μ̂ j and σ j − 1 have the same sign. Consequently, μ j and σ j − 1
have the same sign.

To examine the relation between ρ j and σ j , we take

σ̃ j = sup
X j⊂X

codim(X j )= j−1

inf
{ ∫

�

|∇φ|2 dx
∣∣ φ ∈ X j ,

∫
�

pφ2 dx = 1
}
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for j = 1, 2, . . . . It is the j-th eigenvalue of

−�φ = σ̃ pφ in �,

∂φ

∂ν
= 0 on ∂�,

so that σ̃ j − 1 and ρ j have the same sign for j ≥ 1. On the other hand we have
σ̃1 = 0 with the constant eigenfunction and hence σ j = σ̃ j for j ≥ 2. Thus,
ρ j and σ j − 1 have the same sign for j ≥ 2. �

We have arrived at the eigenvalue problem

−�φ = σ̃ pφ in �,
∂φ

∂ν
= 0 on ∂�

for

p = λev∫
�

ev dx
,

with v = v(x) satisfying (8.1). If it holds that

−� log p ≤ p in �,

then Bandle’s theory [5] on isoperimetric inequality of eigenvalues is applica-
ble. Consequently, we obtain the following lemma.

Lemma 8.13 If � ⊂ R2 is a simply connected domain and p = p(x) is a
positive C2 function on � satisfying

−� log p ≤ p in � and λ ≡
∫
�

p dx < 8π, (8.29)

then there is δ > 0 such that for λ ∈ (0, 4π + δ) it holds that

σ2 ≤ 4π

λ
. (8.30)

The above lemma is concerned with the Neumann boundary condition, and
the method of conformal plantation is adopted for the proof. However, more
essentially, the isoperimetric inequality on surfaces, referred to as the Alexan-
droff–Bol inequality, is applied for the proof. Therefore, it is regarded as a
variant of Polyá-Szegö-Weinberger’s inequality developed on the round sphere
S2 in R3. The associated Legendre equation arises in this context as the polar
decomposition of −� defined on R3, or equivalently, the Laplace–Beltrami
operator defined on S2. This geometric account of Bandle’s theory is devel-
oped in [162], and the following fact is proven from that point of view.
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Lemma 8.14 If � ⊂ R2 is a simply connected bounded domain with smooth
boundary and q = q(x) > 0 is a smooth function on � satisfying

−� log q ≤ q in � and
∫
�

q dx < 8π,

then it holds that

inf

{∥∥∇ψ∥∥2
2

∣∣∣ ψ ∈ H1
c (�),

∫
�

qψ dx = 0,
∫
�

qψ2 dx = 1

}
> 1.

As we have illustrated, these lemmas are involved with the theory of non-
linear partial differential equations, the isoperimetric inequality on surfaces
associated with Gaussian curvature, complex function theory, spectral analysis
of the linearized operator, spectral geometry on the Laplace–Beltrami opera-
tor defined on surfaces, nonlinear functional analysis including the theory of
bifurcation, the theory of special functions, particularly that on the associated
Legendre equation, and so forth. We refer to [166] for the proof of Lemma
8.14, and now we give the following proof.

Proof of Lemma 8.13: We have only to examine [5] and therefore just sketch
the outline of the proof. Note that σ̃ j = σ j holds for j ≥ 2. First, each
λ ∈ (0, 8π) determines R = R(λ) ∈ (−1, 1) and the eigenvalue problems
in consideration are associated with this value R as[(

1 − ξ2)�ξ ]ξ + 2τ� = 0 (−1 < ξ < R) (8.31)

with

|�(−1)| < +∞ and �′(R) = 0 (8.32)

and [(
1 − ξ2)�ξ ]ξ − �

1 − ξ2
+ 2ν� = 0 (−1 < ξ < R) (8.33)

with

�(−1) = 0 and �′(R) = 0. (8.34)

Here, λ �→ R(λ) is monotone increasing and λ = 0, 4π, 8π correspond to
R = −1, 0,+1, respectively.

If the second eigenvalue of (8.31) with (8.32) is denoted by τ2, and the first
one of (8.33) with (8.34) by ν1, then the conclusion of Lemma 3.3.10 of [5]
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holds as far as τ2 > ν1 is preserved. On the other hand, in the proof of Lemma
3.3.10 of [5] it is shown that τ2 > ν1 is satisfied in the case of R ≤ 0, or
equivalently, λ ≤ 4π . From the continuity, τ2 > ν1 holds true for 0 < λ −
4π � 1. Namely, the conclusion of Lemma 3.3.10 of [5] holds even if 0 <
λ− 4π � 1. Next we examine Lemma 3.3.12 of [5]. Let us suppose that e(ζ )
is nonincreasing only in (a, b∗) with some b∗ < b. Even so, the proof exposed
there is valid if b − b∗ > 0 is sufficiently small so that the conclusion of this
lemma holds even in this case.

Thanks to these facts, we can reproduce the argument in the proof of Corol-
lary 3.3.10 of [5] even for λ ∈ (0, 4π + δ) with δ > 0 sufficiently small. Then,
we obtain

1

σ2
+ 1

σ3
≥ λ

2π
,

and in particular (8.30) follows. �

We complete the following proof.

Proof of Theorem 8.2: We take δ > 0 of Lemma 8.13 and fix λ ∈ (4π, 4π+δ).
Suppose that there exists a family of solutions (8.1) with a = ak ↓ 0, denoted
by {vk}, of which the first eigenvalues of linearized operators are nonnegative.
We write a = ak , va = vak , and

pa = λeva∫
�

eva dx

for simplicity. By Lemma 8.11, we have a subsequence (denoted by the same
symbol) satisfying

pa → p0 (8.35)

in C2(�) with a positive function p0(x) defined on �. We note that this p0

satisfies (8.29).
If ϕa attains

σ2(a) ≡ inf

{∫
�

|∇φ|2 dx∣∣∣ φ ∈ H1(�),

∫
�

paφ dx = 0,
∫
�

paφ
2 dx = 1

}
,
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then {ϕa} is compact in H1(�). It is obvious that {σ2(a)} is bounded, and
hence we have

ϕa → ϕ in H1(�) and σ2(a)→ σ 0
2 ,

passing through a subsequence. This σ 0
2 attains

σ 0
2 ≡ inf

{∫
�

|∇φ|2 dx∣∣∣ φ ∈ H1(�),

∫
�

p0φ dx = 0,
∫
�

p0φ
2 dx = 1

}
,

and therefore Lemma 8.13 assures

σ 0
2 ≤ 4π

λ
< 1

for λ ∈ (4π, 4π + δ). This implies μ0
2 < 0 by Lemma 8.12.

On the other hand, the set of eigenvalues of the linearized operator around
va(x) is given by

a + {
0 + μ j (a)

∣∣ j ≥ 2
}
.

Then, (8.35) implies

μ2(a) → μ0
2,

with the second eigenvalue μ0
2 introduced before Lemma 8.12 for p = p0. See

Kato [77] for this convergence of eigenvalues. Then,

lim
a↓0
(μ2(a)+ a) = μ0

2 < 0

follows and hence μ2(a) + a < 0 holds for a > 0 sufficiently small. This
contradicts the assumption and the proof is complete. �

From the proof of Theorem 8.2, we see that there is a constant δ > 0 such
that for any δ1 ∈ (0, δ) there exists a1 > 0 such that if 4π + δ1 < λ < 4π + δ
and 0 < a < a1 then any solution of (8.1) is linearized unstable, provided that
� ⊂ R2 is a simply connected bounded domain with smooth boundary.
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Dynamical Equivalence

This chapter returns to the general W (x) and describes the fact that the varia-
tional structure F defined on Pλ and that of Jλ on V = dom(A1/2) stated in
Chapter 6 are equivalent up to Morse indices. This fact was known concerning
the stability in the case that A is equal to −� with the Dirichlet boundary con-
dition, but actually general theory holds true. This structure is not restricted to
the Keller–Segel system; it is valid for several mean field theories.

We recall that � ⊂ Rn is a bounded domain with smooth boundary ∂�,
W = W (x) > 0 is a smooth function of x ∈ �, and A > 0 is a self-adjoint
operator in L2(�) with compact resolvent. We set

W(u, v) =
∫
�

(u log u − u log W − uv) dx + 1

2

∥∥A1/2v
∥∥2

for u ∈ Pλ ∩ C(�) and v ∈ dom(A1/2), where λ > 0 is a given constant and
Pλ is the set defined by (6.14):

Pλ = {
u : measurable

∣∣ u ≥ 0 a.e.,
∥∥u

∥∥
1 = λ

}
.

Putting

F(u) = W(u, A−1u)

=
∫
�

(u log u − u log W ) dx − 1

2
(A−1u, u),
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we say that u = u(x) > 0 (x ∈ �) is a critical function of F on Pλ if it belongs
to Pλ ∩ C(�) and satisfies

d

ds
F(u + sϕ)

∣∣∣
s=0

= 0

for any ϕ ∈ C(�) in
∫
�
ϕ dx = 0. Here, we note that the relation

u + sϕ ∈ Pλ ∩ C(�)

is valid for |s| � 1. In this case, the bilinear form

F ′′(u)[ϕ, ϕ] = d2

ds2
F(u + sϕ)

∣∣∣
s=0

defined for ϕ ∈ C(�) in
∫
�
ϕ dx = 0 is shown to be bounded in L2(�), and

hence is closable in L2
0(�), where

L2
0(�) =

{
ϕ ∈ L2(�)

∣∣∣ ∫
�

ϕ dx = 0
}
.

We call the maximum integer k satisfying

inf

{
sup

ϕ∈Y\{0}
F ′′(u)[ϕ, ϕ]

‖ϕ‖2

∣∣∣ Y ⊂ L2
0(�), dim Y = k

}
< 0

the Morse index of u = u(x).
Next, we take

Jλ(v) = W
( λW ev∫
�

W ev dx
, v

)
− λ log λ

= 1

2

∥∥A1/2v
∥∥2 − λ log

( ∫
�

W ev dx
)

defined for v ∈ C(�) ∩ dom(A1/2). We say that such v = v(x) is a critical
function of Jλ on dom(A1/2) if

d

ds
Jλ(v + sw)

∣∣∣
s=0

= 0

holds for any w ∈ C(�) ∩ dom(A1/2). Then, similarly we can show that the
bilinear form

J ′′
λ (v)[w,w] = d2

ds2
Jλ(v + sw)

∣∣∣
s=0
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defined for w ∈ C(�) ∩ dom(A1/2) is semi-bounded in L2(�). Under the
assumption [

C(�) ∩ dom(A1/2)
]L2(�) = L2(�), (9.1)

this bilinear form is closable in L2(�), where [ ] denotes the closure. Then it
is associated with a self-adjoint operator in L2(�) provided with the standard
norm. It is denoted by M and the number of negative eigenvalues of M is called
the Morse index of v = v(x).

We impose the following condition:

ϕ ∈ L2
0(�), A−1ϕ = constant ⇒ ϕ = 0. (9.2)

In the cases of the (JL) and (D) fields, 1 �∈ dom(A) and this condition is au-
tomatically satisfied. In the (N) field, we have 1 ∈ dom(A), but if A−1ϕ is
a constant, then so is ϕ. This implies ϕ = 0 because

∫
�
ϕ = 0 holds for

ϕ ∈ L2
0(�). Thus, (9.2) is valid for the (N), (JL), and (D) fields.

Under these notations, we can show the following theorem.

Theorem 9.1 A positive function u = u(x) ∈ Pλ∩C(�) is a critical function
of F defined on Pλ if and only if it solves (6.7), and this is equivalent to that
v = A−1u is a solution to (6.6):

v ∈ dom(A), Av = λW ev∫
�

W ev dx
. (9.3)

Conversely, v = v(x) ∈ C(�) ∩ dom(A1/2) is a critical function of Jλ on
dom(A1/2) if and only if it solves (9.3), and this is equivalent to that u = fλ(v)
solves (6.7):

log u − A−1u − log W = constant,
∥∥u

∥∥
1 = λ, (9.4)

where

fλ(v) = λW ev∫
�

W ev dx
.

Finally, the Morse indices of these u and v are equal under the assumptions
(9.1) and (9.2).

Proof: We can confirm the following identities, where u ∈ Pλ ∩ C(�) is a
positive function on �, v ∈ C(�) ∩ dom(A1/2), ϕ ∈ C(�) satisfies
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�
ϕ dx = 0, and w ∈ dom(A1/2):

Wu(u, v)[ϕ] = d

ds
W(u + sϕ, v)

∣∣∣
s=0

=
∫
�

ϕ (log u − log W − v) dx

Wuu(u, v)[ϕ, ϕ] = d2

ds2
W(u + sϕ, v)

∣∣∣
s=0

=
∫
�

u−1ϕ2 dx

Wuv(u, v)[ϕ,w] = ∂2

∂s1∂s2
W(u + s1ϕ, v + s2w)

∣∣∣
(s1,s2)=(0,0)

= −
∫
�

ϕw dx

Wv(u, v)[w] = d

ds
W(u, v + sw)

∣∣∣
s=0

= −
∫
�

uw dx + (
A1/2v, A1/2w

)
Wvv(u, v)[w,w] = d2

ds2
W(u, v + sw)

∣∣∣
s=0

= ∥∥A1/2w
∥∥2
.

First, we examine the variational structure of F on Pλ. Given u ∈ Pλ∩C(�)
and ϕ ∈ C(�) satisfying u(x) > 0 for x ∈ � and

∫
�
ϕ dx = 0, respectively,

we set

u(s) = u + sϕ

for |s| � 1. Then, from

F(
u(s)

) = W(
u(s), A−1u(s)

)
it follows that

d

ds
F(

u(s)
) = Wu

(
u(s), A−1u(s)

)
[ϕ] + Wv

(
u(s), A−1u(s)

)
[A−1ϕ].

Here, we have

Wv

(
u(s), A−1u(s)

)
[A−1ϕ]

= −(
u(s), A−1ϕ

) + (
A1/2 · A−1u(s), A1/2 · A−1ϕ

) = 0
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and hence

d

ds
F(u + sϕ) = Wu

(
u + sϕ, A−1u + s A−1ϕ

)
[ϕ] (9.5)

follows. This implies

F ′(u)[ϕ] = Wu
(
u, A−1u

)
[ϕ]

= (
ϕ, log u − log W − A−1u

)
and therefore u = u(x) is a critical function of F on Pλ if and only if (9.4)
holds. This means that v = A−1u is a solution to (9.3). In this case, for u(s) =
u + sϕ we have

F ′′(u)[ϕ, ϕ] = d2

ds2
F (u(s))

∣∣∣
s=0

= d

ds
Wu

(
u(s), A−1u(s)

)
[ϕ]

∣∣∣
s=0

= Wuu(u, v)[ϕ, ϕ] + Wuv(u, v)[ϕ, A−1ϕ]

=
∫
�

u−1ϕ2 dx − (ϕ, A−1ϕ) (9.6)

by (9.5). If we provide L2
0(�) with the norm ‖ · ‖u−1 by∥∥ϕ∥∥u−1 = (ϕ, ϕ)

1/2
u−1 and (ϕ, ψ)u−1 =

∫
�

u−1ϕ · ψ dx,

then the bounded symmetric bilinear form

L(ϕ, ψ) =
∫
�

u−1ϕψ dx − (
A−1/2ϕ, A−1/2ψ

)
(9.7)

defined for ϕ,ψ ∈ L2
0(�) is associated with

L = I − Pu A−1

with respect to
∥∥ · ∥∥u−1 , through the relation

L(ϕ, ψ) = (Lϕ,ψ)u−1

for ϕ,ψ ∈ L2
0(�). Here, u is identified with the multiplication by itself, and

P : L2(�)→ L2
0(�) is the orthogonal projection with respect to ‖ · ‖u−1 , that

is,

Pv = v − u

λ

∫
�

v dx . (9.8)
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The operator T = Pu A−1 restricted to L2
0(�) is compact. From Riesz–

Schauder’s theory, σ(L) ⊂ σp(L)∪ {1}, σp(L) is discrete and can accumulate
only at 1, and each eigenvalue of L except for 1 has finite multiplicity. Here
and henceforth, σ(L) and σp(L) ⊂ σ(L) denote the spectrum and the point
spectrum of L , respectively.

Furthermore, L is self-adjoint in L2
0(�)with respect to the norm ‖ · ‖u−1 and

has the spectral decomposition denoted by L = ∫ ∞
−∞ λd E(λ). Since

σ(L) \ {0} ⊂ R \ [−δ, δ] holds with some δ > 0, we have the orthogonal
decomposition

L2
0(�) = X− ⊕ X0 ⊕ X+,

where X0 = ker(L), X− = E
(
(−∞,−δ)) (L2

0(�)
)
, and

X+ = E
(
(δ,+∞)) (L2

0(�)
)
.

We have

X± \ {0} ⊂ {
v ∈ L2

0(�)
∣∣ ±L(v, v) > 0

}
,

and ±L( ·, ·) provides an inner product, equivalent to ( , )u−1 , on X±. See
[77, 152, 191] for the operator theory used here.

We have dim X− < +∞, and X− coincides with the maximum linear space
Y ⊂ L2

0(�) satisfying L(v, v) < 0 for any v ∈ Y \ {0}, namely, dim X− is
equal to the maximum integer k satisfying

σk ≡ min

{
max
v∈Y\{0}

L(v, v)
‖v‖2

u−1

∣∣∣ Y ⊂ L2
0(�), dim Y = k

}
< 0 (9.9)

by the mini-max principle. Since ‖ · ‖u−1 is equivalent to ‖ · ‖, this maximum
integer k is equal to the Morse index of u. Furthermore, from (9.7) it follows
that

σk = 1 − 1
/

min
{

max
v∈Y\{0}

‖v‖2
u−1

‖A−1/2v‖2

∣∣ Y ⊂ L2
0(�), dim Y = k

}
.

In other words, the Morse index of u is equal to the maximum integer k satis-
fying

μk ≡ min

{
max
v∈Y\{0}

‖v‖u−1

‖A−1/2v‖2

∣∣ Y ⊂ L2
0(�), dim Y = k

}
< 1.
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This value μk is associated with the eigenvalue problem of finding ϕ ∈ L2
0(�)

such that ∫
�

u−1φψ dx = μ
(

A−1/2ϕ, A−1/2ψ
)

(9.10)

for any ψ ∈ L2
0(�). Actually, the operator-theoretic form of this eigenvalue

problem takes

Tϕ = μ−1ϕ
(
ϕ ∈ L2

0(�)
)

(9.11)

for T = Pu A−1.
Since T is compact and self-adjoint in L2

0(�), the normalized eigenfunctions
of (9.10) form a complete orthonormal system of ran(T ) = ker(T )⊥ [152,
154]. Here and henceforth, ran(T ) and ker(T ) denote the range and the kernel
of T , respectively. Here, the eigenvalue μ of (9.10) is always positive, and the
normalization and the orthogonality are taken with respect to the norm ‖ · ‖u−1 .
If ϕ ∈ L2

0(�) satisfies

Tϕ = Pu A−1ϕ = 0,

then it holds that

A−1ϕ = 1

λ

∫
�

u · A−1ϕ dx

by (9.8). This means that A−1ϕ is a constant, and hence ϕ = 0 follows from
(9.2). Thus, we have

ker(T ) = {0}
and those normalized eigenfunctions {ϕi } form a complete orthonormal system
in L2

0(�), and therefore the Morse index of u, that is, the maximum integer k in
σk < 0, is equal to the number of eigenvalues of (9.11) in μ < 1, where σk is
the value defined by (9.9). In terms ofw = A−1ϕ, problem (9.11) is equivalent
to finding w ∈ dom(A) such that

Aw = μu
(
w − 1

λ

∫
�

uw dx
)
. (9.12)

Thus, dim X−, the Morse index of u, is equal to the number of eigenvalues of
(9.12) in μ < 1. Now we shall show that this number is also equal to that of
negative eigenvalues of M defined above in terms of v = A−1u.
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For this purpose, first, we examine the variational structure of Jλ. In fact,
given v ∈ C(�) ∩ dom(A1/2), we have

Jλ(v) = W ( fλ(v), v)− λ log λ

for fλ(v) = λW ev/
∫
�

W ev dx by (6.15). In terms of

ϕs ≡ ∂

∂s
fλ(v + sw)

this implies

d

ds
Jλ(v + sw) = Wu ( fλ(v + sw), v + sw) [ϕs]

+ Wv ( fλ(v + sw), v + sw) [w].

By means of
∫
�

fλ(v + sw) dx = λ, it holds that∫
�

ϕs dx = 0.

This implies

Wu
(

fs(v + sw) , v + sw
)
[ϕs]

=
∫
�

ϕs · { log fλ(v + sw)− log W − (v + sw)
}

dx

=
∫
�

ϕs ·
{

log λ− log
( ∫

�

W ev+sw dx
)}

dx = 0

and hence

d

ds
Jλ(v + sw) = Wv ( fλ(v + sw), v + sw) [w] (9.13)

holds true. In particular, we have

J ′
λ(v)[w] = d

ds
Jλ(v + sw)

∣∣∣
s=0

= Wv ( fλ(v), v) [w]

= − ( fλ(v), w)+
(

A1/2v, A1/2w
)
.

Using assumption (9.1), we conclude that

v ∈ C(�) ∩ dom(A1/2)
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is a critical function of Jλ if and only if it satisfies (9.3). This means that the
positive function u = fλ(v) is a solution to (9.4).

Let us compute the Morse index of v = v(x). In fact, putting

ϕ ≡ ϕs
∣∣
s=0 = ∂

∂s
fλ(v + sw)

∣∣∣
s=0
,

we have

J ′′
λ (v)[w,w] = d2

ds2
Jλ(v + sw)

∣∣∣
s=0

= Wuv(u, v)[ϕ,w] + Wvv(u, v)[w,w]

= ∥∥A1/2w
∥∥2 − (ϕ,w)

by (9.13). On the other hand, from u = fλ(v) we have

ϕ = ∂

∂s
fλ(v + sw)

∣∣∣
s=0

= λ

{
W evw∫
�

W ev dx
− W ev

∫
�

W evw dx(∫
�

W ev dx
)2

}
= u

(
w − 1

λ

∫
�

uw dx
)
.

Therefore, we have

w = u−1ϕ + 1

λ

∫
�

uw dx

and hence

(ϕ,w) =
∫
�

u−1ϕ2 dx =
∫
�

u

(
w − 1

λ

∫
�

uw dx

)2

dx

follows from
∫
�
ϕ dx = 0. We obtain

J ′′
λ (v)[w,w] = ∥∥A1/2w

∥∥2 −
∫
�

u

(
w − 1

λ

∫
�

uw dx

)2

dx (9.14)

and the linearized operator M stated above is realized as

Mw = Aw − u

(
w − 1

λ

∫
�

uw dx

)
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with w ∈ dom(M) = dom(A), that is,

J ′′
λ (v)[w,ψ] = (Mw,ψ)

for w ∈ dom(M) ⊂ dom(A1/2) and ψ ∈ dom(A1/2).
Here, we apply the theory of perturbation [77], which assures that M is a

self-adjoint operator with respect to the standard L2 norm, and that its normal-
ized eigenfunctions form a complete orthonormal system of L2(�). Further-
more, there is a maximum linear space Y ⊂ V = dom(A1/2), denoted by Y−,
satisfying

J ′′
λ (v)[w,w] < 0 (9.15)

for any w ∈ Y \ {0}. Its dimension is equal to the number of negative eigen-
values of M , that is, the Morse index of v, and is finite. Thus, we have only to
show that the number of negative eigenvalues of M defined above is equal
to that of eigenvalues in μ < 1 of (9.12) for the given positive function
u = u(x) ∈ Pλ ∈ C(�). Here,

b(v,w) =
∫
�

u
(
v − 1

λ

∫
�

uv dx
)

·
(
w − 1

λ

∫
�

uw dx
)

dx

is a nonnegative bounded bilinear form of v,w ∈ L2(�), and V = dom(A1/2)

is a Hilbert space provided with the inner product

a(v,w) = (
A1/2v, A1/2w

)
defined for v,w ∈ V . Problem (9.12) is equivalent to finding w ∈ V =
dom(A1/2) such that

a(w, v) = μb(w, v)

for any v ∈ V .
Since A−1 : L2(�) → L2(�) is compact, Riesz’s representation theorem

induces the compact operator S : L2(�)→ L2(�) through the relation

a(Sv,w) = b(v,w),

where v ∈ L2(�), Sv ∈ dom(A1/2), and w ∈ dom(A1/2). Then, problem
(9.12) is written as

Sv = μ−1v
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with v ∈ L2(�), which is equivalent to finding

v ∈ V = dom(A1/2)

such that

Sv = μ−1v. (9.16)

This S is reformulated as a compact operator on

V = dom(A1/2),

because v ∈ dom(A1/2) implies Sv ∈ dom(A). It is symmetric with respect
to a( , ), and therefore its normalized eigenfunctions, denoted by {vi }, form
a complete orthogonal system of ran(S) = ker(S)⊥ in V = dom(A1/2).
Here, normalization and orthogonalization are taken with respect to the norm
‖A1/2 · ‖.

Given v ∈ L2(�), we have b(v, v) = 0 if and only if it is a constant.
Conversely, we have

b(1, v) = 0 (9.17)

for any v ∈ L2(�). Therefore, in the case of 1 �∈ V = dom(A1/2), we have
ker(S) = {0} and the maximum linear space Y ⊂ V satisfying (9.15), de-
noted by Y−, coincides with the linear space generated by the eigenfunctions
of (9.12) with μ < 1. Hence the Morse index of u is equal to the number of
negative eigenvalues of M , that is, the Morse index of v. In the other case of
1 ∈ V = dom(A1/2), it holds that ker(S) = {1}. However,∫

�

u
(
v − 1

λ

∫
�

uv dx
)

dx = 0

holds for any v ∈ L2(�), which implies

a(1, v) = (1, Av) = 0

for any eigenfunction v of (9.16) by (9.12). If V denotes the linear space gen-
erated by eigenfunctions of S defined on V = dom(A1/2), this means V ⊥ {1}
with respect to a( , ), where {1} denotes the linear space generated by 1. Hence

[V ⊕ {1}]V = V

follows.
Using (9.17), we obtain again that Y−, the maximum linear space Y ⊂

dom (A1/2) satisfying (9.15), coincides with the linear space generated by
eigenfunctions of (9.12) with μ < 1. We have the same conclusion in this
case also, and the proof is complete. �
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From the proof of the above theorem, we have also

dim ker(L) = dim X0 = dim ker
(J ′′
λ (v)

)
.

We call dim X−+dim X0 the augmented Morse index of u or v. Now, we show
that the stationary solution to the (N) and (JL) fields takes unstable and center
manifolds with the dimensions equal to Morse and augmented Morse indices,
respectively, in the simplified system (3.1):

ut = ∇ · (∇u − u∇(v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

Av = u for t ∈ (0, T ). (9.18)

We shall show that the Morse index represents the stability of the equilibrium
state faithfully even in the full system of n = 2. Furthermore, this result is
extended to more general systems.

For the moment, we develop a formal argument to take the structure of the
problem. Namely, if F ′(u) is identified with

log u − u log W − A−1u

through usual L2 inner product, then the simplified system is written as

ut = ∇ · (u∇F ′(u)
)

and its stationary problem is given as (6.7):

log u − A−1u − log W = constant,
∥∥u

∥∥
1 = λ. (9.19)

Since the stationary solution u is characterized by

F ′(u) = 0,

the linearized system is given by

ϕt = ∇ · (u∇F ′′(u)ϕ
)
,

or equivalently,

ϕt = ∇ · (u∇(u−1ϕ − A−1ϕ)
)

in �× (0, T ),

∂

∂ν

(
u−1ϕ − A−1ϕ

) = 0 on ∂�× (0, T ),∫
�

ϕ dx = 0 for t ∈ (0, T ). (9.20)
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In what follows, these operators S, T and families {vi }, {μi } are differently
denoted from these defined above. On the other hand, the bounded self-adjoint
operator L on L2

0(�) continues to indicate the one associated with the bilinear
form

L(ϕ, ψ) =
∫
�

u−1ϕψ dx − (
A−1/2ϕ, A−1/2ψ

)
and the norm ‖ · ‖u−1 in such a way as

L(ϕ, ψ) = (Lϕ,ψ)u,

where ϕ,ψ ∈ L2
0(�). Namely, S denotes the self-adjoint operator in L2(�)

associated with the bilinear form

S(v,w) =
∫
�

u∇v · ∇w dx

defined for v,w ∈ H1(�) and usual L2 norm ‖ · ‖ in such a way as

S(v,w) = (Sv,w),

where v ∈ dom(S) ⊂ H1(�) and w ∈ H1(�). This implies

dom(S) =
{
v ∈ H2(�)

∣∣ ∂v
∂ν

= 0 on ∂�
}

and

Sv = −∇ · (u∇v)
for v ∈ dom(S) under the assumption of u ∈ C1(�). Let H = Su−1L with

dom(H) =
{
ϕ ∈ L2

0(�)
∣∣ u−1Lϕ ∈ dom(S)

}
.

Then, (9.20) is realized as the evolution equation in L2
0(�),

dϕ

dt
+ Hϕ = 0. (9.21)

If we have u ∈ C2(�) furthermore, and∥∥A−1
∥∥

L2(�),H2(�)
≤ A(2) (9.22)
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holds with a constant A(2) > 0, then

dom(H) =
{
ϕ ∈ H2(�) ∩ L2

0(�)
∣∣ ∂
∂ν

(
u−1ϕ − A−1ϕ

) = 0 on ∂�
}

(9.23)

is a closed subspace of H2(�) ∩ L2
0(�) and

Hϕ = −∇ · (u∇(u−1ϕ − A−1ϕ)
)

(9.24)

holds for ϕ ∈ dom(H). Then, the well-posedness of (9.21) is assured by the
following theorem.

Theorem 9.2 Let u = u(x) be a stationary solution to (9.18) in u ∈ C2(�)

and suppose that (9.22) holds. Then, the operator −H defined by (9.23) and
(9.24) generates a holomorphic semigroup{

e−t H}
t≥0

in L2
0(�). Furthermore, σ(H) = σp(H) ⊂ R and the numbers of negative

and nonpositive eigenvalues of H are equal to the Morse and the augmented
Morse indices of u = u(x), respectively.

Proof: We study the spectrum of H first, and take the eigenvalue problem of
finding ϕ ∈ dom(H) such that

Hϕ = μϕ. (9.25)

We note that the inverse operator of S in L2(�) is realized by S−1 : L2
0(�)→

L2
u(�) for

L2
u(�) = {

v ∈ L2(�)
∣∣ (v, u) = 0

}
,

where S−1w = v if and only if

−∇ · (u∇v) = w in �,

∂v

∂ν
= 0 on ∂�,

∫
�

uv dx = 0.

On the other hand, relation (9.25) means

Su−1Lϕ = μϕ ∈ L2
0(�)

with u−1Lϕ ∈ L2
u(�), and hence it is equivalent to

u−1Lϕ = μS−1ϕ,
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or finding ϕ ∈ L2
0(�) such that

L(ϕ, ψ) = μ
(
S−1ϕ,ψ

)
(9.26)

for any ψ ∈ L2
0(�).

Now we introduce T : L2
0(�)→ L2

0(�) by Tw = v if and only if

−∇ · (u∇v) = w in �,

∂v

∂ν
= 0 on ∂�,

∫
�

v dx = 0.

Then (9.26) is equivalent to finding ϕ ∈ L2
0(�) such that

L(ϕ, ψ) = μ (Tϕ,ψ) (9.27)

for any ψ ∈ L2
0(�). Here, T : L2

0(�) → L2
0(�) is a compact positive self-

adjoint operator satisfying

ran(T 1/2) = H1(�) ∩ L2
0(�).

Taking v = T 1/2ϕ and w = T 1/2ψ , we see that (9.27) is equivalent to finding
v ∈ H1(�) ∩ L2

0(�) such that

L(T −1/2v, T −1/2w) = μ(v,w) (9.28)

for any w ∈ H1(�) ∩ L2
0(�).

The bilinear form

L̂(v,w) = L(T −1/2v, T −1/2w)

defined for v,w ∈ H1(�) ∩ L2
0(�) splits in

L̂ = L̂0 − L̂1,

where

L̂0(v,w) = (
u−1/2T −1/2v, u−1/2T −1/2w

)
and

L̂1(v,w) = (
A−1/2T −1/2v, A−1/2T −1/2w

)
.

Here,

L̂0(v, v) ≈ ∥∥T −1/2v
∥∥2
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for v ∈ H1(�)∩ L2
0(�) and A−1/2 : L2(�)→ H1(�) is bounded because of

(9.22) and the interpolation theory. Also, we have∥∥T 1/2 A1/2w
∥∥ ≈ ‖w‖

for w ∈ D(A1/2) with A1/2w ∈ L2
0(�), and hence each ε > 0 admits C ′

ε > 0
such that

‖w‖ ≤ ε∥∥A1/2w
∥∥ + C ′

ε

∥∥T 1/2 A1/2w
∥∥

for any w ∈ A−1/2
(
L2

0(�)
)
. Therefore, we have Cε > 0 satisfying

0 ≤ L̂1(v, v) ≤ εL̂0(v, v)+ Cε
∥∥v∥∥2

for any v ∈ H1(�) ∩ L2
0(�).

On the other hand, the self-adjoint operator in L2
0(�), associated with the

bilinear form L̂0 on H1(�)∩ L2
0(�)× H1(�)∩ L2

0(�) and usual L2 norm, is
given by G0 = T −1/2u−1T −1/2:

L̂0(v,w) = (G0v,w),

where v ∈ dom(G0) ⊂ H1(�)∩L2
0(�) andw ∈ H1(�)∩L2

0(�). This implies

dom(G0) = H2(�) ∩ L2
0(�) ∩ L2

w(�)

with

w = T −1/2
(

u−1 − 1

|�|
∫
�

u−1 dx
)

and also that G−1
0 = T 1/2uT 1/2 is compact in L2

0(�). Then, the perturbation

[77] guarantees that L̂ is associated with a self-adjoint operator with com-
pact resolvent in L2

0(�). Consequently, problem (9.28) provides a complete
orthonormal system of L2

0(�), denoted by {vi } ⊂ H1(�) ∩ L2
0(�). We have

[{vi }
]L2(�) = L2

0(�),
[{vi }

]H1(�) = H1(�) ∩ L2
0(�),

and (vi , v j ) = δi j .
Here, we recall the decomposition

L2
0(�) = X− ⊕ X0 ⊕ X+. (9.29)
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Since T −1/2 : H1(�) ∩ L2
0(�) → L2

0(�) is an isomorphism, the numbers
of negative and zero eigenvalues of (9.28) are equal to dim X− and dim X0,
respectively. The system of eigenfunctions of (9.25) is given by {ϕi } for ϕi =
T −1/2vi ∈ L2

0(�). It satisfies

[ {ϕi }
]L2(�) = L2

0(�) and L(ϕi , ϕ j ) = μiδi j

by (9.27). This decomposition (9.29) is orthogonal with respect to the norm
‖ · ‖u−1 . However, these subspaces are eigenspaces of L are orthogonal also
with respect to L( , ). That is, L(φ, ψ) = 0 if φ and ψ belong to the different
spaces of X−, X0, and X+. Furthermore, ±L is equivalent to ( , )u−1 on X±,
respectively. Therefore, we can introduce an equivalent inner product to ( , )L
on L2

0(�) = X− ⊕ X0 ⊕ X+ by

(φ, ψ)L =
{
±L(φ, ψ) (φ,ψ ∈ X±)
(φ, ψ) (ψ, φ ∈ X0)

and

(φ, ψ)L = (φ−, ψ−)L + (ψ0, φ0)L + (φ+, ψ+)L

for

φ = φ− + φ0 + φ+ ∈ X− ⊕ X0 ⊕ X+

and

ψ = ψ− + ψ0 + ψ+ ∈ X− ⊕ X0 ⊕ X+.

Putting n = dim X− and m = dim X0, we arrange σ(H) = σp(H) = {μi }
as

μ1 ≤ · · · ≤ μn < 0 = μn+1 = · · · = μn+m+1 < μm+n+1 ≤ · · · .
We take ϕ̂i = ϕi√±μi

according to ±μi > 0 and retake {ϕi }m+n
i=n+1 to be an

orthonormal basis of X0 with respect to ‖ · ‖. In this way, we obtain a com-
plete orthonormal system

{
ϕ̂i

}
in L2

0(�) with respect to ( , )L, composed of
eigenfunctions of H . Then, it holds that[ {

ϕ̂i
}n

i=1

]L2(�) = X−,
[{
ϕ̂i

}n+m+1
i=n+1

]L2(�) = X0,
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and [{
ϕ̂i

}∞
i=n+m+1

]L2(�) = X+,

and therefore −H generates the holomorphic semigroup{
e−t H}

t≥0

in L2
0(�) defined by

e−t Hv =
∞∑

i=1

e−tμi
(
v, ϕ̂i

)
L ϕ̂i ,

where the right-hand side converges strongly in L2
0(�) because of

dim X− < +∞
and the proof is complete. �

Returning to (9.18), we define the perturbation from the stationary solution,
taking the stationary solution u = u(x), put u = u +ϕ, which is a system of ϕ:

ϕt = ∇ · (u∇(u−1ϕ − A−1ϕ)
) − ∇ · (ϕ∇ A−1ϕ

)
in �× (0, T ),

u
∂

∂ν

(
u−1ϕ − A−1ϕ

) = ϕ
∂

∂ν
A−1ϕ on ∂�× (0, T ),∫
�

ϕ dx = 0. (9.30)

Henceforth, X = L2
0(�) is provided with the standard L2 norm. If

dom(A) ⊂
{
v ∈ H2(�)

∣∣ ∂v
∂ν

= 0 on ∂�
}
, (9.31)

then the quadratic term vanishes in the boundary condition of (9.30), and

D ≡ dom(H) =
{
ϕ ∈ H2(�) ∩ L2

0(�)
∣∣ ∂

∂ν
(u−1ϕ)

∣∣∣
∂�

= 0
}

(9.32)

is a closed subspace of H2(�). We show that the nonlinear mapping N : D →
X = L2

0(�) is well defined by

N (ϕ) = −∇ · (ϕ∇ A−1ϕ
)
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in the case of n ≤ 8. Then, (9.30) is reduced to the evolution equation

dϕ

dt
+ Hϕ = Nϕ in X = L2

0(�), (9.33)

This fact is justified by the next lemma, because it assures

N (D) ⊂ L2
0(�)

by (9.31) and the generalized Green’s formula [59]:∫
�

Nϕ dx = −
〈
1, ϕ

∂

∂ν
A−1ϕ

〉
= 0,

where 〈 , 〉 denotes the pairing between

H1/2(∂�) and H−1/2(∂�).

