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Preface

General Presentation

The analysis of mathematical problems connected with the theory of super-
conductivity has been intensively developed in the last decade. For concrete-
ness, in this introduction we will only discuss the two-dimensional case. Also,
let us stress from the beginning that in this book we will not discuss at all
the microscopic BCS-theory of superconductivity. An accepted basic model of
superconductivity is the Ginzburg-Landau functional involving a pair (¢, A),
where 1 is a wave function and A is a magnetic potential on an open set
Q C R?, which is defined by

2
0. A) = [ =iV + oAyl = w2+ [0l da

2
+/<;2/Q’UcurlA—aﬁ dx . (1)

Here 1 is called the order parameter, A is a magnetic potential, and §—or
rather koB3—is the external' magnetic field. The field curl A is called the
induced magnetic field. The parameter £ > 0 is characteristic of the sample.
In the physics literature, one usually makes the distinction between type I
materials, corresponding to small «, and type II materials, corresponding to
large values of . For some model problems in the entire space the transition
between the two types takes place at the value x = 1/4/2. Mathematically,
this leads to the analysis of various asymptotic regimes like kK — 0 or kK — +o0.
It is this last case that will be the subject of the present book. In order to
measure the dependence on the magnitude of the external magnetic field,
we have written the external magnetic field in terms of the parameter o.
Thus, we think of 3 as being some fixed function and o as measuring the
strength of the field.

! Sometimes also called the applied magnetic field.

xi
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We will generally assume that 2 is a bounded, simply connected subset
of R? (or R3). As Q is bounded, proving the existence of a minimizer of G is
a rather standard problem. The minimizer should satisfy the Euler-Lagrange
equation, which in this context is called the Ginzburg-Landau system (see
[S-JAG)).

The minimizers will describe the properties of the material when submitted
to the external magnetic field; i.e., |¢)(x)|?> measures the level of supercon-
ductivity (density of Cooper pairs in the language of physicists) of the material
near the point z. One traditionally distinguishes among three types of possible
minimizers. We say that a minimizer (1, A) is superconducting if ¢ never
vanishes, normal if ¢ is identically 0, and mixed if ¥ has zeroes but does not
vanish identically.

This naturally leads physicists to “define” two critical fields. The lower
one (or first critical field) corresponds to the transition from superconducting
to mixed states and is denoted by He, (). In other words, this corresponds to
the appearance of zeroes for ¢ (usually called vortices) when increasing the
external field, and many authors have worked on this phenomenon.

It is believed that when k is large, there exists a zone where the mini-
mizers correspond to mixed states. So the highest critical field, or third criti-
cal field, which is denoted by Hg,(k), corresponds to the transition from
mixed states to normal states. When this process is viewed in the opposite
direction—magnetic field strength decreasing across Hc,—this is the pheno-
menon called the onset of superconductivity. It can indeed be observed that
for large external magnetic fields the minimizer is “normal”—that is, ¢» = 0.
So we are interested in describing what happens when we decrease this exter-
nal magnetic field. What can be shown is that for large k, superconductivity
first appears at the boundary. This is called surface superconductivity, and
the precise description of this phenomenon will occupy a large part of the
text.

The reader may wonder why we have until now only introduced He, (k)
and He, (k). The last critical field (called the second critical field) of interest is
He,(k), and denotes the field corresponding, inside the “mixed zone”, to the
transition from having minimizers, which are localized very near the boundary,
to having minimizers that are significatively nonzero in regions far from the
boundary.

Because we are mainly interested in understanding what happens around
He,(k), it is natural to analyze when the normal solution (0,F) (with
curl F = ) is a local minimum of the functional. This leads naturally to the
question of positivity of the Hessian of G. Due to the particular form of the
functional and to the choice of the point where we compute the Hessian, this
positivity is immediately related to the positivity of the operator —A,,p — k2,
where —A,F is a Schrédinger operator with magnetic field

—Awor = (—iV + koF)? | (2)



Preface xiii

corresponding to the self-adjoint realization with a magnetic Neumann
boundary condition:

v (—iV+koF)Yp =0 on 09, (3)

where v is the interior normal vector at the boundary. This is a linear problem,
which is, of course, related to the determination of the lowest eigenvalue—
or ground state energy—of the operator in question. When « is large, this
becomes a semiclassical problem where the role of the Planck constant h is
played by 1/(kc). So the first part of the book will mainly be devoted to the
techniques leading to a very accurate spectral analysis of —A,,F.

Not surprisingly, there are strong links between the questions of determin-
ing whether the normal solution is a local minimum or whether it is a global
minimum—mathematicians may, in fact, wonder why physicists have not dis-
tinguished in their terminology between these local and global critical fields—
but the second problem is effectively nonlinear. It is the aim of the second part
of this book to develop the necessary nonlinear tools to solve this question
rather completely and pursue the analysis to the zone |He, (k), He, (k)[. Note
that here we are complementary with the scope of the excellent recent book by
Sandier and Serfaty [SaS3], which treats mainly the zone |Hc¢, (), He, (k)] -
Furthermore, we will not discuss, except for illustrating some phenomena,
what has been done in numerical analysis (see [DuGP] and references therein).

Organization of the Book

As the presentation suggests, this book is divided into two main parts:

e The first part is devoted to the spectral analysis of the Schrodinger
operator with magnetic field.

e The second part concentrates on the analysis of the Ginzburg-Landau
functional and is mainly nonlinear.

For a first reading, or for a graduate course on the subject, we suggest restrict-
ing to the 2D situation and reading Chapters 1-4, 7, and 8 from the linear part
and Chapters 10, 12, and 13 from the nonlinear part. The remaining chapters
in the linear part, Chapters 5, 6, and 9, are somewhat more technical and can
be skipped at a first reading. The same applies to Chapters 11 and 14 in the
nonlinear part. The final chapters, 15 and 16, contain more specialized topics.

Linear analysis: Spectral analysis of Schrodinger operators with
magnetic fields

Chapter 1 is a short introduction to the spectral theory for the Schrédinger
operator with magnetic field. We analyze successively the following basic
questions:
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e How do we define the self-adjoint extensions?
e What are the basic properties of the spectrum?

We finish the chapter by presenting rough bounds for the ground state energy.

Chapter 2 is devoted to the analysis of diamagnetism, which will play
an important role in the analysis of the critical fields in the nonlinear part.
Diamagnetism means that the (ground state) energy is an increasing function
of the magnetic field.

The elementary Chapter 3 contains a precise analysis of various one-
dimensional problems that are fundamental for understanding the spectral
analysis in the higher-dimensional situations. In particular, we start with a
complete analysis of a family of one-dimensional models that are the basis of
the explanation of surface superconductivity.

Chapter 4 concentrates on the spectral analysis of two-dimensional models.
We apply the results of the analysis in the previous chapter to various model
geometries. The magnetic field is assumed to be constant and the domains
are successively R?2, R>*, and the infinite sector. In the analysis of general
domains in later chapters these model geometries will be used in comparison
arguments to obtain precise spectral information.

Chapter 5 gives a detailed presentation of the case of the disc or of its
exterior. This will play a basic role in the analysis of curvature effects.

Chapter 6 is concerned with the same questions in the three-dimensional
case. We concentrate mainly on R?* and R**. The magnetic field is still con-
stant, but the interesting fact is that the analysis depends strongly on the
angle between the vector normal to the boundary and the magnetic vector
field. As a side product, the results obtained justify the assumption done
by de Gennes and Saint-James [S-JdG] that taking the magnetic vector field
tangent to the boundary gives the lowest energy.

We recall in Chapter 7 the main techniques in semiclassical analysis:
harmonic approximation, decay estimates. Although this material is already
present in various books, we feel it was necessary to give a brief account of
the standard techniques before extending them to the problems arising in the
case with boundary.

In Chapter 8, we present the methods allowing one to arrive at the two-
term asymptotics of the ground state energy in the two-dimensional case
and to the localization property of the ground state within the boundary and
close to the points of maximal curvature. We mention under what assump-
tions one can get a complete asymptotics, and we conclude with an analysis
of diamagnetism.

Chapter 9 is analogous to Chapter 8 but for three-dimensional domains.
This chapter is more descriptive because it would be too technical to prove all
the results presented. We refer to Helffer-Morame [HeM6] for proofs. As an
application, we show in detail how the main results on the localization of the
ground state can be applied to the question of diamagnetism.
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Nonlinear analysis: The Ginzburg—Landau functional with
magnetic field

This part is devoted to the analysis of the onset of superconductivity.
We mainly concentrate our analysis on the high-x limit, which is the case
where the large field—or semiclassical—analysis is relevant. Also, we mainly
restrict our attention to the regime where the strength of the external mag-
netic field is “above He,(k)”, i.e., we do not study vortices.

Chapter 10 comes back in detail to the general presentation of the
Ginzburg-Landau functional. We recall the rather standard proof of the exis-
tence of a minimizer and prove that the normal solution is a global minimum
for large external magnetic fields. We marginally treat some questions about
type I superconductors.

Chapter 11 explores a priori estimates that are needed to relate the non-
linear question to the linear one. These are elliptic estimates, but compared
to the “classical” case, we need to control the uniformity with respect to
different parameters. In the second part of this chapter, we analyze what can
be achieved through the technique of “blowing up” initiated in this context
by Lu—Pan [LuP3].

In Chapter 12, we discuss decay estimates in the direction normal to
the boundary. As explained above, when o is much larger than x, one
expects superconductivity to be localized near the boundary. For sufficiently
large fields, the techniques of Agmon estimates can be used to prove this
(see [HeP1]). However, we also consider weaker estimates due to Almog (see
[Al2, Al4]), which are valid for all o > k.

Chapter 13 is devoted to a complete analysis of the critical field He, (%),
corresponding to the transition, when decreasing the strength of the exter-
nal magnetic field, between normal minimizers and non-normal minimizers.
Here we follow Lu-Pan [LuP3|, Helffer-Pan [HeP1], [Pa6] with some recent
improvements in the approach due to Fournais—Helffer [FoH3, FoH4, FoH6].

Chapter 14 describes what happens when continuing to decrease the
strength of the external magnetic field. One would like to understand how
the onset of superconductivity, which has been shown to start from the points
of maximal curvature at the boundary, will extend to the whole boundary
by a nonlinear mechanism of uniformization inside the boundary. We follow
here the works by Lu-Pan, Fournais—Helffer [FoH2], Almog—Helffer [A1H], and
Pan [Pa2] (for the region close to H¢, (k) see also Sandier—Serfaty [SaS2] and
Aftalion—Serfaty [AfS]).

Chapter 15 gives a short presentation of the case with corners. This is
a case where the literature in physics is quite developed [BeR] and which
leads to interesting conjectures that are confirmed both experimentally and
numerically. This also gives a good opportunity to show the tunneling effects
occurring inside the boundary between the different corners in the case of
a regular polygon. We refer here to the works of Pan [Pal], Pan-Kwek
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[PaK], Jadallah [Ja], Bonnaillie, Bonnaillie-Noél-Dauge, and Bonnaillie-Noél-
Fournais [Bonl, Bon2, BonD, BonF].

Chapter 16 presents various extensions. The Ginzburg-Landau functional
is the simplest model corresponding to a superconducting sample surrounded
by a vacuum. Other models are proposed to better take into account the
exterior of the superconducting sample. This can, for example, lead to other
boundary conditions (like the de Gennes boundary conditions considered by
Lu-Pan [LuP3], [Pa4] and Kachmar [Kacl, Kac2]).

Additionally, we will discuss problems related to the existence of holes or
of periodically perforated structures.

Finally, we will discuss how the techniques used in this book can also
be useful in the analysis of liquid crystals. In particular, we present the
analogy due to de Gennes [dGed] between the problems analyzed here in
superconductivity and the transition smectic-nematic occurring in liquid crys-
tals. Many recent papers have been devoted to this subject [BaCLP, Pa5, Pa7,
Pa8, JoP].

We conclude this chapter with a short presentation of open problems in
the field.

Each chapter (except this Preface and Chapter 16) ends with a Notes
section containing comments and references.

We have added at the end of the book various appendices containing some-
what standard material in order to make the book self-contained.

We conclude the book by giving a fairly complete bibliography on the
subject of the book.

About the History of the Subject

We limit ourselves in this presentation to the phenomenon of the onset of
superconductivity and refer to [SaS3] for the discussion of other aspects like
the appearance of vortices.

One can surely find the original problem in the first papers by Ginzburg
or Landau [Gin] or [GiL] starting from the 1950s, but one usually refers to the
paper by D. Saint-James and P-G. de Gennes [S-JdG] of 1963 as the initial
reference for a theoretical explanation for the onset of superconductivity.
These authors were mainly interested in the analysis of a sample  in R3
delimited by two hyperplanes. Assuming that the external magnetic field is
parallel to the boundary, the authors reduced the problem to a family of
one-dimensional problems, which will play an important role throughout the
analysis.

So the first mathematical results in this direction are based on a fine analy-
sis of one-dimensional problems (see Bolley [Bol], Bolley—Helffer [BolH1]-
[BolH4], and also Aftalion [Afl] and the survey by Aftalion and Troy [AfT]).
All these works appeared in the 1990s.
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As explained, for example, in the lectures of Rubinstein [Ru], the analysis
of effectively two-dimensional problems arises later, at first through rather
formal papers (Chapman [Ch1, Ch2], Chapman-Howison-Ockendon [ChHO])
proposing formal constructions of minimizers. A completely rigorous approach
starts with the papers [LuP1, LuP2] by Lu and Pan. Then three mathemati-
cal papers appeared that played an important role for the further develop-
ment of the subject: The formal expansion by Bernoff-Sternberg suggesting
the role of the boundary curvature, the fine analysis of the case of the disc
by Bauman—Phillips—Tang (1998) [BaPT], and the paper by Giorgi—Phillips
(1999) [GioP]. Then began a period of intense activity by Lu-Pan [LuP3]-
[LuP7] on one side and del Pino—Felmer—Sternberg [dPiFS] on the other side.
The semiclassical character of the questions allowed Helffer and Morame to
bring all the semiclassical technology around the WKB constructions and
Agmon estimates into the subject. This led to the solution of a conjecture
(initially due to [BeS]) about the two-term asymptotics of the third critical
field (Helffer-Morame [HeM3], Helffer—Pan [HeP1]) and gave new possibilities
for the analysis of the problem in dimension 3 (Lu-Pan [LuP7], Pan [Pa6],
Helffer-Morame [HeM4, HeM6]).

More recent works were developed in three directions:

e case of corners (Jadallah-Rubinstein—Sternberg (1999) [JaRS], Jadallah
(2001) [Ja], Pan (2002) [Pal], Bonnaillie (2003-2005) [Bonl, Bon2],
Bonnaillie-Noél-Dauge (2006) [BonD], and Bonnaillie-Noél-Fournais
(2007) [BonF]),

e fine analysis of all the definitions of the third critical field (Fournais—
Helffer),

e analysis of the region between Hc¢, (k) and He, (k) (Pan (2002) [Pa2],
Fournais—Helffer (2005) [FoH1], Almog-Helffer (2007) [AlH]).

Comparison with the Existing Literature and
Prerequisites

We make an effort to keep the text reasonably self-contained, having graduate
students and researchers in mind. The reader is supposed to have a good
knowledge of elementary spectral analysis, Hilbertian analysis, and the elliptic
theory in PDE. For the spectral theory, the books by Reed and Simon [ReS]
is more than enough, and the reader can also look at [LeB] (in French) or to
the notes of an unpublished course [He8].

When Schrodinger operators with magnetic fields are concerned, one
should also mention the surveys by Helffer [He4, Hel5, He9], Mohamed—Raikov
[MoR], [He6] for the relations with superconductivity, and the book by Thaller
[Th], which is mainly devoted to the Dirac operator but contains interesting
information on magnetic problems. Other aspects in semiclassical analysis
are presented in the books by Helffer [He2], Dimassi-Sjostrand [DiS], Robert
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[Ro], Kolokoltsov [Ko] (in connection with results of Maslov’s school), and
A. Martinez (in the spirit of microlocal analysis) [Mart]. Concerning super-
conductivity, one should mention in mathematics recent books by Bethuel-
Brezis—Helein [BeBH], Sandier—Serfaty [SaS3], Hoffmann-Tang [HoT], and
surveys like the lectures by Rubinstein [Ru] or Sternberg [St]. The collective
book edited by Berger and Rubinstein [BeR] also contains a lot of information
on the problems with holes. The techniques appearing in this book might have
applications for related problems in the theory of Bose-Einstein condensates,
see [Af2] and [LSSY].

We should also mention in the physics literature the course by de Gennes
[dGe2] and the books by Saint-James, Sarma, and Thomas [S-JST], Tilley—
Tilley [TiT], and Tinkham [Ti].
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Notation

We will work with domains Q C R™, which will generally be assumed simply
connected (for convenience) and regular or piecewise regular (polygons). For
a point € 90, we denote by v(x) the unit interior normal vector to the
boundary. Also, for a general point x € ), we define

t(z) = dist(z,00Q) = in%fQ |z —yl|. 4)

Some model operators will appear repeatedly in the text. We therefore fix
the following definitions [see (3.1) and (3.9)]:

d2 2 2
ho := e +7° on L*(R), (5)
2
GV == L (T e on LARY), (6)

with Neumann boundary condition at the origin.
The scalar product in L?(Q) is denoted by

(1) = | S@a) da. 7)
We will use the standard Sobolev spaces W#P. For integer values of s,
these are given by
WP(Q) :={u € LP(Q) : D% € LP(Q) for all || < s}. (8)
When s is a positive integer, the norm on W*?(Q) is,
lullwes@) == Y 1Du] o) -
ler|<s

For s € R, the space W*P(€Q) is defined by duality (negative values of s) and
interpolation (noninteger values of s). See, for instance, [Ad] for details. In the
case p = 2, we will also use the standard symbol H® for W*P | i.e.,

H(Q) == W2(Q) .

Xix



XX Notation

These spaces will sometimes be combined with the suffixes “comp” or “loc” to
denote “compact support” or “locally”. For example, a distribution f belongs
to HZ.(Q) if

of € H*(Q), forall ¢ € C(9Q).

Also, the magnetic generalizations of these spaces will be use; for example,
for a given vector function (magnetic vector potential) A, the space H (Q)
is given by the functions f with f € L?(Q) and (—iV + A)f € L?(Q2). This
space is given its natural norm.

Furthermore, we will use Holder spaces. Let us fix the definition of the
norm in the Holder spaces C™®. For a smooth bounded domain 2, n € N,
a €]0,1[, the space C™(Q) is the set of functions u with the nth-order
derivatives being Holder continuous of degree « in €2 and such that the norm

0Pu(z) — dPuly
[ellmay = 3 10%ullpm@ + 3 sup 12747~ g,

B1<n |B]=n YEQ |z —y|*

is finite. In the case when o = 0, the last sum is omitted.
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Linear Analysis






1

Spectral Analysis of Schrodinger Operators

1.1 The Magnetic Schrodinger Operator

Let 2 be an open set in R" |, A = (41, As,..., A,) be a C* vector field on
Q, corresponding to the so-called magnetic potential, V' (which may depend
on B) be a C*(2) real-valued function, corresponding to the electric poten-
tial, and B > 0 be a (large) parameter, playing the role of the strength of the
magnetic field. The vector field A corresponds more intrinsically to a 1-form

n
WA = Z Aj dx; . (1.1)
j=1

One can then associate to wa a 2-form called the magnetic field o3:
0g = dwa = Zﬁjk dx; Adxy, . (1.2)
j<k

When n = 2, the unique coefficient 512 defines (in a fixed system of coordi-
nates) a function, more simply denoted by

x— B(x) =curl A = 0, Ay — Opy Ay,

also called the magnetic field.
When n = 3, the magnetic field is identified with a magnetic vector (3,
by the Hodge map:

B = (b1, B2, B3) = (B2, — 13, Bi2) = curl A, (1.3)

with the usual definition of curl. All these objects can be defined more gene-
rally on a Riemannian manifold (with notions like connections, curvature,
etc.), but that is outside the scope of this book.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 3
DOI 10.1007/978-0-8176-4797-1_1, © Springer Science+Business Media, LLC 2010



4 1 Spectral Analysis of Schrédinger Operators

We would like to discuss the spectrum of self-adjoint realizations of the
Schrédinger operator in an open set {2 in R™:

PBA’V’Q = Z(_Z azj + BAj)2 + V(:L‘; B).

J=1

For this abstract question we will generally absorb the parameter B in the
vector potential and thus write

Pavo=pa+V=-Va+V=-A2a+V,
with
pA = —t1V+A =—-iVa,
and
Va:i=V+iA, Ap = (V+iA)%

Notice that one can perform a gauge transformation, i.e., a conjugation by e?.
Then, since e‘i¢pAei¢ = pAa+ve, We get the unitary equivalence! of Pava
and Payvg,v,o. Notice that curl V¢ = 0, so the magnetic field is unchanged
by the change of gauge.

1.2 Self-Adjointness

Our main interest is the analysis of the bottom of the spectrum of Pp v,q.
The open set Q2 can be bounded or the whole space R™. Many physically
interesting situations correspond to n = 2,3. In the case of a bounded open
set ), we will consider the Dirichlet realization or the Neumann realization.

The Dirichlet realization

The Dirichlet realization corresponds to taking the so-called Friedrichs exten-
sion associated with the quadratic form:

C(Q;C) s um— Q27V7Q(u) = / |VAU<$)|2 + V(JL‘)|u(9L‘)\2 dx . (1.4)
Q
The existence of the Friedrichs extension follows immediately if one can prove
that the quadratic form is semibounded from below, i.e., the existence of a
constant C' such that:

/Q IVau(z)?* + V(z)|u(z)|? de > —Cllul|?, Yu € C§°(9). (1.5)

1 Of course, that will not become a rigorous statement before the domains of the
operators in question are defined.



1.2 Self-Adjointness 5

When € is regular and bounded (and V, A are smooth), the form domain of
the operator is

VP(Q) = H (D). (1.6)

Using the Lax—Milgram lemma, we can then associate a self-adjoint operator
Pfav (which is denoted by P‘EA’V’Q when we need to stress the domain
in question) in the following way. We consider the sesquilinear form qQ,V’Q
defined on VP (Q2) x VP (Q) by

(1,0) > 68 v, v) = /

(VAu(x) -Vav(z) + V(x)u(x)v(x)) dx .
Q

The space VP () x VP (Q) is called the form domain of the sesquilinear form
qE’V’Q. The domain of the operator is defined as the subspace of the u’s

in VP(Q) such that v — qf_vﬂ(u, v) extends as a continuous linear form on
L?, and we denote by PE’VU this element identified by Riesz’s theorem to an
element in L?. So we have

(PRyulv)20) =g volu,v), YveVP(Q). (L.7)
More concretely, observing that (1.7) is equivalent to

(PRyvulv)rzie) = & volu,v), YuveCe(Q), (1.8)
this leads to

D(PRyq) ={ue VP’ Q)| Pavaue L*(Q)}, (1.9)

where D(H) denotes the domain of the operator H. The operator P;av,n is
simply defined, for u € D(PE,V.,Q>> by

D
Py vou=Payaou.

Using a regularity theorem, this domain can be characterized, if {2 is assumed
to be regular, as

D(PRyq) = HY(Q) N HA(Q). (1.10)

In most cases under consideration, the operator Pg,v,ﬂ will have a compact
resolvent? and the spectrum will consist of a nondecreasing sequence of eigen-
values denoted by {)\jD (A,V,Q)}. We will sometimes omit some or all of the
variables and write, for example, AP or AP (Q) if it is clear from the con-
text what the other variables are. Also, in the case when the shape of A is

fixed and B is a parameter measuring the strength of the field, we will write
)\jD(B) = AJD(BA).

2 For bounded regular Q, compactness follows from (1.6) and the compactness of
the inclusion Hg(Q) — L*(Q).
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The Neumann realization

The Neumann realization corresponds to first taking the Friedrichs extension
of the quadratic form:

C®(2C) > ur QN yolu) = /Q IVau(@)]? + V(z)|u(@)?de.  (1.11)

Again, the existence of the Friedrichs extension follows from semiboundedness,
i.e., if there exists a constant C such that

/Q IVau(z)|> + V(z)|u(z)|* de > —C|lul|*, Yue C®(Q). (1.12)

When ( is regular and bounded (and V' and A are smooth), the form domain
of the operator is

YNQ) = HY(Q). (1.13)
We then associate to this quadratic form a self-adjoint operator, which is
denoted by Pﬁv or PA]XV,Q, in the classical way. Denoting by ¢ = qX,V,Q the
sesquilinear form associated to QX’V‘Q , the domain of the operator is defined
as the subspace in VV(Q) of the u’s such that VY (Q) 3 v — q(u,v) admits a
continuous extension to L2(£2). When (2 is regular, the domain of the operator
can be characterized as

D(Pﬁvﬁ) ={ue H*(Q) |v-(=iV+A)u=0 on o }. (1.14)

Here, for z € 0Q, v(x) denotes the unit interior normal vector to 9 at « and
the condition

v-(—iV+ A)u=0 on o (1.15)
is called the magnetic Neumann boundary condition. This characterization

involves the Green—Riemann formula and a regularity result for the magnetic
Laplacian. We can then define Py y, qu € L*(2) by

<PﬁV’Qu |v)pz = q(u,v), Yo € VN(Q) .

The eigenvalues of the Neumann Schrodinger operator will be denoted by
{AY(A,V,Q)}. The conventions about notation discussed for Dirichlet eigen-
values also apply to the )\év .

Remark 1.2.1.
Let us for a moment reintroduce the dependence on the parameter B. Clearly,
D(PEAMQ) does not depend on B. This is obvious from (1.10). However, for

the Neumann operator, we see from (1.14) that if we want a domain indepen-
dent of B, we need to impose the condition

v(z) - A(x) =0 for all x € 00.

Under this condition the magnetic Neumann condition becomes the usual
Neumann condition. We discuss in Appendiz D (Proposition D.1.1) how to
arrive at this situation via a gauge transformation.
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The case of R™

In the case of R™ | it is in general more difficult to characterize the domain
of the operator. When V' > —(C', it is easy to characterize the form domain,
which is

V(R") = {u € L2(R") | Vau € LAR™), (V + C)iu € LAR") } . (1.16)
The domain of the associated operator is then given by
D(Payv):={u € V(R"), Payvuc L*(R")}. (1.17)

In the general case, if the operator is semibounded on C§°(R™) in the sense
of (1.5), it has been proved by Simader [Sima] that the operator is essentially
self-adjoint. The essential self-adjointness means that the Friedrichs extension
is the unique self-adjoint extension in L?(R") starting from C§°(R") and that
D(Pa,v) satisfies in this case

D(Pav) = {ue L*(R"), Pavue L*R")}. (1.18)

We include here the proof of essential self-adjointness.

Theorem 1.2.2.
Suppose that P = (—iV + A)? +V is semibounded on C§°(R™) and that
V e C°%(R"), A € CY(R™). Then P is essentially self-adjoint.

Proof.
Since P is semibounded, we may assume, possibly replacing P by P + C for
some constant C' > 0, that

(| Pu) > ul?, Yue CPRY). (1.19)

Here we recall that the scalar product of two functions f and g in L?(R") is
introduced in (7). Inequality (1.19) extends by density to distributions u €
H} . (R") (the H' distributions with compact support),

comp
HVAMV+:4 V(@)u@)]? do > [lull*, V€ Hegpy(R™). (1.20)

According to the general criterion of essential self-adjointness, it suffices to
verify that the range R(P) is dense. Suppose that f € L#(R") is such that

(f | Puy=0, YueCC(R™). (1.21)

We have to show that f =0.
We first observe that (1.21) implies that

(=iV+A?+V)f=0,
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in the sense of distributions. Standard elliptic regularity theory for the
Laplacian (with our assumptions on V' and A in mind) implies then that
f € HE(R").
We now introduce a family of cutoff functions, (j , by
C(x) :=((x/k), VkeN, (1.22)

where ¢ € C5°(R") satisfies 0 < ¢ < 1, ¢ = 1 on the unit ball D(0,1), and
supp ¢ € D(0,2).
For any u € C§°(R™), we have the identity

[Vatcn) - Vauy s+ [ @V @) ds
— (£ 1 PG + [ 1960 fe)ula) do
+ / (@) V(@) - [f(@)Vaule) — u@)Vaf(@)]de.  (1.23)
When [ satisfies (1.21), we get

/ Va(Gef) - Va(Gou) de + / G2V (@) f(@)ulz) da

- / V()P (@) u(z) di

+ /(k(ac)vgk(a:) . [f(x)VAu(x) — u(x)VAf(x)] dx . (1.24)

This formula can be extended by continuity to functions u € H}

loc (Rn) .
In particular, we can take u = f and obtain

IVa(Ch)I* + /gk (2)|f(2)]? da
- %{nvA I+ [ GVl )Ide}
= [IVa@P )P ds. (1.25)

Using (1.20), (1.25), the definition of (i , and taking the limit & — oo, we get
IF1% = Jim G £

< timsup <||vA<<kf>||2 + [ Vol @ier dw)
~ limsup / VG ()2 /()P di = 0. (1.26)

This finishes the proof of Theorem 1.2.2. ad
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1.3 Spectral Theory

All the operators introduced earlier are self-adjoint. If one denotes by H one
of these unbounded operators, one can analyze its spectrum, defined as the
complement in C of the resolvent set p(H) corresponding to the points z € C
such that (H — z)~! exists. The spectrum o(H) is a closed set contained in R.
The spectrum contains in particular the set of the eigenvalues of H. We recall
that X\ is an eigenvalue if there exists a nonzero vector u € D(H) such that
Hu = Au. The multiplicity of A is the dimension of Ker(H — \). We call
discrete spectrum o4(H) the subset of the spectrum consisting of eigenvalues
of finite multiplicity that are isolated points of o(H). The following standard
theorem plays an important role in the theory.

Theorem 1.3.1.
For all A € C and all uw € D(H) , we have

dist(A, o(H)) ||ul| < [(H = ANul|. (1.27)

An elementary consequence that will be used quite often in the book is
that if we find a normalized v in D(H) such that, for some ¢ > 0,

I(H = Nu| <e, (1.28)

then
dA,o(H)) <e.

Therefore, approximate eigenfunctions—also called quasimodes—i.e., func-
tions u satisfying (1.28) for some (small) €, are very useful for locating the
spectrum.
Finally, the essential spectrum of H—denoted by oess(H)—is defined to
be the closed set:
Uess(H) = U(H) \Ud(H) : (129)

In this book, we will mainly be interested in the analysis of the infimum of the
spectrum of H as a function of the various parameters (mainly B). Depending
on the assumptions, this infimum could correspond to an eigenvalue or to the
bottom of the essential spectrum.

Using the min-max characterization (see Appendix A), the infimum of the
spectrum of H = Ppa,y is determined by

inf(o(Ppa,v)) = uei‘jrl\ﬂo} Qpa,v(u)/|ul?, (1.30)

where V denotes the form domain of the quadratic form Qpa v. In order
to determine if the infimum corresponds to an eigenvalue, it is consequently
enough to find a nontrivial v in the form domain V such that

QBAA,V(U) < inf(oess(PBAyv))HuHZ. (131)
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An easy case where the infimum of the spectrum is an eigenvalue is when
Oess(PeA,v) = 0, corresponding to the case when H has compact resolvent.
To verify this last property, it is enough to show that the injection of V in
L? is compact. This is in particular the case (for Dirichlet and Neumann
boundary conditions) when €2 is regular and bounded. When (2 is unbounded,
it is possible to determine the bottom of the essential spectrum using Persson’s
theorem (see Appendix B).

Example 1.3.2. .
Let us consider Pg2y := —A+B2V on R", where V is a C™ potential tending
to 0 at oo and such that infgegpn V() < 0.

Then, if B is large enough, there exists at least one eigenvalue for Pg2y/ .
We note that the essential spectrum is [0, +00[. The proof of the existence of
this eigenvalue is elementary. If iy, is a point such that V(@) = inf, V(z),
it is enough to show that, with ¢p(z) = exp(—B|z — Tmin|?), the quotient
<PBB2§"T¢BB|H?B> tends to V(zmin) < 0 as B — +oo.

Actually, we can produce an arbitrary number N of eigenvalues below the
essential spectrum, under the condition that B € [By,+oo[, for By large
enough.

1.4 Preliminary Estimates for the Dirichlet Realization

1.4.1 Lower bounds

We start by giving the following very basic result, Lemma 1.4.1. The lemma
immediately yields a lower bound to the spectrum of the Dirichlet realization;
see (1.34). But this lemma will also be very useful for the Neumann realization,
since it is the fundamental reason behind the boundary localization, which will
be proven in Chapters 8 and 9.

Lemma 1.4.1.

Let n € {2,3} and let curl A = 3. We use the conventions that if n = 3,
8 = (B1, P2, B3) is a vector and that if n =2, = (1 is a function. Then, for
all w e C§° () and all j, we have the inequality

IVaul® = (Paqu|u) > /Qﬁj(I)IU(Jf)IQdI- (1.32)

Of course, (1.32) is only interesting if §;(x) is positive in Q. Notice (see
the proof) that it is important that the function u has compact support.

Proof.
The basic point is to observe that
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for suitable k, . We then write
Bj(@)u(z) u(z) = —iu(z) (XpXeu)(z) +iu(z) (X Xpu)(z),

with X, = &w +iAy.
Integrating over €2 and performing an integration by parts, we get

/Qﬂj(:c)\u(:cﬂz de =i (Xpu | Xeu) — i(Xpu | Xpu) = 28(Xou | Xypu) .
Applying the Cauchy—Schwarz inequality, we then find
| Bl do < | Xl + | Xl
which yields (1.32). O

1.4.2 Two-dimensional case

In the two-dimensional situation, Lemma 1.4.1 leads, for the Dirichlet reali-
zation and when [(z) > 0, to the easy but useful estimate,

inf o(PY) > inf B(z) =:b. (1.34)
zEQ

Note that the converse inequality is asymptotically (as B — oo) true. The
proof is rather easy. This will later—in Chapter 8—be carried out in a more
systematic way after the analysis of model operators, but let us simply look
here for Gaussian quasimodes. In a system of coordinates where x = 0 denotes
a minimum of S—which is assumed to be inside 2—and in a gauge where

Alor,2) = ) b(—2,1) + Oa ),
we consider the quasimode
u(z; B) := p2biB2 exp (- p\/bB\m\z)x(x) )
where x is a cutoff function equal to 1 in a neighborhood of 0 and p > 0 has to

be determined. The optimal p is computed by minimizing (with respect to p)
the energy corresponding to the constant magnetic field b =1 and B = 1:

(/o)

up(y) =74 p? exp (—gyz) : (1.35)

2 .
(3
+ ‘(ayz + 2y1> up(y)

2
dy) /llull®,

with
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One easily gets that this quantity is minimized for p = 1/2 and that the
corresponding energy is 1. The control of the remainders is easy, and we get,
using (1.30),

inf o(PL,) < Bb+ O(B2). (1.36)

So we have proven® (in the two-dimensional case):

Theorem 1.4.2.
Suppose 3 > 0. The smallest eigenvalue AP (B) of the Dirichlet realization
PEa o of Peaq satisfies

=b+o(1), (1.37)

as B — 400, with b defined in (1.34).
Remark 1.4.3.

For the Dirichlet realization and when the magnetic field is constant, one can
show, by taking a Gaussian centered as far as possible from the boundary, the
existence of a > 0 such that

AL (B) =b+ O(exp —aB), (1.38)

as B — +oo.

FEzxcept for the case of the disc [see (5.1)] the optimal a is unknown, but the
construction of quasimodes suggests that it should be the square of the inner
radius of .

1.4.3 The case of three or more dimensions

Let us state Theorem 1.4.2 in a more general case. Let us extend at each point
Bjr as an antisymmetric matrix (more intrinsically, this is the matrix of the
2-form o). Then the eigenvalues of the matrix i3 are real and one can see
that if A\ is an eigenvalue of i3, with corresponding eigenvector w, then u is
an eigenvector relative to the eigenvalue —A\, since 3 has real coefficients. If
the A\; denote the eigenvalues of i3 counted with multiplicity, then one can

define R
tr B(x) = Z Aj(z). (1.39)

j:Xj (z)>0

3 We leave the proof of (1.36) in the case where the minimum of 3(x) is attained
at the boundary to the reader. This affects only the remainder term.
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The extension of Theorem 1.4.2 is then

Theorem 1.4.4.
The smallest eigenvalue AP (B) of the Dirichlet realization P]?A’Q of Ppa .o

satisfies b
MU gt (80)) +o(1). (1.40)
as B — +oo.

The idea for the proof is to first treat the constant field case, and then
to make a partition of unity. For the constant field case, after a change of
variable, we will get, for n = 2m, the model

m o~
Z[i(aﬂﬁj )2 - (afrj+m + i/\jq}j)z] s

j=1
and for n = 2m + 1, the model

~ 01 + Y = (00,)% = (uye + i),
j=1

with .
ST =t .
j=1

1.5 Perturbation Theory for Small B

Although our main interest in this book is the case of large B, it is also
interesting to discuss the opposite case, which also appears in the physics
literature.

If A satisfies

A-v=0 ondQ and divA =01in Q, (1.41)

then the domain of the Neumann realization PYy ¢, is fixed (see Remark 1.2.1)
and the dependence on B is analytic. Assume that 2 is bounded and connected
and has smooth boundary. Then the resolvent of P, Ao is compact and the
spectrum is discrete. So the family of operators { P3| Ao} B is a holomorphic
family of type (A) (see Appendix C). We can then apply analytic perturbation
theory to the analysis of the ground state energy.

For B =0, P113VA o is simply the Neumann realization of —A in Q. The
ground state energy is 0 and this is a simple eigenvalue (2 is assumed to be
connected). The associated L?-normalized eigenfunction ¢19 can be chosen as

the constant function 1

B
where [Q| denotes the volume (area) of Q: |Q] = [, dx.

10 (1.42)
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We consequently know that for B small (B€] — By, +By[) enough, the
ground state energy remains simple and admits the convergent expansion

AV (BA) => B\ (1.43)
Jj=>1
We will proceed to compute A1 and Aqs.
This can be done by using formal expansions in the following way.

We look for an eigenvalue admitting the expansion (1.43) and an associated
eigenfunction

¢1(BA) ~ ) Bl (1.44)
>0

Moreover, without loss of generality, we may assume that ¢q; is orthogonal
to @19 for 7 > 1. This can be rewritten in the form

/ P15 dx = 0, (].45)
Q

forj=1,...,n.
We now write that

PgA,Q ©1(BA) — A (BA) ¢1(BA) ~ 0, (1.46)

in the sense of formal series in powers of B. This means more precisely that,
when expanding the left-hand side of (1.46) in powers of B, each of the
coefficients in the expansion should vanish.

We note that with our choice of gauge,

—~Apa = —-A+2iBA -V + B?|A)?.
We denote by R the operator defined by
RO = (I - Ho)Ail(I - HQ),

where Ilj is the projector on the first eigenfunction ¢1¢.

Computing the coefficients of each of the powers of B in (1.46), we get
equations determining the Ai;, 1. Due to our choice of ¢y, it is clear that
the coefficient of BY is 0. Let us look at the coefficient of B. We get

7A<)011 — )\11@10 = —22A . v9010 = 0 . (147)

A necessary condition (take the scalar product with ¢1¢, i.e., simply integrate
the equation over Q) is that
A1 =0, (1.48)

and we can consequently choose ¢17 =0.
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Remark 1.5.1.
The fact that A1 vanishes is not a surprise. We should indeed have

AV (BA) >0,

by the positivity of the quadratic form.

Let us now look at the coefficient of B2. Taking account of the previous
equation, we obtain

~Ap12 — Aaio + |A2p10 =0. (1.49)

This equation can be solved if and only if

1 2
Nz = g /Q|A(;r,)| d . (1.50)

This gives the value of A2, which is nonzero if and only if the magnetic field
curl A is not identically 0 (See Appendix D). We are also very happy to verify
that A1z is positive, which is natural from the positivity of A;(BA). For this
value of A\j2, one can then define @12 by

1
Y12 :R() (|A|2 (PIO) = |Q|1RO|A|2 (151)
2
It is easy to see that one can continue to solve the equations by recursion.
The necessary solvability condition indeed determines Aq; at each step and
the solution is unique due to (1.45).
We have therefore proven the following result.

Proposition 1.5.2.

Let Q C R™, with n = 2,3, be smooth, connected, and bounded. Suppose
that A satisfies curl A #£ 0 and (1.41). Then A2 defined by (1.50) satisfies
A2 >0 , and

AMV(BA) = 2 B> =0(B?), as B —0. (1.52)

Remark 1.5.3.
Observing that the complex conjugation u — T'u = w intertwines —Apa and
—A(_BA), i-e., satisfies

FOABA:A(_BA)OF, (153)
one can actually show that all the \i;’s with j odd vanish in the expansion
(1.43). So we have

AV(BA)~ Y a;BY. (1.54)
£>1,5=2¢

One can also observe that the functions ¢1; are real for j even and purely
imaginary for 7 odd.
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Remark 1.5.4.
Without Assumption (1.41), A2 can be more intrinsically written as

inf A +Vo|Pdr. 1.55
0 ol [, 14+ Volias (155)

Observe that (1.41) is satisfied if and only if the infimum of (1.55) is realized
for p=0.

1.6 Notes

1. The main references for this chapter are the book by Kato [Katl], the
series of articles by Avron—Herbst—Simon [AvHS1]-[AvHS3], the paper
by Combes—Schrader—Seiler [CoSS], and the contribution of Leinfelder—
Simader [LeS] on self-adjointness.

2. For an introduction to spectral theory and most of the material presented
in the three first sections, students can consult the books [ReS, LiL, LeB].

3. The abstract criterion of self-adjointness can be found in [ReS, Theo-
rem X. 26, Vol. II].

4. Theorem 1.2.2 is proven under weaker conditions on the electric potential
V in [Sima]. We follow here [He8], where the case without magnetic field
was considered. We show here that one can modify the proof in order
to accommodate the magnetic case also. One can find in [CyFKS, Chap-
ter 1] a statement of Leinfelder—Simader [LeS| giving a criterion of self-
adjointness under the weaker condition that A € L} and divA € LE .
This condition is necessary in order to have Aa¢ € L? for ¢ € C§°.

5. We have mainly discussed the Dirichlet case (which is the most stan-
dard one) and the Neumann case, which is the basic case in view of our
applications. Note that in the physics literature on superconductivity, one
finds other boundary conditions—the so-called de Gennes boundary con-
ditions (more commonly called Robin’s boundary condition in the mathe-
matics literature)—which take the form

v-Vau=~yuondf, (1.56)

where v is a real parameter with a physical interpretation. The case v =0
corresponds to the Neumann case. The de Gennes boundary condition
appears when studying the L?-normalized minimizers of the quadratic
form
(@) 30 Qy(0) =@ () +7 [ fuPdo, (157
o0
where QY is defined in (1.11) and do is the induced measure on 9 . In the
context of superconductivity, we refer to [dGel, Kacl, Kac2, LuP3, Pa4].
6. The lower bound obtained in Lemma 1.4.1 appears already in the work of
Avron—Herbst—Simon [AvHS1]. It is actually closely related to the stan-
dard proof of the uncertainty principle.
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7. An extension of Theorem 1.4.2 appears (actually in a still more general
situation) in [Me], [Ho, Vol. III, Chapter 22.3], and [HeM2]. The question
arises in some of these references for rather different problems occurring
in the analysis of partial differential equations like Garding’s inequality
or hypoellipticity of operators with double characteristics.

8. The problem of the perturbation theory for small B analyzed in Section 1.5
appears in the one-dimensional case in the work of Bolley—Helffer [BolH2,
BolH3] for the analysis of a one-dimensional reduced model corresponding
to the functional

+d
(/. A) / K2 (@) + (1 — f(2)?)?
A@)f(2)* + (A'(x)? — )2 de (1.58)

which occurs already in the work of Ginzburg-Landau [GiL] when
modeling a 2D problem for Q =] — d, +d[xR. The small parameter there
is the Ginzburg-Landau parameter x and for a minimizer of the functional
(f,A), the wave function f is nearly constant.

In the three-dimensional case, the question appears in the work of Pan
[Pa3] (for a problem coming from the analysis of Type I superconduc-
tors) and [Pa7] (in the context of problems for liquid crystals) and more
recently in [HeP2, HeP3].
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Diamagnetism

2.1 Preliminaries

For Schrodinger operators, the inclusion of a magnetic field raises the energy.
This is the consequence of a basic inequality due to Kato. A variation on this
question—namely, monotonicity of the ground state energy as a function of
the parameter B—is of central importance in the theory of superconductivity
and is discussed in Section 2.3 here and repeatedly in the book.

Without loss of generality, set B = 1 in this first section.

Theorem 2.1.1 (Diamagnetic inequality).
Let A : R™ — R"™ be in LE (R™) and suppose that f € L} (R™) is such that
(—=iV+A)f € L2 _(R"). Then |f| € HL .(R") and

loc loc
VI < [(=iV + A) f] (2.1)
almost everywhere.

In the proof of this theorem we will clearly need to differentiate the
absolute value. We state this result as a proposition.

Proposition 2.1.2.
Suppose that f € Li (R™) with Vf € LL _(R"). Then also V|f| € L (R"™)

loc loc
and with the notation

: 2 Jorz#0,
—{ Izl
sign z {07 for 2= 0, (2.2)
we have

VIfl(z) = R{sign(f(z))Vf(x)} for almost every x € R™. (2.3)

In particular,

IVIfIl < IV £

almost everywhere in R™ .

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 19
DOI 10.1007/978-0-8176-4797-1_2, © Springer Science+Business Media, LLC 2010
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Proof of Proposition 2.1.2.
Suppose first that u € C°°(R™) and define |z|c = \/|z|2 + €2 — ¢, for z € C
and € > 0. We observe that

0 < |zle < 7] and lirr(1)|z|6 =|z].
Then the function |ul., defined, for z € R™, by
ule(z) = |u(z)lc,
belongs to C*°(R™) and
R(u Vu)

Vi0ule = . 2.4
= ey (24
Now let f be as in the proposition and define f5 as the convolution
f5 =fx Ps 5

with ps being a standard approximation of unity for convolution. Explicitly,
we take a p € C§°(R™) with

p>0, / ple)dr =1,

and define ps(z) = § "p(x/d), for x € R™ and § > 0. Then fs — f,
|fs| — |f], and Vfs — Vfin Ll (R") as § — 0.

Take a test function ¢ € C§°(R™). We may extract a subsequence {0y } ren
(with 0 — 0 for & — o0) such that f5 (z) — f(x) for almost every
x € supp¢. We restrict our attention to this subsequence. For simplicity
of notation, we omit the & from the notation and write lims_.o instead of
limkﬁoo .

We now calculate, using dominated convergence and (2.4),

[olstds = tim [(vo)s. do
— tiy Jin [ (V)fs. do

_ fsVfs
N 2105H0/¢\/|f5|2+62

Using the pointwise convergence of fs(z) and ||V fs — Vf|r1suppg) — 0,
we can take the limit 6 — 0 and get

Jwolsias =t [ ¢ W{ffeg . (2.5)

Now, ¢V f € LY(R"™) and f(x) (|f(x)* + €?)~1/2 — sign f(z) as € — 0. So we
get (2.3) from (2.5) by dominated convergence. O
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Proof of Theorem 2.1.1.
Since A € L (R") and f € L (R™), the assumption (V +iA)f € L (R")

implies that Vf € L] (R™). Therefore, we can use Proposition 2.1.2 to con-
clude that (2.3) holds for f. Since R{sign(f)iAf} = 0, we can rewrite (2.3)
as

VIf| = R{sign(f)(V +iA) [}, (2.6)
and therefore, since |z| > |R(z)| for all z € C, we get (2.1). O

Using Theorem 2.1.1 we now get, by the variational characterization of
the ground state energy, the comparison for Dirichlet eigenvalues,

inf o (PYo+V) >inf o (-AF5+V), (2.7)

where —AL denotes the Dirichlet Laplacian in €.
Also, a similar result is true in the case of Neumann boundary conditions:

inf 0 (PAo+V)>inf o(-Af +V), (2.8)

where —AJX denotes the Neumann Laplacian in €.
Inequality (2.8) admits a kind of converse inequality showing its optimality.

Proposition 2.1.3.

Suppose that Q C R? or R? is bounded, smooth, and connected, that A €
CY(Q), and that V € L>(2). Let A1 (A) be the ground state of PX . Then the
following three properties are equivalent:

1. PY and PY_, are unitarily equivalent.
2. M(A) =X(0).

3. A satisfies the following two conditions:

B :=curlA=0 (2.9)
and
1 1
/wA— /A-d;vEZ (2.10)
27 J, 27 J,
on any closed path v in ).
Proof.

Clearly, 1 implies 2.

Let us now prove the statement that 3 implies 1. First, let us observe
that, when € is simply connected, condition (2.10) is a consequence of (2.9),
by Green’s formula. Now, even for nontrivial topology, conditions (2.9) and
(2.10) permit the construction of a multivalued function, ¢a , such that
Voa = —A and exp(iga) is welldefined. This function ¢a is defined by
taking some zo € 2 and then writing

ba(z) = / A,
'y(zg,z)
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where v(x, x) is a path in Q joining o and x and the integral is independent
of the choice of path (modulo 27Z). This permits us to define the C! function
on {):

Q32— Ua(r) =exp(—ida(z)). (2.11)

The associated multiplication operator Up gives the unitary equivalence with
the problem corresponding to A = 0. Thus, we have established that 3
implies 1.

Let us finish by giving the proof that 2 gives 3. This requires the use of
more advanced techniques, including some positivity results that are beyond
the scope of this book. Let ua be a normalized ground state of P} . By elliptic
regularity theory we conclude that ua € C*(Q). Define pa := |ua|. The
diamagnetic inequality and assumption 2 imply that

M (A = 0) :/ Vpal® + Vo de,
Q

and so we conclude that pa is a ground state for PAV:O . By elliptic regularity

theory we therefore conclude that pa € C'(Q), and the Harnack inequality
[GiT, Corollary 9.25] implies that pa > 0 in 2.

Thus, we can write

eit = UA

PA

for some multivalued function ¢ such that V¢ is welldefined and continuous
and €’ is of class C'. Now a calculation gives

b

)q(A):/ ‘(—iV+A)uA|2+V‘uA|2dl‘

« (2.12)

:/ \VpA|2+V|pA|2dx+/p2A|V¢>+A|2 dzx.
Q Q

So we can conclude that A = —V¢, from which (2.9) and (2.10) clearly
follow. ad

Remark 2.1.4.

It is instructive to look at the model on the circle with the magnetic Laplacian
(fi(ﬁg +a)?, where a is a real constant corresponding to the magnetic poten-
tial. So the magnetic field is zero and the spectrum can easily be found to be
described by the sequence (n+ a)? (n € Z) with corresponding eigenfunctions
0 — exp(inf) .

We immediately see that, confirming the general statement, the ground
state energy, which is equal to dist(—a, Z)? , increases when a magnetic poten-
tial is introduced. We also observe that the multiplicity of the ground state is 1
except when d(a,Z) = 1/2. We note finally that the number of eigenvalues
which are strictly less than 1, is 1 for a =0, and 2 for ac]0,1[. This shows
that although the ground state energy becomes higher when we introduce a
magnetic potential, this is not the case for the second one.
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2.2 Diamagnetic Estimates

One can actually give a more quantitative version of the previous proof in
the two-dimensional case. We only consider the situation when € is regular,
bounded, and simply connected in R2.

Let us start with the upper bound. Let ug be the normalized, positive
ground state of —A + V. For any ¢ in C*(Q),! we can use uy = ug expi¢
as a test function. Using formula (2.12) and the min-max principle, we have

M(A) g/\l(A:O)+/ |V + Al?ud d .
Q

This implies

z€Q HEC>(Q)

AL(A) — A\ (0) < (supuo(x)>2< inf /Q|V¢+A|2dx> .

So there exists by Proposition D.2.2 a constant Cq - such that
AL(A) = A1 (0) < Cov [ curl Al -1 (g (2.13)

where H () denotes the dual of H}(Q).
Let us now look for a lower bound. Again using (2.12), we first write

L 09oal +VoR)dz < i(A). (2.14)

We would like to estimate pa — ug as A1(A) — A1(0) tends to 0.
For this, we first write

pa = aug +ut, (2.15)

where ut is orthogonal to ug in L2((2).

Denoting by A2(0) the second eigenvalue of the Neumann realization of
—A+V in Q, we immediately deduce from (2.14) the inequality

A1(A) — A (0)
1-a?) < ,
=00 500 M (0)
which leads to
A1(A) = A1(0)
A2(0) — A1(0)
This control is not sufficient. We need a control in L° . One can then find,

using the Sobolev embedding theorem combined with interpolation, for any
0€10,1/2[, a constant Cy and pg > 2(1 — 6)/(1 — 26) such that

oA —uol|* <2 (2.16)

oA = uollz < Cllpa — uol|2llpa — uolljyts, -

! In the non simply connected case, one should replace this condition by exp i¢ €
Cc>(Q).
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So, for some constant C' > 0 depending only on €2 and V', we get
0 —
lpa = uollz= < C(M(A) = X1(0)* ((IVpallzre + lpallm)' ™ +C) -

We now use the magnetic Sobolev spaces Wi"z (©) and get, using the diamag-
netic inequality,
[Hualllwrre @) < C lluallyz2q) ; (2.17)

and

I = wollze < COR(A) = M©O)? ((IVpalliro +lloallr) ™ +C)

1-6
< COu(A) = 05 { (luallyze@)  +C}-
We next use the estimate
> D Ditpl| 72y < 3 [ curl AJZ 165 + 2 | H|I3 (2.18)
g,k

which is a particular case of what will be proved in (11.5) and where the D;’s
correspond to magnetic differentiation: Dj = 9,; +iA; and H =}, D?.

This leads, for given V' and Q and for any 6 € ]0,1/2[, to the existence of
a constant Cy such that for any A |

lpa — uollz= < Ca(A1(A) — A1(0))*
X <||Cur1A||oo + (M(A) — A (0)) +cg). (2.19)

We now come back to the end of our control of a lower bound. Starting
from

M(8) = X1(0) 2 [ pAIVO+ AP do > inf [pa (o) curl Al oy (2:20)
9] T

(curl is continuous from L? into H 1), we obtain the following converse state-
ment of (2.13). For any 6 € ]0,1/2[, there exists a constant Cyp > 0 such
that

1
M(A) = M) > {1-Con(a) = xi(0)f
x (H curl Ao + (A (A) — A1 (0)) + ce)}” curl A% g -
(2.21)
This is rather good except for the fact that the norm || curl A||L (instead of
| carl A g-1(q)) appears in the right-hand side.

Remark 2.2.1.
Replacing A by BA and letting B — 0, it is interesting to compare the result
of this section with the result we have obtained in Section 1.5.
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2.3 Monotonicity of the Ground State Energy for Large
Field

As discussed earlier, the diamagnetic inequality (2.1) implies that the ground
state energy increases when a magnetic field is applied. Consider a fixed mag-
netic potential A and let A;(B) be the ground state energy of the operator
(—iV 4+ BA)? + V (either in a domain and with boundary conditions, or
on R™). One can now ask whether the function B — A\(B) is monotone non-
decreasing for all B > 0. This is generally not true. However, for large B,
positive results can be obtained.

We consider the Neumann operator PgA,V in a domain 2 and assume
that €, V are such that PévAy has compact resolvent for all (sufficiently
large) B > 0. So the spectrum of P, A,V consists of a sequence of eigenvalues
(of finite multiplicity) tending to infinity; in particular, the degeneracy of the
ground state energy is finite. Let B € R and let n be the degeneracy of the
ground state AYY(B). For simplicity, from now on we write more briefly

Furthermore, we will assume that we have chosen a gauge such that
A(z) -v(z)=0 forall z € 0f. (2.22)

This implies that the domain D(Pé\'Ay) is independent of B ; see Remark 1.2.1.
We are now in a situation where we can apply analytic perturbation theory
to P1]3VA,V (see Theorem C.2.2 in Appendix C). Thus, there exist ¢ > 0, n
analytic functions

(B—€B+e¢) 30w ¢;(0) € H*(Q)\ {0},
for j=1,...,n, and n analytic functions
(B—¢,B+¢) 36— E;(0) €R,
such that

Piav$i(0) = E;(0)¢;(0),

E;(B) = M(B).

We may choose e sufficiently small in order to have the existence of j;,j_ €
{1,...,n} such that

for § > B: E;, ()= min FE;(0),
je{1,...,n}
(2.23)
for § < B: E; ()= min E;(@).

Je{l,...,n}
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Define the left and right derivatives of A1(B):

((B) = tim BT MB) (2.24)

e—04 €

Notice that
M+(B)=E; (B), XN _(B)=E; (B); (2.25)

in particular, A} | (B) = ] _(B) if j; = j— . Notice also that since A is the
minimum of the F;, we must have

14+(B) < M_(B). (2.26)

Proposition 2.3.1.
For all B € R, the one-sided derivatives Ny 4 (B) ewist and satisfy

1+(B) = —2R(¢j, [A - (=iV + BA)g;, ).

Proof.
By (2.25) we need to prove that

Ej, (B) = —2R(¢;. | A - (—iV + BA)¢;. ).

But this result is just first-order perturbation theory (and is called the
Feynman—Hellmann formula). O

Using the specific algebraic structure of Pév a,v and the variational princi-
ple, one can prove the following result.

Proposition 2.3.2.
Suppose that Q is bounded with smooth boundary. Then

1iéninf Al 4 (B) > limsup ! liBminf (AM(B+¢€) = Ai(B)) , (2.27)
— o0 e—04 00

limsup A} _(B) < liminfe " limsup (A1 (B + €) — A\i(B)) . (2.28)
B—oo ’ e—0- B—oo

Proof.
Let € > 0. Then

A4 (B) = —2R(¢; (B)|A - (—iV + BA)¢,, (B))

1
T (¢, (B) | (P(%-s-e)A,V - PgA,V - €2|A|2)¢j+ (B)) -
Therefore, the variational principle implies
B+ 6) — )\1(3)
€

Upon letting B — 400 and then € — 0, we get (2.27).
The proof of (2.28) is similar (taking e < 0 reverses the inequalities) and
is omitted. O

A1
X, (B) > M A -
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Proposition 2.3.2 implies that the derivative of A\i(B) (for large values
of B) can be estimated from knowledge of the asymptotics of A1 (B).

Corollary 2.3.3.

Suppose that Q is bounded with smooth boundary. Suppose that A,V are
smooth functions and that Q, A,V are such that there exist « € R and a
function g, satisfying g € o(B), and

M(B)=aB+g(B)+0(1), as B— +c0. (2.29)
Then
lim inf M4 (B) > o+ limsupe 'liminf (g(B +¢) — g(B)), (2.30)
—00 e—04 —00
limsup X} _(B) < a+ lim(i)nf e 'limsup (g(B +¢€) — g(B)). (2.31)
B—oo e—U-— B—oo

In particular, if for all e€ 10, 1],

lim g(B+¢€)—g(B)=0, (2.32)

B—oo

then the limits limp oo N} 4 (B) and limp_.oo A _(B) ewist and

Blgxlm M4 (B)= Bliixlw N _(B)=a. (2.33)
Remark 2.3.4.

In the case of the disc (see Chapter 4), the assumption (2.32) is not satisfied,
and we need the more general result of (2.30) and (2.31). We will actually
in specific cases (see, for example, the proof of Theorem 8.5.1) combine the
general idea with other techniques in order to obtain the same conclusion but
without knowing as precise an asymptotic result as (2.29). In those cases, one
will actually not take € to be small, but rather to grow as a function of B.

Remark 2.3.5.
Let v € [0,1]; then g(8) = 07 satisfies (2.32). Thus, if there exist powers
Yy -y ¥m € 10,1 and a, a1, ..., € R, such that (as B — o0)

M(B)=aB+» a;B% +o(1),
j=1

then Corollary 2.3.3 implies that

Proof of Corollary 2.5.5.

The estimates (2.30) and (2.31) are immediate from Proposition 2.3.2.
Furthermore, suppose (2.32) is satisfied. Then the last terms in (2.30) and
(2.31) vanish. Therefore, we get (2.33) by recalling (2.26). O
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2.4 Kato’s Inequality

In order to obtain stronger results on essential self-adjointness than
Theorem 1.2.2, a useful tool is the so-called Kato inequality. We present it
in the magnetic version in Theorem 2.4.2.

Let us start with the case without magnetic field.

Theorem 2.4.1 (Kato’s inequality).
Let f € L} .(R™) such that Af € L.

Alf| = R{sign(f)Af}, (2.34)

(R™) . Then we have the inequality

loc

almost everywhere, where sign f was defined in (2.2).

The proof of Theorem 2.4.1 follows the same steps as the proof of
Proposition 2.1.2. That is, one first considers smooth functions f and the
regularized absolute value

lzle = V22 + €2 e,

and calculates directly. One then considers a sequence fs of smooth approxi-
mations to f. Taking first § and then e to zero, one obtains the desired
inequality. We leave the details to the reader (see [ReS, Vol. 2, Section X.4]).

Theorem 2.4.2 (Kato’s magnetic inequality).
Let A € CYR",R"). Then, for all f € Li_(R") with (—iV + A)%f €
L2 (R™), we have the inequality

Alfl = —R{sign(f)(—iV + A)*f}, (2.35)
where sign f was defined in (2.2).

Proof of Theorem 2.4.2.

We only give the proof under the extra regularity assumption, A € C?(R").
In that case the assumption (—iV + A)?f € L2 (R™) and standard elliptic
regularity imply that f € H2_(R"), in particular that

AfVS € DL (R"). (2.36)
Suppose now that u is smooth. Then we can calculate as follows:

R{uVuy  R{u(V +iA)u} .

YT e T e 240
We therefore find
VIul? + € Alule = div(y/[ul? + € V]ul) — | V]ul|
=R{Vu- (V+iA)u+u div((V +iA)u)} — |V]ulc ]

=[(V+iA) | |V|u|’
+ R{iAu - (V+iA)u+u div(V+iA)u)}.  (2.38)
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By (2.37) and using the Cauchy—Schwarz inequality, we get

(V +iA)u|” > |[V]ul|*.

So (2.38) implies that, for a smooth u,

A2
Alul, > 8?u(V +iA)*u

2R e (2.39)

The end of the proof now follows the same lines as the proof of
Proposition 2.1.2; i.e., (2.39) holds for suitably smoothened versions f5 of f .
By taking the limit § — 0 followed by the limit ¢ — 0, in the sense of distri-
butions, one arrives at (2.35).

If one only knows that A € C!| it is not immediate to conclude (2.36).

The details in this case can be found in [ReS, Vol. 2, Section X.4]. O
2.5 Notes
1. The diamagnetic inequality first appeared in [Kat2]. We refer also to

2.

Sections 7.20-7.21 in [LiL] for additional comments on our Section 2.1.
The Aharonov—Bohm effect appears as a basic Gedanken Ezperiment
in the interpretation of quantum mechanics [AhB]. It says that although
the magnetic field is identically zero, the magnetic potential has an effect
through the circulation of its magnetic potential along paths that are not
homotopic to a point. This can typically occur in two-dimensional domains
with holes. Although the first effect considered by Aharonov and Bohm
was related to scattering theory, the effect analyzed in the present chapter
(Proposition 2.1.3) corresponds to an analogous interpretation. This effect
was first mentioned in a paper by Lavine-O’Caroll [LaOC] that gives a
heuristic proof of the phenomenon later justified in [He3]. The proof given
here is a little simpler than the original one, profiting from the fact that
we consider the Neumann condition.

. Diamagnetism appears also in various other questions. Let us mention

its connection with Hardy inequalities and the applications to complex
analysis [ChF].

