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SUMMARY

We explore some stochastic considerations regarding accumulation of mutations in relation to
carcinogenesis. In particular, we consider the effect of exposure to specific agents, especially ionizing
radiation, that may increase mutation rates. The formulation and consequences are a further development
of the Armitage–Doll model; both in terms of background cancer where assumptions are substantially
weakened, and in terms of the effect of specific mutagenic exposures through generally increasing
mutation rates. Under our model the effect of exposure is equivalent to a change in age scale, adding
to age a parametric multiple of cumulative dose to the mutagen, which leads to useful formulae for
the relative risk. In particular, the excess relative risk at agea behaves approximately as a parametric
multiple of the mean dose over ages prior toa. These results do not require assuming that some fixed
number of mutations are required for malignancy. The implications are particularly useful in providing
guidance for descriptive analyses since they have characteristics largely independent of parameter values.
It is indicated that the model consequences conform remarkably well to observations from cohort studies
of the A-bomb survivors, miners with prolonged exposure to radon, and cigarette smokers who stopped
smoking at various ages.

Keywords: Armitage-doll model; Mechanistic cancer model; Multistage model; Mutations and cancer; Radiation and
cancer; Smoking and cancer.

1. INTRODUCTION

Weoffer some mathematical considerations regarding cellular accumulation of mutations, which seem
related to the age–time patterns of excess cancer due to specific acute and prolonged mutagenic exposures.
A primary aim is to provide guidance for analyses of cohort data. These analyses are particularly
challenging for prolonged exposures, and even for acute exposures it is difficult to distinguish between
effects of age at exposure, time since exposure, and attained age. Carcinogenesis is extremely complicated,
and we do not consider our formulation as a mathematical model for it. We focus on a fairly general
stochastic process involving waiting times for accumulation of mutations in a cell, and the notion that some
mutagens may quite generally increase the mutation rates. The generality of the process may implicitly
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accommodate, to an extent, selective growth advantage of altered cells. Our primary interest is on age–time
patterns in the relative increase in cancer rates, rather than on cancer rates themselves. The most notable
aspect of the results is provision of insights into age–time patterns of exposure relative risk that are largely
independent of parameter values in the detailed mathematical formulation. We do not recommend that the
precise results here be used directly in substantive data analyses, but as indicated above only hope that
they may provide some guidance in this. Our work is an instance of the suggestion of Aalen and Gjessing
(2001) that hazard functions be considered in terms of underlying stochastic processes, and in fact we
utilize what they refer to as phase-type models (Aalen, 1995).

The formulation and results are a further development of the Armitage and Doll (1954) multistage
model that has for 50 years captured the imagination of statisticians and biologists interested in the age
patterns of cancer rates. When considering observed cancer rates without regard to specific causes, the
appeal is a possible reason why for most cancers, and for most of lifetime, there is the remarkable tendency
for cancer rates to increase as a power of age. Many others have considered the extension of the multistage
model to allow for specific carcinogenic exposures. Some of this work is considered further in Section
5, particularly that of Whittemore and Keller (1978), Whittemore (1977), Day and Brown (1980), and
Ohtaki (1981), but some brief comment at this point may be useful.

In multistage models for carcinogenesis a stem cell, meaning its lineal descendency for all of lifetime,
passes through several stages in becoming malignant. Note that it is a cell, not an organ or person, to
which these stages correspond. The cancer rate for an organ or person is the product of the rate for a
given stem cell and the relevant number of stem cells (probably roughly on the order of 107 to 109).
Alternatively, this can be thought of in an extreme value sense, in terms of the first of many cells
to become malignant. Multistage models may or may not allow explicitly for selective proliferation
advantage of cells that are beyond some stage. The essential aspects of the Armitage–Doll multistage
model are described in that section. The particular multistage model of interest here is illustrated by
Figure 1 at the end of that section, where the stages correspond to the accumulation of mutations. A
mutation is any cellular change transcending cell division. It is important to understand that much previous
thinking has been in terms of stages of a more functional nature, e.g. initiation, promotion, progression.
While we are by no means the first to consider the stages specifically as accumulation of mutations,
there has been little emphasis on special issues arising from this. The most influential work in multistage
models has—very differently from here—emphasized the notion, most sensible in the functional-stage
thinking, that a given carcinogen can affect only one or two of the stages when identified in terms of
the order of their occurrence, e.g. only initiation or only promotion. This formulation is less appealing
when thinking of the stages as accumulation of mutations, and in particular we consider the notion that
exposure to a fairly general mutagen might cause any of the required mutations not yet present in the
cell.

Pierce and Mendelsohn (1999) considered a closely related formulation along these lines for the acute
radiation exposures of A-bomb survivors followed up by the Radiation Effects Research Foundation
(RERF) in Hiroshima and Nagasaki. Their results conform interestingly well to the age–time patterns
seen in the RERF data for most radiation-related solid cancers. In concert with other more empirical
developments (Kellerer and Barclay, 1992; Pierceet al., 1996), this has led to substantial reinterpretation
of descriptions of the excess cancer, with more emphasis on attained age and less on age at exposure or
time since exposure. The initial aim of the present research was to directly extend the Pierce–Mendelsohn
results to multiple and prolonged exposures, but as often happens, addressing a more general problem also
led to improved understanding of the simpler one.

