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Preface

This book treats isomorphism theory – that branch of ergodic theory dealing
with the question of when two measure-preserving systems are, in a certain
sense, essentially equivalent. Although these topics have received fair treat-
ment in several books, we think that the time is right for a fresh perspective.
Indeed, with ergodic theory becoming more fashionable in its connections
with number theory and additive combinatorics, yet also more abstract and
structure-laden, it is interesting to observe the extent to which progress in
its original concerns, classification of measure-preserving systems up to iso-
morphism, was achieved via combinatorial/probabilistic reasoning. Our hope
is that the ergodic theory revival currently underway will find its way to
isomorphism theory, and revitalize it as well.

We have also attempted to write a book that teaches general mathematical
thinking in a unique manner. Most graduate level textbooks in pure mathemat-
ics provide detailed proofs of theorems followed by exercises. We1 have tried
to write this book in such a way as to make the proofs of the theorems them-
selves the exercises. Optional details, which readers may want more or less of,
may be relegated to footnotes or to sections labeled “Remark” or “Comment”.

Indeed, proofs of major theorems are generally presented twice; once
labeled “Idea of proof”, in which the reader is called on to flesh out the argu-
ment from a very basic outline, then again with the label “Sketch of proof”, in
which more details are given. We consider it important that the reader attempt
to work through the “Idea" section before or instead of the “Sketch". This
reading strategy benefits:

(a) the serious beginner wishing to work out the proofs on their own, with
helpful guidance from the book;

(b) the student wanting a basic overview of ergodic theory, who doesn’t want
to be overburdened with notation while trying to understand the ideas;

(c) the professional mathematician who is familiar with the material, but wants
a quick review or different perspective on it.

1 The first author has circulated a rough precursor to this book as an MS Word document on the
Internet for a number of years; the pedagogic philosophy employed here (and all original proofs
of major theorems) are due to him. R.M.
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viii Preface

This book differs from other books of its type not only in the careful com-
partmentalization of detail; much in our approach to classical theorems (those
of Shannon–McMillan–Breiman and Ornstein, for example) would be con-
sidered unorthodox, however presented. Indeed, our aim is not to present
“distinctively modern”, “slick” or “book” proofs. Our aim is to present our
proofs, stumbled upon by active engagement with the subject matter. Our hope
is that readers will follow our example, and come to favor their own proofs
as well.
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Introduction

Note: this introduction is written in an intuitive style, so a scientifically ori-
ented non-mathematician might get something out of it. It is the only part of
the book that requires no mathematical expertise.

Question: What is ergodic theory?

Let’s start with two examples.

Example 1: Imagine a potentially oddly shaped billiard table having no pock-
ets and a frictionless surface. Part of the table is painted white and part of the
table is painted black. A billiard ball is placed in a random spot and shot along
a trajectory with a random velocity. You meanwhile are blindfolded and don’t
know the shape of the table. However, as the billiard ball careens around, you
receive constant updates on when it’s in the black part of the table, and when
it’s in the white part of the table. From this information you are to deduce
as much as you can about the entire setup: for example, whether or not it is
possible that the table is in the shape of a rectangle.

Example 2: (This example is extremely vague by intention.) Imagine you are
receiving a sequence of signals from outer space. The signal seems to be in
some sense random, but there are recurring patterns whose frequencies are
stationary (that is, do not alter over time). We are unable to detect a precise
signal but we can encode it by interpreting five successive signals as one signal:
unfortunately, this code loses information. Furthermore, we make occasional
mistakes. We wish to get as much knowledge as possible about the original
process.

Measure preserving transformations. The subject matter encompassing the
previous two examples is called ergodic theory. Ergodic theory models situ-
ations (like the examples) under the abstraction of measure-preserving trans-
formations. To understand that concept, we need to understand what measures
are and what transformations are.

A measure is a concept of size that tells you how big a set is, or, in the lan-
guage of probability, how probable an event is. (A probability space is a space
whose total measure is equal to 1.) It has to act like a notion of size should: the
measure of the union of two disjoint sets has to equal the sum of the measures
of the sets, for example. A transformation is a way of mapping a space to itself
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by assigning one point to another. In many modeling applications, the transfor-
mation indicates evolution in time: for example, it may map the position and
direction of a billiard ball at the current time to the position and direction of
the ball one second later.

Ergodic theory is the study of transformations on probability spaces that
preserve measure. So, for example, if a set A of points has measure 1

3 , and
a transformation T is measure-preserving, then the set of points which are
mapped into A by T will also have measure 1

3 . When the measure is interpreted
as a probability, the measure-preserving property indicates the stationarity
or time-invariance of the expected frequencies of certain events (like the
probability that the billiard ball of Example 1 lies in the white part of the table).

Processes. When you apply a transformation over and over, checking after
each application whether some event has occurred and recording the result, you
get a process. The language of processes and the language of transformations
are really just two different ways of describing the same thing. You can get
a process out of Example 1 if you record at one-second intervals, by writing
down either B or W , the location of the moving billiard ball. For example,
the output B BW W B . . . represents the ball having been in the black, black,
white, white and black areas at times 0, 1, 2, 3 and 4, respectively. You can
also get processes out of real world systems, without foreknowledge of any
transformation acting. For example, say you record each day at noon whether
it’s rainy or sunny by writing down R or S. If you did this every day into both
the future and the past, you would output a doubly infinite string of Rs and Ss,
thus: . . . S R RS(S)R R RS . . . Here the parentheses identify the current day (it
is sunny today, will be rainy tomorrow, and was sunny yesterday, etc.).

To transfer this example to the language of transformations, note that the set
of all doubly infinite strings of Rs and Ss forms a space, and a natural trans-
formation of this space is the shift, which moves time forward one day. (Hence
the shift takes the above sequence to . . . S R RSS(R)R RS . . .) An appropriate
measure can be derived from the probabilities of rain and sun respectively on
the various days. This measure will be preserved by the shift precisely when
the original process was stationary.

In this book, we will usually study measure-preserving transformations
using the language of stationary processes. Here is a summary of the important
concepts and theorems we will cover.

(1) Isomorphism: Suppose that in Example 1 we were to change which part of
the table is painted white and which is painted black. Then you would have
a different process. But our new process could end up being equivalent
to the original process in the sense that if you know the output of either
process infinitely far into both the past and future, it would tell you the
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output of the other process. Very roughly, one says that two processes are
isomorphic when there is a nice way to map outputs of one to outputs of the
other so that they determine each other. In general, determining whether
there is such a map can be nearly impossible; much of this book is about
ways to do it in a few cases.

(2) Ergodicity: An ergodic process or transformation is one that cannot be
expressed as a combination of two simpler processes (or transformations).
For example, consider the process that picks a random person and then
spits out an enormous sequence of Ls and Rs according to which hand that
person uses to twist open all the doorknobs they encounter their whole life.
That process is certainly not going to be ergodic because the character of
the output will be divided in a predictable way according to whether the
person chosen is left-handed or right-handed. Assuming the proportion of
left-handed people in the general population to be 0.09, the whole process
would then be expressible as 0.09(left-hand process) + 0.91 (right-hand
process).

(3) Birkhoff ergodic theorem: When an ergodic transformation is repeatedly
applied to form an ergodic process, then with probability 1, the frequency
of time an output of that process spends in a given set is the measure of
that set, e.g. if the measure of a set is 1

3 , then it will spend (in an asymptotic
sense) 1

3 of the time in that set.
(4) Rohlin tower theorem: Fix an arbitrary positive integer, say 678. For any

measure-preserving transformation T that does not simply rotate finite sets
of points around, you can break almost the whole space into 678 equally
sized disjoint sets A1, . . . , A678 such that if you arrange the sets as the
rungs of a ladder, the transformation consists in simply walking up the
ladder; that is, T Ai = Ai+1.

(5) Shannon–McMillan–Breiman theorem: Consider an ergodic process that
spits out doubly infinite strings of as and bs. If you pick a random doubly
infinite string, then with probability 1, when you look at its sequence of
finite initial strings (e.g. a, ab, abb, abba, . . .), that sequence will have
probabilities that asymptotically approach a fixed rate of exponential
decay. Moreover, that rate of decay will not depend on the sequence you
choose.

(6) Entropy: The exponential rate of decay just mentioned is called the entropy
of the process. Recall that essentially all of the doubly infinite strings have
the same exponential decay rate. Call the ones that do reasonable names.
Then the number of reasonable names is approximately equal to the recip-
rocal of this exponentially decaying probability, that is, it is a quantity that
increases at a fixed exponential rate. Thus entropy can also be thought of as
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being the asymptotic exponential growth rate of the number of reasonable
names.

(7) Kolmogorov entropy invariance: Any two isomorphic processes must have
the same entropy. This provides a quick way to identify two processes as
not being isomorphic, namely, having different entropies.

(8) Independent process: A stationary process on an alphabet in which the next
letter to come in the output string is always independent of the ones that
came previously is called an independent process. For example, repeatedly
rolling a die (even a loaded die) gives an independent process.

(9) Ornstein isomorphism theorem: Says that two stationary independent pro-
cesses are isomorphic if and only if they have the same entropy. Indeed,
the standard proofs of the theorem say even more, as they give a condition
which is natural to check in many cases such that any two processes that
are of equal entropy and satisfy the condition must be isomorphic. This
has led to the surprising realization that a great many classes of measure-
preserving systems that don’t seem at all similar to die rolling or coin
tossing are in fact isomorphic to independent processes.

The above list spans the core topics of isomorphism theory. In the final chapter
of the book, we touch briefly on additional topics in both isomorphism theory
and ergodic theory, more broadly construed. In an appendix, we list some of
our favorite open problems.
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1

Measure-theoretic preliminaries

1. Discussion. In this opening chapter, we offer a review of the basic facts we
need from measure theory for the rest of the book (it doubles as an introduc-
tion to our pedagogic method). For readers seeking a true introduction to the
subject, we recommend first perusing, e.g. Folland (1984); experts meanwhile
may safely jump to Chapter 2.

2. Comment. When an exercise is given in the middle of a proof, the end of
the exercise will be signaled by a dot: •
The conclusion of a proof is signaled by the box sign at the right margin, thus:

1.1. Basic definitions

In this subchapter, we discuss algebras, σ -algebras, generation of a σ -algebra
by a family of subsets, completion with respect to a measure and relevant
definitions.

3. Definition. Let � be a set. An algebra of subsets of � is a non-empty
collection A of subsets of � that is closed under finite unions and comple-
mentation. A σ -algebra is a collection A of subsets of � that is closed under
countable unions and complementation.

4. Comment. Every algebra of subsets of � contains the trivial algebra
{∅,�}.
5. Exercise. Let � be a set and let C be a family of subsets of �. Show that the
intersection of all σ -algebras of subsets of � containing C is itself a σ -algebra.

6. Definition. Let � be a set and let C be a family of subsets of �. The
σ -algebra generated by C is the intersection of all σ -algebras of subsets of
� containing C.

7. Definition. Let A be an algebra of subsets of �. A premeasure on A is
a finitely additive set function p taking A to the non-negative reals that also



9780521194402c01 CUP/KKW October 10, 2009 19:46 Page-6

6 Measure-theoretic preliminaries

never violates countable additivity except for “undefined” cases caused by A
not being a σ -algebra.2

If A is a σ -algebra, then p is called a measure.

8. Definition. Let � be a set, and let A be a σ -algebra of subsets of �. The
pair (�,A) is called a measurable space, and the members of A are called
measurable sets. Next let μ be a probability measure defined on A; that is,
a measure satisfying μ(�) = 1. The triple (�,A, μ) is called a probability
space.

Let (�,A, μ) be a probability space. An event is a measurable set, that is, a
member of A. Two events A and B are independent if μ(A∩ B) = μ(A)μ(B).

Let (�,A, μ) be a probability space. A null set is a set A ∈ A with
μ(A) = 0. A is said to be complete with respect to μ, or (�,A, μ) is sim-
ply said to be complete, if all subsets of null sets are measurable (and hence
null sets).

9. Exercise. Let (�,B, μ) be a probability space and suppose that B is
not complete with respect to μ. Let A= {B ∪ C : B ∈B, there exists a null
set D withC ⊂ D}. Extend μ to A by the rule μ(B ∪ C) = μ(B) for the
relevant cases. Show that this extension is well defined and that (�,A, μ) is a
complete probability space.

10. Definition. The completion of a probability space (�,B, μ) is the proba-
bility space (�,A, μ) constructed in the previous exercise.

11. Definition. If A and B are sets, the symmetric difference of A and B is the
set of points in A or B but not both. We denote the symmetric difference by
A�B.

12. Definition. Suppose that (�,A, μ) is a complete measure space and sup-
pose that C ⊂ A is a family of measurable sets. We say that C generates A
mod zero if for every A ∈ A there exists B in the σ -algebra B generated by C
such that μ(A�B) = 0.

13. Comment. Notice that this does not imply that B = A.

14. Definition. Let � be a set and denote its power set by P(�). An outer
measure on � is a non-increasing, countably sub-additive set function μ∗ from
P(�) to the non-negative reals taking the empty set to zero.3

2 That is to say, p : A → [0,∞] and if (Ai )
∞
i=1 ⊂ A is pairwise disjoint with A = ⋃∞

i=1 Ai ∈ A
then p(A) = ∑∞

i=1 p(Ai ). Notice that p(∅) = 0.
3 That is, μ∗ : P(�) → [0,∞] with μ∗(∅) = 0, μ∗(A) ≤ μ∗(B) whenever A ⊂ B, and

μ∗(
⋃∞

i=1 Ai ) ≤ ∑∞
i=1 μ∗(Ai ) for any sequence (Ai )

∞
i=1 ⊂ P(�).
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1.2. Carathéodory’s theorem, isomorphism, Lebesgue spaces

In this subchapter we develop the machinery for constructing probability
spaces and determining when they are essentially the same. We use this
machinery to construct Lebesgue measure on the unit interval and define
Lebesgue spaces to be those spaces isomorphic to an interval space.

15. Convention. If (xn)∞n=1 is a sequence, we use the notation (xn) ⊂ X to
relate the fact that xn ∈ X for all n.

16. Theorem. (Carathéodory; see e.g. Folland 1984, Theorem 1.11.) Let �

be a set, A an algebra of subsets of � and p a premeasure on A for which
p(�) = 1. For every B ⊂ � let

μ∗(B) = inf

{ ∞∑
i=1

p(Ai ) : (Ai )
∞
i=1 ⊂ A, B ⊂

∞⋃
i=1

Ai

}
.

Let B = {B ⊂ � : μ∗(B) + μ∗(Bc) = 1}. Then μ∗ is an outer measure on �

which agrees with p on A, B is a σ -algebra containing A, and the restriction
μ of μ∗ to B is a measure.

(Proof omitted.)

17. Exercise. Show that the measure space arrived at in an application of
Carathéodory’s theorem is complete.

We now give a couple of applications of Carathéodory’s theorem.

18. Definition. Let � be a countable set and let � = �Z. A cylinder set is
a subset of � you get by specifying values for finitely many (possibly zero)
coordinates.4 The support of a cylinder set is the set of coordinates whose
values are specified.5

19. Example. The set of (xi )
∞
i=−∞ ∈ � such that x0 = a, x17 = b and

x−2 = c is a cylinder set. The support of this cylinder set is {−2, 0, 17}.
20. Theorem. (Tychonoff; see e.g. Folland 1984, Theorem 4.43.) Let Xi be
compact topological spaces, i ∈ I, and let X = ∏

i∈I . Then X is compact in
the product topology.

21. Exercise. Prove Tychonoff’s theorem.

4 To be more precise: for r ≥ 0 an integer, f1, f2, . . . , fr ∈ Z and λ1, . . . , λr ⊂ �, set C =
C( f1, . . . , fr , λ1, . . . , λr ) = {(xi )

∞
i=−∞ ∈ � : x f j = λ j , 1 ≤ j ≤ r}. C is a cylinder set.

5
So the support of the cylinder set defined in the previous footnote is { f1, f2, . . . , fr }.
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22. Exercise.

(a) Show that the family A of unions of finite (possibly empty) collections of
cylinder sets in � = �Z forms an algebra. Then show that if � is finite and
(Ai )

∞
i=1 are pairwise disjoint members of A whose union is a member of A

then only finitely many of the Ai are non-empty. Hint: Apply Tychonoff’s
theorem to �Z.

(b) (See, e.g. McCutchen 1999, Theorem 3.2.4.) If � is finite, any finitely
additive set function p from cylinder sets to the non-negative reals6 taking
� to 1 is extendable to a premeasure on A which may thereby be extended
to a measure by Carathéodory’s theorem.7

23. Exercise. Let � = [0, 1) and denote by A the set of unions of finite
(possibly empty), pairwise disjoint families of half-open intervals [a, b) ⊂
[0, 1). Show that A is an algebra of sets. Put p

([a, b)
) = b − a. Show that p

has a unique extension to a premeasure on A.

24. Definition. The outer measure μ∗ you get by applying Carathéodory’s
theorem to the premeasure p of the foregoing exercise is called Lebesgue outer
measure, which we denote by m∗. We denote by L the σ -algebra B coming
from Carathéodory’s theorem; members of L are called Lebesgue measurable
sets. The restriction of m∗ to B is called Lebesgue measure, which we denote
by m.

25. Remark. Although we’ve only defined Lebesgue measure, Lebesgue mea-
surable sets, etc. here on the unit interval, one can of course extend this
to the whole line in the obvious way; readers should convince themselves
of this.

26. Definition. For A ⊂ R, define the Lebesgue inner measure of A to be the
quantity m∗(A) = sup{m(B) : B ∈ L, B ⊂ S}.8
27. Exercise. Prove that for any set A and any interval I , m∗(A) = |I | −
m∗(I \ A).

6 In other words, if C1, . . . , Cr are pairwise disjoint cylinder sets whose union is a cylinder set C ,
then p(C) = ∑r

i=1 p(Ci ).
7 It is instructive, and the reader is encouraged, to explore just what such a finitely additive func-

tion looks like. For a quick example, suppose that � = {a, d}. The cylinder set C1 that sees the
occurrence of “add” at the zero place (that is, C(0, 1, 2, a, d, d)) and the cylinder set C2 that
sees “ada” at the zero place are disjoint and their union is the cylinder set C3 that sees “ad” at
the zero place; hence any premeasure p must satisfy p(C1) + p(C2) = p(C3), but these are the
only sorts of conditions.

8
The reader should check that this supremum is a maximum; i.e. it is attained.
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28. Exercise. Show that for any Lebesgue measurable set A ⊂ [0, 1],
m(A) = sup{m(K ) : K ⊂ A, K is closed} and m(A) = inf{m(U ) : A ⊂
U, U is open}. (We may sometimes say, accordingly, that Lebesgue measure
is inner regular with respect to closed sets and outer regular with respect to
open sets.)

29. Definition. Let (�,A) and (�′,A′) be measurable spaces. A function
T : � → �′ satisfying T −1 A′ ∈ A for every A′ ∈ A′ is said to be
(A,A′)-measurable, or simply measurable when A and A′ are understood.
Let (�,A, μ) and (�′,A′, μ′) be probability spaces. A measurable function
T : � → �′ satisfying μ(T −1 A′) = μ′(A′) for every A′ ∈ A′ is said to be
measure-preserving.

30. Theorem. (Urysohn’s lemma; see e.g. Dudley 2002, Lemma 2.6.3.) Let X
be a normal topological space, and let A and B be disjoint closed subsets of
X. There exists a continuous function f : X → [0, 1] such that f (x) = 0 for
all x ∈ A and f (x) = 1 for all x ∈ B.

(Proof omitted.)

31. Exercise. Let (�,A, μ) and (�′,A′, μ′) be measure spaces and suppose
that A′ is generated by a family of sets B. Let T : � → �′. Show that:

(a) if T −1 B ∈ A for every B ∈ B then T is measurable;
(b) if μ(T −1 B) = μ′(B) for every B ∈ B then T is measure-preserving.

32. Definition. Let (�,A, μ) and (�′,A′, μ′) be probability spaces and sup-
pose π : � → �′ is a measure-preserving transformation. We say that
π is a homomorphism, or a factor map, and that (�′,A′, μ′) is a factor of
(�,A, μ).

33. Definition. Let (�,A, μ) and (�′,A′, μ′) be probability spaces and sup-
pose T : � → �′ is a homomorphism. If there exist full measure sets9 X ⊂ �

and X ′ ⊂ �′ such that the restriction of T to X is a bijection to X ′, and
T −1 : X ′ → X is measurable, then we will say that T is an isomorphism, and
that the spaces (�,A, μ) and (�′,A′, μ′) are isomorphic.

34. Comment. When two spaces (�,A, μ) and (�′,A′, μ′) are isomorphic,
then, once appropriate null sets are disregarded, they are “essentially the same
space”. In other words, they are in fact the same, up to relabeling.

35. Exercise. Show that “is isomorphic to” is an equivalence relation and that
completeness is an isomorphism invariant.

9
A set X ⊂ � is said to be of full measure if μ(� \ X) = 0.
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36. Convention. Our attitude toward null sets is that they “don’t count”.
Accordingly we will assume that all probability spaces are complete.

Without this convention, ([0, 1],L, m) would not be isomorphic to
([0, 1],B, m), where B is the σ -algebra of Borel sets (that is, the σ -algebra
generated by the open sets) for the rather uninteresting (though non-trivial)
reason that L has more null sets than B does.

37. Definition. An interval space consists of an interval [0, t] equipped with
Lebesgue measure, where 0 ≤ t ≤ 1, to which are appended countably many
points having a combined positive measure 1 − t ; with atoms if t < 1, without
atoms if t = 1.10

38. Exercise. Show that an interval space is a complete probability space.

39. Definition. A Lebesgue space is a probability space that is isomorphic to
some interval space. A Lebesgue space is non-atomic if it is isomorphic to
([0, 1],L, m).

40. Remark. A classic reference in the theory of Lebesgue spaces, axiomat-
ically defined, is Rohlin (1952), though this and most of the literature on
axiomatic treatments is fraught with vagueness and ambiguity (if not con-
fusion), due in part to a cavalier attitude toward sets of measure zero. (For
an interesting and well-motivated modern axiomatic treatment, see Rudolph
(1990).) An arguably more sensible theory of spaces measurably isomorphic to
the unit interval is that of regular Borel probability measures on Polish spaces;
however, we are choosing to skirt most of the issues entirely by simply defin-
ing Lebesgue spaces to be those that are isomorphic to an interval space. (Not
all of the issues: see the axiomatic criterion in Theorem 53 below.)

There are tremendous technical advantages to doing analysis on Lebesgue
spaces. Following standard ergodic theory practice, we shall deal almost exclu-
sively with non-atomic Lebesgue spaces in this book. Since, in essence, the
only non-atomic Lebesgue space is the unit interval, one can be deceived into
thinking that this is unduly restrictive. However, the concept is actually quite
general. Indeed, just about every probability space you are likely to encounter
is Lebesgue or at least has a Lebesgue completion; in particular, spaces derived
from completing regular Borel measures on compact metrizable spaces are
Lebesgue; non-Lebesgue spaces are pathological examples, generally deriving

10 So, let θ = [0, t] ∪ C , where C is a countable set whose intersection with [0, t] is empty,
let f : C → [0, 1 − t] be a function satisfying

∑
c∈C f (c) = 1 − t , let A consist of all

L ∪ D, where L is a Lebesgue measurable subset of [0, t] and D is any subset of C , and for
A = L ∪ D ∈ A, put μ(A) = m(L) +∑

c∈D f (c). (θ,A, μ) is an interval space.
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from non-separable topologies or via constructions requiring the axiom of
choice.

1.3. Properties of Lebesgue spaces, factors

In this subchapter we collect facts about probability spaces for which the
hypothesis that you are dealing with a Lebesgue space is needed. Among these
is the fact that any factor of a Lebesgue space is a Lebesgue space.

41. Exercise. Let (�,A, μ) be a non-atomic Lebesgue space. Let ε > 0 and
suppose A ∈ A with μ(A) > ε. Then there exists B ∈ A with B ⊂ A
satisfying μ(B) = ε.

We need the following classical theorem.

42. Theorem. (Lusin; see e.g. Folland 1984, Theorem 7.10.) Let f : [0, 1] →
R be Lebesgue measurable. For every ε > 0 there exists a continuous function
g : [0, 1] → R such that m

({x : f (x) �= g(x)}) < ε.

Sketch of proof.

43. Exercise. Show that we may assume without loss of generality that
0 < f (x) < 1 for all x ∈ [0, 1]. Hint: Consider the function h(x) =
1
2

(
1 + f (x)

1+sup(| f |)
)

. •

Suppose, then, that 0 < f (x) < 1. For every x ∈ [0, 1], write f (x) =∑∞
n=1 an(x)2−n for the binary decimal expansion of f (x)11 and let Hn =

{x ∈ [0, 1] : an(x) = 1}. The sets Hn are clearly Lebesgue measurable.
Accordingly, by Exercise 28 one may approximate Hn by an open set Un and
by a closed set Kn such that Kn ⊂ Hn ⊂ Un , with m(Un \ Kn) < δn , where∑∞

n=1 δn < ε. Pick, by Urysohn’s lemma, continuous functions hn satisfying
hn(x) = 1 for x ∈ Kn and hn(x) = 0 for x ∈ U c

n . Let g(x) = ∑∞
n=1 hn(x)2−n .

44. Exercise. Show that g is continuous and that m
({x : f (x) �= g(x)}) < ε.

Below, we will see that a measure-preserving bijection T between probabil-
ity spaces needn’t be an isomorphism (due to non-measurability of T −1) even
when the range space is Lebesgue. The content of the next theorem is that this
can’t happen when the domain and range are each Lebesgue.

11 There is an issue about uniqueness here for countably many cases but one can agree to choose in
these cases in some canonical fashion; for example, one can agree to avoid expansions having
only finitely many occurrences of 0 where possible.
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45. Theorem. Let (�,A, μ) and (X,B, ν) be Lebesgue spaces and suppose
T : � → X is injective and measure preserving. Then T A is measurable for
every measurable set A.

Sketch of proof.

46. Exercise. Prove that it is sufficient for the general case to establish the
conclusion when both (�,A, μ) and (X,B, ν) are ([0, 1],L, m). •
So, let T : [0, 1] → [0, 1] be injective and measure-preserving. Let A ∈ L.
We must show that T A ∈ L.

47. Exercise. It is sufficient to show that for arbitrary ε > 0, m∗(T A) <

m∗(T A) + 2ε. •
Let ε > 0 be arbitrary. By Lusin’s theorem, there is a continuous function
g : [0, 1] → [0, 1] such that the set B = {x : T x �= g(x)} satisfies m(B) < ε.
ε-approximate A \ B and Ac \ B from the inside by closed sets K1 and K2,
respectively.

48. Exercise. Show that g(K1) and g(K2) are measurable. Hint: recall that the
continuous image of a compact set is compact. Show that m(K1) + m(K2) >

1 − 2ε. Finally show that g(K1) ⊂ T A ⊂ g(K2)
c and complete the proof.

49. Exercise. Obtain the following more general version of Theorem 45 by
adapting its proof. Let (�,A, μ) and (X,B, ν) be Lebesgue spaces and sup-
pose T : � → X is measure-preserving. Prove that if for some B ⊂ X ,
T −1(B) is measurable, then B is measurable.

We need a way of verifying that spaces we construct are Lebesgue spaces.

50. Definition. Let � be a set. A sequence (Ci )
∞
i=1 of subsets of � is said to

separate points on � if for every x, y ∈ � with x �= y there is some i ∈ N
such that either x ∈ Ci and y ∈ Cc

i or y ∈ Ci and x ∈ Cc
i . A sequence (Pi )

∞
i=1

of countable partitions of � separates points if a sequence consisting of all the
cells of all the Pi separates points.

51. Exercise. Let (�,A, μ) be a measure space. Show that ρ(A, B) =
μ(A�B) defines a metric on A, modulo identification of sets differing by a
null set.

52. Definition. Let (�,A, μ) be a measure space. A property P predicated
of points ω ∈ � is said to hold almost everywhere, or a.e., if the set of x for
which P(x) fails has zero measure.
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53. Theorem. Let (�,A, μ) be a probability space. Suppose there is a
countable sequence of measurable sets (Ci )

∞
i=1 that separates points such that:

(a) if Bi is a sequence of measurable sets such that Bi ∈ {Ci , Cc
i } for every

i ∈ N then
⋂∞

i=1 Bi �= ∅;
(b) if C is the algebra generated by (Ci )

∞
i=1 then for every A ∈ A, μ(A) =

inf{∑∞
i=1 μ(Di ) : Di ∈ C, i ∈ N with A ⊂ ⋃∞

i=1 Di }.
Then (�,A, μ) is a Lebesgue space.

Idea of proof. First establish that there is a countable sequence (Bi )
∞
i=1 ⊂ A

that is dense for the metric ρ(A, B) = μ(A�B). Next, let Pn be the algebra
generated by B1, Bc

1, . . . , Bn, Bc
n . (Pn) is an increasing sequence of partitions.

Construct an isomorphic increasing sequence of partitions of the unit interval
that separates points and use this to construct a pointwise isomorphism.

Sketch of proof. First we assume that μ({ω}) = 0 for every ω ∈ �. That is, we
assume that (�,A, μ) has no atoms. For n ∈ N, let Cn be the set of positive
measure, minimal elements of the algebra generated by (Ci )

n
i=1. Let I be the

family of closed intervals contained in [0, 1].
54. Exercise. Show there exist, for all n ∈ N, maps 
n : Cn → I satisfying:

(a) for every n ∈ N and every C ∈ Cn , m
(

n(C)

) = μ(C);
(b) for every n ∈ N and every distinct C, D ∈ Cn , 
n(C) ∩ 
n(D) is either

empty or consists of a single point;
(c) if n > m, C ∈ Cn and D ∈ Cm with C ⊂ D, then 
n(C) ⊂ 
m(D).

55. Exercise.

(a) Show that for a.e. ω ∈ �, ω lies in some member Cn,ω of Cn for every
n ∈ N.

(b) For such ω, prove that limn μ(Cn,ω) = 0. Use this to show that⋂∞
n=1 
n(Cn,ω) has a unique element π(ω).

(c) Prove that π : � → [0, 1] is, upon deleting suitable sets of measure
zero from � and from [0, 1], a bimeasurable measure-preserving bijec-
tion, i.e. an isomorphism. Hint: measurability of the inverse is achieved
by, essentially, showing the image to be full measure. •

For the general case, when (�,A, μ) may have atoms, start by deleting
the atoms and applying the first case to show that whatever part of the space
remains is isomorphic to some interval [0, t]. The rest is easy: just map atoms
to atoms of equal measure.

We now turn to a discussion of how a sub-σ -algebra of a Lebesgue space
determines a factor of the whole space that is itself Lebesgue.
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56. Example. Notice that if π : � → �′ is a factor map then π−1(A′) =
{π−1(A) : A ∈ A′} is a σ -algebra contained in A. The following theorem
contains a converse.

57. Theorem. Let (�,A, μ) be a Lebesgue probability space and suppose
that B ⊂ A is a σ -algebra. There exists a Lebesgue space (�′,A′, μ′) and a
factor map π : � → �′ such that π−1(A′) = B.

Idea of proof. Choose a countable dense set (Bi ) ⊂ B. Merge points not
separated by (Bi ). Apply Carathéodory.

Sketch of proof. Let (Bi ) be as above.

58. Exercise. We can assume without loss of generality that the members of
this sequence form an algebra of sets. •

For x, y ∈ �, write x ∼ y if for all i ∈ N, x and y are in the same cell of the
partition {Bi , Bc

i }.
59. Exercise. Show that ∼ is an equivalence relation. •
Let �′ be the set of equivalence classes of ∼ and let π : � → �′ be the map
that sends a point ω to its equivalence class. (If x ∈ � then π−1

(
π(x)

)
, that is,

the equivalence class of x under ∼, is called the fiber over x .)

60. Exercise.
(
π(Bi )

)∞
i=1 forms an algebra of subsets of �′. If we let

p
(
π(Bi )

) = μ(Bi ), i ∈ N, p is a premeasure on this algebra. •
Using Carathéodory’s extension theorem and the standard completeness con-
struction, extend the algebra to a σ -algebra A′ and the premeasure p to a
complete measure μ′.

61. Exercise. Show that π : � → �′ is a homomorphism from (�,A, μ)

to (�′,A′, μ′) satisfying π−1(A′) = B. Next show that (�′,A′, μ′) is a
Lebesgue space. Hint: it may have atoms even if (�,A, μ) doesn’t. Get rid
of these first and apply Theorem 53.

62. Convention. If (�,A, μ) is a Lebesgue space and B ⊂ A is a σ -algebra,
we may say that B is a “factor” of A. What we have in mind by this abuse of
notation is the space (�′,A′, μ′) of the above construction.

63. Lemma. Let (�,A, μ) be a probability space and let f : � → N be a
measurable function. Given ε, there is an i such that P( f ≥ i) < ε.

64. Exercise. Prove the lemma.
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65. Definition. Let (�,A, μ) be a probability space. A measurable partition
is a partition P of � into measurable cells.

66. Theorem. Suppose (�,A, μ) is a Lebesgue space. Let (Pi )
∞
i=1 be an

increasing12 sequence of finite, measurable partitions that separates points.
If A ∈ A and ε > 0, there is some i ∈ N and some set B which is a union of
some of the pieces of Pi such that μ(A�B) < ε.

Idea of proof. Assume your space to be [0, 1). Remove a little of the space
to make A, Ac, and every set of P1 closed. Remove a little more to make
every set of P2 closed. Continue. Since nested sequences of these closed sets
intersect in at most a single point, they are eventually either completely out of
A or completely out of Ac. For a point x in your space, let i(x) be the smallest
natural number so that the atom of Pi that contains x is either completely out of
A or completely out of Ac. Then most points of Pi are in an atom completely
out of A or completely out of Ac for i chosen as in the previous lemma.

Sketch of proof.

67. Exercise. Show that the conclusion of the theorem is an isomorphism
invariant, so that in particular we may assume without loss of general-
ity that (�,A, μ) is an interval space. Indeed, show that we may assume
that (�,A, μ) is an interval space without atoms; i.e. [0, 1] with Lebesgue
measure. •
A big advantage of being allowed to assume the space is ([0, 1],L, m) is that
we can utilize the relationship of m to the topology of [0, 1]; in particular, the
facts that the measure m is inner regular with regard to compact sets and outer
regular with regard to open sets. Let A ∈ A and let ε > 0.

68. Exercise. Show that the cells comprising the partitions Pi can be approx-
imated by closed sets from the inside in such a way that:

(a) for all n, the union of the closed sets approximating the cells of Pn has
measure > 1 − ε

2 ;
(b) for any sequence (Ai )

∞
i=1 satisfying Ai ∈ Pi and A1 ⊃ A2 ⊃ A3 ⊃

· · · , one has C1 ⊃ C2 ⊃ C3 ⊃ · · · , where Ci is the closed set
approximating Ai . •

69. Exercise. Show that for every ω ∈ �, there exist sets A(ω)
i ∈ Pi , i ∈ N,

such that
⋂n

i=1 A(ω)
i = {ω}. It follows that if C (ω)

i is the interior approximating

12
By increasing we mean if i < j and p ∈ Pi then p is a union of some members of Pj .
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closed set for A(ω)
i , one has

⋂n
i=1 C (ω)

i equal to either {ω} or to ∅. Show that

the measure of P = {ω : ⋂n
i=1 C (ω)

i = {ω}} is at least 1 − ε
2 . •

Now, let C be an open set containing A and satisfying m(C) < m(A) + ε
2 .

70. Exercise. For any x ∈ P ∩ C , there exists r = r(x) ∈ N such that
C (ω)

r ⊂ C . Hence for some R ∈ N, E = {x ∈ P ∩ C : r(x) ≤ R} satisfies
m(E) > m(A) − ε

2 . •
One finishes the proof by letting B = ⋃

ω∈E C (ω)
R .

71. Corollary. Let P be the family of measurable sets consisting of the cells
of the various partitions Pi in Theorem 66. Then P generates A mod 0.

1.4. Random variables, integration, (stationary) processes

In this subchapter we collect the basic facts of integration theory and introduce
one of the most important objects of study for this book: stationary processes.

72. Definition. By a random variable we mean a measurable function from a
probability space to an abstract set � equipped with a σ -algebra. We will call
� an alphabet.

73. Discussion. Most of the random variables we encounter in this book will
be into a finite alphabet. For real-valued random variables, we require a bit of
integration theory, which we now develop briefly.

Let (�,A, μ) be a fixed measure space.

74. Definition. The extended real line is the set R = R ∪ {−∞,+∞}. The
usual order relation < is extended to a total order on R × R consistent with
−∞ < x < +∞ for all real x .

75. Notation. Notation for intervals in R is exactly what one would expect,
consistent with the extended order relation, e.g. [−∞, x) = {y ∈ R : y < x}.
76. Definition. The order topology on R is the topology generated by inter-
vals; in particular, intervals [−∞, x) form a neighborhood basis for −∞, while
intervals (x,+∞] form a neighborhood basis for +∞.

77. Convention. When discussing measurability of functions into the
extended reals, we mean with respect to the σ -algebra on R generated by the
open sets of the order topology.

78. Exercise. If ( fi )
∞
i=1 are measurable functions � → R then supi fi , infi fi ,

lim supi fi and lim infi fi are measurable.
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79. Definition. A simple function � → R is a function ϕ(x) =∑n
i=1 ci 1Ai (x), where A1, . . . , An ∈ A with μ(Ai ) < ∞ and c1, . . . , cn ∈ R.

The integral of ϕ is
∫

ϕ dμ = ∑n
i=1 ciμ(Ai ).

80. Exercise. If f : � → [0,∞] is measurable, there exists a sequence
(ϕi )

∞
i=1 of simple functions with 0 ≤ ϕ1(x) < ϕ2(x) < · · · such that

limn→∞ ϕn(x) = f (x) for all x ∈ �.

We now extend the definition of the integral to non-negative measurable
functions.

81. Definition. If f : � → [0,∞] is measurable, let∫
f dμ = sup

{ ∫
ϕ dμ : 0 ≤ ϕ ≤ f, ϕ a simple function

}
.

82. Exercise. This definition of the integral agrees with the previous one if
f is a simple function. Hint: show first that for simple functions ϕ1 < ϕ2,∫
ϕ1 dμ <

∫
ϕ2 dμ.

83. Theorem. (Monotone convergence theorem.) If ( fi )
∞
i=1 is a non-

decreasing sequence of non-negative measurable functions on � and we let
f (x) = limi→∞ fi (x), then

∫
f dμ = limi→∞

∫
fi dμ.

Sketch of proof. Clearly
∫

fi dμ ≤ ∫
f dμ for all i , so limi→∞

∫
fi dμ ≤∫

f dμ. Let ε > 0 be arbitrary and let ϕ = ∑M
i=1 ci 1Bi be an arbitary

non-negative simple function with ϕ ≤ f . The idea is to show that
limi→∞

∫
fi dμ ≥ (1 − ε)

∫
ϕ dμ, which, since ε and ϕ are arbitrary, will get

that limi→∞
∫

fi dμ ≥ ∫
f dμ, completing the proof.

84. Exercise. Fill in the details.

85. Exercise. If f → [0,∞] is measurable then
∫

f dμ = 0 if and only if
f (x) = 0 a.e.

86. Theorem. (Fatou’s lemma.) Let fn : � → [0,∞] be measurable
functions, n ∈ N.

(a)
∫

lim infn→∞ fn dμ ≤ lim infn→∞
∫

fn dμ.
(b) If μ(�) < ∞ and there exists K < ∞ such that fn(x) ≤ K for all x and

all n then
∫

lim supn→∞ fn dμ ≥ lim supn→∞
∫

fn dμ.

Sketch of proof.

(a) For all i ,
∫

infn≥i fn dμ ≤ infn≥i
∫

fn dμ. Notice that infn≥i fn increases
to lim infn→∞ fn as i → ∞.
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87. Exercise. Complete the proof. Hint: monotone convergence theorem. For
(b), let gn = K − fn and apply part (a).

88. Definition. Let f : � → R. We put f + = sup{ f, 0} and f − =
− inf{ f, 0}.
89. Definition. If f : � → [−∞,∞] is measurable and at least one of∫

f + dμ,
∫

f − dμ is finite then we let
∫

f dμ = ∫
f + dμ − ∫

f − dμ.
If
∫

f dμ exists and is finite we say that f is integrable.

90. Comment. One easily checks that f is integrable if and only if∫ | f | dμ < ∞.

91. Exercise. If f (x) = g(x) a.e. then
∫

f dμ = ∫
g dμ.

92. Theorem. (Dominated convergence theorem.) Suppose that ( fi )
∞
i=1 is a

sequence of measurable functions � → R and g : � → [0,+∞] with | fi | ≤
g a.e. for all i . If f (x) = limn→∞ fn(x) exists a.e. then f is integrable and∫

f dμ = limn→∞
∫

fn dμ.

Sketch of proof. Note that g − fn ≥ 0 a.e. By Fatou’s lemma,∫
g dμ −

∫
f dμ =

∫
lim inf
n→∞ (g − fn) dμ ≤ lim inf

n→∞

∫
g − fn dμ

=
∫

g dμ − lim sup
n→∞

∫
fn dμ.

93. Exercise. Complete the proof. Hint: rerun the above for g + fn; conclude
that lim supn→∞

∫
fn dμ ≤ ∫

f dμ ≤ lim infn→∞
∫

fn dμ.

94. Definition. If X is an integrable random variable into the reals, the
expectation of X is defined by E(X) = ∫

X .

95. Convention. In this book, random variables will, unless otherwise noted,
be functions into countable alphabets �, and the relevant σ -algebra on �

will always be taken to be the power set P(�). We will often say sim-
ply “X is a random variable on the alphabet �”, suppressing mention of
the measure space (Z ,B, μ) on which X is defined. Note, however, that
when multiple random variables are considered simultaneously, we always
assume that their domain spaces coincide (see below for more detailed
conventions).

96. Notation. If X is a random variable from domain space (Z ,B, μ) to an
alphabet �, for a set B ⊂ � we write P(X ∈ B) (read “the probability that
X lies in B”) for the quantity μ

(
X−1(B)

)
. If B = {λ} is a singleton, we may

write P(X = λ) (read “the probability that X is equal to λ”) instead. Also, for
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example, if X1, X2, X3 are random variables we write P(X1 = a, X2 = b,

X3 = c) for μ
(
X−1

1 (a) ∩ X−1
2 (b) ∩ X−1

3 (c)
)
.13

97. Definition. The density function of a random variable X on an alphabet �

is the function f : � → [0, 1] defined by f (λ) = P(X = λ). The joint density
function of random variables X1, X2, X3 is given by g(a, b, c) = P(X1 =
a, X2 = b, X3 = c).14

98. Definition. Random variables X1, X2, . . . , Xr are said to be independent
if their joint density function is the product of their individual density func-
tions.15 An infinite family of random variables is independent if every finite
subfamily is independent.

99. Definition. Let � be an alphabet. A preprocess on � is a doubly infinite16

sequence of random variables . . . , X−3, X−2, X−1, X0, X1, X2, X3, . . . into
an alphabet �. It is stationary if its “probability law” is “time invariant”.17

100. Definition. A preprocess (Xi )
∞
i=−∞ on � is a process if its domain space

(that is, the domain space of the Xi ) is (�,A, μ), where � = �Z, A is
generated by the cylinder sets,

P(Xi1 = λ1, . . . , Xik = λk) = μ
{
(xi )

∞
i=−∞ ∈ � : xi1 = λ1, . . . , xik = λk

}
for all i1, . . . , ik ∈ Z and λ1, . . . , λk ∈ �, and (�,A, μ) is a Lebesgue space.

101. Comment. What we call a preprocess might be called a process by
some statisticians. However, this allows in some pathological examples that we
would like to avoid; we discuss this below. The crucial part of our definition is
the part that requires (�,A, μ) to be Lebesgue.

Note that when (Xi ) is a stationary process, the probability that X0 is equal
to c, X1 is equal to a and X2 is equal to t is the same as the probability that
X100 is equal to c, X101 is equal to a and X102 is equal to t . This is just a way
of saying that the probability of seeing “cat” doesn’t change over time.

13 More generally, if X1, . . . , Xr are random variables and B1, . . . , Br are subsets of �, we write
P(X1 ∈ B1, . . . , Xr ∈ Br ) for the quantity μ

(
X−1(B1)∩ · · · ∩ X−1(Br )

)
or, if Bi = {λi } are

singletons, P(X1 = λ1, . . . , Xr = λr ).
14 More generally, if X1, . . . , Xr are random variables into �, their joint density function is the

function g : �r → [0, 1] defined by g(λ1, . . . , λr ) = P(X1 = λ1, X2 = λ2, . . . , Xr = λr ).
15 In other words, if P(X1 = λ1, X2 = λ2, . . . , Xr = λr ) = P(X1 = λ1)P(X2 =

λ2) . . . P(Xr = λr ) for every λ1, λ2, . . . , λr ∈ �.
16

One can also consider singly infinite sequences, though we usually won’t in this book.
17 This means that for any f1, f2, . . . , fr ∈ Z, every B1, . . . , Br ⊂ �, and every n ∈ Z, P(X fi ∈

Bi , 1 ≤ i ≤ r) = P(X fi +n ∈ Bi , 1 ≤ i ≤ r).
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102. Definition. Random variables X and Y are identically distributed if
their density functions coincide. A stationary process (Xi )

∞
i=−∞ is said to be

i.i.d. (for independent, identically distributed) if the Xi s are independent and
identically distributed.

103. Example. Say we want to represent an independent sequence of heads
and tails obtained by a doubly infinite independent sequence of flips of a fair
coin. This can be modeled as a stationary process in the following way. Let
� = {h, t} and put � = �Z. For any cylinder set C defined by specifying r
coordinates,18 put p(C) = 2−r .

104. Exercise. Show that p extends uniquely to a premeasure on the algebra
consisting of the finite unions of cylinder sets. Apply Carathéodory’s theo-
rem to extend p to a measure on the σ -algebra generated by the cylinder sets.
Denote by (�,A, μ) the resulting probability space. Now define a process
(Xi )

∞
i=−∞ on � by the rule X j

(
(ωi )

∞
i=−∞

) = ω j .
This is an effective model of a doubly infinite independent sequence of flips

of a fair coin in the sense that a black box which picks a point ω ∈ � “at
random” and spits out the sequence

(
Xi (ω)

)∞
i=−∞ will not be distinguishable

from one that spits out a doubly infinite sequence of hs and ts obtained from
coin tossing.

105. Theorem. Let (Yi )
∞
i=−∞ be any stationary preprocess whose domain

space is not necessarily Lebesgue. Show that there exists a stationary process
(Xi )

∞
i=−∞ such that for any r ∈ N and f1, . . . , fr ∈ Z, the joint distribution

of X f1 , . . . , X fr is equal to the joint distribution of Y f1 , . . . , Y fr .

Sketch of proof. Let � = �Z and let C be the algebra generated by cylinder
sets. For a cylinder set such as C = {(xi )

∞
i=−∞ : x0 = c, x1 = a, x2 = t}, put

p(C) = P(X0 = c, X1 = a, X2 = t).19

106. Exercise. Show that p extends uniquely to a premeasure on C. Let
A and μ be the resulting σ -algebra and measure extending p obtained via
Carathéodory’s theorem. Note that (�,A, μ) is a Lebesgue space.

107. Aside. According to the previous theorem, if we’re dealing with a prepro-
cess (Xi )

∞
i=−∞ and whatever we would like to know about it is characterized

by the joint distributions of finite collections of the Xi , we can assume it is a
process and hence that the space we are working on is Lebesgue. On the other

18
In the notation of the previous footnote, a cylinder set C( f1, . . . , fr , λ1, . . . , λr ).

19 More generally, if C = C( f1, . . . , fr , λ1, . . . , λr ) = {(xi )
∞
i=−∞ ∈ � : x f j = λ j , 1 ≤ j ≤

r}, define p(C) = P(X f j = λ j , 1 ≤ j ≤ r).
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hand, beyond their finite joint distributions, preprocesses can be pathological,
as we will demonstrate in the remainder of this section. Since, however, none
of this material will be used in the rest of the book, disinterested readers may
feel free to skip.

108. Example (A pathological preprocess). The first step is to get our hands
on a subset of the reals that is not Lebesgue measurable. Here is one way to
do this.

109. Exercise. Let A ⊂ R be Lebesgue measurable with m(A) > 0.

(a) For every ε > 0 there exists an interval I ⊂ R such that μ(I∩A)
|I | > 1 − ε.

(b) There exists δ > 0 such that [−δ, δ] ⊂ A − A = {x − y : x, y ∈ A}.
110. Exercise. Let G be the additive group of reals generated by {1, π}, let H
be the group generated by {1, 2π}, let C be a set of coset representatives for
R
G (note that the existence of such a set requires the axiom of choice) and let
A = C + H = {c + h : c ∈ C, h ∈ H}. Show that:

(a) G is dense in R;
(b) R is the disjoint union of A and B = A + π ;
(c) A − A (and hence B − B as well) does not contain any non-trivial interval

centered at 0; hence
(d) for any interval I , m∗(I ∩ A) = m∗(I ∩ B) = m(I ) and m∗(I ∩ A) =

m∗(I ∩ B) = 0.

Now that we’ve got a non-measurable set, we construct a stationary process
that acts locally like coin tossing, in the sense that the joint distribution of
any finite collection of its constituent random variables models coin tossing
efficaciously, but acts globally very unlike coin tossing in that if you interpreted
it as such, one of the “tosses” would be wholly determined by the others.

111. Exercise. Justify the following steps:

(a) There exists a set A ⊂ [0, 1] such that m∗(A) = 1 and m∗(A) = 0. Hint:
use the foregoing exercise.

(b) Let A be the σ -algebra of subsets of [0, 1] generated by A∪L (recall that L
is the σ -algebra of Lebesgue measurable subsets of [0, 1]). Show that every
member of A can be uniquely written in the form (A ∩ L1) ∪ (Ac ∩ L2),
where L1, L2 ∈ L.

(c) For B = (A ∩ L1) ∪ (Ac ∩ L2), define μ(B) = 1
2

(
m(L1) + m(L2)

)
. Then

([0, 1],A, μ) is a probability space.
(d) The identity map x → x is a measure-preserving injection from

([0, 1],A, μ) to ([0, 1],L, m) that has a non-measurable inverse. Con-
clude that ([0, 1],A, μ) is not a Lebesgue space.
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(e) A.e. x ∈ [0, 1] has a unique binary decimal expansion; that is, for a.e. x ,
there is a unique {0, 1}-valued sequence (ai )

∞
i=1 such that x = ∑∞

i=1 ai 2−i .
Define (for these values x) a sequence of random variables (Yi )

∞
i=−∞ from

([0, 1],A, μ) into the alphabet � = {0, 1} as follows:

(i) Yi (x) = a2i−1 for i > 0;
(ii) Yi (x) = a−2i for i < 0;

(iii) Y0(x) = 1 if x ∈ A and 0 otherwise.