Now, we show the following lemma.

Lemma 9.1 Under the assumption of (9.31), the continuous bilinear form

(ϕ, ψ) ∈ D × D �→ ∇ · (ϕ∇ A−1ψ
) ∈ L2(�) (9.34)

is well defined for n ≤ 8.

Proof: We recall the constant A(p) > 0 introduced in (3.5):∥∥A−1
∥∥

L p(�),W 2,p(�)
≤ A(p) (9.35)

and the relation

∇ · (ϕ∇ A−1ψ
) = ∇ϕ · ∇ A−1ψ + ϕ�A−1ψ.

In fact, taking r, p ∈ (1,∞) in 1
r + 1

p = 1
2 , we have∥∥ϕ ·�A−1ψ

∥∥ ≤ ∥∥ϕ∥∥r · A(p) · ∥∥ψ∥∥
p.

Here, by Sobolev’s imbedding theorem we obtain∥∥ϕ∥∥r ≤ K3
∥∥ϕ∥∥D and

∥∥ψ∥∥
p ≤ K3

∥∥ϕ∥∥D

for 1
2 − 2

n ≤ 1
r and 1

2 − 2
n ≤ 1

p , where K3 > 0 is a constant determined by �.

If 2 ·
(

1
2 − 2

n

)
≤ 1

2 , that is, n ≤ 8, we have such r, p and then∥∥ϕ ·�A−1ψ
∥∥ ≤ K 2

3 · A(p) · ∥∥ϕ∥∥D

∥∥ψ∥∥
D

follows.
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Similarly, we have∥∥∇ψ · ∇ A−1ψ
∥∥ ≤ ∥∥∇ϕ∥∥r · ∥∥∇ A−1ψ

∥∥
p

for r, p ∈ (1,∞) in 1
r + 1

p = 1
2 . Using Sobolev’s imbedding theorem, we have∥∥∇ϕ∥∥r ≤ K4

∥∥ϕ∥∥D

for 1
2 − 1

n ≤ 1
r and ∥∥∇ A−1ψ

∥∥
p ≤ K4 · A(q) · ∥∥ψ∥∥

D

for q ∈ (1,∞) in 1
p = 1

q − 1
n and 1

q = 1
2 − 2

n , where K4 > 0 is a constant

determined by �. We have such r, p, q ∈ (1,∞) if
(

1
2 − 1

n

)
+

(
1
2 − 3

n

)
≤ 1

2 ,

or n ≤ 8 again, and then∥∥∇ψ · ∇ A−1ψ
∥∥ ≤ K 2

4 · A(q) · ∥∥ϕ∥∥D

∥∥ψ∥∥
D

follows. The proof is complete. �

Condition (9.31) is satisfied for the (N) and (JL) fields. If this is not the case,
we need the fundamental solution to treat the inhomogeneous boundary con-
dition of (9.30). From this technical difficulty, local dynamical theory around
the stationary solution has not been clarified for the (D) field. From now on,
we shall concentrate on the case (9.31).

Let Q : X → X− be the projection defined by

Qv =
n∑

i=1

(
v, ϕ̂i

)
L ϕ̂i ,

and X̂+ = (I − Q)D ⊂ D. Given a time interval I and an exponent α ∈ (0, 1),
we put

‖w‖Cα(I,D) = ‖w‖L∞(I,D) + [w]Cα(I,D) ,

‖w‖L∞(I,D) = sup
t∈I

∥∥w(t)∥∥D,

[w]Cα(I,D) = sup
t,s∈I,t �=s

‖w(t)− w(s)‖D

|t − s|α ,

‖w‖Cαα ((0,1],D) = ‖w‖L∞((0,1),D) +
[
tαw(·)]Cα((0,1),D) .

The sets G� and G , stated there, are to be called local unstable and stable
manifolds of u = u(x), respectively. Thus, we have the unstable manifold
with the dimension equal to the Morse index, in the case that the stationary
solution is not degenerate.
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Theorem 9.3 If u = u(x) ∈ C2(�) is a stationary solution to (9.18) satisfy-
ing (9.19), X0 = {0}, n ≤ 8, (9.35), and (9.31), then we have a neighborhood
B of ϕ = 0 in D defined by (9.32), and the Lipschitz-continuous mappings

� : B ∩ X− → X̂+
and

 : B ∩ X̂+ → X−
differentiable at ϕ = 0, satisfying �(0) = 0, �′(0) = 0,  (0) = 0, and
 ′(0) = 0. Furthermore, given w0 ∈ D, we have the following items, where
α ∈ (0, 1) and R0 > 0 is a small constant.

1. This w0 is in G� ≡ {
(ϕ,�(ϕ))

∣∣ ϕ ∈ B ∩ X−
}

if and only if Qw0 ∈ B
and there exists w ∈ Cα ((−∞, 0], D) satisfying

dw

dt
+ Hw = Nw (−∞ < t ≤ 0),

‖w‖Cα((−∞,0],D) ≤ R0,

w(0) = w0,

lim
t→−∞

∥∥w(t)∥∥D = 0.

2. This w0 is in G ≡ {
(ϕ, (ϕ)) | ϕ ∈ B ∩ X̂+

}
if and only if

(I − Q)w0 ∈ B and there exists w ∈ Cαα
(
(0, 1], D) ∩ C([0, 1], X) ∩

Cα([1,+∞), D
)

satisfying

dw

dt
+ Hw = Nw (0 ≤ t < +∞),

‖w‖Cαα ((0,1],D) + ‖w‖Cα([1,+∞),D) ≤ R0,

w(0) = w0,

lim
t→+∞

∥∥w(t)∥∥D = 0.

Proof: Since the results are obtained by the general theory [93], we have only
to show that N ∈ C1(D, X) and its derivative N ′ is locally Lipschitz continu-
ous in D. In fact, we have

N ′(ϕ)ψ = −∇ ·
(
ϕ∇ A−1ψ

)
− ∇ ·

(
ψ∇ A−1ϕ

)
and the right-hand side is regarded as a continuous bilinear mapping from D ×
D into L2

0(�) by Lemma 9.1. All requirements are verified and the proof is
complete. �
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We recall that the first eigenvalue of H is denoted by σ1. Then, for a ∈
(−∞, σ1) we have

D1/2 ≡ dom
(
(H − a)1/2

) ⊂ H1(�)

from the interpolation theory. This implies that

(ϕ, ψ) ∈ D × D �→ ∇ · (ϕ∇ A−1ψ
) ∈ D1/2

is a continuous mapping if n ≤ 6. The following theorem is obtained similarly,
where

Q0v =
n+m∑
i=1

(
v, ϕ̂i

)
L ϕ̂i ,

X̂+ = (I − Q0)(D), and ρ : X− ⊕ X0 → R is a smooth mapping such that

0 ≤ ρ(ϕ) ≤ 1 and ρ(ϕ) =
{

1 (‖ϕ‖ ≤ 1/2),

0 (‖ϕ‖ ≥ 1).

There,

M = {
(ϕ, �ϕ) | ϕ ∈ X− ⊗ X0, ‖ϕ‖ < r/2

}
is to be called the local center unstable manifold of u = u(x). Thus, we have a
center unstable manifold with dimensions equal to the augmented Morse index.

Theorem 9.4 Under the assumptions of the previous theorem except for X0 =
{0}, if n ≤ 6 we have r > 0 sufficiently small and the bounded Lipschitz-
continuous mapping � : X− ⊗ X0 → X̂+ such that if ψ0 = �ϕ0, then there
exist ϕ = ϕ(t) ∈ X− ⊗ X0 and ψ = ψ(t) ∈ X̂+ such that

dϕ

dt
+ Hϕ = Q0 N

(
ρ(ϕ/r)ϕ + ψ)

,

dψ

dt
+ Hψ = (I − Q0)N

(
ρ(ϕ/r)ϕ + ψ)

for t ∈ (−∞,+∞), ϕ
∣∣∣
t=0

= ϕ0, and ψ |t=0 = ψ0.

In the full system, on the other hand, the spectral properties of the linearized
system around the stationary solution are disturbed by τ . Consequently, the
analogous result to Theorem 9.2 will not hold, because this field provides
streaming movement to particles.
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To confirm these facts, we take the (N) field with W ≡ 1:

ut = ∇ · (∇u − u∇v) in �× (0, T ),

τvt = �v − av + u in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ).

In this case, A is equal to −� + a with the Neumann boundary condition
with a constant a > 0, and system (3.1) takes the stationary constant solution
(u, v) = (λ/ |�| , λ/ (a |�|)) for each λ = ‖u0‖1, which forms the branch
of trivial solutions, denoted by Cc in λ − v space. In this case, the linearized
system around this (u, v) is given as

ϕt = �ϕ − u�ψ in �× (0, T ),

τψt = �ψ − aψ + ϕ in �× (0, T ),

∂ϕ

∂ν
= ∂ψ

∂ν
= 0 on ∂�× (0, T ),∫

�

ϕ dx = 0 for t ∈ (0, T ),

and the corresponding eigenvalue problem takes the form of

�ϕ − u�ψ + ηϕ = 0 in �,

τ−1ϕ + τ−1 (�− a) ψ + ηψ = 0 in �,

∂ϕ

∂ν
= ∂ψ

∂ν
= 0 on ∂�,∫

�

ϕ dx = 0. (9.36)

Defining the eigenvalues of −� in � under the Neumann boundary condition
by

μ0 = 0 < μ1 ≤ μ2 ≤ · · · ,
and expanding ϕ and ψ using the associated eigenfunctions, we see that η is
an eigenvalue to (9.36) if and only if it is either that of

Ai =
(
μi −uμi

−τ−1 τ−1(μi + a)

)
for i ≥ 1 or that of A0 with the eigenvector t (0, 1). This means that η =
τ−1a > 0 for i = 0 and η is a root of

η2 − [
(1 + τ−1)μi + τ−1a

]
η + μiτ

−1 (μi + a − u) = 0 (9.37)

for i ≥ 1 [142].
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These eigenvalues of the constant stationary solution are actually involved
with τ , but we can show that any eigenvalue η is shown to be real, although
it is not known that this is always the case even for the nonconstant stationary
solution. On the other hand, the lowest eigenvalue is taken from either τ−1a or
(9.37) with i = 1 in this case, and therefore (u, v) is linearized stable if and
only if

a > u − μ1 = λ

|�| − μ1,

regardless of the value τ . Actually, the dynamical stability in the full system of
any stationary solution is controlled by its Morse index.

More precisely, if

(u, v) ∈ Pλ ∩ C(�)× C(�) ∩ dom(A1/2)

is a stationary solution to (3.1):

ut = ∇ · (∇u − u∇(v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

τ
d

dt
v + Av = u for t ∈ (0, T ), (9.38)

then these u and v are critical functions of F on Pλ and Jλ, respectively, and
it holds that v = A−1u and u = fλ(v). We say that (u, v) is linearized stable
if the augmented Morse index of u, and hence that of v, is 0, and linearized
unstable if the Morse index of u, and hence that of v, is not 0.

Remembering that L log L(�) denotes the Zygmund space on � and its
norm is provided by

[ f ]L log L =
∫
�

| f (x)| log
(

e + | f (x)|
‖ f ‖1

)
dx,

we can show the following theorem.

Theorem 9.5 If n ≤ 2, the assumptions of Theorem 3.2 hold, the initial values
are in

(u0, v0) ∈ W 1,p(�)× A−1 (
L p(�)

)
with p > 2, the supremum of the existence time T > 0 of the solution to
the full system (9.38) is denoted by Tmax > 0, C2+θ (�) ∩ A−1 (L p(�)) is
compact in A−1 (L p(�)) for θ ∈ (0, 1) and p > 1, and (u, v) is a stationary
solution to (9.38) satisfying ‖u‖1 = λ and u = u(x) ∈ C2(�), then we have
the following:



9. Dynamical Equivalence 199

1. If (u, v) is linearized stable, then there is ε0 > 0 such that∥∥u0
∥∥

1 = λ, [u0 − u]L log L < ε0,∥∥A1/2 (v0 − v) ∥∥ < ε0 (9.39)

implies Tmax = +∞ and

lim
t↑+∞

{∥∥u(t)− u
∥∥∞ + ∥∥v(t)− v∥∥∞

}
= 0. (9.40)

2. If (u, v) is linearized unstable, then any ε > 0 admits an initial value
(u0, v0) such that∥∥u0

∥∥
1 = λ,

∥∥u0 − u
∥∥∞ + ∥∥v0 − v∥∥∞ < ε, (9.41)

and

lim inf
t↑+Tmax

{∥∥u(t)− u
∥∥

L log L + ∥∥A1/2 (v(t)− v) ∥∥} > 0. (9.42)

Here, (9.31) is not necessary to assume.

Proof: First, if

(u, v) ∈ Pλ ∩ C(�)× C(�) ∩ dom(A1/2)

is a stationary solution to (9.38), then we have

v = A−1(u) ∈ A−1 (
L p(�)

) ⊂ W 2,p(�)

and

u = fλ(v) ∈ W 1,p(�).

Thus, (u, v) belongs to the function space where the well-posedness of (9.38)
is assured.

Next, the inequalities∣∣ f log | f | − g log |g| − ( f − g) log | f − g|∣∣ ≤ 2 | f − g| log
(
e + | f | + |g|

| f − g|
)

and∫
�

| f − g| log
(

e + | f | + |g|
| f − g|

)
dx ≤ ‖ f − g‖1 log

(
e + ‖ f ‖1 + ‖g‖1

‖ f − g‖1

)
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are known [72], and therefore using∣∣∣ ∫
�

| f − g| log | f − g| dx
∣∣∣

= ∥∥ f − g
∥∥

1

∫
�

| f − g|∥∥ f − g
∥∥

1

∣∣∣ log
| f − g|∥∥ f − g

∥∥
1

∣∣∣ dx

+∥∥ f − g
∥∥

1 ·
∣∣∣ log

∥∥ f − g
∥∥

1

∣∣∣
≤ ∥∥ f − g

∥∥
1

∫
�

(
e−1 + | f − g|∥∥ f − g

∥∥
1

)
log

(
e + | f − g|∥∥ f − g

∥∥
1

)
dx

+∥∥ f − g
∥∥

1 ·
∣∣∣ log

∥∥ f − g
∥∥

1

∣∣∣
= [

f − g
]

L log L + ∥∥ f − g
∥∥

1

(
e−1 + e−1

∣∣�∣∣ + ∣∣∣ log
∥∥ f − g

∥∥
1

∣∣∣),
we obtain∣∣∣ ∫

�

f log | f | − g log |g| dx
∣∣∣

≤ 2
∥∥ f − g

∥∥
1 log

(
e +

∥∥ f
∥∥

1 + ∥∥g
∥∥

1∥∥ f − g
∥∥

1

)
+ ∥∥ f − g

∥∥
1

(
e−1 + e−1

∣∣�∣∣ + ∣∣∣ log
∥∥ f − g

∥∥
1

∣∣∣) + [
f − g

]
L log L .

This implies the continuity of

f ∈ L log L(�) �→
∫
�

f log | f | dx .

On the other hand,

(u, v) ∈ L log L(�)× EXP(�) �→
∫
�

uv dx

is a continuous bilinear form [135]. Furthermore, H1(�) ⊂ EXP(�) holds if
n ≤ 2 by the Trudinger–Moser inequality [164]. Therefore, we have a constant
L > 0 determined by � such that∣∣∣ ∫

�

uv dx
∣∣∣ ≤ L [u]L log L

∥∥A1/2v
∥∥ (9.43)

for (u, v) ∈ L log L(�)× dom(A1/2). In particular,

(u, v) ∈ L log L+(�)× dom(A1/2) �→ W (u, v) ∈ R (9.44)
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is continuous, where

L log L+(�) = {
u ∈ L log L(�)

∣∣ u ≥ 0 (a.e.)
}
.

Now, we show the second part of the theorem. In fact, any eigenfunction
of L = I − Pu A−1 with the eigenvalue not equal to 1 belongs to H2(�) by
u ∈ C2(�) and u(x) > 0 for x ∈ �. Since u is linearized unstable, we have
ϕ1 ∈ H2(�) ⊂ C(�) satisfying∫

�

ϕ1 dx = 0 and F ′′(u)[ϕ1, ϕ1] = −2δ1 < 0.

Here, we have

F ′′(u(s))[ϕ1, ϕ1] =
∫
�

u(s)−1ϕ2
1 dx − (ϕ1, A−1ϕ1)

for u(s) = u + sϕ1 with |s| � 1 similarly to (9.6). Therefore, there exists
s1 > 0 such that

F ′′(u(s))[ϕ1, ϕ1] ≤ −δ1

for |s| ≤ s1. By means of ϕ2 = s1ϕ1 ∈ H2(�) and δ2 = δ1s2
1 > 0, this implies

F ′′(u + sϕ2)[ϕ2, ϕ2] ≤ −δ2

for |s| ≤ 1. Therefore, we obtain

F(u + sϕ2)− F(u) = 1

2

∫ 1

0
(1 − t)2F ′′(u + stϕ2)[sϕ2, sϕ2] dt

≤ −s2δ2

6
(9.45)

for |s| ≤ 1.
Given ε > 0, we take s in 0 < |s| � 1 such that (9.41) holds for

u0 = u + sϕ2 and v0 = A−1u0.

Then, we obtain

(u0, v0) ∈ W 1,p(�)× A−1 (
L p(�)

)
and

W (u(t), v(t)) ≤ W (u0, v0) = F(u0)

≤ F(u)− s2δ2

6
= W(u, v)− s2δ2

6
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for t ∈ [0, Tmax), and therefore relation (9.42) follows from the continuity of
(9.44). Thus, we obtain the second part.

The first part is proven by the method of [164]. In fact, if v = v(x) is
linearized stable, then we have δ3 > 0 satisfying

J ′′
λ (v)[w,w] = ∥∥A1/2w

∥∥2 −
∫
�

u
(
w − 1

λ

∫
�

uw dx
)2

dx

≥ 2δ3
∥∥A1/2w

∥∥2

for w ∈ dom(A1/2). On the other hand, for

v,w ∈ dom(A1/2) ⊂ H1(�)

we have

J ′′
λ (v)[w,w] = ∥∥A1/2w

∥∥2 −
∫
�

u
(
w − 1

λ

∫
�

uw dx
)2

dx

similarly to (9.14), where u = fλ(v). Therefore, there is ε1 > 0 such that

J ′′
λ (v + ζ )[w,w] ≥ δ3

∥∥A1/2w
∥∥2 (9.46)

for w, ζ ∈ dom(A1/2) in
∥∥A1/2ζ

∥∥ ≤ ε1. This implies

Jλ(v + ζ )− Jλ(v) = 1

2

∫ 1

0
(1 − s)2J ′′

λ (v + sζ )[ζ, ζ ]ds

≥ δ3

6

∥∥A1/2ζ
∥∥2

for ζ ∈ dom(A1/2) in ‖A1/2ζ‖ ≤ ε1. Now, we use of the following lemma.

Lemma 9.2 If (u, v) is linearized stable, then we have

W(u, v)− W(u, v) ≥ δ3

6

∥∥A1/2 (v − v) ∥∥2
. (9.47)

for (u, v) ∈ L log L+(�)× dom(A1/2) satisfying u ∈ Pλ and∥∥A1/2 (v − v) ∥∥ < ε1.
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Proof: We have ‖u‖1 = λ. Putting

μ =
∫
�

W ev dx and ψ = λW ev∫
�

W ev dx
,

we obtain

0 = − log
( ∫

�

ψ

λ
dx

)
= − log

( ∫
�

ψ

u
· u

λ
dx

)
≤

∫
�

(
− log

ψ

u

)
· u

λ
dx

by Jensen’s inequality. This means∫
�

(log u − logψ) · u dx ≥ 0,

or equivalently,

W(u, v)− W
( λW ev∫
�

W ev dx
, v

)
=

∫
�

(u log u − u log W − uv) dx

+ λ log
( ∫

�

W ev dx
)

− λ log λ ≥ 0.

We now recall (6.15):

W
( λW ev∫
�

W ev dx
, v

)
= Jλ(v)+ λ log λ.

Actually, this implies

W(u, v)− W(u, v) ≥ W
( λW ev∫
�

W ev dx
, v

)
− W

( λW ev∫
�

W ev dx
, v

)
= Jλ(v)− Jλ(v),

and therefore (9.47) holds for ‖A1/2 (v − v) ‖ < ε1. The proof is complete. �

To continue proving the first part of the theorem, we put ε2 = min{ε1,1/L},
where L is the constant in (9.43). Then we take δ4 > 0 satisfying

W(u, v)− W(u, v) < δ3ε
2
2

24
(9.48)

for any (u, v) ∈ L log L+(�)× dom(A1/2) such that

[u − u]L log L < δ4 and
∥∥A1/2 (v − v) ∥∥ < δ4,

and put ε0 = min{δ4, ε2/2}.
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If (u0, v0) ∈ W 1,p(�)× A−1(L p(�)) satisfies (9.39), then we have

W(u(t), v(t))− W(u, v) ≤ W(u0, v0)− W(u, v)

<
δ3ε

2
2

24
(9.49)

for t ∈ [0, Tmax). At t = 0, we have∥∥A1/2 (v(t)− v) ∥∥ < ε2/2. (9.50)

Even if ∥∥A1/2 (v(t1)− v)
∥∥ = ε2/2

holds for some t1 ∈ (0, Tmax), inequality (9.47) still holds for (u, v) =(
u(t1), v(t1)

)
. Therefore,

δ3

6

∥∥A1/2 (v(t1)− v)
∥∥2
<
δ3ε

2
2

24
follows from (9.49) with t = t1, but this means∥∥A1/2 (v(t1)− v)

∥∥ < ε2/2,

a contradiction. Therefore, inequality (9.50) keeps to hold for t ∈ [0, Tmax). In
particular, we have∣∣∣ ∫

�

u(t) (v(t)− v) dx
∣∣∣ ≤ L [u(t)]L log L

∥∥A1/2 (v(t)− v) ∥∥
≤ 1

2
[u(t)]L log L (9.51)

for t ∈ [0, Tmax) by (9.43). Here, we use the following lemma.

Lemma 9.3 We have

[ f ]L log L ≤
∫
�

| f | log | f | dx + e‖ f ‖1 · |�| − ‖ f ‖1 log ‖ f ‖1 (9.52)

for f ∈ L log L(�).

Proof: Writing

[ f ]L log L = ‖ f ‖1

∫
�

| f |
‖ f ‖1

log
(

e + | f |
‖ f ‖1

)
dx,

we apply supt>0
log(1+t)

t = 1:

s log(e + s)− s log s = e · log(1 + es−1)

es−1
≤ e,

where s = | f | /‖ f ‖1. Then (9.52) follows. �
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We continue the proof of the theorem. By means of (9.51) and (9.52), we
obtain∫

�

(uv)(t) dx =
∫
�

u(t) (v(t)− v) dx +
∫
�

u(t) · v dx

≤ 1

2
[u(t)]L log L + λ · ∥∥v∥∥∞

≤ 1

2

{ ∫
�

(u log u) (t) dx + eλ |�| − λ log λ
}

+ λ∥∥v∥∥∞.

On the other hand, we have∫
�

(u log u − uv) (t) dx − λ log
∥∥V

∥∥∞ ≤ W (u(t), v(t))

≤ W(u0, v0).

These inequalities imply ∫
�

(u log u) (t) dx ≤ C (9.53)

with a constant C > 0 independent of t ∈ [0, Tmax). Then, the argument of
Chapter 4 guarantees that Tmax = +∞ and

sup
t∈[0,∞)

∥∥u(t)
∥∥∞ < +∞.

This implies the compactness of the semiorbit

O = {
(u(t), v(t))

}
t≥1 ⊂ W 1,p(�)× A−1(L p(�))

by Theorem 3.2, and then, theory of the infinite-dimensional dynamical system
[61] is applicable. Thus, the ω-limit set of O, denoted by ω(O), is contained in
the set of stationary solutions. Therefore, (u∗, v∗) ∈ ω(O) implies J ′

λ(v∗) = 0.
On the other hand, ∥∥A1/2 (v∗ − v) ∥∥ ≤ ε2/2

follows from (9.50). This implies v∗ = v by (9.46), and hence u∗ = u. This
means ω(O) = {(u, v)} and (9.42). The proof is complete. �



10

Formation of Collapses

In this chapter, we conclude the study of stationary solutions and describe sev-
eral suggestions obtained by this for the dynamics of (3.1),

ut = ∇ · (∇u − u∇ (v + log W )
)

in �× (0, T ),

∂

∂ν
u − u

∂

∂ν
(v + log W ) = 0 on ∂�× (0, T ),

τ
d

dt
v + Av = u for t ∈ (0, T ), (10.1)

in particular, the formation of collapses of the blowup solution. Thus, we take
the case n = 2, regarding the conjecture [33] and mathematical work [14,
50, 107, 106, 110, 146]. Therefore, stability of the stationary solution (u, v) is
controlled by its Morse index, and this Morse index is equal to the number of
eigenvalues in μ < 1 in the eigenvalue problem (9.12):

Aw = μu
(
w − 1

λ

∫
�

uw dx
)
. (10.2)

First, we study the (D) field, where A is equal to −� provided with the
Dirichlet boundary condition. In this case, (10.2) is equivalent to finding w ∈
H1

0 (�) such that

(∇w,∇ψ) = μ (Hw, Hψ)u (10.3)
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for any ψ ∈ H1
0 (�), where

Hw = w − 1

λ

∫
�

uw dx . (10.4)

Here, we have (Hw, 1)u = 0, and furthermore, if w ∈ H1
0 (�) is a nonzero

solution to (10.3), then

ŵ = Hw

is a nonconstant function belonging to

H1
c (�) =

{
ψ ∈ H1(�)

∣∣ ψ = constant on ∂�
}
.

Given ψ̂ ∈ H1
c (�), we have

ψ ≡ ψ̂ − ψ̂∣∣
∂�

∈ H1
0 (�)

and hence

(∇ŵ,∇ψ̂) = (∇w,∇ψ) = μ (Hw, Hψ)u

follows. Furthermore, we have

(Hw, Hψ)u = (Hw,ψ)u = (Hw, ψ̂)u = (ŵ, ψ̂)u

by (Hw, 1)u = 0. Thus, we obtain a nonconstant ŵ ∈ H1
c (�) from this

nonzero w ∈ H1
0 (�) satisfying

(∇ŵ,∇ψ̂) = μ(ŵ, ψ̂)u (10.5)

for any ψ̂ ∈ H1
c (�).

Conversely, if ŵ ∈ H1
c (�) is a nonconstant function satisfying (10.5) for

any ψ̂ ∈ H1
c (�), then

w ≡ ŵ − ŵ∣∣
∂�

∈ H1
0 (�)

is a nonzero function. Furthermore, given ψ ∈ H1
0 (�) we have

ψ̂ = Hψ ∈ H1
c (�)

and hence

(∇w,∇ψ) = (∇ŵ,∇ψ̂) = μ(ŵ, ψ̂)u
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follows. Here, we have

(ŵ, ψ̂)u = (Hw, ψ̂)u = (Hw, Hψ)u

by (1, ψ̂)u = 0, which implies (10.3). Therefore, the eigenvalue problem
(10.5) is equivalent to finding φ such that

−�φ = μuφ in �

φ = constant on ∂�∫
∂�

∂φ

∂ν
dσ = 0.

The first eigenvalue of the above problem is μ = 0, which is associated with
the eigenfunction φ = 1. Therefore, the following lemma is obtained by the
mini-max principle.

Lemma 10.1 If A is equal to −� provided with the Dirichlet boundary con-
dition, then the Morse index of the stationary solution (u, v) to (10.1) is equal
to the number of eigenvalues of (10.5) in μ < 1 minus 1. In particular, it is
linearized stable (resp. unstable) if and only if μ2 > 1 (resp. μ2 < 1), where

μ2 = inf
{∥∥∇ψ∥∥2

2

∣∣ ψ ∈ H1
c (�),

∫
�

uψ dx = 0,
∫
�

uψ2 dx = 1
}
.

The above lemma is valid even in the case of n �= 2. It was found by
[162, 185] independently, where the Morse indices are defined in terms of u
and v, respectively. Thus, Theorem 9.1 was first proven in this special case
without being recognized explicitly, while a generalized abstract theory for
this equivalence is described in the last chapter.

We hereby apply the isoperimetric inequality, Lemma 8.14, for

q = u = λW ev∫
�

W ev dx
,

where v is a solution to (7.1):

−�v = λW ev∫
�

W ev dx
in �,

v = 0 on ∂�. (10.6)

In more details, if λ = ∥∥u
∥∥

1 ∈ (0, 8π), � ⊂ R2 is simply connected, and

−� log W ≤ 0 in �, (10.7)
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then any stationary solution to (10.1) is linearized stable, where A is −� with
the Dirichlet boundary condition.

Theorem 7.1 says, on the other hand, that any family of solutions to (10.6)
can blowup only at the quantized value of λ in 8πN. In particular, any ε > 0
admits Cε > 0 such that any solution {v} to (10.6) with λ ∈ (0, 8π − ε) takes
the estimate ∥∥v∥∥∞ ≤ Cε.

In particular,r the argument developed for the proof of Theorem 8.1 assures
the unique existence of the solution for 0 < λ � 1, which is extended to
λ ∈ (0, 8π) by Lemma 8.14 and the standard argument of continuation [166].
In other words, similarly to the first case of Theorem 8.1, the set of stationary
solutions {

(λ, vλ) | λ ∈ (0, 8π)}
forms a branch in λ − v space, and any other solution is not admitted for
λ ∈ (0, 8π). This implies, in particular, the unique existence of the stationary
solution (u, v) to (10.7), satisfying ‖u‖1 = λ ∈ (0, 8π).

As is described in Chapter 4, on the other hand, nonstationary problem
(10.1) admits the solution u = u(·, t) globally in time if ‖u0‖1 < 8π satis-
fying

sup
t≥0

∥∥u(t)
∥∥∞ < +∞.

Therefore, the following theorem is obtained by the theory of an infinite-
dimensional dynamical system, similarly to Theorem 9.5.

Theorem 10.1 If� ⊂ R2 is a simply connected bounded domain with smooth
boundary ∂�, A is equal to −� provided with the Dirichlet boundary condi-
tion, and W (x) > 0 is a smooth function of x ∈ � satisfying (10.7), then each
λ ∈ (0, 8π) admits a unique stationary solution (uλ, vλ) to (10.1) such that
‖uλ‖1 = λ, and if ‖u0‖1 = λ, then Tmax = +∞ and

lim
t↑+∞

{∥∥u(t)− uλ
∥∥∞ + ∥∥v(t)− vλ∥∥∞

}
= 0,

where (u(t), v(t)) denotes the nonstationary solution such that u0 = u|t=0,
both to the simplified and full systems of (10.1).

Problem (10.6) admits the solutions for λ ≥ 8π even if W = 1 and � ⊂ R2

is convex. This is actually the case when � is thin [20, 21, 24, 98, 167], and
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then the branch
{
(λ, vλ)

∣∣ λ ∈ (0, 8π)} of stationary solutions to (10.1) does
not blow up as λ ↑ 8π . In any case, if � is simply connected, then we have an
upper bound λ < +∞ of λ for the existence of the solution. (This is not the
case of multiply connected � [92, 112, 116, 166].

If W = 1 and � is close to a ball, then λ = 8π and vλ(x) of Theorem 10.1
takes the singular limit

lim
λ↑8π

vλ(x) = 8πG(x, x0) (10.8)

in W 1,q(�) for q ∈ [1, 2), with x0 ∈ � satisfying

∇R(x0) = 0,

where G = G(x, x ′) and

R(x) =
[
G(x, x ′)+ 1

2π
log

∣∣x − x ′∣∣]
x ′=x

denote the Green’s and the Robin functions to −� provided with the Dirichlet
boundary condition, respectively [98, 166, 167].

If� is such a domain, then the limit as t ↑ +∞ of the nonstationary solution
u(·, t) such that

u
∣∣
t=0 = u0(x) for λ = ∥∥u0

∥∥
1 ∈ (0, 8π),

denoted by (uλ, vλ), becomes spiky as λ ↑ 8π . More precisely, it holds that

uλ(x) dx ⇀ 8πδx0(dx)

as λ ↑ 8π . Then, we can expect that the blowup in finite time occurs for u(·, t)
if ‖u0‖1 = λ holds with 0 < λ − 8π � 1, because the branch of station-
ary solutions formed by uλ(x) does not exceed across λ = 8π . Since this
branch leaves the singular limit 8πδ0(dx) at λ = 8π , the above nonstationary
solution may make a collapse in � with the quantized mass. This is nothing
but a detailed observation of [33] concerning the threshold of λ = ‖u0‖1 for
Tmax < +∞, regarding the formation of collapses of the blowing-up solution.

The above observed blowup mechanism of the nonstationary solution to
(10.1) will not be different from the other cases. In fact, in the (JL) field, the
operator A is defined by (3.4); Av = u if and only if

−�v = u − 1

|�|
∫
�

u dx in �,

∂v

∂ν
= 0 on ∂�,

∫
�

v dx = 0. (10.9)
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Therefore, the stationary problem is formulated as

−�v = λ
( W ev∫
�

W ev dx
− 1

|�|
)

in �,

∂v

∂ν
= 0 on ∂�,

∫
�

v dx = 0 (10.10)

in terms of v, and the linearized problem (10.2) is equivalent to finding

w ∈ H1(�) ∩ L2
0(�)

such that

(∇w,∇ψ) = μ (Hw, Hψ)u (10.11)

for any ψ ∈ H1(�) ∩ L2
0(�), where H is the operator defined by (10.4):

Hw = w − 1

λ

∫
�

uw dx .

If w ∈ H1(�)∩ L2
0(�) is a nonzero solution to this linearized problem, and

take ψ̂ ∈ H1(�), then

ψ ≡ ψ̂ −
∫
�

ψ̂ dx

belongs to H1(�) ∩ L2
0(�), and ŵ = Hw ∈ H1(�) satisfies

(∇ŵ,∇ψ̂) = (∇w,∇ψ) = μ (Hw, Hψ)u .

Here, we have

(Hw, Hψ)u = (ŵ, ψ̂)u

by (Hw, 1)u = 0, and therefore ŵ ∈ H1(�) is a nonconstant solution to

(∇ŵ,∇ψ̂) = μ(ŵ, ψ̂)u (10.12)

for any ψ̂ ∈ H1(�).
If ŵ ∈ H1(�) is a nonconstant solution to (10.12), conversely, then

w ≡ ŵ − 1

|�|
∫
�

ŵ dx ∈ H1(�)
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is a nonconstant solution to (10.11). Here, the eigenvalue problem (10.12) is
equivalent to finding φ such that

−�φ = μuφ in �,

∂φ

∂ν
= 0 on ∂�.

This problem has μ = 0 as the first eigenvalue, and the associated eigenfunc-
tion is φ = ŵ = 1. Thus we obtain the following lemma.

Lemma 10.2 If (10.1) is associated with the (JL) field, that is, if

Av = u

is equivalent to (10.9), then the Morse index of the stationary solution (u, v)
is equal to the number of negative eigenvalues of −� − u under the Neu-
mann boundary condition minus 1. In particular, it is linearized stable (resp.
unstable) if and only if μ2 > 1 (resp. μ2 < 1), where

μ2 = inf
{∥∥∇ψ∥∥2

2

∣∣ ψ ∈ H1(�),

∫
�

uψ dx = 0,
∫
�

uψ2 dx = 1
}
.

Because the stationary solution v satisfies (10.10), this lemma can be com-
bined with the following lemma obtained in the proof of Theorem 8.2.

Lemma 10.3 There exists δ > 0 such that if � ⊂ R2 is a simply connected
bounded domain with smooth boundary ∂� and q = q(x) > 0 is a smooth
function of x ∈ � satisfying

−� log q ≤ q in � and
∫
�

q dx ∈ (4π, 4π + δ),

then it holds that

inf
{∥∥∇ψ∥∥2

2

∣∣ ψ ∈ H1(�),

∫
�

qψ dx = 0,
∫
�

qψ2 dx = 1
}
< 1.

Consequently, we obtain the following theorem.

Theorem 10.2 If� ⊂ R2 is a simply connected bounded domain with smooth
boundary ∂�, W = W (x) > 0 is a smooth function defined on �, A is the
(JL) field, that is, u = Av if and only if (3.4), and condition (10.7) holds
for W = W (x), then any stationary solution (u, v) to (10.1) satisfying λ =
‖u‖1 ∈ (4π, 4π + δ) is not asymptotically stable (even if it exits).
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We shall study the (N) field in comparison with the (JL) field. This time A is
equal to −�+a provided with the Neumann boundary condition, where a > 0
is a constant. Then, from Chapter 4, the condition ‖u0‖1 = λ < 4π implies
Tmax = +∞ and supt≥0 ‖u(t)‖∞ < +∞.

If W (x) ≡ 1, we have the constant stationary solution

(u, v) = (λ/ |�| , λ/ (a |�|)

and its Morse index is calculated in Chapter 8. In particular, it is linearized
stable (resp. unstable) if and only if λ < λ1 (resp. λ > λ1), where λ1 =
|�| (a + μ∗

2

)
with μ∗

2 being the second eigenvalue of −� under the Neumann
boundary condition. Here, from the isoperimetric inequality of Polyá–Szegö–
Weinberger, we have λ1 < 4π for a > 0 sufficiently small, because the first
zero of the Bessel function is less than 4π [5]. If λ1 < 4π and λ ∈ (λ1, 4π),
then Jλ admits a global minimum in H1(�) with the minimizer denoted by
v. Then by Theorem 9.5, the stationary solution u = fλ(v) is asymptotically
stable if it is nondegenerate. By Theorem 8.1, on the other hand, any stationary
solution (u, v) is constant if 0 < λ = ‖u‖1 � 1, and therefore if ‖u0‖1 =
λ � 1 the constant stationary solution is a global attractor of the dynamical
system induced by (10.1).

