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Conventions and Abbreviations

Important terms are defined in the glossary (Appendix
9.1) and are italicized when first discussed in detail.

Important mathematical equations are given up to the
level of the multiple summation (

∑∑
). For more complex

mathematical details, see cited references.
Some more specialized techniques and mathematical

details are given in appendices.
Unless taken directly from another publication, iden-

tifiers of individual animals are given in upper case (e.g.,
“B”, “JOE”) or preceded by the number sign if numeric
(e.g., “#305”), and are not italicized.

Scientific names of species are given once in each sec-
tion, either in the first table or figure captions or, if there is
no table or figure, when first mentioned in the main text.
Given the current uncertainty in delphinid taxonomy and
nomenclature, and following current practice, I give only
the generic name for Tursiops spp. even when species
names were provided in the papers being referenced.

aic Akaike information criterion
anova analysis of variance
ccc cophenetic correlation coefficient
cv coefficient of variation
id individual identification
manova multivariate analysis of variance
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mdscal nonmetric multidimensional scaling
P probability of obtaining the true value of the test

statistic, or a more extreme value, under the null
hypothesis

pit passive integrated transponder tags
r correlation coefficient
sd standard deviation
se standard error
Var Variance
x̄ mean
∑

summation over
τ time lag



1 Analyzing Social Structure

1.1 Introduction

Social structure synthesizes a vital class of ethological and
ecological relationships—those among members of the
same species whose ranges overlap. This book is about
how to study, analyze, and model social structure (here
synonymous with social system, social organization, and
society). It is intended to assist biologists studying social
structures.

Social structure is founded on behavioral interactions
among individuals. Without identification of individuals,
analyses of social structure are constrained to be simplis-
tic. Studies of social behavior in vertebrates usually iden-
tify individuals, whereas those of invertebrates usually
do not. Hence “vertebrate” in the book title—I almost
always assume that data refer to individually identified
animals. However, the methods I describe could be effec-
tively applied to invertebrates in many cases, and I will
consider a few techniques that do not require individual
identification.

This is a book of methods intended for the scientist
or student who can identify members of an animal pop-
ulation and can record their interactions or associations.
There are several fine guides to appropriate methods of so-
cial observation (e.g., Altmann 1974; Martin & Bateson



C H A P T E R O N E 2

2007 Lehner 1998). Following this advice, social interactions can be
observed systematically and without much bias, but then what? How
do we go from records of “ID#302 groomed/grouped with ID#127” to
a model of social structure? How do we test a hypothesis, such as that
grooming is reciprocal, based on theory or discoveries on other popula-
tions? There has been remarkably little guidance on the analytical side
of social analysis. Fine data sets are collected, but frequently analyses
are not even attempted, and when they are, they are often suboptimal.

Following a brief consideration of technical, principally statistical,
matters (Chapter 2) and data collection (Chapter 3), the book princi-
pally focuses on the production of valid, quantitative models of social
structure from such data. I use as a backbone Hinde’s (1976) conceptual
framework for the study of social structure (Section 1.6). This is based
on interactions between individuals that are integrated and abstracted
to describe relationships between members of dyads, where a dyad is a
pair of individuals (Chapter 4) and the relationships among all dyads in
the population form its social structure (Chapter 5). These two chapters
are the heart of the book. In some cases, the division of the material
between these two chapters is rather arbitrary. For instance, plots of
relative measures of relationship (e.g., Fig. 4.7) indicate both the na-
ture of the relationships and the form of social structure. I then consider
whether and how we can compare different societies (Chapter 6), before
ending in a less comprehensive vein by discussing methods of examining
the evolutionary and ecological links between social structures and other
biological attributes (Chapter 7) and how social analysis may develop in
the future (Chapter 8). The appendices include definitions of important
terms used in the book (Appendix 9.1), books that I have found useful in
carrying out social analyses (Appendix 9.2), some information on how
computer packages can be used for social analyses (Appendix 9.3), and a
few statistical derivations (Appendixes 9.4 and 9.5). To provide larger-
scale guidance, I have provided general recommendations in text boxes.

An important decision in writing this book has concerned the level
of statistical detail to include. Statistical methods used in social analysis
range from the trivial (e.g., when constructing sociograms) to complex
modern techniques such as Markov chain Monte Carlo methods. Aim-
ing at what I perceive to be the median level of statistical expertise of
those who study animal societies, I include within the main text of the
book descriptions of the techniques, how they are used, when they are
appropriate, when they are not appropriate, output options, and poten-
tial difficulties. Where derivation or calculation of a measure is fairly
straightforward, I give formulas (roughly up to the level of multiple
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summations, ��). More-detailed statistical matters and more-complex
procedures are covered in the technical works cited and in appendices.

Nearly all of the available techniques of social analysis require com-
puter programs. Wherever such techniques are available, I show in Ap-
pendix 9.3 how reasonably easy-to-use computer programs can be used
to carry out the analyses.

This book is not a statistical treatise; a guide to field or laboratory
methods of studying the social behavior of animals; a collection of com-
puter programs; a synthesis of results on vertebrate social structures; or
a review of vertebrate social evolution. All of these are or would be most
valuable, but this is a book about methods of social analysis. It concen-
trates on the most fundamental methods. There are many examples in
the literature of quite complex and creative analyses of vertebrate social
structures. There are too many to cover well, however, and most are
highly situation dependent, so I stay with those techniques that I think
will have reasonably broad usage.

The methods are illustrated by examples from a variety of taxa. I
have often chosen parts of the available data in ways to best illustrate
a particular analytical method. This means that different parts of the
same data set are used at different places in the book. It also means that,
while the results presented in the examples generally represent the social
systems from which the data were collected, those interested in these
social systems should use the original publications, which I cite, not the
examples in this book.

I have tried to keep the book relatively brief. I hope that those who
need guidance and information on methods of social analysis can find
much of what they need.

1.2 What Is Social Structure?

Later in this chapter (Section 1.6), I introduce a formal conceptual frame-
work of social analysis, but, principally for the benefit of those new to
social analysis, I provide here a brief summary of the object and goal
of this field. Social structure is a synthesis of how individuals interact
with each other. Ideally, a description of the social structure of a popu-
lation captures the nuances of individual differences in social behavior
but also efficiently summarizes the actions of the individuals and their
relationships with each other. A good description of social structure
should be sufficiently general to permit comparisons with social struc-
tures of other populations and correlations between social structure and
nonsocial factors such as population density and predator pressure.
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1.3 Why Social Structure Is Important

For all but the most solitary asexual organisms, nearby conspecifics are
vital elements of the environment. Individuals of the same species often
compete with each other for resources. In some cases, they may use each
other as resources, for instance, in cannibalism. Alternatively, they may
cooperate in attaining resources or defending either resources against
conspecifics or themselves against predators. They may mate with one
another or care for one another. Thus, social structure is often a key de-
terminant of population biology, influencing fitness, gene flows, and spatial
pattern and scale (Wilson 1975). Through these routes, social structure
often becomes an important element in the management and conserva-
tion of a species (Sutherland 1998). For instance, poaching affects the
health of African elephant (Loxodonta africana) populations not only
through the number of animals killed, but also because in this highly
social species the reproductive success of individuals depends on social
relationships with others (Poole & Thomsen 1989).

With patterns of mortality, reproductive success, and dispersal strongly
affected by social structure, one expects that not only will social struc-
tures evolve into forms adaptive for their members, but also that these
forms will influence the evolution of social and other traits. For instance,
interactions with relatives may affect inclusive fitness and thus drive so-
cial evolution (Hamilton 1964), and the evolution of cooperation among
nonrelatives also depends on the form of social structure (Trivers 1985).
It is believed that social structures shaped the evolution of sexual size
dimorphism (e.g., Lindenfors et al. 2002), signaling systems (Bradbury
& Vehrencamp 1998), and cognition (Byrne & Whiten 1988).

The rate and pattern of spread through a population of anything that
is transmitted by individual-to-individual proximity or interaction will
depend on social structure. Thus, network analyses of social systems are
used to study information flow (e.g., Lusseau 2003) and disease trans-
mission (e.g., Rogers et al. 1998).

So social structure is important, and scientists should study it.

1.4 Conceptualizing Animal Societies: A Brief History

The study of the structure of vertebrate societies has a diffuse history.
Scientists studying particular species found models to guide their analysis
from a wide variety of sources or invented their own. In this section, I
sketch the major paths of social analysis. Crook (1970) provides a nice
summary of the history of social analysis until 1970, and Roney and
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F I G U R E 1 . 1 Frontispiece of Espinas’ (1878) treatise on an animal societies, from a 1924 reprint.

Maestripieri (2003) discuss more recent developments in the study of
primate societies.

Although there were earlier perspectives on animal societies, a land-
mark, at least in hindsight, was the publication of Des sociétés animales
by Espinas (1878) (Fig. 1.1). Espinas provided a history of social theory
and summarized what was known of animal social life, categorizing ani-
mal societies. His approach, which used evolutionary and ecological ideas
as well as perspectives from sociology, looks quite modern in retrospect.
He noted that animal societies arose through the “habitual reciprocity” of
the actions of its members, and that they seemed adapted to local con-
ditions but were not clearly related to phylogeny. The ideas of Espinas,
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although influential in the development of sociology, were largely ignored
by zoologists, as were those of some early twentieth-century scientists
who also examined animal societies from both sociological and evolu-
tionary perspectives (Crook 1970).

Instead, in the mid-twentieth century, an ethological outlook on so-
cial structure based on the motivational and physiological causation of
behavior became dominant. The perspective is clear from the title of
Lorenz’s classic paper “Der Kumpan in der Umwelt des Vogels (Der
Artgenosse als auslösendes Moment sozialer Verhaltungsweisen),” or
“The companion in the bird’s world: the fellow-member of the species
as a releasing factor of social behavior” (Lorenz 1935, summarized in
English in Lorenz 1937). Individuals, through their presence or behavior,
were seen as releasers of each others’ instinctive behavior. Nonhuman
social structure was seen as the sum of these instinctive reactions to the
“Kumpan” (roughly translated as “companion”). It lacked the “deeper
and nobler bonds” of human society.

This early ethological view of vertebrate social behavior “based on
the releaser system” (Tinbergen 1953) was in some respects in competi-
tion with other paradigms, including the ideas of the even more mech-
anistic U.S. behaviorist school. In the 1950s other ethologists began
seriously to question Lorenz’s motivational approach (Crook 1970). A
range of perspectives was appearing. For instance, Thompson (1958)
considered social behavior from an evolutionary viewpoint, emphasized
communication and interaction as the basis of social structure, and ex-
amined the attributes of animal groups, which might include bonds and
altruism. The paradigm was shifting, partly due to an increasing atten-
tion to primates in place of Lorenz’s birds. With a focus on primates, it is
more natural to make comparisons with humans, so ideas were imported
from the human social sciences. Some anthropologists, sociologists, and
psychologists began examining primate social structures, hoping to learn
about the roots of human society.

In the 1960s and early 1970s, role theory, developed in social psy-
chology and anthropology, became an important paradigm in prima-
tology (Roney & Maestripieri 2003). From this perspective, individuals
have distinctive roles in society, and social structure is the outcome of
behavior resulting from these roles. In the 1970s and early 1980s, pri-
matologists imported another set of models, this time from sociology.
Sociometric analyses, and the related block-model approach, focused
on dyadic relationships rather than individuals (Roney & Maestripieri
2003). In some respects, this completed a loop because fundamental con-
cepts of sociology were developed from models of nonhuman societies.



A N A L Y Z I N G S O C I A L S T R U C T U R E 7

F I G U R E 1 . 2 Social groups depicted as information networks by Wilson (1975; adapted from Fig. 2-3) “in
order to illustrate variation in several of the qualities of sociality.”

For instance, Emile Durkheim, one of the fathers of sociology, was
strongly influenced by Espinas (1878).

In his monumental book Sociobiology, Wilson (1975, pp. 16–19)
(Fig. 1.2) drew together many of these threads, listing 10 “qualities of
sociality”: group size, demographic distributions, cohesiveness, amount
and pattern of connectedness in communication, permeability or move-
ment between social groups, compartmentalization or the degree to which
the population contains distinct social units, differentiation of roles, in-
tegration of behavior, information flow, and fraction of time devoted
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to social behavior. All of these are important qualities of societies and
can be used in comparative studies or in attempts to classify societies
(Section 1.8).

Social structures have not escaped the drive to classify. For instance,
Espinas (1878) produced a simple classification based on whether as-
sociations among individuals are active or passive and are colonial or
free-living and the function of aggregation, and others followed with
systems that were more or less divisive (Wilson 1975, pp. 16–19). Such
blanket classifications of animal social systems were unsatisfactory in
several respects. Divisions were at least partially arbitrary. If they were
of fine scale, it was often unclear into which category the social struc-
ture of a given population of animals should be placed, and populations
could appear to switch categories over time. With broad categories, pa-
tently dissimilar social systems might end up in the same bin. Catego-
rization has been more successful on subsets of animal social systems,
such as those of the social insects (Michener 1969) or primates (Crook
& Gartlan 1966; Kappeler & van Schaik 2002) or the mating systems
of mammals (Clutton-Brock 1989). In each of these cases, there are ap-
parent categories with quite clear discontinuities between them (Section
1.7 and Chapter 6).

Whereas the sociobiologist Wilson (1975) discussed the “top-down”
classification and measurement of social structure, ethologists took a
more “bottom-up” approach. Having moved beyond Lorenz’s releasers,
they melded their descriptive methods to ideas imported from sociology.
Hinde’s (1976) conceptual framework for the study of social structure
(Section 1.6), rooted in dyadic interactions, cemented the position of
the sociometric approach as fundamental to studies of primate social
structure, and it has a central role in structuring this book.

Initially at least, this conceptually rich approach was principally ap-
plied to primates. Studies of social structure in other vertebrates went
little beyond Wilson’s (1975) first two qualities of sociality: group size
and demography. Although primatologists were using methods developed
for humans, there was a deep reluctance among some scientists to infer
complex sociality among other vertebrates. Although it was considered
likely, and a useful research hypothesis, that individual primates recog-
nize and form distinct relationships with other individuals, distinctive
relationships among individuals of other species were rarely considered.
Individual recognition and dyadic relationships may not be important
elements of the social structure of most pelagic fishes. There are other
species, however, whose social complexity is not very different from that
of primates. The gulf is illustrated by perspectives from about 1980 on
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the social ecology of two vertebrate orders that are now recognized as
having quite similarly high levels of social complexity (Connor et al.
1998). On one hand, Nagel (1979, p. 316) asserted “a primate group can
certainly be described as a complex of interacting members,” whereas
Gaskin (1982, p. 151) concluded “statements that assume the existence
of a high order of social evolution in the Cetacea are, frankly, not really
supported to any extent.”

In the 1980s and 1990s, the gulf between the productive course of
primate social analysis and the depauperate studies of the social struc-
ture of most other vertebrates began to narrow. This was due to a largely
one-way flow of personnel and ideas. Scientists trained as primatologists
or by primatologists began detailed and highly illuminating studies of
other species (e.g., Clutton-Brock et al. 1982; Connor et al. 1992), and
important ideas from primatology, such as Hinde’s framework (Section
1.6), began to influence nonprimate social analysis (e.g., Le Pendu et al.
1995). Meanwhile, other ideas, such as the game-theoretic concept of
evolutionarily stable strategies developed in economics, were placing the
social behavior of both primates and nonprimates in new and productive
perspectives (e.g., Trivers 1985).

Despite their slow start, toward the end of the twentieth century, non-
primatologists became active in developing new quantitative methods
of social analysis. This is perhaps partly because they were less con-
strained by “standard practices” and partly because nonprimate study
populations are often larger, making quantitative methods more valu-
able. For instance the temporal methods described in this book (Sections
4.6 and 5.5) had their roots in Myers’ (1983) analysis of shorebird soci-
ety and Underwood’s (1981) work on ungulates. Consequently, during
the 1980s and 1990s, whereas studies of primate societies developed
into new conceptual directions (including culture, politics, and areas of
experimental psychology), those of nonprimate vertebrates became gen-
erally more quantitatively sophisticated (Whitehead & Dufault 1999).

An important approach to the analysis of vertebrate social systems—
network analysis—has recently been introduced. Used for some time in
sociology and other scientific disciplines, with very few exceptions (e.g.,
Maryanski 1987), network analysis was not applied to nonhuman verte-
brate societies until 2003. Then, network analysis caught the attention of
scientists studying dolphins (Lusseau 2003) and fish (Croft et al. 2004),
with applications to primates (Flack et al. 2006) following.

In this book, I describe methods of vertebrate social analysis, often
developed on nonprimate species, from a conceptual perspective that
stems largely from studies of apes and monkeys.
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1.5 Ethology and Behavioral Ecology

Studies of animal social structure are generally approached from one
of two paradigms—ethology or behavioral ecology (which is related to,
and sometimes synonymous with, sociobiology). Ethologists take what
might be called a bottom-up approach to animal behavior, “attempting
to start their analyses from a secure base of description” (Hinde 1982,
p. 19), and then examining immediate causation, development, function,
and/or evolution—Tinbergen’s (1963) four “whys.” Ethology has strong
links to a number of areas of psychology (Hinde 1982).

Behavioral ecology is a subdiscipline of Darwinian evolutionary biol-
ogy, being concerned principally with the function of behavior and how
a particular behavioral pattern influences survival and reproductive suc-
cess (Krebs & Davies 1991). Thus, an ethologist studying social struc-
ture may try to work out how patterns of interactions among individuals
are organized and change with time, whereas a behavioral ecologist will
measure fitness differences of females in different-sized groups or be-
tween those males who defend territory and those who do not. The two
approaches are linked, and I draw from both.

With simple or easily classifiable social traits (such as some mating
systems), the behavioral ecological approach can proceed from relatively
straightforward field or laboratory data, with the primary technical chal-
lenge being the measurement of fitness. However, the social structures
of many vertebrates are not easily described or classified. Addressing
functional questions using poorly supported social measures such as ill-
defined “group sizes” of different species can be misleading (e.g., Connor
et al. 1998). In such situations, the ethological approach—accurately
describing and modeling social structure—should precede behavioral
ecological analysis. Thus, my approach to social analysis is primarily
based on that of the ethologists.

By using the concept of the graphical network (Newman 2003b),
however, the ethological and behavioral ecological perspectives can be
integrated. Individuals are represented by nodes or points on a graph-
ical representation (e.g., Fig. 5.5). The nodes are linked in ways that
describe their interactions and relationships. The primary work of the
ethologist, then, is in producing this representation and then analyzing
and describing the network (Section 5.3). The behavioral ecologist asks
“why”? Why are nodes linked in the way that they are? Why does the
network take the overall form that it does? The behavioral ecologist
asks ecological “whys”: Given an individual’s genes and environment—
its physical, ecological and social environment—why does an animal
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Table 1.1 Definitions of Social Structure and Related Terms from the Literature

Social structure “The composition of groups and the spatial distribution of individuals” (Rowell
1972, 1979)

“Pattern of social interactions and the resulting relationships among members of
a society” (Kappeler & van Schaik 2002)

Social organization “The pattern of interactions between individuals, a description of behavior”
(Rowell 1972, 1979)

“Size, sexual composition and spatiotemporal cohesion of society” (Kappeler &
van Schaik 2002)

“Union of overlapping social niches” (Flack et al. 2006; supplementary
information)

Social system “Set of conspecific animals that interact regularly and more so with each other
than with members of other such societies” (Kappeler & van Schaik 2002;
considered synonymous to “society”; roughly equivalent to “community” in the
terminology of this book)

Society “A group of individuals belonging to the same species and organized in a
cooperative manner” (Wilson 1975, p. 595)

Surface structure “Nature, quality and patterning of relationships” a (Hinde 1976)
Structure Generalizations of surface structure across populations (Hinde 1976)
Deep structure Dynamic understanding of patterns of relationships (Hinde 1976)

aThis is the definition used in this book.

behave as it does? But she also asks evolutionary questions: How do the
physical, ecological, and social environments interact with behavior to
change the distribution of genes within a population? To consider the be-
havioral ecologist’s questions, we need an accurate representation of the
social network or at least an understanding of the limitations of the repre-
sentation. Conversely, with her analysis complete and a representation of
a social network in front of her, any thinking ethologist will ask: Why?

1.6 Hinde’s Ethological Conceptual Framework of Social Structure

There are a number of concepts and definitions of social structure in the
ethological and behavioral ecological literatures (Table 1.1). Most are
sensible and reasonable, but there is one that has proved to be the most
logically consistent and empirically useful. It is also the one that has
probably been the most frequently cited.

Robert Hinde (1976) produced his conceptual framework for the
analysis of animal societies from an ethological perspective based on
his observations of captive primates as well as a thorough knowledge
of the methods used to study human societies. Hinde’s framework is
applicable for very rich studies of complex societies (such as humans
or chimpanzees, Pan troglodytes) as well as much more basic studies of
species with simple societies (such as some rodents) or the limited data
sets that are available for more cryptic species (including arboreal and
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F I G U R E 1 . 3 Summary of Hinde’s (1976) framework for the analysis of animal societies.

aquatic animals). Particularly in the case of primates, Hinde’s frame-
work has formed the conceptual basis of a wide range of studies of
social structure (Roney & Maestripieri 2003).

Hinde’s framework is illustrated in Figs 1.3 and 1.4. Figure 1.3 sum-
marizes the essence of Hinde’s framework, and Fig. 1.4, taken directly
from Hinde (1976), introduces some of the major factors that may in-
fluence social structure and the abstractions that may be involved in
studying it.

At the fundamental level is the interaction: When the presence or
behavior of one individual is directed toward another or affects the be-
havior of another—in Hinde’s words, “what the animals are doing to-
gether (its content) and how they do it (quality).” Although behavioral
interactions are usually among members of the same species, this is not
always the case, for instance, in mixed-species bird flocks. A relationship
between two individuals comprises the content, quality, and patterning
of their interactions, in which patterning is with respect both to each
others’ behavior and to time. Finally, the social structure of a popula-
tion comprises the nature, quality, and patterning of the relationships
among its members.

Hinde’s framework does not include any causal direction: Social
structure is the result of interactions, but type, quality, and patterning of
interactions may be influenced, sometimes strongly, by social structure
(Hinde 1976; Fig. 1.3). Some of the other factors that may affect social
structure at different levels of the framework are shown around the
periphery of Fig. 1.4. From the perspective of this book some of the



F I G U R E 1 . 4 Hinde’s (1976) framework for the analysis of animal societies. Interactions, relationships,
and social structures are shown as rectangles on each level, with successive stages of abstraction moving
from left to right. The circles note independent or intervening factors that may operate at different
levels. Cultural institutions, having a dual role, are shown in both a circle and a rectangle. For nonhuman
primates, these numerically coded examples might represent the following:

1. Instances of grooming between a mother A and her infant B.
2. Instances of nursing interactions between A and B.
3. Instances of play between A and B.
4. Instances of grooming between female A and male C.
5. Instances of copulation between A and C.
6. First-stage abstraction: schematic grooming interactions between A and B. Abstractions of

grooming interactions between other mother–infant pairs are shown behind, but the specific
instances from which they were abstracted are not shown.

7. First-stage abstraction: schematized nursing interactions between A and B. Abstractions of
nursing interactions of other mother–infant pairs are shown behind.

8. Second-stage abstraction: schematized grooming interactions between all mother–infant pairs in
the population.

9. Mother–infant relationship between A and B. Mother–infant relationships of other mother–
infant pairs are shown behind (but connections to grooming, nursing, etc., interactions are not
shown).

10. Consort relationship between A and C. Other consort relationships are shown behind.
11. Specific relationship of another type (e.g., peer-peer).
12, 13, 14. Abstraction of mother–infant, consort, and peer–peer relationships. These may depend on

abstractions of the contributing interactions.
15. Surface structure of the troop containing A, B, C, etc.
16, 17. Surface structure of other troops (contributing relationships not shown).
18. Abstraction of structure of set of troops containing A, B, C, etc. This may depend on abstractions

of mother–infant, etc., relationships.
19. Abstraction of structure of a different set of troops (from another environment, species, etc.).

(From Hinde 1976 with a few changes in terminology, and from which most of this caption is taken).
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more significant are age/sex classes, kinship, and cultural institutions
(Chapter 7). These may help us to “explain” the patterns found at each
level (Hinde 1976); for instance, kinship and the age/sex class of the
individuals may explain much of the variance in patterns of interactions
or relationships, and aspects of culture, such as conformism, can have
a strong influence on social structure.

Using Hinde’s framework, the study of social structure is based on
identifying individual animals and recording their interactions, an etho-
logical bottom-up approach. The analytical challenge is to find and
synthesize measures of content, quality, and patterning at the levels of
both interaction and relationship.

1.6.1: Changes from Hinde’s Terminology. Hinde (1976) calls the third level
of his framework “surface structure”: “that which is apparent in empiri-
cal data.” Thus “surface structure” is in the eye of the beholder—literally
the data of the scientist—who hopes that it approximates the true social
structure of the population. The distinction between the true nature of
a parameter, entity, or system and its estimated nature is always impor-
tant, and particularly so in the case of complex systems that may be hard
to model or conceptualize. Following usual practice, however, through-
out this book I will use the same name for the true value or nature of a
parameter, entity, or system and its estimated value or nature. Thus “so-
cial structure” will be used in place of “surface structure.” Sometimes
I use the adjectives “true” or “estimated” to emphasize the difference.
Readers should be aware, however, that the true and estimated will al-
ways differ, often substantially and especially so in the case of com-
plex systems such as social systems. Hinde (1976) defines and discusses
two other forms of social structure: (1) “structure”—generalizations
from studies of social structure in several populations; and (2) “deep
structure”—the principles of societal organization (Table 1.1). In this
book, I consider both generalizations and principles, but, aiming for
conceptual simplicity, refer to them as such, leaving “social structure”
for the actual or inferred society of a particular population.

Another change from Hinde’s terminology is the replacement of
“group” by “population.” “Group,” as used by primatologists, includ-
ing Hinde (1976), refers to a set of individuals that is largely behaviorally
distinct from all others, but when referring to most other vertebrates,
“group” has a very different, and much more transitory, connotation
(Whitehead & Dufault 1999). I will call a largely behaviorally closed
set of animals in which most individuals interact with most others (the
primate “group”) a community. For some species (including some pri-
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mates, such as orangutans, Pongo pygmaeus [Mitani et al. 1991]), there
are no clear entities corresponding to the community. For the purposes
of this book, I will define population as a set of animals such that the
great majority of interactions that involve at least one member of the
population involve only members of the population. Thus, a popula-
tion could consist of one or more communities or a spatially discrete
set of individuals. The key feature is that within-population interactions
greatly outnumber those between members of different populations.

As another attempt to simplify terminology, I will treat social or-
ganization, social system, and society as synonyms of social structure.
Some authors (e.g., Rowell 1972, 1979; Kappeler & van Schaik 2002)
have given some of these terms distinct definitions to clarify aspects
of social analysis (Table 1.1). These distinctions can be useful, but on
balance I think simplicity is to be preferred. In most published studies
on vertebrates, social structure, social structure, and society are neither
defined nor distinguished.

1.7 Other Definitions and Concepts of Social Structure

There are other ethologically oriented definitions of social structure,
such as those of Rowell (1972, 1979) and Kappeler and van Schaik (2002),
that, although they differ in specifics from that of Hinde, have a concept-
ually similar ethological orientation toward animal societies (Table 1.1).
They are generally more complex than Hinde’s framework and have
been less widely used.

At least two other concepts of animal social structure differ from that
used by Hinde, Rowell, Kappeler and van Schaik, and this book, and
appear in the literature on animal societies. They are principally found
in work rooted in the behavioral-ecological perspective on animal be-
havior. Studies of invertebrates, particularly social insects, tend to focus
on emergent properties, such as divisions of labor (including “castes”),
and patterns of alloparental care and aggregation (e.g., Michener 1969).
Species may then be allocated to categories of social structure such as
“communal” or “eusocial” with the hope of identifying drivers of these
patterns, such as ecological attributes or kinship. From this perspec-
tive, a primary challenge is seen as the classification of social systems,
given reasonably easily obtained knowledge on the emergent properties
(Costa & Fitzgerald 1996).

Some species, including many pinnipeds and amphibians, principally
congregate to breed. Most studies of the social behavior of these animals
are of breeding behavior, and mating systems are used to classify their
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social structure. As with the studies of social structure in insects, ecologi-
cal and other factors, such as kinship, are considered as potential drivers
of the different types of mating systems (e.g., Emlen & Oring 1977).

These approaches to the study of social structure are appropriate
with such species, but most vertebrate social structures cannot easily be
classified by large-scale properties and include much more than breeding
behavior. Thus, I generally advocate an initial use of the bottom-up,
ethological approach to studying social structure that was conceptual-
ized by Hinde. The results of such analyses can be linked to data on
mating systems or other attributes of populations (e.g., Kappeler & van
Schaik 2002).

More recently, another approach has emerged, the social niche. Rather
than focusing on dyadic relationships as in Hinde’s (1976) framework,
the social niche is an individual characteristic: the “vector of behavioral
connections in the set of overlapping social networks in which it partici-
pates” (Flack et al. 2006). Social niches have similarities with ecological
niches. They vary in quality, both between individuals and with time, af-
fect reproductive success, and interact with one another. Individuals may
be able to “construct” social niches as they can ecological niches (Laland
et al. 2000), potentially improving reproductive success. The statistics
of network analysis (Section 5.3) provide useful quantitative descriptors
of the social niche. Social organization is then the union of overlapping
social niches (Flack et al. 2006). The concept of the social niche is suf-
ficiently new that its true significance is unclear. I believe that it has
considerable potential, however, and may, at least partially, supplant
the relationship-based approach that I generally advocate in this book
(Section 8.1).

1.8 Elements and Measures of Social Structure

Although within an ethological approach emergent properties are not
the starting points of social analysis, they are highly significant. Ele-
ments of all three levels of Hinde’s conceptual framework can often be
measured or classified in useful ways and then used to investigate the
evolution or function of social behavior or social structures as well as
other questions. Interactions may be classifiable into agonistic, coopera-
tive, or other classes, and the relative rates of the different classes might,
for instance, be used as indices of the competitive or cooperative nature
of a society (Section 5.1).

Moving up a level, the interactions between a pair of animals may
have a particular content, quality, and patterning, allowing their dyadic
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Table 1.2 Elements, Attributes, and Measures of Different Levels of Social Analysis

Attributes of individuals Gender
Age
Reproductive state
Role
Gregariousness
Dominance rank

Types of interaction Agonistic
Cooperative
Reciprocal–unidirectional
Symmetric–asymmetric

Types of relationship Bonds
Dependence
Dominance
Kinship

Elements within social structures Groups
Dominance hierarcies
Roles
Social units
Tiers

Measures of social structure Demographic structure
Rates of interaction and communication
Group size: number of potential interactants at any time
Closure and stability of groups, units, or communities
Stability of relationships
Social differentiation: variability in probabilities of association

(true association indices) among dyads
Behavioral integration
Patterns of communication
Differentiation of roles
Time and energy devoted to social behavior
Community size: number of potential interactants over a

substantial period of time
Network measures such as mean and maximum path length,

clustering coefficient, assortativity
Social complexity

relationship to be classified (Section 4.8). For instance, some relation-
ships may be dependent (e.g., parent–offspring), dominant (some types of
interaction are consistently unidirectional), a bond (consistently strong
in several independent modes), or refer to cooperative reproduction (such
as a breeding pair). Types or degrees of relationship may also correlate
with the attributes of the dyads, such as age or sex class or degree of
kinship. Sometimes, relationships can be organized into mutually exclu-
sive and/or hierarchically nested tiers, patterns of reciprocity, or domi-
nance hierarchies. All these are elements of social structure (Table 1.2).

We can measure or classify social structures themselves. As noted
earlier (Section 1.4) and by Wilson (1975, p. 16), classification has
only been satisfactory within subsets of animal societies (Section 6.2).
Measuring social structure is one of the aims of this book. To set the
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scene, here are Wilson’s (1975, pp. 16–18) 10 “qualities of sociality,”
with some comments and cross-references to later sections of the book
where they are considered:

� Group size. Group size is often the most obvious feature of
an animal society. Surely, social life is different for an animal
who can usually only sense one conspecific compared to an
animal immersed in a group of hundreds. Defining and dis-
tinguishing animal groups is not straightforward, however,
and groups may mean different things to different observers
and to the animals themselves. For primatologists, a group
is usually a largely self-contained set of animals whose inter-
actions are principally with each other (what I call a commu-
nity), whereas for scientists studying ungulates, a group may
mean animals clustered for just a few minutes (e.g., Under-
wood 1981). In this book, I use group in the sense of animals
that actively achieve or maintain spatiotemporal proximity,
giving it a similar connotation to the primatologists’ “party”
but contrasting it with “aggregations” of animals that may
be caused by nonsocial factors such as a patchy distribution
of resources (Section 3.4). This definition of group is useful
if associations are to be defined using groups, as is often the
case (Section 3.4). Group size is an important measure of
the complexity of social life, indicating the mean number of
other individuals that an animal may interact with at any
instant. Similarly, the community size (the primatologists’
“group” size) is the number of other individuals with which
an animal may interact over a substantial period of time,
perhaps a season or a year.

� Demographic distributions. Age, sex, and reproductive
state are fundamental characteristics of animals, strongly
affecting their interactions and associations. With demo-
graphic information incorporated, descriptions of animal
societies become much richer (Section 3.6).

� Cohesiveness. Wilson (1975, p. 16) suggests that the close-
ness of group members to one another may be an index of
sociality. Fundamentally, we should be interested in rates of
interaction, which are likely well predicted by cohesiveness
and proximity.

� Amount and pattern of connectedness in communica-
tion. Patterns of communication within populations are
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an important feature of any social structure because com-
munication is fundamental to sociality (Fig. 1.2). Network
analysis addresses this (Section 5.3).

� Permeability. Wilson considers permeability in reference
to movement between fairly closed groups. Permeability, in
this sense, can be seen as one potential element of the tempo-
ral change in association, or interaction, patterns between
dyads. These rates of change can be studied using measures
such as lagged association rates (Whitehead 1995; Sections
4.6 and 5.5).

� Compartmentalization or modularity. The degree to which
sets of animals operate as distinct units is an important el-
ement of social structure and can be examined using so-
ciograms, cluster analyses, network analyses, and other
methods (Section 5.7). More fundamentally, we can ask
whether there are preferential associations among dyads
(Bejder et al. 1998; Section 4.9).

� Differentiation of roles. The differentiation of roles is one
of the significant attributes of social evolution in insects
(Michener 1969). Among vertebrates, roles are less striking
but may be present and important (e.g., Stander 1992). We
can examine individual roles using multivariate analysis of
interaction or association rates, network analysis, or other
methods (Section 7.1).

� Integration of behavior. This is in some ways the obverse
of the differentiation of roles and can be looked at using
similar methods, although there are operational difficulties
because lack of differentiation is often the null hypothesis,
which cannot be proved. Measures of synchrony (Section
3.2) can be used, however, to examine integration from a
more positive perspective.

� Rates of information flow. Wilson (1975, p. 18) suggests
that we can usefully compare rates of information flow in so-
cieties of different types. There are many pitfalls here (some
noted by Wilson 1975, pp. 199–200), however, including
deciding what information is important to the sender and
receiver, redundancy, how to compartmentalize informa-
tion (e.g., into bits), and how to standardize time scales.
I do not cover these areas in this book, but Bradbury and
Vehrencamp (1998, esp. pp. 387–418) provide an excellent
introduction.
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� Fraction of time devoted to social behavior. This useful
measure of sociality is one product of an ethogram that is
described by Lehner (1998, pp. 90–93) but is not covered
in this book. The proportion of energy devoted to social
behavior would also be of interest.

Wilson’s measures can be assessed and compared for populations of
the same and different species and sometimes between classes of animal
(such as those defined by age or sex) or even among individuals.

Missing from Wilson’s list is what I think of as the grail of social
analysis: a measure of social complexity that can be employed across
species. We have not yet found such a measure. In Section 6.3, I discuss
the desired characteristics of such a measure and prospects for success.

I have used most of the elements of Wilson’s list and some other ideas
discussed in this section to tabulate attributes, elements, and measures
of the levels of social analysis in Table 1.2, which abstracts some of the
principal elements and outputs of the methods discussed in this book.

1.9 The Functional Why Questions, and Ecology

Behavioral ecology is principally driven by functional questions (Krebs
& Davies 1991). How do particular forms of behavior contribute to in-
dividuals’ survival and reproductive success and thus become adaptive,
and so persist? These questions are behind many, perhaps most, studies
of animal societies; we are interested in the functional value of elements
of a social structure to its members relative to other possibilities. In be-
havioral ecology, there are three principal methodological approaches:
comparisons of individuals, experiments, and comparisons of species
(Krebs & Davies 1991). Experiments are quite rare in vertebrate social
analysis but are sometimes very illustrative (e.g., Kummer et al. 1974;
Chase et al. 2002; Durrell et al. 2004; Flack et al. 2006). Instead, most
frequently, we examine functionality in social systems by considering
the position of individuals within a social structure and how patterns of
interactions and relationships may relate to fitness. This is often done by
relating nonsocial attributes of individuals and dyads, such as kinship
and reproductive success, to measures of interaction or relationship.
As discussed in Chapter 7, comparisons among communities, popula-
tions, and species may also be informative (e.g., Kappeler & van Schaik
2002).

Thus, from the behavioral ecologist’s perspective, we may ask whether
a particular interaction or relationship, or pattern of interactions or
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relationships, is adaptive to individuals, and if so, how. Constraints,
such as a position in a dominance hierarchy, will often be important fac-
tors in such analyses. One might also consider the adaptive value of a
particular social structure to its members, although in most cases this has
no utility from an evolutionary perspective because social structure is an
emergent property and individuals can do little to change the one they
are in (Section 7.4).

A frequently employed approach is to look for ecological correlates
of social structure. The assumption, usually unstated, is that factors such
as population density, predation pressure, or the abundance and distri-
bution of resources influence the patterns of interactions and associa-
tions among individuals and so their relationships and social structure.
Then differences in these ecological factors can be related to differences
in social structure. In this way, ecological factors explaining intraspe-
cific, and especially interspecific, differences in social structure have
been sought by many (including Crook & Gartlan 1966; Jarman 1974;
Seghers 1974; Pitcher 1986; Wrangham & Rubenstein 1986).

1.10 Examples of Social Analyses

Although Hinde’s framework is applicable to any population of animals,
challenges and possibilities vary dramatically by species and population.
In this book, I use examples from a range of species to illustrate methods.
These can be arranged roughly along one major axis.

At one end are large populations of widely ranging animals in which
particular individuals are encountered rarely and opportunistically, sexes
and ages may not be known, and little behavior is observable. The work
of my group on South Pacific sperm whales (Physeter macrocephalus),
in which we opportunistically encounter members of a large population
in a vast ocean area, is an example. The data collected are sparse and
simple. Only a limited range of methods can be applied and a few topics
examined—issues such as group size and the stability of associations.
However, more can usually be retrieved from such data than might be
imagined. It is important to remember that because we cannot see or
measure much social behavior in such cases, this does not mean that
social structure is simple.

At the other extreme are small, easily viewed captive colonies (e.g.,
Corradino 1990). Animals are well known to the scientists and usually
each other, not only their ages, sexes, and kinship, but also their social
histories. The range of options for social analysis with such populations
is huge, including the analysis of shifting dominance hierarchies and
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triadic interactions. The disadvantages are that the habitat is unnatural
and that the social structures of small populations can be strongly influ-
enced by particular individuals and events (for a dramatic example see
de Waal [1998]), so generalization becomes problematic.

Table 1.3 lists 10 diverse studies of vertebrate social structure pub-
lished over the last 25 years. It includes birds, fish, and mammals ranging
in size from chickadees to sperm whales. There are aquatic, aerial, and
terrestrial species. These studies took place on the lands or waters of
nine nations and examined free-living, provisioned, and captive ani-
mals. In one case, there was an experimental component to the study.
The studies ranged very considerably in scale, with 9 to 1,767 animals
being identified individually through a variety of methods over spatial
spans ranging from 4 m to 200 km. They also ranged very considerably
in scope, from work directed toward one principal question, such as
whether individuals associate randomly (Myers 1983), to multifaceted
and detailed descriptions of social life (Goodall 1986). It is clear that
to look more deeply, one needs more data. The numbers in Table 1.3
suggest that in most circumstances about 30 study days are needed to
make an informative study of social structure. However, snorkeling or
using scuba equipment allows some fish societies to be studied very ef-
ficiently, with useful descriptions of social structure emerging from just
a few days of study. The power and precision of social analyses are
considered in Section 3.11.

Despite their variety, there are some communalities among the stud-
ies in Table 1.3 that reflect the thrust of this book. In all studies, animals
were individually identified (Section 3.5), although sometimes uniden-
tified members of the same population were also present, and in all
studies there was an attempt to describe social structure as the pattern
of relationships among members of the population (Chapters 4 and 5).

1.11 Problems with Analyzing Social Structure

Social analysis is rarely straightforward. If it were, there would be no need
for this book. Scientists are faced with a number of questions, challenges,
and decisions. Most fundamental is the research goal. In Chapters 3 to
5, I usually assume a very general objective: describing the social struc-
ture of an animal population with maximum precision. The methods con-
sidered, however, should be useful when only one element of social
structure is being examined or a hypothesis, causal or functional, is being
tested (Chapter 7). In these cases, it is very important to state the ques-
tion clearly and design the data collection and analysis appropriately.
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Thus, before starting research, we should consider some fundamental
questions. Which data should be collected? How much data are needed
to build a “useful” model of social structure or investigate our ques-
tions? In reality, the data have often been collected before the analysis is
properly considered, and sometimes primarily for some quite different
purpose, such as population analysis. In such circumstances, we should
do the best with what we have but not try to build models or come to
conclusions that go beyond the power of the data.

With data in hand, or, better, in a database or spreadsheet, another
set of questions needs attention before the numbers are crunched. Which
data can be used? Are the data independent, and, if not, is this a prob-
lem? How do we study social structure in the many cases in which
interactions, the basis of Hinde’s framework, are not visible? Which an-
alytical methods, which options, and which computer programs should
we use? Should hypotheses be tested or models fitted? If hypotheses are
considered, which null models are appropriate? If we are fitting models,
which should be tried?

As the results appear, we still need to question. Does the output make
sense when compared with what we know of the animals and the data
set? How can we distinguish real features of animal social structures
from methodological artifacts of the data?

And then there are more general issues. How can rare but vital
events such as weaning and mating be incorporated into social analysis?
How may social structures of different populations or species be com-
pared?

In this book I try to provide guidance on these issues.



2 Technical Matters

The principal function of this chapter is to introduce some
standard statistical methods and terms (summarized in
Table 2.1) that can be useful in several areas of social
analysis. More-specific methods are presented later in rel-
evant sections. I begin the chapter with a more general
and fundamental discussion of the ways in which we do
science and end it with a summary of computer packages
that can assist with social analysis.

Social data are different—different from the majority
of the data in introductory statistics classes or textbooks
(e.g., Sokal & Rohlf 1994; Ruxton & Colegrave 2006).
This is because they usually refer to the interactions, as-
sociations, or relationships between two (or occasionally
more) individuals (Hinde 1976)—they are dyadic. This
means that they can rarely, as they stand, be considered
independent, and should not be subject to statistical meth-
ods, such as t-tests, that assume independence. Instead,
we need more-specialized techniques, such as ordinations,
permutation tests, and the class of methods termed net-
work analysis.

2.1 Modes of Scientific Enquiry

The foundation of the scientific method in biology is usually
considered to be the designed manipulative experiment
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Table 2.1 Some Standard Statistical Methods Useful in Social Analysis

Basic statistics (section 2.2) Measures of central tendency Mean, median, mode
Measures of dispersion Variance, standard deviation,

coefficient of variation, range
Relationship between variables Covariance, correlation

coefficient, Spearman rank
correlation coefficient

Precision (section 2.3) Precision of statistic or
parameter estimate

Standard error, confidence
interval from: distributional
probability functions,
likelihood methods,
parametric bootstrap,
nonparametric bootstrap,
jackknife

Hypothesis testing (section 2.4) Traditional techniques t-test, ANOVA, MANOVA, others
Permutation tests Mantel tests, others

Data matrices (section 2.5) Rectangular data matrices Individual by attribute, group
by individual, others

Similarity and dissimilarity
matrices

Matrices of association indices,
matrices of kinship, others

Ordination (section 2.6) Visual representation of data
matrices

Principal components analysis,
correspondence analysis,
principal coordinates
analysis, nonmetric
multidimensional scaling

Classification (section 2.7) Nonhierarchical cluster analysis K-means, network methods of
community delineation

Hierarchical cluster analysis Average linkage, Ward’s, others
Model fitting (section 2.8) Parameter estimation, model

selection
Maximum likelihood, Akaike

information criterion

(Ruxton & Colegrave 2006). The scientist comes up with a hypothesis,
usually either from theory, a preliminary study, or results from a related
system. The hypothesis is often phrased in terms of some factor or factors
having an effect on a system. Then, in the simplest form, the factor is ran-
domly applied or not applied to a set of independent subjects and an output
variable is measured. The scientist uses statistical methods to accept or
reject the null hypothesis that the factor has an effect (e.g., Lehner 1998,
pp. 347–357; Martin & Bateson 2007, p. 106). This methodology can
be elaborated in many ways, but the essence remains testing whether
factors affect a biological system by controlling their application.

In the analysis of the social systems of free-ranging vertebrates, de-
signed experiments are rare. For many species, experiments that would
reveal important aspects of social structure are either impossible or suffi-
ciently difficult, costly, or ethically questionable that they are not carried
out. Instead, much use is made of quasi-experiments in which natural
variation in independent variables is used to investigate their relationship
with social measures. For instance, a scientist might compare group size
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with predator density across study sites to investigate the hypothesis that
the function of groups is in defense against predators (e.g., Seghers
1974). Quasi-experiments are not as definitive as real manipulative ex-
periments. A statistically significant positive correlation between group
size and predator density among study sites seems to support the defen-
sive function hypothesis, but it could also be due to the effects of some
confounding variable. Perhaps more-productive sites can support both
larger groups, whose primary function is in intraspecific competition,
and more predators.

Often social analysis is purely descriptive: We wish to produce a
model of social structure that matches reality as closely as possible, given
the effort we can put into collecting data or the data available. In produc-
ing such models, it is often useful to have formal or informal hypotheses
about the social system that we can use to guide the data collection and
analysis (e.g., that there are social units with permanent, or nearly perma-
nent, membership, or that bonds among members of one sex are stronger
than those among members of the other), and these may be developed
into statistically analyzed quasi-experiments to examine the relation-
ships between the independent variables and the social measures, assum-
ing no unaccounted-for confounding variables. Unlike many of those
who write about biological data analysis, however, I do not believe that
hypotheses are always necessary. Effective social analyses, especially of
poorly known species, can often proceed without hypotheses: General
principles of data collection are used to collect a potentially revealing
data set, which is then displayed using hypothesis-free analytical meth-
ods such as ordinations, sociograms, or lagged association rates. The
patterns that emerge may suggest hypotheses that can be tested using
aspects of the original data that are independent of the exploratory anal-
ysis or, better, a new data set. The testing of hypotheses on the data that
were used to develop them is almost always wrong (e.g., Burnham &
Anderson 2002, pp. 37–38).

As noted, hypothesis testing is not as common in social analysis as in
some other areas of biology. However, many have argued (e.g., Johnson
1999) that biologists test hypotheses for statistical significance too often,
and that many null hypotheses are straw men, most unlikely to be true.
When investigating sex differences, for instance, the size of the effect—the
magnitude of the effect of a factor on the response variable, in this case
sexual dimorphism—is usually the important issue, not whether it is
statistically significant. Thus the presentation of effect sizes, and confi-
dence in them, should take precedence over the P values of hypothesis
tests (Johnson 1999).
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In social analysis, however, there are reasonable null hypotheses,
and falsifying them should precede some further analyses. As an exam-
ple, it is entirely conceivable that individuals have no preference as to
the identity of their associates (e.g., if there is no means of individual
recognition), and if this is so, displays of patterns of association among
individuals (such as dendrograms) have little validity.

Unfortunately, testing hypotheses of social patterning is not partic-
ularly straightforward. Social measures, such as association indices, are
rarely normally distributed, and more important, they have patterns
of dependence that violate the assumptions of most standard statistical
tests. For instance, the association index between individuals A and C
is usually not independent of the indices between A and B and between
B and C. To accommodate these issues, we generally use permutation
tests, but we need to set them up carefully. Later (e.g., Section 4.9), I will
show how to set up these types of hypothesis tests.

I will also use another mode of statistical enquiry—model fitting.
Here, the assumption is that the data collected are produced by a com-
plex process and that we wish to find a mathematical model that best
approximates it. The best model balances bias versus precision (Burn-
ham & Anderson 2002, p. 32). A simple model may have bias in that
it consistently errs in its predictions at some combinations of parameter
values; a complex model will have imprecise parameter estimates.

2.2 Basic Descriptive Statistics

Let us suppose that we observe n subjects (often individual animals in
social analysis) and, on each, measure variable x, so we have an n-
element data set {x1, x2, . . . , xn}. In social analysis, x might represent
the rate of some kind of display per time unit. We can use a range of
“statistics” to describe these data (see Sokal and Rohlf [1994, pp. 39–
59]) for more information]. Basically, there are three well-used measures
of central tendency:

Mean. The sum of observations divided by the number of obser-
vations (x̄ = �xi/n). The mean is the most frequently used
measure of central tendency.

Median. The value above and below which there are equal num-
bers of observations. The median is particularly useful in
situations in which measures have unusual distributions or
there are outliers.
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Mode. The most common value of a variable, the peak value of
the frequency distribution. A bimodal distribution has two
peaks, a multimodal distribution many peaks, and so on.

There are several measures of dispersion of a variable about its
central tendency:

Variance. The mean square deviation of the observations from
the mean: V = �(xi − x̄)2/n. This is the variance of the
sample. The variance of the original variable is better es-
timated by the following formula, which removes bias:
V = �(xi − x̄)2/(n − 1). The variance is theoretically very
important but hard to relate to actual phenomena because
units are squared. Instead we use the following:

Standard deviation (SD). SD = √
V. The standard deviation is

the most common measure of dispersion. It is in the same
units as the original variable. With a normal distribution,
about 70% of the observations are within one SD of the
mean, and about 95% are within two SDs of the mean.

Coefficient of variation (CV). CV = SD/x̄. The coefficient of
variation is a standardized, unit-free measure of dispersion.

Range. The difference between the minimum and maximum
observations. The range is influenced by sample size.

If, for each individual, we measure two variables x and y, then we
can describe the relationship between them in several ways, including
the following:

Covariance. The equivalent of the variance for two variables,
usually estimated from C(x, y) = �(xi − x̄) · (yi − ȳ)(n − 1).
The covariance is large and positive if x and y are positively
related to one another, large and negative if they are in-
versely related to one another, and close to zero if they are
unrelated. However, the units of covariance (the product of
the units of the two original variables) are not particularly
useful. Thus, instead, in descriptive statistics, we use the
following:

Correlation coefficient. The correlation coefficient is the co-
variance standardized by the standard deviations of the
two measures: r = C(x, y)/[SD(x) · SD(y)]. The correlation



C H A P T E R T W O 30

coefficient has no units and ranges between +1, indicating a
positive linear relationship between the variables, and −1,
indicating a negative linear relationship between the vari-
ables. A value of r = 0 indicates no relationship.

Spearman correlation coefficient rs . Before computing the corre-
lation coefficient, the two variables are ranked, so the lowest
x becomes 1, the next lowest 2, and so on, and the lowest
y becomes 1, the next lowest 2, and so on. The Spearman
correlation coefficient is useful in situations in which the re-
lationship between x and y may not be linear. The value of
rs also varies between −1 and +1, with rs = 0 indicating no
relationship.

2.3 Precision of Statistics: Bootstraps and Jackknives

An estimated social measure (such as mean group size) or parameter
(such as rate of disassociation) may be a useful output of a social analy-
sis, but it has little value without some measure of precision. Estimates
of precision are often presented using the statistics of dispersion sum-
marized in the previous section. Instead of describing how a set of data
is dispersed around its mean or median, however, they are used to quan-
tify the error between an estimated parameter or statistic and its true
value. Standard deviations of statistics are often known as standard er-
rors (SE), and these are commonly used to describe confidence in an
estimate. Coefficients of variation (in this case CV = SE/x̄) can also be
appropriate.

The other common way of expressing the precision of an estimate is
through a confidence interval. For a single-valued statistic, two numbers
make up the interval such that if we repeatedly sampled the population in
the same manner and calculated confidence intervals, some percentage—
usually 95%—of these intervals would contain the true mean.

In some circumstances, estimating standard errors and confidence
intervals is straightforward. For instance, the usual estimated standard
error of the mean of a population calculated using a sample of size n,
{x1, x2, . . . , xn}, is simply SD(xi )/

√
n, and its 95% confidence inter-

val is

[x̄ − t0.05[n−1] · SD(xi )/
√

n] to [x̄ + t0.05[n−1] · SD(xi )/
√

n]

where t0.05[n−1] is the two-sided cumulative probability distribution of
the t distribution with n − 1 degrees of freedom, which is often tabulated
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at the back of introductory books on statistics. As a rough guide, the
95% confidence interval of a normally distributed statistic is the mean
plus and minus about twice the SE.

Estimating the precision of other statistics and parameter estimates
is less straightforward. Social measures are often like this. For instance,
there is no easy formula for giving the precision of an estimate of the
mean association index (Section 4.5) among a population of animals.
Techniques exist, however, that can be used in difficult situations like
this. Likelihood methods (Edwards 1992; see later discussion) can be
used to estimate model parameters, and likelihood also gives estimates
of precision, although the mathematics is sometimes difficult. Two
computer-intensive techniques have become very important in this area
over the last two decades: the bootstrap and the jackknife (Efron &
Gong 1983; Sokal & Rohlf 1994, pp. 820–825).

There are actually two, quite different forms of the bootstrap (Fig.
2.1). To use the parametric bootstrap to estimate parameter precision,
we need a model of the process by which the parameters produce the
data. Having estimated parameters from the real data, we feed them into
the model to produce random data by Monte Carlo methods (Manly
1997, p. 61), from which we estimate a new set of parameters. This is
a bootstrap replicate, and the distribution of many such bootstrap repli-
cate parameter estimates tells us about the bias and precision of the
original estimate from the real data. The parametric bootstrap is an im-
portant technique, giving, in some respects, the best-possible estimate
of precision, as well as other important information about the estima-
tion procedure. However, it takes some skill in computer programming
to achieve (because the generative model must be coded), and is infre-
quently used in practice.

In contrast, the nonparametric bootstrap—usually, and hereafter in
this book, just referred to as “the bootstrap”—is quite easy to use and
has become a preferred method of estimating precision in many areas of
research (Fig. 2.1). In the nonparametric bootstrap, we assume that the
original data consist of n independent units—they must be independent.
Having estimated the parameter(s) or statistic(s) using the data set, we
construct bootstrap replicates sampling with replacement from the n in-
dependent units in the original data set. Thus, in a single bootstrap repli-
cate, x1 might occur three times and x2 not at all. From each bootstrap
replicate, we calculate parameter estimates, as with the original data.
For any parameter, the distribution of its estimates among, say, 1,000
bootstrap replicates allows precision to be estimated. The SD of the
bootstrap replicate parameter estimates is used as the SE of the original
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F I G U R E 2 . 1 Bootstraps and jackknives: the basics.

estimate, and its 95% confidence interval is such that 2.5% of the boot-
strap replicate parameter estimates are less than the lower bound and
2.5% are above the upper bound. The bootstrap is a powerful and
widely used technique, but it is invalid in situations in which having
identical units in the data set (as results from sampling with replacement)
biases the statistics or parameter estimates. This occurs in social analysis
when the statistic or parameter reflects association among individuals.
For instance, association indices between an individual and itself are
always 1.0, so the bootstrap cannot be used to estimate the precision of
an estimate of the mean association index among individuals within a
population by randomly sampling the individuals with replacement for
each bootstrap estimate.

In such cases, the jackknife (Fig. 2.1) is a useful alternative. Jack-
knife replicate data sets are calculated by omitting each unit (or set of
units) in turn from the data set, and jackknife parameter estimates are
obtained from these [ŝ(−i) is the estimate omitting unit i]. Pseudoval-
ues [ϕi = n · ŝ − (n − 1) · ŝ(−i), where n is the sample size and ŝ is the
original parameter estimate] are then calculated. The distribution of the
pseudovalues gives estimates of the bias and precision of the original
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parameter estimate (Fig. 2.1). Jackknife estimates of precision tend to
be conservative, overestimating standard errors and not very precise
themselves (Efron & Stein 1981). However, the jackknife is useful in
cases when other methods are not available. The data units that are se-
quentially omitted should be independent of one another. I have found
jackknife techniques in which temporal clusters of data are omitted in
turn (e.g., each month of collected data) to be useful in some situations
when there is no other straightforward method of assessing precision.

2.4 Hypothesis Testing

As noted earlier (Section 2.1), formal hypothesis testing does not have
as large a role in social analysis as in most other areas of biology. How-
ever, it has a role. We can sometimes set up realistic null and alternative
hypotheses and use data to test them against one another. For instance,
it might be reasonable to test the null hypothesis that groups including
only males are of similar size to those containing only females against the
alternative hypothesis that one sex forms larger groups than the other,
or the hypothesis that rates of aggression are similar in groups of all sizes
against the alternative that aggression rates rise with group size. In the
latter example, we may be able to use classical experimental design to
test the hypothesis: We can randomly select individuals from a popula-
tion, without replacement, to construct experimental groups of various
sizes; measure aggression rates for a randomly chosen individual in each
group in a standard manner; and then test whether the correlation co-
efficient between group size and aggression rate is significantly greater
than zero, using the well-known distribution of the calculated correla-
tion coefficient under the null hypothesis of no relationship between the
variables. Standard methods of hypothesis testing using designed exper-
iments are described in many books, including those by Sokal and Rohlf
(1994) and Ruxton and Colegrave (2006). Assumptions and issues with
these standard statistical methods are discussed briefly in Chapter 7 in
Box 7.1.

Frequently in social analysis, however, including the example of dif-
ferences in group size with sex, manipulative experiments are impossible:
We cannot randomly assign sex. Thus, as noted earlier, we are left with
quasi-experiments: We take the sexes the animals come with and see
whether males are in different-size groups than are females. With a quasi-
experiment, confounding explanations must be carefully considered. Per-
haps larger animals are usually found in smaller groups and males are larger,
and so the bigger groups of females are a secondary result of sexual
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dimorphism. In this case, however, and frequently in social analysis,
there is another problem preventing the employment of standard statis-
tical techniques for testing hypotheses, in this case the t-test. We would
normally make observations of a number of groups and record the gen-
ders present. Usually, there will be individuals in more than one of the
observed groups, so the groups are not independent. For instance, a par-
ticularly asocial male, always alone, will bias the data. t-tests, ANOVAs,
and so on, all assume independence of experimental subjects, and when
independence is lacking, test results are invalid. What to do? The best
answer in many cases is to use permutation tests.

2.4.1: Permutation Tests. In permutation tests (Manly 1997), a test statis-
tic is chosen and calculated for the real data. The data are randomly
permuted—scrambled—many times (using a computer), with the statis-
tic being calculated for each of these permuted data sets. The real statistic
is compared with those from the randomly scrambled data sets, and if it
is, say, less than or greater than those from 97.5% of the randomly per-
muted data sets, the two-sided null hypothesis that the permutation had
no effect is rejected (at P = 0.05). Sometimes we must be careful in trans-
lating this result into biologically meaningful terms—the hypothesis usu-
ally only refers to the data collected, and this method cannot be used
as it stands to test absolute values of parameters of populations against a
null value (Manly 1997, p. 17). Thus, in the case of differences in group
size with sex, we might proceed by taking all records of group member-
ship and calculating the difference between the mean size of the groups
only containing males and those only containing females. Then, for each
permutation, sexes are scrambled so that there are the same number of males
and females as in the real data but individuals may be of the opposite
sex. Groups of mixed sex are then discarded and the difference in mean
group sizes between those containing only males and those containing
only females is calculated, giving one random value of the test statistic.
Suppose this statistic is greater in the real data than in 993 of 1,000 per-
muted data sets; we can conclude that, within the data set, males form
larger groups than females with a two-sided significance P = 0.014.

Permutation tests are discussed in some detail by Manly (1997).
Technical issues that need considering include how many permutations
to carry out. In the usual situations in which permutations are indepen-
dent, 1,000 permutations are usually sufficient, although more may be
used if the P value is close to a critical value. There are some permuta-
tion tests, including one that is very important in social analysis (Bejder
et al. 1998; Section 4.9), in which the permutations are not independent
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of one another. In such cases, many more permutations are usually re-
quired. Several computer packages can be used to carry out permutation
tests (Appendix 9.3).

A relatively simple and important permutation test is the Mantel
test (Mantel 1967; Schnell et al. 1985). This examines the relationship
between two similarity (or dissimilarity) matrices (Section 2.5). The ma-
trices are indexed by the same subjects, usually individuals in social
analysis. Thus, we might have a similarity matrix giving the rates of
association among members of a community and another with their
genetic relatedness (e.g., Table 7.1). A matrix correlation can be com-
puted between the two matrices: it is simply the correlation coefficient
between the elements of the different matrices, ignoring those on the
diagonal. This indicates the degree of association between the two mea-
sures, with r > 0 indicating that higher genetic relatedness predicts higher
association indices. Because of patterns of dependency (each individual
contributes to many association and kinship values), however, the null
hypothesis of no correlation between association and kinship cannot be
tested using the standard formulas and tables for confidence intervals of
r under the null hypothesis that its true value is zero. Instead, the Mantel
test permutes the identities of the individuals in one matrix many times,
calculating the matrix correlation coefficient for each permutation. The
true value of r is compared with the distribution of these random r’s to
investigate its statistical significance. There are variants on the Mantel
test, including nonparametric versions that consider the ranks of ele-
ments of the similarity matrix (Hemelrijk 1990a) and partial Mantel
tests in which the relationship between two similarities is controlled for
a third (e.g., whether grooming rates are related to association indices
after controlling for difference in dominance rank) (Smouse et al. 1986;
Hemelrijk 1990a).

2.5 Data Matrices

Social data are usually represented by matrices (two-way tables of num-
bers). There are two principal forms.

The simplest form is the rectangular data matrix. It is indexed by
subjects (by convention giving the rows) and variables (the columns).
An important example is a group-by-individual matrix. Rows represent
groups and columns represent individuals, with “1” indicating that the
individual was in the group and “0” that it was not in the group, or per-
haps that it was not observed in the group. So we have something like
the matrix in Table 2.2.
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Table 2.2 Example of Group-by-Individual Matrix

Individual

Group JOE SAL FRED BOB SUE

a 1 0 0 0 1
b 0 1 1 0 1
c 0 1 1 0 1
d 0 1 0 1 1
e 1 1 0 1 0
f 0 0 0 1 0
g 0 0 1 0 0
h 0 1 1 0 1

Each entry indicates whether an individual was present (1) or absent (0)
in a particular observed group.

Table 2.3 Example of Similarity Matrix between Individuals.

JOE SAL FRED BOB SUE CON ART BILL

JOE 1 0 0 0 1 0 0 0
SAL 0 1 1 0 1 0 0 1
FRED 0 1 1 0 1 0 1 1
BOB 0 0 0 1 1 1 0 0
SUE 1 1 1 1 1 0 0 1
CON 0 0 0 1 0 1 0 1
ART 0 0 1 0 0 0 1 1
BILL 0 1 1 0 1 1 1 1

Each entry indicates whether a dyad was associated (1) or not (0) during a sampling
period. This matrix is symmetric.

The second form of data matrix frequently used in social analysis
is a similarity matrix. Here, both the rows and columns generally refer
to individuals, usually the same set of individuals. Sociologists call this
a “sociomatrix.” Similarity matrices are useful in several situations. A
symmetric 1:0 matrix can represent associations within a sampling pe-
riod: a “1” in the cell at the intersection of A’s row and B’s column
indicates that A and B were associated; a “0” in the same cell indicates
that they were not associated using some definition of association (e.g.,
proximity, behavioral synchrony; Section 3.3). It is symmetric in the
sense that this value is the same as that in the cell at the intersection
of A’s column and B’s row, so that if A is associated with B, then B is
associated with A, as in Table 2.3.

A similarity matrix need not be symmetric, for instance, if association
is defined in terms of nearest neighbor distances, so that A may be
B’s nearest neighbor but B is not A’s. Similarity matrices can show
integer (i.e., 0, 1, 2, . . . ) counts of dyadic interaction events. These
are sometimes called sociometric matrices (Lehner 1998, p. 201). Such
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Table 2.4 An Asymmetric Similarity Matrix Giving Frequencies of
Occurrence, Perhaps Representing Numbers of Contests Won during
Dyadic Agonistic Encounters

JOE SAL FRED BOB SUE CON ART BILL

JOE 0 8 4 2 6 1 0 3
SAL 0 0 1 7 3 2 1 1
FRED 9 1 0 0 5 0 2 1
BOB 0 0 0 0 1 1 0 0
SUE 1 4 1 1 0 0 6 1
CON 0 3 3 0 0 0 9 1
ART 0 0 1 0 0 0 0 1
BILL 7 5 9 6 2 2 1 0

Table 2.5 Symmetric Similarity Matrix of Association Indices Using Half-Weight Association Indices
(section 4.5) of Observations of Members of a Social Unit of Seven Sperm Whales (Physeter
macrocephalus) Observed off Dominica in 2005

#5703(C) #5722(A) #5561(A) #5727(J) #5560(A) #5130(A) #5563(A)

#5703(C) 1 0.97 0.48 0.35 0.29 0.13 0.13
#5722(A) 0.97 1 0.17 0.06 0.12 0.04 0.07
#5561(A) 0.48 0.17 1 0.32 0.29 0.27 0.33
#5727(J) 0.35 0.06 0.32 1 0.53 0.11 0.07
#5560(A) 0.29 0.12 0.29 0.53 1 0.18 0.07
#5130(A) 0.13 0.04 0.27 0.11 0.18 1 0.09
#5563(A) 0.13 0.07 0.33 0.07 0.07 0.09 1

Data from Gero (2005). A, adult female; C, male calf; J, juvenile male. The numbers indicate the proportion of time that
each pair of individuals was clustered together when at the surface.

matrices may be symmetric (e.g., if the event is touching) or asymmetric
(e.g., if it details grooming or agonistic behavior), as in the example of
Table 2.4.

Similarity matrices representing associations or behavior can have
noninteger values, for instance, giving mean interindividual distances. Fre-
quently, several similarity matrices are needed to represent social data,
one for each type of behavior or association measured and one set of
these for each temporal sampling period.

Similarity matrices can also be used to represent the results of social
analyses. In particular, association indices between pairs of individuals
within a population can be tabulated in similarity matrices (e.g., Table
2.5). Association indices estimate the proportion of time that pairs of
individuals are associated (Section 4.5).

A dissimilarity matrix is structured like a similarity matrix, with indi-
viduals as both rows and columns, but here, high values indicate less simi-
larity. A matrix of geographic distances between locations is a dissimilarity
matrix. Dissimilarity matrices can be converted into similarity matrices
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by simple transformations, such as “(1 − x)” or “(1/x)”. Association in-
dices, and so matrices of association indices, are usually transformed into
dissimilarities by taking the square root of 1 minus the association
index.

Sometimes similarity and dissimilarity matrices are lumped under
the term “association matrix.” Using “association matrix” in this way
would be confusing in social analysis because “association” has an im-
portant meaning of its own (Section 3.3), and matrices of association
indices are commonly used.

2.6 Ordination

Human brains are not particularly good at assimilating tables of num-
bers, such as those in a group-by-individual matrix or a similarity ma-
trix. A number of techniques have been developed to ordinate such data
to display them visually in ways that we can assimilate much better. Or-
dination tries to represent subjects as points in a low-dimensional visual
display (Randerson 1993). There are many examples of ordination in
this book, usually with individuals being represented by points in a two-
dimensional display, with the proximity of the points indicating their
association or relationship. Several ordination methods are available
[for more information see, e.g., Randerson (1993), Manly (1994), and
Legendre and Legendre (1998)]. Four of the most important techniques
are as follows:

Principal components analysis. This, the most basic ordination
method, works with a rectangular data matrix, preferably
with normally distributed elements. Such data matrices do
not occur very frequently in social analyses (but see, e.g.,
Section 5.6 and Fig. 5.18).

