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E.5 Poincaré Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

F Boundary Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
F.1 The Two-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
F.2 Adapted Coordinates in the Three-Dimensional Case . . . . . . . . . 301

F.2.1 Tubular coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
F.2.2 Local coordinates near a curve inside the boundary . . . . 302
F.2.3 Local coordinates near a curve on the boundary . . . . . . . 304
F.2.4 More magnetic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321



Preface

General Presentation

The analysis of mathematical problems connected with the theory of super-
conductivity has been intensively developed in the last decade. For concrete-
ness, in this introduction we will only discuss the two-dimensional case. Also,
let us stress from the beginning that in this book we will not discuss at all
the microscopic BCS-theory of superconductivity. An accepted basic model of
superconductivity is the Ginzburg–Landau functional involving a pair (ψ,A),
where ψ is a wave function and A is a magnetic potential on an open set
Ω ⊂ R

2, which is defined by

G(ψ,A) =
∫

Ω

|(−i∇+ κσA)ψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx

+ κ2

∫
Ω

∣∣∣σ curlA− σβ
∣∣∣2 dx . (1)

Here ψ is called the order parameter, A is a magnetic potential, and β—or
rather κσβ—is the external1 magnetic field. The field curlA is called the
induced magnetic field. The parameter κ > 0 is characteristic of the sample.
In the physics literature, one usually makes the distinction between type I
materials, corresponding to small κ , and type II materials, corresponding to
large values of κ. For some model problems in the entire space the transition
between the two types takes place at the value κ = 1/

√
2 . Mathematically,

this leads to the analysis of various asymptotic regimes like κ→ 0 or κ→ +∞.
It is this last case that will be the subject of the present book. In order to
measure the dependence on the magnitude of the external magnetic field,
we have written the external magnetic field in terms of the parameter σ.
Thus, we think of β as being some fixed function and σ as measuring the
strength of the field.
1 Sometimes also called the applied magnetic field.

xi
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We will generally assume that Ω is a bounded, simply connected subset
of R

2 (or R
3). As Ω is bounded, proving the existence of a minimizer of G is

a rather standard problem. The minimizer should satisfy the Euler–Lagrange
equation, which in this context is called the Ginzburg–Landau system (see
[S-JdG]).

The minimizers will describe the properties of the material when submitted
to the external magnetic field; i.e., |ψ(x)|2 measures the level of supercon-
ductivity (density of Cooper pairs in the language of physicists) of the material
near the point x. One traditionally distinguishes among three types of possible
minimizers. We say that a minimizer (ψ,A) is superconducting if ψ never
vanishes, normal if ψ is identically 0, and mixed if ψ has zeroes but does not
vanish identically.

This naturally leads physicists to “define” two critical fields. The lower
one (or first critical field) corresponds to the transition from superconducting
to mixed states and is denoted by HC1(κ). In other words, this corresponds to
the appearance of zeroes for ψ (usually called vortices) when increasing the
external field, and many authors have worked on this phenomenon.

It is believed that when κ is large, there exists a zone where the mini-
mizers correspond to mixed states. So the highest critical field, or third criti-
cal field, which is denoted by HC3(κ), corresponds to the transition from
mixed states to normal states. When this process is viewed in the opposite
direction—magnetic field strength decreasing across HC3—this is the pheno-
menon called the onset of superconductivity. It can indeed be observed that
for large external magnetic fields the minimizer is “normal”—that is, ψ ≡ 0.
So we are interested in describing what happens when we decrease this exter-
nal magnetic field. What can be shown is that for large κ, superconductivity
first appears at the boundary. This is called surface superconductivity, and
the precise description of this phenomenon will occupy a large part of the
text.

The reader may wonder why we have until now only introduced HC1(κ)
and HC3(κ). The last critical field (called the second critical field) of interest is
HC2(κ), and denotes the field corresponding, inside the “mixed zone”, to the
transition from having minimizers, which are localized very near the boundary,
to having minimizers that are significatively nonzero in regions far from the
boundary.

Because we are mainly interested in understanding what happens around
HC3(κ) , it is natural to analyze when the normal solution (0,F) (with
curlF = β) is a local minimum of the functional. This leads naturally to the
question of positivity of the Hessian of G. Due to the particular form of the
functional and to the choice of the point where we compute the Hessian, this
positivity is immediately related to the positivity of the operator −ΔκσF−κ2,
where −ΔκσF is a Schrödinger operator with magnetic field

−ΔκσF := (−i∇+ κσF)2 , (2)
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corresponding to the self-adjoint realization with a magnetic Neumann
boundary condition:

ν · (−i∇+ κσF)ψ = 0 on ∂Ω , (3)

where ν is the interior normal vector at the boundary. This is a linear problem,
which is, of course, related to the determination of the lowest eigenvalue—
or ground state energy—of the operator in question. When κ is large, this
becomes a semiclassical problem where the role of the Planck constant h is
played by 1/(κσ). So the first part of the book will mainly be devoted to the
techniques leading to a very accurate spectral analysis of −ΔκσF.

Not surprisingly, there are strong links between the questions of determin-
ing whether the normal solution is a local minimum or whether it is a global
minimum—mathematicians may, in fact, wonder why physicists have not dis-
tinguished in their terminology between these local and global critical fields—
but the second problem is effectively nonlinear. It is the aim of the second part
of this book to develop the necessary nonlinear tools to solve this question
rather completely and pursue the analysis to the zone ]HC2(κ), HC3(κ)[. Note
that here we are complementary with the scope of the excellent recent book by
Sandier and Serfaty [SaS3], which treats mainly the zone ]HC1(κ), HC2(κ)[ .
Furthermore, we will not discuss, except for illustrating some phenomena,
what has been done in numerical analysis (see [DuGP] and references therein).

Organization of the Book

As the presentation suggests, this book is divided into two main parts:

• The first part is devoted to the spectral analysis of the Schrödinger
operator with magnetic field.

• The second part concentrates on the analysis of the Ginzburg–Landau
functional and is mainly nonlinear.

For a first reading, or for a graduate course on the subject, we suggest restrict-
ing to the 2D situation and reading Chapters 1–4, 7, and 8 from the linear part
and Chapters 10, 12, and 13 from the nonlinear part. The remaining chapters
in the linear part, Chapters 5, 6, and 9, are somewhat more technical and can
be skipped at a first reading. The same applies to Chapters 11 and 14 in the
nonlinear part. The final chapters, 15 and 16, contain more specialized topics.

Linear analysis: Spectral analysis of Schrödinger operators with
magnetic fields

Chapter 1 is a short introduction to the spectral theory for the Schrödinger
operator with magnetic field. We analyze successively the following basic
questions:
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• How do we define the self-adjoint extensions?
• What are the basic properties of the spectrum?

We finish the chapter by presenting rough bounds for the ground state energy.
Chapter 2 is devoted to the analysis of diamagnetism, which will play

an important role in the analysis of the critical fields in the nonlinear part.
Diamagnetism means that the (ground state) energy is an increasing function
of the magnetic field.

The elementary Chapter 3 contains a precise analysis of various one-
dimensional problems that are fundamental for understanding the spectral
analysis in the higher-dimensional situations. In particular, we start with a
complete analysis of a family of one-dimensional models that are the basis of
the explanation of surface superconductivity.

Chapter 4 concentrates on the spectral analysis of two-dimensional models.
We apply the results of the analysis in the previous chapter to various model
geometries. The magnetic field is assumed to be constant and the domains
are successively R

2 , R
2,+, and the infinite sector. In the analysis of general

domains in later chapters these model geometries will be used in comparison
arguments to obtain precise spectral information.

Chapter 5 gives a detailed presentation of the case of the disc or of its
exterior. This will play a basic role in the analysis of curvature effects.

Chapter 6 is concerned with the same questions in the three-dimensional
case. We concentrate mainly on R

3 and R
3,+. The magnetic field is still con-

stant, but the interesting fact is that the analysis depends strongly on the
angle between the vector normal to the boundary and the magnetic vector
field. As a side product, the results obtained justify the assumption done
by de Gennes and Saint-James [S-JdG] that taking the magnetic vector field
tangent to the boundary gives the lowest energy.

We recall in Chapter 7 the main techniques in semiclassical analysis:
harmonic approximation, decay estimates. Although this material is already
present in various books, we feel it was necessary to give a brief account of
the standard techniques before extending them to the problems arising in the
case with boundary.

In Chapter 8, we present the methods allowing one to arrive at the two-
term asymptotics of the ground state energy in the two-dimensional case
and to the localization property of the ground state within the boundary and
close to the points of maximal curvature. We mention under what assump-
tions one can get a complete asymptotics, and we conclude with an analysis
of diamagnetism.

Chapter 9 is analogous to Chapter 8 but for three-dimensional domains.
This chapter is more descriptive because it would be too technical to prove all
the results presented. We refer to Helffer–Morame [HeM6] for proofs. As an
application, we show in detail how the main results on the localization of the
ground state can be applied to the question of diamagnetism.
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Nonlinear analysis: The Ginzburg–Landau functional with
magnetic field

This part is devoted to the analysis of the onset of superconductivity.
We mainly concentrate our analysis on the high-κ limit, which is the case
where the large field—or semiclassical—analysis is relevant. Also, we mainly
restrict our attention to the regime where the strength of the external mag-
netic field is “above HC2(κ)”, i.e., we do not study vortices.

Chapter 10 comes back in detail to the general presentation of the
Ginzburg–Landau functional. We recall the rather standard proof of the exis-
tence of a minimizer and prove that the normal solution is a global minimum
for large external magnetic fields. We marginally treat some questions about
type I superconductors.

Chapter 11 explores a priori estimates that are needed to relate the non-
linear question to the linear one. These are elliptic estimates, but compared
to the “classical” case, we need to control the uniformity with respect to
different parameters. In the second part of this chapter, we analyze what can
be achieved through the technique of “blowing up” initiated in this context
by Lu–Pan [LuP3].

In Chapter 12, we discuss decay estimates in the direction normal to
the boundary. As explained above, when σ is much larger than κ, one
expects superconductivity to be localized near the boundary. For sufficiently
large fields, the techniques of Agmon estimates can be used to prove this
(see [HeP1]). However, we also consider weaker estimates due to Almog (see
[Al2, Al4]), which are valid for all σ > κ .

Chapter 13 is devoted to a complete analysis of the critical field HC3(κ) ,
corresponding to the transition, when decreasing the strength of the exter-
nal magnetic field, between normal minimizers and non-normal minimizers.
Here we follow Lu–Pan [LuP3], Helffer–Pan [HeP1], [Pa6] with some recent
improvements in the approach due to Fournais–Helffer [FoH3, FoH4, FoH6].

Chapter 14 describes what happens when continuing to decrease the
strength of the external magnetic field. One would like to understand how
the onset of superconductivity, which has been shown to start from the points
of maximal curvature at the boundary, will extend to the whole boundary
by a nonlinear mechanism of uniformization inside the boundary. We follow
here the works by Lu–Pan, Fournais–Helffer [FoH2], Almog–Helffer [AlH], and
Pan [Pa2] (for the region close to HC2(κ) see also Sandier–Serfaty [SaS2] and
Aftalion–Serfaty [AfS]).

Chapter 15 gives a short presentation of the case with corners. This is
a case where the literature in physics is quite developed [BeR] and which
leads to interesting conjectures that are confirmed both experimentally and
numerically. This also gives a good opportunity to show the tunneling effects
occurring inside the boundary between the different corners in the case of
a regular polygon. We refer here to the works of Pan [Pa1], Pan–Kwek



xvi Preface

[PaK], Jadallah [Ja], Bonnaillie, Bonnaillie-Noël–Dauge, and Bonnaillie-Noël–
Fournais [Bon1, Bon2, BonD, BonF].

Chapter 16 presents various extensions. The Ginzburg–Landau functional
is the simplest model corresponding to a superconducting sample surrounded
by a vacuum. Other models are proposed to better take into account the
exterior of the superconducting sample. This can, for example, lead to other
boundary conditions (like the de Gennes boundary conditions considered by
Lu–Pan [LuP3], [Pa4] and Kachmar [Kac1, Kac2]).

Additionally, we will discuss problems related to the existence of holes or
of periodically perforated structures.

Finally, we will discuss how the techniques used in this book can also
be useful in the analysis of liquid crystals. In particular, we present the
analogy due to de Gennes [dGe4] between the problems analyzed here in
superconductivity and the transition smectic–nematic occurring in liquid crys-
tals. Many recent papers have been devoted to this subject [BaCLP, Pa5, Pa7,
Pa8, JoP].

We conclude this chapter with a short presentation of open problems in
the field.

Each chapter (except this Preface and Chapter 16) ends with a Notes
section containing comments and references.

We have added at the end of the book various appendices containing some-
what standard material in order to make the book self-contained.

We conclude the book by giving a fairly complete bibliography on the
subject of the book.

About the History of the Subject

We limit ourselves in this presentation to the phenomenon of the onset of
superconductivity and refer to [SaS3] for the discussion of other aspects like
the appearance of vortices.

One can surely find the original problem in the first papers by Ginzburg
or Landau [Gin] or [GiL] starting from the 1950s, but one usually refers to the
paper by D. Saint-James and P-G. de Gennes [S-JdG] of 1963 as the initial
reference for a theoretical explanation for the onset of superconductivity.
These authors were mainly interested in the analysis of a sample Ω in R

3

delimited by two hyperplanes. Assuming that the external magnetic field is
parallel to the boundary, the authors reduced the problem to a family of
one-dimensional problems, which will play an important role throughout the
analysis.

So the first mathematical results in this direction are based on a fine analy-
sis of one-dimensional problems (see Bolley [Bol], Bolley–Helffer [BolH1]–
[BolH4], and also Aftalion [Af1] and the survey by Aftalion and Troy [AfT]).
All these works appeared in the 1990s.
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As explained, for example, in the lectures of Rubinstein [Ru], the analysis
of effectively two-dimensional problems arises later, at first through rather
formal papers (Chapman [Ch1, Ch2], Chapman–Howison–Ockendon [ChHO])
proposing formal constructions of minimizers. A completely rigorous approach
starts with the papers [LuP1, LuP2] by Lu and Pan. Then three mathemati-
cal papers appeared that played an important role for the further develop-
ment of the subject: The formal expansion by Bernoff–Sternberg suggesting
the role of the boundary curvature, the fine analysis of the case of the disc
by Bauman–Phillips–Tang (1998) [BaPT], and the paper by Giorgi–Phillips
(1999) [GioP]. Then began a period of intense activity by Lu–Pan [LuP3]–
[LuP7] on one side and del Pino–Felmer–Sternberg [dPiFS] on the other side.
The semiclassical character of the questions allowed Helffer and Morame to
bring all the semiclassical technology around the WKB constructions and
Agmon estimates into the subject. This led to the solution of a conjecture
(initially due to [BeS]) about the two-term asymptotics of the third critical
field (Helffer–Morame [HeM3], Helffer–Pan [HeP1]) and gave new possibilities
for the analysis of the problem in dimension 3 (Lu–Pan [LuP7], Pan [Pa6],
Helffer–Morame [HeM4, HeM6]).

More recent works were developed in three directions:

• case of corners (Jadallah–Rubinstein–Sternberg (1999) [JaRS], Jadallah
(2001) [Ja], Pan (2002) [Pa1], Bonnaillie (2003-2005) [Bon1, Bon2],
Bonnaillie-Noël–Dauge (2006) [BonD], and Bonnaillie-Noël–Fournais
(2007) [BonF]),

• fine analysis of all the definitions of the third critical field (Fournais–
Helffer),

• analysis of the region between HC2(κ) and HC3(κ) (Pan (2002) [Pa2],
Fournais–Helffer (2005) [FoH1], Almog–Helffer (2007) [AlH]).

Comparison with the Existing Literature and
Prerequisites

We make an effort to keep the text reasonably self-contained, having graduate
students and researchers in mind. The reader is supposed to have a good
knowledge of elementary spectral analysis, Hilbertian analysis, and the elliptic
theory in PDE. For the spectral theory, the books by Reed and Simon [ReS]
is more than enough, and the reader can also look at [LeB] (in French) or to
the notes of an unpublished course [He8].

When Schrödinger operators with magnetic fields are concerned, one
should also mention the surveys by Helffer [He4, Hel5, He9], Mohamed–Raikov
[MoR], [He6] for the relations with superconductivity, and the book by Thaller
[Th], which is mainly devoted to the Dirac operator but contains interesting
information on magnetic problems. Other aspects in semiclassical analysis
are presented in the books by Helffer [He2], Dimassi–Sjöstrand [DiS], Robert
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[Ro], Kolokoltsov [Ko] (in connection with results of Maslov’s school), and
A. Martinez (in the spirit of microlocal analysis) [Mart]. Concerning super-
conductivity, one should mention in mathematics recent books by Bethuel–
Brezis–Helein [BeBH], Sandier–Serfaty [SaS3], Hoffmann–Tang [HoT], and
surveys like the lectures by Rubinstein [Ru] or Sternberg [St]. The collective
book edited by Berger and Rubinstein [BeR] also contains a lot of information
on the problems with holes. The techniques appearing in this book might have
applications for related problems in the theory of Bose–Einstein condensates,
see [Af2] and [LSSY].

We should also mention in the physics literature the course by de Gennes
[dGe2] and the books by Saint-James, Sarma, and Thomas [S-JST], Tilley–
Tilley [TiT], and Tinkham [Ti].
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Notation

We will work with domains Ω ⊂ R
n, which will generally be assumed simply

connected (for convenience) and regular or piecewise regular (polygons). For
a point x ∈ ∂Ω , we denote by ν(x) the unit interior normal vector to the
boundary. Also, for a general point x ∈ Ω , we define

t(x) := dist(x, ∂Ω) = inf
y∈∂Ω

|x− y| . (4)

Some model operators will appear repeatedly in the text. We therefore fix
the following definitions [see (3.1) and (3.9)]:

h0 := − d2

dτ2
+ τ2 on L2(R) , (5)

hN,ξ := − d2

dτ2
+ (τ + ξ)2 on L2(R+) , (6)

with Neumann boundary condition at the origin.
The scalar product in L2(Ω) is denoted by

〈f | g〉 =
∫

Ω

f(x) g(x) dx . (7)

We will use the standard Sobolev spaces W s,p. For integer values of s,
these are given by

W s,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ s} . (8)

When s is a positive integer, the norm on W s,p(Ω) is,

‖u‖W s,p(Ω) :=
∑
|α|≤s

‖Dαu‖Lp(Ω) .

For s ∈ R , the space W s,p(Ω) is defined by duality (negative values of s) and
interpolation (noninteger values of s). See, for instance, [Ad] for details. In the
case p = 2, we will also use the standard symbol Hs for W s,p , i.e.,

Hs(Ω) := W s,2(Ω) .

xix
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These spaces will sometimes be combined with the suffixes “comp” or “loc” to
denote “compact support” or “locally”. For example, a distribution f belongs
to H2

loc(Ω) if
φf ∈ H2(Ω) , for all φ ∈ C∞

0 (Ω) .

Also, the magnetic generalizations of these spaces will be use; for example,
for a given vector function (magnetic vector potential) A, the space H1

A(Ω)
is given by the functions f with f ∈ L2(Ω) and (−i∇ + A)f ∈ L2(Ω) . This
space is given its natural norm.

Furthermore, we will use Hölder spaces. Let us fix the definition of the
norm in the Hölder spaces Cn,α. For a smooth bounded domain Ω , n ∈ N ,
α ∈ ]0, 1[ , the space Cn,α(Ω) is the set of functions u with the nth-order
derivatives being Hölder continuous of degree α in Ω and such that the norm

‖u‖Cn,α(Ω) :=
∑
|β|≤n

‖∂βu‖L∞(Ω) +
∑
|β|=n

sup
x,y∈Ω

|∂βu(x)− ∂βu(y)|
|x− y|α (9)

is finite. In the case when α = 0 , the last sum is omitted.
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Linear Analysis





1

Spectral Analysis of Schrödinger Operators

1.1 The Magnetic Schrödinger Operator

Let Ω be an open set in R
n , A = (A1, A2, . . . , An) be a C∞ vector field on

Ω , corresponding to the so-called magnetic potential, V (which may depend
on B) be a C∞(Ω) real-valued function, corresponding to the electric poten-
tial, and B > 0 be a (large) parameter, playing the role of the strength of the
magnetic field. The vector field A corresponds more intrinsically to a 1-form

ωA =
n∑
j=1

Aj dxj . (1.1)

One can then associate to ωA a 2-form called the magnetic field σβ :

σβ := dωA =
∑
j<k

βjk dxj ∧ dxk . (1.2)

When n = 2 , the unique coefficient β12 defines (in a fixed system of coordi-
nates) a function, more simply denoted by

x �→ β(x) = curlA = ∂x1A2 − ∂x2A1 ,

also called the magnetic field.
When n = 3 , the magnetic field is identified with a magnetic vector β,

by the Hodge map:

β = (β1, β2, β3) = (β23,−β13, β12) = curlA , (1.3)

with the usual definition of curl. All these objects can be defined more gene-

etc.), but that is outside the scope of this book.
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rally on a Riemannian manifold (with notions like connections, curvature,
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4 1 Spectral Analysis of Schrödinger Operators

We would like to discuss the spectrum of self-adjoint realizations of the
Schrödinger operator in an open set Ω in R

n:

PBA,V,Ω =
n∑
j=1

(−i ∂xj +BAj)2 + V (x;B) .

For this abstract question we will generally absorb the parameter B in the
vector potential and thus write

PA,V,Ω = p2
A + V = −∇2

A + V = −ΔA + V ,

with

pA := −i∇+ A = −i∇A ,

and

∇A := ∇+ iA, ΔA := (∇+ iA)2.

Notice that one can perform a gauge transformation, i.e., a conjugation by eiφ.
Then, since e−iφpAeiφ = pA+∇φ , we get the unitary equivalence1 of PA,V,Ω

and PA+∇φ,V,Ω. Notice that curl∇φ = 0 , so the magnetic field is unchanged
by the change of gauge.

1.2 Self-Adjointness

Our main interest is the analysis of the bottom of the spectrum of PA,V,Ω.
The open set Ω can be bounded or the whole space R

n. Many physically
interesting situations correspond to n = 2, 3. In the case of a bounded open
set Ω , we will consider the Dirichlet realization or the Neumann realization.

The Dirichlet realization

The Dirichlet realization corresponds to taking the so-called Friedrichs exten-
sion associated with the quadratic form:

C∞
0 (Ω; C) � u �→ QDA,V,Ω(u) :=

∫
Ω

|∇Au(x)|2 + V (x)|u(x)|2 dx . (1.4)

The existence of the Friedrichs extension follows immediately if one can prove
that the quadratic form is semibounded from below, i.e., the existence of a
constant C such that:∫

Ω

|∇Au(x)|2 + V (x)|u(x)|2 dx ≥ −C‖u‖2 , ∀u ∈ C∞
0 (Ω) . (1.5)

1 Of course, that will not become a rigorous statement before the domains of the
operators in question are defined.
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When Ω is regular and bounded (and V,A are smooth), the form domain of
the operator is

VD(Ω) = H1
0 (Ω) . (1.6)

Using the Lax–Milgram lemma, we can then associate a self-adjoint operator
PDA,V (which is denoted by PDA,V,Ω when we need to stress the domain Ω
in question) in the following way. We consider the sesquilinear form qDA,V,Ω
defined on VD(Ω)× VD(Ω) by

(u, v) �→ qDA,V,Ω(u, v) =
∫

Ω

(
∇Au(x) · ∇Av(x) + V (x)u(x) v(x)

)
dx .

The space VD(Ω)×VD(Ω) is called the form domain of the sesquilinear form
qDA,V,Ω. The domain of the operator is defined as the subspace of the u’s
in VD(Ω) such that v �→ qDA,V,Ω(u, v) extends as a continuous linear form on
L2, and we denote by PDA,V u this element identified by Riesz’s theorem to an
element in L2. So we have

〈PDA,V u | v〉L2(Ω) = qDA,V,Ω(u, v) , ∀v ∈ VD(Ω) . (1.7)

More concretely, observing that (1.7) is equivalent to

〈PDA,V u | v〉L2(Ω) = qDA,V,Ω(u, v) , ∀v ∈ C∞
0 (Ω) , (1.8)

this leads to

D(PDA,V,Ω) := {u ∈ VD(Ω) |PA,V,Ωu ∈ L2(Ω)} , (1.9)

where D(H) denotes the domain of the operator H . The operator PDA,V,Ω is
simply defined, for u ∈ D(PDA,V,Ω), by

PDA,V,Ωu = PA,V,Ωu .

Using a regularity theorem, this domain can be characterized, if Ω is assumed
to be regular, as

D(PDA,V,Ω) = H1
0 (Ω) ∩H2(Ω) . (1.10)

In most cases under consideration, the operator PDA,V,Ω will have a compact
resolvent2 and the spectrum will consist of a nondecreasing sequence of eigen-
values denoted by {λDj (A, V,Ω)}. We will sometimes omit some or all of the
variables and write, for example, λD1 or λD1 (Ω) if it is clear from the con-
text what the other variables are. Also, in the case when the shape of A is
fixed and B is a parameter measuring the strength of the field, we will write
λDj (B) := λDj (BA).

2 For bounded regular Ω , compactness follows from (1.6) and the compactness of
the inclusion H1

0 (Ω) ↪→ L2(Ω).
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The Neumann realization

The Neumann realization corresponds to first taking the Friedrichs extension
of the quadratic form:

C∞(Ω; C) � u �→ QNA,V,Ω(u) :=
∫

Ω

|∇Au(x)|2 + V (x)|u(x)|2 dx . (1.11)

Again, the existence of the Friedrichs extension follows from semiboundedness,
i.e., if there exists a constant C such that∫

Ω

|∇Au(x)|2 + V (x)|u(x)|2 dx ≥ −C‖u‖2 , ∀u ∈ C∞(Ω) . (1.12)

When Ω is regular and bounded (and V and A are smooth), the form domain
of the operator is

VN(Ω) = H1(Ω) . (1.13)

We then associate to this quadratic form a self-adjoint operator, which is
denoted by PNA,V or PNA,V,Ω, in the classical way. Denoting by q = qNA,V,Ω the
sesquilinear form associated to QNA,V,Ω , the domain of the operator is defined
as the subspace in VN (Ω) of the u’s such that VN (Ω) � v �→ q(u, v) admits a
continuous extension to L2(Ω). When Ω is regular, the domain of the operator
can be characterized as

D(PNA,V,Ω) = {u ∈ H2(Ω) | ν · (−i∇+ A)u = 0 on ∂Ω } . (1.14)

Here, for x ∈ ∂Ω , ν(x) denotes the unit interior normal vector to ∂Ω at x and
the condition

ν · (−i∇+ A)u = 0 on ∂Ω (1.15)

is called the magnetic Neumann boundary condition. This characterization
involves the Green–Riemann formula and a regularity result for the magnetic
Laplacian. We can then define PNA,V,Ωu ∈ L2(Ω) by

〈PNA,V,Ωu | v〉L2 = q(u, v) , ∀v ∈ VN (Ω) .

The eigenvalues of the Neumann Schrödinger operator will be denoted by
{λNj (A, V,Ω)}. The conventions about notation discussed for Dirichlet eigen-
values also apply to the λNj .

Remark 1.2.1.
Let us for a moment reintroduce the dependence on the parameter B. Clearly,
D(PDBA,V,Ω) does not depend on B. This is obvious from (1.10). However, for
the Neumann operator, we see from (1.14) that if we want a domain indepen-
dent of B, we need to impose the condition

ν(x) ·A(x) = 0 for all x ∈ ∂Ω .

Under this condition the magnetic Neumann condition becomes the usual
Neumann condition. We discuss in Appendix D (Proposition D.1.1) how to
arrive at this situation via a gauge transformation.
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The case of R
n

In the case of R
n , it is in general more difficult to characterize the domain

of the operator. When V ≥ −C , it is easy to characterize the form domain,
which is

V(Rn) =
{
u ∈ L2(Rn) | ∇Au ∈ L2(Rn) , (V + C)

1
2 u ∈ L2(Rn)

}
. (1.16)

The domain of the associated operator is then given by

D(PA,V ) := {u ∈ V(Rn) , PA,V u ∈ L2(Rn)} . (1.17)

In the general case, if the operator is semibounded on C∞
0 (Rn) in the sense

of (1.5), it has been proved by Simader [Sima] that the operator is essentially
self-adjoint. The essential self-adjointness means that the Friedrichs extension
is the unique self-adjoint extension in L2(Rn) starting from C∞

0 (Rn) and that
D(PA,V ) satisfies in this case

D(PA,V ) = {u ∈ L2(Rn) , PA,V u ∈ L2(Rn)} . (1.18)

We include here the proof of essential self-adjointness.

Theorem 1.2.2.
Suppose that P = (−i∇ + A)2 + V is semibounded on C∞

0 (Rn) and that
V ∈ C0(Rn) , A ∈ C1(Rn). Then P is essentially self-adjoint.

Proof.
Since P is semibounded, we may assume, possibly replacing P by P + C for
some constant C ≥ 0 , that

〈u | Pu〉 ≥ ‖u‖2 , ∀u ∈ C∞
0 (Rn) . (1.19)

Here we recall that the scalar product of two functions f and g in L2(Rn) is
introduced in (7). Inequality (1.19) extends by density to distributions u ∈
H1

comp(Rn) (the H1 distributions with compact support),

‖∇Au‖2 +
∫

Rn

V (x)|u(x)|2 dx ≥ ‖u‖2 , ∀u ∈ H1
comp(R

n) . (1.20)

According to the general criterion of essential self-adjointness, it suffices to
verify that the range R(P ) is dense. Suppose that f ∈ L2(Rn) is such that

〈f | Pu〉 = 0 , ∀u ∈ C∞
0 (Rn) . (1.21)

We have to show that f = 0 .
We first observe that (1.21) implies that

((−i∇+ A)2 + V )f = 0 ,
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in the sense of distributions. Standard elliptic regularity theory for the
Laplacian (with our assumptions on V and A in mind) implies then that
f ∈ H2

loc(R
n) .

We now introduce a family of cutoff functions, ζk , by

ζk(x) := ζ(x/k) , ∀k ∈ N , (1.22)

where ζ ∈ C∞
0 (Rn) satisfies 0 ≤ ζ ≤ 1 , ζ = 1 on the unit ball D(0, 1), and

supp ζ ⊂ D(0, 2) .
For any u ∈ C∞

0 (Rn) , we have the identity
∫
∇A(ζkf) · ∇A(ζku) dx+

∫
ζ2
kV (x)f(x)u(x) dx

= 〈f | P (ζ2
ku)〉+

∫
|∇ζk(x)|2f(x)u(x) dx

+
∫
ζk(x)∇ζk(x) ·

[
f(x)∇Au(x)− u(x)∇Af(x)

]
dx . (1.23)

When f satisfies (1.21), we get
∫
∇A(ζkf) · ∇A(ζku) dx+

∫
ζk(x)2V (x)f(x)u(x) dx

=
∫
|∇ζk(x)|2f(x)u(x) dx

+
∫
ζk(x)∇ζk(x) ·

[
f(x)∇Au(x)− u(x)∇Af(x)

]
dx . (1.24)

This formula can be extended by continuity to functions u ∈ H1
loc(R

n) .
In particular, we can take u = f and obtain

‖∇A(ζkf)‖2 +
∫
ζk(x)2V (x)|f(x)|2 dx

= �
{
‖∇A(ζkf)‖2 +

∫
ζk(x)2V (x)|f(x)|2 dx

}

=
∫
|∇ζk(x)|2 |f(x)|2 dx . (1.25)

Using (1.20), (1.25), the definition of ζk , and taking the limit k →∞ , we get

‖f‖2 = lim
k→∞

‖ζkf‖2

≤ lim sup
k→∞

(
‖∇A(ζkf)‖2 +

∫
Rn

V (x)|ζk(x)f(x)|2 dx
)

= lim sup
k→∞

∫
|∇ζk(x)|2 |f(x)|2 dx = 0 . (1.26)

This finishes the proof of Theorem 1.2.2. ��
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1.3 Spectral Theory

All the operators introduced earlier are self-adjoint. If one denotes by H one
of these unbounded operators, one can analyze its spectrum, defined as the
complement in C of the resolvent set ρ(H) corresponding to the points z ∈ C

such that (H− z)−1 exists. The spectrum σ(H) is a closed set contained in R.
The spectrum contains in particular the set of the eigenvalues of H. We recall
that λ is an eigenvalue if there exists a nonzero vector u ∈ D(H) such that
Hu = λu. The multiplicity of λ is the dimension of Ker(H − λ). We call
discrete spectrum σd(H) the subset of the spectrum consisting of eigenvalues
of finite multiplicity that are isolated points of σ(H). The following standard
theorem plays an important role in the theory.

Theorem 1.3.1.
For all λ ∈ C and all u ∈ D(H) , we have

dist(λ, σ(H)) ‖u‖ ≤ ‖(H− λ)u‖ . (1.27)

An elementary consequence that will be used quite often in the book is
that if we find a normalized u in D(H) such that, for some ε > 0 ,

‖(H− λ)u‖ ≤ ε , (1.28)

then
d(λ, σ(H)) ≤ ε .

Therefore, approximate eigenfunctions—also called quasimodes—i.e., func-
tions u satisfying (1.28) for some (small) ε, are very useful for locating the
spectrum.

Finally, the essential spectrum of H—denoted by σess(H)—is defined to
be the closed set:

σess(H) = σ(H) \ σd(H) . (1.29)

In this book, we will mainly be interested in the analysis of the infimum of the
spectrum of H as a function of the various parameters (mainly B). Depending
on the assumptions, this infimum could correspond to an eigenvalue or to the
bottom of the essential spectrum.

Using the min-max characterization (see Appendix A), the infimum of the
spectrum of H = PBA,V is determined by

inf(σ(PBA,V )) = inf
u∈V\{0}

QBA,V (u)/‖u‖2 , (1.30)

where V denotes the form domain of the quadratic form QBA,V . In order
to determine if the infimum corresponds to an eigenvalue, it is consequently
enough to find a nontrivial u in the form domain V such that

QBA,V (u) < inf(σess(PBA,V ))‖u‖2 . (1.31)
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An easy case where the infimum of the spectrum is an eigenvalue is when
σess(PBA,V ) = ∅ , corresponding to the case when H has compact resolvent.
To verify this last property, it is enough to show that the injection of V in
L2 is compact. This is in particular the case (for Dirichlet and Neumann
boundary conditions) when Ω is regular and bounded. When Ω is unbounded,
it is possible to determine the bottom of the essential spectrum using Persson’s
theorem (see Appendix B).

Example 1.3.2. .
Let us consider PB2V := −Δ+B2V on R

n , where V is a C∞ potential tending
to 0 at ∞ and such that infx∈Rn V (x) < 0.

Then, if B is large enough, there exists at least one eigenvalue for PB2V .
We note that the essential spectrum is [0,+∞[. The proof of the existence of
this eigenvalue is elementary. If xmin is a point such that V (xmin) = infx V (x) ,
it is enough to show that, with φB(x) = exp(−B|x − xmin|2) , the quotient
〈PB2V φB | φB〉
B2 ‖φB‖2 tends to V (xmin) < 0 as B → +∞ .
Actually, we can produce an arbitrary number N of eigenvalues below the

essential spectrum, under the condition that B ∈ [BN ,+∞[ , for BN large
enough.

1.4 Preliminary Estimates for the Dirichlet Realization

1.4.1 Lower bounds

We start by giving the following very basic result, Lemma 1.4.1. The lemma
immediately yields a lower bound to the spectrum of the Dirichlet realization;
see (1.34). But this lemma will also be very useful for the Neumann realization,
since it is the fundamental reason behind the boundary localization, which will
be proven in Chapters 8 and 9.

Lemma 1.4.1.
Let n ∈ {2, 3} and let curlA = β . We use the conventions that if n = 3 ,
β = (β1, β2, β3) is a vector and that if n = 2 , β = β1 is a function. Then, for
all u ∈ C∞

0 (Ω) and all j , we have the inequality

‖∇Au‖2 = 〈PA,Ωu | u〉 ≥
∫

Ω

βj(x)|u(x)|2 dx . (1.32)

Of course, (1.32) is only interesting if βj(x) is positive in Ω. Notice (see
the proof) that it is important that the function u has compact support.

Proof.
The basic point is to observe that

βj(x) = −i[∂xk
+ iAk, ∂x�

+ iA	] , (1.33)
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for suitable k, �. We then write

βj(x)u(x)u(x) = −i u(x) (XkX	u)(x) + i u(x) (X	Xku)(x) ,

with X	 = ∂x�
+ iA	.

Integrating over Ω and performing an integration by parts, we get
∫

Ω

βj(x)|u(x)|2 dx = i 〈Xku | X	u〉 − i〈X	u | Xku〉 = 2�〈X	u | Xku〉 .

Applying the Cauchy–Schwarz inequality, we then find
∫

Ω

βj(x)|u(x)|2 dx ≤ ‖Xku‖2 + ‖X	u‖2 ,

which yields (1.32). ��

1.4.2 Two-dimensional case

In the two-dimensional situation, Lemma 1.4.1 leads, for the Dirichlet reali-
zation and when β(x) ≥ 0 , to the easy but useful estimate,

inf σ(PDA ) ≥ inf
x∈Ω

β(x) =: b . (1.34)

Note that the converse inequality is asymptotically (as B →∞) true. The
proof is rather easy. This will later—in Chapter 8—be carried out in a more
systematic way after the analysis of model operators, but let us simply look
here for Gaussian quasimodes. In a system of coordinates where x = 0 denotes
a minimum of β—which is assumed to be inside Ω —and in a gauge where

A(x1, x2) =
1
2
b(−x2, x1) +O(|x|2) ,

we consider the quasimode

u(x;B) := ρ
1
2 b

1
4B

1
2 exp

(− ρ√bB|x|2)χ(x) ,

where χ is a cutoff function equal to 1 in a neighborhood of 0 and ρ > 0 has to
be determined. The optimal ρ is computed by minimizing (with respect to ρ)
the energy corresponding to the constant magnetic field b = 1 and B = 1:

(∫ ∣∣∣∣
(
∂y1 −

i

2
y2

)
uρ(y)

∣∣∣∣
2

+
∣∣∣∣
(
∂y2 +

i

2
y1

)
uρ(y)

∣∣∣∣
2

dy

)
/‖uρ‖2 ,

with

uρ(y) = π−
1
4 ρ

1
2 exp

(
−ρ

2
y2
)
. (1.35)
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One easily gets that this quantity is minimized for ρ = 1/2 and that the
corresponding energy is 1. The control of the remainders is easy, and we get,
using (1.30),

inf σ(PDBA) ≤ Bb+O(B
1
2 ) . (1.36)

So we have proven3 (in the two-dimensional case):

Theorem 1.4.2.
Suppose β ≥ 0. The smallest eigenvalue λD1 (B) of the Dirichlet realization
PDBA,Ω of PBA,Ω satisfies

λD1 (B)
B

= b+ o(1) , (1.37)

as B → +∞ , with b defined in (1.34).

Remark 1.4.3.
For the Dirichlet realization and when the magnetic field is constant, one can
show, by taking a Gaussian centered as far as possible from the boundary, the
existence of α > 0 such that

λD1 (B)
B

= b+O(exp−αB) , (1.38)

as B → +∞.
Except for the case of the disc [see (5.1)] the optimal α is unknown, but the

construction of quasimodes suggests that it should be the square of the inner
radius of Ω.

1.4.3 The case of three or more dimensions

Let us state Theorem 1.4.2 in a more general case. Let us extend at each point
βjk as an antisymmetric matrix (more intrinsically, this is the matrix of the
2-form σβ). Then the eigenvalues of the matrix iβ are real and one can see
that if λ is an eigenvalue of iβ , with corresponding eigenvector u , then u is
an eigenvector relative to the eigenvalue −λ, since β has real coefficients. If
the λ̂j denote the eigenvalues of iβ counted with multiplicity, then one can
define

tr+ β(x) =
∑

j:�λj (x)>0

λ̂j(x) . (1.39)

3 We leave the proof of (1.36) in the case where the minimum of β(x) is attained
at the boundary to the reader. This affects only the remainder term.
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The extension of Theorem 1.4.2 is then

Theorem 1.4.4.
The smallest eigenvalue λD1 (B) of the Dirichlet realization PDBA,Ω of PBA,Ω

satisfies
λD1 (B)
B

= inf
x∈Ω

tr+(β(x)) + o(1) , (1.40)

as B → +∞.

The idea for the proof is to first treat the constant field case, and then
to make a partition of unity. For the constant field case, after a change of
variable, we will get, for n = 2m , the model

m∑
j=1

[−(∂xj )
2 − (∂xj+m + iλ̂jxj)2] ,

and for n = 2m+ 1 , the model

−∂2
2m+1 +

m∑
j=1

[−(∂xj )
2 − (∂xj+m + iλ̂jxj)2] ,

with
m∑
j=1

|λ̂j | = tr+ β .

1.5 Perturbation Theory for Small B

Although our main interest in this book is the case of large B , it is also
interesting to discuss the opposite case, which also appears in the physics
literature.

If A satisfies

A · ν ≡ 0 on ∂Ω and div A = 0 in Ω , (1.41)

then the domain of the Neumann realization PNBA,Ω is fixed (see Remark 1.2.1)
and the dependence on B is analytic. Assume that Ω is bounded and connected
and has smooth boundary. Then the resolvent of PNBA,Ω is compact and the
spectrum is discrete. So the family of operators {PNBA,Ω}B is a holomorphic
family of type (A) (see Appendix C). We can then apply analytic perturbation
theory to the analysis of the ground state energy.

For B = 0 , PNBA,Ω is simply the Neumann realization of −Δ in Ω. The
ground state energy is 0 and this is a simple eigenvalue (Ω is assumed to be
connected). The associated L2-normalized eigenfunction ϕ10 can be chosen as
the constant function

ϕ10 =
1
|Ω| 12 , (1.42)

where |Ω| denotes the volume (area) of Ω: |Ω| = ∫
Ω
dx .
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We consequently know that for B small (B∈ ] − B0,+B0[) enough, the
ground state energy remains simple and admits the convergent expansion

λN1 (BA) =
∑
j≥1

Bjλ1j . (1.43)

We will proceed to compute λ11 and λ12.
This can be done by using formal expansions in the following way.

We look for an eigenvalue admitting the expansion (1.43) and an associated
eigenfunction

ϕ1(BA) ∼
∑
j≥0

Bjϕ1j . (1.44)

Moreover, without loss of generality, we may assume that ϕ1j is orthogonal
to ϕ10 for j ≥ 1. This can be rewritten in the form

∫
Ω

ϕ1j dx = 0 , (1.45)

for j = 1, . . . , n .
We now write that

PNBA,Ω ϕ1(BA)− λN1 (BA)ϕ1(BA) ∼ 0 , (1.46)

in the sense of formal series in powers of B. This means more precisely that,
when expanding the left-hand side of (1.46) in powers of B , each of the
coefficients in the expansion should vanish.

We note that with our choice of gauge,

−ΔBA = −Δ + 2iBA · ∇+B2|A|2 .

We denote by R0 the operator defined by

R0 := (I −Π0)Δ−1(I −Π0) ,

where Π0 is the projector on the first eigenfunction ϕ10.
Computing the coefficients of each of the powers of B in (1.46), we get

equations determining the λ1j , ϕ1j . Due to our choice of ϕ10 , it is clear that
the coefficient of B0 is 0. Let us look at the coefficient of B. We get

−Δϕ11 − λ11ϕ10 = −2iA · ∇ϕ10 = 0 . (1.47)

A necessary condition (take the scalar product with ϕ10 , i.e., simply integrate
the equation over Ω) is that

λ11 = 0 , (1.48)

and we can consequently choose ϕ11 = 0 .
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Remark 1.5.1.
The fact that λ11 vanishes is not a surprise. We should indeed have

λN1 (BA) ≥ 0 ,

by the positivity of the quadratic form.

Let us now look at the coefficient of B2. Taking account of the previous
equation, we obtain

−Δϕ12 − λ12ϕ10 + |A|2ϕ10 = 0 . (1.49)

This equation can be solved if and only if

λ12 =
1
|Ω|
∫

Ω

|A(x)|2dx . (1.50)

This gives the value of λ12 , which is nonzero if and only if the magnetic field
curlA is not identically 0 (See Appendix D). We are also very happy to verify
that λ12 is positive, which is natural from the positivity of λ1(BA) . For this
value of λ12 , one can then define ϕ12 by

ϕ12 = R0

(|A|2 ϕ10

)
=

1
|Ω| 12 R0|A|2 . (1.51)

It is easy to see that one can continue to solve the equations by recursion.
The necessary solvability condition indeed determines λ1j at each step and
the solution is unique due to (1.45).

We have therefore proven the following result.

Proposition 1.5.2.
Let Ω ⊂ R

n , with n = 2, 3, be smooth, connected, and bounded. Suppose
that A satisfies curlA �= 0 and (1.41). Then λ12 defined by (1.50) satisfies
λ12 > 0 , and

λN1 (BA) − λ12B
2 = O(B3) , as B → 0 . (1.52)

Remark 1.5.3.
Observing that the complex conjugation u �→ Γu = u intertwines −ΔBA and
−Δ(−BA) , i.e., satisfies

Γ ◦ΔBA = Δ(−BA) ◦ Γ , (1.53)

one can actually show that all the λ1j ’s with j odd vanish in the expansion
(1.43). So we have

λN1 (BA) ∼
∑

	≥1,j=2	

λ1jB
2	 . (1.54)

One can also observe that the functions ϕ1j are real for j even and purely
imaginary for j odd.
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Remark 1.5.4.
Without Assumption (1.41), λ12 can be more intrinsically written as

1
|Ω| inf

φ∈H2(Ω)

∫
Ω

|A +∇φ|2dx . (1.55)

Observe that (1.41) is satisfied if and only if the infimum of (1.55) is realized
for φ = 0 .

1.6 Notes

1. The main references for this chapter are the book by Kato [Kat1], the
series of articles by Avron–Herbst–Simon [AvHS1]–[AvHS3], the paper
by Combes–Schrader–Seiler [CoSS], and the contribution of Leinfelder–
Simader [LeS] on self-adjointness.

2. For an introduction to spectral theory and most of the material presented
in the three first sections, students can consult the books [ReS, LiL, LeB].

3. The abstract criterion of self-adjointness can be found in [ReS, Theo-
rem X. 26, Vol. II].

4. Theorem 1.2.2 is proven under weaker conditions on the electric potential
V in [Sima]. We follow here [He8], where the case without magnetic field
was considered. We show here that one can modify the proof in order
to accommodate the magnetic case also. One can find in [CyFKS, Chap-
ter 1] a statement of Leinfelder–Simader [LeS] giving a criterion of self-
adjointness under the weaker condition that A ∈ L4

loc and div A ∈ L2
loc.

This condition is necessary in order to have ΔAφ ∈ L2 for φ ∈ C∞
0 .

5. We have mainly discussed the Dirichlet case (which is the most stan-
dard one) and the Neumann case, which is the basic case in view of our
applications. Note that in the physics literature on superconductivity, one
finds other boundary conditions—the so-called de Gennes boundary con-
ditions (more commonly called Robin’s boundary condition in the mathe-
matics literature)—which take the form

ν · ∇Au = γu on ∂Ω , (1.56)

where γ is a real parameter with a physical interpretation. The case γ = 0
corresponds to the Neumann case. The de Gennes boundary condition
appears when studying the L2-normalized minimizers of the quadratic
form

H1(Ω) � u �→ Qγ(u) = QN (u) + γ

∫
∂Ω

|u|2dσ , (1.57)

where QN is defined in (1.11) and dσ is the induced measure on ∂Ω . In the
context of superconductivity, we refer to [dGe1, Kac1, Kac2, LuP3, Pa4].

6. The lower bound obtained in Lemma 1.4.1 appears already in the work of
Avron–Herbst–Simon [AvHS1]. It is actually closely related to the stan-
dard proof of the uncertainty principle.



1.6 Notes 17

7. An extension of Theorem 1.4.2 appears (actually in a still more general
situation) in [Me], [Ho, Vol. III, Chapter 22.3], and [HeM2]. The question
arises in some of these references for rather different problems occurring
in the analysis of partial differential equations like G̊arding’s inequality
or hypoellipticity of operators with double characteristics.

8. The problem of the perturbation theory for smallB analyzed in Section 1.5
appears in the one-dimensional case in the work of Bolley–Helffer [BolH2,
BolH3] for the analysis of a one-dimensional reduced model corresponding
to the functional

(f,A) �→
∫ +d

−d
κ−2f ′(x)2 + (1− f(x)2)2

+A(x)2f(x)2 + (A′(x)2 − h)2 dx , (1.58)

which occurs already in the work of Ginzburg–Landau [GiL] when
modeling a 2D problem for Ω = ]− d,+d[×R . The small parameter there
is the Ginzburg–Landau parameter κ and for a minimizer of the functional
(f,A) , the wave function f is nearly constant.
In the three-dimensional case, the question appears in the work of Pan
[Pa3] (for a problem coming from the analysis of Type I superconduc-
tors) and [Pa7] (in the context of problems for liquid crystals) and more
recently in [HeP2, HeP3].
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Diamagnetism

2.1 Preliminaries

For Schrödinger operators, the inclusion of a magnetic field raises the energy.
This is the consequence of a basic inequality due to Kato. A variation on this
question—namely, monotonicity of the ground state energy as a function of
the parameter B—is of central importance in the theory of superconductivity
and is discussed in Section 2.3 here and repeatedly in the book.

Without loss of generality, set B = 1 in this first section.

Theorem 2.1.1 (Diamagnetic inequality).
Let A : R

n → R
n be in L2

loc(R
n) and suppose that f ∈ L2

loc(R
n) is such that

(−i∇+ A)f ∈ L2
loc(R

n) . Then |f | ∈ H1
loc(R

n) and
∣∣∇|f |∣∣ ≤ ∣∣(−i∇+ A)f

∣∣ (2.1)

almost everywhere.

In the proof of this theorem we will clearly need to differentiate the
absolute value. We state this result as a proposition.

Proposition 2.1.2.
Suppose that f ∈ L1

loc(R
n) with ∇f ∈ L1

loc(R
n) . Then also ∇|f | ∈ L1

loc(R
n)

and with the notation

sign z =

{
z
|z| , for z �= 0 ,

0 , for z = 0 ,
(2.2)

we have

∇|f |(x) = �{sign(f(x))∇f(x)} for almost every x ∈ R
n . (2.3)

In particular, ∣∣∇|f |∣∣ ≤ |∇f | ,
almost everywhere in R

n .

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
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Proof of Proposition 2.1.2.
Suppose first that u ∈ C∞(Rn) and define |z|ε =

√|z|2 + ε2 − ε , for z ∈ C

and ε > 0 . We observe that

0 ≤ |z|ε ≤ |z| and lim
ε→0

|z|ε = |z| .

Then the function |u|ε , defined, for x ∈ R
n , by

|u|ε(x) = |u(x)|ε ,
belongs to C∞(Rn) and

∇|u|ε =
�(u∇u)√|u|2 + ε2

. (2.4)

Now let f be as in the proposition and define fδ as the convolution

fδ = f ∗ ρδ ,
with ρδ being a standard approximation of unity for convolution. Explicitly,
we take a ρ ∈ C∞

0 (Rn) with

ρ ≥ 0 ,
∫

Rn

ρ(x) dx = 1 ,

and define ρδ(x) := δ−nρ(x/δ) , for x ∈ R
n and δ > 0 . Then fδ → f ,

|fδ| → |f | , and ∇fδ → ∇f in L1
loc(R

n) as δ → 0 .
Take a test function φ ∈ C∞

0 (Rn) . We may extract a subsequence {δk}k∈N

(with δk → 0 for k → ∞) such that fδk
(x) → f(x) for almost every

x ∈ suppφ . We restrict our attention to this subsequence. For simplicity
of notation, we omit the k from the notation and write limδ→0 instead of
limk→∞ .

We now calculate, using dominated convergence and (2.4),∫
(∇φ)|f | dx = lim

ε→0

∫
(∇φ)|f |ε dx

= lim
ε→0

lim
δ→0

∫
(∇φ)|fδ |ε dx

= − lim
ε→0

lim
δ→0

∫
φ
�(fδ∇fδ)√|fδ|2 + ε2

dx .

Using the pointwise convergence of fδ(x) and ‖∇fδ − ∇f‖L1(suppφ) → 0 ,
we can take the limit δ → 0 and get

∫
(∇φ)|f | dx = − lim

ε→0

∫
φ
�(f∇f)√|f |2 + ε2

dx . (2.5)

Now, φ∇f ∈ L1(Rn) and f(x) (|f(x)|2 + ε2)−1/2 → sign f(x) as ε→ 0 . So we
get (2.3) from (2.5) by dominated convergence. ��
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Proof of Theorem 2.1.1.
Since A ∈ L2

loc(R
n) and f ∈ L2

loc(R
n) , the assumption (∇+ iA)f ∈ L2

loc(R
n)

implies that ∇f ∈ L1
loc(R

n) . Therefore, we can use Proposition 2.1.2 to con-
clude that (2.3) holds for f . Since �{sign(f)iAf} = 0 , we can rewrite (2.3)
as

∇|f | = �{sign(f)(∇+ iA)f} , (2.6)

and therefore, since |z| ≥ |�(z)| for all z ∈ C , we get (2.1). ��
Using Theorem 2.1.1 we now get, by the variational characterization of

the ground state energy, the comparison for Dirichlet eigenvalues,

inf σ
(
PDA,Ω + V

) ≥ inf σ
(−ΔD

Ω + V
)
, (2.7)

where −ΔD
Ω denotes the Dirichlet Laplacian in Ω .

Also, a similar result is true in the case of Neumann boundary conditions:

inf σ
(
PNA,Ω + V

) ≥ inf σ
(−ΔN

Ω + V
)
, (2.8)

where −ΔN
Ω denotes the Neumann Laplacian in Ω .

Inequality (2.8) admits a kind of converse inequality showing its optimality.

Proposition 2.1.3.
Suppose that Ω ⊂ R

2 or R
3 is bounded, smooth, and connected, that A ∈

C1(Ω), and that V ∈ L∞(Ω) . Let λ1(A) be the ground state of PNA . Then the
following three properties are equivalent:

1. PNA and PNA=0 are unitarily equivalent.
2. λ1(A) = λ1(0) .
3. A satisfies the following two conditions:

β := curlA = 0 (2.9)

and
1
2π

∫
γ

ωA =
1
2π

∫
γ

A · dx ∈ Z (2.10)

on any closed path γ in Ω .

Proof.
Clearly, 1 implies 2.

Let us now prove the statement that 3 implies 1. First, let us observe
that, when Ω is simply connected, condition (2.10) is a consequence of (2.9),
by Green’s formula. Now, even for nontrivial topology, conditions (2.9) and
(2.10) permit the construction of a multivalued function, φA , such that
∇φA = −A and exp(iφA) is welldefined. This function φA is defined by
taking some x0 ∈ Ω and then writing

φA(x) =
∫
γ(x0,x)

ωA ,



22 2 Diamagnetism

where γ(x0, x) is a path in Ω joining x0 and x and the integral is independent
of the choice of path (modulo 2πZ). This permits us to define the C1 function
on Ω :

Ω � x �→ UA(x) = exp(−iφA(x)) . (2.11)

The associated multiplication operator UA gives the unitary equivalence with
the problem corresponding to A = 0 . Thus, we have established that 3
implies 1.

Let us finish by giving the proof that 2 gives 3. This requires the use of
more advanced techniques, including some positivity results that are beyond
the scope of this book. Let uA be a normalized ground state of PNA . By elliptic
regularity theory we conclude that uA ∈ C1(Ω) . Define ρA := |uA| . The
diamagnetic inequality and assumption 2 imply that

λ1(A = 0) =
∫

Ω

|∇ρA|2 + V ρ 2
A dx ,

and so we conclude that ρA is a ground state for PNA=0 . By elliptic regularity
theory we therefore conclude that ρA ∈ C1(Ω) , and the Harnack inequality
[GiT, Corollary 9.25] implies that ρA > 0 in Ω .

Thus, we can write
eiφ =

uA

ρA
,

for some multivalued function φ such that ∇φ is welldefined and continuous
and eiφ is of class C1 . Now a calculation gives

λ1(A) =
∫

Ω

|(−i∇+ A)uA|2 + V |uA|2 dx

=
∫

Ω

|∇ρA|2 + V |ρA|2 dx+
∫

Ω

ρ2
A|∇φ+ A|2 dx .

(2.12)

So we can conclude that A = −∇φ , from which (2.9) and (2.10) clearly
follow. ��
Remark 2.1.4.
It is instructive to look at the model on the circle with the magnetic Laplacian
(−i ddθ + a)2 , where a is a real constant corresponding to the magnetic poten-
tial. So the magnetic field is zero and the spectrum can easily be found to be
described by the sequence (n+ a)2 (n ∈ Z) with corresponding eigenfunctions
θ �→ exp(inθ) .

We immediately see that, confirming the general statement, the ground
state energy, which is equal to dist(−a,Z)2 , increases when a magnetic poten-
tial is introduced. We also observe that the multiplicity of the ground state is 1
except when d(a,Z) = 1/2 . We note finally that the number of eigenvalues
which are strictly less than 1 , is 1 for a = 0 , and 2 for a∈ ]0, 1[ . This shows
that although the ground state energy becomes higher when we introduce a
magnetic potential, this is not the case for the second one.
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2.2 Diamagnetic Estimates

One can actually give a more quantitative version of the previous proof in
the two-dimensional case. We only consider the situation when Ω is regular,
bounded, and simply connected in R

2.
Let us start with the upper bound. Let u0 be the normalized, positive

ground state of −Δ + V . For any φ in C∞(Ω) ,1 we can use uφ = u0 exp iφ
as a test function. Using formula (2.12) and the min-max principle, we have

λ1(A) ≤ λ1(A = 0) +
∫

Ω

|∇φ + A|2u2
0 dx .

This implies

λ1(A) − λ1(0) ≤
(

sup
x∈Ω

u0(x)
)2
(

inf
φ∈C∞(Ω)

∫
Ω

|∇φ+ A|2 dx
)
.

So there exists by Proposition D.2.2 a constant CΩ,V such that

λ1(A)− λ1(0) ≤ CΩ,V ‖ curlA‖2H−1(Ω) , (2.13)

where H−1(Ω) denotes the dual of H1
0 (Ω) .

Let us now look for a lower bound. Again using (2.12), we first write∫
Ω

(|∇ρA|2 + V ρ 2
A) dx ≤ λ1(A) . (2.14)

We would like to estimate ρA − u0 as λ1(A)− λ1(0) tends to 0 .
For this, we first write

ρA = αu0 + u⊥ , (2.15)

where u⊥ is orthogonal to u0 in L2(Ω) .
Denoting by λ2(0) the second eigenvalue of the Neumann realization of

−Δ + V in Ω , we immediately deduce from (2.14) the inequality

(1− α2) ≤ λ1(A)− λ1(0)
λ2(0)− λ1(0)

,

which leads to

‖ρA − u0‖2 ≤ 2
λ1(A)− λ1(0)
λ2(0)− λ1(0)

. (2.16)

This control is not sufficient. We need a control in L∞ . One can then find,
using the Sobolev embedding theorem combined with interpolation, for any
θ∈ ]0, 1/2[ , a constant Cθ and pθ > 2(1− θ)/(1 − 2θ) such that

‖ρA − u0‖L∞ ≤ C‖ρA − u0‖θL2‖ρA − u0‖1−θW1,pθ
.

1 In the non simply connected case, one should replace this condition by exp iφ ∈
C∞(Ω) .
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So, for some constant C > 0 depending only on Ω and V , we get

‖ρA − u0‖L∞ ≤ C
(
λ1(A) − λ1(0)

) θ
2
(
(‖∇ρA‖Lpθ + ‖ρA‖Lpθ )1−θ + C

)
.

We now use the magnetic Sobolev spaces W 2,2
A (Ω) and get, using the diamag-

netic inequality,
‖ |uA| ‖W1,pθ (Ω) ≤ C ‖uA‖W2,2

A (Ω) , (2.17)

and

‖ρA − u0‖L∞ ≤ C(λ1(A)− λ1(0))
θ
2

(
(‖∇ρA‖Lpθ + ‖ρA‖Lpθ )1−θ + C

)

≤ C(λ1(A)− λ1(0))
θ
2

{(
‖uA‖W2,2

A (Ω)

)1−θ
+ C

}
.

We next use the estimate∑
j,k

‖DjDkψ‖2L2(Ω) ≤ 3 ‖ curlA‖2∞‖ψ‖22 + 2 ‖Hψ‖22 , (2.18)

which is a particular case of what will be proved in (11.5) and where the Dj ’s
correspond to magnetic differentiation: Dj = ∂xj + iAj and H =

∑
j D

2
j .

This leads, for given V and Ω and for any θ∈ ]0, 1/2[ , to the existence of
a constant Cθ such that for any A ,

‖ρA − u0‖L∞ ≤ Cθ(λ1(A) − λ1(0))
θ
2

×
(
‖ curlA‖∞ + (λ1(A)− λ1(0)) + Cθ

)
. (2.19)

We now come back to the end of our control of a lower bound. Starting
from

λ1(A)− λ1(0) ≥
∫

Ω

ρ2
A|∇φ+ A|2 dx ≥ inf

x∈Ω
|ρA(x)|2‖ curlA‖2H−1(Ω) (2.20)

(curl is continuous from L2 into H−1), we obtain the following converse state-
ment of (2.13). For any θ ∈ ]0, 1/2[ , there exists a constant Cθ > 0 such
that

λ1(A)− λ1(0) ≥ 1
Cθ

{
1− Cθ(λ1(A)− λ1(0))

θ
2

×
(
‖ curlA‖∞ + (λ1(A) − λ1(0)) + Cθ

)}
‖ curlA‖2H−1(Ω) .

(2.21)

This is rather good except for the fact that the norm ‖ curlA‖L∞ (instead of
‖ curlA‖H−1(Ω)) appears in the right-hand side.

Remark 2.2.1.
Replacing A by BA and letting B → 0 , it is interesting to compare the result
of this section with the result we have obtained in Section 1.5.
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2.3 Monotonicity of the Ground State Energy for Large
Field

As discussed earlier, the diamagnetic inequality (2.1) implies that the ground
state energy increases when a magnetic field is applied. Consider a fixed mag-
netic potential A and let λ1(B) be the ground state energy of the operator
(−i∇ + BA)2 + V (either in a domain and with boundary conditions, or
on R

n). One can now ask whether the function B �→ λ1(B) is monotone non-
decreasing for all B > 0 . This is generally not true. However, for large B ,
positive results can be obtained.

We consider the Neumann operator PNBA,V in a domain Ω and assume
that Ω , V are such that PNBA,V has compact resolvent for all (sufficiently
large) B > 0 . So the spectrum of PNBA,V consists of a sequence of eigenvalues
(of finite multiplicity) tending to infinity; in particular, the degeneracy of the
ground state energy is finite. Let B ∈ R and let n be the degeneracy of the
ground state λN1 (B) . For simplicity, from now on we write more briefly

λ1(B) = λN1 (B) .

Furthermore, we will assume that we have chosen a gauge such that

A(x) · ν(x) = 0 for all x ∈ ∂Ω . (2.22)

This implies that the domainD(PNBA,V ) is independent ofB ; see Remark 1.2.1.
We are now in a situation where we can apply analytic perturbation theory
to PNBA,V (see Theorem C.2.2 in Appendix C). Thus, there exist ε > 0 , n
analytic functions

(B − ε, B + ε) � θ �→ φj(θ) ∈ H2(Ω) \ {0} ,

for j = 1, . . . , n , and n analytic functions

(B − ε, B + ε) � θ �→ Ej(θ) ∈ R ,

such that

PNθA,V φj(θ) = Ej(θ)φj(θ) ,

Ej(B) = λ1(B) .

We may choose ε sufficiently small in order to have the existence of j+, j− ∈
{1, . . . , n} such that

for θ > B: Ej+(θ) = min
j∈{1,...,n}

Ej(θ) ,

for θ < B: Ej−(θ) = min
j∈{1,...,n}

Ej(θ) .
(2.23)
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Define the left and right derivatives of λ1(B):

λ′1,±(B) := lim
ε→0±

λ1(B + ε)− λ1(B)
ε

. (2.24)

Notice that

λ′1,+(B) = E′
j+(B) , λ′1,−(B) = E′

j−(B) ; (2.25)

in particular, λ′1,+(B) = λ′1,−(B) if j+ = j− . Notice also that since λ1 is the
minimum of the Ej , we must have

λ′1,+(B) ≤ λ′1,−(B) . (2.26)

Proposition 2.3.1.
For all B ∈ R , the one-sided derivatives λ′1,±(B) exist and satisfy

λ′1,±(B) = −2�〈φj± |A · (−i∇+BA)φj± 〉 .
Proof.
By (2.25) we need to prove that

E′
j±(B) = −2�〈φj± |A · (−i∇+BA)φj± 〉 .

But this result is just first-order perturbation theory (and is called the
Feynman–Hellmann formula). ��

Using the specific algebraic structure of PNBA,V and the variational princi-
ple, one can prove the following result.

Proposition 2.3.2.
Suppose that Ω is bounded with smooth boundary. Then

lim inf
B→∞

λ′1,+(B) ≥ lim sup
ε→0+

ε−1 lim inf
B→∞

(
λ1(B + ε)− λ1(B)

)
, (2.27)

lim sup
B→∞

λ′1,−(B) ≤ lim inf
ε→0−

ε−1 lim sup
B→∞

(
λ1(B + ε)− λ1(B)

)
. (2.28)

Proof.
Let ε > 0 . Then

λ′1,+(B) = −2�〈φj+(B) |A · (−i∇+BA)φj+(B)〉

=
1
ε
〈φj+(B) | (PN(B+ε)A,V − PNBA,V − ε2|A|2

)
φj+ (B)〉 .

Therefore, the variational principle implies

λ′1,+(B) ≥ λ1(B + ε)− λ1(B)
ε

− ε‖A‖2L∞(Ω) .

Upon letting B → +∞ and then ε→ 0 , we get (2.27).
The proof of (2.28) is similar (taking ε < 0 reverses the inequalities) and

is omitted. ��
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Proposition 2.3.2 implies that the derivative of λ1(B) (for large values
of B) can be estimated from knowledge of the asymptotics of λ1(B).

Corollary 2.3.3.
Suppose that Ω is bounded with smooth boundary. Suppose that A, V are
smooth functions and that Ω,A, V are such that there exist α ∈ R and a
function g, satisfying g ∈ o(B), and

λ1(B) = αB + g(B) + o(1) , as B → +∞ . (2.29)

Then

lim inf
B→∞

λ′1,+(B) ≥ α+ lim sup
ε→0+

ε−1 lim inf
B→∞

(
g(B + ε)− g(B)

)
, (2.30)

lim sup
B→∞

λ′1,−(B) ≤ α+ lim inf
ε→0−

ε−1 lim sup
B→∞

(
g(B + ε)− g(B)

)
. (2.31)

In particular, if for all ε∈ ]0, 1[ ,

lim
B→∞

g(B + ε)− g(B) = 0 , (2.32)

then the limits limB→∞ λ′1,+(B) and limB→∞ λ′1,−(B) exist and

lim
B→∞

λ′1,+(B) = lim
B→∞

λ′1,−(B) = α . (2.33)

Remark 2.3.4.
In the case of the disc (see Chapter 4), the assumption (2.32) is not satisfied,
and we need the more general result of (2.30) and (2.31). We will actually
in specific cases (see, for example, the proof of Theorem 8.5.1) combine the
general idea with other techniques in order to obtain the same conclusion but
without knowing as precise an asymptotic result as (2.29). In those cases, one
will actually not take ε to be small, but rather to grow as a function of B.

Remark 2.3.5.
Let γ ∈ [0, 1[ ; then g(θ) = θγ satisfies (2.32). Thus, if there exist powers
γ1, . . . , γm ∈ [0, 1[ and α, α1, . . . , αm ∈ R , such that (as B →∞)

λ1(B) = αB +
m∑
j=1

αjB
γj + o(1) ,

then Corollary 2.3.3 implies that

lim
B→+∞

λ′1,±(B) = α .

Proof of Corollary 2.3.3.
The estimates (2.30) and (2.31) are immediate from Proposition 2.3.2.
Furthermore, suppose (2.32) is satisfied. Then the last terms in (2.30) and
(2.31) vanish. Therefore, we get (2.33) by recalling (2.26). ��



28 2 Diamagnetism

2.4 Kato’s Inequality

In order to obtain stronger results on essential self-adjointness than
Theorem 1.2.2, a useful tool is the so-called Kato inequality. We present it
in the magnetic version in Theorem 2.4.2.

Let us start with the case without magnetic field.

Theorem 2.4.1 (Kato’s inequality).
Let f ∈ L1

loc(R
n) such that Δf ∈ L1

loc(R
n) . Then we have the inequality

Δ|f | ≥ �{sign(f)Δf} , (2.34)

almost everywhere, where sign f was defined in (2.2).

The proof of Theorem 2.4.1 follows the same steps as the proof of
Proposition 2.1.2. That is, one first considers smooth functions f and the
regularized absolute value

|z|ε =
√
|z|2 + ε2 − ε ,

and calculates directly. One then considers a sequence fδ of smooth approxi-
mations to f . Taking first δ and then ε to zero, one obtains the desired
inequality. We leave the details to the reader (see [ReS, Vol. 2, Section X.4]).

Theorem 2.4.2 (Kato’s magnetic inequality).
Let A ∈ C1(Rn,Rn) . Then, for all f ∈ L1

loc(R
n) with (−i∇ + A)2f ∈

L2
loc(R

n) , we have the inequality

Δ|f | ≥ −�{sign(f)(−i∇+ A)2f} , (2.35)

where sign f was defined in (2.2).

Proof of Theorem 2.4.2.
We only give the proof under the extra regularity assumption, A ∈ C2(Rn) .
In that case the assumption (−i∇ + A)2f ∈ L2

loc(R
n) and standard elliptic

regularity imply that f ∈ H2
loc(R

n) , in particular that

Δf,∇f ∈ L1
loc(R

n) . (2.36)

Suppose now that u is smooth. Then we can calculate as follows:

∇|u|ε =
�{u∇u}√|u|2 + ε2

=
�{u (∇+ iA)u}√|u|2 + ε2

. (2.37)

We therefore find√
|u|2 + ε2 Δ|u|ε = div(

√
|u|2 + ε2∇|u|ε)−

∣∣∇|u|ε∣∣2
= �{∇u · (∇+ iA)u+ u div((∇+ iA)u)

}− ∣∣∇|u|ε∣∣2
=
∣∣(∇+ iA)u

∣∣2 − ∣∣∇|u|ε∣∣2
+ �{iAu · (∇+ iA)u+ u div((∇+ iA)u)

}
. (2.38)
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By (2.37) and using the Cauchy–Schwarz inequality, we get

∣∣(∇+ iA)u
∣∣2 ≥ ∣∣∇|u|ε∣∣2 .

So (2.38) implies that, for a smooth u ,

Δ|u|ε ≥ �u (∇+ iA)2u√|u|2 + ε2
. (2.39)

The end of the proof now follows the same lines as the proof of
Proposition 2.1.2, i.e., (2.39) holds for suitably smoothened versions fδ of f .
By taking the limit δ → 0 followed by the limit ε→ 0 , in the sense of distri-
butions, one arrives at (2.35).

If one only knows that A ∈ C1 , it is not immediate to conclude (2.36).
The details in this case can be found in [ReS, Vol. 2, Section X.4]. ��

2.5 Notes

1. The diamagnetic inequality first appeared in [Kat2]. We refer also to
Sections 7.20–7.21 in [LiL] for additional comments on our Section 2.1.

2. The Aharonov–Bohm effect appears as a basic Gedanken Experiment
in the interpretation of quantum mechanics [AhB]. It says that although
the magnetic field is identically zero, the magnetic potential has an effect
through the circulation of its magnetic potential along paths that are not
homotopic to a point. This can typically occur in two-dimensional domains
with holes. Although the first effect considered by Aharonov and Bohm
was related to scattering theory, the effect analyzed in the present chapter
(Proposition 2.1.3) corresponds to an analogous interpretation. This effect
was first mentioned in a paper by Lavine–O’Caroll [LaOC] that gives a
heuristic proof of the phenomenon later justified in [He3]. The proof given
here is a little simpler than the original one, profiting from the fact that
we consider the Neumann condition.

3. Diamagnetism appears also in various other questions. Let us mention
its connection with Hardy inequalities and the applications to complex
analysis [ChF].
An interesting model case is the Dirichlet realization of the magnetic
Laplacian in Ω = R

2 \ {0} or in Ω = D(0, 1) \ {0} , when the magnetic
potential is

A =
α

|x|2 + |y|2 (−y, x) .

The corresponding magnetic field vanishes identically (in polar coordi-
nates, we have ωA = αdθ), but the flux around a positively oriented
simple curve around the origin is equal to 2πα . In this example, one can,
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for instance, explicitly measure the diamagnetic effect. Using polar coor-
dinates and a unitary transformation, one is indeed led to the analysis of
the family of Dirichlet operators (indexed by m ∈ Z):

− d2

dr2
+

(α−m)2 − 1
4

r2
,

on L2( ]0,+∞[ ) or L2( ]0, 1[ ) .
When α = 1/2 , the ground state has multiplicity 2 as for the toy model
on the circle (see Remark 2.1.4). This has interesting consequences in
superconductivity (see in the book [BeR] the contributions of Rubinstein
(after Berger–Rubinstein) and Helffer, M. and T. Hoffmann-Ostenhof, and
Owen).
There is a long list of references related to this operator—see [LaW] or
[Ba] and references therein. These authors also consider cases with holes.

4. In Section 2.2, we can also write, starting from (2.20), the estimate

λNA − λN0 ≥
∫

Ω

ρ2
0|∇φ+ A|2dx− 2

∫
Ω

ρ0|ρA − ρ0||∇φ+ A|2 dx . (2.40)

This yields

λNA − λN0 ≥ 1
C

∫
Ω

|∇φ+ A|2dx− C‖ρA − ρ0‖2‖∇φ+ A‖24 . (2.41)

From (2.41) we find, for some constant C (independent of A),
√
λNA − λN0

(√
λNA − λN0 + inf

φ
‖∇φ+ A‖24

)
≥ 1
C

inf
φ
‖∇φ+ A‖22 . (2.42)

5. On the subject of diamagnetism, we would also like to mention the con-
tribution of Erdös [Er2, Er3] and his survey [Er4], which has one section
devoted to this question and contains many references.

6. For the applications of Kato’s inequality to self-adjointness questions,
we refer also to [ReS, Vol. 2, Section X.4].
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Models in One Dimension

Many of the spectral problems that we encounter later in the text can be

have to be analyzed in detail in order to understand the original higher-
dimensional questions. That is the objective of the present chapter.

3.1 The Harmonic Oscillator on R

The most important operator in this book is the harmonic oscillator. Actually,
the main role will be played by this operator in its realization on a half-axis,
but before analyzing that, we recall some results on the case without boundary.
Let

h0 := − d2

dt2
+ t2 , (3.1)

whose domain is
D(h0) = B2(R) , (3.2)

where, for k ∈ N , Bk(R) is defined as

Bk(R) = {u ∈ L2(R) : tpu(q)(t) ∈ L2(R) , ∀p, q ∈ N s.t. p+ q ≤ k} . (3.3)

The space Bk is equipped with the natural norm,

‖u‖Bk =
∑
p+q≤k

‖tpu(q)‖L2 . (3.4)

Of course, h0 is the unique self-adjoint operator associated with the quadratic
form on B1(R) :

B1(R) � u �→
∫ +∞

−∞

(|u′(t)|2 + t2|u(t)|2) dt . (3.5)

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_3,  
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completely described in terms of one-dimensional problems. These 1D problems
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This operator has compact resolvent and its spectrum is known explicitly as

σ(h0) = {(2j − 1) , j ∈ N
∗} , (3.6)

each eigenvalue having finite multiplicity. Moreover, the corresponding ortho-
normal basis of eigenfunctions {ϕj} [associated with the eigenvalue (2j − 1) ,
j ∈ N

∗] are generated from the Gaussian

ϕ1(t) = π− 1
4 exp(−t2/2) ,

through the action of the creation operator

L = − d

dt
+ t ,

by the formula:
ϕj = cjL

j−1ϕ1 , (3.7)

where cj ∈ R is a normalization constant.
One can recognize the Schwartz space S(R) as

S(R) = ∩kBk(R) . (3.8)

One can show the following proposition by the difference-quotients method

Proposition 3.1.1.
For all k ∈ N , the restriction of h0 to Bk(R) defines an isomorphism of
Bk+2(R) onto Bk(R) and hence of S(R) onto S(R) .

One way to see this property is to observe that S(R) can be described as
the subspace of the functions in L2(R) , whose coefficients in the orthonormal
basis ϕj are in the space of the rapidly decreasing sequences s(N) .

Remark 3.1.2.
The same proof gives that, for any λ �∈ σ(h0) , h0 − λ maps Bk+2(R) onto
Bk(R) for all k ∈ N and S(R) onto S(R) .