In the (JL) field with W (x) ≡ 1, we have the trivial solution v = 0 to
(10.10). This situation is quite similar to the (N) field with 0 < a � 1. In
particular, the generation of nonradially symmetric solutions occurs to (10.1)
with � equal to the unit disc

� = D ≡
{

x ∈ R2
∣∣ |x | < 1

}
.

Studying the (N) field with W (x) = 1 and � = B in more detail [144], we
recall that

{
μ∗

j

}∞
j=1 denotes the set of eigenvalues of

−� with
∂

∂ν
·
∣∣∣
∂�

= 0.

Then, Lemma 8.3 clarifies how
{
μ∗

j

}
j≥2 is committed to the spectrum of a

linearized operator around the constant solution to (8.1):

−�v + av = λev∫
�

ev dx
in �,

∂v

∂ν
= 0 on ∂�, (10.13)
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that is, in this case of � = B, a complete system of eigenfunctions is ob-
tained by the separation of variables. If n denotes the number of zeros in radial
direction of the eigenfunction, and m its period with respect to the argument
mode, then there are double eigenvalues and μ∗

2 = μ∗
3, μ∗

4 = μ∗
5, and μ∗

6 are
associated with the eigenfunctions with (n,m) = (0, 1), (n,m) = (0, 2), and
(n,m) = (1, 0), respectively, and μ∗

6 is simple. Furthermore, we have μ∗
2 < 4

and μ∗
4 > 8 [5].

The set of solutions to (10.13) on� = B is now illustrated as follows. First,
a branch of radial solutions to (8.1), denoted by Cc, bifurcates from that of
constant solutions, denoted by Crd , at λ = λ3 ≡ |�| (a + μ∗

6

)
in λ − v space

(Chapter 1). From the local theory of bifurcation, this Crd is transversal to Cc.
Then, the following theorem suggests that Crd is absorbed into λ = 8π .

Theorem 10.3 We have the following facts for (10.13) with � = B and v =
v (|x |):

1. If λ ∈ (0, 8π), then only constant solutions are admitted.

2. If λ ∈ (8π, λ3), then there exists a nonconstant solution, where λ3 =
|�| (a + μ∗

6

)
.

The first assertion justifies the numerical computation [33]. Then, the second
assertion assures the family of radial solutions

C∗
rd = {

(λ, vλ) | 8π < λ < λ3
}

absorbed into the hyperplane λ = 8π with the radial singular limit of Theorem
7.5. Thus, the functions on C∗

rd make one point blow up at the origin as λ ↓ 8π .
Now, we restrict ourselves to the case of 0 < a � 1. Then the first bifurca-

tion point λ = λ1 ≡ |�| (a + μ∗
2

)
of the branch of constant solutions Cc is less

than 4π . At this point of λ = λ1, the linearized operator takes 0 as an eigen-
value, and the corresponding eigenfunction has the argument mode 1. Since
S1 acts on B = �, this bifurcated object forms a two-dimensional manifold in
λ− v space, denoted by C1.

Regarding the second case of Theorem 8.1, we can expect that C1 is com-
posed of the global minima of Jλ(v) defined on H1(B) with λ ∈ (λ1, 4π), and
this branch continues up to λ = 4π . Therefore, based on Theorem 8.2, we sus-
pect that C1 does not exceed across λ = 4π , and C1 is connected with a family
of singular limits denoted by O1. Here, each element of O1 has a singular point
of its own on the boundary. This O1 will be located on λ = 4π in λ− v space
and will form an object homeomorphic to S1 because of the S1 action to B.
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A similar profile is expected to the other two-dimensional manifold in λ − v
space, denoted by C2, bifurcating from Cc at λ = λ2 ≡ |�| (a + μ∗

4

)
> 8π .

In more details, this C2 will be connected with a S1 families of singular limits
denoted by O2 on the hyperplane λ = 8π , of which members have two singu-
lar points of their own on the boundary. The bifurcation diagram of C1 will be
drastically changed in a � 1, and then it bifurcates from Cc at λ = λ1 > 4π .
However, the ultimate state will be similar, absorbed into O1 as λ ↓ 4π .

If � is slightly perturbed from B, then these C1 and C2 will be reduced to
curves making pitchfork bifurcations from Cc, and similarly, both O1 and O2

will be reduced to two singular limits of their own, but the other structures will
be kept (Figure 1.6). After such a profile is obtained for the set of stationary
solutions, then the dynamics of (10.1) with W (x) = 1, the (N) field, and 0 <
a � 1, is suspected as follows.

First, if

λ = ∥∥u0
∥∥

1 ∈ (0, λ1),

then any solution is global in time and converges to the constant stationary
solution uniformly in infinite time. Even if

λ = ∥∥u0
∥∥

1 ∈ (λ1, 4π),

again any solution to (10.1) is global in time (Chapter 4), but now the constant
stationary solution located on Cc is linearized unstable, while the nonconstant
stationary solution on C1 is the global minimum of Jλ(v). Therefore, generic
solutions to (10.1) with ‖u0‖1 ∈ (λ1, 4π) will have an ω limit set contained in
C1, because the linearized stability implies the dynamical stability (Chapter 9).
This means that they have a tendency to concentrate on the boundary with one
peak. One can expect that this tendency is kept even in

λ = ∥∥u0
∥∥

1 ∈ (4π, 8π).
However, only an unstable constant solution will exist as the stationary solu-
tion, and therefore except for the initial values on a thin set of stable mani-
folds of the constant stationary solution, the solution to (10.1) with ‖u0‖1 ∈
(4π, 8π) will blow up in a finite time, concentrating on the boundary with one
peak. This profile is quite similar to the case of the (D) field described ear-
lier, but this time the (N) field, the boundary blowup point, is involved in the
threshold phenomenon of the blowup.

So far, we have obtained several suggestions for the dynamics of the non-
stationary solution from the study of stationary solutions. Now, we give the
following proof.
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Proof of Theorem 10.3 for the first case: We can apply Lemma 8.14 for� = B
and

H1
r (B) =

{
v ∈ H1(B)

∣∣ v = v (|x |)
}
,

because it holds that H1
r (B) ⊂ H1

c (B). Then, we obtain

inf
{ ∫

B
|∇v|2 dx

∣∣ v ∈ H1
r (B),

∫
B

qv2 dx = 1,
∫

B
qv dx = 0

}
> 1

(10.14)

for q ∈ C2(B), satisfying

−� log q ≤ q in B and
∫

B
q dx < 8π.

Given a solution v = v (|x |) to (10.13) on � = B, we put

q = λev∫
�

ev dx
.

Then, the linearized operator is given as L = L0 + a, for L0 defined by (8.3).
Let L0r be the radial part of L0. Then, any eigenvalue of L0r corresponding to
the nonconstant eigenfunction is positive by (10.14) and the proof of Lemma
8.12. Therefore, if λ ∈ (0, 8π) and v = v (|x |) is a solution of (10.13) on
� = B, then L0r + a is invertible.

On the other hand, any compact set

! ⊂ [0,+∞) \ {8π}
admits a constant C > 0 such that any solution v (|x |) of (10.13) on � = B
with λ ∈ ! satisfies ∥∥v∥∥∞ ≤ C (10.15)

by Theorem 7.5, and therefore the proof of Theorem 8.1 guarantees the unique-
ness of the radial solution for (10.13) for λ ∈ (0, 8π). The proof is complete. �

Proof of Theorem 10.3 for the second case: We recall that μ∗
6 is the second

eigenvalue in (8.6), associated with a radially symmetric eigenfunction of −�
under the Neumann boundary condition. Therefore, if λ ∈ (0, λ3), then the
constant solution

s = λ/a|�|
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is a strict local minimum of Jλ(v) on H1
r (B), where

λ3 = |�| (a + μ∗
6

)
.

On the other hand, there exists v0 ∈ H1
r (B) such that

Jλ(v0) < Jλ(s)

if λ > 8π . In fact, we have only to take x0 = 0 in the proof of Lemma 8.5.
Now, we reproduce the proof of Theorem 8.1 for the third case, replacing

the underlying space H1(�) by H1
r (B). Then we obtain the conclusion, using

(10.15) for λ ∈ !. �

In the case of W (x) �≡ 1, the calculation of the Morse indices of the station-
ary solution of the (N) field is not reduced for simpler problems as in the (D)
or (JL) field. However, the following theorem is obtained similarly to Theorem
8.2.

Theorem 10.4 If A is the (N) field: −�+a with the Neumann boundary con-
dition, and the positive smooth function W (x) satisfies (10.7) in (10.1), then
we have δ > 0 such that any λ ∈ (4π, 4π+δ) admits a0 such that if a ∈ (0, a0)

then any stationary solution (u, v) in ‖u‖1 = λ is not asymptotically stable
(even if it exists). Furthermore, this a0 is locally uniform in λ ∈ (4π, 4π + δ).

We have observed that in the simplified system, the Morse index of the sta-
tionary solution is reflected faithfully in the dynamics of the nonstationary so-
lution near them, while the stability of the stationary solution is still kept in the
full system. If we have a stationary solution of which the linearized system as
the full system possesses a nonreal eigenvalue, then some spiral movement is
suggested for the nonstationary solution. This problem is open mathematically.
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Finiteness of Blowup Points

Similarly to life, thermodynamical circuitry enables
the organic activity against entropy, by a circular

reaction within the gradient of nonequilibrium.
— H. Tanaka

In this chapter we discuss the blowup mechanism of the nonstationary sim-
plified system of chemotaxis. This chapter is devoted to the proof of Theo-
rem 1.1.

The first process is to introduce the localized version of Theorem 4.1. Here,
Moser’s iteration scheme is applied and the blowup point of the solution is
characterized by the blowup of the local Zygmund norm around it. Then,
Gagliardo–Nirenberg’s inequality provides a universal constant ε0 > 0 sat-
isfying

lim sup
t↑Tmax

∥∥u(t)
∥∥

L1(BR(x0)∩�) ≥ ε0 (11.1)

for any blowup point x0 ∈ � and R > 0. The next process is to provide the
global profile of this localization by the method of symmetrization described
in Chapter 5. More precisely, the function

t ∈ [0, Tmax) �→ ∥∥u(t)
∥∥

L1(B(x0,R)∩�)
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has a uniform bounded variation, and consequently (11.1) is improved by

lim inf
t↑Tmax

∥∥u(t)
∥∥

L1(BR(x0)∩�) ≥ ε0.

This inequality implies the finiteness of blowup points by
∥∥u(t)

∥∥
1 = ∥∥u0

∥∥
1 for

t ∈ [0, Tmax), and therefore each blowup point is isolated, which induces the
chemotactic collapse with a sharp estimate of the collapse mass from below,
and hence an inequality estimating the number of blowup points from above.

Henceforth, we study the simplified system (3.1), provided with the (N) field
and W (x) ≡ 1 for the sake of simplicity, that is,

ut = ∇ · (∇u − u∇v)
0 = �v − av + u

}
in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) on �, (11.2)

where� ⊂ R2 is a bounded domain with smooth boundary ∂�, a > 0 is a con-
stant, ν denotes the outer unit normal vector, and u0 = u0(x) is a smooth non-
negative function not identically 0 on �. As before, Tmax ∈ (0,+∞] denotes
the supremum of existence time of the solution, and therefore Tmax < +∞
means the blowup of the solution in finite time. Thus, we show that

u(x, t) dx ⇀
∑
x0∈S

m(x0)δx0(dx)+ f (x) dx (11.3)

holds in M(�) in the case of Tmax < +∞, where 0 ≤ f = f (x) ∈ L1(�) ∩
C(� \S), m(x0) ≥ m∗(x0) with m∗(x0) = 8π and m∗(x0) = 4π according to
x0 ∈ � ∩ S and x0 ∈ ∂� ∩ S, respectively, and S denotes the blowup set of
u(·, t) as t ↑ Tmax. We confirm that the Dirac measure δx0(dx) ∈ M(�) acts
as 〈

η(x), δx0(dx)
〉 = η(x0)

(
x0 ∈ �)

for η ∈ C(�), and consequently, the finiteness of blowup points follows as
(1.28):

2 · �(interior blowup points)+ �(boundary blowup points) ≤ ∥∥u0
∥∥

1/4π. (11.4)

In particular, if 4π < ‖u0‖1 < 8π and Tmax < +∞, then u(x, t) dx concen-
trates to a point on the boundary as t ↑ Tmax. An interesting open question is
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whether one can prescribe the numbers of interior and boundary blowup points
independently, that is, whether the quantization in space implies synchroniza-
tion in time or not. It is open also to exclude the equality of (11.4).

Some results proven for (11.2) are shown to be valid even for the full system,
for example, ‖u0‖1 < 4π implies Tmax < +∞ and there are chemotactic
collapses (11.3) for the radially symmetric case [108]. In fact, any x0 ∈ S and
R > 0 admit (11.1) even in this case. An important open question is whether
any blowup point is isolated in the full system, which we do not think to be
true (Chapter 1).

We show the result proven in this chapter more precisely. First, if Tmax <

+∞ then

lim
t↑Tmax

∥∥u(t)
∥∥∞ = +∞ (11.5)

holds (Theorem 3.2), and we define the blowup set S of u (Chapter 1):

S =
{

x0 ∈ � ∣∣ there exist tk ↑ Tmax and xk → x0

such that u(xk, tk)→ +∞ as k → ∞
}
.

Each x0 ∈ S is called the blowup point. The condition Tmax < +∞ implies
S �= ∅ by (11.5). Then we have the finiteness of blowup points, (11.4), and the
formation of chemotactic collapse (11.3) as follows.

Theorem 11.1 If Tmax < +∞, then we have (11.3) in M(�) as t ↑ Tmax with
m(x0) ≥ m∗(x0) and

0 ≤ f = f (x) ∈ C(� \ S) ∩ L1(�), (11.6)

where

m∗(x0) =
{

8π (x0 ∈ �),
4π (x0 ∈ ∂�).

Henceforth, we put a = 1 for simplicity, using the Gagliardo–Nirenberg
inequality in two-dimensional space indicated as (4.32):

‖w‖2
2 ≤ K 2(‖∇w‖2

1 + ‖w‖2
1

)
. (11.7)

It is valid for any w ∈ W 1,1(�), where K > 0 is a constant determined by �.
We recall the notation

B(x0, R) =
{

x ∈ R2
∣∣ |x − x0| < R

}
.
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Given x0 ∈ �, now we take the cut-off function ϕ = ϕx0,R′,R defined for
0 < R′ < R � 1 introduced in Chapter 5. It satisfies 0 ≤ ϕ ≤ 1 in �,
ϕ(x) = 1 for x ∈ B(x0, R′)∩�, ϕ(x) = 0 for x ∈ B(x0, R)∩�, ‖Dαϕ‖∞ =
O

(
(R − R′)−|α|) for any multi-index α, and supp ϕ ⊂ � and ∂ϕ

∂ν
= 0 on ∂� in

the cases of x0 ∈ � and x0 ∈ ∂�, respectively. Then, ψ = (ϕx0,R′,R)6 satisfies

ψ(x) =
{

1
(
x ∈ B(x0, R′) ∈ �)

0
(
x ∈ � \ B(x0, R)

)
0 ≤ ψ ≤ 1 in �,

∂ψ

∂ν
= 0 on ∂�

|∇ψ | ≤ Aψ5/6

|�ψ | ≤ Bψ2/3

}
in �,

where A > 0 and B > 0 are constants determined by 0 < R′ < R � 1. We
have, more precisely,

A = O
(
(R − R′)−1) and B = (

(R − R′)−2),
but these rates are not used in this chapter.

First, we prove some variants of (4.31):∫
�

u2 dx ≤ 2K 2

log s

∫
�

(
u log u + e−1) dx ·

∫
�

u−1 |∇u|2 dx

+ 2K 2
∥∥u

∥∥2
1 + 3s2 |�| .

Lemma 11.1 The following inequalities hold for any s > 1, where C > 0 is
a constant determined by A and K :∫

�

u2ψ dx ≤ 2K 2
∫

B(x0,R)∩�
u dx

∫
�

u−1 |∇u|2 ψ dx

+ K 2
( A2

2
+ 1

)∥∥u
∥∥2

1. (11.8)∫
�

u3ψ dx ≤ 72K 2

log s

∫
B(x0,R)∩�

(
u log u + e−1) dx

∫
�

|∇u|2 ψ dx

+ C
∥∥u

∥∥3
L1(B(x0,R)∩�) + 10 |�| s3. (11.9)
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Proof: Putting w = uψ1/2, we have{ ∫
�

|∇w| dx
}2 ≤ 2

{ ∫
�

|∇u|ψ1/2 dx
}2 + 2

{ ∫
�

u
∣∣∇ψ1/2

∣∣ dx
}2

≤ 2
{ ∫

�

|∇u|ψ1/2 dx
}2 + A2

2

∥∥u
∥∥2

1

≤ 2
∫

B(x0,R)∩�
u dx ·

∫
�

u−1 |∇u|2 ψ dx + A2

2
‖u‖2

1.

Hence (11.8) follows from (11.7) and
∥∥w∥∥

1 ≤ ∥∥u
∥∥

1. To prove (11.9), we apply
(11.7) for

w = (u − s)3/2+ ψ1/2.

First, we get∥∥w∥∥2
2 =

∫
{u>s}

(u − s)3+ψ dx
∫
{u>s}

(1

4
u3 − s3

)
ψ dx

≥ 1

4

∫
�

u3ψ dx − 5

4
s3 |�| .

Next, we have

|∇w| ≤ 3

2
(u − s)1/2+ |∇u|ψ1/2 + 1

2
A(u − s)3/2+ ψ1/3

and hence it holds that∥∥∇w∥∥2
1 ≤ 9

2

{ ∫
{u>s}

(u − s)1/2 |∇u|ψ1/2 dx
}2

+ A2

2

{ ∫
{u>s}

(u − s)3/2ψ1/3 dx
}2
.

Here, we have{ ∫
{u>s}
(u − s)1/2|∇u|ψ1/2 dx

}2 ≤
{ ∫

{u>s}
u1/2 |∇u|ψ1/2 dx

}2

≤
∫

B(x0,R)∩{u>s}
u dx ·

∫
{u>s}

|∇u|2 ψ dx

≤ 1

log s

∫
B(x0,R)∩�

(u log u + e−1) dx ·
∫
�

|∇u|2 ψ dx
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and{ ∫
{u>s}

(u − s)3/2ψ1/3 dx
}2 ≤

{ ∫
{u>s}

uψ1/3u1/2 dx
}2

≤
{ ∫

�

u3ψ dx
}2/3∥∥u

∥∥
L1(B(x0,R)∩�) |�|1/3

≤ ε
∫
�

u3ψ dx + 1

3

( 2

3ε

)2 |�| ∥∥u
∥∥3

L1(B(x0,R)∩�) (11.10)

for ε > 0. Therefore, writing Cε = 4
27ε

−2, we have

‖∇w‖2
1 ≤ 9

2 log s

∫
B(x0,R)∩�

(
u log u + e−1) dx

∫
�

|∇u|2 ψ dx

+ A2

2
ε

∫
�

u3ψ dx + A2

2
Cε |�| ‖u‖3

L1(B(x0,R)∩�).

Finally, from (11.10) and ψ1/2 ≤ ψ1/3 it follows that∥∥w∥∥2
1 ≤ ε

∫
�

u3ψ dx + Cε|�|‖u‖3
L1(B(x0,R)∩�).

These relations, combined with (11.7), imply(
1

4
− K 2

( A2

2
+ 1

)
ε

)∫
�

u3ψ dx

≤ 9K 2

log s

∫
B(x0,R)∩�

(
u log u + e−1) dx ·

∫
�

|∇u|2 ψ dx

+ K 2Cε |�|
( A2

2
+ 1

)∥∥u
∥∥3

L1(B(x0,R)∩�) +
5

4
s3 |�| .

Taking ε > 0 as

1

4
− K 2

( A2

2
+ 1

)
ε = 1

8
,

we obtain (11.9) and the proof is complete. �

We are discretizing in space the argument of Chapter 4. We assume Tmax <

+∞ and take the blowup set S of u = u(·, t) as t ↑ Tmax. Generic positive
constants are denoted as C1,C2, . . . , successively. In case that their depen-
dence on the parameter, say α, β, . . . , must be referred to explicitly, we write
them as Cα,Cα,β, . . . , and so forth.
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In the previous argument, we showed that the first equation of (11.2), pro-
vided with the boundary condition, implies

d

dt

∫
�

u(x, t) dx = 0,

and hence (1.11) follows from u > 0 in �× (0, Tmax):∥∥u(t)
∥∥

1 = ∥∥u0
∥∥

1 ≡ λ. (11.11)

Then, from the L1 estimate to the second equation of (11.2), we obtain

sup
0≤t<Tmax

{∥∥v(t)∥∥W 1,q (�)
+ ∥∥v(t)∥∥p

}
< +∞ (11.12)

for q ∈ [1, 2) and p ∈ [1,∞). Here, we remember that W m,q(�) denotes the
usual Sobolev space; the set of q-integrable functions up to the m-th order of
differentiation.

The global version of the following lemma is shown in the proof of Theorem
4.1 by the maximal regularity theorem (Chapter 4). Here, we apply Moser’s
iteration scheme for the proof.

Lemma 11.2 A point x0 ∈ � is a blowup point of u if and only if

lim sup
t↑Tmax

∫
B(x0,R)∩�

(u log u)(x, t) dx = +∞

holds for any small R > 0.

Proof: The “if” part is obvious, because x0 �∈ S implies

sup
0≤t<Tmax

∥∥u(t)
∥∥

L∞(B(x0,R)∩�) < +∞

for 0 < R � 1 by the definition. To prove the “only if” part, we suppose

sup
0≤t<Tmax

∫
B(x0,R)∩�

(u log u)(x, t) dx < +∞ (11.13)

for some 0 < R � 1. Then, localizing the estimates [14, 50, 110], we shall
show x0 �∈ S.

For this purpose, first, we take R′ ∈ (0, R) andψ = (ϕx0,R′,R)6. Multiplying
uψ to the first equation of (11.2), we obtain

1

2

d

dt

∫
�

u2ψ dx +
∫
�

|∇u|2 ψ dx +
∫
�

u∇u · ∇ψ dx

=
∫
�

u (∇v · ∇u) ψ dx +
∫
�

u2∇v · ∇ψ dx . (11.14)
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Here, the first term of the right-hand side of (11.14) is treated by the second
equation of (11.2) as

∫
�

u(∇v · ∇u)ψ dx = 1

2

∫
�

(
∇u2 · ∇v

)
ψ dx

= −1

2

∫
�

(u2�v)ψ dx − 1

2

∫
�

u2∇v · ∇ψ dx

= 1

2

∫
�

u3ψ dx − 1

2

∫
�

u2vψ dx − 1

2

∫
�

u2∇v · ∇ψ dx

≤ 1

2

∫
�

u3ψ dx − 1

2

∫
�

u2∇v · ∇ψ dx .

Therefore, the right-hand side of (11.14) is estimated from above by

1

2

∫
�

u3ψ dx + 1

2

∫
�

u2∇v∇̇ψ dx

= 1

2

∫
�

u3ψ dx − 1

2

∫
�

v∇u2 · ∇ψ dx − 1

2

∫
�

u2v�ψ dx,

and we have

1

2

d

dt

∫
�

u2ψ dx +
∫
�

|∇u|2 ψ dx

≤ 1

2

∫
�

u3ψ dx −
∫
�

u∇u · ∇ψ dx

− 1

2

∫
�

v∇u2 · ∇ψ dx − 1

2

∫
�

u2v�ψ dx . (11.15)

Now, Young’s inequality is applied to each term of the right-hand side except
for the first one:

∣∣∣ ∫
�

u∇u · ∇ψ dx
∣∣∣ ≤ A

∫
�

uψ1/3 · |∇u|ψ1/2 dx

≤ A|�|1/6
{ ∫

�

u3ψ dx
}1/3{ ∫

�

|∇u|2 ψ dx
}1/2

≤ 1

4

∫
�

|∇u|2 ψ dx + 1

3

∫
�

u3ψ dx + 4A6 |�|
3

,
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1

2

∣∣∣ ∫
�

v∇u2 · ∇ψ dx
∣∣∣ ≤ A

∫
�

v · uψ1/3 · |∇u|ψ1/2 dx

≤ A
∥∥v∥∥6

{ ∫
�

u3ψ dx
}1/3{ ∫

�

|∇u|2ψ dx
}1/2

≤ 1

4

∫
�

|∇u|2 ψ dx + 1

3

∫
�

u3ψ dx + 4A6‖v‖6
6

3
,

and

1

2

∣∣∣ ∫
�

u2v�ψ dx
∣∣∣ ≤ B

2

∫
�

v · u2ψ2/3 dx

≤ B

2

∥∥v∥∥3

{ ∫
�

u3ψ dx
}2/3

≤ 1

3

∫
�

u3ψ dx + B3‖v‖3
3

6
.

Therefore, from (11.12) we obtain

d

dt

∫
�

u2ψ dx +
∫
�

|∇u|2 ψ dx ≤
∫
�

u3ψ dx + C1.

Here, we apply (11.9) and (11.13) to the right-hand side of this inequality.
Making s � 1, we have

d

dt

∫
�

u2ψ dx + 1

2

∫
�

|∇u|2 ψ dx ≤ C2.

This implies

sup
0≤t<Tmax

∫
�

u(·, t)2ψ dx < +∞. (11.16)

We proceed to the second step, multiplying u2ψ to the first equation of
(11.2). In this case, we obtain

1

3

d

dt

∫
�

u3ψ dx + 2
∫
�

u |∇u|2 ψ dx +
∫
�

u2∇u · ∇ψ dx

= 2
∫
�

u2 (∇v · ∇u) ψ dx +
∫
�

u3∇v · ∇ψ dx .
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For w = u3/2, this means

1

3

d

dt

∫
�

w2ψ dx + 8

9

∫
�

|∇w|2 ψ dx + 2

3

∫
�

w∇w · ∇ψ dx

= 4

3

∫
�

w (∇v · ∇w)ψ dx +
∫
�

w2∇v · ∇ψ dx . (11.17)

Here, using the second equation of (11.2), we have∫
�

w
(∇v · ∇w)

ψ dx = 1

2

∫
�

(∇v · ∇w2)ψ dx

≤ 1

2

∫
�

uw2ψ dx − 1

2

∫
�

w2∇v · ∇ψ dx

= 1

2

∫
�

w8/3ψ dx − 1

2

∫
�

w2∇v · ∇ψ dx .

Therefore, the right-hand side of (11.17) is estimated from above by

2

3

∫
�

w8/3ψ dx + 1

3

∫
�

w2∇v · ∇ψ dx

≤ 2

3

{ ∫
�

w3ψ dx
}8/9 |�|1/9 − 1

3

∫
�

v∇w2 · ∇ψ dx

− 1

3

∫
�

w2v�ψ dx

≤ 2

3

∫
�

w3ψ dx − 1

3

∫
�

v∇w2 · ∇ψ dx

− 1

3

∫
�

w2v�ψ dx + 2

3
·
(8

9

)8 · |�|
9
.

Thus, we obtain

1

3

d

dt

∫
�

w2ψ dx + 8

9

∫
�

|∇w|2 ψ dx + 2

3

∫
�

w∇w · ∇ψ dx

≤ 2

3

∫
�

w3ψ dx − 1

3

∫
�

v∇w2 · ∇ψ dx − 1

3

∫
�

w2v�ψ dx

+2

3
·
(8

9

)8 · |�|
9
,

which has a similar form of (11.15).
Here, inequality (11.16) means

sup
0≤t<Tmax

∫
�

w4/3(x, t)ψ dx < +∞
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and hence we have

sup
0≤t<Tmax

∫
B(x0,R′)∩�

(w logw)(x, t) dx < +∞

and

sup
0≤t<Tmax

∥∥w(t)∥∥L1(B(x0,R′)∩�) < +∞.

Therefore, taking R′′ ∈ (0, R′), we can repeat the above argument, with u, R,
and ψ = (

ϕx0,R′,R
)6

, replaced by w, R′, and ψ1 = (
ϕx0,R′′,R′

)6
, respectively.

Then, similarly to (11.16) it follows that

sup
0≤t<Tmax

∥∥w(t)∥∥2/3
L2(B(x0,r)∩�) = sup

0≤t<Tmax

∥∥u(t)
∥∥

L3(B(x0,r)∩�) < +∞

for any r ∈ (0, R), because R′ ∈ (0, R) and R′′ ∈ (0, R′) are arbitrary.
From the second equation of (11.2) this implies

sup
0≤t<Tmax

∥∥v(t)∥∥W 2,3(B(x0,r ′)∩�) < +∞

for r ′ ∈ (0, r) by the local L3 estimate, and hence it holds that

sup
0≤t<Tmax

∥∥v(t)∥∥C1(B(x0,r)∩�) < +∞ (11.18)

for any r ∈ (0, R). On the other hand, repeating the above argument once
more, we obtain

sup
0≤t<Tmax

∥∥u(t)
∥∥

L4(B(x0,r)∩�) < +∞. (11.19)

These estimates, (11.18) and (11.19), are sufficient to set up the iteration
scheme by putting ψ = (ϕx0,r ′,r )6 for r ′ ∈ (0, r). This ψ(x) is different from
the previous one, as the support is reduced, but there will arise no confusion.

Thus, for p ≥ 1, we multiply u pψ p+1 by the first equation of (11.2) and
obtain

d

dt

1

p + 1

∫
�

(uψ)p+1 dx

= −
∫
�

∇(u pψ p+1) · ∇u dx +
∫
�

u∇(u pψ p+1) · ∇v dx

= −I + II.
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Here, we have

I =
∫
�

(
pu p−1ψ p+1∇u + u p∇ψ p+1) · ∇u dx

= 4p

(p + 1)2

∫
�

∣∣∇u
p+1

2
∣∣2ψ p+1 dx + 1

p + 1

∫
�

∇ψ p+1 · ∇u p+1 dx

= 4p

(p + 1)2

∫
�

∣∣∇u
p+1

2
∣∣2ψ p+1 dx + 4

p + 1

∫
�

ψ
p+1

2 ∇u
p+1

2

· u
p+1

2 ∇ψ p+1
2 dx =

{
4p

(p + 1)2
− 2

p + 1

}∫
�

∣∣∇u
p+1

2
∣∣2ψ p+1 dx

+ 2

p + 1

∫
�

∣∣∇ (uψ) p+1
2

∣∣2 dx − 2

p + 1

∫
�

u p+1
∣∣∇ψ p+1

2
∣∣2 dx

and the right-hand side is estimated from below by

2

p + 1

∫
�

∣∣∇ (uψ) p+1
2

∣∣2 dx − p + 1

2

∫
�

u p+1ψ p−1
∣∣∇ψ∣∣2 dx

≥ 2

p + 1

∫
�

∣∣∇ (uψ) p+1
2

∣∣2 dx − A2(p + 1)

2

∫
�

(uψ)p+ 2
3 u

1
3 dx

≥ 2

p + 1

∫
�

∣∣∇ (uψ) p+1
2

∣∣2 dx − A2(p + 1)

2

∥∥u0
∥∥ 1

3
1

·
{ ∫

�

(uψ)1+
3
2 p dx

} 2
3
.

On the other hand, estimate (11.18) means

L ≡ sup
0≤t<Tmax

∥∥∇v(t)∥∥L∞(B(x0,r)∩�) < +∞
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and hence we obtain

II ≤ L
∫
�

∣∣u∇(
u pψ p+1)∣∣ dx

= L
∫
�

∣∣∣ p

p + 1
∇ (uψ)p+1 + u p+1ψ p∇ψ

∣∣∣ dx

≤ Lp

p + 1

∫
�

∣∣∇ (uψ)p+1
∣∣ dx + L(p + 1)

∫
�

u p+1ψ p
∣∣∇ψ∣∣ dx

≤ 2pL

p + 1

∫
�

(uψ)
p+1

2
∣∣∇ (uψ) p+1

2
∣∣ dx

+ L A(p + 1)
∫
�

(uψ)p+ 5
6 u

1
6 dx

≤ 1

p + 1

∫
�

∣∣∣∇ (uψ) p+1
2

∣∣∣2 dx + 4L2(p + 1)
∫
�

(uψ)p+1 dx

+ L A(p + 1)
∥∥u0

∥∥ 1
6
1

{ ∫
�

(uψ)1+
6
5 p dx

} 5
5
.

These relations are summarized, for u1 = uψ , as

d

dt

∫
�

u p+1
1 dx ≤ −

∫
�

∣∣∇u
p+1

2
1

∣∣2 dx + C3(p + 1)2
∫
�

u p+1
1 dx

+ C3(p + 1)2
{ ∫

�

u
3p+2

2
1 dx

} 2
3

+ C3(p + 1)2
{ ∫

�

u
6p+5

5
1 dx

} 5
6

(11.20)

with a constant C3 > 0 independent of p ≥ 1. Therefore, now we can argue as
in Alikakos [2].

For this purpose, we make use of Gagliardo–Nirenberg’s inequality in the
form of

‖w‖Lq (�) ≤ K
(‖∇w‖2

L2(�)
+ ‖w‖2

L2(�)

) 1−(1/q)
2 ‖w‖1/q

L1(�)
, (11.21)

where K ≥ 1 is a constant independent of q ∈ [1, q0] if q0 > 1 is prescribed
in advance. This K is again different from the previous one, but there will arise
no confusion.
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First, we apply (11.21) for w = u(p+1)/2
1 and q = 3p+2

p+1 ∈ [ 5
2 , 3):

C3(p + 1)2
{ ∫

�

u
3p+2

2
1 dx

} 2
3 = C3(p + 1)2

∥∥w∥∥ 2q
3

q

≤ C3(p + 1)2K
2q
3

(∥∥∇w∥∥2
2 + ∥∥w∥∥2

2

)(q−1)/3 · ∥∥w∥∥ 2
3
1

= C3(p + 1)2K
6p+4
3p+3

{ ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx

} 2p+1
3p+3

·
{ ∫

�

u
p+1

2
1 dx

} 2
3
.

By means of 6p+4
3p+3 < 2 and 2p+1

3p+3 <
2
3 , the right-hand side is estimated from

above by

C3K 2(p + 1)2
{

1

4

( ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx + 1

)} 2
3

· 4
2
3

{ ∫
�

u
p+1

2
1 dx

} 2
3 ≤ 1

6

{ ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx + 1

}

+ 16

3
· C3

3 K 6 · (p + 1)6
{ ∫

�

u
p+1

2
1 dx + 1

}2
.

Next, we apply (11.21) for w = u(p+1)/2
1 and q = 12p+10

5p+5 ∈ [22
10 ,

12
5

)
. This

time, we have

C3(p + 1)2
{ ∫

�

u
6p+5

5
1 dx

}5/6 = C3(p + 1)2
∥∥w∥∥5q/6

q

≤ C3(p + 1)2K 5q/6
(∥∥∇w∥∥2

2 + ∥∥w∥∥2
2

)5(q−1)/12 · ∥∥w∥∥5/6
1

= C3K 5q/6(p + 1)2
{ ∫

�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx

} 7p+5
12p+12

·
{ ∫

�

u
p+1

2
1 dx

}5/6
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and the right-hand side is estimated from above by

C3K 2(p + 1)2
{

2

7

( ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx + 1

)} 7
12

·
{(7

2

)7/10
∫
�

u
p+1

2
1 dx

}5/6 ≤ 1

6

∫
�

(∣∣∣∇u
p+1

2
1

∣∣∣2 + u p+1
1

)
dx

+ 1

6
+ 5

12
·
(7

2

)7/5
C12/5

3 K 24/5(p + 1)24/5
{ ∫

�

u
p+1

2
1 dx + 1

}2

≤ 1

6

{ ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx + u p+1
1 dx + 1

}
+ 5

12
·
(7

2

)7/5
C12/5

3 K 24/5(p + 1)6
{ ∫

�

u
p+1

2
1 dx + 1

}2
.

Finally, we apply (11.21) for w = u(p+1)/2
1 and q = 2 and obtain

C3(p + 1)2
∫
�

u p+1
1 dx ≤ C3K 2(p + 1)2

·
{

1

3

( ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx

)} 1
2 · 31/2

∫
�

u
p+1

2
1 dx

≤ 1

6

{ ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx + 1

}
+ 31/2

2
· C2

3 K 4(p + 1)4
{ ∫

�

u
p+1

2
1 dx + 1

}
≤ 1

6

{ ∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx +
∫
�

u p+1
1 dx + 1

}2

+ 31/2

2
· C2

3(p + 1)6K 4
{ ∫

�

u
p+1

2
1 dx + 1

}2
.

In this way, from (11.20) we can deduce

d

dt

∫
�

u p+1
1 dx + 1

2

∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx

≤ 1

2

∫
�

u p+1
1 dx + C4(p + 1)6

{ ∫
�

u
p+1

2
1 dx + 1

}2
.

However, again by (11.21) for q = 2, we have∥∥w∥∥
2 ≤ K 2

(∥∥∇w∥∥2
2 + ∥∥w∥∥2

2

) 1
2 ∥∥w∥∥

1

≤ 1

4

(∥∥∇w∥∥2
2 + ∥∥w∥∥2

2

)
+ K 4

∥∥w∥∥2
1
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and hence we obtain∥∥u
p+1

2
1

∥∥2
2 ≤ 1

3

∥∥∇u
p+1

2
1

∥∥2
2 + 4K 4

3

∥∥u
p+1

2
1

∥∥2
1.