In the following section we present the mathematical formulation, results, and arguments for them.
Section 3 provides application of the results to three settings: the A-bomb survivor data, lung cancer of
miners exposed to radon, and the effects of cessation of cigarette smoking. The remainder of the paper is
devoted to further discussion of the issues raised.
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2. GENERAL FORMULATION AND RESULT

2.1 Formulation

In the classical Armitage–Doll formulation a stem cell becomes malignant after passing throughk stages,
where transitions occur according to a fixed sequenceλr ; r = 1, 2, . . . , k of age-constant transition rates.
Their primary result was that the age-specific rate at which a cell becomes malignant is asymptotically,
as transition rates uniformly approach zero, given by{(k − 1)!}−1{∏k

r =1 λr }ak−1, wherea denotes age.
We consider the accuracy of this approximation in the Appendix. The cancer rate for a person, or an
organ, is the product of this cellular rate and the relevant number of stem cells. Here and elsewhere we use
‘cancer rate’ to mean the rate at which a malignant cell occurs—there is of course some significant time
lag between the existence of a malignant cell and the development of a diagnosable cancer, considered
later.

This formulation in terms of a fixed sequence of transition rates is not very suitable when the
transitions correspond to accumulation of mutations. The rate of ther th mutation in a cell will then be the
sum of rates of those that could next occur, and different orderings of occurrence would lead to different
λ-sequences unless all mutations had the same rates (a special case considered by Nordling (1953)).
Generally, each rateλr should thus depend in this manner on the mutational history of the cell up to that
time. In dealing with this, we can with no loss extend the Armitage–Doll formulation to a very general
age-homogeneous Markov process under which it remains true that cancer rates are asymptotically of
form µak−1. The state of this process at any age is the mutational status of the cell, and the rate of
the next transition is an arbitrary function of the current state, but is otherwise independent of age. This
allows not only for different orders of occurrence, but more importantly for the likely possibility that
certain mutations effectively increase the rate of subsequent ones by affecting repair mechanisms. The
age homogeneity is a strong assumption and we show later that results along lines of this section can be
obtained for specified age inhomogeneity.

A notable aspect of our development is that useful results on the relative cancer rates of exposed and
unexposed persons arise without the usual assumption, as above, that a certain numberk of mutations
are required for malignancy. All that is required is that, in some more general manner, the occurrence of
malignancy depends only on the mutational state of the cell. Results involving a specifick follow from
these more general ones.

The assumption explored here for effects of mutagenic exposure is that an increment of exposure
momentarily increases transition rates by a common dose-dependent factor not depending on the
mutational status of the cell. That is, for prolonged exposure at age-specific dose ratesd(a), the rate
λr of the transition being awaited at agea is increased by the exposure toλr [1 + βd(a)]. Note that for a
given age the rateλr is a random quantity given by the sum of rates of mutations that could happen next.
The assumption made is slightly weaker than one under which the exposure increases all mutation rates by
a common factor. Modification of the results for nonlinearity of the factor in dose rate is straightforward.
However, any dose-dependent increase by a factor independent ofr is a strong assumption, and it is not
our intention to claim that it should hold in any generality. For radiation exposure there is some case for
it, but not an ironclad one since radiation may be more effective in causing some mutations than others.
Our intention is only to explore the consequences of this assumption, and compare them to what is seen
in some data.

Figure 1 illustrates the essence of our model. We recapitulate and amplify on what is involved.

(1) Malignancy of a cell results from accumulation of mutations, perhaps any one of several collections
of these. If the chance of a malignant cell developing to a cancer does not depend on age (or
exposure) then theRR (relative risk) results are unchanged, but for cancer rates themselves this
chance would need incorporation.
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(2) For the results we consider most important, it is not necessary that the required number of mutations
for malignancy is some given numberk. Some further results require this and we will make clear
which ones do.

(3) Without the mutagenic exposure in question, the rate of the next mutation in a cell depends in a
given but arbitrary manner on its current mutational status, but not otherwise on age (results under
relaxation of the age homogeneity are given in Section 4). The rate of the next mutation in a cell is
the sum of rates of those particular mutations which could next occur, the formulation allowing that
there may be order restrictions and that rates of particular mutations may depend on which have
occurred.

(4) The effect of the mutagenic exposure is that an increment of dose at agea, at rated(a), momentarily
increases by a factor 1+ βd(a) the randomly determined transition rateλr currently faced by each
cell (the results generalize readily when the factor is not linear in dose rate). The essential points
are that this increase is multiplicative rather than additive, and that this factor does not depend onr .

(5) It presents no problem if some mutations act recessively (must occur in both alleles) and others
act dominantly (need only occur in one allele). If it is assumed that some fixedk must occur, then
both recessive mutations count towards this. For the recessive case, the mutagenic exposure under
consideration would, with dominant probability, cause at most one of the mutations at a given locus.

(6) The model does not explicitly allow for selective proliferation of cells having only some of the
required mutations, nor indeed for any proliferation or death prior to malignancy. To some extent,
the adaptiveness described in item 3 implicitly allows for this.