3.2 Harmonic Oscillator on a Half-Axis

Let us begin with the analysis of a family of ordinary differential operators,
whose study will play an important role in the analysis of various examples.
For ξ ∈ R , we consider the Neumann realization hN,ξ in L2(R+) associated
with the operator − d2

dt2
+ (t+ ξ)2 , i.e.,

hN,ξ := − d2

dt2
+ (t+ ξ)2, D(hN,ξ) = {u ∈ B2(R+) |u′(0) = 0} . (3.9)

Here the Bk(R+) are defined similarly to the Bk(R) , and let us observe that

∩k∈NB
k(R+) = S(R+) .
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3.2.1 Elementary properties of hN,ξ

It is easy to see that the operator hN,ξ has compact resolvent. This operator
is indeed associated with the quadratic form

B1(R+) � u �→ q(N,ξ)(u) :=
∫ +∞

0

(|u′(t)|2 + (t+ ξ)2|u(t)|2) dt , (3.10)

where [see (3.3)]

B1(R+) := {u ∈ L2(R+) , tu ∈ L2(R+) , andu′(t) ∈ L2(R+)} . (3.11)

So the form domain is B1(R+) and it is a standard exercise to show that the
injection of B1(R+) into L2(R+) is compact.

The domain of hN,ξ can be determined as

D(hN,ξ) = {u ∈ B2(R+) |u′(0) = 0} . (3.12)

Moreover, the lowest eigenvalue μ(ξ) of hN,ξ is simple. For this point, the
following simple argument can be used. Suppose by contradiction that the
eigenspace is (at least) of dimension 2 . Then we can find in this eigenspace an
eigenstate u such that u(0) = u′(0) = 0 . But then it should be identically 0
by Cauchy uniqueness. This argument actually gives that all eigenvalues are
simple.

Suppose that f is a ground state, normalized in L2 . Using Propo-
sition 2.1.2, we see that |f | has a lower energy. Therefore, we may assume
that f ≥ 0 . Assume that f(t0) = 0 . By positivity, we must have f ′(t0) = 0 ,
and we therefore get by Cauchy uniqueness that f ≡ 0 . This is in contradic-
tion to the normalization condition. So we see that the ground state will be
strictly positive.

We can therefore introduce

Definition 3.2.1.
The function ϕξ is the unique, strictly positive, L2-normalized ground state of
hN,ξ associated to μ(ξ) .

Proposition 3.2.2.
The function R � ξ �→ μ(ξ) is continuous and satisfies

1. μ(ξ) > 0 , for all ξ ∈ R .
2. At +∞ we have the limit,

lim
ξ→+∞

μ(ξ) = +∞ . (3.13)

3. At the origin the value is
μ(0) = 1 . (3.14)

4. At −∞ we have
lim

ξ→−∞
μ(ξ) = 1 . (3.15)
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5. There exists ξ0 ∈ R
− such that

μ(ξ0) = inf
ξ∈R

μ(ξ) < 1 . (3.16)

Furthermore, the second eigenvalue μ2(ξ) satisfies

μ2(ξ) ≥ 1 , ∀ξ ∈ R . (3.17)

Proof.
The min-max characterization shows that ξ �→ μ(ξ) is a continuous function.
Also, the operator hN,ξ is clearly positive, so μ(ξ) > 0 .

To prove (3.13), we estimate for ξ ≥ 0 ,

hN,ξ ≥ − d2

dt2
+ t2 + ξ2 ≥ ξ2,

and this gives
μ(ξ) > ξ2 , ∀ξ ≥ 0 . (3.18)

Clearly, (3.13) follows from this.
To prove (3.14), we use the fact that the lowest eigenvalue of the Neumann

realization of − d2

dt2 + t2 in R
+ is the same as the lowest eigenvalue of − d2

dt2 + t2

in R , but restricted to the even functions, which is also the same as the lowest
eigenvalue of − d2

dt2 + t2 in R [see (3.6)].
Moreover, the derivative of μ at 0 is strictly positive [see (3.21) or (3.29)

below]. Hence, using also (3.14), we get the inequality in (3.16). This weak
result can also be obtained, without proving that μ is C1, by minimizing the
quadratic form associated with h(N)(ξ) over a family of Gaussians.

It is a little more difficult to prove (3.15). For the upper bound, we observe
that μ(ξ) ≤ λ(ξ) , where λ(ξ) is the eigenvalue of the Dirichlet realization hD,ξ .
By the monotonicity of λ(ξ) , it is easy to see that λ(ξ) ≥ 1 and that λ(ξ) → 1
as ξ → −∞ . Another way is to use the function t �→ exp− 1

2 (t+ ξ)2 as a test
function.

For the converse statement, we start from the eigenfunction t �→ ϕξ(t) and
show some uniform decay of ϕξ(t) near 0 as ξ → −∞ . It is actually enough
to write that for any ξ < 0 we have

∫ +∞

0

|ϕ′
ξ(t)|2 dt+

∫ +∞

0

(t+ ξ)2|ϕξ(t)|2 dt ≤ μ(ξ) ≤ λ(ξ) ≤ λ(0) = 3 .

This implies that, for any R > 0 ,
∫ R

0

|ϕξ(t)|2 dt ≤ 3
(R+ ξ)2

, ∀ξ < −R . (3.19)

We can now use the function x �→ χ(x − ξ)ϕξ(x − ξ) , with χ with support
in ]0,+∞[ such that χ = 1 on [1,+∞[ , as a test function for the harmonic
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oscillator in R—h0—and, applying the min-max principle, we obtain the exis-
tence of C > 0 such that

1 ≤ μ(ξ) +
C

|ξ| , ∀ξ ≤ −C . (3.20)

This completes the proof of (3.15).
Combining the previous results, we obtain that the infimum in (3.16) is

actually a minimum (and strictly less than 1). This finishes the proof of (3.16).
The assertion about the second eigenvalue was proven in [Fr1] and is based

on the following idea. If u2 is indeed an eigenfunction associated with μ2(ξ) ,
u2 , which is orthogonal to the strictly positive first eigenfunction, admits at
least1 one zero x2(ξ) in R

+ . So the restriction of u2 to ]x2(ξ),+∞[ is an
eigenfunction of the Dirichlet realization of the harmonic oscillator

− d2

dt2
+ (t+ ξ)2 , in ]x2(ξ),+∞[ .

So μ2(ξ) is larger than the lowest eigenvalue of this problem. By monotonicity
of the Dirichlet problem (see Example A.2.2), we get that μ2(ξ) is higher than
the lowest eigenvalue of the harmonic oscillator on R , which is equal to 1 . ��

3.2.2 Variation of μ and Feynman–Hellmann formula.

It is a little more work (see Appendix C) to show that the eigenfunction
depends analytically on ξ. Actually, observing that hN (ξ) is a holomorphic
family of type (A) with domain given in (3.12), we have the proposition.

Proposition 3.2.3.
The eigenvalue μ(ξ) and the corresponding eigenfunction ϕξ are analytic with
respect to ξ .

Properties (3.13), (3.14), and (3.15) are completed by the following propo-
sition.

Proposition 3.2.4.
The eigenvalue μ admits a minimum Θ0 , which is attained at a unique point
ξ0 < 0, and satisfies Θ0 ∈ ]0, 1[ . Moreover, this minimum is nondegenerate
and μ is strictly decreasing on ]−∞, ξ0] from 1 to Θ0 and strictly increasing
on [ξ0,+∞[ from Θ0 to +∞ .

Remark 3.2.5.
In Proposition 3.2.8 ahead we will improve the lower bound to Θ0 > 1/2.

Proof.
Let us first establish the following identity:

μ′(ξ) = [μ(ξ)− ξ2]ϕξ(0)2 . (3.21)

1 Actually, exactly one by Sturm–Liouville theory.
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To get (3.21), we use the Feynman–Hellmann formula (3.29) ahead.

μ′(ξ) = 2
∫ ∞

0

(t+ ξ)|ϕξ(t)|2dt. (3.22)

One proceeds by writing 2(t+ ξ) = d
dt (t+ ξ)2 and integrating by parts. This

yields

μ′(ξ) = −2
∫ ∞

0

(t+ ξ)2ϕξ(t)ϕ′
ξ(t)dt− ξ2ϕξ(0)2.

Using the eigenvalue equation for ϕξ inside the integral sign yields (3.21).
From (3.21), it follows that, for any critical point ξc of μ in R

−,

μ′′(ξc) = −2ξcϕ2
ξc

(0) > 0 . (3.23)

So any negative critical point will be a local minimum. Thus, there can be at
most one negative critical point. The existence of a negative critical point
follows from Proposition 3.2.2. It also follows from (3.23) that any posi-
tive critical point will be a local maximum. However, limξ→+∞ μ(ξ) = +∞.
Combining these two pieces of information, we find that no positive critical
point exists. Finally, (3.21) implies that μ′(0) > 0.

In conclusion, there exists a unique minimum ξ0 < 0 such that

Θ0 = inf
ξ
μ(ξ) = μ(ξ0) < 1 . (3.24)

Moreover, by (3.21),
Θ0 = ξ20 . (3.25)

��
Remark 3.2.6.
In the case of the Dirichlet realization, we have a similar formula:

λ′(ξ) = (ϕDξ )′(0)2 , (3.26)

where ϕDξ is the ground state of hD,ξ and this immediately shows the monotoni-
city. Note that (ϕDξ )′(0) �= 0 (by the Cauchy uniqueness theorem), so λ′ is
strictly positive.

This formula is actually a particular case of a general formula (called
Rellich’s formula) for the Dirichlet realization of a Schrödinger operator.

We now further consider the properties of ξ �→ μ(ξ) and ϕξ(·), which are
related to the Feynman–Hellmann formula. We differentiate the identity2 with
respect to ξ:

hN (ξ)ϕ( · ; ξ) = μ(ξ)ϕ( · ; ξ) . (3.27)

2 We change a little the notations for hN,ξ [this becomes hN (ξ)] and ϕξ [this becomes
ϕ( · ; ξ))] in order to have an easier way of writing the differentiation.
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We obtain

(∂ξhN (ξ)− μ′(ξ))ϕ( · ; ξ) + (hN (ξ)− μ(ξ))(∂ξϕ)( · ; ξ) = 0 . (3.28)

Taking the scalar product with ϕξ in L2(R+) , we obtain the so-called
Feynman–Hellmann formula:

μ′(ξ) = 〈 ∂ξhN (ξ)ϕξ | ϕξ〉 = 2
∫ +∞

0

(t+ ξ)|ϕξ(t)|2dt . (3.29)

Taking the scalar product with (∂ξϕ)(·; ξ) , we obtain the identity:

〈(∂ξhN (ξ)− μ′(ξ))ϕ( · ; ξ) | (∂ξϕ)(·; ξ)〉
+ 〈(hN (ξ)− μ(ξ))(∂ξϕ)( · ; ξ) | (∂ξϕ)( · ; ξ)〉 = 0 . (3.30)

In particular, for ξ = ξ0 , we obtain
〈
(∂ξhN (ξ0)ϕ( · ; ξ0) | (∂ξϕ)(·; ξ0)

〉
+
〈
(hN (ξ0)− μ(ξ0))(∂ξϕ)( · ; ξ0) | (∂ξϕ)( · ; ξ0)

〉
= 0 . (3.31)

We observe that the second term is positive [and with some extra work coming
back to (3.28) strictly positive]:

〈(∂ξhN (ξ0))ϕ)( · ; ξ0) | (∂ξϕ)( · ; ξ0)〉 < 0 . (3.32)

Let us define for later use

I2 := −1
4
〈(∂ξhN (ξ0))ϕ)( · ; ξ0) | (∂ξϕ)( · ; ξ0)〉 . (3.33)

Let us differentiate (3.28) once more with respect to ξ :

2(∂ξhN (ξ)− μ′(ξ))∂ξϕ( · ; ξ) + (hN (ξ)− μ(ξ))(∂2
ξϕ)( · ; ξ)

+ (∂2
ξh
N (ξ) − μ′′(ξ))ϕ( · ; ξ) = 0 . (3.34)

Taking the scalar product with ϕξ and ξ = ξ0 , we obtain from (3.32) that

μ′′(ξ0) = 2 + 2〈 ∂ξhN (ξ0)ϕ( · ; ξ0) | ∂ξϕ( · ; ξ0)〉 < 2 . (3.35)

We also notice that
μ′′(ξ0)

2
= 1− 4I2 . (3.36)

3.2.3 Formulas for the moments

We set
u0 = ϕξ0 (3.37)
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and introduce the constant

C1 =
u2

0(0)
3

. (3.38)

The next formula (3.39) is simply a rephrasing of (3.23):

μ′′(ξ0)
2

= 3C1
√

Θ0 . (3.39)

Define Mk to be the kth moment, centered at −ξ0 , of the measure u2
0(t) dt:

Mk =
∫

R+
(t+ ξ0)ku2

0(t) dt . (3.40)

These moments can be calculated as follows.

Lemma 3.2.7.
The first moments can be expressed by the following formulas:

M0 = 1 , M1 = 0 , M2 =
Θ0

2
, M3 =

u2
0(0)
6

> 0 . (3.41)

Proof.
Define for α > 0 the following L2-normalized functions:

u0,α(t) :=
√
αu0(αt) . (3.42)

After a change of variable, we see that

Θ0 =
∫ ∞

0

α−2|u′0,α(t)|2 + (αt+ ξ0)2u2
0,α(t) dt

for all α > 0. Differentiating this function at α = 1 and using (3.29), we get
∫ +∞

0

u′0(t)
2 dt =

∫ +∞

0

(t+ ξ0)2u0(t)2 dt =
Θ0

2
.

To have formulas for higher-order moments, we observe the following
identities:

(hN (ξ0)−Θ0)(2pu′0 − p′u0)

= u0

(
p(3) − 4

(
(t+ ξ0)2 −Θ0

)
)p′ − 4(t+ ξ0)p

)
, (3.43)

for p ∈ C∞(R+) , and

〈(hN (ξ0)−Θ0)v |u0〉 = u0(0)v′(0) , (3.44)

for v ∈ S(R+) . So for any polynomial p , we get

〈(hN (ξ0)−Θ0)(2pu′0 − p′u0) |u0〉
= u2

0(0)
(
2p(0)(ξ20 −Θ0)− p(2)(0)

)
= −u2

0(0)p(2)(0) ,

where we have used (3.25). Taking p(t) = (t + ξ0)2 gives the formula
for M3 . ��
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As an application, we give a lower bound of Θ0 :

Proposition 3.2.8.
We have Θ0 > 1/2.

Proof.
By the lower bound to the harmonic oscillator on the half-axis, we can estimate

1 <
∫ ∞

0

|u′0(t)|2 + t2u2
0(t) dt .

Inserting
t2 = (t− ξ0)2 + 2ξ0(t− ξ0) + ξ20 ,

applying the formula for M1, as well as the definition of u0 , we find

1 < Θ0 + ξ20 = 2Θ0 .

This clearly finishes the proof. ��

3.2.4 On the regularized resolvent

Finally, in some more specialized applications, we will need the following
mapping properties of the regularized resolvent.

Lemma 3.2.9.
Let P0 = hN (ξ0)−Θ0 . For φ ⊥ u0 , we can define P−1

0 φ as the unique solution
f to

P0f = φ , f ⊥ u0 . (3.45)

Let R0 ∈ L(L2(R+)) be the regularized resolvent:

R0φ =

{
0 , φ ‖ u0 ,

P−1
0 φ, φ ⊥ u0

(3.46)

(and extended by linearity). Then R0 is continuous from S(R+) into S(R+) .
Moreover, for any α ≥ 0 , R0 is continuous in L2(R+ ; exp(−αt) dt) .

Sketch of proof.
Using the local regularity up to the boundary of P0 (as a differential operator),
we first get that R0 sends S(R+) into C∞(R+) . For the control at +∞ ,
we then observe, after cutting away from 0 , that the problem is reduced to
the question of inverting the harmonic oscillator h0 −Θ0 on S(R) , which is a
standard result (see Remark 3.1.2).

For the last statement, we can also observe that, for ε0 > 0 small enough,
the operator

exp(−εt2) ·
(
− d2

dt2
+ (t+ ξ0)2 −Θ0

)−1

· exp(εt2) ,
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which can also be seen as
(
−
(
d

dt
+ 2εt

)2

+ (t+ ξ0)2 −Θ0

)−1

,

is welldefined for any ε ∈ [−ε0, ε0] and extends continuously to L2(R) and by
using, for example, a global pseudodifferential calculus to S(R) . ��
Remark 3.2.10.
By similar techniques, it is easy to prove that the eigenfunctions of hN (ξ) are
in S(R+) .

3.3 Montgomery’s Model

We briefly discuss a one-dimensional model that is useful for the description
of the results in dimension 3 . Although not directly used later, it can be
interesting to see how it appears first in the analysis of “magnetic bottles”.

We consider in R
2
x,y , and for some parameter κ > 0 the operator

P := −∂2
x +
(
−i∂y +

κ

2
x2
)2

. (3.47)

The magnetic potential is A = (0, κx2/2), and we have

curlA = κx .

So the magnetic field vanishes along the line {x = 0} . Let us describe the
spectral analysis of this model. After a Fourier transform in the y-variable,
we first get

P̂ = −∂2
x +
(
η +

κ

2
x2
)2

.

This leads to the analysis of the family, parametrized by η ∈ R , of self-adjoint
operators on L2(R) :

P̂ (η) = − d2

dx2
+
(
η +

κ

2
x2
)2

.

Using a simple dilation, we get

inf σ(P̂ ) = inf
η

inf σ
(
P̂ (η)

)
=
∣∣∣κ
2

∣∣∣
2
3

inf
ρ

inf σ
(
− d2

dr2
+ (r2 + ρ)2

)
. (3.48)

Let us summarize some properties of the family of operators

S(ρ) = − d2

dr2
+ (r2 + ρ)2 , (3.49)

and of the corresponding ground state ψρ .
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Theorem 3.3.1.

1. There exists a unique ρ = ρmin such that

ν̂0 := inf
ρ

inf σ
(
− d2

dr2
+ (r2 + ρ)2

)
= inf σ

(
− d2

dr2
+ (r2 + ρmin)2

)
.

(3.50)
2. ψρ belongs to S(R) and is even.

Sketch of proof.
Except for the uniqueness of the minimum, the proof of these statements is
not too difficult.

It is immediate to see that the lowest eigenvalue ν̂(ρ) of S(ρ) tends to +∞
as ρ → +∞ . Also, first-order perturbation theory gives that ν̂′(ρ) > 0 for
ρ ≥ 0 .

To analyze the behavior as ρ → −∞ , it is suitable to do a dilation
r =

√−ρ s , which leads to the analysis of

(−ρ)2
(
−h2 d

2

ds2
+ (s2 − 1)2

)
,

with h = (−ρ)−3/2 small. Semiclassical analysis is therefore relevant and it
is easy to show, using harmonic approximation, as it will be explained in
Chapter 7, that

ν̂(ρ) ∼ 2|ρ| 12 as ρ→ −∞ .

It is then clear that the continuous function ν̂(ρ) admits a minimum for a
strictly negative ρmin , which is given, using the Feynman–Hellmann formula,
by

ρmin = −
∫
r2|ψρmin(r)|2 dr . (3.51)

��

3.4 A Model Occurring in the Analysis of Infinite Sectors

When looking at problems in an infinite sector of opening angle α , we get—
after various changes of variables and a gauge transformation—the question
of determining the lower bound for the quadratic form

Qα(u) = α

∫
]0,+∞[×]− 1

2 ,+
1
2 [

(
2t|(∂t − iη)u|2 +

1
2α2t

|∂ηu|2
)
dtdη ,

where we minimize over the L2-normalized functions in the variational space

V =
{
u ∈ L2 | t−1/2∂ηu ∈ L2,

√
t(∂t − iη)u ∈ L2

}
,

with L2 = L2(]0,+∞[×]− 1/2,+1/2[) .
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When analyzing the asymptotics of the model in a sector with a small
opening angle, it is natural to think that, as α→ 0 , the ground state will be
essentially constant in the η variable. This leads us to restrict attention to the
subspace of the η invariant functions. On this space the quadratic form Qα
takes the reduced form

Qred
α (u) = 2α

∫ +∞

0

(
t|∂tu|2 +

t

12
|u|2
)
dt .

Dividing by α , the differential operator associated with the quadratic form
Qred
α is

Lmean = −2
d

dt
t
d

dt
+
t

6
, (3.52)

which consequently plays the role of a “mean-value” operator (after integrat-
ing over the angle variable). This operator is easily seen to have compact
resolvent. Furthermore, its ground state energy and corresponding ground
state are given by

λmean =
1√
3
, u(t) =

1√
3

exp
(
− t

2
√

3

)
. (3.53)

3.5 Notes

1. The method of difference-quotients, which can be used in the proof of
Proposition 3.1.1, is explained in [LiM] or [GiT].

2. The family hN,ξ of model problems on R
+, first appeared in the work

of de Gennes. In physics books, one usually gets a partial estimate
by considering a problem on the line with the potential (|t| + ξ)2 for
ξ < 0 . The complete mathematical analysis first appeared in the works
of Bolley [Bol] and Bolley–Helffer [BolH1], who discovered the role of
(3.21). The proof of (3.21) in full generality was obtained by Dauge–Helffer
[DaH].

3. The half-axis models, hN,ξ, reappeared a few years later in the analysis of
2D problems. The first one is the case of the disc [BaPT], which will be
discussed in detail later. We should also mention the papers of Sternberg
and collaborators (cf. [BeS, dPiFS]), who discovered new relations between
the moments, and at about the same time the work of Lu–Pan (see [LuP3]
and references therein). The general formula for the moments for k > 3
given in [BeS] is

4kMk = (k − 1)
{
4ξ20Mk−2 + (k − 2)[ξk−3

0 φ2
0(0) + (k − 3)Mk−4]

}
. (3.54)

4. The estimate of the value of Θ0 is often carried out in physics texts by
using appropriate Gaussians as test functions. That yields quite good
upper bounds. The lower bound of Proposition 3.2.8 is given in [LuP3].
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We also state the following numerical values from [Bon1, Bon3] (containing
also a rigorous analysis of the error):

C1 ∼ 0.254 , |ξ0| ∼ 0.768 . (3.55)

Another approach is using (Weber) special functions. If u(t;λ) is the
unique solution in R of

(
− d2

dt2
+ t2 − λ

)
u = 0 ,

such that limt→+∞ t(1−λ)/2et
2/2u(t;λ) = 1 , then Θ0 = ξ20 can be recovered

as the solution of (∂tu)(ξ, ξ2) = 0. This has been implemented in Mathe-
matica by M. Persson and yields the same numerical values as above
(3.55). This approach can, in principle, give arbitrarily good precision.

5. The global pseudodifferential calculus is, for example, presented in [He1]
and in [Ho] in the usual context of the Weyl calculus.

6. Montgomery’s model appears in a problem in sub-Riemannian geometry:
Can we hear the shape of a zero locus [Mon] (see also [HeM2]). It also
appears in the theory of analytic hypoellipticity. Its role in
three-dimensional superconductivity problems was first discovered by Pan
[Pa6] and then exploited by Helffer–Morame [HeM5, HeM6], see also
[HeK1, HeK3]. The fact that there is a unique minimum was numerically
observed by Bolley and discussed in Pan–Kwek [PaK]. A proof is given in
[He10], who obtains in addition the nondegeneracy of the minimum.

7. Section 3.4 follows [Bon1], who gives much more complete information
(complete expansion in powers of α as α → 0). The reader interested
in the sector problem can continue his or her reading of this question in
Section 4.4, where a universal upper bound of the ground state energy is
given.





4

Constant Field Models in Dimension 2:
Noncompact Case

Before we analyze the general situation and the possible differences between
the Dirichlet problem and the Neumann problem, it is useful—and actually a
part of the proof for the general case—to analyze particular model geometries.

4.1 Preliminaries in Dimension 2

Let us consider, in a regular domain Ω in R
2 , the Neumann realization (or the

Dirichlet realization) of the operator PBF with

F(x1, x2) =
1
2
(−x2, x1) . (4.1)

The magnetic Neumann boundary condition [as introduced in (3)] is the natu-
ral condition considered in the theory of superconductivity; see
Chapter 10. We will assume B > 0 . If the domain is invariant by dilation,
one can reduce the analysis to B = 1 . Let us denote by λN1 (B,Ω) and
λD1 (B,Ω) the infimum of the spectrum of the Neumann and Dirichlet realiza-
tions, respectively, of PBF in Ω . Depending on Ω , this infimum can correspond
to an eigenvalue (if Ω is bounded) or to a point in the essential spectrum (for
example, if Ω = R

2 or if Ω = R
2,+). The analysis of basic examples will be

crucial for the general study of the problem.

4.2 The Case of R
2

We would like to analyze the spectrum of PBF more compactly denoted by:

SB :=
(
−i∂x1 −

B

2
x2

)2

+
(
−i∂x2 +

B

2
x1

)2

. (4.2)

We first look at the self-adjoint realization in R
2 . Let us briefly show

how one can analyze its spectrum. We leave as an exercise to show that the

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
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spectrum (or the discrete spectrum) of two self-adjoint operators S and T is
the same if there exists a unitary operator U such that

U(S ± i)−1U−1 = (T ± i)−1 .

We note that this implies that U sends the domain of S onto the domain of T .
In order to determine the spectrum of the operator SB , we perform a

succession of unitary conjugations.
Step 1:
The first one, U1 , is defined, for f ∈ L2(R2) , by

U1f = exp
(
iB
x1x2

2

)
f . (4.3)

It satisfies
SBU1f = U1S

1
Bf , ∀f ∈ S(R2) , (4.4)

with
S1
B := (−i∂x1)

2 + (−i∂x2 +Bx1)2 . (4.5)

Remark 4.2.1. .
U1 is a very special case of what is called a gauge transformation. More gene-
rally, as was done in the proof of Proposition 2.1.3 [see (2.11)], we can consider
U = exp(iφ) , where exp(iφ) is C∞ .

If ΔA := −∑j(−i∂xj +Aj)2 is a general Schrödinger operator associated
with the magnetic potential A , then U−1ΔAU = ΔÃ , where Ã = A+gradφ .
Here we observe that β := curlA = curl Ã . The associated magnetic field is
unchanged in a gauge transformation. We are discussing in this section the
very special (but important!) case when the magnetic potential is constant.

Step 2:
We now have to analyze the spectrum of S1

B . Observing that the operator
has constant coefficients with respect to the x2-variable, we perform a partial
Fourier transform with respect to the x2-variable:

U2 = Fx2 �→ξ2 , (4.6)

and get by conjugation, on L2(R2
x1,ξ2

) ,

S2
B := (−i∂x1)

2 + (ξ2 +Bx1)2 . (4.7)

Step 3:
We now introduce a third unitary transform U3:

(U3f)(y1, ξ2) = f(x1, ξ2) , with y1 = x1 +
ξ2
B
, (4.8)

and we obtain the operator

S3
B := −∂2

y +B2y2 , (4.9)

operating on L2(R2
y,ξ2

) .
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The operator S3
B depends only on the y-variable. It is easy to find an

orthonormal basis of eigenfunctions for this operator. We observe indeed that
if f ∈ L2(Rξ2) (with ‖f‖ = 1), and if φn is the nth eigenfunction of the
harmonic oscillator, as defined in (3.7), then

(x, ξ2) �→ |B| 14 f(ξ2) · φn(|B| 12 y)
is an eigenfunction corresponding to the eigenvalue (2n−1)|B| . So each eigen-
space has an infinite dimension. An orthonormal basis of this eigenspace can
be given by vectors ej(ξ2)|B|1/4φn(|B|1/2y) where {ej} (j ∈ N) is a basis of
L2(R) . We consequently have an empty discrete spectrum, and the infimum
of the spectrum (which is also the infimum of the essential spectrum) is B .
The eigenvalues (which are of infinite multiplicity!) are usually called Landau
levels.

4.3 The Case of R
2,+

We now consider the case of the half-space:

R
2,+ = {(x1, x2) |x1 > 0} .

For the analysis of the spectrum of the Neumann realization of the Schrödinger
operator with constant magnetic field SB in R

2,+ , we start as in the case of
R

2 until we arrive at (4.7). We can take B = 1 because a dilation will permit
us to get the general case. We can no longer use a translation to arrive to the
harmonic oscillator, because R

+ is not invariant by translation. So we arrive
at the analysis of the operator

S2,N
B=1 := −∂2

x1
+ (ξ2 + x1)2 ,

on L2(R+
x1
× Rξ2) .

Rewriting L2(R+
x1
× Rξ2) as a Hilbertian integral,

L2(R+
x1
× Rξ2) =

∫ ⊕

R

{L2(R+
x1

)} dξ2 ,

we can rewrite, with the notations of Section 3.2,

S2
B=1 =

∫ ⊕

R

hN,ξ2 dξ2 .

Then we can use the preliminary study in dimension 1 developed
in Section 3.2. Using a standard theorem on the Hilbertian integral of
operators, we get, with μj(ξ) denoting the jth eigenvalue of hN (ξ) , that

σ(SN,R
2,+

1 ) =
⋃
j

μj(R) . (4.10)
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Using the dilation, we get

σ(SN,R
2,+

B ) = |B| σ(SN,R
2,+

1 ) . (4.11)

So the bottom of the spectrum is given by

inf σ(SN,R
2,+

B ) = inf
ξ
μ(ξ) |B| = Θ0 |B| . (4.12)

Similarly, for the Dirichlet realization, we find

inf σ(SD,R
2,+

B ) = inf
ξ∈R

λ(ξ) |B| = |B| . (4.13)

4.4 The Case of an Infinite Sector

We consider the Neumann realization of the Schrödinger operator with B = 1
in a sector:

Ωα :=
{
(x1, x2) ∈ R

2 | |x2| ≤ tan
(α

2

)
x1

}
,

i.e., PNF,Ωα
, where F(x1, x2) := (−x2/2, x1/2) generates a constant magnetic

field. We define

μsect(α) := inf σ(PNF,Ωα
) . (4.14)

One can first show, using Persson’s theorem (see Appendix B), that the
infimum of the essential spectrum is equal to Θ0 :

inf σess(PNF,Ωα
) = Θ0 . (4.15)

So the question is to know if there exists an eigenvalue below the essential
spectrum. A simple result is:

lim
α→0

μsect(α)
α

=
1√
3
. (4.16)

Computing the energy of the quasimode uα ,

Ωα � (x, y) = (ρ cosφ, ρ sinφ) �→ uα(x, y) := c exp
(
i
ρ2β2φ

2

)
exp
(
−βρ

2

4

)
,

with β = α/
√

3 + α2 and c = β1/4α−1/2 chosen such that the L2-norm in the
sector is 1 , one has the universal estimate

μsect(α) ≤ α√
3 + α2

, (4.17)

which gives (4.16). This also answers the question of the existence of an eigen-
value below Θ0 under the condition that

α√
3 + α2

< Θ0 .

Let us mention three interesting conjectures.
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Conjecture 4.4.1.
For any α∈ ]0, π[ , there exists at least one eigenvalue μsect(α) below Θ0 .

At present it is only known that μsect(α) < Θ0 for all α ∈ ]0, π/2] .

Conjecture 4.4.2.
The map ]0, π[� α �→ μsect(α) is monotonically increasing.

Conjecture 4.4.3.
For α ∈ [π, 2π[ , the infimum of the spectrum is Θ0 .

Very persuasive numerical evidence has been obtained1 by Bonnaillie-Noël
(see Fig. 4.1).

Figure 4.1. μsect(α) vs. α/π for α ∈ [0, 1.25π] .

We end by giving the following theorem, whose proof is left to the reader.

Theorem 4.4.4.
Suppose that μsect(α) < Θ0 and that ψ is an eigenfunction of PNF,Ωα

with
eigenvalue λ < Θ0 . Then there exist positive constants ε and C such that

∫
Ωα

eε|x|
{|ψ(x)|2 + |pFψ(x)|2} dx ≤ C‖ψ‖22 . (4.18)

1 The authors thank Virginie Bonnaillie-Noël for allowing them to reproduce her
graph here.
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4.5 Notes

1. The case of R
2 is completely standard and appears at the very beginning

of quantum mechanics [Fo, Lan]. The eigenvalues are called the Landau
levels.

2. The theory of Hilbertian integrals can be found in [ReS, Vol. IV,
Chapter XIII], and we mainly use their Theorem XIII.85.

3. The case of R
2,+ appears in the analysis of surface superconductivity by de

Gennes. It is treated mathematically in [Bol] and later in [LuP5], which
contains in addition an analysis of the L∞-spectrum (both for R

2 and
R

2,+), which is useful in the blow-up arguments (see Chapter 11).
4. Section 4.4 can be seen as the natural follow-up to Section 3.4.
5. After preliminary results devoted to the case Ω = R

+ ×R
+ and obtained

by [Ja] (using a result by [Al1]) and [Pa1], a more systematic analysis in
angular sectors was carried out by Bonnaillie in [Bon1, Bon2].

6. The limiting behavior for small angles (4.16) is proved in [Bon1, Bon2].
We do not show the lower bound, which is more difficult. For earlier,
nonrigorous work, see [SP].

7. The construction of quasimodes follows an idea of Bonnaillie–Fournais
published in [Bon1], which is reminiscent of constructions of [BrDFM].



5

Constant Field Models in Dimension 2: Discs
and Their Complements

5.1 Introduction

In this section, we consider the disc and the complement of the disc in R
2 .

We will study the operator

PBF = (−i∇+BF)2,

with Neumann boundary conditions, and where curlF = 1.
The constant curvature models—the disc and its complement—are impor-

tant for the precise understanding of general domains Ω. Consider a small
neighborhood of a boundary point x0. As a first approximation, we may
consider approximating by a straight boundary. This becomes the half-space
model considered in the previous chapter. A better approximation is obtained
by considering the disc (or complement of a disc) with curvature equal to
the curvature of ∂Ω at x0. Thus, even if one is only interested in bounded
domains Ω, one needs to consider both bounded and unbounded constant
curvature models.

First, we state a result for the case of Dirichlet boundary conditions.
As R

√
B becomes large, the following asymptotics holds:

λD1 (B,D(0, R)) −B ∼ 2
3
2π− 1

2B
3
2R exp

(
−BR

2

2

)
. (5.1)

We will actually not use this result in what follows. Our main concern is indeed
the case of Neumann boundary conditions. We will be interested in obtaining
a fine asymptotic formula for the ground state energy. In the literature, one
can find the following:

Proposition 5.1.1.

λN1 (B,D(0, 1)) = Θ0B − C1
√
B +O(1). (5.2)

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
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However, in order to apply Corollary 2.3.3 to prove the monotonicity of
the ground state energy, we need better control of the remainder. That will
be the result of Theorem 5.3.1.

We will start with an accurate discussion of an approximating model. The
analysis of this approximating model in Section 5.2 is much more technical
than most of this book. The reader not particularly interested in this calcu-
lation may safely skip Section 5.2.

5.2 A Perturbed Model

In order to understand the effect of the boundary curvature for
two-dimensional models, we need to consider a perturbed version of hN,ξ .
Let η be small enough, and we will choose for definiteness

η ∈ ]0, 1/100[ . (5.3)

Let χ : R → R be a standard cutoff function

χ(t) = 1, for |t| ≤ 1 , 0 ≤ χ ≤ 1 , and suppχ ⊂ [−2, 2] ,

and define the function � on R
+ by

�(τ) := τχ(2B−ητ). (5.4)

Notice that � depends on B and η, though we will not include this dependence
in the notation.

We observe that

�(τ) = τ , if τ ≤ Bη/2 , (5.5)

�(τ) = 0 , if τ ≥ Bη , (5.6)

and that
0 ≤ � ≤ Bη . (5.7)

Consider, for δ, B ≥ B0 (with B0 large enough1), the quadratic form qη,δ,B ,

qη,δ,B[φ] =
∫ ∞

0

(
1− �(τ)√

B

)−1(
(τ + ξ0) +B− 1

2

(
δ − �(τ)2

2

))2

|φ(τ)|2

+
(

1− �(τ)√
B

)
|φ′(τ)|2 dτ , (5.8)

defined on the space B1(R+) .

1 The condition B
1
2−η

0 ≥ 2 is enough at this stage. It allows us to have the lower
bound (1 − 	/

√
B) ≥ 1/2 .
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This closed quadratic form defines an unbounded operator on

L2

(
R

+;
(

1− �(τ)√
B

)
dτ

)

(with Neumann boundary condition at 0). Denote by {λj(qη,δ,B)}j∈N the
increasing sequence of eigenvalues of the self-adjoint operator associated with
qη,δ,B . Then we have the following result.

Proposition 5.2.1.
Let η ∈ ]0, 1/100[ . There exist positive constants C, c0, M , and B0 such that
if B ≥ B0 , then

• If |δ| ≥M B
1
4+η , then

λ1(qη,δ,B) ≥ Θ0 + c0 min
(

1,
δ2

B

)
. (5.9)

• If |δ| ≤M B
1
4+η , then

λ2(qη,δ,B) ≥ 1 , (5.10)

and
∣∣∣λ1(qη,δ,B)−

(
Θ0 − C1B

− 1
2 + λ2(δ)B−1

)∣∣∣ ≤ C

(
1 + |δ|3
B

3
2

)
, (5.11)

where λ2 is given by the expression

λ2(δ) = 3C1
√

Θ0

(
(δ − δ̌0)2 + C0

)
, (5.12)

for universal constants δ̌0 and C0 and with C1 from (3.38).

Remark 5.2.2.
In particular, it follows from Proposition 5.2.1 that

inf
δ∈R

λ1(qη,δ,B) = Θ0 − C1B−1/2 + 3C1

√
Θ0C0B

−1 +O(B− 3
2 ) . (5.13)

Proof.
Recall the unperturbed quadratic form q(N,ξ) from (3.10). Using (5.7), we get,
for all φ ∈ B1(R+) ,

qη,δ,B[φ] ≥ (1−Bη−1/2)

×
∫ +∞

0

|φ′(τ)|2 +
∣∣∣∣τ + ξ0 +B− 1

2 δ −B− 1
2
�(τ)2

2

∣∣∣∣
2

|φ(τ)|2 dτ . (5.14)

We then use the inequality
∣∣∣∣τ + ξ0 +B− 1

2 δ −B− 1
2
�(τ)2

2

∣∣∣∣
2

≥ (1 − ε)|τ + ξ0 +B− 1
2 δ|2 − 1

ε
B−1�(τ)4 ,
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with ε = B2η− 1
2 and get the existence of a constant C > 0 , such that for all

δ ∈ R ,

qη,δ,B[φ] ≥ (1− CB2η−1/2)q(N,ξ0+δ/
√
B)[φ]− CB2η−1/2

∫
|φ(τ)|2 dτ . (5.15)

This implies by the variational characterization of eigenvalues (see
Appendix A) that, for any j ≥ 1 ,

λj(qη,δ,B) ≥ (1− CB2η−1/2)μj(ξ0 + δ/
√
B)− CB2η−1/2 . (5.16)

In particular, using the nondegeneracy result (3.23), which implies the exis-
tence of c0 > 0 such that

μ(ξ) ≥ Θ0 + c0 min
(|ξ − ξ0|2, 1) ,

we obtain

λ1(qη,δ,B) ≥ (1 − CB2η−1/2)
[
Θ0 + c0 min(1, δ2/B)

]− CB2η−1/2 .

This again implies that (for M sufficiently large)

λ1(qη,δ,B) ≥ Θ0 + c′0 min(1, δ2/B), for all |δ| ≥MB
1
4+η , (5.17)

where c′0 > 0 , and thus proves (5.9).
From now on, we consider only values of δ such that |δ| ≤ MB

1
4+η ;

in particular, δ/
√
B is bounded.

To get the reverse inequality to (5.16), let us consider an eigenfunc-
tion fj of hN,ξ with eigenvalue μj(ξ) . As mentioned in Remark 3.2.10, fj
decays exponentially at +∞ . Applying Proposition A.1.3 to the subspace
V := Span{f1, . . . , fn} , where the fj ’s are taken with ξ = ξ0 + δ/

√
B , we get

λj(qη,δ,B) ≤ μj(ξ0 + δ/
√
B) + CB2η−1/2 , (5.18)

where the constant C is uniform for |δ| ≤ MB
1
4+η . Combining (5.16) and

(5.18), we find
∣∣λj(qη,δ,B)− μj(ξ0 + δ/

√
B)
∣∣ ≤ CB2η−1/2 . (5.19)

In particular, we can conclude, using (3.17), that qη,δ,B admits exactly one
eigenvalue below 1 for B sufficiently large. This proves (5.10).

The self-adjoint operator h(δ, B) associated with qη,δ,B [on the Hilbert
space L2(R+; (1 − �/

√
B)dτ)] is the following differential operator (with

Neumann boundary condition):

h(δ, B) = −
(

1− �(τ)√
B

)−1
d

dτ

(
1− �(τ)√

B

)
d

dτ

+
(

1− �(τ)√
B

)−2(
(τ + ξ0) +B− 1

2

(
δ − �(τ)2

2

))2

. (5.20)
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We will write an explicit test function for h(δ, B) in (5.25), giving λ1(qη,δ,B)
up to an error of order o(B−1) .

For f ∈ S(R+) we have
∥∥∥h(δ, B)f −

(
k0 +B− 1

2 k1 +B−1k2

)
f
∥∥∥
L2(R+)

= O
(

1 + |δ|2
B3/2

)
, (5.21)

with

k0 := − d2

dτ2
+ (τ + ξ0)2 (= hN,ξ0) ,

k1 :=
d

dτ
+ 2(τ + ξ0)

(
δ − τ2

2

)
+ 2τ(τ + ξ0)2 ,

k2 := τ
d

dτ
+
(
δ − τ2

2

)2

+ 4τ(τ + ξ0)
(
δ − τ2

2

)
+ 3τ2(τ + ξ0)2 . (5.22)

Notice, as part of the argument leading to (5.21), that � can be replaced
by τ up to errors in O(B−∞) , since

∫ ∞

0

(�(τ) − τ)2|f (k)(τ)|2 dτ = O(B−∞) ,

(and similarly for expressions like
∫∞
0 �′(τ)2|f ′(τ)|2 dτ).

We will only consider k1 and k2 as differential operators acting on S(R+)—
we do not consider their possible self-adjoint extensions in a given Hilbert
space.

Let u0 be the known normalized ground state of hN,ξ0 with eigenvalue Θ0 .
Let R0 be the regularized resolvent considered in Lemma 3.2.9. Let λ1(δ) and
λ2(δ) be given by

λ1 := 〈u0 | k1u0〉 (5.23)

and

λ2 := λ2,1 + λ2,2 , with λ2,1 := 〈u0 | k2u0〉 , λ2,2 := 〈u0 | (k1 − λ1)u1〉 .
Here the inner products are the usual inner products in L2(R+, dτ) . The
functions u1 and u2 are given by

u1 := −R0(k1 − λ1)u0 , u2 := −R0

{
(k1 − λ1)u1 + (k2 − λ2)u0

}
. (5.24)

Notice that u0 ∈ S(R+) and that, by Lemma 3.2.9, R0 maps S(R+)
(continuously) to itself. Therefore, u0, u1, u2 (and their derivatives) are rapidly
decreasing functions on R

+ . Furthermore, each function satisfies the Neumann
boundary condition at 0 .

Our trial state is defined by

ψ := u0 +B− 1
2u1 +B−1u2 . (5.25)



56 5 Constant Field Models in Dimension 2: Discs and Their Complements

We will need to make explicit how the objects above depend on δ. We can
rewrite k1 as

k1 :=
d

dτ
+ (2δ − ξ20)(τ + ξ0) + (τ + ξ0)3. (5.26)

From this, (3.38), and (3.41), it is immediate that

λ1 = −C1 . (5.27)

In particular, λ1 is independent of δ . Also, for some u1,0, u1,1 ∈ S(R+),

u1 = δu1,1 + u1,0 . (5.28)

Notice that
λ2,2 = −〈u0 | (k1 − λ1)R0(k1 − λ1)u0〉 .

Hence, we get that λ2(δ) is a quadratic polynomial as a function of δ . We find
that the coefficient of δ2 is

1− 4〈u0 | (τ + ξ0)R0(τ + ξ0)u0〉 . (5.29)

Therefore, also u2 is quadratic in δ,

u2 = δ2u2,2 + δu2,1 + u2,0 , (5.30)

with u2,2, u2,1, u2,0 ∈ S(R+).
A calculation (using that |δ|/√B ≤ 1, (5.21) and the decay of the involved

functions) gives
∥∥{h(δ, B)− (Θ0 + λ1B

− 1
2 + λ2B

−1
)}
ψ
∥∥

=
∥∥{k0 −Θ0 + (k1 − λ1)B− 1

2 + (k2 − λ2)B−1
}
ψ
∥∥+O

(
1 + |δ|2
B3/2

)

= ‖B− 3
2 [(k1 − λ1)u2 + (k2 − λ2)u1] +B−2(k2 − λ2)u2

∥∥+O
(

1 + |δ|2
B3/2

)

= O
(

1 + |δ|3
B3/2

)
. (5.31)

Here ‖ · ‖ denotes the norm in L2(R+; (1− 	√
B

)dτ). Furthermore,

‖ψ‖L2(R+;(1− �√
B

)dτ) = 1 +O
(

1 + |δ|
B

1
2

)
. (5.32)

By the spectral Theorem 1.3.1, we get, combining (5.31) and (5.32),

dist
(
Θ0 + λ1B

− 1
2 + λ2B

−1, σ(h(δ, B))
)

= O
(

1 + |δ|3
B3/2

)
.
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Since h(δ, B) has only one eigenvalue below 1 , we have therefore proved that

λ1(qη,δ,B) = Θ0 + λ1B
− 1

2 + λ2B
−1 +O

(
1 + |δ|3
B3/2

)
. (5.33)

In view of (3.28), (3.35), and (3.36), we recognize that the coefficient of
δ2 in λ2(δ) given in (5.29), can be written as

μ′′(ξ0)
2

= 3C1|ξ0| = 3C1
√

Θ0 = 1− 4I2 .

Notice that 3C1

√
Θ0 > 0 , which expresses the nondegeneracy of the minimum

of μ at ξ0 . Since λ2 is quadratic in δ , there exist therefore δ̌0 and C0 ∈ R such
that

λ2(δ) = 3C1
√

Θ0

(
(δ − δ̌0)2 + C0

)
.

The constants δ̌0 and C0 are indeed defined by

3C1

√
Θ0 C0 = min

δ
λ2(δ) = λ2(δ̌0) .

Inserting this information in (5.33) finishes the proof of Proposition 5.2.1. ��

5.3 Asymptotics of the Ground State Energy for the
Disc

In this subsection, we will state a precise asymptotic estimate that will help
us settle the question of diamagnetism for the disc. We remind the reader that
the spectral parameters C1 , Θ0 , and ξ0 were introduced in (3.24), (3.25), and
(3.38).

Theorem 5.3.1 (Eigenvalue asymptotics for the disc).
Suppose that Ω = D(0, 1) is the unit disc. Define δ(m,B) , for m ∈ Z , B > 0 ,
by

δ(m,B) := m− B

2
− ξ0

√
B. (5.34)

Then there exist (computable) constants C0 and δ̌0 ∈ R such that if

Δ̂B := inf
m∈Z

|δ(m,B)− δ̌0| , (5.35)

then, for all η > 0 ,

λ1(B) = Θ0B − C1

√
B + 3C1

√
Θ0

(
Δ̂2
B + C0

)
+O(Bη−

1
2 ) . (5.36)

When Ω = R
2 \ D(0, 1) is the exterior of the unit disc, a similar statement

holds. Let us define

δext(m,B) := −m− B

2
+ ξ0

√
B, Δ̂ext

B := inf
m∈Z

|δext(m,B)− δ̌0| .
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Then, with the same constants as above,

λ1(B) = Θ0B + C1

√
B + 3C1

√
Θ0

(
(Δext

B )2 + C0

)
+O(Bη−

1
2 ) . (5.37)

Remark 5.3.2.
As the proof will show, the constants C0, δ̌0 are the constants introduced in
(5.12). We recall that they can be expressed in terms of spectral data for the
basic operator hN,ξ0 discussed in Section 3.2.

Remark 5.3.3.
For the exterior of the disc, one first observes, using Persson’s characteriza-
tion in Appendix B, that the bottom of the essential spectrum is B and one
can show that when B is large, there exists at least one eigenvalue below B .
Therefore, it follows in particular that the ground state is a discrete eigenvalue
for large B .

Proof of Theorem 5.3.1.
We start by giving the proof in the case of the disc. Afterwards we briefly
indicate the changes in the case of the exterior domain.

For brevity, we write λ1(B) instead of λ1(B,D(0, 1)) . A simple argument
with a trial state, which will be detailed later in Section 8.2.1 for all domains
with smooth boundary, gives the preliminary upper bound:

λ1(B) ≤ Θ0B + o(B) . (5.38)

Let D(t) = {x ∈ R
2 : |x| ≤ t} be the disc with radius t . Let Q̃B be the

quadratic form

Q̃B[u] =
∫

D(1)\D( 1
2 )

∣∣(−i∇+BF)u
∣∣2 dx ,

with domain {u ∈ H1(D(1) \ D(1
2 )) : u(x) = 0 on |x| = 1

2} . Let λ̃1(B)
be the lowest eigenvalue of the corresponding self-adjoint operator. Using the
Agmon estimates in the normal direction, which will be proven in a more
general situation in Theorem 8.2.4, we obtain

λ1(B) ≤ λ̃1(B) = λ1(B) +O(B−∞) . (5.39)

The first inequality in (5.39) is immediate by the variational principle. The
second estimate follows by using a cutoff version of the ground state ψ of
PNBF,D(1) as a trial state in Q̃B , since ψ decays exponentially away from
{|x| = 1} by the normal Agmon estimates.

Let H̃(B) be the self-adjoint operator associated with the quadratic
form Q̃B . In the remainder of the proof, we will use the fact that a similar
result on exponential decay holds for the first eigenfunctions of H̃(B) .
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Proposition 5.3.4.
For any ρ ∈ ]0, 1[ , there exist positive constants α, B0, and C such that if
ψ̃ ∈ D(H̃(B)

)
satisfies

H̃(B)ψ̃ = λ̃(B)ψ̃ ,

with
B ≥ B0, λ̃(B) ≤ (1 − ρ)B ,

then∫
D(1)\D( 1

2 )

eα
√
B(1−|x|){|ψ̃(x)|2 +B−1|pBFψ̃(x)|2} dx ≤ C ‖ψ̃‖22 . (5.40)

Proposition 5.3.4 is essentially a particular case of Theorem 8.2.4 and hence
the proof is omitted here.

By changing to boundary coordinates [see Section F.1—if (r, θ) are usual
polar coordinates, then t = 1 − r , s = θ], the quadratic form Q̃B[u] and the
L2-norm become

Q̃B[u] =
∫ 2π

0

∫ 1/2

0

(1 − t)−1|(−i∂s +BÃ1)u|2 + (1− t)|∂tu|2 dtds , (5.41)

‖u‖2L2 =
∫ 2π

0

∫ 1/2

0

(1 − t)|u|2 dtds , (5.42)

with Ã1(s, t) = 1
2
− t+ t2

2
. Here we have used Lemma F.1.1, and [see (F.8)]

γ0 =

∫
Ω

curlF dx
|∂Ω| =

1
2
,

for the disc.
Performing the scaling τ =

√
B t and decomposing u in Fourier modes, we

find

λ̃1(B) = B inf
m∈Z

eδ(m,B),B . (5.43)

Here the function δ(m,B) was defined in (5.34) and eδ,B is the lowest eigen-
value of the self-adjoint operator h̃δ,B associated with the quadratic form q̃δ,B :

q̃δ,B[φ] =
∫ √

B/2

0

(
1− τ√

B

)−1(
(τ + ξ0) +B− 1

2

(
δ − τ2

2

))2

|φ(τ)|2

+
(

1− τ√
B

)
|φ′(τ)|2 dτ . (5.44)

This quadratic form is considered to be a form defined on the space

L2
(
(0,
√
B/2);

(
1− τ√

B

)
dτ) .
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Let ρ, η ∈ ]0, 1/100[ and let φ̃ be a normalized ground state for h̃δ,B . So

∫ √
B/2

0

(1− τ√
B

)|φ̃(τ)|2 dτ = 1 . (5.45)

Then

• either
eδ(m,B),B ≥ (1 − ρ) , (5.46)

• or we can apply Proposition 5.3.4 to e−imsφ̃(
√
Bt) to see that φ̃ decays

exponentially in τ .

Using the rough bound (5.38), it suffices to consider the cases where eδ(m,B),B <
(1− ρ) . Let χ ∈ C∞

0 (R) , with χ ≡ 1 on a neighborhood of 0 , and define

φ(τ) := χ(B−ητ)φ̃(τ)

(extended by 0 to a function on R
+). Then the decay estimate in Proposi-

tion 5.3.4 implies that [with the localized form qη,δ(m,B),B defined in (5.8)],

eδ(m,B),B = q̃δ(m,B),B[φ̃] = q̃δ(m,B),B[φ] +O(B−∞)

= qη,δ(m,B),B[φ] +O(B−∞)

≥ λ1(qη,δ(m,B),B)
∫
|φ(τ)|2

(
1− �√

B

)
dτ +O(B−∞) . (5.47)

Proposition 5.3.4 also implies that [with � from (5.4)]
∫
|φ(τ)|2

(
1− �√

B

)
dτ = 1 +O(B−∞) .

Thus,

eδ(m,B),B ≥ λ1(qη,δ(m,B),B) +O(B−∞) . (5.48)

Recall that λ1(qη,δ(m,B),B) was estimated in Proposition 5.2.1. In particular,
with the constant M from Proposition 5.2.1, we have

λ1(qη,δ(m,B),B) ≥ Θ0 + c0M
2B2η− 1

2 ,

for |δ| ≥ MB
1
4+η . Therefore, such values of δ correspond to a ground state

energy that is too large compared to the desired one and can be neglected.
For |δ| ≤ MB

1
4+η , we can use the explicit test function ψ from (5.25)

(in the proof of Proposition 5.2.1) as a trial state for q̃δ,B . This will complete
(5.48) with a corresponding upper bound; i.e., we find

eδ(m,B),B = λ1(qη,δ(m,B),B) +O
(

1 + |δ|3
B

3
2

)
. (5.49)
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Remembering (5.39), (5.43), and Proposition 5.2.1, this finishes the proof
of Theorem 5.3.1 in the case of the disc.

When Ω = R
2 \ D(0, 1) , we still have Agmon estimates. In this case the

curvature k = −1 , and since the curvature is negative, the boundary coordi-
nates can be used on the entire domain. We find

γ0 =
1
2π

∫ 2π

0

F · γ′(s) ds = −1
2

;

therefore,

Ãext
1 (s, t) = −1

2
− t− t2

2
,

and the quadratic form becomes

Qext
B [u] =

∫ 2π

0

∫ ∞

0

(1 + t)−1|(−i∂s +BÃext
1 )u|2 + (1 + t)|∂tu|2 dtds ,

(5.50)

with

‖u‖2L2 =
∫ 2π

0

∫ ∞

0

t (1 + t)|u|2 dtds . (5.51)

After scaling and decomposition in Fourier modes, we find

λ̃ext
1 (B) = B inf

m∈Z

eext
δ(m,B),B , (5.52)

with eext
δ,B being the lowest eigenvalue of the quadratic form q̃ext

δ,B ,

q̃ext
δ,B[φ] =

∫ ∞

0

(
1 +

τ√
B

)−1(
(τ + ξ0)−B− 1

2

(
δ − τ2

2

))2

|φ(τ)|2

+
(

1 +
τ√
B

)
|φ′(τ)|2 dτ (5.53)

on the space L2
(
R

+; (1 + τ√
B

)dτ) .
In the notation and sense from (5.21) and (5.22), we therefore find

hext(δ, B) = kext
0 +B− 1

2 kext
1 +B−1kext

2 +O
(

1 + |δ|3
B

3
2

)
, (5.54)

with

kext
0 = k0 , kext

1 = −k1 , kext
2 = k2 . (5.55)

Therefore,

λext
1 = −λ1 , λext

2 = λ2 . (5.56)

This finishes the proof of the exterior case. ��
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Remark 5.3.5.
In the case of the disc, let λ1(B,m) denote the ground state energy of PNB,Ω
restricted to the space of angular momentum m , i.e., functions that have the
form e−imθf(r) in polar coordinates (r, θ). Then, using (5.39), (5.43), and
(5.46), we obtain that

• either λ1(B,m) ≥ 99
100

B ,
• or λ1(B,m) = Beδ(m,B),B +O(B−∞) .

It is rather easy to deduce from the calculations above that if m is fixed then
lim infB→∞ λ1(B,m)/B > Θ0 . Thus, the integer minimal m(B) such that
λ1(B,m(B)) = infj λ1(B, j) will have to change with B , and this implies
crossings of eigenvalues by continuity. This means that we have the existence
of a sequence {Bn}n∈N with Bn → ∞ and such that λ1(Bn) has multiplicity
at least 2 .

If, on the other hand, for n ∈ N , we define Bn as the positive solution to

δ(n,Bn) := n− Bn
2
− ξ0

√
Bn = δ0 ,

then we have Δ̂Bn = 0 . Now using the asymptotics of λ1(Bn, n) and those of
λ1(Bn,m) , we observe that for n large,

λ1(Bn, n) = inf
m
λ1(Bn,m) .

Now (5.36) implies that

λ1(Bn, n) = Θ0Bn − C1
√
Bn + 3C1

√
Θ0C0 + o(1) ,

and for all m �= n ,

λ1(Bn,m) ≥ Θ0Bn − C1

√
Bn + 3C1

√
Θ0(1 + C0) + o(1) .

This proves the existence of a spectral gap of asymptotic size larger than
3C1

√
Θ0 along the sequence {Bn} .

Similar arguments give the following two statements:

• There exists B0 > 0 such that for B ≥ B0 , the maximal degeneracy of the
ground state energy λ1(B) is equal to 2 .

• The spectral gap λ2(B)− λ1(B) satisfies

lim sup
B→∞

(
λ2(B)− λ1(B)

)
= 3C1

√
Θ0 .

5.4 Application to the Monotonicity

Proposition 5.4.1.
Let Ω be the unit disc, D(0, 1) , or the exterior of the unit disc, R

2 \D(0, 1) .
Then the left- and right-hand derivatives λ′1,±(B) exist and satisfy



5.4 Application to the Monotonicity 63

λ′1,+(B) ≤ λ′1,−(B) ,

lim inf
B→+∞

λ′1,+(B) ≥ Θ0 − 3
2
C1|ξ0| > 0 , (5.57)

lim sup
B→+∞

λ′1,−(B) ≤ Θ0 +
3
2
C1|ξ0| .

In particular, B �→ λ1(B) is strictly increasing for large B .

Proof of Proposition 5.4.1.
We only consider the case of the unit disc, since the calculation is similar for
Ω = R

2 \D(0, 1) .
The numerical fact that Θ0 > 3

2C1|ξ0| follows from known identities.
We give the following short argument. From (3.39), we get that

3C1|ξ0| = 1− 4I2 , (5.58)

where I2 [introduced in (3.33)] satisfies I2 > 0 . In particular, 3C1|ξ0| < 1 .
Since it is known from Proposition 3.2.8 that Θ0 > 1/2 , this proves the
desired statement (see also Note 4 to Chapter 3 for numerical values).

We now prove (5.57). Let g(B) = −C1
√
B + 3C1

√
Θ0

(
Δ̂2
B + C0

)
, α = Θ0 .

By Corollary 2.3.3, we have to estimate lim supB→∞ g(B + ε) − g(B) and
lim infB→∞ g(B + ε) − g(B). As discussed in Remark 2.3.4, we only need to
consider the oscillating part of the function g.

Notice that 0 ≤ Δ̂B ≤ 1/2 , for all B > 0 . Furthermore, consider B > 1 ,
ε > 0 . Let m0 ∈ Z be such that

Δ̂B+ε =
∣∣∣∣m0 − B + ε

2
− ξ0

√
B + ε− δ̌0

∣∣∣∣ .
Then, since −1 < ξ0 < 0 ,

Δ̂B+ε − Δ̂B ≥
∣∣∣∣m0 − B + ε

2
− ξ0

√
B + ε− δ̌0

∣∣∣∣−
∣∣∣∣m0 − B

2
− ξ0

√
B − δ̌0

∣∣∣∣
≥ −

∣∣∣∣− ε2 − ξ0
ε√

B + ε+
√
B

∣∣∣∣ ≥ − ε2 . (5.59)

Therefore,

Δ̂2
B+ε − Δ̂2

B = (Δ̂B+ε + Δ̂B)(Δ̂B+ε − Δ̂B) ≥ − ε
2
,

and we get

lim inf
B→+∞

g(B + ε)− g(B)
ε

≥ −3
2
C1
√

Θ0 .

The estimate of (5.57) follows by taking the limit ε → 0 . The proof of the
upper bound on the left-side derivative is similar and is omitted.
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The attentive reader may have realized a small problem in the argument in
the proof of Proposition 2.3.2—on which Corollary 2.3.3 depends—in the case
when Ω = R

2 \ D(0, 1) . Since the vector potential F(x1, x2) := 1
2 (−x2, x1) is

unbounded, one cannot estimate the term
∫

Ω

|F(x)|2|ψ(x)|2 dx

by the square of the L∞-norm of F, which is infinite. However, by the Agmon
estimates (see Theorem B.5.1), the eigenfunction ψ decays exponentially in
the radial variable, so we find that

∫
Ω

|F(x)|2|ψ(x)|2 dx ≤ C ,

with a constant C independent of B . From this point the proof is identical to
the case of the disc. ��

We can easily obtain results for other constant curvature domains by
applying scaling to the disc models. Let k ∈ R . Then the model with constant
boundary curvature k is

Ωk :=

⎧⎪⎪⎨
⎪⎪⎩

D(0, k−1) , if k > 0 ,

R
2 \D(0, |k−1|) , if k < 0 ,

R
2,+, if k = 0 .

By scaling we see that, for k �= 0 ,

λ1(B,Ωk) = k2λ1

(
B

k2
,Ωsign(k)

)
. (5.60)

Therefore, we find the following corollary of Theorem 5.3.1.

Corollary 5.4.2.
There exist positive constants C and B0 such that if Ωk is the domain with
constant boundary curvature k , then for all k ∈ R , B ≥ B0k

2 ,
∣∣λ1(B,Ωk)−

(
Θ0B − C1k

√
B
)∣∣ ≤ C k2 . (5.61)

5.5 Notes

1. The case of Dirichlet boundary conditions was considered by Erdös in
connection with an isoperimetric inequality [Er2]. Estimate (5.1), which
is a small improvement of his result, was proved in [HeM3] using the
techniques of [BolH1].
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2. The case of the disc with Neumann conditions was first considered by
Bauman–Phillips–Tang [BaPT] (see also [HoT]) who obtain (5.2). Another
proof with a worse remainder term was given in [HeM3]. More formal com-
putations were given in [S-J] for the disc and [BeBZ] for its complement.
These contributions indicate the role of the sign of the curvature.

3. The case of the complement to the disc was first given in [HeM3] with a
less precise remainder term.

4. For the purpose of the analysis of the monotonicity of the ground state
energy or for the analysis of the multiplicity, new improvements were
needed. They first appeared in [FoH4] and are explained in detail in
the present chapter.





6

Models in Dimension 3: R
3 or R

3,+

In the analysis of the magnetic Schrödinger operator with Neumann boundary
condition in an open set Ω ⊂ R

3 , the first two models to analyze are the
constant field case in R

3 and the constant field case in R
3,+ . The latter model

will permit us to understand the effect of the boundary.

6.1 The Case of R
3

We start with the Schrödinger operator with constant magnetic field β =
curlF in dimension 3 . After possibly performing a rotation in R

3 and a gauge
transformation, we arrive at the model:

PBF = −∂2
x1

+ (−i∂x2 +Bx1)2 − ∂2
x3
, (6.1)

with
B = ‖β‖ ,

being the strength of the magnetic field. Here we can take the partial Fourier
transform with respect to x2 and x3 in order to get the operator

−∂2
x1

+ (ξ2 +Bx1)2 + ξ23 .

When B �= 0 , we can translate in the x1-variable and get the operator on
L2(R3):

−∂2
y1

+ (By1)2 + ξ23 .

It is then easy to see that the spectrum is [B,+∞[ .

Remark 6.1.1.
Unitarily implementing the scaling x �→ B−1/2x , one finds that PBF is
unitarily equivalent to B−1PF . Therefore, one only needs to go through the
discussion above in the case B = 1 .
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Remark 6.1.2.
One can also give explicit quasimodes to show that inf σ(PF) ≤ 1. For a
general constant β ∈ R

3 with |β| = 1, we consider the gauge where A =
1
2
β × x. We consider coordinates x = (x⊥, x‖) corresponding to the perpendi-

cular and parallel components of the vector x with respect to β. Then ground
state quasimodes can be written as

ε−1/4e−εx
2
‖e−x

2
⊥/4.

More generally, one can make a “magnetic translation” of these functions to
have them localized near an arbitrary point y = (y⊥, y‖) ∈ R

3:

uε(x) = ε−1/4e−ε(x‖−y‖)2eiy⊥×x⊥e−(x⊥−y⊥)2/4, (6.2)

where y⊥ × x⊥ is the two-dimensional cross-product.

6.2 The Case of R
3,+

We now investigate the case of R
3,+ := {(x1, x2, x3) ∈ R

3 |x1 > 0} . In this
case, there is one geometric parameter, namely, the angle between the mag-
netic field and the boundary {x1 = 0} . We will see that the infimum of the
spectrum is a monotone continuous function of this angle with the lowest
value Θ0 being attained for the magnetic field parallel to the boundary and
the highest value 1 being attained when the magnetic field is perpendicular
to the boundary.

6.2.1 An easy upper bound

We would proceed as in the case of R
3 , but our rotations have to conserve

R
3,+ and its boundary. Let β = (β23, β13, β12) , and let us start from the

particular gauge choice

P (β) := −∂2
x1

+ (−i∂x2 + β12x1)2 + (−i∂x3 − β13x1 + β23x2)2

in R
3,+. After scaling, we can assume that β2

12 + β2
13 + β2

23 = 1 .
More precisely, the operator P (β) is defined as the positive operator

associated with the closed quadratic form

u �→
∫

R3,+
|∂x1u|2 + |(−i∂x2 + β12x1)u|2 + |(−i∂x3 − β13x1 + β23x2)u|2 dx ,

with domain{
u ∈ L2(R3,+)

∣∣ ∂x1u ∈ L2(R3,+) , (−i∂x2 + β12x1)u ∈ L2(R3,+) ,

(−i∂x3 − β13x1 + β23x2)u ∈ L2(R3,+)
}
.



6.2 The Case of R
3,+ 69

Let us start by noticing the following inequality:

inf σ(P (β)) ≤ 1 . (6.3)

Proof.
We can implement the quasimodes of Remark 6.1.2 in order to prove (6.3). We
only sketch the geometric idea. For a given ε > 0, we choose the localization
point y far away from the boundary. We can now insert the u from (6.2) in
the quadratic form restricted to R

3,+, and realize that the difference with the
form on the entire space is exponentially small in the distance from y to the
boundary.

We have thereby established (6.3). ��

6.2.2 Preliminary reductions

We return to the differential operator P (β) . After performing a rotation in
the (x2, x3)-variables, we can assume that the new magnetic field B̃ satisfies
β̃12 = 0 , the new β̃13 satisfying

β̃2
13 = β2

12 + β2
13 .

So we have now reduced to the problem of analyzing

P (β1, β2) := −∂2
x1
− ∂2

x2
+ (−i∂x3 + β1x1 + β2x2)2 ,

in {x1 > 0} , where
β2

1 + β2
2 = 1 .

Here we have
β2

1 = β2
23 , β2

2 = β2
12 + β2

13 .

So we arrive at the following model:

L(ϑ,−i∂t) = −∂2
x1
− ∂2

x2
+ (−i∂t + x1 cosϑ+ x2 sinϑ)2 ,

which only depends on the parameter ϑ . Geometrically, sinϑ = β · ν (where
ν is the interior normal vector), and so ϑ is the angle between the magnetic
field and the (tangent plane to the) boundary.

By a partial Fourier transform in the t-variable, we arrive at

L(ϑ, τ) = −∂2
x1
− ∂2

x2
+ (τ + x1 cosϑ+ x2 sinϑ)2 ,

in {x1 > 0} and with Neumann boundary condition on {x1 = 0} . It is enough
to consider the variation with respect to ϑ ∈ [0, π/2] .

The bottom of the spectrum is given by

ς(ϑ) := inf σ (L(ϑ,−i∂t)) = inf
τ

(inf σ(L(ϑ, τ))) . (6.4)
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Lemma 6.2.1.

1. If ϑ ∈ ]0, π/2] , then σ(L(ϑ, τ)) is independent of τ .
2. The function ϑ �→ ς(ϑ) is continuous on ]0, π/2[ .
3. At the endpoints ς takes the values

ς(0) = Θ0 < 1 , and ς
(π

2

)
= 1 . (6.5)

Proof.
The proof of the first assertion is easy since the translation x2 �→ x2+τ/ sinϑ ,
exchanges L(ϑ, τ) and L(ϑ, 0) .

We now prove the second assertion. After the change of variables y1 =
cosϑx1 , y2 = sinϑx2,1 we get a continuous family of operators with a fixed
domain. Using the min-max principle (see Appendix A), the result follows
easily.

To prove the first inequality in (6.5), we first observe that

L(0,−i∂t) = −∂2
x1
− ∂2

x2
+ (−i∂t + x1)2 .

After a partial Fourier transform in x2 and t, we thus have to analyze the
bottom of the spectrum of the family:

L(0, τ, ξ2) := −∂2
x1

+ ξ22 + (x1 + τ)2 .

This infimum is obtained as the infimum over τ ∈ R of the spectrum of the
family:

L(0, τ, 0) = −∂2
x1

+ (x1 + τ)2 .

This is the model hN (τ) that was analyzed in Chapter 3.
To prove the second inequality in (6.5), we start from

L
(π

2
, τ
)

= −∂2
x1
− ∂2

x2
+ (τ + x2)2 .

The infimum of the spectrum is the same as the bottom of the Neumann
realization of

−∂2
x1
− ∂2

x2
+ x2

2 ,

in {x1 > 0} . This is easily computed (by separation of variables) as being
equal to 1 (the infimum of the spectrum of the harmonic oscillator). ��

6.2.3 Spectral bounds

Lemma 6.2.2.
For ϑ ∈ [0, π/2] , we have the bounds

ς(ϑ) ≤ Θ0 cosϑ+ sinϑ , (6.6)
1 Here we use the restrictions on ϑ .
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and
ς(ϑ) ≥ Θ0(cosϑ)2 + (sinϑ)2 . (6.7)

Furthermore, the function [0, π/2] � ϑ �→ ς(ϑ) is monotone increasing.

Notice that by Lemma 6.2.1 the bounds (6.6) and (6.7) are valid—actually
with strict inequalities—for ϑ ∈ {0, π/2} . Thus, it suffices to consider ϑ ∈
]0, π/2[ . Also, by combining Lemma 6.2.1 with (6.6) and (6.7), one finds that
ς is continuous at 0 and π/2 . Notice though that the upper bound (6.6) is
weaker than (6.3) for ϑ near but below π/2 .

Proof.
We will prove (6.6) for ϑ ∈ ]0, π/2[ . Let us write

L(ϑ, 0) = −∂2
x1

+ (x1 cosϑ+ z)2 − ∂2
x2

+ (x2 sinϑ− z)2
+ 2(x1 cosϑ+ z)(x2 sinϑ− z) .

Use as quasimode the product of the eigenfunction attached to the lowest
eigenvalue of −∂2

x1
+ (x1 cosϑ+ z)2 and of the eigenfunction attached to the

lowest eigenvalue of −∂2
x2

+ (x2 sinϑ− z)2 . This gives, by a good choice of z
(z = ξ0

√
cosϑ) , the desired upper bound.

We will now prove the lower bound (6.7). We only need to consider the
case when ϑ ∈ ]0, π/2] . According to Lemma 6.2.1, we can take τ = 0 and we
have to analyze

L(ϑ) := L(ϑ, 0) = −∂2
x1
− ∂2

x2
+ (x1 cosϑ+ x2 sinϑ)2. (6.8)

Let us introduce a parameter ρ ∈ [0, 1] and associate the following decompo-
sition

L(ϑ) := P1(ρ, ϑ) + P2(ρ, ϑ), (6.9)

with

P1 :=− ∂2
x1

+ ρ2(x1 cosϑ+ x2 sinϑ)2 ,

P2 :=− ∂2
x2

+ (1− ρ2)(x1 cosϑ+ x2 sinϑ)2 .
(6.10)

We will find a lower bound of the spectrum of L(ϑ) by considering the sum
of the lower bounds of the spectra of the two operators P1 and P2 . Easy
computations lead to

inf σ(P1(ρ, ϑ)) = ρΘ0 cosϑ (6.11)

and
inf σ(P2(ρ, ϑ)) =

√
1− ρ2 sinϑ . (6.12)

Choosing ρ = cosϑ , we obtain (6.7).
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We finally prove the monotonicity. The case ϑ = 0 is a consequence of
(6.7) and (6.5). The case ϑ = π/2 follows from (6.3) and (6.5). We therefore
assume that ϑ ∈ ]0, π/2[ and consider L(ϑ) in R

2,+ .
We first use the change of variables

u1 = x1 cosϑ+ x2 sinϑ , u2 = −x1 sinϑ+ x2 cosϑ ,

whose inverse is given by

x1 = u1 cosϑ− u2 sinϑ , x2 = u1 sinϑ+ u2 cosϑ .

This shows that L(ϑ, 0) is unitarily equivalent to

L′ = −∂2
u1
− ∂2

u2
+ u2

1 , (6.13)

in {u1 > tanϑu2} .
A new change of variables,

y1 = −u1 , y2 = − tanϑu2 ,

shows that this problem is unitarily equivalent to the Neumann realization of

Lnew = −∂2
y1 − tan2(ϑ)∂2

y2
2

+ y2
1 , (6.14)

in {y2 > y1} .
By unitary equivalence, ς(ϑ) is the bottom of the spectrum of this new

operator. The monotonicity is immediate from (6.14), via the min-max prin-
ciple. ��

We have ς(ϑ) ≤ 1 . If the inequality was strict, i.e., if we were able to prove
strict monotonicity directly, we would get, by combining with our result on
the essential spectrum, that ς(ϑ) is an eigenvalue.

Unfortunately, the strict monotonicity is clear only when we know that
ς(ϑ) is an eigenvalue. Note that our “rough” upper bound does not give the
result, and so we are obliged to prove an upper bound of ς(ϑ) in another way,
thereby showing that it is less than 1 as soon as ϑ < π/2 . We will give such
a result in Section 6.2.5.

For the behavior near ϑ = 0 , we will later need

ς(ϑ) = Θ0 + δ0|ϑ|+O(ϑ2) , (6.15)

as ϑ→ 0 , with

δ0 =

√
μ′′(ξ0)

2
. (6.16)

We recall from (3.23) that
δ0 > 0 . (6.17)
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The expansion (6.15) is a consequence of the more general property

Proposition 6.2.3.
The function ς admits at 0 the following asymptotic expansion:

ς(ϑ) ∼ Θ0 +
∑
n≥1

αn|ϑ|n . (6.18)

Sketch of the proof.
After a scaling (y1, y2) = (x1(cosϑ)

1
2 , x2 sinϑ/(cosϑ)

1
2 ) , the operator L(ϑ)

introduced in (6.8) becomes cosϑ P (ε) , where P (ε) is defined on R
2,+ by

P (ε) := −ε2∂2
y2
− ∂2

y1
+ (y1 + y2)2 ,

with ε = tanϑ .
Then a Born–Oppenheimer technique is relevant for getting the complete

expansion, which will not be detailed in this book. For the weaker result [the
lower bound in (6.15), which is the only important point], one can simply
observe that

inf σ(P (ε)) ≥ inf σ(−ε2∂2
t + μ(t)) , (6.19)

where μ(ξ) is the lowest eigenvalue of hN,ξ introduced in (3.9). Here −ε2∂2
t +

μ(t) is considered as an operator on L2(R). Observing that, by (6.16) and
(6.17), we have a nondegenerate well at ξ0 , we can then use the semiclassical
analysis (see Section 7.1 in the next chapter) for a one-well problem to get,
via the harmonic approximation, the suitable lower bound. ��

6.2.4 Analysis of the essential spectrum

Proposition 6.2.4.
If ϑ ∈ ]0, π/2] , then the essential spectrum of L(ϑ) is contained in [1,+∞[ .

Proof.
Using Persson’s criterion (see Appendix B), we have to show that if the sup-
port of u is in {x1 > R} ∪ {|x2| > R} , then we have

〈L(ϑ)u |u〉 ≥ (1− ε(R))‖u‖2 ,

with ε(R)→ 0 as R→ +∞ .
We start by reducing to the two cases suppu ⊂ {x1 > R} and suppu ⊂

{|x2| > R}. Let f2
1 + f2

2 = 1 be a partition of unity on R with f1 = 1 on
[−1/2, 1/2], supp f1 ⊂ [−1, 1]. Define fj,R(x) = fj(x2/R) and uj = fj,Ru.
Then, by an integration by parts,

〈L(ϑ)u |u〉 ≥ 〈L(ϑ)u1 |u1〉+ 〈L(ϑ)u2 |u2〉 − C

R2
‖u‖2 . (6.20)
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Furthermore, suppu2 ⊂ {|x2| > R} and—using that suppu ⊂ {x1 > R} ∪
{|x2| > R}—suppu1 ⊂ {x1 > R} .