Correspondence analysis. This technique is better adapted than
principal components analysis for ordinating data matri-
ces with 1:0 or positive integer elements, such as group-by-
individual matrices. An ordination using correspondence
analysis of the group-by-individual data matrix in Table 2.2
is shown in Fig. 2.2. Note that SUE and SAL, which were to-
gether in four of five groups in which each was observed, are
plotted together, whereas BOB, with only one group in com-
mon with any of the other individuals, is plotted separately.
Another example is shown in Fig. 7.1, which illustrates the
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F I G U R E 2 . 2 Example of correspondence analysis of group-by-individual matrix (table 2.2). Individuals
generally identified in the same groups are plotted together.

ability of correspondence analysis to visually display both
the rows and columns of a data matrix in one figure.

Principal coordinates analysis (also called classic metric mul-

tidimensional scaling). This is a modification of principal
components analysis that can be used on similarity matrices,
such as matrices of association indices (Digby & Kempton
1987, pp. 83–93). Although in most applications, principal
coordinates analysis actually uses dissimilarity matrices (in
which large values indicate unlike subjects), it can employ
similarity matrices by a suitable transformation of associ-
ation into dissimilarity (such as the square root of 1 minus
the similarity, the common transformation in social analy-
ses). It tries to produce a plot in which the distance between
two points on the plot is proportional to the dissimilarity
between the two individuals. A principal coordinates ordina-
tion of the matrix of association indices of sperm whales in
Table 2.5 is shown in the upper part of Fig. 2.3. Three clus-
ters appear: the calf and one adult female (its mother), the
juvenile and another adult female (its mother), and then the
other three adult females (Gero 2005). More information
and additional examples of principal coordinates analysis
are given in Section 5.2.

Nonmetric multidimensional scaling (MDSCAL). This method
also uses a similarity matrix and produces a plot similar to
that of principal coordinates, although, unlike principal
coordinates, it can use a similarity matrix directly without
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F I G U R E 2 . 3 Example of principal coordinates analysis and nonmetric multidimensional scaling of the
matrix of association indices of the social unit of sperm whales in table 2.5. (Illustration copyright Emese
Kazár.)

transformation into dissimilarities. The plots of the sperm
whale data (Table 2.5) in Fig. 2.3 using the two methods
have some similarities (the orientation of these plots is ar-
bitrary), although the clustering in the multidimensional
scaling plot is much less tight, with the calf taking a more
central position. MDSCAL differs from principal coordi-
nates analysis in several ways. The relationship between the
associations and the distances between the points tries to
be monotonic (i.e., more associated pairs are represented
by closer points) rather than linear. This is a less stringent
criterion, so with MDSCAL it is easier to ordinate data in
few dimensions than with principal coordinates. MDSCAL
is also an iterative procedure that may not always reach the
same solution, in contrast to principal coordinates, which
is prescriptive and gives a unique display. Unlike principal
coordinates, there is a limit on the number of subjects that
MDSCAL can ordinate (perhaps a few hundred, depending
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on the computer package). In social analysis, a linear rela-
tionship between transformed similarities and distances on
the ordination will usually be less important than captur-
ing as much as possible of the general pattern of similarity,
so MDSCAL is usually preferable to principal coordinates
(Section 5.2).

I have stressed two-dimensional ordinations of data or similarity
matrices in this section. The principal output are “scores,” the coordi-
nates of the points in the two dimensions (as depicted, for instance
in Fig. 2.3). However, the ordination techniques can give much more
(Section 5.2). Ordination can also be done in one, three, or more dimen-
sions. The methods give measures (including the “stress,” proportion of
variance accounted for, etc.) of how well the data are represented in
any specified number of dimensions. When a data matrix is ordinated
using principal components or correspondence analysis, then we also
get useful information on the other axis of the matrix. In the case of a
group-by-individual matrix, these are groups, so the principal compo-
nents analysis shows how they are associated with the ordination axes,
in other words, which individuals were associated with which groups.

2.7 Classification

Another set of methods for simplifying and displaying data matrices is
classification or cluster analysis, in which the subjects are assigned to clu-
sters. In social analysis, the subjects are usually individuals and the
clusters may be permanent or semipermanent social units, communities,
or other social entities. Unlike the model-free ordinations, classification
is only appropriate when the society does contain such clusters. We can
classify random data, producing informative-looking clusters (e.g., Fig.
5.7), but they mean nothing, as do quite a few of the published classifi-
cations of individuals in studies of animal societies.

There is a large range of statistical methods available for classi-
fication. For introductions to cluster analysis see, for instance, Bridge
(1993), Legendre and Legendre (1998, pp. 303–385), and Manly (1994,
pp. 128–141). Cluster analyses can be divided into nonhierarchical and
hierarchical methods.

In nonhierarchical cluster analysis, a set of subjects (usually individu-
als in social analysis) is separated into clusters such that, in some defined
sense, the separation between the clusters is maximized. Two impor-
tant, and challenging, questions are the following: How many clusters
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should we use, and how should we measure intercluster separation? The
standard method of nonhierarchical cluster analysis is K-means, which
works using a data matrix, such as the individuals-by-groups matrix
of Table 2.2. In K-means, subjects are allocated to a given number of
clusters to minimize the pooled within-cluster sum of squares. K-means
leaves open the question of how many clusters to use. For instance, using
K-means on the data in Table 2.2 gives the following allocations:

Two clusters: {SAL, FRED, SUE}, {JOE, BOB}
Three clusters: {SAL, SUE}, {JOE, BOB}, {FRED}
Four clusters: {SAL, SUE}, {JOE}, {BOB}, {FRED}

These allocations seem not unreasonable when compared with the cor-
respondence analysis ordination (Fig. 2.2), but which is best? A number
of “stopping rules” have been developed for K-means and other cluster
analyses, but unfortunately, the performance of any rule is data depen-
dent (Milligan & Cooper 1987), and different rules are appropriate in
different circumstances (e.g., Rendell & Whitehead 2003). Unless the
clusters are very clear, I suggest that a range of numbers of clusters be
tried, considered. and presented when using K-means.

Network analysts have come up with a number of methods of non-
hierarchical clustering of individuals whose relationships are described
by a similarity matrix (often just binary matrices consisting of 1s and
0s). A few of these methods can use nonbinary data such as a matrix of
association indices and may be very useful (Section 5.7). For the social
analyst, the network techniques have the advantages over K-means in
that they work from similarity matrices rather than data matrices, sug-
gest the optimal number of clusters (or the possibility that it is optimal
not to divide the data), and provide a measure of the effectiveness of the
division, modularity.

With any clustering, an important issue is whether the classification
is appropriate in itself. If SAL and SUE are actually a permanent distinct
social unit, then it probably is. If, on the other hand, they are just parti-
cularly “good friends” in a loose fission–fusion social system in which
individuals associate with a range of others at different rates, then it
probably is not. Instead, ordination methods (Fig. 2.3), as well as so-
ciograms (Section 5.2), provide a more legitimate visualization of the
society.

There is the same concern with the other major class of cluster anal-
yses: hierarchical methods. In hierarchical cluster analysis, clusters are
formed either by division or agglomeration. In divisive techniques, all
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F I G U R E 2 . 4 Example of average-linkage cluster analysis of the matrix of association indices of the social
unit of sperm whales in table 2.5.

subjects start in the same cluster, which is then split into two (often by
K-means), and these are then split, and so on, until each subject is in its
own cluster. In contrast, in agglomerative cluster analysis, “distances”
are calculated between all subjects to be clustered. These can be dissim-
ilarities, or inverse similarities. Each subject starts out in a cluster by
itself, then the two clusters with the smallest distance between them are
joined, and then the next two, and so on, until all subjects are in the
same cluster. There is a range of available agglomerative techniques that
differ in how the distances between a newly formed cluster and the other
clusters are calculated, including “single-linkage,” “complete-linkage,”
“average-linkage,” and “Ward’s” techniques. Of these, average-linkage
or Ward’s technique is generally preferred (Milligan & Cooper 1987),
perhaps especially in social analyses because extreme small or large dis-
tances, whether caused by random error, measurement error, or unusual
individuals, have less impact on the results than when using single-
linkage or complete linkage techniques (Whitehead & Dufault 1999).

The results of cluster analyses are usually displayed as a dendrogram
or tree diagram (e.g., Fig. 2.4), which shows the pattern of cluster for-
mation along the axis of the similarity measure. In Fig. 2.4, the sperm
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whale calf and its mother form a very tight cluster. Dendrograms are
attractive: They seem to provide a model of a social system, but they are
frequently overinterpreted and sometimes inappropriate (Section 5.2). If
a society is hierarchical in its structure, with permanent or semiperma-
nent units nested within other permanent semipermanent social entities
[“tiers” (Wittemyer et al. 2005)], then hierarchical cluster analyses and
the resultant dendrograms may be appropriate ways to visualize it. If
no such hierarchical nesting of social entities exists in reality, however,
then a dendrogram may be deeply misleading.

There is also a useful statistical check on the validity of a dendro-
gram, the cophenetic correlation coefficient, or CCC (Wittemyer et al.
2005). The CCC is the correlation between the input distance measure
among all pairs of subjects and the level at which they are joined on the
dendrogram (Bridge 1993). CCC’s range from 1.0, a perfect fit, to 0.0,
no relationship, and values greater than 0.8 are sometimes considered
to indicate that the dendrogram is an acceptable representation of the
input distances (Bridge 1993).

More information on classification and some examples are given in
Sections 5.2 and 5.7.

2.8 Model Fitting and Selection: The Method of Likelihood
and the Akaike Information Criterion

With data collected from a system, including a social system, we can fit
mathematical models. In social analysis, a model might be that indi-
viduals form semipermanent units but move between units at a certain
unknown rate. The models are probabilistic in the sense that they assign
probabilities to certain data values. They usually contain parameters
that we do not know, such as the mean unit size and rate of movement
between units. The statistical term likelihood is simply the probability
of obtaining a particular data set given a particular model and set of pa-
rameters. Intuitively, larger likelihoods indicate better model fits. Thus,
a standard and theoretically appealing (Silvey 1975, pp. 68–79) man-
ner of estimating the parameters of a particular model is to find those
that maximize likelihood. Likelihood methods also allow the estimation
of confidence intervals for parameters: The confidence interval includes
sets of parameter values such that the likelihoods with these sets of val-
ues are within a particular factor (chosen depending on the confidence
percentile required) of the maximum likelihood. An important book on
likelihood is that of Edwards (1992).
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In some cases, such as linear regression with normal errors, there
are known analytical formulas for maximum likelihoods, and maximum
likelihood estimators of parameters usually correspond to those in
standard practice (minimizing the sum of the squares of the deviations
of the differences between the actual data values and their predicted
values). In other cases, there is no analytic formula for maximum likeli-
hood, but likelihoods can be calculated for any set of parameter values
using a computer, and the set of parameters that optimizes the likeli-
hood can be found by optimization techniques. In still other cases, we
need to use variants of the likelihood method, such as quasi-likelihood,
which deals with overdispersed data (Wedderburn 1974), simulation,
or summed log-likelihoods (Whitehead 2007).

Likelihood methods can also be used to choose between models.
Thus, for each of two competing models, say, one including permanent
units and the other not, we calculate and compare the maximum like-
lihoods over all possible parameter combinations. However, we cannot
simply choose the model with the greatest maximum likelihood. If the
models have different numbers of parameters, then the one with the
most parameters will usually have the greatest likelihood, and if one is
a special case of the other, then the general model will always fit better
and have a higher maximum likelihood. In the interests of parsimony,
and for other good reasons (Burnham & Anderson 2002, pp. 29–35),
we choose the simpler model if the data fit it almost as well as its more
complex elaboration.

The traditional manner of comparing the fit of data to two or more
models is to use the likelihood-ratio test. The ratio of the maximum like-
lihood of the more complex model to that of the simpler one is logged,
doubled, and compared to a chi-squared distribution with degrees of
freedom equal to the additional number of parameters in the more com-
plex model. If an unusually large likelihood ratio is found, then the null
hypothesis that the simpler model is correct is rejected. The likelihood-
ratio test has been much used but suffers from a number of problems.
The most serious are that it is only possible to compare two models at
a time, they must be nested within one another, the chi-squared distri-
bution of the likelihood ratio is only an approximation except at very
large sample sizes, and setting the problem up as a test for the “true”
model, with one model being null and one the alternative, is unrealistic
and misleading. Generally in the life sciences, no model is true; instead,
we are looking for a model that best approximates a complex reality
(Burnham & Anderson 2002, pp. 20–22). For these good reasons, the
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likelihood-ratio test has become less used, being replaced by the Akaike
information criterion (AIC) and its variants.

Akaike (1973) proposed that “Kullback-Leibler information” be used
as a fundamental basis for model selection. Kullback-Leibler information
measures the discrepancy between data and model, and can be estimated
from likelihood. If the maximum likelihood of the data set under a part-
icular model is L and the number of estimable parameters is K, then

AIC = −2 loge(L) + 2K

This is a simple and very useful result. To compare the fit of a data set to
several models, we calculate the AIC for each and select the model with
the lowest AIC. The degree of support for the other models is indicated
by the excess of their AIC over that of the best-fitting model, �AIC. For
instance, if �AIC < 2 for a model, then it has some support and should
not be dismissed. The shortcomings of the likelihood-ratio test are gone:
Models that are not nested can be compared; there is a version of AIC
(AICC) that compensates for small sample sizes; and, best of all, there
is no “null model” or “true model.” There is also a version of the AIC,
QAIC, that uses quasi-likelihood and deals with overdispersed data,
which may result from grouped animals behaving similarly. These and
many other features of AIC are discussed by Burnham and Anderson
(2002).

2.9 Computer Programs

To achieve realistic and useful social models, we almost always need a
large amount of data (Section 3.11), and frequently we use permuta-
tion tests or other computationally intensive statistical methods, such
as ordination and lagged association rates. Thus, computers have be-
come essential tools in virtually all social analyses. Useful software is of
four major types: that used during the collection of data; data storage
and manipulation programs; general statistical analysis software; and
specialized software for social analysis. There is overlap between types.
For instance, database and spreadsheet programs, such as Microsoft’s
Access and Excel, although principally used for storing and organizing
data, can be customized to collect data and can perform some statistical
analyses. In the following summary and in Table 2.6, which lists data
analysis software (together with web addresses), I describe some of what
is available, noting those programs that are financially cost free. In some



Table 2.6 Software That May Be Useful for Social Analysis

Name URLa Free? Notes

Data collection software
JWatcher http://www.jwatcher.ucla.edu Yes Input, storage and analysis of

behavioral data
Noldus Observer http://www.noldus.com No Collection, analysis, presentation,

and management of
observational data

Psion http://www.psion.com No Hand-held data collection

Data storage software
Excel http://www.office.microsoft.com No Standard spreadsheet storage and

analysis
Access http://www.office.microsoft.com No Standard database software,

linked to Excel
OpenOffice http://www.openoffice.org Yes Free analogs of Excel and Access

General statistical analysis software
Minitab http://www.minitab.com No Easy-to-use statistical analysis
SPSS http://www.spss.com No Easy-to-use statistical analysis
Systat http://www.systat.com No Intermediate statistical analysis
SAS http://www.sas.com No Intermediate statistical analysis
S-PLUS http://www.insightful.com/

products/splus/default.asp
Nob Powerful statistical analysis

R http://cran.r-project.org Yes Powerful statistical analysis
Matlab (plus

Statistics
toolbox)

http://www.mathworks.com No Powerful and flexible general
analysis (including sparse
matrices)

PopTools http://www.cse.csiro.au/poptools Yes Matrix manipulation, likelihood,
simulations, bootstrap

Social analysis software
MatMan http://www.noldus.com/site/

doc200401030
No Manipulates matrices, good for

analyses of dominance and
reciprocity

SOCPROG http://myweb.dal.ca/∼hwhitehe/
social.htm

Yesc Wide range of social analyses

PeckOrder 1.03 http://www.animalbehavior.org/
Resources/CSASAB/
#PeckOrder 1.03.hqx

Yes Dominance hierarchies, older,
Macintosh based

Network analysis software
See http://www.insna.org/INSNA/soft inf.html for a list

UCINET http://www.analytictech.com/
ucinet/ucinet.htm

Nob Range of network and other
analyses

Pajek http://vlado.fmf.uni-lj.si/pub/
networks/pajek

Yes Range of network analyses

NetDraw http://www.analytictech.com/
netdraw/netdraw.htm

Yes Visualizes networks

GraphViz http://www.graphviz.org Yes Visualizes networks

Other
KINSHIP http://www.gsoftnet.us/

GSoft.html
Yes Estimates genetic relatedness

CAIC http://www.bio.ic.ac.uk/evolve/
software/caic/

Yes Performs comparative analysis
using independent contrasts,
Macintosh based

aSubject to change over time.
bFree evaluation version available.
cTo run SOCPROG in its original form, you need to have installed MATLAB plus the Statistics Toolbox, which are not free.
However, there is a compiled version of SOCPROG available for which MATLAB is not necessary.
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cases, however, I have not tried the software and rely on the descrip-
tions of the authors and vendors, which may or may not be accurate.
In Appendix 9.3, the capabilities of the different analytical packages are
indexed to the sections of the book that describe methods for which the
packages are useful.

Software is in flux. The information in the following subsections,
Table 2.6, and Appendix 9.3 is accurate and fairly complete at the time
of writing. However, new methods will be incorporated into packages,
less-than-useful procedures will be dropped, new packages will be intro-
duced, manuals will be rewritten, and web addresses will change. Thus,
I cannot guarantee that the information presented will all be accurate
and relevant at the time you are reading this. You may need to explore.

2.9.1: Data Collection Software. There are a number of software packages
that can assist considerably in the collection and storage of behavioral
data. Use of such packages can reduce or remove the need for written
field notes, data sheets, and voice records, all of which can be cumber-
some, time-consuming to transcribe, and sources of error. Commonly
used is the Noldus Observer, described by the provider as a “system
for the collection, analysis, presentation and management of observa-
tional data”; it can be used “to record activities, postures, movements,
positions, facial expressions, social interactions or any other aspect of
human or animal behavior.” There are versions for field and laboratory
settings and the analysis of video data.

A comprehensive free package designed for the input, storage and
analysis of behavioral data is JWatcher (Blumstein and Daniel 2007).
As it is written in Java, it works on almost any type of microcomputer.
There is also JWatcher-Palm that can be used to acquire data on a Palm
equipped device.

The versatility of standard database, spreadsheet, and other pro-
grams, such as Access and Excel, allow scientists easily to design their
own data input routines, and this is often done. In field situations, small
“palmtops,” such as those manufactured by Psion and Palm, can be
programmed easily to collect systematic social data. Lehner (1998, pp.
162–266) describes older data collection software.

In some situations, the major challenge is not collecting the behavioral
data, but identifying the individuals. Computers can be of assistance here,
for instance. in processing photoidentifications (e.g., Araabi et al. 2000).

2.9.2: Data Storage Software. In many cases, data are manually tran-
scribed from video or audio recordings or data sheets to databases
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or spreadsheets. It is usually both desirable and easy to export
data collected on palmtops or produced by data collection software,
such as the Noldus Observer, or automated or semiautomated data-
processing systems such as Passive Integrated Transponder (PIT)-tag
readers or photoidentification programs into databases or spread-
sheets. Of these, Microsoft’s Access and Excel are most popular.
OpenOffice provides similar, but free, packages. Useful formats for data
coding are discussed in Section 3.8. Within such packages the data can
be manipulated in a large range of ways. Some analyses can be per-
formed within Excel. The free PopTools Excel add-in is useful for social
analyses. Data stored in Access or Excel can be input into the powerful
general statistical packages and often, sometimes with a little manipula-
tion, the more specialized social analysis software (see later discussion).
Relational databases, such as Access, are particularly useful for storing
information from multifaceted studies on the same individuals.

It is often useful to think about the data analyses to come when set-
ting up data storage software. Some guidelines are given in Section 3.8.

2.9.3: General Statistical Software. There are several widely used packages
for the statistical analysis of data that can be used to perform some of
the social analyses in this book, such as ordinations and cluster analyses.
Two of the easiest to use are Minitab and the Statistical Package for the
Social Sciences (SPSS). Somewhat more sophisticated, but still simple to
use, are Systat and SAS. Professional statisticians often use S-PLUS or
the similar, but free, R. These are both very powerful and flexible pack-
ages but are more difficult to use than Minitab, SPSS, Systat, or SAS.
An alternative for those with some programming skills is the extremely
general and powerful programming package Matlab with its Statistics
Toolbox. Matlab is particularly useful with large data sets because of
its ability to use sparse matrices. Sparse matrices have a large propor-
tion of zeros and are frequently encountered in social analysis of large
populations because most pairs of individuals have not been observed
interacting or associating. Special programming methods in Matlab can
easily and efficiently store sparse matrices and thus allow analyses of
large data sets that would not be possible otherwise.

2.9.4: Specialized Software. Many important social analyses, such as per-
mutation tests (Section 4.9), cannot be carried out using the standard
statistical packages without additional programming (usually easiest in
S-PLUS, R, or Matlab). Therefore, several packages of software have
been developed.
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Noldus MatMan is designed for matrix manipulation and analysis.
According to the provider, it is “a powerful tool for performing a wide
variety of ethological analyses on sociometric, behavioral profile, and
behavioral transition matrices.” It is an easy-to-use add-in for Excel, and
is particularly useful for the analysis of dominance hierarchies (Section
5.4) and reciprocity (Section 4.8).

My package SOCPROG is a set of Matlab (plus Statistics Toolbox)
programs for social analyses (as well as some movement and population
analyses). It can be used as it stands or be modified by anyone familiar
with programming in Matlab. SOCPROG is free. To have the ability to
modify programs, the user needs access to Matlab and its Statistics Tool-
box, which are not free. There is also a stand-alone compiled version
of SOCPROG for which Matlab is not required. SOCPROG is partic-
ularly useful for manipulating large identification data sets (changing
sampling periods, definitions of association, restricting data), for ordi-
nations (Section 5.2), permutation tests (Section 4.9), lagged association
rates (Section 5.5), and multivariate methods (Section 5.6). It also con-
tains modules for population and movement analyses and utilities for
exporting the data in the format used by other programs, including those
used for network analysis.

PeckOrder 1.03 is an older Macintosh program for analyzing domi-
nance hierarchies.

JWatcher, in addition to aiding the collection of behavioral data,
performs a number of analyses. These include calculating time budgets
and the analysis of sequences (Blumstein and Daniel 2007).

Network analysis is an increasingly used set of techniques in the
analysis of animal societies (Section 5.3). There are a number of pro-
grams that can carry out network analyses (see http://www.insna.org/
INSNA/soft inf.html for a list), including the following:

� UCINET (Borgatti et al. 1999) is a Windows-based program
that performs a range of network and other analyses (and
includes Pajek and NetDraw; see following items). There is a
free evaluation version.

� Pajek is another Windows-based program, and is free for
noncommercial users.

� NetDraw visualizes networks using UCINET files. It is
free.

� GraphViz is a free set of programs that is very useful for
representing and analyzing very large networks.
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Genetic relatedness is becoming an increasingly important element
of social analyses (Sections 4.2 and 7.3). The genetic relatedness among
dyads is most often estimated by molecular genetic techniques, partic-
ularly using microsatellites (Selkoe & Toonen 2006). There are several
programs for processing such data, but Queller and Goodnight’s (1989)
KINSHIP is a general favorite for producing relatedness estimates.

The method of independent contrasts has become very important
when making comparisons between species or other taxonomic levels
(Box 7.1). The program CAIC is frequently used for this (Purvis &
Rambaut 1995).





3 Observing Interactions and Associations:
Collecting Data

3.1 Types of Behavior

Having decided what we wish to study and why (Chap-
ter 1), the next step in analyzing social structure, and the
subject of this chapter, is the collection of data. The real-
life behavior of individual animals needs to be abstracted
into a form, usually a numerical form, in which it can
be analyzed. So, how should behavior be described? This
subject is considered in detail by several authors, for in-
stance, Lehner (1998, pp. 109–124) and Martin and Bate-
son (2007, pp. 48–61), and so in this chapter I summarize
areas well covered in these books, concentrating on the
most significant issues for social analysis.

There are two general ways of describing behavior—
in terms of either the structure of the behavior (physical
form, posture, movements, etc.) or the consequences of
the structure for the animal or the environment (Martin &
Bateson 2007, p. 32; Lehner 1998, p. 81).1 Consequences
might include agonism, feeding, or grooming. Describing
behavior in terms of consequences is generally more pow-
erful and economical (Martin & Bateson 2007, p. 32), but
sometimes when we do not understand the behavior of

1. Lehner calls these types “empirical” and “functional” descriptions,

respectively.
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the animals well, it might be better to stay with structural definitions
of behavior types. An example is when cetaceans are viewed from the
surface and a characteristic posture of infants seems to suggest suckling,
but nipple contact cannot be observed and we are not certain about the
function of the behavior (Gero & Whitehead 2007).

Another important distinction is between behavioral events and
behavioral states (Altmann 1974). Events are virtually instantaneous,
and one must watch for awhile to see any. In any time period, they can
be counted and classified. Events include behavior such as vocalizations,
sudden movements, and ingestion of prey. States are behavior patterns
of relatively long duration. Often, several states are defined [e.g., forag-
ing, traveling, resting and socializing (Mann 2000)] such that an animal
is always in at least one of them. They may be defined as exclusive, so
that an animal is only in one state at a time, or be allowed to overlap
(e.g., social and traveling). Events occur within states, and can be used
to define them: The state “feeding” might consist of time periods that in-
clude events of food ingestion. Before starting a study, events and states
should be defined as rigorously as possible, perhaps with the help of a
preliminary study whose data are not used in the final analysis (Martin &
Bateson 2007, pp. 31–32). If behavior is videotaped or recorded acous-
tically, then some of these decisions can be postponed, but rigor is im-
portant.

In this book, I am concerned with social structure, and therefore
social behavior, which involves two or more individuals. The funda-
mental element of social behavior is the interaction (Section 1.6), an
event that can be defined structurally or, more usually, by consequence.
However, we can also use interactive state measures, associations, as
the core of our social analysis or combine interactions and associations.
Interactions and associations are the subjects of the next two sections,
which are followed by a section on groups. Groups can be used as short-
cuts to the designation of associations. All of this depends crucially on
the ability to identify individuals (Section 3.5). Thus, the meat of most
analyses of social structure comprises systematically collected records of
observations of interactions, associations, or group membership among
identified individuals. These may be supplemented by records of rare but
important behavior and supplementary data about the individuals such
as sex, age, reproductive status, or kinship (Section 3.6). The choice of
sampling scheme depends on whether we are collecting interaction or
association data, and other factors. These are considered in Section 3.7.
The final sections of this chapter consider the formatting, structuring,
and power of data sets.
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3.2 Interactions

Interactions are the basis of Hinde’s (1976) framework for the study of
social structure. The definition of interaction is fairly straightforward
(“the behavior of one animal is affected by the presence or behavior of
another”), but the operational use of the term is less so (Hinde 1976).
Is a fight one interaction, or are all the elements (physical contacts, vo-
calizations, movements, wounds, etc.) individual interactions? Do we
separate different types of affiliative behavior or simply have one inter-
action type that may include affiliative grooming and vocalizations as
well as movements?

My advice is to collect data at the highest level of resolution that per-
mits operational consistency, so that interaction types are rarely missed
or misclassified. If high operational resolution is feasible, it may turn
out that some distinctly defined interaction types are functionally equiv-
alent to the animals (interaction types A and B are interchangeable from
their perspective) or redundant (A always follows B). A well-organized
analysis will identify such relationships between interaction types and
account for their interdependence in subsequent analyses (e.g., using
principal components analysis; Section 2.6). Nothing is lost by collect-
ing the high-resolution data, even if they are somewhat redundant. More
frequently, especially with hard-to-study species, achievable operational
precision will be much less than that which is meaningful to the animals.
In these cases, the more detailed the data, the more meaningful is the
model of social structure that results, provided that the data are reliable.
For some analyses, however, it may be efficient to lump types of interac-
tion into classes based on structure or function, such as “vocalizations”
or “agonistic behavior.” Although high-resolution data can be lumped
if desired, it is not possible to go the other way, increasing resolution.

Sometimes, interactions are identified by synchrony or leader/follower
events—one animal follows another in performing a particular activity—
in other words, by temporal patterning (e.g., Connor et al. 2006). To
identify synchrony or leader/follower events rigorously, we need simul-
taneous records of behavioral events from several individuals.

To give an idea of the range of types of interactions that can be
recorded, Table 3.1 lists some, noting whether they are defined by struc-
ture or consequence (Section 3.1) and whether they are symmetric (if A
interacts with B, then B interacts with A).

In what follows, I usually assume that interactions are dyadic—in-
volving two animals—although some of the analyses make sense with
triadic or higher-order interactions (e.g., Kummer et al. 1974).
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Table 3.1 Examples of Interaction Types That Can Be Used as the Basis of a Social
Analysis Together with Whether They Are Primarily Structural or a Consequence, or
Primarily Symmetric or Asymmetric

Type Structural/consequence Symmetric?

Grooming bout Consequence No
Fight outcome Consequence No
Touch Consequence Yes
Synchronous dive Consequence Yes
Leader/follow dive Consequence No
Vocalization exchange Consequence Yes
Suckle Structural No
Intromission Structural No
Mating Consequence Yes
Particular gesture in dyadic context Structural No

3.3 Associations

Behavioral interactions, the foundation of Hinde’s conceptual frame-
work of social analysis, are events. Interactions cannot always be ob-
served, however, and in some more cryptic species are virtually always
hidden. A common way around this difficulty is to use associations in-
stead of interactions or in addition to interactions as the fundamental
elements of social analysis. Dyads are in “association” if they are in a
situation in which interactions usually take place (Whitehead & Du-
fault 1999). Associations are state measures, and usually they are more
easily measured than interactions. They can often be determined from
nearly instantaneous observations, whereas interactions, even when ob-
servable, require prolonged observation.

Association can also be reasonably interpreted as “within range of
communication” because communication involves the active or passive
transmission of information that may change the behavior of the recip-
ient (Bradbury & Vehrencamp 1998, p. 2), resulting in an interaction.
This emphasizes the important role of communication in studies of so-
cial structure (Costa & Fitzgerald 1996).

Thus, ideally, the social analyst would initially make a thorough
study of communication in her study species or have access to the results
of one. From this, she could determine the dyadic circumstances that
best characterize communication between a pair of animals. She can then
define association in such a way that it delineates circumstances under
which communication, and interactions, take place. Systematic records
of such associations are then used as the data for social analysis. Such
rigorous approaches are rare. Instead, even the best studies rarely go
beyond reasoning such as the following: Animals can hear each other at
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Table 3.2 Examples of Definitions of Dyadic Association That Can Be Used as the Basis of a Social
Analysis Together with Whether They are Symmetric or Asymmetric

Definition Symmetric?

Within x body lengths (or x meters) Yes
Within x body lengths (or x meters), and in same behavioral state Yes
Within x body lengths (or x meters), and heading in same direction Yes
Nearest neighbor No
Sharing feeding site/nest/roost Yes
Duetting Yes
Grooming No
Overlapping home ranges Yes
Grouped (table 3.3) Yes

ranges up to about x meters, and so we will define association as “dyads
separated by less than x meters.” This is not unreasonable, and in most
cases, errors in choosing a suitable x will not profoundly affect the
subsequent analysis. A too small value of x will omit some interactions,
and a too large one will include noninteracting dyads, but if a large data
set is collected and there is no systematic bias (such as might be caused
by pairs of individuals who generally interact at ranges just greater than
the chosen x), an informative social model should emerge.

Association is usually defined based on spatial proximity plus, per-
haps, some behavioral state measure (e.g., “within x body lengths and
heading the same direction”). It is often possible, and desirable, to mea-
sure more than one association measure simultaneously. Perry (1996),
for example, noted associations within 1, 5, and 10 body lengths for
capuchin monkeys (Cebus capucinus); animals within 10 body lengths
may interact vocally, and those within 1 body length may interact using
touch. Table 3.2 lists some ways in which association has been defined.

Associations may be asymmetric. For instance, nearest neighbor is
a commonly used asymmetric definition of association. During an ob-
servation, A may be the nearest neighbor of B, but B is not necessarily
the nearest neighbor of A. Most analytical techniques assume symmetric
association measures, so I generally recommend their use, although it
should not take too much work to adapt them for asymmetric measures.

Sometimes, the same behavior can be viewed as either an interaction
(event) or an association (state). The difference is whether the observa-
tions are considered continuous or instantaneous. For instance, we can
count the number of grooming bouts in an observation period, consid-
ering each bout as an interaction, or observe whether a dyad is engaged
in grooming behavior when we observe them, in which case grooming
is an asymmetric association measure.
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Association within any sampling period (Section 3.9) is usually de-
fined in a 1:0 manner; a dyad is observed associated or is not observed
associated within that sampling period. It is possible to define associ-
ation as a continuous variable [e.g., a function of proximity or dive
synchrony within the sampling period (Whitehead & Arnbom 1987;
Perry 1996)], but this adds considerably to the complexity of the subse-
quent analysis, and I do not usually recommend this.

3.4 Groups

A simplifying assumption that is often made is that all individuals within
some spatiotemporal “group” are associated with each other. Such groups
are assumed to be transitive in the sense that if, at any time, A and B are
members of the same group and so associated, and B and C are members
of the same group and so associated, then A and C are also members
of the same group and associated. We have called the assumption that
grouped individuals are associated “the gambit of the group” (White-
head & Dufault 1999). The fundamental assumptions, almost never tested,
are that all, or almost all, interactions of some type take place within
groups and that interactions of this type are similar and occur at a simi-
lar rate among all animals within a group (Whitehead & Dufault 1999).

To evaluate the likely validity of the gambit of the group, it helps to
consider the reasons that animals may be in spatiotemporal proximity.
An important distinction is between spatiotemporal clusters of individ-
uals that are entirely the result of some nonsocial forcing factor, such
as a localized source of food or shelter, and those that result from the
active behavior of individuals converging on, or maintaining proximity
with, other animals. I call these aggregations and groups, respectively,
and only groups are of direct interest as elements of social structure.
Connor (2000), making the assumption that animals do not usually
behave maladaptively, refers to them as nonmutualistic groups (= ag-
gregations) and mutualistic groups (= groups) because individuals are
likely to seek or maintain proximity with other individuals if and only if
there is expected to be mutual benefit. This suggests two ways of distin-
guishing aggregations from groups. They are groups if it can be shown
either that individuals actively seek or maintain proximity with other
individuals or that there is some benefit of being grouped with others.

In some cases, these criteria allow the simple recognition of groups.
For instance, individuals clustered over a habitat with uniform resources
(flocks of roosting birds in some trees when other nearby and simi-
lar trees are empty, or ungulates migrating over featureless habitat in
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groups) can be considered groups, as may clusters of individuals that
are passed over by a predator that takes lone individuals. In other cases,
it is not so clear whether clustered individuals form a group. Bats may
be clustered in a cave solely because it is suitable roosting habitat or
because they are drawn to assemblages of other roosting bats. Of course,
even within my definition of group there is enormous variability. A fish
school may contain animals drawn together solely to combat predation
and possess little temporal stability and no behavioral substructure. In
contrast, a nearby pod of killer whales (Orcinus orca) may be made up
of genetic relatives who spend their lives together, feed together, and
have distinctive relationships with each other (Ford et al. 2000). Such
distinctions are considered in the following chapters, but at this step,
we need to exclude aggregations from further social analysis.

Groups are usually obvious. If the spatiotemporal clustering is so sub-
tle that human observers cannot be sure that it is present or so variable in
type that they find it difficult to come up with a rigorous definition, then
they should doubt whether such groups are meaningful to the animals. In
many cases, however, although group distinctions are generally obvious,
there are some borderline cases (“Is that one group or two?”). It is
important that such instances be treated consistently, and so we need a
criterion for allocating individuals to groups (Martin & Bateson 2007,
pp. 46–47).

Ideally, we would base our definition of group on studies of com-
munication, as with association (Section 3.3), but this is rarely done
explicitly. In some fortunate instances, groups consist of sets of animals
using small areas or volumes of suitable habitat separated clearly from
other such groups. Roosting sites of birds and bats in particular trees,
leaves, or caves are such cases (e.g., Vonhof et al. 2004), as are islets
used by seals to haul out (e.g., da Silva & Terhune 1988). More usually,
groups are formed over homogeneous or continuously varying habitat.
A useful empirical approach is to measure interindividual distances, per-
haps on photographs or video, and examine their distribution. If clear
modes are apparent, then these can suggest a suitable definition of a
group (Clutton-Brock et al. 1982, pp. 319–320). For instance, if there
are many interindividual distances between 1 and 5 body lengths but
very few between 6 and 30, then perhaps animals within 5 body lengths
should be considered grouped. Whereas such a distance criterion works
well with associations (Table 3.2), however, it may give inconsistent
results when used directly to define groups: A and B may meet the cri-
terion, and so may B and C, but A and C may not. In this case, the
transitive feature of groups is violated. Frequently, researchers use a
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Table 3.3 Examples of Criteria Used to Distinguish Groups

Definition

Sharing feeding site/nest/roost/haulout
Within x body lengths (or x meters) chain rule
Within x body lengths (or x meters) chain rule, and in same behavioral state
Within x body lengths (or x meters) chain rule, and coordinating movement
Clusters produced by kth nearest-neighbor clustering on spatial arrangement of individuals

(Strauss 2001)

“chain rule” to circumvent this problem (Clutton-Brock et al. 1982,
pp. 319–320; Smolker et al. 1992). If A and B meet the criterion as well
as B and C, then A and C automatically meet it too, and so we have
transitive groups.

Strauss (2001) considers the difficult case of fluid shoals of fish, which
may form irregularly shaped groups. After some experimentation, he
found that a method called “kth nearest-neighbor hierarchical cluster-
ing” best mimicked human perceptions of shoal membership. He also
developed permutation methods to test whether the spatial arrangement
of the animals is clustered compared with a random null hypothesis.

Table 3.3 list some criteria used to designate groups. Group criteria
may include a behavioral condition such as “coordinated movement” or
“in same behavioral state,” which helps to exclude individuals that are
incidentally clustered (Mann 2000). As with associations, it is possible
simultaneously to use two or more types of group at different spatial or
temporal scales, usually with one type nested within the other, which
thereby stand in for different classes of interaction.

Estimating group size is usually easy if individuals can be assigned
to groups: We just count. In some cases, however, for instance, with
cryptic animals, a population assessment technique may be useful for
estimating group size. Such techniques are summarized in Appendix 9.5.

3.4.1: Typical Group Size. A distinction that is important in many cases is
between mean group size and mean typical group size (Jarman 1974).
The former is the mean size as experienced by an outside observer, such
as a predator or the social analyst, the latter is the size as experienced by
a member of the population. For example, if there are four groups of size
1, 2, 2, and 3, then the mean group size is 2, whereas the mean typical
group size is 2.25. There is 1 animal in a group of size 1, 4 in groups
of size 2, and 3 in groups of size 3, giving a mean typical group size of
(1 × 1 + 4 × 2 + 3 × 3)/8 = 2.25 . Mean typical group sizes are usually
higher, and never lower, than those experienced by outside observers.
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If we have counts or estimates of the sizes of n observed groups Ng(i =
i , . . . , M) their mean is simply �Ng(i)/M, whereas the mean typical
group size is �Ng(i)2/�Ng(i). We can also speak of the mean typical
sizes of other social or nonsocial entities, such as aggregations, units,
or communities. As an example of the differences between an animal-
and an observer-centered approach, here are the mean sizes and mean
typical sizes of aggregations (probably a nonsocial assemblage), groups,
and social units (both social assemblages) of sperm whales (Physeter
macrocephalus) (Whitehead 2003, pp. 213, 218):

Mean Typical mean

Aggregation (Ecuador 1991) 60.1 77.4
Group (South Pacific) 19.4 25.1
Unit (Galápagos) 10.5 13.6

3.5 Identifying Individuals

A primary requirement for the social analyses described in the subse-
quent chapters is that individuals be identifiable. There are many ways
to do this. With humans and some small populations of other species,
it may be possible to discriminate visually all individuals reliably in real
time. In larger populations, photographs of natural markings can be
used either to ground-truth visual identifications or as the sole source
of identifications (Pennycuick 1978; International Whaling Commis-
sion 1990; Lehner 1998, pp. 221–223). Vision is not the only medium,
however, by which individuals can be distinguished. In appropriate cir-
cumstances, individual identification may be possible using vocalizations
(Adi et al. 2004) or by collecting DNA samples (Palsbøll et al. 1997;
Sloane et al. 2000). Artificial marks, including dye marks and tags,
can be used to identify individuals visually (Stonehouse 1978), acous-
tically (Zeller 1999), or through radio signals (Chambers et al. 2000).
Use of passive integrated transponder (PIT) tags that can be implanted
into animals or attached to them and “read” by an external radio sig-
nal is becoming an increasingly important method of identifying ani-
mals (Biomark, Inc., see http://www.biomark.com/; e.g., McCormick &
Smith 2004).

In many situations, especially if tags or artificial marks are used, but
also sometimes with naturally marked animals (e.g., Ottensmeyer &
Whitehead 2003), only a portion of the population will be identifiable.
This should be considered in subsequent social analyses. For instance,
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estimates of group sizes need to be corrected for animals that are not
identified. In the worst scenario, the social behavior of the identified an-
imals is not representative of the population. This could happen if more-
aggressive individuals were more likely to accumulate natural markings
or those generally in smaller groups were more likely to be tagged.

Another important issue with individual identification is reliability.
With almost all techniques, there is a chance that an animal can lose or
change the identifying feature. Natural marks can change, tags may be
lost, or the technology in acoustic or radio tags may malfunction. In
most cases, a numerical analysis treats this as equivalent to mortality or
permanent emigration. Thus, if marking failure is likely, then methods
and models that include the disappearance of the animal from the popu-
lation, by whatever means, need to be used. If “mortality” or “survival”
estimates are produced (as in some models of lagged association rates;
Section 5.5), then it must be recognized that these include mark failure,
as well as perhaps permanent emigration from the population. With
natural markings, there is the additional possibility that an unrecogniz-
able mark change will produce a “new” individual in the population,
for instance, when a large, new mark obliterates the features previously
associated with an individual or a “clean” unmarked individual gains
marks and joins the study population. Although this is an important
concern when estimating populations using natural markings (Ham-
mond 1986), these changes, as long as they are not too frequent, are
unlikely seriously to affect social analyses.

Misidentification is of greater concern. This can occur with all tech-
niques and at several stages of the identification process. Real-time visual
identifications can be wrong, acoustic identifications may be less than
100% accurate (Adi et al. 2004), and equipment problems can cause
errors with acoustic or radio tags. The data can be recorded wrongly,
entered in the database erroneously, or scrambled by a computer. All
of these can cause data to enter the numerical analyses tagged with the
wrong individual. With large data sets, there are almost certain to be
some errors. One hopes that the rate will be small, but what will be the
effect on the output measures of social structure? I cannot give an over-
all prescription, and each situation should be considered on its merits.
The greatest danger, however, occurs when a particular data record can
have a considerable effect on the output. This might be the case if we
are looking for closed units, when a misidentification could mean reject-
ing this hypothesis or lumping separate units. With less hard-and-fast
social structures, however, such as “fission–fusion societies,” a small
proportion of misidentifications is unlikely to have any major impact
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on the results. One can test the effects of misidentifications by deliber-
ately making some and seeing how the output is changed. This method
will not work, however, if errors have already ruled out a “true” model
for the data, such as closed units.

3.6 Class Data

An important part of Hinde’s (1976) framework (Fig. 1.4) is the gen-
eralization from interactions between two individuals to interactions
between classes of individuals. This is often done by some form of av-
eraging (“the mean rate at which mothers groom their neonates”) or by
abstracting essential characteristics of interrelationships between classes
(“fights only occur between mature males”) (Hinde 1976). These class-
abstracted results are clearly of interest in their own right. When data
are few or sparse, however, there may be insufficient power to catego-
rize social structure at the level of individuals, and so class abstractions
become the principal results of a social analysis (Section 4.11). Classes
can also be used to form nonsocial measures of relationship (e.g., “same
or different gender”; Section 4.2) that are important when trying to
address functional questions (Chapter 7).

Thus, social analyses are much richer if animals can be classified
using attributes of individuals (Table 1.2). Here are some of the classes
most frequently used:

� Sex. Gender can be determined by observation, photographs
or video of genital areas or sexually dimorphic anatomical
features; observations of gender-specific behavior, such as
nursing; or sex-specific DNA markers in tissue samples.

� Age. Ideally, this is available from the lifetime knowledge
of an individual, but sometimes accurate aging of living ani-
mals can be achieved through other means, such as drawing
and sectioning a tooth. Age can often be estimated by size.
With inaccurate aging methods, it may be more appropriate
to assign animals to general age classes.

� Physiological state. Classes may describe sexually mature
or immature animals, pregnant or estrous animals, or some
other physiological state.

� Subspecies, morph, and so on. These can be considered in
mixed populations.

� Matriline (or patriline). These may be used in populations
with well-known genealogies.
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� Genes. The genetic class that is most usually employed is the
mitochondrial haplotype (e.g., Weinrich et al. 2006), which
in some respects stands in for the matriline when this is not
known.

� Behavioral phenotype. Individuals can be classified into
those that are dominant, aggressive, submissive, and so on
(see Section 4.3).

� Social unit, community. Sometimes, the results of one level
of social analysis can be used to define classes (Section 5.7)
and these used to investigate questions such as whether pat-
terns of within-unit or within-community social structure
differ among units or communities or whether there are con-
sistent affiliations among units.

3.7 Collecting Social Data

The analysis of social structure needs data. Social data may be recorded
by human observers on data sheets, voice recordings, or photographs or
keyed straight into computers (Section 2.9). Alternatively or additionally,
acoustic, visual, or electronic data may be recorded by automated devices.

From the perspective of Hinde’s framework and this book, these data
are in the form of records of interactions and/or associations among
identified individuals. Suppose a researcher is interested in a population
of animals some or all of which are identifiable, and that she has a time
frame over which the study is to be carried out and an effort budget.
How should she plan data collection to give the most informative model
of social structure? This is not an easy decision. It depends on the actual
social structure, what behavior is observable, and a number of other
factors.

Altmann’s (1974) paper “Observational study of behavior: sampling
methods” has been very influential in guiding the collection of behav-
ioral data and has formed the basis of several other good reviews of
protocols and procedures in behavioral observation (e.g., Martin &
Bateson 2007, pp. 48–61; Lehner 1998, pp. 189–210; Mann 2000).
Social data form a subset of behavioral data, and a subset with special
characteristics, because two (or possibly more) individuals are involved.
Thus, Altmann’s (1974) recommendations need some refinement. In the
following subsections, I consider whether to collect interaction, associ-
ation, or group data and how to collect them. Table 3.4 summarizes the
major recommendations and contrasts the features of interaction and
association data.
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Table 3.4 Collecting Interaction or Association Data: Guidelines

Interactions Associations

Type of measure Event State
Dyadic measure Usually counts Usually 1:0 (associated:not

associated)
Use when Interactions reliably and frequently

observable
Interactions not reliably or

frequently observable; coordinated
behavior predominates

Follow protocol Usually individual follow is best Usually survey or group follow is best
Sampling protocol All interactions involving focal

animal with times and interactant
identities is best

Associations are noted at regular
times or when they change

3.7.1: Interactions, Associations, or Groups? As indicated in preceding sec-
tions, social analysis can be based on interactions, association, or groups.
But which is preferable?

If interactions form the basis of social structure and associations
are merely the imperfectly defined circumstances under which interac-
tions are likely to occur (Section 3.3), then would it not be true that
interactions should be preferred over associations as the targets of data
collection? Under this rationale, it should be better to record when ani-
mals touch than that they are grouped, and associations should only be
used as a “stand in” when interactions are unobservable. This used to
be my perspective (Whitehead & Dufault 1999). After more reflection,
however, I am not so sure (Whitehead 2004). A pair may have an im-
portant relationship but not touch or perform any overt interaction. A
seamless behavioral synchrony without any observable interactions, as
is sometimes characteristic of dolphins (Connor et al. 2006), might indi-
cate the strongest of relationships. From the practical perspective, if we
can rarely see animals interacting, associations will be more appropri-
ate measures of sociality. In such circumstances, records of associations
may be much more revealing than those of interactions.

In many circumstances, either associations or groups can be re-
corded. To decide which is preferable, we would ideally need to see
inside the minds of the animals. Are their locations, movements, and
behaviors more the result of the locations, movements, and behaviors
of particular companions or of “the group” itself? Resolving this would
often be a major study in its own right, but aspects of the animals’
behavior can help. When movement is coordinated within a whole group
or there are frequent changes of position within the group such as occurs
in some fish schools, then the group appears to be a more significant
behavioral determinant than the identity of any associate. In contrast, if
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behaviors and movements vary among clustered animals or they show
little active behavior or movement, as in resting lions (Panthera leo), then
perhaps associations should be used. If accurate positions are recorded,
then both are possible, associations being defined by, for instance, one of
the measures in Table 3.2 and then groups formed from the associations
using a “chain rule” (Section 3.4). Group memberships are usually easier
to record than associations, however, and so practical limitations may
play a role in this decision.

There is no theoretical problem with recording interactions as well
as associations and perhaps also groups (potentially derived from the
association data), and more than one type of association, interaction,
or group. If the different dyadic measures are well correlated and add
little information, then methods such as principal components analysis
can be used to simplify the multivariate data set (Section 5.6). If they are
not well correlated, then the analysis is that much the richer.

3.7.2: Temporal Patterning and Length of Observations. Let us suppose that
we have start and stop dates for the research, say, 1 June to 10 Septem-
ber, and also a limit on the total amount of research effort, say, 100
hours of observation. How should it be allocated? There are many pos-
sibilities, such as 1 hour per day every day for 100 days, or ten 10-hour
days on 1 to 5 June and 26 to 31 August.

To make the best use of time resources, we need to have some idea
of the temporal patterning of social relationships. At one extreme, if
groups of bats are defined on the basis of roosting in a cave together and
no bats change caves during the day, then there is no point in spending all
day watching the bats in one cave. Instead, just enter the cave for long
enough to identify the animals using it, move to the next cave and
identify its inhabitants, and end the day’s observation when all caves,
or some predetermined proportion of them, have been sampled. At the
other extreme, if fish are continually changing their associations, longer
periods spent with any individual or group or in any area may be ap-
propriate.

Clearly, to study social structure over any time scale means that we
need data over that scale. Thus, if the important social time scales are
unknown, it makes sense to arrange the data collection so that a range
of scales can be examined. Thus, if we collect data for 6 hours per day
on days 1, 2, 3, 11, 12, 13 June; 1, 2, 3, 11, 12, 13 July; and 1, 2, 3, 11,
12 August, we can examine scales of up to 5 hours, 1 to 3 days, about
10 days, 30 days, and 60 days within a total of roughly 100 hours of
observation, a quite diverse set of spans. It is also important to consider
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the timing of important activities, such as breeding periods, that may
affect interactions, associations, and social structure.

3.7.3: To Follow? What to Follow: Individuals or Groups? Another important
decision when planning studies of social structure is who to watch and
for how long. An initial choice is whether to follow or survey. In a survey,
an individual or group is first encountered and then observed, and then
the researcher, or her eyes or binoculars, move on to another individual
or group. In a follow, the researcher’s attention stays with an individual
or group. The survey-or-follow decision is sometimes trivial, but at other
times, it is more challenging.

If one is studying a small, captive, low-energy population in an open
habitat, then perhaps all individuals and each action can be seen. In such
cases, it is possible and optimal to follow everyone, recording interac-
tions and/or noting changes in association and groups. At the other
extreme are large, active populations most of whose habitat is invisible.
Dolphins of the open ocean are an example. We cannot consistently
follow either individuals or groups or observe interactions. We are con-
strained to survey individuals as they are encountered and to note asso-
ciations or groups. In intermediate situations, a range of factors comes
into play when choosing an observational strategy.

To record interactions (events), we must follow, at least for short pe-
riods, because, by definition, no interaction is visible in an instantaneous
survey. If associations (states) are the measures of choice or necessity,
however, then surveys will be generally more efficient if the rate at
which individuals change associations is less than the rate at which new
groups of animals can be surveyed (Whitehead 2004). For example, sup-
pose group composition changes about once an hour; then, in terms of
producing a model of social structure from records of group member-
ship, it is more efficient to leave each group after noting its membership
as long as another group can probably be found within 1 hour.

If the decision is made to follow, then should individuals or groups
be the subject? Obviously, the more animals on which data can be col-
lected simultaneously, the more powerful is the analysis. If the group
is small and interactions are infrequent and easily seen, then group
follows in which all interactions among all individuals are recorded are
optimal. More normally, however, if interactions are the social measures
of choice, then these will be difficult to record systematically for a whole
group (Altmann 1974). Thus, if interactions are being recorded, then
usually they should be between a focal individual that is being followed
and others. In particular circumstances (such as parent–offspring or
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courting pair), dyadic follows may be appropriate, with interactions
between the focal pair and between the focal pair and others all being
recorded. Although recording all interactions within a group is usually
impracticable (Altmann 1974), however, it is often possible to record
all associations, especially if using the “gambit of the group” so that the
group itself is used to define associations. In such cases, group follows
will provide more information per unit time.

It is sometimes possible, and profitable, to make hybrid follows.
For instance, while tracking a group of sperm whales (Physeter macro-
cephalus) for periods of days, we may carry out focal-individual follows
of individuals during the 8 to 10 minutes that animals spend at the sur-
face between dives (Whitehead 2004). Similarly, when following a large
group of ungulates, one can make surveys of subgroups as they are
encountered.

Frequently, “ideal” protocols for collecting social data are modified for
reasons that are strategic (e.g., the desire simultaneously to collect data for
another goal, such as population analysis) or tactical (such as weather).

3.7.4: Choosing Subjects. Although the random or systematic selection of
experimental subjects is a cornerstone of statistical methodology (e.g.,
Sokal & Rohlf 1994, p. 393), in social analysis it is not so crucial.
Clearly, if there are sets of individuals with very different social behav-
ior, we need data on all of them, but it does not matter much if we gather
relatively more data on some than on others. Hypothesis tests are not
very frequent in social analysis, and those that are performed are usually
framed in terms of the behavior of the individuals that have been sam-
pled (e.g., “within the sampled population of individuals, males form
larger groups than females”), in which we assume that we have obtained
a random sample of the behavior of the sampled individuals, not that the
sampled individuals are a random selection from the entire population.

Thus, when choosing the cave in which to identify roosting bats
or which member of a captive population to begin a focal individual
follow, we could use a random numbers table, but we could also use
other criteria. Caves or focal individuals or classes of animals (Section
3.6) could be chosen in rotation, or a special focus could be placed on
those that are deemed particularly interesting (perhaps mothers or caves
with high bat densities). In more difficult research settings, subjects of
surveys and follows are often chosen haphazardly, such as “the first
group we come across.” This is usually acceptable, even if it means that
individuals with a home range near the research base are sampled more
often than those who live at a greater distance.
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Subject choice, however, could affect some social measures. For in-
stance, if groups are surveyed as they are observed and large groups are
more prominent than small ones, then an estimate of mean group size
calculated from the data will be biased upward.

Another decision faces those who follow groups: When the group
splits, which part should be followed? A rule such as “follow the largest
of the daughter groups” will have no important effect on measures of
dyadic relationship but would bias group size estimates. It is possible
randomly to choose the daughter group that will be followed or, even
better but impracticable in some circumstances, randomly pick a key
individual when the group is first encountered and then, when a split
occurs, follow whichever daughter group contains the individual.

3.7.5: Sampling Protocols. Altmann (1974) and others (e.g., Martin &
Bateson 2007, pp. 48–61; Lehner 1998, pp. 195–210; Mann 1999) list a
number of sampling protocols, such as “ad libitum,” “focal-animal,” “all-
event,” “predominant activity,” “point,” “scan,” “1:0,” or “sequence.”
These have different advantages, disadvantages, and recommended uses.
In most formulations, the relative merits of the sampling protocols are
confounded with follow protocols (discussed earlier). Here and in Table
3.4, I adapt the standard terminology and recommendations for the col-
lection of social data, indexing choices by the follow protocol (surveys,
individual follows, or group follows) and type of social measure being
collected (interactions, associations or groups):

Surveys, recording associations or groups. Here the sampling is an
instantaneous scan and usually 1:0 (a dyad is or is not associated, or
are members or not members of the same group). Sometimes, however,
individual or dyadic behavioral state data are collected. These could be
ordinal or continuous data or categorical data with several states. They
can be used to produce associations in subsequent analysis. For instance,
locations can give nearest-neighbor data, whereas behavioral state and
movement measures allow synchronicity to be assessed. In the simplest
and most common format, the members of a group are noted during
each survey of each group.

Individual follows, recording interactions. Ideally, each interaction
involving the focal animal is recorded together with the time, type, and
identity of the interactant. This is sometimes called “all-event” sam-
pling. Simplifications include omitting the time information but record-
ing the order of interactions (this becomes “sequence sampling” under
some definitions), simply counting all interactions between each dyad
(“sociometric matrix”), or recording whether there was an interaction
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between the focal animal and each other individual (“1:0 sampling”).
I recommend that time, interaction type, and interactant identity be
recorded if possible. Some measure of effort is required for most analy-
ses, usually the time or number of sampling periods (Section 3.9) spent
observing each individual.

Individual follows, recording associations or groups. There are sev-
eral possible sampling protocols for association measures during indi-
vidual follows. The associates of the focal individual can be recorded at
regularly spaced instants (e.g., “who was the focal individual associated
with at 12:05?,” also called “point sampling”), during regular intervals
(e.g., “who was the focal individual associated with between 12:05 and
12:10?,” a form of “1:0 sampling”), or when they changed (e.g., “A
became associated with the focal individual at 12:07,” a form of “all-
event sampling”). As long as the intervals used are not greatly longer
than the rates of disassociation, it probably makes little difference to the
results which of these is used. As with the survey protocols, individual
data (e.g., identities and positions relative to the focal animal) can be
recorded for all nearby individuals using any of these methods and then
used later to produce one or more association measures with the focal
animal (such as nearest neighbor).

Group follows, recording interactions. This will only be possible in
rare cases in which the group is small and easily viewed and interaction
rates are low, but in such cases, “event sampling” (in which events are
the interaction types) is appropriate and efficient.

Group follows, recording associations or groups. The possibilities
are similar to those available for association measures during individual
follows listed previously, but with a few additional options. The sim-
plest, and probably most frequently used, sampling protocol is simply to
list group membership at regularly spaced sampling points (“point sam-
pling”) or whenever it changes (“event sampling”). Alternatives are to
note associations within the group, if association is defined other than
by membership of the followed group, either directly (e.g., subgroup
membership) or by recording individual data such as position and be-
havioral state that can be used to derive associations later. Sometimes,
these data will only be collected for a subset of the group.

It is often possible and desirable to combine sampling protocols.
For instance, interactions and associations can both be recorded during
individual follows. Sometimes, the data collected can be used to derive
two or more association measures, such as “behavioral coordination”
and “within x body lengths.” Finally, the maligned ad libitum sampling
method (basically field notes) should be used to record unusual but
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important behavior, such as fighting or mating, whether or not the focal
individual is a participant and whether or not the behavior occurs during
a survey or follow (Altmann 1974).

3.7.6: Effects of Observers. It is important both ethically and scientifically
to minimize the effects of observation. Disturbed animals may form larger
or smaller groups or increase or decrease their rates of association or dis-
association (e.g., Foster & Rahs 1983; Kinnaird & O’Brien 1996), often
showing antipredator-type behavior (Frid & Dill 2002). Martin and
Bateson (2007, pp. 17–18) and Lehner (1998, p. 210) discuss causes and
remedies for observer effects. Similarly, effects on behavior caused by
individual identification (Section 3.5) and the collection of data for
classifying animals (Section 3.6) should be minimized.

3.7.7: Nonobservational Data. It has been tacitly assumed throughout this
section that interaction or association data are collected through visual
observation, which may be real time or by analysis of video or still im-
ages. There are, however, other sensory modes. Interactions can some-
times be heard. Associations can be measured in a large range of ways
(Table 3.2), including the co-occurrence of natural (e.g., DNA analysis
of discarded body tissue or feces) or artificial (e.g., PIT tag) individual
markers, as well as through the products of nonsocial analyses (such as
the overlap of ranges).

3.8 Data Formats

Database and spreadsheet software are almost essential for storing so-
cial data (Section 2.9), but what format should be used? In this section,
I recommend formats that either allow relatively simple manipulation in
spreadsheet programs such as Excel or are suitable for my software pack-
age, SOCPROG. Other specialized software packages, such as UCINET
and MatMan (Section 2.9), assume some processing of the raw data
into similarity or dissimilarity matrices (Section 2.5). The preferred for-
mat may depend on whether interactions, associations, or groups are
recorded directly or are derived from other recorded measures. Finally,
I suggest a format (the SOCPROG format) for entering supplemental
data, such as age or sex, that directly or indirectly can be used to allocate
individuals to classes (Section 3.6).

First, a few preliminaries. I suggest that dates and times be combined
in one field using the database or spreadsheet date–time format. Second,
changes and ambiguity in field (column) formats can cause problems in
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Table 3.5 Example of Interaction Data with Two Asymmetric (X and Y) and One Symmetric (M)
Interaction Types Coded in Linear Mode for Situations in Which All individuals Are Observable

Date and time
Type of
interaction Actor/recipient Interaction no. ID

12/9/89 9:01 X 0 1 A1
12/9/89 9:01 X 1 1 A9
12/9/89 9:22 X 0 2 A14
12/9/89 9:22 X 1 2 A15
12/9/89 12:10 Y 0 3 B8
12/9/89 12:10 Y 1 3 A11
12/9/89 12:17 X 0 4 A13
12/9/89 12:17 X 1 4 A20
12/9/89 15:32 M 1 5 A4
12/9/89 15:32 M 1 5 A7
12/9/89 15:44 X 0 6 B12
12/9/89 15:44 X 1 6 A17
12/10/89 9:09 Y 0 11 A19
12/10/89 9:09 Y 1 11 A1
12/10/89 9:40 M 1 12 A9
12/10/89 9:40 M 1 12 A14

Asymmetric association data can be coded similarly.

analyses within Excel (and probably other spreadsheet software) as well
as when the data are exported into other programs (such as SOCPROG).
Therefore, I suggest that one not identify some individuals (or behavior
types or classes) by numbers (such as “1453”) and others alphanumer-
ically (such as “53c”); one should just use numbers or alphanumeric
codes throughout each field, whichever is more appropriate.

Data are usually stored so that rows represent observations, and co-
lumns (fields) the circumstances of the observation, what was observed,
and who was observed. In SOCPROG, the final field gives the identi-
ties of the observed individuals, and I stay with this convention in the
examples given later. I distinguish three ways of coding social data:

1. Linear mode (e.g., Table 3.5), in which each row corre-
sponds to one observation of one individual. This is a
SOCPROG format.

2. Dyadic mode (e.g., Table 3.6), in which each row corre-
sponds to an observation of an association or interaction of
a dyad. Thus, there are two identity fields representing the
two identities in the dyad. This is a particularly useful format
for asymmetric interactions or associations. Occasionally,
the two identities may be of the same individual, as when an
individual grooms itself (e.g., Table 3.6) or the presence of
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Table 3.6 Example of Asymmetric Interaction or Association Data Coded in Dyadic Mode for
Situations in Which All Individuals Are Observablea

Date and time Groomer ID Groomee ID

1/1/00 9:49 131 202
1/1/00 14:54 142 155
1/1/00 15:41 176 194
1/2/00 9:11 194 202
1/2/00 9:41a 100 100
1/2/00 10:09 6 162
1/3/00 10:35 100 188
1/3/00 11:03 196 202
1/3/00 14:32 6 162
1/3/00 17:40 155 89
1/4/00 7:16 196 202
1/4/00 13:17 131 3
1/4/00 16:15 155 89
1/5/00 6:00 51 89
1/5/00 15:57 162 100
1/5/00 17:55 131 3
1/11/00 7:19 188 127
1/11/00 10:09 89 45
1/12/00 7:14 89 45
1/12/00 9:01 162 100

aIncluding one case in which the interaction is of an animal with itself.

a noninteracting or nonassociating individual needs to be
noted (see later discussion). This is a useful format for pro-
cessing in Excel or other spreadsheet programs, for instance,
by using “pivot tables” to produce counts of interactions or
associations.

3. Group mode (e.g., Table 3.7) in which observations of one,
two or more than two individuals are represented on each
row, and one field gives all the identities of the individuals
observed in the group. This is a SOCPROG format, and
is compact, using less computer space and memory than
individual or dyadic mode to store the same data.

Dyadic and group mode data can always be converted to linear mode
data,2 and linear mode data can usually be converted to dyadic mode.
Linear and dyadic mode data cannot necessarily be converted into group
mode, however, because linear and dyadic mode data are not necessarily
symmetric and transitive, a requirement for group mode data (if A and

2. SOCPROG can convert group mode data into linear mode.
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Table 3.7 Example of Coding Symmetric Association Data with
One Association Type Such as Group Membership, Coded in Group
Mode, Collected from Surveys

Date and time Associating IDs

1/1/00 9:49 6 13 20
1/1/00 14:54 15
1/1/00 15:41 17 19
1/2/00 9:11 20
1/2/00 9:11 10 18
1/2/00 10:09 6 16
1/3/00 10:35 5 10 18
1/3/00 11:03 20
1/3/00 14:32 6 10 16 20

B interact/associate and B and C interact/associate, this does not neces-
sarily imply that A and C interact/associate).

3.8.1: Coding Interaction Data. Coding interaction data is not always
straightforward. The simplest case occurs when the whole population
and all their interactions of certain types are observed and all interac-
tion types are symmetric, so that there is no ordering to the interaction.
Then, we can use dyadic or group mode data storage, with each row
representing an interaction. The fields will usually contain date/time,
type of interaction if more than one is observed and the identities of
the interactants, as in Tables 3.6 and 3.8. Additional fields may contain
information such as place and intensity of the interaction. Interactions
involving three or more individuals can also be coded in this way in
group mode simply by having more than two individuals recorded in
the ID field, or in dyadic mode by having, for three individuals, three
rows representing all three dyadic interactions.

If interactions are not symmetric, as in grooming (A may groom B
without B grooming A) or fight outcomes, then we can use group mode
data storage, but the first individual listed is considered the actor and
the second (or perhaps all of the others if more than two individuals
are listed) the receivers. Dyadic mode is particularly well suited for this
situation (e.g., Table 3.6), or it may be best to use linear mode to code
the data. One field represents the interaction type and another whether
an individual is the actor or recipient, and a third distinguishes the dif-
ferent interactions, as in Table 3.5, which codes a mixture of symmetric
and asymmetric interaction types. For each observed asymmetric inter-
action one individual has a “0” in the actor/recipient field and another
individual a “1.” For symmetric interactions, both individuals have a
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Table 3.8 Example of Interaction Data with Five Symmetric Interaction Types
Coded in Group Mode for Situations in Which All Individuals Are Observable

Date and time Interaction type Interactant IDs

1/1/00 9:49 A 13 20
1/1/00 14:54 A 14 15
1/1/00 15:41 A 17 19
1/2/00 9:11 F 19 20
1/2/00 9:41 F 10 18
1/2/00 10:09 A 6 16
1/3/00 10:35 A 10 18
1/3/00 11:03 D 19 20
1/3/00 14:32 A 6 16
1/3/00 17:40 A 15 8
1/4/00 7:16 D 19 20
1/4/00 13:17 A 13 3
1/4/00 16:15 A 15 8
1/5/00 6:00 A 5 8
1/5/00 15:57 B 16 10
1/5/00 17:55 F 13 3
1/11/00 7:19 C 18 12
1/11/00 10:09 A 8 4
1/12/00 7:14 C 8 4
1/12/00 9:01 B 16 10

“1.” This format can also be extended for triadic interactions or those
including more than three individuals.

