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Preface

Quantum Chromodynamics becomes now – moving into the second decade of the twenty-
first century – a very extended theory with many branches. Therefore, it is impossible to
expose in one book the whole QCD with all its branches and applications. On the other
hand, it is a rapidly developing theory and for the authors of a book on QCD it is a serious
danger to go too close to the border between that which is known with certainty and the
domain of unknown. For these reasons, we decided to present in this book some aspects
of QCD that are not very closely related to one another. In the selection of these aspects,
surely, the individual preferences of authors also played a role.

What is not discussed in this book includes the theory of heavy quark systems – charm,
bottom, top mesons and baryons; QCD at finite temperature and density; the problem of
phase transitions in QCD; and lattice calculations. The QCD corrections to weak interac-
tions, particularly to the production of W, Z , and Higgs bosons, are also beyond the scope
of the book. We intentionally avoided various model approaches related to QCD, restrict-
ing ourself to exposition of the results following from the first principles of the theory.
The phenomenology of hard processes and of the parton model was only lightly touched
on in this book. We refer the reader to our previous book: B. L. Ioffe, V. A. Khoze and
L. N. Lipatov, Hard Process, North Holland, 1984, where these topics were considered
in detail.

We are greatly indebted to W. von Schlippe, who read the manuscript, performed the
enormous work of improving the English, and gave very significant advice. We are very
thankful to N. S. Libova, who also participated in improving the English and partly printed
the text, and to M. N. Markina, who did the hard work of printing and preparing the
manuscript. We acknowledge A. N. Sidorov, who kindly presented the data of parton distri-
butions, A. Samsonov and A. Oganesian for drawing the figures, and S. Bass, who kindly
sent his book to one of us (B.I.).

B. Ioffe, V. Fadin, L. Lipatov
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1

General properties of QCD

1.1 QCD Lagrangian

As in any gauge theory, the quantum chromodynamics (QCD) Lagrangian can be derived
with the help of the gauge invariance principle from the free matter Lagrangian. Since
quark fields enter the QCD Lagrangian additively, let us consider only one quark flavour.
We will denote the quark field ψ(x), omitting spinor and colour indices [ψ(x) is a three-
component column in colour space; each colour component is a four-component spinor].
The free quark Lagrangian is:

Lq = ψ(x)(i � ∂ − m)ψ(x), (1.1)

where m is the quark mass,

� ∂ = ∂μγμ = ∂

∂xμ
γμ = γ0

∂

∂t
+ γ ∂

∂r
. (1.2)

The Lagrangian Lq is invariant under global (x–independent) gauge transformations

ψ(x)→ Uψ(x), ψ(x)→ ψ(x)U+, (1.3)

with unitary and unimodular matrices U

U+ = U−1, |U | = 1, (1.4)

belonging to the fundamental representation of the colour group SU (3)c. The matrices U
can be represented as

U ≡ U (θ) = exp(iθata), (1.5)

where θa are the gauge transformation parameters; the index a runs from 1 to 8; ta are
the colour group generators in the fundamental representation; and ta = λa/2, λa are the
Gell-Mann matrices.

Invariance under the global gauge transformations (1.3) can be extended to local
(x-dependent) ones, i.e. to those where θa in the transformation matrix (1.5) is
x-dependent. This can be achieved by introducing gluon fields Aa

μ(x) which transform
according to

Aμ(x)→ A(θ)μ (x) = U Aμ(x)U
−1 + i

g
(∂μU )U−1, (1.6)

1



2 General properties of QCD

where g is a coupling constant,

Aμ(x) = Aa
μ(x)t

a, (1.7)

and the partial derivative ∂μ in (1.1) is replaced by the covariant derivative ∇μ
∇μ ≡ ∂μ + ig Aμ. (1.8)

The transformation law of the covariant derivative,

∇(θ)μ = ∂μ + ig A(θ)μ = U∇μU+, (1.9)

ensures the gauge invariance of the Lagrangian

Lq + Lqg = ψ(x)(i � ∇ − m)ψ(x) = Lq − gψ(x) �A(x)ψ(x). (1.10)

The gauge field Lagrangian

Lg = −1

2
Tr
[
Gμν(x)Gμν(x)

]
(1.11)

is expressed in terms of the field intensities Gμν , which are built from the covariant
derivatives ∇μ

Gμν(x) = − i

g

[∇μ,∇ν] = ∂μAν(x)− ∂ν Aμ(x)+ ig[Aμ(x), Aν(x)]. (1.12)

For the components

Ga
μν(x) = 2 Tr

(
taGμν(x)

)
(1.13)

we have

Ga
μν(x) = ∂μAa

ν(x)− ∂ν Aa
μ(x)− igT a

bc Ab
μ(x)A

c
ν(x), (1.14)

where T a
bc = −i f abc are group generators of the adjoint representation; f abc are the group

structure constants. Invariance of the Lagrangian (1.11) follows from the transformation
law for the field strengths

G(θ)μν = − i

g

[
∇(θ)μ ,∇(θ)ν

]
= U GμνU

+. (1.15)

Thus, the QCD Lagrangian is

LQC D = Lg + Lq + Lqg. (1.16)

1.2 Quantization of the QCD Lagrangian

The Lagrangian (1.16) is invariant under the transformations (1.3)–(1.6). However, because
of this invariance, a canonical quantization (i.e. exploiting operators with commutation
laws [pi q j ] = −iδi j ) of this Lagrangian is impossible, since the momentum, canonically
conjugate to coordinate Aa

0(x), is zero. The reason is that the gauge invariance means
the presence of superfluous, nonphysical fields (degrees of freedom) in the Lagrangian. In
other words, massless gluons have only two possible helicities: ±1. Only a two-component
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field is required to describe them, but we have introduced the four-component field Aa
μ(x).

This problem is similar to those that arise in quantum electrodynamics (QED), but the
solution in QCD is more complicated because the symmetry group SU (3)c is non-abelian,
unlike the abelian U (1) in QED.

The quantization problem can be solved in several ways. One is elimination of superflu-
ous degrees of freedom with the help of constraint equations (the Lagrange–Euler equation
for the Aa

0-component does not contain the second-order time derivative of Aa
0 and is there-

fore a constraint equation) and some gauge condition (for example, the Coulomb gauge
condition ∂i A a

i = 0), which can be imposed due to gauge invariance of the Lagrangian.
Clearly, this leads to the loss of an explicitly relativistic invariance of calculations. Of
course, physical values obtained as a result of these calculations have correct transforma-
tion properties (because of their gauge invariance); however, the loss of explicit invariance
of intermediate calculations can produce a sense of aesthetic protest; moreover, it can
lead to more cumbersome calculations. This method is applied as a rule in cases where
a noncovariant approach has evident advantages (as the Coulomb gauge in nonrelativistic
problems).

In another approach, a term L f i x , which allows one to perform the canonical quantiza-
tion, is added to the Lagrangian (for example, L f i x = − 1

2 (∂μAa
μ)

2). In classical theory,
this term is neutralized by the corresponding gauge condition (in our example, the Lorentz
condition ∂μAa

μ = 0). In quantum theory, such a condition cannot be imposed since com-
ponents Aa

μ are quantized independently. Therefore, the total space contains states with
arbitrary numbers of pseudogluons, i.e. massless particles with nonphysical polarization
vectors – timelike and longitudinal. In such an approach, the canonical quantization leads
to an indefinite metric, i.e. a not positive definite norm of states, which clearly is incom-
patible with the probabilistic interpretation. Of course, the physical subspace contains only
gluons with transverse polarizations, and the indefinite metric does not show up there. But
the S-matrix built using LQC D + L f i x as a total Lagrangian has matrix elements between
physical and nonphysical states. Recall that the same applies to QED. However, in QED,
the corresponding S-matrix is unitary in the physical subspace, so that it can be success-
fully used for calculation of physical observables. This is not quite so in the QCD case
because of self-interaction of gluons. Here, the unitarity in the physical subspace can be
achieved only by embedding ghost fields with an unusual property: They must be quan-
tized as fermions with spin zero. Originally, this was pointed out by Feynman [1], who
suggested the method of resolving the problem in the one-loop approximation. Later the
method was developed in more detail by DeWitt [2]–[4]. Now the most common method
of quantization of gauge fields is based on the functional integral formalism. In this for-
malism, the impossibility of canonical quantization becomes apparent as the divergence
of the functional integral

∫ DA exp (i SQC D), where SQC D = ∫
d4xLQC D is the classical

action for the gluon fields. The reason of the divergence is that, since both the integration
measure

DA =
∏

a,μ,x

d Aa
μ(x), (1.17)
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and SQC D are invariant under the gauge transformations (1.3), (1.6), the integral contains
as a factor the volume of the gauge group∫

Dθ =
∫ ∏

a,x

dθa(x). (1.18)

However, it is sufficient to integrate only over a subspace of gauge nonequivalent fields
Aa
μ(x), i.e. fields not interconnected by the transformations (1.6). Such a subspace can be

defined by the gauge condition

(Ĝ A)a(x) = Ba(x), (1.19)

with some operator Ĝ acting on the fields Ac
μ. The factor (1.18) can be extracted explicitly

using the trick suggested in [5], namely by exploiting the equality

det M̂(A)
∫

Dθ
∏
a,x

δ((Ĝ A(θ))a(x)− Ba(x)) = 1, (1.20)

where the operator M̂(A) is defined by its matrix elements

(M(A))ab (x, y) =
(
δ(Ĝ A(θ))a(x)

δθb(y)

)
, (1.21)

and det M̂(A) is called the Faddeev–Popov determinant. Here δ/δθ is the functional
derivative, which is defined for any functional F(θ) as

δF(θ)
δθb(y)

= lim
ε→0

F(θa(x)+ εδabδ(x − y))− F(θa(x))

ε
, (1.22)

and the values of θ in (1.21) are determined by the solution of the equation (Ĝ A(θ))a(x)=
Ba(x) with given A and B. It is supposed that this solution is unique.

From the definition (1.20), it follows that det M̂(A) is gauge invariant, since (A(θ̃))θ =
A(θ̃+θ). Therefore, we have∫

DA ei SQC D =
∫

DA ei SQC D det M̂(A)
∫

Dθ
∏
a,x

δ
(
(Ĝ A(θ))a(x)− Ba(x)

)
=
∫

Dθ
∫

DA(θ) det M̂(A(θ))
∏
a,x

δ
(
(Ĝ A(θ))a(x)− Ba(x)

)
ei SQC D

=
∫

Dθ
∫

DA det M̂(A)
∏
a,x

δ
(
(Ĝ A)a(x)− Ba(x)

)
ei SQC D , (1.23)

where det M̂(A) is now given by (1.21) at θ = 0, so that the integrand is θ -independent
and we can omit the factor

∫ Dθ . Therefore, the functional integral over the gauge field
can be defined as the last expression in (1.23) without

∫ Dθ . Moreover, since (1.23) does
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not depend on B, one can integrate it over B with an appropriate weight factor and define
the functional integral as the result of integration. The commonly used definition is∫

DBe− i
2ξ

∫
d4x(Ba(x))2

∫
DA det M̂(A)

∏
a,x

δ
(
(Ĝ A)a(x)− Ba(x)

)
ei SQC D

=
∫

DA det M̂(A) ei SQC D− i
2ξ

∫
d4x((Ĝ A)a(x))2

. (1.24)

The latter exponential can be written as exp(i
∫

d4x(LQC D + L f i x )), where the gauge
fixing term is given by

L f i x = − 1

2ξ

(
(Ĝ A)a(x)

)2
. (1.25)

The factor det M̂(A) can also be presented in the Lagrangian form using nonphysical
ghost fields φa(x) obeying Fermi–Dirac statistic. The functional integral formalism can
be extended to the case of fermion fields, considering them as anticommuting Grassmann
variables. For a finite number of such variables ψi , i =1÷N , [ψiψ j ]+ ≡ ψiψ j +ψ jψi =0
for all i, j , the set of monomials

1, ψi , ψiψ j , . . . , ψ1ψ2 . . . ψN (1.26)

gives the basis of the linear space of the Grassmann algebra. There are left and right
derivatives in this space that are defined by the rules

∂

∂ψ j

(
ψi1ψi2 · · ·ψin

) =
{
(−1)k−1ψi1 · · ·ψik−1ψik+1 · · ·ψin , if ik = j,
0, if il �= j, l = 1, 2, . . . , n,

(1.27)(
ψi1ψi2 · · ·ψin

) ←−
∂

∂ψ j
=
{
(−1)n−kψi1 · · ·ψik−1ψik+1 · · ·ψin , if ik = j,
0, if il �= j, l = 1, 2, . . . , n.

(1.28)
Note that the derivatives are anticommuting:

∂2

∂ψi∂ψ j
= − ∂2

∂ψ j∂ψi
. (1.29)

The integrals over the Grassman variables are defined by the rules∫
dψi = 0,

∫
dψi ψ j = δi j , (1.30)

and

[dψi , ψ j ]+ = [dψi , dψ j ]+ = 0. (1.31)

These rules give the important relation∫
dψ1dψ2 · · · dψN dψ̄1dψ̄2 · · · dψ̄N exp

⎛⎝−
∑
i, j

ψ̄i Mi jψ j

⎞⎠ = (−1)
N (N+1)

2 det M,

(1.32)
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where Mi j are matrix elements (which can be complex numbers) of the matrix M , and ψ̄i

are the Grassmann variables that can be considered either as complex conjugate to ψi or as
independent Grassman variables. In any case, they are supposed to anticommute with ψi .
Recall that for ordinary complex numbers φi instead of (1.32) one has∫

dφ1dφ2 · · · dφN dφ∗
1 dφ∗

2 · · · dφ∗
N exp

⎛⎝−
∑
i, j

φ∗
i Mi jφ j

⎞⎠ = (2π)N det−1 M. (1.33)

The relation (1.32) allows det M̂(A) in (1.24) as the functional integral over the
Grassman variables φa(x) and φa†(x) [where φa†(x) can be the complex conjugate of
φa(x) or can have nothing to do with φa(x)]:

det M̂(A) = C
∫

DφDφ† exp

[
i
∫

d4xd4 yφ†a(x) (M(A))ab (x, y)φb(y)

]
, (1.34)

where C is an inessential numerical constant. Usually, the operator Ĝ in (1.19) is local, so
that one can write (

M(A)
)ab
(x, y)) = R̂ab(x)δ(x − y), (1.35)

and

det M̂(A) = C
∫

DφDφ† exp

[
i
∫

d4xφ†a(x)R̂ab(x)φb(x)

]
= C

∫
DφDφ† exp

[
i
∫

d4xLghost

]
, (1.36)

where Lghost is the Lagrangian of the fields φa(x), which are called Faddeev–Popov
ghosts. Therefore, one can introduce the QCD Lagrangian unitary in physical space

Le f f = LQC D + L f i x + Lghost = ψ(x)(i � ∇ − m)ψ(x)− 1

4
Ga
μν(x)G

a
μν(x)

− 1

2ξ

(
(Ĝ A)a(x)

)2 + φ†a(x)R̂ab(x)φb(x), (1.37)

and consider it as a quantum Lagrangian, where the ghosts are fermions. We also can use
this Lagrangian to describe several quark flavours; in this case ψ and ψ , besides being
Dirac bispinors and colour triplets, have also the flavour indices, � ∇ is multiplied by the
unit matrix in flavour space and m is the mass matrix.

The Lagrangian (1.37) also can be used to construct the generating functional

Z [J, η, η̄] =
∫

DADψDψ̄DφDφ† exp

{
i
∫

d4x
(Le f f + Aa

μ(x)J
a
μ(x)

+ψ̄(x)η(x)+ η̄(x)ψ(x)) } , (1.38)

where J a
μ(x), η(x), and η̄(x) are sources for the gluon fields Aa

μ(x) and quark fields ψ̄(x)
and ψ(x), respectively. All sources and fields here are considered as classical, but whereas
J a
μ(x) and Aa

μ(x) are usual c–numbers, η(x), η̄(x) and ψ(x), ψ̄(x) are anticommuting
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Grassman variables. This property has to be taken into account in defining Green functions
with participation of quarks and antiquarks. For example, the quark propagator is defined as

〈0|T (ψα(x)ψβ(y)) |0〉 = − (−i)2δ2 Z [J, η, η̄]
Z [0, 0, 0]δη̄α(x)δηβ(y)

∣∣∣∣
J=η=η̄=0

, (1.39)

where ψα(x) and ψβ(y) are Heisenberg operators, and α and β symbolize both spinor and
colour indices. Green functions for any number of particles can be defined in a similar way
as corresponding functional derivatives of the generating functional (1.38).

1.3 The Gribov ambiguity

When deriving (1.37), it was supposed that at any fixed A and B the equation
(Ĝ A(θ))a(x) = Ba(x) has a unique solution with respect to θ , i.e. the absence of any
solution or the existence of several solutions were excluded. There are no examples for the
first possibility (i.e. the absence of any solution), however, the existence of many solutions
(i.e. many gauge-equivalent fields obeying the same gauge condition) is an ordinary case,
as was pointed out by Gribov [6],[7].

The simplest example presented by Gribov [6] corresponds to the Coulomb gauge
defined by the equation

∂i Ai (x) = 0, (1.40)

for the case of the SU (2) colour group, where ta = τ a/2 and τ a are the Pauli matrices.
The existence of gauge-equivalent fields means that the equality

∂i A(θ)i (x) = 0, (1.41)

where

A(θ)i (x) = U Ai (x)U
−1 + i

g
(∂iU )U

−1, U = exp(iθa(x)ta), ∂i Ai (x) = 0, (1.42)

is valid for nontrivial θa(x) and the matrix U tending to the identity matrix at |r| → ∞.
Taking account of the equalities

U−1∂iU = −(∂iU
−1)U, ∂i (∂iU )U

−1 = −U
(
∂i (∂iU

−1)U
)

U−1, (1.43)

it follows from (1.41), (1.42), that[
∇i (A), (∂iU

−1)U
]

= 0, (1.44)

where ∇i (A) = ∂i + ig Ai .
Let us consider first the case A = 0. It can be shown, using (1.42), that in this case the

solutions of (1.44) are transverse fields, which are gauge equivalent to A = 0. It is easy to
demonstrate the existence of such solutions for the gauge group SU (2). One can look for
spherically symmetric solutions of the form

U = eiθ(r)nτ = cos θ + inτ sin θ, (1.45)
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where n = r/r . Equation (1.44) follows from the extremum condition for the functional

W =
∫

d3x Tr
(
(∂iU )(∂iU

−1)− 2ig Ai (∂iU
−1)U

)
. (1.46)

For A = 0 and U given by (1.45), W is equal to

W = 2
∫

d3x

((
dθ

dr

)2

+ 2 sin2 θ

r2

)
, (1.47)

so that Equation (1.44) gives

r
d2

dr2
(θr)− sin(2θ) = 0. (1.48)

With t = ln r , the equation turns into the equation of motion for a particle in the potential
− sin2 θ with friction:

d2θ

dt2
+ dθ

dt
− sin(2θ) = 0. (1.49)

The fields A(θ)i (1.42) are expressed through the solutions of (1.49) as:

A(θ)ai = − 2

g

(
nani

dθ

dr
+ (δai − nani )

sin(2θ)

2r
+ εaibnb

sin2 θ

r

)
. (1.50)

Fields nonsingular at r = 0 (t = −∞) correspond to motion of the particle which is at
unstable equilibrium θ = 0 at t → −∞ [points θ = nπ are equivalent because the fields
(1.50) do not change at θ → θ ± π ]

θr→0 = cet = cr (1.51)

where the constant c defines the motion. Because of friction −π < θ < π at any t and

θ |r→∞ = ±π
2

+ c1√
r

cos

(√
7

2
ln r + c2

)
, (1.52)

where the constants c1,2 are determined by c in (1.51). The corresponding fields given
by (1.50)

A(θ)ai |r→∞ = − 2

g
εaibnb

1

r
(1.53)

decrease as 1/r .
Thus, there is a family of pure gauge transverse fields, i.e. nonzero fields A(θ), which

up to gauge transformations are equivalent to zero fields and satisfy the gauge condition
(1.41). It is a particular case of a general statement that the gauge condition (1.41) does not
fix uniquely the field from a family of gauge-equivalent fields.

The existence of a solution of (1.44) for an arbitrary field Aa
i means the existence of

local extremes of the action (1.46), and can be easily understood for large fields. First, it is
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clear that W = 0 at U = 1 (θa = 0), and it is the absolute minimum of the contribution of
the first term in (1.46). At small θa , the functional W (1.46) becomes

W0 =
∫

d3x
1

2

(
θa(x)R̂ab(x)θb(x)

)
, (1.54)

where R̂ab(x) = −∂i Dab
i (A) is the Faddeev–Popov operator (1.35) in the case of Coulomb

gauge, Dab
i (A) = ∂iδ

ab + g f cab Ac
i . The operator R̂ is analogous to the nonrelativistic

Hamiltonian for a particle with spin in a velocity-dependent field. Evidently, if the field Aa
i

is small (more precisely, the product of a typical magnitude of the field on a typical length
of the space occupied by the field is small), then R̂ has only positive eigenvalues. But if
the field is sufficiently large and has an appropriate configuration (with a deep potential
well), the appearance of negative eigenvalues is quite natural. Negative eigenvalues of R̂
mean negative values of the functional W0 (1.54). Since min W ≤ W0 and W = 0 at
U = 1, for such fields there is a nontrivial extremum of W (1.46), i.e. a solution of (1.41).
Thus, for such fields the Coulomb gauge is not uniquely defined. Note that the extremum
is reached for U → 1 at r → ∞, since the contribution of the first term in (1.46) is
non-negative.

The existence of solutions of (1.42) can be demonstrated explicitly in the case when

Aa
i (x) = 1

g
εia j

x j

r2
f (r). (1.55)

It is easy to see that ∂i Aa
i (x) = 0. For such fields with the parameterization (1.45), the

functional (1.46) takes the form of

W = 2
∫

d3x

((
dθ

dr

)2

+ 2 sin2 θ

r2
(1 − f (r))

)
, (1.56)

and instead of (1.49) one has

d2θ

dt2
+ dθ

dt
− sin(2θ)(1 − f (r)) = 0. (1.57)

Besides solutions of the same type as for f = 0, for sufficiently large f there can be
other solutions corresponding to the particle in positions of unstable equilibrium θ = nπ
at t → ∞ as well at t → −∞ (with or without change of n). The corresponding fields
A(θ)i (x) (1.42) rapidly decrease with r if f (r) decreases.

The problem of the existence of many gauge equivalent fields (Gribov copies) satisfying
the same gauge condition is inherent not only in the Coulomb gauge, but for covariant
gauge conditions as well. Thus, for the gauge ∂Aμ/∂xμ = 0, the existence of Gribov
copies follows from the same line of argument as for (1.41), if the theory is formulated in
the four-dimensional Euclidean space. On the contrary, axial and planar gauges were found
to be free of Gribov ambiguity [8].

The existence of Gribov copies means that Eqs. (1.24) and (1.38) have to be improved.
Gribov suggested [7] that the problem of copies can be solved if the integration in
the functional space is restricted by the potentials for which the Faddeev–Popov deter-
minant is positive (in Euclidean space). This restriction does not concern small fields,
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and therefore is not significant for perturbation theory. In particular, it is not significant
for hard processes, where perturbation theory is applied. But the region of sufficiently
large fields, where the operator R̂ could have negative eigenvalues, is excluded from the
integral (1.38).

The existence of Gribov copies is evidently important for lattice QCD. For investigation
of their influence see, for instance, [9]–[11] and references therein.

1.4 Feynman rules

Feynman diagrams and Feynman rules are defined by the effective QCD Lagrangian (1.37).
The rules for external lines are the same as in QED apart from evident colour indices. The
rules for internal lines can be divided in two parts: independent and dependent of a choice
of gauge. The quark propagator belongs to the first part. Using α, β for the Lorentz indices
and i, j for colour indices, we have for the propagator

β, j α, ip

iδi j
(�p + m)αβ

p2 − m2 + i0
. (1.58)

We will omit quark indices in the following. Then we have

a, μ

− igtaγμ (1.59)

b, β

q

p

a, α

r

c, γ

g f abc [(q − p)γ δαβ + (r − q)αδβγ + (p − r)βδαγ
]

= −ig
[
T c

ab(q − p)γ (−δαβ)+ T a
bc(r − q)α(−δβγ )

+T b
ca(p − r)β(−δαγ )

]
(1.60)
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b, β c, γ

a, α d, δ

−ig2
[

f abl f cdl (δαγ δβδ − δαδδβγ
)

+ f acl f bdl (δαβδγ δ − δαδδβγ
)

+ f adl f cbl (δαγ δβδ − δαβδγ δ
)]

(1.61)

The gluon propagator in any gauge can be presented as

a, μ b, νk
iδab dμν

k2 + i0
(1.62)

with gauge dependent dμν .
A gauge is called covariant if L f i x does not depend on external vectors. A commonly

used choice is

L f i x = − 1

2ξ

(
∂μAa

μ

)2
. (1.63)

In this case

dμν = −δμν + (1 − ξ)kμkν
k2
, (1.64)

and one needs to introduce ghosts with the Lagrangian (note that it does not depend on the
gauge parameter ξ )

Lghost =
(
∂μφ

†
)a (

Dμφ
)a =

(
∂μφ

†
)a (
∂μφ

)a − g f abc∂μφ
†a Ab

μφ
c, (1.65)

where

(
Dμφ

)a = Dab
μ φ

b, Dab
μ = ∂μδab + ig Ac

μT c
ab, T c

ab = −i f abc. (1.66)

Therefore we need to add to the diagram elements presented above the ghost propagator

a, μ b, νr

iδab 1

r2 + i0
, (1.67)

and the ghost-gluon interaction vertex
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b, β

a

r

c

− g f abcrβ = −igT b
carβ. (1.68)

Among the non-covariant gauges the most popular are the Coulomb, axial [12]–[16],
and planar [17] gauges. The Coulomb gauge is a particular case of gauges with

L f i x = − 1

2ξ

(
∂̄μAa

μ

)2
, (1.69)

where ∂̄μ = ∂μ − nμ(n∂), n is a timelike vector, n2 = 1. With (1.69) we have

dμν = −δμν +
(

1 − ξ k2

k2 − (kn)2

)
kμkν

k2 − (kn)2
− kn

k2 − (kn)2
(kμnν + nμkν), (1.70)

and

Lghost =
(
∂̄μφ

†
)a (

D̄μφ
)a =

(
∂̄μφ

†
)a (
∂̄μφ

)a − g f abc
(
∂̄μφ

†a
)

Ab
μφ

c. (1.71)

It follows from (1.71) that the Coulomb gauge requires the substitution r → r̄ = r −n(nr)
in eqs. (1.67) and (1.68) for the ghost propagator and the ghost-gluon vertex.

The Coulomb gauge can be obtained as the limit of ξ → 0, so that

dμν = −δμν + kμkν
k2 − (kn)2

− kn

k2 − (kn)2
(kμnν + nμkν). (1.72)

In the Lorentz frame, where n = 0, we have

d00

k2
= 1

k 2
,

di j

k2
=
(
δi j − ki k j

k 2

)
1

k2
. (1.73)

It is clear from (1.73), that the 00-component of the propagator corresponds to the Coulomb
interaction, while the i j-components describe propagation of transverse gluons. Therefore,
in contrast to covariant gauges, the Coulomb gauge allows a clear physical interpretation.
On the other hand, an evident disadvantage of this gauge is its noncovariance. Moreover,
it contains long-range action, that, taken literally, violates causality. Indeed, causality is
violated in contributions of separate diagrams. But, of course, for physical values, which
are represented by gauge invariant sets of diagrams, causality is restored.

The Coulomb gauge is convenient for calculations of nonrelativistic observables. Note
that the ghost fields in this gauge are not actually dynamical variables, which is easily seen
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in the Lorentz frame where n = (1, 0, 0, 0). Instead of using the ghost Lagrangian (1.71),
one can rewrite the Faddeev–Popov determinant as

det
(
∂̄μ D̄μ

) = det
(
∂̄μ∂̄μ

)
exp

{
Tr ln

(
1 − i

∂̄μ∂̄μ
g∂̄ν Aν

)}
, (1.74)

where Aμ = Aa
μta , and expand the exponential function.

Axial and planar gauges are ghost-free. Generally, for the axial gauges

L f i x = − 1

2ξ

(
nμAa

μ

)2
, (1.75)

dμν = −δμν − kμkν
(kn)2

(n2 + ξk2)+ kμnν + nμkν
(kn)

. (1.76)

These gauges are called physical gauges because of the absence of ghosts. The gauges with
ξ → 0 and n2 = 0 are called light-cone gauges. In this case, we have

dμν =
2∑
λ=1

e∗
λ μeλ ν + k2 nμnν

(kn)2
, (1.77)

where the polarization vectors eλ are transverse both to k and n. The light-cone gauges are
widely employed, in particular, in perturbative analysis of deep inelastic scattering, where
their use allows reduction of the analysis to effective ladder diagrams. Physical gauges
are convenient because vertices for emission of a gluon with momentum k and physical
polarization by a particle with momentum p in the massless limit vanish at zero-emission
angle ϑkp. Consequently, for real gluons, the corresponding matrix elements behave as
ϑ−1

kp . Taking account of the angular integration measure ϑdϑ , this means that interference
terms in cross sections have no collinear singularities (singularities at ϑkp = 0). For virtual
gluons, collinear singularities appear only in contributions of diagrams where a gluon line
connects two lines with the same momentum.

However, it must be noted that physical gauges also have an evident inconvenience
related to the use of external vectors. In particular, they require special renormalization
procedures (see, for instance, Refs. [18]–[20]). Therefore, these gauges are used mainly for
qualitative analyses and calculations of leading contributions. Moreover, even in one-loop
calculations in the axial gauges, there is the problem of definition of the unphysical singu-
larity at (kn) = 0. There are different prescriptions for treatment of this singularity, which
seems in the one-loop case to be equivalent between themselves and to covariant gauges,
but a strict proof of such statement for any number of loops is absent. Consequently,
many-loop calculations are performed in covariant gauges.

Another example of a ghost-free gauge is the planar gauge [17], with

L f i x = − 1

2n2
(nμAa

μ)∂
2(nν Aa

ν) (1.78)

and

dμν = −δμν + kμnν + nμkν
(kn)

. (1.79)
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1.5 Regularization

Calculating radiative corrections in field theories results in ultraviolet divergences in inte-
grals over momenta of virtual particles. In renormalizable theories, these divergences can
be hidden by transition from the bare charges and masses, appearing as parameters of an
initial Lagrangian, to renormalized charges and masses. All physical quantities must not
contain the divergences being expressed in terms of the renormalized charges and masses.
But, in intermediate calculations – which are necessary in order to express the physical
quantities through the renormalized parameters – one has to work with divergent integrals.
In order to make the calculations work, one needs first to regularize the theory, i.e. to make
the integrals convergent by introducing some regularization parameters.

Physically most transparent is the regularization by an ultraviolet cut-off �. This was
widely used in quantum electrodynamics (see, for instance, [21] and references therein).
Unfortunately, such regularization violates both Lorentz and gauge invariance, thus its use
requires great care. Other methods of regularization worth mentioning include the Pauli–
Villars method [22], where convergence of integrals is achieved by means of introduction
of auxiliary fields with large (tending to infinity) mass and wrong statistics; the analytical
regularization [23], consisting of change of the power of propagator denominators; the
higher covariant derivative method [24],[25]; and the zeta-function method [26].

The most suitable technically and currently most popular method is the dimensional
regularization [27]–[32], where the space-time dimension D = 4−2ε is kept different from
the physical value 4. Positive values of ε remove ultraviolet divergences, while negative
values make integrals convergent in the infrared region. Results of integration are presented
as analytical functions of D. Therefore, the dimensional regularization can be used for both
ultraviolet and infrared divergences. Both of them become apparent as poles at ε = 0.

The only change of the generating functional (1.38) in dimensional regularization is the
space-time dimension: d4x → d Dx . All required properties such as gauge invariance,
unitarity, and so on, are preserved. Note, however, that values related to the space-time
dimension are changed. Thus, canonical dimensions of fields (in mass units) become

[ψ] = [m] D−1
2 , [Aa

μ] = [m] D−2
2 , [φ] = [m] D−2

2 , (1.80)

and the coupling g in the QCD Lagrangian (1.16) acquires the dimension

[g] = [m] 4−D
2 . (1.81)

The anticommutation relations of the Dirac matrices have the same form

{γμ, γν} ≡ γμγν + γνγμ = 2δμν. (1.82)

The normalization of Tr (γμγν) is ambiguous. We will use also the same form as at D = 4:

Tr (γμγν) = 4δμν. (1.83)

Since δμμ = δμνδμν = D, we have

γμγνγμ = (2 − D)γν, γμγνγργμ = 4δνρ + (D − 4)γνγρ,

γμγνγργσ γμ = −2γσ γργν − (D − 4)γνγργσ . (1.84)
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The basic integral is∫
d Dk

(2π)Di

1

(k2 − 2(pk)− r2 + i0)α
= (−1)α

(4π)
D
2

�(α − D
2 )

�(α)

1

(r2 + p2 − i0)α− D
2

, (1.85)

where �(x) is the Euler gamma-function. Integrals with k in the numerator can be obtained
from (1.85) by taking derivatives with respect to p. The most frequently encountered
integrals are∫

d Dk

(2π)Di

kμ
(k2 − 2(pk)− r2 + i0)α

= (−1)α

(4π)
D
2

�(α − D
2 )

�(α)

pμ

(r2 + p2 − i0)α− D
2

, (1.86)

∫
d Dk

(2π)Di

kμkν
(k2 − 2(pk)− r2 + i0)α

= (−1)α

(4π)
D
2

�(α − D
2 )

�(α)

1

(r2 + p2 − i0)α− D
2

×
(

pμ pν − δμν (r2 + p2)

2(α − 1 − D
2 )

)
. (1.87)

The case of several propagator denominators can be reduced to (1.85) with the help of the
generalized Feynman parametrization

1

aα1
1 aα2

2 . . . aαn
n

= �(α)

�(α1)�(α2) . . . �(αn)

1∫
0

dx1

1∫
0

dx2 · · ·
1∫

0

dxnδ(1 − x1 − x2 − · · · − xn)

× xα1−1
1 xα2−1

2 · · · xαn−1
n

(a1x1 + a2x2 + · · · + an xn)α
, (1.88)

where α = α1 +α2 +· · ·+αn . This equation solves the problem when all the denominators
are quadratic in k. In axial gauges there are denominators linear in k. In this case, the
problem can be solved applying (1.88) to quadratic and linear denominators separately and
then using the equality

1

aαbβ
= �(α + β)
�(α)�(β)

∞∫
0

dz
zβ−1

(a + bz)α+β
, (1.89)

where a and b mean denominators quadratic and linear in k respectively.

1.6 γ5 problem

At the space-time dimension D = 4, the Dirac matrix γ5 is defined as

γ5 = −i

4! εμνρσ γμγνγργσ , (1.90)

where ε0123 = 1, and has the properties

Tr
(
γ5γμγνγργσ

) = 4iεμνρσ , (1.91){
γμγ5

} = 0. (1.92)
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A well-known shortcoming of dimensional regularization is the absence of a natural gen-
eralization of the γ5 to noninteger values D �= 4 (see [33] for a review). This shortcoming
seems to be unimportant in QCD, which is a parity conserving theory, so that, at first sight,
the problem of definition of γ5 at D �= 4 is irrelevant for QCD. But it arises in calcula-
tions of QCD corrections to electro-weak processes. Moreover, different generalizations
of γ5 lead to discrepancies in calculations of radiative corrections to pure QCD processes.
This problem also arises at the consideration of polarization phenomena, interactions with
external axial currents, and so forth. In particular, the problem appears [34] because of the
absence of a unique representation of 4-quark operators in connection with violation of the
identity

1

2
(γμγνγρ − γργνγμ)

⊗ 1

2
(γμγνγρ − γργνγμ) = 6γ5γμ

⊗
γ5γμ (1.93)

in dimensional regularization.
The definition (1.90) cannot be unambiguously continued to D dimensions. The prob-

lem is that the totally antisymmetric ε-tensor is a purely 4-dimensional object and cannot
be self-consistently continued to D dimensions. In dimensional regularization, only com-
putational rules are meaningful; the invariant tensors and gamma-matrices are considered
formal objects obeying certain algebraic identities and no explicit values should be given
to their indices [35],[36]. But a set of rules must be complete, consistent, and must lead to
a satisfactory renormalization scheme. Although usability for practical calculations is not
necessary, it is very desirable, and it is particularly desirable to conserve the anticommuta-
tivity of γ5 with γμ. Unfortunately, this cannot be done, at least in a nonsophisticated way.
Thus, generalization of (1.92) to D dimensions, together with δμμ = D and the cyclic
property of the trace operation, leads to

2D Tr γ5 = Tr ({γ5γα}γα) = 0,

2(D − 2) Tr
(
γ5γμγν

) = −Tr
({γ5γα}γμγαγν

) = 0,

2(D − 2)(D − 4) Tr
(
γ5γμγνγργσ

) = (D − 2) Tr
({γ5γα}γμγνγαγργσ

)
− 4(D − 2)δμν Tr

(
γ5γργσ

)− 4(D − 2)δρσ Tr
(
γ5γμγν

) = 0, (1.94)

so that instead of (1.91) the trace γ5γμγνγργσ should vanish at D �= 4. But this contradicts
the general requirement that every self-consistent regularization must be smooth at D = 4.
Therefore, γ5 anticommuting with γμ is forbidden in the usual dimensional regularization.

This discrepancy can be avoided within the framework of the modified form of dimen-
sional regularization (called also dimensional reduction), as proposed by Siegel [37] for
supersymmetric theories, where the Dirac algebra and vector fields are considered in four
dimensions. Then, γμγμ = 4 and it seems at first sight that (1.91) is allowed. Unfortu-
nately, for the 4–D-dimensional parts γ̃μ of gamma matrices (which participate in loop
traces), one comes to the same inconsistency as in dimensional regularization. A similar
inconsistency [38] arises when one tries to generalize the 4–dimensional equality

εμ1μ2μ3μ4εν1ν2ν3ν4 = −
∑
P∈S4

signP
4∏

i=1

δμi νP(i) , (1.95)
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where P is an element of the permutation group S4. The reason for this inconsistency is
related to the equality

δμν δ̃νρ = δμρ, (1.96)

where δμν and δ̃μν are metric tensors in D- and 4-dimensional spaces (so that {γμ, γν} =
2δ̃μν). In turn, (1.96) follows from the requirement �p 2 = p2, and, consequently,

pμ pν(δμν − δ̃μν) = 0 (1.97)

for any p.
Since (1.92) greatly simplifies spinorial calculations, there are many suggestions of ways

to conserve it in sophisticated variants of dimensional reduction (with 4-dimensional Dirac
algebra), including:

• Modifying (1.91) to

Tr
(
γ5γμγνγργσ

) = 4iεμνρσ + O(D − 4), (1.98)

where O(D − 4) is some D-dependent constant which must be fixed order by order in
perturbation theory by Ward identities and Bose symmetry [39].

• Rejecting the cyclicity of the the trace operation [40].
• Redefining the trace operation for the traces with odd numbers of γ -matrices [41],[42].

For other suggestions see, e.g. [43]–[45]. Such proposals were criticized in [33], with the
conclusion that regularization through dimensional reduction is inconsistent. Nevertheless,
the method can be used – with caution – in specific calculations. Thus, one can use (1.92)
if traces with an odd number of γ5 are not involved.

In some cases, the γ5 problem can be solved by calculation of the imaginary part of the
amplitude, which can be done in four dimensions, and restoration of the whole amplitude
by using dispersion relations.

A consistent definition of γ5 in D dimensions is possible if (1.92) is rejected. An explicit
version of such definition was proposed by ’t Hooft and Veltman [29] and elaborated in
[46]. The general discussion is done in [36]. Introducing the “4-dimensional” metric tensor
δ̃μν with the properties

δ̃μν = δ̃νμ, δ̃μν δ̃νρ = δ̃μρ, δμν δ̃νρ = δ̃μνδνρ = δ̃μρ, δ̃μμ = 4, (1.99)

and the tensor εμνρσ satisfying

εμ1μ2μ3μ4εν1ν2ν3ν4 = −
∑
P∈S4

sign P
4∏

i=1

δ̃μi νP(i) , (1.100)

γ5 is defined by (1.90) and satisfies the equalities

{γ̃μγ5} = 0, {γμγ5} = 2γ5(γμ − γ̃μ), (1.101)

Tr γ5 = T r(γ5γμγν) = Tr(γ5γμ1γμ2 · · · γμ2n+1) = 0,

Tr (γ5γμγνγργσ ) = 4iεμνρσ , (γ5)
2 = 1, (1.102)
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where γ̃μ = δ̃μνγν . The relations (1.101) correspond to the definition used by ’t Hooft
and Veltman [29] (γ5 is anticommuting with γμ if μ = 0, 1, 2, 3 and commuting in
other cases), but do not explicitly violate relativistic invariance picking out the first four
dimensions.

1.7 Renormalization

The bare charge g and mass m entering the QCD Lagrangian (1.16) are not physical values.
The transition from the bare parameters to physical ones, i.e. to the quantities that can be
(at least in principle) experimentally measured, is called renormalization. It is worthwhile
to recall the following circumstances related to this procedure.1

First, the physical coupling constants and masses depend on the scale. This important
fact was first realized in the famous papers by Landau, Abrikosov and Khalatnikov [48]
and by Gell-Mann and Low [49].

Second, renormalization would make sense even if ultraviolet divergences were absent.
Although in this case the renormalization would be finite, so that physical quantities could
be expressed through bare parameters, it would be more convenient to express the former
in terms of experimentally measured ones. In the actual case of the existence of ultraviolet
divergences, renormalization is not only convenient but necessary.

Third, the renormalization procedure is not unique, that is clear from its physical mean-
ing. Indeed, it is a question of our definition, i.e. of how we choose the parameters called
the renormalized charge and mass. Moreover, instead of these we could use other physical
quantities, for example, cross sections of two physical processes. The choice of the renor-
malization procedure is called the renormalization scheme. Note that in QCD, in contrast to
QED, renormalization cannot result in transition from bare to physical (observable) charge
and mass. The reason is that observable hadrons are colourless objects that are supposed to
consist of coloured quarks and gluons; quarks and gluons are confined in hadrons and are
not observed as isolated states.

Fourth, in theories with ultraviolet divergences, the renormalization is closely related
to regularization. Evidently, connections between bare and renormalized quantities in
such theories make sense only in the presence of some regularization. The choice of the
regularization method is called regularization scheme. In what follows we will assume
dimensional regularization. The renormalization scheme is closely related to the regular-
ization scheme, and usually they are mentioned together. A complete definition of any
theory requires not only knowledge of the Lagrangian, but also of the regularization
and renormalization schemes. Of course, all regularization and renormalization schemes
must lead to the same values for physical observables. Note, however, that although this
statement seems obvious, it is inapplicable in any fixed order of perturbation theory (see
Section 1.11 for details).

For physical quantities, such as probabilities and cross sections, which are related
to S-matrix elements, the renormalization procedure is reduced to the transition from

1 For more detail see, for instance, [47]
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bare charges and masses to the renormalized ones (below the subscript 0 means bare
quantities):

g0 = Zgμ
ε g, m0 = Zmm. (1.103)

Here, the dimensional regularization with D = 4 − 2ε is assumed and the factor με ,
where μ is the renormalization scale, is introduced in order to make the renormalized
coupling dimensionless. Regularizations with D = 4 do not require this factor. Note that
all renormalization constants Zi are dimensionless.

However, the most general objects of field theories are Green functions. Their renor-
malization requires additional renormalization constants. Thus, for the quark and gluon
propagators

G0(p) = Z2G(p), G(tr)ab
0 μν (k) = Z3G(tr)ab

μν (k), (1.104)

where the superscript (tr) means the transverse part, Z2 and Z3 are the renormaliza-
tion constants. Renormalization is required also for the interaction vertices; omitting the
Lorentz and colour structures, one can write

�
(q̄gq)
0 (pi ) = Z−1

1q �
(q̄gq)(pi ), �

(3g)
0 (ki ) = Z−1

1 �(3g)(ki ), �
(4g)
0 (ki ) = Z−1

4 �(4g)(ki ),

(1.105)

where �(q̄gq), �(3g), and �(4g) are the renormalized one-particle irreducible vertices and
Zi are the renormalization constants. The renormalizability of the theory means that the
renormalized quantities, being expressed in terms of the renormalized charges and masses,
remain finite in the limit when the regularization is removed.

In the covariant gauges (1.63), one also needs to renormalize the ghost propagator, the
vertex of the ghost-gluon interaction, and the gauge parameter ξ . The renormalization con-
stants for the first two items are denoted Z̃3 and Z̃1, respectively; for the gauge parameter,
the constant is usually taken equal to that of the gluon field:

ξ = Z−1
3 ξ0. (1.106)

The renormalized coupling constant can be defined using any of the interaction vertices.
Its universality required by gauge invariance means that

Z−1
g = Z1/2

3 Z2 Z−1
1q = Z3/2

3 Z−1
1 = Z3 Z−1/2

4 = Z1/2
3 Z̃3 Z̃−1

1 . (1.107)

Note that the definition of the charge renormalization constant Zg in terms of the ghost-
gluon interaction appears to be the most suitable for its calculation. Eq. (1.107) means that
the renormalization constants are not independent. The relations

Z3

Z1
= Z2

Z1q
= Z1/2

3

Z1/2
4

= Z̃3

Z̃1
(1.108)

are fulfilled as a consequence of gauge invariance. These relations appear as a particular
case of the Slavnov–Taylor identities [50],[51], which correspond to the Ward identities in
QED and guarantee the universality of the renormalized coupling constant g.
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It is convenient to construct perturbation theory using renormalized quantities. The
effective Lagrangian (1.37) is expressed in terms of the bare quantities, which must now
carry the subscript 0. In terms of the renormalized fields

ψ = Z−1/2
2 ψ0, Aa

μ = Z−1/2
3 Aa

0 μ, φ = Z̃−1/2
2 φ0, (1.109)

the Lagrangian (1.37) with the gauge-fixing term (1.63) takes the form of

Le f f = Z2ψ
(
i � ∂ − Z3 Zgμ

εg �Aata − Zm m
)
ψ

− 1

4
Z3

(
∂μAa

ν − ∂ν Aa
μ − Z3 Zgμ

εg f abc Ab
μ(x)A

c
ν(x)

)2

− 1

2ξ
(∂μAa

μ)
2 + Z̃2

(
∂μφ

†
)a (

δac∂μ − Z3 Zgμ
εg f abc Ab

μ

)
φc. (1.110)

The renormalized perturbation theory is obtained from (1.110) by writing the renormalized
constants in the form of Zi =1+�Zi and considering the terms with�Zi as perturbations.
These terms are called the counterterms. Here, each of�Zi is written as a series in g2, and
the coefficients of these series are determined by the renormalization conditions, order by
order, of perturbation theory.

The renormalization in noncovariant gauges has specific peculiarities. In particular, in
the planar gauge [see (1.78) and (1.79)] the field renormalization is nonmultiplicative [52]:

Aa
0 μ = z1/2

3

[
Aa
μ − nμ

(n Aa)

n2
(1 − z̃−1

3 )

]
, (1.111)

where z3 is a renormalization constant for physical field components but z̃3 is related to
the change of the gauge group under renormalization.

The renormalization constants are different in different renormalization schemes. The
schemes that are commonly used can be divided into three classes: on-shell, off-shell, and
minimal subtraction (MS)-like schemes.

In on-shell scheme, the renormalization constants are defined in such a way that the
inverse renormalized propagators, together with their first derivatives and the renormal-
ized vertices, are equal to the corresponding Born values on the mass shell. Such schemes
usually are used in QED, but even in QED on-shell schemes have a certain inconvenience
related to the infrared divergences. On-shell schemes are not used in QCD. The technical
reason for this is that infrared divergences are much more severe in QCD than in QED. The
physical reason is the absence of the mass shell for quarks and gluons due to confinement.

In the off-shell schemes, analogous conditions on the propagators and vertices are
imposed at some off-shell values of momenta in the space-like region [53]–[56]. These
schemes also are called momentum-space subtraction (MOM) schemes; values of momenta
where the renormalization conditions are imposed are called renormalization scale or
subtraction point.

The on-shell and the off-shell renormalization schemes can be applied to any regulariza-
tion scheme but, MS-like schemes cannot because MS-like schemes assume dimensional
regularization. In the MS scheme [57], μ in Eq. (1.103) is called renormalization scale, and
renormalized quantities are obtained from the corresponding nonrenormalized quanties by
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subtraction of pole terms in 1/ε. Schemes that differ from the MS scheme by a shift of the
renormalization scale μ are called MS-like schemes. The most frequently used is the MS
scheme [58] which is obtained from the MS scheme by the replacement

μ2 → μ2 = μ2

4π
eγE , (1.112)

where γE = 0.57721 . . . is the Euler constant. The reason is that in one-loop calculations
1/ε always appears in the combination

1

ε
− γE + ln 4π ≡ 1

ε̄
. (1.113)

Note that, unlike the MOM schemes, renormalization in the MS-like schemes does not
mean imposing the renormalization conditions at some values of momenta, so that μ does
not have the sense of a renormalization or subtraction point.

1.8 One-loop calculations

One-loop calculations are straightforward in the covariant gauges with dimensional
regularization. The simplest object is the ghost self-energy part M2(p). One has

−i M2(p)δab =

k

p p − k p

= δab g2CA

(2π)D

∫
d Dkμ2ε pμ(p − k)νdμν(k)

(k2 + i0)((k − p)2 + i0)
, (1.114)

where dμν is the numerator of the gluon propagator (1.64), CA = Nc. Using (1.88) and
(1.85) we get

M2(p) = g2CA p2

4(2π)Di

∫
d Dkμ2ε

(k2 + i0)((k − p)2 + i0)

(
2 − (1 − ξ) p2

k2

)
= g2CA p2�(ε)

4(4π)
D
2

(
μ2

−p2

)ε ∫ 1

0
dx(x(1 − x))−ε

(
2 − ε (1 − ξ)

x

)
= g2CA p2�(ε)

4(4π)
D
2

(
μ2

−p2

)ε
�2(1 − ε)
�(1 − 2ε)

(
2

1 − 2ε
+ (1 − ξ)

)
. (1.115)

In the limit of ε → 0 and neglecting terms that vanish in this limit we obtain

M2(p) = g2CA p2

4(4π)2

[(
1

ε
− ln

(−p2

μ2

))
(3 − ξ)+ 4

]
. (1.116)

It follows from (1.116) that the ghost renormalization constant Z̃3 in the MS scheme is

Z̃3 = 1 + g2CA

4(4π)2
(3 − ξ)1

ε
. (1.117)
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For the quark self-energy part �(p) one has:

−i�(p) =

k

p p − k p

= g2CF

(2π)D

∫
d Dkμ2εγμ(�p− � k + m)γνdμν
(k2 + i0)((k − p)2 − m2 + i0)

, (1.118)

where CF = (N 2
c − 1)/(2Nc). Using (1.84), (1.88) and (1.85), it is easy to get

�(p) = g2CF

∫ 1

0
dx
∫

d Dkμ2ε

(2π)Di

[
γμ(�p− � k + m)γμ − (1 − ξ)(m− �p)
(k2 − 2x(kp)+ x(p2 − m2)+ i0)2

− 2(1 − ξ) (1 − x) � k(p2 − m2)

(k2 − 2x(kp)+ x(p2 − m2)+ i0)3

]
= g2CF�(ε)μ

2ε

(4π)
D
2

∫ 1

0
dxx−ε

×
[
γμ(�p(1−x)+m)γμ−(1−ξ)(m−�p)

(m2 − p2(1 − x))ε
+ ε(1− ξ) (1− x) �p(p2−m2)

(m2− p2(1−x))1+ε

]
,

(1.119)

hence in the limit of ε → 0

�(p) = g2CF

(4π)2

[
1

ε

(
3m + ξ(m− �p))+ �p − 2m

+
1∫

0

dx

(
(2 �p(1−x)− 4m + (1−ξ)(m− �p)) ln

(
x(m2 − p2(1 − x))

μ2

)

+ (1 − ξ) (1 − x) �p(p2 − m2)

(m2 − p2(1 − x))

)]
. (1.120)

From (1.120) it follows that the renormalization constants Z2 and Zm in the MS
scheme are:

Z2 = 1 − g2CFξ

(4π)2
1

ε
,

Zm = 1 − 3g2CF

(4π)2
1

ε
, (1.121)

so that Zm is gauge independent and Z2 turns out to be unity in the Landau gauge (ξ = 0).
The gluon polarization operator δab�μν(k) contains contributions of quark, gluon, and

ghost loops. In the first of these,
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iδab�
f
μν(k) =

p

k, μ, a

p − k

k, ν, b

(1.122)

the tensor� f
μν differs from the quark contribution to the photon polarization operator only

by the coupling constant and the coefficient 1/2 coming from the trace of colour matrices:

i� f
μν(k) = −g2μ2ε

2

∑
f

∫
d D p

(2π)D
Tr [γμ(�p + m f )γν(�p− � k + m f )]

(p2 − m2
f + i0)((p − k)2 − m2

f + i0)
, (1.123)

where the sum goes over quark flavours. This part is gauge invariant. On the contrary, the
part related to gluons is gauge dependent. In the covariant gauges, together with the proper
gluon contribution,

iδab�
g
μν(k) =

α, i γ, l

p

k, μ, a

p − k

β, j σ,m

k, ν, b (1.124)

it contains the ghost contribution

iδab�
gh
μν(k) =

i l

p

k, μ, a

p − k

j m

k, ν, b
. (1.125)

For the tensors�i
μν (i = g, gh), one has

i�i
μν(k) = g2μ2εNc

2

∫
d Dqd DrδD(k + q + r)

(2π)D(q2 + i0)(r2 + i0)
T i
μν(k; q, r), (1.126)

where

T g
μν(k; q, r) = γμαβ(k, q, r)dαγ (q)dβσ (r)γνγ σ (k, q, r), (1.127)

T gh
μν (k; q, r) = −2qμ(q + k)ν. (1.128)
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Here, γμαβ represents the three-gluon vertex,

γμαβ(k, q, r) = (q − k)β δμα + (r − q)μδαβ + (k − r)αδμβ, (1.129)

and hence

T g
μν(k, q, r) = δμν

2

(
9k2 + (q − r)2

)
− 9

2
kμkν +

(
D − 3

2

)
(q − r)μ(q − r)ν

− (1 − ξ)
q2

[
δμν(k

2 − r2)2 + kμkνq
2 − (kμqν + qμkν)(q

2 + 3kq)− qμqν(r
2 − 2k2)

]
+ (1−ξ)

r2

[
δμν(k

2 − q2)2 + kμkνr
2 − (kμrν + rμkν)(r

2 + 3kr)− rμrν(q
2 − 2k2)

]
+ (1 − ξ)2

r2q2

[
rμrν(kq)2 + qμqν(kr)2 − (qμrν + rμqν)(rk)(qk)

]
. (1.130)

Integration over loop momenta is easily performed using the Feynman parametrization.
The result is

� f
μν(k) =

(
kμkν − k2δμν

)
� f (k

2),

� f (k
2) = 4g2μ2ε�(ε)

(4π)D/2
∑

f

∫ 1

0
dx

x(1 − x)

(m2
f − k2x(1 − x)− i0)ε

; (1.131)

�g
μν(k) = g2 Nc

2(4π)D/2

(
μ2

−k2 − i0

)ε
�(ε)�2(1 − ε)(1 − ε)

�(D)

[
k2δμν(6D − 5)

− kμkν(7D − 6)+ (1 − ξ)(k2δμν − kμkν)

×
(

2(D − 1)(2D − 7)− 1 − ξ
2
(D − 1)(D − 4)

)]
; (1.132)

and

�gh
μν(k) = g2 Nc

2(4π)D/2

(
μ2

−k2−i0

)ε
�(ε)�2(1−ε)(1−ε)

�(D)

[
k2δμν + kμkν(D−2)

]
.

(1.133)
In contrast to the quark part, which is transverse, �g

μν(k) and �gh
μν(k) separately are not

transverse. Nevertheless, their sum is transverse, as is required by gauge invariance.
For ε → 0 we have

� f (k
2) = 4g2

(4π)2

⎛⎝n f

6

1

ε
−
∑

f

∫ 1

0
dxx(1 − x) ln

(
m2

f − k2x(1 − x)− i0

μ2

)⎞⎠ ,
(1.134)

where n f is the number of quark flavours,

�g
μν(k) = g2 Nc

12(4π)2

(
1

ε
− ln

(−k2 − i0

μ2

)
+ 8

3

)[
k2δμν(19 − 12ε)− kμkν(22 − 14ε)

+ (1 − ξ)(k2δμν − kμkν)

(
2(3 − 14ε)+ (1 − ξ)3ε

)]
; (1.135)
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and

�gh
μν(k) = g2 Nc

12(4π)2

(
1

ε
− ln

(−k2 − i0

μ2

)
+ 8

3

)[
k2δμν + 2kμkν(1 − ε)

]
. (1.136)

Denoting the part related to gluons �G
μν , we have

�G
μν(k) = �g

μν(k)+�gh
μν(k) = (kμkν − k2δμν)�G(k

2), (1.137)

where

�G(k
2) = − g2 Nc

12(4π)2

(
1

ε
− ln

(−k2 − i0

μ2

)
+ 8

3

)
×
[

20 − 12ε + (1 − ξ)
(

2(3 − 14ε)+ (1 − ξ)3ε
)]
. (1.138)

The transverse part of the gluon propagator is

Gtr
μν(k) = i

k2(1 +�(k2))

(
−δμν + kμkν

k2

)
, (1.139)

where �(k2) = � f (k2) + �G(k2). From (1.104), (1.134), (1.138) it follows that in the
MS scheme

Z3 = 1 − g2

(4π)2
1

ε

[
Nc

(
−13

6
+ ξ

2

)
+ 2

3
n f

]
. (1.140)

Note that in the photon case,

Im�γ (s) = s

4πα
σ
γ

e+e−→anything(s), (1.141)

where σγe+e−→anything is the total cross section of one-photon e+e− annihilation. This
means that Im�γ is positive definite. This is evidently true for the quark contribution
to the gluon polarization operator. From (1.134), we have

Im� f (k
2) = g2

(4π)

1

6

∑
f

k2 + 2m2
f

k2

√
k2 − 4m2

f

k2
θ(k2 − 4m2

f ). (1.142)

Instead, we see from (1.138) that, first of all, in the gluon case Im�G is gauge dependent:

Im �G(k
2) = −πg2 Nc

6(4π)2

[
10 + 3(1 − ξ)

]
, (1.143)

and is negative at ξ < 13/3. Separate contributions of ghost fields and gluon fields to�μν
are not transverse. Nevertheless, it is possible to give them some sense considering their
convolutions with polarization vectors e(k) satisfy the transversality and normalization
conditions

eμkμ = 0, eμe∗
μ = −1. (1.144)
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Then we have

eμe∗
ν Im �g

μν(k
2) = − πg2 Nc

12(4π)2
k2
[

19 + 6(1 − ξ)
]
, (1.145)

eμe∗
ν Im �gh

μν(k
2) = − πg2 Nc

12(4π)2
k2, (1.146)

and

eμe∗
ν Im�G

μν(k
2) = −πg2 Nc

6(4π)2
k2
[

10 + 3(1 − ξ)
]
. (1.147)

Evidently, the negative sign of (1.146) is related to “wrong statistics” of the ghosts. As for
(1.145), it receives contributions from intermediate gluons both with physical and unphysi-
cal polarizations; the first contribution is positive, whereas the last one is gauge dependent.
To find the first contribution we can use the Cutkosky rule. The discontinuity of (1.135) is
obtained by the substitution

1

r2 + i0
→ −2π iδ(r2),

1

q2 + i0
→ −2π iδ(q2). (1.148)

After that we can perform summation over physical polarizations by substitution in (1.127):

− dμν → δμν − qμrν + rμqν
(qr)

. (1.149)

As a result, we obtain

Im�g phys
μν = πg2 Nc

3(4π)2

(
kμkν − k2δμν

)
, (1.150)

so that the contribution of physical gluons in the intermediate state to the polarization
tensor is transverse, and

eμe∗
ν Im �g phys

μν = πg2 Nc

3(4π)2
k2, (1.151)

the contribution to the cross section, is positive.
Calculations of the one-loop vertex parts is considerably more complicated. We do not

present them here. Instead, let us summarize the one-loop renormalization constants in the
covariant gauges. Denoting

Zi = 1 − g2

(4π)2
1

ε
ai , Z̃i = 1 − g2

(4π)2
1

ε
ãi , (1.152)

in the theory with n f quark flavours we have

am = 3CF , a2 = CFξ, a3 = Nc

(
−13

6
+ ξ

2

)
+ 2

3
n f , a1 = Nc

(
−17

12
+ 3ξ

4

)
+ 2

3
n f ,

a1q = Nc
3 + ξ

4
+ CFξ, a4 = Nc

(
−2

3
+ ξ

)
+ 2

3
n f , ã3 = Nc

−3 + ξ
4

, ã1 = Nc
ξ

2
.

(1.153)
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From (1.152) and (1.153) it is easy to see that the relations (1.108) are fulfilled and
Eq. (1.107) gives

Zg = 1 − g2

(4π)2
1

ε

(
11

6
Nc − 1

3
n f

)
, (1.154)

independent of ξ , as it should be.

1.9 Renormalization group

As we have discussed, there is a great arbitrariness in the renormalization. First, one can use
different renormalization schemes. Then, after choosing a renormalization scheme, there
is an arbitrariness in the renormalization scale μ. The renormalization can be carried out at
any scale. The parameters of the theory renormalized at two different scales are connected
with each other by finite renormalizations. The set of finite renormalizations constitutes
the renormalization group and obeys functional equations characteristic of the group. For
an infinitesimal change of the scale μ, the functional equations are reduced to differential
equations that are called renormalization group equations [49], [59]–[65].

It is worth mentioning again that the difference between MOM and MS-like schemes
is that in the MS-like schemes the renormalization scale μ is not really a renormalization
point. In the MS scheme, only pole terms are subtracted, so the renormalization constants
in this scheme are mass-independent (when expressed in terms of g they depend neither on
the quark masses mq nor on the renormalization scale μ). In the MOM schemes, renormal-
ization constants contain dependence on mq and μ. This circumstance leads, in particular,
to a difference in the renormalization group equations.

In the MS scheme, indicating explicitly the dependence of the renormalized charge g on
the renormalization scale μ, we have

g(μ) = μ−εZ−1
g g0. (1.155)

The renormalization constant Zg in this scheme takes the form

Zg = 1 +
∞∑

n=1

Z (n)g

εn
, Z (n)g =

∞∑
k=n

ckng2k . (1.156)

Since g0 is independent of μ, we get

d ln g

d lnμ
= −ε − g

d ln Zg

dg

d ln g

d lnμ
, (1.157)

so that

d ln g

d lnμ
= −ε

1 + gd ln Zg/dg
= −ε + g

d Z (1)g

dg
. (1.158)

The last equality follows from finiteness of the left-hand side in the limit ε → 0, which
means cancelation of all pole terms in its Taylor series in g. Defining in this limit

d ln g

d lnμ
= β(g), (1.159)
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we have

β(g) = g
d Z (1)g

dg
. (1.160)

Note that whereas (1.160) relates to the MS-scheme, (1.159) serves by the definition of the
β-function in any scheme with renormalization scale μ. It follows from this definition that
all schemes that differ by a shift of the renormalization scale, as MS-like schemes, have
the same β-function; in particular, β-functions of the MS and MS schemes coincide. Let
us stress that everything stated above applies equally to both massless and massive quarks,
since in the MS-like schemes the renormalization constants are mass-independent.

The mass must be renormalized too. In the MS scheme the renormalization is written as

m0 = Zm m(μ), (1.161)

where m0 and m(μ) are the bare and the renormalized masses, respectively, and Zm is the
mass renormalization constant, which is expanded similarly to (1.156):

Zm = 1 +
∞∑

n=1

Z (n)m

εn
, Z (n)m =

∞∑
k=n

dkng2k . (1.162)

By definition,
d ln m(μ)

d lnμ
= −γm(g(μ)), (1.163)

where γm is the mass anomalous dimension. Usingμ–independence of m0 and Eqs. (1.158)
and (1.160), one has

d ln m(μ)

d lnμ
= −d ln Zm

dg

dg

d lnμ
= −d ln Zm

dg
g
(− ε + β(g)). (1.164)

From finiteness of the left-hand side it follows in the limit of ε → 0

γm(g) = −g
d Z (1)m

dg
. (1.165)

It is worth noting that the mass-independent functions β(g) and γm(g) in the MS-like
schemes are also gauge-independent [66],[67].

Let us write β(g) as

β(g) = −β0
αs

4π
− β1

α2
s

(4π)2
− β2

α3
s

(4π)3
− β3

α4
s

(4π)4
. . . , (1.166)

where αs = g2/(4π). As follows from (1.160), in the MS-scheme the coefficients βi are
determined by the residues of the first-order poles in ε in the renormalization constant Zg .
From (1.154), we come to the result obtained in [68],[69]:

β0 = 11

3
Nc − 2

3
n f = 11 − 2

3
n f . (1.167)

The positive sign of β0 (at a not very large n f ) is the striking phenomenon providing the
remarkable property of QCD – asymptotic freedom. Due just to this property, QCD has
become the theory of strong interactions.
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The two-loop beta-function obtained in [70],[71],[72] is presented as

β1 = 34

3
C2

A − 4CF TF n f − 20

3
CATF n f = 34

3
N 2

c −
(

13

3
Nc − 1

Nc

)
n f

= 102 − 38

3
n f , (1.168)

where

CA = Nc, CF = N 2
c − 1

2Nc
, TF = 1

2
. (1.169)

The three-loop result [73],[74], valid for an arbitrary semi-simple compact Lie group, is:

β2 = 2857

54
C3

A + 2C2
F TF n f − 205

9
CF CATF n f − 1415

27
C2

ATF n f

+ 44

9
CF T 2

F n2
f + 158

27
CAT 2

F n2
f = 2857

2
− 5033

18
n f + 325

54
n2

f . (1.170)

The coefficient β3 in the MS-like schemes was found [75] also for an arbitrary semi-simple
compact Lie group. In the case of QCD, it takes the form of

β3 =
(

149753

6
+ 3564ζ(3)

)
−
(

1078361

162
+ 6508

27
ζ(3)

)
n f

+
(

50065

162
+ 6472

81
ζ(3)

)
n2

f + 1093

729
n3

f , (1.171)

where ζ(n) is the Riemann zeta-function. Numerically for QCD,

β0 = 11 − 0.66667n f ,

β1 = 102 − 12.6667n f ,

β2 = 1428.50 − 279.611n f + 6.01852n2
f ,

β3 = 29243.0 − 6946.30n f + 405.089n2
f + 1.49931n3

f . (1.172)

As already noted, multi-loop calculations are performed in covariant gauges. In particular,
the result (1.171) was obtained in [75] using a general covariant gauge (1.63). The explicit
cancellation of the gauge dependence in the β-function was used as an important check of
the correctness of the calculations. The charge renormalization constant and β-function
were obtained by calculating the renormalization constants for the ghost-ghost-gluon
vertex, for the ghost propagator, and for the gluon propagator.

According to (1.159), the charges renormalized at different scales are connected by the
equation

ln

(
μ

μ0

)
=

g(μ)∫
g(μ0)

dg

gβ(g)
. (1.173)
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In the one-loop approximation for the coupling constant we have

αs(μ) = αs(μ0)

1 + αs (μ0)
4π β0 ln

(
μ2

μ2
0

) . (1.174)

Usually, instead of an arbitrary point μ0, the position �QC D of the infrared pole of g(μ)
is used:

ln

(
μ

�QC D

)
= −

∞∫
g(μ)

dg

gβ(g)
. (1.175)

In the one-loop approximation this gives

αs(μ) = 4π

β0 ln

(
μ2

�2
QC D

) . (1.176)

In higher orders, the definition (1.175) becomes unhandy; it is more convenient to write
the solution of (1.159) as

β0 ln

(
μ2

�2

)
= L

(
αs(μ)

4π

)
, (1.177)

with

L(a) = 1

a
+ β1

β0
ln(β0a)+

∫ a

0
dx

[
1

x2
− β1

β0

1

x
+ β0

xβ(4π
√

x)

]
, (1.178)

where β(g) is given by (1.166). One can check by direct differentiation of (1.178) that
(1.177) provides the correct evolution of αs with μ. The parameter � in (1.177) is the
integration constant (different from �QC D). From the expansion

β0

xβ(4π
√

x)
= − 1

x2
+ β1

β0x
+ O(1) (1.179)

one sees that the integrand in (1.178) is not singular at x = 0 and the integral can be
expanded in powers of a, that makes the representation (1.177) more suitable than (1.175).
In the three-loop approximation for the beta-function (1.166) this representation gives

αs(μ) = 4π

β0 ln
(
μ2

�2

)
⎡⎣1 − β1

β2
0

ln
(

ln
(
μ2

�2

))
ln
(
μ2

�2

) + β2
1

β4
0 ln2

(
μ2

�2

)
×
((

ln

(
ln

(
μ2

�2

))
− 1

2

)2

+ β2β0

β2
1

− 5

4

)⎤⎦ . (1.180)

The mass anomalous dimension (1.163) is known now also in four loops [76]. Writing
it as

γm = γ0
αs

4π
+ γ1

α2
s

(4π)2
+ γ2

α3
s

(4π)3
+ γ3

α4
s

(4π)4
. . . , (1.181)
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we have

γ0 = 6CF ,

γ1 = 3C2
F + 97

3
CF CA − 20

3
CF TF n f ,

γ2 = 129C3
F − 129

2
C2

F CA + 11413

54
C2

ACF + 4C2
F TF n f (24ζ(3)− 23)

− 8CF CATF n f

(
12ζ(3)+ 139

27

)
− 280

27
CF T 2

F n2
f ,

γ3 = 4603055

81
+ 271360

27
ζ(3)− 17600ζ(5)+ 2

(
18400

9
ζ(5)+ 880ζ(4)− 34192

9
ζ(3)− 91723

27

)
n f

+ 2

(
5242

243
+ 800

9
ζ(3)− 164

3
ζ(4)

)
n2

f + 2

(
64

27
ζ(3)− 332

243

)
n3

f . (1.182)

Here, the first three coefficients are given for an arbitrary semi-simple compact Lie group
and the fourth for the case of QCD. The one-loop contribution can be obtained from (1.121)
and the two- and three-loop contributions were found in [77] and [78],[79], respectively.
Numerically for QCD

γ0 = 8,

γ1 = 134.667 − 4.44445 n f ,

γ2 = 2498 − 292.367 n f − 3.45679 n2
f ,

γ3 = 50659 − 9783.04 n f − 141.395 n2
f + 2.96613 n3

f . (1.183)

From Eqs. (1.163) and (1.159) one obtains

m(μ) = m(μ0) exp

⎛⎜⎝−
g(μ)∫

g(μ0)

dg

g

γm(g)

β(g)

⎞⎟⎠ . (1.184)

Expansion of the ratio γm(g)/β(g) in powers of g2 gives

m(μ) = m(μ0)

(
g(μ)

g(μ0)

)γ0/β0
(
1 +∑∞

n=1 An (αs(μ)/π)
n)(

1 +∑∞
n=1 An (αs(μ0)/π)

n) . (1.185)

The first three coefficients An are determined by expansions (1.166) and (1.181). In
particular,

A1 = 1

8

(
γ1

β0
− β1γ0

β2
0

)
. (1.186)

Numerically An ∼ 1 for n = 1, 2, 3.
In the renormgroup equations for Green functions, both their mass and gauge depen-

dence need to be taken into account. The connection of the bare �0 and renormalized �
functions is written as

�0(pi ; g0,m0, ξ0) = Z−1
� �(pi ; g,m, ξ, μ), (1.187)
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where

m = Z−1
m m0, ξ = Z−1

3 ξ0. (1.188)

Independence of the unrenormalized function of μ leads to the equation(
μ
∂

∂μ
+ gβ(g)

∂

∂g
+ γ�(g, ξ)− γm(g)m

∂

∂m
+ δ(g, ξ)ξ ∂

∂ξ

)
�(pi ; g,m, ξ, μ) = 0,

(1.189)

where

δ(g, ξ) = dln ξ

d lnμ
= −dln Z3

d lnμ
, (1.190)

and

γ�(g, ξ) = −dln Z�
d lnμ

(1.191)

is the anomalous dimension of the Green function. The derivatives in (1.190) and (1.191)
are taken at fixed values of g0,m0, and ξ0.

In MS-like schemes, δ(g, ξ) and γ�(g, ξ) are expressed in terms of the derivatives with
respect to g of the coefficients Z (1)3 (g, ξ) and Z (1)� (g, ξ) of the expansions

Z3 = 1 +
∞∑

n=1

Z (n)3 (g, ξ)

εn
, Z� = 1 +

∞∑
n=1

Z (n)� (g, ξ)

εn
(1.192)

in the same way as it was done for the beta-function [see (1.157)–(1.160)] and for the mass
anomalous dimension [see (1.163)–(1.165)]. Thus, we have

d ln ξ

d lnμ
= −d ln Z3

d lnμ
= −∂ ln Z3

∂ ln g
(−ε + β(g))− ∂ ln Z3

∂ ln ξ

d ln ξ

d lnμ
, (1.193)

so that

δ(g, ξ) = d ln ξ

d lnμ
= −∂ ln Z3/(∂ ln g) (−ε + β(g))

1 + ∂ ln Z3/(∂ ln ξ)
, (1.194)

and in the limit of ε → 0 using finiteness of the left-hand side we obtain

δ(g, ξ) = g
∂Z (1)3

∂g
. (1.195)

Accordingly,

γ�(g, ξ) = g
∂Z (1)�
∂g

. (1.196)

If the notation d� is used for the canonical dimension of �,(
μ
∂

∂μ
+ m

∂

∂m
+ λ ∂

∂λ

)
�(λpi ; g,m, ξ, μ) = d� �(pi ; g,m, ξ, μ), (1.197)
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then (1.189) can be rewritten as:(
λ
∂

∂λ
− gβ(g)

∂

∂g
+ (1 + γm(g))m

∂

∂m
− δ(g, ξ)ξ ∂

∂ξ
− γ�(g, ξ)− d�

)
× �(λpi ; g,m, ξ, μ) = 0. (1.198)

Therefore, the renormalization group defines the transformation law of � at the simultane-
ous change of scale of all momenta pi . For the case ξ = 0 in the MS-like schemes γ� , as
well as β and γm , depends only on g, so that Eq. (1.198) can be easily solved:

�(λpi ; g,m, 0, μ) = λd��(pi ; g(λμ), m̃(λ), 0, μ) exp

⎡⎢⎣ g(λμ)∫
g

dx

xβ(x)
γ�(x)

⎤⎥⎦ , (1.199)

where m̃(λ) is defined by the equation

λd ln m̃(λ)

dλ
= −(1 + γm(g(λμ))) (1.200)

with the initial condition m̃(1) = m ≡ m(μ). Note that since g(λμ) and m̃(λ) depend on
g ≡ g(μ) and m as on initial conditions, we have

∂ ln g(λμ)

∂ ln g
= β(g(λμ))

β(g)
,

∂m(λ)

∂m
= m̃(λ)

m
,

∂m̃(λ)

∂g
= m̃(λ)

β(g)
[γm(g(λμ))− γm(g)]. (1.201)

The important point is that the Green function on the right-hand side (1.199) depends on
the coupling constant at the point λμ. Due to the asymptotic freedom at large λ it can
be calculated in perturbation theory. In the leading approximation one can use the Born
value.

It is worth noting that one has to refer with caution to the statements about scheme-
and gauge-independence of the first two coefficients of the β-function. In fact, even the
first coefficient is scheme-dependent; in particular, in the MOM schemes this coefficient
depends on quark masses. Thus, one can talk about the independence only in mass-
independent schemes, such as MS schemes (or in the limit of negligibly small masses).
Here, the independence is proved by presenting the ratio g2(μ)/g1(μ) of the couplings
in two schemes in the form of 1 + cg2

1+ terms of higher orders in g2
1 and calculating

β(2) = d ln g2/(d lnμ). It is easy to see that the first two coefficients of β(2) and β(1) coin-
cide if c does not depend onμ. The scheme-independence of the first two coefficients leads,
in particular, to their gauge-independence, because of the existence of physical schemes,
where g is defined in terms of physical, i.e. gauge invariant, values.

However, as is shown in [80], there is a class of schemes, where c depends on μ because
of gauge parameter dependence. In this case, only β0 is scheme- and gauge-independent.
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The MS-like schemes result in simpler calculations. The renormgroup equations in these
schemes have the simplest form. However, sometimes virtues turn into shortcomings, and
the mass-independence of the β- and γ -functions is just such a case. It is quite unnatural
that these functions contain contributions from all quarks independently of their masses.
It is also in evident contradiction with the decoupling theorem [81], according to which
a heavy quark Q of mass M can be ignored in processes with typical momentum scale
k2 � M2.

The point is that the decoupling theorem was proved using the MOM schemes. Actually,
the proof is very simple. As already mentioned, in these schemes the renormalization can
be performed by subtractions at the renormalization point μ2. Let us take μ2 � M2. After
these subtractions all integrals become convergent. In the absence of quark loops they
converge at values of virtual momenta p2 ∼ μ2 or p2 ∼ k2. But integrals over momenta
of Q-quark loops converge at p2 ∼ M2, giving some negative power of M , which means
heavy quark contributions vanish in the limit M → ∞.

This proof is not valid in the MS-like schemes because, as already mentioned, the
renormalization in these schemes cannot be performed by subtractions at some point of
momentum space. Whereas in the MOM schemes the renormalization for Q quark loops
looks like

∫ ∞

0
dp2

(
1

p2 + k2 + M2
− 1

p2 + μ2 + M2

)
∼ O

(
k2

M2
,
μ2

M2

)
, (1.202)

in the MS-like schemes it is similar to

∫ ∞

0

dp2

p2 + k2 + M2

(
μ2

p2

)ε
−
∫ ∞

μ2

dp2

p2

(
μ2

p2

)ε
∼ O ln

(
M2

μ2

)
. (1.203)

Therefore, the decoupling theorem is not applicable in its direct sense, and β0 (1.167)
contains contributions of arbitrary heavy quarks, which is quite unnatural. This means, in
particular, that in the MS-like schemes physical amplitudes with typical momentum scale
k2 � M2, being expressed in terms of αs(μ

2) with μ2 ∼ k2, contain large logarithms
ln(M2/μ2).

The standard solution of this problem is to provide decoupling explicitly [82],[83],
using the notion of active flavours. In the region k2 < M2, the quark Q with mass
M becomes inactive. In this region, one considers the dynamical degrees of freedom
involving Q quarks as integrated out and works with the effective Lagrangian includ-
ing only the remaining active quarks. That means, in particular, that only active quarks
contribute to the β- and γm-functions that determine the dependence of g(μ) and
m(μ). The requirement that such theory be consistent with the theory where the Q
quark is also active leads to matching conditions between g(μ) and m(μ) in two the-
ories at μ ∼ M , which are nontrivial in the two-loop approximation [84]–[87]. These
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conditions can be formulated in the language of finite renormalizations of the coupling
constant and mass. The corresponding renormalization constants are found in [88] with α3

s
accuracy.

1.10 Asymptotic freedom in QCD

Asymptotic freedom means decreasing αs at small distances. This behaviour is opposite
of that known in QED, where the effective charge increases when distances decrease. The
discovery of asymptotic freedom in nonabelian gauge theories [68],[69] was a great break-
through in the development of quantum field theories. A common belief before was that in
any reasonable field theory the effective charge had the same behaviour as in QED, namely,
it increased at small distances and decreased at large distances. Such phenomenon is called
zero-charge, because the effective charge at large distances (physical charge) tends to zero
when the scale where the effective charge is supposed to take a fixed value (bare charge)
tends to infinity.

In QED, this phenomenon has a classical physical interpretation as the shielding of a
trial charge source due to polarization by virtual pairs of charged particles created in the
field of this source. Of course, a similar shielding of the colour charge takes place in QCD
as well. This is clear from the quark contribution to the β-function. There is an analo-
gous gluon contribution [the contribution of physical gluons to the polarization tensor, see
(1.151)]. However, there is a new physical phenomenon related to gluons that leads to
asymptotic freedom. The origin of this phenomenon is that, contrary to photons, the glu-
ons themselves carry the colour charge and thereby spread out the colour charge of the
source.

The QED behaviour of the effective charge also can be easily understood from the
point of view of dispersion relations. Indeed, in QED, due to the Ward identity Z1 = Z2,
the charge renormalization is determined by the photon polarization operator �γ (s). The
imaginary part of �γ (s) is positive definite [see (1.141)]. Actually the positivity is not
accidental but is dictated by unitarity. The positivity of Im� and (1.139) leads to the
zero-charge phenomenon.

In QCD in covariant gauges, the identity Z1 = Z2 is absent (as well as the positivity of
Im�). Nevertheless, at first sight it seems that the zero-charge phenomenon should remain.
Indeed, the effective charge can be defined in terms of the interaction of two classical trial
charges, and one can believe that in physical gauges the same line of arguments as in
QED should work. But this impression is wrong. Moreover, the first calculation of the
invariant charge [89] – even before the discovery of asymptotic freedom – actually was
carried out just in a physical, namely the Coulomb, gauge and exhibited a decrease of the
invariant charge at small distances. Unfortunately, it was not recognized at the time that
the calculated value was just the invariant charge.

Using physical gauges makes clear the difference between QCD and QED and explains
asymptotic freedom as a result of spreading of the colour charge of the trial source by
gluons [90]. It is well known that the interaction of two distributed overlapping charges is
weaker than that between two point charges of the same strength.
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Most convenient for the elucidation is the Hamiltonian formulation of QCD in the
Coulomb gauge. One can come to this formulation starting from the functional integral
(1.24), with

(Ĝ A)a(x) = ∂i Aa
i (x); M̂(A) = ∂i Dab

i (A),

e− i
2ξ

∫
d4x((Ĝ A)a(x))2 |ξ→0 → δ(∂i Aa

i (x)), SQC D → 2
∫

d4x Tr

[
−1

4
GμνGμν + Aμ Jμ

]
,

(1.204)

where Jμ = J a
μta , J a

μ = (ρa
f (r), �0) (ρa

f (r) is the fixed colour charge source), and rewriting
it in the following form:∫

DA det M̂(A) δ(∂i Aa
i (x)) exp

{
2i
∫

d4x Tr

[
−1

4
GμνGμν + Aμ Jμ

]}
=
∫

DADA0DP det M̂(A) δ(∂i Aa
i (x)) exp

{
2i
∫

d4x

×Tr

[
Pi∂0 Ai − 1

2
Pi Pi − 1

4
Gi j Gi j + A0([∇i Pi ] + ρ f )

]}
. (1.205)

Here Pi = Pa
i ta . This equality is easily checked by integration over DP . Now, defining

φ by

P = P⊥ + ∂φ, ∂ P⊥ = 0, ∂2φ = ∂ P, DP = DP⊥Dφ, (1.206)

we have, taking account of δ(∂i Aa
i (x)),

[∇i Pi ] = ∂i [∇iφ] + ρ, (1.207)

where ρ = ig[Ai P⊥i ], so that∫
DA0 det exp

{
2i Tr

[
A0
([∇i Pi ] + ρ f

)] } = δ (∂i [∇iφ] + ρ + ρ f
)

= δ
(

M̂(A)φ + ρ + ρ f

)
, (1.208)

and therefore the determinant of M̂(A) in (1.205) is cancelled when integration over φ is
performed. Now, using∫

d4x Tr

[
Pi∂0 Ai − 1

2
Pi Pi

]
=
∫

d4x Tr

[
P⊥i∂0 Ai − 1

2
P⊥i P⊥i + 1

2
φ∂2φ

]
, (1.209)

we obtain after integration over φ and A‖∫
DA det M̂(A) δ(∂i Aa

i (x)) exp

{
2i
∫

d4x Tr

[
−1

4
GμνGμν + Aμ Jμ

]}
=
∫
DA⊥DP⊥ exp

{
2i
∫

d4x Tr

[
P⊥i∂0 A⊥i − 1

2
P⊥i P⊥i − 1

4
Gi j Gi j + 1

2
φ∂2φ

]}
,

(1.210)

where

φ = −M̂(A)−1(ig[A⊥i P⊥i ] + ρ f
)
. (1.211)
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Thus, we come to the original Feymnan formulation [91] of the path integral. The exponent
in (1.210) is therefore i

∫
d4x(Pa⊥i∂0 Aa⊥i )− H, so that

H = 2 Tr

[
1

2
P⊥i P⊥i + 1

4
Gi j Gi j − 1

2
φ∂2φ

]
. (1.212)

Let ρ f = ρ1 + ρ2, where ρ1 and ρ2 are two fixed charges forming a colour singlet. The
energy of their interaction Eρ1ρ2 is given by the term containing the product ρ1ρ2 in the
correction to the energy of the vacuum state |0〉. Up to terms ∼ g2, it consists of two pieces:

Eρ1ρ2 = E1 + E2 (1.213)

having different physical meaning. The first of them is the first-order correction of
perturbation theory where the perturbation is the term with φ in (1.212):

E1 = −2
∫

d3x Tr
[
ρ1(x)〈0|M̂(A)−1∂2 M̂(A)−1|0〉ρ2(x)

]
. (1.214)

Such a term is absent in the QED case. Just this correction diminishes the interaction energy
at small distances. Indeed, up to terms ∼ g2

M̂(A)−1∂2 M̂(A)−1 f = 1

∂2
f − 2ig

1

∂2

[
Ai ,

∂i

∂2
f

]
− 3g2 1

∂2

[
Ai ,

∂i

∂2

[
A j ,

∂ j

∂2
f

]]
,

(1.215)

and since

〈0|Aa
i (x)|0〉 = 0, 〈0|Aa

i (x)A
b
j (y)|0〉 = δab

∫
d3k

(2π)32|k|
(
δi j − ki k j

k 2

)
ei k(x− y),

(1.216)

for ρ1,2 = gχa
1,2taδ(x − x1,2) we obtain

E1 = −2
∫

d3x Tr

[
ρ1(x)

1

∂2
ρ2(x)− 3g2〈0|

[
Ai ,

(
∂i

∂2
ρ1

)]
1

∂2

[
A j ,

(
∂i

∂2
ρ2

)]
|0〉
]

= g2(χ1χ2)

∫
d3q

(2π)3
ei q(x1 − x2)

q2

[
1 + 3g2CA

(2π)3

∫
d3k

2|k|(q − k)2

(
1 − (kq)2

k2q2

)]
. (1.217)

The latter integral is logarithmically divergent. With the ultraviolet cut-off �2 it gives

E1 = g2(χ1χ2)

∫
d3q

(2π)3
ei q(x1−x2)

q 2

[
1 + g2CA

4π2
ln

(
�2

q 2

)]
. (1.218)

The logarithmic term in (1.218) increases when effective values of q 2 decrease, or the
charge separation |x1 − x2| increases. This means that the correction E1 (1.218) gives
antishielding.

On the contrary, the second term in (1.213) gives normal shielding. This is clear without
calculations, since it comes from the second-order correction to the ground state, which is
always negative. To find this, in (1.212) make the replacement:

φ∂ 2φ → 2ig[A⊥i∂0 A⊥i ] 1

∂ 2
ρ f . (1.219)
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The intermediate states in the second-order correction are two-gluon states |g1g2〉. Let k1

and k2 denote gluon momenta. Then

E2 = −4g2
∫

d3k1

(2π)32ω1

d3k2

(2π)32ω2

∑∫
d3x〈0| Tr

(
ρ1(x)

1

∂2
[A⊥i (x), ∂0 A⊥i (x)]

)
|g1g2〉

× 1

ω1 + ω2

∫
d3 y〈g1g2| Tr ([∂0 A⊥i (y), A⊥i (y)]) 1

∂ 2
ρ2(y)|0〉, (1.220)

where the sum goes over polarizations and colours of the produced gluons and their identity
is taken into account. A straightforward calculation gives

E2 = g2(χ1χ2)

∫
d3q

(2π)3
ei q(x1−x2)

q2

(−g2CA)

4(2π)3

∫
d3k (|k| − |q − k|)2

|k||q − k|(|k| + |q − k|)q2

×
(

1 + k(q − k)2

k2(q − k)2

)
. (1.221)

With logarithmic accuracy, we obtain

E2 = g2(χ1χ2)

∫
d3q

(2π)3
ei q(x1−x2)

q 2

(−g2CA)

48π2
ln

(
�2

q 2

)
. (1.222)

The minus sign provides for normal shielding. But the dominant correction is given by E1,
so that

E = g2(χ1χ2)

∫
d3q

(2π)3
ei q(x1−x2)

q 2

[
1 + (11g2CA)

48π2
ln

(
�2

q 2

)]
, (1.223)

which means antishielding and thus asymptotic freedom.

1.11 The renormalization scheme and scale ambiguity

All regularization and renormalization schemes must lead to the same values for physi-
cal observables. This statement seems to be obvious, but it is true only in principle; in
practice, however, when a finite number of terms of perturbation theory is used, different
schemes lead to different results. Let us consider a dimensionless physical quantity V (Q)
that depends on one variable Q = √|q2| (q is a four-momentum), with the expansion

V (Q) = a(μ)

[
1 +

∞∑
k=1

vk

(
Q

μ

)
ak(μ)

]
, (1.224)

where

a(μ) = αs(μ)

4π
. (1.225)

For simplicity, we consider the case when V (Q) is proportional to the first power of αs ,
but it is clear from the following that the consideration can be easily generalized to higher



1.11 The renormalization scheme and scale ambiguity 39

powers. The running coupling constant αs(μ) depends on its definition (renormalization
scheme) and on the scale μ. For two different schemes we have

a2(μ) = a1(μ)

[
1 +

∞∑
k=1

ckak
1(μ)

]
, (1.226)

where the subscripts 1 and 2 denote the schemes; the coefficients ck depend on
schemes, although this dependence is not indicated explicitly. In general, the coeffi-
cients ck , as well as vk in (1.224), can depend on μ through the renormalized gauge
parameter [see discussion after (1.201)]. We confine ourselves to the case when they are
gauge-independent.

Being a physical quantity, V (Q) must not depend on the definition of the running cou-
pling a(μ) (renormalization scheme) or on the scale μ. This means that the coefficients vn

are scheme- and scale-dependent; their dependence compensates the scheme- and scale-
dependence of αs(μ). But this compensation is exact only in the infinite series (1.224).
Truncation of the series leads to scheme- and scale-dependence. Denoting

V (n)(Q;μ) = a(μ)

[
1 +

n−1∑
k=1

vk

(
Q

μ

)
ak(μ)

]
, (1.227)

we have V (n)1 (Q;μ) �= V (n)2 (Q;μ) and V (n)i (Q;μ1) �= V (n)i (Q;μ2) for i = 1, 2. There-
fore, any fixed-order perturbative expansion contains a scheme and scale ambiguity. Of
course, the difference of V (n)i is of order αn+1

s , and formally any choice of scheme and
scale is admissible. But a wrong choice leads to a bad convergence of the series (1.224)
and therefore to a large deviation of V (n) from V (Q). On the contrary, a good choice puts
V (n) closer to V (Q). There are a few ways to resolve scheme-scale ambiguity.

The simplest way has no strictly defined rules. Some renormalization schemes are
accepted without serious grounds and the appropriate scale is guessed. There are, however,
at least three approaches that are based on definite principles. In the first of these [92],[93],
called the method of effective charges (MEC) or fastest apparent convergence (FAC), V (Q)
is considered to be the physical coupling constant: V (Q) ≡ av(Q) = αv(Q)/(4π). Its
evolution with Q is described by the equation

dav(Q)

d ln Q2
= av(Q)βv(gv(Q)), gv = 4π

√
av. (1.228)

Differentiating (1.224) with respect to ln Q2 having set μ = Q, using the evolution
equation for g(Q) and comparing the result with the expansion

avβv(gv) = −βv0 a2
v − βv1 a3

v − βv2 a4
v − · · · . (1.229)

gives equations connecting βvi with the coefficients βi (1.166) and vi (1.224). It is easy to
see that, in accordance with the discussion after (1.201), the first two βvi coincide with βi ,
βv0 = β0, β

v
1 = β1, and the next βvk are expressed in terms of βl and vl(1) with l ≤ k. In

particular,

βv2 = β2 − β1v1(1)− β0v
2
1(1)+ β0v2(1). (1.230)
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Thus, knowledge of βl and vl(1) up to l = k determines the function βv up to the terms
ak+1
v [in the (k + 1)–loop approximation]. Then V (Q) is given by the solution of the

following equation [cf. (1.177)]:

β0 ln

(
Q2

�2
v

)
= Lv(V (Q)), (1.231)

where Lv(a) is defined as the right-hand side of (1.178) with the substitution β → βv and
�v is the integration constant, which can be expressed [54],[55], in terms of the constant
� for the running coupling a(μ) and the coefficient v1 in (1.224):

β0 ln

(
�2
v

�2

)
= v1(1). (1.232)

The last relation, as well as the relations among βvi , βi and vi , can be obtained taking the
difference of (1.177) and (1.231):

β0 ln

(
�2
v

�2

)
= L(a(Q))− Lv(V (Q)) =

∫ a(Q)

0
dx

β0

xβ(4π
√

x)
−
∫ av(Q)

0
dx

β0

xβv(4π
√

x)
,

(1.233)

using (1.224) at μ = Q and expanding the right-hand member in powers of a(Q).
In the two-loop approximation, because of the coincidence of the β–functions, av(μ)

and a(μ) differ only by the scales, so that in this approximation

V (2)F AC = V (2)(Q;μc) = a(μc), (1.234)

where

ln

(
Q

μc

)
= v1(1)

2β0
, μc = Q exp

(
−v1(1)

2β0

)
. (1.235)

A second principle is the principle of minimal sensitivity (PMS) [94],[95], which means
that the scheme and scale must be chosen so as to minimize the sensitivity of V (n) to their
small variations. To realize this principle in corpore is not an easy task. One has to intro-
duce some parametrization of schemes (for example, using coefficients of corresponding
β-functions as the parameters) and to solve the problem of minimization in the many-
dimensional space of these parameters and the scale μ. But in the two-loop approximation
the only parameter isμ. From the PMS requirementμ∂V (n)(Q;μ)/∂μ = 0, using (1.159),
(1.166), one obtains

a2(μ)

[
d

d lnμ
v1

(
Q

μ

)
− 2β0

]
− 2a3(μ)

[
β1 + 2v1

(
Q

μ

)
(β0 + β1a(μ))

]
= 0. (1.236)

The a2 terms cancel each other because of the scale-invariance of V (Q) (1.224), as
V (Q)− V (2)(Q;μ) ∼ a3(μ). One can write

v1

(
Q

μ

)
= −2β0 ln

(
Q

μ

)
+ v1(1). (1.237)
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Then (1.236) gives the equation for the PMS scale μs :

β1 + 2v1

(
Q

μ s

)
(β0 + β1a(μs)) = 0, (1.238)

where v1

(
Q
μ s

)
is defined by (1.237) and a(μs) by (1.177), (1.178). The two-loop PMS

approximation for V (Q) is obtained from V (2)(Q;μ) putting μ = μs and using (1.238)

to express v1

(
Q
μ s

)
through a(μs):

V (2)P M S(Q) = a(μs)

[
1 − β1a(μs)

2 (β0 + β1a(μs))

]
. (1.239)

The approximation (1.239) without expansion in a(μs) is considered to be the most reliable
one. With such expansion the approximation is simplified:

V (2)P M S(Q) = V (2)(Q;μs) = a(μs)

[
1 − β1

2β0
a(μs)

]
, (1.240)

where for the scale μs we have from (1.238), taking account of (1.237)

ln

(
Q

μs

)
= β1

4β2
0

+ v1(1)

2β0
, μs = Q exp

(
− β1

4β2
0

− v1(1)

2β0

)
. (1.241)

The FAC and PMS optimization procedures were used to estimate the coefficients vn in
the expansion (1.224) from the known coefficients vk and βk at k < n (see, for example,
[96] and references therein). The idea is that because corrections to the optimized V (n) are
supposed to be small, most of the coefficients vn come from their expansion in terms of
a(μ). Thus, for n = 2, i.e. in the two-loop approximation, the estimates of v2 are given by
the coefficients at a3(μ) in the expansions of (1.234) and (1.239).

Both in FAC and PMS approaches in the two-loop approximation, the problem is
reduced to the scale choice. Here, both FAC and PMS scales μc (1.235) and μs (1.241)
have a distant relation to typical virtualities for the processes under consideration. Rather,
they are defined so as to absorb the correction v1; as a result, the FAC correction becomes
zero and the PMS one is small and process-independent, even in the case when v1 is large.
This property was criticized in [97], where it was pointed out that a large correction v1 can
be a consequence of bad convergence of the perturbation expansion rather than of a bad
choice of an expansion parameter. The simplest example is the orthopositronium decay
width in QED, where the expansion looks like

� = �0

(
1 − 10.3

α

π
+ · · ·

)
, (1.242)

and the first-order correction should not be absorbed into a redefinition of α since it is not
running at these energies. It was argued in [97] that the methods based on the FAC and
PMS give wrong results for processes likeϒ-decay, where the higher-order corrections are
very large.

In contrast to these methods, the scale is defined in [97] such as to absorb only the part
of v1 related to charge renormalization. This can be done straightforwardly for processes
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without gluon-gluon interactions in the lowest order. For such processes, the dependence
of v1 on the number of flavours n f comes only from the quark vacuum polarization. Since
the polarization is inseparably linked with charge renormalization, all terms proportional
to n f are absorbed into the scale. If

v1(1) = e1n f + e2, (1.243)

then, in order to absorb the term e1n f , one has to take the scale equal to

μp = Q exp

(
3e1

4

)
. (1.244)

This procedure is called the Brodsky-Lepage-Mackenzie (BLM) scale setting. With this
scale for V (Q) one obtains in the second order:

VBL M (Q) = V (2)(Q;μp) = a(μp)
[
1 + epa(μp)

]
, (1.245)

where

ep =
(

n f + 3

2
β0

)
e1 + e2 = 11

2
Nce1 + e2. (1.246)

Thus, the principal difference between the approaches is that, in the first two, the scale is
determined by the total correction, while in the third approach, the scale is determine by
only the part of the correction that relates to charge renormalization. It should be noted that
in the BLM approach a definite renormalization scheme is assumed and different schemes
give different expansions. However, if two schemes differ only by an n f -independent
rescaling (as, for example, MS and MS) they give the same result. Moreover, for two dif-
ferent schemes connected by (1.226) with c1(1) = β0c + d, where d is n f -independent,
the coefficients ep (1.246) will differ in d for all processes. This means in particular that
the difference of ep for different processes is scheme-independent. Therefore, for a bad
scheme choice the coefficients ep are large and of the same sign for most processes, which
gives a possibility to eliminate unsuitable schemes.

1.12 Anomalous dimensions of twist-2 operators

As an example, let us calculate the anomalous dimensions of the nonsinglet twist-2
operator:

Ôi
μ1μ2...μn

(x) = 2in−1S
⎡⎣ψ̄ t i

f γμ1

↔∇μ2

2

↔∇μ3

2
. . .

↔∇μn

2
ψ

⎤⎦ . (1.247)

Here, ψ is supposed to describe three quark flavours; t i
f are the generators of the flavour

group in the fundamental representation; ∇μ are the covariant derivatives (1.8); the sign ↔
means difference of their actions to the right and to the left (neglecting the total deriva-

tives it is possible to replace
↔∇μ/2 by ∇μ); S denotes the symmetrization of indices

μ1μ2 · · ·μn ; and the subtractions which turn into zero all convolutions of Ôi with δμν .
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The symmetrization and the subtractions result in definite Lorentz spin (equal to n)
of the operator Ôi . By definition, a twist τ of an operator Ô is the difference between
the canonical dimension d (in mass units) of the operator and its Lorentz spin n. It is
not difficult to see that the minimal twist of operators built from quark and gluon fields
is equal to 2. The operators of twist 2 play a major role in theoretical analysis of deep
inelastic scattering.

To simplify the calculation let us perform it for the operator

Ôi
n = cμ1 cμ2 . . . cμn Ôi

μ1μ2...μn
= 2in−1ψ̄ � c

(
c
↔∇
2

)n−1

t i
fψ, (1.248)

with c2 = 0, evidently having the same anomalous dimension as O( f )i
μ1μ2···μn . In order to

find the dimension, it is sufficient to consider only matrix elements with zero momentum

transfer, where
↔∇μ/2 can be replaced by ∇μ. In this case, in Born approximation, the

operator Ôi
n has the following vertices:

Oi
n

p p

= 2 � c(cp)n−1t i
f = �i(B)

n(qq), (1.249)

Oi
n

a, μp1 p2

= −2(n − 1) � ctat i
f cμ

n−1∑
j=1

(cp1)
j−1(cp2)

n− j−1

= �i(B)
n(qqg), (1.250)

and so on. According to (1.196), the anomalous dimension is given in one-loop approx-
imation by the doubled residue in the pole ε = 0 of the renormalization constant ZO
defined by

Ôi
n 0 = Z−1

O Ôi
n . (1.251)

Here, the subscript 0 in the first member means, as usual, a bare quantity, and Ôi
n is the

renormalized operator with finite matrix elements in the limit ε → 0. Let us consider
the matrix elements between single-quark states; then we have ZO = Z−1

2 Z f
n , where

Z2 and Z f
n are the renormalization constants of the quark propagator (1.104) and of the

one-particle irreducible q̄Oi
nq vertex (cf. (1.105)):

�i
n(qq) 0 = (Z f

n )
−1�i

n(qq). (1.252)
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Fig. 1.1. The one-loop diagrams for the calculation of the renormalization constant for the

operator O( f )i
μ1μ2···μn .

The renormalization constant Z2 is given by (1.121). For the calculation of Z f
n in g2-order

it is sufficient to find divergent contributions of the one-loop diagrams shown in Fig. 1.1.
As is seen from (1.121), Z2 is gauge-dependent. The same is true for Z f

n . On the con-
trary, ZO is gauge-independent, because of gauge invariance of the operator Ôi

n . Therefore,
we can use any gauge for its calculation. Eq. (1.121) gives the constant Z2, in particular in
the Feynman gauge, so that we will use this gauge. Since the divergent parts are indepen-
dent of quark masses, we put m = 0. Then with the required accuracy for the contribution
of the diagram Fig. 1.1a

�
i(a)
n(qq) = 2g2CF ti

f

∫
d Dk

(2π)Di
(ck)n−1 γμ � k � c � kγμ

(k2 + i0)2((p − k)2 + i0)
(1.253)

we get, using γμ � k � c � kγμ = 2(k2 � c − 2(kc) � k),

�
i(a)
n(qq) = 4g2CF ti

f

1∫
0

dx
∫

d Dk

(2π)Di

[ � c(ck)n−1

[(k−xp)2 + p2x(1−x)+i0]2
− 4(1 − x) � k(ck)n

[(k−xp)2 + p2x(1−x)+i0]3

]

= 4g2CF ti
f

∫ 1

0
dx
∫

d Dk

(2π)Di

[ � c(cp)n−1xn−1

[k2 + p2x(1 − x)+ i0]2
− 4nxn−1(1 − x)(cp)n−1 � k(ck)

[k2 + p2x(1 − x)+ i0]3

]
= �i(B)

n(qq)
g2

(4π)2
CF

ε
2
∫ 1

0
dx
[
xn−1 − nxn−1(1 − x)

]
. (1.254)

The diagrams Fig. 1.1b and Fig. 1.1c give equal contributions. In the same way, we obtain

�
i(b+c)
n(qq) = −4g2CF ti

f

n−1∑
j=1

∫
d Dk

(2π)Di

(ck) j−1(cp)n− j−1 � c � k � c
(k2 + i0)2((p − k)2 + i0)

= �i(B)
n(qq)

−g2

(4π)2
CF

ε
4

n−1∑
j=1

∫ 1

0
dxx j . (1.255)

From (1.254) and (1.255), it follows that in the MS scheme

Z ( f )
n = 1 − g2

(4π)2
CF

ε

⎡⎣ 2

n(n + 1)
− 4

n−1∑
j=1

1

j + 1

⎤⎦ . (1.256)
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Using the result (1.104) for Z2, we obtain for the anomalous dimension of the operator
Ôi
μ1μ2···μn

γOi
n

= −αsCF

π

⎡⎣3

2
+ 1

n(n + 1)
− 2

n∑
j=1

1

j

⎤⎦
= −αsCF

π

[
3

2
+ 1

n(n + 1)
− 2ψ(n + 1)− 2γE

]
. (1.257)

Here,

ψ(x) = (ln�(x))′ = �′(x)
�(x)

, ψ(x + 1) = 1

x
+ ψ(x), ψ(1) = −γE , (1.258)

γE = .5772 · · · is the Euler constant.

1.13 Colour algebra

The generators T̂ a of the colour group SU (Nc) obey the commutation relations

[T̂ a T̂ b] = i f abcT̂ c, (1.259)

where the group structure constants f abc are antisymmetric under the interchange of any
two indices. In the fundamental representation the generators are denoted ta . They have
the properties

Tr ta = 0, ta = ta †, Tr tatb = 1

2
δab (1.260)

and together with the identity matrix I create a complete set of Nc × Nc matrices. The
completeness condition can be written as

(ta)αβ(t
a)
γ
δ = 1

2
δαδδ

γ
β − 1

2Nc
δαβδ

γ
δ. (1.261)

The generators of the adjoint representation are denoted usually T a , hence(
T a)

bc = −i f adc. (1.262)

From the completeness condition (1.261), one can easily obtain

tata = CF I, tatbta =
(

CF − CA

2

)
tb, tatbtcta = 1

4
δbc I +

(
CF − CA

2

)
tbtc,

(1.263)

where CF and CA are the values of the Casimir operators in the fundamental and adjoint
representations:

CF = N 2
c − 1

2Nc
, CA = Nc. (1.264)

Taking account of (1.259) and (1.260), the completeness gives

tatb = δab

2Nc
+ 1

2

(
dabc + i f abc

)
tc, (1.265)
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where the dabc are symmetric under the interchange of any two indices. Thus,

i f abc = 2 Tr([tatb]tc) = 2 Tr([tbtc]ta), dabc = 2 Tr({tatb}tc) = 2 Tr({tbtc}ta).

(1.266)

For Nc × Nc matrices T a and Da with matrix elements

T a
bc = −i f abc, Da

bc = dabc (1.267)

we have the following useful identities, which result from (1.266) and (1.261):[
T a, T b

]
= i f abcT c,

[
T a, Db

]
= i f abc Dc, (1.268)

T aT a = CA I, T aT bT a = CA

2
T b, (1.269)

Tr
(
T a) = Tr

(
Da) = Tr

(
T a Db

)
= 0, (1.270)

Tr
(

T aT b
)

= Ncδ
ab, Tr

(
Da Db

)
= N 2

c − 4

Nc
δab, (1.271)

Tr
(

T aT bT c
)

= i
Nc

2
f abc, Tr

(
T aT b Dc

)
= Nc

2
dabc, (1.272)

Tr
(

Da DbT c
)

= i
N 2

c − 4

2Nc
f abc, Tr

(
Da Db Dc

)
= N 2

c − 12

2Nc
dabc, (1.273)

Tr
(

T aT bT cT d
)
=δadδbc+ 1

2

(
δabδcd + δacδbd

)
+ Nc

4

(
f adi f bci +dadi dbci

)
, (1.274)

Tr
(

T aT bT c Dd
)

= i
Nc

4

(
dadi f bci − f adi dbci

)
, (1.275)

Tr
(

T aT b Dc Dd
)

= 1

2

(
δabδcd − δacδbd

)
+ N 2

c − 8

4Nc
f adi f bci + Nc

4
dadi dbci , (1.276)

Tr
(

T a DbT c Dd
)

= −1

2

(
δabδcd − δacδbd

)
+ Nc

4

(
f adi f bci + dadi dbci

)
, (1.277)

Tr
(

T a Db Dc Dd
)

= i
2

Nc
f adi dbci + i

N 2
c − 8

4Nc
f abi dcdi + i

Nc

2
dabi f cdi , (1.278)

Tr
(

Da Db Dc Dd
)

= N 2
c − 4

N 2
c
δadδbc + 1

2
δacδbd + N 2

c − 8

2N 2
c
δabδcd

+ Nc

4
f adi f bci + N 2

c − 16

4Nc
dadi dbci − 4

Nc
dabi dcdi , (1.279)

f adi f bci + dadi dbci − f abi f cdi − dabi dcdi + 2

Nc

(
δadδbc − δabδcd

)
= 0. (1.280)
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These relations are valid for arbitrary Nc. For Nc = 3, the following extra relation exists:

dbb′cdaa′c + dba′cdb′ac + dbacda′b′c = 1

3

(
δbb′
δaa′ + δba′

δb′a + δbaδa′b′)
. (1.281)

Sometimes it is convenient to use colour diagrams to perform colour algebra. Colour fac-
tors of Feynman diagrams in QCD are expressed in terms of the colour propagators of
quarks and gluons

β α
= δαβ,

b a
= δab, (1.282)

and the vertices

a

= ta,

a

c b

= T a
bc = −i f abc.

(1.283)

Then the first and the third of Eqs. (1.260) are presented as

= 0, = TF
, (1.284)

where TF = 1/2 is the trace normalization of the fundamental representation. The
commutation relations are depicted as

− = ,

(1.285)

and the completeness condition (1.261) as

= TF − TF
Nc

.

(1.286)
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The sequential algorithm for calculation of colour factors corresponding to Feynman dia-
grams consists of the successive exclusion of the three-gluon vertices with the help of the
equality

= 1
TF

− 1
TF (1.287)

which follows from (1.285) and (1.284) and exclusion of internal gluon lines with the help
of the completeness condition (1.286).

Finally, let us present the projection operators for decomposition of two adjoint
representations onto the irreducible ones. For the colour group SU (Nc) with
Nc = 3, these representations R are 1, 8a, 8s, 10, 10, 27. The corresponding projection
operators are

〈bb′|P̂1|aa′〉 = δbb′
δaa′

N 2
c − 1

, (1.288)

〈bb′|P̂8a |aa′〉 = f bb′c f aa′c

Nc
, (1.289)

〈bb′|P̂8s |aa′〉 = dbb′cdaa′c Nc

N 2
c − 4

, (1.290)

〈bb′|P̂10|aa′〉 = 1

4

[
δbaδb′a′ − δba′

δb′a − 2

Nc
f bb′c f aa′c + if ba′cdb′ac + idba′c f b′ac

]
, (1.291)

〈bb′|P̂10|aa′〉 = 1

4

[
δbaδb′a′ − δba′

δb′a − 2

Nc
f bb′c f aa′c − if ba′cdb′ac − idba′c f b′ac

]
, (1.292)

〈bb′|P̂27|aa′〉 = 1

4

[(
1 + 2

Nc

)(
δbaδb′a′ + δba′

δb′a
)

− 2(Nc + 2)

Nc(Nc + 1)
δbb′

δaa′

−
(

1 + 2

Nc + 2

)
dbb′cdaa′c + dbacdb′a′c + db′acdba′c

]
. (1.293)

For generality, we do not put Nc = 3 here, so that the above expressions are valid for
the SU (Nc) group with arbitrary Nc. Corresponding representations in this case have
dimensions
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n1 = 1, n8a = n8s = N 2
c − 1, n10 = n10 = (N 2

c − 4)(N 2
c − 1)

4
,

n27 = (Nc + 3)N 2
c (Nc − 1)

4
. (1.294)

However, for Nc > 3 there is an additional representation with dimension

nNc>3 = (Nc + 1)N 2
c (Nc − 3)

4
(1.295)

and projection operator

〈bb′|P̂Nc>3|aa′〉 = 1

4

[(
1 − 2

Nc

)(
δbaδb′a′ + δba′

δb′a
)

+ 2(Nc − 2)

Nc(Nc − 1)
δbb′
δaa′

+
(

1 − 2

Nc − 2

)
dbb′cdaa′c − dbacdb′a′c − dba′cdb′ac

]
. (1.296)

In SU (3) this projection operator turns into zero due to the equality (1.281).
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2

Chiral symmetry and its spontaneous violation

2.1 The general properties of QCD at low energies

The asymptotic freedom of QCD, i.e. the logarithmic decrease of the QCD coupling con-
stant αs(Q2) ∼ 1/ ln Q2 at large momentum transfers Q2 → ∞ (or, equivalently, the
decrease of αs at small distances, αs(r) ∼ 1/ ln r ) allows one to perform reliable the-
oretical calculations of hard processes, using perturbation theory.1 However, the same
property of the theory implies an increase of the running coupling constant in QCD at
small momentum transfer, i.e. at large distances. Furthermore, this increase is unlimited
within the framework of perturbation theory. Physically such growth is natural and is even
needed, because otherwise the theory would not be a theory of strong interactions.

QCD possesses two remarkable properties. The first is the property of confinement:
quarks and gluons cannot leave the region of their strong interaction and cannot be
observed as real physical objects. Physical objects, observed experimentally at large dis-
tances, are hadrons – mesons and baryons. The second important property of QCD is the
spontaneous violation of chiral symmetry. The masses of light u, d, s quarks that enter
the QCD Lagrangian, especially the masses of u and d quarks from which the usual (non-
strange) hadrons are built, are very small as compared to the characteristic QCD mass
scale M ∼ 1 GeV (mu,md < 10 MeV, ms ∼ 150 MeV).2 In QCD, the quark interaction
is due to the exchange of vector gluonic field. Thus, if light quark masses are neglected,
the QCD Lagrangian (its light quark part) becomes chirally symmetric, i.e. not only vector,
but also axial currents are conserved. In this approximation the left-hand and right-hand
chirality quark fields do not transform into each other. However, this chiral symmetry is
not realized in the spectrum of hadrons and their low energy interactions. Indeed, in a chi-
rally symmetric theory fermion states must be either massless or degenerate in parity. It is
evident that baryons (particularly, the nucleon) do not possess such properties. This means
that the chiral symmetry of the QCD Lagrangian is spontaneously broken. According to
the Goldstone theorem, the spontaneous breaking of symmetry leads to the appearance
of massless particles in the spectrum of physical states – the Goldstone bosons. In QCD,
Goldstone bosons can be identified with the triplet of π mesons in the limit mu,md → 0,

1 Here and in what follows the same notation is used for functions defined in coordinate and momentum spaces.
2 By the characteristic mass scale we mean the scale at which the interaction in QCD becomes strong.
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ms �= 0 (SU (2) symmetry) and with the octet of pseudoscalar mesons (π, K , η) in the
limit mu,md ,ms → 0 (SU (3) symmetry). The local SU (2)L × SU (2)R symmetry (here
L and R mean left-hand and right-hand quark currents) or SU (3)L × SU (3)R symmetry
of strong interactions makes it possible to construct an effective low energy chiral theory
of Goldstone bosons and their interactions with baryons.

The initial version of the approach was developed before QCD and was called the the-
ory of partial conservation of axial current (PCAC). The effective Lagrangian of this theory
represents the nonlinear interaction of pions with themselves and with nucleons and cor-
responds to the first term in the expansion in powers of momenta in the modern chiral
effective theory. (The review of the PCAC theory at this stage can be found in [1]). When
QCD was developed, it was proved that the appearance of Goldstone bosons is a con-
sequence of spontaneous breaking of chiral symmetry of the QCD vacuum which leads
to vacuum condensates violating the chiral symmetry. It was also established that baryon
masses are expressed through the same vacuum condensates. Nowadays, one can formulate
the chiral effective theory (CET) of hadrons as a succesive expansion of physical observ-
ables in powers of particle momenta and quark (or Goldstone boson) masses not only in
tree approximation, as in PCAC, but also by taking into account loop corrections. (CET is
often called chiral perturbation theory – ChPT.)

In this chapter we present foundations, basic ideas and concepts of CET as well as
their connection with QCD, paying much attention to the general properties of pion
interactions.