We treat the first case, {x1 > R} , by observing that one can use the
Dirichlet result or, better, the lower bound of the operator in R

2 . After a
rotation, the operator is isospectral to −∂2

s1−∂2
s2 +s21 , whose spectrum starts

at the value 1.
For the second case, {|x2| > R} , one uses the decomposition (6.9), (6.10)

with ρ = cosϑ . Under the assumption that the support of u is contained in
{|x2| ≥ R} , we have

〈P1(ρ, ϑ)u |u〉 ≥ cosϑ ρ inf
|x2|≥R

μ(x2 cot(ϑ)) ‖u‖2 ,

where μ(τ) is the first eigenvalue of the Neumann realization hN,τ of the
operator − d2

dt2 + (t+ τ)2 in R
+ .

This gives, for R large enough,

〈P1(ρ, ϑ)u |u〉 ≥ cosϑ ρμ(−R cot(ϑ)) ‖u‖2 ,
when suppu ⊂ {|x2| > R} . Combining this estimate with (6.12), we get the
result by recalling [see (3.15) and (3.13)] the behavior of μ at ∞:

lim
τ→−∞μ(τ) = 1 and lim

τ→+∞μ(τ) = +∞ .

��

6.2.5 A refined upper bound: ς(ϑ) < 1

In this section, we will prove the strict inequality

ς(ϑ) < 1 , for all ϑ ∈ ]0, π2 [ . (6.21)

For this analysis, we come back to Lnew , which was introduced in (6.14). For
simplicity, we define α by

1
α

= tanϑ 2 ,

and we note that α > 0 if ϑ < π/2 . We now introduce:

f(t) = exp− t
2

2
, and F (t) =

∫ t

−∞
exp−s2 ds .

We observe that F is strictly positive, that

lim
t→+∞F (t) =

√
π , (6.22)

and that
F (t) ∼ 1

2t
exp−t2 , as t→ −∞ . (6.23)
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We shall apply the min-max principle (see Appendix A) with the test
function:

Ψ(y1, y2) = f(y1)g(y2) ,

with g to be determined in L2(R) .
Integrating Ψ2 in the domain {y2 > y1}, we first have

‖Ψ‖2 =
∫ +∞

−∞
g(y2)2F (y2)dy2 .

Let us now compute the energy associated with Ψ. We first get

〈LnewΨ |Ψ〉 =
∫ +∞

−∞
g(y2)2

(∫ y2

−∞

(
f ′(y1)2 + y2

1f(y1)2
)
dy1

)
dy2

+
1
α

∫ +∞

−∞
g′(y2)2F (y2)dy2 .

After a first integration by parts, we get

〈LnewΨ |Ψ〉 = ‖Ψ‖2 +
∫ +∞

−∞
g(y2)2f(y2)f ′(y2) dy2

+
1
α

∫ +∞

−∞
g′(y2)2F (y2)dy2 ,

and then, after a second integration by parts,

〈LnewΨ |Ψ〉 = ‖Ψ‖2 −
∫ +∞

−∞
g(y2)g′(y2)f(y2)2 dy2 +

1
α

∫ +∞

−∞
g′(y2)2F (y2)dy2

= ‖Ψ‖2 + Σα(g) , (6.24)

where

Σα(g) :=
∫ +∞

−∞
g′(y2)

(
1
α
g′(y2)F (y2)− g(y2)F ′(y2)

)
dy2 .

We observe that we will have finished the proof of (6.21) if we find a g ∈ L2

such that Σα(g) is strictly negative. Let us first see what happens if we try
to have the sum inside the integral vanish. A natural try is then to solve the
equation

1
α
g′(y2)F (y2)− g(y2)F ′(y2) = 0 ,

which leads to g = c gα , with gα = Fα . Notice that Fα is not in L2 at +∞.
We can compute Σα(gα̂) for more general α̂ . We get

Σα(gα̂) = α̂(α̂α−1 − 1)
∫ +∞

−∞
f4(y2)F 2α̂−1(y2) dy2 .
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Let us first confirm that this integral is welldefined. There is no problem at
+∞, because F tends to a constant and f is exponentially decreasing. Near
−∞ , F decreases like f2 (see above), and so the integral converges for all
α̂ > 0 . Now the expression is clearly negative if 0 < α̂ < α .

We now choose such an α̂ . But gα̂ is not in L2 at +∞ . So we are obliged
to introduce a cutoff function χn defined by

χn(t) = χ

(
t

n

)
,

where χ is equal to 1 for t ≤ 1 and equal to 0 for t ≥ 2 . We now take
g = gα̂,n = χn(t)gα̂(t) . We observe that, due to (6.22), the corresponding
‖Ψα̂,n‖2 increases like n as n→ +∞ . More precisely, we have

−C + nπα̂+1 ≤ ‖Ψα̂,n‖2 ≤ (2n)πα̂+1 + C .

Let us compare Σα(gα̂,n) and Σα(gα̂) as n→ +∞ . We have

g′α̂,n(t) =
1
n
χ′
(
t

n

)
gα̂(t) + χ

(
t

n

)
g′α̂(t) .

The more problematic term is:

1
n2

∫ +∞

−∞
χ′
(
t

n

)2

g2
α̂(t)F (t) dt .

But this term is less than C
n2 ‖Ψα̂,n‖2 , that is of order n×O(1/n2) = O(1/n) .

The other terms appearing in the computation of Σα(gα̂,n) − Σα(gα̂) are
O(1/n) . Now, observing that Σα(gα̂) < 0 , we get, for n large enough, that

〈LnewΨ |Ψ〉 ≤ Σ(gα̂) +
C

n
+ ‖Ψα̂,n‖2 < ‖Ψα̂,n‖2 .

This shows property (6.21).

6.2.6 Application

Coming back to the initial problem, we have shown that

inf σ(P (β)) ≥ (Θ0(β2
13 + β2

12) + β2
23)(β

2
13 + β2

12 + β2
23)

− 1
2 .

Moreover, one verifies that we have equality when β23 = 0:

inf σ(P (β)) = (Θ0(β2
13 + β2

12))
1
2 .

This clearly shows that when |β| = 1 is fixed, the energy is minimal when the
magnetic field is parallel to the hyperplane x1 = 0 .
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6.3 Notes

1. The case of R
3 was also studied by Fock and Landau [Fo, Lan].

2. The first results can be found in Kato [Kat1] and Avron–Herbst–Simon
[AvHS1]–[AvHS3].

3. The results presented in Section 6.2 were first obtained by Lu–Pan in
[LuP7], Pan in [Pa6], and then rewritten in papers by Helffer–Morame
[HeM3]–[HeM6], see also [Ar2].

4. Further estimates and identities for the half-space model are obtained in
the recent work [Ra3].

5. Proposition 6.2.3 has been established in [HeM4].
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Introduction to Semiclassical Methods for the
Schrödinger Operator with a Large Electric

Potential

In this chapter, we present one of the basic techniques for analyzing the
ground state energy (also called lowest eigenvalue or principal eigenvalue)
of a Schrödinger operator in the case when the electric potential V has non-
degenerate minima, in the limit of large coupling constant B. This problem
turns out to be a semiclassical problem.

7.1 Harmonic Approximation

7.1.1 Upper bounds

The case of the one-dimensional Schrödinger operator

We start with the simplest one-well problem:

PB2v := − d2

dx2
+B2v(x) , (7.1)

where v is a C∞-function tending to +∞ at |x| = ∞ and having a unique
minimum at 0 with

v(0) = 0 .

Let us assume that
v′′(0) > 0 . (7.2)

In this very simple case, the harmonic approximation is an elementary exer-
cise. We first consider the harmonic oscillator associated with 0:

− d2

dx2
+

1
2
v′′(0)B2x2 . (7.3)

This means that we replace the potential v by its quadratic approximation
at 0 , namely, 1

2v
′′(0)x2 , and consider the associated Schrödinger operator.
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Using the dilation x = B− 1
2 y , we observe that this operator is unitarily

equivalent to

B

[
− d2

dy2
+

1
2
v′′(0)y2

]
. (7.4)

Consequently, as we have seen in Section 3.1, the eigenvalues are given by

λn(B) = B λn(1) = (2n+ 1)B

√
v′′(0)

2
, (7.5)

and the corresponding eigenfunctions are

uBn (x) = B
1
4 un(B

1
2x) . (7.6)

Here1

u1(y) =
(
v′′(0)
2π

) 1
4

e−
1
2

�
v′′(0)

2 y2
,

and, by recursion,

un = cn

(
d

dy
−
√
v′′(0)

2
y

)
un−1 , (7.7)

where cn is a normalization constant.
It is easy to see that

un(y) = Pn(y)e−
1
2

�
v′′(0)

2 y2
,

where Pn is a polynomial of degree (n−1) that can also be obtained recursively.
We now return to the full operator PB2v . For simplicity, we will only

consider the first eigenvalue. We consider the function uB,app
1 ,

x �→ χ(x)uB1 (x) = χ(x)
(
Bv′′(0)

2π

) 1
4

exp

(
−
√
v′′(0)

2
B

2
x2

)
,

where χ is compactly supported in a small neighborhood of 0 and equal to 1 in
a smaller neighborhood of 0 . Note here that the H1-norm of this function over
the complement to a neighborhood of 0 is exponentially small as B → +∞ .
We now get

(
PB2v −B

√
v′′(0)

2

)
uB,app

1 = O(B
1
2 ) . (7.8)

1 We normalize by assuming that the L2-norm of uB
n is one. For the first eigenvalue,

we have seen that, by assuming in addition that the function is strictly positive,
we determine uB

1 (x) completely.
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The coefficients corresponding to the commutation of PB2v and χ give
exponentially small terms, and the main contribution is

B2

∥∥∥∥(v(x) − 1
2
v′′(0)x2)χ(x)uB1 (x)

∥∥∥∥
L2

,

which is easily estimated as O(B
1
2 ) , observing that

∣∣∣∣v(x) − 1
2
v′′(0)x2

∣∣∣∣ ≤ C|x|3 for |x| ≤ 1 .

The spectral theorem (Theorem 1.3.1) applied to (7.8) gives the existence
of C > 0 and B0 such that, for any B ≥ B0 , there exists an eigenvalue λ(B)
of PB2v such that ∣∣∣∣∣λ(B) −B

√
v′′(0)

2

∣∣∣∣∣ ≤ C B
1
2 .

In particular, we get the inequality

λ1(B) ≤ B

√
v′′(0)

2
+ C B

1
2 . (7.9)

Combining with a lower bound (which will be obtained in the next subsection),
one can actually prove that

∣∣∣∣∣λ1(B)−B
√
v′′(0)

2

∣∣∣∣∣ ≤ C B
1
2 . (7.10)

The harmonic approximation in general: Upper bounds

In the multidimensional case, we can proceed essentially in the same way. The
analysis of the quadratic case

H(−i∂x, Bx) := −Δ +
1
2
B2〈Ax | x〉

can be done explicitly by diagonalizing A via an orthogonal matrix U . There
is a corresponding unitary transformation on L2(Rn) defined by

(Uf)(x) = f(U−1x)

such that

U−1HU =
n∑
j=1

(
−∂2

yj
+
μj
2
B2y2

j

)
.

Using the Hermite functions as quasimodes, we get the upper bounds by
B
∑n

j=1

√
μj/2 +O(B

1
2 ) as in the one-dimensional case.
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Case of multiple minima

When there is more than one minimum, one can apply the above construction
near each of the minima. The upper bound for the ground state is obtained
by taking the infimum over all the minima of the upper bound attached to
each minimum.

7.1.2 Harmonic approximation in general: Lower bounds

It is rather standard2 to show the existence of a constant C and, for any
R > 0 , of a covering of R

n , by balls of radius R , D(xj , R) (j ∈ J ), and of a
corresponding partition of unity with suppφRj ⊂ D(xj , R) , such that,

∑
j∈J

(φRj )2 = 1 ,
n∑
	=1

∑
j∈J

|∂x�
φRj |2 ≤

C

R2
. (7.11)

Using this partition of unity, we can then write, for all u ∈ C∞
0 ,

〈PB2V u | u〉 =
∑
j

〈PB2V φ
R
j u | φRj u〉 −

∑
j,	

‖|∂x�
φRj |u‖2

≥
∑
j

〈PB2V φ
R
j u | φRj u〉 −

C

R2
‖u‖2 . (7.12)

We now suppose
R ∈ ]0, 1] .

Possibly taking a larger C , we can in addition assume either that the balls
are centered at the minima of V (denoted by xjk , k ∈ K) or that the balls
are at a distance at least R/C from these minima.

In the first case, we observe that
∣∣〈PB2V φ

R
j u | φRj u〉 − 〈P kB2V φ

R
j u | φRj u〉

∣∣ ≤ C B2R3‖φRj u‖2 , (7.13)

where P kB2V is the quadratic approximation model at the minimum xjk , i.e.,
the operator obtained by replacing V by its quadratic approximation

V k(x) = inf V +
1
2
〈HessV (xjk )(x − xjk) | (x− xjk)〉 ,

if the ball is centered at the minimum.
In the second case, we use the fact that the minima of V are nondegen-

erate, and find

〈PB2V φ
R
j u | φRj u〉 ≥

(
B2 inf V +

B2R2

C

)
‖φRj u‖2 . (7.14)

2 One can first construct a covering by balls of radius 1 and an associate partition
of unity. We then get the general family by a dilation.
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The optimization between the two errors appearing in (7.12) and (7.13)
leads to the choice R−2 = B2R3 , that is to the choice

R = B− 2
5 , (7.15)

and we then observe that R2/C = B− 4
5 /C , which is dominant in comparison

with B−1 as B → +∞ . We then get the lower bound

λ1(B)
B2

≥ inf V +B−2(inf
k
λ1(B, xjk ))− CB− 6

5 , (7.16)

where the infimum is over the various minima xjk (assumed to be
nondegenerate) and λ1(B, xjk ) denotes the lowest eigenvalue of the harmonic
approximation at xjk P kB2V . Recall, by the explicit calculation on the har-
monic oscillator, that λ1(B, xjk ) has order of magnitude B [see (7.5)], and so
the error term in (7.16) is indeed small.

7.1.3 The case with magnetic field

Let us consider two situations.

V has a nondegenerate minimum.

The first case is the case when V has a nondegenerate minimum at 0 , with
V (0) = 0 . In this case, the model that gives the approximation is

n∑
j=1

(−i∂xj +BA0
j )

2 +
B2

2
〈V ′′(0)x | x〉 ,

where A0 is a linear magnetic potential generating the constant magnetic field
βjk = βjk(0) :

A0
j (x) =

1
2

(∑
k

βjkxk

)
.

Therefore, in a suitable gauge [note that by a linear gauge, one can first reduce
to the case when A(0) = 0],

A(x)−A0(x) = O(|x|2) .

After the dilation x = B− 1
2 y , we get the operator

B

⎛
⎝ n∑
j=1

(−i∂yj +A0
j)

2 +
1
2
〈V ′′(0)y | y〉

⎞
⎠ ,

whose spectrum can be determined explicitly.
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Let us treat the two-dimensional case as an exercise. We start from

−∂2
x1

+ (−i∂x2 +Bx1)2 +
h1

2
x2

1 +
h2

2
x2

2 ,

with h1 > 0, h2 > 0 .
A partial Fourier transform with respect to the x2-variable leads to

−∂2
x1

+ (ξ2 +Bx1)2 +
h1

2
x2

1 −
h2

2
∂2
ξ2 .

A dilation leads to the standard Schrödinger operator

−∂2
t − ∂2

s +

(√
h2

2
s+Bt

)2

+
h1

2
t2 .

So we have proved the isospectrality of the initial operator with a standard
Schrödinger operator, with quadratic electric potential

V new(s, t) =

(√
h2

2
s+Bt

)2

+
h1

2
t2 .

Its ground state energy is immediately computed as

λ(B) =
√
λ(0)2 +B2 , with λ(0) =

(√
h1 +

√
h2

)
/
√

2 .

In this formula, one explicitly sees the diamagnetic effect announced in Sec-
tion 2.1 and also that

λ(B) − |B| ≤ λ(0) , (7.17)

which is more specific to the quadratic case (paramagnetic inequality).

Lower bounds.

The lower bound is obtained similarly to the case without a magnetic field
once we have observed that

�〈PBA,B2V u | u〉 =
∑
j

〈PBA,B2V φ
R
j u | φRj u〉 −

∑
j,	

‖|∂x�
φRj |u‖2 . (7.18)

Then, for the balls containing the minima, we must replace the magnetic
potential by its affine approximation at the minimum and control the remain-
der. Note that there is a “small” additional difficulty (of the same type as for
the manifold case) of controlling the term corresponding to the approximation
of the magnetic potential.

Let us more precisely describe what is going on. A new control is only
necessary for the balls centered at one of the minima. The idea is that the
harmonic approximation at the minimum [we choose one of the minima, taking
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coordinates such that 0 is the minimum of V , so V (0) = 0 and ∇V (0) = 0]
has to be replaced by

P app,0
B :=

∑
	

(−i∂x�
+BAlin

	 (x))2 +
B2

2
HessV (0)x · x .

We recall from the previous section that this spectrum is known and equal
to B times the spectrum computed for B = 1 , as immediately seen by the
dilation x = B− 1

2 y .
After a gauge transformation, we can assume that

A(x) −Alin(x) = O(|x|2)

and note that the magnetic field generated by Alin(x) is the value of the
magnetic field generated by A evaluated at 0 .

We now take R = B− 2
5 and write

〈PBA,B2V φ
R
j u | φRj u〉 ≥ 〈P app,0

B φRj u | φRj u〉 − CB
4
5 ‖φRj u‖2

−B
∫
|(A(x) −Alin(x))φRj u| · |(−i∇+BAlin(x))φRj u| dx .

This leads first (omitting the reference to R, which is now fixed) to

〈PBA,B2V φju | φju〉 ≥ 〈P app,0
B φju | φju〉 − CB 4

5 ‖φju‖2
− CB 1

5 ‖φju‖ · ‖(−i∇+BAlin(x))φju‖ .

Using the Cauchy–Schwarz inequality with some (to be determined) weight
ρ(B) , we obtain

〈PBA,B2V φju | φju〉
≥ 〈P app,0

B φju | φju〉 − CB 4
5 ‖φju‖2

− CB 1
5

(
1

ρ(B)2
‖φju‖2 + ρ(B)2‖(∇+ iBAlin(x))φju‖2

)

≥ (1− C B 1
5 ρ(B)2) 〈P app,0

B φju | φju〉
− CB 4

5 ‖φju‖2 − C B 1
5 ρ(B)−2‖φju‖2 .

The choice of ρ(B) = B− 3
10 leads to

〈PBA,B2V φ
R
j u | φRj u〉 ≥ (1− C B− 2

5 ) 〈P app,0
B φRj u | φRj u〉 − C B

4
5 ‖φRj u‖2 .

We are now essentially in the same situation as in the case without magnetic
field.
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Magnetic wells

We would like to describe a case where no electric potential is present.
We consider the rather generic case when β ∈ C∞(Ω) satisfies, for some
(x0, y0) ∈ Ω ,

β(x, y) > b := β(z0) > 0, ∀(x, y) ∈ Ω \ {(x0, y0)}, (7.19)

and we assume that the minimum is nondegenerate:

Hess β(x0, y0) > 0 . (7.20)

We introduce in this case the notation

a = Tr
(

1
2

Hessβ(x0, y0)
)1/2

. (7.21)

Theorem 7.1.1.
If A ∈ C∞(Ω; R2) , and if the hypotheses (7.19) and (7.20) are satisfied, then

λD1 (BA) =
(
b+

a2

2bB

)
B + o(1) , (7.22)

where λD1 (BA) denotes the ground state energy of the Dirichlet realization.

The proof is based on the analysis of the simpler model where, near 0,

β(x, y) = b+ αx2 + βy2. (7.23)

In this case, we can also choose (after a gauge transformation) a magnetic
potential A(x, y) such that

A1(x, y) = 0 and A2(x, y) = bx+
α

3
x3 + βxy2 . (7.24)

When β vanishes, other models should be considered. An interesting case
is the case when β vanishes along a line. This is related to Montgomery’s
model described in Section 3.3.

7.2 Decay of Eigenfunctions and Applications

7.2.1 Introduction

As we have already seen when comparing the spectrum of the harmonic
oscillator and that of the Schrödinger operator, it could be quite important
to know a priori how the eigenfunction associated with an eigenvalue λ(B)
decays in the “classically forbidden region”—that is, the set of the x’s such
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that B2V (x) > λ(B) . The Agmon estimates give a very efficient way to
control such a decay.

Let us start with very weak notions of localization. For a family B �→ ψB
of L2-normalized functions defined in Ω , we will say that the family ψB lives
(resp. fully lives) in a closed set U of Ω if, for any neighborhood V(U) of U ,

lim inf
B→+∞

∫
V(U)∩Ω

|ψB(x)|2 dx > 0 ,

respectively,

lim
B→+∞

∫
V(U)∩Ω

|ψB(x)|2 dx = 1 .

For example, we expect that the ground state of the Schrödinger operator
−Δ +B2V (x) fully lives in V −1(inf V ) . Similarly, we expect that if3

lim sup
B→+∞

λ(B)
B2

≤ E < inf σess(B−2PB2V )− ε0

(for ε0 > 0) and if ψB is an eigenfunction associated with λ(B) , then ψB will
fully live in V −1(] −∞, E]) . This is the way we can understand that in the
semiclassical limit (remembering that the semiclassical parameter h is 1/B)
the quantum mechanics should recover the classical mechanics.

Of course, the above is very heuristic, but there are more accurate mathe-
matical notions like the frequency set (see [Ro]) permitting us to give a
mathematical formulation to the above vague statements.

Once we have determined a closed set U , where ψB fully lives (and hope-
fully the smallest), it is interesting to discuss the behavior of ψB outside U ,
and to measure how ψB decays in this region.

To illustrate the discussion, we can start with the very explicit example of
the harmonic oscillator. The ground state x �→ π−

1
4 B

1
4 exp(−B

2
x2) of − d2

dx2 +
B2x2 lives at 0 and is exponentially decaying in any interval [a, b] such that
0 �∈ [a, b] . This is this type of result that we will recover but without having
an explicit expression for ψB .

7.2.2 Energy inequalities

The main but basic tool is a very simple identity for the Schrödinger operator
PBA,B2V .

Proposition 7.2.1.
Let Ω be a bounded open domain in R

n with C2 boundary. Let V ∈ C0(Ω; R) ,
A ∈ C0(Ω; Rn) and φ be a realvalued Lipschitzian function on Ω . Then, for
any u ∈ C2(Ω; C) satisfying

• either the Dirichlet condition u
∣∣
∂Ω

= 0 ,

3 This is the case, in particular, when lim inf |x|→+∞ V (x) > inf V .
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• or the magnetic Neumann condition ν · (∇u+ iBAu)
∣∣
∂Ω

= 0 ,

we have ∫
Ω

|∇BA (eBφu)|2 dx+B2

∫
Ω

(V − |∇φ|2)e2Bφ|u|2 dx

= �
(∫

Ω

e2Bφ (PBA,B2V u)(x) · u(x) dx
)
. (7.25)

Proof.
In the case when φ is a C2(Ω)-function and A = 0 , this is an immediate
consequence of the Green–Riemann formula:∫

Ω

∇v · ∇w dx = −
∫

Ω

Δv · w dx−
∫
∂Ω

(∂v/∂ν) · w dσ∂Ω , (7.26)

where ∂v/∂ν is the normal derivative at the boundary

(∂v/∂ν) = (ν · ∇v)∣∣
∂Ω
.

This gives in particular∫
Ω

∇v · ∇w dx = −
∫
Ω

Δv · w dx , (7.27)

for all v, w ∈ C2(Ω) such that w
∣∣
∂Ω

= 0 or ∂v/∂ν
∣∣
∂Ω

= 0 . This can actually
be extended to v, w ∈ H1

0 (Ω) .
We then observe (we still treat the case when A = 0)

�
∫
e2Bφ(−Δu) · u dx = �

∫
(∇u) · (∇e2Bφu) dx

= �
∫

((∇−B∇φ) eBφu) · (∇+B∇φ)eBφu) dx

=
∫
|(∇eBφu)|2 dx −B2

∫
|∇φ|2|eBφu|2 dx .

The case when A is nonzero is treated similarly. Using the gauge invari-
ance, one can first treat the case when A · ν vanishes at the boundary.

To treat more general φ’s, we just write φ as a limit as ε→ 0 of φε = χε∗φ,
where χε(x) = χ(x/ε) ε−n is the standard mollifier, and we remark that ∇φ is
almost everywhere the limit of ∇φε = ∇χε ∗ φ . When A is nonzero, we must
additionally use∫

Ω

∇BAv · ∇BAw dx = −
∫

Ω

ΔBAv · w dx

−
∫
∂Ω

(∂v/∂ν + iBA · ν v) · w dσ∂Ω . (7.28)

This identity can be used in the two cases considered in the proposition. ��
Note that the proposition is also true for u ∈ H2(Ω) .
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7.2.3 The Agmon distance

The Agmon metric associated with an energy E and a potential V is defined
as (V − E)+dx2 , where dx2 is the standard metric on R

n . This metric is
degenerate and vanishes identically in the “classical” region: {x | V (x) ≤ E} .
Associated with the Agmon metric, we define a natural distance

(x, y) �→ d(V−E)+(x, y)

by taking the infimum:

d(V−E)+(x, y) = inf
γ∈C1,pw([0,1];x,y)

∫ 1

0

[(V (γ(t))− E)+]
1
2 |γ′(t)|dt , (7.29)

where C1,pw([0, 1];x, y) is the set of the piecewise C1 paths in R
n connecting

x and y:

C1,pw([0, 1];x, y) = {γ ∈ C1,pw([0, 1]; Rn) , γ(0) = x , γ(1) = y} . (7.30)

When there is no ambiguity, we shall write more simply

d(V−E)+ = d . (7.31)

Similarly to the Euclidean case [which corresponds to (V − E)+ replaced by
1], we obtain the following properties:

• Triangle inequality

|d(x′, y)− d(x, y)| ≤ d(x′, x) , ∀x, x′, y ∈ R
m . (7.32)

•
|∇xd(x, y)|2 ≤ (V − E)+(x) , (7.33)

almost everywhere.

We observe that the second inequality is satisfied for other distances like

d(x, U) = inf
y∈U

d(x, y) .

The most useful case will be the case when U is the set {x | V (x) ≤ E} .
In this case, d(x, U) is the distance to the classical region associated with the
energy E . In this case, we will write

dE(x) = d(x, {x | V (x) ≤ E}) . (7.34)

As these notions are expressed in terms of metrics, they can easily be extended
to manifolds.
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7.2.4 Decay of eigenfunctions for the Schrödinger operator

When uB is a normalized eigenfunction of the Dirichlet realization in Ω
satisfying

PBA,B2V uB = λBuB ,

then the identity (7.25) roughly states that exp(Bφ) uB is well controlled
(in L2) in a region

Ω1(ε1, B) =
{
x | V (x)− |∇φ(x)|2 − λB

B2
> ε1 > 0

}
,

by exp(supΩ\Ω1
Bφ(x)) . The choice of a suitable φ (possibly depending on B)

is related to the Agmon metric (V −E)+ dx2 when λB/B2 → E as B → +∞ .
The typical choice is φ(x) = (1 − ε)dE(x) , where dE(x) is introduced in
(7.34). In this case, we get that the eigenfunction is localized inside a small
neighborhood of the classical region and we can measure the decay of the
eigenfunction outside the classical region by

exp[(1 − ε)BdE(x)] uB = O(exp εB) , (7.35)

for any ε > 0 .
More precisely, we get the following theorem:

Theorem 7.2.2. :
Let us assume that V is C∞, semibounded and satisfies

lim inf
|x|→∞

V > inf V . (7.36)

Let E be such that
inf V ≤ E < lim inf

|x|→∞
V . (7.37)

Let uB be a (family of L2-) normalized eigenfunctions such that

PBA,B2V uB = λBuB , (7.38)

with
lim sup
B→+∞

λB
B2

≤ E . (7.39)

Then, for all ε > 0 and all compact K ⊂ R
m , there exists a constant Cε,K

such that for B large enough,

‖∇BA(eBdEuB)‖L2(K) + ‖eBdEuB‖L2(K) ≤ Cε,K exp εB . (7.40)

Remark 7.2.3.
Useful improvements in the case when E = minV and when the minima
are nondegenerate can be obtained by controlling what is going on near the
minima of V more carefully with respect to B . It is also possible to control
the eigenfunction at ∞ . This was actually the initial goal of Agmon (see also
Theorem B.5.1).
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Proof.
Let us choose some δ ∈ ]0, 1[ . We shall use the identity (7.25) with

• V replaced by V − λB

B2 ,
• φ = (1− δ)dE(x) ,
• PBA,B2V replaced by −ΔBA +B2V − λB .

Let

Ω+
δ = {x ∈ Ω , V (x) > E + δ} , Ω−

δ = {x ∈ Ω , V (x) ≤ E + δ} .
We deduce from (7.25)
∫

Ω

|∇BA(expBφuB)|2dx+B2

∫
Ω+

δ

(
V − λB

B2
− |∇φ|2

)
exp 2Bφ |uB|2 dx

≤ B2 sup
x∈Ω−

δ

∣∣∣∣V (x) − λB
B2

− |∇φ|2
∣∣∣∣
(∫

Ω−
δ

exp 2Bφ |uB|2 dx
)
.

Then, for some constant C independent of B ∈ [B0,+∞[ and δ ∈ ]0, 1[ ,
we get
∫

Ω

|∇BA(expBφuB)|2dx+B2

∫
Ω+

δ

(
V − λB

B2
− |∇φ|2

)
exp 2Bφ |uB|2 dx

≤ CB2

∫
Ω−

δ

exp 2Bφ |uB |2 dx .

Let us observe now that on Ω+
δ we have [with φ = (1− δ)d(·, U)]

V − λB
B2

− |∇φ|2 ≥ (2− δ)δ2 + o(1) ,

as B →∞. Choosing B(δ) large enough, we then get, for any B ∈ [B(δ),+∞[ ,

V − λB
B2

− |∇φ|2 ≥ δ2 .

This permits us to get the estimate∫
Ω

|∇BA(expBφuB)|2dx + δ2B2

∫
Ω+

δ

exp 2Bφ |uB |2 dx

≤ C B2

∫
Ω−

δ

exp 2Bφ |uB|2 dx ,

and finally,∫
Ω

|∇BA(expBφuB)|2dx+ δ2B2

∫
Ω

exp 2Bφ |uB |2 dx ≤ C̃B2 exp a(δ)B ,

where a(δ) = 2 supx∈Ω−
δ
φ(x) . We now observe that limδ→0 a(δ) = 0 and the

end of the proof is then easy. ��
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Remark 7.2.4.
When V has a unique nondegenerate minimum, the estimate can be improved
when, for some C0 > 0, λB belongs to the interval [EB2, EB2+C0B] . We take
in the previous proof

δ = CB−1, and φ = dE − CB−1 inf(log(BdE), logC) ,

for some C ≥ 1. We observe indeed that V −E , dE , and |∇dE |2 are equivalent
in the neighborhood of the well. We can then replace Cε,K exp(εB) in (7.40)
by CK BN0 for some N0 ∈ R .

7.2.5 Applications

As an example of an application, we can compare different Dirichlet prob-
lems corresponding to different open sets Ω1 and Ω2 containing a unique well
U associated with an energy E . If, for example, Ω1 ⊂ Ω2 , we can prove
the existence of a bijection b between the spectrum of B−2PBA,B2V,Ω1 in an
interval I(B) tending (as B → +∞) to E and the corresponding spectrum of
B−2PBA,B2V,Ω2 such that |b(λ)−λ| = O(exp−BS) [under a weak assumption
on the spectrum at ∂I(B)]. Here S is any constant such that

0 < S < d(V−E)+(∂Ω1, U) .

This can actually be improved (using more sophisticated perturbation theory)
as Oε(exp−2B(S − ε)) , for any ε > 0 .

Let us just give a hint about the proof. If (u(2)
B , λ

(2)
B ) is a family of spectral

pairs of the Dirichlet realization of the Schrödinger operator in Ω2 , then, if χ
is a cutoff function with compact support in Ω1 , which is equal to 1 on a
neighborhood of U , we can use χu(2)

B as a quasimode for the realization in
Ω1 . We observe indeed that

(−ΔBA +B2V − λ(2)
B )(χu(2)

B ) = −2(∇χ) · (∇BAu
(2)
B )− (Δχ)u(2)

B .

Hence, the choice of χ and the Agmon decay estimates on u
(2)
B permit us to

show that the right-hand side is exponentially small as stated.

7.2.6 The case with magnetic fields but without electric potential

In this case, there is no hope to use the result for V , which does not
create any localization. The idea is that the role previously played by V (x)
is replaced by |β(x)|/B for the two-dimensional case [or more generally by
x �→ tr+(β(x)]. This is due to (1.32) in the case n = 2 [β(x) of constant
sign] and to their extensions. The Agmon distance will be associated with
1
B

[tr+(β(x)) − infx tr+(β(x))] dx2 .
The proof is in two steps: treatment of the case with constant magnetic

field and then partition of unity to control the comparison with this case.
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This explains, because of the presence of B−1 before |β| , that the decay
is measured through a weight of the type exp−α√Bφ , where α ∈ ]0, 1[ and
φ should satisfy

|∇φ|2 ≤ tr+(β(x)) − inf
x

tr+(β(x)) ,

outside a neighborhood of the magnetic well, which is the set of points where
tr+(β(x)) = infx tr+(β(x) . We will come back to this in Chapter 8.

7.3 Notes

1. The aim of this chapter was to explain the semiclassical techniques
mainly due to Helffer–Sjöstrand and Simon. The presented material
appears in many books or courses (Cycon–Froese–Kirsch–Simon [CyFKS],
Helffer [He2, He7, He9], Dimassi–Sjöstrand [DiS], Hislop–Sigal [HiS],
Martinez [Mart]) that emphasize various aspects of the theory. We have
rewritten the results in the version of a large coupling constant in order
to immediately have the needed applications. So the large parameter B
corresponds to the small parameter h = B−1 which plays the role of the
Planck constant in semiclassical analysis.

2. For the harmonic approximation, we follow Simon’s approach (see [Simo]).
Another approach is described in [He2] and another variant in [DiS]. The
reader can also look at another presentation in Chapter 11 of [CyFKS].

3. The specific semiclassical properties of Schrödinger operators were mainly
developed to answer questions from Solid-state physics (see [HeS5] and
references therein).

4. Note that in the case of the harmonic approximation on a manifold,
there is another term that leads to a small change in the argument (see
[Simo]). The Laplacian indeed has the form

∑
ij g

−1/2∂xigg
ij∂xjg

−1/2

after a change of function in order to come back to the self-adjoint case.
5. The explicit computations of λ(B) are particular cases of theorems due

to Matsumoto [Mat] or Matsumoto–Ueki [MatU], but they are actually
much older and appear in the analysis of the G̊arding–Melin inequality
[Me]. We can, for example, refer to Hörmander [Ho, Vol. 3, Lemma 22.3.1
(p. 360)].

6. The fact that inequality (7.17) (which says that the ground state energy of
the Pauli operator PB2V − |B| is lower than in the case without magnetic
field) cannot be extended for more general situations has been shown by
Avron–Simon [AvS] and Helffer [He3] using the Aharonov–Bohm effect.

7. The detailed proof of Theorem 7.1.1 can be found in [HeM3].
8. Models with a vanishing magnetic field along lines were proposed by

Montgomery [Mon]. See also Section 3.3 and the discussion around
Theorem 8.6.2. More examples can be treated (see Helffer–Morame [HeM2,
HeM3] and more recently Helffer–Kordyukov [HeK1]).
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9. The Agmon estimates were developed first in [Ag]. Agmon was actually
more interested in the behavior of eigenfunctions at spatial infinity. In the
semiclassical context, we refer to [He2] or to the original papers of Helffer–
Sjöstrand [HeS1] or Simon [Simo] for details and complements. Microlocal
versions of these Agmon estimates are discussed in [Mart].

10. That the derivative of a Lipschitz function can be defined almost every-
where is a standard result due to Rademacher. See, for example, [DiS,
p. 50].

11. The decay properties of eigenfunctions were also the object of many
contributions. Let us mention Helffer–Sjöstrand [HeS4], Brummelhuis
[Bru], Helffer–Nourrigat [HeN2] for typically magnetic effects, Erdös,
Martinez, Nakamura, and Sordoni for Gaussian decay properties (see
[Er1, So, MartS] and references therein).

12. It can be useful to extend the decay properties of eigenfunctions to the
decay properties of the kernel of the resolvent of the operator. The reader
is invited to look in [DiS, Proposition 6.6].



8

Large Field Asymptotics of the Magnetic
Schrödinger Operator: The Case of

Dimension 2

In this chapter, we study the asymptotics of the ground state energy of the
magnetic Neumann operator PNBA,Ω as the field strength B tends to infinity.
We also obtain the localization properties of the ground state. These results
are combined to analyze the question of the monotonicity of the ground state
energy.

8.1 Main Results

We recall that we have given a rough asymptotic estimate for the ground state
energy of the Dirichlet realization, PDBA,Ω , in dimension 2 (see Theorem 1.4.2)
and that by the min-max principle this also gives an upper bound in the case of
Neumann boundary conditions. Of course, the case of the Dirichlet realization
does not lead to really new phenomena in comparison with the case Ω = R

n ,
at least if the condition

b < b (8.1)

is satisfied, where we introduced the notations

inf
x∈Ω

|β(x)| = b , inf
x∈∂Ω

|β(x)| = b′ . (8.2)

For the Neumann Laplacian, however, the introduction of a boundary can lead
to interesting new phenomena. The first “rough” theorem for the Neumann
realization is the following:

Theorem 8.1.1.
Suppose that Ω ⊂ R

2 is bounded and smooth. Then

lim
B→∞

1
B

inf σ(PNBA,Ω) = min(b,Θ0b
′) , (8.3)

where Θ0 is the constant from (3.24).
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Recall that the constant Θ0 < 1 . Therefore, in the special case where
β is constant, we have Θ0b

′ < b . This spectral fact is responsible for the
phenomenon of surface superconductivity, as we will see later.

One important theorem that we would like to present is

Theorem 8.1.2.
Let Ω ⊂ R

2 be smooth and bounded. If the magnetic field is constant and
nonzero, then any ground state corresponding to the Neumann realization is
localized as B →∞ near the boundary of Ω .

These two theorems are not necessarily optimal. In many cases one can
give more precise asymptotic expressions for the ground state energy. Also,
in many cases the ground state will be localized in a smaller region, i.e., only
near a part of the boundary. We give a more precise result for the case of a
constant magnetic field.

Theorem 8.1.3.
Let Ω ⊂ R

2 be smooth and bounded. If the magnetic field is constant and
nonzero, then any ground state corresponding to the Neumann realization is
localized as B → ∞ near the points on the boundary where the boundary
curvature is maximal.

8.2 Proof of Theorem 8.1.1

8.2.1 Upper bounds

The case when b = 0 can be treated independently. The upper bounds are
based on the construction of suitable quasimodes. Gaussians can be used in
the case when b ≤ Θ0b

′—just as in the proof of Theorem 1.4.2. In the case
when Θ0b

′ < b , one should use trial functions obtained by multiplying a
boundary tangential Gaussian by a “normal” solution constructed with the
help of the first eigenfunction of the model on R

+ (see Section 3.2). More
precisely, let x0 be a point on the boundary where |β(x0)| = b′ . We can
take a system of coordinates x �→ (s, t) such that t(x) denotes the distance to
the boundary and s(x) is a parametrization of the boundary with s(x0) = 0
(see Section F.1 for details). In these coordinates, the leading-order term of
the operator as B →∞ will look like

−∂2
t + (−i∂s +Bb′t)2

on the half-plane t > 0 . (More correctly, we should consider S
1× ]0, t0] with

Neumann boundary conditions at t = 0 and Dirichlet conditions at t = t0.)
The first guess in order to have the lowest possible energy is to consider

the function
(t, s) �→ B

1
4 eiρ0s

√
Bu0(B

1
2 τ0t) ,
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where R
+ � v �→ u0(v) is the eigenfunction for the half-line model with ξ = ξ0

and magnetic field equal to 1 (τ0 and ρ0 being suitably chosen) in order to
get the minimal energy (for the moment, it is an L∞-eigenfunction).

This leads to the equation

−Bβ̃2u′′0(B
1
2 τ0t) + (B

1
2 ρ0 −Bb′t)2u0(B

1
2 τ0t) = Θ0Bb

′u0(B
1
2 τ0t) .

So we should take the pair (τ0, ρ0) = (
√
b′, ξ0τ0) .

It then remains to localize with a cutoff function t �→ χ(t) with compact
support in [0, t0[ and to localize in the s-direction with a function s �→ χ0(s)
with support in a neighborhood of 0 . So the trial function that we choose (for
a B-independent constant C and for α > 0 arbitrary) is

φ0(t, s;B) = C B
5
16 χ(t)χ0(s)

× exp(−αB 1
4 s2) exp(iξ0

√
Bb′s) u0(

√
Bb′t) . (8.4)

Computing the energy of this trial function gives

λN1 (BA) ≤ Bmin(b,Θ0b
′) + o(B) , (8.5)

which is enough for the analysis of the decay and proves the upper bound part
in Theorem 8.1.1.

8.2.2 Lower bounds

Let 0 ≤ ρ ≤ 1 . We first claim that there exists C such that, for any R0 > 0 ,
we can, by scaling a standard partition of unity of R

2 , and by restricting it
to Ω , find a partition of unity χBj satisfying in Ω

∑
j

|χBj |2 = 1 , (8.6)

∑
j

|∇χBj |2 ≤ C R−2
0 B2ρ , (8.7)

and
supp(χBj ) ⊂ Qj = D(zj , R0B

−ρ) , (8.8)

where D(c, r) denotes the open disc in R
2 of center c and radius r . Moreover,

we can add the property that:

either suppχj ∩ ∂Ω = ∅ , or zj ∈ ∂Ω . (8.9)

According to the two alternatives in (8.9), we can decompose the sum in (8.6)
in the form ∑

=
∑
int

+
∑
bnd

,
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where “int” refers to the j’s such that zj ∈ Ω and “bnd” refers to the j’s such
that zj ∈ ∂Ω .

We now implement this partition of unity in the following way

Q(u) =
∑
j

Q(χBj u)−
∑
j

‖ |∇χBj |u ‖2 , ∀u ∈ H1
BA(Ω) . (8.10)

Here Q = QNBA,Ω denotes the magnetic quadratic form as defined in (1.11).
We can rewrite the right-hand side of (8.10) as the sum of three (types of)
terms:

Q(u) =
∑
int

Q(χBj u)+
∑
bnd

Q(χBj u)−
∑
j

‖ |∇χBj |u ‖2 , ∀u ∈ H1
BA(Ω) . (8.11)

For the last term on the right side of (8.11), we get, using (8.7),
∑
j

‖ |∇χBj |u ‖2 ≤ C B2ρR−2
0 ‖u‖2 . (8.12)

This measures the price to pay when using a fine partition of unity: If ρ is
large, the error due to this localization will be in O(B2ρ) .

We shall later optimize the choice of ρ or of R0 for our various problems
(note that taking R0 large will only be interesting when ρ = 1/2).

The first term on the right-hand side (8.11) can be estimated from below
using (1.32). The support of χBj u is indeed contained in Ω . So we have

∑
int

Q(χBj u) ≥ B
∑
int

∫
β(x)|χBj u|2 dx . (8.13)

The second term on the right-hand side of (8.11) is the more delicate and
corresponds to the specificity of the Neumann problem. We have to find a
lower bound for Q(χBj u) for some j such that zj ∈ ∂Ω . We emphasize that zj
depends on B , so we have to be careful in the control of the uniformity.

We will use the boundary coordinates (s, t) defined in Section F.1. Let
z ∈ ∂Ω and consider functions u supported in the small disc D(z,B−ρ) (where
the magnetic parameter B is sufficiently large). We have (F.5) after a change
of coordinates. We now choose a convenient gauge. Define

Ã1(s, t) := −
∫ t

0

(
1− t′k(s))β̃(s, t′) dt′, Ã2(s, t) := 0.

With a suitable gauge change, i.e., with the substitution ṽ := eiBφu for some
function φ , we have for suppu ⊂ D(z,R0B

−ρ) ,
∫
|(−i∇+BA)u|2 dx

=
∫

(1− tk(s))−1
∣∣(−i∂s +BÃ1)ṽ

∣∣2 + (1− tk(s))|∂tṽ|2 dsdt . (8.14)
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Define

k0 := k(0) , A(s, t) := −β̃(0, 0)
(
t− 1

2
t2k(0)

)
,

Δk(s) := k(s)− k(0) , b̃(s, t) :=
(
1− tk(s))β̃(s, t)− (1− tk(0)

)
β̃(0, 0) ,

ã1(s, t) := −
∫ t

0

b̃(s, t′) dt′ .

Then we have the estimates in the support of ṽ :

|Δk| ≤ CR0B
−ρ , |b̃(s, t)| ≤ CR0B

−ρ , |ã1(s, t)| ≤ CR0B
−ρt .

Of course, since t = O(B−ρ) , one can obtain a t-independent estimate, but
we keep the t-dependence for later use.

Let B be so large that 2−1 ≤ (1 − tk(s)) ≤ 2 on supp ṽ . Then we can
make the following comparison between (8.14) and the similar constant field,
constant curvature formula:∫

|(−i∇+BA)u|2 dx

≥ (1− η)
∫

(1− tk0)−1|(−i∂s +BA)ṽ|2 + (1− tk0)|∂tṽ|2 dsdt

− C
∫
tΔk
{∣∣(−i∂s +BÃ1)ṽ

∣∣2 + |∂tṽ|2
}
dsdt

− η−1

∫
(1− tk0)−1B2ã2

1|ṽ|2 dsdt, (8.15)

for any 0 < η < 2−1 and any u with suppu ⊂ D(z,R0B
−ρ) . The first term on

the right-hand side is the quadratic form corresponding to constant curvature
and constant magnetic field, so we can estimate

∫
(1− tk0)−1|(−i∂s +BA)ṽ|2 + (1 − tk0)|∂tṽ|2 dsdt

≥ (Θ0Bβ(z)− C1k
√
Bβ(z)− C)‖ṽ‖22 , (8.16)

using Corollary 5.4.2. Notice that this estimate is uniform, since the boundary
curvature is uniformly bounded.

The second term on the right-hand side is estimated by

C

∫
tΔk
{∣∣(−i∂s +BÃ1)ṽ

∣∣2 + |∂tṽ|2
}
dsdt

≤ CĈB−2ρ

∫
|(−i∇+BA)u|2 dx , (8.17)

and consequently involves the left-hand side. Here we use the property that
0 ≤ t ≤ CB−ρ on supp ṽ .
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The third term is estimated by

η−1

∫
(1 − tk0)−1B2ã2

1|ṽ|2 dsdt ≤ C̃η−1B2−4ρ ‖ṽ‖2 . (8.18)

To get a first but nonoptimal estimate, we choose R0 = 1 , η = B
1
2−2ρ ,

ρ = 3/8 , and conclude from (8.15) and (8.16)–(8.18) that
∫
|(−i∇+BA)u|2 dx ≥ (Θ0Bβ(z)− CB 3

4
)‖u‖2 , (8.19)

for all u such that suppu ⊂ D(z,B−ρ) .
Combining this with (8.10), (8.12), and (8.13), we find the lower bound

inherent in Theorem 8.1.1. More precisely, we find constants C and B0 such
that, ∀u ∈ H1

BA(Ω) and ∀B ≥ B0 ,

Q(u) ≥ B
∑
int

∫
β(x)|χBj u|2 dx

+ Θ0B
∑
bnd

∫
β(zj)|χBj u|2 dx− CB

3
4

∑
j

∫
|χBj u|2 dx . (8.20)

Upon replacing β(zj) by β(x) in each of the terms in the boundary sum,
we have actually proved the following.

Proposition 8.2.1.
There exist positive constants C and B0 such that, with

Uβ(x) :=

{
Bβ(x) , d(x, ∂Ω) ≥ B− 3

8 ,

Θ0Bβ(x) , d(x, ∂Ω) < B− 3
8 ,

(8.21)

we have ∫
Ω

|(−i∇+BA)u|2 dx ≥
∫

Ω

(Uβ(x)− CB 3
4 )|u(x)|2 dx , (8.22)

for all u ∈ H1
BA(Ω) and all B ≥ B0 .

In particular, we get the following version of the lower bound corresponding
to Theorem 8.1.1.

Proposition 8.2.2.
There exist positive constants C and B0 such that, for all B ≥ B0 , we have
the estimate

λ1(BA) ≥ Bmin(b,Θ0b
′)− C B 3

4 . (8.23)

We can also make the choice ρ = 1/2 , η = B−1/8 and R0 large in (8.15).
This gives an estimate that may look weaker than Proposition 8.2.1, but that
will be more efficient in the study of decay. The reason is that the boundary
zone now has the right length scale, namely B−1/2 . The result analogous to
Proposition 8.2.1 is
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Proposition 8.2.3. .
There exist C,B0 > 0 and, for all R0 > 0 , there exists C(R0) such that with

U
(2)
β (x) :=

{
Bβ(x) , d(x, ∂Ω) ≥ R0B

− 1
2 ,

BC(R0)β(x) , d(x, ∂Ω) ≤ R0B
− 1

2 ,
(8.24)

we have∫
Ω

|(−i∇+BA)u|2 dx ≥
∫

Ω

(
U

(2)
β (x)− C B

R2
0

)
|u(x)|2 dx , (8.25)

for all u ∈ H1
BA(Ω) and all B ≥ B0 .

8.2.3 Agmon’s estimates

We will prove that ground states localize near the boundary in the case where

Θ0b
′ < b (8.26)

is satisfied.
We first observe that if Φ is a real and uniformly Lipschitzian function and

if u is in the domain of the Neumann realization of PNBA,Ω , then we have by
a simple integration by parts

�〈PBA,Ωu | e2
√
BΦu〉

= �〈(−i∇+BA)u | (−i∇+BA)e2
√
BΦu〉

= 〈(−i∇+BA)e
√
BΦu | (−i∇+BA)e

√
BΦu〉 −B∥∥|∇Φ| e

√
BΦu

∥∥2
= QBA(e

√
BΦu)− B

∥∥|∇Φ| e
√
BΦu

∥∥2 . (8.27)

We now take u to be an eigenfunction associated with the lowest eigenvalue
λ1(BA) . This gives

λ1(BA)‖e
√
BΦu‖2 = QBA(e

√
BΦu)−B∥∥|∇Φ| e

√
BΦu

∥∥2 . (8.28)

We will obtain strong decay estimates by implementing the upper bound (8.5)
and the lower bound of Proposition 8.2.3. Let us take

Φ(x) = αmax(d(x, ∂Ω), R0B
− 1

2 ),

where α > 0 has to be determined, and let us apply Proposition 8.2.3. We first
write

QBA(e
√
BΦu) ≥

∫ (
U

(2)
β (x) − C B

R2
0

) ∣∣e√BΦ(x)u(x)
∣∣2dx . (8.29)

Implementing (8.26), (8.5) becomes

λN1 (BA) ≤ Θ0 b
′B + o(B) . (8.30)
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Using (8.28), we now obtain
∫
{t(x)≥R0B

− 1
2 }

[
β(x) −Θ0b

′ − o(1)− C

R2
0

− α2

]
e2

√
BΦ(x)|u(x)|2 dx

≤
∫
{t(x)≤R0B

− 1
2 }

[
Θ0b

′ − C(R0)β(x) + o(1) +
C

R2
0

]
e2

√
BΦ(x)|u(x)|2 dx

≤ C′(R0)
∫
{t(x)≤R0B

− 1
2 }
|u(x)|2 dx. (8.31)

This gives the main ingredient of the proof for the following theorem:

Theorem 8.2.4. .
Under condition (8.26), there exist C > 0 , α > 0 , and B0 > 0 , such that if
B ≥ B0 and uB is the ground state of PNBA,Ω , then

∫
Ω

e2α
√
B d(x,∂Ω)

{|uB(x)|2 + B−1|pBAuB(x)|2} dx ≤ C ‖uB‖2 . (8.32)

More generally, for δ > 0 , there exist C,α,B0 > 0 such that if uB is an
eigenfunction of PNBA,Ω with eigenvalue smaller than (1− δ)Bb , and B ≥ B0 ,
then (8.32) holds.

Remark 8.2.5.
Notice that Theorem 8.2.4 is a precise version of Theorem 8.1.2.

Note that condition (8.26) is always satisfied when β is constant, because
Θ0 < 1 and in that case b = b′ .

Proof.
We only consider the case of the ground state. From (8.31), we see that for
all α <

√
b−Θ0b′ , we can choose R0 sufficiently large and get (for large B)

the inequality
∫
e2

√
BΦ|u(x)|2 dx ≤ C(α,R0)

∫
{t(x)≤R0B

− 1
2 }
|u(x)|2 dx . (8.33)

From this we deduce the estimate on ‖eα
√
Bd(x,∂Ωu‖2 in (8.32). The other part

of (8.32) is a consequence of (8.33) and (8.28). ��
Remark 8.2.6.
On the contrary, when b < Θ0b

′ , the ground state decays exponentially outside
any fixed neighborhood of β−1(b) in Ω . Note that in this case the boundary
condition does not affect the localization of the ground state or the asymptotics
of the ground state energy (exponentially small effect). The decay is then esti-
mated by the weight exp−[α0

√
Bdβ−b(x)] , where, for a given x ∈ Ω , dβ−b(x)

denotes the Agmon distance of x to the minima of the strength of the magnetic
field β attached to the potential y �→ β(y)− b .
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In applications it is often not exponential but polynomial weights that
occur. Theorem 8.2.4 has the following useful corollary.

Corollary 8.2.7.
Suppose that (8.26) is satisfied. Then there exists Cn > 0 such that

∫
t(x)n{|uB(x)|2 +B−1|pBAuB(x)|2} dx ≤ CnB

−n
2 ‖uB‖2 . (8.34)

Remark 8.2.8.
Upon inserting Corollary 8.2.7 in (8.15), we get (choosing η = B−ρ , ρ = 1/3),
the following improvement of (8.23). There exist C and B0 such that, for
B ≥ B0 ,

λ1(BA) ≥ min(b,Θ0b
′) B − C B 2

3 . (8.35)

We recall that the optimal result is in O(B1/2) .

The next result, which is useful in the analysis of the monotonicity of λN1 ,
is a rather weak localization result inside the boundary. The proof is analogous
to the proof of Theorem 8.2.4 but instead uses Proposition 8.2.1.

Proposition 8.2.9.
Suppose that (8.26) is satisfied and that in addition the restriction of β(x) to
the boundary is not constant. Then, for any neighborhood V(∂Ω) of

ñ(∂Ω) := {x ∈ ∂Ω | |β(x)| = b′} , (8.36)

there exist η > 0 , B0 > 0 , and C > 0 such that, for B ≥ B0 , any normalized
ground state uB satisfies

∫
Ω\V(∂Ω)

|uB(x)|2 dx ≤ C exp(−ηB 1
2 ) .

8.3 Constant Magnetic Field

In this section, we will obtain more precise asymptotics in the important
special case of a constant magnetic field. We therefore assume that

β(x) = 1 , ∀x ∈ Ω. (8.37)

In this case, Theorem 8.1.1 becomes

Proposition 8.3.1.
In the case of a constant magnetic field, we have

λ1(B) = Θ0B + o(B). (8.38)
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Also, the exponential localization in Theorem 8.2.4 holds. We will prove
that in the case of a constant magnetic field the next term in the expansion
is determined by the maximum of the boundary curvature.

Theorem 8.3.2.
Suppose that Ω is bounded and smooth and that β(x) ≡ 1 . Then

λ1(B) = Θ0B − C1kmax

√
B +O(B

1
3 ), (8.39)

where
kmax := max{k(s) ∣∣ s ∈ ∂Ω} ,

k(s) denotes the curvature of the boundary at the point s , and C1 is the con-
stant defined in (3.38).

Proof.
Lower bound:
The argument is the same as for the proof of Theorem 8.1.1. In particular,
we have (8.10) and (8.12). We will choose R0 = 1 . For the boundary terms,
we notice that since the magnetic field is constant, the function b̃ satisfies

b̃(s, t) = −t(Δk)(s) ,
and thus

ã1(s, t) =
1
2
t2(Δk)(s) .

Therefore, (8.15) is improved to∫
|(−i∇+BA)u|2 dx

≥ (1− η)
∫

(1− tk0)−1|(−i∂s +BA)ṽ|2 + (1− tk0)|∂tṽ|2 dsdt

− C
∫
tΔk
{∣∣(−i∂s + Ã1)ṽ

∣∣2 + |∂tṽ|2
}
dsdt

− Cη−1B2

∫
t4(Δk)2|ṽ|2 dsdt , (8.40)

for all u such that suppu ⊂ D(z,B−ρ) .
Estimating Δk = O(B−ρ) and putting together the different pieces, we get

the inequality∫
|(−i∇+BA)u|2 dx

≥ B
∑
int

∫
|χBj u|2 dx+

∑
bnd

(1− η)
∫

(Θ0B − C1k(zj)
√
B − C)|χBj u|2 dx

− CB−ρ∑
bnd

∫
t(x)|pBA(χju)|2 dx− Cη−1B2−2ρ

∑
bnd

∫
t(x)4|χju|2 dx

− CB2ρ‖u‖2 , (8.41)
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for all u ∈ H1
BA(Ω) . In the case where u = uB is a ground state of PNBA,Ω ,

we can apply Theorem 8.2.4 and find
∑
bnd

∫
t(x)|pBA(χjuB)|2 dx ≤ CB

1
2 , (8.42)

∑
bnd

∫
t(x)4|χjuB|2 dx ≤ CB−2 . (8.43)

Using that Θ0 < 1 and choosing η = B− 1
2−ρ, ρ = 1/6 , we therefore find

(8.39).
Upper bound:
For the upper bound we choose u to be localized near z ∈ ∂Ω , where the
boundary curvature is maximal. This is done in such a way that only one
term—the corresponding boundary term—in the sum for the lower bound is
nonzero. Then by (8.14) we get, similarly to (8.40),∫

|(−i∇+BA)u|2 dx

≤ (1 + η)
∫

(1− tk0)−1|(−i∂s +BA)ṽ|2 + (1− tk0)|∂tṽ|2 dsdt

+ C

∫
tΔk
{∣∣(−i∂s +BÃ1)ṽ

∣∣2 + |∂tṽ|2
}
dsdt

+ Cη−1B2

∫
t4(Δk)2|ṽ|2 dsdt . (8.44)

Choose

ṽ = χ(Bρs)χ(Bρt)u1,B,k0(s, t) ,

where u1,B,k0 is a normalized ground state for the constant curvature model
of curvature k0 as analyzed in Chapter 5. The corresponding eigenvalue
λ1(B,Ωk0) satisfies, according to (5.61), λ1(B,Ωk0) = Θ0B−C1k0

√
B+O(1) .

Choosing ρ = 1/6 , η = B− 1
2−ρ as for the lower bound, we find (using the decay

in t of u1,B,k0 ; see Corollary 8.2.7)∫
|(−i∇+BA)u|2 dx ≤

[
(1 + η)λ1(B,Ωk0 ) + C ′B

1
3

]
‖u‖2 . (8.45)

This finishes the proof of the upper bound. ��
Looking more carefully at the proof of the lower bound in Theorem 8.3.2,

one can actually see that we have also proved the following proposition.

Proposition 8.3.3.
Under the assumptions of Theorem 8.3.2, there exists C0 > 0 such that we
have

QNBA,Ω(u) ≥
∫

Ω

W 1
B(x)|u(x)|2 dx , ∀u ∈ H1

BA(Ω) , (8.46)
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for any B ≥ 1 . Here W 1
B is defined by

W 1
B(x) :=

{
B , if dist(x; ∂Ω) > 2B− 1

6 ,

Θ0B − C1B
1
2 k(s)− C0B

1
3 , if dist(x; ∂Ω) ≤ 2B− 1

6 .
(8.47)

In particular, we have, also using the upper bound of λ1(BA) and with
uB being a normalized ground state,

QNBA,Ω(uB)− λ1(BA)

≥
∫

Ω

(W 1
B(x) − λ1(BA))|uB(x)|2 dx

≥ C1B
1
2

∫
{t(x)≤2B−1/6}

(kmax − k(s)− C0B
− 1

6 )|uB(x)|2 dx . (8.48)

As for the proof of the previous Agmon estimates in this chapter, we get

Theorem 8.3.4.
Under the assumptions of Theorem 8.3.2, we have the following localization.
There exist δ > 0 and for any ε > 0 , Cε > 0 and Bε > 0 such that, for all
B ≥ Bε ,

‖eδB
1
4 d̂(x,n(∂Ω),B) uB‖ ≤ Cε exp(εB

1
4 ) . (8.49)

Here n(∂Ω) is the set

n(∂Ω) := {z ∈ ∂Ω | k(z) = kmax} (8.50)

of the points of maximal curvature,

d̂(x, n(∂Ω), B) = d̂∂Ω(s(x), n(∂Ω))χ(d(x, ∂Ω)) +B
1
4 d(x, ∂Ω) , (8.51)

and d̂∂Ω(s, n(∂Ω)) is the Agmon distance to n(∂Ω) associated with the metric
(κmax − κ(s)) ds2 .

As an immediate corollary, we have

Corollary 8.3.5.
Under the assumptions of Theorem 8.3.2, then, for any neighborhood V(∂Ω)
of n(∂Ω) in Ω , there exist η > 0 and C > 0 such that, for large B ,

∫
Ω\V(∂Ω)

|uB(x)|2 dx ≤ C exp(−ηB 1
4 ) .

Remark 8.3.6.
We can use the localization estimate to improve the error bound in the eigen-
value asymptotics. Thus, when the maxima of the boundary curvature are
nondegenerate, we can improve the error bound from O(B1/3) to O(B1/4) in
Theorem 8.3.2. We refer to the next section for precise statements.
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8.4 Refined Expansions and Spectral Gap

We now present finer results that give a complete asymptotic expansion of
λ1(BA) under a (generically satisfied) nondegeneracy assumption on Ω . The
argument used in the proof is somewhat more technically involved than in
the rest of the book, so we limit ourselves to stating the result without proof
and refer to the original article for details. We define λn(BA) to be the nth
eigenvalue of PNBA,Ω , in particular,

λ1(BA) = inf σ(PNBA,Ω) .

Then the result is as follows.

Theorem 8.4.1.
Suppose that Ω is a smooth, bounded domain, that its curvature ∂Ω � s �→ k(s)
at the boundary has a unique maximum,

k(s) < k(s0) =: kmax , for all s �= s0 , (8.52)

and that the maximum is nondegenerate, i.e.,

k2 := −k′′(s0) �= 0 . (8.53)

Then, for all n ∈ N \ {0} , there exists a sequence {ζ(n)
j }∞j=1 ⊂ R (which can

be calculated recursively to any order) such that λn(B) admits the following
asymptotic expansion (for large B):

λn(BA) ∼ Θ0B − kmaxC1B
1
2 + C1Θ

1
4
0

√
3k2

2
(2n− 1)B

1
4

+B
1
8

∞∑
j=0

ζ
(n)
j B− j

8 . (8.54)

For possible applications to bifurcations from the normal state in supercon-
ductivity (see Section 13.5), it is important to calculate the splitting between
the ground state energy and the first excited eigenvalues of PNBA,Ω . Let us
define

Δ(B) = λ2(B)− λ1(B) . (8.55)

Corollary 8.4.2.
Under the hypothesis from Theorem 8.4.1, Δ(B) admits the following asymp-
totics:

Δ(B) ∼ C1Θ
1
4
0

√
6k2B

1
4 +B

1
8

∞∑
j=0

B− j
8 ξ̂j , (8.56)

where ξ̂j = ζ
(2)
j − ζ(1)

j .
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The case when Ω is a disc has been presented in Chapter 5. In this case,
the splitting Δ(B) turns out to vanish for a sequence of values of B tending
to ∞ . This is a complication in the analysis of bifurcation. Thus, in some
sense, the more “generic” situation considered in Theorem 8.4.1 has a nicer
property. We recall that for the disc we get from Remark 5.3.5 that

0 = lim inf
B→∞

Δ(B) < lim sup
B→∞

Δ(B) < +∞ .

We recall also that in the case of a domain with a unique corner (with
a sufficiently small angle), we have ([Bon2], [BonD], and [BonF]—see also
Chapter 15)

lim inf
B→∞

Δ(B)
B

> 0 .

In our case, (8.56) implies

lim
B→∞

Δ(B)
B

1
4

> 0 .

Of course, if there are multiple minima and symmetries, one expects by
tunneling analysis an exponentially small gap between the lowest eigenvalues.

We will come back to this point in Chapter 15, which is devoted to domains
with corners.

8.5 Monotonicity

Let Ω ⊂ R
2 be a bounded, simply connected domain with a regular boundary.

Let F(x) = (F1(x), F2(x)) = (−x2/2, x1/2) such that curlF = 1 . We consider
H(B) = PNBF,Ω and will show that in the present situation, we can obtain
the monotonicity of λ1(B) with much less information on the asymptotics of
λ1(B) than required by the general Corollary 2.3.3.

We use the definitions concerning the geometry of the boundary defined
in Section F.1; in particular, the boundary is parametrized (by arc-length) by
γ(s) , s ∈ |∂Ω|

2π S
1 , and k(s) denotes the curvature at the point γ(s) . We recall

that kmax denotes the maximum of the boundary curvature.

Theorem 8.5.1.
The one-sided derivatives,

λ′1,+(B) = lim
ε→0+

λ1(B + ε)− λ1(B)
ε

, λ′1,−(B) = lim
ε→0+

λ1(B)− λ1(B − ε)
ε

,

exist for all B > 0 and λ′1,+(B) satisfies

lim inf
B→∞

λ′1,+(B) > 0 . (8.57)
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Furthermore, if Ω is not a disc, then the limit actually exists and satisfies

lim
B→∞

λ′1,−(B) = lim
B→∞

λ′1,+(B) = Θ0 . (8.58)

If Ω is a disc, then

lim sup
B→∞

λ′1,+(B) > Θ0 , 0 < lim inf
B→∞

λ′1,+(B) < Θ0 .

In particular, in any case, there exists B0 > 0 such that B �→ λ1(B) is strictly
increasing on [B0,∞[ .

If we could obtain sufficiently precise asymptotic expansions of λ1(B) ,
a result like Theorem 8.5.1 would follow from Corollary 2.3.3. However, as the
argument below illustrates, we can obtain the same conclusion from a weaker
asymptotic expansion combined with information on the localization of the
magnetic ground state. This strategy does not work in the case of the disc.
However, due to the symmetry of the question for that domain, special tech-
niques have already been applied in Chapter 5 to settle that special case.
Thus, the structure of the proof of Theorem 8.5.1 is as follows. If Ω is not a
disc, then there exists a part of the boundary where the ground state ψ will
be very small. Thus, we can choose a gauge such that |Âψ| � 1 (for large
B and in the L2-sense), where Â is the vector field F in the new gauge. This
new input allows us to differentiate the leading-order asymptotics for λ1(B) .

Notice that if Ω is not a disc, then it satisfies the following assumption:

Assumption 8.5.2.
Let n(∂Ω) denote the set of boundary points of maximal curvature as defined
in (8.50). Then

n(∂Ω) �= ∂Ω .

We recall the Agmon estimates, Theorem 8.2.4, which we state in the
following form:

Lemma 8.5.3 (Normal Agmon estimates).
There exist positive constants α, M , and C such that if B ≥ 1 and ψ1( · ;B)
is a ground state of H(B) , then

∫
Ω

e2α
√
B dist(x,∂Ω)

{
|ψ1(x;B)|2 +

1
B
|pBFψ1(x;B)|2

}
dx

≤ C

∫
{√B dist(x,∂Ω)≤M}

|ψ1(x;B)|2 dx . (8.59)

In particular, for all N > 0 ,
∫

dist(x, ∂Ω)N |ψ1(x;B)|2 dx = O(B−N/2) . (8.60)
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Also, Theorem 8.3.4 implies that ground states are localized near n(∂Ω) .
We actually only need the following very weak version of this localization.

Lemma 8.5.4.
Let ε0 > 0 . Then, for all N > 0 , there exist CN > 0 and BN > 0 such that if
ψ1( · ;B) is a normalized ground state for H(B) , then

∫
{dist(x,n(∂Ω))≥ε0}

|ψ1(x;B)|2 dx ≤ CN B−N , ∀B ≥ BN .

We will also need to use the boundary coordinates (s, t) defined in
Section F.1.

Lemma 8.5.5.
Let us define for ε ≤ min(t0/2, |∂Ω|/2) and s0 ∈ ∂Ω

Ω(ε, s0) := {x = Φ(s, t)
∣∣ t ≤ ε, |s− s0| ≥ ε} .

Then there exists φ ∈ C∞(Ω) such that Â = F +∇φ satisfies

|Â(x)| ≤ C dist(x, ∂Ω) ,

for x ∈ Ω(ε, s0) .

Proof.
Let Ã = (Ã1, Ã2) be the magnetic 1-form written in the (s, t)-coordinates,

F1 dx+ F2 dy = Ã1 ds+ Ã2 dt .

Taking the exterior derivative, and using dx ∧ dy = |DΦ|ds ∧ dt , we find

curls,t Ã(s, t) = ∂sÃ2 − ∂tÃ1 = (1− tk(s)) .

Since {(s, t) | t ≤ ε , |s − s0| ≥ ε} is simply connected, there exists a function
φ̃ ∈ C∞(Φ−1(Ω(ε, s0))) such that

Ã(s, t) +∇s,tφ̃(s, t) = (t− t2k(s)/2, 0) .

Let χ ∈ C∞(Ω) ,

χ = 1 on {x | t ≤ ε, |s− s0| ≥ ε} ,
χ = 0 on {x | dist(x, ∂Ω) ≥ 2ε or |s− s0| ≤ ε/2} ,

and define φ(x) = φ̃(Φ−1(x))χ(x) . Then φ solves the problem. ��
Proof of Theorem 8.5.1.
The existence of λ′1,+(B), λ′1,−(B) follows from analytic perturbation theory.
We recall that the case of the disc was already considered in Proposition 5.4.1,
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and so it remains to consider the case where Ω is not the disc. Thus, Ω
satisfies Assumption 8.5.2. Therefore, there exist s0 ∈ [−|∂Ω|/2, |∂Ω|/2] and
0 < ε0 < min(t0/2, |∂Ω|/4) such that

[s0 − 2ε0, s0 + 2ε0] ∩ n(∂Ω) = ∅ .

Let Â be the vector potential defined in Lemma 8.5.5, Q̂B the quadratic form
u �→ Q̂B(u) =

∫
Ω
|−i∇u+BÂu|2dx , and Ĥ(B) the associated operator. Then

Ĥ(B) andH(B) are unitarily equivalent and thus have the same spectrum. Let
ψ+

1 ( · ;β) be a normalized ground state of Ĥ(B) for β in a right neighborhood
of B and such that β �→ ψ+

1 ( · ;β) ∈ L2 is smooth—the existence of such a
ground state was discussed in Section 2.3. Then we get the following expression
for the right-derivative:

λ′1,+(B) = 〈Âψ+
1 ( · ;B) | pB �Aψ+

1 ( · ;B)〉

+ 〈pB �Aψ+
1 ( · ;B) | Âψ+

1 ( · ;B)〉 . (8.61)

We now obtain, for any b > 0 ,

λ′1,+(B) =
Q̂B+b(ψ+

1 ( · ;B))− Q̂B(ψ+
1 ( · ;B))

b
− b
∫

Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx

≥ λ1(B + b)− λ1(B)
b

− b
∫

Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx . (8.62)

By Lemma 8.5.5, we can estimate
∫

Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx ≤ C

∫
Ω

dist(x, ∂Ω)2|ψ+
1 (x;B)|2 dx

+ ‖Â‖2∞
∫

Ω\Ω(ε0,s0)

|ψ+
1 (x;B)|2 dx . (8.63)

Combining Lemmas 8.5.3 and 8.5.4, we therefore find the existence of a con-
stant C > 0 such that∫

Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx ≤ C B−1 . (8.64)

We now choose b = η B , where η > 0 is arbitrary. By the asymptotics (8.38)
for λ1(B) , we therefore find

lim inf
B→∞

λ′1,+(B) ≥ Θ0 − η C . (8.65)

Since η was arbitrary, this implies

lim inf
B→∞

λ′1,+(B) ≥ Θ0 . (8.66)
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Applying the same argument to the derivative from the left, λ′1,−(B) , we get
(the inequality gets turned since β < 0)

lim sup
B→∞

λ′1,−(B) ≤ Θ0 . (8.67)

Since, by perturbation theory,

λ′1,+(B) ≤ λ′1,−(B) for all B ,

we get (8.58). ��

8.6 Extensions

8.6.1 Nonconstant magnetic fields with boundary localization

If Θ0b
′ < b and if the restriction of β(x) to the boundary is not constant, i.e.,

with the notation introduced in (8.36) if

ñ(∂Ω) �= ∂Ω , (8.68)

we can get the monotonicity of the ground state energy in the large field limit.
We can find φ ∈ C∞(Ω) and Â such that Â = A + ∇φ and Â vanishes

on ∂Ω except in a neighborhood of a point where |β(x)| is maximum. It is
indeed enough to apply Lemma 8.5.5, whose proof can be modified in order
to extend it to the case of a general magnetic field.

We can then follow the proof of Theorem 8.5.1 given in the case of non-
constant curvature. We then use Proposition 8.2.1 (and its application in
Corollary 8.2.7 to the decay), Proposition 8.2.9, and Theorem 8.1.1 (and its
proof) for the asymptotic expansion of λ1(BA) .

8.6.2 Interior localization

If Θ0b
′ > b > 0 , i.e., the ground state should be localized in the interior of Ω,

we can also use the techniques described in this book.

Theorem 8.6.1.
Suppose Θ0b

′ > b > 0 and that b = β(z0) is attained at a unique point z0 ∈ Ω.
Suppose furthermore that

Hess β(z0) > 0.

Then the following asymptotics holds:

λ1(BA) = B +
1
4

tr(Hessβ(z0)) + o(1) , (8.69)

as B → +∞ .

This asymptotic estimate is sufficiently precise to apply Corollary 2.3.3
and thereby get the monotonicity of the ground state energy.
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8.6.3 Montgomery’s model revisited

The Montgomery model appears more generally in the following context
[PaK]. If, in the two-dimensional case, the magnetic field β = curlA has non-
degenerate zeroes in Ω and if we denote by Z(β) the subset of the zeroes of β in
Ω , then the ground state energy λ1(BA) of the magnetic Laplacian associated
to the magnetic field Bβ can be estimated asymptotically as B → +∞ . More
precisely, we have the theorem

Theorem 8.6.2 (Pan–Kwek).

lim
B→+∞

λ1(BA)
B

2
3

= [α̂1(β)]
2
3 , (8.70)

where

α̂1(β) = min
{

1
2
ν̂

3
2
0 inf
x∈Ω∩Z(β)

|∇β(x)| , inf
x∈∂Ω∩Z(β)

ζ̂(ϑ(x))
3
2 |∇β(x)|

}
, (8.71)

where ϑ(x) denotes the angle between curlβ and the tangent vector of ∂Ω at
x and ζ̂ denotes the lowest eigenvalue of −ΔAϑ

in R
2,+ with

Aϑ = −|x|
2

2
(cosϑ, sinϑ) .

8.7 Notes

1. Theorem 8.1.1 and 8.1.2 first appeared in [LuP4]. Theorem 8.1.3 was
proved in [HeM3].

2. The large magnetic field limit and the semiclassical limit h↘ 0 are clearly
equivalent, since
∫

Ω

|(−i∇x +BA(x))u(x)|2 dx = B2

∫
Ω

|(− i
B
∇x + A(x))u(x)|2 dx .

The implementation of semiclassical techniques for the analysis of the
magnetic ground state first appeared in [HeS4] and then in [HeM2]. Very
roughly, it is shown in [HeM2] that if Ω = R

n , then B| curlA(x)| plays the
role of an effective electric potential. By this we mean that the analysis
of the operator, −Δ + B| curlA(x)| , gives good information about the
localization of the ground state. The case of domains with boundary was
less analyzed.

3. More precise results concerning the case when b = 0 are obtained under
additional conditions in [HeM2].

4. Note also that the upper bound involving b = inf β can also be obtained
by using [HeM3]. Following the same paper or [dPiFS], one can improve
the o(B) into O(B1/2) , without additional assumptions.
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5. Formula (8.10) is sometimes called the IMS formula (see [CyFKS], in the
context of N -body problems) but is actually much older (see [Me, Ho]).