An interesting model case is the Dirichlet realization of the magnetic
Laplacian in © = R? \ {0} or in © = D(0,1) \ {0}, when the magnetic

potential is
@

A =
|z[? + Jy[?

(_yv .23) .

The corresponding magnetic field vanishes identically (in polar coordi-
nates, we have wa = adf), but the flux around a positively oriented
simple curve around the origin is equal to 27w« . In this example, one can,
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2 Diamagnetism

for instance, explicitly measure the diamagnetic effect. Using polar coor-
dinates and a unitary transformation, one is indeed led to the analysis of
the family of Dirichlet operators (indexed by m € Z):

B d? N (cu—m)Q—}l
dr? 72 ’

on L%(]0,+oo[) or L%(]0,1]).

When o = 1/2, the ground state has multiplicity 2 as for the toy model
on the circle (see Remark 2.1.4). This has interesting consequences in
superconductivity (see in the book [BeR] the contributions of Rubinstein
(after Berger—Rubinstein) and Helffer, M. and T. Hoffmann-Ostenhof, and
Owen).

There is a long list of references related to this operator—see [LaW] or
[Ba] and references therein. These authors also consider cases with holes.

. In Section 2.2, we can also write, starting from (2.20), the estimate

M= = [ 190+ ARdr =2 [ polpa = pollVo+ AP s (240)
This yields
M =N 2, [ Vo APde = Clloa = poll| V6 + A (241
From (2.41) we find, for some constant C' (independent of A),

. 1.
VR =N (VM =08 +inf [V + AIR) = [ inf Vo + AJ. (242

. On the subject of diamagnetism, we would also like to mention the con-

tribution of Erdés [Er2, Er3] and his survey [Er4], which has one section
devoted to this question and contains many references.

. For the applications of Kato’s inequality to self-adjointness questions,

we refer also to [ReS, Vol. 2, Section X.4].
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Models in One Dimension

Many of the spectral problems that we encounter later in the text can be
completely described in terms of one-dimensional problems. These 1D problems
have to be analyzed in detail in order to understand the original higher-
dimensional questions. That is the objective of the present chapter.

3.1 The Harmonic Oscillator on R

The most important operator in this book is the harmonic oscillator. Actually,
the main role will be played by this operator in its realization on a half-axis,
but before analyzing that, we recall some results on the case without boundary.
Let

d2
bo == o T (3.1)
whose domain is
D(ho) = B*(R), (3.2)

where, for k € N, B¥(R) is defined as
B*(R) = {u € L} (R) : tPu'?9(t) € L*(R), Vp,q e Ns.t. p+q < k}. (3.3)

The space B¥ is equipped with the natural norm,

lullge = > [[#7u @) 2. (3-4)

p+q<k

Of course, hg is the unique self-adjoint operator associated with the quadratic
form on BY(R):

1 oo / 2 2 2
B(R) BUH[ (o (8)2 + 2 u(t)?) dt (3.5)

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 31
DOI 10.1007/978-0-8176-4797-1_3, © Springer Science+Business Media, LLC 2010
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This operator has compact resolvent and its spectrum is known explicitly as

U(ho) = {(2.7 - 1)7 JE N*}v (36)

each eigenvalue having finite multiplicity. Moreover, the corresponding ortho-
normal basis of eigenfunctions {¢;} [associated with the eigenvalue (25 — 1),
J € N*] are generated from the Gaussian

o1(t) =74 exp(—t2/2),

through the action of the creation operator

d
L=—" +t
at "
by the formula: }
pi=c L1, (3.7)

where c; € R is a normalization constant.
One can recognize the Schwartz space S(R) as

S(R) = N, B*(R). (3.8)
One can show the following proposition by the difference-quotients method

Proposition 3.1.1.
For all k € N, the restriction of by to B¥(R) defines an isomorphism of
B**2(R) onto B¥(R) and hence of S(R) onto S(R) .

One way to see this property is to observe that S(R) can be described as
the subspace of the functions in L2(R), whose coefficients in the orthonormal
basis ¢; are in the space of the rapidly decreasing sequences s(N) .

Remark 3.1.2.
The same proof gives that, for any X € o(bo), ho — A maps B¥T2(R) onto
BY(R) for all k € N and S(R) onto S(R).

3.2 Harmonic Oscillator on a Half-Axis

Let us begin with the analysis of a family of ordinary differential operators,
whose study will play an important role in the analysis of various examples.
For ¢ € R, we consider the Neumann realization h™:¢ in L?(RT) associated

with the operator —C‘li:z + (t+&)?, ie.,

BV = b % DOV = fue BXRY)[W(0) =0} (39)

Here the B¥(R*) are defined similarly to the By(R), and let us observe that

NrkenBF(RT) = S(R+).
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3.2.1 Elementary properties of hN+¢

It is easy to see that the operator h™:¢ has compact resolvent. This operator
is indeed associated with the quadratic form

+oo

BYRY) 3 ur ¢V @) = /o |/ @) + (¢t + &) u(t)]?) dt,  (3.10)

where [see (3.3)]
BYRY) :={uec L*(R"), tu € L*(R"), andw/(t) € L*(RT)}.  (3.11)

So the form domain is B'(RT) and it is a standard exercise to show that the
injection of B'(R*) into L2(R*) is compact.
The domain of h™*¢ can be determined as

D(HN) = {u € B*(RT) |4/(0) = 0} . (3.12)

Moreover, the lowest eigenvalue u(¢) of h™V:¢ is simple. For this point, the
following simple argument can be used. Suppose by contradiction that the
eigenspace is (at least) of dimension 2. Then we can find in this eigenspace an
eigenstate u such that «(0) = «/(0) = 0. But then it should be identically 0
by Cauchy uniqueness. This argument actually gives that all eigenvalues are
simple.

Suppose that f is a ground state, normalized in L?. Using Propo-
sition 2.1.2, we see that |f| has a lower energy. Therefore, we may assume
that f > 0. Assume that f(to) = 0. By positivity, we must have f'(ty) =0,
and we therefore get by Cauchy uniqueness that f = 0. This is in contradic-
tion to the normalization condition. So we see that the ground state will be
strictly positive.

We can therefore introduce

Definition 3.2.1.
The function @¢ is the unique, strictly positive, L?-normalized ground state of
hV:¢ associated to p(€) .

Proposition 3.2.2.
The function R 3 € — u(€) is continuous and satisfies

1. (&) >0, for all§ €R.
2. At 400 we have the limit,

EETOO () = +oo. (3.13)

3. At the origin the value is
w(0)=1. (3.14)

4. At —oo we have
glim wé)=1. (3.15)
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5. There exists & € R™ such that

(&) = girel]%u(f) <l (3.16)

Furthermore, the second eigenvalue ps(€) satisfies
ua(§) > 1, V¢ e R. (3.17)

Proof.
The min-max characterization shows that £ — p(€) is a continuous function.
Also, the operator hV:¢ is clearly positive, so p(&) > 0.

To prove (3.13), we estimate for £ >0,

2
ve> - D heie e
dt
and this gives
p(e) > €&,  VE>0. (3.18)

Clearly, (3.13) follows from this.

To prove (3.14), we use the fact that the lowest eigenvalue of the Neumann
realization of — g; +12 in Rt is the same as the lowest eigenvalue of — C‘li; + 12
in R, but restricted to the even functions, which is also the same as the lowest
eigenvalue of —C‘li; +t? in R [see (3.6)].

Moreover, the derivative of p at 0 is strictly positive [see (3.21) or (3.29)
below]. Hence, using also (3.14), we get the inequality in (3.16). This weak
result can also be obtained, without proving that p is C!, by minimizing the
quadratic form associated with h(N)(€) over a family of Gaussians.

It is a little more difficult to prove (3.15). For the upper bound, we observe
that () < (&), where A(€) is the eigenvalue of the Dirichlet realization h2-¢ .
By the monotonicity of A(£), it is easy to see that A(§) > 1 and that A(§) — 1
as £ — —oo. Another way is to use the function ¢ — exp — % (t+€)? as a test
function.

For the converse statement, we start from the eigenfunction ¢ — ¢ (t) and
show some uniform decay of ¢¢(t) near 0 as £ — —oo. It is actually enough
to write that for any £ < 0 we have

+oo +oo
/O (O dt + / (+€%pe(D)? dt < p(€) < A(E) < A(0) = 3.
This implies that, for any R > 0,
R ) 3
[ rectories 7, ve<or. (3.19)

We can now use the function z — x(z — &§)pe(z — &), with x with support
in ]0, 400 such that x = 1 on [1,+o0o[, as a test function for the harmonic
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oscillator in R—hp—and, applying the min-max principle, we obtain the exis-
tence of C' > 0 such that

1< u(é)+ |§| , Ve < -C. (3.20)

This completes the proof of (3.15).

Combining the previous results, we obtain that the infimum in (3.16) is
actually a minimum (and strictly less than 1). This finishes the proof of (3.16).

The assertion about the second eigenvalue was proven in [Fr1] and is based
on the following idea. If us is indeed an eigenfunction associated with s (§),
ug , which is orthogonal to the strictly positive first eigenfunction, admits at
least! one zero z2(£) in R*. So the restriction of us to Jxa(€), +o0[ is an
eigenfunction of the Dirichlet realization of the harmonic oscillator

2
de2

So p2(€) is larger than the lowest eigenvalue of this problem. By monotonicity
of the Dirichlet problem (see Example A.2.2), we get that p2(&) is higher than
the lowest eigenvalue of the harmonic oscillator on R, which isequalto1. O

+ (t4£6)?, in  Jza(€), +oo.

3.2.2 Variation of ¢ and Feynman—Hellmann formula.

It is a little more work (see Appendix C) to show that the eigenfunction
depends analytically on &. Actually, observing that h™V(¢) is a holomorphic
family of type (A) with domain given in (3.12), we have the proposition.

Proposition 3.2.3.
The eigenvalue u(§) and the corresponding eigenfunction e are analytic with
respect to £ .

Properties (3.13), (3.14), and (3.15) are completed by the following propo-
sition.

Proposition 3.2.4.

The eigenvalue 1 admits a minimum Oq , which is attained at a unique point
&0 < 0, and satisfies Og €]0,1[. Moreover, this minimum is nondegenerate
and p is strictly decreasing on ] — 00, &) from 1 to Og and strictly increasing
on [€o, +00[ from Og to +oo.

Remark 3.2.5.
In Proposition 3.2.8 ahead we will improve the lower bound to ©g > 1/2.

Proof.
Let us first establish the following identity:

W (&) = [u(€) — €% pe(0)*. (3.21)

! Actually, exactly one by Sturm-Liouville theory.
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To get (3.21), we use the Feynman—Hellmann formula (3.29) ahead.

WE) =2 / ()l (1) P, (3.22)

One proceeds by writing 2(t + &) = ;t (t + €)? and integrating by parts. This
yields

J(E) = 2 / (00t (1)t — €2 (0.

Using the eigenvalue equation for ¢, inside the integral sign yields (3.21).
From (3.21), it follows that, for any critical point &, of p in R™,

1 (&) = =267 (0) > 0. (3.23)

So any negative critical point will be a local minimum. Thus, there can be at
most one negative critical point. The existence of a negative critical point
follows from Proposition 3.2.2. It also follows from (3.23) that any posi-
tive critical point will be a local maximum. However, limg_, 4o p(§) = +o00.
Combining these two pieces of information, we find that no positive critical
point exists. Finally, (3.21) implies that p/(0) > 0.

In conclusion, there exists a unique minimum &, < 0 such that

Oy = irglf,u(g) =u(&) <1. (3.24)
Moreover, by (3.21),
©0 = &5 (3.25)
O
Remark 3.2.6.
In the case of the Dirichlet realization, we have a similar formula:
N (€)= (€)' (0), (3.26)

where <p£D is the ground state of WP¢ and this immediately shows the monotoni-
city. Note that (gogD)’(O) # 0 (by the Cauchy uniqueness theorem), so X is
strictly positive.

This formula is actually a particular case of a general formula (called
Rellich’s formula) for the Dirichlet realization of a Schrédinger operator.

We now further consider the properties of { — p(€) and ¢¢(-), which are
related to the Feynman-Hellmann formula. We differentiate the identity? with
respect to &:

hY(€)p(-:€) = n(&)w(-:€). (3.27)

2 We change a little the notations for h™* [this becomes h™¥ (¢€)] and g [this becomes
w(+;€))] in order to have an easier way of writing the differentiation.
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We obtain

(Db™ (&) = 1'(€)(5€) + BV (€) — n(€))(Fe ) (+3€) = 0. (3.28)

Taking the scalar product with ¢ in L*(RT), we obtain the so-called
Feynman—Hellmann formula:

+oo

H(O = (060" ©pc [0 =2 [ (+OlpcPar. (329)
Taking the scalar product with (Jz¢)(-;€), we obtain the identity:

(Peb™ (&) =1 (€)e(56) | (De)(56))
+ (7 (&) = 1(€))Pep)(-:€) | (Dep)(-:€)) =0. (3.30)
In particular, for & = &y, we obtain
((9eh™ (€0) (-3 €0) | (Be)(:€0))
+ (07 (60) — (&) (Pe0) (1 60) | (Pep)(+:€0)) = 0. (3.31)

We observe that the second term is positive [and with some extra work coming
back to (3.28) strictly positive]:

((9eH™ (€0))) (30) | (Pe)(+:€0)) < 0. (3.32)
Let us define for later use
1
L= = {(9h™ (£0))¢)(+5€0) | (D) (-3 80)) (3.33)
Let us differentiate (3.28) once more with respect to ¢ :

2000 (&) — 1/ (€)0ep(+5€) + (H7V(€) — ul(€))(9F) (-3 €)

+ (927N (&) = 1"(€)e(-56) = 0. (3.34)
Taking the scalar product with ¢ and § = &y, we obtain from (3.32) that
1 (&) = 2+ 2(0eh™ (o) (-3 €0) | Dep(-560)) < 2. (3.35)
We also notice that Y
a é&]) =1—4l,. (3.36)

3.2.3 Formulas for the moments

We set
ug = ‘)050 (337)
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and introduce the constant

2
0
Cy = “0?5 ) (3.38)
The next formula (3.39) is simply a rephrasing of (3.23):
"
a ;50) = 3C1\/Op. (3.39)
Define My, to be the kth moment, centered at —&g, of the measure u?(t) dt:
M;, :/ (t + &o)Ful(t) dt . (3.40)
R+
These moments can be calculated as follows.
Lemma 3.2.7.
The first moments can be expressed by the following formulas:
S 3(0
My=1, M; =0, My = 20, M3=“°é)>o. (3.41)
Proof.
Define for o > 0 the following L?-normalized functions:
u0,a(t) == Vaug(at). (3.42)

After a change of variable, we see that
oo
O = [ a lupu () + (at + &)Pud o (1) di
0

for all & > 0. Differentiating this function at o = 1 and using (3.29), we get

+o0 400
/0 u(t)” dt = /O (t-+ o) uolt) dt =

To have formulas for higher-order moments, we observe the following
identities:

(6™ (%) — ©0)(2pug — p'uo)

=up (9 —4((t+&)2 =00 4t +&)p) . (3.43)
for p € C°(R"), and
(6" (S0) = ©0)v |uo) = uo(0)v'(0), (3.44)

for v € S(R*). So for any polynomial p, we get
(6™ (€0) — ©0)(2puy — p'uo) o)
= u3(0) (2p(0)(& — ©0) — p2(0)) = —ud(0)p®(0),

where we have used (3.25). Taking p(t) = (t + &)? gives the formula
for Ms. O
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As an application, we give a lower bound of Oy :

Proposition 3.2.8.
We have ©g > 1/2.

Proof.

By the lower bound to the harmonic oscillator on the half-axis, we can estimate

1< / lug ()| + t2ud(t) dt .
0
Inserting
% = (t — &) + 260 (t — &) + &5,
applying the formula for M, as well as the definition of ug , we find
1 <Oy +E& =200.

This clearly finishes the proof. O

3.2.4 On the regularized resolvent

Finally, in some more specialized applications, we will need the following
mapping properties of the regularized resolvent.

Lemma 3.2.9.
Let Py = hN (&) —Oq . For ¢ L ug, we can define P071¢ as the unique solution

f to

Pf=¢, fLug. (3.45)
Let Ry € L(L*(R™)) be the reqularized resolvent:
07 U )
Rop=< ', ¢ |l uo (3.46)
PO (ba ¢ J— Uuo

(and extended by linearity). Then Ry is continuous from S(RT) into S(R+).
Moreover, for any a >0, Ry is continuous in L*(RT ; exp(—at)dt) .

Sketch of proof.
Using the local regularity up to the boundary of Py (as a differential operator),
we first get that Ry sends S(Rt) into C*°(R*). For the control at +oo,
we then observe, after cutting away from 0, that the problem is reduced to
the question of inverting the harmonic oscillator o — ©p on S(R), which is a
standard result (see Remark 3.1.2).

For the last statement, we can also observe that, for ¢y > 0 small enough,
the operator

2 a? 2 o 2
exp(—et®) - (— g2 + (t+ &) — @0> -exp(et?),



40 3 Models in One Dimension

which can also be seen as

-1

<_ (jt +2€t>2 +(t+ &) - @0> :

is welldefined for any € € [—¢g, €9] and extends continuously to L?(R) and by
using, for example, a global pseudodifferential calculus to S(R) . O

Remark 3.2.10.
By similar techniques, it is easy to prove that the eigenfunctions of h™ (&) are
in S(RT).

3.3 Montgomery’s Model

We briefly discuss a one-dimensional model that is useful for the description
of the results in dimension 3. Although not directly used later, it can be
interesting to see how it appears first in the analysis of “magnetic bottles”.

We consider in Ri,y , and for some parameter x > 0 the operator

2
Pi=—0+ (—z'ay + ’;ﬁ) . (3.47)
The magnetic potential is A = (0, kx?/2), and we have

curl A = kx .

So the magnetic field vanishes along the line {x = 0}. Let us describe the
spectral analysis of this model. After a Fourier transform in the y-variable,
we first get

A I{/ 2

P=-0*+ <n+ 2x2> .

This leads to the analysis of the family, parametrized by n € R, of self-adjoint
operators on L?(R):

A d? K 9\2
Py) = - ( )
==t (1t ,2
Using a simple dilation, we get

. Sy . ~ - K 123 . d2 2 2
info(P) = 1I$f inf o (P(n)) = ‘2‘ 1r,§f inf o <— dr? + (r° + p) > . (3.48)

Let us summarize some properties of the family of operators

S(p) = —ddrz + (r* +p)?, (3.49)

and of the corresponding ground state 9” .
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Theorem 3.3.1.
1. There exists a unique p = pmin Such that

. e d 2 2 - & 2 2
Dy = Hgf info ( 2 + (r* + p) ) =info (— g2 + (7" 4 pmin)* ) -
(3.50)

2. P belongs to S(R) and is even.

Sketch of proof.
Except for the uniqueness of the minimum, the proof of these statements is
not too difficult.

It is immediate to see that the lowest eigenvalue 0(p) of S(p) tends to o0
as p — +oo. Also, first-order perturbation theory gives that ©'(p) > 0 for
p=0.

To analyze the behavior as p — —oo, it is suitable to do a dilation
r = /—ps, which leads to the analysis of

o (=2 4 6217

with h = (—p)~3/2 small. Semiclassical analysis is therefore relevant and it
is easy to show, using harmonic approximation, as it will be explained in
Chapter 7, that

P(p) ~ 2lp|> as p— —oo.

It is then clear that the continuous function #(p) admits a minimum for a
strictly negative pmin , which is given, using the Feynman-Hellmann formula,
by

Pmin = — /T2|¢pmin (T)|2 dr. (351)

O

3.4 A Model Occurring in the Analysis of Infinite Sectors

When looking at problems in an infinite sector of opening angle o, we get—
after various changes of variables and a gauge transformation—the question
of determining the lower bound for the quadratic form

1
Qau:a/ <2t8—inu2+ 8u2)dtdn,
@=af o (O o

where we minimize over the L2-normalized functions in the variational space
V={ueL?|t"20u € L* Vt(d; — in)u € L*},
with L? = L?(]0, +oo[x] — 1/2,+1/2]).
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When analyzing the asymptotics of the model in a sector with a small
opening angle, it is natural to think that, as @« — 0, the ground state will be
essentially constant in the n variable. This leads us to restrict attention to the
subspace of the 7 invariant functions. On this space the quadratic form @,
takes the reduced form

+oo t
Qred(u) = 2a/ <t|5‘tu|2 + |u|2> t.
; 12

Dividing by «, the differential operator associated with the quadratic form
Qi is
d d t

Lmean — _9 52
dttdt + 6’ (3.52)

which consequently plays the role of a “mean-value” operator (after integrat-
ing over the angle variable). This operator is easily seen to have compact
resolvent. Furthermore, its ground state energy and corresponding ground
state are given by

mean __ 1 u p— 1 ex — t
= (t)f\/g p( 2¢3)' (3.53)

3.5 Notes

1. The method of difference-quotients, which can be used in the proof of
Proposition 3.1.1, is explained in [LiM] or [GiT].

2. The family h™¢ of model problems on RT, first appeared in the work
of de Gennes. In physics books, one usually gets a partial estimate
by considering a problem on the line with the potential (|t| + &)? for
& < 0. The complete mathematical analysis first appeared in the works
of Bolley [Bol] and Bolley—Helffer [BolH1], who discovered the role of
(3.21). The proof of (3.21) in full generality was obtained by Dauge—Helffer
[DaH].

3. The half-axis models, h™¢, reappeared a few years later in the analysis of
2D problems. The first one is the case of the disc [BaPT], which will be
discussed in detail later. We should also mention the papers of Sternberg
and collaborators (cf. [BeS, dPiFS)), who discovered new relations between
the moments, and at about the same time the work of Lu-Pan (see [LuP3|
and references therein). The general formula for the moments for k£ > 3
given in [BeS] is

AkMy, = (k — 1) {46 M5 + (k — 2)[€5 2 92(0) + (k — 3)Mi_4]}. (3.54)

4. The estimate of the value of © is often carried out in physics texts by
using appropriate Gaussians as test functions. That yields quite good
upper bounds. The lower bound of Proposition 3.2.8 is given in [LuP3].
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We also state the following numerical values from [Bonl, Bon3] (containing
also a rigorous analysis of the error):

Ci~ 0254, ||~ 0.768. (3.55)

Another approach is using (Weber) special functions. If u(¢;\) is the
unique solution in R of
d? 9
(_dt2 +1 )\)uO,

such that lim;_, ; o t(l”\)/2et2/2u(t; A) = 1, then ©g = &2 can be recovered
as the solution of (9;u)(£, &%) = 0. This has been implemented in Mathe-
matica by M. Persson and yields the same numerical values as above
(3.55). This approach can, in principle, give arbitrarily good precision.

. The global pseudodifferential calculus is, for example, presented in [Hel]
and in [Ho| in the usual context of the Weyl calculus.

. Montgomery’s model appears in a problem in sub-Riemannian geometry:
Can we hear the shape of a zero locus [Mon] (see also [HeM2]). It also
appears in the theory of analytic hypoellipticity. Its role in
three-dimensional superconductivity problems was first discovered by Pan
[Pa6] and then exploited by Helffer-Morame [HeM5, HeM6], see also
[HeK1, HeK3]. The fact that there is a unique minimum was numerically
observed by Bolley and discussed in Pan-Kwek [PaK]. A proof is given in
[Hel0], who obtains in addition the nondegeneracy of the minimum.

. Section 3.4 follows [Bonl], who gives much more complete information
(complete expansion in powers of o as @ — 0). The reader interested
in the sector problem can continue his or her reading of this question in
Section 4.4, where a universal upper bound of the ground state energy is
given.
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Constant Field Models in Dimension 2:
Noncompact Case

Before we analyze the general situation and the possible differences between
the Dirichlet problem and the Neumann problem, it is useful—and actually a
part of the proof for the general case—to analyze particular model geometries.

4.1 Preliminaries in Dimension 2

Let us consider, in a regular domain €2 in R? | the Neumann realization (or the
Dirichlet realization) of the operator Ppg with

F(n,a2) =
The magnetic Neumann boundary condition [as introduced in (3)] is the natu-
ral condition considered in the theory of superconductivity; see
Chapter 10. We will assume B > 0. If the domain is invariant by dilation,
one can reduce the analysis to B = 1. Let us denote by AY(B,{) and
AP (B, ) the infimum of the spectrum of the Neumann and Dirichlet realiza-
tions, respectively, of P in (2. Depending on €2, this infimum can correspond
to an eigenvalue (if €2 is bounded) or to a point in the essential spectrum (for
example, if Q = R? or if = R%T). The analysis of basic examples will be
crucial for the general study of the problem.

—T2,71). (4.1)

4.2 The Case of R?

We would like to analyze the spectrum of Pgr more compactly denoted by:

2 2
Sp = <_iax1 - ?.%2) + <_i812 + §$1> : (42)

We first look at the self-adjoint realization in R?. Let us briefly show
how one can analyze its spectrum. We leave as an exercise to show that the

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 45
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spectrum (or the discrete spectrum) of two self-adjoint operators S and T is
the same if there exists a unitary operator U such that

US+i) U t=T+i)*.

We note that this implies that U sends the domain of S onto the domain of T".
In order to determine the spectrum of the operator Sp, we perform a
succession of unitary conjugations.

Step 1:
The first one, Uy , is defined, for f € L*(R?), by
Urf =exp (inlzz) I (4.3)
It satisfies
SpU.f =USLf,  VfeS[R?), (4.4)
with
Sk = (=i0z,)* + (—i0z, + Bx1)?. (4.5)

Remark 4.2.1. .

U, is a very special case of what is called a gauge transformation. More gene-
rally, as was done in the proof of Proposition 2.1.3 [see (2.11)], we can consider
U = exp(i¢) , where exp(i¢) is C*.

If Ap o= =30 (—10,, + Aj)? is a general Schrodinger operator associated
with the magnetic potential A, then U !AAU = Ag , where A=A+tgrado.
Here we observe that 3 := curl A = curl A . The associated magnetic field is
unchanged in a gauge transformation. We are discussing in this section the
very special (but important!) case when the magnetic potential is constant.

Step 2:

We now have to analyze the spectrum of S5 . Observing that the operator
has constant coefficients with respect to the xo-variable, we perform a partial
Fourier transform with respect to the xo-variable:

U2 = fmzr—vﬁz 5 (46)

and get by conjugation, on L*(RZ . ),

S% = (=i0s,)* + (&2 + Bx1)? . (4.7)
Step 3:
We now introduce a third unitary transform Us:
(Usf)(y1,&2) = f(21,&2), with y1 = 21 + % , (4.8)
and we obtain the operator
S = -0, + By, (4.9)

- 2(TR2
operating on L*(R} . ).
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The operator S%, depends only on the y-variable. It is easy to find an
orthonormal basis of eigenfunctions for this operator. We observe indeed that
if f € L*(Re,) (with ||f|| = 1), and if ¢, is the nth eigenfunction of the
harmonic oscillator, as defined in (3.7), then

(,&) | B|1 f(&2) - on(|B|2y)

is an eigenfunction corresponding to the eigenvalue (2n—1)|B|. So each eigen-
space has an infinite dimension. An orthonormal basis of this eigenspace can
be given by vectors e;(&2)|B|Y4¢,(|B|'/?y) where {e;} (j € N) is a basis of
L?(R). We consequently have an empty discrete spectrum, and the infimum
of the spectrum (which is also the infimum of the essential spectrum) is B.
The eigenvalues (which are of infinite multiplicity!) are usually called Landau
levels.

4.3 The Case of R*>t

We now consider the case of the half-space:
R = {(z1,22) |21 > 0}.

For the analysis of the spectrum of the Neumann realization of the Schrédinger
operator with constant magnetic field Sp in R?>%, we start as in the case of
R? until we arrive at (4.7). We can take B = 1 because a dilation will permit
us to get the general case. We can no longer use a translation to arrive to the
harmonic oscillator, because R is not invariant by translation. So we arrive
at the analysis of the operator

Syl = =02 + (& +11)?,

on L2(R} x Re,).

1

Rewriting L*(R] x Rg,) as a Hilbertian integral,

D
2R}, x Re,) = / (LA(R})} des
R

we can rewrite, with the notations of Section 3.2,

2 © N
3, = /R hYVE de, .

Then we can use the preliminary study in dimension 1 developed
in Section 3.2. Using a standard theorem on the Hilbertian integral of
operators, we get, with y;(£) denoting the jth eigenvalue of h™¥ (¢), that

o(SNET qu (4.10)
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Using the dilation, we get
N,R*+ N,R%+
o(Sp™ ) =IBlo(57 ). (4.11)

So the bottom of the spectrum is given by

. N.R2+ .

info (S ) :uglfu(f) |B| = ©¢|B]|. (4.12)

Similarly, for the Dirichlet realization, we find

inf o (S2F") = inf A(©)|B| = |B|. (4.13)

4.4 The Case of an Infinite Sector

We consider the Neumann realization of the Schrédinger operator with B =1
in a sector:

o
Qg = {(.’171,.1‘2) € R? | |z2] < tan(2) xl} ,

ie., Plé\fﬂa , where F(x1,22) := (—x2/2,21/2) generates a constant magnetic
field. We define

15 (a) :=info(Pgg, ). (4.14)

One can first show, using Persson’s theorem (see Appendix B), that the
infimum of the essential spectrum is equal to O :

inf oess(Pprg, ) = ©0 . (4.15)

So the question is to know if there exists an eigenvalue below the essential
spectrum. A simple result is:
Msect (a) 1

lim & = (4.16)

Computing the energy of the quasimode u,, ,

2 32 2
Qa3 (,3) = (pcos d, psin ) - ua(z,y) = cexp (z'p ; ¢) exp (—ﬁj ) ,
with 3 = a/v/3 + a2 and ¢ = $'/*a~'/2 chosen such that the L?-norm in the
sector is 1, one has the universal estimate
sect(oy < 417
TR (2.17)
which gives (4.16). This also answers the question of the existence of an eigen-
value below ©y under the condition that
@

V3 + a2

Let us mention three interesting conjectures.

<0Og.
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Conjecture 4.4.1.
For any a €0, [, there exists at least one eigenvalue p**°*(a) below Oy .
At present it is only known that p%°*(a) < Oy for all a €]0,7/2].

Conjecture 4.4.2.
The map 10, 7[> a — p**°* () is monotonically increasing.

Conjecture 4.4.3.
For a € [r, 2], the infimum of the spectrum is Oy .

Very persuasive numerical evidence has been obtained! by Bonnaillie-Noél
(see Fig. 4.1).

0.6 i
0.5+ // i
e
&
—~ 04F & 4
3
4
B
3
= oaf i
0.2r- 4
0.1 4
Essential spectrum
. Numerical estimates
0 L Il Il Il Il Il L
0 0.2 0.4 0.6 0.8 1 1.2

alw

Figure 4.1. u**“*(a) vs. a/7 for a € [0,1.257].

We end by giving the following theorem, whose proof is left to the reader.

Theorem 4.4.4.
Suppose that p**°*(a) < ©Og and that v is an eigenfunction of PfQ{Qa with
eigenvalue A < Og . Then there exist positive constants € and C such that

| e w@P + lpev@)P} de < i3 (4.18)

o

! The authors thank Virginie Bonnaillie-Noél for allowing them to reproduce her
graph here.
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4.5 Notes

. The case of R? is completely standard and appears at the very beginning

of quantum mechanics [Fo, Lan]. The eigenvalues are called the Landau
levels.

. The theory of Hilbertian integrals can be found in [ReS, Vol. IV,

Chapter XIII], and we mainly use their Theorem XIII.85.

. The case of R>% appears in the analysis of surface superconductivity by de

Gennes. It is treated mathematically in [Bol] and later in [LuP5], which
contains in addition an analysis of the L>-spectrum (both for R? and
R%%), which is useful in the blow-up arguments (see Chapter 11).
Section 4.4 can be seen as the natural follow-up to Section 3.4.

. After preliminary results devoted to the case Q = Rt x Rt and obtained

by [Ja] (using a result by [All]) and [Pal], a more systematic analysis in
angular sectors was carried out by Bonnaillie in [Bonl, Bon2].

. The limiting behavior for small angles (4.16) is proved in [Bonl, Bon2].

We do not show the lower bound, which is more difficult. For earlier,
nonrigorous work, see [SP].

The construction of quasimodes follows an idea of Bonnaillie-Fournais
published in [Bonl], which is reminiscent of constructions of [BrDFM].
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Constant Field Models in Dimension 2: Discs
and Their Complements

5.1 Introduction

In this section, we consider the disc and the complement of the disc in R?.
We will study the operator

P = (—iV + BF)?,

with Neumann boundary conditions, and where curl F = 1.

The constant curvature models—the disc and its complement—are impor-
tant for the precise understanding of general domains ). Consider a small
neighborhood of a boundary point zg. As a first approximation, we may
consider approximating by a straight boundary. This becomes the half-space
model considered in the previous chapter. A better approximation is obtained
by considering the disc (or complement of a disc) with curvature equal to
the curvature of 92 at xg. Thus, even if one is only interested in bounded
domains €2, one needs to consider both bounded and unbounded constant
curvature models.

First, we state a result for the case of Dirichlet boundary conditions.
As RV B becomes large, the following asymptotics holds:

MP(B,D(0,R))—B~2n"2B:R _BR? 5.1
1( 9 (a )) ™ eXp 2 . ()

We will actually not use this result in what follows. Our main concern is indeed
the case of Neumann boundary conditions. We will be interested in obtaining
a fine asymptotic formula for the ground state energy. In the literature, one
can find the following;:

Proposition 5.1.1.

ANV(B,D(0,1)) = 9B — C;VB + O(1). (5.2)

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 51
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However, in order to apply Corollary 2.3.3 to prove the monotonicity of
the ground state energy, we need better control of the remainder. That will
be the result of Theorem 5.3.1.

We will start with an accurate discussion of an approximating model. The
analysis of this approximating model in Section 5.2 is much more technical
than most of this book. The reader not particularly interested in this calcu-
lation may safely skip Section 5.2.

5.2 A Perturbed Model

In order to wunderstand the effect of the boundary curvature for
two-dimensional models, we need to consider a perturbed version of h¥:¢ .
Let 1 be small enough, and we will choose for definiteness

€10,1/100[ . (5.3)
Let x : R — R be a standard cutoff function
x(t) =1, for |t| <1, 0<x<1, and suppyxC]I[-2,2],
and define the function £ on R™ by
1) :=7x(2B7"T). (5.4)

Notice that ¢ depends on B and 7, though we will not include this dependence
in the notation.
We observe that

Ur) =T, if < B"/2, (5.5)
{r)=0, it > B", (5.6)

and that
0<t< B (5.7)

Consider, for §, B > By (with By large enough!), the quadratic form g, 4.5,

mantdl = [ (1- é) (45 (55(?2))2@(7”2

+ <1 \; )> |¢/ (1) dr (5.8)

defined on the space B!(R™).

1
! The condition Bg " > 2 is enough at this stage. It allows us to have the lower
bound (1 —¢/+/B) >1/2.
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This closed quadratic form defines an unbounded operator on

L? (R+; <1 - 62) dT>

(with Neumann boundary condition at 0). Denote by {A;(¢,,s5,8)}jen the
increasing sequence of eigenvalues of the self-adjoint operator associated with
@n,5,8 - Then we have the following result.

Proposition 5.2.1.
Let 1 €]0,1/100]. There exist positive constants C, co, M, and By such that
if B> By, then

o If|6| > M Bt then

52
A1 (@n,5,8) = ©0 + ¢o min (1, B) . (5.9)

o If|6| < M Bt then

Ao(qys8) > 1, (5.10)
and
M (ans,8) — (90 —CB 2 + Az(é)B‘l)‘ <C (1 ;';3) ,  (5.11)
where Ao s given by the expression
A2(8) = 3C1/O0((8 — d0)* + Co) (5.12)

for universal constants &y and Co and with Cy from (3.38).

Remark 5.2.2.
In particular, it follows from Proposition 5.2.1 that

inf X1 (¢y.5.5) = O0 - CiB™Y2 43C11/00CoB~ +O(B~%).  (5.13)

Proof.
Recall the unperturbed quadratic form ¢ from (3.10). Using (5.7), we get,
for all » € BY(RT),

gn.s.8l¢] > (1 — B"1/2)
+oo
X/ @' (7)* +

0

2

Ury? l6(r)[2dr.  (5.14)

T+§o+Bié5—B7§ 9

We then use the inequality

2

2
1 1 1
1 4) >(1—e)|r+& +B 26> - B lr)*,
€

T+&+B 20— B~
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with € = B27=2 and get the existence of a constant C' > 0, such that for all
deR,

Gns5[0] > (1 — CB1=1/2)gN-0t0/VB) g] _ cp2n=1/2 / |6(7)|? dr. (5.15)
This implies by the variational characterization of eigenvalues (see
Appendix A) that, for any j > 1,

Xj(an.5.8) = (1= CB* V) (& + 6/VB) — OB~ 12, (5.16)

In particular, using the nondegeneracy result (3.23), which implies the exis-
tence of cg > 0 such that

1(€) > g + comin (€ — &, 1) ,
we obtain
M(gns.8) > (1 —CB*71/2) [0 + comin(1,4?/B)] — CB*"~/2.
This again implies that (for M sufficiently large)
A (qns.8) > ©0 + chymin(1,6%/B), for all || > MBi+", (5.17)

where ¢}, > 0, and thus proves (5.9).

From now on, we consider only values of § such that |§] < MBat";
in particular, §/v/B is bounded.

To get the reverse inequality to (5.16), let us consider an eigenfunc-
tion f; of B¢ with eigenvalue p;(€). As mentioned in Remark 3.2.10, f;
decays exponentially at +oo. Applying Proposition A.1.3 to the subspace
V :=Span{fi,..., fn}, where the f;’s are taken with ¢ = & +6/v B, we get

N (@n5.8) < pi(éo +0/VB) + CB™~1/2 (5.18)

where the constant C' is uniform for |§] < MBi+". Combining (5.16) and
(5.18), we find

|\ (an.6.8) — (€0 + 3/VB)| < CB*1~1/2. (5.19)

In particular, we can conclude, using (3.17), that ¢, s 5 admits exactly one
eigenvalue below 1 for B sufficiently large. This proves (5.10).

The self-adjoint operator h(d, B) associated with gy 5 [on the Hilbert
space L2(R*; (1 — ¢/v/B)dr)] is the following differential operator (with
Neumann boundary condition):

() (- )

w1 3(2)2 (r+e+574 (5 “?2»2. (5.20)
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We will write an explicit test function for h(d, B) in (5.25), giving Ai(gy,s,B)

up to an error of order o(B~1).
For f € S(R*) we have

[0 B)s — (00 + B2t + B7'8) /|

1+ 102
— 21
e o( Y e

with
d2

b= dr?

FTH&)? (=),

d 2 2
b= dT+2(T+§0) (5— 2>+27(T+50) ;
d

Eg::TdT+

(5 - T;)Q +47(r + &) (5 - T;) +3r2(r+&)%. (5.22)

Notice, as part of the argument leading to (5.21), that £ can be replaced
by 7 up to errors in O(B~°°), since

/ T ) = PP dr = 0B,

(and similarly for expressions like [~ ¢'(7)2|f'()[* dr).

We will only consider ¢; and € as differential operators acting on S(R+)—
we do not consider their possible self-adjoint extensions in a given Hilbert
space.

Let ug be the known normalized ground state of hV:¢0 with eigenvalue O .
Let Ry be the regularized resolvent considered in Lemma 3.2.9. Let A;(0) and
A2(0) be given by

)\1 = <UO | E1U0> (523)
and
/\2 = )\271 + )\2727 with )\271 = <U0 | gQUO> 5 )\272 = <UQ | (El — )\1)U1> .

Here the inner products are the usual inner products in L?(R*, dr). The
functions u; and usy are given by

uyp = —Ro(h — /\1)11,07 Ug 1= —Ro{(& — )\1)1,61 + (EQ — )\Q)UO} . (524)

Notice that uwg € S(Rt) and that, by Lemma 3.2.9, Ry maps S(RT)
(continuously) to itself. Therefore, ug, u1, us (and their derivatives) are rapidly
decreasing functions on RT . Furthermore, each function satisfies the Neumann
boundary condition at 0.

Our trial state is defined by

VY=o + B 2u; + B u,. (5.25)
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We will need to make explicit how the objects above depend on §. We can
rewrite £, as

b= ddT + (26 — &) (T + &) + (T + &) (5.26)

From this, (3.38), and (3.41), it is immediate that
A =-Ci. (5.27)
In particular, A; is independent of §. Also, for some uj g, 41,1 € S(RT),
up = 0u1,1 + uro- (5.28)

Notice that
)\272 = —<u0 | (El — )\1)R0(E1 — )\1)’LLO> .

Hence, we get that A2(d) is a quadratic polynomial as a function of § . We find
that the coefficient of 62 is

1 —4(ug | (14 &) Ro(T + &o)uo) - (5.29)
Therefore, also us is quadratic in 4,
Uy = 52u2’2 + 6U2’1 + u2,0, (5.30)

with U2,2,U2,1,U2,0 € S(R+)
A calculation (using that |§|/v/B < 1, (5.21) and the decay of the involved
functions) gives

{08, B) = (80 + MB~2 + 2B~ 1) }u||

= [[{ts = ©0 + (& = M)B™2 + (& — A2)B~H ||+ O <1 ) |5|2>

B3/2

_s _ 1+ |6]?
= ||B 2[(21—)\1)u2+(32—)\2)u1]+B 2(E2_)\2)u2||+0< ‘ | >

B3/2
146
o (1111, a1

Here || - || denotes the norm in L?(R*; (1 — fB)dT). Furthermore,

1+ 4]
%1l L2 51— L)) = 1+0 < B : (5.32)

By the spectral Theorem 1.3.1, we get, combining (5.31) and (5.32),

dist (O + M B4 + 0B o(b(5.8)) =0 T1F
lst( o+ A1 + A2 ,a(h(9, )))_ B3/2 )
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Since h(J, B) has only one eigenvalue below 1, we have therefore proved that

_ _ 1+ 163
/\1(%,5,3) =0p+MB 2 + Ao B 140 < B3|/2‘ > . (5.33)

In view of (3.28), (3.35), and (3.36), we recognize that the coefficient of
52 in A2(9) given in (5.29), can be written as

1" (o)
2

Notice that 3C1v/©¢ > 0, which expresses the nondegeneracy of the minimum
of i at & . Since Az is quadratic in § , there exist therefore dg and Cy € R such
that

=3Cy|€| = 3C1\/Op =1 —4I5.

Ao (5) =3C; \/@0(((5 — 50)2 + Co) .
The constants dy and Cy are indeed defined by
3C1v/00Co = min Ay (6) = A2(80) -

Inserting this information in (5.33) finishes the proof of Proposition 5.2.1. O

5.3 Asymptotics of the Ground State Energy for the
Disc

In this subsection, we will state a precise asymptotic estimate that will help
us settle the question of diamagnetism for the disc. We remind the reader that
the spectral parameters C1 , Qg , and & were introduced in (3.24), (3.25), and
(3.38).

Theorem 5.3.1 (Eigenvalue asymptotics for the disc).

Suppose that Q = D(0,1) is the unit disc. Define 6(m,B), form € Z,B >0,
by

§(m,B) :==m — ]23 —&VB. (5.34)
Then there exist (computable) constants Co and 5y € R such that if
Ap = inf |§(m, B) - S, (5.35)
then, for allm >0,
M (B) = ©9B — C1VB +3C11/00 (A% +Cy) + O(B"2). (5.36)

When Q = R?\ D(0,1) is the exterior of the unit disc, a similar statement
holds. Let us define

5 (m, B) :== —m — 2 +&VB, K?t = ian |69 (m, B) — o] .
me
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Then, with the same constants as above,
M(B) = ©9B + CiVB + 301100 ((AFH? +Co) + O(B"2).  (5.37)

Remark 5.3.2.

As the proof will show, the constants Co,d¢ are the constants introduced in
(5.12). We recall that they can be expressed in terms of spectral data for the
basic operator hN-¢0 discussed in Section 3.2.

Remark 5.3.3.

For the exterior of the disc, one first observes, using Persson’s characteriza-
tion in Appendiz B, that the bottom of the essential spectrum is B and one
can show that when B is large, there exists at least one eigenvalue below B .
Therefore, it follows in particular that the ground state is a discrete eigenvalue
for large B .

Proof of Theorem 5.3.1.
We start by giving the proof in the case of the disc. Afterwards we briefly
indicate the changes in the case of the exterior domain.

For brevity, we write A;(B) instead of A;(B,D(0,1)). A simple argument
with a trial state, which will be detailed later in Section 8.2.1 for all domains
with smooth boundary, gives the preliminary upper bound:

Let D(t) = {# € R? : |z| < t} be the disc with radius ¢. Let Qp be the
quadratic form

O[] :/ |(~iV + BF)u|* dz,
DAND(Y)

with domain {u € H'(D(1) \ D(})) : u(z) = Oon |z = 1}. Let \(B)
be the lowest eigenvalue of the corresponding self-adjoint operator. Using the
Agmon estimates in the normal direction, which will be proven in a more
general situation in Theorem 8.2.4, we obtain

AM(B) < M\ (B) = A\ (B) 4+ O(B™). (5.39)

The first inequality in (5.39) is immediate by the variational principle. The
second estimate follows by using a cutoff version of the ground state i of
PgED(l) as a trial state in @B, since 1 decays exponentially away from
{]z| = 1} by the normal Agmon estimates.

Let H(B) be the self-adjoint operator associated with the quadratic
form @ B . In the remainder of the proof, we will use the fact that a similar
result on exponential decay holds for the first eigenfunctions of H(B) .
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Proposition 5.3.4.
For any p €]0,1[, there exist positive constants o, By, and C such that if

P e D(?—NK(B)) satisfies
()T = X)F
with B
B>By,  AMB)<(1-p)B,
then

[ eV G 4 B b)) do < C . (5.40)
D(1)\D(3)

Proposition 5.3.4 is essentially a particular case of Theorem 8.2.4 and hence
the proof is omitted here.

By changing to boundary coordinates [see Section F.1—if (r, ) are usual
polar coordinates, then t = 1 —r, s = 6], the quadratic form @B[u] and the
L?-norm become

_ 2m p1/2 ~
QB[u]—/O /O (1= t)7Y(=i0s + BA)ul? + (1 — t)|0pul? dtds, (5.41)

2 p1/2
Jull22 = / / (1= Oful deds, (5.42)
0 0

with A;(s,t) = y—t+ f’; . Here we have used Lemma F.1.1, and [see (F.8)]

B JocurlFde 1

Yo = |8Q| _2a

for the disc.
Performing the scaling 7 = /Bt and decomposing u in Fourier modes, we
find

)\1 (B) =B nlzléfZ €5(m,B),B - (543)

Here the function 6(m, B) was defined in (5.34) and es p is the lowest eigen-
value of the self-adjoint operator hs g associated with the quadratic form g; 5 :

dsald] = /OJB/Q (1- ¢B> (+e+5t (o 2)) 6()?

+ (1 - JB) |/ ()| dr . (5.44)

This quadratic form is considered to be a form defined on the space

L*((0,VB/2); <1 - \/TB> dr) .
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Let p,n €]0,1/100[ and let Zs be a normalized ground state for 65,3 . So

VB/2 _
/0 1= Jlo(n)Pdr=1. (5.45)

Then

e cither
€5(m,B),B > (]- - P) ’ (546)

e or we can apply Proposition 5.3.4 to e_imsg(\/Bt) to see that ¢ decays
exponentially in 7.

Using the rough bound (5.38), it suffices to consider the cases where €5, 5y, B <
(1 —p). Let x € C(R), with x =1 on a neighborhood of 0, and define

¢(7) := x(B™"7)o(7)

(extended by 0 to a function on RT). Then the decay estimate in Proposi-
tion 5.3.4 implies that [with the localized form g, 5(,,5),5 defined in (5.8)],

es(m,B),B = 45(m,B),Bl¢) = @5(m,B),B[¢] + O(B~>)
= qU,é(m,B),B[(b] + O(B_Oo)

> Mlansim ) [ 167 (1— fB)drw(Bm). (5.47)

Proposition 5.3.4 also implies that [with ¢ from (5.4)]

/|¢(T)|2 (1 - fB> dr =1+ O(B™).
Thus,

€s(m,B),B = M (@n,5(m,B),B) + O(B~>). (5.48)

Recall that \i(qy,5(m,B),8) Was estimated in Proposition 5.2.1. In particular,
with the constant M from Proposition 5.2.1, we have

A(@n.6(m,B),B) = O0 + coM2B21~ 2 |

for |6| > MBat". Therefore, such values of § correspond to a ground state
energy that is too large compared to the desired one and can be neglected.

For || < MB3t" we can use the explicit test function ¢ from (5.25)
(in the proof of Proposition 5.2.1) as a trial state for ¢s g . This will complete
(5.48) with a corresponding upper bound; i.e., we find

14163
es5(m,B),B = M(qn.5(m,B),B) + O < BL | > . (5.49)

2
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Remembering (5.39), (5.43), and Proposition 5.2.1, this finishes the proof
of Theorem 5.3.1 in the case of the disc.

When Q = R?\ D(0,1), we still have Agmon estimates. In this case the
curvature k = —1, and since the curvature is negative, the boundary coordi-
nates can be used on the entire domain. We find

1 [ 1
Yo = / F-v'(s)ds=—_;
0 2

27
therefore,
~ 1 t2
Aext t) = — —t—
1 (87 ) 2 ) ’
and the quadratic form becomes
2m
exty, / / (14 1) Y(—i0s + BA)u|? + (1 + £)|9yul? dtds

(5.50)

with

27 00
Huuizz/o /O t(1+t)|u)? dtds . (5.51)

After scaling and decomposition in Fourier modes, we find
557(B) = B ind e5 .1 (5.52)

with ee"t being the lowest eigenvalue of the quadratic form qg"g ,

o= [ (14 1) (ere-mi (5-7)) o

+ <1 + w) |6/ (7)|? dr (5.53)

on the space L? (R*; (1 + Jp)dT).
In the notation and sense from (5.21) and (5.22), we therefore find

H (6, B) = B + B35 + B S + O (1 " |253> : (5.54)
with
B =g, B = g, B =ty (5.55)
Therefore,
AP = — g, AP = Ay (5.56)

This finishes the proof of the exterior case. O
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Remark 5.3.5.

In the case of the disc, let A\1(B,m) denote the ground state energy of P}BV’Q
restricted to the space of angular momentum m , i.e., functions that have the
form e~ f(r) in polar coordinates (r,0). Then, using (5.39), (5.43), and
(5.46), we obtain that

o cither \i(B,m) > [\ B,
o or \i(B,m) = Besim,p),B+ O(B~>).
It is rather easy to deduce from the calculations above that if m is fized then
liminfg oo AM1(B,m)/B > Og. Thus, the integer minimal m(B) such that
M (B,m(B)) = inf; \i(B,j) will have to change with B, and this implies
crossings of eigenvalues by continuity. This means that we have the existence
of a sequence { By, }nen with B, — 0o and such that A\ (B,,) has multiplicity
at least 2 .

If, on the other hand, for n € N, we define B,, as the positive solution to

6(n, Bn) :=n— B; —&V/Bn =0,
then we have EBH = 0. Now using the asymptotics of \1(By,n) and those of
A (Bp,m), we observe that for n large,
A (Bn,n) = igf A (B, m).
Now (5.36) implies that
A (B, n) = ©9B,, — C1v/By, + 3C11/00Co + o(1)
and for all m # n
M(Bn,m) > 0B, — Ci\/ By + 3C11/00(1 + Co) + o(1) .

This proves the existence of a spectral gap of asymptotic size larger than
3C1v/©q along the sequence {B,} .
Similar arguments give the following two statements:

e There exists By > 0 such that for B > By, the maximal degeneracy of the
ground state energy A1 (B) is equal to 2.
e The spectral gap A2(B) — A\ (B) satisfies

lim sup ()\Q(B) — )\1(3)) =3C; \/@0 .

B—oo

5.4 Application to the Monotonicity

Proposition 5.4.1.
Let Q be the unit disc, D(0,1), or the exterior of the unit disc, R? \ D(0,1) .
Then the left- and right-hand derivatives X| 4 (B) exist and satisfy
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Xy (B) <X (B),

3
lim inf )\II’JF(B) > 0Oy — 201|§0| >0, (557)

B—+4oc0

3
limsup \; _(B) <0+ _Cilé]-
B—+o00 ’ 2

In particular, B — A1(B) is strictly increasing for large B .

Proof of Proposition 5.4.1.
We only consider the case of the unit disc, since the calculation is similar for
Q=R2\D(0,1).

The numerical fact that ©¢ > §C1|§0| follows from known identities.
We give the following short argument. From (3.39), we get that

3C1|6o| = 1 — 4l (5.58)

where I [introduced in (3.33)] satisfies Iy > 0. In particular, 3Cy1|| < 1.
Since it is known from Proposition 3.2.8 that ©¢ > 1/2, this proves the
desired statement (see also Note 4 to Chapter 3 for numerical values).

We now prove (5.57). Let g(B) = —CivV/B + 3C1v/00 (A% + (o) , a = Oy
By Corollary 2.3.3, we have to estimate limsupg_,. g(B + €) — ¢g(B) and
liminfp_oo g(B + €) — g(B). As discussed in Remark 2.3.4, we only need to
consider the oscillating part of the function g.

Notice that 0 < Ap < 1/2, for all B > 0. Furthermore, consider B > 1,
€ > 0. Let mg € Z be such that

-~ B+e -
Apye = |mo — 9 —&VB +e— o .
Then, since —1 < & <0,
~ ~ B+ « B <
ABJre_AB>"rn0_ 26_50\/3"‘6_50 _'m0—2—§0\/3—50
€ € €
> ==, = > — . 5.59
a ‘ 2 50\/B+e+\/B‘_ 2 (5.59)
Therefore,
~ ~ ~ ~ .~ ~ €
Abye— A = (Apie + Ap)(Apye — Ap) > —y
and we get
. . .9(B+e)—g(B) 3
1 f > — .
Jim fnf ; ==, 01V/00

The estimate of (5.57) follows by taking the limit € — 0. The proof of the
upper bound on the left-side derivative is similar and is omitted.
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The attentive reader may have realized a small problem in the argument in
the proof of Proposition 2.3.2—on which Corollary 2.3.3 depends—in the case
when Q = R?\ D(0,1). Since the vector potential F(z1,22) 1= 5(—x2,21) is
unbounded, one cannot estimate the term

/ [F(2)2 () ? d
Q

by the square of the L°°-norm of F, which is infinite. However, by the Agmon
estimates (see Theorem B.5.1), the eigenfunction v decays exponentially in
the radial variable, so we find that

[ F@P@Pd<c.
Q

with a constant C' independent of B . From this point the proof is identical to
the case of the disc. O

We can easily obtain results for other constant curvature domains by
applying scaling to the disc models. Let k¥ € R. Then the model with constant
boundary curvature k is

D(0, k1), if k>0,
Q= { R2\ D(0, [k1]), ifk<0,
R2+, ifk=0.

By scaling we see that, for k # 0,

B
A (B, Q) = k2)\1 <k2 , Qsign(k)) . (5.60)

Therefore, we find the following corollary of Theorem 5.3.1.

Corollary 5.4.2.
There exist positive constants C and By such that if Qy is the domain with
constant boundary curvature k , then for all k € R, B > Bgk?,

[A1(B, Q) — (80B — C1kVB)| < Ck*. (5.61)

5.5 Notes

1. The case of Dirichlet boundary conditions was considered by Erdés in
connection with an isoperimetric inequality [Er2]. Estimate (5.1), which
is a small improvement of his result, was proved in [HeM3| using the
techniques of [BolH1].
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2. The case of the disc with Neumann conditions was first considered by
Bauman-Phillips-Tang [BaPT] (see also [HoT]) who obtain (5.2). Another
proof with a worse remainder term was given in [HeM3]. More formal com-
putations were given in [S-J] for the disc and [BeBZ] for its complement.
These contributions indicate the role of the sign of the curvature.

3. The case of the complement to the disc was first given in [HeM3] with a
less precise remainder term.

4. For the purpose of the analysis of the monotonicity of the ground state
energy or for the analysis of the multiplicity, new improvements were
needed. They first appeared in [FoH4] and are explained in detail in
the present chapter.
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Models in Dimension 3: R3 or R®*

In the analysis of the magnetic Schrodinger operator with Neumann boundary
condition in an open set Q C R?, the first two models to analyze are the
constant field case in R? and the constant field case in R3* . The latter model
will permit us to understand the effect of the boundary.

6.1 The Case of R3

We start with the Schrodinger operator with constant magnetic field g =
curl F in dimension 3. After possibly performing a rotation in R? and a gauge
transformation, we arrive at the model:

Ppr = —851 + (—i(’)m + Bl‘l)z —9?

T3

(6.1)

with
B = ”ﬁ”a

being the strength of the magnetic field. Here we can take the partial Fourier
transform with respect to x5 and z3 in order to get the operator

—02 4+ (& + Bx)* + 6.
When B # 0, we can translate in the x;-variable and get the operator on

L%(R3):
—02 + (By1)® + 45
It is then easy to see that the spectrum is [B,4o00].
Remark 6.1.1.
Unitarily implementing the scaling x — B~'2x, one finds that Pgg is

unitarily equivalent to B~'Pg . Therefore, one only needs to go through the
discussion above in the case B =1.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 67
DOI 10.1007/978-0-8176-4797-1_6, © Springer Science+Business Media, LLC 2010
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Remark 6.1.2.

One can also give explicit quasimodes to show that info(Pr) < 1. For a
general constant 3 € R3 with || = 1, we consider the gauge where A =
éﬂ x x. We consider coordinates x = (x1,x|) corresponding to the perpendi-
cular and parallel components of the vector x with respect to 8. Then ground
state quasimodes can be written as

2 2
6—1/46—636“ 6_11-/4.

More generally, one can make a “magnetic translation” of these functions to
have them localized near an arbitrary point y = (y1,y)) € R3:

ue(z) = e~ Ag—elz—y))? giyixz L e—(m—yi)z/{ (6.2)

where y1 X x s the two-dimensional cross-product.

6.2 The Case of Rt

We now investigate the case of R*»* := {(z1,72,23) € R3|z; > 0}. In this
case, there is one geometric parameter, namely, the angle between the mag-
netic field and the boundary {x; = 0} . We will see that the infimum of the
spectrum is a monotone continuous function of this angle with the lowest
value ©¢ being attained for the magnetic field parallel to the boundary and
the highest value 1 being attained when the magnetic field is perpendicular
to the boundary.

6.2.1 An easy upper bound

We would proceed as in the case of R, but our rotations have to conserve
R*T and its boundary. Let 3 = (8323, 013, 512), and let us start from the
particular gauge choice

P(B) i= =02, + (—i0s, + Br221)? + (=104, — Br3z1 + Po3z2)?

in R®*. After scaling, we can assume that 3%, + 3% + 33, = 1.
More precisely, the operator P(8) is defined as the positive operator
associated with the closed quadratic form

U /3 |00, ul? + [(—i02, + Brow1)ul? + |(—i0zy — Brsmy + Baswa)ul® da
R3.+
with domain
{u € LX(R¥T) |0y u € LAR3 ), (=idy, + Prowr)u € L2A(R3Y),

(=102 — Bi3x1 + Poazza)u € Lz(R3’+)} .
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Let us start by noticing the following inequality:
info(P(8)) <1. (6.3)

Proof.
We can implement the quasimodes of Remark 6.1.2 in order to prove (6.3). We
only sketch the geometric idea. For a given € > 0, we choose the localization
point y far away from the boundary. We can now insert the u from (6.2) in
the quadratic form restricted to R®*, and realize that the difference with the
form on the entire space is exponentially small in the distance from y to the
boundary.

We have thereby established (6.3). O

6.2.2 Preliminary reductions

We return to the differential operator P(f3). After performing a rotation in
the (2, x3)-variables, we can assume that the new magnetic field B satisfies
B12 = 0, the new ;3 satisfying

By = B + Bs -
So we have now reduced to the problem of analyzing
P(By1,B2) := =02, — 02, + (=0, + B121 + f212)”

in {z1 > 0}, where
B+ B =1.
Here we have

B} = B33, B3 =P+ Bis .

So we arrive at the following model:
£(9, —i0y) = —8:51 — (‘)iz + (=90 + w1 cos Y + zo sin 19)2 ,

which only depends on the parameter ©. Geometrically, sint = § - v (where
v is the interior normal vector), and so 9 is the angle between the magnetic
field and the (tangent plane to the) boundary.

By a partial Fourier transform in the ¢-variable, we arrive at

L£0,7) = —851 - 352 + (T + 21 cos ¥ + xasin)?

in {z1 > 0} and with Neumann boundary condition on {z; = 0} . It is enough
to consider the variation with respect to ¥ € [0,7/2].
The bottom of the spectrum is given by

$(9) = inf o (£(9, —i0y)) = inf(inf o(£(9, 7)) . (6.4)
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Lemma 6.2.1.

1. If 9 €]0,7/2], then o(£(9,7)) is independent of T .
2. The function ¥ — ¢(¥) is continuous on |0,7/2] .
8. At the endpoints ¢ takes the values

0)=0y<1, and < (ﬂ> =1. (6.5)

Proof.
The proof of the first assertion is easy since the translation zg — xo+7/sind,
exchanges £(1, 7) and £(1,0).

We now prove the second assertion. After the change of variables y; =
cos¥xy, y2 = sin z2,! we get a continuous family of operators with a fixed
domain. Using the min-max principle (see Appendix A), the result follows
easily.

To prove the first inequality in (6.5), we first observe that

£(0,—i0) = =02, — 02, + (—i0y + 31)*.

After a partial Fourier transform in zs and ¢, we thus have to analyze the
bottom of the spectrum of the family:

£(0,7,&) == —8%1 + 53 + (1 + 7')2 .

This infimum is obtained as the infimum over 7 € R of the spectrum of the
family:

2(0,7’,0) = _831 + ((L‘l +T)2 .
This is the model h™ () that was analyzed in Chapter 3.

To prove the second inequality in (6.5), we start from

S(g,T) =07 — 02 + (T+m)>.

The infimum of the spectrum is the same as the bottom of the Neumann
realization of
_a:il - 822 + x% ’

in {z1 > 0}. This is easily computed (by separation of variables) as being
equal to 1 (the infimum of the spectrum of the harmonic oscillator). O

6.2.3 Spectral bounds

Lemma 6.2.2.
For ¥ € [0,7/2], we have the bounds

¢(¥) < ©gcosd +sind, (6.6)

! Here we use the restrictions on ¥ .
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and

s(9) > Op(cosV)? + (sin9)?. (6.7)
Furthermore, the function [0,7/2] 3 ¥ — ¢(¥) is monotone increasing.

Notice that by Lemma 6.2.1 the bounds (6.6) and (6.7) are valid—actually
with strict inequalities—for ¥ € {0,7/2}. Thus, it suffices to consider 9 €
10, 7/2[. Also, by combining Lemma 6.2.1 with (6.6) and (6.7), one finds that
¢ is continuous at 0 and 7/2. Notice though that the upper bound (6.6) is
weaker than (6.3) for ¢ near but below /2.

Proof.
We will prove (6.6) for © €]0,7/2[. Let us write
£(0,0) = =02 + (z1cosV + 2)* — 02 + (z2sind — 2)°
+ 2(x1 cos 9 + 2)(x2sind — z).

Use as quasimode the product of the eigenfunction attached to the lowest
eigenvalue of —92 + (x1 cos¥ + z)? and of the eigenfunction attached to the
lowest eigenvalue of —5‘%2 + (w2 sind — 2)%. This gives, by a good choice of z
(z = & V/cos ), the desired upper bound.