Prove that (Yi )
∞
i=−∞ forms a stationary preprocess.

(f) Let C = {A ∩ L : L ∈ L} and define a measure ν on C by
ν(A ∩ L) = m(L). Show that the injection map x → x from (A, C, ν)

to ([0, 1),L, m) is measure-preserving with a non-measurable inverse.
Conclude that (A, C, ν) is not a Lebesgue space.

(g) Define a sequence of random variables (Zi )
∞
i=−∞ from (A, C, ν) into the

alphabet � = {0, 1} as follows: For a.e. z ∈ A, write z = ∑∞
i=1 ai 2−i

and put

(i) Zi (x) = a2i+1 for i ≥ 0;
(ii) Zi (x) = a−2i for i < 0.

Prove that (Zi )
∞
i=−∞ forms a stationary preprocess.

(h) Show that for any f1, . . . , fr ∈ Z, the joint distributions of Y f1 , . . . , Y fr
and Z f1 , . . . , Z fr are equal to the joint distribution of X f1 , . . . , X fr , where
(Xi )

∞
i=−∞ is the coin tossing stationary process defined in Exercise 103

above.

(i) Argue that knowledge of all the Xi , i �= 0, provides no knowledge of
the value of X0, but that knowledge of all the Yi , i �= 0, determines the
value of Y0 with probability 1.

(j) Argue that all possible sequences of 0s and 1s are equally likely to
occur as output of the process (Xi )

∞
i=−∞, but that a non-negligible set of

sequences is forbidden as output of (Zi )
∞
i=−∞. (What is the meaning of

“non-negligible” here?)

112. Discussion. In what sense, exactly, would black boxes housing the two
processes (Xi )

∞
i=−∞ and (Yi )

∞
i=−∞ be distinguishable one from the other? On

one hand, if you knew the non-measurable set A used to construct (Yi )
∞
i=−∞,

they would be very distinguishable, for as was mentioned, Y0 is determined
by the other Yi s, this dependence being linked critically to A. On the other
hand, if you didn’t know (or even know about) A, you probably wouldn’t be
able to figure out enough about A or catch any inkling of its existence by
looking at countably many instances of output from the black box housing
(Yi )

∞
i=−∞. Then again, if you could look at an uncountable number of instances

of output, you’d probably be able to eventually figure out what A was. (Readers
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are encouraged to compose for themselves a similar dialectical argument about
(Zi )

∞
i=−∞.)

At any rate, it is time to leave pathology behind.

113. Convention. From this point forward, all the probability spaces with
which we deal are assumed to be non-atomic Lebesgue spaces unless otherwise
noted.

1.5. Conditional expectation

We give basic definitions on conditional expectation. For the purposes of this
section, the reader is expected to know the Radon–Nikodym theorem (see, e.g.,
Folland 1984, Theorem 3.8).

Let (�,A, μ) be a Lebesgue space, let f be an integrable function on �

and suppose that B ⊂ A is a σ -algebra. Form (see Example 56) the canonical
factor space (�′,A′, μ′) with canonical factor map π : � → �′. Now define
a measure ν on (�′,A′) by the rule ν(A′) = ∫

π−1(A′) f dμ, A′ ∈ A′.

114. Exercise. Show that ν is non-singular with respect to μ′: that is, if
μ′(A′) = 0 then ν(A′) = 0. Conclude by the Radon–Nikodym theorem that
there is some μ′-integrable function g such that ν(A′) = ∫

A′ g dμ′ for every
A′ ∈ A′.

115. Definition. The function h = g ◦ π , where g is as constructed above, is
called the conditional expectation of f given the σ -algebra B. We denote this
function by h = E( f |B).

If A ∈ A then the conditional probability of A given the σ -algebra B is just
the function P(A|B)(x) = E(1A|B)(x).

116. Exercise. Show that E( f |B) is B-measurable, is constant on fibers and
that for every B ∈ B,

∫
B E( f |B) dμ = ∫

B f dμ.
The alert reader will have noticed that since the construction of condi-

tional expectation depended on the construction of Example 56, which in turn
depended on the arbitrary choice of a countable dense sequence (Bi )

∞
i=1 ⊂ B,

there may be an issue about well-definition. Indeed there is, however as the
following exercise shows, this issue may be satisfactorily resolved up to sets
of measure zero.

117. Exercise. Show that if h1 and h2 are B-measurable functions and∫
B h1 dμ = ∫

B h2 dμ for every B ∈ B then h1 = h2 a.e. Conclude that:

(a) E( f |B) is well defined up to sets of measure zero;
(b) if f is B-measurable then E( f |B) = f a.e.
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118. Definition. A function will be called a version of E( f |B) if it coincides
a.e. with some (and therefore any) h constructed as above.

119. Example. Let B be some measurable set, let P be a finite partition and
let B be the σ -algebra generated by P . Then if f is an integrable function,
E( f |B) takes the constant value 1

μ(p)

∫
p f dμ on p for each positive measure

p ∈ P . This is of course just the average value of f on p.
The intuition this example suggests is that E( f |B)(x) is the expected value

of f (x), given that you know for every B ∈ B whether or not x ∈ B. A further
example illustrates this principle in a somewhat different way.

120. Example. Let (�,A, μ) be the unit square with Lebesgue measure (of
course we didn’t actually define this here but we take it that it’s more or less
standard fare for graduate courses in real analysis) and let B be the σ -algebra
of “vertical sets” {B × [0, 1) : B ∈ L}. Then for an integrable function f
defined on the unit square, a version of E( f |B) is given by E( f |B)(x, y) =∫

f (x, y) dm(y). It is important to notice that E( f |B) is constant on each
vertical fiber {x} × [0, 1).

121. Comment. The reader should take careful note of the general picture
implied by the foregoing example when f = 1A for some measurable A.
The whole space (�,A, μ) may be represented as a square, with A occupying
some region (one does well to imagine a region bounded by a simple closed
curve) of two-dimensional space. To get the value of E(1A|B) at a point (x, y),
you just look to see how much of the fiber over (x, y) (namely {x} × [0, 1)) is
occupied by A. Not all the details of this picture are completely valid in gen-
eral (the fibers over the points here are all isomorphic copies of [0, 1), which
needn’t always happen), however there are lots of cases when it is accurate
and it’s harmless to instruct one’s intuition by means of this general image
in any case. This image is: represent the whole space (�,A, μ) as a square
X × X , think of the sub-σ -algebra B as the algebra of vertical sets B × X ,
think of the canonical factor space (�′,A′, μ′) as the copy of X lying at the
base of the horizontal axis and think of the fiber over a point (x, y) as the
set {ω} × X . Now to get the value of E( f |B) at a point (x, y), you should
think of integrating f against the measure μ(x,y) on the fiber {x}× X . Accord-
ing to a classical theorem of Rohlin (1952), all of this can be formalized.
That lies outside the scope of this book but the general picture is instructive
nonetheless.

122. Definition. Let X be a measurable map on a Lebesgue space (�,A, μ)

into a measurable space (�, C). The σ -algebra generated by X is the σ -algebra
B(X) generated by {X−1(C) : C ∈ C}.
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Let X, Y, Z or more be measurable maps from a Lebesgue space (�,A, μ)

into a measurable space (�, C). The σ -algebra generated by X, Y, Z is the
σ -algebra B(X, Y, Z) generated by

{X−1(C) : C ∈ C} ∪ {Y −1(C) : C ∈ C} ∪ {Z−1(C) : C ∈ C}.
123. Definition. Let (�,A, μ) be a Lebesgue space and let f be an integrable
function on �. For random variables X, Y, Z or more, defined on �, the con-
ditional expectation of f with respect to the σ -algebra B(X, Y, Z) generated
by X , Y and Z is denoted E( f |X, Y, Z).20

We’ll be needing the following exercises later on.

124. Exercise. Suppose ( fi )
∞
i=1 is a sequence of functions whose sum con-

verges in a dominated way.21 Show E(
∑∞

i=1 fi |B) = ∑∞
i=1 E( fi |B) a.e.

125. Exercise. Show that if B1 ⊂ B2 are σ -algebras then E
(
E( f |B1)|B2) =

E( f |B2) a.e.

126. Exercise.

(a) Suppose that f (x) ≤ c a.e. Prove that for any σ -algebra B, one has
E( f |B)(x) ≤ c a.e.

(b) Let B2 ⊂ B1 be σ -algebras and suppose P(A|B1)(x) ≤ c a.e. Then
P(A|B2)(x) ≤ c a.e. Hint: for (b), let f = P(A|B1) and B = B2. Apply
part (a) and the previous exercise.

20
That is, E( f |X, Y, Z) = E

(
f |B(X, Y, Z)

)
.

21
In other words, there is some integrable g such that for all n, |∑n

i=1 fi (x)| < g(x) a.e.



9780521194402c02 CUP/KKW October 10, 2009 21:55 Page-26

2

Measure-preserving systems, stationary
processes

2.1. Systems and homomorphisms

In this subchapter, we give basic definitions concerning measure-preserving
systems and homomorphisms between them.

127. Definition. Let (�,A, μ) be a probability space and assume that T :
� → � is a measure-preserving transformation. We call the quadruple
(�,A, μ, T ) a measure-preserving system. If there are sets X, X ′ ∈ A of full
measure such that T is a bimeasurable bijection between X and X ′ then we say
that the system (�,A, μ, T ) is invertible, or simply that T is invertible.

128. Comment. Whereas probability theory is the study of probability spaces,
ergodic theory is the study of measure-preserving systems. In other words, the
most basic object of study for a probabilist is (�,A, μ), while the most basic
object of study for an ergodic theorist is (�,A, μ, T ).

129. Convention. In this book we will primarily deal with invertible measure-
preserving systems. Accordingly, we may not always say “invertible” though
we generally mean it unless we specify otherwise.

130. Definition. Let (�,A, μ, T ) and (�′,A′, μ′, T ′) be measure-preserving
systems and assume that π : � → �′ is a measure-preserving transformation
such that T ′πω = πT ω for a.e. ω ∈ �. Then we call π a homomor-
phism. We also say that the system (�′,A′, μ′, T ′) is a factor of the system
(�,A, μ, T ), and that the system (�,A, μ, T ) is an extension of the system
(�′,A′, μ′, T ′).

131. Definition. Let (�,A, μ, T ) and (�′,A′, μ′, T ′) be measure-preserving
systems and assume that π : � → �′ is a homomorphism. If there
exist full measure sets X ⊂ � and X ′ ⊂ �′ such that the restriction of
π to X is a bimeasurable bijection between X and X ′, we say that π is
an isomorphism and that the systems (�,A, μ, T ) and (�′,A′, μ′, T ′) are
isomorphic.
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132. Definition. Let (�,A, μ, T ) be a measure-preserving system and let
B ⊂ A be a sub-σ -algebra that is complete with respect to μ. We say that
B is T -invariant if for every B ∈ B, T −1 B ∈ B.

133. Exercise. Show that if π : � → �′ is a homomorphism then {π−1(A) :
A ∈ A′} is a T -invariant σ -algebra of subsets of �.

134. Exercise. Let (�,A, μ, T ) be a measure-preserving system on a
Lebesgue space and suppose that B ⊂ A is a T -invariant σ -algebra.
Carry out the construction of the canonical factor space (�′,A′, μ′).22 Show
that T projects to a measure-preserving transformation T ′ on �′ and that
(�′,A′, μ′, T ′) is a factor of (�,A, μ, T ).

135. Convention. When (�,A, μ, T ) is a measure-preserving system and
B ⊂ A is a T -invariant σ -algebra we shall refer to B as a factor; what we
have in mind is the system (�′,A′, μ′, T ) of the foregoing exercise.

136. Definition. A system (�,A, μ, T ) is said to be ergodic if there
is no measurable set A of measure strictly between 0 and 1 such that
μ(A�T −1 A) = 0.

137. Exercise. Show that (�,A, μ, T ) is ergodic if and only if A ∈ A and
A = T −1 A implies μ(A) ∈ {0, 1}.

2.2. Constructing measure-preserving transformations

In this subchapter we outline three basic ways to construct measure-preserving
transformations. For the purposes of this book, only the second and third are
essential.

138. First method: explicitly defined functions. Take � to be some set, say
for example [0, 1), and define some function T : � → � by an explicit
formula, for example, T x = ex mod 1. This T doesn’t preserve Lebesgue
measure, but it does preserve some measure, for example the point measure23

on any point y that is a solution to the equation x = ex mod 1. (We leave it
to the reader to prove that there is such a solution to this equation in [0, 1).)
This suggests a general scheme whereby one constructs a measure-preserving
system by first specifying a set � and a self-map T and then finding a measure
preserved by T . That this will work under fairly general circumstances is the
content of the following exercise.

22 See Example 56 and the series of exercises following it.
23 The point measure on a point y is the measure that assigns 1 to any set containing y and 0 to

all other sets.
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139. Exercise. Let X be a compact metric space and suppose T : X → X
is continuous. Prove there exists a measure μ on the Borel σ -algebra A such
that (�,A, μ, T ) is a measure-preserving system by completing the steps in
the following argument. (Note: this exercise requires some functional analytic
background. The reader is encouraged to look to the relevant sources for the
details, but we will not use the contents of this exercise in the rest of the book.)

(a) The space M(X) of probability measures on A can be identified with {λ ∈
C(X)∗ : C(1) = 1, C( f ) ≥ 0 if f ≥ 0}. Namely, μ is identified with λ

when
∫

f dμ = λ(μ). (This is the Riesz representation theorem; its proof
is non-trivial. See for example (Folland 1984, Theorem 7.17.)

(b) M(X) is compact in the weak∗ topology. (This follows from the fact
that the unit ball of C(X)∗ is compact and M(X) is closed in the weak∗
topology; see (Folland 1984, Theorems 5.18, 7.17.)

(c) If μ ∈ M(X), let T μ be the measure defined by
∫

f dT μ = ∫
T f dμ.

Now fix any σ ∈ M(X) and let μ be any weak∗ limit point of the sequence
1
n

∑n
i=1 T nσ . Show that μ ∈ M(X) is T -invariant. •

140. Second method: cutting and stacking. This is a very informal and
intuitive introduction to cutting and stacking constructions. We’ll use almost
no notation. Start with an interval taken from the real line and cut the interval
into a bunch of sub-intervals of equal length. Stack these sub-intervals verti-
cally and define a transformation on the whole stack except for the top “rung”
to be the map that sends any point to the point immediately above it (on the
next level up).

141. Example. Say the interval you start with is
[
0, 3

4

)
, which you cut into

three pieces
[
0, 1

4

)
,
[ 1

4 , 2
4

)
and

[ 2
4 , 3

4

)
. After stacking them vertically, the

picture looks something like this:

[
2
4 , 3

4

)
[

1
4 , 2

4

)
[

0
4 , 1

4

)

The transformation at this stage takes x to x + 1
4 for x ∈ [0, 2

4

)
and is undefined

for x ∈ [ 2
4 , 3

4

)
, that is, on the top rung. To define it on (at least part of) the top

rung, cut the whole tower vertically into columns of equal width and stack
them into one or more taller, narrower towers. While you’re at it, you can
add extra rungs (called spacers) in between these columns. These spacers are
new intervals from the real line, disjoint from each other and any previously
chosen; adding them increases the measure of the space you’re constructing.
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The transformation still sends a point on any rung (not the top rung, though)
to the point directly above it on the next rung up. You should check that this
means it’s defined the same way it was before, where it was defined before.

142. Example. Take the previous stack and split it into five equal sized
columns, like this:

[ 10
4 , 11

4 )

[ 5
20 , 6

20 )

[ 0
20 , 1

20 )

[ 11
4 , 12

4 )

[ 6
20 , 7

20 )

[ 1
20 , 2

20 )

[ 12
4 , 13

4 )

[ 7
20 , 8

20 )

[ 2
20 , 3

20 )

[ 13
4 , 14

4 )

[ 8
20 , 9

20 )

[ 3
20 , 4

20 )

[ 14
4 , 15

4 )

[ 9
20 , 10

20 )

[ 4
20 , 5

20 )

Now arrange these columns into two stacks as follows. The first stack con-
sists of (in this order) the first column, three spacers, then the second column.
The second column consists of the third column, the fourth column, a spacer
and the fifth column. We’ll give two pictures of the situation now, one with the
spacers labeled as such and a second one in which the spacers are labeled as
new intervals from the real line.

[ 11
4 , 12

4 )

[ 6
20 , 7

20 )

[ 1
20 , 2

20 )

spacer

spacer

spacer

[ 10
4 , 11

4 )

[ 5
20 , 6

20 )

[ 0
20 , 1

20 )

[ 14
4 , 15

4 )

[ 9
20 , 10

20 )

[ 4
20 , 5

20 )

spacer

[ 13
4 , 14

4 )

[ 8
20 , 9

20 )

[ 3
20 , 4

20 )

[ 12
4 , 13

4 )

[ 7
20 , 8

20 )

[ 2
20 , 3

20 )
or

[ 11
4 , 12

4 )

[ 6
20 , 7

20 )

[ 1
20 , 2

20 )

[ 17
4 , 18

4 )

[ 16
4 , 17

4 )

[ 15
4 , 16

4 )

[ 10
4 , 11

4 )

[ 5
20 , 6

20 )

[ 0
20 , 1

20 )

[ 14
4 , 15

4 )

[ 9
20 , 10

20 )

[ 4
20 , 5

20 )

[ 18
4 , 19

4 )

[ 13
4 , 14

4 )

[ 8
20 , 9

20 )

[ 3
20 , 4

20 )

[ 12
4 , 13

4 )

[ 7
20 , 8

20 )

[ 2
20 , 3

20 )

Continue this process of cutting and stacking countably many times, making
sure that your transformation ends up being defined almost everywhere. (In
other words, so that the combined measure of the tops of the stacks converges
to zero.) Also you want to make sure that the whole space is finite in measure,
so you can’t add arbitrarily many spacers at each stage. At the end, normalize
so that the measure of the whole space is 1.

143. Third method: stationary processes. A stationary processes (Xi )
∞
i=−∞

on an alphabet � gives rise to a measure-preserving transformation in the
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following way. Recall that � = �Z is the domain space of the process. Define
a map T : � → � by T

(
(xi )

∞
i=−∞

) = (zi )
∞
i=−∞, where zi = xi+1.

144. Exercise. Show that (�,A, μ, T ) is an invertible measure-preserving
system. Hint: first show that the collection of cylinder sets generates A mod 0.

In this book, most of the concrete measure-preserving transformations we
construct will be obtained by way of the third method, i.e. via stationary
processes.

2.3. Types of processes; ergodic, independent and (P, T)

The material in this subchapter is essential.

145. Exercise. Let (Xi )
∞
i=−∞ and (Yi )

∞
i=−∞ be stationary processes. If for any

r ∈ N and f1, . . . , fr ∈ Z, the joint distribution of X f1 , . . . , X fr is equal to the
joint distribution of Y f1 , . . . , Y fr , then the processes (Xi )

∞
i=−∞ and (Yi )

∞
i=−∞

are isomorphic.

146. Comment. We may at times talk about stationary process being ergodic,
isomorphic to measure-preserving systems or other processes, etc. In these
cases, one can infer the meaning by taking the assertion to be about the
associated measure-preserving system.

A typical example of a stationary process that fails to be ergodic arises as
follows. Take two coins, one a fair 1

2 - 1
2 coin and the other one an unfair coin,

say 2
3 - 1

3 . Randomly pick one of them, each with probability 1
2 , and use it to

produce a doubly infinite sequence of heads and tails. This gives rise to a sta-
tionary process by analogy with Exercise 106.24 This stationary process gives
rise, in turn, to a measure-preserving system (�,A, μ, T ). This system fails to
be ergodic, for example because (see the Birkhoff ergodic theorem below) the

set A =
{
(ωi )

∞
i=−∞ ∈ � : limn→∞ |{i∈[−n,n]:ωi =h}|

2n+1 = 1
2

}
satisfies μ(A) = 1

2

and μ(A�T −1 A) = 0.
From the perspective of pure mathematics, non-ergodic processes are some-

what unnatural, and we won’t treat them here. Note, however, that they do arise
in some applications; for such cases, ergodic decomposition (see below) can
be a useful tool.

147. Comment. Notice that the definition of “ergodic” refers to T −1 A rather
than T A. This distinction is substantive when T is not invertible, as in this case,
T A may often not have the same measure as A. (Consider for example the map

24 You just have to figure out the relative frequencies of all finite words, in order to construct the
required premeasure. For starters, you can verify that the relative frequencies of hh, ht , th and
t t are 25

72 , 17
72 , 17

72 and 13
72 , respectively.
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T x = 2x (mod 1), which preserves Lebesgue measure on [0, 1).) Even when
T is invertible, however, we will frequently prefer to write, e.g. T −n A rather
than T n A. This is because T nω ∈ A if and only if ω ∈ T −n A.

148. Definition. A stationary process (Xi )
∞
i=−∞ is called an independent pro-

cess if the random variables Xi are independent of each other, so that for
example P(X0 = a, X1 = b, X2 = c) = P(X0 = a)P(X0 = b)P(X0 = c).

149. Theorem. Any independent process is ergodic.

Sketch of Proof. Let (�,A, μ, T ) be the system arising from the process.
Suppose that this system is not ergodic. Then there exists A ∈ A with
0 < μ(A) < 1 such that μ(A�T −1 A) = 0. By Corollary 71, the algebra
of cylinder sets generates A mod 0.

150. Exercise. For any ε > 0 there exist two cylinder sets C1 and C2 such that
each Ci approximates A up to ε and yet C1 and C2 are independent. Use this
fact to complete the proof.

Formerly we saw how a process gives rise to a measure-preserving transfor-
mation. Now we shall see how to run this correspondence in reverse.

151. Definition. Let (�,A, μ, T ) be a measure-preserving system and let P
be a countable, measurable partition. The (P, T ) process is the stationary pro-
cess . . . X−3, X−2, X−1, X0, X1, X2, X3, . . . whose alphabet consists of the
pieces of P , such that Xi takes a point ω to the value p, if p is the member of
P containing T iω.25

152. Discussion. Given a stationary process (Xi )
∞
i=−∞, where the Xi take val-

ues in a countable alphabet � = {λ1, λ2, . . .}, one can form the associated
measure-preserving shift system (�,A, μ, T ) per Exercise 99, then let P be
the partition consisting of the pieces {x : x0 = λi }, i = 1, 2, . . ., and construct
the (P, T ) process, which will be isomorphic to the original process and, for
all practical purposes, indistinguishable from it. It follows that we can always
assume that the underlying space for our stationary processes (Xi )

∞
i=−∞ is

� = �Z and that the underlying transformation is the shift. Notice that,
modulo this assumption, when the alphabet � is fixed, a stationary process
is completely characterized by the measure μ. This is extremely important,
and the reader should make careful note of it.

153. Exercise. Show that the (P, T ) process is stationary.

25 To be more precise: let P = {P1, P2, . . .} be a countable, measurable partition of �. Choose an
alphabet � = {λ1, λ2, . . .} having the same cardinality as P and for ω ∈ � and i ∈ Z, define
Xi (ω) = α j if T i ω ∈ Pj . (Xi )

∞
i=−∞ is the (P, T ) process.
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154. Definition. If the (P, T ) process separates points mod 0,26 we say that
P generates T , or that P is a generator for T .

155. Exercise. Show that P generates T if and only if {T i p : p ∈ P, i ∈ Z}
generates A mod 0.

156. Definition. Let (�,A, μ, T ) be a measure-preserving system, let P be
a countable partition of � and let ω ∈ �. The P-name of ω is the sequence
(pi )

∞
i=−∞, where for each i , pi is the member of P containing T iω. If n ∈ N,

the P-name of length n (or simply the n-name, when P is understood) of ω is
the finite sequence (pi )

n−1
i=0 .

157. Comment. In practice, one usually chooses an alphabet �={λ1, λ2, . . .}
in one-to-one correspondence with a partition P = {p1, p2, . . .} and writes the
P-name of ω as (λi )

∞
i=−∞.

158. Theorem. If P generates T then the (P, T ) process is isomorphic27 to
(�,A, μ, T ).

Sketch of proof. Let π be the map taking ω to the P-name of ω.28

159. Exercise. Show that π is an isomorphism.

160. Corollary. If two partitions P and Q each generate T then the (P, T )

process is isomorphic to the (Q, T ) process.

2.4. Rohlin tower theorem

In this section we give three versions of the Rohlin tower theorem, which is
one of the fundamental tools of constructive ergodic theory.

161. Definition. Let (�,A, μ) be a probability space. Write A ∼ B if
μ(A�B) = 0.

162. Exercise. Show that ∼ is an equivalence relation.

163. Definition. For A ∈ A, write A for the equivalence class of A under ∼
and write A for the family of equivalence classes.

164. Definition. For A, B ∈ A, write A � B if μ(A \ B) = 0.

26 This means that there exists a null set E such that for every pair of distinct points x, y ∈ � \ E
there is some i ∈ Z such that T i x and T i y lie in different cells of P .

27 That is to say, the measure-preserving system generated by the (P, T ) process.
28 To be more precise, let (Xi )

∞
i=−∞ be the (P, T ) process and let (X,B, ν, S) be the system

arising from this process. (So X = �Z, where � is an alphabet indexing P , S is the shift, etc.)
For ω ∈ �, let π(ω) = (xi )

∞
i=−∞, where xi = λ if and only if T i ω ∈ pλ.
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165. Exercise. Show that the relation � is well defined (that is, does not
depend on the representatives of the classes), and that � is a partial order.29

166. Theorem. (Measurable Zorn lemma.) Let (�,A, μ) be a probability
space and let S ⊂ A be a collection of sets. If every totally ordered (under �)
subcollection of S has an upper bound, then S has a maximal element.

167. Convention. We are writing A � B as shorthand for A � B. Note,
however, that � is not a partial order on A (it fails antisymmetry). There is a
corresponding point about the notion of a maximal element: C ∈ S is maximal
with respect to � if D ∈ S and C � D implies that D ∼ C (instead of
D = C).

Sketch of proof. Pick a chain (Sn) where μ(Sn) − μ(Sn−1) is always at least
half of what it could be.30

168. Exercise. Let S be an upper bound of (Sn). Show that S is a maximal
element.

169. Theorem. (Rohlin tower theorem: ergodic version.) Let (�,A, μ, T )

be an ergodic measure-preserving system, let N ∈ N and let ε > 0. There
exists some S ∈ A such that S, T S, T 2S, . . . , T N−1S are pairwise disjoint
and μ(X \⋃N−1

i=0 T i S) < ε.

Idea of proof. Start with a tiny set C, and let S be the set of all points T n x such
that x ∈ C, n is a non-negative multiple of N , and {T x, T 2x, . . . , T n+N x} is
entirely outside of C. Then {S, T S, T 2S, . . . , T N S} is a disjoint cover of all of
the space except C ∪ T −1C ∪ T −2C ∪ · · · ∪ T −N C, because by ergodicity, the
translates of C cover the whole space.

Sketch of proof. Let C be a set of measure less than ε
N and let

S = {T k N ω : k ∈ Z, k ≥ 0, ω ∈ C, C∩{T ω, T 2ω, T 3ω, . . . , T (k+1)N ω} = ∅}.
170. Exercise. Show that (X \⋃N−1

i=0 T i S) ⊂ ⋃N−1
i=0 T −i C . Hint: by ergodic-

ity, the union of the translates of C covers � mod 0.

171. Definition. Let (�,A, μ, T ) be a measure-preserving system. We say
that T is non-periodic, or (�,A, μ, T ) is non-periodic, if for every i ∈ N the
probability that T i x = x is zero.31

29 That is, a reflexive, antisymmetric and transitive relation.
30 In other words, for S ∈ S, let f (S) = sup{μ(B) : B ∈ S with S � B}. Let S1 ∈ S and for

n > 1, choose Sn with Sn−1 � Sn and μ(Sn) ≥ [μ(Sn−1) + f (Sn−1)]/2.
31 That is, μ({x : ∃i ∈ N with T i x = x}) = 0.
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172. Theorem. (Rohlin tower theorem: non-periodic version.) Let (�,A,

μ, T ) be a non-periodic measure-preserving system, let N ∈ N and let ε > 0.
There exists some S ∈ A such that S, T S, T 2S, . . . , T N−1S are pairwise
disjoint and μ(X \⋃N−1

i=0 T i S) < ε.

Idea of proof. Since the space is Lebesgue, we can assume it is the unit inter-
val, endowed with its usual metric. Let M � N . Use the same proof as above,
letting (by measurable Zorn) C be a maximal set such that for every x ∈ C ,
T x, T 2x, . . . , T M x are all outside C . The only problem is to show that C
and its translates cover the whole space. If not, note that by non-periodicity,
for δ small enough there is a positive probability that T x, T 2x, . . . , T M x are
all more than δ away from x , and x is not in the union of C and its trans-
lates. There must be some interval of diameter δ which intersects that event
on a set of positive measure, and that intersection is a set of positive mea-
sure outside the union of the translates of C , such that for any x in that set,
T x, T 2x, . . . , T M x are all outside of that set. Add that set to C to contradict
maximality.

Sketch of proof.

173. Exercise. Show that it is sufficient (by simply mimicking the proof of the
ergodic case) to show that there is a set C ∈ A with μ(C) < ε/N such that the
union of the translates of C covers � mod 0. •

We now turn our attention to the construction of the set C .

174. Exercise. Show that we may without loss of generality assume
that (�,A, μ) is the unit interval with Lebesgue measure. (Recall our
convention that (�,A, μ) is a Lebesgue space. One needs to rule out
atoms.) •

An advantage of working in the unit interval is that we can exploit its usual
metric.

Let M be very large and let S be the family consisting of measurable
sets A having the property that A, T −1 A, T −2 A, . . . , T −M A are pairwise
disjoint.

175. Exercise. Show that every totally ordered (under �) subfamily of S has
an upper bound (in S). •

By the foregoing exercise and the measurable Zorn lemma, choose a max-
imal element C in S. Suppose, for proof by contradiction, that C and all its
translates don’t cover � mod 0.
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176. Exercise. There exists δ > 0 such that, with positive probability, x is not
in the union of the translates of C and T x, T 2x, . . . , T M x are all more than δ

away from x . Call this event E .32 Hint: let Fn = {x : |x − T j x | > 1
n , 1 ≤ j ≤

M} and show that μ(Fn) → 1. •
Choose an interval I of diameter < δ such that μ(I ∩ E) > 0. Let C ′ =
C ∪ (I ∩ E).

177. Exercise. Show that C ′ ∈ S, C � C ′ and C ′ �∼ C , a contradiction.

178. Definition. Let (�,A, μ, T ) be an invertible measure-preserving system
and suppose S ∈ A with S, T S, T 2S, . . . , T N−1S pairwise disjoint. We call
{S, T S, T 2S, . . . , T N−1S} a Rohlin tower of height N . The sets T i S are called
the rungs of the tower, and S is called the base. The set �\⋃N−1

i=0 T i S is called
the error set.

179. Comment. In all arguments, we shall assume that the error set is
sufficiently small in measure.

180. Exercise. Prove that, in Theorem 172, one may choose the error set to
have measure exactly ε.

181. Definition. Let (�,A, μ, T ) be a measure-preserving system, let P be a
countable measurable partition of �, let N ∈ N and let {S, T S, . . . , T N−1S}
be a Rohlin tower. For x, y ∈ E , put x ∼ y if x and y have the same
P-name of length N . If E is an equivalence class of this relation, the family
{E, T E, . . . , T N−1 E} is called a (P, T )-column of the tower. The sets T i E
are called the rungs of the column.

182. Comment. Each rung of a (P, T ) column lies entirely inside a member
of P .

183. Definition. Let (�,A, μ) be a probability space. An event S and a mea-
surable partition P = {p1, p2, . . .} are independent if S and pi are independent
for each i . If Q = {q1, q2, . . .} is another partition, we say that Q and P are
independent if pi and q j are independent for all i, j .

184. Theorem. (Rohlin tower theorem: independent base version.) Let
(�,A, μ, T ) be a non-periodic measure-preserving system, let N ∈ N and
let ε > 0. For any finite measurable partition P, there exists some S ∈ A that

32 That is, E = {x ∈ � \⋃∞
i=−∞ T i C : |x − T j x | > δ, 1 ≤ j ≤ M} and one has μ(E) > 0.
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is independent of P such that S, T S, T 2S, . . . , T N−1S are pairwise disjoint
and μ(X \⋃N−1

i=0 T i S) = ε.

Sketch of proof. 33 Let δ be extremely small and let M be extremely large.
Choose a Rohlin tower of height M with error set of measure less than δ.
Break each (P, T )-column into N subcolumns. We picture the situation with
N = 4 below. In the picture you see a single (P, T )-column, split into four
vertical subcolumns. You put the pieces with the ∼ marks into the set S. Do
this for all the (P, T )-columns.

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼

33 Readers are encouraged to provide their own arguments from the intuitive sketch provided;
here we offer a few more details. First, note that the independence condition amounts to the
requirement that μ(S ∩ p) = 1−ε

N μ(p) for every p ∈ P , and that if one can satisfy μ(S ∩ p) >
1−ε

N μ(p) for every p ∈ P , one can finish the proof by shaving off suitably sized portions of

each S ∩ p. Choose δ > 0 such that δ < μ(p)ε for every p ∈ P . Next choose M > 2N
δ

and let B, T B, . . . , T M−1 B be a Rohlin tower with an error set F of measure less than δ
2 .

Now for each (P, T )-column {E, T E, . . . , T M−1 E} of this tower, do the following. Let E =
c0∪c1∪· · ·∪cN−1 be a partition of E into equal measure pieces and let SE = ⋃M−N

i=0 T i cm(i),
where m(i) is the remainder when i is divided by N . Finally put S = ⋃

SE , where E runs over
the bases of the (P, T )-columns in the tower. S is the base of a Rohlin tower of height N ;
call its error set F ′. One must show that μ(F ′) < δ. By construction μ(S ∩ p) = μ(p\F)

N >
μ(p)−δ

N >
μ(p)−εμ(p)

N = 1−ε
N μ(p) for each p ∈ P .
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185. Exercise. Show that {S, T S, T 2S, . . . , T N−1S} is a Rohlin tower of
height N , and that, if δ is small enough and M large enough, one may, by shav-
ing off a small part of S and throwing it into the error set, achieve independence
from P while keeping the error set under ε in measure.

186. Definition. The superimposition of a sequence of partitions (Pi ) is the
partition of � into the equivalence classes of ∼, where x ∼ y if for every
i ∈ N, x and y are in the same cell of Pi .

187. Notation. The superimposition of a sequence of partitions (Pi ) will be
denoted by

∨
i Pi . The superimposition of two partitions A and B will be

denoted by A ∨ B.

188. Exercise. Show that in the Rohlin tower theorem you can in fact
get the base of the Rohlin tower to be independent of finitely many
finite measurable partitions. Hint: consider the superimposition of the
partitions.

189. Exercise. Use the previous exercise to show that one can in fact get
every rung of the tower to be independent of a given finite measurable par-
tition P . Hint: if the height is to be N, get the base S to be independent of
P, T −1 P, T −2 P, . . . , T −N P.

190. Comment. Given a (P, T ) process, where P is a finite partition, if you
pick a Rohlin tower of height n whose base is independent of the (finite)
partition of the space by equivalence of n names, you get the beautiful situ-
ation where the distribution of names defined by the columns is precisely the
distribution of all n names.

2.5. Countable generator theorem

In this subchapter we show that an arbitrary invertible measure-preserving
transformation on a Lebesgue space is isomorphic to a stationary process on a
countable alphabet.

191. Definition. A measurable partition P is said to be countable mod 0 if P
has a countable subfamily P ′ such that μ(� \⋃p∈P ′) = 0.

Suppose now that (Pi ) is a sequence of measurable partitions of �. For
x, y ∈ � write x ∼ y if for every i ∈ N, x and y are in the same cell of Pi .

192. Exercise. Show that ∼ is an equivalence relation and that its equivalence
classes form a measurable partition of �. (Measurability is primarily of interest
when there are equivalence classes of positive measure.)
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193. Theorem. Let (�,A, μ) be a probability space and suppose that (Si )
∞
i=1

is a sequence of measurable sets with
∑∞

i=1 μ(Si ) < ∞. Suppose that for each
i ∈ N, Pi is a finite measurable partition of � having the property that Sc

i ∈ Pi .
Then the superimposition P of (Pi )

∞
i=1 is countable mod 0.

Sketch of proof.

194. Exercise. Show that it is sufficient to show that for each ε > 0, there is a
finite subfamily P ′ of P such that μ(

⋃
p∈P ′ p) > 1 − ε. •

Let ε > 0 and choose j such that μ(
⋃∞

i= j Si ) < ε.

195. Exercise. There is a finite subfamily P ′ of P such that
(
� \⋃∞

i= j Si
) ⊂⋃

p∈P ′ p.

The reasoning of the foregoing proof recalls a famous lemma. Since we’ll
be needing this lemma anyway, now’s a good time to introduce it. The reader
is encouraged to look for its covert use in the above proof.

196. Theorem. (Borel–Cantelli lemma; see e.g. Folland 1984, Lemma 9.10.)
Let (�,A, μ) be a probability space and suppose (Ai )

∞
i=1 is a sequence of

events satisfying
∑∞

i=1 μ(Ai ) < ∞. Then for a.e. ω ∈ �, ω ∈ Ai for at most
finitely many i .

197. Exercise. Prove the Borel–Cantelli lemma.

198. Exercise. It’s possible (indeed typical) for the superimposition of a
countable sequence of finite partitions to fail countability mod 0. Hint: let Pi

be partition of [0, 1) into two cells according to the value of the i th binary
digit.

199. Theorem. (Rohlin 1965.) Every invertible measure-preserving system
on a Lebesgue space is isomorphic to a stationary process on a countable
alphabet.

Idea of proof. Again we assume the space to be [0, 1] with Lebesgue measure.
All we need is a countable partition of the space so that the map which takes
points to the name of points with respect to that partition is an isomorphism,
i.e. such that the point-to-name map is one-to-one. To do this, create Rohlin
towers with bases S1, S2, . . . so that the measures of the Si are summable, and
with insignificant error sets. Assume the heights of these towers are N1, N2, . . .

Let Pi be a partition of the whole space, consisting of the complement of Si

together with the following partition of Si : two points x and y are in the same
atom if and only if for all k ∈ {1, 2, . . . , Ni }, T k x and T k y have the same first
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Ni digits in their binary expansions. The superimposition of the Pi supplies the
desired partition; error sets can be obnoxious but Borel–Cantelli can dispose
of all but finitely many of them.

Sketch of proof. Let (�,A, μ, T ) be the system in question.

200. Exercise. Show that we may, without loss of generality, assume that
(�,A, μ) is [0, 1] with Lebesgue measure. •
By Theorem 158, it will suffice to find a partition P that is countable mod 0
and that generates T , i.e. (see Definition 154) such that {T i p : i ∈ Z, p ∈ P}
separates points mod 0.

For each n ∈ N, let Sn be the base of a Rohlin tower of height n2 having error
set at most 1

n2 in measure. For x, y ∈ Sn , write x ∼ y if T k x and T k y agree in
the first n digits of their binary expansions, 0 ≤ k ≤ n. It is easy to see that ∼ is
an equivalence relation on Sn and that its equivalence classes are measurable.
Let Pn be the partition consisting of Sc

n and the equivalence classes of ∼. Let P
be the superimposition of (Pi )

∞
i=1. Since

∑∞
i=1 μ(Si ) < ∞, by Theorem 193,

P is countable mod 0. Let E be the intersection of the error sets of the Rohlin
towers. Clearly E is a null set.

201. Exercise. Show that for x, y ∈ Ec, there is some p ∈ P and some n ∈ N
such that T n x ∈ p and T n y �∈ p.

2.6. Birkhoff ergodic theorem and the strong law

We give two versions of the Birkhoff ergodic theorem, possibly the most basic
theorem in ergodic theory, and one of its probabilistic variants, the strong law
of large numbers.

202. Theorem. (Birkhoff ergodic theorem; Birkhoff 1931.) Let (�,A, μ, T )

be a measure-preserving system and suppose f : � → R is an integrable
function. Then for a.e. ω ∈ �, limN→∞ 1

N

∑N
n=1 f (T iω) exists.

Idea of proof. Fix b > a. Consider the set of points ω with

lim sup
1

n

(
f (ω) + f (T ω) + . . . + f (T nω)

)
> b

and

lim inf
1

n

(
f (ω) + f (T ω) + . . . + f (T nω)

)
< a.

Let B be chosen large enough that we can write f = f1 + f2, where
| f1| < B and the integral of | f2| is small. Now pick N so big that the set
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of all points which don’t have an ergodic average for f almost as big as b
by time N (to be called bad points) has a probability that is a small frac-
tion of (b−a)

B . Let M � N . Show that there is an S ⊂ {T ω, T 2ω, . . . , T Mω}
such that

(i) the average of f over S is not much smaller than b, and
(ii) only bad points and points among the last N points are outside S. Hint:

express S as a disjoint union of intervals for which the average of f is not
much less than b.

Now f1 summed over the points in {T ω, T 2ω, . . . , T Mω} that are outside S
is usually a small fraction of (b − a)M , because the terms are bounded above
by B and the number of bad points is usually a small fraction of (b−a)

B . | f2|
summed over these same points is usually a small fraction of M , since

∫ | f2|
is a small fraction of M .

This proves that the average of all the points in the interval is usually much
closer to b than to a. A similar argument shows that the average is usually
much closer to a than to b, leading to a contradiction.

Sketch of proof.

203. Exercise. We may, without loss of generality, assume that T is ergodic.
•

For ω ∈ �, let l(ω) = lim infN→∞ 1
N

∑N
n=1 f (T iω), u(ω) = lim supN→∞ 1

N∑N
n=1 f (T iω).

204. Exercise. Show that l and u are measurable and T -invariant. •

Hence by the ergodicity assumption, l and u take on constant values a and b,
respectively. Plainly a ≤ b; we must show that equality holds. Assume for a
contradiction that a < b.

Choose B so large that one has a decomposition f = f1 + f2, where
| f1(ω)| ≤ B for all ω and

∫ | f2| dμ < b−a
64 . Now choose N so large that the

set of all points which don’t have an ergodic average for f of at least b − b−a
4

by time N (to be called bad points34) has measure at most b−a
96B . Next, pick

M > 24B N
b−a and let S be the base of a Rohlin tower of height M having an error

set of measure smaller than 1
2

(
so that, in particular, μ(S) > 1

2M

)
.

34 If it isn’t clear what the bad points are, the corresponding set of “good points” is G = {ω :
there exists n ≤ N such that 1

n
∑n

i=1 f (T i ω) > b − δ}.
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For ω ∈ S, put Iω = {ω, T ω, T 2ω, . . . , T M−1ω}. Let r(ω) be the number
of bad points in Iω and let j (w) = ∑

x∈Iω | f2(x)|.
205. Exercise. Show that

∫
S r(ω) dμ(ω) ≤ b−a

96B and
∫

S j (ω) dμ(ω) ≤ b−a
64 .

•
From the previous exercise, we get that the set D1 = {ω ∈ S : r(ω) >

b−a
12B M} satisfies μ(D1) < 1

8M and the set {ω ∈ S : j (ω) > b−a
b M} satisfies

μ(D2) < 1
8M . Hence letting S′ = S \ (D1 ∪ D2), one has μ(S′) > 1

2μ(S).

206. Exercise. Show that, for any ω ∈ S, there exists a set Eω ⊂ Iω such that:

(i) if Eω �= ∅ then 1
|Eω|

∑
x∈Eω

f1(x) > b − b−a
4 ;

(ii) if x ∈ Iω \ Eω then either x ∈ {T M−N ω, T M−N+1ω, . . . , T M−1ω} or x
is bad. •

Conclude35 that if ω ∈ S′ then 1
M

∑M−1
i=0 f (T iω) > b+a

2 .

This shows that, for more than half the points ω in the base of the tower,∑M−1
i=0 f (T iω) > b+a

2 . But it’s just as easy to show that for more than

half the points ω in the base of the tower,
∑M−1

i=0 f (T iω) < b+a
2 . This is a

contradiction.

207. Comment. The Birkhoff ergodic theorem holds for non-invertible sys-
tems with σ -finite measure (see e.g. [Walters 2000, Theorem 1.14]), sys-
tems with continuous time (see Krengel 1985, p. 10, for discussion), as
well as for some systems without an invariant measure. Indeed, a (possi-
bly non-measure preserving) system (�,A, μ, T ) is said to be asymptot-
ically mean stationary, or AMS, if limn

1
n

∑n
i=1 μ(T −i A) exists for every

measurable set A. For a development of the theory of such systems, includ-
ing a relevant extension of the Birkhoff ergodic theorem, see Gray (1988,
Chapters 6–8).

208. Exercise. (Birkhoff ergodic theorem, version 2.) In the ergodic case of
Theorem 202, limN→∞ 1

N

∑N
n=1 f (T iω) = ∫

f dμ. Hint: first show that

35 The argument runs as follows. For ω ∈ S′, one has

M−1∑
i=0

f (T i ω) = 1
M

∑
x∈Iω

f1(x) + 1
M

∑
x∈Iω

f2(x)

≥ 1
M

( ∑
x∈Eω

f1(x) − ∑
x∈Iω\Eω

| f1(x)|
)

− 1
M

∑
x∈Iω

| f2(x)|

≥ 1
|Eω |

∑
x∈Eω

f1(x) − B
M

(
N + b−a

12B M
)

− j (ω)
M

≥ b − a − b−a
4 − b−a

24 − b−a
12 − b−a

8 = b+a
2 .
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the limit is T -invariant, and hence constant by ergodicity. Now use the domi-
nated convergence theorem on f1 and control the error due to f2 with Fatou’s
lemma.

209. Comment. When T is ergodic and f is the indicator function of a mea-
surable set A, the Birkhoff ergodic theorem says that the frequency of times
that the orbit of a typical point under T lands in A is μ(A).

210. Theorem. (Strong law of large numbers; see e.g. Dudley 2002.) Let
(Xi )

∞
i=−∞ be an i.i.d. process composed of real-valued Xi . Show that

limN→∞ 1
N

∑N−1
i=0 Xi = E(X0) a.e.

Sketch of proof. Denote by (Z ,B, ν) the probability space on which the pro-
cess is defined. Let n > 0 be large and let � = { i

n : i ∈ Z}, which we view

as a countable alphabet. Next, define f : R → � by f (x) = �nx�
n .36 Then let

Yi = f ◦ Xi .

211. Exercise. (Yi )
∞
i=−∞ is an independent stationary process on a countable

alphabet. •

Let (�,A, μ, T ) be the measure-preserving system associated with (Yi ).
By Theorem 149, (�,A, μ, T ) is ergodic. Define a measurable function
g : � → R by g

(
(xi )

∞
i=−∞

) = f (x0).

212. Exercise. Show that
∫

g dμ = ∑∞
i=−∞ i

n P(Y0 = i
n ) = E(Y0). •

Hence by the Birkhoff ergodic theorem, limN→∞ 1
N

∑N
n=1 g(T iω) =∫

g dμ = E(Y0) for a.e. ω ∈ �.

213. Exercise. Define π : Z → � by π(z) = (
Yi (z)

)∞
i=−∞. Show that π

is measure-preserving and that Yi (z) = g
(
T i (π(z))

)
a.e. for every i ∈ Z.

Conclude that limN→∞ 1
N

∑N
n=1 Yi (z) = E(Y0) a.e. and use this to complete

the proof.

214. Comment. The above proof is a bit inefficient, since we are dealing in
this book only with processes on countable alphabets. Actually, one can turn
real-valued processes into measure-preserving systems just as easily. Briefly,
let (Xi ) be such a process. We require that the domain space be (�,A, μ),
where � = RZ, A is generated by sets of the form {(xi )

∞
i=−∞ : x j ∈

( k
2n , k+1

2n ]}, where k, j ∈ Z, n ∈ N, and

P(Xi1 ∈ S1, . . . , Xik ∈ Sk) = μ
{
(xi )

∞
i=−∞ ∈ � : xi1 ∈ S1, . . . , xik ∈ Sk

}
36 Here �y� denotes the greatest integer less than or equal to y.
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for all i1, . . . , ik ∈ Z, where S1, . . . , Sk are sets of the form ( k
2n , k+1

2n ]. We
also require (in order to avoid pathology) that (�,A, μ) be a Lebesgue space.
One must show that the shift T preserves μ, whereupon one has a measure-
preserving system (�,A, μ, T ).

215. Exercise. Formalize the above and use it to give a more direct proof of
the strong law. Hint: show that an independent real-valued process is ergodic.

216. Exercise. Show that a stationary process with a countable alphabet is
ergodic if and only if the frequency of every word is constant.37

2.7. Measure from a monkey sequence

We outline a way to construct a measure-preserving system from a random
sequence of letters.

217. Discussion. Put � = �Z, where � is a countable alphabet. Now let
an immortal monkey type any infinite sequence λ1, λ2, . . . of letters from
�.38 We can use this sequence to construct a shift-invariant measure on �

as follows.
Select increasing integers mi in such a way that for every word w of length 1,

the frequency of w in the sequence of finite words λ1λ2 · · · λmi converges.39

Now take a subsequence of (mi ), call it (ni ), in such a way that for every
word w of length 2, the frequency of w in the sequence of finite words
λ1λ2 · · · λni converges.40

Continue taking subsequences, using the standard diagonal argument to con-
verge to a stable sequence (ri ) in the end, having the property that for every
k ∈ N and word of length k, the frequency of w in the sequence of finite words
λ1λ2 · · · λri converges.41

37 Translation: let (Xi )
∞
i=−∞ be a stationary process on a countable alphabet �. Form the

associated measure-preserving system (�,A, μ, T ), where � = �Z, etc. (�,A, μ, T ) is
ergodic if and only if for every k ∈ N and every k-tuple w = (λ0, λ1, . . . , λk−1) ∈ �k ,
there exists a number fw (the frequency of the word w) such that for a.e. (xi )

∞
i=−∞ ∈ �,

limN→∞ |{n∈[−N ,N ]:xn=λ0,xn+1=λ1,...,xn+k−1=λk−1}|
2N+1 = fw . Another way of putting this is

to say that with probability 1, limN→∞ |{n∈[−N ,N ]:Xn=λ0,Xn+1=λ1,...,Xn+k−1=λk−1}|
2N+1 = fw .