6. The points where the minimum of |β| is attained are sometimes called
magnetic wells for the energy b . The decay of the ground state outside
the wells can be estimated (cf. [Bru, HeN2]) as a function of the Agmon
distance associated with the Agmon metric (|β|−b)dx2 , where dx2 denotes
the Euclidean metric. We recall that this estimate is very easy to get from
(1.32) in the special case when n = 2 and when the magnetic field has a
constant sign.

7. The decay estimates established in Theorem 8.2.4 can be found in various
forms (weighted L2- or L∞-estimates) in [LuP4, HeM3] and [dPiFS].

8. As in the case where A = 0 but where an electric potential V is added,
it is possible to discuss the various possible asymptotics depending on the
properties of β near the minima (cf. [HeM2, HeM3, Mon, Sh, Ue1, Ue2]
or more recently [PaK]). But these results are mainly devoted to the case
of R

n or of a compact, boundaryless manifold and admit relatively simple
extensions for the Dirichlet problem, but as we see in the whole book,
this property is no more true in the case of the Neumann realization.
The infimum b of |β(x)| on Ω is not necessarily the right quantity for
analyzing the bottom of the spectrum as (8.1) is satisfied. Of course,
by direct comparison of the variational spaces corresponding to Dirichlet
and Neumann, one knows that the smallest eigenvalue λN1 (BA) of the
Neumann realization PNBA,Ω of PBA,Ω is bounded from above by λD1 (BA)
[but the lower bound (1.37) is not correct in general].

9. In the case of a constant magnetic field, the two-term expansion given
in Theorem 8.3.2 was conjectured by Bernoff–Sternberg [BeS], but the
complete proof was achieved by Helffer–Morame in [HeM6] (see [HeM6,
Theorems 10.3 and 11.1]). The localization at the points of maximal curva-
ture has been verified numerically (see Fig. 5.9, p. 61 in [HoS]). The
extension of the two-term asymptotics to the case of nonconstant magnetic
fields is done by Raymond in [Ra2] and [Ar1]–[Ar5].

10. The results of Section 8.4 were obtained [FoH2], but stated in terms of
the semiclassical limit. Formal expansions previously appeared in [BeS].
If the uniqueness condition in (8.52) is replaced by the assumption that
there are a finite number of maxima [for which (8.53) is assumed to hold],
there will exist sequences of eigenvalues z(n)(B) corresponding to each
maximum. This also follows by the same techniques with a little extra
work.

11. The analysis of the tunneling effect was done in the case of the Schrödinger
operators by Helffer–Sjöstrand [HeS1, HeS2] and Simon in the 1980s (see
also the books [He2] or [DiS]). The rigorous analysis of the tunneling
inside the boundary is open (see Bonnaillie [Bon1] for a discussion inspired
by the analysis of the tunnel effect and Chapter 15 in this book devoted
to the case of domains with corners).
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12. The assumption that Ω is bounded is included for convenience only.
An adaptation of the techniques presented in this book would permit
the omission of this assumption (see also Chapter 5, where we treat the
exterior of the disc).

13. It follows easily from the proof that Theorem 8.4.1 holds without change in
the case of a nonconstant field β(z) = curlA(z) provided β(z) satisfies β is
constant on a neighborhood of the boundary ∂Ω , or even more generally,
that β ≡ β0 + β′ , where β0 is a constant and β′ vanishes to infinite order
on ∂Ω . Extensions are considered in [Ra2].

14. Results similar to (8.57) were first proved in [FoH3] under extra
assumptions. This was due to the fact that the complete asymptotics of
Theorem 8.4.1 was used as an input. The most prominent domain excluded
in this approach is the disc—where the curvature is constant. However,
[FoH3] includes a special analysis of the disc—essentially repeated here in
Chapter 5—proving that Theorem 8.5.1 remains true in that case.

15. What remained was the study of all the other nongeneric cases. Also, it
seemed desirable to be able to establish Theorem 8.5.1 without using the
existence of a complete asymptotic expansion, since such expansions are
difficult to obtain and their structure depends heavily on the different
kinds of maxima of the boundary curvature.

16. Theorem 8.6.1 is a simplified version of [HeM3, Theorem 7.2].





9

Main Results for Large Magnetic Fields in
Dimension 3

In dimension 3, the general strategy is very similar to the two-dimensional
situation, but the geometry is somewhat more complicated. Therefore, for
some of the proofs, we will give only the main ideas and refer to the original
papers for details.

9.1 Main Results for Variable Magnetic Fields

We are concerned with the behavior of the ground state energy of magnetic
Schrödinger operators—with nonzero magnetic field β = curlF and Neumann
boundary conditions—as the strength of the magnetic field becomes large.
In this chapter, Ω ⊂ R

3 denotes a three-dimensional domain.
For simplicity of notation, we write H(B) = PNBF,Ω for the magnetic

Laplacian defined in Section 1.2. Similarly, we write QB = QNBF,Ω for the
associated quadratic form. As in the two-dimensional situation we define

λ1(B) := inf σ(H(B)) , (9.1)

i.e., the lowest eigenvalue of H(B) . The main result is the following extension
of Proposition 8.2.2 in the two-dimensional case. In order to state the result,
let us define the function ϑ(x) , which gives the angle between β(x) and the
tangent plane at x . More precisely,

∂Ω � x �→ ϑ(x) ∈ [0, π/2]

is given by

ϑ(x) = arcsin
( |β(x) · ν(x)|

|β(x)|
)
. (9.2)

So, π/2− ϑ(x) denotes the angle between β(x) and ν(x) at x ∈ ∂Ω .

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_9,  
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Theorem 9.1.1.
We assume that Ω is a bounded, smooth domain in R

3 and that a smooth
magnetic field β is given such that infx∈Ω |β(x)| �= 0 . There exist constants C
and B0 such that, for all B ≥ B0,

∣∣∣λ1(B)−Bmin
(

inf
x∈Ω

|β(x)|, inf
x∈∂Ω

ς(ϑ(x))|β(x)|
)∣∣∣ ≤ C |B| 34 . (9.3)

Here we recall that the map ϑ �→ ς(ϑ) was introduced in (6.4).

We will prove only the lower bound. This proof is quite analogous to the
proof of Proposition 8.2.2, given our analysis of the three-dimensional models
carried out in Chapter 6.

Proof of Theorem 9.1.1.
As in the two-dimensional case, we introduce a partition of unity attached to
a covering of Ω by small balls of radius R(B) = B−ρ . The choice of ρ > 0 will
be done later, but, in any case, we observe that

R(B) ∈ ]0, 1] ,

for B ≥ 1—which is a condition that we always impose (we are interested in
the large B asymptotics). We start from the same partition of unity [see (8.6),
(8.7)],

∑
j∈J

(χBj )2 = 1 ,
3∑
	=1

∑
j∈J

|∂x�
χBj |2 ≤

C

R(B)2
. (9.4)

We can additionally assume that each ball either does not intersect the
boundary (“interior balls”) or is centered at a point of the boundary
(“boundary balls”). Using this partition of unity, we can then write that,
for u ∈ H1(Ω) ,

‖∇BFu‖2 ≥
∑
j

‖∇BF(χBj u)‖2 − CR(B)−2
∑
j

‖χBj u‖2 .

We now distinguish between the case when j corresponds to a ball inside
Ω and the case when the ball is centered at a point of ∂Ω and write

∑
j

=
int∑
j

+
bnd∑
j

. (9.5)

Estimates for the interior balls
We do not repeat the estimates for the interior balls, which are quite analogous
to the case of dimension 2 . They lead to the choice of ρ = 3/8 and so

R(B) = B− 3
8 , (9.6)



9.1 Main Results for Variable Magnetic Fields 119

and to the estimate

‖∇BF(χBj u)‖2 ≥ B|β(xj )| ‖χBj u‖2 − ĈB
3
4 ‖χBj u‖2 . (9.7)

Estimates for the boundary balls
We proceed essentially in the same way as in the 2D case with two additional
difficulties. We first take a system (see Section F.2.1) of tubular coordinates
y = Θ(x) locally sending Ω on a half-space {y3 > 0} , ∂Ω on {y3 = 0} , and the
center of the balls at (0, 0, 0) . Moreover, the metric is the identity at (0, 0, 0)
and hence the Jacobian is 1 at (0, 0, 0) . After a gauge transformation, we can
assume1 that

F(xj) = 0 .

The estimate that will be established at the end [see (9.8)] is gauge invariant,
and so there is no loss of generality.

In the new coordinates y = (y1, y2, y3) = (r, s, t) , the magnetic potential
is defined by ∑

j

Fjdxj =
∑
j

F̃jdyj .

The approximation of the quadratic form in the new coordinates is done by
replacing F̃j(y) by its linear part at (0, 0, 0) denoted by F̃lin

j (y) so that

|F̃(y)− F̃lin(y)| ≤ C|y|2 ,

and by replacing in the Jacobian and the gradient the metric gij(y) by the
flat metric δij .

The associated approximating operator is a Schrödinger operator with
constant magnetic field of strength |β(xj )| (in the new variable y), but we now
have to consider the Neumann realization in the half-space. This time a new
parameter appears, which is the angle ϑ(xj) introduced in (9.2). The bottom
of the spectrum is given by |β(xj)|ς(ϑ(xj)) by (6.4).

We now follow the proof of the 2D case and note that, on the support of
the ball D(xj , R) , we have, for v with supp v ⊂ D(xj , R) ,

‖v‖2 = (1 +O(R))
∫
|ṽ(y)|2dy .

Here we have defined ṽ by

ṽ(y) = v(Θ−1(y)) .

1 We keep the notation F for this new magnetic potential, which may depend on
the index j . Notice that the involved local gauge transformation possibly depends
on j as well.
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We now follow the proof of the “interior” case using the change of variables
and we get, with χ̃j(y) := χBj (Θ−1(y)) ,

‖∇BF(χBj u) ‖2 ≥ (1− CR)‖∇̃B�Flin(χ̃j ũ)‖2

− CB2R4‖χ̃jũ‖2 − CBR2‖χ̃jũ‖‖∇̃B�Flin(χ̃j ũ)‖ .
Proceeding in the same way, this leads, for any r , to

‖∇BFχju ‖2 ≥ (1− CR)(1−BR2r2)Bς(ϑ(xj))‖χ̃jũ‖2

− CB2R4‖χ̃jũ‖2 − CBR2 r−2‖χ̃jũ‖2

≥ (1− CR)2(1−BR2r2)B ς(ϑ(xj))‖χju‖2

− C(1 + CR)B2R4‖χju‖2 − C(1 + CR)BR2 r−2‖χju‖2 .
The choice of the parameter r = B−1/4 leads, together with the choice of R
done in (9.6), to the lower bound

‖∇BFχju ‖2 ≥ B ς(ϑ(xj))‖χju‖2 − ĈB 3
4 ‖χju‖2 .

It remains to observe that the variation of x �→ ς(ϑ(x)) is uniformly con-
trolled on the ball D(xj , R) , and we obtain

‖∇BFχju ‖2 ≥ B

∫
ς(ϑ(x))|χj(x)u(x)|2 dx− C̃B 3

4 ‖χju‖2 . (9.8)

Summing up the contributions of the “interior” terms and the “boundary”
terms, we have obtained the proof of the following proposition, which is the
three-dimensional analog of Proposition 8.2.1.

Proposition 9.1.2.
We assume that Ω is a bounded, smooth domain in R

3 and that a smooth mag-
netic field β is given such that infx∈Ω |β(x)| �= 0 . Then, there exist constants
C and B0 such that, if

Uβ(x) =

{
B|β(x)| if d(x, ∂Ω) ≥ B− 3

8 ,

ς(ϑ(x))|β(x)| if d(x, ∂Ω) < B− 3
8 ,

(9.9)

then
QB(u) ≥

∫
Ω

(Uβ(x) − CB 3
4 )|u(x)|2 dx , (9.10)

for all u ∈ H1(Ω) and all B ≥ B0 .

Here x �→ ς(ϑ(x)) is the extension of the function initially defined on ∂Ω
to a tubular neighborhood of ∂Ω , which is independent of t = t(x) in the
boundary coordinates.

As in the previous chapter, this proposition plays an important role
for the control of the decay of the eigenfunctions and immediately implies
Theorem 9.1.1. ��
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9.2 Refined Results for Constant Magnetic Fields

We now concentrate on the case when the magnetic field β is constant and
describe the more accurate results that can be obtained in this case. This will
be a step in the proof (under a generic assumption on the domain Ω) that the
mapping B �→ λ1(B) is monotonically increasing for sufficiently large values
of B .

Consider the case where the magnetic field is constant; after normalization
we assume

|β| = 1 . (9.11)

Then the minimum in (9.3) is given by the term infx∈∂Ω ς(ϑ(x)) and the
infimum is obtained at the points of ∂Ω where ς(ϑ(x)) is minimal and hence
|ϑ(x)| is minimal.

By Stokes’ formula, we have
∫
∂Ω

sinϑ(x) dσ∂Ω =
∫
∂Ω

curlA · ν dσ∂Ω =
∫

Ω

div curlA dx = 0 . (9.12)

So there exists at least one point x0 ∈ ∂Ω such that ϑ(x0) = 0 , and it is then
natural to introduce the (nonempty) set of boundary points where ϑ(x) = 0 ,
i.e., where β is tangent to ∂Ω ,

Σ := {x ∈ ∂Ω
∣∣β · ν(x) = 0} . (9.13)

We will work under the following geometric assumption.

Assumption 9.2.1.

1. The domain Ω is a bounded, open set of R
3 with smooth boundary.

2. On Σ , the differential dT of the function ∂Ω � x �→ β · ν(x) is nonzero:

dT (β · ν(x)) �= 0 . (9.14)

3. The set of points where β is tangent to Σ is finite.

Under these assumptions, Σ is a regular submanifold of ∂Ω . Therefore, Σ
is a disjoint union of regular curves. We choose an orientation on each such
curve, and define the normal curvature at the point x ∈ Σ by

kn(x) := Kx(T (x) ∧ ν(x), β) . (9.15)

HereK denotes the second fundamental form on ∂Ω , and T (x) is the oriented,
unit tangent vector to Σ at the point x . A computation gives

|kn(x)| = |dT (β · ν(x))| . (9.16)

Hence, we have

kn(x) �= 0 , ∀x ∈ Σ . (9.17)
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Assumption 9.2.1 seems generic. It is, for instance, satisfied for ellipsoids,
whereas a domain containing a cylindrical boundary piece with axis parallel
to β will violate this assumption.

We will need a two-term asymptotics of the ground state energy of H(B) .

Theorem 9.2.2.
With Θ0 from (3.24) and with Ω satisfying Assumption 9.2.1, we have, when
β(x) is constant of module 1 ,

λ1(B) = Θ0B + γ̂0B
2
3 +O(B

2
3−η), (9.18)

for some η > 0 .
Here γ̂0 is defined by

γ̂0 := inf
x∈Σ

γ̃0(x), (9.19)

γ̃0(x) := 2−
2
3 ν̂0 δ

1
3
0 |kn(x)| 23

(
1− (1− δ0)

∣∣∣T (x) · β
∣∣∣2
) 1

3
, (9.20)

where ν̂0 and δ0 are defined in (3.50) and (6.16).

Remark 9.2.3.
The two last items in Assumption 9.2.1 are not used for the proof of the upper
bound.

9.3 Some Heuristics Around the Proof of Theorem 9.2.2

Giving in this book a complete proof of Theorem 9.2.2 would lead us too far.
Therefore, we would like to discuss a simpler model that plays the role of
approximating model at a point of Σ and that will permit us to understand
the appearance of the first two coefficients in (9.18).

We concentrate our analysis on the model

P0 := (hDr − sin θ t)2 +
(
hDs + cos θ t+ γ

r2

2

)2

+ h2D2
t , (9.21)

on R
2
r,s × R

+
t .

Here we have divided the operator by B2 and introduced the semiclassical
parameter

h = B−1 .

The three coordinates (r, s, t) (see Section F.2.2) should be interpreted in
the following way. The hyperplane t = 0 corresponds to the boundary and
r = 0 determines the curve (parametrized by s) on which the magnetic field
vanishes. The parameter γ corresponds to a curvature that can be defined
intrinsically at each point of Σ . Finally, θ+π/2 denotes the angle inside t = 0
of the magnetic field with the tangent to the curve.
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Our model corresponds to the following magnetic vector field:

β = (− cos θ,− sin θ, γr) . (9.22)

Having the construction of quasimodes in mind or to find a lower bound
for the bottom of the spectrum, we perform the dilation

r = h
1
3 r̂ , t = h

1
2 t̂ , s = h

1
2 ŝ .

We first get

P̃0 := h

(
(h

1
6Dr̂ − sin θ t̂)2 +

(
Dŝ + cos θ t+ h

1
6 γ
r̂2

2

)2

+D2
t̂

)
(9.23)

on R
2
r,s×R

+
t . We then take a partial Fourier transform in the ŝ-variable (with

the dual variable denoted by σ̂) and obtain

P̂0 := h

(
(h

1
6Dr̂ − sin θ t̂)2 +

(
σ̂ + cos θ t+ h

1
6 γ
r̂2

2

)2

+D2
t̂

)
. (9.24)

Remark 9.3.1.
From the point of view of the construction of suitable test functions, it may
be better to think that we are looking for formal eigenfunctions for P̃0 in the
form

û(r̂, t̂;h) exp(iσ̂ŝ) (9.25)

corresponding in the initial variables to formal solutions of P0 in the form

u(r, t, s;h) = h−
1
6− 1

4 û(h−
1
3 r, h−

1
2 t) exp(ih−

1
2 σ̂s) . (9.26)

Part of the task is to find the optimal σ̂ = σ̂(h) in this trial state. These
formal trial states actually have to be localized by suitable cutoff functions in
order to get elements of the Hilbert space. See the end of the construction.

On the contrary, when thinking of lower bounds, it is better to keep the
point of view of partial Fourier transform and to think that we will try to
minimize over σ̂ .

After division by h , we find the operator (omitting the hats)

P1 := D2
t + (t− h 1

6L1(σ̃))2 + h
1
3L2(σ̃)2 , (9.27)

with

L1(σ̃) = sin θDr − cos θ
(
σ̃ +

γ

2
r2
)
, (9.28)

L2(σ̃) = cos θDr + sin θ
(
σ̃ +

γ

2
r2
)
, (9.29)
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and
σ̃ = h−

1
6 σ̂ .

We assume
θ �= π

2
(the situation θ = π/2 corresponds to the particular case when the magnetic
vector field is tangent to Σ) and will rewrite σ̃ as

σ̃ = σ̂0h
− 1

6 + σ̂ .

Here σ̂0 is a constant to be determined, and σ̂ will be written as a formal
power series in h ; see (9.34).

After a gauge transformation,

u �→ exp−i
(
tan θσ̂0h

− 1
6 r
)
u , (9.30)

which leads to

P2(σ0, σ̂) := D2
t + (t− σ0 − h 1

6L1(σ̂))2 + h
1
3L2(σ̂)2 , (9.31)

with
σ0 =

σ̂0

cos θ
.

We now look for a solution having the form

u(t, r, h) ∼
∑
j≥0

uj(t, r)h
j
6 , (9.32)

λ(h) ∼
∑
j≥0

λjh
j
6 , (9.33)

σ̂(h) =
∑
j≥1

σjh
j−1
6 , (9.34)

satisfying
(P2(σ0, σ̂)− λ(h))u(t, r, h) ∼ 0 , (9.35)

with σ̂ = σ̂(h) .
The goal is to determine for which pair (σ0, σ̂(h)) one can find a minimal

asymptotic λ(h) in the limit h→ 0 .
We will limit our analysis to the first three terms, which permit us to

understand the main points and are enough for our constructions.
Expanding in powers of h1/6 , the first equation reads

[D2
t + (t− σ0)2 − λ0]u0(t, r) = 0 , (9.36)
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and we look for
u0(t, r) = ϕ0(t)w0(r) , (9.37)

with ‖w0‖L2(R) = 1 .
Using the notation of Section 3.2, (9.36) is satisfied if

(hN (−σ0)− λ0)ϕ0 = 0 . (9.38)

We choose σ0 such that λ0 is minimal. We know that this minimum is
unique and corresponds to

σ0 = −ξ0 and λ0 = Θ0 , (9.39)

and we choose the corresponding positive normalized eigenfunction [see (3.2.1)]

ϕ0 = ϕξ0 , (9.40)

(with the Neumann condition at 0) and ψ0 remains free for the moment.
We recall from (3.29) at ξ = ξ0 that ϕ0 satisfies

∫ +∞

0

(t+ ξ0)ϕ0(t)2 dt = 0 . (9.41)

We now look at the coefficient of h1/6. The second equation reads

[hN (ξ0)−Θ0]u1(t, r)− 2(t+ ξ0)L1(σ1)u0 − λ1u0 = 0 . (9.42)

We rewrite this in the form

[hN (ξ0)−Θ0]u1(t, r) − 2(t+ ξ0)ϕ0(t)L1(σ1)w0 − λ1ϕ0w0 = 0 . (9.43)

Multiplying this last equation by ϕ0(t) and integrating over t ∈ R
+ ,

we get, using (9.41), the necessary condition

λ1 = 0 . (9.44)

Then, with ϕ1 solution of

[hN (ξ0)−Θ0]ϕ1 = 2(t+ ξ0)ϕ0 ,

∫ +∞

0

ϕ0ϕ1 dt = 0 , (9.45)

i.e.,

ϕ1 = R0
(
(t+ ξ0)ϕ0

)
,

with the notation from Lemma 3.2.9, we can take

u1(t, r) = w1(r)ϕ0(t) , (9.46)
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with
w1(r) = L1(σ1)w0(r) . (9.47)

Let us now look at the crucial equation expressing the O(h1/3)
balance.

[hN (ξ0)−Θ0]u2(t, r) − 2(t+ ξ0)L1(σ1)u1

+
(
L1(σ1)2 + L2(σ1)2 − λ2

)
u0 = 0 . (9.48)

Using our previous choices, we get

[hN (ξ0)−Θ0]u2(t, r) − 2(t+ ξ0)ϕ1L1(σ1)2w0

+ ϕ0

(
L1(σ1)2 + L2(σ1)2 − λ2

)
w0 = 0 . (9.49)

A necessary solution for solving is obtained as before by multiplying by ϕ0

and integrating over t ∈ ]0,+∞[ . We get

δ0L1(σ1)2w0 + L2(σ1)2w0 − λ2w0 = 0 , (9.50)

with

δ0 = 1− 2
∫ +∞

0

(t+ ξ0)ϕ1(t)ϕ0(t) dt . (9.51)

It is then natural to introduce

P3(σ1) := δ0L1(σ1)2 + L2(σ1)2 . (9.52)

Our aim is now to minimize the bottom of the spectrum of P3(σ1) over σ1 .
Let us now show that by a gauge transform, we can rewrite P3(σ1) in the

form
P4(σ1) = cD2

r + d(r2 − ρ)2 . (9.53)

We look for a gauge function on the form

t(θ, r) = α(θ)
(γ

6
r3 + σ1r

)
, (9.54)

such that
P4(σ1) := e−it(θ,r)P3(σ1)eit(θ,r) . (9.55)

The function α(θ) in (9.54) is chosen such that the coefficient of the operator
(γ2 r

2 + σ1)Dr +Dr(γ2 r
2 + σ1) vanishes. This leads to

α(θ) =
sin θ cos θ (1− δ0)
δ0 sin2 θ + cos2 θ

. (9.56)

Of course, we have
c = cos2 θ + δ0 sin2 θ , (9.57)
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and
ρ = 2σ1/γ . (9.58)

But for this value of α(θ) , we get:

d =
(γ

2

)2 (
δ0(cos θ + α(θ) sin θ)2 + (− sin θ + α(θ) cos θ)2

)
.

After computation, this gives

d = δ0

(γ
2

)2

/(δ0 sin2 θ + cos2 θ) . (9.59)

We now rescale the operator cD2
r+d(r2−ρ)2 . This means that we perform

a new scaling:

r =
( c
d

) 1
6
r′ ,

such that P5(σ1) becomes in the new coordinates

P5(σ1) = d
1
3 c

2
3
[
D2
r′ + ((r′)2 − ρ′)2] , (9.60)

with

ρ′ =
( c
d

)− 1
3
ρ .

We observe that c and d are independent of σ1 . So in order to minimize
the bottom of the spectrum of the initial operator over σ1 , we will have to
minimize the bottom of the spectrum of the operator

(
D2
r′ + ((r′)2 − ρ′)2)

over ρ′ , which is obtained for ρ′ = ρmin , and take the value ν̂0 introduced in
(3.50). This corresponds to

σ1,min =
γ

2

( c
d

) 1
3
ρmin , (9.61)

with
c

d
= (cos2 θ + δ0 sin2 θ)2/[δ0(γ/2)2] . (9.62)

So the infimum over σ1 of the bottom of the spectrum of P5(σ1) is given for
this value of σ1 = σ1,min by

d
1
3 c

2
3 ν̂0 =

(
1
2

) 2
3

δ
1
3
0 |γ|

2
3 (δ0 sin2 θ + cos2 θ)

1
3 ν̂0 . (9.63)

We have consequently found w0 �= 0 , σ1 such that λ2 is as small as possible.
One can then find u2 as a solution in the form

u2 = ϕ2w2 ,

where ϕ2 is the solution orthogonal to ϕ0 of

[hN (ξ0)−Θ0]ϕ2 = 2(t+ ξ0)ϕ1 − (1− δ0)ϕ0 ,
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and
w2 = L1(σ1)2w0 .

Reintroducing the hats, we have found σ0 and σ1 and an L2-normalized
u(2) ∈ S(R× R

+) such that the energy 〈P2(σ0)u(2), u(2)〉 of

u(2)(r̂;h) := ch

⎛
⎝ 2∑
j=0

uj(r̂, t̂)h
j
6

⎞
⎠

satisfies

〈P2(σ0)u(2), u(2)〉 = Θ0 + h
1
3 ν̂0( 1

2 )
2
3 δ

1
3
0 |γ|

2
3 (δ0 sin2 θ + cos2 θ)

1
3 +O(h

1
2 ) .
(9.64)

In particular, we have proved the following:

Lemma 9.3.2.
The ground state energy of the family of model operators P2(σ0, σ̂) satisfies

inf
σ0,σ1

(inf σ(P2(σ0, σ1))) ≤ Θ0 + h
1
3 ν̂0( 1

2)
2
3 δ

1
3
0 |γ|

2
3 (δ0 sin2 θ + cos2 θ)

1
3

+O(h
1
2 ) . (9.65)

Moreover, the upper bound is obtained for σ0 = −ξ0 and σ1 = σ1,min defined
in (9.61).

Sketch for the lower bound.

We can use a vector-valued version of the analysis of hN (ξ) . This leads, using
an abstract functional calculus, to

P1(σ̃) ≥ μ(h
1
3L1(σ̃)) + h

1
3L2(σ̃)2 .

Modulo a localization argument for which we refer to [HeM6], we can then
use the quadratic approximation of μ to replace μ(h

1
3L1(σ̃)) + h

1
3L2(σ̃)2 by

Θ0 + h
1
3P3(σ̃) and we can then use the previous analysis.

Quasimodes for P0

Having in mind formulas (9.25) and (9.26), we define

uh(r, s, t) = chh
− 1

6− 1
4− δ

2 u(2)(r̂, t̂) exp(ih−
1
6 σ̃s) exp(iσ̂0 tan θh−

1
2 r)

× χ(h−δs)χ(h−δ+
1
3 r/C)χ(h−δ+

1
2 t/C) , (9.66)

with δ ∈ ] 5
18
, 1

3
[ and χ a cutoff function around the origin.
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Remark 9.3.3.
In our application, γ and θ are not independent but should satisfy

γ = kn(x) , θ = θ(x) ,

for some x in Σ . Here kn(x) was defined in (9.15) and θ(x) is defined by

θ(x) = arcsin
(
T (x) · β(x)

|β(x)|
)
, (9.67)

where T (x) is a unit-vector tangent to Σ at x .
This suggests that we have to look for a minimum over Σ of the expression

γ2
(
δ0 sin2 θ(x) + cos2 θ(x)

)
,

that is,
�2 := inf

x∈Σ

{
(kn(x))2(δ0 sin2 θ(x) + cos2 θ(x))

}
. (9.68)

This explains formulas (9.19) and (9.20).

9.4 Localization Estimates

We still consider the case of constant magnetic field β under Assumption 9.2.1.
We start by stating the decay in the direction normal to the boundary. We will
often use the notation

t(x) := dist(x, ∂Ω) . (9.69)

Now, if φ ∈ C∞
0 (Ω) , i.e., has support away from the boundary, Lemma 1.4.1

implies that

QB(φ) ≥ B‖φ‖22 . (9.70)

As in dimension 2 , this inequality (and the fact that Θ0 < 1) implies that
ground states are exponentially localized near the boundary (in the sense of
Theorem 9.4.1). We give the result without repeating the proof.

Theorem 9.4.1.
Let Ω ⊂ R

3 be a bounded, open set with smooth boundary. Then there exist
positive constants C, a1 , and B0 such that

∫
Ω

e2a1B
1
2 t(x)

(
|ψB(x)|2 +B−1|(−i∇+BF)ψB(x)|2

)
dx

≤ C ‖ψB‖22 , (9.71)

for all B ≥ B0 and all ground states ψB of the operator H(B) .
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We will mainly use this localization result in the following form.

Corollary 9.4.2.
Let Ω ⊂ R

3 be a bounded, open set with smooth boundary. Then for all n ∈ N ,
there exist Cn > 0 and Bn > 0 such that

∫
t(x)n|ψB(x)|2 dx ≤ CnB

−n
2 ‖ψB‖22 ,

for all B ≥ Bn and all ground states ψB of the operator H(B) .

We now define tubular neighborhoods of the boundary as follows. For
ε > 0 , define

B(∂Ω, ε) = {x ∈ Ω : t(x) ≤ ε} . (9.72)

For sufficiently small ε0 , we have that for all x ∈ B(∂Ω, 2ε0) exists a unique
point y = y(x) ∈ ∂Ω such that t(x) = dist(x, y) . We fix such an ε0 in the rest
of the chapter.

We extend the definition of ϑ introduced in (9.2) to the tubular neighbor-
hood B(∂Ω, 2ε0) by ϑ(x) := ϑ(y(x)) . In order to obtain localization estimates
in the variable normal to Σ , we use the following operator inequality, which
is a particular case of Proposition 9.1.2.

Proposition 9.4.3.
Let Ω ⊂ R

3 be a bounded, open set with smooth boundary. Let B0 be chosen
such that B−3/8

0 = 1
2
ε0 and define, for B ≥ B0, C > 0 , and x ∈ Ω ,

WB(x) :=

{
B − CB 3

4 , t(x) ≥ B− 3
8 ,

Bς(ϑ(x)) − CB 3
4 , t(x) < B− 3

8 ,
(9.73)

where ς is the function defined in (6.4).
Then

H(B) ≥WB , (9.74)

for all B ≥ B0 , if C is sufficiently large.

We use this energy estimate to prove Agmon-type estimates on the
boundary.

Theorem 9.4.4.
Suppose that Ω ⊂ R

3 satisfies Assumption 9.2.1. Define, for x ∈ ∂Ω ,

dΣ(x) := dist(x,Σ) ,

and extend dΣ to a tubular neighborhood of the boundary by dΣ(x) := dΣ(y(x))
[where y(x) is the unique boundary point closest to x].
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Then there exist positive constants C, a2 , and B0 such that∫
B(∂Ω,ε0)

e2a2B
1
4 dΣ(x)|ψB(x)|2 dx ≤ C‖ψB‖22 , (9.75)

for all B ≥ B0 and all ground states ψB of H(B) .

It is useful to collect the following easy consequence.

Corollary 9.4.5.
Suppose that Ω ⊂ R

3 satisfies Assumption 9.2.1. Then, for all n ∈ N , there
exist Cn > 0 and Bn > 0 such that∫

B(∂Ω,ε0)

dΣ(x)n|ψB(x)|2 dx ≤ CnB
−n

4 ‖ψB‖22 , (9.76)

for all B ≥ Bn and all ground states ψB of H(B) .

Proof of Theorem 9.4.4.
We may clearly assume that ‖ψB‖2 = 1 . Let χ1, χ2 ∈ C∞(R) satisfy that χ1

is decreasing, χ1 ≡ 0 on [2,+∞[ , χ1 ≡ 1 on ]−∞, 1] , χ2 is increasing, χ2 ≡ 1
on [2,+∞[ , and χ2 ≡ 0 on ]−∞, 1] .

By the standard localization formula, we find, since H(B)ψB = λ1(B)ψB ,

λ1(B)
∥∥∥∥χ1

(
t

ε0

)
χ2(B

1
4 dΣ)eaB

1
4 dΣψB

∥∥∥∥
2

2

= QB

[
χ1

(
t

ε0

)
χ2(B

1
4 dΣ)eaB

1
4 dΣψB

]

−
∫ ∣∣∣∣∇

(
χ1

(
t

ε0

)
χ2(B

1
4 dΣ)eaB

1
4 dΣ

)∣∣∣∣
2

|ψB|2 dx . (9.77)

Using Theorem 9.4.3, we estimate

QB

[
χ1

(
t

ε0

)
χ2(B

1
4 dΣ)eaB

1
4 dΣψB

]

≥
∫
WB(x)

∣∣∣∣χ1

(
t

ε0

)
χ2(B

1
4 dΣ)eaB

1
4 dΣψB

∣∣∣∣
2

dx . (9.78)

Also, ∣∣∣∣∇
(
χ1

(
t

ε0

)
χ2(B

1
4 dΣ)eaB

1
4 dΣ

)∣∣∣∣
2

≤ 2
∣∣∣∣∇χ1

(
t

ε0

)∣∣∣∣
2

χ2
2(B

1
4 dΣ)e2aB

1
4 dΣ

+ 2
∣∣∇χ2(B

1
4 dΣ)

∣∣2χ2
1

(
t

ε0

)
e2aB

1
4 dΣ

+ 2a2B
1
2χ2

1

(
t

ε0

)
χ2

2(B
1
4 dΣ)e2aB

1
4 dΣ . (9.79)
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Combining (9.77), (9.78), and (9.79), we find
∫ (

WB(x) − λ1(B) − 2a2B
1
2
)
χ2

1

(
t

ε0

)
χ2

2(B
1
4 dΣ)e2aB

1
4 dΣ |ψB|2 dx

≤ C

∫
B(∂Ω,2ε0)\B(∂Ω,ε0)

e2aB
1
4 dΣ |ψB|2 dx

+ CB
1
2 e4a

∫
{x∈B(∂Ω,2ε0) :B

1
4 dΣ(x)≤2}

|ψB(x)|2 dx . (9.80)

Since Ω is bounded there exists D > 0 such that dΣ(x) ≤ D for all x . Thus
we can estimate, with a1 being the constant from Theorem 9.4.1,

∫
B(∂Ω,2ε0)\B(∂Ω,ε0)

e2aB
1
4 dΣ |ψB|2 dx

≤ e2aB
1
4D3/2

e−2a1B
1
4 ε0

∫
Ω

e2a1B
1
4 t(x)|ψB|2 dx

≤ Ce2B
1
4 (aD

3
2 −a1ε0)‖ψB‖22 = O(B−∞) , (9.81)

where the last estimate holds if a is sufficiently small.
Notice now that Assumption (9.15) implies that β ·N vanishes exactly at

order 1 on Σ . Therefore, using the boundedness of Ω , there exists a constant
C > 0 such that

C−1dΣ(x) ≤ ϑ(x) ≤ CdΣ(x) , (9.82)

for all x ∈ B(∂Ω, 2ε0) . Therefore, using that ς is monotone, that δ0 > 0 [from
(6.17)], and the upper bound on λ1(B) [from (9.18)], we find that

WB(x) − λ1(B) − 2a2B
1
2 ≥ c0B

3
4 , (9.83)

for some c0 > 0 and for all x ∈ B(∂Ω, 2ε0) ∩ {B1/4dΣ(x) ≥ 1} , if a is suffi-
ciently large and B is sufficiently large.

Inserting (9.81) and (9.83) in (9.80) yields
∫
χ2

1

(
t

ε0

)
χ2

2(B
1
4 dΣ)e2aB

1
4 dΣ |ψB |2 dx ≤ C . (9.84)

Since e2aB
1/4dΣ is bounded when B1/4dΣ ≤ 2 , (9.75) follows from (9.84). ��

Consider now the set MΣ ⊂ Σ where the function γ̃0 is minimized:

MΣ := {x ∈ Σ : γ̃0 = γ̂0} . (9.85)
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Theorem 9.4.6.
Suppose that Ω ⊂ R

3 satisfies Assumption 9.2.1 and let δ > 0 . Then, for all
N > 0 , there exist CN and BN > 0 such that if ψB is a ground state of H(B) ,
then ∫

{x∈Ω : dist(x,MΣ)≥δ}
|ψB(x)|2 dx ≤ CNB

−N , (9.86)

for all B ≥ BN .

Sketch of the proof.
We refer to the analysis of the model done in Section 9.3 for an idea of this
proof, which is actually very long and technical. One can then use Agmon
estimates using the weight exp[αB1/3(γ̃0(x) − γ̂0)] for some α > 0 . This
actually gives a decay in exp[−α(δ)B1/3] for some α(δ) > 0 . ��

9.5 The Derivative of λ1(B)

In this section, we prove how one can derive the monotonicity result from the
known asymptotics of the ground state energy and localization estimates for
the ground state itself. This section also is restricted to the case of constant
magnetic field β and Ω satisfying Assumption 9.2.1. Of course, monotonicity
would follow from the general Corollary 2.3.3 if a sufficiently precise asymp-
totics [up to order o(1)] of λ1(B) were available. However, we do not know
any genuinely three-dimensional example where such an asymptotics is known.
Therefore, we will combine the idea of the proof of Corollary 2.3.3 with various
localization estimates from the previous section.

Theorem 9.5.1.
Let β ∈ S

2 be a constant magnetic field and let Ω ⊂ R
3 satisfy Assump-

tion 9.2.1. Let {Σ1, . . . ,Σn} be the collection of disjoint smooth curves making
up Σ . We assume that for all j there exists x ∈ Σj such that γ̃0(x) > γ̂0 .
Then the directional derivatives λ′1,± := limβ→0± [λ1(B + β)− μ(B)]/β , exist
and satisfy

lim
B→∞

λ′1,+(B) = lim
B→∞

λ′1,−(B) = Θ0 . (9.87)

In particular, there exists B0 ≥ 0 such that B �→ λ1(B) is strictly increasing
on [B0,+∞[ .

Based on these estimates, the proof of Theorem 9.5.1 is very similar to the
two-dimensional case. But we first need an adapted gauge transformation.

Proposition 9.5.2.
Let dΣ be the function defined in Theorem 9.4.4 and let Σj be one of the curves
making up Σ . Let s0 ∈ Σj and define, for ε > 0 ,

Ω(ε, s0) = {x ∈ Ω : dΣ(x) < ε and dist(x, s0) > ε} . (9.88)
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Then if ε is sufficiently small, there exists a function φ ∈ C∞(Ω) such that
Â := F +∇φ satisfies

|Â(x)| ≤ C
(
t(x) + dΣ(x)2

)
,

for all x ∈ Ω(ε, s0) .

An easy localization argument shows that we can carry out the above
gauge change simultaneously at each Σj .

Corollary 9.5.3.
Let (s1, . . . , sN ) ∈ Σ1 × · · · × ΣN and define, for ε > 0 ,

Ω
(
ε, (s1, . . . , sN )

)
= {x ∈ Ω : dist(x,Σ) < ε and min

j
dist(x, sj) > ε} . (9.89)

Then if ε is sufficiently small, there exists a function φ ∈ C∞(Ω) such that
Â := F +∇φ satisfies

|Â(x)| ≤ C
(
t(x) + dΣ(x)2

)
,

for all x ∈ Ω
(
ε, (s1, . . . , sN )

)
.

Proof of Proposition 9.5.2.
We use the adapted coordinates (r, s, t) near Σj defined in Section F.2. Let
Σj be parametrized by arc-length as

|Σj |
2π

S
1 � s �→ Σj(s) ∈ ∂Ω .

Given a point x ∈ Ω sufficiently close to Σj , there exist a unique point y(x) ∈
∂Ω such that dist(x, ∂Ω) = dist(x, y(x)) and a unique point Σj(s(x)) ∈ Σj
such that dist∂Ω(y(x),Σj) = dist∂Ω(y(x),Σj(s(x))) , where dist∂Ω denotes the
geodesic distance on the boundary. The coordinates (r, s, t) associated with
the point x now satisfy

|r| = dist∂Ω(y(x),Σj) , s = s(x) , t = dist(x, ∂Ω) .

Notice that there exists a constant C > 0 such that

C−1dΣ(x) ≤ |r(x)| ≤ CdΣ(x) ,

and so we may replace dΣ by r in the proposition.
Let Ã1dr + Ã2ds + Ã3dt be the magnetic 1-form ωA = A · dx written in

the new coordinates (r, s, t) . Also, write the corresponding magnetic 2-form,
dωA , as

B̃12dr ∧ ds+ B̃13dr ∧ dt+ B̃23ds ∧ dt .
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Clearly,

B̃ij = ∂iÃj − ∂jÃi , (9.90)

for i < j and where we identify (1, 2, 3) with (r, s, t) for the derivatives.
The magnetic field β corresponds to the magnetic 2-form via the Hodge-

map. In particular, since β is tangent to ∂Ω at Σ , we get

B̃12(0, s, 0) = 0 . (9.91)

We now find a particular solution Ã to (9.90). We make the Ansatz

Ã1 = −
∫ t

0

B̃13(r, s, τ) dτ , (9.92)

Ã2 = −
∫ t

0

B̃23(r, s, τ) dτ + ψ2(r, s) , (9.93)

Ã3 = 0 . (9.94)

Using the relation d(dωA) = 0 , we see that the above Ansatz gives a solution
if ψ2 is chosen as

ψ2(r, s) =
∫ r

0

B̃12(ρ, s, 0) dρ . (9.95)

We can verify by inspection that with these choices

|Ã| ≤ C(r2 + t) . (9.96)

By transporting this Ã back to the original coordinates, we get the existence
of an Â with

curl Â = 1, |Â(x)| ≤ C(t(x) + dΣ(x)2) .

Since Ω(ε, s0) is simply connected (for sufficiently small ε), Â is gauge equiva-
lent to F and the proposition is proved. ��
Proof of Theorem 9.5.1.
The strategy is the same as the one applied in the proof of Theorem 8.5.1.
We will use a convenient gauge together with localization estimates in order
to prove monotonicity using a less precise asymptotics than the one required
by the general statement of Corollary 2.3.3.

Applying analytic perturbation theory to H(B) , we get the existence of
λ′1,±(B) .

Let Σ = ∪Nj=1Σj be the decomposition of Σ in disjoint closed curves and
let sj ∈ Σj be a point with γ̃(sj) > γ̂0 . Let Ω

(
ε, (s1, . . . , sN )

)
be as defined

in (9.89) with ε so small that

γ̃(x) > γ̂0 ,
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for all x in the set

{x ∈ Ω : dist(x,Σ) < ε and min dist(x, sj) ≤ ε} .

Define Â to be the vector potential defined in Corollary 9.5.3. Let Q̂B be the
quadratic form

H1(Ω) � u �→ Q̂B(u) =
∫

Ω

| − i∇u+BÂu|2 dx ,

and let Ĥ(B) be the associated operator. Then Ĥ(B) and H(B) are unitarily
equivalent: Ĥ(B) = eiBφH(B)e−iBφ , for some φ independent of B .

It follows from the strategy of the proof of Theorem 8.5.1 that it suffices
to prove

B
2
3

∫
Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx ≤ C , (9.97)

for some constant C independent of B . [Then we can take b := MB
2
3−η ,

in (8.62) with η from (9.18) and M > 0 arbitrarily large and proceed as in
the proof of Theorem 8.5.1].

Thus, it remains to prove (9.97).
By Corollary 9.5.3, we can estimate

∫
Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx

≤ C

∫
Ω(ε,(s1,...,sN ))

(t2 + r4)|ψ+
1 (x;B)|2 dx

+ ‖Â‖2∞
∫

Ω\Ω(ε,(s1,...,sN ))

|ψ+
1 (x;B)|2 dx . (9.98)

Combining Corollaries 9.4.2 and 9.4.5 and Theorem 9.4.6, we therefore find
the existence of a constant C > 0 such that

∫
Ω

|Â(x)|2 |ψ+
1 (x;B)|2 dx ≤ C B−1 , (9.99)

which is stronger than the estimate (9.97) needed. ��

9.6 Notes

1. The localization of the ground state around Σ is mentioned in the physics
literature, at least for the case of the sphere. One can find in Chapter 4
of [S-JST] a physical presentation of the problem we are considering.
We place particular emphasis on their Section 4.3, where they analyze
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(with partially heuristic arguments) the angular dependence of the nucle-
ation field (which is the third critical field). For type II superconductors,
they write
Superconductivity is not entirely destroyed for HC2 < H < HC3 .
A superconducting sheath remains close to the surface parallel to the
applied field. Conversely, when the field is decreased below HC3 ,
a superconducting sheath appears at the surface before superconductivity is
restored in the bulk at H = HC2(κ) . If the sample is a long cylinder with
the applied field parallel to the axis, the sheath will cover all the surface
of the cylinder. If it is a sphere, the sheath will be restricted to a small
zone near the equatorial plane when H is close to HC3 . When the field
is decreased toward HC2(κ) , the sheath will progressively extend up to the
poles.
Note, however, that in this chapter we have only analyzed the linear
problem. But this text could give the main motivation for the second
part of the book.
Notice also that a precise spectral analysis in the case of the sphere is
contained in [FoP].

2. The fact that the ground state energy is minimal when the magnetic
field is tangent to the boundary is at the origin of the choice of some
one-dimensional models occurring often in the literature. Let us consider
R

3,+ (or R
2×] − d,+d[) and assume that the external magnetic field is

tangent to the boundary x3 = 0 . Then it is natural to minimize the
Ginzburg–Landau functional over A’s that have the same property. One
can restrict the functional to vector potentials in the form A(x1, x2, x3) =
(a(x3), 0, 0) . This leads by minimization to the reduced model mentioned
in Note 8 to Chapter 1 [see (1.58)].

3. Theorem 9.1.1 was first obtained in [LuP7] with some additional informa-
tion concerning the decay appearing in [HeM4]. We do not repeat the proof
of the upper bound, which is completely analogous to the one given in
Section 8.2.1. Note that the optimal result without additional assumption
is with a remainder in O(|B|2/3) which was obtained in [HeM6] and
in [Pa6] (in the constant magnetic field case, but this assumption is not
used).

4. The proof of Theorem 9.2.2 was achieved in [HeM6]. The corresponding
upper bound was also given in [Pa6], and a less general geometric situation
was studied in [HeM4].

5. Pan [Pa6] obtained for the upper bound in (9.18) the probably optimal
remainder in O(B7/12) .

6. The results presented in this chapter are due to Lu–Pan [LuP7], Almog
[Al3], Helffer–Morame [HeM4]–[HeM6], Pan [Pa6], and the recent paper
of Fournais–Helffer [FoH6].
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10

The Ginzburg–Landau Functional

10.1 The Problem in Superconductivity

Let us describe the mathematical problem. It is naturally posed for domains
in R

3 , but for cylindrical domains in R
3 , it is natural (though not completely

justified mathematically) to consider a functional defined in a domain Ω ⊂ R
2 ,

where Ω is the cross-section of the cylinder. This explains why we also consider
models in R

2 . The behavior of a sample of material can be read off from the
properties of the minimizers (ψ,A) of the Ginzburg–Landau functional (free
energy) G to be defined below.

10.1.1 The functional

Let d = 2 or 3 and consider a domain Ω ⊂ R
d and another domain Ω̃ such

that Ω ⊆ Ω̃ . The most important cases are Ω̃ = Ω and Ω̃ = R
d . In this book,

we will always consider the cases where Ω is connected and simply connected.
The Ginzburg–Landau functional is defined by

G�Ω,κ,σ(ψ,A) =
∫

Ω

|pκσAψ|2 −κ2|ψ|2 +
κ2

2
|ψ|4 dx+(κσ)2

∫
�Ω
| curlA− β|2 dx .

(10.1)

Here the function ψ is called the order parameter (or sometimes the wave
function) and A is a magnetic potential. The symbol β denotes a magnetic
vector field and is called the external magnetic field or the applied magnetic
field. In the case d = 2 , β is just a function in, say, L2

loc , whereas when d = 3 ,
β is the curl of some vector field with components in H1

loc , hence satisfying
div β = 0 . The parameter κ > 0 (the Ginzburg–Landau parameter) depends
on the material, and σ > 0 (or rather the product κσ) is a measure of the
strength of the external magnetic field. In the present book, we are concerned

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_10,  

with the analysis of the asymptotic regime κ→ +∞.
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We will mainly use two different choices of Ω̃ depending on whether d = 2
or 3 . This is partly for physical reasons that will be explained below, but
also partly in order to follow what we consider the custom in the subject.
Therefore, we define

G(ψ,A) = Gκ,σ(ψ,A) :=

{
GΩ,κ,σ(ψ,A) when d = 2 ,
GR3,κ,σ(ψ,A) when d = 3 .

(10.2)

In the three-dimensional situation, we will sometimes write G = G3D in order
to stress the dimension of the space.

In order to avoid certain technicalities for the Neumann problem in non-
smooth domains, in Chapter 15 we will deviate from convention (10.2).
In Chapter 15, we will consider (polygonal) Ω ⊂ R

2 , but the functional will
be associated with the pair (Ω, Ω̃ = R

2) .
Next, we will discuss the two cases in (10.2) separately below.

10.1.2 The two-dimensional functional

In the two-dimensional situation, the original functional Ĝ is defined on func-
tions (ψ,A) ∈ H1(Ω,C)×H1

loc(R
2,R2) by

Ĝ(ψ,A) =
∫

Ω

|pκσAψ|2 +
κ2

2
(|ψ|2 − 1)2 dx+ (κσ)2

∫
R2
| curlA− β|2 dx .

(10.3)

It will be convenient to subtract the constant κ2

2
|Ω| from the functional, and

this leads to the new functional GR2,κ,σ . This just changes the zero-point of
the “energy” and has no physical consequence.

The function β (magnetic field) is initially defined in L2
loc(R

2) , but since
Ω is simply connected, one can replace the domain of integration in the field
integral from R

2 to Ω (see Section 10.5). Thus, we end up with β ∈ L2(Ω)
and G as defined above, i.e.,

G(ψ,A) =
∫

Ω

|pκσAψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx + (κσ)2

∫
Ω

| curlA− β|2 dx .
(10.4)

We will sometime write G = Gκ,σ or even G = Gκ,σ,β , if we want to emphasize
the choice of parameters involved in the definition of the functional. Note that
if ψ ≡ 0 and A is such that curlA = β , then G(ψ,A) = 0 . The above change
of zero for the energy is motivated by the fact that we will, in particular,
study the behavior of minimizers of G near such a state (called the normal
state in physics).

The natural domain of the functional is H1(Ω,C) ×H1(Ω,R2) . However,
due to the gauge invariance of G (see Section D.1), it is better to restrict the
functional to the smaller set H1(Ω,C)×H1

div(Ω) , where
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H1
div(Ω) =

{
V = (V1, V2) ∈ H1(Ω,R)2

∣∣ divV = 0 in Ω , V · ν = 0 on ∂Ω
}
.

(10.5)

The space H1
div(Ω) inherits the topology (norm) from H1(Ω,R2) . We will

generally consider the functional on this space if not specified otherwise.
We define the Ginzburg–Landau ground state energy to be the infimum of

the functional, i.e.

E(κ, σ) := inf
(ψ,A)∈H1(Ω)×H1

div(Ω)
Gκ,σ(ψ,A) , (10.6)

and we observe, using the previously mentioned gauge invariance, that

E(κ, σ) := inf
(ψ,A)∈H1(Ω)×H1(Ω)

Gκ,σ(ψ,A) . (10.7)

As Ω is bounded, the existence of a minimizer is rather standard, so the
infimum is actually a minimum. We will prove this existence in the next
section. However, in general, one does not expect uniqueness of minimizers.
A minimizer should satisfy the Euler–Lagrange equation, which is called in
this context the Ginzburg–Landau system.

Using (10.7), this equation reads

p2
κσAψ = κ2(1− |ψ|2)ψ ,

curl
(
curlA− β) = − 1

κσ
�
(
ψ pκσAψ

)
}

in Ω , (10.8a)

ν · pκσAψ = 0 ,
curlA − β = 0

}
on ∂Ω . (10.8b)

Here, for A = (A1, A2) , curlA = ∂x1A2 − ∂x2A1 , and

curl2 A = (∂x2(curlA),−∂x1(curlA)) .

Notice that the weak formulation of (10.8) is

�
∫

Ω

(
pκσAφ · pκσAψ − κ2(1 − |ψ|2)φψ) dx = 0 , (10.9a)

∫
Ω

(curlα)(curl A− β) dx = − 1
κσ

∫
Ω

�(ψ pκσAψ)αdx , (10.9b)

for all (φ, α) ∈ H1(Ω)×H1(Ω,R2) .
The analysis of the system (10.8) can be performed by PDE techniques.

We note that this system is nonlinear, that H1(Ω) is, when Ω is bounded and
regular in R

2 , compactly embedded in Lp(Ω) for all p ∈ [1,+∞[ , and that,
if div A = 0 , curl2 A = (−ΔA1,−ΔA2) .

Actually, the nonlinearity is weak in the sense that the principal part
is a linear elliptic system. One can show in particular that the solution in
H1(Ω,C)×H1

div(Ω) of the elliptic system (10.8) is actually, when Ω is regular,
in C∞(Ω) (see Theorem E.2.1 in Appendix E).
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10.1.3 The three-dimensional functional

Most of the discussion and notation from the two-dimensional case carries
over to the three-dimensional case. However, notice that, whereas in two
dimensions a magnetic field is just (in a given system of coordinates1) any
function [the image of the operator curl on say H1

loc(R
2 , R

2) is all of L2
loc by

Proposition D.2.1], in three dimensions a magnetic field b has to satisfy that
div b = 0 .

This is the reason why in 3D it is not immediate to replace the field integral∫
R3 | curlA − β|2 by the same integral over Ω . Hence, what in the future we

call a magnetic field is always a vector field β that is associated with some
F ∈ H1

loc(R
3 , R

3) such that

β = curlF and div F = 0 . (10.10)

We now define the Ginzburg–Landau functional in three dimensions by

Gκ,σ(ψ,A) = G3D
κ,σ(ψ,A) =

∫
Ω

|pκσAψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx

+ (κσ)2
∫

R3
| curlA− β|2 dx . (10.11)

Here ψ ∈ H1(Ω,C) and A lies in the space Ḣ1
div,F that we are presently

defining. We consider the case of smooth, bounded Ω . Let Ḣ1(R3) denote the
homogeneous Sobolev space, i.e., the closure of C∞

0 (R3) under the norm

u �→ ‖u‖Ḣ1(R3) := ‖∇u‖L2(R3) .

Then the natural variational space for the functional G3D is H1(Ω) ×
Ḣ1

div,F , where

Ḣ1
div,F := {A : div A = 0 , and A− F ∈ Ḣ1(R3)} . (10.12)

We note that minimizing over Ḣ1
div,F is the same as minimizing over

Ḣ1
F , with

Ḣ1
F := {A : A− F ∈ Ḣ1(R3)} . (10.13)

Given some A in Ḣ1
F , one can indeed always find Ã ∈ Ḣ1

div,F and φ ∈ H2
loc

such that ∇φ ∈ Ḣ1(R3) and Ã − A = ∇φ . This is a consequence of the
properties of the operator ∇Δ−1 on R

3 . Using this remark, minimizers of G
are weak solutions of the Euler–Lagrange equations
1 The identification is through the map f �→ f(x, y)dx ∧ dy .
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p2
κσAψ = κ2(1 − |ψ|2)ψ in Ω , (10.14a)

curl
(
curlA− β) = − 1

κσ
�(ψ pκσAψ) 1Ω in R

3 , (10.14b)

(pκσAψ) · ν = 0 on ∂Ω . (10.14c)

The analysis of the regularity of this system is more delicate. This is due to
the fact that in the right-hand side of (10.14b) we have introduced a cutoff
function 1Ω . This will be discussed further in Appendix E.

10.2 The Existence of a Minimizer

Using the discussion in the previous section, we can impose without loss of
generality the condition that A ∈ H1

div(Ω) (resp. A ∈ Ḣ1
div,F ).

Theorem 10.2.1.
Suppose that Ω ⊂ R

2 is bounded, smooth, and simply connected. For all κ, σ ∈
R

+ and β ∈ L2(Ω) , the functional G on H1(Ω)×H1
div(Ω) has a minimizer.

Similarly, if Ω ⊂ R
3 is bounded and has Lipschitz continuous boundary,

then for all κ, σ ∈ R
+ and β ∈ L2(R3) , the functional G has a minimizer in

H1(Ω)× Ḣ1
div,F .

Furthermore, minimizers satisfy the Ginzburg–Landau systems in two and
three dimensions [ (10.8) and (10.14)] respectively.

Proof.
We start by giving the proof in dimension 2 .
Let (ψn,An) ∈ H1(Ω)×H1

div(Ω) be a minimizing sequence, i.e.,

lim
n→∞G(ψn,An) = inf

(ψ,A)∈H1(Ω)×H1
div(Ω)

G(ψ,A) . (10.15)

Step 1. {(ψn,An)} is bounded in H1(Ω)×H1(Ω) .
By using that G̃ is the sum of three positive terms, we get the existence of a
constant E0 > 0 such that

Tn ≤ E0 , (10.16)

where Tn is any of the three terms
∫

Ω

|(∇+ iκσAn)ψn|2 dx,
∫

Ω

(|ψn|2 − 1)2 dx ,
∫

Ω

| curlAn − β|2 dx .

Since β is a fixed function in L2(Ω) and div An = 0 , we get from Propo-
sition D.2.1 that {An} is uniformly bounded in H1(Ω) .

Using the Cauchy–Schwarz inequality and the inequality

2ab ≤ εa2 + ε−1b2 for any ε > 0 ,
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notice that∫
Ω

(|ψn|2 − 1)2 dx =
∫

Ω

(|ψn|4 − 2|ψn|2 + 1
)
dx

≥ ‖ψn‖44 − 2‖ψn‖24
√
|Ω| ≥ 1

2
‖ψn‖44 − 2|Ω| .

Therefore, {ψn} is uniformly bounded in L4(Ω) , and therefore—again using
the Cauchy–Schwarz inequality—in L2(Ω) .

The boundedness of {An} in H1(Ω) implies, by the Sobolev embedding
theorem, that {An} is uniformly bounded in L4(Ω) . Combined with the
L4-bound on ψn , this gives the uniform boundedness of {Anψn} in L2(Ω) .
So, considering the uniform bound,

∫
Ω

|∇ψn + iκσAnψn|2 dx ≤ E0 ,

this implies that {ψn}n is uniformly bounded in H1(Ω) .
Step 2. A weak limit is a minimizer.
We now extract a subsequence, again denoted by {(ψn,An)} , converging
weakly in H1(Ω)×H1(Ω) to some (ψ,A) ∈ H1(Ω)×H1(Ω) .
Of course, by taking the limit, we obtain

div A = 0 in Ω , (10.17)

in the sense of distributions.
Furthermore, since the inclusion of H1(Ω) in Hs(Ω) is compact for all s < 1
and the restriction Hs(Ω) ↪→ L2(∂Ω) is continuous for all s > 1/2 , we also
get

A · ν = 0 on ∂Ω .

Thus, A ∈ H1
div(Ω) . We can estimate:

∫
Ω

| curlA− β|2 dx = lim
n→+∞ 〈curlA− β | curlAn − β〉L2×L2

≤ ‖ curlA− β‖2 lim inf
n→+∞ ‖ curlAn − β‖2 .

Therefore,
∫

Ω

| curlA− β|2 dx ≤ lim inf
n→+∞

∫
Ω

| curlAn − β|2 dx . (10.18)

The same type of calculation gives
∫

Ω

|(∇+ iκσA)ψ|2 dx ≤ lim inf
n→+∞

∫
Ω

|(∇+ iκσAn)ψn|2 dx . (10.19)
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The compactness of the Sobolev embedding

H1(Ω) ↪→ Lp(Ω) for
1
p
>

1
2
− 1
d

(if d is the dimension, here d = 2), hence for p = 2, 4 , implies that
∫

Ω

(|ψ|2 − 1)2 dx = lim
n→+∞

∫
Ω

(|ψn|2 − 1)2 dx . (10.20)

Combining (10.15) with (10.17)–(10.20) shows that (ψ,A) is a minimizer.
This finishes the proof in the two-dimensional case.

The proof in the three-dimensional case is similar. By (D.17), Hölder’s
inequality, and the boundedness of Ω, we find that

‖A− F‖Lp(Ω) ≤ C ‖ curlA− β‖L2(R3) ,

for all p ≤ 6 . From here the proof is identical to the 2D case. ��

10.3 Basic Properties for Solutions of the
Ginzburg–Landau Equations

As we have seen, minimizers are solutions of the Ginzburg–Landau equations,
but many properties are true for general solutions of these equations. The first
important property is

Proposition 10.3.1.
If (ψ,A) ∈ H1(Ω)×H1(Ω,R2) is a (weak) solution to (10.8), then

‖ψ‖L∞(Ω) ≤ 1 . (10.21)

The same is true for solutions to the three-dimensional GL system (10.14).

We only give the explicit proof in the 2D case. We first indicate the idea
of an alternative proof using the maximum principle.
Sketch of a proof via the maximum principle
Assuming the C2-regularity of the boundary and of the stationary point (up to
the boundary), we can apply the maximum principle to the function

u(x) = |ψ(x)|2 . (10.22)

We observe that u satisfies

1
2
Δu+ κ2u(1− u) = |∇κσAψ|2 . (10.23)

This equation is a direct consequence of the first Ginzburg–Landau equation
(10.8a): We multiply the equation for ψ by ψ̄ and take the real part.



148 10 The Ginzburg–Landau Functional

Formula (10.23) is then a consequence of the identity

� (ΔκσAψ · ψ̄
)

=
1
2
Δ(|ψ|2) − |(∇+ iκσA)ψ|2 ,

with

ΔκσA = (∇+ iκσA)2 .

From (10.23), we get
1
2
Δu+ κ2u(1− u) ≥ 0 . (10.24)

Now if u admits a maximum that is greater than 1 , then we get a contradiction
as follows. If this maximum is attained at a point x0 ∈ Ω , we have indeed
Δu(x0) ≤ 0 and κ2u(x0)(1 − u(x0)) < 0 in contradiction with (10.24). If the
maximum is attained at the boundary, we should additionally use the fact
that u satisfies the usual Neumann boundary condition.

Instead of giving the necessary justifications for the above proof, we prefer
to give a proof that does not imply showing regularity properties.

Proof of Proposition 10.3.1.
With the notation [t]+ = max(t, 0) , we introduce

Ω+ := {x ∈ Ω : |ψ(x)| > 1} ,

and the following functions on Ω+ :

f :=
ψ

|ψ| , ψ̃ := [|ψ| − 1]+f .

Notice that [t]+ = (t+ |t|)/2 , and so applying Proposition 2.1.2 twice, we see
that

[|ψ| − 1]+ ∈ H1(Ω) and ∇[|ψ| − 1]+ = 1Ω+∇[|ψ| − 1]+ = 1Ω+∇|ψ| .

Let χ ∈ C∞(R) be increasing and satisfy

χ(t) = 0 on t ≤ 1
4
, χ(t) = 1 on t ≥ 3

4
,

and define
G(z) = χ(|z|) z|z| , f̃ := G(ψ) .

Then, since G is smooth with bounded derivatives and ψ ∈ H1(Ω) , the chain
rule gives that f̃ = G(ψ) ∈ H1(Ω) (see, for instance, [LiL, Theorem 6.16]).
Furthermore,

ψ̃ = [|ψ| − 1]+f̃ ,
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and so
(∇+ iκσA)ψ̃ = 1Ω+ f̃∇|ψ|+ [|ψ| − 1]+(∇+ iκσA)f̃ .

Now, clearly,

1Ω+(∇+ iκσA)ψ = 1Ω+(∇+ iκσA)(|ψ|f̃) = 1Ω+

{
f̃∇|ψ|+ |ψ|(∇+ iκσA)f̃

}
.

Therefore,

�
{

(∇+ iκσA)ψ̃ · (∇+ iκσA)ψ
}

= 1Ω+

(∣∣∇|ψ|∣∣2 + (|ψ| − 1)|ψ| ∣∣(∇+ iκσA)f̃
∣∣2) .

Here we used the fact that, on Ω+ , we have |f | = |f̃ | = 1 . Therefore,

f ∇f + f ∇f = ∇|f |2 = 0 ,

and so 1Ω+f ∇f takes values in iR2 .
Thus, we have, by (10.9) and the support of ψ̃ ,

0 = �
{∫

Ω

(∇+ iκσA)ψ̃ (∇+ iκσA)ψ + ψ̃(|ψ|2 − 1)ψ dx
}

=
∫

Ω+

∣∣∇|ψ|∣∣2 + (|ψ| − 1)|ψ| ∣∣(∇+ iκσA)f̃
∣∣2 + (1 + |ψ|)(|ψ| − 1)2|ψ| dx .

Since the integrand is nonnegative, we easily conclude that Ω+ has measure
zero. ��

Using Proposition 10.3.1, we can get various a priori estimates on solutions
to the Ginzburg–Landau equations (10.8).

Lemma 10.3.2.
Let Ω ⊂ R

2 be bounded and smooth, and let β ∈ L2(Ω) be given. Then for
all p ≥ 2 , there exists a constant C = C(p) > 0 such that for all solutions
(ψ,A) ∈ H1(Ω)×H1

div(Ω) to (10.8), we have

‖p2
κσAψ‖p ≤ κ2‖ψ‖p , (10.25)

‖pκσAψ‖2 ≤ κ‖ψ‖2 , (10.26)

‖ curlA− β‖W1,p(Ω) ≤ C

κσ
‖ψ‖∞ ‖pκσAψ‖p . (10.27)

Furthermore, there exists a constant C2 > 0 such that

‖ curlA− β‖2 ≤ C2

σ
‖ψ‖2‖ψ‖4 . (10.28)



150 10 The Ginzburg–Landau Functional

Proof.
Since, by Proposition 10.3.1,

0 ≤ 1− |ψ|2 ≤ 1 , (10.29)

the inequality (10.25) is immediate from (10.8a). Multiplying the equation for
ψ in (10.8a) by ψ and integrating over Ω, one obtains (10.26), again using
(10.29).

Since, by definition,

curl(curlA− β) = (∂x2(curlA− β),−∂x1(curlA− β)) ,

it follows immediately from the equation for A in (10.8a) that

‖∇(curlA− β)‖p ≤ 1
κσ
‖ψ‖∞‖pκσAψ‖p . (10.30)

Since curlA−β vanishes on ∂Ω , (10.27) follows from (10.30) by the Poincaré
inequality, Theorem E.5.1.

Finally, we prove (10.28). For this we use (10.9b) with α := A− F . Here
F is the unique vector field (see Section D.1) in H1

div(Ω) such that

curlF = β and div F = 0 in Ω , (10.31)
F · ν = 0 on ∂Ω . (10.32)

Applying Hölder’s inequality yields

‖ curlA− β‖22 ≤
1
κσ
‖ψ‖4 ‖pκσAψ‖2 ‖A− F‖4 .

Thus, using a Sobolev inequality and (D.7), we get

‖ curlA− β‖2 ≤ C

κσ
‖ψ‖4 ‖pκσAψ‖2 . (10.33)

The estimate (10.28) follows upon inserting (10.26) in (10.33). ��
The 3D version of Lemma 10.3.2 is slightly harder to prove.

Lemma 10.3.3.
Let Ω ⊂ R

3 be bounded and smooth, and let β be given as in (10.10) and
satisfying β ∈ L∞(R3) . Then for all p ≤ 6 , there exists a constant C =
C(p) > 0 such that for all solutions (ψ,A) ∈ H1(Ω) × Ḣ1

div,F to (10.14),
we have

‖p2
κσAψ‖p ≤ κ2 ‖ψ‖p , (10.34)

‖pκσAψ‖2 ≤ κ ‖ψ‖2 , (10.35)

‖A− F‖W2,p(Ω) ≤ C

{
1
σ
‖ψ‖∞ ‖ψ‖2 +

1
κσ
‖ψ‖∞ ‖pκσAψ‖p

}
. (10.36)
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Finally, there exists a constant C2 > 0 such that

‖ curlA− β‖2 ≤ C2

σ
‖ψ‖2 ‖ψ‖4 . (10.37)

Proof.
The proofs of (10.34) and (10.35) are identical to the corresponding estimates
for the 2D case [see (10.25) and (10.26)]. The same applies to the proof of
(10.37) except that one has to apply Proposition D.3.2.

So we only have to prove (10.36). From (D.17) we find that there exists
C > 0 such that

‖A− F‖L6(R3) ≤ C ‖ curlA− β‖L2(R3) . (10.38)

Since div(A− F) = 0 , (10.14b) can be reformulated as

Δ(A− F) = − 1
κσ
�(ψ pκσAψ ) 1Ω in R

3 . (10.39)

Let D(0, R) be the open ball of radius R around the origin. Using the elliptic
regularity for the Laplacian (see Theorem E.4.1), we obtain, for all p′ ∈ [1,∞[ ,
R > 0 , the existence of a constant Cp′(R) such that

‖A− F‖W 2,p′(D(0,R))

≤ Cp′(R)
(
‖A− F‖Lp′(D(0,2R) +

1
κσ
‖ψ‖∞ ‖pκσAψ‖Lp′(Ω)

)
.

In particular, for p′ ≤ 6 , we can apply the estimate (10.38) and the compact-
ness of D(0, 2R) to get, for p′ ≤ 6 ,

‖A− F‖W 2,p′ (D(0,R))

≤ C ′
p′(R)

(
‖ curlA− β‖L2(R3) +

1
κσ
‖ψ‖∞ ‖pκσAψ‖Lp′(Ω)

)
. (10.40)

Let R be chosen so big that Ω ⊂ D(0, R − 1) . Using once again Theo-
rem E.4.1 and the Sobolev embedding theorem, we find for any p ∈ [1,∞[ ,

‖A− F‖W2,p(Ω) ≤ C

(
‖A− F‖Lp(D(0,R)) +

1
κσ
‖ψ‖∞ ‖pκσAψ‖Lp(Ω)

)

≤ C

(
‖A− F‖W2,2(D(0,R)) +

1
κσ
‖ψ‖∞ ‖pκσAψ‖Lp(Ω)

)
.

Reimplementing (10.40) with p′ = 2 , we obtain

‖A− F‖W2,p(Ω) ≤ C

(
‖ curlA− β‖L2(R3) +

1
κσ
‖ψ‖∞ ‖pκσAψ‖L2(Ω)

+
1
κσ
‖ψ‖∞ ‖pκσAψ‖Lp(Ω)

)
. (10.41)
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Multiplying (10.14b) by A− F and integrating by parts yields

‖ curlA− β‖2L2(R3) = − 1
κσ

∫
Ω

(A− F)�(ψ pκσAψ) dx

≤ 1
κσ
‖A− F‖L2(Ω)‖ψ‖∞ ‖pκσAψ‖L2(Ω)

≤ C

κσ
‖A− F‖L6(Ω)‖ψ‖∞ ‖pκσAψ‖L2(Ω) .

Implementing the estimates (10.38) and (10.35), we obtain

‖ curlA− β‖L2(R3) ≤ Cσ−1‖ψ‖∞ ‖ψ‖L2(Ω) . (10.42)

Thus, (10.41) combined with (10.35) and (10.42) yields (10.36). ��

10.4 The Result of Giorgi–Phillips

We observe that (0,F) is a trivial critical point of the functional G , i.e.,
a trivial solution of the Ginzburg–Landau system (10.8). The pair (0,F) is
often called the normal state or normal solution. The situation is similar in
the 3D case but F appears already in our discussion of the domain.

It is natural to discuss—as a function of σ—whether this pair is a local or
global minimizer. When σ is large, one will show that this solution is effectively
the unique global minimizer. One says that in this case the superconductivity
is destroyed. In other words, the order parameter is identically zero in Ω .

Let us give a rather simple proof of this result that roughly says (see
Theorem 10.4.1 for the precise statement) that (0,F) is the unique minimizer
of the functional when the strength of the exterior magnetic field is sufficiently
large. We will actually show this result for the solutions of the associated
Ginzburg–Landau system.

So we assume that we have a nonnormal stationary point (ψ,A) for G .
This means that (ψ,A) ∈ H1(Ω) × H1

div(Ω) [resp. (ψ,A) ∈ H1(Ω) × Ḣ1
div,F

in the 3D case] is a solution of (10.8) [resp. (10.14)] and
∫

Ω

|ψ(x)|2 dx > 0 . (10.43)

By (10.26), (10.27), and (10.21), and using (D.7) for controlling ‖A−F‖2 in
Ω by ‖ curlA− β‖2 , we get

‖pκσAψ‖22 + (κσ)2‖A− F‖22 ≤ CΩκ
2‖ψ‖22 . (10.44)
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We now compare
∫
Ω
|(∇ + iκσF)ψ|2 dx and

∫
Ω
|(∇ + iκσA)ψ|2 dx . A trivial

estimate is∫
Ω

|(∇+ iκσF)ψ|2 dx ≤ 2 ‖(∇+ iκσA)ψ‖2 + 2(κσ)2‖(A−F)|ψ| ‖2 . (10.45)

Implementing (10.21) and (10.44) gives∫
Ω

|(∇+ iκσF)ψ|2 dx ≤ 2CΩκ
2

∫
Ω

|ψ(x)|2 dx . (10.46)

Since ψ satisfies (10.43), we obtain

λN1 (σκF) ≤ 2CΩκ
2 . (10.47)

We observe that, by Proposition 2.1.3, λN1 (σκF) > 0 . So by combining Propo-
sitions 1.5.2 and 8.2.2 [and the continuity of B �→ λN1 (BF)], we get the exis-
tence of a constant C0 > 0 such that

λN1 (σκF) ≥ 1
C0

min(σκ, (σκ)2) . (10.48)

Thus, we find that if a nontrivial stationary point (ψ,A) exists, then

σ ≤ C(1 + κ) .

This can be reformulated as the following theorem. Before we formally state
the result let us note that the same argument can be applied in 3D. In that
case, the lower bound to the eigenvalue is given in Theorem 9.1.1.

Theorem 10.4.1 (Giorgi–Phillips).
2D. Let Ω ⊂ R

2 be smooth, bounded, and simply connected, and let the func-
tion β in (10.8) be continuous and satisfy

β(x) ≥ c > 0 , ∀x ∈ Ω .

Then there exists a constant C = C(Ω, c) such that if

σ ≥ C max{κ, 1} ,
then the pair (0,F) is the unique solution to (10.8) in H1(Ω)×H1

div(Ω) .
3D
Let Ω ⊂ R

3 be smooth, bounded, and simply connected, and let β be a
continuous vector field in (10.14) satisfying (10.10) and

|β(x)| ≥ c > 0 , ∀x ∈ Ω .

Then there exists a constant C = C(Ω, c) such that if

σ ≥ C max{κ, 1} ,
then (0,F) is the unique solution to (10.14) in H1(Ω)× Ḣ1

div,F .

We emphasize that the result is true for any κ > 0 .
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10.5 GΩ vs. GRd

Here we briefly discuss the question of how the magnetic energy should enter
the functional. Shall we integrate over Ω or over R

2 (or R
3) for the quantity∫ |β − curlA|2 appearing in the definition of the GL functional?

The 2D case

In two dimensions it does not matter (for simply connected Ω) whether the
field integral is taken over Ω or over R

2 . We recall the outline of the proof, in
order to be able to see how it breaks down in the three-dimensional case. For
simplicity, we only consider an open set Ω , which is star-shaped with respect
to the origin. One can then split a magnetic field b defined on R

2 as b = b1+b2

with b1 supported in Ω and b2 supported in Ωc . One can now choose a vector
potential a2 , defined on R

2 and supported in Ωc , such that curla2 = b2 as
a distributional equation in R

2 . In the starshaped case, the explicit formula
(Poincaré gauge)

a2(x) =
∫ 1

0

b2(tx)× tx dt

shows this immediately. Here b2 × x = (−x2b
2, x1b

2) . In the non-starshaped
case, the same result is true, but the proof involves a bit of algebraic
topology—the topological condition on Ω being that Ω is homeomorphic to
the unit disc. Define (we omit κ, σ for simplicity)

EΩ = inf
(ψ,A)

GΩ(ψ,A) , ER2 = inf
(ψ,A)

GR2(ψ,A) . (10.49)

We aim to prove that
EΩ = ER2 . (10.50)

The inequality EΩ ≤ ER2 is easy—it suffices to consider a minimizing
sequence for GR2 and restrict the A’s to Ω .