We will now prove the lower bound (6.7). We only need to consider the

case when ¥ €]0,7/2]. According to Lemma 6.2.1, we can take 7 = 0 and we
have to analyze

£(0) := £(9,0) = =92, — 92, + (1 cosV + z2sin 1) (6.8)
Let us introduce a parameter p € [0,1] and associate the following decompo-
sition
£(0) := Pi(p,9) + Pa(p, V), (6.9)
with
Py i=— 02 + p*(v1co8? + x28in9)?,

6.10
Py i=— 082 + (1—p*) (21 cos? + zosinvd)” . (6.10)

We will find a lower bound of the spectrum of £(¢) by considering the sum
of the lower bounds of the spectra of the two operators P; and P, . Easy
computations lead to

inf o(Py(p,9)) = pOg cos v (6.11)

and
inf o(Py(p,9)) = /1 — p?sind. (6.12)

Choosing p = cos ¥, we obtain (6.7).
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We finally prove the monotonicity. The case ¥ = 0 is a consequence of
(6.7) and (6.5). The case ¥ = /2 follows from (6.3) and (6.5). We therefore
assume that ¥ €]0,7/2[ and consider £(¢9) in R*™ .

We first use the change of variables

u1 = 1 cos + xosin Uy = —x1 sind + x5 cos
whose inverse is given by
T1 = uy cost¥ — ug sind, To = uy sind + ug cos? .
This shows that £(1J,0) is unitarily equivalent to
L'=-0; — 02, +uf, (6.13)

in {u; > tanduz}.
A new change of variables,

Y1 = —u1, Yo = —tand usg,
shows that this problem is unitarily equivalent to the Neumann realization of

2 2 2
LMY = —0y, — tan®(9) 0y + v, (6.14)
in {yg > yl} .

By unitary equivalence, ¢(1) is the bottom of the spectrum of this new
operator. The monotonicity is immediate from (6.14), via the min-max prin-
ciple. a

We have ¢(9) < 1. If the inequality was strict, i.e., if we were able to prove
strict monotonicity directly, we would get, by combining with our result on
the essential spectrum, that ¢(«) is an eigenvalue.

Unfortunately, the strict monotonicity is clear only when we know that
¢(¥) is an eigenvalue. Note that our “rough” upper bound does not give the
result, and so we are obliged to prove an upper bound of ¢(4) in another way,
thereby showing that it is less than 1 as soon as ¢ < 7/2. We will give such
a result in Section 6.2.5.

For the behavior near 1 = 0, we will later need

() = O + Gol9] + O(1?) (6.15)
as 9 — 0, with
5o = \/“ ;’50) . (6.16)

We recall from (3.23) that
50 >0. (617)
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The expansion (6.15) is a consequence of the more general property

Proposition 6.2.3.
The function s admits at 0 the following asymptotic expansion:

<(0) ~ O+ ) anld|". (6.18)

n>1

Sketch of the proof.
After a scaling (y1,y2) = (1(cos¥)2,zosind/(cosd¥)2), the operator £(1)
introduced in (6.8) becomes cos® P(e), where P(e) is defined on R+ by

P(e) := —€°0;, — 02 + (y1 +42)°,

with € = tand .

Then a Born—Oppenheimer technique is relevant for getting the complete
expansion, which will not be detailed in this book. For the weaker result [the
lower bound in (6.15), which is the only important point], one can simply
observe that

inf o(P(e)) > inf o(—€28? + pu(t)), (6.19)

where () is the lowest eigenvalue of h™¥V:¢ introduced in (3.9). Here —e20? +
p(t) is considered as an operator on L%(R). Observing that, by (6.16) and
(6.17), we have a nondegenerate well at £, we can then use the semiclassical
analysis (see Section 7.1 in the next chapter) for a one-well problem to get,
via the harmonic approximation, the suitable lower bound. O

6.2.4 Analysis of the essential spectrum

Proposition 6.2.4.
If9 €]0,7/2], then the essential spectrum of £(0) is contained in [1,+o0].

Proof.
Using Persson’s criterion (see Appendix B), we have to show that if the sup-
port of w is in {z1 > R} U {|z2| > R}, then we have

(C@ulu) > (1 = e(R))llul?,

with e(R) — 0 as R — +00.

We start by reducing to the two cases suppu C {1 > R} and suppu C
{lz2| > R}. Let f2 + f2 = 1 be a partition of unity on R with f; = 1 on
[—1/2,1/2], supp fi C [—1,1]. Define f; r(z) = fij(z2/R) and u; = fj ru.
Then, by an integration by parts,

(L@)ulu) = (L(@)ur [ur) + (£(D)uz |uz) — gz | (6.20)
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Furthermore, suppugs C {|zz2| > R} and—using that suppu C {z1 > R} U
{lz2| > R}—suppur C {z1 > R}.

We treat the first case, {1 > R}, by observing that one can use the
Dirichlet result or, better, the lower bound of the operator in R?. After a
rotation, the operator is isospectral to —92, — 92, + 7, whose spectrum starts
at the value 1.

For the second case, {|z2| > R}, one uses the decomposition (6.9), (6.10)
with p = cos?. Under the assumption that the support of u is contained in
{|z2| > R}, we have

(Pu(p.0)ul ) = cosp int (s cot(®)) [l

where p(7) is the first eigenvalue of the Neumann realization h™°7 of the
operator —;; +(t+7)?in Rt.
This gives, for R large enough,

(Pi(p,O)u|u) > cosd p pu(—Rcot(9)) [|ul®,

when suppu C {|z2] > R}. Combining this estimate with (6.12), we get the
result by recalling [see (3.15) and (3.13)] the behavior of u at oo:

lim p(r) =1 and 11111 p(r) = +oo.
O
6.2.5 A refined upper bound: ¢(9) < 1
In this section, we will prove the strict inequality
(W) <1, forall ¥€]0,7[. (6.21)

For this analysis, we come back to L™V | which was introduced in (6.14). For
simplicity, we define a by

=tan?d?,
and we note that a > 0 if ¥ < /2. We now introduce:
t2 t
f(t) = exp— 9 and  F(t) 2/ exp —s2 ds.

— 00

We observe that F' is strictly positive, that

, lig_n F(t) =, (6.22)
and that 1
F(t)~ _ exp—t?, ast — —0c0. (6.23)

2t
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We shall apply the min-max principle (see Appendix A) with the test
function:

U(y1,y2) = f(y1)9(y2)

with g to be determined in L?(R).
Integrating ¥2 in the domain {y2 > y1}, we first have

—+o0
1P = [ o) F )y
Let us now compute the energy associated with W. We first get

welv) - [ " ) ( [ e+ sy dyl) dy,

— 00 — 00

1 Hoo 2 2
+ / g (y2)" F(y2)dys2 -

@ J o

After a first integration by parts, we get
2 oo 2
@) = [+ [ ) ) ) do

— 00

1 e / 2
+ 9" (y2)"F(y2)dy2

— 00

and then, after a second integration by parts,

“+oo “+oo
e | = 0 - [ g r e et [ P
= 0P + Salg), (6:24)

where

+oo 1
Ya(9) ::/ 9'(y2) <ag’(yz)F(yz) —g(yz)F’(yz)) dys .

We observe that we will have finished the proof of (6.21) if we find a g € L?
such that 3, (g) is strictly negative. Let us first see what happens if we try
to have the sum inside the integral vanish. A natural try is then to solve the

equation
1
ag’(yQ)F(ya) —g(y2)F'(y2) =0,

which leads to g = c g, , with g, = F®. Notice that F® is not in L? at +oc.
We can compute X, (g4) for more general &. We get

+oo .
Sa(ga) = (a0~ — 1) / () 25 () s

— 00
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Let us first confirm that this integral is welldefined. There is no problem at
400, because F' tends to a constant and f is exponentially decreasing. Near
—o00, F decreases like f? (see above), and so the integral converges for all
& > 0. Now the expression is clearly negative if 0 < & < «.

We now choose such an & . But g4 is not in L? at 400 . So we are obliged
to introduce a cutoff function y,, defined by

Xn(t) =X (;) :

where x is equal to 1 for ¢ < 1 and equal to 0 for ¢ > 2. We now take
g = gan = Xn(t)ga(t). We observe that, due to (6.22), the corresponding
|Wa,nll? increases like n as n — +o0o. More precisely, we have

—C 4 T < | Wan]? < 2n)7H + O

Let us compare ¥4 (ga,n) and Xq(ga) as n — +oo. We have

PO M PACRY G PAC

The more problematic term is:

1/+mx’<t>29§(t)F(t) it

n? J_ n
But this term is less than G [|W4,,[|%, that is of order n x O(1/n?) = O(1/n).

The other terms appearing in the computation of ¥,(ga,n) — Lalga) are
O(1/n). Now, observing that ¥,(gs) < 0, we get, for n large enough, that

new C
(L 0) < %(ga) + -+ 1 Wanl® < [1Wan]®
This shows property (6.21).

6.2.6 Application
Coming back to the initial problem, we have shown that
inf o(P(8)) > (Q0(Bs + B) + 53) (B3 + B + B5) 2.
Moreover, one verifies that we have equality when (a3 = 0:
inf o(P(8)) = (€0 (5 + 512)*

This clearly shows that when |G| = 1 is fixed, the energy is minimal when the
magnetic field is parallel to the hyperplane 1 = 0.
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6.3 Notes

1. The case of R? was also studied by Fock and Landau [Fo, Lan].

2. The first results can be found in Kato [Katl] and Avron—Herbst—Simon
[AvHS1]-[AvHS3].

3. The results presented in Section 6.2 were first obtained by Lu-Pan in
[LuP7], Pan in [Pa6], and then rewritten in papers by Helffer—Morame
[HeM3]-[HeM6], see also [Ar2].

4. Further estimates and identities for the half-space model are obtained in
the recent work [Ra3].

5. Proposition 6.2.3 has been established in [HeM4].
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Introduction to Semiclassical Methods for the
Schrodinger Operator with a Large Electric
Potential

In this chapter, we present one of the basic techniques for analyzing the
ground state energy (also called lowest eigenvalue or principal eigenvalue)
of a Schrédinger operator in the case when the electric potential V' has non-
degenerate minima, in the limit of large coupling constant B. This problem
turns out to be a semiclassical problem.

7.1 Harmonic Approximation
7.1.1 Upper bounds
The case of the one-dimensional Schrédinger operator

We start with the simplest one-well problem:

2

Ppge, = r + B*v(x), (7.1)
where v is a C*°-function tending to +oco at |z| = oo and having a unique
minimum at 0 with

v(0) =0.
Let us assume that
v"(0) > 0. (7.2)

In this very simple case, the harmonic approximation is an elementary exer-

cise. We first consider the harmonic oscillator associated with 0:
d2 1 " 2,.2
= a2 + 5 (0)B*z=. (7.3)

This means that we replace the potential v by its quadratic approximation
at 0, namely, ;v’ ’(0)x?, and consider the associated Schrédinger operator.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 79
DOI 10.1007/978-0-8176-4797-1_7, © Springer Science+Business Media, LLC 2010
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Using the dilation =z = Bféy7 we observe that this operator is unitarily

equivalent to
d2 1 " 2
Ty +,0 0)y~| . (7.4)

Consequently, as we have seen in Section 3.1, the eigenvalues are given by

B

M(B) = B(1) = (2n+ 1)B \/”"2(0) , (7.5)
and the corresponding eigenfunctions are
uB(z) = Biu,(B2x). (7.6)
Here!

2

Unp = Cp <dC; - \/v,/2(0) y) Un—1, (77)

where ¢,, is a normalization constant.
It is easy to see that

1
" 4 !
ui(y) = (U (0)) 67%\/ 2" y27

and, by recursion,

v/’ (0) 2

un(y)=Pn(y)e’N 2 Y

where P, is a polynomial of degree (n—1) that can also be obtained recursively.
We now return to the full operator Pgz,. For simplicity, we will only
consider the first eigenvalue. We consider the function ul’**PP |

szmmﬂm—M@(Bg?Uimpﬁwﬁgmgﬁ),

where x is compactly supported in a small neighborhood of 0 and equal to 1 in
a smaller neighborhood of 0. Note here that the H'-norm of this function over
the complement to a neighborhood of 0 is exponentially small as B — 400
We now get

(&M—B¢W$v“?”=0@b~ (7.8)

L We normalize by assuming that the L2-norm of uZ is one. For the first eigenvalue,
we have seen that, by assuming in addition that the function is strictly positive,
we determine u? (z) completely.



7.1 Harmonic Approximation 81

The coefficients corresponding to the commutation of Pg2, and x give
exponentially small terms, and the main contribution is

(@) = " O x(@)uf (@)

)

L2

which is easily estimated as O(B?2), observing that

v(z) — ;v”(O)x2 < Clz]® for |z| < 1.

The spectral theorem (Theorem 1.3.1) applied to (7.8) gives the existence
of C > 0 and By such that, for any B > By, there exists an eigenvalue A\(B)
of Pg2, such that

<CB:.

In particular, we get the inequality

M(B) < B \/”"2(0) L OB, (7.9)

Combining with a lower bound (which will be obtained in the next subsection),
one can actually prove that

M(B) - B V ”Héo) sCB. (7.10)

The harmonic approximation in general: Upper bounds

In the multidimensional case, we can proceed essentially in the same way. The
analysis of the quadratic case

1
H(—i0;, Bx) == —A+ 2BQ<Ax | z)

can be done explicitly by diagonalizing A via an orthogonal matrix U . There
is a corresponding unitary transformation on L?(R") defined by

Uf)(x) = fFU )
such that

_ e 1
u 11&1_;1 (o2 + "5 B%3) .

Using the Hermite functions as quasimodes, we get the upper bounds by
B Z?Zl Vii/2+ 0B 2) as in the one-dimensional case.
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Case of multiple minima

When there is more than one minimum, one can apply the above construction
near each of the minima. The upper bound for the ground state is obtained
by taking the infimum over all the minima of the upper bound attached to
each minimum.

7.1.2 Harmonic approximation in general: Lower bounds

It is rather standard? to show the existence of a constant C' and, for any
R >0, of a covering of R” | by balls of radius R, D(z/,R) (j € J), and of a
corresponding partition of unity with supp qbf C D(27, R), such that,

n

D@ =1, > > 10n0f P < ng : (7.11)

JjET {=1jeJ

Using this partition of unity, we can then write, for all v € C§°,

(Ppzyu | u) = Z<PB2V¢§%U | oFfu) — Z 0z, &5 ]|

gt

j
C
> (Ppevofiu| ¢fiu) - R ull?- (7.12)
J

We now suppose
R €]0,1].

Possibly taking a larger C', we can in addition assume either that the balls
are centered at the minima of V (denoted by 2%, k € K) or that the balls
are at a distance at least R/C from these minima.

In the first case, we observe that

[(Prevfiu | ¢fu) — (Prayoiu | ¢fu)| < C B*R?||gftul?, (7.13)

where P§2V is the quadratic approximation model at the minimum 27 | i.e.,
the operator obtained by replacing V' by its quadratic approximation

VF(z) =infV + ;(Hess V(z7*)(z — 27%) | (z — 27%))

if the ball is centered at the minimum.
In the second case, we use the fact that the minima of V' are nondegen-
erate, and find

2

B 2
(Ppay¢fiu | ¢ftu) > (32 inf V + R >||¢§‘u|2. (7.14)

C

2 One can first construct a covering by balls of radius 1 and an associate partition
of unity. We then get the general family by a dilation.



7.1 Harmonic Approximation 83

The optimization between the two errors appearing in (7.12) and (7.13)
leads to the choice R~2 = B?R3, that is to the choice

R=B%, (7.15)

and we then observe that R?/C = B~ E /C', which is dominant in comparison
with B~! as B — +00. We then get the lower bound

Al;f) > inf V 4 B~2(inf A (B, 2™)) - CB™*, (7.16)

where the infimum is over the various minima 7% (assumed to be
nondegenerate) and A1 (B, z7*) denotes the lowest eigenvalue of the harmonic
approximation at x7* PE,QV. Recall, by the explicit calculation on the har-
monic oscillator, that A1 (B, z7*) has order of magnitude B [see (7.5)], and so
the error term in (7.16) is indeed small.

7.1.3 The case with magnetic field

Let us consider two situations.

V has a nondegenerate minimum.

The first case is the case when V has a nondegenerate minimum at 0, with
V(0) = 0. In this case, the model that gives the approximation is

32
(—ide, + BAD? + 7 (V" (0)z | 2),
1

n

J

where AU is a linear magnetic potential generating the constant magnetic field

Bik = Bjr(0): )
3

Therefore, in a suitable gauge [note that by a linear gauge, one can first reduce
to the case when A(0) = 0],

A(z) - A(z) = O(|2]*).
After the dilation z = B_éy, we get the operator
“ 1
B | X_(=idy, + AD? + (V" (O)y | v) | ,
j=1

whose spectrum can be determined explicitly.
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Let us treat the two-dimensional case as an exercise. We start from

hi ho
g T T

—02 4 (=04, + Bz1)* +
with hy > 0,he > 0.
A partial Fourier transform with respect to the zs-variable leads to

h1

02 + (& + Bzy)* + 5

ho
2 2
T, O, -

A dilation leads to the standard Schrédinger operator

2
h h
—8?8§+<\/223+Bt> + 21t2.

So we have proved the isospectrality of the initial operator with a standard
Schrédinger operator, with quadratic electric potential

2
h h
VeV (s, t) = <\/ 225+Bt> + 21152.

Its ground state energy is immediately computed as
AB) = VA0 + B2, with A(0) = (\/h1 + \/hQ) V2.

In this formula, one explicitly sees the diamagnetic effect announced in Sec-
tion 2.1 and also that
A(B) — |B| < A(0), (7.17)

which is more specific to the quadratic case (paramagnetic inequality).
Lower bounds.

The lower bound is obtained similarly to the case without a magnetic field
once we have observed that

R(Ppa prvu | u) = Z<PBA,B2V¢§%U | pftu) — Z 0,07 [ ull?. (7.18)
Iy

J

Then, for the balls containing the minima, we must replace the magnetic
potential by its affine approximation at the minimum and control the remain-
der. Note that there is a “small” additional difficulty (of the same type as for
the manifold case) of controlling the term corresponding to the approximation
of the magnetic potential.

Let us more precisely describe what is going on. A new control is only
necessary for the balls centered at one of the minima. The idea is that the
harmonic approximation at the minimum [we choose one of the minima, taking
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coordinates such that 0 is the minimum of V', so V(0) = 0 and VV(0) = 0]
has to be replaced by

. B?
PyP? = (=ids, + BA}"(2))* + ) HessV(0)x -
L

We recall from the previous section that this spectrum is known and equal
to B times the spectrum computed for B = 1, as immediately seen by the
1
dilation x = B™2y.
After a gauge transformation, we can assume that
A(z) — A (z) = O(|z*)

and note that the magnetic field generated by Al"™(x) is the value of the
magnetic field generated by A evaluated at 0.
We now take R = B~ 5 and write

(Ppa,pevoliu | oftu) > (PEPPPoRu | ¢ltu) — CB5 || gltul|?

- B/ [(A(z) — A" (2)¢ftul - |(—=iV + BA™ ()¢ ul da
This leads first (omitting the reference to R, which is now fixed) to

(Ppa g2y dju | pju) > (PPPOpiu | dju) — CBs (| jul?
— CB5 || ¢jul - | (—iV + BA™(2))p,ul -

Using the Cauchy—Schwarz inequality with some (to be determined) weight
p(B), we obtain

(Ppa,g2véju | ¢ju)

4
> (PP pju | gju) — CB3 | djul)?

-ont (p(]g)

> (1—C B3 p(B)?) (PP ¢;u | p;u)

lldsull + p(BYI(V + z’BA“n<x>>¢>ju|2)

— CB% || pjul]> — C B3 p(B) 2| ¢,ul®.
The choice of p(B) = B~ 10 leads to
(Ppa,pevoliu | ¢ftu) > (1— CB75) (PFPP0 ¢lftu | ¢ftu) — O B3 ||oful?.

We are now essentially in the same situation as in the case without magnetic
field.
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Magnetic wells

We would like to describe a case where no electric potential is present.
We consider the rather generic case when § € C*(Q) satisfies, for some
((E(), yO) € Qa

Bz, y) > b:=P(z0) >0, V(x,y) € Q\{(x0,50)}, (7.19)
and we assume that the minimum is nondegenerate:
Hess B(x0,y0) > 0. (7.20)

‘We introduce in this case the notation

1 1/2
a="Tr (2 Hessﬂ(xo,yo)> . (7.21)
Theorem 7.1.1.
If A € C>(;R?), and if the hypotheses (7.19) and (7.20) are satisfied, then
2

AP(BA) = (b+ 2%3) B+o(1), (7.22)

where AP (BA) denotes the ground state energy of the Dirichlet realization.

The proof is based on the analysis of the simpler model where, near 0,
Blx,y) = b+ az® + By*. (7.23)

In this case, we can also choose (after a gauge transformation) a magnetic
potential A(z,y) such that

Ai(z,y) =0 and As(x,y) = bx + ;yx?’ + Bry?. (7.24)
When ( vanishes, other models should be considered. An interesting case

is the case when (8 vanishes along a line. This is related to Montgomery’s
model described in Section 3.3.

7.2 Decay of Eigenfunctions and Applications

7.2.1 Introduction

As we have already seen when comparing the spectrum of the harmonic
oscillator and that of the Schrodinger operator, it could be quite important
to know a priori how the eigenfunction associated with an eigenvalue A(B)
decays in the “classically forbidden region”—that is, the set of the z’s such
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that B2V (x) > A(B). The Agmon estimates give a very efficient way to
control such a decay.

Let us start with very weak notions of localization. For a family B — 9
of L?-normalized functions defined in Q, we will say that the family 15 lives
(resp. fully lives) in a closed set U of Q if, for any neighborhood V(U) of U,

liminf/ |Yp(z)*dx >0,
B—+oo Jyu)na

respectively,

lim [ (x)?de=1.
B—+oo Jyw)na
For example, we expect that the ground state of the Schrodinger operator
—A + B2V (x) fully lives in V~!(inf V) . Similarly, we expect that if?

B)

lim sup B2 < FE <inf aeSS(szszV) — €

B—+oc0

(for €9 > 0) and if ¢ is an eigenfunction associated with A\(B), then ¢ p will
fully live in V~1(] — oo, E]). This is the way we can understand that in the
semiclassical limit (remembering that the semiclassical parameter h is 1/B)
the quantum mechanics should recover the classical mechanics.

Of course, the above is very heuristic, but there are more accurate mathe-
matical notions like the frequency set (see [Ro]) permitting us to give a
mathematical formulation to the above vague statements.

Once we have determined a closed set U, where ¥p fully lives (and hope-
fully the smallest), it is interesting to discuss the behavior of ¢ 5 outside U,
and to measure how ¢ p decays in this region.

To illustrate the discussion, we can start with the very explicit example of
the harmonic oscillator. The ground state x — 71 Bi eXp(7§£E2) of — d(fz +
B?z? lives at 0 and is exponentially decaying in any interval [a,b] such that
0 & [a,b]. This is this type of result that we will recover but without having
an explicit expression for ¥ p .

7.2.2 Energy inequalities

The main but basic tool is a very simple identity for the Schrédinger operator
Ppa . p2v -

Proposition 7.2.1.

Let Q be a bounded open domain in R™ with C? boundary. Let V € C°(;R),

A € CO(R™) and ¢ be a realvalued Lipschitzian function on Q. Then, for
any u € C?(Q; C) satisfying

e cither the Dirichlet condition u‘BQ =0,

% This is the case, in particular, when liminf|;|_ ;o V(z) > inf V.
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e or the magnetic Neumann condition v - (Vu + iBAu)’39 =0,

we have

/ |Vsa (eP%u)|? dz + B? / (V —|Vo|?)e*Bul? da
Q Q

~® ( /Q €259 (Pya povu)(z) - ulz) dx) . (7.25)

Proof.
In the case when ¢ is a C%(Q)-function and A = 0, this is an immediate
consequence of the Green—Riemann formula:

/Vv-Vw dx:—/Av-wdx—/ (Ov/0v) - w dogq (7.26)
Q Q o0

where Jv/0v is the normal derivative at the boundary

(Ov/ov) = (v- Vv)faﬂ .

This gives in particular

/Vv-dex:—/Av~wdx, (7.27)
Q Q

for all v,w € C?(Q) such that w|aQ =0or (%/81/|8Q = 0. This can actually

be extended to v, w € H} ().
We then observe (we still treat the case when A = 0)

%/eQB‘b(fAu) cudr = §R/ (Vu) - (Ve2Bou) dx
= §R/ ((V — BV¢) eBou) - (V + BV¢)ePPu) dx
= /|(VeB¢u)|2dm - B? /|V¢|2|eB¢u|2 dx .
The case when A is nonzero is treated similarly. Using the gauge invari-
ance, one can first treat the case when A - v vanishes at the boundary.
To treat more general ¢’s, we just write ¢ as a limit as € — 0 of ¢ = xc* P,
where x.(z) = x(z/€) e~™ is the standard mollifier, and we remark that V¢ is

almost everywhere the limit of Ve = Vxe * ¢. When A is nonzero, we must
additionally use

/VBAU'VBAwdl‘Z—/ABA’U'de
Q Q
—/ (Ov/Ov +iBA -vv) - w dopq . (7.28)
o0

This identity can be used in the two cases considered in the proposition. O

Note that the proposition is also true for u € H?(Q).
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7.2.3 The Agmon distance

The Agmon metric associated with an energy E and a potential V is defined
as (V — E)ydx?, where dz? is the standard metric on R™. This metric is
degenerate and vanishes identically in the “classical” region: {z | V(z) < E}.
Associated with the Agmon metric, we define a natural distance

(1'7 y) = d(V—E)+ (1’7 y)

by taking the infimum:

1
diy_ y) = inf V(y(t) — BE)4 2|1/ (H)|dt,  (7.29
v-p), (z,y) U /O (V(v(1) = E)+]2 1Y (1) (7.29)

where C1P¥ ([0, 1]; 7, y) is the set of the piecewise C! paths in R connecting
x and y:

Ctre((0,1];x,y) = {y € CYPY([0,1];R™), v(0) =z, v(1) =y}.  (7.30)
When there is no ambiguity, we shall write more simply
CIZ(V,E)Jr =d. (7.31)

Similarly to the Euclidean case [which corresponds to (V — E); replaced by
1], we obtain the following properties:

e Triangle inequality

|d(z',y) — d(z,y)| < d(z',x), Ve, o,y € R™. (7.32)

Vad(z,y)|* < (V — E)+(z), (7.33)
almost everywhere.

We observe that the second inequality is satisfied for other distances like

d(z,U) = yHElg d(z,y).

The most useful case will be the case when U is the set {z | V(z) < E}.
In this case, d(z,U) is the distance to the classical region associated with the
energy E . In this case, we will write

dp(z) = d(z,{z | V(z) < E}). (7.34)

As these notions are expressed in terms of metrics, they can easily be extended
to manifolds.
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7.2.4 Decay of eigenfunctions for the Schrédinger operator

When up is a normalized eigenfunction of the Dirichlet realization in €2
satisfying

Ppa p2yup = Apup,
then the identity (7.25) roughly states that exp(B¢) up is well controlled
(in L?) in a region

(e, B) = {x | V(z) — V()| — 23; > € > O} :
by exp(supg\ o, Be(z)) . The choice of a suitable ¢ (possibly depending on B)
is related to the Agmon metric (V — E) dx? when A\g/B? — F as B — +c0.
The typical choice is ¢(z) = (1 — €)dg(x), where dg(x) is introduced in
(7.34). In this case, we get that the eigenfunction is localized inside a small
neighborhood of the classical region and we can measure the decay of the
eigenfunction outside the classical region by

exp[(1 — €)Bdg(z)] up = O(expeB), (7.35)

for any € > 0.
More precisely, we get the following theorem:

Theorem 7.2.2. :
Let us assume that V' is C*°, semibounded and satisfies

1|ir|n infV>infV. (7.36)
Let E be such that
infV<E< lliIIn inf V. (7.37)

Let up be a (family of L*-) normalized eigenfunctions such that

Ppa p2vup = Apup, (7.38)

with N
limsup > < E. 7.39
imsup 1 < (7.39)

Then, for all € > 0 and all compact K C R™, there exists a constant Ce i
such that for B large enough,

||VBA(eBdEuB)HL2(K) + ||eBdEuB||L2(K) < Ce,K expeB. (7.40)

Remark 7.2.3.

Useful improvements in the case when E = minV and when the minima
are nondegenerate can be obtained by controlling what is going on near the
minima of V. more carefully with respect to B . It is also possible to control

the eigenfunction at co. This was actually the initial goal of Agmon (see also
Theorem B.5.1).
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Proof.
Let us choose some 6 €]0, 1[. We shall use the identity (7.25) with

e V replaced by V — 33,
6= (1—8)dp(z),
e Ppa p2v replaced by —Apa + BV — Ap.

Let
Qf ={z€Q, V(z) > E+6}, Oy ={zeQ, V(z) < E+6}.
We deduce from (7.25)

A
/ |VBA(eXpB¢UB)|2d$+BQ/+ (V - Blz - |V¢|2> exp2Bo|up|? dr
0 0

)
</ exp 2B¢ |up|? d:r) .
0

)

A

< B2 sup ‘V@s) e Tk

_ B
2695

Then, for some constant C' independent of B € [By,+oo[ and § €]0, 1],
we get

A
/ |VBA(expB¢uB)|2dx+B2/+ <V— Bg - |v¢|2> exp2Bé lup|? dx
Q Q

)

< C’BQ/ exp2B¢ lup|? d .

Q5

Let us observe now that on € we have [with ¢ = (1 — §)d(-,U)]
AB
V-8 96 2 (2 8)8 4 o1),

as B — o0o. Choosing B(4) large enough, we then get, for any B € [B(4), +oo|,
AB
B2

This permits us to get the estimate

V- |Vo|? > 62.

/|VBA(expB¢uB)|2dx+§ZBQ/ exp2B¢|up|* dx
Q Qf

%5

SCBQ/ exp2B¢ lup|* dx,

Q5

and finally,
/ |Vpa(exp Boup)|>dx + 6232/ exp 2B¢ |ug|* dz < CB?expa()B,
Q Q

where a(d) = 2 SUD,cq - ¢(z) . We now observe that lims_.o a(d) = 0 and the
end of the proof is then easy. O
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Remark 7.2.4.

When V' has a unique nondegenerate minimum, the estimate can be improved
when, for some Cy > 0, A\g belongs to the interval [EB?, EB?*+CyB]. We take
in the previous proof

§=CB™', and ¢=dg— OB 'inf(log(Bdg),logC),

for some C' > 1. We observe indeed that V—F |, dg , and |VdE|2 are equivalent
in the neighborhood of the well. We can then replace Ce k exp(eB) in (7.40)
by Cx BN for some Ng € R.

7.2.5 Applications

As an example of an application, we can compare different Dirichlet prob-
lems corresponding to different open sets €1 and €2y containing a unique well
U associated with an energy E. If, for example, ; C 2, we can prove
the existence of a bijection b between the spectrum of B’2P3A732V791 in an
interval I(B) tending (as B — 4+00) to E and the corresponding spectrum of
B72Pga p2v.q, such that |b(A) — | = O(exp —BS) [under a weak assumption
on the spectrum at 0I(B)]. Here S is any constant such that

0<S< d(V,E)Jr(an,U).

This can actually be improved (using more sophisticated perturbation theory)
as Oc(exp —2B(S —¢)), for any € > 0.

Let us just give a hint about the proof. If (ug), )\g)) is a family of spectral
pairs of the Dirichlet realization of the Schrédinger operator in €22, then, if x
is a cutoff function with compact support in €, which is equal to 1 on a
neighborhood of U, we can use Xu(g) as a quasimode for the realization in
Q1. We observe indeed that

(~Apa+ BV = XZ)(xug)) = ~2(VX) - (Veaug)) — (Ax)ufy -
Hence, the choice of x and the Agmon decay estimates on ug) permit us to
show that the right-hand side is exponentially small as stated.

7.2.6 The case with magnetic fields but without electric potential

In this case, there is no hope to use the result for V', which does not
create any localization. The idea is that the role previously played by V(z)
is replaced by |S(z)|/B for the two-dimensional case [or more generally by
x — tr7(B(z)]. This is due to (1.32) in the case n = 2 [3(z) of constant
sign] and to their extensions. The Agmon distance will be associated with
5 [trT(B(z)) — inf, trt (B(x))] da? .

The proof is in two steps: treatment of the case with constant magnetic
field and then partition of unity to control the comparison with this case.
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This explains, because of the presence of B~1 before |3], that the decay
is measured through a weight of the type exp —an/B¢, where o €]0,1[ and
¢ should satisfy

[Vo|* < tr*(B(x)) — inf tr* (B(x)),

outside a neighborhood of the magnetic well, which is the set of points where
trT(B(x)) = inf, tr™(B(z) . We will come back to this in Chapter 8.

7.3 Notes

1. The aim of this chapter was to explain the semiclassical techniques
mainly due to Helffer—Sjostrand and Simon. The presented material
appears in many books or courses (Cycon—Froese-Kirsch—-Simon [CyFKS],
Helffer [He2, He7, He9], Dimassi-Sjostrand [DiS], Hislop—Sigal [HiS],
Martinez [Mart]) that emphasize various aspects of the theory. We have
rewritten the results in the version of a large coupling constant in order
to immediately have the needed applications. So the large parameter B
corresponds to the small parameter h = B~! which plays the role of the
Planck constant in semiclassical analysis.

2. For the harmonic approximation, we follow Simon’s approach (see [Simo]).
Another approach is described in [He2] and another variant in [DiS]. The
reader can also look at another presentation in Chapter 11 of [CyFKS].

3. The specific semiclassical properties of Schrodinger operators were mainly
developed to answer questions from Solid-state physics (see [HeS5] and
references therein).

4. Note that in the case of the harmonic approximation on a manifold,
there is another term that leads to a small change in the argument (see
[Simo]). The Laplacian indeed has the form }°,; g_l/Q(‘%gigg"'j@zjg_l/2
after a change of function in order to come back to the self-adjoint case.

5. The explicit computations of A\(B) are particular cases of theorems due
to Matsumoto [Mat] or Matsumoto-Ueki [MatU], but they are actually
much older and appear in the analysis of the Garding—Melin inequality
[Me]. We can, for example, refer to Hérmander [Ho, Vol. 3, Lemma 22.3.1
(p. 360)].

6. The fact that inequality (7.17) (which says that the ground state energy of
the Pauli operator Pgzy — |B| is lower than in the case without magnetic
field) cannot be extended for more general situations has been shown by
Avron—Simon [AvS] and Helffer [He3] using the Aharonov—Bohm effect.

7. The detailed proof of Theorem 7.1.1 can be found in [HeM3].

8. Models with a vanishing magnetic field along lines were proposed by
Montgomery [Mon]. See also Section 3.3 and the discussion around
Theorem 8.6.2. More examples can be treated (see Helffer—Morame [HeM2,
HeM3] and more recently Helffer-Kordyukov [HeK1]).



94

10.

11.

12.

7 Semiclassical Methods for the Schrédinger Operator

The Agmon estimates were developed first in [Ag]. Agmon was actually
more interested in the behavior of eigenfunctions at spatial infinity. In the
semiclassical context, we refer to [He2] or to the original papers of Helffer—
Sjostrand [HeS1] or Simon [Simo] for details and complements. Microlocal
versions of these Agmon estimates are discussed in [Mart].

That the derivative of a Lipschitz function can be defined almost every-
where is a standard result due to Rademacher. See, for example, [DiS,
p. 50].

The decay properties of eigenfunctions were also the object of many
contributions. Let us mention Helffer—Sj6strand [HeS4], Brummelhuis
[Bru], Helffer—Nourrigat [HeN2] for typically magnetic effects, Erdds,
Martinez, Nakamura, and Sordoni for Gaussian decay properties (see
[Erl, So, MartS] and references therein).

It can be useful to extend the decay properties of eigenfunctions to the
decay properties of the kernel of the resolvent of the operator. The reader
is invited to look in [DiS, Proposition 6.6].
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Large Field Asymptotics of the Magnetic
Schrodinger Operator: The Case of
Dimension 2

In this chapter, we study the asymptotics of the ground state energy of the
magnetic Neumann operator PJ Ao as the field strength B tends to infinity.
We also obtain the localization properties of the ground state. These results
are combined to analyze the question of the monotonicity of the ground state
energy.

8.1 Main Results

We recall that we have given a rough asymptotic estimate for the ground state
energy of the Dirichlet realization, PgA)Q , in dimension 2 (see Theorem 1.4.2)
and that by the min-max principle this also gives an upper bound in the case of
Neumann boundary conditions. Of course, the case of the Dirichlet realization
does not lead to really new phenomena in comparison with the case } = R",
at least if the condition

b<b (8.1)

is satisfied, where we introduced the notations

inf |3(x)] = . nf |5(x)| =V (8.2)

For the Neumann Laplacian, however, the introduction of a boundary can lead
to interesting new phenomena. The first “rough” theorem for the Neumann
realization is the following:

Theorem 8.1.1.
Suppose that Q C R? is bounded and smooth. Then

1
lim inf o(Pga o) = min(b, ©ob'), (8.3)

—00

where Oy is the constant from (3.24).

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 95
DOI 10.1007/978-0-8176-4797-1_8, © Springer Science+Business Media, LLC 2010
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Recall that the constant ©g < 1. Therefore, in the special case where
0 is constant, we have O¢b’ < b. This spectral fact is responsible for the
phenomenon of surface superconductivity, as we will see later.

One important theorem that we would like to present is

Theorem 8.1.2.

Let Q C R? be smooth and bounded. If the magnetic field is constant and
nonzero, then any ground state corresponding to the Neumann realization is
localized as B — oo near the boundary of €2 .

These two theorems are not necessarily optimal. In many cases one can
give more precise asymptotic expressions for the ground state energy. Also,
in many cases the ground state will be localized in a smaller region, i.e., only
near a part of the boundary. We give a more precise result for the case of a
constant magnetic field.

Theorem 8.1.3.

Let Q C R? be smooth and bounded. If the magnetic field is constant and
nonzero, then any ground state corresponding to the Neumann realization is
localized as B — oo near the points on the boundary where the boundary
curvature is mazimal.

8.2 Proof of Theorem 8.1.1

8.2.1 Upper bounds

The case when b = 0 can be treated independently. The upper bounds are
based on the construction of suitable quasimodes. Gaussians can be used in
the case when b < ©gb’—just as in the proof of Theorem 1.4.2. In the case
when ©¢b’ < b, one should use trial functions obtained by multiplying a
boundary tangential Gaussian by a “normal” solution constructed with the
help of the first eigenfunction of the model on RT (see Section 3.2). More
precisely, let zg be a point on the boundary where |3(zg)| = b’'. We can
take a system of coordinates x — (s,t) such that ¢(z) denotes the distance to
the boundary and s(x) is a parametrization of the boundary with s(zg) = 0
(see Section F.1 for details). In these coordinates, the leading-order term of
the operator as B — oo will look like

—0? + (=i, + BU't)?

on the half-plane ¢t > 0. (More correctly, we should consider S!x ]0,#o] with
Neumann boundary conditions at ¢ = 0 and Dirichlet conditions at t = ty.)
The first guess in order to have the lowest possible energy is to consider
the function
(t,s) — Bi ei”"s‘/Buo(B : Tot),
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where RT 3 v — wug(v) is the eigenfunction for the half-line model with & = &
and magnetic field equal to 1 (79 and pg being suitably chosen) in order to
get the minimal energy (for the moment, it is an L*-eigenfunction).

This leads to the equation

—Bf2ull(B27ot) + (B2 po — Bb't)?uo(B>7ot) = ©gBbuo(B>Tot) .

So we should take the pair (79, po) = (V¥,&070) -

It then remains to localize with a cutoff function ¢ — x(t) with compact
support in [0, o[ and to localize in the s-direction with a function s — xo(s)
with support in a neighborhood of 0. So the trial function that we choose (for
a B-independent constant C' and for « > 0 arbitrary) is

¢o(t,s;B) = C Bs x(t) xo(s)
X exp(—aBiSQ)exp(ifo\/Bb’s) uo(VBU't) . (8.4)
Computing the energy of this trial function gives
AV(BA) < Bmin(b, 0¢b') + o(B), (8.5)
which is enough for the analysis of the decay and proves the upper bound part
in Theorem 8.1.1.

8.2.2 Lower bounds

Let 0 < p < 1. We first claim that there exists C' such that, for any Ry > 0,
we can, by scaling a standard partition of unity of R?, and by restricting it
to 2, find a partition of unity x7 satisfying in ©

D=1, (8.6)

J
S IV < C Ry B, (8.7)
J

and
supp(x}’) C Q; = D(z;, Ro B™"), (88)

where D(c,r) denotes the open disc in R? of center ¢ and radius 7. Moreover,
we can add the property that:

either supp x; N9 =0, or z; € 9N. (8.9)

According to the two alternatives in (8.9), we can decompose the sum in (8.6)

in the form
DIEDIEDIE

int bnd
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where “int” refers to the j’s such that z; € €2 and “bnd” refers to the j’s such
that zj € 0.
We now implement this partition of unity in the following way

Q(u) = ZQ(XJBU) - Z VX7 lull?, Vue Hpa(9). (8.10)

Here Q = QgAﬂ denotes the magnetic quadratic form as defined in (1.11).
We can rewrite the right-hand side of (8.10) as the sum of three (types of)
terms:

Qu) = ZQ(X?UHZQ(X?U)—Z VX7 ull?, Yu € Hpa (). (8.11)

int bnd 7

For the last term on the right side of (8.11), we get, using (8.7),

SOV ul? < CB* Ry ul®. (8.12)

J

This measures the price to pay when using a fine partition of unity: If p is
large, the error due to this localization will be in O(B?%").

We shall later optimize the choice of p or of Ry for our various problems
(note that taking Ry large will only be interesting when p = 1/2).

The first term on the right-hand side (8.11) can be estimated from below
using (1.32). The support of Xfu is indeed contained in 2. So we have

S Q0Fu>BY / B(x)xBul? dr. (8.13)

int int

The second term on the right-hand side of (8.11) is the more delicate and
corresponds to the specificity of the Neumann problem. We have to find a
lower bound for Q(Xfu) for some j such that z; € 0. We emphasize that z;
depends on B, so we have to be careful in the control of the uniformity.

We will use the boundary coordinates (s,t) defined in Section F.1. Let
z € 00 and consider functions u supported in the small disc D(z, B~?) (where
the magnetic parameter B is sufficiently large). We have (F.5) after a change
of coordinates. We now choose a convenient gauge. Define

A(s,t) = — /Ot (1- t’k(s))@(s,t’) dt’, Az (s, t) :== 0.

With a suitable gauge change, i.e., with the substitution @ := e?®®y for some
function ¢, we have for suppu C D(z, RyB~*),

/ =iV + BA)u|? dz

_ /(1 — th(8)) 7Y (=i + BAY)D| + (1 — th(s))| 00| dsdt . (3.14)
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Define

ko := k(0), A(s,t) := —5(0,0) (t — ;tQk(0)> ,
Ak(s) := k(s) — k(0), b(s,t) == (1 — tk(s)) (s, t) — (1 — tk(0))5(0,0),
ai(s,t) = —/O b(s,t')dt’ .

Then we have the estimates in the support of o :

|Ak| < CRyB~”, b(s,t)| < CRyB™", |a1(s,t)] < CRyB~*t.
Of course, since t = O(B~"), one can obtain a t-independent estimate, but
we keep the t-dependence for later use.

Let B be so large that 271 < (1 — tk(s)) < 2 on supp®. Then we can

make the following comparison between (8.14) and the similar constant field,
constant curvature formula:

/|(7iV + BA)u|? dx
>(1-n) /(1 — tho) "H(=i0s + BA)D|? 4 (1 — tho)|0:0|? dsdt
- C/tAk{](—ias + BAG|* + (802} dsdt
—n ! /(1 — tko) "t B2a}|o|* dsdt, (8.15)
for any 0 < n < 27! and any u with suppu C D(z, RyB~*) . The first term on

the right-hand side is the quadratic form corresponding to constant curvature
and constant magnetic field, so we can estimate

/(1 — tho) " |(—i0s + BA)D|? + (1 — tko)|0;0|? dsdt

> (00BB(z) ~ Cak/BA(2) — O) o], (8.16)

using Corollary 5.4.2. Notice that this estimate is uniform, since the boundary
curvature is uniformly bounded.
The second term on the right-hand side is estimated by

C’/tAk{|(fi85 +BA)D| + (0,02} dsdt
<CcCB™% /|(—N+BA)u\2dx, (8.17)

and consequently involves the left-hand side. Here we use the property that
0<t<CB™ on supp?.
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The third term is estimated by

- /(1 ~ the) " B2 dsdt < Oy B2 B2, (8.18)

To get a first but nonoptimal estimate, we choose Ry = 1, 7 = B2~/
p =3/8, and conclude from (8.15) and (8.16)—(8.18) that

/\(—iV + BA)u? dr > (00BA(z) — CBY)|lul?, (8.19)

for all u such that suppu C D(z, B™*).

Combining this with (8.10), (8.12), and (8.13), we find the lower bound
inherent in Theorem 8.1.1. More precisely, we find constants C' and By such
that, Vu € H; A (2) and VB > By,

Q=B [ s ds

int

+®oBZ/ﬁ(zj)|xfu|2 dz — CB? Z/|Xfu|2d$c. (8.20)
J

bnd

Upon replacing B(z;) by f(z) in each of the terms in the boundary sum,
we have actually proved the following.

Proposition 8.2.1.
There exist positive constants C' and By such that, with

Us(x) == {Bﬂ(w)’ dl,00) 2 B:z ’ (8.21)
©oBB(x), d(z,00)< B~ s,
we have
/ |(—=iV + BA)u|? dz > /(Ug(x) — CB)|u(z)? dz, (8.22)
Q Q

for allu € Hp A (Q) and all B> By .

In particular, we get the following version of the lower bound corresponding
to Theorem 8.1.1.

Proposition 8.2.2.
There exist positive constants C and By such that, for all B > By, we have
the estimate

A1(BA) > Bmin(b,0gb') — C Bi . (8.23)

We can also make the choice p = 1/2, n = B~'/® and Ry large in (8.15).
This gives an estimate that may look weaker than Proposition 8.2.1, but that
will be more efficient in the study of decay. The reason is that the boundary
zone now has the right length scale, namely B~'/2 . The result analogous to
Proposition 8.2.1 is
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Proposition 8.2.3. .
There exist C, By > 0 and, for all Ry > 0, there exists C(Ry) such that with

U (2) = {Bﬁ(m)’ d(e,00) 2 ROB?? ’ (8.24)
BC(Ro)B(x), d(z,090) < RyB~%,
we have
. B
/Q |(=iV + BA)u|? dz > /Q <Ué2)(a:) - C’R%> lu(z))? da , (8.25)

for allu € Hi A (Q) and all B> By .

8.2.3 Agmon’s estimates

We will prove that ground states localize near the boundary in the case where
Opb’ < b (8.26)

is satisfied.

We first observe that if @ is a real and uniformly Lipschitzian function and
if u is in the domain of the Neumann realization of P} A then we have by
a simple integration by parts

R(Ppa.qu | e?VB%u)
= R((—iV + BA)u | (—iV + BA)e2VB%y)
= ((=iV + BA)eYP%u | (—iV + BA)eYP%u) — B[|V®| Y PP
= Qpa(eVP®u) - B|||VE|VBul*. (8.27)

We now take u to be an eigenfunction associated with the lowest eigenvalue
A1(BA). This gives

M(BA)|[eYE?u|? = Qpal(eVP®u) — B||Ve| ¥ Eul|”. (8.28)

We will obtain strong decay estimates by implementing the upper bound (8.5)
and the lower bound of Proposition 8.2.3. Let us take

O(z) = amax(d(xz,00), RgyB~ 2),

where a > 0 has to be determined, and let us apply Proposition 8.2.3. We first
write

QBA(e‘/BCDu) > / (Uéz) (x) — 052) |e\/3¢(z)u($)’2dx. (8.29)
0

Implementing (8.26), (8.5) becomes
AV(BA) <00V B+ o(B). (8.30)
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Using (8.28), we now obtain

/ ) {,@(m) — Ot —o(1) — 02 - 042:| e2VB2(@) |y (2) |2 da
{t()>RoB™ 3} Rg

g/ ) {G)Ob’—C(Ro)ﬂ(x)—i—o(l)—i— C;]ewmwu(x)ﬁdx
{t(x)<RoB~ 2} Rj

SC”(RO)/ - Ju(o)? da. (8.31)
{t(z)<RoB™ 2}

This gives the main ingredient of the proof for the following theorem:

Theorem 8.2.4. .
Under condition (8.26), there exist C >0, a > 0, and By > 0, such that if
B > By and up is the ground state of PéVA’Q , then

/ eQa\/Bd(m,aﬂ){|uB(x)|2 + Bil‘pBAUB(f)P} dr < C ||UB||2 (832)
Q

More generally, for 6 > 0, there exist C,a, By > 0 such that if up is an
eigenfunction of P]JBVAA’Q with eigenvalue smaller than (1 —9§)Bb, and B > By,
then (8.32) holds.

Remark 8.2.5.
Notice that Theorem 8.2.4 is a precise version of Theorem 8.1.2.

Note that condition (8.26) is always satisfied when (3 is constant, because
O < 1 and in that case b=b’.

Proof.

We only consider the case of the ground state. From (8.31), we see that for
all o < v/b— Ogb’, we can choose Ry sufficiently large and get (for large B)
the inequality

/62\/Bq>|u(:r)|2d1: < C(a,RO)/ u(@)? de. (8.33)
{t(x)<RoB™ 2}

From this we deduce the estimate on ||eo‘\/Bd(””’aQu||2 in (8.32). The other part

of (8.32) is a consequence of (8.33) and (8.28). O

Remark 8.2.6.

On the contrary, when b < ©gb’ , the ground state decays exponentially outside
any fized neighborhood of 371(b) in Q. Note that in this case the boundary
condition does not affect the localization of the ground state or the asymptotics
of the ground state energy (exponentially small effect). The decay is then esti-
mated by the weight exp —[aoV Bds_p(z)] , where, for a given z € Q, dg_p(z)
denotes the Agmon distance of x to the minima of the strength of the magnetic
field B attached to the potential y — B(y) —b.
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In applications it is often not exponential but polynomial weights that
occur. Theorem 8.2.4 has the following useful corollary.

Corollary 8.2.7.
Suppose that (8.26) is satisfied. Then there exists Cy,, > 0 such that

/t(x)”{|u13(x)|2 + B~ ppaup()|?} dz < CB™ 2 [lup|?. (8.34)

Remark 8.2.8.

Upon inserting Corollary 8.2.7 in (8.15), we get (choosingn = B=?, p=1/3),
the following improvement of (8.23). There exist C and By such that, for
B 2 BO ’

A1(BA) > min(b,©0b') B — C B5 . (8.35)

We recall that the optimal result is in O(B'/?).

The next result, which is useful in the analysis of the monotonicity of A ,
is a rather weak localization result inside the boundary. The proof is analogous
to the proof of Theorem 8.2.4 but instead uses Proposition 8.2.1.

Proposition 8.2.9.
Suppose that (8.26) is satisfied and that in addition the restriction of B(x) to
the boundary is not constant. Then, for any neighborhood V(0Q2) of

7(0Q) = {z € 9 |8(z)| = b}, (8.36)

there exist n > 0, By > 0, and C > 0 such that, for B > By, any normalized
ground state up satisfies

/ lup(x)]?* do < Cexp(—nBé).
Q\V(69)

8.3 Constant Magnetic Field

In this section, we will obtain more precise asymptotics in the important
special case of a constant magnetic field. We therefore assume that

Blz)=1, Vzeq. (8.37)

In this case, Theorem 8.1.1 becomes

Proposition 8.3.1.
In the case of a constant magnetic field, we have

M(B) = ©9B + o(B). (8.38)
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Also, the exponential localization in Theorem 8.2.4 holds. We will prove
that in the case of a constant magnetic field the next term in the expansion
is determined by the maximum of the boundary curvature.

Theorem 8.3.2.
Suppose that Q is bounded and smooth and that 3(x) = 1. Then

A (B) = OB — Cikmax VB + O(B3), (8.39)

where
kmax = max{k(s) | s € 090},

k(s) denotes the curvature of the boundary at the point s, and Cy is the con-
stant defined in (3.38).

Proof.

Lower bound:

The argument is the same as for the proof of Theorem 8.1.1. In particular,
we have (8.10) and (8.12). We will choose Ry = 1. For the boundary terms,
we notice that since the magnetic field is constant, the function b satisfies

b(s,t) = —t(Ak)(s),
and thus
ai(s,t) = ;tz(Ak)(s).
Therefore, (8.15) is improved to

/|(—iV + BA)u|? dx
> (1) /(1 ~ tho) Y |(—iDs + BAYI[? + (1 — tho)|0,0? dsdt
- C/tAkﬂ(—iBs + A0)[* + 10401} dsdt

Oy B / (AR)2[5[2 dsdt (8.40)

for all u such that suppu C D(z,B~").
Estimating Ak = O(B~?) and putting together the different pieces, we get
the inequality

/\(—iV + BA)ul? dz

> BZ/|Xfu|2da:—|—Z(1—n)/(@OB—Clk(zj)\/B—C)|xfu|2dx

int bnd

~CB™"3 / H(@)lppa(xju)l® de — Cn~ B>y /t(l‘)4|><ju|2 dx

bnd bnd
— CB**||u|)?, (8.41)
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for all u € Hpa (). In the case where u = up is a ground state of Pg g,
we can apply Theorem 8.2.4 and find

Z/t(x)|pBA(XjUB)|2 dz < CB*, (8.42)

bnd

Z/t(x)4|xju3|2 dr <CB™2. (8.43)

bnd

Using that ©9 < 1 and choosing 7 = B~277,p = 1/6, we therefore find
(8.39).

Upper bound:

For the upper bound we choose u to be localized near z € 02, where the
boundary curvature is maximal. This is done in such a way that only one
term—the corresponding boundary term—in the sum for the lower bound is
nonzero. Then by (8.14) we get, similarly to (8.40),

/ (=iV + BA)u|? dz
<(147) /(1 — tho) (=i, + BAYS + (1 — tho)|9;d]? dsdt
+ C/tAkﬂ(—i@s + B[ll)fb}z + |0¢0|* } dsdt

+Cn—132/t4(Ak)2|@|2dsdt. (8.44)
Choose

0= x(B?s)x(B t)u1 Bk, (5,1)

where w1 Bk, is a normalized ground state for the constant curvature model
of curvature ky as analyzed in Chapter 5. The corresponding eigenvalue
M1 (B, Qy,) satisfies, according to (5.61), A1 (B, Q,) = 9B —CikovVB+0(1).
Choosing p =1/6,n = B~ >=F as for the lower bound, we find (using the decay
in t of uy p g, ; see Corollary 8.2.7)

/ [(—iV + BA)u>dz < [(1 + )M\ (B, Q) + C' B3 | ||u]%. (8.45)

This finishes the proof of the upper bound. a

Looking more carefully at the proof of the lower bound in Theorem 8.3.2,
one can actually see that we have also proved the following proposition.

Proposition 8.3.3.
Under the assumptions of Theorem 8.3.2, there exists Cy > 0 such that we
have

Q¥ aolu) > / Wh@)u(@)Pdr,  VYue Hh,(Q),  (3.46)
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for any B > 1. Here W} is defined by

B, if dist(z;09) > 2B~ 6 |

1 1 1 (847)
@()B—Cl BZI{Z(S)—C()B3 5 if dlSt(.’E,@Q) SQB_G .

Wh(z) == {

In particular, we have, also using the upper bound of A\;(BA) and with
up being a normalized ground state,

QgA,Q(uB) —A\i(BA)

> [ (Wh() = M(BADun(@)] do
Q
> ¢, B} / (bmax — k(5) — CoB—)up(2)[2dz.  (3.48)
{t(x)<2B-1/5}

As for the proof of the previous Agmon estimates in this chapter, we get

Theorem 8.3.4.

Under the assumptions of Theorem 8.3.2, we have the following localization.
There exist 0 > 0 and for any e > 0, Cc > 0 and Be > 0 such that, for all
B 2 BE )

1~
|58 *d@m(99).B) 4, p|| < C, exp(eB‘ll) . (8.49)
Here n(0Q) is the set
n(0Q) == {z € 00 | k(2) = kmax} (8.50)
of the points of maximal curvature,
d(z,n(89), B) = daq(s(x), n(0Q)) x(d(z, Q) + Bid(x,09),  (8.51)
and daq (s, n(9)) is the Agmon distance to n(9Q) associated with the metric
(Kmaz — K(8)) ds?.
As an immediate corollary, we have

Corollary 8.3.5.
Under the assumptions of Theorem 8.3.2, then, for any neighborhood V(9)
of n(0) in Q, there exist n > 0 and C > 0 such that, for large B,

/ lup(z)|? de < C exp(—nB}l).
Q\V(89)

Remark 8.3.6.

We can use the localization estimate to improve the error bound in the eigen-
value asymptotics. Thus, when the mazima of the boundary curvature are
nondegenerate, we can improve the error bound from O(BY3) to O(BY*) in
Theorem 8.3.2. We refer to the next section for precise statements.
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8.4 Refined Expansions and Spectral Gap

We now present finer results that give a complete asymptotic expansion of
A1(BA) under a (generically satisfied) nondegeneracy assumption on Q2. The
argument used in the proof is somewhat more technically involved than in
the rest of the book, so we limit ourselves to stating the result without proof
and refer to the original article for details. We define A, (BA) to be the nth
eigenvalue of P% A, in particular,

A (BA) = info(Phy q) -

Then the result is as follows.

Theorem 8.4.1.
Suppose that ) is a smooth, bounded domain, that its curvature 9 > s — k(s)
at the boundary has a unique mazximum,

k(s) < k(so0) =: kmax , for all s # sg, (8.52)
and that the maximum is nondegenerate, i.e.,

kg = —k”(SQ) 7’5 0. (853)

Then, for all n € N\ {0}, there exists a sequence {Cj(n)}‘;';l C R (which can
be calculated recursively to any order) such that A, (B) admits the following
asymptotic expansion (for large B):

An(BA) ~ 098 — knaxC1B* + 10 \/3]2“2 (2n —1)B4

o0
1 n _J
+ Bs § Cj(' VB (8.54)
i=0

For possible applications to bifurcations from the normal state in supercon-
ductivity (see Section 13.5), it is important to calculate the splitting between
the ground state energy and the first excited eigenvalues of PévA’Q. Let us
define

A(B) = X2(B) — M (B). (8.55)

Corollary 8.4.2.
Under the hypothesis from Theorem 8.4.1, A(B) admits the following asymp-
totics:

A(B) ~ €10 /6ks Bt + B S B4, (8.56)

Jj=0

where Ej = (;2) — Cj(.l) .
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The case when €2 is a disc has been presented in Chapter 5. In this case,
the splitting A(B) turns out to vanish for a sequence of values of B tending
to oo. This is a complication in the analysis of bifurcation. Thus, in some
sense, the more “generic” situation considered in Theorem 8.4.1 has a nicer
property. We recall that for the disc we get from Remark 5.3.5 that

0 =liminf A(B) < limsupA(B) < +o0.

B—o0 B—o00

We recall also that in the case of a domain with a unique corner (with
a sufficiently small angle), we have ([Bon2], [BonD], and [BonF]—see also

Chapter 15)
lim inf AlB)

ik >0.

In our case, (8.56) implies

lim A(B)

>0,
B—oo BRa

Of course, if there are multiple minima and symmetries, one expects by
tunneling analysis an exponentially small gap between the lowest eigenvalues.

We will come back to this point in Chapter 15, which is devoted to domains
with corners.

8.5 Monotonicity

Let Q C R? be a bounded, simply connected domain with a regular boundary.
Let F(z) = (F1(z), F2(z)) = (—x2/2,21/2) such that curl F = 1. We consider
H(B) = P]JBVF’Q and will show that in the present situation, we can obtain
the monotonicity of A;(B) with much less information on the asymptotics of
A1(B) than required by the general Corollary 2.3.3.

We use the definitions concerning the geometry of the boundary defined

in Section F.1; in particular, the boundary is parametrized (by arc-length) by
v(s), s € ‘gg‘ S, and k(s) denotes the curvature at the point (s). We recall
that kpax denotes the maximum of the boundary curvature.

Theorem 8.5.1.
The one-sided derivatives,

exist for all B >0 and X}, (B) satisfies

liminf X | (B) > 0. (8.57)
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Furthermore, if Q) is not a disc, then the limit actually exists and satisfies
Jim X _(B)= lim X (B) = 6. (3.58)
If Q is a disc, then

limsup \| , (B) > Oy, O<li§nﬂior<1>f)\/17+(3) < Oy.

B—oo

In particular, in any case, there exists By > 0 such that B — \1(B) is strictly
increasing on [Bg, 00| .

If we could obtain sufficiently precise asymptotic expansions of A\ (B),
a result like Theorem 8.5.1 would follow from Corollary 2.3.3. However, as the
argument below illustrates, we can obtain the same conclusion from a weaker
asymptotic expansion combined with information on the localization of the
magnetic ground state. This strategy does not work in the case of the disc.
However, due to the symmetry of the question for that domain, special tech-
niques have already been applied in Chapter 5 to settle that special case.
Thus, the structure of the proof of Theorem 8.5.1 is as follows. If  is not a
disc, then there exists a part of the boundary where the ground state ¢ will
be very small. Thus, we can choose a gauge such that |A¢| < 1 (for large
B and in the L2-sense), where A is the vector field F in the new gauge. This
new input allows us to differentiate the leading-order asymptotics for A\ (B).

Notice that if Q is not a disc, then it satisfies the following assumption:

Assumption 8.5.2.
Let n(09) denote the set of boundary points of mazimal curvature as defined
in (8.50). Then

n(0Q) #£ 0N .

We recall the Agmon estimates, Theorem 8.2.4, which we state in the
following form:

Lemma 8.5.3 (Normal Agmon estimates).
There exist positive constants «, M, and C such that if B > 1 and ¥1(-; B)
is a ground state of H(B), then

. 1
/€2a\/Bdlst(;c,8Q) {W)l(wa B)|2 + B|pBF'l/Jl(1';B)|2} dx
Q

< c/ (o1 (23 B) 2 da (8.59)
{V/B dist(z,002)<M}

In particular, for all N >0,

/dist(:n, O N4y (x; B)|? dz = O(B~N/?). (8.60)
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Also, Theorem 8.3.4 implies that ground states are localized near n(9S2) .
We actually only need the following very weak version of this localization.

Lemma 8.5.4.
Let €g > 0. Then, for all N > 0, there exist Cy > 0 and By > 0 such that if
¥1( -5 B) is a normalized ground state for H(B), then

/ |w1(x;B)|2da:§CN BN VB > By .
{dist(z,n(892))>eo}

We will also need to use the boundary coordinates (s,t) defined in
Section F.1.

Lemma 8.5.5.
Let us define for e < min(tg/2,|02|/2) and so € O

Q(e, s0) = {xz = (s,t) ‘ t<e|s—so| >e€}.
Then there exists ¢ € C*(Q) such that A=F+ V¢ satisfies
|A(z)| < C dist(z,09),
for z € Q(e, so) .