The reader should get used to passing seamlessly back and forth between such interpretations.
38 In other words, let us consider an arbitrary sequence in �.
39 This means that pc = limi→∞ |{n∈{1,...,mi }:λn=c}|

mi
exists for c ∈ {0, 1}.

40 This means that pcd = limi→∞ |{n∈{1,...,ni −1}:λn=c,λn+1=d}|
ni

exists for c, d ∈ {0, 1}.
41 That is, pw = limi→∞ |{n∈{1,...,ni −k+1}:λnλn+1···λn+k−1=w}|

ri
exists.
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218. Exercise. Use the frequencies of the words w to construct a premeasure
on the algebra of finite unions of cylinder sets. Show that the measure you get
upon applying Carathéodory’s theorem is stationary.

219. Definition. We call the above method for extracting a stationary mea-
sure from a sequence on a finite alphabet the monkey method. Of course, the
method doesn’t have anything to do with monkeys. (See Furstenberg 1981 for
a treatment utilizing the Riesz representation theorem.)

220. Convention. When � is an alphabet and � = �Z, if x ∈ � then we use
the notation xi for the i th coordinate of x ; that is to say, we assume without
mention that x = (xi )

∞
i=−∞.

221. Definition. Let � be a countable alphabet and let � = �Z. For a word
x ∈ � and n ∈ N, write wn(x) for the word x1x2 . . . xn . Let Wn = �n be the
set of words of length n. Suppose k < m, w is a word of length k and u is a
word of length m. We write

r f (w; u) = #
{
i : 1 ≤ i ≤ m − k + 1, ui ui+1 · · · ui+k−1 = w

}
m − k + 1

for the relative frequency with which w occurs as a subword of u. If B ⊂ Wk

we write

r f (B; u) = #
{
i : 1 ≤ i ≤ m − k + 1, ui ui+1 · · · ui+k−1 ∈ B

}
m − k + 1

for the relative frequency with which the members of B occur collectively as
subwords of u. If v ∈ � we write r f (w; v) = limn→∞ r f

(
w; fn(v)

)
, should

this limit exist, and similarly for r f (B; v).

222. Definition. Suppose (�,A, μ, T ) is a measure-preserving system
derived from a stationary process (so that � = �Z, T is the shift, etc.). For
k ∈ N and B ⊂ Wk , we let ϕ(B) = {x ∈ � : wn(x) ∈ B}. When B is a
singleton {w}, we may write ϕ(w) rather than ϕ

({w}). We say that x ∈ � is
generic if for every finite word w, r f (w, x) exists.

223. Comment. In order to create a stationary measure via the monkey
method from a generic point, it isn’t necessary to pass to subsequences. Note
that if μ is the resulting measure, r f (w, x) = μ

(
ϕ({w})) for every finite

word w. We express this by saying that x is generic for μ. It is important
to note that the notion of a generic point is not more general than that of one
generic for some μ; every generic sequence is generic for its own monkey
measure.
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2.8. Ergodic decomposition

In this subchapter, we show how to decompose an arbitrary measure-
preserving system as an integral of ergodic ones. (This allows one in many
applications to restrict attention to ergodic systems without any loss of
generality.)

224. Exercise. Let (X,A, μ, T ) be a measure-preserving system and suppose
that C is dense in the measure algebra.42 (X,A, μ, T ) is an ergodic system if
and only if for every C ∈ C one has limn

1
n

∑n
i=1 1C (T i x) = μ(C) a.e. Hint:

for an arbitrary T -invariant A ∈ A show that
∫ |1A − μ(A)| dμ is arbitrarily

small by approximating A by some C ∈ C and using the triangle inequality in
the integrand.

225. Exercise. Suppose (�,A, μ, T ) is a measure-preserving system derived
from a stationary process (so that � = �Z, T is the shift, etc.) (X,A, μ, T ).
Is an ergodic system if and only if for every finite word w one has
limn

1
n

∑n
i=1 1ϕ(w)(T i x) = μ

(
ϕ(w)

)
in measure. Hint: use the Birkhoff the-

orem and Exercise 224, keeping in mind that if a sequence converges a.e. to f
and in measure to g then f = g.

226. Theorem. Suppose (�,A, μ, T ) is a measure-preserving system derived
from a stationary process (so that � = �Z, T is the shift, etc.) and x ∈ � is
generic for μ and has the following property P(x):

P(x): For any k ∈ N and any word w ∈ Wk there exists c(w, x) such that for
every ε > 0 there is an M0 such that if m > M0 there exists some N0 such that
for all n > N0, if we let B = B(m, w, x) = {u ∈ Wm : |r f (w; u)−c(w, x)| ≥
ε} then r f

(
B, wn(x)

)
< ε.

Then (�,A, μ, T ) is ergodic.

227. Comment. We call P(x) the “little, middle, big” condition. You can
think of it as saying that for every little (word w) there is a middle (size M)
such that for every big (initial word u of x), most middle-sized subwords of
big have approximately the same frequency of occurrences of little.

Idea of proof. Let x be generic and suppose P(x) is satisfied. The first thing
to realize is that for every finite word w, c(w, x) = r f (w; x) (r f (w; x) exists
because x is generic, and c(w, x) is the only viable candidate). Our aim is to
show that for every finite word w,

lim
n

1

n

n∑
i=1

1ϕ(w)(T
i x) = μ

(
ϕ(w)

)

42 In other words, for any ε > 0 and any A ∈ A there is some C ∈ C with μ(A�C) < ε.
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in measure, which will complete the proof by Exercise 225. Here’s an idea
of how to do that. First note that for any fixed m, if n is large enough then
wn(x) essentially tells you the distribution of words of length m. Using this
fact, translate the above sentence about convergence in measure into a sentence
about wn(x) and you’ll see that what you get is just P(x).

Sketch of proof. Fix a finite word w. It’s sufficient to show:

(*) For every ε > 0 there exists M0 such that if m > M0 then

μ
({

x : ∣∣ 1

m

m∑
i=1

1ϕ(w)(T
i x) − μ

(
ϕ(w)

)∣∣ ≥ 2ε
})

< ε.

Let ε > 0. Choose M0 as in condition P(x) and bigger than twice the
length of w. Now let m > M0. According to condition P(x), for all suffi-
ciently large n, if we let B = {u ∈ Wm : |r f (w; u) − c(w, x)| ≥ ε} then
r f
(
B, wn(x)

)
< ε. This implies, in turn, that r f (B, x) ≤ ε. But x is generic

for μ, hence μ
(
ϕ(B)

) = r f (B, x) ≤ ε.

228. Exercise. Note that μ
(
ϕ(B)

) = c(w, x), and use this to show that{
x :
∣∣∣∣∣ 1

m

m∑
i=1

1ϕ(w)(T
i x) − μ

(
ϕ(w)

)∣∣∣∣∣ ≥ 2ε

}
⊂ ϕ(B).

229. Theorem. Suppose (�,A, μ, T ) is a measure-preserving system derived
from a stationary process (so that � = �Z, T is the shift, etc.). For a.e. x with
respect to μ, P(x) holds.

Idea of proof. The Birkhoff ergodic theorem says that for any “little” (word)
the frequency of times little occurs converges to a (not necessarily constant)
limit c, so by some time “middle” it will probably be very close to c. Again by
the Birkhoff ergodic theorem, now for most initial words “big”, most middle-
sized words in that word exhibit copies of little with frequency near c.

Sketch of proof. Now for the details.

Fix ε > 0 and a finite word w. For m ∈ N let

Bm= {y ∈ � : there exists m′ ≥ m such that
∣∣r f
(
w;wm′(y)

)−r f (w; y)
∣∣> ε

}
.

Notice that Bm+1 ⊂ Bm .

230. Exercise. Use the Birkhoff ergodic theorem applied to the function 1ϕ(w)

to show that limm→∞ μ(Bm) = 0. •
Let now lm(x) = limn→∞ 1

n

∑n
i=1 1Bm (T i x), which exists a.e. by Birkhoff.
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231. Exercise. Use the dominated convergence theorem to show
∫

lm dμ =
μ(Bm). •

Now put Em = {x : l(x) ≥ ε}.
232. Exercise. Show that Em+1 ⊂ Em . Show also that if δ > 0 and μ(Bm) <

εδ then μ(Em) < δ. Conclude that limm→∞ μ(Em) = 0. •

Let now x be any generic point in
(⋂∞

m=1 Em
)c

. This x has the property that

there exists some M0 such that x �∈ Em for every m ≥ M0, which means that
lm(x) = limn→∞ 1

n

∑n
i=1 1Bm (T i x) < ε. This implies that there exists an N0

such that for every n > N0, 1
n

∑n
i=1 1Bm (T i x) < ε.

233. Exercise. Show that T i x ∈ Bm implies that T i x ∈ ϕ
(
B(m, w, x)

)
.

(Warning: this does not mean that Bm ⊂ ϕ
(
B(m, w, x)

)
.) Conclude

that for every n > N0, 1
n

∑n
i=1 1ϕ(B(m,w,x))(T i x) < ε, hence that

r f
(
B(m, w, x), wn(x)

)
< ε. •

What we have shown is that for a given finite word w and a given ε > 0, for
a.e. x , x is generic and there is an M0 such that if m > M0 there exists some
N0 such that for all n > N0, r f

(
B(m, w, x), wn(x)

)
< ε. Denote this good set

of x by G(w, ε).

234. Exercise. Show that any x ∈ G = ⋂
w,h G(w, 1

h ) is generic and satisfies
P(x).

235. Theorem. (Ergodic decomposition; Rohlin.) Suppose (�,A, μ, T ) is a
measure-preserving system derived from a stationary process (so that � =
�Z, T is the shift, etc.). There exists an a.e. defined function x → μx taking �

to probability measures on (�,A) such that:

(1) μx is ergodic a.e.;
(2) for any μ-integrable f : � → R, f is integrable with respect to μx a.e.

and ∫
f dμ =

∫ ( ∫
f dμx

)
dμ(x).

First proof of Theorem. 235. We’ll give two proofs of this theorem. This is
the first. For any generic x such that P(x) holds, let μx be its monkey mea-
sure.43 Then by Theorem 229 μx is defined a.e. and by Theorem 226 μx is
ergodic whenever it is defined.

43 That is, the measure ν constructed in Theorem 226. Notice that it is unique, by Comment 223.
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236. Exercise. Recall the discussion in 217. Show that if C is a cylinder set
then 1

n

∑n
i=1 1C (T i x) → μx (C) a.e. Conclude that μ(C) = ∫

μx (C) dμ(x).
Use this fact to show that the conclusion to the theorem holds whenever f is a
finite linear combination of cylinder set indicator functions. •

In order to get the result in full from the foregoing exercise, we have to be
able to deal with the error function that arises when you approximate a general
f by a finite linear combination of cylinder set indicator functions.

237. Claim. Let δ > 0. If μ(A) < δ2 then μ
({x : μx (A) > δ}) ≤ δ.

Assume for contradiction that the claim fails, that is, μx (A) > δ for all x ∈
B, where μ(B) > δ. Choose cylinder sets (Ci )

∞
i=1 with A ⊂ ⋃∞

i=1 Ci and∑∞
i=1 μ(Ci ) < δ2.

238. Exercise. Show that there exist n ∈ N and B ′ ⊂ B such that μ(B ′) > δ

and
∑n

i=1 μx (Ci ) > δ for x ∈ B ′. Use Exercise 236 to conclude that∑n
i=1 μ(Ci ) > δ, a contradiction establishing the claim.

239. Exercise. If δ > 0 and if f ≥ 0 with
∫

f dμ < δ2 then∫ ( ∫
f dμx

)
dμ(x) ≤ δ2. Hint: virtually the same proof; pick (Ci ) this time

with f ≤ ∑∞
i=1 ai 1Ci and

∑∞
i=1 aiμ(Ci ) < δ2; use the monotone convergence

theorem. •
The foregoing exercise makes it easy to deal with the error you get when

approximating by a linear combination of cylinder set indicator functions.
Anyway this does it for non-negative functions and any integrable function
is the difference of two non-negative functions – we’ll leave verification of the
final details to the reader.

Our second proof of Theorem 235 requires a bit of preparation, so will be
deferred for now.

240. Exercise. (Birkhoff ergodic theorem, version 3.) In the general case of
Theorem 202, limN→∞ 1

N

∑N
n=1 f (T iω) = E( f |B), where B is the σ -algebra

generated by the T -invariant sets. Hint: first show that the limit h is T -
invariant, hence B-measurable. Then show (cf. Exercise 208) that

∫
B h dμ =∫

B f dμ for every B ∈ B.

2.9. Ergodic theory on L2

One of the themes of this book and of the methodology it champions is that
you can do a lot of involved ergodic theory without assuming a lot of structure.
In the next few sections we’ll talk a little bit, for the sake of completeness,
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about perhaps the most basic unit of additional structure one might add under
a different philosophy: L2(�,A, μ). Nothing we say here will be needed until
the optional last chapter, so it may be skipped without dire consequence. We
do assume a basic familiarity with Hilbert spaces.

241. Discussion. If (�,A, μ) is a probability space then the set L2(�,A, μ)

of complex-valued square integrable functions44 f on � is a Hilbert space.
The inner product on this space is given by

〈
f, g

〉 = ∫
f g dμ. The important

thing to note, from the standpoint of ergodic theory, is that if T : � → � is an
invertible measure-preserving transformation then the map f → T f , where
T f (x) = f (T x), is unitary on L2(�,A, μ).45

Let’s have a brief look at how the objects we have been studying relate to L2:

242. Theorem. The map f → E( f |B) on L2(�,A, μ) is the orthog-
onal projection onto the subspace of B measurable, square integrable
functions.

Sketch of proof.

243. Exercise. Fix f ∈ L2(�,A, μ). It suffices to show that for an arbitrary
B-measurable, square integrable function g, || f − g|| ≥ || f − E( f |B)||. •

Fix such a g. We need one more thing:

244. Exercise. Let (X, C, ν) be an arbitrary probability space and f ∈ L2(X).
Show that infc∈R ||F − c|| = || f − ∫

f dν||. •
Now we have

|| f − g|| =
∫

| f − g|2 dμ

=
∫ (∫

| f − g|2 dμx

)
dμ(x)

≤
∫ (∫ ∣∣∣∣ f −

∫
f dμx

∣∣∣∣
2

dμx

)
dμ(x)

=
∫ ∣∣∣∣ f −

∫
f dμx

∣∣∣∣
2

dμ(x)

=
∫

| f − E( f |B)|2 dμ(x) = || f − E( f |B)||. (1)

We can now give an alternate proof of the result in Exercise 240.

44 That is, the functions f such that
∫ | f |2 dμ < ∞.

45 That is, T is a linear operator satisfying
〈
T f, T g

〉 = 〈
f, g

〉
for all f, g ∈ L2(�,A, μ).
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245. Corollary. In the Birkhoff ergodic theorem, one has limn→∞ 1
n

∑n
i=1

f (T i x) = E( f |B)(x) a.e., where B is the σ -algebra of sets that are
T -invariant mod 0.

Sketch of proof.

246. Exercise. In general, for f ∈ L2((�,A, μ)) let P f = limN→∞
1
N

∑N
n=1 f (T iω). Show that P is the orthogonal projection onto the closure

I of the space of T -invariant functions. Hint: show first that P f is always
T -invariant. Then show that g ∈ I ⊥ implies Pg ∈ I ⊥. •
Invoking Theorem 242 now finishes the proof.

2.10. Conditional expectation of a measure

Earlier we showed how to decompose a system into ergodic components. Here
we give a more general construction, decomposing a measure over an arbitrary
σ -algebra.

247. Theorem. (Rohlin 1952.) Suppose (�,A, μ, T ) is a measure-preserving
system derived from a stationary process (so that � = �Z, T is the shift, etc.)
and let B ⊂ A be a sub-σ -algebra that is complete with respect to μ. There
exists an a.e. defined function x → μx taking � to probability measures on
(�,A) such that:

(1) for any μ-integrable f , the function g(x) = ∫
f dμx is B-measurable;

(2) for any μ-integrable f : � → R, f is integrable with respect to μx a.e.
and for any B ∈ B,∫

B
f dμ =

∫
B

( ∫
f dμx

)
dμ(x);

(3) if B is T -invariant mod 0 then for a.e. x, T maps (�,A, μx ) to
(�,A, μT x ) in a measure-preserving fashion.

248. Comment. It is intuitively useful to employ a doubly indexed nota-
tion. For example, let Eμ|B(A, x) = μx (A). Now for fixed x , the map
A → Eμ|B(A, x) gives back the measure μx and for fixed A the map
x → Eμ|B(A, x) gives back a version of the conditional expectation of 1A.
One of the authors prefers this notation and feels that it appears to indicate a
(false) proof of this theorem. Investigation of what this idea is, and why it fails,
can help one to appreciate the subtlety of the result.

The idea is that you just pick a version of P(A|B) for every measurable
set A, write the value of this at x as Eμ|B(A, x), and hope that now that for
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a.e. x the map A → Eμ|B(A, x) gives you a measure. Things look promis-
ing enough from the standpoint that P(

⋃∞
i=1 Ai |B)(x) = ∑∞

i=1 P(Ai |B)(x)

certainly holds (for a.e. x) for pairwise disjoint sequences (Ai )
∞
i=1. But, unfor-

tunately, there are uncountably many choices for the sequence (Ai )
∞
i=1. That is

why we must restrict attention to a countable dense set of sets (namely the set
of finite unions of cylinder sets).

Sketch of proof. We construct the family of measure μx as follows. For every
cylinder set C , pick a version of E(1C |B) and call it, say, fC . Now for a given
x ∈ �, let px (C) = fC (x).

249. Exercise. Show that for a.e. x with respect to μ, px extends uniquely
to a premeasure on the algebra of finite unions of cylinder sets. Hint: use
Exercise 124. •
Now by Caratheódory’s extension theorem, px extends to a measure μx a.e.

250. Exercise. Show that for A ∈ A, x → μx (A) is B-measurable. Hint:
clear for cylinder sets; show that the set of A satisfying the conclusion forms
a complete σ -algebra. •
By the foregoing exercise, x → ∫

f dμx will be B-measurable for f a finite
linear combination of indicator functions. To get to non-negative integrable
functions, we just need monotone limits. Accordingly:

251. Exercise. Let (gi )
∞
i=1 be a non-decreasing sequence of B-measurable

functions and suppose g = limi gi is integrable. Show that g is B-measurable.
Use this fact to prove (1). •
To prove (2), the reader who has been paying attention should now have no
trouble.46 As for (3), we won’t be using it so we leave it as an exercise.

252. Exercise. Let (�,A, μ) be a Lebesgue space, B ⊂ A a sub-σ -algebra
and let {μx : x ∈ X} be the decomposition of μ over B. Show that if g is a
B-measurable function on � then for a.e. x (with respect to μ), g is constant
a.e. (with respect to μx ).

Second proof of Theorem. 235. It suffices to show that if B is the σ -algebra
of T -invariant sets then μx is ergodic a.e.

46 The formula clearly works when f is an indicator function of a cylinder set. Now either approx-
imate a general f by a finite linear combination of cylinder set indicator functions and control
the error effect, as in Exercise 239, or first establish that the formula holds for general indica-
tor functions and use monotone convergence (notice that a use of monotone convergence was
buried in the error analysis of the first method anyway). The choice of method and details are
left to the reader.
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253. Comment. At first one would think that the ergodicity of μx is trivial
because for any A in the invariant algebra, μx (A) = P(A|B)(x) = 1A a.e.
and hence only takes on the values 0 and 1 a.e. One now wants to apply Exer-
cise 242, but the problem is that for every A one can get an exceptional null set
of xs for which it doesn’t work, and there are uncountably many choices for
A. Recall we drew attention to a very similar difficulty in Comment 248. The
solution here is similar to the solution there: we restrict attention to a dense set
via employment of Exercise 224.

We apply Exercise 224 as follows. Let C be the countable algebra generated
by cylinder sets. By Corollary 245 and the proof of Theorem 247, for C ∈ C,

lim
n

1

n

n∑
i=1

1C (T i x) = E(1C |B)(x) = μx (C)

a.e. with respect to μ, and hence, for a.e. x , a.e. with respect to μx . For such
x , μx is an ergodic measure by Exercise 224.

2.11. Subsequential limits, extended monkey method

We give some refinements of the monkey method introduced earlier.

254. Definition. Let � be a countable alphabet and let W = �i be the set of
words of length i . A cylinder set is a subset of W obtained by specifying values
for finitely many coordinates.47 If C is a cylinder set and the i th coordinate is
unspecified, the right shift of C is the cylinder set C ′ you get by making all the
same specifications one coordinate to the right.48 Left shift is defined similarly.

255. Definition. A measure p on W is said to be stationary if for every
cylinder set C and one of its (left or right) shifts C ′, p(C) = p(C ′).

256. Comment. So p is stationary if p(cat ∗ ∗) = p(∗cat∗) = p(∗ ∗ cat)
and similarly for all cats. Here ∗ is a standard wildcard, so that for example
cat ∗ ∗ = {λ1λ2λ3λ4λ5 : λ1 = c, λ2 = a, λ3 = t}.
257. Exercise. Let p be a measure on W and suppose that p(∗λ1λ2 · · · λi−1) =
p(λ1λ2 · · · λi−1∗) for all λ1, λ2, · · · , λi−1. Show that p is stationary.

258. Comment. If p is a measure on words of length i and j < i then p
induces a measure p( j) on words of length j by the rule p( j)(cat) = p(cat∗∗).

47 Hence the general cylinder set has the form C = {λ1λ2 · · · λi : λ jk = lk , 1 ≤ k ≤ t}, where
1 ≤ j1 < j2 < · · · < jt ≤ i .

48 That is, C ′ = {λ1λ2 · · · λi : λ jk+1 = lk , 1 ≤ k ≤ t}, where 1 ≤ j1 < j2 < · · · < jt ≤ i − 1.
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(Here of course we are taking i = 5 and j = 3.)49 The reader should check
that this also works when p is a measure on �N.

259. Definition. Let pi be a sequence of measures on words of length n, and
let p be such as well. We say that pi converges to p if for every word w of
length n, limi pi (w) = p(w).

260. Exercise. For every i ∈ N, let pi be a measure on words of length i .
We are not assuming that the pi are stationary. Show that there exists a subse-
quence such that, along this subsequence, limi p( j)

i = q j exists for all j ∈ N.
Hint: use a standard diagonal argument. Finally show that there is a unique
measure q on �N such that q( j) = q j for all j ∈ N.

261. Definition. The limiting measure q obtained in the foregoing exercise is
called a subsequential limit of the sequence (pi )

∞
i=1.

262. Comment. A subsequential limit needn’t be stationary if the approximat-
ing measures aren’t.

263. Definition. A stochastic process is an infinite sequence of random
variables (Xi )

∞
i=1 or (Xi )

∞
i=−∞ into an alphabet �.

264. Comment. The modifier “stochastic” here mostly just serves to remind
the reader that the process needn’t be stationary. A measure on (doubly or
singly) infinite words determines a stochastic process in the obvious way: for
an infinite word y = (yi ), just let Xi (y) = yi .

265. Discussion. We’ve already exhibited a way to extract a stationary pro-
cess from a sequence of letters. You can also extract a stationary process
from a sequence of measures on finite words of increasing length, or from a
sequence of measures on infinite sequences. Here’s how it’s done. Let (pi )

∞
i=1

be measures on words of lengths (Li )
∞
i=1, respectively, where Li → ∞.

By passing to a subsequence if necessary, you can assume Li > 100i for
all i . For each i , derive from pi a “nearly stationary measure” νi on words of
length i by:

νi (a1a2 . . . ai ) = 1

Li − i + 1

Li −i+1∑
j=1

pi

({
x1x2 . . . xLi : x j x j+1 . . . x j+i−1

= a1a2 . . . ai
})

.

Finally let ν be any subsequential limit of (νi )
∞
i=1.

49 More generally, p( j)(λ1λ2 · · · λ j ) = p(λ1λ2 · · · λ j ∗ ∗ · · · ∗).
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266. Definition. Any measure ν so constructed is called a measure obtained
by the extended monkey method.

267. Exercise. Prove that a measure obtained by the extended monkey method
is stationary.

268. Discussion. It’s useful to compare subsequential limits with measures
obtained by the extended monkey method. Subsequential limits have the
advantage of maintaining local behavior. For example, a measure ν obtained
from the extended monkey method may, restricted to the first 10 coordinates,
look nothing at all like any of the original measures pi so restricted. On the
other hand any ν obtained via the extended monkey method is stationary;
straight subsequential limits of non-stationary pi needn’t be.

Of course, if the pi are stationary, any subsequential limit of them is nec-
essarily stationary, and there is no advantage to using the extended monkey
method.
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Martingales and coupling

3.1. Martingales

We give a brief introduction to martingales. Those not interested may skip.

269. Definition. A sequence (Xn)∞n=0 of real-valued random variables is
called a martingale if for every n ≥ 1, E(Xn|X0, X1, . . . , Xn−1) = Xn−1.
A backward martingale satisfies E(Xn|Xn+1, Xn+2, . . .) = Xn+1. A martin-
gale (Xn)∞n=0 is bounded if there is a constant M such that |Xn| ≤ M a.e.
for all n.

270. Example. Let Xn be the net winnings (negative values interpreted as
losses) that a gambler has obtained after n rounds of an even game of chance.
For example if a round consists in flipping a fair coin, and the gambler wins a
dollar for heads and loses a dollar for tails, and Xn is the amount he has won
after n rounds, then (Xi )

∞
i=1 is a martingale.

271. Definition. The martingale (Xi )
∞
i=1 of the previous example is called an

unbiased random walk. A biased random walk is the same thing except one
uses a biased coin.

272. Definition. A stopping time for a martingale (Xi )
∞
i=1 is a random vari-

able T taking values in N such that for all k ∈ N, T −1(k) is in the σ -algebra
generated by X1, . . . , Xk . An STRV (for stopping time random variable) is a
random variable of the form Y = XT , where (Xi )

∞
i=1 is a martingale and T is

a stopping time for (Xi )
∞
i=1.

273. Comment. A stopping time can be thought of as a rule for stopping that
depends only on information you know from looking at the past relative to the
time you stop (and which does stop, with probability 1). So, for example, if you
have a prophet who can tell you to stop after n rounds in all those instances
where you are to lose round n + 1, you might make a lot of money under his
guidance, but you aren’t utilizing a stopping time.

If a stopping time is bounded, we interpret this as saying that you always
stop by time n for some n. The STRV associated with a stopping time is the
random variable that takes on the value of the martingale when it stops.
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274. Definition. We say that a stopping time makes money if E(Y ) > E(X0),
where Y is the associated STRV.

275. Example. In the coin tossing example, the stopping time specified by
“stop as soon as you are ahead by 106 dollars” makes money. Indeed, it makes
exactly a million dollars, with probability 1.

The reader is advised not to get too excited about this opportunity. The rea-
son for this is that to employ it, you need not only infinite time, but an infinite
bankroll as well. To wit:

276. Exercise. Show that in the coin tossing example, the stopping time spec-
ified by “stop as soon as you are ahead by 106 dollars or at time 10106

,
whichever comes first” does not make money. Hint: use induction.

277. Exercise. Show that in the coin tossing example, the stopping time spec-
ified by “stop as soon as you are ahead by 106 dollars or behind by 10106

dollars, whichever comes first” does not make money. Hint: for n ∈ N, let Yn

be the STRV coming from the stopping time specified by “stop as soon as you
are ahead by 106 dollars or behind by 10106

dollars or by time n, whichever
comes first”. Show that Yn → Y a.e.; use dominated convergence.

More generally we have the following two theorems. To prove these
theorems, just make the appropriate modifications to the foregoing exercises.

278. Theorem. (Bounded time theorem.) An STRV Y coming from a bounded
stopping time satisfies E(Y |X0) = X0. In particular, bounded stopping times
don’t make money.

(Bounded money theorem.) In a bounded martingale, stopping times don’t
make money. Indeed, for a STRV Y coming from a bounded martingale,
E(Y |X0) = X0.

279. Exercise. Prove the bounded time theorem and the bounded money
theorem.

280. Example. Consider the coin tossing martingale, but start with L dollars
and use the stopping time specified by “stop when you run out of money or
when you reach a million dollars”. If p if the probability that you hit a million
dollars then the bounded money theorem gives L = E(X0) = E(Y ) = 106 p.
That is, L = p

106 .

281. Definition. Let (Xi )
∞
i=1 be a one-sided process taking values in some set

S, called the set of states of the process. A state s ∈ S is recurrent for the
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process if it occurs with positive probability and it is the case that if it occurs
at any time then it will occur again with probability 1.50 A non-recurrent state
that occurs with positive probability is said to be transient.

282. Exercise. Show that if s is recurrent and P(Xi = s) > 0 then:

(a) P(X j = s for infinitely many j > i |Xi = s) = 1, and
(b)

∑∞
j=i+1 P(X j = s|Xi = s) = ∞.

283. Exercise. Use the foregoing example to show that every state is recurrent
for an unbiased random walk.

284. Exercise. Show that if s is transient, P(Xi = s) > 0 and (Xi )
∞
i=1 is

stationary then:

(a) P(X j = s for infinitely many j > i |Xi = s) = 0, and
(b)

∑∞
j=i+1 P(X j = s|Xi = s) < ∞.

285. Example. Modify the coin tossing example as follows. Use a coin that
comes up heads with probability 1

3 . Start with 1 dollar. In each betting round,
you bet half your money on heads at fair odds; that is, 2-1. This means you
lose your bet if it comes up tails (this has the effect of halving your fortune)
and you win double what you bet if it comes up heads (which has the effect
of doubling your fortune). If after some number of rounds, m is the number
of heads minus the number of tails, your fortune is 2m . Stop when m = 1 or
m = −106. Let p be the probability that m hits 1. Then by the bounded money
theorem, 1 = E(X0) = E(Y ) = 2p + 1−p

2106 .

286. Exercise. Use the foregoing example to show that every state is transient
for a biased random walk.

287. Theorem. (Martingale convergence theorem; see e.g. Dudley 2002,
Section 10.5.) Let (Xi )

∞
i=−∞ be a bounded martingale. Then limi→∞ Xi (x)

exists a.e.

Idea of proof. Suspend your disbelief and pretend for a moment that the price
of some imaginary stock market index IMAG is a bounded martingale (say
bounded by 0 and 1). Let 0 < a < b < 1 and consider the following invest-
ment strategy. You sell a million shares of IMAG whenever it has risen to a
price ≥ b from a price ≤ a, and buy a million shares whenever it drops to a
price ≤ a from a price ≥ b. Now, brokerage fees aside, you will probably get
very rich using this strategy provided the price of IMAG crosses the interval

50 To be more precise: P(Xi = s) > 0 for some i , and if P(Xi = s) > 0 then P(X j =
s for some j > i |Xi = s) = 1.
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[a, b] infinitely many times. But the probability of this has to be zero, because
you can’t lose more than 106a dollars, and by the bounded money theorem,
your expected net gain is 0. Therefore with probability 1 the price of IMAG
crosses [a, b] only finitely many times and since this holds for all rational a, b,
the price of IMAG must converge to a limit with probability 1.

Sketch of proof. Let 0 < a < b < 1. In this proof (Z , ν) denotes the domain
space of the random variables under consideration. Let M ∈ N, and let

B = {z : (Xi (z)
)∞

i=−∞ crosses (a, b) at least 2M times}.
We claim that ν(B) ≤ 2

M(b−a)
. Suppose for a contradiction that the claim fails.

288. Exercise. Show that for some n ∈ N,

Bn = {z : (Xi (z)
)n

i=1 crosses (a, b) at least 2M times}
satisfies μ(Bn) ≥ 1

M(b−a)
. •

Let T1(z) be the lesser of n and min{i : Xi (z) ≥ b}. Now let T2(z) be the
lesser of n and min{i : i > T1(z) and Xi (z) ≤ a}. Now for 2 < k ≤ M and
k odd, let Tk(z) be the lesser of n and min{i : i > Tk−1(z) and Xi (z) ≥ b}.
Finally for 2 < k ≤ M and k even, let Tk(z) be the lesser of n and min{i : i >

Tk−1(z) and Xi (z) ≤ a}.
Let Y = XT1 − XT2 + XT3 − XT4 + · · · + XT2M−1 − XT2M . Now, by the

bounded money theorem, E(Y ) = 0. But for every z ∈ Bn ,

Y (z) = XT1(z)−XT2(z)+XT3(z)−XT4(z)+· · ·+XT2M−1(z)−XT2M (z) ≥ M(b−a).

289. Exercise. Show that Y (z) ≥ b − 1 except possibly on a set of
measure zero. Conclude that E(Y ) ≥ b > 0, a contradiction prov-
ing the claim. Now use the truth of the claim to show that {z :(
Xi (z)

)∞
i=−∞ crosses (a, b) infinitely many times} is a null set. Finish the

proof by considering all pairs (a, b) of rationals. Question: why are we limiting
ourselves to rationals?

290. Comment. Bounded backward martingales also converge (by the same
argument).

291. Definition. Let (Xi )
∞
i=−∞ be a stationary process. The past is the σ -

algebragenerated by (Xi )i<0. We will often denote this σ -algebra by past .

292. Discussion. So, when the Xi are real valued and we speak of the con-
ditional expectation of the present given the past, we mean E(X0|past). In
the general case, where the Xi may take values in some alphabet �, if we
speak of the probability of seeing some letter a given the past, we mean
P(X0 = a|past) = E(1X−1

0 (a)
|past).
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This relates to martingales as follows. If you let Yi = P(X0 =
a|X−1, X−2, . . . , X−i ), (Yi )

∞
i=−∞ forms a bounded martingale and must there-

fore converge a.e. It doesn’t take a lot of checking to see that the limit must be
P(X0 = a|past).

3.2. Coupling; the basics

In this subchapter we give basic definitions relating to coupling and intro-
duce simple techniques. (Coupling also goes by the name joining: the classical
ergodic theory source is Furstenberg (1967), though at a probabilistic level, the
idea has been around for a long time.)

293. Definition. Let (�i ,Ai ) be measurable spaces, i = 1, 2, and suppose
μ is a measure on the product space (�1 × �2,Ai ⊗ A2). For A ∈ A1, let
μ1(A) = μ(A × �2) and for B ∈ A2, let μ2(B) = μ(�1 × B). Then μ1, μ2

are called the marginal probabilities of μ on the first and second coordinates,
respectively, and μ is called a coupling of μ1 and μ2.

Couplings of more than two measures are defined analogously. For example,
a coupling of three measures is a measure on the triple product space whose
marginals give back the original measures.

294. Comment. In Section 152 it was pointed out that when an alphabet �

is fixed, a stationary process (Xi )
∞
i=−∞ is characterized by the measure μ it

puts on � = �Z. In a similar fashion, one may identify a one-sided process
(Xi )

∞
i=1 with the measure it induces on �N. Accordingly, we shall often speak

of a coupling between two processes, rather than two measures. Of course, we
simply mean the corresponding measures. Similarly, we may speak of coupling
two finite sets of random variables (X ( j)

i )n
i=1, j = 1, 2. What we mean in

this instance is the coupling of the corresponding measures that are induced
on �n .51

295. Definition. Given probability spaces (�i ,Ai , μi ), i = 1, 2, the indepen-
dent coupling of μ1 and μ2 is the product measure μ = μ1 × μ2.

296. Comment. The independent coupling always exists, though there may
be others. Often the coupling that maximizes the measure of the diagonal is of
interest.

297. Example. Let μ and ν be measures on {0, 1} defined by

μ(0) = 1

3
, μ(1) = 2

3
, ν(0) = 1

4
, μ(1) = 3

4
.

51
We mean the measures μ

({λ1, . . . , λn}) = P(X1 = λ1, . . . , Xn = λn).
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The independent coupling is given by

P(0, 0) = 1

12
, P(0, 1) = 1

4
, P(1, 0) = 1

6
, P(1, 1) = 1

2
.

The coupling that assigns the greatest measure to the diagonal is given by

P(0, 0) = 1

4
, P(0, 1) = 1

12
, P(1, 0) = 0, P(1, 1) = 2

3
.

298. Example. Let (�,A, μ) be a probability space. Create a measure ν on
the product space (�2,A ⊗ A) as follows. For A, B ∈ A put ν(A × B) =
μ(A ∩ B). Extend to a measure on A ⊗ A by using Carathéodory’s theorem.
ν is a coupling of μ with itself.

299. Definition. ν as defined above is called the diagonal coupling of μ with
itself.

300. Exercise. Show that the map π : � → �2 defined by π(x) = (x, x) is
a measurable isomorphism from (�,A, μ) to (�2,A ⊗ A, ν), where ν is the
diagonal coupling of μ with itself.

301. Example. Coupling by induction. Let (Xi )
∞
i=1 and (Yi )

∞
i=1 be two pro-

cesses; say the random variables take values in a countable alphabet �. We
outline an inductive technique for coupling these processes together. First,
couple X1 and Y1 together any way you like. Assume next that (Xi )

n
i=1 and

(Yi )
n
i=1 have been coupled.52 Pick a conditional probability law for Xn+1 given

(Xi )
n
i=1 and (Yi )

n
i=1 in such a way that when you integrate that probability law

over all (Yi )
n
i=1 you get the conditional probability of Xn+1 given (Xi )

n
i=1.53

Then pick a conditional probability law for Yn+1 given (Xi )
n
i=1 and (Yi )

n
i=1 in

such a way that when you integrate that probability law over all (Xi )
n
i=1 you

get the conditional probability of Yn+1 given (Yi )
n
i=1.54 Now simply couple the

conditional on Xn+1 with the conditional on Yn+1.55

52 The assumption is that some measure Pn on �2n has been chosen such that

Pn
({(x1, . . . , xn , y1, . . . , yn) : xi = λi , 1 ≤ i ≤ n}) = P(Xi = λi , 1 ≤ i ≤ n) and

Pn
({(x1, . . . , xn , y1, . . . , yn) : yi = γi , 1 ≤ i ≤ n}) = P(Yi = γi , 1 ≤ i ≤ n).

53 That is to say: choose a family of measures
{
μ

γ1,...,γn
λ1,...,λn

: λ1, . . . , λn , γ1, . . . , γn ∈ �
}

on �

having the property that for every λ1, . . . , λn and λ ∈ �, one has
∑

γ1,...,γn∈� μ
γ1,...,γn
λ1,...,λn

(λ) =
P(Xn+1 = λ|Xi = λi , 1 ≤ i ≤ n).

54 This time choose a family of measures
{
ν
γ1,...,γn
λ1,...,λn

: λ1, . . . , λn , γ1, . . . , γn ∈ �
}

on � hav-

ing the property that for every γ1, . . . , γn and γ ∈ �, one has
∑

λ1,...,λn∈� μ
γ1,...,γn
λ1,...,λn

(γ ) =
P(Yn+1 = λ|Yi = λi , 1 ≤ i ≤ n).

55 That is, for every λ1, . . . , λn , γ1, . . . , γn ∈ �, couple μ
γ1,...,γn
λ1,...,λn

with ν
γ1,...,γn
λ1,...,λn

any way you

like and call this coupling P
γ1,...,γn
λ1,...,λn

. Finally define Pn+1(λ1, . . . , λn+1, γ1, . . . , γn+1) =
Pn(λ1, . . . , λn , γ1, . . . , γn)P

γ1,...,γn
λ1,...,λn

(λn+1, γn+1). Pn+1 is the desired coupling.
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Now that Pn has been constructed for all n you just let P be a subsequen-
tial limit of the Pn . P is a measure on (�2)N, which may be identified with
(�N)2.

302. Exercise. Show that P is the unique subsequential limit of the Pn and
that it is a coupling of (Xi )

∞
i=1 and (Yi )

∞
i=1 (that is, of the associated measures

on �N).

303. Comment. You can couple double sided processes (Xi )
∞
i=−∞ and

(Yi )
∞
i=−∞ by induction as well; you just have to first choose a bijection

n : N → Z and then couple the random variables in the order indicated
by n. Note, however, that the language about subsequential limits needs to
be modified a bit, albeit in a rather obvious way; alternatively, use couplings
over “located words” (try to figure out what a located word is)56 to induce
a corresponding premeasure on cylinder sets of the product space and use
Carathéodory’s theorem to get to the measure on the product space. Details
are left to the reader.

304. Example. A special case of Example 301: here we arrange that
P(Xn+1|X1, X2, . . . , Xn) is independent of (Yi )

n
i=1 and P(Yn+1|Y1, Y2, . . . ,

Yn) is independent of (Xi )
n
i=1.57 This means, you simply couple the condi-

tional probability of Xn+1 given (Xi )
n
i=1 with the conditional probability of

Yn+1 given (Yi )
n
i=1.58

305. Example. A further special case, this time a greedy algorithm that
attempts to provide a coupling that is supported on pairs of words that agree
on a high number of coordinates. Let (Xi )

∞
i=1 and (Yi )

∞
i=1 be processes on the

alphabet {0, 1}. Start by coupling X1 and Y1 in such a way as to maximize the
probability that the two coordinates are equal.59 Now, having coupled (Xi )

n
i=1

with (Yi )
n
i=1, couple the conditional probability of X N+1 given (Xi )

n
i=1 with

the conditional probability of YN+1 given (Yi )
n
i=1 in a way that maximizes the

probability that the (n + 1)st coordinates are equal.

56
It’s a function from a finite subset of Z to �.

57 In other words, knowing the values of Xi , 1 ≤ i ≤ n, no information about Xn+1 is gained
by further knowing the values of Yi , 1 ≤ i ≤ n. Notice that this does not say that knowing the
values of Yi , 1 ≤ i ≤ n, won’t give you information about the value of Xn+1 in cases where
you didn’t previously know anything.

58 In the notation of previous footnotes, μ
γ1,...,γn
λ1,...,λn

(λ) = P(Xn+1 = λ|Xi = λi , 1 ≤ i ≤ n),
irrespective of the values of γ1, . . . , γn , etc.

59 Recall that a coupling of X1 and Y1 is a measure α on {0, 1}×{0, 1} such that α{(0, 0), (0, 1)} =
P(X1 = 0) and α{(0, 0), (1, 0)} = P(X2 = 0). We want to choose an α that maximizes
α
({(0, 0), (1, 1)}).
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306. Example. Gluing couplings together. Suppose α1 is a coupling of
(Xi )

n
i=1 and (Yi )

n
i=1 and α2 is a coupling of (Yi )

n
i=1 and (Zi )

n
i=1. We want

to give a coupling β of (Xi )
n
i=1, (Yi )

n
i=1 and (Zi )

n
i=1 such that restricting to the

first two coordinates gives you back α1 and restricting to the last two coordi-
nates gives you back α2. Here’s how it works. First you put down an output of
(Yi )

n
i=1 in accordance with its probability law. Now you use α1 to compute the

conditional probability law μ1 of (Xi )
n
i=1 given the output of (Yi )

n
i=1 that has

occurred. Next use α2 to compute the conditional probability law μ2 of (Zi )
n
i=1

given the output of (Yi )
n
i=1 that has occurred. Finally pick a coupling γ of μ1

and μ2. (You might use the independent coupling.) Notice that γ depends on
the output of (Yi )

n
i=1 you chose; you want to do this for all such outputs to get

a measure on �3n by integrating over all outputs.60

3.3. Applications of coupling

In this section we use coupling to prove a few theorems, including the
Kolmogorov 0-1 law and a version of the renewal theorem.

307. Theorem. (An application of coupling.) Let (Xi )
∞
i=1 be a random walk

(biased or unbiased). Let an even number k ∈ N and ε > 0 be given.
There exists N such that for every set B of integers, |P(X N ∈ B)− P(X N−k ∈
B)| < ε.

Sketch of proof. Let Yi = X0, 0 ≤ i ≤ k, and let (Yi )
∞
i=k be a random walk

with the same parameter p as the (Xi ) walk. Assume additionally that (Yi )
∞
i=k

is independent of (Xi ) (otherwise, the assertion of the following exercise need
not be true).

308. Exercise. There exists N such that P(Xi = Yi for some k ≤ i ≤ N ) >

1 − ε. •
Couple (Xi )

N
i=1 and (Yi )

N
i=1 inductively in the following way. Couple (Xi )

k
i=0

with (Yi )
k
i=0 any way you like. Now, supposing (Xi )

n
i=0 and (Yi )

n
i=0 have been

coupled, for any pair of outputs λ0, . . . , λn of (Xi ) and γ0, . . . , γn of (Yi ),
couple the conditional probabilities of Xn+1 given (Xi )

n
i=0 and of Yn+1 given

(Yi )
n
i=0 independently if λn 	= γn and diagonally if λn = γn .61 Denote by Q

the resulting coupling of (Xi )
N
i=1 and (Yi )

N
i=1.

60 Some details: given words w, v, let μw(v) = α1(v,w)
α1(�×w)

and let νw(v) = α2(w,v)
α2(w×�)

. Choose
a coupling γw of μw and νw . Finally for words u, w, v put c(u, w, v) = P(Y1 · · · Yn =
w)γw(u, v). c is the desired coupling of the three processes.

61 The conditionals μ and ν of Xn+1 and Yn+1, respectively, are of course given by μ(λn + 1) =
ν(γn + 1) = p, μ(λn − 1) = ν(γn − 1) = 1 − p. The coupling of μ and ν that is used for the
marginal coupling is either P(λn +1, γn +1) = p2, P(λn −1, γn +1) = P(λn +1, γn −1) =
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309. Exercise. Show that Q
({(x, y) : xN = yN }) > 1 − ε and finish the

proof.62

310. Definition. If (Xi )
∞
i=−∞ is a process, the n future is the σ -algebra Fn

generated by (Xi )
∞
i=n . The tailfield T is the intersection, over all n, of the n

future.63

311. Definition. Let a, b ∈ �Z. We write a ∼ b and say that a and b have the
same tail if for some N , an = bn for every n > N .

312. Comment. Obviously ∼ is an equivalence relation.

313. Theorem. Let (Xi )
∞
i=−∞ be a stationary process taking values in a

countable alphabet �. Let A ⊂ �Z be a measurable set. Then A ∈ T if and
only if there is a set B such that μ(A�B) = 0 and B is a union of equivalence
classes of ∼.

Sketch of proof. For n ∈ N write a ∼n b if for every i ≥ n, ai = bi . Then
plainly a ∼ b if and only if there exists some n such that a ∼n b. We make the
following claim:

Claim. Let A be a measurable set. Then A ∈ Fn if and only if there is some
B such that μ(A�B) = 0 and B is a union of equivalence classes of ∼n .

To prove the claim, start by letting (Bi )
∞
i=1 be the algebra generated by all

sets of the form X−1
i (λ), where λ ∈ � and i ≥ n. This algebra is dense

in Fn . Carry out the construction of the canonical factor (�′,A′, μ′) per
Example 56 using the sequence (Bi ) and observe that the fibers are precisely
the equivalence classes under ∼n .

314. Exercise. Use this observation to prove the claim. Hint: for one direc-
tion, let A ∈ Fn and take B = {x : E(1A|B) = 1}. Use Exercise 117 (b).
Conversely, let A be measurable and a union of equivalence classes, i.e. fibers.
Observe that A = π−1(B) for some B ⊂ �′. Apply Exercises 49 and 61.

315. Exercise. Now use the claim to finish off the proof.64

p(1 − p), P(λn − 1, γn − 1) = (1 − p)2 in the event λn 	= γn and P(λn + 1, λn + 1) = p,
P(λn−1, λn − 1) = 1 − p in the event λn = γn .

62 It is useful to notice that P(X N ∈ B) = Q
({(x, y) : xN ∈ B}) and P(X N−k ∈ B) =

Q
({(x, y) : yN ∈ B}).

63
That is, T = ⋂∞

n=1 Fn . Obviously it depends on X .
64 Some details: suppose A ∈ T . Then A ∈ Fn for every n, so there exist sets (Bn) such

that μ(A�Bn) = 0 for every n and Bn is a union of equivalence classes under ∼n . Let
B = ⋃∞

j=1
⋂∞

i= j Bi . Plainly μ(A�B) = 0. Suppose x ∈ B and x ∼ y. Then there exists N1
such that x ∼n y for all n ≥ N1. Now choose N2 such that x ∈ Bn for all n ≥ N2. Then for every
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316. Definition. A process is said to have trivial tail if every set in the tailfield
has measure 0 or 1.

317. Theorem. (Kolmogorov 0-1 law; see e.g. Dudley 2002, Theorem 8.4.4.)
Any independent stationary process has trivial tail.

Sketch of proof. We take (Xi )
∞
i=1 to be our independent process, which we

are assuming one sided for convenience. We assume the Xi are random vari-
ables into a countable alphabet � and form the associated space (�,A, μ),
where � = �N, etc. As is our standard convention, we now view the random
variables Xi as being defined on �. Let B be a member of the tailfield; by
adding and deleting sets of measure zero we can assume that B is a union of
equivalence classes under ∼.

Take a cylinder set C that closely approximates B and define a measure
ν by ν(A) = μ(A∩C)

μ(C)
= Pμ(A|C), A ∈ A. The same sequence (Xi )

∞
i=1,

only defined on the measure space (�,A, ν), is called the conditioned process
(conditioned on C , that is). Now we want to couple the measures μ and ν. That
is, we want to couple the original process and the conditioned process. We do
it inductively. Couple any way you like until, eventually, you get beyond all
the Xi for which i is one of the coordinates involved in the definition of C . For
subsequent n, you have

Pμ(Xn = λ|X1, . . . , Xn−1) = Pν(Xn = λ|X1, . . . , Xn−1) = c(λ)

for every letter λ and every valuation of X1, X2, . . . , Xn−1. For the induction
step, couple these (equal) marginals together with the diagonal coupling. Let
P be the resulting coupling.

318. Exercise. Show that P is supported on pairs of words
(
x, y) with x ∼ y

and use this to show that μ(B) = ν(B). Hint: show that both are equal to
P(B × B). Conclude that μ(B) ∈ {0, 1}.

319. Digression: the renewal theorem. For our final application in this
section, we present a proof via couplings of one of the main theorems on
Markov chains, the renewal theorem. We feel that this proof may be of some
interest even to those already well acquainted with the theorem, in that it is
arguably more intuitive and natural than are standard proofs. We won’t use
this material later, so disinterested readers are advised to skip. First, a bit of
background.

n ≥ max{N1, N2}, x ∈ Bn and x ∼n y, hence y ∈ Bn . This implies y ∈ B and B is a union
of equivalence classes of ∼. Conversely, suppose A is measurable and a union of equivalence
classes under ∼. Let n ∈ N, let x ∈ A and suppose x ∼n y. Then x ∼ y, so y ∈ A. Hence A is a
union of equivalence classes under ∼n . By the claim, A ∈ Fn and since n is arbitrary, A ∈ T .
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320. Definition. Let � be a finite alphabet. (Without loss of generality, we
may assume that � = {1, 2, . . . , k}.) A possibly non-stationary Markov chain
(or pnm) on � is a process (Xn)∞n=1 satisfying the following:

(1) for every n ∈ N, Xn takes values in �, and
(2) for some constants p(i, j), 1 ≤ i, j ≤ k, for all n ∈ N one has

P
(
Xn = in|Xt = it , 1 ≤ t ≤ n − 1

) = P
(
Xn = in|Xn−1 = in−1)

= p(in−1, in).