2.2 The masses of the light quarks

In what follows, u, d, s quarks will be called light quarks and all other quarks heavy quarks.
The reason is that the masses of light quarks are small compared with the characteristic
mass of strong interaction M ∼ 0.5−1.0 GeV or mρ . The symmetry of strong interactions
is SU (3)L × SU (3)R ×U (1). Its group generators are the charges corresponding to the left
(V − A) and right (V + A) light quark chiral currents and U (1) corresponds to the baryonic
charge current. The experiment shows that the accuracy of SU (3)L × SU (3)R symmetry is
of the same order as that of SU (3) symmetry: the small parameter characterizing the chiral
symmetry violation in strong interactions is generally of order ∼ 1/5−1/10. If we restrict
ourselves to the consideration of u and d quarks and hadrons which are built from them,
then the symmetry of strong interaction is SU (2)L × SU (2)R ×U (1) and its accuracy is of
order (mu + md)/M ∼ 1%, i.e. of the same order as the isospin symmetry violation which
arises from electromagnetic interactions.

The approximate validity of chiral symmetry means that not only divergences of the
vector currents ∂μ jq

μ are zero or small, but also those of the axial currents ∂μ jq
μ5. (Here

q = u, d, s. This statement refers to flavor nonsinglet axial currents. The divergence of the
singlet axial current is determined by the anomaly and is nonzero even for massless quarks
(see Chapter 3). The divergences of nonsinglet axial currents in QCD are proportional to
the quark masses. Therefore the existence of chiral symmetry can be justified if the quark
masses are small [2, 3, 4]. However, the baryon masses are by no means small – the chiral
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symmetry is not realized on the hadronic mass spectrum in a trivial way by vanishing of
all the fermion masses. Chiral symmetry is broken spontaneously and massless particles –
Goldstone bosons – appear in the physical spectrum. These Goldstone bosons belong to a
pseudoscalar octet. They are massless if light quark masses are put to zero. The nonvan-
ishing light quark masses lead to the explicit violation of chiral symmetry and provide the
nonzero masses of the pseudoscalar meson octet. For this reason this octet of Goldstone
bosons plays a special role in QCD.

Heavy quarks are decoupled in the low energy domain (this statement is called the
Appelquist–Carazzone theorem) [5]. We ignore them in this chapter where QCD at low
energies is considered.

The QCD Hamiltonian can be split into two pieces

H = H0 + H1, (2.1)

where

H1 =
∫

d3x
(
muūu + mdd̄d + mss̄s

)
. (2.2)

Evidently, because of vector gluon–quark interaction the first term in the Hamiltonian, H0,
is SU (3)L × SU (3)R invariant and the only source of SU (3)L × SU (3)R violation is H1.
The quark masses mq , q = u, d, s in (2.2), are not renormalization invariant: they are scale
dependent. It is possible to write

mq(M) = Zq(M/μ)mq(μ), (2.3)

where M characterizes the scale, μ is some fixed normalization point and Zq(M/μ) are
renormalization factors. If the light quark masses are small and can be neglected, the
renormalization factors are flavour-independent. This means that the ratios

mq1(M)

mq2(M)
= mq1(μ)

mq2(μ)
(2.4)

are scale-independent and have a definite physical meaning. (This relation holds if M is
greater than the Goldstone mass mK : its validity in the domain M ∼ mK may be doubtful.)
The u, d, s quark masses had been first estimated by Gasser and Leutwyler in 1975 [2] (see
also their review [4]). In 1977, Weinberg [3] using PCAC and the Dashen theorem [6] to
account for electromagnetic self-energies of mesons has proved that the ratios mu/md and
ms/md could be expressed in terms of the K and π meson masses. In order to find the
ratios mu/md and ms/md following Weinberg consider the axial currents

j−μ5 = d̄γμγ5u,

j3
μ5 = [

ūγμγ5u − d̄γμγ5d
]/√

2, (2.5)

j s−
μ5 = s̄γμγ5u, j s0

μ5 = s̄γμγ5d, (2.6)
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and their matrix elements between the vacuum and π or K meson states:

〈0 | j−μ5 | π+〉 = i fπ+ pμ,

〈0 | j3
μ5 | π0〉 = i fπ0 pμ,

〈0 | j s−
μ5 | K +〉 = i fK + pμ,

〈| j s0
μ5 | K 0〉 = i fK 0 pμ, (2.7)

where pμ are π or K momenta. In the limit of exact SU (3) symmetry all constants in the
right-hand sides of (2.7) are equal: fπ+ = fπ0 = fK + = fK 0 , SU (2) – isotopic symmetry
results in equalities fπ+ = fπ0 , fK + = fK 0 . The constants fπ+ ≡ fπ and fK + ≡ fK

are the coupling constants of the decays π+ → μ+ν and K + → μ+ν. Their experimental
values are: fπ = 131 MeV, fK = 160 MeV. The ratio fK / fπ = 1.22 characterizes the
accuracy of SU (3) symmetry. Multiply (2.7) by pμ. Using the equality for the divergence
of the axial current following from the QCD Lagrangian

∂μ
[
q̄1(x)γμγ5q2(x)

] = i(mq1 + mq2)q̄1(x)γ5q2(x), (2.8)

we get

i(mu + md)〈0 | d̄γ5u | π+〉 = fπ+m2
π+ ,

(i/
√

2)
[
(mu + md)〈0 | ūγ5u − d̄γ5d | π0〉 + (mu − md)〈0 | ūγ5u + d̄γ5d | π0〉

]
= fπ0 m2

π0 ,

i(ms + mu)〈0 | s̄γ5u | K +〉 = fK +m2
K + ,

i(ms + md)〈0 | s̄γ5d | K 0〉 = fK 0 m2
K 0 . (2.9)

Neglect electromagnetic (and weak) interactions and assume that isotopic invariance can
be used for the matrix elements on the left-hand side of (2.9). Then

〈0 | ūγ5u + d̄γ5d | π0〉 = 0,

〈0 | d̄γ5u | π+〉 = 1√
2
〈0 | ūγ5u − d̄γ5d | π0〉 (2.10)

and, as follows from (2.9), the π± and π0 masses are equal in this approximation even
when mu �= md . Hence the experimentally observed mass difference �mπ = mπ+ −
mπ0 = 4.6 MeV is caused by the electromagnetic interaction only. The sign of the K
meson mass difference �mK = mK + − mK 0 = −4.0 MeV is opposite to that of the pion
one. The electromagnetic kaon and pion mass differences in QCD or in the quark model
are determined by the same Feynman diagrams and must be, at least, of the same sign. This
means, in accord with (2.9), that md > mu .

Assuming SU (3) invariance of the matrix elements in (2.9) it is easy to get from (2.9)
and (2.10)
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mu

md
= m̃2

π − (m̃2
K 0 − m̃2

K +)

m̃2
π + (m̃2

K 0 − m̃2
K +)

, (2.11)

ms

md
= m̃2

K 0 + m̃2
K + − m̃2

π

m̃2
K 0 − m̃2

K + + m̃2
π

. (2.12)

The tildas in (2.11),(2.12) mean that the pion and kaon masses here are not physical, but
are the masses in the limit when the electromagnetic interaction is switched off. In order
to relate m̃2

π , m̃2
K to physical masses, let us again use SU (3) symmetry. In SU (3) sym-

metry the photon is a U singlet and π+ and K + belong to the U doublet.3 Therefore, the
electromagnetic corrections to m2

π+ and m2
K + are equal

(δm2
π+)el = (δm2

K +)el . (2.13)

It is possible to show, that in the limit m2
π , m2

K → 0, the electromagnetic corrections to
the π0 and K 0 masses tend to zero,

(δm2
π0)el = (δm2

K 0)el = 0. (2.14)

Eqs. (2.13), (2.14) can be rewritten in the form of the Dashen relation [6]

(m2
π+ − m2

π0)el = (m2
K + − m2

K 0)el . (2.15)

From (2.14), (2.15) we have

m̃2
π = m2

π0,

m̃2
K + − m̃2

K 0 = m2
K + − m2

K 0 − (m2
π+ − m2

π0). (2.16)

Substitution of (2.16) into (2.10), (2.11) leads to:

mu

md
= 2m2

π0 − m2
π+ − (m2

K 0 − m2
K +)

m2
K 0 − m2

K + + m2
π+

, (2.17)

ms

md
= m2

K 0 + m2
K + − m2

π0

m2
K 0 − m2

K + + m2
π+
. (2.18)

Numerically, this gives
mu

md
= 0.56,

ms

md
= 20.1. (2.19)

A strong violation of isotopic invariance, as well as the large difference between u, d
and s quark masses, i.e. the violation of SU (3) flavor symmetry, is evident from (2.19).
(A more detailed analysis shows that the results (2.19) are practically independent of the
assumption of SU (3) symmetry of the corresponding matrix elements used in their deriva-
tion.) This seems to be in contradiction with the well-established isospin symmetry of
strong interactions, as well as with the approximate SU (3) symmetry. The resolution of

3 The description of T,U, V subgroups of SU (3) is given, e.g. in [7].
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this puzzle is that the quark masses are small in comparison with the scale M ∼ mρ of
strong interaction: the parameter characterizing isospin violation is (md − mu)/M and the
parameter characterizing the SU (3) symmetry violation is ms/M .

The large ms/md ratio explains the large mass splitting in the pseudoscalar meson octet.
For m2

K +/m2
π+ we have from (2.9) [m̄ = (mu + md)/2]

m2
K +

m2
π+

= ms + m̄

2m̄
= 13 (2.20)

in perfect agreement with experiment. The ratio m2
η/m2

π expressed in terms of quark mass
ratios is also in a good agreement with experiment.

The ratios (2.17), (2.18) were obtained in the first order in quark masses. Therefore, their
accuracy is of order of the SU (3) symmetry accuracy, i.e. about 10–20%.

Gasser and Leutwyler demonstrated that there is a relation valid in the second order in
quark masses [8] (

mu

md

)2

+ 1

Q2

(
ms

md

)2

= 1. (2.21)

Using the Dashen theorem for electromagnetic self-energies of π and K mesons one can
express Q as

Q2
D = (m2

K 0 + m2
K + − m2

π+ + m2
π0)(m

2
K 0 + m2

K + − m2
π+ − m2

π0)

4m2
π0(m

2
K 0 − m2

K + + m2
π+ − m2

π0)
. (2.22)

Numerically Q D is equal to 24.2. However, the Dashen theorem is valid only in the first
order in quark masses. The electromagnetic mass difference of K mesons calculated in
[9] using the Cottingham formula [10] within the framework of the large Nc approach [11]
increased�mK = (MK + −MK 0)e.m. from its Dashen value�mK = 1.27 MeV to�mK =
2.6 MeV and, correspondingly, decreased Q D to Q = 22.0 ± 0.6. The other way to find
Q is from η → π+π−π0 decay, using the chiral effective theory. Unfortunately, the next
two leading corrections are large in this approach [12], which makes the accuracy of the
results uncertain. From the η → π+π−π0 decay data with account of interactions in the
final state it was found that Q = 22.4±0.9 [13], Q = 22.7±0.8 [14] and Q = 22.8±0.4
[15] (the latter from the Dalitz plot). So, the final conclusion is that Q is in the interval
21.5 < Q < 23.5. (See [16] for a review.) The ratio γ = mu/md can also be found from
the ratio of ψ ′ → (J/ψ)η and ψ ′ → (J/ψ)π0 decays [17] . In [17] it was proved that

r = �(ψ ′ → J/ψ + π0)

�(ψ ′ → J/ψ + η) = 3

(
1 − γ
1 + γ

)2(mπ
mη

)4 ( pπ
pη

)3

, (2.23)

where pπ and pη are the pion and η momenta in the ψ ′ rest frame. Eq. (2.23) is valid in
the first order in quark masses. The Particle Data Group [18] gives

rexp = (4.08 ± 0.43) · 10−2. (2.24)
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Assuming the theoretical uncertainty in (2.23) as 30% and adding the theoretical and
experimental errors in quadratures, we get from (2.23)

γ = mu

md
= 0.385 ± 0.060. (2.25)

A value close to (2.25) was found recently in [19]. The substitution of (2.25) into (2.21)
with account of the above-mentioned uncertainty of Q results in

ms

md
= 20.8 ± 1.3. (2.26)

The value (2.25) is slightly less than the lowest-order result (2.19); (2.26) agrees with it.
The values (2.25),(2.26) are in an agreement with lattice calculations [20].

The calculation of absolute values of quark masses is a more subtle problem. As was
mentioned above, the masses are scale dependent. In perturbation theory, their scale
dependence is given by the renormalization group equation (see Chapter 1):

dm(μ)

m(μ)
= −γ [ αs(μ) ]dμ2

μ2
= −

∞∑
r=1

γr ar (μ2)
dμ2

μ2
. (2.27)

In (2.27) a = αs/π, γ1 = 1, γ2 = 91/24, γ3 = 12.42 for 3 flavours in the MS scheme
[21]. In the first order in αs it follows from (2.27) that:

m(Q2)

m(μ2)
=
[
αs(μ

2)

αs(Q2)

]γm

, (2.28)

where γm = −4/9 is the quark mass anomalous dimension. The recent calculations of
ms by QCD sum rules [22], from τ decay data [23, 24] and on lattice [20, 25], are not
in good agreement with one another. The mean value estimated in [18] is: ms(2 GeV) ≈
105 MeV with an accuracy of about 20%. By taking ms(1 GeV)/ms(2 GeV)=1.40 we have
then: ms(1 GeV) ≈ 147 MeV and, according to (2.25), (2.26), md(1 GeV) = 7.1 MeV,
mu(1 GeV) = 2.9 MeV. The light quark mass difference md − mu is equal to md − mu =
4.2 ± 1.0 MeV. This value agrees with that found by QCD sum rules from baryon octet
mass splitting [26] and D and D∗ isospin mass differences [27], md − mu = 3 ± 1 MeV.
For the sum of the quark masses we have mu + md = 10.0 ± 2.5 MeV compared with
mu + md = 12.8 ± 2.5 MeV found in [28]. For completeness the value of mc(mc) is also
presented here (see Chapter 6, Section 6.5.4):

mc(mc) = 1.275 ± 0.015 GeV. (2.29)

2.3 Spontaneous violation of chiral symmetry. Quark condensate

As has been already mentioned, the large value of baryon masses indicate that chiral
symmetry in QCD is violated. Generally, there are two possible mechanisms of chiral
symmetry violation in quantum field theory. In the first (soft) mechanism, the symme-
try is violated by the presence of fermion masses in the Lagrangian. (In the case of
QCD by the presence of quark masses.) In the second mechanism, the chiral symmetry
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is broken spontaneously: the Lagrangian of the theory in chiral symmetric, but the
spectrum of physical states is not. In QCD we deal with spontaneously broken chiral
symmetry.4

In all known examples of field theories, spontaneous violation of global symmetry man-
ifests itself in the modification of the properties of the ground state – the vacuum. Let us
show that such phenomenon takes place also in QCD.

Consider the matrix element

iqμ(mu + md)

∫
d4xeiqx 〈0 | T { j−μ5(x), ū(0)γ5d(0)} | 0〉 (2.30)

in the limit of massless u and d quarks (except for the overall factor mu + md ). Put qμ
inside the integral, integrate by parts, and use conservation of the axial current. Then only
the term with the equal time commutator will remain

−(mu + md)

∫
d4xeiqx 〈0 | δ(x0)[ j−05(x), ū(0)γ5d(0) ] | 0〉

= (mu + md)〈0 | ūu + d̄d | 0〉. (2.31)

Let us go now to the limit qμ → 0 in (2.31) and perform summation over all intermediate
states. The nonvanishing contribution comes only from the one-pion intermediate state
since in this approximation the pion should be considered as massless. This contribution is
equal to

qμ〈0 | j−μ5 | π+〉−1

q2
〈π+ | (mu + md)ūγ5d | 0〉 = − f 2

πm2
π , (2.32)

where (2.7) and (2.9) were substituted when going to the right-hand side. Putting (2.32) in
the left-hand side of (2.31) we get

〈0 | q̄q | 0〉 = −1

2

m2
π f 2
π

mu + md
, (2.33)

where q = u or d and SU (2) invariance of the QCD vacuum was used. Eq. (2.33) is the
Gell-Mann–Oakes–Renner (GMOR) relation [29]. It can be derived also in another way.
Assume the quark masses to be nonzero but small. Then the pion is massive and (2.30)
tends to zero in the limit qμ → 0. However, when we insert qμ inside the integral, a term
with the axial current divergence will appear in addition to the equal time commutator
term (2.31). The account of this term, saturated by the one-pion intermediate state, results
in the same Eq. (2.33). Numerically, with the quark mass values given in Section 2.2,
mu + md = 10.0 ± 2.5 MeV we have

〈0 | q̄q | 0〉 = −(257 MeV)3 = −(1.70 ± 0.42) · 10−2 GeV3. (2.34)

As follows from (2.33), the product (mu + md)〈0 | q̄q | 0〉 is scale independent, while
〈0 | q̄q | 0〉 depends on the scale and the numerical value (2.34) refers to 1 GeV. Eq. (2.33)

4 In principle, the chiral symmetry in baryonic states could be realized in a way that all baryonic states would be
degenerate in parity with a splitting of the order of mu + md . This is evidently not the case.
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is valid in the first order in mu,md ,ms . Therefore its accuracy is of order 20%. (This can
be seen explicitly from the error shown in (2.34)). A more precise value of 〈0 | q̄q | 0〉,
following from the overall fit to the data in framework of QCD, will be given in Chapter 6.
The quantity 〈0 | q̄q | 0〉, called vacuum quark condensate can be also represented as

〈0 | q̄q | 0〉 = 〈0 | q̄LqR + q̄RqL | 0〉, (2.35)

where qL and qR are left and right quark fields qL = (1/2)(1+γ5)q, qR = (1/2)(1−γ5)q.
It is evident from (2.34) that quark condensate violates chiral invariance and its numerical
value (2.34) has a characteristic hadronic scale. The chiral invariance is violated globally,
because 〈0 | q̄q | 0 〉 is noninvariant under global transformations q → eiαγ5q with a
constant α.

In perturbative QCD with massless quarks the quark condensate is zero in any order of
perturbation theory. Therefore, the nonzero and nonsmall value of the quark condensate
may arise only due to nonperturbative effects. The conclusion is that the nonperturbative
field fluctuations which violate the chiral invariance of the Lagrangian are present and
essential in QCD. Quark condensate plays a special role because its lowest dimension:
d equals 3.

2.4 Goldstone theorem

Two arguments were presented in favor of chiral symmetry, approximately valid in QCD
because of small u, d, s quark masses being spontaneously broken. These arguments were:
the existence of large baryon masses and the appearance of a chiral symmetry violating
quark condensate. Let us go to the limit of massless u, d, s quarks and show now that the
direct consequence of each of these arguments is the appearance of massless pseudoscalar
bosons in the hadronic spectrum.

Consider the matrix element of the axial current j+μ5 = ūγμγ5d between neutron and
proton states. The general form of this matrix element is:

〈p | j+μ5 | n〉 = v̄p(p
′)
[
γμγ5 F1(q

2)+ qμγ5 F2(q
2)

]
vn(p), (2.36)

where p and p′ are the neutron and proton momentum, q = p′ − p, vp(p′), vn(p) are
proton and neutron spinors and F1(q2), F2(q2) are formfactors. (Conservation of G parity
was exploited in the derivation of (2.36)). Multiply (2.36) by qμ and go to the limit q2 →0,
but qμ �= 0. After multiplication, the left-hand side of (2.36) vanishes owing to axial cur-
rent conservation. In the right-hand side using the Dirac equations for proton and neutron
spinors, we have:

v̄p(p
′)
[

2mgA + q2 F2(q
2)

]
γ5vn(p), (2.37)

where gA = F1(0) is the neutron β-decay coupling constant, gA = 1.26 and m is the
nucleon mass (assumed to be equal for proton and neutron). The only way to avoid the
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n p

π+

Fig. 2.1. The diagram describes the nucleon–axial current interaction by exchange of an
intermediate pion: the solid line corresponds to the nucleon, the dashed line to the pion,
and the cross means the interaction with external axial current.

discrepancy with the vanishing left-hand side of (2.36) is to assume that F2(q2) has a pole
at q2 = 0:

F2(q
2)q2→0 = −2mgA

1

q2
. (2.38)

The pole in F2(q2) corresponds to the appearance of a massless particle with pion quantum
numbers. Then at small q2 the matrix element in (2.36) has the form of:

〈p | j+μ5 | n〉 = gAv̄p(p
′)
(
δμν − qμqν

q2

)
γνγ5vn(p), (2.39)

where conservation of the axial current is evident. The second term on the right-hand side
of (2.39) describes the interaction of the nucleon with axial current by exchange of an
intermediate pion, when the axial current creates a virtual π+ and then the π+ is absorbed
by the neutron (Fig. 2.1). The low-energy pion–nucleon interaction can be parametrized
phenomenologically by the Lagrangian

LπN N = igπN N v̄Nγ5τ
avNϕ

a, (2.40)

where τ a are the isospin Pauli matrices and gπN N is the πN N coupling constant,
g2
πN N/4π≈14. Using (2.7) and (2.40) the second term in (2.36) can be represented as

− √
2 gπN N fπ v̄pγ5vn

qμ
q2
. (2.41)

Comparison with (2.38) gives the Goldberger–Treiman relation [30]

gπN N fπ = √
2 mgA. (2.42)

Experimentally, the Goldberger–Treiman relation is satisfied with 5% accuracy which
strongly supports the hypothesis of spontaneous chiral symmetry violation in QCD. The
main modification of (2.39) which arises from the nonvanishing pion mass is the replace-
ment of the pion propagator: q2 → q2 − m2

π . Then the contribution of the second term
vanishes at qμ → 0 and becomes very small in the case of neutron β decay.

Since the only assumption in the above discussion was the conservation of the axial
current, it can be generalized to any other component of the isospin 1 axial current if
SU (2) flavour symmetry is assumed, and to any octet axial current in the case of SU (3)
flavour symmetry. In the latter case we come to the conclusion that the octet of pseudoscalar
mesons is massless in the limit of massless u, d, s quarks.
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The massless bosons which arise by spontaneous symmetry breaking are Goldstone
bosons and the theorem which states their appearance is the Goldstone theorem [31] (see
also [32]). The proof of the Goldstone theorem presented above was based on the existence
of massive baryons and on the nonvanishing nucleon β decay constant gA. Before proceed-
ing to another proof based on the existence of quark condensate in QCD, let us formulate
some general features of spontaneously broken theories.

Let the Hamiltonian of the theory under consideration be invariant under some Lie group
G, i.e. let the group generators Qi commute with the Hamiltonian:

[Qi , H ] = 0, i = 1, . . . n. (2.43)

The symmetry is spontaneously broken if the ground state is not invariant under G and a
subset of Ql , l ≤ m, 1 ≤ m ≤ n exists such that

Ql | 0〉 �= 0. (2.44)

Denote: | Bl〉 = Ql | 0〉. As follows from (2.43)

H | Bl〉 = 0 (2.45)

the states | Bl〉 have the same energy as the vacuum. These states may be considered as
massless bosons at rest, i.e. as Goldstone bosons. 5 The operators Q j , j = m + 1, . . . n
generate a subgroup K ⊂ G, since from

Q j | 0〉 = 0 (2.46)

it follows that

[Q j , Q j ′ ] | 0〉 = 0 j, j ′ = m + 1, . . . n. (2.47)

In the case of QCD the group G is SU (3)L × SU (3)R , which is spontaneously broken
to SU (3)V , i.e. to the group, where generators are the octet of vector charges. Ql are the
octet of axial charges and | Bl〉 are the octet of pseudoscalar mesons. (If only u, d quarks
are considered as massless, all said above may be repeated, but relative to the SU (2)L ×
SU (2)R group.)

Strictly speaking, the states | Bl〉 are not well defined, they have an infinite norm. Indeed,

〈Bl | Bl〉 = 〈0 | Ql Ql | 0〉 =
∫

d3x〈0 | jl(x, t)Ql(t) | 0〉, (2.48)

where jl(x) is the charge density operator corresponding to the generator Ql . Extracting
the x dependence of jl(x, t) and using the fact that vacuum and intermediate states in
(2.48) have zero momenta, we have

〈Bl | Bl〉 =
∫

d3x〈0 | jl(0, t)Ql(t) | 0〉 = V 〈0 | jl(0, t) Ql(t) | 0〉, (2.49)

where V is the total volume, V → ∞. Physically, the infinite norm is well understood,
since the massless Goldstone boson with zero momentum is distributed over the whole

5 The statement that Ql are operators of a continuous Lie group is essential: the theorem is not correct for discrete
symmetry generators.
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space. The prescription how to treat the problem is evident: give a small mass to the boson.
In what follows, when the commutators will be considered, the problem can be circum-
vented by performing first the commutation resulting in δ functions, and after that the
integration over the entire three-dimensional space.

Let us demonstrate now explicitely how this general theorem works in QCD. Go back
to Eq. (2.31), which at q = 0 can be rewritten as

〈0 | [Q−
5 , ūγ5d] | 0〉 = −〈0 | ūu + d̄d | 0〉, (2.50)

where

Q−
5 =

∫
d3x j−05(x) (2.51)

is the axial charge generator. It is evident from (2.50) that Q−
5 does not annihilate the vac-

uum, i.e. it belongs to the set of (2.44) generators. It is clear that the same property is
inherent to all members of the octet of axial charges in SU (3) symmetry (or to the isovec-
tor axial charges in SU (2) symmetry). Applying the general considerations of Goldstone,
Salam, and Weinberg [33] to our case, consider the vacuum commutator

〈0 |
[

j−μ5(x), ū(0)γ5d(0)
]

| 0〉 (2.52)

in coordinate space. This expression can be written via the Lehmann–Källen representation

〈0 | [ j−μ5(x), ū(0)γ5d(0)] | 0〉 = ∂

∂xμ

∫
dκ2�(x, κ2)ρ−(κ2), (2.53)

where �(x, κ2) is the Pauli–Jordan (causal) function for a scalar particle with mass κ(
∂2
μ + κ2

)
�(x, κ2) = 0 (2.54)

and ρ−(κ2) is the spectral function, defined by

(2π)−3 pμθ(p0)ρ
−(p2) = −

∑
n

δ4(p − pn)〈0 | j−μ5(0) | n〉〈n | ū(0)γ5d(0) | 0〉. (2.55)

Axial current conservation and (2.54) imply that

κ2ρ−(κ2) = 0, (2.56)

hence

ρ−(κ2) = Nδ(κ2), (2.57)

where N is a constant.
Substitution of (2.57) into (2.53) gives

〈0 |
[

j−μ5(x), ū(0)γ5d(0)
]

| 0〉 = ∂

∂xμ
D(x)N , (2.58)

where D(x) = �(x, 0). Put μ = 0, t = 0, integrate (2.58) over three-dimensional space
and use the equality ∂D(x)/∂t |t=0= −δ3(x). Comparison of this result with (2.31) shows
that N is proportional to the quark condensate and is nonzero. This means that the spectrum
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of physical states contains a massless Goldstone boson which gives a nonzero contribution
to ρ−. Its quantum numbers are those of π+. It is easy to perform a similar calculation
for other members of the pion multiplet in the case of SU (2) symmetry or for the pseu-
doscalar meson octet in the case of SU (3) symmetry. Obviously, the proof can be repeated
for any other operator whose commutator with axial charges has a nonvanishing vacuum
expectation value.

The two proofs presented above cannot be considered to be rigorous like a mathemati-
cal theorem, where the presence of Goldstone bosons in QCD is proved starting from the
QCD Lagrangian and using the first principles of the theory. Indeed, in the first proof the
existence of massive nucleons was taken as an experimental fact. In the second proof,
the appearance of the nonvanishing quark condensate in QCD was exploited. The latter
was proved (see Eqs. (2.30)–(2.32)) based on Ward identities which, as was demonstrated,
became self-consistent only in the case of the existence of massless pions. Therefore,
these proofs may be treated as a convincing physical argument, but not as a mathematical
theorem (cf. [34]).

The two arguments mentioned above in favour of spontaneously broken chiral symme-
try in QCD, namely the existence of large baryon masses and the appearance of a chiral
symmetry violating quark condensate, are deeply interconnected. If it is believed that the
origin of baryon masses in QCD is the spontaneous violation of chiral symmetry in the
QCD vacuum, then one may expect that baryon masses can be expressed through chiral
symmetry violating QCD vacuum condensates. Calculations performed within the frame-
work of QCD sum rules have given support to this idea. Particularly, it was found that the
proton mass is approximately equal to [35] (see Chapter 6)

m p = [−2(2π)2〈0 | q̄q | 0〉 ]1/3. (2.59)

This formula demonstrates the fundamental fact that the appearance of the proton mass is
caused by spontaneous violation of chiral invariance: the presence of the quark condensate.
(Numerically, (2.59) gives the experimental value of the proton mass with an accuracy of
about 15%). A similar formula applies to other baryons; see Chapter 6.

2.5 Chiral effective theory (CET) at low energies

An effective chiral theory based on QCD and exploiting the existence and properties of the
Goldstone bosons can be formulated. This theory is an effective low-energy theory and is
valid in terms of an expansion in powers of particle momenta (or in the derivatives of fields
in coordinate space). The Lagrangian is represented as a series of terms with increasing
powers of momenta. The theory breaks down at sufficiently high momenta, the character-
istic parameters are | pi |/M , where pi are the spatial momenta of the Goldstone bosons
entering the process under consideration and M is the characteristic scale of strong inter-
action. (Since pi depend on the reference frame, some care must be taken when choosing
the most suitable frame in each particular case.) The physical basis of the theory is the fact
that in the limit of vanishing (or small enough) quark masses the spectrum of Goldstone
bosons is separated by the gap from the spectrum of other hadrons. The chiral effective
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theory which works in the domain | pi |/M � 1 is a self-consistent theory and not a phe-
nomenological model. Such theory can be formulated on the basis of SU (2)L × SU (2)R
symmetry with pions as (quasi) Goldstone bosons. Then one may expect the accuracy
of the theory to be of the order of isospin symmetry violation, i.e. of a few percent. Or
the theory can be based on SU (3)L × SU (3)R symmetry with an octet of pseudoscalar
bosons π, K , η as (quasi) Goldstone bosons. In this case the accuracy of the theory is of
the order of SU (3) symmetry violation, i.e. of order ms/M ∼ 10 − 20%. Corrections
of the order of mq/M can be accounted for at the price of introducing additional param-
eters in the theory. For definiteness, the main part of this section deals with the case of
SU (2)L × SU (2)R .

The heuristic arguments for the formulation of the chiral effective theory are the follow-
ing. In the limit of the quark and pion masses going to zero, Eq. (2.7) can be generalized
to the operator form as a field equation

j i
μ5 = −

(
fπ
/√

2
)
∂μϕ

i
π , (2.60)

j i
μ5 = q̄γμγ5(τ

i/2)q, q = u, d, (2.61)

where ϕi
π is the pion field, τ i are the Pauli matrices, and i = 1, 2, 3 is the isospin

index. (Normalization of the current j i
μ5 is changed compared with (2.7) in order to have

the standard commutation relations of current algebra). Taking the divergence of (2.60)
we have

∂μ j i
μ5 =

(
fπ/

√
2
)

m2
πϕ

i
π . (2.62)

Eqs. (2.60) and (2.62) are correct near the pion mass shell.
Since the pion state is separated by a gap from the other massive states in the channel

with pion quantum numbers these equations can be treated as field equations valid in the
low-energy region (usually they are called the equations of partial conservation of axial
current, PCAC).

A direct consequence of (2.62) is the Adler self-consistency condition [36]. Consider the
amplitude of the process A → B + π , where A and B are arbitrary hadronic states, in the
limit of vanishing pion momentum p. The matrix element of this process can be written as

Mi (2π)
4δ4(pA − p − pB) =

∫
d4xeipx (∂2

μ + m2
π )〈B | ϕi

π (x) | A〉. (2.63)

The substitution of (2.62) gives

Mi = i(p2 − m2
π )

( fπ/
√

2)m2
π

pμ〈B | j i
μ5(0) | A〉. (2.64)

Going to the limit pμ → 0 we get

Mi (A → Bπ)p→0 → 0 (2.65)

which is the Adler condition. In deriving (2.65), it was implicitly assumed that the matrix
element 〈B | j i

μ5 | A〉 does not contain pole terms where the axial current interacts with an
external line. Generally, the Adler theorem does not work in such cases.
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The chiral theory is based on the following principles:

1. The pion field transforms under some nonlinear representation of the group G =
SU (2)L × SU (2)R .

2. The action is invariant under these transformations.
3. After breaking the SU (2)L × SU (2)R symmetry reduces to SU (2)V , i.e. to the

symmetry generated by the isovector vector current.
4. In the lowest order the field equations (2.60), (2.62) are fulfilled.

The pion field may be represented by the 2 × 2 unitary matrix U (x), U−1 = U+(x),
that depends on ϕi

π (x). The condition | det U | = 1 is imposed on U (x). Therefore the
number of degrees of freedom of the matrix U is equal to that of three pion fields ϕi

π (x).
The transformation law under the group G transformations is given by

U ′(x) = VLU (x)V +
R , (2.66)

where VL and VR are unitary matrices of SU (2)L and SU (2)R transformations. (2.66)
satisfies the necessary condition that after breaking, when G reduces to SU (2) and VL =
VR = V , the transformation law reduces to

U ′ = V U (x)V −1, (2.67)

i.e. to the transformation induced by the vector current.
It can be shown that the general form of the lowest-order effective Lagrangian, where

only the terms up to p2 are kept and the breaking arising from the pion mass is neglected,
is: [8],[37]–[39]

Lef f = k Tr
(
∂μU · ∂μU+) , (2.68)

where k is some constant.
The conserved vector and axial currents (Noether currents) which correspond to

Lagrangian (2.68) can be found by applying to (2.68) the transformations (2.66) with

VL = VR = 1 + iετ/2 (2.69)

in the case of vector current and

VL = V +
R = 1 + iετ/2 (2.70)

in the case of axial current. (Here ε is an infinitesimal isovector). The results are:

j i
μ = ik Tr

(
τi [∂μU,U+]) ,

j i
μ5 = ik Tr

(
τi {∂μU,U+}) . (2.71)

One may use various realizations of the matrix field U (x) in terms of pionic fields ϕi
π (x).

All of them are equivalent and lead to the same physical consequences [40, 41]. Mathe-
matically, this is provided by the statement that one realization differs from the other by a
unitary (nonlinear) transformation (2.66). One of the useful realizations is

U (x) = exp(iατϕπ (x)), (2.72)
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where α is a constant. Substitution of (2.72) into (2.68) and expansion in powers of the
pion field up to the 4th order gives

Lef f = 2kα2(∂μϕπ )
2 + 2

3
kα4

[
(ϕπ∂μϕπ )

2 − ϕ2
π · (∂μϕπ )

2
]

+ · · · (2.73)

From the requirement that the first term in (2.73), the kinetic energy, has the standard from,
we have

kα2 = 1

4
. (2.74)

Substitution of (2.72) into (2.71) in the first nonvanishing order in the pionic field and
account of (2.74) results in

j i
μ = εikl ϕ

k
π

∂ϕl
π

∂xμ
,

j i
μ5 = −2

√
k
∂ϕi
π

∂xμ
. (2.75)

The formula for the vector current – the first in Eqs. (2.75) – is the standard formula for the
pion isovector current. Comparison of the second equation (2.75) with (2.60) finally fixes
the constant k and, because of (2.74), α

k = 1

8
f 2
π , α =

√
2

fπ
. (2.76)

Therefore, the effective Lagrangian (2.68) as well as U (x) are expressed in terms of one
parameter – the pion decay constant fπ , which plays the role of the coupling constant in
the theory. On dimensional grounds it is then clear that the expansions in powers of the
momenta or in powers of the pion field are in fact the expansions in p2/ f 2

π and ϕ2/ f 2
π .

Particularly, the expansion of the effective Lagrangian (2.73) takes the form of

Lef f = 1

2
(∂μϕπ )

2 + 1

3

1

f 2
π

[
(ϕπ∂μϕπ )

2 − ϕ2
π (∂μϕπ )

2
]

+ · · · (2.77)

Turn now to the symmetry breaking term in the chiral effective theory Lagrangian. This
term is proportional to the quark mass matrix

M =
(

mu 0
0 md

)
. (2.78)

In the QCD Lagrangian, the corresponding term transforms under SU (2)L ×SU (2)R trans-

formations according to the representation
(

1
2 ,

1
2

)
. This statement may be transferred to

chiral theory by the requirement that in chiral theory the mass matrix (2.78) transforms
according to

M′ = VLMV +
R . (2.79)
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The term in the Lagrangian linear in M, of the lowest (zero) order in pion momenta and
invariant under SU (2)L × SU (2)R transformation, has the form of

L ′ = f 2
π

4

{
B Tr (MU+)+ B∗Tr (MU )

}
, (2.80)

where B is a constant and the factor f 2
π is introduced for convenience. Impose the require-

ment of T invariance on the Lagrangian (2.80). The pion field is odd under T -inversion:
T (ϕi

π ) = −ϕi
π , so T U = U+ and as a consequence B = B∗ and

L ′ = f 2
π

4
B Tr [M(U + U∗)]. (2.81)

In the lowest orders of the expansion in the pion field (2.81) reduces to

L ′ = 1

2
B(mu + md)

[
f 2
π − ϕ2

π + 1

6 f 2
π

(ϕ2
π )

2
]
. (2.82)

The first term in square brackets gives a shift in vacuum energy resulting from symmetry
breaking, the second corresponds to the pion mass term (m2

π/2)ϕ
2
π in the Lagrangian. With

this identification we can determine the constant B:

B = m2
π

mu + md
= − 2

f 2
π

〈0 | q̄q | 0〉, (2.83)

where the Gell-Mann–Oakes–Renner relation (2.33) was used. The relation (2.83) can be
obtained also in another way. From the QCD Lagrangian we have

∂

∂mu
〈0 | L | 0〉 = −〈0 | ūu | 0〉. (2.84)

Differentiating (2.82) we get:

1

2
B f 2
π = −〈0 | ūu | 0〉, (2.85)

which coincides with (2.83). (The equality 〈0|ūu|0〉 = 〈0|d̄d|0〉 has been exploited).
As the simplest application of the effective Lagrangians (2.77), (2.82), calculate the

pion–pion scattering amplitude to the first order in 1/ f 2
π . The result is [42]:

T = δikδlm A(s, t, u)+ δilδkm A(t, s, u)+ δimδkl A(u, t, s), (2.86)

where

A(s, t, u) = 2

f 2
π

(s − m2
π ), (2.87)

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2, (2.88)

p1, p2 are the initial and p3, p4 are the final pion momenta. The isospin indices i, k refer
to initial pions, l,m to the final ones. For example, for the π+π0 → π+π0 scattering
amplitude we get [42]

T = 2

f 2
π

(t − m2
π ), (2.89)
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where T is related to the centre of mass scattering amplitude fc.m. by

fc.m. = 1

16π

1

E
T, (2.90)

and E is the energy of π+ in centre of mass system.
Another realization often used instead of (2.72) is

U (x) =
√

2

fπ
[σ(x)+ iτϕπ (x)] (2.91)

supplemented by the constraint

σ 2 + ϕ2 = 1

2
f 2
π . (2.92)

It can be shown by direct calculations that the expressions for effective Lagrangians up to
ϕ4 obtained in this realization coincide with (2.77), (2.82) on the pion mass shell. In higher
orders (ϕ6, ϕ8, etc.) the expressions for effective Lagrangians in these two realizations are
different even on mass shell. But according to the general arguments by Coleman, Wess,
and Zumino [40], the physical amplitudes appear to be equal after adding one-particle
reducible tree diagrams. The realization (2.91) is equivalent to one where the O(4) real
four-vector Ui (x), which satisfies the constrain UiU T

i = 1, i = 1, 2, 3, 4, is used instead
of the 2 × 2 matrix U (x) [39].

The chiral effective Lagrangian (2.68) is the leading term in the expansion in pion
momenta. The next term of order of p4 consistent with Lorentz and chiral invariance,
parity and G parity symmetry has the general form of [39]

L2,e f f = l1
[
Tr (∂μU∂μU+)

]2 + l2 Tr (∂μU∂νU
+) Tr (∂μU∂νU

+), (2.93)

where l1 and l2 are constants. A term of the second order in quark masses should be added
to (2.93). If spatial momenta of pions in the process under consideration are close to zero,
| p |� mπ , the contribution of this term is of the same order as (2.93), since p2 = m2

π ∼
(mu + md). Its general form is [39]

L ′
2,e f f = l4 Tr

(
∂μU∂μU+)Tr [χ(U + U+)] + l6{Tr [χ(U + U+)]}2

+ l7{Tr [iχ(U − U+)]}2, (2.94)

where

χ = 2BM. (2.95)

In order to perform the next-to-leading order calculations in CET it is necessary, besides
the contributions of (2.93), (2.94), to go beyond the tree approximation in the leading order
Lagrangians and to calculate one-loop terms arising from (2.68), (2.81). As can be seen,
the parameter of the expansion is (1/π fπ )2 ∼ (1/500 MeV)2 and, as a rule, small numeri-
cal coefficients also arise. Therefore, the n-loop contribution is suppressed compared with
the leading order tree approximation by the factor [p2/(π fπ )2]n . Loop integrals are diver-
gent and require renormalization. Renormalization can be performed in any scheme which
preserves the symmetry of the theory. This can be dimensional regularization or a method
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where finite imaginary parts of the scattering amplitudes are calculated and the whole
amplitudes are reconstructed using dispersion relations (an example of such calculation is
given below) or any other. The counterterms arising in loop calculations (pole contributions
at d → 4 in dimensional regularization or subtraction constants in the dispersion relation
approach) are absorbed by the coupling constants of the next order effective Lagrangian,
like l1 and l2 in (2.93). Theoretically unknown constants li are determined by comparison
with experimental data.

As a result of loop calculations and of taking account of higher-order terms in the
effective Lagrangian, the coupling constant fπ entering (2.68), (2.81) acquires some con-
tributions and is no longer equal to the physical pion decay constant defined by (2.7). For
this reason, the coupling constant fπ in (2.68), (2.81) should be considered as a bare one,
f 0
π , which will coincide with the physical fπ after taking account of all higher-order cor-

rections. A similar statement refers to the connection between m2
π and mu + md (2.83). If

B is considered to be a constant parameter of the theory, then relation (2.83) is modified
by higher-order terms. Particularly, in next-to-leading order [43]

m2
π = m̃2

π

[
1 + c(μ)

m2
π

f 2
π

+ m2
π

16π2 f 2
π

ln
m2
π

μ2

]
, (2.96)

where

m̃2
π = B(mu + md), (2.97)

μ is the normalization point and c(μ) is the μ-dependent renormalized coupling constant
expressed in terms of li . (The total correction is independent of μ.) The appearance of the
term ∼ m2

π ln m2
π which is nonanalytic in m2

π (or mq ) – the so-called chiral logarithm –
is a specific feature of chiral perturbation theory. The origin of its appearance are infrared
singularities of the corresponding loop integrals. fπ also contains the chiral logarithm [43]:

fπ = f 0
π

[
1 + c1(μ)

m2
π

f 2
π

− m2
π

8π2 f 2
π

ln
m2
π

μ2

]
. (2.98)

Examples of loop calculations are given in Problems 2.1 and 2.2.
Straightforward is the generalization to three massless quarks, i.e. to massless u, d, and

s quarks and an SU (3)L × SU (3)R symmetric Lagrangian. The matrix U (x) is a 3 × 3
unitary matrix, the leading order Lagrangians are of the same form as (2.68), (2.81) with
the obvious difference that the quark mass matrix M is now a 3 × 3 matrix. In the for-
mulae for axial and vector currents (2.61), (2.71), τi should be replaced by Gell-Mann
matrices λn, n = 1, . . . 8, and the same replacement must be done in the exponential
realization of U (x):

U (x) = exp

(
i

√
2

fπ

∑
n

λnϕn(x)

)
, (2.99)

where ϕn(x) is the octet of pseudoscalar meson fields. Because the algebra of λn matrices
differs from that of τi and, particularly, the anticommutator λn, λm does not reduce to δnm ,
there is no linear realization as simple as (2.91) in this case.
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The symmetry breaking Lagrangian (2.81) in the order of ϕ2
n – the mass term in the

pseudoscalar meson Lagrangian – is nondiagonal in meson fields: the effective Lagrangian
contains a term proportional to (mu − md)Aϕ3ϕ8. The presence of this term means that
the eigenstates of the Hamiltonian, π0 and η mesons, are not eigenstates of the Q3 and Q8

generators of SU (3)V : in η there is an admixture of the isospin 1 state (the pion) and in the
pion there is an admixture of an isospin 0 state [44, 45].

In general we can write:

H = 1

2
m̃2
πϕ

2
3 + 1

3
m̃2
ηϕ

2
8 + A(mu − md)ϕ3ϕ8 + kinetic terms. (2.100)

The physical π and η states arise after an orthogonal transformation of the Hamiltonian
(2.100):

| π〉 = cos θ | ϕ3〉 − sin θ | ϕ8〉
| η〉 = sin θ | ϕ3〉 + cos θ | ϕ8〉. (2.101)

It can be shown [44, 8] that the constant A in (2.100) is equal to

A = 1√
3

m2
π

mu + md
(2.102)

and the mixing angle (at small θ ) is given by

θ = 1√
3

m2
π

m2
η − m2

π

mu − md

mu + md
. (2.103)

This result is used in many problems where isospin is violated, e.g. the decay rate ψ ′ →
J/ψπ0 [17] and the amplitude of η → π+π−π0 decay. The isospin violating amplitude
η → π+π−π0 is found to be [46, 12] (Eq. (2.103) was exploited in its derivation):

Tη→π+π−π0 =
√

3

2 f 2
π

mu − md

ms − (mu + md)/2

(
s − 4

3
m2
π

)
, (2.104)

where s = (pη − pπ0)2.
In the three-flavour case, the next-to-leading Lagrangian contains several additional

terms compared with (2.93), (2.94) [8, 38]

L ′
2e f f = l3 Tr

(
∂μU∂μU+∂νU∂νU+)+ l5 Tr

[
∂μU∂μU+χ(U + U+)

]
+ l8 Tr

(
χU+χU+ + Uχ+Uχ+) . (2.105)

In the case of three flavours, a term of different origin proportional to the totally antisym-
metric tensor εμνλσ arises at the order of p4. As was pointed out by Wess and Zumino, [47]
its emergence is due to anomalous Ward identities for vector and axial nonsinglet currents.
Witten [48] has presented the following heuristic argument in favour of this term. The
leading and next-to-leading Lagrangians (2.68), (2.81), (2.93), (2.94), (2.105) are invariant
under discrete symmetries U (x)→ U+(x),U (x, t)→ U (−x, t). According to (2.72) the
former transformation is equivalent to ϕi (x)→ −ϕi (x). In the case of pions, this operation
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coincides with G-parity, but for the octet of pseudoscalar mesons this is not the case. Par-
ticularly, such symmetry forbids the processes K +K − → π+π−π0 and ηπ0 = π+π−π0,
which are allowed in QCD. In QCD, the symmetry under change of sign of pseudoscalar
meson fields is valid only if supplemented by space reflection, i.e. ϕi (−x, t)→ −ϕi (x, t).
Therefore, one may add to the chiral Lagrangian a term which is invariant under the latter
operation, but violates separately x → −x and ϕi (x) → −ϕi (x). Evidently, such term
is proportional to εμνλσ . The general form of the term added to the equation of motion is
unique:

1

8
f 2
πTr

(
−∂2

μU+ + U+∂2
μU · U+)+

λεμνλσTr
{
U+∂μU · U+∂νU · U+∂λU · U+∂σU

} = 0, (2.106)

where λ is a constant. (Other nonleading terms are omitted). Eq. (2.106) is noninvariant
under U+ → U and x → −x separately, but conserves parity. However, (2.106) cannot
be derived from a local Lagrangian in four-dimensional space-time, because the trace of
the second term on the left-hand side of (2.106) vanishes after cyclic permutation. Witten
[48] has shown that the Lagrangian can be represented formally as an integral over some
five-dimensional manifold, where the Lagrangian density is local. The integral over this
manifold reduces to its boundary, which is precisely four-dimensional space-time. In the
first nonvanishing order in meson fields the contribution to the Lagrangian (the so-called
Wess–Zumino term [47]) is equal to: [47]–[49]

�W Z (U ) = n
1

15π2 f 2
π

∫
d4x εμνλσ Tr ( ∂μ ∂ν ∂λ ∂σ ), (2.107)

where  = ∑
λmϕm . The coefficient n in (2.107) is an integer number [48]. This state-

ment follows from the topological properties of mapping of four-dimensional space-time
into SU (3) manifold produced by the field U . It is clear from (2.107) that LW Z = 0 in
the case of two flavours: the only antisymmetric tensor in flavour indices is εikl and it is
impossible to construct from the derivatives of pion fields an expression antisymmetric in
coordinates.

In order to find the value of n, it is instructive to consider the interaction with the electro-
magnetic field. In this case, the Wess–Zumino Lagrangian is supplemented by terms which
form together with (2.107) a gauge-invariant Lagrangian [47]

LW Z (U, Aμ) = LW Z (U )− en
∫

d4x Aμ Jμ + ie2n

24π2

∫
d4xεμνλσ (∂μAν)Aλ

× Tr
[
e2

q(∂σU )U+ + e2
qU+(∂σU )+ eqUeqU+(∂σU )U+] , (2.108)

where

Jμ = 1

48π2
εμνλσ Tr

[
eq(∂νU · U+)(∂λU · U+)(∂σU · U+)

+ eq(U
+∂νU )(U+∂λU )(U+∂σU )

]
, (2.109)
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eq is the matrix of quark charges, eq = diag(2/3,−1/3,−1/3) and e is the proton charge.
The amplitude of π0 → γ γ decay can be found from the last term in (2.108). It is given by

T (π0 → γ γ ) = ne2

48
√

2π2 fπ
εμνλσ F (1)μν F (2)λσ . (2.110)

(F (1)μν and F (2)λσ are the fields of the first and second photon.) On the other hand, the same
amplitude is defined in QCD by anomaly. Consider the anomaly condition [50]–[52] (see
Chapter 3):

∂μ j3
μ5 = α

2π
Nc(e

2
u − e2

d)Fμν F̃μν = α

12π
Ncεμνλσ FμνFλσ , (2.111)

where Nc is the number of colours and eu, ed are u and d quark charges. For the amplitude
T (π0 → γ γ ) we have, using the PCAC condition (2.62):

T (π0 → γ γ ) = e2

48
√

2π2 fπ
Ncεμνλσ F (1)μν F (2)λσ . (2.112)

Eq. (2.110) coincides with (2.112) if n = Nc [48]. The other physically interesting object,
the γπ+π−π0 vertex, is defined by the second term on the right-hand side of (2.108) and
is equal to

�(γπ+π−π0) = −1

3
ie

n

π2
√

2 f 3
π

εμνλσ Aμ∂νπ
+∂λπ−∂σπ0. (2.113)

Again, if n = Nc, then this result agrees with the QCD calculation based on the VAAA
anomaly or with the phenomenological approach where the anomaly was taken for granted
[52]–[55].

2.6 Low-energy sum rules in CET

Using the CET technique important low energy sum rules can be derived which, of course,
are valid also in QCD. The most interesting sum rules, tested by experiment, refer to the
difference of the polarization operators of vector and axial currents. Let us define

�U
μν(q) = i

∫
d4xeiqx 〈0 | T

{
Uμ(x), Uν(0)

+} 0〉
= (qμqν − q2δμν)�

(1)
U (q

2)+ qμqν�
(0)
U (q

2), (2.114)

where

U = V, A, Vμ = uγμd, Aμ = uγμγ5d, (2.115)

Vμ and Aμ are vector and axial quark currents. The imaginary parts of the correlators are
the spectral functions (s = q2):

v1(s)/a1(s) = 2π Im �(1)V/A(s), a0(s) = 2π Im�(0)A (s), (2.116)
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which are measured in τ decay. (The spectral function which is isotopically related to v1 is
measured in e+e− annihilation.) The spin 0 axial spectral function a0(s) which is mainly
saturated by the one pion state will not be of interest to us now.
�
(1)
V (s) and�(1)A (s) are analytical functions of s in the complex s plane with a cut along

the right hand semiaxis, starting from the threshold of the lowest hadronic state: 4m2
π for

�
(1)
V and 9m2

π for �(1)A . Besides the cut, �(1)A (q
2) has a kinematical pole at q2 = 0. This

is a specific feature of QCD and CET which follows from the chiral symmetry in the limit
of massless u, d quarks and its spontaneous violation. In this limit, the axial current is
conserved and the pion is massless. Its contribution to the axial polarization operator is
given by

�A
μν(q)π = f 2

π

(
δμν − qμqν

q2

)
. (2.117)

When the quark masses are taken into account, then in the first order of quark masses, or
equivalently in m2

π , Eq. (2.117) is modified to:

�A
μν(q)π = f 2

π

(
δμν − qμqν

q2 − m2
π

)
. (2.118)

Decompose (2.118) in the tensor structures of (2.114)

�A
μν(q)π = − f 2

π

q2

(
qμqν − δμνq2

)
− m2

π

q2
qμqν

f 2
π

q2 − m2
π

. (2.119)

The pole in �A
1 (q

2) at q2 = 0 is evident.
Let us write a dispersion relation for �V

1 (s) − �A
1 (s). This should be an unsubtracted

dispersion relation, since perturbative terms (besides the small contribution from the mass
squares of the u, d quark) cancel in the difference, and the operator production expansion
(OPE) terms decrease with q2 = s at least as s−2 (the term ∼ mq〈0|q̄q|0〉 in OPE).
We have

�V
1 (s)−�A

1 (s) = 1

2π2

∞∫
0

ds′ v1(s′)− a1(s′)
s′ − s

+ f 2
π

s
. (2.120)

The last term on the right-hand side of (2.120) represents the kinematical pole contribu-
tion. Let us go to s → ∞ in (2.120). Since�V

1 (s)−�A
1 (s)→ s−2 in this limit we get the

sum rule (the first Weinberg sum rule [56]):

1

4π2

∞∫
0

ds[v1(s)− a1(s)] = 1

2
f 2
π . (2.121)

The accuracy of this sum rule is of the order of chiral symmetry violation in QCD, or
next-order terms in CET, i.e. ∼m2

π/M2 (e.g. a subtraction term).
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If the term ∼mq〈0|q̄q|0〉 ∼ f 2
πm2

π in OPE can be neglected, then, performing in (2.120)
the expansion up to 1/s2, we get the second Weinberg sum rule:

∞∫
0

sds[v1(s)− a1(s)] = O(m2
π ). (2.122)

(For other derivations of these sum rules see [57].)
One more sum rule can be derived in CET (in its earlier version PCAC): the Das–

Mathur–Okubo sum rule [58]:

1

4π2

∞∫
0

ds
1

s
[v1(s)− a1(s)] = 1

6
f 2
π 〈r2

π 〉 − FA, (2.123)

where 〈r2
π 〉 is the mean pion electromagnetic radius and FA is the pion axial-vector

formfactor in the decay π− → e−νμγ (in fact, FA is a constant to a high accuracy).
The sum rules (2.121),(2.122),(2.123) were checked by measurements of v1(s)− a1(s)

in τ decay. The upper limit of integrals in sum rules was restricted experimentally by s0 =
m2
τ ≈ 3 GeV2. The comparison of the theory with experiment shows a good coincidence
(∼10%) of the first sum rule. No definite conclusion could be obtained in case of the
second and third sum rules [59].

2.7 The nucleon and pion–nucleon interaction in CET

The general method of treatment of nucleon field in chiral symmetry was formulated by
Weinberg [60] and Callan, Coleman, Wess, and Zumino [40],[41]. (More recent reviews
are in [61],[62].) Since pion-nucleon interaction at soft pion fields is linear in the pion field
and quadratic in nucleon fields it is expected that the nucleon field transforms like a square
root of the pion field. So, let us put

u2(x) = U (x), (2.124)

where U (x) is 2×2 unitary matrix, defined in Section 2.5. The chirally transformed matrix
U ′(x) (2.66) corresponds to u′2 = U ′. Define now the matrix-valued function K by the
following equalities:

VLu = u′K , uV +
R = K +u′. (2.125)

K is a unitary 2 × 2 matrix, K −1 = K +, that depends on VL , VR and U : K =
K (VL , VR,U ). Under SU (2)L × SU (2)R transformations the two-component nucleon
spinor

ψ =
(

p

n

)
(2.126)

transforms as

ψ → ψ ′ = K (VL , VR,U )ψ. (2.127)
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(The explicit form of K for an infinitesimal axial transformation is presented in Prob-
lem 2.3.) The covariant derivative of the nucleon field is given by [61]:

Dμψ = ∂μψ + �μψ, (2.128)

where the connection �μ has the form of

�μ = 1

2

{
u+(∂μ − ieAμQ)u + u(∂μ − ieAμQ)u+} . (2.129)

For generality, the electromagnetic field Aμ is included, Q = diag(1, 0) is the nucleon
charge matrix. It can be shown that in the absence of electromagnetic field, �μ transforms
like a gauge field under chiral transformations:

�′
μ = K�μK + + K∂μK +. (2.130)

Because the nucleon is massive, the expansion parameter in CET in the case of pion–
nucleon interaction is the spatial nucleon momentum p. The effective πN interaction
Lagrangian L(1)πN valid up to the first order of p is given by:

L(1)πN = ψ̄

(
iγμDμ − m + i

2
gAγμγ5uμ

)
ψ, (2.131)

where

uμ = iu+∂μU · u+ = i
(
u+∂μu − u∂μu+) . (2.132)

The last term in (2.131) corresponds to the pion–nucleon interaction through the axial
current, discussed in Section 2.4, Fig. 2.1. The constants m and gA should be considered
as bare nucleon mass and axial coupling constant, which differ from the physical ones
due to CET higher-order corrections. By using U (x) realizations (2.71) or (2.91), the πN
interaction term in (2.131) may be reduced to

L(1)πN ,int = − gA√
2 fπ

ψ̄γμγ5τ∂μϕπψ − 1

2 f 2
π

ψ̄γμτ [ϕπ , ∂μϕπ ]ψ. (2.133)

The second term in (2.133) arises from the term proportional to �μ in Dμψ . Its existence
is one of the important consequences of CET.

Problems

Problem 2.1

Find the nonanalytical correction to pion electric radius proportional to ln m2
π [63],[64].

Solution
The one-loop contribution to the pion formfactor comes from the ππ interaction term in

the Lagrangian given by (2.77) and is equal to

i
1

f 2
π

∫
d4k1d4k2

(2π)4
δ(q + k1 − k2)(k1 + k2)μ

1

k2
1 − m2

π

1

k2
2 − m2

π

(p1 + p2)(k1 + k2). (1)
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Here p1 and p2 are the initial and final pion momenta, q is the momentum transfer, q2 <

0, p1 + q = p2. The integral in (1) can be calculated in the following way. Consider the
integral

i
∫

d4k1d4k2

(2π)4
(k1 + k2)μ(k1 + k2)ν

1

k2
1 − m2

π

1

k2
2 − m2

π

δ4(q + k1 − k2)

= A(q2)
(
δμνq

2 − qμqν
)
. (2)

The form of the right-hand side of (2) (the absence of a subtraction term) follows from
gauge invariance. Calculate the imaginary part of A(q2) at q2 > 0. We have

Im A(q2)(δμνq
2 − qμqν) = − 1

8π2

∫
d4k(2k − q)μ(2k − q)νδ[(q − k)2]

= 1

48π

(
q2δμν − qμqν

)
. (3)

(The pion mass can be neglected in our approximation.) A(q2) is determined by the
following dispersion relation:

A(q2) = 1

π

M2∫
4m2

π

ds

s − q2
Im A(s) = 1

48π2
ln

M2

4m2
π − q2

. (4)

(The subtraction term is omitted, M2 is a cutoff.) Substitution of (2),(3) into (1) gives the
correction to the γππ vertex

(p1 + p2)μ[F(q2)− 1] = (p1 + p2)μ
q2

48π2 f 2
π

ln
M2

4m2
π − q2

, (5)

where F(q2) is the pion formfactor. The pion electric radius is defined by

r2
π = 6

d F(q2)

dq2
(6)

and its part nonanalytical in m2
π is equal to

r2
π = 1

8π2 f 2
π

ln(M2/m2
π ). (7)

Problem 2.2

Find the nonanalytical correction to the quark condensate proportional to m2
π ln m2

π [65].

Solution
Using (2.84) and (2.82) we get

〈0 | ūu | 0〉 = −1

2
f 2
π B

〈
0 | 1 − ϕ2

i

f 2
π

| 0

〉
. (1)
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The vacuum expectation value of ϕ2
i is given by

lim
x→0

〈0 | Tϕi (x), ϕi (0) | 0〉 = 3i

(2π)4
lim
x→0

∫
d4k

eikx

k2 − m2
π

= Am2
π + Cm2

π ln m2
π + · · · (2)

in order to find C differentiate (2) with respect to m2
π . We have

3i

(2π)4

∫
d4k

1

(k2 − m2
π )

2
= − 3π2

(2π)4
ln

M2

m2
π

. (3)

Substitution of (3) into (1) and taking into account of (2.83) gives

〈0 | ūu | 0〉 = 〈0 | ūu | 0〉0

(
1 + 3m2

π

16π2 f 2
π

ln
M2

m2
π

+ Am2
π

)
. (4)

Problem 2.3

Find the π−π scattering lengths in the states with isospin 0 and 2 (S. Weinberg, 1966 [42]).

Answer:

a0 = 7

16π

mπ
f 2
π

; a2 = − 1

8π

mπ
f 2
π

.

Problem 2.4

Find the matrix K given by (2.125) for infinitesimal axial transformation (2.70).

Answer:

K = 1 − i

2
√

2 fπ
[εϕπ ]τ .
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3

Anomalies

3.1 Generalities

The phenomenon of anomaly plays an important role in quantum field theory: in many
cases it determines whether or not a theory is self-consistent and can be realized in
the physical world and, therefore, allows one to select the acceptable physical theories.
In a given theory anomalies are often related to the appearance of new quantum numbers
(topological quantum numbers; see Chapter 4), result in the emergence of mass scales,
determine the spectrum of physical states. So, despite its name, anomalies are a normal
and significant attribute of any quantum field theory.

The term “anomaly” has the following meaning: Let the classical action of the theory
obey some symmetry, i.e. let it be invariant under certain transformations. If this symmetry
is violated by quantum corrections, such a phenomenon is called an “anomaly.” (Reviews
of anomalies are given in [1]–[4].) There are two types of anomalies – internal and exter-
nal. In the first case, the gauge invariance of the classical Lagrangian is destroyed at the
quantum level. The theory becomes nonrenormalizable and cannot be considered as a self-
consistent theory. The standard method to solve this problem is a special choice of fields
in the Lagrangian in such a way as to cancel all internal anomalies. (Such an approach is
used in the standard model of electroweak interaction – the Glashow–Illiopoulos–Maiani
mechanism.) An external anomaly corresponds to violation of symmetry of interaction
with external sources, not related to gauge symmetry of the theory. Such anomalies arise
in QCD and are considered below. There are two kinds of anomalies in QCD: axial (chiral)
anomaly and scale anomaly. Both are connected with singularities of the theory at small
distances (at large momenta) and with the necessity of regularization: a regularization pro-
cedure which respects the symmetry does not exist and hence the symmetry is violated by
the anomaly. In QCD, evidence of anomalies came from perturbation theory but in fact
their occurrence follows from general principles.

3.2 The axial anomaly

The axial anomaly in QCD is very similar to those in massless QED. For this reason let us
first consider the latter. The equations of motion of QED in the external electromagnetic
field Aμ(x) have the form:

82
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iγμ
∂ψ(x)

∂xμ
= mψ(x)− eγμAμ(x)ψ(x). (3.1)

In massless QED, classically, i.e. without account of radiative corrections, the axial current
jμ5(x) is conserved like the vector current,

∂μ jμ5(x) = ∂μ jμ(x) = 0. (3.2)

However, it appears that in quantum theory with account of radiative corrections it is
impossible to keep the conservation of both currents – vector and axial. The origin for this
comes from the singular character of the currents. Vector and axial currents are composite
operators built from local fermion fields and the products of local operators are singular
when their points coincide, as is the case with V and A currents. In order to consider the
problem correctly, define the axial current by placing two fermion fields at distinct points,
separated by a distance ε, and go to the limit ε → 0 in the final result,

jμ5(x, ε) = ψ̄
(

x + ε

2

)
γμγ5 exp

[
ie

x+ε/2∫
x−ε/2

dyαAα(y)

]
ψ

(
x − ε

2

)
. (3.3)

The exponential factor in (3.3) is introduced in order for the operator to be locally gauge
invariant. The divergence of the axial current (3.3) is equal to

∂μ jμ5(x, ε) = 2imψ̄

(
x + ε

2

)
γ5ψ

(
x − ε

2

)
− ieεαψ̄

(
x + ε

2

)
γμγ5ψ

(
x − ε

2

)
Fαμ, (3.4)

where Fαμ is the electromagnetic field strength. In the derivation of (3.3), the equations of
motion (3.1) have been exploited and the first term of the expansion in powers of ε was
retained. For simplicity assume that Fμν = Const. Take the vacuum average of Eq.(3.4).
On the right-hand side of (3.4) the expression for the electron propagator in the external
electromagnetic field can be used (the first term on the right-hand side of Eq.(6.273)).
The vacuum averaging corresponds to taking account of corrections of first order in e2. In
massless QED, the first term on the right-hand side of (3.4) is absent and we get

〈0 | ∂μ jμ5 | 0〉 = e2

4π2
FαμFλσ εβμλσ

εαεβ

ε2
. (3.5)

Since there is no specific direction in space-time the limit ε→ 0 should be taken
symmetrically,

lim
ε→0

εαεβ

ε2
= 1

4
δαβ. (3.6)

Substitution of (3.6) into (3.5) gives

∂μ jμ5 = e2

8π2
Fαβ F̃αβ, (3.7)

where

F̃αβ = 1

2
εαβλσ Fλσ (3.8)
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(a)

q q

k–p′ k+p′ k–pk+p

k k

p′ p′p p

γμ γ5 γμ γ5

γβ γβγα γα

(b)

Fig. 3.1. The diagrams, representing the vacuum expectation value of axial current in the
presence of external electromagnetic field in QED, (a) the direct diagram, (b) the crossing
diagram.

is the dual field strength tensor. In order e2 Eq.(3.7) can be considered as an operator
equation. For this reason the symbol of vacuum averaging is omitted in (3.7). Relation
(3.7) is the Adler–Bell–Jackiw anomaly [5]–[8].

In order to have a better understanding of the origin of the anomaly let us consider the
same problem in momentum space. In QED, the matrix element for the transition of the
axial current with momentum q into two real or virtual photons with momenta p and p′ is
represented by the diagrams of Fig. 3.1. The matrix element is given by

Tμαβ(p, p′) = �μαβ(p, p′)+ �μβα(p′, p), (3.9)

�μαβ(p, p′) = −e2
∫

d4k

(2π)4
T r

[
γμγ5(� k+ � p − m)−1γα(� k − m)−1γβ(� k− � p′ − m)−1

]
.

(3.10)

Consider the divergence of the axial current qμTμαβ(p, p′), q = p+ p′. For qμ�μαβ(p, p′)
we can write (at m = 0):

qμ�μαβ(p, p′) = −e2
∫

d4k

(2π)4
Tr
[
(� p+ � k+ � p′− � k)γ5(� k+ � p)−1γα � k−1γβ(� k− � p′)−1

]
= −e2

∫
d4k

(2π)4
Tr
[
−γ5γα � k−1γβ(� k− � p′)−1 − γ5(� k+ � p)−1γα � k−1γβ

]
(3.11)

Each one of the two terms in square brackets on the right-hand side of (3.11) depends
after integration over k on only one 4-vector – p or p′. Each of these terms should be pro-
portional to the totally antisymmetric unit tensor εαβγβ times the product of two different
vectors. Since we have only one vector at our disposal, the result is zero. This fact seems to
contradict the anomaly relation (3.7). However, we cannot trust this result. The arguments
are the following: The integral (3.10) is linearly divergent. In a linearly divergent integral,
it is illegitimate to shift the integration variable: such shift may result in the appearance
of so-called surface terms. So, if the integration variable k in (3.10), (3.11) were changed
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to k + cp + dp′, where c and d are some numbers, then qμ�μαβ(p, p′) would not be
zero. The other argument against the calculation performed in (3.11) is that Tμαβ(p, p′)
must satisfy the conditions of the conservation of vector current: pαTμαβ(p, p′) = 0,
p′
βTμαβ(p, p′) = 0. The calculations performed using the same integration variable as in

(3.11) show that these conditions are not fullfilled. The question arises whether it is possi-
ble to choose the integration variable in such a way that qμTμαβ = 0 and simultaneously
pαTμαβ = 0, p′

βTμαβ = 0. Following Ref. 8, consider �μαβ , defined by (3.10), where the
integration variable k is shifted by an arbitrary constant vector aλ, kλ → kλ + aλ. We can
write:

�μαβ(p, p′; a) = �μαβ(p, p′)+�μαβ(p, p′, a) (3.12)

�μαβ(p, p′; a) = �μαβ(p, p′)k→k+a − �μαβ(p, p′) (3.13)

where �μαβ(p, p′) is given by (3.10) and, therefore qμ�μαβ(p, p′) = 0 according to
(3.11). �μαβ(p, p′)k→k+a is obtained from (3.10) by substituting kλ → kλ + aλ. The
surface term is �μαβ(p, p′; a), the integral is convergent, and its calculation gives [8]:

�μαβ = − e2

8π2
εμαβγ aγ . (3.14)

Generally, aλ is expressed in terms of two vectors involved in the problem: p and p′,
aλ = (a + b)pλ + bp′

λ. Accounting for the crossing diagram we get:

Tμαβ(p, p′, a) = Tμαβ(p, p′)− e2

8π2
aεμαβγ (pγ − p′

γ ). (3.15)

The matrix element of the divergence of the axial current appears to be equal to

qμTμαβ(p, p′; a) = qμTμαβ(p, p′)+ e2

4π2
aεαβγσ pγ p′

σ . (3.16)

As was demonstrated above, the first term on the right-hand side of (3.16) vanishes in the
limit of massless quarks (the Sutherland–Veltman theorem [9], [10], see also Ref.[8]). As
follows from (3.16), to ensure the conservation of the axial current it is necessary to choose
a = 0. Such choice is just the repetition of the result already obtained in Eq. (3.11). Let us
check now the conservation of the vector current. The direct calculation gives

pαTμαβ(p, p′; a) = e2

4π2
εμαβγ pα p′

γ

(
1 + a

2

)
(3.17)

and a similar expression for p′
βTμαβ(p, p′; a). As follows from (3.17), the conservation

of vector current can be achieved if a = −2. That means that it is impossible to have
simultaneously the conservation of vector and axial currents in massless QED. We are sure
that the vector current is conserved, since otherwise the photon would be massive and all
electrodynamics would be ruined, we must choose a = −2. Substitution of a = −2 in
(3.16) gives back Eq. (3.7).

Note that the first method of deriving the anomaly – namely by using coordinate splitting
in the expression of the axial current – is valid for constant external electromagnetic field
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since Eq.(6.273) corresponds to such a case. The second method of the derivation, based
on consideration of the diagrams of Fig. 3.1 is much more general – it is valid for arbitrary
varying external electromagnetic fields, including the emission of real or virtual photons.
In this case, the anomaly condition has the form of

qμTμαβ(p, p′) =
[

2mG(p, p′)− e2

2π2

]
εαβλσ pλ p′

σ . (3.18)

In (3.18) the term proportional to the electron mass is retained and G(p, p′) is defined by

〈p, εα; p′, ε′β | ψ̄γ5ψ | 0〉 = G(p, p′)εαβλσ pλ p′
σ , (3.19)

where εα, ε′β are photon polarizations.
The proof of the axial anomaly, Eqs. (3.7), (3.18), can be obtained also by other meth-

ods: by dimensional regularization, by Pauli–Villars regularization, or by consideration of
functional integral [11],[12],[13]. In the latter, the axial anomaly arises due to noninvari-
ance of the fermion measure in external gauge field at γ5 transformations in the functional
integral.

Although the axial current is not conserved in massless QED, there does exist a
conserved, gauge-invariant axial charge [5],[7],[8]. Define

j̃μ5 = jμ5 − e2

4π2
F̃μν Aν . (3.20)

The current j̃μ5 is conserved, but is not gauge invariant. However, the axial charge

Q5 =
∫

d3x j̃05(x) (3.21)

is gauge invariant.
The axial anomaly in QED was considered till now to order of e2. It was shown that

there are no corrections to Eq. (3.7) of order e4 [5], [6]. The argument is that at this order
all radiative corrections correspond to the insertion of a photon line inside the triangle
diagrams of Fig. 3.1. If the integration over the photon momentum is carried out after the
integration over the fermion loop, then the fermion loop integral is convergent and there
is no anomaly. [This argument was supported by direct calculation [6]]. In higher orders
of perturbation theory, any insertions of photon lines and fermion loops inside the triangle
diagrams of Fig. 3.1 do not give the corrections to the anomaly [5],[14]. The corrections
to the Adler–Bell–Jackiw anomaly arise from higher-order diagrams like that shown in
Fig. 3.2 [15]. Fig. 3.2 shows the renormalization of the anomaly term in (3.7), (3.18) to
order of e6 [5],[14],[15]. In this order [15]

∂μ jμ5 = α

2π
(Fμν F̃μν)ext

(
1 − 3

4

α2

π2
ln
�2

q2

)
, (3.22)

where � is the ultraviolet cut-off, the axial-vector vertex is renormalized and the axial-
vector current, unlike the vector current, acquires an anomalous dimension.

Turn now to QCD. Here jμ5 can be identified with the current of light quarks. In the case
of interaction with external electromagnetic field, if jμ5 corresponds to the axial current of
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Fig. 3.2. The e6 correction to Adler–Bell–Jackiw anomaly in QED.

one quark flavour with electric charge eq , the anomaly has the form of Eqs. (3.7), (3.18)
with the only difference that the right-hand side is multiplyed by e2

q Nc, where Nc is the
number of colours. In QCD, there is also another possibility that the external fields are
gluon fields. In this case, instead of (3.7) we have:

∂μ jμ5 = αs Nc

4π
Gn
μν G̃n

μν, (3.23)

where Gn
μν is the gluon field strength and G̃n

μν is its dual. Eq. (3.23) can be considered

to be an operator equation and the fields Gn
μν, G̃n

μν can be represented by virtual gluons.
Note, that due to the same argument as in the case of radiative corrections to the anomaly
in QED, the perturbative corrections to (3.23) start from α3

s . Evidently, the flavour octet
axial current

j i
μ5 =

∑
q

ψ̄qγμγ5(λ
i/2)ψq , i = 1, . . . 8 (3.24)

is conserved in QCD. (Here λi are Gell-Mann SU (3) matrices and the sum is performed
over the flavours of light quarks, q = u, d, s.) Neglecting u, d, s quark masses, we have
instead of (3.23):

∂μ j i
μ5 = 0. (3.25)

However, the anomaly persists for the singlet axial current

j (0)μ5 =
∑

q

ψ̄qγμγ5ψq , (3.26)

∂μ j (0)μ5 = 3
αs Nc

4π
Gn
μν G̃n

μν (3.27)

From (3.25), (3.27), it follows that because of spontaneous chiral symmetry break-
ing the octet of pseudoscalar mesons (π, K , η) is massless: in the approximation of
mq → 0, they are Goldstown bosons, while the singlet pseudoscalar meson η′ remains
massive. Therefore, the occurrence of the anomaly solves the so-called U (1) problem [16].
(A detailed exposition of this statement is given in [17], see also [18],[19] for reviews.)
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Return now to QED and consider the matrix element of the transition of the axial cur-
rent into two real or virtual photons, i.e. the function Tμαβ(p, p′) (3.9), described by the
diagrams of Fig. 3.1, where the internal lines correspond to electron propagators. The gen-
eral expression for Tμαβ(p, p′), which satisfyes the Bose symmetry of two photons, reads
[5],[7],[20]:

Tμαβ(p, p′) = A1(p, p′)Sμαβ − A1(p
′, p)S′

μαβ + A2(p, p′)pβ Rμα

− A2(p
′, p)p′

αRμβ + A3(p, p′)p′
β Rμα − A3(p

′, p)pαRμβ, (3.28)

where

Rμν = εμνρσ pρ p′
σ , Sμαβ = εμαβσ pσ , S′

μαβ = εμαβσ p′
σ . (3.29)

Vector current conservation leads to

A1(p, p′) = (pp′)A2(p, p′)+ p′2 A3(p, p′)

A1(p
′, p) = (pp′)A2(p

′, p)+ p2 A3(p
′, p) (3.30)

Using the identity

δαβεσμντ − δασ εβμντ + δαμεβσντ − δανεβσμν + δατ εβσμν = 0, (3.31)

we derive

pσ Rμν − pμRσν + pνRσμ + (pp′)Sσμν − p2S′
σμν = 0

p′
σ Rμν − p′

μRσν + p′
νRσμ + (pp′)S′

σμν + p′2Sσμν = 0. (3.32)

The Lorentz structures Sσμν and S′
σμν are retained in (3.28) in order to avoid kinemati-

cal singularities [20]. Let us put p2 = p′2 ≤ 0. Using (3.30) and the identities (3.32),
Tμαβ(q, p, p′) can be expressed in terms of two functions: F1(q2, p2) and F2(q2, p2)

[21], [22]:

Tμαβ(p, p′) = F1(q
2, p2)qμεαβρσ pρ p′

σ

− 1

2
F2(q

2, p2)

[
εμαβσ (p − p′)σ − pα

p2
εμβρσ pρ p′

σ + p′
β

p2
εμαρσ pρ p′

σ

]
.

(3.33)

If p2 �= 0, then the formfactors F1(q2, p2) = −A2 and F2(q2, p2) = 2A1 are free of
kinematical singularities [22]. Consider now the divergence

qμTμαβ(p, p′) = [ F2(q
2, p2)+ q2 F1(q

2, p2) ]εαβρσ pρ p′
σ . (3.34)

Substitution on the left-hand side of (3.34) of the anomaly condition (3.18) gives the
following sum rule [21]:

F2(q
2, p2)+ q2 F1(q

2, p2) = 2mG(q2, p2)− e2

2π2
. (3.35)
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The functions F1(q2, p2), F2(q2, p2) and G(q2, p2) can be represented by unsubtracted
dispersion relations in q2:

fi (q
2, p2) = 1

π

∞∫
4m2

Im fi (t, p2)

t − q2
dt, fi = F1, F2,G. (3.36)

(The direct calculations [21], [23] show that Im fi (q2, p2) are decreasing at q2 → ∞. The
result of the calculation of Im F1(q2, p2) is presented in Problem 3.1.) For the imaginary
parts of F1, F2,G, we have the relation:

ImF2(q
2, p2)+ q2ImF1(q

2, p2) = 2mImG(q2, p2). (3.37)

From (3.35)–(3.37) we get the following sum rule:

∞∫
4m2

ImF1(t, p2)dt = e2

2π
. (3.38)

The sum rule (3.38) has been verified explicitly by Frishman et al. [23] for p2 < 0,m = 0,
by Hořejši [21] at p2 = p′2 < 0, m2 �= 0, and by Veretin and Teryaev [24] in the general
case of p2 �= p′2,m2 �= 0.

Consider now the transition of axial current into two real photons in QCD with one
flavour of unit charge. Instead of (3.38), we have

∞∫
4m2

q

ImF1(t, 0)dt = 2αNc. (3.39)

F2(q2, p2) should vanish at p2 ⇒ 0 in order for Tμαβ(p, p′) to have no pole there, which
would correspond to a massless hadronic state in channel J PC = 1−−. In the limit of
massless quarks, mq = 0, the right-hand side of (3.35) is given by the anomaly and in
QCD we have

F1(q
2, 0)|m2

q=0 = −2αNc

π

1

q2
, (3.40)

Tμαβ(p, p′) = −2α

π
Nc

qμ
q2
εαβλσ pλ p′

σ . (3.41)

The imaginary part of F1(q2, 0) at m2
q = 0 is proportional to δ(q2) [25]:

Im F1(q
2, 0)m2

q=0 = 2αNcδ(q
2) (3.42)

and the sum rule (3.39) is saturated by the contribution of a zero-mass state. It is interesting
to look how the limit m2

q → 0, q2 → 0 proceeds. At mq �= 0, Im F1(q2, 0) is equal to [25]

Im F1(q
2, 0) = 4αNc

m2

q4
ln

1 +
√

1 − 4m2
q/q

2

1 −
√

1 − 4m2
q/q

2
(3.43)
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p

q

p′

γ γ

π°

Fig. 3.3. The diagram describing the transition of isovector axial current (marked by cross)
into two photons through virtual π0.

and in the limit m2
q → 0, q2 → 0 indeed we get (3.42). The most interesting case is when

the current jμ5 is equal to the third component of the isovector current

j (3)μ5 = ūγμγ5u − d̄γμγ5d. (3.44)

Then at p2 = p′2 = 0,m2
u = m2

d = 0 [25]:

Tμαβ(p, p′) = −2α

π
Nc

qμ
q2
(e2

u − e2
d)εαβλσ pλ p′

σ . (3.45)

The amplitude Tμαβ (3.45) corresponds to the transition of isovector axial current into two
photons. Eq. (3.45) is consistent with the fact that the transition proceeds through virtual π0

and π0 is massless at mq = 0 (the pole in the amplitude at q2 = 0) [25]. Then the process

is described by a diagram such as Fig. 3.3. The use of relation 〈0 | j (3)μ5 | π0〉 = √
2i fπqμ

determines the amplitude of π0 → 2γ decay:

M(π0 → 2γ ) = Aεαβλσ ε1αε2β p1λ p2σ , (3.46)

where ε1α and ε2β are the photon polarization vectors. From (3.45), the constant A is found
to be

A = 2α

π

1√
2 fπ

(3.47)

and the π0 → 2γ decay rate is equal to

�(π0 → 2γ ) = α2

32π3

m3
π

f 2
π

. (3.48)

Substitution of the π0 mass from the Particle Data Tables [26] and fπ0 = fπ+ = 130.7 MeV
into Eq.(3.48) gives the theoretical value of the π0 → 2γ decay width �(π0 → 2γ )theor =
7.73 eV in good agreement with the experimental value �(π0 → 2γ )exp = 7.8 + 0.6 eV
[26]. The accuracy of the theoretical value (3.48) is 5–7%. But one can achieve a better
accuracy of the theoretical prediction. To do this it is necessary: (1) to put fπ0 instead of
fπ+ in (3.48), and (2) to account for the contribution of excited states, besides π0, to the
isovector current to the sum rule (3.39). With the help of the QCD sum rules it was shown
in Ref. [27] that the difference � fπ = fπ0 − fπ+ is very small: � fπ/ fπ ≈ −1.0 · 10−3

and can be safely neglected. Among the exited states, the only significant contribution
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comes from the η meson because of η − π0 mixing. Using the η − π0 mixing angle
given by (2.103) and the experimental value of �(η → 2γ ) = 510 eV [26] results in
�(π0 → 2γ )theor = 7.93 eV ± 1.5% [27]. Theoretical predictions of �(π0 → 2γ ) which
agree with this value and have the same accuracy were also obtained within the framework
of chiral effective theory (CET) and 1/Nc expansion [28]. The recent experiment by the
PriMeX Collaboration [29] gave �(π0 → 2γ )exp = 7.93eV ± 2.1% ± 2.0%.

Despite the fact that the axial anomaly results in the appearance of a massless π0 in
the transition of isovector axial current into two photons and well predicts the π0 decay
rate, it is incorrect to say that the existence of massless pseudoscalar Goldstone bosons (at
mq = 0) are caused by the anomaly. The reasons are the following: Im F1(q2, p2) has a
δ(q2) singularity at p2 = 0. According to the CET, it is expected that the same singularity
will persist in the case of p2 �= 0 – the diagram of Fig. 3.3 contributes in this case as well.
However, examination of Im F1(q2, p2) (see Problem 3.1) shows that ImF1(q2, p2) is a
regular function of q2 near q2 = 0 at p2 �= 0 which tends to a constant at q2 → 0. The sum
rules (3.38), (3.39) are satisfied by the triangle diagram contribution at p2 �= 0. The integral
sum rules (3.38), (3.39) are valid, but local relation, like (3.40), is not. (It is assumed that
| p2 | is less than the characteristic CET mass scale.) Therefore, by considering the case
p2 �= 0, we have come to the conclusion that the existence of massless π0 mesons cannot
be attributed to the axial anomaly.

Consider now the transition of the eighth component of the octet axial current

j (8)μ5 = 1√
6
(ūγμγ5u + d̄γμγ5d − 2s̄γμγ5s) (3.49)

into two real photons at mu = md = ms = 0. The amplitude F1(q2, 0) has a pole at
q2 = 0, which can be attributed to the η meson. The η → 2γ decay width is given by a
relation analogous to (3.48):

�(η → 2γ ) = α2

32π3

1

3

m3
η

f 2
η

. (3.50)

However, (3.50) strongly disagrees with experiment: �(η → 2γ )theor = 0.13 keV (at
fη = 150 MeV) compared with �(η → 2γ )exp = 0.510 ± 0.026 keV [26]. A possi-
ble explanation of this discrepancy is the effect of strong nonperturbative interactions like
instantons (see Section 6.6.3), which persist in the pseudoscalar channel. The ηη′ mix-
ing significantly increases �(η → 2γ ). Another discrepancy arises if we consider the
transition j (0)μ5 → 2γ , where j (0)μ5 is the singlet axial current:

j (0)μ5 = 1√
3
(ūγμγ5u + d̄γμγ5d + s̄γμγ5s). (3.51)

Since at mu = md = ms = 0 there are poles at q2 = 0 in F1(q2, 0) for each quark
flavour, the transition amplitude T (0)μαβ(q, p, p′) has a pole at q2 = 0. The corresponding
pseudoscalar meson is η′. But η′ is not a Goldstone boson – it is massive! A possible
explanation is the important role of instantons in η′ → 2γ decay [30] and that in QCD
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the contribution of a diagram similar to Fig. 3.2 (with virtual gluons instead of virtual
photons) and maybe a ladder (or parquet) of box diagrams is of importance here [24].
(We do not touch the theoretical determination of η → 2γ and η′ → 2γ decay rates
by using additional hypotheses, besides the anomaly condition; see [31] and references
therein.)

Turn now back to Eqs. (3.38),(3.39). These equations are equivalent to anomaly
conditions. The integrals on the left-hand side of these equations are convergent.
(Im F1(q2, p2)q2→∞ ∼ 1/q4; see Problem 3.1.) This means that with such interpreta-
tion the anomaly arises from a finite domain of q2. Eq. (3.38) can be rewritten in another
form [24]:

lim
q2→∞

q2πF1(q
2, p2) = e2

2π
. (3.52)

This form returns us to the initial interpretation of the anomaly as corresponding to the
domain of infinitely large q2. So, it is possible to speak about the dual face of the anomaly:
from one point of view, it corresponds to large q2; from the other, its origin is connected
with finite q2. As is clear from the discussion above, both points of view are correct. These
two possibilities of interpretation of the anomaly are interconnected by analyticity of the
corresponding amplitudes.

’t Hooft suggested the hypothesis that the singularities of amplitudes calculated in
QCD on the level of quarks and gluons shall be reproduced on the level of hadrons (the
so-called ’t Hooft consistency condition [32]). Of course, if it were possible to prove
that such singularity will not disappear after taking account of perturbative and nonper-
turtbative corrections, then this statement would be correct and moreover it would be
trivial. But, as a rule, no such proof can be given. In examples of the realization of
axial anomaly presented above (with the exception of π0 → 2γ decay) the ’t Hooft
conjecture was not realized. Much better chances are for the duality conditions, such as
Eq.(3.39), when the QCD amplitude integrated over some duality interval gives the same
result as the corresponding hadronic amplitude integrated over the same duality interval
(the so-called quark-hadron duality). Many examples of such dualities are considered in
Chapter 6.

In QCD, the case when one of the photons in Fig. 3.1 is soft is of special interest [33].
If the momentum of the soft photon is p′

β and its polarization is ε′β , then, restricting our-
selves to the terms linear in p′

β , the amplitude Tμαβε′β can be represented in terms of two
structure functions:

Tμαβε
′
β = wT (q

2)(−q2 f̃αμ + qαqσ f̃σμ − qμqσ f̃σα)

+ wL(q
2)qμqσ f̃σα, (3.53)

where

f̃μν = 1

2
εμνλσ (p

′
λε

′
σ − p′

σ ε
′
λ). (3.54)

The first structure is transverse with respect to the axial current momentum qμ, while the
second one is longitudinal. From the triangle diagram, the relation [24],[34]
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wL(q
2) = 2wT (q

2) (3.55)

follows. For massless quarks, the anomaly condition gives

wL(q
2) = 2

α

π
Nc

1

q2
. (3.56)

Because of (3.55) this condition determines also the transverse structure function. Accord-
ing to the Adler–Bardeen nonrenormalization theorem, there are no perturbative correc-
tions to the triangle diagram. But, as was demonstrated in [33], there are nonperturbative
corrections which at large q2 can be expressed through the OPE series in terms of vacuum
condensates induced by external electromagnetic field.

3.3 The axial anomaly and the scattering of polarized electron (muon)
on polarized gluon

Consider the scattering of longitudinally polarized electrons (muons) on longitudinally
polarized gluons. The first moment of the forward scattering amplitude is proportional to
the diagonal matrix element (see Chapter 7)

〈gpolar | jμ5 | gpolar 〉, (3.57)

where the gluons are on mass shell. The corresponding Feynman diagrams are the same
as in Fig. 3.1 with the only difference that the wavy lines represent now the polarized
gluons and the lower vertices are the vertices of quark–gluon interaction. Put q = 0, p =
−p′, p2 < 0. It is convenient to use light-cone kinematics where p0 = p+ + p−/2,
pz = p+ − p−/2, p2 = 2p+ p− < 0, and to work in an infinite momentum frame moving
along the z direction. The matrix element is given by:

�μ(p) = 2ig2 N f Tr

(
λn

2

)2 ∫ d4k

(2π)4
Tr{ � ε∗(� k + m)γμγ5(� k + m) � ε(− � p+ � k + m) }

× 1

(k2 − m2 + iε)2
1

[(p − k)2 − m2 + iε] . (3.58)

Here, N f is the number of flavours, λn, n = 1, . . . 8, are the Gell-Mann SU (3) matrices in
colour space, m is the quark mass, assumed to be equal for all flavours, and εμ is the gluon
polarization vector,

εμ = 1√
2
(0, 1, i, 0) (3.59)

for gluon helicity +1. The contribution of the crossing diagram Fig. 3.1b is equal to the
direct one and is accounted for in (3.58) by the factor of 2. The evaluation of (3.58) is
performed using dimensional regularization in n �= 4 dimensions. According to the ’t
Hooft–Veltman recipe (see, e.g.[2] and Chapter 1) it is assumed that γ5 is anticommuting
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with γμ for μ = 0, 1, 2, 3, and is commuting with γμ for μ �= 0, 1, 2, 3. After integration
over k−, one has for the component �5+ [35]:

�5+ = −αs N f p+
π2

1∫
0

dx
∫

dn−2kT

[k2
T + m2 + P2x(1 − x)]2

{
k2

T (1 − 2x)− m2

−2

(
n − 4

n − 2

)
k2

T (1 − x)

}
, (3.60)

where P2 = −p2. In the integration over k− it is enough to take the residue at the pole of
the last propagator in (3.58), which results in the integration domain in k+: 0 < k+ < p+,
and allows k+ = xp+. The last term in (3.60) comes from the n − 4 regulator dimen-
sions and is proportional to k̂2, where k̂ is the projection of k into these dimensions. The
azimuthal average gives k̂2 = k2

T (n − 4)/(n − 2).
The first term in curly brackets in (3.60) vanishes after integration over x . (In fact, the

result after integration over x , which is equal to zero, is multiplyed by the divergent integral
over kT . So, strictly speaking, this term is uncertain. This problem will be discussed later.)
After integration over kT , using the rules of dimensional regularization and going to n = 4,
we get [35]:

�5+ = −αs N f p+
π

⎧⎨⎩1 −
1∫

0

2m2(1 − x)dx

m2 + P2x(1 − x)

⎫⎬⎭ . (3.61)

The first term on the right-hand side of (3.61) arises from the last term in (3.60) and is of
ultraviolet origin. As was stressed by Gribov [36] and in Ref. [35], it cannot be attributed
to any definite set of quark–gluon configurations and is a result of collective effects in
the QCD vacuum. In other words, this term can be considered as a local probe of gluon
helicity.

The magnitude of �5+ strongly depends on the ratio m2/P2. At m2/P2 � 1

�5+ = −αs N f p+
π

. (3.62)

In the opposite case, m2/P2 � 1, the second term on the right-hand side of (3.61) almost
entirely cancels the first one and we get approximately

�5+ ≈ 0. (3.63)

The real physical situation corresponds to the first case. Gluons do not exist as free par-
ticles; they are confined in hadrons and their virtualities are of the order of the inverse
confinement radius squared, P2 ∼ R−2

c � m2.
Turn now to a more detailed discussion of the contribution of the first term in the curly

brackets in (3.60). At fixed kT , this contribution is zero because of the integration over x :
the denominator is symmetric under the interchange x ↔ (1 − x), while the numerator
is antisymmetric under such interchange. For the same reason, the contribution of this
term vanishes under dimensional regularization at n �= 4. However, the domain of low
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k2
T ≤ P2 contributes to the integral over k2

T here. In this domain, we cannot be sure that
the first term of the integrand in (3.60) has the same form as is presented there. If its form
is different – we know nothing about it – and if it is not symmetric under interchange
x → (1 − x), then a nonvanishing infrared contribution to �5+ can arise from this term
[22]. Consider the simple model with infrared cut-off in k2⊥,

k2
T > M2(x, P2), (3.64)

where M2(x, P2) is some function of x, P2. In the first term of (3.60), the integral over
k2

T can be written as an integral between the limits (0,∞) which vanishes after integration
over x , as before, minus the integral between the limits (0,M2). Then, neglecting the term
proportional to m2, we get instead of (3.62) the following result [22]:

�5+ = −αs N f p+
π

⎧⎨⎩1 −
1∫

0

dx(1 − 2x)[ln r(x)− r(x)]
⎫⎬⎭ , (3.65)

where

r(x) = x(1 − x)P2

x(1 − x)P2 + M2(x, P2)
. (3.66)

Eq. (3.65) demonstrates that the matrix element 〈gpolar | jμ5 | gpolar 〉 is not entirely
saturated by the ultraviolet domain connected with the anomaly, but can get a contribution
from the infrared region.

Note that in the parton model �5+ is related to the part of hadron spin carried by gluons
in the polarized hadron:

(�gh
1 )gl =

1∫
0

gh
1,gl(x)dx = (�5+/2p+)[ ggl+ − ggl− ]. (3.67)

Here, ggl+ and ggl− are the numbers of gluons in the hadron with helicities +1 and −1,
respectively, gh

1,gl(x) is the contribution of gluons to the structure function gh
1 (x). For

polarized protons it was found [37],[38],[39]

(�g1)gl = −αs N f

2π
(ggl+ − ggl−). (3.68)

This relation will be exploited in Chapter 7.

3.4 The scale anomaly

The classical massless field theory with dimensionless coupling constants is scale invariant.
In such theory, the energy dependence of any physical observable is determined by its
dimension,

F(E, pa, pb, . . .) = EdF f

(
pa

E
,

pb

E
, . . .

)
, (3.69)
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where dF is the dimension of F (in energy units) and f is a dimensionless function of the
ratios pa/E, pb/E, . . .. In quantum theory, scale invariance is violated because of ultra-
violet divergences, which necessitates the introduction of a normalization point μ and the
appearance of μ-dependent running coupling constants. Traces of the scale invariance of
the classical theory still persist in quantum theory and, since the source of scale violation
is known, definite predictions can be made.

Consider first the scale transformations in classical theory. Perform an infinitesimal shift
of the coordinates:

x ′
μ = xμ + ξμ. (3.70)

The invariance of the theory under such transformation results in the conservation of the
energy-momentum tensor !μν (the Noether theorem). In order to derive this conservation
law from a minimum action principle, it is convenient to introduce formally the metric
tensor gμν(x) into the action, as is done in general relativity theory. This method allows
one to get directly a symmetrical energy-momentum tensor. The variation of gμν(x) under
the transformation (3.70) is given by [40]:

g′
μν(x

′) = gμν(x)+ gμλ
∂ξν

∂xλ
+ gνσ

∂ξμ

∂xσ
(3.71)

(In our approach there is no need to distinguish the co- and contravariant coordinates.) In
the Classical Field Theory by Landau and Lifshitz [40], it is shown that the variation of the
action under the transformation (3.70), (3.71) is given by

δS =
∫
∂!μν

∂xν
ξμ

√
gd", (3.72)

where the integration is performed over the entire four-dimensional space-time and the
energy-momentum tensor is defined by

1

2
√

g!μν = ∂

∂xλ

∂
√

gL

∂(
∂gμν
∂xλ
)

− ∂
√

gL

∂gμν
. (3.73)

Since the shift of coordinates does not change the action, δS = 0. Because ξμ is arbitrary,

∂!μν

∂xν
= 0. (3.74)

This is the energy-momentum conservation law. Evidently, !μν defined by (3.73) is sym-
metric: !μν = !νμ. The scale (dilatation) transformation corresponds to a special case
of (3.70):

ξμ = αxμ. (3.75)

Substituting (3.75) into (3.72) and integrating by parts (for
√

g =Const), we have

δS = −α
∫
!μμ

√
gd". (3.76)

Let us define the dilatation current as

Dμ = !μνxν . (3.77)
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As follows from (3.74),
∂Dμ
∂xμ

= !μμ (3.78)

and the dilatation current is conserved if

!μμ = 0. (3.79)

According to (3.76), this condition provides the scale invariance of the theory.
In QCD we have

!μν = −Gn
μλGn

νλ+
1

4
δμνGn

λσGn
λσ+

i

4

∑
q

{ψ̄q(γμ∇ν+γν∇μ)ψq−ψ̄q(γμ
←−∇ ν+γν←−∇ μ)ψq}

(3.80)
and

!μμ =
∑

q

mq ψ̄qψq . (3.81)

As is seen from (3.81), the massless QCD (or QED) is scale invariant on the level of
classical theory.

Turn now to quantum theory and consider the properties of the dilatation current Dμ
(3.77) as a quantum field operator [3],[41]. The dilatation charge is given by

D(t) =
∫

D0(x)d
3x = t H + D̃(t), D̃(t) =

∫
!oi xi d

3x . (3.82)

Introduce the spatial component operators of the total momentum

Pi =
∫
!0i (x)d

3x . (3.83)

For any operator A(t, x) we have

[ Pi , A(t, x) ] = i
∂

∂xi
A(t, x); A(t, x) = ei Pi xi A(t, O)e−i Pi xi , (3.84)

and

[ D̃, Pi ] = i Pi . (3.85)

Let O(x) be an arbitrary colourless operator. Then, according to (3.82)

[ D, O(x) ] = −i t
∂

∂t
O(x)+ [ D̃, O(x) ] (3.86)

Using (3.84) it can be shown [3] that

[ D̃, O(x) ] = −i xi
∂

∂xi
O(x)+ ei Pi xi [ D̃, O(t, O) ]e−i Pi xi . (3.87)

The commutator in the last term of (3.87) is proportional to O(t, O) and we have

[ D, O(x) ] = −i

[
xμ

∂

∂xμ
+ dO

]
O(x). (3.88)
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(For gauge-noninvariant operators O(x) additional gauge-dependent terms can appear on
the right-hand side of (3.88).) The values of dO depends on the type of the operator O(x).
By considering the examples of free theories it is easy to see that d = 1 for boson fields ϕ
and d = 3/2 for fermion fields ψ .

Let us determine now the divergence of the dilatation current, equal to!μμ, in massless
QCD in quantum field theory [42],[43],[44]. Using (3.76) we can write

∂μDμ = !μμ = −∂L

∂α
= −∂g2

∂α

∂L

∂g2
, (3.89)

where L is the QCD Lagrangian and g is the QCD running coupling constant. Redefine the
gauge field in QCD: g Aμ = Āμ. In QCD with Lagrangian expressed in terms of Āμ, g2

appears only in front of the terms proportional to Ḡ2:

L = −1

4

1

g2
Ḡn
μν Ḡn

μν + . . . (3.90)

The dependence of g2 on α is given by the renormalization group equation:

1

2

∂g2

∂α
= β(αs), β(αs) = bα2

s + . . . , (3.91)

where β(αs) is the Gell-Mann-Low β-function, b = 11 − (2/3)N f = 9 for N f = 3. Let
us take the vacuum expectation value of (3.89), i.e. consider G2

μν as the mean gluon field
in the QCD vacuum. Substitution of (3.90) and (3.91) in (3.89) gives:

〈0 | !μμ | 0〉 = −1

8
β(αs)

1

α2
s
〈0 | Ḡ2

μν | 0〉 = −π
2
β(αs)

1

αs
〈0 | G2

μν | 0〉. (3.92)

In one-loop approximation (3.92) reduces to:

〈0 | !μμ | 0〉 = −1

8
b
〈
0 | αs

π
G2
μν | 0

〉
. (3.93)

Since there is no preferential direction in the vacuum, the general form of 〈0 | !μν | 0〉 is:

〈0 | !μν | 0〉 = εvδμν, (3.94)

where εv is the energy density of the vacuum. It is reasonable to perform the renormal-
ization and subtract the (infinite) perturbative contribution to the vacuum energy. (More
precisely – see Section 6.1 of Chapter 6 – the normalization point μ in momentum
space should be introduced. The perturbative contributions from vacuum fluctuations with
momenta p > μ should be subtracted, the fluctuations with momenta p < μ are included
into the nonperturbative part.) Then εv has the meaning of vacuum energy density, caused
by nonperturbative fluctuations of quark and gluon fields. It follows from (3.92), (3.94) that

εv = −π
8

β(αs)

αs
〈0 | G2

μν | 0〉, (3.95)

and in one-loop approximation:

εv = − 9

32
〈0 | αs

π
G2
μν | 0〉. (3.96)
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So, in QCD, the vacuum energy density is expressed in terms of the gluon conden-
sate [45].

The relation (3.92) is the scale (or dilatation) anomaly in QCD. The question arises: is it
possible to formulate it as an operator equation, valid for any matrix element, as is the case
for axial anomaly? The answer is negative for the following reasons: The axial anomaly
arises from a definite type of diagram – from triangle diagrams. The scale anomaly arises
from scale dependence of the QCD coupling constant g2. If we would like to consider the
matrix element of Eq. (3.89) between any hadronic states whose wave functions depend
on g2, then additional terms arising from variation of these wave functions would appear.
So, Eq. (3.92) cannot be generalized to an operator equation. This can be done in one-loop
only, since all other matrix elements, besides the vacuum averaging, correspond to many
loops. (Note that for a special theory – supersymmetric QCD – the one-loop relation (3.93)
becomes an operator equation. The origin of this is that in this theory the axial current and
the energy-momentum tensor enter one supermultiplet and the axial anomaly is reproduced
in the scale anomaly [3],[46],[47]).

In the presence of external electromagnetic field the anomaly condition (3.92) changes to

〈0|!μμ|0〉 = −π
2

β(αs)

αs
〈0|G2

μν |0〉 + α

6π
Nc

∑
q

e2
q F2

μν, (3.97)

where Fμν is the strength of external electromagnetic field. Eq. (3.97) directly follows from
(3.92) if we note that asymptotically

αs(Q
2) ∼ 1

(b/4π)lnQ2
, α(Q2) ∼ − 1

(1/3π)lnQ2
. (3.98)

The anomaly condition (3.92) leads to useful low-energy theorems in QCD [48]. If O(x)
is any local operator, then the relation

i
∫

d4x〈0|T {O(x),!μμ(0)}|0〉 = −dO 〈0|O(0)|0〉 (3.99)

holds, where dO is the canonical dimension of O . In order to prove (3.99), rescale Gμν ,
gGμν = Ḡμν . Then

i
∫

d4x〈0|T {O(x), Ḡ2
μν(0)}|0〉 = − ∂

∂(1/4g2)
〈0|O(0)|0〉. (3.100)

The scale dependence of 〈0|O|0〉 arises only from its dependence on the normalization
point μ. In one-loop approximation, we have

μ = M0 exp

(
−8π2

bg2

)
(3.101)

and on dimensional grounds the general expression for 〈0|O|0〉 is

〈0|O(0)|0〉 = Const

[
M0 exp

(
−8π2

bg2

)]dO

. (3.102)
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Differentiation of (3.102) with respect to 1/4g2 and substitution into (3.100) gives (3.99).
This proof was performed in 1-loop approximation, but it can be generalized to the many-
loop case, where instead of b the β-function arises. Note, however, that the anomalous
dimensions of the operator O were disregarded. (A more detailed proof of the low-energy
theorems is presented in [48]. The delicate problem of the renormalization of divergences
is also considered there.)

Two low-energy theorems for the transitions of two gluons into two photons follow from
the anomaly conditions [48]:〈

0| αs

4π
Gn
μν Ḡn

μν |γ (k1)γ (k2)
〉
= α

3π
Nc

∑
q

e2
q F (1)μν F̃ (2)μν , (3.103)

〈
0| − π β(αs)

2αs
Gn
μν Gn

μν |γ (k1)γ (k2)

〉
= α

π
Nc

∑
q

e2
q F (1)μν F (2)μν , (3.104)

where

F (i)μν = k(i)μ e(i)ν − k(i)ν e(i)μ , (i = 1, 2),

k(i)μ and e(i)μ are the momenta and polarizations of the photons. Eq. (3.104) can be derived
from (3.97) if it is noted that

〈0|!μν |γ (k1)γ (k2)〉 = Const

[
F (1)μα F (2)να − 1

4
δμν F (1)αβ F(2)αβ

]
(3.105)

in the low-energy limit. (The low-energy theorem for the matrix element 〈0|!μμ|γ γ 〉 was
considered in detail in [49]). Until now, the contributions of heavy quarks were completely
ignored. The reason for this is that the vacuum expectation values of the operators involving
heavy quarks fields are inversely proportional to their mass [45],[48].

3.5 The infrared power-like singularities in photon-photon, photon-gluon,
and gluon-gluon scattering in massless QED and QCD.

Longitudinal gluons in QCD

Longitudinal photons and gluons are not physical degrees of freedom; they cannot
be emitted, absorbed, or scattered. In classical electrodynamical or chromodynamical
Lagrangians, these degrees of freedom can be separated and result in Coulomb interac-
tion between charged particles (or coloured particles in QCD). This statement holds for
massive, as well as for massless electro- or chromodynamics. The virtual longitudinal pho-
tons or gluons can be, of course, scattered. As will be shown below, in massless QED
the scattering cross section of nonpolarized photon on a longitudinally polarized virtual
photon σL(p2) tends to a constant limit when the virtuality p2 of the longitudinal photon
tends to zero [50]. This looks like the longitudinal photon can be scattered on the photon,
and, therefore, in high orders of α on any other target. This would mean that in massless
QED the longitudinal photons can be emitted and absorbed, i.e. that the third degree of
freedom of the electromagnetic field is revived. However, the appearance of even a tiny,
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but nonzero, electron mass m changes the situation cardinally: σL(p2) → 0 at p2 → 0
and such decrease starts sharply at p2 ∼ m2. So, there is no soft transition from massive
to massless QED. A related phenomenon is the chirality violation in processes such as
μ+μ− → e+e−γ [51] or π+ → e+νγ decay [52]. If the electron mass m tends to zero,
the cross section of the chirality violating process μ+μ− → e+

R e−
Rγ (or e+

L e−
L γ ) with

photon production in the forward direction is going to a constant limit instead of being
proportional to m2/E2, as should follow from chirality conservation. All these phenomena
appear in quantum theory and for this reason they can be called anomalies.

Consider the scattering of nonpolarized photon on longitudinally polarized photon in
more detail. The emission amplitude Tλ(p) of the photon with momentum p satisfies the
condition

pλTλ(p) = 0 (3.106)

for real p2 = 0 and for virtual p2 �= 0 photons. This condition is a direct consequence
of gauge invariance. The condition (3.106) does not mean that the emission amplitude
of the longitudinal photon vanishes since the latter is proportional to eL

λ Tλ(p), where eL
λ

is the polarization of the longitudinal photon. The vector eL
λ (p) is by no means propor-

tional to pλ, but on the contrary, in the Lorentz gauge ∂λAλ(x) = 0 it is orthogonal to it:
eL p = 0. Thus, in the general case eL

λ (p)Tλ(p) �= 0 although Eq. (3.106) is fulfilled. The
components of the polarization vector of the virtual longitudinal photon moving along the
z-axis are:

eL
λ (p) = (eL

0 , e
L
x , e

L
y , e

L
z ) = (| p|, 0, 0, p0)/

√
−p2 (3.107)

(It is supposed that p2 < 0 and eL
λ is normalized by (eL

λ )
2 = 1.) Using (3.106) and (3.107),

we can write

eL
λ (p)Tλ(p) =

√−p2

| p| T0(p). (3.108)

As is seen from Eq.(3.108), eL
λ (p)Tλ(p) → 0 at p2 → 0, but only if T0(p) has no

singularity at p2 → 0. It appears, however, that in some cases such a singularity does
arise, so that eL

λ (p)Tλ(p) tends to a finite limit at p2 → 0.
Let us calculate the total annihilation cross section of a photon with momentum q and a

photon with momentum p in massless QED. The value of the total cross section is deter-
mined by the sum of imaginary parts of the forward scattering amplitudes described by the
graphs of Fig. 3.4.

We assume both photons to be virtual: q2, p2 < 0, the photon with momentum q being
transverse and the photon with momentum p being longitudinal, |q2| � |p2|. The calcula-
tion is straightforward. It will be convenient to use the covariant form for the polarization
of the longitudinal photon (3.107)

eL
λ (p) = −

√−p3√
ν2 − p2q2

(
qλ − νpλ

p2

)
, (3.109)



102 Anomalies

(a)

q q q q

pp pp

(b)

Fig. 3.4. The diagrams of photon-photon scattering: (a) direct diagram, (b) crossing
diagram.

where ν = pq. Restricting ourselves to the nonvanishing term at p2 → 0 we get for the
total cross section

σ
L(p)
T (q)

∣∣∣∣
p2→0

= 16πα2

Q2
(1 − x)x2 (3.110)

where Q2 = −q2, x = Q2/2ν. (The analogous calculation for the case of two longitudinal

photons yields σ L(p)
L(q)

∣∣∣∣
p2→0

= 0.)

We see that despite naive expectations, the total cross section of the longitudinal photon
interaction does not tend to zero when its virtuality p2 vanishes. The reason is that the
imaginary part of the forward scattering amplitude described by the graph of Fig. 3.4a has
a pole at p2 = 0, which compensates the factor p2 in the denominator resulting from the
products of polarization eL

λ (p)e
L
σ (p) (3.109) of the initial and final photons. Namely, the

imaginary part of the forward-scattering amplitude averaged over polarizations of the hard
photon q is given by

1

8πα2
Im Tλσ (p, q) =

(
−δλσ + pλ pσ

p2

){[
1

2
− x(1 − x)

]
ln

(
2ν

−p2x

)
−1 + x(1 − x)} − p2

ν2

(
qλ − pλ

ν

p2

)(
qσ − pσ

ν

p2

)
×
{[

1

2
− x(1 − x)

]
ln

(
2ν

−p2x

)
− 1 + 3x(1 − x)

}
. (3.111)

It can be easily seen that the pole 1/p2 in this expression which appears due to the last
term in (3.111) after multiplication by the polarization vectors (3.109) gives a nonvanishing
contribution in the limit p2 → 0:

Im Tλσ eL
λ (p)e

L
σ (p) = 16πα2x(1 − x) (3.112)

which being rewritten in terms of the cross section leads to (3.110).
In massive QED the situation is quite different. In the case of a massive electron, the last

term in (3.111) is multiplied by
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p2
/(

p2 − m2

x(1 − x)

)
, (3.113)

so that in massive QED σ L
T → 0 at p2 → 0.

As follows from (3.113), the sequence of limits m2 → 0, p2 → 0 or p2 → 0, m2 → 0
leads to different results. Physically, the correct order of limits is: first put p2 to zero and
afterwards m2 → 0. The reason is that the states of the electron and the photon produced in
γ e collisions are formed outside the formation zone, whose size is of order E/m2, where
E is the electron energy in the centre of mass system [52].

If the limit is performed in the opposite order, then the states of electron and photon
cannot be separated. The origin of the appearance of the pole 1/p2 in(3.111) is connected
with the power collinear singularity in the differential cross section

dσ

[
γT (q)+ γL(p)→ e+e−

]
= 8πα2x2(1 − x)

p2

ν2

d cos θ

(1 − p2x/ν − cos θ)2
, (3.114)

where θ is the angle of the emitted electron relative to the direction of the colliding photons.
(The theory of the transition m → 0 in QED was formulated in [53],[54] in the case of
logarithmic singularities and in [51] in the case of power singularities.)

Turn now to QCD. In QCD, gluons are confined, their virtualities are of the order of the
square of the inverse hadron radius: −p2 ∼ R−2 ∼ (500 MeV)2, and much larger than
the square of the u and d quark masses, (mu + md)

2 ≈ (12 MeV)2, and probably larger
than the square of the s quark mass m2

s = (150 MeV)2. Therefore, for light quarks we have
p2/m2 � 1. This condition was already exploited in Section 3.3. As a consequence of this
condition, the cross section for the scattering of a virtual photon on a longitudinal gluon is
given by a formula similar to (3.110):

σγ gL = 8πααs
1

Q2

∑
q

eq x2(1 − x). (3.115)

The longitudinal gluon contribution to the structure function F2(x) obtained from (3.115)
is equal to (for eq = 1):

F L
2 (x) = 2

π
αs x2(1 − x) (3.116)

Since the third degree of freedom of the gluonic field – the longitudinal gluon – can be
considered as hadronic constituents, besides the usually accounted for transverse gluons,
the question arises as to how they will influence the evolution equations. The answer
is the following [55]: The longitudinal gluons contribute to the structure functions in
the next-to-leading order approximation. For this reason, accounting for them does not
change the form of evolution equations and can be reduced to a change of initial con-
ditions only. Since in practice the gluon distributions are determined from overall fits to
the data, the distributions of longitudinal gluons are accounted for automatically in the
analysis.

In the attempt to formulate the contribution of longitudinal gluons by using the opera-
tor product expansition (OPE) we encounter a problem. The pole 1/p2 in the amplitude
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(3.111) cannot be described by any local operator and it is necessary to introduce nonlocal
operators. A suitable nonlocal operator of the lowest dimension, corresponding to the first
moment of the structure function, is

Rμν = Gn
αν(DμDν/D2

λ)G
n
αβ. (3.117)

(See [55] for details.)
Generally speaking, gL(x) as a function of x differs from gT (x) and may exceed it

in some cases. For instance, in pions at x → 1, gL(x) ∼ gT (x)/(1 − x)2, since gT (x)
in pions at x → 1 is suppressed by helicity conservation. In the production of parti-
cles or jets with large pT or in the production of heavy quarks in hadronic collisions,
the longitudinal gluon contribution is suppressed by the factor 〈p2〉gL/p2

T ∼ (R2 p2
T )

−1

or (R2 M2)−1, where 〈p2〉gL is the average virtuality of longitudinal gluons in a hadron
and M is the heavy quark mass. For this reason, the contribution of longitudinal gluons
to cross sections of such processes can be neglected as a rule. But there are important
exceptions to this rule when the production of a given state by the transverse gluon col-
lision is also suppressed (for instance, by chirality conservation). An example of such
process may be the production in hadronic collisions of the χ1 charmonium state with
quantum number J PC = 1++. In QCD, the production of charmonium P-states occurs
via two-gluon fusion g + g → χ . However, the process gT + gT → χ1 is forbidden for
on-shell gluons. Therefore, for transverse gluons the cross section is nonvanishing for vir-
tual gluons only and the χ1 production cross section by gT and gL fusion may be of the
same order.

Problems

Problem 3.1

Calculate Im F1(q2, p2) according to definitions (3.9), (3.10), (3.33). Prove the sum
rule (3.38). Consider the case p2 = 0 and demonstrate that in this case the limit
limm2→0,q2→0 Im F1(q2, 0) = e2πδ(q2) [25].