2.2 Results

Under the above assumptions, with malignancy of a cell depending only on some unspecified aspect of its
mutational status, we have the following result. Writere(a) andru(a) for the cancer rates for exposed and
unexposed persons (or organs),D(a) for the cumulative dose by agea, and consider the change of age
scale toa∗ = a + βD(a). We will see that on the age scalea∗ exposed and unexposed persons have (with
totally negligible error) the same cancer rates, so on transforming back to the age scale we have that

re(a) = ru{a + βD(a)}{1 + βd(a)}. (1)

The only approximation involved is the virtual equivalence of the hazard rate and the density function in
the very extreme left tail of the distribution of ages at which a given cell becomes malignant (this is not the
distribution of ages at which thefirst cell becomes malignant). We are mainly concerned with the relative
risk, thus given by

RR(a) = re(a)

ru(a)
= ru{a + βD(a)}

ru(a)
{1 + βd(a)}. (2)

Subsequently to exposure the final factor of course disappears, and for acute exposure the formulae then
hold with D(a) being simply the dose.

Relations (1), (2) are interesting in their own right, but more so when something is known about the
function ru(a). In cohort studies this can be estimated without regard to consideration of mechanistic
models, and it can be useful to estimateRR(a) in this manner. However, it is often true that an
approximation of formru(a) = µap is useful over most of lifetime, leading to the rather empirical
approximation

RR(a) =
{

1 + β
D(a)

a

}p

{1 + βd(a)}. (3)
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Fig. 1. Illustration of model for carcinogenic process both without and with mutagenic exposure. A cell becomes
malignant due to accumulation of mutations, not necessarily requiring a certain fixed number of them, and then
proliferates to become a tumor. Without exposure, the inter-event times are exponentially distributed with ratesλr that
can depend arbitrarily on what mutations have occurred in the cell, indicated by the (history-r) notations. Mutagenic
exposure increases the transition rates as indicated, in terms of an exposure rate function that depends on age.

Subsequent to exposure to total doseD, acute or prolonged, this becomes

RR(a) =
{

1 + β
D

a

}p

= 1 + pβ
D

a
+ · · · (4)

and the linear approximation indicated is adequate for doses and ages such thatRR is no greater than
about 3, and for reasonable values ofp in the range 4–7. Note that for acute exposures, theRRgiven by
(4) does not depend on age at exposure or time since exposure, but only on the attained age. In equation
(4) the ‘excess’RRdecreases approximately as 1/a, and of course the quantitypβ would be estimated
without regard to the value ofp. We note, however, that the decrease of the dose-linear term in (4) as
1/a is sensitive to departures from the approximation of log–log linearity ofr0(a). A moderate decrease
in the log–log slope of this at old ages, commonly seen, can result in the dose-linear approximation to
RR(a) from (2) to decrease much faster than 1/a (roughly like 1/a2, for example). We note in the final
section, though, that such a decrease in log–log slope may be seen for populations, due to heterogeneity
and selection, when it does not exist for individuals and thus it may be inappropriate to focus on this in
mechanistic models.

When it is further assumed thatk mutations are required for malignancy, we will show that
asymptoticallyru(a) = µak−1, so the result becomes

RR(a) =
{

1 + β
D(a)

a

}k−1

{1 + βd(a)} (5)

and so forth as in (4). The asymptotic approximation forru(a), given the assumptions made if not in
reality, is usually adequate for mutation rates compatible with cancer rates. But due to cancellation of
errors in the numerator and denominator cancer rates involved, the asymptotic approximation (5) is even
better than for the rates themselves.
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2.3 Arguments

We now give the argument for (1). Writes = {s1, . . . , sr , . . . } for the sequence of mutational states of a
cell while awaiting mutations 1, . . . , r, . . . . Until stated otherwise, the argument is conditional ons. Write
λs = {λ1,s1, . . . , λr,sr , . . . } for the sequence of transition rates for an unexposed cell, which are by the
age-homogeneous Markov process assumption determined by the state vectors and otherwise independent
of a. Now suppose that malignancy of a cell results in some way from the mutations considered, but not
necessarily upon the occurrence of thekth one. Then the age-specific cancer rate for the unexposed cell
is determined byλs, a function of age written asru,s(a; λs). For an exposed cell the transition rates
becomeλe,s(a) = {λ1,s1[1 + βd(a)], . . . , λr,sr [1 + βd(a)], . . . }. On the age scalea∗ = a + βD(a)

the transformation rates becomeλ∗
e,s(a

∗) = λe,s(a)da/da∗ = λs. Note that this involves not only the
differential element canceling the factors[1+ βd(a)] but also the age-homogeneity of the transition rates
for the unexposed cell. Thus the cancer rate function for an exposed cell on the transformed age scale is
r ∗
e,s(a

∗) = ru,s(a∗; λs), and the cancer rate function for an exposed cell on the original age scale is thus
re,s(a) = ru,s(a∗; λs)da∗/da = ru,s{a + βD(a); λs}{1 + βd(a)}. Given this, the only approximation for
the result leading to (1) is that unconditionallyru(a)

∑
ru,s(a; λs)pr(s). Such an averaging is exact for

densities rather than rates, but these are hazard rates in the extreme left tail of the distribution of cancer
ages for individual cells, where the hazard rate and density are virtually the same.