(Note in particular that this conditional probability does not depend on Xi ,
i < n − 1, nor does it depend on n.)

321. Definition. The constants p(i, j) are called transition probabilities.

322. Definition. Let i, j ∈ �. We say that there is a path of length n ∈ N from
i to j if there exist c0, c1, c2, . . . , cn ∈ � such that:

(1) i = c0,
(2) j = cn , and
(3) p(ct−1, ct ) > 0, 1 ≤ t ≤ n.

323. Exercise. Show that there is a path of length n from i to j if and only if
for some t , P(Xt+n = j |Xt = i) > 0.

324. Definition. If there is a path from i to j and a path from j to i , then we
say that i and j communicate. If i fails to communicate with itself, we say that
i is strongly transient.

325. Definition. If i is not strongly transient, let

θ(i) = {n ∈ N : there is a path of length n from i to itself},
and let g(i) be the greatest common divisor of θ(i).

326. Theorem. If i is not transient, there exists n such that θ(i) contains every
multiple of g(i) greater than n.

Idea of proof. First show that θ(i) is a sub-semigroup of (N,+) (i.e. a
non-empty subset of N that is closed under sums). Next show that every sub-
semigroup G of N contains every sufficiently large multiple of its greatest
common divisor g. Do this as follows. Let S be a finite subset of G such that
g is a linear combination of the members of S with integer coefficients. Next
let t be the sum of the members of S, and show that for all sufficiently large k,
kt + i , 0 ≤ i < t , can be written as a linear combination of the members of S
with non-negative integer coefficients.
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327. Theorem. (The renewal theorem.) Suppose (Xi )
∞
i=0 is a pnm and let ε >

0. Suppose a, b, c ∈ � communicate with one another. Suppose further that
L(a) = 1 and that any state to which a has a path, communicates with a. Then
there exists N such that whenever n, m > N,

∣∣P(Xm = c|X0 = a) − P(Xn =
c|X0 = b)

∣∣ < ε.

The proof of this theorem is going to strongly resemble the proof of
Theorem 307. Before giving ideas of the proof, we have the following:

328. Lemma. Let d, e, and f be any states in � communicating with a. Sup-
pose two processes (Yi )

∞
i=1 and (Zi )

∞
i=1 are independent of one another and

have the exact same alphabet and transition probabilities as (Xi ), but start
from Y0 = d and Z0 = e, respectively. Then for any δ > 0 there exists M such
that P(Yi = f = Zi for some 1 ≤ i ≤ M) > 1 − δ.

Sketch of a proof of the lemma.

329. Exercise. Let S be the set of states communicating with a. Show that
for all s ∈ S and all large enough n, P(Xn = f |X0 = s) > 0. Hint: use
Theorem 326.

330. Exercise. Use the foregoing exercise to show that there exist J and some
d > 0 such that for all s ∈ S and all k > J , P(YJ+k = f |Yk = s) =
P(Z J+k = f |Zk = s) > d. (Note one must have for this that P(Yk = s) > 0
and P(Zk = s) > 0; use the previous exercise.) Conclude by independence
that for any s1, s2 ∈ S, P(YJ+k = f = Z J+k |Yk = s1, Zk = s2) > d2.

331. Exercise. Show that the proof of the lemma can be finished off by
choosing t so large that (1 − d2)t < δ and letting M = J t .

Idea of proof. (Of Theorem 327.) With the lemma in hand, we may proceed
exactly as in the proof of Theorem 307. The details are left largely to the reader,
but we offer presently a sort of “storybook” interpretation of what’s going on.
Let N = M . If n ≥ m > N , choose independent (Yi ) and (Zi ) processes as
in the lemma, but with Y0 = a and Z0 = Z1 = · · · = Zn−m = b. Think
of the (Yi ) process as a criminal running from a detective (represented by the
(Zi ) process). The detective gives the criminal a head start of n − m time
steps. Now, n − m might be very large, much larger than, say, m. Even so,
the detective is still very likely to catch the criminal within m time steps. This
is where the proof differs from that of Theorem 307; here, the criminal can
run until the cows come home and he still can’t get too far away from the
detective because he’s running on a finite set. So anyway you couple the two
processes together in such a way to reflect that if the detective ever catches the
criminal he handcuffs him and they remain together thereafter. Since by time
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m they are together with probability at least 1 − ε, it is certainly the case that
|P(Yn = c) − P(Zn = c)| < ε. But P(Yn = c) = P(Xn = c|X0 = a) and
P(Zn = c) = P(Xm = c|X0 = b).

3.4. The dbar and variation distances

We use coupling to define two metrics on the family of stationary processes on
an alphabet �. This material is essential and should not be skipped.

332. Definition. The mean Hamming distance between two words of the same
length is the fraction of the located letters that are different.65 For example,
d(stashed, plaster) = 4

7 . (Notice that the ts don’t count as being the same; they
don’t occur in the same place.)

333. Exercise. Prove that, on the space of words of a given length n, the mean
Hamming distance is a metric.

334. Definition. Let � be an alphabet and n ∈ N. The dbar distance d(μ, ν)

between two measures on the words of length n from � is the infimum of
the expected mean Hamming distance between coupled words, taken over all
couplings of the measures.66

335. Exercise. Show that the infimum of the previous definition is achieved;
that is, show it is in fact a minimum.

336. Exercise. Let f : N → [0,∞) be a function satisfying f (0) = 0, f (n −
1) ≤ f (n) ≤ f (n − 1) + 1 and f (kn) ≤ k f (n) for all k, n ∈ N. Show that
limn→∞ f (n)

n exists.

337. Comment. The dbar distance is closely related to various distance
metrics that have been around for a long time, going by the names
Vasershtein distance, Monge–Kantorovich transportation metric, earth mover’s
distance, etc. See the two volume Rachev and Rüschendorf (1998) for a
history.

Now let (Xi )
∞
i=1 and (Yi )

∞
i=1 be stationary processes on a countable alpha-

bet �. As usual (see the discussion in 152) we may assume that each of
the random variables in these sequences has � = �N as the domain space.

65
For w = λ1λ2 · · · λn and v = γ1γ2 · · · γn , one has d(w, v) = #{i :λi 	=γi }

n .
66 Let μ and ν be measures on �n . Recall that a coupling of μ and ν is a measure P on �n ×

�n , that is, a measure on pairs of words (w, v). The expected mean Hamming distance on
pairs relative to P is

∑
w,v P(w, v)d(w, v). d(μ, ν) is the infimum of this expectation over all

couplings P .
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Recall (again see 152) that the processes (Xi )
∞
i=1 and (Yi )

∞
i=1 are charac-

terized by the measures μ and ν they induce on �. Let μn(λ1 · · · λn) =
P(X1 = λ1, . . . , Xn = λn) and νn(λ1 · · · λn) = P(Y1 = λ1, . . . , Yn =
λn). μn and νn are measures on �n , and we denote their dbar distance by
g(n).

338. Exercise. Show that g = limn→∞ g(n) exists. Hint: show that f (n) =
ng(n) satisfies the conditions of Exercise 336.

339. Definition. The limit g of the previous exercise is called the dbar
distance between the processes (Xi )

∞
i=1 and (Yi )

∞
i=1, and is denoted by

d
(
(Xi ), (Yi )

)
.

340. Exercise. The dbar distance d
(
(Xi ), (Yi )

)
can always be achieved by a

stationary coupling.67 Hint: treat �2 as a countable alphabet and view cou-
plings between two measures on words of length n as measures on length n
words over �2. Use the extended monkey method on an “infimal” sequence of
couplings.

341. Definition. Let (�,A, μ) be a probability space and let n ∈ N. By an
n-element, measurable ordered partition of � (generally, we shall say simply
“ordered partition of �”) we mean an n-tuple (A1, . . . , An) of sets in A such
that � = ⋃n

i=1 Ai and Ai ∩ A j = ∅ for 1 ≤ i 	= j ≤ n.

342. Definition. Let (�,A, μ) and (X,B, ν) be probability spaces having
ordered partitions A = (A1, . . . , An) and B = (B1, . . . , Bn), respectively.
The variation distance between A and B is

v(A, B) = inf

{
1 − α

(
n⋃

i=1

Ai × Bi

)
: α is a coupling of μ, ν

}

=1 − sup

{
α

(
n⋃

i=1

Ai × Bi

)
: α is a coupling of μ, ν

}
.

343. Important comment. To be technically precise we really ought, in the
above definition, to say the variation distance between the pair (A, μ) and
the pair (B, ν). However, we shall usually omit reference to the underlying
measures when they are understood.

344. Exercise. Show that the infimum of Definition is in fact a minimum.

67 What this means is that there is a measure c on (�N)2 (which may be identified with (�2)N)
such that for the induced measures cn on (�2)n , which are defined by

cn(
λ1···λn
γ1···γn ) = c

({(
(xi )

∞
i=1, (yi )

∞
i=1

) : xi = λi , yi = γi , 1 ≤ i ≤ n
})

,

one has limn→∞
∑

w,v∈�n cn(w, v)d(w, v) = d
(
(Xi ), (Yi )

)
.
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345. Definition. Let p and q be two probability measures on a finite
set {x1, . . . , xn}. The variation distance v(p, q) between p and q is
1
2

∑n
i=1 |p(xi ) − q(xi )|.

346. Exercise. Show that the variation distance between p and q is exactly
the same as the variation distance between the ordered partition ({1}, . . . , {n})
(under the measure p) and the same ordered partition ({1}, . . . , {n}) (under the
measure q).

347. Exercise. Show that when μ = ν, v(A, B) = 1
2

∑n
i=1 μ(Ai�Bi ).

348. Exercise. Generalize the foregoing definition and exercise to measures
on a countable set � = {x1, x2, . . .}.
349. Comment. An important special case of the above is when � is the set
of words over an alphabet � of a given finite length. Note: saying the variation
distance between two measures on � is small is much stronger than saying the
dbar distance between them is small.

350. Definition. Let X1 and X2 be real-valued random variables. Define mea-
sures μi on R, i = 1, 2, by the rule μi (B) = P(Xi ∈ B). A coupling of X1

and X2 is a coupling of μ1 and μ2. The variation distance between X1 and
X2 is the minimum of the probability that x 	= y over all couplings of X1

and X2.68

3.5. Preparation for the Shannon–Macmillan–Breiman theorem

As a final application of coupling, we give a lemma designed to prepare for
the proof of the most important theorem of the next chapter, the Shannon–
McMillan–Breiman theorem.

351. Notation. Let (ai )
∞
i=1 be a sequence of real numbers. We write C limi ai

as shorthand for limn→∞ 1
n

∑n
i=1 ai . C lim sup and C lim inf are defined

similarly.

352. Definition. For N > 0, let fN be the function defined as follows:
fN (x) = x , if |x | > N , and fN (x) = 0 otherwise.

353. Definition. A sequence (ai )
∞
i=1 is essentially bounded if

lim
N→∞ C lim sup

i
| fN (ai )| = 0.

68 To be more precise, the variation distance between X and Y is the infimum, over all couplings
α of μ1 and μ2, of α

({
(x, y) : x 	= y

})
. One can show that this is a minimum.
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354. Comment. The “C” in the notation “C lim” stands, of course,
for “Cesàro”. Essentially bounded sequences have the property that the
“unbounded” part does not interfere with Cesàro summation of the sequence,
allowing one to assume without loss of generality in many situations that one
is actually dealing with a bounded sequence.

355. Theorem. Let (ai )
∞
i=1 be any sequence of non-negative reals such that∑∞

i=1 iai < ∞. If (Xi ) is a process, where the Xi are real-valued random
variables, satisfying

P(i ≤ |Xn| < i + 1|(Xi )
n−1
i=1 )(x) < ai

for all i , all n and a.e. x, then for a.e. x the sequence
(
Xi (x)

)∞
i=1 is essentially

bounded.

356. Comment. The hypotheses of this theorem should strike the reader
as outrageously strong; hence the reasonableness of such a strong
conclusion.

Idea of proof. Choose N large enough that aN−1 + aN + aN+1 + · · · < 1.
Pick a random variable YN with distribution P(YN = 0) = 1 − (aN−1 + aN +
aN+1 + · · · ), P(YN = i) = ai−1, i > N . Let (Y (i)

N )∞i=1 be an independent
sequence of random variables each with the distribution of YN . Now couple
(|FN (Xi )|)∞i=1 to (Y (i)

N )∞i=1 inductively so that | fN (Xi )| < Y (i)
N for all i . (Here

we make our coupling so that i − 1 < fN (Xi ) < i whenever Yn = i , i >

N .) Now check that when N is large, 1
n

∑n
i=1(Y

(i)
N ) approaches something

small.

Sketch of proof. Let ε > 0 be arbitrary. We must show that for a.e. x there is
some N0 such that for all N > N0, one has lim supn→∞ 1

n

∑n
i=1 | fN (Xi )| < ε.

We will do even more: we will show that N0 need not depend on x .
For all N ∈ N large enough that

∑∞
i=N−1 ai < 1, let YN be a random

variable such that P(YN = 0) = 1 −∑∞
i=N−1 ai and for i ≥ N , P(YN = i) =

ai−1.

357. Exercise. Use the summability hypothesis of the theorem to show that
for some N0, E(YN ) < ε for all N > N0. •
Now suppose N > N0. Let (YN ,i )

∞
i=1 be a sequence of random variables that is

independent, independent of the sequence (Xi ), and such that the distribution
of YN ,i is the same as the distribution of YN .

358. Exercise. Inductively couple
(|FN (Xi )|

)∞
i=1 with (YN ,i )

∞
i=1 in such a

way that | fN (Xi )| < YN ,i a.e. for all i . Hint: use the conditional probability
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hypothesis of the theorem, together with our independence assumptions, to
guarantee that YN ,i = j whenever j − 1 ≤ | fN (Xi )| < j . •
The proof is now completed by an application of Theorem 210. To wit:

lim sup
n→∞

1

n

n∑
i=1

| fN (Xi )| ≤ lim
n→∞

1

n

n∑
i=1

YN ,i = E(YN ) < ε

a.e.
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Entropy

The notion of entropy in ergodic theory has its roots in C. Shannon’s (1948)
classic paper, which launched information theory as a well-developed science.
The entropy of an ergodic system (�,A, μ, T ) is a non-negative number that
in a certain sense measures the amount of randomness in the system. In this
chapter we’ll define entropy in a non-standard way and show that our definition
is equivalent to various other classical formulations. The reader should note
that there are problems with extending the notion of entropy to non-ergodic
systems; in particular, the many equivalent formulations turn out not to be so
when one doesn’t assume ergodicity.

4.1. The 3-shift is not a factor of the 2-shift

The theorem we prove in this section as an introduction to entropy was open
for a long time, even though a lot of very good mathematicians tried to do it.
However, we use essentially nothing in our short proof of it. This is the benefit
of hindsight in mathematics!

359. Comment. We are about to define the stationary process known as the
n-shift. One should think of it as being obtained by taking a fair n-sided die
and tossing it doubly infinitely many times.

Let n ∈ N and let �n = {1, 2, . . . , n}, considered as a finite alphabet having
n letters. Put �n = �Z

n and let Tn : �n → �n be the shift, Tnγ (i) = γ (i + 1).
For a cylinder set C = {x ∈ �n : xi1 = a1, . . . , xit = at }, put p(C) =
n−t . p extends additively to the algebra generated by cylinder sets and to a
Tn-invariant measure μ on a σ -algebra An by Carathéodory’s theorem.

360. Definition. The measure-preserving system (�n,An, μn, Tn) described
above is called the n-shift.

361. Comment. Recall Definition 222: if B is a set of words of length n
we denote by ϕ(B) the set of doubly infinite words (ai )

∞
i=−∞ such that

a1a2 · · · an ∈ B.

362. Definition. Let W be a set of words of length n. The number of words
in W is of course |W |. The exponential number of words in W is H = log |W |

n .
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(Equivalently, |W | = 2Hn .) The size of W is μ
(
ϕ(W )

)
. The exponential size

of W is
− log μ

(
ϕ(W )

)
n .

363. Comment. Sometimes we may say “a small exponential number of
words of length n”; by this we mean a set of words W with, say log |W |

n = ε,
where ε is small.69 For example, if |W | = 2.001n then we would probably
say that about W . We can speak of the size or exponential size of a single
word w; by this we just mean the size or exponential size of the singleton {w}.
Notice that the exponential size of a word w1 of length n is greater than the
exponential size of a word w2 of length n when the size of w1 is less than the
size of w2.

In the following exercise you are asked to prove a technical fact that will aid
in the proof of the next theorem.

364. Exercise. Let w be a word of length n on an alphabet having three letters.
Show that the number of words u such that d(u, w) < ε is exponentially small
(when ε is small).70 Hint: recall Stirling’s formula, n! ≈ nne−n

√
2πn.

365. Theorem. The 3-shift is not a factor of the 2-shift. That is, (�3,A3,

μ3, T3) is not a factor of (�2,A2, μ2, T2).

Idea of proof. Suppose π : �2 → �3 is a homomorphism. Approximate
the inverse image of the canonical three-set partition on �3 with a three-set
partition of cylinder sets in �2 having maximum length, say, 9. Presume for
the moment, that this approximation is actually exact. Then each subword of
length 200 of a point x ∈ �3 is determined by a distinct word of length 208 in
π−1(x). This is impossible because 2208 < 3200. However, since the cylinder
set partition is only an approximation, words of length 208 determine words of
length 200 only after some small proportion of letters are altered (on most of
the space). Even so, by Exercise 364 each word of length 208 can still account
for only an exponentially small number of words of length 200, which isn’t
enough.

Sketch of proof. Suppose π : �2 → �3 is a homomorphism. Let Ai =
{x ∈ �3 : x0 = i}, i = 1, 2, 3. Put δ = 1

1000 and choose ε as in the
footnote cited in the last exercise, that is such that for all sufficiently large
n,
( n
�εn�

)
3�εn� < 2δn .

69 Technically, what one usually has in mind is a sequence (Wn) of sets of words of length n, with
log |W |

n → 0; cf. the definition of “exponentially fat” below.
70 The number of such words is at most

( n
�εn�

)
3�εn�. What you must show here is that for every

δ > 0, there exists ε > 0 such that for all sufficiently large n,
( n
�εn�

)
3�εn� < 2δn .
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366. Exercise. There exist sets C1, C2, C3 ⊂ �2 satisfying the following:

(a) each Ci is a finite union of cylinder sets;
(b) the Ci are pairwise disjoint;
(c) �2 = C1 ∪ C2 ∪ C3;
(d) μ2

(
Ci�π−1(Ai )

)
< ε

6 , i = 1, 2, 3. •
Choose k large enough that each Ci is supported on {−k,−k + 1, . . . , k}.
Define γ : �2 → {1, 2, 3} by γ (x) = i if and only if x ∈ Ci and set B = {x ∈
�2 : γ (x) �= π(x)0}.
367. Exercise. Show that μ2(B) < ε

2 , whence P(
∑n−1

i=0 T −i
2 1B > nε) < 1

2
for every n. •
Fix a large n and define α, β : �2 → {1, 2, 3}{0,1,...,n−1} by α(x) =
γ (x)γ (T x)γ (T 2x) · · · γ (T n−1x) and β(x) = π(x)0π(x)1 · · · π(x)n−1.

368. Exercise. Show that P
(

d
(
α(x), β(x)

) ≤ ε
)

> 1
2 , and that |range α| ≤

2n+2k . •
Let D = {

z ∈ {1, 2, 3}{0,1,...,n−1} : d(z, y) ≤ ε for some y ∈ range α
}
. Then

|D| ≤ 2n+2k
( n
�εn�

)
3�εn� < 1

2 3n . This implies that μ3
(
ϕ(D)

)
< 1

2 . On the other

hand, setting E = {
x ∈ �2 : d

(
α(x), β(x)

) ≤ ε
}
, we have μ2(E) > 1

2 . But
π(E) ⊂ ϕ(D).

4.2. The Shannon–McMillan–Breiman theorem

In this section we prove the most basic major theorem of entropy theory. We
use a fact we call the square lemma. We feel that this lemma is important in
that the technique it employs is a universal one in analysis.

369. Exercise. Let (ai )
∞
i=1 be a real-valued sequence. Let ε, δ > 0 and

M > 0. If |ai | ≤ M for all i and |ai | ≤ ε for all i ∈ Ec, where
lim supn→∞

|E∩{1,2,...,n}|
n ≤ δ, then C lim sup ai ≤ ε + δM .

370. Exercise. Let (Yi ) be a real-valued, non-negative stationary process and
suppose that for some ε > 0, E(Y1) ≤ ε2. Then P(C lim Yi ≥ ε) ≤ ε.

371. Square lemma. Let (Xi, j )
∞
i, j=1 be real-valued random variables such

that the columns form a stationary process; that is, such that for each fixed k,
the sequence of vector-valued random variables

(
(X1, j , X2, j , . . . , Xk, j )

)∞
j=1

forms a stationary process.71 Now suppose that (X j )
∞
j=1 is a sequence of

71 So, letting X j = (X1, j , X2, j , . . . , Xk, j ), for measurable sets At ∈ Zk , 1 ≤ t ≤ s, one has
P(X j1+t ∈ At , 1 ≤ t ≤ s) = P(X j2+t ∈ At , 1 ≤ t ≤ s).
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random variables such that limi→∞ Xi, j = X j a.e. for every j . If both of
the sequences (X j )

∞
j=1 and (Xi,i )

∞
i=1 are essentially bounded a.e., then

lim
n→∞

1

n

n∑
i=1

Xi,i = lim
n→∞

1

n

n∑
i=1

Xi

a.e. (In particular, both these limits exist a.e.)

Idea of proof. First use essential boundedness to reduce to the case where the
(Xi, j ) are uniformly bounded. Then show that (X j )

∞
j=1 is stationary, so that by

Birkhoff, 1
n

∑n
i=1 Xi converges. Now it’s enough to show that C limi |Xi,i −

Xi | = 0 a.e. Fix ε and N . Let Y j = 1 if there are some i, k > N such that
|Xi, j − Xk, j | > ε, Y j = 0 otherwise. Then for large N , 1

n

∑n
i=1 Yi converges

a.e. to something small.

Sketch of proof. It is an easy exercise to reduce the general case to the case
where all of the Xi, j are uniformly bounded.72 (The impetus for the essential
boundedness concept is precisely so we can make this assumption.) Indeed we
may assume without loss of generality that |Xi, j | ≤ 1 a.e. Next one shows
that the sequence (X j )

∞
j=1 is stationary, which we leave to the reader.73 Now

it follows by Birkhoff that limn→∞ 1
n

∑n
i=1 Xi exists a.e. Therefore, it will be

sufficient to show that for arbitrary ε > 0,

P(C lim sup |Xi,i − Xi | ≥ 2ε) ≤ ε.

Fix ε > 0. Choose N so large that P
(∃i, k > N such that |Xi,1−Xk,1| > ε

)
< ε2.

Now for each j let Y j = 1 if there are i, k > N such that |Xi, j − Xk, j | > ε

and Y j = 0 otherwise. Plainly E(Y1) < ε2 and if i > N and Yi (x) = 0 then
|Xi,i (x) − Xi (x)| ≤ ε.

372. Exercise. Show that (Yi )
∞
i=1 is stationary. Hint: let Yr, j = 1 if |Xi, j −

Xk, j | > ε for some N < i, k < r . Then for fixed r (Yr, j )
∞
j=1 is stationary and

limr Yr, j = Y j a.e. •
Now, for a.e. x , Ex = {n : |Xi,i (x) − Xi (x)| > ε} ⊂ {n : Yn(x) = 1},
and hence by Exercise 370, lim supn→∞

|Ex ∩{1,...,n}|
n ≤ ε with probability ≥

72 Here are some details. We’ll assume Xi, j is non-negative here, leaving the general case
to the reader. Notice that Xi, j = Mi, j + fM (Xi, j ); here Mi, j = max{Xi, j , M}. More-
over limi→∞ fM (Xi, j ) = fM (X j ), which implies that X j = M j + fM (X j ), where
M j = limi Mi, j . So one need only choose M so large that C lim supi | fM (Xi,i )| and
C lim sup | fM (Xi )| are small.

73 The basic idea here is that, e.g. P(X1 ∈ A1, X2 ∈ A2) ≈ P(Xn,1 ∈ A1, Xn,2 ∈ A2) =
P(Xn,k ∈ A1, Xn,k+1 ∈ A2) ≈ P(Xk ∈ A1, Xk+1 ∈ A2) when n is large.
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1 − ε. Meanwhile for these values of x , C lim sup |Xi,i (x) − Xi (x)| ≤ 2ε by
Exercise 369.

373. Theorem. (Shannon–McMillan–Breiman theorem; Shannon 1948,
McMillan 1953, Breiman 1957.) Let (Yi )

∞
i=−∞ be a stationary process on a

finite alphabet �. For a.e. x ∈ �Z,

H(x) = lim
n→∞ −1

n
log P(Yt = xt , 1 ≤ t ≤ n)

exists.74 If the process is ergodic then the limit is constant a.e.

Idea of proof. The idea is to use the square lemma to show that

− 1

n
log

(
P(b1b2 · · · bn)

)
= − 1

n
log

(
P(b1)

)− 1

n
log

(
P(b2|b1)

)− · · · − 1

n
log

(
P(bn|bn−1bn−2 · · · b1)

)
and

− 1

n
log

(
P(b1|b0b−1b−2 · · · ))− 1

n
log

(
P(b2|b1b0b−1 · · · ))− 1

n
log

(
P(b3|b2b1b0 · · · ))

converge to the same thing. You do this by choosing your Xi, j s in such a way
that one sequence is the diagonal and the other is the limit of the columns. To
get you started, here’s the way the first 9 entries in the matrix should look:⎛
⎜⎜⎜⎝

− log
(
P(b1)

) − log
(
P(b2)

) − log
(
P(b3)

) · · ·
− log

(
P(b1|b0)

) − log
(
P(b2|b1)

) − log
(
P(b3|b2)

) · · ·
− log

(
P(b1|b−1b0)

) − log
(
P(b2|b0b1)

) − log
(
P(b3|b1b2)

) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

(Notice that the sequence (Xn,n) on the diagonal is exactly the thing you are
trying to establish Cesàro convergence of.) To establish essential bounded-
ness, one uses Theorem 355, with ai = |�|2−i . The idea is that in order
for − log

(
P(bn|bn−1bn−2 · · · b1)

)
to be between i and i + 1 (indeed, in

order for it to be at least i), bn has to be a letter which, given bn−1, bn−2,
etc. has probability at most 2−i . There can’t be more than |�| such letters.
But note there’s some subtlety here. In showing that (Xn,n) is essentially
bounded, for example, it isn’t sufficient for the hypotheses of Theorem 355
that P

(
i ≤ − log P(bn|b1b2 · · · bn−1) < i + 1

)
< ai ; you have to remem-

ber to condition on (Xi,i )
n−1
i=1 , so what you are actually showing is that for a.e.

b = (bi )
∞
i=−∞,

74 We assume, as usual, the domain space to be � = �Z.
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P
(

i ≤ − log P(bn |b1b2 · · · bn−1) < i + 1
∣∣− log P(bn−1|b1b2 · · · bn−2),

− log P(bn−2|b1b2 · · · bn−3), . . . ,− log P(b2|b1),− log(b1)
)
(b) < ai . (1)

(Remember, we use P(bn|b1b2 · · · bn−1) for P(Yn = bn|Yi = bi , 1 ≤ i ≤
n − 1).)

Sketch of proof.

374. Exercise. Assuming the limit to exist, show that H(x) = H(T x) a.e.,
where T is the shift. Conclude that in the ergodic case, H is constant a.e. •
Let Xi, j (x) = − log

(
P(Y j = x j |Yt = xt , j − i + 1 ≤ t ≤ j − 1)

)
. Also let

X j (x) = limi→∞ Xi, j (x) = − log
(
P(Y j = x j |Yt = xt , t ≤ j − 1)

)
. (This

limit exists a.e. by the bounded martingale convergence theorem.) We must
show:

(a) the columns form a stationary process;
(b) (Xi,i ) and (Xi ) are essentially bounded a.e.

In order to show (a), it suffices to show that for any n, m ∈ N, any measurable
sets Ai, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and any z ∈ N,

P(Xi, j ∈ Ai, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m)= P(Xi,z+ j ∈ Ai, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m).

That is to say, we must show that

P
(

− log
(
P(Y j = x j |Yt = xt , j − i + 1 ≤ t ≤ j − 1)

) ∈ Ai, j ,

1 ≤ i ≤ n, 1 ≤ j ≤ m
)

= P
(
− log

(
P(Yz+ j = xz+ j |Yt = xt , z + j − i + 1 ≤ t ≤ z + j − 1)

)∈ Ai, j ,

1 ≤ i ≤ n, 1 ≤ j ≤ m
)
.

375. Exercise. Denote the events of the foregoing equality by B1 and B2,
respectively. Establish the equality by showing that B2 = T −z B1, where T
is the shift.

As to (b), we consider (Xi,i ) first. The idea is to apply Theorem 355,
supplemented with the following exercise.

376. Exercise. Establish (1), and conclude that (Xi,i ) is essentially bounded

a.e. Hint: first show that P
(

i ≤ − log P(Yn = bn|Yi = bi , 1 ≤ i ≤ n − 1) <

i + 1
∣∣Y1, . . . , Yn−1

)
(b) < ai for a.e. b (see the “Idea” section for how), then

apply Exercise 126 (b).
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Showing that (Xi ) is essentially bounded a.e. is similar. Now by the
conclusion of the square lemma,

lim
n→∞ −1

n
log P(Yt = xt , 1 ≤ t ≤ n)

= lim
n→∞ −1

n
log

( n∏
i=1

P(Yi = xi |Yt = xt , 1 ≤ t ≤ i − 1)
)

= lim
n→∞

1

n

n∑
i=1

− log
(

P(Yi = xi |Yt = xt , 1 ≤ t ≤ i − 1)
)

= lim
n→∞

1

n

n∑
i=1

Xi,i (x)

exists a.e., as required.

377. Comment. Like the Birkhoff theorem, versions of the Shannon–
McMillan–Breiman theorem can be proved in various other circumstances, e.g.
non-ergodic or asymptotically mean stationary systems. We refer the reader
to Gray (1991, Chapter 3) for formulations, proofs and a wealth of historical
information.

4.3. Entropy of a stationary process

This is a very short but important section in which we define the entropy of a
process (see Kolmogorov 1958) and show that it is an isomorphism invariant.

378. Definition. The entropy H
(
(Yi )

)
of an ergodic stationary process

(Yi )
∞
i=−∞ is the almost everywhere constant value of the function H(x) in the

Shannon–McMillan–Breiman theorem. In the general, possibly non-ergodic
case, the entropy of (Yi )

∞
i=−∞ is E(H).

379. Corollary. The entropy of (Yi )
∞
i=−∞ is E

(− log P(Y0|past)
)
.

Proof. In the ergodic case, H(x) is constant and equal to the limit of the
Cesàro averages of the stationary process (Xi ). Therefore, H(x) = E(Xi ) for
any i . Taking i = 0, H(x) = E(X0), where X0(x) = − log P(Y0 = x0|Yt =
xt , t < 0) = − log P(Y0|past)(x). (See the proof of Shannon–McMillan–
Breiman.)

380. Exercise. Do the non-ergodic case.

381. Corollary. A process has zero entropy if and only if the past determines
the present (with probability 1).
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382. Comment. For an ergodic process, notice that the Shannon–McMillan–
Breiman theorem implies (indeed, using just convergence in measure) that for
all ε > 0 it is the case that for all sufficiently large n, for every x outside an
exceptional set of measure at most ε, the word x1x2 · · · xn has exponential size
within ε of the entropy of the process.

383. Definition. In the ergodic case, by an ε-reasonable name we mean a word
whose exponential size lies within ε of the entropy of the process.

384. Comment. In the ergodic case, the Shannon–McMillan–Breiman theo-
rem implies that for large n, after removing a small set, all words of length n
have approximately the same exponential size. Therefore (again after removal
of a small set) the exponential number of words is approximately the entropy
of the process.

385. Theorem. The function that takes a process to its entropy is d-
continuous.

386. Exercise. Prove the theorem. Hint: the number of words of length n that
are dbar-close to a given word is exponentially small; use the fact that the two
processes admit of a coupling that usually spits out a pair of words close in
dbar.

387. Comment. It is important to note that the ratio of the probabilities of two
ε-reasonable names can be arbitrarily large; it’s the exponential sizes that are
close.

388. Theorem. Suppose that (Xi )
∞
i=−∞ is a stationary process and (Yi )

∞
i=−∞

is a factor. Then the entropy of (Xi )
∞
i=−∞ is at least as great as the entropy of

(Yi )
∞
i=−∞.

Idea of proof. In the ergodic case, adapt the argument of Theorem 365,
utilizing Comment 382.

389. Exercise. Complete the proof.

We omit the proof of the following immediate corollary.

390. Corollary. Any two isomorphic processes have the same entropy.

4.4. An abstraction: partitions of 1

In the last section we introduced the entropy of a process, but we didn’t do it
in the normal way. The more usual way is to first define the entropy of a finite
partition and then do a bunch of other stuff we’ll get into later. All that matters
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in computing the entropy of a finite partition are the measures of the cells. In
this section we consider finite partitions stripped of all but that information;
we call these partitions of 1.

391. Definition. p is a finite ordered partition of 1 if there is some n for which
p = (p1, p2, . . . , pn), where pi ≥ 0, 1 ≤ i ≤ n and

∑n
i=1 pi = 1. We refer

to the n coordinates as the cells of the partition.

392. Comment. When there is no danger of confusion, we may simply say
that p is a partition of 1.

393. Definition. Let p = (p1, p2, . . . , pn) be a finite ordered partition of 1.
The partition entropy (denoted H(p)) of p is the entropy of any independent
process (Xi )

∞
i=−∞ on an n-letter alphabet � = {λ1, . . . , λn} with P(X0 =

λi ) = pi , 1 ≤ i ≤ n.

394. Exercise. Show that the partition entropy of a partition of 1 is well
defined.

395. Theorem. The partition entropy of p = (p1, . . . , pn) is
∑n

i=1 − pi

log(pi ).

Idea of proof. Either apply Corollary 379 directly, or for a more intuitive
proof, consider that the typical word of length n has approximately npi occur-
rences of λi , 1 ≤ i ≤ n, whence its probability is something like

∏n
i=1 pnpi

i =
2n(p1 log(pi )+···+pn log(pn)).

396. Comment. If (X, μ) is a probability space, where X = {x1, . . . , xk} is
finite, then we may speak of the partition entropy of the measure μ. By this we
mean the partition entropy of p = (

μ(x1), μ(x2), . . . , μ(xk)
)
.

397. Definition. Let p = (p1, . . . , pn) and q = (q1, . . . , qm) be partitions of
1. By interpolate p into the first cell of q we mean “construct the (n + m − 1)-
cell partition of 1 r = (q1 p1, q1 p2, . . . , q1 pn, q2, . . . , qm)”. By interpolate p
into the second cell of q we mean “construct the (n + m − 1)-cell partition
r = (q1, q2 p1, q2 p2, . . . , q2 pn, q3, . . . , qm)”. Similarly for cells 3 through m.

398. Exercise. (The conditioning property.) Let p and q be partitions of 1 and
let q1 be the size of the first cell of q. If p is interpolated into the first cell of q
then the resulting partition r has entropy H(r) = H(q) + q1 H(p).

399. Definition. Let p = (p1, . . . , pn) and q = (q1, . . . , qm) be partitions of
1. By a join, or joining, of p and q we mean an n × m matrix a = (ai j ) of
non-negative reals satisfying the following:

(a)
∑m

j=1 ai j = pi , 1 ≤ i ≤ n;
(b)

∑n
i=1 ai j = q j , 1 ≤ j ≤ m.

The independent join is given by ai j = pi q j .
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400. Comment. Notice that a join of two partitions of 1 can be viewed as a
coupling of the obvious corresponding measures on {1, . . . , n} and {1, . . . , m},
respectively.

401. Important comment. In practice, we want to consider a join of two par-
titions of 1 to itself be a partition of 1. Therefore we say r = (r1, . . . , rt ) is
a join of p and q, provided there is some understood bijection π taking the
index set {1, 2, . . . , t} of R to the index set {1, . . . , n} × {1, 2, . . . , m} of the
canonical join a such that ri = aπ(i), 1 ≤ i ≤ t . This allows one to speak
meaningfully about the join of two joins, for example, or about the entropy
of a join. Although this may be an abuse of notation, for the most part we’ll
completely suppress reference to such technical details.

402. Exercise. Show that the entropy of the independent join of partitions of 1
p and q is H(p) + H(q). Hint: interpolate p into each of the original cells of
q in turn. Use the conditioning property.

403. Exercise. Let p(i) = (pi,1, pi,2, . . . , pi,r ) be ordered partitions of 1 hav-
ing the same number of cells r , 1 ≤ i ≤ k, and let a1 + a2 + · · · + ak = 1,
where ai ≥ 0, 1 ≤ i ≤ k. Let p j = a1 p1, j +a2 p2, j +· · ·+ak pk, j , 1 ≤ j ≤ r .
Then p = a1p(1) + a2p(2) + · · · + akp(k) = (p1, p2, . . . , pr ) is an ordered
partition of 1.

404. Definition. A partition of 1 p constructed from partitions p(i) as in the
previous exercise is called a convex combination of the p(i).

405. Comment. More generally, if v1 . . . , vk are elements of any vector space
and a1 + a2 + · · · + ak = 1, where ai ≥ 0, 1 ≤ i ≤ k, then v = ∑k

i=1 aivi is a
convex combination of the vi . This construction can apply to random variables
or probability measures.

406. Theorem. Suppose p = a1p(1) + a2p(2) + · · · + akp(k) is a convex
combination of partitions of 1. Then H(p) ≥ ∑k

i=1 ai H(p(i)).
Sketch of proof. Write p(i) = (pi,1, pi,2, . . . , pi,r ) and p = (p1, p2, . . . , pr ),
where p j = a1 p1, j + a2 p2, j + · · · + ak pk, j , 1 ≤ j ≤ r .

407. Exercise. Show that the function f (x) = −x log2 x is concave on (0, 1).
Hint: it suffices to show that f ′′ < 0 on that interval.

Now by Jensen’s inequality, one has

H(p) =
r∑

j=1

f (p j ) =
r∑

j=1

f

(
k∑

i=1

ai pi, j

)
≥

r∑
j=1

k∑
i=1

ai f (pi, j )

=
k∑

i=1

ai

r∑
j=1

f (pi, j ) =
k∑

i=1

ai H(p(i)).
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408. Theorem. Let p and q be ordered partitions of 1. No joining of p and q
has entropy greater than that of the independent joining.

Sketch of proof. Let p = (p1, . . . , pn), q = (q1, . . . , qm) and let a = (ai, j )

be the canonical join. For 1 ≤ i ≤ n put ai = (
ai,1
p1

,
ai,2
p1

, . . . ,
ai,m
p1

).

409. Exercise. Each ai is a partition of 1 and q = ∑n
i=1 pi ai . •

410. Exercise. One can get back to a partition of 1 equivalent to a by inter-
polating, in turn, each ai into the i th cell of p. Conclude that H(a) =
H(p) +∑n

i=1 pi H(ai ). •
The proof is completed by observing that H(p) +∑n

i=1 pi H(ai ) ≤ H(p) +
H(q) (which is the entropy of the independent join) by the previous exercise
and Theorem 406.

411. Definition. Let p and q be ordered partitions of 1 and let a be a joining of
p and q. Then the entropy of p given q relative to a is the quantity H(p|aq) =
H(a) − H(q).

412. Comment. Observe that H(p|aq) ≤ H(p) as an immediate consequence
of Theorem 408.

4.5. Measurable partitions, entropy of measure-preserving systems

In this section we consider real partitions (instead of their abstractions, as in
the last section), and show that our definition of entropy coincides with the
classical one via partitions. Finally we define the entropy of a general measure-
preserving system.

413. Exercise. Let (�,A, μ) be a probability space and let A = {A1,

A2, . . . , An} be a measurable partition of �. Then pA = (
μ(A1), μ(A2), . . . ,

μ(An)
)

is an ordered partition of 1.

414. Definition. Let A = {A1, A2, . . . , An} be a measurable partition; assume
μ(A1) ≤ μ(A2) ≤ · · · ≤ μ(An). We denote by pA the partition of 1(
μ(A1), μ(A2), . . . , μ(An)

)
. The entropy of A is given by H(A) = H(pA).

415. Comment. Let A = {A1, A2, . . . , An} be a measurable partition of a
probability space (�,A, μ). If one defines I (x) by the rule x ∈ AI (x) (so
that I just picks out what cell one is in), then one can check that H(A) =
E(− log

(
μ(AI )

))
. That is to say “entropy of a partition is the expectation of

− log of the probability of the cell you’re in”.

416. Definition. Let A and B be finite measurable partitions. The entropy of
A given B is the quantity H(A|B) = H(A ∨ B) − H(B).
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417. Comment. Let A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bm} be
finite measurable partitions of a probability space (�,A, μ) and let C =
{Ci, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} be their superimposition, C = A ∨ B.
Here Ci, j = Ai ∩ B j . Then pC is a join of pA and pB .

418. Exercise. H(A|B) = H(p|rq), where p = pA, q = pB and r = pA∨B .

419. Comment. One has H(A|B) ≤ H(A). (Cf. Comment 412.)

420. Definition. Let A and B be measurable partitions such that every cell of
A is a union of cells of B. We say that A is a subpartition of B and that B is a
refinement of A.

421. Theorem. Let Q be a subpartition of R, and let P be another partition.
Then H(P|R) ≤ H(P|Q).

Idea of proof. Construct measurable partitions P ′, Q′ and R′ of [0, 1) having
the same numbers of cells as P , Q and R respectively, such that μ(P ′

i ∩ Q′
j ) =

μ(Pi ∩ Q j ), μ(R′
k) = μ(Rk), and such that Q′

j = R′
i1

∪ · · · ∪ R′
it

if and only
if Q j = Ri1 ∪ · · · ∪ Rit . In addition, arrange that each P ′

i ∩ Q′
j is independent

of the partition that R′ induces on Q′
j . Show that H(P|R) ≤ H(P ′|R′) =

H(P ′|Q′) = H(P|Q). (Use concavity of −x log2 x in showing that H(P ∨
R) ≤ H(P ′ ∨ R′).)

422. Definition. Let Xi and Y j be random variables taking values in a finite
alphabet, 0 ≤ i ≤ n, 0 ≤ j ≤ m. By H(Xi , 1 ≤ i ≤ n|Y j , 0 ≤ j ≤ m)

we mean H(A|B), where A is the algebra generated by the Xi and B is the
algebra generated by the Y j .

423. Corollary. Let (Xi )
∞
i=−∞ be a stationary process on a finite alphabet.

Then

(a) H(Xn|Xi , 0 ≤ i < n) is non-increasing in the variable n;
(b) 1

n H(Xi , 0 ≤ i < n) is non-increasing in the variable n.

Sketch of proof. H(Xn|Xi , 0 ≤ i < n) = H(X0|Xi ,−n ≤ i < 0) by
stationarity. Apply Theorem 421 to get (a). Now (b) follows from (a) easily.

The following theorem shows our definition of entropy to be equivalent to a
more classical one, namely the right-hand side of the display below.

424. Theorem. Let (Xi )
∞
i=−∞ be a stationary process on a finite alphabet.

Then

H
(
(Xi )

∞
i=−∞

) = lim
n→∞ H(Xn|Xi , 0 ≤ i < n) = lim

n→∞
1

n
H(Xi , 0 ≤ i < n).
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Sketch of proof. By Corollary 379, one has

H
(
(Xi )

∞
i=−∞

)
= E

(− log P(X0|past)
)

= lim
n→∞ E

(− log P(X0|Xi , N ≤ i < 0)
)

= lim
n→∞

∑
b0,b−1,...,b−n∈�

P(b0b−1 · · · b−n)
(

− log
P(b0b−1 · · · b−n)

P(b−1 · · · b−n)

)

= lim
n→∞

∑
b0,b−1,...,b−n∈�

P(b0b−1 · · · b−n)

(
− log P(b0b−1 · · · b−n) + log P(b−1 · · · b−n)

)
= lim

n→∞
( ∑

b0,b−1,...,b−n∈�

−P(b0b−1 · · · b−n) log P(b0b−1 · · · b−n)

−
∑

b−1,...,b−n∈�

−P(b−1 · · · b−n) log
(
P(b−1 · · · b−n)

)

= lim
n→∞

(
H(Xi ,−n ≤ i ≤ 0) − H(Xi ,−n ≤ i ≤ −1)

)
= lim

n→∞ H(X0|Xi ,−n ≤ i < 0) = lim
n→∞ H(Xn|Xi , 0 ≤ i < n).

This takes care of the first equality. For the second, observe that

H(Xi , 0 ≤ i < n) = H(X0) + H(X1|X0) + H(X2|X0, X1) + · · ·
+ H(Xn|X0, . . . , Xn−1),

and use the fact that xn → x implies C lim xn → x .

425. Theorem. Let (Xi )
∞
i=−∞ be a stationary process on a finite alphabet

and let m ∈ N. Then H = H
(
(Xi )

∞
i=−∞

) = 1
m limn→∞ H(Xi , n + 1 ≤ i ≤

n + m|X j , 0 ≤ j ≤ n).

Sketch of proof.

lim
n→∞ H(Xi , n + 1 ≤ i ≤ n + m|X j , 0 ≤ j ≤ n)

= lim
n→∞ H(Xi , 1 ≤ i ≤ m|X j ,−n ≤ j ≤ 0),

which exists by Theorem 421. Call the limit L . Our job is to show that L =
m H . Now we mimic the preceding proof. For k ∈ N,



9780521194402c04 CUP/KKW October 10, 2009 21:49 Page-85

4.6. Krieger finite generator theorem 85

1

k
H(Xi , 1 ≤ i ≤ km) = 1

k

(
H(Xi , 1 ≤ i ≤ m)

+ H(Xi , m + 1 ≤ i ≤ 2m|Xi , 1 ≤ i ≤ m)

+ H(Xi , 2m + 1 ≤ i ≤ 3m|Xi , 1 ≤ i ≤ 2m) + · · ·
· · · + H(Xi , (k − 1)m + 1 ≤ i ≤ km|Xi , 1

≤ i ≤ (k − 1)m)
)
.

426. Exercise. As k → ∞, the left-hand side goes to m H , the right-hand
side to L .

427. Definition. Let (�,A, μ, T ) be a measure-preserving system, and let P
be a finite measurable partition of �. We denote by H(P, T ) the entropy of
the (P, T ) process.

The entropy of a measure-preserving system (�,A, μ, T ) is the supremum,
over all finite measurable partitions P , of H(P, T ). We denote the entropy of
(�,A, μ, T ) by H(�,A, μ, T ), or simply by H(T ).

428. Comment. If P and Q are two finite generators then H(P, T ) =
H(Q, T ). The reason for this is that the (P, T ) process is isomorphic to
the (Q, T ) process. In fact, if a transformation has a finite generator P then
H(T ) = H(P, T ), since for any other finite partition Q, P ∨ Q is a generator
too, so H(Q, T ) ≤ H(P ∨ Q, T ) = H(P, T ).

4.6. Krieger finite generator theorem

We won’t have to use the material in this section, but we don’t think the reader
should skip it because the methods used herein are very important. We start
out with a couple of technical exercises and then move to the Krieger finite
generator theorem, which is a deep result with a demanding proof. The reader
who is patient enough to work through the details will be rewarded in the
remainder of the book.

429. Exercise. Given an upper bound on the number of cells, show that the
entropy of the factor generated by a partition is continuous in the variation
metric. That is to say: let Q ∈ N and ε > 0. Show there exists δ =
δ(ε, Q) > 0 such that if (�,A, μ, T ) is any system and P = {P1, . . . , PQ},
F = {F1, . . . , FQ} are any Q-cell measurable partitions of � satisfying
v(H, F) < δ (see Definition 344) then |H(P, T ) − H(F, T )| < ε. Hint:
choose δ so that both −δ log δ and δ log Q are small relative to ε.

430. Exercise. Let k ∈ N and let k′ < k be a real number. Take � =
{1, 2, . . . , k}. There exists u ∈ N such that if r is any word on � of length
u then for every J ∈ N it is the case that for all sufficiently large n,
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∣∣{w : w is a word on � of length n − J not having r as a subword
}| > (k′)n .

Hint: take u large enough that ku − 1 > (k′)u.

431. Comment. We’re now ready to state the Krieger finite generator theorem.
For the proof, we’re going to provide more detail than the reader will be used
to seeing in this book. The reason for this is that this proof is a paradigm for
many of the constructions to come in later chapters. We view it as absolutely
essential that the details be worked through rigorously.

432. Theorem. (Krieger finite generator theorem; Krieger 1970.) Let k ∈ N
and suppose an ergodic system (�,A, μ, T ) has entropy h < log k. Then
(�,A, μ, T ) has a k-cell generator. (See Definition 154 for the definition of
“generator”.)

Idea of proof. Let (Qn) be a nested sequence of finite partitions that sepa-
rates points. We will look at a Rohlin tower, then a much bigger one, then a
much bigger one, etc. Start with a large m. Let n � m. We will choose the
first tower of height n, so that the base is independent of the partition accord-
ing to n names of Qm . By Shannon–McMillan–Breiman, there are enough
n-names on a k-letter alphabet to label the rungs of all reasonable columns
with the letters B1, B2, . . . , Bk in such a way that the reasonable columns are
distinguished from each other, because the number of reasonable columns is
smaller than the number of such names. Carry out such a labeling. If you
know the {B1, B2, . . . , Bk}-name of a column containing the base of the
tower, you probably know the Qm-name of that column. The only reason you
might turn out to be wrong is that you might be looking at an unreasonable
column.

This is just the first stage. We will end up altering our labeling
B1, B2, . . . , Bk over and over again, to accommodate approximation of Qm

for larger and larger m, however altering the labeling less and less so that it
stabilizes, and so that starting with a random point x which is labeled at some
stage, the label of x is unlikely to change in subsequent alterations. In the end,
we will be able to tell all of the Qi names from our {B1, . . . , Bk}-name, and
hence we will be able to tell what point we are, from our {B1, . . . , Bk}-name.
Hence we will know that {B1, . . . , Bk} generates.