An additional, but very important, consideration in most circum-
stances is the coding of control data. In addition to recording the ob-
served interactions, we need to know for which individuals we could
have recorded interactions had they taken place, so that, for instance,
rates of interaction per unit time can be calculated for each dyad. Thus,
in cases such as focal animal or group follows, where not all members of
the population are being observed all the time, effort data must be coded
in some way. This can be done by including, at least once per sampling
period, data on “null interactions” that simply note the animals that
could have interacted. For focal group follows, this can be achieved in
group mode format. With individual follows, however, linear or dyadic
mode will usually be needed as if A is being followed and B and C are
also being observed such that they could have interacted with A; then
we need to record the possibility of AB and AC interactions, but not BC
ones. Tables 3.9 to 3.11 give, respectively, examples of group, dyadic,
and linear mode interaction records with control data.

3.8.2: Coding Direct Association Data. When symmetric associations are
recorded directly, the data can be coded using dyadic mode, as in Table
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Table 3.9 Example of Interaction Data with Two Symmetric Interaction Types
Coded in Group Mode, Including “Null” Interaction Effort Data (“O”), as Might
Be Obtained from a Focal Group Follow

Date and time Interaction type Interactant IDs

1/1/00 9:40 O 13 18 20
1/1/00 9:45 O 13 18 20
1/1/00 9:49 A 13 20
1/1/00 9:50 O 13 14 20
1/1/00 9:55 O 13 14
1/1/00 14:45 O 14 15 18 20
1/1/00 14:50 O 14 15 18 20
1/1/00 14:54 A 14 15
1/1/00 14:55 O 15 18 20
1/1/00 14:58 B 15 20
1/1/00 15:00 O 15 18 20

Table 3.10 Example of Asymmetric Interaction Data Coded in Dyadic Mode, Including
“Null” Data—Individuals Who Could Have Groomed but Did Not—as Might Be Obtained
from a Focal Follow of #131

Time Grooming? Groomer ID Groomee ID

06:22:00 Yes 131 202
06:27:00 Yes 131 155
06:27:00 No 176 131
06:32:00 No 176 131
06:37:00 Yes 131 176
06:37:00 No 131 162
06:42:00 No 131 188
06:47:00 No 131 202
06:52:00 Yes 6 131
06:52:00 Yes 131 89
06:57:00 No 131 202
06:57:00 No 131 89

3.6, or group mode, as in Table 3.7, in which each row corresponds to
animals that are associated with each other. If more than two identi-
fications are noted in group mode, then each is assumed to have been
associated with all the others. The coding is basically the same whether
the data come from surveys, group follows, or individual follows and
whatever sampling protocol is used. It is important, however, that all
individuals observed within a sampling period are noted, with an indi-
vidual that was not associated with any other being indicated by a single
identification in a row in group mode (as in Table 3.7), or, in dyadic
mode, as an association of an animal with itself. With asymmetric as-
sociations (such as nearest-neighbor measures), then linear or dyadic
mode coding is required, as in Tables 3.5, 3.6, 3.10, and 3.11.
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Table 3.11 Example of Interaction Data with Two Asymmetric (X and Y) Interaction Types plus
“Null” Data (“O”) Coded in Linear Mode as Might Result from Focal Individual Follows

Date and time Type of interaction Actor/Recipient Interaction# ID

12/9/89 8:55 O 1 1 A1
12/9/89 8:55 O 1 1 A9
12/9/89 8:55 O 1 2 A1
12/9/89 8:55 O 1 2 B10
12/9/89 9:00 O 1 3 A1
12/9/89 9:00 O 1 3 A9
12/9/89 9:00 O 1 4 A1
12/9/89 9:00 O 1 4 B10
12/9/89 9:01 X 0 5 A1
12/9/89 9:01 X 1 5 A9
12/9/89 9:05 O 1 6 A1
12/9/89 9:05 O 1 6 A9
12/9/89 9:20 O 1 7 A14
12/9/89 9:20 O 1 7 A15
12/9/89 9:25 O 1 8 A14
12/9/89 9:25 O 1 8 A15
12/9/89 9:30 Y 0 9 A14
12/9/89 9:30 Y 1 9 A15
12/9/89 9:35 O 1 10 A14
12/9/89 9:35 O 1 10 A15
12/9/89 9:40 O 1 11 A14
12/9/89 9:45 O 1 12 A14

A1 and A14 are the focal individuals.

3.8.3: Coding Indirect Association Data. Sometimes, associations are not re-
corded directly but are inferred later. In this case, data are generally
recorded in linear mode. Fields may include date/time, position (one,
two, or possibly three dimensional), heading, or behavior (events or
states). Then one can derive association measures such as “nearest neigh-
bor,” “dived within 30 seconds of one another,” or “within three body
lengths and heading the same direction (±30◦).” SOCPROG can usually
produce such association measures reasonably easily. Table 3.12 shows
an example of such data.

3.8.4: Coding Group Data. Group data are the simplest to code, usually in
group mode, as in Table 3.7, in which each row corresponds to a group.
Once again, it is important that single animals are entered, as a row
containing just one ID.

3.8.5: Coding Supplemental Data. For social analysis, in addition to data on
interactions or associations, we generally use attributes of individuals to
place them into classes (Section 3.6). Individual attributes can be used
to calculate nonsocial relationship measures, such as age differences
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Table 3.12 Example of Data Coded so That Associations Can Be Derived Later

Date and time Position on branch Branch no. ID

12/9/89 9:01 12 1 A1
12/9/89 9:01 27 1 A9
12/9/89 9:01 31 1 A14
12/9/89 9:01 37 1 A15
12/9/89 12:10 5 2 B8
12/9/89 12:10 15 2 A11
12/9/89 12:17 6 3 A13
12/9/89 12:17 9 3 A20
12/9/89 15:17 21 3 A4
12/9/89 15:17 25 3 A7
12/9/89 15:17 29 3 B12
12/9/89 16:40 31 4 A17
12/10/89 9:09 19 5 A19
12/10/89 9:09 25 5 A1
12/10/89 9:09 31 5 A9
12/10/89 9:09 50 5 A14

The identities of birds perching on surveyed branches are recorded together with the position on the
branch (in centimeters from the trunk of the tree). Associations such as “nearest neighbor” and “on
same branch and within 15 cm” can be calculated from these data.

Table 3.13 Example of Supplemental Data That Assign Individuals to Classes (e.g., Sex),
Can Be Used to Derive Classes (e.g., from Age, One Can Derive Age Classes), or Can Be Used
to Produce Nonsocial Relationship Measures (Such as Haplotype Similarity)

ID Sex Age (yr) Haplotype

1 M 15.5 A
2 M 2.7 H
3 F 5.8 H
4 M 14.5 G
5 M 20.8 F
6 F 9.7 A
7 F 7.4 F
8 F 24.6 G
9 M 6.1 H
10 F 17.2 A
11 M 11.7 A
12 M 17.7 F
13 F 11.7 A
14 M 4 B
15 M 15.7 C
16 F 0.3 A

or genetic relatedness (Section 4.2). Class allocations, or data used to
produce them, can also be stored in spreadsheet or database format.
Table 3.13 illustrates the format used by SOCPROG and UCINET.
The first column (field) is a list of identification names or numbers, and
the subsequent columns (fields) give information such as sex, age, or
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haplotype for the corresponding individual. If a spreadsheet program
such as Excel is being used, supplemental data can be stored in the same
file as the social data but using separate worksheets. When we have both
social data and supplemental data, it is perhaps even more useful to use
a relational database such as Access with linked relationships, which
makes it simple to both change and view aspects of the data.

3.9 Sampling Periods

Time has two important roles in social analyses. First, because the tem-
poral patterning of interactions and associations is one of the key at-
tributes of a relationship (Hinde 1976), temporal methods should play a
key role in the analysis (Sections 4.6 and 5.5). At a more basic level, for
almost all statistical techniques, we need to define a “sampling period”—
the temporal units of the analysis. Thus, in each sampling period, we
may produce counts of dyadic interactions or abstract whether a dyad
was associated or not.

There are a number of considerations in selecting a suitable sampling
period, including natural breaks in the sampling scheme, the rate of
data collection, and independence of neighboring periods. For instance,
if sampling is only carried out in darkness or only in daylight, then a
sampling period of a day has a natural break and may be appropriate.
A sampling period so short that there are few data collected within it
(e.g., few interactions observed) is rarely useful. At the other extreme,
valuable information is lost if the sampling period is so long that, for
instance, almost all individuals in the population have associated with
each other during each period. If association data are being collected and
associations in consecutive intervals are almost always identical, then
the sampling period is probably too short, whereas if they are almost un-
correlated, then the sampling period may be too long. For most anal-
yses, statistical independence between neighboring sampling periods is
neither needed nor desirable because we are interested in how dyadic
relationships change over a range of time scales (Section 4.6). However,
there are exceptions. Some permutation tests (Bejder et al. 1998) and
estimates of the power of social analyses (Section 3.11), assume inde-
pendent sampling periods, independent in the sense that the data from
neighboring sampling periods are no more alike than those from well-
separated periods. Thus, for different analytical techniques, it may be
appropriate to divide the data into sampling periods of different dura-
tions. Occasionally, it may be useful to use sampling periods defined by
a measure other than time, such as the field study or survey.
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3.10 Attributes of Data Sets

When individuals have been identified and data on their interactions or
associations recorded, we have a data set from which, potentially, we can
analyze social structure. Such data sets vary widely over a large range
of attributes, as indicated by the example studies listed in Table 1.3.
Some of the most basic features of data sets and study populations are
the number of identified individuals; the proportion of the population
that is identifiable (possessing marks, tags, or other attributes used for
individual identification); the proportion of the population that has been
identified in the study; whether individuals are classifiable by age, sex,
or other attributes; the length of the sampling period; the number of
sampling periods; their temporal pattern; the proportion of the popula-
tion identified during each sampling period; the number of study areas;
their geographical relationship; the migration rates between study ar-
eas; movement and spatial structure within study areas; the number
and type (presence/absence, ordinal, etc.) of interaction and association
measures; and whether there are missing or incomplete data (e.g., some
measures not always collected).

These attributes allow data sets to be allocated to general types. Here
are some axes by which data sets might be classified and suggested classes:

Size of study population: “Small,” less than 20 identified indi-
viduals; “intermediate,” 21 to 100 identified individuals;
“large,” more than 100 identified individuals.

Rate of identification: “Sparse,” less than 10% of study popula-
tion identified during each sampling period; “intermediate,”
10% to 80% of study population identified during each
sampling period; “complete,” greater than 80% of study
population identified during each sampling period.

Number of sampling periods during which a dyad is ob-

served associated: “Few,” less than 1 mean observed as-
sociations per dyad; “some,” 1 to 10 mean associations
per dyad; “many,” more than 10 mean associations per
dyad.

Associations per individual: “Few,” less than 10 mean observed
associations per individual over all other members of the
population; “some,” 10 to 100 mean associations per in-
dividual; “many,” more than 100 mean associations per
individual.
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Population closure: “Closed,” no birth, death, or emigration
during the study; “open,” some individuals enter or leave the
population during the study.

Information on individuals: “Undifferentiated,” no class infor-
mation; “gender,” sex, but no other class data, available for
each individual; “detailed,” gender plus other individual
data, such as age, available for each individual.

Behavioral measures recorded: “Univariate,” just one interac-
tion or association measure available; “bivariate,” two in-
teraction or association measures available; “multivariate,”
more than two measures available.

Length of data set: “Short,” less than 20 sampling periods; “me-
dium,” 20 to 100 periods; “long,” more than 100 periods.

3.11 How Large a Data Set Is Needed for Social Analysis?

This book is principally concerned with deriving a model of social struc-
ture from observations of the social behavior of animals. As far as pos-
sible, the output model of social structure should correspond to its real
nature. The closer this match, the better. Using the best methods im-
proves the input–output match, and Chapters 4 and 5 are principally
about the utility of different methods. Even if the ideal analytical tech-
niques are employed, however, the output model will likely have little
basis in reality if insufficient data are input. So how large a data set is
needed for social analysis? In this section, I look at the precision and
power of social analysis (Whitehead In press-a). Three subsections are
concerned with the precision of dyadic relationship measures, the ac-
curacy of representations of social structures, and the power of tests of
null hypotheses, respectively.

3.11.1: Precision of Relationship Measures. In Chapter 4, I describe several
relationship measures, primarily interaction rates (Section 4.4) and as-
sociation indices (Section 4.5). These indicate the strength and nature
of a relationship between a pair of individuals.

An interaction rate measures how frequently interactions occur be-
tween a pair of individuals. If interactions can be considered independent
then, from Equations (4) and (5) in Chapter 4, the coefficient of varia-
tion (CV; standard error divided by mean) of an estimated interaction
rate between individuals A and B is approximately 1/

√
nAB , where nAB

is the number of observed interactions between them.
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Table 3.14 Precision of Relationship Measures as Indicated by the Expected Coefficient of
Variation (CV) of Interaction Rates and Association Indices as a Function of the Number of
Observed Interactions or Associations and (for Association Indices) the Association Index

CV of association index if association index is:Number of observed
interactions or
associations CV of interaction rate 0.1 0.3 0.5 0.7 0.9

5 0.45 0.42 0.37 0.32 0.24 0.14
10 0.32 0.30 0.26 0.22 0.17 0.10
20 0.22 0.21 0.19 0.16 0.12 0.07
40 0.16 0.15 0.13 0.11 0.09 0.05
80 0.11 0.11 0.09 0.08 0.06 0.04

An association index, αAB, estimates the proportion of time that a
pair of individuals A and B is in association. From Equation (6) in
Chapter 4, its CV is approximately

√
((1 − αAB)/xAB), where xAB is the

number of observed associations (actually number of sampling periods
with an observed association) between A and B.

Using these formulas, Table 3.14 presents estimated CVs of interac-
tion rates and association indices. Unless the association index is close
to 1, one needs at least 15 independent observations of interactions or
associations to lower the CV of the relationship measure below 0.15,
thus giving 95% confidence intervals in the relationship measures of
±∼30% of the mean (because 95% confidence intervals are roughly
twice the SE, and CV = SE/mean). To obtain even more precise inter-
action rates or association indices, many independent observations are
required.

3.11.2: Accuracy of Social Representations. In Chapter 5, I show how es-
timated relationship measures among members of a population can be
used to construct representations and models of social structures. Given
that each estimated relationship measure will likely have an error, how-
ever, how accurate is a representation built on many such imperfect
measures? This has not been fully explored, but in the case of asso-
ciation indices assembled into matrices of association indices (such as
those in Tables 2.5, 4.16, and 4.17), I have made a start (Whitehead In
press-a).

The measure of accuracy used is the correlation coefficient between
the true association indices—what proportion of time a pair are actually
associated—and their estimated values, the association indices. A high
correlation, with r near 1.0, indicates an excellent representation; r ∼
0.8 indicates a good representation; and r ∼ 0.4 indicates a somewhat
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representative pattern. I have shown (Whitehead In press-a) that this
correlation can be estimated, in a fairly unbiased fashion, from

r = s
CV(αAB)

(1)

where S is the social differentiation, the estimated CV of the true as-
sociation indices (Section 5.1), and CV(αAB) is the CV of the estimated
association indices. Briefly, S indicates the variability of association in-
dices within a population: if S is close to 0, the relationships within the
population are homogeneous; if S is near or greater than 1, they are very
varied. S can itself be estimated in two ways described by Whitehead (In
press-a) and in Appendix 9.4.

Equation (1) allows post hoc estimation of the accuracy of social
representations based on calculated association indices. For instance,
for the 63 northern bottlenose whales (Hyperoodon ampullatus) whose
data are summarized in Tables 4.19 and 5.1, the estimated correlation
coefficient between the true and estimated association indices is 0.22,
which is not good and suggests that, in this case, representations of
the matrix of association indices will not reflect reality to any great
extent.

We do not know CV(αAB) until the data are collected, so Equation
(1) does not help directly with addressing the question of how much data
are needed to achieve an “accurate” social representation. By making
the simplifying assumptions that the observations of associations are
Poisson distributed and that effort is equally concentrated on all dyads,
we can come up with a formula that is useful for predicting the accuracy
of social representations (Whitehead In press-a):

r =
√

1

1 + 1
S2 ·G

(2)

where G is the mean number of associations observed per dyad This
relationship allows prediction of the correlation between the true and
estimated association indices, as is done in Table 3.15. Equation (2)
assumes that effort is equally concentrated on all dyads. If this is not the
case, so that more effort is devoted to some dyads than to others, then
the power to assess the true association index will be reduced.

The amount of data needed to give a “somewhat representative”
pattern of relationships within a population, indicated by r = 0.4, or
a “good” representation, indicated by r = 0.8, varies greatly with the
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social differentiation (Table 3.15). With a poorly differentiated popu-
lation (S < ∼0.2), many associations are needed per dyad to achieve
even a “somewhat representative” pattern, whereas when social differ-
entiation is high, the data requirements are much less. About 10 times
as much data are required for a “good” representation, r = 0.8, as a
“somewhat representative” one with r = 0.4 (Table 3.15).

3.11.3: Power of Tests of Null Hypotheses of No Preferred Companionship.
Social analysis can also be approached from a hypothesis-testing per-
spective. A frequently useful null hypothesis is that individuals have
no preferences for social partners, with the alternative that there are
preferred and/or avoided associations between some pairs of individu-
als. In Section 4.9, I describe a permutation test introduced by Bejder
et al. (1998) that tests for preferred or avoided association among in-
dividuals when dyadic association is defined using group membership
(Section 3.4), as well as several extensions of this test. These are impor-
tant techniques in social analysis. However, the power of such tests is
unknown: How much data are needed to detect a particular degree of
social preference/avoidance?

In simulated data sets, the null hypothesis of no preferred compan-
ions was usually rejected (at P < 0.05) if S·g′ > 5 and not rejected (P <

0.05) if S·g′ < 5, where g′ is the mean number of observed associations
per individual, not per dyad as in the case of G (Whitehead In press-a).
Thus, to detect preferred companionship in a data set with low social
differentiation (S = ∼0.05), we need a mean of about 2,000 observed as-
sociations per individual; with medium social differentiation (S = ∼0.2),
we need about 125; with high social differentiation (S = ∼0.8), we need
about 8; and with extreme social differentiation (S = ∼10), we need just
0.05 (Table 3.15).

As an example, for the 63 northern bottlenose whales whose data is
summarized in Tables 4.19 and 5.1, S·g′ = 11.3, which is greater than
5, suggesting the ability to detect nonuniform associations and that the
null hypothesis of social homogeneity (no social differentiation) will be
rejected. It is rejected (P < 0.001, testing by permuting the matrices
of association indices, using the coefficient of association indices as a
test statistic, as described in Section 4.9). This indicates that although a
quite sparse data set on a fairly large number of animals (63 in this case)
may be unable to provide a good representation of social structure, it
can provide useful social information.
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B O X 3.1 Precision and Power of Social Analysis

The considerations of Section 3.11 show that in most situations,
quite a great deal of data are needed to give even reasonably
useful portrayals of social systems. This is especially true when
social differentiation is low. Only in cases of highly socially differ-
entiated populations for which relationships among dyads vary
substantially can we get by with sparse data. This indicates that
many published social analyses contain representations of social
systems and conclusions about social features that may have little
validity because of poor analytical precision or power.



4 Describing Relationships

4.1 Relationships

Whereas interactions are the foundations of social struc-
ture, the relationship is its heart. A relationship may
seem simple. Perhaps the relationship between two males
has always between characterized by mutual antagonism.
Even within this consistent hostility, however, the level of
dominance may have shifted over time. Relationships may
be much more complex, especially in cooperative species,
with bonds developing and deteriorating over time, being
tested by agonism expressed in many behavioral contexts,
often asymmetrically. de Waal (1998, pp. 83–135) describes
in dramatic detail the changes in a complex relationship
between two adult male chimpanzees (Pan troglodytes) in
the Arnhem Zoo. As Yeroen and Luit struggled for power,
their dynamic relationships with other members of the
colony, males and females, became crucial.

Relationships between individuals form and develop
through experience, learning, feedbacks, and institution-
alization (Hinde 1976). In social analysis, we need to des-
cribe relationships in ways that are both meaningful and
tractable. This is challenging in many ways, but the chal-
lenges are circumscribed by the data.

A primary challenge is time scale. From their very def-
inition, relationships are integrations of interaction data
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over time, and yet relationships change with time (Hinde 1976). When
we make quantitative representations of relationships, we need to incor-
porate data over sufficient time periods to make them good representa-
tions but not over time periods so long that the relationship is likely to
have changed substantially. Choosing suitable time periods over which
to average needs a good feel for the time scales that are significant to the
animals. There are also analytical techniques, such as lagged association
rates (Section 5.5), that can provide guidance with this.

Once data have been collected and a sampling period chosen, the
next step in a social analysis is to calculate measures that describe the
interactions and associations in each sampling period, what I have called
“interaction measures” (Whitehead 1997). These are often counts of in-
teractions (Section 3.2) or records of associations (Section 3.3). The
interaction measures can be abstracted over sampling periods to pro-
duce relationship measures, such as the mean interaction rate or associ-
ation index of a dyad, that describe the content, quality, and temporal
patterning of relationships (Whitehead & Dufault 1999). The heart of
this chapter is a discussion of interaction and relationship measures,
but before that, I consider nonsocial dyadic measures (Section 4.2) and
individual attributes (Section 4.3), both of which give perspective on
dyadic measures of sociality.

Table 4.1 gives an overview of much of the material in this chapter. It
lists general types of relationship measures, the level or levels at which
they operate (individuals, dyads, classes, or community), and where
there are tests against null hypotheses.

A fundamental attribute of the methods that I advocate in this chap-
ter and the chapters that follow it is that they adopt an animal-centered
approach (Jarman 1982; Whiten 2000). They try to view a social struc-
ture from the perspective, and through the relationships, of its members
rather than just as perceived by external observer.

4.2 Nonsocial Measures of Relationship

The dynamics of the social relationship between the male chimpanzees
(Pan troglodytes) Yeroen and Luit at the Arnhem Zoo were heavily in-
fluenced by the relative ages and consequent stamina of the participants.
Yeroen was older, but he tired more quickly (de Waal 1998, pp. 50–53).
Most fundamentally, both were mature males.

There is a range of possible and useful dyadic nonsocial measures of
relationship. Nearly all of the class attributes of individuals (Section 3.6)
can be used to produce such measures. Some are 1:0 or same/different
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dyadic measures, including same/different sex, age class, reproductive
state, subspecies, morph, or matriline (i.e., with a recent common ances-
tor in the maternal line). Alternatively, we can have several categorical
dyadic states for each combination of individual classes, such as, for
sex classes, F-F, M-M, and M-F. Nonsocial dyadic measures can also be
quantitative, such as the difference in age between the two individuals.

Among the most commonly used nonsocial measures of relationship
are those that indicate kinship or genetic relatedness. As discussed in
Section 7.3, kinship is believed to be one of the drivers of sociality, and
a general prediction of kinship theory is that the social relationship in
a dyad should be correlated with its members’ genetic relatedness. If
the genealogy is known, kinship (an estimate of the probability that
individuals have a gene in common through common recent ancestry)
between any pair of individuals can be calculated. Alternatively, kinship
is indicated by genetic relatedness estimated using molecular genetic
techniques, frequently microsatellites (van de Casteele et al. 2001) (e.g.,
Table 4.2). Dyadic kinship measures usually estimate the proportion of
genes shared through common recent ancestry, and so they should range
from 0 to 1, although, in practice, there are frequently small negative
relatedness estimates. A molecular genetic 1:0 measure of matrilineal
relatedness that is methodologically simpler to derive is whether the
pair of individuals does or does not share the same mitochondrial DNA
haplotype. Individuals from the same matriline should have the same
mitochondrial DNA haplotype; those from different matrilines may not.

Other important nonsocial dyadic measures include spatial and/or tem-
poral range overlap (e.g., Gompper et al. 1998). The former is often derived
from habitat occupancy data using geographic information systems.

4.3 Social Attributes of Individuals, Including Gregariousness

In the following sections of this chapter, I consider dyadic measures of
social relationship; to place these in perspective, however, we need to
think about social attributes of individuals. Just as individual, nonsocial
class attributes (Section 3.6) can be used to produce nonsocial measures
of relationship (Section 4.2), so social attributes of individuals affect
measures of social relationship. For instance, in the power struggle be-
tween the chimpanzees (Pan troglodytes) Yeroen and Luit at the Arnhem
Zoo, a crucial factor was the greater sociability of Luit (de Waal 1998,
p. 53), which allowed him to form alliances more easily.

An important social attribute of individuals in many societies is dom-
inance rank, the ranking of an in individual, within its community, in
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its ability to consistently win repeated agonistic encounters with other
members of the community (Drews 1993). Yeroen and Luit competed
for dominance rank. Although dominance rank is an attribute of individ-
uals, it is actually the result of dyadic interactions and is estimated using
interaction data (for methods, see Sections 4.8 and 5.4). An alternative
to the standard integer dominance rank is the dominance index, which
expresses an individual’s ability to dominate others. Some dominance
indices are described in Section 5.4.

Pepper et al. (1999) draw attention to gregariousness, which mea-
sures an individual’s tendency to form associations. An individual with
high gregariousness has more and/or stronger relationships than a less
gregarious member of its community. Once association has been defined
(Section 3.3), gregariousness can be measured simply as the mean num-
ber of associates possessed by an individual, or the sum of all dyadic as-
sociation indices (Section 4.5) involving a particular individual (usually
excluding the 1.0 of the individual with itself). If association is defined
using group membership, then a measure of gregariousness for an indi-
vidual is its typical group size (Section 3.4) minus one, the mean group
size that it experiences (Underwood 1981; Pepper et al. 1999)—the av-
erage number of other individuals in the same group as an individual.

With individuals assigned to classes, we can consider gregariousness
within and between classes (Underwood 1981; Pepper et al. 1999). A
female possesses a gregariousness in its relationships with other females,
as well as a separate gregariousness with males, estimated simply from
the means of the number of other females or males in groups containing
the individual. The former could be relatively low and the latter rela-
tively high. Such a female would generally be found associating with
more males but fewer females than an average female.

In an analogous manner to the way in which measures of gregari-
ousness can be calculated from association indices, we can measure the
average rate for any type of interaction for individuals or classes of indi-
vidual, within or between classes. For instance, here are the percentages
of total time spent grooming for six adult male chimpanzees studied at
Gombe in 1978 (Goodall 1986, p. 395):

Humphrey 7.5%
Evered 34.5%
Figan 15.0%
Satan 36.0%
Jomeo 16.0%
Sherry 15.0%
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These measures of social attributes of individuals are usually infor-
mative in their own right, but they also have another important role: Dif-
ferences in rates of association (gregariousness) and interaction among
individuals and classes of individual affect dyadic interaction and asso-
ciation measures (e.g., two very gregarious individuals are likely to have
a high association index), and these may need to be controlled for when
examining dyadic relationships. This is covered in Sections 4.8 and 4.9.

4.3.1: Tests for Differences in Gregariousness or Interaction Rates among In-
dividuals. Permutation tests (Section 2.4) can be used to test the null hy-
pothesis that all individuals in the community have the same gregarious-
ness against the alternative that gregariousness varies among individuals.

If association is defined using group membership, then a test for
differences in gregariousness among individuals can be a byproduct of
the Bejder et al. (1998) test for preferred/avoided companionship (Sec-
tion 4.9; Whitehead et al. 2005). A suitable test statistic is the standard
deviation of typical group sizes among individuals:

s = SD

⎡

⎢
⎢
⎢
⎢
⎣

∑

k

[

x(k, I)
∑

J
x(k, J)

]

∑

k
x(k, I)

⎤

⎥
⎥
⎥
⎥
⎦

(3)

where x(k, I) = 1 if individual I is a member of group k, and x(k,
I) = 0 if it is not. The quantity s is calculated for the real data as
well as for data sets constructed by permuting the real data in such a
way that the number of individuals in each group and the number of
groups containing each individual are held constant (Section 4.9; Bejder
et al. 1998). Significantly large values of s indicate that some animals are
consistently found in particularly large groups and others in particularly
small groups, and so there are differences in gregariousness (Section 2.4).

If the data consist of rates of interaction or associations not defined
using groups, then another approach to testing for differences between
mean rates of interaction or association among individuals is needed.
We can simply use a one-way analysis of variance (Sokal & Rohlf 1994,
pp. 207–271) or its nonparametric equivalent, the Kruskal-Wallis test
(Sokal & Rohlf 1994, pp. 423–427), on interaction rates, or typical
group sizes, of each individual in each sampling period, but these are
theoretically invalid because the data for the different individuals are
not independent (Section 2.4).
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Table 4.3 Numbers of Interactions among Individuals within a Sampling Period (above), with
Identities Randomized (below) for Permutation Test for Individual Differences in Interaction Rates

Real data for sampling period

JOE SAL FRED BOB SUE CON ART BILL

JOE 0 8 4 2 6 1 0 3
SAL 0 0 1 7 3 2 1 1
FRED 9 1 0 0 5 0 2 1
BOB 0 0 0 0 1 1 0 0
SUE 1 4 1 1 0 0 6 1
CON 0 3 3 0 0 0 9 1
ART 0 0 1 0 0 0 0 1
BILL 7 5 9 6 2 2 1 0

↓
Permuted data for sampling period

ART BILL SAL FRED CON BOB JOE SUE

ART 0 8 4 2 6 1 0 3
BILL 0 0 1 7 3 2 1 1
SAL 9 1 0 0 5 0 2 1
FRED 0 0 0 0 1 1 0 0
CON 1 4 1 1 0 0 6 1
BOB 0 3 3 0 0 0 9 1
JOE 0 0 1 0 0 0 0 1
SUE 7 5 9 6 2 2 1 0

An alternative, suggested by Whitehead et al. (2005), is to construct
random association or interaction data by permuting the identities of
the individuals in each sampling period, while retaining the numeric
structure of the data (Table 4.3), as in the Mantel test (Mantel 1967;
Section 2.4). All individuals could be permuted at each sampling pe-
riod, but so that demographic effects (movement in and out of the study
area, recruitment, mortality) do not produce significant results, I suggest
only permuting the identities of individuals actually identified in each
sampling period. A test statistic (such as the SD of the mean number
of associates, or interactions, of each individual over sampling peri-
ods during which it was identified) is calculated for the real data and
compared with its distribution over all random data sets (Section 2.4).
This test controls for the possibility that individuals may have generally
associated or interacted more in some sampling periods than in others.

As an example of how it works, consider the results for a data set
on bottlenose whales (Hyperoodon ampullatus), summarized in Table
1.3 for an earlier published analysis, containing 160 identified individ-
uals. If association is defined as “identified within 15 minutes of one
another” and sampling period is 1 day, the SD, among individuals, of
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the mean number of associates of each individual (over days on which
each individual was identified) was 1.29 individuals. The mean of this
test statistic for 1,000 random data sets (produced by permuting the
identities of the individuals identified on each day) was 1.40 individu-
als. In 58 cases, the statistic for the random data was less than the real
one, and so the alternative hypothesis that individuals differ in their
gregariousness (producing an abnormally high real SD) is not accepted
at P = 0.94.

These techniques of examining differences in overall gregariousness
and interaction rates have some of the benefits of Bejder et al.’s (1998)
test for preferred companions (Section 4.9). P values can be calculated
for each individual (the proportion of permutations with typical group
size, mean number of associates or mean interaction rate for that indi-
vidual less than the real typical group size, mean number of associates
or mean interaction rate for that individual) to identify individuals with
significantly high or low gregariousness or interaction rates. Another
potential extension is to examine variations between classes of individ-
uals, so that the tested hypothesis is something like “Do females differ
in the number of males with which they associate?” I have not seen this
done.

4.4 Rates of Interaction

A fundamental method by which to describe the content of a relationship
between two individuals is to use their rates of interaction (Altmann
& Altmann 1977; Michener 1980), such as the number of grooming
instances per sampling period. Some of these relationship measures will
be symmetric (e.g., the rate at which A and B touch), and others will not
be (e.g., rate of agonistic interactions in which A dominates B). With
rare events, it may be appropriate to use 1:0 instances, rather than rates,
of interaction (e.g., did A and B ever fight during the study?).

Table 4.4 shows an example from Perry (1996) of a matrix of groom-
ing rates. This is an asymmetric measure, and it is clear that individuals
differed greatly in the rates at which they groomed and were groomed.

An important consideration when using rates of interaction as a
relationship measure is effort. Unless all individuals were observed all of
the time, we should not simply tally observed numbers of interactions for
all dyads (Lehner 1998, p. 201). Interaction data are generally recorded
during focal individual (Section 3.7; Table 3.4), or occasionally focal
group, follows. With focal individual follows (Section 3.7; Altmann
1974), the measure of effort for a dyad is usually the total time, or
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Table 4.4 Rates of Female–Female Grooming in Capuchin Monkeys (Cebus capucinus), in Seconds
Grooming/Hour

Recipient

Actor A S N D W T Mean

A – 5.8 3.5 2.1 2.3 0.04 2.7
S 41.6 – 28.6 18.1 9.0 7.4 20.9
N 10.3 25.5 – 9.6 9.9 4.3 11.9
D 23.3 9.3 10.5 – 13.4 6.9 12.7
W 21.2 15.2 14.6 25.1 – 10.4 17.3
T 2.5 2.9 3.7 3.6 5.3 – 3.6
Mean 19.8 11.7 12.2 11.7 8 5.8 11.5

From Perry (1996).

number of sampling intervals, in which either of the two individuals was
focal. For focal group follows, the effort should either be the amount of
time spent following groups in which either individual is present, or that
spent following groups in which both are present or available to interact.
These give distinctively different interaction rates, the former being an
estimate of the absolute interaction rate of the dyad over time, the latter
only over those times in which the dyad was in a position to interact
[assuming “group” is defined as individuals in a position to interact
(Section 3.4; see also Michener 1980)]. In any case, care must be taken
that there are no substantial biases (e.g., rates of recording interactions
that do occur among followed individuals do not vary among individuals
or classes of individuals).

The precision of interaction rates can be estimated using bootstrap
or jackknife techniques (Section 2.3) in which sampling periods are
resampled with replacement (bootstrap) or omitted in turn (jackknife).
These assume that the data obtained in different sampling periods are
independent.

If the interactions themselves are assumed to be independent (and so
Poisson distributed), and nAB interactions were observed in eAB units of
effort, then the interaction rate and its standard error can be estimated
from

IAB = nAB

eAB
(4)

SE (IAB) =
√

nAB

eAB
(5)
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Using these formulas, we can calculate the coefficient of variation
(CV = SE/mean) of the interaction rate. These are presented for dif-
ferent numbers of observed interactions in Table 3.14. In cases in which
interactions are assumed to be independent, Poisson-derived 95% con-
fidence intervals for interaction rates are given by

95%CI(IAB) =
{

χ2
2nAB,0.025

2eAB
,
χ2

2nAB,0.975

2eAB

}

where χ2
x,p is the value at which the cumulative probability of the chi-

squared distribution with x degrees of freedom equals P (commonly
presented in statistical tables).

4.5 Association Indices

Following interaction rates, association indices form the second ma-
jor class of relationship measures. In species in which interactions are
hard to observe or relationships are best expressed through associa-
tions rather than interactions (Section 3.7), association indices become
the fundamental building blocks for describing social structure. For
instance, in my studies of whale societies, an invariant step has been
the calculation of association indices among identified individuals. Cal-
culating association indices was a fundamental driver for the initial
development of the software, SOCPROG.

If all animals and their associations (Section 3.3) are visible during all
of the observation time, then the proportion of time each dyad spends
associated can be estimated directly, or counts of “joint occurrences”
can be used as a proportional stand in (Table 4.5). Usually, however, we
need to standardize the number of observations of association by some
measure of effort. Unfortunately, converting records of associations into
relationship measures is not quite as straightforward as calculating rates
of interaction. A variety of association indices is available (Cairns &
Schwager 1987; Whitehead & Dufault 1999; Table 4.5), most of which
were developed for ecological applications and then incorporated, with-
out too much consideration, into social analyses. Almost all association
indices estimate the proportion of time that a pair of individuals spends
in association, and so they are symmetric (the association index of A with
B equals that of B with A) and range between zero and one. Exceptions
are the simple “joint occurrences” and Cole’s (1949) index, which can
be negative, and seem to have few advantages over other available in-
dices. Depending on the method by which the data were collected, one or
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Table 4.5 Commonly Used Association Indices

Index Formula Comments

“Joint occurrences” x Effort not controlled; does not
estimate proportion of time
together

“Simple ratio” x
x+yAB+yA+yB

Unbiased if assumptions hold
(Ginsberg & Young 1992)

“Half-weight” (also “Dice’s,”
“Sorensen’s,” “coherence”)

x
x+yAB+ 1

2 (yA+yB)
Most commonly used; less biased

when individuals are more likely to
be identified when not associated
or not all associates identified;
monotonic function of twice-weight

“Twice-weight” x
x+2yAB+yA+yB

Less biased when individuals are more
likely to be identified when
associated; monotonic function of
half-weight

“Square root” x√
(x+yAB+yA)(x+yAB+yB)

Based on flawed probability model
(Cairns & Schwager 1987)

“Social affinity” x
min{(x+yAB+yA),(x+yAB+yB)} May be useful when individuals differ

considerably in their identifiability

“Both identified” x
x+yAB

Controls for cooccurrence

x, number of sampling periods with A and B observed associated; yA, number of sampling periods with just A identified;
yB, number of sampling periods with just B identified; yAB, number of sampling periods with A and B identified but not
associated.
From Cairns and Schwager (1987), Whitehead and Dufault (1999), and Christal and Whitehead (2001).

other of these indices may be more appropriate, as discussed by Cairns and
Schwager (1987), Ginsberg and Young (1992), and later in this section.

Here are some assumptions for an ideal data set:

1. Recorded association is a symmetric 1:0 measure of whether
the members of a dyad are or are not associated in a sam-
pling period.

2. Recorded associations are accurate.
3. If one individual is identified in a sampling period, then all its

associates are identified.
4. Members of a dyad are equally likely to be identified

whether they are associated or not associated.

If these assumptions hold, then the “simple ratio” index—simply
the ratio of the number of sampling periods in which two individuals
were recorded as associated divided by the number of sampling periods
in which at least one of them was identified (formula in Table 4.5)—is



Table 4.6 Expected Values of Association Indices under Various Scenarios of Association and
Identification

Association indices:

Identification
rate

Association
rate

“Simple
ratio”

“Half-
weight”

“Twice-
weight” “Squareroot”

“Social
affinity”

“Both
identified”

Individuals identified independentlya

0.7 0.75 0.750 0.796 0.661 0.796 0.796 0.848
0.7 0.25 0.250 0.302 0.178 0.302 0.302 0.382
0.1 0.75 0.750 0.851 0.740 0.851 0.851 0.983
0.1 0.25 0.250 0.388 0.241 0.388 0.388 0.864

Pairs identified independentlyb

0.7 0.75 0.698 0.750 0.600 0.750 0.750 0.811
0.7 0.25 0.204 0.250 0.143 0.250 0.250 0.323
0.1 0.75 0.612 0.750 0.600 0.750 0.750 0.968
0.1 0.25 0.149 0.250 0.143 0.250 0.250 0.769

Identified at half the rate when alonec

0.7 0.75 0.784 0.857 0.750 0.857 0.857 0.945
0.7 0.25 0.288 0.400 0.250 0.400 0.400 0.656
0.1 0.75 0.755 0.857 0.750 0.857 0.857 0.992
0.1 0.25 0.255 0.400 0.250 0.400 0.400 0.930

Fifty percent of associates not identifiedd

0.7 0.75 0.577 0.674 0.508 0.674 0.674 0.811
0.7 0.25 0.192 0.241 0.137 0.241 0.241 0.323
0.1 0.75 0.395 0.561 0.390 0.561 0.561 0.968
0.1 0.25 0.132 0.225 0.127 0.225 0.225 0.769

Individual B identified 25% time presente

0.7 0.75 0.560 0.687 0.523 0.699 0.846 0.887
0.7 0.25 0.124 0.196 0.108 0.223 0.378 0.465
0.1 0.75 0.547 0.703 0.542 0.715 0.856 0.983
0.1 0.25 0.118 0.208 0.116 0.237 0.397 0.868

Individual B dies 25% way through studyf

0.7 0.75 0.227 0.358 0.218 0.429 0.796 0.848
0.7 0.25 0.076 0.126 0.067 0.155 0.302 0.382
0.1 0.75 0.291 0.449 0.289 0.509 0.851 0.983
0.1 0.25 0.097 0.174 0.095 0.209 0.388 0.864

Bold values indicate associate indices that match the true association rate (true association index) most closely. The
identification rate is the probability that an individual is identified in a sampling period.
a Individuals have a fixed probability of being identified primarily (the identification rate); if they are identified, all of
their associates are secondarily identified.
b Groups of associates have a fixed probability of being identified (the identification rate); if a group is identified, all of
its members are identified.
c When associated, individuals have a fixed probability of being identified (the identification rate); when not associated,
this probability is halved.
d Individuals have a fixed probability of being primarily identified (the identification rate); if they are identified, then
50% of their associates are secondarily identified.
e Individual A has a fixed probability of being primarily identified (the identification rate); individual B is primarily
identified at 25% of this rate; if A is primarily identified, then B is secondarily identified with probability 0.25; if B is
primarily identified, then A is secondarily identified with probability 1.0.
f Individuals have a fixed probability of being identified primarily (the identification rate), although this drops to 0.0 for
individual B in the last 75% of the study, as does the association rate between A and B
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an unbiased estimate of the proportion of time they spend together
(Ginsberg & Young 1992; Table 4.6). This is why Ginsberg and Young
(1992) recommend the general use of the “simple ratio” index, and it
has been quite commonly used as a measure of relationship in the years
since their paper was published.

If the assumptions do not hold, then the “simple ratio” index will
probably be biased (Table 4.6), and other indices may be more appro-
priate. In the following subsections, I consider the effects of failures
in each of the foregoing assumptions, with some possible remedies. I
take the assumptions in reverse order, and then conclude with how to
estimate the precision of association indices. Some general recommen-
dations on the choice of an association index are summarized in Box
4.1. Table 4.6 shows the expected biases of different association indices
in different circumstances. The discussion of “special” relationships in
Section 4.9 includes methods of testing whether association indices are
particularly large or small, as well as correcting association indices for
the gregariousness of individuals.

4.5.1: Identification and Association Linked. Quite often, members of a
dyad will be more or less likely to be identified when associated than
when not associated. If association is defined based on group member-
ship, the former will result when large groups are more easily detected
than small ones are, whereas the latter will be a consequence of a situa-
tion in which each group has the same probability of being identified, so
that when the pair is separated into two groups, there is a greater prob-
ability of identifying at least one member (Cairns & Schwager 1987).
Cairns and Schwager (1987) show that the “twice-weight” index is less
biased than the “simple ratio” in the case in which pairs are more likely
to be identified together, and the “half-weight” index (or the “square
root” or “social affinity” index) is better when pairs are more likely to be
identified when apart, and is in fact unbiased if each group has the same
probability of being identified (Table 4.6). This makes sense because, us-
ing the terminology of Table 4.5, in the first case, the measured xAB (the
number of times A and B are identified as being associated) will be too high
and the “twice-weight” index reduces its significance, whereas in the
reverse situation, xAB pwill be too low and the “half-weight” index
inflates its significance. Cairns and Schwager (1987) develop almost un-
biased maximum likelihood indices, which theoretically work very well.
However, this method requires a specific and realistic model of the data
collection methodology, is technically relatively complex, and has rarely
been used in practice.
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4.5.2: All Associates Not Identified. I can envisage two principal situations
in which all the associates of an identified individual are not themselves
identified. With cryptic species, an associate of an identified individual
may be hidden (in foliage, beneath the water, or some other way) or
visible but not seen well enough to be identified. Second, if the sampling
period is relatively long and an individual is only viewed for a small pro-
portion of it, it may have other associates during parts of the sampling
period when it was not being viewed.

In these cases, yA and yB (counts of periods in which only one indi-
vidual is identified) will be biased upward and x (periods with individ-
uals associated) downward, lowering the association index. This means
that, as with the case when individuals are identified more when apart
(see previous discussion), the “half-weight,” “square root,” and “social
affinity” indices generally correct at least somewhat for the bias in the
simple ratio index (Table 4.6). Bias caused by missing associates within
long sampling periods can also be lessened by reducing the length of
the sampling period to less than the usual time for disassociation (see
Section 5.5).

In some situations, individuals may differ considerably in their iden-
tifiability, and then the usual indices will be biased downward because
if A is the much more identifiable individual, then yA (only A identified)
will be much larger than the other elements of the formulas. The “social
affinity” index and especially the “square root” index, which operate
more from the perspective of the least observable individual (Table 4.5),
remove much of this bias (Table 4.6).

4.5.3: Recorded Associations Are Inaccurate. If there are errors in record-
ing associates but they are not biased toward recording proportionally
more or fewer associates than exist, then the “simple ratio” index should
remain approximately unbiased overall, although, generally, low asso-
ciation indices will be increased and high ones reduced. Biases toward
recording more associates will increase association indices and suggest
the use of the “twice-weight” index to reduce the effect. Similarly, the
“half-weight” index can be used to reduce the effects of systematically
underrecording associates (see previous subsection).

4.5.4: Asymmetric or Non-1:0 Association Measures. Association indices for
asymmetric (if A is associated with B, then B is not necessarily associated
with A) or non-1:0 association measures have not been much considered
(Section 3.3). The simplest way to deal with an asymmetric measure
is probably just to use it to produce a new symmetric measure. For
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instance, A and B might be considered associated if either A is B’s
nearest neighbor or B is A’s nearest neighbor, giving a symmetric index
that can be used to produce association indices (as in Table 4.5). Little
important information will be lost in most cases by using this procedure.
The true proportion of time that individuals are associated, which is the
target of most association indices, is naturally symmetric.

With continuous, or other non-1:0, measures of association between
each dyad in each sampling interval, it would seem reasonable to use
the mean of the measure over sampling periods as an association index.
The major problem then is what to do with sampling periods in which
neither, or only one, of the individuals was identified. There are various
possible approaches that can be tailored to the particular situation,
usually involving omitting sampling periods in which neither individual
was identified; see Whitehead and Arnbom (1987) and Perry (1996) for
some possibilities.

4.5.5: The Precision of Association Indices. Like other measures of rela-
tionship, the precision of association indices can be estimated using
bootstrap or jackknife techniques (sampling periods are resampled with
replacement for bootstrap or omitted in turn for jackknife; Section 2.3).
Alternatively, if x is the number of sampling periods in which A and B
were observed associated and α is the calculated association index (as
in Table 4.5), then, using the binomial distribution, we can estimate the
standard error of α from

SE(α) = α

√
1−α

x
(6)

From this, the coefficient of variation (CV = SE/mean) of association
indices can be estimated. These are tabulated for different levels of α

and x in Table 3.14. All of these methods assume that the associations
observed in different sampling periods are independent. The bootstrap,
although it may take some computational time with large data sets,
is probably the best of the available techniques, although in practice,
standard errors from the binomial approximation [Equation (6)] and
bootstrap are generally in close agreement (Whitehead In press-a).

Both the binomial approximation [Equation (6)] and bootstrap
methods of estimating the precision of association indices possess the
drawback that if the estimated association index is either α = 0.0 (i.e.,
x = 0; never seen associated) or α = 1.0 (always seen associated), then
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the estimated standard error is exactly 0.0. However, there may be
considerable uncertainty about an estimate of either zero or complete
association. Better than using the CV in such circumstances is to con-
struct confidence intervals using methods such as Wilson’s (1927) score
for binomial proportions (here given for a 95% confidence interval):

95%CI(α) =
α + z2

0.975/2d ± z0.975

√
[α(1 − α) + z2

0.975/4d]/d

1 + z2
0.975/d

where z0.975 is the 97.5th percentile of the normal distribution and d is
the denominator of the association index (as given in Table 4.5, or x/α,
unless α = 0).

B O X 4.1 Choosing an Association Index: Recommendations

When choosing an association index to measure the relationship
between two individuals, there are several issues the social analyst
should consider.

Do you wish to correct for bias? It is not easy to predict which
index will best correct for bias so that association indices more
accurately reflect the proportion of time that a dyad spends to-
gether. Ginsberg and Young (1992) argue that, because of the
difficulty and arbitrariness of making such corrections, it is best
just to use the “simple ratio” index and discuss how biases might
affect the results observed. Association indices are actually used
rather rarely as estimates of the proportion of time that individ-
uals spend together, although if this is the case, bias is obviously
to be avoided as far as possible. More frequently, association
indices are compared among dyads or within populations (e.g.,
Sections 4.9, 5.2, and 5.3). If the bias is similar for all dyads,
then for within-population comparisons, it is of little concern.
For between-population comparisons, the bias is unlikely to be
similar, so it may be worth choosing an index to reduce bias
if the indices are to be compared with those from a different
population.

Should the index include or exclude demographic effects? In-
dividuals may not be associated because they choose not to be
or because of what I call demographic effects: Two animals can-
not associate during a sampling period if one has not been born,
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has died, or has temporarily or permanently emigrated from the
study area. An individual that emigrated part of the way through
a study will generally have a low value on most standard asso-
ciation indices with those that stayed on, so that demographic
effects are included in the value of the index (see bottom sec-
tion of Table 4.6). This may be what the researcher desires if she
is using the association index to measure the potential for food
competition. In contrast, if she is examining how social relation-
ships correlate with kinship, it makes sense when constructing
association indices to consider only times during which a dyad
could have associated. The “social affinity” index (Table 4.5)
largely excludes demographic effects and is useful in such circum-
stances.

Putting these considerations together, I generally recommend us-
ing the simple “simple ratio” index, except in the following cases:

� When there is a clear source of bias (from individ-
uals being more or less identifiable when together
or apart, not all associates being identified, or some
other cause) AND the researcher wishes to use the
absolute values of the index OR to make interpop-
ulation comparisons. Then it may be useful to use
the “half-weight” index, the “twice-weight” index,
a maximum-likelihood index (Cairns & Schwager
1987), or some other association index.

� When the researcher wishes to EXCLUDE demo-
graphic effects from the index. Then she should use
the “social affinity” index or something similar.

Additional recommendations are to use a short sampling period
to reduce bias and, if uncertain about which is the best association
index, to try two or more association indices and then see if the
conclusions of the analysis are changed.

4.6 Temporal Patterning of Interactions/Associations

Rates of interaction and association indices provide quite straightfor-
ward measures of the content and quality of relationship, but the third
of Hinde’s (1976) features of a relationship—temporal patterning—is
less easily quantified. However, it should not be ignored. A relationship
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between a pair of humans changes over many temporal scales, including
minutes, hours, weeks, months, and years, as do those of nonhumans. de
Waal (1998) vividly describes the very dynamic nature of the relationship
between Yeroen and Luit, two male chimpanzees (Pan troglodytes) at
the Arnhem Zoo, over all these scales. Such a written history of a re-
lationship will only be possible and desirable in very few cases. Rarely
have two animals been watched as closely and carefully as Yeroen and
Luit, and the description of their interactions and associations fills the
large part of a book. We need techniques for abstracting information
on temporal patterning from much more sparse data as well as for sum-
marizing it.

Temporal patterning can be seen from three principal conceptual
perspectives: developmental, cyclical, and fission–fusion. Each has a set
of corresponding statistical methods, which could be characterized as
regressive, spectral, and autoregressive analyses. The last two of these
usually assume “stationary” models (Dunstan 1993), so that the long-
term nature of the relationship does not change, whereas with a devel-
opmental model, long-term change is the essence.

The archetypal developing relationship is between parent and off-
spring. This can be described using a plot of interaction or association
measures with offspring age. An example is shown in Fig. 4.1, which is
averaged over five infant dolphins, whereas in Fig. 4.2 the developing
relationship is between an infant and her older brother. Usually such
data are simply plotted against age or time as in these examples. It is
possible, however, to fit regression and other models to such data (Sokal
& Rohlf 1994, pp. 451–545, 609–681).

Second, a relationship’s quality might vary in some cyclical manner,
in which case association or interaction measures could be analyzed us-
ing spectral analysis [for an introduction, see Dunstan (1993)]. I have
yet to see this done, and am not sure such models will be appropri-
ate except in a very few cases. Behavior does often vary cyclically, but
almost always because there is an underlying periodic force, either en-
vironmental, such as diurnal or seasonal cycles, or physiological, such
as reproductive cycles. In these cases, a spectral analysis may describe
variation in behavior quite well, but relating the measure of behavior
to the forcing factor directly (whether time of day, season, or hormonal
level) will be much more informative. Spectral analysis may perform
usefully in another case: when the underlying model is autoregressive,
so that the value of the variable in one sampling unit affects its value
in subsequent ones, but in such cases, a true autoregressive model is
preferable and, in some ways, simpler.
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F I G U R E 4 . 1 Rates at which mother dolphins (Tursiops spp.) chase their infants as a function of infant
age. (Redrawn from Mann & Smuts 1998).

F I G U R E 4 . 2 Development of a relationship between a captive infant gibbon (Hylobates pileatus) and her
older brother: the percentage of time the infant was carried by her brother as a function of infant age.
(Redrawn from Geissmann & Braendle 1997.)

Autoregressive systems are particularly important in social analy-
sis because they can be used to analyze and model the classic fission–
fusion social systems of many higher vertebrates. Fission–fusion has
been much written about but less often defined. A recent definition of a
fission–fusion society captures the essence: “a society consisting of ca-
sual groups of variable size and composition, which form, break-up and
reform at frequent intervals” (Conradt & Roper 2005). In defining a re-
lationship within a fission–fusion society, the challenge is to characterize
this dynamism.
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One approach is to divide the study into time periods (each contain-
ing several of what I call sampling periods; Section 3.9), calculate rates
of interaction (Section 4.4) or association indices (Section 4.5) for each
period, and then compare them. They can be plotted against time, or
the standard deviation or coefficient of variation of the interaction rates
or association indices among time periods can be used as measures of
temporal variability in a relationship (Whitehead 1997). Standard devi-
ations and coefficients of variation are confounded with measurement
error, however, and depend on the time periods chosen. There are better
alternatives that use an approach based on autocorrelation.

Suppose that we have measured the interaction rates of a dyad over
several time periods. Then, for any time lag τ longer the interval be-
tween the periods (e.g., 1 minute, hour, or day), we can characterize the
change in their interaction rate using the autocorrelation function. The
autocorrelation of lag τ is simply the correlation coefficient between the
interaction rates at time periods {t1, . . . , tT}, and time periods {t1 +
τ , . . . , tT + τ}, where interaction rates I are assumed to be available for
all these time periods. Thus,

ρ(τ ) = r (I(t1, . . . , tr ), I(t1 + τ , . . . , tT + τ ))

A high autocorrelation (ρ close to 1.0) indicates that interaction rates
change little over time scales of τ , a value near 0 indicates little holdover
in rates of interaction over such time periods, and a low autocorrelation
(ρ < 0.0) indicates that a high interaction rate at any time is likely
to be followed by a relatively low one τ units later or vice versa. The
autocorrelation with lag τ is then plotted against τ in a display known as
a correlogram (Dunstan 1993), which indicates time scales of changes
in interactions for the dyad. I do not know of any such analyses for
interaction rates of a dyad, but they are certainly feasible if sufficient
data are available over a range of time scales.

The same approach can be used for 1:0 measures such as associations.
If there are N pairs of sampling periods τ units apart, and if the dyad
is associated during n of the sampling periods in each series, and is
associated in the corresponding periods of both series during m(τ ) pairs
of periods, then the autocorrelation is

ρ(τ ) = m(τ ) − n2/N
n − n2/N

(7)
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This is closely related to a simpler measure that I call the lagged associ-
ation rate (Whitehead 1995):

g(τ ) = m(τ )/n (8)

The lagged association rate is simply the probability of association τ time
units after a previous association. The lagged association rate g(τ ) is 1.0
if an associated pair is always associated τ time units later [equivalent
to ρ(τ ) = 1], and g(τ ) = 0.0 if associations always disband and do
not reform within τ time units [equivalent to ρ(τ ) = −1]; if there is
no relationship between associations τ time units apart, then g(τ ) =
n/N [equivalent to ρ(τ ) = 0]. I call g(τ ) = n/N the null association rate
(Whitehead 1995). I have assumed so far that n, the number of recorded
associations, is the same for both series of time periods. This is not
normally the case, although they should be similar if the relationship
is stationary in the statistical sense (i.e., not changing systematically
with time). For the mathematically estimated lagged association rate to
conform to the informal definition (“rate of association τ time units
after a previous association”), then n should refer to the number of
associations in the earlier series.

The lagged association rate is usually plotted against lag (τ ) for a
range of values of τ . An example is shown in Fig. 4.3, which presents the
lagged and null association rates, for two female sperm whales (Physeter
macrocephalus). These whales seems to have had periods of stronger
association lasting about 1 week, after which their association rate fell
to near their long-term mean (as indicated by the null association rate).

Unless there are considerable data for a dyad, lagged association
rates, or autocorrelation analyses of interaction rates, will have little
validity for characterizing the temporal patterning of a particular re-
lationship. However, these techniques can be generalized to describe
temporal patterns of relationship within an entire population or com-
munity, as well as relationships within and between classes of individual.
They then become powerful. Such generalizations, as well as a number
of extensions and variations of the method of using lagged association
rates (including the use of the jackknife technique to obtain confidence
intervals about lagged association rates, the use of “standardized” rates
in situations when not all interactions or associates are recorded, and
model fitting), are described in Section 5.5. Although sufficient data will
rarely be available, the fitting of mathematical models representing dif-
ferent types of relationship is possible for dyadic association data; the
methods summarized in Section 5.5 for populations, communities, and
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F I G U R E 4 . 3 Lagged and null association rates for a pair of female sperm whales (Physeter macro-
cephalus), ID#3703 and ID#3708, both members of “social unit T,” observed off the Galápagos Islands
in 1998 and 1999. Sampling periods are 1 hour long (83 sampling periods with at least one of the indi-
viduals identified), and association is defined by diving within 5 minutes. Lagged association and null
association rates are plotted using a moving average of 20 recorded associations.

classes can usually be used for dyads without modification (standardized
lagged association rates are an exception).

4.7 Relative Relationships: Multivariate Description of Relationships

The methods described in the previous three sections (interaction rates,
association indices, and lagged rates) are absolute measures of a rela-
tionship: They can be calculated for a dyad and used to describe the
relationship of its members without reference to other members of the
community. We can say that A and B have “an association index of 0.4,
and when they are together, they have affiliative interactions at a rate of
0.3/hour, agonistic interactions at a rate of 0.1/hour, A grooms B 8%
of the time, and B grooms A 5% of the time.” We might add that “the
lagged association rate between A and B falls to the null association rate
after about 3 hours.” Such statements describe the A-B relationship in
absolute terms.

It is also possible and often useful, however, to consider the relative
strength of a relationship with reference to either all of the relationships
among members of the community or just those that involve one or other
of the members of the dyad under concern. Thus, we can describe the
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relationship between A and B as “having an association index greater
than 75% of those among dyads of their community, with an affiliation
rate 150% of the community mean and a rate of agonism at 80% of the
community mean.”

When several relationship measures are available, as in the previous
example, powerful and informative methods are available (Whitehead
1997). For instance, each relationship measure can be represented by an
axis in multivariate space and each dyad by a point. Then the position of
a particular dyad can be assessed with respect to the overall distribution
of points and the axes.

As an example, Fig. 4.4 displays four measures of the relationship
between a pair of chickadees at a feeder who later mated, BJAO and
SORA, relative to the relationship measures of the other dyads in the
data set. From the comparative perspective, this dyad was particularly
likely to be nearest associates but not to arrive at the feeder together or
to be censused together in the same hour. The other two pairs that later
mated were also frequently nearest associates, but, unlike BJAO and
SORA, often arrived together and were censused in the same hour. In
addition, BJAO and SORA showed relatively little asymmetry in their
agonistic interactions (Fig. 4.4).

If relationship measures are correlated, then dimensionality can be
reduced using techniques such as principal components analysis (White-
head 1997; Section 2.6). Other techniques of analyzing several rela-
tionship measures discussed in Section 5.6 may also be useful when
considering a particular relationship.

4.8 Types of Relationships

Although relationships vary enormously, they clearly form categories.
Categorizing relationships is not only a useful step by which an analyst
may summarize social structure, the animals may do this themselves,
treating one set of individuals in one way and another set in another.
Thus, in common, as well as ethological, vocabulary we give names
to certain types of relationship. Some are nouns, such as “bonds” and
“acquaintances,” whereas others are adjectives applied to the word “re-
lationship”: for example, dependent relationships, dominance relation-
ships, asymmetric relationships, and reciprocal relationships. In this
section and those that follow (Sections 4.9 and 4.10), I consider some
of these terms and whether there are ways to define them that allow
statistical or experimental assignation of a particular relationship into
the type using interaction or association data.
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F I G U R E 4 . 4 Four relationship measures for seven chickadees (Parus atricapillus) observed at a feeder:
arrivals at feeder within 1 minute; nearest associates; within same hourly census; and difference in dom-
inance measure. Each symbol represents one dyad: ◦, dyad BJAO–SORA; +, other dyads that later formed
mated pairs; •, nonpaired dyads. (Data from Ficken et al. 1981.) (Illustration copyright Emese Kazár.)

There is an important challenge in discriminating types of relation-
ship. Although it may be possible to derive a statistical hypothesis test
of whether a particular relationship fits into a type—whether a pair is
“bonded,” for instance—the outcome of the test will depend on both
the “strength” of the relationship—what we are interested in—and the
amount of data available (and so the power of the test), as well as chance
and the chosen significance level. The most responsible procedure is to
focus on the strength of the effect—how well the data indicate that the re-
lationship falls into a particular type—and to use the results of a statisti-
cal significance test to indicate our confidence in this assignment (Section
2.1). Using this procedure, we represent each type by a measure of effect
size, a “strength,” “bondedness,” “asymmetry,” “dominance,” or “de-
pendence.” To assign “friends,” “bonds,” asymmetric relationships,”
“dominant relationships,” and “dependent relationships,” we must choose
a cutoff on this scale. Usually this is rather arbitrary, so I tend to focus on
the measure of effect size rather than ascribing particular relationships
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to types, saying “the relationship between A and B has an asymmetry
of 3.2” rather than “A and B have an asymmetric relationship.”

In this section, I consider types of relationship that can be derived
principally from interaction data. In Sections 4.9 and 4.10, the emphasis
is on association data. Some attributes of a relationship can be assessed
using the information for the dyad in isolation. An example of such an
absolute measure is the symmetry of interaction rates. Other attributes
are relative and can only be assessed by comparison with the other re-
lationships present in the community.

4.8.1: High and Low Interaction Rates. The most obvious way to char-
acterize a relationship is through interaction rates. With a matrix of
interaction rates, such as those in Table 4.4, some dyadic rates are al-
ways relatively high or low. Can these be explained just by sampling? By
overall differences in interaction among individuals? Or by interaction
rates specific to a dyad? Thus, we may wish to examine a number of
factors that can affect interaction rates.

If we have asymmetric interaction rates for pairs within a community
IAB(t) estimated for a number of sampling intervals t, we can express
these as an ANOVA-type general linear model (Kirk 1995, pp. 219–
220) with several possible factors: an overall mean interaction rate (µ),
a sampling period effect (νt), an actor effect (αA), a receiver effect (βB), a
dyadic effect (γAB) and the error (ε). Various models represent different
hypotheses about relationships within the community:

IAB(t) = µ + νt + ε: There are no individual or dyadic effects,
all relationships are effectively the same, but their intensity
might vary between sampling periods.

IAB(t) = µ + νt + αA + ε: Individual-specific actor rates are the
principal influence on relationships.

IAB(t) = µ + νt + βB + ε: Individual-specific receiver rates are
the principal influence on relationships.

IAB(t) = µ + νt + αA + βB + ε: Individual-specific actor and
receiver rates are the principal influences on relationships.

IAB(t) = µ + νt + γAB + ε: Dyads have characteristic interaction
rates.

The fit of the data to these models can be assessed using AIC methods,
F tests, or likelihood-ratio tests (Section 2.8; Burnham & Anderson
2002), and the relative importance of the different factors could be in-
dicated by Akaike weights (Burnham & Anderson 2002, pp. 167–169).
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With symmetric interactions, the range of models is narrowed, with
αA becoming an individual (rather than an actor or receiver) effect:

IAB(t) = µ + νt + ε: There are no individual or dyadic effects, all
relationships are effectively the same, but they might vary
between sampling periods.

IAB(t) = µ + νt + αA + αB + ε: Individual-specific interaction
rates are the principal influences on relationships.

IAB(t) = µ + νt + γAB + ε: Dyads have characteristic interaction
rates.

The general linear model assumes that errors (ε) are normally dis-
tributed. Generalized linear models (Dobson 2001) allow nonnormal
error structures and link functions so that the left-hand side of the
model equation is some function of IAB(t), perhaps a log. An impor-
tant type of generalized linear model is the log-linear model (Sokal &
Rohlf 1994, pp. 743–760) for categorical data, an extension of the
“chi-squared test.” This can be used in the case in which all interactions
can be assumed to be independent, and so we do not need to consider
sampling intervals. The model, then, with asymmetric interactions and
dyadic rates is

loge(IAB) = loge(EAB) + µ + γAB + ε

where, in this case, IAB is the number of interactions between A and B
and EAB is the effort spent observing this dyad. The importance of the
different model terms can be assessed in similar ways as before. If effort
is equal for all dyads, then the loge(EAB) term can be omitted, and the
model reverts to a more tractable two-way G test or chi-squared test
(Sokal & Rohlf 1994, pp. 724–743), with the important modification
that diagonal terms (animals interacting with themselves) are omitted.

As an example of this approach, several models are fitted to the
grooming rates of a community of eight chimpanzees measured in two
time periods (Table 4.7). The best-fitting model of those used, indicated
by that with the lowest AIC (in Table 4.8), contains just a groomee
effect: Some animals are groomed more than others (mean rates of being
groomed are 9.5, 18.0, 9.5, 12.5, 43.0, 9.0, 6.5, and 41.5, respectively,
for the eight individuals). The identity of the groomer, dyadic effects, and
differences between the time periods seem to be relatively unimportant
in the grooming rates of this community.
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Table 4.7 Numbers of Grooming Interactions among Eight Adult Chimpanzees (Pan troglodytes)
Studied in both 1976–1977 and 1982–1983

TA Ka Nn Fn Jr Vl Yo Pm
1976–1977

TA − 2 3 2 1 0 1 0
Ka 1 − 3 1 6 1 3 0
Nn 1 3 − 0 3 1 1 16
Fn 3 2 0 − 6 0 1 3
Jr 1 1 1 5 − 0 1 14
Vl 0 0 1 0 0 − 1 1
Yo 1 3 3 0 1 0 − 0
Pm 1 1 0 2 7 0 0 −

1982–1983

TA − 5 0 1 2 1 1 3
Ka 2 − 0 1 10 0 0 4
Nn 1 0 − 1 3 0 0 4
Fn 0 1 1 − 3 2 0 6
Jr 1 7 0 0 − 5 0 7
Vl 0 0 1 1 10 − 1 5
Yo 4 2 0 1 4 5 − 13
Pm 0 2 3 7 5 2 2 −

Rows indicate groomers and columns indicate groomees.
From Sugiyama (1988).

Table 4.8 Models Fit to Grooming Rates among Eight Adult Chimpanzees given in table 4.7

Factors included

Identity of
groomer

Identity of
groomee Dyad

Time
period

Parameters
estimated AIC 	AIC

X 9 266.0 35.7 No support
X 9 230.3 0.0 Best

X X 16 244.6 14.3 No support
X 50 332.4 102.1 No support

X X 10 268.1 37.7 No support
X X 10 232.0 1.7 Some

support
X X X 17 246.3 15.9 No support

X X 51 334.3 103.9 No support

The best model, indicated by the lowest Akaike information criterion (AIC), is indicated in bold. The lowest AIC indicates
the best-fitting model, and 	AIC (difference between AIC and that of best model) indicates the degree of support for the
other models.

This community-wide modeling and testing of interaction rate data
seems to move away from the stated purpose of this section, examining
dyadic relationships, but the models help because they produce expected
interaction rates under the various hypotheses. These can be compared
with real interaction rates, allowing us to decide whether the actual
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interaction rate of a dyad is unexpectedly high or low and thus to assess
the relationship of its members.