Thus, we have

d

dt

∫
�

u p+1
1 dx + 1

3

∫
�

∣∣∣∇u
p+1

2
1

∣∣∣2 dx

≤ C4(p + 1)6
{ ∫

�

u
p+1

2
1 dx + 1

}2 + 2

3
K 2

{ ∫
�

u
p+1

2
1 dx

}2
,

and therefore it holds that

d

dt

∫
�

u p+1
1 dx +

∫
�

u p+1
1 dx ≤ C5(p + 1)6

{ ∫
�

u
p+1

2
1 dx + 1

}2

for t ∈ [0, Tmax).
From this differential inequality, we can conclude

sup
0≤t<Tmax

{ ∫
�

u p+1
1 dx + 1

}
≤ C5 max

{
(p + 1)6 sup

0≤t<Tmax

{ ∫
�

u
p+1

2
1 dx + 1

}2
,
∥∥u0

∥∥p+1
∞ |�| + 1

}
for any p ≥ 1. Therefore,

�k = sup
0≤t<Tmax

∫
�

u2k

1 dx + 1

satisfies

�k+1 ≤ C5 max
{

26(k+1)�2
k, (|�| + 1)

(∥∥u0
∥∥∞ + 1

)2k+1}
≤ C526(k+1) max

{
�2

k,
(∥∥u0

∥∥∞ + 1
)2k+1}

for k = 1, 2, . . . . This implies

�k+1 ≤ C2k−1−1
5 · 2

∑k
�=2 6(�+1)2k−� · max

{
�2k−1

2 , d2k+1
}

for k = 2, 3, . . . , where d = ∥∥u0
∥∥∞ + 1, and hence we obtain

sup
0≤t<Tmax

{ ∫
�

u2k+1

1 dx
} 1

2k+1 ≤ �
1

2k+1

k+1

≤ C
2k−1−1

2k+1

5 · 26
∑∞

j=1 j2− j · max
{
�

1/4
2 , d

}
.
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Making k → +∞, we have

sup
0≤t<Tmax

∥∥u1(t)
∥∥∞ ≤ C5 max

{(
sup

0≤t<Tmax

∥∥u1(t)
∥∥4

4 + 1
)1/4

, d

}
.

Using (11.19), we obtain

sup
0≤t<Tmax

∥∥u1(t)
∥∥∞ = sup

0≤t<Tmax

∥∥u(t)ψ
∥∥∞ < +∞,

and hence it holds that

lim sup
t↑Tmax

∥∥u(t)
∥∥

L∞(B(x0,r ′)∩�) < +∞.

This means x0 �∈ S and the proof is complete. �

Localizing the argument of [73], now we show the following lemma.

Lemma 11.3 It holds that

d

dt

∫
�

(u log u)ψ dx + 1

4

∫
�

u−1|∇u|2ψ dx ≤ 2
∫
�

u2ψ dx + C6 (11.22)

for t ∈ (0, Tmax).

Proof: From the first equation of (11.2), we have

d

dt

∫
�

(u log u) ψ dx =
∫
�

ut (log u + 1)ψ dx

= −
∫
�

∇u · ∇ ((log u + 1) ψ) dx

+
∫
�

u∇v · ∇ ((log u + 1) ψ) dx

= −I + II.

Here, the second equation of (11.2) applies and it holds that

II =
∫
�

ψ∇v · ∇u dx +
∫
�

u (log u + 1)∇v · ∇ψ dx

= −
∫
�

u∇ · (ψ∇v) dx +
∫
�

u (log u + 1)∇v · ∇ψ dx

=
∫
�

uψ(u − v) dx +
∫
�

u log u∇v · ∇ψ dx .
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We also have

I =
∫
�

u−1|∇u|2ψ dx +
∫
�

(log u + 1)∇u · ∇ψ dx

and hence

d

dt

∫
�

(u log u)ψ dx +
∫
�

u−1 |∇u|2 ψ dx +
∫
�

uvψ dx

=
∫
�

u2ψ dx −
∫
�

(log u + 1)∇u · ∇ψ dx

+
∫
�

(u log u)∇v · ∇ψ dx . (11.23)

Now, we use an elementary inequality valid for α > 0 and 0 < β < 2:

( |log u| + 1
)α

uβ ≤ u2 + Cα,β (u > 0).

Then, the second term of the right-hand side of (11.23) is estimated from above
by

∣∣∣ ∫
�

(log u + 1)∇u · ∇ψ dx
∣∣∣ ≤ A

∫
�

( |log u| + 1
)
u1/2ψ1/3

· u−1/2 |∇u|ψ1/2 dx ≤ A |�|1/6
{ ∫

�

( |log u| + 1
)3

u3/2ψ dx
}1/3

·
{ ∫

�

u−1|∇u|2ψ dx
}1/2 ≤ A |�|1/6 21/2

·
{ ∫

�

u2ψ dx + C3,3/2 |�|
}1/3 ·

{1

2

∫
�

u−1 |∇u|2 ψ dx
}1/2

≤ 1

4

∫
�

u−1|∇u|2ψ dx + 1

3

∫
�

u2ψ dx + 4A6 |�|
3

+ C3,3/2 |�|
3

.

The third term of the right-hand side of (11.23) is equal to

−
∫
�

v∇ · (u log u∇ψ) dx = −
∫
�

v(log u + 1)∇u · ∇ψ dx

−
∫
�

(vu log u)�ψ dx,
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where each term of the right-hand side is estimated from above as follows:∣∣∣ ∫
�

v(log u + 1)∇u · ∇ψ dx
∣∣∣

≤ A
∫
�

v · u1/2 (|log u| + 1) ψ1/3 · u−1/2 |∇u|ψ1/2 dx ≤ A‖v‖621/2

·
{ ∫

�

u3/2 (|log u| + 1)3 ψ dx
}1/3 ·

{1

2

∫
�

u−1 |∇u|2 ψ dx
}1/2

≤ 1

4

∫
�

u−1|∇u|2ψ dx + 1

3

∫
�

u2ψ dx + 4A6‖v‖6

3
+ C3,3/2|�|

3
,

∣∣∣ ∫
�

(vu log u)�ψ dx
∣∣∣ ≤ A

∫
�

v |u log u|ψ2/3 dx

≤ A‖v‖32
2
3 ·

{1

2

∫
�

|u log u|3/2 ψ dx
}2/3

≤ 1

3

∫
�

u2ψ dx + 4A3‖v‖3
3

3
+ C3/2,3/2 |�|

3
.

Inequality (11.22) follows from (11.12) and the proof is complete. �

We are ready to prove the key lemma.

Lemma 11.4 The blowup set S of u is finite.

Proof: First, we show that there is ε0 > 0 such that any x0 ∈ S and 0 < R � 1
admit the estimate

lim sup
t↑Tmax

∫
B(x0,R)∩�

u(·, t) dx ≥ ε0. (11.24)

For this purpose, we take R′ ∈ (0, R) andψ = (
ϕx0,R′,R

)6
. Then, from (11.22)

and (11.8), it follows that

d

dt

∫
�

(u log u)ψ dx + 1

4

(
1 − 16K 2

∫
B(x0,R)∩�

u dx
)

·
∫
�

u−1|∇u|2ψ dx ≤ C7.

Therefore, if

lim sup
t↑Tmax

∫
B(x0,R)∩�

u(·, t) dx < ε0 ≡ 1

16K 2
,
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then it holds that

lim sup
t↑Tmax

∫
B(x0,R′)∩�

(u log u)(·, t) dx ≤ lim sup
t↑Tmax

∫
�

(u log u)(·, t)ψ dx < +∞.

This implies x0 �∈ S by Lemma 11.2, a contradiction. Thus, we have proven
(11.24) for each x0 ∈ S and 0 < R � 1.

Now, we apply (5.11), or equivalently,∣∣∣ d

dt

∫
�

u(·, t)ψ dx
∣∣∣ ≤ B

∥∥u0
∥∥

1 + 1

2

∥∥ρψ∥∥
L∞(�×�)

∥∥u0
∥∥2

1 (11.25)

with

ρψ(x, y) = ∇ψ(x) · ∇x G(x, y)+ ∇ψ(y) · ∇yG(x, y).

Actually, it is a consequence of the method of symmetrization, because the first
equation of (11.2) implies

d

dt

∫
�

uψ dx =
∫
�

utψ dx =
∫
�

u�ψ dx +
∫
�

u∇v · ∇ψ dx

by ∂ψ
∂ν

∣∣
∂�

= 0.
Here, it is obvious that∣∣∣ ∫

�

u(·, t)�ψ dx
∣∣∣ ≤ B

∥∥u0
∥∥

1,

while we have∫
�

u∇v · ∇ψ = 1

2

∫
�

∫
�

ρψ(x, y)u(x, t)u(y, t) dxdy

with

ρψ ∈ L∞ (�×�) .
Thus, it holds that∣∣∣ ∫

�

∫
�

ρ(x, y)u(x, t)u(y, t) dxdy
∣∣∣ ≤ ∥∥ρ∥∥L∞(�×�)

∥∥u0
∥∥2

1

and inequality (11.25) follows.
This fact confirms that the value

lim
t↑Tmax

∫
�

u(·, t)ψdt =
∫
�

u0(x)ψ dx +
∫ Tmax

0

( d

dt

∫
�

u(·, t)ψ dx
)

dt
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exists for ψ = (ϕx0,R′,R)6. Since 0 < R � 1 is arbitrary in (11.24), it is
improved as

lim inf
t↑Tmax

∫
B(x0,R)∩�

u(·, t) dx ≥ lim
t↑Tmax

∫
�

u(·, t)ψ dx

≥ lim sup
t↑Tmax

∫
B(x0,R′)∩�

u(·, t) dx ≥ ε0.

This inequality holds for any x0 ∈ S and 0 < R � 1, and therefore from
(11.11) it follows that

�S ≤ ∥∥u0
∥∥

1/ε0 < +∞.
This indicates the finiteness of blowup points and the proof is complete. �

After the finiteness of blowup points is proven, formation of the chemotactic
collapse (6.5) is a consequence of the localization of the argument of Chapter 4.
Here, we apply Brezis–Merle’s type of inequality instead of the Trudinger–
Moser inequality.

In fact, putting

Sε = ∪x0∈S B(x0, ε)

for 0 < ε � 1, we obtain

sup
0≤t<tmax

∥∥u(t)
∥∥

L∞(�\Sε) < +∞

and therefore the relation

sup
0≤t<Tmax

∥∥∇v(t)∥∥L∞(�\S2ε)
< +∞

follows from the second equation of (11.2) and the elliptic regularity. Then,
the first and the second equations of (11.2) assure∥∥u

∥∥
C2+θ,1+θ/2(�\S3ε×[0,Tmax))

< +∞ (11.26)

and ∥∥v∥∥C2+θ,1+θ/2(�\S4ε×[0,Tmax)
) < +∞ (11.27)

for θ ∈ (0, 1) by the parabolic and elliptic regularities [58, 85]. In particular, it
holds that

sup
0≤t<Tmax

∥∥ut (t)
∥∥

C
(
�\S3ε

) < +∞
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and

f (x) = u(x, 0)+
∫ Tmax

0
ut (x, t)dt

= lim
t↑Tmax

u(x, t) ≥ 0 (11.28)

exists for any x ∈ �\S. Convergence (11.28) is locally uniform on�\S, and
relation (11.6) follows from (11.11) and Fatou’s lemma.

The family {
u(x, t) dx

∣∣ 0 ≤ t < Tmax
} ⊂ M(�)

is bounded, and therefore is sequentially precompact ∗-weakly as t ↑ Tmax.
Now, we shall show the following lemma.

Lemma 11.5 It holds that

lim inf
t↑Tmax

∫
B(x0,R)∩�

u(x, t) dx ≥ m∗(x0) (11.29)

for each x0 ∈ S and 0 < R � 1, where

m∗(x0) =
{

8π (x0 ∈ �) ,
4π (x0 ∈ ∂�) .

This lemma implies Theorem 11.1 as follows. First, any sequence tk ↑ Tmax

admits a subsequence
{
t ′k
}

and a measure μ(dx) ∈ M(�) such that

w∗ − lim
k→∞ u(x, t ′k) dx = μ(dx).

Since μ(dx)− f (x) dx ∈ M(�) has the support on the finite set S and (11.29)

holds, we have m′ : S → [4π,+∞) satisfying m
∣∣∣
S∩� ≥ 8π and

μ(dx) =
∑
x0∈S

m′(x0)δx0(dx)+ f (x) dx .

However, from the proof of Lemma 11.4 we have the existence of

lim
t↑Tmax

∫
�

u(x, t)ϕ(x) dx
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for any ϕ ∈ C2(�) in ∂ψ
∂ν

= 0 on ∂�, and the value m′(x0) is independent of
the choice of {tk} or

{
t ′k
}
. This implies (6.5).

To prove Lemma 11.5 we take x0 ∈ S and 0 < R′ < R � 1. Then, letting
ϕ = ϕx0,R′,R , we introduce the localized Lyapunov function

Wϕ(t) =
∫
�

{
u log u − uv + 1

2

(
|∇v|2 + v2

) }
ϕ dx

and show the following lemma.

Lemma 11.6 It holds that

d

dt
Wϕ(t)+

∫
�

u
∣∣∇(log u − v)∣∣2ϕ dx = d

dt

∫
�

uϕ dx + R1(u, v, ϕ)

(11.30)

with

R1(u, v, ϕ) =
∫
�

[
(1 − v)∇u − (u log u − uv + vt )∇v

] · ∇ϕ dx

+
∫
�

(u log u)�ϕ dx .

Proof: Multiplying (log u − v)ϕ by the first equation of (11.2), we have∫
�

ut (log u − v)ϕ dx =
∫
�

[∇ · (∇u − u∇v)] (log u − v)ϕ dx

= −
∫
�

u|∇(log u − v)|2ϕ dx

−
∫
�

(log u − v)(∇u − u∇v) · ∇ϕ dx . (11.31)

Here, it holds that∫
�

ut (log u − v)ϕ dx = d

dt

∫
�

(u log u − uv)ϕ dx

− d

dt

∫
�

uϕ dx +
∫
�

uvtϕ dx (11.32)

and ∫
�

(log u)∇u · ∇ϕ dx = −
∫
�

u∇ · (log u∇ϕ) dx

= −
∫
�

{(u log u)�ϕ + ∇u · ∇ϕ} dx (11.33)

by ∂ϕ
∂ν

∣∣
∂�

= 0.
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Using the second equation of (11.2), we have∫
�

uvtϕ dx =
∫
�

(−�v + v)vtϕ dx

= 1

2

d

dt

∫
�

( |∇v|2 + v2)ϕ dx +
∫
�

vt∇v · ∇ϕ dx .

This, together with (11.31)–(11.33), implies

d

dt
Wϕ +

∫
�

u |∇(log u − v)|2 ϕ dx

= d

dt

∫
�

uϕ dx +
∫
�

(u log u)�ϕ dx

+
∫
�

[
(1 − v)∇u − (u log u − uv + vt )∇v

] · ∇ϕ dx

and the proof is complete. �

Now, we show the following lemma.

Lemma 11.7 If x0 ∈ S and ϕ = ϕx0,R′,R for 0 < R′ < R � 1, then

W ∗ ≡ sup
0≤t<Tmax

Wϕ(t) < +∞ (11.34)

and

lim sup
t↑Tmax

∫
�

|∇v|2 ϕ dx = +∞. (11.35)

Proof: We recall (11.30) and put

F(t) = Wϕ(t)−
∫ t

0
R1(u, v, ϕ)ds −

∫
�

uϕ dx .

Then, from (11.11), (11.26), and (11.27) we obtain∣∣∣ ∫
�

uϕ dx
∣∣∣ ≤ ∥∥u0

∥∥
1

and

sup
0≤t<Tmax

|R1(u, v, ϕ)| < +∞.

Also, by Lemma 11.6, F is monotone decreasing in t ∈ [0, Tmax) and therefore
(11.34) follows.
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Now, we have ∫
�

(u log u)ϕ dx ≤ W ∗ +
∫
�

uvϕ dx,

and therefore Lemma 11.2 guarantees

lim sup
t↑Tmax

∫
�

uvϕ dx = +∞.

Then, using Young’s inequality, we have

a
∫
�

uvϕ dx ≤
∫
�

(u log u) ϕ dx + 1

e

∫
�

eavϕ dx

≤ Wϕ +
∫
�

uvϕ dx + 1

e

∫
�

eavϕ dx

≤ W ∗ +
∫
�

uvϕ dx + 1

e

∫
�

eavϕ dx,

and hence it follows that

(a − 1)
∫
�

uvϕ dx ≤ 1

e

∫
�

eavϕ dx + W ∗,

where a is a constant. Therefore, we have

lim sup
t↑Tmax

∫
�

eavϕ dx = +∞

for a > 1, and (11.35) follows from the following lemma. �

Lemma 11.8 If a > 0 and ϕ = ϕx0,R′,R for x0 ∈ S and 0 < R′ < R � 1,
then the inequality∫

�

eavϕ dx ≤ C8 exp
( a2

8π

∫
�

|∇v|2 ϕ dx
)

(11.36)

holds for t ∈ [0, Tmax). If x0 ∈ �, then this inequality is improved as∫
�

eavϕ dx ≤ C9 exp
( a2

16π

∫
�

|∇v|2 ϕ dx
)
. (11.37)
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Proof: We apply the inequalities [23, 102] in Chapter 4 valid for w ∈ X :

log
( ∫

�

ew dx
)

≤ 1

2π∗
∥∥∇w∥∥2

2 + 1

|�|
∫
�

w dx + K ,

where

π∗ =
{

4π
(
X = H1(�)

)
,

8π
(
X = H1

0 (�)
)
.

In fact, it holds that

sup
0≤t<Tmax

∥∥v(t)∥∥
C1

(
B(x0,R)∩�\B(x0,R′)

) < +∞

by (11.27), so that for the case of x0 ∈ S ∩ ∂� we have∫
�

eavϕ dx ≤
∫

B(x0,R′)∩�
eav dx +

∫
B(x0,R)∩�\B(x0,R′)

eav dx

≤
∫
�

eavϕ dx + C10 ≤ eK exp
( a2

8π

∥∥∇(vϕ)∥∥2
2 + a‖v‖1

|�|
)

+ C10 ≤ (
eK+aC11 + C10

)
exp

( a2

8π

∫
�

|∇v|2ϕ dx
)

by (11.12). This shows (11.36). Inequality (11.37) for x0 ∈ S ∩ � is shown
similarly, and the proof is complete. �

Now, we localize an inequality used in Chapter 4.

Lemma 11.9 We have∫
�

uvϕ dx ≤
∫
�

(u log u)ϕ dx + Mϕ log
( ∫

�

evϕ dx
)

− Mϕ log Mϕ (11.38)

for Mϕ = ∫
�

uϕ dx.

Proof: Since − log s is convex, Jensen’s inequality applies as

− log
( 1

Mϕ

∫
�

evϕ dx
)

= − log
( ∫

�

ev

u

u

Mϕ

ϕ dx
)

≤
∫
�

{
− log

(1

u
ev

) u

Mϕ

ϕ
}

dx

= − 1

Mϕ

∫
�

{
u log

(ev

u

)
ϕ
}

dx .

This means (11.38). �
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We are ready to complete the proof of Theorem 11.1.

Proof of Lemma 11.5: Having proven that limt↑Tmax

∥∥uϕ
∥∥

1 exists, we suppose

lim
t↑Tmax

Mϕ(t) = lim
t↑Tmax

∥∥uϕ
∥∥

1 < m∗ (11.39)

and derive a contradiction.
In fact, in the case that x0 ∈ � we have (11.37), and therefore

1

2

∫
�

( |∇v|2 + v2)ϕ = Wϕ −
∫
�

(u log u − uv)ϕ dx

≤ Wϕ + Mϕ log
( ∫

�

evϕ dx
)

− Mϕ log Mϕ

≤ W ∗ + Mϕ

16π

∫
�

|∇v|2 ϕ dx + Mϕ log
C9

Mϕ

by (11.34) and (11.38). This means

1

2

(
1 − Mϕ

8π

) ∫
�

|∇v|2ϕ dx ≤ W ∗ + Mϕ log
C9

Mϕ

≤ C12,

and therefore

lim sup
t↑Tmax

∫
�

|∇v|2 ϕ dx < +∞

by (11.39) and m∗ = 8π , a contradiction. The case x0 ∈ ∂� is treated simi-
larly, and the proof is complete. �
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Concentration Lemma

In this chapter we show that the mass quantization of collapse occurs if the
solution blows up in infinite time [148]. It is uncertain whether such a solution
exists or not. Actually, it is suspected that the blowup in infinite time occurs
only when the solution converges to a singular stationary solution, and there-
fore, in that case, the total mass λ = ‖u0‖1 must be quantized as λ ∈ 4πN.
This question is open, but an important tool is exploited, which we call the
concentration lemma. (This is different from the lemma given by [23].)

Similarly to the case dealt with in the previous chapter, the mass quantization
of collapse of the solution blowing-up in infinite time is valid for other systems,
provided they also have the properties of positivity and total mass preserving
of the solution, decrease of the free energy, and the physical field associated
with a kernel uniformly bounded under the symmetrization process. But we
concentrate on (11.2) for simplicity:

ut = ∇ · (∇u − u∇v) in �× (0, T ),

0 = �v − av + u in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0 on �, (12.1)

Here, u0 = u0(x) ≥ 0 is a smooth function, a > 0 is a constant, � ⊂ R2

is a bounded domain with smooth boundary ∂�, and ν denotes the outer unit
normal vector. Furthermore, we put a = 1.
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Under these assumptions, we can show that if u = u(x, t) is a solution
global in time, then any tn ↑ +∞ admits

{
t ′n
} ⊂ {tn} and 0 ≤ f = f (x) ∈

L1(�) ∩ C(� \ B{t ′n}) such that

u(x, t ′n) dx ⇀
∑

x0∈B({t ′n})
m∗(x0)δx0(dx)+ f (x) dx (12.2)

in M(�), where B({t ′n}) denotes the set of exhausted blowup points so that
x0 ∈ � belongs to B({t ′n}) if and only if there is {x ′

n} ⊂ � such that u(x ′
n, t

′
n)

→ +∞, and

m∗(x0) =
{

8π (x0 ∈ �),
4π (x0 ∈ ∂�).

It should be noted that the number of exhausted blowup points is not prescribed
in (12.2), and the case B({t ′n}) = ∅ is admitted.

Here, we confirm the notation used in this chapter. First,

B({t ′n})

denotes the blowup set of {u(t ′n)}, so that x0 ∈ B({t ′n}) if and only if there exist
{t ′′n } ⊂ {t ′n} and {xn} ⊂ � satisfying t ′′n ↑ +∞, xn → x0, and u(xn, t ′′n ) →
+∞. We say that x0 is exhausted as a blowup point of

{
u(t ′n)

}
, if t ′′n = t ′n holds

in the above relation. By definition, the blowup set B({t ′n}) is exhausted, if its
any element is so. Next, we say that the solution blows up in infinite time if

Tmax = +∞ and lim sup
t→+∞

‖u(t)‖∞ = +∞

hold. In this case, we have B ({t ′n}) �= ∅ if limn→∞ ‖u(tn)‖∞ = +∞, but the
possibility of the oscillating formation of collapses is still kept in (12.2).

We proceed to the concentration lemma. This is a criterion for a sequence of
solutions to have a converging subsequence using the concentration function.
This type of result is obtained when � is a flat torus [152], and the proof is
done along a similar line.

Theorem 12.1 If
{
un

0

}
n≥1 is a family of smooth nonnegative functions defined

on � satisfying

sup
n≥1

∥∥un
0

∥∥
1 = ! < +∞,
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un = un(x, t) denotes the solution to (12.1) whose initial value is un
0 , the

supremum of the existence time of un is denoted by T n = T n
max > 0, and

lim sup
n→∞

∥∥un
0

∥∥
L1(B(x0,R)∩�) < m∗(x0) (12.3)

for x0 ∈ � and R > 0, then there exist T > 0, r > 0, and
{
un′} ⊂ {un}

satisfying

sup
n′

∥∥un′∥∥
C2+θ,1+θ/2(B(x0,r)∩�×[τ,min(T,T n′

max)))
< +∞ (12.4)

for any τ ∈ (0, T ), where θ ∈ (0, 1). If R > 0 in (12.3) is independent of
x0 ∈ �, then we have T∗ ≡ lim infn T n

max > 0. Furthermore, in this case, {un}
has a subsequence converging in C2,1(�× (0, T ]) for some T ∈ (0, T∗).

Here and henceforth, we take the agreement that the term∥∥un′∥∥
C2+θ,1+θ/2(B(x0,r)∩�×[τ,min(T,T n′

max)))

in (12.4) has the meaning only when τ < T n′
max.

We use several facts obtained in the previous chapters for the proof. First,
we use (11.7), a form of the Gagliardo–Nirenberg inequality, specifying the
constant K1 > 0 determined by � ⊂ R2:∥∥w∥∥2

2 ≤ K 2
1

(∥∥∇w∥∥2
1 + ∥∥w∥∥2

1

)
,

which is valid for all w ∈ W 1,1(�). We use also (5.11) valid for ψ = ψ(x) ∈
C2(�) with ∂ψ

∂ν
= 0 on ∂�, that is,∣∣∣ d

dt

∫
�

ψ(x)u(x, t) dx
∣∣∣ ≤ K2λ

2

2

∥∥∇ψ∥∥
W 1,∞(�) + λ

∥∥�ψ∥∥∞ (12.5)

for λ = ‖u0‖1, where K2 > 0 is a constant determined again by �. Given
x0 ∈ �, we take the cut-off function ϕ = ϕx0,R′,R for 0 < R′ < R � 1
defined in Chapter 5, and put

ψ = (ϕx0,R′,R)
6.

This smooth ψ = ψx0,R′,R satisfies 0 ≤ ψ ≤ 1 in �,

ψ(x) =
{

1 (x ∈ B(x0, R′) ∩�),
0 (x ∈ � \ B(x0, R)) ,
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∂ψ
∂ν

= 0 on ∂�, and∣∣Dαψ∣∣ ≤ A(R − R′)−1ψ5/6 (|α| = 1),∣∣Dαψ∣∣ ≤ B(R − R′)−2ψ2/3 (|α| = 2),

with the absolute constants A > 0 and B > 0. In this chapter, we use the order
on (R − R′) in these inequalities. Finally, |D| denotes the area of measurable
set D ⊂ R2.

In the following lemma, u = u(x, t) denotes the solution to (12.1) with the
smooth initial value u0 = u0(x) ≥ 0, and the supremum of its existence time
is denoted by T = Tmax > 0. This lemma, in contrast with Theorem 12.1,
describes a uniform estimate depending only on ! ≥ ‖u0‖1. More precisely,
the constants T1 and C1 stated here are explicitly determined by K1, K2,!, R1

and K1, K2, !, R1, τ , respectively. The proof is done by examining the proof
of Theorem 11.1 carefully.

Lemma 12.1 There exists T1 > 0 determined by R1 > 0 such that if∥∥u0
∥∥

L1(B(x0,3R1)∩�) < 1/(64K 2
1 ), (12.6)

then each τ ∈ (0, T1) admits C1 > 0 satisfying∥∥u
∥∥

C2+θ,1+θ/2(B(x0,R1)∩�×[τ,min(T1,Tmax))
) ≤ C1

for x0 ∈ �.

Proof: To make the description simple, we write K , R, T , and λ for K1, R1,
T1, and !, respectively. Given R > 0 and x0 ∈ �, we take ψ = ψx0,5R/2,3R

and apply (12.5):∣∣∣ d

dt

∫
�

uψ dx
∣∣∣ ≤ K2λ

2

2

∥∥∇ψ∥∥
W 1,∞ + λ∥∥�ψ∥∥∞.

Thus, if T1 ∈ (0, Tmax) is taken as( K2λ
2

2

∥∥∇ψ∥∥
W 1,∞ + λ∥∥�ψ∥∥∞

)
T1 ≤ 1/(64K 2),

then, from (12.6) it follows that

sup
t∈[0,T1]

∥∥u(t)
∥∥

L1(�∩B(x0,5R/2)) ≤ 1/(32K 2). (12.7)
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Next, we take ψ1 = ψx0,2R,5R/2. Then, for R ∈ (0, 1), inequalities (11.8) and
(11.22) of the previous chapter are written as∫

�

u2ψ1 dx ≤ 2K 2
∫
�∩B(x0,5R/2)

u dx ·
∫
�

u−1 |∇u|2 ψ1 dx

+ K 2
( A2

8R2
+ 1

)
λ2 (12.8)

and

d

dt

∫
�

(u log u) ψ1 dx + 1

4

∫
�

u−1 |∇u|2 ψ1 dx

≤ 2
∫
�

u2ψ1 dx + L R−6, (12.9)

respectively, where L > 0 is a constant determined by |�| and λ. Henceforth,
Ci (i = 2, 3, . . . ) denote positive constants determined by �, λ, and R. Then,
(12.8) and (12.9) imply

d

dt

∫
�

(u log u) ψ1 dx + 1

4

(
1 − 16K 2

∫
B(x0,5R/2)

u dx
)

·
∫
�

u−1 |∇u|2 ψ1 dx ≤ C2

for t ∈ [0, Tmax). Therefore, from (12.7) we have

d

dt

∫
�

(u log u) ψ1 dx + 1

8

∫
�

u−1 |∇u|2 ψ1 dx ≤ C2 (12.10)

for t ∈ [0, T1].
In what follows, the time variable t is restricted in t ∈ [0, T1]. Then, from

(12.8) it follows that∫
�

u2ψ1 dx ≤ 1

16

∫
�

u−1 |∇u|2 ψ1 dx + K 2
( A2

8R2
+ 1

)
λ2, (12.11)

and hence

d

dt

∫
�

(u log u) ψ1 dx + 2
∫
�

u2ψ1 dx ≤ C3

holds true. In terms of

J (t) ≡
∫
�

(
u log u + e−1)ψ1 dx ≥ 0,
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this implies

d J

dt
+ 3J 3/2 ≤ C3 − 2

∫
�

u2ψ1 dx

+ 3
∫
�

(
u log u + e−1)3/2

ψ1 dx · |�|1/2 . (12.12)

Since the elementary inequality

u log u ≤ 4u5/4

is valid in u > 0, the right-hand side of (12.12) is estimated from above by

C4

(
1 +

∫
�

u15/8ψ1 dx
)

− 2
∫
�

u2ψ1 dx ≤ C5.

Therefore, it holds that

d

dt
J (t)+ 3J (t)3/2 ≤ C5

for t ∈ [0, T1].
We also have

d

dt
t−2 + 3

(
t−2)3/2 = t−3,

and the function F(J ) ≡ J 3/2
+ is continuously differentiable in J ∈ R. The

standard comparison theorem is applicable, and if T ∈ (0, T1) is so taken as in
T 3C5 ≤ 1, then, for t ∈ (0, T ) it holds that t−3 ≥ C5. This implies that the
inequality

J (t) =
∫
�

(
u log u + e−1)ψ1 dx ≤ t−2 (12.13)

holds in t ∈ (0, T ]. Then, by (12.10), inequality (12.13) gives

1

8

∫ t1

t
K (s)ds ≤ t−2 + C2T (12.14)

for 0 < t ≤ t1 ≤ T , where

K (t) =
∫
�

u−1 |∇u|2 ψ1 dx .
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Now we repeat the proof of Lemma 11.2 based on (12.13), taking t = τ/2
as the initial time for given τ ∈ (0, T ). Henceforth, Ci (i = 6, 7, 8, . . . ) denote
positive constants determined by τ besides �, λ, and R. Its first step assures

d

dt

∫
�

u2ψ2 dx + 1

2

∫
�

|∇u|2 ψ2 dx ≤ C6 (12.15)

for t ∈ [τ/2, T ], where ψ2 = ψx0,3R/2,2R . Here, we have

4

τ

∫ 3τ/4

τ/2
K (s)ds ≤ C7

by (12.14), and therefore there exists τ1 ∈ (τ/2, 3τ/4) satisfying K (τ1) ≤ C7.
This implies ∫

�

u2ψ1 dx ≤ C8

at t = τ1 by (12.11), and inequality (12.15) now guarantees∫
�

u2ψ2 dx + 1

2

∫ t

τ1

K1(s)ds ≤ C9 (12.16)

for t ∈ [τ1, T ], where K1(t) =
∫
�

|∇u|2 ψ2 dx . In particular,

∫ 7τ/8

3τ/4

∥∥∇u(s)
∥∥2

L2(�∩B(x0,3R/2))ds ≤ 2C9

follows, and we have τ2 ∈ (3τ/4, 7τ/8) satisfying∥∥∇u(τ2)
∥∥

L2(�∩B(x0,3R/2)) ≤ C10 (12.17)

similarly. This implies

‖u(τ2)‖L p(�∩B(x0,3R/2)) = O(1)

for any p ∈ [1,∞) fixed, by Sobolev’s inequality.
Based on this fact, we can perform the second step of Lemma 11.2, taking

t = τ2 as the initial value. We set R1 = (3R)/2 for the moment, and take
R2 ∈ (R, R1). Then, given p ∈ [1,∞), we can prescribe C > 0 satisfying

sup
t∈[τ2,T ]

‖u(t)‖L p(�∩B(x0,R2)) ≤ C.
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The second equation of (12.1) now gives

sup
t∈[7τ/8,T ]

∥∥v(t)∥∥W 2,p(�∩B(x0,R3))
≤ C ′

with the prescribed C ′ > 0, where R3 ∈ (R, R2) is fixed arbitrarily. Thus, we
obtain

sup
t∈[7τ/8,T ]

∥∥v(t)∥∥C1+θ (�∩B(x0,R3))
≤ C11 (12.18)

by taking p > 2, where θ ∈ (0, 1).
Now, we take R4 ∈ (R, R3) and set ψ3 = ψx0,R4,R3 . Multiplying −∇ ·

(ψ3∇u) to the first equation of (12.1), we have

1

2

d

dt

∫
�

|∇u|2ψ3 dx +
∫
�

|�u|2 ψ3 dx

=
∫
�

[∇ · (u∇v)] ∇ · (ψ3∇u) dx −
∫
�

(�u)∇ψ3 · ∇u dx

=
∫
�

[∇ · (u∇v)] (�u) ψ3 dx

+
∫
�

[∇ · (u∇v)−�u] ∇u · ∇ψ3 dx

=
∫
�

(
∇u · ∇v − u2 + uv

)
(�u) ψ3 dx

−
∫
�

(�u)∇u · ∇ψ3 dx

+
∫
�

(
∇u · ∇v − u2 + uv

)
(∇u · ∇ψ3) dx,

where we make use of the second equation of (12.1). By means of (12.18), the
right-hand side is estimated from above by

1

2

∫
�

|�u|2 ψ3 dx +
∫
�

u4ψ3 dx +
∫
�

u2v2ψ3 dx

+ C12

∫
�

|∇u|2 ( |∇v|2 + 1
)
ψ

3/2
3 dx

≤ 1

2

∫
�

|�u|2 ψ3 dx + C13

( ∫
�

|∇u|2 ψ2 dx + 1
)
,

and hence it follows that

d

dt

∫
�

|∇u|2 ψ3 dx +
∫
�

|�u|2 ψ3 ≤ 2C13

( ∫
�

|∇u|2 ψ2 dx + 1
)
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for t ∈ [7τ/8, T ]. This implies

16

τ

∫ 15τ/16

7τ/8

∥∥�u(s)
∥∥2

L2(�∩B(x0,R4))
ds ≤ C14

by (12.16) and (12.17), and therefore there is

τ3 ∈ (7τ/8, 15τ/16)

such that ∥∥�u(τ3)
∥∥2

L2(�∩B(x0,R4))
≤ C14.

Then, we have ∥∥u(τ3)
∥∥

L∞(�∩B(x0,R4))
≤ C15 (12.19)

by Morrey’s inequality and supt∈[0,Tmax)

∥∥u(t)
∥∥

1 ≤ λ.
Based on (12.19), we can perform the final part of the proof of Lemma 11.2.

First, the iteration scheme gives

sup
t∈[τ3,T ]

∥∥u(t)
∥∥

L∞(�∩B(x0,R5))
≤ C16

for R5 ∈ (R, R4). Then the standard elliptic and parabolic estimates guarantee∥∥u
∥∥

C2+θ,1+θ/2(B(x0,R)×[τ,T ]) ≤ C

with the prescribed constant C > 0, and the proof is complete. �

Given {un
0}n≥1 of Theorem 12.1, we choose {un′

0 } ⊂ {un
0} and μ0(dx) ∈

M(�) satisfying

un′
0 (x) dx ⇀ μ0(dx)

in M(�) as n′ → ∞. We write n for n′ for simplicity. The constants T2, T3,
. . . , R2, R3, . . . , and C2,C3, . . . prescribed below are different from those in
the proof of Lemma 12.1.

By means of μ0(�) ≤ !, we have �S ≤ 64K 2
1! < +∞, where

S =
{

x0 ∈ � ∣∣ μ0 ({x0}) ≥ 1/(64K 2
1 )

}
. (12.20)

Each x0 ∈ � \ S admits R1 > 0 and N1 ≥ 1 such that∥∥un
0

∥∥
L1(B(x0,3R1)∩�) < 1/(64K 2

1 )
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for n ≥ N1. Then, Lemma 12.1 guarantees the existence of T1 > 0 such that
each τ ∈ (0, T1) admits C1 > 0 satisfying∥∥un

∥∥
C2+θ,1+θ/2(B(x0,R1)∩�×[τ,min(T1,T n

max))
) ≤ C1

for n ≥ N1. These R1, N1, T1, and C1 depend on x0. But if we set

Ss = {x ∈ � ∣∣ dist(x,S) < s}
for s > 0, then the standard argument of covering guarantees the existence
of T2 = T2(s) > 0 such that each τ ∈ (0, T2) admits C2 = C2(s, τ ) > 0,
satisfying ∥∥un

∥∥
C2+θ,1+θ/2(�\Ss×[τ,min(T2,T n

max))
) ≤ C2 (12.21)

for n ≥ 1. Then, the following lemma is obtained.