Answer [21]:

Im F1(q
2, p2) = − e2

2π

2p2

q2

{
q2 + 2p2

(q2 − 4p2)2

(
1 − 4m2

q2

)1/2

+ 2p2(q2 − 2p2)

(q2)1/2(q2 − 4p2)5/2

×
[

q2 − p2

q2 − 2p2
+ m2 q2 − 4p2

2(p2)2

]
ln

q2 − 2p2 − [(q2 − 4m2)(q2 − 4p2)]1/2

q2 − 2p2 + [(q2 − 4m2)(q2 − 4p2)]1/2

}
.

At p2 = 0

Im F1(q
2, 0) = e2

π

m2

q4
ln

1 +√
1 − 4m2/q2

1 −√
1 − 4m2/q2

.
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Problem 3.2

Find the low-energy matrix element 〈0 | G2
μν | π+π−〉 in the limit of massless pions.

Hint: Consider 〈0 | !μν | π+π−〉 and use CET and the anomaly condition.

Answer [56]:

〈0 | (−bαs/8π)G
n
μνGn

μν | π+(p1)π
−(p2)〉 = (p1 + p2)

2.
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4

Instantons and topological quantum numbers

Unlike QED, the vacuum state in QCD has nontrivial structure. In QCD vacuum there
are nonperturbative fluctuations of gluon and quark fields. They are responsible for spon-
taneous violation of chiral symmetry and for the appearance of topological quantum
numbers, which result in a complicated structure of an infinitely degenerate vacuum. The
phenomenon of confinement is also attributed to these fluctuations.

Instantons were discovered in 1975 by Belavin, Polyakov, Schwarz, and Tyupkin [1].
They are the classical solutions for gluonic field in the vacuum, which indicate the non-
trivial vacuum structure in QCD (papers on instantons are collected in [2]). In Euclidean
gluodynamics (i.e. in QCD without quarks) at small g2 they realize the minimum of action.
The instantons carry new quantum numbers – the topological (or winding) quantum num-
bers n. There is an infinite set of minima of the action, labelled by the integer n and, as
a consequence, an infinite number of degenerate vacuum states. In Minkowski space-time
instantons represent the tunneling trajectory in the space of fields for transitions from one
vacuum state to another. Therefore, the genuine vacuum wave function is a linear super-
position of the wave functions of vacua of different n characterized by a parameter θ . This
is analogous to the Bloch wave function of electrons in crystals – the so-called θ vacuum.
θ is the analog of the electron quasimomentum in a crystal. The existence of a θ vacuum
at θ �= 0 implies violation of CP-invariance in strong interactions, which is not observed
until now. This problem waits for its solution.

If quarks are included in the theory, then, at least in the case of one massless quark
flavour, instantons generate spontaneous breaking of chiral symmetry – the appearance of
a nonvanishing value of the condensate of massless quarks.

The contributions of instantons to physical observables are proportional to e−2π/αs and
can be reliably calculated if e−2π/αs � 1. If this condition is not fulfilled, then the instan-
ton contribution cannot be separated as a rule from other nonperturbative fluctuations. As is
shown by lattice calculations, instantons are not responsible for confinement in QCD. Nev-
ertheless, they can play a remarkable role in some physical effects, especially where chiral
invariance is violated and/or the perturbative contributions are suppressed. The account of
instantons is also useful for estimating nonperturbative terms not given by the operator
product expansion. Such phenomena are considered in this and in the next chapters. Since
instantons describe the tunneling transitions in non-Abelian gauge theories, we start from
a discussion of similar phenomena in nonrelativistic quantum mechanics.
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4.1 Tunneling in quantum mechanics

The tunneling phenomena – the penetration through potential barriers – are studied in
quantum mechanics by using a quasiclassical approach: the Wentzel–Kramers–Brillouin
(WKB) method. In case of a time-dependent potential, it is convenient to use the imaginary
time method. This approach is a generalization of the Landau method of complex classical
trajectories [3] and was introduced by Perelomov, Popov, Terentjev in 1966 [4] (a review of
the modern state of the method is given in [5]). In the exposition of the method we follow
the reviews [6],[7].

Consider the one-dimensional problem of a particle of mass m moving in the potential
V (x). The classical Lagrangian is equal to

L = 1

2
m

(
dx

dt

)2

− V (x). (4.1)

(The energy scale is chosen such that V (x) ≥ 0.) We are interested in the quantum mechan-
ical transition amplitude, when in the initial state at t = −t0/2 the wave function of the
particle is equal to ψi (x,−t0/2) and in the final state at t = t0/2 it is ψ f (x, t0/2). The
transition amplitude is given by

〈 f | e−i Ht0 | i〉 =
∑

n

e−i Ent0〈 f | n〉〈n | i〉, (4.2)

where H is the Hamiltonian and the sum on the right-hand side of (4.2) is performed over
the complete set of intermediate states. In order to separate the contribution of the lowest
state (in field theory the vacuum state is of the main interest) put t = −i t ′ and go to the
limit t ′0 → ∞. Then only the lowest state contribution survives on the right-hand side
of (4.2):

〈 f | e−Ht ′0 | i〉 = e−E0t ′0〈 f | 0〉〈0 | i〉 . (4.3)

It is convenient to calculate the transition amplitude by using the Feynman path integral
method [8]. According to this method, the amplitude of transition of the particle from the
point xi at t = −t0/2 to the point x f at t = t0/2 is equal to

〈x f | e−i Ht0 | xi 〉 = N
∫

[Dx]ei S(x,t), (4.4)

where S is the action:

S(x, t) =
t0/2∫

−t0/2

L(x, t)dt (4.5)

and the integration [Dx] is performed over all functions x(t) with boundary conditions
x(− t0

2 ) = xi , x( t0
2 ) = x f . (N is a normalization factor, inessential for us.) In order to
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get (4.2), Eq. (4.4) shall be multiplied by ψ∗(x f , t0/2)ψ(xi ,−t0/2) and integrated over
x f , xi . Going to imaginary time in (4.5), we have:

i S(x, t)→ −
t ′0/2∫

−t ′0/2

[
m

2

(
dx

dt ′

)2

+ V (x)

]
dt ′ ≡ −S′(x, t ′). (4.6)

We will call S′ the Euclidean action. (It what follows the primes in t ′ and S′ will be omit-
ted.) The energies and potentials will be measured in units of m and the time in units of
1/m. So, the factor m will be omitted. The Euclidean action is positive. Suppose that it is
large. This supposition corresponds to small h̄, i.e. to quasiclassics in quantum mechanics
and to a small coupling constant g in QCD. Then the main contribution to e−S arises from
the trajectory X (t), where S is minimal, Smin = S0:

N
∫

[Dx]e−S ∼ e−S0 . (4.7)

The equation for the extremal trajectory can be easily found from the requirement of the
minimum of action, δS = 0:

δS =
t0/2∫

−t0/2

dt δx(t)

[
−d2 X

dt2
+ V ′(X)

]
= 0. (4.8)

Since δx(t) is arbitrary we get

d2 X

dt2
= V ′(X). (4.9)

The boundary conditions for X (t) are X (−t0/2) = xi , X (t0/2) = x f . Eq. (4.9) is the
classical equation of motion in the potential – V (x). In order to perform the path integration
and, therefore, to find the pre-exponential factor in (4.4) we consider a deviation from the
extremal trajectory

x(t) = X (t)+ η(t), (4.10)

hence

S[X (t)+ η(t)] = S0 +
t/2∫

−t/2

dt η(t)

[
−1

2

d2η

dt2
+ 1

2
V ′′(X)η

]
. (4.11)

Let us expand η(t) in the complete set of eigenfunctions normalized to 1 in the interval
t0/2 > t > −t0/2 at t0 → ∞:

η(t) =
∑

n

cnηn(t). (4.12)

Choose ηn(t) as the eigenfunctions of the equations

− d2

dt2
ηn(t)+ V ′′(X)ηn(t) = εnηn(t) (4.13)



110 Instantons and topological quantum numbers

x

V(x)

(a)

x–V(x)

(b)

Fig. 4.1. The oscillator potential in real time (a) and in Euclidean space (b).

with eigenvalues εn . Then

S = S0 + 1

2

∑
n

εnc2
n . (4.14)

The integration measure in (4.4) can be chosen as

[Dx] =
∏

n

dcn√
2π
. (4.15)

The substitution of (4.14) in (4.4) (after transition to imaginary time) gives

〈x f | e−Ht0 | xi 〉 = Ne−S0
∏

n

ε
−1/2
n . (4.16)

In (4.16) it was tacitly assumed that all εn are positive, εn > 0. The case when some of the
εn are zero will be considered below. Sometimes it is convenient to write the product of
eigenvalues in the form of a determinant:∏

n

ε
−1/2
n =

[
det

(
− d2

dt2
+ V ′′[X (t)]

)]−1/2

. (4.17)

Consider the simplest example: the oscillator potential V (x) = ω2x2/2 in Minkowski
space-time, V (x) = −ω2x2/2 in Euclidean space (see Fig. 4.1). Let a particle start its
movement from the upper point of the hill in Fig. 4.1b at time −t0/2 and return to the
same point at time +t0/2. The amplitude of this process calculated according to the rules
presented above was found to be [7]

〈x f = 0 | e−Ht0 | xi = 0〉 =
(
ω

π

)1/2

(2sinhωt0)
−1/2 (4.18)

and at large t0 is approximately equal to(
ω

π

)1/2

e− ωt0
2 . (4.19)

As expected, the energy of the lowest state is equal to E = ω/2.
Let us consider now the other example – the double well potential of Fig. 4.2.

This potential can be represented as

V (x) = λ(x2 − a2)2. (4.20)
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–a a x

V(x)
–a a xV(x)

(a) (b)

Fig. 4.2. The double well potential in (a) real time (Eq.(4.1)), and (b) Euclidean expression
for S (Eq. (4.6).)

Use the notation

8λa2 = ω2. (4.21)

Classically, the lowest state of the particle in this potential is the state with zero energy
at the bottom of one of the wells. The parameter ω is the energy of small oscillations
around the bottom. Quantum mechanically, however, because of tunneling from one well
to another, the particle simultaneously persists in both wells and the energies of the two
lowest states are

E0 = ω

2
−
√

2ω3

πλ
e− ω3

12λ · ω
2
,

E1 = ω

2
+
√

2ω3

πλ
· e− ω3

12λ
ω

2
. (4.22)

The exponentials in the second terms in (4.22) correspond to tunneling from one well to
the other. According to the general theory one can expect that

S0 = ω3/12λ. (4.23)

Let us apply the general method presented above and prove that this is the case. We
assume that 12λ/ω3 � 1 and S0 given by (4.23) is large. The transition amplitude from
the left well to the right one is

〈a | e−Ht0 | −a〉 (4.24)

and we want to find the classical trajectory, realizing the minimum of the action S0 in
Euclidean space-time. For simplicity, we restrict ourselves to the case of zero energy,
E = 0. In Euclidean space-time, the energy is equal to

E = 1

2

(
dx

dt

)2

− V (x). (4.25)

(See (4.6)). At E = 0

dx

dt
= √

2V (x) = √
2λ(a2 − x2). (4.26)
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Fig. 4.3. The graph of instanton.

The situation of interest to us is when x is near the bottom of the well. So, the sign on
the right-hand side of (4.26) was chosen in accord with this condition. The solution of
Eq. (4.26) representing the extremal trajectory is equal to

X (t) = a tanh
ω

2
(t − tc), (4.27)

where tc is an arbitrary constant. Graphically, the solution is shown in Fig. 4.3. Usually
this is called the instanton (or soliton).

As is seen from (4.27) and Fig. 4.3, we have X (t)|t→−∞ → −a and X (t)|t→∞ → a.
At large t � 1/ω, the instanton is a localized object:

X (t)− a ≈ −2e−ω(t−tc). (4.28)

In the limit t0 → ∞, the action is equal to

S0 =
∞∫

−∞
dt

(
d X

dt

)2

= ω3

12λ
, (4.29)

which coincides with (4.23).
There is also a solution which corresponds to the transition from a to −a. It can be

obtained from (4.27) by replacing t by −t and is called anti-instanton. The parameter tc
in (4.27) corresponds to the position of the center of the instanton. The action S0 (4.29) is
independent of the position of the center. Therefore, one can expect that in order to get the
transition amplitude (4.24), the factor e−S0 should be integrated over tc. Let us present the
formal proof of this statement.

In this particular case, the general eigenvalue equations (4.13) have the form

− d2

dt2
ηn(t)+

(
ω2 − 3

2

ω3

cosh2 ωt
2

)
ηn(t) = εnηn(t). (4.30)

(tc was temporarily put equal to zero). The boundary conditions are ηn(± t0
2 ) = 0 at

t0 → ∞. These boundary conditions are fulfilled for discrete levels. There are two dis-
crete eigenvalues of Eq. (4.30) with ε0 = 0 and ε1 = (3/4)ω2 [9]. The normalized wave
function corresponding to ε0 = 0 is equal to

η0(t) =
√

3ω

8

1

cosh2 ωt
2

. (4.31)
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The general formula of functional integration (4.16) cannot be applied to η0(t) – the
zero-mode wave function. The existence of the zero mode means that the perturbations
proportional to its eigenfunctions do not change the action. On the other hand, the varia-
tion of the instanton center does not change the action either. Since there is only one zero
mode, one can expect that η0(t) is proportional to the variation of X (t − tc):

η0(t) = A
d X

dtc
≡ −A

d X

dt
. (4.32)

The substitution of (4.32) into (4.29) gives

A = S−1/2
0 . (4.33)

It is convenient to perform the integration over tc instead of integration over the coefficient
c0 in the functional integration [Dx] (4.15). Using (4.12) we have:

�η(t) = η0(t)�c0. (4.34)

On the other hand,

�η(t) = �X (t) = d X

dtc
�tc = S1/2

0 η0(t)�tc. (4.35)

Equating (4.34) with (4.35), we get:

dc0 = S1/2
0 dtc. (4.36)

Finally, for the transition amplitude (4.24) we have

〈a | e−Ht0 | −a〉 =
√

S0

2π
dtce−S0

{
det′

(
− d2

dt2
+ V ′′[X (t)]

)}−1/2

, (4.37)

where det′ denotes that the zero-mode contribution is omitted in the determinant.
The final result with account of nonzero modes is equal to (at large t0, ωt0 � 1) [7]

〈+a | e−Ht0 | −a〉 = d

(
ω

π

)1/2

e− ωt0
2 ωdtc, (4.38)

where

d =
(

6

π

)1/2√
S0e−S0 (4.39)

can be considered as the density of instantons.
The action is independent of tc and the integration over tc was left in (4.37), (4.38). Such

variables which leave the action invariant are called collective coordinates. The integration
over collective coordinates is not performed in the calculation of the determinant. Note
that the factor

√
S0 corresponds to the integration over tc. This is a general statement which

applies to the case of QCD instantons as well. The function X (t) (4.27), which corresponds
to the instanton, goes to the limits ±a at t → ±∞. If there are n instantons with different
centers tci and the positions of the centers satisfy the inequalities ω | tci − tcj |� 1, then
we can sum their trajectories and evidently X (t) → ±na at t → ±∞. In this case, the
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x

V(x)

Fig. 4.4. The periodical potential in the real time.

minimal action is equal to nS0. It is possible to introduce the topological classification
of the functions, which realize the minima of the action, by their limiting values. The
topological charge can be defined by

Q = 1

2a

∞∫
−∞

dy
dx(t)

dt
= x(+∞)− x(−∞)

2a
. (4.40)

Q is an integer, Q = 0,±1, . . . The functions with different Q cannot be transformed into
each other by any continuous deformation. The amplitude of transition from the bottom of
the first well to the bottom of the second well caused by n widely separated instantons is
equal to (n is odd)

ω

π

1/2
e− ωt0

2 dn

t0/2∫
−t0/2

ωdtc,n

tc,n∫
−t0/2

ωdtc,n−1...

tc,2∫
−t0/2

ωdtc,1 =
(
ω

π

)1/2

e− ωt0
2 dn (ωt0)n

n! .

(4.41)
The total amplitude is obtained by summing the contributions of all n:

〈+a | e−Ht0 | −a〉 =
∞∑

n=1,3...

(
ω

π

)1/2

e− ωt0
2
(ωt0d)n

n! =
(
ω

π

)1/2

e− ωt0
2 sinh(ωt0d). (4.42)

The energies of the two lowest states, determined from (4.42) by going to the limit t0 → ∞,
coincide with (4.22).

An instructive example which is useful in the consideration of the QCD vacuum is the
periodical potential, Fig. 4.4.

The amplitude of transition from −a j at −t0/2 to the point +a j at t0/2, caused by n
instantons and n anti-instantons is given by

〈+a j | e−H0t | −ai 〉 =
(
ω

π

)1/2

e−ωt0/2
∑
n,n̄

dndn̄ (ωt0)n

n!
(ωt0)n̄

n̄! δn−n̄−�, (4.43)

where

� = n(+a j )− n(−ai )
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is the difference of the winding numbers of a j and ai states. The Kronecker symbol can be
represented as

δn−n̄−� =
2π∫

0

ei(n−n̄−�)θ dθ

2π
. (4.44)

The substitution of (4.44) in (4.43) and the summation over n, n̄ leads to

〈+a j | e−H0t | −ai 〉 =
(
ω

π

)1/2

e− ωt0
2

2π∫
0

ei�θ dθ

2π
exp[2dωt0 cos θ ]. (4.45)

The energy of the lowest state is now equal to

E = −ω
2

+ 2ωd cos θ. (4.46)

It is tacitly implied that the second term in (4.46) must be integrated over θ , according
to (4.45). We found that in the periodic potential instead of discrete levels, energies are
distributed over the bands and the widths of the bands are determined by the difference of
winding numbers �. The situation here closely resembles the movement of electrons in
periodic crystals, where the energies of the electrons are grouped in bands and the wave
function of the electrons is the superposition of different solutions of the Schrödinger equa-
tion, characterized by one common vector – the quasimomentum (Bloch waves). Here, the
role of quasimomentum is played by the parameter θ . As we shall see, a similar situa-
tion takes place in QCD. We will not go into more details of quantum mechanical models,
referring the interested readers to Refs. [6],[7],[10].

4.2 Instantons and the topological current

4.2.1 Instantons in Euclidean QCD

As was demonstrated in the previous section by consideration of quantum mechanical
problems, instantons correspond to the tunneling phenomena and the most suitable method
of the treatment of problems is the imaginary time formalism. A similar situation takes
place in QCD. Here it is convenient to work in Euclidean space-time. The rules for how
to go from QCD, formulated in Minkowski space-time, to Euclidean QCD are the follow-
ing: The spatial coordinates x1, x2, x3 are not changed. The time coordinate x0 is replaced
by −i x4,

x0 → −i x4. (4.47)

The differential operators ∂μ are defined simply:

∂μ =
(
∂

∂x4
,
∂

∂xi

)
. (4.48)
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Such a definition allows one to have the standard form of the momentum operator:

pμ = −i
∂

∂xμ
. (4.49)

In order to have the same form of the covariant derivative Dμ as it was in Minkowski
space-time,

(Dμ)
ab = ∂μδab + g f abc Ac

μ, (4.50)

it is necessary to put

AEucl
i = −AMink

i , i = 1, 2, 3; AEucl
4 = −i AMink

0 . (4.51)

For the field strengths Gn
μν , we have:

(Gn
ik)

Eucl = (Gn
ik)

Mink, (Gn
4i )

Eucl = i(Gn
0i )

Mink (4.52)

and (Gn
μν)

Eucl is expressed in terms of ∂Eucl
μ and AEucl

μ by the same formula as in
Minkowski space-time. It is convenient to define the action S as

S = 1

4

∫
d4xG2

μν. (4.53)

Then S > 0 in Euclidean space-time and transition probabilities are given by the matrix
elements of e−S .

In the case of fermions, the Dirac γ -matrices in Euclidean space-time are given by:

γ E
4 = γ0, γ E

i = −iγ M
i (4.54)

and their anticommutation relations are:

{γμ, γν} = 2δμν. (4.55)

The γ5 matrix is defined as

γ5
E = γ5

M = i(γ1 γ2 γ3 γ4)
M (4.56)

and is Hermitian. The ψ and ψ̄ operators obey the anticommutation relations

{ψ(x), ψ(y)} = {ψ̄(x), ψ̄(y)} = {ψ(x), ψ̄(y)} = 0, (4.57)

ψ̄ is the Hermitian conjugate of ψ, ψ̄ = ψ+. The last relation in (4.57) is essentially
different from that in Minkowski space-time, where the anticommutator of ψ and ψ̄ is
proportional to δ(x − y) at x0 = y0. Because of (4.57) ψ and ψ̄ must be treated as inde-
pendent variables, particularly in the calculation of functional integrals. The Euclidean
action for fermion fields is equal to

S = −
∫

d4x[ψ̄(iγμ∇μ + im)ψ], (4.58)

where

∇μ = ∂μ + ig
λn

2
An
μ. (4.59)
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The sign in front of Eq. (4.58) is chosen in order to have Re S> 0 for free fermions at rest.
The factor i in front of m ensures the absence of tachyon poles: the free propagator that
corresponds to (4.58) is equal to

� p + im

p2 + m2
(4.60)

and has no poles (recall that Euclidean p2 is always positive.) Note that in Euclidean space-
time the definition of the propagator as a T -product of ψ(x), ψ̄(y) operators fails, but its
definition as a Green function of the Dirac equation remains.

Consider now Euclidean gluodynamics, i.e. QCD without quarks. The action can be
represented in the form of

S = 1

4

∫
d4xGn

μνGn
μν = 1

4

∫
d4x

[
Gn
μν G̃n

μν + 1

2
(Gn
μν − G̃n

μν)
2
]
, (4.61)

where G̃n
μν = (1/2)εμνλσGn

λσ , ε1234 = 1. Since the last term in (4.61) is positive, the
minimum of the action is realized on the self-dual gluonic fields,

Gn
μν = G̃n

μν, (4.62)

Smin = 1

4

∫
d4x Gn

μν G̃n
μν. (4.63)

The integrand in (4.63) is the total divergence

Gn
μν G̃n

μν = ∂μKμ, (4.64)

Kμ = 2εμνγ δ

(
An
ν∂γ An

δ − 1

3
g f nmp An

ν Am
γ Ap

δ

)
(4.65)

or

Kμ = εμνγ δ
(

An
νGn

γ δ − 1

3
f nmp An

ν Am
γ Ap

δ

)
. (4.66)

Substitute (4.64) into (4.63). Assuming that Gn
μν has no singularities at finite x , we can

transform the four-dimensional integral in (4.63) into an integral over the infinitly remote
three-dimensional sphere:

Smin = 1

4

∫
dV K4. (4.67)

Evidently, the action is finite only in the case when the field strengths Gn
μν are decreasing

faster than 1/x2 at infinity. Therefore, the contribution of the first term in (4.66) to (4.67)
vanishes and we have

Smin = − 1

12
gεikl

∫
dV f nmp An

i Am
k Ap

l . (4.68)
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The potentials An
μ may not decrease faster than 1/x at infinity, but they should represent a

pure gauge. Let us show that Smin is proportional to an integer n – the topological charge
or winding number:

Smin = 8π2

g2
n = 2π

αs
n. (4.69)

This important fact was established in the Ref. [1]. (In the derivation we follow Ref. [11].)
Suppose that the gluonic fields belong to SU (2), the subgroup of the SU (3) colour group.
Then the group constants f nmp reduce to the three-dimensional totally antisymmetric
tensor εnmp. Use the matrix notation

Ai = −1

2
gτ n An

i , (4.70)

where τ n are Pauli matrices,

Tr (τmτ n) = 2δmn . (4.71)

Instead of (4.68) we have now:

Smin = − i

3

1

g2

∫
dV εikl Tr (Ai Ak Al). (4.72)

Since Ai is a pure gauge, only the second term survives in the general expression of the
gauge transformation (see Chapter 1):

A′
i = U−1 AiU + iU−1∂iU, (4.73)

where U is an x-dependent unitary unimodular matrix. The substitution of the last term of
(4.73) into (4.72) gives

Smin = −1

3

1

g2

∫
dV εikl Tr

[
U−1∂iU · U−1∂kU · U−1∂lU

]
= 1

3

1

g2

∫
dV εikl Tr

[
∂iU

−1∂k · U−1∂lU
]
. (4.74)

(The last equation of (4.74) follows from ∂iU−1U = 0.) We assume that Ai (r) falls faster
than 1/r at spatial infinity. This means that U is a constant matrix at r → ∞, which
without loss of generality may be taken equal to ±I . Let us parametrize U by

U = exp(θaτ a/2i), (4.75)

where θa(r) are functions of r . The calculation of the trace in (4.74) results in

Smin = −1

2
εiklε

abc 1

g2

∫
dV ∂i

[
θ̂a∂k θ̂

b∂l θ̂
c(sin θ − θ)

]
, (4.76)

where

θ = √
θaθa, θ̂a = θa/θ. (4.77)

(Since θ̂a is a unit vector, εabc∂i θ̂
a∂k θ̂

b∂l θ̂
c = 0. This was exploited in the derivation of

Eq. (4.76).) The integrand in (4.76) is a total derivative. Using Gauss’ theorem we can
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represent the volume integral in (4.76) as the integral over the surface of an infinitely large
sphere. The condition U → ±I at r → ∞ means that θ → ±2πn at r → ∞. We get

Smin = πn

g2
εiklε

abc
∫

d Si

(
θ̂a∂k θ̂

b∂lθ
c
)
, (4.78)

where the integration is performed over the surface of the sphere of infinitely large radius r .
Suppose first, for simplicity, that θ̂a is the unit vector in the direction of r, θ̂a = ra/r . Then
the integral in (4.78) is calculated directly and we have

Smin = 8π2n

g2
= 2π

αs
n. (4.79)

In a more general case, we can parametrize θ̂a as

θ̂1 = sinψcosϕ, θ̂2 = sinψsinϕ, θ̂3 = cosψ, (4.80)

where ψ and ϕ are functions of the polar and azimuthal angles α and β. In this case, Smin

is given by:

Smin = 2πn

g2

2π∫
0

dβ

π∫
0

dαsinψ

(
∂ψ

∂α

∂ϕ

∂β
− ∂ψ

∂β

∂ϕ

∂α

)
. (4.81)

The quantity in parenthesis is the Jacobian of the transformation from (α, β) to (ψ, ϕ).
Therefore, the integral is the integer that counts the number of times the pair (ψ, ϕ) covers
its unit sphere as (α, β) covers its unit sphere once. The integers n in (4.69), (4.79) can be
positive or negative; the minima of the action correspond to positive n.

The proof of Eq. (4.69) can be based on very general arguments, as was originally done
in Ref. [1]. The group space of the SU (2) matrix U is S3, a three-dimensional sphere.
Hence, the S3 set in group space is mapped onto S3 in coordinate space. It is obvious that
all continuous mappings S3 → S3 fall into different classes corresponding to different
coverings of the group manifold by the coordinates on the sphere. Evidently, a mapping
that is characterized by a given winding number n cannot be transformed by continuous
transformation into a mapping with another n. The SU (2) subgroup considered above plays
a special role in the SU (3) colour group: the winding numbers and instanton solutions in
SU (2) are defined by separations of SU (2) subgroups in various ways from SU (3). Its
special role is connected with the isomorphism of SU (2) with the group of rotations in
three-dimensional space.

Find now the self-dual gluonic fields realizing the minimum of the action. (We follow
here Ref. [7].) Note that self-dual fields satisfy the equations of motion. Indeed,

(DμGμν)
n = (DμG̃μν)

n = 1

2
εμνλσ (DμGμν)

n

= 1

6
εμνλσ (DμGλσ + DλGσμ + DσGμλ)

n = 0, (4.82)

because of the Bianchi identity

DμGλσ + DλGσμ + DσGμλ = 0. (4.83)
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The anti-self-dual fields Gμν = −G̃μν , which also satisfy the equations of motion, cor-
respond to negative winding numbers n and realize the minimum of the action equal to
(8π2/g2) | n |. Consider an SU (2) subgroup of the SU (3) colour group and introduce
’t Hooft symbols ηaμν and η̄aμν (a = 1, 2, 3 are isospin indices; μ, ν = 1, 2, 3, 4 are
space-time indices) [12]:

ηaμν =

⎧⎪⎪⎨⎪⎪⎩
εaμν, μ, ν = 1, 2, 3
−δaν μ = 4
δaμ ν = 4
ηa44 = 0.

(4.84)

(The symbols η̄aμν differ from ηaμν by changing the sign of the δ-terms. Useful relations
for ηaμν and η̄aμν are presented in the appendix to this chapter.) The generators of rotations
in four-dimensional Euclidean space are of the following form [7] (see also [13]):

J a
1 = 1

4
ηaμνMμν,

J a
2 = 1

4
η̄aμνMμν, (4.85)

where

Mμν = −i xμ
∂

∂xν
+ i xν

∂

∂xμ
+ spin terms (4.86)

are the operators of infinitesimal rotations in the (μ, ν) plane. The isospin τ -matrices are
generalized to four dimensions as:

τ±
μ = (τ ,∓i). (4.87)

They satisfy the relations

τ+
μ τ

−
ν = δμν + iηaμντ

a,

τ−
μ τ

+
ν = δμν + i η̄aμντ

a . (4.88)

Under action of the generators of rotations the matrix τ+
μ xμ transforms in the follow-

ing way:

eiϕa
1 J a

1 +iϕa
2 J a

2 τ+
μ xμ = e−iϕa

1 τ
a/2(τ+

μ xμ)e
iϕa

2 τ
a/2, (4.89)

where ϕa
1 and ϕa

2 are the rotation parameters. As is seen from (4.89), τ+
μ xμ is not invariant

under rotations in four-dimensional Euclidean space. However, if this rotation will be sup-
plemented by a rotation in the SU (2)× SU (2) isospin group (cf. Eq. (2.66) in Chapter 2),
then τ+

μ xμ becomes invariant. Since all observable objects in gauge theory are defined up
to a gauge transformation, we can consider

U = iτ+
μ xμ

/√
x2 (4.90)



4.2 Instantons and the topological current 121

as a suitable unitary unimodular matrix which determines the asymptotics of the gluonic
field. In terms of ’t Hooft symbols, the asymptotic expression of Aa

μ has the form of

Aa
μ(x)x→∞ = − 2

g
ηaμν

xν
x2
. (4.91)

Let us search for a solution of the self-duality equation (4.62) by putting

Aa
μ(x) = − 2

g
ηaμν

xν
x2

f (x2). (4.92)

The boundary conditions for f (x2) are: f (x2)x2→∞ = 1, f (x2)x2→0 → Const·x2. From
(4.92) we have for the field strengths:

Ga
μν = 4

g

{
ηaμν

f (1 − f )

x2
+ 1

x4

[
xμηaνλxλ − xνηaμλxλ

] [ f (1 − f )− x2 f ′]
}
, (4.93)

G̃a
μν = 4

g

{
ηaμν f ′ − 1

x4
[xμηaνλxλ − xνηaμλxλ][ f (1 − f )− x2 f ′]

}
. (4.94)

(The relations from the appendix were exploited.) It follows from the self-duality condi-
tion that

f (1 − f )− x2 f ′ = 0. (4.95)

The solution of (4.95) is found to be

f (x2) = x2

x2 + ρ2
. (4.96)

The integration constant ρ is called the instanton radius. The gluonic field and the instanton
strength are equal to

Aa
μ(x) = − 2

g
ηaμν

xν
x2 + ρ2

,

Ga
μν(x) = 4

g
ηaμν

ρ2

(x2 + ρ2)2
. (4.97)

The solutions (4.97) correspond to the position of the instanton center at the origin. In order
to get the field with instanton center at xc it is necessary to replace x by x − xc in (4.97).
Using (4.97) and the relation ηaμνηaμν = 12 it is easy to calculate the action. The result is:
S = 8π2/g2, i.e. the instanton represents the gluonic field, corresponding to the winding
number n = 1. The anti-instanton solution can be found from (4.97) by replacing ηaμν

by η̄aμν and results in the same value of the action. Sometimes it is convenient to use
the so-called singular gauge for the instanton field, when the singularity appears at the
instanton centre. The transformation to the singular gauge can be done with the help of the
formulae

g
τ a

2
(Aa
μ)sing = U+g

τ a

2
Aa
μU − iU+∂μU,

g
τ a

2
(Ga
μν)sing = U+g

τ a

2
Ga
μνU, (4.98)
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where Aa
μ,Ga

μν are given by (4.97) and

U = i
τ+
μ xμ√

x2
. (4.99)

(Aa
μ)sing and (Ga

μν)sing are found to be

(Aa
μ)sing = − 2

g
η̄aμνxν

ρ2

x2(x2 + ρ2)
,

(Ga
μν)sing = 8

g
η̄aνρ

(
xμxλ

x2
− 1

4
δμλ

)
ρ2

(x2 + ρ2)2
− (μ←→ ν). (4.100)

The expression (4.100) for (Aa
μ)sing can be represented as

(Aa
μ)sing = 1

g
η̄aμν∂ν ln

(
1 + ρ2

x2

)
. (4.101)

Eq. (4.101) can be generalized to the case of winding numbers n > 1 if

W = 1 +
n∑

i=1

ρ2
i

(x − xic)2
(4.102)

would be substituted under the logarithm sign [12]. Here xic is the position of the center of
i-th instanton.

4.2.2 The topological current

The existence of topological quantum numbers is a very specific feature of non-Abelian
quantum field theories and, in particular, of QCD. Therefore, the study of properties of the
topological charge density operator in QCD

Q5(x) = αs

8π
Gn
μν(x)G̃

n
μν(x) (4.103)

and of the corresponding vacuum correlator

ζ(q2) = i
∫

d4xeiqx 〈0|T {Q5(x), Q5(0)}|0〉 (4.104)

is of great theoretical interest. It follows from (4.63), (4.69) that∫
d4x Q5(x) = n (4.105)

is the topological quantum number. Crewther [14] has derived Ward identities related to
ζ(0), which allowed him to prove the theorem that ζ(0) = 0 in any theory where there
is at least one massless quark. An important step in the investigation of the properties of
ζ(q2) was achieved by Veneziano [15] and Di Veccia and Veneziano [16]. These authors
considered the limit Nc → ∞. Assuming that in the theory there are N f light quarks with
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masses mi � M , where M is the characteristic scale of strong interaction, Di Veccia and
Veneziano found that

ζ(0) = 〈0 | q̄q | 0〉
( N f∑

i

1

mi

)−1

, (4.106)

where 〈0 | q̄q | 0〉 is the common value of the quark condensates for all light quarks and
terms of order mi/M are neglected. The concept of θ -term in the Lagrangian (see below
Eq. (4.191)) was successfully exploited in [16] in deriving (4.106). Using the same concept
and studying the properties of the Dirac operator, Leutwyler and Smilga [17] succeeded in
proving (4.106) at any Nc for the case of two light quarks, u and d. The proof of Eq. (4.106)
will be given here for the case of two light quarks u and d using the chiral effective theory
(Chapter 2).

Consider QCD with N f light quarks, mi � M ∼ 1 GeV, i = 1, . . . N f . Define the
flavour singlet axial current by

jμ5(x) =
N f∑
i

q̄i (x)γμγ5qi (x) (4.107)

and the polarization operator

Pμν(q) = i
∫

d4xeiqx 〈0 | T { jμ5(x), jμ5(0)} | 0〉. (4.108)

The general form of the polarization operator is:

Pμν(q) = −PL(q
2)δμν + PT (q

2)(−δμνq2 + qμqν). (4.109)

Because of the anomaly the singlet axial current is nonconserving:

∂μ jμ5(x) = 2N f Q5(x)+ D(x), (4.110)

where Q5(x) is given by (4.103) and

D(x) = 2i

N f∑
i

mi q̄i (x)γ5qi (x). (4.111)

It is well known that even if some light quarks are massless, the corresponding Goldstone
bosons that arise from spontaneous chiral symmetry violation do not contribute to the sin-
glet axial channel, i.e. to the polarization operator Pμν(q). PL(q2) also have no kinematical
singularities at q2 = 0. Therefore,

Pμν(q)qμqν = −PL(q
2)q2 (4.112)

vanishes in the limit q2 → 0. Calculate the left-hand side of (4.112) in the standard way:
put qμqν inside the integral in (4.108) and integrate by parts. (To do this, it is convenient
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to represent the polarization operator in coordinate space as a function of two coordinates
x and y.) Going to the limit q2 → 0 we have

lim
q2→0

Pμν(q)qμqν = i
∫

d4x〈0 | T {2N f Q5(x), 2N f Q5(0)}
+ T {2N f Q5(x), D(0)} + T {D(x), 2N f Q5(0)} + T {D(x), D(0)} | 0〉

+ 4

N f∑
i

mi 〈| q̄i (0)qi (0) | 0〉

+
∫

d4x〈0 | [ j05(x), 2N f Q5(0)] | 0〉δ(x0) = 0. (4.113)

In the calculation of (4.113) the anomaly condition (4.110) was used. The terms pro-
portional to quark condensates arise from the equal-time commutator [ j05(x), D(0)]x0=0

calculated by standard commutation relations. Relation (4.113), up to the last term, was
first obtained by Crewther [14]. The last term, which is equal to zero according to standard
commutation relations and is omitted in [14]–[17], is kept. The reason is that we deal with
a very subtle situation related to anomaly, where nonstandard Schwinger terms in commu-
tation relations may appear. (It can be shown that, in general, the only Schwinger term in
this problem is given by the last term on the left-hand side of (4.113); no others can arise.)
Consider also the correlator

Pμ(q) = i
∫

d4x eiqx 〈0 | T { jμ5(x), Q5(0)} | 0〉 (4.114)

and the product Pμ(q)qμ in the limit q2 → 0 (or q2 of order of m2
π , where mπ is

the Goldstone boson mass). The general form of Pμ(q) is Pμ(q) = Aqμ. Therefore,
nonvanishing values of Pμqμ in the limit q2 → 0 (or of order of quark mass m, if
| q2 |∼ m2

π – this limit will be also of interest to us later) can arise only from Gold-
stone boson intermediate states in (4.114). Let us estimate the corresponding matrix
elements

〈0 | jμ5 | π〉 = Fqμ, (4.115)

〈0 | Q5 | π〉 = F ′. (4.116)

F is of the order of m since in the limit of massless quarks Goldstone bosons are coupled
only to nonsinglet axial current. F ′ is of the order of m2

π fπ ∼ m, where fπ is the pion
decay constant (not considered to be small). These estimates give

Pμqμ ∼ q2

q2 − m2
π

m2 (4.117)

and it is zero at q2 → 0, m2
π �= 0, and of order of m2 at q2 ∼ m2

π . In what
follows, we will restrict ourself to the terms linear in quark masses. So, we can put



4.2 Instantons and the topological current 125

Pμ(q)qμ = 0 at q → 0. The integration by parts on the right-hand side of (4.114)
gives:

lim
q2→0

Pμ(q)qμ = −
∫

d4x〈0 | T {2N f Q5(x), Q5(0)} + T {D(x), Q5(0)} | 0〉

−
∫

d4x〈0 | [ j05, Q5(0)] | 0〉δ(x0) = 0. (4.118)

After substitution of (4.118) in (4.113), we find the following low-energy theorem:

i
∫

d4x〈0 | T {2N f Q5(x), 2N f Q5(0)} | 0〉

− i
∫

d4x〈0 | T {D(x), D(0)} | 0〉 − 4

N f∑
i

mi 〈0 | q̄i (0)qi (0) | 0〉

+ i
∫

d4x〈0 |
[

j0
05(x), 2N f Q5(0)

]
| 0〉δ(x0) = 0. (4.119)

The low-energy theorem (4.119), with the last term on the left-hand side omitted, was
found by Crewther [14].

Consider first the case of one massless quark, N f = 1, m = 0. This case can be treated
easily by introduction of the θ -term in the Lagrangian:

�L = θ αs

4π
Gn
μν G̃n

μν. (4.120)

The matrix element 〈0 | Q5 | n〉 between any hadronic state | n〉 and vacuum is
proportional to

〈0 | Q5 | n〉 ∼ 〈0 | ∂
∂θ

ln Z | n〉θ=0, (4.121)

where Z = ei L and L is the Lagrangian. The gauge transformation of the quark field
ψ ′ → eiαγ5 results in the appearance of the term

δL = α∂μ jμ5 = α(αs/4π)G
n
μν G̃n

μν (4.122)

in the Lagrangian density. By the choice α = −θ , the θ -term (4.120) will be killed and
(∂/∂θ) ln Z = 0. Therefore, ζ(0) = 0 (Crewther theorem) – the first term in (4.119)
vanishes as well as the second and third, since m = 0. From (4.119), we conclude that the
anomalous commutator does indeed vanish:

〈0 | [ j05(x), Q5(0)]x0=0 | 0〉 = 0, (4.123)

supporting the assumptions made in [14]–[16].
Let us turn now to the case of two light quarks, u, d, N f = 2. This is the case of real

QCD where the strange quark is considered to be heavy. Define the isovector axial current

j (3)μ5 = (
ūγμγ5u − d̄γμγ5d

)/√
2 (4.124)
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and its matrix element between the states of pion and vacuum

〈0 | j (3)μ5 | π〉 = fπqμ, (4.125)

where qμ is the pion four-momentum, fπ = 131 MeV. Multiply (4.125) by qμ. Using the
Dirac equations for the quark fields we have

2i√
2
〈0 | muūγ5u − mdd̄γ5d | π〉 = i√

2
〈0 | (mu + md)(ūγ5u − d̄γ5d)

+ (mu − md)(ūγ5u + d̄γ5d) | π〉 = fπm2
π , (4.126)

where mu , md are the u and d quark masses. The ratio of the matrix elements on the
left-hand side of (4.126) is of order

〈0 | ūγ5u + d̄γ5d | π〉
〈0 | ūγ5u − d̄γ5d | π〉 ∼ mu − md

M
, (4.127)

since the matrix element in the numerator violates isospin and such violation (in the
absence of electromagnetism, which is assumed) can arise from the difference mu − md

only. Neglecting this matrix element, we have from (4.126)

i√
2
〈0 | ūγ5u − d̄γ5d | π〉 = fπm2

π

mu + md
. (4.128)

Let us find ζ(0) from the low-energy sum rule (4.119), restricting ourselves to the terms
linear in quark masses. Since D(x) ∼ m, the only intermediate state in the matrix element∫

d4x〈0 | T {D(x), D(0)} | 0〉 (4.129)

in (4.119) is the one-pion state. Define

Dq = 2i
(
muūγ5u + mdd̄γ5d

)
. (4.130)

Then

〈0 | Dq | π〉 = i〈0 | (mu + md)(ūγ5u + d̄γ5d)+ (mu − md)(ūγ5u − d̄γ5d)

= √
2

mu − md

mu + md
fπm2

π , (4.131)

where the matrix element of the singlet axial current was neglected and (4.128) was used.
The substitution of (4.131) into (4.129) gives

i
∫

d4xeiqx 〈0 | T {Dq(x), Dq(0)} | 0〉q→0 = lim
q→0

{
− 1

q2 − m2
π

2

(
mu − md

mu + md

)2

f 2
πm2

π

}

= −4
(mu − md)

2

mu + md
〈0 | q̄q | 0〉. (4.132)

In the latter equation in (4.132), the Gell-Mann–Oakes–Renner relation (2.33),

〈0 | q̄q | 0〉 = −1

2

f 2
πm2

π

mu + md
, (4.133)
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and the SU (2) equalities

〈0 | ūu | 0〉 = 〈0 | d̄d | 0〉 ≡ 〈0 | q̄q | 0〉 (4.134)

were substituted. From (4.119) and (4.132) we finally get:

ζ(0) = i
∫

d4x〈0 | T {Q5(x), Q5(0)} | 0〉 = mumd

mu + md
〈0 | q̄q | 0〉 (4.135)

in agreement with (4.106).
In a similar way, one can find the matrix element 〈0 | Q5 | π〉. Consider

〈0 | jμ5 | π〉 = Fqμ. (4.136)

The estimate of F gives

F ∼ mu − md

M
fπ (4.137)

and after multiplying (4.136) by qμ the right-hand side of (4.136) can be neglected. On the
left-hand side we have

〈0 | Dq | π〉 + 2N f 〈0 | Q5 | π〉 = 0. (4.138)

The substitution of (4.131) into (4.138) results in

〈0 | Q5 | π〉 = − 1

2
√

2

mu − md

mu + md
fπm2

π . (4.139)

A relation of this type (with a wrong numerical coefficient) was found in [18], the correct
formula was presented in [19]. From comparison of (4.135) and (4.139), it is clear that
it would be wrong to calculate ζ(0) (4.135) by accounting only for pions as intermediate
states: important are the constant terms, which reflect the necessity of subtraction terms
in dispersion relations and are represented by terms proportional to quark condensate in
(4.119). The cancellation of Goldstone boson pole terms and these constant terms result in
the Crewther theorem – the vanishing of ζ(0), when one of the quark masses, e.g. mu , is
going to zero.

The validity of Eq. (4.106) in the case of three light quarks, u, d and s, can be shown by
the same method in the limit of mu/ms � 1, md/ms � 1 [20].

4.3 Instantons in Minkowski space-time

The fact that instantons realize the tunneling process between vacuums with different topo-
logical (winding) numbers in Minkowski space-time was first mentioned by Gribov [21]
(see the remark in [22]). Independently, the tunneling phenomenon was revealed by Jackiw
and Rebbi [23] and Callan, Dashen, and Gross [24]. The explicit demonstration of the tun-
neling mechanism caused by instantons in Minkowski space-time was presented by Bitar
and Chang [25]. Below we follow Ref. [25].
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Consider the SU (2) subgroup of the SU (3) colour group. Use the matrix notation
(4.70) and

Gμν = −1

2
gτ aGa

μν, (4.140)

Gμν = ∂μAν − ∂ν Aμ − i[Aμ, Aν]. (4.141)

It is convenient to use also the chromoelectric and chromomagnetic field strengths:

Ei = G0i , (4.142)

Bi = 1

2
εi jk G jk, i, j, k = 1, 2, 3. (4.143)

The Lagrangian density has the form of

L = − 1

2g2
Tr G2

μν = 1

g2
Tr(E2 − B2). (4.144)

The Hamiltonian density is equal to

H = 1

g2
(E2 + B2). (4.145)

The topological (winding) number n in Minkowski space-time is given by (a = 1, 2, 3):

n = g2

32π2

∫
d4xGa

μνGa
μν = 1

4π2

∫
d4xTr(E B). (4.146)

Let us consider the vacuum transition from the state with n = 0 at t = t1 → −∞ to the
state with n = 1 at t = t2 → ∞. Introduce the family of field configurations characterized
by the t-dependent parameter λ(t). Then the determination of the tunneling amplitude is
reduced to the quantum mechanical problem of the transition through a potential barrier.
It can be shown [25] that the minimum of the action in such a transition arises in the case
where E(x, t) is proportional to B(x, t) and the coefficient of proportionality is indepen-
dent of x but dependent of t . (Note that this is different from the Euclidean case where we
had E = B.) So put

A0 = − xτ

x2 + λ2 + ρ2
λ̇(t), A = − λτ + [x, τ ]

x2 + λ2 + ρ2
, (4.147)

where the dot means differentiation with respect to t . The chromoelectric and chromomag-
netic fields are equal to

E = − 2ρ2λ̇

(x2 + λ2 + ρ2)2
τ , B = − 2ρ2

(x2 + λ2 + ρ2)2
τ (4.148)

and proportional to each other. The effective Lagrangian that depends on λ(t) is given by

L =
∫

d3x Tr(E2 − B2) = 3π2

g2

ρ4

(λ2 + ρ2)5/2
(λ̇2 − 1). (4.149)
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The Lagrangian (4.149) can be represented in standard quantum mechanical form:

L = 1

2
m(λ)λ̇2 − V (λ), (4.150)

where

m(λ) = 6π2ρ4

g2(λ2 + ρ2)5/2
, (4.151)

V (λ) = 3π2ρ4

g2(λ2 + ρ2)5/2
. (4.152)

Eqs. (4.150)–(4.152) correspond to the following Hamiltonian:

H = p2
λ

2m(λ)
+ V (λ), (4.153)

pλ = m(λ)λ̇. (4.154)

E = B = 0 at t → ±∞. Assume that λ(t) → ±∞ at t → ±∞. Calculate the winding
number n(t):

n(t) = 1

4π2

t∫
−∞

dt
∫

d3x Tr(E B). (4.155)

After substitution of (4.148) into (4.155) and integration we get:

n(t) = 3

4

[
2

3
+ λ(t)√

λ2(t)+ ρ2

(
1 − 1

3

λ2(t)

λ2(t)+ ρ2

)]
. (4.156)

Evidently, n(t)t→−∞ → 0, n(t)t→+∞ → 1, i.e. the fields (4.147) result in a transition of
the vacuum from the state with winding number n = 0 to that with n = 1. The transition
amplitude e−S is given by the standard WKB formula:

S =
∞∫

−∞
dλ[2m(λ)V (λ)]1/2. (4.157)

Substitution of (4.151), (4.152) in (4.157) and integration leads to:

S = 6π2ρ4

g2

∞∫
−∞

dλ
1

(λ2 + ρ2)5/2
= 8π2

g2
. (4.158)

Eq. (4.158) coincides with (4.79) and supports the interpretation of the instanton as a min-
imal tunneling trajectory in the space of gluonic fields between vacuum states different by
one unit of winding number.
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4.4 Fermions in the instanton field. Atiyah–Singer theorem

Let us dwell on the consideration of quarks in the instanton field. It is clear that the interac-
tion of heavy quarks with instanton field and its contribution to the action are proportional
to 1/(mρ)2 and are small, since mρ � 1. (Here, m is the quark mass, ρ is the charac-
teristic instanton size, ρ ≈ 1.5 − 2.0 GeV−1.) For the light quarks there is the opposite
inequality: mρ � 1. Therefore, we can restrict ourselves to the first nonvanishing terms in
the expansion in powers of m. We will work in Euclidean space. The action of the fermion
field is given by Eq. (4.58). The functional integration of the action over the anticommuting
fermion fields results in the appearance of the determinant

− det(iγμ∇μ + im). (4.159)

If the eigenvalues of the operator −iγμ∇μ are denoted by λn ,

− iγμ∇μψn = λnψn, (4.160)

then (4.159) is reduced to

− det(iγμ∇μ + im) =
∏

n

(λn − im). (4.161)

(We consider the system embedded in a box, so the spectrum is discrete.) Generally, λn are
of the order of a characteristic hadronic scale and in the product on the right-hand side
of (4.161) m can be safely neglected compared with λn . However, there can be a special
case when some λn are zero. Let us show (see [6, 7, 12]), that in the instanton field one
zero-mode solution of Eq. (4.160) exists – u0(x), which corresponds to λ0 = 0,

− iγμ∇μu0 = 0. (4.162)

Decompose u0 into left-hand and right-hand two-component spinors χL and χR :

u0 = 1

2
(1 + γ5)χL + 1

2
(1 − γ5)χR, γ5 = γ1 γ2 γ3 γ4 = −

(
0 1
1 0

)
. (4.163)

Expressed in terms of χL , χR , Eq. (4.162) looks like

γ4
[
σ+
μ ∇μ(1 + γ5)χL − σ−

μ ∇μ(1 − γ5)χR
] = 0, (4.164)

where

σ±
μ = (σ ,∓i) (4.165)

(cf. (4.87)). As follows from (4.165),

σ+
μ ∇μχL = 0, (4.166)

σ−
μ ∇μχR = 0. (4.167)

Act on (4.166) with the operator σ−
ν ∇ν and on (4.167) with the operator σ+

ν ∇ν . The
result is:

− ∇2
μχL = 0, (4.168)
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− ∇2
μχR = −4στ

ρ2

(x2 + ρ2)2
χR . (4.169)

In the calculation we have exploited the relations for σ+
μ , σ

−
μ similar to (4.88) as well as

the commutator

[∇ν,∇μ] = i
g

2
τ aGa

νμ, (4.170)

the expression (4.97) for Ga
μν , and the identity η̄aνμηaνμ = 0. The operator −∇2

μ =
(−i∇μ)2 is equal to the sum of squares of Hermitian operators, i.e. its eigenvalues are pos-
itive. Therefore χL = 0. In (4.169), the state χR has spin I = 1/2 and isospin T = 1/2.
The matrices σ act on spin variables, the matrices τ on isospin variables. There are two
states with total spin + (colour) isospin J = I + T :

1

4
(σ + τ )2χR =

{
0
2

}
χR

J = 0
J = 1,

(4.171)

corresponding to στ = −3 and στ = 1. Only the first solution is suitable in (4.169)
because of the positivity of −∇2

μ. Its substitution into (4.169) gives:

∇2
μχR + 12ρ2

(x2 + ρ3)2
χR = 0. (4.172)

From (4.59), with λn replaced by τ n , and (4.97) we have:

∇2
μ = ∂2

∂x2
μ

− 3
x2

(x2 + ρ2)2
= 1

x3

∂

∂x
x3 ∂

∂x
− 3

x2

(x2 + ρ2)2
(4.173)

and the equation for χR(x2) takes the form of[
1

x3

∂

∂x
x3 ∂

∂x
− 3

x2

(x2 + ρ2)2
+ 12ρ2

(x2 + ρ2)2

]
χR(x

2) = 0. (4.174)

The solution of Eq. (4.174) is

χR = Aρ

(x2 + ρ2)3/2
, (4.175)

where A is a normalization constant. The expression (4.175) shall be multiplyed by the
colour – isospin wave function corresponding to J = 0:

χ0 =
[
χs

(
1

2

)
χc

(
−1

2

)
− χs

(
−1

2

)
χc

(
1

2

)]/√
2, (4.176)

where χs and χc are spin 1/2 spinors in the coordinate and colour–isospin spaces and the
arguments of χs are the spin projections. So, we have

u0(x) = A

2
(1 − γ5)

ρ

(x2 + ρ2)3/2
χ0. (4.177)

Normalizing u(x) by ∫
d4xu+u = 1, (4.178)
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we get finally

u0(x) = 1

2
(1 − γ5)

1

π

ρ

(x2 + ρ2)3/2
χ0. (4.179)

The fact that only the right-hand zero-mode solution survives in the instanton field, while
the left-hand solution vanishes, clearly indicates chirality violation.

Turn now to the proof of the important topological theorem – the Atiyah–Singer (or
index) theorem [26], which was derived in [27] within the framework of the instanton
approach (see also [12, 28, 29, 6, 30, 31]). Consider the anomaly condition (3.23) in QCD
and take the vacuum average in the instanton field. As was shown above, only one colour
state (related to spin) is contributing to the left-hand side of (3.23) and the factor Nc must
be omitted from the right-hand side of this equation. We have:∫

d4x Tr 〈0 | ∂μ jμ5(x) | 0〉 = g2

16π2

∫
d4x〈0 | Ga

μν G̃a
μν | 0〉. (4.180)

In the instanton field, the right-hand side of (4.180) is equal to

g2

16π2

∫
d4x〈0 | Ga

μν G̃a
μν | 0〉 = g2

16π2
· 32π2

g2
= 2. (4.181)

The left-hand side of (4.180) can be expressed in terms of the inverse Dirac operator:∫
d4x Tr 〈0 | ∂μ jμ5(x) | 0〉 =

∫
d4x∂μ Tr 〈0 | i � ∇−1(x, x)γμγ5 | 0〉

=
∫

d4x∇μ Tr

[∑
n

ψn(x)ψ+
n (x)

λn
γμγ5

]
=
∫

d4x Tr

[∑
n

ψn(x)ψ+
n (x)

λn
· 2λnγ5

]
,

(4.182)

where ψn(x) are the eigenfunctions defined by (4.160). (Quarks are assumed to be mass-
less.) The states with nonzero λn do not contribute to the sum in (4.182): at λn �= 0 the
function γ5ψn is also the solution of (4.160) with eigenvalue −λn , these two states being
orthogonal. So, only the zero-mode contribution survives and we have for the left-hand
side of (4.180)

2
∫

d4x Tr
[
γ5u0(x)u

+
0 (x)

] = −2. (4.183)

Since the formulae for anti-instantons are obtained by the substitution ηaμν → η̄aμν , it can
be easily shown that in the case of anti-instantons we would have +2 in (4.183) instead
of −2. For far-separated instantons and anti-instantons, the relations (4.181), (4.183) can
be generalized to

n = nL − nR, (4.184)

where n is the winding number defined above, nL and nR are the numbers of left-hand
and right-hand zero modes of Dirac equation (4.160). Eq. (4.184) is the Atiyah–Singer
(or index) theorem. This theorem has been proved in Ref. [26, 27], where its validity was
demonstrated in a much more general situation (mult-instanton solutions, etc.) than that
considered above. Eq. (4.184) does not alter for any number of massless flavours; if on the
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right-hand side of (4.184), nL and nR mean the numbers of zero modes for one flavour.
Indeed, in this case, both sides of (4.180) are multiplied by N f and this factor can be
cancelled.

4.5 The vacuum structure in QCD

It has been shown that in QCD there is an infinite number of vacuums, each of which
is characterized by a winding number n. The energies of all of them are equal. We will
use the notation "(n) for the wave function of such a vacuum. We assume that vacuum
wave functions are normalized, "+(n)"(n) = 1, and form a complete set. Therefore,
the arbitrariness in the wave functions reduces to the phase factors: "(n) → eiθn"(n),
where θ is real. Let us divide the whole Euclidean space into two large parts and suppose
that the field strengths are zero on the boundaries of each part, so that the potentials on
the boundaries are of pure gauge. This is just the condition which allows us to consider
the vacuum states in the two parts separately. The vacuum wave functions do not depend
on the volume, the only dependence on the volume which survives is the dependence on
windings numbers. If the winding numbers of the two parts of space are n1 and n2 and
their wave functions are eiθn1"(n1) and eiθn2"(n2), then the wave function of the whole
space is

eiθn1+n2"(n1 + n2) = eiθn1"(n1)e
iθn2"(n2). (4.185)

Since

"(n1 + n2) = "(n1)"(n2). (4.186)

we get the equation

θn1+n1 = θn1 + θn2 . (4.187)

The solution of (4.187) is

θn = nθ. (4.188)

Therefore, the vacuum wave function in QCD, which is the superposition of all vacuum
states with different winding numbers, has the form of

"(θ) =
∑

n

eiθn"(n). (4.189)

This state is often called the θ -vacuum. The θ -vacuums with different θ are orthogonal:

"+(θ1)"(θ2) = 0. (4.190)

This statement directly follows from (4.189), because (4.189) can be considered as a
Fourier transformation. Within the framework of QCD, the states with different θ form
different worlds – transitions between them are strictly forbidden. The vacuum state "(θ)
is similar to the states in a periodic potential in quantum mechanics as discussed in
Section 4.1 and reminiscent of the Bloch waves of electrons in a crystal. The energies
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of the θ -vacuums form bonds as a function of θ , like in the periodic potential in quantum
mechanics but without transitions between different levels.

The vacuum state "(θ) can be reproduced if (in Minkowski space-time) the term

Lθ = g2θ

32π2
Gμν G̃μν (4.191)

is added to the standard QCD Lagrangian. Eq.(4.191) explicitly demonstrates that θ is
an observable quantity. It can be determined by measuring the correlator of topological
currents Q5 ∼ Gμν G̃μν , which enters ep polarized scattering. (See Section 6.9.6.) The
term (4.191) violates P and T -invariance, but conserves C . (The possibility of P and T
violation and C conservation was studied many years ago [32].) The strongest upper limit
on θ was found from searches of the neutron electric dipole moment:

| θ | <∼ 10−9. (4.192)

Within the framework of QCD, no arguments have been proposed to explain why θ is so
small or even equal to zero.

4.6 The pre-exponential factor of the instanton action. The dilute gas
instanton model

The calculation of the pre-exponential factor of the instanton action was done by ’t Hooft
[12] in two-loop approximation; the qualitative description of the calculation – without
numerical factors – is presented in the review [7]. We skip here the details of the ’t Hooft
calculation and mainly follow [7]. Our goal is to present a reasonable model for instanton
density in QCD vacuum based on the results of this calculation which could be used to
estimate instanton contributions in various processes.

Consider first the gluonic part of the action. According to the standard procedure, expand
the fields Aμ around the instanton solution:

Aa
μ = Aa

μ,ins + aa
μ (4.193)

and treat aa
μ as a perturbation. The action, up to the second order terms in aa

μ, has the form

S(A) = S0 + 1

2

∫
d4x aa

μ Lab
μν(Ains)a

b
ν = 8π2

g2

+ 1

2

∫
d4xaa

μ

[
D2aa

μ − DμDνa
a
ν − 2gεabcGb

μνa
c
ν

]
, (4.194)

where the instanton field must be substituted in Dμ and Ga
μν . Let us fix the gauge by adding

to the action the term
1

2

∫
d4xaa

μ(�L)ab
μν ab

ν = 1

2

∫
d4x(Dμaa

μ)
2 (4.195)

as well as the term representing the Faddeev–Popov ghosts:

�Sgh =
∫

d4x φ̄a Lab
ghφ

b =
∫

d4xφa D2φa, (4.196)
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where φa is a scalar anticommuting field. The instanton contribution to the vacuum–
vacuum transition 〈0T |0〉ins = 〈0|e−H T |0〉ins is of the form

〈0T |0〉ins =
[

det(L +�L)

]−1/2[
det Lgh

]+1

e−S0 . (4.197)

The determinant of the ghosts fields enters (4.197) to the positive power +1 because these
fields are anticommuting. The normalization of the transition amplitude is fixed by the con-
dition that in perturbation theory 〈0T |0〉pert = 1. The perturbative calculation corresponds
to Aμν = 0 and S0 = 0 and is divergent. So, the introduction of an ultraviolet cut-off
M is necessary. It is convenient to perform the calculations in the Pauli–Villars regular-
ization scheme and in the final results to go to the MS or MS schemes [12]. In this case,
M is the mass of the Pauli–Villars additional vector field which enters the Lagrangian with
negative metric. In order to achieve the desired normalization, let us divide (4.197) by the
perturbative amplitude. We have

〈0T |0〉ins
/〈0T |0〉pert =

[
det(L +�L)

det(L +�L)pert
M2

]−1/2 [ det Lgh

(det Lgh)M2

]
e−S0 , (4.198)

where the index M2 means that the calculation is performed with the cut-off M2.
Consider first the contribution of zero modes. As was shown in Sec. 4.1, each zero

mode results in the appearance of an integral over the corresponding collective coordi-
nate and contributes a factor proportional to

√
S0 to the transition amplitude. In the case

of the instanton in the SU(2) group, there are the following collective coordinates: four
coordinates of the instanton center x , the instanton size ρ, and three isospace rotations,
characterized by the Euler angles θ , ϕ, ψ . The spatial rotations are connected in a unique
way with rotations in isospin space. So, only one of these rotations shall be accounted for.
The perturbative factor [det(L + �L)]1/2 in (4.198) contributes a factor of M for each
collective coordinate. We have

〈0T |0〉ins

〈0T |0〉pert
∼
∫

d4xcdρ · M8ρ3
(√

S0

)8
e−S0 . (4.199)

The factor ρ3 arises from the Jacobian of the transition from the spatial integration to
the integration over Euler angles. Eq. (4.199) can be rewritten as:

〈0T |0〉ins

〈0T |0〉pert
= Const

∫
d4xc

ρ5

(
8π2

g2
0

)4

e−8π2/g2
0+8 ln Mρ+ , (4.200)

where e gives the contributions of the non-zero modes. In (4.200), g2
0 is the bare cou-

pling constant, defined at the cut-off value M2, g2
0 = g2(M2). The renormalization group

requires that only quantities covariant under transformations of this group (in this case,
the effective charge g2(ρ)) can enter the final result). This requirement determines without
any calculations the non-zero mode contribution = (2/3) ln Mρ. (Of course, the explicit
calculation confirms this value. Note that the account of the one-loop perturbative diagram
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Fig. 4.5. The schematical representation of the matrix of SU (3) generators. The SU (2)
subgroup generators are in the left-upper corner; the generators of SU (3), which touch
SU (2) variables but are not SU (2) generators, are marked by crosses.

is sufficient [12, 7]). Therefore, in the case of the SU (2) colour group – which is the case
studied up to now – we have the exponential factor equal to

− 8π2

g2(ρ)
= − 8π2

g2(M)
+ 8 ln Mρ − 2

3
ln Mρ = − 8π2

g2(M)
+ 22

3
ln Mρ. (4.201)

If the SU (2) group is a subgroup of the SU (3) colour group, then additional zero
modes and the corresponding collective coordinates appear. They are related to SU (3)
generators which touch the SU (2) subgroup variables. (They are marked by crosses in
Fig. 4.5, schematically representing the matrix of the SU (3) generators.) As is clear from
Fig. 4.5, there are four such generators and the total number of zero modes and collec-
tive coordinates is twelve. This number is exactly equal to the coefficient in front of the
“antiscreening” logarithm in the formula for 8π2/g2(ρ) in the SU (3) colour group. After
adding the nonzero-mode contribution, the effective charge for SU (2) instantons in the
SU (3) colour group arises in the exponent, we get:

〈0T |0〉inst

〈0T |0〉pert
= Const

∫
d4xcdρ

ρ5

(
8π2

g2
0

)6

e
8π2

g2(ρ) . (4.202)

A one-loop calculation is needed in order to find the Const in (4.202). Such calculation
was performed by ’t Hooft [12] (see also [7]). The result is

〈0T |0〉ins

〈0T |0〉pert
=
∫

d4xc dρ

ρ5
dg(ρ), (4.203)

where the instanton density dd(ρ) caused by the gluon action is given by

dg(ρ) = c1

(Nc − 1)! (Nc − 2)!
[

2π

αs(ρ)

]2Nc

e
2π
αs (ρ)

−c2 Nc , (4.204)

Nc = 3 is the number of colours, and αs(ρ)must be expressed in terms of the one-loop per-
turbative formula. The constant c1 = 0.466, the constant c2 depends on the regularization
scheme and is equal to



4.6 The pre-exponential factor of the instanton action 137

in the Pauli–Villars regularization scheme: c2 = 1.679,
in the MS dimensional regularization: c2 = −2.042,
in the MS dimensional regularization: c2 = 1.54.

Turn now to the account for the quark contribution to the pre-exponential factor. It is
evident that the heavy quark contribution is suppressed by the factor 1/(mqρ)

2, where mq

is the heavy quark mass, and can be neglected. Then light quarks give rise to the factor

F =
N f∏
f

det(−iγμ∇μ − im f )ins

det(−iγμ∇μ − i M)pert
, (4.205)

where the product is taken over the light quark flavours u, d, s, N f = 3 is the number of
light quarks. The role of light quarks in the exponential e−S0 is clear: the coupling constant
αs(ρ) is expressed by the formula which accounts for the light quarks. Separate the factor
corresponding to the zero-mode contribution in (4.205):

F = mumdms

M3

N f

�
det′(−iγμ∇μ)ins

det′(−iγ∇μ − i M)pert
, (4.206)

where the determinant corresponding to nonzero modes is denoted by det′. Since m f ρ � 1
and for nonzero modes λn ∼ 1/ρ, we have neglected m f in det′. The factor 1/M3 cannot
appear in the final result due to renormalization arguments: it must be absorbed in the
definition of αs(ρ) and for dimensional reasons should be replaced by ρ3. The instanton
density d(ρ) which arises from gluons and light quarks is equal to

d(ρ) = dg(ρ)dq(ρ), (4.207)

dq(ρ) = mumdmsρ
3ec f N f , (4.208)

dg(ρ) is given by (4.204), where αs(ρ) accounts for gluons and quarks, and c f = 0.292
for the Pauli–Villars regularization, c f = −0.495 for the MS scheme, and c f = 0.153 for
the MS scheme [12, 7].

Consider the ρ-dependence of the instanton contribution to the vacuum transition
amplitude. Eqs. (4.203), (4.204), (4.207), (4.208), together with the one-loop relation

2π/αs(ρ) ∼ −9 ln ρ, (4.209)

give

〈0T |0〉inst ∼ ρ7. (4.210)

The amplitude increases very steeply with ρ ! In Ref. [33] an attempt was made to account
for the influence of the QCD vacuum structure – namely, the persistence of the quark
condensate – on the instanton density in the case of small-size instantons. The result was
(semi-quantatively) that for each quark flavour the quark mass should be replaced by

mq → mq − 2

3
π2〈0|q̄q|0〉ρ2 (4.211)
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(mq and 〈0|q̄q|0〉 are normalized at μ = ρ−1). At ρ > 1 GeV−1, the last term in (4.211)
overwhelms the first one in the case of u and d quarks and is of the same order as the first
term in the case of s quarks. (The numerical value of 〈0|q̄q|0〉 is given in Section 6.2).

One may guess that instantons are responsible for the appearance of quark condensates
in QCD. Consider the case of one quark flavour. Differentiation with respect to m of the
vacuum–vacuum amplitude gives, according to (4.58),

i
∂

∂m
〈0T |0〉 =

∫
d4x 〈0T |ψ̄ψ |0〉 c, (4.212)

where the constant c is independent of m in the limit m → 0. On the other hand, the
differentiation of (4.206) or (4.207) results in a constant independent of m in the same
limit:

i
∂

∂m
〈0T |0〉 = Const. (4.213)

Comparison of (4.212) with (4.213) shows that the quark condensate is nonvanishing in
the instanton field in the limit of massless quarks. The case of several light quarks is
less certain because additional factors, proportional to light quark masses, appear in the
instanton density (4.208). But we come to the same conclusion if the substitution (4.211)
holds true.

Substitution of (4.211) into (4.208) leads to an even stronger increase of 〈0T |0〉inst with
increasing ρ than given by (4.210). Physically, it is clear that such a steep increase cannot
continue in a large interval of ρ: it also must be damped very sharply. So one can expect
that 〈0T |0〉 as a function of ρ is concentrated near some value ρ = ρc and a reasonable
model of 〈0T |0〉 is

〈0T |0〉 =
∫

d4xc n0δ(ρ − ρc)dρ, (4.214)

where n0 is a constant (see [30, 34] and references therein).
In such a model, it is assumed that there is a dilute gas of noninteracting instantons.

Therefore, the necessary condition of the validity of the model is n0ρ
4
c � 1. The upper

limit on the constant instanton density n0 can be found from the value of the gluon conden-
sate if it is supposed that the contribution to the gluon condensate of other nonperturbative
fluctuations, besides instantons, is positive [30]. Then

〈0|αs

π
G2
μν |0〉 >

∫
d4xc

αs

π
(G2
μν)inst n0δ(ρ − ρc) = 8 n0. (4.215)

When deriving (4.213), the expression (4.144) for (Ga
μν)inst was exploited with the

substitution x → x − xc. Using the value

〈0|αs

π
G2
μν |0〉 = (0.005 ± 0.004) GeV2, (4.216)

(Table 1, Section 6.2), we have

n0 < 0.001 GeV4 = 0.62 fm−4. (4.217)
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The value of ρc has been estimated in various ways [30]. One way is the matching of
the low q2 behaviour of the correlator of topological currents ζ(q2) given by (4.153) and
(6.327) with its high q2 dependence found in the dilute instanton gas model [35]. These
estimates show that

ρc = (1.0 − 2.0) GeV−1 = (0.2 − 0.4) fm. (4.218)

If we put for n0 the highest value allowed by (4.217), then n0ρ
4
c = (1 ± 15) · 10−3 and

is small indeed. Note, that the dilute gas instanton model is a semiquantitative description
of the influence of instantons on physical amplitudes. For this reason, the parameters of
the model are not certain and slightly different values of the parameters can be used in the
description of different processes.

4.7 Quark propagator in the instanton field

The quark propagator in the instanton field in Euclidean space satisfies the equation

− i(γμ∇μ + m)S(x, y) = δ4(x − y), (4.219)

where the gluon field that enters the covariant derivative (4.59) is the instanton field. The
propagator can be represented as a sum over the complete set of eigenfunctions of the Dirac
operator:

S(x, y) =
∑

n

ψn(x)ψ+
n (y)

λn − im
, (4.220)

where λn are eigenvalues of the equation

− iγμ∇μψn = λnψn (4.221)

and it is assumed for simplicity that the system is in a box and the spectrum is discrete.
By applying the operator −i(γμ∇μ + m) to (4.220) one can easily convince oneself that
(4.220) satisfies Eq. (4.219).

S(x, y) can be expressed in terms of the spin 0 particle propagator (�(x, y) in the
instanton field [36]). Put

S = (−iγμ∇μ + im)G = G (−iγμ
←−∇ μ + im), (4.222)

where
←−∇ μ means the operator ∇μ acting to the left with the opposite sign of the derivative.

(The second equality in (4.222) follows from Hermiticity of S). G(x, y) obeys the second-
order equation [

−(γμ∇μ)2 + m2
]

G = δ4(x − y). (4.223)

If the field strength tensor is self-dual, Gn
μν = G̃n

μν , then the following equality holds:

(γ∇)2 1 + γ5

2
= ∇2 1 + γ5

2
. (4.224)
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The proof is straightforward. In the general relation

(γ∇)2 = ∇2 + g

2
σμν

λn

2
Gn
μν, (4.225)

the last term vanishes after multiplying by (1+γ5) if Gμν = G̃μν . Using symbolic notation
we can write:

G = 1

−(γ∇)2 + m2

1 + γ5

2
+ 1

−(γ∇)2 + m2

1 − γ5

2

= 1

−∇2 + m2

1 + γ5

2
+ 1

m2

[
1 + (γ∇) 1

−(γ∇)2 + m2
(γ∇)

]
1 − γ5

2

= 1

−∇2 + m2

1 + γ5

2
+ 1

m2

[
1 + (γ∇) 1

−∇2 + m2
(γ∇)

]
1 − γ5

2
. (4.226)

In the last equality, the anticommutativity of (γ∇) with of γ5 was exploited and (4.224)
was used. S can be found from G (4.226) with the help of the identity

(γ∇)
[

1 + (γ∇) 1

−∇2 + m2
(γ∇)

]
1 − γ5

2
= m2

−∇2 + m2
(γ∇)1 − γ5

2
. (4.227)

The final formula for S follows from (4.222), (4.226), (4.227) [36]:

S = (−iγ∇ + im) G = (−iγ∇ + im)
1

−∇2 + m2

1 + γ5

2
− i

1

−∇2 + m2
(γ

←−∇ )1 − γ5

2

+ i

m

[
1 + (γ∇) 1

−∇2 + m2
(γ

←−∇ )
]

1 − γ5

2
. (4.228)

In Eq. (4.228), S expressed in terms of the propagator (Green function) of a scalar particle
in the instanton field

� = 1

−∇2 + m2
. (4.229)

In the limit m → 0, the last term in (4.228) represents the contribution of zero modes. The
operator

P =
[

1 + γ∇ 1

−∇2
γ
←−∇
]

1 − γ5

2
(4.230)

is the projection operator on the zero-mode subspace, since

(γ∇)P = P (γ
←−∇ ) = 0, P2 = P. (4.231)

At m → 0, the last term in (4.228) tends to (i/m)P . Its singularity in m is attributed
to the zero-modes contribution. But, as was demonstrated in the previous subsection, the
determinant is proportional to m and the product det ·S tends to a finite limit at m → 0. If
there are several quark propagators in the amplitude under consideration, then, according
to the Pauli principle, different quarks cannot be simultaneously present in the same zero-
mode state and the singularity is absent in this case as well.



4.8 Appendix 141

The quark propagator in Eq. (4.228) is expressed in terms of the propagator �(x, y) of
a scalar particle with SU (2)c colour spin 1/2, which was defined by (4.229). �(x, y) was
calculated in Ref. [37]. We present here the final result, where the terms of order m2 were
neglected (in the regular gauge):

�(x, y) = 1

4π2

1

(x − y)2

[
ρ2 + xy + iηaμνxμyντ

a
] 1

(x2 + ρ2)1/2

1

(y2 + ρ2)1/2
.

(4.232)
The center of the instanton is chosen at the origin. In the limit y → x � ρ, �(x, y) tends
to the free propagator of the scalar particle:

�(x, y)→ 1

4π2

1

(x − y)2
. (4.233)

The terms of order m2 were accounted for in [38, 39]. The quark propagator in the anti-
instanton field can be obtained from (4.228), (4.232) by the replacements γ5 → −γ5 and
ηaμν → η̄aμν .

The knowledge of the quark propagator allows one to calculate polarization operators
of the vector and axial quark current in the instanton field – objects which are interesting
from various points of view. The polarization operator in 1-loop approximation is given by

�μν(x, y) = −i
∫

d4z Tr[�μS(x, z)�νS(z, y)]

− i
∫

d4z Tr[�μS(x, z)] Tr[�νS(z, y)], (4.234)

where �μ = γμ stands for the vector current and �μ = γμγ5 for the axial current. The
second term on the right-hand side of (4.234) vanishes in the case of the vector current. The
last term in (4.228) can contribute to (4.234) only if it is multiplied by a term proportional to
m that arises from another propagator, otherwise the result will be equal to zero. Therefore,
�μν is of order m0 at small m, the next correction is of order m2ρ2, and, as a rule, can be
disregarded.

The polarization operators of the vector and axial currents in the instanton fields were
calculated by Andrei and Gross [40]. The results of these calculations are used in Chapter 6.

4.8 Appendix

Relations among ηaμν and η̄aμν symbols

ηaμν = 1

2
εμναβηaαβ, ηaμν = −ηaνμ, ηaμνηbμν = 4δab,

ηaμνηaμλ = 3δνλ, ηaμνηaμν = 12,

ηaμνηaγ λ = δμγ δνλ − δμλδνγ + εμνγλ,

εμνλbηαγ b = δγμηaνλ − δγ νηaμλ + δγληaμν,
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ηaμνηbμλ = δabδνλ + εabcηcνλ,

εabcηbμνηcγ λ = δμγ ηaνλ − δμληaνγ − δνγ ηaμλ + δνληaμγ ,

ηaμνη̄bμν = 0, ηaγμη̄bγ λ = ηaγ λη̄bγμ.

Problems

Problem 4.1

Find the relation of quark condensate to spectral function of the vacuum expectation value
of quark correlator for massless quark.

Solution
Define (in Euclidean space-time):∑

(x, y) = 〈0|ψ(x)ψ+(y)|0〉 (1)

and

1

V

∫
d4x

∑
(x, x) =

∑
(0, 0) =

∞∫
−∞

ρ(λ)dλ

m − iλ
, (2)

where V is the 4-volume of the Euclidean space, V → ∞, λ – are the eigenvalues of
Dirac operator given in (4.160), ρ(λ) is the spectral function. (The continuous spectrum is
considered.) ρ(λ) is symmetrical, ρ(λ) = ρ(−λ).

∑
(0, 0) = 2m

∞∫
0

ρ(λ)

m2 + λ2
dλ (3)

In the limit m → 0
2m

m2 + λ2
→ πδ(λ) (4)

and ∑
(0, 0) = −〈0|ψ+ψ |0〉 = πρ(0) (5)

Quark condensate is determined by zero-mode contribution of Dirac equation (4.160).
(Eq.(5) is called Banks-Casher relation [41], see also [31].)
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5

Divergence of perturbation series

It is well known that in Quantum Field Theory the perturbation series is divergent. In the
case of QED a physical argument supporting this property was suggested by Dyson [1]. He
performed an analytic continuation of physical quantities O(αe) to negative values of the
fine structure constant αe = e2/4π . In the world with αe < 0 particles with the same sign
of the electric charge would attract each other. In this case, the energy is not restricted from
below and the vacuum state is unstable because it would decay into two clouds of electrons
and positrons separated by large distances. Indeed, the attractive Coulomb potential inside
the cloud with a size r̄ consisting of k electrons would grow proportional to αek(k−1)/(2r̄)
for r̄ ∼ 1/me at large k and would exceed their rest mass k me at some k = k0. This means
that the observables O(αe) should have singularities at αe < 0, leading to the divergence
of the perturbation series

∑
(−αe)

k Ck . Moreover, according to Dyson, the coefficients Ck

should grow at large orders k as b−k
0 k! which is proportional to the number of Feynman

diagrams. Similar estimates for Ck were obtained in scalar field models [2].
A transparent physical example of the divergent perturbation series in QED is the vac-

uum polarization in the external magnetic field H [3]. The corresponding contribution to
the Lagrangian was calculated by Schwinger [4]:

L = − 1

8π2

∞∫
0

e−m2s ds

s3

[
e s H ctnh(e s H)− 1 − 1

3
(e s H)2

]
, (5.1)

where m and e are the electron mass and charge. In this case, it is easy to calculate the
coefficients of the perturbative expansion for large k [3]:

Ck = (−1)k−1 2 · 4k (k − 3)!
πk

H2k

m4k−4
. (5.2)

Note that such a series is Borel summable. Indeed, if we perform the Borel transforma-
tion of the physical quantity O(αe)

O(αe) =
∫ ∞

0

db

αe
B(b) e−b/αe , B(b) =

∑
k

(−b)k
Ck

k! , (5.3)

then the function B(b) has singularities at b = −b0 < 0 outside the region of integration
b > 0 and therefore there is no ambiguity in the integration over b. A similar situation

145
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related to an underbarrier transition to the new vacuum state for a negative coupling con-
stant g is valid also in the case of the anharmonic oscillator in quantum mechanics [5].
Strictly speaking, the Dyson argument can be applied only to scalar electrodynamics (SED)
because in QED the effects related to Fermi statistics lead to less rapidly growing terms
Ck ∼ √

k! (see the discussion in Section 5.8). Formally, the Dyson picture is related to the
existence of classical solutions of the Euler–Lagrange equations in Euclidean space-time
[6],[7],[8],[9]. These solutions describe underbarrier transitions between different vacuum
states and the asymptotic behaviour of perturbation theory coefficients can be obtained
with the use of the saddle-point approach to calculate the functional integral [6]. The pos-
sibility to use this approach was discussed initially in Ref. [10]. Another method is based
on finding the dicontinuity of physical quantities considered to be analytic functions of
the coupling constant [11]. In the case of non-Abelian gauge theories, there is an infi-
nite number of vacuum states with different topological numbers and the instability of the
perturbative vacuum arises already at positive αc, which leads to the Borel nonsummabil-
ity of the series ∼ ∑

αc
k(2π)−k k! (cf. (5.3)). Here, the field configuration responsible

for the divergence of perturbation theory corresponds to a weakly interacting instanton–
anti-instanton pair having a vanishing topological charge. The singularity of B(b) in the
non-Abelian models is situated on the path of integration at bI = 2π .

But there is another reason for the divergence of perturbation theory. Namely, it turns
out that at large orders k there are particular Feynman diagrams giving factorial contri-
butions ∼ k! to observables [12],[13],[14],[15]. Such diagrams contain logarithmically
divergent subgraphs responsible for the renormalization of the coupling constant. These
contributions generate Borel plane singularities known as renormalons. A first example of
the renormalon contribution was found by Lautrup [12]. He considered the electron vertex
function

�ν = γν f (q2)− 1

2m
σνρqρ g(q2), (5.4)

where q is the momentum transfer, f (q2) and g(q2) are the electric and magnetic
formfactors. The anomalous magnetic moment can be calculated in perturbation theory
g(0) = αe/(2π) + . . .. The Feynman integral of the one loop contribution to g(0) is
rapidly convergent at the large photon virtuality p2 → ∞:

g(0) ∼ αe

π

∫ ∞

m2
m4 dp2

p6
d(ρ) ∼ αe

π

∫ ∞

0
dρ e−2ρd(ρ), ρ = ln

p2

m2
, (5.5)

where d(ρ)/p2 is the photon Green function. Insertion of the asymptotic expression for
the Green function d(ρ) in leading logarithmic approximation αeρ ∼ 1 gives factorially
growing coefficients of the perturbation series for g(0):

g(0) = αe

π

∞∑
k=0

( αe

3π

)k
ck, ck ≈

∫ ∞

0
dρ e−2ρρk = k!

2k+1
. (5.6)

This series is not Borel summable, because the function B(b) contains a singularity at
b = 6π > 0. Note that in the case of the Dirac formfactor slope f ′(0) the coefficients ck
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of similar multi-loop diagrams contain an extra factor 2k and the corresponding singularity
of B(b) in the b-plane is situated at b = 3π .

In QCD, there are ultraviolet and infrared renormalons appearing due to the nonvanish-
ing coefficient β0 of the Gell-Mann–Low function. Ultraviolet renormalons are similar to
the above b-plane singularity in QED; they are situated at negative values of b

bu = −4π/β0, β0 = 11

3
Nc − 2

3
n f (5.7)

and do not lead to any problem with the Borel resummation (5.3).
Infrared renormalons exist due to logarithmic singularities of the gluon polarization

operator�g(k2) at small k2. For massless gluons and quarks, its behaviour in infrared and
ultraviolet limits coincides up to a common sign. For the particular case of radiative cor-
rections to the photon polarization operator, the pole 1/k2 in the propagator of the virtual
gluon is cancelled at small k because of gauge invariance and the corresponding renor-
malon singularity is situated on the integration contour in (5.3) at bi = 8π/β0 = −2bu .
In this case, the Borel resummation contains an uncertainty [16],[17], [18] �O(αc) ∼
exp(−bi/αc) ∼ �4

QC D/Q4, which has the same functional dependence as the gluon

condensate contribution ∼ 〈0 | G2
μν | 0〉/Q4. Therefore, the divergence of the pertur-

bation series is related to nonperturbative effects arising from the nontrivial structure of
the physical vacuum state.

Note that renormalon singularities exist at smaller values of b than instanton–anti-
instanton ones and therefore generally they are more important. But these singularities
are absent in the logarithmically divergent contributions to the invariant charge and matrix
elements of local operators satisfying the Callan–Symanzik equations [13]. In this section,
we discuss the methods of calculating the asymptotically large orders in scalar field mod-
els, in QED, in the electroweak model, and in QCD. These results are of practical interest
because at present some physical quantities in the standard model are computed in many
loops and there is a need to estimate them in higher orders. In the first section, we discuss
the ultraviolet renormalons from the point of view of the operator product expansion and
of the renormalization group.

5.1 Renormalization group approach to renormalons

Let us consider the ultraviolet renormalon singularities in QED and QCD. The fine struc-
ture constant in both cases will be denoted by α. In the general case, the renormalons
appear in the loop integrals of the type (5.5) where the integral over the momentum p is
rapidly convergent at large p2 as

∫
d4 p /p2r for r = 3, 4, . . .. Inserting the logarithmic

corrections ∼ (α ln(p2/m2))k in the loop vertices and in the propagators we find a facto-
rial behaviour ∼ k! of the large-order coefficients. Generally, the renormalon contribution
can be written as an integral over the particle virtuality p2 of the expression proportional
to an effective vertex �. For this vertex, p2 plays the role of an ultraviolet cut-off. The
vertex has also external lines corresponding to particles of moderate virtuality. We con-
sider a gauge invariant amplitude F(α) (for example, the matrix element of the product of



148 Divergence of perturbation series

four electromagnetic currents). The Feynman integral for this case after integration over
the angles can be written as follows (cf. (5.5)):

A(αe) =
∫ ∞

0
dρe−(r−2)ρ�(α, ρ), r = 3, 4, . . . , (5.8)

where �(α, ρ) is the corresponding vertex and ρ = ln p2

m2 . The parameter r = 3, 4, . . . is
related to the canonical dimension of the gauge-invariant operator described by the matrix
element �.

We consider below the ultraviolet renormalon contributions (5.8) from the point of view
of the operator product expansion [13],[15],[18]. Within the framework of this approach,
�(α, ρ) can be written as a product of the coefficient function R(α(ρ)) (being generally a
series in the running coupling constant α(ρ)) and the matrix element M(α, ρ) of a local
operator with ultraviolet cut-off p2:

�(α, ρ) = R(α(ρ))M(α, ρ), R(α(ρ)) = r1α(ρ)+ r2α
2(ρ)+ . . . . (5.9)

We have chosen the normalization point μ entering in R and M equal to |p|. In this case,
the function R(α(ρ)) does not contain an additional dependence on ln p2/μ2.

The quantity A(αe) is expanded in a perturbation series

A(α) =
∞∑

n=0

ak α
k, (5.10)

where the coefficients an can be calculated using the following contour integral represen-
tation (cf. [6]):

ak = −
∫ ∞

0
dρ e−(r−2)ρ

∫
L

dα

2π i αk+1
�(α, ρ). (5.11)

The closed contour L goes around the point α = 0 in clockwise direction. One should
integrate first over α and then over ρ because generally A(α) contains singular contribu-
tions at α = 0 which cannot be expanded in a series in α. In principle, �(α, ρ) has also
nonanalytic terms related to instanton-type field configurations which will be discussed
in the following sections. The positions of the renormalon and instanton singularities are
opposite in sign. For large k � 1, it is possible to calculate the integrals over α and ρ by
the saddle-point method. Below we construct the functional for finding this saddle-point
contribution.

The renormalization group equations

∂

∂ρ
α(ρ) = −β(α(ρ)), ∂

∂ρ
ln M(α, ρ) = γ (α(ρ)), (5.12)

with the functions β(α) and γ (α) calculated in perturbation theory,

β(α) = β0α
2 + β1α

3 + . . . , γ (α) = γ0α + γ1α
2 + . . . , (5.13)

can be written in integral form

F(α(ρ))− F(α) = ρ, ln M(α, ρ) =
∫ ρ+F(α)

F(α)
dx f (x), f (x) = γ (F−1(x)), (5.14)
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where

F(α) = −
∫ α dα′

β(α′)
= 1

β0 α
+ β1

β2
0

lnα + . . . , f (x)x→∞ = γ0

β0

1

x
+ . . . . (5.15)

We have neglected above the finite renormalization effects fixing integration constants in
accordance with the conditions

α(0) = α, M(α, 0) = 1, (5.16)

because at the saddle point for integral (5.11) α is small for large k as will be shown below.
One can verify that M(α, ρ) satisfies the Callan–Symanzik equation(

− ∂

∂ρ
− β(α) ∂

∂α
+ γ (α)

)
M(α, ρ) = 0.

Its general solution can be written in the form of

ln M(α, ρ) =
∫ ρ+F(α)

dx f̃ (x)−
∫ F(α)

dx f (x),

where f̃ (x) is an arbitrary function. But from our normalization condition (5.16) for
M(α, 0) we find that f̃ (x) = f (x) in accordance with the above integral representation
(5.14) for M(α, ρ).

One can write the coefficient ak (5.11) in the form of

ak = −
∫ ∞

0
dρ
∫

L ′
β(α) dy

2π i α
χ(y) e− ∫ F(α) dx f (x) esk (α), (5.17)

where the new integration variable is a function of the invariant charge

y = ρ + F(α) = F(α(ρ)). (5.18)

We have introduced also the functions

sk(α) = −k lnα + (r − 2) F(α), (5.19)

χ(y) = exp

(
−(r − 2)y +

∫ y

dx φ(x)

)
, (5.20)

φ(x) = f (x)− β(F−1(x))
∂ ln R(F−1(x))

∂F−1(x)
, (5.21)

where

φ(x)x→∞ ≈ −(1 − γ0

β0
)

1

x
. (5.22)

The contour L ′ goes in clockwise direction along a large circle to the right of all singular-
ities of the integrand. This contour can be deformed in such way that the essential values
of y on it are of the order of unity.

In Eq. (5.17), the integral over ρ at large k can be calculated by the saddle-point method.
The position of the saddle point is given by the condition
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δsk (̃α) = − k

α̃
− r − 2

β(̃α)
= 0. (5.23)

For fixed y this equation defines the saddle point in the integral over ρ. Because α̃ is small,
we can calculate it using perturbation theory:

α̃ ≈ −r − 2

β0 k
− β1

β0

(
r − 2

β0 k

)2

, ln α̃ ≈ ln
r − 2

−β0 k
+ β1

β2
0

r − 2

k
. (5.24)

One can extract from the integral a smooth factor that depends on α̃ and expand the function
sk(α) in a series in the small fluctuations �ρ = ρ − ρ̃ near the saddle point:

sk(α) ≈ k ln
−β0 k

e (r − 2)
− (r − 2)

β1

β2
0

ln
−β0k

r − 2
− (r − 2)2

2 k
(�ρ)2.

Therefore, the contour of the integration over �ρ goes in the right direction for ρ̃ to be a
saddle point.

After taking the Gaussian integral over the fluctuations �ρ we obtain

ak ≈
√

2π

k

( −β0 k

(r − 2) e

)k− (r−2)β1
β2

0 e
− (r−2)β1

β2
0

(
k

r − 2

)− γ0
β0

c(r − 2), (5.25)

where

c(r − 2) = −
∫

L ′
d y

2π i
R(F−1(y)) exp

(
−(r − 2) y +

∫ y

f (x) d x

)
. (5.26)

Note that in the case of QCD, β0 > 0 and ak contains the factor (−1)k leading to the Borel
summability of the perturbation series.

Thus, generally, the common factor c(r − 2) in the renormalon contribution can be
found only if we can take into account nonperturbative effects. In principle, c(r − 2) could
be zero at least for some operators [19],[20]. At r → 2, large values of y are essential and
it is possible to use perturbation theory to calculate c(r − 2):

c(r−2) =
∫

L ′
d y

2π i

r1

β0
y
−1+ γ0

β0 exp (−(r − 2) y)=− r1

β0
�−1(1− γ0

β0
) (r −2)

− γ0
β0 , (5.27)

where r1 was defined in Eq. (5.9). Although for all local operators r − 2 ≥ 1, this
perturbative result can be considered as an argument for nonvanishing c(r − 2) in the
general case.

From Eq. (5.3) one can find the singularity of the Borel transformed function

B(b) ≈ �
(

− (r − 2)β1

β2
0

− γ0

β0

)
(−β0)

− (r+2)β1
β2

0 (r − 2 + β0b)
(r−2)β1
β2

0
+ γ0
β0 c(r−2). (5.28)

Therefore, in the general case, the singular part of the Borel transformation is factorized
and proportional to the renormalon “residue” c(r −2). This factorised expression gives the
possibility to calculate the discontinuity of B(b) situated in QED on the path of integration
at b > (r − 2)/|β0|.
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Let us return to A(α) written in the form of

A(α) = e(r−2)F(α)−∫ F(α) dx f (x)
∫ ∞

F(α)
dy e−(r−2)y+∫ y dx φ(x). (5.29)

This satisfies the renormalization group equation

− R(α) =
(

−β(α) d

d α
− (r − 2)+ γ (α)

)
A(α). (5.30)

Therefore, there exist such functions R(α) for which the renormalons are absent (in par-
ticular c(r − 2) = 0). For given R(α), this differential equation has a solution with the
following boundary condition

lim
F(α)→∞

(
e−(r−2) F(α)+∫ F(α) dx f (x) A(α)

)
= 0. (5.31)

In the leading logarithmic approximation, the invariant charge α(ρ) has a Landau pole
in QED at ρ = 1/|β0| lying on the path of integration over ρ. Taking into account that
generally γ0 �= 0 and β1 �= 0, we find that this pole becomes a cut, but the integral over
ρ for A(α) still contains an uncertainty related to different ways of integrating around
this singularity. One can believe that for the complete theory the singularities y± of the
integrand move into the complex plane from the real axis and are situated at symmetric
points Im y± = ±a. Because at large |y| the asymptotics of the integrand for c(r − 2) can
be calculated in perturbation theory due to the relation

exp
∫ y

dx φ(x) ≈ y
−(1− γ0

β0
)
,

these singularities should exist somewhere in the y-plane. Note that expression (5.8) in
QED, written in the form

A(α)=
∫ ∞

0
dρ G(ρ−�) e(r−2)F(α)−∫ F(α) dx f (x)c(r−2), �= − F(α) ≈1/α, (5.32)

where G(y) is given by

G(y) = e−(r−2)y+∫ y dx φ(x) 1

c(r − 2)
, (5.33)

can be interpreted as a dispersion relation. Indeed, at large ρ and�, the function G(ρ−�)
behaves like a smeared pole (ρ − �)−1 because it is large at a relatively small argument
and normalized due to (5.26) as ∫

L ′
dy G(y) = −2π i.

One can write an analogous dispersion-like representation also for the function B(b).
In the next sections, we discuss the divergence of the perturbation theory related to the

Dyson instability for various field models written in terms of functional integrals. It is
helpful to begin the discussion with a similar phenomenon existing for usual integrals.
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5.2 High-order estimates in zero-dimensional models

One of the reasons for the divergence of perturbation theory is related to the rapid growth
of the number of the Feynman diagrams at large orders k � 1. To estimate this number it is
helpful to consider a zero-dimensional scalar model with a quartic self-interaction term [8].
Its partition function is given by the integral

Z(g) =
∫ ∞

−∞
dx√
2π

exp(−S(x, g)) =
∞∑

k=0

Zk gk, S(x, g) = x2

2
+ g

4
x4, (5.34)

where

Zk = (−1)k

4kk!
∫ ∞

−∞
dx√
2π

exp

(
− x2

2

)
x4k = (−1)k√

π

�(2k + 1
2 )

�(k + 1)
(5.35)

and �(x) is the Euler gamma-function. The asymptotic behaviour of Zk is

lim
k→∞ Zk = (−1)k√

π k

(
4k

e

)k (
1 + O

(
1

k

))
. (5.36)

On the other hand, the same result can be obtained by applying the saddle-point method to
calculate the integral Zk :

lim
k→∞ Zk = 2

(−1)k√
2πk(k/e)k

exp
(−Sef f (̃x, k)

)√
∂2

(∂ x̃)2
Sef f (̃x, k))

. (5.37)

The factor 2 takes into account the contributions of two saddle points at x = ±x̃ ,

Sef f (x, k) = x2

2
− k ln

x4

4
,

∂

∂ x̃
Se f f (̃x, k) = x̃ − 4

k

x̃
= 0,

Sef f (̃x, k) = 2k − 2k ln(2k),
∂2

(∂ x̃)2
Sef f (̃x, k)) = 2, (5.38)

and we have integrated over the quantum fluctuations δx near the saddle point x = x̃ + δx .
One can represent Zk as an integral over x and g:

Zk =
∫

L

dg

2π ig

1

gk

∫ ∞

−∞
dx√
2π

exp(−S(x, g)) (5.39)

with the new effective action

Sef f (x, g, k) = S(x, g)+ k ln g. (5.40)

The closed contour of integration L goes in counterclockwise direction around the point
g = 0. The saddle point in the variables x, g is found from the equations

∂

∂ x̃
S(̃x, g̃) = x̃ + gx̃3 = 0, g̃

x̃4

4
+ k = 0 (5.41)

and is given by

x̃ = ±√
k, g̃ = −1

k
. (5.42)
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Note that the saddle point g̃ is situated at negative values of g. This is related to the
Dyson vacuum instability. Indeed, we can easily show that the function Z has a singularity
at g = 0 because the discontinuity on the cut g < 0 is nonzero:

�Z(g) =Z(g + iε)− Z(g − iε) =
∫ (−1+i)∞

−(1+i)∞
dx√
2π

exp(−S(x, g))

+
∫ (1−i)∞

(1+i)∞
dx√
2π

exp(−S(x, g)), (5.43)

where the contours of integration pass the region x ∼ 1. At small negative values of g
there are saddle points x̃ = ±1/

√−g on these contours and we find the following result
by calculating the Gaussian integrals over the fluctuations δx near these points:

lim
g→−0

�Z(g) = −i exp
1

4g
. (5.44)

One can write the dispersion relation for Z(g) in the form of

Z(g) =
∫ 0

−∞
dg′

2π i

�Z(g′)
g′ − g

+ subtractions (5.45)

and calculate the following contribution of the high-order terms of the saddle point at
g′ = −1/(4k)

lim
k→∞ Zk = (−1)k

∫ 0

−∞
dg′

2π i
(−g′)−k−1i exp

1

4g′ = (−1)k√
π k

(
4k

e

)k (
1 + O

(
1

k

))
.

(5.46)

Note that in this case we have a sign-alternating behaviour of the coefficients Zk ,
which leads to the possibility of summing the perturbation expansion using the Borel
transformation:

Z(g) =
∫ ∞

0

dz

g
B(z) e− z

g , B(z) =
∞∑

k=0

Zk

k! zk . (5.47)

The series for B(z) has a finite convergence radius |z| < 1/4 because the nearest singu-
larity B(z) ∼ ln (z + z0) of this function is situated at z0 = −1/4 beyond the region of
integration.

Let us consider now another integral, which can serve as a zero-dimensional model of
the partition function for the Higgs or Yang–Mills fields:

Z H (g) =
∫ ∞

−∞
dx√
π

exp(−SH (x, g)), SH (x, g) = x2(1 − λx)2, g = λ2. (5.48)

In this case, the action SH (x, g) besides x = 0 has another minimum at x = 1/λ = 1/
√

g
and therefore the perturbation expansion can be written as follows:

Z H (g) = 2
∞∑

k=0

Z H
k gk . (5.49)
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With the use of the generating function

exp
(

2 λx3 − λ2x4
)

=
∞∑

n=0

Hn(x)
(λx2)n

n! (5.50)

for the Hermite polynomials

Hn(x) = n!
[n/2]∑
m=0

(−1)m (2x)n−2m

m! (n − 2m)! = (−1)n ex2 dn

(dx)n
e−x2

(5.51)

one can derive the following expression for the coefficients Z H
k :

Z H
k =

∫ ∞

−∞
dx√
π

e−x2
H2k(x)

x4k

(2k)! = (4k)!
((2k)!)2

�(k + 1/2)

�(1/2)
. (5.52)

The perturbation series in this case is not Borel summable because the asymptotic
behaviour of the coefficients Z H

k ,

lim
k→∞ Z H

k = 1√
πk

(
16k

e

)k

(5.53)

does not contain the factor (−1)k .
Nevertheless, we can obtain for it a Borel-like representation. Indeed, let us consider the

following expression defined for purely imaginary λ (negative g):

Y H (g) = 1

2

∫ (1+i)∞

−(1+i)∞
dx√
π

exp(−SH (x, g))+ 1

2

∫ (1−i)∞

−(1−i)∞
dx√
π

exp(−SH (x, g)).

(5.54)

It has a singularity at g > 0 because its discontinuity on this cut is not zero:

�Y H (g) = Y H (g + iε)− Y H (g − iε) =
∫ i∞

−i∞
dx√
π

exp(−SH (x, g)). (5.55)

Therefore, Y H satisfies the dispersion relation

Y H (g) =
∫ ∞

0

dg′

2π i

�Y H (g′)
g′ − g

+ subtractions. (5.56)

Its real part on the cut g > 0 equals

Re Y H (g) = Y H (g + iε)+ Y H (g − iε)

2
= Z H (g). (5.57)

Therefore, the partition function Z H (g) is represented as a dispersion integral for Y H (g)
with a principal value prescription for g > 0. The discontinuity�Y H (g) can be calculated
at g → +0 by the saddle-point method. The position of the corresponding saddle point is
found from the equation

∂

∂ x̃
SH (̃x, g) = 1 − 2λx̃ = 0. (5.58)
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There are two saddle points since λ = ±√
g but only one of them should be taken into

account, for example x̃ = 1/(2
√

g). Near this point, SH (x, g) has the form of

SH (̃x, g) = 1

16g
− 1

2
(δx)2, x = x̃ + δx (5.59)

and the calculation of the Gaussian integral over the fluctuations δx gives

�Y H (g) = i
√

2 exp

(
− 1

16g

)
. (5.60)

The perturbation expansion of Y H (g) for g < 0 is given by

Y H (g) = 2
∞∑

k=0

Z H
k gk (5.61)

and the asymptotic behaviour of the coefficients Z H
k can be calculated from the dispersion

relation for Y H (g) in the form of

lim
k→∞ Z H

k (g) = lim
k→∞

∫ ∞

0

dg′

2π

(
1

g′

)k+1 √
2 exp

(
− 1

16g′

)
= 1√

πk

(
16k

e

)k

(5.62)

in agreement with the above result obtained from the explicit expression.
The function Y H (g) is Borel summable for g < 0

Y H (g) =
∫ ∞

0

dz

(−g)
B(z) e

z
g , B(z) = 2

∞∑
k=0

Z H
k

k! (−1)k zk, (5.63)

and the Borel resummation for Z H (g) for g > 0 is obtained by analytic continuation

Z H (g) =
∫ ∞

0

dz

g
B̃(z) e− z

g , B̃(z) = 2
∞∑

k=0

Z H
k

k! zk, (5.64)

where the logarithmic singularity of B̃(z) at z = 1/2 should be avoided with the use of the
principal value prescription.

5.3 Zero charge and asymptotic freedom in scalar models

In this and next sections we consider simple renormalizable scalar field theories in D-
dimensional Euclidean space-time with action

S =
∫

d Dx

(
(∂σ φ)

2

2
+ g

φn

n!
)
. (5.65)

Here the degree of nonlinearity n is assumed to be an even number and the dimension D is
chosen from the condition that the coupling constant g > 0 is a dimensionless quantity:

D = 2n

n − 2
. (5.66)
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Well-known examples of such theories are models with the following interactions:

g
∫

dx
1

φ2
, g

∫
d3x

φ6

6! , g
∫

d4x
φ4

4! . (5.67)

The coupling constant g is assumed to be normalized at some scale p2 = μ2 and we
introduce the running coupling constant as follows:

g(p2/μ2) = g �(p2/μ2) dn/2(p2/μ2), �(1) = d(1) = 1, (5.68)

where �(p2/μ2) and d(p2/μ2)/p2 are the vertex function and the scalar particle Green
function, respectively. For example, one can define the vertex function at the symmetric
point p2

r = p2, pr ps = −p2/(n − 1) (r �= s). Furthermore, the action should contain the
counterterms cancelling the coupling constant and mass divergences. The invariant charge
g(p2/μ2) satisfies the equation

d

d ln(p2/μ2)
g(p2/μ2) = ψ(g(p2/μ2)), (5.69)

where the Gell-Mann–Low function is expanded in a perturbation series:

ψ(g) =
∞∑

k=2

(−g)k Ck(n). (5.70)

The properties of the ψ-function are important for the self-consistency of the scalar field
theories. The first coefficient of the perturbative expansion is positive C2(n) > 0, at least
for n = 4 and n = 6. In these cases, providing that the theory does not have an ultraviolet
stable point g0 > 0 with ψ(g0) = 0 and ψ(g) grows at large g more rapidly than g ln g,
the well-known Landau zero-charge problem exists. To go beyond the perturbation theory
with the possible use of the Borel resummation (5.3), one needs to estimate high-order cor-
rections. In the next subsections, we calculate the asymptotic behaviour of the coefficients
Ck(n) for k → ∞.

Here we discuss an exactly solvable example of above scalar models with n = −2, D =
1. In this model, the coordinate x and field φ can be denoted by t and x(t), respectively.
In fact, this theory coincides with a nonrelativistic quantum-mechanical model with the
following Hamiltonian

H = p2

2
+ g

x2
+ x2

2
, p = i

d

dx
, (5.71)

where the “mass” term x2/2 was added to have a discrete spectrum.
The normalizable solution of the Schrödinger equation H# = E# is expressed in terms

of Laguerre polynomials:

# = x2s+1 exp

(
− x2

2

)
L

2s+ 1
2

n (x2), Lαn (z) =  (−n, α + 1, z), (5.72)

s = −1 + √
1 + 4g

4
(5.73)
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and the corresponding energy is quantized as follows:

En = 2n + 2s + 3

2
. (5.74)

Note that the ground state energy is E0 = 2s+ 3
2 , which does not coincide with the vacuum

energy E0 = 1
2 of the harmonic oscillator at g → +0. Moreover, the spacing�E between

the neighbouring energy levels is 2 instead of 1 for the harmonic oscillator. Both properties
are related to a singular character of the potential V = g/x2.

At first sight, the equidistant spectrum means triviality of the interaction similar to the
case of QED where we have the zero-charge phenomenon. But in fact, this quantum-
mechanical model can be considered as a simple example of an asymptotically free theory
of the type of QCD. Indeed, let us regularize the potential energy Vε as follows:

V|x |>ε = gε
x2

(5.75)

and construct the function gε = g(ε) for ε → 0 such as to provide a nonequidistant
energy spectrum for even wave functions. Generally, the energy levels of the states of even
and odd parity under the substitution x → −x should be different, but for the singular
potential g/x2 they coincide with each other. After our regularization there could be a
nonzero probability for a particle to penetrate through the barrier between two potential
wells with x < 0 and x > 0.

To derive the functional dependence of the bare charge gε → 0 on ε let us consider the
even solution of the regularized Schrödinger equation that decreases for x → ±∞:

#x>ε=x2sε+1 e− x2
2 U (a, b, x2), U (a, b, z) =

∫ ∞

0

e−t zdt

�(a)
ta−1(1 + t)b−a−1, (5.76)

where U (a, b, z) is the Kummer function and

b = 2sε + 3

2
, E = −2a + 2sε + 3

2
, sε = −1 + √

1 + 4gε
4

≈ gε
2
. (5.77)

For x → 0 the function #x>ε behaves as follows:

#x→0 = x2sε+1
(

�(1 − b)

�(1 + a − b)
+ x2(1−b) �(b − 1)

�(a)

)
(1 + O(x2)). (5.78)

Therefore, we obtain the following approximate result for the logarithmic derivative of
the wave function at x = ε:

d

dx
ln#x=ε+0 ≈ −2

�(a)

�(a − 1
2 )

− 2
gε
ε

= 2 ctn(πa)
�( 3

2 − a)

�(1 − a)
− 2

gε
ε
. (5.79)

On the other hand, the function #|x |<ε can be expanded up to a quadratic term in x due
to the smallness of ε. For example, if we chose V|x |<ε = gε/ε2, then the logarithmic
derivative of even # in the region of small x is

d

dx
ln#0<x<ε = 2

gε
ε2

x (5.80)
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and does not depend on a. Therefore, the quantization condition for a (and for the
corresponding energy) can be written as follows:

2
gε
ε

= ctn(πa)
�( 3

2 − a)

�(1 − a)
. (5.81)

In particular, we obtain for gε/ε → ∞

lim
gε/ε→∞ a → −n + ε

gε

1

2π

�( 3
2 + n)

�(1 + n)
, n = 0, 1, 2, . . . (5.82)

and for gε/ε → 0

lim
gε/ε→0

a → −n + 1

2
− gε
ε

2

π

�( 1
2 + n)

�(1 + n)
, n = 0, 1, 2, . . . (5.83)

with some corrections to harmonic oscillator energies. Note that for negative gε/ε the
quantum number n in the large coupling limit should be shifted by unity

lim
gε/ε→−∞ a → 1 − n + ε

gε

1

2π

�( 1
2 + n)

�(n)
, n = 1, 2, . . . (5.84)

and for n = 0 we obtain another asymptotic expression for a

lim
gε/ε→−∞ a =

(
2 gε
ε

)2

. (5.85)

This means that the ground state energy E0 tends to −∞ in this limit, which demonstrates
the Dyson instability of the theory for negative gε/ε.

It is possible to give a physical interpretation of the above quantization condition for
a. Indeed, consider the Schrödinger equation for the harmonic oscillator with the above
Hamiltonian but without the term g/x2. The solution that decreases for x → ∞ can be
expressed in terms of the parabolic cylinder function

#(0)(x) = e− x2
2

�(2a − 1)

∫ ∞

0
e−√

2xs− s2
2 s2a−2 ds, E = −2a + 3

2
. (5.86)

Its logarithmic derivative at x = 0 is

� = d

dx
ln#(0)(x)|x=0 = 2 ctn(πa)

�( 3
2 − a)

�(1 − a)
. (5.87)

Thus, one can write the above quantization condition for even energy levels in the following
universal form:

4
gε
ε

= d

dx
ln#(0)(x)|x=0. (5.88)

Therefore, our theory does actually coincide with the free theory for x > 0 with an addi-
tional boundary condition on the logarithmic derivative of the wave function at x = 0.
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Because the logarithmic derivative� has the dimension of mass similar to�QC D , we have
dimensional transmutation of the coupling constant g in this asymptotically free model:

� = 4
gε
ε
. (5.89)

If the renormalization group equation for this model is written in the form

∂gε
∂(ln 1/ε2)

= #(gε), (5.90)

then the Gell-Mann–Low function #(g) is given by the following expression

#(g) = −g

2
. (5.91)

Presumably, all renormalizable scalar models with the interaction V (φ) = gφ−2r

(r=2,3,. . . ) also have the property of asymptotic freedom.

5.4 Renormalized strongly nonlinear scalar model

5.4.1 Strong nonlinearity and saddle-point approach

In the limit of n → ∞ in (5.66), we have D → 2 and the coefficients Ck(n) of the perturba-
tion theory can be calculated exactly at fixed k [22], as will be shown below. Formally, we
can write the following functional integral for the n-point Green function G(x1, . . . , xn) in
the k-th order of perturbation theory:

Gk = (−1)k

J0 k!
∫ ∏

x

dφ(x) e− ∫ d D x (∂σ φ)
2

2

∫ k∏
r=1

d Dxr Vint (φ(xr )), (5.92)

where

J0 =
∫ ∏

x

dφ(x)e− ∫ d D x (∂σ φ)
2

2 (5.93)

and the function Vint (φ(x)) corresponds to the interaction term gφn/n! written in normal
order:

Vint (φ(x)) = g
: φn(x) :

n! = g
∫

L

dl

2π i

exp
(

lφ(x)− 1
2 l2�(0)

)
ln+1

. (5.94)

Here the integral is performed along the contour L closed around the point l = 0 in
counterclockwise direction, and the free Green function is defined by

�(x) =
∫

d D p

(2π)D|p|2 ei �p�x = b(n) |x |2−D, b(n) = 1

4
�

(
2

n − 2

)
π−D/2. (5.95)

In the large-n limit, this is simplified as follows:

�(x)|n→∞ = n

8π
exp

(
− 1

2n
(1 + lnπ + γ )− 2

n
ln |x |

)
, (5.96)

where γ is the Euler constant.
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The functional integral in the expression for Gk generally contains contributions of dis-
connected diagrams, but in the large-n limit they are not important. The most essential
contribution arises from diagrams in which all interaction vertices are connected by an
almost equal number n/k of inner lines and each vertex absorbs the same number of exter-
nal lines. In this configuration we can extract the Feynman integral over the coordinates xr

in the saddle point. It turns out that this integral contains only a single logarithmic diver-
gence in the region where all relative distances |xrs | tend to zero simultaneously. In fact,
its integrand is equal to the product of the total number of diagrams and Green functions
�(xrs).

To take account of the translational and scale invariance, one can use the Faddeev–Popov
trick corresponding to the insertion of unity in the integrand,

1 =
∫ 1/μ2

ε2
dy2 δ

(
y2 −

k∏
r=1

|xr − x |2/k

) ∫
d Dx δD

(
x − 1

k

k∑
r=1

xr

)
(5.97)

with the subsequent change of the integration variables xr → xr y + x , lr → lr y2/(n−2).
After this transformation, we can omit y everywhere leaving only the pole 1/y2 appearing
in agreement with the Gell-Mann–Low equation for the invariant charge. The integral∫

d Dx
n∏

i=1

�(xi − x) (5.98)

should be omitted, which corresponds to amputation of the external lines. In this way, the
following expression for the coefficients Ck(n) of the Gell-Mann–Low function is obtained
after taking the Gaussian integral over φ(x):

Ck(n) = 1

k!
∫ n∏

r=1

d Dxr
dlr

ln+1
r 2π i

(
k∑

i=1

li

)n

 (lk; xk), (5.99)

where

 (lk; xk) = exp

⎛⎝−1

2

∑
r �=r ′

lr lr ′�(xr − xr ′)

⎞⎠ δD

(
1

k

k∑
r=1

xr

)
δ

(
1

k

k∑
r=1

ln |x2
r |
)
.

Here xr are the coordinates of the interaction points in the Feynman diagrams. The integrals
over lr can be calculated for n → ∞ by the saddle point method. There are two saddle
points: l̃r = ±√

8π/k. The integration over the fluctuations δlr around these saddle points
gives the result [22]

Ck(n)|n→∞ =
√

2

k!
(

ek

8π

) n(k−1)
2

kn
(

2πn
k − 1

k

)− k
2

e−(k−1)(1+lnπ+cE ) zk, (5.100)

where the factor zk does not depend on n and is expressed in terms of an integral over the
coordinates of the interaction points in the two-dimensional space:

zk =
∫ k∏

r=1

d2xr

∏
s<s′

|xs − xs′ |− 4
k δ2

(
1

k

k∑
r=1

xr

)
δ

(
1

k

n∑
r=1

ln |xr |2
)
. (5.101)
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This expression can be interpreted as a partition function of k particles interacting with
each other through the gravitational potential ln |xr − xr ′ | at a temperature of T = k/4.
Such Feynman diagrams appear if we replace our potential at large n by the Liouville
interaction

g
φn

n! → g
φ̃n

n! exp

(
nδφ

φ̃

)
, (5.102)

where the saddle-point field is φ̃ = n
√

k/(16π) and δφ describes the quantum fluctuations
near this saddle point.