4.8.2: Asymmetric and Symmetric Relationships. An asymmetric relation-
ship can be defined as one in which the members of a dyad interact with
one another at “significantly” different rates, so perhaps A grooms B
more than B grooms A. I have placed quotes around “significantly” be-
cause the term can have two meanings: biological significance—impor-
tant variation from the perspective of the individual—or statistical
significance—variation in the observed measure beyond that expected
by chance alone if there was really no difference. These are not the
same. With large sample sizes, statistical significance can be found when
there is no biological significance, and with small sample sizes, a biolog-
ically significant effect may not be detected statistically. In the context of
asymmetry, I mean biological significance. Asymmetry in relationships
can have large biological significance, for instance, skewing mating op-
portunities so that only some individuals within a society breed, and
consequently reducing the effective genetic population size.

To measure asymmetry in a relationship, we need one or more asym-
metric interaction measures (Section 3.2). A simple measure of asym-
metry for one interaction measure is the difference in interaction rates
divided by the sum of the interaction rates, as proposed by Beilharz and
Cox (1967):

aAB = IAB − IBA

IAB + IBA
(9)

where IAB is the interaction rate, or number of interactions, between
actor A and receiver B, and IBA is that between actor B and receiver A.
This measure of asymmetry varies between aAB = 0.0, indicating equal
rates in both directions and a symmetric relationship, and aAB = 1.0 in
which case A is always the actor and B always the receiver, or aAB =
−1.0, in which case B is always the actor and A always the receiver. van
Hooff and Wensing’s (1987) “directional consistency index” is simply
the absolute value of aAB (i.e., always positive).

An alternative in the case in which IAB is a count of asymmetric
interactions is de Vries et al.’s (2006) dyadic dominance index:

DAB = IAB + 0.5
IAB + IBA + 1

(10)
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DAB is a Bayesian estimator of the probability that individual A “wins” an
encounter with individual B, and it potentially ranges from 0.0 to 1.0.

DAB, aAB, or some other index of asymmetry has little value without
some measure of precision. If the interaction rates are calculated using
independent sampling periods (Section 4.4), then bootstrap (resampling
sampling periods with replacement) or jackknife (omitting each sampling
period in turn) are suitable (Section 2.3). An analytical formula for the
approximate SE of aAB can be calculated using the delta method [a stan-
dard method in applied statistics (Tietjen 1986, p. 61)] on Equation (9):

SE (aAB) =
2
√

I2
AB Var (IBA) + I2

BA Var (IAB)

(IAB + IBA)2 (11)

If IAB and IBA are counts of observed interactions that can be con-
sidered independent, then they should be Poisson distributed, and thus
Var(IAB) ≈ IAB, so that Equation (11) reduces to

SE (aAB) = 2
√

IAB IBA (IAB + IBA)

(IAB + IBA)2 (12)

I have tested this formula on simulated data and it works well.
For the dyadic dominance index [Equation (10)], the delta-method

estimate of the SE becomes

SE (DAB) =
√

(IAB + 0.5)2 Var (IBA) + (IBA + 0.5)2 Var (IAB)

(IAB + IBA + 1)2 (13)

If the interactions can be assumed to be independent and Poisson dis-
tributed then, in Equation (13), Var(IAB) can be replaced by IAB and
Var(IBA) by IBA.

If the interaction measures are calculated using independent subjects,
then we can test for statistically significant asymmetry using likelihood-
ratio G or chi-squared tests (Sokal & Rohlf 1994, 686–697), which are
almost equivalent. Assuming, once again, that IAB and IBA are counts of
observed interactions, then we can write

G = 2
[

IAB loge(IAB) + IBA loge (IBA) − (IAB + IBA) loge

(
IAB + IBA

2

)]

(14)

X2 = (IAB − IBA)2

IAB + IBA
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Table 4.9 Frequency of Grooming (Vervaecke et al. 2000) in a Captive Group
of Six Bonobos (Pan paniscus), with Calculated Measures of Asymmetry
[Equation (9)], SEs [Equation (12)] in parentheses, and Results of
Likelihood-Ratio G tests of Null Hypothesis That Grooming Is Symmetric
[Equation (14)]

Dz He Des Ho Lu Ki

Frequency of grooming

Dz 0 24 41 11 1 0
He 22 0 1 19 0 0
Des 48 8 0 40 2 0
Ho 83 63 40 0 9 1
Lu 23 6 15 55 0 6
Ki 89 19 8 9 6 0

Asymmetry aAB (SE)

Dz
He −0.04

(0.07)
Des 0.08

(0.05)
0.78

(0.10)∗

Ho 0.77
(0.03)∗∗

0.54
(0.05)∗∗

0.00
(0.06)

Lu 0.92
(0.04)∗∗

1.00
(0.00)∗∗

0.76
(0.08)∗∗

0.72
(0.04)∗∗

Ki 1.00
(0.00)∗∗

1.00
(0.00)∗∗

1.00
(0.00)∗∗

0.80
(0.09)∗∗

0.00
(0.14)

The groomers (actors) are the rows, and the groomees (receivers) are the columns.
∗ P < 0.05; ∗∗ P < 0.01.

These statistics (G or X2) are compared to the χ2 distribution with one
degree of freedom, and the null hypothesis (no asymmetry) is rejected if
they are unexpectedly high.

As an example of these methods, Table 4.9 shows the measure of
asymmetry aAB and its standard error for the 15 dyadic grooming re-
lationships in a captive population of six bonobos. Also shown are the
results of likelihood-ratio G tests for asymmetry. The grooming relation-
ships in this population vary dramatically. There are pairs who rarely groom
one another (e.g., Des and He), pairs who groom each other frequently
and symmetrically (e.g., Des and Dz), and very asymmetric pairs in
which grooming is almost entirely in one direction (e.g., Dz and Ki).

If several asymmetric interactions are measured, then aAB could be
calculated for each, and they could be combined in various ways. Be-
cause the sign of aAB is in some respects arbitrary, depending on how
the interaction is defined, then it may make sense to use the absolute
values (ignoring minus signs) when combining them [i.e., the directional
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consistency index of van Hooff and Wensing (1987)], for instance, as a
straight arithmetic mean of the aAB’s on the different interaction measures.

4.8.3: Dominance Relationships. Dominance relationships are a major part
of many, perhaps most, vertebrate social structures. Although interac-
tions and associations define dominance, very often whether and how
individuals interact and associate are strongly affected by their rela-
tive dominance. Drews (1993) defined dominance as “an attribute of
the pattern of repeated, agonistic interactions between two individuals,
characterized by a consistent outcome in favor of the same dyad member
and a default yielding response of its opponent rather than escalation.”
Thus, dominance is a particular and strong form of asymmetry in a rela-
tionship. For a dyad, the options are that A is the consistent winner and
so dominates B, B dominates A, or there is no dominance. Furthermore,
we might wish to quantify the dominance.

Dyadic dominance can be measured in several ways (Lehner pp.
1998, 328–330). Experiments can be conducted in which a pair com-
petes for a limited resource introduced by the experimenter and the
individual that wins the resource is noted. This is also sometimes possi-
ble in a nonexperimental field (or captive) setting in which the resources
are those naturally competed for by members of the population. Dom-
inance can also be inferred by examining the asymmetry of aggressive
and/or submissive behavior in dyadic encounters. If, when A and B are
together, A wins contests for limited resources more than B does, or A
displays more aggressive behavior and/or B more submissive behavior,
then we can conclude that A is dominant over B.

In many cases, the determination is trivial: One individual wins the vast
majority of contests and shows greatly more aggressive behavior and much
less submissive behavior. However, dominance can be less complete or less
obvious. In these cases, the techniques used to examine asymmetry in re-
lationships, as discussed in the preceding subsection, are directly relevant
and useful. A measure of asymmetry, such as aAB proposed by Beilharz and
Cox (1967) or, probably better, de Vries et al.’s (2006) dyadic domi-
nance index [Equation (10)] indicates the degree of dominance. Using
the results of statistical tests of asymmetry [such as the G test, Equation
(14)] (Lehner 1998, p. 330) to assign dominance is conceptually invalid
because it confuses biological significance with statistical significance.

Although dominance, if present, is a vital element of any dyadic
relationship, most dominance relationships are sufficiently conspicuous
that methodological development has mostly focused on the next step,
delineating dominance hierarchies (considered in Section 5.4).
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4.8.4: Dependent Relationships. Another type of asymmetric relationship
is dependency, in which one member of a dyad depends on another for
the necessities of life, usually food or protection from predators. De-
pendent relationships are usually between parent and offspring and are
usually sufficiently obvious (did the young mammal suckle or the young
bird beg?) that little collection or processing of data is required. Obser-
vations of interactions that indicate dependency, however, such as suck-
ling or begging, may be used to trace changes in dependency, especially
around the crucial transition from dependency (weaning or fledging).

4.8.5: Reciprocal Relationships. Behavioral ecologists consider that there
are three principal processes leading to cooperation among animals:
mutualism, kinship and reciprocity (Krebs & Davies 1991, p. 265; Sec-
tion 7.3). Although mutualism, in which both individuals benefit, is not
much of a puzzle, and kinship is based in the genes, reciprocity (“I’ll
scratch your back if you scratch mine”) stems from social behavior it-
self (Trivers 1971). Thus, we may seek reciprocity in data on dyadic
social interactions. It is both impracticable and unrealistic, however, to
examine reciprocity in a relationship without reference to other rela-
tionships. One could, theoretically, look at the temporal arrangement
of asymmetric interactions in one relationship to examine reciprocity
(e.g., “Is A more likely to assist B soon after B has helped A?”), but I
know of no such investigations. Partly this is because the general model
of reciprocity is time averaged and partly because the conceptual mod-
els of reciprocity include relativity with respect to other relationships.
Hemelrijk (1990b) considered two dyadic models of relative reciprocity
that she found in the behavioral literature:

1. Actor-reactor model. Individuals give relatively more to
those individuals that give to them relatively more in return
compared to what they give to other individuals: I am Joe’s
best friend, so he can be mine.

2. Actor-receiver model. Individuals give more to those individ-
uals from whom they receive more: I receive most from Joe,
so I will help him most.

These models seem very similar but they differ importantly in both
their practical tractability and what they assume about animals’ mental
processes. Hemelrijk (1990b) shows that the actor-receiver is both easier
to fit to real data and makes fewer assumptions about the cognitive abil-
ities of the animals. It assumes that animals can keep track of what they
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receive from whom, whereas the actor-reactor model assumes knowl-
edge of the nature of all other relationships in the community. Thus,
in what follows, I assume an actor-receiver model of reciprocity as the
alternative to the null hypothesis that the frequency of dyadic asym-
metric interactions with A the actor and B the receiver has no direct
dependence on the frequency when B is the actor and A is the receiver.

Under this and other models, reciprocity is relative, and so we can-
not look at the reciprocity of one relationship in isolation. We can,
however, look at relationships involving one individual. In Table 4.9,
the bonobo Ho grooms the other members of its community at rates
of 83, 63, 40, 9, and 1 per unit time and receives grooming from the
same individuals at rates of 11, 19, 40, 55, and 9, respectively. A test
of actor-receiver reciprocity is that these two series are correlated. The
correlation coefficient is r = −0.37, however, indicating no positive re-
lationship between the rates at which Ho grooms others and the rate she
is groomed by them, and so there is no evidence for actor-receiver reci-
procity in grooming relationships for Ho. We can modify the hypothesis
so that it only considers ranks of grooming or being groomed by oth-
ers, such that Ho grooms more often those individuals from whom she
receives more grooming. In this case, a test statistic is Spearman’s rank
correlation coefficient rs. For the grooming relationships of Ho, rs =
0.0, so again there is no sign of reciprocity.

This approach can be extended to the community level, using vari-
ants of the Mantel test (Hemelrijk 1990b; see Section 2.4). The basic
idea is to compare the actor-receiver interaction matrix with its trans-
pose, the receiver-actor matrix. To transpose a matrix, one flips it about
its diagonal so that the rows become columns and the columns become
rows (Table 4.10). If there is reciprocity, then the high elements of the
actor-receiver matrix should correspond to the high elements of the
receiver-actor matrix, so that when the interaction level within a dyad is
high in one direction, then it is also high in the other. The relationship
between the actor-receiver interaction matrix and its transpose can be
tested using the Mantel test (Hemelrijk 1990b; Section 2.4), with sta-
tistically significant positive values of the matrix correlation coefficient
indicating reciprocity. As Hemelrijk (1990b) explains, however, prop-
erly to test the actor-receiver model of reciprocity, we need to use a
variant of the Mantel test, the Rr test, in which the actor-receiver ma-
trix and its transpose, the receiver-actor matrix, are first ranked within
rows (Table 4.10). Using the bonobo example (Table 4.9), we see that
the row in the actor-receiver matrix that represents Ho grooming others
(83, 63, 40, 9, 1) is transformed into ranks 1, 2, 3, 4, 5, and that in the
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Table 4.10 Actor-Receiver and Receiver-Actor (Transpose) Matrices for Bonobo Grooming
Data (table 4.9), Together with Ranked-within-Rows Matrices

Actor-receiver matrix Receiver-actor matrix (transpose)

0 24 41 11 1 0 0 22 48 83 23 89
22 0 1 19 0 0 24 0 8 63 6 19
48 8 0 40 2 0 41 1 0 40 15 8
83 63 40 0 9 1 11 19 40 0 55 9
23 6 15 55 0 6 1 0 2 9 0 6
89 19 8 9 6 0 0 0 0 1 6 0
↓ ↓

Ranked Ranked

0 2 1 3 4 5 0 5 3 2 4 1
1 0 3 2 4.5 4.5 2 0 4 1 5 3
1 3 0 2 4 5 1 5 0 2 3 4
1 2 3 0 4 5 4 3 2 0 1 5
2 4.5 3 1 0 4.5 4 5 3 1 0 2
1 2 4 3 5 0 4 4 4 2 1 0

The matrix correlation (r = 0.12), and Mantel test (P = 0.033) between the two lower matrices constitute
Hemelrijk’s (1990a) Rr test for reciprocity.

receiver-actor matrix that represents Ho being groomed by others, 11,
19, 40, 55, 9 becomes 4, 3, 2, 1, 5 (Table 4.10). After we rank these ma-
trices within rows, the Rr test follows the Mantel test. For the bonobo
data, the matrix correlation of the Rr test is 0.12 with significance P =
0.33, so there is little support for reciprocity in this community.

Hemelrijk (1990b) discusses a number of variants of this approach to
testing for reciprocity, including the use of an analog of Kendall’s rank
correlation coefficient, the Kr test, instead of the Rr test, and testing for
reciprocity between two different classes of individual (e.g., do males
reciprocate grooming by females?). She also considers testing for abso-
lute reciprocity and qualitative reciprocity. In absolute reciprocity, all
individuals value acts identically, and to test for this, Hemelrijk (1990b)
suggests ranking the entire off-diagonal actor-receiver and receiver-actor
similarity matrices (rather than ranking within rows as with the Rr test),
a procedure known as the R test (Dietz 1983). In qualitative reciprocity,
we are only concerned with whether an interaction did or did not occur,
not its frequency, and so all nonzero interaction rates are replaced by
one in actor-receiver and receiver-actor matrices before the Mantel test.

Another form of reciprocity occurs when the exchange is between
different types of act: “I’ll scratch your back if you bring me food.” Thus,
the actor-receiver and receiver-actor matrices are for different types of
interaction and are not transposes of one another. Hemelrijk (1990b)
calls this “interchange” and shows how the Rr and R tests can be used
in these cases. A problem, particularly with interchange analyses, is that
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the relationship between the two acts might not be causal but due to
one or more other attributes that relate to the two measured behavioral
rates, such as dominance rank. In a second paper, Hemelrijk (1990a)
shows how to use partial correlation methods to tease out such effects,
for instance, testing for a relationship between grooming and support
in agonistic interactions, controlling for differences in dominance rank.

Additional possibilities, considered in Section 7.3, are that reci-
procity is not dyadic. Individual A does not adjust its behavior toward
B based on B’s behavior toward A, but based either on B’s behavior
toward the population in general, “reputation reciprocity” (“I am good
to those who are good to others”) (Mohtashemi & Mui 2003), or the
general population’s behavior to A, “generalized reciprocity (“If I have
received, I will give”) (Pfeiffer et al. 2005).

4.9 “Special” Relationships: Permutation Tests for Preferred/Avoided
Companionships

Are certain relationships especially strong or weak? There are numer-
ous examples in the literature on animal social structures of overly in-
terpreted results: Large association indices are considered bonds, small
ones indicate a pair that avoids one another, and so on. Even with ran-
dom association within a population, there will be one dyad that has
the largest association index and one that has the smallest. Before inter-
preting relationship measures as a bond, avoidance, or anything similar
(Section 4.10), it is highly desirable to compare them with those from
randomly interacting or associating individuals (Bejder et al. 1998), in
other words, to use the data to test the null hypothesis that, given cer-
tain constraints, individuals associate at random against alternatives
that individuals have preferred or avoided companions.

The constraints usually considered concern the data structure. The
number of individuals identified during each sampling period, the num-
ber of identifications of each individual, or similar characteristics of the
data are taken as fixed. At this level of analysis, we are interested in
neither the pattern of field effort nor differences in identifiability be-
tween animals, and we wish to factor them out of any conclusion about
preferred or avoided companionships. We may also wish to control for
the gregariousness (Section 4.3) of the individuals.

The problem can then be set up as a permutation test (Section 2.4).
We consider a statistic that indicates the degree of variation in dyadic
association within a community, such as the standard deviation of asso-
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ciation indices (Section 4.5), and calculate it for the real data. We then
make many random permutations of the data, subject to constraints in
the pattern of identifications of individuals (such as those suggested in
the previous paragraph), calculating the statistic for each. If the real
statistic is greater than 95% of those from the random data, then we
may conclude that there are indications of preferred and/or avoided
companions within the community at P < 0.05. This test is one sided
because it is hard to envisage a scenario that would produce less varied
association indices than expected by chance.

The challenge is with the permutation. It is not trivial to permute
association data randomly subject to constraints such as keeping con-
stant both the number of identifications in each sampling period and
the number of identifications of each individual. Early attempts (e.g.,
Smolker et al. 1992; Whitehead et al. 1982), although successful, used
cumbersome computational techniques that would not necessarily work
on other data sets. A major breakthrough occurred when Bejder et al.
(1998) harnessed a technique that Manly (1995) had developed for the
congruent ecological problem of determining whether pairs of species
cooccur more frequently than would be expected. Manly noted that
whereas producing new independent random data sets subject to the
constraints is challenging, new, nonindependent data sets can be con-
structed easily, and if this is done enough times, the distribution of test
statistics is equivalent to that from independent random permutations.
The procedure is illustrated using a group-by-individual matrix in Table
4.11. The constraints are keeping constant both the number of individ-
uals in each group and the number of groups in which each individual
was observed. This is achieved by choosing two individuals and two
groups randomly so that each individual is identified in just one of the
groups and each group contains just one of the individuals. Then the
four group-individual assignments are flipped (in Table 4.11, the indi-
vidual A in group r is now in group k and vice versa for individual F),
preserving the totals for each group and individual. Thus, we have a
new data set with the constraints preserved. This is only slightly differ-
ent from its precursor, and they are not independent of one another.
The new data set in turn can be flipped into another data set, and so
on. Although permutations produced with flips are not independent be-
cause a flip makes only a small change to the data matrix (Table 4.11),
Manly (1995) showed that this does not matter as long as sufficient
flips are carried out. Typically, such tests use many more than the 1,000
permutations or so that are usual for permutation tests.
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Table 4.11 One Flip in Bejder et al.’s (1998) Process of Permuting a Group–Individual Matrix

Individuals Individuals

Group A B C D E F G Group A B C D E F G

a 1 1 0 0 0 0 0 a 1 1 0 0 0 0 0
b 1 1 1 1 0 0 0 b 1 1 1 1 0 0 0
c 1 1 0 0 0 0 0 c 1 1 0 0 0 0 0
d 1 1 1 1 0 0 0 d 1 1 1 1 0 0 0
e 0 0 1 0 1 1 1 e 0 0 1 0 1 1 1
f 0 0 1 0 0 1 1 f 0 0 1 0 0 1 1
g 0 0 0 0 1 1 1 g 0 0 0 0 1 1 1
h 0 0 0 0 0 1 1 h 0 0 0 0 0 1 1
i 0 1 0 0 0 0 1 ⇒ i 0 1 0 0 0 0 1
j 0 1 0 0 0 1 1 j 0 1 0 0 0 1 1
k 0 1 0 0 0 1 0 k 1 1 0 0 0 0 0
l 1 0 1 0 0 0 0 l 1 0 1 0 0 0 0
m 0 0 1 0 1 0 0 m 0 0 1 0 1 0 0
n 1 0 0 0 1 0 0 n 1 0 0 0 1 0 0
o 1 0 0 0 1 0 0 o 1 0 0 0 1 0 0
p 0 0 1 1 0 0 0 p 0 0 1 1 0 0 0
q 1 0 0 1 0 0 0 q 1 0 0 1 0 0 0
r 1 0 1 1 0 0 0 r 0 0 1 1 0 1 0
s 1 0 1 1 1 0 0 s 1 0 1 1 1 0 0

The matrix on the left, showing which groups contained which individuals, is modified by randomly choosing two
individuals and two groups (with each individual in only one of the groups and each group containing only one of the
individuals) and switching assignments (shaded), preserving row and column totals.
Table adapted from Whitehead (1999a).

An attractive feature of Bejder et al.’s (1998) procedure is that one
can investigate the null hypothesis of no preferred or avoided compan-
ionship for any dyad as well as for the entire community. If the real
association index of a dyad is greater than 95% of the random indices
for that dyad, then we may conclude that the dyad is a preferred com-
panionship at P < 0.05. Unlike the overall test for preferred/avoided
companions in the community, which is one sided, it often makes sense
to use two-sided tests for dyadic association, so we test simultaneously
for preferred companionship (a significantly high value of the associa-
tion index) or avoided companionship (a significantly low value of the
association index).

Dyadic P values must be used carefully. It typically takes many more
permutations to stabilize dyadic P values than the P value for the test
against random companionship for the entire community (Whitehead
et al. 2005). In addition, with N individuals in the community, there
will be N(N – 1)/2 dyadic P values and so a large number of false-
positive test results if the P values for all dyads are examined in even
a moderate-sized community. This can be addressed using Bonferroni
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or other multiple-comparisons procedures (Bejder et al. 1998), but then
power is considerably reduced. I do not think any dyadic P values should
be considered if the overall, community-wide test for preferred/avoided
companionships is not statistically significant or nearly statistically sig-
nificant, or if fewer than 5% of the dyadic tests are significant (assum-
ing a nominal significance level of 0.05). A final warning with regard
to dyadic P values is that they should not be used as measures of the
strength of a relationship and input into further analyses (Whitehead et
al. 2005). Doing so confuses statistical significance with effect size. A
dyadic P value depends on the strength of the relationship but also on
sample sizes and data structure (the data for some dyads may not be
amenable to much permutation, giving the test little power). Methods of
quantifying the strength of a relationship are considered in Section 4.10.

There are several variants on the Bejder et al. (1998) method. These
allow testing for preferred/avoided companionship in particular but im-
portant situations (Whitehead 1999a; Whitehead et al. 2005). In the
next subsections, I consider these different variants, the circumstances
in which they can be used, the assumptions and practical issues involved,
such as the choice of a test statistic, and, finally, some notes on technical
issues. Table 4.12 summarizes the Bejder et al. (1998) test, its variants,
and this advice.

These procedures have uses beyond the testing of hypotheses about
preferred or avoided companionship. They produce “random” data sets
and “expected” association indices that can be most useful when con-
structing models of social structure (Sections 4.10, 5.3, and 5.7).

4.9.1: Permuting a Group-by-Individual Matrix. In the original form of the
test proposed by Bejder et al. (1998), the data can be represented by a
group-by-individual matrix, as in Table 2.2, and these are permuted as
indicated in Table 4.11. A variety of test statistics is possible. Bejder et al.
(1998), following Manly (1995), suggested using the sum of squares of
the differences between the observed and expected half-weight associa-
tion indices, in which the expected association index between any pair
is the mean over all the random data sets. Alternative test statistics with
the advantage that they have a more intuitive meaning in terms of so-
cial structure are the standard deviation of the association indices and
the standard deviation, mean, and median of the nonzero association
indices. After trying a number of these and other statistics, I found that
it usually matters little which is chosen and that the coefficient of vari-
ation of association indices is perhaps most intuitive and least affected
by data structure (Whitehead et al. 2005; Table 4.12).
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Table 4.12 Summary of Permutation Tests for Preferred/Avoided Companionships: Bejder et al.
(1998) Test and Variants

Permuting:

Group-by-individual
matrix

Group-by-individual
matrix within
sampling periods

Matrices of
association indices

Used for Groups defined;
closed population

Groups defined; open
population

Associations defined;
open or closed
population

Suggested test
statistics, short term

— Prop(AI-); mean(AI) —

Suggested test
statistics, long term

CV(AI); SD(AI);
SD(AI-);
mean(AI-);
median(AI-)

CV(AI); SD(AI);
SD(AI-)

SD(AI)

Controls for movement
into and out of the
study area

No Yes Yes

Controls for differences
in gregariousness

No No Yes

Important
considerations

Independence of
groups

Closed population
Number of flips

Independence of
groups

Length of sampling
periods

Number of flips

Independence of
sampling periods

Length of sampling
periods

Number of flips

AI, association index; AI-, nonzero association indices; Prop, proportion.

Important assumptions of this permutation method are that groups
are independent and that the population is closed. If groups are not
independent, so that records of groups close together in time are more
likely to contain the same individuals than groups further apart, then
the permutation test is more likely to reject the null hypothesis of no
preferred/avoided companions than the nominal level of the test if there
is no effect.

A cause for rejection of the null hypothesis could be differences in
gregariousness among individuals. Suppose that some “asocial” indi-
viduals are found only in small groups, whereas other, “hypersocial”
individuals generally seek out large groups. The former will tend to have
low association indices and the latter high ones, so that these differences
will increase the test statistic, indicating variability in association indices
above that expected if all individuals had the same affinity for groups of a
particular size. The group-by-individual permutations remove any char-
acteristic individual gregariousness, lowering the expected test statistic.
Thus, differences in gregariousness can lead to rejection of the null hypo-
thesis of no preferred/avoided companions, even though the only pref-
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erence or avoidance is indirect: Because of their preference for large
groups, hypersocial individuals will be more likely than expected to be
associated with each other and less likely than expected to be associated
with asocial individuals.

If the population is not closed, so that some individuals are not pre-
sent during part of the study period because of birth, death, or emigra-
tion, then they will not be available for sampling during these periods.
Dyads with similar patterns of presence in the study area will tend to
have high association indices, and those who were rarely in the study
area together will have low association indices, even if there is no pre-
ferred/avoided companionship. Thus, once again, statistically significant
results of the permutation test may occur even when there is no prefer-
ence or avoidance, in this case because of demographic effects.

4.9.2: Permuting a Group-by-Individual Matrix within Sampling Periods. A
way around the problem of demographic effects is to make the flips
of the group-by-individual matrix only within sampling periods within
which there is likely to have been little birth, death, immigration, or
emigration (Whitehead 1999a; Table 4.13). Thus, the analysis is con-
strained for the number of times each individual was identified in each
sampling period rather than the number of times it was identified overall.

With this method, a suitable length of sampling period must be
chosen. It should be short enough so that animals rarely join or leave the
population within sampling periods, but long enough so that there are
several groups within most sampling periods, allowing identifications to
be flipped in a number of ways. If sampling periods contain few data,
then few flips are possible and the test loses power.

In this situation, we can test for preferred/avoided companions both
between (long-term) and within (short-term) sampling periods. Simula-
tions suggested that the proportion of nonzero association indices and
the mean of all association indices are suitable test statistics when testing
for preference/avoidance within sampling periods, with low real values
of the statistics indicating preferred or avoided companions within pe-
riods (Whitehead et al. 2005). If there are preferred/avoided compan-
ionships within sampling periods in the real data, then there will be
proportionally more pairs of individuals that are repeatedly grouped
within sampling periods than expected. Thus, because the number of
individuals in each group is constrained, proportionally fewer dyads are
grouped during sampling periods and overall, decreasing the propor-
tion of nonzero association indices and the mean association index. To
test for preferred/avoided companionships between sampling periods,
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Table 4.13 One Flip in the Variant of Bejder et al.’s (1998) Process of Permuting a
Group-Individual Matrix in Which Demographic Effects Are Controlled

Individuals Individuals

Group A B C D E F G Group A B C D E F G

a 1 1 0 0 0 0 0 a 1 1 0 0 0 0 0
b 1 1 1 1 0 0 0 b 1 1 1 1 0 0 0
c 1 1 0 0 0 0 0 c 1 1 0 0 0 0 0
d 1 1 1 1 0 0 0 d 1 1 1 1 0 0 0
---------------------------------------------------- ----------------------------------------------------
e 0 0 1 0 1 1 1 e 0 0 1 0 1 1 1
f 0 0 1 0 0 1 1 f 0 0 1 0 0 1 1
g 0 0 0 0 1 1 1 g 0 0 0 0 1 1 1
h 0 0 0 0 0 1 1 h 0 0 0 0 0 1 1
---------------------------------------------------- ----------------------------------------------------
i 0 1 0 0 0 0 1 ⇒ i 0 1 0 0 0 0 1
j 0 1 0 0 0 1 1 j 0 1 0 0 0 1 1
k 0 1 0 0 0 1 0 k 0 1 0 0 0 1 0
---------------------------------------------------- ----------------------------------------------------
l 1 0 1 0 0 0 0 l 1 0 1 0 0 0 0
m 0 0 1 0 1 0 0 m 0 0 1 0 1 0 0
n 1 0 0 0 1 0 0 n 1 0 0 0 1 0 0
o 1 0 0 0 1 0 0 o 1 0 0 0 1 0 0
---------------------------------------------------- ----------------------------------------------------
p 0 0 1 1 0 0 0 p 0 0 1 1 0 0 0
q 1 0 0 1 0 0 0 q 0 0 0 1 1 0 0
r 1 0 1 1 0 0 0 r 1 0 1 1 0 0 0
s 1 0 1 1 1 0 0 s 1 0 1 1 1 0 0
t 0 0 1 0 1 0 0 t 1 0 1 0 0 0 0

The data were collected in five sampling periods, divided by horizontal dashed lines. At this step, the fifth sampling period
was randomly chosen, and within it, the matrix was modified by randomly choosing two individuals and two groups and
switching assignments (shaded), preserving row and column totals within the sampling periods.
Method and table from Whitehead (1999a).

the coefficient of variation of the association indices seems a suitable
test statistic, with high values indicating rejection of the null hypothesis
of random association (Whitehead et al. 2005). The standard deviation
of the association indices and the standard deviation of the nonzero
association indices are also potential statistics for long-term, between-
period preference/avoidance, but if there is a short-term effect, this will
lower the mean association index and so its standard error, lessening
the ability to detect long-term effects.

This version of the test, like the original, does not control for differ-
ences in individual gregariousness. The null hypothesis may be rejected
in cases in which individuals have distinctive preferences for groups of
particular sizes, even though they do not possess preferences for associ-
ating with particular individuals.
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Table 4.14 One Flip in the Process of Permuting a Symmetric 1:0 Similarity Matrix for a
Randomly Chosen Sampling Period

Individuals Individuals

A B C D E F G H A B C D E F G H

A – 1 0 0 0 1 0 1 A – 1 0 1 0 1 0 0
B 1 – 1 1 0 0 1 1 B 1 – 1 1 0 0 1 1
C 0 1 – 1 1 1 1 0 C 0 1 – 0 1 1 1 1
D 0 1 1 – 0 1 0 0 ⇒ D 1 1 0 – 0 1 0 0
E 0 0 1 0 – 0 1 1 E 0 0 1 0 – 0 1 1
F 1 0 1 1 0 – 0 0 F 1 0 1 1 0 – 0 0
G 0 1 1 0 1 0 – 1 G 0 1 1 0 1 0 – 1
H 1 1 0 0 1 0 1 – H 0 1 1 0 1 0 1 –

The symmetric 1:0 matrix on the left is modified by randomly choosing two pairs of individuals (D and H; A and C) so
that each individual is associated with only one member of the other pair. The associations between these pairs
(shaded) are switched, preserving row (and column) totals.
Method and table from Whitehead (1999a).

4.9.3: Permuting Matrices of Association Indices. Bejder et al.’s (1998) orig-
inal test and the variant that deals with demography by flipping within
sampling periods assume that association is defined using groups, but
this need not be the case; association can be defined using criteria such as
spatial proximity or behavioral interactions, which do not lead to tran-
sitive groups (Section 3.3). These data can be represented by a series of
matrices of associations, one for each sampling period (as in Table 2.3).
To test for preferred/avoided companionship in such situations, flips are
made within 1:0 symmetric matrices of associations for randomly cho-
sen sampling periods, with two pairs of individuals being chosen such
that each member of one pair is associated with just one member of the
other pair. The associations are then switched (Table 4.14).

A suitable test statistic when permuting matrices of association in-
dices is the standard deviation of the association indices. This tests for
preferred/avoided companionship between sampling periods; there is
no test for short-term, within-sampling-period association in this case.
Sampling period length must be chosen carefully. Associations should
be independent between sampling periods, and sampling periods should
be sufficiently long so that they contain enough data so that a range of
possible flips can be made. Very short sampling periods will produce ma-
trices of association indices mostly containing zeros (few associations),
and long sampling periods may produce matrices mostly containing ones
(most pairs associated). In either case, there are few possible flips and
little power to the test.
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This procedure has the advantage over its predecessors in that it does
control for differences in individual gregariousness. In each sampling
period, the number of associates of each individual is held constant.
This feature, as well as its applicability to any definition of association
and control over demographic effects, makes this version of the test, in
which the associations themselves are permuted, especially attractive. Its
drawbacks are that it generally needs rather more data than the group-
by-individual permutations and it only addresses long-term, between-
sampling-period association preferences (Table 4.12).

4.9.4: Some Technical Issues with the Bejder et al. and Related Tests. In ad-
dition to the choice of association index (Section 4.5), sampling period
length, and test statistic (covered previously), there are several other
technical issues that need to be considered when carrying out the Bejder
et al. (1998) test or its variants. Because the flips are not independent,
many more are needed to provide stable P values than in normal per-
mutation tests. How many more? Unfortunately, there is no guide to
how many flips are needed. Instead, it is recommended that one start
with perhaps 10,000, note the P value(s), try 20,000, see whether the
P value(s) are similar, and, if they are not, continue adding more flips
until they do stabilize. Then, once P values seem to have stabilized at a
certain number of flips, repeat with that number of flips to check their
stability. Note that many more permutations (flips) are usually required
to stabilize dyadic P values than the overall P value for the community
(Whitehead et al. 2005).

Each flip only changes the data, and so the test statistic, a little
(Table 4.11). Hence, it is partially redundant to calculate the test statistic
after every flip as proposed by Manly (1995). We have found it most
efficient computationally to calculate test statistics after about every 100
flips (Whitehead et al. 2005), and this is what SOCPROG allows one
to do.

All of these tests can also be carried out between classes of individual,
so we may ask whether there are differences among the relationships
between individual males and individual females. These are done by sim-
ple restrictions to the Bejder et al. (1998) test or its variants (Whitehead
et al. 2005).

4.10 Quantifying the Strength of a Relationship and the Bond

Reiterating a point made at the start of the previous section, dyadic
significance tests should not be used to measure the strength of a rela-
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tionship. Instead, the association index, as a measure of the proportion
of time a dyad spends in association (Section 4.5), is an indicator of the
strength of a relationship, whereas the P value of the dyadic permutation
test (Section 4.9) is an indicator of confidence that the association is
unusually large or small (Table 4.15).

Examples of this approach are shown in the matrices of association
indices for disk-winged bats (Table 4.16) (Vonhof et al. 2004) and ma-
ture male northern bottlenose whales (Table 4.17) (Gowans et al. 2001).
In the former case, the associations are often very obvious. Some pairs of
bats always roosted together and some never did so. The null hypothesis
of random association was clearly rejected by the permutation test for
the whole matrix and for each of the high-association dyads. These bats
seem to have strong friends, and the analysis identifies them.

The results of the analysis for the mature male bottlenose whales are
less clear cut (Table 4.17). Although the overall test for preferred/avoided
associations is statistically significant and there are some quite large and
quite small association indices, only three are statistically significant at P <

0.05, and the actual coefficient of variation of the association indices
(CV = 1.64) is only a little larger than the expected value (CV = 1.52).
The bottlenose whales seem to have preferred companions, but the anal-
ysis does not shed much light on how strong they are or which they are.

Sometimes, we may wish to divide relationships into those that are
strong (perhaps “friends”) and those that are weak (“acquaintances”),
perhaps for input to a binary network analysis (Section 5.3). As I have
emphasized, the dyadic P value is not a good basis for doing this (and see
Table 4.17). Any other measure will be somewhat arbitrary. One basis
my colleagues and I have used (Durrell et al. 2004; Gero et al. 2005) is
to define “friends” as those dyads with association indices greater than
twice the average index, so that these are pairs of individuals that are
associated at least twice as much as the expected value of a dyad chosen
randomly from the community (Table 4.15).

Association indices themselves, or dichotomous measures based on
them such as greater or less than twice the mean association index, do
not consider gregariousness (Section 4.3). Thus, a very gregarious animal
is likely to have many friends, even though there may not be any mutual
attraction between them (Pepper et al. 1999). Pepper et al. (1999) sug-
gest using the ratio of the observed to the expected dyadic association
index as a measure of friendship corrected for gregariousness, in which
the expected dyadic association index might be calculated using the Be-
jder et al. (1998) permutation method or one of its variants (Section 4.9).
These “ratio indices,” which correct for gregariousness, could then be



Ta
bl

e
4.

15
M

ea
su

re
s

Th
at

In
di

ca
te

th
e

St
re

ng
th

of
a

Re
la

ti
on

sh
ip

M
ea

su
re

W
ha

t
is

it
?

Af
fe

ct
ed

by
Di

ch
ot

om
ou

s
ve

rs
io

n
Re

co
m

m
en

da
ti

on

As
so

ci
at

io
n

in
de

x
Es

ti
m

at
e

of
pr

op
or

ti
on

of
ti

m
e

as
so

ci
at

ed
Sa

m
pl

in
g

m
et

ho
d,

de
m

og
ra

ph
y,

gr
eg

ar
io

us
ne

ss
Gr

ea
te

r
th

an
tw

ic
e

th
e

m
ea

n
co

m
m

un
it

y-
w

id
e

as
so

ci
at

io
n

in
de

x

St
ra

ig
ht

fo
rw

ar
d;

in
de

x
sh

ou
ld

be
ch

os
en

to
re

du
ce

bi
as

es
fr

om
sa

m
pl

in
g

m
et

ho
ds

an
d

de
m

og
ra

ph
y

Ob
se

rv
ed

as
so

ci
at

io
n

in
de

x÷
ex

pe
ct

ed
as

so
ci

at
io

n
in

de
x

Pr
op

or
ti

on
al

ly
,

ho
w

m
uc

h
m

or
e

or
le

ss
th

e
dy

ad
is

as
so

ci
at

ed
th

an
ex

pe
ct

ed
,

gi
ve

n
it

s
gr

eg
ar

io
us

ne
ss

>
2.

0
Go

od
;

co
m

pe
ns

at
es

fo
r

gr
eg

ar
io

us
ne

ss
,

sa
m

pl
in

g
m

et
ho

ds
,

an
d

de
m

og
ra

ph
y

(i
f

ap
pr

op
ri

at
e

m
et

ho
d

is
us

ed
to

ca
lc

ul
at

e
ex

pe
ct

ed
va

lu
es

);
co

m
pl

ex
to

ca
lc

ul
at

e
Si

gn
ifi

ca
nc

e
of

as
so

ci
at

io
n

in
de

x
fr

om
pe

rm
ut

at
io

n
te

st
Pr

ob
ab

ili
ty

of
ob

ta
in

in
g

a
m

or
e

ex
tr

em
e

as
so

ci
at

io
n

in
de

x
th

an
fo

r
ra

nd
om

as
so

ci
at

io
n,

gi
ve

n
sa

m
pl

in
g

sc
he

m
e,

gr
eg

ar
io

us
ne

ss
,

an
d

de
m

og
ra

ph
y

(i
f

ap
pr

op
ri

at
e

m
et

ho
d

is
us

ed
)

Sa
m

pl
e

si
ze

,
da

ta
st

ru
ct

ur
e

P
<

0.
05

No
t

re
co

m
m

en
de

d
as

a
m

ea
su

re
of

th
e

st
re

ng
th

of
a

re
la

ti
on

sh
ip

Di
ch

ot
om

ou
s

ve
rs

io
ns

(e
.g

.,
“f

ri
en

ds
”

an
d

“a
cq

ua
in

ta
nc

es
”)

ar
e

su
gg

es
te

d.



D E S C R I B I N G R E L A T I O N S H I P S 133

Table 4.16 Association Indices among 10 Disk-Winged Bats (Thyroptera tricolor) Based on at Least
6 Days of Identification

al102
al115 0.00
al138 0.00 0.00
al140 0.00 0.00 1.00∗∗

al23 0.00 0.00 1.00∗∗ 1.00
al81 0.00 0.00 0.00 0.00 0.00
al86 0.00 0.00 0.57∗∗ 0.57∗∗ 0.57 0.00
al87 0.00 0.00 0.71∗∗ 0.71∗∗ 0.71∗∗ 0.00 0.83∗∗

al88 1.00∗∗ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

al102 al115 al138 al140 al23 al81 al86 al87 al88 y22

See Vonhof et al. (2004). The mean simple ratio association index, using sampling periods of days and groups defined by
roosts, is 0.19. Dyads with association indices at least twice the mean are shown in bold. Double asterisks indicate dyadic
P < 0.01 for the original Bejder et al. (1998) test with 1,000 permutations and 100 flips per permutation, for preferred
association (no dyadic P values were 0.01 < P < 0.05, and there were no significantly low association indices at P <

0.05). The overall significance for preferred/avoided associations in this matrix, using the coefficient of variation (CV) of
association indices as a test statistic, is P = 0.001 (CV = 1.82 for real data, compared with CV = 1.67 for mean of random
permutations).

used to produce dichotomous measures. For instance, “friends” could
be defined as dyads who spend twice at least as much time associated as
would be expected, given their gregariousness (Table 4.15).

The association index of a dyad is affected by factors other than
their “friendship” and the gregariousness of the two individuals. These
include their identifiabilities, the sampling methods, and demographic
effects (who could be associated with whom, given patterns of presence
in the study area?). Methods of reducing biases due to these effects
are discussed in Section 4.5. Pepper et al’s (1999) ratio of observed to
expected index is particularly useful because if a suitable permutation
method is used to calculate the expected indices, this can go a long way
toward correcting for sampling and demographic effects as well as for
gregariousness (Table 4.15). For instance, the Bejder et al. (1998) per-
mutation method corrects for sampling effort by permuting groups, or
permutes associations within sampling periods so that demographic
effects are corrected for, whereas if associations are permuted, then
gregariousness is also controlled (Table 4.12).

4.10.1: Bonds. Bonds are frequently considered crucial elements of so-
cial structures (e.g., Wrangham 1980) and social behavior (e.g., Zahavi
1977), yet the term “bond” is rarely defined. It seems to connote more
than mutual attraction, and there is usually an implied element of tem-
poral stability: Bonded animals interact preferentially over long time
periods. Usually, however, even more than this is implied.
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Smuts (1985) noticed that male–female dyads of olive baboons (Pa-
pio cynocephalus) that had relatively high grooming rates also were
likely to be found close together. Thus, for any female, she defined “af-
filiates” as those males who were ranked first or second for both groom-
ing rates and proximity scores. Following this, R. Wrangham (personal
communication; see also Wrangham et al. 1992), suggests that bonded
animals are those that have strong relationships on two or more “in-
dependent” interaction or association measures. Here, I do not mean
statistical independence, which would be indicated by an effectively zero
correlation between the dyadic values of the association or interaction
measures; the presence of bonded dyads, which have high values on
both of the measures, would likely lead to a positive correlation. In-
stead, the measures should be behaviorally independent. Thus, the rates
at which animals make courtship displays and the rates at which they
copulate would not be independent, whereas the rates at which they
make courtship displays and the rates at which they groom might be
considered independent.

An example, for female capuchin monkeys, is shown in Fig. 4.5.
Among the six females in the community, the two dyads with the high-
est grooming scores were also those that most often formed coalitions
against other females. Thus, by Wrangham’s criterion, we might con-
sider these two dyads to have bonds.

I have suggested the use of multiple strong association or interaction
measures as a way objectively and quantitatively to identify bonds, but
am not sure that it is the ideal approach and am fairly certain it will not
be in some situations. I look forward to developments.

4.11 Relationships between Classes

As Hinde (1976) notes, considerable insight into social structures comes
from abstractions of relationships among pairs of individuals to classes
of individual (Fig. 1.4). We can generalize from the rates of interaction,
or association indices, between pairs of females to get a mean and stan-
dard deviation for female–female relationships and can compare these
with male–female relationships, and so on. Sometimes, the classes used
in these abstractions arise from the social analysis itself (Section 3.6).
For instance, if permanent, or fairly permanent, social units are identi-
fied (Section 5.7), then the interactions and associations among social
units can be studied.

Calculating interaction rates within and between classes might seem
straightforward: How many interactions were observed between males
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F I G U R E 4 . 5 Grooming rate and proportion of sampling periods in which a dyad formed a coalition
against other females for dyads among six female capuchin monkeys (Cebus capucinus). The two dyads
with high rates of both grooming and coalition formation (unfilled circles) might be considered bonded.
(Redrawn from Perry 1996.)

and males, between females and females, and between males and fe-
males? If there are different numbers of individuals in each class, how-
ever, which there usually will be, and the effort spent observing indi-
viduals varies, which it often will, then corrections are needed, as will
cases in which the population composition changes during the course
of the study. Altmann and Altmann (1977) discuss how to make these
corrections. Table 4.18 gives an example showing how rates of ago-
nistic interaction change with time and between sex classes for ground
squirrels.

Interclass associations are examined in two principal ways. We can
ask: What are the mean number of members of class B associated with
a member of class A at any time, or what is the mean association index
between members of class A and B? The latter is easily calculated from
dyadic association indices. The former, which I call interclass gregar-
iousness, is an extension of the concept of typical group size (Section
4.3; also see later discussion). It may also be useful to consider the mean
proportion of associates belonging to a particular class, which is the ra-
tio of interclass or intraclass gregariousness to typical group size minus
one (Underwood 1981).
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Table 4.18 Interaction Rates among Richardson’s Ground Squirrels (Spermophilus
richardsonii) by Time Period in 1975 and Sex Class

Two-week time period Interaction rates per overlapping pair per survey
F-F F-M M-M

1 Late pregnancy 0.025 0.009 0.052
2 Lactation 0.024 0.014 0.021
3 Lactation 0.036 0.028 0.026
4 Postweaning 0.023 0.011 0.016
5 Postweaning 0.022 0.002 0
6 Postweaning 0.005 0 0
7 Prehibernation 0 0 —
8 Prehibernation 0 — —

Rates are only calculated for dyads with overlapping home ranges.
From Michener (1980).

Table 4.19 Mean Simple Ratio Association Indices (SD) for Dyads among Age-Sex
Classes of 63 Bottlenose Whales (Hyperoodon ampullatus) Identified on at Least
5 Days

Female Subadult male Mature male

Female 0.011 (0.006)
Subadult male 0.007 (0.011) 0.047 (0.059)
Mature male 0.008 (0.010) 0.013 (0.012) 0.037 (0.024)

Simple ratio association index, using sampling periods of days and association defined by identification
within 15 min. A Mantel test of the null hypothesis that intraclass and interclass association indices had
the same mean was rejected (p < 0.0001).

Whereas interclass gregariousness and intraclass gregariousness gen-
erally differ (because of different numbers of individuals in each class),
realistic null hypotheses are that interaction rates or association indices
do not differ between and within classes. Such hypotheses can be tested
using the Mantel test (Section 2.4). A matrix correlation between the
matrix of dyadic interaction rates, or association indices (e.g., Table
2.5), and a 1:0 matrix indicating whether members of a dyad are from
the same or different class is calculated. The classes of the individuals
are randomly permuted and the matrix correlation recalculated for each
random permutation, allowing the statistical significance of the real ma-
trix correlation to be assessed (Section 2.4; Mantel 1967; Schnell et al.
1985).

Table 4.19 gives an example of using association indices to examine
interclass associations for bottlenose whale sex classes. Associations
within sex classes are substantially higher, especially for males.

Most of the other methods described in this chapter for analyzing
dyadic relationships can be abstracted to classes. For instance, interclass
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F I G U R E 4 . 6 Standardized lagged association rates for Ecuadorian sperm whales (Physeter macro-
cephalus) over time periods from 1 day to several years for pairs of mature males (�), females (� ), and
female–male dyads (oo). For the male–female and female–female data, curves are fitted based on ex-
ponential decay in the probability that individuals continue associating (Section 5.5). (Redrawn from
Whitehead 1997.)

asymmetry, dominance, and reciprocity can be calculated from the means
of the appropriate dyadic values (Section 4.8). We can also produce
lagged interaction/association rates (Section 4.6) within and between
classes. Figure 4.6 plots standardized lagged association rates within and
between sex classes of sperm whale. The classes have very different types
of relationship: Females show permanent (within the several-year scale
of the study) associations with one another as well as more temporary
acquaintances lasting about 1 week. Male–female associations last about
1 week and then break down, whereas no individual male was observed
to associate with another individual male over more than 1 day.

It may also be instructive to plot inter- and intraclass relationship
measures in multidimensional space. Gero et al. (2005) calculated as-
sociation indices between bottlenose dolphins separately for different
behavioral states. Figure 4.7 plots associations when foraging or feed-
ing against those when socializing; these relationships are indexed by
age/sex class. Gero et al. (2005) distinguished four general types of rela-
tionship: affiliates who were associated strongly (i.e., dyads who spent
most of their time together in both behavioral states), acquaintances
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F I G U R E 4 . 7 Relationships between dyads of bottlenose dolphins (Tursiops spp.) in Shark Bay, Western
Australia (data from Gero et al. 2005), classified by sex, and indicating four general types of relationship,
as indicated by association index when socializing (x axis) and foraging (y axis). FF, between females; MC,
mother-calf; MF, male-female; MM, between males. (Illustration copyright Emese Kazár.)

who were weakly associated in both states, social associates who spent
much more time together when socializing, and the unusual relationship
of foraging associates who spent much more time together when forag-
ing. Mother–calf dyads were affiliates, as were some relationships be-
tween two adult males. The only two foraging associate relationships,
and most social associates, were between adult males. Dyads including
females were mostly of the acquaintance type. Plotting the distribution
of interclass and intraclass associations as in Fig 4.7 gives a much clearer
insight into the distribution of relationships than simply presenting mean
interclass and intraclass values.
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In long-term studies, analytical power and insight may be achieved
through analyses that compare the relationships of identified individu-
als before and after they change class. Such transitions could include
weaning or sexual maturity.

4.11.1: Animals Assigned to Class but Not Individually Identified. It is pos-
sible to make some inferences about relationships between classes in
situations in which individuals are not individually identified but can
be assigned to classes. Interaction rates between classes can be calcu-
lated, although some care is needed with the denominator (Altmann &
Altmann 1977).

If group composition is recorded whenever groups are encountered,
then, assuming that groups are equally likely to be encountered what-
ever their composition, interclass and intraclass gregariousness and the
mean proportion of companions in a particular class can be calculated
using the equations of Underwood (1981). Thus, if nX(k) is the num-
ber of members of class X in observed group k, the mean number of
companions of class Y with a member of class X (XY gregariousness)
is

GXY =
∑

k
nX (k) · nY (k)
∑

k
nX (k)

For intraclass gregariousness (the mean number of companions of the
same class), we just subtract one from the intraclass typical group size:

GXX =
∑

k
nX (k)2

∑

k
nX (k)

− 1

Overall gregariousness for a class (the mean total number of compan-
ions) is calculated similarly:

GX =
∑

k
nX (k) ·

(
∑

Y
nY (k) − 1

)

∑

k
nX (k)

=
∑

Y

GXY

The estimated proportion of companions of members of class X that
are of class Y is then GXY/GX. Pepper et al.’s (1999) “pairwise affinity”
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index, which completely controls for the gregariousness of both classes,
is

[
∑

k
nX (k) · nY (k)

]

·
[
∑

k

∑

Z
nZ (k) ·

(
∑

Z
nZ (k) − 1

)]

[
∑

k
nX (k) ·

(
∑

Z
nZ (k) − 1

)]

·
[
∑

k
nY (k) ·

(
∑

Z
nZ (k) − 1

)]

Similarly, the intraclass pairwise affinity index is

[
∑

k
nX (k) · (nX (k) − 1)

]

·
[
∑

k

∑

Z
nZ (k) ·

(
∑

Z
nZ (k) − 1

)]

[
∑

k
nX (k) ·

(
∑

Z
nZ (k) − 1

)]2

As an example of some of these measures, for Underwood’s (1981)
eland (Taurotragus oryx oryx), in January, the prime mating season,
mean interclass and intraclass gregariousness between classes were esti-
mated as follows:

Adult males with average adult female: 2.5
Subadult males with average adult female: 0.7
Adult males with average adult male: 1.5
Subadult males with average adult male: 0.5
Adult females with average adult male: 4.6

Gregariousness among other pairs of classes is not given. The propor-
tions of companions of an adult male are 23% other adult males, 8%
subadult males, and 70% adult females; and the overall gregariousness
is 6.6 companions for each adult male.

Finally, if we know, or have estimates of, the number of individuals
in each class in the community NX, then we can determine the mean
interclass and intraclass association indices (estimates of the proportion
of time spent together) from αXY = GXY/NY. Thus, because there were
about 60 female eland in the population studied by Underwood, an
estimate of the mean association index between individual adult males
and individual females is 4.6/60 = 0.077.

These are examples of the rather few useful measures of social struc-
ture that can be calculated without identifying individuals.



C H A P T E R F O U R 142

B O X 4.2 Describing Relationships: Recommendations

This chapter summarizes a wide range of techniques for describ-
ing relationships. There seem to be many options. For some
species, however, collecting interaction or association data is suf-
ficiently challenging that we can go little beyond group-based
association indices (Section 4.5) as a relationship measure. Even
here, however, there are choices, including the length of sampling
period (Section 3.9) and type of association index (Section 4.5).
With more easily viewed species, the options increase dramati-
cally. My overall advice in choosing relationship measures has
two components:

1. Think from the individual animal’s perspective.
What appear to be the important time scales of social
interactions and relationships, and in what ways are
an individual’s social relationships manifested? The
heuristic answers to these questions can be used to
select appropriate relationship measures.

2. Produce as many relationship measures as both seem
appropriate for the animals and are technically fea-
sible without compromising precision. It does not
matter whether they are correlated or even redun-
dant so that one relationship measure contains ba-
sically the same information as another. The fact
that they are correlated is interesting in its own right,
and such redundancy can be removed from further
analyses using multivariate techniques (Section 5.6).



5 Describing and Modeling Social Structure

The third stage of Hinde’s (1976) conceptual framework
for the study of social structure is to use the content, qua-
lity, and patterning of relationships to describe social
structure. The description is sometimes qualitative, for
example, “Core social units of related females are accom-
panied by unrelated males.” The addition of quantitative
measures, however, adds much, for example, “Core social
units of 2 to 6 females with a mean relatedness of 0.13 are
accompanied by 1 to 2 males, who are unrelated either
to each other or the females they are accompanying. Each
male stays with a unit for a mean of 14 months.” Visual
displays of social structure usually enhance and inform
such descriptions. Qualitative, quantitative, and visual
techniques of analyzing social structure can be purely de-
scriptive, letting the data speak for themselves, or may use
one or more models. We can often use the collected data
to estimate parameters of the model that might be behav-
iorally informative (such as mean group size). It is also
helpful to assess the validity of the model using goodness-
of-fit and other measures, as well as to compare fits of
different models.

The most appropriate method of describing a social
structure depends heavily on its attributes and on the data
available. For instance, social structures involving many
thousands of animals cannot be represented usefully by
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dendrograms, but these are often highly appropriate for smaller popula-
tions. In this chapter, I suggest appropriate methods for displaying and
modeling social structures of different types, whether highly structured
or loose and labile, and whether containing 6 individuals or 6,000.

The chapter begins by considering simple quantitative (Section 5.1)
and visual (Section 5.2) descriptors of social structure that use one-
dimensional relationship measures. More complex, and usually informa-
tive, techniques often use models, and I introduce network analysis (Sec-
tion 5.3), dominance hierarchies (Section 5.4), temporal analysis using
lagged association rates (Section 5.5), and multivariate analyses of two
or more relationship measures (Section 5.6). The final section considers
the assignment of individuals to communities, social units, or other so-
cial entities (Section 5.7). All these methods are principally within the
ethological, descriptive perspective. Chapter 6 and especially Chapter 7
focus more directly on the “why?” questions of a behavioral ecologist.

B O X 5.1 Omitting Individuals from Analyses of Social Structure

In many studies, especially field studies, information on the webs
of relationships among individual animals—their social niches—
varies considerably. Some individuals, perhaps those whose ranges
are closest to the base of the field workers or who have lived
through a large part of a long-term study, will have been ob-
served many times and will often have been recorded interacting
or associating. The data used to describe their relationships are
good, and will form a strong basis for describing or modeling
the social structure of the population. In contrast, other indi-
viduals, perhaps more peripheral in range or short lived, may
have been rarely observed. Knowledge of their relationships will
be sketchy. When describing and modeling social structures, if
we include these poor-data individuals, perhaps it will bias our
perspective or model of the society. This is an important issue.

For a few of the methods described in this chapter, the data
from poorly studied individuals have no disproportionate effect
on the outcome of the analysis: lagged association rates (Sec-
tion 5.5) and Bayesian and temporal methods of unit delineation
(Section 5.7). In the former case, the estimated lagged association
rate is an integration of the available data, with that from poorly
studied animals having appropriately small impact. The Bayesian
method will indicate great uncertainty in the unit delineation of
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poorly studied animals, and, usually, much less uncertainty for
well-studied animals, whereas temporal unit delineation will not
assign individuals to units if there are insufficient data.

All the other methods considered in this chapter are based on
matrices of one or more relationship measures: interaction rates
or association indices. For some of the dominance indices or
ranking methods, individuals with relatively little data available
are given less weight, but they are given an index or rank (Section
5.4). However, for other methods—univariate attributes of social
structure (Section 5.1), ordinations (Section 5.2), cluster analyses
(Section 5.2), network analyses (Section 5.3), and multivariate
methods (Section 5.6)—the interaction rates and association in-
dices go into the analysis without any indication of their accuracy,
thus potentially allowing poorly studied individuals to unduly in-
fluence the output, perhaps giving a misleading or biased model
of social structure.

So, often, the social analyst should consider omitting some
poorly studied individuals from an analysis (while perhaps re-
taining them for other analyses, such as lagged association rates).
But which to omit? If the data are divided into sampling peri-
ods (Section 3.9), then the number of sampling periods observed
makes a suitable measure of the data available for an individual.
So we might make ordinations for individuals identified in at least
5, 10, or 20 sampling periods. But which cutoff should we use?

The precision of interaction rates [Equation (5)] and that of
association indices [Equation (6)] both decrease inversely as the
square root of the number of observations. They also depend, how-
ever, on the rates of association or interaction: With rare associa-
tions or interactions, considerable data are needed for their pattern
to emerge. Thus, I cannot give a recommendation such as “For
analysis Y, just use individuals identified more than x times.”

One can say, however, that interaction rates or association
indices based on four or fewer samples will always be inaccurate.
Therefore, a minimum cutoff of using only individuals identified
in five sampling periods for any analysis that does not account
for variation in data quality seems sensible. I suggest also trying
sequentially larger cutoffs of perhaps 10 and 20 sampling periods
to see whether results change substantially as the lower-quality
data are excluded.
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5.1 Attributes of Social Structure

In this section, I list and discuss a number of measurable or estimable
attributes that help the social analyst describe the social structure of a
population. Many follow from Wilson’s (1975) 10 “qualities of social-
ity,” which are reproduced and annotated in Section 1.8 (see also Table
1.2). This list is distinct from the “attributes of the data set” of Section
3.10, although the nature of the data set determines which attributes of
social structure can be measured or estimated and how well.

Modularity. A study population may be socially homogeneous
or well divided. Modularity (described in Section 5.7) in-
dicates how well a population can be delineated into com-
munities or social units. Newman (2004) suggests that a
modularity greater than about 0.3 (on a scale in which 0.0
indicates random association and 1.0 indicates no associ-
ations between closed units or communities) indicates im-
portant divisions. The modularity of a population may vary,
however, with the definition of association (Section 3.3), the
choice of sampling period (Section 3.9), the type of associa-
tion index (Section 4.5), and how expected associations are
calculated (Section 5.7).

Community size. As used in this book, a community is a set of
individuals that is largely behaviorally self-contained and
within which most individuals interact with most others.
From an individual’s perspective, community size is im-
portant because it approximates the number of other indi-
viduals that it may interact with (Section 1.8) and so might
need to distinguish (Dunbar 1998). A study population may
contain one or more communities, or the study may focus
on just part of a community. In some situations, such as
the loose societies of pelagic fish or migratory ungulates or
territorial species in which individuals principally interact
with their neighbors, there may be no community. Meth-
ods of deciding whether a population contains one or more
communities and of allocating individuals to communities
are described in Section 5.7, and techniques of estimating
community size when not all individuals are identified are
summarized in Appendix 9.5. If there are communities, the
following attributes should usually be calculated within
each.
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Rates of interaction and association (typical group size). We
can estimate the mean rates, over dyads and individuals,
of interaction per time unit (Section 4.4) or association
per sampling period (mean association index; Section 4.5)
for all available measures. If association is defined using
groups, then the mean over individuals of the sum of as-
sociation indices translates into gregariousness or typical
group sizes minus one (Section 4.3). High interaction rates
indicate active societies, and high association rates indi-
cate large numbers of animals associated or grouped at any
time.

Social differentiation. A useful attribute of the social structure
of a community is its social differentiation—how much vari-
ation there is in dyadic probability of association. I suggest
that this variation be expressed by the coefficient of variation
of the true association indices, in other words the standard
deviation, over dyads, of the true proportion of time spent
associated, divided by the mean proportion of time spent as-
sociated. Appendix 9.4 gives two methods of estimating this
from real data [Equation (23) gives the maximum likelihood
formula; Equation (24) gives a simpler but less accurate and
more biased estimate]. The precision of this measure is prob-
ably best assessed using the bootstrap procedure in which
sampling periods are resampled with replacement (Section
2.3). There are a number of reasons why true association
indices may vary in addition to preferred/avoided compan-
ionships, and these will increase social differentiation. These
include demographic effects (death, birth, and migration
causing some pairs to be present together more than others)
and associations within the community being structured by
factors that could include dominance, dependency, kinship,
range use, age or gender class, gregariousness, or permanent
social units.

Asymmetry. If asymmetric interaction measures are available,
then the mean value of some measure of asymmetry [such
as van Hooff and Wensing’s (1987) directional consistency
index, the absolute value of aAB; Section 4.8] can be calcu-
lated.

Linearity of dominance. Measures of dyadic dominance such
as interaction rates that give the winners of fights, access to
competed resources, or dominant/submissive behavior can



C H A P T E R F I V E 148

be used to calculate Landau’s (1951) index of dominance
linearity h or de Vries’ (1995) h′ (Section 5.4). High values
indicate communities with a linear structure, such as a dom-
inance hierarchy, and low values indicate a more egalitarian
society (Section 5.4).

Stability of associations. If association measures are available,
then the temporal stability of associations can be indicated
by measures such as the mean half-life of associations, which
can be estimated from the time lag at which the lagged as-
sociation rate equals 0.5 (Whitehead 1997; Section 5.5).
This is a sensible approach with fairly simple societies, but
when things become more complex, such as brief associa-
tions among permanent units, then more complex measures
or displays are needed to capture the temporal nature of
relationships.

Network measures. Means and standard deviations of some
network analysis measures of dyads or individuals (Section
5.3), such as strength, reach, clustering coefficient, and affin-
ity, can be informative, as can measures calculated for an
entire community, such as diameter.

Class structure. All of the aforementioned attributes can be
separated into intraclass and interclass measures, such as
the numbers of individuals of each class in the community,
interaction and association rates within and between classes,
and social differentiation within and between classes.

Table 5.1 illustrates the use of some of these attributes for northern
bottlenose whales off Nova Scotia.

5.2 Single-Measure Displays of Social Structure

A relationship measure, such as an interaction rate or an association
index, is dyadic. Potentially, it gives a value to each dyad in the popula-
tion. These can be listed as a matrix of numbers, such as those in Tables
2.5, 4.4, 4.16, and 4.17. The human eye and brain are not particularly
good at assimilating large arrays of numbers, so that the essence of the
social structures displayed in these matrices is obscure, even with just
seven individuals as in Table 2.5, and if the table is very large, say with
100 individuals, and so 4,950 elements (assuming a symmetric measure
and matrix; 9,900 if not), the pattern is virtually incomprehensible as
it stands. Thus, we seek to display the matrix in a graphical form that
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is more appropriate for human cognitive abilities. In this section, I dis-
cuss methods of displaying matrices of association indices or interaction
measures. I illustrate the values and drawbacks of each method by trying
to use them on four populations with very different attributes:

1. Observations of seven black-capped chickadees at a feeder.
The data (Ficken et al. 1981) are of half-weight association
indices indicating presence at a feeder together. Like other
matrices of association indices, the data matrix is symmetric.

2. Rates of grooming among six female capuchin monkeys
[shown in Table 4.4, from Perry (1996)]. This is an asym-
metric interaction rate matrix.

3. Observations of 55 disk-winged bats roosting together in
leaves [part of the data are shown in Table 4.16 (Vonhof
et al. 2004)], using simple ratio association indices and
restricting consideration to individuals identified on 5 or
more days.

4. Associations among 353 sperm whales identified off the
Galápagos Islands between 1985 and 2002, with association
defined as observed within 1 hour of each other, sampling
periods of days (only individuals identified on 3 or more days
are included), and a half-weight index (Whitehead 2003).

The social structure of each of the four populations was displayed
(when possible) using a histogram of association indices or interaction
rates, a sociogram, a principal coordinates analysis, nonmetric multidi-
mensional scaling and a hierarchical cluster analysis (Figs. 5.1–5.4). I
discuss each of these methods using the displays of the four populations
as a guide, concluding the section with a mention of other methods and
types of display.

5.2.1: Histograms of Association Indices or Interaction Rates. A simple dis-
play of a matrix of association indices or interaction rates is a histogram
showing their distribution. This is informative with almost any relation-
ship measure or study population. Overlaying histograms for relation-
ships between different pairs of classes (as in Figs 5.1, 5.3, and 5.4)
usually helps. For instance, associations among chickadees are generally
strongest between sexes, but this is not the case for the bats, who seem
to have no preference to associate with the same or a different sex, or in
sperm whales, in which all the strong associations are among female–
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F I G U R E 5 . 1 Ordinations of half-weight association indices of observations of chickadees (Parus atri-
capillus) at a feeder. Distribution of association indices, sociogram, principal coordinates analysis (first
two coordinates explaining 42.8% of the variance in the matrix of association indices), nonmetric mul-
tidimensional scaling (squared stress criterion; stress = 0.0018), and average-linkage cluster analysis
(cophenetic correlation coefficient = 0.77). (Data from Ficken et al. 1981.).

female dyads. If there are many individuals in the population (as in Figs
5.3 and 5.4), it is often clearer to log the y-axis because otherwise the all-
important high-association dyads are swamped by the many dyads with
near-zero associations. Although histograms do summarize the distri-
bution of relationships within a study population, they do not describe
their structure. Quite different social structures can produce similar-
looking histograms. For instance, there might be a bimodal distribution



F I G U R E 5 . 2 Ordinations of rates of grooming among six female capuchin monkeys (Cebus capucinus)
(table 4.4). Distribution of grooming rates, sociogram (arrow points from groomer to groomee), principal
coordinates analysis (first two coordinates explaining 73.0% of the variance in the matrix of grooming
rates), nonmetric multidimensional scaling (squared stress criterion; stress = 0.00048), and average-
linkage cluster analysis (cophenetic correlation coefficient = 0.94). For the last three displays, the associ-
ation between any pair of monkeys is the average of their unidirectional grooming rates. (Data from Perry
1996.) (Illustration copyright Emese Kazár.)