There is a complication. We will have to know whenever we enter one of
these towers from just looking at the {B1, . . . , Bk}-name. If we saw an infinite
{B1, . . . , Bk}-name but had no idea which coordinates were in the base of the
tower, we would be quite confused. To handle this, we need to reserve certain
words to label the bases of the towers, so that we know when we are in one.
You can arrange that so few words are reserved that no damage is done to
the proof. Use labels like 21111112 for the first tower and 211111112 for the
second, etc. (the reader needs to figure out how long these labels need to be so
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that the restriction that these names cannot be used except for labeling the base
will not cause damage).

More details

1. Start off with Q10 (10 chosen so that Q10 has nearly full entropy). Pick n1

large enough so that Shannon–McMillan–Breiman kicks in for Q10-names
by time n1. Pick a Rohlin tower of height n1 whose base is independent of
the partition of Q10 names of length n1. Label the reasonable columns with
distinct {B1, . . . , Bk}-names.

2. Pick your second tower to be much bigger than your first, and as before pick
your base independent of Q1000-names of length the height of the tower
(1000 chosen so that Q1000 has very nearly full entropy). The {B1, . . . , Bk}
process defined at the previous stage already captures a great deal of
entropy, because {B1, . . . , Bk}-names almost determine which atom of Q10

you are in. Prove that there are enough {B1, . . . , Bk}-names so that, since
our entropy is strictly less than log k, it is possible to let the top 3

4 of
the rungs remain as they are and change the bottom 1

4 of the rungs to
{B1, . . . , Bk}-names in such a way as to distinguish all reasonable Q1000

columns.
3. Continue, except replace the numbers 3

4 and 1
4 with 7

8 and 1
8 at the next

stage, then with 15
16 and 1

16 in the following stage, etc.
4. Here is why the final {B1, . . . , Bk}-name separates points. At the end of

the first stage you probably know what atom of Q10 you are in and there
is not much more than a 1

4 chance that the information will be damaged.
Continue this reasoning at higher stages using Borel–Cantelli to show that
information is damaged only finitely many times (with probability 1).

Sketch of proof.

Put � = {1, 2, . . . , k}. Choose a real number k′ < k such that h < log k′.
Now choose u as in Exercise 430 and let r be the word of length u consisting
entirely of 1s. Also, for any i ∈ N, let ri be the word of length u + i + 1
consisting of a 2 followed by u + i − 1 consecutive 1s then another 2. Notice
that every ri contains r as a subword. For n ∈ N, let W (i)

n consist of all words
on � of length n that begin with ri but contain no other occurrence of r . By
the conclusion of Exercise 430 (with J = u + i + 1), |W (i)

n | > (k′)n for all
sufficiently large n.

Let (P(i))∞i=1 be an increasing sequence of finite partitions of � that sep-
arates points. Let h′ = limi→∞ H(P(i), T ) ≤ h.75 Choose i1 such that

75 One actually has h′ = h, however our proof does not make use of this fact.
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h′ − H(P(i1), T ) < ε1 = 1
10 (log k′ − h′). Letting now Q1 be the number

of cells in P(i1), let δ1 = min{ 1
3δ(ε1, Q1),

1
6 } (cf. Exercise 429).

Choose n1 >
|r1|
δ1

such that |W (1)
n1 | > (k′)n1 and such that

P(x0x1x2 . . . xn1−1 is an ε1-reasonable P(i1)-name) > 1 − δ1.

Let A1 be the algebra generated by the P(i1)-names of length n1, and let S1 be
the base of a Rohlin tower of height n1 with an error set E1 having measure at
most δ1 such that S1 is independent of A1.

433. Exercise. Show that there are at most 2n1(H(P(i1),T )+ε1) < (k′)n1 rea-
sonable P(i1)-names of length n1. Conclude that, neglecting a set D1 ⊂ S1

with μ(D1) < δ1
n1

, one can partition S1 into fewer than (k′)n1 cells C1, . . .

such that any two members of the same cell have the same P(i1)-name on
{0, 1, . . . , n1 − 1}. •
Let π be any injective mapping from the cells C1, . . . into W (1)

n1 . (There are

such mappings since |W (1)
n | > (k′)n .) We now use π to create a k-cell

ordered partition of � as follows: if x ∈ Ci and π(Ci ) = a0a1 . . . an1−1,
put x ∈ B(1)

a0 , T x ∈ B(1)
a1 , T 2x ∈ B(1)

a2 , . . ., T n1−1x ∈ B(1)
an1−1 . Finally, put

E1 ∪
(⋃n1−1

i=0 T i D1

)
into B(1)

2 . Denote the resulting partition by B(1).

Let M1 = E1 ∪
(⋃n1−1

i=0 T i D1

)
∪⋃|r1|−1

i=0 T i S1. Note that μ(M1)< 3δ1 ≤ 1
2 .

434. Exercise. Show that if x �∈ M1, then by knowing x−n1 x−n1+1 · · · xn1

(as a B(1)-name), one can figure out which cell of P(i1) x is in. To be more
precise: write P(i1) as an ordered partition {G1, . . . , G Q1}. There is an ordered

partition F (1) = {F (1)
1 , . . . , F (1)

Q1
} that is measurable with respect to the algebra

generated by {T i B(1)
j : −n1 ≤ i ≤ n1, 1 ≤ j ≤ k} and such that if x ∈ Gm

and x �∈ M1 then x ∈ F (1)
m , 1 ≤ m ≤ Q1. Hint: locate x in the tower by

finding an occurrence of r1 in the word x−n1+1x−n1+2 · · · x−1x0. If this works,
you know what cell of P(i1) x is in, so you put x in the corresponding cell of
F (1). If it fails, you know x ∈ M1. Put such x in F (1)

2 . •
Note by choice of δ1, H(B(1), T )≥ H(F (1), T )> H(P(i1), T )− ε1 > h′ − 2ε1.

Now choose i2 > i1 such that h′ − H(P(i2), T ) < ε2 = 1
100 (log k′ −h′). Let

P(i2)
B be the superimposition of B(1) and P(i2). Letting now Q2 be the number

of cells in P(i2)
B , let δ2 = min{ 1

4δ(ε2, Q2),
1
16 } (cf. Exercise 429).

Now, for all sufficiently large n divisible by 4, the following hold:

(1) |W (2)
n
4

| > (k′) n
4 ;

(2) n >
|r2|
δ2

;
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(3) P(x0x1 · · · x 3n
4 −1 is an ε2-reasonable B(1)-name) > 1 − δ2;

(4) P(x0x1 · · · x 3n
4 −1 is an ε2-reasonable P(i2)

B -name) > 1 − δ2;
(5) n > 2n1.

Choose n2 satisfying (1)–(5) and let A2 be the algebra generated by the P(i2)
B -

names of length 3
4 n2.76 Let S2 be the base of a Rohlin tower of height n2 with

an error set E2 having measure at most δ2 such that every rung of the tower is
independent of A2. (This is possible by Exercise 189. The reader should make
note, however, that we don’t actually need every rung to be independent; in
fact only one particular rung needs to be so.) Notice that for every B(1)-name
w on {0, 1, . . . , 3

4 n2 −1}, ϕ(w) is a union of sets ϕ(v), where each v is a P(i2)
B -

name. If v1 and v2 are two ε2-reasonable P(i2)
B -names on {0, 1, . . . , 3

4 n2 − 1},
write v1 ∼ v2 if ϕ(v1) ⊂ ϕ(w) and ϕ(v2) ⊂ ϕ(w) for some ε2-reasonable
B(1)-name w on {0, 1, . . . , 3

4 n2 − 1}.
435. Exercise. Show that the measure of ϕ(w), where w is an ε2-reasonable
B(1)-name on {0, 1, . . . , 3

4 n2 −1}, is at most 2− 3
4 n2(H(B(1),T )−ε2), and the mea-

sure of ϕ(v), where v is a reasonable P(i2)
B -name of length 3

4 n2, is at least

2− 3
4 n2(H(P

(i2)

B ,T )+ε2). •
We now focus attention on the particular rung T

n2
4 S2 of our Rohlin tower. In

the next exercise, you are asked to show that, upon deleting the points of this
rung giving rise to unreasonable names, on what’s left there is an exponentially
small number of represented P(i2)

B -names v in each equivalence class under ∼.

436. Exercise. There is a set T
n2
4 D2 ⊂ T

n2
4 S2 with μ(D2) < 2δ2

n2
having the

property that for every x ∈ T
n2
4 (S2 \ D2), letting w = x0x1 · · · x 3

4 n2
(as a

B(1)-name), there are no more than 2
3
4 n2(2ε1+2ε2) elements in the set C(w) of

P(i2)
B -names v on {0, 1, . . . , 3

4 n2−1} for which there is some y ∈ T
n2
4 (S2\D2)

such that v = y0 y1 · · · y 3
4 n2−1 (as a P(i2)

B -name) and w = y0 y1 · · · y 3
4 n2−1 (as

a B(1)-name). •
Let x and w be as in the previous exercise. Since |C(w)| < (k′)

n2
4 < |W (2)

n2
4

|,
there is an injective function πw : W (2)

n2
4

→ C(w). We now use the maps πw to

modify the first partition B(1) as follows. If y ∈ T l(S2\D2), where 0 ≤ l < n2
4 ,

let x = T
n2
4 −l y ∈ T

n2
4 (S2 \ D2), write w = x0x1 · · · x 3

4 n2−1 (as a B(1)-name),

write v = x0x1 · · · x 3
4 n2−1 (as a P(i2)

B -name), write a0a1 · · · a n2
4 −1 = πw(v)

76 We mean the algebra whose atoms are the equivalence classes of the relation x ∼ y if and only
if x0x1 · · · x 3

4 n2−1
= y0 y1 · · · y 3

4 n2−1
(as P

(i2)

B -names).
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and put y ∈ B(2)
al . For any other point y, put y ∈ B(2)

i if and only if y ∈ B(1)
i ,

1 ≤ i ≤ k.

437. Exercise. Let V2 ⊂ ⋃ n2
4

i=1(S2\D2) be the set of points that were modified

in moving from B(1) to B(2). That is, V2 = ⋃
t �=s B(1)

t ∩ B(2)
s . Show that:

(a) μ(V2) < 1
4 , and

(b) μ
(⋃n1

i=−n1
T i V2

)
< 1

2 . Hint: recall n2 > 2n1.

Let M2 = E2 ∪
(⋃n1−1

i=0 T i D2

)
∪⋃|r2|−1

i=0 T i S2. Note that μ(M2) < 4δ2 ≤ 1
4 .

438. Exercise. Show that if x �∈ M2, then by knowing x−n2 x−n2+1 · · · xn2 (as
a B(2)-name), one can figure out which cell of P(i2) x is in. (See Exercise 434
for clarification.)

439. Exercise. Establish by induction that one may find, for all j ∈ N, i j , n j ∈
N, a measurable set M j , and a k-cell ordered partition B( j) of � satisfying, for
all j > 1:

(a) h′ − H(P(i j ), T ) < ε j = 1
10 j (log k′ − h′);

(b) μ(M j ) ≤ 2− j ;
(c) H(B( j), T ) > h′ − 2ε j ;
(d) i j > i j−1;
(e) v(B( j−1), B( j)) ≤ 2− j ;

(f)
(⋃n j−1

i=−n j−1
T i Vj

)
< 2− j+1, where Vj = ⋃

t �=s B( j−1)
t ∩ B( j)

s ;

(g) if x �∈ M j , then by knowing x−n j x−n j +1 · · · xn j (as a B( j)-name), one can
figure out which cell of P(i j ) x is in;

(h) n j > 2n j−1.

Hint: the above few paragraphs do exactly this for the case j = 2. •
440. Exercise. Show that lim j→∞ B( j)

i = Bi exists a.e., 1 ≤ i ≤ k.77 Hint:
use (e) above and Borel–Cantelli.

We claim that the ordered partition B = {B1, B2, . . . , Bk} separates points.
To see this, let R1 be the set of points x ∈ � that lie in only finitely many of
the sets

⋃n j−1
i=−n j−1

T i Vj , j > 1. By (f) above and Borel–Cantelli, μ(R1) = 1.
Let R2 be the set of points x ∈ � that lie in only finitely many of the sets M j ,
j ∈ N. Again by Borel–Cantelli, μ(R2) = 1. Finally let R2 be a set of full
measure such that for any x, y ∈ R2, x �= y, there is some i ∈ N such that P(i)

separates x and y. Let R = R1 ∩ R2 ∩ R3.

77 That is to say, lim j→∞ 1
B( j)

i
(x) exists a.e., and the limit is clearly an indicator function. We

let Bi be the set of points where the limit is 1.
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Suppose that x, y ∈ R with x �= y. We claim that the B-names (xi )
∞
i=−∞

and (yi )
∞
i=−∞ are different. To see this, choose m so large that x and y are not

in the “bad” sets
⋃n j−1

i=−n j−1
T i Vj or M j for any j ≥ m, and such that P(im )

separates x and y. By (g) above, x−nm x−nm+1 · · · xnm and y−nm y−nm+1 · · · ynm

as B(m)-names are different. But these are the same as x−nm x−nm+1 · · · xnm and
y−nm y−nm+1 · · · ynm as B-names, so we’re done.

441. Abbreviation of Proof. Make a big tower distinguishing reasonable
columns in mean Hamming distance. Improve the approximation with a bigger
tower by altering a few columns at the bottom. Label the bases of all towers
with words reserved for this purpose.

442. Definition. Let (Xi )
∞
i=−∞ and (Yi )

∞
i=−∞ be stationary processes on

alphabets �1 and �2, respectively. Realize Y as a system (Y,A, μ, T ) and
realize X as a system (X,B, ν, S). Suppose there is a homomorphism π :
X → Y having the property that for every λ ∈ �2, π−1{y ∈ Y : y0 = λ} is a
finite union of cylinder sets in X . Then (Yi )

∞
i=−∞ is said to be a coded factor

of (Xi )
∞
i=−∞, and the map taking a cylinder set in the preimage back to λ is a

code.

443. The following lemma will be used in the next section.

Lemma. Let (X,A, μ, T ) be an ergodic measure-preserving system and sup-
pose that Q = (A1, A2, . . .) is a countable generating partition. Then H(T ) =
limn→∞ H(Qn, T ), where Qn = (A1, A2, . . . , An−1,

⋃∞
i=n Ai ).

Sketch of proof. Obviously H(T ) ≥ limn→∞ H(Qn, T ) (the limit exists, of
course, as the sequence is monotone). Let P be an arbitrary finite measurable
partition and let ε > 0 be arbitrary. We will find an n such that H(Qn, T ) ≥
H(P, T ) − ε, completing the proof.

Let δ be a very small number depending on ε and |P| to be specified later.
Since Q generates, the (infinite) Q-name of a point determines the P-name.
Choose m so large that the Q-name of length 2m + 1 centered at 0 of a point x
determines the cell of P that x is in with probability at least 1−δ. Next, choose
n so large that μ(

⋃∞
i=n Ai ) < δ

2m+1 . Then the probability that the Qn-name
of length 2m + 1 centered at the origin determines which cell of P x is in is at
least 1 − 2δ. Let B be the bad set where this code makes errors.

Next, choose a really big N such that Shannon–McMillan–Breiman has
δ-kicked in for Qn names of length N and P-names of length N and where
Birkhoff ergodic has δ-kicked in for the bad set B.

444. Exercise. Show that the number of reasonable P-names of length N is
no more than something like
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2N (H(Qn ,T )+δ)

(
N

3δN

)
|P|3δN+2m .

Then show that for small enough δ depending on ε and |P|, and big enough N ,
this is less than 2N (H(Qn ,T )+ε). Use this to finish the proof.

4.7. The induced transformation and fbar

This section can be skipped if desired. We show how a transformation on a
measure space induces transformations on its subsets, and describe the rela-
tionship between the entropy of the original system and the entropy of the
induced system.

445. Discussion. Let (X,A, μ, T ) be an ergodic measure-preserving system,
and let A be a set of positive measure. Let B be the σ -algebra of subsets of
B that is obtained by restricting A to subsets of A. Let ν be the probability
measure on B defined by ν(B) = μ(B)

μ(A)
for B ∈ B. Define a transformation

S : A → A by Sx = T i x , where i is the least positive integer such that
T i x ∈ A.

446. Exercise. Show that (A,B, ν, S) is a measure-preserving system on a
probability space.

447. Definition. As introduced above, S is called the induced transformation
of T on A.

448. Theorem. Poincaré recurrence theorem. Let (X,A, μ, T ) be a measure
preserving system and suppose μ(A) > 0. Then

(a) for some n ∈ N, one has μ(A ∩ T −n A) > 0;
(b) μ

({
x ∈ A : A ∩ {T x, T 2x, T 3x, . . .} = ∅}) = 0.

Idea of proof. For part (a), consider A, T −1 A, T −2 A, . . . , T −m A where m >
1

μ(A)
. These sets cannot be pairwise essentially disjoint. For (b), let B be the

set of points in A that don’t come back. Apply part (a).

449. Theorem. Let (X,A, μ, T ) be an ergodic measure-preserving system,
and let A be a set of positive measure. Denote by S the induced transformation
of T on A. Then H(S) = H(T )

μ(A)
.

Idea of proof. The reader should check that if we know this for H(T ) finite,
we get it for H(T ) = ∞ for free. Let then P be a finite generator for T .
Define a new (countable) alphabet whose letters are finite strings of letters in
P . A point x ∈ A is assigned a particular string if that string is the P-name of
(x, T x, T 2x, . . . , T i−1x), where i is the least positive integer with T i x ∈ A.
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450. Exercise. Show that this partition is a generator for S. •
By the Birkhoff ergodic theorem, for a typical x ∈ A the number of times x
returns to A under iteration by T by time n is about nμ(A). Hence names of
size close to nμ(A) in the induced process look like names of size close to n
in the original process.

This would pretty much complete the argument if the partition on A were
finite, but as it stands, it proves nothing. We can make it finite by lumping
together points in A whose return time is greater than some large num-
ber M . This does not seriously alter the entropy. Just be careful in applying
Lemma 443.

Sketch of proof. For x ∈ A let i(x) be the minimum positive integer i such
that T i x ∈ A. By Poincaré, this is < ∞ almost everywhere. Put Ai = {x :
i(x) = i}.
451. Exercise. Show that

∑∞
i=1 iν(Ai ) = 1

μ(A)
. •

Let f be the function taking on the value i on Ai and 0 off A. By the above
exercise,

∫
f dμ = 1. For m ∈ N, let Pm be the partition whose letters consist

of all P-names of length less than m, plus an additional letter “Z”, that assigns
to point x the P-name x0x1 · · · xi(x)−1 if i(x) < m and “Z” otherwise. (So the
P-name can be read off the Pm-name except for return times of m and greater,
which are lumped into a single cell.) Then P = ∨

Pm is a generator for S and
hence H(S) = lim H(Pm, S). Choose ε > 0 arbitrarily small and pick m =
m(ε) such that

∑∞
i=m iμ(Ai ) < ε and such that Hm = H(Pm, S) > H(S)−ε.

For N ∈ N and x ∈ A, let n(x, N ) be the time of the N th return of x to
A under iteration by T . Thus it takes a word of length n(x, N ) in the (P, T )

process to translate to a word of length N in the (Pm, S) process. Now choose
N large enough that

(1) Most of the space is taken up by reasonable names for the (Pm, S) process.
That is, for most points x ∈ A, the size of the N -name of x in the Pm

alphabet is between 2−N (Hm+ε) and 2−N (Hm−ε).
(2) For most points x ∈ A, N ( 1

μ(A)
− ε) < n(x, N ) < N ( 1

μ(A)
+ ε).

(3) For most points x ∈ A, 1
n(x,N )

∑n(x,N )−1
i=0 f (T i x) < ε.

(4) For most points x ∈ A, the size of the n(x, N )-name for P of x is between
2−n(x,N )(H+ε) and 2−n(x,N )(H−ε). (Here of course H = H(P, T ).)

We consider a point “good” if it and most of the points in its names (P-name
of length n(x, N ) and Pm-name of length N ) satisfy (1) through (4) above.

Now consider a typical “good” point x ∈ A. How big is the Pm-name of
x of length N? According to (1) above, it’s at most 2−N (Hm−ε). On the other
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hand, it’s at least the size of the P-name of x of length n(x, N ), because that
entire P-name codes to the Pm-name of length N . So it’s at least 2−n(x,N )(H+ε)

by 4. This gives 2−n(x,N )(H+ε) ≤ 2−N (Hm−ε). Taking logs and using (2) above
yields ( 1

μ(A)
+ ε)(H + ε) > (Hm − ε). Now letting ε → 0 (so that m → ∞)

gives 1
μ(A)

H ≥ H(S).

Consider again the question, how big the Pm-name of x of length N is.
(More accurately, that part of the name that lies in the good set.) According
to (1) above, it’s at least 2−N (Hm+ε). On the other hand, (3) above says that
at most εn(x, N ) characters in the P-name of x of length n(x, N ) are part of
a block that gets coded to the character “Z”. By increasing |P| if necessary,
we can assume that which cell of P you are in tells whether or not you are

in A. It follows that at most |P|εN ( 1
μ(A)

+ε) “good” P-names of various lengths

of at least N ( 1
μ(A)

− ε), and hence of size at most 2−N ( 1
μ(A)

−ε)(H−ε), code to

the Pm-name of x of length N . Hence the Pm-name of x of length N has size

at most 2−N ( 1
μ(A)

−ε)(H−ε)|P|εN ( 1
μ(A)

+ε) ≥ 2−N (Hm+ε). Taking logs, dividing
through by N and letting ε → 0 yields 1

μ(A)
H ≤ H(S).

452. Comment. There is another way to prove the above theorem, but in order
to indicate it, we need to introduce a generalization of the dbar metric, due to
J. Feldman.

453. Definition. The f-distance between words λ1λ2 · · · λn and γ1γ2 · · · γn

is 1
n times the number of letters that must be removed from each so

that the remaining words, when collapsed, are the same.78 So for example
f (dsornstein, katznelson) = 7

10 since the length of each is ten and a longest
common collapsible subword is ten.

454. Definition. Let � be an alphabet and n ∈ N. The fbar distance f (μ, ν)

between two measures on the words of length n from � is the infimum of the
expected f -distance between coupled words, taken over all couplings of the
two measures.

Let (Xi )
∞
i=1 and (Yi )

∞
i=1 be stationary processes onto a countable alpha-

bet �. Let

μn(λ1 · · · λn) = P(X1 = λ1, . . . , Xn = λn),

νn(λ1 · · · λn) = P(Y1 = λ1, . . . , Yn = λn);
78 Let w = λ1λ2 · · · λn and v = γ1γ2 · · · γn . Pick the maximum k such that there are indices

1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ n such that the words
λi1λi2 · · · λik and γ j1γ j2 · · · γ jk coincide. Now f (w, v) = n−k

n .
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μn and νn are measures on �n , and we denote their fbar distance by f (n). The
fbar distance between the processes (Xi )

∞
i=1 and (Yi )

∞
i=1 is f

(
(Xi ), (Yi )

) =
limn→∞ f (n).

455. Theorem. The function that takes a process to its entropy is continuous
in the fbar metric.

456. Exercise. Prove the theorem. Hint: see the proof of Theorem 385.

457. Idea of Proof of Theorem 449 using fbar. Recall that the proof was a
triviality so long as we could assume that the amount of time it took to return
to the set A was bounded from above. Well, it is an easy matter to find a set A′
for which this is the case, with μ(A�A′) arbitrarily small. Given that entropy
is fbar-continuous, we will be done if we can show that the process induced on
A′ is fbar close to the process induced on A.

458. Exercise. Prove that the process induced on A′ is fbar close to the process
induced on A. Hint: refine the given alphabets on A and A′ so they agree on
A ∩ A′. Now just kill the parts of trajectories lying outside A ∩ A′.
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Bernoulli transformations

459. Definition. Let 0 < p < 1. A random variable X has the Bernoulli
(p, 1 − p)-distribution if one has P(X = 1) = p and P(X = −1) = 1 − p.

A measure-preserving system (�,A, μ, T ) is said to be Bernoulli if it is
isomorphic to an independent process on a finite alphabet.

460. Discussion. The archetypical deep result of isomorphism theory is the
Ornstein isomorphism theorem, proved by D. Ornstein in 1970. There are var-
ious formulations of this theorem, of which the best known is perhaps that any
two Bernoulli systems of the same entropy are isomorphic. A simplified proof
of this version of the Ornstein isomorphism theorem was given by M. S. Keane
and M. Smorodinsky in 1979. However, Ornstein’s original proof is stronger
in that it gives a condition, the so-called finite-determination condition, that is
on the one hand both necessary and sufficient for a system to be Bernoulli, and
on the other hand is easily checked for a number of specific systems.

Indeed, there are several characterizations of the class of Bernoulli systems
of independent interest. Experts in isomorphism theory have long known what
these characterizations are, and that they are equivalent to each other, though
good expositions on many of the equivalences has appeared only recently;
Shields (1996) and Thouvenot (2002) are two examples. Indeed, this chapter
covers much the same ground as Chapter IV of Shields (1996), with a few
differences: Shields’ “ABI” (almost block independent) processes are essen-
tially the same as our “IC” (independent concatenation) processes, and his
“ABUP” (almost blowing up) property is very similar to what we call “EX”
(extremal). We both consider the finitely determined (FD) and very weak
Bernoulli (VWB) characterizations, and both prove equivalence of four condi-
tions with a circuit of five implications. Our circuit is quite different, however:
only two of our five implications appear in Shields (1996). In particular, we
do not show directly that FD implies VWB. (This classical result is due to
Ornstein and Weiss 1974.)

5.1. The cast of characters

In this subchapter, we introduce the various conditions. For each of these con-
ditions, we will denote the class of stationary processes satisfying the condition
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by a boldfaced abbreviation. Then we formulate the theorem stating that they
coincide (minus one implication, which is handled in the next chapter).

461. Convention. Throughout this chapter and the next, all measure-
preserving systems are assumed to be, or be isomorphic to, processes on a
finite alphabet. (In particular, we assume that our systems have finite entropy.)

462. Definition. (Ornstein 1974.) A stationary process (Xi )
∞
i=−∞ is said to be

very weak Bernoulli, or VWB, if the d-distance between the n-future condi-
tioned on the past and the unconditioned n-future79 goes to zero in probability
as n → ∞.80

463. Notation. If X = (Xi )
∞
i=−∞ is a stationary process and n ∈ N, let

μX,n be the measure X defines on words of length n, that is the measure
μX,n(λ1 · · · λn) = P(wi = λ1, 1 ≤ i ≤ n). If X is understood, we will
simply use μn instead of μX,n .

464. Definition. (Ornstein 1974.) An ergodic stationary process X =
(Xi )

∞
i=−∞ is said to be finitely determined, or FD, if for every ε > 0 there

exist n and δ > 0 such that for any other ergodic process Y = (Yi )
∞
i=−∞

on the same alphabet, if v(μX,n, μY,n) < δ and |H(X) − H(Y )| < δ then
d(X, Y ) < ε.

465. Comment. Thus a process is finitely determined if any process that
is a good approximation to it in both distribution and entropy is a good
approximation to it in dbar.

466. Definition. Let (�,A) be a measurable space and suppose that μ and ν

are measures on A. Let s = s
(

ν
μ

)
= sup

{
ν(A)
μ(A)

: A ∈ A
}

. If s < ∞, we say

that ν is a submeasure of μ having size 1
s .

467. Definition. (J. Thouvenot 2002.) A (not necessarily stationary) process μ

is called extremal if for every ε, there is a δ, such that for all sufficiently large
n, there is a set of measure less than δ (that we call “error”) of words of length
n, such that the following holds: Any submeasure of μn of size greater than
2−δn whose support is off error is within ε of μn in dbar. If one can always
take the error set to be empty, the process is completely extremal.81

79 This is a function from pasts to non-negative reals.
80 To clarify: if, for every ε > 0, there exists some N such that, for every fixed n > N , there

is a past-measurable set B with P(B) < ε such that for every (xi )
∞
i=−∞ ∈ Bc , if we define

measures μn and νn on words of length n by μn(λ1λ2 · · · λn) = P(wi = λi , 1 ≤ i ≤ n) and
νn(λ1λ2 · · · λn) = P(wi = λi , 1 ≤ i ≤ n|wi = xi , i ≤ 0), then d(μn , νn) < ε.

81 Here is a more precise definition. A process (possibly not stationary) (Xi )
∞
i=−∞ is said to be

extremal if for every ε > 0 there exists δ > 0 and N ∈ N such that for every n ≥ N there is a
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We now introduce some terminology that we feel is useful in conceptualiz-
ing submeasures, extremality and related notions.

468. Definition. Let � be a finite alphabet, let μ be a measure on �Z and
for each n ∈ N, let νn be a measure on �n . We say that the sequence (νn) is

exponentially fat relative to μ if limn
1
n log s

(
νn
μn

)
= 0.

469. Abbreviated definition of extremal. A process is extremal if there is a
sequence of error sets having measure tending to zero such that for any expo-
nentially fat sequence (νn) of submeasures of μn whose supports are off the
error sets, one has limn d(μn, νn) = 0.

470. Further abbreviated definition of extremal. A process is extremal if
for sufficiently large n, exponentially fat submeasures whose support is off
some small subset are dbar close to the whole measure.

471. Definition. We denote by EX the class of all extremal processes that are
also stationary.

472. Important comment. In practice we will generally, in what is admit-
tedly an abuse of terminology, use “exponentially fat” to refer not to a
sequence of measures but to a single measure νn on words of length n,
where n is large. Basically, we mean by this that s( νn

μn
) ≤ 2δn for some

δ > 0 fixed in advance. Hence we can further abbreviate the definition
of extremal thus: A process is extremal if for sufficiently large n, exponen-
tially fat submeasures whose support is off a small error set must be dbar
close to μn .

473. Definition. A process (Xi )
∞
i=−∞ is an independent concatenation if it is

obtained by taking any measure on words of length n, using that measure to
choose the first n letters, using that measure again to choose the next n letters
independently, and so on forever (and backwards in time).82

474. Definition. If, in the definition of independent concatenation, the original
measure on words of length n comes from a given process (Yi )

∞
i=−∞, then the

independent concatenation (Xi )
∞
i=−∞ will be called the period n independent

concatenation induced by (Yi )
∞
i=−∞.

set Bn ⊂ �n with μn(Bn) < ε having the property that for any submeasure ν of μn of size at
least 2−δn (that is, with s

(
ν

μn

)
≤ 2δn ) satisfying ν(Bn) = 0, d(μn , ν) ≤ ε. If one can always

take Bn = ∅, (Xi )
∞
i=−∞ is completely extremal.

82 Thus, if there is an n ∈ N and a measure μ on words of length n such that, letting, for k ∈ Z and
λ = λ1 · · · λn a word of length n, Ek,λ be the event

{
(wi )

∞
i=−∞ : wkn+i = λi , 1 ≤ i ≤ n

}
,

one has that the probability of Ek,λ is μ(λ) and any collection of events
{

Eki ,λ
(i) : 1 ≤ i ≤ r

}
,

for distinct k1, · · · , kr , is independent.
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475. Comment. Independent concatenations need not be stationary.
The following definition is equivalent to P. Shields’ almost block indepen-

dence. (See Shields 1979, wherein he proves this property to be equivalent to
Bernoulli.)

476. Definition. A stationary process Y = (Yi )
∞
i=−∞ is a dbar limit of

independent concatenations, or IC, if is the dbar limit of a sequence of inde-
pendent concatenations, i.e. if there exists a sequence X (n) of independent
concatenations such that limn→∞ d

(
Y, X (n)

) = 0.

477. Comment. The reader should note that it follows immediately from the
definition that IC is closed under passage to dbar limits.

478. Notation. We will use B to denote the class of Bernoulli processes and
FB to denote the class of their factors.

The boldfaced theorem.

The main purpose of this chapter is to establish the following.

479. Theorem. B ⊂ FB ⊂ I C = E X = V W B = F D.

480. Comment. The rest of this chapter constitutes a proof of the boldfaced
theorem. This will be accomplished in a series of steps. We’ll show FD ⊂ B in
the next section, thus completing the proof that all of the boldfaced properties
are equivalent. The first step we can do immediately, the others will be done in
the subchapters to come.

Step 1: B ⊂ FB

This is obvious. Any process is a factor of itself.

5.2. Step 2: FB ⊂ IC

Step 2 will be accomplished in two stages. First, we prepare an explication of
Definition 442

Let (Xi )
∞
i=−∞ be a stationary process on a finite alphabet �, let �′ be

another finite alphabet, and suppose that there are given some m ∈ N and
a function f : �{−m,−m+1,...,m} → �′. We define a process (Yi )

∞
i=−∞ by

Yi = f (Xi−m, Xi−m+1, . . . , Xi+m).

481. Exercise. Show that (Yi )
∞
i=−∞ is a stationary process, and that moreover

it is a factor of (Xi )
∞
i=−∞. Hint: try π(x) = y as factor map, where yi =

f (xi−m, xi−m+1, . . . , xi+m).
The process (Yi )

∞
i=−∞ constructed above is a coding of the process

(Xi )
∞
i=−∞. The function f is the coding map, or code. Thus we see that the
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codings of (Xi )
∞
i=−∞ are a subclass of the factors of (Yi )

∞
i=−∞. Our strategy

is as follows. First, we will show that any factor of a stationary process on a
finite alphabet can be dbar-approximated to any desired degree of accuracy by
a coding of that process. Then, we will show that any coding of a Bernoulli
process is IC.

482. Exercise. Verify that the above scheme is sufficient for completing
Step 2.

483. Theorem. Let (Xi )
∞
i=−∞ be a stationary process on a finite alphabet �

and let (Zi )
∞
i=−∞, a stationary process on a finite alphabet �′, be one of its

factors.83 For every ε > 0, there exists a coding (Yi )
∞
i=−∞ of (Xi )

∞
i=−∞ such

that d
(
(Zi )

∞
i=−∞, (Yi )

∞
i=−∞

)
< ε.

Idea of proof. Let π be the factor map which takes doubly infinite
strings (xi )

∞
i=−∞ to strings (zi )

∞
i=−∞. For each λ′ ∈ �′, put Eλ′ ={

(zi )
∞
i=−∞ : z0 = λ′}.

484. Exercise. For some sufficiently large m, there is a partition {Dλ′ : λ′ ∈
�′} of �Z such that

∑
λ′∈�′ P

(
π−1(Eλ′)
Dλ′

)
< ε and such that each Dλ′ is

a union of cylinder sets having support in {−m,−m + 1, . . . , m}.
We now define the coding map f : �{−m,−m+1,...,m} → �′. The previ-

ous exercise implies that for each located word w on the alphabet � having
support in {−m,−m + 1, . . . , m}, ϕ(w) lies entirely inside some Dλ′ ; we let
f (w) = λ′ and form the associated coding (Yi )

∞
i=−∞. Now (Yi )

∞
i=−∞ is ε-

close to (Zi )
∞
i=−∞ in variation, which is of course even stronger than being

ε-close in dbar.

Now for the remaining piece.

485. Theorem. Let (Xi )
∞
i=−∞ be a Bernoulli process and let (Yi )

∞
i=−∞ be a

coding of (Xi )
∞
i=−∞. Then (Yi )

∞
i=−∞ is IC.

Sketch of proof. Let m and f : �{−m,−m+1,...,m} → �′ be as in the coding
construction introduced above. Let ε > 0 be arbitrary. Choose n > m

2ε
and let

(Zi )
∞
i=−∞ be the period n independent concatenation induced by (Yi )

∞
i=−∞.

We couple (Zi )
∞
i=−∞ and (Yi )

∞
i=−∞ by induction. We couple blocks of times

{kn +1, kn +2, . . . , kn +n} in turn for k = 0, 1, 2, 3, . . . Inside the blocks, we
will take care to use the diagonal coupling on the conditionals often enough to

83 It is a consequence of the Krieger finite generator theorem that every factor may be so
represented. Indeed, one may take � = �′, if desired.
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ensure a low dbar distance. We will be able to do this when the probabilities
for the various letters at the next time conditioned on previously coupled times
are equal for the two processes. This is unlikely to be the case at the beginning
of a block; Ykn+1 will depend crucially on Ykn−m+1, Ykn−m+2, . . . , Ykn , while
Zkn+1 will not depend on Zkn−m+1, Zkn−m+2, . . . , Zkn (or any other previ-
ously coupled time). However, since Yi and Y j are independent when |i − j | >

2m, prospects seem good on the interior of the blocks. Be warned, however,
that there is some subtlety at play here; taking m = 1 and n = 10, while it’s
true that, for example, Y13 and Y10 must be independent, it need not be the
case that P(Y13 = b|Y12 = Y11 = a) = P(Y13 = b|Y12 = Y11 = Y10 = a).
(Whereas of course P(Z13 = b|Z12 = Z11 = a) = P(Z13 = b|Z12 = Z11 =
Z10 = a).)

The easiest way to solve this problem is to skip a sub-block of size 2m at
the beginning of each n-block. That is, we couple each n-block in the order
{nk + 2m + 1, nk + 2m2, . . . , nk + n, nk + 1, nk + 2, . . . , nk + 2m}. We
couple the conditionals with the diagonal measure whenever possible, which
will be the case for at least n − 2m of the n times in the block (the exceptional
times are the first 2m times).

486. Exercise. Fill in the details and complete the proof.

The proof of this step is now complete, however, we pause to formulate
the following convenient corollary. Together with the obvious fact that IC
is closed under dbar limits, it shows that IC is closed under the taking of
factors.

487. Corollary. IC is closed under finite code factors.

Idea of proof. Let (Xi ) be IC and let (Yi ) be a finite coding of (Xi ). Let
M be the length of the code. Since (Xi ) is IC we can approximate it much
closer than 1

M in dbar by an independent concatenation (Zi ). Let n � M be a
period of the independent concatenation. Since (Zi ) is dbar close to (Xi ) we
can assume that they are coupled in such a way that most of their M-words
coincide. Hence, if we let (Wi ) be the coding of (Zi ) that comes from the
exact same code used to derive (Yi ) from (Xi ), (Wi ) will be close to (Yi )

in dbar. On the other hand, if we only use the code on the interior of the n-
blocks, and begin and end each n-block with some arbitrary fixed word of
length M , and call the result of this (Ui ), then (Ui ) will be an independent
concatenation and will be close to (Wi ) in dbar, hence close to (Yi ) in dbar
as well.
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5.3. Step 3: IC ⊂ EX

Our first task is to show that independent processes are completely extremal,
which will require some preparation. After doing that, we will argue briefly
that independent concatenations are extremal for much the same reasons and
finally that the class of extremal processes is closed under dbar limits, which
will complete Step 3.

Let (Xi )
∞
i=−∞ be a stationary process on a countable alphabet � and let

(�,A, μ, T ) be the standard realization of the process as a measure-preserving
system. (� = �Z, etc.) For n ∈ N, let μn be the measure on �n defined by
μn(w) = μ

(
ϕ(w)

)
.

488. Comment. We formulate the following theorem two times, first for the
“Idea” section, then more formally for the more detailed proof sketch.

489. Theorem. Let (�,μ) be a probability space and let Xi from � to {−1, 1}
be independent random variables each assigning probability 1

2 to both −1
and 1. Let Sn = ∑n

i=1 Xi . Let ν be a submeasure of μ and let E be the expec-
tation operator corresponding to ν. For every ε > 0 there is a δ > 0 such that
if n is sufficiently large and E(Sn) > εn then the size of ν is not more than
2−δn. (In other words, ν is not exponentially fat.)

Idea of proof. On the one hand, E(Sn) > εn. On the other hand, if Rn is the
set of names in {−1, 1}n such that Sn > εn

2 , then by an elementary fact about
random walks, (Rn) is not exponentially fat. From these facts, the reader can
establish that ν is not exponentially fat.

490. Reformation of Theorem 489. Let ε > 0. There exists a δ > 0 and an
N ∈ N such that for every n ≥ N, if (�,A, μ) is a probability space and

X1, . . . , Xn are independent
(

1
2 , 1

2

)
-Bernoulli random variables, then for any

measure ν on A, if Eν

(∑n
i=1 Xi

)
> εn, where Eν denotes expectation relative

to the measure ν, then s( ν
μ
) > 2δn.

Sketch of proof. Notice first that Eν

(∑n
i=1 Xi

)
> εn implies

Pν

(∑n
i=1 Xi > ε

2 n
)

> ε
2n . Therefore we will be done if we exhibit δ > 0

such that for all relevant (�,A, μ) and (Xi ) and all sufficiently large n,
Pμ

(∑n
i=1 Xi > ε

2 n
)

< 2−δn ε
2n .

Let f (x) = 1(
1
2 + x

4

)(
1
2 − x

4

) .

491. Exercise. Show that f is strictly decreasing on [0, 1). •
Note that f has a maximum value of 4 at 0. Choose δ > 0 so small that

2−δ >

√
f (ε)

4 .
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For large n, let j = j (n) =
⌈(

1
2 + ε

4

)
n
⌉

. Then

Pμ

(
n∑

i=1

Xi >
ε

2
n

)
= 2−n

n∑
i= j

(
n

i

)
≤ 2−n

(
1

2
n

)(
n

j

)

≈ nne−n
√

2πn

j j e− j
√

2π j(n − j)n− j e−(n− j)
√

2π(n − j)

=
(

n

j

) j ( n

n − j

)n− j √ n

2π j (n − j)
(2−n)

(
1

2
n

)
.

492. Exercise. Show that for large n, this is less than
( n2

j (n− j)

) 1
2 n2−n ε

2n . Hint:
n− j

j < 1 − ε. For large n, (1 − ε)
1
4 εn

( n2

ε

) � 1. •
Therefore we have, for all sufficiently large n,

Pμ

(
n∑

i=1

Xi >
ε

2
n

)
≤
(

n2

j (n − j)

) 1
2 n

2−n ε

2n

≤
⎛
⎝ 1(

1
2 + ε

4

)
( 1

2 − ε
4 )

⎞
⎠

1
2 n

2−n ε

2n
=
(

f (ε)

4

) 1
2 n ( ε

2n

)

≤ 2−δn
( ε

2n

)
.

493. Exercise. Let ε > 0, let P be a finite set and suppose μ and ν are two
probability measures on P having variation distance v(μ, ν) ≥ ε. There exists
a set S ⊂ P × [0, 1) such that μ × m(S) = 1

2 and ν × m(S) ≥ 1
2 + ε

2 . Hint:
partition P into two cells P1, P2 with μ ≥ ν on P1 and ν > μ on P2. If
μ(P2) ≥ 1

2 , take S = P2 × [0, 1
2μ(P2)

).

494. Definition. For X a finite set, μ a measure on X and S a subset of X ,
we write μ(S)(A) = μ(S∩A)

μ(S)
. μ(S) is called the normalized probability measure

induced by μ on S.

495. Exercise. Let � be a finite alphabet, let 0 < t < 1, n ∈ N and suppose
that μ, ν1, ν2 and ν are probability measures on �n satisfying ν = tν1 + (1 −
t)ν2. Show that d(μ, ν) ≤ td(μ, ν1)+ (1− t)d(μ, ν2). Hint: if ci is a coupling
of μ with νi , i = 1, 2, then c = tc1 + (1 − t)c2 is a coupling of μ and ν.

496. Exercise. More generally, if ν = ∑t
i=1 aiνi , where

∑t
i=1 ai = 1 and

ai > 0, 1 ≤ i ≤ t , then d(μ, ν) ≤ ∑t
i=1 ai d(μ, νi ). Also, one has s

(
ν
μ

) ≤
maxi s

(
νi
μ

)
.

497. Exercise. Let � be a finite alphabet, let n ∈ N and suppose that μ and ν

are measures on �n . Show that v(μ, ν) ≥ d(μ, ν).
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498. Theorem. Let X be a finite set, let μ and ν be measures on X with s ≥
s( ν

μ
). Let β = maxx∈X μ(x). Let γ > 0 with 1 − γ < 1

1+βs . Then there exist

t and a collection of subsets Si ⊂ X such that μ(Si ) ≥ 1
s , 1 ≤ i ≤ t , and

v(ν,
∑t

i=1
1
t μ

(Si )) < γ .

499. Comment. Recall that v(ν,
∑t

i=1 μ(Si )) = 1
2

∑
x∈X |ν(x) − 1

t

∑t
i=1

μ(Si )(x)|.

Idea of proof. Pick your sets Si with 1
s ≤ μ(Si ) ≤ 1

s + β and such that any

point x is in a fraction of the sets close to f (x) = ν(x)
sμ(x)

. This can be done in
pretty much any ad hoc way. At any step, say in the construction of Si , having
previously constructed S1, . . . , Si−1, go through all the points x ∈ X and throw
them in Si if, up to that point, they have been in too small a proportion of the
sets. If you run out of these, throw points in starting at the beginning of the list.
In any event, stop as soon as your set gets as large as 1

s in measure. As the
number n of sets gets large, all of the points will have been in about the right
fraction of the sets, which is sufficient for the result.

500. Discussion. Suppose that you wake up one morning having the insane
desire to couple the northernmost half of the Earth to the whole of the Earth,
in such a way that the average distance between coupled points is less than
the length of your foot. It is rather obvious that (unless you have really big
feet) your desire must go unfulfilled: it’s possible for half of the Earth to be
inextricably “far from" the whole. But, as our next theorem will show, the same
isn’t true for {0, 1}n with mean Hamming distance. Not only is it impossible
to extract half the space such that the half you extract is “far away from” the
whole space when n is large; it is even impossible to extract an exponentially
fat subset such that the subset is far away from the whole space. In other words,
{0, 1}n is completely extremal.

501. Theorem. An independent process on a finite alphabet is completely
extremal.

502. Comment. As we often do in this book, we will give the proof in two
different grades of detail, however in this case there is a bit more repetition
than usual and a few notational differences. As always, we strongly suggest
that readers attempt to work through the “Idea” section on their own before
consulting the sketch.

503. First reformulation of Theorem 501. Let P = {p1, p2, p3, . . . , pm} be
a finite set and let μ be a measure on P. For an understood n ∈ N, let � = Pn

and let � denote the measure μn on �. Let S ⊂ � and let ϕ = μ(S) be
the normalized probability measure on S induced by �. We will show that for
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any c, there is a d such that if n is large enough and d
(
(S, ϕ), (�,�)

)
> c then

ϕ(S) < 2−dn. (What this all says is that (P∞, μ∞) is completely extremal.)

Idea of proof. Let I be the unit interval and let m be Lebesgue measure on I .
We consider the space �× I n with measure �×mn . Similarly, we will look at
the space S × I n with measure ϕ ×mn . Our goal is to prove that �(S) < 2−dn ,
which is equivalent to (� × mn)(S × I n) < 2−dn .

Our first step is to construct independent random variables on (�× I n,�×
mn) such that each has probability 1

2 of being 1 and 1
2 of being −1. Let

k < n and select some word a1a2a3 · · · ak . (If k = 0 we mean the empty
word.) If a1a2a3 · · · ak occurs as the initial word of some member of S (as
is always true when k = 0 if S �= ∅) we write a1a2a3 · · · ak ∈ i(S) and
let νa1a2a3···ak be the conditional measure (under ϕ) of the (k + 1)st letter
of a word in S given that the first k letters are a1a2a3 · · · ak . For such a
word, let da1a2a3···ak = v(μ, νa1a2a3···ak ), where v is variation distance. Invok-
ing Lemma 493, let θ = θ(a1a2a3 · · · ak) be a subset of P × I such that

(μ × m)(θ) = 1
2 and (νa1a2a3···ak × m)(θ) > 1

2 + da1a2a3···ak
4 .

Now we define the random variable Xk+1 on � × I n :

Xk+1
(
(a1a2 · · · an), (t1t2 · · · tn)

)

=

⎧⎪⎪⎨
⎪⎪⎩

−1 if a1a2 · · · ak �∈ i(S) and tk+1 ≤ 1
2

1 if a1a2 · · · ak �∈ i(S) and tk+1 > 1
2

1 if a1a2 · · · ak ∈ i(S) and (ak+1, tk+1) ∈ θa1a2···ak

−1 if a1a2 · · · ak ∈ i(S) and (ak+1, tk+1) �∈ θa1a2···ak .

Under � × mn , X1, X2, . . . are independent random variables taking on the
values −1, 1 with probabilities 1

2 each.
It is time to make use of the fact that d

(
(S, ϕ), (�,�)

)
> c. We cou-

ple (S, ϕ) and (�,�) by induction. Assume that we already know how
the first k coordinates of the elements of S are coupled with the first k
coordinates of the elements of �. Consider such a coupled pair of k-tuples
(a1a2a3 · · · ak, b1b2b3 · · · bk); conditioned on that coupled pair, we want the
joint distribution of (ak+1, bk+1). ak+1 has conditioned distribution νa1a2a3...ak

and bk+1 has conditioned distribution μ. Couple those two distributions
as closely as possible; the probability that the coordinates don’t match is
da1a2a3...ak . The expected mean Hamming distance between words forming a
coupled pair for this coupling must be greater than c. That is,

c <
h1 + h2 + h3 + · · · + hn

n
,

where hk is the probability that the kth coordinates differ.
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The rest is definition chasing. Letting E be the expectation operator of the
measure ϕ × mn , show that

c

2
<

1

n
E

(
n∑

i=1

Xi

)

and use Theorem 489.

504. Abbreviation. S far away in dbar, independent 1
2 - 1

2 (Xi ) defined induc-
tively which prejudices for 1 as much as possible on S. Far dbar implies
prejudice is strong enough to force partial sums of Xi to grow linearly on
S in expectation, proving S shrinks exponentially.

That’s it for the idea of the proof. We now give a second reformulation of
the theorem and proceed to the proof sketch.

505. Second reformulation of Theorem 501. We formulate a precise state-
ment of what is to be proved. Let � = {λ1, λ2, . . . , λm} be a finite alphabet
and let p be a measure on �. For fixed n, we define a measure μn on �n by
μn({a1a2 · · · an}) = ∏n

i=1 p({ai }). Given ε > 0, there exists δ = δ(ε) > 0
such that for all sufficiently large n, if ν is any measure on �n with d(μn, ν) >

ε then s
(

ν
μn

)
> 2δn.

Sketch of proof. First we show that it is sufficient to restrict attention to ν of
the form μSi , where Si is a subset of �n . That is, it is sufficient to show that:

506. Claim. If ε > 0 then for some δ > 0, for all sufficiently large n, if S is
any subset of �n with d(μn, μ

(S)
n ) > ε then μn(S) ≤ 2−δn .