Lemma 12.2 Under the assumptions of Theorem 12.1, given x0 ∈ S ∩�, we
define R2 > 0 and δ1 > 0, satisfying B(x0, 4R2) ⊂ �,

B(x0, 4R2) ∩ S = {x0},
and ∥∥un

0

∥∥
L1(B(x0,3R2))

≤ 8π − 2δ1

for n sufficiently large, where S denotes the set defined by (12.20). Then, there
is T3 > 0 such that each τ ∈ (0, T3) admits C3 > 0 satisfying

‖un‖C2+θ,1+θ/2(B(x0,R2)×[τ,min(T3,T n
max)))

≤ C3.

It is obvious that this lemma is a consequence of the following lemma.

Lemma 12.3 If u = u(x, t) is the classical solution to (12.1) with the smooth
initial value u0 = u0(x) ≥ 0 and T = Tmax ∈ (0,+∞] denotes the supremum
of its existence time, then there are 0 < T ≤ T̂ < Tmax determined by δ > 0
and R > 0 such that if B(x0, 4R) ⊂ �,∥∥u0

∥∥
L1(B(x0,3R)) ≤ 8π − 2δ

and τ ∈ (0, T ), then we have Ĉ > 0 determined by

� = ∥∥u
∥∥

C2+θ,1+θ/2(B(x0,4R)\B(x0,R/4)×[τ/4,T̂ ]), (12.22)

τ , and R, such that ∥∥u
∥∥

C2+θ,1+θ/2(B(x0,R)×[τ,T ]) ≤ Ĉ, (12.23)

where θ ∈ (0, 1).
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In the radially symmetric case, this lemma can be proven by the method
of Biler [14], and therefore we apply the rearrangement technique to treat the
general case.

Thus, given a nonnegative measurable function f , we put

μ(σ) = ∣∣{x ∈ � ∣∣ f (x) > σ
}∣∣

and

f ∗(s) = inf
{
σ > 0

∣∣ μ(σ) ≤ s
}

for s ∈ [0, |�|], so that f ∗(s) denotes the monotone decreasing rearrangement
of f (x). Let us confirm

ρ = f ∗(μ(ρ)).

The following are fundamental propositions of this type of rearrangement, and
are obtained by Mossino and Rakotoson [104], where 1 ≤ p ≤ ∞.

Proposition 12.2 If f ∈ W 1,p
0 (�) is a nonnegative function and δ ∈ (0, |�|),

then f ∗ ∈ W 1,p ((δ, |�|)) holds.

Proposition 12.3 If f = f (t) ∈ H1 (0, T ; L p(�)) is a nonnegative function,
then it holds that

f ∗ = f (t)∗ ∈ H1 (
0, T ; L p ((0, |�|)))

and ∥∥∂t f ∗(t)
∥∥

L p((0,|�|)) ≤ ∥∥∂t f (t)
∥∥

L p(�)

for a.e. t ∈ [0, T ]. Furthermore, the function

F(s, t) =
∫ s

0
f ∗(σ, t)dσ

is in

F ∈ L∞(
(0, |�|)× (0, T )

) ∩ H1(0, T ; W 1,p((0, |�|)))⋂
δ>0

L2(0, T ; W 2,p((δ, |�|)))
and satisfies ∫

{u>s}
(∂t f ) dx = ∂t F (|{u > s}| , t)

for a.e. (s, t) ∈ (0, |�|)× (0, T ).
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Beginning the proof of Lemma 12.3, we take the agreement that a positive
constant determined by � besides τ , possibly changing from line to line, is
henceforth denoted by C�.

First, the second equation of (12.1) implies∥∥v∥∥C2+θ,1+θ/2(B(x0,3R)\B(x0,R/3)×[τ/2,T ])) ≤ C�.

Now, we take ϕ = ϕx0,R,2R . Given s ∈ [0, |B(x0, 3R)|) and t ∈ [0, Tmax), we
define

μ(s, t) = ∣∣{x ∈ B(x0, 3R)
∣∣ (uϕ)(x, t) > s

}∣∣
and

(uϕ)∗(s, t) = inf
{
σ > 0

∣∣ μ(σ, t) ≤ s
}
.

Then the function

k(s, t) =
∫ s

0
(uϕ)∗(s′, t)ds′

is Lipschitz continuous in (s, t) with ks , and it holds that∫
{x∈B(x0,3R)|(uϕ)(x,t)>s}

∂

∂t
(uϕ) dx = ∂k

∂t
(μ(s, t), t) (12.24)

for a.e. (s, t) ∈ (0, |B(x0, 3R)|)× (0, Tmax) by Proposition 12.3. We have also

k (μ(s, t), t) =
∫
{x∈B(x0,3R)|(uϕ)(x,t)>s}

uϕ dx .

Now, we use the following lemma [38].

Lemma 12.4 Under the assumptions of the previous lemma, there is a con-
stant L > 0 determined by � and R such that

∂k

∂t
− 4πs

∂2k

∂s2
− (k + Ls)

∂k

∂s
− Ls ≤ 0 (12.25)

for a.e. (s, t) ∈ (0, |B(x0, 2R)|)× (τ/2, T ). Furthermore, we have

k
∣∣
s=0 = 0 and

∂k

∂s

∣∣∣
s=|B(x0,2R)| = 0 (12.26)

for t ∈ [τ/2, T ].
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Proof: Equalities of (12.26) are obtained immediately. To show (12.25), we
take t ∈ ( τ2 , T ). Given ρ ∈ (0, (uϕ)∗(0, t)) and h > 0, we set

Tρh(s) =

⎧⎪⎨⎪⎩
0 (s ≤ ρ),
s − ρ (ρ < s ≤ ρ + h),

h (s > ρ + h).

Then it holds that Tρh ((uϕ)(·, t)) ∈ W 1,∞
0 (B(x0, 2R)).

Using the first equation of (12.1), we have∫
�

∂

∂t
(uϕ) · Tρh(uϕ) dx =

∫
�

utϕ · Tρh(uϕ) dx

= −
∫
�

∇u · (ϕ∇Tρh(uϕ)+ Tρh(uϕ)∇ϕ
)

dx

+
∫
�

u∇v · (ϕ∇Tρh(uϕ)+ Tρh(uϕ)∇ϕ
)

dx

= −
∫
�

∇(uϕ) · ∇Tρh(uϕ) dx +
∫
�

(uϕ)∇v · ∇Tρh(uϕ) dx

+
∫
�

Tρh(uϕ) (−∇ · (u∇ϕ)− ∇u · ∇ϕ + u∇v · ∇ϕ) dx . (12.27)

Since the supports of |∇ϕ| and |�ϕ| are contained in

B(x0, 2R) \ B(x0, R),

the function g = −∇ · (u∇ϕ)− ∇u · ∇ϕ + u∇v · ∇ϕ satisfies∥∥g
∥∥

L∞(�×[τ/2,T ]) ≤ C�.

Therefore, the last term of the right-hand side of (12.27) is treated by∣∣∣1

h

∫
�

Tρh(uφ)g dx
∣∣∣

=
∣∣∣1

h

{ ∫
{(uϕ)>ρ+h}

hg dx +
∫
{ρ<(uϕ)≤ρ+h}

(uϕ − ρ)g dx
}∣∣∣

≤ ∥∥g
∥∥∞ |{(uϕ) > ρ + h}| + ∥∥g

∥∥∞ |{ρ < (uϕ) ≤ ρ + h}| .
This implies

lim sup
h↓0

∣∣∣1

h

∫
�

Tρh(uϕ)g dx
∣∣∣ ≤ ∥∥g

∥∥∞μ(ρ, t).
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Next, the first term of the right-hand side of (12.27) is treated by

lim
h↓0

1

h

∫
�

∇(uϕ) · ∇Tρh(uϕ) dx

= lim
h↓0

1

h

{ ∫
{(uϕ)>ρ}

|∇(uϕ)|2 dx −
∫
{(uϕ)>ρ+h}

|∇(uϕ)|2 dx
}

= − ∂

∂ρ

∫
{(uϕ)>ρ}

|∇(uϕ)|2 dx .

Finally, in terms of

Sρh(s) =
∫ s

0
s

d

ds
Tρh(s)ds =

⎧⎪⎨⎪⎩
0 (s ≤ ρ),
1
2

(
s2 − ρ2

)
(ρ < s ≤ ρ + h),

h
(
ρ + h

2

)
(s > ρ + h),

we have ∫
�

(uϕ)∇v · ∇Tρh(uϕ) dx =
∫
�

∇v · ∇Sρh(uϕ) dx

=
∫
�

(u − v)Sρh(uϕ) dx

from the second equation of (12.1).
The second term of the right-hand side of (12.27) is treated by

lim
h↓0

1

h

∫
�

(uϕ)∇v · ∇Tρh(uϕ) dx

= lim
h↓0

1

2h

∫
{ρ<(uϕ)≤ρ+h}

(u − v){(uϕ)2 − ρ2} dx

+ lim
h↓0

∫
{(uϕ)>ρ+h}

(u − v)
(
ρ + h

2

)
dx

= ρ

∫
{(uϕ)>ρ}
(u − v) dx ≤ ρ

∫
{(uϕ)>ρ}

u dx = (uϕ)∗ (μ(ρ, t), t)

·
{ ∫

{(uϕ)>ρ}
uϕ dx +

∫
{(uϕ)>ρ}∩(B(x0,2R)\B(x0,R))

u(1 − ϕ) dx
}

≤ ∂k

∂s
(μ(ρ, t), t) {k (μ(ρ, t), t)+ �μ(ρ, t)} .

On the other hand, relation (12.24) is applicable to the left-hand side of (12.27).
We have

lim
h↓0

1

h

∫
�

∂

∂t
(uϕ) · Tρh(uϕ) dx =

∫
{(uϕ)>ρ}

∂

∂t
(uϕ) dx = ∂k

∂t
(μ(ρ, t), t) .
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Those relations are summarized as

∂k

∂t
(μ(ρ, t), t)− ∂

∂ρ

∫
{(uϕ)>ρ}

|∇(uϕ)|2 dx

≤ ∂k

∂s
(μ(ρ, t), t) (�μ(ρ, t)+ k (μ(ρ, t), t))+ L ′μ(ρ, t)

for a.e. (ρ, t) ∈ (0, |B(x0, 2R)|)×(τ/2, T )with a constant L ′ > 0 determined
by �.

From this stage we can argue similarly to the proof of Lemma 4 of [38]. In
fact, the co-area formula and isoperimetric inequality imply

4πμ
(

− ∂μ

∂ρ

)−1 ≤ − ∂

∂ρ

∫
{(uϕ)>ρ}

|∇(uϕ)|2 dx

and hence (
− ∂μ

∂ρ

)−1 ≤ 1

4πμ

(
− ∂k

∂t
+ k

∂k

∂s

)
+ 1

4π

(
�
∂k

∂s
+ L ′)

follows for a.e. (ρ, t). This implies

−∂(uϕ)
∗

∂s
(s, t) = −∂

2k

∂s2
(s, t)

≤ 1

4πs

(
− ∂k

∂t
(s, t)+ k(s, t)

∂k

∂s
(s, t)

)
+ 1

4π

(
�k(s, t)+ L ′)

for a.e. (s, t). Now, setting L = max{�, L ′}, we get the conclusion. �

We are ready to give the following proof.

Proof of Lemma 12.3: We take T̂ ∈ (0, Tmax) as small as

T̂ −2 |B(x0, 2R)| ≥ 1

and

sup
t∈[0,T̂ ]

∥∥u(t)
∥∥

L1(B(x0,2R)) ≤ 8π − δ.

Actually, the latter relation is obtained by (12.5). Then, we take � by (12.22)
and L according to Lemma 12.4. Furthermore, letting

m = 8π − δ

2
and σ0 = 2m

δ
− 1, (12.28)
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we take T ∈ (0, T̂ ) as small as

δmσ 2
0

2
− T (1 + σ0)

{
LT + 2 + T 3(1 + σ0)

2} ≥ 0. (12.29)

Given τ ∈ (0, T ), we take τ̃ = τ/2. Then, we rescale (s, t) to (y, t) by
y = s(t − τ̃ )−2. We see that the function j (y, t) = k(s, t) solves

jt − 4πy(t − τ̃ )−2 jyy − {
j + L(t − τ̃ )2y + 2(t − τ̃ )y}(t − τ̃ )−2 jy

≤ L(t − τ̃ )2y

for a.e. (y, t) ∈ (
0, (t − τ̃ )−2 |B(x0, 2R)|) × (τ̃ , T ). It holds also that

j
( |B(x0, 2R)| (t − τ̃ )−2, t

) = k
( |B(x0, 2R)| , t) ≤ 8π − δ

for t ∈ [0, T ].
Here, we take the function

J (y) = mσ0y

1 + σ0y

and apply the comparison theorem. First, we have J (1) = 8π−δ. Then, putting

L(J ) ≡ Jt − 4πy (t − τ̃ )−2 Jyy

− (
J + L(t − τ̃ )2y + 2(t − τ̃ )y)(t − τ̃ )−2 Jy − L(t − τ̃ )2y,

we obtain

L(J ) = (t − τ̃ )−2 · (1 + σ0y)−3 · y

·
{
δmσ 2

0 /2 − (t − τ̃ )(1 + σ0y) · (L(t − τ̃ )+ 2 + (t − τ̃ )3(1 + σ0y)2
)}
.

by (12.28). Therefore, we have

LJ ≥ 0 ≥ L j

for a.e. (s, t) by (12.29) and

j (y, τ̃ ) = lim
t↓τ k

(
(t − τ̃ )2y, t

) = k(0, t) = 0 ≤ J (y)

for y ∈ (0, 1]. We have also

j (1, t) = k
(
(t − τ̃ )2, t) ≤ k

( |B(x0, 2R)| , t) < 8π − δ = J (1)
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for t ∈ [0, T ] by T −2 |B(x0, 2R)| ≥ 1 and

J (0) = 0 = j (0, t).

Then, the inequality

j (y, t) ≤ J (y)

follows for (y, t) ∈ (0, 1] × [τ̃ , T ] similarly to Proposition A.1 of [38].
This implies

ks(0, t)(t − τ̃ )2 = jy(0, t) = lim
h↓0

j (h, t)

h
≤ lim

h↓0

J (h)

h
= Jy(0) = mσ0

for t ∈ [τ̃ , T ], and hence∥∥u(t)
∥∥

L∞(B(x0,2R)×[τ,T ]) ≤ 4τ−2mσ0

holds true. We have obtained (12.23), and the proof is complete. �

The case x0 ∈ ∂�∩S is treated by the same idea. First, we take R3 ∈ (0, R)
as

B(x0, 4R3) ∩ S = {x0}.
Without loss of generality, we assume x0 = 0 and ν = (0,−1) at x0. We have
a conformal mapping

X = (X1, X2) : � ∩ B(0, 4R3)→ R2+
satisfying

X (∂� ∩ B(0, 4R3)) ⊂ ∂R2+ and
∂X

∂x
(0) = id,

where R2+ = {(X1, X2) | X2 > 0}. We assume also

B(0, 2R3) ⊂ X (B(0, 3R3))

and

X (B(0, R3/2)) ⊂ B(0, R3).

As in Chapter 5, we take a smooth function ϕ1 satisfying 0 ≤ ϕ1 ≤ 1,

ϕ1(x) =
{

1 (x ∈ B(0, R3/2)) ,

0 (x �∈ B(0, 3R3)) ,
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and (∂ϕ1)/(∂ν) = 0 on ∂�. Making R3 > 0 smaller, we assume

ε ≡ sup
x∈B(0,3R3)∩�

∣∣∣∂X

∂x
(x)− id

∣∣∣ < 1

5
,

furthermore. We put T4 = T3(R3/2) and �1 = C3(R3/2, τ ) in (12.21) for
τ ∈ (0, T4). This means∥∥un

∥∥
C2+θ,1+θ/2

(
�\SR3/2×[τ,min(T4,Tmax))

) ≤ �1. (12.30)

The following lemma is a modification of Lemma 12.4, where

Pn(s, t) =
∫ s

0
(unϕ1)

∗(θ, t)dθ.

Lemma 12.5 There is L ≥ 0 satisfying

∂t Pn − 2π(1 − 5ε)s∂2
s Pn − (

Pn + Ls
)
∂s Pn − Ls ≤ 0 (12.31)

for a.e. (s, t) ∈ (0, |�|)× (
τ,min{T4, T n

max}
)

and n ≥ 1. It also holds that

Pn
∣∣
s=0 = 0 and ∂s Pn

∣∣
s=|�| = 0

for t ∈ (
τ,min{T4, T n

max}
)
.

Proof: We drop the index n and put

T5 = min(T4, Tmax).

Let

ũϕ1(ξ, t) = u
(
X−1(ξ), t

) · ϕ1
(
X−1(ξ)

)
and

ṽϕ1(ξ, t) = v
(
X−1(ξ), t

) · ϕ1
(
X−1(ξ)

)
.

The even extensions of ũϕ1 and ṽϕ1 with respect to ∂R2+ are denoted by uϕ1

and vϕ1, respectively. Then, we see that (uϕ1)
∗ is locally absolutely continuous

on (0, |�|] by Lemma 12.2.
Taking τ ∈ (0, T5). For t ∈ (τ, T5), ρ ∈ (0, ‖u(t)ϕ1‖∞), and h > 0, we put

that

Tρ,h(s) =

⎧⎪⎨⎪⎩
0 (s ≤ ρ) ,
s − ρ (ρ < s ≤ ρ + h) ,

h (s > ρ + h) .
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Then it holds that

Tρ,h(uϕ1(·, t)) ∈ W 1,∞ (B(0, 2R3))

and

Tρ,h (u(·, t)ϕ1) ∈ W 1,∞(�).

Using the first equation of (12.1), we obtain∫
�

(uϕ1)t Tρ,h(uϕ1) dx =
∫
�

utϕ1Tρ,h(uϕ1) dx

=
∫
�

∇ · (∇u − u∇v) ϕ1 · Tρ,h(uϕ1) dx

= −
∫
�

∇(uϕ1) · ∇Tρ,h(uϕ1) dx

+
∫
�

(uϕ1)∇v · ∇Tρ,h(uϕ1) dx −
∫
�

Tρ,h(uϕ1) · g dx

= −I + II − III (12.32)

with

g = ∇ · (u∇ϕ1)+ ∇u · ∇ϕ1 − u∇v · ∇ϕ1.

Then, we estimate each term of the right-hand side as follows.
First, for the third term we have

supp |∇ϕ1| ∩ B(0, R3/2) = ∅,
and hence from (12.30) it follows that∥∥g

∥∥
L∞(�×[τ,T5]) ≤ L1,

where L1 > 0 is a constant. This implies

lim sup
h↓0

∣∣∣ III

h

∣∣∣ = lim sup
h↓0

∣∣∣1

h

∫
�

Tρ,h (u(x, t)ϕ1(x)) g(x, t) dx
∣∣∣

≤ L1 lim sup
h↓0

1

h

∫
{u(·,t)ϕ1>ρ}

h ≤ L1μ(ρ, t),

where

μ(ρ, t) = ∣∣{x ∈ � ∣∣ u(x, t)ϕ1(x) > ρ
}∣∣ .
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To estimate the first term of the right-hand side of (12.32), we use the fact
that X is conformal. This implies∫

E
|∇ f |2 dx =

∫
X (E)

∣∣∇ f̃
∣∣2dξ = 1

2

∫
X(E)

∣∣∇ f
∣∣2 dξ

for any f ∈ C1
(
B(0, 3R3) ∩�

)
and any measurable set E ⊂ B(0, 3R3) ∩�,

where X(E) denotes the even extension of X (E). Therefore, it holds that

lim
h↓0

I

h
= lim

h↓0

1

h

∫
�

∇(uϕ1) · ∇Tρ,h(uϕ1) dx

= lim
h↓0

1

h

{ ∫
{uϕ1>ρ}

|∇(uϕ1)|2 dx −
∫
{uϕ1>ρ+h}

|∇(uϕ1)|2 dx
}

= 1

2
lim
h↓0

1

h

∫
{ρ+h≥uϕ1>ρ}

∣∣∇ξ (uϕ1)
∣∣2 dξ

= −1

2

∂

∂ρ

∫
{uϕ1>ρ}

∣∣∇ξ (uϕ1)
∣∣2 dξ.

Here, applying the co-area formula and the isoperimetric inequality, we obtain

4πm
(

− ∂m

∂ρ

)−1 ≤ − ∂

∂ρ

∫
{uϕ1>ρ}

∣∣∇ξ (uϕ1)
∣∣2 dξ

for a.e. ρ, where

m = m(s, t) ≡ ∣∣{ξ ∈ supp ϕ1
∣∣ uϕ1(ξ, t) > s

}∣∣ .
We have also

det
(∂X

∂x

)
= ∂X1

∂x1
· ∂X2

∂x2
− ∂X1

∂x2
· ∂X2

∂x1

≥ (1 − ε)2 − ε2 = 1 − 2ε

and

det
(∂X

∂x

)
≤ (1 + ε)2 + ε2 ≤ 1 + 3ε

by ε ∈ (0, 1/2). Therefore, it holds that

m(ρ, t) =
∫
{uϕ1>ρ}

dξ = 1

2

∫
{uϕ1>ρ}

det
(∂X

∂x

)
dx ≥ 1 − 2ε

2
μ(ρ, t)
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and

−∂m

∂ρ
(ρ, t) = lim

h↓0

1

h
(m(ρ, t)− m(ρ + h, t))

= lim
h↓0

1

h

∫
{ρ+h≥uϕ1>ρ}

dξ ≤ 1 + 3ε

2
lim
h↓0

1

h

∫
{ρ+h≥uϕ1>ρ}

dx

= −1 + 3ε

2

∂μ

∂ρ
(ρ, t).

These relations are summarized as

lim
h↓0

I

h
≥ 1

2
· 4π · μ

1 + 3ε
· (1 − 2ε) ·

(
− ∂μ

∂ρ

)−1

or equivalently,

μ−1
(

− ∂μ

∂ρ

)
lim
h↓0

I

h
≥ 1

2
· 4π · 1 − 2ε

1 + 3ε
≥ 2π · (1 − 5ε)

for a.e. ρ.
To handle with the second term of the right-hand side of (12.32), we put

Sρ,h(s) =
∫ s

0
τ

d

dτ
Tρ,h(τ )dτ

=

⎧⎪⎨⎪⎩
0 (s ≤ ρ) ,
1
2(s

2 − ρ2) (ρ < s ≤ ρ + h) ,

h
(
ρ + h

2

)
(s > ρ + h) .

Then, we have

II =
∫
�

∇v · ∇Sρ,h(uϕ1) dx =
∫
�

(u − v)Sρ,h(uϕ1) dx

from the second equation of (12.1). This implies

lim
h↓0

II

h
= lim

h↓0

1

h

∫
�

(uϕ1)∇v · ∇Tρ,h(uϕ1) dx

= lim
h↓0

1

2h

∫
{ρ+h≥uϕ1>ρ}

(u − v)
{
(uϕ1)

2 − ρ2
}

dx

+ lim
h↓0

∫
{uϕ1>ρ+h}

(u − v)
(
ρ + h

2

)
dx = ρ

∫
{uϕ1>ρ}
(u − v) dx

≤ ρ
∫
{uϕ1>ρ}

uϕ1 dx + ρ
∫
{uϕ1>ρ}

u(1 − ϕ1) dx .
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Here, we have ∫
{uϕ1>ρ}

u(1 − ϕ1) dx ≤ �1μ(ρ, t)

by (12.30) and supp (1 − ϕ1) ∩ B(0, R3/2) = ∅. Also, we have∫
{uϕ1>ρ}

uϕ1 dx =
∫ μ(ρ,t)

0
(uϕ1)

∗dθ = P(μ(ρ, t), t)

and

ρ = (uϕ)∗(μ(ρ, t), t) = Ps(μ(ρ, t), t).

Thus, we obtain

lim
h↓0

II

h
≤ (P(μ(ρ, t), t)+ �1μ(ρ, t)) Ps (μ(ρ, t), t) .

On the other hand, the left-hand side of (12.32) is treated by Lemma 12.3.
We have ∣∣{uϕ1 = ρ}∣∣ = 0 for a.e. ρ

and hence it follows that

lim
h↓0

1

h

∫
�

(uϕ1)t Tρ,h(uϕ) dx =
∫
{uϕ>ρ}
(uϕ1)t dx = Pt (μ(ρ, t), t)

for any t ∈ (0, T5). Therefore, equality (12.32) implies

2π(1 − 5ε) ≤ μ−1
(

− ∂μ

∂ρ

){
− Pt (μ(ρ, t))

+ (
P(μ(ρ, t), t)+ �1μ(ρ, t)

)
Ps(μ(ρ, t), t)+ L1μ(ρ, t)

}
.

Then, integrating this inequality in ρ ∈ (ρ1, ρ2) ⊂ [0, |�|), we get

2π(1 − 5ε) (ρ2 − ρ1)

≤
∫ μ(ρ1,t)

μ(ρ2,t)
s−1{ − Pt (s, t)+ (P(s, t)+ �1s)Ps(s, t)+ L1s

}
ds.

Here, we have

ρ2 − ρ1 = (uϕ1)
∗ (μ(ρ2, t), t)− (uϕ1)

∗ (μ(ρ1, t), t) ,
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and it holds that

0 ≤ −2π(1 − 5ε)∂2
s P(s, t)

= −2π(1 − 2ε)
[
∂s(uϕ1)

∗] (s, t)
≤ s−1 (−Pt + (P + �1s)Ps + L1s) .

Finally, we have Ps ≥0; hence inequality (12.31) holds with L = max(�1, L1).
The latter part of the lemma is immediate and the proof is complete. �

Here, we use the following lemma, where

L(h) = ∂t h − Bs∂2
s h − (h + Ds)∂sh − Ds

is a second-order parabolic differential operator with the inhomogeneous term
−Ds, and B > 0 and D ≥ 0 are constants.

Lemma 12.6 Let A = A(t) ∈ C1([0, T ]) be a positive function, and f =
f (s, t) and g = g(s, t) be measurable functions defined on

QT = {(s, t) | 0 < t < T, 0 < s < A(t)} ,
satisfying the following conditions for any δ > 0:

(i) f, g, ft , gt , fs, gs ∈ L∞(QT ).

(ii) sup0≤t≤T

{∥∥ f (t)
∥∥

W 2,1(δ,A(t)) +
∥∥g(t)

∥∥
W 2,1(δ,A(t))

}
< +∞.

(iii) L( f ) ≤ L(g) a.e. in QT .

(iv) 0 = f (0, t) ≤ g(0, t) and f (A(t), t) ≤ g(A(t), t) for t ∈ [0, T ].

(v) f (s, 0) ≤ g(s, 0) for s ∈ [0, A(0)] and g ≥ 0 in QT .

Then, the inequality f ≤ g holds on QT .

Proof: Let

w = f − g and w+ = max{w, 0}.
By means of g ≥ 0 and f (0, t) = 0, we have

w+(s, t) ≤ f (s, t) ≤ c1s (12.33)

in QT , where c1 = ‖ fs‖L∞(QT ). In particular,

w+/s ∈ L∞(QT )

holds true.
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We have also

wt − Bswss − Dsws − ( f · fs − g · gs) ≤ 0

a.e. in QT . Multiplying w+/s, we integrate it in s ∈ [δ, A(t)] for δ ∈(
0,mint∈[0,T ] A(t)

)
. Then, we get

1

2

d

dt

∫ A(t)

δ

s−1w2+ds ≤
∫ A(t)

δ

Bwssw+ds + D

2

[
w2+

]s=A(t)
s=δ

+
∫ A(t)

δ

( f · fs − g · gs) s−1w+ds = I + II + III,

where t ∈ [0, T ]. Here, we have

I = −Bws(δ, t)w+(δ, t)− B
∫ A(t)

δ

(w+s)
2 ds

and

II = −D

2
(w+(δ, t))2 ≤ 0

by w+(A(t), t) = 0. Furthermore,

III =
∫ A(t)

δ

s−1w2+gsds +
∫ A(t)

δ

s−1w+ws f ds

≤ c2

∫ A(t)

δ

w2+
s

ds + c1

∫ A(t)

δ

w+ |w+s | ds

holds by w = f − g and (12.33), where c2 = ‖gs‖L∞(QT ).
Therefore, using

c1

∫ A(t)

δ

w+ |w+s | ds ≤ B

2

∫ A(t)

δ

(w+s)
2 ds

+ c2
1‖A‖C([0,T ])

2B

∫ A(t)

δ

s−1w2+ds,

we obtain

1

2

d

dt

∫ A(t)

δ

s−1w2+ds + B

2

∫ A(t)

δ

(w+s)
2 ds

≤
(

c2 + c2
1‖A‖C([0,T ])

2B

)∫ A(t)

δ

s−1w2+ds

+ B |ws(δ, t)w+(δ, t)| .
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This implies

1

2

[ ∫ A(t)

δ

s−1w2+ds
]t=t2

t=t1

≤
(

c2 +
c2

1

∥∥A
∥∥

C([0,T ])

2B

)∫ t2

t1
dt ·

∫ A(t)

δ

s−1w2+ds

+ B
∫ t2

t1
dt · ∣∣ws(δ, t)w+(δ, t)

∣∣
for 0 < t1 < t2 < T . Here, w+(s, 0) = 0 holds, and we have

lim
δ↓0

∫ t2

t1
|ws(δ, t)w+(δ, t)| dt = 0.

Therefore,

1

2

d

dt

∫ A(t)

0
s−1w2+ds ≤

(
c2 +

c2
1

∥∥A
∥∥

C([0,T ])

2B

)∫ A(t)

0
s−1w2+ds

follows for t ∈ [0, T ]. This implies
∫ A(t)

0 s−1w+(s, t)2ds = 0 and the proof is
complete. �

Now, we show the following lemma.

Lemma 12.7 Suppose x0 ∈ S ∩ ∂� in Theorem 12.1, and let us take R3 ∈
(0, R) and δ2 > 0 satisfying B(x0, 4R3) ∩ S = {x0} and∥∥un

0

∥∥
L1(B(x0,4R3)∩�) ≤ 4π − 2δ2

for n ≥ 1. Then, there is T6 > 0 such that each τ ∈ (0, T6) admits C4 > 0
satisfying ∥∥un

∥∥
C2+θ,1+θ/2(B(x0,R3)∩�×[τ,min(T6,T n

max))
) ≤ C4.

Proof: We omit the index n, and put x0 = 0 without loss of generality. Making
R3 > 0 smaller, we assume that ε in (12.31) satisfies δ2/(16π) > 2ε.

Next, we take ψ = ϕ2 in (5.11), where 0 ≤ ϕ2 ≤ 1,

ϕ2(x) =
{

1 (x ∈ B(0, 3R3)) ,

0 (x �∈ B(0, 4R3)) ,
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and (∂ϕ2)/(∂ν) = 0 on ∂�:∣∣∣ d

dt

∫
�

ψ(x)u(x, t) dx
∣∣∣ ≤ Kλ2

2

∥∥∇ψ∥∥
C1(�)

+ λ∥∥�ψ∥∥∞.

This provides T7 > 0 determined by !, �, and R3 such that

2T −2
7 |� ∩ supp ϕ1| ≥ 1

and

sup
t∈[0,T7]

∥∥u(t)
∥∥

L1(B(0,3R3)∩�) ≤ 4π − 2δ2

3
. (12.34)

We take τ1 ∈ (0, Tmax) and set

j (ζ, t) = P(s, t)

for ζ = s(t − τ1)
−2. Putting

M( j) ≡ ∂t j − 2π

(
1 − δ1

16π

)
ζ(t − τ1)

−2 jζ ζ

−
{

j + L(t − τ1)
2ζ + (t − τ1)ζ

}
(t − τ1)

−2 jζ − L(t − τ1)
2ζ,

we obtain

M( j) ≤ 0

for a.e. t ∈ (τ1,min(T7, Tmax)) and ζ ∈ (
0, (t − τ1)

−2 |�|) by

δ2/(16π) > 5ε, jζ ζ ≤ 0,

and (12.31).
Putting

J (ζ ) = mσ0ζ

1 + σ0ζ

with m = 4π − (δ2/2) and σ0 = (2m/δ2)− 1, we have

J (1) = mσ0

1 + σ0
= σ0δ2

2
= m − δ2

2
= 4π − δ2

and

P(|�| , t) ≤ 4π − 2δ2
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by (12.34). Hence it holds that

j (1, τ1) = P
(
(t − τ1)

2, t
)

≤ P (|�| , t) ≤ 4π − 3δ2

2
= J (1)− δ2

2
(12.35)

for t ∈ [0, T7].
Next, we have

ζ−1(t − τ1)
2(1 + σ0ζ )

3M(J )

=
{

4π
(

1 − δ2

16π

)
mσ 2

0 − m2σ 2
0

}
− (t − τ1)(1 + σ0ζ )

·
{

Lmσ0(t − τ1)+ mσ0 + L(t − τ1)
3(1 + σ0ζ )

2
}

≥ δ2mσ 2
0

4
− (t − τ1)(1 + σ0ζ )

·
{

Lmσ0(t − τ1)+ mσ0 + L(t − τ1)
3(1 + σ0ζ )

2
}
.

Therefore, taking T8 ∈ (τ1, T7] in

δ2mσ 2
0

4
− T8(1 + σ0)

{
Lmσ0T8 + mσ0 + LT 3

8 (1 + σ0)
2
}

≥ 0,

we obtain

M(J ) ≥ 0 ≥ M( j) (12.36)

for (ζ, t) ∈ (0, 1] × [τ1, T8]. Finally, we have

j (ζ, τ1) = lim
t↓τ1

P((t − τ1)
2ζ, t)

= P(0, τ1) = 0 < J (ζ ) (12.37)

for ζ ∈ (0, 1]. Using

jζ (ζ, t) = (t − τ1)
2(uϕ1)

∗((t − τ1)
2ζ, t

)
≤ (t − τ1)

2
∥∥u(t)

∥∥∞

and

Jζ (ζ ) ≥ (mσ0)(1 + σ0)
−2,
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we can find τ2 in 0 < τ2 − τ1 � 1 satisfying

j (ζ, τ2) ≤ J (ζ ) (12.38)

for ζ ∈ [0, 1].
Now, we apply Lemma 12.6 for

f (s, t) = P(s, t), g(s, t) = J
(

s(t − τ1)
−2)

)
, A(t) = (t − τ1)

2,

and

QT = {(s, t) | τ2 < t < T9, s ∈ (0, A(t))} ,
where T9 ∈ (τ2,min{T8, Tmax}) is arbitrary. In fact, conditions (i) and (ii)
are obvious, while conditions (iii), (iv), and (v) follow from (12.36), (12.37),
(12.35), P(0, t) = J (0) = 0, and (12.38). Thus, we obtain

P(s, t) ≤ J
(
s(t − τ1)

−2)
for any t ∈ [τ2, T9] and s ∈ [0, (t − τ1)

2].
Since T9 is arbitrary, this means

P(s, t) ≤ mσ0s

(t − τ1)2 + σ0s

for t ∈ [τ2,min(T8, Tmax)) and s ∈ [0, (t − τ1)
2]. Finally, τ2 and τ1 are also

arbitrary, and hence

P(s, t) ≤ mσ0s

t2 + σ0s

follows for t ∈ (0,min(T8, Tmax)) and s ∈ (0, t2].
Combining this with P(0, t) = 0, we obtain

(uϕ)∗(0, t) = Ps(0, t) ≤ ∂s

( mσ0s

t2 + σ0s

)∣∣∣
s=0

= (mσ0)t
−2,

or
∥∥u(t)ϕ1

∥∥
L∞(�) ≤ mσ0t−2. Then, the standard bootstrap argument guaran-

tees the conclusion. The proof is complete. �

We conclude this section with the following proof.
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Proof of Theorem 12.1: Inequality (12.4) is a consequence of (12.21) and
Lemmas 12.2 and 12.7.

To prove

T∗ ≡ lim inf
n→∞ T n

max > 0

in the latter case, we take {n′} ⊂ {n} such that

T∗ = lim
n′→∞

T n′
max.

Then, we have {un′′ } ⊂ {un′ } and μ0(dx) ∈ M(�), satisfying

un′′
⇀ μ0(dx)

in M(�) and the finite set S as above. The constants T3, T6, C3, and C4 are
taken to be uniform in x0 ∈ S in Lemmas 12.2 and 12.7.

Combining this with (12.21), we have

T∗ = lim
n→∞ T n′′

max > 0.

Furthermore, there exists T ∈ (0, T∗) such that any τ ∈ (0, T ) admits C > 0
satisfying ∥∥un′′∥∥

C2+θ,1+θ/2(�×[τ,T ]
) ≤ C.

Therefore, {un′′ } ⊂ C2,1
(
�× (0, T ]

)
has a converging subsequence. Then,

repeating the above argument, we obtain T∗ > 0, and the proof is complete. �



13

Weak Solution

Our concern is focused on the problem of mass quantization,

m(x0) = m∗(x0) ≡
{

8π (x0 ∈ �),
4π (x0 ∈ ∂�),

in (11.3):

u(x, t) dx ⇀
∑
x0∈S

m(x0)δx0(dx)+ f (x) dx, (13.1)

which arises as t ↑ Tmax < +∞ in M(�). Here, u = u(x, t) denotes the
classical solution to (11.2):

ut = ∇ · (∇u − u∇v)
0 = �v − av + u

}
in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) on �, (13.2)

where � ⊂ R2 is a bounded domain with smooth boundary ∂�, and a > 0 is
a constant.

To solve this problem we define the weak solution and study its blowup cri-
terion as in Theorem 5.1. More precisely, formulation (5.8) to (13.2) makes it
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possible to introduce a measure-valued solution, and then the argument devel-
oped for the proof of Theorem 5.1 is applicable. If the initial measure contains
a collapse

m(x0)δx0(dx)

with m(x0) > m∗(x0), then the solution does not exist even locally in time.
This means that if a weak solution is constructed after the blowup time, then
the collapses formed at the blowup time must have the quantized mass. In
other words, mass quantization of collapses of the classical blowup solution is
reduced to its post-blowup continuation. This principle was noticed by [147],
and the present chapter is devoted to its proof. It is extended also to the case of
a blowup in infinite time as described in the previous chapter.