To get the other inequality, let (ψ,A) ∈W 1,2(Ω)×W 1,2(Ω,R2) be given.
Let Ã ∈ W 1,2

loc (R2,R2) be an extension of A to the entire plane, with curl Ã = β
outside a (large) compact set, and define

b1 + b2 = curl Ã− 1Ωcβ

as above. Let
curla2 = b2 = (curl Ã− β)1Ωc

in R
2 , as before, with supp a2 ⊂ R

2 \ Ω , and define

Ā = Ã− a2 .

Then
curl Ā = 1Ω · curlA + β1Ωc .
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In particular, in the domain Ω , we have

curl Ā = curlA ,

and, therefore, there exists a gauge function φ such that
∫

Ω

|(−i∇+ κσA)ψ|2 dx =
∫

Ω

|(−i∇+ κσĀ)eiφψ|2 dx .

So GΩ[eiφψ, Ā] = GR2 [ψ,A] . This gives the desired converse inequality.

The 3D case

The situation is not as simple in 3D. The “algebraic topology” remains valid;
i.e., magnetic fields supported in Ωc can be generated by vector potentials
supported in the same set.2 The difference lies in the meaning of the words
“magnetic field”. In 3D a magnetic field b has to satisfy div b = 0 , and upon
splitting b = b1Ω + b1Ωc , this condition on the divergence is generally not
satisfied by either term on the right-hand side. In two dimensions, a “magnetic
field” on R

2 is any function, and therefore the splitting does not cause any
problems.

10.6 Critical Fields

It follows from Theorem 10.4.1 that for fixed κ and for sufficiently large σ , the
only minimizer (or—more generally—stationary point) of Gκ,σ is the normal
state (0,F) . It is then natural to try to follow the property of the mini-
mizers when decreasing σ starting from +∞ and to determine when the trivial
solution is no longer a global minimum or a local minimum. This suggests
defining the third critical field HC3(κ) mentioned in the Preface as follows:

HC3(κ) := inf{σ > 0 : (0,F) is the unique minimizer of Gκ,σ} . (10.51)

Of course, one can make a similar definition in the 3D case.
Another critical field mentioned in the Preface is HC2(κ) corresponding to

the transition from the surface superconducting state to the bulk supercon-
ducting state. That second critical field is much harder to define; in fact, no
rigorous definition exists in the literature. However, the term is widely used
and has an intuitive meaning. Many results exist to indicate that, in the limit
where κ is large, minimizers show “bulk” behavior for bσ < κ and “surface
concentration” for bσ > κ , where

b := inf
x∈Ω

β(x) .

2 This, of course, depends strongly on the topology. As before, the precise condition
is that Ω and the unit ball are homeomorphic.
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In this book, we will allow ourselves to use the term HC2 in discussions. For
the purpose of mathematical clarity, we define

HC2(κ) :=
κ

b
. (10.52)

10.7 Notes

1. The Ginzburg–Landau model is described in all textbooks on supercon-
ductivity (see, for example, Saint-James–Sarma–Thomas [S-JST], Tilley–
Tilley [TiT], or Tinkham [Ti]). In the mathematics literature, many
articles have appeared devoted to the analysis of this model. In dimen-
sion one, one can refer to the work of Bolley [Bol] in the late 1980s. For
the first mathematical discussions in the two- or three-dimensional cases,
we mention Du–Gunzburger–Peterson [DuGP] and Chapman–Howison–
Ockendon [ChHO] and the basic material also appears in the books by
Bethuel–Brézis–Hélein [BeBH], Sandier–Serfaty [SaS3] or in the lectures
of Rubinstein [Ru].

2. Our proof of Proposition 10.3.1 is inspired by the proof of [DuGP].
3. The systems considered here are a particular (simple) case of Agmon–

Douglis–Nirenberg systems [AgDN1, AgDN2]. In appendix E we give a
short presentation of the needed material and the involved bootstrap
argument.

4. Our presentation of the Giorgi–Phillips theorem is close to the original
proof [GioP] with some simplifications. One can also find a presentation
of this result in the book of Hoffmann and Tang [HoT]. The new point is
that our statement concerns not only minimizers but any critical point of
the GL functional.

5. The argument for the discussion between the two possible definitions of the
GL functional is essentially taken from [DuH]. We do not treat in this book
the case with holes (see, however, the last chapter for a short discussion).

6. The first definition of HC3(κ) was proposed by Lu–Pan in [LuP3]. We will
discuss this and related definitions in Chapter 13 (two and three dimen-
sions, smooth boundary) and Chapter 15 (2D case with corners). We will
complete the list of references in the specific chapter devoted to the analy-
sis of this critical field.

7. There is an extensive literature on boundary value problems in Lipschitz
domains. We mention here [Ne], [GeK], [BuCS], [BuC], [BuG], and the
book by Maz’ja [Maz]. See also [GeM].
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Optimal Elliptic Estimates

11.1 Introduction

In this chapter, we establish estimates on “how far” the induced magnetic
vector potential A is allowed to be from the external field F , when (ψ,A)
is a solution to the Ginzburg–Landau equations. It is in particular proved
(for more precise statements; see, for instance, Theorem 11.3.1) that in the
entire region between HC2(κ) and HC3(κ) , i.e., for σ ≥ κ , we have that
A− F = o(1) , in suitable norms.

These estimates come in two types:
The first set of estimates is deduced from the ellipticity of the Ginzburg–
Landau system. In this way one obtains the desired inequalities in (Sobolev)
norms, W s,p , for p < +∞ (by embedding theorems, estimates in Hölder
norms, Cs

′,α , α < 1 , are also obtained). The challenge here is to get inequali-
ties with the right dependence on the magnetic field strength. This part of
the analysis is valid in a large parameter regime and is essentially functional
analytical.

The second set of estimates corresponds to the case p = ∞ above. They
are obtained using a very different technique, called a “blow-up argument”.
In this technique, one rescales balls of size κ−1 to unity, thereby obtaining
(after suitable extractions of subsequences) a limit function that is a solution
of a natural limit equation. In many interesting cases this limit equation has
only trivial solutions, and this information can then be transformed back to
the original solutions of the Ginzburg–Landau system. The estimates obtained
in this way are often much stronger than the first set of estimates described
above.

11.2 Hölder Estimates

In both dimensions 2 and 3 , the starting point is a formula expressing the
L2-norm of mixed second derivatives of a function in terms of the L2-norm of

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_11,  
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the magnetic Laplacian on the function and lower-order terms involving the
magnetic field itself.

11.2.1 The case of two dimensions

For convenience, we will use the following notation for the magnetic deriva-
tives:

D = (D1, D2) = (−i∇+BA) . (11.1)

The magnetic Laplacian is now the operator

H := D2 = D2
1 +D2

2 .

Proposition 11.2.1.
Let Ω ⊂ R

2 be a regular bounded domain. Suppose that ψ ∈W 2,2(Ω) satisfies
magnetic Neumann boundary conditions

ν ·Dψ∣∣
∂Ω

= 0 . (11.2)

Then
∑
j,k

‖DjDkψ‖22 = B2

∫
Ω

(curlA)2|ψ|2 dx+
∫

Ω

|Hψ|2 dx

+ 2B
∫

Ω

(curlA)�(D1ψD2ψ) dx . (11.3)

Proof of Proposition 11.2.1.
Notice the following magnetic commutator:

[Dj , Dk] = −iB(∂jAk − ∂kAj) .
Therefore, a calculation, also using the divergence theorem, yields

∑
j,k

‖DjDkψ‖22 = B2

∫
Ω

(curlA)2|ψ|2 dx+
∫

Ω

|Hψ|2 dx

+ 2B
∫

Ω

(curlA) �(D1ψ D2ψ) dx

+ �
∫
∂Ω

{
(ν ·Dψ) Hψ +

∑
j,k

Dkψ νj DkDjψ

}
dσ .

This formula holds for all functions ψ in C∞(Ω) . Proposition 11.2.1 will follow
from this calculation once we prove that the boundary term vanishes.

We now assume the Neumann boundary condition. Thus, (ν ·Dψ) = 0 ,
and so the first boundary term vanishes. We can rewrite the second boundary
term as follows:

�
∫
∂Ω

∑
j,k

Dkψ νj DkDjψ dσ = �(a+ b) ,
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with

a :=
∫
∂Ω

∑
j,k

Dkψ DkνjDjψ dσ , b := i

∫
∂Ω

∑
j,k

Dkψ (∂kνj)Djψ dσ .

To analyze a and b , we introduce a unit vector τ parallel to the boundary
and we define Dτ := τ ·D , Dν := ν ·D .

Let us start by proving that �(b) vanishes. Taking the real part, we find

�(b) =
i

2

∫
∂Ω

〈Dψ |MDψ〉C2 dσ , (11.4)

where M is the matrix with entries Mj,k = ∂jνk − ∂kνj . It clearly suffices to
prove that the integrand is real in order to conclude that �(b) = 0 . Writing
Dψ = (Dτψ)τ + (Dνψ)ν and using the boundary condition, we find that the
integrand satisfies

〈Dψ |MDψ〉C2 = |Dτψ|2〈τ |Mτ〉C2 ,

which is manifestly real since M, τ are real. Thus, �(b) = 0 .
Using the Neumann boundary condition and the fact that (τ, ν) is an

orthogonal basis for C
2 , we can rewrite a as

a =
∫
∂Ω

Dτψ DτDνψ dσ .

Since (the vector-field part in) Dτ is a derivative along the boundary, and
since Dνψ

∣∣
∂Ω

= 0 , we find DτDνψ
∣∣
∂Ω

= 0 . Thus, a clearly vanishes.
This finishes the proof of Proposition 11.2.1. ��
Applying Hölder’s inequality to the result of Proposition 11.2.1 yields an

interesting elliptic inequality for 2D magnetic problems with Neumann boun-
dary conditions.

Lemma 11.2.2.
Let Ω ⊂ R

2 be a regular domain and let β ∈ L∞(Ω) be an external mag-
netic field. Suppose that ψ ∈ C∞(Ω) satisfies magnetic Neumann boundary
conditions. Then, for all p1, p2 ∈ [1,+∞] , we have∑

j,k

‖DjDkψ‖22 ≤ 3B2‖β‖2∞‖ψ‖22 + 2‖Hψ‖22 + 2B2‖ curlA− β‖22p1‖ψ‖22q1

+ 2B‖ curlA− β‖p2‖Dψ‖22q2 , (11.5)

where qj is the conjugate exponent to pj ; i.e., p−1
j + q−1

j = 1 .

Proof.
The proof is direct using the identity in Proposition 11.2.1—replacing curlA
by (curlA − β) + β—and Hölder’s inequality. The term B‖β‖∞‖Dψ‖22 is
estimated as

B‖β‖∞‖Dψ‖22 = B‖β‖∞〈ψ,Hψ〉 ≤ B2‖β‖2∞‖ψ‖22 + ‖Hψ‖22 ,
where the Neumann boundary condition is used to get the identity. ��
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11.2.2 The case of three dimensions

The same calculation as in the 2D case yields (using of course that ψ satisfies
the Neumann condition)

∑
j,k

‖DjDkψ‖22 = B2

∫
Ω

(curlA)2|ψ|2 dx+
∫

Ω

|Hψ|2 dx

+ 2B
∫

Ω

(curlA) · �
⎛
⎝D2ψD3ψ

D3ψD1ψ

D1ψD2ψ

⎞
⎠ dx+ �b , (11.6)

with

b := i

∫
∂Ω

∑
j,k

Dkψ (∂kνj)Djψ dσ , curlA =

⎛
⎝∂2A3 − ∂3A2

∂3A1 − ∂1A3

∂1A2 − ∂2A1

⎞
⎠ . (11.7)

In the three-dimensional case, we are not able to prove that b vanishes, but
this boundary term can be controlled as follows by trace theorems.

Since the derivatives of ν are bounded, we can estimate

|b| ≤ C‖Dψ‖2L2(∂Ω) = C

3∑
j=1

‖Djψ‖2L2(∂Ω) .

Notice that the elementary identity

|u(0)|2 = −
∫ ∞

0

d

dt
|u(t)|2 dt = −2

∫ ∞

0

|u(t)| |u(t)|′ dt ,

for u ∈ H1(R+) , implies the inequality

|u(0)| ≤
√

2 ‖u‖L2(R+)‖u′‖L2(R+) .

Implementing this inequality (with u replaced by χu , where χ localizes closely
to 0) in the boundary coordinates introduced in Appendix F, we see that there
exists a constant C ′ > 0 such that, for all ε < 1 and all f ∈ H1(Ω) , we have

‖f‖2L2(∂Ω) ≤ C′ε−1‖f‖22 + ε‖f‖2H1(Ω) .

We will choose ε = 1/2C and apply the resulting inequality to each of the
functions f = |Djψ| . This gives, with a new constant C,

|b| ≤ C
∑
j

‖Djψ‖22 +
1
2

∑
j,k

‖∂k|Djψ|‖22 ≤ C
∑
j

‖Djψ‖22 +
1
2

∑
j,k

‖DkDjψ‖22 ,

where we used the diamagnetic inequality, Theorem 2.1.1, to get the last
estimate.
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Combining with (11.6), we thereby get

∑
j,k

‖DjDkψ‖22 ≤ C‖Dψ‖22 + 2B2

∫
Ω

(curlA)2|ψ|2 dx+ 2
∫
Ω

|Hψ|2 dx

+ 4B
∣∣∣
∫

Ω

(curlA) · �

⎛
⎜⎝
D2ψD3ψ

D3ψD1ψ

D1ψD2ψ

⎞
⎟⎠ dx

∣∣∣ . (11.8)

The 3D result analogous to Lemma 11.2.2 is the following.

Lemma 11.2.3.
Let Ω ⊂ R

3 be a domain with compact smooth boundary and let β ∈ L∞(Ω)
be an exterior magnetic field [see (10.10)]. Then there exists a constant C > 0
such that, for all p1, p2 ∈ [1,+∞] and all ψ ∈ C∞(Ω) satisfying the magnetic
Neumann condition, we have
∑
j,k

‖DjDkψ‖22 ≤ C
{
B2‖β‖2∞‖ψ‖22 + ‖Dψ‖22 + ‖Hψ‖22 (11.9)

+B2‖ curlA− β‖22p1‖ψ‖22q1 +B‖ curlA− β‖p2‖Dψ‖22q2
}
,

where qj is the conjugate exponent to pj ; i.e., p−1
j + q−1

j = 1 .

11.3 Regularity of Solutions of the Ginzburg–Landau
System

11.3.1 The case of two dimensions

We recall that the Ginzburg–Landau system was introduced in (10.8), the
vector field F in (10.31), and the basic inequality

‖ψ‖∞ ≤ 1 , (11.10)

was given in Proposition 10.3.1. Also, recall that, without loss of generality,
by a gauge transformation we can assume that the vector potential A belongs
to the space H1

div(Ω) , i.e., satisfies

A ∈ H1(Ω,R2) , div A = 0 in Ω , A · ν = 0 on ∂Ω . (11.11)

Theorem 11.3.1.
Let Ω ⊂ R

2 be a bounded domain with smooth boundary and let β ∈ C∞(Ω) .
Then there exist a constant C and, for any α ∈ ]0, 1[ and p ∈ ]1,+∞[ , con-
stants Ĉα and C̃p such that if (ψ,A) ∈ H1(Ω) × H1

div(Ω) is any solution of
the Ginzburg–Landau system (10.8) with parameters κ , σ > 0 , then
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∑
j,k

‖DjDkψ‖2 ≤ C(1 + κσ + κ2)‖ψ‖2, (11.12)

‖ curlA− β‖C0,α(Ω) ≤ Ĉα
1 + κσ + κ2

κσ
‖ψ‖2 ‖ψ‖∞ , (11.13)

and

‖ curlA− β‖W1,p(Ω) ≤ C̃p
1 + κσ + κ2

κσ
‖ψ‖2 ‖ψ‖∞ . (11.14)

Remark 11.3.2.

• Using the W k,p-regularity of the curl-div system (Proposition D.2.5),
we obtain from (11.14) the estimate

‖A− F‖W2,p(Ω) ≤ D̃p
1 + κσ + κ2

κσ
‖ψ‖2 ‖ψ‖∞ . (11.15)

Hence, using the Sobolev embedding theorem,

‖A− F‖C1,α(Ω) ≤ D̂α
1 + κσ + κ2

κσ
‖ψ‖2 ‖ψ‖∞, (11.16)

for all α ∈ [0, 1[ .
• In the applications, σ is of the same order as κ , and so (11.16) gives that

(A− F) is uniformly bounded in C1,α(Ω) in this regime, for any α < 1 .

Proof of Theorem 11.3.1.
We use Lemma 11.2.2 with p1 = 1 , p2 = ∞ , and B = κσ . After inserting
(10.8a) and the results of Lemma 10.3.2, we find

∑
j,k

‖DjDkψ‖22 ≤ C
{(

1 + κ4 + (κσ)2
)‖ψ‖22 + κ3σ‖ψ‖22 ‖ curlA− β‖∞

}
.

(11.17)

Using a Sobolev inequality and the fact that

‖ψ‖2 ≤ |Ω| 12 ,

which is an immediate consequence of (11.10), this becomes, with a new con-
stant C and, for any ε ∈ ]0, 1] ,
∑
j,k

‖DjDkψ‖22

≤ C
{
ε−1
(
1 + κ4 + (κσ)2

)‖ψ‖22 + ε(κσ)2‖ curlA− β‖2W1,p

}
. (11.18)
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We now apply a Sobolev inequality and the (pointwise) diamagnetic inequality
(2.1)—with f = (−i∂xk

+ κσAk)ψ—to (10.27), in order to get

‖ curlA− β‖2W1,p(Ω) ≤
C′

(κσ)2
‖ψ‖2∞

(∑
j,k

‖DjDkψ‖22 + ‖pκσAψ‖22
)

≤ C′

(κσ)2
‖ψ‖2∞

∑
j,k

‖DjDkψ‖22 +
C ′

σ2
‖ψ‖2∞ ‖ψ‖22 ,

(11.19)

where the last inequality follows from (10.26).
Inserting (11.19) in (11.18) and choosing ε sufficiently small yields the

desired (11.12).
Once (11.12) is established, we get (11.14) from (11.19). Finally, (11.13)

follows from (11.14) and a Sobolev inequality. This finishes the proof of
Theorem 11.3.1. ��

11.3.2 The case of three dimensions

In three dimensions, the Ginzburg–Landau functional G3D is given in (10.11)
and the Ginzburg–Landau system is stated in (10.14). Recall that in this case
A belongs to Ḣ1

div,F as defined in (10.12). Also, the inequality (10.21) remains
true in the 3D case.

As we will see ahead, the fact that we do not have a boundary condition
for A will be both a simplification and a complication.

Theorem 11.3.3.
Let Ω ⊂ R

3 be a smooth, bounded domain and let β ∈ L∞(R3) be given. Then,
for all α < 1/2 and all 1 ≤ p ≤ 6 , there exist constants Cα , Cp such that for
all κ, σ > 0 and all solutions (ψ,A) ∈W 1,2(Ω)× Ḣ1

div,F to (10.14),

‖A− F‖W2,p(Ω) ≤ Cp
1 + κσ + κ2

κσ
‖ψ‖∞ ‖ψ‖2 , (11.20)

‖A− F‖C1,α(Ω) ≤ Cα
1 + κσ + κ2

κσ
‖ψ‖∞ ‖ψ‖2 . (11.21)

Proof.
By (10.36), Sobolev embeddings, the diamagnetic inequality, and (10.35), we
find for p ≤ 6 the estimate

‖A− F‖W2,p(Ω)

≤ C

(
1
σ
‖ψ‖∞ ‖ψ‖2 +

1
κσ
‖ψ‖∞

∥∥|pκσAψ|∥∥W1,2(Ω)

)

≤ C ′

⎛
⎝ 1
σ
‖ψ‖∞‖ψ‖2 +

1
κσ
‖ψ‖∞

∑
j,k

‖DjDkψ‖2
⎞
⎠ . (11.22)
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We will use (11.22) for p = 6 and the Sobolev inequality

‖ curlA− β‖∞ ≤ C ‖A− F‖W2,6(Ω) . (11.23)

We use Lemma 11.2.3 with p1 = 1 and p2 = +∞ , and find, by implementing
(10.14a), (10.21), (10.35), and (10.42),
∑
j,k

‖DjDkψ‖22 ≤ C′
{
(1 + (κσ)2 + κ4)‖ψ‖22 + κ3σ‖ curlA− β‖∞ ‖ψ‖22

}
.

So, using (11.10), we get, for all ε > 0 ,
∑
j,k

‖DjDkψ‖2 ≤ C
{

(1 + κσ + κ2 + ε−1κ2)‖ψ‖2 + εκσ‖ curlA− β‖∞
}
.

(11.24)

Choosing ε sufficiently small and inserting (11.10), (11.23), and (11.24) in
(11.22) with p = 6 , we get

‖A− F‖W2,6(Ω) ≤ C
1 + κ2 + κσ

κσ
‖ψ‖∞‖ψ‖2 . (11.25)

Now using Sobolev embeddings, we have proved Theorem 11.3.3. ��

11.4 Asymptotic Estimates in Two Dimensions

11.4.1 Nonexistence of solutions to certain partial differential
equations

We will use the notation F̃ for any vector potential on R
2 or on the half-space

R
2,+ := {(x1, x2) ∈ R

2
∣∣x1 > 0} satisfying curl F̃ = 1 .

From Section 4.2 we know that the natural self-adjoint extension of the
differential operator (−i∇+ F̃)2 on L2(R2) has spectrum

σ(−i∇+ F̃)2L2(R2) =
{
2j + 1, j ∈ N

}
.

We also consider the Neumann realization H of the same operator but
restricted to the half-space R

2,+ . That is the operator studied in Section 4.3,
where we found

inf σ(H) = Θ0 . (11.26)

In this section, we will consider the following partial differential equations, for
β0 > 0 :

(−i∇+ β0F̃)2ψ = λβ0ψ on R
2 , with λ < 1 , (11.27a)

(−i∇+ β0F̃)2ψ = λβ0(1− S2|ψ|2)ψ on R
2 , with 0 ≤ λ ≤ 1 , (11.27b)
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(−i∇+ β0F̃)2ψ = λβ0ψ on R
2
+ , with λ < Θ0 , (11.27c)

(−i∇+ β0F̃)2ψ = λβ0(1− S2|ψ|2)ψ on R
2
+ , with 0 ≤ λ ≤ Θ0 . (11.27d)

The last two equations, (11.27c), (11.27d), are considered with Neumann
boundary condition, i.e.,

ν · (−i∇+ β0F̃)ψ
∣∣
∂R

2
+

= 0 .

In order for this boundary condition to be well defined, we assume that

ψ ∈ H2
loc(R

2
+) .

Also, we assume that

• the parameter S ≥ 0 in (11.27b) verifies S �= 0 when λ = 1 ,
• the parameter S ≥ 0 in (11.27d) satisfies S �= 0 when λ = Θ0 .

The linear problems (11.27a), (11.27c) have no nontrivial solutions in L2 .
That follows directly from the definition of the spectrum. We will prove that
they do not have any nontrivial bounded solutions either.

Proposition 11.4.1.
Let (ψ, λ) be a solution to one of the equations (11.27a)–(11.27d) with λ in
the indicated interval and ψ being globally bounded. Then ψ = 0 .

Proof.
We only consider the cases on R

2
+ since the other statements follow by the

same arguments. Also, we can reduce to the case β0 = 1 by scaling.
Let H be the operator (−i∇+ F̃)2 with the Neumann boundary condition.

We will prove that a nonzero bounded solution to (11.27c) or (11.27d) will
provide a contradiction to (11.26) through the variational principle.

Let ψ ∈ L∞(R2
+) \ {0} be a solution to (11.27c). Define

〈x〉 =
√
x2 + 1 , (11.28)

and notice that |∇〈x〉| ≤ 1. Define, furthermore,

χR(x) = exp(−〈x〉/R) . (11.29)

Since ψ is bounded, we get that χRψ ∈ L2(R2,+) . We see that the Neumann
condition ν · (−i∇+ F̃)(χRψ)

∣∣
∂R

2
+

= 0 is satisfied. So, using (11.27c), (11.26),
and an integration by parts, we get

Θ0‖χRψ‖22 ≤ 〈χRψ |H(χRψ)〉
≤ λ‖χRψ‖22 +

1
R2

∫
R2,+

∣∣χR(x)
∣∣2 |ψ(x)|2 dx . (11.30)

Therefore,

(Θ0 − λ−R−2)‖χRψ‖22 ≤ 0 , (11.31)
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which for sufficiently large values of R implies that ψ = 0. This finishes the
proof for (11.27c).

We now prove the nonexistence of nontrivial bounded solutions to (11.27d).
Let ψ ∈ L∞(R2

+)\{0} be a solution to (11.27d) and let the rest of the notation
be as in the previous case. If λ = 0 or S = 0 , (11.27d) is the same as (11.27c),
and so we may assume that 0 < λ ≤ Θ0 and S > 0 . Furthermore, after
replacing ψ by Sψ , we may assume that S = 1 .

Integrating by parts, we obtain in analogy to (11.30)

Θ0‖χRψ‖22 ≤ 〈χRψ |H(χRψ)〉 ≤ λ‖χRψ‖22 − λ
∫

R2,+
χR(x)2|ψ(x)|4 dx

+
1
R2

∫
R2,+

|χR(x)|2 |ψ(x)|2 dx . (11.32)

Since λ ≤ Θ0 , this implies, using the Cauchy–Schwarz inequality, that

λ

∫
R2,+

χR(x)2|ψ(x)|4 dx ≤ R−2

{∫
R2,+

χR(x)2|ψ(x)|4 dx
∫
χ2
R(x) dx

}1/2

.

So

λ

∫
R2,+

χR(x)2|ψ(x)|4 dx ≤ R−4

∫
χ2
R(x) dx ≤ CR−2 . (11.33)

By taking the limit R→ +∞, this implies that ψ = 0. ��

11.4.2 Extraction of convergent subsequences

The nonexistence result of Proposition 11.4.1 will be combined with a com-
pactness result that states that under certain circumstances we can construct
bounded solutions to (11.27).

In this section, we will consider sequences of solutions to the Ginzburg–
Landau equations. In particular, we will consider sequences {An}n of vector
potentials. We stress that the vector potential A has components (A1, A2)
and similarly An = (An1 , A

n
2 ).

Lemma 11.4.2.
Suppose that the external magnetic field β belongs to C∞(Ω) . Suppose we are
given a sequence {(Pn, κn, σn)}n∈N ⊂ Ω× R

+ × R
+ , and let (ψn,An)κn,σn ∈

H1(Ω)×H1
div(Ω) be an associated sequence of solutions to (10.8) [with (κ, σ) =

(κn, σn) in the equation] with ψn �= 0 . Define Sn := ‖ψn‖∞ . Assume that
κn →∞ and that κn/σn → Λ ∈ R

+ .
Then there exist P ∈ Ω , S ∈ [0, 1] , f ∈ C , and β0 ∈ R such that—after

possibly extracting a subsequence—we have

Pn → P , Sn → S , ψn(Pn)→ f , curlAn(Pn)→ β0 , (11.34)

as n→∞ .
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Furthermore:
Case 1
If

√
κnσn dist(Pn, ∂Ω)→∞ , (11.35)

then there exist

• a function ϕ ∈ C∞(R2), satisfying |ϕ(0)| = |f |/S and ‖ϕ‖∞ ≤ 1,
• a linear vector potential F̃, with curl F̃ = 1 ,

such that

(−i∇+ β0F̃)2ϕ = Λ(1− S2|ϕ|2)ϕ in R
2 . (11.36)

Case 2
If there exists C > 0 such that

√
κnσn dist(Pn, ∂Ω) ≤ C , (11.37)

then there exist

• a function ϕ ∈ C∞(R2,+), satisfying ‖ϕ‖∞ ≤ 1 and |ϕ(0)| = |f |/S ,
• a linear vector potential F̃ with curl F̃ = 1 ,

such that

(−i∇+ β0F̃)2ϕ = Λ(1− S2|ϕ|2)ϕ in R
2,+

e2 · (−i∇+ β0F̃)ϕ = 0 on ∂R
2,+. (11.38)

Note that, up to extraction of a subsequence, we can always ensure that
case 1 or case 2 occurs.

Proof.
The proof of (11.34) is elementary since Ω is compact, |ψn(x)| ≤ 1 for all n
and x , and we use (11.16).

Since β is regular, we get from Corollary D.2.6 that also F ∈ C∞(Ω) .
Therefore, we can use (11.15), with A = An , to conclude that the sequence
{An}n is bounded in W 2,p(Ω) , for all p <∞ . By compactness of the inclusion
W 2,p(Ω) ↪→ W s,p(Ω) for s < 2 , we may further extract a convergent sub-
sequence (still denoted by An) in W s,p(Ω) . Furthermore, for a given α < 1 ,
we may choose p sufficiently big and s sufficiently close to 2 in order to have
the inclusion W s,p(Ω) ↪→ C1,α(Ω) . Thus, we get the existence of some A ∈
(∩α<1C

1,α(Ω)) ∩ (∩s<2,pW
s,p(Ω)) such that, for all α < 1 , s < 2 , and p > 1 ,

An → A in C1,α(Ω) ∩W s,p(Ω) .

We now identify the field generated by A . The inequality (10.28) holds for
An with a constant C independent of n (only depending on Ω). By passing
to the limit (using Proposition 10.3.1), we find that

curlA = β . (11.39)
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From here we split the proof into two parts, depending on whether we are in
case 1 or case 2.

Limiting equation for case 1.
Let us define, for any R > 0 the following functions on the disc D(0, R):

an(y) :=
√
κnσn

(
An

(
Pn +

y√
κnσn

)
−An(Pn)

)
,

ϕn(y) := S−1
n e−i

√
κnσnAn(Pn)·yψn

(
Pn +

y√
κnσn

)
.

Since we are in case 1, an , ϕn are defined on D(0, R) for all n sufficiently
large.

Let us introduce the linear function

F̄(y) :=
(
JacA(P )

)
y ,

with (JacA)jk = (∂xjAk) .
Since Pn → P and An → A in C1,α(Ω) , we find that

an → F̄ ,

in Cα
(
D(0, R)

)
for all R .

By (11.39), we obtain

curl F̄ = β0 in R
2 .

Thus, F̄ = β0F̃ , where

curl F̃ = 1 .

The equation for ψ in (10.8a) implies, since div an = 0 , that

−Δϕn − 2ian · ∇ϕn + |an|2ϕn =
κn
σn

(1− S2
n|ϕn|2)ϕn . (11.40)

Notice that (11.16) implies that for all α < 1 , ‖an‖Cα(D(0,R)) ≤ Cα(R) for
some Cα(R) > 0 . Also, we have ‖ϕn‖∞ ≤ 1 . Elliptic regularity (see Theo-
rem E.3.2) now implies, since {κn/σn} , {Sn} are bounded uniformly in n , the
existence of a constant C ′

α(R) > 0 such that

‖ϕn‖C1,α(D(0, 2R
3 ))

≤ C ′
α(R) .

Now applying Theorem E.3.1, we obtain

‖ϕn‖C2,α(D(0,R
2 ))
≤ C ′

α(R) .

Since the inclusion C2,α(D(0, R/2)) ↪→ C2,α′
(D(0, R/2)) is compact for

any α′ < α , we may, for any α < 1 , R ≥ 1 , extract a subsequence—denoted



11.4 Asymptotic Estimates in Two Dimensions 169

by {ϕRn }—having a limit in the C2,α(D(0, R/2)) topology. A “diagonal
sequence” argument now gives the existence of a subsequence {ϕ̃n} of the
original sequence {ϕn} and a ϕ ∈ C2,α(R2) such that

lim
n→∞ ‖ϕ̃n − ϕ‖C2,α(D(0,R))

= 0 ,

for all R > 0 . In particular,

|ϕ(0)| = lim
n→∞ |ϕ̃n(0)| = lim

n→∞
|ψn(Pn)|
Sn

=
|f |
S
.

Passing to the limit in (11.40) we obtain that ϕ satisfies (11.36). We can now
use elliptic regularity to obtain the additional (C∞(R2)) regularity of ϕ.

Limiting equation for case 2.
The idea in the second case is the same as before, but things are complicated
slightly by the presence of the boundary. We transform the equation into
boundary coordinates (s, t) in order to find a model on the half-plane.

The boundary coordinates are defined in Section F.1. We repeat some of
the definitions, since we will need to consider a sequence of centered coordinate
changes.

Since we are in case 2, P ∈ ∂Ω . Let Qn ∈ ∂Ω be the unique (for n
sufficiently large) boundary point such that |Pn − Qn| = dist(Pn, ∂Ω) . Let
O be a (sufficiently small) neighborhood of P , let γ : [−s0, s0] → ∂Ω be a
smooth parametrization of the boundary with γ(0) = P , |γ′(s)| = 1 , and let
ν(s) be the inward normal vector to ∂Ω at the point γ(s) . We may assume
that {γ′(s), ν(s)} is a positively oriented basis. Define the coordinate change

Φ : ]− s0, s0[×]0, t0[→ Ω ∩ O ,

by Φ(s, t) = γ(s) + tν(s) . For s0, t0,O sufficiently small, the map Φ is a
diffeomorphism.

Let γn be as γ above, but with γn(0) = Qn . We now define Φn to be the
same construction but with γ replaced by γn and s0 replaced by s0/2 . Since
Qn → P as n → ∞ , the image of Φn will contain Φ

(
] − s0/4, s0/4[×]0, t0[

)
when n is large.

Define

ψ̃n := ψn ◦ Φn , Ãn := (JacΦn)t(An ◦ Φn) ,

Jn := | det JacΦn| , Mn = {Mn
j,k} :=

[
(JacΦn)t(JacΦn)

]−1
.

Notice that Mn

∣∣
t=0

= Id and that the boundary condition ν · An

∣∣
∂Ω

= 0
implies that

e2 · Ãn

∣∣
t=0

= 0 ,

where e2 = (0, 1) .
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Implementing this change of variables in (10.8a) for ψn yields

J−1
n (−i∇+ κnσnÃn) ·

[
JnMn(−i∇+ κnσnÃn)ψ̃n

]
= κ2

n(1− |ψ̃n|2)ψ̃n ,
e2 · (−i∇+ κnσnÃn)ψ̃n

∣∣∣
t=0

= 0 .

Let us calculate curl Ãn . We use the geometric fact that ν′n(s) = −kn(s)γ′n(s) ,
where kn(s) is the curvature of the boundary at the point γn(s) . Then

Ãn = (Ãn1 , Ã
n
2 ) =

(
(1− tkn(s))γ′n(s) ·An(Φn(s, t)) , νn(s) ·An(Φn(s, t))

)
.

A direct calculation now yields

curl Ãn := ∂sÃ
n
2 − ∂tÃn1 = (1− tk(s))(curlAn)

∣∣
Φn(s,t)

. (11.41)

Define yn := Φ−1
n (Pn) and zn :=

√
κnσnyn . Since we are in case 2, {zn}

is bounded and we may assume that zn → z ∈ R
2,+ .

We proceed to rescale as before. Define, with ζ = (σ, τ) ,

an(ζ) :=
Ãn(ζ/

√
κnσn)− Ãn(0)

1/
√
κnσn

, jn(ζ) := Jn(ζ/
√
κnσn) ,

ϕn(ζ) := S−1
n e−i

√
κnσnÃn(0)·ζψn(ζ/

√
κnσn) , mn(ζ) := Mn(ζ/

√
κnσn) .

We denote the components of an,mn in the natural way, i.e., an = (an1 , a
n
2 ) ,

mn = {mn
j,k}2j,k=1 . Remember also the relations

mn

∣∣
τ=0

= Id , e2 · an
∣∣
τ=0

= 0 .

We get the resulting equation for the scaled function ϕn :

j−1
n (−i∇+ an) ·

[
jnmn(−i∇+ an)ϕn

]
=
κn
σn

(1 − S2
n|ϕn|2)ϕn , (11.42)

e2 · (−i∇+ an)ϕn
∣∣
τ=0

= 0 .

By (11.15), {An} is a bounded sequence in W 2,p(Ω) for all p < ∞ .
Therefore, {Ãn} is bounded in W 2,p(] − s0/4, s0/4[×]0, t0[) , and {an} is
bounded in W 1,p

(
D(0, R) ∩ R

2,+
)

for all R > 0 . Also, it is immediate that
the matrix mn is uniformly (in n) bounded in C1(D(0, R) ∩R2,+) for all
R > 0. We note for later use, that the bounds on {An} imply compactness
in W s,p

loc (]− s0/4, s0/4[×]0, t0[) for any s < 2. So we may extract a convergent
subsequence with limit A. It is now immediate from the definition that

an → DA(0) in W s,p
loc (R2), (11.43)

(for any s < 1) along the same subsequence. Notice that the limit is a linear
vector potential.

Ahead we will use the standard results on elliptic regularity recalled in
Chapter E on (11.42) to conclude that for all α < 1 ,
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{ϕn}n is bounded in C1,α
(
D(0, R) ∩ R

2,+
)

for all R > 0 . (11.44)

To prove (11.44), we rewrite the equation for ϕn as follows:

− div(mn∇ϕn) + bn · ∇ϕn + cnϕn = fn , (11.45)

with

fn :=
κn
σn

(1− S2
n|ϕn|2)ϕn + i

(∑
j,k

mn
j,k ∂ja

n
k

)
ϕn ,

and with the standard Neumann boundary condition e2 · ∇ϕn
∣∣
τ=0

= 0 .
Here {fn} is uniformly bounded in L∞(D(0, R) ∩ R

2,+
)

(for all R > 0)
since ‖ϕn‖∞ ≤ 1 , and the coefficients bn, cn are uniformly bounded in
W 1,p

(
D(0, R) ∩ R

2,+
)

for any p <∞ and hence in L∞(D(0, R) ∩R
2,+
)
.

In order to remove the boundary condition we extend by reflection.
We denote extended functions by a superscript tilde. These functions will be
defined by the fact that they are extensions of the original functions and that
they are even or odd under the symmetry (σ, τ) �→ (σ,−τ) . These symmetry
properties are as follows

ϕ̃n , m̃
n
1,1 , m̃

n
2,2 , b̃

n
1 , c̃n , f̃ are even,

m̃n
1,2 , m̃

n
2,1 , b̃

n
2 are odd.

Since mn

∣∣
τ=0

= Id , the matrix m̃n thus defined is uniformly Lipschitz con-
tinuous and ϕ̃n satisfies the extended version of (11.45) (with symbols having
a superscript tilde). Clearly, the boundedness properties of bn , cn imply that
b̃n, c̃n are bounded in L∞(D(0, R)) for all R . We can now apply the “interior”
estimate Theorem E.3.2, to this extended equation and conclude that, for all
α < 1 ,

‖ϕn‖C1,α(D(0,R)∩R2,+)
≤ ‖ϕ̃n‖C1,α(D(0,R))

(11.46)

≤ C
(‖ϕ̃n‖L∞(D(0,2R)) + ‖f̃n‖L∞(D(0,2R))

)
≤ C′(‖ϕn‖L∞(D(0,2R)∩R2,+) + ‖f‖L∞(D(0,2R)∩R2,+)

)
.

Using that ‖ϕn‖∞ ≤ 1 , we can control ‖fn‖L∞ by ‖ϕn‖L∞ . We have therefore
proven (11.44).

With (11.44) established, we can proceed essentially as in case 1. Let
α < 1 . A diagonal sequence argument, as for case 1, gives the existence of
ϕ ∈ C1,α(R2,+) with

ϕ(0) = |f |/S, ‖ϕ‖∞ ≤ 1 (11.47)
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such that (eventually after extraction of a subsequence)

lim
n→∞ ‖ϕn − ϕ‖C1,α

(
D(0,R)∩R2,+

) = 0 ,

for all R > 0 .
We now pass to the limit in (11.42) in the weak sense, i.e., we let u ∈

C1
0 (R2) be arbitrary and consider the equation obtained by integrating by

parts once in (11.42), namely
∫

[−i∇(j−1
n u) + an(j−1

n )] · jnmn[−i∇(ϕn) + an(ϕn)] dx

=
κn
σn

∫
(1− S2

n|ϕn|2)ϕnu dx. (11.48)

Upon passing to the limit, we obtain that
∫

(−i∇u+ β0F̃u) · (−i∇ϕ+ β0F̃ϕ) dx =
∫

Λ(1− S2|ϕ|2)ϕu dx. (11.49)

Also the Neumann boundary condition is obtained by taking the limit in
(11.42). In conclusion ϕ satisfies (11.38) in the weak sense. Here we used
(11.41) to conclude that the limiting linear vector field obtained in (11.43)—
which we denote by β0F̃—satisfies curl F̃ = 1 . We can now use elliptic regu-
larity to obtain additional regularity (C∞(R2,+)) of ϕ. ��

11.4.3 Asymptotic estimates

We will now combine the nonexistence result Proposition 11.4.1 with the
“compactness” result in Lemma 11.4.2 to obtain strong estimates on solu-
tions to the Ginzburg–Landau equations.

Actually, our first result, Proposition 11.4.4, only uses the extraction of
convergent subsequences from (the proof of) Lemma 11.4.2.

Remark 11.4.3.
Our results will be stated under the assumption that κ/σ has a positive lower
bound. Actually, when the magnetic field β is nonvanishing, it follows from
Theorem 10.4.1 that this assumption is automatically satisfied for nontrivial
solutions.

Proposition 11.4.4.
Suppose that β ∈ C∞(Ω) . Let 0 < λmin ≤ λmax . There exist constants
D0 , D1 such that if

κ ≥ D0, λmin ≤ κ/σ ≤ λmax,

then any solution (ψ,A) of (10.8) satisfies

‖pκσAψ‖C(Ω) ≤ D1

√
κσ‖ψ‖∞ , (11.50)
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‖ curlA− β‖C1(Ω) ≤
D1√
κσ
‖ψ‖2∞ , (11.51)

‖ curlA− β‖C2(Ω) ≤ D1 ‖ψ‖2∞ . (11.52)

Proof of Proposition 11.4.4.
Proof of (11.50). Suppose (11.50) is wrong. Then there exist a sequence
(ψn,An)κn,σn of solutions to (10.8) and a corresponding sequence of points
{Pn} ⊂ Ω such that

|pκnσnAnψn(Pn)|√
κnσn‖ψn‖∞ →∞ .

After extracting subsequences as in the proof of Lemma 11.4.2, we find (along
the converging subsequence)

lim
n→∞

|pκnσnAnψn(Pn)|√
κnσn‖ψn‖∞ = |(−i∇+ β0F̃)ϕ(z)| <∞ ,

where z = 0 in case 1 and z = limn→∞
√
κnσnΦ−1

n (Pn) in case 2. This yields
a contradiction, and so we conclude that (11.50) is correct.
Proof of (11.51). This inequality is a consequence of (11.50). Remember that

curl2 A := (∂x2 curlA , −∂x1 curlA) .

Thus, by the Ginzburg–Landau equation (10.8a) and (11.50),

‖∇(curlA− β)‖∞ = ‖ curl(curlA− β)‖∞
=

1
κσ
‖�{ψ pκσAψ}‖∞ ≤ C√

κσ
‖ψ‖2∞ . (11.53)

This is (11.51) for the derivatives.
Furthermore, since curlA− β = 0 on ∂Ω and Ω is bounded, we can inte-

grate (11.53) “from the boundary” and find

‖ curlA− β‖∞ ≤ C√
κσ
‖ψ‖2∞ .

This finishes the proof of (11.51).
Proof of (11.52). The proof of this inequality follows the same idea as the
proof of the pair of inequalities (11.50)–(11.51). One needs to take one extra
derivative and consequently prove the existence of C > 0 and κ0 > 0 such
that, for all κ ≥ κ0 ,

1
κσ
‖∇(ψ pκσAψ)‖∞ ≤ C‖ψ‖2∞ . (11.54)

As before, if (11.54) was wrong, there would exist a sequence (ψn,An)κn,σn

of solutions and a corresponding sequence of points {Pn} ⊂ Ω such that
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lim
n→+∞

|∇(ψn pκnσnAnψn)|(Pn)
κnσn‖ψn‖2∞

= +∞ .

After extracting subsequences, we find, following the proof of Lemma 11.4.2,
that

lim
n→+∞

|∇(ψnpκnσnAnψn)|(Pn)
κnσn‖ψn‖2∞

=
∣∣∣∇
(
ϕ(−i∇+ β0F̃)ϕ

)
(z)
∣∣∣ < +∞ .

This yields a contradiction. ��
Our next result shows that ψ must be “small” in the region that is not

“classically allowed”. We will discuss such results further in Chapter 12 using
other methods.

Proposition 11.4.5.
Let β ∈ C∞(Ω) be strictly positive and let 0 < Λmax < 1 be given. Define

AB := {x ∈ ∂Ω |Λmax ≥ Θ0β(x)}, AI := {x ∈ Ω |Λmax ≥ β(x)} .
Then there exist positive constants κ0 and C such that if (ψ,A)κ,σ is a solution
to (10.8) with ψ �= 0 , and

κ > κ0 , κ/σ ≤ Λmax ,

and P ∈ Ω is such that |ψ(P )| = ‖ψ‖∞ , then

dist(P,AB ∪AI) ≤ C√
κσ

.

Proof.
Suppose Proposition 11.4.5 is false. Then (with standard notation) there exists
a sequence (Pn, κn, σn, ψn,An) such that

κn →∞ , κn/σn ≤ Λmax,

|ψn(Pn)| = ‖ψn‖∞ ,
√
κnσn dist(Pn,AB ∪ AI) →∞ . (11.55)

We will also suppose that
√
κnσn dist(Pn, ∂Ω)→∞ , the contrary case being

treated analogously. By case 1 in Lemma 11.4.2, we find a continuous solution
ϕ ∈ L∞(R2) to (11.36) with |ϕ(0)| = 1 , Λ ≤ Λmax , and S ≤ 1 . By Propo-
sition 11.4.1 for the case (11.27b), applied with λ = Λmax/β0 and S ≤ 1 ,
we therefore have ϕ ≡ 0 , in contradiction to |ϕ(0)| = 1 . Thus, no such
sequence can exist and Proposition 11.4.5 is true. ��
Remark 11.4.6.
In the special case when β ≡ 1 and

Θ0 < Λmax < 1 ,

the result of Proposition 11.4.5 is that maxima of |ψ| are located within a
distance 1/

√
κσ of ∂Ω . In other words ψ is in some sense concentrated near

the boundary.
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The next result is of the same spirit.

Proposition 11.4.7.
Suppose that β ≡ 1 . Let g : R

+ → R
+ satisfy g(κ) → 0 as κ → ∞ . Then

there exists a function g̃ with g̃(κ) → 0 as κ→∞ such that if

κ(Θ−1
0 − g(κ)) ≤ σ ≤ κ(Θ−1

0 + g(κ)) , (11.56)

then any solution (ψ,A)κ,σ of (10.8) satisfies

‖ψ‖∞ ≤ g̃(κ) . (11.57)

In Section 13.4, we will give a more quantitative estimate valid in a smaller
parameter region.

Proof of Proposition 11.4.7.
The proof goes by contradiction. If Proposition 11.4.7 is false, then there exist
ε0 > 0 and a sequence {(ψn,An)κn,σn} of solutions to (10.8) such that

(Θ−1
0 − g(κn)) ≤ σn/κn ≤ (Θ−1

0 + g(κn)) ,

κn →∞ ,

and

‖ψn‖∞ ≥ ε0 .

Choose Pn ∈ Ω such that ‖ψn‖∞ = |ψn(Pn)| . We now proceed to extract
subsequences as described above. We may assume that either case 1 or case 2
is satisfied. In case 1, we find the limiting equation (11.36) with Λ = Θ0 and
S ≥ ε0 . Proposition 11.4.1 implies, since Θ0 ≤ 1 , that ϕ ≡ 0 . However, by
assumption,

|ϕ(0)| = lim
n→∞ |ϕ̃n(0)| = lim

n→∞
|ψn(Pn)|
‖ψn‖∞ = 1 . (11.58)

This is a contradiction, so we conclude that case 1 cannot occur.
Since case 1 cannot occur, we necessarily find that case 2 occurs. Thus,

the limiting equation becomes (11.38) with Λ = Θ0 , S ≥ ε0 . By Proposi-
tion 11.4.1, ϕ ≡ 0 , but

|ϕ(z)| = lim
n→∞ |ϕn(zn)| = lim

n→∞
|ψn(Pn)|
‖ψn‖∞ = 1 .

Thus, case 2 is also impossible, and we conclude that Proposition 11.4.7 is
satisfied. ��
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11.5 Asymptotic Estimates in Three Dimensions

In this section, we will carry out a similar analysis in the three-dimensional
situation. We will generally be rather brief when arguments are too similar to
the 2D case to warrant a repetition.

11.5.1 Nonexistence of solutions to certain partial differential
equations

Let β ∈ S
2 . We will use the notation F̃ for any vector potential on R

3 or on
the half-space R

3
+ such that curl F̃ = β .

The spectrum of the (Neumann) realizations of (−i∇ + F̃)2 on L2(R3)
or L2(R3,+) was determined in Chapter 6. In particular—in the half-space
case—it depends on the angle ϑ between β and the boundary.

Just like the case of dimension 2 we will consider the linear and nonlinear
equations

(−i∇+ F̃)2ψ = λψ on R
3, with λ < 1 , (11.59)

(−i∇+ F̃)2ψ = λ(1 − S2|ψ|2)ψ on R
3, with 0 ≤ λ ≤ 1 , (11.60)

(−i∇+ F̃)2ψ = λψ on R
3,+ , with λ < ς(ϑ) , (11.61)

(−i∇+ F̃)2ψ = λ(1 − S2|ψ|2)ψ on R
3,+, with 0 ≤ λ ≤ ς(ϑ) . (11.62)

Equations (11.61), (11.62) are considered with the Neumann boundary condi-
tion, i.e., ν ·(−i∇+F̃)ψ

∣∣
∂R3,+ = 0 , and we assume that ψ ∈ H2

loc(R
3,+) . Also,

we assume that the parameter S ≥ 0 in (11.60) verifies S �= 0 when λ = 1 ,
and similarly, the parameter S ≥ 0 in (11.62) satisfies S �= 0 when λ = ς(ϑ) .

Proposition 11.5.1.
Let (ψ, λ) be a solution to one of (11.59), (11.60), (11.61) or (11.62) with λ
in the indicated interval and ψ globally bounded. Then ψ = 0 .

The proof of Proposition 11.5.1 is identical to the 2D result (Proposi-
tion 11.4.1), and will be omitted.

11.5.2 Three-dimensional asymptotic estimates

The extraction of subsequences is essentially identical to the two-dimensional
case.

Lemma 11.5.2.
Suppose that the external magnetic field β belongs to C∞(R3) . Suppose we are
given a sequence {(Pn, κn, σn)}n∈N in Ω×R

+×R
+ , and let {(ψn,An)κn,σn} be

an associated sequence of solutions in H1(Ω)×Ḣ1
div,F to (10.14) with ψn �= 0 .

Define Sn := ‖ψn‖∞ . Assume that κn →∞ and that κn/σn → Λ ∈ R
+ .
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Then there exist P ∈ Ω , S ∈ [0, 1] , f ∈ C , and β0 ∈ R
3 such that—after

possibly extracting a subsequence—we have

Pn → P , Sn → S , ψn(Pn)→ f , curlAn(Pn)→ β0 , (11.63)

as n→∞ .
Furthermore:

Case 1
If

√
κnσn dist(Pn, ∂Ω)→∞ , (11.64)

then there exist a function ϕ ∈ C∞(R3) , with ‖ϕ‖∞ ≤ 1 and |ϕ(0)| = |f |/S
and a (linear) vector potential F̃ with curl F̃ = β0 , and such that

(−i∇+ F̃)2ϕ = Λ(1− S2|ϕ|2)ϕ in R
3 . (11.65)

Case 2
If there exists C > 0 such that

dist(Pn, ∂Ω) ≤ C√
κnσn

, (11.66)

then there exist a function ϕ ∈ C∞(R3,+) , with ‖ϕ‖∞ ≤ 1 and |ϕ(0)| = |f |/S
and a linear vector potential F̃ with curl F̃ = β0 , and such that

(−i∇+ F̃)2ϕ = Λ(1− S2|ϕ|2)ϕ in R
3,+ ,

e3 · (−i∇+ F̃)ϕ = 0 on ∂R
3,+. (11.67)

The analysis in the three-dimensional case is similar to the two-dimensional
one, and so we state only a representative result without proof.

Proposition 11.5.3.
Let β ∈ C∞(R3) satisfy

|β(x)| ≥ c > 0 ,

for all x ∈ Ω , and let Λmax ∈ ]0, 1[ be given. Define

AB := {x ∈ ∂Ω
∣∣Λmax ≥ ζ(ϑ(x))|β(x)|}, AI := {x ∈ Ω

∣∣Λmax ≥ |β(x)|} .
Then there exist positive constants κ0 and C > 0 such that if (ψ,A)κ,σ is a
solution to (10.14) with ψ �= 0 , and

κ > κ0 , κ/σ ≤ Λmax ,

and P ∈ Ω is such that |ψ(P )| = ‖ψ‖∞ , then

dist(P,AB ∪AI) ≤ C√
κσ

.
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11.6 Notes

1. The elliptic estimates are very useful and can be found in various publi-
cations (cf. [LuP3]–[LuP7], [HeP1], [Al2]–[Al4]) in the context of super-
conductivity.

2. In this chapter we have followed rather closely the review paper [FoH5]
with a few improvements and extensions.

3. Theorem 11.3.3 is inspired by [Pa3, Lemma 3.3].
4. Proposition 11.4.1 is reminiscent of [LuP3, Proposition 2.5]. Our proof is

based on an idea we learned from Almog.
5. Proposition 11.4.4 is a slightly improved version of [HeP1, Prop. 4.2] and

[Pa2, Lemma 7.1].
6. In the case of Schrödinger operators without magnetic fields, the strong

relation between the spectrum and the existence of generalized eigen-
functions is well known (Sch’nol’s theorem, see [Sch’n] or in [CyFKS,
Chapter 2]). Proposition 11.4.1 can be seen as a generalization of that
result.

7. Formula (11.3) appears in [LuP4] with an additional boundary term. Here
we show that this boundary term vanishes in the case of the magnetic
Neumann condition.

8. Note 1 to Chapter 9 also relates to the present chapter. In particular,
Proposition 11.5.3 is a mathematical proof of some of the phenomena
discussed in [S-JST] and quoted in the note.

9. Clearly, one can obtain many more results in 3 dimensions—both the
direct generalization of the 2D case and real 3D cases where the angle of
the magnetic field with the boundary comes into play. Some results in this
direction are given in [Pa3, Pa6].
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Decay Estimates

12.1 Introduction

In this chapter, which will mainly concentrate on the 2D case, we will discuss
the decay of ψ away from the boundary. Suppose for the purpose of this
discussion that β = 1 , i.e., that the magnetic field is constant. We have seen
that—for the linear problem—eigenfunctions corresponding to low eigenvalues
are concentrated near the boundary. As will be discussed below, this result
carries over to solutions of the nonlinear Ginzburg–Landau equations. Propo-
sition 11.4.5 can also be seen as such a result. There are various techniques
to establish rigorous and precise versions of this statement, and the objective
of this chapter is to discuss some of these approaches.

For purposes of understanding, the reader may consider the case of con-
stant magnetic field only. However, we will allow general magnetic fields (with
regularity Cα for some α > 0), satisfying the assumption introduced in (8.26).
For the facility of the reader, we recall here the assumption

b > Θ0b
′, (12.1)

with
b = inf

x∈Ω
β(x) , b′ = inf

x∈∂Ω
β(x) . (12.2)

We study solutions to the two-dimensional Ginzburg–Landau equations (10.8)
or sometimes their three-dimensional version (10.14).

In Section 12.2, we will use the magnetic Agmon technique from Chapter 8
combined with the elliptic estimates from Chapter 11 to obtain exponential
decay estimates for the 2D problem and for magnetic field strengths satisfying,
for some δ > 0 ,

bσ

κ
> 1− δ .

Since the proof of the elliptic estimates in Chapter 11 is somewhat
involved, we also give another self-contained proof of the Agmon estimates in

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_12,  
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Section 12.5. This approach has the advantage of being directly applicable to
domains with limited regularity. In this section, we also treat the 3D problem.

The rest of the chapter is mainly concerned with pushing the lower limit
of validity of the decay estimates downward toward HC2(κ), i.e., to

bσ ≈ κ .

We concentrate for simplicity on the 2D situation. In Section 12.3, we give a
new proof of (an improved version of) an estimate by Almog:∫

Ω

|ψ(x)|4 dx ≤ C/κ . (12.3)

For large fields, this follows from the Agmon estimates, but the estimate is
valid for all σ above κ/b (and slightly below—see Theorem 12.3.1 for the
precise statement). We also recall the original proof in Section 12.6. That
original proof is very interesting but very different from the techniques gene-
rally used in this book.

The advantage of (12.3) is the large range of validity. The disadvantage is
the lack of decay rate. However, it can be used as input to an Agmon estimate
with κ, σ in an extended parameter regime. That is Theorem 12.4.1, which is
our best decay estimate.

We end this introduction by recalling some inequalities for solutions to
(10.8) that will be used repeatedly all through the chapter. By Lemma 10.3.2
combined with Proposition 10.3.1, we find

‖pκσAψ‖2 ≤ κ ‖ψ‖2 , (12.4)

‖ψ‖24 ≤ ‖ψ‖2 , (12.5)

and

σ‖ curlA− β‖2 ≤ C0 ‖ψ‖∞‖ψ‖2 ≤ C0 ‖ψ‖2 . (12.6)

We also recall the notation used throughout the text

t(x) := dist(x, ∂Ω) .

12.2 Nonlinear Agmon Estimates

The important technique of Agmon estimates can also give exponential locali-
zation to the boundary for nonlinear problems. This is an adaptation of the
technique for linear problems—as introduced in previous chapters and more
specifically in Section 8.2.3—to the nonlinear Ginzburg–Landau equations.
Notice that in the equation for ψ in (10.8), the nonlinearity has a specific
sign. We can express that equation as

−ΔN
κσAψ + V (ψ)ψ = κ2ψ , (12.7)
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where V (ψ) is the potential

x �→ V (ψ)(x) := κ2|ψ(x)|2 ≥ 0 . (12.8)

The positivity of the potential allows us to discard this nonlinear term in the
analysis and thus to argue exactly as for the linear case. Of course, when |ψ|
is not small—which is expected for bσ near κ—it will be rather expensive to
omit the nonlinear term, which explains why the Agmon estimates are not
optimal in that region.

We consider first the case of general magnetic fields β and smooth
domains Ω . Here we use the elliptic estimates from Chapter 11. Notice that
in that chapter we used in particular the regularity of the curl-div system in
Sobolev spaces W k,p (see Appendix D). That is, though standard, a rather
heavy theorem. It therefore seems appropriate to also derive the Agmon
estimates more directly using simpler arguments. We give such an argument
in Section 12.3.

Theorem 12.2.1 (Agmon estimates).
Suppose that Ω ⊂ R

2 is bounded and simply connected with smooth boundary.
Suppose that β ∈ C∞ (Ω) . Then, for all c0 ∈ ]0, b[ and all α <

√
c0 , there

exist κ0 > 0 and C > 0 such that if

σ(b− c0) > κ , κ ≥ κ0 ,

then ∫
Ω

e2α
√
κσt(x)

{
|ψ(x)|2 +

1
κσ
|pκσAψ(x)|2

}
dx

≤ C

∫
{√κσt(x)≤1}

|ψ(x)|2 dx , (12.9)

for all solutions (ψ,A)κ,σ to the Ginzburg–Landau equations (10.8).

Notice that Corollary 12.5.5 is an interesting consequence of these decay
estimates.

Remark 12.2.2.
The reader may have noticed that we do not impose an assumption like (12.1)
in the above theorem. However, if such a condition is not imposed, one risks
that the theorem is empty in the sense that the only solution to (10.8) with
κ < bσ is the trivial solution (0,F) . This will essentially follow from the
analysis of the critical field HC3(κ) in Chapter 13.

Remark 12.2.3.
Coming back to the second equation of the Ginzburg–Landau system (10.8a),
we can deduce the following estimate in the two-dimensional case from (12.9):∫

Ω

e2α
√
κσt(x) |∇(curlA− β)| dx ≤ C√

κσ

∫
Ω

|ψ(x)|2 dx . (12.10)

By integration from the boundary, we also get an estimate for curlA− β .
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Proof of Theorem 12.2.1.
Let χ ∈ C∞(Ω) have compact support in Ω . First using (1.32) and (10.9a),
we obtain

κσ

∫
Ω

curlA |χψ|2 dx ≤
∫

Ω

|pκσA(χψ)|2 dx

=
∫

Ω

|∇χ|2|ψ|2 + κ2|χψ|2(1− |ψ|2) dx . (12.11)

We will now deduce from (12.11) the existence of C > 0 such that

κσ
(
b− C√

κσ

)∫
Ω

|χψ|2 dx ≤
∫

Ω

|∇χ|2|ψ|2 + κ2|χψ|2(1 − |ψ|2) dx . (12.12)

This will result from the control of
∫
Ω
| curlA − β||χψ|2 dx . Here we simply

use (11.51) in order to get∫
Ω

| curlA− β||χψ|2 dx ≤ C√
κσ
‖χψ‖2 .

We will discard the negative term −κ2
∫ |χψ|2|ψ|2 in (12.12) and finally obtain

κσ
(
b− C√

κσ

)∫
Ω

|χψ|2 dx ≤
∫

Ω

(|∇χ|2|ψ|2 + κ2|χψ|2) dx . (12.13)

We make the following choice of function χ . Let f ∈ C∞(R) , with

f ≡ 1 on [1,∞[ , f ≡ 0 on ]−∞, 1
2
] , (12.14)

and define

χ(x) := eα
√
κσt(x)f(

√
κσt(x)) .

Note that, for any ε > 0 , we can find C(ε) s.t.

|∇χ|2 ≤ (1 + ε)α2κσχ2 + C(ε)κσe2α
√
κσt(x)|f ′(

√
κσt(x))|2 .

Therefore, (12.13) becomes, using the support properties of f and f ′ ,(
b− κ

σ
− C1

1√
κσ
− α2(1 + ε)

)∫
{√κσt(x)≥ 1

2}
e2α

√
κσt(x)|ψ(x)|2 dx

≤ C ′(ε)
∫
{√κσt(x)≤1}

|ψ(x)|2 dx . (12.15)

Clearly, (12.15) implies the bound on ‖eα
√
κσtψ‖22 in (12.9), upon taking ε

sufficiently small that

b− κ

σ
− α2(1 + ε) > 0 .

The estimate on ‖eα√κσtpκσψ‖22 follows by inserting the bound on ‖eα√κσtψ‖22
in (12.13). ��
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12.3 Weak Decay Estimates

In this section, we will consider both the two- and three-dimensional cases.
If d = 3 , we will suppose that the external magnetic field β is constant of unit
length. After possibly performing a fixed rotation of the coordinates, we may
assume that β = (0, 0, 1) . In the two-dimensional case, we work with general
external fields as before.

In this section, we establish “weak” decay estimates. In the proof of these
estimates, we do not use Proposition 11.4.4. Thus, the estimates are valid
under very general assumptions. The estimates are weak in the sense that no
decay rate is given. However, they have the strong advantages of being valid

1. for domains with limited regularity,
2. even when σ ≈ κ , i.e., all the way down to the critical field called HC2(κ) .

The results in this section will later be used to give a second proof of Agmon-
type estimates.

We start with a calculation similar to (12.13) but without using (11.51).
Let f ∈ C∞(R) be a standard nondecreasing cutoff function, as in (12.14).

Let λ > 0 and define χλ : Ω → R by

χλ(x) := f(t(x)/λ) .

Then χλ is a Lipschitz function and suppχλ ⊂ Ω .
Arguing as in (12.11)–(12.13) but using a simple Cauchy–Schwarz inequa-

lity instead of invoking (11.51), we find

κσb‖χλψ‖22 − κσ‖ curlA− β‖2‖χλψ‖24

≤
∫

Ω

|∇χλ|2|ψ|2 + κ2|χλψ|2(1− |ψ|2) dx . (12.16)

Here we used for the 3D situation that the magnetic field is constant (actually
constant direction would suffice), in order to avoid an additional error term
in the first inequality in (12.11).

Using (12.6)—notice that (12.6) remains valid in 3D by (10.37)—we get
from (12.16)

κ(bσ − κ)‖χλψ‖22

≤ C0κ‖ψ‖2‖χλψ‖24 − κ2

∫
Ω

χ2
λ|ψ|4 dx+ ‖f ′‖2∞λ−2

∫
{t(x)≤λ}

|ψ(x)|2 dx

≤ C2
0

2
‖ψ‖22 −

κ2

2

∫
Ω

χ2
λ|ψ|4 dx

+ ‖f ′‖2∞λ−2

∫
{t(x)≤λ}

|ψ(x)|2 dx+
κ2

2

∫
Ω

(χ4
λ − χ2

λ)|ψ|4 dx .
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Notice that since χλ ≤ 1 , the last integral is negative and we thus find by
dividing the integral ‖ψ‖22 in two:{(

bσ

κ
− 1
)
− C2

0

2κ2

}
‖χλψ‖22 +

1
2

∫
Ω

|ψ|4 dx ≤ C2
0

2κ2

∫
Ω

(1− χ2
λ)|ψ|2 dx

+
‖f ′‖2∞
κ2λ2

∫
{t(x)≤λ}

|ψ(x)|2 dx +
1
2

∫
{t(x)≤λ}

|ψ(x)|4 dx . (12.17)

Thus, {(
bσ

κ
− 1
)
− C2

0

2κ2

}
‖χλψ‖22 +

1
2

∫
Ω

|ψ|4 dx

≤
(‖f ′‖2∞
κ2λ2

+
C2

0

2κ2
+

1
2

)∫
{t(x)≤λ}

|ψ(x)|2 dx . (12.18)

Here C0 remains the constant from (12.6). This is the basic inequality.

Theorem 12.3.1 (L4-estimate).
Let Ω ⊂ R

d , with d = 2 or 3, be a bounded, smooth, or polygonal domain.
If d = 2, let β be a continuous magnetic field with b > 0 . If d = 3, we suppose
that β ∈ S

2 is constant. Then there exists κ0 > 0 and for all C > 0 , there
exists a C′ > 0 such that if (ψ,A)κ,σ is a solution to (10.8) with κ > κ0 and

bσ

κ
≥ 1− Cκ−1/2 , (12.19)

then

‖ψ‖44 ≤ C′
{
κ−1 for bσ < κ ,

‖ψ‖2∞ κ−1 for bσ ≥ κ .
(12.20)

Using the Hölder inequality, we obtain an L2 bound:

Corollary 12.3.2.
Under the assumptions of Theorem 12.3.1, we have

‖ψ‖2 ≤ cκ−1/4 . (12.21)

Proof of Theorem 12.3.1.
We take λ = κ−1 in (12.18). Since there exists a constant Ĉ1 > 0 (depending
only on Ω) such that

meas{x : t(x) ≤ λ} ≤ Ĉ1λ ,

for all λ ∈]0, 2] , the right side of (12.18) clearly satisfies the correct bound.
Assumption (12.19) implies that{(

bσ

κ
− 1
)
− δ

2κ2

}
‖χλψ‖22 ≥ −

C ′′
√
κ
‖ψ‖22 ≥ −

C ′′√|Ω|√
κ

‖ψ‖24 .

If bσ ≥ κ , we can discard the positive term ( bσκ − 1)‖χλψ‖22 on the left side
in (12.18). ��
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12.4 Nonlinear Agmon Estimates II

Using Theorem 12.3.1, we can improve the Agmon estimates. In the proof we
use (11.50), and so Theorem 12.4.1 is dependent on Chapter 11. Hence, the
domain Ω has to satisfy the strong regularity assumptions of that chapter; in
particular, Theorem 12.4.1 does not apply to domains with corners.

Theorem 12.4.1.
Suppose that Ω ⊂ R

2 is bounded and simply connected with smooth boundary.
Suppose that β ∈ C∞ (Ω) and let δ > 0. Then there exist α,C > 0 and κ0 > 0
such that if

σb > κ+ κ−
1
4 +δ , κ ≥ κ0 ,

then
∫

Ω

e2α
√
κ(bσ−κ)t(x)

{
|ψ(x)|2 +

1
κσ
|pκσAψ(x)|2

}
dx

≤ C

∫
{
√
κ(bσ−κ)t(x)≤1}

|ψ(x)|2 dx , (12.22)

for all solutions (ψ,A)κ,σ to the Ginzburg–Landau equations (10.8).

Proof.
We follow the proof of Theorem 12.2.1, but we will estimate | curlA− β| in a
different manner. Choose η > 0 sufficiently small that

5 + 2η
4 + 2η

>
5
4
− δ

2
. (12.23)

By the Sobolev inequality and (10.27), we have

‖ curlA− β‖∞ ≤ C‖ curlA− β‖W1,2+η ≤ C′

κσ
‖ψ‖∞ ‖pκσAψ‖2+η

≤ C′

κσ
‖ψ‖∞ ‖pκσAψ‖2/(2+η)2 ‖pκσAψ‖η/(2+η)∞ . (12.24)

The norm ‖pκσAψ‖∞ is controlled by (11.50) and the norm ‖pκσAψ‖2 by
(12.4), so we get (with new constants C and C ′)

‖ curlA− β‖∞ ≤ C

κσ
(κ‖ψ‖2)2/(2+η)(κσ)η/(4+2η)

≤ C′κ−(5+2η)/(4+2η) , (12.25)

where we used (12.21) to get the last estimate. Therefore, by the choice of η,
(12.13) becomes

κσ(b − C ′κ−
5
4+ δ

2 )
∫

Ω

|χψ|2 dx ≤
∫

Ω

(|∇χ|2|ψ|2 + κ2|χψ|2) dx . (12.26)
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We now modify the definition of the function χ to be

χ(x) = eα
√
κ(bσ−κ)t(x)f(

√
κ(bσ − κ)t(x)). (12.27)

The rest of the proof is identical to that of Theorem 12.2.1 and will be omitted.
��

12.5 Nonlinear Agmon Estimates III

In this section, we will use the weak decay estimates to obtain Agmon-type
exponential decay estimates for solutions to the Ginzburg–Landau equations.
We first need the following energy estimate for functions located away from
the boundary.

Lemma 12.5.1.
Let Ω ⊂ R

d , with d = 2 or d = 3, be a bounded, smooth, or polygonal domain
and let β be a continuous magnetic field with b > 0 . If d = 3, we assume that
β ∈ S

2 is constant. There exists a universal constant C(Ω) such that if (ψ,A)
is a solution to (10.8) or (10.14), then, for all φ ∈ C∞

0 (Ω) , we have

‖(−i∇+ κσA)φ‖22 ≥ κbσ
(
1− C(Ω)

√
κ

bσ
‖ψ‖2

)
‖φ‖22 . (12.28)

Proof.
In the 2D case, we proceed as follows. We estimate, for φ ∈ C∞

0 (Ω) , using
Lemma 1.4.1,

‖pκσAφ‖22 ≥ κσ

∫
Ω

(curlA) |φ|2 dx

≥ κσb‖φ‖22 − κσ‖ curlA− β‖2‖φ‖24 . (12.29)

By the Sobolev inequality, for φ ∈ C∞
0 (R2) , and scaling, we get the existence

of a a universal constant CSob such that, for all η > 0 ,

‖φ‖24 ≤ CSob

(
η
∥∥∇|φ|∥∥2

2
+η−1‖φ‖22

)
≤ CSob

(
η
∥∥pκσAφ∥∥2

2
+η−1‖φ‖22

)
, (12.30)

where we used the diamagnetic inequality to get the second estimate.
Combining (12.29), (12.6), and (12.30) and choosing η =

√
1/κσb , we find:(

1 + CSob

√
κ

bσ
‖ψ‖2

)
‖pκσAφ‖22 ≥ κσb

(
1− CSob

√
κ

bσ
‖ψ‖2

)
‖φ‖22 .

(12.31)

Thus (12.28) follows from (12.31).
In the 3D case, the scaling behavior is different so we choose different

exponents. First of all, in (12.29) we use the Hölder inequality instead of the
Cauchy–Schwarz inequality to get

‖pκσAφ‖22 ≥ κσb‖φ‖22 − κσ‖ curlA− β‖3‖φ‖23 . (12.32)
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Now the 3-norm scales correctly in 3D, and we get

‖φ‖23 ≤ CSob

(
η
∥∥pκσAφ∥∥22 + η−1‖φ‖22

)
. (12.33)

We can combine (10.35) and (10.36) of Lemma 10.3.3 to get

‖ curlA− β‖L3(Ω) ≤ C‖ curlA− β‖W1,2(Ω) ≤ Ĉσ−1‖ψ‖2 . (12.34)

Combining these estimates, we get (12.31) as in the 2D case.
This finishes the proof of Lemma 12.5.1. ��

Remark 12.5.2.
It is clear from the proof that the estimate of Lemma 12.5.1 is not optimal.
In particular, we have made a simple and convenient choice of exponents in
the Hölder inequalities instead of striving for optimality.

In particular, using the estimate on ‖ψ‖2 from Corollary 12.3.2, we find

Lemma 12.5.3.
Let Ω ⊂ R

d , with d = 2 or d = 3, be a bounded, smooth, or polygonal domain
and let β be a continuous magnetic field with b > 0 . If d = 3, we assume that
β ∈ S

2 is constant. There exists a constant C′ such that if bσ > κ and (ψ,A)
is a solution to (10.8) or (10.14), then for all φ ∈ C∞

0 (Ω) , we have

‖(−i∇+ κσA)φ‖22 ≥ κbσ

(
1− C′

4
√
κ

)
‖φ‖22 . (12.35)

By standard arguments, Lemma 12.5.3 implies Agmon estimates in the in-
terior, i.e., the conclusion of Theorem 12.2.1. We restate the theorem including
also the 3D case.

Theorem 12.5.4.
Let Ω ⊂ R

d , with d = 2 or d = 3, be a bounded, smooth or polygonal domain
and let β be a continuous magnetic field with b > 0 . If d = 3, we assume
that β ∈ S

2 is constant. Then, for all c0 ∈ ]0, b[ and all α <
√
c0 , there exist

κ0 > 0 and C > 0 such that if

σ(b− c0) > κ , κ ≥ κ0 ,

then the Agmon estimate (12.9) holds for all solutions (ψ,A)κ,σ to the
Ginzburg–Landau equations (10.8) or (10.14).

Proof.
We proceed as in the proof of Theorem 12.2.1 but using Lemma 12.5.3.
Applying that lemma instead of (11.51), the left-hand side of (12.13) is
replaced by

κσb

(
1− C ′

1
4
√
κ

)
‖χψ‖22 .
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Following the proof, we see that the only difference is that the lower-order
factor C1/

√
κσ in (12.15) is replaced by C′

1/
4
√
κ , which is of still lower order.

��
Corollary 12.5.5.
Let the assumptions of Theorem 12.5.4 be satisfied. Then, for any p ≥ 2 , there
exists a constant Cp > 0 such that

‖ψ‖2 ≤ Cp(κσ)−
p−2
4p ‖ψ‖p . (12.36)

In particular, we have

‖ψ‖2 ≤ C∞(κσ)−
1
4 ‖ψ‖∞ ≤ C∞(κσ)−

1
4 . (12.37)

Proof.
Applying the Hölder inequality to (12.9), we get

‖ψ‖2 ≤ C

{∫
{√κσt(x)≤1}

dx

} 1
q

‖ψ‖p ,

with 1
q

+ 1
p

= 1
2

. Estimating

∫
{√κσt(x)≤1}

dx ≤ C′
√
κσ

yields the result. ��

12.6 Almog’s L4 Bound

We will now prove a generalization of Almog’s estimate (12.3), which in
the original version only considered the case of constant magnetic field β .
Of course, this estimate is essentially the same as Theorem 12.3.1, but the
method of proof is very different. An important ingredient is the implemen-
tation of the elliptic estimates from Proposition 11.4.4.

Theorem 12.6.1.
Suppose that Ω ⊂ R

2 is smooth and bounded, let β ∈ C∞(Ω) with b > 0 , and
let Λ > b be given. Then there exist positive constants κ0 and C such that if
(ψ,A) is a solution to (10.8) and

κ ≥ κ0 , κ ≤ bσ ≤ Λκ ,

then ∫
Ω

|ψ(x)|4 dx ≤ C

κ
‖ψ‖2∞ ≤ C

κ
. (12.38)
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Remark 12.6.2.
We can actually extend the argument to bσ ≥ κ−O(

√
κ) , thereby obtaining

the same range of validity as for Theorem 12.3.1.

Proof.
We will, as usual, work in the gauge where A ∈ H1

div(Ω) is defined in (10.5).
Define

h := − curlA + β and u := κσh+
1
2
|ψ|2 .