To see that this suffices for the general case, let ε > 0 and let δ be chosen
such that for all sufficiently large n, if S is any subset of �n with d(μn, μ

(S)
n ) >

ε
2 then μn(S) < 2−δn . We can certainly choose a smaller δ if we want to, so
we shall assume without loss of generality that 2δ p(λi ) < 1, 1 ≤ i ≤ m. Now
suppose that n is large enough that 1

1+βs > 1− ε
2 , where β = max1≤i≤m p(λi )

n

(notice that β is the maximum size of μn(w) for a word w ∈ �n) and s = 2δn .
Let ν be any measure on �n such that s

(
ν
μn

) ≤ 2δn = s. By Theorem 498,

there exist t and a collection of subsets Si ⊂ �n such that μn(Si ) ≥ 2−δn , 1 ≤
i ≤ t , and v(ν, 1

t

∑t
i=1 μ

(Si )
n ) < ε

2 . By Exercise 497, d(ν, 1
t

∑t
i=1 μ

(Si )
n ) < ε

2 .

Since μn(Si ) ≥ 2−δn , one has d(μn, μ
(Si )
n ) ≤ ε

2 , 1 ≤ i ≤ t . This implies by
Exercise 496 that

d(μn, ν) ≤ d

(
μn,

1

t

t∑
i=1

μ(Si )
n

)
+ d

(
1

t

t∑
i=1

μ(Si )
n , ν

)

≤ 1

t

t∑
i=1

d
(
μn, μ(Si )

n

)
+ ε

2
≤ ε.
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507. Proof of Claim 506. Let ε > 0. Choose δ and N as in Theorem 489.
Suppose now that n > N and that S ⊂ �n with d(μn, μ

(S)
n ) > ε. We must

show that μn(S) ≤ 2−δn . According to the conclusion of Theorem 489, it is
sufficient to construct a probability space (�,A, μ̃), a measurable set S′ ∈
A with μ̃(S′) = μn(S), and independent

(
1
2 , 1

2

)
-Bernoulli random variables

X1, . . . , Xn defined on (�,A, μ̃) with Eμ̃

(∑n
i=1 Xi (x)|x ∈ S′) > εn.

508. Notation. Write w ∈ i(S) if w = a1a2 · · · ak is the initial string of some
word in S.

Let � = �n × [0, 1)n , endowed with the measure μ = μn × mn , and let
S′ = S × [0, 1)n . Plainly μ(S′) = μn(S). For 0 ≤ k < n and a1, . . . , ak+1 ∈
�, if a1a2 · · · ak ∈ i(S) then write

νa1a2···ak (ak+1) = Pμn (wk+1 = ak+1|wi = ai , 1 ≤ i ≤ k, w1 · · · wn ∈ S).

(When k = 0, the string a1a2 · · · ak is of course empty; we denote it by ∅ and
consider it to be a member of i(S), writing ν∅, etc.) Now write da1a2···ak =
v(μ, νa1a2···ak ), and choose by Exercise 493 a set θa1a2···ak ⊂ � × [0, 1) with
μ × m(θa1a2···ak ) = 1

2 and νa1a2···ak × m(θa1a2···ak ) ≥ 1
2 + 1

2 da1a2···ak . Now for
0 ≤ k < n put

Xk+1
(
(a1a2 · · · an), (t1t2 · · · tn)

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if a1a2 · · · ak �∈ i(S) and tk+1 ≤ 1
2

1 if a1a2 · · · ak �∈ i(S) and tk+1 > 1
2

1 if a1a2 · · · ak ∈ i(S) and (ak+1, tk+1) ∈ θa1a2···ak

−1 if a1a2 · · · ak ∈ i(S) and (ak+1, tk+1) �∈ θa1a2···ak .

Clearly the Xi are
(

1
2 , 1

2

)
-Bernoulli random variables. We must show they are

independent. We do a special case of this here to give the general idea and leave
the general case as an exercise. We claim that P(X2 = 1, X3 = −1) = 1

4 . First
note that X2 = 1 and X3 = −1 when evaluated at

(
(a1a2 · · · an), (t1t2 · · · tn)

)
in three cases. Case 1: a1 �∈ i(S), t2 > 1

2 , t3 ≤ 1
2 . Case 2: a1 ∈ i(S), (a2, t2) ∈

θa1 , a1a2 ∈ i(S), (a3, t3) �∈ θa1a2 . Case 3: a1 ∈ i(S), (a2, t2) ∈ θa1 , a1a2 �∈
i(S), t3 ≤ 1

2 . Letting p = P
(
a1 �∈ i(S)

)
, and letting q = P

(
a1a2 �∈ i(S)|a1 ∈

i(S)
)
, then summing the probabilities of these three cases we get p · 1

2 · 1
2 +

(1 − p) · 1
2 · (1 − q) · 1

2 + (1 − p) · 1
2 · q · 1

2 = 1
4 .

509. Exercise. Do the general case. That is, establish that X1, . . . , Xn are
independent. •

Our next observation is that for a fixed word w1 · · · wk ∈ i(S), one has that

E
(
Xk+1(a, t)|a1 · · · an ∈ S, ai = wi , 1 ≤ i ≤ k

)
= νw1w2···wk × m(θw1w2···wk ) − νw1w2···wk × m(θc

w1w2···wk
) ≥ dw1w2···wk .
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510. Exercise. Justify this observation and conclude that

Eμ̃

(
n∑

i=1

Xi (x)|x ∈ S′
)

≥
n−1∑
k=0

∑
a1a2···ak∈i(S)

da1a2···ak

× P(wi = ai , 1 ≤ i ≤ k, w1w2 · · · wn ∈ S). •
We have not yet used the fact that d(μn, μ

(S)
n ) > ε. We construct a cou-

pling between μn and μ
(S)
n inductively, as in Example 301. Here’s the basic

idea: assume that we already know how the first k coordinates are coupled.
Consider such a coupled pair of k-tuples (λ1, λ2, . . . , λk), (γ1, γ2, . . . , γk).
Conditioned on that coupled pair, we want to determine the joint distribution of
(λk+1, γk+1). Note that the marginal distributions of λk+1 and γk+1 are μ and
νγ1γ2···γk respectively. Couple these two distributions as closely as possible. It
follows that the probability that the coordinates don’t match is dγ1γ2···γk .

511. Exercise. Do the coupling in this manner. Write down an expression for
the expected mean Hamming distance between a pair of coupled words. •
Here are some more details concerning the foregoing exercise. Begin by letting
P1 be a coupling of μ with ν∅ having the property that EP1

(
d(λ, γ )

) = d∅.
(Here d is the mean Hamming distance. Since it’s being applied to a pair
of one-letter words, its value is just 0 if the letters coincide and 1 if they
don’t.) Having constructed Pk (we are following the notation of Example 301;
see in particular the footnotes there), for every fixed λ1, . . . , λk ∈ � and
γ1γ2 · · · γk ∈ i(S), use μ for the first coordinate probability law and νγ1γ2···γk

for the second coordinate probability law conditioned on the occurrence of
λ1, . . . , λk and γ1, . . . , γk at prior stages. (In the notation of the footnotes to
Example 301, each μ

γ1,...,γk
λ1,...,λk

is μ and each ν
γ1,...,γk
λ1,...,λk

is νγ1γ2···γk .) Now when μ

is coupled to νγ1γ2···γk , choose a coupling P = Pγ1γ2···γk having the property
that EP

(
d(λ, γ )

) = dγ1γ2···γk . Finally let Pk+1
(
λ1, . . . , λk+1, γ1, . . . , γk+1

) =
Pk
(
λ1, . . . , λk, γ1, . . . , γk

)
Pγ1γ2···γk (λk+1, γk+1). Continue in this fashion

until Pn has been constructed.

512. Claim. For 1 ≤ m ≤ n,

m EPm

(
d(b1b2 · · · bm, a1a2 · · · am)

)
=

m−1∑
k=0

∑
a1a2···ak∈i(S)

da1a2···ak P(wi = ai , 1 ≤ i ≤ k, w1w2 · · ·wn ∈ S).

513. Exercise. Show that the truth of this claim for m = n, together with
Exercise 510 and the fact that d(μn, μ

(S)
n ) > ε, suffices for the proof of

Theorem 501. •
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We now proceed to the proof of Claim 512. To illustrate the idea, we’ll justify
the claim for m = 2 and leave the general case as an exercise. One has

EP2

(
d(b1b2, a1a2)

)= ∑
b1,b2∈�,a1a2∈i(S)

P2(b1, b2, a1, a2)|{i : bi �= ai , 1 = i, 2}|

=
∑

b1,b2∈�,a1a2∈i(S)

P1(b1, a1)Pb1 (a2, b2)|{i : bi �= ai , 1 = i, 2}|.

We can further analyze this expression to∑
b1,b2∈�,a1a2∈i(S),a1 �=b1

P1(b1, a1)Pb1 (a2, b2) +
∑

b1,b2∈�,a1a2∈i(S),a2 �=b2

P1(b1, a1)Pb1 (a2, b2)

=
∑

b1∈�,a1∈i(S),a1 �=b1

P1(b1, a1)

⎛
⎝ ∑

b2∈�,a1a2∈i(S)

Pb1 (a2, b2)

⎞
⎠

+
∑

b1∈�,a1∈i(S)

P1(b1, a1)

⎛
⎝ ∑

b2∈�,a1a2∈i(S),a2 �=b2

Pb1 (a2, b2)

⎞
⎠ .

But this is just

∑
b1∈�,a1∈i(S),a1 �=b1

P1(b1, a1) +
∑

a1∈i(S)

⎛
⎝∑

b1∈�

P1(b1, a1)

⎞
⎠ da1

= d∅ +
∑

a1∈i(S)

P(w1 = a1, w1w2 · · ·wn ∈ S)da1 ,

as required.

514. Exercise. Prove the general case of the claim, completing the proof of
Theorem 501.

There are two things left to do to complete Step 3. First, we must show that
independent concatenations are extremal. Then, we must show that the class
of extremal processes is closed under dbar limits.

515. Theorem. Independent concatenations are completely extremal.

Idea of proof. This is a fairly straightforward application of Theorem 501.
The basic idea is that an independent concatenation of period k on an alphabet
� is very much like an independent process on the alphabet �k . (So the letters
are words of length k.)

516. Exercise. The reader should attempt to work out the details before, or
instead of, reading the sketch given below. •

Sketch of proof. Let (Xi )
∞
i=−∞ be a period k independent concatenation on a

finite alphabet � induced by (Yi )
∞
i=−∞. Let �′ = �k and define a (stationary)
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process (Ui ) on the finite alphabet �′ by Ui = Xik+1 Xik+2 · · · Xik+k . For
n ∈ N, let μn be the measure induced on �n by (Xi )

∞
i=−∞ and let γn be

the measure induced on �′n = �kn by (Ui )
∞
i=−∞. Let ε > 0 and choose

δ > 0 and N > 1
ε

as in the definition of extremal for the independent, and
hence completely extremal, process (Ui )

∞
i=−∞. Suppose now that n ≥ k N and

suppose that ν is a submeasure of μn of size at least 2
−δ
2k n . Write n = kn′ + r ,

where 0 ≤ r < k. ν induces a measure ν′ on �kn′ = �′n′
in the natural way

(nu′(w′) is just the sum of ν(w), where w ranges over words of length n that
begin with w′). It’s easy to verify that s( ν′

γn′ ) ≤ s( ν
μn

) ≤ 2δn ≤ 2δn′
, so, since

n′ ≥ N , d(γn′, ν′) ≤ ε.

That is to say, there is a coupling of γn′ with ν′ such that the average mean
Hamming distance between coupled pairs is at most ε. Now, this coupling
couples pairs of length n′ words on the alphabet �′, which can be identified
with pairs of length kn′ words on the alphabet �. The short description of
this is that the coupling can be taken to be a coupling of μkn′ and the mea-
sure νkn′ that ν induces on length kn′ words. Moreover, when the coupling is
interpreted in this way, the average mean Hamming distance between coupled
pairs cannot increase (though it certainly can decrease). All that remains is to
inductively extend the coupling to a coupling of μn and νn using independent
joinings of the conditionals on the remaining r times. Since r < k < εkn′, this
can increase the average mean Hamming distance between coupled pairs by
at most something like ε. Hence we have found a coupling of μn and ν such
that the average mean Hamming distance between coupled pairs is at most 2ε,
which is good enough.

517. Exercise. Fill in the details of this sketch.

518. Notation. Let X and Y be sets and consider a subset C ⊂ X × Y . For
x ∈ X , we write Cx to denote the set C ∩ {x} × Y .

519. Theorem. The class of extremal processes is closed under dbar limits.

Idea of proof. Suppose (Si ) is a sequence of extremal processes which con-
verge in dbar to S. Select Sm close to S. Regard Sm and S to be measures on
words of length n, where n is large. Let μ be a good dbar match, i.e. a measure
on the product space with S and Sm as marginals. There are two small bad sets
to consider.

There is a set � in the product space with μ small measure, such that off
that set every ordered pair has coordinates that are close in the mean Hamming
metric. And there is a set α of small Sm measure, such that every exponentially
fat submeasure of Sm whose support is off α is close in dbar to Sm .
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Let us refer to {(x, y) : y �∈ α and (x, y) �∈ �} as the good set.
There is an S-small set θ , such that for any x ∈ θc, μ

({(x, y) : y ∈
�n, (x, y) is good} \ {x} × �n

)
is close to 1.

Fix an exponentially S-fat set F . (Here we restrict to subsets rather than
submeasures, expecting the reader to generalize; see the proof sketch below
for more details.) Let ν be the normalized probability measure on F × �n

induced by μ. ν is a coupling, in fact a good mean Hamming match, between
F and its second coordinate projection ν2. ν2 is just as exponentially fat as F ,
and most of it is off α, so it can be changed slightly to get a measure ν′

2 that is
completely off α. F is close to ν2 is close to ν′

2 is close to Sm is close to S in
dbar.

520. Abbreviation. We wish to show that approximating S with extremal Sm

tends to make S extremal. After dodging obnoxious sets, we extract from the
dbar coupling of S and Sm a dbar coupling of a prechosen fat submeasure of S
with a fat submeasure of Sm .

521. Comment. The reader should note one can’t use the above proof to show
that a dbar limit of completely extremal processes is completely extremal.

Here are some more details.

Sketch of proof. Let (S( j)
i )∞i=−∞ be extremal processes on a finite alpha-

bet �, j ∈ N, and let (Si )
∞
i=−∞ be a process on � such that

lim j→∞ d
(
(S( j)

i )∞i=−∞, (Si )
∞
i=−∞

) = 0. We must show that (Si )
∞
i=−∞ is

extremal. For n ∈ N, let μn be the measure on �n induced by (Si )
∞
i=−∞ and

let μ
( j)
n be the measure on �n induced by (S( j)

i )∞i=−∞.
Let ε > 0. We shall find δ > 0 and N such that for every n < N there is

a set Bn ⊂ �n with μn(Bn) < ε and such that for any measure ν on �n with
ν(Bn) = 0 and s( ν

μn
) ≤ 2δn , one has d(μn, ν) < 3ε.

Choose j with d
(
(S( j)

i )∞i=−∞, (Si )
∞
i=−∞

)
< ε3

10 . Since (S( j)
i )∞i=−∞ is

extremal, we can choose δ > 0 and N having the property that for every

n > N there is a set B( j)
n ⊂ �n with μ

( j)
n (B( j)

n ) < ε2

2 and such that

for any submeasure ν of μ
( j)
n of size at least 2−δn satisfying ν(B( j)

n ) = 0,
d(μ

( j)
n , ν) < ε

10 .

Let n > N and pick a coupling μ of μn and μ
( j)
n , that is a measure on �n ×

�n , having the property that the average mean Hamming distance between

coupled pairs of words is less than ε3

8 . Let � be the set of pairs (w1, w2) ∈
�n × �n having the property that d(w1, w2) > ε

4 . Then μ(�) ≤ ε2

2 . We

denote by G the set of pairs (w1, w2) such that (w1, w2) �∈ � and w2 �∈ B( j)
n .

Clearly μ(G) > 1 − ε2.



9780521194402c05 CUP/KKW October 10, 2009 21:15 Page-112

112 Bernoulli transformations

522. Exercise. Show that the set Bn = {w ∈ �n : μ(Gw)
μn(w)

≤ 1 − ε} satisfies

μn(Bn) ≤ ε. Hint: note that
∫ μ(Gc

w)

μn(w)
dμn(w) = μ(Gc) ≤ ε2.

Now let ν be a measure on �n such that ν(Bn) = 0 and s( ν
μn

) ≤ 2δn . We

will show that d(μn, ν) < 3ε, thus completing the proof.
Define a measure μ′ on �n ×�n by the rule μ′(w1, w2) = 0 if μn(w1) = 0

and μ′(w1, w2) = μ(w1, w2) · ν(w1)
μn(w1)

otherwise. It is easy to show that μ′ is
a probability measure and that the projection of μ′ onto the first coordinate
is ν. Notice also that s(μ′

μ
) ≤ 2δn . Let ν( j) be the projection of μ′ onto the

second coordinate. That is, ν( j)(w2) = ∑
w1

μ′(w1, w2). μ′ is a coupling of

ν and ν( j). One sees that μ′(�) ≤ e, from which it immediately follows that

d(ν, ν( j)) ≤ 5ε
4 . Moreover, one has s( ν( j)

μ
( j)
n

) ≤ 2δn .

523. Exercise. Show that ν( j)(B( j)
n ) ≤ ε, and that consequently there exists a

measure ν′ on �n differing from ν( j) by at most ε in the variation distance such
that ν′(B( j)) = 0 and such that s( ν′

μ
( j)
n

) ≤ 2δn . Conclude that d(μ
( j)
n , ν′) < ε

10 .

This finishes the proof, as by the triangle inequality,

d(μn, ν) ≤ d
(
μn, μ

( j)
n

)
+ d

(
μ

( j)
n , ν′)+ d

(
ν′, ν( j)

)
+ d

(
ν( j), ν

)
≤ ε3

8
+ ε

10
+ ε + 5ε

4
< 3ε.

5.4. Step 4: FD ⊂ IC

This step requires a bit of work but is fairly straightforward. We start with a
definition.

524. Definition. Let (Xi )
∞
i=−∞ be a stationary process and let ε > 0. Let

(Yi )
∞
i=−∞ be the independent stationary process on {0, 1} with P(Yi = 1) = ε.

We define a new process (Zi )
∞
i=−∞ as follows. Select i such that Yi = 1.

Let j be the least number greater than i such Y j = 1. For each such i, j we
let Zi+1, Zi+2, . . . , Z j have the same distribution as Xi , Xi+1, . . . X j−1, but
require that Zi , Zi+1, . . . , Z j−1 be independent of the other Zi s. (Zi )

∞
i=−∞ is

called the ε-startover process of (Xi )
∞
i=−∞.84

84 Some more details. We can assume that (Xi )
∞
i=−∞ and (Yi )

∞
i=−∞ are defined on the same

space Z and are independent. To carry out the construction, for each pair of integers i < j

define families of random variables S(i, j) =
{

R(i, j)
k : i < k ≤ j

}
, in such a way that

(Ri+1, Ri+2, . . . , R j ) is distributed as (X1, X2, . . . , X j−i ) is, and such that, moreover, the
families S(i, j) are mutually independent and independent of (Yi )

∞
i=−∞. For a.e. z ∈ Z ,

Yi (z) = 1 for both arbitrarily large positive and negative i . For such z, if Yi (z) = 1 = Y j (z)

and Yk �= 1, i < k < j , one puts Zk (z) = R(i, j)
k (z), i < k ≤ j .
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525. Exercise. ε-startover processes are stationary.

526. Comment. Intuitively, at each time step the ε-startover process runs like
the X process with probability 1 − ε, starting over with probability ε.

527. Theorem. ε-startover processes are IC.

Idea of proof. Let X be a process and Z its ε-startover process. Let m be large
enough so that with very high probability Z has started over by time m. Let
n � m. We independently concatenate the distribution of X1, X2, X3, . . . , Xn

to form Y = (Y1, Y2, Y3, . . . , Yn)(Yn+1, Yn+2, Yn+3, . . . , Y2n)(Y2n+1, Y2n+2,

Y2n+3, . . . , Y3n) . . . Now we couple Y to Z as follows.

(i) First couple times 1 to n − m, n + 1 to 2n − m, 2n + 1 to 3n − m, etc.
(ii) Conditioned on how we coupled the above times we couple the remaining

times independently.

To accomplish (i) couple each set of times {kn + 1, . . . , (k + 1)n − m} inde-
pendently if X did not start over during times {kn −m, . . . , kn} and identically
the same if X did start over during {kn − m, . . . , kn}.
Sketch of proof. Let ε > 0, let (Xi )

∞
i=−∞ be a stationary process on a finite

alphabet � and let (Zi )
∞
i=−∞ be its ε-startover process. Let (Yi )

∞
i=−∞ be as

in the construction of the ε-startover process. Let δ > 0 be arbitrary and
choose a positive integer m so large that (1 − ε2)m < δ. Choose n > m

δ
.

Let (Ui , Wi )
∞
i=−∞ be an independent concatenation85 of period n induced by

(Zi , Yi )
∞
i=−∞. In particular, (U1, . . . , Un, W1, . . . , Wn) is to have the same

distribution as (Z1, . . . , Zn, Y1, . . . , Yn). Notice that (Yi )
∞
i=−∞ encodes the

startover times of (Zi )
∞
i=−∞ and (Wi )

∞
i=−∞ encodes the startover times of

(Ui )
∞
i=−∞.86

528. Exercise. It suffices for the proof to show that (Ui )
∞
i=−∞ is within 4δ of

(Zi )
∞
i=−∞ in dbar. •

As the previous exercise suggests, the thing to do now is to couple (Zi )
∞
i=−∞

to (Ui )
∞
i=−∞. In Theorem 485, the idea was to isolate blocks encompass-

ing a large proportion of the times on which the two processes had identical
marginals, so the diagonal coupling could be used in the induction step.
Here, things are a bit more complicated. As in the prior proof, we couple
blocks of times {kn + 1, kn + 2, . . . , kn + n} in turn for k = 0, 1, 2, 3, . . .

Inside the blocks, however, we do something a bit different, which actually

85 The process pairs we are considering here can be viewed as processes on the alphabet �×{0, 1}.
86 Of course, Ui has additional startover times occurring with period n.



9780521194402c05 CUP/KKW October 10, 2009 21:15 Page-114

114 Bernoulli transformations

doesn’t even fall precisely under “coupling by induction” as we introduced it
in Example 301.

Now to the details: let us say (Zi , Yi )
∞
i=−∞ has been coupled to

(Ui , Wi )
∞
i=−∞ over several n-blocks of times, and we want now to extend the

coupling over the block {kn + 1, kn + 2, . . . , kn + n}. First, we count our
way through the block using the independent coupling on the second coordi-
nate only.87 That is, we couple just (Yi ) and (Wi ) on this first run-through.
Naturally, everything is independent of previous blocks here as well.

529. Exercise. Make sure you understand what has happened so far. •
The next stage is to run through the block again, coupling the first coordinate.
Note that the next-letter probabilities are conditioned on everything previ-
ously coupled, which includes not only previous blocks, but also the startover
times over the current block, as encoded by (Yi ) and (Wi ). Let us say that
these startover times are given in a specific instance by words (yi ) and (wi ),
kn + 1 ≤ i ≤ kn + n. Let imin be the least i in the block (if any) such that
yi = wi = 1. Now, when we are coupling the first coordinate through the
current block, conditioned on everything previously coupled, we use the inde-
pendent joining at times kn + 1, kn + 2, . . . , imin and the diagonal joining
thereafter.

530. Exercise. Justify the argument given to this stage, namely that the diago-
nal joining can be used between simultaneous startovers within the block. Say
why it cannot be used elsewhere within the block. Hint: the marginals may
depend on previously coupled blocks.

One now completes the proof by noting that, with probability at least 1 − δ,
there is a simultaneous startover time in the first m-sub-block of the n-block
we are considering, which allows us to use the diagonal coupling on all but at
most m of the n coordinates of the block, where m

n < δ.

531. Exercise. Give the details.

532. Theorem. Let (Xi )
∞
i=−∞ be a stationary process on a finite alphabet and

let H be its entropy. If δ > 0, then for all small enough ε > 0, if Z = (Zi )
∞
i=−∞

is the ε-startover process for (Xi )
∞
i=−∞, one has |H(Z) − H | < δ.

Idea of proof. Fix a big n such that the number of reasonable n-names is
about 2nH . Now pick ε � 1

n , so that the chances of (Zi )
∞
i=−∞ starting over

87 The reader may want to check that we could use the diagonal coupling here. If we did that,
then later we wouldn’t have to worry about simultaneous startovers, since they would all be
simultaneous. It doesn’t really matter.
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in a typical n-block are miniscule. Now for large k, if you look at a kn-
word in (Zi )

∞
i=−∞ and break it into k n-words, most of those n-words will

be reasonable for X most of the time. The rest is just counting.

533. Theorem. FD ⊂ IC.

Idea of proof. Just observe that, restricted to a large enough initial block
of times, the ε-startover process of (Xi ) is close to (Xi ) in distribution and
entropy. Apply Theorem 527.

Sketch of proof. Let X = (Xi )
∞
i=−∞ be a finitely determined process on a

finite alphabet � and let α > 0 be arbitrary. Choose, by the definition of FD,
n ∈ N and δ > 0 such that for any ergodic process Y = (Yi )

∞
i=−∞ on �, if

v(μX,n, μY,n) < δ and |H(X) − H(Y )| < δ then d(X, Y ) < α. Now choose
ε > 0 small enough that the ε-startover process Z = (Zi )

∞
i=−∞ for (Xi )

∞
i=−∞

satisfies |H(X) − H(Z)| < δ and v(μX,n, μZ ,n) < δ. (The first requirement
may be satisfied using Theorem 532, the second is a simple exercise.) One may
conclude that d(X, Z) < α. Since α is arbitrary and Z is IC by Theorem 527,
we are done.

5.5. Step 5: EX ⊂ VWB

Let (Yi )
∞
i=−∞ be a stationary process on a finite alphabet �. As usual, we

assume the space of the random variables to be � = �Z, and denote by μ the
measure induced by (Yi )

∞
i=−∞ on �. Recall that we denote the σ -algebra gen-

erated by (Yi )
−1
i=−∞ by past ; we extend this notion. For each n ∈ Z, denote

the σ -algebra generated by (Yi )
n
i=−∞ by An . (So that past = A−1.) Next,

denote by μn the restriction of μ to An . Finally let �n = �{...,n−2,n−1,n}. In a
small abuse of notation, we may speak of the probability spaces (�n,An, μn)

rather than (�,An, μn); we hope this doesn’t alarm the reader too
greatly.

534. Exercise. Note that An ⊂ An+1. Show that the disintegration of μn+1

over μn is given by
∫
�n+1

dμn+1 = ∫
�n

∫
�

dμy dμn(y), where, for y =
(yi )

n
i=−∞, μy(λ) = P(Yn+1 = λ|Xi = yi , i ≤ n).

535. Let m ∈ N. For a0 · · · am−1 ∈ �m and y = (yi )
∞
i=−∞ ∈ � write

γy(a0 · · · am−1) = P(Yi = ai , 0 ≤ i < m|past)(y) = P(Yi = ai , 0 ≤
i < m|Yi = yi , i < 0). γy is a measure on the finite space �m and we denote
its partition entropy (see Comment 396) by Hm(y).

536. Definition. The function y → Hm(y) is called the conditioned entropy
of the m future given the past.
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537. Theorem. E(Hm) = m H, where H is the entropy of the process
(Yi )

∞
i=−∞.

Idea of proof. The easiest proof is to show that E(Hm(y)) is the limit as
n → ∞ of H(Xi , 1 ≤ i ≤ m|Xi ,−n ≤ i ≤ 0). Apply Theorem 425. In the
sketch we offer a different proof.

Sketch of proof. The proof we just suggested, while being rather slick,
doesn’t give one much sense of what’s going on. Here we’ll outline a more
direct proof. As the notation is somewhat involved, we limit ourselves to the
case m = 2, leaving the general case to the reader. The first step is to show the
following:

Claim: E
(− log P(Y0Y1|past)

) = 2E
(− log P(Y0|past)

) = 2H .

The second equality is just Corollary 379. We explain the notation:
P(Y0Y1|past) is a �1-measurable random variable whose value at a.e. y =
(yi )

∞
i=−∞ is given by

P (Y0 = y0, Y1 = y1|Yi = yi , i < 0) = P (Y0 = y0|Yi = yi , i < 0)

× P (Y1 = y1|Yi = yi , i < 1) .

It follows that

− log P(Y0Y1|past)(y) = − log P(Y0 = y0|Yi = yi , i < 0)

− log P(Y1 = y1|Yi = yi , i < 1)

= − log P(Y0|A−1) − log P(Y1|A0).

(Recall that past = A−1.) Taking expectations, the claim therefore follows
from:

538. Exercise. For any n ∈ Z, one has E
( − log P(Yn+1|An)

) =
E
(− log P(Y0|past)

)
.

Now we start disintegrating the measure μ1. Notation here is as follows. y =
(yi )

−1
i=−∞ ∈ �−1, y0, y1 ∈ �, so that yy0 ∈ �0 and yy0 y1 ∈ �1. One has

2H =
∫

�1

− log P(Y0Y1|past)(yy0 y1) dμ1(yy0 y1)

=
∫

�0

∫
�

− log P(Y0Y1|past)(yy0 y1) dμyy0(y1) dμ0(yy0)

=
∫

�−1

∫
�

∫
�

− log P(Y0Y1|past)(yy0 y1) dμyy0(y1) dμy(y0) dμ−1(y).
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We can rewrite the interior double integral as∑
y0,y1∈�

(− log P(Y0Y1|past)(yy0 y1)
)
μyy0(y1)μy(y0).

But

μyy0(y1)μy(y0)= P(Y1|A0)(yy0 y1)P(Y0|A−1)(yy0)= P(Y0Y1|A−1)(yy0 y1)

= γy(y0 y1),

so the double integral is just the partition entropy of γy , namely H2(y).

539. Exercise. Extend the above argument to general m.

The next couple of exercises are technical in nature. They or something like
them are needed to show that for a stationary process, most pasts induce con-
ditioned futures that are exponentially fat submeasures of the unconditioned
future.

540. Exercise. Let � be a finite alphabet, m ∈ N and ε > 0, let μ be a measure
on �m and let R ⊂ �m with ν(R) ≤ ε. Then the contribution of the names in
R to the partition entropy of ν is at most −ε log ε + εm log |�|. Indeed, there
is some measure ν′ that is supported on Rc and is ε-close to ν in the variation
metric such that H(ν′) ≥ H(ν) − (−ε log ε + εm log |�|).
541. Important comment. We’d like to avoid messy expressions when we

can. When ε is small enough (given |�|), −ε log ε + εm log |�| ≤ mε
2
3 (for

example) gives a cleaner, if less precise, estimate.

542. Exercise. Suppose you have a measure μ on a finite space X . Let m ∈ N,
ε > 0, H > 0. Suppose that X has enough atoms of μ-measure enough greater
than 2−m H+εm and enough other atoms of μ-measure less than 2−m H that it is
possible to move a total of ε of the measure from the first set of atoms to the
second set of atoms without lowering the measure of any atom in the first set
below 2−m H+εm and without raising the measure of any atom in the second set
above 2−m H . Call the measure you get after the move ν. Show that H(ν) ≥
H(μ) + ε2m

ln 2 . Hint: consider that H(μ) = ∑
x f (x) where f (x) = −x log x.

Compute the derivative f ′ and estimate H(ν) − H(μ) with the mean value
theorem.

543. Theorem. Let (Xi )
∞
i=−∞ be an ergodic stationary process on a finite

alphabet �. For any ε > 0, there exists M such that for all m ≥ M there is
a set S ⊂ �−1 with μ−1(S) ≥ 1 − ε such that for every y ∈ S, there is a
measure γ on �m such that88 v(γ, γy) ≤ ε and such that s( γ

μm
) ≤ 2εm.

88 Recall that γy is the probability law on the m future given that the past is y.
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544. Abbreviation. If you select ε and let m be large enough, then for most
(probability at least 1 − ε) pasts, the m future given the past is close (distance
at most ε) in variation to an exponentially fat (size at least 2εm) submeasure of
the unconditioned m future.

545. Further abbreviation. Most conditioned futures are nearly exponen-
tially fat submeasures of the unconditioned future.

Idea of proof. Let θ be the set of all names that eventually become and
stay reasonable. θ has measure 1 by the Shannon–McMillan–Breiman the-
orem, hence for all pasts y off a set of measure 0, the conditioned future
given y assigns measure 1 to θ . Conditioned on such a past y, for sufficiently
large m most (in the conditioned-on-y sense) m-names are reasonable (in the
unconditioned sense).

Now it is an elementary fact that if you have a random variable with a
finite expectation which nearly always takes on values at most slightly greater
than its expectation and never takes on values much greater than its expecta-
tion, then it rarely takes on values much lower than its expectation. We apply
this fact to Hm(y), the conditioned entropy of the m future given the past. In
particular:

(i) E(Hm) = m H ,
(ii) Hm is rarely much bigger than m H because

(a) usually most of the m future is on reasonable names so
(b) usually by making only a small change in the m future you can get a

measure which lives entirely on reasonable names.
(c) Making this small change only slightly affects entropy.
(d) The most entropy you can get if you live on reasonable names is when

you assign every reasonable name the same measure.
(e) If you do that you get about m H entropy because by Shannon–

McMillan–Breiman there are about 2m H reasonable names.

(iii) m log |�| is an absolute upper bound for Hm .

These facts imply that the conditioned entropy of the m future given the past
is rarely much smaller than m H . Use the conditioning property to show that
when a measure lies almost entirely on reasonable names and has entropy not
much smaller than m H then it is rare for a name to have measure much bigger
than 2−m H . Alter such a measure to live only on reasonable names whose
measure is not much bigger than 2−m H . If you then multiply their measures
by 2−εm you will get only reasonable names with measures not more than
reasonable.
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Sketch of proof. Let 1 � ε > 0 and let H be the entropy of (Xi )
∞
i=−∞. Put

δ = ε20

106 . Let μ be the measure on � = �Z induced by (Xi )
∞
i=−∞. Let

θ =
{

x = (xi )
∞
i=−∞ : lim

n→∞ −1

n
log P(Xi − xi , 1 ≤ i ≤ n) = H

}
.

For n ∈ N, put

θn =
{

x = (xi )
∞
i=−∞ : for all m ≥ n,

∣∣∣∣− 1

m
log P(Xi − xi , 1 ≤ i ≤ m) − H

∣∣∣∣ ≤ δ

}
.

Then θ ⊂ ⋃∞
n=1 θn . One has μ(θ) = 1, which implies that∫

�−1
μy(θ) dμ−1(y) = 1. Hence letting G = {

y ∈ �−1 : μy(θ) = 1
}
, one

has μ−1(G) = 1. For y ∈ G, choose m(y) so large that μy(θm(y)) ≥ 1 − δ.

546. Exercise. Let Rn = {
(xi )

n
i=1 : (xi )

∞
i=−∞ ∈ θn

}
. Show that |Rn| ≤

2m H+mδ . •
547. Exercise. If m ≥ m(y) then Hm(y) ≤ m H +mδ

2
3 . Hint: use the fact that

γy(Rn) ≥ 1 − ε and see Comment 541 above. •
Choose m such that μ−1 ({y ∈ �−1 : m(y) ≤ m}) ≥ 1 − δ. Let now E1 =
{y ∈ �−1 : Hm(y) ≥ m H} and let E2 = {y ∈ �−1 : Hm(y) < m H}.
Since E(Hm) = m H , one has

∫
E1

Hm(y) − m H dμ−1(y) = ∫
E2

m H −
Hm(y) dμ−1(y).

548. Exercise. Show that
∫

E1
Hm(y) − m H dμ−1(y) ≤ mδ

2
3 + mδ log |�| ≤

mδ
1
2 . •

From the preceding exercise, we get that
∫

E2
m H − Hm(y) dμ−1(y) ≤ mδ

1
2 ,

so that the set B =
{

y : m H − Hm(y) ≥ mδ
1
4

}
satisfies μ−1(B) ≤ δ

1
4 . Let

S =
{

y : Hm(y) ≥ m H − mδ
1
4 and m ≥ m(y)

}
. Note that for any y ∈ S,

μy(θm) ≥ 1 − δ. This implies that γy(Rm) ≥ 1 − δ, and of course Hm(y) ≥
m H − mδ

1
4 . By Exercise 541, less than mδ

2
3 of the entropy of γy comes from

Rc
m . Therefore, we may find a measure γ ′

y supported on Rm with v(γy, γ
′
y) ≤ δ,

such that the entropy of γ ′
y is at least m H − mδ

1
8 .

Suppose now, for a contradiction, that for no measure γ supported on
Rm with v(γ, γ ′

y) ≤ ε
2 does one have s( γ

μm
) ≤ 2εm . In particular, one

cannot have for such γ that γ (w) ≤ 2−m H+δm+ ε
2 m for all w ∈ Rm .

This means that one can move ε
2 of measure off words having γ ′

y-measure

more than 2−m H+δm+ ε
2 m (without reducing any of these words to a measure

below this level) to words in Rm of γ ′
y-measure less than 2−m H+δm (with-

out raising any of these words to a measure above this level) to form a new
measure γ ∗. Denote the partition entropy of γ ∗ by H∗. By Exercise 542,
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H∗ ≥ H(γ ′
y) + ε2

4 m ≥ m H − mδ
1
8 + ε2

4 m. On the other hand, γ ∗ is sup-
ported on Rm , so H∗ ≤ m H + mδ. This is a contradiction.

549. Exercise. Shore up the details, completing the proof.

550. Exercise. Show that the proof of Theorem 543 can be modified to allow
that if C ⊂ �m is small in the unconditioned m-future, then the measures
γys can be chosen disjoint from C . To be precise, show: Let (Xi )

∞
i=−∞ be an

ergodic stationary process on a finite alphabet �. For any ε > 0, there exists M

such that for all m ≥ M and all sets C ⊂ �m for which μm(C) ≤ ε20

106 there is
a set S ⊂ �−1 with μ−1(S) ≥ 1 − ε such that for every y ∈ S, there is a mea-
sure γ on �m such that γ (C) = 0, v(γ, γy) ≤ ε and such that s( γ

μm
) ≤ 2εm .

(Abbreviation: most conditioned futures are nearly exponentially fat submea-
sures of the unconditioned future disjoint from a prechosen small set.) Hint: in
the proof, replace S by S ∩ {

y : μy(C) < δ
}

and Rm by Rm ∩ C.

551. Theorem. Any extremal process is ergodic.

Idea of proof. We outline a proof of the contrapositive. Non-ergodicity
implies the existence of a finite word whose frequency of occurrence in
a randomly chosen (xi )

∞
i=−∞ ∈ �Z is non-constant. Select a < b such

that both the event that the frequency of the word is less than a and
the event that the frequency of the word is greater than b have positive
probability.

552. Exercise. Show that these two events induce fat submeasures of μn , for
large n, that cannot possibly be close in dbar.

553. Theorem. EX ⊂ VWB.

Sketch of proof. Let (Xi )
∞
i=−∞ be extremal. By Theorem 551, (Xi )

∞
i=−∞

is ergodic. To show that (Xi )
∞
i=−∞ is very weak Bernoulli, it is sufficient

to exhibit, for arbitrary ε > 0, some M such that for all m ≥ M one has
μ−1

({
y : d(γy, μm) > 2ε

})
< ε. Let ε > 0. Since (Xi )

∞
i=−∞ is extremal,

there is some δ > 0 (we’ll assume δ < ε) and N ∈ N such that for all n ≥ N ,
there is a set Bn ⊂ �n with μn(Bn) < ε20

106 having the property that for any

submeasure ν of μn with s( ν
μn

) ≤ 2δn and ν(Bn) = 0, d(μn, ν) ≤ ε.
Since (Xi )

∞
i=−∞ is ergodic, by Exercise 550 there is an M > N such that

for every m ≥ M there is a set S ⊂ �−1 with μ−1(S) ≥ 1 − δ and such that
for all y ∈ S, there is some measure γ on �m with γ (Bm) = 0, v(γ, γy) ≤ δ

and such that s( γ
μm

) ≤ 2δm . This latter implies by the above that d(γ, μm) ≤ ε

and hence that d(γy, μm) ≤ 2ε.
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5.6. Step 6: EX ⊂ FD

Theorem 543 (also Exercise 550) says that sufficiently far out conditioned
futures are nearly exponentially fat subsets of the unconditioned future, but
it doesn’t tell you how far out. We’ll say a bit about this because we need
a stronger version for this step. By examining the proof, one can see that as
soon as most names are reasonable, that’s sufficiently far. We now put the
precise formulation we’ll need in an exercise; the reader should be able to
do the exercise by mimicking the proof of Theorem 543. There is one sub-
tlety, however. In Theorem 543, one conditions on the whole past and uses the
fact that E(Hm) = m H . In the exercise below, one needs an analogous fact
that applies to the case where one conditions on a finite past. Hint: use Theo-
rem 421 to show that the expected entropy of the m-future given the n-past is
non-increasing in n, so that if it is close to m H for n = 0, it must be close to
m H for all n.

554. Exercise. Let (Xi )
∞
i=−∞ be an ergodic stationary process on a finite

alphabet � and having entropy H . Let ε > 0 and m ∈ N. Let μm be the
measure on �m induced by the process and let μ′

m be any measure with
v(μm, μ′

m) < ε. Put

Rm =
{

a = a1a2 · · · am ∈ �m :
∣∣∣∣− 1

m
log P(a1a2 · · · am) − H

∣∣∣∣ < ε

}
.

Show that if μm(Rm) > 1 − ε then for any n ∈ N and all sets
C ⊂ �m with μm(C) ≤ ε, there is a set S ⊂ �{−n+1,−n+2,...,0} with
P(X−n+1 X−n+2 · · · X0 ∈ S) ≥ 1 − ε

1
20 such that for all a ∈ S, there is a

measure γ on �m such that γ (C) = 0, v(γ, γa) ≤ ε
1
20 , where

γa(E) = P(X1 X2 · · · Xm ∈ E |Xi = ai ,−n < i ≤ 0),

and such that s( γ
μm

) ≤ 2mε
1
20 .

555. Theorem. EX ⊂ FD.

Idea of proof. Let (Xi ) be an extremal process. Pick m so that most m-names
are reasonable, and also big enough so that off a small error set, all expo-
nentially fat submeasures of μm are dbar-close to μm . Then pick a process
(Yi )

∞
i=−∞ that approximates (Xi )

∞
i=−∞ in both m-distribution and entropy.

Notice that this implies in particular that most m-names for (Yi ) are reason-
able. Now for either process, Exercise 554 says that conditioned on the n-past
for any n, conditioned m-futures are usually close in variation to exponentially
fat submeasures of the unconditioned m-future of the (Xi ) process. It follows
that they can each be coupled closely in dbar to that unconditional and hence
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to each other. Since this holds for any natural number n, you can just couple
(Xi ) closely to (Yi ) in dbar inductively, one m-block at a time.

5.7. Step 7: VWB ⊂ IC

556. Theorem. VWB ⊂ IC.

Idea of proof. This is easy. Start with a very weak Bernoulli process
(Xi )

∞
i=−∞. We must couple it closely in dbar to an independent concatena-

tion. Fix a large n such that the unconditioned n-future is close in dbar to the
n-future conditioned on the past, for almost all pasts. If m is large enough,
this is still true even if you only condition on the m-past. Let (Zi )

∞
i=−∞ be

the period-n independent concatenation induced by (Xi )
∞
i=−∞. Start coupling

(Xi )
∞
i=−∞ and (Zi )

∞
i=−∞ together any way you like; once you’ve gone out at

least m steps, you can couple n blocks together very closely.

557. Exercise. Fill in the details.

Recapitulation of the proof.

The proof of the boldfaced theorem is spread out over this whole chapter,
which might make it difficult for the reader to grasp the big picture. Here we
give a brief recapitulation of the main ideas for quick reference.

558. B ⊂ FB: This part was obvious.

559. FB ⊂ IC: Every FB process is a factor of an independent process, hence
a dbar limit of finite codings of an independent process. Finite codings of
independent processes are approximable by their own period n independent
concatenations, hence are IC according to Theorem 485.

560. IC ⊂ EX: We proved in Theorem 501 that independent processes are
completely extremal. Then we argued that an independent concatenation of
length k is practically like an independent process on �k . Finally, we used the
fact that the class of extremal processes is closed in dbar (Theorem 519).

561. FD ⊂ IC: We just observed that the e-startover process of a process
is close to it in distribution and entropy and applied the fact that ε-startover
processes are IC (Theorem 527).

562. EX ⊂ VWB: This followed from Exercise 550 (most conditioned futures
are nearly exponentially fat submeasures of the unconditioned future disjoint
from a prechosen small set).

563. EX ⊂ FD: We used the fact that Theorem 543 kicks in once most names
are reasonable. We picked m big enough so that most names were reasonable,
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and so that exponentially fat submeasures of μm were close to μm in dbar.
We then picked an approximating process in m-distribution and entropy. Both
conditioned m-futures were usually fat submeasures of the unconditional, and
had essentially the same unconditional, so could be coupled to each other.

564. VWB ⊂ IC: We started with a very weak Bernoulli system and coupled
its period n independent concatenation with the original, n-block by n-block.

Here now are a couple of easy consequences of the boldfaced theorem.

565. Theorem. All of the equivalent properties above are closed under dbar
limits.

Idea of proof. IC is closed under dbar limits.

566. Theorem. All of the equivalent properties above are closed under the
taking of factors.

Idea of proof. IC is closed under finite code factors, and under dbar limits.

567. Theorem. Any member of the equivalent classes considered above is
either trivial or has positive entropy.

Idea of proof. Zero entropy means past determines future, easily contradict-
ing IC.
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Ornstein isomorphism theorem

In this chapter we prove the Ornstein isomorphism theorem, which states that
any two finitely determined processes of the same entropy are isomorphic. In
particular, since Bernoulli processes are finitely determined, this establishes
that any two Bernoulli processes of equal entropy are isomorphic. (An earlier,
related result of Sinai (1964) has, as a consequence, that any two Bernoulli
processes of equal entropy are weakly isomorphic; i.e. each is a factor of the
other. Both may be viewed as limiting, stationary versions of Shannon’s (1948)
noiseless coding theorem (1948).) Several (substantively different) proofs of
Ornstein’s theorem have been published; to the best of our knowledge, the one
presented here adds to the variety. The closest match to our proof may be the
proof of J. Kieffer (1984). Like Kieffer, we avoid the use of a marriage lemma.

568. Comment. In this chapter it is necessary to assume that our process is
invertible (see, however Hoffman and Rudolph 2002, in which a condition
is given for some non-invertible processes to be isomorphic to a one-sided
Bernoulli shift). Also, though we restrict attention to the finite entropy case,
the theorem has an infinite entropy version; see Ornstein (1970b).

6.1. Copying in distribution

In this section, we show that, given a process on a finite alphabet and a second
system, we can construct a partition of the second system so that the second
system with this partition is close in distribution to the first process. The reader
should think of this as a very minor step in the direction of establishing an
isomorphism. (It has to be minor, because you can do it for non-isomorphic
systems!)

569. Definition. Let (�,A, μ) and (Y,B, ν) be probability spaces and let P
be a countable measurable partition of �. A copy of P on Y is an ordered pair
(Q, π), where Q is a measurable partition of X and π : P → Q is a bijection
(called the copy map) such that ν

(
π(p)

) = μ(p) for all p ∈ P .

570. Exercise. If π : P → Q is the copy map then π has a unique additive
extension π (additive means satisfying π(A ∪ B) = π(A) ∪ π(B) whenever
A ∩ B = ∅) to the algebra generated by the cells of P .
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571. Comment. We may suppress mention of the copy map π and say simply
that Q is a copy of P .

Suppose one is given n ∈ N, systems (�,A, μ, T ) and (Y,B, ν, S) and a
finite measurable partition P on �. We will outline a technique for copying P
to a partition Q on Y so that the (Q, S)-process has a distribution over n-names
that is as close as desired in variation to that of the (P, T )-process. (We will
assume that the space Y is non-atomic.)

572. Copying (P, T ) to R.

Suppose we are given a Rohlin tower R of height N on Y . Let R′ be a Rohlin
tower on � of height N with an error set of the same size.

Now we partition R′ into vertical columns according to the P-name of
length N at the base. Partition R into the same number of vertical columns
of the same size, and associate to each vertical column of R a unique col-
umn of R′ having the same size. We now construct our copy Q of P on Y .
The cells of Q will be denoted by {qp : p ∈ P} and π(p) = qp will be the
copy map. Here is the construction: if C is a column of R and C ′ is the cor-
responding column of R′ then each rung of C will lie in some p ∈ P . Just
put the corresponding rung of C ′ into qp. This handles the tower R. Extend
to the error set in the obvious way. (Break the error set of R′ into pieces
according to P , make pieces of the same sizes in the error set of R and match
them up.)

573. Definition. The procedure just outlined will be referred to as copying
(P, T ) to R to get (Q, S).

574. Comment. If n ∈ N, P is a partition on � and Q is a copy of P on
Y , we can compare the distributions on n-names of the (P, T )-process and
the (Q, S)-process by using the copy map π . The distributions of 1-names
will coincide by the definition of a copy but the distributions of n-names
for n > 1 can be much different. The reader should think about this until
it’s clear.

575. Definition. Let n ∈ N. If (Q, S) is a copy of (P, T ) and the two n-
name distributions are less than ε apart in variation, we shall say that (Q, S)

n-resembles (P, T ) up to ε.

576. Comment. We may suppress mention of ε, saying simply that (Q, S)

n-resembles (P, T ). (Here it is assumed that ε is small.)

577. Exercise. Let n ∈ N. Suppose that N > n
2ε

and R is a Rohlin tower of
height N on Y with error set less than ε

2 in measure. Show that if (P, T ) is
copied to R to get (Q, S) then the distribution of n-names in (P, T ) differs



9780521194402c06 CUP/KKW October 10, 2009 20:57 Page-126

126 Ornstein isomorphism theorem

in variation from the distribution of n-names in (Q, S) by at most ε. Hint: the
n-names are the same except on the error set and on the uppermost n rungs of
the towers.

The previous exercise prompts the following definition.

578. Definition. Let n ∈ N. If we copy (P, T ) to R, where the error set of R
has negligible measure and the height of R is much bigger than n, we will say
we are copying the n-distribution of (P, T ) to S.