Proof.
Let A = (A1, A2) be the magnetic 1-form written in the (s, t)-coordinates,

Fide + Fody = Ay ds + Ay dt .
Taking the exterior derivative, and using dx A dy = |D®|ds A dt, we find
curly; A(s, t) = O, Ay — 0, Ay = (1 — th(s)).
Since {(s,t)[t < €,|s — so| = €} is simply connected, there exists a function
¢ € C(®71(Q(e, s0))) such that
A(s,t) 4 Vaid(s,t) = (t — t2k(s)/2,0).
Let x € C>*(Q),
x=1 on {z[t<els—sol>e},

x=0 on {z]dist(x,d0Q) > 2 or |s — so| < €/2},

and define ¢(z) = ¢(®~1(x))x(x). Then ¢ solves the problem. O

Proof of Theorem 8.5.1.
The existence of A} | (B), A} _(B) follows from analytic perturbation theory.
We recall that the case of the disc was already considered in Proposition 5.4.1,
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and so it remains to consider the case where € is not the disc. Thus,
satisfies Assumption 8.5.2. Therefore, there exist so € [—]|99Q|/2, |0Q|/2] and
0 < € < min(tp/2,|092|/4) such that

[50 — 2€g, S0 + 260] n n(@Q) =0.

Let KAbe the vector potential defined in Lemma 8.5.5, @ p the quadratic form
u— Qp(u) = [, |—iVu+BAul*dz, and H(B) the associated operator. Then

7‘7(3 ) and H(B) are unitarily equivalent and thus have the same spectrum. Let
¥} (-5 8) be a normalized ground state of H(B) for 3 in a right neighborhood
of B and such that 8 — ] (-;8) € L? is smooth—the existence of such a

ground state was discussed in Section 2.3. Then we get the following expression
for the right-derivative:

Ni+(B) = (Av{ (+:B) |ppati (+; B))
+ (ppaty (+:B) | AY (- B)). (8.61)
We now obtain, for any b > 0,
_ Qps(¥F (+:B)) — Qp(¥f(-;B
b

S M(B+b) = Au(B) _b/ |A(2)? [¢f (x; B)]? dz . (8.62)
b Q

X, (B) b [R@P ot B ds
Q

By Lemma 8.5.5, we can estimate

/ |A(2)? o] (3 B)|? do < c/ dist(x, 9Q)% 05 (z; B)|? da
Q Q

I / Wi (e B)P de.  (8.63)
Q Q(eo,S(])

Combining Lemmas 8.5.3 and 8.5.4, we therefore find the existence of a con-
stant C' > 0 such that

[ R@P W @B dr<cB. (3.64)
Q

We now choose b = n B, where 1 > 0 is arbitrary. By the asymptotics (8.38)
for A\1(B), we therefore find

liminf A} | (B) > 69 —nC. (8.65)

B—oo

Since n was arbitrary, this implies

liminf X} | (B) > . (8.66)
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Applying the same argument to the derivative from the left, A} _(B), we get
(the inequality gets turned since 5 < 0)

limsup \] _(B) <6y (8.67)

B—oo

Since, by perturbation theory,
1.4+(B) <A _(B) for all B,
we get (8.58). O

8.6 Extensions

8.6.1 Nonconstant magnetic fields with boundary localization

If ©pb’ < b and if the restriction of 3(x) to the boundary is not constant, i.e.,
with the notation introduced in (8.36) if

7(09) # 09, (8.68)

we can get the monotonicity of the ground state energy in the large field limit.

We can find ¢ € C*°(Q) and A such that A = A + V¢ and A vanishes
on 9N except in a neighborhood of a point where |3(x)| is maximum. It is
indeed enough to apply Lemma 8.5.5, whose proof can be modified in order
to extend it to the case of a general magnetic field.

We can then follow the proof of Theorem 8.5.1 given in the case of non-
constant curvature. We then use Proposition 8.2.1 (and its application in
Corollary 8.2.7 to the decay), Proposition 8.2.9, and Theorem 8.1.1 (and its
proof) for the asymptotic expansion of A\;(BA).

8.6.2 Interior localization

If ©pd’ > b > 0, i.e., the ground state should be localized in the interior of §2,
we can also use the techniques described in this book.

Theorem 8.6.1.
Suppose Ogb’ > b > 0 and that b = ((zp) is attained at a unique point zo € 2.
Suppose furthermore that

Hess 8(z) > 0.

Then the following asymptotics holds:
1
M(BA) =B+ 4 tr(Hess B(z0)) + o(1) , (8.69)

as B — +00.

This asymptotic estimate is sufficiently precise to apply Corollary 2.3.3
and thereby get the monotonicity of the ground state energy.
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8.6.3 Montgomery’s model revisited

The Montgomery model appears more generally in the following context
[PaK]. If, in the two-dimensional case, the magnetic field 8 = curl A has non-
degenerate zeroes in Q and if we denote by Z(3) the subset of the zeroes of 3 in
Q, then the ground state energy A;(BA) of the magnetic Laplacian associated
to the magnetic field B can be estimated asymptotically as B — +oo . More
precisely, we have the theorem

Theorem 8.6.2 (Pan-Kwek).

lim =[a1(B)]®, (8.70)
where

~ . 1.3 . . ~ 3
a1(f) = min { 2V02 zeﬂlng(B) |VE(x)], ﬁeaégfz(ﬂ)C(ﬁ(z)) 2 |Vﬂ(m)|} , (8.71)
where ¥(x) denotes the angle between curl 5 and the tangent vector of 00 at
x and ¢ denotes the lowest eigenvalue of —Aa, in R>T with

Ay=-— * (cos¥,sin?) .

8.7 Notes

1. Theorem 8.1.1 and 8.1.2 first appeared in [LuP4]. Theorem 8.1.3 was
proved in [HeM3].

2. The large magnetic field limit and the semiclassical limit h \, 0 are clearly
equivalent, since

|(—iVs + BA(2))u(z)|* do = BZ/ (= Ve + A())u(z)]? de.
Q Q

The implementation of semiclassical techniques for the analysis of the
magnetic ground state first appeared in [HeS4] and then in [HeM2]. Very
roughly, it is shown in [HeM2] that if O = R™, then B| curl A(z)| plays the
role of an effective electric potential. By this we mean that the analysis
of the operator, —A + B|curl A(z)|, gives good information about the
localization of the ground state. The case of domains with boundary was
less analyzed.

3. More precise results concerning the case when b = 0 are obtained under
additional conditions in [HeM2].

4. Note also that the upper bound involving b = inf 8 can also be obtained
by using [HeM3]. Following the same paper or [dPiFS], one can improve
the o(B) into O(B'/?), without additional assumptions.
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. Formula (8.10) is sometimes called the IMS formula (see [CyFKS], in the

context of N-body problems) but is actually much older (see [Me, Hol).

. The points where the minimum of |3| is attained are sometimes called

magnetic wells for the energy b. The decay of the ground state outside
the wells can be estimated (cf. [Bru, HeN2]) as a function of the Agmon
distance associated with the Agmon metric (|3|—b)dx? , where da? denotes
the Euclidean metric. We recall that this estimate is very easy to get from
(1.32) in the special case when n = 2 and when the magnetic field has a
constant sign.

The decay estimates established in Theorem 8.2.4 can be found in various
forms (weighted L?- or L>-estimates) in [LuP4, HeM3] and [dPiFS].

. As in the case where A = 0 but where an electric potential V' is added,

it is possible to discuss the various possible asymptotics depending on the
properties of 3 near the minima (cf. [HeM2, HeM3, Mon, Sh, Uel, Ue2]
or more recently [PaK]). But these results are mainly devoted to the case
of R™ or of a compact, boundaryless manifold and admit relatively simple
extensions for the Dirichlet problem, but as we see in the whole book,
this property is no more true in the case of the Neumann realization.
The infimum b of |B(x)| on 2 is not necessarily the right quantity for
analyzing the bottom of the spectrum as (8.1) is satisfied. Of course,
by direct comparison of the variational spaces corresponding to Dirichlet
and Neumann, one knows that the smallest eigenvalue AV (BA) of the
Neumann realization P} ¢, of Ppa o is bounded from above by A’ (BA)
[but the lower bound (1.37) is not correct in general].

. In the case of a constant magnetic field, the two-term expansion given

in Theorem 8.3.2 was conjectured by Bernoff-Sternberg [BeS], but the
complete proof was achieved by Helffer-Morame in [HeM6] (see [HeMS6,
Theorems 10.3 and 11.1]). The localization at the points of maximal curva-
ture has been verified numerically (see Fig. 5.9, p. 61 in [HoS]). The
extension of the two-term asymptotics to the case of nonconstant magnetic
fields is done by Raymond in [Ra2] and [Arl]-[Ar5].

The results of Section 8.4 were obtained [FoH2], but stated in terms of
the semiclassical limit. Formal expansions previously appeared in [BeS].
If the uniqueness condition in (8.52) is replaced by the assumption that
there are a finite number of maxima [for which (8.53) is assumed to hold],
there will exist sequences of eigenvalues z("(B) corresponding to each
maximum. This also follows by the same techniques with a little extra
work.

The analysis of the tunneling effect was done in the case of the Schrédinger
operators by Helffer-Sjostrand [HeS1, HeS2] and Simon in the 1980s (see
also the books [He2] or [DiS]). The rigorous analysis of the tunneling
inside the boundary is open (see Bonnaillie [Bon1] for a discussion inspired
by the analysis of the tunnel effect and Chapter 15 in this book devoted
to the case of domains with corners).
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The assumption that 2 is bounded is included for convenience only.
An adaptation of the techniques presented in this book would permit
the omission of this assumption (see also Chapter 5, where we treat the
exterior of the disc).

It follows easily from the proof that Theorem 8.4.1 holds without change in
the case of a nonconstant field 5(z) = curl A(z) provided (=) satisfies 3 is
constant on a neighborhood of the boundary 92, or even more generally,
that 8 = By + 8, where f3j is a constant and 3’ vanishes to infinite order
on 09 . Extensions are considered in [Ra2].

Results similar to (8.57) were first proved in [FoH3|] under extra
assumptions. This was due to the fact that the complete asymptotics of
Theorem 8.4.1 was used as an input. The most prominent domain excluded
in this approach is the disc—where the curvature is constant. However,
[FoH3] includes a special analysis of the disc—essentially repeated here in
Chapter 5—proving that Theorem 8.5.1 remains true in that case.

What remained was the study of all the other nongeneric cases. Also, it
seemed desirable to be able to establish Theorem 8.5.1 without using the
existence of a complete asymptotic expansion, since such expansions are
difficult to obtain and their structure depends heavily on the different
kinds of maxima of the boundary curvature.

Theorem 8.6.1 is a simplified version of [HeM3, Theorem 7.2].
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Main Results for Large Magnetic Fields in
Dimension 3

In dimension 3, the general strategy is very similar to the two-dimensional
situation, but the geometry is somewhat more complicated. Therefore, for
some of the proofs, we will give only the main ideas and refer to the original
papers for details.

9.1 Main Results for Variable Magnetic Fields

We are concerned with the behavior of the ground state energy of magnetic
Schrodinger operators—with nonzero magnetic field 8 = curl F and Neumann
boundary conditions—as the strength of the magnetic field becomes large.
In this chapter, Q C R? denotes a three-dimensional domain.

For simplicity of notation, we write H(B) = PgF’Q for the magnetic
Laplacian defined in Section 1.2. Similarly, we write Qp = QgF,Q for the
associated quadratic form. As in the two-dimensional situation we define

A (B) == inf o(H(B)) (9.1)

i.e., the lowest eigenvalue of H(B) . The main result is the following extension
of Proposition 8.2.2 in the two-dimensional case. In order to state the result,
let us define the function ¥(z), which gives the angle between G(x) and the
tangent plane at . More precisely,

00N>z~ I(x)e0,m/2]

is given by

9(z) = arcsin ('5(@ ' ”(x)> . (9.2)

|6(x)]
So, m/2 — ¥(x) denotes the angle between G(z) and v(z) at z € 0Q.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 117
DOI 10.1007/978-0-8176-4797-1_9, © Springer Science+Business Media, LLC 2010
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Theorem 9.1.1.

We assume that Q is a bounded, smooth domain in R® and that a smooth
magnetic field 3 is given such that inf,cq |B(x)| # 0. There exist constants C
and By such that, for all B > By,

M(B) — Bumin ( inf [5@)], inf cO@)B@I)|<C B (93)

Here we recall that the map 9 — <(¥) was introduced in (6.4).

We will prove only the lower bound. This proof is quite analogous to the
proof of Proposition 8.2.2, given our analysis of the three-dimensional models
carried out in Chapter 6.

Proof of Theorem 9.1.1.

As in the two-dimensional case, we introduce a partition of unity attached to
a covering of by small balls of radius R(B) = B~” . The choice of p > 0 will
be done later, but, in any case, we observe that

R(B) €]0,1],

for B > 1-—which is a condition that we always impose (we are interested in
the large B asymptotics). We start from the same partition of unity [see (8.6),

8.7)],

3
> ()P =1, SN 0PI < R(%)z . (9.4)

JET {=1jeJ

We can additionally assume that each ball either does not intersect the
boundary (“interior balls”) or is centered at a point of the boundary
(“boundary balls”). Using this partition of unity, we can then write that,
for ue HY(Q),

IVsrul® > ) IVer(Ful® = CRB)72 ) I ul®.
i i

We now distinguish between the case when j corresponds to a ball inside
Q and the case when the ball is centered at a point of 9Q and write

int bnd

Z:Z+Z' (9.5)

Estimates for the interior balls
We do not repeat the estimates for the interior balls, which are quite analogous
to the case of dimension 2. They lead to the choice of p = 3/8 and so

R(B)=B"% , (9.6)
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and to the estimate
. A3
IVer(x7wl* > BB IxFul* = CB4 x5 ul*. (9.7)

Estimates for the boundary balls

We proceed essentially in the same way as in the 2D case with two additional
difficulties. We first take a system (see Section F.2.1) of tubular coordinates
y = O(x) locally sending  on a half-space {y3 > 0}, 9Q on {y3 = 0}, and the
center of the balls at (0,0, 0). Moreover, the metric is the identity at (0,0,0)
and hence the Jacobian is 1 at (0,0,0). After a gauge transformation, we can
assume! that

F(z/)=0.

The estimate that will be established at the end [see (9.8)] is gauge invariant,
and so there is no loss of generality.
In the new coordinates y = (y1,y2,y3) = (r,s,t), the magnetic potential

is defined by
ZFjdﬂ?j = ZFjdyj .
J J

The approximation of the quadratic form in the new coordinates is done by
replacing F;(y) by its linear part at (0,0,0) denoted by Fb‘n(y) so that

[F(y) — F"(y)| < Cly|*,

and by replacing in the Jacobian and the gradient the metric g;;(y) by the
flat metric d;; .

The associated approximating operator is a Schrodinger operator with
constant magnetic field of strength |3(x?)| (in the new variable y), but we now
have to consider the Neumann realization in the half-space. This time a new
parameter appears, which is the angle ¥J(z7) introduced in (9.2). The bottom
of the spectrum is given by |3(z7)|s(d(z7)) by (6.4).

We now follow the proof of the 2D case and note that, on the support of
the ball D(27, R) , we have, for v with supp v C D(27, R),

[0l = (1 + O(R)) / 5(y) Py

Here we have defined v by

! We keep the notation F for this new magnetic potential, which may depend on
the index j . Notice that the involved local gauge transformation possibly depends
on j as well.
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We now follow the proof of the “interior” case using the change of variables
and we get, with X;(y) == xF(©7'(v)),

IV (u) |22 (1= CR)IV s (%5
— CB*RY|I;il|* - OBR?||X;|V ppuen (50| -
Proceeding in the same way, this leads, for any r, to
IVerx;ull® > (1= CR)(1 — BR*?) B<(d(a’))|X;ul®
— CB’R|%il? - CB R 2| %]
> (1= CR)*(1 = BR*r*) B<(9(2”)) | x;ull?
— C(14 CR)B?R*||x;jull* — C(1 + CR)B R*r~2||x;ul*.

The choice of the parameter r = B~/4 leads, together with the choice of R
done in (9.6), to the lower bound

: ~ 3
IVsrX;u [|* > Bc(W(2?))|x;ull* = CB+|x;ull*.

It remains to observe that the variation of z — ¢(¥(z)) is uniformly con-
trolled on the ball D(z7, R), and we obtain

IVsrxu |* > B/<(19(1‘))IXJ' (x)u()[? dz — OB || x;ull. (9-8)

Summing up the contributions of the “interior” terms and the “boundary”
terms, we have obtained the proof of the following proposition, which is the
three-dimensional analog of Proposition 8.2.1.

Proposition 9.1.2.

We assume that Q is a bounded, smooth domain in R? and that a smooth mag-
netic field 3 is given such that inf . |8(x)| # 0. Then, there exist constants
C and By such that, if

T if d(x, Q) > -3 ,
Us(a) = {BW( ) fd( ) > B_S (9.9)
s(W(x))|B(x)| if d(x,00) < B™ =,
then
Qn(u) > /Qwﬁ(x) — CBY)u(@)? de, (9.10)

for allu € HY(Q) and all B > By .

Here x — ¢(¥(x)) is the extension of the function initially defined on 0f2
to a tubular neighborhood of 02, which is independent of ¢ = ¢(z) in the
boundary coordinates.

As in the previous chapter, this proposition plays an important role
for the control of the decay of the eigenfunctions and immediately implies
Theorem 9.1.1. a
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9.2 Refined Results for Constant Magnetic Fields

We now concentrate on the case when the magnetic field 3 is constant and
describe the more accurate results that can be obtained in this case. This will
be a step in the proof (under a generic assumption on the domain 2) that the
mapping B — A1(B) is monotonically increasing for sufficiently large values
of B.

Consider the case where the magnetic field is constant; after normalization
we assume

1Bl =1. (9.11)

Then the minimum in (9.3) is given by the term inf,cgq<(¥(z)) and the
infimum is obtained at the points of 9Q where ¢(9(z)) is minimal and hence
|9(x)| is minimal.

By Stokes’ formula, we have

/ sin¥(x) dopqa = / curl A - vdogg = / diveurlAdx =0.  (9.12)
9] ET) Q

So there exists at least one point zo € 92 such that ¥(zo) = 0, and it is then
natural to introduce the (nonempty) set of boundary points where ¥(z) =0,
i.e., where [ is tangent to 02,

Y:={z€0Q|B v(z)=0}. (9.13)
We will work under the following geometric assumption.

Assumption 9.2.1.

1. The domain Q is a bounded, open set of R® with smooth boundary.
2. On X, the differential d* of the function 0 > x + (3 - v(x) is nonzero:

dT'(B-v(z)) #0. (9.14)
3. The set of points where B is tangent to X is finite.

Under these assumptions, Y is a regular submanifold of 92 . Therefore, %
is a disjoint union of regular curves. We choose an orientation on each such
curve, and define the normal curvature at the point x € ¥ by

kn(z) == Ky(T(z) Av(z), 5). (9.15)

Here K denotes the second fundamental form on 92, and T'(x) is the oriented,
unit tangent vector to X at the point z. A computation gives

|n ()| = d7 (8 - v(2))]. (9.16)
Hence, we have

kn(x) #0, VreX. (9.17)
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Assumption 9.2.1 seems generic. It is, for instance, satisfied for ellipsoids,
whereas a domain containing a cylindrical boundary piece with axis parallel
to (0 will violate this assumption.

We will need a two-term asymptotics of the ground state energy of H(B) .

Theorem 9.2.2.
With ©¢ from (3.24) and with Q satisfying Assumption 9.2.1, we have, when
B(x) is constant of module 1,

A (B) = ©0B +7,B% + O(B3 "), (9.18)

for somen > 0.
Here 7y is defined by

%o := inf 5o(2), (9.19)
oler) = 274908 (k)| (1~ (1~ 60)[T(w) .5‘2) : (9.20)

where Uy and 0y are defined in (3.50) and (6.16).

Remark 9.2.3.
The two last items in Assumption 9.2.1 are not used for the proof of the upper
bound.

9.3 Some Heuristics Around the Proof of Theorem 9.2.2

Giving in this book a complete proof of Theorem 9.2.2 would lead us too far.
Therefore, we would like to discuss a simpler model that plays the role of
approximating model at a point of ¥ and that will permit us to understand
the appearance of the first two coefficients in (9.18).

We concentrate our analysis on the model

2

2
Py := (hD, —sinft)% + (hDS +cosft+y ) + h2D?, (9.21)

2

on RZ xR/ .
Here we have divided the operator by B2 and introduced the semiclassical

parameter
h=DB"".

The three coordinates (r,s,t) (see Section F.2.2) should be interpreted in
the following way. The hyperplane ¢ = 0 corresponds to the boundary and
r = 0 determines the curve (parametrized by s) on which the magnetic field
vanishes. The parameter v corresponds to a curvature that can be defined
intrinsically at each point of ¥ . Finally, 4+ 7/2 denotes the angle inside ¢t = 0
of the magnetic field with the tangent to the curve.



9.3 Some Heuristics Around the Proof of Theorem 9.2.2 123
Our model corresponds to the following magnetic vector field:
B = (—cosf,—sinf,qr) . (9.22)

Having the construction of quasimodes in mind or to find a lower bound
for the bottom of the spectrum, we perform the dilation

r=h3f, t=h2t, s=h23.

We first get
B L2\
PO::h<(h6Df—sin9f)2+<D§+0089t+h672> +D?> (9.23)

on R%S x R;" . We then take a partial Fourier transform in the -variable (with
the dual variable denoted by &) and obtain

~ 1 ~ L P2 ?
Py ::h((hﬁDf—sinGt)Q-i-(5+0089t+h67r2> +D?>- (9-24)

Remark 9.3.1.

From the point of view of the construction of suitable test functions, it may
be better to think that we are looking for formal eigenfunctions for Py in the
form

a(#, &5 h) exp(iG3) (9.25)
corresponding in the initial variables to formal solutions of Py in the form
w(r,t,s;h) =h~ o ia(h™ s, h™2t) exp(ih™26s). (9.26)

Part of the task is to find the optimal 6 = &(h) in this trial state. These
formal trial states actually have to be localized by suitable cutoff functions in
order to get elements of the Hilbert space. See the end of the construction.

On the contrary, when thinking of lower bounds, it is better to keep the
point of view of partial Fourier transform and to think that we will try to
minimize over o .

After division by h, we find the operator (omitting the hats)
Pl = D%+ (t —ho Li(5))2 + h3 Ly(5)?, (9.27)
with
Li(c) =sinfD, — cosf (5 + r2> , (9.28)

Y
2
Ly(5) = cosfD, + sinf (5 + gr2> , (9.29)
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and )
oc=h"s6¢0
We assume
T
0 + 9

(the situation # = 7/2 corresponds to the particular case when the magnetic
vector field is tangent to X) and will rewrite & as

G=0oh™6 +7.
Here 0y is a constant to be determined, and & will be written as a formal

power series in h; see (9.34).
After a gauge transformation,

U — exp —i (tan Q&Oh_ér) u, (9.30)
which leads to
Py(00,5) 1= D2 + (t — 0g — h¢ L1(5))? + hs Ly(5)? (9.31)
with R
oo= "°
07 cosf

We now look for a solution having the form

ut,r,h) ~ Yyt r)hs (9.32)

j=0
A(h) ~ 3" Ajhi (9.33)

j=0
G(hy=> o;n’s" (9.34)

jz1

satisfying

(P2(00,7) — A(h))u(t,r,h) ~ 0, (9.35)

with @ =a(h).

The goal is to determine for which pair (oo, (h)) one can find a minimal
asymptotic A(h) in the limit A — 0.

We will limit our analysis to the first three terms, which permit us to
understand the main points and are enough for our constructions.

Expanding in powers of h'/6 | the first equation reads

[DF + (t — 0)* — XoJuo(t,7) =0, (9.36)
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and we look for
ug(t,r) = @o(t)wo(r), (9.37)

with H'LUOHLQ(]R) =1.
Using the notation of Section 3.2, (9.36) is satisfied if

(6™ (—00) = Xo)po = 0. (9.38)

We choose o such that Ay is minimal. We know that this minimum is
unique and corresponds to

gy = —fg and /\0 = @0, (939)
and we choose the corresponding positive normalized eigenfunction [see (3.2.1)]

Po = P, ; (9.40)

(with the Neumann condition at 0) and v remains free for the moment.
We recall from (3.29) at £ = &y that ¢g satisfies

/+Oo(t +&)po(t)?dt =0. (9.41)
0

We now look at the coefficient of h'/¢. The second equation reads
[hN(fO) — Oolui(t, ) — 2(t + &) L1(01)uo — Aug = 0. (9.42)
We rewrite this in the form
6N (&0) — Oolua (t,7) — 2(t + &o0)wo(t)Li(o1)wo — Mipowo = 0. (9.43)

Multiplying this last equation by ¢q(¢) and integrating over ¢t € RT,
we get, using (9.41), the necessary condition

A =0. (9.44)

Then, with ¢, solution of

+oo
(6™ (€0) — Oolr = 2(t + &o)¢o / Poprdt =0, (9.45)
0
ie.,

@1 =RO((t+ &)¢o) ,

with the notation from Lemma 3.2.9, we can take

up (¢, 1) = w1 (r)po(t), (9.46)
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with
wi (1) = L1(o1)wo(r). (9.47)

Let us now look at the crucial equation expressing the O(hl/?’)
balance.

(6™ (€0) — Oolua(t,7) — 2(t + &o) L (o1 )us
+ (L1(01)® + La(01)® — A2)ug = 0. (9.48)
Using our previous choices, we get
(6™ (€0) — ©oJua(t,m) — 2(t + &)1 L1 (01) wo
+ (,00([/1(0'1)2 + L2(0'1)2 — )\Q)wo =0. (949)

A necessary solution for solving is obtained as before by multiplying by o
and integrating over t €0, +o00[. We get

50L1(01)2w0 =+ L2(01)2w0 — AWy = 0, (950)
with oo
op=1-— 2/ (t + fo)(pl(t)<p0(t) dt . (951)
0

It is then natural to introduce
Pg(a'l) = 50[/1(0'1)2 + L2(0'1)2 . (952)

Our aim is now to minimize the bottom of the spectrum of Ps(o1) over o7 .
Let us now show that by a gauge transform, we can rewrite Ps(o7) in the
form
Py(01) = eD? +d(r* — p)*. (9.53)

We look for a gauge function on the form

_ .3
t(0,r) = a(h) (67" + 017") , (9.54)
such that ' _
Py(01) := e 07 Py )etOm) (9.55)

The function «(f) in (9.54) is chosen such that the coefficient of the operator
(grz +o1)D, + Dr(gr2 + o1) vanishes. This leads to

sinf cosf (1 — o)
8o sin? 0 + cos26

a(d) = (9.56)

Of course, we have
¢ =cos? 0 + Sysin® 6 (9.57)
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and
p=201/7. (9.58)
But for this value of «(6), we get:

d= (g)Q (0(cos 0 + () sin ) + (—sin 6 + a(0) cos 0)?) .

After computation, this gives
7\? 2 2
d =6 (2> /(805in2 0 + cos?6) . (9.59)
We now rescale the operator cD?+d(r? — p)? . This means that we perform
a new scaling:
r= (C) ‘ r
=y ,

such that Ps(o71) becomes in the new coordinates
Ps(o1) = dich [D% + () = p)?] | (9.60)

with

ey

p= (d) P
We observe that ¢ and d are independent of o;. So in order to minimize
the bottom of the spectrum of the initial operator over o1, we will have to
minimize the bottom of the spectrum of the operator (D2 + ((r')? — p')?)
over p’, which is obtained for p’ = pmin, and take the value g introduced in
(3.50). This corresponds to

1

c
01,min = ;/ (d)3 Pmin » (961)
with ¢
i= (cos® O + 8g sin® 0)%/[60(7/2)%] . (9.62)

So the infimum over o7 of the bottom of the spectrum of Ps(oq) is given for
this value of o1 = 01, min by

2 1 g 1 2 1
d3c3190:( ) 68 17)% (B sin? 0 + cos? )3 i . (9.63)

We have consequently found wg # 0, o1 such that As is as small as possible.
One can then find uy as a solution in the form

U2 = P2wW2,

where 5 is the solution orthogonal to g of

[HY (&) — o)z = 2(t + &)1 — (1 — do)wo
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and
Wo = L1(01)2w0 .

Reintroducing the hats, we have found oy and o; and an L2-normalized
u® € S(R x R*) such that the energy (Ps(oo)u®,u®) of

2
u@ (7 1) = ¢y Zuj(f,f)h%
3=0

satisfies

(Pa(00)u®, u®) = O + h3 in(1)3 68 |13 (J0 5in? 0 + cos? )5 + O(h) .
(9.64)

In particular, we have proved the following:

Lemma 9.3.2.
The ground state energy of the family of model operators Py(oo,5) satisfies

inf (inf o(Py (00, 1)) < O + hi (L) 363 [1]% (Jp sin® 0 + cos? )
70,01

+O(h?). (9.65)

Moreover, the upper bound is obtained for oo = —&y and 01 = 01 min defined
in (9.61).

Sketch for the lower bound.

We can use a vector-valued version of the analysis of h™V(¢) . This leads, using
an abstract functional calculus, to

Pi(3) > p(h3 Ly (3)) + hs La(5)?.

Modulo a localization argument for which we refer to [HeM6], we can then
use the quadratic approximation of y to replace pu(hs L1(5)) + h La(5)2? by
O + h3 P3(5) and we can then use the previous analysis.

Quasimodes for Py
Having in mind formulas (9.25) and (9.26), we define
ul(r,s,t) = cph™ 6=imay® (7,1) exp(ih~ 6 as) exp(idptan Oh~ Sp)
x x(h0s)x(h =037 /C)x(h~F2t/C) (9.66)

with 6 €] %, [ and x a cutoff function around the origin.
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Remark 9.3.3.
In our application, v and 6 are not independent but should satisfy

for some x in ¥. Here kn(x) was defined in (9.15) and 6(z) is defined by
6(z) = arcsin <T(;v) : ég;) , (9.67)

where T'(x) is a unit-vector tangent to ¥ at x .
This suggests that we have to look for a minimum over X of the expression

v (80 sin® (z) + cos® 0(z)) ,
that is,

2= ;Ielg {(kn(2))*(80 sin® O(z) + cos® ()} . (9.68)

This explains formulas (9.19) and (9.20).

9.4 Localization Estimates

We still consider the case of constant magnetic field 8 under Assumption 9.2.1.
We start by stating the decay in the direction normal to the boundary. We will
often use the notation

t(x) := dist(z, 09). (9.69)

Now, if ¢ € C§°(Q), i.e., has support away from the boundary, Lemma 1.4.1
implies that

Qp(9) = Blél3- (9.70)

As in dimension 2, this inequality (and the fact that ©y < 1) implies that
ground states are exponentially localized near the boundary (in the sense of
Theorem 9.4.1). We give the result without repeating the proof.

Theorem 9.4.1.
Let Q C R? be a bounded, open set with smooth boundary. Then there exist
positive constants C, a1, and By such that

[ 220 (jpa@) + B~V + BE)a(@)) do
Q
<Clvsls, (9.71)

for all B > By and all ground states yp of the operator H(B) .
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We will mainly use this localization result in the following form.

Corollary 9.4.2.
Let Q C R? be a bounded, open set with smooth boundary. Then for alln € N,
there exist C,, > 0 and B, > 0 such that

/ Ha)"[$5(2)? dz < CuB~ 3 453

for all B > B,, and all ground states yp of the operator H(B) .

We now define tubular neighborhoods of the boundary as follows. For
€ > 0, define

B(0Qye) ={x e : t(z) <e€}. (9.72)

For sufficiently small g, we have that for all z € B(9€, 2¢p) exists a unique
point y = y(z) € 9Q such that t(z) = dist(x, y). We fix such an ¢ in the rest
of the chapter.

We extend the definition of 9 introduced in (9.2) to the tubular neighbor-
hood B(0%, 2¢p) by 9(x) := ¥(y(z)) . In order to obtain localization estimates
in the variable normal to ¥, we use the following operator inequality, which
is a particular case of Proposition 9.1.2.

Proposition 9.4.3.
Let Q C R? be a bounded, open set with smooth boundary. Let By be chosen

such that Bag/g = éeo and define, for B> By,C >0, and x €

B-CB, He) > B75,
Wpg(x) = 5 5 (9.73)
B¢(¥(z)) —CBa1, t(z) < B s,
where < is the function defined in (6.4).
Then
H(B) 2 Ws, (9.74)

for all B> By, if C is sufficiently large.

We use this energy estimate to prove Agmon-type estimates on the
boundary.

Theorem 9.4.4.
Suppose that Q0 C R? satisfies Assumption 9.2.1. Define, for x € 02,

dy(x) := dist(z, %),

and extend dy, to a tubular neighborhood of the boundary by ds.(x) := ds(y(x))
[where y(x) is the unique boundary point closest to x].
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Then there exist positive constants C, as, and By such that

1
/ 202B4dn (@) |y o (212 da < C|ob |2, (9.75)
B(aQ,Eo)

for all B > By and all ground states ¥p of H(B) .
It is useful to collect the following easy consequence.

Corollary 9.4.5.
Suppose that Q C R3 satisfies Assumption 9.2.1. Then, for all n € N, there
exist C,, > 0 and B,, > 0 such that

[ as@ria@ldo <GB usll, @70
B(8%,¢0)

for all B > B,, and all ground states g of H(B).

Proof of Theorem 9.4.4.
We may clearly assume that ||1p]l2 = 1. Let x1, x2 € C°°(R) satisfy that x;
is decreasing, x1 = 0 on [2,+00[, x1 = 1 on ] — 00, 1], x2 is increasing, x2 = 1
on [2,+o0o[, and x2 =0 on | — 00, 1].

By the standard localization formula, we find, since H(B)yp = A\ (B)vYp,

n ()| 2

t 1
X1 (e )XQ(Bidz)eanziﬁB
0

2

=@ {Xl (€t0> X2<Bidz>ea’3‘l‘%3}

2

t 1
- / ‘v (xl( )xQ(Bidz)e“B“dE) V5 da. (9.77)
€0
Using Theorem 9.4.3, we estimate
t 1
o (easeien
t ) ! ?
> /WB(JJ) X1< >X2(34dg)ea34d2w3 dx . (9.78)
€0
Also,
t ) ta\ P
V() etmtaesie)
€0
t 2 1 !
§2‘vxl( ) X%(B4d2)€2a34d2
€0

1 2 o t\ 24Bidy
+2|VX2(B4dE)| X3 e

€0

1 t 1 1
+2a*B2 7 (eo) X3(Badyg)e?* Bt =, (9.79)
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Combining (9.77), (9.78), and (9.79), we find

1 t 1 b
/(WB(Q?) — M (B) —2a’B2)x} (eo) X3(Bids)e** P =g da

1
SC €2aB4dE|¢B|2d$
B(09,2¢0)\B(89,¢0)

+ CB%e‘*a/ 5 (2)|? da . (9.80)

(2€B(89,2¢0) : B1dx (2)<2}

Since  is bounded there exists D > 0 such that dx(x) < D for all z. Thus
we can estimate, with a; being the constant from Theorem 9.4.1,

1
/ €2uB4dE|’(/)B|2de
B(89,2¢9)\B(02,¢€0)

1 oas 1 1
< 62aB4D e 2a1B4 ¢ 62a1B4t(x)|,L/}B|2 dx

1 3
< OB (aD2—aie0) |1y 1112 = O(B~), (9.81)

where the last estimate holds if a is sufficiently small.

Notice now that Assumption (9.15) implies that 8- N vanishes exactly at
order 1 on X. Therefore, using the boundedness of €2, there exists a constant
C > 0 such that

C~lds(z) < I(x) < Cds (), (9.82)

for all z € B(9%Q, 2¢eg) . Therefore, using that ¢ is monotone, that dp > 0 [from
(6.17)], and the upper bound on A (B) [from (9.18)], we find that

Wa(z) — A1 (B) — 2a®B? > ¢gB4 (9.83)
for some ¢o > 0 and for all z € B(99Q,2¢y) N {BY4dx(x) > 1}, if a is suffi-

ciently large and B is sufficiently large.
Inserting (9.81) and (9.83) in (9.80) yields

t 1 1
[ (L) amtaseriepnta <o, (9.89

Since ¢22B"/*d= is hounded when BY/4ds, < 2, (9.75) follows from (9.84). O

Consider now the set My C ¥ where the function 7 is minimized:

MZ = {.’E S 5() = ﬁo} (985)



9.5 The Derivative of A\ (B) 133

Theorem 9.4.6.

Suppose that Q C R? satisfies Assumption 9.2.1 and let § > 0. Then, for all
N > 0, there exist Cy and By > 0 such that if ¥ is a ground state of H(B),
then

/ p(@)Pdz < OB | (9.86)
{zeQ: dist(x,Mx)>5}

for all B> By .

Sketch of the proof.

We refer to the analysis of the model done in Section 9.3 for an idea of this
proof, which is actually very long and technical. One can then use Agmon
estimates using the weight exp[aB'/?(Fy(x) — Ap)] for some a > 0. This
actually gives a decay in exp[—a(8)B/3] for some a(8) > 0. 0

9.5 The Derivative of A;(B)

In this section, we prove how one can derive the monotonicity result from the
known asymptotics of the ground state energy and localization estimates for
the ground state itself. This section also is restricted to the case of constant
magnetic field § and ) satisfying Assumption 9.2.1. Of course, monotonicity
would follow from the general Corollary 2.3.3 if a sufficiently precise asymp-
totics [up to order o(1)] of A;(B) were available. However, we do not know
any genuinely three-dimensional example where such an asymptotics is known.
Therefore, we will combine the idea of the proof of Corollary 2.3.3 with various
localization estimates from the previous section.

Theorem 9.5.1.
Let B € S? be a constant magnetic field and let Q C R? satisfy Assump-
tion 9.2.1. Let {31, ..., 5, } be the collection of disjoint smooth curves making
up . We assume that for all j there exists x € ¥; such that Yo(z) > o .
Then the directional derivatives Ny 4 = limg .o, [\ (B + ) — u(B)]/B, ewist
and satisfy

lim X ,(B)= lim X} (B)=6y. (9.87)

B—oo B—o00
In particular, there exists By > 0 such that B — A (B) is strictly increasing
on [By, +00].
Based on these estimates, the proof of Theorem 9.5.1 is very similar to the
two-dimensional case. But we first need an adapted gauge transformation.

Proposition 9.5.2.
Let dx, be the function defined in Theorem 9.4.4 and let £; be one of the curves
making up X . Let so € X; and define, for e >0,

Qe, s0) ={z € Q : du(z) < € and dist(z, sg) > €} . (9.88)
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Then if € is sufficiently small, there exists a function ¢ € C*°(Q) such that
A :=F + V¢ satisfies

A@)] < C(ta) + du(@)?).

for all x € Q(e, sp) -

An easy localization argument shows that we can carry out the above
gauge change simultaneously at each ¥, .

Corollary 9.5.3.
Let (s1,...,8N) € X1 X -+ x X and define, for e >0,

Q(e, (s1,--, SN))
={x € Q : dist(z,X) < € and mindist(z, s;) > €} . (9.89)
j

Then if € is sufficiently small, there exists a function ¢ € C*°(Q) such that
A :=F + V¢ satisfies

A@) < O(t) +do@)?)

for all z € Q(e, (s1,...,5n)) .

Proof of Proposition 9.5.2.
We use the adapted coordinates (7, s,t) near ¥; defined in Section F.2. Let
>; be parametrized by arc-length as

1251

9 St 35 X;(s) €09Q.

Given a point z € 2 sufficiently close to X; , there exist a unique point y(z) €
0N such that dist(xz, Q) = dist(z,y(z)) and a unique point X;(s(z)) € %;
such that distan (y(x), Z;) = distan(y(z), X;(s(x))) , where distan denotes the
geodesic distance on the boundary. The coordinates (r, s,t) associated with
the point z now satisfy

|r| = distaa(y(z),%;), s =s(x), t = dist(z, 09).
Notice that there exists a constant C' > 0 such that
Clds(z) < |r(x)] < Cds(z),

and so we may replace dy by 7 in the proposition.

Let Ajdr + Asds + Asdt be the magnetic 1-form wa = A - dx written in
the new coordinates (r, s,t) . Also, write the corresponding magnetic 2-form,
dwap , as _ B _

Biodr Ads + Bigdr A dt + Bogds A dt.
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Clearly,
Eij = 8ifzij - 5;‘111' ) (9.90)

for i < j and where we identify (1,2,3) with (r, s, t) for the derivatives.
The magnetic field 8 corresponds to the magnetic 2-form via the Hodge-
map. In particular, since 3 is tangent to 0f) at ¥, we get

Bi2(0,5,0)=0. (9.91)

We now find a particular solution A to (9.90). We make the Ansatz

t

A1 = —/ B13(7‘,8,T) Cl’T'7 (992)
0
t

Ay = —/ Bos(r,s,7) dr + 1a(r, ), (9.93)
0

A3 =0. (9.94)

Using the relation d(dwa) = 0, we see that the above Ansatz gives a solution
if 15 is chosen as

Ya(r, s) = /OT Bia(p, 5,0)dp. (9.95)

We can verify by inspection that with these choices
Al <C(r?+1). (9.96)

By transporting this A back to the original coordinates, we get the existence
of an A with

curlA =1,  |A(z)| < C(t(z) + ds(2)?).

Since Q(e, so) is simply connected (for sufficiently small €), A is gauge equiva-
lent to F and the proposition is proved. a

Proof of Theorem 9.5.1.
The strategy is the same as the one applied in the proof of Theorem 8.5.1.
We will use a convenient gauge together with localization estimates in order
to prove monotonicity using a less precise asymptotics than the one required
by the general statement of Corollary 2.3.3.

Applying analytic perturbation theory to H(B), we get the existence of

L 4(B).

Let ¥ = UévzlEj be the decomposition of ¥ in disjoint closed curves and
let s; € 3; be a point with 3(s;) > Fo. Let Q(e, (s1,...,5n)) be as defined
in (9.89) with € so small that

rY('/I:) > 30 )
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for all x in the set
{z € : dist(z,X) < ¢ and mindist(z,s;) <e€}.

Define A to be the vector potential defined in Corollary 9.5.3. Let @B be the
quadratic form

HY Q) 3> ur Qp(u) z/ | — iVu + BAu|? dz
Q

and let H(B) be the associated operator. Then H(B) and H(B) are unitarily
equivalent: H(B) = ¢/B9H(B)e~*B% | for some ¢ independent of B.

It follows from the strategy of the proof of Theorem 8.5.1 that it suffices
to prove

B! / AP [ (@ B)P de < C, (9.97)
Q

for some constant C independent of B. [Then we can take b := MB3 ",
in (8.62) with 5 from (9.18) and M > 0 arbitrarily large and proceed as in
the proof of Theorem 8.5.1].

Thus, it remains to prove (9.97).

By Corollary 9.5.3, we can estimate

/Q A@)? [0F (@ B) do

<C (2 + r) ¥ (z; B)|? da
Q(e,(s1,--,8N))

AL /Q L WiB)R (9.98)
(815, SN

Combining Corollaries 9.4.2 and 9.4.5 and Theorem 9.4.6, we therefore find
the existence of a constant C' > 0 such that

[ R@P i @ pP i <oB, (9.99)
Q

which is stronger than the estimate (9.97) needed. O

9.6 Notes

1. The localization of the ground state around ¥ is mentioned in the physics
literature, at least for the case of the sphere. One can find in Chapter 4
of [S-JST] a physical presentation of the problem we are considering.
We place particular emphasis on their Section 4.3, where they analyze



9.6 Notes 137

(with partially heuristic arguments) the angular dependence of the nucle-
ation field (which is the third critical field). For type II superconductors,
they write

Superconductivity is not entirely destroyed for Hc, < H < Hg,.
A superconducting sheath remains close to the surface parallel to the
applied field. Conversely, when the field is decreased below He,,
a superconducting sheath appears at the surface before superconductivity is
restored in the bulk at H = Hc, (k) . If the sample is a long cylinder with
the applied field parallel to the axis, the sheath will cover all the surface
of the cylinder. If it is a sphere, the sheath will be restricted to a small
zone near the equatorial plane when H is close to Hc, . When the field
is decreased toward He, (k) , the sheath will progressively extend up to the
poles.

Note, however, that in this chapter we have only analyzed the linear
problem. But this text could give the main motivation for the second
part of the book.

Notice also that a precise spectral analysis in the case of the sphere is
contained in [FoP].

. The fact that the ground state energy is minimal when the magnetic
field is tangent to the boundary is at the origin of the choice of some
one-dimensional models occurring often in the literature. Let us consider
R+ (or R?x| — d, +d[) and assume that the external magnetic field is
tangent to the boundary x3 = 0. Then it is natural to minimize the
Ginzburg—Landau functional over A’s that have the same property. One
can restrict the functional to vector potentials in the form A(x1, z2,23) =
(a(x3),0,0) . This leads by minimization to the reduced model mentioned
in Note 8 to Chapter 1 [see (1.58)].

. Theorem 9.1.1 was first obtained in [LuP7] with some additional informa-
tion concerning the decay appearing in [HeM4]. We do not repeat the proof
of the upper bound, which is completely analogous to the one given in
Section 8.2.1. Note that the optimal result without additional assumption
is with a remainder in O(|B|*/?) which was obtained in [HeM6] and
in [Pa6] (in the constant magnetic field case, but this assumption is not
used).

. The proof of Theorem 9.2.2 was achieved in [HeM6]. The corresponding
upper bound was also given in [Pa6], and a less general geometric situation
was studied in [HeM4].

. Pan [Pa6] obtained for the upper bound in (9.18) the probably optimal
remainder in O(B7/12).

. The results presented in this chapter are due to Lu—Pan [LuP7], Almog
[Al3], Helffer-Morame [HeM4]-[HeM6], Pan [Pa6], and the recent paper
of Fournais—Helffer [FoH6].
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The Ginzburg—Landau Functional

10.1 The Problem in Superconductivity

Let us describe the mathematical problem. It is naturally posed for domains
in R?, but for cylindrical domains in R?, it is natural (though not completely
justified mathematically) to consider a functional defined in a domain  C R?,
where (2 is the cross-section of the cylinder. This explains why we also consider
models in R?. The behavior of a sample of material can be read off from the
properties of the minimizers (¢, A) of the Ginzburg-Landau functional (free
energy) G to be defined below.

10.1.1 The functional

Let d = 2 or 3 and consider a domain 2 C _ R? and another domain Q such
that  C Q. The most important cases are Q=0 and Q =R, In this book,
we will always consider the cases where (2 is connected and simply connected.
The Ginzburg—Landau functional is defined by

2
Gy (1, A / Droatsl? — w22 + \w\‘*dmﬂm)?/ﬁ curl A 2 d.
(10.1)

Here the function v is called the order parameter (or sometimes the wave
function) and A is a magnetic potential. The symbol 3 denotes a magnetic
vector field and is called the external magnetic field or the applied magnetic
field. In the case d = 2, 3 is just a function in, say, L2 ., whereas when d = 3,
[ is the curl of some vector field with components in HllOC7 hence satisfying
div g = 0. The parameter x > 0 (the Ginzburg—Landau parameter) depends
on the material, and ¢ > 0 (or rather the product ko) is a measure of the
strength of the external magnetic field. In the present book, we are concerned

with the analysis of the asymptotic regime x — +o0.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 141
DOI 10.1007/978-0-8176-4797-1_10, © Springer Science+Business Media, LLC 2010



142 10 The Ginzburg-Landau Functional

We will mainly use two different choices of Q depending on whether d = 2
or 3. This is partly for physical reasons that will be explained below, but
also partly in order to follow what we consider the custom in the subject.
Therefore, we define

Gako(W,A) whend=2,

gR3,Ii,o’('(/), A) when d = 3. (102)

g(¢7A) = g/{,o(w,A) = {

In the three-dimensional situation, we will sometimes write G = G in order
to stress the dimension of the space.

In order to avoid certain technicalities for the Neumann problem in non-
smooth domains, in Chapter 15 we will deviate from convention (10.2).
In Chapter 15, we will consider (polygonal) @ C R?, but the functional will
be associated with the pair (Q,Q = R?).

Next, we will discuss the two cases in (10.2) separately below.

10.1.2 The two-dimensional functional

In the two-dimensional situation, the original functional G is defined on func-
tions (¢, A) € H(Q,C) x HL (R? R?) by

R 2
G, A) = /Q Proatd|? + ’“””2 ([9]2 = 1)? dz + (r0)? /R lcurl A — B2 da.
(10.3)

It will be convenient to subtract the constant "22 || from the functional, and
this leads to the new functional Gge ,, ,. This just changes the zero-point of
the “energy” and has no physical consequence.

The function 3 (magnetic field) is initially defined in L2 _(R?), but since
Q) is simply connected, one can replace the domain of integration in the field
integral from R? to Q (see Section 10.5). Thus, we end up with 3 € L?(Q)
and G as defined above, i.e.,

2
Gy, A) = / |p,WAz/J|2 — ﬁ2|w|2 + I; |w|4 dx + (50)2/ [curl A — ﬁ|2 dx .
: ? (10.4)

We will sometime write G = G,. , or even G = G, , 3, if we want to emphasize
the choice of parameters involved in the definition of the functional. Note that
if ¥ = 0 and A is such that curl A = 3, then G(¢), A) = 0. The above change
of zero for the energy is motivated by the fact that we will, in particular,
study the behavior of minimizers of G near such a state (called the normal
state in physics).

The natural domain of the functional is H!(Q,C) x H(, R?). However,
due to the gauge invariance of G (see Section D.1), it is better to restrict the
functional to the smaller set H*(Q,C) x H}, (), where
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HL () = {v = (Vi,Va) € HY(Q,R)? | divV =0 inQ,V-v =0 on 69}.
(10.5)

The space H}, () inherits the topology (norm) from H'(€,R?). We will
generally consider the functional on this space if not specified otherwise.

We define the Ginzburg—Landau ground state energy to be the infimum of
the functional, i.e.

E(k,0) = inf Gro(,A), (10.6)

(0, A)EHL(Q)x HY,, ()

and we observe, using the previously mentioned gauge invariance, that

E(k,0) := (w,A)eHllr(leZ)le(Q) Gro(h,A). (10.7)
As 2 is bounded, the existence of a minimizer is rather standard, so the
infimum is actually a minimum. We will prove this existence in the next
section. However, in general, one does not expect uniqueness of minimizers.
A minimizer should satisfy the Euler-Lagrange equation, which is called in
this context the Ginzburg—Landau system.
Using (10.7), this equation reads

Proat = £2(L = [Y1*)y, . l0s
curl (curlA — ﬁ) = —Kl(,%(lbpmAw) m ’ (10.82)
v- pno’A’lp =0,
Q. 10.8b
curlA—ﬁzO} on 9 (10-8b)
Here, for A = (A1, A3), curl A = 9,, As — 9, A1, and
curl? A = (8, (curl A), —9,, (curl A)) .
Notice that the weak formulation of (10.8) is
R [ (eond proaty = w21~ [0P)o) dz =0. (10.92)
/(Curl a)(curl A — B)dx = — ! / R(¢ proaty) adz, (10.9b)
Q KO Ja

for all (¢, ) € HY(Q) x H*(Q,R?).

The analysis of the system (10.8) can be performed by PDE techniques.
We note that this system is nonlinear, that H*() is, when 2 is bounded and
regular in R? | compactly embedded in LP(Q) for all p € [1,+oc[, and that,
if divA =0, curl®? A = (—AA;, —AA,).

Actually, the nonlinearity is weak in the sense that the principal part
is a linear elliptic system. One can show in particular that the solution in
H'(Q,C) x H}, () of the elliptic system (10.8) is actually, when (2 is regular,
in C>(2) (see Theorem E.2.1 in Appendix E).
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10.1.3 The three-dimensional functional

Most of the discussion and notation from the two-dimensional case carries
over to the three-dimensional case. However, notice that, whereas in two
dimensions a magnetic field is just (in a given system of coordinates!) any
function [the image of the operator curl on say H{ _(R?*, R?) is all of L _ by
Proposition D.2.1], in three dimensions a magnetic field b has to satisfy that
divb=0.

This is the reason why in 3D it is not immediate to replace the field integral
Jgs | curl A — B|? by the same integral over Q. Hence, what in the future we
call a magnetic field is always a vector field 8 that is associated with some
F € H} .(R?, R?) such that

B =curlF and divF =0. (10.10)

We now define the Ginzburg-Landau functional in three dimensions by

42
G (1, A) = G (0. A) = [ Ipuonvl = w2lu+ 'y 101 do
+(n0)2/ |curl A — B2 dx . (10.11)
R3

Here 1 € H'(Q,C) and A lies in the space Hjiv,F that we are presently

defining. We consider the case of smooth, bounded . Let H'(R?) denote the
homogeneous Sobolev space, i.e., the closure of C§°(R?) under the norm

U= HUHHI(RS) = HVUHLZ(RB)-

 Then the natural variational space for the functional G3P is HY(Q) x
Hjiv’F , Where

Hi,p:={A : divA=0, and A—F € H'(R%)}. (10.12)

We note that minimizing over Hjiv’F is the same as minimizing over
H117 , with

HL:={A : A—Fec H'(R?)}. (10.13)

Given some A in HL, one can indeed always find A € H dive and ¢ € HZ

such that V¢ € H'(R3) and A — A = V¢. This is a consequence of the
properties of the operator VA~™! on R3. Using this remark, minimizers of G
are weak solutions of the Euler-Lagrange equations

! The identification is through the map f — f(z,y)dz A dy.
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Proath = r*(1 = [} in Q, (10.14a)
curl (curl A — j3) = — Klg%(w Proa?) 1o in R3, (10.14b)
(pﬁko) v=20 on o0 . (10140)

The analysis of the regularity of this system is more delicate. This is due to
the fact that in the right-hand side of (10.14b) we have introduced a cutoff
function 1g . This will be discussed further in Appendix E.

10.2 The Existence of a Minimizer

Using the discussion in the previous section, we can impose without loss of
generality the condition that A € Hy, () (resp. A € Hy;, g ).

Theorem 10.2.1.
Suppose that Q C R? is bounded, smooth, and simply connected. For all k,0 €
RY and B € L?(Q), the functional G on HY(Q) x H}, () has a minimizer.
Similarly, if Q@ C R3 is bounded and has Lipschitz continuous boundary,
then for all k,o € RT and B € L3(R3), the functional G has a minimizer in
Hl(Q) X H&iV,F .
Furthermore, minimizers satisfy the Ginzburg—Landau systems in two and
three dimensions [(10.8) and (10.14)] respectively.

Proof.
We start by giving the proof in dimension 2.
Let (¢, A,) € HY(Q) x Hi (Q) be a minimizing sequence, i.e.,

Jim G, Ay) = G(w.A).  (10.15)

inf
(Y, A)eHY (Q)x H},,(Q)

Step 1. {(¢n, A,)} is bounded in H(Q) x HY(Q).
By using that G is the sum of three positive terms, we get the existence of a
constant Fy > 0 such that

where T;, is any of the three terms

/ (V + koA )ion |2 da, /(|¢n|2 C1)2da, / lcurl A, — B2 da.
Q Q Q

Since 3 is a fixed function in L?(Q) and div A,, = 0, we get from Propo-
sition D.2.1 that {A,,} is uniformly bounded in H*().
Using the Cauchy—-Schwarz inequality and the inequality

2ab < ea® + ¢ 1b? for any € > 0,
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notice that

[l =17 do = [ (alt = 2000 +1) do
Q Q
1
> ol — 2 3VIO] > ) salld — 2102

Therefore, {1, } is uniformly bounded in L*(Q), and therefore—again using
the Cauchy—Schwarz inequality—in L?((2).

The boundedness of {A,,} in H'(Q) implies, by the Sobolev embedding
theorem, that {A,} is uniformly bounded in L*(). Combined with the
L*-bound on 1), , this gives the uniform boundedness of {A, ¢, } in L*(Q).
So, considering the uniform bound,

/ |V, + ikoAyiby, | do < Ey,
Q

this implies that {ty,}, is uniformly bounded in H*(2).

Step 2. A weak limit is a minimizer.

We now extract a subsequence, again denoted by {(¢n,A,)}, converging
weakly in H(Q) x H'(Q2) to some (¢, A) € H}(Q) x H}(Q).

Of course, by taking the limit, we obtain

divA =0 inQ, (10.17)
in the sense of distributions.
Furthermore, since the inclusion of H!(Q) in H*({) is compact for all s < 1
and the restriction H*(Q) — L2(dR) is continuous for all s > 1/2, we also

get
A-v=0 onoQ.

Thus, A € H}, (Q2). We can estimate:
/Q |curl A — B|? dx = nEIJIrlOO (curlA — 8| curl A, — B) 2w r2
< fleul A — > liminf |leurl Ay, — 5.
Therefore,
/Q |curl A — B|? dx < hmmf/ |curl A,, — B|? d. (10.18)
The same type of calculation gives

n—-+oo

/ (V + ikoA)y|* de < hmmf/ (V 4 iko Ap )| do . (10.19)
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The compactness of the Sobolev embedding
1 1 1
H'(Q) — LP(Q) for > _—
@)= L@ for > )=
(if d is the dimension, here d = 2), hence for p = 2,4, implies that

/(|¢|2 —1)?%dz = lim [ (|¢n]* —1)*ds. (10.20)
Q

n—-+o0o Q

Combining (10.15) with (10.17)—(10.20) shows that (¢, A) is a minimizer.
This finishes the proof in the two-dimensional case.

The proof in the three-dimensional case is similar. By (D.17), Holder’s
inequality, and the boundedness of 2, we find that

||A — FHLP(Q) S C || curl A — ﬁHLz(R3) s

for all p < 6. From here the proof is identical to the 2D case. a

10.3 Basic Properties for Solutions of the
Ginzburg—Landau Equations

As we have seen, minimizers are solutions of the Ginzburg-Landau equations,
but many properties are true for general solutions of these equations. The first
important property is

Proposition 10.3.1.
If (v, A) € HY(Q) x HY(,R?) is a (weak) solution to (10.8), then
[¥llLe) < 1. (10.21)

The same is true for solutions to the three-dimensional GL system (10.14).

We only give the explicit proof in the 2D case. We first indicate the idea
of an alternative proof using the maximum principle.
Sketch of a proof via the mazimum principle
Assuming the C2-regularity of the boundary and of the stationary point (up to
the boundary), we can apply the maximum principle to the function

u(z) = [()* . (10.22)
We observe that u satisfies
1 2 2
2Au + 5 u(l —u) = |Viead]”. (10.23)

This equation is a direct consequence of the first Ginzburg-Landau equation
(10.8a): We multiply the equation for ¢ by 1 and take the real part.
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Formula (10.23) is then a consequence of the identity

R (Dcoath - 8) = yAU) ~ (7 +inc Al
with
Avor = (V +ikoA)?.
From (10.23), we get
;Au +r2u(l —u) > 0. (10.24)

Now if v admits a maximum that is greater than 1, then we get a contradiction
as follows. If this maximum is attained at a point z¢y € 2, we have indeed
Au(zg) < 0 and k?u(z)(1 — u(wg)) < 0 in contradiction with (10.24). If the
maximum is attained at the boundary, we should additionally use the fact
that u satisfies the usual Neumann boundary condition.

Instead of giving the necessary justifications for the above proof, we prefer
to give a proof that does not imply showing regularity properties.

Proof of Proposition 10.3.1.
With the notation [¢]+ = max(¢,0), we introduce

Q= {z e [b)] > 1},
and the following functions on Q4 :

_:¢
F= g

Notice that [t]+ = (¢t + |t])/2, and so applying Proposition 2.1.2 twice, we see
that

b= (9] = 1S

¥l -1+ € H'(Q)  and  V[l¥| =14 = 1o, V[[¢| - 1]+ = 1o, V]¥|.

Let x € C*°(R) be increasing and satisfy
1 3
X(t)zOont§47 X(t)zlont24,

and define . R
G(z) = x(lz]) PR f=G{).

Then, since G is smooth with bounded derivatives and ¢ € H 1(Q), the chain
rule gives that f = G(v) € H'(Q) (see, for instance, [LiL, Theorem 6.16]).
Furthermore,

b=l =1+ f,
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and so R R R
(V +ikoA)d = Lo, V0] + [[4] — 114 (V +inoA)f.

Now, clearly,
lo, (V+iko A = 1o, (V +ikocA)(|¥|f) = Lo, { V|| + [$|(V +ikcA) f} .

Therefore,
&e{(v koA - (V + z'/wA)z/J}
= Lo, (V11" + (1wl = DIl [(V + inoa) fI)
Here we used the fact that, on Q. , we have |f| = |f] = 1. Therefore,
IVf+fVf=V|f?=0,

and so 1o f Vf takes values in iR?.
Thus, we have, by (10.9) and the support of 0,

0= 3%{ /Q (V + ikoA) (V + ikoA)p + (|02 — 1)y dx}
= /Q V[ 1* + (] = DI |[(V + ino A) F|” + 1+ ) (1] — 1)2[¢] da.

Since the integrand is nonnegative, we easily conclude that €, has measure
Zero. O

Using Proposition 10.3.1, we can get various a priori estimates on solutions
to the Ginzburg-Landau equations (10.8).

Lemma 10.3.2.

Let Q C R? be bounded and smooth, and let 3 € L*(Q) be given. Then for
all p > 2, there exists a constant C' = C(p) > 0 such that for all solutions
(¥, A) € HY(Q) x HE, () to (10.8), we have

120 atls < 5215, (10.25)
[roatslls < sl6l2, (10.26)

C
el A = Bl < & lo IPsoatly- (10.27)

Furthermore, there exists a constant Cy > 0 such that

C
| curl A = Bll2 < [zl lla - (10.28)
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Proof.
Since, by Proposition 10.3.1,

0<1—Jpf <1, (10.29)

the inequality (10.25) is immediate from (10.8a). Multiplying the equation for
¥ in (10.8a) by % and integrating over €, one obtains (10.26), again using
(10.29).

Since, by definition,

curl(curl A — ) = (0y, (curl A — 3), =0y, (curl A — 3)) ,

it follows immediately from the equation for A in (10.8a) that

1
IVl A= Bl < [llollpnmatly- (10.30)

Since curl A — 3 vanishes on 92, (10.27) follows from (10.30) by the Poincaré
inequality, Theorem E.5.1.

Finally, we prove (10.28). For this we use (10.9b) with o := A — F . Here
F is the unique vector field (see Section D.1) in H}, (£2) such that

cwrlF=p3 and divF=0 1inQ, (10.31)
F-v=0 onoQ. (10.32)

Applying Holder’s inequality yields

1
leurl A= BB < - [9llalpeatls |A = Fs.

Thus, using a Sobolev inequality and (D.7), we get

c
el A= Blla < © 16t [panatlz- (10.33

The estimate (10.28) follows upon inserting (10.26) in (10.33). O

The 3D version of Lemma 10.3.2 is slightly harder to prove.

Lemma 10.3.3.

Let  C R? be bounded and smooth, and let 3 be given as in (10.10) and
satisfying 3 € L>®°(R3). Then for all p < 6, there exists a constant C' =
C(p) > 0 such that for all solutions (1, A) € H*(Q) x Héiv,F to (10.14),
we have

P2 atlly < &2 141l (10.34)
”pmrAw“Q S R HwHQ 9 (1035)

1 1
1A~ Fllwasay < € {16l 10l 4 Wl Inravil ) - (1036)
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Finally, there exists a constant Cy > 0 such that
Co
Jeurl A — o <l [0l (10.37)
Proof.
The proofs of (10.34) and (10.35) are identical to the corresponding estimates
for the 2D case [see (10.25) and (10.26)]. The same applies to the proof of
(10.37) except that one has to apply Proposition D.3.2.