An explicit, though tedious, calculation using (10.8) yields an equation for u .
One can verify that [see (10.23), with a different “u”]

κσΔh = κσ|ψ|2 curlA− 2�[∂x1ψ(i∂x2ψ)
]− 2κσ�[ψ(A1∂x2ψ −A2∂x1ψ)

]
,

(12.39)
and

1
2
Δ|ψ|2 = −κ2(1−|ψ|2)|ψ|2+|∇ψ|2+κ2σ2A2|ψ|2+2κσA·�(ψ∇ψ) . (12.40)

Therefore, with

Ĵ := (∂x1ψ − i∂x2ψ) + iκσ(A1 − iA2)ψ ,

we find

Δu = |ψ|2(κσ curlA− κ2) + κ2|ψ|4 + |Ĵ |2 . (12.41)

Integrating (12.41) over Ω yields

κ2

∫
Ω

|ψ(x)|4 dx+
∫

Ω

|ψ(x)|2(κσ curlA− κ2) dx ≤
∫

Ω

Δu(x) dx

=
∫
∂Ω

ν · ∇u dσ(x) = −κσ
∫
∂Ω

ν · ∇(curlA− β) dσ(x)

≤ C
√
κσ‖ψ‖2∞ , (12.42)

where we have used that ψ satisfies the Neumann condition (remember that
A · ν = 0 on the boundary) and the last inequality follows from the elliptic
estimate (11.51).

Now using the property that the parameters satisfy bσ ≥ κ combined with
(11.51) gives

|ψ|2 (σ curlA− κ) ≥ −C|ψ|2 .
Therefore, (12.42) combined with Proposition 10.3.1 and the boundedness of
Ω implies (12.38). ��



190 12 Decay Estimates

12.7 Power Law Decay Above HC2(κ)

Theorem 12.7.1.
Let Ω ⊂ R

2 be bounded and have smooth boundary. Let β ∈ C∞(Ω) satisfy
b > 0 . Then there exist positive constants C0 and C1 such that if

bσ ≥ κ+ C0 ,

and (ψ,A)κ,σ is a solution of (10.8), then∫
Ω

(κt(x))4|ψ(x)|4 + (κt(x))2
{
|ψ(x)|2 + κ−2|pκσAψ|2

}
dx ≤ C1 . (12.43)

Proof of Theorem 12.7.1.
We start by proving the L4 bound inherent in (12.43). Upon multiplying
(10.8a) by (κt)4ψ and integrating over Ω , we get, after an integration by
parts, ∫

Ω

|pκσA(κ2t2ψ)|2 dx−
∫

Ω

∣∣∇(κ2t2)
∣∣2 |ψ|2 dx

= κ2

∫
Ω

(κt)4|ψ|2 dx− κ2

∫
Ω

(κt)4|ψ|4 dx . (12.44)

Now, since t2ψ vanishes on ∂Ω , we can estimate, using (11.51),∫
Ω

|pκσA(κ2t2ψ)|2 dx ≥ κσ

∫
Ω

(curlA) |κ2t2ψ|2 dx

≥ κσ(b− C/√κσ)‖κ2t2ψ‖22 . (12.45)

If the constant C0 in Theorem 12.7.1 is sufficiently large, we have

κσ(b − C/√κσ) ≥ κ2

and therefore obtain the estimate

κ2

∫
Ω

(κt)4|ψ|4 dx ≤
∫

Ω

∣∣∇(κ2t2)
∣∣2 |ψ|2 dx ≤ 4κ2

∫
Ω

(κt)2|ψ|2 dx . (12.46)

We proceed by applying the Hölder inequality and find

‖κtψ‖24 ≤ 4
√
|Ω| . (12.47)

This is the desired L4-estimate.
The L2-estimate in (12.43) follows from the L4-estimate and Hölder’s

inequality.
Upon multiplying (10.8a) by (κt)2ψ instead of (κt)4ψ , we get the following

modification of (12.44):∫
Ω

|pκσA(κtψ)|2 dx+ κ2

∫
Ω

(κt)2|ψ|4 dx

=
∫

Ω

∣∣∇(κt)
∣∣2 |ψ|2 dx+ κ2

∫
Ω

(κt)2|ψ|2 dx . (12.48)
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Using the L2 bound deduced from the L4 bound from (12.47) and the
L∞ bound of ψ , we can estimate the two terms on the r.h.s. of (12.48) and
arrive (after division by κ2) at∫

Ω

|pκσA(tψ)|2 dx ≤ C . (12.49)

The desired estimate, ∫
Ω

t2|pκσAψ|2 dx ≤ C ,

follows from (12.49) and the L∞ bound of ψ . ��
As a corollary to the proof above, we get the following estimate.

Corollary 12.7.2.
Let Ω ⊂ R

2 be bounded, simply connected and have smooth boundary, and let
β ∈ C∞(Ω) satisfy b > 0 . Then there exist positive constants C0 and C1 such
that if

bσ ≥ κ+ C0 ,

then, for all p ∈ [2,∞[ , ∫
Ω

|ψ(x)|p dx ≤ C1

κ
. (12.50)

Proof of Corollary 12.7.2.
By Proposition 10.3.1, it suffices to consider the case p = 2 . Using (12.48)
and a spectral estimate similar to (12.45), we find∫

Ω

(κt(x))2|ψ(x)|4 dx ≤ C‖ψ‖22 . (12.51)

We now calculate/estimate as follows:

‖ψ‖22 =
∫
{t≤κ−1}

|ψ(x)|2 dx+
∫
{t≥κ−1}

(κt(x)|ψ(x)|2)(κt(x))−1 dx

≤ Cκ−1 +

√∫
Ω

κ2t(x)2|ψ(x)|4 dx×
√∫

{t≥κ−1}
(κt(x))−2 dx . (12.52)

Combining (12.51) with the inequality
∫
{t≥κ−1}(κt(x))

−2 dx ≤ C κ−1 (12.52)
implies that

‖ψ‖22 ≤ C ′κ−1 + C ′‖ψ‖2κ−1/2 ,

or equivalently,
‖ψ‖22 ≤ C ′′κ−1 .

��
Clearly, Almog’s L4-estimate (12.3), which can be extended to p ≥ 4 , is

contained in Corollary 12.7.2 but for a slightly reduced parameter regime.
We also see from Corollary 12.7.2 that (12.21) is not optimal.
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12.8 Notes

1. We refer to (and follow) [HeM3, HeP1, FoH3] for implementations of the
Agmon estimates in the present context.

2. The “weak decay estimates” obtained in Theorem 12.3.1 first appeared in
[BonF] in a somewhat weaker L2 version. More precisely, it is shown that
there exists a C > 0 such that if (ψ,A)κ,σ is a solution to (10.8) with

κ(bσ − κ) ≥ 1 ,

then

‖ψ‖22 ≤ C

∫
{
√
κ(bσ−κ) t(x)≤1}

|ψ(x)|2 dx ≤ C ′√
κ(bσ − κ)

. (12.53)

3. In this chapter, we restrict in the 3D case to constant magnetic field β .
That restriction permits us to directly use the lower bound PDF ≥ |β|
[by (1.32)]. Similar results can, however, be obtained for more general
magnetic fields but with a bit more work, since for a variable magnetic
field one can obtain a generalization of the above lower bound but with
an error term. For details and applications, see [HeM5].

4. The Agmon estimates give L2-exponential decay of ψ and its derivative
when bσ/κ ≥ 1 + ε . By Sobolev inequalities and using the Ginzburg–
Landau equation, this implies that ψ is exponentially small in the L∞ sense
away from a narrow boundary region.
When bσ ≤ κ , the L∞ norm is no longer small in the interior of Ω .
This follows from L4-estimates by [SaS2]. These have been strengthened
to L∞-estimates in a recent work (see [FoH7], in answer to a conjecture
of Aftalion–Serfaty [AfS]—appearing in a less formalized way in [SaS2]).
So we have, for any δ > 0 , a constant Cδ such that

|ψ(x)| ≤ Cδ

(
1− σb

κ

)

when dist(x, ∂Ω) ≥ δ .
Actually, one can even get estimates away from a κ-dependent neighbor-
hood of the boundary; see [SaS2, FoH7] for the precise statement (see also
[FoK2] for more precise results in the region where bσ ≈ κ).

5. The Agmon estimate of Theorem 12.4.1 was inspired by a suggestion of
the referee of the present book.

6. The bound in Theorem 12.7.1 is inspired by the somewhat overlooked
result [Pa2, Theorem 4.1].
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On the Third Critical Field HC3

Using the spectral asymptotics of the Neumann Laplacian with magnetic field,
we give precise estimates on the critical field HC3 , describing the onset of
superconductivity in type II superconductors. Furthermore, we prove that
the definitions of this field corresponding to local minimizers and global mini-
mizers coincide.

13.1 Critical Fields and Spectral Theory

13.1.1 Critical fields

It follows from Theorem 10.4.1 that, for fixed κ and sufficiently large σ , the
only minimizer (or—more generally—stationary point) of Gκ,σ is the normal
state (0,F) . This corresponds to the observation in physics that a large mag-
netic field breaks the superconductivity of a given material. An important
question in the literature has been to define and calculate the critical field
where this transition takes place.

The first definition, which was proposed by Lu–Pan is

HC3(κ) := inf{σ > 0 : (0,F) is the unique minimizer of Gκ,σ} .
At this point one should be careful because a priori one cannot be sure that
the transition from ψ nonvanishing to ψ ≡ 0 takes place at a unique value
of σ—there could be a region of transitions back and forth. Thus, one should
define upper and lower critical fields by

HC3
(κ) = inf{σ > 0 : (0,F) is a minimizer of Gκ,σ} , (13.1)

HC3(κ) = inf{σ > 0 : (0,F) is the unique
minimizer of Gκ,σ′ for all σ′ > σ} . (13.2)

Recall that we have fixed the choice of gauge by our choice of variational space.
If one releases this constraint, we would have to replace “unique” by “unique
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194 13 On the Third Critical Field HC3

up to change of gauge” in the preceding definition. Note that in (13.1) the
word “unique” is not present but appears in the definition of HC3(κ) . This is
because we want HC3

(κ) to be as small as possible and HC3(κ) to be as large
as possible. By Theorem 10.4.1, we have

HC3(κ) ≤ Cmax(κ, 1) ,

and clearly

HC3
(κ) ≤ HC3(κ) ≤ HC3(κ) . (13.3)

The aim of this chapter is to prove that these different definitions coincide
for large κ and that actually they also coincide with similarly defined local
fields. The local fields are easier to calculate, and we will therefore be able to
give good asymptotic expansions of HC3(κ) once we have established that the
local and global definitions coincide.

The main point is to investigate the strong connections between the critical
field HC3(κ) and the smallest magnetic Neumann eigenvalue λN1 (κσA) . One
first observes the following elementary lemma:

Lemma 13.1.1.

• If λN1 (κσF) < κ2 , then Gκ,σ has a nontrivial minimizer, with energy
strictly less than the energy of the normal solution.

• If Gκ,σ has a nontrivial minimizer (ψ,A) , then λN1 (κσA) < κ2 .

Proof.
Notice that the normal state (0,F) has energy

Gκ,σ(0,F) = 0 . (13.4)

For the first statement, it is easy to see that if u1 is a normalized eigenfunction
associated with λN1 (κσF) and if we consider the couple (μu1,F) , then we get
a negative energy for |μ| �= 0 , small enough. We indeed have

Gκ,σ(μu1,F) = |μ|2(λN1 (κσF) − κ2) +
κ2|μ|4

2
‖u1‖44 .

For the second statement, we observe that if the minimizer satisfies ψ �= 0 ,
then

0 ≥ Gκ,σ(ψ,A) > ‖pκσAψ‖22 − κ2‖ψ‖22 ,
which implies, using the variational characterization of the ground state
energy, that λN1 (κσA) < κ2 . ��

The previous proof also gives an upper bound to the infimum of the
Ginzburg–Landau functional (ψ,A) �→ G(ψ,A) . Optimizing with respect to
μ in the proof of the previous lemma indeed gives

inf
ψ,A

Gκ,σ(ψ,A) ≤ − (λN1 (κσF)− κ2)2

2κ2
∫ |u1(x)|4 dx . (13.5)
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We will see in Section 13.5 that this upper bound is rather optimal when
λN1 (κσF) is a simple eigenvalue, sufficiently far from the second one.

Remark 13.1.2.
Using the first Ginzburg–Landau equation, a minimizer (ψ,A) satisfies (12.7)
and (12.8). If one shows by a priori estimates that A is near F and that
ψ is small in L∞ in the asymptotic regime considered here (such properties
were reviewed in Chapter 11), it is not too surprising to think that the analysis
presented in the first part of the book of the behavior of the ground state energy
of p2

BF as B → ∞ will still be valid for the order parameter ψ corresponding
to the minimizer (ψ,A) .

The discussion around Lemma 13.1.1 naturally leads to the following
questions:

• Does the equation in σ ,

λ1(κσ) = κ2 ,

have a unique solution (for κ large enough)?
Here and in the rest of this section, we will use the notation

λ1(B) = λN1 (BF,Ω)

for the lowest eigenvalue of the Neumann realization of the magnetic
Laplacian in Ω , H(B) = PNBF,Ω (Ω ⊂ R

d , d = 2, 3).
• Is this unique solution the critical field HC3(κ)?

Theorem 8.5.1 gives an affirmative answer to the first question in the case
when β = curlF is constant—see also some other cases treated in Section 8.6
and see Theorem 9.5.1 for a three-dimensional result.

In order to analyze the second question in some generality, let us define
the following subsets of the positive real axis:

N (κ) := {σ > 0
∣∣Gκ,σ has a nontrivial minimizer} , (13.6)

N loc(κ) := {σ > 0
∣∣λ1(κσ) < κ2} , (13.7)

N sc(κ) := {σ > 0
∣∣ The Ginzburg–Landau equations

have nontrivial solutions} . (13.8)

Recall that the functional G is defined by (10.1), (10.2) and that the Ginzburg–
Landau equations are (10.8) in 2D and (10.14) in 3D.

We define local fields and generalized fields by

H
loc

C3
(κ) := sup N loc(κ) , H loc

C3
(κ) := inf R

+ \ N loc(κ) ,

H
sc

C3
(κ) := sup N sc(κ) , Hsc

C3
(κ) := inf R

+ \ N sc(κ) .
(13.9)

The global fields—defined in (13.1) and (13.2)—obviously have similar rela-
tions to the set N (κ) . Also, one easily verifies by calculating the Hessian of
the functional that the local fields are determined by the values where the
normal solution (0,F) is a not unstable local minimum of Gκ,σ .
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13.1.2 Main results

Our main result (combining Theorems 13.1.3 and 13.1.4) below is that all
the critical fields above are contained in the interval [H loc

C3
(κ), H

loc

C3
(κ)] when

κ is large. More precisely (see Proposition 13.1.7), the sets N (κ), N loc(κ),
and N sc(κ) coincide for large values of κ . The proof we give is identical for
the two- and three-dimensional situations. For simplicity, as elsewhere in this
book, we restrict in the 3D case to a constant magnetic field.

We first observe the following general inequalities.

Theorem 13.1.3.
Let Ω ⊂ R

d , with d = 2 or d = 3, be a bounded, simply connected domain with
smooth boundary. The following general relations hold between the different
definitions of HC3 :

H loc
C3

(κ) ≤ HC3
(κ) , (13.10)

H
loc

C3
(κ) ≤ HC3(κ) . (13.11)

For large values of κ , we have a converse statement to (13.11).

Theorem 13.1.4.
Let Ω ⊂ R

d , with d = 2 or d = 3 , be a bounded, simply connected domain
with smooth boundary. If d = 2 , suppose that the external magnetic field β
satisfies

0 < Θ0b
′ < b . (13.12)

If d = 3 , we suppose that β ∈ S
2 is constant.

Then there exists κ0 > 0 such that for κ ≥ κ0 ,

H
loc

C3
(κ) = HC3(κ) . (13.13)

Furthermore, if the function B �→ λ1(BF) is strictly increasing for large
B , then all the critical fields coincide for large κ and are given by the unique
solution H to the equation

λ1(κH) = κ2 . (13.14)

Remark 13.1.5.
One may ask what happens when σ = HC3(κ) . Are there nontrivial minimizers
of Gκ,σ for that value of σ? Consider for simplicity the case where B �→ λ1(B)
is strictly increasing for large B . At σ = HC3(κ) we have λ1(κσ) = κ2 , and we
therefore conclude from (13.26) that Δ vanishes, which implies that ψ = 0 .
Thus, no nontrivial minimizer (or more generally no nontrivial stationary
point) can exist at the critical value. A more quantitative version of this result
is given in Proposition 13.4.1, in which ‖ψ‖∞ is estimated in terms of the
quantity κ2 − λ1(κσ) .
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13.1.3 Proofs

Theorem 13.1.3 follows from the following easy lemma whose proof is left to
the reader.

Lemma 13.1.6.
We have the following inclusions for all values of κ :

N loc(κ) ⊆ N (κ) ⊆ N sc(κ) .

The remainder of this section will be devoted to the proof of the converse
inclusion for large values of κ (see Proposition 13.1.7). Clearly, this implies
the proof of Theorem 13.1.4.

Proposition 13.1.7.
Let Ω ⊂ R

d , d = 2 or 3 , be smooth, bounded, and simply connected.
If d = 2 , suppose that the external magnetic field β satisfies (13.12). If d = 3 ,
we suppose that the magnetic field β ∈ S

2 is constant. Then there exists κ0 > 0
such that

N sc(κ) = N (κ) = N loc(κ),

for all κ ≥ κ0 .

Proof.
Using Lemma 13.1.6, it only remains to prove the inclusion

N sc(κ) ⊆ N loc(κ) .

Suppose that (ψ,A) is a solution of (10.8) or (10.14) with ψ �= 0 . From
Theorem 10.4.1, we get that

σ ≤ Cκ . (13.15)

Using Theorem 8.1.1 in the 2D case and Theorem 9.1.1 in the 3D case (notice
that in this case b′ = b = 1), we see that, for any ε > 0 , there exists κε > 0
such that, if κ ≥ κε ,

[
0,
(

1
Θ0b′

− ε
)
κ

]
⊂ N loc(κ) . (13.16)

So it suffices to consider σ satisfying, for some c > 0 and some arbitrary ε > 0 ,

c ≤ κ

σ
≤ Θ0b

′ + ε . (13.17)

In particular, we may take ε such that Θ0b
′ + ε < b . Let us define

Δ := κ2‖ψ‖22 − ‖pκσAψ‖22 . (13.18)
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Multiplying the first equation in (10.8), respectively (10.14), by ψ and inte-
grating over Ω , we first obtain

κ2‖ψ‖44 = Δ , (13.19)

and the nontriviality of (ψ,A) implies the inequality

0 < κ2‖ψ‖44 = Δ . (13.20)

Combining (13.27), (13.28) ahead with (13.20) yields

(κσ)2‖A− F‖2L4(Ω) ≤ C
Δ

(κσ)
1
4
. (13.21)

We now estimate, for arbitrary η > 0 ,

−Δ = ‖pκσAψ‖22 − κ2‖ψ‖22
≥ (1− η)‖pκσFψ‖22 − κ2‖ψ‖22 − η−1(κσ)2 ‖A− F‖2L4(Ω) ‖ψ‖24 . (13.22)

Thus, using (13.28), (13.20), and (13.21), we obtain

−Δ ≥ (λ1(κσF)−κ2)‖ψ‖22−ηCλ1(κσF)
Δ

1
2

κ(κσ)
1
4
−η−1C

Δ
3
2

κ(κσ)
1
4
. (13.23)

It clearly follows from Theorem 8.1.1, respectively Theorem 9.1.1 in three
dimensions, that there exists a C > 0 such that

λ1(κσF) ≤ Cσκ (13.24)

if σκ ≥ 1 .
Thus, we can choose η =

√
Δ/κσ and find that (13.23) gives the existence

of κ0 and C such that, for κ ≥ κ0 ,

0 ≥ −Δ ≥ (λ1(κσF)− κ2)‖ψ‖22 − C
(κσ)

1
4

κ
Δ . (13.25)

Using (13.15), we find that, for sufficiently large κ ,

0 < (1− Cκ− 1
2 )Δ ≤ [κ2 − λ1(κσF)]‖ψ‖22 . (13.26)

Thus, since ψ �= 0 , we conclude that λ1(κσF) < κ2 , which is what we needed
to prove. ��
Proposition 13.1.8.
Suppose that Ω ⊂ R

d , d = 2 or 3 , is smooth, simply connected, and bounded.
Suppose that β satisfies (13.12) if d = 2 and that β ∈ S

2 is constant if d = 3 .
Then there exists a C1 > 0 such that

‖A− F‖L4(Ω) ≤ C1

σ
‖ψ‖4‖ψ‖2 , (13.27)

for all solutions (ψ,A) to the Ginzburg–Landau equations.
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Furthermore, if ε is sufficiently small, then there exist κ0 > 0 and C2 > 0
such that if

κ ≤ (Θ0b
′ + ε)σ ,

then

‖ψ‖22 ≤
C2

(κσ)
1
4
‖ψ‖24 , (13.28)

when κ ≥ κ0 and for all solutions (ψ,A) to the Ginzburg–Landau equations.

Proof.
Corollary 12.5.5 with p = 4 yields (13.28) for d = 2 or 3 . For d = 2 , we use
(10.28), (D.7), and a Sobolev inequality to get (13.27). The estimate (13.27)
in 3D is a consequence of (10.37) and Proposition D.3.2. ��

13.2 Asymptotics of the Critical Field in 2D

A central question in the mathematical treatment of type II superconductors
is to establish the asymptotic behavior of HC3(κ) for large values of κ . We see
from Theorem 13.1.4 that this asymptotic behavior can be read directly from
the asymptotics of λ1(B) . In particular, we get, using Theorem 8.1.1.

Theorem 13.2.1.
Suppose that Ω ⊂ R

2 , β satisfy the assumptions of Theorem 13.1.4. Then

HC3(κ) =
κ

Θ0b′
+ o(κ) .

The case of a constant magnetic field has been the focus of much attention
in the literature. In that case, we see from Theorem 8.5.1 combined with
Theorem 13.1.4 that the critical fields coincide and we get the following
asymptotics, using Theorem 8.3.2.

Theorem 13.2.2.
Suppose that β = 1 and that Ω ⊂ R

2 is bounded, smooth, and simply connected.
Then

HC3(κ) =
κ

Θ0
+
C1
Θ

3
2
0

kmax +O(κ−
1
3 ) . (13.29)

Remark 13.2.3.
As mentioned in Remark 8.3.6, the error bound in Theorem 8.3.2 is not
optimal. If one uses the optimal error bound O(B1/4) , (13.29) improves to

HC3(κ) =
κ

Θ0
+
C1
Θ

3
2
0

kmax +O(κ−
1
2 ) . (13.30)
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Of course, one can also use the more precise eigenvalue asymptotics for
special geometries as in Theorem 8.4.1 or in Corollary 5.4.2 to give better
estimates on HC3(κ) in the corresponding cases. We leave the details to the
reader.

13.3 Asymptotics of the Critical Field in 3D

It should be noted from Chapter 9 that obtaining precise spectral asymptotics
is technically much more involved in 3D than in 2D. In particular, we have
at present no three-dimensional analog of Theorem 8.5.1. Thus, we do not in
general know that the interval [H loc

C3
(κ), H

loc

C3
(κ)] collapses to a point for large

values of κ , even when β is constant.
As in 2D, Theorem 13.1.4 reduces the nonlinear question of the asympto-

tics ofHC3 (whatever the definition) to the simpler linear question of asympto-
tics of λ1(B) . For example, we can use the asymptotics (9.18) under certain
geometric assumptions on Ω . Combining this result with Theorem 13.1.4, one
gets a two-term asymptotics for HC3(κ):

Theorem 13.3.1.
Suppose Ω is a smooth, bounded, simply connected domain in R

3 satisfying
Assumption 9.2.1. Then

HC3(κ)−
( κ

Θ0
− γ̂0Θ

− 5
3

0 κ
1
3

)
= o(κ

1
3 ) , (13.31)

where HC3(κ) denotes any of the six different (upper or lower) critical fields
defined above and the geometric constant γ̂0 was defined in (9.19).

The proof of Theorem 13.3.1 is immediate. By Theorems 13.1.3 and 13.1.4,
it suffices to prove that H loc

C3
(κ) and H

loc

C3
(κ) have the asymptotics given

by (13.31). But this follows easily from the asymptotics of λ1(B) given in
Theorem 9.2.2.

Theorem 13.1.4 together with the monotonicity result established in
Theorem 9.5.1 gives

Corollary 13.3.2.
Suppose that Ω satisfies Assumption 9.2.1. Then there exists a κ0 > 0 such
that for κ ∈ [κ0 , ∞[ , one has

H loc
C3

(κ) = HC3
(κ) = Hsc

C3
(κ) = H

loc

C3
(κ) = HC3(κ) = H

sc

C3
(κ) . (13.32)

13.4 Amplitude Near the Onset

In this section, we restrict for simplicity to two-dimensional domains. From
Proposition 10.3.1, we know that minimizers (ψ,A) of the Ginzburg–Landau
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functional satisfy the estimate ‖ψ‖L∞ ≤ 1 independently of the values of κ, σ .
Furthermore, the elliptic estimate of Proposition 11.4.7 tells us that, in the
case of a constant magnetic field,

‖ψ‖∞ = o(1) ,

for large κ when σ is near HC3(κ) . Here we will give more precise estimates
on the magnitude of ‖ψ‖∞ .

Proposition 13.4.1.
Let Ω ⊂ R

2 be a bounded, simply connected domain with smooth boundary.
Suppose that the magnetic field β satisfies

0 < Θ0b
′ < b .

Then, for all ε > 0 and ε′ > 0 , there exist constants C and κ0 such that if
(ψ,A) is a nontrivial solution to (10.8) with

κ

σ
≤ b− ε′ , κ ≥ κ0 ,

then

‖ψ‖L∞(Ω) ≤ C κ−
1
2 +ε
√
κ2 − λ1(κσF) . (13.33)

Remark 13.4.2.
The estimate (13.33) can also be expressed in terms of the distance to the
critical field, i.e., |HC3(κ)− σ| . Suppose that Ω and β are such that1

C0 := lim sup
B→∞

|λ′1(BF)| <∞ .

Then, using Theorem 13.1.4 (and a continuity argument), we can write (for
large values of κ)

κ2 − λ1(κσF) =
∫ κHC3 (κ)

κσ

λ′1(BF) dB ≤ (C0 + 1)κ |HC3(κ)− σ| .

Therefore, the estimate (13.33) becomes,

‖ψ‖L∞(Ω) ≤ Cε κ
ε
√
|HC3(κ)− σ| , ∀ε > 0 . (13.34)

Let (ψ,A) be a solution to (10.8). We will define a “nonlinear spectral
distance” δψ by

δψ :=
κ2‖ψ‖22 − ‖pκσAψ‖22

‖ψ‖22
. (13.35)

1 In general, the derivative λ′
1(BF) will not exist for all B . So one should

rather replace λ′
1(BF) by the maximum of the left- and right-hand derivatives

max(|λ′
1,−(BF)|, |λ′

1,+(BF)|) . For simplicity, we omit this point in the discussion.
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With the parameter Δ from the proof of Proposition 13.1.7, we have

δψ =
Δ
‖ψ‖22

.

Hence, from (13.19), we obtain that δψ > 0 if ψ �= 0 .
The proposition will be a consequence of the following lemma.

Lemma 13.4.3.
Under the assumptions of Proposition 13.4.1, for all ε1 > 0 , ε2 > 0 , and
ε′ > 0 such that ε1 ≤ 1 + ε2 , there exist constants C and κ0 > 0 such that if
(ψ,A) is a nontrivial solution to (10.8), with

κ

σ
≤ b− ε′, κ ≥ κ0 ,

then

λ ≤ Cδ
1
2
ψκ

ε1+ε2μ1+ε1 , (13.36)

where λ = ‖ψ‖∞ and μ is defined by λμ = ‖ψ‖2 .

Proof of Lemma 13.4.3.
We recall from (10.26) and (13.19) the estimates

‖pκσAψ‖22 ≤ κ2‖ψ‖22 , ‖ψ‖44 =
δψ
κ2
‖ψ‖22 . (13.37)

Furthermore, from Proposition 11.4.4 we get the inequality

‖pκσAψ‖∞ ≤ C
√
κσ‖ψ‖∞ . (13.38)

By the Sobolev inequality and using interpolation theory, we get that, for all
(p, s) satisfying ps > 2 and 0 < s ≤ 1 , there exist constants Ĉ and C such
that

λ ≤ Ĉ ‖|ψ|‖W s,p ≤ C ‖ψ‖1−sp ‖∇|ψ|‖sp + C ‖ψ‖p .
We then use the diamagnetic and Hölder inequalities on the right-hand side:

λ ≤ C‖ψ‖1−sp ‖pκσAψ‖sp + Cλμ
2
p .

Using Corollary 12.5.5, with p = ∞ , we get

μ ≤ Cκ−
1
2 . (13.39)

So for κ large enough, we obtain

λ ≤ C‖ψ‖1−sp ‖pκσAψ‖sp .
We now apply the Hölder inequality for each term on the right-hand side:

λ ≤ C
{
λp−4‖ψ‖44

} 1−s
p

{
‖pκσAψ‖p−2

∞ ‖pκσAψ‖22
} s

p

.
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We use (13.37) and (13.38) to get

λ ≤ C

(
λp−2μ2 δψ

κ2

) 1−s
p

(λpκpμ2)
s
p = Cλ1−2 1−s

p δ
1−s

p

ψ μ
2
pκs−2 1−s

p . (13.40)

This implies that

λ ≤ Cδ
1
2
ψ μ

1
1−sκ

ps
2(1−s)−1 . (13.41)

Write 1/(1− s) = 1 + ε1 and ps = 2 + 2ε2/(1 + ε1) . Then we find (13.33). ��
Proof of Proposition 13.4.1.
The estimate (13.26) implies that

δψ ≤ 2(κ2 − λ1(κσF)) , (13.42)

for large κ . Thus, (13.33) follows from (13.36) with ε1 = ε and ε2 = ε/2 ,
(13.42), and (13.39). ��
Remark 13.4.4.
If (ψ,A) is a global nontrivial minimizer, we have

0 > G(ψ,A) ≥ −Δ
2

= −κ
2

2
‖ψ‖44 = −1

2
Δ2

κ2‖ψ‖44
.

Using (13.26), this finally gives

G(ψ,A) ≥ −1
2
(1 + Cκ−

1
4 )

[κ2 − λ1(κσF)]2‖ψ‖42
κ2‖ψ‖44

. (13.43)

It is interesting to compare this with (13.5).
If we indeed are able to prove in some case that ψ/‖ψ‖2 is close to u1 for

σ sufficiently close to HC3(κ) , we will get an estimate of the energy of the
minimizer.

For this last point, we could try to use ψ as a quasimode for ΔκσA or
ΔκσF together with a lower bound of λ2(κσF)−λ1(κσF) , which we have, for
example, in the case when β is constant and when the curvature has a unique
nondegenerate maximum at the boundary. This will be developed in the next
section.

13.5 Energy Near the Onset

Near HC3 we have σ ≈ κ/Θ0 , in particular,

C−1κ ≤ σ ≤ Cκ ,
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for some constant C > 0 . We take the assumptions of Theorem 8.4.1, and so
we have

λ2(κσ) − λ1(κσ) ≈ κ
1
2 . (13.44)

Recall the notation u1 = u1,B for a normalized ground state of the Neumann
realization PNBF,Ω . Our aim is to prove

Proposition 13.5.1.
Under the assumptions of Theorem 8.4.1, there exists a function g(α) on
[0, α0] such that

lim
α→0

g(α) = 0

and such that if
κ2 − ακ 1

2 ≤ λ1(κσF ) ≤ κ2 , (13.45)

then we have

inf G(ψ,A) = −(1 + g(α))(1 + Cκ−
1
4 )

[κ2 − λ1(κσF)]2

2κ2‖u1,κσ‖44
. (13.46)

Remark 13.5.2.
Under these assumptions (see Theorem 8.4.1), the strength σ satisfies for some
α̂0 and for α small enough

λ1(κσF) ≤ κ2 ≤ λ2(κσF) − α̂0κ
1
2 . (13.47)

Remark 13.5.3.
Condition (13.45) can also be written in the form

0 ≤ HC3(κ)− σ ≤ α

C
κ−

1
2 . (13.48)

Proof.
What remains to be proven is the lower bound. The upper bound was indeed
obtained in (13.5). According to (13.43), it is enough to show that the L4

norm of ψ/‖ψ‖2 tends to the L4 norm of u1 as α→ 0 (we actually only need
an asymptotic lower bound by the L4 norm of u1).

Let us assume that we have proven the two following lemmas under the
assumptions of the proposition.

Lemma 13.5.4.
There exists c(α, σ, κ) ∈ C such that |c(α, σ, κ)| = 1 and

∥∥∥∥ ψ

‖ψ‖2 − c(α, σ, κ)u1

∥∥∥∥
2

= o(1) , (13.49)

uniformly with respect to the other parameters as α→ 0 .

Lemma 13.5.5.

‖u1‖44 ≈ κ
5
4 and ‖u1‖66 ≈ κ

5
2 . (13.50)
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Using the elementary inequality

|b|4 ≥ |a|4 − 4|b− a||a|3 ,
for real numbers a, b , we get for any pair of functions v , w in L6(Ω) ,∫

Ω

|v|4dx ≥
∫

Ω

|w|4dx− 4‖v − w‖2‖w‖36 . (13.51)

Applying this inequality with v = ψ/‖ψ‖2 and w = cu1 , and Lemmas 13.5.4
and 13.5.5, yields∫

Ω

(ψ/‖ψ‖2)4 dx ≥
∫

Ω

|u1|4 dx− o(1)κ
5
4 = (1 − o(1))

∫
Ω

|u1|4 dx , (13.52)

as α→ 0 .
So the proof of the proposition is achieved modulo the proofs of the two

lemmas. ��
Proof of Lemma 13.5.4.
We come back to (13.22) but replace (13.23) with

−Δ ≥ (1− η)‖pκσFψ‖22 − κ2‖ψ‖22 − η−1C
Δ

3
2

κ(κσ)
1
4
. (13.53)

We now choose η = βκ−3/2 . This leads to

−Δ ≥ (1− η) (‖pκσFψ‖22 − κ2‖ψ‖22
)− βκ 1

2 ‖ψ‖22 −Δ
(
Cβ−1Δ

1
2

)
, (13.54)

with β to be chosen suitably.
We need at this stage an upper bound for Δ . Using (13.26) and the upper

bound of ‖ψ‖22 obtained in Corollary 12.7.2, we find, using our assumption,

Δ ≤ C
(
κ2 − λ1(κσF )

)2
κ−1 ≤ Cα2 . (13.55)

So we can take β = α1/2 and finally obtain

0 ≥ −Δ(1−O(α
1
2 )) ≥ (‖pκσFψ‖22 − κ2‖ψ‖22

)− C√ακ 1
2 ‖ψ‖22 , (13.56)

which implies
‖pκσFψ‖22 ≤ (κ2 + C

√
ακ

1
2 ))‖ψ‖2 . (13.57)

This should be interpreted as the fact that ψ/‖ψ‖ is a quasimode for −ΔκσF .
This is indeed the case if the quantity

(κ2 + C
√
ακ

1
2 − λ1(κσF))κ−

1
2

is small. The smallness of that quantity is assured by our assumption and by
(13.45). Hence, by abstract analysis, we obtain the existence of c such that
|c| = 1 and

∥∥∥ ψ

‖ψ‖2 − cu1

∥∥∥2 ≤ 2

(
κ2 + C

√
ακ

1
2 − λ1(κσF)

)
λ2(κσF) − λ1(κσF)

≤ Ĉ
√
α . (13.58)

��
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Proof of Lemma 13.5.5.
This is a consequence of the WKB approximation of the ground state of
the linear model and as such part of the proof of Theorem 8.4.1 given in
[FoH2]. In boundary coordinates and near the maximum of the curvature,
this approximation takes the following form (see (2.2) in [FoH2]),

u1 ∼ (κσ)
5
16χ(s, t) exp iξ0(κσ)

1
4 s ×G((κσ)

1
16 s) u0((κσ)

1
4 t) , (13.59)

where G is a Gaussian, χ is a cutoff function at the point of maximal curvature
(s, t) = 0 , and u0 = ϕξ0 was introduced in (3.37). This leads to

‖u1‖44 ≈ (κσ)
5
8 and ‖u1‖66 ≈ (κσ)

5
4 ,

and observing that σ ≈ κ , we have proven the lemma. ��
Remark 13.5.6.
This proof also gives the following approximation of ‖ψ‖2:

‖ψ‖2 = (1 + ε(α) +O(κ−
1
4 ))

1
κ

1
‖u1‖24

(
κ2 − λ1(κσF)

) 1
2 , (13.60)

with limα→0 ε(α) = 0 .
Using the asymptotic behavior of the right-hand side together with (13.50),

we get
‖ψ‖2 ≈ κ−

13
8
(
κ2 − λ1(κσF)

) 1
2 . (13.61)

13.6 Notes

1. The results of this part were initiated in the series of papers by Lu–Pan
[LuP3, LuP4, LuP5, LuP7]. In particular, they were the first to propose
a clear mathematical definition for HC3 .
Then the first point was to observe that many other definitions of this
critical field were possible.
The second point was to have a good asymptotics of these various critical
fields.
The third point was to try to get better asymptotics. Any improvement in
this direction was leading to the conclusion that all these possible critical
fields have the same asymptotics.
This was a good motivation for showing that all these critical fields coin-
cide in the large κ regime. This result was proved in [FoH3] (see [FoH4]
for later improvements).

2. Lemma 13.1.1 was stated in [LuP3]. Also Theorem 13.2.1 was obtained in
[LuP5].
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3. The analysis of the 3D case is very close to the presentation in [FoH6],
where a slightly modified functional is also considered. Theorem 13.3.1
(which appeared in [FoH6]) is an affirmative answer to a conjecture in
[Pa6], however; the conjecture is stated without the geometric Assump-
tion 9.2.1, which originated in the work [HeM6]. Notice however, the typo
in [FoH6] which has been corrected in (13.31).
The main point here is that—for generic domains—the 3D case does not
present new phenomena in the nonlinear part. This is only true for external
field strengths that are very close to the third critical field. For the linear
part, we have used mainly the results presented in Chapter 9.

4. The use of (13.51) in the proof of Proposition 13.5.1 is inspired by an
argument appearing in [AfH] in a similar context.
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Between HC2
and HC3

in Two Dimensions

Between HC2(κ) and HC3(κ), superconductivity is for large κ confined to
the boundary. This follows from the decay estimates in Chapter 12. In the
present chapter, we will give leading-order energy estimates in this parameter
region, which are valid when we are not too close to either of the critical
fields. These energy estimates indicate that superconductivity is essentially
uniformly distributed over the entire boundary region.

14.1 Introduction

In this chapter, we will assume that the dimension is 2 and that the external
magnetic field is constant, i.e., we take

β ≡ 1 , (14.1)

in (10.4). In that case, we have, by (13.30),

HC3(κ) =
κ

Θ0
+
C1
Θ

3
2
0

kmax +O(κ−
1
2 ) . (14.2)

We will consider field strengths σ = σ(κ) below HC3(κ) . The results in this
chapter will concern σ’s such that σ → ∞ and HC3(κ)− σ → ∞ as κ → ∞ .
Thus, we define the positive quantity

ρ = ρ(κ) := HC3(κ)− σ . (14.3)

We recall that a complementary analysis was carried out in Section 13.5, which
was devoted to the case when we were much closer to HC3 :

ρ(κ) = o(κ−
1
2 ) .

Recall that the Ginzburg–Landau ground state energy E(κ, σ) was defined
in (10.6). The main result of this chapter is an asymptotic formula for the
ground state energy.

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_14,  

209
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Theorem 14.1.1.
1. Suppose that

σ = (b + o(1))κ , for some b ∈ [1,Θ−1
0 [ .

Then there exists a constant Eb > 0 such that

E(κ, σ) = −√κσEb|∂Ω|+ o(κ) . (14.4)

2. For b sufficiently close to Θ−1
0 ,

Eb =
1
2b
‖fζ(b−1),b−1‖4L4(R+) , (14.5)

where ζ(λ) will be introduced in Definition 14.2.4 and the function fζ,λ will
be defined in Proposition 14.2.1.
3. If b = Θ−1

0 and ρ→ +∞ , then

E(κ, σ) = −Θ
5
2
0 |∂Ω|+ o(1)

2‖u0‖44
ρ2

κ
. (14.6)

Remark 14.1.2.
The heuristics behind Theorem 14.1.1 is as follows.

• In the case corresponding to (14.6), σ is very close to HC3 . This forces the
minimizer of the Ginzburg–Landau functional to be approximately equal to
the function u0 in the normal variable. It roughly has the structure

ψ ≈ λeiξ0κσsu0(
√
κσt) , (14.7)

where (s, t) are boundary coordinates, ξ0, u0 are the parameters/functions
from the model problem in 1 dimension, and λ is a normalization para-
meter. In particular, |ψ| is (up to approximation errors) constant on the
boundary.

• When σ is slightly farther away from HC3 , corresponding to (14.5), the
structure of ψ as eiκσζs × (function of t) remains, but the parameter ζ
and the function of t are now determined by a nonlinear one-dimensional
problem (14.16).

• Finally, in the case corresponding to (14.4), we are not able to prove that
the minimizer essentially has a product structure as in the previous cases.
However, one gets the uniform distribution of energy along the boundary
by a weaker argument.

The present chapter is devoted to the proof of Theorem 14.1.1. By the
decay estimates of Chapter 12, superconductivity is localized to a region near
the boundary, which, after a change of coordinates, can be identified with a
cylinder. Section 14.3 is devoted to the study of the effective model on this
cylinder. However, the most important ingredient of the proof is the analy-
sis of the effective one-dimensional model obtained from the cylinder model
after a Fourier transformation. That analysis is carried out in Section 14.2.
Finally, in Sections 14.4 and 14.5, we collect the estimates to finish the proof
of Theorem 14.1.1.
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14.2 A Nonlinear One-Dimensional Problem

14.2.1 Presentation

Let μ(ξ) be the lowest eigenvalue of hN,ξ defined in Section 3.2. Suppose that
λ is a parameter such that

λ ∈ ]Θ0, 1[ . (14.8)

Then, using the properties of μ established in Proposition 3.2.4, there exist
two real points z1(λ) and z2(λ) such that

z1(λ) < ξ0 < z2(λ) < 0 and μ−1([Θ0, λ[) =
]
z1(λ) , z2(λ)

[
.

Clearly, z1(λ) is decreasing, z2(λ) is increasing, and

lim
λ→+1

z1(λ) = −∞ , lim
λ→+1

z2(λ) = 0 . (14.9)

Let us consider, for z ∈ R and for λ1 and λ2 in ]0,+∞[ , the functional

B1(R+) � φ �→ Ẽz,λ1,λ2(φ) (14.10)

:=
∫ ∞

0

|φ′(τ)|2 + (τ + z)2|φ(τ)|2 +
λ2

2
|φ(τ)|4 − λ1|φ(τ)|2 dτ ,

where B1(R+) is introduced in (3.3).
Let us also introduce

b̃(z, λ1, λ2) := inf
φ∈B1(R+)

Ẽz,λ1,λ2(φ) . (14.11)

Notice that the scaling relation Ẽz,λ1,λ2(tφ) = t2Ẽz,λ1,t2λ2(φ) , which is satisfied
for all φ ∈ B1(R+) and t > 0 , implies that

b̃(z, λ1, λ2) = t2b̃(z, λ1, t
2λ2) . (14.12)

In particular, if f minimizes Ẽz,λ1,λ1 , then
√
λ1/λ2 f minimizes Ẽz,λ1,λ2 and

b̃(z, λ1, λ2) =
λ1

λ2
b(z, λ1, λ1) . (14.13)

Thus, we can reduce our attention to the case λ1 = λ2 . We define correspond-
ing quantities without tildes for this case, i.e.,

Ez,λ(φ) :=
∫ ∞

0

|φ′(τ)|2 + (τ + z)2|φ(τ)|2 +
λ

2
|φ(τ)|4 − λ|φ(τ)|2 dτ , (14.14)

b(z, λ) := inf
φ∈B1(R+)

Ez,λ(φ) . (14.15)
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Proposition 14.2.1.
For all z ∈ R , λ ∈ R

+, the functional Ez,λ admits a nonnegative minimizer
fz,λ ∈ B1(R+) . The minimizer satisfies the Euler–Lagrange equation

{
f ′
z,λ(0) = 0 ,

−f ′′z,λ + (τ + z)2fz,λ = λfz,λ(1− |fz,λ|2) .
(14.16)

Moreover, we have

b(z, λ) = inf
φ∈B1(R+)

Ez,λ(φ) = −λ
2
‖fz,λ‖44 , (14.17)

and the inequality

‖fz,λ‖∞ ≤ 1 . (14.18)

Proof.
The existence of a minimizer is left to the reader. It follows from Proposi-
tion 2.1.2 that

Ez,λ(f) ≥ Ez,λ(|f |) .

Hence, we have equality for a minimizer and minimizers can be chosen to be
nonnegative.

The energy identity (14.17) is obtained by multiplying by fz,λ in (14.16)
and integrating over ]0,+∞[ . Finally, the inequality (14.18) is the analog
of Proposition 10.3.1 and can be proved similarly (or using the maximum
principle). ��

The preceding proposition does not tell us whether fz,λ is trivial (i.e.,
identically 0) or not. This question is analyzed in the next proposition.

Proposition 14.2.2.
Let λ ∈ ]0,+∞[ and z ∈ R be given. Then the following properties hold.

1. The equation
{
u′(0) = 0 ,

−u′′ + (τ + z)2u = λu(1 − |u|2) (14.19)

admits nontrivial bounded solutions if and only if μ(z) < λ .
2. If u ∈ L∞(R+) satisfies (14.19), then ‖u‖∞ ≤ 1 . Furthermore, u is in

L2(R+) and
∫ ∞

0

eατ
(|u(τ)|2 + |u′(τ)|2) dτ <∞ , (14.20)

for all α > 0 .
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3. If μ(z) < λ < 1 , the only nontrivial bounded solution (up to multiplication
by a unit scalar) of (14.19) is a minimizer of Ez,λ . In particular, any
bounded solution of (14.19) has the form u = c|u| with |c| = 1 and any
minimizer has this form.

4. If μ(z) < λ < 1 , the nonnegative minimizer fz,λ of Ez,λ is unique, is
strictly positive, and is the (nonnormalized) ground state of the Neumann
realization on L2(R+) of

− d2

dτ2
+ (τ + z)2 − λ(1− |fz,λ(τ)|2) . (14.21)

5. If λ < 1 , the map ]z1(λ), z2(λ)[� z �→ fz,λ ∈ B2(R+) is C∞ .

Proof.
We first prove 1.
Suppose that μ(z) ≥ λ and that u ∈ L∞(R+) solves (14.19). Let χ ∈ C∞

0 (R)
be a standard cutoff function: χ(t) = 1 on [−1, 1] , suppχ ⊂ [−2, 2] and define
χN (τ) := χ(τ/N) . Using the min-max characterization of μ(z) together with
(14.19), we obtain the existence of C > 0 such that, for all N ≥ 1 ,

μ(z)‖χNu‖22 ≤ ‖(χNu)′‖22 + ‖(τ + z)(χNu)‖22

=
∫ ∞

0

χ2
N (τ)u(τ) [−u′′(τ) + (τ + z)2u(τ)] dτ + ‖uχ′

N‖22

≤ λ

∫ +∞

0

(1 − |u(τ)|2) |χN (τ)u(τ)|2 dτ + C
‖u‖2∞
N

.

Using the fact that μ(z) ≥ λ , we therefore get

λ lim
N→+∞

∫ +∞

0

|u(τ)|2|χN (τ)u(τ)|2 dτ = 0 ,

and conclude that u = 0 .
If, on the other hand, μ(z) < λ , we can consider, for any s > 0 , the

function sφz , where φz is the ground state of the operator hN,z studied in
Section 3.2. It is easy to see that Ez,λ(sφz) < 0 for sufficiently small s . There-
fore, the minimizer of Ez,λ is a nontrivial solution of (14.19), which is bounded
by (14.18).
We next prove 2.
The uniform estimate ‖u‖∞ ≤ 1 is a standard consequence of the maximum
principle.

To prove that u ∈ L2 , define hu to be the Neumann realization of

− d2

dτ2
+ (τ + z)2 − λ(1 − |u(τ)|2) .

Then (as a formal differential operator)

huu = 0 . (14.22)
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Also, (χNu) (with χN from the previous argument) is a Weyl sequence for
hu ; i.e.,

〈χNu | hu(χNu)〉
‖χNu‖22

→ 0 ,

as N →∞ . This implies that 0 ∈ σ(hu) . Since the potential

(τ + z)2 − λ(1− |u(τ)|2)
tends to +∞ for large τ , σ(hu) is discrete and consists of eigenvalues. Thus,
0 is an eigenvalue of hu and there exists a nontrivial function v ∈ L2(R+)
in the domain of hu such that huv = 0 . We may assume that v(0) = u(0) .
Observing that v′(0) = u′(0) = 0 , the Cauchy uniqueness theorem implies
that v = u ; i.e., u ∈ L2(R+) .

The decay estimate (14.20) follows from the Agmon technique described
in Chapter 12 combined with the easy inequality

∫ +∞

0

|φ′(τ)|2 + (τ + z)2|φ(τ)|2 dτ ≥
∫ +∞

0

(τ + z)2|φ(τ)|2 dτ

≥M2

∫ ∞

|z|+M
|φ(τ)|2 dτ ,

for all φ ∈ B1(R+) and all M > 0 .
We now prove 3 and 4.
We first prove that nontrivial bounded solutions have a sign. Let hu be the
operator from the proof of 2. Suppose that u ∈ L∞(R+) \ {0} solves (14.19).
Clearly, hu satisfies the operator inequality

hu ≥ hN,z − λ ,
with hN,z from (3.9). Thus, (3.17), the min-max principle, and the simplicity
of eigenvalues in dimension 1 imply that the second eigenvalue μ2(hu) of hu
satisfies

μ2(hu) > 0 .

Therefore, 2 and (14.22) imply that u is the ground state of hu . Since ground
states can be chosen to be positive this proves that u has a sign. In the process,
we have proven 4. Moreover, u is necessarily strictly positive by the Cauchy
uniqueness theorem. It remains to prove the uniqueness part of 3. Let u1 and
u2 be two nonnegative and nontrivial solutions of (14.19). Integrating by parts
yields

∫ +∞

0

u′1(τ)u
′
2(τ)dτ +

∫ +∞

0

(τ + z)2u1(τ)u2(τ) dτ

− λ
∫ +∞

0

u1(τ)u2(τ) dτ = −λ
∫ +∞

0

u1(τ)3u2(τ) dτ .
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Exchanging the roles of u1 and u2 , we get
∫ +∞

0

u1(τ)3u2(τ) dτ =
∫ +∞

0

u2(τ)3u1(τ) dτ .

From this we deduce that if u1 ≥ u2 or u2 ≥ u1 , then u1 = u2 .
It remains to exclude the case when one of these two last conditions is not

satisfied. Again by Cauchy uniqueness, we have only to exclude the case when

u1(0) > u2(0)

and when there is a point τmin > 0 such that

u1(τ) > u2(τ) for τ ∈ ]0, τmin[ and u1(τmin) = u2(τmin) .

We start from the Wronskian identity

−
(
u2

2

(
u1

u2
− 1
)′)′

+ λu1u2(u2
1 − u2

2) = 0 .

We multiply by u1
u2
− 1 and integrate over ]0, τmin[ . This gives

∫ τmin

0

u2
2

[(
u1

u2
− 1
)′]2

dτ + λ

∫ τmin

0

u1(u1 + u2)(u1 − u2)2 dτ = 0 .

This is the sum of two positive terms, the second one being strictly positive,
and this sum should vanish, hence a contradiction.
We finally prove 5.
This is a consequence of the implicit function theorem applied to the map

]z1(λ), z2(λ)[×{f ∈ B2(R+) : f ′(0) = 0} → L2(R+),

(z, f) �→ −f ′′ + (t+ z)2f − λf + λf3 .

We observe indeed that the operator − d2

dt2 +(t+z)2−λ+3λf2
z,λ (the derivative

with respect to f) satisfies

− d2

dt2
+ (t+ z)2 − λ+ 3λf2

z,λ =
{
− d2

dt2
+ (t+ z)2 − λ+ λf2

z,λ

}
+ 2λf2

z,λ

and is consequently invertible using what we have established in 4 (in partic-
ular, the strict positivity of fz,λ).

This finishes the proof of Proposition 14.2.2. ��
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Proposition 14.2.3.
Suppose that λ ∈ ]Θ0, 1[ . Then there exists z0 ∈

]
z1(λ), z2(λ)

[
such that

b(z0, λ) = inf
z∈R

b(z, λ) = inf
z∈R,φ∈B1(R+)

Ez,λ(φ)

and
∫ ∞

0

(τ + z0)
∣∣fz0,λ(τ)∣∣2 dτ = 0 . (14.23)

Proof of Proposition 14.2.3.
One can observe that b(z, λ) < 0 for z ∈ ]z1(λ), z2(λ)[ and that b(z, λ) = 0 for
z /∈ ]z1(λ), z2(λ)[ . Moreover, b is a C∞-function on ]z1(λ), z2(λ)[ . Thus, the
existence of a minimum is an exercise that can be left to the reader. Notice
that (14.23) is the Euler–Lagrange equation with respect to z . ��

It is then natural to introduce the smallest z0 realizing the infimum.

Definition 14.2.4.
For λ ∈ [Θ0, 1) , we define ζ = ζ(λ) by

ζ(λ) :=

{
min{z0 ∈ R : b(z0, λ) = infz b(z, λ)}, λ > Θ0 ,

ξ0, λ = Θ0 .
(14.24)

Clearly, the value at λ = Θ0 is fixed by continuity at that point [since
z1(λ), z2(λ) → ξ0 as λ↘ Θ0].

Remark 14.2.5.
A natural question is to ask whether the minimum is attained in a single point,
i.e., if

{z0 ∈ R : b(z0, λ) = inf
z
b(z, λ)} = {ζ(λ)} .

We will show that this is indeed the case when λ is sufficiently close to Θ0 .

14.2.2 Bifurcation analysis

We will study here the bifurcation for the nonlinear equation (14.19) near the
solution z = ξ0 , λ = Θ0 , u = 0 . We use a variant of the standard method
due to Lyapunov–Schmidt.

We consider λ ∈ ]Θ0, 1[ and z with μ(z) < λ . Let us define ϕz as in (3.2.1)
to be the positive ground state of hN,z and let Πz be the L2-projection on
Spanϕz . Finally, let us introduce the regularized resolvent of hN,z by

Rz,λ :=
(
hN,z − λ)−1(1−Πz) .

Let us recall the main properties.
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Lemma 14.2.6.
Suppose that λ < 1 , z < 0 . Then the regularized resolvent Rz,λ maps L2(R+)
into {u ∈ B2(R+) : u′(0) = 0} . Furthermore, if K ⊂ ] − ∞, 0[×[Θ0, 1[ is
compact, then there exists a constant C1 = C1(K) such that

‖Rz,λu‖B1(R+) ≤ C1‖u‖L2(R+) , (14.25)

for all (z, λ) ∈ K .

Proof.
The regularized resolvent maps L2(R+) continuously to the operator domain
D(HN,z) given by (3.9), in particular to the quadratic form domain. It is
immediate that the natural norm on the quadratic form domain is equivalent
to the B1(R+) norm. This gives the continuous maps

L2(R+)
Rz,λ→ D(HN,z) id→ B1(R+) , (14.26)

where the first map is uniformly bounded for λ uniformly below 1 [by (3.17)]
and the second is uniformly bounded for z varying in compact sets. Note that
(λ, z) �→ Rλ,z is smooth with values in L(L2(R+), B2(R+)) . ��

Let fz,λ be the unique positive solution to (14.19). If we introduce

ε = 〈fz,λ |ϕz〉 , (14.27)

we get from (14.19) the system of equations

(λ− μ(z))ε = 〈f3
z,λ |ϕz〉, (14.28)

fz,λ + λRz,λf
3
z,λ = εϕz . (14.29)

Let us also introduce the map G = Gz,λ by

B1(R+) � u �→ G(u) = −λRz,λu3 . (14.30)

Note that (14.29) reads

fz,λ −G(fz,λ) = εϕz . (14.31)

In order to invert this last equation, we have to analyze the properties of G .
First, we have.

Lemma 14.2.7.
The map G maps the space B1(R+) to itself. Furthermore, for all compact
sets K ⊂ ]−∞, 0[×[Θ0, 1[ , there exists a constant C3 such that

‖G(u)‖B1(R+) ≤ C3‖u‖3B1(R+) , (14.32)

for all u ∈ B1(R+) .
Moreover, Gz,λ depends smoothly on the parameters (z, λ) .
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Proof.
This is an immediate consequence of Lemma 14.2.6. We just have to observe
in addition that B1(R+) is an algebra and that, by the standard Sobolev
embedding theorem, we have

B1(R+) ↪→W 1,2(R+) ↪→ L∞(R+) ,

with continuous injection. ��
This immediately implies the following contraction property.

Lemma 14.2.8.
Let K ⊂ ] −∞, 0[×[Θ0, 1[ be compact. Then there exists an R > 0 such that
if u ∈ B1(R+) with ‖u‖B1(R+) ≤ R and if (z, λ) ∈ K , then

‖Gz,λ(u)‖B1(R+) ≤ 1
2
‖u‖B1(R+) .

Therefore, we can define the inverse of I −G by

u �→
∞∑
j=0

Gj(u) ,

which is defined in the ball centered at 0 and of radius R in B1(R+) .
In order to have an a priori control of fz,λ in B1(R+) , we will use the

following lemma.

Lemma 14.2.9.
Let K ⊂ ]−∞, 0[×[Θ0, 1[ be compact. Then there exists a constant C > 0 such
that if (z, λ) ∈ K , u ∈ B1(R+) , and Ez,λ(u) ≤ 0 , then

‖u‖B1(R+) ≤ C
√
λ−Θ0 . (14.33)

Proof.
Using the compactness of K , there exists a constant C1 , independent of z ,
such that

‖u‖2B1(R+) ≤ C1

∫ ∞

0

|u′(τ)|2 + (τ + z)2|u(τ)|2 dτ . (14.34)

Using the negativity of the energy, we find

‖u‖2B1(R+) ≤ C1λ‖u‖22 . (14.35)

Using again the negativity of the energy, we also find

λ

2
‖u‖44 ≤ λ‖u‖22 −

∫ ∞

0

|u′(τ)|2 + (τ + z)2|u(τ)|2 dτ

≤ (λ− μ(z))‖u‖22 ≤ (λ−Θ0)‖u‖2B1(R+) . (14.36)
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We finally need to use the decay inherent in the space B1(R+) to control the
L2 norm by the L4 norm. That is achieved using the Hölder inequality:

‖u‖22 =
∫ +∞

0

|u(τ)||(1 + τ)u(τ)|(1 + τ)−1 dτ

≤ ‖u‖4 ‖(1 + τ)u‖2 ‖(1 + τ)−1‖4 ≤ C2‖u‖4 ‖u‖B1(R+) . (14.37)

Combining (14.35)–(14.37) yields

‖u‖2B1(R+) ≤ C 4
√
λ−Θ0 ‖u‖

3
2
B1(R+)

, (14.38)

(for some new constant C , which may be chosen depending only on K), from
which the lemma follows. ��

Observing from (14.17) that Ez,λ(fz,λ) < 0 and applying Lemma 14.2.9
with u = fz,λ , we get

‖fz,λ‖B1(R+) ≤ C
√
λ− Θ0 . (14.39)

So we get

fz,λ =
∞∑
j=0

Gj(εϕz) =
+∞∑
j=0

ε3
j

Gj(ϕz) , (14.40)

with ε introduced in (14.27), which satisfies for some constant C(K)

0 ≤ ε ≤ C(K)
√
λ−Θ0 . (14.41)

Note that the series (in ε) has a positive radius of convergence and that there
exists ε0(K) such that the right-hand side in (14.40) is normally convergent
in the B1(R+) norm for ε ∈ D(0, ε0(K)) .

We denote by L(ε, z, λ) the sum of the series, which is a C∞-function
(actually analytic) in all the arguments in ∪K (D(0, ε0(K))×K) with values
in B1(R+) . It is useful to write L in the form

L(ε, z, λ) = εM(ε2, z, λ) , (14.42)

where M(η, z, λ) is defined by

M(η, z, λ) =
+∞∑
j=0

η
3j−1

2 Gj(ϕz) , (14.43)

for (η, λ, z) ∈ ∪K (D(0, η0(K))×K) , with η0(K) = ε0(K)2 .
Hence, we can write

fz,λ = εM(ε2, z, λ) .

Note that
M(0, z, λ) = ϕz . (14.44)
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Inserting this equality into (14.28), we get

(λ− μ(z))ε = ε3〈M(ε2, z, λ)3 |ϕz〉 .

We look for positive, nontrivial solutions; therefore, we have to impose ε > 0 .
So we can rewrite the equation in the form

(λ − μ(z)) = ε2m(ε2, z, λ) , (14.45)

where (η, z, λ) �→ m(η, z, λ) is a C∞-function such that

m(0, z, λ) =
∫ +∞

0

ϕ4
z(τ) dτ �= 0 .

We first easily solve the equation for ζ and η in a small complex neighborhood
of 0

ν = ηm(η, z, λ)

and get
η = ν n(ν, z, λ) ,

with
n(0, z, λ) =

1
‖ϕz‖44

> 0 .

When λ− μ(z) > 0 , we finally recover ε by

ε(z, λ) =
√
λ− μ(z)

√
n(λ− μ(z), z, λ) , (14.46)

and the desired (unique) positive solution fz,λ is given by

fz,λ = ε(z, λ)M(η(z, λ), z, λ) , (14.47)

with
η(z, λ) = (λ − μ(z))n(λ− μ(z), z, λ) . (14.48)

This shows that (z, λ) �→ η(z, λ) and hence (z, λ) �→M(η(z, λ), z, λ) are C∞-
functions for z near ξ0 and λ near (and above) Θ0 .

Let us finish by proving that the minimum ζ(λ) is attained for a unique
value of z0 when λ − Θ0 is small. We use (14.23) (which is satisfied for any
minimum of b) linking ε, λ , and z0 and implement (14.47). This gives

0 =
∫ +∞

0

(τ + z0)|fz0,λ(τ)|2dτ

= ε2
∫ +∞

0

(τ + z0)|M(η(z0, λ), z0, λ)|2dτ . (14.49)
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Using the Feynman–Hellmann formula (3.29) and (14.44), we find

μ′(z) =
∫ +∞

0

(τ + z)ϕz(τ)2 dτ =
∫ +∞

0

(τ + z)|M(0, z0, λ)|2 dτ

= −
∫ +∞

0

(τ + z)
(|M(η(z0, λ), z0, λ)|2 − |M(0, z0, λ)|2) dτ ,

where we used (14.49) to get the last equality. By (14.43), we find

μ′(z0) = η(z0, λ)2a(z0, λ) ,

with a(z, λ) being a smooth function.
Inserting (14.48) yields that a minimum should be a solution of the

equation

μ′(z) = (λ− μ(z))ã(z, λ) ,

for a new smooth function ã . Consider the smooth function

(z, λ) �→ g(z, λ) := μ′(z)− (λ − μ(z))ã(z, λ) .

Using the fact that μ′(ξ0) = 0 , μ(ξ0) = Θ0 , we get

∂g

∂z
(ξ0,Θ0) = μ′′(ξ0) > 0 ,

by (3.23). Therefore, the implicit function theorem implies that there exists
a unique (smooth) solution ζ(λ) to the equation g(z, λ) = 0 for λ sufficiently
close to Θ0 .

Hence, we have proven the following refinement of Proposition 14.2.3.

Proposition 14.2.10.
There exists η0 > 0 such that for any λ ∈ ]Θ0,Θ0 + η0] , there exists a unique
ζ(λ) ∈ ]z1(λ), z2(λ[ such that

b(ζ(λ), λ) = inf
z
b(z, λ) .

Moreover,

• λ �→ ζ(λ) is a C∞-function on [Θ0,Θ0 + η0] with ζ(Θ0) = ξ0 .
• λ �→ f2

ζ(λ),λ is a B1-valued C∞-function on [Θ0,Θ0 + η0] .

For the calculation of the ground state energy, we will need the following
result.

Lemma 14.2.11.
Let u0 = ϕξ0 be the normalized ground state of hN,ξ0 as in Section 3.2. We
have

‖fζ(λ),λ‖44 =
(λ−Θ0)2

‖u0‖44
(1 + o(1)) , (14.50)

as λ→ Θ0 .
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Proof.
By the convergence of the series (14.40) in the B1 norm and therefore in the
L4 norm we get

‖fζ(λ),λ‖44 = |ε|4‖ϕζ(λ)‖44 +O(|ε|6) .
By continuity in ζ , we find ‖ϕζ(λ)‖4 = ‖u0‖4(1+o(1)) , which, combined with
(14.46), yields

‖fζ(λ),λ‖44 =

(
λ− μ(ζ(λ))

)
‖u0‖44

(1 + o(1)) .

Since

μ(ζ(λ)) = Θ0 +O((ζ(λ) − ξ0)2
)

= Θ0 +O((λ−Θ0)2
)
,

this finishes the proof of (14.50). ��
The lemma permits us to immediately get

Proposition 14.2.12.
There exists η0 > 0 , such that λ �→ infz b(z, λ) is a C∞-function on the
interval [Θ0,Θ0 + η0] and satisfies

inf
z
b(z, λ) = −λ

2

(
λ−Θ0

)2
‖u0‖44

(1 + o(1)) , (14.51)

as λ→ Θ0 .

14.2.3 The spectral estimate

The following proposition will be very important in the analysis of the 2D
problem in half-cylinders. Let us introduce the following closed and symmetric
quadratic form on B1(R+) :

qα,λ(φ) :=
∫ +∞

0

|φ′(τ)|2 + (τ + ζ + α)2|φ(τ)|2 − λ(1− |fζ,λ(τ)|2)|φ(τ)|2 dτ ,
(14.52)

with ζ = ζ(λ) .
Furthermore, let

γ(α, λ) := inf σ (qα,λ)

be the infimum of the spectrum of the unique self-adjoint operator hα,λ asso-
ciated with qα,λ . Then we have the following property.

Proposition 14.2.13.
There exists ε > 0 such that for λ ∈ [Θ0,Θ0 + ε[ , we have

inf
α∈R

γ(α, λ) = 0 .
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Proof.
Clearly, qα,λ is the quadratic form of the Neumann realization hα,λ on L2(R+)
of the differential operator

− d2

dτ2
+ (τ + ζ + α)2 − λ(1− |fζ,λ(τ)|2) .

By (14.16), fζ,λ is an eigenfunction of h0,λ with eigenvalue 0 . Since fζ,λ is
positive, it is necessarily the ground state. Therefore,

γ(0, λ) = 0 . (14.53)

Furthermore, we will see that

∂γ

∂α
(0, λ) = 0 . (14.54)

For the proof of this, define u = u(·;α, λ) to be the positive, normalized ground
state of hα,λ . The family α �→ hα,λ is a holomorphic family of type (A). By
perturbation theory (see Appendix C), the map α �→ γ(α, λ) is analytic in α
and

∂γ

∂α
(α, λ) = 2

∫ +∞

0

(τ + α+ ζ)|u|2 dτ . (14.55)

Thus,
∂γ

∂α
(0, λ) =

2
‖fζ,λ‖22

∫ +∞

0

(τ + ζ)
∣∣fζ,λ(τ)∣∣2 dτ = 0 ,

by (14.23).
We will prove in Lemma 14.2.17 that

γαα(0, λ) > 0 . (14.56)

Now, because λ �→ |fζ(λ),λ|2 is a C∞-function on [Θ0,Θ0 + η0] , one gets
by a rather standard perturbation argument that (α, λ) �→ γ(α, λ) is a C∞-
function.

From (14.53), (14.54), and (14.56), it follows that there exist α1 and ε1 > 0
such that if λ < Θ0 + ε1 , then

γ(α, λ) ≥ 0 for all |α| ≤ α1 .

Furthermore, it is clear that γ(α, λ) ≥ μ(ζ+α)−λ , and we know that we
have the convergence ζ(λ) → ξ0 as λ → Θ0 . Therefore, using our knowledge
of the function μ(ξ) , we see that there exists ε2 < ε1 such that if λ < Θ0 + ε2
and |α| ≥ α1 , then

γ(α, λ) ≥ 0 .

This finishes the proof modulo the proof of (14.56). ��
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Proof of (14.56)

There are two possible proofs. The first one is done by direct computation,
which will be established in the next lemma. A second one could be obtained
by extending to complex α . We present the first one.

Lemma 14.2.14.
For any λ ∈ ]Θ0, 1[ , we have, with ζ = ζ(λ) , f = fζ(λ),λ ,

1
2
γαα(0, λ) ‖f‖22 = −ζf(0)2 − 2λ

∫ ∞

0

f(τ)2f ′(τ)2 dτ − λ2

4
‖f‖44 . (14.57)

Proof.
This is a tricky computation. We write for brevity f = fζ,λ , and as before
u = u(·;α, λ) is the normalized ground state of hα,λ . As in [Pa2], we introduce
the function

H(t) := f ′(t)2 − (t+ ζ)2f(t)2 + λf(t)2 − λ

2
f(t)4 , (14.58)

and recall that
f = ‖f‖2u if α = 0 . (14.59)

First, we immediately see that

H ′(t) = −2(t+ ζ)f2(t) , (14.60)

and hence, in view of the behavior of f at +∞ and of the definition of ζ , we
obtain by integration

H(0) = 0 . (14.61)

Differentiating the equation satisfied by u ,

hα,λu = γ(α, λ)u , (14.62)

with respect to α , with uα(t) := ∂u
∂α (t;α, λ) , we obtain

{
−u′′α + (t+ α+ ζ)2uα − λ(1− f2)uα = γuα + γαu− 2(t+ α+ ζ)u ,

u′α(0) = 0 .
(14.63)

Let us introduce v by
uα(t;α, λ) = f(t) v(t) . (14.64)

We observe that
v′(0) = 0 . (14.65)

We now write

u′α = f ′v + fv′ , u′′α = f ′′v + 2f ′v′ + fv′′ .
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Substituting in (14.63), we obtain

− f ′′v − 2f ′v′ − fv′′ + (t+ α+ ζ)2fv − λ(1 − f2)fv

= γfv + γαu− 2(t+ α+ ζ)u .

We will now evaluate at α = 0 . By the definition of ζ , we have

γ = 0, γα = 0, at α = 0.

Using the equation satisfied by f , we obtain, for α = 0 ,

−2f ′v′ − fv′′ = −2(t+ ζ)u .

We now multiply this equation by f and get from (14.59) that, at α = 0,

−2ff ′v′ − f2v′′ = −2(t+ ζ)uf = −2(t+ ζ)
f2

‖f‖2 ,

which can be written, using (14.60), in the form

(
f2v′

)′
= − H ′

‖f‖2 , (14.66)

for α = 0.
Consequently, by integration over ]0,+∞[ , and using the conditions at 0

(14.55) and (14.65), we get

H = −f2v′‖f‖2 for α = 0 . (14.67)

Let us start an independent computation. We differentiate (14.55) with
respect to α and obtain for α = 0

γαα(0, λ) = 2
(

1 + 2
∫ +∞

0

(τ + ζ)u(τ)uα(τ) dτ
)
. (14.68)

This leads after an integration by parts and using (14.61) to

γαα(0, λ)
2

= 1− 1
‖f‖2

∫ +∞

0

H ′v dτ = 1 +
1

‖f‖2

∫ +∞

0

Hv′ dτ .

Hence, having (14.67) in mind, we get

γαα(0, λ)
2

= 1− 1
‖f‖22

∫ +∞

0

H2

f2
dτ . (14.69)

Recall the definition of H . We see that (14.69) expresses the second partial
derivative γαα(0, λ) purely in terms of the solution f . We will now use the
equation satisfied by f in order to control the sign of γαα(0, λ) (for small λ).
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Notice, using the equation satisfied by f , that

H = f ′2 − ff ′′ +
λ

2
f4 . (14.70)

Thus, ∫ ∞

0

H2

f2
dτ =

∫ ∞

0

(
H [(f ′)2 − ff ′′]

f2
+
λ

2
Hf2

)
dτ . (14.71)

We split the integral into two parts. Consider first
∫ ∞

0

H [(f ′)2 − ff ′′]
f2

dτ =
∫ ∞

0

H

(−f ′

f

)′
dτ =

∫ ∞

0

f ′

f
H ′ dτ .

Note, for controlling the boundary terms in the integration by parts, that H
decays exponentially rapidly at +∞ and that f ′(τ)/f(τ) behaves like τ at
+∞ by the theory of ordinary differential equations (as presented in [Sib]).
Using (14.60) and a further integration by parts yields∫ ∞

0

H [(f ′)2 − ff ′′]
f2

dτ = −
∫ ∞

0

2(τ + ζ)ff ′ dτ = ζf2(0) + ‖f‖22 . (14.72)

We also evaluate the other term in (14.71), using (14.70) and an integration
by parts: ∫ ∞

0

Hf2 dτ =
∫
f2
{
(f ′)2 − ff ′′ + λ

2
f4
}
dτ

= 4
∫ ∞

0

f2(f ′)2 dτ +
λ

2
‖f‖44 . (14.73)

Combining (14.69), and (14.71)–(14.73), we get (14.57). This achieves the
proof of the lemma. ��
Remark 14.2.15.
In Lemma 14.2.14, ζ(λ) can be any critical value ζc(λ) ∈ ]z1(λ), z2(λ)[ such
that ∫ +∞

0

(τ + ζc(λ))|fζc(λ),λ(τ)|2 dτ = 0 .

Remark 14.2.16.
Using (14.61), one can see that

λ− ζc(λ)2 =
λ

2
f2
ζc(λ),λ(0) . (14.74)

So ζc(λ) is a solution of the implicit equation

λ− z2 =
λ

2
f2
z,λ(0) .

This gives another way to show the uniqueness of ζc(λ) for λ close to Θ0 . We
have indeed shown that the map (z, λ) �→ f2

z,λ is C∞ with value in B1 . This
implies that (z, λ) �→ f2

z,λ(0) is C∞ .
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So, taking the limit λ → Θ0 in (14.57) and the properties of fζ(λ),λ as
λ→ Θ0 , we obtain the equivalent of (3.24).

Lemma 14.2.17.

lim
λ→Θ0

1
2
γαα(0, λ) = −ξ0ϕ2

ξ0(0) > 0 . (14.75)

Remark 14.2.18.
A variant of the Feynman–Hellmann formula gives

b′′(ζ(λ), λ)) = ‖fζc(λ),λ‖22
∂2γ

∂α2
(0, λ) .

So there exists δ0 > 0 such that, for any λ ∈ ]Θ0,Θ0 + δ0] , b(·, λ) has in
]z1(λ), z2(λ)[ a nondegenerate minimum at ζ(λ) .

14.3 Models on Half-Cylinders

Theorem 14.3.1.
For ω ∈ ]0,+∞[ , λ1 ∈ [Θ0, 1] , and λ2 ∈ R

+ , let us consider the functional

Hω � ψ �→ Ecyl
ω (ψ, λ1, λ2) (14.76)

:=
∫ π/ω

−π/ω

(∫ ∞

0

|(i∇+ ξ1 î2)ψ|2 − λ1|ψ|2 +
λ2

2
|ψ|4 dξ1

)
dξ2 ,

where

|(i∇+ ξ1î2)ψ|2 = |i∂ξ1ψ|2 + |(i∂ξ2 + ξ1)ψ|2

and

Hω =
{
ψ ∈ H1

mag

(
R

+×]− L,L[
)
, ∀L > 0

∣∣

∃z ∈ R : ψ(ξ1, ξ2 + 2π/ω) = e−iz
2π
ω ψ(ξ1, ξ2)

}
.

Let ψλ1,λ2 be the function

R
+ × R � (ξ1, ξ2) �→ ψλ1,λ2(ξ1, ξ2) :=

√
λ1

λ2
e−iζ(λ1)ξ2fζ(λ1),λ1(ξ1) . (14.77)

Then, for all M > 1, there exists ε > 0 such that

Ecyl
ω (ψ, λ1, λ2) ≥ Ecyl

ω (ψλ1,λ2 , λ1, λ2) (14.78)

for all λ1 ∈ ]Θ0,Θ0 + ε[ , ω > 0 , λ2 ∈ [M−1,M ] , and ψ ∈ Hω .
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Here

H1
mag

(
R

+×]− L,L[
)

:=
{
ψ ∈ L2

(
R

+×]− L,L[
)

: |(i∇+ ξ1 î2)ψ| ∈ L2
(
R

+×]− L,L[
)}

.

Remark 14.3.2.
Clearly, ψλ1,λ2 is in Hω [take z = ζ(λ1)]. Hence, the theorem states that it
is the global minimizer of Ecyl

ω in Hω . Inserting (14.17) and (14.13), we can
express the minimal energy as

Ecyl
ω (ψλ1,λ2 , λ1, λ2) =

2πλ1

ωλ2
b
(
ζ(λ1)

)
= −πλ

2
1

ωλ2
‖fζ(λ1),λ1‖44 . (14.79)

Proof.
Consider first functions in Hω that are given in the form

(ξ1, ξ2) �→ ψ(ξ1, ξ2) := gζ(ξ1)e−iζξ2v , (14.80)

with

gζ :=
√
λ1

λ2
fζ,λ1 , ζ = ζ(λ1) ,

and v periodic:

v(ξ1, ξ2) = v(ξ1, ξ2 + 2π
ω

) .