579. Comment. Speaking informally, we may simply say that we copy (P, T )

to R to get (Q, S), or, to be more long-winded, copy (P, T ) to R to get Q so
that (Q, S) n-resembles (P, T ).

Let (Q, π) be a copy of P on Y , let P ′ be a refinement of P (all cells of P
are a union of cells of P ′) and let (Q′, π ′) be a copy of P ′.

580. Definition. We say that (Q′, π ′) extends (Q, π) (or simply that π ′
extends π ) if π ′ agrees with π on P .

581. Exercise. Suppose P ′ refines P and (Q, π) is a copy of P on Y . Show
that if Y is non-atomic then there is an extension (Q′, π ′) of (Q, π).

The previous exercise shows that a copy can always be extended to a finer
partition. The next example shows that you can’t always do this in a way that
preserves closeness of n-name distribution.

582. Example. Let ({a, b}Z, μ, T ) be a system, where T is the shift and μ

is concentrated uniformly on the four doubly infinite words · · · aaaaaa · · · ,
· · · ababab · · · , · · · bababa · · · and · · · bbbbbb · · · (μ assigns each of these
words measure 1

4 ). Now let ({h, t}Z, ν, S) be the standard 1
2 − 1

2 Bernoulli
system. Let Xi be the i th coordinate on the space of T and let Yi be the i th
coordinate on the space of S. Let P = {{X0 = a}, {X0 = b}}, Q = {{Y0 =
h}, {Y0 = t}} and B = {{X1 = a}, {X1 = b}}. Letting π({X0 = a}) = {Y0 =
h} and π({X0 = b}) = {Y0 = t}, Q is a copy of P .

583. Exercise. Verify that (Q, S) 2-looks (exactly) like (P, T ), but that for no
extension (Q ∨ C, π ′) of (P ∨ B, π) does (Q ∨ C, S) 2-look like (P ∨ B, T )

up to 1
4 . Hint: if Y0(y) 	= Y2(y) then either y or Sy has a (Q ∨ C)-name of

length 2 whose translation to a (P ∨ B)-name has probability zero.
One might think that the previous example depends crucially on the fact that

the space of T is atomic. This is not so, however.
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584. Exercise. Show that the previous example still works if ({a, b}Z, μ, T )

is replaced by its ε-startover process, where ε is small. (You can change 1
4 to

something slightly smaller.)
Copies made by copying to tall enough towers can, on the other hand, be

extended while preserving closeness of n-name distribution: suppose you just
copied (P, T ) to a tower R having a small error set, where the height N of R is
much bigger than n, to get (Q, S). Note that (Q, S) n-resembles (P, T ). Now
you are given another partition B on the space of T .

585. Exercise. Let π be the original copy map. Show that there is a partition
C on the space of S such that (Q ∨ C) is a copy of (P ∨ B) by a copy map π ′
such that π ′ extends π , and that (Q∨C, S) n-resembles (P ∨B, T ). Hint: each
original column of R′ splits into subcolumns according to B-name of length N.
Split the corresponding columns of R into equal sized subcolumns, etc.

586. Definition. When we do the above, we say we are copying (B, T ) to R
to get C so that (Q ∨ C, S) n-resembles (P ∨ B, T ).

587. Theorem. Let ε > 0 and n ∈ N. Let N > n and suppose (Q, π) is a copy
of P such that (Q, S) N-resembles (P, T ) up to ε. Then for any measurable
partition B on �, there is a measurable partition C on Y and a copy map
π ′ : P ∨ B → Q ∨ C that extends π such that (Q ∨ C, S) n-looks like
(P ∨ B, T ) up to ε + n

N .

Idea of proof. Choose δ > 0 such that the variation distance between the
N -name distributions is less than ε − δ. Choose Rohlin towers R and R′ on
the spaces having error sets less than δ in measure and such that the bases are
independent of the distributions of N -names for (P, T ) and (Q, S), respec-
tively. Split each tower into columns according to N -name. By shaving off and
adding to the error set at most ε−δ in measure from the columns of each tower,
one can arrange that corresponding columns have the same measure. Now the
tower on Y looks like it just had (P, T ) copied to it, so you can proceed as in
Exercise 585. n-names agree except possibly on the error set and top n rungs
of the columns.

588. Corollary. If (Q, S) is a perfect copy of (P, T ) (exactly the same N
distribution for all N), then for any n, ε and B you can copy B to get C so that
(Q ∨ C, S) n-resembles (P ∨ B, T ) up to ε.

589. Definition. Let (�,A, μ) be a probability space. Suppose P and Q are
measurable partitions of � and that π : P → Q is a bijection. Then we will
write P ∩π Q = ⋃

p∈P p ∩ π(p) and P
π Q = � \ (P ∩π Q
)
. We also write

|P − Q|π = μ
(
P
π Q

)
.
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6.2. Coding

In this short subchapter we discuss approximation of factor maps by finite
codes and restricting copies to a sub-σ -algebra. These are technical tools we
will need later in the chapter.

Suppose π is a homomorphism from (P, T ) to (Q, S). Then π can be
approximated by a finite code. That is, there is some n such that the P-name
x−n, x−n+1, . . . , xn−1, xn of a point x in the space of T determines the cell
of Q containing π(x) up to some small probability ε.89 More precisely: for
every ε > 0, there is an n and a function f taking words of length 2n + 1
a−na−n+1 · · · an to cells of Q such that

P
(
π(x)0 = f (x−n x−n+1 · · · xn)

)
> 1 − ε.

590. Definition. In the above eventuality, we will say that (P, T ) codes (Q, S)

ε-well by time n. If T = S, we will say simply that (P, T ) codes Q ε-well by
time n. The function f is called an n-code from (P, T ) to (S, Q).

591. Comment. In the language of processes, an n-code from (Xi )
∞
i=−∞ to

(Yi )
∞
i=−∞ is a function from located words x−n x−n+1 · · · xn on the alphabet of

X to letters y0 in the alphabet of Y . If (Yi )
∞
i=−∞ is a factor of (Xi )

∞
i=−∞,

we will say that the X process codes the Y process ε-well by time n, if
X−n X−n+1 · · · Xn determines Y0 up to probability ε.

592. Comment. Suppose the X process codes the Y process ε-well by time
n. Then for every i ∈ Z, you can use the code f to predict with accuracy
rate better than 1 − ε what Yi is on the basis of what Xi−n Xi−n+1 · · · Xi+n is;
indeed one has

P
(
Yi = f (Xi−n Xi−n+1 · · · Xi+n)

)
> 1 − ε.

593. Exercise. Suppose that (P, T ) codes Q ε-well by time n. If |P− P0| < γ

then (P0, T ) codes Q
(
ε + (2n + 1)γ

)
-well by time n.

594. Theorem. Let (X,A, μ, T ) be a measure-preserving system, and sup-
pose there is a sequence of measurable partitions (Pi ), an increasing sequence
of natural numbers (ni ), and a sequence of positive reals (εi ) with

∑
i εi < ∞,

|Pi+1 − Pi | <
εi
ni

for all i , and such that for all i , (T, Pi ) codes Q εi -well by
time ni . Then Pi converges to a measurable partition P such that (T, Q) is a
factor of (T, P).

89 The reason for this is that π−1(Q) is a partition which, in the language of processes, can be
approximated by a partition of cylinder sets.
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Idea of proof. We need to show that the P-name determines the Q-name with
probability 1. By the foregoing exercise, P2 codes Q 4ε1-well by time n1. P3

codes Q (4ε1 + 3ε2)-well by time n1 and 4ε2-well by time n2. In general, Pm

codes Q (4εl +3εl+1 +· · ·+3εm−1)-well by time nl . Hence the limit P should
code Q

(
4
∑∞

i=l εi
)
-well by time nl .

595. Exercise. Complete the proof.

Now we discuss copying in a sub-σ -algebra.

596. Definition. Let (X,A, μ, T ) be a measure-preserving system and let P
be a measurable partition that does not necessarily generate A. The σ -algebra∨∞

i=−∞ T i P will be called the land of P .

597. Comment. When copying, constructing partitions, etc. one can restrict
everything to the land of P (that is, use only sets measurable with respect to
the land of P), since by Exercise 61 the land of P gives rise to a Lebesgue
space. Note in particular that if you copy a process to T in the land of P , the
copy will be a factor of (P, T ).

598. Example. Fix a system (X,A, μ, T ) and n ∈ N. Suppose P , P1 and
P2 are measurable partitions, and you have a copy P3 of P1 so that (P3, T )

n-looks exactly like (P1, T ). You would like to make a good copy P4, in the
land of P , of P2 so that (P3 ∨ P4, T ) n-resembles (P1 ∨ P2, T ). You can do
so as long as P3 resides in the land of P (it doesn’t matter whether P1 and P2

reside there). If P3 does not reside in the land of P , there is no reason to think
you can do it, because you use the (P3, T )-process to construct P4.

6.3. Capturing entropy: preparation

In the next section we will show how to copy a distribution while holding up
the entropy, which is the most important technique in this chapter. We have a
unique way of holding up the entropy, which is in many proofs done with a
marriage lemma. In this section, we make the needed preparations.

599. Discussion. Let (P, T ) be a process and let (Y, S) be a measure-
preserving system. Copy the n distribution of (P, T ) to S to get (Q, S) so
that (Q, S) n-resembles (P, T ). Question: is there anything we can say about
the entropy of (Q, S) compared with that of (P, T )? To answer this, recall that
(converting to the current notation) by Corollary 423 and Theorem 424 the
entropy of (P, T ) is the non-increasing limit of

1

n
H

(
n∨

i=1

T −i P

)
. (∗)
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This means that the n-distribution of (P, T ) already gives an upper bound for
the entropy of (P, T ). Hence if (Q, S) has been selected to have approximately
the same n-distribution as (P, T ), and if n is large enough for (∗) to be close
to its limit, then (Q, S) could not possibly have (much) more entropy than
(P, T ).

However, the entropy of (Q, S) could conceivably be much less than the
entropy of (P, T ) (indeed, it could be zero), regardless of “how well” we
copied the distribution. In short, a good copy of the n-distribution, for large
n, guarantees a small enough entropy (up to ε), but does not guarantee
a large enough entropy. If we want to guarantee that (Q, S) has approxi-
mately the same entropy as (P, T ), we need to have some way of holding
its entropy up. We are now going to develop techniques for copying distribu-
tions of processes (P, T ) in such a way as to hold up the entropy of the copy
(Q, S), thereby ensuring that (Q, S) and (P, T ) have approximately the same
entropy.

600. Definition. Let (P, T ) be a process and let n ∈ N. The (P, T, n) entropy
drop is the number

1

n
H

(
n∨

i=1

T −i P

)
− H(P, T ).

601. Exercise. Fix a measure νn on words of size n. Prove that among all
stationary processes whose distribution on n-names coincides with νn , the
(unique) (n−1)-step Markov chain with this n-name distribution has minimum
(P, T, n) entropy drop.

602. Theorem. Let Q be a refinement of P. Then

H(P) − 1

2
H(P ∨ T P) ≤ H(Q) − 1

2
H(Q ∨ T Q).

Proof. By Theorem 421, if A, B, and C are three partitions such that C refines
B, then H(A ∨ C) − H(C) = H(A|C) ≤ H(A|B) = H(A ∨ B) − H(B).
Taking A = T Q, B = P and C = Q, one gets

H(Q ∨ T Q) − H(P ∨ T Q) ≤ H(Q) − H(P).

Taking A = P , B = T P and C = T Q, one gets

H(P ∨ T Q) − H(P ∨ T P) ≤ H(T Q) − H(T P) = H(Q) − H(P).

Add these two inequalities together.
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603. Corollary. Let Q be a refinement of P. Then

1

n
H

(
n∨

i=1

T i P

)
− 1

2n
H

(
2n∨

i=1

T i P

)
≤ 1

n
H

(
n∨

i=1

T i Q

)
− 1

2n
H

(
2n∨

i=1

T i Q

)
.

Proof. Apply Theorem 602, replacing P by
∨n

i=1 T i P , Q by
∨n

i=1 T i P , and
T by T n .

604. Corollary. If Q is a refinement of P then for every n ∈ N the (P, T, n)

entropy drop is less than or equal to the (Q, T, n) entropy drop.

Idea of proof Use Corollary 603 together with the observation that the
(P, T, n) entropy drop is equal to

1

n
H

(
n∨

i=1

T −i P

)
− H(P, T )

= lim
k→∞

((
1

n
H

(
n∨

i=1

T −i P

)
− 1

2n
H

(
2n∨

i=1

T −i P

))

+
(

1

2n
H

(
2n∨

i=1

T −i P

)
− 1

4n
H

(
4n∨

i=1

T −i P

))

+ · · · +
⎛
⎝ 1

2kn
H

⎛
⎝2k n∨

i=1

T −i P

⎞
⎠− 1

2k+1n
H

⎛
⎝2k+1n∨

i=1

T −i P

⎞
⎠
⎞
⎠
⎞
⎠ .

605. Theorem. Let (�,A, μ, T ) be a measure-preserving system, and let P
be a measurable partition such that (P, T ) is ergodic and has entropy H. If
ε > 0 then for all sufficiently large n and for all Rohlin towers R of height
n and base B (having negligible error set), if one partitions B according
to P-name of length n, thus creating P-name columns in R, then for some
exceptional set E (a union of columns), each remaining column has measure
between 2−n(H+ε) and 2−n(H−ε).

Idea of proof. This theorem immediately follows if we know that the bad set
of the Shannon–McMillan–Breiman theorem does not contain a large fraction
of the base because the width of a column is exactly the size of a word in
the base of that column. It’s not easy to prove directly that the base has a
small bad set, but we will now point out that there are nearby rungs with small
bad sets. Pick γ and δ such that 0 < δ � ε (in particular we would like
(1 − δ)(H − δ) > H − ε) and 0 < γ � δε. By Shannon–McMillan–Breiman,
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there are n ∈ N and a bad set E of measure at most γ such that for all x
outside of the bad set E and all N > (1 − δ)n, the N -name of x has size
between 2−N (H+δ) and 2−N (H−δ).

Let now R be a tower of height n with base B and negligible error set.
Consider the rungs of the tower B, T B, . . . , T �δn�B. Not all of these rungs
can intersect E in a set of measure more than ε

2n ≈ ε
2μ(B) (there isn’t enough

of E to go around), so some one of these rungs r must intersect the bad set E in
a set of measure less than ε

2n . The existence of r establishes that all but ε
2 of the

columns of R are no larger than 2−n(H−ε) in measure.90 A similar argument
with the sets B, T −1 B, . . . , T −�δn�B establishes the required estimate from
below.

606. Abbreviation. Since the bad set of Shannon–McMillan–Breiman is
small, there are nearby rungs above and below the base intersecting the bad
set only slightly.

607. Exercise. Young children’s puzzle theorem. Let P be an ordered parti-
tion with m cells and let Q be a partition whose sets are all smaller than ε in
measure. Then there is a partition P ′ such that (a) Q is finer than P ′, and (b)
v(P, P ′) < mε.

608. Exercise. Show that it is possible to decrease the entropy of a partition
arbitrarily much by lumping many tiny cells together, even when the resulting
lump has arbitrarily small measure.91 Hint: use the conditioning property.

609. Lemma. Let P be a measurable partition with m pieces, let n ∈ N,
and let B be a set of n-names in the (P, T ) process. If μ(B) � 1

log m , then

lumping the members of B together92 will not significantly alter the value of
1
n H

(∨n−1
i=0 T −i P

)
.

Idea of proof. The number of possible names of length n is at most mn .
The normalized measure on B therefore has at most mn pieces. The largest
its entropy can be is if all those sets have the same entropy, in which case it
is n log m. By the conditioning property, therefore, the contribution of B to
H
(∨n−1

i=0 T −i P
)

is at most μ(B)n log m.

90 Taking N = n − j , where r = T j B, one sees that any point in r whose N -name is not bigger
than 2−N (H−δ) lies in a column of the tower having size at most 2−N (H−δ) < 2−n(H−ε).
Moreover any point in r \ E is such a point.

91 To be precise: for any M > 0 and any ε > 0 there is a measurable partition P and a set 	 of
cells of P such that μ(

⋃
	) < ε such that if P ′ is the partition that results from lumping the

members of 	 into a single cell, then H(P ′) < H(P) − M .
92 We identify an n-name with that atom of

∨n−1
i=0 T −i P consisting of those points having that

n-name.
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610. Comment. In the preceding lemma, B doesn’t actually have to be a union
of n-names. If B is just some measurable set satisfying μ(B) � 1

log m , and E

denotes {B, Bc}∨∨n−1
i=0 T −i P , then lumping all of the cells of E contained in

B together will still not significantly affect 1
n H(E).

Copying a distribution while holding up the entropy.

611. Theorem. Let (P, T ) be a process, n ∈ N, and let (Y,B, ν, S) be a
measure-preserving system with H(S) > H(P, T ). For any δ > 0 there is a
finite measurable partition Q on Y so that the n-distributions and entropies of
(P, T ) and (Q, S) are within δ of one another.

Idea of proof. For the purposes of this proof x ≈ y will mean that |x−y| � δ.
Put H = H(P, T ), H ′ = H(S) and let ε � min{H(S) − H(P, T ), δ}.
Our first observation is that it doesn’t hurt to assume that n is larger; that
is, to copy the n′-distribution, where n′ > n, is to copy the n-distribution
as well. Accordingly, we may choose a generator G for S and assume that n
is large enough that H(S) ≈ 1

n H
(∨n−1

i=0 Si G
)
. That is, we assume that the

(G, S, n)-entropy drop is small. Also we assume that n is large enough that
1
n H

(∨n−1
i=0 T i P

) ≈ H(P, T ) and log n
n � ε.

Now we proceed. Among other things we are going to be copying the n-
distribution, which we already know how to do: let N = (n + 1)n, and choose
N -towers R for T and R′ for S. Our goal is to copy P from R to R′ carefully,
so that we keep our entropy.

By Theorem 605, if N is large enough then only a small measure of
(P, T, R)-columns have measure smaller than 2−N (H+ε). Alter P by lump-
ing those “bad” columns together into one big column with one name (any
given name you choose); by Lemma 609 that won’t change either the entropy
or distribution of (P, T ) very much. Now you have at most 2N (H+ε) columns.

Consider the (S, G, R′)-columns. If N is large enough, all but a very small
measure of those columns have measure at most 2−N (H ′−ε). This is much less
than the reciprocal of the number of (P, T, R)-columns. Therefore, by the
young children’s puzzle theorem, we can copy (P, T ) to R′ to get Q in such a
way that each (S, Q, R′)-column is a union of (S, G, R′)-columns.93 Put the
whole error set into a single cell of Q.

Denote the rungs of R′ by B0, B1, . . . , B(n+1)n−1. Let PG be the partition
whose pieces are the rungs of the G-columns of R′, excepting the uppermost

93 The copy will be less precise than it normally would be; there will be a small error which
comes from the puzzle theorem and another from the big (S, G, R′)-columns. These errors do
not add appreciably, however, to the distribution errors one already gets from the error sets of
the towers and from upper rung effects.
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n − 1 rungs of the tower, and a big chunk consisting of the top n − 1 rungs
of the tower and the error set. Similarly let PQ be the partition whose pieces
are the rungs of the Q-columns of R′, excepting the uppermost n − 1 rungs
of the tower, and the same big chunk. Note that PG is finer than PQ . Note
also that PG practically generates.94 We claim that the (PG , S, n)-entropy
drop is approximately equal to the (G, S, n)-entropy drop (which is small by
assumption).

612. Exercise. Prove the claim by justifying the following.

(a) H(G, S) ≥ H(PG, S). (Obvious since G generates.)
(b) If the error set of R′ is small then H(PG , S) ≥ H(G, S) − ε. Hint: use the

prior footnote, smallness of the error set of R′, and Exercise 429.
(c) Write B = {B0, Bn, B2n, . . . , Bn2 , (B0 ∪ Bn ∪ B2n ∪ · · · ∪ Bn2)c}. Then∨n−1

i=0 Si
(
G ∨ B

)
is a refinement of

∨n−1
i=0 Si PG .

(d)
∣∣ 1

n H
(∨n−1

i=0 Si (G ∨ B)
)− 1

n H
(∨n−1

i=0 Si G
)∣∣ < ε. Solution: consider that

1

n
H

(
n−1∨
i=0

Si (G ∨ B)

)
= 1

n
H

((
n−1∨
i=0

Si G

)
∨
(

n−1∨
i=0

Si B

))

≤ 1

n
H

(
n−1∨
i=0

Si G

)
+ 1

n
H

(
n−1∨
i=0

Si B

)

≤ 1

n
H

(
n−1∨
i=0

Si G

)
+ H(B).

Now use the fact that H(B) < ε, n large. •
Next, we claim that the (PQ, S, n)-entropy drop is approximately equal to the
(Q, S, n)-entropy drop.

613. Exercise. Prove this claim by justifying the following.

(a) H(PQ, S) ≥ H(Q, S). Hint:
∨n−1

i=0 Si PQ is a refinement of Q.
(b)

∨n−1
i=0 Si

(
Q ∨ B

)
is a refinement of

∨n−1
i=0 Si PQ .

(c) For m ≥ n,
∣∣ 1

m H
(∨m−1

i=0 Si (Q ∨ B)
)− 1

m H
(∨m−1

i=0 Si Q
)∣∣ ≤ H(B) < ε.

(d) H(Q, S) ≥ H(PQ, S) − ε. Hint: let m → ∞ in (c); use (b). •
Now just use the fact that (since PG refines PQ) the (PQ, S, n)-entropy
drop is no more than the (PG , S, n)-entropy drop to see that the (Q, S, n)-
entropy drop must be small. In other words, H(Q, S) ≈ 1

n H
(∨n−1

i=0 Si Q
) ≈

1
n H

(∨n−1
i=0 T i P

) ≈ H(P, T ).

94 Not quite, but close. The σ -algebra generated by
∨n−1

i=0 Si PG will contain every member of
G’s intersection with R′, however.
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614. Exercise. Fill in the details to complete the proof.

615. Abbreviation. To copy an n-distribution and keep entropy, assume
WLOG n � 1 and copy one N = (n + 1)n tower onto another as usual.
First put G columns on the range tower where G is a generator and then
compose copy columns out of G columns by fudging columns to make the
puzzle theorem applicable. Intersect columns with rungs not near the top to
get PQ and PG , use that the (PQ, S, n)-entropy drop is no greater than the
(PG , S, n)-entropy drop.

616. Corollary. Theorem 611 remains valid if H(S) = H(P, T ).

Idea of proof. Don’t copy (P, T ) itself, but something close to it. That is,
choose a partition P0 such that H(P0, T ) is slightly less than H(P, T ) but
such that (P0, T ) is close to (P, T ) in distribution. Then use the proof of
Theorem 611 to copy (P0, T ). One way to get P0 is to form a very tall Rohlin
tower and lump a small set of columns together. A small lumping won’t affect
the n-distribution much, nor will it do much damage to entropy. Nevertheless
to see that one can lower entropy in this way, at least somewhat, just pick a
big N such that 1

N H
(∨N

i=1 T i P
)

is very close to H(P, T ), and choose your
tower of height N with very small error set. Forming P0 by lumping a small
set of columns together will be enough to get the entropy of the partition into
rungs of P0-columns low enough to force H(P0, T ) < H(P, T ).

617. Exercise. Let (X,A, μ, T ) and (Y,B, ν, S) be measure-preserving sys-
tems. Let P and Q be finite measurable partitions on X , let q be a finite
measurable partition on Y and assume that (Q, T ) is isomorphic to (q, S).
Suppose that H(S) ≥ H(P ∨ Q, T ). For any n ∈ N and δ > 0 there is a
finite measurable partition p on Y so that the n-distributions and entropies of
(P ∨ Q, T ) and (p ∨ q, S) are within δ of one another. Hint: adapt the proof
of Theorem 611; incorporate ideas from Corollary 588 and Corollary 616.

6.4. Tweaking a copy to get a better copy

What makes the proof of the Ornstein isomorphism difficult is that you can’t
just construct an isomorphism in one go; you have to make better and better
copies that converge to an isomorphism. When you do this, you have to make
sure you can make a much better copy than the one you’ve got by making a
very small change. In this section, we prove two theorems (we need them both)
that allow one to do that, but first we need a technical lemma and a new puzzle
theorem.
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618. Lemma. Fix a, ε > 0 with a + ε < 1
2 . For sufficiently large n,

the number of words in {0, 1}n having less than an 1s is not more than
2−n(a+ε) log(a+ε)−n(1−a−ε) log(1−a−e).

Idea of proof. One can of course prove this using Stirling’s formula but we
prefer this proof. Consider a random independent stationary process (Xi ) on
the alphabet {0, 1} where P(X1) = a +ε. The entropy of this process is −(a +
ε) log(a + ε) − (1 − a − ε) log(1 − a − e), so the typical reasonable word
of length n has probability roughly 2n(a+ε) log(a+ε)+n(1−a−ε) log(1−a−e). Now
simply observe that, since a + ε < 1

2 , words having less than an 1s have
higher probability than reasonable words.

619. Theorem. Let 
 be a finite alphabet and fix a, ε with a + ε <
1

|
| . If n is sufficiently large and w ∈ 
n is a word, then the num-
ber of words v ∈ 
n such that d(w, v) < a is not more than
2−n(a+ε) log(a+ε)−n(1−a−ε) log(1−a−e)+n(a+ε) log(|
|−1).

Idea of proof. Don’t use the previous lemma directly. Use the idea of its proof.
First describe a set that has the same number of elements as the given set.

620. Definition. Let 
 be a finite alphabet. We put

h(d) = h
(d) = −d log(d) − (1 − d) log(1 − d) + d log(|
| − 1).

621. Exercise. Mature children’s puzzle theorem. Let M and P be two parti-
tions such that M ∨ P contains m sets. Let M ′ be a partition with the same
number of cells as M . Let Q be a partition finer than M ′ all of whose sets are
of measure at most ε. Then there is a partition P ′ such that Q is finer than
M ′ ∨ P ′ and the variation distance between the distributions of M ∨ P and
M ′ ∨ P ′ is less than mε plus the variation distance between the distributions
of M and M ′.

622. Discussion. Let (Xi )
∞
i=−∞ and (Yi )

∞
i=−∞ be two processes on the same

alphabet 
. Let c be a coupling between them. Recall that (Xi )
∞
i=−∞ and

(Yi )
∞
i=−∞ can be identified with measures μ and ν on 
Z, and c is a mea-

sure on the product space 
Z ×
Z whose marginals are μ and ν, respectively.
Moreover, for fixed n we can look at the measures μn and νn that μ and ν

induce on words of length n; cn , the measure that c induces on pairs of words
(v,w) of length n, couples these.

We now consider a completely new Lebesgue space having a Rohlin tower
of height n. (You don’t even have to assume there to be any error set; the entire
space consists of n sets having measure 1

n each.) Break the tower into columns
so that for every ordered pair (v,w) ∈ 
n × 
n there is an associated column
whose measure is cn(v,w).
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We now construct a partition of our new space into cells indexed by 
×
 in
the obvious way: we regard the mth rung of the column associated with (v,w)

to be in the cell C(λ1,λ2) indexed by (λ1, λ2) if the mth letter of v is λ1 and the
mth letter of w is λ2.

623. Definition. A tower as constructed above, endowed with a partition
indexed by 
 × 
, is called a picture of the coupling between (Xi )

n
i=1 and

(Yi )
n
i=1.

624. Exercise. Show that
⋃

λ1 	=λ2
C(λ1,λ2) has measure equal to the expected

mean Hamming distance achieved by the coupling.

625. Theorem. Let (P, T ) be a process, let n ∈ N and let (Y,B, ν, S) be a
measure-preserving system. Let Q be a partition on Y whose cells are in one-
to-one correspondence with those of P95 and let d = d

(
(P, T ), (Q, S)

)
. If

H(S) > H(Q, S)+ h(d
1
2 ), then for every δ > 0 there exists a partition Q1 on

Y such that

(1) Q1 differs from Q by at most 3d
1
2 in variation;

(2) |H(P, T ) − H(Q1, S)| < δ; and
(3) (P, T ) and (Q1, S) have n-distributions differing by at most δ (in varia-

tion).

Proof. As in the proof of Theorem 611, we let G be a generator for S and
assume without loss of generality (increasing n if necessary) that 1

n � δ and
that both the (G, S, n)-entropy drop and the (P, T, n)-entropy drop are � δ.
Moreover, we assume that for all N > n, the measure of unreasonable N -
names for the (Q, S) process is � δ. Fix N = (n +1)n. In the proof to follow,
we will verify conclusions (1) and (3), leaving conclusion (2) as an exercise
(the reader may wish to consult the proof of Theorem 611).

There is a coupling of the N -distribution of (P, T ) with the N -distribution
of (Q, S) which achieves an expected mean Hamming distance less than d. Let
R′′ be a picture of this coupling. Denote by P ′′ and Q′′ the partitions on R′′
corresponding to the first and second coordinates, respectively. For the moment
ignore P ′′ and just focus on the Q′′ columns. In preparation for copying, lump
together all unreasonably small Q′′ columns (totally ignoring what P ′′ looks
like on those columns) as we did in the proof of Theorem 611. By assumption,
this lump has some negligible size � δ.

Now we will add some more (P ′′ ∨ Q′′)-columns to the lumped column.
Consider a (P ′′ ∨ Q′′)-column in R′′ to be “bad” if the proportion of its

95 Given a one-to-one correspondence of this kind, (P, T ) and (Q, S) can be regarded as
stationary processes on the same alphabet.
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rungs in which the first and second coordinates disagree exceeds d
1
2 (Our

problem is that the number of bad columns may be too big for us to apply
the mature children’s puzzle theorem.) Before adding these columns to the
lump, the lump was negligibly small. Now since d is the Hamming distance
achieved by the coupling, the size of the lumped column is at most something

like d
1
2 .

On the lumped column, we erase all knowledge of P ′′ so that we no
longer have (P ′′ ∨ Q′′)-columns, but rather only Q′′-columns. Now we count
columns. The number of unlumped Q′′-columns can’t be very much bigger
than 2N H(Q,S). By Theorem 619, the number of unlumped (P ′′∨ Q′′)-columns

inside of an unlumped Q′′-column can’t be much bigger than 2Nh(d
1
2 ). Hence,

the total number of unlumped (P ′′ ∨ Q′′)-columns can’t be much greater than

2N H(Q,S)+Nh(d
1
2 ).

Let R be a tower of height N on Y having error set with measure � δ. Since

H(S) > H(Q, S) + h(d
1
2 ), R has something like 2N H(Q,S) reasonable G-

columns; this is enough to apply the puzzle theorems. Now we copy P ′′ to get
Q1. In copying the unlumped (P ′′ ∨ Q′′)-columns, use the mature children’s
puzzle theorem to get G finer than Q1 and to get Q1 ∨ Q to look like P ′′ ∨ Q′′.
On the lumped column, use the young children’s puzzle theorem to get G finer
than Q1 and to get Q1 to look like P ′′.

Now, conditioned on being in an unlumped (P ′′ ∨ Q′′)-column, the prob-
ability of being in “different cells” (actually non-correlated cells) of P ′′ and

Q′′ is no more than d
1
2 . Since the measure of the lumped column is also no

more than d
1
2 , and as the error coming from the puzzle theorems is not worse

than the measure of a reasonable G-column times the number of unlumped

(P ′′ ∨ Q′′)-columns, which is negligible, one gets v(Q1, Q) < 3d
1
2 . This

gives (1). Finally, since the error coming from the puzzle theorems is negligi-
ble, the initial lump (where one erased knowledge of Q′′) had size much less
than δ, and since n � 1

δ
, the variation distance between the distributions of

n-names for P and Q1 is small (< δ).

626. Exercise. Verify (2) by mimicking the proof of Theorem 611.

627. Comment. Theorem 625 will be used, but it won’t be quite enough. We
will also need that in a special case, where we have a better picture of the
coupling, we can copy more efficiently, and with a much lower entropy ceiling.
We now proceed to develop this special case, in which (Q, S) is a factor of
(P, T ).

628. Definition. Let (Y,B, ν) be a factor of (X,A, μ) and let π : X → Y be
the factor map. The coupling induced by π is the unique coupling of μ and ν
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supported on the graph of π . That is, such that c
({(

x, π(x)
) : x ∈ A

}) = μ(A)

for every A ∈ A.

629. Exercise. Show that there is such a coupling, and that it is unique.

630. Exercise. Let (Yi )
∞
i=−∞ be a factor of (Xi )

∞
i=−∞, where these are pro-

cesses on a finite alphabet, let π be the factor map, and let γ be the coupling
corresponding to π . Let cN be the measure on pairs of words of length N
induced by γ . Recall that cN couples μN and νN . Let H = H

(
(xi )

∞
i=−∞

)
. Let

η > 0 be arbitrarily small. Show that, when N is large, upon exclusion of an
error set having measure less than η, cN is supported on no more than 2N (H+η)

pairs of names. Hint: for big enough n, H
(
Y0|∨n

i=−n Xi
)

<
η
2 . Take N � n.

Here now is the special version of Theorem 625 alluded to above.

631. Theorem. Let (P, T ) be a process, let n ∈ N and let (Y,B, ν, S) be
a measure-preserving system. Let Q be a partition on Y whose cells are in
one-to-one correspondence with those of P and let d = d

(
(P, T ), (Q, S)

)
. If

(Q, S) is a factor of (P, T ) and H(S) > H(P, T ), then for every δ > 0 there
exists a partition Q1 on Y such that

(1) Q1 differs from Q by at most 2d in variation;
(2) |H(P, T ) − H(Q1, S)| < δ; and
(3) (P, T ) and (Q1, S) have n-distributions differing by at most δ (in varia-

tion).

Idea of proof. Basically the same proof as that of Theorem 625, only easier.
There are no big lumps to worry about here, just a small one coming from
Exercise 630. (The puzzle theorems apply without having to eliminate columns
on which the first and second coordinates disagree by some given amount.)

6.5. Sinai’s theorem

In this section we prove Sinai’s theorem, which states that every measure-
preserving system has a finitely determined factor of full entropy. Then, we
prove a stronger form of Sinai’s theorem that we need for the proof of the Orn-
stein isomorphism theorem in the next section. Before doing any of that, we
need a technical result stating that you can exhaust an arbitrary system by a
chain of factors of increasing entropy satisfying some additional requirements.

The following exercise is intended to give a flavor of the exhaustion theorem
that follows it, and may be skipped if desired.

632. Exercise. Let (Xi )
∞
i=−∞ be an independent, ( 1

2 , 1
2 ) process on the alpha-

bet {a, b}. Now define a stationary process (Yi )
∞
i=−∞ on the same space by
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the rules Yi = d if Xi = b or Xi Xi+1 Xi+2 Xi+3 Xi+4 = aaaaa, and Yi = c
otherwise.

(a) (Yi )
∞
i=−∞ is a factor of (Xi )

∞
i=−∞.

(b) H
(
(Yi )

∞
i=−∞

)
< H

(
(Xi )

∞
i=−∞

)
. Hint: both the baaaaab and bbaaaab

map to ddccccd on the same indices and have equal effect on other
indices.

(c) Define a process (Zi )
∞
i=−∞ by Zi = f if Xi = b or Xi Xi+1 · · · Xi+24 =

aa · · · a. Show that (Yi )
∞
i=−∞ is a factor of (Zi )

∞
i=−∞. Hint: first show

that e f always comes from ab, then show that Zi Zi+1 Zi+2 Zi+3 Zi+4

determines Yi .
(d) Choose a large n and let γ be the coupling on pairs of words of length n

induced by the factor map mapping (Zi )
∞
i=−∞ to (Yi )

∞
i=−∞. Show that the

mean Hamming distance achieved by γ is < 2−5 when n is large enough.
Hint: f → d and e → c are matches. f → c never happens, so e → d is
the only mismatch and this happens < 2−5 of the time.

633. Theorem. Let (P, T ) be an ergodic positive entropy process on a finite
alphabet. There exists a sequence of partitions Pi , each of whose cells are in
one-to-one correspondence with the cells of P, such that:

(a) (Pi , T ) is a factor of (Pi+1, T ) (we denote the factor map by πi );
(b)

∑
i di < 1, where di is the mean Hamming distance achieved by the

coupling corresponding to πi ;
(c) |P − Pi | → 0 as i → ∞; and
(d) H(Pi , T ) < H(P, T ) for all i .

Idea of proof. To start, we want to choose P1. Pick a big n1 and start with the
partition into P, n1 names. Choose a name a0a1 · · · an1−1. The set of points
having this name lies in a0. Relabel the points having that name to a different
letter (some letter already in your alphabet). When you do this, entropy can
only go down. If it does, stop. Otherwise, do it again. As soon as entropy goes
down, stop. P1 is the partition into the new labels. Since you can figure out
which cell of P1 you are in by looking at the infinite P-name, (P1, T ) is a
factor of (P, T ).

Now pick a much bigger n2 and consider the partition into P, n2 names.
Make sure this partition is into sets so tiny that the entropy drop you can
get by labeling any name with a different initial letter won’t drop the entropy
more than H(P, T ) − H(P1, T ). Now do what you did before. Pick a name
a0a1 · · · an2−1 and relabel the initial letter of all the points having that name.
However, when you do this, only relabel names a0a1 · · · an2−1 for which you
already labeled the initial string a0a1 · · · an1−1 in the first part of the proof,
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and relabel them in the same way as you did before. Keep lumping only long
enough to make entropy go down a bit. That’s P2.

634. Exercise. Show that (P1, T ) is a factor of (P2, T ) is a factor of (P, T ).
Argue how to continue in this fashion and verify the remaining claims.

635. Notation. We will write (Q, S) ≈ (P, T ) when the n-distributions of
(Q, S) and (P, T ) coincide for all n. Of course, by Exercise 145, this implies
that (Q, S) and (P, T ) are isomorphic, so we will interpret ≈ thusly.

636. Theorem. (Sinai’s theorem 1964.) Let (Y,B, ν, S) be an ergodic system
and let (P, T ) be a finitely determined process. If H(P, T ) ≤ H(S) then
(P, T ) is a factor of S.

Idea of proof. The proof will be completed in a series of steps.

(1) Choose partitions Pi as in the conclusion of Theorem 633. Note that each
(Pi , T ) is finitely determined, as the FD property is closed under the taking
of factors.

(2) By Theorem 611, choose a measurable partition P01 on Y such that
(P01, S) approximates (P1, T ) in distribution and entropy (hence in dbar).

(3) Use Theorem 625 to alter P01 slightly to get a new partition P02 such that
(P02, S) is a much better approximation to (P1, T ).96

(4) Continue in this fashion: alter P02 slightly to get a new partition P03 such
that (P03, S) approximates (P1, T ) better still, etc.97 Make the approxima-
tions converge fast enough98 that the sequence P0i converges in variation
to a partition P10 with (P10, S) ≈ (P1, S).

(5) Use Theorem 631 to alter P10 slightly to get a new partition P11 such that
(P11, S) is a good approximation of (P2, T ).

(6) Emulate steps (3)–(4), using Theorem 625 to make alterations to get
partitions P12, P13, etc., converging to a partition P20 with (P20, S) ≈
(P2, S).99

96 Theorem 625 requires a certain amount of excess entropy, relative to the dbar distance between
the partition you are altering and the one you are approximating. One must therefore make sure
in step 2 that (P01, S) approximates (P1, T ) so closely in distribution and entropy that it will
be also be close enough in dbar (recall (P1, T ) is finitely determined) to be able to do step (3).
Similar remarks apply throughout the proof.

97 Approximations in n-distribution, for larger and larger values of n.
98 One needs to alter P0i by at most 3d

1
2 , where d = d

(
(P0i , S), P1, T )

)
. Since (P1, T ) is finitely

determined, d can be made as small as required in the previous step, when P0i was chosen to
approximate (P1, S) in distribution and entropy. In order that the sequence stabilize, one needs
to make sure that the sizes of the alterations sum to something small.

99 These alterations should be summably tiny (P20 is itself a very slight alteration of P10).
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(7) Follow the same recipe to get P30, P40, etc. converging100 to some P∗ such
that (P∗, S) ≈ (P, T ).

637. Comment. Notice that if H(P, T ) < H(S), one doesn’t need to use
Theorems 631 and 633.

638. Discussion. We now wish to develop a special case of Sinai’s theorem,
with an extra hypothesis and a stronger conclusion. Suppose (P, T ) and (Q, S)

are processes, and the cells of P are in one-to-one correspondence with the
cells of Q. Let d

(
(P, T ), (Q, S)

) = ε. Suppose now we have an alpha-
bet 
 and a finite code f taking P-words of length 2n + 1 to 
. Letting
(xi )

∞
i=−∞ be the P-name of a point x , the map π sending x to (ai )

∞
i=−∞, where

ai = f (xi−n xi−n+1 · · · xi+n), determines a factor (Xi )
∞
i=−∞ of (P, T ). Let f ′

be (essentially the same code) the function taking corresponding Q-words of
length n to 
 and use f ′ to form a factor (Yi )

∞
i=−∞ of (Q, S) in the same way.

(Call the factor map π ′.)

639. Exercise. Show that d
(
(Xi )

∞
i=−∞, (Yi )

∞
i=−∞

)
< (2n +1)ε. Hint: a good

dbar coupling of the original processes induces a good dbar coupling of the
images, where k errors on terms from −(M + n) to (M + n) induce at most
(2n + 1)k errors on terms from −M to M.

640. Exercise. Suppose you used the same alphabets for the factors as for the
original processes themselves. (That is, there is a one-to-one correspondence.)
Then it makes sense to ask whether a given point when moved by the factor
map π ends up in the corresponding cell in the factor space. Let γ be the
probability that this doesn’t happen; that is, the probability that x winds up in
a different cell.101 Show that the probability that a random point in the space
of the (Q, S) process winds up in a non-corresponding cell in its factor space
is at most (2n + 1)ε + γ . Hint: as before, induce a coupling from a coupling.
If the −n to n terms of (P, T ) and (Q, S) coincide and the 0 coordinate of
(P, T ) and its factor coincide then the 0 coordinate of (Q, S) and its factor
will coincide.

641. Theorem. Sinai’s theorem, strong form of a special case. For every ε > 0
there exist δ > 0 and m such that if (Q, S) is an ergodic process and (P, T ) is
a finitely determined process, where the cells of P are in one-to-one correspon-
dence with the cells of Q, with H(Q, S) − δ < H(P, T ) ≤ H(Q, S) and such

100 Of course, to guarantee convergence one has to provide that the successive alterations are
summable in variation.

101 This is, of course, 1 − P
(
(π(x))0 = g

(
c(x)

))
, where c(x) denotes the cell of P that x lies in

and g is the bijection taking the cells of P to 
.
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that the variation distance of the m-distributions of (Q, S) and (P, T ) differ
by at most δ, then there is a partition P∗ on the space of Q with |Q − P∗| < ε

and such that (P∗, S) ≈ (P, T ).

Idea of proof. Choose the Pi as in the proof of Sinai’s theorem. We may
assume that

∑
i |Pi+1 − Pi | � ε. Notice in the proof of Sinai’s theorem, once

P01 is in a position to be chosen, the amount it has to be altered to get to P∗ is
at most 2

∑
i d
(
(Pi+1, T ), (Pi , T )

)
plus a quantity that can be made as small

as desired. Therefore, it suffices to show that we may choose P01 close to Q,
modulo the restriction that d

(
(P01, S), (P1, T )

)
be small enough to perform

the future steps. Here are some more details.

(1) Once we choose P01 with (P01, S) close to (P1, T ), we don’t want to have
to move P01 more than ε

2 to get to P∗. There is some α � ε such that if
d((P01, S), (P1, T ))) < α, then this will be the case.102 All we must do
therefore is choose P01 such that |P01 − Q| < ε

2 and d((P01, S), (Pi , T ))

< α.
(2) Choose n such that P1 is well approximated by a length n coding. That is,

so that |P1 − P ′
1| � ε, where P ′

1 is coded from P with a code of length n.
(3) Choose δ and m such that if (P ′, T ′) is any process and the m-

distributions and entropies of (P ′, T ′) and (P, T ) differ by at most δ, then
d
(
(P ′, T ′), (P, T )

) � α
n .

(4) Now let P01 be coded from Q by the same code with which P ′
1 is coded

from P . By Exercise 640, the variation distance between Q and P01 is at
most |P − P ′

1| + (2n + 1)d
(
(Q, S), (P, T )

)
< ε

2 .
(5) By Exercise 639, d

(
(P01, S), (P ′

1, T )
) ≤ (2n + 1)d((Q, S), (P, T )) < α.

6.6. Ornstein isomorphism theorem

Finally, we reap the harvest we have sown in the previous six chapters.

642. Theorem. (Ornstein isomorphism theorem; Ornstein 1970a.) Any two
finitely determined processes with the same entropy are isomorphic.

Idea of proof. We are given transformations T and S and partitions P and Q
such that (P, T ) and (Q, S) are finitely determined of the same entropy, where

102 We also require of α that for any partition Q′ on the space of S, if d((P1, T ), (Q′, S)) < α

then H(S) − H(Q′, S) � h(α
1
2 ). This will allow us to continue the proof of Sinai’s theorem

once we have chosen P01; the reader who worked out the details is by now familiar with such
considerations.
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P generates. Our goal is to establish a Q′ which also generates T such that
(Q′, T ) has the same distribution as (Q, S).

(1) By Sinai, get q such that (q, T ) has the same distribution as (Q, S).
By Theorem 594, it suffices to get q ′ such that (q ′, T ) has the same

distribution as (Q, S), q ′ is arbitrarily close to q, and q ′ codes P arbitrarily
well.

(2) Using Exercise 617, copy P in the land of q to get P ′, so that

(i) (P ′ ∨ q, T ) resembles (P ∨ q, T ) in distribution and entropy. By
the strong form of Sinai’s theorem, by moving the copy a little after
making it we can assume

(ii) (P ′, T ) has the same distribution as (P, T ).

(3) Copy q to get q ′, so that

(i) (P ∨ q ′, T ) look like (P ′ ∨ q, T ) in distribution and entropy. By
the strong form of Sinai’s theorem, by moving the copy a little after
making it, we can assume

(ii) (q ′, T ) has the same distribution as (Q, S).

What all this means:

Since P generates, there is some n such that P codes q well by time n.
(P ′ ∨ q, T ), (P ∨ q, T ) and (P ∨ q ′, T ) all look alike so P codes q like P
codes q ′ by time n. Thus q is close to q ′.

P ′ is in the land of q so there is an n1 such that q codes P ′ extremely well
by time n1. Hence, by making the copy q ′ good enough, we can guarantee that
q ′ codes P extremely well by time n1.

We are done. However there is a technicality to be concerned about when we
play this game. It takes 2n1+1 letters from the q ′ partition to code a letter from
P , when we are using an n1 code. If any of those 2n1 + 1 letters are altered,
the code codes wrong. Therefore, if we move the q ′ partition an amount on the
order of 1

n1
, that is enough to wreck the coding. Furthermore, you will recall

that we did in fact move q ′ using the strong form of Sinai’s theorem.
Relax. We did not make the q ′ coding until after we already knew n1, and

by making it arbitrarily well, we can get the distance we needed to move it to
be small, even in comparison to 1

n1
.

Here are some more details.

Sketch of proof. Let (P, T ) and (Q, S) be finitely determined and of the same
entropy, where P generates. Our goal is to find a partition Q′ on the space of
T which generates, such that (Q′, T ) ≈ (Q, S).
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1. By Sinai’s theorem, there is a partition q on the space of T such that
(q, T ) ≈ (Q, S).

643. Exercise. It suffices to show that for every ε > 0 and n ∈ N there exists
a partition q ′ on the space of T such that (q ′, T ) ≈ (Q, S), |q ′ − q| < ε, and
q ′ codes P ε-well by time n. Hint: Borel–Cantelli and Theorem 594. •
2. Fix n and ε per the foregoing exercise and choose l so that P codes q ε

10 -
well by time l. Pick a big m � n and a small δ � ε

l . Using Exercise 617,
copy P in the land of q to get P ′ so that (P ′∨q, T ) m-resembles (P ∨q, T )

up to δ and such that H(P ′, T ) > H(P, T )− δ. If you picked δ and m well
enough, then the strong form of Sinai’s theorem says you can move P ′ a
little bit (way less than ε

l , and still in the land of q!) to make (P ′, T ) ≈
(P, T ).

3. Choose m′ � m such that q codes P ′ ε
10 -well by time m′. Now choose

m′′ � m′ and δ′ � δ; again using Exercise 617, copy q onto the space of
T to get a partition q ′ such that (P ∨ q ′, T ) m′′-resembles (P ′ ∨ q, T ) up
to δ′ and H(q ′, T ) > H(q, T ) − δ′. If you picked δ′ and m′′ well enough,
then the strong form of Sinai’s theorem says you can move q ′ a little bit
(way less than ε

m′ ) to make (q ′, T ) ≈ (q, T )
( ≈ (Q, S)

)
.

644. Exercise. Show that |q − q ′| < ε. Hint: P codes q ε
10 -well by time l and

(P ∨ q ′, T ) 10l-resembles (P ∨ q, T ) up to ε
10l .

645. Exercise. Show that q ′ codes P ε-well by time n. Hint: q codes P ′ ε
10 -

well by time m′ and (P ∨ q ′, T ) 10m′-resembles (P ′ ∨ q, T ) up to ε
10m′ .

646. Abbreviation. By Sinai (Q, S) isomorphic to factor (q, T ) of (P, T ).
You would like to move q slightly to get an isomorphic copy (q ′, T ) of (Q, S)

which generates (P, T ) better. Make (P ′, T ) factor of (q, T ): (P ′∨q, T ) looks
like (P ∨ q, T ). Make q ′ so that (P ∨ q ′, T ) looks like (P ′ ∨ q, T ). q ′ is close
to q because (P, T ) codes them about the same. (q ′, T ) captures (P, T ) well
because it copies the way (q, T ) captures (P ′, T ).

647. Corollary. Ornstein isomorphism theorem (classical form). Any two
independent processes of the same entropy are isomorphic.

648. Corollary. F D ⊂ B.

Proof. Let (P, T ) be finitely determined. Choose an independent process
(Q, S) of the same entropy. (Q, S) is finitely determined, therefore (P, T )

and (Q, S) are isomorphic.



9780521194402c07 CUP/KKW October 10, 2009 21:40 Page-146

7

Varieties of mixing

649. Discussion. In Chapters 5 and 6 we gave various randomness conditions
on a stationary process X and showed that each was both necessary and suf-
ficient for X to be isomorphic to a “maximally random” (i.e. independent)
process. In this chapter, we will give a series of progressively weaker random-
ness conditions, showing each in turn to be necessary, but not sufficient, for the
previous. As before, we use a boldfaced designation for the class of stationary
processes satisfying a given condition, and formulate a “boldfaced theorem”
specifying the various proper inclusions.