5.4.2 Holomorphic factorization of the Feynman diagrams

To calculate the integral zk , we initially shift the variables xr → xr + xk for r < k and use
two δ-functions to integrate over xk . Then go to Minkowsky space by an anti-Wick rotation
of the contours of integration over the second components yr of the vectors xr = (zr , yr )

to the imaginary axes yr = i tr , and introduce the light-cone variables [22]

αr = tr − zr , βr = tr + zr , d2xr = i

2
dαr dβr . (5.103)

After rescaling

αr → αr α1, βr → βrβ1 (5.104)

we integrate over α1, β1 with the use of the third δ-function and obtain for zr the following
expression:

zk = π
(

i

2

)k−2 ∫ k−1∏
r=2

dαr dβr

(αrβr + iε)
2
k

∏
1≤s<s′≤k−1

((αs − αs′)(βs − βs′)+ iε)−
2
k .

(5.105)

The additional term iε → 0 in the denominators corresponds to the Feynman prescription
and in the product over s and s′ the equalities

α1 = β1 = 1 (5.106)

are implied.
If the integrals over βr are considered to be external, then the integration over αr ′ is

non-zero only in the region 0 < βr < 1 for r = 2, . . . , n − 1 since in the opposite case all
singularities in one of the variables αr ′ will be on the same side of the integration contour,
which would lead to the vanishing of the corresponding integral. Moreover, each region of
integration 0 < βr2 < βr3 < . . . < βrk−1 < 1 gives the same contribution. Therefore, we
can obtain for zr the following factorized expression

zk = π(k − 2)! Bk Ak, (5.107)

where

Bk =
∫ 1

0
dβ2β

− 2
k

2

∫ β2

0
dβ3.β

− 2
k

3 . . .

∫ βk−2

0
dβk−1 β

− 2
k

k−1

∏
1≤s<s′<k

(βs − βs′)−
2
k (5.108)
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and

Ak =
(

i

2

)k−2 k−1∏
r=2

∫ ∞

−∞
dαr (αr + iε)−

2
k

∏
1≤s<s′<k

(αs − αs′ + iε)−
2
k . (5.109)

The integration region over αr can also be devided in k!/2 subregions corresponding
to different orderings of the values of αr (r = 2, 3, . . . , k − 1), αk = 0, and α1 = 1. In
particular, from the region 0 < αk−1 < αk−2 < . . . < α1 = 1 we obtain the contribution
(i/2)k−2 Bk . Generally, Ak can be written in factorized form

Ak = Bk Dk, (5.110)

where Dk is proportional to the sum of the phase factors

Dk =
(

i

2

)k−2 ∑
P

exp

(
−iηP

2

k
π

)
. (5.111)

Here P denotes all possible permutations of indices k, k − 1, . . . , 1, corresponding to dif-
ferent orderings of values of αr . The quantity ηP is the number of the elementary pair
permutations which are needed to obtain P from the normal order k, k − 1, . . . , 1. The
phase factors exp(−iηP 2π/k) appear due to the Feynman prescription for the integration
above the branch points of the integrand. Up to these factors and to the multiplier (i/2)k−2,
the value of the integral in each subregion coincides with Bk due to the conformal invari-
ance of the integrand. Indeed, in the case of integration over all variables αt (t = 1, 2, . . . k)
in the region −∞ < αk < αk−1 < . . . < α1 < ∞ the result is the same for all possible
choices of indices r, s at the additional constraint αr = 0, αs = 1. Therefore [22]

zk = π (k − 2)! B2
k Dk . (5.112)

Let us write Dk in the form of

Dk =
(

i

2

)k−2

χ(exp(−2π i/k)), (5.113)

where the function χ(z) can be represented as follows:

χ(z) =
∞∑

l=0

N k
l zl . (5.114)

The coefficients N k
l are the numbers of permutations P of αs (s = 1, . . . , k and αk < α1)

for which ηP = l. They are expressed in terms of the number Ñ k−2
m of permutations of

αr (r = 2, 3, . . . , k − 1), for which the number of pair permutations is m, by the simple
relation

N k
l =

∑
m=max(0,n−k+2)

(n − m + 1) Ñ k−2
m . (5.115)
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Indeed, for fixed m and n there are n − m + 1 possibilities to insert αk = 0 and α1 = 1 in
the ordered sequence of αr , −∞ < αi1 < αi2 < . . . < αik <∞. On the other hand, if we
introduce the generating function for Ñ k−2

m by

φk−2(z) =
∞∑

m=0

Ñ k−2
m zm, (5.116)

then we can easily find an explicit expression for it in a recursive way:

φk−2(z) =
k−2∏
r=1

1 − zr

1 − z
= z

k−3
4 (k−2)

k−2∏
r=1

z−r/2 − zr/2

z−1/2 − z1/2
. (5.117)

As a consequence of the above relation between N k
l and Ñ k−2

m , one can express χ(z) in
terms of φk−2(z)

χ(z) = φk−2(z)
d

dz

1 − zk

1 − z
= φk−2(z)

(
−kzk−1

1 − z
+ 1 − zk

(1 − z)2

)
. (5.118)

Taking into account that zk = 1 for z = exp(−2π i/k), we obtain finally the following
expression for Dk :

Dk = 2−k+1 k

sin(π 1
k )

k−2∏
r=1

sin(π r
k )

sin(π 1
k )

= k22−2k+2

(sin(π/k))k
, (5.119)

where we have used the Gauss multiplication formula for �-functions:

k−1∏
r=1

sin
πr

k
= πk−1

(
k−1∏
m=1

�
(m

k

))−2

= 2−k+1 k. (5.120)

5.4.3 Gell-Mann–Low function for the strongly nonlinear model

To calculate Bk (5.108) we represent it in the form of

Bk = 2

k! lim
�→+0

1

2π

∫ 2π

0

k∏
m=1

dϕm

∏
1≤l< j≤k

|ϕl − ϕ j |− 2
k δ(

ϕ1 − ϕk

�
− 1), (5.121)

where the factor 2/k! takes into account that k!/2 integration regions with different order-
ings of ϕm give the same contribution. Furthermore, for � → 0 the distances between all
points on the circle are small ∼ � and the factor 1/(2π) cancels the integral over their
collective coordinate.

On the other hand, according to the Dyson hypothesis [23], proven by Wilson [24]
and Hanson [25], the partition function for k electrons on the circle can be calculated
analytically:

#k(γ ) = (2π)−k
∫ 2π

0

k∏
m=1

dϕm

∏
1≤l< j≤k

|eiϕl − eiϕ j |γ = �(1 + γ k/2)

(�(1 + γ /2))k . (5.122)
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In particular, we have

#k(γ )|γ→−2/k = (1 + γ k/2)−1(
�(1 − 1

k )
)k
. (5.123)

The same singularity of #k(γ ) can be derived also from the integral

lim
γ→−2/k

(2π)−k
∫

|ε|�1
dε δ(ϕ1 − ϕk − ε)

∫ 2π

0

k∏
m=1

dϕm

∏
1≤l< j≤k

|ϕl − ϕ j |γ

= lim
γ→−2/k

Bk

(2π)k−1

k!
2

∫
|ε|�1

dε |ε|k−1+γ k(k−1)/2 = Bk

(2π)k−1

k!
k − 1

1

1 + γ k/2
,

(5.124)

where we have changed the integration variables ϕm → ϕm |ε| to extract a power of |ε|.
Thus, by comparing the last two expressions for #k(γ )|γ→−2/k one can find

Bk = (2π)k−1

(k − 2)!k (�(1 − 1/k))−k . (5.125)

The final result for zk is given by [22]

zk = πk−1

�(k − 1)

(
�(1/k)

�(1 − 1/k)

)k

. (5.126)

The asymptotic growth of the coefficients Cn(k) at large k is very rapid:

Cn(k)|k→∞ = kn(k+1)/2

kk−1

( e

8π

)n(k−1)/2
(2πn )−k/2 e−(k+1) cE

ek+3/2

√
2π

. (5.127)

We shall reproduce this asymptotics in the next section using a completely different
approach. Therefore, the perturbation series is badly divergent especially for large val-
ues of n. We search the Gell-Mann–Low function in the form of the Mellin–Barnes
representation [22] (see also [27])

#(g) =
∞∑

k=2

(−g)k Cn(k) = −
∫ σ+i∞

σ−i∞
dk

2i sin (πk)
gk Cn(k), (5.128)

where σ < 2. This corresponds to one of the possibilities to sum the asymptotic series,
because at small g the resummed expression reproduces it. The discontinuity of #(g) at
g < 0 is given by the simple expression

�#(g)|g<0 = #(g + iε)−#(g + iε) = −
∫ 2−ε+i∞

2−ε−i∞
dk gk Cn(k). (5.129)

In the limit of n → ∞, the coefficients Cn(k) are known analytically and have their
rightmost singularity at k → 1 as follows:

Cn(k)|k→1 = 1√
πn

(k − 1)3/2 . (5.130)
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As a result, one can find the strong coupling behaviour of #(g) [22]:

lim
g→∞#(g) = − g

(ln g)3/2
1

2π
√

n
. (5.131)

Taking into account that for small g the function #(g) is positive,

#(g) = 2−1/2
( e

π

)n/2 1

nπ
e−1−cE g2 + O(g3), (5.132)

we conclude that the Gell-Mann–Low function should change its sign in the interval 0 <
g < ∞ and there is a nontrivial fixed ultraviolet point where #(g) = 0 [22]. If one can
apply the above formulas which have been derived for n → ∞ to the cases n = 4 and
n = 6, then the positions of the ultraviolet stable points are g = 103 and g = 187,
respectively.

The asymptotic behaviour of zk for k → ∞ is

lim
k→∞ zk = (πe)kk3/2

(2π)1/2
exp(−2cE )

π
. (5.133)

On the other hand, we can attempt to apply a statistical approach to the integral (5.105),
assuming that at large k the significant region of integration is fixed: |xi j | ∼ 1. In this case,
one can sum over the densities of the interaction points ρ(x) instead of integrating over xi .
After finding the saddle-point density ρ̃(x)∼ k, it is possible to determine the asymptotics
of zk by calculating the functional integral over the quantum fluctuations δρ around this
saddle-point solution [22]. In the next subsection, we shall find the asymptotic behaviour
of the coefficients Cn(k) at large k using another method.

5.5 Functional approach to the high-order estimates

5.5.1 Classical solutions, zero modes, and counterterms

As in the above zero-dimensional case, we can initially find the singularity of physical
quantities on the left-hand cut g < 0 in the g-plane. Within a certain accuracy it is given
by the expression [6, 11]

�Z(g) ∼ exp(−S(φ̃)), S(φ) =
∫

d Dx L(φ), L(φ) = (∂σ φ)
2

2
+ g

φn

n! , (5.134)

where the saddle-point function is obtained from the Euler–Lagrange equation

∂2
σ φ̃ = g

φ̃n−1

(n − 1)! . (5.135)

Its spherically symmetric solutions are given by [6]

φ̃(x − x0, y) = a(n, g)

(
y

(x − x0)2 + y2

) 2
n−2

, an−2(n, g) = − 8 n!
(n − 2)2g

, (5.136)

where the arbitrary parameters x0 and y > 0 appear as a result of the invariance of the
initial action under translations and dilatations.
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To justify the above choice of the classical solution, one can use the Sobolev inequality
for integrals defined on arbitrary functions φ [21]

T (φ) ≥ CS(D) (n! V (φ))
2
n , T (φ) =

∫
d Dx

(∂σ φ)
2

2
, V (φ) =

∫
d Dx

φn

n! , (5.137)

where D = 2n/(n − 2) and

CS(D) = D(D − 2)

2
π

(
�(D/2)

�(D)

)2/D

. (5.138)

The equality is realized on the above solutions φ̃ (for an arbitrary factor a(n, g)). It can be
verified with the use of the relations

T (φ̃) = a2(n, g)
D(D − 2)

2
πD/2 �(D/2)

�(D)
, V ( φ̃) = an(n, g)

n! πD/2 �(D/2)

�(D)
. (5.139)

Due to the Sobolev inequality, the maximal value of the integrand for the functional integral
expressing the perturbation theorical coefficients Ck(n) for k → ∞ is given by above
saddle-point configuration and we have [6]

Ck(n) ∼ 1

k! max e−T (φ)V k(φ) ≤ 1

k! max e−T (φ̃)
(

1

n!
)k ( T (φ̃)

CS(D)

)kn/2

= 1

k!
(

1

n!
)k ( k n

2e CS(D)

)kn/2

, (5.140)

where it was exploited the fact that at the saddle point T (φ̃) = kn/2.
One can obtain Ck(n) also with the use of the dispersion approach, deriving initially the

value of the action for the saddle-point function φ̃:

S(φ̃) = T (φ̃)+ gV ( φ̃) = (1 − 2

n
) T (φ̃) =

(
g0

g

) 2
n−2

, (5.141)

where

g0 = −n! 2

n − 2

(
4π

n − 2

) n
2
(
�(D/2)

�(D)

) n−2
2

. (5.142)

This means that the discontinuity for the functional integral is given by the expres-
sion [11]

�Z(g) ∼ i exp
(
− (g0/g)

2/(n−2)
)
. (5.143)

The calculation of the dispersion integral for Ck(n) from the discontinuity �Z(g) gives
the following asymptotic result:

Ck(n) ∼ ck(n),

ck(n) ≡
∫ 0

−∞
dg

2π

exp
(− (g0/g)2/(n−2))
(−g)k+1

=
(

− 1

g̃

)k

e−k( n
2 −1)

√
n − 2

4π k
, (5.144)
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where the saddle-point value g = g̃ is

g̃ = k− n−2
2

(
2

n − 2

) n−2
2

g0 = −n!
(

8π

(n − 2)2

) n
2
(
�(D/2)

k �(D)

) n−2
2

(5.145)

and we have taken account of the fluctuations around this saddle point.
To find the pre-exponential factor in the asymptotic expression for the high-order

coefficients γn of the perturbative series for the n-point vertex function,

(−g)�(x1, . . . , xn) =
∞∑

k=1

(−1)k gk γk(x1, . . . , xn)), (5.146)

one should expand the field near its saddle-point configurations:

φ = φ̃(x − x0, y)+ δφ, (5.147)

and calculate the functional integral over the quantum fluctuations δφ [6]:

γk(x1, . . . , xn)

= 2 ck(n)
∫

d Dx0

∫ ∞

0

dy

yD+1

n∏
t=1

g̃
φ̃n−1(xt − x0, y)

(n − 1)!
∫ ′∏

x

d δφ R, (5.148)

where the factor 2 accounts for two equal contributions from the saddle-point fields ±φ̃.
Furthermore, we have extracted from the integral the product of the fields for external parti-
cles in the saddle points and used the classical equations (5.135) to remove the propagators.
The loop corrections to these propagators are not important within our accuracy, and in fact
the high-order expansion of the invariant charge g(p2/μ2) coincides with the expansion

of g�(p2/μ2). The symbol
′∏

in the expression for γk means that the integration over the

fluctuation δφ ∼ φ̃ should be treated in a special way because it gives the factor i in ��,
which was taken already into account in the calculation of�Z(g) and ck(n). The integrand
R = R(δφ) is given by

R = 1

J0
e−δφ K δφ k D+1δD

(∫
d Dx δρ(x) x

)
δ

(∫
d Dx δρ(x) ln |x |

)
e−δS, (5.149)

where

J0 =
∫ ∏

x

dδφ exp

(
−
∫

d Dx
(∂σ δφ)

2

2

)
(5.150)

and the quadratic form in the exponent is

δφ K δφ =
∫

d Dx

(
(∂σ δφ)

2

2
+ g̃

φ̃n−2(x, 1)

(n − 2)!
(δφ)2

2

)
. (5.151)

To integrate accurately over the zero modes related to the translational and dilatational
invariance we have used the Faddeev–Popov trick by inserting in the initial functional
integral the following representation of unity [6]:
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1 =
∫

d Dx0

∫ ∞

0

dy

y1+D

(∫
d Dx ρ(x)

)D+1

δD(�X) δ(�X), (5.152)

where

�X =
∫

d Dx ρ(x)
x − x0

y
, �X =

∫
d Dx ρ(x) ln

|x − x0|
y

, (5.153)

and

ρ(x) = −g
φn

n! (5.154)

can be considered as the density of the interaction points. The saddle-point solution φ̃
is assumed to satisfy these constraints. The δ-functions in the expression for R appear
after the following substitution of the coordinates in the fields φ(x) entering in the
definition of ρ:

x → (x + x0) y, ρ((x + x0) y)→ y−D (ρ̃(x)+ δρ(x)) , (5.155)

where the fluctuations δρ(x) around the saddle-point density ρ̃(x) are defined as follows:

δρ(x) = −g̃
φ̃n−1(x, 1)

(n − 1)! δφ. (5.156)

Finally, the term δS that appears in the expression of R(δφ) is the contribution of the
counterterms [6]. To remove the ultraviolet divergences at R(δφ ), it is enough to take into
account for n ≥ 6 only one counterterm for the vertex φn−2

δSn≥6 = −g̃
∫

d Dx
φ̃n−2

(n − 2)!
�(0)

2
(5.157)

and two counterterms for n = 4

δSn=4 = −g̃
∫

d4x
φ̃2

2!
�(0)

2
+ g̃2

∫
d4x

φ̃4

16
b2(4)

∫
d4x

x4
exp

(
i
2 pμx√

3
y

)
, (5.158)

where pμ is the particle momentum in the normalization point μ and �(x) is the scalar
particle Green function

�(x) =
∫

d D p

(2π)D|p|2 ei px = b(n) |x |2−D, b(n) = 1

4
�

(
2

n − 2

)
π−D/2. (5.159)

Note that the second contribution in δSn=4 corresponds to three one-loop Feynman dia-
grams for the vertex function calculated at the pair invariants ( pμr + pμs )2 = (2−2/3)μ2 =
4μ2/3. The additional factor y in the exponent of the Fourier transformation appears as a
result of the above shifting x → xy of the relative coordinates.

5.5.2 Quantum fluctuations around classical solutions

For the calculation of the integral over the fluctuations δφ, it is helpful to take into account
the symmetry of the saddle-point configuration φ̃ [6]. Recall that after the use of the
Faddeev–Popov trick only the solution with x0 = 0 and y = 1 should be considered. As a
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result, one is able to keep only the symmetry under the D(D + 1)/2-parameter subgroup
of the initial symmetry group including the rotational, dilatational, and conformal transfor-
mations with the number of parameters D(D + 3)/2 + 1 . This symmetry can be realized
as a rotation group in the D + 1-dimensional space [26]. Therefore it is natural to per-
form the inverse stereographic projection of the x space to the unit sphere |Z | = 1 in the
D + 1-dimensional space with a simultaneous renormalization of the field:

Zμ = 2xμ
1 + x2

, Z D+1 = x2 − 1

x2 + 1
, φ(x) =

(
2

1 + x2

) 2
n−2

(Y0 + δY (Z)) , (5.160)

where the classical solution Ỹ = Y0 in the new variables is a constant:

Y0 = a(n, g) 2− 2
n−2 . (5.161)

We obtain the following helpful relations∫
d Dx

(
2

x2 + 1

)D

= SD+1 = 2
π(D+1)/2

�((D + 1)/2)
, (5.162)

∫
d Dx (∂σ δφ)

2 =
∫

d SD+1

(
(∇tδY )

2 + D(D − 2)

4
(δY )2

)
, (5.163)

− g̃
∫

d Dx
φ̃n−2

(n − 2)! (δφ)
2 =

∫
d SD+1

D(D + 2)

4
(δY )2, (5.164)

− 1√
k

g̃
∫

d Dx
φ̃n−1

(n − 1)! δφ =
∫

d SD+1
D√

2
δY

1√
SD+1

. (5.165)

Here ∇t is the gradient tangential to the surface of the unit sphere.
It is obvious that the spherical harmonics on the D + 1-sphere diagonalize the quadratic

form because they are eigenfunctions of the spherical Laplacian operator

∇2
t Y (m)r = λ(m)Y (m)r , λ(m) = m(m + D − 1), (5.166)

where the index r denotes the components of the corresponding irreducible representation.
Explicitly, the normalized spherical harmonics are given by

Y (m)r = Sμ1...μm
r Zμ1 . . . Zμm ,

∫
d SD+1Y (m)r Y (m

′)
r ′ = δm,m′δr,r ′ (5.167)

where the normalization coefficients Sμ1...μn include the subtraction of the tensors con-
taining the Kronecker symbols to make the product of Zμr traceless. The number of
independent eigenfunctions Yr for given m is

Nm(D) = �(D + m − 1)

�(D) �(m + 1)
(D + 2m − 1). (5.168)

In particular, for the first two harmonics with m = 0 and m = 1 we have

Y (0) = 1√
SD+1

, Y (1)μ =
√

D + 1

SD+1
Zμ. (5.169)
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We expand the function δY (z) in a linear combination of normalized spherical
harmonics:

δY (z) =
∞∑

m=0

Nm (D)∑
r=1

Cm,r Y (m)r ,

∫ ′∏
z

dY (z) =
∫ ′∏

m,r

dCm,r . (5.170)

In the quadratic forms

δϕ K δφ =
∞∑

m=0

∑
r

C2
m,r

2

((
m + D

2

)(
m + D − 2

2

)
− D(D + 2)

4

)
, (5.171)

δϕ K0 δφ =
∞∑

m=0

∑
r

C̃2
m,r

2

(
m + D

2

)(
m + D − 2

2

)
(5.172)

the coefficient of C2
m for m = 0 is negative and we should rotate the contour of integration

over C2
0 to the line parallel to the imaginary axis, which gives an additional factor i taken

already into account in the multiplier ck(n). The coefficient of C2
m,μ for m = 1 is zero.

We should calculate the integrals over the zero modes C1,μ = Cμ with the use of the
δ-functions and of the relations∫

d Dx
δ1ρ(x)√

k
x = D Cμ√

2SD+1

∫
d SD+1x Y (1)μ =

√
D + 1

2
C, (5.173)

∫
d Dx

δ1ρ(x)√
k

ln |x| = CD+1

√
D + 1

2

D SD

SD+1

∫ π/2

0
d sinϑ (sinϑ)D−1 ln

1 + cosϑ

1 − cosϑ

=
√

D + 1

2
CD+1. (5.174)

Thus, we obtain from the integration over Cm,r , taking into account the factor 1/J0 [6],∫ ∏
x

dδϕ R = k
D+1

2 Z(D), (5.175)

Z(D) =
√

D − 2

4

(
D(D + 2)

4π(D + 1)

) D+1
2

exp

(
−1

2
F(D)−�S(D)

)
, (5.176)

where the first two factors in Z(D) appear as a result of integration over the negative and
zero modes C0, C̃0 and Cμ, C̃μ (μ = 1, 2, . . . , (D + 1)), respectively. The function F(D)
is a regularized contribution of the modes with m ≥ 2. For n ≥ 6, we can represent it as
the following sum:

F(D) =
∞∑

m=2

Nm(D) fm(D), (5.177)

fm(D) = ln

(
1 − D(D + 2)

(D + 2m)(D + 2m − 2)

)
+ D(D + 2)

(D + 2m)(D + 2m − 2)
. (5.178)
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The function F(D) is different for n = 4:

F =
∞∑

m=2

Nm(4)

(
ln (1 − t (m))+ t (m)+ t2(m)

2

)
, (5.179)

t (m) = 6

(m + 2)(m + 1)
. (5.180)

The terms subtracted from the logarithms provide a good convergence of the sums at
large m. On the other hand, these subtractions (with the sum taken from m = 0) can be
expressed in terms of contributions of one-loop Feynman diagrams expanded up to the
second order in the external field ∼ ϕ̃n−2 (see (5.151)) and added to the counterterms δS
(5.157) and (5.158). For the counterterm δS(D) (5.157) at n ≥ 6 modified by the first-order
contribution, we obtain the following finite result:

�S(D)n≥6 = 1

2

1∑
m=0

Nm(D) D(D + 2)

(D + 2m)(D + 2m − 2)
= D2

2(D − 2)
. (5.181)

In the case n = 4, the counterterm δS (5.158) contains an additional dependence on yμ.
After subtracting from it the first- and second-order corrections to −F/2 in the external
field ϕ̃2 we obtain for the modified counterterm [6]

�S(yμ) = −3 ln(yμ)+�S, �S = 1

2

1∑
m=0

(3 + 2m)

(
1 + 3

(m + 2)(m + 1)

)

+ g̃2
∫ 2∏

i=1

d4xi

16π2

φ̃4( x1+x2
2 ) exp

(
i 2 pμ(x1−x2)√

3
y
)

− φ̃2(x1) φ̃
2(x2)

|x1 − x2|4 + 3 ln(yμ)

+ 15

2
+ 9

π4

∫
d4x1 d4x2

|x1 − x2|4

⎛⎝exp
(

i 2(x1−x2)4√
3

)
(| x1+x2

2 |2 + 1)4
− 1

(|x1|2 + 1)2 (|x2|2 + 1)2

⎞⎠ = 8 − 3γ,

(5.182)
where γ = −ψ(1) is the Euler constant.

5.5.3 High-order coefficients of the Gell-Mann–Low function

As was mentioned above, the high-order behaviour of the perturbation coefficients dk for
the invariant charge

g(p2/μ2) =
∞∑

k=1

(−1)k gk dk(p
2/μ2) (5.183)

coincides up to a common sign with the Fourier transformed coefficients γk(x1, . . . , xn):

(2π)DδD

(
n∑

r=1

�pr

)
dk(p

2/μ2)
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= −
∫ n∏

r=1

d Dxr

(
ei
∑

s ps xs − ei
∑

s pμs xs
)
γk(x1, . . . , xn), (5.184)

where the product of the δ-functions appears also on the right-hand side of the equality due
to the translational invariance of γk(x1, . . . , xn).

According to the Gell-Mann–Low equation, the large-order coefficients for the pertur-
bative expansions of g(p2/μ2) and ψ(g) are related as follows:

Ck(n) = d

d ln p2
dk(p

2/μ2)+ (k − 1) d2(p
2/μ2)

d

d ln p2
dk−1(p

2/μ2)

+ (k − 2)(k − 3)

2
d2

2 (p
2/μ2)

d

d ln p2
dk−2(p

2/μ2)+ . . . , (5.185)

where

d2(
p2

μ2
)|n=4 = 3

32π2
ln

p2

μ2
(5.186)

and the right-hand side should not depend on p2/μ2 due to the renormalizability of the
theory. For n ≥ 6, the coefficients dk grow very rapidly: dk ≥ (k!)2, and hence

Ck(n)|n≥6 = d

d ln p2
dk(p

2/μ2). (5.187)

In the case n = 4, they grow as k! (16π2)−k and as a result we have at large k:

Ck(4) = exp(16π2 d2(p
2/μ2))

d

d ln p2
dk(p

2/μ2)

=
(

p2

μ2

)3/2
d

d ln p2
dk(p

2/μ2). (5.188)

This means, in particular, that the second factor should compensate the p2-dependence of
the first factor.

For n > 4, we can use the Frullani formula to calculate the integrals over y and xr :∫ ∞

0

dy

y

∫ n∏
r=1

d Dxr
−g̃φ̃n−1(xr )√

k (n − 1)!
(

eiy
∑

s ps xs − eiy
∑

s pμs xs
)

= −sn(D)
1

2
ln

|p|2
μ2
, (5.189)

where

s(D) =
∫

d Dx

(−g̃φ̃n−1(x)√
k (n − 1)!

)
= 21+D/2π(D−1)/4

√
�((D + 1)/2)

�(D/2)
. (5.190)



5.5 Functional approach to the high-order estimates 173

But in the case n = 4, one should take into account an additional dependence of the mod-
ified counterterm �S(yμ) on yμ with the above relation between Ck(4) and dk(p2/μ2).
Therefore, for the factor analogous to sn(D), we obtain at n = 4

s(4) = −2

(
p2

μ2

)3/2
d

d ln p2

∫ ∞

0

dy

y

∫ 4∏
r=1

d4xr
g̃φ̃3(xr )√

k 3! eiy
∑

s ps xs (μy)3

= 3
∫ ∞

0
dz z6

(
4π

√
3 K1(z)

)4
, z = y|p|, (5.191)

where the function K1(z) is the Bessel function of imaginary argument:

K1(z) = 8

π z

∫ ∞

0
cos(t z) dt

∫ ∞

t

√|x |2 − t2 |x | d|x |
(|x |2 + 1)3

= 1

z

∫ ∞

0

cos(t z) dt(
t2 + 1

)3/2 . (5.192)

Thus, for n ≥ 6, the high-order asymptotics of the coefficients Cn(k) is given by [6]

C̃n(k) = ck(n)
(√

k s(D)
)n

k
D+1

2 Z(D)

= (−g̃)−k exp(k(1 − n/2)) k(n+D)/2 C̃n, (5.193)

where

C̃n =
(

21+D/2π(D−1)/4
√
�((D + 1)/2)

�(D/2)

)n e
D2/2
D−2√
4π

(
D(D + 2)

4π(D + 1)

)(D+1)/2

e− F(D)
2 ,

F(D) =
∞∑

m=2

Nm

(
ln

(
4(D + m)(m − 1)

(D + 2m)(D + 2m − 2)

)
+ D(D + 2)

(D + 2m)(D + 2m − 2)

)
.

For n = D = 4, the asymptotics is [6]

C̃4(k) = ck(4) k4 s(4)
1√
2

(
6

5π

)5/2

e− 1
2 F−�S =

(
k

16π2e

)k

k4 C̃4, (5.194)

where

C̃4 = e− 1
2 F+3 cE −8 2

19
2 34

55/2
π

∫ ∞

0
dz z6 (K1(z))

4 , K1(z) = 1

z

∫ ∞

0

dt cos(t z)

(t2 + 1)
3
2

,

F =
∞∑

m=2

2m + 1

αm

(
ln (1 − αm)+ αm + α2

m

2

)
, αm = 6

(m + 1)(m + 2)
. (5.195)

In particular, for the case k � n � 1, we obtain the asymptotic behaviour (5.127),
which was found in the previous subsection in the other limit of n � k � 1.

As for the case n = D = 4, one can compare the above asymptotic expression C̃4(k)
with the known analytic results for k = 2, 3, 4. We find for the ratios of the asymptotic
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and exact expressions C̃4(k)/C4(k) ≈ 0.1, 0.7, 1.1, respectively. The relative correction
to the above asymptotic formula for n = 4 at k → ∞ was calculated by Kubyshin [27]

C4(k)/C̃4(k) ≈ 1 − 4.7/k. (5.196)

The asymptotic estimates for the multicomponent case were performed in Ref. [7].

5.6 Series divergence in models with gauge interactions

5.6.1 Classical equations for scalar models in the presence of gauge fields

To apply the saddle-point approach to estimate the high orders of perturbation theory, one
should find the solution of classical equations with the minimal value of action. We have
shown in the previous section that for scalar renormalizable models such a problem is
solved with the use of the Sobolev inequalities. In the case of an n-component scalar field
in the Euclidean D = 4 space-time, this inequality is of the following form (cf. (5.138)):∫ (

n∑
i=1

φ2
i

)2

d4x ≤ 3

32π2

(∫ n∑
i=1

(∂σ φi )
2 d4x

)2

. (5.197)

It is realized as an equality only for solutions of classical equations for the scalar model
with interaction

Lint = λ
(

n∑
i=1

(φ2
i )

2

2

)
. (5.198)

These solutions have the form

φ̃i (x) = Ci
y

(x − x0)2 + y2
,

n∑
i=1

C2
i ∼ −1/λ (5.199)

and provide the minimal value of the action. The parameters x0 and y are related to the
translational and dilatational symmetries of the theory and a consistent treatment of cor-
responding zero modes can be performed with the use of the Faddeev–Popov trick (see
previous section). These zero modes appear in any renormalizable model. We choose the
simplest configuration by fixing x0 = 0 and y = 1. This solution of classical equations
has a hidden ten-dimensional symmetry, which can be realized as a group of rotations
of an unit sphere in the five-dimensional space. For this purpose, we perform the inverse
stereographic projection of the x-space to this sphere:

Z = 2x
x2 + 1

, Z5 = x2 − 1

x2 + 1
, |Z |2 + Z2

5 = 1, d S = 16
d4x

(x2 + 1)4
. (5.200)

For the scalar field φ(x), we define the corresponding field on the sphere by extracting a
factor

φ(x) = 2

x2 + 1
Y (Z). (5.201)
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Then the above particular solution Ỹ with x0 = 0 and y = 1 is simply a constant invariant
under rotations of the sphere.

In this subsection we consider the high-order estimates for gauge models with scalar
fields [28, 29, 30]. These models are the scalar electrodynamics (SED) and the Yang–Mills
theory with the SU (2) gauge group interacting with the charged Higgs particle in doublet
representation as in the electroweak model with a vanishing Weinberg angle. It is natural to
search for the most symmetric solutions of the corresponding classical equations. For this
purpose, one can use the five-dimensional formalism discussed above. The vector potential
Aμ and its intensity Gμν for the Yang–Mills model can be considered to be 2×2 matrices:

Aμ = Aa
μ

τ a

2
, Gμν = ∂μAν − ∂ν Aμ − ig [Aμ, Aν]. (5.202)

For SED, Aμ and Fμν are the abelian vector and tensor fields. We can introduce the
corresponding five-dimensional potentials with the definitions

Ai (Z) =
(

1 + x2

2

)2

Aμ(x)
∂Zi

∂xμ
, Aμ(x) = ∂Zi

∂xμ
Ai (Z). (5.203)

This is compatible with the additional constraint

Zi Ai = 0. (5.204)

Then the action for the corresponding Yang–Mills model can be written as follows:

S =
∫

d S5 L(Y, A), L(Y, A) = LY M + L S, (5.205)

where

LY M = 1

6
tr
(
Li j Ak − igZi [A j , Ak]+L jk Ai − igZ j [Ak, Ai ]+Lki A j − igZk[Ai , A j ]

)2
,

L S = 1

2

∣∣(Li j − ig(Zi A j − Z j Ai )
)

Y
∣∣2 + 2|Y |2 + λ

2
|Y |4. (5.206)

In the above expressions we have

Li j = Zi ∂ j − Z j ∂i . (5.207)

The action for SED can be obtained by omitting the commutators in the above expression.
Among solutions of the Euler–Lagrange equations with different values of x0 and y we
consider the solution satisfying the constraint∫

d S5 L(Y, A) Zi = 0. (5.208)

Furthermore, the following gauge for the vector field is implied

(∂i − Zi (Zk∂k)) Ai = 0. (5.209)
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One can represent physical quantities in the form of perturbative expansions in two
coupling constants

G(g, λ) =
∞∑

m=0

∞∑
k=0

g2mλk Gk,m . (5.210)

In the case when the order k of the expansion in λ is much larger than the order m of the
expansion in g2, one can expect that in first approximation it is possible to neglect Ai and
hence get the above result for the saddle-point scalar field:

|Ỹ (0)|2 = −2

λ
, Ỹ (0) = U

√
−2

λ
, U∗U = 1, (5.211)

where U is a constant isospinor in the Yang–Mills model or a phase in SED. The
corresponding saddle value of the action is

S̃ = −16π2

3λ
. (5.212)

5.6.2 Search of the saddle-point configurations

Since for the function Ỹ (0) the Sobolev bound (5.197) turns out to be an equality, we can
expect that the iteration of the Euler–Lagrange equations in Ai will give a solution with
the minimal action. The linearized classical equation for Ai in the field Ỹ (0) has the form(

−1

2
L2

i j + 2 + g2

2
|Ỹ (0)|2

)
A(0)i = 0, (5.213)

where the first two terms in the brackets appeared from the contributions of LY M bilinear
in A. The equation for A0

i is an eigenvalue equation for the ratio of two coupling constants
g2/λ. We should find the minimal value for this ratio, because for fixed λ this value is
equal to the radius of convergence of the series in g2/λ. The eigenfunctions are spherical
harmonics and the corresponding eigenvalues of the operator − 1

2 L2
i j on the symmetric

traceless tensors of rank n are n(n + 3). As a result, the minimal value of g2/λ is obtained
for the function which is a constant on the sphere, but this solution does not satisfy the
constraint Zi Ai = 0. Therefore, for small A, we choose the solution in the form of a linear
combination of the first harmonics [28, 29]:

Ã(0)i = ε ηi j Z j , (5.214)

where ε is a small parameter and ηi j is a matrix in colour space in the case of the Yang–
Mills theory. The corresponding value of the ratio g2/λ is

g2

λ
= 6 + O(ε). (5.215)

Note that the critical ratio 6 of g2 and λ corresponds to the N = 4 supersymmetric Yang–
Mills theory where three complex scalar fields belong to the adjoint representation of the
gauge group.
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The saddle-point solution for the vector-potential Aa
i is an isovector:

Ãa(0)
i = ε ηa

i j Z j . (5.216)

Due to the condition Zi Ai = 0 and the chosen gauge condition, the tensor ηi j should be
antisymmetric:

ηa
i j = −ηa

ji . (5.217)

Other constraints on the matrix ηi j appear from the possibility to iterate the equation for Y
and Ai in the small parameter ε:

[ηa, ηb] = C1ε
abcηc, ηaηaηb = C2η

b, T r
(
ηaηb

)
ηb = C3 η

a, (5.218)

where C1,C2 and C3 are some constants. The reason for these constraints is the vanish-
ing of the contribution of the first harmonics δ Ãi ∼ ca

ik zk on the left-hand side of the
Euler–Lagrange equation after applying to Ai the differential operator in Eq. (5.213). The
iteration is possible only if one can compensate contributions with the first harmonics on
the right-hand side of the equation by the term proportional to the correction O(ε) and
O(ε2) to the critical value of g2/λ.

If the constant C1 is nonzero, then there are three independent solutions of the above
equations for ηa which are unique up to rotations in the isotopic and five-dimensional
coordinate space. Indeed, one can choose the constant C1 to be unity and, as a result, the
matrices T a = iηa can be interpreted as a representation of the SU (2) generators. These
representations should be irreducible or they should consist of irreducible representations
with the same weights. Such matrices can have isospin T = 2 acting in the entire five-
dimensional space, T = 1 acting in the three-dimensional subspace or T = 1/2 × 1/2
acting in the four-dimensional subspace [29]:

1) ηa
i j = γ i

cd γ
j
f g

(
−εac f δdg − εacg δd f

)
, (5.219)

2) ηa
i j = γ i

c γ
j

d

(
−εacd

)
, c, d = 1, 2, 3, (5.220)

3) ηa
i j = γ i

μ γ
j
ν η̂

a
μν, μ, ν = 1, 2, 3, 4, (5.221)

where the γ -matrices are chosen as follows:

Ẑ = Ziγ
i = 1√

2

⎛⎜⎜⎝
Z4 − Z5√

3
Z1 Z2

Z1 −Z4 − Z5√
3

Z3

Z2 Z3 2 Z5√
3

⎞⎟⎟⎠ , γ i
c = δi

c, γ
i
μ = δi

μ. (5.222)

The tensors η̂a
μν coincide with the ’t Hooft matrices ηa

μν up to the common factor −1/2:

η̂1 = 1

2

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ , η̂2 = 1

2

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞⎟⎟⎠ ,
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η̂3 = 1

2

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ . (5.223)

Other solutions of the above equations for ηa correspond to the commuting case C1 = 0
and can be represented in the following form [29]:

ηa = la
1 η1 + la

2 η2, (5.224)

where the matrices η1,2 are equal:

η1 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , η2 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ . (5.225)

Up to appropriate rotations in isospin space the three independent solutions with C1 = 0
can be chosen as follows [29]:

4) (la
1 )

2 = (la
2 )

2 = 1, la
1 la

2 = 0, (5.226)

5) la
1 = la

2 , (la
1 )

2 = 1, (5.227)

6) l2
1 = 1, la

2 = 0. (5.228)

5.6.3 Solutions of the classical equations

In the first case of (5.219), due to the relations

Ẑ3 = − Ẑ

2
+ s

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ , s = 1

3
T r Ẑ3 = Det Ẑ (5.229)

one can search for the solution in the form of

Ãa
i = εabc

(
a1(s) Ẑ γi + a2(s) Ẑ2 γi + a3(s) Ẑ2 γi Ẑ

)
bc
, Ỹ = U b(s), (5.230)

where U is an arbitrary isospinor normalized by U+U = 1 and we have taken into
account the property that the bracket can be antisymmetrized in the indices b, c. The Euler–
Lagrange equations for the functions ar (s) and b(s) can be obtained from the stationarity
condition of the functional S [29]

S = √
6π2

∫ 1/
√

54

−1/
√

54
ds L , L = W

(
(a′)2

2
+ W (a′

2)
2

12
+ W (a′

3)
2

36
− 2a′a2

)

+ 18a2 + 9Wa2
2 + 10

3
Wa2

3 + g

(
3a3 − 3sWa3

2 + W

9
a3

3 + W

2
a2

2(3a − a3)

)
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+ g2
(

9

8
a4 + W 2

32
a4

2 + W 2

216
a4

3 + 3W

8
a2a2

2 + W

2
a2a3(a − 9sa2)− W 2

4
a2

2a3(a − sa2)

)

+ 2

3
W (b′)2 + 8b2 + 2λb4 + g2b2

(
3

2
a2 + 1

4
Wa2

2 + W

12
a2

3

)
, (5.231)

where we have used the following notation:

W = 1 − 54 s2, a = a1 + 3sa2 − 1

3
a3. (5.232)

In cases 2, 3, 5, and 6, the iteration in ε leads to the following ansatz for the classical
solutions [29]:

Ãa
i = ηa

ik Zk a(t), Ỹ = U b(t), t = ηa
i j1
ηa

i j2
Z j1 Z j2 =

n⊥∑
r=1

Z2
r , (5.233)

where n⊥ = 2, 3, 4 is the dimension of the subspace in which the matrices ηa act.
The Euler–Lagrange equation for the functions a(t) and b(t) can be obtained from the
stationarity condition of the functional

S = 2π5/2

�( n⊥
2 ) �(

5−n⊥
2 )

∫ 1

0
dt t

n⊥
2 −1 (1 − t)

3−n⊥
2 L⊥, (5.234)

where

L⊥ = T (T + 1)

(
−g t a3 + T

4
g2t2a4

)
+ 4t (1 − t)(b′)2 + 2b2 + λ

2
b4

+ (T (T + 3 − n⊥)+ 1)

(
2t2(1 − t)(a′)2 + 3ta2 + g2

4
ta2b2

)
. (5.235)

For case 4 of (5.226), one can obtain the following ansatz:

Ãa
i = la

1 (η1)ik Zk a1 + la
2 (η2)ik Zk a2, Ỹ = U b, (la

1 )
2 = (la

2 )
2 = 1, la

1 la
2 = 0, (5.236)

where the functions a1, a2 and b depend on two variables,

t1 = −(η2
1)ik Zi Zk, t2 = −((η2)

2)ik Zi Zk . (5.237)

The Euler–Lagrange equations for these functions are obtained from the functional

S = 8π2
∫ 1

0
dt1

∫ 1−t1

0
dt2 (1 − t1 − t2)

− 1
2 L4, (5.238)

where

L4 = t2 (1 − t2)

(
t1

(
∂a1

∂t2

)2

+ t2

(
∂a2

∂t2

)2

+ 2

(
∂b

∂t2

)2
)

+ t1 (1 − t1)

(
t1

(
∂a1

∂t1

)2

+ t2

(
∂a2

∂t1

)2

+ 2

(
∂b

∂t1

)2
)
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− 2t1t2

(
t1
∂a1

∂t1

∂a1

∂t2
+ t2

∂a2

∂t1

∂a2

∂t2
+ 2

∂b

∂t1

∂b

∂t2

)

+ 3

2
(t1a2

1 + t2a2
2)+

g4

2
t1t2a2

1a2
2 + b2 + λ

4
b4 + g2

8
b2(t1a2

1 + t2a2
2). (5.239)

In the case of SED, the correponding expressions for solutions similar to the above cases
5, 6 are given by

Ãi = (η1)ik Zk a(t), Ỹ = eiϕ b(t), t = −(η2
1)ik Zi Zk (5.240)

and

Ãi = (η1 − η2)ik Zk a1(t), Ỹ = eiϕ b1(t), t = −((η2 − η1)
2)ik Zi Zk . (5.241)

The corresponding effective Lagrangians can be obtained from L⊥ by putting T = 0 in it.

5.6.4 High-order estimates for gauge model with the Higgs fields

The high-order asymptotics of the coefficients of the perturbation series is expressed in
terms of the effective action Fk,m [29]:

Gk,m ∼ Re exp (−Fk,m), Fk,m = S̃ + m ln g2 + k ln λ, (5.242)

where S̃ is the value of S calculated on the corresponding classical solutions. The saddle-
point values g̃2, λ̃ of the coupling constants are found from the equations

m = − ∂

∂ ln g2
S̃, k = − ∂

∂ ln λ
S̃, m + k = S̃ (5.243)

which can be written in another form:

m + k = S̃ = s(g2/λ)

λ
,

m

m + k
= −g2

λ

s′(g2/λ)

s(g2/λ)
. (5.244)

Here we have taken into account that S̃ can be represented as s(g2/λ)/λ, where s is a
function depending on the ratio g2/λ. This allows us to write the asymptotics of Gk,m in
the simple form

Gk,m =
(

k + m

16π2e

)k+m

Re

(
C

(
m

k + m

))k+m

, (5.245)

C

(
m

k + m

)
= 16π2

s
(

g̃2

λ̃

) ( g̃2

λ̃

)− m
k+m

, (5.246)

where g̃2, λ̃ are the saddle-point values of the coupling constants.
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The simplest way to solve the Euler–Lagrange equations approximately is to use the
variational approach for the corresponding functionals by representing the trial functions
as superpositions of several harmonics on the five-dimensional unit sphere [29]. This
approach can be justified for small m/k. In this region, we obtain for the above six types
of solutions in the Yang–Mills model the following expansion of C(x)

ln

∣∣∣∣C ( m

m + k

)∣∣∣∣ = ln 3 − m

k + m
ln 6 − Bi

(
m

k + m

)2

+ . . . . (5.247)

where Bi = 1/9, 10/63, 5/18, 5/42, 5/21, 5/28, respectively.
This means that for small m/k, the first solution with T = 2 gives the largest contribu-

tion to the asymptotics of Gk,m . The phase of C for small m/k is iπ , which corresponds to
the sign-alternating form of Gk,m . Generally, this phase depends on m/k and is different
for the above six solutions.

In the opposite limit m/k > 1, the leading asymptotic behaviour of Gk,m is given by the
third ansatz with T = 1/2 × 1/2. For this anzatz, one can find an explicit solution directly
in the four-dimensional space [29]:

Ãa
μ = 4

g
η̃ a
μν xν

ρ2 − 1

(x2 + ρ2)(1 + ρ2x2)
, φ̃ = i

g
U

4
√

3√
(x2 + ρ2)(1 + ρ2x2)

, (5.248)

where the parameter ρ is expressed in terms of the coupling constants g and λ as follows:

ρ =
(

12
λ

g2
− 1

) 1
4 = eξ . (5.249)

This solution describes an instanton of size 1/ρ embedded inside an anti-instanton of size
ρ. Recall that from the beginning we have considered the average scale y equal to unity.
Such type of function for ρ → ∞ will be used below for the calculation of the high-order
asymptotics in the pure Yang–Mills theory. The action for this solution is given by

S = 16π2

g2

(
−2 + 3

sinh (4ξ)− 4ξ

cosh(4ξ)− 1

)
. (5.250)

For the case ξ → 0, we obtain g2/λ→ 6 and S̃ → −16π2/(3λ).
On the other hand, the parameter ξ can be fixed from the saddle-point conditions

k

k + m
= 12e−2ξ ctnh(2ξ)

2ξ cosh(2ξ)− sinh(2ξ)

12ξ + 2(cosh(4ξ)− 1)− 3 sinh(4ξ)
(5.251)

and the saddle-point value of g is found from the relation

m + k = S. (5.252)

There are two different solutions ξ1,2 of these equations. For m/k → 0, we have ξ1 → 0
and ξ2 → 0.65 + 1.4 i . In the opposite limit m/k → ∞, one can obtain ξ1 → π i/4
and ξ2 → ∞. Here the second branch corresponds to the noninteracting instanton–anti-
instanton configuration with S = 16π2/g2 in the pure Yang–Mills theory where the
perurbation series in g2 is not Borel summable.
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Note that in the pure Yang–Mills model (φ = 0) we can find analytically the second
solution corresponding to T = 1 [29]:

a = 2
√

2 sinh(2ξ)

cosh(2θ)+ cosh(2ξ)
, θ = ln t, tanh(ξ) =

√
3

2
e−iπ/6. (5.253)

The action for this solution is

g2

16π2
S = 4

3
e−iπ/3

(
i

√
3

2
− tan−1(sinh ξ)

sinh(ξ)

)
≈ 2.275 e−iπ/3 (5.254)

and its contribution to the high order asymptotics is small in comparison with the
instanton–anti-instanton configuration.

In the case of scalar electrodynamics, we obtain for the above two solutions generated
by the matrices η1 and η1 −η2 the following expressions for ln C at a small ratio m/k [28]:

ln

∣∣∣∣Ci

(
m

m + k

)∣∣∣∣ = ln 3 − m

m + k
+ Di

(
m

m + k

)2

+ . . . , (5.255)

where D1 = 5/21 and D2 = 5/42, respectively. Therefore, the first solution with n⊥ = 2
gives the leading contribution to the asymptotic behaviour of Gk,m at k � m � 1. One
can verify that this conclusion is valid for an arbitrary value of the ratio m/k including the
pure electrodynamic case m � k ∼ 1.

To obtain a more accurate expression for Gk,m at large k and m, one should find the
quantum fluctuations around the above classical solutions. The zero-mode contribution
is most important and can be calculated analytically, but the Gaussian integration over
fluctuations in other directions in the functional space can be performed only numerically
because it is not possible to diagonalize analytically the corresponding quadratic forms.
Nevertheless, for the most interesting case of the instanton–anti-instanton configuration in
the pure Yang–Mills theory the explicit result will be presented in the following section.

5.7 Asymptotic estimates in the pure Yang–Mills theory

Let us discuss the high-order behaviour of the perturbation theory coefficients in the pure
Yang–Mills theory with gauge group SU (2) [31]. In this model, there is a series of topo-
logically nontrivial vacuum states characterized by an integer number n (see Chapter 4).
The vector potentials describing these states are pure gauge fields which, however, cannot
be obtained continuously by a gauge transformation from the field A = 0. These vacua
are degenerate. In quantum theory, there are solutions of the Yang–Mills equations in the
Minkowski space-time which are responsible for the tunnel transitions between them. The
simplest solution having a topological charge equal to unity is the BPST instanton (see
Chapter 4)

Ãa
μ = Rab η

b
μν

2

g

(x − x0)ν

(x − x0)2 + y2
, (5.256)
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where R is the orthogonal matrix describing O(3)-colour rotations and x0 and y are
arbitrary real parameters. The t’Hooft matrix ηa

μν has the form

ηa
μν = ε0aμν + 1

2
εabc εbcμν. (5.257)

The analogous solution with the matrix

ηa
μν = ε0aμν − 1

2
εabc εbcμν (5.258)

describes the anti-instanton. The value of the action on the instanton and anti-instanton
configurations is the same

S(i) = 1

4
Tr
∫

G̃2
μν d4x = 8π2

g2
. (5.259)

The amplitude of the tunnel transition between two vacuum states with �n = 1 is known
(see Section 4.6)

〈0|1〉inst

〈0|1〉pert
=
∫

d4x0
dy

y5
(μ0 y)ν exp

(
− 8π2

g2(μ0)

)
B d", (5.260)

where ν = 22
3 , the coefficient B was calculated by ′t Hooft (see Chapter 4) and μ0 is the

normalization point. The integration over the Euler angles " with the normalized volume∫
d" = 1 corresponds to taking into account all possible orthogonal matrices R for the

instanton field.
To calculate the asymptotic behaviour of the perturbation series coefficients one should

find the solution of the Euler–Lagrange equations with the minimal action and a vanish-
ing topological charge. Strictly speaking, in the pure Yang–Mills theory such a solution
does not exist, but we can obtain it as a limit of the instanton–anti-instanton solution for
the theory containing a complex Higgs field in doublet representation (see (5.248)). This
solution is spherically symmetric, but one can deform it using conformal transformations.
Moreover, in the pure Yang–Mills theory, the value of the action is the same S ≈ 2S(i)

for all weakly interacting instanton–anti-instanton configurations which can be written as
follows:

Ãa
μ = R(1)ab η

b
μν

2

g

y2
1(x − x1)ν

(x − x1)2
(
(x − x1)2 + y2

1

) + R(2)ab η
b
μν

2

g

(x − x2)ν

(x − x2)2 + y2
2

, (5.261)

where R(1) and R(2) are arbitrary 3 × 3 orthogonal matrices; x1, y1 and x2, y2 are
parameters of the instanton and anti-instanton, respectively. It turns out that the lead-
ing contribution is obtained from two kinematical regions in which the instanton and
anti-instanton have completely different scales:

y1 � y2 ∼ |x1 − x2|, (5.262)

and

y2 � y1 ∼ |x1 − x2|. (5.263)
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The calculation of the action on the above trial configurations gives [31]

S̃ = 16π2

g2
− 32π2

g2
R(1)ab R(2)ab η, (5.264)

where for y1 � y2 we have

η = y2
1 y2

2(
(x1 − x2)2 + y2

2

)2 � 1. (5.265)

The analytic properties of physical quantities in the complex g2-plane in the Yang–Mills
theory are similar to the case of the partition function Z in the zero-dimensional model
with action S = x2(1 − λx)2 (λ = g) considered above. Namely, it can be represented
for g2 > 0 as a dispersion integral with a principal value prescription for another function
analytic in g2 < 0. Formally, the discontinuity of this function for Z in the Yang–Mills
model for g2 → 0 is given by the expression [31]

�Z =
∫ 2∏

r=1

(
d4xr

dyr

y5
r
(μ0 yr )

ν B d"r

)
exp

(−S̃
)
. (5.266)

Here an additional condition for the product of matrices R(r) is implied:

R(1)ab R(2)ab > 0. (5.267)

It corresponds to attractive instanton–anti-instanton interactions, which leads to a pure
imaginary value for �Z after integration over the parameter η in S̃

�Z = iπ3
(

32π2

g2

) ν
2 B2 e−16π2/g2

ω

(ν − 2)(ν − 1) �(−1 + ν
2 )

∫
d4x1

dy1

y5
1

(μ0 y1)
2ν, (5.268)

where we have integrated also over x2. The coefficient ω is obtained as a result of
integration over the instanton and anti-instanton orientations in the colour space [31]

ω =
∫

R(1)ab R(2)ab >0

(
R(1)ab R(2)ab

) ν
2

2∏
r=1

d"r = 1

π

∫ 2π/3

0

(1 + 2 cos φ)1+ ν
2

(1 + cos φ) (1 + ν
2 )

d φ, (5.269)

where φ is the total azimuthal angle in the Euler parametrization of the matrix R(1) R(2).
The most interesting quantity in the Yang–Mills theory is the Gell-Mann–Low function.

One can calculate it using the heavy charge interaction energy E(R) defined in terms of
the Wilson P-exponent [8]

exp(−2E(R)T ) =< P exp

(
ig
∫

Aμdzμ

)
> . (5.270)

Here the integral over z goes along a rectangle with sides T and R for R � T . Its averaging
in the functional integral over A for small g2 is performed with the use of the saddle-point
method around the instanton–anti-instanton configuration Ã.
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The invariant charge can be defined as follows:

g2(p) = −p2
∫

d3 R ei pR E(R). (5.271)

The Gell-Mann–Low function is found from the equation

ψ(g2(p)) = ∂g2(p)

∂ ln p2/μ2
. (5.272)

The final result for the coefficients ψk in the perturbative expansion of ψ(g2),

ψ(g2) =
∞∑

k=2

(g2)k ψk, (5.273)

can be written as follows [8, 31] (cf. also Ref. [32]):

lim
k→∞ψk = −(16π2)1−k �(k + ν

2
+ 8)C, ν = 22

3
, (5.274)

where the constant C is given by

C = 2(
ν
2 −11) 0.412

π3(ν − 2)(ν − 1)�
(
1 + ν

2

) I1 I2 . (5.275)

(The numerical factor in (5.275) corresponds to Pauli–Villars regularization.) In (5.275)
we have introduced the functions (cf.(5.269))

I1 =
∫ 2π

3

0
d t
(1 + 2 cos t)1+ ν

2

1 + cos t
, I2 =

∫ ∞

0
d ρ ρ2ν−1 ( f 2

1 (ρ)+ f 2
2 (ρ)), (5.276)

defined in terms of the integrals

f1(ρ) =
∫ ∞

0
r d r sin r

(
1 + cos

πr√
r2 + ρ2

)
,

f2(ρ) =
∫ ∞

0
d r

(
r cos r − sin r

r

)
sin

πr√
r2 + ρ2

. (5.277)

Note that the asymptotic expression for ψk can be represented in different forms due to
the relation

lim
k→∞�(k + k0) = lim

k→∞�(k) kk0 .

Because k0 in the Yang–Mills theory is large due to a large number of zero modes, an
uncertainty in the choice of the asymptotic expression for ψk does not allow us to verify
its accuracy for existing fixed values of k. Nevertheless, this asymptotics can be used in
resummations of the perturbation theory.
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5.8 Asymptotic estimates in quantum electrodymamics

Although initially the Dyson argument supporting the divergence of perturbation theory
was applied to QED, it was shown later that in this case there are some peculiarities related
to Fermi statistics [33]. Indeed, for the anticommuting fields the approach based on the
solution of classical equations is not applicable. However, because these fields enter in the
QED action only in a bilinear way, one can integrate over them to obtain a determinant
being a nonlocal gauge-invariant functional of the product eAμ, where e is the electron
charge and Aμ is the photon field [34]. The logarithm of the determinant gives an addi-
tional contribution to the free electromagnetic action. But it is difficult to work with such
effective theory due to its nonlocality. For constant external fields Fμν , the fermionic deter-
minant can be calculated exactly, which leads to the Heisenberg–Euler action (5.1). But in
accordance with the Dyson argument for the perturbation series divergence, classical solu-
tions for the photon fields should be found for pure imaginary values of the electric charge
e. Therefore, we cannot use the Heisenberg–Euler action for our purpose. Note, however,
that for us it is enough to estimate the fermionic determinant only for large complex values
of the product eAμ [34],[35]. To find its asymptotics, one can assume that the saddle-point
configuration of the photon field has the most symmetric form. Furthermore, as was argued
above for the case of scalar electrodynamics, there is a simple ansatz for classical solutions.
Indeed, using the inverse stereographic projection of the four-dimensional space to the unit
sphere in the five-dimensional space, one can write the expression for the five-component
gluon field Ai in the form

Ai = ηi j Z j a(Z2⊥), (5.278)

where the matrix η is antisymmetric

ηi j = −η j i (5.279)

and satisfies the additional constraint

ηi jηk j = Pi j . (5.280)

Here P is the projector onto a subspace of the five-dimensional space

P2 = P. (5.281)

There are only two possibilities (5.240) and (5.241). Namely, the dimension n⊥ of this
subspace can be 2 or 4. Generally the argument of the function a can be written as
follows

Z2⊥ = Pi j Zi Z j =
n⊥∑

r=1

Z2
r . (5.282)

One can choose the matrices η1 and η2 for these two cases using appropriate five-
dimensional rotations in the form of
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η1 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , n⊥ = 2 (5.283)

and

η2 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0

−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , n⊥ = 4. (5.284)

We shall obtain the large field behaviour of the fermionic determinant only for the first
case, because it turns out that its asymptotics is universal for all configurations of the
external field. In particular, in the large field limit one can neglect the electron mass in the
stationary Dirac equation

γμ (i∂ + e A)μ #n = λn #n, (5.285)

where

Aμ = (η1)μν
xν

x2
1 + x2

2

b1(Z
2⊥). (5.286)

Generally, the fermion loop contribution to the effective action is expressed in terms of the
eigenvalues λn as follows

ln Det
(
γμ (i∂ + e A)μ

) =
∑

n

ln λn . (5.287)

Furthermore, for large e A the spin effects can be neglected. As a result, instead of the
Dirac equation we can solve the Klein–Gordon equation [35]

(i∂ + e A)2μ # = λ2#n, (5.288)

taking into account the double spin degeneracy of λn only at the end of the calculations.
The photon field for the first anzatz has the symmetry SO(3) × O(2). Therefore, the

angular momentum m in the O(2)-subspace is quantized (m = 0,±1,±2, . . .) and the
wave function has the factorized form

#(x) = eim φ ψ(r, x3, x4), r2 = x2
1 + x2

2 , (5.289)

where φ is the asimuthal angle in the plane (x1, x2). The function ψ satisfies the equation

M ψ = −
(

1

r

∂

∂r
r
∂

∂r
− (m − g)2

r2
+
(
∂

∂x3

)2

+
(
∂

∂x4

)2
)
ψ = λ2 ψ, (5.290)

where the field eAμ for our case has only one nonzero component Aφ = g and

g = e b1(Z
2⊥), Z2⊥ = 4r2

(r2 + x2
3 + x2

4)
2
. (5.291)
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We express the determinant of the operator M in terms of the integral over the Fock–
Schwinger proper time s

ln DetM = −
∫ ∞

s0

d s

s

∞∑
m=−∞

Tr exp

(
−s

(
p2

r + (m − g)2

r2
+ p2

3 + p2
4

))
, (5.292)

where s0 is an ultraviolet cut-off. For large M , one can use the quasiclassical approach
by replacing the trace in the above expression with integrals over the phase space for the
corresponding canonical degrees of freedom [35]

Tr →
∫

dpr dr

2π

dp3 dx3

2π

dp4 dx4

2π
. (5.293)

This leads to the following result after calculating the integrals over pr , px , py

ln DetM = − 1

8π2

∫
d4x

r4
F(g), (5.294)

where after rescaling the integration variable s → s r2 we obtain for the function F(g) the
simple representation [35]

F(g) = 1

2
√
π

∫ ∞

s0

d s

s5/2

∞∑
m=−∞

exp
(
−s (m − g)2

)
. (5.295)

Note that the field A can be interpreted as the vector-potential of an infinitely thin and
long solenoid with magnetic flux 2πg. The magnetic field outside this solenoid is zero, but
nevertheless for g different from an integer number, the potential A is physically observable
according to Bohm and Aharonov [36].

Using the relation

∞∑
m=−∞

exp
(
−s (m − g)2

)
=
√
π

s

∞∑
k=−∞

exp

(
−π

2

s
k2 + 2π i k g

)
, (5.296)

one can represent F(g) in another form [35]

Freg(g) =
∞∑

k=−∞

1

2(πk)4
exp (2π i k g) , (5.297)

where the subscript reg of F implies that in the sum over k the term with m = 0 is absent
and the constant term at g → 0 is subtracted.

The function Freg(g) has the following properties

Freg(g) = Freg(g + 1), Freg(g) = Freg(1 − g) (5.298)

and in the interval 0 < g < 1 it can be expressed in terms of a Bernulli polynomial

Freg(g) = −1

3
g2(1 − g)2. (5.299)
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For large imaginary values of g it behaves as follows:

lim
g→±i∞ Freg(g) = −1

3
g4. (5.300)

Therefore, the contribution of the photon fields described by the first ansatz, Eq. (5.286),
to the effective action of the fermionic determinant at a large imaginary charge e, can be
written in the following local form [35]:

�S = lim
Im e→∞ ln Det M = (Im e)4

12π2

∫
(A2
μ)

2 d4x, (5.301)

where we have taken into account two spin degrees of freedom for the electron in
comparison with one for a spinless particle.

It turns out that the expression derived for �S is valid for all external fields satisfying
two additional constraints [35]:

∂μAμ = 0, Aμ∂μA2 = 0. (5.302)

One can easily verify that both constraints are fulfilled by our trial function (5.278) or, in
four-dimensional notation, by the function

Aμ = (η2)μνxνb2(x
2) (5.303)

with matrices η1,2 given in (5.283) and (5.284) for two cases, n⊥ = 2 and n⊥ = 4.
Inserting the above expressions for Aμ in the effective action Sef f = S0+�S, we obtain

the corresponding functionals depending on the functions b1,2

S1 = π2

2

∫ 1

0
dt (1 − t)1/2

(
(1 − t) b′2

1 − λ

128
b4

1 t−2
)
, t = 4(x2

1 + x2
2)

(1 + x)2
(5.304)

and

S2 = 2π2
∫ ∞

0
dt t3

(
b′2

2 − λ

8
b4

2

)
, t = x2, (5.305)

where

λ = e4

3π2
. (5.306)

The Euler–Lagrange equations for these two functionals,

(1 − t) b′′
1 − 3

2
b′

1 + λ

64 t2
b3

1 = 0 (5.307)

and

t b′′
2 + 3 b′

2 + λ

4
b3

2 t = 0, (5.308)

have the simple solutions

b1 = 8
√

2√
3λ

t
4
3 − t

(5.309)
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and

b2 = 4
√

2√
λ

1

1 + t2
, (5.310)

respectively.
We can calculate the actions on these solutions [35]

S1 = b1

α2
, b1 = 4π33−3/2, (5.311)

S2 = b2

α2
, b2 = 4π2. (5.312)

The discontinuity for α < 0 of physical quantitities can be written as follows:

�Gα<0 ∼ i
2∑

r=1

exp

(
− br

α2

)
. (5.313)

Note that the value of the action for the first solution is slightly smaller then the
corresponding result for second one. This means that the asymptotic behaviour of the
perturbation theory coefficients in QED is governed by the first solution [35]

lim
k→∞ Gk ∼ (−1)k b

− k
2

1

√
k!. (5.314)

There is an additional oscillatory factor from neglected corrections to the large-field
asymptotics of the fermionic determinant [8]. The modification of the factorial behaviour
Gk ∼ k!, predicted by Dyson, to a weaker growth ∼ √

k! is related to a compensation of
contributions of Feynman diagrams with a different number of electron loops (see [37]).
Physically, this compensation is explained by the Fermi statistics of electrons.

5.9 Applications of high-order estimates

Sometimes in solid state physics and in quantum field theory it is necessary to go beyond
traditional perturbation theory. A typical example is the Wilson approach to second-order
phase transitions [38]. Due to the universality of critical exponents for physical quanti-
ties one can use for their calculation the simple mathematical models being in the same
universality class as the corresponding physical models. The most popular method for
computations in a theory with space dimension D = 3 is based on the ε-expansion of
the physical quantities defined in the space with D = 4−2ε [39]. For example, in the clas-
sical Ising model each node of the three-dimensional regular lattice contains the variable
σk = ±1 and the corresponding Hamiltonian is [40],[41]

H = −J
∑
(i,k)

σiσk − h
∑

k

σk, (5.315)

where the sum is performed over all closest vertices i and k. The parameter J is positive
for ferromagnets and negative for antiferromagnets. The quantity h can be considered to
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be a magnetic field. The On-symmetric Heisenberg spin model has the more complicated
Hamiltonian [40],[41]

H = −J
∑
(i,k)

si sk − h
∑

k

sk, (5.316)

where si are classical spins.
The corresponding mathematical model is the theory of the scalar field φk (k =

1, 2, . . . , n) in the D-dimensional Euclidean space with the action

S =
∫

d Dx

⎛⎝ n∑
k=1

(
(∂σ φk)

2

2
+ τ0 (φk)

2

2

)
+ λ0

4!

(
n∑

k=1

φ2
k

)2
⎞⎠ . (5.317)

Here τ0 and λ0 are the bare parameters depending on the normalization point μ (for the
minimal subtraction scheme [42]). The physical quantities Oi are the powers Oi ∼ τγi

of the small difference τ = T − T0 → 0, where T is the current temperature and T0 is
that of the phase transition. These anomalous dimensions γi are calculated as functions of
the quantity ε = (4 − D)/2 which is considered to be small (but in fact ε = 1/2). The
β-function entering in the renormalization group equation for the invariant charge

∂λ

∂ lnμ
= β(λ) (5.318)

contains in the MS-scheme [42] an additional term linear in ε [40, 41]

β(λ) = −2ελ+
∞∑

k=2

(−1)k Ck λ
k, (5.319)

where the coefficients Ck of the perturbative expansion are calculated in the four-
dimensional theory with ε = 0. Since C2 > 0 for sufficiently small ε there is a nontrivial
infrared stable point λ̃, where

β(̃λ) = 0. (5.320)

The value λ̃ depends on ε and therefore the critical exponents

γi =
∞∑

k=1

(−1)k λkdi (k), (5.321)

taken at this point also depend on ε. The quantities β and γi are calculated analytically
within the framework of perturbation theory up to a rather large order k0. The result for γi

is represented in terms of a divergent series in the parameter ε = 1/2 and is rather unstable
with increasing k0.

To improve the convergence of the series one can perform, for example, the Pade resum-
mation of its Borel transform B(b) (5.3), using for this purpose the asymptotic expressions
obtained above for the coefficients Ck and di (k) at large k [40],[41]. The most important
critical exponents γ and ν enter in the expression for the Green function of the scalar
particle in momentum space

lim
p,τ→0

D(p, τ ) = p−γ /ν f (τp−1/ν), (5.322)
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where f (∞) is a finite number. The resummation procedure leads to values which are
in good agreement with experimental data. For example, for the critical exponents in the
Ising model (n = 1), the experimental values γ = 1, 237, ν = 0.630 are reproduced by
the resummation with relative accuracy ∼ 10−3 [40, 41, 43].

Another traditional application of the high-order estimates is related to attempts to verify
self-consistency of local quantum field theory in the cases of the φ4-model and of quan-
tum electrodynamics. As is well known, in the leading logarithmic approximation in these
models the physical charge λc is zero in the local limit when the ultraviolet cut-off� tends
to infinity (so-called Moscow zero-charge problem [44], [45]). Generally, such nullifica-
tion of interactions takes place when the β-function does not have an ultraviolet stable zero
and grows at large coupling constants λ → ∞ sufficiently rapidly to provide convergence
of the integral on the right-hand side of the renormalization group equation [46]:

ln
�2

μ2
=
∫ λ0 d λ

β(λ)
. (5.323)

In perturbation theory β(λ) = C2λ
2, and the integral is convergent, which leads to the

Moscow zero. One should go beyond perturbation theory to verify whether or not the above
conditions for the charge nullification are valid. For the theory with interaction Hamiltonian
λφ4/4! the coefficients Ck in the MS-scheme are known up to k = 6 (these and other results
for the renormalization group functions are contained in Refs. [47],[48],[49]).

β(u) = 3u2 − 17

3
u3 + u4

(
145

8
+ 12 ζ(3)

)

+ u5
(

−3499

48
− 78 ζ(3)+ 18 ζ(4)− 120 ζ(5)

)
+ . . . , u = λ

16π2
. (5.324)

The results of the Pade–Borel resummation of β(u) based on the asymptotic estimates for
the coefficients Ck can be found in Refs. [50],[51],[52]. There is an opinion that the infor-
mation used up to now is not enough to prove or disprove the Moscow zero. The method
of resummation based on the Mellin–Barnes representation (5.128) used in Ref. [22] was
developed in Ref. [51]. It was argued [51] that the expression for the coefficients C(k) at
k → ∞ is an analytic function and therefore one can believe that the asymptotic behaviour
of β(λ) for large λ is governed by the leading singularity of C(k). If this singularity is
situated on the real axis in the interval 1 < k < 2, then the integral

∫
dλ/ψ(λ) is con-

vergent for λ → ∞ and the theory is not self-consistent [50]. But providing that C(k) is
regular for k > 1 and C(1) �= 0, the asymptotic behaviour of the β-function is β(λ) ∼ λ.
This would lead to the divergence of the integral

∫
dλ/β(λ) at large λ and, as a result, the

Moscow zero would be absent for the bare coupling constant growing as λ0 ∼ exp(c�/μ)
at large � [52]. In the case of a model with the strong nonlinearity considered above, the
coefficient C(k) has an additional singularity at k = 1 [22] but nevertheless the theory
is self-consistent. It will be interesting to investigate the analytic properties of the pertur-
bation theory coefficients in the k-plane, at least in the integrable cases, for example for
N = 4 SUSY.
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In the case of QCD, the divergence of perturbation theory for many observables is gov-
erned by the infrared and ultraviolet renormalons. As was argued above, the infrared
renormalon contributions lead to nonperturbative effects similar to those arising from
vacuum condensates. Therefore, they presumably contain information about the hadron
mass spectrum and further investigation of the relation between renormalons and the
nonperturbative physics is important.
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6

QCD sum rules

6.1 Operator product expansion

In this chapter we study the correlators of hadronic currents:

�ABC ...(x, y1, y2..yn) = iT
{

j A(x), j B(0), i jC1(y1) . . . i jCn (yn)
}
, (6.1)

where j A(x), j B(y), jC
1 (y1) . . . are colourless local currents built from the field variables

of the theory, i.e. from quark and gluon fields. In (6.1), we exploited the invariance of
the theory under displacement of coordinates, which allowed us to choose one of the
coordinates as the origin of the reference frame. If x2, (x − yi )

2, (yi − yk)
2, i, k =

1, . . . n are negative and xμ, (x − yi )μ, (yi − yk)μ tend to zero, the matrix elements of
�ABC ...(x, y1, y2 . . . yn) between quark and gluon states can be calculated in perturbation
theory. On the other hand, the correlators of hadronic currents are related to the amplitudes
of the physical processes: e+e−-annihilation into hadrons, τ -decays, τ → ντ+hadrons,
deep inelastic lepton–hadron scattering, etc. In many cases, the study of the correlators
�ABC ... allows one to go beyond perturbation theory. Therefore, the study of correlators is
a useful instrument in the theoretical description of hadronic properties in QCD.

Consider the simplest two-point correlator �AB(x). In 1969, K. Wilson proposed the
operator product expansion (OPE) for�AB(x) [1]:

�AB(x) = iT
{

j A(x), j B(0)
}

x→0 =
∑

n

C AB
n (x)On(0), (6.2)

valid at x2 < 0 and xμ → 0. Here On(0) are the local operators built from field vari-
ables and taken at the point xμ = 0. C AB

n (x) are the coefficient functions that one
can, in principle, calculate in perturbation theory. C AB

n (x) have canonical dimensions of
(mass)dA+dB−dn , where dA, dB are the current dimensions, dn is the dimension of On . In
momentum space, OPE looks like

�AB(q) = i
∫

d4xeiqx T
{

j A(x), j B(0)
}

q2<0,q→∞ =
∑

n

C AB
n (q)On(0) (6.3)

Equations (6.2) and (6.3) are operator equalities: they are valid for any matrix element,
provided that the characteristic momenta of the initial and final states pi are much smaller
than q: | p2

i |� Q2 = −q2. The physical meaning of OPE is that the contributions of

195
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small and large distances can be factorized: the contributions of small distances determine
the coefficient functions, while large distances contribute to the matrix elements of the
operators.

In perturbation theory in case of any renormalizable theory, the OPE is a consequence
of the following intuitive considerations: Let us go to the interaction representation in (6.2)
and expand exp[i ∫ d4x Lint (x)] in a perturbation series. In each term of this expansion,
contract some field operators according to the rules of perturbation theory and leave all
others as operators. Perform the renormalization procedure and subtractions, if necessary.
Then at x2 → 0 the coefficient functions are dominated by the domain of small x2. So,
all operators are local and may be taken at xμ = 0. The strict mathematical proof of the
validity of OPE within perturbation theory was given by Zimmermann [2].

The intuitive proof of OPE sketched above, however, leaves aside a few important points.
The first is the correct formulation of the renormalization procedure. As is well known,
renormalization requires an introduction of the normalization point μ (see Chapter 1). In
(6.3), μ = Q was chosen as the normalization point of the On(0) operators. By defini-
tion, at the normalization point, all perturbative corrections to the operator are absorbed in
On(0). When we claim that the contributions of large and small momenta (or distances)
are factorized in OPE, we mean that the domain of integration over vacuum fluctuations
at momenta k larger than μ, k > μ, contributes to the coefficient functions Cn(q) while
the domain of integration k < μ contributes to operators On . In a theory with asymptotic
freedom and large nonperturbative effects, like QCD, if μ is large enough, αs(μ)/π � 1,
the domain k > μ can be accounted for perturbatively, but the contributions of the k < μ
domain are mainly of nonperturbative origin. An equivalent (or, practically equivalent)
recipe can be formulated as follows: calculate Cn(q), taking into account perturbative con-
tributions from the whole domain of integration in momentum space, and assume that
operators On and their matrix elements are given by nonperturbative interactions and that
the perturbative contributions in the domain k < μ were subtracted. Therefore, each
term of OPE in (6.2), (6.3), in general, is μ dependent. If the currents j A(x), j B(x) are
physical currents and the polarization operator �AB is a measurable object, the sum of
the OPE series is μ-independent. In practice, when only few terms of OPE are taken
into account, this statement is only approximately correct. (For a more detailed discus-
sion of this problem see ref. [3],[4].) If we consider different matrix elements of (6.2),
(6.3) or compare polarization operators of different currents j A(x), j B(x), the perturba-
tive contributions at k < μ to the same operator On may be different. So, the values
of the matrix element of the same operator, say 〈0|On|0〉 might be slightly different, if
found from different processes. (Practically, these effects are not important, because they
can be significant only for high-dimension operators or in higher orders of perturbation
theory.)

The second point that introduces some uncertainty in OPE is how to account for non-
perturbative vacuum fluctuations at large momenta. In QCD, we know the example of such
fluctuation – the instanton. Its contribution to the effective action is suppressed by a fac-
tor exp[−2π/αs(ρ)]K 2

n (Qρ), where Kn is the McDonald function, ρ is the instanton size,
and n = 0, 1 or 2, depending on the type of the currents jA, jB under consideration. (See
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Chapter 4.) To get the final result one has to integrate over ρ with some weight factor,
w(ρ), that has the physical meaning of instanton density. At fixed ρ, the instanton con-
tribution decreases exponentially at large space-like Q. The instanton contribution to the
vacuum expectation value of (6.2) can be estimated as

��inst (Q
2) ∼ (Qρ)n−1e−2Qρ (6.4)

and can be neglected at large enough Q. (It should be stressed, however, that this statement
holds only for space-like Q2 > 0 because for time-like Q2 < 0, i.e. in the physical domain
of the polarization operator, ��inst (Q) oscillates.) The integration over ρ changes the
situation: the results significantly depend on the behaviour of the instanton density at large
ρ. In perturbation theory, wherew(ρ) ∼ ρm , the integral over ρ is dominated by ρ ∼ 1/Q.
In this case, since αs ≈ 4π/(b ln q2/λ2), the instanton contribution is proportional to

1/Qb+2 (6.5)

(b = 9 in QCD with three light quarks). So, the instanton contribution can generate higher-
order terms of OPE. In the model of dilute instanton gas, where it is assumed that the
instanton density is concentrated near some fixed ρ = ρ0, the ��inst (Q) behaviour is
given by (6.4). In this model, the instanton contribution can be accounted for separately.
(The example of such computation will be presented in Section 6.5.1).

The third point that leads to an uncertainty in OPE is the convergence of the OPE series
in 1/Q2. The study of the potential model in nonrelativistic quantum mechanics demon-
strated that OPE series converges only asymptotically [5]. As was mentioned above, in
QCD the instanton contribution leads to an exponential decrease of �(Q) at large Q,
corresponding to the asymptotic OPE series, in the case when the instanton density is con-
centrated at fixed ρ = ρ0. Another source of an asymptotic character of OPE in QCD are
higher-order diagrams. In these diagrams, the operators, representing the nonperturbative
contributions, can be chosen in various ways and the number of such possibilities factori-
ally increases with the order of the diagram, which leads to an asymptotic series for OPE
(see Chapter 5). For these reasons, in all practical calculations, where OPE is exploited, it
is necessary to convince oneself that the desired accuracy of the OPE series is achieved by
terms that were actually taken into account.

If instead of the variable Q a fixed normalization point μ is introduced, corrections to
the operators On appear in perturbation theory as a series in the coupling constant αs

Oi (Q) = Oi (μ)

∞∑
n=0

d(i)n (Q, μ)α
n
s (μ). (6.6)

The running coupling constant αs at the right-hand side of (6.6) is normalized at the point
μ. The coefficients d(i)n (Q, μ) generally contain logarithms in powers smaller than or equal
to n. The summation of leading logarithms in (6.6) can be performed using the Callan–
Symanzik equation [6], [7] (see Chapter 1):(

μ2 ∂

∂μ2
+ β ∂

∂as
− γi asb

)
Oi (Q, μ, as) = 0. (6.7)
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This equation follows from the fact that the value of the operator Oi (Q) is independent of
the normalization point μ, apart from the overall renormalization of coupling constant and
field operators (see Chapter 1). Here Oi is considered as a function of Q, μ and as = αs/π ,
β = β(as) is the Gell-Mann–Low function for QCD. The variables as and μ are treated as
independent. The last term in brackets in (6.7) represents the anomalous dimension of Oi

(actual dimension minus canonical dimension dOi ), b is the first coefficient in the expan-
sion of β(as) in as : β(as) = a2

s (b + b1as + . . .). Since γi is a function of as and its
expansion in powers of as starts from the term proportional to as , it is convenient to sepa-
rate this factor explicitly in (6.7), as well as the factor b. In what follows, γi will be called
the anomalous dimension of operator Oi . The Callan–Symanzik equation expresses the
fact that if μ2 is varied, then αs is varied correspondingly, these two variations compensate
one another, and the value of Oi (Q) remains unchanged. Evidently, as(μ) satisfies (6.7)
without the last term

das(μ
2)

d lnμ2
= −β(as). (6.8)

Eq. (6.7) can be easily solved; we notice that it is similar to the advection equation
describing particles in a moving medium:[

∂

∂t
+ v(x) ∂

∂x
− ρ(x)

]
D(x, t) = 0. (6.9)

Here v(x) is the velocity of the medium, ρ(x) is the rate of particle production. This allows
one to write immediately the solution of Eq. (6.7):

Oi (Q) = Oi (μ) exp

⎡⎢⎣ Q2∫
μ2

d

(
ln

Q′2

μ2

)
γi

(
as(Q

′2))as(Q
′2) b

⎤⎥⎦ , (6.10)

where the as(Q2) dependence is determined by (6.8). If γi is approximated by a constant
and β(as) by β(as) = ba2

s , we get from (6.10) using (6.8)

Oi (Q) = Oi (μ)

[
αs(μ)

αs(Q)

]γi

. (6.11)

Accounting for higher-order terms of perturbation theory we can write

Oi (Q) = Oi (μ)

(
αs(μ)

αs(Q)

)γi ∞∑
n=0

b(i)n (Q, μ)α
n
s (μ). (6.12)

The anomalous dimension operators can be found from the renormalization group: in order
to determine γi , it is sufficient to calculate the divergent part of the first αs-correction to
Oi (Q). The currents j A, j B in (6.2), (6.3) have generally anomalous dimensions γA, γB .
Therefore, accounting for perturbative corrections and summing the leading logarithms we
get the general form of OPE

�AB(Q) =
∑

i

Oi (μ)

(
αs(μ)

αs(Q)

)γA+γB+γi ∞∑
n=0

C (i)n (Q, μ)α
n
s (μ). (6.13)
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(q2 = −Q2). In (6.12), all leading logarithms related to ultraviolet divergences are
absorbed in anomalous dimensions. If the quark masses are neglected, then infrared
divergences may appear, resulting in infrared logarithms. They are accounted for by the
coefficient functions C (i)n (Q, μ). If several operators are present with the same canonical
dimensions, their mixing is possible in perturbation theory. In this case, the relations (6.6),
(6.12) become matrix ones. The anomalous dimensions of conserved currents are zero.
Indeed, the associated charge

Z A =
∫

d3x jA,0(x) (6.14)

is a number and is independent of the normalization point. (Here jA,0 is the time-
component of jA,μ.) This statement refers to vector and axial currents and to their
octet generalization in SU (3)L × SU (3)R flavour symmetry in QCD, as well as to the
energy-momentum tensor !μν .

6.2 Condensates

Consider now vacuum matrix elements of (6.2), (6.3), or (6.13). The vacuum expectation
values 〈0 | Oi (Q) | 0〉 are called vacuum condensates. One of such condensates – the
quark condensate – has been already discussed in Chapter 2.

In their physical properties, condensates in QCD have much in common with those
appearing in condensed matter physics: such as superfluid liquid (Bose-condensate) in
liquid 4He, Cooper pair condensate in superconductors, spontaneous magnetization in
magnetic, etc. That is why, analogously to effects in condensed matter physics, it can be
expected that if one considers QCD at a finite and increasing temperature T , then there
will be a phase transition at some T = Tc and condensates (or a part of them) will be
destroyed. (Generally, the phase transition can proceed in some interval of temperatures
near Tc – the crossover domain.) Particularly, it is expected that such a phenomenon must
hold for condensates responsible for spontaneous symmetry breaking. Namely, at T > Tc

the condensates should vanish and the symmetry be restored. (In principle, surely, QCD
may have few phase transitions.)

Condensates in QCD are divided into two types: conserving and violating chirality. As
was demonstrated in Chapter 2, the masses of light quarks u, d, s in the QCD Lagrangian
are small compared with the characteristic scale of hadronic masses M ∼ 1 GeV. If light
quark masses are neglected, the QCD Lagrangian becomes chiral-invariant: left-hand and
right-hand (in chirality) light quarks do not transfer into one another, both vector and axial
currents are conserved (except for the flavour-singlet axial current, the nonconservation of
which is due to anomaly). The neglect of u and d quark masses corresponds to the accuracy
of the isotopic symmetry, i.e. a few percent, and the neglect of the s quark mass to the
accuracy of SU (3) symmetry, i.e. 10–15%. In the case of the condensates violating the
chiral symmetry, perturbative vacuum mean values are proportional to light quark masses
and are zero at mu = md = ms = 0.
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For this reason, the perturbative contributions to condensates discussed above, which
violate chiral symmetry, are small. So, such condensates are defined in the theory much
better than those conserving chirality and, in principle, they can be found experimentally
with higher accuracy.

The lattice calculations indicate that the phase transition from the phase where chiral
symmetry is violated to the phase of restored chiral symmetry is of the second order.

Quark condensate can be considered as an order parameter in QCD corresponding to
spontaneous violation of chiral symmetry. At the temperature T = Tc of the chiral symme-
try restoration it must vanish. The investigation of the temperature dependence of quark
condensate in the chiral effective theory shows that 〈0|q̄q|0〉 vanishes at T = Tc ≈
150 − 200 MeV [8]. Similar indications were obtained also in lattice calculations [9].

Thus, the quark condensate: (1) has the lowest dimension (d = 3) as compared with
other condensates in QCD; (2) determines baryons masses (see Chapter 2); (3) is the order
parameter in the phase transition between the phases of violated and restored chiral sym-
metry. These three facts determine its important role in low-energy hadronic physics.
If u and d quark masses as well as electromagnetic interactions are neglected, then
〈0 | ūu | 0〉 = 〈0 | d̄d | 0〉. Since ūu and d̄d enter the QCD Lagrangian multiplied by quark
masses and the Lagrangian is renormalization group invariant, the products mq〈0 | q̄q | 0〉,
q = u, d, s are renormalization group invariant, the anomalous dimensions of ūu, d̄d
and s̄s differ by sign from the anomalous dimension of quark masses and are equal to
γq̄q = 4/9.

The quark condensate of strange quarks is somewhat different from 〈0|ūu|0〉. It was
found that [10]:

〈0|s̄s|0〉/〈0|ūu|0〉 = 0.8 ± 0.1. (6.15)

The condensate next in dimension (d = 5), which violates chiral symmetry is the quark–
gluon one:

−g〈0|q̄σμν λn

2
Gn
μνq|0〉 ≡ m2

0〈0|q̄q|0〉. (6.16)

Here Gn
μν is the gluonic field strength tensor, λn are the Gell-Mann matrices, σμν =

(i/2)(γμγν − γνγμ). The value of the parameter m2
0 was found from the sum rules for

baryonic resonances [11]

m2
0 = 0.8 ± 0.2 GeV2 at μ = 1 GeV. (6.17)

The same value of m2
0 was found from the analysis of B mesons by QCD sum rules

[12]. The anomalous dimension of the operator in (6.16) is equal to −2/27. Therefore,
the anomalous dimension of m2

0 is equal to γ = −14/27.
Consider now the condensates conserving chirality. Of fundamental significance here is

the gluon condensate of the lowest dimension:

〈0|αs

π
Gn
μνGn

μν |0〉. (6.18)

Since the gluon condensate is proportional to the vacuum expectation value of the trace of
the energy-momentum tensor θμν , its anomalous dimension is zero. The existence of the
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gluon condensate was first indicated by Shifman, Vainshtein, and Zakharov [13]. They also
obtained its numerical value from the sum rules for charmonium:

〈0|αs

π
Gn
μνGn

μν |0〉 = 0.012 GeV4. (6.19)

As was shown by the same authors, since the vacuum energy density in QCD is given by
ε = −(9/32)〈0|(αs/π)G2|0〉, the nonzero and positive value of gluon condensate implies
that the vacuum energy is negative in QCD. The persistence of quark fields in vacuum
destroys (or suppresses) the condensate. Therefore, if a quark is embedded in vacuum, this
leads to an increase of energy. Modern determinations of the gluon condensate numerical
value from hadronic τ decay data and from the charmonium sum rules are presented in
Sections 6.5.3 and 6.5.4.

The d = 6 gluon condensate is of the form

g3 f abc〈0|Ga
μνGb

νλGc
λμ|0〉, (6.20)

( f abc are the structure constants of the SU (3) group). There are no reliable methods to
extract its value from experimental data. There is only an estimate which follows from the
model of diluted instanton gas [14]:

g3 f abc〈0|Ga
μνGb

νλGc
λμ|0〉 = −4

5
(12π2)

1

ρ2
c

〈
0|αs

π
G2
μν |0

〉
, (6.21)

where ρc is the effective instanton radius in the given model (for estimate, one can take
ρc ∼ (1/3 − 1/2)fm).

The general form of d=6 condensates built from quark fields is:

αs〈0|q̄i Oαqi · q̄k Oαqk |0〉, (6.22)

where qi , qk are quark fields of u, d, s quarks, Oα are composed from Dirac and SU (3)
matrices. Eq. (6.22) is usually factorized: in the sum over intermediate states in all channels
(i.e. if necessary, after a Fierz transformation) only the vacuum state is taken into account.
The accuracy of such approximation is ∼ 1/N 2

c , where Nc is the number of colours i.e.
∼ 10%. After factorization Eq. (6.22) reduces to

αs〈0|q̄q|0〉2, (6.23)

if q = u, d. The anomalous dimension of (6.23) is –1/9 and can be neglected. When αs-
corrections are taken into account, then the matrix that describes the mixing of 4-quark
condensates depends on the normalization point. So, even if the factorization hypothesis
is assumed to be exact at the normalization point μ2, it will be violated at Q2. However,
as one can verify, such violation of factorization does not exceed 10% in the interval 1 <∼
Q <∼ 2 GeV2 [13]. Within the framework of the factorization hypothesis the condensates
of dimension d = 8 containing four quarks and one gluon fields reduce to

αs〈0|q̄q|0〉 · m2
0〈0|q̄q|0〉. (6.24)

(The definition of m2
0 in (6.16) is used.) Note, however, that the factorization procedure in

the d = 8 condensate case is not quite certain. For this reason, it is necessary to demand
their contribution to be small.
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Table 1

Condensates Numerical values

〈0 | q̄q | 0〉1 GeV, q = u, d −(1.65 ± 0.15) · 10−2 GeV3

〈0 | αs
π

G2
μν | 0〉 0.005 ± 0.004 GeV4

αs〈0 | q̄q | 0〉2 (1.5 ± 0.2) · 10−4 GeV6

There are few other gluon and quark–gluon condensates of dimension 8. (The full list
of them is given in [15].) As a rule, the factorization hypothesis is used for their estimate.
The other way to find the values of these condensates is to use the dilute instanton gas
model. However, this model gives for some condensates results (at accepted values of
instanton model parameters) by an order of magnitude larger than the factorization method.
There are arguments that the instanton gas model overestimates the values of d = 8 gluon
condensates [16]. Therefore, the estimates based on the factorization hypothesis are more
reliable here.

The violation of the factorization ansatz is stronger for higher-dimension condensates.
So, this hypothesis can be used only for their estimate by order of magnitude. The best
values of condensates, extracted by QCD sum rules from experimental data, are given in
Table 1 [17]. The methods of their determination are described in Section 6.5.

6.3 Condensates, induced by external fields

The meaning of such vacuum condensates can be easily understood by comparing their
appearance with similar phenomena in condensed matter physics. If the condensates con-
sidered in the previous section can be compared, for instance, with ferromagnetics, where
magnetization is present even in the absence of an external magnetic field, the condensates
induced by an external field are similar to dia- or paramagnetics. Consider, for example,
the case of a constant external electromagnetic field Fμν . In its presence, there appears a
condensate induced by the external field (in the linear approximation in Fμν) [18]

〈0|q̄σμνq|0〉F = eqχFμν〈0|q̄q|0〉. (6.25)

To a good approximation 〈0|q̄σμνq|0〉F is proportional to eq , the electric charge of the
quark q [18]. (See below, Section 6.9.2.) The vacuum expectation value 〈0|q̄σμνq|0〉F

induced by this field violates chiral symmetry. So, it is natural to separate 〈0|q̄q|0〉 as
a factor in Eq. (6.25). The universal quark flavour independent quantity χ is called the
magnetic susceptibility of the quark condensate. Its numerical value was found using a
special sum rule [19],[20],[21]:

χ1 GeV = −(3.15 ± 0.3)GeV−2. (6.26)

(The anomalous dimension of χ is equal to −16/27). Another example is the external
constant axial isovector field A(i)μ . The interaction of its third component A(3)μ with light
quarks is described by the Lagrangian
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L ′ = (ūγμγ5u − d̄γμγ5d)A(3)μ . (6.27)

In the presence of this field, there appear the condensates induced by A(3)μ

〈0|ūγμγ5u|0〉A = −〈0|d̄γμγ5d|0〉A = f 2
π A(3)μ , (6.28)

where fπ = 131 MeV is the π → μν decay constant. The right-hand side of Eq. (6.28)
is obtained assuming mu,md → 0, m2

π → 0 and follows directly from consideration of
the polarization operator of axial currents �A

μν(q) in the limit q → 0. Indeed, because of
axial current conservation the nonzero contribution to �A

μν(q)q→0 emerges only from the
one-pion intermediate state. A relation similar to (6.28) holds in the case of the octet axial
field. Of special interest is the condensate induced by the flavour singlet constant axial field

〈0| j (0)μ5 |0〉A = 3 f 2
0 A(0)μ , (6.29)

j (0)μ5 = ūγμγ5u + d̄γμγ5d + s̄γμγ5s. (6.30)

The interaction Lagrangian with the external field has the form

L ′ = j (0)μ5 A(0)μ . (6.31)

The constant f0 cannot be calculated by the method used when deriving Eq. (6.28), since
the singlet axial current is not conserved because of the anomaly and because the singlet
pseudoscalar meson η′ is not a Goldstone meson. The constant f 2

0 is proportional to the
topological susceptibility of vacuum [22]

f 2
0 = 4

3
N 2

f ζ
′(0), (6.32)

where N f is the number of light quarks, N f = 3, and the topological susceptibility of the
vacuum ζ(q2) is defined as

ζ(q2) = i
∫

d4xeiqx 〈0|T {Q5(x), Q5(0)}|0〉, (6.33)

Q5(x) = αs

8π
Gn
μν(x)G̃

n
μν(x). (6.34)

Here G̃n
μν is dual to Gn

μν : G̃n
μν = (1/2)εμνλσGn

λσ . Using the QCD sum rule, one can
relate f 2

0 with the fraction of proton spin � carried by quarks in polarized ep (or μp)
scattering [22]. The value of f 2

0 was found from the experimental value of � (see Section
6.9.6):

f 2
0 = (3.5 ± 0.5) · 10−2GeV2. (6.35)

The value of the derivative at q2 = 0 of the vacuum topological susceptibility ζ ′(0), (more
precisely, its nonperturbative part) is equal to:

ζ ′(0) = (2.9 ± 0.4) · 10−3 GeV2. (6.36)

The quantity ζ ′(0) is of interest for studying properties of vacuum in QCD.
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6.4 QCD sum rules method

There are many sum rules in QCD: the sum rules for deep-inelastic lepton–hadron scat-
tering, which were originally derived (before QCD) on the basis of current algebra (their
exposition is given in the book [23]) – QCD allows one to calculate αs-corrections to these
sum rules; Weinberg sum rules (see Chapter 2), low-energy sum rules [24], etc. Tradi-
tionally, however, the term QCD sum rule applies only to those sum rules discussed in
this chapter. So, we shall use this name for them. The QCD sum rules were proposed
by Shifman, Vainshtein, and Zakharov and applied to calculate the masses of the light
mesons and their coupling constants to corresponding quark currents [13]. Later QCD sum
rules for baryon masses were suggested, QCD sum rules for meson and baryon formfac-
tors at low Q2 were found, a new class of QCD sum rules for hadrons in external fields
(baryons magnetic moments, axial β-decay coupling constants, etc.) was invented, and
finally, the sum rules for hadronic and photonic structure functions (quark distributions in
hadrons and photons – real and virtual) were obtained. These topics are considered in this
chapter.

The main idea of QCD sum rules for the simplest case – the calculation of hadronic
masses – is the following: Consider the polarization operator (6.3) for large enough
Q2 = −q2 > 0 and use OPE (6.13). On the other hand, represent �AB(q2) through
the contributions of physical states via a dispersion relation:

�
phys
AB (q2) = 1

π

∞∫
0

Im �AB(s)

s − q2
ds. (6.37)

These two representations of the polarization operator are equal

�
QC D
AB (q2) = �phys

AB (q2). (6.38)

(The relations (6.37), (6.38) are understood to be valid for any structure function of polar-
ization operators.) These equalities are the desired QCD sum rules, which, in principle, give
us information about the properties of hadrons in terms of QCD variables. In Im�AB(s),
it is reasonable to separate the contribution of the lowest hadronic state in the given chan-
nel (stable particle or resonance) and use one or another model for contributions of excited
states. (The first who used such an approach was Sakurai [25], who considered the polariza-
tion operator of vector currents and tried to determine the ρ-meson mass and ργ -coupling
constant identifying the ρ-meson contribution with the contribution of the bare quark loop,
cut at some q2

0 ).
However, Eq. (6.38) is ill defined. First, the perturbatively calculated polarization oper-

ator is divergent and requires an ultraviolet cut-off. This corresponds to the fact that
subtractions are needed in the calculation of �phys

AB (q2). So, unknown polynomials appear
on both sides of (6.38). Second, in order to determine the properties of the lowest hadronic
state, which is our goal, its contribution to the right-hand side of (6.37) should dominate
in comparison with the contribution of excited states. In fact, this is not so. Third, the OPE
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must be well converging (as well as the perturbative series) in the domain of Q2 where we
would like to exploit the sum rule (6.38).

In order to get rid of these drawbacks and obtain self-consistent and informa-
tive QCD sum rules, Shifman, Vainshtein, and Zakharov [13] suggested to apply the
Borel transformation of (6.38). The Borel transformation of the function f (Q2) is
defined by:

BM2 f (Q2) = lim
(Q2)n+1

n!
(

− d

d Q2

)n

f (Q2) n→∞, Q2→∞
Q2/n→M2=const

, (6.39)

where M2 is the Borel parameter. If f (Q2) is represented by the dispersion relation

f (Q2) = 1

π

∞∫
0

Im f (s)

s + Q2
ds, (6.40)

then

BM2 f (Q2) = 1

π

∞∫
0

e−s/M2
Im f (s)ds, (6.41)

and the Borel transformation is reduced to the Laplace transformation. Note, that

BM2
1

(Q2)n
= 1

(M2)n−1(n − 1)! (6.42)

and

BM2(Q2)k ln Q2 = (−1)k+1 �(k + 1)(M2)k+1. (6.43)

Evidently, the Borel transformation kills the subtraction terms in (6.38) and improves the
convergence of the dispersion integral in (6.37). If the lowest hadronic state is separated
by a gap from the excited states, then by a suitable choice of the Borel parameter M2

it is possible to suppress the contributions of excited states compared with that of the
lowest state. As follows from (6.42), the Borel transformation factorially improves the
convergence of the OPE series. In what follows, only the Borel transformed QCD sum
rules will be used. In the practical applications of QCD sum rules it is necessary to ensure
that the OPE converges on the accounted terms and that the contribution of the lowest
hadronic state, whose characteristics are determined, dominates or is at least is comparable
with contributions of excited states. (For this reason the so-called finite energy sum rules –
FESR, where the integral (6.37) is cut at some chosen value s0 – cannot be considered
as reliable.) The standard model of excited state contributions is based on the assumption
that, starting from some s0, this contribution is described by the continuum, given by the
nonvanishing (at q2 → ∞) terms of OPE in the given Lorentz structure. The reason for
such assumption is that only such terms survive at high Q2. Of course, the perturbation
series should converge at the accounted for terms for a chosen value of M2. Since the
convergence of OPE improves with increasing M2 but the contribution of exited states
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increases when M2 grows, then there is a possibility to find a window M2
1 < M2 < M2

2
where all above mentioned requirements are fulfilled. At M2 > M2

1 , the last accounted for
terms in the perturbative and OPE series are small compared with the whole contribution.
So, one can believe that accounting for these terms is enough for a desired accuracy of the
result. At M2 < M2

2 , the contribution of excited states is small or comparable with the
contribution of the lowest state (but does not overwhelm it!), therefore the latter is well
separated. QCD sum rules make sense only for M2 within this window. If the window
is absent, i.e. if M2

1 > M2
2 , then a QCD sum rule does not exist. To ensure the validity

of a QCD sum rule it is necessary to check the M2-dependence: the left- and right-hand
sides of the Borel transformed Eq. (6.38) must have a similar M2-dependence inside the
M2-window.

The goal of QCD sum rules is to determine the properties of the lowest hadronic states.
The sizes of such states are typically of the order of 0.3 fermi and the corresponding
momenta are of the order of 1 GeV. In this domain, the QCD interaction is rather strong.
For this reason, QCD sum rules are approximate. The sources of the uncertainties in these
relations were mentioned above. Let us summarize them:

1. The QCD coupling constant αs(Q) is rather large, αs (1 GeV)≈ 0.5, and in practice
only few terms in perturbative series are taken into account. (Usually only one;
sometimes the perturbative corrections are completely neglected.)

2. The OPE series is truncated. As a rule, it is required that the highest-order term
of the OPE contributes not more than 10% to the sum rule. Nonperturbative
vacuum fluctuations besides the OPE can be only estimated using the instanton
model.

3. The values of condensates have some uncertainties, especially for high-dimension
condensates where the factorization hypothesis is accepted.

4. The separation of perturbative and nonperturbative contributions has some arbi-
trariness.

5. The separation of the lowest hadronic state contribution in the given channel is
achieved using the model of the hadronic spectrum “pole + continuum.”

The role of all these uncertainties should be estimated in each specific calculation.
The precision of QCD sum rule predictions is not high – in the best case, not bet-
ter than 10%. This fact is not surprising: we have to deal with strong interaction!
Since all uncertainties are of a physical origin and their estimates cannot be com-
pletely reliable, any mathematical tricks, like the χ2 best fit, could hardly improve the
situation.

Despite all these uncertainties, the QCD sum rule approach is a unique method, which
allows one to calculate a broad variety of hadronic characteristics from first principles
of QCD, using only a restricted number of QCD parameters – vacuum condensates. If
found in one sum rule, the condensate leads to definite predictions for physical observables
determined by other sum rules. Thus, new physical knowledge is obtained and at the same
time the whole approach is checked.
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6.5 Determination of αs( Q2) and the condensates from low-energy data

6.5.1 Determination of αs(m2
τ ) from hadronic decays of τ -lepton

Collaborations ALEPH [26],[27], OPAL [28] and CLEO [29] have measured with good
accuracy the relative probability of hadronic decays of the τ lepton Rτ = B(τ → ντ +
hadrons)/B(τ → ντ eνe), and the vector V and axial A spectral functions. We present
below the results of the theoretical analysis of these data on the basis of the OPE in QCD
[30],[31] (see also [32],[33],[27]). In the perturbation series, the terms up to α4

s will be
taken into account, in OPE – the operators up to dimension 8. We restrict ourself to the
case of final hadronic states with zero strangeness.

Consider the polarization operator of hadronic currents

�J
μν = i

∫
eiqx 〈T Jμ(x)J

†
ν (0)〉dx = (qμqν−δμνq2)�

(1)
J (q

2)+qμqν�
(0)
J (q

2), (6.44)

where

J = V, A; Vμ = ūγμd, Aμ = ūγμγ5d.

The spectral functions measured in τ decay are imaginary parts of�(1)J (s) and �(0)J (s),
s = q2

v1/a1(s) = 2π Im �(1)V/A(s + i0), a0(s) = 2π Im �(0)A (s + i0). (6.45)

The functions�(1)V (q
2) and�(1)A (q

2) are analytic in the complex q2 plane with a cut along

the right-hand semiaxis starting from 4m2
π for �(1)V (q

2) and from 9m2
π for �(1)A (q

2). The

function�(1)A (q
2) has a kinematical pole at q2 = 0, since the singularity free physical com-

bination is δμνq2�
(1)
A (q

2). Because of axial current conservation in the limit of massless
quarks this kinematical pole is related to the one-pion state contribution to �A(q) which
has the form of (2.119):

�A
μν(q)π = − f 2

π

q2

(
qμqν − δμνq2

)
− m2

π

q2
qμqν

f 2
π

q2 − m2
π

. (6.46)

Chiral symmetry violation may result in corrections of order f 2
π (m

2
π/m2

ρ) in�(1)A (q
2) (mρ

is the characteristic hadronic mass), i.e. to the theoretical uncertainty in the magnitude of
the residue of the kinematical pole in �(1)A (q

2) of order � f 2
π / f 2

π ∼ m2
π/m2

ρ .
Consider first the ratio of the total probability of hadronic decays of τ leptons into

states with zero strangeness to the probability of τ → ντ eνe. This ratio is given by the
expression [34]

Rτ,V +A = B(τ → ντ + hadronsS=0)

B(τ → ντ eν̄e)
= 6|Vud |2SEW

×
m2
τ∫

0

ds

m2
τ

(
1 − s

m2
τ

)2[(
1 + 2

s

m2
τ

)
(v1 + a1 + a0)(s)− 2

s

m2
τ

a0(s)

]
, (6.47)
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where |Vud | = 0.9735 ± 0.0008 is the matrix element of the Kobayashi–Maskawa matrix
and SEW = 1.0194 ± 0.0040 is the electroweak correction [35]. Practically only the one-
pion state is contributing to the last term in (6.47) and it happens to be small:

�R(0)τ = −24π2 f 2
πm2

π

m4
τ

= −0.008. (6.48)

Denote

ω(s) ≡ v1 + a1 + a0 = 2π Im
[
�
(1)
V (s)+�(1)A (s)+�(0)A (s)

]
≡ 2π Im�(s). (6.49)

As follows from Eq. (6.46), �(s) has no kinematical pole, but only a right-hand cut. It is
convenient to transform the integral in Eq. (6.47) into an integral over the circle of radius
m2
τ in the complex s plane [36]–[38]:

Rτ, V +A = 6π i |Vud |2SEW

∮
|s|=m2

τ

ds

m2
τ

(
1 − s

m2
τ

)2 (
1 + 2

s

m2
τ

)
�(s)+�R(0)τ . (6.50)

Eq. (6.50) allows one to express Rτ,V +A in terms of �(s) at large | s | = m2
τ where

perturbation theory and the OPE are valid.
Calculate first the perturbative contribution to Eq. (6.50). To this end, use the Adler

function D(Q2):

D(Q2) ≡ −2π2 d�(Q2)

d ln Q2
=
∑
n≥0

Knan , a ≡ αs(Q2)

π
, Q2 ≡ −s, (6.51)

the perturbative expansion of which is known up to terms ∼ α4
s . In the MS regularization

scheme K0 = K1 = 1, K2 = 1.64 [39], K3 = 6.37 [40] for three flavours and for K4 there
are the estimates K4 = 25 ± 25 [41] and K4 = 27 ± 16, K4 ≈ 50 [42]. The renormgroup
equation yields

da

d ln Q2
= −β(a) = −

∑
n≥0

βnan+2, (6.52)

ln
Q2

μ2
= −

∫ a(Q2)

a(μ2)

da

β(a)
, (6.53)

in the MS scheme for three flavours β0 = 9/4, β1 = 4, β2 = 10.06, β3 = 47.23
[43, 44, 45]. Integrating over Eq. (6.51) and using Eq. (6.52) we get

�(Q2)−�(μ2) = 1

2π2

∫ a(Q2)

a(μ2)

D(a)
da

β(a)
. (6.54)

Put μ2 = m2
τ and choose some (arbitrary) value a(m2

τ ). With the aid of Eq. (6.53), one
can determine a(Q2) for any Q2 and by analytical continuation for any s in the complex
plane. Then, calculating (6.54) find�(s) in the whole complex plane. Substitution of�(s)
into Eq. (6.50) determines Rτ for the given a(m2

τ ) up to power corrections. (The contribu-
tion of the constant term �(μ2) vanishes after integration over the closed contour.) Thus,
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–1 GeV2

PT + OPE works

PT + OPE fails–Q0
2

cut

S-plane

Fig. 6.1. The applicability region of PT and OPE in the complex plane s. In the shaded
region, PT + OPE does not work.

knowing Rτ from experiment it is possible to find the corresponding a(m2
τ ). Note, that

with such an approach there is no need to expand the denominator in Eqs. (6.53), (6.54)
in inverse powers of ln Q2/μ2. Advantages of transforming the integral over the real axis
(6.47) into a contour integral are the following: It can be expected that the applicability
region of the theory presented as perturbation theory (PT) + (OPE) in the complex s-plane
is off the dashed region in Fig. 6.1. It is evident that PT+OPE does not work at positive and
comparatively small values of s.

As is well known in perturbation theory, in the expansion in inverse powers of ln Q2, in
the first order in 1/ ln Q2 the running coupling constant αs(Q2) has an unphysical pole at
some Q2 = Q2

0. If β(a) is kept in the denominator in (6.53), then in n-loop approximation
(n > 1) a branch cut with a singularity ∼ (1 − Q2/Q2

0)
−1/n appears instead of the pole.

The position of the singularity is given by

ln
Q2

0

μ2
= −

∞∫
a(μ2)

da

β(a)
. (6.55)

Near the singularity, the last term in the expansion of β(a) dominates and gives the
aforesaid behavior. Since the singularity has become weaker, one may expect a better
convergence of the series, which would allow one to go to lower Q2.

The real and imaginary parts of αs(s)/π , obtained as numerical solutions of Eq. (6.53)
for various numbers of loops, are plotted in Fig. 6.2 as functions of s = −Q2. The τ lepton
mass was chosen as normalization point, μ2 = m2

τ and αs(m2
τ ) = 0.352 was put in. As

is seen from Fig. 6.2, perturbation theory converges at negative s < −1 GeV2, and 4-loop
calculations are necessary to get a good precision of the results. At positive s, especially
for Im (αs/π), the convergence of the series is much better. This comes from the fact
that in the chosen integral form of renormalization group equation (6.53) the expansion
in π/ ln(Q2/�2) is avoided, the latter being not a small parameter at intermediate Q2. (A
systematic method of analytical continuation from the spacelike to time-like region with
summation of π2 terms was suggested in [46] and developed in [47].) For instance, in the
next-to-leading order

2π Im �(s + i0) = 1 + 1

πβ0

[
π

2
− tan−1

(
1

π
ln

s

�2

)]
(6.56)
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Fig. 6.2. Real and imaginary parts of αMS(s)/π as exact numerical solutions of RG equa-
tion (6.53) on the real axis for different numbers of loops. The initial condition is chosen
αs = 0.352 at s = −m2

τ , N f = 3. Vertical dotted lines display the position of the unphysical

singularity at s = −Q2
0 for each approximation (4 → 1 from left to right).

instead of

2π Im�(s + i0) = 1 + 1

β0 ln(s/�2)
, (6.57)

which would follow in the case of small π/ ln(s/λ2).
The QCD coupling constant αs(Q2) at Q2 > 0 in the low Q2 region (0.8 < Q2 <

5 GeV2) is plotted in Fig. 6.3. (Four loops are accounted for, αs(m2
τ ) is put to be equal to

αs(m2
τ ) = 0.33. As follows from the τ -decay rate αs(m2

τ ) = 0.352 ± 0.020, and the value
of one standard deviation below the mean is favoured by low-energy sum rules.)

Integration over the contour allows one to obviate the dashed region in Fig. 6.1 (except
for the vicinity of the positive semiaxis, the contribution of which is suppressed by the
factor (1 − s/m2

τ )
2 in Eq. (6.50)), i.e. to work in the applicability region of PT + OPE.

The OPE terms, i.e. power corrections to the polarization operator, are given by the
formula [13]:

�(s)nonpert =
∑
n≥2

〈O2n〉
(−s)n

(
1 + cn

αs

π

)
= αs

6π Q4

× 〈
0 | Ga

μνGa
μν | 0

〉 (
1 + 7

6

αs

π

)
− 2

Q4
(mu + md) 〈0 | q̄q | 0〉 αs

π

+ 128

81 Q6
παs 〈0 | q̄q | 0〉2

μ

[
1 +

(
29

24
+ 17

18
ln

Q2

μ2

)
αs

π

]
+ 〈O8〉

Q8
, (6.58)

(αs-corrections to the first and third terms in Eq. (6.58) were calculated in [48] and
[49], respectively). Contributions of terms proportional to m2

u , m2
d are neglected. When
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Fig. 6.3. αs(Q2) normalized at m2
τ , αs(m2

τ ) = 0.33.

calculating the d = 6 term, the factorization hypothesis was used. The gluon condensate
of dimension d = 6 g3〈0 | G3 | 0〉 (6.20) does not contribute to the polarization operator
(6.58). This is a consequence of the general theorem, proved by Dubovikov and Smilga
[50], that in case of self-dual gluonic fields there are no contributions of gluon condensates
of dimensions higher than d = 4 to vector and axial current polarization operators. Since
the vacuum expectation value of the G3 operator does not vanish for self-dual gluonic
fields, this means that the coefficient in front of the condensate g3〈0 | G3 | 0〉 in (6.58)
must vanish. The same argument refers to the dimension 8 gluon operators g4G4 except
some of them, like g4[ Gn

μαGn
μβ − (1/4)δαβGn

μνGn
μν ]2, which have zero expectation val-

ues in any self-dual field. But the latter are suppressed by a small factor 1/4π2 arising from
loop integration in comparison with the tree diagram that corresponds to the d = 8 four-
quark condensate contribution 〈O8〉 ∼ 〈q̄Gq · q̄q〉. The contribution from this condensate
may be estimated as | 〈O8〉 |< 10−3 GeV [31] (see below, Section 6.5.2) and appears to
be negligibly small. The d = 8 two quarks – two gluon operator O ′

8 ∼ g2 Dq̄GGq is
nonfactorizable, its vacuum mean value is suppressed by 1/Nc and one may believe that
its contribution to (6.58) is also small. It can be readily seen that d = 4 condensates (up
to small αs-corrections) give no contribution to the integral over the contour Eq. (6.50).
Rτ,V +A may be represented as

Rτ, V +A = 3|Vud |2SEW

(
1 + δ′em + δ(0) + δ(6)V +A

)
+�R(0) = 3.486 ± 0.016, (6.59)

where δ′em = (5/12π)αem(m2
τ ) = 0.001 is the electromagnetic correction [51], δ(6)A+V =

−(3.3 ± 1.1) · 10−3 is the contribution of the d = 6 condensate (see below) and δ(0)

is the PT correction. The right-hand part presents the experimental value obtained as a
difference between the total probability of hadronic decays Rτ = 3.647 ± 0.014 [52]
and the probability of decays into strangeness S = −1 states: Rτ,s = 0.161 ± 0.007 [53,
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54, 33]. (In Ref. [27],[33] the values Rτ,V +A = 3.482 ± 0.014, 3.478 ± 0.016 are given
correspondingly.) For the perturbative correction it follows from Eq. (6.59) that

δ(0) = 0.208 ± 0.006. (6.60)

From (6.60) the constant αs(m2
τ ) was found employing the above described method [31]:

αs(m
2
τ ) = 0.352 ± 0.020. (6.61)

The calculation was made taking account of terms up to ∼ α4
τ (m

2
τ ); the theoretical error

was assumed to be equal to the last contributing term. Maybe this error is underestimated
(by ∼ 0.010) since the theoretical and experimental errors were added in quadratures. The
value of αs(m2

τ ) (6.61) corresponds to:

αs(M
2
Z ) = 0.121 ± 0.002. (6.62)

This value is in agreement with the determination [55] of αs(m2
z ) from the complete set of

available data

αs(M
2
Z ) = 0.1189 ± 0.0010. (6.63)

Some nonperturbative features of QCD may be described in the instanton gas model
[56] (see Chapter 4 and [57] for extensive review and the collection of related papers in
[58]). Namely, one computes the correlators in the SU (2)-instanton field embedded in the
SU (3) colour group. In particular, the 2-point correlator of the vector currents had been
computed long ago [59]. Apart from the usual tree-level correlator proportional to ln Q2 it
has a correction which depends on the instanton position and radius ρ. In the instanton gas
model these parameters are integrated out. The radius is averaged over some concentration
n(ρ), for which one or another model is used. Concerning the 2-point correlator of charged
axial currents, the only difference from the vector case is that the term with zero modes
must be taken with opposite sign. In coordinate representation, the answer can be expressed
in terms of elementary functions, see [59]. An attempt to compare the instanton correlators
with ALEPH data in the coordinate space was made in Ref. [60].