Then

Ecyl
ω (ψ, λ1, λ2)

=
∫ π/ω

−π/ω

∫ ∞

0

|(i∇+ (ξ1 + ζ )̂i2)gζv|2 − λ1|gζv|2 +
λ2

2
|gζv|4 dξ1dξ2 .

By periodicity, we can expand v in an L2-convergent Fourier series as

v(ξ1, ξ2) =
∞∑

n=−∞
vn(ξ1)e−inωξ2 .

Then, using Parseval’s theorem, we get

Ecyl
ω (ψ, λ1, λ2) =

2π
ω

∑
n

∫ +∞

0

{∣∣(gζvn)′
∣∣2 + (nω + ξ1 + ζ)2|gζvn|2

− λ1|gζvn|2 + λ2g
2
ζ |gζvn|2

}
dξ1

− λ2
2π
ω

∑
n

∫ +∞

0

g4
ζ |vn|2 dξ1 +

λ2

2

∫ π/ω

−π/ω

∫ +∞

0

|gζv|4 dξ1dξ2 .
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Again using Parseval’s theorem, the last two terms can be combined and we
see that

Ecyl
ω (ψ, λ1, λ2) =

∑
n

2π
ω

∫ +∞

0

{∣∣(gζvn)′∣∣2 + (nω + ξ1 + ζ)2|gζvn|2

− λ1|gζvn|2 + λ2g
2
ζ |gζvn|2

}
dξ1

+
λ2

2

∫ π/ω

−π/ω

∫ +∞

0

g4
ζ

(
(|v|2 − 1)2 − 1

)
dξ1dξ2 .

Using (14.13) and (14.17), we see that

Ecyl
ω (ψλ1,λ2 , λ1, λ2) = −λ2

2
2π
ω

∫ +∞

0

g4
ζ dξ1 , (14.81)

and therefore,

Ecyl
ω (ψ, λ1, λ2)− Ecyl

ω (ψλ1,λ2 , λ1, λ2)

≥
∑
n

2π
ω
γ(nω, λ1, λ2)

∫ +∞

0

|gζvn|2 dξ1 . (14.82)

This finishes the proof under Assumption (14.80) if ε is so small that Propo-
sition 14.2.13 can be applied.

To prove (14.78) for all ψ ∈ Hω , we now consider functions of the form

(ξ1, ξ2) �→ ψ0(ξ1, ξ2) = gζ(ξ1)e−izξ2v ,

with v(ξ1, ξ2) = v(ξ1, ξ2 + 2π
ω

) . (14.83)

Consider first the case when ω ∈ R
+ satisfies

ζ − z
ω

=
p

q
for some pair (p, q) ∈ Z× N . (14.84)

Clearly, if ψ0 satisfies (14.83) for some ω ∈ R
+ , then it also satisfies (14.83)

for ω/q̂ , for every q̂ ∈ (N \ {0}) . Moreover, it is easy to show that

Ecyl
ω/q̂(ψ0) = q̂Ecyl

ω (ψ0) , Ecyl
ω/q̂(ψλ1,λ2) = q̂Ecyl

ω (ψλ1,λ2) . (14.85)

We now choose q̂ = q , and observe that, according to (14.84), ω̂ = ω/q satisfies

ζ − z
ω̂

∈ Z . (14.86)

But in this case, ψ0 admits the representation (14.80), and hence

Ecyl
ω̂ (ψ0) ≥ Ecyl

ω̂ (ψλ1,λ2) .

Coming back to ω and using (14.85), we have the proof of (14.78) when ω
satisfies (14.84) (with the additional condition that z is fixed).

The proof of (14.78) in the general case now follows immediately from the
density of the rational numbers in R . ��
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14.4 Proof of (14.5) and (14.6)

14.4.1 Lower bounds

The main part of this argument will also be valid in the case of (14.4), at
least for b > 1 , where the exponential decay estimates of Theorem 12.2.1 are
valid.

We will use the parameter

ε :=
1√
κσ

.

Let (ψ,A) be a minimizer of G . First, we need to make a localization to the
boundary region. Let 1 = f2

1 (t) + f2
2 (t) be a standard partition of unity on

[0,∞[ . We choose f1 to be nonincreasing and satisfying

f1(t) =

{
1 if t ≤ 1,
0 if t ≥ 2 .

(14.87)

Consider ψj(x) = fj(t(x)/εM)ψ(x) [in (14.95), we will choose M = C| log ε|
for some large constant C ]. For ε small enough, one can change to boundary
coordinates on the support of f1(t(x)/εM) . Then, by the localization formula
[see (8.10)],

G(ψ,A) =G(ψ1,A)+G(ψ2,A)+
κ2

2

∫ (
1−f4

1

(
t(x)
εM

)
−f4

2

(
t(x)
εM

))
|ψ(x)|4 dx

− (εM)−2

∫ (∣∣∣f ′
1

(
t(x)
εM

) ∣∣∣2 +
∣∣∣f ′2
(
t(x)
εM

) ∣∣∣2
)
|ψ(x)|2 dx . (14.88)

Consider first the third term in (14.88). Since

1 = (f2
1 + f2

2 )2 = f4
1 + f4

2 + 2f2
1f

2
2 ,

this term is positive. We will therefore discard it for the lower bound.
Proposition 11.4.4 tells us that curlA ≈ 1 , and therefore, since ψ2 has

compact support in Ω , and using Lemma 1.4.1,

G(ψ2,A) ≥ ε−2(1−O(κ−1))‖ψ2‖22 ≥ 0 .

So we can ignore this positive term for the lower bound.
The Agmon estimates, Theorem 12.2.1, combined with the properties of

the support of (|f ′1|2+ |f ′
2|2)(t(x)/(εM)) can be used to bound the localization

errors as follows:
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(εM)−2

∫
(|f ′1|2 + |f ′2|2)

(
t(x)
εM

)
|ψ(x)|2 dx

≤ C(εM)−2

∫
{1≤ t(x)

εM ≤2}
e−

αt(x)
ε

(
e

αt(x)
ε |ψ(x)|2

)
dx

≤ C(εM)−2e−αM
∫
e

αt(x)
ε |ψ(x)|2 dx

≤ C′(εM)−2 e−αM
∫
{t(x)<c0ε}

|ψ(x)|2 dx

≤ C ′(εM)−2 e−αM‖ψ1‖22 . (14.89)

Here we used, in the last line, the fact that M →∞ as ε→ 0 ; therefore (for
ε sufficiently small),

∫
{t(x)<c0ε}

|ψ(x)|2 dx ≤ ‖ψ1‖22 .

For sufficiently large M , we find

(εM)−2

∫
(|f ′1|2 + |f ′2|2)

(
t(x)
εM

)
|ψ(x)|2 dx ≤ Cε−2 e−

αM
2 ‖ψ1‖22 .

From these estimates and (14.88), we find

G(ψ,A) ≥
∫
|(−i∇+ κσA)ψ1|2 − κ2(1 + Ce−

αM
2 )|ψ1|2 +

κ2

2
|ψ1|4 dx .

Upon changing to boundary coordinates (see Section F.1), this integral
becomes:

∫ |∂Ω|

0

∫
{t≤2Mε}

{
|∂tφ|2 + (1− tk(s))−2|(−i∂s + κσÃ1)φ|2

− κ2(1 + Ce−
αM
2 )|φ|2 +

κ2

2
|φ|4
}

(1− tk(s)) dt ds , (14.90)

where
φ = e−iκσϕψ1(Φ(s, t)) , (14.91)

and Ã1 is defined in Lemma F.1.1. Here the gauge transformation e−iκσϕ is
chosen in order to have Ã2 = 0 . It also follows from Lemma F.1.1 combined
with Proposition 11.4.4 that

Ã1(s, t) = γε − t+
k(s)t2

2
+O(εt2) (14.92)

(uniformly in ε) in a fixed neighborhood of the boundary. Again using Propo-
sition 11.4.4,
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γε :=
1
|∂Ω|

∫
Ω

curlA dx =
|Ω|
|∂Ω| +O(ε) . (14.93)

In order to have a simple model operator, we want to replace Ã1(s, t) by
γε − t . Therefore, we estimate

|(−i∂s + κσÃ1)φ|2 ≥ (1− ε)|(−i∂s + κσ(γε − t))φ|2

+ (κσ)2(1− ε−1)
∣∣(Ã1 − (γε − t)

)
φ
∣∣2 . (14.94)

Using the Agmon estimates, Theorem 12.2.1, and the simple inequality

|Ã1(s, t)− (γε − t)| ≤ Ct2 ,

which is valid on suppφ and deduced from (14.92), we find

(κσ)2
∫ ∣∣(Ã1(s, t)− (γε − t)

)
φ
∣∣2 ds dt

≤ C(κσ)2‖t4e−αt
ε ‖∞

∫
e

αt
ε |φ|2 ds dt ≤ C′‖φ‖22 .

We use the Agmon estimates and Theorem 12.2.1 [and the boundedness
of the curvature k(s)] to replace all factors of (1− tk(s)) by 1 +O(ε) . Upon
choosing

M = CM | log ε| (14.95)

(for a large constant CM ), we get

G[ψ,A] ≥ (1− Cε)Q̃[φ]− κ2(1 + Cε)
∫ |∂Ω|

0

∫ ∞

0

|φ(s, t)|2 ds dt

+
κ2

2
(1− Cε)

∫ |∂Ω|

0

∫ ∞

0

|φ(s, t)|4 ds dt ,

where

Q̃[φ] =
∫ |∂Ω|

0

∫ ∞

0

|∂tφ|2 + |(−i∂s − κσ(γε − t))φ|2 dt ds .

We finally change coordinates (s, t) = ε(ξ1, ξ2) . We introduce

φ̃(ξ1, ξ2) := φ(εξ1, εξ2) . (14.96)

The inequality thereby becomes

G[ψ,A] ≥ (1− Cε)Qε[φ̃]− κ

σ
(1 + Cε)‖φ̃‖22 +

κ

2σ
(1− Cε)‖φ̃‖44 . (14.97)

Here, with Γε = −γε/ε ,

Qε[φ̃] =
∫ |∂Ω|/ε

0

dξ1

∫ +∞

0

|∂ξ2 φ̃|2 + |(−i∂ξ1 + ξ2 + Γε)φ̃|2 dξ2 .
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Using the functional Ecyl defined in (14.76), we recognize (14.97) as stating
that

G[ψ,A] ≥ (1 − Cε)Ecyl
|∂Ω|
2ε

(
eiΓεξ1 φ̃,

κ

σ

1 + Cε

1− Cε,
κ

σ

)
. (14.98)

Proof of (14.5) and (14.6).
In the case of these two results, we are in a situation where the assumptions
of Theorem 14.3.1 are satisfied. We therefore continue the estimate in (14.98)
as follows, using (14.79):

G[ψ,A] ≥ (1− Cε)Ecyl
2πε
|∂Ω|

(
eiΓεξ1 φ̃,

κ

σ

1 + Cε

1− Cε,
κ

σ

)

≥ −(1 + C′ε)
|∂Ω|
2ε

κ

σ
‖fζ(κ

σ
1+Cε
1−Cε ,

κ
σ ),κ

σ
1+Cε
1−Cε

‖44 . (14.99)

In the case of (14.5), we have κ/σ → b−1 > Θ0 , and we find

G[ψ,A] ≥ −(1 + o(1))
|∂Ω|
2b
√
κσ‖fζ(b−1),b−1‖44 , (14.100)

which finishes the proof of (14.5).
In the case of (14.6), we have to use the bifurcation analysis for λ1 near

Θ0 . Notice that in the case under consideration, we have

1
Θ0

− σ

κ
≈ ρ

κ
, as κ→∞ .

The bifurcation analysis Lemma 14.2.11 yields

‖fζ( κ
σ

1+Cε
1−Cε ),κ

σ
1+Cε
1−Cε

‖44 =
ρ2

κ2
Θ2

0‖u0‖−4
4 (1 + o(1)) .

Thus, we find, using σ ≈ κ/Θ0 , that

E(κ, σ) ≥ −√κσ |∂Ω|
2b

ρ2

κ2
Θ2

0‖u0‖−4
4 (1 + o(1))

≥ − |∂Ω|
2‖u0‖44

Θ5/2
0

ρ2

κ
(1 + o(1)) . (14.101)

This finishes the proof of the lower bound in (14.6). ��

14.4.2 Upper bounds

We will give the upper bounds corresponding to (14.5) and (14.6). To get
a good upper bound, we can use an explicit test configuration. We choose
A = F (the external field). For ψ , we write (in the boundary coordinates
defined in Section F.1)
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ψ(s, t) = eiκHϕ+i[ζ]εs/ελg(t/ε)χ(t) . (14.102)

We will proceed to define the different parts of ψ .
The function χ is smooth and localizes to the boundary region. If t0 is

the constant from Section F.1 defining the boundary region, the function χ is
chosen to be nonincreasing and satisfying

χ ∈ C∞(R), χ(t) =

{
0 if t ≥ 3t0

4
,

1 if t ≤ t0
2
.

(14.103)

This localization near the boundary allows us to use the boundary coordinates
(s, t) .

We will write ζ for ζ(b−1) defined by (14.24). The symbol [ζ]ε denotes an
“integer part” of ζ :

[ζ]ε = max
{
z ∈ 2πε

|∂Ω|Z
∣∣z ≤ ζ − ε−1 |Ω|

|∂Ω|
}
. (14.104)

The term ε−1 |Ω|
|∂Ω| counterbalances the (topological) constant γ0 in (14.107)

below. Ideally, we would use ζ − ε−1 |Ω|
|∂Ω| instead of [ζ]ε , but in order for ψ to

be welldefined on Ω , we need it to be periodic in s . This is assured by using
[ζ]ε .

The constant λ is defined by

λ =

⎧⎨
⎩

1 if b < Θ−1
0 ,√

Θ0
‖u0‖4

4

ρ
κ

if b = Θ−1
0 .

(14.105)

The function g is, of course, either u0 or fζ,b−1 :

g =

{
fζ,b−1 , if b < Θ−1

0 ,

u0, if b = Θ−1
0 .

(14.106)

Let Ã = (Ã1, Ã2) be the vector potential F transformed to boundary coordi-
nates. Using Lemma F.1.1, we choose ϕ such that, with γ0 = |Ω|/|∂Ω| ,

(
Â1

Â2

)
:=
(
Ã1

Ã2

)
+∇(s,t)ϕ =

(
γ0 − t+ k(s) t

2

2
0

)
. (14.107)

With all these choices, ψ from (14.102) is defined and we can proceed to
calculate G[ψ,F] . Using Section F.1, we will calculate in boundary coordinates

G[ψ,F] =
∫

(1− tk(s))−1|(−i∂s + κHÃ1)ψ|2 ds dt

+
∫ {

|(−i∂t + κHÃ2)ψ|2 − κ2|ψ|2
}

(1− tk(s)) ds dt

+ 1
2
κ2

∫
|ψ|4(1− tk(s)) ds dt .
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Upon calculating G[ψ,F] , we therefore find

G[ψ,F] = λ2

∫
(1− tk(s))−1

∣∣∣(κHÂ1 + ε−1[ζ]ε)(g(t/ε)χ(t))
∣∣∣2ds dt

+ λ2

∫
(1 − tk(s)){∣∣∂t (g(t/ε)χ(t))

∣∣2 + κ2
∣∣g(t/ε)χ(t))

∣∣2} dsdt
+
κ2

2
λ4

∫ ∣∣g(t/ε)χ(t))
∣∣4(1− tk(s)) ds dt . (14.108)

We write this, after a change of variable in t, as

G[ψ,F] = I + II , (14.109)

with

I := λ2ε

∫ ∞

0

∫ |∂Ω|

0

∣∣∣(κHÂ1(s, ετ) + ε−1[ζ]ε)(g(τ)χ(ετ))
∣∣∣2

× (1− ετk(s))−1 ds dτ (14.110)

and

II := λ2ε

∫∫
(1− ετk(s))

{∣∣ε−1∂τ (g(τ)χ(ετ))
∣∣2 + κ2

∣∣g(τ)χ(ετ))
∣∣2} dsdτ

+
κ2

2
λ4ε

∫∫
(1− ετk(s))∣∣g(τ)χ(ετ))

∣∣4 ds dτ , (14.111)

with the same limits on the integrals as for I .
We start by estimating I . We keep in mind the fast decay of g ; cf.

Remark 3.2.10 and (14.20). This will allow us to replace χ by the constant 1
and (1 − ετk(s)) by 1 + O(ε) . We calculate, inserting the definitions of Â1

and γ0 ,

κHÂ1(s, ετ) + ε−1[ζ]ε

= ε−1

{
(ζ − τ) +

1
2
εk(s)τ2 +

(
[ζ]ε −

(
ζ − ε−1 |Ω|

|∂Ω|
))}

. (14.112)

The last term, [ζ]ε − (ζ − ε−1 |Ω|
|∂Ω| ) is uniformly bounded by ε . Using the fast

decay of g , we can therefore (uniformly) estimate all terms depending on s
and do the s integral in order to get

I = λ2ε−1|∂Ω|
∫ ∞

0

(ζ − τ)2|g(τ)|2 dτ +O(λ2) . (14.113)

Similarly, we can use the rapid decay of g on II to get

II = λ2ε−1|∂Ω|
∫ ∞

0

|g′(τ)|2 dτ − λ2κ2ε|∂Ω|
∫ ∞

0

|g(τ)|2 dτ

+
κ2

2
λ4ε

∫ ∞

0

|g(τ)|4 dτ +O(λ2 + λ4). (14.114)



236 14 Between HC2 and HC3 in Two Dimensions

Collecting the terms I and II , using λ ≤ 1 and the definition of ε , we find

G[ψ,F] ≤ ε−1|∂Ω|λ2

∫ {
|g′(τ)|2 + (τ − ζ)2|g(τ)|2

−κ
σ
|g(τ)|2 + λ2 κ

2σ
|g(τ)|4

}
dτ + Cλ2 , (14.115)

for some constant C > 0 .
In the case where b < Θ−1

0 , we have λ = 1 , κ/σ = b−1 + o(1) , g = fζ,b−1 ,
and we get, using (14.17),

G[ψ,F] ≤ −ε−1|∂Ω| 1
2b
‖fζ,b−1‖44 + o(ε−1) . (14.116)

We recognize (14.116) as being the upper bound corresponding to (14.5).
In the case where b = Θ−1

0 , we have g = u0 , ζ = ξ0 , and therefore, using
the L2-normalization of u0 ,

∫
|g′(τ)|2 + (τ − ζ)2|g(τ)|2 dτ = Θ0‖u0‖22 = Θ0 . (14.117)

Also, since σ = Θ−1
0 κ− ρ+O(1) ,

κ

σ
= Θ0 + Θ2

0

ρ

κ
+O

(
ρ2

κ2
+ κ−1

)
,

∫
κ

σ
|g(τ)|2 dτ = Θ0 + Θ2

0

ρ

κ
+O

(
ρ2

κ2
+ 1
)
,

∫
λ2 κ

2σ
|g(τ)|4 dτ =

1
2
λ2Θ0‖u0‖44

(
1 +O

(ρ
κ

))
.

Therefore, (14.115) becomes

G[ψ,F] ≤ ε−1|∂Ω|λ2

{
−Θ2

0

ρ

κ
+

1
2
λ2Θ0‖u‖44

+O
(
ρ2

κ2
+ κ−1 + λ2 ρ

κ

)}
+O(λ2) . (14.118)

Inserting the (optimal) value of λ from (14.105) yields the upper bound cor-
responding to (14.6).

14.5 Idea of the Proof of (14.4)

The proof of (14.4) is somewhat more complicated. This is mainly due to
the fact that Theorem 14.3.1 is only valid for λ1 near Θ0 , i.e., for b near
Θ−1

0 . When this is not the case, we do not know that minimizers have a



14.6 Notes 237

product structure in boundary coordinates. Therefore, the argument is more
indirect and we cannot give the constant Eb as explicitly as when b is near
Θ−1

0 . We only explain the main ideas of the proof and refer for details to the
original work of Pan [Pa2].

By the decay estimates of Chapter 12, superconductivity is a boundary
phenomenon in the parameter domain in question. Therefore, one can restrict
the functional to the boundary region where the boundary coordinates (s, t)
are defined. Also, by Proposition 11.4.4, one can replace the induced magnetic
vector potential A by the vector potential F generating the constant exterior
magnetic field. After a scaling of the coordinates, one finds the following func-
tional on cylinders [with notation as in (14.76)]:

ψ �→
∫ L

−L

∫ ∞

0

|(i∇+ ξ1 î2)ψ|2 − λ|ψ|2 +
λ

2
|ψ|2 dξ1 dξ2 , (14.119)

where ψ is restricted to periodic H1-functions ψ(−L, ξ2) = ψ(L, ξ2) . The
parameter λ equals (up to small errors) the quotient κ/σ , i.e., b−1 .

Define t(L, λ) to be the ground state energy of this functional. After the
scaling, the perimeter 2L of the cylinder is of the order of magnitude

√
κσ ,

i.e., very large. One therefore needs to prove the existence of a constant Cλ > 0
such that

t(L, λ)
2L

→ −Cλ, as L→∞ . (14.120)

In order to prove (14.120), one needs the ideas from Chapter 12 to prove
that the energy density is concentrated near the boundary of the cylinder.
The other input is a subadditivity inequality stating the existence of some
constant C0 such that

t(L1 + L2, λ) ≥ t(L1, λ) + t(L2, λ)− C0 , ∀L1, L2 . (14.121)

Backtracking the scalings and changes of coordinates, (14.4) follows from
(14.120). ��

14.6 Notes

1. The first mathematical contributions to the subject considered in this
chapter are again to be found in the work of Lu–Pan [LuP3]. Then
came various efforts to improve and clarify the initial contribution. Near
HC3(κ) , one should mention the work of Fournais–Helffer [FoH1] devoted
to the phenomenon of uniformization along the boundary when leaving
the third critical zone with lower exterior fields. The other important con-
tribution is then the paper by Pan [Pa2], which was later complemented
by the paper of Almog–Helffer [AlH]. We have chosen here to give a new
and improved presentation of what happens near HC3 .
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2. Theorem 14.1.1 is a combination of [Pa2, FoH1, AlH]. The first result
(14.4) was proven in [Pa2]. The identification of the constant for b close
to Θ−1

0 was carried out in [AlH]. The last energy asymptotics (14.6) was
proven in [FoH1] (see also [LuP3]) for a reduced parameter domain.

3. One may ask if (14.7) can be justified in the uniform ‖ · ‖∞-topology
and not just in an energy norm. That question has been pursued in [AlH].
Under a reasonable—but unproven—continuity hypothesis, they conclude
that there is an obstruction of topological nature to such a uniform con-
vergence.

4. The reference [Pa2] contains a number of interesting conjectures on the
minimizer.

5. We refer, for example, to [AbMR] for the implicit function theorem in
Banach spaces, which is used at the end of the proof of Proposition 14.2.2.

6. Standard references for bifurcation theory include [CrR] (bifurcation from
simple eigenvalues). The method is also called the Lyapunov–Schmidt
method.

7. Lemma 14.2.14 is a variant of a computation mentioned in [AlH] and
inspired by a calculation by Almog (personal communication).

8. One should also mention that coming from HC1(κ), other authors,
including Sandier, Serfaty, Aftalion, and Almog ([AfS], [Al6], [SaS2]),
have started to explain what is going on near the second critical field.
As known by physicists starting with A. A. Abrikosov, this is related
to the appearance of vortex lattices called Abrikosov lattices (see [BeR,
p. 100, Section 4.2] and also Section 16.5).
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On the Problems with Corners

15.1 Introduction

It has been observed in the physics literature that the transition field HC3(κ)
is significantly larger when the domain Ω has corners than for samples of the
same material but with a smooth cross section. In this chapter, we analyze
this phenomenon. It still results in the value of HC3(κ) being completely
determined by the corresponding linear spectral problem. The experimentally
observed change in HC3(κ) is due to a decrease of the first eigenvalue for
the magnetic Neumann problem when a domain has a corner. Eigenfunctions
corresponding to the lowest eigenvalues will be localized near the corners and
their leading-order asymptotics for a large field controlled by the model of an
infinite sector considered in Section 4.4.

In this chapter, for simplicity we will only consider polygons. The first
part of the chapter will develop the necessary (linear) spectral theory for the
magnetic Neumann operator with magnetic field on polygons. The second
part will be devoted to the analysis of the Ginzburg–Landau functional on
polygonal domains.

In the case of regular domains (without corners), one has the asymptotics
(cf. Theorem 13.2.2)

HC3(κ) =
κ

Θ0
+O(1) , (regular domains)

where the leading correction depends on the maximal curvature of the bound-
ary. The corresponding result for polygons, Theorem 15.3.7, gives the asymp-
totics

HC3(κ) =
κ

Λ1
+O(1) , (corners)

for some spectrally defined Λ1 < Θ0 .
We observe that the corners—which can be seen as points where the cur-

vature is infinite—change the leading-order term of HC3(κ) . Thus, there is a

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_15,  
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large parameter regime of magnetic field strengths between κ/Θ0 andHC3(κ) ,
where superconductivity in the sample must be dominated by the corners.

Since the conjectures in Section 4.4 have not yet been proven, we need
to add the technical Assumption 15.1.1. If Conjectures 4.4.1 and 4.4.3 were
established, this assumption would hold for any convex polygon.

We consider a bounded open subset Ω ⊂ R
2 whose boundary is a polygon.

We denote by
Σ = {s1, . . . , sN} (15.1)

the set of vertices of ∂Ω . Notice that for a polygon we always have N =
#Σ ≥ 3 . Recall that the ground state energies, μsect , for magnetic operators
in angular sectors were defined in (4.14). We will work under the following
assumption on the domain.

Assumption 15.1.1.
We assume that Ω is a convex polygon Ω such that if we denote by αs the
angle at the vertex s (measured toward the interior), then

μsect(αs) < Θ0 for all s ∈ Σ . (15.2)

We define
Λ1 := min

s∈Σ
μsect(αs) . (15.3)

When having a fixed numbering {s1, . . . , sN} of the vertices, we will also write
αj instead of αsj .

15.2 Large Field Analysis in Domains with Corners

15.2.1 Agmon estimates near corners for the linear problem

The proof of Theorem 8.2.4 goes through unchanged and yields that eigen-
states corresponding to low eigenvalues are exponentially localized near the
boundary:

Theorem 15.2.1.
Let δ > 0 .

Then there exist positive constants ε , C , and B0 such that
∫
eε

√
B dist(x,∂Ω)

{|ψB(x)|2 +B−1|pBFψB(x)|2} dx ≤ C‖ψB‖22 ,

for all B ≥ B0 and all eigenfunctions ψN of PNBF,Ω with eigenvalue λ(B)
satisfying

λ(B) ≤ (1 − δ)B .
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In order to prove exponential localization near the corners for minimizers
of Gκ,σ , we will need the operator inequality (15.4) (compare to Proposi-
tion 8.3.3).

Theorem 15.2.2.
Let δ > 0 . Then there exist constants M0 > 0 and B0 > 0 such that if
B ≥ B0 , then PNBF,Ω satisfies the operator inequality

PNBF,Ω ≥ UB , (15.4)

where UB is the potential given by

UB(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(μsect(αs)− δ)B if dist(x, s) ≤ M0√
B
,

(Θ0 − δ)B if dist(x,Σ) > M0√
B
,

(1− δ)B if dist(x, ∂Ω) > M0√
B
.

Proof of Theorem 15.2.2.
Suppose for simplicity that the corners {sj}Nj=1 are numbered such that sj
and sj+1 are connected by a smooth curve Γj . We will use a cyclic numbering
such that sN+1 = s1 .

For j = 1, . . . , N , choose a smooth, simply connected domain Ω̃j such that
Γj ⊂ ∂Ω̃j and such that Ω and Ω̃j lie (locally) on the same side of Γj .

Define λ̃(j)(B) := λN1 (BF, Ω̃j) . By Theorem 8.3.2, we have

λ̃(j)(B) = Θ0B +O(
√
B) . (15.5)

Let χ1 ∈ C∞(R) be nonincreasing and satisfy χ1(t) = 1 for t ≤ 1 , χ1(t) =
0 for t ≥ 2 .

Define, for M > 0 and j = 1, . . . , N ,

χ(j)
cor(x) := χ1(

√
B dist(x, sj)/M) .

Define also, for L,M > 0 and j = 1, . . . , N , the Lipschitz functions

χ
(j)
side(x) :=

√
1− χ2

1(
√
B dist(x, sj)/M)χ1(

√
BL dist(x,Γj)/M) .

We choose and fix L (depending only on the smallest opening angle αs of the
corners) such that the supports of the χ(j)

side are disjoint. Finally, we define the
Lipschitz function χint by

χ2
int = 1−

∑
j

(χ(j)
cor)

2 −
∑
j

(χ(j)
side)

2 .

Let φ ∈ H2(Ω) . The standard localization formula yields for some constant
C > 0 ,
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〈φ |PNBF,Ωφ〉 ≥
N∑
j=1

〈χ(j)
corφ |PNBF,Ω(χ(j)

corφ)〉 +
N∑
j=1

〈χ(j)
sideφ |PNBF,Ω(χ(j)

sideφ)〉

+ 〈χintφ |PNBF,Ω(χintφ)〉 − C B

M2
‖φ‖2 . (15.6)

We can compare the corner contributions with the infinite sector with
opening angle αj and get

〈χ(j)
corφ |PNBF,Ω(χ(j)

corφ)〉 ≥ Bμsect(αj)‖χ(j)
corφ‖22 . (15.7)

We can compare the contributions from the sides with Ω̃j and get, using
(15.5),

〈χ(j)
sideφ |PNBF,Ω(χ(j)

sideφ)〉 ≥ λ̃(j)‖χ(j)
sideφ‖22 ≥ (Θ0B − C

√
B)‖χ(j)

sideφ‖22 . (15.8)

Finally, the interior piece is estimated using Lemma 1.4.1:

〈χintφ |PNBF,Ω(χintφ)〉 ≥ B‖χintφ‖22 . (15.9)

Combining (15.6)–(15.9) gives Theorem 15.2.2 upon choosing M0 sufficiently
large. ��

One can use Theorem 15.2.2 to prove localization estimates near the cor-
ners for the linear problem. We do not give the details, since the proof is
a repetition of ideas from Chapter 8 and since we will give the proof of the
corresponding statement for the nonlinear problem. So we only state the main
result.

Theorem 15.2.3.
Let δ > 0 . Then there exist positive constants ε , C , and B0 such that

∫
eε

√
B dist(x,Σ)

{|ψB(x)|2 +B−1|pBFψB(x)|2} dx ≤ C‖ψB‖22 ,

for all B ≥ B0 and all eigenfunctions ψB of PNBF,Ω with eigenvalue λ(B)
satisfying

λ(B) ≤ (Θ0 − δ)B .

15.2.2 Eigenvalue asymptotics

Definition 15.2.4.
Let Ω be a bounded polygon. We denote by

• Λn the nth eigenvalue of the model operator ⊕s∈ΣP
N
F,Ωαs

,
• KΩ the largest integer K such that ΛK < Θ0 ,
• λn(B) the nth eigenvalue (counted with multiplicity) of the magnetic Neu-

mann Laplacian (−i∇+BF)2 on Ω .
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In particular,
Λ1 = min

s∈Σ
μ1(αs) .

Theorem 15.2.5.
Let n ≤ KΩ . Then

λn(B) = ΛnB +O(B−∞) . (15.10)

Proof.
We only give the main ideas and leave the details to the reader. Define
δ = minj<k |sj − sk| . Let χ ∈ C∞

0 (R) be a standard localization function:
χ(t) = 1 for |t| ≤ 1 and χ(t) = 0 for |t| ≥ 2 .

Let ψn be the eigenfunction corresponding to Λn and let Ωαs be the cor-
responding angular sector. We apply the scaling ψn(x) �→ Bψn(

√
Bx) and a

(magnetic) rigid motion in order to move the vertex of Ωαs to the correspond-
ing corner s of Ω . Furthermore, we localize near the corner s by multiplication
by χ(4 dist(x, s)/δ) . We denote the corresponding function φn ∈ L2(Ω) .

Using the exponential decay result, Theorem 4.4.4, ‖φn‖2 = 1+O(B−∞) ,
and {φ1, . . . , φn} span a linear space of dimension n . Furthermore, a calcula-
tion yields

〈φj | (−i∇+BF)2φk〉 = Λkδj,kB +O(B−∞). (15.11)

By Proposition A.1.3, this yields the upper bound in (15.10).
The proof of the corresponding lower bound follows from the inverse

procedure: Let {ψ1, . . . , ψn} be the first n eigenfunctions of PBF,Ω . By Theo-
rem 15.2.3, these functions are exponentially localized near the corners.
By localization with χ(4 dist(x,Σ)/δ) and applying the inverse scalings/trans-
lations we obtain a family of n functions {ψ̃1, . . . , ψ̃n} in ⊕s∈ΣL

2(Ωαs) . Again
using the min-max principle, Proposition A.1.3, we get the lower bound. ��

15.2.3 Monotonicity of λ1(B)

By Theorem 15.2.5, we have a complete asymptotics of λ1(B) . The proof of
Corollary 2.3.3 easily carries over to the case with corners. Therefore, we have

Proposition 15.2.6.
Let Ω be a bounded polygon. The limits of λ′1,+(B) and λ′1,−(B) as B → +∞
exist and are equal, and we have

lim
B→+∞

λ′1,+(B) = lim
B→+∞

λ′1,−(B) = Λ1 > 0 .

Therefore, B �→ λ1(B) is strictly increasing for large B .

Corollary 15.2.7.
Let Ω be a bounded polygon. The equation λ1(κσ) = κ2 in σ has a unique
solution σ(κ) for κ sufficiently large. Furthermore,

σ(κ) =
κ

Λ1
+O(κ−∞) .



244 15 On the Problems with Corners

15.2.4 The tunneling effect between corners

We describe heuristically the case of the n-regular polygon. We then show how
we arrive at an n× n interaction matrix with symmetry properties. We then
reproduce some of the pictures obtained by Bonnaillie-Noël–Dauge–Martin–
Vial.

The “proof” is based on various steps and is inspired by the analysis of
the spectrum of the Schrödinger operator with multiple wells in the presence
of symmetries.

Invariance by rotation

We consider the polygon to be placed with its center at the origin. The first
point is that we have a finite group Gn of symmetry generated by the rotation
by 2π/n around the origin in R

2 , which is denoted by gn. This group has n
elements gjn (j = 0, . . . , n−1) and we have gnn = 1 . The group acts on L2(Rn)
as follows:

(M(gn)u)(x) = u(g−1
n x) ,

where we verify that M(gn) commutes with (−i∇+BF)2 .

Selected orthonormal basis of En

The second point is that according to the previous sections, if we consider
μsect(2π/n) the ground state energy of the reference problem in a sector of
opening angle 2π/n , then we can show that there exist n eigenvalues expo-
nentially close to μsect(2π/n)B , the rest of the spectrum being at a distance
of order B/Cn for some constant Cn > 0 .

Moreover, all the corresponding eigenfunctions are exponentially localized
in the union of the n corners.

Lemma 15.2.8.
There exists an orthonormal basis (ej) (j = 1, . . . , n) of the eigenspace En(B)
corresponding to the n lowest eigenvalues such that

• ej is exponentially localized in a corner and exponentially close (in L2) to
the ground state of the corresponding corner,

• M(gn)ej = ej+1 .

The proof consists of starting with the eigenfunction ψB1 relative to a
corner s1 defined by

ψB1 (x) = B
1
4 exp i

B

2
(x ∧ s1)ψ1(B

1
2 (R−1

1 (x− s1))) .

Here ψ1 is the eigenfunction in the sector Ω2π/n andR1 is the rotation sending
this sector on the corner s1 of our polygon.

We now introduce f1 = χ1ψ
B
1 , where χ1 is cutoff function equal to one in

a neighborhood of the corner s1 and depending only on the distance to s1 .
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Due to the fact that ψ1 decays exponentially at ∞ in the infinite sector
by Theorem 4.4.4, this gives a good quasimode for (−i∇+BF)2 . We indeed
have

(−∇+ iBF)2f1 = μ1

(
2π
n

)
f1 +O

(
exp− 1

C
B

1
2 |x− s1|

)
. (15.12)

We then define fj by
fj = M(g)j−1f1 ,

and project these fj on the spectral space relative to the n-first eigenfunctions
to get a basis gj :

gj = Π0fj ,

Its Gram matrix 〈gj | gk〉 is exponentially close to the identity and we can
orthonormalize by the Gram–Schmidt procedure to get the orthonormal basis
ej . Throughout this construction we have respected the symmetries. In par-
ticular, we have

M(gn)ej = ej+1 , ∀j ∈ Z/nZ .

��
The interaction matrix

Once we have constructed the basis {e1, . . . , en} , we can introduce the inter-
action matrix, which is simply the matrix M of (−∇ + iBF)2 restricted to
En(B) in the basis (ej) . This permits us to identify En(B) with �2(Z/nZ) , and
the action of M(gn) simply becomes the shift operator τ whose corresponding
matrix is given by τj,k = δj+1,k .

The restricted HamiltonianM is a self-adjoint matrix that commutes with
τ . It can therefore be written as

M = λτ0 + I1τ +
n−1∑
k=2

Ikτ
k ,

for some coefficients Ik ∈ C . Observing that

τ∗ = τ−1 = τn−1 ,

the self-adjointness implies that

λ = λ̄ , and Ik = In−k for k = 1, . . . , n− 1 .

All these matrices share the property of being diagonalizable in the same
orthonormal basis of eigenfunctions uk (k = 1, . . . , n) whose coordinates in
our selected basis are given by

(uk)	 = ω(k−1)	
n ,

with
ωn := exp(2iπ/n) .
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Braid structure of the eigenvalues

Let us, for example, look at the case n = 3 . Then M takes the form

M =

⎛
⎜⎝
λ I1 I1

I1 λ I1

I1 I1 λ

⎞
⎟⎠ .

Writing I1 = ρ exp iθ , the eigenvalues are given by

λ1 = λ+ 2ρ cos θ , λ2 = λ+ 2ρ cos
(
θ +

2π
3

)
, λ3 = λ+ 2ρ cos

(
θ +

4π
3

)
.

It is easy to show that ρ decreases exponentially rapidly as a function of B .
This is a consequence of the exponential decay of ej away from the corner sj ,
permitting us to show the existence of C > 0 and B0 > 0 such that

ρ ≤ C exp− 1
C
B

1
2 , ∀B ≥ B0 .

But the asymptotics of ρ (or a lower bound) is not determined. The function
Bθ(B) , if chosen continuously as a function of B for avoiding jumps of 2π, is
expected to depend asymptotically onB in a linear way. So it is natural to look
at the map θ �→ (

cos θ, cos(θ + 2π
3

), cos(θ + 4π
3

)
)
. The graph of this function

immediately gives the right prediction for the braid structure of the first three
eigenvalues of (−∇+iBF)2 . This leads us to predict a crossing of eigenvalues,
hence a change of multiplicity, when cos θ = cos(θ + 2π

3
) , which leads to

θ = 2π/3 and θ = 5π/3 . Other crossings occur for cos(θ+ 2π
3 ) = cos(θ+ 4π

3 ) ,
i.e., for θ = 0 and θ = π and for cos(θ + 4π

3 ) = cos θ , which corresponds to
θ = 4π/3 and θ = π/3 . All together, we can predict crossings for θ = kπ/3
(k ∈ Z).

Remark 15.2.9.
We suspect that for B large, we have

θ ∼ 1
n
|Ω|B .

This leads us to predict that the values Bk where a crossing occurs satisfy

Bk+1 −Bk ∼ π

|Ω| . (15.13)

For n = 4, M assumes the form

M =

⎛
⎜⎜⎜⎝

λ I1 I2 I1

I1 λ I1 I2

I2 I1 λ I1

I1 I2 I1 λ

⎞
⎟⎟⎟⎠ .
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Figure 15.1. λn(B)/B as a function of B for the equilateral triangle and for n =
1, 2, 3 . Notice that Θ0 ≈ 0.59 is, as expected, larger than limB→+∞ λn(B)/B .

We note that I2 is real. Probably I2 (which corresponds to a tunneling effect
between opposite corners) is exponentially small in comparison with |I1| = ρ .
One can indeed suspect that I2 ≈ ρ2 . In any case, we have four eigenvalues
given by

λ1 = λ+ I2 + 2ρ cos θ , λ2 = λ− I2 + 2ρ cos
(
θ +

π

2

)
,

λ3 = λ+ I2 − 2ρ cos θ , λ4 = λ− I2 − 2ρ cos
(
θ +

π

2

)
.

Independently of I2 , crossings of λ1 and λ3 occur when θ = (2k+1)π
2

(k ∈ Z)
and crossings of λ2 and λ4 occur when θ = kπ (k ∈ Z).

When I2 = 0 , λ1 and λ2 cross for θ = 3π/4 and θ = 7π/4 . This crossing
is transverse but remains when I2/ρ is small at a close value of θ . Similarly,
λ3 and λ4 cross for the same value for I2 = 0 (so we have two double eigen-
values). The appearance of an I2 �= 0 keeps the two crossings but destroys
the phenomenon of appearance for the same value of θ of two distinct double
eigenvalues. Finally, one observes similar properties for θ = π/4 and 5π/4
with crossings between λ2 and λ3 and λ4 and λ1 .
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15.3 Nonlinear Analysis

15.3.1 Basic estimates

In the case of domains with corners, we deviate from the convention (10.2)
applied in the rest of the book and introduce

Gκ,σ(ψ,A) =
∫

Ω

|pκσAψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx

+ (κσ)2
∫

R2
| curlA− 1|2 dx . (15.14)

Here we have immediately restricted to the case of a constant exterior mag-
netic field. This functional is studied much in the spirit of our analysis of the
3D functional.

Let us define

F(x) :=
(
−x2

2
,
x1

2

)
. (15.15)

Contrary to the case of three dimensions, it is not easy to prove that mini-
mizers of G exist. This has to do with the lack of existence of a homogeneous
Sobolev inequality [like (D.16)] in 2D. We therefore have to restrict attention
to A such that A−F belongs to the space W 1,2

0,0 (R2,R2)—a somewhat smaller
space than Ḣ1

F . See (D.12) in Appendix D for the definition of W 1,2
0,0 (R2,R2) .

Theorem 15.3.1.
For all κ, σ > 0 , there exists a (possibly nonunique) minimizer of Gκ,σ defined
on (ψ,A) such that (ψ,A− F) ∈ W 1,2(Ω)×W 1,2

0,0 (R2,R2) .
Furthermore, minimizers are weak solutions of the Ginzburg–Landau

equations:

p2
κσAψ = κ2(1− |ψ|2)ψ in Ω , (15.16a)

curl2 A = − 1
κσ
�(ψ pκσAψ)1Ω in R

2 , (15.16b)

(pκσAψ) · ν = 0 on ∂Ω . (15.16c)

We can use the gauge invariance (see Lemma D.2.7) to impose the
condition

div A = 0 . (15.17)

This determines A up to an additive constant. We choose (again using the
gauge freedom) this constant such that (D.14) holds, i.e.,

‖A− F‖W1,2
0,0 (R2,R2) = inf

a∈R2
‖(A− F)− a‖W1,2

0,0 (R2,R2)

≤ C‖ curlA− 1‖2 , (15.18)

for some universal constant C .
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In this chapter, we will always study solutions of (15.16) under the addi-
tional gauge choice implied by (15.17) and (15.18). With this choice, curlA−1
controls the local W 1,2 norm by (D.15); in particular, there exists a C > 0
such that

‖A− F‖W1,2(Ω) ≤ C‖ curlA− 1‖L2(R2) . (15.19)

By a Sobolev inequality, this again implies that ‖ curlA − 1‖L2(R2) controls
‖A− F‖Lp(Ω) for all p <∞ .

Lemma 15.3.2.
Let Ω be a bounded polygonal domain and let (ψ,A) be a (weak) solution to
(15.16). Then curl(A− F) = 0 on R

2 \ Ω .

Proof.
The second equation, (15.16b), reads in the exterior of Ω (in the sense of
distributions), using the fact that curlF = 1 ,(

∂2 curl(A− F),−∂1 curl(A− F)
)

= 0 .

Thus, we see that curl(A − F) is constant on R
2 \ Ω . Since curl(A − F) ∈

L2(R2) , we get the conclusion. ��
Rereading the proofs from Chapter 10 with the new definition of the func-

tional [and using Lemma 15.3.2 in the proof of (15.22)], we now get the fol-
lowing results for polygonal domains:

• Solutions to (15.16) satisfy the inequality

‖ψ‖∞ ≤ 1 . (15.20)

• Solutions to (15.16) satisfy the inequalities (cf. Lemma 10.3.2)

‖pκσAψ‖2 ≤ κ‖ψ‖2 , (15.21)

‖ curlA− 1‖L2(R2) ≤ C1

σ
‖ψ‖2‖ψ‖L4(Ω) , (15.22)

for some constant C1 > 0 .
• There exists a constant C > 0 such that if

σ ≥ Cmax(1, κ) , (15.23)

then the normal state, (0,F) , is the unique solution to (15.16).

The statement of (15.23) in Chapter 10, i.e., Theorem 10.4.1, contains the
assumption that Ω is smooth. However, upon inspecting the proof, one realizes
that this assumption was only needed in order to know that B �→ λ1(B)
increases like constant × B for large values of B . This was established for
polygons in the previous section; therefore, Theorem 10.4.1 is also valid for
polygons.

We will mainly use (15.22) combined with (15.19) and a Sobolev inequality
to give a bound on the L4(Ω) norm:
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Lemma 15.3.3.
There exists a constant C > 0 such that, for all solutions (ψ,A) to (15.16),
we have

(κσ)2‖A− F‖2L4(Ω) ≤ C κ2 ‖ψ‖24 ‖ψ‖22 . (15.24)

15.3.2 Nonlinear Agmon estimates

Normal estimates

In the variable normal to the boundary we have the exponential estimate
of Theorem 12.5.4. The input to these estimates is the inequalities (12.4)–
(12.6), which by (15.20)–(15.22) are also valid for polygons. Therefore, Theo-
rem 12.5.4 also holds for solutions to (15.16). In particular, the “rough bound”
established in Theorem 12.3.1 holds for solutions to (15.16).

Rough bounds on ‖ψ‖22
For stronger fields, superconductivity is essentially localized to the corners.

Theorem 15.3.4 (Decay estimate on the boundary).
Suppose that Ω satisfies Assumption 15.1.1. For μ ∈ (Λ1,Θ0) , define

Σ′ = Σ′(μ) := {s ∈ Σ
∣∣μ1(αs) ≤ μ} and

b := inf
s∈Σ\Σ′

{μ1(αs)− μ} (15.25)

(in the case Σ = Σ′ , we set b := Θ0 − μ).
There exist κ0 > 0 , C > 0 , C′ > 0 , and M > 0 such that if (ψ,A)κ,σ is

a solution of (15.16) with

σ

κ
≥ μ−1, κ ≥ κ0 , (15.26)

then

‖ψ‖22 ≤ C

∫
{κ dist(x,Σ′)≤M}

|ψ(x)|2 dx ≤ C′

κ2
. (15.27)

Proof.
To prove this result, we follow the same procedure as in the proof of Theo-
rem 12.3.1.

Let δ = b/2 , and let M0 = M0(δ) be the constant from Theorem 15.2.2.
Let χ ∈ C∞(R) be a standard nondecreasing cutoff function,

χ = 1 on [1,∞[ , χ = 0 on ]−∞, 1/2[ ,
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and let λ = 2M0/
√
κσ . Define χλ : Ω → R , by

χλ(x) = χ

(
dist(x,Σ′)

λ

)
.

Then χλ is a Lipschitz function and suppχλ∩Σ′ = ∅ . Combining the standard
localization formula and (15.16), we find as previously

∫
Ω

|pκσA(χλψ)|2 dx−
∫

Ω

|∇χλ|2|ψ|2 dx

= �〈χ2
λψ, P

N
κσA,Ωψ〉 ≤ κ2‖χλψ‖22 . (15.28)

We need a lower bound to
∫
Ω
|pκσA(χλψ)|2 dx . Notice that

suppχλ ∩ ∂Ω �= ∅ ;

so we cannot use the basic lower bound from (1.32). Therefore, we will intro-
duce the constant magnetic field F for which we do have such an estimate,
namely Theorem 15.2.2. We can write

∫
Ω

|pκσA(χλψ)|2 dx ≥ (1− ε)
∫

Ω

|pκσF(χλψ)|2 dx

− ε−1

∫
Ω

(κσ)2|F−A|2(χλψ)|2 dx . (15.29)

Theorem 15.2.2 and the choice of λ imply that
∫

Ω

|pκσF(χλψ)|2 dx ≥
(

inf
s∈Σ\Σ′

μ1(αs)− δ
)
κσ‖χλψ‖22

=
(
μ+

b

2

)
κσ‖χλψ‖22 . (15.30)

We now have to give a lower bound to the second part of the right side of
(15.29). We can estimate

∫
Ω

(κσ)2|F−A|2|χλψ|2 dx ≤ (κσ)2‖A− F‖2L4(Ω) ‖χλψ‖24 . (15.31)

By Lemma 15.3.3 and (15.20),

(κσ)2‖F−A‖2L4(Ω) ≤ Cκ2σ2‖F−A‖2W1,2(Ω) ≤ C̃κ2‖ψ‖22 . (15.32)

Let us now estimate ‖χλψ‖24 . According to (12.20)—which is valid for so-
lutions to (15.16) by the discussion above—and the property of the cutoff
function 0 ≤ χλ ≤ 1 , we can deduce that
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‖χλψ‖24 ≤
C√
κ
. (15.33)

Inserting (15.30)–(15.33) in (15.29), we obtain
∫

Ω

|pκσA(χλψ)|2 dx ≥ (1− ε)
(
μ+

b

2

)
κσ‖χλψ‖22 − Cε−1κ3/2‖ψ‖22 . (15.34)

We insert (15.34) in (15.28). Then
[
(1− ε)

(
μ+

b

2

)
κσ − κ2 − Cε−1κ3/2

]∫
{dist(x,Σ′)≥λ}

|ψ|2 dx

≤ (Cε−1κ3/2 + ‖χ′‖2∞λ−2)
∫
{dist(x,Σ′)≤λ}

|ψ|2 dx . (15.35)

Assumption (15.26) leads to the lower bound

(1− ε)
(
μ+

b

2

)
κσ − κ2 − Cε−1κ3/2 ≥ b

4
κσ , (15.36)

as soon ε is small enough and κ large enough.
Once ε is fixed and with λ = 2M0/

√
κσ , we find

Cε−1κ3/2 + ‖χ′‖∞λ−2 ≤ c κσ . (15.37)

Combining (15.35)–(15.37), we deduce∫
{dist(x,Σ′)≥λ}

|ψ|2 dx ≤ C

∫
{dist(x,Σ′)≤λ}

|ψ|2 dx . (15.38)

It follows easily that

‖ψ‖22 ≤ (C + 1)
∫
{dist(x,Σ′)≤λ}

|ψ|2 dx .

Inserting the choice λ = 2M0/
√
κσ and the condition (15.26) on σ , this clearly

implies (15.27). ��
Exponential localization

We will use the rough bound on ψ to obtain exponential (Agmon) estimates
near the corners. The strategy is the same as in Section 12.5.

Theorem 15.3.5.
Suppose that Ω satisfies Assumption 15.1.1, let μ > 0 satisfy

min
s∈Σ

μ1(αs) < μ < Θ0 ,

and define
Σ′ := {s ∈ Σ

∣∣μ1(αs) ≤ μ} .
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There exist constants κ0 > 0 , M > 0 , C > 0 , and ε > 0 such that if

κ ≥ κ0 ,
σ

κ
≥ μ−1 ,

and (ψ,A) is a solution of (15.16), then
∫

Ω

eε
√
κσ dist(x,Σ′)

(
|ψ(x)|2 +

1
κσ
|pκσAψ(x)|2

)
dx

≤ C

∫
{x:√κσ dist(x,Σ′)≤M}

|ψ(x)|2 dx .

We will need the following lemma, which is similar to Lemma 12.5.1.

Lemma 15.3.6.
Suppose that Ω ⊂ R

2 satisfies Assumption 15.1.1. For μ ∈ (Λ1,Θ0) , define

Σ′ := {s ∈ Σ
∣∣μ1(αs) ≤ μ} and b := inf

s∈Σ\Σ′
{μ1(αs)− μ} (15.39)

(in the case Σ = Σ′ , we set b := Θ0 − μ).
There exists M0 > 0 such that if (ψ,A) is a solution of (15.16), then for

all φ ∈ C∞(Ω) such that dist(suppφ,Σ′) ≥M0/
√
κσ , we have

‖pκσAφ‖22 ≥ μκσ

(
1 +

b

4

)
‖φ‖22 , (15.40)

for κσ sufficiently large.

Proof.
Let δ = b/2 and let M0 = M0(δ) be the constant from Theorem 15.2.2.
We estimate, for φ ∈ C∞(Ω) such that dist(suppφ,Σ′) ≥M0/

√
κσ ,

‖pκσAφ‖22 ≥ (1− ε)
∫

Ω

|pκσFφ|2 dx− ε−1

∫
Ω

(κσ)2|F−A|2 |φ|2 dx . (15.41)

Using Theorem 15.2.2 and the support properties of φ , we have
∫

Ω

|pκσFφ|2 dx ≥
(

inf
s∈Σ\Σ′

μ1(αs)− δ
)
κσ‖φ‖22 =

(
μ+

b

2

)
κσ‖φ‖22 . (15.42)

Using the Cauchy–Schwarz inequality, Lemma 15.3.3, and Theorem 15.3.4, we
can bound the last term of (15.41) as follows:

∫
Ω

(κσ)2|F−A|2 |φ|2 dx ≤ (κσ)2‖A− F‖2L4(Ω) ‖φ‖24

≤ Cκ2‖ψ‖22‖φ‖24 ≤ C̃
∥∥|φ|∥∥2

4
. (15.43)
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We use the Sobolev inequality (12.30) in (15.43) and estimate ‖∇|φ|∥∥2
2
, using

the diamagnetic inequality, by ‖pκσAφ‖22 to obtain
∫

Ω

(κσ)2|F−A|2 |φ|2 dx ≤ CSob

(
η‖pκσAφ‖22 + η−1‖φ‖22

)
. (15.44)

Combining (15.41), (15.42) and (15.44), we deduce that
(

1 +
CSobη

ε

)
‖pκσAφ‖22 ≥

{
(1− ε)

(
μ+

b

2

)
κσ − CSob

εη

}
‖φ‖22 . (15.45)

We choose η = CSob/(ε2κσ) ; then (15.45) becomes
(

1 +
C2

Sob

ε3κσ

)
‖pκσAφ‖22 ≥ κσ

{
(1− ε)

(
μ+

b

2

)
− ε
}
‖φ‖22 . (15.46)

If we choose ε sufficiently small and independent of κ, σ (actually, since μ +
b/2 ≤ 1 , ε = b/8 will do), then (15.40) follows. ��

By standard arguments, Lemma 15.3.6 implies the Agmon estimates given
in Theorem 15.3.5.

Proof of Theorem 15.3.5.
The function t′(x) := dist(x,Σ′) defines a Lipschitz continuous function on
Ω . In particular, |∇t′| ≤ 1 . Let χ ∈ C∞(R) be a nondecreasing function
satisfying

χ = 1 on [1,∞[ , χ = 0 on [−∞, 1/2[ .

Define the function χM on Ω by χM (x) = χ(t′(x)
√
κσ/M) . By Lemma 15.3.6,

there exists β > 0 such that if M,κσ are sufficiently large, then
∫

Ω

∣∣pκσA(eε√κσt′χMψ)∣∣2 dx ≥ μκσ(1 + β)‖eε
√
κσt′χMψ‖22.

Using the localization formula and the assumption σ/κ ≥ μ−1 , there exists
some constant C independent of κ, σ, ε , and M such that

βμ‖eε
√
κσt′χMψ‖22 ≤ Cε2‖∇t′‖2∞‖eε

√
κσt′χMψ‖22 (15.47)

+
C‖∇t′‖2∞
M2

∫
Ω

e2ε
√
κσt′(x)

∣∣∣∣χ′
(
t′(x)

√
κσ

M

)
ψ(x)

∣∣∣∣
2

dx .

We achieve the proof of Theorem 15.3.5 with arguments similar to the ones
of the proof of Theorem 9.4.1. ��
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15.3.3 Equality of critical fields

In order to define the critical field HC3(κ), one runs into the same problems of
a priori non-uniqueness as in the smooth case. Thus, we can define upper and
lower fields as in (13.1), (13.2) and also local versions as in (13.9). We will
prove that in the case with corners these definitions also coincide for large
values of κ .

Theorem 15.3.7.
Suppose that Ω satisfies Assumption 15.1.1. Then there exists κ0 > 0 such
that if κ ≥ κ0 , then the equation

λ1,Ω(κσ) = κ2

has a unique solution H = H loc
C3

(κ) . Furthermore, if κ0 is chosen sufficiently
large, then for κ ≥ κ0 , the critical fields defined in (13.1), (13.2), and (13.9)
coincide and satisfy

HC3
(κ) = HC3(κ) = H loc

C3
(κ) . (15.48)

Finally, the critical field satisfies

HC3(κ) =
κ

Λ1
+O(κ−∞), for κ→∞ . (15.49)

Proof of Theorem 15.3.7.
By Corollary 15.2.7 it only remains to prove (15.48). Actually, we will prove
that Proposition 13.1.7 remains true for domains with corners with essentially
unchanged proof. As in the proof of that proposition, the only nontrivial point
is the inclusion (for large κ)

N sc(κ) ⊆ N loc(κ) .

We now let (ψ,A) be a nontrivial solution to (15.16). Since we have (15.23)
and the leading term of the asymptotics of λ1(B), it clearly suffices to consider
the case where

C−1 ≤ κ

σ
≤ Λ1 + ε ,

for some C > 0 and ε > 0 (small). Also, by Lemma 15.3.3,

‖A− F‖L4(Ω) ≤ C

σ
‖ψ‖4 ‖ψ‖2 . (15.50)

By Corollary 12.5.5, we find, for some C > 0 ,

‖ψ‖22 ≤ C
‖ψ‖24
(κσ)

1
4
. (15.51)

With these estimates established, the proof of Proposition 13.1.7 goes through
unchanged. ��
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15.3.4 Energy asymptotics in corners

Finally, we discuss leading-order energy asymptotics in the parameter regime
dominated by the corners, i.e., 1 � σ − κ/Θ0 ≤ HC3(κ) − κ/Θ0 . The result
below, Theorem 15.3.8, can be seen as a partial converse statement to Theo-
rem 15.3.5 in that all corners that are spectrally permitted will contribute to
the leading-order of the ground state energy.

We recall that the angular sectors Ωα were defined in Section 4.4. Let
α ∈ ]0, π[ be such that μsect(α) < Θ0 . Define, for μ1, μ2 > 0 , the following
functional Jαμ1,μ2

:

Jαμ1,μ2
[ψ] =

∫
Ωα

{
|(−i∇+ F)ψ|2 − μ1|ψ|2 +

μ2

2
|ψ|4
}
dx , (15.52)

with domain {ψ ∈ L2(Ωα) | (−i∇ + F)ψ ∈ L2(Ωα)} . Define also the corres-
ponding ground state energy

Eαμ1,μ2
:= inf

ψ
Jαμ1,μ2

[ψ] .

The main result on the ground state energy of the Ginzburg–Landau func-
tional in the parameter regime dominated by the corners is the following.

Theorem 15.3.8.
Suppose κ/σ(κ) → μ ∈ R+ as κ → ∞ , where μ < Θ0 . Let (ψ,A) =
(ψ,A)κ,σ(κ) be a minimizer of Gκ,σ(κ) .

Then

Gκ,σ(κ)[ψ,A]→
∑
s∈Σ

Eαs
μ,μ , (15.53)

as κ→∞ .

Remark 15.3.9.
Proposition 15.3.10 states that Eαs

μ,μ = 0 unless μ1(αs) < μ . So only cor-
ners satisfying this spectral condition contribute to the ground state energy, in
agreement with the localization estimate from Theorem 15.3.5.

Basic properties

We give the following proposition without proof, since it is completely analo-
gous to the similar statements for Gκ,σ .

Proposition 15.3.10.
The map ]0,Θ0[×R+ � (μ1, μ2) �→ Eαμ1,μ2

is continuous.
Suppose that μ1 < Θ0 . If μ1 ≤ μsect(α) , then Eαμ1,μ2

= 0 and ψ = 0 is a
minimizer.

If μ1 > μsect(α) , there exists a nontrivial minimizer ψ0 of Jαμ1,μ2
. Fur-

thermore, there exist constants a and C > 0 such that∫
Ωα

e2a|x|
(|ψ0(x)|2 + |(−i∇+ F)ψ0|2

)
dx ≤ C . (15.54)
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Finally, ψ0 satisfies the uniform bound,

‖ψ0‖∞ ≤ μ1

μ2
.

One easily verifies the following scaling property.

Proposition 15.3.11.
Let T > 0 . Then the functional

ψ �→
∫

Ωα

|(−i∇+ T−2F)ψ|2 − μ1T
−2|ψ|2 +

μ2

2
T−2|ψ|4 dx ,

defined on {ψ ∈ L2(Ωα)
∣∣ (−i∇+ T−2F)ψ ∈ L2(Ωα)} , is minimized by

ψ̃0(y) = ψ0

( y
T

)
,

where ψ0 is the minimizer of Jαμ1,μ2
.

In particular,

inf
ψ

∫
Ωα

|(−i∇+ T−2F)ψ|2 − μ1T
−2|ψ|2 +

μ2

2
T−2|ψ|4 dx = Eαμ1,μ2

.

By the continuity of Eαμ1,μ2
, we get the following consequence.

Proposition 15.3.12.
Suppose that limκ→+∞ κ/σ(κ) := μ < Θ0 and that d1(κ) and d2(κ) → 1 as
κ→∞ . Then the ground state energy of the functional

ψ �→
∫

Ωα

|pκσFψ|2 − d1(κ)κ2|ψ|2 + d2(κ)
κ2

2
|ψ|4 dx (15.55)

tends to Eαμ,μ as κ→∞ .

Proof of Theorem 15.3.8.
Upper bounds
We indicate here how to obtain the inequality

inf
(ψ,A)

Gκ,σ(κ)[ψ,A] ≤
∑
s∈Σ

Eαs
μ,μ + o(1) , (15.56)

which is the “easy” part of (15.53).
The inequality (15.56) follows from a calculation with an explicit trial

state. The test functions will be of the form A = F and

ψ(x) =
∑
s∈Σ

ψs(Φs(x)), with ψs(y) = eiκσηsψαs
μ,μ(

√
κσy)χ(|y|) .

Here ηs ∈ C∞(R2,R) is a gauge function, χ is a standard cutoff function, χ = 1
on a, neighborhood of 0 , suppχ ⊂ D(0, r) , with r = 1

2 minj<k |sj − sk| , and
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ψαs
μ,μ is the minimizer of Jαs

μ,μ . The coordinate change Φs is the rigid motion
mapping Ω ∩D(s, r) to Ωαs ∩D(0, r) .

The proof of (15.56) is a straightforward calculation similar to the lower
bound (given below) and will be omitted. Notice though that the decay
estimates (15.54) for the minimizers ψαs

μ,μ imply that the function defined
by ψαs

μ,μ(
√
κσy)[1− χ(|y|)] is exponentially small.

Lower bounds
Let (ψ,A) be a minimizer of Gκ,σ . Define χ1 ∈ C∞(R) to be a standard
localization function, χ1 is nonincreasing, χ1(t) = 1 for t ≤ 1 , χ1(t) = 0 for
t ≥ 2 .

For s ∈ Σ , let

φs(x) = χ1

(
4 dist(x, s)

δ

)
,

where δ := min j < k|sj − sk| .
Notice that φsφs′ = 0 , when s �= s′ . Therefore, using Theorem 15.3.5, the

localization formula, and the estimate ‖ψ‖∞ ≤ 1 , we can write

Gκ,σ[ψ,A] ≥
∑
s∈Σ

Gκ,σ[φsψ,A] +O(κ−∞) (15.57)

=
∑
s∈Σ

∫
Ω

|pκσA(φsψ)|2 − κ2|φsψ|2 +
κ2

2
|φsψ|4 dx+O(κ−∞) .

By Lemma 15.3.3, (15.20), and Theorem 15.3.5, we get

(κσ)2‖A− F‖24 ≤ C′′κ2‖ψ‖22 ≤ C′′′ . (15.58)

Thus, we can estimate
∫

Ω

∣∣pκσA(φsψ)
∣∣2 dx

≥ (1− κ− 1
2 )
∫

Ω

∣∣pκσF(φsψ)
∣∣2 dx− κ

1
2 (κσ)2‖A− F‖24‖φsψ‖24

≥ (1− κ− 1
2 )
∫

Ω

∣∣pκσF(φsψ)
∣∣2 dx− Cκ−

1
2 , (15.59)

where we used the inequality (consequence of Theorem 15.3.5)

‖φsψ‖24 ≤
√∫

Ω

|ψ|2 dx ≤
√
C

∫
{dist(x,Σ)≤Mκ−1}

dx ≤ C′κ−1 .
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Combining (15.59) and (15.57), we find

Gκ,σ[ψ,A] ≥ (1− κ− 1
2 )
∑
s∈Σ

∫
Ω

{
|pκσF(φsψ)|2 − κ2

1− κ− 1
2
|φsψ|2

+
κ2

2(1− κ− 1
2 )
|φsψ|4

}
dx+O(κ−

1
2 ) . (15.60)

For fixed s ∈ Σ (and using the fact that Ω is a polygon), the integral is—up to
a rigid motion and a gauge transformation—of the type considered in (15.55).
We therefore get by Proposition 15.3.12:

Gκ,σ(κ)[ψ,A] ≥
∑
s∈Σ

Eαs
μ,μ + o(1) .

This finishes the proof of Theorem 15.3.8. ��

15.4 Notes

1. We have chosen for simplicity to present the case of polygons. This permits
us to directly implement the results on infinite sectors. For results on more
general domains with corners, see below.

2. The observation that the superconductivity first appears at the corner for
type II superconductors was mentioned in the physics literature. Semi-
rigorous results were obtained by Molshalkov et al. We refer, for example,
to [BeR, Section 4.3.6].

3. At the mathematical level, Jadallah, Rubinstein, and Sternberg first
exposed the corner effect for HC3(κ) in [JaRS]. Further results were
obtained by Jadallah [Ja] and Pan [Pa1]. Here we mainly refer to con-
tributions by Bonnaillie [Bon1, Bon2], Bonnaillie-Noël–Dauge [BonD],
Bonnaillie-Noël–Dauge–Vial [BonDMV], and Bonnaillie-Noël–Fournais
[BonF]. In particular, an analysis similar to the present chapter, but for
general curvilinear domains instead of polygons, is done in [BonD], [BonF].

4. The linear spectral problem has been studied in depth in the case of
corners in [Bon1, Bon2, BonD].

5. The tunneling effect is discussed in the thesis of Bonnaillie [Bon1].
She implements ideas that were developed for the Schrödinger operator
in [HeS1, HeS2]. This was further discussed in Bonnaillie-Noël–Dauge
[BonD] and numerically in the work by Bonnaillie-Noël–Dauge–Martin–
Vial [BonDMV]. It is rather surprising that the numerical system MÉLINA
permits one to follow exponentially close eigenvalues so accurately.
The computations for the triangle were done for us more recently by
Bonnaillie-Noël.

6. One can do the same kind of discussion about the tunneling in a case of
regular domains with a Gn symmetry. Then we can play with the points of
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maximal curvature assuming that they are nondegenerate and exchanged
by the rotation.

7. For more general domains, the nonlinear part has been carried out in
[BonF].

8. The question about the existence of minimizers has been studied by several
authors; see [Gio], [GioS], and references therein. The solution is to use
the correct variational space W 1,2

0,0 . Some of these technical points are
discussed briefly in Section D.2.3.
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On Other Models in Superconductivity and
Open Problems

In this chapter, we will briefly describe some questions for which the tech-
niques developed in this book have been (or could be) useful for understanding
some asymptotic regimes for other problems occurring in superconductivity.
We will also discuss some open questions.

16.1 On Josephson’s Junctions

In [Kac3] (extending previous results of [ChDG, Gio, GioJ]), Kachmar ana-
lyzes the situation of two open sets Ω1 and Ω2—Ω1 representing the super-
conducting material and Ω2 surrounding Ω1 and playing the role of a metallic
material. Mathematically, this corresponds to adding to the previously intro-
duced functional G (used with Ω = Ω1) a second functional associated with
Ω2 taking the form

GJΩ2
(ψ,A) :=

∫
Ω2

{
1
m
|∇κσAψ|2 + aκ2|ψ|2 + μσ2| 1

μ
curlA− 1|2

}
dx ,

with a > 0 , m > 0 , and μ > 0 .
In physics, the existence of a surrounding material is often modeled

through the de Gennes boundary condition—instead of studying the
Ginzburg–Landau equations with Neumann boundary condition, one replaces
the first equation in (10.8b) by an equation of the type (1.56). A rather
complete analysis of the modified functional has been performed. This new
situation requires

• a spectral analysis of new models in dimension 1 ,
• a semiclassical analysis of problems with a transmission condition at the

boundary between Ω1 and Ω2 .

Through this approach, Kachmar could also obtain an alternative explanation
of the de Gennes condition. In certain parameter regimes, the results coincide

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, 
© Springer Science+Business Media, LLC 2010DOI 10.1007/978-0-8176-4797-1_16,  
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with those obtained for the much studied “usual” Ginzburg–Landau model,
including in particular the two-term expansion for the upper critical field
obtained by Helffer–Pan [HeP1] and the identification of the critical field HC3

[FoK1].

16.2 Analogy with Liquid Crystals

Based on de Gennes’ theory of analogies between liquid crystals and super-
conductivity, Pan introduced in [Pa5] a critical wave number Qc3 (which is an
analog of the upper critical field HC3 for superconductors) and predicted the
existence of a surface smectic state, which is supposed to be an analog of
the surface superconducting state. It is then interesting to analyze the exis-
tence of the surface smectic state of liquid crystals. We refer here to recent
contributions, including [BaCLP], [Al7], and [HeP2, HeP3], and references
therein.

Let us recall the Landau–de Gennes functional of liquid crystals [dGeP,
dGe4]. After some simplifying assumptions, this energy functional takes the
form

E [ψ,n] =
∫

Ω

{
|∇qnψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

+K1| divn|2 +K2|n · curln + τ |2 +K3|n× curln|2
}
dx ,

(16.1)

where Ω is the region occupied by the liquid crystal, ψ is a complex-valued
function called the order parameter, n is a real vector field of unit length
called the director field, q is a real number called the wave number, τ is a real
number referring to the chiral pitch in some liquid crystal materials, K1 , K2 ,
and K3 are positive constants called elastic coefficients, and κ is a positive
constant that depends on the material and temperature. As in [Pa5], we call
κ the Ginzburg–Landau parameter of the liquid crystal.

We are interested in the properties of the global minimizers of E without
prescribing boundary data for the director fields. As explained in [Pa5], the
natural space for the variational problems of (16.1) is

V(Ω) = H1(Ω,C)× V (Ω, S2) ,

where1

V (Ω,R3) = {u ∈ L2(Ω,R3) : div u ∈ L2(Ω), curlu ∈ (L2(Ω,R3))3},
V (Ω, S2) = {n ∈ V (Ω,R3) : |n(x)| = 1 a.e. in Ω}. (16.2)

1 The space V (Ω, R3) was denoted by H(curl, div, Ω) in Dautray–Lions [DaL].
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V (Ω,R3) is a Hilbert space with the inner product and norm defined by

(u,v)V =
∫

Ω

div u div v + curlu · curlv + u · v dx ,

‖u‖V =
{‖ divu‖22 + ‖ curlu‖22 + ‖u‖22

} 1
2 .

(16.3)

Define
C(K1,K2,K3, κ, q, τ) = inf

(ψ,n)∈V(Ω)
E [ψ,n] .

We assume that Ω is a bounded, simply connected domain in R
3 with smooth

boundary.
According to de Gennes’ theory [dGe3, dGeP], ψ = 0 for a nematic phase,

and ψ �= 0 for a smectic phase. Hence, a nontrivial minimizer (ψ,n) of (16.1)
where ψ �= 0 describes a smectic state, and a trivial critical point (0,n) cor-
responds to the nematic state.

The set of trivial critical points of E is given by (0,n) with n ∈ C(τ) ,
where n ∈ C(τ) if and only if n ∈ V (Ω, S2) and n satisfies

div n = 0 , n · curln + τ = 0 , n× curln = 0 . (16.4)

For a unit-length vector field, (16.4) is equivalent to

div n = 0 , curln + τn = 0 . (16.5)

The set C(τ) of all solutions of (16.5) in V (Ω, S2) consists of the vector fields

NQ
τ ≡ QNτ (Qtx) , Q ∈ SO(3) , (16.6)

where
Nτ (x1, x2, x3) = (cos τx3, sin τx3, 0) . (16.7)

One can consequently first consider the reduced Ginzburg–Landau func-
tional GA , associated with a magnetic potential A , which is defined on H1(Ω)
by

GA[ψ] =
∫

Ω

|∇Aψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx . (16.8)

For convenience, we also write GA[ψ] as G[ψ,A] . Define

cg = inf
n∈C(τ)

inf
ψ∈H1(Ω,C)

Gqn[ψ] = inf
n∈C(τ),ψ∈H1(Ω,C)

G[ψ, qn] . (16.9)

It can be shown that cg is a good approximation of the minimal value of E for
large Kj ’s. Then one can analyze the behavior of the minimizers of G . There
are mainly two cases.

• When τ = 0 , we meet essentially the case that was analyzed in this book:
analysis of the spectrum of a magnetic Neumann Laplacian with constant
magnetic field, with as new point the question of minimizing over the
direction of the external field. So this supposes there is a uniform control
with respect of this external vector field. This is not a problem in the
strictly convex case.
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• When τ �= 0 , we already have a problem in order to obtain the optimal
asymptotics. The magnetic field is no longer constant but only of con-
stant length. A partial analysis of this has been carried out in [Pa9] and
continued in [HeP2].

16.3 Perforated Structures

In this book, we have assumed for simplification that our domains Ω were
simply connected. There is an extensive literature about the phenomena aris-
ing when holes are present. In the linear part, we have mentioned some specific
phenomena due to the Aharonov–Bohm effect. We do not have room here to
describe all these phenomena (Little–Parks effects, antidot lattices, supercon-
ducting micronetworks, etc.), and we prefer to refer to the book [BeR] edited
by Berger and Rubinstein, which is devoted to an overview of what is known,
mathematically and physically, on this subject (see also [JiZ],[AlB]). There
are still many open questions related to the discussions in that book. We refer
to the paper by Frank [Fr1] for preliminary results on antidot lattices.

16.4 Pinning

Here we just present the kind of problems one can find (following a paper of
[CaR]). Similar considerations also appear in [KiZ].

When considering the presence of impurities in the superconducting
sample, one usually introduces the slightly modified energy functional

Ga(ψ,A) =
∫

Ω

|(∇+ iκA)ψ|2 + κ2| curlA− β|2 +
κ2

2
(a(x) − |ψ|2)2dx ,

(16.10)

where a is a positive smooth (to simplify) function on Ω with values close
to 1. This modified Ginzburg–Landau functional has been studied by many
authors in the context of vortex pinning. The idea is that if a mixed state ψ
presents a vortex, i.e., a point where ψ vanishes, then the vortex has to be
situated in the region where a < 1 (see [Ru, Section 3]). This “pinning” of
the vortices is important in applications, for their implication in the loss of
energy.

In the spirit of the present book, we are interested in a different regime.
Our concern is to consider the case where a is slightly less than 1 in Ω , but that
there exists a small region where it reaches the value 1. Then we expect that
the superconductivity appears in that region, and we would like to have some
knowledge on the corresponding critical field. This model can be understood
as a study of the nucleation phenomenon (the onset of superconductivity) for
a superconducting sample of bad quality. As in the case a = 1 , we have to
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consider the linearization of the Euler–Lagrange equation for the functional
Ga at ψ = 0 , and we obtain (with curlF = β)

{−(∇+ iσκF)2ψ = κ2a(x)ψ , in Ω ,

(∇+ iσκF)ψ · ν = 0 , on ∂Ω .
(16.11)

We define h = 1/κσ , and write (16.11) as
{

(h∇+ iF)2ψ + λ
σ2 V (x)ψ = 1−λ

σ2 ψ , in Ω ,

(h∇+ iF)ψ · ν = 0 , on ∂Ω ,
(16.12)

where we have used the notation

a = (1− λ)− λV = 1− λ(1 + V ) . (16.13)

Here V is a smooth function on Ω with values in [−1, 0] , close to 0 in almost
all of Ω , with a unique minimum in Ω̄ , and λ > 0 is a real constant that mea-
sures the amplitude of the fluctuations of a below the value 1 . At least when
this minimum is attained in Ω , one meets a problem similar to the one solved
in [HeS4] where the main effect is due to the electric potential. One can also
play with the size of λ by permitting it to be h-dependent. Hence, we get
localization near minima of the electric potential, and surface superconduc-
tivity is destroyed by the pinning. There is an extensive literature on the
subject of pinning, but it is mainly devoted to the analysis of vortices, which
is outside the scope of the present book. We refer to [AfSS, Af2] and references
therein.