F I G U R E 5 . 3 Ordinations of simple-ratio association indices of observations of 55 disk-winged bats
(Thyroptera tricolor) roosting together in leaves (Vonhof et al. 2004), just using individuals identified
on 5 or more days. Distribution of association indices, sociogram, principal coordinates analysis (first
two coordinates explaining 21.7 percent of the variance in the matrix of association indices), nonmetric
multidimensional scaling (squared stress criterion; stress = 0.0018), and average-linkage cluster analysis
(cophenetic correlation coefficient = 0.99). (Illustration copyright Emese Kazár.)
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F I G U R E 5 . 4 Ordinations of simple-ratio association indices of 353 sperm whales (Physeter macro-
cephalus) identified off the Galápagos Islands between 1985 and 2002 (Whitehead 2003), with association
defined as observed within 1 hour of each other, sampling periods of days (only individuals identified on
3 or more days are included), and a half-weight index. Distribution of association indices, sociogram,
principal coordinates analysis (first two coordinates explaining 7.7 percent of the variance in the matrix
of associations), and average-linkage cluster analysis (cophenetic correlation coefficient = 0.92).

of association indices when permanent social units within which indi-
viduals are strongly associated interact casually with other units. A sim-
ilar bimodal pattern (a few high indices and many low ones) might be
produced by a range-based society in which animals whose core ranges
overlap associate strongly, whereas more spatially separated individuals
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F I G U R E 5 . 5 Sociogram of simple-ratio association indices of observations of 55 disk-winged bats roost-
ing together in leaves (Vonhof et al. 2004), just using individuals identified on 5 or more days, drawn
using NetDraw (black nodes are males; gray nodes are females), omitting bats unconnected by associa-
tion indices less than 0.1. Clusters of bats are indicated by letters, and their locations among the three
subunits of the study area (1, 2, 4) are indicated in parentheses.

have low association rates. To resolve such differences, we need other
displays.

In some contexts (Section 6.2) it may be useful to rescale the y-axis
of the histogram so that it indicates the mean number of associates of
an individual rather than the number of associations in the population.
This is done in Fig. 6.1.

5.2.2: Sociogram. The sociogram is a simple display of a relationship mea-
sure in which individuals are arranged as points (or nodes) in a plane,
and lines showing links (or edges) are drawn between them indicating
the strength of the relationship. In mathematical terminology, a socio-
gram is a “valued graph.” In its implementation in SOCPROG, the in-
dividuals are equally spaced around the circumference of a circle, and
the thickness of the linking lines indicates the size of the association
index or interaction rate. It helps to place strongly related individuals
close together (and SOCPROG tries to do this). Pairs of individuals with
relationship measures less than some cutoff are usually not linked. If an
asymmetric measure (often an interaction rate) is being examined, two
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directional links can be drawn between each dyad (e.g., Fig. 5.2). It is
now a “directed valued graph.”

Sociograms display almost all the data in matrices of association in-
dices or interaction rates. For small populations (less than about 25 indi-
viduals), sociograms are an excellent, model-free way to display the data
clearly and completely. They have been frequently used in the analysis of
vertebrate social systems (Whitehead & Dufault 1999). As population
sizes get larger, however, they become cluttered (e.g., Fig. 5.3) and then
an overwhelming mess (e.g., Fig. 5.4). The usefulness of sociograms for
displaying larger populations can be improved by thoughtful arrange-
ment of the points representing the individuals. The circular style used by
SOCPROG (and shown in Figs. 5.1–5.4) works well for small popula-
tions, but separating clusters of points representing highly associating or
interacting sets of individuals—basically communities—or other designs
can be much better for larger ones. Nonmetric multidimensional scaling
(see later in this section) and network analysis programs (Section 5.3)
may provide useful arrangements of the points. For instance, a more
informative sociogram of the bat data of Fig. 5.3 is shown in Fig. 5.5
(using the same cutoff for indicating links, 0.10). It was drawn using
NetDraw (Section 2.9) with initial positions of points from multidimen-
sional scaling, which were then moved interactively to improve clarity.
The bats form tight mixed-sex clusters, each well connected internally
but poorly linked.

Network analysis (Section 5.3) goes on mathematically to analyze
the properties of a sociogram.

5.2.3: Principal Coordinates Analysis. Principal coordinates analysis (some-
times called classic multidimensional scaling), a type of ordination, is
described briefly in Section 2.6 (see also Digby & Kempton 1987, pp.
83–93; Manly 1994, pp. 190–198; Legendre & Legendre 1998, 424–
444). The principal output is a display of points (sometimes called a
“scores plot”), each representing an individual, in which the distances
between the points is inversely related to their association index or in-
teraction rate.

For association indices, the usually assumed ideal relationship is that
the distance between two points is proportional to the square root of
one minus the association index between the two individuals. Therefore,
if two individuals have an association index of 0.0, their points should
be plotted, say, 1 unit apart. If the index is 0.01, then they should be
0.9 units apart; if the index is 0.25, they should be 0.5 units apart; if it
is 0.81, then they should be 0.1 units apart; and if the index is 1.0, they
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should be plotted on top of one another. With enough dimensions, such
an arrangement of the points may be possible—or it may not. Suppose
that the association index between A and B is 0.01, that between A
and C is 0.16, and that between B and C is 0.81. Then the distances
between the points are as follows: A–B 0.9, A–C 0.6, B–C 0.1. No such
arrangement of points is possible in any number of real dimensions;
the “triangle inequality” is violated. This is indicated mathematically by
negative eigenvalues of the principal coordinates analysis. A few small
negative eigenvalues and a few violations of the triangle inequality are
probably not too serious, but having many large, negative eigenvalues
indicates that principal coordinates analysis is not producing a useful
ordination (Manly 1994, p. 194). There are ways to try to remove
negative eigenvalues (Legendre & Legendre 1998, pp. 432–438). In such
cases, however, I suggest trying nonmetric multidimensional scaling (see
later discussion).

Principal coordinates analysis operates on symmetric matrices—there
is only one distance between each pair of points, so only one value
can be represented for each dyad. With asymmetric relationship mea-
sures, such as interaction rates, we can simply take the mean of the two
associations, although potentially useful information is obviously lost.
There is a related technique, the principal components biplot, which can
be used for asymmetric matrices (Digby & Kempton 1987, pp. 151–
154). Here, each individual is plotted twice, once as interactant and
once as interactee. Interpretation of such plots, however, is not particu-
larly straightforward, and I have never seen them used for social anal-
ysis.

With interaction rates, which, unlike association indices, are un-
bounded by an upper 1.0, the square root of one minus is not a suit-
able transformation as it stands. Instead, we can divide all the rates by
the maximum rate before transforming using the square root of one
minus.

Principal coordinates works mathematically by calculating the eigen-
vectors and eigenvalues of the dissimilarity or transformed similarity
matrix. The eigenvectors—there are as many of them, n, as individuals—
give the positions of the points representing individuals in n-dimensional
space (Digby & Kempton 1987, pp. 83–84). The dimensions are ar-
ranged, as in principal components analysis (Section 2.6), so that as
much as possible of the variance is explained by the distribution of the
points in the first dimension, as much as possible of the remaining vari-
ance by the distribution of the points in the second dimension, and so on.
This means that if we are interested in, for example, a three-dimensional
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representation, we take the first three eigenvectors or dimensions. The
actual values of the points in the new coordinates (the axes of the plot)
have no direct meaning and are usually of little interest. It is the arrange-
ment of the points that should be informative.

With each eigenvector comes an eigenvalue, proportional to the
amount of variance explained by the arrangement of the points in that
dimension, and so the effectiveness of the principal coordinates display
in any number of dimensions can be assessed. If perhaps 40% to 80% of
the variance is explained by a principal coordinates analysis in a given
number of dimensions, then some of the attributes of the social structure
are being captured, but some are also being missed. With greater than
about 80% of the variance explained, the display might be considered
a very useful representation of the matrix of association indices.

Unfortunately, this is not often the case with social data, unless there
are only a few individuals (Figs. 5.1 and 5.2) or a very large number of
dimensions are being considered, and in this case the display is unwieldy.
However, it is often worth trying a principal coordinates analysis. If it
works, explaining a large proportion of the variance in a few dimensions
with no large, negative eigenvalues, the analyst has a clear, uniquely de-
termined display of the relationships in the community as described by
the matrix of association indices. With large numbers (> ∼50) of individ-
uals, principal coordinates analyses are possible computationally (unlike
multidimensional scaling) and can produce an informative display, in
contrast to sociograms and cluster analyses.

An example of a fairly informative three-dimensional principal co-
ordinates plot with a moderate number (27) of individuals is shown in
Fig. 5.6 (with the three dimensions explaining 43% of the variance).
The bats (a subset of those used in Figs. 5.3 and 5.5) appear to form
five quite distinct co-roosting clusters. Some of the bats are plotted on
top of one another, limiting the value of this display.

If principal coordinates analysis does not produce a useful display,
for instance, because the first three dimensions explain less than perhaps
about 40% of the variance, or there are large, negative eigenvalues, the
next step may be to try multidimensional scaling, particularly the non-
metric version. Multidimensional scaling has a similar output to princi-
pal coordinates analysis but produces it by a different method in which
some of the conditions are relaxed.

5.2.4: Metric and Nonmetric Multidimensional Scaling. Morgan et al. (1976)
advocate the use of multidimensional scaling for the analysis of non-
human societies. Multidimensional scaling provides a display similar
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F I G U R E 5 . 6 Three-dimensional ordination of simple-ratio association indices of observations of 27 disk-
winged bats from two “locations” roosting together in leaves (Vonhof et al. 2004), just using individuals
identified on 5 or more days, using principal coordinates analysis (first three coordinates explaining
43.3% of the variance in the matrix of association indices). Each circle representing an individual is
linked to the z = 0 plane by a “spike.” Males are represented by black circles, females by open circles.

to that of principal coordinates: a set of points in n-dimensional space
arranged so that more associated dyads are plotted closer. Rather than
employing the elegant but rather inflexible properties of eigenvectors to
produce a plot, however, multidimensional scaling uses computational
power. The analyst specifies, a priori, the number of dimensions re-
quired. A starting configuration in these dimensions is also given. This
could be from principal coordinates or a random scattering of the indi-
viduals. Multidimensional scaling iteratively tries to find a “better” ordi-
nation by moving the points around. One of the useful attributes of mul-
tidimensional scaling is that “better” can be defined in a range of ways,
giving different properties to the ordination. The “metric stress” crite-
rion is similar to principal coordinates (Manly 1994, p. 171): The aim is
to produce a display so that the distance between points is proportional
to the transformed (usually using a “square root of one minus” trans-
formation) association index. However, there are differences: Principal
coordinates produces an optimal arrangement in all possible numbers
of dimensions in one step; metric multidimensional scaling aims at a
given number of dimensions and works iteratively, and so the optimal
arrangement may not be achieved. This means that metric multidimen-
sional scaling has few perceived advantages over principal coordinates
analysis, and it is not often used.
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In nonmetric multidimensional scaling (Legendre & Legendre 1998,
pp. 444–450), the relationship between the matrix of association indices
and distances between the points is relaxed to a monotonic one: More
closely associated pairs of individuals are plotted more closely together
than are less closely associated ones. “Nonmetric stress” represents the
degree of failure in this criterion of a particular representation (Manly
1994, pp. 170–171; Legendre & Legendre 1998, p. 447), and nonmetric
multidimensional scaling minimizes it. This is a much less onerous crite-
rion than linear proportionality (used in principal coordinates analysis
and metric multidimensional scaling), and so nonmetric multidimen-
sional scaling can usually produce an acceptable ordination in fewer
dimensions than principal coordinates or metric scaling. This is usually
accomplished by separating the highly associated individuals more than
in principal coordinates analysis.

Generally, nonmetric multidimensional scaling highlights the differ-
ences among the most associated individuals, and principal coordinates
that among the least associated. This may be seen as an advantage
of nonmetric multidimensional scaling, but the method has disadvan-
tages. The final ordinations are the results of iteration and may not be
globally optimal, depending on starting conditions. Thus, it is strongly
recommended that any multidimensional scaling be repeated with dif-
ferent starting positions. If several different displays are produced, those
with similarly low stress should have similar arrangements of the points,
apart from an arbitrary left–right and up–down ambiguity. Multidimen-
sional scaling with more than 25 or so individuals can take appreciable
computer time, and may be impossible with more than 50 or a few
hundred individuals (e.g., Fig. 5.4), depending on the computer pack-
age.

How can one tell whether a multidimensional scaling plot is “good”?
An informal but useful criterion is that a stress of less than about 0.1
is an indicator of a useful ordination (Morgan et al. 1976). How many
dimensions should be used? Two is easiest on the human eye–brain
system, but using a three-dimensional plot (e.g., Fig. 5.6) or a series of
plots of different dimensions against one another, we can assimilate in-
formation from more dimensions. Multidimensional scaling can be tried
in a range of numbers of dimensions (e.g., two to five) and the optimal
stress noted for each. These stress values should decrease as the number
of dimensions increases. An analyst might choose the number of dimen-
sions at which the stress first falls below 0.1, or that at which it starts to
level out, so that additional dimensions make little improvement to the
stress.
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Table 5.2 Summary of Characteristics of Principal Coordinates Analysis and Nonmetric
Multidimensional Scaling for Ordinating Matrices of Association Indices or Interaction Rates

Principal coordinates
analysis

Nonmetric
multidimensional scaling

Scaling Metric Nonmetric
Matrix Positive semidefinite (no

negative eigenvalues)
–

Solution Unique Iterative, not necessarily optimal
Computing Quick Slow
Maximum individuals Virtually unlimited ∼50–200
Dimensions needed for “useful”

ordination
More Less

Choose number of dimensions Afterward Before
Measure of fit Proportion of variance

accounted for
Stress

Table 5.2 summarizes the relative advantages and disadvantages of
nonmetric multidimensional scaling relative to principal coordinates
analysis.

5.2.5: Cluster Analysis. Another method commonly used to display matri-
ces of association indices or interaction rates is hierarchical cluster anal-
ysis (Section 2.7), in which the individuals and their relationships are
displayed in a dendrogram, or tree diagram (Morgan et al. 1976; Fig. 2.4).

Dendrograms are attractive ways of displaying matrices of associ-
ation indices or interaction rates, but unlike sociograms or the ordi-
nations of principal coordinates analysis or multidimensional scaling,
they impose a model. The model is that the society is structured in a
hierarchical fashion, in the sense that clusters of individuals formed at
the high-association end of the dendrogram, the groups of twigs, act as
subjects in the social structure at the low-association end, the branches.
Here, “hierarchical” is not used in the sense of a dominance hierarchy.
A dendrogram may be a reasonable representation of a society, for in-
stance, in the second-order alliances of first-order alliances formed by
male bottlenose dolphins (Tursiops spp.) (Connor et al. 1992), or it may
not, for instance, in the loose network of associations formed by female
bottlenose dolphins (Smolker et al. 1992).

Random data can make interesting dendrograms. The dendrogram
of associations among 11 individuals shown in Fig. 5.7 suggests a quite
complex society. It is divided into two principal clusters, each containing
some pairs with strong (association indices > 0.65) relationships. Are
these mated pairs? But Fig. 5.7 is a dendrogram drawn entirely using
randomly generated associations.
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F I G U R E 5 . 7 Dendrogram produced using average-linkage hierarchical cluster analysis on a random
matrix of association indices (all association indices are the mean of two numbers chosen from the [0, 1]
uniform distribution).

There is a way to weed out at least some of such spurious dendro-
grams: the cophenetic correlation coefficient (CCC). As noted in Section
2.7, the CCC is the correlation between the dyadic entries in the matrix
of association indices and the level at which the dyads are joined on the
dendrogram (Bridge 1993). A CCC of 1.0 indicates a perfect fit, so that
the dendrogram is an appropriate model of the matrix of association in-
dices or interaction rates, fully describing it. A reasonable rule of thumb
is that a dendrogram is a reasonable display of a matrix if the CCC is
greater than 0.8 (Bridge 1993). The dendrogram from the random data
in Fig. 5.7 has a CCC of 0.58 and so is rejected under this criterion,
whereas those from the real data in Figs. 5.2 to 5.4 are all acceptable.
This does not mean they are truly hierarchically structured societies, but
that a hierarchically structured model is reasonably consistent with the
data.

The dendrogram of capuchin grooming data (Fig. 5.2) indicates a fre-
quently grooming dyad, S and N, that forms the nucleus of the grooming
network among these females, with no other preferred partnerships, and
differences in grooming rates among individuals.



D E S C R I B I N G A N D M O D E L I N G S O C I A L S T R U C T U R E 163

With 55 disk-winged bats, the dendrogram (Fig. 5.3) is becoming
cluttered, but, perhaps with the help of a magnifying glass, an informa-
tive structure emerges. There are a many links with associations of 0.6
or higher, producing clusters of two to nine individuals that frequently
roost together but rarely roost with other clusters. There are also a num-
ber of “loner” individuals without strong associations. There seems to
be little structuring of the roosting society based on sex.

The dendrogram of hundreds of sperm whales (Fig. 5.4) is too full
to be assimilated in anything except its coarsest features. With a CCC
of 0.92, however, it is an accurate representation of the matrix of asso-
ciation indices. There are strongly associated clusters, each containing
a dozen or so individuals, and very few loners. Because many of the
links are at an association index of zero, there are effectively discrete
communities of whales. The overcluttered dendrogram of Fig. 5.4 can
then be dissected into more informative diagrams showing these closed
communities. In Fig. 5.8, the sperm whale dendrogram is divided along
the x-axis into six separate displays with almost no association between
them. It becomes apparent that many of the unlinked animals are males,
and some fairly clear, and apparently closed, social units of animals
linked by high association indices appear.

Looking at such dendrograms, the social analyst may wonder where
to place the dividing line along the “y” (association index) axis if she
wants to retrieve the membership of the units. This is a topic for Section
5.7 on assigning individuals to social units and other entities.

Technically, hierarchical cluster analysis can be performed in a num-
ber of ways [for a rather complete description of clustering methods, see
Legendre and Legendre (1998, pp. 314–355); for a shorter summary, see
Manly (1994, pp. 128–134)]. Most techniques are agglomerative, start-
ing with all individuals alone in their own clusters. Then, at each step,
the most associated individuals/clusters are merged, building up the den-
drogram. However, an important decision must be made: After clusters
A and B are merged, what is the association of the new AB cluster with
another cluster C? There are several ways that these associations can be
calculated, some of which (such as Ward’s method) depend on the asso-
ciations representing distances in Euclidean space. This is not the case
with matrices of association indices or interaction rates, although either
can be transformed into Euclidean distances using principal coordinates
analysis or multidimensional scaling (see prior discussion), or we can
just assume that the square root of one minus the association index is a
distance. Such steps seem unnecessary because there are perfectly good
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clustering methods that work directly on similarity matrices such as ma-
trices of association indices or interaction rates (although these must be
symmetric). These include the following:

1. Single-linkage (nearest neighbor) cluster analysis. After
clusters A and B are merged, the similarity between AB and
C is the most similar of AC and BC.

2. Complete-linkage (furthest neighbor) cluster analysis. The
similarity between AB and C is the least similar of AC and
BC.

3. Average-linkage (or unweighted group mean) cluster anal-
ysis. The similarity between AB and C is the average of all
similarities between individuals in C and either A or B.

Although Morgan et al. (1976) initially recommended single-link-
age cluster analysis, more recent research has strongly indicated that
average-linkage cluster analysis is most likely to mimic the input matrix
(Milligan & Cooper 1987). This recommendation is perhaps especially
warranted in social analysis because extreme small or large similarities,
whether caused by random error, measurement error, or unusual re-
lationships, have less impact on the results than in single-linkage or
complete-linkage cluster analysis (Whitehead & Dufault 1999). The
CCC can be used to indicate the best method: Choose the method with
the highest CCC. In my trials, this has usually been average linkage.

There are other ways of producing dendrograms, such as hierarchi-
cal divisive methods in which all individuals are initially placed in the
same cluster and this is sequentially divided up, perhaps using K-means
(Section 2.7). This is in some ways a theoretically good method (Leg-
endre & Legendre 1998, pp. 343–349) but is computationally intensive
and not much used (Manly 1994, p. 132) outside of network analysis
(Section 5.7).

5.2.6: Other Methods. A variant on the dendrogram produced by hier-
archical cluster analysis is the additive tree (Sattath & Tversky 1977).
Additive trees are a form of network representation. As in the traditional
dendrogram, individuals are represented by nodes, but the dissimilarity
between two individuals is estimated by the length of the path joining
their nodes, and so the nodes representing the individuals are not nec-
essarily aligned along a common axis. Additive trees are a good way of
displaying dissimilarity matrices, especially when within-cluster dissim-
ilarities are greater than within-cluster similarities, and they are much
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used in displaying phylogenetic relationships, whether derived from mo-
lecular genetic or other data. However, they are aimed at describing dis-
similarity matrices, have no direct meaning for similarity measures, such
as association indices or interaction rates, and so are little used in social
analysis.

A related and simpler technique, the minimum/maximum spanning
tree, is used in social analysis (Morgan et al. 1976). This is a variant on
the sociogram and is also related to network analysis. Individuals are
represented by points or nodes in a graph. A “tree” is constructed by
drawing links between the points such that each point is visited by at
least one link, no closed loops occur, and we can get from any point to
any other point by moving along the links. The maximum spanning tree
is that in which the sum of the associations for the dyadic relationships
represented by the links is maximized. Thus, it represents the most
important set of relationships for connecting the whole population. A
minimum spanning tree is the equivalent for a dissimilarity measure
(such as genetic distance). I cannot see any advantages of the maximum
spanning tree over the sociogram, other than that it might look less
cluttered. There is also the disadvantage that important relationships
with high association indices or interaction rates may not be linked in a
maximum spanning tree. For instance, consider the following similarity
matrix (perhaps a matrix of association indices):

A
B 0.84
C 0.87 0.80
D 0.10 0.12 0.22

A B C D

The maximum spanning tree will link A and C, A and B, and C and D,
omitting the strong association between B and C, at the expense of the
quite weak association between C and D.

A frequently useful and simple display is a histogram of group sizes.
These can be of the group sizes experienced by outside observers or
the typical group sizes experienced by the animals themselves (Section
3.4), and they can be calculated from association indices (Section 4.3)
or from observations of groups. The latter does not require individual
identification of animals. The distributions of group sizes obviously tells
us something about the potential number of interactants an individual
has at any time, but it can also indicate processes of group dynamics.
Cohen (1971) explored the distributions of group sizes expected, given
different models of group formation. Based on this approach, some mod-
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els of group formation may be ruled out for a particular data set given the
lack of fit between the observed and expected distribution of group sizes.
However, this analytical approach omits some of the most informative
social information—the identities of the individuals—and has largely
been superseded by modeling individual-specific social data, as in lagged
association rates (Section 5.5) and Bayesian delineation of social units
(Section 5.7).

B O X 5.2 Visual Displays of Social Structure: General Guidelines

For any kind of population, histograms give useful information
about the distribution of any measure and thus how relation-
ships are distributed in the population. Separating information
for classes of dyad, or logging the y-axis, may improve informa-
tion content and interpretability, respectively.

When numbers of animals are small, all of the displays con-
sidered in Section 5.2 are possible and potentially useful. I par-
ticularly like sociograms because they display almost all of the
data, can indicate the form of social structure (unlike histograms,
which are usually ambiguous in this respect), and, unlike cluster
analyses or ordinations using principal coordinates analysis, can
retain and present information on asymmetric relationships. Prin-
cipal coordinates, multidimensional scaling, and cluster analyses
all come with measures of fit (proportion of variance accounted
for, stress, and CCC, respectively), and may or may not pro-
vide useful representations of a small data set in an acceptable
number of dimensions (usually two or three). With small data
sets, one can try them all and different types of cluster analysis
and multidimensional scaling, retaining those that both provide
a good quantitative description of the data, as indicated by the
measure of fit, and a useful description of the social structure. If
the fit of the ordination to the data is good, then principal coor-
dinates and multidimensional scaling should not be very mislead-
ing. Dendrograms provide a nice, hierarchically structured model
of social structure, but this can be misleading, as illustrated by
the dendrogram of random data shown in Fig. 5.7.

With large population sizes, containing more than about 100
individuals, the options are more limited. Histograms still work
well, but sociograms become cluttered with more than 100 indi-
viduals (although the network drawing packages can greatly help
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in producing useful sociograms; Section 5.3). Multidimensional
scaling may either be impossible or not produce a repeatable dis-
play with low stress. Principal coordinates will work with large
data sets, but the display may have little utility (as in Fig. 5.4).
Cluster analysis appears to be useful for the large sperm whale
data set when enlarged (Fig. 5.8), but this will not always be the
case. With large population sizes, the less visual but more an-
alytical methods, such as lagged association rates (Section 5.5),
become relatively more important.

5.3 Network Analysis

5.3.1: Introduction to Networks. In recent years, the informative and so-
phisticated set of techniques collectively known as network analysis has
begun to be used for the analysis of nonhuman social systems (e.g.,
Lusseau 2003; Croft et al. 2004; Flack et al. 2006). Network analysis
has its theoretical basis in the mathematical discipline of graph theory
and is the subject of a huge literature from a variety of perspectives
and scientific disciplines, including the work of a remarkable number of
physicists. Recent general reviews of network analysis include those by
Boccaletti et al. (2006), Newman (2003b), and (particularly accessible)
Proulx et al. (2005). For more information on the application of network
analyses to non-human social networks, see the reviews by Wey et al.
(2008) and Krause et al. (2007), and Croft et al.’s (In press) book.

Network analysis envisages a social system as a network, a set of
nodes (vertices or points)—usually individuals, but they could be higher
levels of social structure, such as units or communities—connected
by edges that indicate their interactions. Networks are similar to so-
ciograms and dendrograms in that there is a graphical display with rela-
tionships being denoted by links rather than Euclidean position as in the
ordination techniques of principal coordinates and multidimensional
scaling. In fact, sociograms, dendrograms, spanning trees, and domi-
nance hierarchies are special cases of the general concept of a graph net-
work.

Newman (2003b) notes four general areas of network analysis:

1. Drawing and viewing networks
2. Analyzing statistical properties of networks
3. Modeling networks
4. Predicting network behavior
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Predicting network behavior (e.g., predicting how, in general, the cul-
tural behavior of a population depends on its social structure) is in its
infancy in all fields (Newman 2003b) and is not covered here. Network
modeling is quite well developed in some areas, such as the analysis
of the World Wide Web, but it has hardly started with nonhuman so-
cial networks. Thus, in this section, I principally discuss the generation,
description, and statistical analysis of networks.

Networks come in a variety of types. In the simple, standard, “undi-
rected binary” network, there is one kind of node (i.e., no classification
of individuals) and one type of edge, so that individuals are either con-
nected or unconnected. A variant relevant to social analysis occurs when
nodes come in discrete classes (such as males and females; Section 3.6).
Edges may also be allocated to classes (e.g., “friendship”, “animosity”),
be “weighted” (so they might represent interaction rates or association in-
dices), or “directed” (as with an asymmetric interaction such as groom-
ing).

The great majority of network analyses in studies of human social
systems, information systems, technological systems, and biological sys-
tems consider only directed or undirected binary networks (Newman
2003b, 2004; Proulx et al. 2005). This is a drawback of network analy-
sis in its current state. Although the analyst may be able to draw a binary
edge with certitude (she saw the two individuals grooming or playing;
e.g., Flack et al. 2006), she can rarely be certain that two members of
a community are not linked. An alternative to the binary associated/not
associated (or interacted/not interacted) edge is to have a cutoff associa-
tion index (or interaction rate). This is also unsatisfactory in the respect
that it is arbitrary (Fig. 5.9 shows three very different network depic-
tions of the same data set on guppies, using three different cutoffs to
define edges; see Section 4.10) and too sharp: If the mean association
index is 0.2, a pair with an index of 0.19 will not be linked and one
with an index of 0.21 will be, even though there is no evidence that the
two relationships are different either statistically or in reality. Weighted
network analyses are the way around this, and these are being developed
(Barrat et al. 2004; Newman 2004; Barthélemy et al. 2005; Boccaletti
et al. 2006; Li et al. 2006). Croft et al. (2004, 2005) made a start at
“analysis of weighted networks” for nonhuman vertebrates, although
the tests that they perform are actually more like the Bejder et al. (1998)
permutation test (Section 4.9), with less control in the structure of the
permutations (see later discussion).

One important benefit of using network analysis for nonhuman so-
cial analyses is the sophistication of the network-drawing computational



F I G U R E 5 . 9 Network depiction (males, filled circles; females, open circles) of wild guppies (Poecilia
reticulata) after 7 days of sampling with links between fish caught together in the same school (upper)
at least once, (middle) at least twice, and (lower) at least three times. (From Croft et al. 2004, fig. 1a.)
(Illustration copyright Emese Kazár.)
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routines. In contrast to the rather basic routine in SOCPROG used to
draw the sociograms in Figs. 5.1 to 5.4, which becomes quite uninforma-
tive with a few tens of individuals, the much more developed network
software (e.g., in NetDraw; Section 2.9) gives useful representations with
more than 100 (Fig. 5.9) or even thousands of nodes (Fig. 2 of Newman
2003b). Some network analysis programs (including NetDraw) can
make the widths of the edges proportional to their weighting, producing
sociograms as described in Section 5.2.

A number of measures are used to describe networks. In the next
subsections, I discuss some of the most common, beginning with those
that refer to dyads, moving on to those that are properties of nodes, and
then considering statistics of entire networks. Where appropriate, I give
the meaning of the term for binary networks and then consider whether
it can be generalized to weighted networks (such as association indices
or interaction rates) or directed networks (in which the relationship
from A to B is not necessarily that from B to A).

5.3.2: Network Measures of Dyads

� Edges and weights. These dyadic measures are the fun-
damental network data. They note whether two nodes
are linked by an edge or not in a binary network or, in a
weighted network, the importance of the link (e.g., the value
of the association index). Edges and weights can be directed
or undirected.

� Geodesic path length. The geodesic path length between
any pair of individuals is the fewest number of links join-
ing them in a binary network. It is not defined, or is infi-
nite, if two individuals are not linked. The geodesic path
length of a dyad within a binary network is, in some circum-
stances, a good indicator of its relationship. If the geodesic
path length is 1, then they are directly linked; if it is 6, the
connection seems very tenuous. In weighted networks,
path lengths can be calculated by making the “length” of
any edge the inverse of its weight, and the geodesic path
length of any dyad is the one that minimizes the sum of
the lengths of the edges forming a route that joins them
(Newman 2004; Holme et al. 2007). An alternative for
association indices might be to use the square root of one
minus the association index, as in principal coordinates
analysis (Section 5.2). The relative benefits of different
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types of transformation for weighted networks have not
been examined.

� Vertex similarity. There are several ways in which the simi-
larity of nodes can be compared. All of those that I know of
[listed by Leicht et al. (2006)] refer only to binary networks.
One set of measures (structural equivalence) refers to the
similarity of neighbors: Pairs of individuals with the same
set of neighbors have high structural equivalence, or vertex
similarity in this sense. Leicht et al. (2006) derive measures
of structural similarity that indicate how well a pair of nodes
is linked.

5.3.3: Network Measures of Nodes

� Class and attribute. Nodes can be allocated to classes, such
as male/female, or possess continuous attributes such as age
(Section 3.6).

� Degree and strength. The degree of a node in a binary
network is the number of edges connected to the node
(Newman 2003b). For a weighted network, the corre-
sponding property is or the sum of the weights on the edges
connected to the node. Some (e.g., Barthélemy et al. 2005)
call this the strength of a node, and I follow this terminol-
ogy. For a weighted network of association indices, the
strength is the individual’s gregariousness (Section 4.3).
For a directed network, representing an asymmetric re-
lationship measure, each individual has an “in-degree”
or “in-strength” (e.g., overall rate of being groomed)
and “out-degree” or “out-strength” (e.g., overall rate of
grooming).

� Betweenness centrality. The betweenness centrality—
usually just called betweenness—of a node (Freeman 1979)
in a binary network is the number of shortest paths between
other nodes that pass through that node. Thus, peripheral
individuals, that is, individuals only connected to one other
individual, have zero betweenness, and an individual that
links two otherwise discrete clusters has a very high be-
tweenness. When a network is being used to investigate
the flow of information or disease through a population,
then betweenness is a very useful measure (Newman 2003b).
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Individuals with high betweenness can have a large effect
on the spread of the information or disease. If the network
is simply being used to describe the social structure, how-
ever, then betweenness is less useful. For instance, if the
population is divided into a number of fairly discrete com-
munities, then the animals with greatest betweenness might
be society’s “social glue” (e.g., Lusseau & Newman 2004)
or, alternatively and perhaps more parsimoniously, the so-
cially exploratory young animals whose relationships have
low impact on the nature or stability of the social struc-
ture. In weighted networks, betweenness centrality could
be calculated similarly but using the sum of the inverses
(or some other transform) of the weight on each edge to
find the shortest path, as in geodesic path length (Newman
2004).

� Eigenvector centrality. Eigenvector centrality (Newman
2004) is another measure of how well connected an individ-
ual is within the network. Mathematically, it is simply the
appropriate element of the first eigenvector of the matrix of
edges or weights (e.g., a matrix of association indices). For
each individual, it gives a number that indicates its connect-
edness within the network, so that an individual can have
high eigenvector centrality either because it has high degree
or strength or because it is connected to other individuals
of high degree or strength. Although eigenvector centrality
has a less direct definition than betweenness, it has the major
advantages that it is directly available for weighted, nonbi-
nary networks (Newman 2004) and does not presuppose
the flow of some attribute, such as disease or information,
through the network. Eigenvector centralities may be highly
skewed, being high for a few well-connected individuals
and virtually zero for the remaining members of the popula-
tion.

� Reach. Reach is a measure of indirect connectedness,
which Flack et al. (2006) defined, for a binary network,
as the number of nodes two or fewer steps away. Other
definitions might be used in other circumstances. For in-
stance, in a weighted network of association indices, the
reach of any individual A might be defined as the sum over
other individuals B of the sum over other individuals C
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Table 5.3 Suggested Nodal (Individual) Network Measures as Used on Weighted Networks Such as
Matrices of Association Indices or Interaction Rates

Measure What it means Formula for weighted network

Strength (degree) How connected to other individuals
(equivalent to: gregariousness;
mean typical group size minus 1)

sI =
∑

j

aIJ

Eigenvalue centrality How well connected, in terms of
number and strength of
connections, and to whom

eI = (first eigenvector of a)I

Reach Overall strength of neighbors
r I =

∑

J

aIJ · sj

Affinity Weighted mean strength of neighbors fI = r I/sI

Clustering coefficient How well connected neighbors are to
each other c I J =

∑
J
∑

K aIJ · aIK · aJK

max(aJK) · ∑J
∑

K aIJ · aJK

aIJ is the association index or interaction rate between individuals I and J; aII = 0 for all I. Formulas are from
Newman (2004) and Holme et al. (2007).

of the products of all pairs of association indices link-
ing A and B through another individual C (and this is the
definition I use in the examples; see Table 5.3). Reach is
a sensible and useful measure for a society that exhibits
behavioral contagion (Flack et al. 2006): The dyadic be-
havior of A with B may induce dyadic behavior between B
and C.

� Affinity. The affinity of a node in a binary network is
the average degree of its neighbors (e.g., Barthélemy
et al. 2005). Thus, a node with high affinity is connected
to other nodes of high degree. Barthélemy et al. (2005)
and Barrat et al. (2004) suggest generalizing affinity to
weighted networks using the weighted degree of the
neighbors, where the weight is that of the edge joining
the focal individual to its neighbor. I believe that the
average weighted strength of the neighbors is a more use-
ful measure of affinity in nonhuman social systems, mak-
ing the affinity of a node its reach divided by its strength
(Table 5.3).

� Clustering coefficient. The clustering coefficient (called the
“network density” in sociology; Newman 2003b) measures
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the degree to which the associates of an individual are them-
selves associated in a binary network. If all associates of an
individual are themselves linked, then the clustering coef-
ficient of that individual is 1.0; if none of them is, it is 0.0.
Clustering coefficients are high in societies containing
tight, closed, homogeneous social units and are lower in
strict territorial societies in which individuals only asso-
ciate with their neighbors, who may not associate with
each other. The clustering coefficient seems to be a useful
measure of individual sociality (Croft et al. 2004) and is
widely used in sociology (Newman 2003b). Generaliza-
tions of clustering coefficients to weighted networks have
being developed (Barthélemy et al. 2005; Li et al. 2006).
The most satisfactory clustering coefficient for use on ma-
trices of association indices seems to be that of Holme
et al. (2007), which considers the weight on all three edges
of each triangle linking nodes, and this is the definition
that I use (Table 5.3). This is standardized by the maxi-
mum weight in the network, however, and so it is heavily
influenced by, say, two inseparable animals, and thus is
hard to compare between populations or even between
a social network and its random permutations (see later
discussion).

� Disparity. This is a measure of the variance in the weights
of the edges connecting a node in a weighted network
(Barthélemy et al. 2005), and so it appears to be a useful
measure of the sociality of an individual:

Y(I) =
∑

J

(
αIJ

sI

)2

(15)

Here, sI is the gregariousness of I and αIJ is the association
index between individuals I and J. An animal with high dis-
parity has varied social relations, whereas one with low dis-
parity has a much more homogeneous set of social partners.
It is thus an individualized alternative to social differentia-
tion introduced in Section 5.1. The variance of association
indices or interaction rates depends heavily on the size and
structure of the sample (Sections 4.4 and 4.5), however, and
so disparity measures calculated from such data will only be
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representative if sample sizes are very large or corrections for
sampling are introduced (I do not know of any attempts to
do this).

The most useful of these nodal measures for the analysis of associa-
tion indices or interaction rates, for which we need to consider weighted
networks, are class, strength, eigenvector centrality, reach, affinity, and
the clustering coefficient. Table 5.3 gives suggested mathematical for-
mulas.

5.3.4: Network Measures for a Population or Community. We can take the
means of any of the dyadic or nodal measures introduced previously to
describe a network. So we have the mean geodesic path length, mean de-
gree, or mean clustering coefficient as network descriptors (e.g., Lusseau
2003; Newman 2003b; Croft et al. 2004). Some care must be taken for
geodesic path length, which is not defined for unconnected dyads, and
clustering coefficient and disparity, which are not defined for isolated
individuals. Confidence intervals for mean network measures can be
calculated using the bootstrap method (Section 2.3) in which random
replicates are constructed by choosing sampling periods with replace-
ment (Lusseau et al. In press).

Other summary statistics of the network measures can be useful.
Standard deviations or coefficients of variation indicate how a measure
varies among nodes or dyads, but these also include sampling variation.
As another example, the diameter of a network is (usually) the maximum
(across dyads) geodesic path length (Newman 2003b).

Distributions of the measures are more informative than summary
statistics. Distributions and summary statistics can be compared with
the distributions of the statistics expected theoretically. There has been
considerable mathematical work on the expected distributions of net-
work statistics for artificial networks created using different algorithms
(Newman 2003b). For instance, networks generated by preferential-
attachment models, in which well-connected nodes are more likely to
become linked, have a power-law-degree distribution that is known as
“scale free” (Barabási & Albert 1999).

In social analysis, it is probably more useful to compare distribu-
tions or summary statistics of network measures with those calculated
from randomly constructed networks using the same individuals and
data characteristics (e.g., Croft et al. 2005). The methods described in
Section 4.9 are useful for producing random networks subject to sam-
pling and gregariousness constraints. Thus, the original Bejder et al.
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(1998) method can produce random networks subject to the sizes of all
groups observed and the number of groups in which each individual was
observed, and using the modifications described by Whitehead (1999a;
Section 4.9), we can control for each individual’s number of groups or
associations in each sampling period.

Other attributes of a social system can be measured by comparing
different nodal measures. For instance, degree or strength and affinity
(the mean degree or strength of an individual’s neighbors) may be re-
lated. If nodes with high degree/strength also have high affinity, then the
“important” individuals are preferentially linked with each other, which
is known as assortative mixing, a situation that seems generally charac-
teristic of social networks (Newman 2003b). In disassortative mixing,
which is not usually found in social networks but is present in other net-
works (e.g., the internet; Newman 2003b), the nodes of highest degree
are surrounded by low-degree nodes. Thus, assortativity is potentially
a useful descriptor of social organization. We can measure assortativity
in a binary network simply by correlating the degrees of the individuals
at each end of an edge (Newman 2003b), using the standard correlation
coefficient. Flack et al. (2006) showed that the experimental removal
of three high-status “policing” macaques (Macaca nemestrina) from a
colony reduced this measure of assortativity. For weighted networks, the
correlation between the strength of a node and its affinity is a suitable
alternative (Barthélemy et al. 2005).

When nodes are divided into classes by gender, age, or other attri-
butes (Section 3.6), then the network measures can be calculated for
each class and compared, such as the mean strength, connectivity, or
reach of males versus females. We can also calculate within-class values
for all measures (such as the strengths of the nodes in the all-female net-
work) and between-class measures for most (the mean female–male
strength would be the mean, over females, of the sum of the weights
along edges leading from each female to all males, as with interclass
gregariousness; Section 4.11).

With classes defined, another type of assortativity can be assessed.
Here, one measures the degree, or strength, of the interactions between
and within classes and compares them. There are several possible as-
sortativity coefficients. The best seems to be that of Newman (2003a),
which is defined using matrix algebra. It equals 0 in a randomly mixed
network, in which there is no preference or avoidance between classes,
1 when all edges join members of the same class, and −1 when all
edges join members of different classes. As far as I can tell, it has not
been generalized for weighted networks, although the matrix correlation
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F I G U R E 5 . 1 0 Sociogram of matrix of association indices of the group of seven sperm whales in table 2.5
(Gero 2005). A, adult female; C, male calf; J, juvenile male.

coefficient and Mantel test between a matrix of association indices or
interaction rates and the 1:0 (same: different) matrix of same/different
class (Section 4.11) provide good analogs. Nodal network measures can
also be compared with continuous individual attributes. For instance,
we could plot connectivity against age, which might, for instance, indi-
cate that individuals form clearer cliques as they become older.

Network analysis also includes routines for finding “clusters” of nodes
within networks, which are well connected internally but have few links
between them. Such clusters might correspond with my concept of the
social unit or community (Section 1.6). Some of these routines are de-
scribed in Section 5.7. Once a network has been dissected using these
methods or non–network-based methods of assigning individuals to
units (Section 5.7), network statistics can be calculated for any or all
clusters separately or between clusters.

5.3.5: Two Examples. To provide a feel for the power and limitations of
network analysis, here are two examples. In these examples, the defini-
tions used for the network measures are as described in the preceding
subsections and in Table 5.3.

For a first and simple example, consider the social unit of seven sperm
whales whose matrix of association indices is shown in Table 2.5. Figure
5.10 shows a sociogram, or network, of their association indices, and
Table 5.4 lists five weighted network measures. Both the sociogram and
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network analyses indicate the rather peripheral positions of #5130 and
#5563 and emphasize the central role of the calf: The calf has much the
highest strength, eigenvector centrality, and reach but the lowest cluster-
ing coefficient and affinity. In this network, rather unusually (Newman
2003b), strength is negatively related to both the clustering coefficient
(r = −0.92) and affinity (r = −0.48).

Removing the calf—a “topological knockout” (Flack et al. 2006)—
changes the structure of the network. For instance, #5722, the mother
of the calf, has the largest reach of the adults when the calf is in the net-
work and the smallest reach when it is removed: She interacts with the
unit principally through the calf. In addition, after the calf is removed,
mean strength, reach, and affinity are reduced, whereas clustering coef-
ficient is increased, presumably because the relationships are now more
homogeneous.

For a more complex example, consider the 55 bats (individuals iden-
tified on 5 or more days) whose network of co-roosting relationships is
shown in the sociogram of Fig. 5.5. Table 5.5 summarizes the network
measures for this population. All of the network measures vary consider-
ably between individuals (indicated by high standard deviations relative
to the mean), although how much of this is due to sampling variation
is unclear from the straight means and standard deviations. The results
indicate a society mildly structured by gender, with males having some-
what higher values of all the network statistics, greater strength, reach,
centrality, clustering coefficients, and affinity. However, there is consid-
erable variance and overlap between the sexes. For instance, the stan-
dard errors of the network measures (calculated using 1,000 bootstrap
replicates, choosing sampling periods randomly with replacement) sug-
gest little real difference between the sexes in any measure (because
the difference between the sexes was less than twice the sum of the
standard errors for each sex; Table 5.5), except eigenvector centrality.
Between-sex strength is somewhat greater than within-sex strength, in-
dicating a slightly assortative society. This is confirmed by the matrix
correlation coefficient between the association indices and the 1:0 ma-
trix of same/different gender (r = − 0.035; P = 0.09, two-sided Mantel
test).

We can also look at classes defined by the clear clusters in Fig. 5.5 (the
same clusters are produced by an average-linkage cluster analysis with a
cutoff average association index between clusters of 0.13, which maxi-
mizes modularity; see Section 5.7). Generally, larger clusters have higher
values of all the network measures, although there are some startling
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differences. Most obviously, the eigenvector centrality is zero (to two
decimal places) for all clusters except cluster B, the most strongly con-
nected. Thus, in cases like this, eigenvector centrality is heavily loaded
on the most connected clusters. Reach also shows pronounced variance
among clusters. In a highly segmented society like this, the mean affinity
of a cluster is almost identical to its mean strength, and there tend to
be strong correlations over individuals between measures. In the bat
data, strength and affinity are correlated at r = 0.97 and strength and
clustering coefficient at r = 0.49.

Table 5.6 shows the results of some permutation tests on this data
set. I calculated three network measures: the standard deviation of
the strengths and the correlation coefficients over individuals between
strength and clustering coefficient and between strength and affinity for
the real data and for 1,000 permutations (with 100 flips per permuta-
tion where appropriate) of each of four types: (1) the simple method
used by Croft et al. (2005), in which the individuals identified in each
roost were randomly chosen from the entire population; (2) the method
of Bejder et al. (1998; Section 4.9), in which the identities are per-
muted but roost sizes and numbers of observations of each individual
are both kept constant; (3) the modification (Whitehead 1999a; Section
4.9) in which roost sizes and numbers of observations of each individ-
ual in each sampling period are kept constant; and (4) the version in
which the number of associations of each individual in each sampling
period is kept constant (Whitehead 1999a; Section 4.9). The expected
values of the measures (the means over the 1,000 permutations) var-
ied considerably among the permutation types, as did the significance
levels (indicated by the proportion of values of the measure from the
random permutations more extreme than the real value). Remarkably,
in the case of the correlation between strength and clustering coeffi-
cient, the real value was either significantly large or significantly small,
depending on the type of permutation used (Table 5.6). To interpret
these tests, we need to consider carefully the structure of the data. In
the case of the disk-winged bats, these discrepancies can be partially
explained by the facts that the study area was divided into three sub-
areas (indicated in Fig. 5.5) with nonoverlapping populations and that
on each sampling period (day), only one subarea was sampled (Vonhof
et al. 2004). Thus, the first two permutation types mix animals from
different subareas, whereas the second two retain the distinctiveness
of the subareas, very much changing the nature of the random net-
works.
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B O X 5.3 Network Analyses: Recommendations

Network analysis is much more vibrant, broader, and faster
evolving than other areas of nonhuman social analysis. The
physicists and mathematicians driving the field keep coming up
with new ways of examining networks. Some give us insight
into animal societies, whereas others do not, and the relevance
of a particular technique or measure very much depends on the
situation. It is an exciting area, but also a confusing one. There
are many possibilities, and some of those used in the first network
analyses of nonhuman societies were not optimal. Here are some
general recommendations drawn from my initial exploration of
the possibilities of network analysis (see also Lusseau et al. In
press). This recommendation set is conservative, in the sense
that it is unlikely that a researcher who follows them will reach
very erroneous conclusions, but she may miss some excellent
opportunities. The field is in flux, and the recommendations will
likely change, principally becoming wider as social analysts gain
experience with network analysis (e.g., a measure of disparity
corrected for sampling effort might prove very useful). Here are
my recommendations:

� Make good use of the network drawing routines,
such as NetDraw. They give flexible and very useful
views of societies.

� Almost always use weighted network measures,
especially for association indices (Lusseau et al.
In press) and interaction rates, rather than binary
network measures. An analyst would need to have
much more data than are usually available to make
a 0 edge in a binary network reliable, and the differ-
ences among the edges marked by 1’s is lost.

� Recognize that some network measures are closely
related to more traditional concepts in social analy-
sis. For instance, when association indices are used,
the strength of an individual is simply its gregarious-
ness or typical group size minus one (Section 4.3).

� Recognize that, in some cases, more traditional
methods may achieve a particular goal more easily
or effectively than network analyses. Assortativity in
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a binary node characteristic such as gender may be
best measured and tested using the matrix correla-
tion coefficient between the association indices and
the 1:0 matrix of same/different gender and a Mantel
test (Section 4.11, Schnell et al. 1985).

� Consider carefully the rationale for using a particular
measure. For instance, the dyadic measure between-
ness only makes much sense if something (such as
information or disease) is being transmitted along the
edges of the network, and the measure reach becomes
important in a society exhibiting contagion, so that if
an individual is engaged in a dyadic interaction with
one individual, it makes it more likely that it will
interact with another (Flack et al. 2006).

� Comparisons within networks are usually quite
straightforward and informative: identifying the
individuals with greater strength or connectivity,
or comparing these measures between males and
females. Standard errors of the measures should be
presented so that the reliability to be attached to
these within-network comparisons can be assessed.
These can be estimated using the bootstrap method
(Section 2.3).

� Comparisons between networks are more fraught.
Network measures such as the standard deviation
of strength or the correlation between strength and
connectivity depend greatly on factors such as the
sampling scheme, sampling period, and association
index used, as well as on the structure of the data
(Croft et al. 2005; Table 5.6). Whereas elegant and
informative methods of comparing binary networks
have been developed (e.g., Faust & Skvoretz 2002),
the comparison of weighted networks is more com-
plex and much less developed.

� Tests of network measures against the values ex-
pected from null models (e.g., Croft et al. 2005)
can be informative but must be carefully consid-
ered. These are best done using permutation tests,
but I strongly recommend that the permutations be
controlled for both the sizes of groups [as proposed
by, and using the methods of, Bejder et al. (1998);
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Section 4.9] and perhaps the gregariousness of in-
dividuals (Whitehead 1999a; Section 4.9), and in
data sets that have important temporal or spatial
structure, permutations should be carried out within
sampling periods (Whitehead 1999a; Section 4.9).
The results of the tests may be quite different, de-
pending on how the permutations are controlled
(e.g., Table 5.6). It is also important to select the
test statistic carefully (see Section 4.9 for some
considerations) and consider clearly what the null
and alternative hypotheses mean in social terms.

In this section, I investigated the potentiality of network anal-
ysis from the perspective of association indices that are bound
by 0 and 1. I suspect that almost all the suggested analyses will
also work with symmetric interaction rates. The network analysis
possibilities with asymmetric interaction rates are more limited
but at least include strength (in-strength and out-strength).

5.4 Dominance Hierarchies

A particular, and important, type of social network is the dominance hi-
erarchy. In many cases, the dominance hierarchy is not only a useful de-
scriptor of social dynamics, it also is the way in which the animals them-
selves experience, and probably envision, a large part of their social
world: These individuals are to be dominated, those are to be appeased
(Drews 1993). Dominance hierarchies are described using one or more
strongly asymmetric interaction measures, such as the winners of ago-
nistic encounters, submissive behavior, or priority access to resources
(Section 4.8). Ideally, the nodes of the dominance network—the indi-
viduals—can be arranged linearly from the most to the least dominant
individual with all directed edges pointing in one direction. When the
nodes are arranged to best satisfy this ideal, any edge pointing in the
wrong direction is termed an inconsistency (sometimes called a “domi-
nance reversal,” although this can also refer to a change in dominance
direction over time). An arrangement without inconsistencies—a per-
fect linear hierarchy—is sometimes achievable (e.g., Table 5.7(i), and
when it is, little further analysis is needed. As a caution, Appleby (1983)
points out that with a binary 1:0 asymmetric measure of dyadic domi-
nance and five or fewer individuals, the individuals can be arranged in
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Table 5.7 Dominance Relationships in a Group of Young Roosters (Gallus domesticus) at (i) 32
Weeks of Age and (ii) 16 Weeks of Age

Subordinate

(i) YY B G R W Y (ii) YY B G R W Y

YY − 1 1 1 1 1 YY − 1 1 1 1 1
B 0 − 1 1 1 1 B 0 − 0 1 1 1

Dominant G 0 0 − 1 1 1 G 0 1 − 1 0 1
R 0 0 0 − 1 1 R 0 0 0 − 1 1
W 0 0 0 0 − 1 W 0 0 1 0 − 1
Y 0 0 0 0 0 − Y 0 0 0 0 0 −

From Murchison (1935).

a perfect linear hierarchy with probability greater than 0.05 even when
the dyadic dominance relations are randomly assigned.

5.4.1: Measures and Tests of Linearity and Steepness. In many, perhaps
most, cases, there are inconsistencies (there are two in Table 5.7(ii),
and further analysis may be useful. A frequently used measure of domi-
nance linearity in a society is Landau’s (1951) index:

h = 12
n3 − n

·
n∑

I=1

(vI − (n − 1)/2)2 (16)

where n is the number of animals in the population and vI is the num-
ber of animals dominated by individual I (plus half of the number of
animals with whom I does not have a dominance relationship, if rel-
evant). h ranges from 0.0 in the completely nonhierarchical situation
in which each animal dominates exactly half of the others [as, in this
case, vI = (n − 1)/2 for all I] to 1.0 in the case of a completely lin-
ear dominance hierarchy without inconsistencies. Under the null hy-
pothesis of random dominance relationships, the expected value of h
is equal to 3/(n + 1). Values of h greater than about 0.9 are usually
taken as indicating a nearly linear hierarchy (Lehner 1998, p. 333). For
the data in Table 5.7, h = 0.77 for the young roosters (Table 5.7ii),
and h = 1.00 for the perfectly linear hierarchy of the older animals
(Table 5.7i).

Appleby (1983) shows how to use h as a test statistic of the null hy-
pothesis that dyadic dominance relations are random rather than linear,
and de Vries (1995) generalizes h and Appleby’s (1983) tests to deal
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with unknown dyadic dominance relationships (maybe the pair was
never observed to interact). de Vries’ (1995) h′ is given by

h′ = h + 6u/(n3 − n)

where u is the number of unknown dominance relationships and h is
the value of Landau’s h for the original matrix with all dyadic entries
whose dominance status is unknown being assigned the value 0.5. de
Vries’ (1995) test of linearity is a randomization test (Section 2.4).

Another potentially useful summary statistic of a dominance hierar-
chy is de Vries et al.’s (2006) steepness. The steepness of a hierarchy
describes how certainly a dominant wins an interaction over a subordi-
nate. In a very steep hierarchy (steepness ∼1.0), dominants almost al-
ways win over subordinates, whereas in a shallow one (steepness ∼0.0),
results are unpredictable. More linear hierarchies tend to be steeper,
but linearity and steepness are different measures. A shallow but lin-
ear hierarchy would be one in which, in all dyads, the higher-ranking
individual is more likely to win a contest but not much more likely.
Thus, steepness quantifies the egalitarian–despotic continuum (de Vries
et al. 2006). Steepness is calculated by regressing a normalized version
of David’s dominance index (see later discussion) on rank. de Vries et al.
(2006) also show how to use randomization tests to test whether the
steepness is significantly greater than would be expected if the number
of interactions won in each dyad was random.

5.4.2: Dominance Ranks and Dominance Indices. Considerable attention has
focused on assigning individuals in a dominance hierarchy to a domi-
nance rank (i.e., a unique integer between 1 and n, the number of ani-
mals in the population) or a noninteger dominance index. Lehner (1998,
pp. 336–338), de Vries (1998), and Bayly et al. (2006) summarize some
of the proposed methods, although there are important recently devel-
oped techniques that are not described in any of these reviews (see later
discussion). The two general approaches have different ostensible objec-
tives but are linked. If each individual is given a dominance index, then
the individuals can be ranked using it, and if individuals are ranked, then
a simple index is the rank divided by the number of individuals. Some
methods use only binary dominant/subordinate information for each
dyad, whereas others consider the data used to come to this conclusion
(e.g., numbers of wins or losses).

It is worth noting that if the hierarchy is perfectly linear (i.e., h =
1.0), then assigning dominance ranks is trivial, and if it is far from linear
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(i.e., h << 1.0) or tests (Appleby 1983; de Vries 1995) do not reject the
null hypothesis of random dyadic dominance, then it probably should
not be attempted.

Here are some of the more popular methods for constructing hierar-
chies, beginning with the ranking methods:

� The “I” method (Slater 1961). Find a ranking that minimizes
the number of inconsistencies. This seems simple and intu-
itive, but it might not produce a unique hierarchy of individ-
uals because several arrangements of the individuals may
possess the same, minimum, number of inconsistencies. For
a few individuals, the I ordering can be found by hand, but
with larger numbers, an iterative computerized procedure is
needed (de Vries 1998).

� Find the ranking that minimizes the proportion of interac-
tions in which an individual lower in the ranking wins over
a more highly ranked individual (Brown 1975, p. 86). This
method is vulnerable to different interaction rates between
different dyads because an inconsistency involving a large
number of interactions will be overweighted.

� The “I&SI” method (de Vries 1998). This is similar to the
I method, but parts of the hierarchy that are unresolved by
minimizing the number of inconsistencies (the same num-
ber of inconsistencies produced by different rankings) are
decided by minimizing the sum of the “strengths” of the
inconsistencies (the rank difference between individuals
whose dominance relationship is inconsistent). This method
is implemented in MatMan (de Vries et al. 1993; Noldus
Information Technology 2003; Section 2.9).

� Find the ranking that maximizes the sum, over dyads, of
the win–loss difference multiplied by the difference in ranks
(Crow 1990). This is an approximate maximum-likelihood
solution when it is assumed that contests are independent
and the probability of A defeating B is an increasing function
of their difference in rank. Both assumptions may or may not
be reasonable.

� Find the ranking that maximizes the likelihood (Section
2.8) of the results of the interactions under the condition of
weak stochastic transitivity (WST) such that if A is likely
to win over B, and B over C, then A is likely to win over C
(McMahan & Morris 1984). This is theoretically a nice
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method, making a reasonable primary assumption about the
nature of the dominance process. The two main drawbacks
are that it also assumes independence of the interactions of
a dyad, which may not be true in many cases, and that the
computation required in maximizing the likelihood is not
particularly straightforward (McMahan & Morris 1984).
In addition, it may not produce a uniquely “best” rank-
ing with several orderings having equal maximum likeli-
hood.

Here are some dominance indices (there are others; Bayly et al. 2006):

� The number of animals dominated by individual I [vI in
Equation (16)] is simple, but it has the drawbacks that it
cannot be calculated when there are unknown dominance
relationships (e.g., a pair never observed interacting), and it
does not use the interaction data if available.

� The proportion of the total encounters engaged in by an
individual that it wins (Baker & Fox 1978) is also simple
and easily calculated, but it might be very misleading if, for
instance, individuals tend only to interact with those close
to them in the hierarchy, leading to situations in which all
except the most and least dominant animals win about half
their contests. This problem is partly dealt with by Crook
and Butterfield’s (1970) index, which is the mean, over
opponents, of the proportion of encounters won by an
individual, and Zumpe and Michael’s (1986) index, which
is similar but combines aggressive and submissive behavior.
These indices become problematic when encounters between
dyads are few and/or very variable.

� David (1987) introduced methods of calculating dominance
indices that deal with the situation in which interactions
do not occur randomly across the hierarchy. In the version
described by de Vries et al. (2006), David’s score is given by

DS(I) =
∑

J

DIJ +
∑

J

DIJ ·
(

∑

K

DJK

)
∑

J

DJI

−
∑

J

DJI ·
(

∑

K

DKJ

)

(17)
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Here, DIJ is de Vries et al.’s (2006) dyadic dominance index
[Equation (10)]. If

∑
DIJ is thought of as I’s net dominance

and
∑

DJI as I’s net submissiveness. then DS(I) can be in-
terpreted as I’s net dominance plus the sum of the net dom-
inances of the animals that I dominated weighted by how
much I dominated them, minus the corresponding values for
net submissiveness. This is a generally good measure of inter-
action success (Gammell et al. 2003; de Vries et al. 2006).

� Clutton-Brock et al. (1979) introduced an index of fighting
success that has some similarities to David’s score. It only
considers whether an individual ever won or lost to another
individual, however, rather than the proportion of wins or
losses, and divides the win measure by the lose measure,
making it very nonlinear. Gammell et al. (2003) consider
Clutton-Brock et al.’s (1979) index to be less satisfactory
than David’s score.

� The cardinal index of dominance rank of Boyd and Silk
(1983) is a maximum-likelihood technique like the WST
(McMahan & Morris 1984), but it makes more assump-
tions and can produce more-informative results. The basic
assumption is that each individual I has a cardinal domi-
nance index DI and that the probability of winning in con-
tests against J is a logistic function of DI − DJ. The DI’s are
estimated by maximum likelihood (Section 2.8), using an
iterative procedure, and the method can give standard errors
or confidence intervals for these, as well as likelihood ratio
tests of a wide range of hypotheses about the dominance
hierarchy (Boyd & Silk 1983). Weighing against these at-
tractive features are the more rigorous assumptions of this
technique, which include independence of interactions and
a form of linearity in dominance, the iterative maximiza-
tion of the likelihood, and the fact that the procedure often
does not work when there are few entries below the diagonal
(i.e., the hierarchy is nearly linear but also includes situa-
tions in which there are individuals who win or lose all their
contests).

� The Elo rating method used by chess federations considers
sequential data on dyadic encounters to update ratings of
each individual in the population after each interaction (Al-
bers & de Vries 2001). It makes sense to import a technique
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developed and accepted by a large number of quantitatively
minded individuals engaged in dyadic contests. The Elo rat-
ing has a number of advantages over most other techniques
used to characterize dominance hierarchies (Albers & de
Vries 2001): It uses the information on individual contests,
but it does not assume them to be independent; it uses se-
quential information; it can track (with some lag) temporal
changes in dominance relationships (Fig. 5.11); it is opera-
tional on almost any data set, however sparse (i.e., lacking
interactions between some pairs of individuals), for which
sequential interaction information is available; it is unaf-
fected by the pattern of frequency of interactions (e.g., indi-
viduals close or far apart in the hierarchy tending to interact
more often); and it is quite easily implemented, containing
no optimization routines or matrix algebra. I can see only
two disadvantages: It needs sequential information that may
not always be available, and the parameter k that determines
the effect of each contest on an individual’s Elo rating is arbi-
trary.

5.4.3: Dominance Hierarchies: An Example. To illustrate some of these mea-
sures, Table 5.8 summarizes the outcomes of pairwise agonistic interac-
tions in a captive population of 10 female olive baboons (from Table I in
McMahan & Morris 1984). There are eight dyads without pairwise data
(indicated by 0s both above and below the diagonal in Table 5.8), and
although there appears to be a dominance hierarchy, it is not perfectly
linear. This is confirmed by a moderate value of h′ = 0.52 that is margin-
ally significant using de Vries’ (1995) permutation test (P = 0.06). The
expected value of h′ under the null hypothesis of randomly distributed
dominance relationships among 10 individuals is 0.27. The steepness
(de Vries et al. 2006) of this hierarchy is 0.40, again a moderate value,
but significantly larger than the expected steepness value of 0.21 (P <

0.01), and so this might be characterized as a “somewhat despotic”
society.

Table 5.9 compares dominance ranks and dominance indices for the
baboon data [de Vries (1998), de Vries and Appleby (2000), Gammell
et al. (2003), and Bayly et al. (2006) also provide comparisons of the
performances of some of these and other measures]. Of the dominance
indices in the foregoing list, the number of animals dominated is not
applicable because of the lack of information for some dyads, the car-
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F I G U R E 5 . 1 1 Example of using the Elo rating to describe a dominance hierarchy from 33 sequentially
ordered dyadic interactions among seven individuals in a fictitious data set. (From Albers & de Vries 2001,
fig. 1.)

dinal dominance rank of Boyd and Silk (1983) cannot be calculated
because there is an individual (#907) that won all her contests, and Elo
ratings cannot be calculated because sequential information is not avail-
able.

The results of the different measures are consistent with regard to
the ranking of the most (#907) and least (#902) dominant individuals,
but in other respects there is considerable discordance (Table 5.9). The
different methods emphasize or deemphasize different aspects of the
data. For instance, the ranking of #915 fourth or fifth using Crow’s
scheme (as opposed to second or third on all others) is driven by a single
loss to the usually lowly ranked #897. Of the dominance rankings, only
the I&SI method provides a unique ranking, which agrees with one other
chosen ranking of the other ranking methods, except Crow’s. Note
that the I&SI method does not necessarily produce a unique ranking
(de Vries & Appleby 2000). Ranks derived from the three dominance
indices differ from each other and from the directly derived dominance
ranks.
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Table 5.8 Outcomes of Pairwise Agonistic Interactions in a Captive Population of 10 Female Olive
baboons (Papio cynocephalus)

Loser

#907 #915 #912 #910 #917 #898 #897 #911 #904 #902

#907 – 2 0 5 2 2 1 0 2 0
#915 0 – 2 2 1 0 3 2 1 1
#912 0 1 – 1 1 3 1 1 4 0

Winner #910 0 0 0 – 1 1 1 0 1 0
#917 0 0 0 0 – 7 1 4 2 3
#898 0 0 0 0 0 – 2 3 6 10
#897 0 1 1 0 2 0 – 0 0 2
#911 0 0 0 1 0 0 0 – 1 1
#904 0 0 0 1 0 0 0 0 – 1
#902 0 0 0 0 0 0 0 0 0 –

From McMahan and Morris (1984).

Table 5.9 Dominance Ranks and Dominance Indices for Baboon Data from Table 5.8

Dominance rankings Dominance indices

I Brown I&SI Crow WST PCW David CBI

907 1 1 1 1 1 1 19.2 33
#915 2 2 2 4,5 2 0.75 12.2 2.75
#912 3 3 3 3 3 0.8 12.5 3.08
#910 4 4 4 7 4 0.29 −1.3 0.91
#917 5,6,7 5 5 2 5 0.71 2.9 0.86
#898 5,6,7 6 6 4,5 6 0.62 −0.7 0.82
#897 5,6,7,8,9 7,8,9 8 6 7,8 0.4 −2.9 0.92
#911 7,8 7,8 7 8 7,8,9 0.23 −7.6 0.53
#904 8,9 8,9 9 9 8,9 0.11 −14.6 0.23
#902 10 10 10 10 10 0 −19.9 0.03

When two or more dominance ranks were chosen by a criterion, all the ranks of an individual are shown. The
dominance ranks are as follows: I (Slater 1961); Brown (Brown 1975, p. 86); I&SI (de Vries 1998); Crow (Crow 1990);
WST (weak stochastic transitivity), (McMahan & Morris 1984). The dominance indices are the proportion of contests
won (PCW), David’s (1987) score as modified by de Vries et al. (2006), and Clutton-Brock et al.’s (1979) index (CBI).

B O X 5.4 Analyzing Dominance Hierarchies: Recommendations

Dominance data are usefully summarized by the sociometric in-
teraction matrices illustrated in Tables 5.7 and 5.8. The linearity
of the hierarchy should usually be assessed by Landau’s (1951)
h or, when there is no information for some dyads, de Vries’
(1995) h′. Except in cases of very obvious hierarchies or the lack
of them, testing the null hypothesis of random dyadic dominance
against the alternative of a hierarchy using the methods of Ap-
pleby (1983) or de Vries (1995) gives an important perspective on
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the data. Often, it will also be useful to calculate de Vries et al.’s
(2006) steepness as a measure of how egalitarian or despotic a
society is. If h (or h′) is reasonably high and larger than would be
expected from random dominance relationships, then obtaining
a dominance index and/or dominance ranking for the individuals
is usually desirable.