We shall work in momentum space. The instanton correction to the spin-J parts�(J ) of
the correlator (6.44) can be written in the following form:

�
(1)
V, inst(q

2) =
∫ ∞

0
dρ n(ρ)

[
− 4

3q4
+ √

π ρ4G30
13

(
−ρ2q2

∣∣∣∣ 1/2

0, 0,−2

)]
,

�
(0)
A, inst(q

2) =
∫ ∞

0
dρ n(ρ)

[
− 4

q4
− 4ρ2

q2
K 2

1

(
ρ

√
−q2

)]
,

�
(1)
A, inst(q

2) = �(1)V, inst(q
2)−�(0)A, inst(q

2), �
(0)
V, inst(q

2) = 0. (6.64)

Here K1 is the modified Bessel function, G p q
mn (z| . . .) is the Meijer function. Definitions,

properties, and approximations of Meijer functions can be found, for instance, in [61]. In
particular, the function in (6.64) can be written as the following series:
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√
πG30

13

(
z

∣∣∣∣ 1/2

0, 0,−2

)
= 4

3z2
− 2

z
+ 1

2
√
π

∞∑
k=0

zk �(k + 1/2)

�2(k + 1) �(k + 3)

×
{ [

ln z + ψ(k + 1/2)− 2ψ(k + 1)− ψ(k + 3)
]2

+ ψ ′(k + 1/2)− 2ψ ′(k + 1)− ψ ′(k + 3)

}
, (6.65)

where ψ(z) = �′(z)/�(z). For large |z|, one can obtain its approximation by the saddle-
point method:

G30
13

(
z

∣∣∣∣ 1/2

0, 0,−2

)
≈ √

π z−3/2 e−2
√

z, |z| � 1. (6.66)

The formulae (6.64) should be treated in the following way. One adds �inst to the usual
polarization operator with perturbative and OPE terms. But the terms ∼ 1/q4 must be
absorbed by the operator O4 in Eq. (6.58), since the gluonic condensate

〈
G2
〉

is averaged
over all field configurations, including the instanton one. Notice the negative sign of 1/q4

in Eq. (6.64). This arises because the negative contribution of the quark condensate
〈
mq̄q

〉
in the instanton field exceeds the positive contribution of the gluonic condensate

〈
G2
〉
. In

the real world,
〈
mq̄q

〉
is negligible.

The correlators (6.64) have the appropriate analytical properties: they have cuts along
the positive real axis:

Im�(1)V, inst(q
2 + i0) =

∞∫
0

dρ n(ρ) π3/2ρ4G20
13

(
ρ2q2

∣∣∣∣ 1/2

0, 0,−2

)
, (6.67)

Im�(0)A, inst(q
2 + i0) = −

∞∫
0

dρ n(ρ)
2π2ρ2

q2
J1

(
ρ

√
q2

)
N1

(
ρ

√
q2

)
. (6.68)

We consider below the instanton gas model. This is a model with fixed instanton radius:

n(ρ) = n0 δ(ρ − ρ0). (6.69)

In Section 4.6, the following values were estimated (see also [56],[57]):

ρ0 ≈ 0.2−0.4fm ≈ 1.0−2.0GeV−1, n0 <∼ 0.62fm−4 ≈ (1.0)×10−3GeV4. (6.70)

In fact, the instanton liquid model, with the account of the instanton self-interaction, was
mainly considered in [56], but the arguments from which the estimates (6.70) follow refer
also to the instanton gas model. In this case, the value of n0 (6.70) should be considered as
an upper limit (see also [57]).

Let us compute the instanton contribution to the τ -decay branching ratio. Since the
instanton correlator (6.64) has a 1/q2 singular term in the expansion near 0 (see Eq. (6.65)),
the integrals must be taken over the circle as in (6.50). In the instanton model, the function
a0(s) differs from experimental δ-function, which gives a small correction. So we shall
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Fig. 6.4. The instanton correction to the τ decay ratio versus ρ0 (a) and “versus τ mass" (b)
for n0 = 1.0 × 10−3 GeV4. The thin solid lines in (b) are the values of 1 + δ(0)(s0), where
δ(0)(s0) are perturbative corrections, calculated as described in Section 6.5.1. The upper
curve corresponds to αs(m2
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regions represent the uncertainties in perturbative calculations, the dark shadowed band is
their overlap. The dashed lines are 1 + δ(0)(s) + δinst , δ

(0)(s) corresponds to αs(m2
τ ) =

0.330.

ignore the last term in (6.47) and consider the integral with �(1)V +A + �(0)A in (6.50). The
instanton correction to the τ -decay branching ratio can be brought to the following form:

δinst = −48π5/2

∞∫
0

dρn(ρ)ρ4G20
13

(
ρ2m2

τ

∣∣∣∣ 1/2

0,−1,−4

)
≈ 48π2n0

ρ2
0m6

τ

sin (2ρ0mτ ). (6.71)

Since the parameters (6.70) are determined rather approximately, we may explore the
dependence of δinst on them: δinst versus ρ0 for fixed n0 = 1.0 · 10−3GeV4 is shown in
Fig. 6.4.

As seen from Fig. 6.4a the instanton correction to hadronic τ -decay is small. At the
favourable value [56] ρ0 = 1.7 GeV−1 the instanton correction to Rτ is almost exactly
zero. This confirms the calculations of αs(m2

τ ) presented above, where the instanton
corrections were not taken into account.

Equation (6.71) can be used in another way. Namely, the τ mass can be considered as
a free parameter s0. The dependence of the fractional corrections δ(0) and δ(0)0.330 + δinst on
s0 is shown in Fig. 6.4b. The result strongly depends on the instanton radius and rather
significantly on the density n0. For ρ0 = 1.7 GeV−1 and n0 = 1 fm−4, the instanton curve
is outside the errors already at s0 ∼ 2 GeV2 where perturbation theory is expected to work.

We have come to the conclusion that in case of a variable τ mass the instanton contri-
bution becomes large at s0 < 2 GeV2. That means that Rτ,V +A(s0) given by (6.50) cannot
be represented by PT + OPE at s0 < 2 GeV2 and the results obtained in this way are not
reliable.
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There are many calculations of αs(m2
τ ) from the total τ -decay rate, using the same

idea, which was used above – the contour improved fixed order perturbation the-
ory [32],[34],[36],[37],[38],[52]. (For more recent ones, see [27],[33],[62].) The results
of these calculations coincide with those presented above within the errors and give
αs(m2

τ ) = 0.33−0.35. From these values, by using the renormalization group one can find
αs(M2

Z ) = 0.118−0.121 in agreement with αs(M2
Z ) determinations from other processes

(see [55],[63]).
Above, only one renormalization scheme has been considered – the MS scheme. In the

BLM renormalization scheme [64], which has some advantages from the point of view of
perturbative pomeron theory [65], the result is αs(m2

τ ) = 0.621 ± 0.008 [66], correspond-
ing in the framework of the BLM scheme to the same value of αs(M2

Z ) = 0.117 − 0.122.
At low scales, however, the αs(Q2) behaviour is significantly different from that presented
in Fig. 6.3.

6.5.2 Determination of quark condensates from the V − A spectral function of τ decay

In order to determine the quark condensate from τ -decay data, it is convenient to consider
the difference V − A of the polarization operators �(1)V −�(1)A , where the contribution of

perturbative terms is absent. �(1)V (s)−�(1)A (s) is represented by OPE:

�
(1)
V (s)−�(1)A (s) =

∑
d≥4

OV −A
d

(−s)d/2

(
1 + cd

αs(s)

π

)
. (6.72)

The gluonic condensate contribution drops out in the V − A difference and only the
following condensates up to d = 10 remain

OV −A
4 = 2 (mu + md) 〈0 | q̄q | 0〉 = − f 2

πm2
π , [13], (6.73)

OV −A
6 = 2παs

〈
0 | (ūγμλad)(d̄γμλau)− (ūγ5γμλad)(d̄γ5γμλau) | 0

〉
= − 64παs

9
〈0 | q̄q | 0〉2, [13], (6.74)

OV −A
8 = −8παs m2

0〈0 | q̄q | 0〉2 , [67], [30],1 (6.75)

OV −A
10 = −8

9
παs〈0 | q̄q | 0〉2

[
50

9
m4

0 + 32π2
〈
0 | αs

π
G2 | 0

〉]
, [68], (6.76)

where m2
0 is defined in Eq. (6.16). In the right-hand of (6.74), (6.75), (6.76) the factor-

ization hypothesis was used. For the O6 operator it is expected [13] that the accuracy of
factorization hypothesis is of order 1/N 2

c ∼ 10%, where Nc = 3 is the number of colours.
For operators of dimensions d ≥ 8 the factorization procedure is not unique. (But, as a
rule, the differences arising are not very large: for the d = 8 operator entering Eq. (6.72)
it is about 20%.) The accuracy of the factorization hypothesis gets worse with increasing

1 There was a sign error in the contribution of O8 in [30].
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operator dimensions: for OV −A
8 it is worse than for OV −A

6 and for OV −A
10 it is worse than

for OV −A
8 .

Operators O4 and O6 have approximately zero anomalous dimensions, the O8 anoma-
lous dimension is equal to – 11/27. Calculations of the coefficients in front of αs in
Eq. (6.72) gave c4 = 4/3 [48] and c6 = 89/48 [49]. (For O4 the α2

s -correction is known
[48]: (59/6)(αs/π)

2.) The αs-corrections to OV −A
8 are unknown; they are included into

the not accurately known value of m2
0; αs-corrections to O10 are also unknown. (In this

section indices V − A will be omitted and Od will mean condensates with αs-corrections
included.)

Our aim is to compare the OPE theoretical predictions with the experimental data on
V − A structure functions measured in τ -decay and with the help of such comparison to
determine the magnitude of the most important condensate O6. The condensate O4 is small
and is known with good accuracy:

O4 = −0.5 · 10−3 GeV4. (6.77)

We put m2
0 = 0.8GeV2 and in the analysis of the data the values of the condensates O8 and

O10 are taken to be equal to

O8 = −2.8 · 10−3 GeV8, (6.78)

O10 = −2.6 · 10−3 GeV10, (6.79)

and their Q2-dependence arising from anomalous dimensions is neglected.
In the calculation of numerical values (6.77), (6.78) it was assumed, that aq̄q(1 GeV2)

≡ −(2π)2〈0 | q̄q | 0〉1 GeV = 0.65 GeV3, 〈0 | (αs/π)G2 | 0〉 = 0.005 GeV4: see below,
Eqs. (6.86), (6.106).

As was shown in [30], the dimension d = 8 four-quark operators for vector and axial
currents are of opposite sign and equal in absolute values up to terms of order 1/N 2

c :
OV

8 =−O A
8 (1 + O(N−2

c )). (The exact value of the N−2
c correction is uncertain: it depends

on the factorization procedure.) So, for OV +A
8 we have from (6.78) the estimate | OV +A

8 |<
10−3 GeV8, which was used in the calculation of �(s)nonpert , Eq.(6.58).

For �(1)V (s)−�(1)A (s) a subtractionless dispersion relation is valid:

�
(1)
V (s)−�(1)A (s) = 1

2π2

∞∫
0

v1(t)− a1(t)

t − s
dt + f 2

π

s
. (6.80)

(The last term on the right-hand side is the kinematical pole contribution.) The experimen-
tal data for v1(s)− a1(s) are presented in Fig. 6.5a.

In order to improve the convergence of the OPE series as well as to suppress the contri-
bution of the large s domain in the dispersion integral one uses the Borel transformation.
Put s = s0eiφ (φ = 0 on the upper edge of the cut; see Fig. 6.1) and make the Borel
transformation in s0. As a result, we get the following sum rules for the real and imaginary
parts of (6.80):
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∞∫
0

exp
( s

M2
cosφ

)
cos
( s

M2
sinφ

)
(v1 − a1)(s)

ds

2π2
= f 2

π +
∞∑

k=1

(−1)k
cos (kφ)O2k+2

k! M2k
,

(6.81)
∞∫

0

exp
( s

M2
cosφ

)
sin
( s

M2
sinφ

)
(v1 − a1)(s)

ds

2π2 M2
=

∞∑
k=1

(−1)k
sin (kφ)O2k+2

k! M2k+2
.

(6.82)

The use of the Borel transformation along the rays in the complex plane has a number of
advantages. Cosφ is negative at π/2 < φ < 3π/2. Choose φ in the region π/2 < φ < π .
In this region, on the one hand, the shadowed area in Fig. 6.1 in the integrals (6.81), (6.82)
is touched to a lesser degree and, on the other hand, the contribution of large s, particu-
larly s > m2

τ where experimental data are absent, is exponentially suppressed. At definite
values of φ the contribution of some condensates vanishes, which may also be used. In
particular, the condensate O8 does not contribute to (6.81) at φ = 5π/6 and to (6.82) at
φ = 2π/3, while the contribution of O6 to (6.81) vanishes at φ = 3π/4. Finally, a well-
known advantage of the Borel sum rules is factorial suppression of higher-dimension terms
of OPE. Figs. 6.6 and 6.7 present the results of the calculations of the left-hand parts of
Eqs. (6.81), (6.82) on the basis of the ALEPH [26],[27] experimental data compared with
OPE predictions, i.e. with the right-hand parts of these equations.

When comparing the theoretical curves with experimental data one must remember that
the value of fπ , which in the figures was taken to be equal to the experimental one of fπ =
130.7 MeV, has, in fact, a theoretical uncertainty of the order of (� f 2

π / f 2
π )theor ∼ m2

π/m2
ρ ,

where mρ is a characteristic hadronic scale (say, the ρ meson mass). This uncertainty is
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caused by chiral symmetry violation in QCD. Particularly, accounting for this uncertainty
may lead to a better agreement of the theoretical curve with the data in Fig. 6.6b. The
calculation of instanton contributions (Eq. (6.64)) shows that in all cases considered above
they are less than 0.5 · 10−3 at M2 > 0.8 GeV2, i.e. are well below the errors. (In some
cases, they improve the agreement with the data.) The best fit of the data (the dashed curves
at Figs. 6.6 and 6.7.) was achieved with the value

O6 = −4.4 · 10−3 GeV6. (6.83)
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From (6.83), after separating the αs-correction [1 + (89/48)(αs/π) = 1.33], we get

αs〈0 | q̄q | 0〉2 = 1.5 · 10−4 GeV6. (6.84)

The error may be estimated as 30%. The value (6.84) agrees within the limits of errors
with the previous estimate [30]. The contribution of dimension 10 is negligible in all cases
at M2 ≥ 1 GeV2. It is worth mentioning that the theory, i.e. the OPE, agrees with the data
at M2 > 0.8 GeV2. The good agreement of the theoretical curves with the data confirms
the chosen value of O8 (6.78) and therefore the use of the factorization hypothesis. From
(6.84), with the use of αs(1 GeV2) = 0.55 (see Fig. 6.3), we can find the value of the quark
condensate at 1 GeV:

〈0|qq|0〉1 GeV = −1.65 · 10−2 GeV3 = −(254 MeV)3 (6.85)

and a convenient parameter is

aq̄q(1 GeV2) ≡ −(2π)2〈0|q̄q|0〉1 GeV = 0.65 GeV3. (6.86)

The magnitude of the quark condensate (6.85) is close to that which follows from the
Gell-Mann–Oakes–Renner relation (2.34).

In the past years, there were many attempts [32],[69]–[75] to determine quark conden-
sates using V − A spectral functions measured in τ decay. Unlike the approach presented
above, where the analytical properties of the polarization operator were exploited in the
whole complex q2-plane which allowed one to separate the contributions of operators
of different dimensions, the authors of [32],[69]–[75] considered the finite energy sum
rules (FESR) (or integrals over contours) with chosen weight functions. In [69],[71], the
Nc → ∞ limit was used. In [70],[71],[72],[75] an attempt was made to find higher
dimensional condensates (up to 18 in [75], up to 16 in [70],[71] and up to 12 in [72]).
Determination of higher dimensional condensates requires fine tuning of the upper limit of
integration in FESR. If the upper limit of integration s0 in FESR is below 2 GeV2 (such
an upper limit, s0 = 1.47 GeV, was chosen in [75]), then instanton-like corrections, not
given by OPE, are of importance (see Section 6.5.1). The same remark refers to the case of
weight factors singular at s = 0 like s−l , l > 0 [32], when there is an enhancement of the
contribution at low s where OPE breaks down. Keeping in mind these remarks, we have a
satisfactory agreement of the values of condensate (6.83) presented above with those found
in [32],[71],[75].

6.5.3 Determination of condensates from V + A and V structure functions of τ decay

The perturbative corrections are calculated by integration over the whole momentum space.
Therefore, in accord with the discussion in Section 6.1, the condensates, which will be
extracted by comparison of the theory with experimental data, correspond to nonpertur-
bative contributions minus the perturbative ones, integrated over the domain below the
normalization point μ. As was formulated in Section 6.5.1, we treat the renormaliza-
tion group equation (6.53) and the equation for polarization operator (6.54) in n-loop
approximation as exact ones; the expansion in inverse logarithms is not performed. Their
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numerical values of condensates depend on the number of loops accounted for; that is why
the condensates defined in this way are called n-loop condensates.

Consider the polarization operator � = �
(1)
V +A + �

(0)
A , defined in (6.49) and its

imaginary part

ω(s) = v1(s) + a1(s) + a0(s) = 2π Im�(s + i0). (6.87)

In the parton model ω(s) → 1 at s → ∞. Any sum rule can be written in the following
form: ∫ s0

0
f (s) ωexp(s) ds = iπ

∮
f (s)�theor(s) ds, (6.88)

where f (s) is some analytical function in the integration region. In what follows, we
use ωexp(s), obtained from τ -decay invariant mass spectra published in [26],[27],[33] for
0 < s < m2

τ . The experimental error of the integral (6.88) is computed as the double inte-
gral with the covariance matrix ω(s)ω(s′) − ω(s)ω(s′), which can be obtained also from
the data available in Ref. [26]. In the theoretical integral in (6.88) the contour goes from
s0 + i0 to s0 − i0 counterclockwise around all poles and cuts of the theoretical correlator
�(s). Because of the Cauchy theorem the unphysical cut must be inside the integration
contour.

The choice of the function f (s) in Eq. (6.88) is actually a matter of taste. First, let us
consider the usual Borel transformation:

Bexp(M
2) =

∫ m2
τ

0
e−s/M2

ωexp(s)
ds

M2
= Bpt(M

2) + 2π2
∑

n

〈
O2n

〉
(n − 1)! M2n

. (6.89)

We separated out the purely perturbative contribution Bpt, which is computed numer-
ically according to (6.88) and Eqs. (6.51)–(6.54). Recall that the Borel transformation
improves the convergence of the OPE series because of the factors 1/(n − 1)! in front
of operators and suppression of the high-energy tail contribution, where the experi-
mental error is large. It does not suppress the unphysical perturbative cut, the main
source of the error in this approach, but actually increases it since e−s/M2

> 1 for
s < 0. So the perturbative part Bpt(M2) can be reliably calculated only for M2 >∼
0.8 − 1 GeV2 and higher; below this value the influence of the unphysical cut is out of
control.

Both Bexp and Bpt are shown in four-loop approximation for αs(m2
τ )= 0.355 and

0.330 in Fig. 6.8. The shaded areas display the theoretical error. They are taken
equal to the contribution of the last term in the perturbative Adler function expansion
K4a4 (6.51).

The contribution of the O8 operator is of order OV −A
8 /N 2

c and is negligible [30]. (In
fact, it depends on the factorization procedure and is uncertain for this reason.) The con-
tributions of gluon condensate and D = 6 operators are positive; the second term in
(6.58) is small. So, the theoretical perturbative curve must go below the experimental
points. The result shown in Fig. 6.8 favours the lower value of the QCD coupling con-
stant αs(m2

τ )=0.330 (or maybe αs(m2
τ ) = 0.340). As is seen from Fig. 6.8, the theoretical
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Fig. 6.8. The results of the Borel transformation of the V + A correlator for two values
αs(m2

τ ) = 0.355 and αs(m2
τ ) = 0.330. The widths of the bands correspond to PT errors;

dots with dashed errors are experimental data. The dashed curve is the sum of the pertur-
bative contribution at αs(m2

τ )= 0.330, and the condensate contributions O4 (Eqs. (6.58),
(6.91)) and O6 (Eqs. (6.58), (6.84)).

curve (perturbative at αs(m2
τ )= 0.330 plus OPE terms) is in agreement with experiment

for M2 ≥ 0.9 GeV2.
In order to separate the contribution of the gluon condensate let us perform the Borel

transformation along the rays in the complex s-plane in the same way as was done in
Section 6.5.2; the real part of the Borel transform at φ = 5π/6 does not contain the d = 6
operator:

Re Bexp(M
2ei5π/6) = Re Bpt (M

2ei5π/6)+ π2 〈O4〉
M4

. (6.90)

The results are shown in Fig. 6.9. If we accept the lower value of αs(m2
τ ), we get the

following constraint on the value of the gluon condensate:〈αs

π
Ga
μνGa

μν

〉
= 0.006 ± 0.012GeV4, αs(m

2
τ ) = 0.330, M2 > 0.8GeV2. (6.91)

The theoretical and experimental errors are added in quadrature in Eq. (6.91).
Turn now to analysis of the vector correlator. (The vector spectral function was published

by ALEPH in [76],[33]). In principle, this cannot give any new information in comparison
with V − A and V + A cases, but such an analysis is an important check of the whole
approach. Note that the analysis of the vector current correlator is important since it can
be performed also using the experimental data on e+e− annihilation. The imaginary part
of the electromagnetic current correlator measured there is related to the charged current
correlator (6.44) by isotopic symmetry.

First, we consider the usual Borel transformation for the vector current correlator, which
was originally applied in [77] to a sum rule analysis. It is defined as (6.89) with the
experimental spectral function ωexp = 2v1 instead of v1 + a1 + a0 (the normalization is
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v1(s)→ 1/2 at s → ∞ in the parton model). Correspondingly, on the right-hand side one
should take the vector operators 2OV = OV +A + OV −A. The numerical results are shown
in Fig. 6.10. The perturbative theoretical curves are the same as in Fig. 6.8 with the V + A
correlator. The dashed lines display the contributions of the gluonic condensate given by
Eq. (6.91), 2OV

6 = −3.5 × 10−3 GeV6 and 2OV
8 = OV −A

8 = −2.8 × 10−3 GeV8 added
to the αs(m2

τ ) = 0.330 perturbative curve. The contribution of each condensate is shown
in the insert box in Fig. 6.10. Notice that for such condensate values, the total OPE contri-
bution is small, since the positive O4 compensates the negative O6 and O8. Agreement is
observed for M2 > 0.8 GeV2.

The Borel transformations along the rays in the complex plane result in the same con-
clusion: at M2 > 0.8 − 0.9 GeV2 agreement with experiment at the 2% level is achieved
with αs(m2

τ ) = 0.33 − 0.34 and at the values of quark and gluon condensates given by
(6.83) and (6.91).

A few words about instanton contributions: They can be calculated in the same way
as in the case of V − A correlators. At the chosen values of instanton gas parameters
the instanton contributions are small, less than 0.5 · 10−3 for M2 > 0.8 GeV2, and do
not spoil the agreement of theory with experiment. The results of the presented above
determinations of αs(m2

τ ) are summarized by the statement: αs(m2
τ ) = 0.340 ± 0.015

[17] (in MS scheme). This value agrees well with ones obtained in [33]. The evolution
to the standard normalization point M2

Z gives αs(M2
Z ) = 0.1207 ± 0.0015. The value

of αs(M2
Z ) is in agreement with ones, obtained by the analysis of the whole set of data

αs(M2
Z ) = 0.1189 ± 0.0010 [55].
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Fig. 6.10. Borel transformation for vector currents.

6.5.4 Determination of the gluon condensate and of the charmed quark mass
from the charmonium spectrum

The existence of the gluon condensate was first demonstrated by Shifman, Vainshtein, and
Zakharov [13]. They considered the polarization operator �c(q2) of the charmed vector
current

�c(q
2)(qμqν − δμνq2) = i

∫
d4xeiqx 〈0|T Jμ(x), Jν(0)|0〉, (6.92)

Jμ(x) = c̄γμc, (6.93)

and calculated the moments of�c(q2)

Mn(Q
2) = 4π2

n!
(

− d

d Q2

)n

�c(Q
2), (6.94)

(Q2 = −q2) at Q2 = 0. The OPE for�(Q2)was used and only one term in the OPE series
was considered – the gluonic condensate. In the perturbative part of �(Q2), only the first-
order term in αs was taken into account and a small value of αs was chosen, αs(mc) ≈ 0.2.
The moments were saturated by contributions of charmonium states and in this way the
value of the gluon condensate (6.19) was found. The SVZ approach [13] was criticized
in [78], where it was shown that the higher-order terms of OPE, namely the contributions
of G3 and G4 operators, are of importance at Q2 = 0. Reinders, Rubinstein, and Yazaki
[79] have shown, however, that the SVZ results may be restored if one considers not small
values of Q2 > 0 instead of Q2 = 0. Later there were many attempts to determine the
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gluon condensate by considering various processes within various approaches. In some of
them, the value (6.19) (or values by a factor of 1.5 higher) was confirmed [77],[80],[81], in
others it was claimed that the actual value of the gluon condensate is by a factor 2–5 higher
than (6.19) [82].

From today’s point of view, the calculations performed in [13] have a serious drawback.
Only the first-order (NLO) perturbative correction was accounted for in [13] and a rather
low value of αs was taken, which was later not confirmed by the experimental data. The
contribution of the next operator G3 of dimension 6 was neglected, so the convergence of
the operator product expansion was not tested.

There are publications [83] where the charmonium as well as bottomonium sum rules
were analyzed at Q2 = 0 with the account of α2

s perturbative corrections in order to extract
the charm and bottom quark masses in various schemes. The condensate is usually taken to
be zero or some another fixed value. However, the charm mass and the condensate values
are entangled in the sum rules. This can be easily understood for large Q2, where the mass
and condensate corrections to the polarization operator behave as some series in negative
powers of Q2, and one may eliminate the condensate contribution to a great extent by
slightly changing the quark mass. Vice versa, different condensate values may vary the
charm quark mass within a few percent (see Fig. 6.11).

Therefore, in order to perform reliable calculations of the gluon condensate by studying
the moments of the charmed current polarization operator, it is necessary to take account
of the α2

s perturbative corrections to the moments, αs-corrections to the gluon condensate
contribution, the 〈G3〉 term in OPE, and to find the region in (n, Q2) space where all these
corrections are small. This program was realized in Ref. [84]. The basic points of this
consideration are presented below.
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The dispersion representation for �(q2) has the form

R(s) = 4π Im�c(s + i0) , �c(q
2) = q2

4π2

∫ ∞

4m2
c

R(s) ds

s(s − q2)
, (6.95)

where R(∞) = 1 in the parton model. In the approximation of infinitely narrow widths of
resonances, R(s) can be written as a sum of contributions from resonances and continuum

R(s) = 3π

Q2
c α

2
em(s)

∑
ψ

mψ�ψ→ee δ(s − m2
ψ) + θ(s − s0), (6.96)

where Qc = 2/3 is the charge of charmed quarks, s0 is the continuum threshold (in what
follows

√
s0 = 4.6 GeV), αem(s) is the running electromagnetic constant, αem(m2

J/ψ) =
1/133.6. The polarization operator moments are expressed through R as

Mn(Q
2) =

∞∫
4m2

c

R(s) ds

(s + Q2)n+1
. (6.97)

According to (6.97), the experimental values of moments are determined by the equality

Mn(Q
2) = 27π

4α2
em

6∑
ψ=1

mψ�ψ→ee

(m2
ψ + Q2)n+1

+ 1

n(s0 + Q2)n
. (6.98)

In the sum in (6.98) the following resonances were considered: J/ψ(1S), ψ(2S),
ψ(3770), ψ(4040), ψ(4160), ψ(4415), their �ψ→ee widths were taken from PDG data
[63]. It is reasonable to consider the ratios of moments Mn1(Q2)/Mn2(Q2) from which
the uncertainty due to the error in �J/ψ→ee largely cancels. The theoretical value of�(q2)

is represented as a sum of perturbative and nonperturbative contributions. It is convenient
to express the perturbative contribution through R(s), making use of (6.95), (6.97):

R(s) =
∑
n≥0

R(n)(s, μ2) an(μ2), (6.99)

where a(μ2) = αs(μ
2)/π . Nowadays, three terms of the expansion in (6.99) are known:

R(0) [85] R(1) [86], R(2) [87]. They are represented as functions of the quark velocity
v = √

1 − 4m2
c/s, where mc is the quark pole mass. Since they are cumbersome we will

not present them here (see [84] for details).
Nonperturbative contributions to the polarization operator have the following form

(constrained by d = 6 operators):

�nonpert (Q
2) = 1

(4m2
c)

2
〈0 | αs

π
G2 | 0〉[ f (0)(z)+ a f (1)(z) ]

− 1

(4m2
c)

3
g3 f abc〈0 | Ga

μνGb
νλGc

λμ | 0〉F(z), z = − Q2

4m2
c
. (6.100)

The functions f (0)(z), f (1)(z) and F(z)were calculated in [13], [88], [89], respectively.
The use of the quark pole mass is, however, not acceptable. The issue is that, in this case,
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the PT corrections to moments are very large in the region of interest and the perturbative
series seems to diverge.

So, it is reasonable to use the MS mass m(μ2), taken at the point μ2 = m2. The calcula-
tions performed in Ref. [84] show that in the region near the diagonal in the (Q2, n) plane,
Q2/4m2 = n/5−1, all above mentioned corrections are small. For example,

n = 10 , Q2 = 4m̄2
c : M̄ (1)

M̄ (0)
= 0.045 ,

M̄ (2)

M̄ (0)
= 1.136 ,

M̄ (G,1)

M̄ (G,0)
= −1.673, (6.101)

(here M̄ (k) are the coefficients that multiply the contributions of terms ∼ ak to the
moments; M̄ (G,k) are the similar coefficients for gluonic condensate contributions).

At a ∼ 0.1 and at the ratios of moments given by (6.101), there is good reason to believe
that the PT series converges well. Such a good convergence holds (at n > 5) only in the
case of large enough Q2; at Q2 = 0 one does not succeed in finding a value of n, such
that perturbative corrections to the moments, αs-corrections to gluonic condensates and
the term ∼ 〈G3〉 contribution would be simultaneously small.

It is also necessary to choose the scale, i.e. the normalization point μ2 where αs(μ
2) is

taken. In (6.99), R(s) is a physical value and cannot depend on μ2. Since, however, we take
into account only three terms in (6.99), such μ2 dependence can arise due to the neglected
terms if an unsuitable normalization point is chosen. At large Q2, the natural choice is
μ2 = Q2. It can be thought that at Q2 = 0 the reasonable scale is μ2 = m2, though some
numerical factor is not excluded in this equality. That is why it is reasonable to take the
interpolation form

μ2 = Q2 + m2, (6.102)

and to check the dependence of final results on a possible factor multiplying m2. Equating
the theoretical value of some moment at fixed Q2 (in the region where M (1)

n and M (2)
n

are small) to its experimental value one can find the dependence of m on 〈(αs/π)G2〉
(neglecting the terms ∼ 〈G3〉). Such a dependence for n = 10 and Q2/4m2 = 0.98 is
presented in Fig. 6.11.

To fix both m and 〈(αs/π)G2〉, one should take not only moments but also their ratios.
Fig. 6.12 shows the value of m obtained from the moment M10 and the ratio M10/M12 at
Q2 = 4m2 and from the moment M15 and the ratio M15/M17 at Q2 = 8m2. The best
values of masses of charmed quark and gluonic condensate are obtained from Fig. 6.12:

m̄(m̄2) = 1.275 ± 0.015 GeV ,
〈αs

π
G2
〉

= 0.009 ± 0.007 GeV4. (6.103)

The calculation shows that the influence of the continuum – the last term in Eq. (6.96) – is
completely negligible. Up to now, the corrections ∼ 〈G3〉 were not taken into account.
In the region of n and Q2 used to find m and the gluonic condensate the corrections
are comparatively small. They practically do not change m. If the term ∼ 〈G3〉 is esti-
mated according to (6.21) at ρc = 0.5 fm, then the account of these corrections increases
〈(αs/π)G2〉 by 10 − 20%.

It should be noted that an improved accuracy of �J/ψ→ee would make it possible to
get a more precise value of the gluonic condensate: the widths of the horizontal bands
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Fig. 6.12. The dependence of m(m) on 〈0|(αs/π)G2|0〉 obtained from the moments (hori-
zontal bands) and their ratios (vertical bands) at different αs . Left-hand figure: Q2 = 4m2,
n = 10, M10/M12; right-hand figure: Q2 = 8m2, n = 15, M15/M17.

in Fig. 6.12 are determined mainly just by this error. In particular, this would possibly
allow one to exclude the zero value of the gluonic condensate which would be extremely
important. Unfortunately, Eq. (6.103) does not allow one to do this reliably. Diminution of
theoretical errors which determine the width of vertical bands seems to be less real.

In order to check the result (6.103) for the gluon condensate, the pseudoscalar and axial-
vector channels in charmonia were considered. The same method of moments was used
and the regions in the space (n, Q2) were found where higher-order perturbative and OPE
terms are small. In the pseudoscalar case, it was shown [90] that if for m the value (6.103) is
accepted and the contribution of 〈0|G4|0〉 condensate may be neglected, then there follows
an upper limit for the gluon condensate

〈0|αs

π
G2|0〉 < 0.008 GeV4. (6.104)

The contribution of the d = 6 condensate 〈0|G3|0〉 is shown to be small. If the 〈G4〉
condensate is accounted for and its value is estimated by the factorization hypothesis, then
the upper limit of the gluon condensate increases to

〈0|αs

π
G2|0〉 < 0.015 GeV4. (6.105)

The case of the axial-vector channel in charmonia was investigated in [91] and very
strong limits on the gluon condensate were found:

〈0|αs

π
G2|0〉 = 0.005+0.001

−0.004 GeV4. (6.106)

Unfortunately, (6.106) does not allow one to exclude the zero value for the gluon conden-
sate. It should be mentioned that the allowed region in (n, Q2) space, where all corrections
are small, is very narrow in this case. This implies that one cannot check the result (6.106)
by studying some other regions in (n, Q2) as was done in the two previous cases – vector
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and pseudoscalar. For this reason, there is no full confidence in the value of (6.106). In
the recommended value of the gluon condensate presented in Table 1 the upper error was
increased up to 0.004.

Let us now turn the problem around and try to predict the width �J/ψ→ee theoretically.
In order to avoid a circular argument, we do not use the condensate value just obtained, but
take the limits

〈
αs/π G2

〉 = 0.006 ± 0.012 GeV4 found from τ -decay data. Then the mass
limits m̄ = 1.28 − 1.33 GeV can be found from the moment ratios exhibited above, which
do not depend on �J/ψ→ee if the contribution of higher resonances is approximated by
a continuum (the accuracy of such approximation is about 3%). The substitution of these
values of m̄ into the moments gives

�theor
J/ψ→ee = 4.9 ± 0.8 keV, (6.107)

compared with the experimental value �J/ψ→ee = 5.26 ± 0.37 keV. Such good agreement
of the theoretical prediction with experimental data is a very impressive demonstration
of the QCD sum rule effectiveness. It must be stressed that while obtaining (6.107) no
additional input was used besides the condensate constraint taken from Eq. (6.91) and the
value of αs(m2

τ ).
Sometimes when considering the heavy quarkonia sum rules the Coulomb-like correc-

tions are summed up [92]–[96]. The basic argument for such summation is that at Q2 = 0
and high n only small quark velocities v <∼ 1/

√
n are essential and the problem becomes

nonrelativistic. So it is possible to perform the summation with the help of well-known
formulae of nonrelativistic quantum mechanics for |ψ(0)|2 in the case of the Coulomb
interaction (see [97]).

This method was not used here for the following reasons:
1. The basic idea of our approach is to calculate the moments of the polarization operator

in QCD by applying perturbation theory and OPE (left-hand sides of the sum rules) and
to compare it with the right-hand sides of the sum rules, represented by the contribution
of charmonium states (mainly by J/ψ in the vector channel). Therefore, it is assumed
that the theoretical side of the sum rule is dual to the experimental one, i.e. the same
domains of coordinate and momentum spaces are of importance on both sides. But the
charmonium states (particularly J/ψ) are by no means Coulomb systems. A particular
argument in favor of this statement is the ratio �J/ψ→ee/�ψ ′→ee = 2.4. If charmonia were
nonrelativistic Coulomb systems, �ψ→ee would be proportional to |ψ(0)|2 ∼ 1/(nr + 1)3,
and since ψ ′ is the first radial excitation with nr = 1 this ratio would be equal to 8 (see
also [97]).

2. The heavy quark-antiquark Coulomb interaction at large distances r > rconf ∼
1 GeV−1 is screened by gluon and light quark-antiquark clouds, resulting in string for-
mation. Therefore the summation of the Coulombic series makes sense only when the
Coulomb radius rCoul is below rconf. (It must be borne in mind that higher-order terms
in the Coulombic series represent the contributions of large distances, r � rCoul.) For
charmonia we have

rCoul ≈ 2

mcCFαs
≈ 4 GeV−1. (6.108)
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It is clear that the necessary condition RCoul < Rconf is badly violated for charmonia. This
means that the summation of the Coulomb series in case of charmonium would be a wrong
step.

3. The analysis is performed at Q2/4m̄2 ≥ 1. At large Q2, the Coulomb corrections are
suppressed in comparison with Q2 = 0. It is easy to estimate the characteristic values of
the quark velocities. At large n they are v ≈ √

(1 + Q2/4m2)/n. In the region (n, Q2)

exploited above, the quark velocity v ∼ 1/
√

5 ≈ 0.45 is not small and is not in the
nonrelativistic domain where the Coulomb corrections are large and legitimate.

Nevertheless, let us look at the expression of Rc, obtained after summation of the
Coulomb corrections in the nonrelativistic theory [98]. It reads (to go from QED to QCD
one has to replace α → CFαs , CF = 4/3):

Rc,Coul = 3

2

πCFαs

1 − e−x
= 3

2
v

(
1 + x

2
+ x2

12
− x4

720
+ . . .

)
, (6.109)

where x = πCFαs/v. At v = 0.45 and αs ≈ 0.26, the first three terms in the expansion
(6.109) accounted for in our calculations reproduce the exact value of Rc,Coul with an accu-
racy of 1.6%. Such deviation leads to an error of the mass m̄ of order (1 − 2)× 10−3 GeV,
which is completely negligible. In order to avoid misunderstanding, it must be mentioned
that the value of Rc,Coul, computed by summing the Coulomb corrections in nonrelativistic
theory, has not too much in common with the real physical situation. Numerically, at the
chosen values of the parameters, Rc,Coul ≈ 1.8, while the real value (both experimental
and in perturbative QCD) is about 1.1. The goal of the arguments presented above was to
demonstrate that even in the case of Coulombic systems our approach would have a good
accuracy of calculation.

At v = 0.45, the momentum transfer from quark to antiquark is�p ∼ 1 GeV. (This is a
typical domain for QCD sum rule validity.) In coordinate space it corresponds to �rqq̄ ∼
1 GeV−1. Comparison with potential models [98] shows that in this region the effective
potential strongly differs from the Coulombic one.

4. Large compensation of various terms in the expression for the moments in the MS
scheme is not achieved if only the Coulomb terms are taken into account. This means that
the terms of non-Coulombic origin are more important here than the Coulombic ones.

For all these reasons, the summation of nonrelativistic Coulomb corrections is inade-
quate to the problem considered: it will not improve the accuracy of calculations but would
be misleading.

6.6 Calculations of light meson masses and coupling constants

6.6.1 Vector mesons

Vector meson (ρ, ω, ϕ, K ∗)masses and their coupling constants with quark vector currents
were first calculated by QCD sum rules by Shifman, Vainshtein, and Zakharov in their
pioneering paper [13]. Their calculations are repeated below with the account of higher-
order terms of the perturbation series and operators of higher dimension in OPE.
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Consider the case of the ρ meson. The quark current corresponding to ρ− is equal to

jρμ = ūγμd. (6.110)

The expression for the vector current (6.110) polarization operator

�V (Q
2) = �pert

V (Q2)+�nonpert
V (Q2), (6.111)

follows directly from (6.54), (6.58), (6.72)–(6.76). For �pert
V , we have up to α3

s terms:

�
pert
V (Q2) = 1

4π2

a(Q2)∫
a(m2

τ )

D(a)
da

β(a)
, (6.112)

D(a) = 1 + a + 1.64a2 + 6.37a2 + 50a3, (6.113)

β(a) = β0a2(1 + 1.78a + 4.47a2 + 20.9a3), (6.114)

where a = αs/π, β0 = 9/4. In the OPE series, condensates up to dimension 10 are
accounted for. For the condensates of dimensions 6, 8, and 10, the factorization hypothesis
is assumed to hold. Several operators of dimensions 8 and 10 are omitted for the reasons
mentioned in the text after Eq. (6.58). The nonperturbative part of the polarization operator
has the form of

�
nonpert
V (Q2) = 1

12Q4

〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉(1 + 7

6
a

)
+ (mu + md)〈0|q̄q|0〉

× 1

Q4

[
1 + 1

3
a +

(
11.6 − 4.4. ln

Q2

μ2

)
a2
]

× −32

81

π

Q6
αs〈0 | q̄q | 0〉2

[
7 +

(
685

48
− 17

9
ln

Q2

μ2

)
a

]
− 4π

Q8
αsm2

0〈0 | q̄q | 0〉2

× −4

9
παs〈0 | q̄q | 0〉2 1

Q10

[
50

9
m4

0 + 32π2
〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉], (6.115)

whereμ is the normalization point. (Terms of order m2
u,m

2
d are neglected.) In what follows,

μ = 1 GeV is chosen. The αs-corrections are taken into account for the contributions of the
operators up to dimension 6. The αs-corrections to higher-order operators are unknown,
their possible contributions, as well as deviations from the factorization hypothesis, will
be included in the errors. The phenomenological side of the sum rule is represented by
the contributions of ρ meson and continuum, the imaginary part of which is equal to
Im�pert

V (s), s = q2 and starts at some threshold value s = s0. The matrix element
〈ρ− | jρμ | 0〉 is known from the vector dominance model (VDM). (For a review, see
e.g. [23].) Thus,

〈ρ− | jρμ | 0〉 =
√

2mρ
gρ

eμ, (6.116)

where mρ is the ρ meson mass, eμ is the ρ meson polarization vector, and gρ is the ρ − γ
coupling constant. The factor

√
2 appears in (6.116) because in VDM gρ is defined as the

matrix element between ρ0 and the third component of the isovector quark current
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j (3)μ = 1

2
(ūγμu − d̄γμd). (6.117)

The current (6.110) is the isotopically minus component of the same isovector current
times

√
2. So, Im�phys

V (s) is given by

Im�phys
V (s) = π 2m2

ρ

g2
ρ

δ(s − m2
ρ)+ Im �pert

V (s)θ(s − s0). (6.118)

(The ρ meson width is disregarded.) It is convenient to represent �pert
V (Q2) by the

following dispersion relation:

�
pert
V (Q2) = 1

π

∫
Im �pert

V (s)

s + Q2
ds (6.119)

Substituting (6.115), (6.118), (6.119) into (6.38) and performing a Borel transformation,
we get the sum rule

1

π

s0∫
0

ds Im �pert
V (s)e−s/M2 + 1

12M2

〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉(1 + 7

6
a

)

+ 1

M2
(mu + md)〈0 | q̄q | 0〉

[
1 + 1

3
a +

(
11.6 − 4.4. ln

M2

μ2

)
a2
]

− 16

81
· 7π

M4
αs〈0 | q̄q | 0〉2

[
1 + 1

7

(
685

48
− 17

9
ln

M2

μ2

)
a

]
− 2π

3

m2
0

M6
αs〈0 | q̄q | 0〉2

− π

54
αs〈0 | q̄q | 0〉2 1

M8

[
50

9
m4

0 + 32π2
〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉] = 2m2

ρ

g2
ρ

e−m2
ρ/M2

. (6.120)

In (6.120), a = αs(Q2)/π is taken at Q2 = M2. The corrections to this approximation
are beyond the accuracy of (6.120), since they are of the next order of αs . In the term
ln Q2/μ2, which appears in Eq. (6.115), the substitution Q2 → M2 was done as well at
the Borel transformation. The deviations from this procedure are very small, with less than
0.1% correction to the sum rule. It is important to calculate the perturbative correction to
the sum rule – the first term on the left-hand side of (6.120) – with sufficient precision
because this is the main correction to the parton model result. Using (6.112)–(6.114) and
renormalization group equation (6.52), we get:

�
pert
V (Q2) = − 1

4π2
ln

Q2

m2
τ

+ 1

4π2

a(Q2)∫
a(m2

τ )

da

β0a

1 + 1.64a + 6.37a2 + 50a3

1 + 1.78a + 4.47a2 + 20.9a3
. (6.121)

As can be seen from (6.121), the coefficients of equal powers of a in the numerator and the
denominator of the second term in (6.121) are of the same magnitude. Therefore, we can
write the numerator of (6.121) as the sum of the polynomial in the denomerator plus the
rest terms and expand in powers of the latter. The estimate of these terms shows that their
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Fig. 6.13. The dependence of g2
ρ/4π (solid line) and m2

ρ (dashed line, right-hand scale)

on the Borel parameter M2.

contribution to Im�pert
V is about 10% of the total. So, with such accuracy Im�pert

V (s)
reduces to

4π Im �pert
V (s) = 1 + 1

πβ0
Im ln

a(s)

a(m2
τ )
. (6.122)

As follows from Fig. 6.2, at s > 0.8 GeV2 αs(s) can be calculated at the same accuracy in
one-loop approximation with the result

4π Im �pert
V = 1 + 1

πβ0

⎡⎣π
2

− tan−1
1 + β0a(m2

τ ) ln s
m2
τ

πβ0a(m2
τ )

⎤⎦ . (6.123)

At s < 0.8 GeV2, the values of Reαs(s) and Imαs(s) are presented in Fig. 6.2. Im�pert
V (s)

is then found using (6.122). These two ways of determining Im�pert
V (s) match well at

s = 0.8 GeV2.
The values of g2

ρ/4π as a function of the Borel parameter M2 found from the sum
rule (6.120) are plotted in Fig. 6.13. The numerical values of condensates, presented in
Section 6.2 (Table 1), were used, αs(Q2) was taken from Fig. 6.3, s0 = 1.5 GeV2 was
chosen, the experimental value of m2

ρ = 0.602 GeV2 was substituted. The interval in M2

where the sum is reliable can be estimated as 0.8 < M2 < 1.2 GeV2. At M2 < 0.8 GeV2,
there is no confidence in the convergence of the perturbative series; at M2 = 1.2 GeV2,
the continuum comprises about 35% of the total contribution. Fig. 6.13 demonstrates that
g2
ρ/4π is very stable in this interval of M2 and the mean value of g2/4π is

g2
ρ

4π
= 2.48, (6.124)

in comparison with the experimental value (see [23]):(
g2
ρ

4π

)
exp

= 2.54 ± 0.23. (6.125)

Let us estimate the errors in the theoretical value (6.124). The main contribution to the sum
rule (6.120), besides the parton model term, arises from perturbative αs-corrections. They
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comprise about 12% of the total (at M2 = 1 GeV2). Among nonperturbative terms, the
main role belongs to the term, proportional to αs〈0 | q̄q | 0〉2, the contribution of which
is negative and about 4%. The convergence of OPE is good: the last terms of OPE con-
tribute about 1% of the total. The main uncertainty arises from the model of the hadronic
spectrum. The continuum contribution is about 25% of the total (at M2 = 1 GeV2) and
its possible uncertainty may be estimated as 20–30%. Therefore, the accuracy of (6.124) is
about 5–7%. It should be stressed that such accuracy of theoretical prediction is very high
considering that we are dealing with the theory of strong interactions and a large coupling
constant! Note also that the perturbative corrections play a modest role in the final result
and the role of nonperturbative terms is even less.

In order to find the theoretical value of m2
ρ , let us apply the differential operator

(−1/M2)−1∂(−1/M2) to (6.120). The obtained result as a function of M2 is plotted in
Fig. 6.13. The confidence interval in M2 significally shrinks in the differentiated sum rule
in comparison with the sum rule (6.120). The reason is that even at M2 = 1 GeV2 the con-
tinuum contribution, subtracted from the parton model term, is practically equal to the total
left-hand side of the differentiated sum rule. Therefore, the optimistic estimate of the con-
fidence interval is: 0.8 < M2 < 1 GeV2. The remarkable dependence of m2

ρ on M2 in
Fig. 6.13 and its significant variation with the variation of s0 indicate that the error in the
determination of m2

ρ is much larger than in case of g2
ρ and, probably, comprises about 20%.

From Fig. 6.13 and taking into account this error, we have

(m2
ρ)th = 0.72 ± 0.15 GeV2 (6.126)

in comparison with the experimental value

(m2
ρ)exp = 0.602 ± 0.001 GeV2. (6.127)

This example clearly demonstrates that differentiation of the QCD sum rule is a dangerous
operation: the confidence interval shrinks significantly and the accuracy of the sum rule is
reduced.

The coupling constants and masses of the ω, ϕ and K ∗ mesons can be calculated in a
similar way. The sum rule for the ωmeson in the accepted approximation coincides exactly
with (6.120) – ρ and ω mesons are degenerate. For ϕ and K ∗, the strange quark mass ms

must be accounted for, particularly the m2
s term for ϕ (see [13]).

6.6.2 Axial mesons

Let us now consider the QCD sum rules for the axial meson a1 with isospin T =1 (J PC =
1++). The corresponding quark current is equal to

j A
μ (x) = ūγμγ5d (6.128)

and the polarization operator is

�A
μν(q) = i

∫
d4xeiqx

〈
0
∣∣∣T { j A

μ (x), j A
ν (0)

+}∣∣∣ 0〉 . (6.129)



234 QCD sum rules

Separate in the expression for the polarization operator the transverse structure

(qμqν − q2δμν)�
A(q2) (6.130)

to which axial mesons are contributing. Neglect the a1 width although experimentally it is
large – about 300–400 MeV. The sum rule for the a1 meson after Borel transformation has
the form of

1

π

s0∫
Im�A

pert (s)e
−s/M2 + 1

12M2

〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉(1 + 7

6
a

)
− 1

M2
(mu + md)

× 〈0 | q̄q | 0〉
[

1 + 7

3
a +

(
7 − ln

μ2

M2

)
a2
]

+ π

M4

176

81
αs〈0 | q̄q | 0〉2

×
[

1 + a

(
917

528
+ 149

326
ln
μ2

M2

)]
+ 2π

3

m2
0

M6
αs〈0 | q̄q | 0〉2 + π

54

1

M6

× 〈0 | q̄q | 0〉2
[

50

9
m4

0 + 32π2
〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉] = 2

m2
a1

g2
a1

e
− m2

a1
M2 + f 2

π . (6.131)

The OPE leading terms of d = 0, 4, 6 were calculated in [13], the term of d = 8 was
found in [30], the term of d = 10 was calculated in [68]. The magnitude of the last two
terms are equal to the corresponding ones in the case of vector currents, but the signs
are opposite. The αs-corrections to OPE terms were calculated in [48] and [49]. The fac-
torization procedure was employed in the calculation of d ≥ 6 terms. The anomalous
dimensions of d = 8 and d = 10 terms (as well as the unknown αs-corrections) were dis-
regarded because the error, arising from the factorization procedure, probably overwhelms
their magnitude. At Borel transformation, the αs dependence on Q2 was disregarded and
Q2 was replaced by M2; the same was done with lnμ2/Q2. The f 2

π term on the right-
hand side of (6.131) arises from the kinematical pole in �A

μν (see Eq. 2.119). Note that
the contributions of all OPE corrections are positive in (6.131), while in (6.120) they were
negative (except for the gluon condensate contribution). This circumstance results in the
necessity to choose larger values of the Borel parameter M2 in (6.131) in comparison with
(6.120).

The values of g2
a1
/4π and m2

a1
calculated from the sum rule (6.131) are plotted in

Fig. 6.14 (m2
a1

was found by differentiation of the sum rule with respect to (1/M2)).
s0 was chosen equal to 2 GeV2. The confidence interval in M2 can be estimated as
1.0 < M2 < 1.4 GeV2: at M2 = 1.4 GeV2 the continuum contribution in the differ-
entiated sum rule is about 60%, at M2 = 1.0 GeV2 the perturbative and nonperturbative
corrections are each about 10%. The mean theoretical value of m2

a1
is equal to

(m2
a1
)theor = 1.32 ± 0.18 GeV2 (6.132)

in comparison with experimental data

(m2
a1
)exp = 1.51 ± 0.09 GeV2. (6.133)
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found from the sum rule (6.131).

The main theoretical error arises from the uncertainty in the continuum threshold s0. The
theoretical value of the a1 meson coupling constant with the axial current is given by(

g2
a1

4π

)
theor

= 5.60 ± 0.15. (6.134)

This value agrees with the data determined from experiment. However, because of the large
a1 width the latter is model dependent.

6.6.3 Pseudoscalar mesons

Consider first the longitudinal part of the polarization operator qμqν�
(0)
A defined by (6.44).

The OPE for it in the limit mu,md → 0 reads:

qμqν�
(0)
A (Q

2) = 2qμqν
1

Q4
(mu + md)〈0 | q̄q | 0〉. (6.135)

No perturbative terms, nor any higher-order terms of OPE, contribute to qμqν�
(0)
A (Q

2)

in this limit. The proof of this statement can be obtained by considering qμqν�μν,A,
where �μν,A is given by (6.44) and using current algebra, as was done in Section 2.3
of Chapter 2. The corrections to Eq. (6.135) are proportional to (mu + md)

2. The physical
part of qμqν�

(0)
A (Q

2) looks like

qμqν

(
− f 2

π

1

q2 − m2
π

+ contributions of excited states

)
. (6.136)

Comparison of (6.135) with (6.136) shows that the coupling constants of all excited states
of nonzero mass are proportional to mu + md in the limit of massless u and d quarks. The
pion mass is also vanishing in this limit. Expanding the denominator in (6.136) in m2

π/q
2

we get by comparing (6.135) and (6.136) the relation derived in Chapter 2:
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〈0 | q̄q | 0〉 = −1

2

f 2
πm2

π

mu + md
. (6.137)

Write now the QCD sum rule for pions using the pseudoscalar current. Instead of the
pseudoscalar current jps = i ūγ5d it is more convenient to consider the divergence of the
axial current

j5 = ∂μūγμγ5d = i(mu + md)ūγ5d, (6.138)

and the polarization operator

�(5)(q2) = i
∫

d4xeiqx 〈0 | T { j5(x), j+5 (0)} | 0〉. (6.139)

A more suitable object is the second derivative of �(5)(q2) [99]

�(5)(q2)′′ = d2

d(q2)2
�(5)(q2) = 2

π

∫
ds

Im�(5)(s)

(s − q2)3
. (6.140)

The QCD sum rule after Borel transformation has the form [99] (lM = ln(M2/μ2)):

3

8π2

{
1 +

(
11

3
+ γE − 2lM

)
a +

(
21.5 − 139

6
lM − 17

2
γElM + 17

4
l2
M

)
a2

+
(

52.7 − 223.5lM + 10.28l2
M − 9.21l3

M

)
a3 + π2

3

〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉 1

M4
+ 896

81
π3αs

× 〈0 | q̄q | 0〉2 1

M6

}
= 4

〈0 | q̄q | 0〉2

f 2
πM4

+ excited states contribution. (6.141)

The terms ∼ mq〈0 | qq | 0〉 are omitted. On the right-hand side of (6.141), the GMOR
relation (6.137) was exploited. (In [99], the α4

s -corrections as well as αs-corrections to
d = 4 and d = 6 power terms were also calculated.) It is easy to see that the sum rule
(6.141) cannot be fulfilled. (The statement that the QCD sum rule does not work in the PS
channel was made in [100],[14],[24].) Indeed, the pion contribution – the first on the right-
hand side of (6.141) – comprises 60% of the perturbative terms of the left-hand side at
M2 = 1 GeV2. Even if we assume that all the rest on the right-hand side is represented by
excited state contributions, then the equality achieved at M2 = 1 GeV2 will be destroyed
with increasing M2, because the M2-dependence of left and right sides of (6.141) are quite
different. There are, in principle, two ways to get rid of the problem:

1. To say that the sum rule (6.141) is valid at high M2 only, i.e. that PT + OPE is
dual to excited state contributions. This statement is trivial and gives us no new
information.

2. To suppose that at M2 ∼ 1 − 2 GeV2 the vacuum fluctuations not given by OPE
are important in PS sum rules.

One can present an argument in favour of the second possibility. It is well known that
isospin zero physical states in pseudoscalar nonets are the eighth component of the SU (3)
octet η and SU (3) singlet η′ with quark contents | η〉 =| ūu + d̄d − 2s̄s〉/√6 and | η′〉 =|
ūu + d̄d + s̄s〉/√3. In vector nonets the situation is different: | ω〉 =| ūu + d̄d〉/√2 and
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u,d
_

_

u,d

s
_

s

x x

Fig. 6.15. The diagram, representing ūu + d̄d ⇔ s̄s mixing in the polarization operator.
The solid lines are quarks, the dashed lines are gluons.

| ϕ〉 =| s̄s〉. This means that in the attempt to describe pseudoscalar mesons in QCD by
QCD sum rules, the mixing transitions ūu + d̄d → s̄s are as important as the diagonal
ones ūu → ūu. In perturbation theory (and in OPE), the term in the polarization operator,
corresponding to the quark pair mixing transition, is given in the first nonvanishing order
of αs by the diagram of Fig. 6.15 (for PS-current).

Evidently, this diagram is proportional to α2
s , contains a small numerical factor due to

three-loop integration and is much smaller than the bare-loop diagram corresponding to the
diagonal ūu → ūu transition. Therefore, the large mixing in the PS nonet can be attributed
to nonperturbative vacuum fluctuations not given by OPE. In QCD, one example is known
of such a nonperturbative solution for gluon field – the instanton. So, let us consider the
polarization operator corresponding to the mixing ūu → s̄s of axial currents:

�su
μν(q) = i

∫
d4xeiqx

〈
0
∣∣∣T { j A,s

μ (x), j A,u
ν (0)

}∣∣∣ 0〉 . (6.142)

Suppose that quarks are moving in the field on instanton and neglect their interaction with
gluons. In the dilute instanton gas approximation, we get the factorized expression for
�su
μν(Q) by integrating over the instanton position [100]:

�su
μν(Q) = −B A,s

μ (Q)B A,u
ν (−Q), (6.143)

B A,i
μ (Q) =

∫
ei Qx Tr

{
γμγ5Gi (x, x)

}
d4x, (6.144)

where Gi (x, y), i = s, u is the quark Green function in the instanton field. (The center of
the instanton is at the origin.)

It is instructive to show that if instead of the axial current, a vector current is
considered, then there is no mixing induced by instantons: BV,i

μ ≡ 0. Indeed, the expres-
sion Tr {γμGi (x, x)} is invariant under the transformations, which does not change the
Lagrangian of the quark in the instanton field. The instanton is a vector in the SU (2) sub-
group of the colour group SU (3). Let us consider a G-parity transformation in the colour
space, i.e. the product of charge conjugation and a 180◦ rotation around the second axis
in the SU (2) subgroup of the colour group. The Lagrangian of the quark in the instan-
ton field is invariant under such transformation. Since Tr {γμGi (x, x)} is odd under charge
conjugation, it changes the sign under such transformation and therefore is identically zero:

Tr
{
γμGi (x, x)

}
= 0. (6.145)
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The same statement follows also from vector current conservation. If the instanton mech-
anism is responsible for quark pair mixing, then this statement explains why such mixing
is absent in vector meson nonet and the physical states are |ω〉 = |ūu + d̄d〉/√2 and
|ϕ = |s̄s〉 [100]. The question can arise: why are ρ0 and ω physical states but not |ūu〉 and
|d̄d〉 ? The answer to this question is evident: the states |ūu〉 and |d̄d〉 are almost degener-
ate: the energy splitting of these states is of order of the mass difference of u and d quarks,
i.e. few MeV. So one can expect that even very small mixing (e.g. by exchange of pertur-
bative gluons) is considerably larger (in the energy scale) than mu − md and will result in
the generation of ρ0 and ω as physical states.

Turn back to Eqs. (6.143), (6.144). The quark Green function in the field of instanton was
calculated in Refs. [59],[101],[102] and is presented in Eqs. (4.228), (4.232). For massless
quarks, its substitution in (6.144) results in:

B A
μ (Q) = −iρ2 QμK0(Qρ) (6.146)

and

�su
μν(Q) = −QμQν�

(0)su
A (Q) = −QμQνK 2

0 (Qρ)ρ
4. (6.147)

In (6.146), (6.147), K0(x) is the McDonald function and ρ is the instanton radius.�su
μν(Q)

(6.147) is longitudinal and therefore contributes to the formation of pseudoscalar η and
η′ mesons. Let us estimate its magnitude in the instanton gas model with fixed instanton
radius ρ = ρc, where the instanton density is given by (6.69). The diagonal longitudinal
polarization operator in the instanton field �(0)uu

A (Q) = �
(0)ss
A (Q) is given by the second

equation (6.64):

�(0)uu
a (Q) = 4ρ2

c

Q2
K 2

1 (Qρ)n0. (6.148)

The first term in this equation, proportional to 1/Q4, is omitted because it corresponds
to the OPE term (6.135) and is small in the real world. At the instanton gas parameter
ρc = 1.5 GeV−1 and Q = 1 GeV the ratio�(0)qq

A /�
(0)(qs)
A ≈ 2, (q̄q = (ūu+d̄d)/

√
2), i.e.

the diagonal and nondiagonal polarization operators are of the same order. Therefore, in the
limit of massless u, d, s quarks, the physical states in the isospin zero pseudoscalar channel
belong to an SU (3) octet or to an SU (3) singlet and the lowest states are η and η′. The
same statement follows from the persistence of the anomaly in the divergence of the SU (3)
singlet axial current, which shows, that η′ is not a Goldstone boson. (See Chapter 3.) Let
us check that the nondiagonal polarization operator �(0)su

A (Q) is approximately saturated
by contributions of η and η′ mesons. Define their coupling constants to axial currents by:

1√
6
〈0 | ūγμγ5u + d̄γμγ5d − 2s̄γμγ5s | η〉 = i fηqμ,

1√
3
〈0 | ūγμγ5u + d̄γμγ5d + s̄γμγ5s | η′〉 = i fη′qμ. (6.149)

Write the sum rule for �(0)su
A (Q) (6.147) and perform the Borel transformation. The

asymptotic expansion of K0(Qρ)
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K0(Qρ) ≈
(
π

2Qρ

)1/2

e−Qρ (6.150)

can be used. (Qρc ≈ 1.5 − 1.7 and the correction term to (6.150) is less than 10%.) The
formula for Borel transformation [24] is

B 1

Q
e−2Qρ = 1√

π
M exp(−M2ρ2). (6.151)

Neglecting the contributions of excited states, we get the sum rule

1

3
f 2
η′e

−m2
η′/M2 − 1

3
f 2
η e−m2

η/M2 =
√
π

2
Me−M2ρ2

c n0ρ
3
c . (6.152)

The coupling constant fη can be estimated as fη ≈ 150 MeV. At M2 = 1 GeV2 and
n0 = 0.5 ·10−3 GeV4 the right-hand side of (6.152) is about to 1.5 ·10−4 GeV2. Then from
(6.152) we get: fη′ ≈ 200 MeV. This value is 30% higher than the result of phenomeno-
logical analysis [103],[104], but bearing in mind the crudeness of the model the agreement
can be considered as satisfactory. (Note that the s quark mass was taken into account in
[103],[104] but not in the present discussion.)

At least one can say that qualitatively the instanton contribution can explain the forma-
tion of meson states in pseudoscalar and vector nonets – the presence of mixing of quark
pairs ūu + d̄d ⇔ s̄s in the first case and its absence in the second. Taking account of
instanton contributions in the sum rules for pseudoscalar mesons is necessary. Probably
the same statement is appropriate for scalar mesons.

6.7 Sum rules for baryon masses

6.7.1 Determination of the proton mass

The calculation of the proton mass is evidently a first-rate problem of nonperturbative
QCD [10],[11],[105],[106]. At the same time, such calculation is an important check of
the QCD sum rule approach and OPE since, as was already stressed, the proton mass is of
nonperturbative origin, arises due to chirality violation and should be expressed in the QCD
sum rule method through chirality violating condensates. At first sight, a direct relation-
ship of the proton mass m and quark condensate seems unlikely since from dimensional
considerations it must have the form of

m3 = −c〈0 | q̄q | 0〉, (6.153)

where c is a numerical coefficient. In order for (6.153) to be valid, c should be about 50 –
a value which seems to be improbably large. However, as will be shown, such a relation
does approximately take place indeed.

Consider the polarization operator

�(p) = i
∫

d4xeipx 〈0 | T {η(x), η̄(0)} | 0〉, (6.154)
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where η(x) is the three-quark current with proton quantum numbers built from u and d
quark fields. We restrict ourselves to consideration of currents without derivatives. The
reason is that the presence of derivatives shifts the effective momenta in (6.154) to higher
values where the convergence of OPE is worse and the role of excited states is higher.
Generally, �(p) has the form

�(p) =�p�1(p
2)+�2(p

2). (6.155)

�1(p2) is the chirality conserving structure function, �2(p2) violates chirality. In what
follows, u and d quark masses will be neglected. Then, in OPE, �2(p2) is proportional to
chirality violating condensates. There are two three-quark currents with proton quantum
numbers:

η1(x) =
(

ua(x)Cγμub(x)
)
γ5γμdc(x)εabc, (6.156)

η2(x) =
(

ua(x)Cσμνu
b(x)

)
σμνγ5dc(x)εabc, (6.157)

where ua(x), dc(x) – are the four-component spinor fields of u and d quarks, a, b, c – are
colour indices, C is the charge conjugation matrix, and CT = −C, C+C = 1 (T stands
for transposition). Any of the currents η1 or η2, as well as their linear combination, can be
used as the current η in (6.154), but the choice of η1 is much preferable for our goal – the
proton mass calculation [10],[107]. In order to see this, perform the Fierz transformation
and introduce right- and left-hand spinors. We have

η1(x) = 2[ (uaCdb)γ5uc − (uaCγ5db)uc ]εabc

= 4[ (ua
RCdb

R)u
c
L − (ua

LCdb
L)u

c
R ]εabc, (6.158)

η2(x) = 2[ (uaCdb)γ5uc + (uaCγ5db)uc ]εabc

= −4[ (ua
RCdb

R)u
c
R − (ua

LCdb
L)u

c
L ]εabc. (6.159)

Comparison of (6.158) and (6.159) shows that the properties of the polarization opera-
tor (6.154) constructed from the currents η1 or η2 are sharply different. Namely, in the
case of the η1 current, the OPE for the chirality violating structure �2(p2) starts from
the vacuum expectation value 〈0 | q̄q | 0〉, while in the case of the η2 current, the first
term of OPE in �2(p2) is proportional to 〈0 | q̄q | 0〉3. Indeed, the chirality violating
condensates appear only if the right-hand spinor is paired with a left-hand spinor. In the
case of the η2 current this is possible only if three spinors are paired at once. Therefore,
in the case of the η2 the current �2(p2) is strongly suppressed compared with �2(p2)

in the case of the η1 current and also with �1(p2) at | p2 |∼ 1 GeV2. (�1(p2) is of
the same order in both cases.) If the structure functions are represented by contributions
of hadronic states via dispersion relation (6.37), then at p2 < 0, �1(p2) > 0 all res-
onances contribute to Im�1(p2) with the same sign. But the signs of contributions of
positive and negative parity resonances to Im�2(p2) are opposite. The suppression of
�2(p2) in the case of the η2 current indicates strong compensation of contributions of the
lowest state and excited states with the opposite parity. For this reason, the current
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(c)(b)(a)

(d) (e)

Fig. 6.16. Feynman diagrams for �1(p
2) – the chirality conserving part of the polariza-

tion operator. The solid lines correspond to quarks, wavy lines to gluons, dots outlined by
dashed lines stand for the mean vacuum values of the field operators, and crosses stand for
interactions with the external current.

η2(x) is not suitable for QCD sum rules and even its admixture to η1 is not accept-
able [10],[107]. In what follows, when considering QCD sum rules for proton only the
current η1(x) (Ioffe current) will be used (the index 1 will be omitted). The currents
η1(x), η2(x) are renormcovariant, i.e. they transform through themselves under renormal-
ization group transformations. The anomalous dimension of the current η1(x) is equal to
−2/9 [108].

The operators up to dimension 8 are accounted for when calculating the chirality con-
serving part �1(p2) of the polarization operator (6.154). They are: the unit operator
corresponding to the bare loop diagram (Fig. 6.16a) (the αs-corrections will be discussed
later); the d = 4 operator – gluon condensate 〈0 | (αs/π)Gn

μνGn
μν | 0〉 (Fig. 6.16b); the

d = 6 four-quark condensate 〈0 | ψ̄�ψ · ψ̄�ψ | 0〉 (Fig. 6.16c); and the d = 8 four-
quark+gluon condensate 〈0 | ψ̄�ψψ̄�ψG | 0〉 (Figs. 6.16d and 6.16e). In the diagram of
Fig. 6.16d, the soft gluon entering the quark–gluon condensate is emitted by a hard quark.
In the diagram of Fig. 6.16e, the gluon is emitted by the soft quark and enters the quark–
gluon condensate. The contribution of the diagram of Fig. 6.16e is found by expansion of
vacuum expectation value 〈0 | qa

α(x)q̄
a
β(0) | 0〉 in powers of x and using the equations

of motion. The factorization hypothesis is used in the calculation of d = 6 and d = 8
operator contributions. The operators of dimensions d = 3 − 9 are accounted for in the
calculation of the chirality violating structure�2(p2). The first term of OPE (d =3) is pro-
portional to the quark condensate (Fig. 6.17a). Because of the structure of the quark current
η1(x) (6.156) only the d quark condensate contributes here. The next term of OPE (d = 5)
represents the contribution of the quark–gluon condensate (6.16), Figs. 6.17b, c. The cal-
culation shows, however, that the diagrams where gluons are emitted by hard (Fig. 6.17b)
and soft (Fig. 6.17c) quarks exactly compensate one another. So, the contribution of the
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(a)

(d) (e)

(g) (h)

(f)

(b) (c)

Fig. 6.17. Feynman diagrams for �2(p
2). The notation is the same as in Fig. 6.16.

quark–gluon condensate to�2(p2) appears to be zero. The diagrams corresponding to the
d = 7 operator 〈0 | d̄d | 0〉〈0 | (αs/π)G2 | 0〉 (factorization is assumed) are shown in
Figs. 6.17d, e. Finally, the diagrams of Figs. 6.17f, g, h represent the contributions of the
d = 9 operator αs〈0 | q̄q | 0〉3. Note that this contribution is enhanced in comparison with
contributions of other d = 9 operators (e.g. q̄qG3) because there are no loop integrations
in Figs. 6.17f, g, h. (Each loop integration results in appearance of a factor of (2π)2 in the
denominator.) A similar situation arises in the case of d = 6 operators (Figs. 6.17d, e). For
this reason we neglect the contributions of all other operators of dimension 6 and 9 leading
to loop integrations.

The calculation technique is described in Section 6.8. We present the results – the sum
rules for the proton polarization operator after the Borel transformation [10],[11],[18] (the
early calculations, where not all terms in (6.160), (6.161) were accounted for, were done
also in [105],[106],[109]):

M6 E2(M)L
−4/9c0(M)+ 1

4
bM2 E0(M)L

−4/9 + 4

3
a2

q̄qc1(M)− 1

3
a2

q̄q
m2

0

M2

= λ̃2
N exp

(
− m2

M2

)
, (6.160)

2aq̄q M4 E1(M)c2(M)+ 272

81

αs(M)

π

a3
q̄q

M2
− 1

12
aq̄qb = mλ̃2

N exp

(
− m2

M2

)
. (6.161)
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Here m is the proton mass, furthermore

aq̄q = −(2π)2〈0 | q̄q | 0〉, (6.162)

b = (2π)2〈0 | αs

π
G2
μν | 0〉, (6.163)

L = αs(μ
2)

αs(M2)
, (6.164)

En(M) = 1

n!

s0/M2∫
0

zne−zdz. (6.165)

The matrix element of the current η between the proton state with momentum p and
polarization r and the vacuum is defined as

〈0 | η | p〉 = λNυ
(r)(p), (6.166)

where υ(r)(p) is the proton spinor normalized as ῡ(r)(p)υ(r)(p) = 2m. The constant λ̃N

is related to λN by

λ̃2
N = 2(2π)4λ2

N . (6.167)

The contribution of excited states to the physical (right-hand) sides of the sum rules is
approximated by a continuum starting from s0 and given by terms of OPE not vanishing
at p2 → ∞. These contributions were transferred to the left-hand sides of the sum rules
and result in the appearance of the factors En(M) there. Strictly speaking, the continuum
thresholds in (6.160) and (6.161) can be different since the contributions of opposite parity
states enter (6.160) with the same sign but appear in (6.161) with opposite signs, which
may lead to different effective values of continuum thresholds. For simplicity, equal values
of s0 were chosen in (6.160) and (6.161). The factors Lγ reflect the anomalous dimensions
of the currents and operators. The factors ci (M), i = 0, 1, 2 are αs-corrections which were
accounted for only for the main terms in the sum rules. The anomalous dimensions of
higher-order terms of OPE are neglected. Let us first estimate crudely the proton mass.
Neglect high-order terms of OPE in (6.160), (6.161) as well as continuum contributions
and αs-corrections. Divide (6.161) by (6.160) and put M = m. We get Ioffe formula [10]

m3 = −2(2π)2〈0 | q̄q | 0〉 (6.168)

i.e. a relation of the form of (6.153). Numerically, at the value of the quark condensate
given in Table 1, we have

m = 1.09 GeV (6.169)

in surprisingly good agreement with the experimental value m = 0.94 GeV.
The αs-corrections to the sum rules were calculated in [110]–[113]. The calculations of

αs-corrections to the first term in (6.160) are performed in the standard way using dimen-
sional regularization. The terms proportional to ln Q2/μ2 are absorbed by the anomalous
dimension factor. When calculating the αs-corrections to the first term of (6.161), there
appear not only ultraviolet but also infrared singularities. The latter are absorbed by the
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Fig. 6.18. The proton mass sum rules, Eqs. (6.160) and (6.161). The dashed and dash-
dotted curves give λ̃2

N , determined from (6.160) and (6.161), respectively, using the
experimental value of m (left scale). The solid line gives m as the ratio of (6.161) to (6.160).

counterterm renormalizing the quark condensate value [111]. The problem of validity of
the factorization hypothesis arises when αs-corrections to four-quark condensate contribu-
tions are calculated (the third term in (6.160)). The most suitable way to treat this problem
is to renormalize each operator separately, take into account their mixing, and use the fac-
torization hypothesis in the final answer. As a result, the αs-corrections are found to be
(after Borelization) [111]–[113]

c0(M) = 1 +
(

53

12
+ γE

)
αs(M2)

π
, (6.170)

c1(M) = 1 +
(

−1

6
+ 1

3
γE

)
αs(M2)

π
, (6.171)

c2(M) = 1 + 3

2

αs(M2)

π
, (6.172)

where γE is the Euler constant, γE = 0.577. During the Borelization, αs(Q2) was taken to
be a constant at the value Q2 = M2 since the deviations from the constant are of order α2

s .
The values of m, found as the ratio of (6.161) to (6.160), and λ̃2

N from (6.160) and
(6.161) at m = mexp = 0.94 GeV are plotted in Fig. 6.18 as functions of M2. The following
values of the parameters were chosen: The values of quark and gluon condensates were
taken from Table 1 and correspond to aq̄q = 0.65 GeV3 and b = 0.20 GeV4, the continuum
threshold s0 = 2.5 GeV2, the normalization point μ2 = 1 GeV2, αs(μ

2) = 0.55, the M2

dependence of αs(M2) from Fig. 6.3. As follows from Fig. 6.18, the proton mass m is
equal to m = 0.98 GeV in good agreement with experiment and in accord with the crude
estimate (6.168), (6.169). The mean value of λ̃2

N is λ̃2
N = 3.2 GeV6. Let us determine the

window M2
1 < M2 < M2

2 , where we can believe in the sum rules (6.160), (6.161). At
low M2, the most restrictive is the growth of perturbative corrections: as is demonstrated
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in Section 6.5, the perturbative series breaks down at M2 ≈ 0.9 − 1.0 GeV2. So, we can
put M2

1 = 0.9 GeV2. (The αs-correction to the first term in (6.160) is very large; this
problem is discussed below.) The last terms of OPE accounted for in (6.160), (6.161) are
still small here in comparison with the total sum: the OPE series is probably still converging
at M2 = 0.9 GeV2. The third term in (6.160) is comparable with the first one. This is
caused by the absence of loop integration in this term and does not mean any violation
of OPE expansion. The upper value of M2 is determined by an increasing role of the
continuum. At central values of M2 ≈ 1.0 − 1.1 GeV2 the continuum contribution in
(6.160) is about 30% less than the total sum. (In (6.161) the situation is even better.) At
M2 = 1.3 − 1.4 GeV2, the continuum contribution in (6.160) is 1.5–2.0 times greater than
the total sum. Therefore, the reasonable choice is M2

2 = 1.3 − 1.4 GeV2.
Let us estimate the possible uncertainties of the calculations. The value of the gluon

condensate influences the results weakly: a 100% uncertainty in 〈0 | (αs/π)G2 | 0〉 gives
less than 4% error in m and λ̃2

N . The error in the quark condensate quoted in Table 1
results in a 5% error in the proton mass and a 10–15% error in λ̃2

N . The influence of the
continuum threshold value can be estimated if we put s0 = 2.2 GeV2 instead of the s0 =
2.5 GeV2 used in the calculation of the curves presented in Fig. 6.18. Such variation results
in a 3% increase of m and about 10% decrease of λ̃2

N . The main uncertainty comes from
αs-corrections. The reason is that the αs-correction to the first term in (6.161), c0(M) –
Eq. (6.170) – is enormously large and about 80% at M2 ≈ 1 GeV2. The first term in
(6.160) gives about half of the total contribution to the left-hand side of this equation. In
the ratio of (6.161) to (6.160), i.e. in the value of m, this effect is partly compensated by
the αs-correction to (6.161). So, if we completely omit the αs-corrections, then the mass
would increase by 12% and λ̃2

N decrease by 20–25%. The more optimistic supposition is
that αs-corrections are given by the first-order term with accuracy about 50%. Then they
result to the error in the proton mass about 6% and in λ̃2

N about 10–12%.
It is difficult to sum all these errors. If we consider them as independent and sum them

in quadrature, then we would get an error in m of about 10% and an error in λ̃2
N of about

20%. These estimates look reasonable. So, the final result of the proton mass calculation
by QCD sum rules is (see also [17],[114]):

m = 0.98 ± 0.10 GeV , (6.173)

λ̃2
N = 3.2 ± 0.6 GeV6. (6.174)

The ratio of Eqs. (6.161) to (6.160) was used above for the determination of the proton
mass. Sometimes [13],[105],[106],[114], another method is exploited: to take the loga-
rithmic derivative of the sum rule with respect to (1/M2). This method directly gives the
value of m2 and is the only one possible in the case where there is only one sum rule –
the case of spinless bosons. In the case of the sum rules (6.160), (6.161) considered above
the differentiation of (6.160) is useless because it would result in an enormously large
continuum contribution – about three times larger than the total sum of all accounted for
terms at the central values of M2 ≈ 1.0 − 1.1 GeV2. The differentiation of Eq. (6.161)
also leads to an increase of the role of the continuum, but here its contribution appears
to be not unacceptably large – about 20% greater than the total sum of all terms. The
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calculation of the proton mass by differentiation of (6.161) gives m = 1.04 GeV in
agreement with (6.173). This calculation has the advantage that the problem of large αs-
corrections in (6.160) is avoided. The method of differentiation of the sum rules has,
however, a disadvantage: the results significantly depend on the value of the continuum
threshold s0.

The instanton contribution was disregarded in the calculation presented above. An
attempt to take it into account was done in [115],[116]. The instanton gas model was con-
sidered where the instantons are noninteracting, the distribution of instantons over their
radius ρ is concentrated at ρ = ρc, and the instanton density is given by (6.69). The quark
propagator and the polarization operator in the instanton field were calculated. It must be
stressed that, in order to avoid double counting, the power-like terms ∼ (Q2)−n must be
omitted from �(Q)inst since they are already accounted for in OPE. Such procedure was
performed in [116]. It was found that instantons do not contribute to �1(Q) in the case
of the quark current η (6.156). The instanton contribution to �2(Q) essentially depends
on the effective quark mass m∗

q in the instanton field �inst
2 ∼ 1/m∗2

q which introduces a
serious uncertainty into results of the calculation. The formulae presented in [116] show
that at n0 = 1 · 10−3 GeV4, ρc = (1/3)fm = 1.7 GeV−1 and m∗

q=300 MeV (this is the

standard choice of the instanton gas model parameters; see [57],[117]),�inst
2 (M) amounts

to about 5–7% of�2(M) at M2 ≈ 1.0 − 1.2 GeV2 and results in an increase of the proton
mass. It is possible that the instanton gas model overestimates the instanton contribution
since one may expect that the interaction of instantons results in its suppression. In any
case, the estimate presented above shows that the instanton contribution is within the lim-
its of the errors of the sum rule calculation. The good coincidence of the results obtained
in different ways as well as their agreement with experiment is also an argument in favour
that instanton contribution is negligible in this problem.

6.7.2 The masses of octet baryons

In order to find the masses of octet baryons it is enough to calculate the masses of � and
% baryons. Then the � mass will be found using the Gell-Mann–Okubo mass formula

m N + m% = 3

2
m� + 1

2
m� (6.175)

valid in the first order of SU (3) breaking. The quark currents corresponding to�+ and%−
can be easily found from the proton current (6.156) by replacing d → s in case of �+ and
u → s in case of %−. We have

η�+ = (uaCγμub)γ5γμsc · εabc, (6.176)

η%− = (saCγμsb)γ5γμdc · εabc. (6.177)

In our calculation the strange quark mass ms is accounted for in the first order and the
deviation of the strange quark condensate from the u quark condensate:

f = 〈0 | s̄s | 0〉
〈0 | ūu | 0〉 − 1. (6.178)
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(a) (b)

(c) (d)

Fig. 6.19. The diagrams, corresponding to quark mass corrections to �� . The notation is
the same as in Fig. 6.16. The small circles mean the mass term insertion.

(a)

(d) (e) (f)

(b) (c)

Fig. 6.20. The same as Fig. 6.19, but for �%.

The diagrams corresponding to contribution of the strange quark mass in the polariza-
tion operators are shown in Fig. 6.19 (for �+) and in Fig. 6.20 for %−. Because of the
structure of the quark current η� (6.176), the diagrams in Fig. 6.19b and d contribute to
the chirality conserving polarization operator �1� and the diagrams in Fig. 6.16a and c to
the chirality violating operator�2� . Similarly, the diagrams in Fig. 6.20a and c contribute
to �1% (in fact, the first one vanishes) and all other diagrams in Fig. 6.20 to �2%. After
Borelezation, the terms proportional to ms in the polarization operators for � and % are
found to be [10],[118]:

��1� = −2msaq̄q E0(M)L
−4/9 M2 − 1

3
m2

0aq̄qms L−14/27, (6.179)

��2� = 2ms M6 E2(M)L
−8/9 + 8

3
msa2

q̄q , (6.180)

��1% = −2

3
msm2

0aq̄q L−1, (6.181)

��2% = 4msa2
q̄q . (6.182)
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(In the higher-order terms of OPE (d > 6), the corrections proportional to ms are
neglected.) In order to get the sum rules for � and % besides the contributions given by
(6.179)–(6.182) the following changes must be made in (6.160), (6.161): in the sum rules
for �, in (6.161)

aq̄q → as̄s = (1 + f )aq̄q , (6.183)

in the sum rules for %, in (6.160)

a2
q̄q → a2

ss = (1 + f )2a2
q̄q . (6.184)

As is seen from (6.179)–(6.182), the baryon mass is increased when terms proportional
to ms are taken into account. Indeed, the baryon mass is determined as the ratio �2/�1.
The contribution of ms terms is positive for �2 and negative for �1. Therefore, we have
come to the conclusion that strange baryons are heavier than the nucleon if f = 0. How-
ever, if only the terms proportional to ms would be accounted for, then the mass difference
m% − m� would be negative. As is clear from (6.160), (6.161), (6.183), (6.184) the term
proportional to f contributes to this difference with a negative sign. So, in order to repro-
duce the experimental value m% − m� ≈130 MeV it is necessary to have f < 0 and
numerically of the order of ms (in GeV units).

We have performed a fit of the sum rules (6.160), (6.161) modified by (6.179)–(6.184).
The following values of the parameters were chosen: ms(1 GeV)=0.17 GeV, f = −0.2,
the continuum thresholds – s0� = 2.8 GeV2, s0% = 3.0 GeV2. (The chosen value of ms is
20% higher than those estimated in Chapter 2. This difference is within the limits of errors
allowed there.) We have found:

m� = 1.16(1.19) GeV, m% = 1.26(1.32) GeV, m� = 1.08(1.12) GeV. (6.185)

The experimental values are given in parentheses. The�mass was calculated according to
(6.175). The values of the � and % coupling constants to quark currents are given by

λ̃2
� = 5.0 GeV6, λ̃2

% = 7.0 GeV6. (6.186)

The values of the � and %-masses are about 30–50 MeV lower than the experimental
ones. It must be stressed that the values of m� and m% cannot be considered as theoretical
predictions, because two new parameters – ms and f (besides s0� and s0%) – were used
in their determination. It can be said merely that the good agreement of m� and m% with
the data shows that the chosen values of ms and f are reasonable. Note that αs-corrections
to ms terms were not accounted for. This may lead to a 20–30% error in ms and f and,
correspondingly, about 50 MeV error in m�,m%.

6.7.3 Masses of baryon resonances

The masses of baryon resonances can also be predicted by QCD sum rules, but it is hard to
expect high accuracy of such a prediction. The reason is that the model of the hadronic
spectrum used in this approach – an infinitely narrow lowest-state separated by a gap
from the continuum – is far from a perfect representation of the spectrum in this case:
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the resonances are situated on backgrounds. Nevertheless, the QCD sum rules for the first
excited states can predict the basic feature of the hadronic spectrum: the sequence of the
levels and, although with less accuracy than in the case of stable particles, the resonance
masses. For highly excited states, the QCD sum rule method does not work. The physical
reason is evident. These states are orbital or radial excitations of the bound quark system;
their sizes are large. The treatment of such systems are outside the scope of perturbation
theory and OPE.

Let us start with the case of the isobar� (isospin T = 3/2, J P = 3/2+). It is convenient
to consider �++, built from three u quarks. There is only one three-quark current without
derivatives with the quantum numbers of �++

η�μ (x) = (ua(x)Cγμub(x))uc(x)εabc. (6.187)

The polarization operator

��μν(x) = i
∫

d4x
〈
0
∣∣T {η�μ (x), η̄�ν (0)}∣∣ 0〉 (6.188)

has few kinematical structures. Below, we present the results of the calculation of
these structures where only the most important terms of OPE are accounted for
[10],[11],[105],[106]: the unit operator, 〈0|ūu|0〉, 〈0|ūu|0〉2 and m2

0〈0|ūu|0〉, the last ones
within the framework of the factorization hypothesis (the perturbative corrections are
neglected):

��μν(p) = ��,1μν +��,2μν , (6.189)

where��,1μν and��,2μν correspond to chirality conserving and chirality violating structures.

��,1μν (p) = p4

10(2π)4
ln

−p2

�2

{
δμν �p − 5

16
γμγν �p + 5

16
(pνγμ − pμγν)

+ 1

16
(pνγμ + pμγν)− pμ pν

p2
�p
}

+ 4

3

〈0 | ūu | 0〉2

p2

(
1 + 7

12

m2
0

p2

)
×
{
δμν �p − 3

8
γμγν �p + 3

8
(pνγμ − pμγν)− 1

8
(pνγμ + pμγν)

}
, (6.190)

��,2μν (p) = − 4

3

〈0 | ūu | 0〉
(2π)2

p2 ln
−p2

�2

{
δμν − 5

16
γμγν + 1

4
(pγμ − pμγν)

�p
p2

− 1

2

pμ pν
p2

}
+ 2

3
m2

0
〈0 | ūu | 0〉
(2π)2

{
ln

(−q2

�2

)(
δμν − 1

4
γμγν

)
+ 1

2
(pνγμ − pμγν)

�p
p2

− pμ pν
p2

}
. (6.191)

On the phenomenological side of the sum rule represented by dispersion relations, the�++
contribution is proportional to the matrix element∑

τ

〈0|ημ(0)|�(p, r)〉〈�(p, r)|η̄ν(0)|0〉, (6.192)
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where the summation goes over the spin projection r of the isobar � with momentum p,
p2 = m2

�. The matrix element entering (6.192) is equal to

〈0|ημ(0)|�(p, r)〉 = λ�v
(r)
μ (p), (6.193)

where v(r)μ (p) is an isospin-vector of the isobar in the Rarita–Schwinger formalism.

v
(r)
μ satisfies the equalities γμv

(r)
μ (p) = 0, pμv

(r)
μ (p) = 0, and the Dirac equation

(� p − m�)v
(r)
μ (p) = 0. The summation over r in (6.192) can be performed using (6.193)

and taking into account these subsidiary conditions. The result is:∑
r

〈0|ημ|�(p, r)〉〈�(p, r)|η̄ν(0)|0〉 = −λ2
�

{[
δμν p̂ − 1

3
γμγν �p + 1

3
(γμ pν − γν pμ)

− 2

3

pμ pν �p
m2
�

]
+
[
δμν − 1

3
γμγν + 1

3
(γμ pν − γν pμ)

�p
m2
�

−2

3

pμ pν
m2
�

]
m�

}
. (6.194)

On the physical side of the sum rule, the polarization operator ��μν has contributions
not only from resonances with spin 3/2 but also from those with spin 1/2. The relations
between various Lorentz structures in this case are quite different from (6.194). Compari-
son of (6.194) with (6.190), (6.191) shows that the relations between the Lorentz structures
in (6.190), (6.191), and (6.194) are very close to one another, i.e. (6.190), (6.191) repro-
duces well the dominance of the � isobar. Note that the sign in front of the second square
bracket in (6.194) is appropriate for the positive parity of �. In the case of negative parity
the sign would be opposite. The sign of the corresponding first term in (6.191) – the main
term of OPE in ��,2μν – is also positive after Borel transformation. Therefore QCD pre-
dicts that the lowest baryonic state with quantum numbers T = 3/2, J = 3/2 has positive
parity.

The spin 1/2 baryons do not contribute to the Lorentz structures δμν p̂ and δμν in (6.190),
(6.191). The sum rules for the corresponding structure functions, where one may expect
dominance of the �++ isobar, are [10],[11]:

M6 E2(M)L
4/27 − 25

72
bM2 E0(M)L

4/27 + 20

3
a2

q̄q L28/27 − 35

9
a2

q̄q
m2

0

M2
L14/27

= λ̃2
� e−m2

�/M2
, (6.195)

20

3
M4aq̄q E1(M)L

16/27−10

3
aq̄qm2

0 M2 E0(M)L
2/27−20

27

αs

π

a3
q̄q

M2
L40/27− 5

18
aq̄qb L16/27

= m�λ̃2
� e−m2

�/M2
, (6.196)

where λ̃2
� = 5(2π)2λ2

�. αs-corrections are not accounted for in (6.195), (6.196) except
for anomalous dimension factors. (The anomalous dimension of the current η� (6.187) is
equal to 2/27). The sum rules (6.195), (6.196) are fitted in the interval of M2 from 1.2
to 1.6 GeV2 at s0 = 3.6 GeV2. The best fit is achieved at m� = 1.30 GeV and λ̃2

� =
12 GeV2. However, the value of λ̃2

� determined from (6.196) demonstrates a remarkable
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M2 dependence in this interval. This means that the accuracy of the sum rules (6.195),
(6.196) is worse than in the case of the nucleon. Probably, m� and λ̃2

� are determined with
15% and 30% accuracy, respectively.

The mass splitting in the decuplet can be found in the same way as was done in the case
of the baryon octet. It is enough to calculate m�∗ − m�, since all mass differences in the
decuplet are equal because of the Gell-Mann–Okubo relation:

m�∗ − m� = m%∗ − m�∗ = m" − m%∗ (6.197)

The �∗+ quark current is given by:

η�∗ =
√

1

3

[
2(uaCγμsb)uc + (uaCγμub)sc)

]
εabc. (6.198)

The left-hand sides of the sum rules for �∗ follow from the sum rules for � by adding the
terms

���
∗,1 = 5msaq̄q M2L4/27

(
E0 − 1

2

m2
0

M2
L−14/27

)
+ 40

9
f a2

q̄q L28/27, (6.199)

���
∗,2 = 5

2
ms M6 E2L−8/27 + 10

3
msa2

q̄q L16/27 + 20

9
f aq̄q M4 E1L16/27. (6.200)

These sum rules were fitted at ms(1 GeV) = 170 MeV, f = −0.2 GeV2 in the interval
1.3 < M2 < 1.7 GeV2 of the Borel mass parameters with the result

m�∗ − m� = 0.12 ± 0.05(0.15) GeV . (6.201)

The experimental data are in parenthesis.
Turn now to considering nonstrange baryon resonances with isospin T = 1/2 and spin

3/2. The three-quark current can be chosen as

η1μ =
[
(uaCσρλdb)σρλγμuc − (uaCσρλub)σρλγμdc

]
εabc. (6.202)

(This is not a unique choice: there is one more local three-quark current with the same
quantum numbers; see below.) The current η1μ is renormcovariant – it transforms through
itself under renormalization group transformations. The anomalous dimension of η1μ is
equal to 2/27 [108]. As before, in order to separate the contributions of spin 3/2 states it is
convenient to consider the structure functions that multiply the tensor structures δμν p̂ and
δμν . The sum rules for these structure functions are: (λ̃2

R = (5/24)(2π)4λ2
R) [11]

M6 E2(M)L
4/27 − 5

36
bM2 E0(M)L

4/27 − 10

3
a2

q̄q L28/27 + 35

18
a2

q̄q
m2

0

M2
L14/27

= λ̃2
R e−m2

R/M2
, (6.203)
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−
[

10

3
aq̄q M4 E1(M)L

16/27− 5

3
aq̄q M2m2

0 E0(M)L
2/27− 220

81

αs

π

a3
q̄q

M2
L40/27− 5

36
aq̄qb L16/27

]

= (±)m Rλ̃2
R e−m2

R/M2
. (6.204)

The + or − signs on the right-hand side of (6.204) correspond to positive and negative
parities of the resonance R. Since the first – the main term – on the left-hand side of
(6.204) is negative, we have come to the conclusion that in QCD the parity of the lowest
baryonic resonance with T = 1/2 and J = 3/2 is negative. This nontrivial prediction is in
full accord with experiment (the N (1520) resonance [63]).

The sum rules (6.203), (6.204) are appropriate for large M2 > 1.6 GeV2 only, because
the contributions of the third and fourth terms in (6.203) – higher-order terms of OPE –
overwhelm the main term at lower M2. But at such a large M2, the continuum contribution
dominates the sum rule. Therefore, only a semi-quantitative estimate of the resonance mass
can be obtained from the sum rules (6.203), (6.204). If we put s0 = 5 GeV2, then

m R

(
T = 1/2, J P = 3

2

−)
= 1.7 ± 0.3 GeV . (6.205)

Consideration of the second renormcovariant quark current with quantum numbers T =
1/2, J =3/2 [10]

η2μ =
[
(uaCdb)γμuc − (uaCγ5db)γμγ5uc

]
εabc (6.206)

results in the same qualitative conclusion: the parity of the lowest baryonic resonance with
T = 1/2 and J = 3/2 is negative. However, this consideration does not allow one to
improve the estimate (6.205) of the resonance mass.

6.8 Calculation technique

In this section, the basic formulae for QCD sum rules calculations are presented. (For QCD
sum rule technique see also the review [119].) The calculation of the nonperturbative parts
of polarization operators, i.e. two-point functions, is convenient to perform in coordinate
space. The terms of OPE calculated in coordinate space can be transformed into momentum
space using the formula (for n ≥ 2):

∫
d4xeipx 1

(x2)n
= i(−1)n

24−2nπ2

�(n − 1)�(n)
(p2)n−2 ln(−p2)+ Pn−2(p

2), (6.207)

where Pn−2(p2) is an inessential polynomial in p2 which will be killed by the Borel trans-
formation. For n = 1 and the case of n = 2 with factors xμ, xμxν, xμxνxλ in the numerator
there are well-known formulae:
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d4xeipx 1

x2
= −i

4π2

p2
;
∫

d4xeipx xμ
x2

= 8π2 pμ
p4

; (6.208)∫
d4xeipx xμ

x4
= 2π2 pμ

p2
;
∫

d4xeipx xμxν
x4

= 2π2i

p4
(2pμ pν − δμν p2); (6.209)∫

d4xeipx xμxνxλ

x4
= 4π2

p6
[ p2(δμν pλ + δμλ pν + δνλ pμ)− 4pμ pν pλ]. (6.210)

For the reader’s convenience, we present here once more the equations of motion in
coordinate space:

(∇μγμ + imq)ψq = 0, (6.211)

Dnm
μ Gm

μν = g
∑

q

ψ̄qγν
λn

2
ψq , (6.212)

where ∇μ and Dnm
μ are covariant derivatives in fundamental and adjoint representations,

respectively:

∇μ = ∂μ + ig
λn

2
An
μ, (6.213)

Dnm
μ = ∂μδnm − g f nlm Al

μ. (6.214)

To calculate nonperturbative corrections it is convenient to represent the gluonic field as a
sum of perturbative and nonperturbative parts

Aμ = aμ + Anonpert
μ (6.215)

and consider Anonpert
μ as a background field in which the perturbative gluons are moving.

In this section only Anonpert
μ is accounted for and the index “nonpert” will be omitted. The

most convenient way to calculate the OPE terms is to use the Fock–Schwinger [120],[121]
(or fixed point) gauge. In application to QCD sum rules such a method was developed by
Smilga [122]. The gauge condition is:

(x − x0)μAn
μ(x) = 0, (6.216)

where x0 is some fixed point. The gauge condition (6.216) breaks the translational symme-
try. Evidently, this symmetry should be restored in all gauge-invariant physical observables.
This property can be used as a check of the calculations. When considering the polarization
operators �(x, y), it is possible to put y = x0 = 0. In case of more complicated objects,
such as 3-point functions, it is necessary to keep x0 �= 0. Let us temporarily make x0 = 0.
Condition (6.216) allows one to express An

μ(x) at small x as a series in x through field
strength Gn

μν(0)

An
μ(x) = 1

2
xνGn

νμ(0)+
1

3
xαxν(DαGνμ(0))

n + 1

4 · 2! xαxβxν(DαDβGνμ(0))
n + . . .

(6.217)
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The proof of (6.217) follows from the relation xμDμ = xμ∂μ, which is a consequence
of (6.214) and gauge condition (6.216) at x0 = 0. (The detailed proof was given in
[122],[123].) A representation similar to (6.217) holds for the quark field:

ψ(x) = ψ(0)+ xα∇αψ(0)+ 1

2
xαxβ∇α∇βψ(0)+ . . . (6.218)

The representations (6.217) and (6.218) are very useful in the QCD sum rules approach,
because the interactions of hard quarks and gluons with vacuum fields is treated as inter-
action with soft quark and gluon fields, the wavelengths of which are much larger than
the wavelengths of hard quarks and gluons. Therefore, the vacuum fields entering the con-
densates can be considered as slowly varying background fields for which the expansions
(6.217), (6.218) are valid.

Consider the equation for the quark propagator

Sαβ(x, z) = 〈0 | T {ψα(x), ψ̄β(z)} | 0〉, (6.219)[
iγμ

(
∂μ + ig

λn

2
An
μ(x)

)
− m

]
S(x, z) = iδ(4)(x − z), (6.220)

in the weak slowly varying external gluon field An
μ(x). We use the gauge condition (6.216)

at x0 = z and restrict ourselves to the first term in the expansion (6.217). Eq.(6.220) can
be solved iteratively. The solution, valid up to terms ∼ G2

μν is given by [124]:

S(x, z) = i

2π2

{ �u
u4

+ i

2

m

u2
− 1

16
gλaGa

αβεαβσργ5γρ
uσ
u2

+ i

4
gλaGa

λβ zβ
uλ �u

u4

− 1

384
g2λaλbGa

μνGb
μν

�u
u4

[
z2u2 − (zu)2

]}
, (6.221)

where uμ = xμ−zμ, ε0123 = 1. (The quark mass is accounted for to the first order.) In prac-
tical applications, particularly in calculations of 3- and 4-point functions, it is convenient
to use (6.221) expressed as an integral over momenta [125]:

S(x, z) = i

(2π)4

∫
d4 pe−i p(x−z)

{ �p + m

p2
− 1

4
gλaGa

αβεαβσργ5γρ
pσ
p4

+ 1

4
gλaGa

αβ zβ(γα p2 − 2pα �p) 1

p4
+ 1

192
g2λaλbGa

μνGb
μν[

−z2 p2 �p − 4 �p(pz)2 + 2 � zp2(pz)

]
1

p6

}
. (6.222)

Taking account of the next term in the expansion (6.217) results in the addition of the term
S(1)(p) to the quark propagator. It is convenient to represent this term in momentum space
and for our further purposes it is enough to put z = x0 = 0. (The reader can easily get
the general expression, corresponding to z �= 0.) In the limit of massless quarks, S(1)(p) is
given by

S(1)(p) = − i

3
g

1

p8
λn(DαGνμ)

n
{

p2[δαν p2+ �p(γα pν + γν pα)− 4pα pν p2
}
γμ.

(6.223)
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The contributions of the next order term to the quark propagator in the expansion (6.217)
was calculated in [126] and reproduced in [119]. In a similar way, the gluon Green function
(gluon propagator) Skp

μν(x, y) in the external gluon field can be found. The equation for

Skp
μν(x, y) is given by

Dnm
λ (x)Dmk

λ (x)Skp
μν(x, z) = iδnpδ4(x − z), (6.224)

where Dnm
λ is defined by (6.214). The solution of (6.224) up to dimension d = 3 gluonic

operators has the form (x − z = u):

Snp
μν(u, z) = − i

(2π)4

∫
d4k

k2
e−iku

{
δμνδ

np − gδμν f npl 1

k2

[
−ikλzαGl

αλ

− 2

3

(
zβ zαkλ − i

zβ
k2
(k2δαλ − 2kαkλ)

)
(DαGβλ)

l + 1

3

(
zα + 2i

kα
k2

)
(DλGαλ)

l
]

− 2g f npl 1

k2

[
Gl
μν +

(
zα + 2i

kα
k2

)
(DαGμν)

l
]}
. (6.225)

Equations (6.221)–(6.223) allow one to find the OPE terms which contain vacuum gluon
field strengths up to the second order. The vacuum averaging of gluon field bilinears is
performed according to

〈0 | Ga
μνGb

λσ | 0〉 = 1

96
δab(δμλδνσ − δμσ δνλ)〈0 | Ga

μνGa
μν | 0〉. (6.226)

In order to calculate of the contributions of the d ≥ 5 operators it is necessary to take
account of the x dependence of the vacuum averages 〈0 | qi

α(x)q̄
k
β(0) | 0〉, q = u, d, s.

Up to dimension 7 we have (i, k = 1, 2, 3):

〈0 | qi
α(x)q̄

k
β(0) | 0〉 = − 1

12
δik(δαβ − i

4
mq � xαβ〈0 | q̄(0)q(0) | 0〉

+ 1

26 · 3
δikδαβx2g

〈
0

∣∣∣∣q̄σμν λn

2
Gn
μνq

∣∣∣∣ 0〉
− i

x2 � xαβδik

23 · 35
g2〈0 | q̄q | 0〉2 − x4

29 · 33
δαβδ

ik〈0 | g2G2 | 0〉〈0 | q̄q | 0〉. (6.227)

The term linear in the quark mass was retained in the first term in (6.227). In the last two
terms of (6.227) the factorization hypothesis was exploited. Within the framework of the
factorization hypothesis one allows to reduce the vacuum expectation values of four-quark
operators to the quark condensate:

〈0 | q̄ i
αq̄ k

βql
γ qm
δ | 0〉 = 1

144
〈0 | q̄q | 0〉2(δimδklδαδδβγ − δilδkmδαγ δβδ),

i, k, l = 1, 2, 3; α, β, γ, δ = 0, 1, 2, 3. (6.228)

This equation is widely exploited in the derivation of sum rules. Below are several relations
useful for calculations of the OPE terms:

〈0 | qi
αq̄ k

βGn
λσ | 0〉 = − 1

26 · 3
(σλσ )αβ

(λn)ik

2

〈
0

∣∣∣∣q̄σμν λm

2
qGm

μν

∣∣∣∣ 0〉 , (6.229)
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〈0 | qi
αq̄ k

β(DρGμν)
n | 0〉 = −g

25 · 33
〈0 | q̄q | 0〉2(λn)ik(δρνγμ − δρμγν)αβ, (6.230)

〈0 | q̄ k
α(∇σ∇ρ∇τqβ)

i | 0〉 = −i
g2

24 · 35
δik〈0 | q̄q | 0〉2(γσ δρτ + γτ δρσ − 5γρδστ ),

(6.231)

〈0 | q̄ k
α(∇σqβ)

i Gn
ρμ | 0〉 = g

26 · 33
〈0 | q̄q | 0〉2(λn)ik(δσργμ − δσμγρ − iεσρμξγ5γξ )βα,

ε0123 = 1. (6.232)

The derivation of (6.229) is evident: it is enough to multiply (6.229) by (σλσ )βα(λ
n)ki

and sum over α, β, k, i . In order to derive (6.230), note that the general expression of the
left-hand side following from Lorentz and colour invariance is

〈0 | qi
αq̄ k

β(DρGμν)
n | 0〉 = A(λn)ik(δρνγμ − δρμγν)αβ. (6.233)

(The term proportional to ερμνσ γ5γσ cannot appear in (6.233) because of the Bianchi iden-
tity DρGμν + DνGρμ + DνGρμ + DμGνρ = 0.) Multiply (6.233) by δρμ(γν)βα(λn)ki ,
sum over all repeated indices, and take into account the equation of motion (6.212). As a
result we obtain

A = g

29 · 3

〈
0

∣∣∣∣∣∣(q̄γμλnq) ·
⎛⎝∑

q ′
ψ̄q ′γμλnψq ′

⎞⎠∣∣∣∣∣∣ 0
〉

= −g〈0 | q̄q | 0〉2

25 · 33
(6.234)

because of (6.228). The substitution of (6.234) into (6.233) gives (6.230). Equations
(6.231) and (6.232) are derived in Problems 6.1 and 6.2.

To demonstrate how this technique really works, let us calculate the OPE series for the
polarization operator of vector current (6.110) �μν(q), used in Section 6.5.3 for check-
ing QCD at low energies and in Section 6.6.1 for constructing QCD sum rules for vector
mesons. The general form of �μν(q) is

�μν(q) =
∫

d4xeiqx�μν(x) = (qμqν − q2δμν)�(q
2), (6.235)

�μν(x) = i〈0 | T { jμ(x), j+ν (0)} | 0〉, (6.236)

where jμ(x) is given by (6.110). We ignore here the perturbative corrections and calculate
OPE contributions up to operators of dimension 6. The first terms of OPE correspond to
the bare-loop contribution, d = 0 (Fig. 6.21), and to the gluon condensate contribution,
d = 4 (Fig. 6.22).

Fig. 6.21. The bare-loop contribution to �μν(q). The solid lines correspond to quark
propagators, the crosses to the external vector currents.
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Fig. 6.22. The diagram describes the gluon condensate contribution to�μν(q). The wavy
lines correspond to interaction of quarks with the background gluon fields Gμν , the dots,
surrounded by the dashed line, mean the vacuum averaging of gluon fields. All other
notations are as in Fig. 6.21.

(a) (b)

Fig. 6.23. The contribution of the operator mψ̄ψ to �μν . The circle corresponds to a
mass insertion, the dots surrounded by a dashed line mean the quark in the condensate
phase. (a) Mass insertion in the free propagator; (b) accounting for the quark mass in the
expansion of 〈0 | q(x), q̄(0) | 0〉 in x .

We restrict ourselves to the terms linear in the quark mass m. In coordinate space, the
part of the polarization operator �μν(x) corresponding to Figs. 6.21 and 6.22 is given by

�(1)μν (x) = −i Tr
{

S(x)γνS(−x)γμ
}
, (6.237)

where the quark propagator S(x) is given by the first and third terms in (6.221). (We can
put z = 0). The simple calculation gives

�(1)μν (x) = i

π4

[
− 3

x8
(2xμxν − x2)δμν − g2

384

1

x4
(2xμxν + x2δμν)〈0 | G2 | 0〉

]
, (6.238)

or in momentum space:

�(1)μν (q) = (qμqν − q2δμν)
1

4π2

[
− ln(−q2)+ π2

3

1

q4

〈
0

∣∣∣∣αs

π
G2
μν

∣∣∣∣0〉]. (6.239)

The other dimension-4 operator is mψ̄ψ (m = mu,md;ψ = u, d). There are two types
of diagrams corresponding to its contributions to �μν . In the first (Fig. 6.23a), the quark
mass insertion is accounted for in one of the quark propagators (the second term in (6.221)),
while for the other propagator, the expression in terms of the quark condensate (the first
term in (6.227)) is substituted. In the diagrams of the second type, the term proportional to
m in the expansion of 〈0 | q(x), q̄(0) | 0〉 in x (the second term in (6.227)) is taken into
account in one of the quark propagators, while the other quark propagator is free.

In momentum space, the complete expression is

�(2)μν (q) = (qμqν − q2δμν)
1

q4
(mu + md)〈0 | ūu | 0〉. (6.240)

We have put 〈0 | ūu | 0〉 = 〈0 | d̄d | 0〉).
Turn now to the calculation of d = 6 operator contributions proportional to the vacuum

averages of four-quark fields. There are three types of these. In the first one, all quarks
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Fig. 6.24. The contribution of the first type of the operator αs(ψ̄ψ)
2 to �μν (see text).

The wavy lines correspond to perturbative gluon propagators, the other notations are the
same as in Figs. 6.21–6.23.

(a) (b)

Fig. 6.25. The contributions of the operator αs(ψ̄ψ)
2 of the second (a) and third types

(b) to �μν . The quark lines enclosed in dashed circles mean the quark pairs produced in
vacuum gluon background fields.

are in the condensate phase and the high momentum exchange between the quark pairs
is realized by a hard gluon (Fig. 6.24). The calculation of the Fig. 6.24 contribution is
a standard perturbative calculation with only one difference, that the vacuum average of
quark fields is performed according to (6.227). Within the framework of the factorization
hypothesis the result is:

�(3.1)μν (q) = −32π

9

αs

Q6
(qμqν − q2δμν)〈0 | ūu | 0〉2. (6.241)

The second contribution arises from the expansion in x of 〈0 | q(x)q(0) | 0〉 and is repre-
sented by the diagram Fig. 6.25a. Its calculation is straightforward: the vacuum average of
one quark propagator is replaced by the term proportional to 〈0 | q̄q | 0〉2 in (6.227), the
other one by the free-quark propagator. In coordinate space, we get:

�(3.2)μν (x) = i
g2

π2

1

2 · 34

1

x2
〈0 | q̄q | 0〉2(2xμxν − x2δμν), (6.242)

and in momentum space:

�(3.2)μν (q) = g2 8

34 Q6
(4qμqν − q2δμν)〈0 | q̄q | 0〉2. (6.243)

In order to find the third contribution, see Fig. 6.25b. One of the quark lines in the diagram
should be replaced by (6.223) and the vacuum averaging should be performed according
to Eq. (6.230). The result is

�(3.3)μν (q) = − 8g2

34 Q6
(2qμqν + q2δμν)〈0 | q̄q | 0〉2. (6.244)

The sum of terms proportional to αs〈0 | q̄q | 0〉2 is given by

�(3)μν (q) = −32π

9

(
1 − 2

9

)
(qμqν − q2δμν)

1

Q6
αs〈0 | q̄q | 0〉2. (6.245)



6.9 Static properties of hadrons 259

Equations (6.239), (6.240), (6.245) give the terms of OPE up to d = 6 for the vector current
polarization operator used in Sections 6.5.3 and 6.6.1.

6.9 Static properties of hadrons

6.9.1 The general approach. Spectral representations of the polarization operators in
constant external fields

Consider hadrons in a constant external field F . F can be the constant electromagnetic field
Fμν (the electric charge e = √

4παem is included into Fμν), the constant axial potential
Aμ, etc. In this case, the term

L ′ =
∫

d4x jext (x)F (6.246)

is added to the QCD Lagrangian. Here j ext is the quark (or gluon) current corresponding
to interaction with the external field. As before, calculate the polarization operator �(p2)

using perturbation theory and OPE. Retain only the terms linear in F . Then

�(p2) = i2
∫

d4xeipx
〈
0

∣∣∣∣T {η(x), ∫ d4z jext (z), η̄(0)

}∣∣∣∣ 0〉 F, (6.247)

where η, η̄ are currents with the quantum numbers of the hadron whose interaction vertex
with the external field F , �(p2) ≡ �(p2, p2; 0), � = �F , we would like to determine. On
the other hand, using a dispersion relation, �(p2) is represented through contributions of
the hadronic states. Among these, the contribution of the lowest state in the given channel
is of interest and must be separated. The desirable hadron interaction vertex with constant
external field, which is of our interest, can be found if the contributions of excited states
are reliably estimated and are small.

When carrying out this program it is essential to represent correctly hadronic contribu-
tions to�(p2), or, equivalently, to �(p2), accounting for all possible terms.

In order to get the dispersion representation of the polarization operator in the external
field �(p2) or the vertex function at zero momentum transfer �(p2, p2, 0), it is conve-
nient to start from the case when the momentum transfer q = p2 − p1 is nonzero, but q2 is
small and negative. (All the following refers to the coefficient function at any Lorentz ten-
sor structure.) The general double-dispersion representation of �(p2

1, p2
2, q

2) in variables
p2

1, p2
2 at fixed q2 < 0 has the form

�(p2
1, p2

2, q
2) =

∞∫
0

∞∫
0

ρ(s1, s2, q2)

(s1 − p2
1)(s2 − p2

2)
ds1ds2 + P(p2

1) f1(p
2
2, q

2)+P(p2
2) f2(p

2
1, q

2),

(6.248)

where P(p2) is a polynomial. (It can be shown that at q2 < 0 there are no anomalous
thresholds.) For simplicity, assume that the currents η and η̄ are Hermitian conjugate of
each other corresponding to the diagonal matrix element between hadronic states. In this
case, ρ(s1, s2, q2) is symmetric in s1, s2 and the functions f are the same in the second and
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third terms on the right-hand side of (6.248). The second and third terms on the right-hand
side of (6.248) play the role of subtraction functions in the double-dispersion relation. The
function f (p2, q2) can be represented by a single-variable dispersion relation in p2.