In 1991, Victory [182] showed that a weak solution for the Fokker–Planck
equation exists globally in time, provided that the initial distribution is regular.
However, this is not the case in (13.2). In fact, although this system is the
adiabatic limit of the Fokker–Planck equation, the status of particles treated in
these systems is different. Thus, the mean field associated with (13.2) is thicker
than the one for the Fokker–Planck equation, and consequently the strategy of
constructing a weak solution globally in time to show the mass quantization
of a collapse in the Keller–Segel system has not been successful. However, if
we combine the weak solution with the backward self-similar transformation,
then we can achieve our purpose; that is, we obtain the mass quantization of
a collapse by the parabolic envelope and the blowup criterion of the rescaled
system in Chapter 15.

The weak formulation of the classical solution to (13.1) has already been
introduced as (5.8), in terms of the Green’s function G = G(x, x ′) of −�+ a
in � under the Neumann boundary condition, that is,

d

dt

∫
�

u(x, t)ψ(x) dx −
∫
�

u(x, t)�ψ(x) dx

= 1

2

∫∫
�×�
ρψ(x, y)u(x, t)u(x ′, t) dx dx ′ (13.3)

with ρψ = ρψ(x, x ′) defined by

ρψ(x, x ′) = ∇ψ(x) · ∇x G(x, x ′)+ ∇ψ(x ′) · ∇x ′G(x, x ′), (13.4)

where ψ = ψ(x) is a C2 function defined on � satisfying ∂ψ
∂ν

= 0 on ∂�. In-
troducing the notion of a weak solution, we take into account that the classical
solution satisfies ‖u(t)‖1 = ‖u0‖1 for t ∈ [0, Tmax). Therefore it is natural to
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put the weak solution into the space of measures. We recall also that conver-
gence (13.1) holds in M(�) = C(�)′, the set of measures on �, where ⇀
denotes the ∗-weak convergence. Henceforth, we shall write∫

�

η(x)μ(dx) = 〈η,μ〉C(�),M(�) (13.5)

for η ∈ C(�) and μ ∈ M(�) = C(�)′.
In Chapter 5, we have shown that ρψ ∈ L∞(�×�) holds, but the argument

provides more precise profiles. To describe this, we put

X =
{
ψ ∈ C2(�)

∣∣ ∂ψ
∂ν

∣∣∣
∂�

= 0
}
, (13.6)

and E = E0 + C
(
�×�) ⊂ L∞(�×�) for

E0 = {
ρψ

∣∣ ψ ∈ X
}
,

and take �0 ⊂⊂ �, the covering

� \�0 ⊂
m⋃

k=1

B(xk, rk)

with xk ∈ ∂� and rk > 0, and the conformal mapping Xk : B(xk, rk) → R2

satisfying Xk(xk) = 0, Xk (B(xk, rk) ∩�) ⊂ R2+, and

Xk (B(xk, rk) ∩ ∂�) ⊂ ∂R2+.

We define

Gk(x, x ′) = 1

2π
log

1

|Xk(x)− Xk(x ′)| + 1

2π
log

1

|Xk(x)− Xk(x ′)∗|
and

G0(x, x ′) = 1

2π
log

1

|x − x ′| ,

where X∗ = (X1,−X2) for X = (X1, X2). Also, putting U0 = �0 and Uk =
B(xk, rk) for k = 1, 2, . . . ,m, we take the partition of unity associated with
the covering {Uk}m

k=0 of�, denoted by {ϕk}m
k=0. Then, given ψ ∈ X , we define

ρ0
ψ(x, x ′) =

m∑
k=0

(∇ψk(x) · ∇x Gk(x, x ′)+ ∇ψk(x
′) · ∇x ′Gk(x, x ′)

)
for ψk = ψ · ϕk .
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Setting

E00 =
{
ρ0
ψ

∣∣ ψ ∈ X
}
,

we have

E = E00 + C
(
�×�)

.

If ψ ∈ X satisfies ρψ ∈ C(�×�), then

lim
h→0

(∇ψ(x + h)− ∇ψ(x)) · h

|h|2 = lim
h→0

D2ψ(x)[h, h]

|h|2

exists for any x ∈ �, where D2ψ denotes the Hess matrix of ψ . Diagonalizing
D2ψ(x), we see that this is the case that D2ψ(x) = a(x)E holds, where
E denotes the unit matrix and a(x) is a scalar continuous function. Then, it
follows that

ψ(x) = a |x |2 + b · x + c

with some a, c ∈ R and b ∈ R2, where a = 0 and b = 0 follow from

∂ψ

∂ν
= (2ax + b) · ν = 0

on ∂�. This means E00 ∩ C(�×�) = {0}, and hence we obtain

E = E00 ⊕ C
(
�×�)

.

If ρ ∈ E00 satisfies ρ = ρψ1 = ρψ2 for ψ1, ψ2 ∈ X , on the other hand, then it
follows that ρψ = 0 ∈ C(�×�) for ψ = ψ1 −ψ2. This implies that ψ(x) is
a constant as we have seen, and therefore the mapping

[ψ] ∈ X/R �→ ρ0
ψ ∈ E00

is an isomorphism. Thus, E00 ∼= X/R holds true, provided with the norm∥∥ [ψ]
∥∥

X =
∑

|α|=1,2

∥∥Dαψ
∥∥∞

for given [ψ] ∈ X/R.
From this isomorphism, E is a separable Banach space, with the norm pro-

vided from L∞(�×�), and hence

L1(0, T ; E)′ ∼= L∞∗ (0, T ; E ′)
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follows from Strassen’s theorem [70, 97]. Here, T > 0 is arbitrary and
L∞∗ (0, T ; E ′) denotes the set of E ′-valued, ∗-weakly measurable, and essen-
tially bounded functions on (0, T ). We note that E ′ is not separable, and the
theorem of Pettis concerning the strong measurability does not work [191].

With these preparations, now we can introduce the notion of a weak solution
to (13.2). We say thatμ = μ( dx, t) is a weak solution to (13.2) if the following
conditions are satisfied, using the notations (13.6) and (13.5):

1. It belongs to C∗
(
[0, T ),M(�)

)
, that is,

μ( dx, t) ∈ M(�) = C ′(�)

holds for t ∈ [0, T ) and the mapping

t ∈ [0, T ) �→
∫
�

η(x)μ( dx, t) (13.7)

is continuous for each η ∈ C(�).

2. It is nonnegative and satisfies μ( dx, 0) = μ0(dx).

3. There exists ν = ν(t) ≥ 0 belonging to L∞∗
(
0, T ′; E ′) for any T ′ < T

such that

ν(t)
∣∣
C(�×�) = μ⊗ μ( dx dx ′, t) (13.8)

for a.e. t ∈ (0, T ).

4. The mapping defined by (13.7) is absolutely continuous if η = ψ ∈ X ,
and then the relation

d

dt

∫
�

ψ(x)μ( dx, t) =
∫
�

�ψ(x)μ( dx, t)+ 1

2

〈
ρψ, ν(t)

〉
E,E ′ (13.9)

holds for a.e. t ∈ (0, T ) for ρψ ∈ E defined by (13.4).

Any classical solution u = u(x, t) is regarded as a weak solution by
μ(dx, t) = u(x, t) dx . If μ( dx, t) is a weak solution, then we have

∥∥μ(t)∥∥M(�)
=

∫
�

μ( dx, t) =
∫
�

μ0(dx) = ∥∥μ0
∥∥
M(�)

(13.10)
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for t ∈ [0, T ). This is obtained by putting ψ = 1 in (13.9) because μ =
μ( dx, t) is nonnegative. Furthermore, we have

‖ν(t)‖E ′ = sup
{〈ρ, ν(t)〉E,E ′

∣∣ ‖ρ‖L∞(�×�) = 1, ρ ∈ E}
≥ sup

{〈η, ν(t)〉E ′,E
∣∣ ‖η‖L∞(�×�) = 1, η ∈ C(�×�)}

= ∥∥μ(t)∥∥2
M(�)

=
{ ∫

�

μ0(dx)
}2

for a.e. t ∈ (0, T ) by (13.8) and 1 ∈ C(� × �). On the other hand, we have
‖ρ‖∞ − ρ ≥ 0 in E for any ρ ∈ E , and hence it follows that 〈‖ρ‖∞ − ρ, ν(t)〉
≥ 0. This implies

〈ρ, ν(t)〉 ≤ ‖ρ‖∞
{ ∫

�

μ0(dx)
}2

for a.e. t ∈ (0, T ). Similarly, we have

−〈ρ, ν(t)〉 ≤ ‖ρ‖∞
{∫
�

μ0(dx)

}2

,

and hence the relation ∥∥ν(t)∥∥E ′ = ∥∥μ0
∥∥2
M(�)

(13.11)

holds for a.e. t ∈ (0, T ). In particular, we have ν ∈ L∞∗ (0, T ; E ′). For ψ ∈ X ,
on the other hand, equality (13.11) implies∣∣∣ d

dt

∫
�

ψ(x)μ( dx, t)
∣∣∣ ≤ ∥∥�ψ∥∥∞

∥∥μ0
∥∥
M(�)

+ 1

2

∥∥ρψ∥∥∞
∥∥μ0

∥∥2
M(�)

for a.e. t ∈ (0, T ). Combined with (13.10), this gives the existence of

lim
t↑T
μ( dx, t) = μ( dx, T )

∗-weakly in M(�), and therefore the continuation after t = T is examined
by the existence of the weak solution locally in time with this μ( dx, T ) as
the initial measure. Thus, we study the existence and nonexistence of the weak
solution to (13.2) locally in time, given the initial measure μ0 = μ0(dx).

If

μ0(dx) = μ0
s (dx)+ f (x) dx (13.12)

denotes the Lebesgue – Radon – Nikodym decomposition of μ0(dx), then
μ0

s (dx) (⊥ dx) is singular and f (x) dx = μ0
a.c.(dx) is absolutely continu-

ous with the nonnegative density function f = f (x) ∈ L1(�). In this case, we
have the following theorem.
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Theorem 13.1 If μ0
s ({x}) < m∗(x) holds for any x ∈ �, then there is a weak

solution to (13.2) locally in time, denoted by μ = μ( dx, t) ∈ C∗
(
[0, T ),

M(�)
)
. This μ = μ( dx, t) satisfies μ( dx, t) = u(x, t) dx for 0 < t � 1

with a smooth u = u(x, t) ≥ 0, and therefore we have the smoothing effect to
the solution in this case.

Theorem 13.2 If there is x0 ∈ � satisfying

μ0
s ({x0}) > m∗(x0),

then system (13.2) admits no weak solution.

As a consequence of Theorem 13.2, if

μ = μ( dx, t) ∈ C∗
(
[0, T ),M(�)

)
is a weak solution of (13.2), μ( dx, t) = μs( dx, t) + f (x, t) dx is its Le-
besgue–Radon–Nikodym decomposition, and Si (t) denotes the set of isolated
points of supp μs( dx, t), then it holds that

μs( dx, t)
∣∣
Si (t)

=
N (t)∑
k=1

mk(t)δxk(t)(dx) (13.13)

with N (t) ≤ λ = ‖μ0‖M(�), xk(t) ∈ �, and mk(t) ≤ m∗(xk(t)). Coming
back to the classical solution, the case T ∗

max > Tmax, referred to as the post-
blowup continuation, can occur only when m(x0) = m∗(x0) is satisfied for
any x0 ∈ S in (13.1), where T ∗

max denotes the supremum of existence time of
μ = μ( dx, t) as a weak solution.

On the other hand, the first part of Theorem 13.1 is a consequence of the fol-
lowing principle concerning the construction of the weak solution. To prove the
second part, we make use of the concentration lemma of the previous chapter.
First, we show the following.

Theorem 13.3 Let {un(x, t)} be a family of classical solutions of (13.2),
where each un = un(x, t) possesses the smooth initial value un(·, 0) = un

0 ≥ 0
satisfying

un
0(x) dx ⇀ μ0(dx)

in M(�) with some measure μ0 = μ0(dx) defined on �. Suppose that

T = lim inf
n→∞ T n

max > 0
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holds, where T n
max ∈ (0,+∞] denotes the supremum of the existence time of

un = un(x, t) as the classical solution. Then, there is
{
un′} ⊂ {un} satisfying

un′
(x, t) dx ⇀ μ( dx, t)

in C∗
(
[0, T ),M(�)

)
, where μ = μ( dx, t) is a weak solution of (13.2) with

the initial measure μ0 = μ0(dx) ≥ 0.

Proof: From the assumption, we have ! = supn ‖un
0‖1 < +∞. Putting

μn( dx, t) = un(x, t) dx ≥ 0, μn
0(dx) = μn( dx, 0),

and

νn( dx dx ′, t) = un(x, t)un(x ′, t) dx dx ′ ≥ 0,

we have ∥∥μn(t)
∥∥
M(�)

=
∫
�

μn( dx, t) = ∥∥un
0

∥∥
1 ≤ !

νn(t)
∣∣
C(�×�) = μn ⊗ μn( dx dx ′, t)∥∥νn(t)

∥∥
E ′ = ∥∥un(t)

∥∥2
1 ≤ !2,

and∫
�

ψ(x)μn( dx, t)−
∫
�

ψ(x)μn
0(dx)

=
∫ t

0
ds

∫
�

�ψ(x)μn( dx, s)+ 1

2

∫ t

0

〈
ρψ, ν

n(s)
〉
E,E ′ ds

for large n, where ψ ∈ X and t ∈ [0, T ). Then, we can take
{
μn′} ⊂ {μn}

satisfying

μn′
( dx, t) ⇀ μ̂( dx, t) ≥ 0

in L∞∗
(
0, T ;M(�)

) ∼= L1
(
0, T ; C(�)

)′
and

νn′
( dx dx ′, t) ⇀ ν(t) ≥ 0

and in L∞∗
(
0, T ; E ′) ∼= L1 (0, T ; E)′, respectively. This implies∥∥μ̂(·, t)∥∥M(�)

≤ !, ∥∥ν(t)∥∥E ′ ≤ !2,

and
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ν(t)
∣∣
C(�×�) = μ̂⊗ μ̂( dx dx ′, t)

for a.e. t ∈ (0, T ). Furthermore, it holds that∫
�

ψ(x)μ̂( dx, t)−
∫
�

ψ(x)μ0(dx)

=
∫ t

0
ds

∫
�

�ψ(x)μ̂( dx, s)+ 1

2

∫ t

0

〈
ρψ, ν(s)

〉
E,E ′ ds (13.14)

for a.e. t ∈ (0, T ), where ψ ∈ X .
Since X is separable, we have dense X0 ⊂ X and measure zero I0 ⊂ (0, T )

such that (13.14) holds for anyψ ∈ X0 and t ∈ (0, T )\ I0. Here, the right-hand
side is continuous in t ∈ [0, T ), and therefore we have h = hψ(t) ∈ C([0, T ))
such that ∫

�

ψ(x)μ̂( dx, t) = hψ(t)

for t ∈ [0, T ) \ I0. This implies

sup
t∈[0,T )

∣∣hψ(t)∣∣ ≤ !∥∥ψ∥∥∞,

and there is μ( dx, t) ∈ M(�) satisfying

hψ(t) =
∫
�

ψ(x)μ( dx, t)

for any t ∈ [0, T ) and ψ ∈ X0. Then, it holds that

μ̂( dx, t) = μ( dx, t)

in M(�) for t ∈ [0, T ) \ I0. Furthermore, this μ = μ( dx, t) satisfies

ν(t)
∣∣
C(�×�) = μ⊗ μ( dx dx ′, t) (13.15)

for a.e. t ∈ [0, T ), and (13.14) for any ψ ∈ X0 and t ∈ [0, T ) with μ̂( dx, t)
replaced by μ( dx, t):∫

�

ψ(x)μ( dx, t)−
∫
�

ψ(x)μ0(dx)

=
∫ t

0
ds

∫
�

�ψ(x)μ( dx, s)+ 1

2

∫ t

0

〈
ρψ, ν(s)

〉
E,E ′ ds. (13.16)
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We can extend this equality of t ∈ [0, T ) to any ψ ∈ X with the (Lipschitz)
continuity of

t ∈ [0, T ) �→
∫
�

ψ(x)μ( dx, t)

in terms of the right-hand side of (13.16). We have also

sup
t∈[0,T )

∥∥μ(·, t)∥∥M(�)
≤ !

and therefore μ = μ( dx, t) ∈ C∗
(
[0, T ),M(�)

)
follows from the left-hand

side, because X ⊂ C(�) is dense and the continuity is preserved under the
uniform convergence. We have also (13.15) for a.e. t ∈ (0, T ). If ψ ∈ X , the
mapping

t ∈ [0, T ) �→
∫
�

ψ(x)μ( dx, t)

is absolutely continuous by (13.16), and relation (13.9) holds for a.e. t ∈ (0, T )
with μ( dx, 0) = μ0(dx). It holds also (13.8) for a.e. t ∈ (0, T ), and therefore
μ = μ( dx, t) ∈ C∗

(
[0, T ),M(�)

)
is a weak solution to (13.2). �

Now we give the following.

Proof of Theorem 13.1: We take � ∈ C∞
0 (R

2) with 0 ≤ � ≤ 1, supp � ⊂
B(0, 1), and

∫
R2 �(x) dx = 1. Then, we put H(x, s) = s−2�(x/s) for s > 0

and

un
0(x) =

∫
�

H(x − y, n−1)μ0(dy) for n = 1, 2, . . . .

This un
0 = un

0(x) is a nonnegative smooth function satisfying

un
0(x) dx ⇀ μ0(dx)

in M(�).
Let un = un(x, t) be the classical solution to (13.2) with the initial value

u0 = un
0(x), and T n

max ∈ (0,+∞] be the supremum of its existence time. If
T n

max < +∞, we have a blowup point, denoted by xn ∈ �. Then, we have
(13.1) with m(x0) ≥ m∗(x0), and hence it holds that

lim inf
t↑T n

max

∥∥un(t)
∥∥

L1(�∩B(xn,R))
≥ m∗(xn) (13.17)
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for any R > 0. Let a subsequence {xn′ } of {xn} converge to x0 ∈ �. In the case
of x0 ∈ �, we may assume m∗(xn′) = 8π for any n′:

lim inf
t↑T n′

max

∥∥un′
(t)

∥∥
L1(�∩B(xn′ ,R)) ≥ 8π.

Otherwise, we have m∗(x0) = 4π . In any case we can replace (13.17) by

lim inf
t↑T n′

max

∥∥un′
(t)

∥∥
L1(�∩B(xn′ ,R)) ≥ m∗(x0). (13.18)

From the assumption to μ0(dx) and its outer regularity, we have R > 0 and
δ > 0 satisfying

μ0
(
� ∩ B(x0, 3R)

)
< m∗(x0)− δ.

Now, we recall (5.11) valid for ψ ∈ X :∣∣∣ d

dt

∫
�

ψ(x)un′
(x, t) dx

∣∣∣ ≤ K!2

2

∥∥∇ψ∥∥
W 1,∞(�) +!

∥∥�ψ∥∥∞. (13.19)

Here, K > 0 is a constant determined by �. Taking ψ = ϕxn′ ,R,2R , we get∣∣∣ d

dt

∫
�

ψ(x)un′
(x, t) dx

∣∣∣ ≤ C(!+!2)(R−1 + R−2)

with a constant C > 0, which implies that∥∥un′
(t)

∥∥
L1(�∩B(xn′ ,R)) ≤ ∥∥un′

0

∥∥
L1(�∩B(xn′ ,2R))

+
∫ t

0

∣∣∣ d

ds

∫
�

ψ(x)un′
(x, s) dx

∣∣∣ds

≤ ∥∥un′
0

∥∥
L1(�∩B(xn′ ,2R))

+ tC(!+!2)(R−1 + R−2)

for t ∈ [0, T n′
max).

Here, we have

lim sup
n′→∞

∥∥un′
0

∥∥
L1(�∩B(xn′ ,2R))

≤ lim sup
n′→∞

∥∥un′
0

∥∥
L1(�∩B(x0,5R/2))

≤ μ0
(
� ∩ B(x0, 3R)

)
< m∗(x0)− δ,

and therefore for n′ sufficiently large it holds that∥∥un′
(t)

∥∥
L1(�∩B(xn′ ,R)) < m∗(x0)− δ + tC(λ+ λ2)(R−2 + R−1).
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Making t ↑ T n′
max, we obtain

T n′
max ≥ δ

C(λ+ λ2)(R−2 + R−1)

by (13.18). This implies

T̂ ≡ lim
n′→∞

T n′
max > 0

and Theorem 13.3 is applicable. Thus, we get a weak solution

μ = μ( dx, t) ∈ C∗
(
[0, T̂ ),M(�)

)
to (13.2) with the given initial measure μ0 = μ0(dx).

To prove the latter part, we use the concentration lemma, Theorem 12.1. In
fact, from the assumption and the outer regularity, each x ∈ � admits r > 0
satisfying

μ0 (B(x, r)) < m∗(x).

Then, we have a constant δ > 0 and a covering {B(xk, rk)}n
k=1 of � such that

μ0 (B(xk, rk)) < m∗(xk)− δ
for k = 1, 2, . . . , n, and therefore there exists R > 0 such that any x ∈ �

admits k satisfying B(x, R) ⊂ B(xk, rk). This implies

μ0 (B(x, R)) ≤ m∗(x)− δ
for any x ∈ �, which guarantees assumption (12.3) of Theorem 12.1:

lim sup
n→∞

∥∥un
0

∥∥
L1(B(x0,R)∩�) < m∗(x0)

with un
0 = un

0(x) ≥ 0, denoting the regularization of μ0 = μ0(dx) defined
above.

Therefore, we have T ∈ (0, T̂ ], a subsequence
{
un′′} ⊂ {

un′}
, and u ∈

C2,1
(
�× (0, T ]

)
with the classical solution un′′

(x, t) with the initial value

un′′
0 = un′′

0 (x) converging to u(x, t) locally uniformly in (x, t) ∈ � × (0, T ].
This gives

μ( dx, t) = u(x, t) dx

for t ∈ (0, T ], and the proof is complete. �
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Now we turn to the proof of Theorem 13.2. Let μ = μ( dx, t) be a weak
solution of (13.2) with the supremum of its existence time, denoted by T ∗

max.
Given an open set ω ⊂ R3 with ω ∩ � �= ∅, we say that μ = μ( dx, t)
is extended in ω ∩ � after T ∗

max, if the following conditions are satisfied for
T > T ∗

max.

1. It has an extension to C∗
(
[0, T ),M(�)

)
, denoted by the same symbol,

satisfying μ( dx, t) ≥ 0 and

sup
t∈[0,T )

∥∥μ(t)∥∥M(�)
≤ ∥∥μ0

∥∥
M(�)

.

2. It admits an extension of ν(t), denoted by the same symbol, as in 0 ≤
ν = ν(t) ∈ L∞∗

(
0, T ′; E ′) for any T ′ < T , satisfying (13.8) and (13.9)

for a.e. t ∈ (0, T ), where ψ is an arbitrary function in C2
0(ω) satisfying

∂ψ
∂ν

= 0 on ∂�.

The supremum of such T is denoted by

T ∗
max(ω).

Similarly to (13.11), the inequality∥∥ν(t)∥∥E ′ ≤ ∥∥μ0
∥∥2
M(�)

(13.20)

is proven for a.e. t ∈ (0, T ∗
max(ω)). However, equality (13.9) is involved by the

Green’s function G = G(x, y) on the whole domain and the above notion does
not mean the time extension of μ = μ( dx, t) on ω∩� as a solution to (13.2).

Using the cut-off function ϕ = ϕx0,R′,R(x) introduced in Chapter 5, we now
shall show the following.

Theorem 13.4 If there exists x0 ∈ � satisfying

μ0 ({x0}) > m∗(x0)

and ∫
�

|x − x0|2 ϕx0,R,2R(x)
4μ0(dx) = o(R2)

as R ↓ 0, then

T ∗
max (B(x0, R)) = o(R2)

follows.
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Proof: The proof is similar to that of the blowup criterion using the second
moment. First, the derivation of inequality (5.35) is valid for the weak solution,
and therefore we have

d IR

dt
(t) ≤ JR(0)+ a

(
R−1t1/2) + B R−1 IR(t)

1/2,

where

IR(t) =
∫
�

m(x)ψR(x)μ( dx, t)

MR(t) =
∫
�

ψR(x)μ( dx, t)

JR(t) = 4MR(t)− 4MR(t)2

m∗(x0)
+ 8B R−1 I4R(t)

1/2

for 0 < R � 1, ψR = ϕ4
x0,R,2R ,

m(x) =
{
|x − x0|2 (x0 ∈ �),
|X (x)|2 / ∣∣ ∂X

∂x (x0)
∣∣ (x0 ∈ ∂�),

and

B = C∗
(
λ3/2 + λ1/2),

a(s) = C∗
(
λ1/2 + λ3)(s2 + s)

λ = μ0(�)

with a constant C∗ > 0 determined by �.
From this inequality, if JR(0) ≤ −A < 0,

1

R2
IR(0) <

( A

24B

)2
and IR(0) <

R2

6
a−1

( A

4

)2
,

then it holds that

T ≡ a−1(A/4)2 · R2 ≥ T ∗
max (B(x0, R))

from the proof of Theorem 14.1. Then, letting R ↓ 0, we can make A ↓ 0 from
the assumption, and the proof is complete. �

Now we give the following.
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Proof of Theorem 13.2: The measure

σ0(dx) = μ0(dx)− μ0 ({x0}) δx0(dx)

is nonnegative and satisfies σ0 ({x0}) = 0. Hence it holds that

1

R2

∫
�

|x − x0|2 ϕx0,R,2R(x)
4μ0(dx)

= 1

R2

∫
�

|x − x0|2 ϕx0,R,2R(x)
4σ0(dx)

≤ 4σ0
(
� ∩ B(x0, 2R)

) = o(1)

as R ↓ 0. From this relation, combined with the assumption

μ0
s ({x0}) > m∗(x0),

we see that Theorem 13.4 is applicable. Then we obtain T ∗
max = 0 by

T ∗
max ≤ T ∗

max (B(x0, R)) .

The proof is complete. �



14

Hyperparabolicity

We are concerned with the classical solution u = u(x, t) to (11.2):

ut = ∇ · (∇u − u∇v)
0 = �v − av + u

}
in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) on �, (14.1)

and study the problem of mass quantization,

m(x0) = m∗(x0) (14.2)

in (11.3):

u(x, t) dx ⇀
∑
x0∈S

m(x0)δx0(dx)+ f (x) dx (14.3)

as t ↑ Tmax. Here, � ⊂ R2 is a bounded domain with smooth boundary ∂�,
a > 0 is a constant, and

m∗(x0) =
{

8π (x0 ∈ �),
4π (x0 ∈ ∂�).
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In this chapter, we show that the mass quantization (14.2) occurs to (14.3) if
the blowup point x0 ∈ S is hyperparabolic. This means

lim
t↑Tmax

MbR(t),x0(t) = m(x0) (14.4)

for any b > 0, where R(t) = (T − t)1/2,

MR,x0(t) =
∫
�

ψR,x0(x)u(x, t) dx,

T = Tmax, and ψR,x0 = ϕx0,R,2R , and the existence of the limit in the left-
hand side of (14.4) is also assumed. This suggests the necessity of the backward
self-similar transformation for the proof of Theorem 1.2.

First, we note that relation (14.3) implies

lim
R↓0

lim
t↑Tmax

MR,x0(t) = m(x0).

Next, y = (x − x0)/R(t) is the standard backward self-similar variable, and it
always holds that

lim sup
t↑Tmax

MbR(t),x0(t) ≤ m(x0),

and the hyperparabolicity of x0 ∈ S means

lim
b↓0

lim inf
t↑Tmax

MbR(t),x0(t) ≥ m(x0).

Thus, at the hyperparabolic blowup point, the process of the formation of col-
lapses, (14.3), is reduced to the infinitely small parabolic region, which we
call the hyperparabola, which is associated with the backward self-similar
transformation. This is not the case with subcritical nonlinearity (Chapter 1),
and motivated by this we next study the rescaled solution. We show that if
it develops the singularity, then it is a sum of delta functions, which we call
subcollapses. Their masses are quantized similarly to the case formed by the
blowup in infinite time of the solution to the prescaled system. In the next
chapter we show that the total mass of the collapse in consideration of the
prescaled solution, denoted by m(x0), is preserved under the transformation
yb = (x − x0)/b(T − t)1/2 if we make b → +∞. Therefore, if the residual
term of the limit measure of that rescaled solution vanishes, then the collapse
mass m(x0) satisfies m(x0)/m∗(x0) ∈ N. This virtual infinitely wide parabolic
region is called the parabolic envelope.
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If the rescaled solution develops the singularity, then the blowup point is
called type (II). Its blowup mechanism is simple, and in the next chapter we
will show that the limit measure described above is composed of one subcol-
lapse located on the origin. This means limk→∞ MbR(tk),x0(tk) = m(x0) for
any b > 0 if tk → Tmax satisfies

lim
k→∞ sup

x∈�, |x−x0|≤C R(tk)
R(tk)

2u(x, tk) = +∞

for some C > 0, namely, the type (II) blowup point is regarded as hyper-
parabolic along the above time sequence tk → Tmax.

The following theorem motivates us to introduce the method of rescaling in
the study of mass quantization, where it is shown that the hyperparabolicity
implies the mass quantization. It is a weak version of Theorem 1.2, and the
proof is not hard.

Theorem 14.1 If x0 ∈ S is hyperparabolic, then m(x0) = m∗(x0).

Proof: Similarly to the proof of Theorem 13.4, we start with inequality (5.35):

d

dt
IR(t) ≤ JR(0)+ a

(
R−1t1/2) + B R−1 IR(t)

1/2,

where

IR(t) =
∫
�

m(x)u(x, t)ψR(x) dx

MR(t) =
∫
�

u(x, t)ψR(x) dx

JR(t) = 4MR(t)− 4MR(t)2

m∗(x0)
+ 8B R−1 I4R(t)

1/2

with 0 < R � 1, ψR = ϕ4
x0,R,2R ,

m(x) =
{
|x − x0|2 (x0 ∈ �),
|X (x)|2 /∣∣ ∂X

∂x (x0)
∣∣ (x0 ∈ ∂�),

and

Bz = C∗
(
λ3/2 + λ1/2),

a(s) = C∗
(
λ1/2 + λ3)(s2 + s),

with constant C∗ > 0 determined by �.
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First, we take the case that

JR(0) = −A < 0 (14.5)

and

T ≡ a−1(A/4)2 · R2 < Tmax. (14.6)

Then, for t ∈ [0, T ] we have

a(R−1t1/2) ≤ a(R−1T 1/2) = A/4,

and hence

d IR

dt
≤ − A

4
+ B R−1 I 1/2

R

holds true. If

IR(0)

R2
<

( A

24B

)2

and

IR(0) <
A

6
· T = R2

6
a−1

( A

4

)2
,

then we have

d IR

dt

∣∣∣
t=0

≤ − A

6
,

and therefore the inequalities

IR(t)

R2
<

( A

24B

)2

and

d IR

dt
≤ − A

6

are preserved in t ∈ [0, T ]. This implies

IR(T ) ≤ IR(0)− A

6
· T < 0,
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a contradiction. In other words,

IR(0)

R2
≥ min

{a−1(A/4)2

6
,
( A

24B

)2}
holds in this case of (14.5) and (14.6).

Otherwise, we have either JR(0) ≥ 0 or JR(0) < 0 and T ≥ Tmax, and the
latter case is written simply as

−JR(0) ≥ 4 · a
(
T 1/2

max/R
)
. (14.7)

Thus, all possibilities are classified into either (14.7) or

IR(0)

R2
≥ min

{
1

6
a−1

(
min

(
0,− JR(0)

4

))
,min

(
0,

−JR(0)

24B

)2
}
.

Therefore, since system (14.1) is autonomous in t , the following alternatives
hold for each R ∈ (0, 1] and t ∈ [0, Tmax):

1. −JR(t) ≥ 4 · a
(
(Tmax − t)1/2 /R

)
2. IR(t)

R2 ≥ min
{

1
6a−1

(
min

(
0,− JR(t)

4

))
,min

(
0,− JR(t)

24B

)2
}

.

Now we show the following lemma using

R(t) = (Tmax − t)1/2 .

Lemma 14.1 If x0 ∈ S is hyperparabolic, then we have

lim
t↑Tmax

IbR(t)(t)

R(t)2
= 0 (14.8)

for each b > 0.

Proof: By the assumption it holds that

lim
t↑Tmax

{
MbR(t)(t)− MεR(t)(t)

} = 0



298 Free-Energy and Self-Interacting Particles

for each ε ∈ (0, b). Here, we have

IbR(t)(t)

R(t)2
= 1

R(t)2

∫
�

m(x)ψbR(t)(x)u(x, t) dx

= 1

R(t)2

∫
�

m(x)
(
ψbR(t)(x)− ψεR(t)(x)

)
u(x, t) dx

+ 1

R(t)2

∫
�

m(x)ψεR(t)(x)u(x, t) dx

= 1

R(t)2

∫
{

x∈�
∣∣|x−x0|≤2bR(t)

} m(x)
(
ψbR(t)(x)− ψεR(t)(x)

)
· u(x, t) dx + 1

R(t)2

∫
�

m(x)ψεR(t)(x)u(x, t) dx

≤ Cb2
∫
�

(
ψR(t)(x)− ψεR(t)(x)

)
u(x, t) dx + Cε2λ

= Cb2 {
MR(t)(t)− MεR(t)(t)

} + Cε2λ

with a constant C > 0 determined by �. Therefore, making t ↑ Tmax and then
ε ↓ 0, we obtain (14.8) and the proof is complete. �

Returning to the proof of Theorem 14.1, first we use

JbR(t)(t) = 4MbR(t)(t)− 4MbR(t)(t)2

m∗(x0)
+ 8Bb−1 R(t)−1 I4bR(t)(t)

1/2

→ 4m(x0)− 4m(x0)
2

m∗(x0)

as t → Tmax by (14.4) and Lemma 14.1. Applying the alternatives (i) and (ii)
with R = bR(t) for each t ∈ [0, Tmax), we get

4m(x0)− 4m(x0)
2

m∗(x0)

⎧⎪⎨⎪⎩
≤ −4a(b−1)

or

≥ 0

(14.9)

again by Lemma 14.1.
Here, the first alternative is impossible if b > 0 is small because lim

s→+∞
a(s) =

+∞ holds true. Then the second alternative implies

m(x0) ≤ m∗(x0)

by m(x0) > 0, and the proof is complete. �
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Two alternatives in (14.9) correspond almost to the types (I) and (II) of x0 ∈
S, respectively, and here, we can emphasize the importance of the rescaled
system in accordance with the standard backward self-similar transformation.
In the latter part of this chapter, we show the formation of subcollapses in the
rescaled solution, supposing T = Tmax < +∞ in (14.1) and x0 ∈ S. Thus, we
define the transformation

z(y, s) = (T − t)u(x, t) and w(y, s) = v(x, t) (14.10)

with

y = (x − x0)/(T − t)1/2 and s = − log(T − t).

Then it follows that

zs = ∇ · (∇z − z∇w − yz/2)t)
0 = �w + z − ae−sw

}
in O,

∂z/∂ν = ∂w/∂ν = 0 on �,

z
∣∣
s=− log T = z0 in O0, (14.11)

where O = cups>− log TOs × {s}, � = ∪s>− log T�s × {s}, and z0(y) =
T u0(x0 + T 1/2y) with Os =es/2(�− {x0}) and �s =∂Os =es/2(∂�− {x0}).

Since this (z, w) is regarded as a solution to (14.11) globally in time, a re-
lation similar to (12.2) is proven. Henceforth, if x0 ∈ ∂�, then H denotes the
half-space in R2 containing 0 ∈ ∂H , with ∂H parallel to the tangential line of
∂� at x = x0. Furthermore, we put

L =
{

H (x0 ∈ ∂�),
R2 (x0 ∈ �).

The following theorem describes the mass quantization of subcollapses
[149, 151].

Theorem 14.2 Any sn → +∞ admits a subsequence {s′
n} ⊂ {sn} such that

z(y, s′
n)dy ⇀

∑
y0∈B

m∗(y0)δy0(dy)+ g(y)dy (14.12)

in M(R2) as n → ∞, where g = g(y) ∈ L1(L) is a nonnegative function
and B ⊂ L denotes the set of exhausted blowup points of

{
z(·, s′

n)
}
, namely,

y0 ∈ B if and only if there exists {yn} ⊂ R2 such that z(yn, s′
n) → +∞ as

n → ∞, where zero extension of z = z(y, s) is taken where it is not defined.
The case B = ∅ is also admitted.
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Before starting the proof, we confirm several fundamental properties of
(z, w) regarded as a solution to (14.11). Henceforth, Ci (i = 1, 2, . . . ) de-
note generic positive constants. First, the L1 estimate of the prescaled system
guarantees

sup
t∈[0,Tmax)

{∥∥∇v(t)∥∥q + ∥∥v(t)∥∥p

}
≤ C1

if q ∈ [1, 2) and p ∈ [1,∞). In what follows, we shall argue the case x0 ∈ ∂�
mostly, because the other is easier to treat. Thus, we have L = H , and take
R1 > 0 and the conformal mapping

X : B(x0, 4R1) ∩�→ R2

such that

X (x0) = 0,

X (B(x0, 4R1) ∩�) ⊂ R2+,
X (B(x0, 4R1) ∩ ∂�) ⊂ ∂R2+,

∂X

∂x
(x0) = id.