This establishes (1), and for (5) we now turn to the asymptotic result that under the assumptions for
cancer without exposure, now assuming that a cell is malignant upon thekth mutation,ru(a) = µak−1.
It is precisely the Armitage–Doll result that, conditionally,ru,s(a) = µsak−1. Again, since densities and
rates are virtually identical then have thatru(a) = ∑

ru,s(a; λs)pr(s) = (∑
µspr(s)

)
ak−1 = µak−1. The

combination of this result and (2) leads to (5).
Of course there is some delay, or latent period, between existence of a malignant cell and a cancer,

and most work in this area gives at least passing attention to this. More importantly, it is likely that a
substantial fraction of malignant cells fail to develop into a cancer, something that would have a large
effect on cancer rates as considered above but would largely cancel out in the relative risk. The variable
latent period can have a particularly notable effect on the above results, due to the factor[1 + βd(a)]
in the relative risk formulae. In particular, an essentially acute exposure leads to a ‘spike’ in the relative
risk there, and smoothing this out with a variable lag time is important. Although, strictly speaking, the
smoothing should be done on the cancer rates in the numerator and denominator of relative risks, we find
that smoothing of theRRformulae themselves is usually quite adequate.

3. EXAMPLES

3.1 A-bomb survivor data

The data used here pertain to cancer incidence during 1958–94, from the follow-up by RERF. Documenta-
tion of similar data on cancer mortality and incidence, and the basic statistical approach, is given in Pierce
et al. (1996) and Thompsonet al. (1994). We follow Pierce and Mendelsohn (1999) in considering the
class of major, non-sex-specific cancers, excluding also thyroid cancer: namely cancers of the stomach,
lung, liver, colon, rectum, gallbladder, pancreas, bladder and esophagus. The omissions are made because
cancers that are hormonally related often have distinctive age patterns. For this class of cancers there are
about 8000 cases for the current follow-up, of which about 400 are estimated as radiation related. About
45 000 of the cohort of 80 000 utilized here have positive dose estimates. Restricting to those, the quartiles
of the dose distribution are about 0.01, 0.05, and 0.18 Sv. Of the 45 000 about 10% and 5%, respectively,
had doses greater than 0.50 and 1.0 Sv. (Note: A seivert (Sv) is a rather large radiation dose that for
whole-body exposure would require medical attention for acute effects. Annual limits for nuclear workers
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Fig. 2. Male age-specific cancer rates for four dose categories with cut-points 0.005, 0.5, and 1 Sv, to provide
perspective for Figure 3. Higher lines correspond to higher dose categories. This is for the pooled nine cancer sites
described in the text.

are 0.02 Sv with further limitations so that workers would not ordinarily accumulate 0.10 Sv). The excess
cancer risk is very linear in dose. The currently standard analytical methods used at RERF, differing from
those used in Pierceet al. (1996) only to allow for age trends in the relative risk, provide estimates of
the excess relative risk (ERR= RR− 1) at age 60 of 0.41/Sv for males and 0.72/Sv for females, for any
prior age at exposure. This sex difference is largely an artifact of the relative risk representation. That is,
males have substantially larger background cancer rates than females during most of life, and as indicated
in Pierceet al. (1996) the radiogenic absolute increase in cancer rates is about the same for the sexes.

We first explore the adequacy of the result in equation (1) that the effect of exposure is equivalent to
an age increment linear in dose. Reference to equations (2)–(5) indicates that for reasons discussed above,
this can only be adequate when the dose coefficient depends on sex. Estimates of these coefficients can be
obtained as values that, when actually applied for the age increments, result in null estimates ofERR/Sv in
standard analyses referred to above. This fitting inevitably results in much of the dose effect disappearing
on the transformed age scale, and the question is whether careful analysis can show any residual effects at
all of radiation exposure. This should include both looking for such effects due to dose level, and to age
at exposure.

Figure 2 shows age-specific cancer rates for men in four dose categories indicating clearly the radiation
effect; the pattern for women is similar but at lower levels. Figure 3 shows the corresponding plot for both
sexes on the transformed age scale, where we see that the dose effect is completely removed. That plot
ignores age at exposure, usually considered to be an important factor. Figure 4 shows by age-at-exposure
categories’ cancer rates on the transformed age scale, without regard to dose, compared to those for
unexposed persons. The pattern seen is birth cohort variation in background cancer rates, and for each
age-at-exposure group the radiation effect vanishes on the transformed age scale. This analysis indicates
that there is virtually no systematic departure from the predictions of equation (1). For all these plots
cancer rates are fitted as quadratic functions on the log–log scale. Results of this aspect of the analysis are
similar when all solid cancers are used, without the omissions made here.