It is clear that the dispersion representation (6.248) holds also in the limit q → 0,
p2

2 → p2
1 ≡ p2, where �(p2) ≡ �(p2, p2, 0) is a function of one variable p2. At first

sight, it seems that a single-variable dispersion relation can be written for �(p2). Indeed,
decomposing the denominator in (6.248), we can write

∞∫
0

ds1

∞∫
0

ds2
ρ(s1, s2)

(s1 − p2)(s2 − p2)
=
∫ ∫

ρ(s1, s2)

s1 − s2
ds1ds2

(
1

s2 − p2
− 1

s1 − p2

)
.

(6.249)

In the first (second) term on the right-hand side of (6.249), the integration over s1(s2)

can be performed and the result has the form of single-variable dispersion relation. Such
transformation is, however, misleading because, in general, the integrals∫

ds1
ρ(s1, s2)

s1 − s2
= −

∫
ds2
ρ(s1, s2)

s1 − s2
(6.250)

are ultraviolet divergent. This ultraviolet divergence cannot be cured by subtractions in the
single-variable dispersion relation: only the subtractions in the double-dispersion represen-
tation (6.248) may be used. It is evident that the procedures, eliminating the subtraction
terms and leading to fast-converging dispersion integrals in standard single-variable
dispersion representations, such as the Borel transformation in p2, do not help here.

Let us consider two examples. The first one corresponds to the determination of the
proton magnetic moment. In this case, η(x) is given by (6.156) and the current j ext is
equal to

1

2
j em
μ (x)xν, (6.251)

where j em
μ is the electromagnetic quark current. In (6.251), the fixed-point gauge

xμAem
μ (x)=0 was chosen for the electromagnetic potential and the equation

Aem
μ (x) = 1

2
xνFνμ (6.252)

was used. The simple loop diagram – the contribution for the lowest-dimension opera-
tor Fμν is shown in Fig. 6.26. It is clear that the spectral function ρ(s1, s2) in (6.248)
corresponding to the diagram of Fig. 6.26 is proportional to δ(s1 − s2).

p p

Fig. 6.26. The bare-loop diagram, corresponding to the determination of nucleon magnetic
moments. The solid lines correspond to quark propagators, the crosses mean the action of
currents η, η̄, and the bubble corresponds to quark interaction with the external field Fμν .
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The separation of the chirality conserving structure (proportional to �p) in�(p2) results
in the statement that the dimension of ρ is equal to 2 (see Sec. 6.9.2). So the general form
of ρ(s1, s2) in (6.248) is

ρ(s1, s2) = as1s2δ(s1 − s2), (6.253)

where a is a constant. The substitution of (6.253) into (6.248) gives for the first term on the
right-hand side of (6.248) at p2

1 = p2 ≡ p2

�(p2) = a
∫ ∞

0

s2
1 ds1

(s1 − p2)2
. (6.254)

In this simple example, the dispersion representation is reduced to a single-variable disper-
sion relation, but with the square of (s1 − p2) in the denominator. Of course, by integrating
by parts, (6.254) may be transformed to the standard dispersion representation. However,
the boundary term arising at such transformation must be accounted for; it does not van-
ish even after the Borel transformation was applied. This means that, even in this simplest
case, the representation (6.248) is not equivalent to a single-variable dispersion relation.

The second example corresponds to the determination of the twist 4 correction to the
Bjorken sum rule for polarized deep inelastic electron–nucleon scattering [127]. Here the
external current j ext in (6.246) is given by

Uμ = −1

2
q̄gεμνλσGa

λσλ
aq, (6.255)

where Ga
μν is the gluonic field strength tensor. An example of the bare-loop diagram is

shown in Fig. 6.27. In this case, unlike the previous one, ρ(s1, s2) is not proportional to
δ(s1 − s2). This stems from the fact that in the discontinuity over p2

1 at q �= 0 and p2
1 �= p2

2
only the left-hand part of diagram Fig. 6.27 is touched and the loop integration on the
right-hand part still persists. For the tensor structure selected in Ref.[127], ρ(s1, s2) has
dimension 4 and is proportional to s1s2. We see that in this example the general form of
the dispersion representation (6.248) must be used in the limit

q2 → 0, p2
1 → p2

2 = p2. (6.256)

Let us represent �(p2, p2; 0) in terms of contributions of hadronic states, using (6.248)
and separating the contribution of the lowest hadronic state in the channels with momentum
p. Consider the first term on the right-hand side of (6.248) at q2 = 0, p2

1 = p2
2 = p2. As

is seen from Fig. 6.28, it is convenient to divide the whole integration region in s1, s2 into
three domains: (I) 0 < s1 < s0, 0 < s2 < s0; (II) 0 < s1 < s0, s0 < s2 <∞; s0 < s1 <∞,

p p

Fig. 6.27. The bare-loop diagram for the twist 4 correction to the Bjorken sum rule for
deep inelastic electron–nucleon scattering. The dashed vertical line corresponds to the
discontinuity over p2

1 at p2
1 �= p2

2.
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s1

I II

IIIII

s2

0

s0

s0

Fig. 6.28. The integration domains in s1, s2 plane.

p p

h(h*) h*(h)

Fig. 6.29. The schematical representation of h −→ h∗ (h∗ −→ h) transitions in the
external field.

0 < s2 < s0; and (III) s0 < s1 < ∞, s0 < s2 < ∞. Adopt the standard in QCD sum rule
model of hadronic spectra: the lowest hadronic state plus continuum, starting from some
threshold s0. Then in domain I only the lowest hadronic state h contributes and

ρ(s1, s2) = Gλ2δ(s1 − m2)δ(s2 − m2), (6.257)

where m is the mass of this state, λ is the transition constant of the hadron in the current
η. (For a baryon 〈B|η̄|0〉 = λB v̄B where vB is the baryon spinor.) G is the coupling
constant of the hadron with external field, which we would like to determine from the sum
rule. In domain III the higher-order terms in OPE may be neglected and the contribution
of hadronic states is with good accuracy equal to the contribution of the bare-quark loop
(like Figs. 6.26 or 6.27) with perturbative corrections. The further application of the Borel
transformation in p2 essentially suppresses this contribution.

The consideration of the domain II contribution is the most troublesome and requires an
additional hypothesis. Assume, using duality arguments, that in this domain also the contri-
bution of hadronic states is approximately equal to the contribution of the bare-quark loop.
The accuracy of this approximation may be improved by subtracting the lowest hadronic
state contributions proportional to δ(s1 − m2) or δ(s2 − m2) from each strip of domain
II. The terms of the latter type also persist in the functions f (p2

1), f (p2
2) in (6.248). They

correspond to the process when the current η̄ produces hadron h from the vacuum, and
under the action of the external current j the transition h → h& to an excited state occurs
or vice versa (Fig. 6.29). At p2

1 = p2
2 = p2 these contributions have the form

∞∫
s0

b(s)ds

(p2 − m2)(s − p2)
(6.258)

with some unknown function b(s). The term (6.258) will be accounted for separately on
the right-hand side of (6.248). The term (6.258) must be added to the right-hand side of
(6.248) independently of the form of the bare-loop contribution ρ(s1, s2). The term (6.258)
may persist even if ρ(s1, s2) = 0, when the OPE for the vertex function �(p2, p2, 0) with
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zero momentum transfer starts from the condensate terms. (6.258) may be written as

∞∫
s0

dsb(s)

(
1

p2 − m2
+ 1

s − p2

)
1

s − m2
. (6.259)

The functions f (p2) in (6.248) can be represented by a dispersion relation as

f (p2) =
∞∫

0

d(s)

s − p2
ds. (6.260)

The integration domain in (6.260) can be also divided into two parts: 0 < s < s0 and
s0 < s <∞. According to our model, the contribution of the first part is approximated by
the h-state contribution, the second one by the continuum. These two parts look like the
contributions of the first and the second terms in the bracket in (6.259).

Now we can formulate the recipe how the sum rule can be written [128]. On the phe-
nomenological side – the right-hand side of the sum rule – there is the contribution of the
lowest hadronic state h and the unknown term (6.259), corresponding to the nondiagonal
transition h → h& in the presence of an external field:

λ2G

(p2 − m2)2
+

∞∫
W 2

dsb(s)
1

s − m2

(
1

p2 − m2
+ α(s)

s − p2

)
. (6.261)

(The coefficient α reflects the possibility that in the function f the ratio of terms propor-
tional to (p2 − m2)−1 and (s − p2)−1 may differ from 1 as is the case in (6.259).) The
continuum contribution, corresponding to the bare loop (or also to the higher-order terms
in OPE if their discontinuity does not vanish at s → ∞) is transferred to the left-hand side
of the sum rule. Here it is cancelled by the bare-loop contribution from the same domain of
integration. As a result, in the double-dispersion representation of the bare loop the domain
of integration over s1, s2 is restricted to 0 < s1, s2 < s0. Finally, apply the Borel transfor-
mation in p2 to both sides of the sum rule. On the left-hand side – the QCD side – the
contribution of the bare loop has the form

s0∫
0

ds1

s0∫
0

ds2ρ(s1, s2)
1

s1 − s2

[
e−s2/M2 − e−s1/M2

]

= 2P

s0∫
0

ds2

s0∫
0

ds1
ρ(s1, s2)

s1 − s2
e−s2/M2

, (6.262)

where P means the principal value and the symmetry of ρ(s1, s2)was used. The right-hand
side of the sum rule is equal to

G
λ2

M2
e−m2/M2 − Ae−m2/M2 +e−m2/M2

∞∫
s0

dsb(s)
α(s)

s − m2
exp

[− (s −m2)/M2], (6.263)
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where

A =
∞∫

S0

ds
b(s)

s − m2
. (6.264)

Two remarks in connection with Eqs. (6.262), (6.263) are necessary. If the discontinuity
ρ(s1, s2) of the bare loop is proportional to δ(s1 − s2), ρ(s1, s2) = ρ(s1)δ(s1 − s2), as in
the diagram Fig. 6.26, then Eq. (6.262) reduces to

1

M2

s0∫
0

ds1e−s1/M2
ρ(s1). (6.265)

In this case, at s0 � M2 the continuum contribution is suppressed exponentially and the
dependence on the value of the continuum threshold s0 is weak. If, however, ρ(s1, s2) has
no such form and is a polynomial in s1, s2, as in the diagram Fig. 6.27, then, as can be
seen from (6.262), the bare-loop diagram contribution has a power-like dependence on s0.
In this case, the QCD sum rule calculation lost a part of its advantage in comparison with
finite energy sum rules.

In the case when the double discontinuity of the bare-loop diagram ρ(s1, s2) is propor-
tional to δ(s1 − s2), this form will be absent in the radiation correction terms. Here (6.265)
is invalid and the more general expression (6.262) must be used. This will result in the
appearance of ln

(
s0/(−p2)

)
in the final answer; s0 plays the role of the ultraviolet cut-off.

The third term in (6.263) is suppressed in comparison with the second term by a factor
smaller than exp[−(s0 − m2)/M2] ≤ 1/4. (It is supposed that α is of order 1.) There-
fore, if A � Gλ2/M2, then this term can be safely neglected. The first term in (6.263)
of interest to us can be determined by applying to the sum rule the differential operator
(∂/∂(1/M2))em2/M2

, which kills the second term in (6.263). After the constant G is found
in this way, the unknown parameter A can be determined by fitting the sum rule. If it will
be found that A ∼ Gλ2/M2, then the contribution of the last term in (6.263), which has
been up to now neglected, must be accounted for as an additional error in the final result.

6.9.2 Nucleon magnetic moments

Let us dwell now on the calculation of proton and neutron magnetic moments
[18],[129],[130]. In accord with (6.247), the polarization operator of currents bearing
nucleon quantum numbers in the weak constant electromagnetic field Fμν has the form

i
∫

d4xeipx 〈0 | T {η(x), η̄(0)} | 0〉F = �(0)(p)+�μν(p)Fμν, (6.266)

where �(0)(p) is the polarization operator when the field is absent. The current ηp with
proton quantum numbers is given by (6.156); for the neutron the substitution u ⇔ d must
be done. Now our interest is concentrated on the second term in (6.266).

Use OPE and classify the operator vacuum expectation values according to their dimen-
sions d. Evidently, the operator of the lowest dimension d = 2 is Fμν itself. The
field-induced vacuum expectation value
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(a)

σμν

gluon
fields

(b)

gluon
fields

μν λG
n n

Fμν

Fμν

Fig. 6.30. The diagrams corresponding to quark pair mixing, q̄q → q̄ ′q ′, and resulting in
deviations from Eq.(6.272): (a) the diagrams corresponding to Eq.(6.267); (b) the diagrams
corresponding to Eqs. (6.269), (6.270).

〈0 | q̄σμνq | 0〉F = χq〈0 | q̄q | 0〉Fμν (6.267)

is of the next dimension, d = 3, and this is the reason for its importance in the problem
under consideration. It can be shown that four-dimensional vacuum expectation values are
absent [18]. There are three vacuum expectation values of dimension 5:

〈0 | q̄q | 0〉Fμν, (6.268)

g〈0 | q̄
1

2
λnGn

μνq | 0〉F =κq Fμν〈0 | q̄q | 0〉, (6.269)

−igεμνλσ

〈
0

∣∣∣∣q̄γ5
1

2
λnGn

λσq

∣∣∣∣ 0〉
F

=ξq Fμν〈0 | q̄q | 0〉. (6.270)

Among six-dimensional operators the vacuum average

〈0 | q̄q | 0〉〈0 | q̄σμνq | 0〉F (6.271)

is accounted for (within the framework of the factorization hypothesis). All other d = 6
operators contain the gluon field strength tensor; their contributions are small, because they
result in loop integrations and in the appearance of additional factors of (2π)−2 or (2π)−4.
For this reason, the contributions of these operators are neglected. The contributions of
higher-order operators will be discussed below.

The factors χq , κq and ξq (q = u, d) are proportional to quark charges with good
accuracy:

χq = eqχ, κq = eqκ, ξq = eqξ, (6.272)

where χ, κ and ξ are flavour independent. (χ is called the quark condensate magnetic
susceptibility.) The deviations from (6.272) are described by the diagrams of Fig. 6.30.
Evidently, for massless quarks the diagrams of Fig. 6.30 with gluon exchange are zero
in any order of perturbation theory because of chirality conservation. Chirality violation
might appear due to instantons, but, as was shown in Section 6.6.3 (see also [100]) in the
case of the vector current which acts in (6.267), (6.269), (6.270), the instantons (in the
dilute-gas approximation) do not contribute to the diagrams of Fig. 6.30. The amplitude of
Fig. 6.30 has a certain resemblance to that of ϕ − ω mixing. Therefore, the experimental
smallness of ϕ − ω mixing is also an argument in favour of (6.272).
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Fig. 6.31. The graph corresponding to the quark condensate magnetic susceptibility
contribution to the odd structure of the polarization operator. Dotted lines encircle the
nonperturbative interactions with the vacuum fields.

(b)(a)

Fig. 6.32. The diagrams describing the contributions of vacuum expectation value Fμν〈0 |
q̄q | 0〉2 to the odd structure of polarization operator.

Turn now to the description of the terms in the operator expansion which will be
taken into account in the calculation of �μν(p) in QCD (the left-hand sides of the
desired sum rules). Three different tensor structures contribute to�μν(p): �pσμν + σμν �p,
i(pμγν − pνγμ) �p and σμν . The first structure includes an odd number of γ -matrices and
conserves chirality. The second and the third include an even number of γ -matrices and
violate chirality.

Let us consider first the left-hand side of the sum rule at the odd structure �pσμν+σμν �p.
The lowest-dimension operator contributing to this structure is Fμν(d = 2) and the corre-
sponding Feynman diagram is depicted in Fig. 6.26. Because of chirality conservation, the
d = 3 and d = 5 operators do not contribute to the odd structure, so the next in dimension
are six-dimensional operators. The contribution of the field-induced vacuum expectation
value 〈0 | q̄q | 0〉× 〈0 | q̄σμνq | 0〉F (d = 6) corresponds to diagram of Fig. 6.31.

In the sum rule at the odd structure �pσμν + σμν �p, we take into account the con-
tributions of vacuum expectation values of eight-dimensional operators assuming the
factorization hypothesis. There are four such vacuum expectation values, Fμν〈0|q̄q|0〉2,
−g〈0|q̄σαβ( 1

2λn)Gn
αβq|0〉〈0|q̄σμνq|0〉F = eqχm2

0 Fμν〈0|q̄q|0〉2, eqκFμν〈0|q̄q|0〉2, and

eqξFμν〈0|q̄q|0〉2. The corresponding diagrams are depicted in Figs. 6.32–6.34. The esti-
mate of eight-dimensional terms is important. Indeed, as will be seen, the contribution of a
six-dimensional term to the sum rules is rather large, even larger than the Fig. 6.26 contri-
bution since the magnitude of the quark condensate magnetic susceptibility χ is large. The
eight-dimensional terms (especially the term ∼ χm2

0〈0|q̄q|0〉2) can be considered as the
first correction to the six-dimensional term. Therefore, their account is necessary since it
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(b)(a)

Fig. 6.33. The diagrams describing the contribution of vacuum expectation value
eqχm2

0 Fμν〈0 | q̄q | 0〉2.

b(b)(a)

Fig. 6.34. The diagrams describing the contributions of vacuum expectation values
eqκFμν〈0 | q̄q | 0〉2 and eqξFμν〈0 | q̄q | 0〉2 to the odd structure of�μν .

Fig. 6.35.

(b)(a)

Fig. 6.36.

permits checking the convergence of the operator expansion series. Of course, the results
will be convincing (and really they are) if contributions of eight-dimensional terms are
much smaller than those of d = 6.

The lowest-dimension operator which contributes to chirality violating structures in
�μν(p) is 〈0|q̄σμνq|0〉F (d = 3); see Fig. 6.35. The next in dimension with d = 5
are the operator vacuum expectation values 〈0|q̄q|0〉Fμν , Fig. 6.36, and those of Eqs.
(6.269), (6.270) corresponding to Fig. 6.37. Assuming factorization again we are left
in even structures with two seven-dimensional operator vacuum expectation values
〈0|q̄σμνq|0〉F 〈0|Gn

αβGn
αβ |0〉 and −g〈0|q̄σαβ( 1

2λn)Gn
αβq|0〉Fμν . The diagram correspond-

ing to the first one is shown in Fig. 6.38. The diagram corresponding to the second one is
evident.

As is seen, the interval of dimensions d = 2 − 8 for the odd structure is larger than the
interval of dimensions d = 3 − 7 for even structures. Therefore, one may expect a better
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(b)(a)

Fig. 6.37.

(b)(a) (c)

Fig. 6.38.

accuracy of the results obtained from the sum rule at odd structure. As for even structure,
we shall use only the sum rule at the structure i(pμγν − pνγμ) �p. The reasons are the
following:

1. The structure i(pμγν − pνγμ) �p contains two extra powers of momentum in
the numerator in comparison with σμν . This results in the appearance of an
extra factor of 1/p2 in non-perturbative corrections. As a consequence, the Borel
transformation brings about a factor of 1/n in the higher-dimensional contribu-
tion to the structure i(pμγν − pνγμ) �p as compared to the structure σμν which
improves the convergence of the power series. At the same time, the role of the
excited states (continuum) on the right-hand side of the sum rule at the structure
i(pμγν − pνγμ) �p is reduced as compared to that of σμν .

2. The sum rule for the structure σμν includes infrared divergence which indicates the
appearance of unknown infrared nonfactorizable vacuum expectation values.

3. Instantons contribute significantly to the sum rule for this structure, do not con-
tribute to the chiral odd structure �pσμν + σμν �p, and give only a small contribution
to the structure i(pμγν − pνγμ) �p [131].

The presence of electromagnetic field results in the appearance of additional terms in
Eq. (6.227) proportional to Fμν :

〈0 | T {qi
α(x), q̄

k
β(0)} | 0〉F = iδik 1

32π2x2
eq Fμν(� xσμν + σμν � x)αβ

− 1

24
δik(σμν)αβ〈0 | q̄σμνq | 0〉F + 1

288
δik(σμν)αβeq(Fμνx2 + 2Fμρxρxν)

+ 1

586
δik〈0 | q̄q | 0〉eq Fμν

[
σμνx2(κ + ξ)− 2xρxνσρμ

(
κ − 1

2
ξ

)]
. (6.273)
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The calculations give for the odd structure:

�μν(p)odd = − 1

16π4
(σμν �p+ �pσμν)

{
1

2
eu p2 ln

�2

−p2
+ 1

3
euχ

a2
q̄q

p2

(
1 + m2

0

8p2

)

− a2
q̄q

6p4

[
ed + 2

3
eu − 1

3
eu(κ − 2ξ)

]}
(6.274)

and for the even structure i(pμγν − pνγμ) �p:

�μν(p)even = i
aq̄q

16π4
(pμγν − pνγμ) �p

{(
eu + 1

2
ed

)
1

p2

− 1

3
edχ

[
ln
�2

−p2
+ π2

6p4

〈
0

∣∣∣∣αs

π
G2
μν

∣∣∣∣0〉]} . (6.275)

Here �2 is the ultraviolet cut-off. (The details of the calculation are presented in [18].)
The one-proton contribution to �μν(p) is given by

�μν(p) = −1

4

λ2
N

(p2 − m2)2

{
μp(σμν �p+ �pσμν)+ 2σμνmμp

+ σμνμ
a
p(p

2 − m2)/m + 2iμa
p(pμγν − pνγμ) �p/m

}
, (6.276)

where μp and μa
p are the proton total and anomalous magnetic moments in nuclear

magneton units, λN is the proton transition amplitude in the current ηp as determined in
Section 6.7.1. The term resulting from the proton → excited state transition corresponding
to the second term in (6.263) is equal to

�μν(p)p→N∗ = 1

4
λ2

N
1

p2 − m2

{
Ap(σμν �p+ �pσμν)

+ 2Apσμνm + 2i Bp(pμγν − pνγμ) �p/m

}
. (6.277)

Perform the Borel transformation of the sum rules and neglect the last term in the
phenomenological part of the sum rules (6.263). The sum rules for the invariant
functions at the structures σμν �p+ �pσμν and i(pμγν − pνγμ) �p taking account of anoma-
lous dimensions are:

eu M4 E2(M)L
−4/9 + a2

q̄q

3M2
L4/9

[
−
(

ed + 2

3
eu

)
+ 1

3
eu(κ − 2ξ)

− 2euχ

(
M2L−16/27 − 1

8
m2

0L−10/9
)]

= 1

4
λ̃2

N e−m2/M2
(
μp

M2
+ Ap

)
, (6.278)

maq̄q

{
eu + 1

2
ed + 1

3
edχM2

[
E1(M)+ b

24M4

]
L−16/27

}
= 1

4
λ̃2

N e−m2/M2
(
μa

p

M2
+ Bp

)
. (6.279)
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(We use the notations of Section 6.7.1.) The anomalous dimensions of κ and ξ are
unknown. The continuum contribution is represented by the double-dispersion relation
(6.248) which in this case reduces to the form given by (6.254). The sum rules for the
neutron are obtained from Eqs. (6.278), (6.279) by substitution: eu ↔ ed , μp, μ

a
p → μn ,

Ap, Bp → An, Bn .
In order to get rid of the constants χ, κ and ξ , let us multiply the sum rule (6.278) for the

proton by ed and for the neutron by eu and subtract one from the other. Similarly, multiply
the sum rule (6.279) for the proton by eu and for the neutron by ed and subtract one from
the other. The resulting expressions can be represented in the form of

μped − μneu + M2(Aped − Aneu) = 4a2
q̄q

3λ̃2
N

em2/M2
(e2

u − e2
d)L

4/9, (6.280)

μa
peu − μned + M2(Bpeu − Bned) = 4aq̄qm M2

λ̃2
N

em2/M2
(e2

u − e2
d). (6.281)

In order to eliminate the unknown single-pole contributions still remaining on the left-
hand side of Eqs. (6.280), (6.281) we apply the differential operator 1 − M2∂/∂M2 to
these equations and obtain

μped − μneu = 4a2
q̄q

3λ̃2
N

(e2
u − e2

d)

(
1 − M2 ∂

∂M2

)
em2/M2

L4/9, (6.282)

μpeu − μned = eu + 4aq̄qm

λ̃2
N

(e2
u − e2

d)

(
1 − M2 ∂

∂M2

)
M2em2/M2

. (6.283)

The magnetic moments μp and μn can be approximately determined by setting M = m,
disregarding anomalous dimensions and substituting for the residue λ̃2

N the value

λ̃2
N = 2aq̄q M4

m
em2/M2

∣∣∣∣
M2=m2

, (6.284)

which follows from the mass sum rules (6.161) neglecting both α-corrections and contin-
uum contributions. Solving in this approximation Eqs. (6.282), (6.283) we arrive at the
elegant results:

μp = 8

3

(
1 + 1

6

aq̄q

m3

)
, (6.285)

μn = −4

3

(
1 + 2

3

aq̄q

m3

)
. (6.286)

Numerically, at aq̄q = 0.65 GeV3 (see Table 1 and Section 6.7.1) we get from (6.285),
(6.286) μp = 3.01, μn = −2.03 in comparison with the experimental values μp =
2.79, μn = −1.91. In a more rigorous treatment, the study of the M2-dependence of Eqs.
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(6.282), (6.283) in the confidence interval 0.9 < M2 < 1.3 GeV2 gives as the best fit the
values

μp = 2.7, μn = −1.7 (6.287)

with an estimated error of about 10%. In the fit we have used the value λ̃ 2
N = 3.2 ±

0.6 GeV6 found in Section 6.7.1. When performing the differentiation in (6.282), (6.283)
the anomalous dimension factor L4/9 was considered to be a constant. The reason is that the
deviations of L4/9 from a constant are of order of αs-corrections, which were disregarded.
The main sources of errors are the neglected αs-corrections and the error in the magnitude
of λ̃2

N . In (6.274), (6.275), the gluon condensate contribution was accounted for only in
the case when it was multiplied by the numerically large factor χ . The calculations of
gluon condensate contributions, in all other cases, show that its influence on the values of
magnetic moments is completely negligible, less than 1% [132].

The constants Ap, An, Bp, Bn can be determined from (6.278)–(6.281) by substituting
into these equations the values of μp and μn shown in (6.287). Eq. (6.280) determines the
combination Ap + 2An = 0.27 GeV−2, which is to be compared with (μp + 2μn)/M2 ≈
0.7 GeV−2. As noted in Section 6.9.1, the last neglected term in (6.263) is in this case
less than (Ap + 2An)e−(s0−m2)/M2 ∼ 0.027 GeV−2, i.e. it is negligible compared with
(μp + 2μn)/M2. From (6.281), we get 2Bp + Bn = 0.15 GeV−2 in comparison with
(2μa

p + μn)/M2 ≈ 1.7 GeV−2. The last term in (6.263) is also negligible. The values of
κ and ξ were calculated by studying special sum rules and found to be κ = −0.34 ± 0.1,
ξ = −0.74 ± 0.2 [133]. However, this determination is less certain than the determination
of χ because of higher dimensions of the corresponding operators.

A remark about the role of instantons in the sum rules for nucleon magnetic
moments. In Ref. [131], it was demonstrated that in the dilute instanton gas approxima-
tion, instantons do not contribute to the sum rules at the structures �pσμν+σμν �p and
i(pμγμ−pνγμ) � p, considered above. However, their contributions to the sum rule at the
structure σμν are large for the standard instanton gas parameters. The consideration of this
sum rule with account of instantons, performed in [131], leads to the values of nucleon
magnetic moments, which are in agreement with those found above.

6.9.3 Hyperon magnetic moments

The same technique is applied to calculate the hyperon magnetic moments. The only dif-
ference with the case of the nucleon is the necessity to account for terms proportional to
the strange quark mass ms . The contribution of these terms is of order of 15–20% in the
values of the � and % magnetic moments. As in the case of the nucleon, it is possible to
find such combinations of the sum rules, in which the unknown susceptibilities χ, κ and ξ
are excluded. These sum rules have the following form [134]:
For �+, �− hyperons:

2μ�− + μ�+ = m

m�

4a2
q̄q

3 · λ̃ 2
�

(
1 − M2 ∂

∂M2

)
L4/9em2

�/M2
, (6.288)
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μ�+ − μ�− = 2 + 4m

λ̃2
�

(
1 − M2 ∂

∂M2

)[
aq̄q M2(1 + f )

+ ms M2 E1

(
s0

M2

)
L−8/9 + 4

9

a2
q̄qms

M2

]
em2

�/M2; (6.289)

For %0, %− hyperons:

2μ%− + μ%0 = −2 − 4aq̄qm

λ̃2
%

(
1 − M2 ∂

∂M2

)(
M2 + 17

36

aq̄qms

M2

)
em2

%/M2
, (6.290)

μ%0 − μ%− = − m

m%

4aq̄q

λ̃2
%

(
1 − M2 ∂

∂M2

[
2ms M2L−4/9 + 1

3
aq̄q(1 + f )2L4/9

]
em2

%/M2
.

(6.291)

(The notation of Section 6.7.1 and 6.7.2 is used.) The factors m/m� and m/m% correspond
to measuring the hyperon magnetic moments in nuclear magnetons.

The � hyperon magnetic moment cannot be obtained by this method. The sum rule
for μ� has nothing to combine with in order to exclude the χ, κ , and ξ susceptibilities.
Moreover, the terms proportional to χs ∼ 〈0 | s̄σμνs | 0〉F appear in the sum rule
for the � hyperon magnetic moment, which means the appearance of a new parameter.
The approximate calculation of μ� can be done by using the SU (3) relation μλ = μn/2
and accounting for a kinematical factor m/m�, corresponding to the μ� measurement in
nuclear magnetons. In this way we get μ� = −0.72. Although with less precision, the
magnetic moment of � can be also calculated by using the sum rule, where the values
found in separate sum rules [135] are substituted for χ, χs, κ, ξ . The�0 magnetic moment
is determined by isospin symmetry:

μ�0 = 1

2
(μ�+ + μ�−). (6.292)

Finally, the magnetic moment of the �0λ transition is given by the relation

μ�λ = 1

2
√

3
(3μλ + μ�0 − 2μn − 2μ%0), (6.293)

which is valid in the linear approximation in the SU (3) violating parameters [136].
The results of the calculations of baryon octet magnetic moments are presented in

Table 2. In calculations of hyperon magnetic moments according to the sum rules (6.288)–
(6.291) the numerical values of parameters ms, f and s0 were taken from Section 6.7.2,
and the experimental values for nucleon and hyperon masses were substituted. For com-
parison, the experimental data [63] and the quark model predictions are also presented. In
the latter, the experimental values of proton, neutron, and λ magnetic moments are used as
input.

Within the limits of the expected theoretical errors (10–15%) the results of the sum
rule calculations are in agreement with the data. The exceptional case is the % hyperon,
where the difference between theory and experiment is larger. The latter can be addressed
to a significant M2 dependence of the sum rules for the %-mass and magnetic moments,



6.9 Static properties of hadrons 273

Table 2 Magnetic moments of the baryon octet.

p n �+ �0 �− %0 %− λ �λ

sum rules 2.70 −1.70 2.70 0.79 −1.12 −1.65 −1.05 −0.72b 1.54b

quark
model 2.79a −1.91a 2.67 0.78 −1.09 −1.44 −0.49 −0.61a 1.63

experiment 2.79 −1.91 2.46 — −1.16 −1.25 −0.65 −0.61 1.61

a Input data.
b Approximate value, calculated on the basis of SU (3) relations.

which in turn may be related to a larger role of ms-corrections. In conclusion, it must
be emphasized that no new parameters, besides those found in the calculations of baryon
masses, enter the above used sum rules for baryon magnetic moments.

6.9.4 Magnetic moments of �++,�− baryons, and ρ meson

The magnetic moments of �++ and "− members of the baryon decuplet were also cal-
culated by the QCD sum rules [137]. In the calculation the generalized method was used,
valid not only for a constant, but for a variable external field [138]. Using this method,
�++ and "− magnetic formfactors were calculated at 0 < Q2 < 0.8 GeV2. For the �++
and "− magnetic moments the following results were found [137]:

μ�++ = 6.2(3.7 − 7.5) [63]; μ"− = −3.1 (−2.024 ± 0.056) [139]. (6.294)

(The experimental values are presented in parentheses.) In calculating the " magnetic
formfactor, the terms proportional to the strange quark mass were disregarded, resulting
in worse accuracy of the results. The baryon octet magnetic moments were also calcu-
lated by using the sum rules, where some chosen values of vacuum susceptibilities were
substituted and a strong violation of factorization hypothesis for vacuum expectation value
of four-quark operators was assumed (the value of the gluon condensate was taken about
six times greater than given in Table 1, Section 6.2) [140]. The results for�++ and"− are:

μ�++ = 4.1 ± 1.3, μ"− = −1.5 ± 0.5. (6.295)

Because of many arbitrary assumptions it is difficult to estimate the reliability of these
calculations.

The ρ meson magnetic moment was calculated by the method presented above taking
account of αs-corrections, [141]. It was obtained:

μρ = (1.8 ± 0.3)
/

2mρ. (6.296)

The fact that the gyromagnetic ratio of the ρ meson appears close to 2 (μρ ≈ 1/mρ) is
very interesting: it demonstrates that at low momentum transfer the ρ meson can be con-
sidered as a Yang–Mills vector meson in close correspondence with the vector dominance
hypothesis.
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6.9.5 Nucleon- and hyperon-coupling constants with axial currents

The knowledge of nucleon- and hyperon-coupling constants with axial currents is impor-
tant for several reasons: (1) these constants determine the β-decay of neutrons and
hyperons; (2) due to the Goldberger–Treiman relation (2.42), the knowledge of the
nucleon-coupling constant with axial current gA allows one to find theoretically the value
of the pion–nucleon coupling constant; (3) the nucleon-coupling constants with isovector
octet in flavour SU (3) and singlet axial current determine the values of the Bjorken sum
rules for polarized deep inelastic e(μ)N scattering, which allows one to study the spin
content of the nucleon.

Let us start with the calculation of the nucleon-coupling constant gA [142, 143]. For this
goal, add the term

L ′ =
∫

d4x j3
μ5(x)A

3
μ (6.297)

to the QCD Lagrangian. Here

j3
μ5 = (ūγμγ5u − d̄γμγ5d)

/√
2 (6.298)

is the third component of the axial current and Aμ is the external axial potential, con-
stant in space-time. The presence of the external field A3

μ results in the appearance of
additional terms linear in A3

μ in the expression (6.227) for the vacuum average of quark
fields:〈

0
∣∣∣ua
α(x), ūb

β(0)
∣∣∣ 0〉

A
=
[

1

2π2x4
δab(A3x)(γ5 � x)αβ + 1

72
δab〈0 | q̄q | 0〉

× (� x �A3γ5− �A3 � xγ5)αβ + 1

12
f 2
π δ

ab(�A3γ5)αβ

+ 1

216
δab f 2

πm2
1

(
5

2
x2 �A3γ5 − (A3x) � xγ5

)
αβ

]/√
2.

(6.299)

In the case of the d quark correlator, the right-hand side of (6.299) changes its sign. The
appearance of the third term on the right-hand side of (6.299) was elucidated in Section 6.3.
The parameter m2

1, introduced in [144] (in [144] it was denoted by δ2) is defined by the
equality:

1

2
gεαβμν

〈
0

∣∣∣∣ūγαGn
μν

1

2
λnu

∣∣∣∣ 0〉
A

= 1√
2

f 2
πm2

1 Aβ. (6.300)

The numerical value of m2
1 was found in [144] by considering special sum rules. Reeval-

uation of these sum rules at the numerical values of αs and condensates, presented in this
chapter, gives m2

1 = 0.15 GeV2.
Among three tensor structures of the polarization operator, �A3γ5, ( �p �A3− �A3 �p)γ5, and

2(A3 p) �pγ5, the most suitable is the third one, because it contains the highest power of p.
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Fig. 6.39. The M2-dependence of gA − 1 + CA M2, Eq. (6.301), g8
A + C8 M2, Eq. (6.307)

and � f i t + C f it
0 M2 at f 2

0 = 4 · 10−2 GeV2, Eq. (6.324).

So, the sum rule for the coefficient function at this structure is considered. The sum rule
for the determination of gA was found to be [142],[143],[145]–[147]:

1 + 8

9λ̃2
N

em2/M2
[

a2
q̄q L4/9 + 2π2 f 2

πm2
1 M2 − 1

4
a2

q̄q
m2

0

M2
+ 5

3
παs f 2

π

a2
q̄q

M2

]
= gA + CA M2.

(6.301)

In the derivation of (6.301), the fact was exploited that the bare loop and gluon condensate
contributions are equal to those in the sum rule for the nucleon mass. The account of this
fact leads to appearance of the first term, equal to 1, on the left-hand side of (6.301). Note
that the main term of OPE of dimension 3 proportional to f 2

π is absent in (6.301) – it
cancelled. Therefore, the deviation of gA from 1 is entirely connected with condensates
and one can expect that it is relatively small. The dependence of gA + CA M2 − 1 on M2

is plotted in Fig. 6.39.
The fitted value of gA is given by

gA = 1.24 ± 0.05 (6.302)

in comparison with the experimental value gA = 1.270 ± 0.003 [63]. The constant CA

is small: CA = −0.04 GeV−2, which confirms the legitimacy of neglecting the last term
in (6.253). The pion–nucleon interaction coupling constant g2

πN N/4π can be determined
from (6.302) with the help of the Goldberger–Treiman relation (2.42):

g2
πN N

4π
= m2g2

A

2π f 2
π

= 12.6 ± 1.0 (6.303)

in good agreement with the experimental value (g2
πN N/4π)exp = 13.5 ± 0.05 (see,

e.g. [148]).
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The axial-coupling constants of the baryon decuplet were also determined by the same
method [149]. The result for the � isobar is:

gA�� = 1.40 ± 0.07, (6.304)

which corresponds to the following pion–delta coupling constant:

g2
π��

4π
= 27.6 ± 2.8. (6.305)

Consider now the nucleon-coupling constant g8
A with the octet axial current

j8
μ5 = 1√

6

(
ūγμγ5u + d̄γμγ5d − 2s̄γμγ5s

)
. (6.306)

The same technique as in the previous case can be used here. The only difference is that,
in the expression for the vacuum average of quark fields (6.297), the overall factor 1/

√
2

should be replaced by 1/
√

6 and fπ should be changed to f8 – the mean meson octet decay
constant. In the limit of massless u, d, s quarks f8 = fπ . However, SU (3) symmetry is
violated and experimentally fK =0.160 GeV= 1.23 fπ . The approximation linear in the s
quark mass ms gives fη = 1.28 fπ . We put below f 2

8 = 2.6 · 10−2 GeV2. The sum rule for
g8

A has the form:

−1 + 8

9λ̃2
N

em2/M2
[

6π2 f 2
8 M4 E1L−4/9 + 14π2 f 2

8 m2
1 M2 E0L−8/9 + a2

q̄q L4/9

− 1

4
a2

q̄q
m2

0

M2
− 1

9
παs f 2

8

a2
q̄q

M2

]
= g8

A + C8 M2. (6.307)

The sum rule for the nucleon mass was used in the derivation of (6.307), but unlike the sum
rule for gA, it results to appearance of the item −1 appears in the left-hand side of (6.307),
but not +1, as in case of gA. This negative term is compensated by the large, proportional
to f 2

8 first term in the square bracket in (6.307). The values of g8
A + C8 M2 as a function of

M2 are plotted in Fig. 6.39. The following result was found:

g8
A = 0.45 ± 0.15, C8 = −0.15 ± 0.05 GeV−2. (6.308)

The large errors in (6.308) are caused by strong compensation of negative and positive
terms in (6.307) and by uncertainties in λ̃2

N and f 2
8 . The value of the parameter C8 is com-

parable with g8
A. Therefore, the neglected contribution of the last term in (6.253), estimated

as C8 M2e−(s0−m2)/M2
, was also included in the errors in g8

A. The theoretical value of g8
A

(6.308) can be compared with the experimental value (g8
A)exp = 0.59 ± 0.02 found from

the data on baryon octet β-decay under the assumption of strict SU (3) flavour symmetry
[150]. The F and D β-decay axial-coupling constants in the baryon octet are determined
from (6.302), (6.308) using the relations (assuming exact SU (3) symmetry):

gA = F + D,

g8
A = 3F − D. (6.309)

The results are:

F = 0.42 ± 0.04, D = 0.82 ± 0.08. (6.310)
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6.9.6 The nucleon-coupling constant with singlet axial current, the proton spin
content, and QCD vacuum topological susceptibility

The method used in the previous subsection cannot be directly applied to the calculation
of the nucleon-coupling constant with the singlet axial current

j0
μ5 = ūγ5γ5u + d̄γμγ5d + s̄γμγ5s, (6.311)

since j0
μ5 is not conserved due to the anomaly

∂μ j0
μ5(x) = 2N f Q5(x), (6.312)

Q5(x) = αs

8π
Gn
μν(x)G̃

n
μν(x). (6.313)

Here N f = 3, G̃n
μν = (1/2)εμνλσGn

λσ , and it is assumed that u, d, s quarks are massless.
Q5(x) is called topological charge density operator (see Chapters 3, 4). As before, add to
the QCD Lagrangian the term

L ′ =
∫

d4x j0
μ5(x)A

0
μ, (6.314)

where A0
μ is the constant external axial potential interacting with the singlet axial cur-

rent j0
μ5. However, because of nonconservation of j0

μ5 and the fact that the η′ meson is

not a Goldstone boson, the polarization operator �μν(x) = iT { j0
μ5(x), j0

μ5(0)} cannot be
saturated by the η′ contribution and a relation like (6.28) does not take place. So, we put

〈0 | j0
μ5 | 0〉A0 = 3 f 2

0 A0
μ (6.315)

and consider f 2
0 as a new parameter to be determined. The constant f 2

0 is related to the
topological susceptibility. Using (6.314) we can write

〈0 | j0
μ5 | 0〉A0 = lim

q→0
i
∫

d4x eiqx
〈
0
∣∣∣T { j0

ν5(x), j0
μ5(0)

}∣∣∣ 0〉 A0
ν ≡ lim

q→0
Pνμ(q)A

0
ν .

(6.316)
The general structure of Pμν(q) is:

Pμν(q) = −PL(q
2)δμν + PT (q

2)(−δμνq2 + qμqν). (6.317)

There are no massless states in the spectrum of the singlet polarization operator Pμν(q)
even for massless quarks. PT,L(q2) also have no kinematical singularities at q2 = 0. There-
fore, the nonvanishing value Pμν(0) comes entirely from PL(q2). Multiplying Pμν(q) by
qμqν in the limit of massless u, d, s quarks, we get

qμqν Pμν = −PL(q
2)q2 = 4N 2

f i
∫

d4xeiqx 〈0 | T {Q5(x), Q5(0)} | 0〉. (6.318)

Going to the limit q2 → 0 we have

f 2
0 = −1

3
PL(0) = 4

3
N 2

f ζ
′(0), (6.319)
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where ζ(q2) is the topological susceptibility

ζ(q2) = i
∫

d4xeiqx 〈0 | T {Q5(x), Q5(0)} | 0〉. (6.320)

Crewther derived Ward identities related to ζ(0) which allowed him to prove the theorem
that ζ(0) = 0 in any theory where there is at least one massless quark [151]. So, ζ(q2) ≈
ζ ′(0)q2 at small q2 in the limit of massless quarks. Our goal is to find the proton coupling
constant with singlet axial current, i.e. the matrix element 〈p | j0

μ5 | p〉. According to
current algebra, this matrix element is proportional to the part � of the spin projection
of the completely longitudinally (along the momentum) polarized proton carried away by
quarks:

2msμ� = 〈p | j0
μ5 | p〉, (6.321)

where sμ is the proton spin vector [23] (see Chapter 7). Within the parton model, � is
defined by

� = �u +�d +�s, (6.322)

where

�q =
1∫

0

dx[ q+(x)− q−(x) ] (6.323)

and q+(x) [q−(x)] are distributions of quarks q carrying the fraction x of the proton
momentum with spin parallel (antiparallel) to the proton spin in longitudinally polarized
protons.

In the same way as in Section 6.9.5, consider the polarization operator �(p) in the
external singlet axial potential A0

μ and separate the coefficient function at the tensor
structure 2(A0 p) � pγ5. The sum rule has the same form as Eq.(6.307) with substitutions:
f 2
8 → f 2

0 , f 2
8 m2

1 → h0, g8
A → �,C8 → C0 [146]:

− 1 + 8

9λ̃2
N

em2/M2
[

6π2 f 2
0 M4 E1L−4/9 + 14π2h0 M2 E0L−8/9 + a2

q̄q L4/9

− 1

4
a2

q̄q
m2

0

M2
− 1

9
παs f 2

0

a2
q̄q

M2

]
= � + C0 M2. (6.324)

The parameter h0 is defined by

g

〈
0

∣∣∣∣ūγα λn

2
G̃n
αβu

∣∣∣∣ 0〉
A0

= h0 A0
β. (6.325)

A special sum rule was suggested for its determination [152]. The calculation gives: h0 =
3.5 · 10−4 GeV4. The sum rule (6.324) represents � as a function of f 2

0 . The left-hand side
of (6.324), which looks like a complicated function of M2, should be in fact well fitted by
a linear function of M2 in the confidence interval 0.9 < M2 < 1.4 GeV2. The best values
of � = � f i t and C0 = C f it

0 are found from the following χ2 fitting procedure:
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Fig. 6.40. � (solid line, left ordinate) and
√
χ2, Eq. (6.326) (solid line, right ordinate) as

a function of f 2
0 .

√
χ2 =

{
1

n

n∑
i=1

[
�

f i t
i + C f it

0 M2
i − R(M2

i )

]2
}1/2/(

� f i t + C f it
0 M̄2

)
= min,

(6.326)

where R(M2) is the left-hand side of Eq.(6.324) and M̄2 ≈ 1.0 GeV2. The values of � f i t

as a function of f 2
0 are plotted in Fig. 6.40 together with

√
χ2.

The dependence of
√
χ2 on f 2

0 demonstrates that theoretically the lower limit on f 2
0

and � f i t can be established: f 2
0 ≥ 3.2 · 10−2 GeV2, � f i t ≥ 0.15. In order to find f 2

0 , we
can fix � at the experimental value �exp = 0.20 ± 0.07 in the MS regularization scheme
[153] (see also [154] and [147] for a discussion). Then f 2

0 = (3.5 ± 0.5) · 10−2 GeV2 in
agreement with the theoretical lower limit. The substitution of f 2

0 = 3.5 · 10−2 GeV2 in
(6.319) results in

ζ ′(0) = (2.9 ± 0.4) · 10−3 GeV2. (6.327)

The corresponding value of C f it
0 is equal to 0.06 GeV2. The errors mentioned above

include the error arising from the neglected last term in (6.253).

6.10 Three-point functions and formfactors at intermediate
momentum transfers

This section is devoted to a consideration of the next in complexity problem in QCD –
the determination of dynamical characteristics of hadrons such as their electromagnetic
formfactors and three-hadron vertices. The 3-point functions �A,B;C (p2, p′2; q2) are
considered. Let us assume that all variables p2, p′2, and q2 of the 3-point function
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�A,B;C (p2, p′2; q2) are in the Euclidean region, p2, p′2, q2 < 0, and large enough in
absolute values, |p2|, |p′2|, |q2| � R−2

con f , where Rcon f is the confinement radius. Then
the idea of the calculation is straightforward: in order to find the transition amplitude
�A→B(Q2), Q2 = −q2, consider the 3-point function for suitably chosen quark currents
and use OPE. On the other side, write down the double-dispersion relations in channels
A and B for invariant structures, perform the double-Borel transformation in p2 and p′2,
and saturate the double discontinuities of the structure function by the contributions of the
low-lying hadronic states A and B. The formfactor of the A → B transition FA→B(Q2)

at intermediate Q2 is found by equating these two representations. If the third channel is
also saturated by the contribution of the lowest state C , then the coupling constant gABC

can be found and, consequently, the decay width �(C → A + B̄). The calculation method
is the same as in the calculations of hadron masses presented in Sections 6.6–6.8, but the
amount of work grows considerably.

As an example, consider the calculation of the pion electromagnetic formfactor [155]–
[157]. The suitable vertex function is:

�μν,λ(p, p′; q) = −
∫

d4xd4 yei(p′x−qy) 〈0 ∣∣T { j+ν5(x), j em
λ (y), jμ5(0)

}∣∣ 0〉 , (6.328)

where q = p′− p, jμ5(x) = ū(x)γμγ5d(x) is the axial current, j em
λ is the electromagnetic

current,

j em
μ = 2

3
ūγμu − 1

3
d̄γμd. (6.329)

The bare-loop diagrams, corresponding to the contribution of the dimension-0 unit operator
are shown in Fig. 6.41a, b. The perturbative corrections are disregarded, u and d quarks are
considered as massless. In OPE, we restrict ourselves to the contributions of the operators
of dimensions d ≤ 6: the gluon condensate 〈0|0(αs/π)G2

μν |0〉 and four-quark conden-
sates. For the latter, the factorization hypothesis is accepted and therefore the four-quark
condensates reduce to αs〈0 | q̄q | 0〉2. The contribution of the three-gluon condensate
〈0|G3|0〉 is neglected.

The vertex function �μν;λ(p, p′; q) includes a number of different tensor structures:
PμPν Pλ, Pλ Pμqν , Pλδμν etc. (The notation P = (p + p′)/2 is introduced here.) The
most suitable structure for our purposes is PμPν Pλ. The reasons are: (1) the one-pion
state contributes to this structure; (2) the terms singular in Q2, like 1/Q2, 1/Q4, which do
not allow extension to low Q2 the applicability domain of the approach, are absent in the
coefficient function at this structure, whereas they persist at other structures.

p′p

q

u

dμ ν
p′p uμ ν

λ λ
u

(a)

q

dd

(b)

Fig. 6.41. The bare-loop diagrams, corresponding to �μν,λ(p, p′; q), Eq. (6.328).
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The double-dispersion representation of the structure function has the form of (6.248).2

The last two terms in (6.248) will be eliminated by the double-Borel transformation. So,
our interest is concentrated on the first term. The contribution of the lowest state in the
channels, corresponding to axial currents, i.e. the pion contribution to the spectral function
ρμν,λ(p, p′; q), is given by:

ρμν,λ(p, p′; q) = 〈0 | j+ν5(0) | π+(p)〉〈π+(p) | j em
λ (0) | π+(p)〉〈π+(p) | jμ5(0) | 0〉

× δ(s)δ(s′) = f 2
π p′

ν pμ(pλ + p′
λ)Fπ (Q

2)δ(s)δ(s′)

= 2 f 2
π Fπ (Q

2)

[
PμPν Pλ + 1

2
Pλ(Pμqν − Pνqμ)− 1

4
qμqν Pλ

]
δ(s)δ(s′),

(6.330)

where Q2 = −q2, fπ = 131 MeV, Fπ (Q2) is the pion electromagnetic formfactor and
pions are assumed to be massless. The hadronic spectrum is described in the same way,
as in Section 6.9 (Fig. 6.28). In domain I, the one-pion state contributes, and domains II
and III refer to the continuum, represented by the bare-loop diagrams of Fig. 6.41. The
lowest-order diagram Fig. 6.41a or b is equal to

�
(0)
μνλ(p, p′; q) = i

(2π)4

∫
d4k

k2(p′ − k)2(p − k)2
Tr
{
γνγ5 � kγμγ5(�p− � k)γλ(�p ′− � k)}.

(6.331)

We are interested only in the part of the amplitude expressible in the double-dispersive
form Eq. (6.248). The most direct way to obtain it is to calculate the double discontinuity
of the amplitude, i.e. the spectral functions ρ(0)(s, s′, Q2). To perform this, one has to put
the quark lines in the graphs of Fig. 6.41 on mass-shell and substitute the denominators of
the quark propagators for the δ functions according to Cutkosky’s rule k−2 → −2π iδ(k2).
In such a way, one is left with expressions including the following integrals:

I =
∫

d4kδ(k2)δ[ (p − k)2 ]δ[ (p′ − k)2] = π/2λ1/2, (6.332)

Iμ =
∫

d4kkμδ(k
2)δ[ (p − k)2]δ[ (p′ − k)2]

= − π

2λ3/2

[
s′(s − s′ − Q2)pμ + s(s′ − s − s Q2)p′

μ

]
, (6.333)

where

λ(s, s′, Q2) = (s + s′ + Q2)2 − 4ss′, (6.334)

as well as Iμν and Iμνλ with factors kμkν and kμkνkλ, respectively. The calculation of
the I integral is most easily performed in a particular reference system, say, in the Breit
system. The integrals Iμ, Iμν , and Iμνλ can be found by a standard recursive procedure.
The double-spectral density ρμν,λ(s, s′, Q2) is equal to the double discontinuity divided

2 The QCD sum rules for the vertex function using double-dispersion relations were originally considered by
Khodjamirian, who investigated the radiative transitions in charmonium [158].
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Fig. 6.42. The diagrams describing the terms of OPE proportional to 〈0 | G2
μν | 0〉.
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Fig. 6.43.

by (2π i)2 = −4π2. After a rather cumbersome calculation, the spectral function at the
structure PμPν Pλ was found to be [155]–[157]:

ρ(0)(s, s′, Q2) = 3Q4

2π2

[(
∂

∂Q2

)2

+ 1

3
Q2
(
∂

∂Q2

)3]
λ−1/2(s, s′, Q2)

= 3Q4

2π2
λ−7/2

[
3λ(x + Q2)(x + 2Q2)− λ2 − 5Q2(x + Q2)3

]
, (6.335)

where x = s + s′ and λ is given by (6.334).
The power corrections proportional to the gluon condensate are described by the dia-

grams of Fig. 6.42. In the calculations one uses the expressions for the quark propagator
in the soft gluon field given by Eqs. (6.221), (6.222). After double-Borel transformation in
p2, p′2 the term proportional to 〈0 | G2 | 0〉 at the structure ∼ PμPν Pλ is:

BM2B′
M2�

〈G2〉
μν,λ(p

2, p′2, Q2) = αs

π

〈0 | Gn
ρσGn

ρσ | 0〉
6M4

PμPν Pλ. (6.336)

(The Borel parameters M2,M ′2 were taken to be equal.) There are a few types of contribu-
tions which generate the term of OPE proportional to the square of the quark condensate.
The graphs in which the virtual gluon is hard with virtuality p2, p′2 (Fig. 6.43a) or q2

(Fig. 6.43b) are calculated in an elementary way using Feynman rules.
For the calculation of diagram Fig. 6.44, where only one soft quark pair is present explic-

itly, it is necessary to expand the quark field ψ(x) in x up to the third order in accord with
(6.218) and exploit the relation (6.231). Finally, there are graphs comprising a soft quark
pair and a soft gluon (see Fig. 6.45). If substituting the expansions for An

μ(x) and ψ(x),
Eqs. (6.217), (6.218), one sees that the six-dimensional vacuum average 〈0|ψ̄ψ |0〉2 can be
generated in two ways. First, the quark field can be taken at the origin where the second
term of the expansion (6.217) Aμ(x) is relevant. The calculation of this term is performed
using Eq. (6.230). The second way to obtain the required vacuum average 〈0|ψ̄ψ |0〉2 is
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p
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Fig. 6.44.

p

q

p′

Fig. 6.45.

to take the third term in the expansion (6.218) and the first term in (6.217). In this case,
the matrix element (6.232) arises. After summing all terms together the αs〈0 | q̄q | 0〉2

contribution to the PμPν Pλ structure appears to be (see [156] for details):

BM2B′
M2�

〈q̄q〉2

μν,λ = 416π

81M4
αs〈0 | q̄q | 0〉2

(
1 + 2Q2

13M2

)
PμPν Pλ. (6.337)

Eqs. (6.248), (6.330), (6.336), (6.337) allows one to find the sum rule for the pion
electromagnetic formfactor Fπ (Q2)

4

f 2
π

⎧⎨⎩
s0∫

0

ds

s0∫
0

ds′e−(s+s′)/M2
ρ(0)(s, s′, Q2)+ αs

48πM2
〈0 | Ga

μνGa
μν | 0〉

+ 52π

81M4
αs〈0 | ψ̄ψ | 0〉2

(
1 + 2Q2

13M2

)}
= Fπ (Q

2). (6.338)

As follows from (6.335), (6.338), the main term on the left-hand side of (6.338)
decreases as Q−4 as Q2 → ∞, while the power corrections grow with Q2. This means that
sum rule (6.338) is inapplicable at large Q2 (practically, at Q2 > 4 GeV2) where power
corrections become large and uncontrollable. At small Q2, the main term has an unphysi-
cal singularity ∼ Q4 ln Q2 resulting from massless quark propagators and testifying to the
inapplicability of our formulae at small Q2. The fact that this method is inapplicable at
small Q2 could be foreseen a priori since when approaching the physical region the oper-
ator expansion stops working. However, the singularity at Q2 → 0 is weak. So, one may
believe that the present approach is valid up to a rather small Q2 and the extrapolation from
the values of Q2, where the results are legitimate, to Q2 = 0 can have good accuracy. A
reasonable choice of s0 is s0 = 1.2 GeV2. At this energy,

√
s0 ≈ 1.1 GeV, the axial meson

a1 starts to contribute to the selected structure in �μν,λ (6.328). The confidence interval
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Fig. 6.46. The pion formfactor Fπ (Q2): the thick solid line is the result of the calculation
according to Eq. (6.338); the thin solid lines are the upper and lower limits, obtained from
the data in the time-like region [163]; the dotted line is the asymptotic formula (6.339).
The points are the experimental data [159]–[162].

in Borel mass parameter is 0.9 < M2 < 1.3 GeV2. At M2 = 1.3 GeV2, s0 = 1.2 GeV2,
Q2 = 1 GeV2 the continuum contribution is about 60%. The study of the M2 dependence
of the left-hand side of (6.338) shows that at Q2 = 1 GeV2, s0 = 1.2 GeV2, the left-hand
side of (6.338) is M2 independent within 0.9 < M2 < 1.3 GeV2 with accuracy of about
10%. At Q2 = 1 GeV2 and M2 = 1 GeV2, the continuum contribution comprises 30%
of the total and gluon and quark condensate corrections are about 10% each. With Q2

increasing the confidence interval in M2 decreases and at Q2 = 4 GeV2 shrinks almost
to zero: at M2 = 1 GeV2 the continuum contribution is almost equal to the main term
and the quark condensate contribution comprises about 40% of it. The lowest value of Q2

where this approach has good accuracy is perhaps Q2 = 0.5 GeV2. Therefore, the results
are reliable for 0.5 <∼ Q2 <∼ 3 GeV2. The best choice of the parameters is s0 = 1.2 GeV2,
M2 = 1 GeV2. The Q2 dependence of the pion formfactor Fπ (Q2) calculated according
to Eq. (6.338) is plotted in Fig. 6.46 in comparison with experimental data. The presented
data were obtained by measuring Fπ (Q2) at Q2 > 0, i.e. in the space-like region [159]–
[162]. The upper and lower limits on Fπ (Q2) found from the data for Q2 < 0 (in the
time-like region) using the analyticity conditions [163] are also shown. For comparison,
the asymptotic dependence curve [164]–[169]:

Fπ (Q
2) = 8π f 2

π

αs(Q2)

Q2
(6.339)
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is also shown. The agreement with experiment for 0.5 < Q2 < 3 GeV2 is good enough.
From Fig. 6.46, it is clear that for Q2 < 3 GeV2 the pion formfactor calculated by the QCD
sum rule method is in much better agreement with experiment than the asymptotic formula
(6.339): the so-called soft mechanism in exclusive processes, described by diagrams such
as Fig. 6.41, is dominating over the so-called hard mechanism, when the struck quark is
exchanged with the spectator quark by a hard gluon.

Let us try to saturate Fπ (Q2) by the ρ meson contribution. Within the framework of the
vector dominance model we have

Fπ (Q
2) = gρππ

gρ

m2
ρ

Q2 + m2
ρ

, (6.340)

where gρππ is the ρππ coupling constant and gρ is the ρ−γ coupling constant defined by
(6.116). Comparison of (6.340) with the curve of Fπ (Q2) in Fig. 6.46 shows that (6.340)
well describes Fπ (Q2) at intermediate Q2 and approximately gρππ/gρ ≈ 1.0. The numer-
ical value of gρ was found in Section 6.6.1: g2

ρ/4π = 2.48 (6.124). Using this value and
the known ratio gρππ/gρ , it is possible to calculate the ρ meson width:

�ρππ = g2
ρππ

48π
mρ(1 − 4m2

π/m2
ρ)

3/2 ≈ 131 MeV (6.341)

in reasonable agreement with the experimental value �ρππ = 150 MeV.
The ρ meson electromagnetic formfactors [156], the electromagnetic formfactors for

ρπ and ωπ transitions [171, 172], the axial formfactor of the ωρ transition [170] and
many others were calculated by the same method. The calculation of ρ meson formfac-
tors demonstrates that in the region of Q2 ∼ 1 −3 GeV2 the behaviour of the formfactors
FρT T (Q

2), FρLT (Q
2), FρL L(Q

2) (T means the transverse and L the longitudinal ρ meson
polarizations) have nothing in common with their asymptotical behaviour. Quark count-
ing and chirality conservation lead to the following asymptotics: FρL L(Q

2) ∼ 1/Q2,
FρLT (Q

2) ∼ 1/Q3, and FρT T (Q
2) ∼ 1/Q4. The QCD sum rule calculation shows that

at Q2 ∼ 1−3 GeV2, FρLT (Q
2) is much larger than FρL L(Q

2) and decreases more slowly
than is expected asymptotically, FρL L decreases very fast. The calculations of the axial
formfactor of the ω → ρ transition allowed one to determine the gωρπ coupling constant,
which was found to be in good agreement with experiment [170, 172]. The attempt to cal-
culate the nucleon formfactor by this method failed: there were no windows in the space
of Borel parameters, where QCD sum rules could be applied. A new method was invented
for the calculation of nucleon magnetic formfactors for 0 ≤ Q2 ≤ 1 GeV2 [138]. Since
this method is rather special it will not be presented here.

6.11 Valence quark distributions in hadrons

6.11.1 The method

Quark and gluon distributions in hadrons are not calculated in QCD starting from first prin-
ciples. It is only possible to calculate their evolution with the square of momentum transfer
Q2, which characterizes the scale where these distributions are measured (see Chapter 7).
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In the case of the nucleon, the standard procedure is the following: At some fixed Q2 = Q2
0,

a form of the quark and gluon distributions is assumed which is described by a number of
free parameters. Then the evolution with Q2 of the distributions is calculated in perturba-
tive QCD and by comparing with data of deep inelastic lepton–nucleon scattering, prompt
photon production and other hard processes, the best fit for these parameters is found. The
quark and gluon distributions in pions are determined in a similar way from data on lepton
pair production in pion-nucleon collisions (the Drell–Yan process). But here one needs an
additional hypothesis about the connection of the fragmentation function at time-like Q2,
which is measured in Drell–Yan processes, with parton distributions defined at space-like
Q2. For other mesons and baryons, as well as for some distributions in polarized nucleon
unmeasured up to now (such as h1(x, Q2)), we have no information about parton distri-
butions from experiment and have to rely on models. In order to check the form of quark
distributions, used as input in evolution equations, as well as to have the possibility to find
them in case of unstable hadrons, the direct QCD calculation of these distributions would
be of great value.

The principal difficulty in the problem of finding the structure functions (parton dis-
tributions) in QCD is that one should calculate the amplitude of deep inelastic forward
scattering, the space-time description of which is characterized by large distances in the t
channel. Since in QCD the dynamics of processes at large distances is determined by the
yet unclear confinement mechanism, this circumstance prevents the calculation of the ini-
tial parton distributions, used as input in evolution equations. In OPE, the essential role of
large distances in the t channel manifests itself in the fact that when trying to extrapolate
the amplitudes to the point t = 0, there appear unphysical singularities and, as a conse-
quence, it turns out to be necessary to take into account new unknown vacuum averages in
OPE, the number of which is infinite for the case of the forward-scattering amplitude. The
idea how to overcome this difficulty is the following [173, 174]. Consider the imaginary
part (in the s channel) of the 4-point correlator, corresponding to the forward scattering
of two quark currents, one of which has the quantum numbers of the hadron of interest
and the other is electromagnetic (or weak). Suppose that the virtualities of the photon and
hadronic current q2 and p2 are large and negative |q2| � |p2| � R−2

c , where Rc is the
confinement radius (q is the virtual photon momentum, p is the momentum carried by
the hadronic current). In this case, the imaginary part in the s channel [s = (p + q)2] of
forward-scattering amplitude is dominated by small distance contributions at intermediate
x . (The standard notation is used: x is the Bjorken scaling variable, x = −q2/2ν, ν = pq).
The proof of this statement is based on the fact that for the imaginary part of the forward-
scattering amplitude the position of the singularity in momentum transfer closest to zero
is determined by the boundary of the Mandelstam spectral function and is given by the
equation

t0 = −4
x

1 − x
p2. (6.342)

Therefore, if |p2| is large and x is not small, then even at t = 0 (the forward amplitude) the
virtualities of intermediate states in the t channel are large enough for OPE to be applicable.
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As follows from (6.342), the approach is invalid at small x . (Since in real calculations −p2

are of order 1 − 2 GeV2, small x means in fact x <∼ 0.1 − 0.2.) This statement is evident
a priori, because at small x Regge behaviour is expected which cannot be described within
the framework of OPE. The approach is also invalid at x close to 1. This is the domain
of resonances, also outside the scope of OPE. The fact that this method of calculation of
quark distributions in hadrons is invalid at x � 1 and at 1− x � 1 follows from the theory
itself: the OPE diverges in these two domains. Therefore, calculating higher-order terms
of OPE makes it possible to estimate up to which numerical values of x , in the small and
large x domain, the theory is reliable in each particular case.

The consideration of the 4-point function with equal momenta of hadronic currents in
initial and final states has, however, a serious drawback. The origin of this drawback comes
from the fact that in the case of the 4-point function, which corresponds to the forward-
scattering amplitude with equal initial and final hadron momenta, the Borel transformation
does not provide suppression of all excited state contributions: the nondiagonal matrix
elements, like

〈0| j h |h∗〉〈h∗| j em(x) j em(0)|h〉〈h| j h |0〉 (6.343)

are not suppressed in comparison with the matrix element of interest

〈0| j h |h〉〈h| j em(x) j em(0)|h〉〈h| j h |0〉, (6.344)

proportional to the hadron h structure function. (Here h is the hadron whose structure func-
tion we would like to calculate, h∗ is the excited state with the same quantum numbers as h,
j h is the quark current with quantum numbers of hadron h, j em is the electromagnetic cur-
rent.) This effect is similar to those which arise in the case of QCD sum rules in a constant
external field (see Section 6.9, Fig. 6.29). In order to avoid the additional differentiation
with respect to the Borel parameter used in Section 6.9, which reduces the accuracy of the
results, let us consider the nonforward 4-point correlator [175, 176]:

�(p1, p2; q, q ′) = −i
∫

d4xd4 yd4zeip1x+iqy−i p2z

× 〈0|T
{

j h(x), j em(y), j em(0), j h(z)
}

|0〉. (6.345)

Here p1 and p2 are the initial and final momenta carried by hadronic current j h , q and
q ′ = q + p1 − p2 are the initial and final momenta carried by virtual photons. (Lorentz
indices are omitted). It will be essential to have nonequal p1, p2 and treat p2

1, p2
2 as two

independent variables. However, we may put q ′2 = q2 and t = (p1 − p2)
2 = 0. We are

interested in the imaginary part of �(p2
1, p2

2, q
2, s) in the s channel:

Im �(p2
1, p2

2, q
2, s) = 1

2i

[
�(p2

1, p2
2, q

2, s + iε)−�(p2
1, p2

2, q
2, s − iε)

]
. (6.346)
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The double-dispersion relation in p2
1, p2

2 takes place for Im�(p2
1, p2

2, q
2, s):

Im�(p2
1, p2

2, q
2, s) = a(q2, s)+

∞∫
0

ϕ(q2, s, u)

u − p2
1

du +
∞∫

0

ϕ(q2, s, u)

u − p2
2

du

+
∞∫

0

du1

∞∫
0

du2
ρ(q2, s, u1, u2)

(u1 − p2
1)(u2 − p2

2)
. (6.347)

The nondiagonal matrix elements contribute to the first three terms in (6.347). Apply the
double-Borel transformation in p2

1, p2
2 to (6.347). This transformation kills the first three

terms on the right-hand side of (6.347) and we have

BM2
1
BM2

2
Im�(p2

1, p2
2, q

2, s) =
∞∫

0

du1

∞∫
0

du2ρ(q
2, s, u1, u2) exp

[
− u1

M2
1

− u2

M2
2

]
.

(6.348)

The integration region in the u1, u2 plane can be divided in four areas in the same manner,
as was done in Section 6.9.1 (Fig. 6.28). The contribution of area I to ρ corresponds to the
lowest state contribution and is equal to

ρ(u1, u2, x, Q2) = g2
h · 2πF2(x, Q2)δ(u1 − m2

h)δ(u2 − m2
h), (6.349)

where gh is defined by

〈0| jh |h〉 = gh . (6.350)

(For simplicity, we consider the case of a Lorentz scalar hadronic current.) If in
Im�(p1, p2, q, q ′) the structure proportional to PμPν [Pμ= (p1+ p2)μ/2] is considered,
then in the lowest twist approximation F2(x, Q2) is the structure function depending on
the Bjorken scaling variable x and weakly on Q2 =−q2. The same model of the hadronic
spectrum as in Section 6.9.1 is assumed: the contributions of areas II and III are referred to
as continuum, represented by the bare-loop diagram (see Figs. 6.47 and 6.51 below). So,
we are left with the sum rule:

Im�0
QC D + Power corrections = 2πF2(x, Q2)g2

h exp
(
−m2

h(1/M2
1 + 1/M2

2 )
)
,

Im�0
QC D =

s0∫
0

s0∫
0

ρ0(u1, u2, x, Q2) exp
(

u1/M2 + u2/M2
2

)
, (6.351)

where ρ0(u1, u2, x, Q2) is the bare-loop spectral function. One advantage of this method
is that after double-Borel transformation unknown contributions of the areas II are expo-
nentially suppressed (actually, the contribution of area II to the bare loop is zero, since
ρ0 ∼ δ(u1 − u2)).

In what follows, only the terms of the first nonvanishing order in the expansion in
p2

1/q
2, p2

2/q
2 are retained, which corresponds to taking account of the lowest-twist con-

tributions (twist 2) to the structure functions. Since no additional quark loops, besides the
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q1

p2p1
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Fig. 6.47. The bare-loop diagram describing the u quark distribution in pion. Dashed lines
with arrows correspond to virtual photons, solid lines to hadron currents. The vertical
dashed line indicates the cut propagators in Im�μνλσ .

bare-quark loops shown e.g. in Figs. 6.47 and 6.51, are accounted for, this approach allows
one to find only valence quark distributions in hadrons at moderate Q2

0 ∼ 3 − 5 GeV2.
The evolution equations must be exploited in order to go to higher Q2. The symmetrical
Borel transformation will be performed and we put M2

1 = M2
2 = 2M2. The factor of 2

is introduced in order that the values of M2 can be identified with the values of M2 used
in the sum rules for hadron masses. The hadronic currents, which enter Eq. (6.343), are
composed by the fields of valence quarks forming the hadron h.

6.11.2 Valence-quark distributions in pion and ρ meson

It is enough to find the distribution of the valence u quark in π+, since d̄(x) = u(x). The
most suitable hadronic current in this case is the axial current

jμ5 = ūγμγ5d. (6.352)

In order to find the u quark distribution, the electromagnetic current is chosen as u quark
current with unit charge

j em
μ = ūγμu. (6.353)

The bare loop of the Fig. 6.47 contribution is given by

Im �μνλσ = − 3

(2π)2
1

2

∫
d4k

k2

1

(k + p2 − p1)2
δ[(q + k)2]δ[p1 − k)2]

× Tr
{
γλ � kγμ(� k+ �q)γν(� k+ �p2− �p1)γσ (� k− �p1)

}
. (6.354)

The tensor structure chosen to construct the sum rule is a structure proportional to
PμPν Pλ Pσ /ν, [P = (p1 + p2)/2]. The reasons are the following: As is known, the results
of the QCD sum rule calculations are more reliable if invariant amplitudes at kinematical
structures with maximal dimension are used. Different p1 �= p2 are important for us only
in denominators, where they allow one to separate the terms in dispersion relations. In
numerators, one may confine oneself to consideration of terms proportional to 4-vector Pμ
and ignore the terms ∼rμ=(p1− p2)μ. Then the factor PμPν provides the contribution of
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the F2(x) structure function and the factor Pλ Pσ corresponds to the contribution of spin
zero states (the factor 1/ν is a scaling factor: w2 = F2/ν).

Let us use the notation

�μνλσ = (PμPν Pλ Pσ /ν)�(p
2
1, p2

2, x)+ . . . . (6.355)

For the calculation of �(p2
1, p2

2, x) the following formula is exploited:

∫
d4k

1

(p1 − k)2
1

(p2 − k)2
δ[ (p1+q−k)2]δ(k2) = π

4νx

∞∫
0

1

u − p2
1

1

u − p2
2

du. (6.356)

(The higher-twist terms are omitted; see [175] for details.) The result is:

Im �(p2
1, p2

2, x) = 3

π
x2(1−x)

∞∫
0

du1

∞∫
0

du2
δ(u1 − u2)

(u1 − p2
1)(u2 − p2

2)
. (6.357)

The use of Eqs. (6.351), (6.357) and the expression (2.7) for 〈0 | jμ5 | π〉, gives the u
quark distribution in the pion in bare-loop approximation

uπ (x) = 3

2π2

M2

f 2
π

x(1 − x)
(

1 − e−s0/M2
)

em2
π /M2

. (6.358)

Before going to more accurate consideration taking account of higher-dimension oper-
ators and leading order perturbative corrections, let us discuss in more detail the unit
operator contribution in order to estimate whether it is reasonable. The calculation of the
pion-decay constant fπ in the same approximation results in [13]:

f 2
π = 1

4π2
M2(1 − e−s0/M2

). (6.359)

The relation (6.359) follows from the sum rule correlator of the axial currents (6.129), if
another separation of the tensor structures than in Section 6.6.2 is performed: the structures
at qμqν and δμν are separated. The relation (6.359) arises from the bare-loop contribution
to the structure at qμqν . Substitution (6.359) into (6.358) gives

uπ (x) = 6x(1 − x). (6.360)

One can note that
1∫

0

uπ (x)dx = 1, (6.361)

in agreement with the fact that in the quark–parton model there is one valence quark in the
pion. Also, it can be easily verified, that

1∫
0

xuπ (x)dx = 1/2, (6.362)
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corresponding to naive quark model where no sea quarks exist. So one can say that formally
the unit operator contribution corresponds to the naive parton model. The relations (6.361),
(6.362) demonstrate that the Borel parameter M2 in the Borelized double-dispersion
relation is correctly identified with those in the sum rule for masses.

The perturbative and nonperturbative corrections must be added to Eq. (6.358). Taking
account of perturbative corrections in leading order, i.e. proportional to ln Q2/μ2, can
be easily done using the DGLAP evolution equations (see Chapter 7). In nonperturbative
corrections the terms of OPE up to dimension d = 6 were considered. In the calculation,
one should use the quark propagator expansion (6.221) up to the third-order term (not
presented in (6.221)) and the expansion of the gluon propagator (6.225). The calculations
of OPE terms are complicated and were performed in Ref. [175] by using the REDUCE
program for analytical calculations. It was found that the sum of all diagrams proportional
to the gluon condensate is zero after double Borelization. Similarly, all terms proportional
to the dimension d = 6 gluon condensate 〈0|G3|0〉 are exactly cancelled. (These statements
refer only to the structure of Im�μνλσ proportional to PμPν Pλ Pσ ). The origin of such
cancellations is unclear until now.

Among the contributions of d = 6 vacuum expectation value of the four-quark opera-
tor there are diagrams with no loops, like those shown in Fig. 6.48. Since this approach
is valid at intermediate x only, such diagrams, which are proportional to δ(1 − x), are
out the domain of applicability of the method and must be omitted. The diagrams, aris-
ing from perturbative evolution of the latter, are also omitted. The calculations of the
αs〈0 | q̄q | 0〉2 contribution are cumbersome, some details are given in [175]. The final
result for the valence u quark distribution is given by:

xuπ (x) = 3

2π2

M2

f 2
π

x2(1 − x)

{[
1 +

(
αs(2M2) ln(Q2

0/2M2)

3π

)
×
(

1 + 4x ln(1 − x)

x
− 2(1 − 2x) ln x

1 − x

)]
×
(

1 − e−s0/M2
)

− αs(2M2)αsa2
q̄q

(2π)2 · 37 · 24 · M6

ω(x)

x3(1 − x)3

}
, (6.363)

Fig. 6.48. Examples of the nonloop diagrams of dimension-6. Wavy lines correspond to
gluons, a dot means a derivative.
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Fig. 6.49. The M2-dependence of xuπ (x) for various x .

where ω(x) is a fourth-order polynomial in x ,

ω(x) = (−5784x4 − 1140x3 − 20196x2 + 20628x − 8292) ln 2

+ 4740x4 + 8847x3 + 2066x2 − 2553x + 1416. (6.364)

In (6.363), the normalization point μ2 = M2
1 = M2

2 = 2M2 was chosen. The parameter
αsa2

q̄q is approximately renormalization group invariant and can be taken at M2 = 1 GeV2,

αsa2
q̄q = 0.234 GeV6. The continuum threshold is chosen as s0 = 1.2 GeV2 to be equal to

the mass square in the axial channel, where the influence of the axial a1 resonance starts.
The analysis of the sum rule (6.363) shows that it is valid in the region 0.20< x<0.70; for
M2 > 0.5 GeV2, the power corrections are less than 30% and the continuum contribution
is small (< 20%). However, due to the factors 1/x and 1/(1−x) in (6.363) there is a rapid
increase of the perturbative corrections at the borders of this interval, up to 40–50%, which
shows that this method is inapplicable at x < 0.2 and x > 0.7. There is good stability
in the Borel mass parameter in the domain 0.4 < M2 < 0.7 GeV2, see Fig. 6.49. (Note,
that the effective parameter, characterizing the magnitude of perturbative corrections is
2M2.) The pion valence u quark distribution xuπ (x, Q2

0) at Q2
0 = 5 GeV2 is shown in

Fig. 6.50 for M2 = 0.5 GeV2.
At x > 0.3, the theoretical curve of xuπ (x) lies higher than the curve determined from

the data in Ref. [177]. This difference, at least partly, can be addressed by the fact that in
the theoretical calculation the perturbative corrections were accounted for in the leading
order, while the determination from the data was performed in the next-to-leading order.
It is known that the transition from leading order to next-to-leading order results in the
suppression of quark distributions at large x, x > 0.3 and enhancement at low x .

Suppose that at small x <∼ 0.15 uπ (x) ∼ 1/
√

x according to Regge behaviour and at
large x >∼ 0.7 uπ (x) ∼ (1 − x)2 according to quark counting rules. Then, matching these
functions with (6.363), one can find the numerical values of the first and second moments
of the u quark distribution
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Fig. 6.50. Pion valence quark distribution xuπ (x) as a function of x (line 1). The line 2
shows xuπ (x) extracted from pion Drell–Yan process and prompt photon production in
pion–nucleon collisions, Ref. [177].

M1 =
1∫

0

uπ (x)dx ≈ 1.05, (6.365)

M2 =
1∫

0

xuπ (x)dx ≈ 0.26. (6.366)

The results only slightly depend on the points of matching. M2 is the fraction of the pion
momentum carried by the valence u quark. M1 is the number of u quarks in π+ and
should be M = 1. The error in (6.365) may be estimated as 20%. This comes from the
fact that about a half of the contribution to M1 arises from the region x < 0.2, where
the extrapolation formula was used. In (6.366), the contributions of regions x < 0.2 and
x > 0.7 comprise 20% of the result. Therefore, one can expect that the accuracy of (6.366)
is, at least, not worse than 20%.

The fact that M1 was found close to 1 confirms the validity of the method. Since due
to charge invariance the distribution d̄π (x) is equal to uπ (x), the numerical value of M2

(6.366) means that valence quarks and antiquarks in the pion are carrying about half of the
pion momentum. The other half must be attributed to the momentum carried by gluons and
sea quarks. This important conclusion, known from experiment, is strongly supported by
the calculation presented above.

Valence quark distributions in longitudinally – along the direction of flight – and trans-
versely – perpendicular to this direction – polarized ρ mesons were calculated by the
same method [176]. It was found that the u quark distribution in longitudinally polarized
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ρ mesons has some resemblance to that in pions: the contributions of vacuum averages
〈0 | G2 | 0〉 and 〈0 | G3 | 0〉 in OPE vanish, the curve of xuL

ρ (x) has a shape similar to
xuπ (x) with its maximum at x ≈ 0.5. However, there is also a significant difference: the
fraction of momentum carried by valence u quarks in the longitudinally polarized ρ meson
is ML

2 ≈ 0.40. This means that valence quarks and antiquarks are carrying about 80% of
the total momentum in longitudinally polarized ρ mesons and only about 20% are left for
gluons and sea quarks – a strong difference from the cases of pions and nucleons.

The shape of the u quark distribution in transversely polarized ρ mesons is different
from that of pions or longitudinally polarized ρ mesons: xuT

ρ (x) increases monotonically
in the domain 0.2 < x < 0.6, where xuT

ρ (x) can be reliably calculated. There is even an
indication of a plateau in xuT

ρ (x) at 0.2 < x < 0.4 and a two-hump structure in xuT
ρ (x) is

not excluded.
The main physical conclusion is that the quark distributions in pions and ρ mesons do

not have much in common. The specific properties of the pion as a Goldstone boson man-
ifest themselves in different quark distributions in comparison with ρ. SU (6) symmetry,
probably, may take the place for static properties of π and ρ but not for their internal struc-
ture. This fact is not surprising. Quark distributions make sense in fast-moving hadrons.
However, SU (6) symmetry cannot be generalized self-consistently to the relativistic case.

6.11.3 Valence-quark distributions in nucleons

The method, developed in Section 6.11, can be applied to the calculation of valence-quark
distributions in nucleons [174, 178]. The object of investigation is the 4-current correlator

Tμν(p1, p2; q, q ′) = −i
∫

d4xd4 yd4zei(p1x+qy−p2z)

×
〈
0
∣∣∣T {η(x), ju,d

μ (y), ju,d
ν (0), η̄(z)

}∣∣∣ 0〉 , (6.367)

where η(x) is the three-quark current with proton quantum numbers (Ioffe current), defined
by (6.156). Choose the currents j u

μ = ūγμu, jd
μ = d̄γμd, i.e. as electromagnetic currents,

which interact only with u(d) quarks with unit charge. Such a choice allows one to get
the sum rules separately for the distribution functions of u and d quarks in protons. Quark
distributions in neutrons un, dn are related to them by un = dp, dn = u p. We will follow
the general method outlined in Section 6.11.1.

Let us select the most suitable invariant amplitude. Consider the contribution of the
intermediate state of a proton to the imaginary part of Tμν in the s-channel:

Im T (p)μν = λ2
N

1

p2
1 − m2

∑
r,r ′

vr (p1)

× Im

{
−i
∫

d4xe−iqy · 〈p1, r |T { jμ(y), jν(0)}|p2, r
′〉
}

· v̄r ′
(p2)

1

p2
2 − m2

,

(6.368)
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where vr (p) is the proton spinor with polarization r and momentum p, λN is the coupling
constant of the proton with the current 〈0|η|p, r〉 = λNv

r (p).
In order to choose the most suitable invariant amplitude, rewrite Eq. (6.368) in the

form of

Im Tμν = λ2
N

1

(p2
1 − m2)(p2

2 − m2)

∑
r,r ′

vr (p1)

×
(
v̄r (p1) Im T̃ (p)μν v

r ′
(p2)

)
v̄r ′(p2), (6.369)

where Im T̃ (p)μν is the amplitude before averaging in proton spin, m is the proton mass.
The general form of this amplitude is

Im T̃ (p)μν (p1, p2) = C1 PμPν + C2(Pμγν + Pμγν)+ C3 � P PμPν + . . .
+ (terms with t), (6.370)

where P = (p1 + p2)/2; t = p1 − p2.
Let us now take into account that we are interested in such a combination of invariant

amplitudes that appears in the spin-averaged matrix element∑
r

v̄r (p1) Im T̃ (p)μν v
r (p2) (6.371)

at the kinematical structure PμPν (since this structure in the limit p1 → p2 ≡ p
transforms into pμ pν , the coefficient at which is just F2(x)).

Using the equation of motion

�p1,2v
r (p1,2) = 1

2
(�p1,2 + m)vr (p1,2) (6.372)

and ∑
r

vr
α(p1,2)v̄

r
β(p1,2) = (�p1,2 + m)αβ (6.373)

one can see that the combination of invariant amplitudes in Eq. (6.370) that arise in
Eq. (6.369) at the kinematical structure �P PμPν coincides (up to a numerical factor) with
the combination of invariant functions at the structure PμPν in (6.371).

Thus we come to the conclusion that the sum rules should be written for an invariant
amplitude at the kinematical structure �P PμPν (in what follows we will denote it Im T/ν).

So, the sum rules for nucleons have the form

2π

4M4

λ̄2
N

32π4
xqu,d(x)e−m2/M2 = Im T 0

u,d + Power corrections (6.374)

where λ̄2
N = 32π4λ2

N ; qu,d(x) are distribution functions of u(d) quarks in the proton,
Im T 0 is a perturbative contribution, i.e. of a bare loop with perturbative corrections. (The
continuum contribution, i.e., of regions II, III of Fig. 6.28 should be subtracted from Im T .
Note that, in fact, the contribution of regions II to the bare loop is zero, since ρ0 ∼ δ(u1 −
u2)). As before, we put the Borel parameters M2

1 ,M2
2 in the double-Borel transformation
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q′
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u

d
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uu

p2 p1 p2
d
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d

q

u

d

d

(b)

Fig. 6.51. The bare-loop diagrams corresponding to determination of u quark (a) and d
quark (b) distributions in the proton. The vertical dashed lines mean that the imaginary
parts of the diagrams are taken.

to be equal: M2
1 = M2

2 = 2M2. The bare-loop diagrams are shown in Fig. 6.51. In the
calculation of the bare-loop diagrams, the following formulae are used∫

d4k[1; k2; (p1 − k)p2]
(p1 − k)2(p2 − k)2

δ[(p1 + q − k)2]θ(k2)

= π

4νx
(1 − x)

∫
du

u

(p2
1 − u)(p2

2 − u)

[
1; 1

2
u(1 − x); 1

4
u(1 + x)

]
. (6.375)

(The terms which vanish at the double-Borel transformation are omitted.) The results after
the double-Borel transformation are the same as in the case for equal p1 = p2 [174]:

Im T 0
u(d) = ϕu(d)

0 (x)
M2

32π3
E2(M), (6.376)

where E2(M) is given by (6.165) and

ϕu
0 (x) = x(1 − x)2(1 + 8x), ϕd

0 (x) = x(1 − x)2(1 + 2x). (6.377)

The substitution of Eq. (6.376) into the sum rules (6.374) results in

xq(x)u(d)0 = 2M6em2/M2

λ̄2
N

ϕ
u(d)
0 (x) · E2(M). (6.378)

In the bare-loop approximation the moments of the quark structure functions are equal to

1∫
0

qd
0 (x)dx = M6em2/M2

λ̄2
N

E2,

1∫
0

qu
0 (x)dx = 2

M6em2/M2

λ̄2
N

E2. (6.379)

Making use of relation λ̄2
N e−m2/M2 = M6 E2 which follows from the sum rule for the

nucleon mass (see (6.160)) in the same approximation, we get

1∫
0

qd
0 (x)dx = 1,
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1∫
0

qu
0 (x)dx = 2. (6.380)

In the bare-loop approximation, there also appears the sum rule for the second moment:

1∫
0

x(qu
0 (x)+ qd

0 (x))dx = 1. (6.381)

One can show that relations (6.380), (6.381) hold also when taking into account power
corrections proportional to the quark condensate square in the sum rules for the 4-point
correlator and in the sum rules for the nucleon mass. Relations (6.380) reflect the fact that
the proton has two u quarks and one d quark. Relation (6.381) expresses the momentum
conservation law – in the bare-loop approximation the entire momentum is carried by the
valence quarks. Therefore, the sum rules (6.380), (6.381) demonstrate that the zero-order
approximation is reasonable. In the real physical theory, the regions x � 1 and 1 − x � 1
are outside the frame of our consideration. However, in the noninteracting quark model
which corresponds to the bare-loop approximation, the whole region 0 ≤ x ≤ 1 should be
considered and relations (6.381), (6.381) should hold.

The perturbative corrections to the bare loop are calculated using the evolution equations
(DGLAP equations) in the leading order. If the quark distributions q(x, Q2

0) are determined
at the point Q2

0, then in leading order the corrections are proportional to αs(μ
2) ln Q2

0/μ
2,

where μ2 is the normalization point. It is natural to choose μ2 to be equal to the Borel
parameter M2

1 = M2
2 = 2M2. The results take the form:

d L O(x) = d0(x)

{
1 + 4

3

αs(2M2)

2π
ln(Q2

0/2M2)

[
1

2
+ x + ln

(1 − x)2

x

+−5 − 17x + 16x2 + 12x3

6(1 − x)(1 + 2x)
− (3 − 2x)x2 ln(1/x)

(1 − x)2(1 + 2x)

]}
, (6.382)

uL O(x) = u0(x)

{
1 + 4

3

αs(2M2)

2π
ln(Q2

0/2M2)

[
1/2 + x + ln((1 − x)2/x)

+ 7 − 59x + 46x2 + 48x3

6(1 − x)(1 + 8x)
− (15 − 8x)x2 ln(1/x)

(1 − x)2(1 + 8x)

]}
, (6.383)

where u0(x) and d0(x) are the bare-loop contributions given by (6.378). In the sum rules
for quark distributions, the terms of OPE up to dimension d = 6 are accounted for: the
contributions of gluon condensate (d = 4) and quark condensate square (d = 6). The
contribution of the dimension-6 operator g3 f abcGa

μνGb
νλG6

λμ is neglected since it arises
through two loop diagrams and is suppressed by the factor 1/2π . The sum rules for valence
u and d quark distributions are [178]:



298 QCD sum rules

xu(x) = M6em2/M2

λ̃2
N

{
2x(1 − x)2(1 + 8x)E2

(
s0

M2

)[
1 + uL O(x, Q2

0)

u0(x)

]
+ π2

6
(11 + 4x − 31x2)

1

M4

〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉E0

(
s0

M2

)
+ 1

324π

1

1−x

(
215−867x+172x2 + 288(1−x) ln 2

) 1

M6
αsa2

q̄q

}
, (6.384)

xd(x) = M6em2/M2

λ̃2
N

{
2x(1 − x)2(1 + 2x)E2

(
s0

M2

)[
1 + d L O(x, Q2

0)

d0(x)

]
− π2

3x
(1 − 2x2)

1

M4

〈
0

∣∣∣∣αs

π
G2
∣∣∣∣0〉E0

(
s0

M2

)
− 2

81π

19 − 43x + 36x2

1 − x

1

M6
αsa2

q̄q

}
.

(6.385)

For u quarks, the interval of x where the sum rules are valid is 0.2 < x < 0.7. For d quarks,
the interval is narrower: 0.3 < x < 0.6. The reason is that at x = 0.2 the gluon condensate,
due to the factor 1/x in the second term in (6.385), contributes about 50% to the total d(x)
and, therefore, invalidates the result. The typical M2 dependence of xu(x) and xd(x) are
plotted in Fig. 6.52 for x = 0.4. As can be seen, the M2 dependence is not negligible,
which indicates a not very good accuracy of the calculation. For d quarks at x = 0.7, the
M2 dependence is even stronger: xd(x) changes by a factor 2 for the variation of M2 in the
interval 1 < M2 < 1.4 GeV2. The valence quark distributions xu(x) and xd(x) determined
by (6.384) and (6.385) are shown in Fig. 6.53 at Q2

0 = 5 GeV2 and M2 = 1.1 GeV2. The
value of λ̃2

N was chosen to be λ̃2
N = 2.6 GeV2, corresponding to (6.174) at the lower border

of error. The magnitudes of condensates are the same as used in the previous calculations:
〈0|αs

π
G2|0〉 = 0.005 GeV4, αsa2

q̄q = 0.234, s0 = 2.5 GeV2. The calculated valence quark
distributions are compared with those found from the whole set of the data using evolution

1.0 1.1 1.2 1.3 1.4

0.1

0.2

0.3

0.4

0.5

0.6

xq(x)

M2

xu(x), x=0.4

xd(x), x=0.4

Fig. 6.52. The M2 dependence of xu(x) and xd(x) at x = 0.4, Q2
0 = 5 GeV2, which

follows from (6.384), (6.385).
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0.6

xu(x)

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 x

0.1

0.2

0.3

xd(x)

Fig. 6.53. Valence-quark distributions xu(x) (a) and xd(x) (b) (thick solid lines) in
comparison with those found from the full set of the data by using evolution equations
Ref. [179] (thin solid lines).

equations in next-to-leading order approximation by the MRST collaboration [179]. (The
data presented by the CTEQ collaboration [180] only slightly differ from [179].) There is
some difference between the data presented in Ref. [181] and Refs. [179] and [180], which
may be attributed to the lower normalization point μ2 = 0.3 GeV2 used in [181].

The valence quark distributions found from the sum rule describe the data only semi-
quantitatively. The disagreement is more noticeable in the case of the d quark. A part of
this disagreement may be attributed to the fact that the sum rule calculation was performed
accounting for perturbative terms in leading order, while the data analysis was done in
next-to-leading order. The transition from leading order to next-to-leading order would
result in suppression of the high-x domain and enhancement of the low-x domain in quark
distributions, i.e. to shrinking of the disagreement. The other source of disagreement is
more serious – the inherent default of QCD sum rules to treat the domain of x close to 1 in
the calculations of valence quark distributions. Note that in both cases considered above –
the cases of pion and nucleon – the perturbative and power corrections are working in
the right direction in order to bring the parton model results more close to experiment.
Despite the drawbacks of the method, one can believe that in cases of unknown quark dis-
tributions in hadrons the QCD sum rule approach would allow one to find them at least
semiquantitatively.

Problems

Problem 6.1

Derive Eq. (6.231).

Solution
The general expression for the left hand side of (6.231) is:

〈0 | q̄k
α(∇σ∇ρ∇τqβ)

i | 0〉 = δik(Bγσ δρτ + Cγρδστ + Dγτ δρσ )βα. (1)
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Multiplying (1) by (γτ )αβ or by (γσ )αβ and using the equation of motion for massless
quarks (6.211), (mq = 0), we find the relationships between B,C , and D:

D = B, C = −5B. (2)

Multiplication of (1) by (γρ)αβδikδστ gives:

B = − 1

33 · 25
〈0 | q̄∇σ � ∇∇σq | 0〉. (3)

Since

� ∇∇σ = ∇σ � ∇ + [� ∇,∇σ ], [ ∇ρ,∇σ ] = 1

2
igλnGn

ρσ , (4)

then, accounting for the equations of motion,

〈0 | q̄∇σ � ∇∇σq | 0〉 = ig

〈
0

∣∣∣∣q̄∇σ γρ λn

2
Gn
ρσq

∣∣∣∣0〉

= ig

〈
0

∣∣∣∣q̄ λn

2
γρq(DσGρσ )

n
∣∣∣∣0〉+ ig

〈
0

∣∣∣∣q̄ λn

2
γρGn

ρσ∇σq

∣∣∣∣0〉. (5)

Deriving (5) we used the relation:[
∇σ , 1

2
λnGn

ρσ

]
= 1

2
λn(DσGρσ )

n . (6)

On the other hand, acting in the left-hand side of (5) with the operator ∇σ � ∇ to the left and
using (4), we have

〈0 | q̄∇σ � ∇∇σq | 0〉 = − ig

〈
0

∣∣∣∣q̄ λn

2
γρGn

ρσ∇σq

∣∣∣∣0〉. (7)

The comparison of (5) and (7) gives〈
0

∣∣∣∣q̄ λn

2
γρGn

ρσ∇σq

∣∣∣∣0〉 = −1

2

〈
0

∣∣∣∣q̄ λn

2
γρq(DσGρσ )

n
∣∣∣∣0〉 (8)

and

〈0 | q̄∇σ � ∇∇σq | 0〉 = 1

2
ig

〈
0

∣∣∣∣q̄ λn

2
γρq(DσGρσ )

n
∣∣∣∣0〉. (9)

Substituting Eq. (6.212) (for one-quark flavour) into (9) and the result into (3), we have

B = i
g2

33 · 28
〈0 | q̄γρλ

nq · q̄γρλ
nq | 0〉 = −i

g2

35 · 24
〈0 | q̄q | 0〉2, (10)

because of the factorization hypothesis. Formulae (1), (2), and (10) give (6.231).
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Problem 6.2

Derive Eq. (6.232)

Solution
The general expression for left hand side of (6.232) has the form:

〈0 | q̄i
α∇σqk

βGn
μν | 0〉 = [ E(δσμγν − δσνγμ)+ i Fεσμνλγ5γλ](λn)ki . (1)

Multiplying (1) by (γσ )αβ , using Eq. (6.211) (mq = 0) and the relation

εσμνλγσ γλγ5 = i(γμγν − γνγμ), ε0123 = 1 (2)

we find:

E = −F. (3)

Multiply (1) by δσμ(γν)αβ(λn)ik . Then

E = 1

3 · 28
〈0 | q̄λnγν∇σqGn

σν | 0〉 = 1

3 · 28

〈
0

∣∣∣∣q̄ λn

2
γρq(DσGρσ )

n
∣∣∣∣ 0〉 . (4)

The substitution of (6.212) in (4) and the use of the factorization hypothesis gives

E = −g

3 · 210
〈0 | q̄λnγρq · q̄λnγρq | 0〉 = g

33 · 26
〈0 | q̄q | 0〉2. (5)

Eq. (6.232) follows directly from (3) and (5).

Problem 6.3

Write the sum rule to determine the quark condensate magnetic susceptibility. Find its
numerical value [19],[20].

Solution
Define the function χ(q2) by the equality

(δμνqν − δνλqμ)〈0 | ūu | 0〉χ(q2) =
∫

d4xeiqx 〈0 | T { ū(x)γλu(x), ū(0)σμνu(0)} | 0〉.
(1)

It is easy to see that if the contribution of the diagram Fig. 6.30a is neglected, then χ(0)
coincides with the quark condensate magnetic susceptibility, χ(0) = χ . Put μ = λ in (1).
Then

〈0 | ūu | 0〉χ(q2) = �(q2), (2)

where �(q2) is defined by:

3qν�(q
2) =

∫
d4xeiqx 〈0 | T { ū(x)γμu(x), ū(0)σμνu(0)} | 0〉. (3)
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Write the OPE for �(q2). Since the right-hand side of (3) violates chirality, only chirality
violating operators contribute to �(q2). Restricting ourselves to the contributions of the
operators up to dimension d = 5, we have

−χ(Q2) = 2

Q2
L−16/27 − 2

3

m2
0

Q4
L−2/27, (4)

where Q2 = −q2 and L = αs(Q2)/αs(μ) reflect the anomalous dimensions of the
operators. The following subtractionless dispersion relation is valid for χ(Q2):

−χ(Q2) = 1

π

∞∫
0

ρ(s)ds

s + Q2
= 2

Q2
L−16/27 − 2

3

m2
0

Q4
L−2/27. (5)

Since the integral in (5) is rapidly converging, ρ(s) can be saturated by contributions of
the lowest resonances to a good approximation. The further treatment of Eq. (5) can be
performed in various ways. The simplest is to saturate the integral by contributions of ρ
and ρ′ mesons (m2

ρ = 0.6 GeV2, m2
ρ′ = 2.1 GeV2), neglect the anomalous dimension

factors, expand the left-hand side of (5) in 1/Q2 and compare the coefficients at 1/Q2 and
1/Q4. In this way, we find [19]:

−χ(Q2) ≈ 4

Q2 + m2
ρ

− 2

Q2 + m2
ρ′
. (6)

(The value m2
0 accidentally disappears from (6) because approximately (2/3)m2

0 ≈ m2
ρ).

Eq. (6) can be extrapolated to Q2 = 0 and we get:

χ(0) ≈ −5.7 GeV−2. (7)

The more refined treatment taking account of anomalous dimensions and continuum
(besides the resonances) result in the value, is given in Eq. (6.26) (see [21]).
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7

Evolution equations

7.1 Introduction

The theory of the deep inelastic lepton–hadron scattering, as well as of other hard pro-
cesses in QCD [1], is based on the parton model suggested by Bjorken [2] and Feynman
[3]. (The phenomenology of hard processes and their description in the framework of the
parton model is presented in the book [4].) The parton model was motivated by the scaling
law in the deep inelastic lepton–nucleon scattering suggested by Bjorken [5]. Generally,
the structure functions of the deep inelastic lepton–nucleon scattering Wi (ν, q2), are the
functions of two variables: q2, the square of momentum transfer, and ν = pq, where p is
the nucleon momentum. According to the scaling law, at high | q2 | and ν, the structure
functions have the form:

Wi (ν, q
2) = (Q2)n Fi (xB j ), (7.1)

where Q2 = −q2, xB j = Q2/2ν and the power n is given by the canonical dimension
of Wi . The scaling law in the deep inelastic lepton–nucleon scattering can be justified
by considering this process in the coordinate space. The cross section of the inclusive
reaction l N → l ′+ everything (the imaginary part of the forward l N scattering amplitude)
is proportional to the integral∫

d4xeiqx
〈

p | [ jμ(x), jν(0)] | p

〉
, (7.2)

where | p〉 means the nucleon state with momentum p and jμ(x) is the electromagnetic
current in the case of eN or μN scattering and the weak current in the case of νN scat-
tering. It was proved [6], that at high | q2 |→ ∞ the amplitude (7.2) is dominated by
the domain near the light cone, x2 ∼ 1/q2 → 0 in the coordinate space. Therefore, the
amplitude in the coordinate space is a function of one variable – the longitudinal dis-
tance along the light cone (Ioffe time) times the factor depending on x2 and fixed by the
behavior of the commutator near the light cone. The canonical dimension in (7.1) corre-
sponds to the free-particle commutator. So, the conclusion follows that the deep inelastic
lepton–nucleon cross section is described as a superposition of cross sections for the lepton
scattering off the free nucleon constituents – partons. In QCD, this phenomenon is slightly
modified due to the asymptotic freedom – the decrease of the coupling constant αs(Q2) at
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large Q2. Since the decrease is only logarithmic, the structure functions Fi depend weakly
on Q2, Fi = Fi (xB j , αs(Q2)).

The Q2-dependence of the structure functions is derived in QCD by two methods. The
results of these approaches are equivalent. It is supposed that at some fixed Q2 = Q2

0 the
functions Fi (xB j , Q2

0) are known. Then Fi (xB j , Q2)) are calculated through Fk(xB j , Q2
0)

using the evolution equations.
In the first approach, the light-cone dominance of the deep inelastic scattering ampli-

tudes is exploited and the expansion of the matrix element in (7.2) over the distances x
along the light cone is performed [7]. The main contribution to Wi (ν, q2) arises from the
operators of the lowest twist, t = 2. The twist of an operator is defined as the differ-
ence between its dimension d and Lorentz spin j . The operators of higher twists result in
the terms suppressed by powers of Q2 and can be omitted at large Q2. Contributions of
individual operators can be obtained by taking moments of Fi (x, Q2):

M (i)
k (Q

2) =
1∫

0

xkdx Fi

(
x, Q2

)
. (7.3)

Then, the renormalization group equations are used for M (i)
k (Q

2), which allows to calcu-

late them from their initial values M (i)
k (Q

2
0). The structure function are reconstructed from

the known values of their moments. This method is exposed in details, e.g. in the books
[8],[9], where the references to original papers are given.

The second method, presented in this chapter, uses the leading logarithm expansion.
As was explained in Chapter 1, in QCD at large s or Q2 the effective parameter of the
perturbation theory apart from αs can contain an additional large factor being a certain
power of ln s or ln Q2. (The similar situation takes place in QED.) The leading-order terms
in the deep inelastic lepton–hadron scattering and other hard processes are proportional to
(αs ln Q2)n . The sum of such terms results in the leading-order approximation, which is
valid under conditions:

αs(Q
2)� 1, αs(μ

2)� 1, αs(Q
2) ln Q2/μ2 ∼ 1. (7.4)

The leading-order approximation for the inelastic lepton–hadron scattering reproduces the
parton model results.

For the deep inelastic lepton–hadron scattering at large energies
√

s and large momen-
tum transfers Q the transverse momenta of produced particles are strongly ordered. In this
case one can use the probabilistic picture to express the lepton–hadron cross section in
terms of the cross sections for the collision of point-like partons. We review below the par-
ton model (see also [4]) and discuss its modification in QCD where the parton transverse
momenta grow logarithmicly with Q. Later, the evolution equations for parton distributions
and for fragmentation functions are derived. We calculate their splitting kernels and find
their solutions. The relation with the renormalization group in the framework of the Wilson
operator product expansion is outlined. The evolution equations are generalized to the case
of the parton correlators related to matrix elements of the so-called quasipartonic opera-
tors. The case of the twist-3 operators describing the large-Q2 behaviour of the structure
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function g2(x) is studied in more detail. We discuss also the double-logarithmic asymp-
totics of structure functions at small x . The next-to-leading corrections to the splitting
kernels in QCD are reviewed.

For exclusive processes, such as the backward e+e−-scattering in QED the effective
parameter is αem ln2 s [10],[11]. The corresponding physical quantities in the double-
logarithmic approximation (DLA) are obtained by calculating and summing the asymp-
totic contributions ∼αn

em ln2n s in all orders of the perturbation theory. Their region of
applicability is

αem � 1, αem ln2 s ∼ 1. (7.5)

In DLA, the transverse momenta |k⊥
r | of the virtual and real particles are large and

implied to be strongly ordered because the first ln s in a loop is obtained as a result of
integration over the energy of a relatively soft particle and another logarithm – over its
transverse momentum (or emission angle). Instead of calculating the asymptotics of each
individual diagram, one can initially divide the integration region in several subregions
depending on the ordering of the particle transverse momenta and sum subsequently their
contributions with the same orderings over all diagrams of the perturbation theory. It gives
a possibility to write an evolution equation with respect to the logarithm of the infrared cut-
off λ [12]. In the Regge kinematics for the forward-scattering processes, the integrals over
transverse momenta are convergent, which leads in these cases to the effective parameter
of the perturbation theory α ln s [13] or even α2 ln s [14].

7.2 Parton model in QCD

As was argued in Section 7.1, in hard processes hadrons can be considered as superpo-
sitions of the point-like bare particles – partons having quantum numbers of quarks and
gluons [2], [3]. For example, in the framework of the parton model the cross section for the
inclusive Z production in hadron–hadron collisions h+h → Z +anything is expressed in
terms of the product of the inclusive probabilities Dq

h1
(x1), Dq

h2
(x2) to find the quark and

antiquark with the energies x1,2
√

s/4 inside the colliding hadrons h1, h2 and the Born
cross section σqq→Z (s x1x2) for the Z -boson production in the quark-antiquark collisions
[15], [16]. This expression is integrated over the Feynman components x1,2 of the quark
and antiquark momenta (see Fig. 7.1)

σh1h2→Z = 1

3

∑
q

∫
dx1dx2

(
Dq

h1
(x1) Dq

h2
(x2)+ Dq

h1
(x1) Dq

h2
(x2)

)
σqq→Z (sx1x2).

(7.6)

Here the factor 1
3 appears because in the quark and antiquark distributions Dq,q

h (x) the sum
over three colour states of the quark is implied, but the Z -boson is produced in annihilation
of quark and antiquark with an opposite colour.

Initially, the parton model was applied to the description of the deep inelastic scatter-
ing of leptons off hadrons [2]. For example, the differential cross section of the inclusive
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ph1 ph2

pZ

x1ph1

q

−x2ph2

q̄

Fig. 7.1. Partonic description of the Z -production in h1h2 collisions.

ph pe

pepq

pq = xph

γ∗
k

Fig. 7.2. Partonic description of the deep inelastic eh scattering.

scattering of an electron with the momentum pe off a hadron with the momentum p = ph

can be written as follows [4] (see Fig.7.2)

dσγ = α2

π

1

q4
LμνWμν

d3 p′
e

(ppe)E
′ , (7.7)

where p′
e and E ′ are the momentum and energy of scattered electron and only the exchange

of one photon with the momentum q = pe − p′
e was taken into account (for large q2, one

should also add the Z -boson exchange, which leads in particular to the parity nonconserva-
tion effects proportional to the axial charge ga ∼ T3). The electron tensor Lμν is calculated
explicitly

Lμν = 1

2
tr (�p′

eγμ �peγν) = 2
(

p′
eμ peν + p′

eν peμ − δνμ(p′
e pe)

)
. (7.8)

The hadronic tensor Wμν is expressed in terms of matrix elements of the electromagnetic
current J el

μ

Wμν = 1

4

∑
n

〈p
∣∣∣J el
μ (0)

∣∣∣ n〉 〈n
∣∣∣J el
ν (0)

∣∣∣ p〉 (2π)4δ4(p + q − pn). (7.9)

For nonpolarized electron and target it can be written as a sum of two contributions propor-
tional to structure functions F1,2(x, Q2) using the properties of the gauge invariance and
the parity conservation as follows
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1

π
Wμν = −

(
δμν − qμqν

q2

)
F1(x, Q2)+

(
pμ − qμ(pq)

q2

)(
pν − qν(pq)

q2

)
F2(x, Q2)

pq
.

(7.10)

Here Q2 and x are the Bjorken variables

Q2 = −q2, x = Q2

2pq
0 ≤ x ≤ 1. (7.11)

The structure functions F1,2(x, Q2) do not depend on Q2 for fixed x and large Q2 in the
framework of the Bjorken–Feynman parton model

lim
Q→∞ F1,2(x, Q2) = F1,2(x) , (7.12)

which corresponds to the Bjorken scaling [2]. In this model, the structure functions can
be calculated in the impulse approximation as a sum of the structure functions for charged
partons averaged with the partonic distributions (see Fig.7.2). From the point of view of the
Wilson operator product expansion [7], the Bjorken scaling means that the corresponding
twist-2 operators have canonical dimensions, as in the free theory.

The charged partons are assumed to be fermions (quarks). The hadronic tensor for the
quarks can be calculated using the relation

|n〉 〈n| =
∫

d4 pn

(2π)3
δ(p2

n − m2) θ(En) (7.13)

in the form

1

π
W f
μν = e2

q

2
δ
(
(k + q)2

) 1

2
Tr (� k γμ(�q+ � k)γν) = −e2

q
1

2
δ⊥μν δ(β − x), (7.14)

where k is the quark momentum and β = kq
pq is its Feynman parameter. (The quark mass

is neglected in (7.14).)
In (7.14), δ⊥μν is the projector to the transverse subspace orthogonal to p and q

− δ⊥μν = −
(
δμν − qμqν

q2

)
+
(

pμ − qμ(pq)

q2

)(
pν − qν(pq)

q2

)
2x

pq
. (7.15)

As follows from (7.10) and (7.15) in the framework of the quark–parton model the Callan–
Gross relation between F1 and F2 is valid [17]

F2(x) = 2x F1(x), (7.16)

where the expression

F2(x) = x
∑

i=q,q

e2
i ni (x) (7.17)

corresponds to the impulse approximation for the cross section. The quantity nq(x) is
the quark distribution in the hadron, normalized in such a way that the electric charge
conservation for the proton takes the form
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1 =
∑

i=q,q

ei

∫ 1

0
dx ni (x). (7.18)

The structure functions can be expressed in terms of the cross sections σt and σl for the
scattering of the virtual photons off protons with the transverse (t) and longitudinal (l)
polarization [4]. In the quark–parton model, we have σl = 0 in accordance with the Callan–
Gross relation between F1 and F2.

Another important deep inelastic process is the scattering of neutrinos and antineutrinos
off hadrons. It is induced by the Z -boson exchange (a neutral current contribution). In
this case, the expressions for inclusive cross sections are similar to the case of the ep
scattering (7.10), but one should take into account the parity-violating contribution (see,
for example, [4]).

The process of the neutrino–hadron scattering with a charged lepton in the final state is
related to the t-channel exchange of the W -boson. The cross section of the corresponding
inclusive process, in which one measures only a produced electron or positron with the
momentum p′

e, is given by [4]

dσν,ν = g4

16π3

(
1

2
√

2

)2
(

1

q2 − M2
W

)2

Lν,νμρ W ν,ν
μρ

d3 p′
e(

pp′
ν,ν

)
E ′ . (7.19)

Taking into account that the initial neutrino or antineutrino have fixed helicities, we obtain

Lν,νμρ = Tr
(�p′

eγμ(1 ± γ5) �pν,νγρ(1 ± γ5)
)

= 8
(

p′
eμ pν,νρ + p′

eρ pν,νμ − δρμ(p′
e pν,ν)∓ iεμρλδ pν,νλ p′

eδ

)
. (7.20)

For the hadronic tensor, one obtains a more complicated spin structure in comparison with
the deep inelastic electron–hadron scattering where the parity nonconservation effects were
absent

1

π
W ν,ν
μρ = −

(
δμρ − qμqρ

q2

)
Fν,ν1 +

(
pμ − qμ(pq)

q2

)(
pρ − qρ(pq)

q2

)
Fν,ν2

pq

− iεμρλδ pλ qδ
Fν,ν3

2pq
. (7.21)

In the framework of the parton model for the neutrino and antineutrino scattering off proton
we can derive [4]

Fν1 = 1

2x
Fν2 = d(x) cos2 θc + u(x)+ s(x) sin2 θc, (7.22)

1

2
Fν3 = d(x) cos2 θc − u(x)+ s(x) sin2 θc, (7.23)

Fν1 = 1

2x
Fν2 = u(x)+ d(x) cos2 θc + s(x) sin2 θc, (7.24)

1

2
Fν3 = u(x)− d(x) cos2 θc − s(x) sin2 θc. (7.25)



7.2 Parton model in QCD 315
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ph

q q̄

ph/xa

Fig. 7.3. Inclusive eē-annihilation to hadrons in the parton model.

Here u(x), d(x), s(x), u(x), d(x), s(x) are the parton distributions of the corresponding
quarks in the proton and θc is the Cabbibo angle – the parameter of the Cabbibo–
Kobayashi–Maskawa (CKM) matrix (we neglect the presence of heavier quarks in the
proton). The elements of the CKM matrix appear in the quark–W -boson interaction vertex.

The simplest process, in which one can measure the distribution nh
q(z) of the hadron

h with the relative momentum z inside the quark q is the inclusive annihilation of the
e+e−-pair into hadrons. In this process, only one hadron h having the momentum p is
detected. Its differential cross section corresponding to the intermediate photon production
(neglecting the Z -boson contribution) is [4] (see Fig.7.3)

dσγ = 4α2

π

1

s3
LμνWμν

d3 p

E
, E = |p| , s = q2, (7.26)

where

Lμν = 1

4
Tr (�peγμ �peγν) = peμ peν + peν peμ − δμν(pe pe) (7.27)

and

Wμν = 1

8

∑
n

〈0
∣∣∣J el
μ (0)

∣∣∣ n, h〉 〈n, h
∣∣∣J el
ν (0)

∣∣∣ 0〉 (2π)4δ4(q − pn − ph). (7.28)

We have from the gauge invariance and the parity conservation

1

π
Wμν = −

(
δμν − qμqν

q2

)
F1(xa)+

(
pμ − qμ(pq)

q2

)(
pν − qν(pq)

q2

)
F2(xa)

pq
,

(7.29)
where

xa = 2pq

q2
< 1, q2 = s. (7.30)

In the parton model, the inclusive annihilation e+e− → h + . . . is described as the process
where initially e+ and e− produce the pair qq and later q or q transform into the hadron
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system with a measured particle h. For the structure functions F1(xa, q2) and F2(xa, q2),
we obtain in this model:

F1(z) = − z

2
F2(z) = 3

z

∑
q

e2
q(hq(z)+ hq(z)), (7.31)

where hq(z) and hq(z) are inclusive distributions of hadrons h inside the corresponding
partons q and q (they are called also the fragmentation functions). The factor 3 is related
to the number of coloured quarks in the fundamental representation of the gauge group
SU (3). Note that the total cross section of the e+e−-annihilation in hadrons in the par-
ton model behaves at large s similar to the cross section for the e+e−-annihilation in the
μ+μ−-pair, which can be proved using more general arguments [18].