16.5 Abrikosov Lattices

Abrikosov’s theory [Ab] about lattices was predictive in the sense that at
the time there was no experiment to motivate the theory. The main point
was that one can consider the Schrödinger operator with constant magnetic
field B associated to a lattice Γ in R

2 and discuss the ground state energy of
the operator restricted to a space L2(R2/Γ, F ) , where F is a one-dimensional
fiber bundle over R

2/Γ . A quantization condition of the magnetic field appears
automatically, and the basic question—which should explain some phenomena
in superconductivity—becomes to minimize the quantity

I :=
∫

R2/Γ

|φ1(x, y)|4 dxdy ,

over the various lattices of fixed area, where φ1 is the normalized ground state.
Abrikosov first wrongly predicted that the square lattice was minimizing

before realizing that the hexagonal lattice (in another terminology, the tri-
angular lattice) gives a lower energy. As in (13.5) and (13.43), the quantity
appears in the analysis of a bifurcation (see [Od, Du1, Du2, Ay1, Ay2, BGT]).
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One of the basic tools is to look for solutions (ψ,A) of the Ginzburg–
Landau system that are gauge periodic in the sense that given a lattice Γ in
R

2 , for any γ ∈ Γ , there exists φγ such that

ψ(x+ γ) = exp iφγ(x)ψ , A(x+ γ) = A(x) +∇φγ(x) .

Important references about the minimization of I over the lattices Γ with
fixed area are [KRA, Mon1, Al8] and in a different context [NoV, AfBN].

The Abrikosov lattices play an important role in the understanding of the
vortex structure near HC2(κ) (see [Al6, AfS]).

16.6 Open Problems

16.6.1 Spectral theory

1. For 1D problems, one open problem (see Section 3.3) is to study the
infimum over the parameter ρ of the lowest eigenvalue of the generalized
Montgomery operator D2

t +(tk+1−ρ)2 . It can be shown that this infimum
is attained in at least one point, but it is expected to be unique and
nondegenerate. This problem was recently settled for k = 1 (the original
Montgomery model) but remains open for k > 1 (see [He10] and references
therein).

2. For 2D problems, some of the most attractive open problems are the
conjectures 4.4.1, 4.4.2 and 4.4.3 concerning the ground state energy for
infinite sectors.

3. It would be interesting to have fine results in the case of the ball in R
3.

Part of this is contained in [FoP].
4. The corresponding three-dimensional problems, i.e., the analysis of mag-

netic models in 3D wedges, are widely open (see [Pa1] for first results).
A motivation for this analysis could come from the theory of liquid
crystals.

5. The precise quantitative analysis of the tunneling effect is open in the two
main cases: case of corners and case of regular domains in dimension 2
with isolated points of nondegenerate maximal curvature. In particular,
one would like to explain the effect of tunneling on the location of the
eigenfunctions and on the multiplicity. This question is presented in [Pa8]
(Problem 2.2.6). It could be useful to reduce the question to a nonlinear
spectral problem for a pseudodifferential operator on the boundary.

6. Another problem is to extend all the fine theory in dimension 3 pro-
posed for constant magnetic fields to magnetic fields of constant norm.
This problem appears naturally in the theory of liquid crystals, where the
magnetic field satisfies the additional condition curlB = −τB . In the
constant magnetic field case, the determination of a third term in the
expansion (9.18) (or of a complete expansion) should be done in the spirit
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of (8.54) (for the 2D case) under the assumption that the function γ̃0(x)
introduced in (9.20) admits a unique minimum on Σ . In particular, this
will permit us to estimate the splitting between the first eigenvalue and
the second one. Some analysis of this question has been carried out in
[Pa5, Pa7, Pa9] and [HeP2].

7. Even in the case of constant magnetic field there remains quite some work
in three dimensions. For example, one may ask if monotonicity of B �→
λ1(B) holds for sufficiently large B (case of general smooth Ω) without
any additional conditions. A notable special case where this monotonicity
has not yet been established is for Ω equal to a ball; however, that will be
contained in the work [FoP].

8. In the case with nonconstant magnetic field, other natural questions occur
in dimension 3 around the second term in formula (9.3) in Theorem 9.1.1.
Here there are two natural cases depending on the comparison between
infx∈Ω |β(x)| and infx∈∂Ω ς(ϑ(x))|β(x)| . In each case, the most generic
assumption is to assume that the infimum is attained at a unique point and
that the corresponding function |β(x)| or ς(ϑ(x))|β(x)) has nondegenerate
minima. This problem is considered in [Ra3].

9. Finally, as mentioned in Problem 2.2.9 in [Pa8], the question of estimating
the ground state energy in the case of weakly smooth magnetic fields [for
example, with β ∈W 1,2(Ω) or β ∈ L2(Ω)] is open.

16.6.2 Nonlinear theory

In the nonlinear part, some of the most attractive open problems are related
to the analysis described in Chapter 14.

1. Can one extend the validity of Proposition 14.2.13 to all λ ∈ [Θ0, 1[ ?
This is important since it would immediately give an answer to the next
question.

2. Does the identity (14.5) hold for all b ∈ ]1,Θ−1
0 [ ?

3. A related question is to describe the solutions to the nonlinear model
problem

−ΔFψ = λ(1 − |ψ|2) in R
2
+ , ν · ∇ψ = 0 on ∂R

2
+ , (16.14)

where we choose F = (−x2, 0) .
The problem is to determine if all the bounded solutions to (16.14) have
the form eiζx2f(x1) , where f is a solution to

−f ′′(t) + (t+ ζ)2f = λ(1− |f2|)f on R
+, f ′(0) = 0 . (16.15)

This is [Pa2, Conjecture 2].
4. One may ask if (14.7) can be justified in the uniform ‖ · ‖∞ topology

and not just in an energy norm. Negative indications are given in [AlH].
However, the question remains unclarified (see also Note 3 to Chapter 14).
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5. It would be useful to carry through the analysis similar to Chapter 14 in
the three-dimensional case.

6. The next problem is to improve the understanding of the emergence of
the Abrikosov lattices. This is on the borderline between the scope of the
present text and [SaS3], in which Abrikosov lattices are shown to appear
for magnetic field strengths near (and below) HC2 . More precisely, let
us suppose that σ = bκ for some b ∈ ]1 − ε, 1[ (ε small). Is it true that,
as κ→∞ , the zeroes of a Ginzburg–Landau minimizer ψ will (approxi-
mately) be organized in a regular lattice. One could even take this problem
to the next level by asking whether the lattice is the hexagonal one.

7. A very different open problem is to follow the bifurcations from the normal
state when σ is decreased below HC3 . The work [Sa] is in this direction
but considers a different asymptotic regime.

8. In the case of the disc, the analysis of the bifurcation for values of κσ
giving double eigenvalues is also open (see [BaPT]).



A

Min-Max Principle

A.1 Main Result

We now give a very flexible criterion for the determination of the bottom
of the spectrum and the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need explicit knowledge of the various
eigenspaces.

Theorem A.1.1.
Let A be a self-adjoint semibounded operator of domain D(A) ⊂ H . Let us
introduce

λn(A) = sup
ψ1,ψ2,...,ψn−1

inf��
�
φ ∈ [span (ψ1, . . . , ψn−1)]⊥;
φ ∈ D(A) and ‖φ‖ = 1

��
	
〈Aφ | φ〉 . (A.1)

Then either
(a) λn(A) is the nth eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has discrete spectrum in
]−∞, λn(A)]
or
(b) λn(A) corresponds to the bottom of the essential spectrum.
In the second case, we have λj(A) = λn(A) for all j ≥ n .

Remark A.1.2.
In the case when the operator has compact resolvent, case (b) does not occur
and the supremum in (A.1) is a maximum. Similarly, the infimum is a mini-
mum. This explains the traditional terminology “min-max principle” for this
theorem (though one may argue that “max-min” would be more correct).

Note that the proof also gives the following proposition.

Proposition A.1.3.
Suppose that there exist a ∈ R and an n-dimensional subspace V ⊂ D(A) such
that

269
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〈Aφ | φ〉 ≤ a‖φ‖2 , ∀φ ∈ V , (A.2)

is satisfied. Then we have the inequality

λn(A) ≤ a . (A.3)

Corollary A.1.4.
Under the same assumption as in Proposition A.1.3, if in addition a is below
the bottom of the essential spectrum of A , then A has at least n eigenvalues
(counted with multiplicity).

Remark A.1.5.
In continuation of Example 1.3.2, one can show that, for any ε > 0 and
any N , there exists h0 > 0 such that for h ∈ ]0, h0] , Ph,V has at least N
eigenvalues in [inf V, inf V + ε] .

A first natural extension of Theorem A.1.1 is obtained by

Theorem A.1.6.
Let A be a self-adjoint, semibounded operator and V(A) its form domain.1

Then

λn(A) = sup
ψ1,ψ2,...,ψn−1

inf��
�
φ ∈ [span (ψ1, . . . , ψn−1)]⊥;
φ ∈ V(A) and ‖φ‖ = 1

��
	
〈Aφ | φ〉 . (A.4)

A.2 Applications

• It is very often useful to apply the min-max principle by taking the mini-
mum over a dense set in V(A) .

• The min-max principle permits one to control the continuity of the eigen-
values with respect to parameters. For example, the lowest eigenvalue λ1(ε)
of − d2

dx2 +x2+εx4 increases with respect to ε . One can show that ε �→ λ1(ε)
is right continuous on [0,+∞[ . [The reader may assume (see [He1]) that
the corresponding eigenfunction is in S(R) for ε ≥ 0.]

• The min-max principle permits one to give an upper bound on the bottom
of the spectrum and the comparison between the spectra of two operators.
If A ≤ B in the sense that V(B) ⊂ V(A) and2

〈Au | u〉 ≤ 〈Bu | u〉 , ∀u ∈ V(B) ,

then
λn(A) ≤ λn(B) .

We get similar conclusions if the inclusion holds for the operator domains,
i.e., D(B) ⊂ D(A) .

1 Associated by completion to the form u �→ 〈u | Au〉 initially defined on D(A) .
2 It is enough to verify the inequality on a dense set in V(B) .
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Example A.2.1 (Comparison between Dirichlet and Neumann).
Let Ω be a bounded, regular, connected, open set in R

d . Then the nth eigen-
value of the Neumann realization of PA,V = −ΔA +V is less than or equal to
the nth eigenvalue of the Dirichlet realization. The proof is immediate if we
observe the inclusion of the form domains.

Example A.2.2 (Monotonicity with respect to the domain).
Let Ω1 ⊂ Ω2 ⊂ R

d be two bounded, regular, open sets. Then the nth eigen-
value of the Dirichlet realization of the Schrödinger operator in Ω2 is less than
or equal to the nth eigenvalue of the Dirichlet realization of the Schrödinger
operator in Ω1 . We observe that we can indeed identify H1

0 (Ω1) with a sub-
space of H1

0 (Ω2) by extending with 0 in Ω2 \Ω1 .
Note that this monotonicity result is wrong for the Neumann problem.
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Essential Spectrum and Persson’s Theorem

In this appendix, we will describe an easy method for determining the bottom
of the essential spectrum of a Schrödinger operator by using a criterion that is
quite analogous to the variational characterization of the bottom of the spec-
trum. We recall that the essential spectrum is by definition the complement—
within the spectrum—of the discrete spectrum, which corresponds to the iso-
lated eigenvalues of finite multiplicity. This analysis is inspired by Agmon’s
book [Ag] (see also [HiS, Chapter 14]).

B.1 The Statement

Theorem B.1.1.
Let V be a real-valued, semibounded potential and A a magnetic potential in
C1(Rn) . Let H = −ΔA + V be the corresponding self-adjoint, semibounded
Schrödinger operator. Then the bottom of the essential spectrum is given by

inf σess(H) = Σ(H) , (B.1)

where

Σ(H) := sup
K⊂Rn

[
inf

‖φ‖=1
{〈φ | Hφ〉 | φ ∈ C∞

0 (Rn \K)}
]
, (B.2)

where the supremum is over all compact subsets K ⊂ R
n .

Essentially, this is a corollary of Weyl’s theorem. We will indeed play with
the fact that

Lemma B.1.2.
σess(H) = σess(H+W ) ,

for any regular potential W with compact support.

Let us now give the detailed proof. Extensions exist for the case with
boundary (see [Bon1]).
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B.2 Preliminary Lemmas

It is useful to find weights ρ such that the form domain of the operator H has
a continuous injection in L2

ρ . This idea also has applications in the analysis
of the compactness of the resolvent. We introduce

Definition B.2.1.
For any y ∈ R

n and R > 0 , we define ΛR(y,H) by

ΛR(y,H) = inf
{ 〈Hφ |φ〉

‖φ‖2 | φ ∈ C∞
0 (D(y,R))

}
. (B.3)

In other words, using the characterization of the bottom of the spectrum,
ΛR(y,H) is the lowest eigenvalue of the Dirichlet realization of −ΔA + V in
the ball D(y,R) .

The function x �→ ΛR(x,H) will play the role of the weight ρ alluded to
above as shown by the following:

Lemma B.2.2.
For all ε > 0 , there exists Rε such that

〈Hφ |φ〉 ≥
∫

Rn

(ΛR(x,H)− ε)|φ(x)|2 dx , (B.4)

for all φ ∈ C∞
0 (Rn) and all R ≥ Rε .

Proof of Lemma B.2.2.
Let ζ be a real-valued function in C∞

0 (Rn) such that

ζ(x) = 0 if |x| ≥ 1
2

and
∫

Rn

|ζ(x)|2 dx = 1 . (B.5)

For R > 0 and y ∈ R
n , let

ζR,y(x) = ζ
(x− y

R

)
, ζR(x) = ζR,0(x) . (B.6)

We immediately get the existence of a constant C such that, for all x ∈ R
n ,

all y ∈ R
n , and all R > 0 ,

|∇xζR,y(x)|2 ≤ C

R2
. (B.7)

We now use the standard localization identity
∫

Rn

(|(∇A(ζR,yφ))(x)|2 + V (x)|ζR,y(x)φ(x)|2) dx

−
∫

Rn

|(∇ζR,y)(x)|2|φ(x)|2 dx = �
∫

Rn

(H φ)(x) ζR,y(x)2φ(x) dx . (B.8)
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The first term on the left-hand side is estimated from below by
∫

Rn

(|(∇A(ζR,yφ))(x)|2 + V (x)|ζR,y(x)φ(x)|2) dx

= 〈H(ζR,yφ), ζR,yφ〉 ≥ ΛR
2
(y,H)

∫
Rn

|φ(x)ζR,y(x)|2dx . (B.9)

Now we observe that when |x − y| ≤ R/2 , we have D(y,R/2) ⊂ D(x,R) and
therefore

Λ R
2
(y,H) ≥ ΛR(x,H) . (B.10)

This leads to the following lower bound
∫

Rn

(|(∇A(ζR,yφ))(x)|2 + V (x)|ζR,y(x)φ(x)|2) dx

≥
∫

Rn

ΛR(x,H)|φ(x)ζR,y(x)|2dx . (B.11)

So the left-hand side of (B.8) is estimated from below as
∫

Rn

(|(∇A(ζR,yφ))|2 + V (x)|ζR,yφ|2
)
dx−

∫
Rn

|(∇ζR,y)|2|φ|2 dx

≥
∫

Rn

ΛR(x,H)|φ(x)ζR,y(x)|2dx − CR−2

∫
D(y,R)

|φ(x)|2 dx . (B.12)

We have consequently obtained

�
∫

Rn

(Hφ)(x) ζR,y(x)2φ(x) dx

≥
∫

Rn

ΛR(x,H)|φ(x)ζR,y(x)|2 dx − CR−2 ·
∫

D(y,R)

|φ(x)|2 dx . (B.13)

We now integrate this inequality with respect to y:

Rn · �
∫

Rn

(Hφ)(x) φ(x) dx

≥ Rn
∫

Rn

ΛR(x,H)|φ(x)|2dx − C̃Rn−2

∫
Rn

|φ(x)|2 dx . (B.14)

Dividing by Rn gives

�
∫

Rn

(Hφ)(x) φ(x) dx ≥
∫

Rn

ΛR(x,H)|φ(x)|2dx − C̃R−2

∫
Rn

|φ(x)|2 dx .
(B.15)

The lemma is obtained by taking Rε = (C̃/ε)1/2. This finishes the proof of
Lemma B.2.2. ��
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The relationship between the family of ΛR(x,H) and Σ(H) is described
by the following:

Lemma B.2.3.
With Σ(H) from (B.2) and ΛR(x,H) from (B.3), we have

Σ(H) = lim
R→+∞

lim inf
|x|→+∞

ΛR(x,H) . (B.16)

Proof of Lemma B.2.3.
Step 1.
Let K be a compact subset of R

n and R > 0 . Then if |x| is large enough, the
ball D(x,R) is contained in R

n \K . Therefore, for such an x , we have

inf
{ 〈Hφ |φ〉

‖φ‖2 | φ ∈ C∞
0 (Rn \K) , φ �= 0

}
≤ ΛR(x,H) ,

and consequently,

inf
{ 〈Hφ |φ〉

‖φ‖2 | φ ∈ C∞
0 (Rn \K) , φ �= 0

}
≤ lim inf

|x|→+∞
ΛR(x,H) . (B.17)

The left-hand side is independent of R; so we can take the limit R→ +∞ in
(B.17) and get

inf
{ 〈Hφ |φ〉

‖φ‖2 | φ ∈ C∞
0 (Rn \K) , φ �= 0

}
≤ lim
R→+∞

lim inf
|x|→+∞

ΛR(x,H) .

(B.18)

Here we note that the limit on the right-hand side of (B.18) exists because
the map R �→ lim inf |x|→+∞ ΛR(x,H) is a monotonically decreasing function.

Now the right-hand side of (B.18) is independent ofK . Taking the infimum
over K , we get

Σ(H) ≤ lim
R→+∞

lim inf
|x|→+∞

ΛR(x,H) . (B.19)

This is the first part of the statement in the lemma.
Step 2.
Let us now show the reverse inequality. Coming back to the definition of
lim inf |x|→+∞ ΛR(x,H) , we get, for any ε > 0 and any R , that there exists
R0 such that, for all φ ∈ C∞

0 (Rn \D(0, R0)) , we have
∫

Rn

ΛR(x,H)|φ(x)|2 dx ≥
(

lim inf
|x|→+∞

ΛR(x,H)− ε
)
‖φ‖2 . (B.20)

Therefore, (B.4) and (B.20) imply, for any R ≥ Rε , the existence of R0 such
that, for any φ ∈ C∞

0 (Rn \D(0, R0)) (φ �= 0),

〈Hφ |φ〉
‖φ‖2 ≥

(
lim inf
|x|→+∞

ΛR(x,H) − 2ε
)
. (B.21)
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Therefore, coming back to the definition of Σ(H) , we get that, for any ε > 0 ,
there exists Rε > 0 such that, for all R ≥ Rε ,

Σ(H) ≥
(

lim inf
|x|→+∞

ΛR(x,H) − 2ε
)
. (B.22)

So the only restriction on R is that R ≥ Rε . Therefore, we can take the limit
R→ +∞ :

Σ(H) ≥ lim
R→+∞

(
lim inf
|x|→+∞

ΛR(x,H)− 2ε
)
. (B.23)

But we can take the limit ε→ 0 in (B.23) and get

Σ(H) ≥ lim
R→+∞

(
lim inf
|x|→+∞

ΛR(x,H)
)
. (B.24)

This is the second part of the statement in the lemma. This finishes the proof
of Lemma B.2.3. ��

B.3 Proof of the Inequality inf σess(H) ≥ Σ(H)

To prove this inequality, we first use Lemma B.2.2 and get, for any ε > 0 , the
existence of R > 0 such that

〈Hφ |φ〉 ≥
∫

Rn

(
ΛR(x,H) − ε

2

)
|φ(x)|2 dx , ∀φ ∈ C∞

0 (Rn) . (B.25)

Since, by Lemma B.2.3,

lim inf
|x|→+∞

ΛR(x,H) ≥ Σ(H) ,

it follows that, for any ε > 0 , there exists aε such that

ΛR(x,H) ≥ Σ(H)− ε

2
,

for |x| ≥ aε .
On the other hand, we have

ΛR(x,H) ≥ inf σ(H) ,

and there consequently exists a constant C such that

ΛR(x,H) ≥ Σ(H)− C .

We now choose a function W with compact support such that

W (x) ≥ C , ∀x ∈ D(0, aε) .
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We consider H+W and obtain, from (B.25), that, for any φ ∈ C∞
0 (Rn) ,

〈(H+W )φ |φ〉 ≥
∫ (

W (x) + ΛR(x,H)− ε

2
)|φ(x)|2dx

≥ (Σ(H) − ε)
∫
|φ|2dx . (B.26)

This can be interpreted as

inf σ(H +W ) ≥ Σ(H)− ε . (B.27)

We now observe that

inf σess(H) = inf σess(H +W ) (B.28)

and
inf σess(H+W ) ≥ inf σ(H +W ) . (B.29)

This leads to
inf σess(H) ≥ Σ(H)− ε , ∀ε > 0 ,

and finally to
inf σess(H) ≥ Σ(H) , (B.30)

which corresponds to the first statement in Persson’s theorem.

B.4 Proof of the Inequality inf σess(H) ≤ Σ(H)

Let us show the reverse inequality. Let μ < inf σess(H) and let E ]−∞,μ] be the
spectral projection that has finite rank (we are below the essential spectrum).
We first observe that there exists a finite orthonormal system of eigenfunctions
such that

E]−∞,μ] =
∑
i

〈· |φi〉φi . (B.31)

From this we get that, for any ε , there exists Rε such that
∫
|x|≥Rε

|E]−∞,μ]φ|2 ≤ ε‖φ‖2 , ∀φ ∈ C∞
0 (Rn) . (B.32)

We now get
〈Hφ |φ〉 = 〈H(I − E(μ))φ | (I − E(μ))φ

〉
+
〈HE(μ)φ |E(μ)φ

〉

≥ μ
〈
(I − E(μ))φ | (I − E(μ))φ〉 − C〈E(μ)φ |E(μ)φ

〉
.

But we can write

Σ(H) ≥ inf
{ 〈Hφ |φ〉

‖φ‖2
∣∣∣ φ ∈ C∞

0 (Rn \ (D(0, Rε))
}
≥ μ‖φ‖2 − ε(C + μ)‖φ‖2 .
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As ε→ 0 , we get
Σ(H) ≥ μ

and, letting μ tend to σess(H) , we finally obtain

Σ(H) ≥ σess(H) . (B.33)

This finishes the proof of Persson’s theorem.

B.5 Agmon Estimates and Essential Spectrum

Theorem B.5.1.
Let A be a C∞ vector field and V be a C∞ semibounded potential and H =
PA,V . If u is an eigenfunction associated to an eigenvalue λ of a self-adjoint
Schrödinger operator H on R

n with

λ < inf σess(H) , (B.34)

then, for all α < 1 , there exists Cα such that
∫
|u(x)|2 exp(2α

√
inf σess(H)− λ|x|) dx < +∞ . (B.35)

This theorem was first given in [Ag, Theorem 4.1 and Corollary 4.2, Chap-
ter 4] in the case without magnetic field and is the origin of the name “Agmon
estimates”.

Remark B.5.2.
The theorem also holds for the exterior of an open set. In the case of the
Schrödinger operator with constant magnetic field B in R

n , we obtain that,
for λ < tr+B , the eigenfunction uλ satisfies, for any α < 1 ,

∫
|u(x)|2 exp(2α

√
tr+B − λ|x|) dx < +∞ . (B.36)

Other results on the decay at ∞ can be found in [Bru] and [HeN2].

Remark B.5.3.
The theorem also holds in the case of a sector S . Here the bottom of the
essential spectrum is Θ0 . So for λ < Θ0 , the eigenfunction uλ attached to an
eigenvalue λ < Θ0 of (−i∇+ F)2 in a sector satisfies, for any α < 1 ,

∫
S

|u(x)|2 exp(2α
√

Θ0 − λ|x|) dx < +∞ . (B.37)
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B.6 Essential Spectrum for the Schrödinger Operator
with Magnetic Field

Theorem B.6.1.
Let A be a magnetic potential in C2(Rn) such that curlA = β , and assume
that ∑

γ,j,k , 1≤|γ|≤3

|Dγ
xβjk(x)| ≤ Cρ(x)−1 (B.38)

for some slowly varying ρ(x) such that lim|x|→+∞ ρ(x) = +∞ .
Let H = −ΔA be the corresponding self-adjoint, semibounded Schrödinger

operator. Then the essential spectrum satisfies

inf σess(H) ≥ lim inf
|x|→+∞

tr+ β(x) . (B.39)

The same result is also true in the exterior of a bounded domain. We note
that there is a specific difficulty. The lower bound depends only on the
behavior of the magnetic field at ∞ . Condition (B.38) can be forgotten in
the case of dimension 2 , if the magnetic field has constant sign.

In the general case, this result is a consequence of [HeM1]. There are
essentially two cases. Either tr+ β(x) tends to +∞ and the operator is with
compact resolvent or tr+ β(x) does not tend to +∞ . In this case, the essen-
tial spectrum is obtained by considering the union of the spectra of limiting
Schrödinger operators with constant magnetic field obtained by taking all the
possible limits

β∞
jk = lim

n→+∞ βjk(xn) ,

for which limn→+∞ |xn| = +∞ . The result is then easy and follows from the
analysis of the case with constant magnetic field.

Remark B.6.2.
This result is a consequence of Theorem 1.5 in [HeM1] (see also [Hel5, MoR,
Mo]). A semiclassical version is also given in [HeM2, p. 44, formulas (1.14)–
(1.16)] .
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Analytic Perturbation Theory

C.1 Main Goals

In this appendix, we will recall the main definitions and main results con-
cerning type (A) and type (B) self-adjoint holomorphic families of operators.
Although some of the results are quite old (see Rellich [Re]), we mainly refer
to Chapter 7 in [Kat2].

C.2 Main Results

Definition C.2.1.
A family T (ξ) of unbounded operators on a Hilbert space H and defined for ξ
in a domain D0 of C is said to be a holomorphic family of type (A) if

1. The domain D(T (ξ)) is independent of ξ ∈ D0 . We denote it by D .
2. For every u in D , ξ �→ T (ξ)u is holomorphic for ξ ∈ D0 .

The main theorem used in this book is a theorem due to Rellich (see
Theorem 3.9 in [Kat2] or in a less precise form Theorem XII.3 in [ReS, Volume
IV]):

Theorem C.2.2.
Let T (ξ) be a self-adjoint family of type (A) defined for ξ in a neighborhood
V(I0) of an interval I0 of the real axis. Furthermore, let T (ξ) have compact
resolvent. Then all eigenvalues of T (ξ) can be represented by functions that are
holomorphic in some neighborhood of I0 . More precisely, there are a sequence
of scalar-valued functions μn(ξ) and a sequence of vector-valued functions
ϕn(ξ) , all holomorphic in an n-dependent complex neighborhood Vn(I0) of
I0 , such that for ξ ∈ I0 , the μn(ξ) represent all the repeated eigenvalues
of T (ξ) and the ϕn(ξ) form a complete orthonormal family of the associated
eigenfunctions of T (ξ) .
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The basic idea in the proof is to reduce the problem to a similar problem
for a family of finite-dimensional self-adjoint matrices ξ �→M(ξ) . This can be
done by using a spectral projector.

There is a weaker notion introduced by Kato corresponding to families
of type (B). The starting point is then a family of sesquilinear forms that
satisfies the following property.

Definition C.2.3.
We will say that a family q(ξ) of unbounded sesquilinear forms on H × H
(where H is an Hilbert space) that is defined for ξ in a domain D0 of C is a
holomorphic family of type (a) if

1. Each q(ξ) is sectorial and the form domain D(q(ξ)) is independent of
ξ ∈ D0 and dense in H . We denote it by Dq .

2. For every u, v ∈ Dq , ξ �→ q(ξ)(u, v) is holomorphic for ξ ∈ D0 .

This leads to the following definition.

Definition C.2.4.
A family T (ξ) of unbounded operators on a Hilbert space H and defined for ξ
in a domain D0 of C is said to be a holomorphic family of type (B) if T (ξ) is
the maximal operator associated with the sesquilinear form q(ξ) , where q(ξ)
is a holomorphic family of type (a).

It is clear that a family of type (A) is of type (B), but this new notion is
weaker as will be shown below.

As mentioned in [Kat1], Theorem C.2.2 is also valid for the self-adjoint
holomorphic families of type (B).

C.3 Basic Examples

• The family ξ �→ hN,ξ introduced in (3.9) is a self-adjoint family of type (A)
in D0 = C . We have indeed in this case H = L2(R+) and a fixed domain

D(hN,ξ) = {u ∈ B2(R+) , u′(0) = 0} .

• The family R � B �→ QNBA,V,Ω introduced in (1.11) can be seen, as Ω is
bounded as the restriction to the real of a type (a) family whose form
domain is H1(Ω) .
So, in general, the associated family of operators PNBA,V,Ω is a type (B)
self-adjoint holomorphic family. The magnetic Neumann condition

ν · (−i∇+BA)u = 0 on ∂Ω

is in general B-dependent. So this family, whose domain is given in (1.14),
is not a type (A) family.
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• But we can get, using Proposition D.1.1, a type (A) family after a gauge
transform.
We get indeed a type (A) family under the condition that

A · ν = 0 on ∂Ω .
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About the Curl-Div System

We will review in this appendix the main results needed about the curl-div
system in our analysis of the Ginzburg–Landau functional. Most of the mate-
rial was established in the context of problems in mechanics (see Temam [Te],
Duvaut–Lions [DuL] and Girault–Raviart [GirR]).

D.1 Discussion About Reduced Spaces and Gauge
Invariance

We first show the proposition

Proposition D.1.1.
Given Â ∈ H1(Ω) on a regular, connected, open set Ω , one can always find a
gauge transform, i.e., a function ϕ ∈ H2(Ω) , such that A := Â−∇ϕ satisfies

div A = 0 in Ω, A · ν = 0 on ∂Ω . (D.1)

Proof.
The proof is standard and very simple. Given a general Â , we look for ϕ ∈
H2(Ω) such that

div
(
Â−∇ϕ

)
= 0 in Ω,

(
Â−∇ϕ

)
· ν = 0 on ∂Ω . (D.2)

With the definitions f := div Â ∈ L2(Ω) , g := Â · ν|∂Ω ∈ H1/2(∂Ω) , this
reads

Δϕ = f in Ω, ν · ∇ϕ = g on ∂Ω . (D.3)

This is an inhomogeneous Neumann problem, whose solution is unique if we
add the condition that ∫

Ω

ϕdx = 0 . (D.4)
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The proof can be done in two steps. We first reduce to the homogeneous case
by choosing ψ ∈ H2(Ω) such that

∂νψ = Â · ν on ∂Ω . (D.5)

Then χ = φ+ ψ , should be a solution of

Δχ = div Â + Δψ , ∂νχ = 0 on ∂Ω .

This last equation can be solved if the right-hand side is orthogonal to con-
stants, that is, if ∫

Ω

(
div Â + Δψ

)
dx = 0 .

But this is an immediate consequence of (D.5) and the Green–Riemann for-
mula. We then find the unique solution χ by adding the condition

∫
Ω

χdx =
∫

Ω

ψ dx .

��
Remark D.1.2.
We note that in this proof we do not need to assume that Ω is simply connected.
The case when Ω is not connected can also be treated by considering each
connected component.

D.2 About the Curl-Div System in Two Dimensions

D.2.1 H1-regularity

The basic Hilbert space is H1
div(Ω), which is defined by

H1
div(Ω) =

{V = (V1, V2) ∈ H1(Ω)2
∣∣ divV = 0 in Ω , V · ν = 0 on ∂Ω

}
.

(D.6)

We will need the following standard result (see, for example, [Te, Appen-
dix 1]) on the curl-div system.

Proposition D.2.1.
If Ω is bounded, simply connected, and has regular boundary, then curl defines
an isomorphism from H1

div(Ω) onto L2(Ω) .
In particular, there exists a constant C > 0 such that for all a ∈ H1

div(Ω) ,
we have

‖a‖H1(Ω) ≤ C‖ curla‖2 . (D.7)
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Actually, we also need the corresponding version for the larger space
H0

div(Ω), which is defined by

H0
div(Ω) = {A ∈ L2(Ω,R2) , div A = 0 and A · ν = 0 on ∂Ω}. (D.8)

Proposition D.2.2.
If Ω is a bounded, regular, simply connected open set in R

2 , then the map
A �→ curlA defines an isomorphism from H0

div(Ω) onto H−1(Ω) .

The reader could think that there is a problem in the above definition
which involves a trace on the boundary. We can use here the following result
(see, for example, [GirR, Theorem 2.6]).

Lemma D.2.3.
The map defined on C∞(Ω,R2) by A �→ A · ν|∂Ω admits a unique continuous
extension from {A ∈ L2(Ω,R2) , div A ∈ L2(Ω)} into H−1/2(∂Ω) .

Remark D.2.4.
When div A = 0 , one can also write

A · ν = 0 on ∂Ω , (D.9)

in the form
〈A , ∇φ〉 = 0 , ∀φ ∈ C∞(Ω) . (D.10)

Proof of Proposition D.2.2.
For the surjectivity, one can use the property that if β ∈ H−1(Ω) [resp. in
L2(Ω)], there exists a unique ψ ∈ H1

0 (Ω) [resp. in H2(Ω) ∩ H1
0 (Ω)] solving

Δψ = β . Then A = (−∂x2ψ, ∂x1ψ) gives a solution in H0
div(Ω) [resp. in

H1
div(Ω)]. For the injectivity, we use the property that Ω is simply connected.

��

D.2.2 Lp-regularity for the curl-div system

We denote, for k ∈ N , by W k,p
div (Ω) the space

W k,p
div (Ω) = {A ∈ W k,p(Ω) , div A = 0 and A · ν = 0 on ∂Ω} . (D.11)

Then we have the following Lp-regularity for the curl-div system.

Proposition D.2.5.
Let 1 ≤ p <∞ . If A ∈W 1,p

div (Ω) satisfies curlA ∈W k,p(Ω) , for some k ≥ 0 ,
then A ∈W k+1,p

div (Ω) .

Proof.
If A belongs to W 1,p

div (Ω) and curlA ∈ Lp(Ω) , then there exists ψ ∈ W 2,p(Ω)
such that

A = (−∂x2ψ, ∂x1ψ) , −Δψ = curlA , with ψ = 0 on ∂Ω .
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This is simply the Dirichlet Lp problem for the Laplacian (see Section D.1).
The result we need for proving the proposition is then that if −Δψ is in addi-
tion in W k,p(Ω) , then ψ ∈ W k+2,p(Ω) . This is simply an Lp-regularity result
for the Dirichlet problem for the Laplacian, which is described in Section E.4.
Coming back to the definition of ψ , we get A ∈ W k+1,p(Ω) . ��
Corollary D.2.6.
If A ∈ W 1,p

div (Ω) for some p ∈ [1,+∞[ and satisfies curlA ∈ C∞(Ω) , then

A ∈ C∞(Ω; R2) .

D.2.3 The curl-div system in the corner case

We discuss here the necessary justifications in the case related to Chapter 15.
The domain Ω is a polygon and the Ginzburg–Landau functional is defined
by (15.14).

As usual, we assume ψ ∈ W 1,2(Ω) , but for A the correct choice is that
A− F ∈W 1,2

0,0 (R2) , where W 1,2
0,0 (R2) is the weighted Sobolev space:

W 1,2
0,0 (R2) ∈

{
u ∈W 1,2

loc (R2) :
u√

1 + x2 log(2 + x2)
∈ L2(R2) ,

∇u ∈ L2(R2)
}
. (D.12)

Notice that the constant functions belong to W 1,2
0,0 (R2) (but higher-degree

polynomials do not). Clearly, W 1,2
0,0 (R2) equipped with the natural inner

product is a Hilbert space.
This space is sufficiently large to lift all magnetic fields:

Lemma D.2.7.
For all u ∈ L2(R2) , there exists A ∈ W 1,2

0,0 (R2,R2) with

curlA = u , div A = 0 .

Furthermore, this uniquely determines A up to a constant.

Lemma D.2.8.
We have the following elementary identity for all A ∈ C∞

0 (R2,R2) :

‖DA‖22 =
∫

R2
| div A|2 + | curlA|2 dx . (D.13)

Furthermore, there exists C > 0 such that for all A ∈W 1,2
0,0 (R2,R2) ,

1
C

inf
a∈R2

‖A− a‖W1,2
0,0 (R2,R2) = ‖DA‖22 =

∫
R2
| div A|2 + | curlA|2 dx . (D.14)

Clearly, the inf in (D.14) is actually a minimum.
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Notice that—since the weight [
√

1 + x2 log(2 + x2)]−1 is bounded away
from zero on any bounded set—for all bounded ω ⊂ R

2 , there exists C > 0
such that

‖u‖W1,2(ω) ≤ C‖u‖W 1,2
0,0 (R2) . (D.15)

Combined with (D.14), (D.15) will give that (after gauge transformations) an
energy-minimizing sequence will have A components converging strongly in
Lp(Ω) . This is what is needed for the proof of the existence of a minimizer.
For details, see references in the notes to Chapter 15.

D.3 About the Curl-Div System in Three Dimensions

When we study the curl-div system on the entire space R
3 , things are

rather simple. Notice that in 3D we have the following homogeneous Sobolev
inequality:

‖u‖L6(R3) ≤ S3‖∇u‖L2(R3) , (D.16)

for some constant S3 > 0 and all u ∈ C∞
0 (R3) . Also, as is easily seen by

taking the Fourier transform, the norms

‖∇a‖L2(R3) and ‖ curla‖L2(R3) + ‖ div a‖L2(R3)

are equivalent. In particular, we get the existence of a constant C > 0 such
that

‖a‖L6(R3) ≤ C‖ curla‖L2(R3) , (D.17)

for all a with compact support and satisfying div a = 0 .
In the next theorem, we will use the homogeneous Sobolev space Ḣ(R3).

This is defined as the closure of of C∞
0 (R3) under the norm f �→ ‖∇f‖2. The

norm on Ḣ(R3) is ‖f‖Ḣ(R3) := ‖∇f‖2.
Theorem D.3.1 (Ellipticity of the curl-div system).
There exists a constant C > 0 such that for all (magnetic fields) b ∈
L2(R3,R3) with div b = 0 , there exists a unique a ∈ Ḣ1(R3,R3) such that

curla = b , div a = 0 .

This solution satisfies the estimate

‖a‖Ḣ1 ≤ C‖b‖L2 . (D.18)

Proof.
An argument for this standard result is given in [GioP]. It is based on the
elementary fact that for f ∈ C∞

0 (R3; R3) , one has
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‖f‖Ḣ1 =
∫

R3
| div f |2 + | curl f |2 dx . (D.19)

With Γ(x) = 1/(4π|x|) being the fundamental solution of the Laplacian, the
desired solution is (formally) a = − curl(Γ ∗ b) . ��
Proposition D.3.2.
Let 2 ≤ p ≤ 6 and let Ω ⊂ R

3 have bounded measure. Then there exists a
constant Cp > 0 such that for all b ∈ L2(R3,R3) with div b = 0 , the solution
a given in Theorem D.3.1 satisfies the estimate

‖a‖Lp(Ω) ≤ Cp‖b‖L2(R3) . (D.20)

Proof.
By (D.18) and the standard three-dimensional Sobolev estimate,

‖f‖L6(R3) ≤ CSob‖f‖Ḣ1 , ∀f ∈ Ḣ1(R3) , (D.21)

the desired estimate holds for p = 6 . Since Ω has finite measure, Hölder’s
inequality implies that ‖a‖Lp(Ω) ≤ C‖a‖L6(Ω) , for p ≤ 6 . ��



E

Regularity Theorems and Precise Estimates in
Elliptic PDE

E.1 Introduction

Here we recall some standard regularity theorems for elliptic partial differen-
tial equations and refer for proofs to [GiT]. Some aspects of the Lp theory
are not in the book of Gilbarg and Trudinger and the extension to systems in
full generality can be found in Agmon–Douglis–Nirenberg [AgDN1, AgDN2].
We emphasize that our systems are usually very particular and that a direct
approach following the scalar case is always possible. The proofs of these regu-
larity theorems involve estimates that play an important role in the attack
of the nonlinear problems. In the problems we meet, the lower-order terms
of our nonlinear equations or systems depend on the solution itself. A direct
use of the regularity theorems for linear PDE is not possible and one needs
to go through bootstrap arguments.

E.2 Bootstrap Arguments for Nonlinear Problems

E.2.1 The case of dimension 2

Typically, the first operator in the Ginzburg–Landau system is the operator

ψ �→ −ΔκσAψ − κ2ψ(1− |ψ|2) , (E.1)

which we would like to consider as the operator ψ �→ Lψ with

L = −Δ +
2∑
j=1

bj∂xj + c , (E.2)

where

bj = −2iκσAj , c = −2iκσ div A + κ2σ2|A|2 − κ2(1 − |ψ|2) . (E.3)

So the regularity of the coefficients will depend on the regularity of ψ and A
starting with the initial regularity

291
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• ψ ∈ L2(Ω) , (−∇+ iA)ψ ∈ L2(Ω) ,
• A ∈ H1(Ω) , div A = 0 , and A · ν|∂Ω = 0 .

Actually, it could be better to start with

−Δψ = 2iκσAj∂xjψ − κ2σ2|A|2ψ + κ2(1− |ψ|2)ψ , (E.4)

with Neumann condition (here we use our choice of gauge for A)

∂νψ
∣∣
∂Ω

= 0 . (E.5)

Let us look at the right-hand side. In dimension 2 , using also the fact that
ψ ∈ L∞(Ω) (see Proposition 10.3.1), we observe, using the initial regularity
and the Sobolev embedding theorem, that the right-hand side in (E.4) is in Lp

for any p ∈ [1,+∞[ , and that ψ ∈ W 1,2(Ω) . The regularity of the Neumann
problem in Lp , which will be recalled in Theorem E.4.7, gives ψ ∈ W 2,p , for
any p ∈]1, 2] ; hence, by Sobolev’s embedding theorem, ψ ∈ C0,α with α < 1
and in W 1,p(Ω) for any p ∈ ]1,+∞[ . Using again this last information, we get
ψ ∈ W 2,p for any p ∈ [1,+∞[ .

There is a need to improve the regularity on A . We look at the second
line of (10.8a):

curl(curlA− β) = − 1
κσ
� (ψ pκσAψ) , (E.6)

which implies
curlA− β ∈ H1(Ω) . (E.7)

Using β ∈ C∞(Ω) , div A = 0 , and the boundary condition, we obtain, by the
regularity of the curl-div system [Proposition D.2.5 (p = 2)], that A ∈ H2(Ω)
and hence A ∈ C0,α for any α < 1 and A ∈W 1,p for any p ∈ [1,+∞[ .

The recursion is then easy, where we can alternatively play with (E.4)
for ψ , (E.6) for curlA , and the curl-div equation for A and the associated
regularity theorems. Hence, we have proved

Theorem E.2.1.
If d = 2 , if Ω ⊂ R

2 has a C∞ and bounded boundary, and if (ψ,A) belongs to
H1(Ω)×H1

div(Ω) and is a solution of (10.8), then ψ and A are in C∞(Ω) .

E.2.2 The case of three dimensions

The 3D case is more delicate. We now look at the three-dimensional case
but consider for simplicity the Ginzburg–Landau functional [defined in (10.1)]
with Ω̃ = Ω . The main difference with two dimensions is that—by the Sobolev
embedding theorem—we have worse regularity. Our solution (ψ,A) satisfies
a variant of (10.14) this time. We will limit ourselves to the regularity in (the
interior of) Ω .
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We first obtain that ψ ∈ W 1,2(Ω) should satisfy

−Δψ = 2iκσ
3∑
j=1

Aj∂xjψ − κ2σ2|A|2ψ + κ2(1− |ψ|2)ψ , (E.8)

and, using the fact that A ∈ L6(Ω) , we get −Δψ ∈ L3/2(Ω) , and by elliptic
regularity ψ ∈ W 2,3/2(Ω) ; hence, by the Sobolev embedding theorem, ψ ∈
W 1,3(Ω) . So there exists α > 0 such that ψ ∈ C0,α(Ω) .

We take the gauge for which

div A = 0 , A · ν∣∣
∂Ω

= 0 .

The vector potential A is in H1(Ω) and satisfies in Ω

curl(curlA) = − 1
κσ
�(ψ pκσAψ) , (curlA− β)× ν∣∣

∂Ω
= 0 .

Using that A is divergence-free, we obtain the system

−Δ(A− F) = − 1
κσ
�(ψ pκσAψ) ,

curlA× ν∣∣
∂Ω

= 0 , A · ν∣∣
∂Ω

= 0 .
(E.9)

This is an elliptic system in the sense of Agmon–Douglis–Nirenberg. In order
to verify this property at the boundary, we should freeze the problem at one
point of the boundary and see if the obtained system in the half-space is
well-posed.

Choosing a point x0 on the boundary and using the invariance by rotation
of the system, we can assume that ν(x0) = (0, 0, 1) and we obtain the following
problem in R

3
+:

−ΔÃ = G ,

Ã3 = 0 for x3 = 0 , ∂x3Ã1 = ∂x3Ã2 = 0 for x3 = 0 .
(E.10)

So the frozen half-space problem is completely decoupled in three independent
problems for each component of Ã , the problem being the standard Dirichlet
or Neumann problem.

This system has consequently the same regularity properties as the
Laplacian. In particular, we first get that (A−F) ∈ H2(Ω) , so A ∈ C1,α(Ω)
for any α > 0 .

Coming back to (E.8), we can now show that ψ ∈ H2(Ω) and ψ ∈ C1,α(Ω)
for any α ∈ ]0, 1[ and the recursion is then easy.

Remark E.2.2.
For the functional considered in Section 10.1.3, (10.14b) permits us to get
A ∈ H2

loc(R
3) and by recursion we get ψ ∈ C∞(Ω) , A ∈ C∞(Ω) , and

ψ ∈ C∞(R3 \ Ω) , A ∈ C∞(R3 \Ω) .
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E.3 Schauder Hölder Estimates

E.3.1 Interior estimates

Theorem E.3.1.
Let Ω be an open set in R

n and L be the differential operator

L := −
∑
i,j

aij∂xi∂xj +
∑
i

bi∂xi + c , (E.11)

where aij , bi , and c are in C0,α(Ω) and
∣∣∣∑
ij

aij(x)ξiξj
∣∣∣ ≥ Λ|ξ|2 , ∀x ∈ Ω, ξ ∈ R

n , (E.12)

for some Λ > 0. Then, for any Ω′ ⊂⊂ Ω , there exists a constant C depending
only1 on Λ , d(Ω′,Ωc) , and the norms in C0,α(Ω) of the coefficients, such that
for any u ∈ C2,α(Ω) , we have

‖u‖C2,α(Ω′) ≤ C
(
‖u‖C0,α(Ω) + ‖Lu‖C0,α(Ω)

)
. (E.13)

We also need the following variant (when beginning a bootstrap argument).
Notice the slight change in the definition of the operator:

Theorem E.3.2.
Let Ω be an open set in R

n and L be the differential operator

L := −
∑
i,j

∂xiaij∂xj +
∑
i

bi∂xi + c, (E.14)

where aij is in C0,α(Ω) , bi and c are in L∞(Ω) and satisfying (E.12). Then,
for any Ω′ ⊂⊂ Ω , there exists a constant C depending only on Λ , d(Ω′,Ωc) ,
and the corresponding norms of the coefficients in Ω , such that for any u ∈
C2,α(Ω) , we have

‖u‖C1,α(Ω′) ≤ C
(
‖u‖C0(Ω) + ‖Lu‖C0(Ω)

)
. (E.15)

Remark E.3.3.
Note that it is quite important in the applications to have ‖u‖C0(Ω) and not
only ‖u‖C0,α(Ω) on the right-hand side of (E.15).

The last statement is a regularity statement.
1 Of course, it also depends on n , the diameter of Ω , and α , but they are supposed

to be fixed.
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Theorem E.3.4.
Let Ω be an open set in R

n and L be the differential operator (E.11), where
aij , bi, c are in C0,α(Ω) , and satisfying (E.12). Then if u ∈ C2(Ω) satisfies
Lu = f and if f ∈ C0,α(Ω) , then u ∈ C2,α(Ω) . Moreover, if above aij , bi and
c are in Ck,α(Ω) for some k ≥ 0 , then if f ∈ Ck,α(Ω) , u ∈ Ck+2,α(Ω) .

Corollary E.3.5.
Let u be a C2(Ω) solution of the equation Lu = f in an open set Ω , where f
and the coefficients of the elliptic operator L are in C∞(Ω) . Then u ∈ C∞(Ω) .

E.3.2 Boundary estimates

We now present the analogous results corresponding to the case with bound-
ary. We meet in our problems the Dirichlet case and the Neumann case.

Dirichlet problem

Theorem E.3.6 (A priori estimates).
Let Ω be an open set in R

n with C2,α boundary and let L be the differential
operator (E.11), where aij , bi , and c are in C0,α(Ω) and satisfying (E.12).
Then there exists a constant C depending only on Λ , and on the corresponding
norms of the coefficients in Ω , such that, for any u ∈ C2,α(Ω) , we have

‖u‖C1,α(Ω) ≤ C
(
‖u‖C0,α(Ω) + ‖γou‖C1,α(∂Ω) + ‖Lu‖C0,α(Ω)

)
, (E.16)

where u �→ γ0u is the trace operator on ∂Ω , and

‖u‖C2,α(Ω) ≤ C
(
‖u‖C0,α(Ω) + ‖γou‖C2,α(∂Ω) + ‖Lu‖C0,α(Ω)

)
. (E.17)

Theorem E.3.7 (Hölder regularity).
Let Ω be an open set in R

n with C2,α boundary, and L be the differential
operator (E.11), where aij , bi , c are in C0,α(Ω) , and satisfying (E.12). Then
if u ∈ C2(Ω) satisfies Lu = f in Ω and if f ∈ C0,α(Ω) and γ0u ∈ C2,α(∂Ω) ,
then u ∈ C2,α(Ω) . Moreover, if above ∂Ω has regularity Ck+2,α and aij , bi and
c are in Ck,α(Ω) , then if f ∈ Ck,α(Ω) and γ0u ∈ Ck+2,α(∂Ω), u ∈ Ck+2,α(Ω) .

Corollary E.3.8 (C∞-regularity).
Let u be a C2(Ω) solution of the equation Lu = f in an open set Ω with
smooth (C∞) boundary, where f and the coefficients of the elliptic operator L
are in C∞(Ω) . Then if γ0u ∈ C∞(∂Ω) , u ∈ C∞(Ω) .

Remark E.3.9.
There is also a similar result in the analytic category [LiM].
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Neumann problem

Theorem E.3.10 (A priori estimate).
Let Ω be an open set in R

n with C2,α boundary and let L be the differential
operator (E.11), where aij , bi , and c are in C0,α(Ω) and satisfying (E.12).
Then there exists a constant C depending only on Λ and the corresponding
norms of the coefficients in Ω such that for any u ∈ C2,α(Ω) , we have

‖u‖C2,α(Ω) ≤ C
(
‖u‖C0(Ω) + ‖γ1u‖C1,α(∂Ω) + ‖Lu‖C0,α(Ω)

)
, (E.18)

where u �→ γ1u is the trace operator of the normal derivative of u on ∂Ω .

Theorem E.3.11 (Hölder regularity).
Let Ω be an open set in R

n with C2,α boundary and L be the differential
operator (E.11), where aij , bi, c are in C0,α(Ω) , and satisfying (E.12). Then
if u ∈ C2(Ω) satisfies Lu = f in Ω and if f ∈ C0,α(Ω) and γ1u ∈ C1,α(∂Ω) ,
then u ∈ C2,α(Ω) . Moreover, if in addition above Ω has Ck+2,α boundary,
if aij , bi, c are in Ck,α(Ω) , then if f ∈ Ck+1,α(Ω) and γ1u ∈ Ck+1,α(∂Ω),
u ∈ Ck+2,α(Ω) .

Corollary E.3.12 (C∞-regularity).
Let u be a C2(Ω) solution of the equation Lu = f in an open set Ω with
smooth boundary, where f and the coefficients of the elliptic operator L are
in C∞(Ω) . Then if γ1u ∈ C∞(∂Ω) , u ∈ C∞(Ω) .

This will mainly be applied when u satisfies the Neumann condition
γ1u = 0 . The theorem with the magnetic Neumann condition is also true
under the condition that the magnetic potential satisfies the regularity con-
dition A · ν ∈ C1,α on the boundary. In any case, when establishing these
theorems, one can usually work in a gauge where A · ν = 0 on ∂Ω .

The proof of all these theorems can either be direct or involve the reflection
method.

E.4 Schauder Lp-Estimates

We refer to [GeG] for a good presentation of the Lp theory for boundary elliptic
problems. However, the presentation is for operators with smooth coefficients.
Some of the results below can also be found in [GiT], but—in particular for
the boundary estimates—we refer to the original paper [AgDN2].

E.4.1 Interior estimates

Theorem E.4.1 (A priori estimates).
Let Ω be an open set in R

n and L be the differential operator (E.11), where
aij is in C0,1(Ω) , bi and c are in L∞(Ω) and satisfying (E.12). Then for any
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Ω′ ⊂⊂ Ω , there exists a constant C depending only on Λ , d(Ω′,Ωc) , and the
corresponding norms of the coefficients in Ω such that for any u ∈ W 2,p(Ω) ,
we have

‖u‖W2,p(Ω′) ≤ C
(‖u‖Lp(Ω) + ‖Lu‖Lp(Ω)

)
. (E.19)

Theorem E.4.2 (Local regularity).
Let Ω be an open set in R

n and L be the differential operator (E.11), where
aij is in C0,1(Ω), bi and c are in L∞

loc(Ω) and satisfying (E.12). Then if
u ∈ W 1,p

loc (Ω) satisfies Lu ∈ Lploc(Ω) in the weak sense, then u ∈ W 2,p
loc (Ω) .

Moreover, if Ω has Ck+2,α boundary, aij is in Ck,1(Ω), bi and c are in
Ck,α(Ω) , then Lu ∈ W k,p

loc (Ω) implies u ∈W k+2,p
loc (Ω) .

Corollary E.4.3.
If Ω has C∞ boundary, and the coefficients aij , bi , and c are in C∞(Ω) , then
u ∈W 1,p

loc (Ω), Lu ∈ C∞(Ω) implies u ∈ C∞(Ω) .

E.4.2 Boundary estimates

Dirichlet problem

Theorem E.4.4 (A priori estimate).
Let Ω be an open set in R

n with C2,α boundary (for some α > 0) and let L
be the differential operator (E.11), where aij is in C0,1(Ω) and bi and c are
in C0(Ω) and satisfying (E.12).

Then there exists a constant C depending only on Λ and the corresponding
norms of the coefficients in Ω such that for any u ∈W 2,p(Ω) , we have

‖u‖W2,p(Ω) ≤ C

(
‖u‖Lp(Ω) + ‖γ0u‖

W
2− 1

p
,p

(∂Ω)
+ ‖Lu‖Lp(Ω)

)
. (E.20)

Theorem E.4.5 (Regularity).
Let Ω be an open set in R

n with C2,α boundary (for some α > 0) and let L be
the differential operator (E.11), where aij is in C0,1(Ω) and bi and c are in
C0(Ω) and satisfying (E.12). Then if u ∈ W 1,p(Ω) satisfies Lu ∈ Lp(Ω) and
γ0u ∈W 2− 1

p ,p , then u ∈W 2,p(Ω) .
More generally, if, for some k ≥ 0 , Ω has Ck+2,α boundary, aij is in

Ck,1(Ω), bi and c are in Ck(Ω) , Lu ∈ W k,p(Ω) , u ∈ W 1,p(Ω) and γ0u ∈
W k+2− 1

p ,p(∂Ω) , then u ∈W k+2,p(Ω) .

Neumann problem

Theorem E.4.6 (A priori estimates).
Let Ω be an open set in R

n with C2,α boundary (for some α > 0) and let L
be the differential operator (E.11), where aij is in C0,1(Ω) and bi and c are
in C0(Ω) and satisfying (E.12).
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Then there exists a constant C depending only on Λ and the corresponding
norms of the coefficients in Ω such that for any u ∈W 2,p(Ω) , we have

‖u‖W2,p(Ω) ≤ C

(
‖u‖Lp(Ω) + ‖γ1u‖

W
1− 1

p
,p

(∂Ω)
+ ‖Lu‖Lp(Ω)

)
. (E.21)

Theorem E.4.7 (Regularity).
Let Ω be an open set in R

n with C2,α boundary (for some α > 0) and let L be
the differential operator (E.11), where aij is in C0,1(Ω) and bi and c are in
C0(Ω) and satisfying (E.12). Then, if u ∈ W 1,p(Ω) satisfies Lu ∈ Lp(Ω) and
γ1u = 0 , then u ∈ W 2,p(Ω) .

If in addition, for some k ≥ 0 , Ω has Ck+2,α boundary, aij is in Ck,1(Ω) ,
bi and c are in Ck(Ω) , Lu ∈ W k,p(Ω) , and γ1u = 0 , then u ∈W k+2,p(Ω) .

E.5 Poincaré Inequality

We recall the following Poincaré-type inequality [Bre, Corollaire IX.19].
We stress that no regularity of ∂Ω is needed.

Theorem E.5.1.
Let Ω ⊂ R

n be open and bounded. Then, for all p ∈ [1,∞[ , there exists a
constant C = C(p,Ω) such that

‖u‖W1,p(Ω) ≤ C‖∇u‖Lp(Ω),

for all u ∈W 1,p
0 (Ω) .



F

Boundary Coordinates

F.1 The Two-Dimensional Case

Let Ω be a smooth, simply connected1 domain in R
2 . Let

γ : R/(|∂Ω|Z)→ ∂Ω

be a parametrization of the boundary with |γ ′(s)| = 1 for all s . Let ν(s) be
the unit vector, normal to the boundary, pointing inward at the point γ(s) .
We choose the orientation of the parametrization γ to be counterclockwise, so

det
(
γ ′(s), ν(s)

)
= 1 .

The curvature k(s) of ∂Ω at the point γ(s) is now given in this parametrization
by

γ′′(s) = k(s)ν(s) .

The map Φ defined by

Φ : R/(|∂Ω|Z)×]0, t0[→ Ω ,

(s, t) �→ γ(s) + tν(s) (F.1)

is clearly a diffeomorphism, when t0 is sufficiently small, with image

Φ
(
R/(|∂Ω|Z)×]0, t0[

)
= {x ∈ Ω

∣∣ dist(x, ∂Ω) < t0} =: Ωt0 .

Furthermore, with the function t(x) defined in (4), t(Φ(s, t)) = t .
The inverse Φ−1 defines a system of coordinates for a tubular neighborhood

of ∂Ω in Ω that we can use locally or semiglobally.
1 In the non-simply connected case, the construction below will give coordinates in

a neighborhood of any connected component of the boundary.
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If A is a vector field on Ωt0 with β = curlA , we define the associated
fields in (s, t)-coordinates by

Ã1(s, t) = (1− tk(s))A(Φ(s, t)) · γ′(s) , Ã2(s, t) = A(Φ(s, t)) · ν(s) , (F.2)

β̃(s, t) = β(Φ(s, t)) . (F.3)

Then
∂sÃ2 − ∂tÃ1 = (1− tk(s))β̃ . (F.4)

Furthermore, for all u ∈ H1(Ωt0) , we have, with v = u ◦ Φ ,∫
Ωt0

|(−i∇+ A)u|2 dx =
∫ {

(1 − tk(s))−2
∣∣∣(−i∂s + Ã1)v

∣∣2

+
∣∣(−i∂t + Ã2)v

∣∣2}(1− tk(s)) ds dt ,
∫

Ωt0

|u(x)|2 dx =
∫
|v(s, t)|2(1− tk(s)) ds dt . (F.5)

The next lemma is quite useful for the fine analysis in a tubular neighborhood
of the boundary and gives a kind of normal form.

Lemma F.1.1.
Suppose Ω is a bounded, simply connected domain with smooth boundary and
let t0 be the constant from (F.1). Let θ be a given function on Ωt0 such that
the corresponding θ̃ is t-independent. Then there exists a constant C > 0 such
that, if A is a magnetic vector potential in Ω with

curlA = θ on ∂Ω , (F.6)

and with Ã defined as in (F.2), then there exists a gauge function ϕ(s, t) on
R/(|∂Ω|Z)×]0, t0[ such that Ā = Ã−∇(s,t)ϕ satisfies

Ā(s, t) =
(
Ā1(s, t)
Ā2(s, t)

)
=

(
γ0 − θ̃(s, 0)t+ t2k(s)

2 + t2b(s, t)
0

)
, (F.7)

where

γ0 =
1
|∂Ω|

∫
Ω

curlA dx , (F.8)

and b satisfies the estimate

‖b‖L∞(R/(|∂Ω|Z)×]0,
t0
2 [) ≤ C‖∇ curlA− θ‖C0(Ωt0 ) . (F.9)

Furthermore, if [s0, s1] is a subset of R/(|∂Ω|Z) with s1 − s0 < |∂Ω| , then we
may choose ϕ on ]s0, s1[×]0, t0[ such that

Ā(s, t) =
(
Ā1(s, t)
Ā2(s, t)

)
=

(
−θ̃(s, 0)t+ t2k(s)

2
+ t2b(s, t)

0

)
, (F.10)

with b still satisfying the estimate (F.9).
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Proof.
Notice first that

∫ |∂Ω|

0

Ā1(s, 0) ds =
∫ |∂Ω|

0

Ā · γ′(s) ds =
∫

Ω

curlA dx .

This determines γ0 which is a global quantity associated with curlA .
Let us write

f = curlA− θ , f̃(s, t) = f(Φ(s, t)) , f̃ ′ =
f̃

t
.

Then ‖f̃ ′‖L∞ ≤ C‖∇f‖C0(Ωt0 ) and, using (F.4), we obtain

∂sÃ2 − ∂tÃ1 = (1− tk(s))(θ̃(s, t) + tf̃ ′) = (1− tk(s))(θ̃(s, 0) + tf̃ ′) .

Define

ϕ(s, t) =
∫ t

0

Ã2(s, t′) dt′ +
(∫ s

0

Ã1(s′, 0) ds′ − sγ0

)
. (F.11)

Then ϕ is a welldefined continuous function on R/(|∂Ω|Z)×]0, t0[ . We pose
Ā = Ã−∇ϕ and find

Ā(s, t) =
(
Ā1(s, t)
Ā2(s, t)

)
=
(
Ā1(s, t)

0

)
,

with

∂tĀ1(s, t) = −(∂sÃ2 − ∂tÃ1) = −(1− tk(s))(θ̃(s, 0) + tf̃ ′) ,

Ā1(s, 0) = γ0 .

Therefore,

Ā1(s, t) = γ0 − θ̃(s, 0)t+
t2k(s)

2
−
∫ t

0

t′(1 − t′k(s))f̃ ′(s, t′) dt′ ,

and we get (F.7) by applying l’Hôpital’s rule to the integral.
When we only consider a (simply connected) part ]s0, s1[×]0, t0[ of the ring

R/(|∂Ω|Z)×]0, t0[ , we can omit the term sγ0 in (F.11) since we do not need
ϕ to be periodic. ��

F.2 Adapted Coordinates in the Three-Dimensional Case

F.2.1 Tubular coordinates

Let ∂Ω � x �→ φ(x) = (y1, y2) be local coordinates on the boundary and G
the metric induced by the 3D Euclidean metric g0 on ∂Ω in these coordinates.
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Then for t0 > 0 small enough (and considering an open set ω on which φ−1

is welldefined), we can consider the map

ω×]0, t0[� (y1, y2, y3) �→ Φ(y) = φ−1(y1, y2) + ν(φ−1(y1, y2))y3 , (F.12)

where ν(x) is the interior normal unit vector at the point x ∈ ∂Ω . This
defines a diffeomorphism of ω×]0, t0[ onto V in Ωt0 and its inverse defines
local coordinates on V , V � x �→ y(x) such that

y3(x) = dist(x, ∂Ω) . (F.13)

Then we get by direct computation the form of the standard flat metric
g0 in these new coordinates:

g0 =
∑

1≤i,j≤3

gij dyi ⊗ dyj

= dy3 ⊗ dy3 +G+ 2y3
∑

1≤i,j≤2

〈 ∂ν
∂yi

∣∣∣ ∂x
∂yj

〉
dyi ⊗ dyj

+ y2
3

∑
1≤i,j≤2

〈 ∂ν
∂yi

∣∣∣ ∂ν
∂yj

〉
dyi ⊗ dyj . (F.14)

Remark F.2.1.
We frequently denote the map x �→ y3(x) = dist(x, ∂Ω) by x �→ t(x) . Let us
also observe that there is some freedom in the choice of the boundary coor-
dinates. We will explain in the next subsection how to construct coordinates
adapted to a given curve in the boundary.

F.2.2 Local coordinates near a curve inside the boundary

Let Σ be a curve in ∂Ω parametrized by arc length on some interval I (I =
[−a,+a]): Σ = {γ(s); s ∈ I} . So we have |γ′(s)| = 1 . Then, there exists a
neighborhoodWx0 of x0 = γ(0) in ∂Ω , such that, for any z ∈ Wx0∩Σ , there
exists a unique geodesic Λz through z and normal to Σ . The neighborhood
Wx0 of x0 can also be chosen such that

∀x ∈ Wx0 , ∃! z = z(x) ∈ Σ ∩Wx0 s.t. d∂Ω(x, z) = d∂Ω(x,Σ) , (F.15)

where d∂Ω( . , . ) denotes the distance on ∂Ω .
Then, there exist an open set S of R

2 and a regular diffeomorphism

φ : Wx0 → S, φ(x) = (r, s) with ± r = d∂Ω(x,Σ) = d∂Ω(x, γ(s)) . (F.16)

We observe that
x(0, s) = γ(s) .
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We choose a positive orientation (and this determines the choice of the sign
of r) by imposing

∂x

∂r
(0, s) ∧ ∂x

∂s
(0, s) = ν(γ(s)) , (F.17)

where ν(x) is the interior normal of ∂Ω at the point x ∈ ∂Ω . Then (r, s) are
local coordinates in Wx0 and observing that, for any fixed s , r �→ x(r, s) is a
parametrization by arc lengths of the geodesic Λγ(s) , we have

∣∣∣∂x
∂r

(r, s)
∣∣∣ = 1 , (F.18)

and 〈∂x
∂r

(0, s)
∣∣∣ ∂x
∂s

(0, s)
〉

= 0 . (F.19)

More precisely we have the following Lemma.

Lemma F.2.2.
In the above local coordinates, the metric G on ∂Ω is diagonal:

G = dr ⊗ dr + α(r, s) ds⊗ ds . (F.20)

On the curve Σ , we have

α(0, s) = 1 ,
∂α

∂r
(0, s) = −2κg(s) , and

∂α

∂s
(0, s) = 0 , (F.21)

where κg(s) denotes the geodesic curvature of the curve Σ at γ(s) .

Remark F.2.3.
In the coordinates (r, s) the second fundamental form

K = K11 dr ⊗ dr + K12dr ⊗ ds + K21 ds⊗ dr + K22 ds⊗ ds ,

satisfies

K11(r, s) =
〈∂2x

∂r2
(r, s)

∣∣∣ ν(x(r, s))
〉
,

K22(r, s) =
〈∂2x

∂s2
(r, s)

∣∣∣ ν(x(r, s))
〉
,

K12(r, s) =
〈 ∂2x

∂r∂s
(r, s)

∣∣∣ ν(x(r, s))
〉
,

K21(r, s) = K12(r, s) .

The function K11(r, s) is the normal curvature of the geodesic Λγ(s) at x(r, s)
and the function K22(0, s) = κn(γ(s)) is the normal curvature of the curve Σ
at x(0, s) = γ(s) .
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F.2.3 Local coordinates near a curve on the boundary

We come back to previous computations and relate them to the curvatures.
Let φ(x) = (y1, y2) be local coordinates of the boundary as defined in the
previous subsection. We have observed in (F.14) that

g0 = dy3⊗dy3 +
∑

1≤i,j≤2

[Gij(y1, y2)−2y3Kij(y1, y2)+y2
3Lij ]dyi⊗dyj , (F.22)

where

G =
∑

1≤i,j≤2

Gij dyi ⊗ dyj ,

K =
∑

1≤i,j≤2

Kij dyi ⊗ dyj ,

L =
∑

1≤i,j≤2

Lij dyi ⊗ dyj =
∑

1≤i,j≤2

〈 ∂ν
∂yi

∣∣∣ ∂ν
∂yj

〉
dyi ⊗ dyj .

The forms G , K , and L are respectively called the first, second, and third
fundamental forms on ∂Ω . If we take local coordinates (y1, y2) = (r, s) on the
boundary given by Lemma F.2.2, the sesquilinear form becomes

qhA(u) =
∫
Vx0

|g| 12
[
| − ih∂y3 + Ã3u|2 (F.23)

+
∑

1≤i,j≤2

gij(−ih∂yiu+ Ãiu) · (−ih∂yju+ Ãju)
]
dy1dy2dy3 ,

for u supported in Vx0 , and the associated differential operator is

P hA = (−ih∂y3 + Ã3)2 +
h

2i
|g|−1(∂y3 |g|)(−ih∂y3 + Ã3)

+ |g|− 1
2

∑
1≤i,j≤2

(−ih∂yj + Ãj)(|g| 12 gij(−ih∂yi + Ãi)) . (F.24)

If we now consider the coordinates (y1, y2) = (r, s) and complete by t = y3
introduced in Remark F.2.1, then

|g| = α(r, s) − 2t
[
α(r, s)K11(r, s) +K22(r, s)

]
+ t2ε3(r, s, t) , (F.25)

and, for 1 ≤ i, j ≤ 2 ,

(gij)1≤i,j≤2 =
(

1 0
0 α−1

)
+ 2t

(
K11 α−1K12

α−1K21 α
−2K22

)
+ t2R , (F.26)

where ε3 and Rij are smooth functions.
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F.2.4 More magnetic geometry

We will apply the previous considerations in the case where the curve Σ is
defined by (9.13). We assume for simplicity that the magnetic field β = curlA
is constant and we can assume, without loss of generality, that

A(x) =
b

2
(0,−x3, x2) , (F.27)

for some fixed b > 0 .
Let Ω be a bounded open set of R

3 with regular boundary ∂Ω . We now
assume that Σ defined in (9.13) is regular.

Remark F.2.4.
We observe that this assumption is satisfied when Ω is strictly convex.

In this situation, we can introduce the following definition:

Definition F.2.5.
At each point x of Σ , we introduce the normal curvature along the magnetic
field β by

κn,B(x) := Kx

(
γ′ ∧ ν , β

|β|
)
, (F.28)

where K denotes the second fundamental form on the surface ∂Ω .

A calculation gives the following identity:

Lemma F.2.6.
κn,B = kn , (F.29)

with κn,B from (F.28) and kn from (9.15).

Similarly to κn,B , we can define

κt,B(s) = K
(
γ′(s),

β

|β|
)
. (F.30)

We observe that we have

κn,B(s) = K
( ∂
∂r
,
β

|β|
)

= cos θ(s)K11(0, s) + sin θ(s)K12(0, s) ,

κt,B(s) = K
( ∂
∂s
,
β

|β|
)

= cos θ(s)K12(0, s) + sin θ(s)K22(0, s) .

(F.31)

Let us observe that the angle θ(s) is not “free” in our picture. In fact, we have
the geometrical constraint:

Proposition F.2.7.
The assumption that β is constant (of norm equal to one) and tangent to the
surface ∂Ω along the curve Σ implies that

κt,B(x) = 0, ∀x ∈ Σ . (F.32)
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Furthermore, if s �→ γ(s) is a parametrization of Σ by arc length, with

θ(s) = arcsin〈γ′(s) |β〉 ,

then
θ′(s) = κg(γ(s)) , ∀ s . (F.33)

Lemma F.2.8.
In the case when ∂Ω is strictly convex (K > 0) , then (F.32) implies that

κn,B �= 0 , ∀x ∈ Σ . (F.34)

When θ(s) = 0 , we deduce from (F.31) and (F.32) that K12(x(s)) = 0 .
So the curvature matrix K becomes diagonal.

Proof of Lemma F.2.8.
We observe that (F.31) can be rewritten in the form

(
κn,B
κt,B

)
= K

(
cos θ
sin θ

)
. (F.35)

Observing that K is invertible when Ω is strictly convex (K is actually strictly
positive), we immediately see that |κn,B|+ |κt,B | �= 0 . ��
Example F.2.9.
In the case of the ellipsoid {a1x

2
1 + a2x

2
2 + a3x

2
3 ≤ 1} , it is interesting to

compute our invariants. Take for simplification the case when β = (0, 0, 1) .
Then Σ is the intersection of the ellipsoid with x3 = 0 . So we get an ellipse
in this plane. We can now observe that the vector field β is orthogonal to Σ .
We observe that, at the point (x1, x2, x3) on the boundary of the ellipsoid, we
have

〈β | ν〉 = − a3x3√
a2
1x

2
1 + a2

2x
2
2

.

This leads to
|κn,B(x1, x2, 0)| = a3√

a2
1x

2
1 + a2

2x
2
2

.

The minimum of κn,B is then obtained at the point where
√
a2
1x

2
1 + a2

2x
2
2 is

maximal. If we assume, for example, that a1 > a2 , we get that this maximum
is obtained at x2 = x3 = 0 and equal to a1 .
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[BolH2] C. Bolley and B. Helffer. Rigorous results on Ginzburg–Landau models
in a film submitted to exterior parallel magnetic field I. Nonlinear Stud.
3 (1) (1996), p. 1–29.



310 References

[BolH3] C. Bolley and B. Helffer. Rigorous results on Ginzburg–Landau models
in a film submitted to exterior parallel magnetic field II. Nonlinear Stud.
3 (2) (1996), p. 1–32.

[BolH4] C. Bolley and B. Helffer. The Ginzburg–Landau equations in a semi-
infinite superconducting film in the large κ limit. European J. Appl.
Math. 8 (1997), p. 347–367.
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[BonDMV] V. Bonnaillie-Noël, M. Dauge, D. Martin and G. Vial. Numerical com-
putations of fundamental eigenstates for the Schrödinger operator under
constant magnetic field. Comput. Methods Appl. Mech. Engng 196,
p. 3841–3858 (2007).
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Thèse de doctorat de l’Univ Paris-Sud (1999).

[Du2] M. Dutour. Phase diagram for Abrikosov lattices. J. Math. Phys. 42
(2001), p. 4915–4926.

[DuH] M. Dutour and B. Helffer. On bifurcations from normal solutions to
superconducting states. Rend. Semin. Mat. Univ. Politec. Torino 58 (3)
(2000), p. 259–279.

[DuL] G. Duvaut and J.L. Lions. Les inéquations en mécanique et en physique.
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Schrödinger avec champ magnétique. Ann. Inst. Fourier 38 (2) (1988),
p. 95–113.

[HeM2] B. Helffer and A. Mohamed. Semiclassical analysis for the ground state
energy of a Schrödinger operator with magnetic wells. J. Funct. Anal.
138 (1) (1996), p. 40–81.

[HeM3] B. Helffer and A. Morame. Magnetic bottles in connection with super-
conductivity. J. Funct. Anal. 185 (2) (2001), p. 604–680. (see Erratum
at http://mahery.math.u-psud.fr/∼helffer/erratum164.pdf, 2005).

[HeM4] B. Helffer and A. Morame. Magnetic bottles for the Neumann problem:
the case of dimension 3 . Proc. Indian Acad. Sci. (Math.Sci.) 112 (1)
(2002), p. 71–84.

[HeM5] B. Helffer and A. Morame. Magnetic bottles for the Neumann problem:
curvature effect in the case of dimension 3 . mp-arc 01-362 (2001) and
mp-arc 02-145 (2002).

[HeM6] B. Helffer and A. Morame. Magnetic bottles for the Neumann problem:
curvature effect in the case of dimension 3 (general case). Ann. Ec.
Norm. Sup. 37 (2004), p. 105–170.

[HeN1] B. Helffer and J. Nourrigat. Hypoellipticité maximale pour des opéra-
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Math. 8 (1939), p. 78–91.

[Mart] A. Martinez. An introduction to Semi-classical and Microlocal Analysis.
(Universitext) Springer-Verlag, New York (2002).

[MartS] A. Martinez and V. Sordoni. Microlocal WKB expansions. J. Funct.
Anal. 168 (1999), p. 380–402.

[Mat] H. Matsumoto. Semi-classical asymptotics of eigenvalues for Schrö-
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