So we only have to prove (10.36). From (D.17) we find that there exists
C > 0 such that

||A*F||L6(RS) < C”CurlA—ﬁ”Ig(Rs) . (10.38)
Since div(A — F) =0, (10.14b) can be reformulated as
1
A(A-F) = - R(Vproaty)lg in R3. (10.39)
o
Let D(0, R) be the open ball of radius R around the origin. Using the elliptic
regularity for the Laplacian (see Theorem E.4.1), we obtain, for all p’ € [1, co],
R > 0, the existence of a constant Cp(R) such that
A = Flly20 o, r))
1
< () (114 = Flloioozm + oy Wl Ioneatlviey ) -

In particular, for p’ < 6, we can apply the estimate (10.38) and the compact-
ness of D(0,2R) to get, for p’ <6,

HA - F||W2=P’(D(O,R))

1
< (R) (n curl A = Bz + 6 |pmw||m«<m) . (10.40)

Let R be chosen so big that Q@ € D(0, R — 1). Using once again Theo-
rem E.4.1 and the Sobolev embedding theorem, we find for any p € [1, oo,

1
14~ Flwasio < € (1A = Plarwom) + o Wl Ipaoatlizne

1
<0 (1A= Flwseomy + b Wl roavilise ) -

Reimplementing (10.40) with p’ = 2, we obtain

1
14~ Fllwariay < € (Jlcurl & = Bz + | 19 Ioaratlzoco

1
o [|Pro P . 10.41
# oo Wl o vlznco (10.41)
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Multiplying (10.14b) by A — F and integrating by parts yields

1
el A — B2 s = — /Q (A = F)R(Y proats) do

RO

1
< A -F [e%s} Ko
< 22 1Y oo IPsoa® ]| L2(0)

C
< T NIA = Fllzo@1¥lloo IPsoatll2 (o) -
Ko
Implementing the estimates (10.38) and (10.35), we obtain

lcurl A — B[ 125y < Co [ $lloo 19 22¢c) - (10.42)

Thus, (10.41) combined with (10.35) and (10.42) yields (10.36). O

10.4 The Result of Giorgi—Phillips

We observe that (0,F) is a trivial critical point of the functional G, i.e.,
a trivial solution of the Ginzburg-Landau system (10.8). The pair (0, F) is
often called the normal state or normal solution. The situation is similar in
the 3D case but F appears already in our discussion of the domain.

It is natural to discuss—as a function of c—whether this pair is a local or
global minimizer. When ¢ is large, one will show that this solution is effectively
the unique global minimizer. One says that in this case the superconductivity
is destroyed. In other words, the order parameter is identically zero in 2.

Let us give a rather simple proof of this result that roughly says (see
Theorem 10.4.1 for the precise statement) that (0, F) is the unique minimizer
of the functional when the strength of the exterior magnetic field is sufficiently
large. We will actually show this result for the solutions of the associated
Ginzburg-Landau system.

So we assume that we have a nonnormal stationary point (1, A) for G.
This means that (¢, A) € H'(Q) x H} (Q) [resp. (¥, A) € HY(Q) x H&iv’F
in the 3D case] is a solution of (10.8) [resp. (10.14)] and

/ yp(x)]> dz > 0. (10.43)
Q

By (10.26), (10.27), and (10.21), and using (D.7) for controlling ||A — F||? in
Q by ||curl A — 3|2, we get

lpeoattlls + (50)?[|A = B3 < Car®[lv]3- (10.44)
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We now compare [, |(V + ikoF)y|* dz and [, |(V + ikoA)p|> dx. A trivial

estimate is
/ (V +ikoF)p|> de < 2||(V +inoA)p||> + 2(ko) || (A — F)|] |*. (10.45)
Q

Implementing (10.21) and (10.44) gives

/ (V + ikoB)y 2 do < 2091-8/ (@) da. (10.46)
Q Q

Since v satisfies (10.43), we obtain
AN (oKF) < 2Cqk?. (10.47)

We observe that, by Proposition 2.1.3, A (¢xF) > 0. So by combining Propo-
sitions 1.5.2 and 8.2.2 [and the continuity of B — A (BF)], we get the exis-
tence of a constant Cy > 0 such that

1.
Co min(ok, (0k)?). (10.48)

Thus, we find that if a nontrivial stationary point (¢, A) exists, then

AV (okF) >

c<C(1+k).

This can be reformulated as the following theorem. Before we formally state
the result let us note that the same argument can be applied in 3D. In that
case, the lower bound to the eigenvalue is given in Theorem 9.1.1.

Theorem 10.4.1 (Giorgi—Phillips).
2D. Let Q C R? be smooth, bounded, and simply connected, and let the func-
tion 3 in (10.8) be continuous and satisfy

Bx)>ec>0, Vr €.
Then there exists a constant C = C(,¢) such that if
o > Cmax{k, 1},

then the pair (0, F) is the unique solution to (10.8) in H*(Q) x HL ().
3D

Let  C R3 be smooth, bounded, and simply connected, and let 3 be a
continuous vector field in (10.14) satisfying (10.10) and

B(z)] >c>0, VreQ.
Then there exists a constant C = C(£2, ¢) such that if
o > Cmax{k, 1},
then (0,F) is the unique solution to (10.14) in H'(Q) x H&iv’F .

We emphasize that the result is true for any £ > 0.



154 10 The Ginzburg-Landau Functional
10.5 gQ VS. ng

Here we briefly discuss the question of how the magnetic energy should enter
the functional. Shall we integrate over 2 or over R? (or R3) for the quantity
[ |3 — curl A|? appearing in the definition of the GL functional?

The 2D case

In two dimensions it does not matter (for simply connected 2) whether the
field integral is taken over  or over R?. We recall the outline of the proof, in
order to be able to see how it breaks down in the three-dimensional case. For
simplicity, we only consider an open set €2, which is star-shaped with respect
to the origin. One can then split a magnetic field b defined on R? as b = b +b?
with b! supported in € and b? supported in 2¢. One can now choose a vector
potential a?, defined on R? and supported in Q°, such that curla® = b2 as
a distributional equation in R?. In the starshaped case, the explicit formula
(Poincaré gauge)

1
212117: 21’ T
() /Ob(t)xtdt

shows this immediately. Here b xx= (—x2b2, x1b2) . In the non-starshaped
case, the same result is true, but the proof involves a bit of algebraic
topology—the topological condition on €2 being that € is homeomorphic to
the unit disc. Define (we omit k, o for simplicity)

Eo = inf Go(h,A), FEgz = inf Gge(1),A). 10.49
Q WMQW’) R2 WA)WW ) ( )

We aim to prove that
Eq = Fge. (10.50)

The inequality Fo < FEg2 is easy—it suffices to consider a minimizing
sequence for Gg2 and restrict the A’s to Q2.

To get the other inequality, let (1, A) € WH2(Q2) x W12(Q,R?) be given.
Let A € W,2?(R?,R?) be an extension of A to the entire plane, with curl A = 3
outside a (large) compact set, and define

bh+ 0% =curl A — 1.

as above. Let }
curla? = b? = (curl A — 3)1qe

in R?, as before, with suppa® C R?\ 2, and define
A=A—2a%

Then
curl A = 1g - curl A + Blge .



10.6 Critical Fields 155
In particular, in the domain €2, we have
curl A = curl A |

and, therefore, there exists a gauge function ¢ such that
/ |(—iV + ko A)Y|? dx = / [(—iV + ko A)ep|* da .
Q Q

So Gale'®v, A] = Gg2[1, A]. This gives the desired converse inequality.
The 3D case

The situation is not as simple in 3D. The “algebraic topology” remains valid;
i.e., magnetic fields supported in Q¢ can be generated by vector potentials
supported in the same set.? The difference lies in the meaning of the words
“magnetic field”. In 3D a magnetic field b has to satisfy divb = 0, and upon
splitting b = blg + blge, this condition on the divergence is generally not
satisfied by either term on the right-hand side. In two dimensions, a “magnetic
field” on R? is any function, and therefore the splitting does not cause any
problems.

10.6 Critical Fields

It follows from Theorem 10.4.1 that for fixed s and for sufficiently large o, the
only minimizer (or—more generally—stationary point) of G, , is the normal
state (0,F). It is then natural to try to follow the property of the mini-
mizers when decreasing o starting from 400 and to determine when the trivial
solution is no longer a global minimum or a local minimum. This suggests
defining the third critical field He, (k) mentioned in the Preface as follows:

Hey (k) :=1inf{o > 0 : (0,F) is the unique minimizer of G, »}.  (10.51)

Of course, one can make a similar definition in the 3D case.

Another critical field mentioned in the Preface is He, (k) corresponding to
the transition from the surface superconducting state to the bulk supercon-
ducting state. That second critical field is much harder to define; in fact, no
rigorous definition exists in the literature. However, the term is widely used
and has an intuitive meaning. Many results exist to indicate that, in the limit
where x is large, minimizers show “bulk” behavior for bo < k and “surface
concentration” for bo > K, where

b:= leelg B(x) .

2 This, of course, depends strongly on the topology. As before, the precise condition
is that Q and the unit ball are homeomorphic.
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In this book, we will allow ourselves to use the term H¢, in discussions. For
the purpose of mathematical clarity, we define

K

He, (k) = b (10.52)

10.7 Notes

1. The Ginzburg-Landau model is described in all textbooks on supercon-
ductivity (see, for example, Saint-James—Sarma—Thomas [S-JST], Tilley—
Tilley [TiT], or Tinkham [Ti]). In the mathematics literature, many
articles have appeared devoted to the analysis of this model. In dimen-
sion one, one can refer to the work of Bolley [Bol] in the late 1980s. For
the first mathematical discussions in the two- or three-dimensional cases,
we mention Du-Gunzburger—Peterson [DuGP] and Chapman—Howison—
Ockendon [ChHO] and the basic material also appears in the books by
Bethuel-Brézis-Hélein [BeBH], Sandier—Serfaty [SaS3| or in the lectures
of Rubinstein [Ru].

2. Our proof of Proposition 10.3.1 is inspired by the proof of [DuGP].

3. The systems considered here are a particular (simple) case of Agmon—
Douglis—Nirenberg systems [AgDN1, AgDN2]. In appendix E we give a
short presentation of the needed material and the involved bootstrap
argument.

4. Our presentation of the Giorgi—Phillips theorem is close to the original
proof [GioP] with some simplifications. One can also find a presentation
of this result in the book of Hoffmann and Tang [HoT]. The new point is
that our statement concerns not only minimizers but any critical point of
the GL functional.

5. The argument for the discussion between the two possible definitions of the
GL functional is essentially taken from [DuH]. We do not treat in this book
the case with holes (see, however, the last chapter for a short discussion).

6. The first definition of He, (k) was proposed by Lu—Pan in [LuP3]. We will
discuss this and related definitions in Chapter 13 (two and three dimen-
sions, smooth boundary) and Chapter 15 (2D case with corners). We will
complete the list of references in the specific chapter devoted to the analy-
sis of this critical field.

7. There is an extensive literature on boundary value problems in Lipschitz
domains. We mention here [Ne|, [GeK], [BuCS], [BuC], [BuG], and the
book by Maz’ja [Maz]. See also [GeM].
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Optimal Elliptic Estimates

11.1 Introduction

In this chapter, we establish estimates on “how far” the induced magnetic
vector potential A is allowed to be from the external field F, when (¢, A)
is a solution to the Ginzburg-Landau equations. It is in particular proved
(for more precise statements; see, for instance, Theorem 11.3.1) that in the
entire region between He, (k) and He,(k), ie., for ¢ > k, we have that
A —F =o(1), in suitable norms.

These estimates come in two types:

The first set of estimates is deduced from the ellipticity of the Ginzburg-
Landau system. In this way one obtains the desired inequalities in (Sobolev)
norms, W#?  for p < 4o0o (by embedding theorems, estimates in Holder
norms, Cs'o , o < 1, are also obtained). The challenge here is to get inequali-
ties with the right dependence on the magnetic field strength. This part of
the analysis is valid in a large parameter regime and is essentially functional
analytical.

The second set of estimates corresponds to the case p = oo above. They
are obtained using a very different technique, called a “blow-up argument”.
In this technique, one rescales balls of size k™! to unity, thereby obtaining
(after suitable extractions of subsequences) a limit function that is a solution
of a natural limit equation. In many interesting cases this limit equation has
only trivial solutions, and this information can then be transformed back to
the original solutions of the Ginzburg-Landau system. The estimates obtained
in this way are often much stronger than the first set of estimates described
above.

11.2 Holder Estimates

In both dimensions 2 and 3, the starting point is a formula expressing the
L2-norm of mixed second derivatives of a function in terms of the L?-norm of

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 157
DOI 10.1007/978-0-8176-4797-1_11, © Springer Science+Business Media, LLC 2010
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the magnetic Laplacian on the function and lower-order terms involving the
magnetic field itself.

11.2.1 The case of two dimensions

For convenience, we will use the following notation for the magnetic deriva-
tives:

D = (Dy,D;) = (—iV + BA). (11.1)
The magnetic Laplacian is now the operator
H:=D?=D]+Dj3.

Proposition 11.2.1.
Let Q C R? be a regular bounded domain. Suppose that v € W2(Q) satisfies
magnetic Neumann boundary conditions

v-Dil,, =0. (11.2)
Then

S 1D Dl = B [ (cul AP0 do+ [ (ol do
I Q Q
+ QB/ (curl A)S(Dy2p Darp) da . (11.3)
Q
Proof of Proposition 11.2.1.
Notice the following magnetic commutator:
[Dj, Di] = —iB(0;Ar — OrA;) .
Therefore, a calculation, also using the divergence theorem, yields
S 10Dl = B [ (curl AP0 do+ [ [ o
I Q Q

+2B / (curl A) (D1 Do) dx
Q
+§R/ {(VD¢) H?ﬁ—FZD;Ab vj Dij'(/)}dO'.
[5}9] ik

This formula holds for all functions ¢ in C*°(2) . Proposition 11.2.1 will follow
from this calculation once we prove that the boundary term vanishes.

We now assume the Neumann boundary condition. Thus, (v - D) = 0,
and so the first boundary term vanishes. We can rewrite the second boundary
term as follows:

3?/ ZDM/} vj DD do = R(a +b),
00
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with

a ;:/ > Dyt DyvDijpdo, b= z/ > Dy (hv) Dyt do .
29 7 20 5%
To analyze a and b, we introduce a unit vector 7 parallel to the boundary
and we define D, :=7-D, D, :=v-D.
Let us start by proving that $(b) vanishes. Taking the real part, we find

/ (DY) | MD) 2 do (11.4)
o0

i
2
where M is the matrix with entries M = 0;v, — Orv; . It clearly suffices to
prove that the integrand is real in order to conclude that R(b) = 0. Writing
Dy = (D;¢)7 4+ (D) and using the boundary condition, we find that the
integrand satisfies

R(b) =

(DY | MDY)c2 = |Dyp|* (7| MT)e2
which is manifestly real since M, 7 are real. Thus, R(b) = 0.

Using the Neumann boundary condition and the fact that (7,v) is an
orthogonal basis for C?, we can rewrite a as

a= | Dy D.Dypdo.
oQ

Since (the vector-field part in) D, is a derivative along the boundary, and
since D,ﬂ/}’{m =0, we find DTDV’Q/J|8Q = 0. Thus, a clearly vanishes.
This finishes the proof of Proposition 11.2.1. O

Applying Hoélder’s inequality to the result of Proposition 11.2.1 yields an
interesting elliptic inequality for 2D magnetic problems with Neumann boun-
dary conditions.

Lemma 11.2.2.

Let Q C R? be a regular domain and let B € L®(Q) be an external mag-
netic field. Suppose that v € C*(Q) satisfies magnetic Neumann boundary
conditions. Then, for all p1,pa € [1,+00], we have

> 1D Dl < 3B2|BII1w113 + 20 H |3 + 257 curl A — B3, 1413,
Jik
+2B| curl A — |, [ DYI3,, . (11.5)
where q; is the conjugate exponent to p; ; i.e., pj_1 + qj_1 =1.

Proof.

The proof is direct using the identity in Proposition 11.2.1—replacing curl A
by (curl A — 3) + f—and Holder’s inequality. The term B||(]|| D3 is
estimated as

B| Blls| D3 = Bl Blloo (v, Ho) < B2 BII5[19113 + [1HwI]3

where the Neumann boundary condition is used to get the identity. a
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11.2.2 The case of three dimensions

The same calculation as in the 2D case yields (using of course that 1) satisfies
the Neumann condition)

S 1D, Dul = B° [ (cnl APfo o + [ s o

jok
D2y D3y
+ 2B/ (curlA) - S | D3y D19y | dx + Rb, (11.6)
@ D1y Doy
with
0243 — 0342
b= z/ > Dy (Okvj) Dipdo,  curl A = | 9341 — 1Az | . (11.7)
o jk 0143 — 0 Ay

In the three-dimensional case, we are not able to prove that b vanishes, but
this boundary term can be controlled as follows by trace theorems.
Since the derivatives of v are bounded, we can estimate

3
Bl < CIDY|F2(00) = C Y 1D #1172 (00 -
j=1

Notice that the elementary identity

2 > d 2 o !

wO)F =~ [ lu@Pde =2 [l dr,
0 0
for u € HY(R*), implies the inequality
[u(0)] < V2 |lull L2 1w/ [| L2 @+ -

Implementing this inequality (with u replaced by xu , where x localizes closely
to 0) in the boundary coordinates introduced in Appendix F, we see that there
exists a constant C” > 0 such that, for all ¢ < 1 and all f € H'(Q), we have

117200y < Ce M IFIE + ell Fll7n o -

We will choose ¢ = 1/2C and apply the resulting inequality to each of the
functions f = |D;v|. This gives, with a new constant C,

1 1
bl < C Y _IDwlE+ D 10k DywlllF < €Y IDsl5+ , > I DeDyvli3,
i ok j ok

where we used the diamagnetic inequality, Theorem 2.1.1, to get the last
estimate.
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Combining with (11.6), we thereby get

S0, Dit |2 < O D3 + 25 / (curl A2 |2 da + 2 / [ de
gk Q Q
Ds1p D3ip
+4B’/(curlA)~% Dyt Dy dm‘. (11.8)
¢ D1ty D)

The 3D result analogous to Lemma 11.2.2 is the following.

Lemma 11.2.3.

Let Q C R? be a domain with compact smooth boundary and let 3 € L (£2)
be an exterior magnetic field [see (10.10)/. Then there exists a constant C' > 0
such that, for all py,ps € [1,4+00] and all b € C°(Q) satisfying the magnetic
Neumann condition, we have

> IDiDd|3 < C{lelﬁ\liollzbllg + [IDy]I3 + [1H 13 (11.9)
J.k

+ B2 curl A — B3, 19]13,, + Bl curl A — 5|, HDI/JH%%} ;

where q; is the conjugate exponent to p; ; i.e., pj_1 + qj_1 =1.

11.3 Regularity of Solutions of the Ginzburg—Landau
System

11.3.1 The case of two dimensions

We recall that the Ginzburg-Landau system was introduced in (10.8), the
vector field F in (10.31), and the basic inequality

[Plloe <1, (11.10)

was given in Proposition 10.3.1. Also, recall that, without loss of generality,
by a gauge transformation we can assume that the vector potential A belongs
to the space H}, (Q), i.e., satisfies

A c HY(Q,R?), divA=0 inQ, A-v=0 ondQ. (11.11)

Theorem 11.3.1.

Let Q C R? be a bounded domain with smooth boundary and let 3 € C>(Q).
Then there exist a constant C' and, for any o €1]0,1[ and p €]1,+o0[, con-
stants Co and C, such that if (¥, A) € HY(Q) x HL () is any solution of
the Ginzburg-Landau system (10.8) with parameters k, o > 0, then
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> ID;Dyll2 < C(1+ ko + &2)[[ 9], (11.12)
gk
~ 14 ko + K2
leurl A = Bllcoaiy < Ca " Wl ]oo (11.13)
and
~ 1+ ko + K2
lewl A = Blwroey <Gy [l e (11.14)

Remark 11.3.2.

e Using the W¥*P-regularity of the curl-div system (Proposition D.2.5),
we obtain from (11.14) the estimate

~ 1+ ko + K2
|A = Flwzsiey <Dy "0 2 e (11.15)

Hence, using the Sobolev embedding theorem,

~ 14 ko + K2
1A =Flcra@<Da  [[¥l2l1¥]e, (11.16)

for all o € ]0,1].
e In the applications, o is of the same order as k , and so (11.16) gives that
(A — F) is uniformly bounded in C*(2) in this regime, for any a < 1.

Proof of Theorem 11.3.1.
We use Lemma 11.2.2 with p; = 1, po = oo, and B = ko . After inserting
(10.8a) and the results of Lemma 10.3.2, we find

S 1D Devl3 < O {1+ 1+ (k0)?) 013 + Kol | wr A = B
j (11.17)

Using a Sobolev inequality and the fact that
[¥ll2 < 1€,

which is an immediate consequence of (11.10), this becomes, with a new con-
stant C' and, for any € €]0,1],

> 1D Ditol3

gk

< C’{e_l(l + kY + (ko)) |13 + €(ko)?| curl A — ﬁ||%/V1,p} . (11.18)
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We now apply a Sobolev inequality and the (pointwise) diamagnetic inequality
(2.1)—with f = (=i, + ko Ag)p—to (10.27), in order to get

C/

leurt & = SRy < (oo 1612 (S IDDIE + Iarav3)
g,k
c’ o
< L IIZ Y T IDDedbl3 + 12 1113
(ko) T o
(11.19)

where the last inequality follows from (10.26).

Inserting (11.19) in (11.18) and choosing e sufficiently small yields the
desired (11.12).

Once (11.12) is established, we get (11.14) from (11.19). Finally, (11.13)
follows from (11.14) and a Sobolev inequality. This finishes the proof of
Theorem 11.3.1. O

11.3.2 The case of three dimensions

In three dimensions, the Ginzburg-Landau functional G3P is given in (10.11)
and the Ginzburg-Landau system is stated in (10.14). Recall that in this case
A belongs to HjiV,F as defined in (10.12). Also, the inequality (10.21) remains
true in the 3D case.

As we will see ahead, the fact that we do not have a boundary condition
for A will be both a simplification and a complication.

Theorem 11.3.3.

Let Q C R? be a smooth, bounded domain and let 3 € L°°(R?) be given. Then,
for alla < 1/2 and all 1 < p <6, there exist constants Cy , Cp such that for
all k,0 >0 and all solutions (1, A) € W12(Q) x Héiv,F to (10.14),

1+ ko + K2

IA=Flware <Cp 0 bl 02, (11.20)
1+ ko + K2

1A =Flicra@y =Ca 1 ¥l ll®ll2- (11.21)

Proof.
By (10.36), Sobolev embeddings, the diamagnetic inequality, and (10.35), we
find for p < 6 the estimate

A = Fllw2r @)

1 1
<0 (L0l llat | 160 Nonaatlycce )

L1 1
<O | Wlolivllet 0l SIDD000: | . (11.22)

gk
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We will use (11.22) for p = 6 and the Sobolev inequality
[ curl A — Blloo < C[|A = F|lw250) - (11.23)

We use Lemma 11.2.3 with p; = 1 and ps = +o0, and find, by implementing
(10.14a), (10.21), (10.35), and (10.42),

S Dl < O {1+ (s0) + ) [0I3 + Ko curl A — Bl 013}
3.k
So, using (11.10), we get, for all e > 0,

Z |D;Dytp]|2 < C{(l + ko 4+ K24+ € R |92 + ero|| curl A — ﬂ”oo} .
3ok
(11.24)

Choosing € sufficiently small and inserting (11.10), (11.23), and (11.24) in
(11.22) with p = 6, we get

1+ K%+ ko
1A = Flwsoe <€ T iyl (11.25)
Now using Sobolev embeddings, we have proved Theorem 11.3.3. a

11.4 Asymptotic Estimates in Two Dimensions

11.4.1 Nonexistence of solutions to certain partial differential
equations

We will use the notation F for any vector potential on R2 or on the half-space
R%F := {(x1,22) € R? |21 > 0} satisfying curl F = 1.
From Section 4.2 we know that the natural self-adjoint extension of the
differential operator (—iV + F)? on L?(R?) has spectrum
U(—iv + F)%Z(RZ) = {2_] + 1,] € N} .

We also consider the Neumann realization H of the same operator but
restricted to the half-space R>* . That is the operator studied in Section 4.3,
where we found

inf o(H) = O . (11.26)

In this section, we will consider the following partial differential equations, for
Bo > 0:

(—iV + BoF) % = A3y on R?, with A < 1, (11.27a)
(—iV + BoF)2y = ABo(1 — S?|9|*)y  on R?, with0< A <1, (11.27b)
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(—iV + BoF)2 = ABotp on R%, with A < 9, (11.27¢)
(—iV + BoF) % = A\Go(1 — S?[p>)y  on R2, with 0 <A < ©g. (11.27d)

The last two equations, (11.27¢), (11.27d), are considered with Neumann
boundary condition, i.e.,

v (—iV + 50F)¢‘6Ri =0.
In order for this boundary condition to be well defined, we assume that
v € Hi)o(RY).
Also, we assume that

e the parameter S > 0 in (11.27b) verifies S # 0 when A =1,
e the parameter S > 0 in (11.27d) satisfies S # 0 when A = Q.

The linear problems (11.27a), (11.27¢) have no nontrivial solutions in L?.
That follows directly from the definition of the spectrum. We will prove that
they do not have any nontrivial bounded solutions either.

Proposition 11.4.1.
Let (1, \) be a solution to one of the equations (11.27a)—(11.27d) with A in
the indicated interval and v being globally bounded. Then ) = 0.

Proof.
We only consider the cases on Ri since the other statements follow by the
same arguments. Also, we can reduce to the case Sy = 1 by scaling.

Let H be the operator (—iV—i—F)Q with the Neumann boundary condition.
We will prove that a nonzero bounded solution to (11.27¢) or (11.27d) will
provide a contradiction to (11.26) through the variational principle.

Let 1 € L>=(R2) \ {0} be a solution to (11.27¢). Define

(z) =22 +1, (11.28)
and notice that |V(z)| < 1. Define, furthermore,
Xr(z) = exp(—(z)/R). (11.29)

Since ¢ is bounded, we get that x gt € L?>(R*T). We see that the Neumann
condition v - (—iV + F)(XRw)|8R2 = 0 is satisfied. So, using (11.27¢), (11.26),
+

and an integration by parts, we get

Oollxrvl3 < (xrY | H(xrY))
< Mixrel3 + 1;2/ . Ixr(@)]? [(2)[ do. (11.30)

R2

Therefore,

(€0 —A—R7?)|xr¥ll3 <0, (11.31)
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which for sufficiently large values of R implies that ¢ = 0. This finishes the
proof for (11.27c).

We now prove the nonexistence of nontrivial bounded solutions to (11.27d).
Let ¢ € L*°(R%)\ {0} be a solution to (11.27d) and let the rest of the notation
be as in the previous case. If A =0 or S =0, (11.27d) is the same as (11.27¢),
and so we may assume that 0 < A < ©g and S > 0. Furthermore, after
replacing ¢ by S, we may assume that S =1.

Integrating by parts, we obtain in analogy to (11.30)

O0llxni 13 < bt | HOxw)) < Alxandl = [ xa(@Plota)l* do

1

* g2 /Ru IXr(2) [¥(2)* de.  (11.32)

Since A\ < Og, this implies, using the Cauchy—Schwarz inequality, that

s xarertar < mf [ xawiela [}
So
3 [ xn@Plo@ltde < R [xh@de <R (13

By taking the limit R — +o0, this implies that ¢) = 0. O

11.4.2 Extraction of convergent subsequences

The nonexistence result of Proposition 11.4.1 will be combined with a com-
pactness result that states that under certain circumstances we can construct
bounded solutions to (11.27).

In this section, we will consider sequences of solutions to the Ginzburg—
Landau equations. In particular, we will consider sequences {A,,},, of vector
potentials. We stress that the vector potential A has components (Ai, As)
and similarly A,, = (A}, A%).

Lemma 11.4.2.
Suppose that the external magnetic field 8 belongs to C*(Q) . Suppose we are
given a sequence {(Py, kn,0pn) tneny C Q@ x RT x RY | and let (Y, Ap)s, 0n €
HY(Q)x HY, () be an associated sequence of solutions to (10.8) [with (r,0) =
(K, 0n) in the equation] with ¥, # 0. Define Sy, := |||l - Assume that
Kp — 00 and that ki, /o, — A € RT .

Then there exist P € Q, S € [0,1], f € C, and By € R such that—after
possibly extracting a subsequence—we have

P, — P, S, — S, Un(Pp) — [, curl A, (P,) — Bo, (11.34)

asn— oo.
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Furthermore:
Case 1

If
VEnop dist(P,, Q) — oo, (11.35)
then there exist
e a function ¢ € COO(RQ),jatisfying le(0)] = |f[/S and |l¢lloc < 1,
e q linear vector potential F, with curl F =1,

such that
(=iV + BoF)%p = A(1 — S2||?)p in R?. (11.36)
Case 2
If there exists C' > 0 such that
VEnon dist (P, 00) < C, (11.37)

then there exist
o a function ¢ € C®°(R%T), satisfying ||¢lleo <1 and |©(0)] = |f|/S,

e q linear vector potential F with curlF = 1,

such that
(—iV + BoF)%p = A(1 — S?|¢|*)e in R>*
ea - (—iV + BoF)p =0 on OR>*. (11.38)

Note that, up to extraction of a subsequence, we can always ensure that
case 1 or case 2 occurs.

Proof.
The proof of (11.34) is elementary since € is compact, |, ()] < 1 for all n
and z, and we use (11.16).

Since [ is regular, we get from Corollary D.2.6 that also F € C*(Q).
Therefore, we can use (11.15), with A = A,,, to conclude that the sequence
{A,.},, is bounded in W%?(Q), for all p < co. By compactness of the inclusion
W2P(Q) — W*P(Q) for s < 2, we may further extract a convergent sub-
sequence (still denoted by A,,) in W*P(Q). Furthermore, for a given oo < 1,
we may choose p sufficiently big and s sufficiently close to 2 in order to have
the inclusion W*P(Q) — C1*(Q). Thus, we get the existence of some A €
(Na<1CH(Q)) N (Ng<2,W*P(2)) such that, foralla < 1,s<2,andp > 1,

A, > A in CHHQ) NTEP(Q).

We now identify the field generated by A . The inequality (10.28) holds for
A, with a constant C independent of n (only depending on Q). By passing
to the limit (using Proposition 10.3.1), we find that

curl A = g. (11.39)
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From here we split the proof into two parts, depending on whether we are in
case 1 or case 2.

Limiting equation for case 1.
Let us define, for any R > 0 the following functions on the disc D(0, R):

an(y) = \/Knon (An (Pn + Y > - An(Pn)> ,

VEnOn

— 571 —i/EnonAn(Pn)-y " P Y .
@n(y) n € ¢ ”+ \/Hno-n

Since we are in case 1, a, , @, are defined on D(0, R) for all n sufficiently
large.
Let us introduce the linear function

F(y) .= (JacA(P))y,
with (Jac A)]k = (8%14]0 .
Since P, — P and A,, — A in C%%(Q), we find that
a, —» F,

in C* (D(O,R)) for all R.
By (11.39), we obtain

curlF =6y, in R2.
Thus, F = ﬂof‘, where
curlF = 1.

The equation for ¢ in (10.8a) implies, since diva,, = 0, that

. Rn
—Ap, — 2ia, - Vo, + |an|2<pn = (1- S§|<pn|2)<pn . (11.40)

n

Notice that (11.16) implies that for all & < 1, [|as||cen(o,r)) < Cal(R) for
some Co(R) > 0. Also, we have ||¢n]l < 1. Elliptic regularity (see Theo-
rem E.3.2) now implies, since {ky/op},{Sn} are bounded uniformly in n, the
existence of a constant C’,(R) > 0 such that

Hcpn||cl,a(D(07 23R)) S C{’](R) .
Now applying Theorem E.3.1, we obtain
”QanCQ““(D(O,I;)) S C(IJ(R) .

Since the inclusion C2(D(0,R/2)) — €2 (D(0,R/2)) is compact for
any o < «, we may, for any a < 1, R > 1, extract a subsequence—denoted
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by {pf}—having a limit in the C%%(D(0,R/2)) topology. A “diagonal
sequence” argument now gives the existence of a subsequence {@,} of the
original sequence {p,} and a ¢ € C**(R?) such that

nan;O |Pn — 80||czwa(D(o,R)) =0,

for all R > 0. In particular,

. - . P,
$(0)] = lim [5,(0)] = lim I%énn)l _ |£| .
Passing to the limit in (11.40) we obtain that ¢ satisfies (11.36). We can now
use elliptic regularity to obtain the additional (C*(IR?)) regularity of ¢.

Limiting equation for case 2.

The idea in the second case is the same as before, but things are complicated
slightly by the presence of the boundary. We transform the equation into
boundary coordinates (s,t) in order to find a model on the half-plane.

The boundary coordinates are defined in Section F.1. We repeat some of
the definitions, since we will need to consider a sequence of centered coordinate
changes.

Since we are in case 2, P € 9Q. Let @, € 9 be the unique (for n
sufficiently large) boundary point such that |P, — Q.| = dist(P,,09). Let
O be a (sufficiently small) neighborhood of P, let v : [—sp, 0] — O be a
smooth parametrization of the boundary with v(0) = P, |4/(s)| = 1, and let
v(s) be the inward normal vector to 9§ at the point v(s). We may assume
that {7'(s),v(s)} is a positively oriented basis. Define the coordinate change

D :]— s0,50[%]0,to[— QN O,

by ®(s,t) = ~(s) + tv(s). For sg,t0, O sufficiently small, the map ® is a
diffeomorphism.

Let 7, be as 7 above, but with v,(0) = Q,,. We now define ®,, to be the
same construction but with v replaced by 7, and sg replaced by sg/2. Since
Qn — P as n — oo, the image of ®,, will contain ®(] — so/4, so/4[x]0, to[)
when n is large.

Define
U i= 1y 0 By A, = (Jac®,) (A, 0 ®,),
J, := | det Jac @,|, M, = (M} = [(Jac ®,)! (Jac ®,,)] .

Notice that Mn}t:O = Id and that the boundary condition v - A”‘BQ =0
implies that _
€2 'A”|t:0 =0,

where e; = (0,1).
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Implementing this change of variables in (10.8a) for v, yields
T =iV + kponAy) - [J Mo (=iV + knonAn)tn] = K2(1 — [Pn]*)
9 (—iV + KnonA )1% =0.

Let us calculate curl A, . We use the geometric fact that v/, (s) = —kn ()7, (s),
where k,(s) is the curvature of the boundary at the point ~,(s). Then

An = (121?7/13) = ((1 - tkn(s))’y;(s) AL (Pn(s, 1)), vn(s) 'An(@n(svt))) .
A direct calculation now yields

curl A,, := 9,A5 — 8; AT = (1 — tk(s))(curl A,,) (11.41)

oo
Define y,, := ®,1(P,) and z, := V/KnOnyn . Since we are in case 2, {z,}
is bounded and we may assume that z, — z € R>%.
We proceed to rescale as before. Define, with ¢ = (o, 7),

an(() = AN(C/\{;;:I/T—{?;)U; An(O) ; jﬂ(g) = Jn(g/\/ﬁnan) ,

on(C) = 8y te VR A0Sy () Jhimom) M (C) 1= Mn(C//sin0m)
We denote the components of a,,, m, in the natural way, i.e., a, = (a},a}),
my = {m7;}%,_, . Remember also the relations

=1Id, eg-an| =0.

m"| =0

=0

We get the resulting equation for the scaled function ¢, :

_ . . . Rn
Ju (ZIV A+ an) - [fama(=iV +an)pn] = (1= SilenlM)en,  (1142)

n

9+ (—iV + a,) <pn| _0=0.

By (11.15), {A,} is a bounded sequence in W*P(Q) for all p < oo.
Therefore, {A,} is bounded in W?2P(] — s0/4,s0/4[x]0,t0[), and {a,} is
bounded in W'*(D(0, R) N R*T) for all R > 0. Also, it is immediate that
the matrix m, is uniformly (in n) bounded in C*(D(0, R) NR2+) for all
R > 0. We note for later use, that the bounds on {A,} imply compactness
in W2P(] — s0/4, s0/4[x]0, to]) for any s < 2. So we may extract a convergent

loc
subsequence with limit A. It is now immediate from the definition that

a, — DA(0)  in W2P(R?), (11.43)

loc

(for any s < 1) along the same subsequence. Notice that the limit is a linear
vector potential.

Ahead we will use the standard results on elliptic regularity recalled in
Chapter E on (11.42) to conclude that for all & < 1,
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{¢n}n is bounded in C**(D(0, R) NR*™) for all R > 0. (11.44)

To prove (11.44), we rewrite the equation for ¢,, as follows:

—div(im,Ven) + by - Vo, + cnon = fu, (11.45)
with
K/n - n n
= 0= SEenPhon -+ (Xm0t ).
" gk
and with the standard Neumann boundary condition eg - V@"L:o = 0.

Here {f,} is uniformly bounded in L*(D(0,R) N R*") (for all R > 0)
since ||¢nllec < 1, and the coefficients by, ¢, are uniformly bounded in
WP (D(0, R) N R**) for any p < oo and hence in L>(D(0, R) NR*™T) .

In order to remove the boundary condition we extend by reflection.
We denote extended functions by a superscript tilde. These functions will be
defined by the fact that they are extensions of the original functions and that
they are even or odd under the symmetry (o, 7) — (0, —7) . These symmetry
properties are as follows

~ ~n ~n o~
Pny MY 1, Mo, bY, Cny [ are even,

~n ~n n
myq, My, by areodd.

Since m”"r:(} = Id, the matrix m,, thus defined is uniformly Lipschitz con-
tinuous and ¢,, satisfies the extended version of (11.45) (with symbols having
a superscript tilde). Clearly, the boundedness properties of b,, , ¢, imply that
by, ¢, are bounded in L>®(D(0, R)) for all R. We can now apply the “interior”
estimate Theorem E.3.2, to this extended equation and conclude that, for all
a<l,

||§Dn||cl,a(D(07R)mR2,+) é ||¢TL||CL@(D(O7R)) (].].46)
< C(l1@nllLm(0,2R)) + ||fn||L<>°(D(0,2R)))
< C'(llenll Lo (o,2r)nR2+) + |1 fll oo (D(0,2R)R2+)) -

Using that ||¢n|lec < 1, we can control || f,||Le by ||@n||L=. We have therefore
proven (11.44).

With (11.44) established, we can proceed essentially as in case 1. Let
a < 1. A diagonal sequence argument, as for case 1, gives the existence of
¢ € CH*(R*T) with

e(0) =[fI/S,  llelleo <1 (11.47)
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such that (eventually after extraction of a subsequence)

A flon =l oo (DO.R)NR2+) — 0,
forall R > 0.

We now pass to the limit in (11.42) in the weak sense, i.e., we let u €
C}(R?) be arbitrary and consider the equation obtained by integrating by
parts once in (11.42), namely

/ [0V (i 'u) + 2, (i )] - Jama[ =iV (n) + a5 (on)] dz

Kn
= /(1 — S2|onl?)pnu de. (11.48)

Upon passing to the limit, we obtain that

/(—iVu + BoFu) - (—iVy + BoFy) d = /A(l — S?|p)pudr. (11.49)

Also the Neumann boundary condition is obtained by taking the limit in
(11.42). In conclusion ¢ satisfies (11.38) in the weak sense. Here we used
(11.41) to conclude that the limiting linear vector field obtained in (11.43)—

which we denote by BoF—satisfies curl F = 1. We can now use elliptic regu-
larity to obtain additional regularity (C°°(R%7)) of . O

11.4.3 Asymptotic estimates

We will now combine the nonexistence result Proposition 11.4.1 with the
“compactness” result in Lemma 11.4.2 to obtain strong estimates on solu-
tions to the Ginzburg-Landau equations.

Actually, our first result, Proposition 11.4.4, only uses the extraction of
convergent subsequences from (the proof of) Lemma 11.4.2.

Remark 11.4.3.

Our results will be stated under the assumption that k/o has a positive lower
bound. Actually, when the magnetic field 3 is nonvanishing, it follows from
Theorem 10.4.1 that this assumption is automatically satisfied for nontrivial
solutions.

Proposition 11.4.4.
Suppose that § € C®(Q). Let 0 < Amin < Amax . There exist constants
Dy, D1 such that if

K> D07 )\min < KJ/O— < )\maxa
then any solution (¥, A) of (10.8) satisfies

||pmA¢||c(Q) < D1 Vo |[¥]lo (11.50)
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D,
feurl & = Blloxe < % 10l (11.51)
lcurl A = Bl eaoy < D1 0112 - (11.52)

Proof of Proposition 11.4.4.
Proof of (11.50). Suppose (11.50) is wrong. Then there exist a sequence
(¥ns Ap)r, .o, Of solutions to (10.8) and a corresponding sequence of points
{P,} C Q such that
|pnnanAn1/}n(Pn)| 0.
\/’inannzbn”oo

After extracting subsequences as in the proof of Lemma 11.4.2, we find (along
the converging subsequence)

im |pnnanAn¢n(Pn)|

Aol OV H AE)R(2)] <o,

where z = 0 in case 1 and z = lim,, o0 /kn07 @, ' (P,) in case 2. This yields
a contradiction, and so we conclude that (11.50) is correct.
Proof of (11.51). This inequality is a consequence of (11.50). Remember that

curl? A := (9, curl A, —9,, curl A).
Thus, by the Ginzburg-Landau equation (10.8a) and (11.50),
IV (curl A — 8)||oo = || curl(curl A — 3|00
1 C
= <
IR poa} e <

eI (153)

This is (11.51) for the derivatives.
Furthermore, since curl A — 8 = 0 on 02 and €2 is bounded, we can inte-
grate (11.53) “from the boundary” and find

c 2
fowl A=l < L
This finishes the proof of (11.51).
Proof of (11.52). The proof of this inequality follows the same idea as the
proof of the pair of inequalities (11.50)—(11.51). One needs to take one extra
derivative and consequently prove the existence of C' > 0 and kg > 0 such
that, for all k > kg,

LIV paratle < Ol (1151)

As before, if (11.54) was wrong, there would exist a sequence (¢n, Ap)x,, .0,
of solutions and a corresponding sequence of points {P,} C 2 such that
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|V(¢n PrnonAn, 1/’n) | (Pn)
Ynll3

After extracting subsequences, we find, following the proof of Lemma 11.4.2,
that

lim
n—+00 RnOn

= +00.

|v(¢npnnanAnwn)|(Pn

. ) . ~
1 = [V (o= + 4B ) ()] < +oc.
S a2 VANV g ) (] < oo
This yields a contradiction. ad

Our next result shows that 1 must be “small” in the region that is not
“classically allowed”. We will discuss such results further in Chapter 12 using
other methods.

Proposition 11.4.5.
Let 5 € C*°(Q) be strictly positive and let 0 < Apax < 1 be given. Define

Ap = {2 € 00| Amax > ©0B(x)},  Ar:={z € Q| Anax > B()} .

Then there exist positive constants ko and C' such that if (¥, A)x » is a solution
to (10.8) with ¢ # 0, and

H>/<507 K/O'SAmaxv

and P € Q is such that [(P)| = |¢||co , then

C
dist(P, Ap U A1) < .
1S ( B 1) < \/Iio’
Proof.
Suppose Proposition 11.4.5 is false. Then (with standard notation) there exists
a sequence (P, Kn, On, ¥n, Ay) such that

Rp — 00, Kn/o'n < Amax7

[thn (Po)| = 1¥nlloo » Vknon dist(P, Ap U Af) — oo. (11.55)

We will also suppose that \/knop dist(P,, 0Q) — oo, the contrary case being
treated analogously. By case 1 in Lemma 11.4.2, we find a continuous solution
¢ € L>®(R?) to (11.36) with |p(0)] = 1, A < Apax, and S < 1. By Propo-
sition 11.4.1 for the case (11.27b), applied with A = Anax/Bo and S < 1,
we therefore have ¢ = 0, in contradiction to |¢(0)] = 1. Thus, no such
sequence can exist and Proposition 11.4.5 is true. a

Remark 11.4.6.
In the special case when 8 =1 and

O < Apax <1,

the result of Proposition 11.4.5 is that mazima of || are located within a
distance 1/+v/ko of Q. In other words 1 is in some sense concentrated near
the boundary.
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The next result is of the same spirit.

Proposition 11.4.7.
Suppose that 3 = 1. Let g : RT — RT satisfy g(k) — 0 as k — oo. Then
there exists a function § with g(k) — 0 as k — oo such that if

K(Op"' —g(k)) <o <w(Oy" +g(K)), (11.56)
then any solution (v, A)... of (10.8) satisfies

[9]loo < g(k) . (11.57)

In Section 13.4, we will give a more quantitative estimate valid in a smaller
parameter region.

Proof of Proposition 11.4.7.
The proof goes by contradiction. If Proposition 11.4.7 is false, then there exist
€0 > 0 and a sequence {(¢n, Ap)w, 0, } Of solutions to (10.8) such that

(05" — g(kn)) < on/kn < (O5" + g(kn)),

Kp — 00,
and

[¥nlloc = €o-

Choose P, € Q such that ||tn|lcc = |[tn(Ppn)|. We now proceed to extract
subsequences as described above. We may assume that either case 1 or case 2
is satisfied. In case 1, we find the limiting equation (11.36) with A = 0 and
S > €. Proposition 11.4.1 implies, since ©g < 1, that ¢ = 0. However, by
assumption,

P,
lo(0)] = lim |$,(0)] = lim m( ””)| =1. (11.58)
This is a contradiction, so we conclude that case 1 cannot occur.
Since case 1 cannot occur, we necessarily find that case 2 occurs. Thus,
the limiting equation becomes (11.38) with A = Oy, S > €p. By Proposi-
tion 11.4.1, ¢ =0, but

6(2)] = T [pa(za)] = tim g

n—o0 n=oo [[Ynllee

Thus, case 2 is also impossible, and we conclude that Proposition 11.4.7 is
satisfied. 0
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11.5 Asymptotic Estimates in Three Dimensions

In this section, we will carry out a similar analysis in the three-dimensional
situation. We will generally be rather brief when arguments are too similar to
the 2D case to warrant a repetition.

11.5.1 Nonexistence of solutions to certain partial differential
equations

Let 3 € S?2. We will use the notation F for any vector potential on R?® or on
the half-space Ri such that curl F = (3.

The spectrum of the (Neumann) realizations of (—iV + F)2 on L2(R3)
or L?(R*T) was determined in Chapter 6. In particular—in the half-space
case—it depends on the angle 9 between 8 and the boundary.

Just like the case of dimension 2 we will consider the linear and nonlinear
equations

(—iV +F)2p = M\ on R® with A <1, (11.59)
(—iV+F)2p =X1—-S%[¢*) onR? with0<A<1, (11.60)
(—iV +F)%p = M\ on R** | with \ < ¢(¢), (11.61)
(—iV+F)2p =21 - S%[9[*)  on R, with0 < A<q(0). (11.62)

Equations (11.61), (11.62) are considered with the Neumann boundary condi-
tion, i.e., v+ (—iV +F) ¢| s+ = 0, and we assume that ¢ € H (R*>). Also,
we assume that the parameter S Z 0 in (11.60) verifies S # 0 when A =1,

and similarly, the parameter S > 0 in (11.62) satisfies S # 0 when A = ¢(¢J).

Proposition 11.5.1.
Let (1, ) be a solution to one of (11.59), (11.60), (11.61) or (11.62) with A
in the indicated interval and i globally bounded. Then ¢ = 0.

The proof of Proposition 11.5.1 is identical to the 2D result (Proposi-
tion 11.4.1), and will be omitted.

11.5.2 Three-dimensional asymptotic estimates

The extraction of subsequences is essentially identical to the two-dimensional
case.

Lemma 11.5.2.

Suppose that the external magnetic field 3 belongs to C*°(R3) . Suppose we are
given a sequence {(Pn, kn, 0n) tnen in QXRTXRT | and let {(¥n, An)k, .0, } be
an associated sequence of solutions in H'(Q) x Héiv,F to (10.14) with ¢, # 0.
Define Sy, := ||tn]|co - Assume that k, — oo and that ko, — A € RT .
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Then there exist P € Q, S € [0,1], f € C, and By € R3 such that—after

possibly extracting a subsequence—we have
P, — P, Sn — S, Un(Prn) — [, curl A, (P,) — Bo, (11.63)

asmn — 0o.
Furthermore:
Case 1

If
VEnop dist(P,, 9Q) — oo, (11.64)
then there exist a function ¢ € C®(R?), with |¢|le <1 and |0(0)| = |f|/S

and a (linear) vector potential F with curl F = [y, and such that

(=iV+F)2o=A1-5%p%¢  inR>. (11.65)
Case 2
If there exists C' > 0 such that
. C
dist(P,,00) < , (11.66)
KnOn

then there exist a function ¢ € C*°(R3T), with ||¢|lc < 1 and |o(0)| = |f]/S

and a linear vector potential F with curl F = By, and such that
(—iV+F o =A1-SpP)p  in R,
es- (=iV+F)p=0 on R, (11.67)

The analysis in the three-dimensional case is similar to the two-dimensional
one, and so we state only a representative result without proof.

Proposition 11.5.3.
Let 3 € C(R3) satisfy

|B(z)] = ¢ >0,
for all x € Q, and let Apmax €10, 1] be given. Define
Ap = {2 € 00| Apax > CODNB@IL A = {2 € 9| Aax > 152}

Then there exist positive constants ko and C > 0 such that if (¢, A)xs is a
solution to (10.14) with v # 0, and

K > Ko, H/O-SAma)m

and P € Q is such that [Y(P)| = |¢||co , then

C

diSt(P, Ap U.A[) < \/HO' .
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6 Notes

. The elliptic estimates are very useful and can be found in various publi-

cations (cf. [LuP3]-[LuP7], [HeP1], [Al12]-[Al4]) in the context of super-
conductivity.

. In this chapter we have followed rather closely the review paper [FoH5]

with a few improvements and extensions.
Theorem 11.3.3 is inspired by [Pa3, Lemma 3.3].

. Proposition 11.4.1 is reminiscent of [LuP3, Proposition 2.5]. Our proof is

based on an idea we learned from Almog.

. Proposition 11.4.4 is a slightly improved version of [HeP1, Prop. 4.2] and

[Pa2, Lemma 7.1].

. In the case of Schrodinger operators without magnetic fields, the strong

relation between the spectrum and the existence of generalized eigen-
functions is well known (Sch’nol’s theorem, see [Sch’'n] or in [CyFKS,
Chapter 2]). Proposition 11.4.1 can be seen as a generalization of that
result.

Formula (11.3) appears in [LuP4] with an additional boundary term. Here
we show that this boundary term vanishes in the case of the magnetic
Neumann condition.

. Note 1 to Chapter 9 also relates to the present chapter. In particular,

Proposition 11.5.3 is a mathematical proof of some of the phenomena
discussed in [S-JST] and quoted in the note.

. Clearly, one can obtain many more results in 3 dimensions—both the

direct generalization of the 2D case and real 3D cases where the angle of
the magnetic field with the boundary comes into play. Some results in this
direction are given in [Pa3, Pa6].
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Decay Estimates

12.1 Introduction

In this chapter, which will mainly concentrate on the 2D case, we will discuss
the decay of ¥ away from the boundary. Suppose for the purpose of this
discussion that 3 = 1, i.e., that the magnetic field is constant. We have seen
that—for the linear problem—eigenfunctions corresponding to low eigenvalues
are concentrated near the boundary. As will be discussed below, this result
carries over to solutions of the nonlinear Ginzburg-Landau equations. Propo-
sition 11.4.5 can also be seen as such a result. There are various techniques
to establish rigorous and precise versions of this statement, and the objective
of this chapter is to discuss some of these approaches.

For purposes of understanding, the reader may consider the case of con-
stant magnetic field only. However, we will allow general magnetic fields (with
regularity C® for some « > 0), satisfying the assumption introduced in (8.26).
For the facility of the reader, we recall here the assumption

b> O, (12.1)

with

_ . / _ .
b=inf 6(), ¥ = inf Bx). (12.2)

We study solutions to the two-dimensional Ginzburg—Landau equations (10.8)
or sometimes their three-dimensional version (10.14).

In Section 12.2,; we will use the magnetic Agmon technique from Chapter 8
combined with the elliptic estimates from Chapter 11 to obtain exponential
decay estimates for the 2D problem and for magnetic field strengths satisfying,
for some § >0,

b1
K

Since the proof of the elliptic estimates in Chapter 11 is somewhat

involved, we also give another self-contained proof of the Agmon estimates in

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 179
DOI 10.1007/978-0-8176-4797-1_12, © Springer Science+Business Media, LLC 2010
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Section 12.5. This approach has the advantage of being directly applicable to
domains with limited regularity. In this section, we also treat the 3D problem.

The rest of the chapter is mainly concerned with pushing the lower limit
of validity of the decay estimates downward toward He, (), i.e., to

bo ~ K.

We concentrate for simplicity on the 2D situation. In Section 12.3, we give a
new proof of (an improved version of) an estimate by Almog:

/Q [(z)|*de < C/k. (12.3)

For large fields, this follows from the Agmon estimates, but the estimate is
valid for all o above k/b (and slightly below—see Theorem 12.3.1 for the
precise statement). We also recall the original proof in Section 12.6. That
original proof is very interesting but very different from the techniques gene-
rally used in this book.

The advantage of (12.3) is the large range of validity. The disadvantage is
the lack of decay rate. However, it can be used as input to an Agmon estimate
with k, 0 in an extended parameter regime. That is Theorem 12.4.1, which is
our best decay estimate.

We end this introduction by recalling some inequalities for solutions to
(10.8) that will be used repeatedly all through the chapter. By Lemma 10.3.2
combined with Proposition 10.3.1, we find

[Proatdll2 < K [Y]l2, (12.4)
1903 < 1%z, (12.5)

and
ol curl A — B[]z < Cy [Pl |?]l2 < Co [|[9]]2- (12.6)

We also recall the notation used throughout the text

t(z) = dist(x, 09) .

12.2 Nonlinear Agmon Estimates

The important technique of Agmon estimates can also give exponential locali-
zation to the boundary for nonlinear problems. This is an adaptation of the
technique for linear problems—as introduced in previous chapters and more
specifically in Section 8.2.3—to the nonlinear Ginzburg-Landau equations.
Notice that in the equation for ¢ in (10.8), the nonlinearity has a specific
sign. We can express that equation as

— AN A+ V()Y = K, (12.7)
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where V(¢) is the potential
z— V()(z) :== k2[(z))* > 0. (12.8)

The positivity of the potential allows us to discard this nonlinear term in the
analysis and thus to argue exactly as for the linear case. Of course, when |1
is not small—which is expected for bo near k—it will be rather expensive to
omit the nonlinear term, which explains why the Agmon estimates are not
optimal in that region.

We consider first the case of general magnetic fields § and smooth
domains 2. Here we use the elliptic estimates from Chapter 11. Notice that
in that chapter we used in particular the regularity of the curl-div system in
Sobolev spaces W*P (see Appendix D). That is, though standard, a rather
heavy theorem. It therefore seems appropriate to also derive the Agmon
estimates more directly using simpler arguments. We give such an argument
in Section 12.3.

Theorem 12.2.1 (Agmon estimates).

Suppose that Q C R? is bounded and simply connected with smooth boundary.
Suppose that € C* (Q) . Then, for all co €]0,b] and all o < \/cq, there
exist ko > 0 and C > 0 such that if

olb—cy) >k, K> Ko,

then
1
[ et {|w<x>|2 ¥ |prw<w>|2} dz
o KO

<c ()2 dr, (12.9)
{Vrot(@)<1}

for all solutions (1, A),. o to the Ginzburg-Landau equations (10.8).

Notice that Corollary 12.5.5 is an interesting consequence of these decay
estimates.

Remark 12.2.2.

The reader may have noticed that we do not impose an assumption like (12.1)
in the above theorem. However, if such a condition is not imposed, one risks
that the theorem is empty in the sense that the only solution to (10.8) with
Kk < bo is the trivial solution (0,F). This will essentially follow from the
analysis of the critical field He, (k) in Chapter 13.

Remark 12.2.3.

Coming back to the second equation of the Ginzburg—Landau system (10.8a),
we can deduce the following estimate in the two-dimensional case from (12.9):

/ZWW |V (curl A — ﬂ|d:1:< /|¢ )2 de . (12.10)
Q

By integration from the boundary, we also get an estimate for curl A — (3.
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Proof of Theorem 12.2.1.
Let x € C*(Q) have compact support in . First using (1.32) and (10.9a),
we obtain

fm/ curl A |xv|* dzx S/ [proa(xV)|? dx
Q Q
= [ IVXPR + P - ey de. (121)
We will now deduce from (12.11) the existence of C' > 0 such that
C
ko= o) [ xwPdo< [ VKPR + P - 0P do. (1212)
VEa/ Jo Q

This will result from the control of fQ |curl A — B||x¥|? dz . Here we simply
use (11.51) in order to get

C
[lewta= sl ar < ol
Q VKo
We will discard the negative term —? [ |x®|?[+|? in (12.12) and finally obtain
C
wov— o ) [P de< [ (VPP 4 pP) de. (123
VEa/ Jo Q
We make the following choice of function x . Let f € C*°(R), with
1
f=1on[l,00[, fEOon]—oo,z], (12.14)
and define

X(@) = eV ) f(rot(x)).
Note that, for any € > 0, we can find C(e) s.t.
IVx[? < (14 €)a?kox? + C(e)roe®VErt@| f(Vkat(z)) 2 .

Therefore, (12.13) becomes, using the support properties of f and f’,

K 1
bV _a2(1 —I—E)) / e2avrat(z) U(z 2 do
( g 1\/*60 ( {Vrot(z)>1} @)
< C’(e)/ ()2 da (12.15)
{Vrot(z)<1}

Clearly, (12.15) implies the bound on [[e®V*7t)||3 in (12.9), upon taking e
sufficiently small that
b—" —a?(1+e) >0.
o

The estimate on [|e®V*7!p,. 1| % follows by inserting the bound on |e®V*7t)||3
in (12.13). 0
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12.3 Weak Decay Estimates

In this section, we will consider both the two- and three-dimensional cases.
If d = 3, we will suppose that the external magnetic field 3 is constant of unit
length. After possibly performing a fixed rotation of the coordinates, we may
assume that 3 = (0,0,1). In the two-dimensional case, we work with general
external fields as before.

In this section, we establish “weak” decay estimates. In the proof of these
estimates, we do not use Proposition 11.4.4. Thus, the estimates are valid
under very general assumptions. The estimates are weak in the sense that no
decay rate is given. However, they have the strong advantages of being valid

1. for domains with limited regularity,
2. even when o = k, i.e., all the way down to the critical field called He, (k) .

The results in this section will later be used to give a second proof of Agmon-
type estimates.
We start with a calculation similar to (12.13) but without using (11.51).
Let f € C*(R) be a standard nondecreasing cutoff function, as in (12.14).
Let A > 0 and define x) : 2 — R by

xa(x) = ft(x)/A).

Then y is a Lipschitz function and supp xx C 2.
Arguing as in (12.11)—(12.13) but using a simple Cauchy—Schwarz inequa-
lity instead of invoking (11.51), we find

kobladll2 — kol curl A — B2l
< /Q VP + /2ol — []?) de. (12.16)

Here we used for the 3D situation that the magnetic field is constant (actually
constant direction would suffice), in order to avoid an additional error term
in the first inequality in (12.11).

Using (12.6)—mnotice that (12.6) remains valid in 3D by (10.37)—we get
from (12.16)

k(b — &) [Ixal3

< Corllbllalasl — 2 [ A1l do -+ 17N w(a)f de
Q {t(@)<A}
C3 K2
< Tlwig- ", [ itas
Q

2

A / (@) de + "

, [ 0d =Xl do.
{H(z) <A} )
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Notice that since x) < 1, the last integral is negative and we thus find by
dividing the integral ||/[|2 in two:

bo Cc? C3
() St e [

2 1
HJ;K / v (x)|? dz + 2/ |v(2)|* d . (12.17)
{t(x)<A} {t(x)<A}
Thus,
bo Cc? 5 1 4
{(K1>2ﬁ}nm¢m+ZLQMcm
1112, 1 / 2
) 12.1
< ( 232 + 2&2 + 2) Jusmrens [(x)]* dx ( 8)

Here Cj remains the constant from (12.6). This is the basic inequality.

Theorem 12.3.1 (L*-estimate).

Let Q C R*, with d = 2 or 3, be a bounded, smooth, or polygonal domain.
If d = 2, let B be a continuous magnetic field with b > 0. If d = 3, we suppose
that 3 € S? is constant. Then there exists ko > 0 and for all C > 0, there
exists a C' > 0 such that if (¥, A).,o is a solution to (10.8) with k > Ko and

bo

>1-Cr Y2, (12.19)
K
then
lli<crd" Jor bo <. (12.20)
- )2 k=t forbo > k.

Using the Holder inequality, we obtain an L? bound:

Corollary 12.3.2.
Under the assumptions of Theorem 12.3.1, we have

]l < ex™Y/4. (12.21)

Proof of Theorem 12.3.1. R
We take A = k! in (12.18). Since there exists a constant C; > 0 (depending
only on ) such that

meas{z : t(z) <A} < 61)\,

for all A €]0,2], the right side of (12.18) clearly satisfies the correct bound.
Assumption (12.19) implies that

b 5 C” C// 9]
(% -1) = o bt = = oz = =Y i,

If bo > r, we can discard the positive term (%7 — 1)[|xa®||3 on the left side

K

n (12.18). O
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12.4 Nonlinear Agmon Estimates 11

Using Theorem 12.3.1, we can improve the Agmon estimates. In the proof we
use (11.50), and so Theorem 12.4.1 is dependent on Chapter 11. Hence, the
domain €2 has to satisfy the strong regularity assumptions of that chapter; in
particular, Theorem 12.4.1 does not apply to domains with corners.

Theorem 12.4.1.
Suppose that Q C R? is bounded and simply connected with smooth boundary.
Suppose that § € C* (Q) and let § > 0. Then there exist a,C > 0 and kg > 0
such that if

ab>/€+n_i+5, K> Kg,

then

/62“\/“@0—&)]&(36) {W(JJ)Z + ! |p,.mA¢(x)|2} dx
0 RO

<C / [v(x)|? dz (12.22)
{V/k(bo—r)t(z)<1}

for all solutions (1, A)y - to the Ginzburg—Landau equations (10.8).

Proof.
We follow the proof of Theorem 12.2.1, but we will estimate | curl A — 3] in a
different manner. Choose n > 0 sufficiently small that

St 50 (12.23)
44297 4 2
By the Sobolev inequality and (10.27), we have
OI
| curl A — o < CII curl A = Bllwrzen < [[¢lloo |Proat 2+
Hwnm||pmw||2/<2*">up VLT (12:24)

The norm ||proat)|eo is controlled by (11.50) and the norm ||pxsat|l2 by
(12.4), so we get (with new constants C' and C”)

[[curl A — Bloo < (,{”1/,” )2/ @) (! (44-2)
< C'H—(5+2n)/(4+2n) 7 (12.25)

where we used (12.21) to get the last estimate. Therefore, by the choice of 7,
(12.13) becomes

ro(b— C'r=5+3) /2 i f? de < /Q(|VX|2W2+HZ|X¢|2) dr.  (12.26)
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We now modify the definition of the function x to be

X(z) = eeVAbT=RH@) £\ /(b — k)t (x)). (12.27)
The rest of the proof is identical to that of Theorem 12.2.1 and will be omitted.
O

12.5 Nonlinear Agmon Estimates III

In this section, we will use the weak decay estimates to obtain Agmon-type
exponential decay estimates for solutions to the Ginzburg-Landau equations.
We first need the following energy estimate for functions located away from
the boundary.

Lemma 12.5.1.