238 D.A. PIERCE AND M. V ÆTH

0

0.01

0.02

0.03

30 40 50 60 70 80

Age Transformed

C
a

s
e

s
/P

e
rs

o
n

-y
e

a
r

Fig. 3. Male and female age-specific cancer rates on transformed age scales, for the four dose categories of Figure 2.
The four upper curves are for males, with age scaleage+ 4.1dose, and lower curves are for females with age scale
age+ 6.4dose. The dose-dependent age transformation removes any indication of a remaining radiation effect
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Fig. 4. Comparison of cancer rates on the transformed age scale, all doses, with those for unexposed on the original
age scale, for age-at-exposure categories< 20, 20− 40, > 40. There are thus two curves for each age-at-exposure
category, with age ranges over follow-up indicating these categories. There is a substantial birth cohort effect for the
unexposed, but no other effect for the exposed on the transformed age scale.
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Fig. 5. Description ofERRand model fit for the 9-site collection of cancer types, averaging over sex. The three
dashed lines are empirically estimated age-specificERRsover the follow-up for ages at exposure 10, 30, and 50. The
steeper solid curve is the fit of equation (4) withp = 4.5, and the other is the fit to the first term in expansion of that,
decreasing as 1/age. There is no statistically significant departure from the model predictions, but possible reasons for
the apparent lack of fit at young ages are discussed in the text.

We now turn to the adequacy ofRRage patterns suggested by equation (4). Some background will
clarify our approach to this. At least until recently, it has been generally considered that theERRfor A-
bomb survivors decreases substantially with increasing age at exposure. TheERRfor those exposed as
adults has been considered essentially constant in age, while that for those exposed as children is initially
higher but decreases with age—although only recently has this decrease become statistically significant.
Thus it is useful to provide empirical descriptions of theERRover the follow-up within age-at-exposure
groups, for comparison to the fit of relations with no age-at-exposure effect derived in this paper. The
empirical description used here is along lines commonly used at RERF, using rather minimal smoothing
through anERRmodel of formβsexd exp[θe+α j +δ j log(a)], where j = 1, 2, 3 denotes age-at-exposure
categories< 20, 20 − 40, > 40 years ande denotes age at exposure. For all analysis here, sex-specific
parameters are used with results presented as the average over sex.

Figure 5 shows these results, where semi-parametric relative risk regression (Cox regression with age-
dependent covariates, using theERRfunction above) is used to fit all the models. Thus, as we prefer, the
asymptotic resultµak−1 for background rates plays no primary role in this analysis. Two fits to the data
related to equation (4) are shown: one using the full formula withp = 4.5 and the other only the first
term of the expansion, where specification ofp is not required. Recall that age at exposure has no effect
in (4). The extent of agreement between the two curves from (4) indicates that theRRis insensitive to the
value of p, so this cannot be usefully estimated from analysis of only theRR. The valuep = 4.5 was
estimated by Pierce and Mendelsohn (1999) in analysis of a previous version of these data that considered
background cancer rates for ages 35–80 as well. We have adapted equation (4) to allow for a fixed latent
period of 7.5 years between malignancy and cancer. This is roughly the maximum likelihood estimator,
but note that the follow-up begins 12 years after exposure so these data provide little information on that
issue and the choice used here has very minor effect.
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There is no statistically significant lack of fit for results based on equation (4), in comparison to the
statistical model used for the empirical description (χ2 = 4 on 6df). That is, although the empirical
description has somewhat higherERRthan the model fit for the youngest age-at-exposure group, this is
quite imprecisely estimated since background rates are so small for that group. The more rapid decline
with age in the empirical description than from the model prediction may be partly due to the point raised
following equation (4) regarding departures from log–log linearity of background rates. As discussed in
the final section, lack of fit for that reason might not be an undesirable aspect of a model. However,
we note that for analysis of all solid cancers together without the selection made here, there is a larger
and significant lack of fit to the model results, in the sense of a residual age-at-exposure effect. The
issues regarding an age-at-exposure effect in theRRare complex, since this tends to reflect birth cohort
variations in background rates and is not a straightforward modifier of the actual radiation effect. It is
shown in the following section that departures from the age homogeneity of our model would introduce
age-at-exposure effects in theERR. Thus for various reasons the traditional age-at-exposure considerations
referred to above remain important, but results here do suggest emphasis on generally age-decliningRR
and possible biological reasons for this.

Kai et al.(1997) considered a very different two-stage mathematical model for A-bomb survivor data,
where cells undergo only two mutational transformations, with proliferative advantage for transformed
cells following the first. Their model, without specification of parameter values, is less predictive of the
general character of age–time patterns than results here, but it can be fitted to the data reasonably well.

3.2 Underground miners exposed to radon

Two committees of the National Research Council (1988, 1999) and also a National Cancer Institute
working group (Lubinet al., 1994, 1995) have done extensive analysis of pooled data on lung cancer from
several large cohorts of underground miners exposed to radon. Because exposures were prolonged, the
description of age–time patterns of excess risk has been challenging, but substantial progress has been
made. A primary characteristic of the descriptive modeling has been to relate the age-specificERRto the
dose within each of several ‘windows’ of time prior to the age at risk, meaning that time since exposure has
been a primary focus. The models considered also allow for a general decrease of theERRwith attained
age, and the selected one an effect of exposure duration aside from accumulated dose. That used here is
referred to as the exposure-age-duration model, in Table 3-3 of National Research Council (1999), which
differs only in minor changes of parameter values from that presented on page 821 of Lubinet al. (1995).