In QCD, the Bjorken scaling for the structure functions is violated [19], [20], [21], [22]
and the quark and hadron distributions depend logarithmically on Q2 in accordance with
the evolution equations [23]–[26].

7.3 Evolution equations for parton distributions

In the framework of the parton model, one can introduce the wave functions of the hadron
in its infinite momentum frame | p| → ∞ with the following normalization condition:

1 =
∑

n

∫ n∏
i=1

dβi d2k⊥i

(2π)2
|#(β1, k⊥1;β2, k⊥2; . . . ;βn, k⊥n)|2 δ(1−

n∑
i=1

βi ) δ
2

(
n∑

i=1

k⊥i

)
,

(7.32)
where ki are the parton momenta, k⊥i are their components transverse to the hadron
momentum p and βi are the components along p, (ki p) = βi p2. The wave func-
tion #(β1, k⊥1;β2, k⊥2; . . . ;βn, k⊥n) satisfies the Schrödinger equation H# = E(p)#
and contains in the perturbation theory the energy propagators simplified in the infinite
momentum frame as follows(

E(p)−
n∑

i=1

E(ki )

)−1

= 2 | p|
(

m2 −
n∑

i=1

m2
i + k2

i⊥
βi

)−1

. (7.33)

In the field theories, the integrals in the right-hand side of the normalization condition
for # are divergent at large momenta. We regularize them by introducing the ultraviolet
cut-off �2 over the transverse momenta ki⊥:∣∣∣k2

i⊥
∣∣∣ < �2. (7.34)

Note that in gauge theories it is more natural to use the dimensional regularization of
the ultraviolet divergencies to keep the gauge invariance. In this case, instead of � one
introduces another dimensional parameter – the normalization point μ.

The amplitudes of the physical processes do not depend on � due to the property of the
renormalizability, corresponding to a possibility to compensate the ultraviolet divergences
by an appropriate choice of the bare-coupling constant depending on �. In particular, the
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renormalized-coupling constant does not depend on �. In a hard process of the type of the
deep inelastic ep scattering it is convenient to fix � as follows

�2 ∼ Q2. (7.35)

In this case, the strong interaction does not modify significantly the hard subprocess and
we obtain the usual formulae of the parton model for physical amplitudes. Note that to
preserve the partonic picture in the gauge theories of the types of QED and QCD, one
should use a physical gauge in which the virtual vector particles contain only the states
with the positive norm. For the deep inelastic ep scattering it is convenient to choose the
light-cone gauge

Aμ q
′
μ = 0, q

′ = q − q2

2pq
p, q ′2 = 0, (7.36)

where q is the virtual photon momentum and p is the proton momentum. In this gauge, the
propagator of the gauge boson is

Dμν(k) = −�μν
k2

=
∑

i=1,2 ei
μ(k

′) ei∗
ν (k

′)
k2

+ q ′
μq ′
ν

(kq ′)2
, �μν = δμν − kμq

′
ν + kνq

′
μ

kq ′ .

(7.37)
On the mass-shell k′2 = 0 (k′ = k − k2

xs q ′) it contains only the physical polarization vectors
ei
μ(k

′) (i = 1, 2) satisfying the constraints

ei
μ(k

′) k′
μ = ei

μ(k
′) q ′

μ = 0. (7.38)

Note that the last contribution q ′
μq ′
ν/(kq ′)2 to Dμν(k) is usually unimportant because it

does not contain the pole 1/k2 or the propagator is multiplied by q ′
μ or q ′

ν .
The polarization vectors have the following Sudakov decomposition

ei = ei⊥ − kei⊥
kq ′ q ′ (7.39)

and therefore they are parametrized by their transverse components.
The �-dependence of partonic wave functions expressed in terms of the physical-

coupling constant is determined by the renormalization group:

|#(β1, k⊥1;β2, k⊥2; . . . ;βn, k⊥n|2 ∼
∏

r

Znr
r . (7.40)

In the right-hand side of this relation we omitted the factor depending on βr and k⊥r .
Further,

√
Zr < 1 are the renormalization constants for the wave functions of the

corresponding partons r and Zr is the probability to find a physical particle r in the corre-
sponding one-particle bare state. The quantity nr is the number of the bare particles r for
their total number n.

To find the �-dependence of the right-hand side of the normalization condition (7.32)
from the integration limits � for k⊥i , one should take into account that the largest integral
contribution occurs from the momentum configuration of the type of the Russian doll, when
the constituent particles in the initial hadron consist of two partons, each of these partons
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Fig. 7.4. Normalization condition for the partonic wave function.

again consists of two other partons, and so on. In each step of this parton branching, the
transverse momenta of the particles significantly grow and only one of the last partons in
this chain of decays reaches the largest possible value |k⊥| = �. It is related to the fact
that only for such configuration the number of the energy propagators (7.33) with large
denominators is minimal. Moreover, in each of the denominators we can leave only two
terms containing k⊥r ≈ −k⊥̃r maximal on the corresponding branching level(

E(p)−
∑

i

E(ki )

)−1

≈ −2 | p|
(

k2⊥r

(
1

βr
+ 1

β̃r

))−1

.

Further, the quantum-mechanical interference of amplitudes with different decay schemes
is not important in the normalization condition (7.32) within the leading logarithmic accu-
racy (see Fig.7.4), because in an opposite case the large transverse momentum in a loop
diagram would enter in k ≥ 3 energy denominators, which would lead to the loss of ln �
in the integral over this momentum.

Therefore, the most essential contribution in the derivative of (7.32) over� appears from
the upper limits of the integrals over k2⊥ $ k′2⊥ for two partons p, p′ produced at the end
of the decay chain (see Fig.7.4). This largest transverse momenta enter only in two energy
denominators corresponding to the square |#|2r→pp′ of the wave function of the decaying

parton r . Really |#|2n for n partons is factorized in the product of |#|2r→pp′ and |#|2n−1 in

which �2 is substituted by k2⊥

|#|2n = |#|2r→pp′ |#|2n−1, �2 → k2⊥. (7.41)

In accordance with this factorization property, after the differentiation of limits of
integration over k⊥ it is convenient to shift the summation variable n − 1 → n.

Thus, the differentiation of the normalization condition (7.32), taking into account Eq.
(7.40), gives the relation

0 =
∑

r

nr

(
d ln Zr

d ln(�2)
+ γr

)
, γr =

∑
p,p′
γr→pp′ , γr→p p′ = d

∥∥#r→pp′
∥∥2

d ln(�)2
. (7.42)
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Here
∥∥#r→pp′

∥∥2 ∼ g2 is the one-loop contribution to the norm of the wave function of the
parton r related to its transition to two more virtual partons p and p′

∥∥#r→pp′
∥∥2 =

∫
|k⊥|<�

d2k⊥
(2π)2

∫ βr

0
|#(βp, k⊥;βp′ ,−k⊥)|2r→pp′dβp, βr = βp + βp′ .

(7.43)

With the use of dimensional considerations, we obtain

|#(x, k⊥; y − x,−k⊥)|2r→pp′ = g2(2π k2⊥)
|k⊥|2

1

y
fr→pp′ (x/y) . (7.44)

The anomalous dimension γr of the field r also depends on the coupling constant (here, in
comparison with that of Chapters 1 and 6, a different normalization for γr is used)

γr→pp′ = g2(�2)

8π2

∫ 1

0
fr→pp′(x)dx . (7.45)

The partial anomalous dimension γr→p p′ describes the probability for the parton r to be
in the state (p, p′). In Eq. (7.42) the quantity

nr =
∑
{ns }

nr

∫ n∏
i=1

dβi d2k⊥i

(2π)2
|#(β1, k⊥1;β2, k⊥2; . . . ;βn, k⊥n |2 δ

(
1 −

n∑
i=1

βi

)
δ2

(
n∑

i=1

k⊥i

)
(7.46)

is an averaged number of partons r in the hadron. Because this number is different for
different hadrons, we derive the relation

d Zr

d ln(�2)
= −γr Zr , (7.47)

which coincides with the Callan–Simanzik equation for the renormalization constants. All
γr are positive, since for γr < 0 the probability Zr to find a physical particle in the bare
state would tend to infinity at �2 → ∞.

Let us introduce now a more general quantity – the density of the number of partons l in
the hadron as a function of the Feynman parameter x of this parton

nl(x) =
∑
{ns }

∫ n∏
i=1

dβi d2k⊥i

(2π)2
|#(β1, k⊥1; . . . ;βn, k⊥n|2 δ

×
(

1 −
n∑

i=1

βi

)
δ2

(
n∑

i=1

k⊥i

)∑
i∈l

δ(βi − x). (7.48)

Note that

nr =
∫ 1

0
dx nr (x). (7.49)

The differentiation of |#|2 in expression (7.48) over ln�2 according to (7.40) and (7.47)
gives the extra factor

C# = −
∑

t

ntγt . (7.50)
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As for the differentiation of the limits of integration over the momenta k2⊥i , one should
take into account that with a leading logarithmic accuracy only two partons from their
total number n can reach the largest transverse momentum |k⊥| = �. There are two
possibilities. In the first case, the parton i ∈ l and another parton ĩ have the maximal
transverse momentum k⊥i = −k⊥̃i . The parton of the type r decaying into the pair i, ĩ has
the Sudakov variable y = βi + β̃i > βi . The integration over βi is performed with the use
of the δ-function δ(βi − x) or their sum δ(βi − x)+δ(β̃i − x) for ĩ ∈ l. Instead of summing
over i ∈ l in (7.48), we can perform summation over all partons j ∈ r summing later over
their different types r . The summation over ĩ for fixed j is automatically performed. By
substituting the summation index n −1 in (7.48) by n after the differentiation in ln�2, one
can obtain for the first case the following result(

d

d ln�2
nl(x)

)
1

= g2(�)

8π2

∑
r

∫ 1

x

dy

y
nr (y)

∑
l̃

φr→l̃l

(
x

y

)

= g2(�)

8π2

∑
r

∫ 1

x

dy

y
nr (y) φr→l

(
x

y

)
, (7.51)

where we introduced the elementary inclusive probabilities

φr→l̃l

(
x

y

)
= fr→l̃l

(
x

y

)
, (̃l �= l); φr→l̃l

(
x

y

)
= 2 fr→l̃l

(
x

y

)
, (̃l = l); (7.52)

φr→l

(
x

y

)
=
∑

l̃

φr→l̃l

(
x

y

)
. (7.53)

with the use of relations (7.43) and (7.44). We obtain also the following expression for the
anomalous dimension of the field r

γr→l̃l = g2(�)

8π2

∫ y

0

dx

y

x

y
φr→l̃l

(
x

y

)
. (7.54)

In the second case, the pair of partons with the maximal transverse momentum |k⊥|
does not include the extracted parton i ∈ l with its Sudakov variable βi in Eq.(7.48) and
the differentiation of the integration limit over ln�2 leads to the factor in (7.48) being
the sum of n − 2 anomalous dimensions γr for n − 1 partons at the previous branching
level. This contribution after the substitution n − 1 → n would cancel n − 1 terms from
n terms related to the differentiation of the factor |#|2 (see (7.50)). The sum of these two
contributions is simplified as follows(

d

d ln�2
nl(x)

)
#

+
(

d

d ln�2
nl(x)

)
2

= −γl nl(x). (7.55)

Summing (7.51) and (7.55), we obtain the equation of Dokshitzer, Gribov, Lipatov,
Altarelli and Parisi (DGLAP) [23]

d

d ln�2
nl(x) = −γl nl(x)+ g2(�)

8π2

∑
r

∫ 1

x

dy

y
nr (y) φr→l

(
x

y

)
. (7.56)
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In QCD, this equation can be written as

d

dξ
nl(x, ξ) = −wl nl(x, ξ)+

∑
r

∫ 1

x

dy

y
wr→l

(
x

y

)
nr (y, ξ), (7.57)

where wr→l(z) is an elementary inclusive probability and the evolution variable ξ is
defined as

ξ = −2Nc

β0
ln
α(Q2)

αμ
. (7.58)

It is expressed in terms of the QCD running coupling constant in one-loop approximation
as follows

dξ = α(Q2) Nc

2π
d ln Q2, α(Q2) = αμ

1 + β0
αμ
4π ln Q2

μ2

, β0 = 11

3
Nc − n f

2

3
. (7.59)

The quantity wr is given below

wr =
∑

k

∫ 1

0
dx x wr→k(x). (7.60)

The last relation corresponds to the energy-conservation constraint∑
k

∫ 1

0
d x x nk(x, ξ) = 1. (7.61)

The DGLAP equation has a simple probabalistic interpretation and it is analogous to the
balance equation for the densities of various gases being in chemical equilibrium. Indeed,
the first term in its right-hand side describes the decrease of the number of partons l as a
result of their decay to other partons in the opening phase space dξ . On the other hand, the
second term is responsible for its increase due to the possibility that the other partons r can
decay into the states containing the parton l.

Traditionally, the evolution equation is written in other form

d

dξ
nl(x, ξ) =

∑
r

∫ 1

x

dy

y
Pr→l

(
x

y

)
nr (y, ξ), (7.62)

where

Pr→l(z) = wr→l(z)− δr,l δ(1 − z) wr . (7.63)

In QCD, the kernels Pr→r (z) contain the singularities at z = 1 because the diagonal
transition probabilities wr→r (z) for the gluon (r = g) and quark (r = q) have the poles
∼ 1/(1 − z). We can extract these poles explicitely

wg→g(z) = 2z

1 − z
+ wreg

g→g(z), wq→q(z) = CF

Nc

1 + z2

1 − z
+ wreg

q→q(z), CF = N 2
c − 1

2 Nc
,

(7.64)



322 Evolution equations

where wreg
g→g(z) and wreg

q→q(z) are analytic functions at z = 1. The regular contributions
w

reg
g→g(z) and wreg

q→q(z) will be calculated in the next section. Analogously, from the total
decay probabilities we can extract divergent integrals in the form

wg =
∫ 1

0
dz

2

1 − z
+ wreg

g , wq = CF

Nc

∫ 1

0
dz

2

1 − z
+ wreg

q . (7.65)

Then the splitting kernels Pr→r (z) are written as follows

Pg→g(z) = Psing
g→g(z)+ Preg

g→g(z), Psing
g→g(z) = 2z

1 − z
− δ(1 − z)

∫ 1

0
dz′ 2

1 − z′ ,

Pq→q(z) = Psing
q→q(z)+Preg

q→q(z), Psing
q→q(z) = CF

Nc

(
1 + z2

1 − z
− δ(1−z)

∫ 1

0
dz′ 2

1 − z′

)
.

(7.66)
Here Preg

g→g(z) and Preg
q→q(z) do not contain divergencies and will be presented later. Indeed

providing these kernels act on smooth parton distributions ng(x) and nq(x) we obtain the
following results for the integral from the singular parts of the kernels∫ 1

0
dz Psing

g→g(z) ng(z) =
∫ 1

0
dz

2z

(1 − z)+
ng(z) (7.67)

and ∫ 1

0
dz Psing

q→q(z) nq(z) = CF

Nc

∫ 1

0
dz

1 + z2

(1 − z)+
nq(z), (7.68)

where we used the Altarelli–Parisi notation [23]∫ 1

0
dz

1

(1 − z)+
f (z) ≡

∫ 1

0
dz

1

1 − z
( f (z)− f (1)). (7.69)

It means that the result of integration of the splitting kernels with smooth functions is finite.
By integrating Eq. (7.57) over x one can obtain a simpler evolution equation for the

average number of partons

nk =
∫ 1

0
d x nk(x, ξ). (7.70)

Namely,

d

dξ
nk = −wk nk +

∑
r

wr→k nr , wr→k =
∫ 1

0
dx wr→k (x) . (7.71)

Note that generally in this case the divergencies in the right-hand side are not compensated,
which is related with the known double-logarithmic Sudakov-type behaviour of the parton
multiplicities.

For the electric charge and other additive quantum numbers Qk , we have the conserva-
tion law

d

dξ

∑
k

Qk nk = 0 (7.72)
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k

k

k − p

p

p

Fig. 7.5. Matrix element of the conserved current or energy-momentum tensor.

fulfilled due to the following property∑
k

Qk wr→k = wr Qr (7.73)

of the elementary inclusive probability wr→k . The splitting kernels, respectively, satisfy
the relations ∑

k

Qk

∫ 1

0
dz Pr→k(z) = 0. (7.74)

The energy conservation

d

dξ

∑
k

∫ 1

0
dx x nk(x, ξ) = 0 (7.75)

is valid due to another important property of the splitting kernels∑
k

∫ 1

0
dz z Pr→k(z) = 0. (7.76)

In turn, these sum rules can be used for finding the kernels wr→i (x). For this purpose,
on one hand one should calculate the Feynman diagram Fig.7.5 for the matrix elements of
the conserved currents jμ(z) or energy-momentum stress tensor Tμν(z) between the states
with the same momentum p with the Sudakov parametrization of the momentum k

k = αq ′ + xp + k⊥. (7.77)

On the other hand, we can write the partonic expressions for the matrix element of the
current jμ q ′

μ

ξs′
∫ 1

0
dx wr→i (x) = i

∫ |s′|dαdx d2k⊥
2(2π)4

g2(k2⊥)
∑

t

∣∣γr→i,t
∣∣2

−s(1 − x)α − k2⊥ + iε

s′x(
sxα − k2⊥ + iε

)2
,

(7.78)

in the case when the particles r and i have the same conserved quantum number Q, and

ξs
′2
∫ 1

0
dx x wr→i (x) = i

∫ |s′| dα dx d2k⊥
2(2π)4

g2(k2⊥)
∑

t

∣∣γr→i,t
∣∣2

−s(1 − x)α − k2⊥ + iε

s
′2x2(

sxα − k2⊥ + iε
)2

(7.79)
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for the energy-momentum tensor Tμνq ′
μq ′
ν . Here the transition amplitude γr→i,t is calcu-

lated in the helicity basis. This basis is convenient because the helicity is conserved for the
matrix elements of jμ and Tμν . We find below the amplitudes γr→i,t for all possible parton
transitions in QCD. In the above expressions, the integrals over α are nonzero only if the
Sudakov variable x belongs to the interval 0 < x < 1. They can be calculated by residues
leading to the following expressions for splitting kernels

wr→i (x) =
∑

t

∣∣γr→i,t
∣∣2

Nc

x(1 − x)

2 |k⊥|2 , (7.80)

which do not depend on k⊥ because γr→i,t ∼ k⊥.

7.4 Splitting kernels in the Born approximation

7.4.1 Transition from a gluon to two gluons

We start with the discussion of the splitting kernelswr→k

(
x
y

)
for the transition from gluon

to gluon. The gluon Yang–Mills vertex for the transition (p, σ )→ (k, μ)+ (p − k, ν) can
be written as follows (see Fig. 7.6)

γσμν = (p − 2k)σ δμν + (p + k)ν δσμ + (k − 2p)μ δνσ (7.81)

up to the colour factor fabc being the gauge-group structure constant which enters in the
commutation relations for the generators:

[Ta, Tb] = i fabc Tc. (7.82)

On the mass-shell, the numerators of the gluon propagators in the light-cone gauge
coincide with the projectors to physical states. The corresponding polarization vectors
satisfying also the Lorentz condition ek′ = 0 have the following Sudakov representation

eσ (p) = e⊥
σ , eμ(k

′) = e⊥
μ − ke⊥

kq ′ q ′
μ, eν(p − k′) = e⊥

ν − (p − k)e⊥

(p − k)q ′ q ′
ν,

k′ = k − k2

2kq ′ q
′. (7.83)

After multiplication of the Yang–Mills vertex γσμν with these polarization vectors one
can introduce the tensor γ⊥

σμν with transverse components according to the definition

γσμνe
σ (p)eμ(k′)eν(p − k′) ≡ γ⊥

σμνe
σ⊥(p)e

μ
⊥(k

′)eν⊥(p − k′), (7.84)

p, σ

k, μp − k, ν

Fig. 7.6. Yang–Mills vertex.
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where

γ⊥
σμν = −2k⊥

σ δ
⊥
μν + 2

1 − x
k⊥
ν δ

⊥
σμ + 2

x
k⊥
μ δ

⊥
νσ , x = kp

q ′ p
. (7.85)

The gluons moving in the z-direction with the helicities λ = ±1 are described by the
polarization vectors

e±
⊥ = 1√

2
(e1 ± ie2). (7.86)

We put the helicity λ of the initial gluon with the momentum p equal to +1. For λ = −1,
the results can be found from the obtained expressions by changing the signs of helicities
of the final particles. The nonzero matrix elements

γλ1λ2 = γ⊥
σμν e+σ (p)e∗

λ1μ
(k′)e∗

λ2ν
(p − k′) (7.87)

are

γ++ = √
2

k∗

x(1 − x)
, γ+− = √

2
x

1 − x
k, γ−+ = √

2
1 − x

x
k, (7.88)

where k = k1 + ik2, k∗ = k1 − ik2.
The dimensionless quantities

w1+→i (x) = x(1 − x)

2 |k|2
∑
t=±

|γi t |2 , (7.89)

are the the elementary inclusive probabilities (we do not write the colour factor fabc fa′bc =
Ncδaa′ , because it is included in the definition of ξ )

w1+→1+(x) = 1 + x4

x(1 − x)
, w1+→1−(x) = (1 − x)4

x(1 − x)
. (7.90)

For the total probability of the gluon transition to gluons we get:

wg→gg =
∫ 1

0

1 + x4 + (1 − x)4

x(1 − x)
x dx = 1

2

∫ 1

0

1 + x4 + (1 − x)4

x(1 − x)
dx, (7.91)

where the factor x in the integrand is substituted by 1
2 due to its symmetry under the

substitution x → 1 − x . The divergency of wg→gg at x = 0, 1 is cancelled in the evolution
equations. There is also the contribution to wg from the quark-antiquark state (see below):

wg→qq̄ = n f

2Nc

∫ 1

0

(
x2 + (1 − x)2

)
dx = n f

3Nc
. (7.92)

To present the evolution equation in the traditional form (see, e.g. ([8],[9]) we write the
splitting kernels for the gluon-gluon transitions as follows

P1+→1+(x) = w1+→1+(x)+ wg δ(x − 1)

= 2x

(1 − x)+
+ (1 + x)(1 − x2)

x
+
(

11

6
− n f

3Nc

)
δ(x − 1), (7.93)
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P1+→1−(x) = w1+→1−(x)+ wg = (1 − x)3

x
, (7.94)

where the notations (7.69) were used. For the splitting kernel describing unpolarised gluon-
gluon transitions, we obtain

Pg→g(x) = 2x

(1 − x)+
+ 2

(1 − x)(1 + x2)

x
+
(

11

6
− n f

3Nc

)
δ(x − 1). (7.95)

The matrix elements for the anomalous dimension matrix describing gluon-gluon
transitions can be written as follows

w
j
r→k =

∫ 1

0
dx wr→k(x)

(
x j−1 − x δrk

)
− n f

3Nc
δrk . (7.96)

Thus, we obtain

w
j
1+→1+ = 2ψ(1)− 2ψ( j − 1)− 1

j + 2
− 1

j + 1
− 1

j
− 1

j − 1
+ 11

6
− n f

3Nc
. (7.97)

where ψ(z) is the Euler function,

ψ(z) = d

dz
ln�(z), ψ(1) = −C ≈ −0.577 (7.98)

and

w
j
1+→1− = − 1

j + 2
+ 3

j + 1
− 3

j
+ 1

j − 1
. (7.99)

The anomalous dimension of tensors Gμ1σ Dμ2 . . .Gμ jσ , corresponding to the vector
(electric) gluon field is:

w
jv
1→1 = 2ψ(1)− 2ψ( j − 1)− 2

j + 2
+ 2

j + 1
− 4

j
+ 11

6
− n f

3Nc
. (7.100)

Note that the regular term 11
6 − n f

3Nc
is proportional to the function β0 entering the expression

for the running of the QCD-coupling constant. It seems to be related to a supersymmetric
generalization of QCD.

Further, the anomalous dimension for the axial tensors Gμ1σ Dμ2 . . . G̃μ jσ in the
gluodynamics is

w
ja
1→1 = 2ψ(1)− 2ψ( j)− 4

j + 1
+ 2

j
+ 11

6
− n f

3Nc
. (7.101)

The energy conservation sum rule for j = 2

w2v
1→1 + w2v

1→1/2 = 0. (7.102)

is fulfilled as it can be verified from the expression for w jv
1→1/2 obtained in the next subsec-

tion. Because the contribution w jv
1→1/2 is proportional to n f , one can verify that w2v

1→1 = 0
at n f = 0.
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7.4.2 Transition from a gluon to a quark pair

The propagator of the massless fermion can be written in the form

G(k) = � k
k2
, � k =

∑
λ=±

uλ(k′) uλ(k′)+ k2

2kq ′ �q ′, k′ = k − k2

xs
q ′, (7.103)

where k′2 = 0. The last contribution in � k is absent on the mass shell or providing that the
vertex neighboring to the propagator G is �q ′. The massless fermion with the momentum k
and the helicity λ/2 is described by the spinor

uλ(k) = √
k0

(
ϕλ

λϕλ

)
, u γμ u = 2 kμ, � k =

∑
λ

uλuλ, (7.104)

where the Pauli spinor ϕ satisfies the equation

σ kϕλ − λ k0 ϕ
λ =

(
k3 − λ k0 k1 − ik2

k1 + ik2 −k3 − λ k0

)(
ϕλ1
ϕλ2

)
= 0, k0 = |k| . (7.105)

In the light-cone frame p = p3 → ∞, we have

ϕ+ $
(

1
k

2 x p

)
, ϕ− $

( −k∗
2 x p

1

)
. (7.106)

The massless antifermion with the momentum p − k and the helicity λ′/2 is described
by the spinor

vλ
′
(− p + k) = √

p0 − k0

(
χλ

′

−λ′χλ′

)
, (7.107)

where the Pauli spinor χ satisfies the equation

σ ( p − k)χλ
′ + λ′(p0 − k0) χ

λ′ = 0. (7.108)

In the light-cone frame, we have

χ− $
(

1
−k

2(1− x) p

)
, χ+ $

(
k∗

2 (1−x) p

1

)
, (7.109)

and vλ satisfies the equation γ5v
λ = −λvλ. Note that in the case of the left Pauli neutrino

we have only λ = −1 for ν and λ′ = 1 for ν in correspondence with the eigenvalues of the
matrix γ5 for its eigenfunctions uλ and vλ

′
, respectively.

Thus, for the matrix element of the vertex describing the transition of the gluon with
momentum p and helicity 1 into a pair of fermions (see Fig. 7.7), we have

γ λλ
′ = uλ(

−→
k )
γ 1 + iγ 2

√
2

vλ
′
(− p + k) = 2

√
(p0 − k0) k0λ δλ,−λ′

√
2ϕλ∗

(
0 1
0 0

)
χλ

′
.

(7.110)
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p

k−p + k

Fig. 7.7. Gluon-quark-antiquark vertex

The nonzero matrix elements γ λλ
′

are given by:

γ+− = −√
2 k

√
x

1 − x
, γ−+ = −√

2 k

√
1 − x

x
. (7.111)

Now, let us use the following representation for the elementary inclusive probabilities,
which was obtained above,

w1+→q(x) = n f

2Nc

x(1 − x)

2 |k|2
∑

t

∣∣γ qt
∣∣2 . (7.112)

Here 1
2 is the colour factor, n f is the number of different types of quarks, and the factor

1/Nc takes into account that Nc is included in the definition of ξ . Thus, we get

w1+→q+(x) = w1+→q+(x) = n f

2Nc
x2, w1+→q−(x) = w1+→q−(x) = n f

2Nc
(1 − x)2.

(7.113)
We write also these splitting kernels in the traditional notations, corresponding to the
evolution equation (7.62)

P1+→q+(x) = n f

2Nc
x2, P1+→q−(x) = n f

2Nc
(1 − x)2,

Pg→q(x) = Pg→q̄ = n f

2Nc
(x2 + (1 − x)2). (7.114)

The total probability for the gluon transition to quarks is

w1→q,q = n f

2Nc

∫ 1

0

(
x2 + (1 − x)2

)
dx = n f

3Nc
. (7.115)

For QED, the colour factor
n f

2Nc
is absent and we obtain w

1→ 1
2

1̄
2

= 2
3 . Taking into

account that in the perturbation theory ξ = α
2π ln �2 for QED, the probability for the

photon to be in the e+e−-pair state is α
3π ln �2 in agreement with the known result for the

charge renormalization in this theory.
The nonvanishing matrix elements for the anomalous dimension matrix are

w
j
1+→q+ = n f

2Nc

1

j + 2
, w

j
1+→q−(x) = n f

2Nc

(
1

j
− 2

j + 1
+ 1

j + 2

)
(7.116)

and these quantities for the vector and axial current are

w
jv
1→1/2 = n f

Nc

(
1

j
− 2

j + 1
+ 2

j + 2

)
, (7.117)
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w
ja
1→1/2 = n f

Nc

(
−1

j
+ 2

j + 1

)
, (7.118)

where we added the gluon transitions to the quark and antiquark.

7.4.3 Transition from a quark to the quark–gluon system

The amplitude for the transition of a quark with the helicity + to quark and gluon (see
Fig. 7.8) can be written as follows in the light-cone gauge for the gluon-polarization vector:

u+(k) (e∗λ⊥ + k⊥e∗λ

(p − k, q ′)
�q ′) u+(p) = √

k0 p02ϕ+∗σe∗λϕ+ + 2 k⊥e∗λ
√

x

1 − x
. (7.119)

Therefore, we have

u+(k) (� e+∗
⊥ + k⊥e+∗

(p − k, q ′)
�q ′) u+(p) = √

2k∗ 1√
x(1 − x)

, (7.120)

u+(k) (� e−∗
⊥ + k⊥e−∗

(p − k, q ′)
�q ′) u+(p) = √

2k

√
x

(1 − x)
. (7.121)

Thus, the splitting kernels are

w1/2+→1+(x) = c

x
, w1/2+→1−(x) = c

(1 − x)2

x
, w1/2+→1/2+(x) = c

1 + x2

1 − x
,

(7.122)

where

c = N 2
c − 1

2N 2
c

= CF

Nc
(7.123)

is the colour factor for the corresponding loop (note that Nc is included in ξ )
The total contribution to w1/2 is

w1/2 = CF

2Nc

∫ 1

0

(
1 + x2

1 − x
+ 1 + (1 − x)2

x

)
dx . (7.124)

The splitting kernels for the quark–gluon transitions in the evolution equation (7.62) are

P1/2+→1+(x) = CF

Nc

1

x
, P1/2+→1−(x) = CF

Nc

(1 − x)2

x
,

Pq→g(x) = CF

Nc

1 + (1 − x)2

x
. (7.125)

p

kp − k

Fig. 7.8. Quark–gluon–quark vertex
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Analogously, the splitting kernels for the quark-quark transition in (7.62)

P1/2+→1/2+(x) = CF

Nc

(
1 + x2

(1 − x)+
+ 3

2
δ(1 − x)

)
, (7.126)

where we used the notations (7.69).
The corresponding anomalous dimensions are

w
j
1/2+→1+ = CF

Nc

1

( j − 1)
, w

j
1/2+→1− = CF

Nc

(
1

j − 1
− 2

j
+ 1

j + 1

)
, (7.127)

w
j
1/2+→1/2+ = CF

Nc

∫ 1

0

1 + x2

1 − x
(x j−1 − 1)dx

= CF

Nc

(
2ψ(1)− 2ψ( j)− 1

j + 1
− 1

j
+ 3

2

)
. (7.128)

The vector and axial contributions are

w
jv
1/2→1 = CF

Nc

(
2

j − 1
− 2

j
+ 1

j + 1

)
, (7.129)

w
ja
1/2→1 = CF

Nc

(
2

j
− 1

j + 1

)
. (7.130)

We have the sum rules

w1v
1/2→1/2 = 0, w2v

1/2→1 + w2v
1/2→1/2 = 0, (7.131)

expressing the conservation of the baryon charge and the energy, respectively, in the quark
decay.

As it is seen from the above formulae, there are two Dokshitzer relations among the
matrix elements of the anomalous dimension matrix for n f = Nc

Nc

CF

(
w

jv
1/2→1 + w jv

1/2→1/2

)
= w jv

1→1 +w jv
1→1/2 = 2ψ(1)−2ψ( j −1)− 3

j
+ 3

2
, (7.132)

Nc

CF

(
w

ja
1/2→1 + w ja

1/2→1/2

)
= w ja

1→1 + w ja
1→1/2 = 2ψ(1)− 2ψ( j)− 2

j + 1
+ 1

j
+ 3

2
.

(7.133)

The relations (7.132), (7.133) can be derived using arguments based on the supersymme-
try (SUSY). In the supersymmetric generalization of the Yang–Mills theory, the gluon and
its partner, gluino, are unified in one multiplet. The gluino is a Majorana fermion which
coincides with the corresponding antiparticle and belongs to an adjoint representation of
the gauge group. In this model, the total probability of finding both gluon and gluino with
the parameter x should not depend on the spin s = 1, 1/2 of the initial particle, since they
are components of the supermultiplet.

On the other hand, for the probability of gluon transition to the qq pair in QCD we have
the extra factor n f /Nc in comparison with its transition to two gluinos, because the ratio of
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the number of the fermion states for these theories is 2n f and the ratio of the corresponding
colour factors is 1/(2Nc). Analogously, for the probability of the transition of the quark
to the gluon and quark we have the additional colour factor CF

Nc
– the ratio of two Casimir

operators in comparison with the transition to the gluon and gluino.
Collecting the results obtained above, we can write the evolution equation for par-

ton distributions in leading order approximation, i.e. where all terms, proportional to
[αs(Q2) ln(Q2/μ2)]n are accounted, but terms ∼ αk

s (Q
2)[αs(Q2) ln Q2/μ2]n, k ≥ 1 are

disregarded (DGLAP equations):

d

d ln Q2
ng(x, Q2) =αs(Q2)

2π

1∫
x

dy

y

⎧⎨⎩Pq→g

(
x

y

)∑
f

[n f (y, Q2)+ n f̄ (y, Q2)]

+ Pg→g

(
x

y

)
ng(y, Q2)

⎫⎬⎭
d

d ln Q2
n f (x, Q2) = αs(Q2)

2π

1∫
x

dy

y

{
Pq→q

(
x

y

)
n f (y, Q2)+ Pg→q

(
x

y

)
ng(y, Q2)

}

d

d ln Q2
n f (x, Q2) = αs(Q2)

2π

1∫
x

dy

y

{
Pq→q

(
x

y

)
n f̄ (y, Q2)+ Pg→q

(
x

y

)
ng(y, Q2)

}
,

(7.134)
where

Pq→q(z) = 4

3

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]

Pg→q(z) = 1

2

[
z2 + (1 − z)2

]

Pq→g(z) = 4

3

1 + (1 − z)2

z

Pg→g(z) = 6

[
1 − z

z
+ z

(1 − z)+
+ z(1 − z)+

(
11

12
− n f

18

)
δ(1 − z)

]
. (7.135)

To solve the evolution equation it is necessary to fix the initial conditions: the values
of ng, n f , n f̄ at some Q2 = Q2

0. Usually, it is chosen the low Q2
0 ∼ 2 − 5 GeV2. The

x-dependence of ni (x, Q2
0) is taken from intuitive considerations – from the expected

behaviour at x → 0 and x → 1 (see [4]). A few numerical parameters are introduced
in ni (x, Q2

0). These parameters are determined by the best fit of the solution of evolution
equations to the whole set of experimental data. The parton densities are devided into a
singlet:

N sing = nu + nū + nd + nd̄ + ns + ns̄ + ng (7.136)
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and a nonsinglet part:

N nonsing
T =1 = nu − nd + nd̄ − nū, (7.137)

N nonsingl
T =0 =

∑
noctet

i + noctet
ī

. (7.138)

Each part is described by separate equations. Only quark and antiquark distributions
contribute to nonsinglet evolution equations.

7.5 OPE on light cone and parton model

As already was mentioned, the cross section of the inclusive reaction l N → l ′+everything
is proportional to

Wμν(q, p) =
∫

d4zeiqz〈p | [ jμ(z), jν(0)] | p〉. (7.139)

(See [2] and the books [4],[9], the second term in the commutator ∼ jν(0) jμ(z) can be
omitted, since its contribution vanishes for the matrix elements between the proton states
| p〉.) It was proved in [6] (see also [4]), that at high | q2 |→ ∞ the amplitude (7.139)
is dominated by the domain near the light cone, z2 = 0. Since we expect that the parton
model is valid at high | q2 |, we can put z2 = 0 in (7.139) and consider the integrand as a
function of zλ along light cone. For simplicity, we consider one flavour and the symmetrical
part of the tensor Wμ,ν . Further,

jμ(z) = q̄(z)γμq(z), (7.140)

where q(z) is the quark field. In the leading order in αs , the product jμ(z) jν(0) is given by

q̄(z)γμq(z)q̄(0)γνq(0)+ q̄(z)γμq(z)q̄(0)γνq(0) (7.141)

and the contracted terms shall be substituted by free propagators:

S(z) = 1

π
� zδ′(z2). (7.142)

After substitution of (7.142) in (7.141) and simple algebra, we get:

W sym
μν (q, p) = 1

π

∫
d4zeiqz Sμανβδ

′(z2)zα〈p | q̄(z)γβq(0) | p〉, (7.143)

where

Sμανβ = δμαδνβ + δμβδαν − δμνδαβ. (7.144)

Expand now the matrix element in (7.143) in powers of z. (Because of δ′(z2) factor in
(7.143) it is the expansion along the light cone.) In the Fock–Schwinger gauge, zλ∂λ can
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be replaced by zλ∇λ where ∇λ is the covariant derivative. After transfer of the derivatives
to the right, we have:

W sym
μν = 1

π

∫
d4zeiqz Sμανβδ

′(z2)zα
∑

n−odd
n=1,3

1

n! zμ1 . . . zμn 〈p | q̄(0)γβ∇μ1 . . .∇μn q(0) | p〉.

(7.145)

The summation in (7.145) is going over odd n = 1, 3 . . . . The reason is that W sym
μν (q, p) is

an even function of qλ,W sym(q, p) = W sym(−q, p). Let us keep only the terms pro-
portional to δμν and pμ pν . All others can be restored from the requirement of gauge
invariance. The substitution of (7.144) into (7.145) results in:

W sym
μν = − 1

2π

∫
d4zeiqz∂αδ(z

2)δμν
∑

n=1,3,...

1

n! zμ1 . . . zμn 〈p | q̄(0)γα∇μ1 . . .∇μn q(0) | p〉

−
[

1

2π

∫
d4zeiqzδ(z2)

∑
n−even

n≥0

1

n! zμ1 . . . zμn 〈p | q̄(0)γμ∇ν∇μ1 . . .∇μn q(0) | p〉+(μ→ ν)

]
.

(7.146)
The first term in (7.146) reduces to:

W sym(1)
μν = i

2π
δμν

∫
d4zeiqzqαδ(z

2)
∑

n=1,3 ...

zμ1 . . . zμn 〈p | q̄γα∇μ1 . . .∇μn q | p〉.
(7.147)

The term, proportional to:

〈p | q̄γα∇μ1 . . .∇α . . .∇μn q | p〉 (7.148)

is dropped, because its spin is lower than the spin of the corresponding term in (7.147),
which results to additional suppression factor 1/Q2 (see below). The general form of the
matrix element in (7.147) is:

〈p | q̄(0)γα∇μ1 . . .∇μn q(0) | p〉 = in+1 pα pμ1 . . . pμn an, (7.149)

where an are some numbers. Using the equalities∫
d4zeiqzδ(z2)zμ1 . . . zμn = ∂n

∂qμ1 . . . ∂qμn

1

in

∫
d4zeiqzδ(z2), (7.150)

∫
d4zeiqzδ(z2) = −2π

q2
, (7.151)

∂n

∂qμ1 . . . ∂qμn

= 2nqμ1 . . . qμn

(
∂

∂q2

)n

+ trace terms, (7.152)

the first term in (7.146) can be calculated and appears to be equal (ν = pq):

W sym(1)
μν = −1

2
δμν

∑
n=1,3...

(
2ν

−q2

)n+1

an = −1

2
δμν

∑
n

an

xn+1
. (7.153)
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The second term in (7.146) is calculated in similar way. We have:

W sym(2)
μν = − 1

2π

∫
d4zeiqzδ(z2)

∑
n=0,2...

1

n! 〈p | q̄γμ∇ν∇μ1 . . .∇μn . . .∇μn q | p〉

=
∑

n=1,3...

(
2ν

−q2

)n an

ν
pμ pν = 1

ν

∑
n

1

xn
pμ pνan . (7.154)

Finally,

W sym
μν =

(
−δμν 1

2x
+ 1

ν
pμ pν

) ∑
n=1,3...

an

xn
. (7.155)

From comparison with (7.10) follows the Gallan–Gross relation (7.16). According to (7.17)
the infinite sum

∞∑
n=1,3

an

xn+1
= n(x) (7.156)

can be interpreted as the quark density. Note that if there are two conciding indices in
(7.149), as happened in (7.148), i.e. the spin of the operator is lower, by two units, then
in the right hand-side appears the factor p2. For dimensional grounds, such a term is sup-
pressed by 1/Q2. Therefore, in OPE the contributions of various operators to the cross
section of deep inelastic scattering is determined not by their dimensions d, but by their
twist

t = d − j, (7.157)

where j is the spin. The lowest possible twist is 2. Note also, that the conservation
low (7.61) in terms of OPE corresponds to the contribution of the operator of the
energy-momentum tensor.

7.6 Evolution equations for fragmentation functions

Let us consider now the evolution equations for the fragmentation functions D̄h
i (z) =

hi (z), which are the distributions of the hadron h carrying the longitudinal fraction z of the
momentum of the parton i . The quark-fragmentation function hq(z) enters, for example,
the cross section for the inclusive production of hadrons (see (7.26)). The initial parton is
assumed to be a highly virtual particle. The virtualities of particles decrease in the process
of their decay to other partons (cf. Fig.(7.4)) in such way that the partons forming the
hadron have virtualities of the order of the value of the characteristic QCD scale �QC D .

Let us find the normalization condition for the wave function ψi (k1, .., kn) of the virtual
parton i with momentum k which is a superposition of the near-mass-shell partons with
momenta k1, .., kn . Consider the nonrenormalized Green functions in the light-cone gauge.
One can present such Green functions for the quark and gluon in the form (cf. (7.37) and
(7.103))

G(k) = � k
k2

g(k2, kq ′)+ �q ′

kq ′ f (k2, kq ′),



7.6 Evolution equations for fragmentation functions 335

Dμν(k) = �μν

k2
d(k2, kq ′)+ q ′

μ q ′
ν

(kq ′)2
c(k2, kq ′), (7.158)

where we used the light-cone vector q ′ (7.36). In our kinematics, we have for the parton
virtuality (see (7.34) and (7.35)) the restriction from above

k2 � 2kq ′ ∼ �2 ∼ Q2, (7.159)

where Q2 is a characteristic large scale in the corresponding hard process. For example,
in the e+e−-annihilation to hadrons this scale is the virtuality of the intermediate photon.
The functions g, f, d , and c depend in the leading logarithmic approximation only on the
ratio k2/�2.

Because at k2 = �2 the nonrenormalized Green functions coincide with the free
propagators, we have the following normalization conditions

g(k2/�2)|k2=�2 = 1, f (k2/�2)|k2=�2 = 0,

d(k2/�2)|k2=�2 = 1, c(k2/�2)|k2=�2 = 0. (7.160)

Let us write the dispersion relations for the functions g and d in the form

1

k2
g(k2/�2) = Zq

k2
+ 1

π

∫ �2

m2

d k̃2

k2 − k̃2 + iε
Im

(
− 1

k̃2
g(k̃2/�2)

)
,

1

k2
d(k2/�2) = Zg

k2
+ 1

π

∫ �2

m2

d k̃2

k2 − k̃2 + iε
Im

(
− 1

k̃2
d(k̃2/�2)

)
, (7.161)

where Zq and Zg are squares of the renormalization constants for corresponding fields.
Using the constraints (7.160), we obtain the following sum rules

1 = Zq + 1

π

∫ �2

m2
d k̃2 Im

(
− 1

k̃2
g(k̃2/�2)

)
,

1 = Zg + 1

π

∫ �2

m2
d k̃2 Im

(
− 1

k̃2
d(k̃2/�2)

)
. (7.162)

They correspond to the normalization conditions for the wave functions ψi (k1, . . . , kn)

which will be derived below.
For this purpose, let us find g and d from Eqs. (7.158)

g(k2/�2) = k2

2kq ′
1

2
Tr �q ′G(k), d(k2/�2) = 1

2
�μν Dμν(k). (7.163)

Since the nonphysical contributions cancel in the propagators, one can express in these
relations the propagators through the projectors to the physical states (see (7.37) and
(7.103))

Dμν(k) ∼
∑

i=1,2 ei
μ(k

′) ei∗
ν (k

′)
k2

, G(k) ∼
∑
λ=± uλ(k′) uλ(k′)

k2
, k′ = k − k2

xs
q ′,

(7.164)
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Note that these representations are in an agreement with the normalization conditions for
the Dirac spinors and polarization vectors

1

2kq ′ uλ(k′) q̂ ′ uλ
′
(k′) = δλλ′

, eλμ(k
′) eλ

′∗
ν (k

′)�μν = δλλ′
. (7.165)

In relations (7.161) and (7.162), one can use the following expressions for the imagi-
nary parts of the corresponding Green functions in terms of the amplitudes Mλ

i→hn
which

describe transitions of the initial parton i to the hadron states hn

2Im

(
− 1

k̃2
g(k̃2/�2)

)
= 1

k̃4

1

2

∑
λ=±1/2

∑
hn

∫
d"n|Mλ

q→hn
|2,

2Im

(
− 1

k̃2
d(k̃2/�2)

)
= 1

k̃4

1

2

∑
λ=±1

∑
hn

∫
d"n|Mλ

g→hn
|2, (7.166)

where we averaged over the helicities ±s of the initial parton. Note that one can omit this
averaging due to the parity conservation in strong interactions. The phase space d"n for
momenta of the final hadrons in the Sudakov variables defined in (7.32) can be written as
follows

d"n =
n∏

i=1

d3ki

2|ki | (2π)3 (2π)
4 δ4(k̃ −

n∑
i=1

ki )

=
n−1∏
i=1

dβi d2ki ⊥
2βi (2π)3

2π

1 −∑n−1
i=1 βi

δ(k̃2 −
∑

i

k2
i ⊥
βi
), (7.167)

where

1 > βi > 0, β̃ = 1 −
n∑

i=1

βi , α̃s = k̃2 < �2. (7.168)

Using Eqs. (7.162) and (7.166), one can get the following normalization condition for
the wave function of the parton in the space of hadron states

1 − Zq = 1

2

∑
λ=±1/2

∑
hn

∫ n−1∏
i=1

dβi d2ki ⊥
2βi (2π)3

2π

1 −∑n−1
i=1 βi

|Mλ
q→hn

|2(∑
i

k2
i ⊥
βi

)2
,

1 − Zg = 1

2

∑
λ=±1/2

∑
hn

∫ n−1∏
i=1

dβi d2ki ⊥
2βi (2π)3

2π

1 −∑n−1
i=1 βi

|Mλ
g→hn

|2(∑
i

k2
i ⊥
βi

)2
. (7.169)

The above expressions are applied, strictly speaking, only to renormalized field theories
of the type of QED, for which bare particles (partons) coincide in their quantum numbers
with physical particles (hadrons). In QCD, quarks and gluons do not exist in the free state
and therefore the amplitude Mλ

q→hn
does not have any physical meaning. Nevertheless,

we shall use the above expressions also in the QCD case, assuming that the final hadron
states include necessarily also soft quarks and gluons, which are annihilated with other soft
particles appearing from the decay of other hard partons produced in the initial state.
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The kinematics in which one can obtain the leading logarithmic terms for the fragmen-
tation functions is different from the kinematics, which gives the main contribution to the
normalization of the partonic wave function of a hadron (see Fig.(7.4)). We shall discuss it
below.

In a one-loop approximation (n = 2) for the transitions i → ( j, k), the normalization
condition for the parton wave function takes the form

1 − Zi =
∑
λ j , λk

∫ 1

0

dβ

β(1 − β)
∫

d2k⊥(
k2⊥
β

+ k2⊥
1−β

)2
|Mλi ; λ j ,λk

i→ j,k |2, (7.170)

where k, k′ − k are momenta of two final partons and λ j , λk are their polarizations, respec-
tively. It is obvious that this expression coincides formally with the analogous one-loop
contribution to the normalization condition of the hadron wave function (see, for example,
(7.32)). Nevertheless, there is an essential difference in the interpretation of two results.
Namely, in (7.32) the wave function # has the small energy propagator 1/�E for the
final partons, whereas in (7.169) we have such propagator for the initial parton. The dif-
ference is especially obvious if one considers the wave functions for the state containing
several (n > 2) final particles with their momenta k1, k2, . . . , kn and the Sudakov com-
ponents x1, x2, . . . , xn . In this case, for the intermediate state of r partons with momenta
q1, q2, . . . , qr the hadron wave function has the energy propagator(

m2 −
r∑

k=1

q2
k

βk

)−1

, (7.171)

but for the parton wave function the corresponding propagator is(
n∑

i=1

k2
i

βi
−

r∑
k=1

q2
k

βk

)−1

. (7.172)

As was mentioned above, the second important peculiarity in the case of fragmentation
functions in comparison with parton distributions is related to the kinematics for the flow of
particle transverse momenta. In the parton shower drawn in Fig.(7.4) for the hadron wave
function, each pair of partons is produced with significantly larger transverse momenta
than the transverse momentum of the initial particle, but in the case of the transition of a
parton to hadrons each produced a pair of partons ( j, l) flies almost in the same direction as
the initial parton (i) and has a much smaller relative transverse momentum. To show it, let
us consider the contribution of this elementary transition i → j, l to the denominator of the
energy propagator (7.172) and impose on momenta the condition of its relative smallness

k2
i

βi
− k2

j

β j
− k2

l

βl
� k2

i . (7.173)

It is obvious that the left-hand side is zero for the planar kinematics when the emission
angles θ ∼ k⊥/β for their momenta are the same

ki

βi
= k j

β j
= kl

βl
. (7.174)
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We obtain the logarithmic contribution over the transverse momenta of produced particles
i, j providing that (

k j

β j
− ki

βi

)2

�
(

ki

βi

)2

. (7.175)

It means that the relative angles �θi of produced pairs decrease in the course of the
subsequent decays

1 � �θ1 � �θ2 � . . .� �θr . (7.176)

Thus, the hadron and parton wave functions are different even on the partonic level,
when instead of final hadrons h we consider the partons with a fixed virtuality k2 ∼ �2

QC D .
Nevertheless, for the last case, in the region of fixed β the evolution equations for the parton
distributions Dk

h(x) and for the fragmentation functions D̄k
h(x) in the leading logarithmic

approximation coincide and one can get the Gribov–Lipatov relation [23]–[25]

D̄k
h(x) = Dk

h(x), (7.177)

which illustrates a duality between the theoretical descriptions of hard processes in terms
of hadrons and partons. In the next-to-leading approximation, this relation is violated
[27] because in the fragmentation function at small x there appear double-logarithmic
contributions ∼ α2 ln3 x ln Q2, which are absent in the parton distributions.

Another interesting equality valid in the Born approximation is the so-called Drell–
Levy–Yan relation [15]

D̄h
k (x) = (−1)2(sk−sh)+1 x Dk

h

(
1

x

)
, (7.178)

where sh and sk are the spins of the corresponding particles. This relation is violated in
QED and QCD already in the leading logarithmic approximation, because the point x = 1
turns out to be a singular point Dk

h (x) ∼ (1 − x)a with a noninteger value of a. In each
order of the perturbation theory we have a polynomial of logarithms ln(1 − x) with the
coefficients which are analytic functions of x . The receipt for the analytic continuation
of Dk

h (x) around the point x = 1 compatible with the relation (7.178) is simple: the
arguments of logarithms should be taken as the modules |1 − x | at x > 1 with an analytic
continuation of the coefficients of the polynomials [24]. (For the connection of Dk

h(x) and
D̄h

k (x) near x = 1 see [4]). The fragmentation functions are discussed in more detail in
Chapter 8.

7.7 Parton distributions in QCD in LLA

To solve the evolution equations (7.57) for the parton distributions nk(x) in the leading log-
arithmic approximation (LLA) of QCD one can use the scale invariance of their integral
kernels to the dilatations x → λ x in the Bjorken variable. This invariance is related to con-
servation of the total angular momentum j in the crossing channel t . Thus, we search for
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solution nk(x) of the DGLAP equations for QCD in the form of the Mellin representation
in the variable ln(1/x)

nk(x) =
∫ σ+i∞

σ−i∞
d j

2π i

(
1

x

) j

n j
k , (7.179)

where n j
k are the analytically continued moments n j

k of the parton distributions

n j
k =

∫ 1

0
dx x j−1 nk(x). (7.180)

These quantities have simple physical meaning. Namely, for integer j they coincide with
the matrix elements of the so-called twist-2 operators O j

k

n j
k (s) =< h|O j

k |h >, O j
k = q ′

μ1
q ′
μ1
. . . q ′

μ j
O
μ1μ2...μ j
k . (7.181)

For the nonpolarized case, the corresponding gauge-invariant tensors are

O
μ1μ2...μ j
q = i j−1 S{μ1...μ j } ψ̄ γμ1 ∇μ2 . . .∇μ j ψ, (7.182)

O
μ1μ2...μ j
g = i j−2 S{μ1...μ j } Gσ μ1 Dμ2 . . . Dμ j−1Gσ μ j . (7.183)

The corresponding pseudotensor operators appeared in the polarized case are

Õ
μ1μ2...μ j
q = i j−1 S{μ1...μ j } ψ̄γ5 γμ1 ∇μ2 . . .∇μ j ψ, (7.184)

Õ
μ1μ2...μ j
g = i j−2 S{μ1...μ j } Gσ μ1 Dμ2 . . . Dμ j−1 G̃σ μ j . (7.185)

In the above relations, S{μ1...μ j } means the symmetrization and subtraction of traces in
the corresponding Lorentz indices, Dμ are the covariant derivatives, and G̃σ μ is the dual
tensor of the gluon field. The above operators have the dimension d = j + 2 in the mass
units. Therefore, all of them have the twist t = d − j equal to 2. There are also four extra
operators

O
μ1μ2...μ j
q,σ = i j−1 S{μ1...μ j } ψ̄γ⊥

σ γμ1 ∇μ2 . . .∇μ j ψ, (7.186)

O
μ1μ2...μ j
g,σ1,σ2 = i j−2 S{μ1...μ j } G⊥

σ1 μ1
Dμ2 . . . Dμ j−1G⊥

σ2 μ j
(7.187)

Õ
μ1μ2...μ j
q,σ = i j−1 S{μ1...μ j } ψ̄γ5 γ

⊥
σ γμ1 ∇μ2 . . .∇μ j ψ, (7.188)

Õ
μ1μ2...μ j
g,σ1,σ2 = i j−2 S{μ1...μ j } G⊥

σ1 μ1
Dμ2 . . . Dμ j−1 G̃⊥

σ2 μ j
, (7.189)

with the twist 2, but they do not enter the description of deep inelastic processes.
In LLA, the momenta n j

k obey the system of the ordinary differential equations

∂

∂ξ
n j

k =
∑

r

w
j
r→k n j

r , (7.190)
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which correspond to the renormalization group equations for the operators O j
k . Here the

variable ξ is defined in eq. (7.58) and (7.59) as follows

ξ(Q2) = 2Nc

βs
ln

αμ

α(Q2)
(7.191)

and the elements of the anomalous dimension matrix w j
r→k are calculated above. This

matrix has the block-diagonal form in an appropriate basis and can be easily diagonalized∑
r

w
j
r→k n j

r (s) = w j (s) n j
k (s). (7.192)

Its eigenvalues w j (s) and eigenfunctions n j
k (s) describe the asymptotic behaviour of the

multiplicatively renormalized matrix elements of twist 2 operators O j
s

n j
k (s) =< h|O j

s |h > (7.193)

at large ultraviolet cut-off �2 = Q2

n j
k (s, Q2) = n j

k (s, Q2
0) exp

(
�ξ w j (s)

)
, �ξ = ξ(Q2)− ξ(Q2

0). (7.194)

Note that the asymptotic freedom, corresponding to logarithmic vanishing of α(Q2) at
large Q2, leads to a rather weak dependence of n j

k (s) from Q2. The value of the matrix

element n j
k (s) at Q2 = Q2

0 is an initial condition for the evolution equation and should be
extracted from the experimental data.

The moments of the parton distributions n j
k are linear combinations of the eigenfunctions

n j
k (s, Q2) (7.194). Partly, the coefficients in these combinations are fixed by the quantum

numbers of the corresponding twist-2 operators. But there are operators with the same
quantum numbers and constructed from gluon or quark fields. They are mixed with others
in the process of renormalization. The linear combinations of the parton distributions which
are multiplicatively renormalizable are obtained from diagonalization of the anomalous
dimension matrix w j

r→k calculated above.

We write below the moments n j
k entering expression (7.179) for the parton distributions

nk(x) being solutions of the DGLAP equations (7.57) in LLA. The helicity of the initial
hadron with its spin s is assumed to be +s. The simplest result is obtained for momenta of
the flavour nonsinglet distributions

1

2

(
nq( j)− nq̄( j)

)
Q2 = 1

2

(
nq( j)− nq̄( j)

)
Q2

0
exp

(
�ξ w

j
1/2+→1/2+

)
, (7.195)

where the helicity is conserved λh = λq and due to (7.128) the anomalous dimension

w
j
1/2+→1/2+ is

w
j
1/2+→1/2+ = N 2

c − 1

2N 2
c

(
2ψ(1)− 2ψ( j)− 1

j + 1
− 1

j
+ 3

2

)
. (7.196)

For the flavour singlet quantum numbers in the crossing channel the corresponding
expressions are more complicated. We begin with the distributions of nonpolarized quarks
and gluons (i = 1/2, 1)
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1

2
(ni+( j)+ ni−( j)) =

∑
s=1,2

V i
s ( j) exp

(
�ξ w

jv
s

)
. (7.197)

The anomalous dimension matrix for the nonpolarized case was calculated above (see
expressions (7.128), (7.129), (7.117), and (7.100))

w
jv
1/2→1/2 = N 2

c − 1

2N 2
c

(
2ψ(1)− 2ψ( j)− 1

j + 1
− 1

j
+ 3

2

)
,

w
jv
1/2→1 = N 2

c − 1

2N 2
c

(
2

j − 1
− 2

j
+ 1

j + 1

)
,

w
jv
1→1/2 = n f

Nc

(
1

j
− 2

j + 1
+ 2

j + 2

)
,

w
jv
1→1 = 2ψ(1)− 2ψ( j − 1)− 2

j + 2
+ 2

j + 1
− 4

j
+ 11

6
− n f

3Nc
. (7.198)

The coefficients V i
s ( j) and quantities w jv

s for s = 1, 2 are respectively two eigenfunc-

tions and eigenvalues of the anomalous dimension matrix w ja
k→i

w jv Vi ( j) =
∑

k=1,1/2

w
jv
k→i Vk( j) (7.199)

with the initial condition∑
r=1,2

V r
i ( j) = 1

2
(ni+( j)+ ni−( j))|

Q2=Q2
0

(7.200)

fixed by the experimental data at Q2 = Q2
0.

In a similar way, one can construct the solution of the evolution equations (7.57) which
describe the Q2-dependence of the difference of distributions for the partons with the same
and opposite helicities with respect to that of the initial hadron

1

2
(ni+( j)− ni−( j)) =

∑
s=1,2

As
i ( j) exp

(
�ξ w

ja
s

)
(7.201)

using the anomalous dimension matrix for polarized particles (see (7.128), (7.130)),
(7.118), and (7.101)

w
ja
1/2+→1/2+ = N 2

c − 1

2N 2
c

(
2ψ(1)− 2ψ( j)− 1

j + 1
− 1

j
+ 3

2

)
,

w
ja
1/2→1 = N 2

c − 1

2N 2
c

(
2

j
− 1

j + 1

)
;

w
ja
1→1/2(x) = n f

Nc

(
−1

j
+ 2

j + 1

)
,

w
ja
1→1 = 2ψ(1)− 2ψ( j)− 4

j + 1
+ 2

j
+ 11

6
− n f

3Nc
. (7.202)



342 Evolution equations

In this case, the coefficients As
i ( j) and quantities w ja

s are obtained from the eigenvalue

equation for the above matrix w j
k→i

w ja Ai ( j) =
∑

k=1,1/2

w
ja
k→i Ak( j) (7.203)

with the additional condition∑
s=1,2

As
i ( j) = 1

2
(ni+( j)− ni−( j))|

Q2=Q2
0

(7.204)

fixed by the experimental data at Q2 = Q2
0.

One can assume, for example, that already for Q2 = Q2
0 the formulae of the parton

model are correct. Then for Q2 � Q2
0, we have

nk(x, Q2) =
∑

r

∫ 1

x

dy

y
nr (y, Q2

0)Wr→k(x/y), (7.205)

where Wr→k(x) is an inclusive probability to find the hard parton k inside a comparatively
soft parton r and nr (y, Q2

0) is a parton distribution function at the scale Q2
0.

The inclusive probabilities Wr→k(x) are normalized as follows

Wr→k(x)|
Q2=Q2

0
= δr,k δ(x − 1). (7.206)

Their momenta

Wr→k( j) =
∫ 1

0
dx x j−1 Wr→k(x) (7.207)

can be calculated in LLA

1

2

(
Wq→q( j)− Wq→q̄( j)

) = 1

2

(
Wq̄→q̄( j)− Wq→q̄( j)

) = exp
(
�ξ w

j
1/2+→1/2+

)
(7.208)

and
1

2
(Wr+→i+( j)+ Wr+→i−( j)) =

∑
s=±

V s
r→i ( j) exp

(
�ξ w

jv
s

)
, (7.209)

1

2
(Wr+→i+( j)− Wr+→i−( j)) =

∑
s=±

As
r→i ( j) exp

(
�ξ w

ja
s

)
, (7.210)

where

w
jv
± = w

jv
1/2→1/2 + w jv

1→1

2
±
√

1

4

(
w

jv
1/2→1/2 − w jv

1→1

)2 + w jv
1/2→1w

jv
1→1/2,

w
ja
± = w

ja
1/2→1/2 + w ja

1→1

2
±
√

1

4

(
w

ja
1/2→1/2 − w ja

1→1

)2 + w ja
1/2→1w

ja
1→1/2, (7.211)
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V ±
q→q( j) = −w

jv
∓ − w jv

1/2→1/2

w
jv
± − w jv

∓
, V ±

g→q( j) = w
jv
1→1/2

w
jv
± − w jv

∓
,

V ±
q→g( j) = w

jv
1/2→1

w
jv
± − w jv

∓
, V ±

g→g( j) = w
jv
± − w jv

1/2→1/2

w
jv
± − w jv

∓
, (7.212)

A±
q→q( j) = −w

ja
∓ − w ja

1/2→1/2

w
ja
± − w ja

∓
, A±

g→q( j) = w
ja
1→1/2

w
ja
± − w ja

∓
,

A±
q→g( j) = w

ja
1/2→1

w
ja
± − w ja

∓
, A±

g→g( j) = w
ja
± − w ja

1/2→1/2

w
ja
± − w ja

∓
. (7.213)

In particular, we have

1

2

(
Wq→q(1)− Wq→q̄(1)

) = 1

2

(
Wq̄→q̄(1)− Wq→q̄(1)

) = 1, (7.214)

which corresponds to the baryon number conservation. Further, for momenta of the
nonpolarized parton distributions with j = 2 one can get

Wq→q(2) = w2v+ − w2v
1/2→1/2

w2v+
+ w2v

1/2→1/2

w2v+
exp

(
�ξ w2v+

)
,

Wq→g(2) = w2v
1/2→1/2

w2v+

(
1 − exp

(
�ξ w2v+

))
,

Wg→q(2) = w2v+ − w2v
1/2→1/2

w2v+

(
1 + exp

(
�ξ w2v+

))
,

Wg→g(2) = w2v
1/2→1/2

w2v+
+ w2v+ − w2v

1/2→1/2

w2v+
exp

(
�ξ w2v+

)
, (7.215)

where w2v− = 0, because the energy-momentum tensor θμν(x) is not renormalized. From
these expressions, we obtain the sum rule

Wh→g(2)+ Wh→q(2) = 1 (7.216)

valid for any initial particle h, which corresponds to the parton energy conservation in the
hadron infinite momentum frame p → ∞. Moreover, at�ξ → ∞, where the contribution
exp

(
�ξ w2v+

)
tends to zero, the average energy taken by gluon or quark is independent of

the type of the initial particle h

Wh→g(2) = w2v
1/2→1/2

w2v+
, Wh→q(2) = w2v+ − w2v

1/2→1/2

w2v+
. (7.217)

This property is a consequence of factorization of the parton distribution momenta Dl
k( j)

for each multiplicatively renormalized operator

Dl
k( j) =

∑
r=1,2

bk(r)b
l(r) exp

(
�ξ w j

)
.
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For the quasi-elastic region x → 1, the large values of the Lorentz spin j ∼ 1/(1 − x)
are essential in the Mellin representation for nk(x). In the limit j → ∞, the anomalous
dimensions are simplified

w
j
+ ≈ w j

1/2→1/2 ≈ w jv
+ ≈ w ja

+ ≈ N 2
c − 1

2N 2
c

(
−2 ln j + 3

2

)
,

w
j
− ≈ w jv

− ≈ w ja
− ≈ −2 ln j + 11

6
− n f

3Nc
. (7.218)

Using also Eqs. (7.212) and (7.213), one can verify that in the quasi-elastic regime the
inclusive probability Wq→g(x) is small and in other transitions the helicity sign is con-
served leading to the relation A ≈ V . The momenta of nonvanishing inclusive probabilities
at large j are

Wq+→g+( j) ≈ 1

2

N 2
c − 1

N 2
c + 1

1

j ln j

(
e�ξ w

j
+ − e�ξ w

j
−
)
,

Wg+→q+( j) ≈ 2 n f Nc

N 2
c − 1

Wq+→g+( j),

Vq+→q+( j) ≈ e�ξ w
j
+ , Vg+→g+( j) ≈ e�ξ w

j
− . (7.219)

Similar results are valid for transitions between partons with negative helicities.
Inserting the above expressions in the Mellin integral representation (7.179), we can

obtain the following behaviour of inclusive probabilities

Wg+→q+( j) ≈ 2 n f Nc

N 2
c − 1

Vq+→g+( j), Wq+→g+(x)|x→1

≈ 1

2

N 2
c − 1

N 2
c + 1

⎛⎜⎝exp
(

3
4

N 2
c −1
N 2

c
�ξ
)

�(1 + N 2
c −1
N 2

c
�ξ)

(1 − x)
N2

c −1

N2
c
�ξ

ln 1
1−x

−
exp

(
( 11

6 − n f
3Nc
)�ξ

)
�(1 + 2�ξ)

(1−x)2�ξ

ln 1
1−x

⎞⎟⎠ ,

Wq+→q+(x)|x→1 ≈
exp

(
3
4

N 2
c −1
N 2

c
�ξ
)

�(
N 2

c −1
N 2

c
�ξ)

(1 − x)
−1+ N2

c −1

N2
c
�ξ
,

Wg+→g+(x)|x→1 ≈
exp

(
( 11

6 − n f
3Nc
)�ξ

)
�(2�ξ)

(1 − x)−1+2�ξ . (7.220)

Note that the expressions for Wq+→q+(x)|x→1 and Wg+→g+(x)|x→1 contain the sum of
the Sudakov double-logarithmic terms.

Let us consider now the small-x behavior of inclusive probabilities Wg+→g+(x). It is
related to the singularities of the anomalous dimension matrix w (7.197), (7.198), and
(7.202) at j → 1. Only two elements of this matrix are singular

lim
j→1

w
jv
1/2→1(x) = N 2

c − 1

2N 2
c

(
2

j − 1
− 3

2

)
, lim

j→1
w

jv
1→1 = 2

j − 1
− 11

6
− n f

3Nc
, (7.221)
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which leads to the singular eigenvalue

w
jv
+ ≈ 2

j − 1
− 11

12
+ n f

6Nc

N 2
c − 2

N 2
c

(7.222)

entering the following nonvanishing momenta Wr→k( j) (7.209)

lim
j→1

Wq→g( j) ≈ N 2
c − 1

2Nc
exp(�ξ w jv

+ ), lim
j→1

Wg→g(x) ≈ exp(�ξ w jv
+ ). (7.223)

For x → 0, the Mellin integral (7.179) has a saddle point at

j − 1 =
√

2�ξ

ln 1
x

. (7.224)

The calculation of the integral by the saddle-point method gives the following result for
the inclusive probabilities

Wq→g(x) ≈ N 2
c − 1

2Nc
Wg→g(x),

Wg→g(x) ≈ 1

x
exp

(
2

√
2�ξ ln

1

x

)(
�ξ

8π2 ln3 1
x

)1/4

exp

((
−11

12
+ n f

6Nc

N 2
c − 2

N 2
c

)
�ξ

)
.

(7.225)
Thus, the gluon distributions grow rapidly with increasing �ξ and decreasing x . It turns
out, that by gathering the powers of g2 ln 1/x in in all orders of perturbation theory in the
framework of the BFKL approach, one can obtain an even more significant increase of
these distributions [13] (see Chapter 9).

The leading singularity of the anomalous dimension w j
1/2→1/2 (7.197) of the nonsinglet

quark distribution is at j = 0 and

lim
j→0

w
j
1/2→1/2 ≈ N 2

c − 1

2N 2
c

(
1

j
− 1

2

)
. (7.226)

The small-x behaviour of this distribution is less singular

lim
x→0

1

2

(
Wq→q(x)− Wq→q̄(x)

) ∼ exp

√
2�ξ ln 1

x (N
2
c − 1)

N 2
c

. (7.227)

7.8 Hard processes beyond the LLA

The results of higher-order term calculations in perturbative QCD are now available. The
first task is to find parton distributions in hadrons with better precision. The starting point
is the factorization theorem. (The exhaustive review of the factorization theorem is given in
[26].) In the case of deep inelastic scattering structure functions, the factorization theorem
has the form:

Fb(x, Q, αs(μ)) = f a
b (x,

Q

μ
, αs(μ))⊗ Pa(x,

Q

μ
, αs(μ)). (7.228)
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Here Fb is the original partonic structure function of hadron, f a
b is the distribution function

of parton a in hadron, Pa is the universal splitting function, and μ is the normalization
point. The factor f a

b (x,
Q
μ
, αs(μ)) absorbs all collinear and soft singularities of the original

partonic structure function Fb(x, Q, αs(μ)). The right-hand side of (7.228) depends on μ,
while Fb(x, Q, αs) is μ-independent (besides of the running couple αs(μ)). However, this
statement is correct when all perturbative series are summed. When only few terms of the
series are accounted, then the result can be μ-dependent. Therefore, the μ-dependence of
the result can be used as a check of the convergency of the series.

7.8.1 Anomalous dimensions of twist-2 operators in two loops

Soon after the discovery of the asymptotic freedom in QCD, several groups of physisists
calculated the splitting kernels of the DGLAP equations and the related anomalous dimen-
sion matrices for the twist-2 operators in the two-loop approximation [27], [28], [29]. The
calculations of anomalous dimensions were performed in the MS-renormalization scheme.
In the same scheme, the one-loop corrections to the coefficient functions were obtained.
Because the obtained results are rather cumbersome, we consider here only the nonsinglet
flavour quantum numbers, where the corrections are comparatively simple. The knowl-
edge of the anomalous dimensions γ j (αs) and γ̃ j (αs) in this case allows one to find the

Q2-dependence of the matrix elements n j
q , ñ j

q of the tensor and pseudotensor operators O ,
Õ constructed only from the quark fields

∂ n j
q

∂ ln Q2
= γ j (αs(Q

2)) n j
q ,

∂ ñ j
q

∂ ln Q2
= γ̃ j (αs(Q

2)) ñ j
q , (7.229)

where αs(Q2) is the QCD running coupling constant and the functions γ j (αs), γ̃ j (αs) are
expanded in the series over αs

γ j (αs) =
∞∑

n=1

( αs

2π

)n
an( j), γ̃ j (αs) =

∞∑
n=1

( αs

2π

)n
ãn( j), (7.230)

where in the Born approximation we have

a1( j) = ã1( j) = CF

(
2ψ(1)− 2ψ( j)− 1

j + 1
− 1

j
+ 3

2

)
, (7.231)

where

CF = N 2
c − 1

2Nc
(7.232)

is the Casimir operator for the quark. Note that our anomalous dimension is normalized in
such a way that it differs from conventional γ by the factor −1/2. Taking into account this
difference, we obtain in two loops [27]

a2( j) = CF CA aF
2 ( j)+

(
C2

F − CF CA

2

)
aF F

2 ( j)+ CF TF NF aF F F
2 ( j), (7.233)
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where

CA = Nc, TF = 1

2
(7.234)

are the colour factors appearing, respectively, in one gluon and quark loops and NF is the
number of light quarks. The coefficients ai

2( j) are given below [27]

aF
2 ( j) = S1( j)

(
134

9
+ 2(2 j + 1)

j2( j + 1)2

)
+ S2( j)

(
−13

3
+ 2

j ( j + 1)

)
− 4S1( j)S2( j)− 43

24
− 1

9

151 j4 + 263 j3 + 97 j2 + 3 j + 9

j3( j + 1)2
. (7.235)

aF F
2 ( j) = 4(2 j + 1)

j2( j + 1)2
S1( j)− 4

(
2S1( j)− 1

j ( j + 1)

)
(S2( j)+ 2S−2( j))+ 16S−2,1( j)

− 8S3( j)− 8S−3( j)+ 6S2( j)− 3

4
− 2

3 j3 + j2 − 1

j3( j + 1)2
+ 4(−1) j 2 j2 + 2 j + 1

j3( j + 1)2
, (7.236)

aF F F
2 ( j) = −40

9
S1( j)+ 8

3
S2( j)+ 1

3
+ 4

9

11 j2 + 5 j − 3

j2( j + 1)2
. (7.237)

Actually the tensor anomalous dimension γ j (αs) is obtained from even values of j and
γ̃ j (αs) corresponds to odd values of j . In the above expressions, we used the following
definitions of harmonic sums

Sa( j)=
j∑

k−1

1

ka
, Sa,b,c...( j) =

j∑
k−1

1

ka
Sb,c...(k), .S−a,b,c...( j)=

j∑
k−1

(−1)k

ka
Sb,c...(k).

(7.238)
Their analytic continuation to the complex values of j is performed with the use of the
relations

Sa( j) = ψ( j + 1)− ψ(1), Sa,b,c...( j) =
∞∑

k−1

(
Sb,c...(k)

ka
− Sb,c...(k + j)

(k + j)a

)
,

.S−a,b,c...( j) =
∞∑

k−1

(−1)k

ka
Sb,c...(k) + (−1) j

∞∑
k−1

(−1)k

(k + j)a
Sb,c...(k + j). (7.239)

In such a way, we obtain two different functions a2( j) and ãn( j) , corresponding to the
analytic continuation from even and odd values of j . They correspond to the positive
and negative signatures, respectively. It then is possible to verify the double-logarithmic
prediction of Section 7.14 concerning the singularity of the anomalous dimensions at j = 0

γ j (αs) = j

2
−
√

j2

4
− αs

2π
CF = αs

2π j
CF .+

(
αs

2π j
CF .

)2

+ · · · (7.240)

γ̃ j (αs) = γ j (αs)− 4
( αs

2π

)2
(

C2
F − CF CA

2

)
+ · · · . (7.241)
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In the next-to-leading approximation the Gribov–Lipatov relation (7.177)

Drs(x) = Drs(x) (7.242)

between the parton distributions (P D) and the fragmentation functions (F F) is violated
[27], [28]. For the singlet case at small j − 1 an important physical effect of this viola-
tion is the appearence of two different effective parameters of the perturbative expansion
αs/( j − 1) and αs/( j − 1)2 for the deep inelastic ep scattering and the e+e−-annihilation,
respectively. Nevertheless, the difference of the corresponding elements of the anomalous
dimension matrices for P D and F F is simple [27], [28] and this fact deserves an explana-
tion. Such an explanation was presented by Dokshitzer with collaborators [30]. From the
physical arguments of ordering the parton processes in their “fluctuation lifetimes” they
suggested the use of two different evolution parameters in the scattering and annihilation
channels. In their approach, the two evolution equations can be written in an universal
form [30]

∂

∂ ln Q2
D(x, Q2) =

∫ 1

0

dz

z
P(z, αs(z

−1 Q2)) D(
x

z
, zσ Q2), (7.243)

where σ = −1 (+1) for the space-like (time-like) region. Here it is assumed that the new
splitting kernel is identical in two considered channels, which corresponds to the Gribov–
Lipatov relation. In this case, by returning to the evolution equations written in the
traditional form, we can obtain for the difference of the splitting kernels in the space-like
(S) and time-like (T) regions the following result for the nonsinglet case in two loops [30]

1

2

(
P(2),Tns (x)− P(2),Sns (x)

)
=
∫ 1

0
dz
∫ 1

0
dyδ(x − yz) P(1)qq (z) ln z

(
P(1)qq (y)

)
+ . (7.244)

This result coincides with that obtained by direct calculations in Ref. [27]. There exists
another relation between the structure functions of the deep inelastic ep scattering and
e+e−-annihilation. This relation obtained by Drell, Levy, and Yan [31]. In terms of the
nonsinglet splitting function, it can be written as follows

PT
ns(x) = −x−1 P S

ns(x
−1), (7.245)

which corresponds to an analytic continuation of P S
ns(z) in the region z = x−1 > 1.

Together with the Gribov–Lipatov relation it could impose a constraint on P S
ns(x). In the j-

representation this constraint means that the anomalous dimension should be a function of
the total momentum square J 2 = j ( j +1). But in QCD, the point x = 1 is a singular point
for the partonic distributions even in LLA. It is possible, however, to give a certain meaning
to this continuation, if in the polynomials over ln (1 − x) with coefficients being analytic
functions of x at x = 1 one substitutes the logarithm argument by (x −1) for x > 1 [24]. In
terms of the splitting functions in the Born approximation, we have only the pole at x = 1
and therefore the analytic continuation around this point is possible. In higher orders of the
perturbation theory, the splitting kernels have more complicated logarithmic singularities
at x = 1. Nevertheless, it is possible to generalize Gribov–Lipatov and Drell–Levy–Yan
relations also to this case [31].
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7.8.2 Partonic distributions in next-to-next-to leading order from the fit of the data

Partonic splitting functions in next-to-next-to leading order were calculated in [32]. The
fit to the data in next-to-leading order and next-to-next-to leading order was performed
by MRST ([33] and references therein), CTEQ collaboration [34], Jimenez–Delgado and
Reya [35] and Alekhin [36]. The data on e(μ)N → e(μ)+ all, ν(ν)N → ν(ν)+ all and
the Drell–Yan process were exploited. We present here the partonic distributions in proton,
obtained by MRST (Figs. 7.9a, b, c).

The initial parton distributions – the input of evolution equations – were taken in the
form:

x fi (x, Q2
0) = Ai x−λi (1 − x)βi (1 + γi

√
x + δi x), Q2

0 = 4 GeV2. (7.246)

This form of initial distributions was chosen from the following considerations:

1. At small x (and fixed Q2) the Regge behaviour is reproduced.
2. At x → 1 x fi (x) looks like counting rules formulae.

As is seen from Figs. 7.9a–7.9c, the most remarkable variation with Q2 appears in gluon
distributions. But, on the other hand, they are among the least well determined parton
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Fig. 7.9. The parton distributions in proton at Q2 = 10 GeV2 by MRST [33], courtesy of
A. V. Sidorov. On the main figure, the gluon distribution is multiplied by 0.1. On the insert
diagram, the parton distributions at x > 0.1 are shown in more detail.
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Fig. 7.9. The same as in Fig.7.9a, but at Q2 = 100 GeV2.

distributions. For u-quark distributions, the difference of next-to-next-to leading order and
next-to-leading order is of order 5% at x > 10−2 [33]. (The detailed analysis of the uncer-
tainties of parton-distribution functions was done in [37],[38].) Note that below x = 10−3

(or perhaps even below x = 10−2), there is no confidence in the analysis of deep inelastic
scattering based on DGLAP equations, since in this domain large logarithms ln(1/x) arise,
which are not properly accounted in these equations. The account of large ln(1/x) was
done by BFKL approach (Chapter 9). The results of different groups are in agreement, but
some disagreement between MRST and CTEQ arises in gluon distribution at x ∼ 0.3 [37].
Also, Alekhin [36] got the value αs(m Z ) = 0.114, which contradicts the world average
αs(m Z ) = 0.119.

7.8.3 Longitudinal structure function

The longitudinal structure function is defined by:

FL(x, Q2) = F2(x, Q2)− 2x F1(x, Q2) (7.247)

In the parton model, FL(x, Q2) vanishes (Callan–Gross relation; Eq.(7.17)). The vanishing
of FL persists, if the target and quark masses are disregarded, as well as nonperturbative
corrections (i.e. only the lowest-twist contributions are accounted) and the quark transverse
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Fig. 7.9. The same as in Fig.7.9a, but at Q2 = 1000 GeV2.

momentum k⊥ is neglected. If the quark-transverse momentum and the quark mass are
accounted, then the simple relation can be derived in the parton model [4]:

FL = 2x
σL

σT
= 8x

k2⊥ + m2
q

Q2
, (7.248)

where k2⊥ is the mean square of quark-transverse momentum. In QCD, the nonvanishing
transverse momenta of quarks arise due to interaction, i.e. as αs-correction. The calculation
of αs-corrections to the structure functions results in the following formula for FL [39]:

FL(x, Q2) = αs(Q2)

4π

1∫
x

dy

y

x2

y2

[
16

3
F2(y, Q2)+ 8δ f N f

(
1 − x

y

)
yg(y, Q2)

]
, (7.249)

where g(y, Q2) is the gluon distribution and δ f is a number, depending on quark charges.
For ep scattering and N f = 4, δ f = 5/18; for ν(ν)p scattering δ f = 1. FL(x, Q2)

increases at small x . In this case, the main contribution arises from the first term in the
right-hand side of (7.249). The estimation gives that at x ∼ 10−3 − 10−4 FL(x, Q2) ∼
0.3 − 0.5 at moderate Q2 ∼ 10 − 100 GeV2. This expectation qualitatively agrees with
experimental data [40]. Eq.(7.249) represents the leading-order contribution to FL . The
next-to-leading order and next-to-next-to leading order contributions were also calculated
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[41],[42],[43]. The qualitative estimations of FL presented above are valid with account of
next-to-leading order and next-to-next-to leading order corrections. Besides perturbative
contribution to FL , there are nonperturbative terms, given by higher-twist operators [44].
The crude estimations show that they are much smaller, than perturbative contributions
(∼ 0.05) and are more or less randomly distributed over all domain of x [43],[44].

7.8.4 The sum rules for the structure functions

There are few sum rules for structure functions, which are called by the names of their
discoverers: Adler (A), Gross–Llewellyn–Smith (GLS), Bjorken (Bjpol – for polarized
e(μ)N -scattering), Bjorken (Bjunpol – for unpolarized ν(ν)p scattering), and Gottfried
(G). The derivation of these sum rules was given in [4], where there are also references
to original papers. Generally, in QCD these sum rules got perturbative and nonperturbative
(higher-twist) corrections. An exceptional case is the Adler sum rule:

A =
1∫

0

dx

x
[Fν p

2 (x, Q2)− Fνp
2 (x, Q2)] = 4T3 = 2, (7.250)

where T3 is the third projection of target (proton) isospin. (The Cabibbo angle θc was
neglected, i.e. the strange and charmed particles were not accounted in F2. Note that Fν p

2 =
Fνn

2 .) The Adler sum rule was derived, basing on SU (2) current algebra and supposing

that the difference Fν p
2 (x)− Fνp

2 (x) satisfies unsubtracted dispersion relation. Since these
statements are very general, the Adler sum rule has no perturbative or nonperturbative
corrections. The experimental check [45] shows the absence of significant Q2 variation in
the range 2 < Q2 < 200 GeV and gives

A = 2.02 ± 0.40. (7.251)

The Gottfrid sum rule is the charged-lepton analog of (7.250) and has the form (a = αs/π)

G =
1∫

0

dx

x
[Fep

2 (x, Q2)− Fen
2 (x, Q2)] = 1

3

[
1 + 0.035a + 3.7CF (CF − 0.5CA)a

2
]

− 2

3

1∫
0

dx(d(x)− u(x)), (7.252)

CF = (N 2
c −1)/2Nc,CA = Nc. The αs- and α2

s -corrections are very small. (The summary
of these corrections is presented in [46].) If the nucleon sea would be flavour symmetric,
u(x) = d(x), we would have

G = 1

3
. (7.253)

However, the experimental data of NMC collaboration [47] give

G(Q2 = 4GeV2) = 0.235 ± 0.026 (7.254)
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There are arguments that nonperturbative corrections are also small [46]. So, the most
plausible conclusion, following from the comparison of the Gottfried sum rule with the
data, is the flavour asymmetry of the sea in the nucleon. This statement was conclusively
confirmed by Fermilab E866/Nusea collaboration [48].

GL S, B j pol , and B junpol sum rules are:

GL S = 1

2

1∫
0

dx[Fν p
3 (x, Q2)+ Fνp

3 (x, Q2] = 3[1 + a(1 + k1a + k2a2)], (7.255)

B j pol =
1∫

0

dx[gep
1 (x, Q2)− gen

1 (x, Q2)] = 1

6
gA[1+a(1+ k1a + k2a2 + ca3)], (7.256)

B junpol =
1∫

0

dx[Fν p
1 (x, Q2)− Fνp

1 (x, Q2)] = 1 − a

2
CF (1 + u1a + u2a2), (7.257)

gA = 1.257 ± 0.003. The perturbative corrections k1, k2, u1, u2 were calculated in
[49],[50]:

k1 = −0.333N f + 5.58, k2 = 0.177N 2
f − 7.61N f + 41.4, (7.258)

u1 = −0.444N f + 5.75, u2 = 0.239N 2
f − 9.5N f + 54.2, (7.259)

the coefficient c was estimated in [51], c ≈ 130. There are nonperturbative corrections of
twist 4 to the sum rules (7.255)–(7.257). The estimation of this correction to B j pol sum
rule, performed in [52] by the QCD sum rule method indicated that it is small at Q2 > 5
GeV2. However, this estimation was critized in [53]. The comparison with experiment
shows the agreement with perturbative contributions at the level of 10–15% in the case of
GLS sum rule (at Q2 ≈ 2 − 10 GeV2, see e.g. [54] and references therein). The agreement
with experiment of the Bjorken polarized sum rule will be discussed in more detail in
Section 7.12.2.

7.9 Parton-number correlators

The knowledge of the parton-wave function makes it possible to calculate more compli-
cated quantities – the parton correlators. The simplest generalization of the parton-number
distribution is the parton-number correlator having the representation

< h|nl1nl2 . . . nlk |h >= Zh

k∏
r=1

δlr h
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+
∞∑

n=2

∑
i1...in

nl1 nl2 . . . nlk

∫ n∏
i=1

d2k⊥i

(2π)3
dβi

βi
θ(βi )Z

ng
g Z

nq
q Z

nq̄
q̄ |ψ |2(2π)3δ2

×
(∑

i

k⊥i

)
δ

(
1 −

∑
i

βi

)
, (7.260)

where Z1/2
s (s = g, q, q̄) are the renormalization constants for the corresponding wave

functions.
By differentiating this expression over the variable ξ (7.58) related to the ultraviolet

cut-off for the transverse momenta of partons and taking into account that in the essential
integration region parton-transverse momenta rapidly grow after each partonic decay, we
obtain the equation for the parton-number correlators

d

dξ
< h|

k∏
r=1

nlr |h >= −
∑

s

Ws < h|ns

k∏
r=1

nlr |h

+
∑

s

k∑
r=1

∑
i1,i2

Ws→(i1,i2) < h|ns

k∏
r=1

(
nlr − δlr s + δlr i1 + δlr i2

) |h > (7.261)

with the initial conditions

< h|
k∏

r=1

nlr |h >|ξ=0=
k∏

r=1

δlr h . (7.262)

In the right-hand side of this equation, the terms containing (k + 1) factors of nl are
cancelled due to the relation

Ws =
∑
i1,i2

Ws→(i1,i2) (7.263)

and therefore it relates the parton-number correlators of the k-th order with low-order
correlators which can be considered as nonhomogeneous contributions.

To illustrate the essential features of the solution of such an equation we neglect in it
the quark and antiquark contributions considering the pure Yang–Mills model. Further, we
consider only the total number of gluons with two helicities

n = n+ + n−. (7.264)

Introducing the following function of the gluon numbers

T (k)(n) = n(n + 1) . . . (n + k − 1) (7.265)

one can verify from (7.261) that its matrix elements satisfy the linear evolution equation

d

dξ
< h|T (k)(n)|h >= W k < h|T (k)(n)|h >, < h|T (k)(n)|h >|ξ=0= k!. (7.266)

Its solution is simple

< h|T (k)(n)|h > = k! ek W ξ . (7.267)
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Further, the probability to find a hadron in the state with the n partons is

Pn =
∑

i1...in

∫ n∏
i=1

d2k⊥i

(2π)3
dβi

βi
θ(βi )Z

ng
g Z

nq
q Z

nq̄
q̄ |ψ |2(2π)3δ2(

∑
i

k⊥i )δ(1 −
∑

i

βi ),

(7.268)
where, in particular (for h coinciding with one of partons)

P1 = Zh . (7.269)

It is obvious that due to the normalization condition for the wave function together with
Eq. (7.266) Wn for the pure gluonic case satisfies the sum rules

∞∑
n=1

Pn = 1,
∞∑

n=1

T (k)(n) Pn = n̄k = ek W ξ (7.270)

and the evolution equation

d

dξ
Pn = W (−n Pn + (n − 1) Pn−1) , (Pn)|ξ=0 = δn,1. (7.271)

In an explicit form, its solution written below

Pn = 1

n̄

(
n̄ − 1

n̄

)n−1

, n̄ = eW ξ (7.272)

is different from the Poisson distribution

P P
n = 1

n! (n̄)
n e−n̄ . (7.273)

Note that Pn satisfies the sum rules (7.270) and for n̄ → ∞ it has the property of the
KNO-scaling [55]

lim
n̄→∞ Pn = 1

n̄
f
(n

n̄

)
, f (x) = e−x . (7.274)

In the real QCD case, we can generalize the above discussion by introducing the prob-
ability P(n+

g , n
−
g , n

+
q , n

−
q , n

+
q̄ , n

−
q̄ ) to find a hadron in the states with a certain number nt

of partons (t = g±, q±, q̄±) with definite helicities λ = ±s. This probability satisfies the
equation

d

dξ
P(nt ) = −

∑
r

nr Wr P(nt )+
∑

r

∑
i, j

(
nr + 1 − δr,i − δr, j

)
× Wr→(i, j) P

(
nt + δt,r − δt,i − δt, j

)
. (7.275)

In the second term of the right-hand side of this equation
∑

t nt is smaller by one than that
in the left-hand side. Therefore, after the Mellin transformation

P(nt ) =
∫ ∞

−i∞
dν

2π i
eνξ Pν(nt ) (7.276)

one can obtain a recurrent relation for Pν(nt ).
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It is natural to introduce the more informative quantity for the description of the hadron
structure – the exclusive distributions of partons as functions of their Feynman parameters
β t

r (r = 1, 2, . . . nt ), where t is the sort of a parton (including its helicity)

fnt (β
t
r ) = 1∏

t nt !
∑

i1...in

∫ ∏
t,l

d2kt⊥l

(2π)3 β t
l

∏
t

Znt
t |ψh(k

t⊥l , β
t
l )|2 (2π)3

× δ
(∑

kt⊥l

)
δ
(

1 −
∑
β t

l

)
. (7.277)

This quantity satisfies the following evolution equation

d

dξ
fnt (β

t
r ) = −

∑
s

ns Ws f (βs
r )

+
∑
s,m

∑
i, j

Ws→(i, j)

(
βs

m, β
i
l1
, β

j
l2

)
δ
(
βs

m − β i
l1

− β j
l2

))
f
(
nt + δts − δti − δt j

) (
β t

l

)
d βs

m

(7.278)
with the initial conditions

fnt (β
t
r )|ξ=0 = δnt 1

∏
i �=1

δni 0δ(β
n − 1), (7.279)

One can define the generating functional for these exclusive distributions

I (φt ) =
∑
nt

∫ ∏
t

nt∏
l=1

φt
(
β t

l

)
dβ t

l fnt

(
β t

r

)
, (7.280)

where φt (β) (t = g±, q±, q̄±) are some auxiliary fields. The evolution equation for fnt (β
t
r )

is equivalent to the following equation in the variational derivatives δ/(δφs(x)) for the
functional I (φt )

d

dξ
I = −

∑
s

Ws

∫
φs(x)

δ I

δφs(x)
d x

+
∑

s

∑
i

∑
j

∫
dx1 dx2 Ws→(i, j)(x1 + x2, x1, x2) φi (x1)φ j (x2)

δ I

δφs(x1 + x2)
(7.281)

with the initial condition

I|ξ=0 = φh(1). (7.282)

Exclusive distributions can be calculated by taking the functional derivative from I

fnt (β
t
l ) = 1∏

t nt !
∏

t

∏
l

δ I

δφt (β
t
l ) |φt (β)=0

. (7.283)

Moreover, we can calculate from this functional also inclusive correlators of partons having
the Feynman parameters β t

l

Dnt (β
t
l ) = 1∏

t nt !
∏

t

∏
l

δ I

δφt (β
t
l ) |φt (β)=1

. (7.284)
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It is related with the fact that the generating functional J for the inclusive correlators is
expressed in terms of I

J (φt ) =
∑
nt

∫ ∏
t

nt∏
l=1

dβ t
l Dnt

(
β t

l

)
, (7.285)

related to the functional I as follows

J (φt ) = I (1 + φt ). (7.286)

Due to the normalization condition for the wave function, the functionals I and J are
normalized as follows

I (1) = J (0) = 1. (7.287)

The energy-momentum conservation
∑

r βr = 1 imposes the following constraint for the
functional I

I (eλβφ(β)) = eλ I (φ(β)). (7.288)

The generating functional for the inclusive probabilities satisfies the following equation

d

dξ
J = −

∑
s

Ws

∫
φs(x)

δ J

δφs(x)
d x

+
∑

s

∑
i

∑
j

∫
dx1 dx2 Ws→(i, j)(x1 + x2, x1, x2) (φi (x1)

+ φ j (x2)+ φi (x1)φ j (x2)
) δ J

δφs(x1 + x2)
(7.289)

with the initial condition

J (φt )|ξ=0 = 1 + φh(1). (7.290)

The inclusive distributions can be obtained from J by the functional differentiation

Dnt (β
t
l ) = 1∏

t nt !
δ J

δφt (β
t
l ) |φt (β)=0

. (7.291)

From the above expressions, we can get the evolution equation for the functions Dnt (β
t
l ). It

has a recurrence form and allows one to calculate it these functions in terms of the simple
inclusive probabilities Di

h(β)

To solve of the evolution equation for the functional I , we can use a simple mathematical
trick and consider the so-called characteristic equation

d

dξ
φs(x, ξ) = −Ws φs(x, ξ)

+
∑
k,r

∫
dx1 dx2 φk(x1, ξ) φr (x2, ξ) δ(x1 + x2 − x)Ws→(k,r)(x, x1, x2). (7.292)
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Let us assume that for any function φk(x, ξ) one can calculate the initial condition

φk(x, 0) = χk (φr (x, ξ), x) , (7.293)

where χs are functions of x and functionals from φr (x, ξ). Then it can be easily verified
that the solution of the evolution equation for I can be constructed as follows

I = χh (φr (x, ξ), 1) . (7.294)

Note that this expression satisfies the initial condition.
To illustrate this mathematical method, we consider the pure Yang–Mills theory and

only the most singular terms in the splitting kernels

Ws→(i,k)(x, x1, x2) = 2
x

x1 x2
, W =

∫ 1

0

d x

x(1 − x)
, (7.295)

which corresponds to the N = 4 extended supersymmetric theory where the anomalous
dimension is universal for all twist-2 operators

w j = 2
∫ 1

0

d x

x (1 − x)

(
x j−1 − x

)
= 2ψ(1)− 2ψ( j − 1). (7.296)

In this case, the characteristic equation takes the form

d

dξ
φ(x, ξ) = −W φ(x, ξ)+ 2

∫
x dx1 dx2

x1 x2
δ(x1 + x2 − x) φ(x1, ξ) φ(x2, ξ). (7.297)

For simplicity, we disregard complications related to infrared divergences of integrals
and consider W as a constant. Then the solution can be searched for in the form of the
Mellin transformation

χ(p, ξ) =
∫ ∞

0

dx

x
e−px φ(x, ξ), (7.298)

where φ(x, ξ) satisfies the equation

d

dξ
χ(p, ξ) = −W χ(p, ξ)+ 2χ2(p, ξ). (7.299)

Therefore, we can find χ(p, ξ) for any initial condition χ(p, 0)

χ(p, ξ) = W χ(p, 0) e−W ξ

W − 2χ(p, 0)
(
1 − e−W ξ

) , (7.300)

which allows us to calculate the generating functional I

I (φ) =
∫ i∞

−i∞
d p

2π i
ep W

∫∞
0 e−xp d x

x φ(x, ξ)

2 (1 − exp(−Wξ))
∫∞

0 e−xp dx
x φ(x, ξ)+ W exp(−Wξ)

.

(7.301)
Note, however, that for self-consistency of the approach one should regularize the split-

ting kernel in the infrared region, for example, by introducing the infinitesimal parameter
ε → 0 in such way to conserve its scale invariance

W (ε)
s→(i,k)(x, x1, x2) = 2

x1−2ε

(x1 x2)1−ε , W (ε) =
∫ x

0

x1−2ε d x1

x1−ε
1 (x − x1)1−ε ≈ 2

ε
. (7.302)
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In this case, the characteristic equation is more complicated

d

dξ
φ(ε)(x, ξ) = −W (ε) φ(ε)(x, ξ)+ 2

∫ x

0

x1−2ε d x1

x1−ε
1 (x − x1)1−ε φ

(ε)(x1, ξ) φ
(ε)(x − x1, ξ).

(7.303)
We are not going to solve it. Note, that for the considered model, the inclusive parton
distribution can be easily calculated

D(x) =
∫ i∞

−i∞
d j

2π i

(
1

x

) j

ew j ξ . (7.304)

7.10 Deep inelastic electron scattering off the polarized proton

One of the most interesting processes is the deep inelastic electron scattering off the polar-
ized target. We consider the scattering off the proton. The differential cross section for
finding an electron with a definite momentum in the final state is expressed in terms of the
antisymmetric tensor describing the imaginary part of the forward-scattering amplitude for
the virtual photons with momenta q and polarization indices μ and ν

W A
μν = 1

2

(
Wμν − Wνμ

) = i

pq
εμνλσ qλ

(
sσ g1

(
x, Q2

)
+ sσ⊥ g2

(
x, Q2

))
, (7.305)

where εμνλσ is the completely antisymmetric tensor (ε0 1 2 3 = 1). The quantities gi (x, Q2)

(i = 1, 2) are the corresponding structure functions. (The kinematics and phenomenologi-
cal description are given in [4].) The four-dimensional pseudovector sσ describes the spin
state of the completely polarized proton with the wave function U (p)

sσ = Ū (p)γσ γ5U (p) = −2m aσ , Ū (p)U (p) = 2m. (7.306)

The vector aσ is a parameter of the proton-density matrix

�(p) = 1

2
(�p + m)(1 − γ5 �a), γ5 = −i γ0γ1γ2γ3 =

(
0 −1

−1 0

)
(7.307)

and has the properties

a p = 0, a2 = −1, a⊥ = a − a q

p q
p. (7.308)

The tensor W A
μν is proportional to the imaginary part of the photon-proton scattering

amplitude T A
μν

W A
μν = 1

π
Im T A

μν (7.309)

with the representation

T A
μν = 1

2

(
Tμν − Tνμ

) = i

pq
εμνλσ qλ

(
sσ ḡ1

(
x, Q2

)
+ sσ⊥ ḡ2

(
x, Q2

))
. (7.310)
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Use the operator product expansion for the product of the electromagnetic currents

Jμ(x) =
∑

q

eq ψ̄q(x) γμ ψq(x) (7.311)

entering the expression for Tμν

Tμν = i
∫

d4x eiqx < p|T (Jμ(x) Jν(0))|p > . (7.312)

In the Bjorken limit q2 ∼ 2pq � m2 on the light cone x2 ∼ q−2 we obtain [56],[57]

T A
μν = − i εμνρσ

qρ
Q2

∞∑
n=0

(
1 + (−1)n

) ( 2

Q

)n

qμ1 . . . qμn

∑
k

ϕk
1,n(Q

2) < h|Rk
1σμ1...μn

|h >

+ i

Q2

(
εμρλσ qνq

ρ − ενρλσ qμ qρ − q2 εμνλσ

) ∞∑
n=0

(
1 + (−1)n

)
× qμ1 . . . qμn−1

∑
k

ϕk
2,n(Q

2) < h|Rk
2σλμ1...μn−1

|h > . (7.313)

Here the index k enumerates various pseudotensor local operators Rk
i (i=1,2) with the posi-

tive charge parity. They are constructed from the quark and gluon fields in a gauge-invariant
way. The quantities ϕk

i,n(Q
2) are the corresponding coefficient functions. We should take

into account such operators Rk
i which would lead to the largest asymptotic contribution to

T A
μν in the Bjorken limit. In particular, it means that the tensors Rk

1σμ1...μn
and Rk

2σλμ1...μn−1

should be symmetric and traceless in indices σ, μ1, . . . , μn and λ,μ1, . . . μn−1, respec-
tively. Further, they should have the minimal dimensions d in the mass units for a given
number of indices. Examples of such operators are given below

Rq
1σμ1...μn

= in S{σ μ1...μn} ψ̄qγ5 γσ ∇μ1 . . .∇μn ψq , (7.314)

Rq
2σλμ1...μn−1

= in S{μ1...μn−1} A[σ μ1] ψ̄qγ5 γσ ∇μ1 . . .∇μn−1 ψq , (7.315)

where the sign S means the symmetrization of the tensor in the corresponding indices and
subtraction of traces. The sign A implies its antisymmetrization. In the above expression,
∇μ is the covariant derivative

∇μ = ∂μ + ig Aμ, (7.316)

where A = ta Aa and ta are the colour-group generators in the fundamental representa-
tion. In principle, each derivative can be applied to the left-quark field with an opposite
sign without changing the value of the matrix element between the initial and final proton
states with the same momentum p. For the deep inelastic ep scattering, only the operators
with even values of n are taken into account because they have the positive charge parity.
The tensor Rq

1σμ1...μn
symmetrized over all indices has the Lorentz spin j = n + 1 and

the canonical dimension d = 3 + n. Further, due to one antisymmetrization the tensor
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Rq
2σλμ1...μn−1

has the Lorentz spin j = n and the canonical dimension d = 3 + n. The
difference between the canonical dimension and the Lorentz spin of an operator is its twist

t = d − j. (7.317)

It is obvious that the twists of operators Rq
1 and Rq

2 are t = 2 and t = 3, respectively.
Increasing the value of the twist leads usually to diminishing the power of Q for the cor-
responding contribution in the cross section. However, for the deep inelastic scattering off
the polarized target the two above operators give a comparable contribution to the structure
function g2

(
x, Q2

)
.

The matrix elements of the operators Rq ′
i between the free-quark states in the Born

approximation can be easily calculated

< q|Rq ′
1σμ1...μn

|q >= −δq q ′ S{μ1...μn}
(

sσ
n + 1

pμ1 . . . pμn + n

n + 1
sμ1 pσ pμ2 . . . pμn

)
(7.318)

and

< q|Rq ′
2σμ1...μn

|q >= −1

2
δq q ′ S{μ1...μn}

(
sσ pμ1 . . . pμn − sμ1 pσ pμ2 . . . pμn

)
. (7.319)

In the Born approximation, the structure functions are

g1(x) = 1

2
e2

q δ(x − 1), g2(x) = 0,

ḡ1(x) = e2
q

x

x2 − 1 − i 0
, ḡ2(x) = 0, (7.320)

The formulas of the operator product expansion give the same result for ḡi (x), providing
that the coefficient functions in the same approximation are

ϕ
q
1,n = e2

q , ϕ
q
2,n = 2

(
n

n + 1

)2

e2
q . (7.321)

We used here the identity

qνqρεμρλσ − qμqρενρλσ − q2εμνλσ = qρ
(
qσ εμνρλ − qλεμνρσ

)
. (7.322)

Because the form of the operator product expansion does not depend on the target,
one can construct the photon–hadron scattering amplitude T A

μν using the same coefficient
functions ϕq

i,n as follows

T A
μν = −i εμνρσ

qρ
Q2

∞∑
n=0

∑
q

e2
q

(
1 + (−1)n

) ( 1

x

)n

< h

∣∣∣∣Rq
1σ ... +

2 n

n + 1
Rq

2σ ...

∣∣∣∣ h > .

(7.323)
Here we introduced the light-cone projections of the Lorentz tensors defined below

O... =
q ′
μ1

pq
. . .

q ′
μn

pq
Oμ1...μn , q ′ = q − xp, q ′ 2 = 0+ (7.324)
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and used the relation
n

n + 1

qρ
pq

(
qσ εμνρλ − qλεμνρσ

) qμ1

pq
. . .

qμn−1

pq
Rq

2σλμ1...μn−1
= −εμνρσqρ Rq

2σ ... (7.325)

valid for the matrix elements between the states with the same momentum p.
Note, that for the case of the large quark mass, there is another twist-3 operator

Rq
3 σμ1...μn

= mq in−1 S{μ1...μn} Aσμ1 ψ̄γ5 γσ γμ1∇μ2 . . .∇μn−1 ψq . (7.326)

Moreover, in the Born approximation one can obtain the relation for the matrix elements
of these twist-3 operators between the quark states:

< q|Rq ′
3 σμ1...μn

|q >= 2 < q|Rq ′
3 σμ1...μn

|q > . (7.327)

However, the above expression for the amplitude T A
μν written in terms of the Wilson oper-

ator expansion remains valid also in the case of massive quarks. To verify it, one should
calculate also its matrix elements between the states containing gluons.

For this purpose, using the Heisenberg equation of motion for the quark fields

(i �∇ − mq) ψq = 0, ψ̄(i �∇ − mq) = 0 (7.328)

we can obtain the following operator identity

R⊥
2 σ ... −

1

2
R⊥

3 σ ... =
1

2n

n−1∑
l=1

(n − l) Y ⊥(l)
σ ... , (7.329)

where the operators are constructed from the fields ψ̄, ψ,Gρλ and their covariant deriva-
tives. For the deep inelastic scattering, where only operators with the positive charge parity
are essential, n is even and, in fact, only the following linear combinations of Y ⊥(l)

σ ... appear
[57], [58], [59]

Y ⊥ (n−l)
σ ... − Y ⊥ (l)

σ ... = R⊥ (l)
4 σ ... − R⊥ (n−l)

4 σ ... ,

R⊥ (l)
4 σ ... = ψ̄γ5γ.(i∇.)l g G⊥

σ. (i∇.)n−l−1ψ (7.330)

and

Y ⊥ (n−l)
σ ... + Y ⊥ (l)

σ ... = R⊥ (l)
5 σ ... + R⊥ (n−l)

5 σ ... ,

R⊥ (l)
5 σ ... = ψ̄γ.(i∇.)l g G̃⊥

σ. (i∇.)n−l−1ψ, (7.331)

where

Gρλ = taGa
ρ,λ, G̃ρλ = 1

2
ερλση Gση, Ga

ρ,λ = ∂ρ Aa
λ−∂λAa

ρ+ ig f abc Ac
ρ Ab

λ. (7.332)

The calculation of the matrix elements of the operators R2 σ ... between the quark and
quark–gluon states using the operator identity (7.329) shows that indeed the operator prod-
uct expansion in the Born approximation is given by the above expression. We confirm this
result below also basing on the parton ideas [58], [59].



7.10 Deep inelastic electron scattering off the polarized proton 363

To begin with, recall that the numerator of the gluon propagator Dμν(k) in the axial
gauge q ′

μAμ = 0 and the numerator of the quark propagator G(k) for positive energies
kq ′/pq ′ = β > 0 can be expressed in terms of projectors on physical states with two
helicities λ = ±s

− δμν + kμq ′
ν + kνq ′

μ

kq ′ =
∑
λ=±1

eλμ
(
k′) eλ ∗

ν

(
k′)+ k2 q ′

μq ′
ν

(kq ′)2
, (7.333)

� k + mq =
∑

λ=±1/2

uλ
(
k′) ūλ

(
k′)+ k2 − m2

q

sβ
�q ′ (7.334)

providing that the last contributions proportional to the particle virtuality are small. In the
above relations, we have for the gluon and quark momenta

k′ = k − k2

2kq ′ q ′ = βp + k⊥ − k2⊥
βs

q ′, k′ 2 = 0 (7.335)

and

k′ = k − k2 − m2
q

2kq ′ q ′ = βp + k⊥ − k2⊥ − m2
q

βs
q ′, k′ 2 = m2

q , (7.336)

respectively.
For the longitudinally polarized hadron, where

aL = 1

m
λh

(
p − m2

pq ′ q ′
)
, a2

L = −1, λ= ± 1, (7.337)

the virtual gluon propagators in the light-cone gauge are not attached to the quark line
between the photon vertices γμ and γν , because such contribution would lead to an
additional large denominator in the quark propagators, which is not compensated by a
nominator. As for the quark lines, the numerators in their propagators can be simplified as
follows

γμ(� k+ �q + m)γν → −iεμνλσqλγ5γσ

γν(� k− �q + m)γμ → −iεμνλσqλγ5γσ . (7.338)

This leads to the following expression for the cross section

W A
μν = − i

pq
εμνλσqλ

∑
q

1

2
e2

q

∫
< γ5γσ > (δ(β − x)+ δ(β + x)) d β, (7.339)

where < γ5γσ > implies the corresponding vertex, and the integration over the Sudakov
parameter β for the neighbouring virtual quark is not performed. The second term in the
bracket describes the antiquark contribution in the Dirac picture, where β < 0. Of course,
the physical antiquark energy is positive. Because for the longitudinal polarization sh ,
the indices μ, ν are transversal, γσ is effectively multiplied by q ′

σ , which allows us to
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leave in the neighbouring quark propagators only projectors on the physical states with
two helicities leading to the result

1

s

∫
< γ5 �q ′ > (δ(β − x)+ δ(β + x)) d β =

∑
r=q,q̄

(
n+

r (x)− n−
r (x)

)
. (7.340)

Thus, we get the parton expression for the structure function g1(x) in terms of quark and
antiquark distributions with helicities λ = ±1/2

g1(x) =
∑

r=q,q̄

e2
r

2
λh
(
n+

r (x)− n−
r (x)

)
. (7.341)

Let us consider now a transversely polarized hadron. Taking into account that, in this
case, one of two indices μ and ν is transversal and other is longitudinal, corresponding
to the substitution of one of two photon vertices by � q ′, we can calculate the intermediate
quark propagator obtaining the relation

(g1(x)+ g2(x)) S⊥
σ = −

∑
q

1

2
e2

q

∫
d β < γ5γ

⊥
σ > (δ(β − x)+ δ(β + x)) . (7.342)

It coincides in fact with the result, which can be derived from the expression for Tμν written
in terms of the operator product expansion. To show it in the light-cone gauge Aμq ′

μ = 0
we apply the operator identity

Aq
σ ... ≡ Rq

1 σ ... +
2n

n + 1
Rq

2 σ ... = ψ̄qγ5γσ (i∂.)
nψq . (7.343)

Further, using the relation

< h|Aq
σ ...|h >=

∫
dβ βn < γ5γσ > (7.344)

one can calculate W A
μν

W A
μν = − i

pq
εμνλσ qλ

∑
q

1

2
e2

q
1

π
Im

∞∑
n=0

(
1 + (−1)n

) (1

x

)n

< h|Aq
σ ...|h >

= − i

pq
εμνλσqλ

∑
q

1

2
e2

q

∫
< γ5γσ > (δ(β − x)+ δ(β + x)) d β. (7.345)

Note that the operator Aq
σ ... does not have a definite twist and therefore it is not renor-

malized in a multiplicative way. Therefore, it is more consistent to use the representation
of Wμν in terms of the operators R1 σ ... and R2 σ .... Due to the relativistic invariance, the
different components of the vector R1 σ ... are proportional. For example,

< h|R⊥
1 σ ...|h >= s⊥

σ

pq ′

sq ′
1

n + 1
< h|R1 ...|h > . (7.346)
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Analogously, for the operator Aq ⊥
σ ... using the equations of motion we obtain

< h|Aq ⊥
σ ...|h > = s⊥

σ

pq ′

sq ′
1

n + 1
< h|R1 ...|h >

+ n

n + 1
< h|R⊥

3 σ ...|h > + 1

n + 1

n−1∑
l=1

(n − l) < h|Y l ⊥
σ ...|h > . (7.347)

One can introduce the generating functions E(β), A(β), C(β), and Y (β1, β2), which
describe the matrix elements of the corresponding operators

λh

∫
dββn <

γ5q̄ ′
2pq ′ >=

∫
dββn E(β),

< h|A⊥
σ n|h >=

∫
dβ βn < γ5 γ

⊥
σ >≡ s⊥

σ

∫
dβ βn−1 A(β),

< h|R⊥
3σ ...|h >=

∫
dβ βn−1 < γ5 γ

⊥
σ γ. >≡ s⊥

σ

∫
dβ βn−1 C(β),

< h|Y l ⊥
σ ...|h >≡

∫
dβ1dβ2 β

l−1
1 βn−l−1

2 Y (β1, β2). (7.348)

The notation γ. was explained in (7.324). We have in particular

g1(x) =
∑

q

e2
q

2x

(
Eq(x)− Eq(−x)

)
,

g1(x)+ g2(x) = −
∑

q

e2
q

2x

(
Aq(x)− Aq(−x)

)
. (7.349)

Further, due to the equation of motion one obtains the relation among these functions
[58],[59](

1 − β d

dβ

)
A(β) = E(β)− β d

dβ
C(β)+ β

∫
dβ1

β1 − β
(
∂

∂β
Y (β1, β)+ ∂

∂β1
Y (β, β1)

)
.