Then, for x, x ′ ∈ B(x0, R1) ∩� we obtain

G(x, x ′) = 1

2π
log

1

|X (x)− X (x ′)| + 1

2π
log

1

|X (x)− X (x ′)∗| + K (x, x ′),

where

K ∈ Cθ,1+θ ∩ C1+θ,θ (B(x0, R1) ∩�× B(x0, R1) ∩�
)
,

G = G(x, x ′) denotes the Green’s function for −�+a in� under the Neu-
mann boundary condition, θ ∈ (0, 1), and X∗ = (x1,−x2) for X = (x1, x2).
This implies

∣∣∇x G(x, x ′)
∣∣ ≤ C2

( 1

|x − x ′| + 1
)

(14.13)

for x and x ′ ∈ � with x �= x ′. Defining

G(y, y′, s) = G(e−s/2y + x0, e
−s/2y′ + x0)
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for y, y′ ∈ B(x0, es/2 R1) ∩ O(s), we have also

G(y, y′, s) = 1

2π
log

1

|Y (y, s)− Y (y′, s)|
+ 1

2π
log

1

|Y (y, s)− Y (y′, s)∗| + K(y, y′, s)+ s/(2π),

where Y (y, s) = es/2 X (e−s/2y + x0) and

K(·, ·, s) = K(y, y′, s) = K (e−s/2y + x0, e
−s/2y′ + x0)

∈ Cθ,1+θ ∩ C1+θ,θ (B(x0, es/2 R1) ∩�× B(x0, es/2 R1) ∩�
)
.

This G = G(·, ·, s) is nothing but the Green’s function −� + ae−s in O(s)
under the Neumann boundary condition on ∂O(s).

Given y0 ∈ H and 0 < R′ < R � 1, we introduce the cut-off function
� = �s

y0,R′,R defined for s � 1, modifying ϕ = ϕx0,R′,R of Chapter 5.
Thus, we take � = ϕ in the case of y0 ∈ H . If y0 ∈ ∂H , then we take
� = ζr ′,r ◦ Y (·, s) instead of ϕ = ζr ′,r ◦ X . Then this smooth � = �s

y0,R′,R
satisfies 0 ≤ � ≤ 1, � = 1 in B(y0, R′) ∩ Os , � = 0 in Os \ B(y0, R), and
∂�
∂ν

= 0 on ∂O(s).
First, we use

∂Y

∂s
= 1

2
es/2(X (e−s/2y + x0)− X (x0)

) − 1

2

∂X

∂x
(e−s/2y + x0)y

= 1

2

[∂X

∂x
(θe−s/2y + x0)− ∂X

∂x
(e−s/2 + x0)

]
y

for θ ∈ (0, 1), which implies∣∣∣∂Y

∂s
(y, s)

∣∣∣ = O
(
e−s/2 |y|2 )

.

On the other hand, we have ∂ 
∂s = ∇ζr ′,r

∂Y
∂s and therefore r ′ ≤ |Y (y, s)| ≤ r

holds if this term does not vanish. Writing

e−s/2Y = X
(
e−s/2y + x0

)
,

we see that this implies |y| = O(1). In this way, the s-dependence of � is
mild, and we have ∥∥∥ ∂

∂s
�s

y0,R′,R

∥∥∥∞ ≤ C3e−s/2.
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Defining  (y, s) = �s
y0,R′,R(y)

6, we have

|∇ | ≤ A(R − R′)−1 5/6

and |Dα | ≤ B(R−R′)−2ψ2/3 for |α| = 2, where A, B are positive constants.
In the estimates exposed below, the dependence in R > 0 or R′ > 0 is not
essential, and is not indicated explicitly. The following lemma is proven by the
previous arguments, and we omit the proof.

Lemma 14.2 It holds that ‖"‖L∞(O(s)×O(s)) ≤ C4 for s � 1, where

" = " (y, y′, s)
= ∇y (y, s) · ∇yG(y, y′, s)+ ∇y′ (y′, s) · ∇y′G(y, y′, s).

We can also show the following lemma.

Lemma 14.3 It holds that ∣∣∣∣ d

ds

∫
O(s)

z dy

∣∣∣∣ ≤ C5

for s � 1.

Proof: Writing ϕ(x, t) =  (y, s), we have

∂

∂t
(uϕ) = ∂

∂s
(z )+ ∇y · (yz /2)

= (
zs + ∇y · (yz/2)

)
 + z ( s + y · ∇ /2)

= z ( s + y · ∇ /2)+ (∇ · (∇z − z∇w)) 
and therefore it follows that

d

ds

∫
O(s)

z dy = (T − t)
d

dt

∫
�

uϕ dx =
∫
�

(T − t)
∂

∂t
(uϕ) dx

=
∫
O(s)

{z ( s + y · ∇ /2)+ (∇ · (∇z − z∇w)) } dy

=
∫
O(s)

z ( s + y · ∇ /2) dy +
∫
O(s)

z� dy

+
∫
O(s)

z∇w · ∇ dy = I + II + III. (14.14)

Here, we have

|I| + |II| ≤ C6λ,
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where λ = ‖u0‖1. On the other hand, from the method of symmetrization we
have

III =
∫∫

O(s)×O(s)
z(y, s)∇y (y, s) · ∇yG(y, y′, s)z(y′, s)dy dy′

= 1

2

∫∫
O(s)×O(s)

" (y, y′, s)z(y, s)z(y′, s)dy dy′.

Then Lemma 14.2 guarantees

∣∣III∣∣ ≤ 1

2
C4λ

2

and the proof is complete. �

We also use the following lemma.

Lemma 14.4 Given y0 ∈ H, 0 < R � 1, and q ∈ [1, 2), we have∥∥∇w∥∥
Lq (B(y0,R)∩O(s)) ≤ C7 (14.15)

for s � 1.

Proof: In fact, by (14.13) we have∣∣∇yG(y, y′, s)
∣∣ = ∣∣e−s/2∇x G(e−s/2y + x0, e

−s/2y′ + x0)
∣∣

≤ C2

( 1

|y − y′| + 1
)

for s � 1. Then, it follows that{ ∫
B(y0,R)∩O(s)

∣∣∇yw(y, s)
∣∣qdy

}1/q

=
( ∫

B(y0,R)∩O(s)

∣∣∣ ∫
O(s)

∇yG(y, y′, s)z(y′, s)dy′
∣∣∣q)1/q

≤ C8

{ ∫
O(s)

z(y′, s)dy′}(q−1)/q

·
{ ∫

B(y0,R)∩O(s)

∫
O(s)

z(y′, s)
( 1

|y − y′| + 1
)q

dy′dy
}1/q

.

This implies (14.15) by ‖z(s)‖L1(Os)
≤ λ and the proof is complete. �
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Fundamental structures of the concentration lemma in Chapter 12 are space
localization and time discretization. In spite of the linear term yz/2, estimates
given above are enough to guarantee them for (14.11). Thus, we have the fol-
lowing lemma [149].

Lemma 14.5 If

lim sup
n→∞

∥∥z(sn)
∥∥

L1(B(y0,R)∩O(sn))
< m∗(y0)

holds for y0 ∈ L, R > 0, and sn → +∞, then there exist τ > 0, R′ ∈ (0, R),
and {s′

n} ⊂ {sn} such that

sup
n

∥∥z
∥∥

C2+θ,1+θ/2(B(y0,R′)∩O(s))×[s′
n−τ,s′

n+τ ] < +∞ (14.16)

for θ ∈ (0, 1).
From the elliptic regularity, we have

sup
n

∥∥∇w∥∥
C1+θ,θ/2

(
B(y0,R′)∩O(s)

)
×[s′

n−τ/2,s′
n+τ/2]

< +∞

by (14.16). The counterpart of the above lemma is the rescaled version of the
local blowup criterion discussed in Chapter 5. We continue to take the case
x0 ∈ ∂�, and also y0 ∈ ∂H . Then, we have m∗(y0) = 4π and put that
 i (·, s) =  s

y0,4i R,2·4i R
and m(y, s) = |Y (y, s)− Y (y0, s)|2 for 0 < R � 1,

s � 1, and i = 1, 2. Recalling the requirement ∂X
∂x (x0) = id in Lemma 5.3,

we obtain the following lemma similarly to the prescaled system [149].

Lemma 14.6 It holds that

∣∣∣"̃(y, y′, s)+ 2

π
 1(y, s) 2(y

′, s)
∣∣∣

≤ C9 R−1 (|y − y0| +
∣∣y′ − y0

∣∣) 1(y, s)
1/2 2(y

′, s)
+ C9 R−1

∣∣y′ − y0
∣∣ 2(y

′, s)1/2,

where

"̃(y, y′, s) = [∇(m 1)(y, s) · ∇yG(y, y′, s)
]
 2(y

′, s)
+ [∇(m 1)(y

′) · ∇y′G(y, y′, s)
]
 2(y, s).
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Now we can argue similarly to the prescaled system. First, as in (14.14) we
have

d

ds

∫
O(s)

zm 1dy =
∫
O(s)

∇ · (∇z − z∇w)(zm 1)dy

+
∫
O(s)

(
(m 1)s + 1

2
∇(ym 1)

)
zdy = IV + V.

Here, we have

|ms | + |∇m| ≤ C10m1/2

and

| 1s | + |∇ 1| ≤ C10 
5/6
1 ,

and hence it follows that

|V | ≤ C11λ
1/2

{ ∫
O(s)

mz 1dy
}1/2

.

On the other hand, Lemma 14.6 and the method of symmetrization guarantees

IV ≤ 4M1 − 1

π
M2

1 + C12 R−1λ3/2 I 1/2
1 + C12λ (M2 − M1) ,

where

Mi =
∫
O(s)

z i dy and Ii =
∫
O(s)

mz i dy

for i = 1, 2. Hence it follows that

d

ds
I1 ≤ 4M1 − 1

π
M2

1 + C13
(
λ1/2 + λ3/2)R−1 I 1/2

1

+ C13λ (M2 − M1) ,

and the following lemma is obtained including the case y0 ∈ H [149].

Lemma 14.7 If ∫
O(s0)∩B(y0,R)

z(y, s0)dy > m∗(y0)

holds for y0 ∈ H, s0 � 1, and 0 < R � 1, then there exists η > 0 determined
by λ = ‖u0‖1 and

∫
O(s)∩B(y0,R)

z(y, s0)dy > m∗(y0) such that

1

R2

∫
O(s0)∩B(y0,4R)

|y − y0|2 z(y, s0)dy < η

then z = z(·, s) must blow up in finite time, which is not the case.

Lemmas 14.5 and 14.7 are enough to provide the following proof.
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Proof of Theorem 14.2: Taking the zero extension of z(·, s) to R2 \ Os , we
obtain ‖z(s)‖L1(R2) = λ, and therefore Lemma 14.5 guarantees the existence
of {s′

n} ⊂ {sn} such that

z(y, s′
n)dy ⇀

∑
y0∈B

m(y0)δy0(dy)+ g(y)dy

in M(R2), where B ⊂ L denotes the set of exhausted blowup points of{
z(·, s′

n)
}
, m(y0) ≥ m∗(y0), and g = g(y) ∈ L1(R2) is a nonnegative function

with the support contained in L .
If m(y0) > m∗(y0) holds for some y0 ∈ B, then there are δ > 0, n0, and

R0 > 0 such that ∫
O(s′

n)∩B(y0,R)
z(y, s′

n)dy > m∗(y0)+ δ

holds for any n ≥ n0 and R ∈ (0, R0]. Then, we can take η > 0 of Lemma
14.7 subject to λ and δ with the relation that

1

R2

∫
O(s′

n)∩B(y0,R)
|y − y0|2 z(y, s′

n)dy < η

for some n ≥ n0 and R ∈ (0, R0]. This is impossible and we obtain m(y0) =
m∗(y0). The proof is complete. �



15

Quantized Blowup Mechanism

Motivated by Theorem 14.1, we introduced the standard backward self-similar
transformation in the previous chapter. Supposing T = Tmax < +∞ and x0 ∈
S, we define R(t) = (T −t)1/2, y = (x−x0)/R(t), and s = − log(T −t). Then
z(y, s) = (T − t)u(x, t) satisfies (14.11), which is a similar system to (14.1),
and this {z(·, s)} is regarded as its global semiorbit. Similarly to the collapse
formed in infinite time in the prescaled system, quantized subcollapses are
formed in infinite time in this rescaled system, stated as Theorem 14.2. Thus,
any sn → +∞ admits a subsequence {s′

n} ⊂ {sn} satisfying (14.12) in M(R2):

z(y, s′
n)dy ⇀ μ0(dy), (15.1)

where supp μ0(dy) ⊂ L ,

μ0(dy) =
∑
y0∈B

m∗(y0)δy0(dy)+ g(y)dy, (15.2)

0 ≤ g ∈ L1(L) ∩ C(L \ B), and

L =
{

R2 (x0 ∈ �),
H (x0 ∈ ∂�).

Here, H denotes the half-space in R2 with ∂H containing the origin and par-
allel to the tangent line of ∂� at x0, B is the set of exhausted blowup points of
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z(·, s′

n)
}
, which may be empty, and the zero extension of z = z(y, s) is taken

where it is not defined. We noticed also that if the residual term g vanishes in
(15.2), then m(x0)/m∗(x0) ∈ N follows from the parabolic envelope described
below.

We can show, more strongly, that m(x0) = m∗(x0) always holds, using the
forward self-similar transformation applied to the backward rescaled system
limit. If x0 is a type (II) blowup point, furthermore, then the limit measure
μ0(dy) of (15.1) is always equal to m∗(x0)δ0(dy). If it is type (I), then we
have a profile of emergence, and the local free energy of the parabolic region
diverges to +∞. Thus, this chapter completes the proof of Theorem 1.2. New
devices are the parabolic envelope, reverse second moment, and forward self-
similar transformation.

We begin with the introduction of the parabolic envelope indicating the in-
finitely wide parabolic region. It is a virtual notion, and what we actually show
is the following lemma.

Lemma 15.1 We have

m(x0) = μ0(L) ≡
∑
y0∈B

m∗(y0)+
∫

L
g(y)dy (15.3)

in (15.2), where m(x0) denotes the collapse mass at x0 ∈ S defined by (14.3),
which arises in the classical solution u = u(x, t) to (14.1) as t ↑ T = Tmax <

+∞:

u(x, t) dx ⇀
∑
x0∈S

m(x0)δx0(dx)+ f (x) dx . (15.4)

Proof: Given x0 ∈ S, we take ψ = ϕ4
x0,R,2R for 0 < R′ < R � 1 and set

MR(t) =
∫
�

ψ(x)u(x, t) dx

Relation (15.4) implies

lim
R↓0

lim
t→T

MR(t) = m(x0),

while in Chapter 5 it is proven that∣∣∣ d

dt
MR(t)

∣∣∣ ≤ C(λ2 + λ)(R−2 + R−1) (15.5)
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for t ∈ (0, T ) with a constant C > 0 determined by �. Hence we obtain

|MR(T )− MR(t)| ≤ C(λ2 + λ)(R−2 + R−1)(T − t)

for

MR(T ) = lim
t→T

MR(t) =
∑
x0∈S

m(x0)ψ(x0)+
∫
�

ψ(x) f (x) dx .

Taking b > 0 arbitrarily, we put

R = bR(t) = b(T − t)1/2

in (15.5). Then, we obtain∣∣MbR(t)(T )− MbR(t)(t)
∣∣ ≤ C(λ2 + λ)(b−2 + b−1(T − t)1/2

)
, (15.6)

and therefore for

mb(x0) = lim sup
t→T

MbR(t)(t)

and

mb(x0) = lim inf
t→T

MbR(t)(t),

it holds that

m(x0)− C(λ2 + λ)b−2 ≤ mb(x0) ≤ mb(x0) ≤ m(x0)+ C(λ2 + λ)b−2

by m(x0) = limt→T MbR(t)(T ). This implies

mb(x0)− C(λ2 + λ)b−2 ≤ m(x0) ≤ mb(x0)+ C(λ2 + λ)b−2. (15.7)

Here, we have∫
B(x0,R)∩�

u(x, t) dx ≤ MR(t) ≤
∫

B(x0,2R)∩�
u(x, t) dx

and hence it follows that∫
B(0,b)

z(y, s)dy ≤ MbR(t)(t) ≤
∫

B(0,2b)
z(y, s)dy.

This implies

μ0 (B(0, b − 1)) ≤ mb(x0) ≤ mb(x0) ≤ μ0 (B(0, 2b + 1)) ,

and we obtain

lim
b→+∞ mb(x0) = lim

b→+∞ mb(x0) = μ0
(
R2) = μ0

(
L
)
.

Then, (15.3) holds by (15.7). �
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Each x0 ∈ ∂� admits the conformal mapping X : B(x0, R) ∩� → R2+ for
0 < R � 1, with the properties described in the previous chapter. If x0 ∈ �,
on the other hand, we put simply X = id, the identity operator. In any case,
we take ϕ ∈ C2

0(L) with ϕ(x0) �= 0 satisfying ∂ϕ
∂ν

= 0 on ∂L , and set � =
ϕ ◦ Y (·, s) for s � 1, where Y (y, s) = es/2 X (e−s/2y + x0). Then, similarly
to (14.14) we obtain

d

ds

∫
O(s)

z�dy =
∫
O(s)

z (�s + y · ∇�/2) dy +
∫
O(s)

z��dy

+1

2

∫∫
O(s)×O(s)

"�(y, y′, s)z(y, s)z(y′, s)dy dy′, (15.8)

where

"�(y, y′, s) = ∇y�(y, s) · ∇yG(y, y′.s)+ ∇y′�(y′, s) · ∇y′G(y, y′, s)

and

G(y, y′, s) = G
(
e−s/2y + x0, e

−s/2y′ + x0
)
.

Here, we can regard Y = Y (y, s) as the transformation y ∈ O(s) �→ Y ∈
H , and in this case it follows that∫

O(s)
z�dy =

∫
H
�̃z̃dY

for �̃(Y ) = �(y) and

z̃(Y, s) =
∣∣∣det

( ∂y

∂Y

)∣∣∣z(y, s).
We have y = y(Y, s) → Y as s → +∞ uniformly in Y in the neighbor-
hood of 0 ∈ H up to its second and first derivatives with respect to Y and s,
respectively. If x0 ∈ �, first, we have

G(y, y′, s) = G0(y, y′)+ s

4π
+ K

(
e−s/2y + x0, e

−s/2y′ + x0

)
for s � 1, where K ∈ Cθ,1+θ ∩ C1+θ,θ (B(x0, R)× B(x0, R)), 0 < R � 1,
θ ∈ (0, 1), and

G0(y, y′) = 1

2π
log

1

|y − y′| ,
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and therefore it follows that

∇y
(G(y, y′, s)− G0(y, y′)

) → 0 (15.9)

locally uniformly in (y, y′) ∈ R2 × R2 as s → +∞. If x0 ∈ ∂�, on the
contrary, we have

G(y, y′, s) = G0(y, y′)

+ 1

2π
log

∣∣y − y′∣∣
|Y (y, s)− Y (y′, s)| + 1

2π
log

∣∣y − y′∗
∣∣

|Y (y, s)− Y (y′, s)∗|
+ K

(
e−s/2y + x0, e

−s/2y′ + x0

)
+ s

2π

for s � 1, where Y∗ denotes the reflection of Y with respect to ∂H ,

G0(y, y′) = 1

2π
log

1

|y − y′| + 1

2π
log

1∣∣y − y′∗
∣∣ ,

K ∈ Cθ,1+θ ∩ C1+θ,θ (B(x0, R) ∩�× B(x0, R) ∩�)
, 0 < R � 1, and θ ∈

(0, 1). Therefore, relation (15.9) holds as s → +∞ even in this case, uniformly
in (Y, Y ′) in a neighborhood of 0 ∈ H × H through the transformation y ∈
O(s) �→ Y ∈ H .

These relations are sufficient to guarantee the generation of the weak so-
lution from the family {z(· + sn)}, when the zero extension is taken to z =
z(y, s) where it is not defined. Thus, any sn → +∞ admits

{
s′

n

} ⊂ {sn} and
μ = μ(dy, s) ∈ M(R2) defined for all s ∈ R such that

supp μ(dy, s) ⊂ L

and

z(y, · + s′
n)dy ⇀ μ(dy, ·)

in C∗
(
(−∞,+∞),M(R2)

)
, and this μ(dy, s) becomes a weak solution for

zs = ∇ · (∇z − z∇ p) , in L × (−∞,∞)
∂z

∂ν
= 0 on ∂L × (−∞,∞), (15.10)

where p = w + |y|2
4 ,

∇yw(y, s) =
∫

L
∇yG0(y, y′)z(y′, s)dy,
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and

G0(y, y′) =
{

1
2π log 1

|y−y′| (x0 ∈ �),
1

2π log 1
|y−y′| + 1

2π log 1|y−y′∗| (x0 ∈ ∂�).

More precisely, if Cm∞(L) denotes the closure of Cm
0 (L) in W m,∞(L), and

L∞ indicates the one-point compactification of R2, usually denoted by R2 ∪
{∞} in the case of L = R2, and its portion cut by ∂H in the other case of
L = H , then there is 0 ≤ ν = ν(s) ∈ L∞∗

(−∞,+∞; E ′) such that

ν(s)
∣∣
C0(L)⊕R×C0(L)⊕R = μ⊗ μ(dy dy′, s)

for almost every s ∈ (−∞,∞),

s ∈ (−∞,∞) �→
∫

L
ϕ(y)μ(dy, s)

is locally absolutely continuous for each ϕ ∈ X0, and

d

ds

∫
L
ϕ(y)μ(dy, s) =

∫
L
(�ϕ + y · ∇ϕ/2)μ(dy, s)+ 1

2

〈
ρ0
ϕ, ν(s)

〉
E,E ′

for almost every s ∈ (−∞,∞), where

E = E0 ⊕ C(L∞ × L∞) ⊂ L∞(L × L)

E0 = {
ρ0
ϕ | ϕ ∈ X0}

ρ0
ϕ(y, y′) = ∇ϕ(y) · ∇yG0(y, y′)+ ∇ϕ(y′) · ∇y′G0(y, y′)

X0 =
{
ϕ ∈ C2∞(L)

∣∣ ∂ϕ
∂ν

∣∣∣
∂L

= 0
}
.

If μ(dy, s) = μs(dy, s) + μa.c.(dy, s) indicates the Lebesgue - Radon -
Nikodym decomposition, then it holds that

μa.c.(dy, s) = F(y, s)dy

with 0 ≤ F(·, s) = F(y, s) ∈ L1(L),

μs(dy, s) =
∑

y0∈Bs

m∗(y0)δy0(dy) (15.11)

for a finite set Bs ⊂ L , and μ(L, s) = m(x0) by Theorem 14.2, and therefore
we obtain

8π · � (L ∩ Bs)+ 4π · � (∂L ∩ Bs)+ μa.c.(L , s) = m(x0) = μ(L, s)

by Lemma 15.1.
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The set

D =
⋃
s∈R

(
L \ Bs

) × {s}

is relatively open in L × R, because

s ∈ (−∞,+∞) �→ μ(dy, s) ∈ M(L)

is continuous and we have the classification (15.11) of the singular part of
μ(dy, s). Then Lemma 14.5 guarantees the smoothness of F = F(y, s) ≥ 0
in D, and there we have

Fs = ∇ · (∇F − F∇ p) (15.12)

with a smooth function p = p(y, s).
Thanks to the parabolic envelope, the proof of mass quantization, m(x0) =

m∗(x0), has been thus reduced to the study of the weak solution μ = μ(dy, s)
to the limiting backward rescaled system (15.10).We next show thatμ({0},0)>
m∗(x0) implies its blowup, and hence is a contradiction. This fact is proven by
the study of (15.10), and therefore we can assume L = R2, using an even
extension of the solution in the other case of L = H .

Here, we apply the method of the (reverse) second moment. In more detail,
if ϕ(y) = A(|y|2) ∈ C2

0(R
2), then we have(∇ϕ(y)− ∇ϕ(y′)

) · (y − y′)

= 2
(

A′(|y|2)y − A′(|y′|2)y′) · (y − y′)

= 2A′(|y|2)|y − y′|2 + 2
(

A′(|y|2)− A′(|y′|2))y′ · (y − y′)
= [

A′(|y|2)+ A′(|y′|2)]|y − y′|2
+ (

A′(|y|2)− A′(|y′|2)) · (|y|2 − |y′|2)
because the left-hand side is symmetric with respect to (y, y′), and therefore it
holds that〈
ρ0
ϕ, ν(s)

〉
E,E ′ = − 1

2π
〈I, ν(s)〉E,E ′

− 1

2π

∫∫
R2×R2

[
A′(|y|2)+ A′(|y′|2)]μ⊗ μ(dy dy′, s)

for

I = I (y, y′) =
(

A′(|y|2)− A′(|y′|2)) · (|y|2 − |y′|2)
|y − y′|2 .
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This implies

d

ds

∫
R2

A(|y|2)μ(dy, s) =
∫

R2

{
4A′′(|y|2) |y|2 + 4A′(|y|2)

+ |y|2 A′(|y|2)− m(x0)

2π
A′(|y|2)

}
μ(dy, s)− 1

4π
〈I, ν(s)〉E,E ′ .

Taking R ≥ 1 here, we specify A = A(s) as follows:

0 ≤ A′(s)≤1 (s ≥ 0),
−R2 ≤ A(s) ≤ 0 (s ≥ 0),

A(s) =
{

s − R2 (0 ≤ s ≤ R2/4),

0 (s ≥ 4R2).

In this case, we have C0 > 0 such that

4A′′(|y|2) |y|2 + |y|2 A′(|y|2) ≤ C0
(

A(|y|2)+ R2)
for all y ∈ R2. We have also∣∣I (y, y′)

∣∣ = {
χB2R×R2(y, y′)+ χR2×B2R

(y, y′)
}

·
∣∣A′(|y|2)− A′(|y′|2)∣∣ · ∣∣|y|2 − |y′|2∣∣

|y − y′|2 ,

and divide the first term of the right-hand side by

χB2R×R2(y, y′) = χB2R×B4R (y, y′)+ χB2R×Bc
4R
(y, y′).

First, we apply the mean value theorem and obtain

χB2R×B4R (y, y′)
∣∣A′(|y|2)− A′(|y′|2)∣∣ · ∣∣|y|2 − |y′|2∣∣

|y − y′|2
≤ ∥∥A′′∥∥∞|y + y′|2χB4R×B4R (y, y′)
≤ 2

∥∥A′′∥∥∞
(|y|2χB4R×R2(y, y′)+ |y′|2χR2×B4R

(y, y′)
)
. (15.13)

Here, we have C1 > 0 such that

|y|2 ≤ C1
(

A(|y|2)+ R2)
for all y ∈ B4R , and therefore the right-hand side of (15.13) is estimated from
above by 2C1

∥∥A′′∥∥∞ times{
A(|y|2)+ R2} + {

A(|y′|2)+ R2}.
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Next, we have

χB2R×Bc
4R
(y, y′)

∣∣A′(|y|2)− A′(|y′|2)∣∣ · ∣∣|y|2 − |y′|2∣∣
|y − y′|2

= χB2R×Bc
4R
(y, y′)A′(|y|2) · |y′|2 − |y|2

|y − y′|2

≤ χB2R×Bc
4R
(y, y′)

∣∣∣ y′ + y

y′ − y

∣∣∣ ≤ C2χR2×Bc
4R
(y, y′)

by 0 ≤ A′ ≤ 1, where

C2 = sup
(y,y′)∈B2R×Bc

4R

∣∣∣ y′ + y

y′ − y

∣∣∣ < +∞.

We have A(|y′|2) + R2 = R2 ≥ 1 for y′ ∈ Bc
4R , and therefore this term is

estimated from above by

C2
(

A(|y′|2)+ R2)
)
.

Since I (y, y′) is symmetric, the other terms are treated similarly. Putting

C3 = C0 + 2C1

π
m(x0)

∥∥A′′∥∥∞ + C2

2π
m(x0),

we obtain
d

ds

∫
R2

(
A(|y|2)+ R2)μ(dy, s) = d

ds

∫
R2

A(|y|2)μ(dy, s)

≤ C3

∫
R2

(
A(|y|2)+ R2)μ(dy, s)+

{
4 − m(x0)

2π

} ∫
R2

A′(|y|2)μ(dy, s)

by ν(s) ≥ 0 and ν(s)|C(R2∪{∞}×R2∪{∞}) = μ⊗ μ(dy dy′, s)
Here, we use δ > 0 satisfying

A(s)+ R2 + A′(s) ≥ δ
for all s ≥ 0. Then we obtain∫

R2
A′(|y|2)μ(dy, s) ≥ δm(x0)−

∫
R2

(
A(|y|2)+ R2)μ(dy, s),

and therefore

d

ds

∫
R2

(
A(|y|2)+ R2)μ(dy, s)

≤ C3 ·
∫

R2

(
A(|y|2)+ R2)μ(dy, s)+ δm(x0)

{
4 − m(x0)

2π

}
for almost all s ∈ R in case m(x0) > 8π .
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From this inequality, we see that if m(x0) > 8π + ε holds with ε > 0, then
there is η > 0 such that if∫

R2

(
A(|y|2)+ R2)μ(dy, 0) < η,

then ∫
R2

(
A(|y|2)+ R2)μ(dy, s) < 0

for s � 1, a contradiction by A(s) + R2 > 0 for s > 0. In other words, we
have ∫

R2

(
A(|y|2)+ R2)z(y, 0)dy ≥ η (15.14)

in case m(x0) > 8π + ε; that is, the concentration, indicated by∫
R2

(
A(|y|2)+ R2)z(y, 0)dy < η

implies the nearly mass quantization, m(x0) ≤ 8π + ε.
However, we can remove this concentration condition using the forward

self-similar transformation. This argument, due to Kurokiba and Ogawa [84]
concerning the prescaled system on the whole domain R2, established that
‖u0‖1 > 8π implies the blowup in finite time of the solution. In more detail,
in the problem on the whole (or a half) plane, such a concentration condition
in terms of the second moment can be hidden behind the forward self-similar
transformation, and ‖u0‖1 ≤ 8π must be always satisfied for the classical so-
lution to exist globally in time.

To apply this argument, we note that the first equation of (15.10) is written
as

z′
s′ − ∇′ · (y′z′/s′) = ∇′ · (∇′z′ − z′∇w′) (15.15)

by y′ = e−s/2y and s′ = −e−s , where z′(y′, s′) = z(y, s) and w′(y′, s′) =
w(y, s). This form is easier to find the forward self-similar transformation
to this rescaled system. In fact, (15.15) is invariant under the transformation
of z′

μ(y
′z′) = μ2z′(μy′, μ2s′) and w′

μ(y
′, s′) = w′(μy′, μ2s′). Using this

structure, we can show the mass quantization, m(x0) = m∗(x0), or m(x0) =
8π under the above reduction to L = R2 by the even extension, as follows.
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First, if m(x0) > 8π + ε, then we have (15.14). Next, system (15.10) is
invariant under the s-translation, and therefore it must hold that∫

R2

(
A(|y|2)+ R2)μ(dy, s) ≥ η

for all s ∈ R. However, system (15.10) is invariant also under the forward
self-similar transformation,

zλ(y, s) = λ2e−s z(λe−s/2y,−λ2e−s)

wλ(y, s) = w(λe−s/2y,−λ2e−s),

and therefore we have∫
R2

(
A(

∣∣y∣∣2)+ R2)dμλ(dy, s) ≥ η

for any s ∈ R and λ > 0, where

μλ(dy, s) = λ2e−sμ(λe−s/2dy,−λ2e−s).

Using ỹ = λe−s/2y, s̃ = λ2e−s , this means∫
R2

(
A(s̃ |ỹ|2)+ R2)μ(d ỹ,−s̃) ≥ η,

that is, ∫
R2

(
A(s̃ |y|2)+ R2)μ(dy,−s̃) ≥ η

for all s̃ > 0.
Again, we use the translation invariance of this system. Applying the above

inequality for μs̃(dy, s) = μ(dy, s + s̃), we obtain∫
R2

(
A(s̃ |y|2)+ R2)μs̃(dy,−s̃) dy =

∫
R2

(
A(s̃ |y|2)+ R2)μ(dy, 0) dy ≥ η,

but this implies a contradiction by making s̃ ↓ 0, because 0 ≤ A(s̃ |y|2) +
R2 ≤ R2 and A(s̃ |y|2) + R2 → 0 for any y ∈ R2 and therefore the left-
hand side converges 0 by the dominated convergence theorem. This means
m(x0) ≤ 8π + ε, and therefore m(x0) ≤ 8π because ε > 0 is arbitrary. Thus,
we have proven the following theorem.
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Theorem 15.1 Mass quantization m(x0) = m∗(x0) holds in (15.4).

If x0 ∈ S is of type (II), then it holds that F(y, 0) = 0, where μa.c.(dy, s) =
F(y, s)dy. Then, the strong maximum principle or the unique continuation
theorem applied to (15.12) assures μa.c.(dy, s) = 0 for any s ∈ R2, and there-
fore we have

μ(dy, s) = m∗(x0)δy(s)(dy)

with s ∈ R �→ y(s) ∈ L locally absolutely continuous by Theorem 15.1.
To study this case in more detail, for the moment, we assume x0 ∈ � and

examine

ϕ(y) = (R2 − |y|2)+.
In fact, the other case of x0 ∈ ∂� is reduced to the study of this case by the
even extension of μ(dy, s).

First, this function ϕ = ϕ(y) satisfies

�ϕ(y)+ y · ∇ϕ(y)/2 = ϕ(y)− (R2 + 4)

and

ρ0
ϕ(y, y′) = 1

π

in the regions where ϕ(y) > 0 and ϕ(y), ϕ(y′) > 0, respectively, that is,
BR = B(0, R) and BR × BR . Therefore, as far as y(s) ∈ BR , we have

d

ds

∫
R2
(R2 − |y|2)+μ(dy, s)

=
∫

R2
(R2 − |y|2)+μ(dy, s)− (R2 + 4)μ(BR, s)+ 1

2π
μ(BR, s)

2

or, equivalently,

d

ds
|y(s)|2 = |y(s)|2 .

Therefore, we see that

|y(s)| = |y(0)| es/2

holds for any s ∈ R, by making R large.
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Now, we show that only y(0) = 0 is admitted by the parabolic envelope, and
we have always

μ0(dy) = m∗(x0)δ0(dy).

For this purpose, we fix s ∈ R, and define tn ∈ (0, T ) by s′
n+s = − log(T −tn).

Then, putting t = tn in (15.6), we obtain∣∣MbR(tn)(tn)− MbR(tn)(T )
∣∣ ≤ C(λ2 + λ)(b−2 + R(tn)b

−1),
where R(t) = (T − t)1/2. Here, we have

MbR(tn)(tn) =
∫
O(s)

ψn(y)z(y, s + s′
n)dy

for

ψn(y) = ϕ4
x0,bR(tn),2bR(tn) (x0 + R(tn)y)

and this function converges to some ξb(y) ∈ C0(R2) uniformly in y ∈ R2 as
n → ∞, where it holds that

ξb(y) =
{

1 (|y| < b) ,

0 (|y| > 2b) .

Thus, we obtain

lim
n→∞ MbR(tn)(tn) =

∫
L
ξb(y)μ(dy, s) = m∗(x0)ξb(y(s))

and therefore ∣∣m∗(x0)ξb(y(s))− m∗(x0)
∣∣ ≤ C(λ2 + λ)b−2.

Here, s ∈ R and b > 0 are arbitrary, and if y(0) �= 0, then we obtain m∗(x0) =
0 by making s → +∞ and then b → +∞. This is a contradiction, and we
have y(0) = 0.

If x0 ∈ S satisfies, more strongly,

lim
t→T

sup
x∈�, |x−x0|≤C R(t)

R(t)2u(x, t) = +∞, (15.16)

then we have

z(y, s)dy ⇀ m∗(x0)δ0(dy)
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as s → +∞. In this it holds that

lim
t→T

MbR(t),x0 = m∗(x0) = m(x0) (15.17)

for any b > 0, and therefore this x0 is hyperparabolic. Thus, we have proven
the following theorem.

Theorem 15.2 If x0 ∈ S is of type (II) and

lim
n→+∞ sup

x∈�, |x−x0|≤C R(tn)
R(tn)

2u(x, tn) = +∞ (15.18)

for some tn → T = Tmax and C > 0, then we have

z(y, sn + ·)dy ⇀ m∗(x0)δ0(dy) (15.19)

in C∗
(
(−∞,+∞),M(R2)

)
for sn → +∞ defined by

sn = − log(T − tn).

Here, the zero extension it taken to z = z(y, s) in the region where it is not
defined and z(y, s) = (T − t)u(x, t) for y = (x − x0)/(T − t)1/2 and T =
Tmax < +∞. If (15.16) holds for some C > 0, more strongly, then x0 ∈ S is
hyperparabolic and we have (15.17) for any b > 0.

Actual existence of the type (I) blowup point, on the other hand, is open. If
x0 ∈ S is such a point, then we obtain a classical solution to (15.10) as we
have seen. Formally, this solution is subject to the Lyapunov function

H(z) =
∫

L
z
(

log z − 1 − |y|2
4

)
dy − 1

2

∫∫
L×L

G0(y, y′)z(y, s)z(y′, s)dy dy′,

and it holds that

d

ds
H(z)+

∫
L

z |∇ (log z − p)|2 dy = 0.

This formula is actually justified if z = z(y, s) decays sufficiently fast as |y| →
+∞, and then there should be a stationary solution contained in the ω- or α-
limit set of {μ(dξ, s)}. Here, the stationary problem is given by log z − p =
constant, or

−�w = λep∫
L epdy

in L ,

∂w

∂ν
= 0 on ∂L (15.20)
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with p = w + |y|2
4 , but no bounded radially symmetric solution to (15.20)

exists for any λ [63]. This suggests that if there is a type (I) blowup point,
then the collapse is formed from the wedge of the parabolic envelope without
asymptotical symmetry or boundedness. Such a mechanism may be interesting
from the biological point of view, but may not exist mathematically.

We can confirm also that the local free energy diverges to +∞ around this
type of blowup point. More precisely,

lim
t→T

Fx0,bR(t) (u(t)) = +∞ (15.21)

holds for any b > 0, where T = Tmax < +∞, R(t) = (T − t)1/2, and

Fx0,R(u) =
∫
�

u(log u − 1)ψx0,R(x) dx

− 1

2

∫∫
�×�

G(x, x ′)u(x, t)u(x ′, t)ψx0,R(x)ψx0,R(x
′) dx dx ′

for ψx0,R = ϕ4
x0,R,2R . In fact, if x0 ∈ S is of type (I), then any sn → +∞

admits {s′
n} ⊂ {sn} and a smooth z = z(y) > 0 satisfying

∫
L z(y)dy = m∗(x0)

and

z(y, s′
n)− z(y) → 0

locally uniformly in Y ∈ L , and therefore

FbR(t) (u(t)) =
∫

L
z(log z − 1)ξbdy

− 1

2

∫∫
L×L

(
G0(y, y′)+ K (x0, x0)

)
z(y)z(y′)ξb(y)ξb(y′)dy dy′

+ o(1)− log R(t) ·
{

2
∫

L
zξbdy − 2

m∗(x0)

( ∫
L

zξbdy
)2 + o(1)

}
as t → T by

G0(x, x ′) = G0(y, y′)− 4

m∗(x0)
log R(t).