The proliferation of ranking methods, some of which need
a fair amount of quite sophisticated computation, will be off-
putting to some social analysts. It is worth remembering that if the
hierarchy is nearly linear (with h or h′ > ∼0.9), then the ranking
should be fairly obvious by any method, whereas if it is less lin-
ear, then the discordance among ranking methods usually reflects
a real lack of predictability in the outcomes of interactions in the
population. I follow Gammell et al. (2003) in recommending
David’s score as providing a dominance index, and thereby dom-
inance ranking, that has generally desirable properties and can
be quite easily calculated (even by hand). The version of David’s
score introduced by de Vries et al. (2006) [Equation (17)] is prob-
ably best because it considers the amount of data available for
each dyad. David’s score is also needed for calculating steepness.
The I&SI (de Vries 1998) technique seems to be in some ways
the best of the straight ranking techniques (de Vries & Appleby
2000), and it is calculated by MatMan (de Vries et al. 1993).
In particular circumstances, other techniques may be useful. For
instance, if the fairly restrictive requirements of Boyd and Silk
(1983) are met, then their cardinal index has many useful prop-
erties, and if sequential data are available, then the chess-players’
Elo ranking (Albers & de Vries 2001) could be very informative.

Martin and Bateson (2007, p. 134) urge caution in interpreting
dominance hierarchies. Dominance relationships can differ, de-
pending on the interaction measure used; they can change tem-
porally (e.g., Table 5.7) and even spatially, with, for instance, the
results of dominance interactions between two territorial animals
being dependent on the relative distances to the centers of their
territories.

5.5 Adding Time: Lagged Association Rates

Temporal patterning is one of the elements of Hinde’s (1976) charac-
terization of social relationships. How associations, interactions, and
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relationships change over time are key components of the social life of
an animal (Section 4.6) and the nature of the society that it inhabits.
Traditional ordinations, network analyses, and dominance hierarchy
analyses indicate temporal patterning coarsely at best. For instance, or-
dinations, cluster analyses, network analyses, and dominance hierarchy
analyses can be made in different time periods and compared (Sections
5.2–5.4). Using the Elo rating to describe a dominance hierarchy can
provide a temporal axis to an aspect of sociality (Fig. 5.11), but this is an
imprecise, lagged description. The temporal scales of sociality are not
addressed.

Lagged association rate analyses, which are based on the methods
of Underwood (1981) and Myers (1983), were designed to address the
scales of temporal patterning in social relationships (Whitehead 1995).
Introduced in Section 4.6 as a method for describing the temporal pat-
terning of a dyadic relationship, their principal utility has been at the
societal level. Partly this is because there are usually insufficient data to
use these methods effectively for a single dyad, and partly because they
integrate well over populations. In addition, by fitting models to lagged
association rates, we can potentially both uncover structural aspects
of a social organization and estimate the parameters of that structure.
However, it is important to be aware that different social structures can
give rise to similarly patterned lagged association rates.

In the following subsections, I show how to calculate lagged association
rates, discuss some variants and options, and then consider model fitting.

5.5.1: The Lagged Association Rate. The dyadic lagged association rate of
lag τ is simply the probability of association τ time units after a previous
association and is estimated by the ratio of the number of associations
X has with Y τ time units apart divided by the number of pairs of
identifications of X τ time units apart (Section 4.6). This is general-
ized to the population lagged association rate g(τ ), the probability of
association τ time units after a previous association averaged over all
associations. It is estimated by taking the ratio of the number of ob-
served dyadic associations that were repeated τ time units apart over the
potential number of such dyadic associations, given when each individ-
ual was identified. Technically, it is given by (Whitehead 1995)

g(τ ) =

∑

j,k|(tk−tj )=τ

∑

X

∑

Y�=X
a j (X, Y) · ak(X, Y)

∑

j,k|(tk−tj )=τ

∑

X

∑

Y�=X
a j (X, Y) · ak(X, X)

(18)
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where a j (X, Y) = 1 if X and Y were recorded as associated in time
period j, a j (X, Y) = 0 if they were not associated or if either was not
identified during the sampling period, ak(X, X) = 1 if X was identified
in period k, and ak(X, X) = 0 if X was not identified in period k.
Summing over each pair of sampling periods τ time units apart, j and
k, and over all individuals (X) identified in both periods, we obtain
the numerator as the total number of other individuals identified in the
same group as X in both periods, whereas the denominator is the total
number of other individuals identified in the same group as X in the first
period.

The lagged association rate g(τ ) is often plotted against lag τ to
describe how relationships change with time (e.g., Fig. 5.14). If the
range of τ considered is wide (say, more than an order of magnitude),
then it is usually clearer to log the x-axes, the time lag. The y-axis may
usefully be logged in some circumstances (such as when there are two
or more processes occurring at very different scales).

Usually, sample sizes are too small for some values of τ to give an
estimate of g(τ ) with acceptable precision. Thus, it makes sense to lump
the data for a range of τ or employ a moving average (as in SOCPROG),
widening the range of τ being considered so that the denominator of
Equation (18) is above some minimum. The desirable minimum depends
on the situation, and so the analyst should try several values to find a
good compromise between the precision of g(τ ) and the precision of τ . A
great deal of lumping will produce a smooth curve of lagged association
rates but be imprecise for any value of τ ; too little lumping will give a
curve with many spurious peaks and troughs (Fig. 5.12).

Like any other social measure, lagged association rates have little value
without some measure of precision. There are no analytical estimates of
confidence intervals for g(τ ), and I have not found a valid nonparamet-
ric bootstrap procedure. Of the methods that I have experimented with,
the parametric bootstrap (Section 2.3) performs best, but it requires a
mathematical model of the social structure and is cumbersome to imple-
ment. More usable, but rather approximate, is the temporal jackknife
(Section 2.3) in which different sets of sampling periods are omitted in
turn (Whitehead 2007). This is the method implemented by SOCPROG
(Fig. 5.16).

5.5.2: Standardized Lagged Association Rate. In many cases, although our
records of associations are accurate, a zero in the association data only
means that a dyad was not observed to associate in the sampling pe-
riod, not that they did not associate. In addition, the rate of identifying
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F I G U R E 5 . 1 2 Standardized lagged association rates for 243 northern bottlenose whales (Hyperoodon
ampullatus) with various degrees of lumping (association defined as observed within 1 hour, sampling
periods of 1 day). With a moving average of 400 associations, the plot is too spiky; with 40,000 associa-
tions, much information is lost. The line with a moving average of 4,000 associations is close to optimal.
(Illustration copyright Emese Kazár.)

individuals and thus associates may vary among sampling periods. In
such cases, the probability of two individuals being associated after
some lag is not estimated by Equation (18). Instead, in these situations,
I suggest estimating a related quantity, the standardized lagged asso-
ciation rate (Whitehead 1995). It is the probability that, supposing Y
is an associate of X, if a randomly chosen associate of X is identified
after a lag of τ , then it is Y. The standardized lagged association rate is
estimated from
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g′(τ ) =

∑

j,k|(tk−tj )=τ

∑

X

∑

Y�=X
a j (X, Y) · ak(X, Y)

∑

j,k|(tk−tj )=τ

∑

X

(
∑

Y�=X
a j (X, Y)

)

·
(

∑

Y �=X
ak(X, Y)

) (19)

where the notation is as for Equation (18).
Although the lagged association rate should be 1.0 at time lags so

small that no associations have changed, the standardized lagged asso-
ciation rate at very small lags will be the inverse of the mean number of
associates of an individual during a sampling period, its gregariousness
or typical group size minus one. Standardized lagged association rates
are plotted against lag, as with lagged association rates, and precision
can be estimated using the temporal jackknife method.

5.5.3: Null Association Rate. To interpret lagged association rates and st-
andardized lagged association rates, it helps to consider what values
they would have if animals associated randomly. I call these the null
association rates and standardized null association rates, respectively.
The null association rate is the ratio of the gregariousness of the popu-
lation (i.e., mean number of associates of an individual in any sampling
period; Section 4.3) to the number of identified individuals minus one.
SOCPROG calculates the null association rate using the association data
available for each time lag, so it varies a little with τ . The standardized
null association rate is the inverse of the number of identified individuals
minus one, and does not change with time lag.

5.5.4: Intermediate Association Rate. I proposed the intermediate associa-
tion rate (Whitehead 1995) as a statistic that would help to distinguish
between social systems that give the same pattern of lagged association
rates (for some examples of such indeterminacy, see the description of
Fig. 5.13). The intermediate association rate is calculated in a similar
way to the lagged association rate, but, between any two individuals,
only associations [the numerator in Equation (18)] and potential as-
sociations [the denominator in Equation (18)] between the first and
last recorded association, and only intervals including either the first
or last association, are considered (Whitehead 1995). For intermediate
association rates, the time lag is the minimum of the time between the
sampling period and the first or last association. Intermediate associa-
tion rates approximate 1.0 if associations with long lags are between
members of permanent units that do not disassociate between observed
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associations. If long-term reassociations often follow periods of separa-
tion, then the intermediate association rate’s relationship with time lag
may be similar to that of the lagged association rate. The standardized inter-
mediate association rate is calculated similarly to the lagged association
rate but includes the number of associates of each individual at both the
beginning and end of the time lag in the denominator, as in Equation (19).

One needs a fair amount of data to compute meaningful intermediate
association rates or standardized intermediate association rates, but if
they are available, they can help to interpret lagged association rates.
The expected values of intermediate association rates can depend on the
amount of data collected, however, which limits their usefulness. For
instance, consider a society in which dyads associate continuously for a
while and then break up but may reassociate after a long time period.
Then, if the sampling rate is such that the data usually contain no more
than one period of association per dyad, the intermediate association
rate will stay around 1.0. In contrast, if the data usually include several
periods of association per dyad, then the intermediate rate will fall with
lag, showing a similar pattern to the lagged association rate. For these
reasons, I now believe that the value of the intermediate association rate
is rather less than when I originally proposed it (Whitehead 1995), and
I do not include it in the examples that follow. A revised version of the
intermediate association rate that is less biased by sampling intensity
could probably be developed but has not yet been.

5.5.5: Lagged Identification Rate. Another related measure that can help in
the interpretation of the lagged association rates is the nonsocial lagged
identification rate (Whitehead 2001). The lagged identification rate in-
forms us about movements into and out of a study area. It estimates the
probability that an individual in the study area at any time is the same
as a randomly chosen individual from the study area τ time units later,
and thus is the probability of remaining in the study area divided by the
population size in the study area. It is estimated from (Whitehead 2001)

R(τ ) =

∑

j,k|(tk−tj )=τ

mjk

∑

j,k|(tk−tj )=τ

nj · nk
(20)

where nj is the number of individuals identified in sampling period j and
mjk is the number of individuals identified in both periods j and k. There
is no lagged-identification-rate analog to the standardization of lagged
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association rates, because the lagged identification rate is, in this sense
(having identifications rather than associations in the denominator), al-
ready standardized.

If the population is closed, with no birth, death, immigration, or
emigration, then the lagged identification rate should be constant at the
inverse of the population size minus one. A fall in lagged identification
rate over lags of about T time units indicates animals leaving the pop-
ulation through emigration or mortality (or possibly misidentifications)
at overall rates of roughly 1/T per time unit [more precise estimates
of leaving rates can come from fitting models; see later discussion and
Whitehead (2001)]. If, following a fall, the lagged identification rate
starts to level again, this may indicate emigration from, and then reim-
migration into, the study area or a mixed population of residents and
transients. Confidence intervals for lagged identification rates can per-
haps best be estimated using the bootstrap technique (Whitehead 2007)
in which individuals are sampled with replacement to obtain bootstrap
replicates (Section 2.3).

Lagged identification rates help to place lagged association rates in
perspective because, if one individual has left the population, then it
cannot associate with anyone still in it, and if two individuals have left
the population, then their association pattern is unknown.

5.5.6: Interpreting Lagged Association Rates. To illustrate the interpretation
of plots of lagged association rates and related measures (null association
rates and lagged identification rates), Fig. 5.13 shows six scenarios:

1. Figure 5.13A: “closed, non-interacting units.” Here, the
lagged association rate is constant at 1.0 at all lags, indicat-
ing that all associations persist throughout the study, and so
there are completely closed, noninteracting units. There is no
information in the plot about the sizes of the units.

2. Figure 5.13B: “casual acquaintances.” The lagged associ-
ation rate falls to the null association rate over periods of
about 10 time units, suggesting casual acquaintances who
associate for about this period before breaking up. They may
reassociate later.

3. Figure 5.13C: “constant companions plus casual acquain-
tances.” In this scenario, the lagged association rate falls but
stabilizes above the null association rate. Several social sys-
tems could produce this pattern, including animals forming
permanent social units that themselves associate for periods
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F I G U R E 5 . 1 3 Possible profiles of lagged association rates (solid line), null association rates (dotted
line), and lagged identification rates (dashed line) indicating different social structures.

of about 10 time periods; casual but preferred acquaintances
in which associations break up after about 10 time peri-
ods, but individuals are more likely to associate with those
with whom they have previously associated than with mem-
bers of the population at random; and a situation in which
units have a permanent core membership but there are also
“floaters” who move between units.

4. Figure 5.13D: “rapid disassociation plus preferred compan-
ions.” Here, the lagged association rate is constant over the
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time lags examined but less than 1.0 and greater than the
null association rate. In this situation, many associations
are broken over less than one time period, but there is little
change over the range of lags considered. This is consistent
with social systems in which associations are ephemeral, but
there are preferred associations, or a population that con-
tains no social preference but is geographically structured
so that individuals are more likely to associate with some
members of the population than others.

5. Figure 5.13E: “constant companions plus casual acquain-
tances plus mortality.” Here, the lagged association rate,
when plotted on a log scale, shows two falls, first over peri-
ods of one to two time periods, and then over greater than
about 40 time periods. The first drop, at small lags, could
be due to the kind of process discussed for Fig. 5.13C, such
as permanent but associating social units, casual but pre-
ferred acquaintances, or permanent units plus floaters. The
second drop over the longer lags coincides with a similar
drop in lagged identification rates, indicating that this is a
demographic feature: Individuals are dying or leaving the
identified population over such lags. If the lagged identifica-
tion rate did not fall over such lags, then the two-drop lagged
association rate would indicate two types of social disasso-
ciation over different time scales, such as might be caused
by semipermanent units that associate with each other and
retain their membership over substantial time periods but do
eventually break up.

6. Figure 5.13F: “cyclic sociality plus mortality.” This shows
a more complex pattern, including cyclic association and
disassociation over periods of about 12 time units, plus mor-
tality or emigration. To clearly detect such a pattern would
require considerable data, and I have never seen such a situa-
tion in practice.

If the lagged association rates and null association rates in Fig. 5.13
were replaced by standardized lagged association rates and standardized
null association rates, we would interpret the patterns similarly in most
cases. Because standardized lagged association rates are not fixed at 1.0
with zero lag, however, the social systems that produced the patterns in
Fig. 5.13A and Fig. 5.13D are not distinguishable based on standardized
rates.
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Figure 5.14 shows a variety of patterns of lagged association and
standardized lagged association rates from published papers. The ma-
jority of these are of cetaceans because lagged association rates have
been primarily used on these species. All show a fall with time lag, but
the drops occur at about 12 hours for eland and pilot whales and 100
days for the disk-winged bats and bottlenose dolphins, whereas with the
killer whales and spinner dolphins, the fall is more gradual and seems
to occur over a wide range of time lags. In the case of the spinner dol-
phins, the drop could be due to mortality (Karczmarski et al. 2005).
The lagged association rate or standardized lagged association rate is
well above the null association rate (not shown in Fig. 5.14 for clar-
ity), indicating nonrandom associations in all these cases, except for the
bottlenose dolphins at the longest lags of about 6 years.

5.5.7: Fitting Models to Lagged Association Rate. Lagged association rate
analyses can give more than a display of the temporal patterning of a
social structure. We can fit models to lagged association rate data, and
thus have some quantitative basis for accepting or rejecting the presence
of certain social elements. Model fitting also allows us to make quanti-
tative estimates of social parameters, so the interpretation of Fig. 5.13C
is changed from “associations break up after about 10 time periods”
to “the mean duration of associations is estimated to be 8.3 time units
(standard error 2.1)”. Model fitting is useful, but the results should not
be overinterpreted. The model chosen describes the lagged association
rates, not social structure per se, and, as emphasized in the previous
subsection, different social structures can give qualitatively and quanti-
tatively similar patterns of lagged association rates.

There are some technical challenges with fitting models to lagged
association rates that are beyond the scope of this book. They revolve
around the issue that, even with a fairly simple model of social structure,
if there are more than just a few sampling periods, then the number of
possible identification histories of an individual becomes too large for
even modern computers to handle. Ways around this are discussed by
Whitehead (2001) in the case of fitting models to lagged identification
rate data, but these also apply to fitting models to lagged association
rates, and are implemented by SOCPROG. They basically amount to
collating information for each pair of sampling periods, assuming that
the number of repeat associations for each pair of periods [the numer-
ator of Equation (18) inside the first summation sign] is drawn from a
binomial distribution. The binomial parameters are the number of pos-
sible periods [denominator of Equation (18) inside the first summation



F I G U R E 5 . 1 4 Examples of the use of lagged association rates (LARs) and standardized lagged associ-
ation rates (SLARs). A: Eland (Taurotragus sp.; data from Underwood 1981). B: Disk-winged bats (Thy-
roptera tricolor; data from Vonhof et al. 2004, fig. 5). C: Pilot whales (Globicephala melas; data from
Ottensmeyer & Whitehead 2003, fig. 3). D: Bottlenose dolphins (Tursiops spp., data from Lusseau et al.
2003, fig. 6a). E: "Transient" killer whales (Orcinus orca, data from Baird & Whitehead 2000). F: Spinner
dolphins (Stenella longirostris, data from Karczmarski et al. 2005, fig. 4, upper panel).
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sign] as sample size and the expected lagged association rate g(τ ) as the
probability of a repeat association. Then models can be fit by choosing
parameters that maximize the likelihood of these data (Section 2.8).

The principal problem with this procedure is that the data as used
are not independent, so that an assumption of the method of likeli-
hood is violated. I have shown analytically and using simulation (White-
head 2001), however, that the parameter estimates produced by maxi-
mum likelihood are approximately unbiased. A version of the likelihood
method, quasilikelihood, that attempts to compensate for nonindepen-
dence of count data (Burnham & Anderson 2002, pp. 67–70) can be
used to produce estimated confidence intervals, but the temporal jack-
knife (Section 2.3), which removes different sets of sampling periods in
turn and can be used to estimate confidence for the lagged association
rates (see earlier discussion), is also a good option. The quasilikelihood
version of AIC, QAIC (Section 2.8), can be used to select among differ-
ent models of lagged association rates (Whitehead 2007).

Which models should be fitted to lagged association rates? Those
that I have found useful are of the exponential family in which lagged
association rates are built up from processes whose effects (forming an
association or breaking it) are equally likely to occur in any time interval.
These models can cover a range of possible scenarios, as I show, but
nonexponential models could be useful in special cases. For instance,
with a lagged association rate pattern such as that shown in Fig. 5.13F,
cyclical patterns could be generated by a model including trigonometric
functions of the lag, such as cos(τ ). Here are the exponential models for
lagged association rates that SOCPROG fits (there is also an option to
fit custom models). The models are in pairs—the same basic model with
and without rapid disassociation over periods of less than one sampling
period (represented by the first two columns in Fig. 5.15):

� LAR1: g = 1. Here, all associations persist through out the
study. This is the “closed, noninteracting units” pattern of
Fig. 5.13A.

� LAR2: g = a. Here, some associations decay rapidly within
one sampling period, and then the lagged association rate
is stable. If a ≈ m/(n − 1), the null association rate (where
m is the mean gregariousness of the population), then there
is no sign of preferred or prolonged association in the pop-
ulation. If a > m/(n − 1), which is the pattern shown in Fig.
5.13D, then the model is that to be expected when individu-
als associate ephemerally but nonrandomly, either because
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F I G U R E 5 . 1 5 Exponential models that can be fitted to lagged association rates (LARs) and standardized
lagged association rates (SLARs).

of dyadic preference or structural features such as ranging
patterns.

� LAR3: g = e−bτ . This is a model of straight exponential de-
cay and is easiest to imagine in a very large population in
which animals associate for about 1/b time units and then
never again. However, it is possible to envisage other scenar-
ios producing lagged association rates that fit this pattern,
for instance, a smaller population where animals avoid pre-
vious associates or a population with a very high mortality
or emigration rate of about b per sampling period. In the
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latter case, the lagged identification rate should also fall over
time lags of about 1/b.

� LAR4: g = a · e−bτ . This combines LAR2, indicating a pro-
portion a of associations that disassociate within a single
sampling period, with LAR3, so that associations that do
persist beyond one sampling unit eventually fall to zero ei-
ther because of random association in a large population or
active avoidance of previous associates or departure from
the population.

� LAR5: g = a + (1 − a) · e−bτ . Here, association rates initially
fall exponentially but then level off. This could indicate the
scenario of casual acquaintances within a closed population
of Fig. 5.13B if the leveling out is at the null association rate
[a ≈ m/(n − 1)]. If the long-term lagged association rate is
above the null association rate [a > m/(n − 1)], then this indi-
cates the “constant companions plus casual acquaintances”
scenario of Fig. 5.13C. This can be produced by social sys-
tems such as permanent social units (of approximate typical
unit size u = 1 + m · a if the population is fairly large) that
associate temporarily (for periods of about 1/b sampling pe-
riods), casual, but preferred, associations lasting about 1/b
sampling periods, and a situation in which some individuals
form permanent units, whereas others are “floaters” who
move between units.

� LAR6: g = a + c · e−bτ . This combines models LAR2, with
rapid disassociation within one sampling period, and LAR5,
in which association rates fall and then level off. The possi-
bilities listed under LAR5 apply here, with rapid disassocia-
tion added to them.

� LAR7: g = a · e−bτ + (1 − a) · e−dτ . Here, there are two levels
of disassociation at time scales of 1/b and 1/d, respectively,
as shown in Fig. 5.13E. The shorter will probably be a social
disaffiliation, of the types discussed under LAR5, but the
more permanent relationships, either within units or pref-
erential association patterns, eventually decay for reasons
such as some movement between permanent units, shifts in
preferred companionship, mortality, emigration, or combi-
nations of these.

� LAR8: g = a · e−bτ + c · e−dτ . This combines the rapid dis-
association of LAR2 with the two levels of disassociation of
LAR7.
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Similar models can be fit to standardized lagged association rates,
although there are some differences, particularly in that rapid disasso-
ciation cannot be directly incorporated because this is confounded with
gregariousness. Thus, each model of standardized lagged association
rates is analogous to two models of unstandardized lagged association
rates, with and without rapid disassociation (given along the rows of
Fig. 5.15). Here are the standard models that SOCPROG can fit to
standardized lagged association rates:

� SLAR1: g′ = a. Here, there is no change in association rate
with lags of one sampling period or more. This could repre-
sent the “closed, noninteracting units” pattern of LAR1, in
which case a is the inverse of the gregariousness, or if there
is rapid disassociation, as in LAR2, a is less than the inverse
of the gregariousness. In the extreme, with no associations
persisting over one sampling period in a closed population of
size n, then a = 1/(n − 1).

� SLAR2: g′ = a · e−bτ . This indicates casual acquaintances in
a large population, possibly including rapid disassociation,
as in LAR3 and LAR4. The duration of associations is of the
order of 1/b, and if there are no rapid disassociations, a is the
inverse of the gregariousness.

� SLAR3: g′ = a + c · e−bτ . Here, association rates fall with
time lag and then level off—the patterns in LAR5 and
LAR6—and the explanations given for these models also
hold here. The duration of associations is of the order of
1/b, and if there is no rapid disassociation, then the gregar-
iousness is 1/(a + c), and, in the case of permanent units
that temporarily group, the typical unit size is about 1 + a/
(a + c)2.

� SLAR4: g′ = a · e−bτ + c · e−dτ . Here, there are two levels
of disassociation, perhaps the fission/fusion of nearly per-
manent social units into and out of groups on the short time
scale and transfers between units on the longer one. Other
scenarios producing this pattern were suggested for LAR7
and LAR8.

Some technical issues may come into play when fitting models of
lagged association rates and standardized lagged association rates. The
model fitting is by iterative convergence to the original association data
(not estimated lagged association rates). One may have to try different
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F I G U R E 5 . 1 6 Standardized lagged association rates plotted against time lag for 1,300 female and imma-
ture sperm whales (Physeter macrocephalus) studied in the South Pacific between 1985 and 1995. Vertical
bars indicate approximate standard errors calculated using the temporal jackknife method (omitting each
year’s data in turn). A moving average of 100,000 associations was used to smooth the curve. The best-
fitting models of four members of the exponential family are shown (see table 5.10 for formulas). These
models were fit using maximum likelihood to the original data, not to the calculated standardized lagged
association rates.

start positions for the parameters a, b, c, and d to get a convergence and
a satisfactory model fit. With large data sets over long time intervals
(e.g., 100 individuals frequently observed over 10 years), using a short
sampling period (say, 15 minutes) may produce too much data for
one’s computer to handle. In these cases, one should place a cap on the
maximum time scale being investigated (e.g., 12 hours; SOCPROG has
an option for this), and then examine lags of greater than 1 day using
a larger sampling period, maybe 1 day. The two lagged association rate
plots can then be joined to show how associations change over scales
from 15 minutes to 10 years. One should use a logged x-axis in this case.

As an example, Fig. 5.16 shows standardized lagged association rates
for female and immature sperm whales, with the four exponential mod-
els for standardized lagged association rates fitted. The two more com-
plex models show reasonable fit to the data, and this is confirmed by the
QAIC analysis shown in Table 5.10. The “constant companions plus
casual acquaintances model,” SLAR3, has the lowest QAIC and so fits
best. Adding a second level of disassociation or mortality, SLAR4, gives
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Table 5.10 Exponential Models ( τ Is Time Lag in Days) Fit to Data on Standardized Lagged
Association Rates (g′) of Sperm Whales as Shown in Figure 5.16

Model Best fit QAIC �QAIC

SLAR1 g ′ = 0.022 5,686.93 60.75 No support
SLAR2 g ′ = 0.026e−0.00034τ 5,660.67 34.49 No support
SLAR3 g ′ = 0.015 + 0.020e−0.095τ 5,626.18 0 Best
SLAR4 g ′ = 0.016e−0.000022tτ + 0.019e−0.097τ 5,628.12 1.94 Some support

The lowest quasilikelihood Akaike Information criterion (QAIC) indicates the best-fitting model, and �QAIC
(difference between QAIC and that of the best model) indicates the degree of support for the other models.

almost the same curve (Fig. 5.16) and a QAIC higher by 1.94, indicat-
ing some support. There is virtually no support for the simpler models,
SLAR1 and SLAR2 �QAIC > 30; see Section 2.8).

These models suggest that there is important disassociation over
scales of about 10 days (1/b), but that the stabilization at lags greater
than this (g′ ≈ 0.015; Fig. 5.16) is well above the standardized null
association rate [0.0008 = 1/(1,300 − 1)]. Sociograms, cluster analyses,
intermediate association rates, and simple inspection of the data show
that this is because of temporary merging of nearly permanent social
units (e.g., Whitehead et al. 1991), and so, using the formulas given
with the description of SLAR3, we obtain an estimate of the typical
group size of 29.6 animals, and the typical unit size 13.4 animals. If
SLAR3 is reparameterized as a = (u − 1)/m2 and c = (m + 1 − u)/m2,
where m is the gregariousness (so m + 1 is the typical group size) and u
is the typical unit size, then the jackknife method gives standard errors
for the measures of social structure: m + 1 = 29.6 (SE 6.6), u = 13.4 (SE
4.2) and b = 0.095/day (SE 0.046). Furthermore, there are indications
of a fall in the standardized lagged association rate at high lags in
Fig. 5.16, and, if we accept SLAR4, this is estimated to be at a rate of
0.000022/day (SE 0.00018499) = 0.008/year (SE 0.0675). This is not
an unreasonable, if a very inaccurate, estimate of mortality for sperm
whales.

B O X 5.5 Lagged Association Rates: Recommendations and Extensions

The display of lagged association rates, and related methods de-
scribed in Section 5.5, constitute the major currently available
analytical tool that allows the social analyst to address the is-
sue of temporal scale directly. Because temporal scale is a vital
element of social structure, this gives these techniques a poten-
tially important role in the social analysis of any species. For
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species with large ranges and large populations, however, like
cetaceans, their relative significance is increased. This is because,
unlike ordinations and network analyses, lagged association rates
naturally integrate over large, sparse data sets. When many in-
dividuals are just identified once or twice, association indices or
interaction rates are highly imprecise (Section 3.11), and any dis-
play produced using them may be extremely misleading. Usually,
then, we restrict attention to just those individuals with reason-
ably large sample sizes (Box 5.1), but is this biasing our sample
or giving a false impression? In contrast, lagged association rates
use all of the data (do not restrict to individuals seen more than
x times when carrying out lagged association rate analyses; Box
5.1). If there are much data in total, even though there are only
little data on any individual and even less on any dyad, we may
get a useful picture of temporal aspects of relationships and be
able to estimate social measures for the population. As an ex-
ample, the 1,300 sperm whales used in the analysis of Fig. 5.16
were identified on an average of 1.7 days each, yet an informative
model of social structure was produced (Section 5.5).

There are, however, limitations and difficulties in the use of
lagged association rates. These analyses do need relatively large
amounts of data to be useful. With just a few identifications of a
few individuals, lagged association rates will be uninformative.
Several technical issues need consideration:

� The definitions of association and sampling period.
These definitions are crucial to the analysis. The
shorter the sampling period, the finer is the scale of
the temporal analysis. However, a very short sam-
pling period may give too much data (too many pairs
of associations) over longer time scales. The way
around this is only to consider short lags with the
fine sampling period and meld the results to those
from a longer-scale analysis with a coarser sampling
period.

� Should one use lagged association rates or stan-
dardized lagged association rates? If the lack of an
association in a sampling period can be recorded ac-
curately, then lagged association rates can be used.
Their meaning is more intuitive and they are more
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informative. For instance, a greater range of expo-
nential models can be fitted (Fig. 5.15). If the social
analyst cannot be sure that a dyad did not associate
in a sampling period even though one or both mem-
bers were identified, then she should use the stan-
dardized lagged association rates.

� Pooling. Over what time lags should data be pooled?
With little pooling, the lagged association rates may
be very “spiky,” with the spikes having no social rel-
evance (Fig. 5.12). With too much pooling, the tem-
poral resolution is lost. My practice is to increase the
pooling (number of associations in the moving aver-
age in SOCPROG) until a fairly smooth and believ-
able curve emerges (Fig. 5.12). I have found no a pri-
ori rule of thumb as to how large the pooling should
be.

� Standard errors. Standard errors in lagged asso-
ciation rates can be obtained using the temporal
jackknife (as in Fig. 5.16), but we need to choose
temporal periods on which to jackknife that can be
considered reasonably independent. This method
produces only rough standard errors. The standard
errors of parameter estimates of fitted models can
also be estimated using the temporal jackknife or by
quasilikelihood methods. These standard errors are
approximate and are not properly justified theoreti-
cally (Whitehead 2007).

� Which models to fit? Burnham and Anderson (2002,
p. 19) warn against trying to fit too many models.
This should not be too great a problem if poten-
tial social structures for the population are used
as the basis for choosing potential models. The
exponential-family models of lagged association
rates and standardized lagged association rates
considered by SOCPROG and described in Sec-
tion 5.5 (see also Fig. 5.15) are appropriate in many
cases.

� Model selection. Although using the QAIC to select
models of lagged association rates and standard-
ized lagged association rates can be useful in many
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circumstances, it is not fully theoretically justified
and can be misleading (Whitehead 2007). Thus,
QAICs should be considered a rough guide to the
value of the different models.

The most important caution when using lagged association rates
and standardized lagged association rates is that these measures
describe aspects of the social structure, they do not prescribe them.
As emphasized in Section 5.5, several quite different social struc-
tures can produce the same patterns and fitted models of lagged
association rates. Thus, lagged association rates may be important
tools in examining social structures, but they do not tell the whole
story and should be used in conjunction with other methods such
as ordinations (Section 5.2) and network analyses (Section 5.3).

Lagged association rate analyses can be extended to look at
between-class associations, as described in Section 4.11. Thus, we
can, for example, examine the changes over time in associations
between males and females (e.g., Fig. 4.6). Another extension,
which has not yet been developed but should be feasible, is to
produce a version of the lagged association rate for interaction,
rather than association, data. Then we would be asking questions
such as, How do dyadic grooming rates change with time lag?

A potentially exciting development is in the work of Palla et al.
(2007) who explicitly incorporates temporal change and the evo-
lution of social groups into network analysis. Although their
examples are for binary networks, they indicate that the method
is usable on weighted networks.

5.6 Multivariate Methods

The methods considered so far in this chapter have used data from one
association measure or interaction type. Our depiction of a relationship
is more powerful if we have more than one interaction or association
measure (Section 4.7), and, consequently, models of social structure are
more powerful if they are based on more than one relationship measure.
Generally, the more relationship measures, and the more varied the
relationship measures, the better. With easily observed animals, the rates
of interaction can be calculated for a range of interaction types, including
both affiliative and agonistic behavior, possibly including interactions
in more than one sensory mode, such as calling and grooming. Even for
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very cryptic species whose behavior is difficult to observe, it is possible
to obtain multiple relationship measures, such as association indices in
different behavioral modes (e.g., foraging and socializing; Fig. 4.7) or
over different spatial and temporal scales (e.g., using two definitions
of association; Section 3.3). With multidimensional relationship data
available, the issue becomes how to make best use of them.

We can use the methods of the previous sections of this chapter in
tandem. Ordinations, cluster analyses, sociograms, network measures,
dominance analyses, and lagged association rates can all be carried out
separately for analyses of, say, agonism and grooming, and the results
displayed side by side (e.g., Flack et al. 2006). A useful technique intro-
duced by network analysts is to use the same ordination of the nodes
representing the individuals for sociograms or network diagrams of dif-
ferent ordination measures. So, for instance, Lusseau (2007) used the
association indices within a community of male bottlenose dolphins to
arrange the nodes on a network diagram and then used the same ar-
rangement to display the strengths of links of agonistic and affiliative
interaction rates (Fig. 5.17). The contrasting patterns indicate that the
dolphins were more agonistic to individuals with whom they associ-
ated least and more affiliative to individuals with whom they associated
most.

Another approach is to produce single displays that incorporate data
from different relationship measures. Examples of this are shown in Fig.
4.7, in which the association index of a pair of dolphins when foraging is
plotted against the association index of the same pair when socializing,
and in Fig. 4.4, in which the dyadic values of four relationship measures
for chickadees feeding at a feeder are plotted against one another. With
more than two relationship measures, however, as in Fig. 4.4, such dis-
plays are rather unwieldy and do not give a clear overall perspective
of the social structure. If the relationship measures are to some degree
correlated, then principal components analysis (Section 2.6) can be used
to reduce dimensionality, perhaps allowing most of the information con-
tained in several relationship measures to be plotted in two dimensions
(Whitehead 1997).

As an example, a principal components analysis of the four relation-
ship measures of the chickadees shown in Fig. 4.4 gave two principal
components with eigenvalues greater than or equal to one (a frequently
used cutoff when deciding how many dimensions to display; Manly
1994, p. 86). The first, which I call “Association,” loaded (i.e., corre-
lated) moderately with all the measures except dominance, and the sec-
ond loaded entirely on dominance, and so I call it “Dominance.” Here





F I G U R E 5 . 1 7 Network depictions of one community of bottlenose dolphins (Tursiops spp.) in Fjordland,
New Zealand, using the same ordination. (A) Association indices based on grouping. (B) Rates of agonis-
tic “head-butts.” (C) Rates of affiliative “mirroring.” (From Lusseau 2007) (Illustration copyright Emese
Kazár.)



C H A P T E R F I V E 218

F I G U R E 5 . 1 8 Principal components scores for four dyadic relationship measures for seven chickadees
(Parus atricapillus) observed feeding together at a feeder (see fig. 4.4; data from Ficken et al. 1981). The
second principal component scores (Dominance) are plotted against the first (Association). Each symbol
represents one dyad.

are the loadings (correlation coefficients between original variables and
principal components):

First principal component Second principal component
“Association” “Dominance”

Nearest associates? 0.34 0.00
Dominance 0.00 1.00
Arrived together? 0.41 0.00
Censused in same hour? 0.39 0.00

Because the variables that make up “Association” are all symmetric
(IAB = IBA), whereas dominance is perfectly asymmetric (IAB = −IBA),
I only plot values of the second principal component greater than zero
against the first principal component in Fig. 5.18 (the part not shown,
with “Dominance” less than zero, is a mirror image of that shown).
This plot summarizes much of the information available (i.e., in the
multiple plots of Fig. 4.4) because the first two principal components
together explained 81% of the variance in the data. It clearly indicates
that dominance asymmetry increases with association, as well as that
the pairs that later mated had high association values but not atypical
dominance relationships.

If the relationship measures are categorical rather than continuous,
then multiway tables may be a useful alternative display method. Table
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Table 5.11 Categorical Summary of Relationships for Ecuadorean Sperm Whales (Physeter
macrocephalus) for Three Levels of Association Strengtha and Two Levels of Temporal Stabilityb

between Different Classes of Individuals and for Relationships of Female #234

Strength Stability Number of pairwise relationships:

G a H b �-� �-� �-� �#234-?

1 (2–4 hr) 0 (unstable) 252 21 0 1
2 (0.1–2 hr) 0 (unstable) 619 45 1 5
3 (together) 0 (unstable) 145 20 0 0
1 (2–4 hr) 1 (stable) 10 0 0 0
2 (0.1–2 hr) 1 (stable) 205 0 0 12
3 (together) 1 (stable) 148 0 0 7

aG : 1, seen <4 hr apart but not <2 hr; 2, seen within 2 hr but never together; 3, seen together.
bH : 0, not seen together on 2 days at least 10 days apart; 1, seen together on 2 days at least 10 days apart.
Whales are classified as female/immature (�) or mature male (�).
From Whitehead (1997).

5.11 shows an example for sperm whale relationships categorized by
how close together in time the individuals were identified and over what
time period. Using the characteristics of sperm whale society indicated by
the summary in Table 5.11, we can see that some relationships among
females and immatures are stable, whereas no observed relationship
involving a mature male is.

Such displays and tables can be very informative about the nature
of a social system (Whitehead 1997). Figure 5.19 displays four different
simulated social systems, each containing 30 animals. In these plots, each
point represents a dyad, the x-axis represents the mean interaction rate,
and the y-axis represents the temporal variability of their interactions
(the CV of the interaction rates over days on which at least one member
of the pair was observed; Section 4.6). The different social systems
produce characteristically distinct plots. We can draw a number of types
of inference from such plots (Whitehead 1997):

� Social complexity. The complexity of the social structure
is indicated by the complexity of the multivariate dyadic
relationship measures plot. A simple social structure, with
all relationships more or less the same, should produce one
cluster of points, with the diameter of the cluster similar to
the precision of the position of the points (as in Fig. 5.19a).
More complex social structures have more diverse relation-
ships, and so more complex multivariate plots (Fig. 5.19).
The possibility of constructing a formal definition of social
complexity from this concept is discussed briefly in Section
6.3.



F I G U R E 5 . 1 9 Representations of the relationships among 30 individuals in four simulated social systems
The temporal variability is the coefficient of variation of the interaction rates over days in which at least
one member of the dyad was identified. An estimate of the precision of the plots (1.96 times SE for each
measure; i.e., half approximate 95% confidence interval) is shown. The four social systems are as follows.
A: “Unstructured,” in which the probability of the dyad interacting during a survey was 0.6. B: “Units,”
in which the probability of interacting during a survey was 0.6 for members of the same unit and 0.02 for
members of different groups. C: “Transient xenophilous units,” in which groups spent 3-day periods in the
study area and the probability of interacting during a survey was 0.1 for members of the same unit, 0.8 for
members of different units in the study area at the same time, and 0.0 if one individual was in the study
area and the other was not. D: “Variable relationships between pairs,” in which case the interaction rate
for a dyad during a survey was chosen from the uniform distribution between 0 and 0.45, except for 15
randomly chosen pairs with rate 0.9 (for further details, see Appendix of Whitehead 1997). (Redrawn from
Whitehead 1997, fig. 2.)



D E S C R I B I N G A N D M O D E L I N G S O C I A L S T R U C T U R E 221

� Classification of relationships. Sometimes (e.g., Fig. 5.19b,
c), the points representing the dyadic relationships fall into
clear clusters, which can be used to describe the general pat-
tern of relationships and characterize the social structure.
For instance, “There are three types of relationship: pairs
who have a permanent strong affiliative relationship, those
who have a strong but agonistic relationship, and those who
spend little time together and rarely interact.” The types
could be distinguished using a method of cluster analysis,
such as K-means (Section 2.7). Even without clear clusters of
points, types of relationship may be identified from regions
of the multivariate space. For instance, in Fig. 4.7, the dol-
phin relationships are labeled “affiliates” who spend most of
their time together whatever their behavior (these are mostly
mother–calf relationships or males within alliances; Gero
et al. 2005), “social associates” who are together about
50% of the time when socializing but much less when forag-
ing, “foraging associates” in which this pattern is reversed
(rather few of these dyads), or “acquaintances” who spend
little time together in any behavioral mode.

� Patterns of relationship between classes. If the plots of
dyadic relationship are coded by the classes (such as sex or
age-class) of the two individuals, for instance, using colors
or marker types (as in Fig. 4.7), then distinctions in relation-
ships between the classes may become apparent.

� Particular individuals or dyads. The relationships involving
particular individuals or dyads can be highlighted using
color, mark type, size, or, in the case of a table, column,
and so seen within the context of the social structure (e.g.,
Fig. 4.4, Table 5.11). With several individuals highlighted,
individual variability in social relationships can be assessed.

� Social units and communities. Although these multivariate
displays do not assume that the population is structured
into social units or communities, if it is, then multivariate
methods can be used to distinguish them [see Section 5.7 and
Whitehead (1997) for more details].

Such plots should be viewed from the perspective of what relation-
ship measures are available as well as the precision of the measures.
The society might be highly structured on the basis of a feature (such as
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a dominance interaction) that has not been measured, and features of
the plot that have smaller diameter than the measurement precision can
bear no reliable interpretation.

5.7 Delineating Groups, Units, Communities, and Tiers

5.7.1: Divisions in Society. A population may be structured into social en-
tities of animals so that many more interactions occur within social en-
tities than between social entities. This can occur in several quite different
ways. I distinguish them using three different terms:

Community. A set of individuals that is largely behaviorally
self-contained over all relevant time scales, so that nearly
all interactions and associations occur within, rather than
between, communities.

Group. A set of animals in mutual association (by some reason-
able definition of association) over any time scale (Section
3.4).

Social unit (or unit). A set of individuals in (nearly) permanent
mutual association, by some reasonable definition of associ-
ation.

Thus, if two animals are members of a social unit, they are nearly al-
ways grouped, by definition, and if they are members of the same group,
then they are very likely to be members of the same community, again
following from the definition of community. However, these inclusions
do not necessarily work backward: Individuals not of the same unit may
form temporary groups, and members of the same community need not
be in the same group at any time. There may also be other social entities
that cluster associated individuals in some way but do not conform to
the definitions of group, unit, or community.

There can be hierarchical levels of social structure, tiers in the termi-
nology of Wittemyer et al. (2005), such that the elements of tier i each
contains one or more elements of tier i − 1. In Wittemyer et al.’s (2005)
usage, the upper tiers may be nonsocial aggregations. According to this
perspective, in a K-tier society, permanently associating social units, if
present, will always be tier 1, the population will be tier K, the commu-
nity may be tier K − 1 (or K − 2 if there are subpopulations), and the
intermediate tiers may consist of elements, sometimes called “clans,”
“bond groups,” or “pods”, within which lower level tiers such as social
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units show association preference. Such hierarchically structured multi-
tier societies are clearly present in elephants (Loxodonta africana) (Wit-
temyer et al. 2005) and killer whales (Orcinus orca) (Bigg et al. 1990)
and probably many other species.

Populations need not contain units, groups, communities, or tiers,
but if they do, these are important elements of the social structure.
We would like to assess their sizes and membership. Sometimes these
are obvious. If the animals are very visible and the groups, units or
communities are well delineated, groups can be counted visually in real
time, and if the animals are easily individually identifiable, assessing
membership may be equally straightforward. However, with less easily
viewable or identifiable animals or situations in which the units, groups,
or communities are not so well defined, estimation techniques may be
needed. This is especially the case with social units embedded within a
fission–fusion society so that any observed group likely contains more
than one unit. Appendix 9.5 summarizes some techniques for estimating
unit, group, or community size in cases in which individual memberships
are not assigned.

If the population being studied consists of multiple social units,
groups, or communities, however, it is usually preferable to delineate
and assign individuals to them. We can then estimate the sizes of the
social entities (just by counting), look at whether the units, groups, or
communities contain different proportions of the different classes in the
population, whether they behave differently, whether there are different
types or rates of dyadic interaction within as opposed to between units,
groups, or communities, and many other issues. Sometimes the units,
groups, and communities are clear, so that delineating them and assign-
ing individuals is trivial; sometimes it is not. Usually, the reason for lack
of clarity is because there is some association between members of differ-
ent units, groups, or communities. This can occur in a number of ways:

1. Individuals form permanent units, but the units fuse tem-
porarily to form groups.

2. Individuals may occasionally transfer permanently from one
unit or community to another.

3. Some individuals float between units and communities or are
members of more than one.

4. The spatiotemporal distinction between groups is not very
clear.

5. Unit, group, or community distinctions break down in some
conditions (e.g., drought or the mating season).
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In some cases, two or more of these sources of “social noise” might be
present. How do we distinguish the community, group, or social unit
signal from the noise?

If the task is dividing a population into groups based on the indivi-
duals’ locations, which appear to form clusters but not in a clearly unambi-
guous way (issue 4 in the foregoing list), then there are a number of avail-
able techniques as summarized in Section 3.4. These include the “chain
rule” and Strauss’ (2001) “kth nearest-neighbor hierarchical clustering.”

When the target clusters are social units or communities, then it is us-
ually the patterns of identifications and associations (or perhaps interac-
tion rates) by which we wish to delineate clusters. Many of the techniques
introduced earlier in this chapter are useful. Sociograms or ordinations
using principal coordinates analysis or multidimensional scaling may
suggest social units or communities if there are clusters of individuals
that are mutually well linked in a sociogram or plotted together in the
ordinations (Section 5.2; e.g., Figs. 5.5 and 5.6). However, cluster analy-
ses (Section 5.2), network analyses (Section 5.3), and multivariate meth-
ods (Section 5.6) include methodology directed at detecting clusters in
the data, and so tend to be more useful. The concept of modularity intro-
duced by the network analysts proves very useful in assessing the utility
of divisions. In what follows I give some details on these and other meth-
ods. Box 5.6 gives overall recommendations for population division.

5.7.2: Modularity. A particularly useful criterion when assessing the value
of a clustering scheme for population division is Newman’s (2004) mod-
ularity as modified for weighted networks. When applied to association
indices, modularity is simply the difference between the proportion of
the total association within clusters and the expected proportion. The
formula for modularity is

Q =

∑

I,J
αIJδ(cI, cJ)

∑

I,J
αIJ

−

∑

I,J
α̂IJδ(cI, cJ)

∑

I,J
α̂IJ

(21)

where αIJ is the association index between individuals I and J, α̂IJ is the
expected value of αIJ assuming random associations, δ(cI, cJ) = 1 if I
and J are members of the same cluster, and δ(cI, cJ) = 0 if I and J are
members of different clusters.

The modularity Q has expected value 0.0 for randomly assigned
clusters and equals 1.0 if there are no associations between members
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of different clusters. Ideally, we would like to divide the population in
a manner that maximizes modularity. Newman (2004) suggests that if
Q ≥ 0.3, then the divisions between clusters are “good.”

Newman’s (2004) original formulation assumes that the expected
association index of a dyad is proportional to the product of the gregar-
iousness of the two individuals, so that

α̂IJ = sIsJ

2m
(22)

where sI is the strength of associations, or gregariousness, of individual
I (sI = ∑

αI,J summing over J; Section 5.3), m = ∑
sI/2 (the total of all

dyadic association indices).
D. Lusseau (In preparation) noticed that by changing the definition

of the expected association index α̂IJ as it is used in Equation (21), one
can achieve different types of community division. Thus, if there are
sets of animals that are never identified in the same sampling period,
they will tend to be allocated to different clusters using the formula
for expected association in Equation (22) [because αIJ is zero between
such sets, whereas α̂IJ is not, and thus if δ(cI, cJ) = 0, with I and J
in different clusters, modularity increases]. Alternatively, we can use
expected values of association indices calculated in other ways, including
from the permutation techniques described in Section 4.9. Here are some
possibilities:

1. Not controlling for gregariousness or data structure,
so that all dyads have same expected association index
[α̂IJ = 2m/n · (n − 1)].

2. Controlling for gregariousness of individuals [Equation
(22)].

3. Controlling for observed group sizes and number of ob-
servations of individuals but not gregariousness (mean of
random matrices of association indices when permuting
group-by-individual matrix; Section 4.9).

4. Controlling for observed group sizes and number of ob-
servations of individuals in each sampling period but not
gregariousness (mean of random matrices of association in-
dices when permuting group-by-individual matrix within
sampling periods; Section 4.9).

5. Controlling for number of observations and associations
of individuals in each sampling period and thus including
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gregariousness (mean of random matrices of association in-
dices when permuting matrices of association indices within
sampling periods; Section 4.9).

If technique 1, 3, or 4 is used, then gregarious individuals that form
large groups will tend to be clustered, whereas less-gregarious animals
found in small groups may find themselves in clusters by themselves. In
most cases, this will not be desirable, so I have only implemented meth-
ods 2 [Newman’s (2004) original method, controlling for gregarious-
ness] and 5 (control of data structure and gregariousness) in SOCPROG.
I call these modularity-G (for gregariousness) and modularity-P (for per-
mutations). Modularity-G divides populations based on who associated
with whom, thus combining association preference with any other ten-
dency to be seen together, whereas modularity-P factors out who could
have been seen with whom, focusing directly on preferred or avoided
associates. Generally, maximum modularity is higher for modularity-G
because identification histories potentially provide a useful way to di-
vide a population. A social analyst could be interested in either or both
of these forms of community division.

Although the highest modularity, of whichever type chosen, is a
sensible goal of population division, this maximization is not technically
straightforward. The next two subsections consider methods for finding
divisions in populations with high modularity.

5.7.3: Using Cluster Analysis to Delineate Social Entities. Cluster analyses
come in many varieties; a primary division is between hierarchical and
nonhierarchical analyses (Section 2.7). Either can be used to divide
a population into units or communities. The nonhierarchical version
seems to do this more directly. Standard nonhierarchical techniques
such as K-means, however, assume a rectangular data matrix (e.g., Ta-
ble 2.2), allowing the individuals to be thought of as points in Euclidean
space. Thus, they are not directly applicable for similarity matrix in-
puts, as result from association and interaction rate data (e.g., Table
2.5). Hierarchical clustering methods are more commonly used in this
context. Dendrograms resulting from hierarchical cluster analyses ap-
plied to association data are shown in Figs. 2.4, 5.1 to 5.4, 5.7, and
5.8. Some of these look as though they do contain fairly closed units
or communities (e.g., Figs. 5.3 and 5.8), whereas others do not. For in-
stance, Figs. 2.4 and 5.1 represent small, quite well-mixed populations,
and Fig. 5.7 is constructed from random data. We need techniques that
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extract meaningful units or communities in the first cases, but not in the
second.

A first consideration is what type of cluster analysis to use. We wish
to use methods that are least affected by social processes that mask units,
groups, and communities (as listed in points 1–5 at the beginning of this
section), as well as by other “noise,” such as recording errors. Spuriously
high association indices are likely to be produced by (a) unit fusions,
(b) transfers, (c) floaters, (d) social breakdowns, (e) recording ambigu-
ities, and (f) recording errors. Single-linkage clustering is vulnerable to
these and so is not recommended as a clustering method (Section 5.2).
Complete-linkage, which considers the least dissimilar individuals when
forming clusters, might be appropriate when tight, socially homoge-
neous units are being sought, but it tends to produce spurious divisions
in more heterogeneous social entities, especially communities. When try-
ing to find units, groups, or communities, I generally recommend the use
of average-linkage cluster analysis or perhaps Ward’s method. Ward’s
method maximizes the within-cluster similarity, and although it is de-
signed for Euclidean distances, it can be used on other dissimilarity mea-
sures (e.g., Wittemyer et al. 2005).

The second, and most difficult, issue when using cluster analysis to
delineate groups, units, or communities is when and if to stop. As we
move from the “twigs” along the “branches” towards the “trunk” of
a dendrogram, the population is divided into fewer and fewer clusters.
Where do we stop, concluding “individuals clustered up to here form
units (or communities), individuals not clustered up to this level are in
different units (or communities)”? Perhaps we do not stop, concluding
that there is no unit or community structure in this population, or we
might stop two or more times, delineating several tiers of social organi-
zation (Wittemyer et al. 2005). We need a “stopping rule.” The stopping
rule might be dendrogram wide (e.g., “all links with an average associa-
tion greater than 0.3 are within units”), or we might examine each join
separately, accepting or rejecting it. Stopping rules are also necessary
when using nonhierarchical cluster analyses, such as K-means (Section
2.7). To partition a population into clusters, how many clusters should
we use?

These are issues encountered in the analysis of many types of data.
Much has been written on stopping rules for cluster analysis (e.g., Mil-
ligan & Cooper 1987), but, unfortunately, few generally applicable
principles have emerged. The “best” technique is very dependent on the
situation.
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In some cases, it is reasonable to apply a simple rule of thumb based
on the social behavior of the animals. Thus, for instance, we might set
the association index at 0.5, indicating animals spending half or more
of their time together, for defining a level of social structure [as in Bigg
et al.’s (1990) “pods”], or twice the mean community-level association
index, so that clustered individuals spend at least twice as much time
together as a randomly chosen pair (Section 4.9; Table 4.15).

An empirical method described by Wittemyer et al. (2005) exam-
ines the structure of the dendrogram looking for “knots”—levels of
association such that the rate of cluster formation suddenly changes on
either side. This is illustrated in Fig. 5.20, in which the elephant social
structure shows two levels of association at which cluster formation de-
creases. These knots allow the determination of three tiers. Knots can be
found by inspecting the knot diagram—the plot of cumulative bifurca-
tions (insert in Fig. 5.20)—and seeing where its shape changes suddenly.
Alternatively, Wittemyer et al. (2005) describe more formal statistical
methods for placing knots in a dendrogram. When trying out this tech-
nique on different data sets, a difficulty I have sometimes encountered is
that knots may appear or not appear in different places, depending on
the distance metric used on the x-axis of the knot diagram (Fig. 5.20,
insert). For instance, one could use the square root of one minus the
association index or minus the logarithm of the association index and
find different knot values.

Modularity (see prior discussion) provides a guideline for assessing
where in a dendrogram to stop clustering. Using a technique developed
by Lusseau (2007), one can move up or down a dendrogram, accepting
or rejecting bifurcations until Q is maximized. The level of associa-
tion index giving maximum modularity is chosen. This could be the
allocation of all members of the population to the same cluster if no
division improves modularity.

As an example of this technique as well as the knot diagram, Fig. 5.21
shows the average-linkage cluster analysis dendrogram, knot diagram,
and modularity plot for 54 female and immature sperm whales, using
both kinds of modularity. The knot diagram is not very clear, but it
might suggest a knot at an association index of about 0.32, whereas
modularity-G and modularity-P clearly peak at much lower levels of
about 0.1. The modularity-G here of 0.603 is high, showing that with
this division, there is much more total association within clusters than
would be expected for randomly determined clusters. However, when
the identification histories of the individuals are factored out by using
permuted associations to estimate the expected association indices, the
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F I G U R E 5 . 2 0 Dendrogram (Ward’s method, cophenetic correlation coefficient [CCC] = 0.82) and knot
diagram (insert) for a population of elephants (Loxodonta africana) in Kenya. Each node, at the bottom
of the dendrogram, is an elephant matriarch, representing the second tier of the social structure. The
bifurcation distance on the y-axis of the dendrogram and the x-axis of the knot diagram is inversely
related to the simple-ratio association index (with a bifurcation distance of 0 being equivalent to an
association index of 1.0, and so always associated). The knot diagram gives the cumulative number of
bifurcations at different bifurcation distances. The rate of bifurcation slows considerably at distances of
1.05 and 1.85, the knots. Thus, third-tier structures are formed by bifurcations less than 1.05 and fourth-
tier structures by bifurcations between 1.05 and 1.85. (From Wittemyer et al. 2005, fig. 4.) (Illustration
copyright Emese Kazár.)

maximum modularity-P is much lower, 0.044 at a cutoff association
index of 0.167. Clearly, much of the division within this population
is based on different patterns of identification, rather than preferential
companionships, within 5-day periods, and only modularity-G meets
the criterion of Q > 0.3 for a “good” division.

The last two columns of Table 5.12 compare the population divisions
using the knot method and modularity-G. The knot method substan-
tially subdivides the clusters produced by maximizing the modularity
across the dendrogram.



F I G U R E 5 . 2 1 Above: Dendrogram (average linkage, cophenetic correlation coefficient [CCC] = 0.96) for
54 female and immature sperm whales (Physeter macrocephalus) observed off the Galápagos Islands (using
sampling periods of 5 days, association being defined as observed within 1 hour, for individuals identified
in five or more periods, and a simple-ratio association index). Below left: The knot diagram, suggesting
a knot at an association index of 0.320 (dashed line). Below right: The modularity of the dendrogram,
suggesting that the best division into clusters is with an association index of 0.098 (solid line) when the
modularity uses expected values that just correct for gregariousness (modularity-G) and 0.167 (dotted
line) when the expected values are from permuting associations within sampling periods (modularity-P).
(Illustration copyright Emese Kazár.)



Table 5.12 Classification of Female and Immature Sperm Whales Identified off the
Galápagos Islands into Social Units Using the Temporal Methods of Christal et al. (1998),
the Eigenvectors of the Modularity-G Matrix (Newman 2006), the Maximum Modularity-G
of the Nodes on the Dendrogram (Lusseau 2007; Fig. 5.21), and the Knot in the
Dendrogram (Wittemyer et al. 2005; Fig. 5.21)

Unit membership
Eigenvector
modularity

Dendrogram
modularity Dendrogram: knot

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

???? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each row of the table represents an individual, and the heavy horizontal lines divide clusters produced by the
different methods.????, an individual whose unit membership could not be determined using the methods of
Christal et al. (1998).
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The methods described so far find population-wide criteria for stop-
ping when proceeding up the branches of a dendrogram. Another po-
tential approach is to consider each bifurcation separately, accepting or
rejecting the linkage using some criterion. I have not seen this done with
traditional cluster analysis, but it is implemented in some of the routines
of network analysis.

5.7.4: Using Network Analysis to Delineate Units or Communities. Network
analysts have long been interested in allocating nodes into communities.
In contrast to the hierarchical cluster analysis approaches, which have
generally favored an agglomerative method—starting with all individuals
separate and progressively clustering them—network theory has empha-
sized divisive methods in which the population is sequentially divided. A
number of algorithms for identifying community structure have been devel-
oped, initially for binary networks, but some are functional with weighted
networks, such as those based on association indices (Newman 2004).

If the criterion by which a method is judged is modularity, then a new
eigenvector-based method of Newman (2006) seems often to be the best.
It can work with weighted networks, such as those we encounter in social
analysis (e.g., association indices), and successively divides each cluster
into two using the positive and negative elements of the dominant eigen-
vector of the “modularity matrix,” adjusting membership of the two
daughter clusters to increase modularity at each stage until all further
potential divisions reduce modularity. It is fast and easily programmed
(e.g., it is included in SOCPROG), and can be applied to modularity-
G as well as modularity-P, in which expected association indices are
obtained by permutation, although this takes more computation time.

Based on using this method on the sperm whale data, the population
was split into six clusters with modularity 0.608 (Table 5.12). This is
slightly higher than the maximum modularity-G from the average-linkage
dendrogram (Fig. 5.21; 0.603). Similarly, the eigenvector method gives a
better division using the permutation method, modularity-P, compared
with the dendrogram method: 0.074 versus 0.044. My not-very-extensive
experience suggests that the eigenvector method usually does better than,
or at least as well as, the dendrogram method of maximizing modularity.

Theoretically, given a metric for assessing the efficiency of any cluster
division such as modularity, all possible divisions could be assessed and
that giving the highest value chosen. Unfortunately, even with only a few
nodes in a network, there are too many potential divisions for this to be
practicable. The dendrogram-based method and the eigenvector-based
method are short-cuts for finding clusterings that are as nearly optimal
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as possible. Network analysts will doubtless continue to work at this
problem and develop more efficient routines for maximizing modularity
or other measures, and their results will be useful to social analysts.

A particularly interesting approach is the division of networks into
overlapping communities so that some individuals could be members of
more than one community. The sole implementation of this that I am
aware of (Palla et al. 2005) works directly only on binary networks, and
so is of limited use to those studying nonhuman societies (Section 5.3).

Another fascinating recent development from the network analysts is
described by Newman and Leicht (2006), whose technique examines a
network without any preconceived notion as to what structure it may
have. The likelihood-based analysis clusters nodes on the basis of a wide
range of potential similarities in the way they connect to other nodes,
including community structure, and its opposite, bipartite structures
in which nodes preferentially link to nodes in different clusters. These
would correspond to interesting social structures! This technique has
another attractive feature: In common with the Bayesian technique dis-
cussed later, it gives probabilities that each individual belongs to each
cluster. Unfortunately, the original description of this method refers only
to binary 1:0 networks.

5.7.5: Using Multivariate Analysis to Delineate Social Entities. A very differ-
ent approach to finding units or communities comes out of the multi-
variate techniques described in Section 5.6. The axes in displays, such
as those Figs. 4.7 and 5.19, define a relationship space within which
each dyad is situated (Whitehead 1997). If a region of this space can
be found such that within it relationships are transitive (i.e., if the re-
lationship between A and B and that between B and C are within the
region, then the relationship between A and C also lies within the re-
gion), then the region can be used to define social units, communities,
or other social entities. The condition of transitivity could be relaxed to
define semiclosed semiunits or to account for imperfections in the data,
for instance, by requiring 80% or more of the pairs of relationships in
the region to be transitive (Whitehead 1997).

This approach is broader than most of the others discussed in this
section [an exception being the Newman and Leicht (2006) network
technique] because it can use two or more relationship measures and be
used to define very different sorts of social entity. For instance, the upper-
left-hand dispersed cluster of points in Fig. 5.19C is transitive, describes
weak but temporally stable relationships, and so could be used to define
“loose but permanent units.” Asymmetric relationship measures could
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also be used in this approach, and then regions of space could define
dominance hierarchies. A more traditional usage is illustrated in Fig. 4.7:
The male–male relationships among the bottlenose dolphins in the upper
right quadrants that have high associations both when foraging and
socializing are members of “alliances” as described by Connor et al.
(1992)].

It is possible to use this approach to define multiple social tiers, which
would be represented by two or more different regions of relationship
space that satisfy transitivity (Whitehead 1997). In the case of hierarchi-
cally arranged tiers (sensu Wittemyer et al. 2005), these regions would
enclose one another, but this need not necessarily be the case. There
could be some male alliances in one part of the space and female social
units in another.

These multivariate methods, although powerful, have rarely been
used (but see Whitehead 1997) partly because multivariate relationship
data are not often available and partly because there is no standard
software for finding regions of transitivity in relationship space.

5.7.6: Temporal Methods for Delineating Groups, Units, or Communities. The
methods described in the foregoing operate on summary relationship mea-
sures, especially association indices, but such approaches may mask im-
portant elements of the available data. For instance, a lagged association
rate analysis (Section 5.5) might indicate that individuals form permanent,
or nearly permanent, social units but that these associate with one an-
other over shorter time periods. We wish to allocate individuals to the
units. Cluster analyses or network analyses using association indices, as
described in earlier subsections, are potential techniques, but if two indivi-
duals are observed together frequently over a few consecutive days, they
will tend to be clustered, even though they may be members of different
but interacting units. Thus the clusters produced may or may not reflect
true social units. In my experience, in such situations most individuals
will be correctly clustered, but a minority will not (e.g., Table 5.12).

An alternative is to use temporal aspects of the data to delineate
social units whose general attributes are uncovered by other methods,
especially lagged association rates (Section 5.5). The specific method
chosen is situation dependent and varies with the results of the lagged
association rate analysis, the structure and amount of data, and the cer-
tainty of delineation required. There is usually a trade-off between more
rigorous methods, for which the resulting unit memberships are very cer-
tain but some individuals are not allocated, and looser techniques, in
which more of the population is allocated but some individuals may
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be misallocated. Thus, the method needs to be designed based on the
presumed social structure, the data available, and the desired output.
Here are two examples from the work of my colleagues.

Ottensmeyer and Whitehead (2003) studied social relationships among
long-fin pilot whales (Globicephala melas). The standardized lagged
association rate fell over periods of 1 hour to 1 week and then stabilized
(Fig. 5.14C), whereas a cluster analysis suggested permanent units con-
taining a few animals, but that these units might associate with one another
for periods of 1 week or less. To delineate unit membership, Ottensmeyer
and Whitehead (2003) first defined “key” individuals identified on at least
4 days, separated from one another by at least 30 days. “Constant com-
panions” of key individuals were considered those identified with the
key individual on at least 3 days, separated from one another by at least
30 days, and two or more key individuals and their constant companions
were allocated to the same unit if they met this criterion. This method
produced seven well-defined units but left many individuals unallocated.

This methodology was based on that of Christal et al.’s (1998) study
of sperm whales, which have a similar social structure. Here, units were
defined by identifying sets of individuals each of which was identified
associated with at least two other members of the unit on at least two
occasions separated by at least 30 days (again much larger than the pe-
riod of association of different units identified by the lagged association
rate analysis; Fig. 5.16). In addition, constant companions of key indi-
viduals were allocated to units, using the same definitions and methods
as with the pilot whales.

These methods seem rather ad hoc, but they are designed specifi-
cally with the data and social structure, including its temporal nature,
in mind, and so, I believe, produce more reliable allocations than other
techniques. For the sperm whale data set, whose dendrogram is illus-
trated in Fig. 5.21, the unit designation produced by this method agrees
generally quite well with that using the modularity-G across the den-
drogram or eigenvector modularity-G, although there are some discrep-
ancies (Table 5.12). The knot method makes too fine a division of these
data, at least by the standards of Christal et al.’s (1998) unit division.

5.7.7: Bayesian Methods. With very few exceptions (such as the WST dom-
inance rank and cardinal dominance index; Section 5.4), none of the
methods considered so far in this chapter starts from a model of social
structure and then fits it. They either display the data in what is hoped
are meaningful ways (such as ordinations) or fit mathematical models
to attributes of the data (as can be done with lagged association rates).
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Ideally, we would start with several biological models of social struc-
ture, convert these to statistical models, estimate their parameters, and
compare their fits. This is not simple because social models, dyadic by
nature, do not easily translate into tractable statistical models. However,
Durban and Parsons (In press) made a start by constructing Bayesian
models of social units. The method is powerful and informative but
complex to implement.

The social model is that individuals are clustered into social units,
members of which tend to be associated, but may not be, at any time,
and members of different units may sometimes be associated. However,
individuals with similar identification histories (i.e., often seen in same
group) are likely to be members of the same unit. Following the Bayesian
procedure (e.g., Carlin & Louise 2000), prior probability distributions
for the number of units and the probability of any individual being in
any unit are provided by the analyst. These are often, and in the method
of Durban and Parsons (In press) are, “uninformative,” so they do not
bias the results in any particular direction. Using Bayes’ theorem, one
uses the prior distributions and data to produce posterior distributions
for the number of groups and the probabilities that each individual is
in any particular unit or shares unit membership with any other indi-
vidual. These outputs are in some respects ideal, conveying not only
the unit structure, but also uncertainty about it. However, obtaining
the posterior distributions in situations like this with many parameters
is challenging. Durban and Parsons (In press) use the Markov chain
Monte Carlo method (Carlin & Louise 2000). With a data set on as-
sociations of 83 pilot whales, the method worked and produced useful
results, indicating 16 to 19 social units (95% confidence interval) to-
gether with the probabilities of membership of each individual in each
unit (Jankowski 2005). The method was hard to implement, however,
and took many days of computer time to run.