Let Q C R, with d =2 or d = 3, be a bounded, smooth, or polygonal domain
and let B be a continuous magnetic field with b > 0. If d = 3, we assume that
B € S? is constant. There exists a universal constant C(2) such that if (¢, A)
is a solution to (10.8) or (10.14), then, for all ¢ € C5°(), we have

(=19 + nr &)l > mbo (1 - 0@ 1 Iwla) ol (1229

Proof.
In the 2D case, we proceed as follows. We estimate, for ¢ € C§°(€2), using
Lemma 1.4.1,

||pmA¢||§ > /w/ (curl A) |q§|2 dx
Q

> kobl|¢l|3 — ol curl A — B|2|g|I3 - (12.29)

By the Sobolev inequality, for ¢ € C§°(R?), and scaling, we get the existence
of a a universal constant Cse}, such that, for all n > 0,

1613 < Cson (0] V16l 3+~ 19113) < Cson (nllprondz+n~"I16]3) , (12:30)

where we used the diamagnetic inequality to get the second estimate.
Combining (12.29), (12.6), and (12.30) and choosing 7 = \/1/kcb, we find:

(1 Coan/ 1 1612 Ipneadl = nd (1= Coony - 1012 ) 013
(12.31)

Thus (12.28) follows from (12.31).

In the 3D case, the scaling behavior is different so we choose different
exponents. First of all, in (12.29) we use the Holder inequality instead of the
Cauchy—Schwarz inequality to get

Iproadll3 > kob]|6]3 — kol curl A — B3]l 4]13. (12.32)
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Now the 3-norm scales correctly in 3D, and we get

2
1613 < Cson (nllpaoadlly + 0 113) (12.33)
We can combine (10.35) and (10.36) of Lemma 10.3.3 to get
| curl A — Bl sy < Cllcurl A — Blwr.2(q) < 6’0_1H1/)||2 . (12.34)

Combining these estimates, we get (12.31) as in the 2D case.
This finishes the proof of Lemma 12.5.1. a

Remark 12.5.2.

It is clear from the proof that the estimate of Lemma 12.5.1 is not optimal.
In particular, we have made a simple and convenient choice of exponents in
the Hélder inequalities instead of striving for optimality.

In particular, using the estimate on ||¢||2 from Corollary 12.3.2, we find

Lemma 12.5.3.

Let Q C R, with d = 2 or d = 3, be a bounded, smooth, or polygonal domain
and let B be a continuous magnetic field with b > 0. If d = 3, we assume that
B € S? is constant. There exists a constant C' such that if bo > k and (1, A)
is a solution to (10.8) or (10.14), then for all ¢ € C§°(Q), we have

C/
(=i + kAol > sbor (1= Y ol (12.35)

By standard arguments, Lemma 12.5.3 implies Agmon estimates in the in-
terior, i.e., the conclusion of Theorem 12.2.1. We restate the theorem including
also the 3D case.

Theorem 12.5.4.

Let Q C R?, with d =2 or d =3, be a bounded, smooth or polygonal domain
and let B be a continuous magnetic field with b > 0. If d = 3, we assume
that 3 € S* is constant. Then, for all co €]0,b] and all o < \/co , there exist
ko >0 and C > 0 such that if

o(b—co) >k, K> Ko,

then the Agmon estimate (12.9) holds for all solutions (¢, A)s . to the
Ginzburg-Landau equations (10.8) or (10.14).

Proof.
We proceed as in the proof of Theorem 12.2.1 but using Lemma 12.5.3.
Applying that lemma instead of (11.51), the left-hand side of (12.13) is

replaced by
C/
ot (1= 1) ol
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Following the proof, we see that the only difference is that the lower-order
factor C1/v/ko in (12.15) is replaced by C}/+/k , which is of still lower order.
O

Corollary 12.5.5.
Let the assumptions of Theorem 12.5.4 be satisfied. Then, for anyp > 2, there
exists a constant Cp, > 0 such that

9]l < Cplro) ™" [l - (12.36)

In particular, we have
[1]l2 < Coo(k0) ™4 [$]lo < Coo(r0) ™4 . (12.37)

Proof.
Applying the Holder inequality to (12.9), we get

wusc{/ <M}nwm
{Vrot(z)<1}

with ; + 11) = % . Estimating

!
dr <
/wmt<m><1} VKo

yields the result. a

12.6 Almog’s L* Bound

We will now prove a generalization of Almog’s estimate (12.3), which in
the original version only considered the case of constant magnetic field 3.
Of course, this estimate is essentially the same as Theorem 12.3.1, but the
method of proof is very different. An important ingredient is the implemen-
tation of the elliptic estimates from Proposition 11.4.4.

Theorem 12.6.1.

Suppose that Q C R? is smooth and bounded, let 3 € C°°(Q) with b > 0, and
let A > b be given. Then there exist positive constants ko and C such that if
(1, A) is a solution to (10.8) and

K> Ko, k <bo < Akr,

then

c c
[ w@ltar< ol < (12.38)
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Remark 12.6.2.
We can actually extend the argument to bo > k — O(y/k) , thereby obtaining
the same range of validity as for Theorem 12.3.1.

Proof.
We will, as usual, work in the gauge where A € H}, (Q) is defined in (10.5).
Define

1
h:=—curl A+ and u:= Kkoh+ 2|1/J|2.

An explicit, though tedious, calculation using (10.8) yields an equation for u .
One can verify that [see (10.23), with a different “u”|

koAb = ko|Y|? curl A — 2R [0y, 1 (i05,1)] — 260R[1h(A105,0 — A205, )],
(12.39)
and

;AW = k(1= [+ VY2 + K202 A2 + 260 A- S V) . (12.40)
Therefore, with
J 1= (0,00 — 105,0) + ik (AL — iA2)),
we find
Au = |} (ko curl A — £2) + k2| + | J]?. (12.41)

Integrating (12.41) over 2 yields
/{2/ 4 (2)]* dac—&—/ [Y(z)|* (ko curl A — k%) da < / Au(z) dx
Q Q Q

:/my.vwg(x) _ —mr/ v V(curl A — B) do(z)

o0
< O/l , (12.42)

where we have used that v satisfies the Neumann condition (remember that
A - v =0 on the boundary) and the last inequality follows from the elliptic
estimate (11.51).
Now using the property that the parameters satisfy bo > « combined with
(11.51) gives
|92 (0 curl A — k) > —C|*.

Therefore, (12.42) combined with Proposition 10.3.1 and the boundedness of
Q implies (12.38). O
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12.7 Power Law Decay Above Hc, (k)

Theorem 12.7.1.
Let Q C R? be bounded and have smooth boundary. Let 3 € C(Q) satisfy
b > 0. Then there exist positive constants Cy and Cy such that if

bo > k+ Cy,
and (Y, A), - is a solution of (10.8), then

/Q (st()) @)+ (st ()2 {0 @) P+ 5 2peoadl® o < Cr. (12.43)

Proof of Theorem 12.7.1.

We start by proving the L*? bound inherent in (12.43). Upon multiplying
(10.8a) by (xt)*1) and integrating over Q, we get, after an integration by
parts,

/|pmA(/£2t2w)|2dx—/ IV (28) o do
Q Q

:/-;2/(@)4|¢|2dx—M/(m)‘*\w*dx. (12.44)
Q Q
Now, since t2¢) vanishes on 92, we can estimate, using (11.51),
/ |Droa (K212 |* dx > no/(curl A) |22 da
Q Q

> ko(b— C/v/ko)|| K>3 . (12.45)
If the constant Cp in Theorem 12.7.1 is sufficiently large, we have
ko(b— C/\ka) > K?
and therefore obtain the estimate
2 /Q(m)4|¢|4 do < /Q IV(28) [ [ de < 4r? /Q(m)%w de.  (12.46)
We proceed by applying the Holder inequality and find
sl < 4v/19. (12.47)

This is the desired L%-estimate.

The L2-estimate in (12.43) follows from the L*-estimate and Holder’s
inequality.

Upon multiplying (10.8a) by (xt)2 instead of (kt)*y) , we get the following
modification of (12.44):

/|p,wA(f-€tw)|2dx+fi2/(f@'t)2|z/J|4dx
Q Q

:/ \V(m)f|¢|2da:+n2/(f<;t)2|w|2dx. (12.48)
Q Q
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Using the L? bound deduced from the L* bound from (12.47) and the
L bound of 1, we can estimate the two terms on the r.h.s. of (12.48) and
arrive (after division by x?2) at

/ Proa(ty)]? de < C. (12.49)
Q

The desired estimate,
/ t2|pnoA'¢)|2dx S Ca
Q
follows from (12.49) and the L*™ bound of . O

As a corollary to the proof above, we get the following estimate.

Corollary 12.7.2.

Let Q C R? be bounded, simply connected and have smooth boundary, and let
B € C™(Q) satisfy b > 0. Then there exist positive constants Cy and Cy such
that if

bo > k+ Cy,
then, for all p € [2,00],

/Qltb(x)Ip dw < il : (12.50)

Proof of Corollary 12.7.2.
By Proposition 10.3.1, it suffices to consider the case p = 2. Using (12.48)
and a spectral estimate similar to (12.45), we find

/Q(Ht(:v))zlw(w)l“d:c < Cllwl3- (12.51)

We now calculate/estimate as follows:

= [ W@l [ @) d

<Ok + \//Q K2t(x)2 [ ()[4 da % \//{f> _q(nt(x))*? dr. (12.52)

Combining (12.51) with the inequality f{tzﬁ_l}(/-@t(nc))’2 de < Cr™1 (12.52)
implies that
193 < C'x™ + O [l ™2,
or equivalently,
93 < C"k1.
O
Clearly, Almog’s L*-estimate (12.3), which can be extended to p > 4, is

contained in Corollary 12.7.2 but for a slightly reduced parameter regime.
We also see from Corollary 12.7.2 that (12.21) is not optimal.



192

12.

1.

2.

12 Decay Estimates

8 Notes

We refer to (and follow) [HeM3, HeP1, FoH3] for implementations of the
Agmon estimates in the present context.

The “weak decay estimates” obtained in Theorem 12.3.1 first appeared in
[BonF] in a somewhat weaker L? version. More precisely, it is shown that
there exists a C' > 0 such that if (¢, A), » is a solution to (10.8) with

k(bo — k) > 1,

then

C’
[l <C / op(z)|? da < : (12.53)
{\/n(bo—n) t(z)<1} \/H(bU — Ii)

. In this chapter, we restrict in the 3D case to constant magnetic field 3.

That restriction permits us to directly use the lower bound PP > |3|
[by (1.32)]. Similar results can, however, be obtained for more general
magnetic fields but with a bit more work, since for a variable magnetic
field one can obtain a generalization of the above lower bound but with
an error term. For details and applications, see [HeM5].

The Agmon estimates give L?-exponential decay of 1) and its derivative
when bo/k > 1+ €. By Sobolev inequalities and using the Ginzburg—
Landau equation, this implies that v is exponentially small in the L°° sense
away from a narrow boundary region.

When bo < k, the L* norm is no longer small in the interior of .
This follows from L*-estimates by [SaS2]. These have been strengthened
to L>-estimates in a recent work (see [FoH7], in answer to a conjecture
of Aftalion—Serfaty [AfS]—appearing in a less formalized way in [SaS2]).
So we have, for any § > 0, a constant Cs such that

ol <cs (1-7)

when dist(z,0Q) > ¢.

Actually, one can even get estimates away from a k-dependent neighbor-
hood of the boundary; see [SaS2, FoH7| for the precise statement (see also
[FoK2] for more precise results in the region where bo ~ k).

The Agmon estimate of Theorem 12.4.1 was inspired by a suggestion of
the referee of the present book.

The bound in Theorem 12.7.1 is inspired by the somewhat overlooked
result [Pa2, Theorem 4.1].
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On the Third Critical Field Hc,

Using the spectral asymptotics of the Neumann Laplacian with magnetic field,
we give precise estimates on the critical field H¢, , describing the onset of
superconductivity in type II superconductors. Furthermore, we prove that
the definitions of this field corresponding to local minimizers and global mini-
mizers coincide.

13.1 Critical Fields and Spectral Theory

13.1.1 Critical fields

It follows from Theorem 10.4.1 that, for fixed x and sufficiently large o, the
only minimizer (or—more generally—stationary point) of G, » is the normal
state (0, F). This corresponds to the observation in physics that a large mag-
netic field breaks the superconductivity of a given material. An important
question in the literature has been to define and calculate the critical field
where this transition takes place.

The first definition, which was proposed by Lu—Pan is

He, (k) :==inf{o > 0 : (0,F) is the unique minimizer of G, ,} .

At this point one should be careful because a priori one cannot be sure that
the transition from 1 nonvanishing to ¥ = 0 takes place at a unique value
of o—there could be a region of transitions back and forth. Thus, one should
define upper and lower critical fields by

He, (k) = inf{o > 0: (0,F) is a minimizer of G, »}, (13.1)
Hey (k) =inf{o > 0 : (0,F) is the unique
minimizer of G, ,» for all o’ >o}. (13.2)

Recall that we have fixed the choice of gauge by our choice of variational space.
If one releases this constraint, we would have to replace “unique” by “unique

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 193
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up to change of gauge” in the preceding definition. Note that in (13.1) the
word “unique” is not present but appears in the definition of H¢, (k). This is
because we want H o, (x) to be as small as possible and H¢, (k) to be as large
as possible. By Theorem 10.4.1, we have

Hey (k) < Cmax(k, 1),
and clearly
He, (k) < Hey(k) < Hey(K) - (13.3)

The aim of this chapter is to prove that these different definitions coincide
for large k and that actually they also coincide with similarly defined local
fields. The local fields are easier to calculate, and we will therefore be able to
give good asymptotic expansions of H¢, (k) once we have established that the
local and global definitions coincide.

The main point is to investigate the strong connections between the critical
field He, (k) and the smallest magnetic Neumann eigenvalue Al (ko A) . One
first observes the following elementary lemma:

Lemma 13.1.1.

o If \V(koF) < K%, then Gu o, has a nontrivial minimizer, with energy
strictly less than the energy of the normal solution.
e IfG. ., has a nontrivial minimizer (¢, A), then A\ (ko A) < k2.

Proof.
Notice that the normal state (0, F) has energy

Gro(0,F) =0. (13.4)

For the first statement, it is easy to see that if u; is a normalized eigenfunction
associated with AY (ko F) and if we consider the couple (pu1, F), then we get
a negative energy for |u| # 0, small enough. We indeed have

/4}2 4
G, B) = 2O (s0F) — )+ " P .

For the second statement, we observe that if the minimizer satisfies ¥ # 0,
then

0> Gro(¥,A) > [Ipeoat|3 — £2|¥]3,

which implies, using the variational characterization of the ground state
energy, that A\ (ko A) < k2. O

The previous proof also gives an upper bound to the infimum of the
Ginzburg-Landau functional (¢, A) — G(¢, A). Optimizing with respect to
w in the proof of the previous lemma indeed gives

(A (ko F) — 2)?

262 [u(z)|* dx (13.5)

. -
i}ﬂi Gr,o(,A) <
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We will see in Section 13.5 that this upper bound is rather optimal when
AV (koF) is a simple eigenvalue, sufficiently far from the second one.

Remark 13.1.2.

Using the first Ginzburg—Landau equation, a minimizer (¢, A) satisfies (12.7)
and (12.8). If one shows by a priori estimates that A is near F and that
¥ 4s small in L in the asymptotic regime considered here (such properties
were reviewed in Chapter 11), it is not too surprising to think that the analysis
presented in the first part of the book of the behavior of the ground state energy
of phg as B — oo will still be valid for the order parameter v corresponding
to the minimizer (¢, A) .

The discussion around Lemma 13.1.1 naturally leads to the following
questions:

e Does the equation in o,
A (ko) = K2,

have a unique solution (for x large enough)?
Here and in the rest of this section, we will use the notation

A\ (B) = AV (BF, Q)

for the lowest eigenvalue of the Neumann realization of the magnetic
Laplacian in Q, H(B) = Pjp o (Q CR?, d =2,3).
e Is this unique solution the critical field He, (k)?

Theorem 8.5.1 gives an affirmative answer to the first question in the case
when 3 = curl F is constant—see also some other cases treated in Section 8.6
and see Theorem 9.5.1 for a three-dimensional result.

In order to analyze the second question in some generality, let us define
the following subsets of the positive real axis:

N (k) := {0 > 0| Gy, has a nontrivial minimizer}, (13.6)
N°C(k) == {o > 0| A1 (ko) < K7}, (13.7)
N*(k) := {0 > 0| The Ginzburg-Landau equations

have nontrivial solutions} . (13.8)

Recall that the functional G is defined by (10.1), (10.2) and that the Ginzburg—
Landau equations are (10.8) in 2D and (10.14) in 3D.
We define local fields and generalized fields by

chog(/i) = sup N'°%(k), Hlé«);(ﬁ‘,) = inf RT\ N¢(k),
He (k) ==sup N(k), HE, (k) :=inf RY \ N*(k).

The global fields—defined in (13.1) and (13.2)—obviously have similar rela-
tions to the set NM(k). Also, one easily verifies by calculating the Hessian of
the functional that the local fields are determined by the values where the
normal solution (0, F) is a not unstable local minimum of G, » .

(13.9)
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13.1.2 Main results

Our main result (combining Theorems 13.1.3 and 13.1.4) below is that all

the critical fields above are contained in the interval [H{ES (x), H 1830(/1)] when

K is large. More precisely (see Proposition 13.1.7), the sets N(x), N'°¢(k),
and A*¢(k) coincide for large values of x. The proof we give is identical for
the two- and three-dimensional situations. For simplicity, as elsewhere in this
book, we restrict in the 3D case to a constant magnetic field.

We first observe the following general inequalities.

Theorem 13.1.3.
Let Q C RY, with d = 2 or d = 3, be a bounded, simply connected domain with
smooth boundary. The following general relations hold between the different
definitions of He, :

HEE (k) < He, (K), (13.10)

loc

HS (k) < Hey (k) - (13.11)

For large values of k, we have a converse statement to (13.11).

Theorem 13.1.4.

Let Q C RY, withd =2 or d = 3, be a bounded, simply connected domain
with smooth boundary. If d = 2, suppose that the external magnetic field 3
satisfies

0 < Ogb <b. (13.12)

If d = 3, we suppose that 3 € S? is constant.
Then there exists kg > 0 such that for k > kg,

loc

HS (k) = Hey (k) (13.13)

Furthermore, if the function B — A\ (BYF) is strictly increasing for large
B, then all the critical fields coincide for large k and are given by the unique
solution H to the equation

M(kH) = k2. (13.14)

Remark 13.1.5.

One may ask what happens when o = Hey (k) . Are there nontrivial minimizers
of Gy for that value of o % Consider for simplicity the case where B — A1 (B)
is strictly increasing for large B . At o = He, (k) we have M\ (ko) = k2, and we
therefore conclude from (13.26) that A vanishes, which implies that ) = 0.
Thus, no nontrivial minimizer (or more generally no nontrivial stationary
point) can exist at the critical value. A more quantitative version of this result
is given in Proposition 13.4.1, in which |||« is estimated in terms of the
quantity k? — \1 (ko) .
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13.1.3 Proofs

Theorem 13.1.3 follows from the following easy lemma whose proof is left to
the reader.

Lemma 13.1.6.
We have the following inclusions for all values of k :

N'¢(k) C N (k) € N*(k).

The remainder of this section will be devoted to the proof of the converse
inclusion for large values of k (see Proposition 13.1.7). Clearly, this implies
the proof of Theorem 13.1.4.

Proposition 13.1.7.

Let Q C R*, d = 2 or 3, be smooth, bounded, and simply connected.
Ifd = 2, suppose that the external magnetic field 5 satisfies (13.12). If d = 3,
we suppose that the magnetic field 3 € S? is constant. Then there exists kg > 0
such that

N*(r) = N'(k) = N°(k),
forall k > kg .

Proof.
Using Lemma 13.1.6, it only remains to prove the inclusion

NSC(K:) g NIOC(K/) .

Suppose that (i, A) is a solution of (10.8) or (10.14) with ¢ # 0. From
Theorem 10.4.1, we get that

o< Ck. (13.15)

Using Theorem 8.1.1 in the 2D case and Theorem 9.1.1 in the 3D case (notice
that in this case i’ = b = 1), we see that, for any € > 0, there exists k. > 0
such that, if kK > k.,

{0, <@ib’ - €> /s] C NP¢(k). (13.16)

So it suffices to consider o satisfying, for some ¢ > 0 and some arbitrary ¢ > 0,
K /
c< < Ogb +e. (13.17)
o

In particular, we may take € such that ©gb’ + € < b. Let us define

A = K [9[I3 = Iproattls- (13.18)
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Multiplying the first equation in (10.8), respectively (10.14), by ¢ and inte-
grating over (), we first obtain

RAlvlls = A, (13.19)

and the nontriviality of (¢, A) implies the inequality
0 < K2|]|f = A. (13.20)

Combining (13.27), (13.28) ahead with (13.20) yields

A
- (13.21)

ko) |A = F|%.00 < C
(k)7 240 < (ko)

We now estimate, for arbitrary n > 0,
A= ”pmwa”% - 52”1/1”3
> (1= 0)lpror |3 = £*[9)13 — 17 (ko) |A = Fl7aq 9117 (13.22)
Thus, using (13.28), (13.20), and (13.21), we obtain

Az A3
A > (M (koF) = D) |0)2—nCh(koF) = —plc 27 (13.23)
k(Kko)a K(ko)4
It clearly follows from Theorem 8.1.1, respectively Theorem 9.1.1 in three
dimensions, that there exists a C' > 0 such that

A (koF) < Cok (13.24)

ifok >1.
Thus, we can choose = \/A/ko and find that (13.23) gives the existence
of kg and C' such that, for k > kg,

1

0> —A > (M (koF) — )|pf2 — ¢ A (13.25)
Using (13.15), we find that, for sufficiently large
0<(1—Cr2)A < [k2 = M (ko) ||l]13. (13.26)

Thus, since ¢ # 0, we conclude that \; (ko F) < k2, which is what we needed
to prove. O

Proposition 13.1.8.

Suppose that Q C R?, d =2 or 3, is smooth, simply connected, and bounded.
Suppose that 3 satisfies (13.12) if d = 2 and that 3 € S? is constant if d = 3 .
Then there exists a C7 > 0 such that

c
|A = Fllzay < lIglallvl:, (13.27)

for all solutions (1, A) to the Ginzburg—Landau equations.
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Furthermore, if € is sufficiently small, then there exist kg > 0 and Cy > 0
such that if

k < (O + €)o,
then

2

C
l]13 < (ko) 1113, (13.28)

when Kk > ko and for all solutions (¢, A) to the Ginzburg-Landau equations.

Proof.

Corollary 12.5.5 with p = 4 yields (13.28) for d =2 or 3. For d = 2, we use
(10.28), (D.7), and a Sobolev inequality to get (13.27). The estimate (13.27)
in 3D is a consequence of (10.37) and Proposition D.3.2. O

13.2 Asymptotics of the Critical Field in 2D

A central question in the mathematical treatment of type II superconductors
is to establish the asymptotic behavior of He, (k) for large values of x . We see
from Theorem 13.1.4 that this asymptotic behavior can be read directly from
the asymptotics of A\1(B). In particular, we get, using Theorem 8.1.1.

Theorem 13.2.1.
Suppose that Q C R?, 3 satisfy the assumptions of Theorem 18.1.4. Then

K
He, (k) = Ol + o(k) .

The case of a constant magnetic field has been the focus of much attention
in the literature. In that case, we see from Theorem 8.5.1 combined with
Theorem 13.1.4 that the critical fields coincide and we get the following
asymptotics, using Theorem 8.3.2.

Theorem 13.2.2.
Suppose that 8 = 1 and that Q C R? is bounded, smooth, and simply connected.
Then

K C

Hoy(K) = 4 % kmax + O(k75) . (13.29)

Remark 13.2.3.
As mentioned in Remark 8.3.6, the error bound in Theorem 8.3.2 is not
optimal. If one uses the optimal error bound O(BY*), (13.29) improves to

K C

Hey(k) = 5+ kmax + O(k72) (13.30)
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Of course, one can also use the more precise eigenvalue asymptotics for
special geometries as in Theorem 8.4.1 or in Corollary 5.4.2 to give better
estimates on He, (k) in the corresponding cases. We leave the details to the
reader.

13.3 Asymptotics of the Critical Field in 3D

It should be noted from Chapter 9 that obtaining precise spectral asymptotics
is technically much more involved in 3D than in 2D. In particular, we have

at present no three-dimensional analog of Theorem 8.5.1. Thus, we do not in

general know that the interval [H 18;(/{), H lg:(/{)] collapses to a point for large

values of k, even when [ is constant.

As in 2D, Theorem 13.1.4 reduces the nonlinear question of the asympto-
tics of He, (whatever the definition) to the simpler linear question of asympto-
tics of A1(B) . For example, we can use the asymptotics (9.18) under certain
geometric assumptions on §2. Combining this result with Theorem 13.1.4, one
gets a two-term asymptotics for He, (k):

Theorem 13.3.1.
Suppose € is a smooth, bounded, simply connected domain in R® satisfying
Assumption 9.2.1. Then

K 1

He, (k) — (@0 - %@gmé) = o(k3), (13.31)

where Hey (k) denotes any of the six different (upper or lower) critical fields
defined above and the geometric constant 5o was defined in (9.19).

The proof of Theorem 13.3.1 is immediate. By Theorems 13.1.3 and 13.1.4,
it suffices to prove that Hgg(fa) and ng;(/@) have the asymptotics given
by (13.31). But this follows easily from the asymptotics of \;(B) given in
Theorem 9.2.2.

Theorem 13.1.4 together with the monotonicity result established in
Theorem 9.5.1 gives

Corollary 13.3.2.
Suppose that Q satisfies Assumption 9.2.1. Then there exists a kg > 0 such
that for k € Ko, 0o[, one has

loc

HES(w) = He, (k) = HE, (k) = He, (k) = Hey (k) = He, (k). (13.32)

13.4 Amplitude Near the Onset

In this section, we restrict for simplicity to two-dimensional domains. From
Proposition 10.3.1, we know that minimizers (1, A) of the Ginzburg—Landau
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functional satisfy the estimate ||¢|| L~ < 1 independently of the values of k, o .
Furthermore, the elliptic estimate of Proposition 11.4.7 tells us that, in the
case of a constant magnetic field,

[¥]loc = 0(1),

for large k when o is near He, (k). Here we will give more precise estimates
on the magnitude of ||?| -

Proposition 13.4.1.
Let Q C R? be a bounded, simply connected domain with smooth boundary.
Suppose that the magnetic field G satisfies

0<@0b/<b.

Then, for all € > 0 and € > 0, there exist constants C and ko such that if
(1, A) is a nontrivial solution to (10.8) with

"<b-d, k2R,
g
then
[l Loy < C k™27 /K2 = Ai (kO F). (13.33)

Remark 13.4.2.
The estimate (13.33) can also be expressed in terms of the distance to the
critical field, i.e., |Hc, (k) — o| . Suppose that Q and 3 are such that!

Cy := limsup |\}(BF)| < cc.
B—o0

Then, using Theorem 13.1.4 (and a continuity argument), we can write (for
large values of k)

rkHcg (k)
/@Q—Al(maF):/ U N(BF)dB < (Co + 1)k |Ho, (k) — o]

KO

Therefore, the estimate (13.33) becomes,

[llsey < Ce n | Hey() — ol ¥e>0. (13.34)

Let (¢, A) be a solution to (10.8). We will define a “nonlinear spectral
distance” 4y by

_ 2 lYlE = llproat 3

1)
v [RAE:

(13.35)

! In general, the derivative \{(BF) will not exist for all B. So one should
rather replace \}(BF) by the maximum of the left- and right-hand derivatives
max(|A] _ (BF)|, |\] 4 (BF)|) . For simplicity, we omit this point in the discussion.
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With the parameter A from the proof of Proposition 13.1.7, we have
A
113

Hence, from (13.19), we obtain that d, > 0if ¢ # 0.
The proposition will be a consequence of the following lemma.

Lemma 13.4.3.

Under the assumptions of Proposition 13.4.1, for all e > 0, e > 0, and
€ > 0 such that e1 < 1+ eo, there exist constants C' and kg > 0 such that if
(1, A) is a nontrivial solution to (10.8), with

Oy

"<b-d, k= ko,
g
then
1
A< Co2rateptta (13.36)

where A = ||[¢]|oo and p is defined by A = ||¢]2 .
Proof of Lemma 15.4.5.
We recall from (10.26) and (13.19) the estimates

)
Ipsoatlls < &*[93, Illl3 = ;ﬁ 9113 - (13.37)
Furthermore, from Proposition 11.4.4 we get the inequality

IProatlloc < CVEolth] o - (13.38)

By the Sobolev inequality and using interpolation theory, we get that, for all
(p, s) satisfying ps > 2 and 0 < s < 1, there exist constants C' and C such
that R

A< C[9lllwer < ClBIL* IVl + Cll]lp -

We then use the diamagnetic and Holder inequalities on the right-hand side:

A< Il Ipeoatlly + Chur .
Using Corollary 12.5.5, with p = oo, we get
p<Cr 2. (13.39)
So for x large enough, we obtain

A< ClYl, ™ Iproadlly -

We now apply the Holder inequality for each term on the right-hand side:

1-s N
A< O {Iproatv I Iproatl3}"
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We use (13.37) and (13.38) to get
1—s

5\ ¥ . e -
/\§C<>\”‘2u2 ﬁ) (WrPp?)e = CA250 5,7 piwt ™20 (13.40)
K
This implies that
A< 062 prtegad oL, (13.41)

Write 1/(1—3s) =1+ ¢€; and ps =2+ 2e2/(1+€1). Then we find (13.33). O

Proof of Proposition 13.4.1.
The estimate (13.26) implies that

6y < 2(K? — \i (ko F)), (13.42)

for large k. Thus, (13.33) follows from (13.36) with ¢; = ¢ and ez = €¢/2,
(13.42), and (13.39). 0

Remark 13.4.4.
If (¢, A) is a global nontrivial minimizer, we have

1 A
2:2|pllg

0>G(y,A) > _A

2
__Fk 4 _

Using (13.26), this finally gives

(K2 = X1 (ko F) 2|13

13.43
R2] 4 (13.43)

G, A) >~ (1+Cr )

It is interesting to compare this with (13.5).

If we indeed are able to prove in some case that /|12 is close to uy for
o sufficiently close to Hey (k) , we will get an estimate of the energy of the
minimizer.

For this last point, we could try to use ¥ as a quasimode for Acoa or
AyoF together with a lower bound of Aa(koF) — A1 (ko F) , which we have, for
example, in the case when (B is constant and when the curvature has a unique
nondegenerate maximum at the boundary. This will be developed in the next
section.

13.5 Energy Near the Onset

Near H¢, we have o = k/Oy, in particular,

C‘%SUSC’H,
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for some constant C' > 0. We take the assumptions of Theorem 8.4.1, and so
we have

Xo(Ko) — A1 (ko) ~ K2 . (13.44)
Recall the notation u; = u;,p for a normalized ground state of the Neumann

. . N . (o
realization Pgrq- Our aim is to prove

Proposition 13.5.1.
Under the assumptions of Theorem 8.4.1, there exists a function g(a) on
[0, o] such that

linb gla) =0
and such that if )
K2 —akz2 < A (koF) < K2, (13.45)

then we have

[k? — A1 (ko F)]?

inf G(v, A) = —(1 + g(@))(1 + Cx~4) 22|y o4

(13.46)
Remark 13.5.2.

Under these assumptions (see Theorem 8.4.1), the strength o satisfies for some
Qg and for a small enough

1

A (koF) < 5% < Ao(koF) — Qgk2 . (13.47)

Remark 13.5.3.
Condition (13.45) can also be written in the form

0< Hey(r) -0 < g/f% . (13.48)

Proof.
What remains to be proven is the lower bound. The upper bound was indeed
obtained in (13.5). According to (13.43), it is enough to show that the L*
norm of v/ ||+||2 tends to the L* norm of u; as a — 0 (we actually only need
an asymptotic lower bound by the L* norm of u,).

Let us assume that we have proven the two following lemmas under the
assumptions of the proposition.

Lemma 13.5.4.
There exists c(c, 0, k) € C such that |c(a, 0, k)| =1 and

clo,o,k)ur|| =o(1), (13.49)

2

[
4112

uniformly with respect to the other parameters as a — 0.

Lemma 13.5.5.

lurlli = ki and  Jur) w3 (13.50)
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Using the elementary inequality
" > [al* — 4]b —allal* ,
for real numbers a,b, we get for any pair of functions v, w in L5(f),

/Q|v|4d;v2/Q|w\4dx—4Hv—w||2||ng. (13.51)

Applying this inequality with v = t/||¢||2 and w = cuy , and Lemmas 13.5.4
and 13.5.5, yields

il de = [ jurftds = ot = (- o(w) [ juftde, (1352)

asa— 0.
So the proof of the proposition is achieved modulo the proofs of the two
lemmas. ]

Proof of Lemma 13.5.4.
We come back to (13.22) but replace (13.23) with

3

A2

-A > (1*77)”17»«71?7/)”% _K:ZH'I/J”%_nilC 1
K(ko)4

(13.53)

We now choose 7 = fr~3/2. This leads to

—A = (1= 1) (Iprowtsl3 = w21%13) - B0l - A (CB7AY ), (13.54)

with 3 to be chosen suitably.
We need at this stage an upper bound for A . Using (13.26) and the upper
bound of ||1||3 obtained in Corollary 12.7.2, we find, using our assumption,

A<LC (,%2 — )q(wa))2 k< Ca?. (13.55)
So we can take 8 = a'/? and finally obtain
0> ~A(1—0(a?)) 2 (|Iprorlls — #*[[4]3) — CVart e[, (13.56)
which implies )
Iprordll3 < (K° + Cvarz))[[p]*. (13.57)
This should be interpreted as the fact that ¢/||¢|| is a quasimode for —A ., .
This is indeed the case if the quantity
(K2 4+ Cvak? — A (ko F))k™ 2

is small. The smallness of that quantity is assured by our assumption and by
(13.45). Hence, by abstract analysis, we obtain the existence of ¢ such that
lc] =1 and

K2 + Cyak? — A1 (koF))

N (k0F) = A (koF) = Vo (13.58)

\Mﬁb“4f§2(

O
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Proof of Lemma 13.5.5.

This is a consequence of the WKB approximation of the ground state of
the linear model and as such part of the proof of Theorem 8.4.1 given in
[FoH2]. In boundary coordinates and near the maximum of the curvature,
this approximation takes the following form (see (2.2) in [FoH2]),

uy ~ (ko) 16 x(s,t) expilo(ro)is x G((ko)16s) ug((ko)it),  (13.59)

where G is a Gaussian, x is a cutoff function at the point of maximal curvature
(s,t) =0, and ug = p¢, was introduced in (3.37). This leads to

lull§ ~ (ko) * and  [lus|l§ ~ (ko) 1,

and observing that o =~ k, we have proven the lemma. a

Remark 13.5.6.
This proof also gives the following approximation of ||1]|2:

1 1

2 _ A (roF))? 13.60
g (5 T ED) T (1560

[¥ll2 = (1 + e(a) + O(k™ 1))

with limg_oe(a) = 0.
Using the asymptotic behavior of the right-hand side together with (13.50),
we get

Jolle ~ & ¥ (52 = A (roF))* . (13.61)

13.6 Notes

1. The results of this part were initiated in the series of papers by Lu—Pan
[LuP3, LuP4, LuP5, LuP7]. In particular, they were the first to propose
a clear mathematical definition for He,.
Then the first point was to observe that many other definitions of this
critical field were possible.
The second point was to have a good asymptotics of these various critical
fields.
The third point was to try to get better asymptotics. Any improvement in
this direction was leading to the conclusion that all these possible critical
fields have the same asymptotics.
This was a good motivation for showing that all these critical fields coin-
cide in the large s regime. This result was proved in [FoH3| (see [FoH4|
for later improvements).

2. Lemma 13.1.1 was stated in [LuP3]. Also Theorem 13.2.1 was obtained in
[LuP5].
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3. The analysis of the 3D case is very close to the presentation in [FoH6],

where a slightly modified functional is also considered. Theorem 13.3.1
(which appeared in [FoH6]) is an affirmative answer to a conjecture in
[Pa6], however; the conjecture is stated without the geometric Assump-
tion 9.2.1, which originated in the work [HeM6]. Notice however, the typo
in [FoH6] which has been corrected in (13.31).
The main point here is that—for generic domains—the 3D case does not
present new phenomena in the nonlinear part. This is only true for external
field strengths that are very close to the third critical field. For the linear
part, we have used mainly the results presented in Chapter 9.

4. The use of (13.51) in the proof of Proposition 13.5.1 is inspired by an
argument appearing in [AfH] in a similar context.
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Between Hc, and H¢e, in Two Dimensions

Between He, (k) and He,(k), superconductivity is for large x confined to
the boundary. This follows from the decay estimates in Chapter 12. In the
present chapter, we will give leading-order energy estimates in this parameter
region, which are valid when we are not too close to either of the critical
fields. These energy estimates indicate that superconductivity is essentially
uniformly distributed over the entire boundary region.

14.1 Introduction

In this chapter, we will assume that the dimension is 2 and that the external
magnetic field is constant, i.e., we take

=1, (14.1)
in (10.4). In that case, we have, by (13.30),
C
Hey(k) = 5 4 7 Kunax + O(k73). (14.2)
SN z

We will consider field strengths o = (k) below He, (%) . The results in this
chapter will concern ¢’s such that ¢ — oo and He, (k) — 0 — 00 as k — 00.
Thus, we define the positive quantity

p=p(K):=He, (k) —0o. (14.3)

We recall that a complementary analysis was carried out in Section 13.5, which
was devoted to the case when we were much closer to He,:

Recall that the Ginzburg-Landau ground state energy F(k, o) was defined
in (10.6). The main result of this chapter is an asymptotic formula for the
ground state energy.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 209
DOI 10.1007/978-0-8176-4797-1_14, © Springer Science+Business Media, LLC 2010
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Theorem 14.1.1.
1. Suppose that

o= (b+o(1))k, forsomebec|[l,05].
Then there exists a constant Ey > 0 such that
E(k,0) = —VkoEp|0Q| + o(k) . (14.4)
2. For b sufficiently close to @51 ,

1
E, = %ch(b—l),b—1||zi4(m+)» (14-5)

where ¢(A\) will be introduced in Definition 14.2.4 and the function fe x will
be defined in Proposition 14.2.1.
3. Ifb:(%al and p — 400, then

02109 +o(1) p?

E = .
(. 9) uold  x

(14.6)
Remark 14.1.2.
The heuristics behind Theorem 14.1.1 is as follows.

e In the case corresponding to (14.6), o is very close to Heo,. This forces the
manimizer of the Ginzburg—Landau functional to be approrimately equal to
the function ug in the normal variable. It roughly has the structure

Y = N0y 0 (Vikat) (14.7)

where (s,t) are boundary coordinates, &y, ug are the parameters/functions
from the model problem in 1 dimension, and X\ is a normalization para-
meter. In particular, || is (up to approzimation errors) constant on the
boundary.

o When o is slightly farther away from He, , corresponding to (14.5), the
structure of 1 as €% x (function of t) remains, but the parameter ¢
and the function of t are now determined by a nonlinear one-dimensional
problem (14.16).

e Finally, in the case corresponding to (14.4), we are not able to prove that
the minimizer essentially has a product structure as in the previous cases.
However, one gets the uniform distribution of energy along the boundary
by a weaker argument.

The present chapter is devoted to the proof of Theorem 14.1.1. By the
decay estimates of Chapter 12, superconductivity is localized to a region near
the boundary, which, after a change of coordinates, can be identified with a
cylinder. Section 14.3 is devoted to the study of the effective model on this
cylinder. However, the most important ingredient of the proof is the analy-
sis of the effective one-dimensional model obtained from the cylinder model
after a Fourier transformation. That analysis is carried out in Section 14.2.
Finally, in Sections 14.4 and 14.5, we collect the estimates to finish the proof
of Theorem 14.1.1.
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14.2 A Nonlinear One-Dimensional Problem

14.2.1 Presentation

Let 11(€) be the lowest eigenvalue of h™V+¢ defined in Section 3.2. Suppose that

A is a parameter such that
)\G]@o,l[. (148)

Then, using the properties of u established in Proposition 3.2.4, there exist
two real points z1(A) and z2(\) such that

21(0) <& < 22(N) <0 and w1 ([0, \]) = ]zl()\) ,zg(/\)[.
Clearly, z1(\) is decreasing, z2(\) is increasing, and

li A) =— li A)=0. 14.
Jim z1(A) =—co,  lim 2(A) =0 (14.9)

Let us consider, for z € R and for A; and As in ]0, +00[, the functional

B'(R1) 5 ¢ &, 5, .2,(0) (14.10)

- / TR+ (7 e+

S16(I = Mo dr,
0

where B'(R™) is introduced in (3.3).
Let us also introduce

b(z, A, )\2) = ¢€éIll(f]R+) 52)\17)\2 ((j)) . (1411)

Notice that the scaling relation gz,,\h)\z (to) = tggz,xl,ﬁ)\z (¢) , which is satisfied
for all $ € BY(R*) and ¢ > 0, implies that

E(Z, )\1, /\2) = tgg(z, )\1, t2)\2) . (1412)

In particular, if f minimizes &, ., , then \/)\1/>\2 f minimizes &£, y,,, and

b(z, A1, Ao) = A1b(,z,A1,A1). (14.13)

A2

Thus, we can reduce our attention to the case Ay = A2 . We define correspond-
ing quantities without tildes for this case, i.e.,

En(@) = [0 + (4 2Pl + ol = Ao dr, (1414

b(z,\) 1= ¢€];111{]R+) Eno). (14.15)
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Proposition 14.2.1.
For all z € R, A\ € RT, the functional &, admits a nonnegative minimizer
fzx € BYRT). The minimizer satisfies the Euler—Lagrange equation

— [ A (T +2)2 fon = Man (1 = [ f2 %) :

Moreover, we have
: A 4
b(z,A) = mf  E:a(9)=—,lfalls (14.17)

and the inequality
[foalloo < 1. (14.18)

Proof.
The existence of a minimizer is left to the reader. It follows from Proposi-
tion 2.1.2 that

E ) = EN(S])-

Hence, we have equality for a minimizer and minimizers can be chosen to be
nonnegative.

The energy identity (14.17) is obtained by multiplying by f. x in (14.16)
and integrating over ]0,+oo[. Finally, the inequality (14.18) is the analog
of Proposition 10.3.1 and can be proved similarly (or using the maximum
principle). O

The preceding proposition does not tell us whether f,  is trivial (i.e.,
identically 0) or not. This question is analyzed in the next proposition.

Proposition 14.2.2.
Let X €10, 400 and z € R be given. Then the following properties hold.

1. The equation

w(0) =0, 14.19
—u” 4 (7 + 2)%u = (1 — |uf?) (14.19)

admits nontrivial bounded solutions if and only if u(z) < A.
2. If u € L®(R") satisfies (14.19), then ||ullcc < 1. Furthermore, u is in
L?(R*) and

/000 e (|u(r)|? + |u/(7)?) dr < o0, (14.20)

foralla>0.
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3. If u(z) < A < 1, the only nontrivial bounded solution (up to multiplication
by a unit scalar) of (14.19) is a minimizer of €, x. In particular, any
bounded solution of (14.19) has the form u = clu| with |c| = 1 and any
minimizer has this form.

4. If u(z) < X < 1, the nonnegative minimizer f, x of €, is unique, is
strictly positive, and is the (nonnormalized) ground state of the Neumann
realization on L2(R*) of

2
M ) (14.21)
5. If A <1, the map ]z1(N), 22(N)[ 3 2 = fon € BA(RY) is O

Proof.

We first prove 1.

Suppose that p(z) > A and that u € L®(RT) solves (14.19). Let x € C§°(R)
be a standard cutoff function: x(¢) = 1 on [—1,1], supp x C [—2, 2] and define
xn(7) = x(7/N) . Using the min-max characterization of u(z) together with
(14.19), we obtain the existence of C' > 0 such that, for all N > 1,

(@) xvull3 < Oeva)' I3 + 11(r + 2) (eva) 13
= /OC>o XA (T)u(r) [=u" (1) + (7 + 2)*u(r)] dr + [lux’y 13

+oo ) i
< A/O (1 — () ?) hen (7)u(r))? dT—|—CH ]\H[oo .

Using the fact that p(z) > A, we therefore get

+oo
A lim (7)) [xn (T)u(r)? dr =0,
N—+oco 0
and conclude that u = 0.

If, on the other hand, u(z) < A, we can consider, for any s > 0, the
function s¢, , where ¢, is the ground state of the operator h™V:* studied in
Section 3.2. It is easy to see that &, x(s¢,) < 0 for sufficiently small s. There-
fore, the minimizer of £, » is a nontrivial solution of (14.19), which is bounded
by (14.18).

We next prove 2.
The uniform estimate ||ul|oo < 1 is a standard consequence of the maximum

principle.
To prove that v € L?, define b, to be the Neumann realization of
T (2P = A~ ()
— T+ 2)° — — |u(T)|?) .
dr?

Then (as a formal differential operator)

huu=0. (14.22)
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Also, (xnu) (with xn from the previous argument) is a Weyl sequence for
Bu;ie.,

(v [ (xvw))

— 0
Ixnull3 ’

as N — oo. This implies that 0 € o(h,,) . Since the potential
(7 +2)? = A = Ju(7)[*)

tends to oo for large 7, o(h,,) is discrete and consists of eigenvalues. Thus,
0 is an eigenvalue of b, and there exists a nontrivial function v € L?(RT)
in the domain of b, such that h,v = 0. We may assume that v(0) = u(0).
Observing that v’(0) = »/(0) = 0, the Cauchy uniqueness theorem implies
that v = u; ie., ue L2(R").

The decay estimate (14.20) follows from the Agmon technique described
in Chapter 12 combined with the easy inequality

“+oo

+oo
/ (O + (7 + 2)2o(r)? dr > / (r + 2)2|g(r)| dr
0 0

> M2 / |6(r)[2 dr
|z|+M

for all ¢ € BY(R*) and all M > 0.

We now prove 3 and 4.

We first prove that nontrivial bounded solutions have a sign. Let b, be the
operator from the proof of 2. Suppose that u € L>(R™) \ {0} solves (14.19).
Clearly, b, satisfies the operator inequality

hu 2 hN7z_>‘7

with H+% from (3.9). Thus, (3.17), the min-max principle, and the simplicity
of eigenvalues in dimension 1 imply that the second eigenvalue p2(h,) of by,
satisfies

/~/J2<hu) > 0 .

Therefore, 2 and (14.22) imply that u is the ground state of b, . Since ground
states can be chosen to be positive this proves that u has a sign. In the process,
we have proven 4. Moreover, u is necessarily strictly positive by the Cauchy
uniqueness theorem. It remains to prove the uniqueness part of 3. Let u; and
ug be two nonnegative and nontrivial solutions of (14.19). Integrating by parts
yields

+oo +oo
/0 wy (T)us (T)dT + /0 (T 4 2)%ur(T)uo(7) dr

_ /\/:00 wr (Fus(r) dr = —)\/0+OO wr (F)Pus(7) dr |
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Exchanging the roles of u; and uy, we get

/OJFOO uy (7)%us(r) dr = /,;oo uz(7)?ua (1) dr .

From this we deduce that if u; > us or ug > uy, then u; = usg.
It remains to exclude the case when one of these two last conditions is not
satisfied. Again by Cauchy uniqueness, we have only to exclude the case when

ul(O) > UQ(O)
and when there is a point 7,;, > 0 such that
up(t) > ug(r) for 7 €J0,Tmin] and  wi(Tmin) = U2(Tmin) -

We start from the Wronskian identity

’ /!
- (u% (Z; - 1) > + Muqug(u? —u3) =0.

We multiply by ;! —1 and integrate over 0, Tmin[. This gives

2
Tmin 4 Tmin
/ u% l(ul —1) ] dT+/\/ ug (w1 + ug)(uy —ug)*dr =0.
0 U2 0

This is the sum of two positive terms, the second one being strictly positive,
and this sum should vanish, hence a contradiction.

We finally prove 5.

This is a consequence of the implicit function theorem applied to the map

Jz1(N), 2(N)[ x{f € BA(RT) : f'(0) = 0} — L*(RT),
(2 f) = =f"+ (E+2)2F = Af+ A2

We observe indeed that the operator — j; +(t+2)2— A—i—?))\fiA (the derivative
with respect to f) satisfies

d2
d?

d2

g2t (t+2)2 = AN+3A2\ = { + (t+2)? —/\+/\ff’k} +2Xf2

and is consequently invertible using what we have established in 4 (in partic-
ular, the strict positivity of f, x).
This finishes the proof of Proposition 14.2.2. a
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Proposition 14.2.3.
Suppose that X €10, 1[. Then there exists zo € |z1(X), 22(A)| such that

b(20,) = inf b(z, ) = zeR,¢>len]£1(R+) En(0)
and
e 2
/ (7 + 20)| faor ()| dr = 0. (14.23)
0

Proof of Proposition 14.2.3.

One can observe that b(z, A) < 0 for z €]z1(X), 2z2(A\)[ and that b(z, A) = 0 for
z ¢1z1(N), z2(A)[. Moreover, b is a C*°-function on |z1(A), z2(A)[. Thus, the
existence of a minimum is an exercise that can be left to the reader. Notice
that (14.23) is the Euler-Lagrange equation with respect to z . 0

It is then natural to introduce the smallest z( realizing the infimum.

Definition 14.2.4.
For X € [©9,1), we define ¢ = ((\) by

C(A) =

min{zg € R : b(z9,\) =inf, b(2z,A)}, A > O,
{ {20 (20, ) (z,A)} 0 (14.24)

507 A= @0 .
Clearly, the value at A\ = ©q is fixed by continuity at that point [since
Zl()\)722()\) — 50 as A \ @0]

Remark 14.2.5.
A natural question is to ask whether the minimum is attained in a single point,

i.e., if
{z0 € R : b(20,\) = irzlfb(z,)\)} ={C(N)}.

We will show that this is indeed the case when X\ is sufficiently close to O .

14.2.2 Bifurcation analysis

We will study here the bifurcation for the nonlinear equation (14.19) near the
solution z = &, A = Oy, u = 0. We use a variant of the standard method
due to Lyapunov—Schmidt.

We consider A €10, 1] and z with u(z) < A. Let us define ¢, asin (3.2.1)
to be the positive ground state of h™¥* and let II, be the L?-projection on
Span ¢, . Finally, let us introduce the regularized resolvent of h™V-* by

Ropi= (V" =211 —1L).

Let us recall the main properties.
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Lemma 14.2.6.

Suppose that X\ < 1, z < 0. Then the reqularized resolvent R, x maps L*(R™)
into {u € B*(RT) : u/(0) = 0}. Furthermore, if K C] — 00,0[x[O0, 1] is
compact, then there exists a constant Cy = C1(K) such that

| R- xull prr+y < Chllull 2+ (14.25)
for all (z,\) € K.

Proof.

The regularized resolvent maps L2(R*) continuously to the operator domain
D(HN#) given by (3.9), in particular to the quadratic form domain. It is
immediate that the natural norm on the quadratic form domain is equivalent
to the B!(RT) norm. This gives the continuous maps

L2(RY) 2 p(oNe) 4 BLRY)Y, (14.26)

where the first map is uniformly bounded for A uniformly below 1 [by (3.17)]
and the second is uniformly bounded for z varying in compact sets. Note that
(A, 2) — Ry, is smooth with values in £(L?(RT), B®(R")). 0

Let f, x be the unique positive solution to (14.19). If we introduce

€= (for]wz), (14.27)

we get from (14.19) the system of equations
(A = u(2))e = (£25]92), (14.28)
Jex AR Af2 ) = ep- . (14.29)

Let us also introduce the map G = G » by
B*RT) 3 ur G(u) = —AR, \u®. (14.30)
Note that (14.29) reads

Jer = G(f20) = €ps. (14.31)
In order to invert this last equation, we have to analyze the properties of G .

First, we have.

Lemma 14.2.7.
The map G maps the space BY(R1) to itself. Furthermore, for all compact
sets K C] — 00,0[x[Oq, 1[, there exists a constant C3 such that

G (u)]| prr+y < CSHUHBBl(]R+) ) (14.32)

for all uw € BY(RT).
Moreover, G, » depends smoothly on the parameters (z,\) .
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Proof.

This is an immediate consequence of Lemma 14.2.6. We just have to observe
in addition that B'(R™") is an algebra and that, by the standard Sobolev
embedding theorem, we have

B'(RY) — WH(R") — L¥([RT),
with continuous injection. O

This immediately implies the following contraction property.
Lemma 14.2.8.
Let K C] — 00,0[%x[Og, 1] be compact. Then there exists an R > 0 such that
if u € BYR™) with ||ul p1r+) < R and if (z,\) € K, then
1
IGn(@llgr @y < llullr @+ -

Therefore, we can define the inverse of I — G by

which is defined in the ball centered at 0 and of radius R in B!(R*).
In order to have an a priori control of f, x in BY(RT), we will use the
following lemma.

Lemma 14.2.9.
Let K C]—00,0[X[Og, 1] be compact. Then there exists a constant C > 0 such
that if (z,\) € K, uw € BHRT), and &, A(u) <0, then

ull prr+y < C VA—6y. (14.33)
Proof.

Using the compactness of K , there exists a constant C;, independent of z,
such that

||u||231(R+) < C1/0 |u'(7)|? + (T + 2)*|u(7)|? dr . (14.34)
Using the negativity of the energy, we find
[ullBrgry < CrMlull3. (14.35)
Using again the negativity of the energy, we also find
)\ o0
o lulld < Allull — /0 [/ (T)? + (7 + 2)*u(7)|? dr

< (= p()llull3 < O = O0)[ull 3z - (14.36)
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We finally need to use the decay inherent in the space B*(R™T) to control the
L? norm by the L* norm. That is achieved using the Holder inequality:

+oo
IIUII§=/0 u()I[(1+ )u(r)|(1+7) " dr

< ulla 1+ Dl (L +7) 7 s < Collulla lullprsy - (14.37)
Combining (14.35)—(14.37) yields

3
lulfs ) < CV/A = Oollull ey (14.38)

(for some new constant C', which may be chosen depending only on K), from
which the lemma follows. O

Observing from (14.17) that £, A(f.,x) < 0 and applying Lemma 14.2.9
with u = f, x, we get

[ fzallBr@e) < CVA= 6. (14.39)
So we get
00 ‘ 4o o
For = Glep:) =D ¥ @F(y2), (14.40)
Jj=0 j=0

with e introduced in (14.27), which satisfies for some constant C'(K)

0<e<CK)VA—6y. (14.41)

Note that the series (in €) has a positive radius of convergence and that there
exists €o(K') such that the right-hand side in (14.40) is normally convergent
in the B'(RT) norm for € € D(0, ¢o(K)) .

We denote by L(e, z,\) the sum of the series, which is a C°°-function
(actually analytic) in all the arguments in Ug (D(0, eg(K)) x K) with values
in BY(R). It is useful to write L in the form

Lie,z,\) = eM (€%, 2, )\, (14.42)
where M (n, z, \) is defined by

M (1, z,\) Zn 2 G(p.), (14.43)

for (n, A\, z) € Ug (D(0,10(K)) x K), with no(K) = €o(K)?.
Hence, we can write
for= eM (€%, 2, \).
Note that
M(0,2z,)\) =@, . (14.44)
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Inserting this equality into (14.28), we get
(A = u(2))e = €(M(e%,2,0)° | @) -

We look for positive, nontrivial solutions; therefore, we have to impose € > 0.
So we can rewrite the equation in the form

A= u(2) = em(e?, 2, \), (14.45)

where (1, z,A) — m(n, z, \) is a C*°-function such that

+oo
m(0,z,\) = / o(r)dr #0.
0

We first easily solve the equation for ¢ and 7 in a small complex neighborhood
of 0

v=nm(n,z,A)
and get
77 = I/n(l/?Z?)\)’
with 1
n(0,z,A) = >0.
lle- 4
When A — u(z) > 0, we finally recover e by
and the desired (unique) positive solution f, x is given by
fex = €(z, )M (n(z,)),2,7) (14.47)
with
n(z,A) = (A = (=)A= p(2), 2, 0) (14.48)

This shows that (z,A) — n(z, A) and hence (z,\) — M (n(z, A), z, \) are C>°-
functions for z near § and A near (and above) ©g .

Let us finish by proving that the minimum ¢(A) is attained for a unique
value of zgp when A — Og is small. We use (14.23) (which is satisfied for any
minimum of b) linking €, A, and 2y and implement (14.47). This gives

0= /()+OO<T + 20)| fron (7)PdT

+oo
= ¢ / (T 4 20)| M (n(20, A), 20, )\)|2d7'. (14.49)
0
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Using the Feynman—Hellmann formula (3.29) and (14.44), we find

+o0 +oo
() = / (r + 2)pa(r)? dr = / (r + 2)|M(0, 20, M2 dr

+oo
= / (T + Z)(|M(n(207 )‘)7 20, )‘)|2 - |M(O’ 20, A)|2) dT7
0
where we used (14.49) to get the last equality. By (14.43), we find

p (20) = n(z0, \)a(z0,A) ,

with a(z, A) being a smooth function.
Inserting (14.48) yields that a minimum should be a solution of the
equation

1 (z) = (A= p(2))a(z,A)

for a new smooth function a. Consider the smooth function

(2,0) = g(2,0) = p'(2) = (A = p(2))a(z, ) -
Using the fact that 1/ (&) =0, u(&o) = O, we get

0
s (€0:00) = 1" (€0) > 0,

by (3.23). Therefore, the implicit function theorem implies that there exists
a unique (smooth) solution ¢(\) to the equation g(z,\) = 0 for A sufficiently
close to O .

Hence, we have proven the following refinement of Proposition 14.2.3.

Proposition 14.2.10.

There exists ng > 0 such that for any X\ €09, O¢ + 10|, there exists a unique
C(A) €]z1(N), z2(A] such that

BC(A), A) = inf b(z, A).

Moreover,
e A ((A) is a C®°-function on [©g, Og + no] with {(BOg) = &o .
e A\ fg()\) , is a B-valued C>-function on [©g, O¢ + no] .
For the calculation of the ground state energy, we will need the following

result.

Lemma 14.2.11.
Let ug = p¢, be the normalized ground state of hN-€o as in Section 3.2. We
have

(A —6p)?

o]l (1+0(1)), (14.50)

I feogalls =

as A — Q.
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Proof.
By the convergence of the series (14.40) in the B norm and therefore in the
L* norm we get

I fecoonlls = leltlecy It + O(lel®) .

By continuity in ¢, we find [[¢¢(x)ll4 = [Juoll4(1+0(1)) , which, combined with
(14.46), yields

(A = u(¢c(N))

4 _
Since
1(C(N) = O0 4+ O((C(A) = &)?) = O + O((A = 89)?) ,
this finishes the proof of (14.50). O

The lemma permits us to immediately get

Proposition 14.2.12.
There exists ng > 0, such that A — inf, b(z,\) is a C®-function on the
interval [©g, Og + no] and satisfies

)\(/\—6)0)2(

2 ot 1+0(1)), (14.51)

infb(z,\) = —
as A\ — Og.

14.2.3 The spectral estimate

The following proposition will be very important in the analysis of the 2D
problem in half-cylinders. Let us introduce the following closed and symmetric
quadratic form on B*(R*):

+oo
dax(9) = /O |0/ (1) + (7 + ¢+ a)*[d(1)]* = AL~ [ fea(m)[D)g(7)[* dr ,
(14.52)
with ¢ = ((X).
Furthermore, let
v(a, A) :=inf o (¢a,r)

be the infimum of the spectrum of the unique self-adjoint operator b, » asso-
ciated with g, . Then we have the following property.

Proposition 14.2.13.
There exists € > 0 such that for A € [0, ©¢ + €[, we have

inf v(e, A) = 0.
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Proof.
Clearly, ga. is the quadratic form of the Neumann realization b, » on L?(R™)

of the differential operator
2
AP A= oA,

By (14.16), fc.» is an eigenfunction of ho » with eigenvalue 0. Since f¢  is
positive, it is necessarily the ground state. Therefore,

~v(0,A) =0. (14.53)
Furthermore, we will see that
2l
0,A\)=0. 14.54
SORCY (14.54)

For the proof of this, define u = u(+; a, A) to be the positive, normalized ground
state of ho x. The family o — b, » is a holomorphic family of type (A). By
perturbation theory (see Appendix C), the map a — 7y(«, \) is analytic in «
and

8’)/ +o0 ,
(@X) =2 (r+a+Qu*dr. (14.55)
Ja o
Thus,
87 2 /+oo ,
0,\) = T4+ O|fer(m)|Pdr =0,
aa( ) Il feall3 Jo ( )| fea(7)]
by (14.23).

We will prove in Lemma 14.2.17 that
Yaa(0,A) > 0. (14.56)

Now, because A — |fe(a)a]? is a C-function on [Og, Oy + 7], one gets
by a rather standard perturbation argument that (a, A) — (o, ) is a C°-
function.

From (14.53), (14.54), and (14.56), it follows that there exist ay and €3 > 0
such that if A < O + €1, then

v(a, A) >0 for all |o| < ag .

Furthermore, it is clear that y(co, A) > p((+a) — A, and we know that we
have the convergence ((\) — & as A — Og . Therefore, using our knowledge
of the function u(§), we see that there exists ez < €1 such that if A < ©¢ + €2
and |a| > a;, then

V(e A) 2 0.

This finishes the proof modulo the proof of (14.56). O
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Proof of (14.56)

There are two possible proofs. The first one is done by direct computation,
which will be established in the next lemma. A second one could be obtained
by extending to complex . We present the first one.

Lemma 14.2.14.
For any X €]00,1[, we have, with { = ((\), f = fe(ons

1 2 2 > 2 ¢/ 2 )‘2 4
1000 I3 = ~CFOP =23 [ feRr e ar =" L. (457

Proof.

This is a tricky computation. We write for brevity f = f¢ n, and as before
u = u(-; o, A) is the normalized ground state of h, x . As in [Pa2], we introduce
the function

Ht) = /(1) — (0 + O F(W) + A1)~ 7(0)", (14.58)
and recall that
f=1flleu if a=0. (14.59)
First, we immediately see that
H'(t) = =2(t+ O)f2(1), (14.60)

and hence, in view of the behavior of f at +o0o and of the definition of {, we
obtain by integration
H(0)=0. (14.61)

Differentiating the equation satisfied by u,
Baru = y(a, Au, (14.62)

with respect to a, with uq/(t) := gz (t; i, A), we obtain

{_ug+(t+a+C)2ua_A(l_fz)ua:7ua+7au_2(t+a+C)u,
u

'(0)=0.
(14.63)
Let us introduce v by
U (t;a, A) = f(t)v(t). (14.64)
We observe that
v'(0)=0. (14.65)

We now write

ul, = flv+ fo, ul = v+ 2f0 + fo”.
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Substituting in (14.63), we obtain

"o —2f" — fu" + (t+ a4+ )% fv— N1 — A fv

=7fv+yu—2(t+a+u.
We will now evaluate at &« = 0. By the definition of (, we have

v =0, Yo =0, at a = 0.
Using the equation satisfied by f, we obtain, for « =0,
=2f" — fo" = =2(t+Qu.

We now multiply this equation by f and get from (14.59) that, at a = 0,

f2
_2fflvl - f2 V= 72(15 + C)Uf = 72(15 + C) ||f||2 )
which can be written, using (14.60), in the form
H/
(f2) =- ", (14.66)
I1£1l2

for a = 0.
Consequently, by integration over |0, +oo[, and using the conditions at 0
(14.55) and (14.65), we get

H = —f%')f|2 fora=0. (14.67)

Let us start an independent computation. We differentiate (14.55) with
respect to a and obtain for a = 0

Yaa(0,X) = 2 <1 +2 / W(T + Ou(r)ua(r) dT> . (14.68)

0

This leads after an integration by parts and using (14.61) to

Y R
Yaa (0, 4) =1- Huvdr =1+ Ho' dr.
2 1712 Jo 1712 Jo
Hence, having (14.67) in mind, we get
Yaa (0, ) 1 /+°° H?
=1- dr . (14.69)
2 If1I5 Jo  f?