The approach illustrated in Figures 6–8 is to graph the age–time pattern ofERR given by this
descriptive model, for several typical exposure scenarios, and compare to this the results of equation (3),
adapted to allow for a random latent period. The dose rate is taken in terms of the conventional measure
for the descriptive model, something calledWLM/year. We have not attempted to fit our model to the
actual data (not publicly available), which seems unnecessary for our purposes. There are three choices
involved in implementing the model: the values ofp andβ, and a distribution for the latent period. Results
are insensitive to the value ofp, taken here as 5, andβ waschosen based on more exposure scenarios than
shown here. In contrast to the previous example, the choice of a distribution for the latent period is here
important, since we are interested in cancer rates during the exposure period. The distribution used for the
latent period, chosen roughly to obtain a generally best fit to the descriptions, is as follows:

years 4 5 6 7 8 9 10 11 12 13 14 15

density 1 2 3 4 5 4 4 3 3 2 2 1
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Fig. 6. Empirical description and model fit for lung cancer among miners with prolonged radiation exposure, under
exposure scenario indicated. Dashed curve is from the application of the empirical model of the NRC committee,
solid curve is fitted using results of this paper.
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Fig. 7. Results as in Figure 6 for the indicated alternative exposure scenario.

The primary effect of this distribution pertains to the final factor in equation (3), which we note later is
the effect of the exposure causing the final required mutation. Considering the plots, the rapid increase in
theERRa few years after start of exposure, and the correspondingly rapid decrease ending 15 years after
exposure ends, are largely the result of lagging and smoothing the effect of the exposure causing the final
mutation. The noticeable change in the decline at 15 years after the end of exposure is where the effect of
that final factor has disappeared, and theERRthen decreases roughly as 1/age.

The correspondence of model predictions and empirical results is remarkable, even though there is
some systematic overprediction ofERRat older ages. Again, this could be partly due to the point raised
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Fig. 8. Results as in Figure 6 for the indicated alternative exposure scenario.

following equation (4) regarding departure from log–log linearity of background rates, and as discussed
in the final section, lack of fit for that reason might not be an undesirable aspect of a model. The empirical
description, evolving from earlier developments in National Research Council (1988), was quite difficult
to obtain without guidance regarding what to expect, and is subject to considerable statistical error. It is
interesting to consider what description would have resulted had there been less emphasis on time since
exposure, as suggested by results here.

Among others who have analysed related data, Luebecket al. (1999) and Hazeltonet al. (2001) fitted
a very different two-stage model, similar to that of Kaiet al. (1997) referred to above, for two of the
cohorts involved (Colorado and Chinese). The most noteworthy feature of these analyses was finding an
apparent radiation effect on the rate of cellular proliferation that was important in comparison to its effect
on mutation rates. Although such an effect cannot be evaluated within our formulation, the results seen
here suggest that such considerations may not be necessary to explain the data. Incidentally, they and
others have estimated a mean latent period for lung cancer similar to that of the distribution chosen here.

3.3 Effects of cessation of cigarette smoking

The American Cancer Society follows up a cohort of about a million persons in regard to lung cancer
mortality and cigarette smoking. Halpernet al. (1993) present in their Table 4 age-specific lung cancer
death rates for non-smokers, continuing smokers, and those who stopped smoking at various ages, ratios
of which are plotted as the points in Figure 9. We note that the follow-up used is only from 1982–88, so
the age variation is largely that for different birth cohorts. The age-specific rates for nonsmokers are quite
linear on a log–log plot, with slopep = 5. The curves in Figure 9 are computed according to equation
(3), incorporating a fixed latent periodt0 = 8 years, withp = 5, andβd = 0.9 during the smoking ages
assumed to begin at 18 years. There is substantial time lag between cessation of smoking and evaluation
of cancer risk, and the role of the latent period is less important than in the previous example. Taking
t0 = 5 improves the fit slightly, but the larger value was taken to conform to the previous examples. The
value ofβd was chosen for an overall best fit to the points in the plot. Results are insensitive to the value
of p. There is no doubt statistically significant lack of fit, but to evaluate this would require more detailed
analysis. However, it is remarkable that such a simple model with essentially only one parameter could
predict the risk patterns this well.
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Fig. 9. Empirical description and model fit for lung cancer risks of continuing smokers, and those stopping at ages
(rounded) of 35, 45, 52.5, and 57.5. Points linked by dashed lines are from ACS cohort data. The solid lines are fitted
using the model of this paper, involving essentially the fitting of just one parameter.

4. FURTHER COMMENTS ON THEORETICAL RESULTS

In our main results theRR is a polynomial in dose, and the terms have interesting interpretation not
evident from the derivation given. Under the assumption that malignancy occurs upon thekth mutation,
the arguments of Section 2 show that after termination of exposure to total doseD the excess absolute
malignancy rate is given by

E AR(a) = µ
[
{a + βD}k−1 − ak−1

]
= µ(k − 1)βDak−2 + · · · . (6)

It can be shown that the terms in this expansion correspond to the effect of the exposure having caused
1, 2, . . . , k − 1 mutations in the same cell. Although the terms decrease rapidly for moderate doses, it is
interesting that those beyond the first may not be totally negligible. The underlying idea is that without
exposure malignancy occurs afterk exponential waiting times resulting in cancer rate increasing asak−1,
and for cells where exposure causes mutations eliminatingj of the waiting times, the malignancy rate
increases asak−1− j . Pierce and Mendelsohn (1999) derived the first term in (6) and we initially derived
subsequent terms, noticing that they corresponded to the expansion above before arriving at the much
simpler argument of Section 2. When exposure has not ended, (6) is multiplied as in (1) by[1 + βd(a)],
arising in the earlier argument as a differential element da∗/da, but in considerations of this paragraph
corresponding to the exposure causing thekth and final mutation.