B O X 5.6 Recommendations for Population Division

Section 5.7 summarizes a battery of methods that can be used to
divide populations. As a general recommendation for most ana-
lysts, I suggest that first ordinations and/or dendrograms (Section
5.2) be produced using association indices or other relationship
measures to see whether there are indications of clustering. If
there does seem to be some sort of population division, then it is
probably worth estimating the modularity using either Newman’s
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(2006) eigenvector method or the maximum value across the den-
drogram, particularly if the dendrogram has a high CCC. If this
maximum modularity is less than about 0.3, then the population
division is not well supported, and divisions produced using any
method should be treated cautiously. If modularity is greater than
about 0.3, then the population may be reasonably subdivided. Of
the methods that can be used to subdivide populations, using the
eigenvector modularity method (Newman 2006) or “stopping”
the dendrogram when modularity is maximized seems a good
approach, with the former usually performing somewhat better.
Neither allocation is necessarily “correct,” however, assuming that,
from the animals’ perspective, there are real units, communities,
or other social entities. In addition, only in the case of the eigen-
vector modularity method with two clusters is there any mea-
sure of how well the allocation of a particular individual is sup-
ported, and so only in this case can we say something like, “We
are pretty sure which unit individual A is in, but much less certain
about B.”

The analytical procedure that I just outlined can be carried
out quite easily with just a few mouse clicks in SOCPROG, and
may be as far as most social analysts will go. With more effort,
however, considerably more useful results may be attainable:

� Following a lagged association rate analysis (Section
5.5), the temporal patterning of social affiliations
may become apparent and permit the delineation of
social units using rules designed for the particular
data set and the animals’ perceived social structure.

� If several relationship measures are available, then
the multivariate method of delineating social units
or other types of transitive social structure can reveal
much greater complexity than the standard univari-
ate methods.

� Finally, fitting true models of social structure using
Bayesian methods (or possibly likelihood methods;
Section 2.8) can give the most revealing and useful
output. I can reasonably hope that future hardware
and especially software improvements will make
these methods, which are currently hard to imple-
ment, available more generally for social analysts.
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Table 5.13 Rough Assessment of Utility of Different Techniques for Displaying and
Modeling Social Structures for Three General Types of Population

Size of population and number of relationship
measures available

Method

A: Small,
well-studied,
several measures

B: Medium,
three
measures

C: Large,
sparse, one
measure

List of attributes (section 5.1) 3 3 3
Histograms of relationship

measures (section 5.2)
2 4 4

Sociogram (section 5.2) 4 2 1
Principal coordinates analysis

(section 5.2)
1 3 2

Multidimensional scaling
(section 5.2)

3 3 0

Cluster analysis (section 5.2) 3 3 2
Network measures (section 5.3) 3 3 3
Dominance hierarchy analysis

(section 5.4)
4 3 0

Lagged association rates (section
5.5)

2 4 4

Multivariate displays (section
5.6)

4 3 0

Delineating units or communities
(section 5.7)

1 3 3

A, small population (∼12 animals), with several interaction and association measures collected over a
considerable time period; B, medium-sized population (∼30 animals) studied over a moderate time period (a
few months) with three relationship measures available, one relating to agonistic interactions, one to
affiliative interactions, and one to associations; C, a large population (∼500 animals) of elusive or cryptic
animals studied over a long time period (many years) but with only one association index available. Utility is
rated as follows: 4, highly useful; 3, generally somewhat useful or useful in some situations (depends on
social structure); 2, occasionally somewhat useful; 1, rarely useful; 0, not feasible.

B O X 5.7 Describing Social Structure: Recommendations

In this chapter, I introduced a number of analytical techniques
for displaying and modeling social structure. For the social ana-
lyst faced with her first data set, the possibilities may seem rather
bewildering. Consequently, in this section I suggest some general
guidelines for how she might proceed. In Table 5.13, three data
sets are envisioned: a small, closely studied population, such as
a group of captive primates; a medium-sized population of rea-
sonably accessible animals such as might be the case for fish on
a coral reef; and a large, hard-to-study population, epitomized
by the pelagic cetaceans. Real populations rarely fit nicely into
one of these categories, but interpolation between the columns of
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Table 5.13 should give some guidance. The rows of Table 5.13
indicate the general utility of a technique for a population type.

For the small, well-studied population, all the techniques are
feasible, but some have limited utility either because they analyze
features that may not be present (such as social units or commu-
nities), other techniques may be better (nonmetric multidimen-
sional scaling will probably give a better display than principal
coordinates with such data), or (as with histograms and lagged
association rates) they provide statistical summaries of rather
few data points, which can usually be presented separately. Par-
ticularly useful for this type of data are likely to be sociograms,
analyses of dominance, and, especially, the multivariate displays
that can reveal many different kinds of societal attributes.

For the moderate-sized population and data set, all the meth-
ods discussed in this chapter may have use (Table 5.13). I singled
out histograms of relationship measures and lagged association
rates by scoring them “4” rather than “3” on the basis that these
general techniques can suggest features, such as social units or
hierarchies, that can be investigated using more specialized meth-
ods. Faced with this type of data, I suggest that the social analyst
first estimate the general attributes of the society (Section 5.1),
then try different methods of displaying the relationship measures
(sociograms, multidimensional scaling, principal coordinates, or
cluster analyses), retaining those that represent the data well on
both visual and quantitative (e.g., proportion of variance ac-
counted for, stress, CCC) grounds. These ordinations, together
with histograms and lagged association rates, can then be used
to assess the presence of general features in the society, such as
units and dominance hierarchies, that may be investigated using
more specialized techniques.

For large populations that are hard to study, the list of useful
methods is narrowed. Many of the displays become unwieldy,
and there are no interaction measures with which to exam-
ine dominance hierarchies or make multivariate displays. His-
tograms, lagged association rates, and network analyses become
particularly important. Units or communities are often present
in such systems, and, if they are, their delineation becomes a
priority.

Techniques presented in other chapters of this book may also
be useful in displaying and modeling social structures. Exam-
ples include the analyses of reciprocity (Section 4.8), preferred
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associations (Section 4.9), roles (Section 7.1), and kinship struc-
ture (Section 7.3). The allocation of techniques to Chapters 4, 5,
and 7 is to some extent arbitrary.

All these methods are more useful and powerful if class infor-
mation is included, so that the relationships within and between
the different classes of animal are described and compared.

A final recommendation is that the social analyst stay in-
formed of developments in analyzing nonhuman social structures
by network analysis (Section 5.3) and Bayesian models (Section
5.7). These are potentially powerful techniques under intense de-
velopment. When these methods have been carefully developed
for this context, validated, and made easy to use, they may be-
come the most preferred methods of social analysis.



6 Comparing Societies

6.1 Comparing Social Structures

Having used the methods of the previous chapters to de-
scribe and perhaps to model a social system, it is natural
to want to compare social systems. How can this social
structure be compared with those of other populations of
this or other species? Can we categorize it in some mean-
ingful way? How complex is it? This chapter is about
lining social structures up against one another.

A straightforward approach is to measure the same at-
tributes for the different societies and then compare them
against one another. The attributes listed in Section 5.1
make a good start. With just a few societies, the measures
can be tabulated against one another. As examples, Con-
nor et al. (2000) compare group sizes of different popula-
tions of bottlenose dolphins (Tursiops sp.) and Maryanski
(1987) compares network measures for chimpanzees (Pan
troglodytes) and gorillas (Gorilla gorilla). If a number of
social structures are being compared, then a data reduc-
tion method such as principal components (Section 2.6)
can be used to ordinate the societies.

In an elegant elaboration of this approach, Faust and
Skvoretz (2002) fitted the same network structure model
to 42 social networks of several species. They then com-
pared each pair of networks, using the ability of the model
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parameters from network A to explain network B and vice versa as a
measure of the similarity between the networks. The matrix of network
similarities was input into correspondence analysis (Section 2.6) to or-
dinate the networks. Unfortunately, to achieve all this, all networks had
to be binary (1:0), thus discarding a great deal of the information for
the nonhuman societies (Section 5.3).

6.2 Classifying Social Structures

As noted in the introductory chapter (Sections 1.4 and 1.7), scientists
have had a propensity for the classification of social structures. In the
general terms of all animal social structures, this has not proved useful.
In more restricted venues, however, classification has more validity. We
might want to categorize the social systems of a taxonomic group [e.g.,
Kappeler and van Schaik (2002) for primates] or perhaps those that have
a particular characteristic (e.g., high-level carnivores). Here are some of
the features that have been, or might be, used, with notes on how the
methods of previous chapters may play a part:

� Mating system. Classification by attributes of the mating sys-
tem (e.g., monogamy, polygamy, polyandry; Emlen & Oring
1977; Section 7.5) is routine and often useful (e.g., Clutton-
Brock 1989). The methods used to determine the mating
system are usually based on observations of who mates with
whom (Section 3.2), as well as genetic determinations of
paternity (Section 4.2).

� Relationships between sexes. Societies are also frequently
classified by the general relationship patterns between the
sexes, so we might have “pair bonds,” “single-male groups,”
and so on (Kappeler & van Schaik 2002). The general pat-
tern of relationships between the sexes can be clearly shown
by sociograms, dendrograms, or ordinations (e.g., Figs. 5.3
and 5.4).

� Number of associates. Individuals may have zero, one, or
many associates, indicating, perhaps, “solitary,” “simple,”
or “diverse” societies. If the y-axis of the histogram of as-
sociation indices (Section 5.2) is divided by the population
size minus one (or the number of animals in the “from” class
minus one in the case of division by class), then this indicates
the number of associates an average individual has at differ-
ent strengths of association. This is done in Fig. 6.1 for the
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F I G U R E 6 . 1 Histograms of the mean numbers of associates at different levels of association index for
chickadees (Parus atricapillus) at a feeder, roosting disk-winged bats (Thyroptera tricolor), and sperm
whales (Physeter nacrocephalus) off the Galápagos Islands (for more details, see captions of figs. 5.1, 5.3,
and 5.4, respectively).

chickadee, disk-winged bat, and sperm whale data whose
original histograms are shown in Figs. 5.1, 5.3, and 5.4, re-
spectively. The chickadees have quite low association rates
with all other members of their small community and the
bats tend to have about three close associates (association
index >0.5), whereas the sperm whale society seems more
diverse, with the average member possessing about 10 to 20
moderate or strong associates.

� Stability of associations. The term fission–fusion is often
used to delineate a class of society in which groups of various
characters form and reform frequently (Conradt & Roper
2005). The alternative is a social system in which there is
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little temporal change in associations, at least over short
time periods. The distinction may be important in several
respects. For instance, it is argued that in fission–fusion
societies there is greater selection for cognitive abilities
(Barrett et al. 2003). Fission–fusion societies themselves
might also be usefully subdivided depending on whether the
groups are formed within closed communities or an open
population, or whether the fission and fusion occur within
hierarchically nested tiers of social entities (C. Garroway,
personal communication). The presence of fission–fusion
is clearly indicated by a fall over short time periods in the
lagged association rate or standardized lagged association
rate (Section 5.5).

� Compartmentalization or modularity of social structure.
One of the ways of categorizing fission–fusion societies is in
the manner of their division. Are there closed communities
or a more open system, with individuals possessing a huge
range of potential affiliates? In this context, methods of
finding optimum modularity are especially useful, such as
Newman’s (2006) eigenvector method, which can indicate
that the best division is no division. Another dimension of
modularity is whether there are hierarchically nested tiers of
social entity (Section 5.7; Wittemyer et al. 2005).

Some of the other elements of Wilson’s (1975, pp. 16–18) list of
10 “qualities of sociality” (Section 1.8) might provide useful ways to
categorize societies, as may the list of measures of social structure given
in Table 1.2. However, I think that, except when there are clear distinc-
tions, social structures are better displayed and measured (Chapter 5)
rather than categorized.

6.3 How Complex Is My Society?

In this section, I consider the concept of social complexity, and begin by
discussing the possibility of a lack of sociality and then the simple sit-
uation in which an individual’s associations are not differentiated. Many
types of societies have differentiated relationships, but can they be ranked
in complexity? The final subsection addresses this challenging topic.

6.3.1: Minimum Conditions for Sociality? A baseline minimum condition
for sociality is that the members of a population interact behaviorally.
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If there are no interactions, so that no behavior of any animal has a direct
effect on the behavior of any other, then there is no sociality. Almost all
sexually reproducing animals interact, and so, when trying to assess the
presence of sociality, we might want to exclude mating interactions. We
might also want to exclude negative or agonistic interactions, so that if
the only way that two individuals respond to each others’ presence is to
avoid or fight with one another, then the population is not considered
social.

Another approach toward asociality that is more generally feasible
but also has challenges is using associations. If association is defined
using circumstances in which an interaction might occur (Section 3.3),
then a pair could be in such circumstances but not interact. For instance,
aggregations of individuals in space and time may result either from
sociality or from some response to a common external factor, such as
resource distribution (Section 3.4).

As an example, consider the humpback whales (Megaptera novaean-
gliae) that spend the summer months off the coast of Newfoundland.
Although the waters are wide, the whales are clustered: Groups of a few
animals swim a body length apart from one another at a distance of
tens, hundreds, or thousands of body lengths from the nearest neighbor-
ing group. This seems clearly social—but maybe not. The group sizes of
the humpbacks are closely related to the horizontal extent of the prey
schools on which they feed (r = 0.603, P < 0.01; Whitehead 1983), and
permutation tests rejected the null hypothesis of preferred or avoided
companionship (Whitehead et al. 1982). Thus, perhaps group formation
in humpbacks is entirely a result of animals aggregating at prey schools.
However, when attention turns to resting humpbacks, for whom there
is no important spatially structured resource, I found a preference for
pairs. Thus, at least when at rest, the humpback whale is social (White-
head 1983).

It will be impossible in most circumstances to conclude that a popula-
tion is not social, using any reasonable definition of asociality. However,
we can perhaps say that there is no evidence of sociality, for instance,
if all observed interactions have to do with mating or are negative (an-
imals avoiding one another) or agonistic, or all observed associations
are simple aggregations associated with resource clusters.

6.3.2: The Null Model: Equivalence. Null models are useful in social analy-
sis, as in other areas of science, when investigating potentially complex
phenomena. They allow us to formalize, at least partially and in a neg-
ative way, what we mean by complexity. If the null model is rejected,
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we can conclude that “the society is not one whose relationships can be
explained by simple SOMETHING.” But what is the SOMETHING?

Equivalence is one possibility. The concept of equivalence was origi-
nally developed in the context of linguistic processing, but Schusterman
et al. (2000) suggest that it may have value in social analysis. From a
particular individual’s perspective, some of its social partners may be
considered equivalent. As Connor et al. (2001) point out, Bejder et al.’s
(1998) permutation test for preferred/avoided associates and its vari-
ants (Section 4.9) can test the equivalence null model. In their appli-
cation, Connor et al. (2001) showed that within a “superalliance” of
14 male bottlenose dolphins (Tursiops spp.), the null hypothesis of no
preferred/avoided companions during consortships with females (i.e.,
equivalence of all other members of the superalliance in this context)
could be rejected using the Bejder et al. (1998) test, thus implying a com-
plex internal structure to the superalliance.

At its most basic, this type of analysis could be carried out with the
entire population, thus testing whether there are any preferred/avoided
companions or differentiated relationships. If this test does not reject the
null, equivalence, hypothesis, then further analysis of social structure (as
described in Chapter 5) makes little sense. Obviously, the probability of
rejecting the null hypothesis depends on the amount of data available,
and in subtly structured societies equivalence may not be rejected if data
are rather few (Section 3.11). Thus, obtaining a P-value greater than the
critical level in the Bejder et al. (1998) test does not necessarily imply
that there is no social structure, but rather that there are insufficient
data to characterize it.

6.3.3: Quantifying Social Complexity. There is a range of reasons for trying
to quantify social complexity. We may be interested in the phenomenon
itself: What are its characteristics, where and how has it evolved, what
are its limits? The potential evolutionary and ecological links between
social complexity and other characteristics of species and populations
have provoked a great deal of speculation and some quantitative re-
search. Are socially complex species more ecologically successful (Ren-
dell & Whitehead 2001)? Are they more cultural, and if so, did social
complexity beget complex culture (Roper 1986, but see Reader & Lefeb-
vre 2001) or perhaps vice versa (Richerson & Boyd 1998)? In particular,
in the most high-profile controversy of all, did social complexity drive
the evolution of large brains and increasing cognitive abilities in pri-
mates and other groups of animals, the “Machiavellian intelligence”



C O M P A R I N G S O C I E T I E S 247

or “social brain” hypothesis (Humphrey 1976; Byrne & Whiten 1988;
Dunbar 1998; Whiten 2000)?

To examine such questions, one needs to quantify, or at least rank,
social complexity. But this is difficult. Few researchers have gone beyond
community size or group size (e.g., Marino 1996; Dunbar 1998). These
have some relevance because they indicate the number of social partners
of an individual, with community size referring to the number of dif-
ferent potential interactants of an individual at any time and group size
referring to the mean number of actual interactants. However, surely,
from the perspective of an issue like the “social brain” hypothesis, we
should consider how dyads interact, not just whether they might. If all
potential or actual interactants are considered “equivalent” (Schuster-
man et al. 2000; see prior discussion) and not individually discriminated,
then in its functional significance and cognitive representation, the group
of animals in which an individual is included might be comparable to a
tree that it uses for shade. In contrast, if each dyadic relationship is char-
acterized by a particular pattern of interactions, then society is much
more complex, even though community or group sizes may be similar.

In consequence, there has been a search for better measures of social
complexity. This has proved to be difficult. Potential conceptual dimen-
sions of social complexity are presented by Whiten (2000) from the per-
spective of examining the Machiavellian intelligence hypothesis: levels
of social structure (including roles and tiers), dyadic complexity (which
includes gregariousness and reciprocity), polyadic complexity (complex-
ities of interactions involving more than two participants), variability of
response, stability of relationships, complexity of prediction of behavior
of others, and demographic complexity.

But how can we operationalize these? To simplify matters, let us first
consider one relationship measure, the interaction rates of some activity
or an association index, summarized by a square matrix (e.g., Table
2.5 or 4.4). My ideal would be to find a measure that (1) indicates the
degree to which individuals in a population prefer or avoid the compan-
ionship of, or preferentially interact with, other particular individuals
(2) is approximately unbiased by the population size or features of the
sampling regime, and (3) is virtually unchanged by the addition into
the study population of separate communities. I do not know of such a
measure, but the methods that have been developed for social analysis
and described in the previous chapters indicate several partially satis-
factory candidates and possible directions for discovery. They are listed
here with advantages and disadvantages:



C H A P T E R S I X 248

� Group size or gregariousness. Typical group size or gregari-
ousness (Section 4.3) indicates the mean number of individu-
als that an individual may interact with at any time, but they
do not say whether they do interact, how they interact, or
whether the interactions among different partners are in any
way different.

� Community size. Community size indicates the maximum
number of individuals that an individual might interact with
more than very occasionally, but it does not say anything
about diversity in the types or rates of interactions.

� Social differentiation. Social differentiation (Section 5.1),
the estimated coefficient of variation of the true association
indices in a population, indicates how rates of association
vary among dyads. It satisfies the first two of my criteria be-
cause it indicates the heterogeneity of associations and is
designed to be approximately unbiased by sampling inten-
sity but not the third criterion: A population consisting of
two barely interacting but internally homogeneous commu-
nities will have a much higher social differentiation than a
population consisting of just one such community.

� Within-community social differentiation. To get around the
failure of social differentiation to satisfy criterion 3, pop-
ulations could be delineated into communities using the
methods summarized in Section 5.7, social differentiation
estimated for each community, and then the mean of these
used for the population. This seems to satisfy all criteria, at
least approximately, but may be heavily dependent on the
criteria used for community delineation. Different assign-
ment techniques can produce quite different communities
(Section 5.7; Table 5.12), which in turn might give quite dif-
ferent estimates of within-community social differentiation
for the same population.

� Observed/expected measures. The Bejder et al. (1998)
permutation method and its variants (Section 4.9) pro-
vide expected values of social measures assuming no pre-
ferred/avoided associations, but given the general structure
of the data. We (L. Bejder, D. Fletcher, and H. Whitehead,
unpublished) have made some preliminary examinations
of whether the ratio of the observed to expected values of
statistics of social diversity (such as the CV of the association
indices) would provide useful measures of social complexity.
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Unfortunately, we found no such measure that had reason-
able performance under my criterion 2, a lack of bias from
population size or the nature of the sampling regime.

� Information/entropy measures. The Shannon–Weaver (or
Shannon–Wiener) measure of entropy or information (Shan-
non & Weaver 1949) is used in disparate areas of science
to quantify diversity. If we applied it to the association in-
dices of an individual, it would increase with the number of
associates, as desired, but decrease with the diversity of its
association indices with others, the opposite trend to that
implied by my criterion 1. Thus, it is not directly applicable
to this situation, although some modification might prove
useful.

� Disparity. Of the network measures introduced in Section
5.3, disparity (Barthélemy et al. 2005), measured for an
individual as the sum of the squares of its association indices
divided by the square of its gregariousness, seems on the
surface to be the most promising approach to a measure
of social complexity. However, as expressed in Equation
(15), disparity is highest (1.0) for an individual with just
one associate and generally decreases with the numbers of
associates, not a desirable attribute for a measure of social
complexity.

� Multivariate diversity. Multivariate displays of social struc-
ture, such as those in Fig. 5.19, indicate the diversity of so-
cial relationships well (Section 5.6). It might be possible to
quantify this diversity in some way (e.g., using multiscale
entropy based upon wavelets; Starck & Murtagh 1999), but
could this be done in such a way so that one could make ro-
bust comparisons between populations that were sampled
in different ways with different intensities and might possess
very different structures? This would be very challenging.

� Diversity of roles. Blumstein and Armitage (1998) assigned
individual rodents to discrete roles (see Section 7.1) using de-
mographic data (e.g., “adult female”, “subadult male”), and
then measured at the diversity of these roles within commu-
nities of different species as measures of social complexity. In
this approach, demographic differences are used as proxies
for differences in social behavior, and the diversity of social
interactions within and between demographic roles is not
addressed.
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None of the possibilities that I have examined is fully satisfactory as
a measure of social complexity. The best, so far, seems to be the within-
community social differentiation, but this suffers from the lack of a ro-
bust and accepted way of delineating communities. One can hope that
there will be more work in this area, and some of the ideas outlined here,
such as network statistics, information, or multivariate diversity, might
provide starting avenues for other approaches.

As a final caution when considering the topic of social complexity, I
note that it is becoming increasingly clear that complex social behavior
can arise from just a few behavioral rules of individuals (Sumpter 2006).
Thus, a beautiful, complex society may just be an emergent property of
automatons. By trying to measure diversity at the level of dyadic interac-
tions or associations among identified individuals, however, as in some
of the approaches outlined above, we might be able to avoid this trap.



7 What Determines Social Structure, and What Does
Social Structure Determine?

In this chapter, I shift emphasis more to the perspective of
the behavioral ecologist who, working from the paradigm
of Darwinian evolution, wants to know why behavior has
the form it does (Section 1.5). The behavioral ecologist has
three main sets of tools: experiments, comparisons between
individuals of the same population or species, and compari-
sons between species (Krebs & Davies 1991, pp. 24–25).
A supplementary technique, which is perhaps especially
useful for generating and validating reasonable hypothe-
ses, is mathematical modeling (Grafen 1991).

Behavioral ecologists ask many questions about ani-
mal societies. I discuss some of them here, focusing on fac-
tors that may affect social structure and may be affected
by it. Most of them roughly correspond to the upper cir-
cles representing “independent or intervening factors” in
Fig. 1.4 [Hinde’s (1976) framework]. The factors are in-
dividuals and their roles (Hinde’s “status”), dyads (“ef-
fects of interactions on interactions”), environment, the
mating system (“age/sex classes”), and culture (“cultural
institutions”).

The depth and comprehensiveness of coverage in this
chapter is generally less than those in its predecessors.
There are many ideas about how social systems relate to
other parts of biology, evolutionarily, ecologically, or in
other ways. Much has been written in some of these areas,



C H A P T E R S E V E N 252

for instance, about mating and social systems, and the quantitative meth-
ods used at this stage of investigation are usually more straightforward
than when examining relationships or describing social systems (for a
summary, see Box 7.1).

My focus is on how the methods of analyzing relationships and soci-
eties described in Chapters 4 through 6 can be used in the examinations
of these issues. In this context, the behavioral ecologist’s toolbox is mod-
ified a little; the principal techniques used are comparisons among pop-
ulations and species, comparisons among dyads, and experiments. Vari-
ation in social measures among populations of the same species or the
same population at different times can be very instructive, and the unit
of analysis in social studies is often the dyad rather than the individual.

7.1 The Individual in Society: Roles

Role theory is one of the important paradigms used to examine human
societies, as well as those of some nonhumans (Roney & Maestripieri
2003). Roles are fundamental to the societies of the social insects, but
they also have a significant influence on the social structures and other
aspects of the biology of some vertebrates. For instance, McComb et al.
(2001) found that the experience of an elephant matriarch determined
the appropriateness of the response of the social unit when faced with a
potential threat (Fig. 7.3), and Flack et al. (2006) removed individuals
with an apparent policing role from a macaque (Macaca nemestrina)
society and observed the social structure change. There are two principal
elements to such studies: the identification of roles, and the sometimes
experimental examination of how roles affect societies. These are the
subjects of the next two subsections.

7.1.1: Identifying Roles. To assign roles to individuals, we need one or
preferably more measures of behavior. Sometimes, these measures are of
individual behavior. For instance, Fresneau and Dupuy (1988) identified
all members in a captive colony of 36 ponerine ants and noted the
activity of each member on 85 occasions using 12 behavioral categories,
such as “nest exploration,” “care of larvae,” and “foraging.” They thus
had a 36 × 12 table of counts of individuals performing each activity.
They analyzed the data using correspondence analysis (Section 2.6) and
cluster analysis (Section 2.7). Figures 7.1 and 7.2 show the resulting
displays. Both show the division of the population into sets of animals
with distinct roles. The dendrogram from the cluster analysis is perhaps
clearest, but the correspondence analysis ordination (which represents



F I G U R E 7 . 1 Ordination resulting from a correspondence analysis of the activities of members of an ant
(Neoponera apicalis) colony. Numbers represent different individuals, and the closed triangle and closed
circle represent the queens. Loadings of activity measures are indicated by asterisks. (From Fresneau &
Dupuy 1988, fig. 1.)

F I G U R E 7 . 2 Dendrogram from the cluster analysis of the activities of members of an ant colony. Num-
bers represent different individuals, and the closed triangle and closed circle represent the queens. (Fres-
neau & Dupuy 1988, fig. 3.)
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76% of the variance in the data set) also gives information on how the
roles line up with the measured activities.

In vertebrate societies, it is more usual to assign roles based on dy-
adic behavior than individual behavior. Thus, for instance, Flack et al.
(2006) distinguished policers in a macaque society as those receiving a
disproportionate number of “silent-bared teeth” subordination displays.
More generally, this method involves looking at the distribution of some,
usually asymmetric, interaction measure and finding sets of individuals
with distinctive values, such as those who groom disproportionately
often or win the large proportion of agonistic encounters (the “alpha”
individual). This can be extended to several interaction measures, such
as those individuals who both groom particularly frequently and are
generally submissive.

Roles can also be assigned based on associations. In taking this route,
the tools of network analysis (Section 5.3) are particularly useful. For
example, Lusseau and Newman (2004) described bottlenose dolphins
(Tursiops spp.) with high betweenness as having the “role of brokers
between communities.”

Moving beyond dyadic behavior, individuals may have a role in group
behavior. This is well illustrated by the significance of matriarchs in ele-
phant society. The matriarch is both agonistically dominant among the
females in a social unit and an altruistic leader of the unit (Payne 2003).
She makes decisions for the unit and leads their movements (McComb
et al. 2001; Payne 2003).

A caution: For any measure calculated for members of a community
or population, whether of individual, dyadic, or group behavior, there
will be individuals with relatively high and low values. Before assigning
roles based on such extremes, we need to know whether they are partic-
ularly high or low given the expectations for a randomly interacting or
associating, or just behaving, society. Thus, unless the categorization is
particularly obvious, the techniques discussed in Sections 4.3, 4.8, and
4.9 for examining distributions of individual and dyadic behavior should
be considered before assigning roles.

7.1.2: How Do Roles Affect Societies? If individuals have roles in societies,
there are a variety of techniques that can be used to assess the impor-
tance of these individuals in the social structure. The basic idea is to
compare situations with and without such individuals. The most infor-
mative method will usually be experimentally to remove the individuals
in question. Examples are Singh and D’Souza’s (1992) removal of an
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alpha male from a captive community of Japanese macaques (Macaca
fuscata) and Flack et al.’s (2006) “experimental knockout” of polic-
ing macaques from a colony. However, experimental removal will not
be practical, ethical, or legal in many field situations. A less definitive
alternative is the “topological knockout” in which measures of a com-
munity’s social behavior are compared between the full data set and
with the data involving certain key individuals removed (e.g., Table 5.4).
Another approach is to compare attributes of social elements (groups,
units, communities, or populations) that naturally vary in the presence
or qualities of the individuals with a particular role.

Once the contrasting social settings have been set up, we need re-
sponse measures. These can vary all the way from reproductive success
(e.g., McComb et al. 2001), through network measures of dyadic behav-
ior (e.g., Flack et al. 2006), to interaction rates (e.g., Singh & D’Souza
1992). Appropriate statistical techniques depend on the experimental
design and may range from general linear models when comparing soci-
eties with different attributes to paired t-tests in the case of experimental
knockouts [see, e.g., Ruxton and Colegrave (2006) or Sokal and Rohlf
(1994) for summaries of statistical techniques for analyzing experiments
and Box 7.1].

An example of this approach is McComb et al.’s (2001) comparison
of group behavior and reproductive success among elephant units whose
matriarchs possessed different levels of experience. A logistic model (in
which continuous and categorical variables may affect the probability of
an event occurring) was used to examine the influence of various factors
on the probability that a family of elephants “bunched” in response to
the playback of the distinctive sounds of an adult female from another
family. Several factors had little effect on bunching: the mean age of
females in the group excluding the matriarch, the number of females in
the group, the number of calves in the group, the age of the youngest calf
in the group, and the presence or absence of adult males. These were
removed from the logistic model. Remaining as factors that affected
the probability of bunching were the family being observed, the age of
the matriarch of the family being observed, the simple ratio association
index (Section 4.5) between the family being observed and that of the
family of the individual whose sounds were being played back, and the
interaction between the matriarch’s age and the association index. These
results showed that families with older matriarchs bunched less and dis-
played a more appropriate response by not bunching in response to calls
from familiar individuals than those with younger matriarchs (Fig. 7.3).
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F I G U R E 7 . 3 Probability of bunching by families of African elephants (Loxodonta africana) in response
to playbacks of calls from individuals of varying familiarity, as indicated by the simple-ratio association
index on the x-axis, for families with (solid line) 55-year-old matriarchs and (dashed line) 35-year-old
matriarchs estimated using logistic regression. (From McComb et al. 2001, fig. 1A.)

7.2 The Dyad in Society: Conflict

The Darwinian paradigm views organisms as competitors for natural
resources. Those that obtain the most, whether it be food, mates, or
territory, have the most surviving offspring, and so genes that code for
success in these competitions propagate. The consequence is that we
expect the behavior of organisms to be adapted for efficient competi-
tion; those whose behavior was not well adapted will, statistically and
evolutionarily, have perished. From this perspective, conflict is to be ex-
pected. There will conflict over food, mates, and territory, and conflict
should structure societies.

Thus, agonistic interactions between dyads are to be expected. Ef-
ficient agonism should have evolved and should generally be adaptive.
Much of behavioral ecology is about how individuals interact agonis-
tically, who wins, how much energy they should devote to a contest,
what risks they should take, and so on. From a societal perspective, we
are interested in how this agonism socially structures a community. As
discussed in Section 7.3, competition may induce cooperation, but if it
does not, then the society is relatively simpler. The important issues are
what is being competed for and how the competition takes place.



W H A T D E T E R M I N E S S O C I A L S T R U C T U R E 257

Some of the methods and measures introduced in the previous chap-
ters can help when investigating the role of agonistic interactions in
societies. Individuals can be characterized by rates of agonistic interac-
tions, dominance rank, and dominance indices (Sections 4.3 and 5.4).
At the dyadic level, asymmetry can be measured using several methods
(Section 4.8), including de Vries’ et al.’s (2006) dyadic dominance index
[Equation (10)]. The most useful societal measures include the overall
rates of agonistic encounters, rates within and between classes, Landau’s
(1951) and de Vries’ (1995) indices of dominance linearity, and Vries et
al.’s (2006) steepness (Section 5.4). These give rates of overt conflict and
how linear and how predictable outcomes of conflicts are. The behav-
ioral ecologist can then use these measures as input for her intraspecific,
interspecific or experimental analyses. I give an example of each of the
three principal methods being used to examine the role of conflict in
structuring society.

At the individual level, rates of agonism, dominance rank, or domi-
nance indices can be compared with age, mass, or other characteristics to
look for determinants of agonistic behavior. By making dominance the
dependent variable, one can examine how reproductive success varies
with dominance, directly addressing the ultimate currency of the behav-
ioral ecologist. Copulation frequency is not quite reproductive success,
but for polygynous male mammals, they are closely correlated. Copu-
lation frequency is plotted against rank in Fig. 7.4 for male northern
elephant seals. In 1968, when there were 193 females and 103 males at
the colony, the most dominant males gained a huge proportion of the
copulations, whereas 5 years later, when the colony had grown to 470
females and 180 males, the reproductive success was less skewed (le Boeuf
1974). Similar issues can be investigated at a dyadic level. How does the
agonistic interaction rate of a pair or their dyadic dominance index de-
pend on their difference in age, mass, or kinship?

Sometimes, experiments are feasible, usually with captive populations.
For instance, Flack et al. (2005) removed the three highest-ranking males
from a captive population of 84 pigtailed macaques on randomly chosen
days and compared interaction measures and network structure within
the remaining community between days with and without the removal.
The rate of aggression increased 30% (t-test, P = 0.02) without the three
“policers.”

As an example of the use of the method of comparing species, Isbell and
Pruetz (1998) found a statistically significant index of dominance linearity
of 0.79 in vervet monkeys (Cercopithecus aethiops) but an index of 0.21,
not significantly from random, in patas monkeys (Erythrocebus patas)
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F I G U R E 7 . 4 Number of copulations observed versus dominance rank for males in a colony of northern
elephant seals (Mirounga angustirostris) breeding on Año Nuevo Island off California over 6 years (Data
from le Boeuf 1974, table 5.) (Illustration copyright Emese Kazár.)

at the same site. They attribute the difference to usurpability of food.
When food is usurpable—able to be taken over—agonism pays and do-
minance hierarchies build up. When food cannot usually be removed from
its discoverer or contested for in other economical ways, then societies
become more equitable (e.g., Kappeler & van Schaik 2002).

7.3 The Dyad in Society: Cooperation

Whereas the Darwinian expects conflict, cooperation between animals
is more intriguing, and behavioral ecologists have looked deeply at the
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mechanisms and evolution of cooperation. The principal processes that
have been invoked to explain cooperative behavior are mutualism, kin
selection, and various forms of reciprocity. In this section, I discuss each
of these mechanisms, using quantitative examples to illustrate poten-
tial methodology. Culture can also promote cooperation (Section 7.6).
The final subsection considers the behavioral underpinnings of bonds
between animals. Statistical methodology is summarized in Box 7.1.

7.3.1: The Puzzle of Cooperation: Mutualism. Mutualism is, in some re-
spects, the simplest of the cooperative mechanisms. Animals behave
in ways that help others because the behavior also helps themselves.
Grouping is the prime example of mutualism. Animals form groups be-
cause it benefits them, and by joining a group, the other members of the
group are benefited. Thus, mutualism may structure societies through
group formation. Behavioral ecologists examine the benefits of grouping
in a variety of ways, occasionally experimentally by changing group sizes
(e.g., Williams et al. 2003), but more normally by comparing the costs,
for instance, in predation rates, and benefits, for instance, in food ob-
tained per unit time, faced by animals in different-sized groups. Packer
et al.’s (1990) study of female lions provides a detailed example of this
approach. In essence, when food was abundant, the lions had similar
rates of energy acquisition at group sizes of one to four, whereas with
food scarcity, the lions did much better either alone or in larger groups
of five to seven animals (Fig. 7.5; with abundant food, no significant
differences; with scarce food, null hypothesis of equal food acquisition
rates rejected at P < 0.02; Mann-Whitney U-tests).

Whether the groups formed through mutualistic mechanisms are ep-
hemeral or permanent units may well depend on how the benefits are ac-
crued. If they depend simply on numbers, as in fish schooling to combat
predation (Pitcher 1986), then the groups are likely to change composi-
tion, whereas if they depend on more complex behavioral coordination,
then permanent membership may be beneficial. When individuals do form
permanent units, however, it is very likely that other mechanisms, such
as reciprocity or, especially, kinship are also in play (e.g., Packer et al. 1991).

7.3.2: The Puzzle of Cooperation: The Role of Kinship. Kinship is considered
to have a major influence on social relationships (Hamilton 1964) and
thus on social structure. The theoretical significance of kinship comes
from the genetic basis of evolution through natural selection. Because
kin carry some of the same genes, genes that promote behavior in an
individual that aids its kin will likely flourish, as will the kin-helping



C H A P T E R S E V E N 260

F I G U R E 7 . 5 Daily rates of food acquisition in groups of female lions (Panthera leo) of different sizes
during times of food abundance and food scarcity. (Redrawn from Packer et al. 1990, fig. 1.) (Illustration
copyright Emese Kazár.)

behavior. Hamilton (1964) formalized this process by showing that be-
havior that increases inclusive fitness—the fitness of an individual plus
the fitness of each kin multiplied by its genetic relatedness (the probabil-
ity that two individuals share a gene through descent)—will be selected
for. Thus, we might expect affiliative interaction rates to increase among
kin, agonistic interaction rates to decrease, and association indices to be
higher.

To test these hypotheses and examine the sizes of the effects if present,
we need information on kinship between members of the population.
Occasionally, this comes from knowledge of the genealogy of the studied
population, but usually this unknown, especially on the paternal side.
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Much more frequently, genetic relatedness is estimated from molecular
genetic data, particularly microsatellites, and often using the methods of
Queller and Goodnight (1989), whose KINSHIP program is frequently
used to estimate relatedness (Section 2.9). Table 4.2 shows an example
of a table of estimates of dyadic relatedness.

With a relatedness table like this, the hypotheses of kin selection
can be translated into statistical tests. The most direct and usual is the
Mantel test (Section 2.4). It tests whether there is a linear relationship
between the elements of the two identically indexed (usually by individ-
uals in the population) similarity or dissimilarity matrices. Alternatives
to the null hypothesis of no relationship when testing for the role of kin-
ship will usually be that there is a positive relationship between kinship
and association indices or affiliative interaction rates and a negative
relationship between kinship and agonistic interaction rates. Variants
on the Mantel test (Section 2.4) may be appropriate. There are nonpara-
metric versions in which elements of the matrices are replaced by their
ranks, and partial Mantel tests in which the relationship between two
variables is controlled for a third (Smouse et al. 1986; Hemelrijk 1990a).
These could be used when studying kinship, for instance, to see whether
association increase with relatedness, controlling for habitat overlap.

As an example of these methods, Table 7.1 shows matrices of associa-
tion indices (home range overlap) and relatedness for greater horseshoe

Table 7.1 Pairwise Relatedness Values (above Diagonal) and Home-Range Overlaps (95% Kernels;
below Diagonal) of Greater Horseshoe Bats (Rhinolophus ferrumequinum)

#9684 #9837 #10930 #9668 #10034 #10361 #10758

#9684 −0.05 0.28 −0.06 0.32 0.38 0.59
(0.25) (0.5) (0.05) (0.05) (0.05) (0.05)

#9837 0.58 0.13 0.14 −0.07 0.01 −0.38
(0.125) (0.05) (0.05) (0.05) (0.05)

#10930 0.61 0.51 −0.24 0.13 0.12 0.41
(0.05) (0.05) (0.05) (0.05)

#9668 0.31 0.37 0.29 0.68 0.30 −0.25
(0.5) (0.25) (0.125)

#10034 0.33 0.38 0.28 0.65 0.32 0.06
(0.5) (0.25)

#10361 0.3 0.42 0.42 0.63 0.57 0.40
(0.5)

#10758 0.46 0.65 0.54 0.39 0.42 0.45

Relatedness was calculated using seven microsatellites and methods of Queller and Goodnight (1989), together with, in
parentheses, Hamilton’s (1964) theoretical coefficients of relatedness based on known genealogy. Matrix correlations and
P-values based on Mantel tests for the relationship between relatedness and home-range overlap were r = 0.27 and P >

0.05 for microsatellite-based relatedness and r = 0.64 and P < 0.05 for genealogy-based relatedness.
From Rossiter et al. (2002).
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bats derived using both known genealogy and molecular genetics (Ros-
siter et al. 2002). In this case, the significant positive relationship pre-
dicted by kinship theory was found using the genealogical measures of
relatedness, but although the correlation calculated from the molecular
genetic relatedness was positive, it was not significant. This may be be-
cause seven microsatellites were insufficient to give accurate measures
of relatedness in this species (Rossiter et al. 2002).

Archie et al. (2006) looked at how well genetic relatedness predicts
association across several tiers of elephant (Loxodonta africana) society.
They found positive matrix correlations, and significant results of a
Mantel test, between genetic relatedness (estimated using 11 microsatel-
lites) and association (calculated using a 100-meter chain rule) among
females in 8 of 10 “core groups” (what I call social units). They also
used a Mantel test to show that core groups that shared the same mito-
chondrial haplotype, and so were more likely to be matrilineally related,
associated more than those that did not. In this case, the relatedness ma-
trix was 1:0 (same/different haplotype possessed by two core groups).

7.3.3: The Puzzle of Cooperation: Reciprocity. Reciprocity is based on the
concept that the rate at which an individual interacts with another indi-
vidual depends on the previous history of interactions in the community.
Three principal forms of reciprocity have been studied, each theoretically
leading to the evolution of cooperative behavior (Axelrod & Hamilton
1981; Mohtashemi & Mui 2003; Pfeiffer et al. 2005). Each makes pre-
dictions about the pattern of interactions in a population, and so the dif-
ferent forms of reciprocity can be set up as tests on an interaction matrix:

� Direct reciprocity. This is the original, dyadic form of reci-
procity, in which individuals direct more affiliative inter-
actions or fewer agonistic ones toward other individuals
who are more affiliative or less agonistic to them (Trivers
1971). As discussed by Hemelrijk (1990b; see also Section
4.8), the actor-receiver version of direct reciprocity is both
more parsimonious and tractable. In this scheme, an individ-
ual interacts with other members of the population at rates
that are proportional to the rates at which the other individ-
uals interact with it. Hemelrijk (1990b) suggests using the
Rr test to test for evidence of direct reciprocity. In this, the
actor-receiver matrix and its transpose, the receiver-actor
matrix, are first ranked within rows and then subjected to
the Mantel test (e.g., Table 4.10).
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� Reputation reciprocity. In reputation reciprocity, individu-
als tend to interact positively with those who interact posi-
tively with others. In other words, reputation counts. For an
affiliative interaction measure, a test of this is that the inter-
action rate between A (actor) and B (receiver) is proportional
to the overall (summed over the population) rate at which B
acts. Once again, we may want to use the Rr version of the
test, ranking within rows both the actual interaction matrix
and expected interaction matrix, before carrying out the
Mantel test.

� Generalized reciprocity. Generalized reciprocity, in which
individuals who have been the subject of positive interac-
tions act more positively, is the least cognitively demanding
of the forms of reciprocity—an individual does not need to
recognize other individuals or track their actions, just re-
spond to the way it has been treated. It would also appear
to be the least likely to evolve. One might wonder why an
individual would not just receive and not give if no one is
keeping track. Pfeiffer et al. (2005) show theoretically that
generalized reciprocity can evolve, at least in small groups.
The prediction of generalized reciprocity is, in some respects,
the transpose of that from indirect reciprocity: that the inter-
action rate between A (actor) and B (receiver) is proportional
to the overall (summed over the population) rate at which
A receives. In this case, we might want to rank both the in-
teraction matrix and expected interaction matrix within
columns.

Table 7.2 illustrates these tests (the ranked versions) using the capuchin
grooming data of Table 4.4. This data set provides little support for any of
the forms of reciprocity, although direct reciprocity has greatest support
(the highest matrix correlation coefficient).

Reputation reciprocity and generalized reciprocity could be applica-
ble to a symmetric interaction measure. For instance, for an association
measure based on grouping, reputation reciprocity would imply that
individuals associate most with the most gregarious members of the
population, and generalized reciprocity that more gregarious individuals
in general are more likely to associate with particular partners. In both
cases, however, the test would need to be modified to remove circularity
(e.g., in reputation reciprocity, removing individual A when calculating
B’s gregariousness for the expected value of the A-B association). I am
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Table 7.2 Tests for Reciprocity in Grooming Rates of Female Capuchin Monkeys (Cebus capucinus)
Using Data of Perry (1996; table 4.4)

Observed: Expected with reciprocity:
Testing for direct reciprocity

Row-ranked matrix Row-ranked transposed matrix

A 0 5 4 2 3 1 A 0 5 2 4 3 1
S 5 0 4 3 2 1 S 2 0 5 3 4 1
N 4 5 0 2 3 1 N 1 5 0 3 4 2
D 5 2 3 0 4 1 D 1 4 3 0 5 2 r = 0.35, P = 0.151
W 4 3 2 5 0 1 W 1 3 4 5 0 2
T 1 2 4 3 5 0 T 1 4 2 3 5 0

A S N D W T A S N D W T

Testing for reputation reciprocity
Row-ranked matrix Row-ranked column-sums of matrix

A 0 5 4 2 3 1 A 0 5 2 3 4 1
S 5 0 4 3 2 1 S 1 0 3 4 5 2
N 4 5 0 2 3 1 N 1 5 0 3 4 2
D 5 2 3 0 4 1 D 1 5 3 0 4 2 r = 0.15, P = 0.369
W 4 3 2 5 0 1 W 1 5 3 4 0 2
T 1 2 4 3 5 0 T 1 5 2 3 4 0

A S N D W T A S N D W T

Testing for generalized reciprocity
Column-ranked matrix Column-ranked row-sums of matrix

A S N D W T A S N D W T
A 0 2 1 1 1 1 A 0 5 5 5 5 5
S 5 0 5 4 3 4 S 4 0 4 3 3 3
N 2 5 0 3 4 2 N 5 4 0 4 4 4
D 4 3 3 0 5 3 D 3 3 3 0 2 2 r = −0.17, P = 0.665
W 3 4 4 5 0 5 W 2 2 2 2 0 1
T 1 1 2 2 2 0 T 1 1 1 1 1 0

A S N D W T A S N D W T

In each of the three tests, the observed rankings of the grooming rates is shown on the left and the expected ranks on the
right. The matrix correlation (r) and value of the Mantel test (P) is shown for each hypothesis.

not sure that such tests for reputation or generalized reciprocity using
symmetric measures have a great deal of value.

7.3.4: Testing the Bond. Zahavi (1977) proposed that bonded animals rou-
tinely test the bond (Section 4.10), inflicting stress on each other and see-
ing how their partner responds. One possible method of testing a bond is
by exchanging costly signals. Thus, we might expect a correlation across
dyads between bond strength and the rate of costly signaling.

Whitham and Maestripieri (2003) examined this hypothesis using
observations of 15 captive adult male baboons (Papio papio). They used
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a Mantel test to look at correlations between bond strength and rates of
intense greeting. Alternative hypotheses were that the greetings were in-
volved in aggressive or submissive behavior, and these also were trans-
lated into Mantel tests. The dyadic rate of intense greeting was corre-
lated with grooming rate (Mantel P < 0.0001) and time spent associated
(Mantel P < 0.01), although a partial Mantel test showed that this latter
relationship no longer held when association rate was controlled for groom-
ing rate (P = 0.46). Thus, intense greetings seemed related to the quality
of the relationship—the bond strength. Arguing against dominance or
submissive functions for intense greetings were a lack of significant re-
lationships between intense greetings and rank difference (Mantel P =
0.30) or aggression rates (Mantel P = 0.46; partial Mantel P = 0.22
controlling for time spent in proximity). Rates of less intense, and so
less costly, greetings were not significantly correlated with any of the af-
filiative or agonistic measures (Mantel P > 0.05), again in line with the
bond-testing hypothesis. In this summary of Whitham and Maestrip-
ieri’s (2003) results, I have just listed P-values, not a recommended
practice (“naked P-values”; Johnson 1999). However, the effect sizes
are presented as dyadic plots of interaction rates in the original paper
(Whitham & Maestripieri 2003; e.g., Fig. 2).

B O X 7.1 Quantitative Methods in the Behavioral Ecology of Social Systems

The quantitative methods used by behavioral ecologists to inves-
tigate the function of behavior are usually closer to the statistical
mainstream than those described in the earlier chapters of this
book. They are mostly well covered by standard statistical texts
(e.g., Sokal & Rohlf 1994). Here I highlight some of the most
important methods (see also Table 2.1.) and issues, focusing first
on experiments and then on comparisons of natural variation.

Experiments. The experimental method involves changing,
randomly, the level of a factor that is hypothesized to affect some
outcome. In the context of this chapter, social elements could be
part of such analyses in three ways:

� Social measures as outcomes, potentially affected by
nonsocial factors. For instance, the temperature or
food availability of a captive colony could be altered
on some random basis and social variables, either at
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the individual, dyadic, or societal level (Table 1.2),
could be measured.

� Nonsocial outcomes, potentially affected by social
factors. Manipulating social factors is difficult but
sometimes possible, usually with captive colonies.
An example of this kind of experiment might address
how removal of an alpha male affects conception
rates of females. Ideally, however, a number of sepa-
rate colonies would need to be available and open to
random removal of alpha males.

� Social measures as outcomes, potentially affected by
social factors. Here, the difficulties are increased with
less tractable social measures to be both manipulated
and measured. A fine example of this type of ap-
proach, however, is Flack et al.’s (2006) comparison
of network measures of social structure in a macaque
colony from which three “policing” individuals were
removed randomly.

The basic analytical method of analyzing such experiments is
the analysis of variance (ANOVA) or t-test if there are only two
levels of the factor. Variants include the multivariate analysis of
variance (MANOVA) when two or more outcome measures are
to be analyzed together.

Several issues should be considered when planning experi-
ments and analyzing experimental data. These include the normal-
ity of the response variable(s). If the response variables are non-
normal, it is best to transform them so that they are normal or
nearly normal (Sokal & Rohlf 1994, pp. 409–422). In situations
in which the response variables cannot be made normal, one can
use the nonparametric equivalents of the ANOVA and t-test (Mann-
Whitney U-test and Kruskal-Wallis test, respectively). If there are
several response measures, then analysts might want to adjust the
critical levels to control experiment-wise probabilities of rejections
of the null hypothesis that there is no effect of the experimen-
tal manipulation. Bonferroni and Dunn-Sidak corrections do this
(Sokal & Rohlf 1994, p. 240). Generally, it is even better to use
the multivariate form of the test (MANOVA) so that only one P-
value is generated despite there being several response variables.

The assumption of independence is one of the most likely prob-
lems to affect experimental studies of social behavior. Statistical
methodology generally assumes random samples from the study
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population. This is rarely the case if we consider the study pop-
ulation to be the species in the wild or captivity. Thus, repeated
measurements made on the same individual are not independent,
nor are repeated measurements made on the same community,
unless the community itself is considered to be the study pop-
ulation. Thus, for instance, the results of Flack et al.’s (2006)
otherwise exemplary study of policing technically only refer to
the macaque colony under observation during the period of the
experiment. Extrapolation of the results more generally requires
a leap of faith that is not statistically buttressed.

Comparison of individuals, dyads, populations or species. In
these nonexperimental situations, variables are compared. The
simplest case is of two continuous variables, perhaps a societal
measure (e.g., from Table 1.2) and an environmental one, such as
food availability. These can be related using the correlation coef-
ficient between the measures (Section 2.2), which expresses how
closely related they are. In addition, it is always worth plotting
them against one another because a correlation coefficient might
mask many kinds of interesting nonlinearities between the mea-
sures. The correlation coefficient can be, and usually is, tested
against zero. If the data are quite nonnormal, then the Spearman
rank correlation coefficient (Section 2.2) is a suitable alternative.

Regression analysis can be used to quantify the relationship be-
tween the variables, assuming that one can be considered depen-
dent on the other. There are many variants of regression analysis,
including multiple regression when there are several independent
variables, polynomial regression for nonlinear situations, and
logistic regression when the dependent variable is categorical
(Kleinbaum et al. 1988). If it is the independent variable or vari-
ables that are categorical, then this turns into an ANOVA. If both
dependent and independent variables are categorical, then we
use log-linear models (Sokal & Rohlf 1994, pp. 743–760). All
of these are special cases of the generalized linear model, which
allows for combinations of categorical and continuous depen-
dent and independent variables as well as nonlinear relationships
between them (Dobson 2001).

With more than one dependent variable, the generalization of
correlation analysis is to canonical correlation analysis (Legendre
& Legendre 1998, pp. 612–616) and that of multiple regression
is to redundancy analysis (Legendre & Legendre 1998, pp. 579–
594).
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From these methods, we obtain estimates of the importance
of the relationships among the variables (e.g., correlation coeffi-
cient, proportion of variance accounted for), descriptions of the
relationships (e.g., regression coefficients, effect sizes), and the
results of tests of the null hypothesis that there is no relationship.
These may all be useful, but many have argued that the results
of tests should not be presented without measures of the size or
nature of the relationship, and that confidence intervals about such
measures are more revealing than P-values (e.g., Johnson 1999).

All of these techniques make assumptions. Most assume that
residual errors, after fitting the regression or other model, are nor-
mally distributed with constant variance and that there is some
kind of linear relationship between the two variables or sets of
variables. Residuals are usually used to check these assumptions
(Kleinbaum et al. 1988, pp. 185–196). If these assumptions fail,
transformations of the variables, by logging, ranking, or in other
ways, are usually the best way to proceed. Sometimes, a more
complex method, such as a generalized linear model or even a
nonlinear model, can be used to deal with assumption failure.

As with the experimental method, in comparative studies the
assumption of independence is a particularly significant one. De-
pendences take rather different forms depending on the nature
of the units of the analysis, whether they are individuals, dyads,
populations, or species.

If the level of comparison is the individual, then either only
one entry should be made for each individual in the analysis and
each variable (although it could be the mean, or some other statis-
tic, calculated from several measurements), or individual identity
should be entered into the analysis as an independent factor.
Even after one takes these steps, there may still be problems with
independence if, for instance, some of the individuals are close
relatives.

When the units of analysis are dyads, the independence prob-
lems become more serious because the same individual is respon-
sible for a number of the units in the analysis. As discussed in
the earlier chapters, however, there are ways around this. Mea-
sures of precision such as confidence intervals and standard errors
can be estimated using bootstraps and jackknives (Section 2.3),
whereas hypothesis tests are best achieved through permutation
(Section 2.4). The Mantel test is particularly valuable in this
situation (e.g., examples in Sections 4.8, 4.11, 7.3, and 7.6). We
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can also use the partial Mantel test (Smouse et al. 1986) to con-
trol for other aspects of nonindependence (e.g., same–different sex).

When populations or communities are the units of analysis,
lack of independence is not built in, but it still could be an is-
sue, and so we might need to use controlling covariates, such as
population size or proportion of mature males, when, for instance,
looking at how prey availability affects group size. In some cases,
such as when we want to control for geographical distance be-
tween populations, it might be useful to recast the problem as a Man-
tel test (Section 2.4) so that, instead of comparing group size with
prey availability, we compare difference in group size with dif-
ference in prey availability, controlling for geographic distance.

Finally, when species or other phylogenetic entities are the
units of analysis, there is an additional problem with indepen-
dence. Evolutionarily related species may have similar values on
a trait either because of homology or because there has been par-
allel evolution of, or ecological adaptation to, the independent
variable being considered (Stearns & Hoekstra 2000, p. 323). To
get around this, scientists use the method of independent con-
trasts, in which comparisons are made between pairs of species,
or groups of species, such that each divergence in the phyloge-
netic tree is only used for one comparison (Felsenstein 1985).
The method of independent contrasts is often regarded as the
optimal technique when comparing species (Stearns & Hoekstra
2000, pp. 327–328). However, the method depends on an ac-
curate phylogenetic tree being available, usually from molecular
genetics, and if the tree is inaccurate, the analysis may become
problematic. The program CAIC implements the method of in-
dependent contrasts (Purvis & Rambaut 1995).

7.4 Environmental Determinants of Social Systems

In this section and the next, which considers the relationship between
social and mating systems, we reach ground that has been much trav-
eled. Among the many important contributions on the evolution of
social and mating systems are those of Wilson (1975), Emlen and Oring
(1977), Clutton-Brock (1989), and Kappeler and van Schaik (2002).
Many other papers and books could have been chosen, but this selection
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indicates both a range of dates and taxonomic perspectives, with the
authors working primarily on insects, birds, nonprimate mammals, and
primates. There is much that is unknown and contested in this area,
but some general principles have emerged. Here and in the following
section, I summarize the principles—for more details, there is plenty to
read!—and discuss methods. See also Box 7.1.

Organisms adapt to their environments, and, in this respect, social
relationships can be treated like any other trait. However, there is major
complicating factor: Because social behavior involves two or more or-
ganisms, each of which is part of the others’ environment, the system is
potentially challenging both for the evolutionary optimization of an or-
ganism’s behavior and its study. Despite these challenges, it has become
clear that nonsocial factors can be major determinants of social structure
in some simpler systems, as well as providing an overall context for the
evolution of more complex ones. Aspects of the nonsocial environment
that are considered to be major determinants of social structure include
the following:

� Predation. The presence of nearby conspecifics can help
combat predators through increased vigilance, dilution (the
predator is more likely to take someone else), confusion of
the predator (e.g., synchronous movement of shoaling fish),
cover (hiding behind group members), and group defense,
for instance, “mobbing” in birds. Thus, predation is of-
ten considered to be a force for gregariousness (Pulliam &
Caraco 1984). However, there may be drawbacks to form-
ing groups. For instance, grouping may make prey more
conspicuous or more desirable, as when the predator is a
bulk feeder, such as a baleen whale that only attacks shoals
of fish and not solitary individuals.

� Finding food. Animals can use other animals to help them
find food in a variety of ways, including information cen-
ters (in which, for instance, roosting birds note the incoming
bearing of conspecifics who have fed successfully and leave
the roost on its reciprocal bearing), local enhancement (re-
acting to the feeding behavior of others), flushing prey, or
communally searching large areas for widely dispersed prey
(Pulliam & Caraco 1984). In some cases, however, living
in groups can make finding food harder, for instance, if the
prey are easily scared into safe refuges or there is a scramble
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competition, with groupmates eating the potential food of
an individual.

� Catching food. Sometimes catching prey is easier with coop-
eration, and in particular carnivores, such as lions (Panthera

leo), can bring down larger prey when working together.
� Defending resources. Grouping may be adaptive in that

the members can defend food or other resources against
members of their own or other species (Wrangham 1980).

� Patchiness of resources. If resources are patchy, this will
tend to aggregate animals. Although such aggregations are
not social in the way in which I use the term (Section 3.4),
aggregation can act as a catalyst for sociality; animals must
be within communicative range of one another to interact,
and patches of resource may bring them within such range.

The significance of these and other hypotheses in determining social
structure is primarily examined through comparisons of species, popu-
lations of the same species in different environments, or changes in the
social structure of a particular population as environmental conditions
change (Box 7.1). Such comparisons are often qualitative, at least from
the perspective of characterizing the social structure. However, mea-
sures of social structure (Section 5.1) and methods of characterizing it
(e.g., Section 5.2–5.5) can add rigor or deeper insight. Here are some
examples.

Hill and Lee (1998) compared community sizes (which they, like
other primatologists, call “group sizes”) and predation rates for 121
populations of 39 primate species. Mean community sizes were almost
twice as high (∼70 animals) in populations with a high risk of predation
(“frequent predator–prey interactions with regular contact and actual
or attempted predation observed or suspected”) than in populations
with a medium (∼28 animals) or low (∼21 animals) risk. There were
unexpectedly high numbers of mature males in populations with high
predation risk.

As with other correlative studies, there is the possibility that some
other factor, such as phylogeny, body size, or habitat productivity, might
have affected both community sizes and predation risk, producing a re-
lationship between the two factors without any direct causative mecha-
nism. Analytical techniques such as multiple regression and the method
of independent contrasts (e.g., Stearns & Hoekstra 2000, pp. 323–326)
can help to distinguish such explanations (Box 7.1).
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Faulkes et al. (1997) used independent contrasts to look at ecological
influences on the evolution of sociality in African mole rats. Mole rats are
subterranean rodents. For mammals, they have a uniquely wide variety
of social structures, ranging from solitary to eusocial (characterized by
cooperative care of the young and sterile castes). Figure 7.6 shows a
phylogeny determined by molecular genetics together with group sizes
and type of social structure for each species or subspecies when known.
It is clear that group sizes and social structures are often similar among
closely related species and subspecies, and thus that the species and
subspecies are not independent. Therefore, Faulkes et al. (1997) made
independent contrasts at the nodes marked A through G on Fig. 7.6.
At each node, they compared the difference in social variables with the
difference in environmental variables. Here is the essence of the results
of correlation analysis using these contrasts with the logarithm of the
maximum group size being correlated with several ecological and other
independent variables (Faulkes et al. 1997):

Log mean geophyte density r = −0.778 (P = 0.022)
Log mean digestible energy r = −0.527 (P = 0.179)
Log mean annual rainfall r = 0.003 (P = 0.993)
Months of >25-mm rainfall r = −0.223 (P = 0.595)
CV of rainfall r = 0.915 (P = 0.001)
Mean body mass r = −0.469 (P = 0.241)
Gestation length r = 0.522 (P = 0.229)

This indicates that social systems in mole rats are related to geophyte
density and variation in rainfall, with the more complex social systems
being found in habitats of low geophyte density and high variability in
rainfall. Thus, in this group of species, complex social systems seem to
have arisen in more challenging environmental conditions.

For an example of the effects of environment on social structure that
includes comparisons within and between populations, consider the
study of Henzi et al. (Submitted). They used lagged association rates
(Section 5.5) and network analysis (Section 5.3) to study the effects of
seasonal environmental differences on the societies of female chacma
baboons (Papio hamadryas ursinus). When food was abundant, mod-
els fitted to lagged association rates included components indicating
preferred companions, whereas when food was scarce, simpler models
without such terms fitted better. In addition, when food was abun-
dant, network strengths (i.e., gregariousness) and clustering coefficients
(“cliqueishness”) decreased, but the variability in the association in-
dices of individuals increased (in agreement with the lagged associa-
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F I G U R E 7 . 6 Phylogeny of African mole rats (family Bathyergidae) determined using molecular genetics
together with maximum colony size, mean colony size, and type of social system when known. C, colonial,
with usually one breeding pair per colony; E, eusocial; S, solitary. Beside nodes are shown the percentage
of bootstrap replicate phylogenies containing the node. (From Faulkes et al. 1997, fig. 1a.)

tion rate analysis). These patterns were consistent at two different sites
(even though the seasons of food abundance are different) and over two
changes in season at each site.

7.4.1: Are Social Systems Adaptive? The preceding examples show social
structures varying with environmental conditions within and between
species. Can we then call them adaptive? A state of a trait is adaptive
if, compared with alternative states, it has improved reproductive per-
formance (basically, surviving offspring). Darwinian evolution through
natural selection predicts that traits will usually be adaptive (Stearns
& Hoekstra 2000, pp. 13–18). This means adaptive at the level of the
replicator, the unit of information and usually the gene, not necessarily
adaptive at higher levels. In many cases, the actions of individual organ-
isms will be adaptive, but sometimes “selfish” genes will make this to
be not the case (Dawkins 1976). As we move up levels of organization
away from that of the replicator, the likelihood of adaptation decreases.
From this perspective, the social structure of a population would not
necessarily be expected to be adaptive in the sense that the mean repro-
ductive performance of its members might be higher with an alternative
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social structure. Examples of important elements of social structure that
are nonadaptive from the perspective of the mean reproductive perfor-
mance of its members are the presence of infanticide (e.g., van Schaik &
Kappeler 1997) and the formation of groups of size larger than the size
that optimizes reproductive success (Sibly 1983). Such elements arise
and persist because the individual behavioral decisions that cause them
are adaptive to the individuals within their social environment, but the
population as a whole would do better without them.

For social systems to be generally adaptive, communities would need
to be the replicators themselves. This is “group selection,” the conditions
for which are believed to have little likelihood of occurring (Stearns and
Hoekstra 2000, p. 50), except in the case of cultural group selection, in
which the transmission of traits is through social learning rather than
genes (Soltis et al. 1995).

A second line of argument about the general adaptiveness of social
systems comes from studies of self-organization. As reviewed by Sumpter
(2006), a variety of empirical and theoretical studies of a diverse range of
species have shown that complex social behavior can arise from the
rather simple actions of individuals. In his abstract, but nowhere else in
the article, Sumpter (2006) uses the word “adaptive” to describe the com-
plex social patterns that may result. The collective behavior is, I believe,
likely usually individually adaptive in the sense that if it is prevalent, an
individual does best, in terms of reproductive performance, by joining in,
but not necessarily collectively adaptive because there may be some other
form of social structure that might have increased mean reproductive
performance.

7.5 Mating Systems and Social Systems

The mating system, as I have defined it, is a part of the social system.
In most cases, mating and its related activities such as courtship, copula-
tion, mate guarding, and mate competition, form a large and important
part of the set of interactions and relationships that define a social
system. Mating is also behind many other significant interactions and
relationships, including infanticide and alliance formation.

The relationships between mating systems in particular and social
systems in general have long been a focus for the attention of behavioral
ecologists (e.g., Wilson 1975) and much has been written about them.
In some groups of species, such as pinnipeds and amphibians, most re-
search on social systems has actually been about mating systems. The
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relationship can work in both directions. For instance, the group sizes
of females are considered to be an important element in the type of mat-
ing system adopted by mammals (Clutton-Brock 1989), whereas infan-
ticide, a male mating strategy, can be a force for general female sociality
(Ebensberger 1998).

Important elements in the evolution of mating systems include the
following (Emlen & Oring 1977; Clutton-Brock 1989; Kappeler & van
Schaik 2002):

� Parental care. How many adults are needed to care for the
offspring? If it is two (as in many birds), then monogamous
systems are likely to prevail; if it is one (as in many mam-
mals), forms of polygyny, polyandry, or promiscuity are
expected; if it is more than two (found occasionally among
mammals and birds, but most prominently in the social in-
sects), then complex helper-based societies evolve; if it is
zero (some fish), then parental care is not an issue and other
factors come into play.

� Monopolization of mating opportunities. When the mat-
ing opportunities of one or both parents are unconstrained
by parental care, then their ability to monopolize mating
opportunities with members of the opposite sex becomes
important. This ability depends on the spatial distribution
of the members of the opposite sex, and so on their social
structure, as well as on their use of defendable resources and
the temporal pattern of receptivity for mating. Polygyny may
be expected if a single male or coalition of males can defend
economically a group of receptive females, the resources
on which they depend, or a sequence of receptive females
(Emlen & Oring 1977).

� Partner choice. Females, investing much more in each ga-
mete, are expected to be choosier. Partner choice is clearly a
major part of many monogamous mating systems with elab-
orate courtship rituals, as well as in polygynous or promis-
cuous systems in which one sex (usually males) displays to
the other (Trivers 1985, pp. 331–360).

� Infanticide. Parents may adopt tactics, including social be-
havior, to lessen the likelihood that their offspring are killed.
Usually the threat comes from males interested in mat-
ing with the mother, who, with her offspring’s death, may
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become receptive more quickly. It has been proposed that al-
liances among females and promiscuity may be adaptations
against infanticide (Ebensberger 1998).

To study mating systems, we first need to determine their form. This
is done in three main ways: (1) from observation—who mates with
whom; (2) from genetic analyses—who were the parents of whom, and
thus mated; and (3) using inferences from other areas of biology. An ex-
ample of the latter is using the correlation between relative testis size and
mating systems in primates, with males having relatively larger testes in
promiscuous systems (Harcourt et al. 1981), to predict mating systems
in baleen whales (Brownell & Ralls 1986), for whom observations of
mating are very rare, but there is plenty of data on testis size collected
by the whaling industry. Frequently, mating systems are described using
categorical variables, such as “monogamous,” “polygynous,” “polyan-
drous,” and “rapid multiple clutch polygamy” (Emlen & Oring 1977).
Numerical variables might also be useful, however, such as the number
of males per social unit or the mean number of males with which each
female mates during a receptive period.