Recall the definition of H . We see that (14.69) expresses the second partial
derivative v44(0,A) purely in terms of the solution f. We will now use the
equation satisfied by f in order to control the sign of v44(0,\) (for small X).
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Notice, using the equation satisfied by f, that

A
H=f?—ff"+ 2f4. (14.70)
Thus,
o] H2 > H "
2dT:/ ( (FP=117 A Hf) (14.71)
o f 0 f
We split the integral into two parts. Consider first

/ "I =177 4, /OOCH(JZH)dT/OOOJ;H’dT.

Note, for controlhng the boundary terms in the integration by parts, that H
decays exponentially rapidly at +oo and that f/(7)/f(7) behaves like T at
+o0o by the theory of ordinary differential equations (as presented in [Sib]).
Using (14.60) and a further integration by parts yields

/ HIY =80 / 2r + QO f dr = (S O0) +|IfI. (14.72)

We also evaluate the other term in (14.71), using (14.70) and an integration
by parts:

> /! 1 >\
/ Hf2d7=/f2{(f)2—ff +2f4}dT

= 4/ ) dr + ||f||3. (14.73)
Combining (14.69), and (14.71)—(14.73), we get (14.57). This achieves the
proof of the lemma. a

Remark 14.2.15.
In Lemma 14.2.14, ¢(X\) can be any critical value (¢(X) €]z1(N), z2(N)] such
that

+o00
/0 (r + CCON ey ()P dr = 0.

Remark 14.2.16.
Using (14.61), one can see that

: A
A=V = S feonn(0)- (14.74)
So (¢(N) is a solution of the implicit equation
A
)\ - 22 = 2 Z2/\(0) *

This gives another way to show the uniqueness of (¢(X) for X close to ©g. We
have indeed shown that the map (z, A) — ff)\ is C>° with value in B . This
implies that (z,\) — f2,(0) is C>°.



14.3 Models on Half-Cylinders 227

So, taking the limit A — ©q in (14.57) and the properties of fr(y)x as
A — Op, we obtain the equivalent of (3.24).

Lemma 14.2.17.
1 9
/\lggo Z’yaa((), A) = —&opg, (0) > 0. (14.75)

Remark 14.2.18.
A wvariant of the Feynman—Hellmann formula gives

" 2 82'7

b (C()\)7)\)) = ||f§c()\),)\||2 80[2 (Oa)‘) .
So there exists 69 > 0 such that, for any A\ €]09,0¢ + o], b(-,\) has in
]21(A), 22(A)[ a nondegenerate minimum at C(X) .
14.3 Models on Half-Cylinders

Theorem 14.3.1.
For w €]0,400[, A1 € [00,1], and A2 € RT | let us consider the functional

Mo 2= B A, 20) (14.76)
= /_z//“; (/OOO |GV + Erin)p > — M ||* + A; Wd&) dés |
where
|0V + &1i2)v|* = |10, 9| + |(i0e, + E)v?
and

Ho = {0 € HYy (R X] = L, L]), VL >0 |

FzeR: P(&,& +2n/w) = €_iz2:1/)(€17§2)} '
Let 1y, ., be the function

A1
e

RT X R 3 (&1,&) = ¥ 0. (61,&2) = \/)\2 TS f o (&) (14.77)

Then, for all M > 1, there exists € > 0 such that
ENh, M, A2) = EX (1hay aes A1, A2) (14.78)

for all \y €]00,00 +¢[, w >0, A\a € [M~, M], and ) € H,, .
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Here

Hl..(R"x]— L, L)

={yp e L*(RTx] — L,L[) : |V +&i2)y| € L*(RTx] - L,L[) } .

Remark 14.3.2.

Clearly, ¥x, .z, 15 i H, [take z = ((M\1)]. Hence, the theorem states that it
is the global minimizer of E' in ‘H,, . Inserting (14.17) and (14.13), we can
express the minimal energy as

ES () 20y A1y A2) = T;;lb(g(Al)) = —Zii I feonynlld- (14.79)
Proof.
Consider first functions in H,, that are given in the form
(&1,&) = (&1, &) = ge(&1)e 0, (14.80)
with

A
g¢ = \/ s ¢=¢),
2
and v periodic:

v(&1,&) =v(&, &+ 27).
Then

EX (1, M, o)

T/ w

e N A
/ |0V + (&1 + Q)iz)gevl* — Ailgevl* + 22 |lgev|* dérdés .
0

—7/w
By periodicity, we can expand v in an L?-convergent Fourier series as

o0

v(€1,&2) = Z vy (E1)e T2

n=-—oo

Then, using Parseval’s theorem, we get
cyl 27 e 2 2 2
EXW A h) =" ) {1gvn)|” + (e + &1 + O?lgcunl
0
n

— Ailgeon|? + Azgglgcvn|2} d&

2T oo 4 2 )\2 /
—Xe’ zn:/O gelvnl® déa + )

w +oo
[ tacolt deadee.
0

—7/w
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Again using Parseval’s theorem, the last two terms can be combined and we
see that

o2r [T
B W) =3 2 [ {Jgcon) [+ (o + 61+ OPlacon?
n 0

— Algevn|® + )\2gg\gcvn|2} d&y

" A22 /W /Om gt (ol = 1)? 1) derdea

—7/w

Using (14.13) and (14.17), we see that

Ao 21 [Fe°
B Wn a0 M de) = =) / gldgy (14.81)
0

and therefore,

EZYI(w7 /\17 )‘2) - Ezyl(w/\l,k2 ) A17 )‘2)

27 oo
> Z " 'y(nw,)\l,)\g)/o lgcvn|? dé; . (14.82)

This finishes the proof under Assumption (14.80) if € is so small that Propo-
sition 14.2.13 can be applied.
To prove (14.78) for all ¢ € H,, , we now consider functions of the form

(&1,&) = Yo(&1, &) = gc(ér)e™ # 2,

with v(&1,&) = v(&1, & + 7). (14.83)
Consider first the case when w € Rt satisfies
C—z_vp for some pair (p,q) € Z x N. (14.84)
w q

Clearly, if 1 satisfies (14.83) for some w € RT | then it also satisfies (14.83)
for w/g, for every § € (N\ {0}). Moreover, it is easy to show that

B9 (o) = 4B (o), B (aan) = 4B (). (14.85)
We now choose § = ¢, and observe that, according to (14.84), & = w/q satisfies
‘“Fem. (14.86)

W

But in this case, 1y admits the representation (14.80), and hence

EX (o) > B (ag ) -

Coming back to w and using (14.85), we have the proof of (14.78) when w
satisfies (14.84) (with the additional condition that z is fixed).

The proof of (14.78) in the general case now follows immediately from the
density of the rational numbers in R. a
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14.4 Proof of (14.5) and (14.6)

14.4.1 Lower bounds

The main part of this argument will also be valid in the case of (14.4), at
least for b > 1, where the exponential decay estimates of Theorem 12.2.1 are
valid.

We will use the parameter

1
VKo

Let (1, A) be a minimizer of G . First, we need to make a localization to the
boundary region. Let 1 = fZ(t) + f2(t) be a standard partition of unity on
[0, 00[. We choose f; to be nonincreasing and satisfying

fi(t) = {1 <1, (14.87)

g =

0 ift>2.

Consider ¥, (x) = f;(t(x)/eM)y(z) [in (14.95), we will choose M = C|loge|
for some large constant C']. For € small enough, one can change to boundary
coordinates on the support of fi(t(x)/eM). Then, by the localization formula
[see (8.10)],

2

0w A) =G(on, A+ A+ [ (1=t (157) =18 (15)) 10t d

2
s

2
t(x
Consider first the third term in (14.88). Since
L=+ 57 =1+F+215,

this term is positive. We will therefore discard it for the lower bound.
Proposition 11.4.4 tells us that curl A ~ 1, and therefore, since 15 has
compact support in €2, and using Lemma 1.4.1,

5(5) \2) (@) do. (14.88)

G2, A) > (1 = O(k™1))l|92]l3 > 0.

So we can ignore this positive term for the lower bound.

The Agmon estimates, Theorem 12.2.1, combined with the properties of
the support of (|f{|*+]f4%)(t(z)/(eM)) can be used to bound the localization
errors as follows:
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t
e fase 1) (1)) ek as

< C(eM)? / e (T @)?) do
{1<iy <2}

< C(eM)™2 _O’M/ M(l) (z)* da
< C'(eM)2emM [¥(2) | dz
{t(z)<coe}
< O/ (M) M 3. (14.89)

Here we used, in the last line, the fact that M — oo as € — 0; therefore (for
e sufficiently small),

/ () ? de < [y 2.
{t(z)<coe}

For sufficiently large M , we find

e [+ 1P >( (= )) @) dz < Ce2e= 2 2.

From these estimates and (14.88), we find

2
G, A) > /|(—z’V + koA |2 — k2(1 + Ce™ "2 ) |2 + ’““2 o1 [* dax .

Upon changing to boundary coordinates (see Section F.1), this integral
becomes:

Ele] -
[ {ioef + (- th(e) (i, + nodn)or
0 {t<2Mze}

— K21+ Ce g + |¢| = th(s)) deds, (14.90)

where 4
b = TPy (D(s, 1)), (14.91)

and A; is defined in Lemma F.1.1. Here the gauge transformation AT
chosen in order to have A5 = 0. It also follows from Lemma F.1.1 combined
with Proposition 11.4.4 that

~ k(s)t?

Ai(s,t) =4 —t + (52) + O(et?) (14.92)
(uniformly in €) in a fixed neighborhood of the boundary. Again using Propo-
sition 11.4.4,
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1 / €2
.= curl A dx = +0O(e). 14.93
== aa) o 109 (€) ( )

In order to have a simple model operator, we want to replace fll(s, t) by
Y. — t . Therefore, we estimate

(=i + ko A1)g* > (1 = e)|(=ids + Ko(y= — 1)
+(ko)? (L - H[(AL — (= —0)g|*.  (14.94)
Using the Agmon estimates, Theorem 12.2.1, and the simple inequality
Ai(s,t) = (7= =) < Ot
which is valid on supp ¢ and deduced from (14.92), we find
(ko)? / [(Ai(s,8) — (7 — 1))@ dsdt
< C(ro)?|the™ HOO/ea; 6> ds dt < C'[|¢]]3-

We use the Agmon estimates and Theorem 12.2.1 [and the boundedness
of the curvature k(s)] to replace all factors of (1 — tk(s)) by 1+ O(e). Upon
choosing

M = Cy|loge| (14.95)

(for a large constant Cps), we get

3 10Q| oo
Gl Al > (1- C)Qld] - (1 + C2) / / 16(s, )[2 d dt

K2 10|  poo
+ . (1- Cs)/ / |p(s,t)[* ds dt
2 0 0

where

N |0Q| oo
Qle] = /0 /0 1002 + |(—i0s — ko (ye —t))¢|* dt ds .

We finally change coordinates (s,t) = €(£1,&2) . We introduce

P(&1,62) = d(e€1,e62) . (14.96)
The inequality thereby becomes

Glw,A] 2 (1 - C)Q:ldl - (1 +Co)lIBl3 + , (1-Ce)|dlli.  (14.97)

Here, with I'. = —. /¢,

B |02 /e +o0 B 5
Q.19 = /0 de, /0 106,012 + (—i0e, + &2 + )32 de
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Using the functional E¥! defined in (14.76), we recognize (14.97) as stating
that

, ~ kl1+Ce &
Al > gyl (eiferg ™ ) )
Gly, Al > (1 —Ce) o0 (e o, 51— e U) (14.98)

Proof of (14.5) and (14.6).

In the case of these two results, we are in a situation where the assumptions
of Theorem 14.3.1 are satisfied. We therefore continue the estimate in (14.98)
as follows, using (14.79):

- ~kl+Ce kK
> _ cyl il &1 K
Glv, Al = (1 C’E)E‘%ﬁ (e 2 ocl—C¢’ 0)

|09 &

_ 4 4
=409 o G Mes gz gy el (14.99)

In the case of (14.5), we have /0 — b~ > O, and we find

Q
Gl A] 2 ~(1+0(1)) M Vol e 4 (14.100)

which finishes the proof of (14.5).
In the case of (14.6), we have to use the bifurcation analysis for A; near
Op . Notice that in the case under consideration, we have

1 o _p
— &', askKk— 0.
Oo kK kK

The bifurcation analysis Lemma 14.2.11 yields

2
4 _ P2 -4
Mg vren. e vee I3 = 7, O3 luol 71 + 0(1))

Thus, we find, using o = k/0q, that

09 p? -
B(s.0) = g 21 68 ug 71 + o(1)
|09 5/2 P2
- (C] 1 1)). 14.101
= 2””0“3 0 :‘{( +O( )) ( )
This finishes the proof of the lower bound in (14.6). O

14.4.2 Upper bounds

We will give the upper bounds corresponding to (14.5) and (14.6). To get
a good upper bound, we can use an explicit test configuration. We choose
A = F (the external field). For ¢, we write (in the boundary coordinates
defined in Section F.1)
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Y(s, t) = e Herildes/e gt /e)x (1) . (14.102)

We will proceed to define the different parts of ¢ .

The function x is smooth and localizes to the boundary region. If ¢y is
the constant from Section F.1 defining the boundary region, the function y is
chosen to be nonincreasing and satisfying

0 ift> 3t
e C*(R), t) = = 40 14.103
x€C*(®) x(®) {1 et (14.103)

This localization near the boundary allows us to use the boundary coordinates

(s,t).
We will write ¢ for ((b™!) defined by (14.24). The symbol [(]. denotes an
“integer part” of (:

1 12
Qe =max{se gzl <c-e [0 o

The term ! I‘a%ll counterbalances the (topological) constant o in (14.107)

below. Ideally, we would use { — =1 ‘g}ll‘ instead of [(]., but in order for ¢ to

be welldefined on €2, we need it to be periodic in s. This is assured by using

[€e -
The constant A is defined by

1 ifb< Oy,
A= (14.105)
e P : o1
\/uuo‘ﬁz Pifb=0;".
The function g is, of course, either ug or fe,-1:
fepo1, ifb< Ot
g=14"°" 0 (14.106)
uo, ifb=0;".

Let A = (fh, ;12) be the vector potential F transformed to boundary coordi-
nates. Using Lemma F.1.1, we choose ¢ such that, with v = |Q]/|09],

A, o 14:11 . ’yo—t—i—k‘(s)t;
(A2> = (A2> + Ve = ( ) . (14.107)

With all these choices, ¢ from (14.102) is defined and we can proceed to
calculate G[y, F] . Using Section F.1, we will calculate in boundary coordinates

G, F) = /(1 — th(s)) " |(—ids + kHA, )p|? ds dt
+ / {I(-i0, + kAP — w20} (1~ th(s)) ds i

+ §H2/le4(1—tk(s)) dsdt .



14.4 Proof of (14.5) and (14.6) 235

Upon calculating G, F], we therefore find

010 F = [ (1~ th() | (n As + sfl[c]axg(t/a)x(t»fds at

+)\2/(1—tk ){10: (9(t/)x () |* + w2[g(t/e)x(t)|”} dsdt
)\4/|g t/e)x ()] (1 — th(s)) ds dt . (14.108)
We write this, after a change of variable in ¢, as
Glv F]=1+11, (14.109)
with
) 0o |69 ~ L 2
= [ [ |t em) + £ ) alr)xCer)
0 0
x (1 —etk(s)"tdsdr (14.110)
and

17 = 22 //(1 —erk(s){[e7 0 (a(r)x(er) [* + w2l (r)x(er))|* } dsdr
+ ”;X*s//(l — erk(s))|g(r)x(e7))|* dsdr (14.111)

with the same limits on the integrals as for I.

We start by estimating I. We keep in mind the fast decay of g; cf.
Remark 3.2.10 and (14.20). This will allow us to replace x by the constant 1
and (1 — e7k(s)) by 1+ O(e). We calculate, inserting the definitions of A,
and g,

nHAl(s, eT) + et [€]e

=¢! {(c —7)+ ;Ek(s)7‘2 + ([g“]g - (c —e! ||a%|>)} . (14.112)

The last term, [¢]. — (( —&! \19%‘\) is uniformly bounded by ¢ . Using the fast

decay of g, we can therefore (uniformly) estimate all terms depending on s
and do the s integral in order to get

I = 2100 / (¢ = 72lg(r) 2 dr + 0(22). (14.113)
0
Similarly, we can use the rapid decay of g on II to get

A2 *1|89|/ (1) dr — )\2/<¢25|8f2|/ ()| dr

x* / g(P)[* dr + O + AY). (14.114)
0
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Collecting the terms I and II, using A <1 and the definition of €, we find
o1y, F) < =~ [ {lg(r) + (7 = Plo(r)P
k 2 2 K 4 2
— 14.11
"lg(n)2+ X2 lg(r)[} dr + A, (14.115)

for some constant C' > 0.
In the case where b < Oy, we have A\ =1, k/c =b"1+0(1), g = fep1,
and we get, using (14.17),

gy, F] < — _1|3Q| el +o(=™"). (14.116)

We recognize (14.116) as being the upper bound corresponding to (14.5).
In the case where b = @al , we have g = ug, ( = &y, and therefore, using
the L2-normalization of ug ,

[190F + (7 = OPlar) dr = Ooljuall; = . (14.117)
Also, since o = @5% —p+0(1),
P 2
. " — gy + 02 +(9( + K ),
/U\ (r )|2d7—®0+®2p +o( +1>
/v " ()| dr = )\2@0||u0||4 (1+o(7))-
Therefore, (14.115) becomes

1
Gl F] < oo {037 + , ¥eulull

+0( +n1+>\2p>}+0(>\2). (14.118)
Inserting the (optimal) value of A from (14.105) yields the upper bound cor-

responding to (14.6).

14.5 Idea of the Proof of (14.4)

The proof of (14.4) is somewhat more complicated. This is mainly due to
the fact that Theorem 14.3.1 is only valid for A\; near ©g, i.e., for b near
Oy 1 'When this is not the case, we do not know that minimizers have a
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product structure in boundary coordinates. Therefore, the argument is more
indirect and we cannot give the constant E} as explicitly as when b is near
Oy 1 We only explain the main ideas of the proof and refer for details to the
original work of Pan [Pa2].

By the decay estimates of Chapter 12, superconductivity is a boundary
phenomenon in the parameter domain in question. Therefore, one can restrict
the functional to the boundary region where the boundary coordinates (s, t)
are defined. Also, by Proposition 11.4.4, one can replace the induced magnetic
vector potential A by the vector potential F generating the constant exterior
magnetic field. After a scaling of the coordinates, one finds the following func-
tional on cylinders [with notation as in (14.76)]:

L oo
¢H1L/O |V + &) — A + ;del dés (14.119)

where ) is restricted to periodic H!-functions (—L,&) = ¥(L,&). The
parameter \ equals (up to small errors) the quotient x /o, i.e., b=1.

Define ¢(L, A) to be the ground state energy of this functional. After the
scaling, the perimeter 2L of the cylinder is of the order of magnitude /ko ,
i.e., very large. One therefore needs to prove the existence of a constant Cy > 0
such that

#(L, \)

of ——C)\, a L— . (14.120)

In order to prove (14.120), one needs the ideas from Chapter 12 to prove
that the energy density is concentrated near the boundary of the cylinder.
The other input is a subadditivity inequality stating the existence of some
constant Cy such that

t(Ll + Lo, )\) > t(Ll, /\) + iL(LQ7 )\) —Cy , VILi,Ls. (14121)

Backtracking the scalings and changes of coordinates, (14.4) follows from

(14.120). O
14.6 Notes

1. The first mathematical contributions to the subject considered in this
chapter are again to be found in the work of Lu-Pan [LuP3]. Then
came various efforts to improve and clarify the initial contribution. Near
Hc, (k) , one should mention the work of Fournais—Helffer [FoH1] devoted
to the phenomenon of uniformization along the boundary when leaving
the third critical zone with lower exterior fields. The other important con-
tribution is then the paper by Pan [Pa2], which was later complemented
by the paper of Almog—Helffer [A1H]. We have chosen here to give a new
and improved presentation of what happens near He, .
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14 Between H¢, and Hc, in Two Dimensions

. Theorem 14.1.1 is a combination of [Pa2, FoH1, AIH]. The first result

(14.4) was proven in [Pa2]. The identification of the constant for b close
to ©y ' was carried out in [AIH]. The last energy asymptotics (14.6) was
proven in [FoH1] (see also [LuP3]) for a reduced parameter domain.

. One may ask if (14.7) can be justified in the uniform | - ||co-topology

and not just in an energy norm. That question has been pursued in [AIH].
Under a reasonable—but unproven—continuity hypothesis, they conclude
that there is an obstruction of topological nature to such a uniform con-
vergence.

The reference [Pa2] contains a number of interesting conjectures on the
minimizer.

. We refer, for example, to [AbMR] for the implicit function theorem in

Banach spaces, which is used at the end of the proof of Proposition 14.2.2.

. Standard references for bifurcation theory include [CrR] (bifurcation from

simple eigenvalues). The method is also called the Lyapunov—Schmidt
method.

. Lemma 14.2.14 is a variant of a computation mentioned in [AIH] and

inspired by a calculation by Almog (personal communication).

. One should also mention that coming from Hg, (k), other authors,

including Sandier, Serfaty, Aftalion, and Almog ([AfS], [Al6], [SaS2]),
have started to explain what is going on near the second critical field.
As known by physicists starting with A. A. Abrikosov, this is related
to the appearance of vortex lattices called Abrikosov lattices (see [BeR,
p. 100, Section 4.2] and also Section 16.5).
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On the Problems with Corners

15.1 Introduction

It has been observed in the physics literature that the transition field He, (k)
is significantly larger when the domain €2 has corners than for samples of the
same material but with a smooth cross section. In this chapter, we analyze
this phenomenon. It still results in the value of He (k) being completely
determined by the corresponding linear spectral problem. The experimentally
observed change in He, (k) is due to a decrease of the first eigenvalue for
the magnetic Neumann problem when a domain has a corner. Eigenfunctions
corresponding to the lowest eigenvalues will be localized near the corners and
their leading-order asymptotics for a large field controlled by the model of an
infinite sector considered in Section 4.4.

In this chapter, for simplicity we will only consider polygons. The first
part of the chapter will develop the necessary (linear) spectral theory for the
magnetic Neumann operator with magnetic field on polygons. The second
part will be devoted to the analysis of the Ginzburg-Landau functional on
polygonal domains.

In the case of regular domains (without corners), one has the asymptotics
(cf. Theorem 13.2.2)

K

HCS (H) - 0

+0(1), (regular domains)
where the leading correction depends on the maximal curvature of the bound-
ary. The corresponding result for polygons, Theorem 15.3.7, gives the asymp-
totics .
H =
C43 (K:) Al
for some spectrally defined A; < Oy .
We observe that the corners—which can be seen as points where the cur-
vature is infinite—change the leading-order term of H¢, (k). Thus, there is a

+0(1), (corners)

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 239
DOI 10.1007/978-0-8176-4797-1_15, © Springer Science+Business Media, LLC 2010
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large parameter regime of magnetic field strengths between k/0¢ and He, (k) ,
where superconductivity in the sample must be dominated by the corners.

Since the conjectures in Section 4.4 have not yet been proven, we need
to add the technical Assumption 15.1.1. If Conjectures 4.4.1 and 4.4.3 were
established, this assumption would hold for any convex polygon.

We consider a bounded open subset 2 C R? whose boundary is a polygon.
We denote by

Y ={s1,...,sn} (15.1)

the set of vertices of 2. Notice that for a polygon we always have N =
#3 > 3. Recall that the ground state energies, p5°* | for magnetic operators
in angular sectors were defined in (4.14). We will work under the following
assumption on the domain.

Assumption 15.1.1.
We assume that Q is a convex polygon 2 such that if we denote by as the
angle at the vertex s (measured toward the interior), then

e as) < B9 forallse X. (15.2)
We define
— : sect
Ay = min (as) - (15.3)
When having a fixed numbering {s1, ...,sny} of the vertices, we will also write

a; instead of as; .

15.2 Large Field Analysis in Domains with Corners

15.2.1 Agmon estimates near corners for the linear problem

The proof of Theorem 8.2.4 goes through unchanged and yields that eigen-
states corresponding to low eigenvalues are exponentially localized near the
boundary:

Theorem 15.2.1.
Let § > 0.
Then there exist positive constants €, C', and By such that

/ eV B dst@0D [y p ()2 + B~ ppryp(2)|?} do < Cllvsl3,

for all B > By and all eigenfunctions VN of PéVF,Q with eigenvalue A\(B)
satisfying

A(B) < (1-8)B.
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In order to prove exponential localization near the corners for minimizers
of G.,», we will need the operator inequality (15.4) (compare to Proposi-
tion 8.3.3).

Theorem 15.2.2.
Let 6 > 0. Then there exist constants My > 0 and By > 0 such that if
B > By, then PgF’Q satisfies the operator inequality

Phr o >Us, (15.4)

where Up is the potential given by

(MSeCt(as) _ 5)B zf dist(l‘,s) < \]\/4]% )
Us(@) = (@0=9B i dist(e.%) > U5
. . My

(1-6)B if dist(z,00) > Mo

Proof of Theorem 15.2.2.
Suppose for simplicity that the corners {sj}jyz1 are numbered such that s;
and s;j41 are connected by a smooth curve I'; . We will use a cyclic numbering
such that sy+1 =s7.
For j =1,..., N, choose a smooth, simply connected domain ﬁj such that
I c 8S~2j and such that Q and S~2j lie (locally) on the same side of I'; .
Define A@)(B) := AN (BF, ﬁj) . By Theorem 8.3.2, we have

A9 (B) = 6B + O(VB). (15.5)

Let x1 € C°°(R) be nonincreasing and satisfy x1(t) = 1fort <1, x1(t) =
0 fort>2.
Define, for M >0and j=1,...,N,

XOh(@) = x1 (VBdist(, ;) /M) .

Define also, for L, M > 0 and j = 1,..., N, the Lipschitz functions

D (@) = /1 = 3B dist(z,s;)/M)x (VBL dist(z, T;) /M)

We choose and fix L (depending only on the smallest opening angle as of the

corners) such that the supports of the Xgijge are disjoint. Finally, we define the

Lipschitz function xint by

X12nt =1- Z(X((:g)r)Q - Z(Xifd)e)z .

J J

Let ¢ € H%(Q) . The standard localization formula yields for some constant
C>0,
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N .
(0] Pip o9) > Z (x| PRr.o(xe)) + Z Xéﬁed) | P]]BVF,Q(XE(;ijc)leqs»
Jj=1 Jj=1

+ (tined | Pl (xim ) — Af 91 (15.6)

We can compare the corner contributions with the infinite sector with
opening angle a; and get

(Xo | PRE.o (X)) > B (ay)||Ix)013 - (15.7)

We can compare the contributions from the sides with fNZj and get, using
(15.5),

(XDt | Phe oa(xD0)) = AV XD 0113 = (00B — CVB)|[xDesl3. (15.8)

Finally, the interior piece is estimated using Lemma 1.4.1:

(Xint® | PBE 0 (Xint®)) > Bllxint® |3 - (15.9)
Combining (15.6)—(15.9) gives Theorem 15.2.2 upon choosing My sufficiently
large. a

One can use Theorem 15.2.2 to prove localization estimates near the cor-
ners for the linear problem. We do not give the details, since the proof is
a repetition of ideas from Chapter 8 and since we will give the proof of the
corresponding statement for the nonlinear problem. So we only state the main
result.

Theorem 15.2.3.
Let § > 0. Then there exist positive constants e, C', and By such that

/NBdl“”){wB )2 + BV psps(@)) dz < Cllés|2,

for all B > By and all eigenfunctions ¥p of P]]BVF,Q with eigenvalue \(B)
satisfying

A(B) < (69— §)B.

15.2.2 Eigenvalue asymptotics

Definition 15.2.4.
Let ) be a bounded polygon. We denote by

e A, the nth eigenvalue of the model operator @sEgPP{\{QQ ,

o Kq the largest integer K such that Ax < O, |

e )\, (B) the nth eigenvalue (counted with multiplicity) of the magnetic Neu-
mann Laplacian (—iV + BF)? on Q.
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In particular,
A = mi )
1= Wil (c)

Theorem 15.2.5.
Letn < Kq. Then

An(B) = AyB + O(B~). (15.10)

Proof.

We only give the main ideas and leave the details to the reader. Define
0 =minjcy |s; —sk|. Let x € C§°(R) be a standard localization function:
x(t) =1 for |t| <1 and x(t) =0 for |t| > 2.

Let v, be the eigenfunction corresponding to A, and let £,, be the cor-
responding angular sector. We apply the scaling 1, (z) — B, (v Bzx) and a
(magnetic) rigid motion in order to move the vertex of €, to the correspond-
ing corner s of 2. Furthermore, we localize near the corner s by multiplication
by x(4dist(z,s)/d) . We denote the corresponding function ¢, € L?(€2).

Using the exponential decay result, Theorem 4.4.4, ||, |2 = 1+ O(B~>°),
and {¢1,...,¢,} span a linear space of dimension n . Furthermore, a calcula-
tion yields

(¢; | (—iV + BF)?¢) = Axdj B + O(B~>). (15.11)

By Proposition A.1.3, this yields the upper bound in (15.10).

The proof of the corresponding lower bound follows from the inverse
procedure: Let {11, ...,1,} be the first n eigenfunctions of Pgg ¢ . By Theo-
rem 15.2.3, these functions are exponentially localized near the corners.
By localization with x(4 dist(x, X)/0) and applying the inverse scalings/trans-
lations we obtain a family of n functions {151, . ,@Zn} in ®sexL?(Qa,) - Again
using the min-max principle, Proposition A.1.3, we get the lower bound. 0O

15.2.3 Monotonicity of A1 (B)
By Theorem 15.2.5, we have a complete asymptotics of A;(B). The proof of
Corollary 2.3.3 easily carries over to the case with corners. Therefore, we have

Proposition 15.2.6.
Let Q be a bounded polygon. The limits of | | (B) and X} _(B) as B — +o0
exist and are equal, and we have

52 M (B) = Sl - (B) = A > 0.

Therefore, B +— A1 (B) is strictly increasing for large B .

Corollary 15.2.7.
Let Q be a bounded polygon. The equation Ai(ko) = K
solution o (k) for & sufficiently large. Furthermore,

2 in o has a unique

o(k) = /’; +O(k™).
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15.2.4 The tunneling effect between corners

We describe heuristically the case of the n-regular polygon. We then show how
we arrive at an n X n interaction matrix with symmetry properties. We then
reproduce some of the pictures obtained by Bonnaillie-Noél-Dauge—Martin—
Vial.

The “proof” is based on various steps and is inspired by the analysis of
the spectrum of the Schrédinger operator with multiple wells in the presence
of symmetries.

Invariance by rotation

We consider the polygon to be placed with its center at the origin. The first
point is that we have a finite group G,, of symmetry generated by the rotation
by 27 /n around the origin in R? | which is denoted by g,,. This group has n
elements g/ (j =0,...,n—1) and we have g” = 1. The group acts on L?(R")
as follows:

(M (gn)u)(x) = ulgy @),

where we verify that M(g,) commutes with (—iV + BF)?2.
Selected orthonormal basis of E™

The second point is that according to the previous sections, if we consider
p5¢t (2 /n) the ground state energy of the reference problem in a sector of
opening angle 27/n, then we can show that there exist n eigenvalues expo-
nentially close to p*°*(2w/n) B, the rest of the spectrum being at a distance
of order B/C,, for some constant C,, > 0.

Moreover, all the corresponding eigenfunctions are exponentially localized
in the union of the n corners.

Lemma 15.2.8.
There exists an orthonormal basis (e;) (j =1,...,n) of the eigenspace ™ (B)
corresponding to the n lowest eigenvalues such that

e ¢, is exponentially localized in a corner and exponentially close (in L?) to
the ground state of the corresponding corner,
o Mlgn)ej = €jt1-

The proof consists of starting with the eigenfunction ¥ relative to a
corner s1 defined by

WP (@) = B expi’y (e hsn) va(BH R @ — 1)

Here 91 is the eigenfunction in the sector 5, /, and Ry is the rotation sending
this sector on the corner s; of our polygon.

We now introduce fi = x19¥ , where x; is cutoff function equal to one in
a neighborhood of the corner s; and depending only on the distance to s .
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Due to the fact that 1, decays exponentially at oo in the infinite sector
by Theorem 4.4.4, this gives a good quasimode for (—iV + BF)?. We indeed
have

(-=V +iBF)*f, = (2;) fi+0O <exp —éBé |z — sl|) . (15.12)
We then define f; by
fi=M(g) " fr,
and project these f; on the spectral space relative to the n-first eigenfunctions
to get a basis g; :
g; =1lofj,

Its Gram matrix (g; | gx) is exponentially close to the identity and we can
orthonormalize by the Gram—Schmidt procedure to get the orthonormal basis
e; . Throughout this construction we have respected the symmetries. In par-
ticular, we have

M(gn)ej = €j+1, Vj € Z/nZ
O
The interaction matrix
Once we have constructed the basis {e1,...,e,}, we can introduce the inter-

action matrix, which is simply the matrix M of (—V + iBF)? restricted to
E™(B) in the basis (e;) . This permits us to identify £"(B) with ¢2(Z/nZ) , and
the action of M (gy,) simply becomes the shift operator 7 whose corresponding
matrix is given by 7j 1 = 41,k -
The restricted Hamiltonian M is a self-adjoint matrix that commutes with
7. It can therefore be written as
n—1
M=X"+17+ ZIka,
k=2

for some coefficients I, € C. Observing that

the self-adjointness implies that
A=A, and I =1,_¢ fork=1,...,n—1.

All these matrices share the property of being diagonalizable in the same
orthonormal basis of eigenfunctions uy (kK = 1,...,n) whose coordinates in
our selected basis are given by

(up)e = wiF—1"

)

with
wp, = exp(2im/n) .
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Braid structure of the eigenvalues

Let us, for example, look at the case n = 3. Then M takes the form

AL
M=|5L X1
LI A

Writing I1 = pexpif, the eigenvalues are given by
27 4
A1 =A+2pcosf, Aa = A+ 2pcos |0+ 3 , A3=A+2pcos |6+ 5 )

It is easy to show that p decreases exponentially rapidly as a function of B.
This is a consequence of the exponential decay of e; away from the corner s; ,
permitting us to show the existence of C' > 0 and By > 0 such that

1 1
pSC’eXp—CB27 VB > By .

But the asymptotics of p (or a lower bound) is not determined. The function
BO(B), if chosen continuously as a function of B for avoiding jumps of 2, is
expected to depend asymptotically on B in a linear way. So it is natural to look
at the map 6 — (cos 0, cos(0 + 2;), cos(6 + 4;)) . The graph of this function
immediately gives the right prediction for the braid structure of the first three
eigenvalues of (—V +iBF)? . This leads us to predict a crossing of eigenvalues,
hence a change of multiplicity, when cosf = cos(f + 2; ), which leads to
0 = 2m/3 and 6 = 5m/3 . Other crossings occur for cos(f + %) = cos(6 + *7),
ie., for 8 =0 and § = 7 and for cos(d + 4;) = cosf, which corresponds to
0 = 4r/3 and 6 = 7/3. All together, we can predict crossings for § = kn/3
(keZ).

Remark 15.2.9.
We suspect that for B large, we have

1
0~ |QB.
n

This leads us to predict that the values By where a crossing occurs satisfy

™

Byy1 — By ~ e

(15.13)

For n = 4, M assumes the form

AL I [T
L N1 I
I A1)
L by I A
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0.5

0.451 b

A,(B)/B

0.4 b

0.35 L L L L L I I I

10 20 30 40 50 B 60 70 80 90 100

Figure 15.1. \,(B)/B as a function of B for the equilateral triangle and for n =
1,2, 3. Notice that ©¢ &~ 0.59 is, as expected, larger than limp_—.4 00 An(B)/B.

We note that Iy is real. Probably I (which corresponds to a tunneling effect
between opposite corners) is exponentially small in comparison with |I;| = p.
One can indeed suspect that Io ~ p?. In any case, we have four eigenvalues
given by

Al =A+1Is+2pcosh, /\gz)\—12+2pcos(9+72r),

A3 = A+ 1o —2pcosh, /\42)\—12—2pcos(9+;r).
Independently of I, crossings of A\; and A3 occur when § = (2k+1)7 (k € Z)
and crossings of Ay and Ay occur when 6 = k7 (k € Z).

When I = 0, Ay and Ay cross for § = 37/4 and § = 7n/4. This crossing
is transverse but remains when I5/p is small at a close value of 6. Similarly,
Az and A4 cross for the same value for Is = 0 (so we have two double eigen-
values). The appearance of an Iz # 0 keeps the two crossings but destroys
the phenomenon of appearance for the same value of 6 of two distinct double
eigenvalues. Finally, one observes similar properties for § = 7/4 and 57 /4
with crossings between Ay and A3 and Ay and A; .
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15.3 Nonlinear Analysis

15.3.1 Basic estimates

In the case of domains with corners, we deviate from the convention (10.2)
applied in the rest of the book and introduce

2
G (10, A /|pmm2 L

+ (KJO’)Q/ |curl A —1|% dz. (15.14)
R2

Here we have immediately restricted to the case of a constant exterior mag-
netic field. This functional is studied much in the spirit of our analysis of the
3D functional.
Let us define
T2 I1
F(o) = (- ). 15.15
()= (-2 (15.15)
Contrary to the case of three dimensions, it is not easy to prove that mini-
mizers of G exist. This has to do with the lack of existence of a homogeneous
Sobolev inequality [like (D.16)] in 2D. We therefore have to restrict attention
to A such that A —F belongs to the space WO 0 ?(R?,R?)—a somewhat smaller

space than H . See (D.12) in Appendix D for the definition of W0 2(R?,R?).
Theorem 15.3.1.
For all k,0 > 0, there ezists a (possibly nonunique) minimizer of G, » defined
on (v, A) such that (v, A —F) € WH2(Q) x Wol”OQ(]RQ,]RQ) .

Furthermore, minimizers are weak solutions of the Ginzburg—Landau
equations:

Proath = K2 (1 = [¥*)y in Q, (15.16a)
curl’ A = — L R(¢ proath)lo in R2?, (15.16b)
(Proa®) v =10 on 0. (15.16c¢)

We can use the gauge invariance (see Lemma D.2.7) to impose the
condition

divA =0. (15.17)

This determines A up to an additive constant. We choose (again using the
gauge freedom) this constant such that (D.14) holds, i.e.,

A - F||W12(R2 R2) — mf (A — F)—a||W0102(R2 R2)

< (| curl A — 1|2, (15.18)

for some universal constant C'.
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In this chapter, we will always study solutions of (15.16) under the addi-
tional gauge choice implied by (15.17) and (15.18). With this choice, curl A—1
controls the local W12 norm by (D.15); in particular, there exists a C' > 0
such that

||A—F||W1,2(Q) < C’||cur1A— 1||L2(IR2) . (1519)
By a Sobolev inequality, this again implies that || curl A — 1|[z2(g2) controls
A —F|Lr(q) for all p < co.

Lemma 15.3.2.
Let Q be a bounded polygonal domain and let (¢, A) be a (weak) solution to
(15.16). Then curl(A —F) =0 on R?\ Q.

Proof.
The second equation, (15.16b), reads in the exterior of Q (in the sense of
distributions), using the fact that curl F =1,

(32 curl(A — F), —0; curl(A — F)) =0.

Thus, we see that curl(A — F) is constant on R? \ Q. Since curl(A — F) €
L?(R?), we get the conclusion. O

Rereading the proofs from Chapter 10 with the new definition of the func-
tional [and using Lemma 15.3.2 in the proof of (15.22)], we now get the fol-
lowing results for polygonal domains:

e Solutions to (15.16) satisfy the inequality

[¥floc < 1. (15.20)
e Solutions to (15.16) satisfy the inequalities (cf. Lemma 10.3.2)
HpmrA'l/J”Q < "{Hw”27 (1521)
Gy
Feurl A —1llz2@e) < Clldllzl¢lzaw (15.22)

for some constant C7; > 0.
e There exists a constant C' > 0 such that if

o> Cmax(1l, k), (15.23)
then the normal state, (0,F), is the unique solution to (15.16).

The statement of (15.23) in Chapter 10, i.e., Theorem 10.4.1, contains the
assumption that 2 is smooth. However, upon inspecting the proof, one realizes
that this assumption was only needed in order to know that B +— A (B)
increases like constant x B for large values of B. This was established for
polygons in the previous section; therefore, Theorem 10.4.1 is also valid for
polygons.

We will mainly use (15.22) combined with (15.19) and a Sobolev inequality
to give a bound on the L*(2) norm:



250 15 On the Problems with Corners

Lemma 15.3.3.
There exists a constant C > 0 such that, for all solutions (1, A) to (15.16),
we have

(50)*[|A = F|7a(q) < O[5 193 (15.24)

15.3.2 Nonlinear Agmon estimates
Normal estimates

In the variable normal to the boundary we have the exponential estimate
of Theorem 12.5.4. The input to these estimates is the inequalities (12.4)-
(12.6), which by (15.20)—(15.22) are also valid for polygons. Therefore, Theo-
rem 12.5.4 also holds for solutions to (15.16). In particular, the “rough bound”
established in Theorem 12.3.1 holds for solutions to (15.16).

Rough bounds on |13

For stronger fields, superconductivity is essentially localized to the corners.

Theorem 15.3.4 (Decay estimate on the boundary).
Suppose that Q satisfies Assumption 15.1.1. For u € (A1,0q), define

Y=Y (p)={s€X|pm(as) <p} and

b:= Selg\le{ul(as) — p} (15.25)
(in the case ¥ =3, we set b := Oy — p).
There exist kg >0, C >0, C" >0, and M > 0 such that if (¥,A), o is
a solution of (15.16) with

>ph K> ko, (15.26)
K

then

Cl
vz < C [W(@))Pde < 7, . (15.27)
{r dist(z,X")<M} K

Proof.
To prove this result, we follow the same procedure as in the proof of Theo-
rem 12.3.1.

Let 6 = b/2, and let My = My(d) be the constant from Theorem 15.2.2.
Let x € C*°(R) be a standard nondecreasing cutoff function,

x=1 on[l,o0[, x=0 on]—o00,1/2[,
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and let A = 2My/+/ko . Define x» : Q@ — R, by

xa(z) = x (diSt(f’Zl)> :

Then y is a Lipschitz function and supp x»NY’ = ). Combining the standard
localization formula and (15.16), we find as previously

/Q Do G2 dz — /Q VP2 de

= ROGY. Ploaa?) < %ol (15.28)
We need a lower bound to [, [proa (xat)[? da . Notice that
supp xx NN # 0 ;

so we cannot use the basic lower bound from (1.32). Therefore, we will intro-
duce the constant magnetic field F for which we do have such an estimate,
namely Theorem 15.2.2. We can write

/ Droa(rd)2de > (1—e) / Pror (0a) |2 da
Q Q

—e! /Q(ISJU)2|F — AP (x\) P dx. (15.29)

Theorem 15.2.2 and the choice of A imply that

/ |pr(XW)|2dw2( in m(as)—5) ro vl
o s\

b
= (et 3 ) mollavlp. (15.30)

We now have to give a lower bound to the second part of the right side of
(15.29). We can estimate

[ (0P IF ~ AP PP d < (04 =Pl o]t (1531
By Lemma 15.3.3 and (15.20),

(k0)*|IF — All7(0) < CR*0%||F = A2y < CR2[19]3. (15.32)
Let us now estimate ||xxt[|7. According to (12.20)—which is valid for so-

lutions to (15.16) by the discussion above—and the property of the cutoff
function 0 < x, < 1, we can deduce that
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aylf < (15.33)

C
Ve
Inserting (15.30)-(15.33) in (15.29), we obtain

b
[ eoabo)P > (1= (1 g ) wolhosl - ool (1534)

We insert (15.34) in (15.28). Then

[(1—6) (u+ Z) Ko — K2 —Ca_l/@g/ﬂ / [v|? dx
{dist(z,X") >}

< (Ce B 4 ||X’Hgox2)/ W2 da. (15.35)
{dist(z,X") <A}

Assumption (15.26) leads to the lower bound

(1—6)(u+b >

b
2) ko — K2 — Ce 132 > 459 (15.36)

as soon ¢ is small enough and x large enough.
Once ¢ is fixed and with A = 2My/+/ko , we find
Ce 632 4+ || looA "2 < ko . (15.37)
Combining (15.35)—(15.37), we deduce

/ || de < C/ |2 da . (15.38)
{dist(x,5")>A} {dist(z,2") <A}

It follows easily that
vl < +1) VP do.
{dist(z,3") <A}
Inserting the choice A = 2Mj/+/ko and the condition (15.26) on o, this clearly
implies (15.27). O

Ezponential localization

We will use the rough bound on 1 to obtain exponential (Agmon) estimates
near the corners. The strategy is the same as in Section 12.5.

Theorem 15.3.5.

Suppose that Q satisfies Assumption 15.1.1, let p > 0 satisfy

min 1 (as) < p < B,

and define
Y i={seX|mlas) < p}.
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There exist constants kg >0, M >0, C >0, and € > 0 such that if

K > Ko, >p!

= )

K

and (1, A) is a solution of (15.16), then

i / 1
[ vt (|w<x>2 n pmmnz) da
[¢) RO

<c | V(@) da
{z:v/ko dist(z,5/) <M}

We will need the following lemma, which is similar to Lemma 12.5.1.

Lemma 15.3.6.
Suppose that Q C R? satisfies Assumption 15.1.1. For p € (A1,00), define

o= {seD|mla) <u) and bi= il (o) -p) (1539

(in the case ¥ =X/, we set b:= Og — ).
There exists My > 0 such that if (¥, A) is a solution of (15.16), then for
all € C=(Q) such that dist(supp ¢, X') > My/\/ko , we have

b
Ionanol = o (14 ) 13, (15.40)

for ko sufficiently large.

Proof.
Let 6 = b/2 and let My = My(d) be the constant from Theorem 15.2.2.
We estimate, for ¢ € C°°(Q) such that dist(supp ¢, ¥X’) > Mo/\/ko ,

Iaradl3 = (1L=2) [ Ipuwof do— =t [ (co)[F ~ AP |6 do. (15.4)
Q Q
Using Theorem 15.2.2 and the support properties of ¢, we have
. b
[ tpeowol?de = (_intmfan) ~ ) wolol = (1t g ) nolol}. (1522
Q seX\ X/ 2

Using the Cauchy—Schwarz inequality, Lemma 15.3.3, and Theorem 15.3.4, we
can bound the last term of (15.41) as follows:

/Q (k0 )2IF — A |82 di < (50)%]| A — F|24(qy 1612

< Cr?llvI3lel3 < Ollgl:- (15.43)
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We use the Sobolev inequality (12.30) in (15.43) and estimate ||V|¢|| z , using
the diamagnetic inequality, by ||pxoa®||3 to obtain
/ (ko)?|F — A[* |¢|* da < Csob (nllproadlls + 07 8112) - (15.44)
Q

Combining (15.41), (15.42) and (15.44), we deduce that

Cso b Cso
(14 ) Iaonel = {1 =) () o= T ol 509

We choose n = Csop/(£2k0) ; then (15.45) becomes

Cvgob 2 b 2
(1+ G0 Y Ionanoll = o {1 =0 (5 ) 1ol 150

RO

If we choose ¢ sufficiently small and independent of k, o (actually, since p +
b/2 <1,e=0>b/8 will do), then (15.40) follows. O

By standard arguments, Lemma 15.3.6 implies the Agmon estimates given
in Theorem 15.3.5.

Proof of Theorem 15.3.5.
The function #'(z) := dist(z, X’) defines a Lipschitz continuous function on
Q2. In particular, |V¢'| < 1. Let x € C*(R) be a nondecreasing function
satisfying

x=1 onll,o0[, x=0 on[-00,1/2].

Define the function xas on Q by xa(z) = x (' (x)v/ko /M) . By Lemma 15.3.6,
there exists 0 > 0 such that if M, ko are sufficiently large, then

/Q |Proa (€Y xarw) [* da > po(1+ B)lle " xarv |3

Using the localization formula and the assumption o/x > p~1 | there exists
some constant C' independent of k, o, €, and M such that

BulleY x5 < CENIVE 2 lle™  xardr |13 (15.47)
C||Vt/||§o 2e/kat' (z) |/ t/(.Z‘)\/I{O' ?
+ A2 /Qe X M P(x)| dx.

We achieve the proof of Theorem 15.3.5 with arguments similar to the ones
of the proof of Theorem 9.4.1. |
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15.3.3 Equality of critical fields

In order to define the critical field He, (%), one runs into the same problems of
a priori non-uniqueness as in the smooth case. Thus, we can define upper and
lower fields as in (13.1), (13.2) and also local versions as in (13.9). We will
prove that in the case with corners these definitions also coincide for large
values of k.

Theorem 15.3.7.
Suppose that Q satisfies Assumption 15.1.1. Then there exists ko > 0 such
that if kK > Ko, then the equation

Ara(ko) = K2

has a unique solution H = Hé?g"(/i) . Furthermore, if ko is chosen sufficiently
large, then for k > ko , the critical fields defined in (13.1), (13.2), and (13.9)
coincide and satisfy

He, (k) = Hey (k) = HES (k). (15.48)
Finally, the critical field satisfies
He, (k) = : +O(k™), for k— . (15.49)
1

Proof of Theorem 15.5.7.

By Corollary 15.2.7 it only remains to prove (15.48). Actually, we will prove
that Proposition 13.1.7 remains true for domains with corners with essentially
unchanged proof. As in the proof of that proposition, the only nontrivial point
is the inclusion (for large k)

NSC(H) C Nloc(ﬁ) .

We now let (¢, A) be a nontrivial solution to (15.16). Since we have (15.23)
and the leading term of the asymptotics of A1 (B), it clearly suffices to consider
the case where

cr <M<,
o
for some C' > 0 and € > 0 (small). Also, by Lemma 15.3.3,

C
1A =Flipa@ < l¥llal[9l2- (15.50)
By Corollary 12.5.5, we find, for some C > 0,
[l
T
4

(ko

lplz <C (15.51)

With these estimates established, the proof of Proposition 13.1.7 goes through
unchanged. a
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15.3.4 Energy asymptotics in corners

Finally, we discuss leading-order energy asymptotics in the parameter regime
dominated by the corners, i.e., 1 € 0 — /0O < Hg, (k) — k/O¢ . The result
below, Theorem 15.3.8, can be seen as a partial converse statement to Theo-
rem 15.3.5 in that all corners that are spectrally permitted will contribute to
the leading-order of the ground state energy.

We recall that the angular sectors €2, were defined in Section 4.4. Let
a €]0,7[ be such that p**°*(a) < O . Define, for ui,pus > 0, the following
functlonal I

Tolt) = [ UV EpP e ) e 552)

with domain {¢p € L?(Q) | (—=iV + F)¢ € L?(Q4)} . Define also the corres-
ponding ground state energy

E“ mf JE ).

H1,p2 " H1,H2

The main result on the ground state energy of the Ginzburg-Landau func-
tional in the parameter regime dominated by the corners is the following.
Theorem 15.3.8.

Suppose k/o(k) — u € Ry as kK — oo, where p < Og. Let (¢,A) =

(¥, A)o(r) be a minimizer of G, 5y -
Then

Gromt, Al = Y EX,, (15.53)
sEX
as kK — 00
Remark 15.3.9.
Proposition 15.3.10 states that Eys, = 0 unless pi(as) < p. So only cor-
ners satisfying this spectral condition contribute to the ground state energy, in
agreement with the localization estimate from Theorem 15.5.5.

Basic properties

We give the following proposition without proof, since it is completely analo-
gous to the similar statements for G .

Proposition 15.3.10.

The map 10, O0[xRy > (p1, p2) — E, |, is continuous.

Suppose that p1 < O¢. If uy < ,useCt( ), then B, =0 and ¢ =01is a
minimaizer.

If p1 > pe(a), there exists a nontrivial minimizer o of J s - FUT

thermore, there exist constants a and C' > 0 such that

| (unla)? + (-9 + FyioP?) do < . (15:54)

o
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Finally, 1y satisfies the uniform bound,
431
[Yolloe <
K2

One easily verifies the following scaling property.

Proposition 15.3.11.
Let T > 0. Then the functional

5 T=%y|" dz,

v [ TR - T+
Qa
defined on {¢p € L*(Qa) | (—iV +T2F)y € L?(Q)}, is minimized by
Jo(y) = vo( ),

where g is the minimizer of J<
In particular,

Hl M2 "

iﬁf/ﬂ [(=iV + T2 F))? — T 22+ T2y de = By, -

a

By the continuity of E¢ we get the following consequence.

M2 7
Proposition 15.3.12.
Suppose that lim,_ o k/o(k) == p < ©¢ and that di(k) and d2(k) — 1 as
Kk — 00 . Then the ground state energy of the functional

2
v [ ot = R+ da()y o do (15.55)

tends to B¢ as k — 0.
o

Proof of Theorem 15.5.8.
Upper bounds
We indicate here how to obtain the inequality

lIlf g:‘Q ,o(K) 1/1, ZE/?SH (1556)

W, sEX

which is the “easy” part of (15.53).
The inequality (15.56) follows from a calculation with an explicit trial
state. The test functions will be of the form A = F and

=S @a), with  (y) = e, (Vaoy)x ()

sEX

Here ns € C*°(R?, R) is a gauge function, x is a standard cutoff function, y = 1
on a, neighborhood of 0, suppx C D(0,7), with » = é min;«y |s; — skl , and
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17, 1s the minimizer of J5%, . The coordinate change ®s is the rigid motion
mapping QN D(s,r) to Qe ND(0,r).

The proof of (15.56) is a straightforward calculation similar to the lower
bound (given below) and will be omitted. Notice though that the decay
estimates (15.54) for the minimizers v, imply that the function defined

by ¥ae, (vVEay)[1 — x(ly|)] is exponentially small.

Lower bounds
Let (¢, A) be a minimizer of G, ,. Define x1 € C*°(R) to be a standard
localization function, x; is nonincreasing, x1(t) = 1 for t < 1, x1(¢t) = 0 for
t>2.

Forse X let

¢s(z) = xa (4dlsg(x’s)) )

where ¢ :=minj < k|s; — sg].

Notice that ¢s¢ps = 0, when s # s’ . Therefore, using Theorem 15.3.5, the
localization formula, and the estimate ||9]|o <1, we can write

GeolA] > 3" G o655, A] + O(~) (15.57)

sEX

2
= [ on @) = o+ 6wl do + O(~).

s€X

By Lemma 15.3.3, (15.20), and Theorem 15.3.5, we get

(r0)?

Thus, we can estimate

/ |pm7A(¢sw)|2 dx
Q
> (1— kb /Q |Pror (05| dz — K2 (ko) A — P3| 653

A~ F[F < C"w?|lv]3 < C". (15.58)

> (1-k2) /Q |Prow(650)|* dz — Cr™2 (15.59)

where we used the inequality (consequence of Theorem 15.3.5)

psllF < \// [|? dx < \/C/ dr < C'k7 1.
Q {dist(z,X)<Mr—1}
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Combining (15.59) and (15.57), we find

2
6ol 812 (1= 1 DY [ipaawto)? = " oo
I |¢w|4} dr + O(k™2). (15.60)
21 —rk"2)

For fixed s € ¥ (and using the fact that € is a polygon), the integral is—up to
a rigid motion and a gauge transformation—of the type considered in (15.55).
We therefore get by Proposition 15.3.12:

RO’(K,) ¢» ZEﬁS/L

seX
This finishes the proof of Theorem 15.3.8. a

15.4 Notes

1. We have chosen for simplicity to present the case of polygons. This permits
us to directly implement the results on infinite sectors. For results on more
general domains with corners, see below.

2. The observation that the superconductivity first appears at the corner for
type II superconductors was mentioned in the physics literature. Semi-
rigorous results were obtained by Molshalkov et al. We refer, for example,
to [BeR, Section 4.3.6].

3. At the mathematical level, Jadallah, Rubinstein, and Sternberg first
exposed the corner effect for He,(k) in [JaRS]. Further results were
obtained by Jadallah [Ja] and Pan [Pal]. Here we mainly refer to con-
tributions by Bonnaillie [Bonl, Bon2], Bonnaillie-Noél-Dauge [BonD],
Bonnaillie-Noél-Dauge-Vial [BonDMV], and Bonnaillie-Noél-Fournais
[BonF]. In particular, an analysis similar to the present chapter, but for
general curvilinear domains instead of polygons, is done in [BonD], [BonF].

4. The linear spectral problem has been studied in depth in the case of
corners in [Bonl, Bon2, BonD].

5. The tunneling effect is discussed in the thesis of Bomnnaillie [Bonl].
She implements ideas that were developed for the Schrodinger operator

n [HeS1, HeS2]. This was further discussed in Bonnaillie-Noél-Dauge
[BonD] and numerically in the work by Bonnaillie-Noél-Dauge—Martin—
Vial [BonDMV]. It is rather surprising that the numerical system MELINA
permits one to follow exponentially close eigenvalues so accurately.

The computations for the triangle were done for us more recently by
Bonnaillie-Noél.

6. One can do the same kind of discussion about the tunneling in a case of
regular domains with a G,, symmetry. Then we can play with the points of
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maximal curvature assuming that they are nondegenerate and exchanged
by the rotation.

For more general domains, the nonlinear part has been carried out in
[BonF].

. The question about the existence of minimizers has been studied by several

authors; see [Gio], [GioS], and references therein. The solution is to use
the correct variational space Wol”OQ. Some of these technical points are
discussed briefly in Section D.2.3.
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On Other Models in Superconductivity and
Open Problems

In this chapter, we will briefly describe some questions for which the tech-
niques developed in this book have been (or could be) useful for understanding
some asymptotic regimes for other problems occurring in superconductivity.
We will also discuss some open questions.

16.1 On Josephson’s Junctions

In [Kac3] (extending previous results of [ChDG, Gio, GioJ]), Kachmar ana-
lyzes the situation of two open sets 2; and 22—, representing the super-
conducting material and €2y surrounding €2; and playing the role of a metallic
material. Mathematically, this corresponds to adding to the previously intro-
duced functional G (used with @ = ;) a second functional associated with
Qs taking the form

1 1
QéQ (1, A) = / {m|VWAw|2 +ar?[Y)? + M02|H curl A — 1|2} dx ,

2
witha >0, m>0,and p>0.

In physics, the existence of a surrounding material is often modeled
through the de Gennes boundary condition—instead of studying the
Ginzburg-Landau equations with Neumann boundary condition, one replaces
the first equation in (10.8b) by an equation of the type (1.56). A rather
complete analysis of the modified functional has been performed. This new
situation requires

e a spectral analysis of new models in dimension 1,
e a semiclassical analysis of problems with a transmission condition at the
boundary between 2; and Qs .

Through this approach, Kachmar could also obtain an alternative explanation
of the de Gennes condition. In certain parameter regimes, the results coincide

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 261
DOI 10.1007/978-0-8176-4797-1_16, © Springer Science+Business Media, LLC 2010
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with those obtained for the much studied “usual” Ginzburg-Landau model,
including in particular the two-term expansion for the upper critical field
obtained by Helffer—Pan [HeP1] and the identification of the critical field Hc,
[FoK1].

16.2 Analogy with Liquid Crystals

Based on de Gennes’ theory of analogies between liquid crystals and super-
conductivity, Pan introduced in [Pa5] a critical wave number @, (which is an
analog of the upper critical field He, for superconductors) and predicted the
existence of a surface smectic state, which is supposed to be an analog of
the surface superconducting state. It is then interesting to analyze the exis-
tence of the surface smectic state of liquid crystals. We refer here to recent
contributions, including [BaCLP], [Al7], and [HeP2, HeP3|, and references
therein.

Let us recall the Landau—de Gennes functional of liquid crystals [dGeP,
dGed]. After some simplifying assumptions, this energy functional takes the
form

2

K
el = [ {19 =+ ol
@ (16.1)
+ K| divn|> + Kyn - curln 4 7> + K3[n x cur1n|2} dz,

where € is the region occupied by the liquid crystal, v is a complex-valued
function called the order parameter, n is a real vector field of unit length
called the director field, q is a real number called the wave number, T is a real
number referring to the chiral pitch in some liquid crystal materials, K7, Ko,
and K3 are positive constants called elastic coefficients, and k is a positive
constant that depends on the material and temperature. As in [Pab], we call
k the Ginzburg—Landau parameter of the liquid crystal.

We are interested in the properties of the global minimizers of £ without
prescribing boundary data for the director fields. As explained in [Pa5], the
natural space for the variational problems of (16.1) is

V(Q) = H'(Q,C) x V(Q,S?),
where!
V(Q,R?) = {ue L*(Q,R?) : divue L*(Q), curlu € (L*(Q,R?))*},
V(,S?)={necV(QRY: |nx) =1 ae in Q}. (16.2)

! The space V (9, R?) was denoted by H(curl,div, ) in Dautray-Lions [Dal].
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V(Q,R3) is a Hilbert space with the inner product and norm defined by

(u,v)y = / divu divv + curlu - curlv +u- vdz,
Q (16.3)

1
lallv = {ll divul3 + [l curlu]3 + [[u]3}* .

Define

C(K17K27K3a’%7qa7—) = 5[%“]

inf
(¥,n)eV(Q)
We assume that  is a bounded, simply connected domain in R? with smooth
boundary.

According to de Gennes’ theory [dGe3, dGeP], ¢» = 0 for a nematic phase,
and ¢ # 0 for a smectic phase. Hence, a nontrivial minimizer (¢, n) of (16.1)
where ¥ # 0 describes a smectic state, and a trivial critical point (0,n) cor-
responds to the nematic state.

The set of trivial critical points of £ is given by (0,n) with n € C(7),
where n € C(7) if and only if n € V(,S?) and n satisfies

divn =0, n-curln+7=0, nxcurln=0. (16.4)

For a unit-length vector field, (16.4) is equivalent to

divn =0, curln+7n = 0. (16.5)
The set C(7) of all solutions of (16.5) in V (£, S?) consists of the vector fields
N =QN-(Q'z), Qe SO(3), (16.6)

where
N, (11,29, 23) = (cos Tx3,sinTx3,0). (16.7)

One can consequently first consider the reduced Ginzburg-Landau func-
tional Ga , associated with a magnetic potential A , which is defined on H'(12)
by

2
K
Galy] :/Q|VA1/J|2—HQ|¢|2+ Il de. (16.8)
For convenience, we also write Ga [¢)] as G[¢, A]. Define
€9 nércl(T)wef}Ill(Q,C) Ya W] n€C(T),:11n€H1(Q,C)gW) qn] ( )

It can be shown that ¢, is a good approximation of the minimal value of £ for
large K;’s. Then one can analyze the behavior of the minimizers of G . There
are mainly two cases.

e When 7 =0, we meet essentially the case that was analyzed in this book:
analysis of the spectrum of a magnetic Neumann Laplacian with constant
magnetic field, with as new point the question of minimizing over the
direction of the external field. So this supposes there is a uniform control
with respect of this external vector field. This is not a problem in the
strictly convex case.
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e When 7 # 0, we already have a problem in order to obtain the optimal
asymptotics. The magnetic field is no longer constant but only of con-
stant length. A partial analysis of this has been carried out in [Pa9] and
continued in [HeP2].