We noted that the essential results here on age–time patterns of risk carry through when the factor
[1+βd(a)] is replaced by[1+βg{d(a)}] for any functiong(·). The only change is thatD(a) in our results
is replaced by the integral ofg{d(a)}. But there is an equally tractable extension in another direction.
There is substantial current interest in the idea that an increment of exposure might cause some long-
lasting instability in a cell, resulting in increased mutation rates for some extended period. All results here
can be applied directly to such situations by definingd(a) not at the dose rate at agea, but a measure of
the instability effect extending beyond the increment of exposure.

The results can also be generalized to allow for a certain type of non-age-homogeneity in background
mutation rates. Let the age-homogeneous transformation ratesλr be replaced byλr s(a), wheres(a) is
an arbitrary function representing age-specific variation in mutation rates. Then essentially the same
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argument as before shows that on the transformed age scalea∗ = ∫ a s(e)[1 + βd(e)]de, exposed and
unexposed cells have the same cancer rates. Thus (3) is replaced by

RR(a) =




1 + β

∫ a

s(e)d(e)de

S(a)




p

{1 + βd(a)}

whereS(a) = ∫ a s(e)de.
For an acute doseD at agee the relative risk subsequent to exposure is then given by

RR(a) =
{

1 + β
s(e)D

S(a)

}p

,

the crucial point being that theRRnow depends on age at exposuree. Although we have not explored the
matter fully, this may be useful for cancer types excluded here for the A-bomb survivors, where there are
indeed age-at-exposure effects. For prolonged exposures the non-age-homogeneous extension is related to
considerations of Pikeet al. (1983). They showed that for female breast cancer the Armitage–Doll result
applies better on a transformed age scale corresponding to the number of menstrual cycles.

5. DISCUSSION

Many others have considered the extension of the Armitage–Doll model to include effects of specific
carcinogenic exposures. Whittemore and Keller (1978), followed by Day and Brown (1980), considered
fixed stage transition ratesλr , r = 1, . . . , k, taken asλr = vr + δr d(a). Their general results were
very complicated, and the key to the simplicity of ours is the further assumption thatδr = vr β: that is,
representing the effects as multiplicative rather than additive. Ohtaki (1981, 1985) did capitalize on this
assumption, obtaining results in the direction of ours. However, he did not allow transition rates to depend
on the mutational history of the cell, nor did he consider the simplifications arising from focus on the
relative risk.

The most influential results of Whittemore (1977), Whittemore and Keller (1978) and Day and Brown
(1980), considered by many others including Thomas (1982), were for the case ofλr = vr + δr d(a),
whereδr d(a) � vr except for one value ofr . Thus, characteristic age patterns of excess cancer rates were
derived under assumptions that the carcinogen in question affected only an early stage, a late stage, and
so forth. In this regard, there was largely misguided emphasis, initiated by Armitage and Doll (1954) and
perpetuated by most workers, on the notion that ifδr d(a) were substantial in relation tovr for m values
of r , then the cancer dose response would involve anmth-degree polynomial in dose. That this seems
untenable for values ofm larger than about 2 was taken to suggest that in the multi-stage model a given
carcinogen is unlikely to affect more than one or two transitions. The flaw in this reasoning is that what
is formally anmth-degree polynomial in dose can in fact be dominantly quite linear, as noted in regard to
our results.

The major aspect of current views of carcinogenesis not explicitly included in the idealized
formulation here pertains to proliferative advantage of cells having acquired some, but not all, of a
collection of mutations required for full malignancy. Generalization of our approach to allow explicitly
for this seems intractable. However, we believe that to some approximation our results allow implicitly
for modest intermediate cell proliferation. Proliferation of altered cells is largely equivalent to increased
mutation rates (for clones) and we do allow mutation rates to depend arbitrarily on the current state of
each cell. We note that our analysis applies exactly if, as an approximation, proliferation prior to full
malignancy is considered only to occur immediately upon the penultimate of the required mutations (not
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requiring that this be some fixed number). Note further than when carcinogenesis involves accumulation
of several mutations, proliferative clones of interest are unlikely to become large, since cell ceases to be a
clone member when it acquires a further mutation. The alternative models referred to in the examples of
Kai et al. (1997) and Luebecket al. (1999), follow work of Moolgavkar and various co-workers to allow
explicitly, in a highly idealized manner, for proliferation following a single mutagenic transformation.

It is well known that the formµap for population cancer rates is often inadequate when the age range
includes the very young and very old, and in particular there is very often seen a substantial reduction
in the log–log slope at old ages. But this is to be expected for population cancer rates even if a relation
µap holds for individuals, with heterogeneity in the values ofµ. That is, as age increases the surviving
population includes an increasing fraction of those with smallerµ values. Mechanistic cancer modeling
is concerned with cancer rates for individuals, rather than for heterogeneous populations, and modeling
driven by aims to accommodate the reduction of log–log slope at old ages may be counterproductive.