Because a mating system is the property of a population, or at least a
community, a quantitative analysis usually needs to have statistical units
of at least this scale. Experiments become difficult here. Mating systems
themselves cannot really be manipulated directly in any consistent but
randomized way. Especially in captive situations, it may be possible to
manipulate the social systems behind the mating systems, for instance,
by changing the sex ratio in a colony, but this is still demanding (Box
7.1). When mating systems are the response variable in an experimen-
tal design, they do not need to be manipulated, but because it usually
takes some time for a mating system to develop and be registered, such
experiments are also demanding. Consequently, mating systems are usu-
ally examined using intraspecific (e.g., Moehlman 1998) or, especially,
interspecific comparisons. Box 7.1 notes major methods.

As an example of the interspecific method, consider the study of Has-
selquist and Sherman (2001). There are two principal hypotheses for how
the prevalence of extrapair copulations in birds should relate to the mat-
ing system. In the first, extrapair copulations should be higher in polyg-
ynous systems because males cannot as effectively protect females with
whom they have mated from being mated by other males as they could
in monogamous systems. Alternatively, if females are driving extra-
pair copulations, there might be more in monogamous systems because
they would be less likely to pair with the male of their choice. Thus,
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Hasselquist and Sherman (2001) examined how the rate of extrapair
copulations varied between mating systems for 40 species of passerine
bird. Mating systems were classified as monogamous (<5% of males
paired with more than one female) or polygynous (>5% of males pairing
multiply). There were proportionally more extrapair young in monog-
amous species (mean 23%) than in polygynous species (mean 11%).
Because of the phylogenetic relationships among the species, they used
the method of independent contrasts (Fig. 7.7; Box 7.1) to test whether
this difference was unexpectedly large. It was: There were significantly
more extrapair young in monogamous species, whether mating sys-
tems were categorized as monogamous or polygynous (P < 0.001) or
placed on a continuum measured by the proportion of polygynous males
(P = 0.02). Thus, Hasselquist and Sherman’s (2001) study strongly sup-
ports the hypothesis that it is the female’s desire to mate with the “best”
male that drives extrapair copulations, and that in polygynously mated
species there is less drive for this and/or that females incur higher costs
for sexual unfaithfulness.

7.6 Culture in Society

7.6.1: What Is Culture? Culture has scores of definitions (Mundinger 1980),
but most of them have the same basic elements as the one that I use:
“information or behavior shared by a population or subpopulation of
animals that is acquired from conspecifics through some form of so-
cial learning” (Rendell & Whitehead 2001). Culture thus constitutes an
additional way that behavior is transmitted from animal to animal—
additional to genes, that is. Social learning is very different from repro-
duction: Most vertebrates receive genetic input from just two parents at
conception, whereas social learning can occur throughout life and from
many models. Individuals may easily modify the information that they
learn socially before using it or passing it on, whereas this rarely occurs
with genetic information. Thus, in several respects, cultural evolution
operates quite differently from genetic evolution, and its products tend
to have different characteristics (Richerson & Boyd 2004). These include
a greater likelihood of apparently maladaptive behavior, more possibil-
ities for group selection, and conformist, culturally marked groups. All
of these are attributes of the “hypercultural” (Barkow 2001) societies of
modern humans (Richerson & Boyd 2004). Perhaps other species “have
culture.” If so, how do we recognize it and investigate its importance?

There are two principal ways in which nonhuman culture is studied,
focusing on two of its fundamental attributes: the “shared” property



F I G U R E 7 . 7 Phylogeny of passerine bird species showing percentage of young with extra-pair fathers
(EPY; percentage of broods with more than one extrapair father) and percentage of males paired with
more than one female. M, monogamous (<5% of males have more than one social mate); P, polygynous
(>5% of males have more than one social mate). (From Hasselquist & Sherman 2001, fig. 1.)
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and “social learning” (Laland & Hoppitt 2003). Social learning comes
in several forms, including imitation, emulation, teaching, and social en-
hancement (Whiten & Ham 1992). It is usually studied experimentally
or through detailed observational studies of captive animals (Laland &
Hoppitt 2003). Unfortunately, the species for which this approach is
feasible are not always those whose behavior seems to have the most
cultural input, which is certainly the case for the sperm whales (Phy-
seter macrocephalus) that I study. Even when the experimental study
of social learning is available, the experimental laboratory situation is
invariably so different from the real-world environment of the animals
that the utility of the results for the assessment of culture in the wild is
questionable (McGrew 1992, p. 21; Boesch 2001).

Thus, field biologists interested in culture usually focus on another
of its attributes: that it is a group phenomenon. Different sets of animals
can have different cultures. Using this approach, we try to identify these
sets of animals and define their distinctive behavior. A major challenge is
determining that these behavioral distinctions result from social learning
rather than the principal alternatives of genetic determination, individ-
ual learning in different environmental circumstances, or ontogenetic
(age-related) effects. How do we proceed? This is an area in develop-
ment (Laland & Janik 2006). In the following subsections, I consider
the identification of social entities for cultural analysis, the current gen-
eral protocol, which features the elimination of noncultural causes of
observed behavioral patterns, and a new approach, which attempts to
partition the variance in behavior into cultural, genetic, environmental,
and possibly other causes.

7.6.2: Identifying Cultural Entities. In this step, we look for sets of animals
with similar behavior. Ideally, the sets are determined based on the
feasibility of members learning socially from one another. Social learning
itself is rarely unequivocally observed in the wild (but see, e.g., Boesch
& Boesch-Achermann 2000, pp. 243–246). Although social learning
between two animals is not the same as a behavioral interaction, the
circumstances under which they occur are likely similar. Thus, it makes
sense to define association in a way similar to that used when measuring
relationships (Section 3.3), construct association indices that indicate the
probability that social learning could take place within a dyad (Section
4.5), and divide the population into sets (units, communities, or other
social entities) based on the pattern within the matrix of association
indices (Section 5.7). This could include two or more hierarchically
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organized tiers of social structure or two or more non–hierarchically
arranged social patterns (Section 5.7).

In some situations, defining suitable social entities is simple. For
instance, chimpanzee (Pan troglodytes) communities are well defined by
defended territorial boundaries. In other cases, such as sperm whales
(Whitehead 2003), social units need to be delineated by analytical
processes such as those considered in Section 5.7.

For the remainder of this section, I call these sets of animals “communi-
ties” because they usually fit within my definition of community, being
largely behaviorally self-contained and within which most individuals
interact with most others. However, this need not be the case. For in-
stance, with humpback whales (Megaptera novaeangliae), a usual division
when looking at the cultural properties of songs is an ocean basin (Payne
1999), but most pairs of individuals within an ocean basin do not interact.

Occasionally (e.g., Krützen et al. 2005) the cultural communities are
defined based on the behavioral activity being considered. Thus, ani-
mals doing one thing are allocated to one community and those doing
another to a second community. This procedure makes the rigorous
identification of culture, and especially the ruling out of environmental
influence, harder. Even if there seems to be no difference in the environ-
ments of the animals behaving differently, how do we know that some un-
measured environmental variation did not cause the difference in behav-
ior? Because the communities are defined using the pattern of behavior
itself, environmental influences can much more easily cause culture-like
patterns than when the communities are delineated in an independent
study based on associations that indicate the probability of social learning.

7.6.3: The Elimination Method: Is It Culture? Once the communities have
been identified, a set of candidate behavioral activities can be mapped
onto them. These activities could be vocalizations, visual or tactile sig-
nals, foraging methods, food types, movement characteristics, types of
play, social conventions, or other types of behavior (for examples, see
Whitehead 1999b; Deecke et al. 2000; Whiten et al. 2001; Mann &
Sargeant 2003; Perry & Manson 2003; van Schaik et al. 2003). An
activity is a candidate for culture if it is found habitually (occurring
repeatedly in several individuals within the community) (Whiten et al.
1999) in some of the communities but not in others, or, if it is a quan-
titative measure, at different rates or intensities in the different commu-
nities. The “elimination” protocol for identifying culture next operates
by ruling out alternative explanations for the patterns identified. The
alternatives are as follows.
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1. Ontogeny. This is usually the easiest to eliminate if all the
communities contain individuals of an age at which this
activity is performed. This step is often omitted if the sets are
virtually closed breeding units.

2. Environmental variation. The suggestion here is that the
pattern of occurrence of the behavior could have arisen
because individuals in the different communities are exposed
to different stimuli and thus learn, individually, different
behavior, or the environment induces behavioral differences
through some other form of phenotypic plasticity. In some
cases, this alternative is easily ruled out, for instance, when
the communities are sympatric using the same environment,
or especially with some communicative or social behavior,
when the asocial environment can reasonably be considered
to have no relevance. In many other cases, especially with
foraging activities, it is much harder to rule out environ-
mental determination, and “elimination” studies of culture
are often criticized on the basis that this has not been done
sufficiently carefully (Laland & Janik 2006).

3. Genetic determination. Genetic determination can be ruled
out in a number of ways. Cross-fostering experiments are
perhaps ideal, in which young animals are moved between
communities with different behavior. If the fostered individ-
uals show the behavior of their adoptive parents and social
partners rather than that of their biological parents, then ge-
netic determination can be ruled out. The situation in which
immigrants adopt the behavior of the community that they
enter is nearly as persuasive. If community-specific behav-
ior changes with time (but not age), so that the members
of a community adopt a form of behavior and then change
it gradually or suddenly (as with humpback whale songs;
Payne 1999) over periods of time less than a lifetime, then
genetic determination can be ruled out. Often, none of these
kinds of evidence is available, and we fall back on molecular
genetic data. In such cases, the pattern of use of the activ-
ity within the communities becomes important. If virtually
all members of some communities do use the activity and
virtually all members of the other sets do not (often the case
with discrete social signals, such as vocalizations), then ge-
netic determination can virtually be ruled out if the com-
munities with the trait are not monophyletic with respect to
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the activity (which would imply that all individuals with the
activity are descended from a common ancestor who is not
the ancestor of any individual without the activity). This is
close to the procedure used by Whiten et al. (1999) in their
analysis of the cultural activities of chimpanzees, in which
they showed that variation in patterns of activity was as
great among communities within two subspecies as between
subspecies. If the variation in the activity among communi-
ties is quantitative or not shared among nearly all members
of a community when it is present, then ruling out genetic de-
termination is harder, and methods are not properly worked
out. A Mantel test (Section 2.4) that compares genetic and
behavioral similarities among communities is one approach,
with a near-zero matrix correlation and nonsignificant test
result indicating that genetic determination is unlikely.

A difficulty here is that if communities are formed by fission and the
daughter communities retain the cultural attributes of the parent com-
munity, then genetic and behavioral measures will tend to concur, giv-
ing a positive matrix correlation and a significant result for the Man-
tel test, even though the behavior may be culturally determined. If
the animals mate within communities, then disentangling the two ef-
fects is extremely hard. If mating is usually between communities or
if one sex usually migrates between communities before mating, then
there is a way around this. Take the case in which communities are
largely matrilineal, with females generally mating with males born in dif-
ferent communities. There may be a correlation among communities be-
tween mtDNA genetic similarity and behavioral similarity, but if there is
no correlation between measures of biparental autosomal genetic simi-
larity (e.g., using microsatellites) and behavioral similarity, then culture
is probably the most parsimonious cause of the behavioral variation
among communities because behavior is generally expected to be deter-
mined by autosomal genes [although there are some exceptions; for a
counterargument see Janik (2001)].

7.6.4: The Regression Method: How Important Is Culture? The standard elim-
ination protocol described in the previous subsection is restrictive; if a
behavioral activity survives the protocol’s rigorous application, it is
likely to be culturally determined. However, culturally determined ac-
tivities may be present in all studied communities or be correlated with
environmental variation (especially foraging activities) or genetic varia-
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tion (especially when most mating is within communities). In all these sit-
uations, the “culture-as-last-resort” elimination protocol just outlined
would conclude “no evidence for culture.” There is no reason that I
find valid why culture in nonhumans should be invoked only when all
other explanations have failed, especially when studies of human behav-
ior take the opposite approach (Laland & Hoppitt 2003). We need a
method of partitioning the causes of behavior into genes, environment,
and culture (Laland & Janik 2006). Here is a potential way forward
that I recently proposed (Whitehead In press-b), which uses multiple re-
gression on association matrices (Legendre & Legendre 1998, p. 559).

Each of the matrices is indexed by the individuals in the population.
Consider four such matrices:

� Behavioral similarity. This is the dependent variable—
differences among individuals in the behavioral trait whose
cultural determination we wish to examine. It could be bi-
nary (1:0), for instance, whether the individuals use the same
type of greeting vocalization or do not. Perhaps more often,
it will be continuous. When studying foraging behavior, diet
similarity could be measured by a niche overlap index (Krebs
1989, pp. 379–380), whereas if the focus is vocal behavior,
dialect similarity could be measured by the proportion of
call types shared (Yurk et al. 2002).

� Genetic relatedness. This indicates the probabilities of the
individuals sharing a gene through common descent and
thus acquiring the same behavior genetically (e.g., Table
4.2). Estimates of genetic relatedness are normally the prod-
uct of molecular genetics, nowadays often produced using
microsatellites, but they could be derived from knowledge of
genealogy (Section 4.2).

� Ecological similarity. This measures the similarity of the
habitats of each pair of individuals. Within a single study
area, this might be indicated by proportional range overlap
using data from tracking studies. When comparing several
study areas, ecological similarity measures (Krebs 1989, pp.
293–309) might be appropriate.

� Social similarity. In the context of culture, this is the key
measure, indicating the probability that two individuals
learned the same behavior socially. As suggested in the
previous subsection, we can use association indices (Sec-
tion 4.5) for this, but we need to think carefully about the
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definition of association. It should be defined in such a way
that associated animals could learn from one another. For
instance, if animals learn most from adult females and before
their sexual maturity, then the association index might be
restricted to data collected when the individuals were both in
appropriate age/sex classes and zero association assigned if
they never were in the characteristic learner–model classes
at the same time. A standard association index should often
suffice, however, so that for social similarity, we use some-
thing like the matrix of association indices in Table 2.5.

I suggest making a multiple regression of the nondiagonal elements of
the behavioral similarity on the corresponding elements of the other
matrices. Thus, for any dyad we have (Whitehead In press-b)

Behavioral similarity = constant + genetic relatedness

+ ecological similarity + social similarity + error

Now, we need to use the data to evaluate the importance of the four
independent variables on the right-hand side of the regression equation.
I suggest doing this using standard partial regression coefficients (Sokal
& Rohlf 1994, p. 614). Standard partial regression coefficients range
from −1 (perfect inverse linear relationship) through 0 (no relationship)
to +1 (perfect linear relationship) and indicate the significance of ge-
netic variation, ecology, and social learning in determining behavior, in
each case controlling for the other independent variables. The jackknife
(Section 2.3), in which individuals are omitted from the analysis in turn,
can be used to estimate the precision of the standard partial regression
coefficients (Whitehead In press-b).

The hypothesis that social similarity does not affect behavioral sim-
ilarity can be tested using a permutation test (Section 2.4) in which indi-
vidual identities in the social similarity matrix (often association indices)
are randomly permuted to give a distribution of randomized standard part-
ial regression coefficients with which the real standard partial regression
coefficient can be compared (Whitehead In press-b). The significance of
genetic relatedness or ecological similarity could be tested similarly.

This technique has not been used on real data. To illustrate its use,
however, Table 7.3 shows the four similarity matrices using artificially
constructed data [for another example using artificial data, see White-
head (In press-b)]. In this case, the standard partial regression coeffi-
cients, jackknife standard errors, and their statistical significance using
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the permutation method outlined earlier, are as follows for the three
independent variables:

Genetic relatedness = 0.185 (SE = 0.177; P = 0.095)

Ecological similarity = 0.373 (SE = 0.231; P = 0.004)

Social similarity = 0.627 (SE = 0.226; P < 0.001)

Thus, behavioral similarities seem to be most determined by social sim-
ilarity, but with some contribution from ecology and perhaps a little
from genetics. This indicates that the behavior whose similarities are
indicated in the top left part of Table 7.3 is substantially determined by
social learning.

According to the definition of culture that I use, the behavior also
needs to be communal as well as determined by social learning. The
social similarity matrix in the bottom right part of Table 7.3 indicates
two communities, {A, B, C, F} and {D, E, G, H} (confirmed using
average linkage cluster analysis with modularity equal to 0.38). Using
this division, we find that the behavioral similarities are substantially
and significantly greater within (mean behavioral similarity = 0.64) than
between (mean behavioral similarity = 0.29) the communities (Mantel
test P = 0.03). Thus, the data of Table 7.3 indicate community-specific
behavior produced by social learning: culture.

This method could be modified to suit different situations. If eco-
logical factors are unlikely to influence some behavior, such as perhaps
communicative behavior, then the ecological similarity matrix might
be omitted. Conversely, other independent variables might be added.
Examples include gender similarity, age difference (thus considering on-
togenetic reasons for behavioral similarity), or more than one measure
of ecological similarity (e.g., range overlap plus another measure of
habitat similarity) or social similarity (based on two or more definitions
of association or interaction) (Whitehead In press-b).

Another modification is to carry out an analysis of the relative impor-
tance of different causes of behavioral similarity at the level of the social
unit or some other social entity. Behavioral similarity, ecological similar-
ity, and genetic relatedness between units may then be the differences be-
tween the mean values for members of each unit or (especially in the case
of genetic relatedness) the mean of differences between dyads with one
member in each unit. We need a different measure of social similarity,
however, because units will not usually learn directly from one another.
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Units between which there were recent transfers, or which through the
processes of unit fission possessed a common ancestral unit, will tend
to behave similarly if the behavior is culturally determined. Ancestral
similarity in matrilineal units can be indicated by mitochondrial DNA.
We have used mitochondrial DNA as a marker of ancestral links among
social units in sperm whales (Whitehead et al. 1998). In this and simi-
lar (e.g., Krützen et al. 2005) cases, mitochondrial haplotype similarity
is used to indicate social similarity, and the assumption is made that
mitochondrial DNA does not code for the behavior being examined.

The method for partitioning behavioral similarity into genetic, eco-
logical, and social causes makes several assumptions (Whitehead In
press-b), including that the measurements are without error. Errors,
which are perhaps most likely in the measures of ecological similarity,
tend to reduce estimated standard partial regression coefficients from
their true values, and so, in this sense, the method is conservative. An-
other potential problem with this, or any other, regression method is
collinearity (Kleinbaum et al. 1988, pp. 206−218). If two or more of the
independent variables (genetic, ecological, or social similarity) are closely
linearly related then the regression analysis cannot partition their effects.
For instance, if there is little preference for social partners, ecological
similarity based on range overlap might be highly correlated with so-
cial similarity from an association index. In such cases, the failure of
the regression technique due to collinearity indicates a genuine inability
to separate the effects of the independent variables using the data and
thus, in this case, to distinguish the relative importance of genes and cul-
ture.

A concern with the general approach of inferring social learning
from a relationship between behavioral similarity and social relationship
is that the relationship could operate in the reverse direction. Social
similarity could potentially be a function of behavioral similarity if,
for instance, individuals whose foraging techniques were similar tended
to associate. The regression approach should indicate this, however,
because if social factors are not determining behavioral differences, then
genes or environment are presumably responsible. Then the standard
partial regression coefficient between social similarity and behavioral
similarity will be small (because genes or environment will primarily
explain behavior) and social learning will not be supported, even though
social and behavioral similarities are well correlated.

For more details of this regression method of inferring the extent of
cultural influence on behavior, see Whitehead (In press-b).
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7.6.5: Culturally Influenced Societies. Once culture takes root, societies are
subject to a new range of influences (Richerson & Boyd 2004). For non-
humans, the most important of these may be group conformism. Sets
of animals, which could be units or communities under my definitions,
develop different ways of doing things, partly through the vagaries of in-
novation and social learning, but also because imperatives may develop
to cause individuals to behave like other members of their community
and differently from members of other communities. Behavior becomes
a badge of membership in a cultural community (Richerson & Boyd
1998). Operationally, how might we recognize these effects?

Conformism will tend to homogenize behavior within communities.
Thus, a failure to detect difference among association rates or interac-
tion rates within communities using the Bejder et al. (1998) test (Section
4.9) could be interpreted as the result of culturally induced behavioral
conformism, but a null model of equivalence among community mem-
bers (Section 6.3) is perhaps more parsimonious.

Another, and I think more powerful, sign of conformism occurs when
communities actively alter their community-specific behavior to main-
tain distinctions. For instance, Deecke et al. (2000) studied the temporal
evolution of a killer whale (Orcinus orca) call type in two sympatric ma-
trilineal social units. The rate of divergence in the characteristics of the
call between the two units was significantly lower than the rate of modi-
fication within either unit, showing that calls were modified in a similar
fashion in the two units and suggesting that the width of the distinc-
tion between the two versions of the vocalization was important to the
animals.



8 The Way Forward

Although social analysis has been something of a back-
water of animal behavior science, there has been develop-
ment over the last 20 years, particularly in analytical tech-
niques and the addition of insights from genetic analysis.
The rate is picking up, especially with the incorporation
of network analysis into our arsenal, and I am confident
that the acceleration will continue. Advances will occur
in the conceptual basis of the field, the range of species
examined, the data that we collect, and how we analyze it.

8.1 Conceptual Frameworks

To structure this book, I have used Hinde’s (1976) semi-
nal paper, which introduced a framework for the analysis
of social structures. There are elements of social analysis,
such as the role of feedback and “institutions” (e.g., con-
formist cultures), that he discusses but that are not yet
part of the general repertoire of analyses of nonhuman
social structures. As the conceptual basis of our analyses
widen, however, this is beginning to change. For instance,
the last 10 years has seen a great increase in interest in the
role of culture in nonhuman societies (Section 7.6).

I like Hinde’s framework, but it is probable that our
conceptual model of social structure can be improved.
Hinde’s framework is based on the dyadic interaction,
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but interactions and resulting relationships can involve three or more
animals (e.g., Kummer et al. 1974; de Waal 1998). Further in this direc-
tion, the concept of the social niche (Section 1.7) recently introduced by
Flack et al. (2006) looks promising. Role theory takes an individual an-
imal as its central focus and Hinde’s framework takes the dyadic inter-
action, whereas the social niche combines these by focusing on the set of
relationships of an individual. Because the relationships of an individual
are invariably interrelated and depend on characteristics of that individ-
ual, this perspective makes a great deal of sense. How would it change
our operational analyses of social structure? Not too much, I suspect,
but techniques that include concepts or measures of social niche, such
as network analysis (Section 5.3) and lagged association rates (Section
5.5), would come to the fore. The social niche may encourage the de-
velopment of these techniques, as well as new analytical methods.

8.2 Subjects of Social Analysis

The great majority of the examples of social analysis in this book and in
the wider literature are of birds or mammals, and within these groups,
attention has been far from uniform. Among the mammals, attention
has focused on primates, cetaceans, ungulates, and bats. There are good
reasons for these foci, such as ease of study and increased interest in what
we perceive as the more cognitively advanced species. However, tech-
nical advances, for instance, using devices such as PIT tags to identify
individuals, and a broadening of interest is spreading the individual-
based methods of social analysis to other groups. This needs to widen
further. For instance, although the societies of the social insects have
attracted a great deal of attention (e.g., Wilson 1971; Sumpter 2006),
there has been little individual-based analysis of the type described in
this book. I believe that this would illuminate much about of these fasci-
nating animals. Conversely, whereas human societies have been the sub-
jects of extraordinarily detailed study using a wide variety of methods
(e.g., Wellman & Berkowitz 2003), some of the techniques introduced
for nonhumans, such as perhaps lagged association rates (Section 5.5),
might reveal new sides of our rich social structures.

8.3 Collecting Better Data

Our models of the social structure of populations (Chapter 5) as well
as the power of our analyses of function and evolution (Chapter 7) are
both limited by the data sets with which we have to work. Clearly, a data
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set with more temporal sampling periods and more individuals about
whom we know more (e.g., including genetic data) and have measured
a greater variety of interaction/association measures is better than one
with fewer. Shear effort will increase the number of time periods, and
perhaps individuals, and as field workers become more experienced, they
may be able to collect more diverse data sets, for instance, by adding ac-
oustic recordings of vocalizations to visual observations of interactions.
Obtaining genetic profiles using molecular techniques (e.g., Selkoe &
Toonen 2006) and using dietary profiles based on methods like fatty
acid signatures (Iverson et al. 2004) are becoming easier to carry out and
less expensive. Thus, we improve our picture of the nonsocial structure
of the population, which may determine, or be determined by, its social
structure. These incremental advances will synergistically add power to
our social analyses.

In addition, we might be about to see quantum jumps in our ability to
collect data on social structure in some species. In most current field and
captive settings, data on only one individual or group are collected at any
time (Section 3.7). With autonomous data collection, however, this limi-
tation can be overcome. Behavior can be captured on video, by acoustic
recorders, or in other media without real-time human operators, giv-
ing potentially enormous databases. However, there are two important
challenges that need to be overcome for these data streams to achieve
their potential. The first is to identify the participants in the behavior
being recorded, and the second is to process the potentially vast amount
of video, acoustic, or other data collected. Without individual identity,
data on social behavior has limited value (Section 3.5). If individuals
are identifiable from video images, then these data become immensely
valuable, although there may be a great deal of labor-intensive work
involved in obtaining the identities of the interactants as well as the
interaction records from long streams of autonomously collected video.
Ideally, the interaction data and identities would be abstracted from the
images by computer routines, although this is probably a long way off
in most cases. Acoustic data are more easily processed automatically,
although even this is challenging, and identifying individuals from their
acoustic signatures has only been possible in a few cases (e.g., Campbell
et al. 2002; Adi et al. 2004). Sometimes identity can be determined by
an additional data stream, such as the PIT tags that encode identity
to special autonomous readers (Section 3.5) or acoustic tags that can
encode identity and position (e.g., Voegeli et al. 2001).

More-complex tags may record interactions or signals acoustically,
visually, or through other communicative modes. They thus become
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autonomous focal animal samplers (Section 3.7). As another example
of where we might be going, McConnell et al. (2003) suggest that quite
simple tags placed on animals that exchange information with each other
when the animals come into proximity could quickly amass a large and
detailed data set on behavioral associations. Perhaps we can go further,
reliably and regularly recording physiological or neurological responses
to interactions or associations with other individuals, and so rooting our
model of social structure deep in the more basic biology of the animals.

8.4 Improving Analysis

With time and scientific advance, the data sets used for social analysis
will grow. In fact, a few are very large at present. An example is that of
the chimpanzees (Pan troglodytes) at Gombe, Tanzania, where a large
part of the population has been followed continuously almost every
day for many years (Goodall 1986). The methods described earlier in
this book are certainly not sufficient to obtain anything like the most
informative social model from such a data set, and some of them are
just not feasible with so much data. Thus, we need special techniques
to analyze such wonderfully large sources. I suspect that methods with
some similarity to lagged association rates (Sections 4.6 and 5.5) may
prove useful. The detailed record of interactions between two individ-
uals might be modeled using functions that include individual factors,
“personality” plus changes with age, dominance rank or reproductive
state (Section 4.3), societal factors including contagion (i.e., the interac-
tions between a dyad being triggered by the behavior of other members
of their community), and the presence and attributes of individuals with
significant roles such as policers or matriarchs (Section 7.1), as well as
dyadic factors (Section 4.8). The individual, societal, and dyadic factors
could include complex changes with time, including perhaps autore-
gression, so there is dependence on what has happened previously, or
transient phenomena (sudden “spats” in a dyadic relationship or “peri-
ods of nervousness” in the population).

Although perhaps feasible with very large data sets, such models
are very far from anything that has been achieved. In fact, only in
very few cases has a statistical model been developed directly from a
conceptual social model and then fitted to real data. Much more often,
general mathematical models are fit to social data and then interpreted
socially [e.g., in network analyses (Section 5.3) and lagged association
rates (Section 5.5)]. An example of the direct fitting of a social model
is instructive. The method of Durban and Parsons (In press) uses a
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Bayesian framework and Markov chain Monte Carlo methods to fit
quite simple models of a compartmentalized closed society formed of
a number of units of unknown size, with the social assumption that
individuals are more likely to associate with members of their own units
(Section 5.7). The output is very useful, giving posterior distributions
of numbers of units and the probabilities that pairs of individuals are
members of the same unit. Currently, however, fitting this model to
real data is difficult and time consuming. Improvements in hardware
and software will change this and make such direct models of social
structure, and more complex ones, much more useful tools.

In a number of places in this book, I suggested areas for analytical
development. These include lagged interaction rates (Section 5.5), meth-
ods for disentangling environmental, genetic, and cultural influences on
behavior (Section 7.6), and wavelet methods for measuring the com-
plexity of multivariate displays (Section 6.3). The development of any
of these would need some attention from a social analyst with statistical
expertise or a statistician interested in the problems of social analysis.

In one area, however, we do not need to do the development our-
selves. New ideas of network analysis are appearing at an extraordinary
rate, driven largely by the work of a group of creative physicists (e.g.,
Newman 2003b; Section 5.3). Several key techniques appeared within
the few months that I spent writing the network sections of this book,
and undoubtedly more will arise before it is published. In this area,
the social analyst needs to keep her eyes on the network literature, and
then—this is the challenging part—sift the useful methods from those
that add little.

And from all this? The output, from the ethological perspective,
should be an increasingly clear view of the social lives of animals: how
their relationships are built up, how they change, the social niches of in-
dividuals, and how all these interact to produce societies. The behavioral
ecologist then has a solid base for her attacks on the “why” questions.





9 Appendices

9.1 Glossary

These definitions are for the usage in this book. Starred
terms are used in various ways by different authors. For
nonstarred terms, there is a generally agreed meaning for
the term that is given.

Affinity The affinity of a node in a binary network is the av-
erage degree of its neighbors (Barthélemy et al. 2005), and
in a weighted network, it is the weighted strength of its
neighbors.∗

Aggregation Spatiotemporal clusters of individuals that are
entirely the result of some nonsocial forcing factor.∗

Association Two animals are associated if their circumstances
(spatial ranges, behavioral states, etc.) are those in which in-
teractions usually take place (Whitehead & Dufault 1999).∗

Association index An estimate of the proportion of time that
a pair of animals are in association (Cairns & Schwager
1987).

Assortativity The extent to which nodes in a network are con-
nected to nodes that are similar to themselves (Newman
2003b).

Asymmetric relationship A dyadic relationship in which the
members interact with one another at significantly different
rates.



A P P E N D I X 9 . 1 296

Behavioral ecology The study of functional questions about
animal behavior (Krebs & Davies 1991).

Bond Two animals are bonded if they have a consistently strong
relationship in two or more independent behavioral modes
(R. Wrangham, personal communication).∗

Clustering coefficient In a network, the extent to which the
nodes connected to a focal node are themselves connected
(Newman 2003b).

Community A set of individuals that is largely behaviorally self-
contained and within which most individuals interact with
most others (Goodall 1968).∗

Culture Information or behavior shared by a population or
subpopulation that is acquired from conspecifics through
some form of social learning (Rendell & Whitehead 2001).∗

Degree In a binary network analysis, the number of other nodes
connected to a node.∗

Dendrogram Tree diagram, in which individuals are repre-
sented by nodes and the branching pattern indicates degrees
of association, the results of a hierarchical cluster analysis.

Dependency Describes a situation in which an animal probably
would not survive without the behavior of another.∗

Dominance A consistent outcome in favor of one member of a
dyad during repeated, agonistic interactions between two
individuals, and a default yielding of the other individual
rather than escalation (Drews 1993).

Dominance hierarchy An ordering of individuals such that
more highly ranked individuals generally win agonistic en-
counters over, or receive submissive behavior from, those
ranked lower.

Dominance index A measure of an individual’s ability to domi-
nate others in its community.

Dominance rank The ranking of an in individual within its
community in its ability to consistently win repeated agonis-
tic encounters with other members of the community.

Dyadic mode A method of storing data in which each row cor-
responds to an observation of a dyad, so that there are two
identity fields representing the two individuals in the dyad
(as opposed to group or linear mode).

Edge Relationship between two nodes in a network.∗
Eigenvector centrality In a network analysis, eigenvector

centrality is a measure of how well connected a node is
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(Newman 2004). Mathematically, it is the first eigenvector
of the matrix of edges or weights.

Equivalence Things, including social partners, that become
mutually interchangeable through common spatiotemporal
or functional interactions (Schusterman et al. 2000).∗

Ethology The study of animal behavior based on description
(Hinde 1982).

Fission–fusion “A society consisting of casual groups of vari-
able size and composition, which form, break-up and reform
at frequent intervals” (Conradt & Roper 2005).

Follow A research strategy in which the researcher’s attention
stays with an individual or group (as opposed to a survey).∗

Gregariousness Mean number of associates possessed by an
individual (Pepper et al. 1999).

Group Sets of animals that actively achieve or maintain spa-
tiotemporal proximity over any time scale and within which
most interactions occur.∗

Group mode A method of storing data in which observations of
more than one individual are represented on each row in one
field (as opposed to dyadic or linear mode).

Inconsistency In a dominance hierarchy, the situation in which
a lower-ranking individual dominates a more highly ranked
one.∗

Interaction An action of one animal directed toward another or
affecting the behavior of another.∗

Kinship Genetic relatedness through common ancestry.
Lagged association rate The probability that a dyad is associated

at some time after a recorded association (Whitehead 1995).
Likelihood The probability of obtaining a data set, given a

particular model and set of parameters.
Linear mode A method of storing data in which observations of

one individual are represented on each row (as opposed to
dyadic or group mode).

Linearity A measure of the consistency with which individuals
higher in a dominance hierarchy dominate those ranked
lower, usually measured by Landau’s (1951) h.∗

Mantel test Permutation test of the significance of the relation-
ship between the corresponding, nondiagonal, elements of
two similarity or dissimilarity matrices indexed by the same
individuals, with the null hypothesis being that there is no
relationship (Mantel 1967).
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Matrix correlation The correlation coefficient between the
corresponding, nondiagonal, elements of two similarity
or dissimilarity matrices indexed by the same individuals,
ranging from −1, indicating a perfect negative linear rela-
tionship, to 0, no relationship, to 1, perfect positive linear
relationship.

Modularity For some arrangement of individuals into clusters,
the difference between the proportion of the total associ-
ation within clusters and the expected proportion when
individuals associate randomly (Newman 2004).∗

Network Pattern of connectedness among members of a popu-
lation (Newman 2003b).

Node Vertex of a network (usually an individual animal in
social analysis).∗

Null association rate The expected probability that a dyad is
associated at some time after a recorded association if associ-
ation had no time dependence (Whitehead 1995).

Ordination Visual display in which points represent individuals
and their proximity to one another indicates their degree of
association.

Population A set of individuals, usually of the same species,
such that the great majority of interactions involving
members take place with other members of the population.∗

Reach A measure of indirect connectedness in a network
such that nodes with high reach are connected indirectly
to other nodes of high degree or strength (Flack et al.
2006).∗

Reciprocity Situation in which an increase in the rate at which
behavior of a particular type by one individual toward an-
other increases the rate at which the same type of behav-
ior is reciprocated (Hemelrijk 1990b). In “reputation reci-
procity,” individuals have increased interaction rates with
those whose overall interaction rate is high (Mohtashemi &
Mui 2003). In “generalized reciprocity,” individuals interact
at rates correlated with the rates at which they are interacted
with (Pfeiffer et al. 2005).

Relationship A synthesis of the content, quality, and patterning
of the interactions between two individuals, where pattern-
ing is with respect to both each others’ behavior and time
(Hinde 1976).∗
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Relationship measures Quantitative descriptors of the con-
tent, quality, or temporal patterning of dyadic relationships
(Whitehead & Dufault 1999).

Social differentiation The degree to which the dyads within a
population differ in their probability of association, mea-
sured using an estimate of the coefficient of variation of the
true association index.

Social niche A vector of behavioral connections in the set of
overlapping social networks in which an individual partici-
pates (Flack et al. 2006).

Social organization Synonymous with social structure.∗
Social structure A synthesis of the nature, quality, and pattern-

ing of the relationships among the members of a population
(Hinde 1976). In this book, social structure is treated as
synonymous with social organization, social system, and
society.∗

Social system Synonymous with social structure.∗
Social unit (unit). Set of animals that are permanently or nearly

permanently in association (Whitehead 1995).∗
Society Synonymous with social structure.∗
Sociogram Diagrammatic representation of social structure

in which individuals are represented by nodes, and edges
between nodes indicate the strength of the dyadic
relationship.∗

Steepness The certainty with which a dominant wins an interac-
tion over a subordinate in a dominance hierarchy (de Vries
et al. 2006).∗

Strength In a weighted network analysis, the sum of the weights
of the edges connected to a node (Barthélemy et al. 2005).∗

Survey A research strategy in which an individual or group is
first encountered and then observed, and then the researcher
moves on to another individual or group (as opposed to a
follow).∗

Symmetric A relation is symmetric if, when A relates to B, then
it necessarily follows that B relates to A.∗

Tier Level of a hierarchical social organization in which el-
ements of tier i social entities are tier i − 1 social entities
(Wittemyer et al. 2005).∗

Transitive A relation is transitive if, when A relates to B, and B
relates to C, then it necessarily follows that A relates to C.



A P P E N D I X 9 . 2 300

In social analysis, transitive associations define groups and
transitive dominance relationships define perfect dominance
hierarchies.∗

Typical group size The mean group size that an individual or set
of individuals experiences (Jarman 1974).

9.2 A Key Journal and Some Useful Books

The journal Animal Behaviour, jointly published by the Animal Behavior
Society (United States) and the Association for the Study of Animal Be-
haviour (United Kingdom), contains a large proportion of the key papers
on the methods of analysis of nonhuman societies, as well as many good
examples.

Here are some of the books that I find most useful when analyzing
animal societies:

Bradbury, J. W., and S. L. Vehrencamp. 1998. Principles of ani-

mal communication. Sunderland, MA: Sinauer Associates. A
wide-ranging and clear consideration of animal communica-
tion.

Burnham, K. P., and D. R. Anderson. 2002. Model selection

and multimodel inference: a practical information-theoretic

approach, 2nd ed. New York: Springer-Verlag. Explains in
detail the justification and practice of model selection using
AIC and related methods.

Legendre, P., and L. Legendre. 1998. Numerical ecology, 2nd
ed. Amsterdam: Elsevier. Intended for ecologists, this book
does a good job of describing techniques in ordination, clas-
sification, and related data analyses.

Lehner, P. N. 1998. Handbook of ethological methods, 2nd
ed. Cambridge: Cambridge University Press. A great deal of
useful information on how to study animal behavior.

Manly, B. F. J. 1994. Multivariate statistical methods, 2nd ed.
New York: Chapman and Hall. A short and particularly
clear introduction to multivariate statistical methods.

Manly, B. F. J. 1997. Randomization, bootstrap and Monte

Carlo methods in biology, 2nd ed. London: Chapman and
Hall. Describes the rationale for permutation methods and
methodologies and some potential problems.

Martin, P., and P. Bateson. 2007. Measuring behaviour:

an introductory guide, 3rd ed. Cambridge: Cambridge
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University Press. A widely cited and very clear summary
of how to study animal behavior.

Sokal, R. R., and F. J. Rohlf. 1994. Biometry, 3rd ed. New York:
W. H. Freeman. This is the classic compendium of the princi-
pal statistical methods used in the biological sciences.

9.3 Computer Programs

Useful computer programs are introduced in Section 2.9 and summa-
rized in Table 2.6. Here, I first outline which programs can perform
the general analytical tasks that are often needed in social analysis, and
then I list those that carry out some of the more specialized analyses
described in other sections of this book. Where appropriate, I indicate,
following the name of the program, the section of the program manual
where the method is described. As new versions of the computer pack-
ages are introduced, however, these references to manual sections will
become inaccurate.

9.3.1: General Tasks

Matrix manipulation. Matrices can be manipulated by Pop-
Tools, MatMan (3), and SOCPROG (7.2.2), as well as by the
general statistical analysis packages (Table 2.6). MATLAB
is extraordinarily powerful and versatile at matrix manipu-
lation.

Permutation tests. Permutation tests can be programmed in the
more sophisticated of the general statistical analysis pack-
ages (especially S-PLUS and R) and in MATLAB, and are
relatively easily accomplished using PopTools. The Bejder
et al. (1998; Section 4.9) permutation tests and their variants
are available in SOCPROG (5.16).

Mantel tests, partial Mantel tests, and so on. These important
matrix permutation tests are carried out by PopTools,
MatMan (4.4, 4.5), R, and SOCPROG (7.4.4).

9.3.2: Specialized Tasks (Indexed to Sections of Chapters 4, 5, and 7)

Nonsocial measures of relationship (Section 4.2). Transforming
a list of attributes of individuals (e.g., sex, age) into a
matrix of their similarities or dissimilarities can be per-
formed using the general matrix manipulation techniques
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noted in the foregoing list or by SOCPROG (7.2.1). Ge-
netically derived kinship measures between individu-
als are produced by programs like KINSHIP (Queller
& Goodnight 1989; gsoft.smu.edu/GSoft.html). Mea-
sures of range overlap are produced by geographical
information systems (GIS) software such as ArcView
(www.esri.com/software/arcgis/arcview/index.html).

Gregariousness (Section 4.3). Once one has a matrix of associ-
ation indices (see later discussion), then the gregariousness
of the individuals is calculated simply by summing across
rows or down columns. Note that the diagonals of the asso-
ciation index matrix should be 0. If they are 1, then 1 should
be subtracted from each sum. In this way, gregariousness can
be calculated easily by spreadsheet programs such as Excel
as well as any of the matrix manipulation routines noted
earlier. It is also calculated by SOCPROG (5.8). SOCPROG
(5.16.6) can also test for differences in gregariousness
between individuals using permutation tests.

Rates of interaction (Section 4.4). The first step in calculating
dyadic rates of interaction is often to produce a matrix of
the total numbers of interactions between each dyad. Ob-
taining these sums from records of interactions can be a
little complex in many programs (e.g., Excel). However,
the use of dyadic mode for coding the data may make this
simpler because standard “pivot table” commands can sum
interaction numbers for each dyad. SOCPROG (5.1; use
“Sum of associations” option when choosing an association
index) will calculate interaction rates if the data are coded
in linear or group mode as suggested in Section 3.8. A sec-
ond step, often necessary, is to obtain a measure of effort for
each dyad (Section 3.8); this is done similarly to calculating
the total numbers of interactions. The matrix of numbers of
interactions is then divided by the effort matrix to give in-
teraction rates, a step that is easily done by any of the matrix
manipulation routines noted here. Alternatively, all this can
be done at once by writing a “Custom association index” in
SOCPROG (5.1.1).

Association indices (Section 4.5). Association indices can be
calculated from coded association data in a similar way to
that just outlined for rates of interaction, although this is
cumbersome. If we already have matrices that give the totals
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of numbers of associations and numbers of identifications
of the individuals, then association indices can be calculated
easily using any of the general matrix manipulation methods
noted. Alternatively, and easier, is to calculate association
indices directly from coded data using SOCPROG (5.1).
SOCPROG (5.4) will also estimate the precision of associ-
ation indices, using analytical [Equation (6)] or bootstrap
methods.

Dyadic lagged association rates (Section 4.6). Lagged associ-
ation rates and related measures (null rates, etc.) are cal-
culated by SOCPROG (6). To obtain these for a particular
dyad, use SOCPROG’s (3.2) ability to restrict the data to the
two individuals of interest.

Multivariate descriptions (Sections 4.7 and 5.6). If we have sev-
eral matrices of interaction rates or association indices, these
can be arranged into a single multivariate data set indexed
by dyads using the matrix manipulation routines noted.
Alternatively, SOCPROG (7) will do this, and it will also
edit the matrices so that only individuals present in all of
them are included. In this way, if one type of association was
calculated for one set of individuals and another type for a
different but overlapping set, the multivariate data set only
includes individuals in both original matrices. The multi-
variate data set can be output from SOCPROG (7.4.3) and
then used in any standard statistical software (Table 2.6).
SOCPROG (7.4) can do a few analyses on such data sets,
including principal components analysis.

General and generalized linear models of interaction rates (Sec-
tion 4.8). General linear models can be fitted using any of
the standard statistical packages (Table 2.6). For generalized
linear models, I recommend the more sophisticated pack-
ages, especially S-PLUS and R.

Measures of asymmetry (Section 4.8). Beilharz and Cox’s
(1967) measure of asymmetry or de Vries et al.’s (2006)
dyadic dominance index can be calculated using any of the
matrix manipulation routines noted.

Analyses of reciprocity (Section 4.8). MatMan (4.4, 4.5, 4.6)
and SOCPROG (5.17) perform analyses of reciprocity.

Tests for preferred/avoided companions (Section 4.9). The
Bejder et al. (1998) test and its variants are performed by
SOCPROG (5.16).
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Interclass association indices and interaction rates (Section
4.11). Mean interaction rates and association indices be-
tween classes (such as males and females), as well as stan-
dard errors, are calculated by SOCPROG (5.8). Also output
are the results of Mantel tests for differences in association
indices or interaction rates within versus between classes.
SOCPROG will perform many of its analyses either within
or between particular classes of individual.

Social differentiation (Section 5.1). Social differentiation and a
bootstrap standard error are estimated by SOCPROG (4),
using both the maximum likelihood and Poisson approxima-
tion methods.

Histograms of association indices or interaction rates (Section
5.2). These can be produced by any statistical software
package, although it is necessary to remove diagonal entries
(associations/interactions of individuals with themselves)
and, usually, to rearrange the square association or interac-
tion matrix. SOCPROG (5.9) does these tasks automatically
when producing histograms.

Sociograms (Section 5.2). The best sociograms that I have
found are those produced by NetDraw. There are many
options, and the plot can be easily adjusted by moving
nodes with the mouse. SOCPROG (5.12) makes simple
sociograms.

Principal coordinates analyses and multidimensional scaling

(Section 5.2). Most standard statistical packages (Table
2.6) and some network software (e.g., NetDraw) include
these ordinations, although sometimes (e.g., in SYSTAT)
principal coordinates analyses have to be procured using
options for the principal components analysis commands.
SOCPROG gives both principal coordinates (5.13) and
multidimensional scaling (5.14) ordinations.

Cluster analysis (Section 5.2). Cluster analysis is a standard part
of all statistical packages (e.g., Table 2.6). However, not all
give the very useful cophenetic correlation coefficient (CCC).
SOCPROG (5.15) provides several types of hierarchical
cluster analysis, outputs the CCC, can save the clusters pro-
duced, and has other potentially useful options, such as the
output of modularity and knot diagrams.

Network analysis (Section 5.3). A list of some popular network
software is given in Table 2.6. For a more comprehensive
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list, see www.insna.org/INSNA/soft inf.html. UCINET is a
favorite with many, and NetDraw does an excellent job of
allowing the visualization of networks. SOCPROG (5.7) will
output matrices of association indices or interaction rates
in .vna format that UCINET and NetDraw can use. David
Lusseau and I have added a number of weighted network
statistics, plus bootstrap standard errors and permutation
tests, to the output options of SOCPROG (5.10).

Dominance hierarchies (Section 5.4). MatMan (4.1, 4.2, 4.3)
carries out analyses of dominance hierarchies, giving statis-
tics such as Landau’s h and de Vries’ h ′, and ranking the
individuals using the I&SI method. PeckOrder uses raw data
(dyadic win–lose encounter results) or summary data to ana-
lyze dominance hierarchies, and outputs include Landau’s h

and won–lost records of dyads.
Lagged association rates (Section 5.5). In its temporal analysis

module, SOCPROG (6) calculates lagged, null, and interme-
diate association rates, with a number of options, including
interclass rates, different smoothing moving averages, model
fitting, and jackknife standard errors. Lagged identifica-
tion rates are calculated in a separate module of SOCPROG
(10.1.2).

Multivariate methods (Section 5.6). See Multivariate descrip-

tions (Section 4.7).
Delineating communities, units, and so on (Section 5.7). The

SOCPROG (5.15) hierarchical cluster analysis function has
options for the delineation of communities, units, tiers, and
so on using either maximum modularity or knots. Also avail-
able in SOCPROG (5.11) is Newman’s (2006) eigenvector
method of dividing communities using either modularity-G
or modularity-P. A variety of modular division techniques
are available in the network analysis packages such as
UCINET and NetDraw. There are no software packages
available for the delineation of communities or other social
tiers using the multivariate, temporal, or Bayesian methods
described in the text (although the Bayesian techniques use
WINBUGS software; www.mrc-bsu.cam.ac.uk/bugs/).

Method of independent contrasts (Section 7.4). The
program CAIC is usually used for the analysis of
data using the method of independent contrasts
(http://www.bio.ic.ac.uk/evolve/software/caic/).
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9.4 Estimating Social Differentiation

Social differentiation is the coefficient of variation of the true association
indices ( .α

′–the prime is to distinguish the true association index from
its estimated value), S = CV.(α′

IJ ) [I �= J]. xIJ, the number of obser-
vations of individuals I and J associated, can be considered binomially
distributed with coefficient .α

′
IJ, their true association index, and number

of samples dIJ, the denominator of the estimated association index (as
given in Table 4.5). I assume that the .αIJ are distributed according to
the beta distribution, which gives values between 0 and 1, with mean
µ and coefficient of variation S. Then the parameters of the beta distri-
bution are.β1 = µ·[(1−µ)/(µ·S2)−1] and.β2 = (1−µ)·[(1−µ)/(µ·S2)−1],
and the likelihood of the data, the {xIJ}, given µ and S is proportional
to (Whitehead In press-a)

L =
∏

IJ

∫ 1

0
α′

IJ
xIJ · (1 − α′

IJ)(dIJ−xIJ) · B(α′
IJ, β1, β2) · d(α′

IJ) (23)

where B(α′
IJ, β1, β2) is the probability density function of the beta

distribution with parameters β1 and β2 at α′
IJ. We then choose {α′

IJ}, µ

and S to maximize L. The maximization and the integration in Equation
(23) are done numerically by SOCPROG.

A simpler method of estimating social differentiation is obtained if we
assume that the probability that an individual is identified in a sampling
period is the same for all individuals in all sampling periods and the
number of observed associations of any pair is Poisson distributed. With
these assumptions, social differentiation can be estimated by

S =
√

Var(xIJ) − Mean(xIJ)
Mean(xIJ)

(24)

Simulations indicate that this Poisson estimate of S [Equation (24)] is
a rough approximation of real social differentiation but is often con-
siderably more biased and less precise than the maximum likelihood
estimator [Equation (23)].

9.5 Assessing Unit Size, Group Size, or Community Size

In ideal circumstances, the sizes of social entities can be enumerated
directly from the number of identified individuals in each. Thus, if their
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memberships can be determined (Section 5.7), then size can be enumer-
ated. In other situations, however, we need to use less direct methods.

For groups that are reasonably well delineated spatiotemporally, a
number of the standard population assessment techniques may be useful.
For instance, line or strip transect methodology can be used to assess
the numbers of animals in large and/or dispersed groups, with the cen-
suses being carried out using any of a variety of platforms and detection
methods. These include observers walking transect lines with binoculars,
use of aerial photographs, or use of acoustic surveys with hydrophones
towed by boats. Numbers of animals or cues (such as calls, scent mark-
ings, or highly visible activities) counted are extrapolated to group sizes
by accounting for individuals missed through not surveying the entire
range of the group because some animals were not available to be counted
(e.g., hiding or underwater) and, in the case of cue counts, the rates at
which animals produce the cues. There is a well-developed methodology
for such censuses that is described by Buckland et al. (1993).

Mark-recapture is another standard population assessment tech-
nique that can be used to estimate group size. The concept is straight-
forward. If the animals are observed in two sampling periods and those
identified are recorded, the proportion of previously identified individ-
uals observed during the second period should be roughly the ratio of
the number identified during the first period to the group size. There
are many elaborations of this, which consider more than two sampling
periods, as well as birth, death, emigration, and immigration (Seber
1982, 1992). For estimating the size of a closed group, however, the
simplest two-sample “Petersen” scenario is often sufficient. There are
three important assumptions: that the group is closed; that all animals
are equally identifiable; and that identification in the first sample does
not make the animal more or less likely to be identified in the second.
If these conditions hold, then the group size Ng can be estimated from
the following formula, which is a slight elaboration of the proportional
argument given earlier to correct for bias (Seber 1982, p. 60):

Ng = (n1 + 1)(n2 + 1)
(m + 1)

− 1

where n1 is the number of animals identified in the first sample, n2 is the
number of animals identified in the second sample, and m is the number of
individuals identified in both samples. Confidence intervals of such esti-
mates can be obtained using binomial, Poisson, or normal-approximation
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methods (e.g., Krebs 1989, pp. 17–22) or bootstrap methods. An ap-
proximate standard error is (Seber 1982, 60)

SE(Ng) =
√

(n1 + 1)(n2 + 1)(n1 − m)(n2 − m)
(m + 1)2(m + 2)

Assessments using this method might need to be corrected if some ani-
mals are not identifiable (Section 3.5).

Whereas, as I have defined them, groups are spatiotemporally dis-
crete, units and communities need not be. If a unit or community is
known to be well delineated in space, then the same line transect and
mark-recapture techniques are applicable. If it is not, for instance, if a
unit frequently mixes with other units or a community shares its range
with another, the best way of estimating its size is to use the methods
described in Section 5.7 to delineate the unit or community membership
and then count the members. If some individuals are not identifiable
and so are not included in the enumeration, then a correction may be
needed (Section 3.5).

If we are more interested in the overall distribution of group, commu-
nity, or unit sizes in a population, then shortcut methods are available.
Fitting models to lagged association rates can give estimates of typical
group size and/or typical unit size (as described in Section 5.5), with
temporal jackknives indicating standard errors.

The size of the social unit containing an individual A can be estimated
if the population is assumed to be large and we have data from three widely
spaced sampling periods, so that common companions in two of the
periods can be assumed to be fellow unit members (Christal et al. 1998):

Nu(A) = (n12(A) + 1)(n23(A) + 1)(n13(A) + 1)
(n123(A) + 1)2

(25)

where n12(A) is the number of common associates of A in sampling
periods 1 and 2, and n123(A) is the number of common associates of A
in all three sampling periods.

The estimates from lagged association rates and the mean unit sizes
estimated using Equation (25) all give mean typical group and unit sizes,
that is, those experienced by a member of the population (Jarman 1974).
These are at least as great as those experienced by outside observers
because there are more individuals in larger groups (Section 3.4).
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microsatellites, used to estimate re-

latedness, 51, 90–91, 261, 262,
283

minimum spanning tree, 166
Minitab software, 47, 49
Mirounga angustirostris. See elephant

seals
mitochondrial haplotypes, 64, 90,

262, 287
mode, statistical, 26, 29
model fitting, 44–46, 112–15, 235–

36, 267–68, 292–93; to lagged
association rates, 108, 204, 206–
11, 213–14

modularity, 19, 42, 146, 224–26,
228–31, 232–33, 236–37, 244,
298, 304, 305

mole rats, 272, 273
morphs, 63, 90
mouflon, 22
movements. See ranging behavior
multidimensional scaling. See non-

metric multidimensional scaling;
principal coordinates analysis

multivariate methods, 19, 66, 109–10,
111, 138–39, 142, 214–22, 224,
239, 249, 250, 303, 305. See also
MANOVA; ordination; used to
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multivariate methods (cont.)
delineate social entities, 233–34,
237

mutualism, 58, 119, 259

natural markings, 61, 62
nearest neighbor measures, 57, 69, 77,

78, 102
neighbors. See nearest neighbor mea-

sures
Neoponera apicalis. See ants, ponerine
NetDraw network analysis software,

47, 50, 156, 171, 184, 304, 305
network analysis, 4, 9, 10–11, 19,

168–86, 214, 215–17, 239, 240,
289, 290, 292, 293, 298; assigning
roles, 254; binary networks, 131,
169, 184; characterizing social
niches, 16; comparing communi-
ties and societies, 185, 241–42,
272–73; delineating communities
or social units, 42, 224, 232–33;
measures, 148, 171–86, 250, 255,
266; recommendations, 184–
85; software for, 47, 50, 304–5;
weighted networks, 169, 184

neurological responses, 292
niche construction, 16
niches. See social niche
nodes, of network, 168, 169, 298;

measures of, 172–76
Noldus MatMan. See MatMan soft-

ware
Noldus Observer. See Observer soft-

ware
nonhierarchical cluster analysis, 41, 42.

See also K-means cluster analysis
nonlinear models, 268
nonmetric multidimensional scaling

(MDSCAL), 39–40, 41, 151–53,
158–61, 167–68, 224, 239, 304

northern bottlenose whales, 22, 83, 85,
94, 95, 131, 134, 137, 149, 198

northern elephant seals, 257, 258
null association rates, 199, 201–4,

206, 208, 211, 298, 305; for
dyads, 108, 109, 303

observer effects, 71
Observer software, 47, 48, 49
ontogenetic variation in behavior,

279, 281, 286. See also develop-
ment of social behavior

OpenOffice software, 47, 49
orangutans, 15
Orcinus orca. See killer whales
ordination, 38–41, 215–17, 224, 236,

239, 241, 242, 298. See also non-
metric multidimensional scaling;
principal components analysis;
principal coordinates analysis

Ovis orientalis. See mouflon

pairwise affinity index, 140, 141
Pajek network analysis software, 47, 50
palmtop computers, 48
Pan paniscus. See bonobos
Panthera leo. See lions
Pan troglodytes. See chimpanzees
Papio cynocephalus. See baboons:

olive
Papio hamadryas ursinus. See ba-

boons: chacma
Papio papio. See baboons
parental care, 105, 119, 275
parties, 18. See also groups
Parus atricapillus. See chickadees,

black-capped
passive integrated transponder (PIT)

tags, 49, 61, 71, 290, 291
patas monkeys, 257–58
path length. See geodesic path length
patrilines, 63
PeckOrder software, 47, 50, 305
permeability, 19
permutation tests, 28, 34–35, 60, 192,

245, 301. See also Bejder et al.
permutation test; Mantel test; for
differences in gregariousness, 93–
95; of network statistics, 196–77,
182–83, 185; for reciprocity, 120–
21; for significance of culture, 284,
286

phenotypic plasticity, 281
photoidentification, 48, 61
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phylogeny, controlling for, 269, 271,
272. See also independent con-
trasts, method of

Physeter macrocephalus. See sperm
whales

physiological responses, 292
physiological state, 63, 105
pigs, domestic, 22
pilot whales, 204, 205, 235, 236
PIT tags. See passive integrated

transponder (PIT) tags
playbacks, 255–56
pods, 222, 228
Poecilia reticulata. See guppies
point sampling protocol, 69, 70
policing, 177, 254, 255, 257, 266, 267
polyadic complexity, 247
Pongo pygmaeus. See orangutans
PopTools software, 47, 49, 301
population biology, 4
populations; attributes of, 80–81; clo-

sure of (see demography); compar-
isons of, 14, 20, 267–69, 272–73;
definition of, 14–15, 298; density
of, and social structure, 21, 271

power of social analysis, 63, 81–86
precision of social analysis, 81–86
predation and social structure, 21,

259, 270, 271
predominant activity sampling proto-

col, 69
pregnancy, 63, 137
primates, 6, 8, 9, 11, 12, 18, 246, 271,

276. See also baboons; bonobos;
capuchin monkeys; chimpanzees;
gibbons; gorillas; Japanese mon-
keys; macaques; orangutans; patas
monkeys; vervet monkeys

principal components analysis, 38, 41,
55, 66, 110, 215, 218, 241, 303

principal coordinates analysis, 39–40,
151–54, 156–61, 167–68, 224,
239, 304

Psion palmtops, 47, 48

QAIC, 46, 206, 210–11, 213–14
quasilikelihood, 206, 213

r. See correlation coefficient
range of measurements, 29
ranging behavior, 71, 80, 90, 195,

200–201, 203, 261–62, 286
ratio indices of relationship strength,

131, 132, 133
reach, network measure, 173–74, 176,

179–82, 185, 298
reciprocity, 89, 119–22, 239, 247,

259, 262–64, 298, 303; absolute
reciprocity, 121; actor-reactor,
119–20, 121; actor-receiver, 119–
20, 121, 262; between classes,
89, 138; direct reciprocity, 262;
generalized reciprocity, 122, 263,
264; qualitative reciprocity, 121;
reputation reciprocity, 122, 263,
264

redundancy analysis, 267
regression analysis, 105, 267, 268,

271; estimating the importance
of culture using, 282–87; logistic,
255–56, 267

relatedness, genetic. See kinship
relationship measures, 88–89, 109–

10, 142, 299. See also association
indices; interaction rates; nonso-
cial, 88, 90; precision of, 81–82

relationships, 87–142, 298; between
classes, 135–41; classifying, 110–
11, 131; as key elements in social
structures, 12, 13, 14; nonsocial,
88, 90; quantifying strength of,
130–33; relative to the community
distribution, 109–11; “special,”
122–30; temporal stability of,
104–9, 247 (see also temporal
patterning in social analysis); types
of, 16–17, 110–22

releasers, 6, 8
reproductive state, 18, 90
reproductive success, 4, 10, 16, 20,

255, 257, 273–74
resources and social structure, 21,

256, 270–73, 275
Rhinolophus ferrumequinum. See

greater horseshoe bats
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rodents, 249. See also mole rats; squir-
rels, Richardson’s ground

roles, 240, 252–56, 292; differenti-
ation of, 19; diversity of, as indi-
cator of social complexity, 247,
249

role theory, 6–7, 290
roosters, 187
Rr test, 35, 120, 121, 262, 263
R software, 47, 49, 301, 303
R test, 35, 121

sampling periods, 79, 80, 88, 104,
142, 145, 212; choice of, when
testing for preferred/avoided com-
panions, 127, 129, 130

sampling protocols, 69–71
sanderlings, 22
SAS software, 47, 49
scale-free networks, 176
self-organization, 274
sequence sampling protocol, 69
sexes, 63, 78. See also classes of ani-

mal; class, 13–14, 90; and cultural
transmission, 286; relationships
between, 242

sexual maturity, 63, 140
Shannon-Weaver information index,

249
Shannon-Wiener information index,

249
signaling. See communication
significance, statistical, 34, 35, 111,

115, 124–25
similarity matrices, 36–37
simple ratio association index, 98,

99, 100, 101, 103, 104, 133, 134,
150, 153, 155, 159, 255, 256

single-linkage cluster analysis, 43,
165, 227

social affinity association index, 98,
99, 100, 101, 104

social brain hypothesis, 246–47
social complexity, 9, 20, 219, 246–50
social differentiation, 83–85, 147,

175, 248, 250, 299, 304, 306

social insects, 8, 15, 16, 19, 252, 275,
290. See also ants, ponerine

social learning, 274, 277, 279, 280,
283–84, 286, 287, 288

social niche, 16, 144, 290, 293, 299
social organization, 11. See also social

structures
social representations, accuracy of,

82–83, 85
social structures, 3; adaptiveness of,

21, 273–74; attributes of, 146–48;
categorization of (see classifying
social structures); comparing,
241–50; complexity of (see com-
plexity, social); definitions of,
11–16, 299; describing and mod-
eling, 143–240; determinants and
correlates of, 251–88; displays of,
148, 150–68; elements of, 17–20;
environmental determinants of,
269–74; importance of, 4; mea-
sures of, 17–20; resources and,
269–73

social system, 11. See also social struc-
tures

social units, 62, 63, 222, 239, 259,
299; as classes of animals, 64,
135; cultures of, 286–87, 288;
elements of cluster analysis, 41,
229; identifying, 221, 222–37,
293, 305; lagged association rates
and, 201–3, 206, 208, 209, 211;
sizes of, 61, 208, 209, 211, 223,
306–8

society, 11. See also social structures
sociobiology, 7–8, 10. See also behav-

ioral ecology
sociograms, 42, 151–56, 167–68, 170,

171, 178, 224, 239, 299, 304
sociology, 5, 6, 7, 9, 175
sociomatrix. See similarity matrix
sociometric analysis, 6, 8
sociometric matrices, 36–37, 69
SOCPROG software, 47, 50, 71, 72,

73, 77, 78, 97, 130, 155, 156,
171, 226, 232, 237, 301–6; lagged
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association rates and, 197, 199,
204, 206, 209, 210, 213

software. See computer programs; and
specific package names

Sorensen’s association index. See half-
weight association index

Spearman rank correlation coefficient
(rs), 26, 30, 120, 267

species, comparisons of, 20, 242–44,
269

spectral analysis, 105
Spermophilus richardsonii. See squir-

rels, Richardson’s ground
sperm whales, 21, 22, 37, 39, 40, 43–

44, 61, 68, 108, 109, 138, 150,
154, 163, 164, 168, 178–80, 210–
11, 212, 219, 228, 230–31, 232,
235, 243, 279, 280, 287

spinner dolphins, 204, 205
S-PLUS software, 47, 49, 301, 303
spreadsheet software, 47–49, 71–

72, 73, 78, 79, 302. See also data
formats; Excel, Microsoft

SPSS software, 47, 49
square root association index, 98, 99,

100, 101
squirrels, Richardson’s ground, 136,

137
standard deviation (SD), 26, 29
standard error (SE), 26, 30, 31, 32
standardized lagged association rates,

138, 197–99, 203, 204, 205, 207,
209, 210–11, 212–14, 235

stationary processes, 105, 108
statistical methods, 25–46, 265–69
steepness of dominance hierarchies,

188, 192, 195, 257, 299
Stenella longirostris. See spinner dol-

phins
stopping rules in cluster analysis, 227–

29, 232
strength, network measure, 172,

174, 176, 177, 179–83, 184, 272,
299

stress, in multidimensional scaling, 41,
160, 161, 167, 168

subjects of data collection, choosing,
68–69

subspecies, 63, 90
supplemental data, coding of, 77–79
surface structure, 11, 14. See also

social structures
surveys as methodology for data col-

lection, 65, 67, 68, 69, 74, 299
symmetric and asymmetric measures,

36–37, 55, 56, 57, 72–77, 89, 95,
112–13, 115–18, 119, 147, 150,
299; association indices, 97, 98,
101–2; between classes, 89, 138

synchrony, 19, 55, 65
Systat software, 47, 49

tags, 61–62, 291–92. See also pas-
sive integrated transponder (PIT)
tags

temporal patterning in social analysis,
19, 55, 66–67, 79, 87, 88, 89,
104–9, 119, 148, 195–214, 219–
21, 243–44; used to delineate
groups, units or communities,
234–35, 237

territoriality. See ranging behavior
testis size, 276
Thyroptera tricolor. See disk-winged

bats
tiers of social structure, 17, 44, 222–

23, 227–29, 234, 244, 247, 262,
280, 299, 305

time. See temporal patterning in social
analysis

transects, 307, 308
transformations of data, 38, 39, 156,

157, 159, 163, 171–72, 173, 266,
268; into ranks, 120–21

transitivity, attribute of group, 58,
59–60, 73, 233–34, 299

tree-diagram. See dendrograms
triangle inequality, 157
t-test, 26, 34, 255, 257, 266
Tursiops spp. See bottlenose dolphins
twice-weight association index, 98,

99, 100, 101, 104
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typical group size, 60–61, 89, 92, 93,
95, 136, 140, 147, 174, 184, 199,
209, 211, 248, 300, 308. See also
gregariousness

UCINET network analysis software,
47, 50, 71, 78, 305

ungulates, 9, 18, 68. See also eland;
mouflon

units. See social units
usurpability, 258

vertex similarity, network measure, 172
vervet monkeys, 257–58
vocalizations, 55, 71, 280, 281, 283,

288, 291; use in identifying indi-
viduals, 61, 62

Ward’s method of cluster analysis, 26,
43, 163, 227, 229

weak stochastic transitivity, 189–90,
194

weaning, 119, 137, 140
weights, in network analysis, 169,

171, 184
whales, 276. See also cetaceans, so-

cial structures of; humpback
whales; killer whales; northern
bottlenose whales; pilot whales;
sperm whales

Wilson, E.O., 7–8; list of qualities of
sociality, 18–20, 146, 244

Wilson’s score for binomial propor-
tions, 103

WINBUGS software, 305
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