16.3 Perforated Structures

In this book, we have assumed for simplification that our domains 2 were
simply connected. There is an extensive literature about the phenomena aris-
ing when holes are present. In the linear part, we have mentioned some specific
phenomena due to the Aharonov-Bohm effect. We do not have room here to
describe all these phenomena (Little-Parks effects, antidot lattices, supercon-
ducting micronetworks, etc.), and we prefer to refer to the book [BeR] edited
by Berger and Rubinstein, which is devoted to an overview of what is known,
mathematically and physically, on this subject (see also [JiZ],[A1B]). There
are still many open questions related to the discussions in that book. We refer
to the paper by Frank [Fr1] for preliminary results on antidot lattices.

16.4 Pinning

Here we just present the kind of problems one can find (following a paper of
[CaR]). Similar considerations also appear in [KiZ].

When considering the presence of impurities in the superconducting
sample, one usually introduces the slightly modified energy functional

2
6.0 A) = [ (V4 irA)f + 2 curl A = 57+ a(o) — [0 P,

(16.10)

where a is a positive smooth (to simplify) function on  with values close
to 1. This modified Ginzburg—Landau functional has been studied by many
authors in the context of vortex pinning. The idea is that if a mixed state ¥
presents a vortex, i.e., a point where 1 vanishes, then the vortex has to be
situated in the region where a < 1 (see [Ru, Section 3]). This “pinning” of
the vortices is important in applications, for their implication in the loss of
energy.

In the spirit of the present book, we are interested in a different regime.
Our concern is to consider the case where a is slightly less than 1 in €2, but that
there exists a small region where it reaches the value 1. Then we expect that
the superconductivity appears in that region, and we would like to have some
knowledge on the corresponding critical field. This model can be understood
as a study of the nucleation phenomenon (the onset of superconductivity) for
a superconducting sample of bad quality. As in the case a = 1, we have to
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consider the linearization of the Euler-Lagrange equation for the functional
G. at ¢ =0, and we obtain (with curl F = ()

—(V +iokF)%¢Y = k%a(x)y, inQ,
(16.11)
(V+iokF)Y-v =0, on 09 .
We define h = 1/k0, and write (16.11) as
(WY +iF)2p + AV (e)p =9, inQ,
(16.12)
(hV +iF)y-v=0, on 0},
where we have used the notation
a=(1-XN)-=-AV=1-X14+V). (16.13)

Here V is a smooth function on Q with values in [—1,0], close to 0 in almost
all of 2, with a unique minimum in €, and A > 0 is a real constant that mea-
sures the amplitude of the fluctuations of a below the value 1. At least when
this minimum is attained in {2, one meets a problem similar to the one solved
in [HeS4] where the main effect is due to the electric potential. One can also
play with the size of A by permitting it to be h-dependent. Hence, we get
localization near minima of the electric potential, and surface superconduc-
tivity is destroyed by the pinning. There is an extensive literature on the
subject of pinning, but it is mainly devoted to the analysis of vortices, which
is outside the scope of the present book. We refer to [AfSS, Af2] and references
therein.

16.5 Abrikosov Lattices

Abrikosov’s theory [Ab] about lattices was predictive in the sense that at
the time there was no experiment to motivate the theory. The main point
was that one can consider the Schrodinger operator with constant magnetic
field B associated to a lattice I' in R? and discuss the ground state energy of
the operator restricted to a space L?(R?/T, F), where F is a one-dimensional
fiber bundle over R?/T". A quantization condition of the magnetic field appears
automatically, and the basic question—which should explain some phenomena
in superconductivity—becomes to minimize the quantity

Ir:/ p1(x,y)|* dady,
R2/T

over the various lattices of fixed area, where ¢ is the normalized ground state.

Abrikosov first wrongly predicted that the square lattice was minimizing
before realizing that the hexagonal lattice (in another terminology, the tri-
angular lattice) gives a lower energy. As in (13.5) and (13.43), the quantity
appears in the analysis of a bifurcation (see [Od, Dul, Du2, Ayl, Ay2, BGT)).
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One of the basic tools is to look for solutions (¢, A) of the Ginzburg—
Landau system that are gauge periodic in the sense that given a lattice I' in
R?, for any v € T, there exists ¢~ such that

V(T +7) = expigy (), Az +7v) = A(z) + Vo, (z).

Important references about the minimization of I over the lattices I with
fixed area are [KRA, Monl, Al8] and in a different context [NoV, AfBN].

The Abrikosov lattices play an important role in the understanding of the
vortex structure near He, (k) (see [AlG, AfS]).

16.6 Open Problems

16.6.1 Spectral theory

1. For 1D problems, one open problem (see Section 3.3) is to study the
infimum over the parameter p of the lowest eigenvalue of the generalized
Montgomery operator D2+ (*+1 — )2 . It can be shown that this infimum
is attained in at least one point, but it is expected to be unique and
nondegenerate. This problem was recently settled for k = 1 (the original
Montgomery model) but remains open for k& > 1 (see [Hel0] and references
therein).

2. For 2D problems, some of the most attractive open problems are the
conjectures 4.4.1, 4.4.2 and 4.4.3 concerning the ground state energy for
infinite sectors.

3. It would be interesting to have fine results in the case of the ball in R3.
Part of this is contained in [FoP].

4. The corresponding three-dimensional problems, i.e., the analysis of mag-
netic models in 3D wedges, are widely open (see [Pal] for first results).
A motivation for this analysis could come from the theory of liquid
crystals.

5. The precise quantitative analysis of the tunneling effect is open in the two
main cases: case of corners and case of regular domains in dimension 2
with isolated points of nondegenerate maximal curvature. In particular,
one would like to explain the effect of tunneling on the location of the
eigenfunctions and on the multiplicity. This question is presented in [Pag]
(Problem 2.2.6). It could be useful to reduce the question to a nonlinear
spectral problem for a pseudodifferential operator on the boundary.

6. Another problem is to extend all the fine theory in dimension 3 pro-
posed for constant magnetic fields to magnetic fields of constant norm.
This problem appears naturally in the theory of liquid crystals, where the
magnetic field satisfies the additional condition curl B = —7B. In the
constant magnetic field case, the determination of a third term in the
expansion (9.18) (or of a complete expansion) should be done in the spirit
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of (8.54) (for the 2D case) under the assumption that the function o (x)
introduced in (9.20) admits a unique minimum on ¥. In particular, this
will permit us to estimate the splitting between the first eigenvalue and
the second one. Some analysis of this question has been carried out in
[Pab, Pa7, Pa9] and [HeP2].

7. Even in the case of constant magnetic field there remains quite some work
in three dimensions. For example, one may ask if monotonicity of B +—
A1(B) holds for sufficiently large B (case of general smooth ) without
any additional conditions. A notable special case where this monotonicity
has not yet been established is for {2 equal to a ball; however, that will be
contained in the work [FoP)].

8. In the case with nonconstant magnetic field, other natural questions occur
in dimension 3 around the second term in formula (9.3) in Theorem 9.1.1.
Here there are two natural cases depending on the comparison between
inf,ecq|B(x)| and infyean <(¥(x))[B(x)|. In each case, the most generic
assumption is to assume that the infimum is attained at a unique point and
that the corresponding function |8(x)| or ¢(9(x))|5(x)) has nondegenerate
minima. This problem is considered in [Ra3].

9. Finally, as mentioned in Problem 2.2.9 in [Pa8§], the question of estimating

the ground state energy in the case of weakly smooth magnetic fields [for
example, with 8 € W12(Q) or 3 € L?(Q2)] is open.

16.6.2 Nonlinear theory

In the nonlinear part, some of the most attractive open problems are related
to the analysis described in Chapter 14.

1. Can one extend the validity of Proposition 14.2.13 to all A € [©g,1[?
This is important since it would immediately give an answer to the next
question.

2. Does the identity (14.5) hold for all b €]1,05[?

3. A related question is to describe the solutions to the nonlinear model
problem

—Apyp = A1-|9|*) inR%, v-Viyp=0 ondR%, (16.14)

where we choose F = (—x2,0) .
The problem is to determine if all the bounded solutions to (16.14) have
the form €2 f(x;), where f is a solution to

')+ E+ O f = A1 |f2)f omRY,  f(0)=0. (16.15)

This is [Pa2, Conjecture 2].

4. One may ask if (14.7) can be justified in the uniform || - || topology
and not just in an energy norm. Negative indications are given in [AlH].
However, the question remains unclarified (see also Note 3 to Chapter 14).
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16 On Other Models in Superconductivity and Open Problems

It would be useful to carry through the analysis similar to Chapter 14 in
the three-dimensional case.

The next problem is to improve the understanding of the emergence of
the Abrikosov lattices. This is on the borderline between the scope of the
present text and [SaS3], in which Abrikosov lattices are shown to appear
for magnetic field strengths near (and below) H¢, . More precisely, let
us suppose that o = bk for some b €1 — ¢, 1[ (e small). Is it true that,
as k — oo, the zeroes of a Ginzburg-Landau minimizer ¢ will (approxi-
mately) be organized in a regular lattice. One could even take this problem
to the next level by asking whether the lattice is the hexagonal one.

A very different open problem is to follow the bifurcations from the normal
state when o is decreased below Hc¢, . The work [Sa] is in this direction
but considers a different asymptotic regime.

. In the case of the disc, the analysis of the bifurcation for values of ko

giving double eigenvalues is also open (see [BaPT]).
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Min-Max Principle

A.1 Main Result

We now give a very flexible criterion for the determination of the bottom
of the spectrum and the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need explicit knowledge of the various
eigenspaces.

Theorem A.1.1.
Let A be a self-adjoint semibounded operator of domain D(A) C H . Let us
introduce
An(A) = sup inf (Ag | @) . (A1)
Y12, Pn {¢ € [span (Y1, ..., Yn_1)]*; }
¢ € D(A)and |[|¢]| =1

Then either
(a) An(A) is the nth eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has discrete spectrum in

] =00, An(4)]

or
(b) A\ (A) corresponds to the bottom of the essential spectrum.
In the second case, we have \;j(A) = A\, (A) for all j >n.

Remark A.1.2.

In the case when the operator has compact resolvent, case (b) does not occur
and the supremum in (A.1) is a mazimum. Similarly, the infimum is a mini-
mum. This explains the traditional terminology “min-mazx principle” for this
theorem (though one may argue that “maz-min” would be more correct).

Note that the proof also gives the following proposition.

Proposition A.1.3.
Suppose that there exist a € R and an n-dimensional subspace V-C D(A) such
that
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(Ag | ¢) < allo]?, VoeV, (A.2)

1s satisfied. Then we have the inequality
An(A) <a. (A.3)

Corollary A.1.4.

Under the same assumption as in Proposition A.1.3, if in addition a is below
the bottom of the essential spectrum of A, then A has at least n eigenvalues
(counted with multiplicity).

Remark A.1.5.

In continuation of Example 1.3.2, one can show that, for any ¢ > 0 and
any N , there exists hg > 0 such that for h €]0,ho], Pyyv has at least N
eigenvalues in [inf V,inf V + €] .

A first natural extension of Theorem A.1.1 is obtained by

Theorem A.1.6.
Let A be a self-adjoint, semibounded operator and V(A) its form domain.
Then

1

An(A) = sup inf (Ap | ).  (A4)
Y1t {¢> € [span (i, .. Y1) s }
¢ €V(A)and ol =1

A.2 Applications

e It is very often useful to apply the min-max principle by taking the mini-
mum over a dense set in V(A4).

e The min-max principle permits one to control the continuity of the eigen-
values with respect to parameters. For example, the lowest eigenvalue Aq (€)
of — d‘fQ +2%+ex? increases with respect to €. One can show that € — A1 (€)
is right continuous on [0, +oo[. [The reader may assume (see [Hel]) that
the corresponding eigenfunction is in S(R) for € > 0.]

e The min-max principle permits one to give an upper bound on the bottom

of the spectrum and the comparison between the spectra of two operators.
If A < B in the sense that V(B) C V(A) and?

(Au | u) < (Bu | u), Yu € V(B),

then

An(A) < A\, (B).
We get similar conclusions if the inclusion holds for the operator domains,
ie., D(B) C D(A).

! Associated by completion to the form u + (u | Au) initially defined on D(A).
2 It is enough to verify the inequality on a dense set in V(B).
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Example A.2.1 (Comparison between Dirichlet and Neumann).

Let © be a bounded, regular, connected, open set in R?. Then the nth eigen-
value of the Neumann realization of Pp v = —Aa +V is less than or equal to
the nth eigenvalue of the Dirichlet realization. The proof is immediate if we
observe the inclusion of the form domains.

Example A.2.2 (Monotonicity with respect to the domain).
Let Q; C Q C R? be two bounded, regular, open sets. Then the nth eigen-
value of the Dirichlet realization of the Schrédinger operator in 29 is less than
or equal to the nth eigenvalue of the Dirichlet realization of the Schrodinger
operator in ;. We observe that we can indeed identify H&(Ql) with a sub-
space of H}(€2) by extending with 0 in Q3 \ Q1 .

Note that this monotonicity result is wrong for the Neumann problem.






B

Essential Spectrum and Persson’s Theorem

In this appendix, we will describe an easy method for determining the bottom
of the essential spectrum of a Schrodinger operator by using a criterion that is
quite analogous to the variational characterization of the bottom of the spec-
trum. We recall that the essential spectrum is by definition the complement—
within the spectrum—of the discrete spectrum, which corresponds to the iso-
lated eigenvalues of finite multiplicity. This analysis is inspired by Agmon’s
book [Ag] (see also [HiS, Chapter 14]).

B.1 The Statement

Theorem B.1.1.

Let V' be a real-valued, semibounded potential and A a magnetic potential in
CY(R™). Let H = —Aa + V be the corresponding self-adjoint, semibounded
Schréodinger operator. Then the bottom of the essential spectrum is given by

inf oess () = B(H), (B.1)

where

E(H) = sup | inf {(¢[He)|¢ec CR"\ K)}|, (B.2)

KcRn [l¢ll=1

where the supremum is over all compact subsets K C R™ .

Essentially, this is a corollary of Weyl’s theorem. We will indeed play with
the fact that

Lemma B.1.2.
Oess (H) = Oess (H + W) P

for any regular potential W with compact support.

Let us now give the detailed proof. Extensions exist for the case with
boundary (see [Bonl]).
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B.2 Preliminary Lemmas

It is useful to find weights p such that the form domain of the operator H has
a continuous injection in Li. This idea also has applications in the analysis
of the compactness of the resolvent. We introduce

Definition B.2.1.
For any y € R™ and R > 0, we define Ar(y, H) by

(Ho|¢)
IRl

In other words, using the characterization of the bottom of the spectrum,
ARr(y,H) is the lowest eigenvalue of the Dirichlet realization of —As + V in
the ball D(y, R) .

The function z — Ag(x, H) will play the role of the weight p alluded to
above as shown by the following:

Ay, H) = inf{ se 03°<D<y,R>>} | (B.3)

Lemma B.2.2.
For all € > 0, there exists R. such that

616)= | (An(e.H) - o) do. (B.4)
for all ¢ € C§°(R™) and all R > R, .
Proof of Lemma B.2.2.
Let ¢ be a real-valued function in C§°(R"™) such that
1
(@) =0iffe]> ) and / C@)Pde=1.  (B5)
For R >0 and y € R", let

ra@) =¢("Y) @) = Crola). (B.6)

We immediately get the existence of a constant C' such that, for all x € R™,
ally e R",and all R >0,

C

Valroy@)” < py - (B.7)

We now use the standard localization identity

[ T4l @ + V@i @)0()) do

- [ V)@l de = R [ (H6)@) Gy aP (o) do. (B
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The first term on the left-hand side is estimated from below by

[ (AR @ + V@) (2)0(a) ) da

= (HM(Cra).Cra) = Mg 1) [ [6()ny@)Pds. (B)

R™

Now we observe that when |z —y| < R/2, we have D(y, R/2) C D(z, R) and
therefore

Az;(y,H) > AR(va) (B]'O)
This leads to the following lower bound

/n (I(VA(Cry®) (@) + V (2)[Cry (2)¢(2)[*) da

> [ An(eH)l6()Cry (@) der (B.11)

So the left-hand side of (B.8) is estimated from below as
| (VA CRy 0D +Vi@Cryol?) da= [ 1(VCr,)PIoP do

> / Ar(a, H)|é(x)Cry (2)2de — CR™ 6(2)2 dz.  (B.12)
R D(y,R)

We have consequently obtained

R [ (Ho)(@) Cry(x)’d(x) do

Rn

> /HAR(a?,H)|¢(x)CR,y(x)|2 de —CR™ / 6(z)2 dz.  (B.13)

D(y,R)
We now integrate this inequality with respect to y:
YR [ (Ho)@) o(x) do
>R [ Ap(e H)|é(2) 2de — ém-?/ 6(@)2 dz.  (B.14)
R”L n

Dividing by R™ gives
R [ 0w o) do > [ AnlaRlote)Pde - CR [ (o) do,
(B.15)

The lemma is obtained by taking R. = (C/€)'/2. This finishes the proof of
Lemma B.2.2. ad
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The relationship between the family of Ag(x,H) and X(H) is described
by the following;:

Lemma B.2.3.
With 3(H) from (B.2) and Ar(zx, H) from (B.3), we have

S(H) = lim liminf Ag(z,H). (B.16)
R—+o00 |z|—+00
Proof of Lemma B.2.3.
Step 1.
Let K be a compact subset of R” and R > 0. Then if |z is large enough, the
ball D(z, R) is contained in R™ \ K . Therefore, for such an x, we have

wr {007 16 e Crmn\£), 60} < dnte ).

and consequently,

inf { %z'? |6 CRRM\ K, ¢+ o} < liminf An(e, 2. (BI7)
The left-hand side is independent of R; so we can take the limit R — +oo in
(B.17) and get

L8 o
e { s 10 €O\ K), 04 0) < lim_imint Ana 7).
(B.18)

Here we note that the limit on the right-hand side of (B.18) exists because
the map R + liminf |, _, | Ar(z,H) is a monotonically decreasing function.

Now the right-hand side of (B.18) is independent of K . Taking the infimum
over K, we get

Y(H) < lim liminf Agr(z,H). B.19
(H) <l liminf Ag(z,7) (B.19)

This is the first part of the statement in the lemma.
Step 2.
Let us now show the reverse inequality. Coming back to the definition of
liminf ;| oo Ar(z,H), we get, for any € > 0 and any R, that there exists

Ry such that, for all ¢ € C§°(R™ \ D(0, Ry)), we have
Ar(z, H)|o(2)|? do > <|li|minf Ar(z, H) — e> ol (B.20)
R™ x|—+o00

Therefore, (B.4) and (B.20) imply, for any R > R, , the existence of Ry such
that7 for any ¢ € Ogo(Rn \ D(07 RO)) (¢ 7é O)a

U (). o
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Therefore, coming back to the definition of X(H), we get that, for any € > 0,
there exists R. > 0 such that, for all R > R,

L(H) > <liminf Ap(z, H) — 26) . (B.22)

|z|—+o00

So the only restriction on R is that R > R, . Therefore, we can take the limit
R — +o00:

Y(H) > lim (liminf Ap(z, H) — 26) . (B.23)
R—+o00 \ |z|—+0c0
But we can take the limit € — 0 in (B.23) and get
E(H) > lim (hminf AR((E,H)> . (B.24)
R>Fo0 \ |z —+00

This is the second part of the statement in the lemma. This finishes the proof
of Lemma B.2.3. 0

B.3 Proof of the Inequality inf oess(H) > X(H)

To prove this inequality, we first use Lemma B.2.2 and get, for any ¢ > 0, the
existence of R > 0 such that

Mol0)= [ (Mn(eH)=5) B@P de,  VoeCFRY. (B2

n

Since, by Lemma B.2.3,

liminf Ap(z,H) > X(H),

|z|—+o00

it follows that, for any € > 0, there exists a. such that

€

Anla. 1) 2 00—

for |z| > a..
On the other hand, we have

Ar(z,H) > info(H),

and there consequently exists a constant C' such that
Ag(z,H) > X(H) - C.

We now choose a function W with compact support such that

W(z) > C, Vz € D(0, ac) .
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We consider H + W and obtain, from (B.25), that, for any ¢ € C§°(R"™),

(+W)o10) = [ (Wia) + Anle.H) = 5)lola) de

S(H) — e)/|</)|2dx. (B.26)
This can be interpreted as
info(H+W)>X(H) —e. (B.27)
We now observe that
inf oess(H) = inf ess(H + W) (B.28)
and
inf oess(H+ W) > info(H + W). (B.29)
This leads to
inf oess(H) > X(H) — €, Ve >0,
and finally to
inf oess(H) > 2(H), (B.30)

which corresponds to the first statement in Persson’s theorem.

B.4 Proof of the Inequality inf o (H) < X(H)

Let us show the reverse inequality. Let y < inf 0oss(H) and let £)_ ,) be the
spectral projection that has finite rank (we are below the essential spectrum).
We first observe that there exists a finite orthonormal system of eigenfunctions

such that
Bl oo = Z<- | i) i - (B.31)

From this we get that, for any €, there exists R, such that
L BendP ScloP,  YoeCRED. (B3

We now get

(Ho|¢) = (H(I — E(u)p | (I — E(n)$) + (HE(n)¢ | E(1)¢)
> (I = E(m)o | (I — E(n)¢) — C(E(1)d | E(1)¢) -

But we can write

$(H) > inf { ol f)

>int{ 01817 |0 € ORRM D0.R) | 2 ol - «(C + )l
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Ase— 0, we get
E(H) =

and, letting p tend to gess(H) , we finally obtain
E(H) > Uess(H) . (B33)

This finishes the proof of Persson’s theorem.

B.5 Agmon Estimates and Essential Spectrum

Theorem B.5.1.

Let A be a C* wvector field and V be a C*° semibounded potential and H =
Pa v . If u is an eigenfunction associated to an eigenvalue A of a self-adjoint
Schrodinger operator H on R™ with

A < inf oess(H) (B.34)

then, for all a < 1, there exists C,, such that
/ u(z)|? exp(20/inf oess (H) — Alz|) dz < +o00. (B.35)

This theorem was first given in [Ag, Theorem 4.1 and Corollary 4.2, Chap-
ter 4] in the case without magnetic field and is the origin of the name “Agmon
estimates”.

Remark B.5.2.

The theorem also holds for the exterior of an open set. In the case of the
Schrédinger operator with constant magnetic field B in R™ | we obtain that,
for A < try B, the eigenfunction uy satisfies, for any o < 1,

/|u(rv)|2 exp(20n/try B — \z|) do < +00. (B.36)

Other results on the decay at oo can be found in [Bru] and [HeN2].

Remark B.5.3.

The theorem also holds in the case of a sector S . Here the bottom of the
essential spectrum is ©q . So for A < Oq, the eigenfunction uy attached to an
eigenvalue \ < Oq of (—iV + F)? in a sector satisfies, for any a < 1,

/S|u(m)|2exp(2a\/@o — Az) dz < +o0. (B.37)
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B.6 Essential Spectrum for the Schrodinger Operator
with Magnetic Field

Theorem B.6.1.
Let A be a magnetic potential in C*(R™) such that curl A = 3, and assume
that

S IDIGu(@) < Cpla)”! (B.38)

7,5k, 1<|y]<3

for some slowly varying p(x) such that lim |z — 4o p(z) = +00.
Let H = —AAa be the corresponding self-adjoint, semibounded Schrodinger
operator. Then the essential spectrum satisfies

inf gess (H) > liminf tr™ B(z). (B.39)

|z|—+o00

The same result is also true in the exterior of a bounded domain. We note
that there is a specific difficulty. The lower bound depends only on the
behavior of the magnetic field at co. Condition (B.38) can be forgotten in
the case of dimension 2, if the magnetic field has constant sign.

In the general case, this result is a consequence of [HeM1]. There are
essentially two cases. Either try §(x) tends to +o0o0 and the operator is with
compact resolvent or try B(x) does not tend to +0o. In this case, the essen-
tial spectrum is obtained by considering the union of the spectra of limiting
Schrédinger operators with constant magnetic field obtained by taking all the
possible limits

for which lim,,_, o |Zn| = +00. The result is then easy and follows from the
analysis of the case with constant magnetic field.

Remark B.6.2.
This result is a consequence of Theorem 1.5 in [HeM1] (see also [Hel5, MoR,
Mo]). A semiclassical version is also given in [HeM2, p. 44, formulas (1.14)-

(1.16)] .
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Analytic Perturbation Theory

C.1 Main Goals

In this appendix, we will recall the main definitions and main results con-
cerning type (A) and type (B) self-adjoint holomorphic families of operators.
Although some of the results are quite old (see Rellich [Re]), we mainly refer
to Chapter 7 in [Kat2].

C.2 Main Results

Definition C.2.1.
A family T(€) of unbounded operators on a Hilbert space H and defined for &
in a domain Dy of C is said to be a holomorphic family of type (A) if

1. The domain D(T(&)) is independent of & € Dy . We denote it by D .
2. For every u in D, & — T(§)u is holomorphic for £ € Dy .

The main theorem used in this book is a theorem due to Rellich (see
Theorem 3.9 in [Kat2] or in a less precise form Theorem XII.3 in [ReS, Volume
IV]):

Theorem C.2.2.

Let T(&) be a self-adjoint family of type (A) defined for £ in a neighborhood
V(Io) of an interval Iy of the real axis. Furthermore, let T'(§) have compact
resolvent. Then all eigenvalues of T'(§) can be represented by functions that are
holomorphic in some neighborhood of Iy . More precisely, there are a sequence
of scalar-valued functions p,(§) and a sequence of vector-valued functions
on(§), all holomorphic in an n-dependent complex neighborhood V,(Io) of
Iy, such that for & € Iy, the un(§) represent all the repeated eigenvalues
of T(§) and the ¢, (&) form a complete orthonormal family of the associated
eigenfunctions of T'(§) .
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The basic idea in the proof is to reduce the problem to a similar problem
for a family of finite-dimensional self-adjoint matrices £ — M (&) . This can be
done by using a spectral projector.

There is a weaker notion introduced by Kato corresponding to families
of type (B). The starting point is then a family of sesquilinear forms that
satisfies the following property.

Definition C.2.3.

We will say that a family q(€) of unbounded sesquilinear forms on H x H
(where H is an Hilbert space) that is defined for & in a domain Do of C is a
holomorphic family of type (a) if

1. Fach q(&) is sectorial and the form domain D(q(§)) is independent of
£ €Dy and dense in H. We denote it by Dgy .
2. For every u,v € Dgq, & — q(§)(u,v) is holomorphic for § € Dy .

This leads to the following definition.

Definition C.2.4.

A family T(€) of unbounded operators on a Hilbert space H and defined for &
in a domain Do of C is said to be a holomorphic family of type (B) if T'(§) is
the mazimal operator associated with the sesquilinear form q(§), where q(§)
is a holomorphic family of type (a).

It is clear that a family of type (A) is of type (B), but this new notion is
weaker as will be shown below.

As mentioned in [Katl], Theorem C.2.2 is also valid for the self-adjoint
holomorphic families of type (B).

C.3 Basic Examples

e The family ¢ — h™¢ introduced in (3.9) is a self-adjoint family of type (A)
in Dy = C. We have indeed in this case H = L?(RT) and a fixed domain

D(H™*) = {u € B*(RY), «/(0) = 0} .

e The family R 3 B — QJ, v introduced in (1.11) can be seen, as Q is
bounded as the restriction to the real of a type (a) family whose form
domain is H(Q).

So, in general, the associated family of operators PgA,V,Q is a type (B)
self-adjoint holomorphic family. The magnetic Neumann condition

v-(—iV+ BA)u=0 on 09

is in general B-dependent. So this family, whose domain is given in (1.14),
is not a type (A) family.
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e But we can get, using Proposition D.1.1, a type (A) family after a gauge
transform.
We get indeed a type (A) family under the condition that

A -v=0o0n9dN.






D
About the Curl-Div System

We will review in this appendix the main results needed about the curl-div
system in our analysis of the Ginzburg-Landau functional. Most of the mate-
rial was established in the context of problems in mechanics (see Temam [Te],
Duvaut-Lions [DuL] and Girault-Raviart [GirR]).

D.1 Discussion About Reduced Spaces and Gauge
Invariance

We first show the proposition

Proposition D.1.1.
Given A € HY(Q) on a regular, connected, open set Q, one can always find a
gauge transform, i.e., a function p € H?(Q), such that A := A — V¢ satisfies

divA =0 in Q, A-v=0o0n00. (D.1)

Proof.
The proof is standard and very simple. Given a general A, we look for ¢ €
H?(Q) such that

div(A-Vp) =0inQ,  (A-Vy):v=00n02.  (D2)

With the definitions f := divA € L%(Q), g := A - v|sg € H/2(0RQ), this
reads
Ap = fin Q, v-Vy=gon o). (D.3)

This is an inhomogeneous Neumann problem, whose solution is unique if we
add the condition that

/szx:o. (D.4)
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The proof can be done in two steps. We first reduce to the homogeneous case
by choosing 1 € H?(Q) such that

8,0 =A-vondQ. (D.5)
Then xy = ¢ + 1, should be a solution of
Ay =divA + Ay, d,x = 0 on Q.

This last equation can be solved if the right-hand side is orthogonal to con-
stants, that is, if

/Q(divK+A¢) de =0.

But this is an immediate consequence of (D.5) and the Green—Riemann for-
mula. We then find the unique solution x by adding the condition

/Qxdx:/ﬂzbdm.

Remark D.1.2.

We note that in this proof we do not need to assume that ) is simply connected.
The case when §2 is not connected can also be treated by considering each
connected component.

D.2 About the Curl-Div System in Two Dimensions

D.2.1 H'-regularity
The basic Hilbert space is Hj; (€2), which is defined by

Hi () = {V=(W,12) e H(Q)?| divV=0inQ,V-v=0 on 89(}. |
D.6

We will need the following standard result (see, for example, [Te, Appen-
dix 1]) on the curl-div system.

Proposition D.2.1.
If Q is bounded, simply connected, and has regular boundary, then curl defines
an isomorphism from HZ (Q) onto L?().

In particular, there exists a constant C > 0 such that for all a € H}, (),
we have

lall g1 (o) < CJ curlallz. (D.7)
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Actually, we also need the corresponding version for the larger space
HY, (), which is defined by

H(Q) ={A € L*(R?), divA=0 and A-v=0 ond0Q}. (D.8)

Proposition D.2.2.
If Q is a bounded, regular, simply connected open set in R?, then the map
A — curl A defines an isomorphism from HY, () onto H1(S2).

The reader could think that there is a problem in the above definition
which involves a trace on the boundary. We can use here the following result
(see, for example, [GirR, Theorem 2.6]).

Lemma D.2.3.
The map defined on C>(Q,R?) by A +— A -v|sq admits a unique continuous
extension from {A € L2(Q,R?), div A € L2(Q)} into H=/2(0Q).

Remark D.2.4.
When div A =0, one can also write

A-v=0o0n0Q, (D.9)
in the form
(A, Vo) =0, Vo € C(Q). (D.10)

Proof of Proposition D.2.2.

For the surjectivity, one can use the property that if 3 € H~1(Q) [resp. in

L2(€)], there exists a unique v € HJ () [resp. in H%(Q) N H}(Q)] solving

A = . Then A = (—9y,¢,0,,%) gives a solution in HS, () [resp. in

H}. (9)]. For the injectivity, we use the property that € is simply connected.
O

D.2.2 LP-regularity for the curl-div system
We denote, for k € N, by WiP(Q) the space
WEPQ) ={A e WrFP(Q), divA=0and A-v=00n8Q}.  (D.11)

Then we have the following LP-regularity for the curl-div system.

Proposition D.2.5.
Let 1 <p<oo.If A€ W,P(Q) satisfies curl A € WFP(Q) , for some k >0,
then A € WiP(Q).

Proof.
If A belongs to Wdli’f(Q) and curl A € LP(Q2), then there exists 1) € W2P(Q)
such that

A = (=01, 0,,0), —Ay) =curl A | with ¥ = 0 on 09Q2.
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This is simply the Dirichlet L? problem for the Laplacian (see Section D.1).
The result we need for proving the proposition is then that if —A% is in addi-
tion in W*P(Q), then ¢y € W**+2P(Q) . This is simply an LP-regularity result
for the Dirichlet problem for the Laplacian, which is described in Section E.4.
Coming back to the definition of ¢, we get A € WkTLr(Q). ]

Corollary D.2.6.
IfA e Wéi’f(Q) for some p € [1,4+00[ and satisfies curl A € C*(Q), then

A € C=(Q;R?).

D.2.3 The curl-div system in the corner case

We discuss here the necessary justifications in the case related to Chapter 15.
The domain € is a polygon and the Ginzburg-Landau functional is defined
by (15.14).

As usual, we assume ¢ € WH2(Q), but for A the correct choice is that
A-Fe W01,’02 (R?), where WOI”OQ (R?) is the weighted Sobolev space:

u

Wog () € {ue Wi2R?) : e L*(R?),

" V14 22 log(2 + 22)
Vue L2(R?)}. (D.12)

Notice that the constant functions belong to Wol”oz(Rz) (but higher-degree

polynomials do not). Clearly, W&,’()Q(RQ) equipped with the natural inner
product is a Hilbert space.
This space is sufficiently large to lift all magnetic fields:

Lemma D.2.7.
For all u € L*(R?), there exists A € Wy 5 (R2,R?) with

curl A = u, divA =0.

Furthermore, this uniquely determines A up to a constant.

Lemma D.2.8.
We have the following elementary identity for all A € C5°(R? R?) :

|DA|% = / |div A|* + |curl A* dx . (D.13)
R2
Furthermore, there exists C > 0 such that for all A € Wolﬁ (R%,R?),
1. .
o alélﬂé [|A — a||W01,,02(R2’R2) =||DA|3 = /R? |div A2 + |curl A?dz. (D.14)

Clearly, the inf in (D.14) is actually a minimum.
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Notice that—since the weight [v/1 + 22log(2 + 22)]~! is bounded away
from zero on any bounded set—for all bounded w C R?, there exists C' > 0
such that

[ullwiew) < C||U||W01;O2(R2) : (D.15)

Combined with (D.14), (D.15) will give that (after gauge transformations) an
energy-minimizing sequence will have A components converging strongly in
LP(Q2). This is what is needed for the proof of the existence of a minimizer.
For details, see references in the notes to Chapter 15.

D.3 About the Curl-Div System in Three Dimensions

When we study the curl-div system on the entire space R?, things are
rather simple. Notice that in 3D we have the following homogeneous Sobolev
inequality:

HUHLG(RS) < SgHV”u”Lz(]RB) , (D.16)

for some constant S3 > 0 and all u € C§°(R?). Also, as is easily seen by
taking the Fourier transform, the norms

||Va||L2(R3) and || Curla||L2(R3) —+ || le aHLQ(R:})

are equivalent. In particular, we get the existence of a constant C' > 0 such
that

||a||La(R3) S CH CuI‘laHL2(R3) y (D].?)

for all a with compact support and satisfying diva=0.

In the next theorem, we will use the homogeneous Sobolev space H (R3).
This is defined as the closure of of C§°(R?) under the norm f — ||V f||2. The
norm on H(R?) is || f| sy = [IV.f]2.

Theorem D.3.1 (Ellipticity of the curl-div system).
There exists a constant C > 0 such that for all .(magnetic fields) b €
L*(R3,R3) with divb = 0, there exists a unique a € H'(R3,R®) such that

curla=D>b, diva=0.
This solution satisfies the estimate
lall g < Clibl|L . (D.18)

Proof.
An argument for this standard result is given in [GioP]. It is based on the
elementary fact that for f € C5°(R?;R?), one has
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£l 2 = / |div f|* + | curl f|? da . (D.19)
R3
With I'(z) = 1/(4w|x|) being the fundamental solution of the Laplacian, the

desired solution is (formally) a = — curl(I' * b) . a

Proposition D.3.2.

Let 2 < p < 6 and let Q C R3 have bounded measure. Then there exists a
constant Cp, > 0 such that for all b € L*(R3,R?) with divb = 0, the solution
a given in Theorem D.3.1 satisfies the estimate

lallzr ) < CpllbllL2(ws) - (D.20)

Proof.
By (D.18) and the standard three-dimensional Sobolev estimate,

IFllzssy < Csobllfllzn, V€ HY (R, (D.21)

the desired estimate holds for p = 6. Since 2 has finite measure, Holder’s
inequality implies that ||a||zr) < C|la||Lsq), for p < 6. O



E

Regularity Theorems and Precise Estimates in
Elliptic PDE

E.1 Introduction

Here we recall some standard regularity theorems for elliptic partial differen-
tial equations and refer for proofs to [GiT]. Some aspects of the LP theory
are not in the book of Gilbarg and Trudinger and the extension to systems in
full generality can be found in Agmon-Douglis-Nirenberg [AgDN1, AgDNZ2].
We emphasize that our systems are usually very particular and that a direct
approach following the scalar case is always possible. The proofs of these regu-
larity theorems involve estimates that play an important role in the attack
of the nonlinear problems. In the problems we meet, the lower-order terms
of our nonlinear equations or systems depend on the solution itself. A direct
use of the regularity theorems for linear PDE is not possible and one needs
to go through bootstrap arguments.

E.2 Bootstrap Arguments for Nonlinear Problems

E.2.1 The case of dimension 2
Typically, the first operator in the Ginzburg-Landau system is the operator
w = _AHO'Aw - K‘2¢(1 - |¢|2) ) (El)

which we would like to consider as the operator ¢ — L1y with

2
L=—A+) b;0s; +c, (E.2)
j=1
where
bj = —2iko A; c=—2iko div A + K22 |A]* — K21 — [9*). (E.3)

So the regularity of the coefficients will depend on the regularity of ¢» and A
starting with the initial regularity

291
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o Y eL?Q), (-V+iA) e L*(Q),
e AcHYQ),divA=0,and A-v|pgo=0.

Actually, it could be better to start with
—AY = 2ik0Aj0,,0 — K2 APY + K2 (1 — [9*), (E.4)
with Neumann condition (here we use our choice of gauge for A)

Bl =0. (E.5)

Let us look at the right-hand side. In dimension 2, using also the fact that
Y € L®(Q) (see Proposition 10.3.1), we observe, using the initial regularity
and the Sobolev embedding theorem, that the right-hand side in (E.4) is in L?
for any p € [1,+o00[, and that 1 € W2(Q) . The regularity of the Neumann
problem in LP, which will be recalled in Theorem E.4.7, gives ¢ € W2, for
any p €]1,2]; hence, by Sobolev’s embedding theorem, 1 € C%* with a < 1
and in WP(Q) for any p €]1, +oo[. Using again this last information, we get
b € W2P for any p € [1, +o0].

There is a need to improve the regularity on A . We look at the second
line of (10.8a):

curl(curl A — ) = —;J?R (wpmAw) , (E.6)

which implies
curl A — B € H'(Q). (E.7)

Using 5 € C*(Q), div A = 0, and the boundary condition, we obtain, by the
regularity of the curl-div system [Proposition D.2.5 (p = 2)], that A € H?(Q)
and hence A € C%® for any o < 1 and A € WP for any p € [1, +o0].

The recursion is then easy, where we can alternatively play with (E.4)
for ¢, (E.6) for curl A | and the curl-div equation for A and the associated
regularity theorems. Hence, we have proved

Theorem E.2.1.
Ifd=2,if Q C R? has a C* and bounded boundary, and if (1, A) belongs to
HY(Q) x HY (Q) and is a solution of (10.8), then ¢ and A are in C>(1).

E.2.2 The case of three dimensions

The 3D case is more delicate. We now look at the three-dimensional case
but consider for simplicity the Ginzburg-Landau functional [defined in (10.1)]
with € = Q. The main difference with two dimensions is that—by the Sobolev
embedding theorem—we have worse regularity. Our solution (¢, A) satisfies
a variant of (10.14) this time. We will limit ourselves to the regularity in (the
interior of) Q.
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We first obtain that 1 € W12(Q) should satisfy
3
—AY =2iko Y A;0,10 — 2P| APY + K7 (1= [P}, (E.8)
j=1
and, using the fact that A € L(Q), we get —Ay € L3/2(Q), and by elliptic
regularity ¢ € W23/2(Q); hence, by the Sobolev embedding theorem, v €

Wh3(Q). So there exists a > 0 such that 1 € C%*(Q).
We take the gauge for which

divA =0, A-y|89:0.

The vector potential A is in H'(Q) and satisfies in

curl(curl A) = —;%(w}?mAiﬁ)a (curl A — 3) x V|aQ =0.

Using that A is divergence-free, we obtain the system

1
~AA-F)=— R peoar),

curleu|aQ:O, A-V|69:0.

(E.9)

This is an elliptic system in the sense of Agmon—Douglis—Nirenberg. In order
to verify this property at the boundary, we should freeze the problem at one
point of the boundary and see if the obtained system in the half-space is
well-posed.

Choosing a point xy on the boundary and using the invariance by rotation
of the system, we can assume that v(zg) = (0,0, 1) and we obtain the following
problem in ]R:j_:

—AA =G,

- ~ ~ (E.10)
As;=0forxz3 =0, 0p,A1=0,,A2=0forz3=0.

So the frozen half-space problem is completely decoupled in three independent
problems for each component of A | the problem being the standard Dirichlet
or Neumann problem.

This system has consequently the same regularity properties as the
Laplacian. In particular, we first get that (A —F) € H2(2), so A € C1*(Q)
for any a > 0.

Coming back to (E.8), we can now show that ¢ € H%(Q) and ¢ € C1(Q)
for any a €10, 1[ and the recursion is then easy.

Remark E.2.2.
For the functional considered in Section 10.1.8, (10.14b) permits us to get
A € H_(R®) and by recursion we get ¢ € C®(), A € C>®(Q), and

e C=(R\Q), A e C®R3\ Q).
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E.3 Schauder Holder Estimates

E.3.1 Interior estimates

Theorem E.3.1.
Let Q0 be an open set in R™ and L be the differential operator

L:=— Zaijamié)zj + Zblawl +c, (E].].)
6j i

where a;j , b;, and ¢ are in C®*(Q) and

‘ Zaz‘j(x)&ﬁj’ > AlE?,  VreQEeR", (E.12)
(]

for some A > 0. Then, for any Q' CC ), there exists a constant C depending
onlyt on A, d(SY,9°), and the norms in C%%(Q) of the coefficients, such that
for any u € C*%(Q), we have

lullgagry < € (lullgagy + 1Ll con)) - (E.13)
We also need the following variant (when beginning a bootstrap argument).
Notice the slight change in the definition of the operator:

Theorem E.3.2.
Let © be an open set in R™ and L be the differential operator

Li=— 00,0i0p, + Y b0, +c, (E.14)
2,7 7

where a;; is in C%*(Q), b; and ¢ are in L>=(Q) and satisfying (E.12). Then,
for any Q' CC Q, there exists a constant C depending only on A, d(Y,Q°),
and the corresponding norms of the coefficients in ), such that for any u €

C?%%(Q), we have

s aary < € (lulloogay + 10l ooy ) - (E.15)

Remark E.3.3.
Note that it is quite important in the applications to have |[ul| ooy and not
only ||ul| go.a(q) on the right-hand side of (E.15).

The last statement is a regularity statement.

L Of course, it also depends on 7, the diameter of ©, and «, but they are supposed
to be fixed.
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Theorem E.3.4.

Let Q2 be an open set in R™ and L be the differential operator (E.11), where
aij, bi,c are in C%*(Q), and satisfying (E.12). Then if u € C*(Q) satisfies
Lu= f and if f € C%*(Q), then u € C**(Q) . Moreover, if above a;;, b; and
c are in C*(Q) for some k >0, then if f € C**(Q), u € CF*2(Q).

Corollary E.3.5.
Let u be a C*(Q) solution of the equation Lu = f in an open set 1, where f
and the coefficients of the elliptic operator L are in C*°(Q) . Thenu € C*(Q).

E.3.2 Boundary estimates

We now present the analogous results corresponding to the case with bound-
ary. We meet in our problems the Dirichlet case and the Neumann case.

Dirichlet problem

Theorem E.3.6 (A priori estimates).

Let Q be an open set in R™ with C*% boundary and let L be the differential
operator (E.11), where a;;, b;, and ¢ are in C®*(Q) and satisfying (E.12).
Then there exists a constant C depending only on A , and on the corresponding
norms of the coefficients in Q, such that, for any u € C*%(Q), we have

lullray < C (lullgoaay + Inotllcraqm + | Eullona ) (B16)

where u — ~you is the trace operator on 9S), and

lullgangy < € (Iullcono + Iotllcne@a + 1 Lullgnag) - (B17)

Theorem E.3.7 (Holder regularity).

Let Q) be an open set in R™ with C*® boundary, and L be the differential
operator (E.11), where a;; , b;, ¢ are in C%*(Q) , and satisfying (E.12). Then
if u € C?(Q) satisfies Lu = f in Q and if f € C(Q) and you € C**(0Q),
then u € C*%(Q) . Moreover, if above OQ has regularity C***% and a;j, b; and
c are in CH*(Q), then if f € CH*(Q) and you € CF+22(0), u € CF+2(Q).

Corollary E.3.8 (C*-regularity).

Let u be a C%(Q) solution of the equation Lu = f in an open set 0 with
smooth (C*) boundary, where f and the coefficients of the elliptic operator L
are in C*(Q) . Then if you € C(00N), u e C>®(Q).

Remark E.3.9.
There is also a similar result in the analytic category [LiM].
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Neumann problem

Theorem E.3.10 (A priori estimate).

Let Q be an open set in R™ with C*% boundary and let L be the differential
operator (E.11), where a;;, b;, and ¢ are in C%*(Q) and satisfying (E.12).
Then there exists a constant C depending only on A and the corresponding
norms of the coefficients in Q0 such that for any u € C**(Q), we have

||U||C2~a(9) <C (HU'HCO(Q) + [Imullcreoo) + ||L“Hcoya(g)) ) (E.18)

where u +— ~yyu is the trace operator of the normal derivative of u on 0S).

Theorem E.3.11 (Holder regularity).

Let Q0 be an open set in R™ with C*® boundary and L be the differential
operator (E.11), where a;;, b;, ¢ are in C%*(2) , and satisfying (E.12). Then
if u € C?(Q) satisfies Lu = f in Q and if f € C(Q) and y1u € CH*(9Q),
then u € C%%(Q). Moreover, if in addition above  has C*+2% boundary,
if aij, bi, ¢ are in C*(Q), then if f € C*1%(Q) and yu € CFH1(99Q),
u € Ck+2.2(Q).

Corollary E.3.12 (C*-regularity).
Let u be a C%(Q) solution of the equation Lu = f in an open set 0 with

smooth boundary, where f and the coefficients of the elliptic operator L are
in C(Q). Then if iu € C°(0Q), u € C*().

This will mainly be applied when u satisfies the Neumann condition
y1u = 0. The theorem with the magnetic Neumann condition is also true
under the condition that the magnetic potential satisfies the regularity con-
dition A - v € C1® on the boundary. In any case, when establishing these
theorems, one can usually work in a gauge where A - v =0 on 9f).

The proof of all these theorems can either be direct or involve the reflection
method.

E.4 Schauder LP-Estimates

We refer to [GeG] for a good presentation of the LP theory for boundary elliptic
problems. However, the presentation is for operators with smooth coefficients.
Some of the results below can also be found in [GiT], but—in particular for
the boundary estimates—we refer to the original paper [AgDN2].

E.4.1 Interior estimates

Theorem E.4.1 (A priori estimates).
Let Q be an open set in R™ and L be the differential operator (E.11), where
a;j is in CO1(Q) , b; and ¢ are in L°°(Q) and satisfying (E.12). Then for any
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Q' CC Q, there exists a constant C depending only on A, d(Q',Q°), and the
corresponding norms of the coefficients in 2 such that for any u € W*P(Q),
we have

[ullwzp@y < C (lullr@) + [ILull o)) - (E.19)

Theorem E.4.2 (Local regularity).

Let Q2 be an open set in R™ and L be the differential operator (E.11), where
ai; is in C%1(Q), b; and ¢ are in L{S.(Q) and satisfying (E.12). Then if
u € W,oP(Q) satisfies Lu € LY, (Q) in the weak sense, then u € WiP(Q).
Moreover, if Q has C*2% boundary, ai; 15 in CkL(Q), b, and c are in

Cke(Q), then Lu € Win(Q) implies u € Wit *P(€) .

loc
Corollary E.4.3.
If Q has C* boundary, and the coefficients a;j , b; , and c are in C*(Q) , then

ue WhP(Q), Lu € C®(Q) implies u € C>(1).

loc

E.4.2 Boundary estimates
Dirichlet problem

Theorem E.4.4 (A priori estimate).
Let Q be an open set in R™ with C** boundary (for some a > 0) and let L
be the differential operator (E.11), where a;; is in C%1(Q) and b; and c are
in C°(Q) and satisfying (E.12).

Then there exists a constant C' depending only on A and the corresponding
norms of the coefficients in Q such that for any u € W2P(Q), we have

lullw2r) < C (”uHLP(Q) + \h’ouHWz_ + ”LUHLP(Q)> . (E.20)

1
»(09)
Theorem E.4.5 (Regularity).
Let Q be an open set in R™ with C** boundary (for some a > 0) and let L be
the differential operator (E.11), where a;j is in C%' () and b; and ¢ are in
CY(Q) and satisfying (E.12). Then if u € WYP(Q) satisfies Lu € LP(Q) and
You € W2~ »P | then u € W2r(Q).

More generally, if, for some k > 0, Q has C*2% boundary, a;j 18 in
C*Y(Q), b; and c are in C*(Q), Lu € WEP(Q), u € WLP(Q) and you €
WHH2=02(90) | then u € WF2P(Q) .

Neumann problem

Theorem E.4.6 (A priori estimates).

Let Q be an open set in R™ with C*>% boundary (for some a > 0) and let L
be the differential operator (E.11), where a;; is in C%1(Q) and b; and c are
in C°(Q) and satisfying (E.12).
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Then there exists a constant C' depending only on A and the corresponding
norms of the coefficients in Q such that for any u € W2P(Q2), we have

lullw2r) < C <||u||LP(Q) + H’Vlunl_ + ”LUHLP(Q)) . (E21)

1
> (50)
Theorem E.4.7 (Regularity).
Let Q be an open set in R™ with C** boundary (for some o > 0) and let L be
the differential operator (E.11), where a;j is in C%1(Y) and b; and ¢ are in
C%(Q) and satisfying (E.12). Then, if u € W1P(Q) satisfies Lu € LP(Q) and
yiu =0, then u € W*P(Q) .

If in addition, for some k >0, Q has C**2:% boundary, a;; is in C*1(),
b; and c are in C*(Q), Lu € WFP(Q), and vyu =0, then u € WFt2P(Q) .

E.5 Poincaré Inequality

We recall the following Poincaré-type inequality [Bre, Corollaire IX.19].
We stress that no regularity of 9 is needed.

Theorem E.5.1.
Let Q C R™ be open and bounded. Then, for all p € [1,00[, there exists a
constant C = C(p, Q) such that

llullwrro) < ClVul Ly @),

for all u € WP (Q).
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Boundary Coordinates

F.1 The Two-Dimensional Case

Let © be a smooth, simply connected' domain in R?. Let
v :R/(|092|Z) — 00

be a parametrization of the boundary with |y'(s)| = 1 for all s. Let v(s) be
the unit vector, normal to the boundary, pointing inward at the point ~(s).
We choose the orientation of the parametrization v to be counterclockwise, so

det (v'(s),v(s)) = 1.

The curvature k(s) of 92 at the point y(s) is now given in this parametrization
by

The map ® defined by
@ 1 R/(100/Z)x]0, to— .
(s,t) — v(s) + tv(s) (F.1)
is clearly a diffeomorphism, when ty is sufficiently small, with image
O (R/(|09]Z)x]0,t[) = {z € Q| dist(x, Q) < to} =: Q.

Furthermore, with the function ¢(x) defined in (4), t(®(s,t)) =t¢.
The inverse ®~! defines a system of coordinates for a tubular neighborhood
of 0N in Q that we can use locally or semiglobally.

! In the non-simply connected case, the construction below will give coordinates in
a neighborhood of any connected component of the boundary.

299
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If A is a vector field on €y, with = curl A, we define the associated
fields in (s, t)-coordinates by
Ails,1) = (1 - th()A(@(5,1) - 7/(s), As(s,1) = A(®@(s,0)) - v(s), (F.2)

B(s,t) = B(2(s,1)) - (F.3)
Then ~ -~ R
0, As — 91 Ay = (1 — th(s))3 . (F.4)
Furthermore, for all u € H(Q,), we have, with v = u o @,

/Q |(-N+A)u|2dx=/{(1—tk(s))—Q‘(—ias+A1)u|2

to

+ (=0, + Az)v|2}(1 — tk(s)) dsdt,

/ |u(x)|2dx:/|v(s,t)|2(1—tk(s)) dsdt. (F.5)
Q

to
The next lemma is quite useful for the fine analysis in a tubular neighborhood
of the boundary and gives a kind of normal form.

Lemma F.1.1.

Suppose  is a bounded, simply connected domain with smooth boundary and
let toy be the constant from (F.1). Let 6 be a given function on 4, such that
the corresponding 6 is t-independent. Then there exists a constant C' > 0 such
that, if A is a magnetic vector potential in Q with

curlA =60 on 09, (F.6)

and with A defined as in (F.2), then there exists a gauge function ¢(s,t) on
R/(|092Z)x]0, to[ such that A = A — V1 satisfies

Als,t) = (ﬁ;gg) - (70 - 9(570)”;22(5) +t2b(8»t)> . ()

1
= 1A F.
Yo 09 /chr dz, (F.8)

and b satisfies the estimate
||b||L°°(R/(|BQ|Z)><]O,t20 < C||V curl A — QHCU(QtU) . (F.9)

Furthermore, if [so, s1] is a subset of R/(|OQZ) with s1 — sg < |09, then we
may choose ¢ on |sg, $1[X]0, to| such that

A(s,t) = (1‘_11(3,1?)) _ (—é(s,O)tJr t2§(s) +t2b(s,t)> 7 (F.10)

with b still satisfying the estimate (F.9).
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Proof.
Notice first that

|0Q2] 3 |69 _
/ Aq(s,0) ds:/ A~7'(5)d5:/ curl A dx .
0 0 Q

This determines 7y which is a global quantity associated with curl A .
Let us write

f=culA -0, f(s,t) = f(D(s,1)), f’:{.

Then || f'||z~ < CHVf”CO(QtO) and, using (F.4), we obtain

s Ay — 0, Ay = (1- tk(s))(é(s,t) + tf') =(1- tk:(s))(é(s, 0)+tf').
Define

(s, t) = /Ot Ag(s,t') dt’ + (/OS Ay (s',0)ds’ — s'yo) . (F.11)

Then ¢ is a welldefined continuous function on R/(|0Q|Z)x]0,%o[. We pose
A=A—Vy and find

s, 1) = (ﬁ;gjg) - (Al((f’t)) ,

A (s,1) = —(05 A5 — 0 Ay) = —(1 — tk(s))(A(s,0) + tf'),
/_11(57 0) =70 -

with

Therefore,

Ay(s,8) = 70 — B(s, 0)t + ’;(S) —/0 (1= t'k(s)f (5,8 dt’,

and we get (F.7) by applying 'Hopital’s rule to the integral.

When we only consider a (simply connected) part ]sg, s1[x]0, to[ of the ring
R/(|092Z)%]0,t0[, we can omit the term svo in (F.11) since we do not need
 to be periodic. ]

F.2 Adapted Coordinates in the Three-Dimensional Case

F.2.1 Tubular coordinates

Let 09 5  — ¢(x) = (y1,y2) be local coordinates on the boundary and G
the metric induced by the 3D Euclidean metric gy on 052 in these coordinates.
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Then for ¢y > 0 small enough (and considering an open set w on which ¢!
is welldefined), we can consider the map

wx]0,t0[> (Y1, y2,y3) — ®(y) = & " (y1,92) + V(¢ (1. y2))ys,  (F.12)

where v(z) is the interior normal unit vector at the point x € 9§. This
defines a diffeomorphism of wx]0,to[ onto V in Qy, and its inverse defines
local coordinates on V, V 3 x +— y(x) such that

ys(x) = dist(x, 09) . (F.13)

Then we get by direct computation the form of the standard flat metric
go in these new coordinates:

go = Z 9ij dy; @ dy;

1<ij<3
Ov | Oz
=dys@dys + G +2ys Y <8- 64>@n®dw
1<ig<e OV Y
ov | Ov
2 dy; ® dy; . F.14

1<ij<2

Remark F.2.1.

We frequently denote the map = — ys(x) = dist(x,0Q) by x — t(x). Let us
also observe that there is some freedom in the choice of the boundary coor-
dinates. We will explain in the next subsection how to construct coordinates
adapted to a given curve in the boundary.

F.2.2 Local coordinates near a curve inside the boundary

Let ¥ be a curve in 02 parametrized by arc length on some interval I (I =
[—a,+al]): ¥ = {v(s); s € I}. So we have |y/(s)] = 1. Then, there exists a
neighborhood W, of 2o = 7(0) in 99, such that, for any z € W,, N3, there
exists a unique geodesic A, through z and normal to ¥ . The neighborhood
Wa, of o can also be chosen such that

Vo € Wy, I z=2z2(x) € ENWy, s.t. doalx,z) =doa(z,X), (F.15)

where dyq( -, . ) denotes the distance on 9.
Then, there exist an open set S of R? and a regular diffeomorphism

¢ Wy, — S, ¢(x) = (r,s) with 7 =dpqa(z,X) = doa(z,v(s)). (F.16)

We observe that
2(0,5) = (s).
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We choose a positive orientation (and this determines the choice of the sign
of ) by imposing

0 0
ai (0, 5) A aﬁ 0,5) = v(v(s)), (F.17)
where v(z) is the interior normal of 9Q at the point z € 9Q. Then (r, s) are
local coordinates in W,,, and observing that, for any fixed s, r — x(r,s) is a

parametrization by arc lengths of the geodesic A, (), we have

0

ai (r, 8)’ =1, (F.18)
and 9 5

x x
=0. F.1
(20| 20.0) -0 w10

More precisely we have the following Lemma.
Lemma F.2.2.

In the above local coordinates, the metric G on 02 is diagonal:
G=dredr+a(r,s)ds®ds. (F.20)

On the curve %, we have

Oa da

a(0,s) =1, o (0,8) = —2r4(s), and 95 (0,s) =0, (F.21)

where Kq(s) denotes the geodesic curvature of the curve ¥ at y(s) .

Remark F.2.3.
In the coordinates (r, s) the second fundamental form

K=K dr®dr + Kiodr®ds + Koy ds®@dr + Koz ds®ds,

satisfies

Koi(r,s) = Kya(r, s) .

The function K11(r, s) is the normal curvature of the geodesic Ay(s) at z(r, s)
and the function Ka2(0,s) = kn((s)) is the normal curvature of the curve ¥

at (0,s) = ~(s) .
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F.2.3 Local coordinates near a curve on the boundary

We come back to previous computations and relate them to the curvatures.
Let ¢(x) = (y1,y2) be local coordinates of the boundary as defined in the
previous subsection. We have observed in (F.14) that

90 =dys@dys+ > [Gij(yr,y2) —2usKij(y1,y2) + 95 Lij)dy; @ dy; , (F.22)
1<4,j<2

where

G= Y Gidy @dy;,

1<4,5<2
K = Z K dy; ® dy; ,
1<4,j<2
ov | Ov
L= Z Lij dy; @ dy; = Z <ayi ayj>dyi®dyj~
1<4,5<2 1<4,5<2

The forms G, K, and L are respectively called the first, second, and third
fundamental forms on 0€2. If we take local coordinates (y1,y2) = (r,s) on the
boundary given by Lemma F.2.2, the sesquilinear form becomes

dhw) = [ 1ol [ =0y, + A (.23)

z0

+ Z 9" (—ihdy,u + Agu) - (—ihdy,u + Aju) | dyidyadys ,
1<i,7<2

for u supported in V,, , and the associated differential operator is

‘ = ho , =
PR = (=ihdy, + A3)* + |91 (9yslg ) (~ihdy, + A3)

+lglm2 Y (—ihdy, + Aj)(|gl2 g7 (—ihd,, + Ay)) . (F.24)

1<i,j<2

If we now consider the coordinates (y1,y2) = (r,s) and complete by ¢t = y3
introduced in Remark F.2.1, then

lgl = a(r,s) = 2t[a(r, s) K11 (r, s) + Kaa(r, s)] + t2e3(r, s, 1), (F.25)
and, for 1 <1i,57 <2,
i 1 0 Kll Oé_lKlg 2
Gy,
(g )1§1,]§2 = (0 0[1) + 2t (Oélel a2K22> +t R, (F26)

where €3 and R;; are smooth functions.
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F.2.4 More magnetic geometry

We will apply the previous considerations in the case where the curve ¥ is
defined by (9.13). We assume for simplicity that the magnetic field § = curl A
is constant and we can assume, without loss of generality, that

A(w) = (0, ~s,12), (F.27)

for some fixed b > 0.
Let Q be a bounded open set of R? with regular boundary 92. We now
assume that 3 defined in (9.13) is regular.

Remark F.2.4.
We observe that this assumption is satisfied when § is strictly convez.

In this situation, we can introduce the following definition:

Definition F.2.5.
At each point x of ¥, we introduce the normal curvature along the magnetic

field B by

fn,B(2) = K, <7’ Av, |§|) , (F.28)

where K denotes the second fundamental form on the surface 0S).
A calculation gives the following identity:

Lemma F.2.6.
Kn,B = kn 5 (F29)

with kg from (F.28) and k, from (9.15).

Similarly to g, we can define

s(s) = K70, ) (F.30)

We observe that we have

o B .
kin.5(5) = K(ar, \ﬁ\) = cos 0(s)K11(0, 5) + sin 0(s)K12(0, 5), .
KeB(5) = K(gs, Igl) = cos0(5)K12(0, 8) + sin 0(s) K22(0, 5)

Let us observe that the angle 6(s) is not “free” in our picture. In fact, we have
the geometrical constraint:

Proposition F.2.7.
The assumption that 5 is constant (of norm equal to one) and tangent to the
surface 02 along the curve 3 implies that

kep(r) =0, Vz € X. (F.32)
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Furthermore, if s — ~(s) is a parametrization of ¥ by arc length, with

0(s) = arcsin(+'(s) | B) ,

then
0'(s) = kg(y(s)), Vs. (F.33)

Lemma F.2.8.
In the case when O is strictly convex (K > 0), then (F.32) implies that

knp# 0, Vze€X. (F.34)

When 6(s) = 0, we deduce from (F.31) and (F.32) that Kis(z(s)) = 0.
So the curvature matrix K becomes diagonal.

Proof of Lemma F.2.8.
We observe that (F.31) can be rewritten in the form

Kn,B\ _ cosf
() < (220). w5

Observing that K is invertible when €Q is strictly convex (K is actually strictly
positive), we immediately see that |k, | + |ke,B| # 0. O

Example F.2.9.

In the case of the ellipsoid {alac% + agac% + 031‘:2:) < 1}, it is interesting to
compute our invariants. Take for simplification the case when 3 = (0,0,1).
Then ¥ is the intersection of the ellipsoid with xs = 0. So we get an ellipse
in this plane. We can now observe that the vector field (3 is orthogonal to 3 .
We observe that, at the point (x1,x2,x3) on the boundary of the ellipsoid, we

have
asxs

Wlv= \/@1331 + azxz .

This leads to
as

Vaia} + a3}
The minimum of k. g is then obtained at the point where \/a3x? + a3x3 is

mazximal. If we assume, for example, that a1 > as , we get that this mazimum
s obtained at xo = x3 = 0 and equal to ay .

|"€n,B(1’17x27 0)|
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