Weconclude with some discussion of our attitude towards the value of results such as here, and about
mathematical modeling more generally. Carcinogenesis is very complicated, and a formulation such as
used here ignores not just details but generally important aspects. However, science is not primarily the
analysis of complexity. As pointed out in Pierce and Mendelsohn (1999), our attitude towards models is
that they should usually be highly idealized, not attempting to reflect many of the actual complexities of
the process, or even of broadly considered data. What is important about a model is that it be useful, rather
than that it reflect a complex reality all that faithfully; indeed its usefulness is often inversely related to
its complexity. It may provide new insights into data, providing a useful framework for further thought,
and suggest interesting consequences that can be verified more directly—thus perhaps transcending the
validity of the model.

In particular, we think that one would almost never want to fit to observed data, for substantive
descriptive purposes as opposed to evaluating a model, the relations derived in this paper. But there is need
for guidance in descriptive analyses, which are not easily done even for acute exposures and become truly
daunting for prolonged exposures. We think most would agree with us that the best aim is some hybrid
approach involving empirical description along with what seems useful from mathematical modeling.
Further, the most important issues often involve interpretation of descriptions, where one is faced with
the need to sort out causality in the presence of too many highly correlated age–time–dose covariables.
Results here have had substantial effect in this sense on work at RERF, contributing to much greater
emphasis on relative risks generally declining with age.
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APPENDIX

Although our formulation for background carcinogenesis is much more general than the Armitage–
Doll process, we do use the Armitage–Doll approximation in the argument and it is useful to consider
its validity. In regard to our more general model, we note that Aalen (1995) has formally investigated a
class of time-homogeneous Markov processes, called phase-type models, that includes ours as a special
case. He does not consider asymptotics as transition rates approach zero, but does provide results useful
for this.
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Fig. A1. Exact result and Armitage–Doll approximation (upper line) for the rate of malignancy under mutation rates
of the Moolgavkar example given in the appendix text. The log–log slopes arek1 = 6 and 5.8, respectively.

For fixed transition ratesλ1, . . . , λk it is a classical result that the exact density of the time until the
kth event, i.e. the sum ofk exponential variates, is

f (a; λ1, . . . , λk) = λ1 . . . λk(−1)k
k∑

j =1

exp(−λ j a)∏
i �= j

(λi − λ j )

with limiting values used when some of the rates are equal. This is the result from which Armitage (1953)
proved the standard asymptotic result. It is straightforward to calculate the hazard function, which here we
refer to as the cancer rate, ignoring both the latent period and more seriously the chance that a malignancy
does not result in cancer. For computation of the above, recursive relations based on the theory of divided
differences are useful, particularly when some of the mutation rates are equal. For exposed cells the exact
formula can be used through the change of age scale argument. Although such formulae are not difficult
to use in calculating cancer rates for given ages, they are not very useful in understanding the age patterns
of excess risk. The asymptotic result provides much more insight, the exact result being mainly useful for
evaluating the adequacy of the asymptotics.

In a strict sense, the Armitage–Doll approximation{(k − 1)!}−1
{∏k

r =1 λr

}
ak−1 can easily be

inaccurate for relevant values of transition rates. This has been stressed by Moolgavkar (1978), who
consideredk = 7 with transition ratesλ of 1, 2, 3, 34, 70, 80, 90, all times 10−4, leading roughly to
human cancer rates. In this case Armitage–Doll approximation overestimates cancer rates by 17%, 27%,
and 37% at ages 40, 60, and 80. The heterogeneity of transition rates is an important factor: about 1/3 of
the error here is due to the size of the rates, and 2/3 is due to their heterogeneity. That is, the Armitage–
Doll approximation (which depends only on the geometric mean of the transition rates) has about 1/3 the
error indicated above if theλ are taken as all equal to the geometric mean of those used here.

However, for our purposes this type of error is essentially irrelevant. We have no interest in the relation
between specific transition rates and cancer rates, but only a relationµak−1 whereµ as defined in Section
2.3’s is a much more complicated function than in the Armitage–Doll result above, and either cancels in
the relative risk or is estimated from cancer rate data. Further, our concern is with the log–log linearity of
the relation, rather than whether the exponent is slightly different from somek − 1. Figure A1 compares
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exact cancer rates and the Armitage–Doll approximation for the above example. Most of the error seen
would be removed simply by adjustingµ. More generally, there is no more departure than this from
log–log linearity, even for a much wider age range, for values ofk less than about 8 and transition rates
compatible with human cancer rates.

A more serious concern with multi-mutation models is some tension between presumed spontaneous
mutation rates and observed cancer rates. Arguments given by biologists that mutation rates are much too
small to explain cancer rates under models such as here are often not made correctly, and it is important
to consider explicitly the Armitage–Doll approximation, and cancer rates rather than the lifetime risk
of cancer. There does remain some tension, and we believe that a substantial part of the resolution of
this must be that some mutations enormously increase the effective rate of subsequent ones by seriously
impairing cellular repair mechanisms. Further, intermediate expansion of affected cells may mean that the
log–log slope of cancer rates is somewhat larger thank − 1, allowing the entertainment of smaller values
of k than is usual and further reducing this tension.
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