7.1. The varieties of mixing

In this subchapter we define the various classes. As always, the systems we
consider are assumed to be invertible and Lebesgue.

650. Definition. We denote by B the class of Bernoulli systems and by E the
class of ergodic systems.

651. Definition. A system (�,A, μ, T ) is Kolmogorov, or K, if there is a sub-
σ -algebra K ⊂ A such that T −1K ⊂ K,

∨∞
i=0 T iK = A, and μ(A) ∈ {0, 1}

for all A ∈ ⋂∞
i=0 T −iK. We denote the class of Kolmogorov systems by K.

652. Definition. Let E ⊂ N. The upper density of E is the number

d(E) = lim sup
n→∞

|E ∩ {1, 2, . . . , N }|
N

.

If (xn) is a sequence in a topological space, we write D − lim xn = x if for
every neighborhood U of x , there is a set E with d(E) = 0 such that xn ∈ U
for all n ∈ (N \ E).

653. Definition. Let (di ) be a sequence of natural numbers. The set

R = {di1 + di2 + · · · + dik : i1 < i2 < · · · < ik}

is called an IP set. A set E ⊂ N is said to be IP∗ if it intersects every IP set
non-trivially.
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654. Definition. Let (xn) be a sequence in a topological space. We write
IP∗ limn xn = x if for every neighborhood U of x , the set {n : xn ∈ U } is
an IP∗ set.

655. Definition. Let (�,A, μ, T ) be an invertible measure-preserving sys-
tem. Then

(a) (�,A, μ, T ) is strongly mixing if for any A, B ∈ A, one has

lim
n→∞ μ(A ∩ T n B) = μ(A)μ(B).

We denote the class of strongly mixing measure preserving systems
by SM.

(b) (Furstenberg and Weiss 1977.) (�,A, μ, T ) is mildly mixing if for any
A, B ∈ A, one has

IP ∗ lim
n→∞ μ(A ∩ T n B) = μ(A)μ(B).

We denote the class of mildly mixing measure preserving systems by MM.
(c) (�,A, μ, T ) is weakly mixing if for any A, B ∈ A, one has

D−lim
n→∞ μ(A ∩ T n B) = μ(A)μ(B).

We denote the class of weakly mixing measure preserving systems
by WM.

Definitions in place, we devote the remainder of the chapter to a proof of the
following.

656. Theorem. B � K � SM � MM � WM � E.

7.2. Ergodicity vs. weak mixing

In this brief subchapter, we show that the weakly mixing systems form a proper
subset of the ergodic systems, then give an alternate characterization of weak
mixing.

657. Theorem. WM � E.

Idea of proof. We use the following fact.

658. Exercise. Suppose that (an) is a bounded sequence of non-negative
numbers. If D- limn an = a exists, then limN

1
N

∑N
n=1 an = a. •

Suppose that (�,A, μ, T ) is weakly mixing and let A ∈ A with T −1 A = A.
By the above exercise, μ(A)2 = limN

1
N

∑N
n=1 μ(A ∩ T −n A) = μ(A). Hence

μ(A) ∈ {0, 1}, which shows that (�,A, μ, T ) is ergodic.
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Now we give an example of an ergodic system that is not weakly mixing.
The system is (X,A, μ, T ), where (X,A, μ) is [0, 1) with Lebesgue measure,
and T x = x + α mod 1, where α is irrational. The necessary properties will
fall out of the following exercise.

659. Exercise. Show that, for this system, all forward orbits are dense. In fact,
given ε, there is an Mε such that all forward Mε-orbits are ε-dense. Hint: first
reduce the problem to showing that the forward orbit of 0, namely {nα : n ∈
N}, comes ε-close to 0. Do this with the pigeonhole principle. •
660. Exercise. Show that (X,A, μ, T ) is not weakly mixing. Hint: let A =
[0, 1

3 ) and show that the set of n for which (A ∩ T −n A) = ∅ has density at
least 1

M 1
3

. •

661. Exercise. Show that (X,A, μ, T ) is ergodic. Hint: let A ∈ A with
0 < μ(A) < 1. There exist intervals I and J almost contained in A and
Ac, respectively. Use density of orbits to bring I to J .

There are many equivalent characterizations of weak mixing. We now prepare
for a theorem that will establish equivalence of three of the most important of
these.

662. Exercise. Prove that (X,A, μ, T ) is ergodic if and only if for all f, g ∈
L2(X), if one of

∫
f dμ,

∫
g dμ is zero, then D- limn

∫
f T ng dμ = 0. Hint:

approximate f and g by simple functions. For the converse, let f = 1A−μ(A),
g = 1B − μ(B).

663. Exercise. Let (an) be a sequence of real numbers. Show that
D- limn an = 0 if and only if limN

1
N

∑N
n=1 a2

n = 0.

664. Theorem. Let (X,A, μ, T ) be a measure-preserving system. The fol-
lowing are equivalent.

(a) (X,A, μ, T ) is weakly mixing.
(b) (X × X,A ⊗ A, μ × μ, T × T ) is ergodic.103

(c) T has no non-constant measurable eigenfunctions.

Idea of proof.

665. Exercise. Prove implication (b)→(a). Hint: suppose one of
∫

f dμ,∫
g dμ is zero, let an = ∫

f T ng dμ and use the previous two exercises;
apply the mean ergodic theorem to the function g ⊗ g(x, y) = g(x)g(y) in the
product space.

103 Here T × T (x, y) = (T x, T y).
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(a)→(c):First note the system is ergodic. Suppose there is a non-constant
eigenfunction f ; T f = λ f . By ergodicity λ 
= 1, however |λ| = 1 since T is
measure-preserving, hence | f | is T -invariant and hence constant. However f
is not constant, so∫

f f dμ=
∫

| f |2 dμ=
( ∫

| f | dμ
)2

>

∣∣∣ ∫ f dμ

∣∣∣2 =
( ∫

f dμ
)( ∫

f dμ
)
.

Hence there is an ε > 0 and a neighborhood U of 1 such that for all α ∈ U ,∣∣∣ ∫ α f f dμ −
( ∫

f dμ
)( ∫

f dμ
)∣∣∣ > ε.

One obtains a contradiction by the fact that for a set of n having positive
density, λn ∈ U , a contradiction.

(c)→(b):We prove the contrapositive. Suppose (b) fails. Then there is a non-
constant, (T × T )-invariant function H(x, y) in L2(X × X, μ × μ), which we
may assume is bounded. For f ∈ L2(X), define H ∗ f by

H ∗ f (x) =
∫

H(x, y) f (y) dμ(y).

666. Exercise. Show that f → H ∗ f is a bounded linear operator. Hint:
in fact the norm of this operator is at most ||H ||2; use Fubini’s theorem and
Cauchy–Schwarz.

Indeed, much more is true: as an operator, H is in fact compact: that is, it
takes bounded sets to precompact sets. Our next step is to construct a self-
adjoint operator having the same properties. Assume that H(x, y) is not a
function of y alone (otherwise, H is not a function of x alone and proceed
similarly). Put

K (x, y) =
∫

H(x, t)H(y, t) dμ(t).

By our assumption, K is not constant. Note that

K (T x, T y) =
∫

H(T x, t)H(T y, t) dμ(t)

=
∫

H(T x, T t)H(T y, T t) dμ(t)

=
∫

H(x, t)H(y, t) dμ(t) = K (x, y).

Moreover, as is obvious from the definition, K is self-adjoint: K (y, x) =
K (x, y). Therefore, by the spectral theorem for compact self-adjoint operators,
L2(X) has an orthonormal basis consisting of eigenvectors for K . Moreover,
the eigenspace Vλ of each eigenvalue λ 
= 0 is of finite dimension.
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667. Exercise. Show that, as operators, K and T commute. Conclude that T
leaves each eigenspace Vλ invariant.

668. Exercise. Show that, restricted to the orthocomplement of the constants,
K is not the zero operator. Hint: write Kx (y) = K (x, y). Use separability of
L2(X) to find f not orthogonal to a.e. Kx and consider K ∗ f .

Consider now an eigenspace Vλ, where λ 
= 0, that is orthogonal to the
constants. Since it is finite dimensional and T -invariant, it contains a one-
dimensional T -invariant subspace, which must be spanned by a non-constant
eigenfunction for T .

7.3. Weak mixing vs. mild mixing

Next we show that the mildly mixing systems form a proper subset of the
weakly mixing systems. First, we give an alternate characterization of mild
mixing. This requires some preparation.

669. Definition. Let (X,A, μ, T ) be a measure-preserving system and let f ∈
L2(X). We say that f is rigid if there exists a sequence (ni ) of natural numbers
such that || f − T ni f || → 0.

670. Definition. We denote the set of finite, non-empty subsets of N by F . If
α, β ∈ F , we write α < β if max α < min β.

671. Definition. (Furstenberg and Katznelson 1985.) Let (αi ) be a sequence
in F with αi < αi+1, i ∈ N. The set F (1) = {⋃

i∈β αi : β ∈ F} is called

an IP-ring. If F (1) is an IP-ring, a function n from F (1) into a commutative
group (G,+) will be called an IP system if n(α ∪β) = n(α)+ n(β) whenever
α, β ∈ F (1) with α < β.

672. Theorem. (Hindman 1974). Let F (1) be an IP-ring, let r ∈ N and
suppose F (1) = ⋃r

i=1 Ci . Then some Ci contains an IP ring F (2).

(Proof omitted.)

673. Definition. Let F (1) be an IP-ring, let (X, ρ) be a metric space and sup-
pose f : F (1) → X is a function. Let x ∈ X and suppose that for every
ε > 0 there is some α0 ∈ F such that for every α ∈ F (1) with α > α0,
ρ
(
x, f (α)

)
< ε. Then we will write IP-lim

α∈F (1)
f (α) = x .

674. Exercise. In the previous definition, if (X, ρ) is compact then there
must exist an IP-ring F (2) ⊂ F (1) such that IP-lim

α∈F (2)
f (α) exists. Hint: use

Hindman’s theorem and a diagonal argument.



9780521194402c07 CUP/KKW October 10, 2009 21:40 Page-151

7.3. Weak mixing vs. mild mixing 151

675. Exercise. Let H be a separable Hilbert space, let F (1) be an IP-ring and
let U be an IP system from F (1) into the space of unitary operators on H. Then
there exists an IP-ring F (2) ⊂ F (1) such that P = IP-lim

α∈F (2)
U (α) exists in

the weak operator topology. Moreover, P is an orthogonal projection. Hint:
for existence of the limit, use the previous exercise and the fact that the weak
topology is compact metric when restricted to the unit ball of H. To show P is
an orthogonal projection, it suffices to show P2 = P.

676. Theorem. (Furstenberg and Weiss 1977.) Let (X,A, μ, T ) be a
measure-preserving system. The following are equivalent.

(a) (X,A, μ, T ) is mildly mixing.
(b) There are no non-constant rigid functions in L2(μ).

Proof. (b)→(a): Suppose there are no non-constant rigid functions. Let H be
the orthocomplement of the constants in L2(μ). T acts unitarily on H. For (a),
it is sufficient to show that for f, g ∈ H, one has

IP ∗ lim
n

∫
f T ng dμ = 0.

Let n : F → N be an arbitrary IP system. For some IP-ring F (1), P =
IP- limα T n(α) exists in the weak operator topology. By the previous exercise,
P is an orthogonal projection.

677. Exercise. Show that Pg is rigid for all g ∈ H. Conclude that P ≡ 0. •
Hence

IP-lim
α∈F (1)

∫
f T n(α)g dμ =

∫
(P f )(Pg) dμ = 0.

(a)→(b): Suppose f is a non-constant rigid function. Choose (ni ) such that
||T ni f − f || < 2−i and put n(α) = ∑

i∈α ni , α ∈ F . Choose a set S such that
A = f −1(S) has measure strictly between 0 and 1.

678. Exercise. Show that IP- limα μ
(

A ∩ T n(α) A
) = μ(A) and use this to

derive a contradiction to (a).

679. Theorem. MM⊂WM.

680. Exercise. Prove the theorem. Hint: show that any eigenfunction is a rigid
function.

Our next task is to give an example of a weakly mixing system that is not mildly
mixing. We use cutting and stacking. Let T1 be a tower having one rung; the
interval [0, 1). Having constructed Tn , construct Tn+1 as follows. Break Tn into
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n+1 equal width columns C1, . . . , Cn+1. Stack the columns vertically, starting
with C1, . . ., etc. Put a single spacer between Cn and Cn+1. For example, T2

looks like:

[ 1
2 , 2

2 )

[ 2
2 , 3

2 )

[ 0
2 , 1

2 )

T3 looks like:

[ 5
6 , 6

6 )

[ 8
6 , 9

6 )

[ 2
6 , 3

6 )

[ 9
6 , 10

6 )

[ 4
6 , 5

6 )

[ 7
6 , 8

6 )

[ 1
6 , 2

6 )

[ 3
6 , 4

6 )

[ 6
6 , 7

6 )

[ 0
6 , 1

6 )

Normalize to a probability measure; denote the system this cutting and stacking
construction converges to by (X, T ).

681. Exercise. Show that (X, T ) is ergodic. Hint: see the proof below that
Chacon’s transformation is ergodic.

682. Theorem. (X, T ) is weakly mixing.

Sketch of proof. Suppose not. Then there is a non-constant eigenfunction f .
Let λ 
= 1 be the corresponding eigenvalue. Denote by An the algebra gener-
ated by the rungs of Tn . Since

∨
n An generates, there is an n such that f is very

nearly constant on at least some rungs of Tn .104 But, since f (T x) = λ f (x)

a.e., in fact f is nearly constant on every rung of Tn .

683. Exercise. Show that λh is very nearly 1, where h is the height of Tn .105

Hint: consider the first two stacked columns comprising Tn+1.

104 That is to say, μ
(

f −1(S) ∩ R
)

> 0.99μ(R), where diam(S) 
 dist(λ, 1) and R is the rung
in question.

105 In other words, dist(λh , 1) 
 dist(λ, 1).
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684. Exercise. Show that λh+1 is very nearly 1. Conclude that λ is arbitrarily
close to 1 and obtain a contradiction.106 Hint: consider the last two stacked
columns comprising Tn+1, which are separated by a spacer.

685. Theorem. (X, T ) is not mildly mixing.

Idea of proof. Let f ∈ L2(X) be arbitrary and let ε > 0. We will find h ∈ N
such that ||T h f − f || < ε. Choose a very large n such that || f − E( f |An)|| <
ε

10 . Let g be equal to E( f |An) on Tn and 0 on the rest of the space. If n is big
enough, || f − g|| < ε

5 .

686. Exercise. Show that ||g − T h g|| ≤ 2||g||
n , where h is the height of Tn .

Assuming n large enough, this is less than ε
2 . Hint: consider how Tn+1 is

constructed.
Hence || f − T h f || ≤ || f − g|| + ||g − T h g|| + ||T h g − T h f || < ε.

7.4. Mild mixing vs. strong mixing

We begin with an example, due to Chacon, of a mildly mixing transformation
that is not strongly mixing. We use cutting and stacking. Begin with the interval
[0, 2

3 ), which we label T1. To get the nth tower Tn , cut the (n −1)st tower Tn−1

into three equal columns. Stack two of them, add a spacer, then stack the third
on top of that. For example, T2 looks like this:

[ 4
9 , 6

9 )

[ 6
9 , 8

9 )

[ 2
9 , 4

9 )

[ 0
9 , 2

9 )

T3 looks like this:

[ 16
27 , 18

27 )

[ 22
27 , 24

27 )

[ 10
27 , 12

27 )

[ 4
27 , 6

27 )

[ 24
27 , 26

27 )

[ 14
27 , 16

27 )

106 That is, show that dist(λh+1, 1) 
 dist(λ, 1), so that dist(λh+1, λh) 
 dist(λ, 1).
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[ 20
27 , 22

27 )

[ 8
27 , 10

27 )

[ 2
27 , 4

27 )

[ 12
27 , 14

27 )

[ 18
27 , 20

27 )

[ 6
27 , 8

27 )

[ 0
27 , 2

27 )

687. Definition. Chacon’s transformation is the transformation that the above
cutting and stacking procedure converges to.

688. Theorem. Chacon’s transformation is ergodic.

Proof. Suppose A = T A with μ(A) ∈ (0, 1). Let 1 > ρ > μ(A). Using
the existence of Lebesgue points of density, there is an interval I = [ i

3n , i+2
3n )

such that μ(A ∩ I ) > |I |ρ. Notice that I is a rung of Tn. Since A = T A,
every rung J of Tn satisfies μ(A ∩ J ) > |J |ρ. Summing over all rungs, we get
μ(A) > ρ 3n−1

3n . Choosing n large enough, we obtain a contradiction.

689. Theorem. Chacon’s transformation is mildly mixing.

Idea of proof. Suppose there is a non-constant rigid function f . We shall
obtain a contradiction.

690. Exercise. Show there is a proper measurable A such that 1A is rigid.
Hint: take A = f −1(S) for some measurable S. •

By ergodicity, μ(A�T A) = ρ > 0. Let An denote the σ -algebra generated
by the rungs of Tn . Then

∨
n An generates, hence there is an m and a set B

consisting of various rungs of Tm such that μ(A�B) <
ρ

106 .
Let hn denote the height of Tn . Choose n � hm such that μ(A�T n A) <

ρ

106 . Then μ(B�T n B) <
ρ

105 . Choose t with 10n < ht < 100n. Note that B
is the union of some rungs of At . Let b1, . . . , bht be in {0, 1} such that bi = 1
if and only if the i th rung of At is in B. Let s1 be the number of i , 1 ≤ i ≤ n,
such that bi 
= bht −n+i .

691. Exercise. Show that s1 <
ρn
103 . Hint: observe how tower At+1 is built, in

particular how the middle third of At is stacked atop the left third; use the fact
that μ(B�T n B) is small and n > ht

100 .
Next, let s2 be the number of i , 1 ≤ i ≤ n, such that bi 
= bht −n+i+1.
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692. Exercise. Show that s2 <
ρn
103 . Hint: again observe how tower At+1 is

built, this time paying attention to how the right third of At is separated from
the middle third by a single spacer.

Note ht−5 < n. Let s3 be the number of i , 1 ≤ i ≤ ht−5, such that bi 
=
bi+1.

693. Exercise. Show that s3 ≤ s1 + s2 <
ρn
500 <

ρht−5
10 . Conclude that

μ(B�T B) <
ρ
5 and derive a contradiction. Hint: B is a union of rungs of

Tn−5, too.

694. Theorem. Chacon’s transformation is not strongly mixing.

Idea of proof. Let A = [0, 2
9 ), i.e. the base of T2.

695. Exercise. Show that for all n, μ(A ∩ T hn A) ≥ 2
9 · 1

3 . Hint: for x ∈ A,
if x lies in the leftmost third of Tn then T hn x will lie in the middle third of the
same rung of Tn.

7.5. Strong mixing vs. Kolmogorov

696. Theorem. K ⊂ SM.

Idea of proof. Let (X,A, μ, T ) be a Kolmogorov system; suppose it is not
mixing. Then there are measurable sets A, B and a sequence ni such that
μ(A ∩ T ni B) → x 
= μ(A)μ(B). There is a sub-σ -algebra K ⊂ A such that
T −1K ⊂ K,

∨∞
i=0 T iK = A, and μ(A) ∈ {0, 1} for all A ∈ ⋂∞

i=0 T −nK.
Since

∨∞
i=0 T iK = A, we can approximate B very closely by a set C in∨n

i=0 T iK = T nK for some n and still have μ(A∩T ni C) → y 
= μ(A)μ(C).
Passing to a subsequence if necessary, we can assume 1T −ni C = T ni 1C → f
in the weak topology.107

697. Exercise. Use the fact that T −1K ⊂ K to show that f is measurable
with respect to T n−niK for every i ; use the fact that

⋂∞
i=0 T −nK is trivial to

conclude that f is constant and obtain a contradiction. Hint: first show that∫
f = μ(C).

In the remainder of this subchapter, we demonstrate that there are strongly
mixing systems that do not have the Kolmogorov property. This will be done
in three steps. First, we show that any K system has positive entropy. Next, we
show that any rank-one system has zero entropy. Finally, we exhibit a mixing
rank-one system.

107 That is, we may assume that 〈T ni 1C , g〉 → 〈 f, g〉 for every g ∈ L2(X). This is easy to show
elementarily by considering a dense subset of L2(X) and using a diagonal argument.
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698. Theorem. Every Kolmogorov system has positive entropy.

Idea of proof. Let (X,A, μ, T ) be a Kolmogorov system, and suppose this
system has zero entropy. There is a sub-σ -algebra K ⊂ A such that T −1K ⊂
K,
∨∞

i=0 T iK = A, and μ(A) ∈ {0, 1} for all A ∈ ⋂∞
i=0 T −nK. Let A ∈ A be

arbitrary. Since
∨∞

i=0 T iK = A, we can approximate A very closely by a set
C in

∨n
i=0 T iK = T nK for some n. Let P = {C, X \ C}.

699. Exercise. Show that
∨m

i=−∞ T i P ⊂ ∨m−1
i=−∞ T i P mod 0 for all m ∈ Z.

Hint: by zero entropy, the past determines the present for the (P, T ) process.

•
Iterating the previous exercise, we get C ∈ ⋂∞

i=0 T −nK. But this σ -algebra is
trivial.

700. Exercise. Let n ∈ N be large and let w be a word of length n on the
alphabet {0, 1}. Then the number of words v of length m having the property
that a proportion close to 1 of v can be exhausted by disjoint copies of w is
exponentially small. 108

701. Theorem. Rank-one systems have zero entropy.

Idea of proof. Let (X,A, μ, T ) be a rank-one system constructed from a
sequence of towers Tn of heights hn .

702. Exercise. It suffices to show that the (P, T ) process has zero entropy for
every 2-set partition P . •

Let A ∈ A be arbitrary and put P = {A, X \ A}. Suppose that H(P, T ) > 0.
Choose n such that A is approximable by a set B that is a union of rungs
of Tn . Setting Q = {B, X \ B}, we will have H(Q, T ) > 0 (provided the
approximation is good enough). Without changing the set B, we can assume
that n is as large as desired (that is, B will still be a union of rungs of Tn). In
particular, we can assume that most of the space is taken up by Tn . Let w be
the Q-name of length n of the base of Tn .

703. Exercise. Show that for m � hn , for most points x , the (Q, m)-name
of x contains nearly m

hn
disjoint copies of w. Hint: consider a tower Tk with

hk � m; most rungs of the tower have m-names consisting mostly of passes
through Tn.

108 A more precise formulation: let ε > 0 and let m � n. The number of words of length m
having at least m(1−ε)

n disjoint copies of w as subwords is at most 3( m
n +mε). Hint: consider

the map taking words on {0, 1, 2} to words on {0, 1} induced by sending 2 to a copy of w.



9780521194402c07 CUP/KKW October 10, 2009 21:40 Page-157

7.5. Strong mixing vs. Kolmogorov 157

By the previous exercise, Exercise 700 and the fact that n can be taken arbitrar-
ily large, the number 700 (Q, m)-names is as exponentially small as desired,
which contradicts H(Q, T ) > 0.

We now give an example of a mixing rank-one transformation. The result is
due to T. Adams, based on a conjecture of Smorodinsky. We need the following
version of the ergodic theorem (we give two formulations, with two suggested
proofs).

704. Exercise. Let (X,A, μ, T ) be ergodic. Show that∣∣∣∣∣1n
n∑

i=1

μ(T −i A ∩ B − μ(A)μ(B)

∣∣∣∣∣ → 0

uniformly over sets A as n → ∞. Hint: first show that 1
n

∑n
i=1

∫
f T −i g dμ →

0 uniformly over functions f of bounded norm by taking the sum inside and
employing Cauchy–Schwarz. Take f = 1A and g = 1B − μ(B).

705. Exercise. Let (X,A, μ, T ) be an ergodic measure-preserving system,
let B ∈ A and let (An) ⊂ A. Then

∣∣ limn→∞ 1
n

∑n−1
i=0 μ(T −i An ∩ B) −

μ(An)μ(B)
∣∣ = 0. Hint: use convergence in measure in the ergodic theorem.

For nearly all x, approximately μ(B)n members of the set {x, T x, . . . , T n−1x}
lie in B; in particular, for nearly all x ∈ An.

706. Definition. Define a system by cutting and stacking as follows. Let T1 =
[0, 1). We view this as a tower having a single rung. To get T2 from T1, cut
T1 into two subcolumns and stack them, putting a spacer in between. T2 looks
like this:

[ 1
2 , 2

2 )

[ 2
2 , 3

2 )

[ 0
2 , 1

2 )

To get T3 from T2, cut T2 into three subcolumns and stack them, putting one
spacer in between the first two subcolumns and two spacers between the last
two subcolumns. T3 looks like this:

[ 5
6 , 6

6 )

[ 8
6 , 9

6 )

[ 2
6 , 3

6 )

[ 11
6 , 12

6 )
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[ 10
6 , 11

6 )

[ 4
6 , 5

6 )

[ 7
6 , 8

6 )

[ 1
6 , 2

6 )

[ 9
6 , 10

6 )

[ 3
6 , 4

6 )

[ 6
6 , 7

6 )

[ 0
6 , 1

6 )

Having constructed Tn−1, cut it into n subcolumns C1, . . . , Cn and stack them,
putting i spacers between Ci and Ci+1. This gives Tn ; denote its height by hn .
Finally, normalize the measure; the resulting system (X,A, μ, T ) is called the
staircase.

707. Exercise. Show that the staircase is totally ergodic.109 Hint: suppose
T j B = B. Choose n � j and approximate B by a measurable set A that
is a union of rungs of Tn. For k j ≈ hn, a typical rung I of Tn will be such that
T k j I is evenly dispersed among about n rungs of Tn. Show that 0 < μ(B) < 1
is inconsistent with T k j A ≈ A.

708. Exercise. Let (X,A, μ, T ) be a measure-preserving system, let B ∈ A
and let R, L , ρ ∈ N. Then

∫ ∣∣∣ 1

R

R−1∑
i=0

1B(T −i x)−μ(B)

∣∣∣dμ(x) ≤
∫ ∣∣∣ 1

L

L−1∑
i=0

1B(T −iρ x)−μ(B)

∣∣∣dμ(x)+ ρL

R
.

Hint: obvious if ρL
R > 1. Otherwise, tile most of {1, . . . , R} by progressions

{a, a + ρ, . . . , a + ρ(L − 1)}.
709. Exercise. Let ε > 0. There exists δ > 0 such that if (X,A, μ, T ) is a
probability space and f ∈ L2(X) then

∫ | f |2 dμ < δ implies
∫ | f | dμ < ε.

710. Theorem. Suppose (X,A, μ, T ) is the staircase. Let B be a union of
levels in some column and suppose ln, ρn → ∞ with hn ≤ ρn ≤ 2hn (where
hn is the height of the nth column). Then

lim
n→∞

∫ ∣∣∣ 1

ln

ln−1∑
i=0

1B(T −iρn x) − μ(B)

∣∣∣ dμ(x) = 0.

109 That is, T j is ergodic for all j .
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Proof. Let ε > 0. Choose δ > 0 as in the foregoing exercise. Fix i and write
iρn = jhn + t , where 0 ≤ t < hn. If n is sufficiently large then B is a union of
levels of Tn. Write B ≈ B1 ∪ B2, where B1 consists of that part of B lying in
the top t −( j +1)(n+1) levels of Tn minus the rightmost ( j +1) subcolumns of
Tn, and B2 consists of that part of B lying in the rest of Tn, minus the rightmost
( j + 1) subcolumns and bottom j (n + 1) levels of Tn.

Let I be that part of a level that lies in B1.

711. Exercise. Show that I passes through the staircase ( j + 1) times under
T iρn . Conclude that T iρn I intersects (n − j) levels of Tn , lying in an arithmetic
progression with gap j + 1, with measure μ(I )

n+1 each. •
Denote the topmost level that T iρn I intersects with measure μ(I )

n+1 by I ∗, and
put B∗

1 = ⋃
I⊂B1

I ∗. Then

μ(T iρn B1 ∩ B) = 1

n + 1

n− j−1∑
k=0

μ(T −k( j+1) B∗
1 ∩ B).

712. Exercise. Carry out a similar construction for B∗
2 such that

μ(T iρn B2 ∩ B) = 1

n + 1

n− j−1∑
k=0

μ(T −k j B∗
2 ∩ B).

•
713. Exercise. Conclude that μ(T iρn B ∩ B) → μ(B)2 as n → ∞. Hint: the
B∗

k depend on n, however T j and T j+1 are ergodic and Exercise 705 applies.
•

By the foregoing exercise, μ(T iρn B ∩ T kρn B) → μ(B)2 as n → ∞ for i 
= k.

714. Exercise. Use this fact to show that for all sufficiently large L , one has
for large n,

∫ ∣∣∣∣∣ 1

L

L−1∑
i=0

1B(T −iρn x) − μ(B)

∣∣∣∣∣
2

dμ < δ.

Hint: just expand the product and take limits. •
By the choice of δ, one has

lim sup
n→∞

∫ ∣∣∣∣∣∣
1

ln

ln−1∑
i=0

1B(T −iρn x) − μ(B)

∣∣∣∣∣∣ dμ ≤ ε.

Since ε is arbitrary, we are done.
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715. Theorem. (Adams 1998.) The staircase is mixing.

Idea of proof. Recall that hn is the height of Tn . Note that hn > n!.
716. Exercise. Show that it suffices to show that μ(T mn A ∩ B) → μ(A)μ(B)

for all sets A, B that are a union of rungs of some Tk and for an arbitrary
sequence (mn) satisfying hn ≤ mn < hn+1. •
Let A, B, (mn) be as in the preceding exercise. Pick n large. Label the sub-
columns of Tn C1, . . . , Cn+1. Write m = mn and let m = khn + t , where
1 ≤ k ≤ n and 0 ≤ t ≤ hn . Our plan is to break Tn into three pieces, D1,
D2 and D3, let Ai be (more or less) the parts of A lying in Di , and show that
μ(T mn Ai ∩ B) → μ(Ai )μ(B), i = 1, 2, 3.

Let D1 consist of Cn−k, Cn−k+1, . . . , Cn+1; that is, the rightmost k + 1 sub-
columns of Tn . Recall that Tn+1 is formed by stacking these subcolumns one
atop the other, with t spacers between Ct and Ct+1, and that T acts by moving
up Tn+1.

717. Exercise. Show that, under T m , most rungs of Tn+1 that lie in D1 move
through the top part of Tn+1 exactly once, then through a variable number of
spacers according to which subcolumn of Tn+1 they are in, then into the bottom
part of Tn+1. •
718. Exercise. Show that most rungs R of Tn+1 that lie in D1 have the property
that T m R intersects n + 2 consecutive rungs of Tn+1 in sets having measure
μ(R)
n+2 each. •

Call the rungs of Tn+1 that lie in D1 and satisfy the foregoing exercise “good
rungs”. Let A1 be the part of A that consists of good rungs in D1 and let A∗

1
be the set of rungs of Tn+1 consisting of the topmost rung intersecting T m R
in a set having measure μ(R)

n+2 , for each good rung R in A1. Of course one has
μ(A∗

1) = μ(A).

719. Exercise. By summing over all the rungs R in A1, verify the following:

μ(T m A1 ∩ B) = 1

n + 2

n+1∑
i=0

μ(T −i A∗
1 ∩ B) → μ(A∗

1)μ(B) = μ(A1)μ(B).

Hint: use Exercise 704. •
Let now A2 be that portion of A lying in all but the bottommost n2 levels (in
Tn) of D2. (Note that when n is large, the union of these levels has very small
measure.) We will show that limn μ(T mn A2∩B) = μ(A2)μ(B) (recall that A2

depends on n, though we are suppressing this in the notation). Assume without
loss of generality that kn

n < 1 − ε for some ε > 0.
Let I = A2 ∩ r for some rung r .
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720. Exercise. Under T mn , I passes through the staircase topping Tn exactly
kn+1 times; hence T mn I intersects n−kn−1 levels of Tn with measure μ(I )

n−kn−1 .
Moreover, these levels lie in an arithmetic progression having gap size kn + 1.

•
Denote by I ∗ the (entire) topmost level of Tn that T mn I intersects, and put
A∗ = ⋃

I⊂A2
I ∗. Notice that μ(A∗) = n

n−kn−1μ(A2).

721. Exercise. Verify that μ(T mn A2 ∩ B) = 1
n

∑n−kn−2
i=0 μ(T −i(kn+1) A∗∩ B).

•
722. Exercise. In order to show that limn μ(T mn A2 ∩ B) = μ(A2)μ(B), it
suffices to show that∫ ∣∣∣ 1

n − kn − 1

n−kn−2∑
i=0

1B(T −i(kn+1)x) − μ(B)

∣∣∣ dμ(x) → 0. (∗)

Hint: integrate just over A, move the absolute value bars outside the integral
and use the previous exercise. •
Choose p = pn such that h p−1 ≤ kn + 1 ≤ h p.

723. Exercise. Show that (n−kn−2)(kn+1)
h p

→ ∞. Hint: recall we assumed that
kn
n < 1 − ε. •

Denote by rn the smallest integer i such that i(kn + 1) ≥ h p.

724. Exercise. There exists a sequence ln → ∞ such that n−kn−2
lnrn

→ ∞.

Hint: show first that n−kn−2
rn

→ ∞. •
By Theorem 710, one has

lim
n→∞

∫ ∣∣∣ 1

ln

ln−1∑
i=0

1B(T −irn(kn+1)x) − μ(B)

∣∣∣ dμ(x) = 0.

Applying now Exercise 708, one gets (∗).

Finally, let A3 be that part of A lying in D3, excepting that part lying in the
bottom n2 rungs of Tn .

725. Exercise. Show that limn μ(T mn A3 ∩ B) = μ(A3)μ(B). Hint: show that
each rung of A3 moves through the staircase kn times under T mn and proceed
as in the previous part.

Since Tn = D1 ∪ D2 ∪ D3, Ai ≈ A ∩ Di and limn μ(T mn Ai ∩ B) =
μ(Ai )μ(B), i = 1, 2, 3, we can conclude that limn μ(T mn A ∩ B) =
μ(A)μ(B).
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7.6. Kolmogorov vs. Bernoulli

Our first task in this section is to show that Bernoulli processes are
K -automorphisms.

726. Exercise. Show that the K property is an isomorphism invariant.

727. Theorem. B ⊂ K.

Proof. By the foregoing exercise, it suffices to establish that independent pro-
cesses are K . Let (Xi ) be an independent process on a finite alphabet 
. Let
P be the partition determined by the zeroth coordinate, that is, into pieces
X−1

0 (λ), λ ∈ 
, and put K = ∨∞
i=0 T −i P.

728. Exercise. Show that T −1K ⊂ K,
∨∞

i=0 T iK generates A, and μ(A) ∈
{0, 1} for all A ∈ ⋂∞

i=0 T −iK.

Our next task is to produce a system that is K but not Bernoulli. This was orig-
inally done by Ornstein (1973), but we will give a more natural example. The
system is called the T, T −1 process, and is defined as follows. Let (Yi )

∞
i=−∞ be

i.i.d. random variables taking values −1 and 1 each with probability 1
2 . Next,

let (Zi )
∞
i=−∞ be i.i.d. random variables taking values H and T each with prob-

ability 1
2 . Now put X0 = (Y0, Z0). For n > 0, put Xn = (Yn, Zs), where

s = ∑n−1
i=0 Yi , and put X−n = (Y−n, Zr ), where r = ∑n

i=1 −Y−i .

729. Definition. (Xi )
∞
i=−∞, as defined in the previous paragraph, is the

T, T −1 process.
The reader should make note of how to generate an output of the T, T −1

process. First, generate a random sequence (yi ) of 1s and −1s. This is called
the random walk. Next, generate a random sequence (zi ) of T s and Hs. This
is called the random scenery. Start at the origin of both sequences and output
(y0, z0). Now march to the right in the sequence (yi ) (this generates the first
coordinate of the output), and at the same time do the random walk that (yi )

generates along the scenery sequence (zi ) (this generates the second coordinate
of the output). Thus the T, T −1 process is often called a random walk on a
random scenery.

We now move to showing that the T, T −1 process is a K system. The
following theorem will provide a sufficient condition.

730. Theorem. Let (X,A, μ, T ) be a measure-preserving system, and let Q
be a generator. If for every measurable set A one has limn→∞ P

(
T n x ∈

A|∨0
j=−∞ T j Q

) = P(A) a.e., then (X,A, μ, T ) is a K system.

Sketch of proof. Let K = ∨0
j=−∞ T j Q. Then trivially T −1K ⊂ K and∨∞

i=0 = A. Let A ∈ ⋂∞
i=0 T −iK. Then for arbitrary n > 0, one has
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A ∈ T −nK = ∨−n
j=−∞ T j Q. It follows that P

(
x ∈ A|∨−n

j=−∞ T j Q
)

is 0,

1-valued. This implies that P
(
T n x ∈ A|∨0

j=−∞ T j Q
)

is 0, 1-valued. Letting
n → ∞ and applying the hypothesis, we get that P(A) ∈ {0, 1}.

731. Theorem. Let (Xi )
∞
i=−∞ be the T, T −1 process. For any measurable set

A, one has limn→∞ P
(
Xn ∈ A|∨0

i=−∞ Xi
) = P(A) a.e.

Idea of proof. Suppose not. Then there is a set A and an ε > 0 such that

∣∣∣ lim
n→∞ P

(
Xn ∈ A

∣∣∣ 0∨
i=−∞

Xi

)
− P(A)

∣∣∣ > ε

on a set of measure at least ε.

732. Exercise. Show that by approximation, we can assume without loss of
generality that A is a cylinder set. •
Since the values of Xi , i ≤ 0, can obviously provide no information whatso-
ever about the first coordinate of X M , we can in fact assume that A is a cylinder
set that comes about by the specifying of second coordinates only. Indeed, here
we will assume for convenience that A = {

X0 ∈ {(−1, T ), (1, T )}}; readers
should convince themselves that the argument to follow can be adapted to the
general case.

733. Exercise. Let ε > 0. There is an N such that for any sufficiently large
M , the following occurs: with probability at least 1 − ε, a randomly chosen
scenery (si ) will have the property that one can cover all but ε (in relative
counting measure) of {−M,−M + 1, . . . , M} by intervals I of length N , such
that in every such interval I , the proportion of i ∈ I with si = T is within
ε of 1

2 . •
734. Exercise. Use the foregoing exercise to show that, given ε > 0, for all
sufficiently large M one has∣∣∣∣∣P

(
X M ∈ {(−1, T ), (1, T )}

∣∣∣ 0∨
i=−∞

Xi

)
− 1

2

∣∣∣∣∣ < ε

on a set of measure at least 1− ε. Hint: let M � N in the previous exercise, so
that (most of) the binomial distribution f (2x − M) = (M

x

)
2−M is essentially

flat on intervals of length N.

The following is now immediate, hence we omit the proof.

735. Corollary. The T, T −1 process is K .
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All that is left to do now is to show that the T, T −1 process is not Bernoulli.
Unfortunately, the proof of this is rather involved, and, unlike some of the other
involved arguments we did give in some detail, not particularly central in its
methodology to ergodic theory as a whole. Accordingly, we will be far more
brief and incomplete here than elsewhere in the book. The reader who wants
more detail can consult Kalikow (1982).

736. Theorem. The T, T −1 process is not Bernoulli.

737. Vague idea of proof. Our plan is to show that the T, T −1 process
doesn’t satisfy the very weak Bernoulli condition. So, suppose it did. As
a consequence of that, you and I could play the following game. First, we
each choose (independently) a random scenery. Next, I choose a random path.
Together with my scenery, this path generates an output. Now (assuming that
the T, T −1 process satisfies the very weak Bernoulli condition), with very high
probability, by changing less than one one-billionth of the entries in my output,
it will be possible for me to convince you that my output comes from some
path paired with your scenery! Think about that for a moment. In running
through an output of the T, T −1 process, one becomes very, very intimately
familiar with one’s scenery. The random walk traipses over it again, and again,
and again. There just isn’t any chance that two completely independently cho-
sen sceneries will look anywhere nearly enough alike that one could mistake
an output using the one for an output using the other, even having changed a
smallish fraction of the entries.

Idea of proof. Well, okay. So much for the vague idea. Unfortunately, as obvi-
ously sound as it seems, it turns out to be pretty tricky to make a rigorous proof
out of the idea. We start with the following.

738. Exercise. Suppose (Cn) is a sequence of positive numbers with∑∞
n=0

log Cn
2n+1 < ∞, for some M > 0. Let (An) be a sequence satisfying the

recursion relation An+1 = Cn A2
n . There exists δ > 0 such that if A0 < δ then

An → 0 as n → ∞. Hint: after taking logarithms, divide through by 2n+1 and
observe that log An

2n telescopes. Let δ = exp(−∑∞
n=0

log Cn
2n+1 ). •

Letting s1, s2 be two sceneries and p1, p2 be two paths, for I = [a, b) an inter-
val write dI

(
(s1, p1), (s2, p2)

)
for the mean Hamming distance between the

outputs generated by (s1, p1) and (s2, p2) restricted to the interval I . Then, as
explained in the vague idea section, for the process to be very weak Bernoulli
it would have to be the case that for fixed ε > 0, and randomly chosen s1, s2

and p2, there is usually a choice of p1 such that d[0,n)

(
(s1, p1), (s2, p2)

)
< ε

for sufficiently large n.
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We will violate the above by constructing a decreasing sequence (εk) con-
verging to some ε > 0, an increasing sequence (nk) of natural numbers, and
sets Rk of “reasonable” paths of length nk , which asymptotically contain a
fraction of all paths tending to 1, such that letting

Ak = max
p2∈Rk ,s1

P
(
∃p1 such that d[0,nk )

(
(s1, p1), (s2, p2)

)
< εk

)
,

one has Ak → 0 as k → ∞. (The probability referred to is determined by the
distribution of s2, which is treated as being chosen randomly while s1 and p2

are fixed.)
Here are the definitions: let nk = 1018(k+1)2

and choose ε = 1
3n0

. For k ∈
N ∪ {0}, put εk = ε(1 + 1

k+1 ). Our next task is to define the sets Rk . To this
end, we need to define quantities λk :

739. Exercise. Write down an expression for numbers λk > 0 having the
property: if A ⊂ [0, nk+1) has relative density at most εk+1, then if we break
[0, nk+1) into sub-intervals of length nk , restricted to at least λk

nk+1
nk

of these
sub-intervals, A has relative density at most εk .

Inductively define Rk as follows: R0 consists of those paths p of length n0

that see all of the scenery in locations [−n
1
3
0 , n

1
3
0 ]. Having defined Rk , Rk+1

consists of those paths p of length nk+1 having the property that if we break
[0, nk+1) into sub-intervals I j = [ jnk, ( j + 1)nk) of length nk and choose
any λk

nk+1
nk

of these sub-intervals, we can find r and t such that the patch of
scenery p visits during times Ir is disjoint from the patch of scenery p visits
during times It and such that p|Ir and p|It are members of Rk .

740. Exercise. Prove that for k large, most paths of length nk are reason-
able. Comment: this requires a bit of knowledge about random walks; since
we aren’t giving any hints, the demand on the reader is high. •

741. Exercise. Prove that A0 ≤ 2−2n
1
3
0 = 2−2·106

. •
Putting Ck = Ak+1

A2
k

gives us our required recurrence relation. Claim: Ck <

4n4
k+1n2

k .

742. Exercise. Use the claim to establish that
∑∞

n=0
log Cn
2n+1 < 106. Use

Exercises 738 and 741 to show that Ak → 0, completing the proof. •
We prove the claim. Fix a scenery s1 and a path p2 ∈ Rk+1. For choices
r, B and b, where 0 ≤ r <

nk+1
nk

, B is an interval of length at most nk such
that B ∩ [−rnk, rnk] 
= ∅, and b is an even number in B ∩ [−rnk, rnk], let
Er,B,b be the event that randomly chosen scenery on the interval B has the
property that if p1 is a path of length rnk that terminates at scenery location
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b, then p1 can be extended through times Ir = [rnk, (r + 1)nk) in such a
way that p1 doesn’t venture outside of B throughout times Ir and such that
dIr

(
(s1, p1), (s2, p2)

)
< εk . Clearly P(Er,B,b) ≤ Ak . Hence, letting EB =⋃

r,b Er,B,b, one has P(EB) ≤ nk+1
nk

nk Ak = nk+1 Ak .
Consider next the event E that a randomly chosen scenery s2 is such that

there exists a path p1 with d[0,nk+1)

(
(s1, p1), (s2, p2)

)
< εk+1. For such s2 and

corresponding p1, we can find at least λk
nk+1

nk
sub-intervals I j = [ jnk, ( j +

1)nk) with dI j

(
(s1, p1), (s2, p2)

)
< εk . Since p2 ∈ Rk+1 some two of these,

say Ir and It , will be such that p2|Ir and p2|It belong to Rk , and such that the
blocks of scenery Br and Bt visited by p2 during times Ir and It respectively
are disjoint. Notice that this implies that EBr and EBt are independent.

743. Exercise. Show that s2 ∈ (EBr ∩ EBt ). •
It follows from the previous exercise that E ⊂ ⋃

Br ,Bt
(EBr ∩ EBt ). Since

there are at most 2nk+1nk choices for each of Br and Bt , this yields P(E) ≤
4n4

k+1n2
k A2

k . Taking the maximum over all s1 and reasonable P2 yields Ak+1 ≤
4n4

k+1n2
k A2

k , as desired.
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We close the book with a “top ten list”. Ten challenging open problems, a solu-
tion to any one of which could greatly help to revitalize isomorphism theory.
The list isn’t supposed to be exhaustive, nor are the problems on it necessarily
the most important ones in isomorphism theory; they reflect authorial interest.

744. Definition. A stationary process (Xi )
∞
i=−∞ is said to be loosely Bernoulli

if the fbar distance between the n-future conditioned on the past and the
unconditioned n-future goes to zero in probability as n → ∞.

745. Comment. Alternatively, (Xi )
∞
i=−∞ is loosely Bernoulli if for a.e. past p

and every ε > 0 there is an n such that the n-future conditioned on p is within
ε of the unconditioned n-future in fbar.

746. Problem .1 Let (X, T ) denote Chacon’s transformation (see
Definition 687). Is (X × X, T × T ) loosely Bernoulli?

747. Comment. Note that Chacon’s transformation is rank one, and hence has
zero entropy, as does its product. It may be useful to know, therefore (and the
reader may take it as an exercise to show), that a zero entropy transformation
is loosely Bernoulli if and only if for any two names outside a set of measure
0, the fbar distance of the initial n names approaches 0 as n → ∞. Alterna-
tively, a zero entropy transformation is loosely Bernoulli if and only if it is
Kakutani equivalent to an irrational rotation of the circle. (Two systems (X, T )

and (Y, S) are Kakutani equivalent if there are sets of equal measure, A ⊂ X
and B ⊂ Y , such that TA is isomorphic to SB , where TA and SB denote induced
transformations; see Definition 447.)

748. Definition. A measure-preserving system (X, T ) has Lebesgue spectrum
if there is a set F ⊂ L2(X) such that {1} ∪ {T n f : f ∈ F, n ∈ Z} forms an
orthonormal basis for L2(X). If F consists of a single function f , we say that
(X, T ) has simple Lebesgue spectrum.

749. Problem .2 Does there exist a system (X, T ) having simple Lebesgue
spectrum?

750. Comment. Lebesgue spectrum is perhaps the best known variety of mix-
ing we didn’t consider in Chapter 7 (there are many, some obscure). Indeed, it
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lies properly between the K property and strong mixing. That it is unknown
whether any systems have simple Lebesgue spectrum seems to us remarkable.

751. Problem .3 (Furstenberg.) Let X = [0, 1) and define Tm : X → X by
Tm x = mx (mod 1). If μ is a non-atomic measure on X that is invariant for T2

and T3, is μ necessarily Lebesgue measure?

752. Comment. D. Rudolph (1991) has established the foregoing in the case
where at least one of (X, μ, T2), (X, μ, T3) has positive entropy; we mention
also that R. Lyons (1988) proved an important preliminary to this result (for K
transformations).

753. Problem .4 Is it the case that if T and S are two K transformations
with the same entropy, there is always a way to join T with S to form another
K transformation having that same entropy?

754. Problem .5 If T has positive but finite entropy, is T necessarily iso-
morphic to a process on a finite alphabet � such that for every a ∈ �,
P
(
X (0) = a|∨−1

i=−n Xi
)

converges uniformly over pasts? If not, can T be
extended to such a process?

755. Comment. The zero entropy case of the foregoing problem is known; it
is proved by Kalikow et al. (1992).

756. Problem .6 Let (X, T ) be a strongly mixing system. Is it necessarily the
case that for every measurable A ⊂ X , one has limn,m,n−m→∞ μ

(
A ∩ T −n A ∩

T −m A) = μ(A)3? Is it necessarily the case that for every measurable A ⊂ X ,
one has limn→∞ μ

(
A ∩ T −n A ∩ T −2n A) = μ(A)3?

757. Comment. This problem is generally phrased “does twofold mixing
imply threefold mixing?” For rank-one transformations, the answer is yes;
see Kalikow (1984). Also for mixing transformations with singular spec-
trum;110 see Host (1991). We remark that it is unknown whether all rank-one
transformations have singular spectrum.

758. Problem .7 Can every positive entropy transformation be written as a
join of two Bernoulli transformations?

759. Comment. It is known that every positive entropy transformation can
be written as a join of three Bernoulli transformations (Smorodinsky and
Thouvenet 1979), or as a factor of a join of two (this is an exercise).

110 This refers to the spectral type of the unitary operator associated with the transformation, a
topic that lies outside the scope of this book.
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760. Problem .8 If T is not isomorphic to S, can T × T be isomorphic to
S × S?

761. Problem . (Thouvenot; weak Pinsker conjecture.) Can every ergodic
transformation be written as a product of a Bernoulli transformation and
an ergodic transformation of arbitrarily small entropy? If not, can every
transformation be written as any non-trivial product?

762. Definition. Let (X,A, μ, T ) be an ergodic system and let B ⊂ A be a
factor. Write μ = ∫

μx dμ(x) as in Theorem 247. Now put a measure μ×B μ

on the product space X × X by the rule μ ×B μ = ∫
(μx × μx ) dμ(x). The

system (X,×X, μ×Bμ, T ×T ) is the relatively independent joining of (X, T )

with itself over the factor B.

763. Problem .9 Can a relatively independent self-joining of a Bernoulli
transformation over one of its factors be ergodic but not K ?
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