The right-hand side diverges to +∞ by∫
L

zξbdy < m∗(x0),

and hence (15.21) follows.
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We can summarize that if the type (I) blowup point exists, then the local
entropy is swept away to the wedge of parabolic envelope, while the quantized
concentration mass comes from this wedge, and the proof of Theorem 1.2 is
complete.



16

Theory of Dual Variation

The expanding cosmos is the origin of nonequilibrium.
It creates order, induces complexity, and brings life.

— H. Tanaka

This chapter is the epilogue. We summarize the argument and give a new for-
mulation applicable to other theories.

So far, we have discovered the quantized blowup mechanism of the mean
field of many self-interacting particles, subject to the total mass conservation,
decrease of the free energy, compensated compactness via the symmetrization
of potential kernels, and certain scaling invariance. We studied

ut = ∇ · (∇u − u∇v)
0 = �v − av + u

}
in �× (0, T ),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂�× (0, T ),

u
∣∣
t=0 = u0(x) on �, (16.1)

as a typical example, where� ⊂ R2 is a bounded domain with smooth bound-
ary ∂�, a > 0 is a constant, and ν is the unit outer normal vector on ∂�. It
is the simplified system of chemotaxis in mathematical biology, describing the
chemotactic feature of cellular slime molds, but it is also the description of the
nonequilibrium mean field of self-attractive particles subject to the second law
of thermodynamics in the theory of statistical mechanics.
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The unique existence of the classical solution locally in time is proven, and
the solution becomes positive and regular for t > 0 if u0 �≡ 0. The supremum
of its existence time is denoted by Tmax ∈ (0,+∞], and Tmax < +∞ is
referred to as the blowup of the solution in finite time. In this case, it holds that

u(x, t) dx ⇀
∑
x0∈S

m(x0)δx0(dx)+ f (x) dx (16.2)

as t ↑ Tmax in M(�) with

m(x0) = m∗(x0) ≡
{

8π (x0 ∈ �),
4π (x0 ∈ ∂�), (16.3)

where M(�) denotes the set of measures on �, ⇀ the ∗-weak convergence
there. Actually, S in (16.2) is the blowup set of u(·, t), and x0 ∈ S if and only
if there are xk → x0 and tk ↑ Tmax in xk ∈ � satisfying u(xk, tk) → +∞. We
have

lim
t↑Tmax

∥∥u(t)
∥∥∞ = +∞

and hence S �= ∅ holds in the case of Tmax < +∞. Therefore, (16.2) with
(16.3) implies the sharp estimate of the number of blowup points,

� (∂� ∩ S)+ 2 · � (� ∩ S) ≤ ∥∥u0
∥∥

1/(4π).

The equality m(x0) = m∗(x0) in (16.2) is referred to as the mass quantiza-
tion of collapses. It has been suspected from the hierarchy of systems in statisti-
cal mechanics, that is, the global existence of the weak solution of the Fokker–
Planck equation and mass and location quantization of the blowup family of
solutions to the Liouville–Gel’fand equation, which describe the kinetic and
the equilibrium states of the mean field, respectively. The actual proof is as-
sociated with the backward self-similar transformation, and the blowup point
x0 ∈ S is classified into two types, namely, it is of type (I) if

lim sup
t↑Tmax

sup
x∈�,

|x−x0|≤C R(t)

R(t)2u(x, t) < +∞

for any C > 0 and of type (II) for the other case that

lim sup
t↑Tmax

sup
x∈�,

|x−x0|≤C R(t)

R(t)2u(x, t) = +∞
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for some C > 0, where R(t) = (Tmax − t)1/2. The important notion introduced
here is the parabolic envelope, the infinitely wide parabolic region as b ↑ +∞
of {

(x, t) ∈ �× [0, Tmax
∣∣ |x − x0| ≤ bR(t)

}
,

that is, the whole blowup mechanism is enveloped there and it holds that

lim
b→+∞ lim sup

t↑Tmax

∣∣∣∣∫
�

ψx0,bR(t)(x)u(x, t) dx − m(x0)

∣∣∣∣ = 0,

where ψ = ψx0,R(x) is the cut-off function around x0 with the support radius
2R > 0 and ∂ψ

∂ν
= 0 on ∂�.

If x0 ∈ S is of type (II) and tk ↑ Tmax satisfies

lim
k→∞ sup

x∈�,
|x−x0|≤C R(t)

R(tk)
2u(x, tk) = +∞

for some C > 0, then it holds that

z(y, sk)dy ⇀ m∗(x0)δ0(dy)

in M(R2) as k → ∞. Here, z(y, s) = R(t)2u(x, t) with the zero extension
taken where it is not defined, y = (x − x0)/R(t), and s = sk is defined from
t = tk by s = − log(Tmax − t). Thus, the type (II) blowup point is fixed at first.
Then, it attracts particles asymptotically radially symmetric and creates a mass
quantization collapse. Concentration, compared with aggregation, is strong,
and the rescaled z = z(y, s) develops delta singularity m∗(x0)δ0(dz), called
the subcollapse, at the origin. While actual existence of the type (I) blowup
point is open to question, if it exists then it takes a profile of emergence in the
sense of Kauffman as

lim
t↑Tmax

Fx0,bR(t) (u(t)) = +∞

holds for any b > 0, where Fx0,R(u) denotes the local free energy defined by

Fx0,R(u) =
∫
�

ψx0,R(x)u (log u − 1) (x) dx

− 1

2

∫∫
�×�
ψx0,R(x)ψx0,R(x

′)G(x, x ′)u ⊗ u(x, x ′) dx dx ′.
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Here, G = G(x, x ′) denotes the Green’s function for −�+ a under the Neu-
mann boundary condition. In this connection, we note that the global free en-
ergy F (u(t)) always decreases as the requirement of the second law of ther-
modynamics, where

F(u) =
∫
�

u(log u − 1)(x) dx − 1

2

∫∫
�×�

G(x, x ′)u ⊗ u(x, x ′) dx dx ′.

On the other hand, formation of collapses around this type of blowup point
may be nonradially symmetric or may not decay rapidly at the infinite point
in the rescaled variable, because the rescaled system is formally provided with
the Lyapunov function. We conclude that around the type (I) blowup point, if
it exists, mass and free energy are exchanged at the wedge of the parabolic
envelope, with a clean “self” of mass quantized collapse being created.

The quantized blowup mechanism of the nonstationary state described above
comes from that of the stationary state, and this story is called the nonlinear
quantum mechanics. In fact, the stationary state of (16.1) is realized as the
nonlinear eigenvalue problem

−�v + av = λev∫
�

ev dx
in �,

∂v

∂ν
= 0 on ∂� (16.4)

with λ = ‖u0‖1, and the quantized blowup mechanism at this level arises in
the blowup family of solutions, namely, if{

(λk, vk)
}∞

k=1

is a family of solutions for (16.4) for λ = λk and v = vk , satisfying λk → λ0 ∈
[0,∞) and ‖vk‖∞ → +∞, then the blowup set of {vk}, denoted by S ⊂ � is
finite, and passing through a subsequence, it holds that

uk(x) dx ⇀
∑
x0∈S

m∗(x0)δx0(dx)

in M(�) as k → ∞, where

uk = λkevk∫
�

evk dx
.

In particular, λ0 ∈ 4πN , and furthermore, we have

∇x

(
m∗(x0)K (x, x0)+

∑
x ′

0∈S\{x0}
m∗(x ′

0)G(x, x ′
0)

)∣∣∣
x=x0

= 0 (16.5)
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for each x0 ∈ S, where only tangential derivative is taken in (16.5) if x0 ∈ ∂�,
and

K (x, x ′) = G(x, x ′)+
⎧⎨⎩

1
2π log

∣∣x − x ′∣∣ (x ∈ �),
1
π

log
∣∣x − x ′∣∣ (x ∈ ∂�)

represents the regular part of the Green’s function G = G(x, x ′).
This kind of quantization was first observed by [114, 115] for the Gel’fand

problem

−�v = λev∫
�

ev dx
in �, v = 0 on ∂�, (16.6)

and [7] proved the converse, that is, the singular perturbation. Calculation of
the topological degree was done based on these facts [30, 31, 87]. On the other
hand, [113, 162] established the uniqueness of the solution to (16.6) for simply
connected� and λ ∈ (0, 8π). There, the Morse index of the stationary solution
v = v(x) is shown to be equal to the number of eigenvalues in μ < 1 minus
one of the eigenvalue problem

−�φ = μuφ in �,

φ = constant on ∂�,∫
∂�

∂φ

∂ν
ds = 0, (16.7)

where

u = λev∫
�

ev dx
. (16.8)

This Morse index is induced from the variational structure of (16.6), associated
with the functional

Jλ(v) = 1

2

∥∥∇v∥∥2
2 − λ log

( ∫
�

ev dx
)

+ c (16.9)

defined for v ∈ H1
0 (�). Using c prescribed later, we can treat this system by

the general theory.
Independently, [185] showed the same fact for u = u(x) > 0 satisfying

(−�D)
−1 u = log u + constant in �, ‖u‖1 = 1. (16.10)
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In more precision, this problem was introduced by the stationary state of the
similar system to (16.1),

ut = ∇ · (∇u − u∇v)
0 = �v + u

}
in �× (0, T ),

∂u

∂ν
− u

∂v

∂ν
= 0

v = 0

}
on ∂�× (0, T ). (16.11)

It is subject to the decrease of the free energy defined by

F(u) =
∫
�

u(log u − 1) dx − 1

2

∫∫
�×�

G(x, x ′)u ⊗ u dx dx ′,

where G = G(x, x ′) denotes the Green’s function for −� under the Dirichlet
boundary condition. Problem (16.10) is nothing but the Euler equation for the
variational problem δF(u) = 0 under the constraint ‖u‖1 = λ, and the Morse
index of the solution is defined by the maximal dimension of the linear sub-
spaces in which the associated quadratic form is negative. Thus, what [185]
showed is that this index is equal to the number of eigenvalues in μ < 1 minus
1 for (16.7). On the other hand, these problems (16.7) are equivalent through
(16.8) and

v = (−�D)
−1 u, (16.12)

and in this way, these two variational structures concerning v and u are equiv-
alent up to the Morse indices. This is important to us, because the structure
of elliptic problem (16.6) is known in detail and the Morse index is easier
to calculate, while the dynamics of (16.11) are subject to the decrease of the
free energy and the local dynamics around the stationary solution is controlled
by its Morse index. Actually, this observation, combined with the global bi-
furcation diagram of the equilibrium state, led us to the mass quantization of
collapses of the nonstationary solution (Chapter 15) and the relation between
the dynamical and linearized stabilities (Chapter 9).

However, the dynamical equivalence of these variations is proven also by the
general theory, called dual variation in this book. Since the Lyapunov function
for the full system takes a role in developing this theory, we describe the situ-
ation for

ut = ∇ · (∇u − u∇v)
τvt = �v + u

}
in �× (0, T ),

∂u

∂ν
− u

∂v

∂ν
= 0

v = 0

}
on ∂�× (0, T ). (16.13)
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In fact, defining W by

W(u, v) =
∫
�

u(log u − 1) dx + 1

2

∥∥∇v∥∥2
2 − 〈v, u〉 ,

we have

d

dt
W(

u(t), v(t)
) + τ∥∥vt (t)

∥∥2
2 +

∫
�

u
∣∣∇ (log u − v) ∣∣2(·, t) dx = 0,

(16.14)

where u = u(·, t), v = v(·, t) is the classical solution to (16.13) and 〈 , 〉
denotes the duality:

〈v, u〉 =
∫
�

uv dx .

In the simplified system we have (16.12), and this W is reduced to the free
energy:

W∣∣
v=(−�D)

−1u = F . (16.15)

We have, furthermore,

u = λev∫
�

ev dx

in the stationary state, because in this case

log u − v = constant and
∥∥u

∥∥
1 = λ

follow from (16.14). If we take c = λ log λ− λ in (16.9), that is,

Jλ(v) = 1

2

∥∥∇v∥∥2
2 − λ log

(∫
�

ev dx

)
+ λ log λ− λ

for v ∈ H1
0 (�), then it holds that

W∣∣
u=λev/

∫
� ev dx = Jλ. (16.16)

We call these relations, (16.15) and (16.16), the unfolding Legendre transfor-
mation, because the stationary states given by u and v, (16.10) and (16.6),
respectively, are realized by δF(u) = 0 on ‖u‖1 = λ and δJλ(v) = 0 on
H1

0 (�), respectively. On the other hand, we have the minimality,

W(u, v) ≥ max {F(u),Jλ(v)} , (16.17)
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where ‖u‖1 = λ. In fact, the first inequality is a direct consequence of
Schwarz’s inequality, while the second inequality is proven by Jensen’s in-
equality. These inequalities are applicable to derive the global existence of the
solution to (16.11) or (16.13) in the case of λ = ‖u0‖1 < 8π . However, we
can show them by the general theory.

The theory of dual variation guarantees the splitting of the stationary state
into each component, indicating the particle density and field distribution, to-
gether with their variational and dynamical equivalence. The above unfolding
and minimality, on the other hand, are enough to establish its stability. Some
systems describing the mean field are provided with only semi-unfolding and
semi-minimality, from which we can derive the stability of one component.

We are ready to begin the abstract theory. Let X be a Banach space over R.
Its dual space and the paring are denoted by X∗ and 〈 , 〉 = 〈 , 〉X,X∗ , respec-
tively. Given F : X → [−∞,+∞], we define its Legendre transformation
by

F∗(p) = sup
x∈X

{〈x, p〉 − F(x)} (p ∈ X∗).

Then, Fenchel–Moreau’s theorem says that if

F : X → (−∞,+∞]

is proper, convex, lower semicontinuous, then so is F∗ : X∗ → (−∞,+∞],
and the second Legendre transformation defined by

F∗∗(x) = sup
p∈X∗

{〈x, p〉 − F∗(p)
}

(x ∈ X)

is equal to F(x) [43].
Given proper, convex, lower semicontinuous F,G : X → (−∞,+∞], we

put

�(x, y) = F(x + y)− G(x).

and define the effective domains of F , G by

D(F) = {
x ∈ X

∣∣ F(x) < +∞}
,

D(G) = {
x ∈ X

∣∣ G(x) < +∞}
.

Each x ∈ D(G) induces a proper, convex, lower semicontinuous mapping

y ∈ X �→ �(x, y) ∈ (−∞,+∞]
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and its Legendre transformation is given by

W (x, p) = sup
y∈X

{ 〈y, p〉 −�(x, y)
}

(p ∈ X∗)

and thus

W (x, ·) : X∗ → (−∞,+∞]

is proper, convex, lower semicontinuous. Sometimes

L(x, p) = −W (x, p)

is referred to as the Lagrange function. Then, for (x, p) ∈ D(G)× X∗ we have

W (x, p) = sup
y∈X

{ 〈y + x, p〉 − F(x + y)+ G(x)− 〈x, p〉 }
= F∗(p)+ G(x)− 〈x, p〉 . (16.18)

Putting W (x, p) = +∞ for x �∈ D(G), we obtain (16.18) for any (x, p) ∈
X × X∗.

Next, given p ∈ X∗, we put

J ∗(p) =
{

F∗(p)− G∗(p) (p ∈ D(F∗)) ,
+∞ (otherwise)

(16.19)

and obtain

inf
x∈X

W (x, p) = F∗(p)− sup
x∈X

{ 〈x, p〉 − G(x)
}

= F∗(p)− G∗(p) = J ∗(p)

for p ∈ D(F∗). It is valid even for p �∈ D(F∗) by (16.18) and (16.19). Simi-
larly, for x ∈ X we set

J (x) =
{

G(x)− F(x) (x ∈ D(G)) ,

+∞ (otherwise)
(16.20)

and obtain

inf
p∈X∗ W (x, p) = G(x)− sup

p∈X∗

{〈x, p〉 − F∗(p)
}

= G(x)− F∗∗(x) = J (x)
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for x ∈ D(G), which is valid even for x �∈ D(G) by (16.18) and (16.20). Thus,
we have

D(J ) = {
x ∈ X

∣∣ J (x) �= ±∞} = D(G) ∩ D(F)

D(J ∗) = {
p ∈ X∗ ∣∣ J ∗(p) �= ±∞} = D(G∗) ∩ D(F∗)

and

inf
x∈X

W (x, p) = J ∗(p)
(

p ∈ X∗)
inf

p∈X∗ W (x, p) = J (x) (x ∈ X) . (16.21)

Relation (16.21) implies

inf
(x,p)∈X×X∗ W (x, p) = inf

p∈X∗ J ∗(p) = inf
x∈X

J (x), (16.22)

which is called the Toland duality [173], [174].
The above global theory can be localized by the subdifferential. In fact, given

F : X → [−∞,+∞], x ∈ X , and p ∈ X∗, we say p ∈ ∂F(x), x ∈ ∂F∗(p)
if

F(y) ≥ F(x)+ 〈y − x, p〉 (for any y ∈ X),

F∗(q) ≥ F∗(p)+ 〈x, q − p〉 (for any q ∈ X∗),

respectively. It is obvious that ∂F(x) �= ∅ implies x ∈ D(F), but if F : X →
(−∞,+∞] is proper, convex, and lower semicontinuous, then

x ∈ ∂F∗(p) ⇔ p ∈ ∂F(x), (16.23)

and Fenchel–Moreau’s identity

F(x)+ F∗(p) = 〈x, p〉 (16.24)

holds [43].
With these preparations, we can show the first part of the theory of dual

variation, the variational equivalence.

Theorem 16.1 Let F,G : X → (−∞,+∞] be proper, convex, lower semi-
continuous, and W = W (x, p) be defined by (16.18). Given x̂ ∈ X, p̂ ∈ X∗,
we take the set of minimizers of p ∈ X∗, x ∈ X in

J (x̂) = inf
p∈X∗ W (x̂, p), J ∗( p̂) = inf

x∈X
W (x, p̂),
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denoted by A∗(x̂) and A( p̂), respectively. We say that x̂ ∈ X and p̂ ∈ X∗ are
critical points of J and J ∗ if ∂G(x̂) ∩ ∂F(x̂) �= ∅, ∂G∗( p̂) ∩ ∂F∗( p̂) �= ∅,
respectively, and that (x̂, p̂) is a critical point of W if 0 ∈ ∂x W (x̂, p̂), 0 ∈
∂pW (x̂, p̂) holds true. Then, we have

A∗(x) = ∂F(x), A(p) = ∂G∗(p) (16.25)

for each (x, p) ∈ X × X∗ and furthermore, the following items are equivalent:

1. (x̂, p̂) ∈ X × X∗ is a critical point of W .

2. x̂ ∈ X is a critical point of J and it holds that p̂ ∈ ∂G(x̂) ∩ ∂F(x̂).

3. p̂ ∈ X∗ is a critical point of J ∗ and it holds that x̂ ∈ ∂F∗( p̂)∩ ∂G∗( p̂).

Finally, we have

W (x̂, p̂) = J (x̂) = J ∗( p̂) (16.26)

in this case.

Proof: In fact, from (16.18) and (16.23) we have

0 ∈ ∂x W (x, p) = 0 ⇔ p ∈ ∂G(x) ⇔ x ∈ ∂G∗(p),
0 ∈ ∂pW (x, p) = 0 ⇔ x ∈ ∂F∗(p) ⇔ p ∈ ∂F(x), (16.27)

for each (x, p) ∈ X × X∗. Given x ∈ X , we take p ∈ A∗(x), which attains

J (x) = inf
p∈X∗ W (x, p),

or equivalently, 0 ∈ ∂pW (x, p). Thus, A∗(x) = ∂F(x) holds by (16.27).
Relation A(p) = ∂G∗(p) follows similarly, and the first part, (16.25), is
proven. The second part, the equivalence of those three items is obtained also
by (16.27), because (x̂, p̂) ∈ X × X∗ is a critical point of

W = W (x, p) = F∗(p)+ G(x)− 〈x, p〉
if and only if p̂ ∈ ∂G(x̂) and x̂ ∈ ∂F∗( p̂). Finally, (16.26) follows from
(16.25), p̂ ∈ ∂G(x̂), and x̂ ∈ ∂F∗( p̂):

W (x̂, p̂) = F∗( p̂)+ G(x̂)− 〈
x̂, p̂

〉
= F∗( p̂)− G∗( p̂)
= G(x̂)− F(x̂).

The proof is complete. �
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We have the equivalence of

p̂ ∈ ∂G(x̂) ∩ ∂F(x̂) ⇔ x̂ ∈ ∂F∗( p̂) ∩ ∂G∗( p̂),

and therefore each critical point of J , J ∗ produces that of J ∗, J , respectively.
We call This correspondence the Legendre transformation of critical points,
or their duality. The principle of dual variation means the production of these
critical points of J and J ∗ from this duality, or equivalently, that the critical
point (x̂, p̂) ∈ X × X∗ of W = W (x, p) is characterized as for each element
x̂ , p̂ to be a critical point of J , J ∗, respectively. We can prove the equivalence
of these critical points up to their Morse indices under reasonable assumptions,
as in the special case of (16.1). If a (local) dynamical system

t ∈ [0, T ) �→ (x(t), p(t))

is given and W = W (x, p) acts as a Lyapunov function, then we call critical
points of W the stationary state.

The structures (16.15), (16.16), and (16.17) of the unfolding and minimality
are the second part of the abstract theory.

Theorem 16.2 Given proper, convex, lower semicontinuous functionals F,G :
X → (−∞,+∞], we take W = W (x, p), J = J (x), and J ∗ = J ∗(p) by
(16.18), (16.20), and (16.19), respectively. Then, it holds that

W
∣∣

p∈∂F(x) = J, W
∣∣
x∈∂G∗(p) = J ∗, (16.28)

and

W (x, p) ≥ max
{

J (x), J ∗(p)
}
, (16.29)

for each (x, p) ∈ X × X∗.

Proof: To prove the unfolding (16.28), we note that p ∈ ∂F(x) implies

F∗(p)− 〈x, p〉 = −F(x)

from Fenchel–Moreau’s identity (16.24). This implies the first equality of
(16.28), and the second equality is proven similarly. On the other hand, the
minimality (16.29) is a direct consequence of (16.21). �

Unfolding and minimality imply the stability of the stationary state as fol-
lows.
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Theorem 16.3 Let a proper, convex, and lower semicontinuous functional F :
X → (−∞,+∞] be given with J : X → [−∞,+∞] and W : X × X∗ →
[−∞,+∞] satisfying

W
∣∣

p∈∂F(x) = J and W (x, p) ≥ J (x)

for any (x, p) ∈ X × X∗. Let (x̂, p̂) ∈ D(W ) ⊂ X × X∗ be in

p̂ ∈ ∂F(x̂) ∩ Y∗ and x̂ ∈ Y0,

where Y0 is a closed subset of a Banach space Y continuously imbedded in X,
and Y∗ is a Banach space continuously embedded in X∗. Suppose that x̂ is a
linearized stable local minimizer of J |Y0

in the sense that for some ε0 > 0,
any ε ∈ (0, ε0/4] admits δ > 0 such that

x ∈ Y0,
∥∥x − x̂

∥∥
Y < ε0, J (x)− J (x̂) < δ

⇒ ∥∥x − x̂
∥∥

Y < ε. (16.30)

Suppose, finally, that W |Y0×Y∗ is continuous at (x̂, p̂). Then, if{
(x(t), p(t))

}
0≤t<T ⊂ Y0 × Y∗

is given with t ∈ [0, T ) �→ x(t) ∈ Y0 continuous and

t ∈ [0, T ) �→ W (x(t), p(t)) (16.31)

nonincreasing, then any ε ∈ (0, ε0/4] admits δ > 0 such that∥∥x(0)− x̂
∥∥

Y < δ and
∥∥p(0)− p̂

∥∥
Y∗ < δ (16.32)

imply ∥∥x(t)− x̂
∥∥

Y < ε (0 ≤ t < T ). (16.33)

Similarly, if G : X → (−∞,+∞] is proper, convex, lower semicontinuous,
J ∗ : X∗ → [−∞,+∞] satisfies that

W
∣∣
x∈∂G∗(p) = J ∗ and W (x, p) ≥ J ∗(x)

for any (x, p) ∈ X × X̂ , (x̂, p̂) ∈ D(W ) is in

x̂ ∈ ∂G∗( p̂) and p̂ ∈ Y0∗,
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respectively, where Y0∗ is a closed set in Y∗, p̂ is a linearized stable local
minimizer of J ∗∣∣

Y0∗ in the sense that any ε ∈ (0, ε0] admits δ > 0 such that

p ∈ Y0∗,
∥∥p − p̂

∥∥
Y∗ < ε0, J ∗(p)− J ∗( p̂) < δ

⇒ ∥∥p − p̂
∥∥

Y∗ < ε,

t ∈ [0, T ) �→ p(t) ∈ Y0∗ is continuous with (16.31) decreasing, x̂ ∈ ∂G∗( p̂),
and W

∣∣
Y×Y0∗ is continuous at (x̂, p̂), then any ε ∈ (0, ε0/4] admits δ > 0

such that (16.32) implies∥∥p(t)− p̂
∥∥

Y∗ < ε (0 ≤ t < T ).

Proof: We show the former part. In fact, given ε ∈ (0, ε0/4], we take δ = δ1 >

0 in (16.30). Since W
∣∣
Y0×Y∗ is continuous at (x̂, p̂), there exists δ ∈ (0, ε0/2]

such that ∥∥x(0)− x̂
∥∥

Y < δ and
∥∥p(0)− p̂

∥∥
Y∗ < δ (16.34)

imply

W (x(0), p(0))− W (x̂, p̂) < δ1. (16.35)

On the other hand, we have

W (x, p) ≥ J (x) ≥ J (x̂) = W (x̂, p̂)

for any (x, p) ∈ Y0 × X∗ with ‖x − x̂‖Y < ε0 from the assumption. Therefore,
as far as ∥∥x(t)− x̂

∥∥
Y < ε0 (16.36)

we have

0 ≤ J (x(t))− J (x̂) ≤ W (x(t), p(t))− J (x̂)

≤ W (x(0), p(0))− W (x̂, p̂) < δ1. (16.37)

Now, we have ∥∥x(0)− x̂
∥∥

Y < δ ≤ ε0/2.

Then, if there is t0 ∈ (0, T ) satisfying ‖x(t0) − x̂‖Y = ε0/2, then we have
(16.36) and hence (16.37) for t = t0. This implies from (16.30) (with δ = δ1)
that

‖x(t)− x̂‖Y < ε ≤ ε0/4, (16.38)
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a contradiction. Therefore, since t ∈ [0, T ) �→ x(t) ∈ Y0 ⊂ Y is continuous,
the relation ∥∥x(t)− x̂

∥∥
Y < ε0/2

keeps to hold for t ∈ [0, T ), and hence (16.36) in particular. Again this implies
(16.37) and (16.38) for any t ∈ [0, T ), and the proof is complete. �

To infer (16.32), the continuity of W at (x, p = (x̂, p̂) can be replaced
by the first case of (16.34) and (16.35) for the initial value (x(0), p(0)). By
Damlamian [35], Toland duality was observed in the free boundary problem
for plasma confinement, between the formulations of Berestycki and Brezis
[10] and Temam [172]. In the Penrose–Fife system [129], on the other hand,
exact duality cannot be observed, while semi-unfolding and semi-minimality
are valid, which provide stability for the field component. We have several ex-
amples of a dual variation or semi-dual variation in mean field theories. Here,
we show how the abstract theory is realized in the system of chemotaxis, par-
ticularly in (16.11), where� ⊂ Rn is a bounded domain with smooth boundary
∂�.

For this problem, we take X = H1
0 (�) with the Gel’fand triple X ↪→

L2(�) ↪→ X∗. Then, the dual entropy functional F : X → (−∞,+∞] is
defined by

F(v) = λ log

(∫
�

ev dx

)
− λ log λ+ λ,

which is proper, convex, and lower semicontinuous. We have

D(F) =
{
v ∈ X

∣∣ ∫
�

ev dx < +∞
}
,

∂F(v) �= ∅ for any v ∈ D(F), and

u ∈ ∂F(v) ⇔ u = λev∫
�

ev dx
.

The entropy functional is defined by its Legendre transformation,

F∗(u) =
⎧⎨⎩

∫
�

u(log u − 1) dx
(
u ∈ X∗ ∩ L1(�), u ≥ 0,

∥∥u
∥∥

1 = λ
)
,

+∞ (otherwise).

It holds that

D(F∗) = {
u ∈ X∗ ∣∣ u ≥ 0, u ∈ L log L(�), ‖u‖1 = λ

}
,
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v ∈ ∂F∗(u) if and only if u ∈ D(F∗) and

v = log u + constant ∈ X,

where L log L(�) denotes the Zygmund space. On the other hand, putting

G(v) = 1

2

∥∥∇v∥∥2
2,

we obtain a proper, convex, and lower semicontinuous mapping

G : X → (−∞,+∞).

The operator −�D induces the isomorphism Â : X → X∗, and we have

G∗(u) = 1

2

〈
Â−1u, u

〉
for u ∈ X∗. Then, the Lyapunov function of this system is realized as

W (v, u) = F∗(u)+ G(v)− 〈v, u〉

and the equilibrium is described by

0 ∈ ∂vW (v, u), 0 ∈ ∂u W (v, u)

or equivalently,

u = Â−1v, v ∈ ∂F∗(u).

From Theorem 9.1, this relation is transformed into the conditions on u and
v, separately, that is, to be critical points of

J (v) = G(v)− F(v)

= 1

2

∥∥∇v∥∥2
2 − λ log

( ∫
�

ev dx
)

+ λ log λ− λ

defined for v ∈ X and

J ∗(u) = F∗(u)− G∗(u)

=
∫
�

u(log u − 1) dx − 1

2

〈
Â−1u, u

〉
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defined for u ∈ X∗ ∩ L1(�), u ≥ 0, ‖u‖1 = λ, respectively. These conditions
are equivalent to

v ∈ X,
∫
�

ev dx < +∞,

Âv = λev∫
�

ev dx
∈ X∗ (16.39)

and

u ∈ X ∩ L log L(�), u ≥ 0,
∥∥u

∥∥
1 = λ

Â−1u = log u + constant ∈ X, (16.40)

respectively. The exact correspondence of the Morse indices is known, but here
we only make use of the equivalence of the linearized stability of those u and
v, applying Theorem 16.3 for

Y = D(J ) = D(G) ∩ D(F) =
{
v ∈ X

∣∣ ∫
�

ev dx < +∞
}

and

Y0∗ = D(J ∗) = {
u ∈ X∗ ∣∣ u ∈ L log L(�), u ≥ 0,

∥∥u
∥∥

1 = λ
}

⊂ Y∗ = X∗ ∩ L log L(�).

Thus, there is ε0 > 0 such that if u = u(·, t), v = v(·, t) is a solution to (16.11)
for t ∈ [0, T ), then any ε ∈ (0, ε0/4] admits δ > 0 such that∥∥v(·, 0)− v∥∥X < δ,

∥∥u(·, 0)− u
∥∥

X∗∩L log L < δ,∥∥u(·, 0)∥∥1 = λ = ∥∥u
∥∥

1

implies ∥∥v(t)− v∥∥X < ε,
∥∥u(·, t)− u

∥∥
X∗∩L log L < ε

for any t ∈ [0, T ). This result is valid for any space dimension and also to the
full system

ut = ∇ · (∇u − u∇v)
τvt = �v + u

}
in �× (0, T ),

∂u

∂ν
− u

∂v

∂ν
= 0

v = 0

}
on ∂�× (0, T ).

with τ > 0.
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Next, we apply the theory of unfolding of minimality to study the behavior
of the solution globally in time for (16.1). In fact, first, from the Trudinger–
Moser inequality, we have

inf
v∈X

J (v) > −∞ (16.41)

in the case of n = 2 and λ = 8π . Next, Theorem 9.1 guarantees the equiva-
lence of the boundedness from below of J on X and that J ∗ on X∗, and hence
it follows that

inf
u∈X∗∩L log L , u≥0, ‖u‖1=λ

J ∗(u) > −∞

in this case. Furthermore, the Trudinger–Moser inequality again guarantees the
imbedding L log L(�) ↪→ X∗ for n = 2, and hence it holds that

inf

{∫
�

u(log u−1) dx − 1

2

∫∫
�×�
G(x, x ′)u⊗u dx dx ′

∣∣∣u ≥ 0, ‖u‖1 = 8π

}
> −∞, (16.42)

where G = G(x, x ′) denotes the Green’s function. Inequality (16.42), valid for
n = 2, is regarded as the dual form of the Trudinger–Moser–Onofri inequality.

From (16.41), each λ < 8π admits a constant C1 such that

J (v) = 1

2

∥∥∇v∥∥2
2 − λ log

( ∫
�

ev dx
)

+ λ log λ− λ

≥ 1

2

(
1 − λ

8π

)∥∥∇v∥∥2
2 − C1

for any v ∈ X . Therefore, if
∥∥u0

∥∥
1 = λ < 8π in (16.11), then we have

sup
t∈[0,T )

∥∥∇v(·, t)∥∥2 ≤ C2

with a constant C2 > 0 determined by λ, because of (16.29), and

sup
t∈[0,T )

W (v(t), u(t)) ≤ W (u(0), v(0)) .

Similarly, from (16.42) we have

J ∗(u) ≥
(

1 − λ

8π

) ∫
�

u log u dx − C3
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for any u ∈ L log L(�) in u ≥ 0 and ‖u‖ = λ < 8π , and this implies that

sup
t∈[0,T )

∫
�

(u log u)(x, t) dx ≤ C4. (16.43)

Then, from Moser’s iteration scheme or the maximal regularity we can derive
Tmax = +∞ and the uniform boundedness of u(·, t):

sup
t∈[0,T )

∥∥u(·, t)∥∥∞ ≤ C5.

Inequality (16.43) is also derived from the Trudinger–Moser inequality and∫
�

(u log u − uv) dx + λ log

(∫
�

ev dx

)
− λ log λ ≥ 0 (16.44)

which is valid for u ∈ L log L(�), u ≥ 0, ‖u‖1 = λ [14, 50, 110]. Inequality
(16.44) follows from Jensen’s inequality, but it is also a consequence of the
minimality

W (v, u) ≥ J (v).

In the simplified system, we have

W (v, u) = F(u)

and hence from the minimality it follows that

F (u(t)) ≥ J (v(t)) (0 ≤ t < Tmax) .

On the other hand, from the quantization of the blowup mechanism of the
stationary state we have

jλ = inf {J (v) | v ∈ Eλ} > −∞
for λ ∈ [0,∞) \ N , where Eλ denotes the set of critical points of J on X .
Furthermore, we have

d

dt

∫
�

u log u dx ≤ 2K 2λ+ 4 |�| exp
(

4K 2
∫
�

u log u dx + 4K 2e−1 |�|
)

with a constant K > 0 determined by �, and if Tmax = +∞ and

lim
t→+∞

∫
�

u log u(x, t) dx < +∞,
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then we have tk → +∞, δ > 0, and C > 0 such that∫
�

(u log u)(x, t) dx ≤ C (t ∈ [tk, tk + δ]) .

This implies the nonempty form of the ω-limit set of (u(t), v(t)), and therefore

W (v0, u0) ≥ lim
t→+∞ W (v(t), u(t)) ≥ jλ

holds true. Since

lim
t↑Tmax

∫
�

(u log u)(x, t) dx = +∞

follows in the case of Tmax < +∞, we obtain the criterion of [69], that is,

W (v0, u0) < jλ ⇒ lim
t→Tmax

∫
�

(u log u)(x, t) dx = +∞. (16.45)

Nonlinear quantum mechanics is just an episode of the mathematical theory
of statistical mechanics. It asserts the control of the total set of stationary states
on the global dynamics of nonstationary states. This story, we are convinced,
is valid for each theory of mean fields, where the self-interaction is caused in
terms of the field created by particles. The principle of dual variation arises
in this context, that is, the study on the stationary states of nonlinear systems,
where interaction is described in terms of the field created by particles. It as-
sures that the stationary state in these hierarchies splits into the problems on
fields and particles, each of which is provided with the variational structure,
dynamically equivalent to each other. We have unified such a structure in the
Toland duality for the system of chemotaxis and also for the free boundary
problem in plasma confinement. In both cases, concentration of the particle
density is observed. On the other hand, the Penrose–Fife system has the prop-
erty of unfolding-minimality in the field component, and the same is true for
the Euler-Poisson equation describing the evolution of gaseous stars. Conse-
quently, we can discuss the stability of the equilibrium field in these systems
by introducing variational structure for the field component. On the other hand,
we have the other systems controlled by a different form of the dual variation,
where the stable stationary state is realized as a saddle point of the Lagrange
function. Actually, it is associated with the Kuhn–Tucker duality, and espe-
cially the dynamics surrounding the degenerate stable equilibrium are interest-
ing. The study of these theories of dual variation is still in progress and will be
clarified in the future.
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In the context of the theory of self-organization, the type (I) blowup point
is interesting. It assures emergence coming from the wedge of the parabolic
envelope, where entropy and mass are exchanged to create a clean self with
the quantized mass, which reminds us of the principle asserted in system bi-
ology that the expanding cosmos is the origin of life. This remarkable fact is
suggested in the story of nonlinear quantum mechanics, where the theory of
dual variation takes on a role to control the set of stationary states as well as
the local dynamics around them. Finally, even the type (II) blowup point can
take on the profile of emergence in the other scaling of space-time, that is,
the emergence is a corollary of the collapse mass quantization and the blowup
envelope.
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