(7.350)

To solve this differential equation concerning A(β), the integration constant should be
chosen from the Burkhardt–Cottingham sum rule∫ 1

0
g2(x)dx = 0 (7.351)

equivalent to the equality ∫ 1

−1

dβ

β
A(β) = −

∫ 1

−1

dβ

β
E(β). (7.352)
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Thus, we obtain the relation

g1(x)+ g2(x) =
∫ 1

x

dx ′

x ′ g1
(
x ′)−

∑
q

e2
q

2

∫ 1

x

dx ′

x ′ K
(
x ′) ,

K
(
x ′) = − d

dx ′ Cq
(
x ′)+∫ dx1

x1 − x ′

(
∂

∂x ′ Yq
(
x1, x ′)+ ∂

∂x1
Yq
(
x ′, x1

))+ (x ′ → −x ′) .
(7.353)

Providing that the current quark masses are small and the gluon contributions are not large,
one can neglect the term containing K (x ′) in the above expression. In this case, it is reduced
to the Wandzura–Wilczek relation

g1(x)+ g2(x) ≈
∫ 1

x

dx ′

x ′ g1
(
x ′) , (7.354)

which appears if we take into account only the contribution of the twist-2 operator.
The matrix element of the current γ5γ

⊥
σ between hadron states contains also the contri-

bution from the off-mass shell quarks, because we can not neglect the additional term ∼ q̂ ′
in their propagators. To solve this problem, let us use the following identity for this current

γ5γ
⊥
σ = γ5

�q ′k⊥
σ

kq ′ + mq γ5γ
⊥
σ

�q ′

kq ′ − (� k − mq) γ5 �q ′γ⊥
σ

2kq ′ − γ5 �q ′γ⊥
σ (� k − mq)

2kq ′ . (7.355)

In the last two terms, the factors (� k − mq) cancel the nearest quark propagator and the
corresponding gluon–quark vertex g ta γρ turns out to be at the same space-time point as
the current producing the new vertices

D1(β1, β) s⊥
σ =< g �A⊥ γ5 �q ′γ⊥

σ

pq ′ >, D2(β, β1) s⊥
σ =< g ta γ5 �q ′γ⊥

σ

pq ′ �A⊥ >,
(7.356)

where the integration over the Sudakov parameters β and β1 respectively for ingoing and
outgoing quarks is not performed and A⊥

ρ means the transverse component of the gluon
field in the momentum space. Such a procedure corresponds to perturbation theory and
leads to the relation

A(β) = B(β)+ C(β)−
∫

dβ1 D(β1, β), (7.357)

where

D(β1, β) = 1

2
(D1(β1, β)+ D2(β, β1)) . (7.358)

Here we introduced the functions B(β) and C(β) according to the following definitions

B(β) s⊥
σ =< γ5

�q ′ kσ
pq ′ >, C(β) s⊥

σ =< mq γ5 γ
⊥
σ

�q ′

pq ′ > . (7.359)

It is important that in the vertices B,C, D1, D2 the nearest quarks can be consid-
ered as real particles with momenta k′ and two physical helicities, since the extra term
∼� q ′ in numerators of their propagators does not give any contribution due to the rela-
tion � q ′ � q ′ = 0. Similarly, the gluon absorbed in the vertices D1, D2 in the axial gauge
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also can be considered as a real particle with two possible polarizations, because the extra
term ∼ q ′

μq ′
ν in the numerator of its propagator gives the vanishing contribution. The cor-

responding operators are simple examples of a large class of quasipartonic operators of
arbitrary twists which will be considered below.

7.11 Parton distributions in polarized nucleon

7.11.1 Evolution equations for parton distributions in longitudinally polarized nucleon

Let us use the notation:

�nr

(
x, Q2

)
= n+

r

(
x, Q2

)
− n−

r

(
x, Q2

)
, r = u, d, s, g, (7.360)

where n+
r (x, Q2) and n−

r (x, Q2) are correspondingly the densities of partons, polarized
along or opposite to the longitudinally polarized nucleon. Using the splitting kernels pre-
sented in Section 7.4, the evolution equations for �nr (x) can be written in the form
analogous to Eqs.(7.134). It is convenient to consider separately the equations for sin-
glet �

∑
(x, Q2) = ∑

r �nr (x, Q2) and nonsinglet �nN S = �n3,�n8 parts of quark
densities. The evolution equations are (see [60],[61] for reviews) for singlet:

d

d ln Q2
�
∑(

x, Q2
)

=αs
(
Q2
)

2π

[ 1∫
x

dy

y
�Pqq

(
x

y

)
�
∑(

y, Q2
)

+ 2N f

1∫
x

dy

y
�Pg→q

(
x

y

)
�g

(
y, Q2

)]
, (7.361)

d

d ln Q2
�g

(
x, Q2

)
=αs

(
Q2
)

2π

[ 1∫
x

dy

y
�Pq→g

(
x

y

)
�
∑(

y, Q2
)

+
1∫

x

dy

y
�Pg→g

(
x

y

)
�g

(
y, Q2

)]
(7.362)

for nonsinglet:

d

d ln Q2
�n

(
x, Q2

)
N S

= αs
(
Q2
)

2π

1∫
x

dy

y
�Pq→q

(
x

y

)
�nN S

(
y, Q2

)
, (7.363)

where in leading order:

�P(z)q→q = 4

3

[
1 + z2

(1 − z)+
+ 3

2
δ(z − 1)

]
,

�Pg→q(z) = 1

2

[
z2 − (1 − z)2

]
= 1

2
(2z − 1),
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�Pq→g(z) = 4

3

1 − (1 − z)2

z
,

�Pg→g(z) = 3

[
(1 + z)4

(
1

z
+ 1

(1 − z)+

)
− (1 − z)3

z
+
(

11

6
− 1

9

)
δ(1 − z)

]
. (7.364)

The splitting kernels �Pq→q and �Pg→q satisfy the equalities:

1∫
0

dz�Pq→q(z) =
1∫

0

dz�Pg→q(z) = 0,

corresponding to chirality conservation. Note that�g contribution is infrared unstable and
depends on the factorization scheme [62]. Particularly, in the MS-renormalization scheme
1∫

0
dx�g(x, Q2) does not contribute to the first moment of g1(x). In the renormalization

scheme proposed in [63], where it was accepted that the gluon virtuality | p2 | is much
larger than the square of quark mass m2, | p2 |� m2 and dimensional regularization was
used:

�g

1∫
0

dxg1(x) = − N f

18π
αs(Q

2)

1∫
0

dx�g(x, Q2) (7.365)

(See also [64].) The spin dependent splitting kernels�Pi j in NLO were calculated in [65],
[66], [67]. The analysis of experimental data in next-to-leading order (in MS scheme) gave
the polarized parton distribution presented in Fig.(7.10) (see the reviews in [60],[61],[68]).

7.11.2 Sum rules

The Bjorken sum rule for polarized DIS was discussed in Section 7.8.4, where the results
for perturbative corrections were presented. E155 collaboration at SLAC found experi-
mentally B j pol = 0.176 ± 0.003 ± 0.007 [69] and SMS collaboration got [70] B j pol =
0.174+0.024

−0.012 (both at Q2 = 5 GeV2) in comparison with the theoretical value 0.185±0.005.
The good agreement of theoretical and experimental values indicates that nonperturbative
corrections to B pol

j are small. Note, however, that about 10% of experimental contributions
to the integral in (7.256) comes from the region x < 0.01, where the data points are absent
and the extrapolation of experimental curve is needed. The Burkhardt–Cottingham (BC)
sum rule [71] looks simple

BC =
1∫

0

g2(x)dx = 0. (7.366)

In [4] it was argued that this sum rule is valid if only the lowest twist terms are accounted.
In SLAC experiments, it was found [72] (BC)p = −0.042±0.008 for proton and (BC)d =
−0.006 ± 0.011 for deuterium at Q2 = 5 GeV2. (The measurements were performed at
0.02 < x < 0.8). These numbers cannot be considered as a trustworthy confirmation of
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Fig. 7.10. Polarized parton distribution in next-to-leading order fits at Q2 = 4 GeV2.

BC sum rule, because g2(x) is small and consistent with zero in the whole domain of x
except x ≈ 0.5, where g2,p(0.5) ≈ −0.06 and g2,d(0.5) ≈ −0.04 [72]. JLab experiments
[73] on transversally polarized 3 He at low Q2 showed the agreement BC sum rule for
neutron with zero value at 0 < Q2 < 0.9 GeV2 at the accuracy about 0.005.

An intriguing problem arises, if the integrals

�p,n(Q
2) =

1∫
0

dxg1,p,n(x) (7.367)

are considered. Neglecting higher-twist contributions, we have

�p,n

(
Q2
)

= 1

12

{[
1 − a − 3.58a2 − 20.2a3 − ca4

][
±gA + 1

3
g8

A

]
+4

3

[
1 − 1

3
a − 0.55a2 − 4.45a3

]
�

}
− γ αs

(
Q2
)

6π
�g

(
Q2
)

(7.368)

(The higher-order perturbative coefficients were calculated in [74], where the references
on previous works can be found.) In (7.368), g8

A = 3F − D = 0.59 ± 0.02 [75] is the
axial-octet-coupling constant with hyperons, � = �u + �d + �s is equal to the part of
parton (neutron) spin projection, carried by quarks in completely longitudinally polarized



370 Evolution equations

nucleon. The coefficient γ reflects the uncertainty in contribution of�g to �p,n , discussed
above. Since�g is not large, | �g |< 0.5 (see the discussion in [61]) and the coefficient in
front of �g is small, contribution of the last term in (7.368) is negligible. The values of �,
which is of great physical interest can be found from the measurements of �p,n , done by
various groups and Eq.(7.368). The world average of � at Q2 = 3 Gev2 is (see e.g. [61])

� = 0.30 ± 0.01(stat.)± 0.02(evol.) (7.369)

This means that only 30% of proton spin is carried by quarks. This phenomenon until now
has no clear physical explanation and is often called “the proton spin crises.”

7.11.3 Connection of Gerasimov–Drell–Hearn and Bjorken sum rules

The Gerasimov–Drell–Hearn (GDH) sum rule reads:

∞∫
0

dν

ν
ImG1;p,n(ν, 0) = −1

4
κ2

p,n, (7.370)

where κp,n are the nucleon anomalous magnetic moments, κp = 1.79, κn = −1.91.
G1(ν, Q2) is related to g1(x, Q2) by

ν

m2
ImG1(ν, Q2) = g1(x, Q2). (7.371)

The GDH sum rule follows from the Low theorem and unsubtracted dispersion relation rep-
resentation in ν for G1(ν, Q2) (see [4]). Since g1,p(x, Q2) is positive at large Q2 and the
integral (7.370) is negative, this means that g1,p(x, Q2) change sign, when Q2 decreases.
That, in turn, means the presence of large nonperturbative contributions to g1,p(x, Q2).
The phenomenological model realizing the smooth transition from large Q2 to Q2 = 0
was suggested in [76],[77],[78]. The model is based on vector dominance, accounts for the
low nucleon resonance contributions, and is in good agreement with experiment.

7.11.4 Transversity structure function

Besides the structure functions considered above, there is a very specific structure function
h1(x, Q2) of twist 2 [79]. Unlike F1, F2, g1, q2, which conserve chirality, h1(x, Q2) vio-
lates chirality. For this reason, h1(x, Q2) does not contribute to electroproduction or ν(ν)N
scattering, where chirality is conserving. The most convenient definition of h1(x, Q2) is
the light-cone representation [80]:

i

∞∫
−∞

dλ

2π
eiλx 〈p, s | ψ(0)σμνγ5ψ(λn) | p, s〉 = 2h1

(
x, Q2

)
(s⊥μ pν − s⊥ν pμ) (7.372)

Here n is the light-cone vector of dimension of (mass)−1, n2 = 0, n+ = n0 + nz = 0
np = 1, p and s are proton momentum and spin vectors, s2 = −1, ps = 0. (We restrict
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(a)

qq

(b)

Fig. 7.11. (a) The diagrammatic representation of the transversity; +,− means the quark
helicities; (b) the polarized Drell–Yan process.

ourselves by the terms of twist 2 in (7.372).) As is seen from (7.372), h1(x, Q2) corre-
sponds to transversally polarized nucleon and can be called transversity distribution. In
parton language, h1(x, Q2) can be described in following way [79],[80],[81],[61]. Sup-
pose that in infinite momentum frame the proton is moving in z-direction and is polarized
in x-direction, perpendicular to z. Then

h1(x) =
∑

r

nr,+(x)− nr,−(x), r = u, d, s (7.373)

where nr,+(x) and nr,−(x) are correspondingly the quark densities, polarized along and
opposite to proton spin. In helicity basis, the transversity corresponds to helicity-flip pro-
cess and can be represented by the diagram of Fig.7.11a. It can be measured in the polarized
Drell–Yan process (Fig.7.11b).

The first moment of the transversity distribution

H =
1∫

0

dxh1(x, Q2) (7.374)

is proportional to the proton-tensor charge [80]

〈p, s | ψiσμνγ5ψ | p, s〉 = (sμ+ pν − sν+ pμ)H (7.375)

It can be shown [82], that h1(x, Q2) can be also expressed through the correlator of axial
and scalar currents:

Tμ(p, q) = i
∫

d4xeiqx 〈p, s | 1

2
T
{

jμ5(x), j (0)+ j (x), jμ5(0)
} | p, s〉, (7.376)

ImTμ(p, q) = −π
(

sμ − qs

q2
qμ

)
h1(x, q

2)+
(

pμ − νqμ
q2

)
(qs)l1(s, q

2)

+ εμνλσ pνqλsσ (qs)l2
(

x, q2
)
. (7.377)
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As was proved in [80], h1
(
x, Q2

)
2 satisfy the inequality | h1

(
x, Q2

)
r |< nr

(
x, Q2

)
for

each quark flavour. Moreover, Soffer [83] proved the more strict inequalities

| h1

(
x, Q2

)
r

|< 1

2
[nr

(
x, Q2

)
+�nr (x, Q2)] (7.378)

valid in leading order. However, as was demonstrated in [84],[85] (7.378) is violated in
next-to-leading order. The transversity h1 can be found by measurement of the asymmetry

AsAsB = σ(sA, sB)− σ(sA,−sB)

σ (sA, sB)+ σ(sA, sB)
(7.379)

in production of e+e−(μ+μ−) pairs in collision of two polarized nucleons A and B
(or nucleon A and antinucleon B). In the case when both A, B or A, B are polarized
transversally, the asymmetry is equal [79]

A(x,y)T T = sin2θcosϕ

1 + cos2θ

�er h A
1,r (x)h

B
1,r (y)

�e2
r n A

r (x)n
B
r (y)

, (7.380)

where θ and ϕ are the polar and azimuthal angles of e+e−(μ+μ−) pair relative to col-
lision axes and transverse polarization direction. Some other effects for measuring the
transversity were also suggested (see [61] for review). Up to now, no definite results were
obtained.

7.12 Evolution equations for quasipartonic operators

As it was demonstrated in the Section 7.10, the equations of motion allow us to reduce
the set of all twist-3 operators appearing in the operator product expansion of two
electromagnetic currents in the light-cone gauge

Aμq ′μ = A. = 0, q ′ = q + xp (7.381)

to the class of operators whose matrix elements can be calculated between on-mass shell
parton states (quarks and gluons) with two helicities. It turns out, that almost all twist-4
operators appearing in the power corrections ∼ 1/Q2 to structure functions of the deep
inelastic lepton–hadron scattering also can be reduced to this class of quasipartonic opera-
tors (QPO) [59],[86]. Apart from the on-mass shell requirement it is natural also to impose
the additional constraint on QPO: they should not contain explicitly the strong coupling
constant [86]. Indeed, in the parton model the form of strong interactions is essential only
when one calculates parton distributions whereas the matrix elements of the operators
between parton states do not depend on the QCD dynamics. Below we shall neglect the
quark mass. It will give us an opportunity to use the conformal symmetry of the theory.

The mass-shell condition will be fulfilled in the light-cone gauge providing that
corresponding QPO are invariant under the following field transformations

ψ → ψ + γ.χ, ψ̄ → ψ̄ + χ̄γ., Aμ → Aμ + q ′
μ φ, (7.382)
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where χ, χ̄ , and φ are arbitrary spinor and scalar functions. Therefore, these quantities can
be constructed as a product of the structures (we also take into account the independence
from the QCD coupling constant g)

γ.ψ, ψ̄γ., G⊥
.μ = ∂.A⊥

μ, D. = ∂., γ.. (7.383)

Of course, the composite operators should be colourless, but on an intermediate step we
consider the operators with an open colour as it takes place for above structures. In prin-
ciple, the fields ψ, ψ̄ can belong to an arbitrary representation of the colour group. For
example, in the supersymmetric models gluinos are transformed according to the adjoint
representation of the gauge group. But, as a rule, the fields ψ and ψ̄ are assumed to be
usual massless quark fields.

Below we list examples of QPO for the twist 2:

ψ̄γ.(i∂.)
nψ, ψ̄γ5γ.(i∂.)

nψ, ψ̄γ.γ
⊥
ρ (i∂.)

nψ,(
−i∂.A

⊥
ρ

)
(i∂.)

n+1 A⊥
ρ , ε⊥⊥

ρ1ρ2

(
−i∂.A

⊥
ρ1

)
(i∂.)

n+1 A⊥
ρ2
, Sρ1ρ2

(
−i∂.A

⊥
ρ1

)
(i∂.)

n+1 A⊥
ρ2
,

(7.384)
twist 3:(

(−i∂.)
n1ψ̄

)
γ.γ5(i∂.A

⊥
σ )(i∂.)

n2ψ, fabcε
⊥⊥
ρ1ρ2

(
(−i∂.)

n1 Aa⊥
ρ1

)
(i∂.A

b⊥
σ )(i∂.)

n2 Ac⊥
ρ2
,

(7.385)
and twist 4: (

(−i∂.)
n1ψ̄

)
γ.
(
(i∂.)

n2ψ
) (
(−i∂.)

n3ψ̄
)
γ.(i∂.)

n4ψ,(
(−i∂.)

n1 A⊥
ρ

) (
(i∂.)

n2 A⊥
ρ

) (
(−i∂.)

n3 A⊥
σ

)
(i∂.)

n4 A⊥
σ , (7.386)

where ε⊥⊥
ρ1ρ2

is an antisymmetric tensor in the two-dimensional space (ε⊥⊥
12 = 1).

One can easily verify that the twist of QPO coincides with the number k of constituent
fields ψ, ψ̄, A⊥

σ

t = d − j = k. (7.387)

They can be written in the form [86]

O{r} = �{r}
ρ1...ρl

l∏
t=1

(i∂.)
nt +st −1 ϕrt

ρt
, (7.388)

where ϕrt
ρt is one of these fields with the spin index ρt and the colour index rt . The factor

�{r} is a numerical matrix satisfying the constraints

q ′
ρt
�{r}
ρ1...ρl

= 0, q̂ ′
ρ̄ρt
�{r}
ρ1...ρl

= 0 (7.389)

in vector and spinor indices. Generally, we consider the matrix elements of such operators
between the hadron states h, h′ with the different momenta ph, ph′ [86]

< h′|O|h >, (7.390)
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They appear, for example, in the theoretical description of the electro- and photoproduction
of photons [87]. The simple case of the matrix element between the vacuum and the hadron
state

< 0|O|h > (7.391)

corresponds to the calculation of the hadron-wave functions at small parton distances x2 ∼
1/Q2 → 0 [88],[89],[90],[91] appearing in the theory of hadron formfactors and other
exclusive processes at large momentum transfers.

To have the universal formulas for particles and antiparticles it is convenient to change
the normalization of the quark spinors and gluon polarization vectors by introducing the
new wave functions [86]

ξλ(k) = � k �q ′

s
uλ(p′), s = 2p′q ′, k2 = sαβ + k2⊥ = 0,

ηλρ(k) = β eλρ
(

p′)− 2

s
q ′
ρ kσ⊥eλσ , λ = ±1, p = p′ + m2

h

s
q ′, (7.392)

where the basis spinors uλ
(

p′) and vectors eλ
(

p′) satisfy the following eigenvalue
equations

γ5uλ
(

p′) = −λuλ
(

p′) , � p′ uλ
(

p′) = 0, p′
0 > 0,

iε⊥⊥
ρτ eλτ

(
p′) = λeλτ

(
p′) , p′eλτ

(
p′) = q ′eλτ

(
p′) = 0, ε⊥⊥

ρτ = 2

s
ερταβ p′

αq ′
β (7.393)

and the normalization conditions

ξ̄ λ
′
(k)γμξ

λ(k) = 2βkμδλλ′ , ηλ
′
ρ (k) η

λ
ρ(k) = −β2 δλλ′ . (7.394)

Inverse transformations for spinors with positive and negative energies and for the
polarization vectors is

uλ(k) = β−1/2 ξλ(k), vλ(−k) = β−1/2 γ2ξ
−λ∗(k), eλ(k) = β−1ηλ(k). (7.395)

It is helpful also to impose on uλ
(

p′) and eλ
(

p′) additional constraints by fixing their
phases to satisfy the equalities

vλ(−k) = |β|−1/2 ξ−λ(−k), ηλ∗(k) = η−λ(−k). (7.396)

The above relations allow us to relate analytically the amplitude for the particle pro-
duction to that for the annihilation of the antiparticle with an opposite helicity. In such
normalization, the numerators of the propagators for the partons entering the vertex can be
written as follows

� k = β−1
∑
λ=±1

ξλ
(
k′) ξ̄ λ (k′)+ k2

sβ
�q ′, k′ = k − k2

βs
q ′,

− δμν + kμq ′
ν + kνq ′

μ

kq ′ = β−2
∑
λ=±1

ηλμ
(
k′) ηλ ∗

ν

(
k′)+ 4k2

s2β2
q ′
μq ′
ν . (7.397)
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Because for QPO the last terms in the right-hand sides of the above equalities give
vanishing contributions one can express the hadron-matrix elements of these operators as
the sum of products of the matrix elements Oλ1...λl between the on-mass shell parton states
with definite helicities λ1 . . . λl integrated with the inclusive parton correlation functions
Nλ1...λl (β1, . . . βl) [86]

< h′|O{r}|h >=
∑
λ1...λl

∫
dβ1 . . . dβl O{r}

λ1...λl

l∏
t=1

β
nt
t N {r}

λ1...λl
(β1, . . . βl) , (7.398)

where

O{r}
λ1...λl

= �{r}
ρ1...ρl

l∏
t=1

β−1
t ξλt

ρt

(
k′

t

)
, (7.399)

N {r}
λ1...λl

(β1, . . . βl) =
∫

d4k1 . . . d
4kl M {r}

ρ1...ρl
(k1, . . . , kl)

l∏
t=1

ξ̄
λt
ρt

(
k′

t

)
k2

t
δ

(
βt − kt q ′

p′q ′

)
.

(7.400)

In the above expressions, for simplicity, we denote by ξλt
ρt (k

′
t ) the parton-wave functions

which for various t could be ξλ(k′), ξ̄−λ(−k′) or ηλρ(k
′). The product O{r}

λ1...λl

∏l
t=1 β

nt
t

corresponds to the parton-matrix element of the operator O{r}
... which includes the

derivatives (i∂.)nt acting on the quark or gluon fields.
The parton-correlation functions (PCF) N {r}

λ1...λl
(β1, . . . βl) contain the δ-function, corre-

sponding to the energy-momentum conservation

β =
l∑

t=1

βt , (7.401)

where β is the difference of the Sudakov variables for ingoing and outgoing hadrons.
In the case of the usual deep inelastic scattering β is zero, but it is not zero for the
case of different momenta of initial and final hadrons. PCF can be calculated in terms
of scalar products of parton-wave functions for initial and final hadrons integrated over
the momenta and summed over quantum numbers of nonobserved partons. Generally, the
function N {r}

λ1...λl
(β1, . . . βl) describes several products of different wave functions which

correspond to two possible signs for each βt . Namely, for a positive sign, the correspond-
ing parton belongs to the initial state and, for an opposite sign, it is in the final state. Note
that PCF are similar to the density matrix in the quantum mechanics.

Another important property of QPO is that they are closed under the renormalization in
the leading logarithmic approximation [86]. Namely, if one calculates the one-loop cor-
rection to their matrix elements between parton states, the resulting operators after using
the equations of motion can be reduced again to QPO. Moreover, the integral kernel in the
evolution equation for the matrix elements of QPO is expressed as a sum of pair-splitting
kernels  ri rk

ri ′rk′ [86]
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∂

∂ξ̃
N {r}(β1, . . . βl)

=
∑
i<k

∑
ri ′rk′

∫
dβi ′ dβk′  ri rk

ri ′rk′ (βi , βk |βi ′ , βk′) δ (βi ′ + βk′ − βi − βk)

N {r ′}(β1, . . . , βi ′ . . . βk′ . . . βl). (7.402)

Here indices r include the types of particles (quark or gluon) and their colour, flavour, and
helicity. In accordance with Ref.[86], we changed here the normalization of the “time”
variable ξ in comparison with expression (7.58)

ξ̃ = 1

b
ln

(
1 + b

g2

16π2
ln

Q2

�2
QC D

)
, b = 11

3
Nc − 2

3
n f . (7.403)

All pair-splitting kernels  ri rk
ri ′rk′ are calculated for both signs of the Sudakov vari-

ables βr [86]. They describe interactions of quarks and gluons in all possible helicity,
colour and flavour states and do not contain infrared divergencies. The pair kernels with
quantum numbers of quark or gluon have contributions from the corresponding virtual par-
ticles in the t-channel. The evolution equations for PCF in the coordinate representation
have many interesting properties, including their conformal invariance under the Möbius
transformations

z → az + b

cz + d
, (7.404)

where z = xμq ′
μ is the light-cone variable. This symmetry makes it possible to find the

eigenfunctions of the pair-splitting kernels in terms of the Gegenbauer polynomials [92]

Rq̄q
n+1(β1, β2) =

n∑
k=0

(−1)k
n! (n + 2)!βk

1 β
n−k
2

k! (k + 1)! (n − k)! (n − k + 1)!

Rgg
n+2(β1, β2) =

n∑
k=0

(−1)k+1 n! (n + 4)!βk
1 β

n−k
2

k! (k + 2)! (n − k)! (n − k + 2)! ,

Rqg

n+ 3
2
(β1, β2) =

n∑
k=0

(−1)k
n! (n + 3)!βk

1 β
n−k
2

k! (k + 1)! (n − k)! (n − k + 2)! , (7.405)

where β1 and β2 are the Sudakov variables of two corresponding partons with spins s1 and
s2, respectively. The degree n of the polynomials is related with the Lorentz spin j of the
twist-2 operators by the relation

j = n + s1 + s2. (7.406)

It is convenient, however, to pass to the momenta representation using the relation

Nr1...rl (n1, . . . , nl) =
∫ l∏

t=1

(
dβt

(nt + 1)! β
nt
t

)
N {r}(β1, . . . , βl). (7.407)
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For these functions, the evolution equation takes the form [86]

∂

∂ξ̃
Nr1...rl (n1, . . . nl)

=
∑
i<k

∑
ri ′ ,rk′

∑
n′

i ,n
′
k

[
 ri rk

ri ′rk′

]ni nk

ni ′ nk′
δni ′+nk′+�Sik , ni +nk Nr1...rl (n1, . . . , ni ′ . . . nk′ . . . nl),

(7.408)
where

�Sik = si ′ + sk′ − si − sk . (7.409)

The new pair kernels are related to those in the β-representation by the relations [86]∑
n1′ n2′

[
 r1r2

r1′r2′

]n1n2

n1′ n2′

β
n1′
1′

(n1′ + 1)!
β

n2′
2′

(n2′ + 1)!

=
∫

dβ1 dβ2
β

n1
1

(n1+1)!
β

n2
2

(n2+1)! δ(β1 + β2 − β1′ − β2′) ri rk
ri ′rk′ (βi , βk |βi ′ , βk′). (7.410)

Due to the conformal invariance the kernels
[
 

r1r2
r1′r2′

]n1n2

n1′ n2′ are completely determined by

their eigenfunctions and eigenvalues [86][
 r1r2

r1′r2′

]n1n2

n1′ n2′
=ar1′ (n1′) ar2′ (n2′)

ar1(n1) ar2(n2)

∑
j

(
V r1r2

) j
n1n2

(
V r1′r2′ ) j

n1′ n2′ �
r1r2
r1′r2′ ( j)

×
(

j + 2

j − 1

) 1
2� S12

, (7.411)

where �S12 was defined in Eq.(7.409),

aq(n) = √
n + 1, ag(n) =

√
n + 1

n + 2
, (7.412)

and (
V r1r2

) j
n1n2

= (−1)n1+2s1−1 C j,�S
n1+n2

2 ,
n2−n1

2 ; n1+n2
2 +S,

n2−n1
2 +�S

,

S = s1 + s2, �S = s1 − s2. (7.413)

The factor C j,m
j1,m1; j2,m2

is the Clebsch–Gordon coefficient which is independent of the
colour, flavour, and helicity of the partons. Such dependence takes place only in the
matrices �r1r2

r1′r2′ ( j) acting on the corresponding indices of PCF. They are presented below
(see [86]):

�
qq
qq( j) =1

2
(Q6 + Q3)

(
Nc − 1

Nc
P6 − Nc + 1

Nc
P3

)
×
[
(PV + PA + PT )

(
2S j − 3

2

)
− PV + PA

j ( j + 1)

]
+ (−1) j (Q3 → −Q3, P3 → −P3, PA → −PA) , (7.414)
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�
q̄q
q̄q( j) = − (Q1+Q8)

(
N 2

c − 1

Nc
P1− 1

Nc
P8

)
×
[
(PV +PA+PT )

(
2S j − 3

2

)
− PV + PA

j ( j + 1)

]
− 2

3
n f Q1 P8 PV δ j,1, (7.415)

�
gg
gg( j) =

(
Nc P1 + P10 + P1̄0 − P27 + Nc

2
P8d + Nc

2
P8 f

)
×
[
(PV + PA + PT )

(
11

6
− 2S j − n f

3Nc

)
+ 4

j ( j + 1)

(
PV + PA + 3PV

( j − 1)( j + 2)

)]
+ (−1) j (P8 f → −P8 f , PA → −PA

)
, (7.416)

�
gg
q̄q( j) =√

n f Q1

⎡⎣⎛⎝√N 2
c − 1

Nc
P1 +

√
N 2

c − 4

2Nc
P8d + i

√
1

2
Nc P8 f

⎞⎠
× ( j + 2)(PV + PA)+ 4PV

j−1

j ( j + 1)
+ (−1) j (P8 f → −P8 f , PA → −PA

)⎤⎦ ,
(7.417)

�
q̄q
gg ( j) =1

2
√

n f Q1

⎡⎣⎛⎝√N 2
c − 1

Nc
P1 +

√
N 2

c − 4

2Nc
P8d − i

√
1

2
Nc P8 f

⎞⎠
× ( j − 1)(PV + PA)+ 4PV

j+2

j ( j + 1)
+ (−1) j (P8 f → −P8 f , PA → −PA

)⎤⎦ ,
(7.418)

�
qg
qg( j) = − (Nc P3 + P6 − P15)

×
⎡⎣(PV + PA + PT )

(
2S j− 1

2
+ 2

2 j + 1
− 5

3
+ n f

6Nc

)
− 2(PV + PA)(

j − 1
2

) (
j + 3

2

)
⎤⎦

+
(

1

Nc
P3 + P6 − P15

)
(−1) j− 1

2

j + 1
2

⎡⎣PT − 2(PV + PA)(
j − 1

2

) (
j + 3

2

)
⎤⎦ . (7.419)

Here Pr (r = V, A, T ) are projectors for vector (V), axial (A), and tensor (T) helicity
states of two partons

(PV )
λ1λ2
λ′

1λ
′
2

= 1

2
δλ,−λ2 δλ′

1,−λ′
2
, (PA)

λ1λ2
λ′

1λ
′
2

= 1

2
λ1 λ

′
1 δλ,−λ2 δλ′

1,−λ′
2
,
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(PT )
λ1λ2
λ′

1λ
′
2

= 1

2

(
1 + λ1 λ

′
1

)
δλ,λ2 δλ′

1,λ
′
2
, λr = ±1. (7.420)

The projectors Pr on the colour states r = 1, 8 f, 8d, 10, 1̄0, 27 (two gluons), r = 3, 6
(two quarks or antiquarks), r = 1, 8 (quark-antiquark pair) and r = 3, 6, 15 (gluon
and quark or antiquark) can be easily constructed (see, for example, Ref. [93]). Similar
expressions are valid also for the projectors Qr on the various flavour states r = 1, 8
(quark-antiquark pair) and r = 3, 6 (two quarks or two antiquarks) for the SU (n f )-flavour
group corresponding to massless u, d, s quarks. We write below only projections for the
transitions between two gluons and a quark-antiquark pair

(P1)
ab
i j =

(
Nc

(
N 2

c − 1
))− 1

2
δab δi j , (P8d)

ab
i j =

(
2Nc

N 2
c − 4

) 1
2

dabc tc
i j ,

(
P8 f

)ab
i j = fabc tc

i j , (Q1)
f1 f2 = (n f )

− 1
2 δ f1 f2 , [ta, tb] = i fabc tc. (7.421)

The above relations give a possibility to write the evolution equation for any QPO with
the Lorentz spin j as a system of linear equations. The rank of this system grows rapidly
with increasing j . The diagonalisation of the anomalous dimension matrix allows us to find
the anomalous dimensions of the multiplicative renormalized operators. As an example, we
write below this system for twist-3 operators responsible for the violation of the Bjorken
scaling in the structure function g2(x).

7.13 Q2-dependence of the twist-3 structure functions
for the polarized target

The twist-3 operators appearing in the operator product expansion of two electromagnetic
currents jμ and jν in the antisymmetric tensor Tμν (7.313) which describe the electon
scattering off the polarized target can be reduced to two quasipartonic operators (7.385)
using equations of motion [58, 86]. To calculate their matrix elements (7.398) between
hadron states one should introduce, respectively, two parton correlation functions

N (β1, β2, β3) ≡ N q̄qg(β1, β2, β3), M(β1, β2, β3) ≡ N ggg(β1, β2, β3). (7.422)

The evolution equations (7.402) are simplified in this case, as it will be shown below.
To begin, we note that the matrix elements of the operators (7.385) vanish if the signs

of helicities of all three partons are the same. Due to parity conservation, it is enough
to consider only the case when two helicities are positive and one is negative. For the
operators containing fermion fields the helicities of quark and antiquark are opposite
and therefore we can choose the positive sign for the gluon helicity. Moreover, PCF
N8(β1, β2, β3) with the flavour octet quantum number (for SU (3)-flavour group) do not
mix with pure gluonic operators. Further, for the flavour-singlet case the combination
N−++

1 (β1, β2, β3)− N+−+
1 (β2, β1, β3) has the negative charge parity and therefore it does

not give any contribution to Tμν . Due to its positive charge parity, the colour structure of the
gluonic operator is proportional to the antisymmetric structure constant fabc. This means
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that the Bose statistics make it possible to express the corresponding correlation functions
with various gluon helicities only in terms of M−++(β1, β2, β3)

M−++(β1, β2, β3) = −M−++(β1, β3, β3) = −M+−+(β2, β1, β3)

= −M++−(β3, β2, β1) = M++−(β2, β3, β1) = M+−+(β3, β1, β2). (7.423)

Thus, one should consider the following correlation functions

N8(β1, β2, β3) ≡ N−++
8 (β1, β2, β3),

N1(β1, β2, β3) ≡ N−++
1 (β1, β2, β3)+ N+−+

1 (β2, β1, β3),

M(β1, β2, β3) ≡ M−++(β1, β2, β3). (7.424)

The evolution equations for N8 in the momenta basis have the form (7.408) [58],[86]

∂

∂ξ̃
N8(n1, n2, n3)=

[(
 

q̄q
q̄q

)
V +A

]n1n2

n1′ n2′
N8(n1′ , n2′ , n3)+

[(
 

q̄q
q̄q

)
V −A

]n1n2

n1′ n2′
N8(n1′ , n2′ , n3)

+
[(
 

q̄g
q̄g

)
V +A

]n1n3

n1′ n3′
N8(n1′ , n2, n3′)+ [(

 
qg
qg
)

T

]n2n3

n2′ n3′ N8(n1, n2′ , n3′), (7.425)

where (
 r1r2

r1′r2′

)
V ±A

≡ 1

2

((
 r1r2

r1′r2′

)
V

±
(
 r1r2

r1′r2′

)
A

)
. (7.426)

The evolution equations for N1 and M are more complicated [58],[86]

∂

∂ξ̃
N1(n1, n2, n3) =

[(
 

q̄q
q̄q

)
V +A

]n1n2

n1′ n2′
N1(n1′ , n2′ , n3)

+
[(
 

q̄q
q̄q

)
V −A

]n1n2

n1′ n2′
N1(n1′, n2′ , n3)+

[(
 

q̄g
q̄g

)
V +A

]n1n3

n1′ n3′
N1(n1′ , n2, n3′)

+ [(
 

qg
qg
)

T

]n2n3

n2′ n3′ N1(n1, n2′ , n3′)+ 4

[(
 

q̄q
gg

)
V +A

]n1n2

n1′ n2′
M(n1′ , n2′ , n3) (7.427)

and
∂

∂ξ̃
M(n1, n2, n3) = 2

[(
 

gg
gg
)

V +A

]n1n2

n1′ n2′
M(n1′, n2′ , n3)

+ 2
[(
 

gg
gg
)

V +A

]n1n3

n1′ n3′
M(n1′, n2, n3′)+ [(

 
gg
gg
)

T

]n2n3

n2′ n3′ M(n1, n2′ , n3′)

+
[(
 

gg
q̄q

)
V +A

]n1n2

n1′ n2′
N1(n1′ , n2′ , n3)+

[(
 

gg
q̄q

)
V +A

]n1n3

n1′ n3′
N1(n1′, n2, n3′), (7.428)

where the sum over ni ′ , nk′ is implied with the additional constraint

ni ′ + nk′ +�Sik = ni + nk . (7.429)
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Here Sik is defined in Eq. (7.409). The pair kernels
(
 

r1r2
r1′r2′

)
s (s = V, A, T ) in the above

equations are enlisted in Eq. (7.411), and in the expressions for �r1r2
r1′r2′ one should leave

only the contributions containing the projectors (7.420) to the corresponding spin states
V, A, or T . In particular, in the kernels describing the transition between partons q̄q and
gg we have only the V + A intermediate state in accordance with the fact that the helicity
of the third gluon is positive. The coefficients 4 and 2 in equations for N1 and M in front of
some kernels appear due to our definition of N1 and the symmetry relations for M (7.423).
The colour and flavour structures are not shown, since for each pair kernel only one colour
and flavour projector gives a nonzero contribution.

Let us consider, for example, the evolution equation for the singlet-flavour state with
j=3. In this case, the independent components of momenta N1(n1, n2, n3) and
M(n1, n2, n3) are

x ≡ N1(0, 0, 2), y ≡ N1(0, 1, 1), z ≡ N1(1, 0, 1), u ≡ N1(2, 0, 0), (7.430)

and

v ≡ N1(2, 0, 0), w ≡ N1(1, 1, 0), m ≡ i M(0, 1, 0) = −i M(0, 0, 1). (7.431)

Using expressions (7.414)–(7.419), we can write the matrix of anomalous dimensions for
the corresponding operators [86]. It turns out that it contains information about the anoma-
lous dimension for lower spins j = 1 and j = 2. Indeed, because the total derivative from
the local operator does not change its anomalous dimension, we obtain, using relation
(7.407), that the linear combination

l∑
k=1

(nk + 2) N (n1, . . . , nk−1, nk + 1, nk+1, . . . , nl) (7.432)

has the same anomalous dimension matrix as PCF N (n1, . . . , nl) with lower j .
Therefore the components of j = 2 state

r = 2y + 3u + 2w, s = 2z + 3v + 2w, t = 3x + 2y + 2z (7.433)

are closed under the Q2-evolution [58],[86]:

d

d ξ̄
r =

(
−3

2
Nc + 1

Nc
− 2

3
n f

)
r +

(
− 2

3Nc
− 1

3
n f

)
s +

(
1

3
Nc − 1

3Nc

)
r,

d

d ξ̄
s =

(
− 2

3Nc
− 1

3
n f

)
r +

(
−7

4
Nc + 1

4Nc
− 2

3
n f

)
s +

(
1

2
Nc + 1

6Nc

)
t,

d

d ξ̄
t =

(
−1

2
Nc − 1

2Nc

)
r +

(
3

4
Nc + 1

4Nc

)
s +

(
−11

6
Nc − n f

)
r. (7.434)

In turn, one can separate from this system the evolution equation for the operator with j=1

d

d ξ̄
(r + s + t) =

(
−Nc − 1

6Nc
− n f

)
(r + s + t) (7.435)
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and its large-q2 behaviour is

r + s + t ∼ exp

((
−Nc − 1

6Nc
− n f

)
ξ̄

)
. (7.436)

The components of the operators having really j = 2 are related as follows

t = −r − s, (7.437)

where r and s satisfy the evolution equation

d

d ξ̄
r =

(
−11

6
Nc − 2

3
n f

)
r +

(
−1

3
Nc − 1

3Nc
− 1

3
n f

)
s,

d

d ξ̄
s =

(
−1

2
Nc − 5

6Nc
− 1

3
n f

)
r +

(
−9

4
Nc + 1

12Nc
− 2

3
n f

)
s. (7.438)

The multiplicatively renormalized PCF with j = 2 depend on Q2 as follows(
−1

3
Nc − 1

3Nc
− 1

3
n f

)
s +

(
−11

6
Nc − 2

3
n f − λ1

)
r ∼ eλ2 ξ̄ ,(

−1

3
Nc − 1

3Nc
− 1

3
n f

)
s +

(
−11

6
Nc − 2

3
n f − λ2

)
∼ eλ1 ξ̄ , (7.439)

where λ1,2 are two solutions of the secular equation(
−11

6
Nc − 2

3
n f − λ

)(
−9

4
Nc + 1

12Nc
− 2

3
n f − λ

)

=
(

−1

3
Nc − 1

3Nc
− 1

3
n f

)(
−1

2
Nc − 5

6Nc
− 1

3
n f

)
. (7.440)

In turn, the three components of PCF with j = 3 are expressed through independent
ones

y = −3

2
u − w, z = −3

2
v − w, x = −2

3
y − 2

3
z (7.441)

which satisfy the evolution equations

d

d ξ̄
u =

(
−29

12
Nc + 7

6Nc
− 8

15
n f

)
u +

(
1

12
Nc − 1

2Nc
− 1

5
n f

)
v

+
(

−1

3
Nc − 7

6Nc
− 4

15
n f

)
+ 17

90

√
1

2
Ncn f m,

d

d ξ̄
v =

(
3

20
Nc − 3

20Nc
− 1

5
n f

)
u +

(
−59

20
Nc + 37

60Nc
− 8

15
n f

)
v

+
(

−2

5
Nc − 23

30Nc
− 4

15
n f

)
− 1

30

√
1

2
Ncn f m,
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d

d ξ̄
w =

(
−3

4
Nc − 7

8Nc
− 1

5
n f

)
u +

(
−1

2
Nc − 1

8Nc
− 1

5
n f

)
v

+
(

−37

12
Nc + 3

2Nc
− 3

5
n f

)
− 7

60

√
1

2
Ncn f m,

d

d ξ̄
m =

√
1

2
Ncn f

(
37

20
u − 23

20
v − 7

10
w

)
−
(

197

60
Nc + n f

)
m. (7.442)

Again, one can construct the multiplicatively renormalized PCF and find their anomalous
dimensions by solving the corresponding secular equation.

For larger j , the derivation of similar evolution equations is straightforward, but the
construction of the multiplicatively normalized operators and their anomalous dimensions
can be done only numerically, because the secular equation contains the polynomials Pn(λ)

of the rank n > 4.

7.14 Infrared evolution equations at small x

7.14.1 Double logarithms and the DGLAP equation

For the nonsinglet structure functions, the pure gluonic intermediate states in the crossing
channel are absent and as a result their behaviour at small x is not related to the pomeron
exchange. The main contribution in this case is obtained from the ladder diagrams having
the quark-antiquark intermediate states in the t-channel [12]. In the Born approximation,
the amplitude for the forward scattering of the virtual photon off a massless quark has the
form

FB = −e2
(
γμ(�p+ �q)γν
(p + q)2

+ γν(�p− �q)γμ
(p − q)2

)
, (7.443)

where e is the quark electric charge, p is the momentum of the quark (p2 = 0), and q is
the photon momentum

q = q ′ + xp, (q ′)2 = 0, x = Q2

2pq
, Q2 = −q2. (7.444)

Taking into account that the γ -matrices in FB are calculated between the quark spinors,
we can write FB in another form

FB = F+
B + F−

B , (7.445)

where

F+
B = e2 δ⊥μν �q ′

(
1

2pq ′ − Q2
− 1

−2pq ′ − Q2

)
,

F−
B = e2 ε⊥μν γ1γ2 �q ′

(
1

2pq ′ − Q2
+ 1

−2pq ′ − Q2

)
. (7.446)

Here δ⊥μν is the Kronecker symbol (δ⊥11 = δ⊥22 = −1) and ε⊥μν is the unit antisymmetric
tensor (ε⊥12 = 1) in the two-dimensional transverse subspace. Because the matrix elements
of F±

B between the spinors with fixed helicities λ = ±1 contain the additional factor 2pq ′,
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uλ(p) �q ′uλ(p) = 2pq ′, uλ(p)γ1γ2 �q ′uλ(p) = −λ 2pq ′, (7.447)

the expressions F+
B and F−

B describe contributions with the positive and negative signa-
tures, respectively.

In double-logarithmic approximation (DLA), the spin and colour structure of the Born
term is not changed. As a result, the amplitude for the photon-quark forward scattering
with the infrared cut-off |k⊥|2 > μ2 can be written as follows

F(s, Q2;μ2) = F+(s, Q2;μ2)+ F−(s, Q2;μ2), (7.448)

F+(s, Q2;μ2) = F+
B

∫ σ+i∞

σ−i∞
d j

2π i

(
1

x

) j ∫ +i∞

−i∞
dγ

2π i

(
Q2

μ2

)γ
ξ+( j) f+( j, γ ),

F−(s, Q2;μ2) = F−
B

∫ σ+i∞

σ−i∞
d j

2π i

(
1

x

) j ∫ +i∞

−i∞
dγ

2π i

(
Q2

μ2

)γ
ξ−( j) f−( j, γ ),

where f p( j, γ ) are the t-channel partial waves with the corresponding signatures p = ±1
and ξp( j) is the signature factor

ξp( j) = −e−iπ j + p

sin π j
. (7.449)

Respectively, the nonsinglet contribution to the quark-antiquark scattering amplitudes
with colour singlet and octet quantum numbers (r = 1, 8) in the t-channel can be presented
in DLA in the form

Ar (s;μ2) =
∫ σ+i∞

σ−i∞
d j

2π i

(
2pp′

μ2

) j (
ξ+( j) f r+( j)+ ξ−( j) f r−( j)

)
. (7.450)

Taking into account the corresponding colour projectors

Pi1,k2
i2,k1

(1, qq) = δ
i1
i2
δ

k2
k1

Nc
, Pi1,k2

i2,k1
(8, qq) = 2 �T i1

i2
�T k2
k1
, (7.451)

one obtains for the t-channel partial waves in the Born approximation

f B± (γ ) = −π
2

1

γ
, f (1)B± = −π

2

N 2
c − 1

2Nc
, f (8)B± = π

2

1

2Nc
. (7.452)

Note that for μ2 > Q2 the amplitude F(s, Q2;μ2) does not depend on Q2 and equals

F±(s, Q2;μ2)|
μ2�Q2 = F±

B A(1)± (s;μ2)
2Nc

N 2
c − 1

. (7.453)

This relation can be considered as an initial condition for the evolution of F±(s, Q2;μ2)

in the infrared cut-off μ2 < Q2.
The Sudakov parameters αi and βi of the quark momenta in the t-channel ladder

diagrams

ki = βi p + αi q ′ + k⊥
i (7.454)
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are strongly ordered in DLA

1 � β1 � β2 � . . .� βn � |k⊥|2
s
, 1 � αn � αn−1 � . . .� α1 � |k⊥|2

s
(7.455)

and their transverse components

|k⊥
i |2 ∼ sαiβi (7.456)

are large and can exceed the photon virtuality Q2 in the deep inelastic scattering. In fact,
the double-logarithmic terms are obtained as a result of logarithmic integrations over the
parameters αi and βi .

Extracting in the ladder the quark and antiquark with the smallest transverse momentum
|k⊥|2 one can write the following relation between F(s, Q2;μ2) and A(s;μ2)

F(s, Q2;μ2) = FB +
∫

d2k⊥
i(2π)4

d(−sα) d(sβ)

2 |s| A(1)(−sα; |k⊥|2)

× � k⊥ . . . � k⊥
(sαβ − |k⊥|2 + iε)2

F(sβ, Q2; |k⊥|2), |k⊥|2 > μ2, (7.457)

substituting by |k⊥|2 in the inner amplitudes the infrared cut-off μ2. Here the notation
� k⊥ . . . � k⊥ means that the corresponding γ -matrices act on different spinors. The spinor
structure is simplified after the integration over the azimuthal angles in the two-dimensional
transverse subspace with the use of the relation

γ⊥
σ � k⊥γ⊥

μ . . . γ
⊥
ν � k⊥γ⊥

σ → −|k⊥|2
2
γ⊥
σ γ

⊥
ρ γ

⊥
μ . . . γ

⊥
ν γ

⊥
ρ γ

⊥
σ = −2|k⊥|2 γ⊥

μ . . . γ
⊥
ν .

(7.458)
Further, if one will present A(−sα; |k⊥|2) and F(sβ, Q2; |k⊥|2) as a sum of two contri-

butions with signatures p = ±1, the signatures of A and F should coincide and be equal to
the signature of the result of integration, which can be verified by changing the sign of the
invariant s and signs of both Sudakov variables α and β. Therefore, it is enough to consider
only the positive values of s and β and multiply the result by the factor 2. The contour of
the integration over −sα can be enclosed around the singularities of A(−sα; |k⊥|2) situ-
ated in the lower semiplane at −sα > 0, which gives a possibility to express the integral
in terms of its discontinuity �A = 2i& A. In such way, we obtain for F(s, Q2;μ2) the
equation

F±(s, Q2;μ2) = F±
B A(1)± (s; Q2)

2Nc

N 2
c − 1

− 2g2
∫ ∞

0

dy

y

∫ sy/μ2

Q2

d(sβ)

(2π)4s

×
∫ Q2

μ2

2π |k⊥|2d|k⊥|2
(y + |k⊥|2)2

∫ σ+i∞

σ−i∞
d j ′

2π i

(
y

|k⊥|2β
) j ′

f±( j ′) F±(sβ, Q2; |k⊥|2), (7.459)

where we introduced the new variable y = −sαβ instead of −sα and used for
�A±(−sα; |k⊥|2) the t-channel partial wave representation. The upper limit of integration
over |k⊥|2 was taken to be equal to Q2, because the contribution from the integration region
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|k⊥|2 > Q2 was included in the new inhomogeneous term A(1)± (s; Q2) in an accordance

with the above discussion. The amplitudes F±(sβ, Q2; |k⊥|2) and A(1)± (s; Q2) have the
signatures p = ±. The equation for A±(s; Q2) will be obtained below. One can perform
the integration over y taking into account that in DLA y � |k⊥|2

F±(s, Q2;μ2) = FB

2
A(1)± (s; Q2)

2Nc

N 2
c − 1

−2g2
∫ s

Q2

d(sβ)

s

∫ Q2

μ2

d|k⊥|2
(2π)3|k⊥|2

∫ σ+i∞

σ−i∞
d j ′

2π i j ′

(
1

β

) j ′

f (1)± ( j ′)F±
(

sβ, Q2; |k⊥|2
)
.

Finally, inserting the Mellin representation for A±(s; Q2) and F±(sβ, Q2; |k⊥|2) in the
form of an integral over j and γ and calculating subsequently the integrals over |k⊥|2, sβ,
and j ′ we obtain

γ f±( j, γ ) = f (1)± ( j)
2Nc

N 2
c − 1

− 1

j

αs

π2
f (1)± ( j) f (1)± ( j, γ ), αs = g2

4π
. (7.460)

The solution of this equation is

f±( j, γ ) =
f (1)± ( j) 2Nc

N 2
c −1

γ + 1
j
αs
π2 f (1)± ( j)

. (7.461)

On the other hand, one can obtain the similar equation for f±( j) by extracting from the
ladder diagrams the quark pair with the smallest transverse momentum

f (1)± ( j) = f (1)B± − 1

j2

αs

π2

(
f (1)± ( j)

)2
, f (1)B± = −π

2

N 2
c − 1

2Nc
. (7.462)

We shall discuss in the next subsection additional contributions from the soft Sudakov
gluons [10]. The neglection of the Sudakov terms is valid for the positive signature, where
the solution for f+( j, γ ) can be presented in the form

f+( j, γ ) = − γ ( j)/j

γ − γ ( j)

π2

αs

2Nc

N 2
c − 1

, (7.463)

where the position of the pole in γ satisfies the algebraic equation

γ ( j) (γ ( j)− j) = − αs

2π

N 2
c − 1

2Nc
. (7.464)

For the negative signature there are corrections to this equation from the soft-gluon
contributions.

It is important that even for the singlet-structure functions, the two-gluon exchange also
can lead to the corrections ∼ s0 related to the double-logarithmic asymptotics [94]. Indeed,
let us consider the amplitude of the deep inelastic scattering with a two-gluon intermediate
state in the t-channel. In the Feynman gauge, the propagators of these gluons contain the
tensor structure

Lμ1ν1;μ2ν2 = δμ1ν1 δμ2ν2 . (7.465)
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We assume that the tensor L is contracted in the indices μ1 and μ2 with the left (L) blob
having particles with large Sudakov parameters βi along the initial momenum p and in the
indices ν1 and ν2 with the right (R) blob with large parameters αi along q ′. In this case, the
leading asymptotic contribution appears from its longitudinal (so-called nonsense) tensor
components

Lμ1ν1;μ2ν2 = q ′
μ1

pν1

pq ′
q ′
μ2

pν2

pq ′ +�Lμ1ν1;μ2ν2, (7.466)

where the small correction �Lμ1ν1;μ2ν2 with good accuracy can be written as follows

�Lμ1ν1;μ2ν2 = q ′
μ1

pν1

pq ′ δ⊥μ2ν2
+ q ′

μ2
pν2

pq ′ δ⊥μ1ν1
. (7.467)

We consider the forward scattering, where the momenta of two gluons are k and −k.
Due to the colour current conservation kμ1 f L

μ1
= kν1 f R

ν1
= 0 for the amplitudes describing

the left and right blobs, one can substitute

�Lμ1ν1;μ2ν2 → pq ′ k⊥
μ1

k⊥
ν1

kp kq ′ δ
⊥
μ2ν2

+ pq ′ k⊥
μ2

k⊥
ν2

kp kq ′ δ
⊥
μ1ν1

. (7.468)

After averaging over the azimuthal angle in the transverse plane we can present this tensor
as a sum of two spin structures factorized in the t-channel

�Lμ1ν1;μ2ν2 → −pq ′ |k⊥|2
kp kq ′

(
δ⊥μ1μ2

δ⊥ν1ν2
+ ε⊥μ1μ2

ε⊥ν1ν2

)
. (7.469)

This means that one can consider the forward-scattering amplitudes only with the trans-
verse polarizations. Note that for the two-gluon intermediate state we obtained the factor
|k⊥|2 in the numerator similar to the nonsinglet case where the product of the quark and
antiquark propagators in the t-channel contain the numerator � k⊥ . . . � k⊥. The presence of
this factor leads to the logarithmic divergency of the integral over |k⊥|2 and, as a result, to
the appearence of double-logarithmic contributions.

To derive the Bethe–Salpeter equation for the amplitude in DLA for the singlet case,
we begin with the DGLAP evolution equation. It is equivalent to the renormalization
group equation for the twist-2 operators. The tensor structure δ⊥μ1μ2

appearing in Lμ1ν1;μ2ν2

corresponds to the operators

Og
μ1μ2...μ j

= S Gμ1σ Dμ2 Dμ3 . . . Dμ j−1 Gμ jσ , (7.470)

where S means the symmetrization in indices μ1, . . . , μ j combined with the trace sub-
traction and Dμ are the covariant derivatives. Analogously, ε⊥μ1μ2

corresponds to the
operators

Õg
μ1μ2...μ j

= S Gμ1σ Dμ2 Dμ3 . . . Dμ j−1 G̃μ jσ (7.471)

where G̃μσ is the dual tensor of the gluon field. Note that due to the positive-charge parity
of the two-photon state, the operators Og

μ1μ2...μ j and Õg
μ1μ2...μ j should have, respectively,

even and odd values of the Lorentz spin j . It means that the small-x asymptotics of the
structure functions F1,2(x) and g1(x) are related to the t-channel partial waves with the
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positive and negative signatures, respectively. The anomalous dimension matrix for the
gluon operators Og

μ1μ2...μ j and Õg
μ1μ2...μ j together with the corresponding quark operators

Og
μ1μ2...μ j

= S ψγμ1∇μ2∇μ3 . . .∇μ jψ, (7.472)

Õq
μ1μ2...μ j

= Sψγ5γμ1 Dμ2 Dμ3 . . . Dμ jψ (7.473)

is well known. We write the evolution equations in the Born approximation for their matrix
elements in the form

d

d ln Q2

(
ng

j

nq
j

)
= αs(Q2)

2π j
K

(
ng

j

nq
j

)
, K =

⎛⎝ −2Nc − N 2
c −1
Nc

n f
N 2

c −1
2Nc

⎞⎠ , (7.474)

d

d ln Q2

(
ñg

j

ñq
j

)
= αs(Q2)

2π j
K̃

(
ñg

j

ñq
j

)
, K̃ =

⎛⎝ 4Nc
N 2

c −1
Nc

−n f
N 2

c −1
2Nc

⎞⎠ , (7.475)

taking into account only the pole contributions at j = 0, responsible for the appearence of
double logarithms. These relations can be considered as differential forms of the Bethe–
Salpeter equations for the parton distibutions at small x

n(|k|2, β) = n0(β)+
∫ 1

β

dβ ′

β ′

∫ |k|2

μ2

d|k′|2
|k′|2

αs(|k|2)
2π

K n(Q2, β ′), (7.476)

ñ(|k|2, β) = ñ0(β)+
∫ 1

β

dβ ′

β ′

∫ |k|2

μ2

d|k′|2
|k′|2

αs(|k|2)
2π

K̃ ñ(Q2, β ′), (7.477)

where

n0(β) = δ(1 − β)
(

ag

aq

)
, ñ0(β) = δ(1 − β)

(
ãg

ãq

)
(7.478)

and ar and ãr describe the content of the initial parton. For example, for the longitudinally
polarized quark in the initial state we have ag = ãg = 0, aq = ãq = 1.

The amplitudes in the double-logarithmic approximation (for the ladder diagrams) sat-
isfy the same integral equations, but with a different region of integration. Namely, one
should order not only the Sudakov variables βi , but also the variables αi = |ki |2/(βi s). As
a result, we obtain the new condition for the region of integration over k′

|k′|2
β ′ <

|k|2
β

(7.479)

instead of the old inequality |k′|2 < |k|2. In the double-logarithmic region |k′|2 can be
larger then |k|2 for β ′ > β. Note that for the pomeron the region of logarithmically small
|k|2 for the gluons inside the BFKL ladder gives a negligible contribution due to the colour-
current conservation. It is important only in the asymptotics g2 ln s → ∞, which is related
to the diffusion in the variable ln |k|2 at large energies.
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Thus, the Bethe–Salpeter equations for the amplitude in DLA are

n(k2, β) = n0(β)+
∫ 1

β

dβ ′

β ′

∫ |k|2 β′
β

μ2

d|k′|2
|k′|2

αs

2π
K n(|k′|2, β ′), (7.480)

ñ(k2, β) = ñ0(β)+
∫ 1

β

dβ ′

β ′

∫ |k|2 β′
β

μ2

d|k′|2
|k′|2

αs

2π
K̃ ñ (|k′|2, β ′). (7.481)

In the leading approximation, the strong coupling fine structure constant αs can be
considered as a quantity independent from |k|2.

Searching the solution of these equations in the form of the Mellin transformation

n(Q2, β) =
∫ σ+i∞

σ−i∞
d j

2π i

(
1

β

) j ∫ i∞

−i∞
dγ

2π i

(
Q2

μ2

)γ
G( j, γ )

(
ag

aq

)
, (7.482)

ñ(Q2, β) =
∫ σ+i∞

σ−i∞
d j

2π i

(
1

β

) j ∫ i∞

−i∞
dγ

2π i

(
Q2

μ2

)γ
G̃( j, γ )

(
ãg

ãq

)
, (7.483)

we obtain for the operators G( j, γ ) and G̃( j, γ ) the following expressions

G( j, γ ) = j χ( j)/K

γ − αs
2π χ( j)

, G̃( j, γ ) = j χ̃ ( j)/K̃

γ − αs
2π χ̃( j)

, (7.484)

where the t-channel partial waves χ( j) and χ̃ ( j) satisfy the matrix relations

j χ( j) = K + αs

2π
(χ( j))2 , j χ̃ ( j) = K̃ + αs

2π
(χ̃( j))2 . (7.485)

The last relations are obtained by comparing the coefficients in front of (k2/μ2)γ ( j) in
the left- and right-hand sides of the above equations for n(k2, β) and ñ(k2, β). The terms
independent from k2 are cancelled in their right-hand sides. The above-derived algebraic
relations for the nonsinglet partial waves f (1)± ( j) are particular cases of these general
equations.

We can calculate the eigenvalues λr , λ̃r and eigenfunctions ai
r , ãi

r of the operators
K and K̃

λr

(
ag

r

aq
r

)
= K

(
ag

r

aq
r

)
, λ̃r

(
ãg

r

ãq
r

)
= K̃

(
ãg

r

ãq
r

)
. (7.486)

They are solutions of the corresponding secular equations

λ2
r + 3N 2

c + 1

2 Nc
λr + N 2

c − 1

Nc
(n f − Nc) = 0,

aq
r

ag
r

= − N 2
c − 1

Nc(λr + 2Nc)
, (7.487)

λ̃2
r + −9N 2

c + 1

2Nc
λ̃r + N 2

c − 1

Nc
(n f + 2Nc) = 0,

ãq
r

ãg
r

= N 2
c − 1

Nc(λr − 4Nc)
. (7.488)

The eigenvalues of the operators χ( j) and χ̃ ( j) satisfy the algebraic equations [12]

j χr ( j) = λr + αs

2π
(χr ( j))2 , j χ̃r ( j) = λ̃r + αs

2π
(χ̃r ( j))2 . (7.489)
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The eigenvalues are not changed after the similarity transformation of the matrices
K and K̃

K → K ′ = U−1 KU, K̃ → K̃ ′ = Ũ−1 K̃ Ũ . (7.490)

For example, using the diagonal matrices U and Ũ one can transform K and K̃ to the
symmetric forms

K ′ =
⎛⎝ −2Nc i

√
N 2

c −1
Nc

n f

i
√

N 2
c −1
Nc

n f
N 2

c −1
2Nc

⎞⎠ , K̃ ′ =
⎛⎝ 4Nc i

√
N 2

c −1
Nc

n f

i
√

N 2
c −1
Nc

n f
N 2

c −1
2Nc

⎞⎠ .
(7.491)

One can write the corresponding t-channel partial waves for the parton distributions in
DLA as follows

G( j, γ )

(
ag

aq

)
=

2∑
r=1

j χr ( j) cr/λr

γ − αs
2π χr ( j)

(
ag

r

aq
r

)
,

(
ag

aq

)
=

2∑
r=1

cr

(
ag

r

aq
r

)
, (7.492)

G̃( j, γ )

(
ãg

ãq

)
=

2∑
r=1

j χ̃r ( j) c̃r /̃λr

γ − αs
2π χ̃r ( j)

(
ãg

r

ãq
r

)
,

(
ãg

r

ãq
r

)
=

2∑
r=1

c̃r

(
ãg

r

ãq
r

)
. (7.493)

It turns out that there is an additional contribution in the equation for χ̃ ( j) from the
soft Sudakov gluon with the smallest transverse momentum. This contribution will be
constructed below.

7.14.2 Sudakov term in evolution equations

According to the Gribov arguments, the main contribution from the diagrams with the
virtual gluon having the smallest transverse momentum |k⊥| appears from its insertion in
the external lines for a scattering amplitude on the mass shell. The inner amplitude has the
new infrared cut-off |k⊥| instead of initial one μ. In LLA for the Regge kinematics these
Sudakov-type terms can be presented as follows [12]

�Ai1r2
i2r1
(s, μ2) = 2

g2

(2π)4

∫
π d |k⊥|2 |s| dα dβ (−2s)

2i
(
sαβ − |k⊥|2 + iε

) (−s(1 − β)α − |k⊥|2 + iε
)

×
⎛⎜⎝

−→
T i1

i ′1
−→
T

r ′
1

r1 A
i ′1r2

i2r ′
1
(s, |k⊥|2)

s(1 + α)β − |k⊥|2 + iε
+

−→
T i1

i ′1
−→
T r2

r ′
2

A
i ′1r ′

2
i2r1
(s, |k⊥|2)

−s(1 − α)β − |k⊥|2 + iε

⎞⎟⎠ . (7.494)

The factor 2 in front of the integral corresponds to the contribution of two symmetric
Feynman diagrams in which the gluon connects the lines with initial and final particle
momenta ±p1 and ±p2. The diagrams in which the soft gluon connects the lines with
opposite momenta ±p1 or ±p2 are not essential at high energies. The operators

−→
T i1

i ′1
are
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the generators of the gauge group in the fundamental and adjoint representations for the
quark and gluon lines, respectively. We use the Sudakov variables

k = αp2 + βp1 + k⊥, d4k = d2k⊥ |s|dα dβ

2
, p2

2 = p2
1 = 0, (7.495)

where p1 and p2 are the initial particle momenta. The factor (−2s) in the integrand appears
as a result of the simplification of the spin structure at high energies. It is convenient to
present the amplitudes �A and A as a superposition of the states with the various colour
quantum numbers in the t-channel. For this purpose, we introduce the projectors on the
singlet (1) and octet (8 f ),(8d) states for gluons

Pa1,b2
a2,b1

(1, gg) = δa1,a2 δb1,b2

N 2
c − 1

, Pa1,b2
a2,b1

(8 f , gg) = fa1,a2,c fb1,b2,c

Nc
, (7.496)

Pa1,b2
a2,b1

(8d , gg) = Nc da1,a2,c db1,b2,c

N 2
c − 4

, (7.497)

quark-antiquark pairs

Pi1,k2
i2,k1

(1, qq) = δ
i1
i2
δ

k2
k1

Nc
, Pi1,k2

i2,k1
(8, qq) = 2 �T i1

i2
�T k2
k1
, (7.498)

and for matrix elements describing transitions between quarks and gluons

Pa1,k2
a2,k1

(1, gq) = δa1,a2 δ
k2
k1√

Nc(N 2
c − 1)

, Pa1,k2
a2,k1

(8 f , gq) = −i fa1,a2,c (T
c)

k2
k1√

Nc/2
, (7.499)

Pa1,k2
a2,k1

(8d , gq) = da1,a2,c (T
c)

k2
k1√

(N 2
c − 4)/(2Nc)

. (7.500)

The scattering amplitudes �A and A for various processes with quarks and gluons can be
expanded over these projectors

Ai1k2
i2k1
(s, μ2) =

∑
r=1,8

Pi1,k2
i2,k1

(1, qq) A(r)qq (s, μ
2), (7.501)

Aa1,b2
a2,b1

(s, μ2) =
∑

r=1,8 f ,8d ,...

Pa1,b2
a2,b1

(r, gg) A(r)gg (s, μ
2), (7.502)

Aa1,k2
a2,k1

(s, μ2) =
∑

r=1,8 f ,8d

Pa1,k2
a2,k1

(r, gq) A(r)gq (s, μ
2). (7.503)

In particular for the colour matrices appearing in the Born amplitudes, we have the
following decomposition

fb1,a1,c fb2,a2,c = Nc Pa1,b2
a2,b1

(1, gg)+ Nc

2
Pa1,b2

a2,b1
(8 f , gg)+ Nc

2
Pa1,b2

a2,b1
(8d , gg)+ . . . ,

(7.504)
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�T k2
i2

�T i1
k1

= N 2
c − 1

2 Nc
Pi1k2

i2k1
(1, qq)− 1

2Nc
Pi1k2

i2k1
(8, qq), (7.505)

√
n f (T

a1 T a2)
k2
k1

= 1

2

√
N 2

c − 1

Nc
n f Pa1,k2

a2,k1
(1, gq)+

√
2Ncn f

4
Pa1,k2

a2,k1
(8 f , gq)

+
√

2(Nc − 4
Nc
)n f

4
Pa1,k2

a2,k1
(8d , gq). (7.506)

The matrix elements of the matrices K ′ and K̃ ′ are proportional to the corresponding coef-
ficients in front of the projectors P(1) to the singlet states for the decomposition of the Born
colour structures. It is natural to generalize these matrices to other colour states l = 8d , 8 f

in accordance with the Born-term decomposition

K ′
8d

=

⎛⎜⎜⎝ −Nc i

√
N 2

c −4
2Nc/n f

i

√
N 2

c −4
2Nc/n f

− 1
2Nc

⎞⎟⎟⎠ , K̃ ′
8d =

⎛⎜⎜⎝ 2Nc i

√
N 2

c −4
2Nc/n f

i

√
N 2

c −4
2Nc/n f

− 1
2Nc

⎞⎟⎟⎠ ,

K ′
8 f

=
⎛⎝ −Nc i

√
Nc n f

2

i
√

Nc n f
2 − 1

2Nc

⎞⎠ , K̃ ′
8 f

=
⎛⎝ 2Nc i

√
Nc n f

2

i
√

Nc n f
2 − 1

2Nc

⎞⎠ . (7.507)

In this case, for the ladder diagrams in DLA the nonlinear equations for the t-channel
partial waves χl( j), χ̃l( j) (l = 1, 8 f , 8d ) are universal [12]

j χl( j) = K ′
l + αs

2π
(χl( j))2 , j χ̃l( j) = K̃ ′

l + αs

2π
(χ̃l( j))2 . (7.508)

Note that signatures of the amplitudes χ8 f and χ̃8d are negative and positive, respectively.
The soft-gluon contribution expressed in the terms of the colour octet and colour singlet

amplitudes is simplified after the integration over the Sudakov variables α and β

�A(r)(s, μ2) = −2
g2

(2π)3

∫ s

μ2

π d |k⊥|2
|k⊥|2

×
(

at→r
s ln

−s

|k⊥|2 − at→r
u ln

s

|k⊥|2
)

A(t)(s, |k⊥|2). (7.509)

The coefficients as and au depend on the transition type (qq), (gg), or (qg) and the
colour quantum numbers of the amplitudes�A(r) and A(t) in the t-channel. For�A in the
singlet state A can be only in the octet state. We obtain the following coefficients

a8→1
s = a8→1

u = N 2
c − 1

2Nc
(7.510)

for the qq transitions,

a
8 f →1
s = a

8 f →1
u = Nc, a8d→1

s = a8d→1
u = 0 (7.511)
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for the gg transitions, and

a
8 f →1
s = a

8 f →1
u =

√
N 2

c − 1

2
, a8d→1

s = a8d→1
u = 0 (7.512)

for the transitions q → g and g → q .
In the case when �g A is in the octet state, A can be in the singlet state, where

a1→8
s = a1→8

u = 1

2Nc
(7.513)

for the qq transitions,

a
1→8 f
s = a

1→8 f
u = Nc

N 2
c − 1

, a1→8d
s = a1→8d

u = 0 (7.514)

for the gg transitions, and

a
1→8 f
s = a

1→8 f
u = 1√

2(N 2
c − 1)

, a1→8d
s = a1→8d

u = 0 (7.515)

for the transitions q → g and g → q .
When�g A is in the octet state 8 f or 8d , A can also be in other colour states. We consider

below only transitions from 8 f and 8d states. The coefficients as and au equal

a8→8
s = N 2

c − 2

2Nc
, a8→8

u = − 1

Nc
, (7.516)

for the qq transitions,

a
8 f →8 f
s = −a

8 f →8 f
u = Nc

4
, a

8 f →8d
s = a

8 f →8d
u = Nc

4
,

a
8d→8 f
s = a

8d→8 f
u = Nc

4
, a8d→8d

s = a8d→8d
u = Nc

4
(7.517)

for the gg transitions, and

a
8 f →8 f
s = −a

8 f →8 f
u = Nc

4
, a

8 f →8d
s = a

8 f →8d
u =

√
N 2

c − 4

4

a
8d→8 f
s = a

8d→8 f
u =

√
N 2

c − 4

4
, a8d→8d

s = a8d→8d
u = N 2

c − 4

4Nc
. (7.518)

for the qg transitions.
The Sudakov contribution can be written in the differential form

∂

∂ ln 1
μ2

�Ar (s, μ2) = − g2

4π2
Rt→r (s) At (s, μ2), (7.519)

where

Rt→r (s) = at→r
s ln

−s

μ2
− at→r

u ln
s

μ2
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= (at→r
s − at→r

u )
ln (−s/μ2)+ ln (s /μ2)

2
+ (at→r

s + at→r
u )

−iπ ε(s)

2
. (7.520)

Here ε(s) = s/|s| is the sign function.
Let us consider the scattering amplitudes with the definite signature p = ±1

A(s) = A+(s)+ A−(s), Ap(s) =
∫ σ+i∞

σ−i∞
d j

2π i

(
s

μ2

) j

ξp( j) f p( j), σ > 0,

(7.521)
where ξp( j) is the signature factor.

ξp( j) = −e−iπ j + p

sin π j
. (7.522)

The inverse transformation is

f p( j) =
∫ ∞

μ2

d s

s

(
s

μ2

)− j

Ims Ap(s), (7.523)

where Ims Ap is the s-channel imaginary part of the amplitude symmetric (p = 1) or
antisymmetric (p = −1) under the transformation s → −s.

Let us calculate the product of Ri→r (s) with the scattering amplitudes

Rt→r (s) Ai
p(s) =

∫ σ+i∞

σ−i∞
d j

2π i

(
s

μ2

) j

×
(
(at→r

s − at→r
u ) ξp( j) ϕt

p( j)

+ (at→r
s + at→r

u ) ξ−p( j) ϕt−p( j)
)
, (7.524)

where

ϕt
p( j) =

∫ ∞

μ2

d s

s

(
s

μ2

)− j ∫ σ ′+i∞

σ ′−i∞
d j ′

2π i

(
ln

s

μ2
+ π

2

cos π j ′ + p

sin π j ′

)(
s

μ2

) j ′

f t
p( j ′)

=
∫ σ ′+i∞

σ ′−i∞
d j ′

2π i( j − j ′)

(
1

j − j ′
+ π

2

cos π j ′ + p

sin π j ′

)
f t

p( j ′) (7.525)

and

ϕt−p( j) =
∫ ∞

μ2

d s

s

(
s

μ2

)− j ∫ σ ′+i∞

σ ′−i∞
d j ′

2π i

(
π

2

cos π j ′ + p

sin π j ′

)(
s

μ2

) j ′

f t
p( j ′)

=
∫ σ ′+i∞

σ ′−i∞
d j ′

2π i( j − j ′)

(
π

2

cos π j ′ + p

sin π j ′

)
f t

p( j ′). (7.526)

In the above expressions, the contour of integration over j ′ lies to the left from the
contour of integration over j (σ > σ ′). Therefore, we can enclose the integration contour
in the variable j ′ around the pole in the point j = j ′ and calculate the integral by residues

ϕt
p( j) =

(
− d

d j
+ π

2

cosπ j + p

sin π j

)
f t

p( j), ϕt−p( j) =
(
π

2

cosπ j + p

sin π j

)
f t

p( j).

(7.527)
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Here we neglected contributions of the poles contained in the factor (cos π j ′ + p)/ sin π j ′
because they do not lead to the singularities of ϕi±( j) in the left half of the j-plane related
to the asymptotic behaviour of amplitudes at large s. As a result, we can write the Sudakov
contribution to the evolution equation in μ2 as follows

j f r
p( j)Sud = − g2

4π2
(at→r

s − at→r
u )

(
− d

d j
+ π

2

cos π j + p

sin π j

)
f t

p( j)

− g2

4π2
(at→r

s + at→r
u )

(
π

2

cos π j − p

sin π j

)
f t−p( j). (7.528)

One can simplify the brackets in the above equation near j = 0

− d

d j
+ π

2

cos π j + p

sin π j
= − d

d j
+ 1 + p

2 j
,

π

2

cos π j − p

sin π j
= 1 − p

2 j
. (7.529)

7.14.3 Equations for the partial waves in DLA

As we have shown above, the amplitude for the virtual photon scattering off the quark
with nonsinglet quantum numbers in the t-channel is expressed in DLA in terms of the
quark-antiquark scattering amplitude on mass shell. The qq-amplitude satisfies the infrared
evolution equation which contains generally the soft quark and Sudakov contributions.
These terms were found in the previous sections. The partial waves f r±( j) for quark pairs
with the colour quantum numbers r are related to the matrix elements of the more general
operators χr and χ̃r with the relations of the type

f (1)+ ( j) = −π
2

j χ(1)qq ( j), f (1)− ( j) = −π
2

j χ̃ (1)qq ( j), (7.530)

In DLA, the singlet operator χ(1)+ ( j) with the positive signature satisfies the equation [12]

jχ(1)( j) = K ′ + αs

2π

(
χ(1)( j)

)2
. (7.531)

The anomalous dimensions of the twist-2 operators with even j are expressed in terms of
two eigenvalues χ(1)1,2( j) of its solution

γ1,2 = αs

2π
χ
(1)
1,2( j), χ(1)( j) = π

αs

(
j −

√
j2 − 2

αs

π
K ′
)
. (7.532)

As for the partial wave χ̃ (1)( j) with the negative signature, its equation contains also the
contribution from the soft gluons [12]

j χ̃ (1)( j) = K̃ ′ + αs

2π

(
χ̃ (1)( j)

)2

− 2
αs

π

1

j

⎛⎝ Nc χ̃
(8 f )
gg ( j)

√
N 2

c −1
2 χ̃

(8 f )
gq ( j)√

N 2
c −1
2 χ̃

(8 f )
qg ( j) N 2

c −1
2Nc

χ̃
(8 f )
qq ( j)

⎞⎠ , (7.533)
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where the operator χ̃r ( j) with the octet quantum numbers r = (8 f ) and the positive
signature satisfies the more complicated Ricatti-type equation

j χ̃ (8 f )( j) = K ′
8 f

+ αs

2π

(
χ̃ (8 f )( j)

)2 + αs

2π
Nc

d

d j
χ̃ (8 f )( j). (7.534)

In the Sudakov term with the double-logarithmic accuracy we neglected the contributions
from the negative-signature amplitudes χ̃r (r = 1, 8d , 10, 10, 27).

One can search the solution in the form

χ̃ (8 f )( j) = Nc
∂

∂ j
ln ψ( j), (7.535)

where ψ( j) satisfies the linear equation(
αs

2π
Nc

∂2

(∂ j)2
− j

∂

∂ j
+ 1

Nc
K ′

8 f

)
ψ( j) = 0. (7.536)

By extracting from ψ( j) the factor exp(π j2/(2Ncαs)) one can reduce it to the Schrödinger
equation for the harmonic oscillator, which allows us to find its solution in terms of the
parabolic-cylinder function Dp(z) satisfying the equation(

∂2

(∂z)2
+ ν + 1

2
− z2

4

)
Dν(z) = 0, (7.537)

where

z = j

√
2π

Ncαs
, ν = 1

Nc
K ′

8 f
. (7.538)

Thus, we obtain for χ̃ (8 f )( j) [12]

χ̃ (8 f )( j) = Nc

∂ ln

(
e

z2
4 Dν(z)

)
∂ j

= Nc
∂ ln

∫∞
0

dt
t1+ν e− t2

2 −zt

∂ j
. (7.539)

This solution is a matrix. One can diagonalize it

χ̃ (8 f )( j) = L−1 Nc
∂

∂ j

⎛⎜⎜⎝ ln

(
e

z2
4 Dν1(z)

)
0

0 ln

(
e

z2
4 Dν2(z)

)
⎞⎟⎟⎠ L , (7.540)

where the operator L is constructed from the eigenfunctions of the matrix K ′
8 f
/Nc and its

eigenvalues νr

L =
(
(L1)1 (L2)1

(L1)2 (L2)2

)
,

1

Nc
K ′

8 f
Lr = νr Lr . (7.541)
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After that the matrix

S̃( j) = K ′
8 f

− 2
αs

π

1

j

⎛⎝ Nc χ̃
(8 f )
gg ( j)

√
N 2

c −1
2 χ̃

(8 f )
gq ( j)√

N 2
c −1
2 χ̃

(8 f )
qg ( j) N 2

c −1
2Nc

χ̃
(8)
qq ( j)

⎞⎠ (7.542)

is constructed in an explicit form. The anomalous dimensions of the operators with the
negative signature are expressed in terms of the eigenvalues of the matrix χ̃ (1)( j)

γ1,2 = αs

2π
χ̃
(1)
1,2( j), (7.543)

satisfying the algebraic equation

j χ̃ (1)1,2( j) = s̃1,2( j)+ αs

2π

(
χ̃
(1)
1,2( j)

)2
, (7.544)

where s̃1,2( j) are the eigenvalues of the matrix S̃( j).
For completeness, we present also the equation for the amplitude with the octet quantum

numbers and the negative signature [12]

j χ(8 f )( j) = φ(8 f )( j)+ αs

2π

(
χ(8 f )( j)

)2 + αs

2π
Nc

d

d j
χ̃ (8 f )( j), (7.545)

where the inhomogeneous term is given below

φ(8 f )( j) =K ′
(8 f )

− αs

π

1

j

⎛⎝ 2Nc
N 2

c −1
χ
(1)
gg ( j)

√
2

N 2
c −1
χ
(1)
gq ( j)√

2
N 2

c −1
χ
(1)
qg ( j) 1

Nc
χ
(1)
qq

⎞⎠
− αs

π

1

j

⎛⎝ Nc
2 χ̃

(8d )
gg ( j)

√
N 2

c −4
2 χ̃

(8d )
gq ( j)√

N 2
c −4

2 χ̃
(8d )
qg ( j) N 2

c −4
2Nc

χ̃
(8)
qq

⎞⎠ . (7.546)

In principle, writing exactly the signature factors, one can derive more accurate
equations taking into account the corrections ∼ j .
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8

QCD jets

8.1 Total cross section of e+e−-annihilation into hadrons

The total cross section σt ≡ σe+e−→hadrons of e+e−-annihilation into hadrons is the
simplest process for theoretical analysis. The asymptotic freedom of QCD allows one
to perform its theoretical calculation reliably. In one-photon approximation, the matrix
element of the process e+e− → X , where X is any hadronic state, is written as

M = −e2v̄(k+)γμu(k−)
1

q2
〈X |J el

μ (0)|0〉, (8.1)

where k− and k+ are the electron and positron momenta, q = k−+k+ is the virtual photon
4–momentum, and J el

μ is the electromagnetic current. Neglecting the electron mass, we
have for unpolarized e+e− beams:

σt = e4

2s3

(
k−μk+ν + k+μk−ν − q2

2
δμν

)
Rμν, (8.2)

where s = q2 and

Rμν = (2π)4
∑

X

〈0|J el
ν (0)|X〉 〈X |J el

μ (0)|0〉 δ(q − pX )

=
∫

d4xeiqx 〈0|
[

J el
ν (x)J

el
μ (0)

]
|0〉. (8.3)

Note that only the first term in the commutator gives a contribution for q0 > 0. As in
Section 7.1, use of the commutator is helpful to clarify the space-time picture of the pro-
cess. In the c.m.s., where q0 = √

s, the condition of absence of oscillations |qx | ≤ 1
implies that the main contribution to the cross section comes from the region |x0| ≤ 1/

√
s.

Since the commutator is different from 0 only at x2 ≥ 0, we obtain similar restrictions on
all components of x . Therefore, in contrast to the amplitude (7.2), the amplitude (8.3) is
dominated by the domain near the central point x = 0. Using the expansion (6.1.1) for the
products of the currents in (8.3), we find that operators of dimension d make contributions
of the order of sdJ −4−d/2, i.e. s−1−d/2 since dJ = 3. The main contribution of the order of
s−1 comes from the unit operator and therefore can be calculated in perturbation theory.
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Due to current conservation Rμν can be written as

Rμν = − 1

6π

(
q2δμν − qμqν

)
R, (8.4)

where

R = −2π

q2
Rμμ = −2π

q2

∫
d4xeiqx 〈0|

[
J el
μ (x)J

el
μ (0)

]
|0〉, (8.5)

so that

σt = 4πα2

3s
R. (8.6)

Now, since

4πα2

3s
= σe+e−→μ+μ− , (8.7)

where σe+e−→μ+μ− is the total cross section of the process e+e− → μ+μ− in the Born
approximation, we have

R = σe+e−→hadrons
σe+e−→μ+μ−

. (8.8)

Note that

σe+e−→μ+μ− = 86 · 10−33

s(GeV2)
cm2. (8.9)

The variable R is related to the hadronic contribution to the photon vacuum polarization
operator P . If P is defined by

Pμν = i
∫

d4xeiqx 〈0|T
(

J el
μ (x)J

el
ν (0)

)
|0〉 =

(
qμqν − q2δμν

)
P(q2), (8.10)

then

R = 12πImP(s)!(s − sth), (8.11)

where sth is the hadron-production threshold.
In the operator expansion for J el

μ (x)J
el
ν (0), the contribution nondecreasing with s gives

only the unit operator (in perturbation theory only this operator makes a contribution).
Retaining only this contribution and taking into account that the anomalous dimension of
a conserved current is zero, we obtain at mq = 0(

μ
∂

∂μ
+ gβ(g)

∂

∂g

)
R

(
s

μ2
, g

)
= 0, (8.12)

where g ≡ g(μ), μ is the renormalization point, and we have made use of R being
dimensionless. This means that R is a function of the invariant charge only:

R

(
s

μ2
, g

)
= R

(
1, g(

√
s)
)
. (8.13)
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This function is known to the first three orders in αs :

R = Nc

∑
i

Q2
i

[
1 + A1

αs

4π
+ A2

( αs

4π

)2 + A3

( αs

4π

)3
]
, (8.14)

where the sum is over quark flavours, Q f is the electric charge of flavour f . The coefficient
A1 is scheme independent. It was found ([1], [2]) long ago:

A1 = 3CF , CF = N 2
c − 1

2Nc
= 4

3
. (8.15)

Indeed, up to the colour coefficient it coincides with the QED result [3]. For massive
quarks, the first-order correction has also been calculated [4],[5].

The coefficients A2 and A3 are scheme dependent. In the MS scheme, the first of them
is ([6]–[8]):

AM S
2 = −3

2
C2

F + CF CA

(
123

2
− 44ζ(3)

)
+ CF n f (−11 + 8ζ(3)) , (8.16)

where ζ(n) is the Rieman zeta-function, ζ(3) $ 1.202. The latter coefficient, A3, is
([9],[10]):

AM S
3 = − 69

2
C3

F + C2
F CA (−127 − 572ζ(3)+ 880ζ(5))

+ CF C2
A

(
90445

54
− 10948

9
ζ(3)− 440

3
ζ(5)

)
+ C2

F n f

(
−29

2
+ 152ζ(3)− 160ζ(5)

)
+ CF CAn f

(
−15520

27
+ 3584

9
ζ(3)+ 80

3
ζ(5)

)
+ CF n2

f

(
1208

27
− 304

9
ζ(3)

)
− π2C f

(
11

3
CA − 2

3
n f

)2

+
(∑

i Qi
)2∑

i Q2
i

(N 2
c − 1)(N 2

c − 4)

16N 2
c

(
176

3
− 128ζ(3)

)
, (8.17)

ζ(5) $ 1.037. Numerically at Nc = 3

R = 3
∑

i

Q2
i

[
1 + αs

π
+
(αs

π

)2 (
1.986 − 0.115n f

)
+
(αs

π

)3 (−6.637 − 1.200n f − 0.005n2
f

)]
− 1.240

(∑
i

Qi

)2 (αs

π

)3
. (8.18)

For five active flavours it is

R = 11

3

[
1 + αs

π
+ 1.409

(αs

π

)2 − 12.805
(αs

π

)3
]
. (8.19)
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One could think that the relatively large value of the last coefficient is related to the asymp-
totic nature of the perturbation series. However, this seems implausible since the value of
this coefficient comes mainly from the negative π2 terms arising due to the analytical
continuation to the physical region of energies [9].

Experimental values of R are used to determine αs . The disadvantage of this method
of determination of αs is that R is only weakly sensitive to a variation of αs , while the
advantage is the model independence.

8.2 Jet production

The variable R gives only a quite general characteristic of the process. It is very desirable
to be able to calculate more detailed properties and to have at least a qualitative picture of
hadron production.

A more or less common picture here is the following: A quark q and antiquark q̄ are
created at small distances in accordance with QCD perturbation theory and then fly apart
with relativistic velocities. Perturbation theory remains valid for some time during their
propagation. In this time, gluon bremsstrahlung and conversion of radiated gluons into
further qq̄ pairs take place. These processes are called parton branching. While relative
transverse momenta of partons produced in the branching are sufficiently large, these pro-
cesses are described by perturbation theory, since the transverse momenta determine the
scale of the coupling constant. However, perturbation theory stops being applicable at cer-
tain transverse momenta. Then the colour fields become deformed in such a way that they
turn out to be concentrated in tubes connecting colour charges. Such localization of the
fields takes place due to the nonperturbative condensate of gluon fields, analogously to
the Meissner effect in a superconductor. In the simplest case of quark and antiquark flying
apart, a “flux tube” or “gluon string” is stretched between them. All colour field energy E
turns out to be concentrated in this string, with a constant linear energy density k, which
is estimated to be k ∼ 0.2 GeV2, and the total energy is E = kr , r being the distance
between the quark and antiquark. Here the strength of the quark and antiquark attraction
becomes independent of r . At the subsequent flying apart of the quark and antiquark more
qq̄ pairs are created from the vacuum (the string breaks into smaller strings with qq̄ pairs
at their ends). Subsequent repeat of the process leads to blanching and hadronization. The
flying apart quark and antiquark turn into hadron jets. In the case when at the first (per-
turbative) stage additional gluons and quark-antiquark pairs are produced, a complicated
structure of chromomagnetic field develops instead of the flux tube and several jets are
created.

It is possible also to speak about the last stage using the usual language of perturbation
theory, without appealing to condensates and to strings. When the distance between the
quark and antiquark reaches ∼ 1 fm, the bremsstrahlung of gluons with k ∼ 1 fm−1, with
a subsequent conversion into qq̄ pairs occurs with a probability ∼ 1 since at such k the
effective coupling αs(k) is large. The creation of soft gluons and qq̄ pairs stops only when
the flying apart clusters (jets) become colourless.
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Evidently, the four-momentum of the jet cannot coincide with the four-momentum of the
quark producing the jet. But at high energies the main difference is the result of perturbative
emission of gluons and their conversion into qq̄ pairs at the stage of parton branching, so
that it is described by perturbation theory. Just parton branching determines the mean value
< k⊥ > of hadron transverse momenta in jets which can be estimated as

< k⊥ >= 1

σ

∫
k⊥

dσ

dk⊥
dk⊥ ∼

∫ √
s

0
k⊥αs(k⊥)

dk⊥
k⊥

∼
√

s

ln

(
s

�2
QC D

) . (8.20)

As for nonperturbative effects, it is considered that they lead to transverse momenta of
hadrons in jets of ∼ 300 MeV.

Measurement of the probabilities of jet production makes it possible to understand the
parton stage of the process. But in order to measure such probabilities, one needs to define
explicitly the notion of jets and to give an algorithm of extraction of jets from data. The
JADE algorithm [11] used by many experimental groups is based on the limit of the jet
invariant mass: M jet ≤ Mcut . The procedure of extraction of jets consists of sequen-
tially finding pairs a, b of clusters of particles (at the initial step each cluster consists of
one particle) with the lowest invariant mass Mab and replacing this pair by cluster c with
momentum pc = pa + pb if Mab < Mcut . Such replacements are repeated until the lowest
invariant mass becomes greater than Mcut . The final clusters are called jets. The Durham
algorithm [12] uses the values 2 min(E2

m, E2
n)(1 − cos θmn) instead of the invariant mass

squared.

8.3 Two-jet events

It follows from the qualitative picture discussed above that at sufficiently high energies
most of the hadronic final states in e+e−-annihilation have a two-jet structure. Such struc-
ture was discovered at the SLAC electron-positron colliding beam facility SPEAR [13],
[14]. The data taken at different incident beam energies from 3.0 to 7.4 GeV were used to
obtain sphericity distributions. The sphericity S,

S = 3
min

∑
i | pi × n|2

2
∑

i p 2
i

, (8.21)

served as a measure of the jet-like character of the event. In (8.21), the sum is over all
hadrons produced in the event, pi is the hadron momentum, and the minimum is found
by varying the direction of the unit vector n. S is bounded between 0 and 1; events with
small S are jet-like. The data show increasing with energy peak at small values of S in
the sphericity distributions and decreasing mean sphericity, which is evidence for the two-
jet structure. Moreover, the angular distribution of the jet axis indicates that the jets are
produced by spin 1/2 partons.

At high energies, cross sections for jet production can be calculated in perturbative
QCD, although it operates with massless quarks and gluons instead of massive hadrons.
Of course, the cross sections must be infrared, stable and free of collinear divergences
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in each order of perturbation theory. This can be achieved by summing over degenerate
states [15]–[17], so that the cross sections must be inclusive.

In [18], the two-jet events are defined as those in which all but a fraction � � 1 of the
total energy

√
s is emitted within a pair of oppositely directed cones of half-angle δ � 1,

lying within two fixed cones of solid angle " (πδ2 � " � 1) at an angle θ to the beam
line. In Born approximation, the jet angular distribution is given by(

dσ

d"

)
B

= α2

4s
Nc

∑
f

Q2
f

(
1 + cos2 θ

)
, (8.22)

where θ is the angle of the axis of the cones to the beam line. In the first order in αs(
dσ

d"

)
=
(

dσ

d"

)
B

+
(

dσ

d"

)
v

+
(

dσ

d"

)
r
, (8.23)

where the subscript v (r ) denotes virtual (real) corrections. The virtual part is determined
by the single electromagnetic quark formfactor f1(q2) surviving in the massless case

〈q( p+)q̄( p−)|J el
μ (0)|0〉 = ū( p+)γμ f1(q

2)v( p−). (8.24)

Using the dimension D = 4 − 2ε for the regularization of both ultraviolet and infrared
singularities, one has in one-loop approximation

f1(q
2) = 1 − αs

2π
CF

(
4πμ2

−q2 − i0

)ε
�(1 + ε)�

2(1 − ε)
�(2 − 2ε)

(
1

ε2
− 1 − 2ε

2ε

)
, (8.25)

so that(
dσ

d"

)
v

=
(

dσ

d"

)
B

αsCF

π

(
4πμ2

s

)ε
�(1 + ε)

(
− 1

ε2
− 3

2ε
− 4 + 2π2

3
+ O(ε)

)
.

(8.26)

Here and below, the terms singular at ε = 0 are concerned with gluons which are either
soft or collinear with the quark or antiquark. The 1/ε2 term comes from soft-collinear
emission. Note that, for consistency, one has to take

( dσ
d"

)
B also at the dimension D, i.e.(

dσ

d"

)
B

= α2

4s
Nc

∑
f

Q2
f (1 − 2ε + cos2 θ)

(4π)ε

�(1 − ε)
(

s

4μ2
sin2 θ

)−ε
. (8.27)

Here we have used that δμμ = 4 − 2ε and in the system with q = 0

(2π)δ((q − p)2)
d D−1 p

2ε(2π)D−1
= d"

32π2

(4π)ε

�(1 − ε)
( s

4
sin2 θ

)−ε
. (8.28)

Thus the total cross section in Born approximation is

σ B
t = 4πα2

3s
Nc

∑
f

Q2
f

(
s

4πμ2

)−ε 3(1 − ε)
(3 − 2ε)

�(2 − ε)
�(2 − 2ε)

. (8.29)

The contribution of real gluon emission can be divided into two parts:(
dσ

d"

)
r

=
(

dσ

d"

)
s
+
(

dσ

d"

)
c
, (8.30)
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where the first part takes into account emission of gluons with energy ω ≤ �
√

s (soft
emission) and the second is related to emission of gluons with ω > �

√
s in cones with

half-angles δ (collinear emission). Using the well-known expression for the soft emission
probability

dWs(k) = −4παsCF

(
p−μ
p−k

− p+μ
p+k

)2
μ2εd D−1k

2ω(2π)D−1
, (8.31)

where p+ and p− are the quark and antiquark momenta, and noting that

μ2εd D−1k

2ω(2π)D−1
= ω2

8π2

(
4πμ2

s

)ε
22ε

�(1 − ε)
dx

x1+2ε

d cos θk

sin2ε θk
, (8.32)

where x = 2ω/
√

s and θk is the emission angle, we obtain(
dσ

d"

)
s

=
(

dσ

d"

)
B

αs

π
CF

(
4πμ2

s

)ε
21+2ε

�(1 − ε)
∫ 2�

0

dx

x1+2ε

∫ π

0

dθk

sin1+2ε θk

$
(

dσ

d"

)
B

αs

π
CF

(
4πμ2

s

)ε
�(1 + ε)

(
(2�)−2ε

ε2
− π2

3

)
. (8.33)

The collinear part can be easily calculated using the quasireal electron method [19]. Note,
however, that the emission probabilities introduced in [19] must be taken with account of
the colour factor and at D = 4 − 2ε. For emission along the quark momenta, we have

2ω(2π)D−1dWc(k

μ2εd D−1k
= 4παsC f

1 − x

1

4(p+k)2
1

2

∑
pol

∣∣ū( p+) � e ∗(k)u( p)
∣∣2

$ 4παsC f
1

p+k

1 + (1 − x)2 − εx2

x(1 − x)
, (8.34)

where p = p+ + k = − p−, the sum goes over polarizations, and only physical gluon
polarizations are used. The factor (1−x)−1 takes into account that in the quark phase-space
volume ε+ $ (1 − x)ε. The integration must be performed with respect to θk ≡ θ(k, p).
Since

xθ(k, p) = (1 − x)θ( p+, p), θ(k, p+)
= θ(k, p) + θ( p+, p) =

θ(k, p)
(1 − x)

, (8.35)

we obtain (
dσ

d"

)
c

=
(

dσ

d"

)
B

αs

π
CF

(
4πμ2

s

)ε
21+2ε

�(1 − ε)

×
∫ 1

2�

dx
(
1 + (1 − x)2 − εx2

)
x1+2ε

∫ 2(1−x)δ

0

dθk

θ1+2ε
k

$
(

dσ

d"

)
B

αs

π
CF

(
4πμ2

s

)ε
�(1 + ε)

×
(
δ−2ε

ε

(
2 ln(2�)+ 3

2

)
− 2 ln2(2�)− 2π2

3
+ 13

2

)
, (8.36)
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so that the real emission gives(
dσ

d"

)
r

=
(

dσ

d"

)
B

αs

π
CF

(
4πμ2

s

)ε
�(1 + ε)

×
(

1

ε2
+ 3

2ε
− 4 ln δ ln 2�− 3 ln δ − π2 + 13

2

)
. (8.37)

The final result is(
dσ

d"

)
=
(

dσ

d"

)
B

(
1 − αs

π
CF

(
4 ln δ ln 2�+ 3 ln δ + π2

3
− 5

2

))
. (8.38)

Here the term with ln δ ln� is connected with the suppression of the soft-collinear
emission. Its coefficient can be easily obtained using the soft-emission probability (8.31):

4
αs

π
CF = 2

dWs(k)

d ln xd ln θk

∣∣∣∣
θk�1

. (8.39)

The infrared and collinear singularities are cancelled in accordance with the Kinoshita–
Lee–Nauenberg theorem [15]–[17]. At high energies and not too small � and δ the two-
jet cross section is insensitive to large distances and can be calculated order by order in
perturbation theory. Evidently, the angular distribution of jets coincides with that of the
primary partons. Experimental investigations of the angular distribution therefore elucidate
the nature of the partons.

The Sterman–Weinberg definition of two-jet events is not the only possible jet definition.
Another definition [20] is based on an invariant mass constraint. Two-jet events are defined
as those in which all produced particles can be combined into two clusters with invariant
masses less than y0s.

The calculation of the two-jet cross section can be simplified by integration over all
angular correlations of the produced jets with the initial particles. Taking account of the
αs-correction we have

σ2− jet = σ2− jet (qq̄)+ σ2− jet (qq̄g), (8.40)

where σ2− jet (qq̄) coincides with the total cross section of quark-antiquark production and
σ2− jet (qq̄g) is the cross section of quark-antiquark-gluon production integrated over the
two-jet region. Using (8.25) we have for the former term

σ2− jet (qq̄) = σ B
t

(
1 + αsCF

π

(
4πμ2

s

)ε
�(1 + ε)

(
− 1

ε2
− 3

2ε
− 4 + 2π2

3
+ O(ε)

))
.

(8.41)

For the cross section of qq̄g production, we have

σ2− jet (qq̄g) = e4

2s3

(
k−μk+ν + k+μk−ν − q2

2
δμν

)
Rqq̄g
μν , (8.42)
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where Rqq̄g
μν is obtained from (8.3) if the sum over X contains only qq̄g states with

momenta in the two-jet region:

Rqq̄g
μν = (2π)D

∑
qq̄g

〈0|J el
ν (0)|qq̄g〉 〈qq̄g|J el

μ (0)|0〉 δ(q − p+ − p− − k). (8.43)

Here p+, p−, and k are the quark, antiquark, and gluon momenta,
∑

means the sum over
their polarizations, colours, and flavours, as well as integration over the phase space

dρqq̄g = d D−1 p+
(2π)D−12ε+

d D−1 p−
2π)D−12ε−

d D−1k

(2π)D−12ω
(8.44)

with the constraint

x± = 2p±q/s ≥ 1 − y0, x = 2kq/s = 2 − x+ − x− ≥ 1 − y0,

q = k+ + k−, q2 = s, (8.45)

and

〈0|J el
μ (0)|qq̄g〉 = Q f gμε ū( p+)ta

[ � e∗(k)( �p++ � k)γμ
2(p+k)

− γμ(�p−+ � k) � e∗(k)
2(p−k)

]
v( p−),

(8.46)

where e is the gluon-polarization vector and a is the colour index. Since the constraint
(8.45) is Lorentz invariant and depends only on q, we have from current conservation

Rqq̄g
μν = 1

D − 1

(
δμν − qμqν

q2

)
Rρρ. (8.47)

Using the expression

(2π)D
∫
δ(q − p+ − p− − k)dρqq̄g =

(
4π

s

)2ε∫ sdx+dx− ((1 − x)(1 − x+)(1 − x−))−ε

2(4π)3�(2 − 2ε)

(8.48)

for the phase-space element and

∑
〈0|J el

μ (0)|qq̄g〉 〈qq̄g|J el
μ (0)|0〉 = Q2

f g2μ2εNcCF
−8

(1 − x+)(1 − x−)

×
[
x2+ + x2− − 2ε

(
(1 − x+)2

+(1 − x−)2 + x+x−
)

+ ε2x2
]

(8.49)
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for the sum over polarizations and colours, we have

σ2− jet (qq̄g) = σ B
t
αsCF

π

(
4πμ2

s

)ε
3(1 − ε)

2(3 − 2ε)�(2 − 2ε)

∫
dx+dx−(1 − x)−ε

((1 − x+)(1 − x−))1+ε

×
[
x2+ + x2− − 2ε

(
(1 − x+)2 + (1 − x−)2 + x+x−

)
+ ε2x2

]
, (8.50)

where the integration region is defined by (8.45). In the limit ε → 0 (8.50) turns into the
result [24],[25]

dσe+e−→qq̄g = σ B
t
αs

2π
CF

dx+dx−(x2+ + x2−)
(1 − x+)(1 − x−)

. (8.51)

Now, performing the integration over x+ and x− with the constraint (8.45), one obtains in
the limit ε → 0 for y0 � 1

σ2− jet (qq̄g) = σ B
t
αsCF

π

(
4πμ2

s

)ε
�(1 + ε)

(
1

ε2
+ 3

2ε
− ln2 y0 − 3

2
ln y0 + 7

2
− π2

2

)
.

(8.52)

Putting together (8.41) and (8.52), we come to the result [20]

σ2− jet = σ B
t

[
1 − αsCF

π

(
ln2 y0 + 3

2
ln y0 + 1

2
− π2

6

)]
. (8.53)

Note that this result can be reached with much less effort if the total cross section σt is
known with one-loop accuracy. Indeed, in αs-order the two-jet cross section is given by
the difference of the total cross section and the cross section for qq̄g production integrated
over the region complementary to the two-jet region defined by (8.45). The latter cross
section contains neither soft nor collinear singularities and can be calculated directly with
D = 4 using the result (8.51).

The two-jet cross section to αs-order does not require renormalization and, strictly
speaking, cannot be used to determine the coupling constant or the QCD scale parame-
ter �QC D . Knowledge of the α2

s -corrections is very useful from this point of view. It is
required also to understand the convergence of the perturbation series.

The α2
s -corrections to the two-jet cross section were calculated in [21],[22] for both the

Sterman–Weinberg [18] and the invariant mass [20] definitions of two-jet events. In both
cases, the angular correlations with e+e− beams were integrated out. All calculations were
performed in the Feynman gauge using dimensional regularization for both ultraviolet and
infrared divergences and MS renormalization scheme. The α2

s -corrections are given by the
sum of the three parts: the two-loop contribution to σ2− jet (qq̄), the one-loop contribu-
tion to σ2− jet (qq̄g), and the four-parton contributions σ2− jet (qq̄gg) and σ2− jet (qq̄qq̄).
The calculation of σ2− jet (qq̄) was performed also in [23]. The one-loop corrections to
the differential cross section dσ(qq̄g) were calculated previously [26]–[35] in the limit
ε → 0; but to find σ2− jet (qq̄g) with α2

s -accuracy the order ε terms in dσ(qq̄g) are
necessary, and therefore dσ(qq̄g) was recalculated in [21],[22] taking account of these
terms. The cross sections for the processes with four-parton final states were found in
[36],[37],[27],[28].
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In the case of the invariant mass definition of two-jet events, the result for the
α2

s -correction in the MS renormalization scheme with μ2 = s is of the following form:

σ
α2

s
2− jet = σ B

t

(αs

π

)2
CF

{
CF

[
2 ln4 y0 + 6 ln3 y0 +

(
13

2
− 6ζ(2)

)
ln2 y0

+
(

9

4
− 3ζ(2)− 12ζ(3)

)
ln y0 + 1

8
− 51

4
ζ(2)+ 11ζ(3)+ 4ζ(4)

]
+ Nc

[
−11

3
ln3 y0 +

(
2ζ(2)− 169

26

)
ln2 y0

+
(

6ζ(3)− 57

4

)
ln y0 + 31

9
+ 32

3
ζ(2) −13ζ(3)+ 45

2
ζ(4)

]
+n f

2

[
−4

3
ln3 y0 + 11

9
ln2 y0 + 5 ln y0 + 19

9
− 38

9
ζ(2)

]}
. (8.54)

The α2
s -correction is positive and not large. For αs = 0.12 and n f = 5 at y0 = 0.05 it

amounts to 4%, whereas the αs-correction is about 19%.

8.4 Three-jet events

Existence of three-jet events due to hard single-gluon bremsstrahlung off quark or anti-
quark at small distances before hadronization was predicted [1] even before the discovery
of the two-jet structure of hadronic final states in e+e−-annihilation. Soon after its dis-
covery, it was pointed out [24] that it is possible to calculate cross sections for multijet
production within perturbative QCD. Experimentally the three-jet events were observed
by several groups [38],[39],[40] at PETRA. All groups found a good qualitative agreement
of observed jet properties with the lowest-order QCD perturbation theory. The rate and
shape of the three-jet events were compared with the distribution (8.51). Peaks at x± = 1
in this distribution are distinctive for spin 1. Comparison of the data with models has given
the evidence of spin 1 for the intermediary of the strong interactions. This observation is
now called gluon discovery.

But higher-order corrections must be included for a quantitative comparison and for
a determination of αs . In the next order in αs , one needs to know one-loop corrections
to qq̄g production (calculated in [26]–[35]) as well as the cross sections for processes
with four-parton final states (found in [36],[37],[27],[28]). The analytic calculation of the
three-jet cross section to order α2

s with all angular correlations integrated out was per-
formed in [26],[30]–[32],[34]. As in the two-jet case, various theoretical definitions of
three-jet events are possible. In [26],[31] the Sterman–Weinberg type definition was used.
The three-jet cross section was defined as the cross section of events which have all but
a fraction ϑ/2 of the total energy distributed within three separate cones of full open-
ing angle δ. The corrections are small for not too small ϑ, δ and negative, as one would
have expected. The results were used to fit the data from the detector PLUTO at the stor-
age ring PETRA: at Q = √

s = 30, ϑ = 0.2, δ = 45◦. In the MS scheme this gives
αs = 0.17.
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The three-jet cross section for invariant mass cut-off was calculated in [30],[32],[34].
In [34] the three-jet events were defined as those which consist of three clusters, each
having an invariant mass smaller than y0s. The “dressed variables” x1, x2, and x3 were
introduced as the ratios of twice the energy of the parent quark, antiquark and gluon cluster,
respectively, to the total energy. This definition leads to a simpler expression for the cross
section than that of the Sterman–Weinberg type:

dσ3− jet

dx1dx2
= σ B

t
αs(s)

2π
CF

{
(x2

1 + x2
2)

(1 − x1)(1 − x2)

[
1 + αs(s)

2π

(
J1 + J2 + J3

)]

+αs(s)

2π
f (x1, x2)

}
, (8.55)

where

J1 = CF

[
−2 ln2 y0

1 − x3
− 3 ln y0 − 1 + 2ζ(2)+ 2y0

1 − x3
ln

y2
0

1 − x3

]
, (8.56)

J2 =NC

[
ln2 y0

1 − x3
− ln2 y0

1 − x1
− ln2 y0

1 − x2
− 11

6
ln y0 + 67

18

+ζ(2)− y0

1 − x3
ln

y2
0

1 − x3
+ y0

1 − x1
ln

y2
0

1 − x1
+ y0

1 − x2
ln

y2
0

1 − x2

]
, (8.57)

J3 = n f

2

[
2

3
ln y0 − 10

9

]
, (8.58)

f (x1, x2) = CF

[
(1 − x3)

(
2

x3
− 1 − x3

x1(1 − x2)

)
− 1 − x2

1 − x1

]
+ Nc

1 − x1

x3(1 − x2)

+ ln(1 − x2)

[
Nc

1 − x2

x2
+ CF

(
2 − (1 − 3x1)

x2
− 1 − x1

x2
2

)]

+ (2CF − Nc)
1 − x2

3

x2
3

ln(1 − x3)− Nc
x2

1

(1 − x1)(1 − x2)
r(x1, x2)

− (2CF − Nc)
(1 − x3)

2 + x2
1

(1 − x1)(1 − x2)
r(x1, x3)+ (x1 ↔ x2), (8.59)

with

r(x, y) = ln(1 − x) ln(1 − y)+ Li2(x)+ Li2(y)− π2

6
,

Li2(x) = −
1∫

0

dt

t
ln(1 − xt). (8.60)

The corrections are negative and small for not too small y0.
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As mentioned before, the first observation of three-jet events is considered to be the
discovery of the gluon. Measurement of probabilities of four-jet events provides data on
the gluon self-interaction. The limits on CA/CF were obtained from an analysis of the
ratio of the probability of four-jet events, when two of the jets are of gluon origin, to
the squared probability of three-jet events. The limits on TR/CF (TR is defined by the
relation Tratb = 1/2δabTR) were obtained from the ratio of the probability of events with
four-quark jets to the squared probability of three-jet events.

8.5 Event shape

Two factors affecting the event shape are obvious: the shape of events at the parton level
and the hadronization process. Experimental study of hadron-event shapes provide data on
both the parton stage of a process and on hadronization. Evidently, we cannot define com-
pletely the shape of hadronic events, since we cannot describe the hadronization process.
However, it is possible to calculate some inclusive characteristics of the shape. Doing so,
the calculations are carried out on the parton level. It is supposed that the hadronization
process does not affect them.

A typical value used to describe the hadron event shape is the thrust T [41] defined by

T = max

∑ | pn|∑ | p| , (8.61)

where the sum is taken over all hadrons produced in a given event, and the maximum is
found by varying the direction of the unit vector n.1 Evidently, T = 1 for ideal two-jet
events; for three-jet events 2/3 < T < 1, and for spherically symmetric events T = 1/2.

The thrust T belongs to the observables called “infrared and collinear stable,” which
means that they are insensitive to the emission of gluons of small frequencies and/or
at small angles. Singular contributions from the infrared and collinear regions, existing
separately in virtual radiative corrections and in radiative corrections owing to real gluon
emission, cancel in these variables. Therefore, the cross section

σ(τ) =
∫ 1

1−τ
dσ

dT
dT, (8.62)

is finite order by order in perturbation theory and can be calculated at the parton level.
In one-loop approximation, only quark-antiquark and quark-antiquark-gluon production
contribute to (8.62). Actually, it is more convenient to calculate the quantity

r(τ ) = 1 − σ(τ)

σt
= 1

σt

∫ 1−τ

0

dσ

dT
dT . (8.63)

The latter equality follows from σ(1) = σt . In the first order in αs , one has to know only
the quark-antiquark-gluon production cross section (8.51). It is easy to understand that for
the process e+e− → qq̄g we have

T = max{x+, x−, x}, (8.64)

1 Actually, in [41], the variable d = max
∑
( pn)θ( pn)/

∑ | p| was used, which is smaller than T by a factor of two.
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such that

r(τ ) = αs

2π
CF

∫
dx−dx+

x2+ + x2−
(1 − x+)(1 − x−)

× θ(1 − τ − x−)θ(1 − τ − x+)θ(x− + x+ − 1 − τ)

= αs

2π
CF

∫ (1−τ)

2τ

dx+
1 − x+

(
(1 + x2+) ln

(
x+ − τ
τ

)
+ 4τ − 2x+ − τ x+ + x2+

2

)
.

(8.65)

In the next order in αs , one needs to know one-loop corrections to the three-parton produc-
tion process as well as the cross sections for the processes with four-parton final states. The
order αs-correction to the cross section dσe+e−→qq̄g was found in [27],[28],[31]; the cross
sections dσe+e−→qq̄gg and dσe+e−→qq̄qq̄ were calculated in [37],[36],[27],[28]. The thrust
distribution to order α2

s has been found in [42] (see also [27],[28],[30],[29]). The α2
s -

corrections are large and positive, in contrast to small negative corrections to two- and
three-jet cross sections. As was emphasized in [31],[34], the large corrections indicate sen-
sitivity of the thrust to emission of soft and collinear gluons. (This applies also to sphericity,
acoplanarity, and most other “bare” shape variables, i.e. variables calculated using parton
momenta.) It was advocated to use “dressed” shape variables calculated using the jet cross
sections and jet momenta instead of the parton ones. In [34], it was demonstrated explic-
itly that the large α2

s -corrections to bare thrust-like distributions arise primarily from rather
soft and collinear partons. This was done adding three- and four-jet cross sections and tak-
ing the zero limit of the jet-resolution parameter. In this limit the large corrections were
recovered.

At τ → 0, the expansion parameter in the thrust distribution is αs(Q) ln2 τ . The double-
logarithmic terms have the same nature as the Sudakov formfactor, i.e. they are related
to the suppression of soft-collinear radiation. The double-logarithmic terms are easily
resummed. It is possible to resum not only these but all terms of the type αn

s lnm(1 − T )
with m ≥ n [43]. The resummed result gives better agreement with the data at large
values of T .

8.6 Inclusive spectra

The variable R is the most general (totally inclusive) property of the process. Next in
degree of specification is the inclusive cross section dσh of the hadron h-production process
e+e− → h + X . The corresponding matrix element is obtained from (8.1) by extraction of
the hadron h:

M = −e2v̄( p+)γμu( p−)
1

q2
〈h X |J el

μ (0)|0〉. (8.66)

Denoting the hadron momentum by p, we obtain

εp
d3σh

d3 p
= 4α2

πs3

(
k−μk+ν + k+μk−ν − q2

2
δμν

)
Wμν, (8.67)
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where the hadronic tensor Wμν is defined in Chapter 7, Eq.(7.26). Note that in contrast to
the tensor Wμν for deep inelastic scattering of electrons (Chapter 7, Eq.(9)), Wμν is not
expressed in terms of the matrix element of the current product, since the sum goes not
over all states but only over states containing the hadron h with fixed momentum p. If
Wμν and Wμν were related by crossing (i.e. if they were values of one analytic function in
different kinematical regions), then we would have the relations

Wμν(p, q) = Wμν(−p, q), Fi (ν, q
2) = Fi (−ν, q2). (8.68)

Here, if we consider the s–channel physical region, then the Fi in (8.68) are outside their
region of definition, so that they need to be defined. If crossing could be applied, then
this would be simply analytic continuation. But actually crossing connects amplitudes of
processes and not their structure functions, the definition of which includes complex con-
jugation, so that in the relation (8.68) the right-hand member cannot be obtained simply by
analytic continuation. This is clear considering that the functions acquire imaginary parts
under analytic continuation.

A possible variant of the definition is the analytic continuation with truncation of the
imaginary parts. This is correct in the leading logarithmic approximation. More refined
methods are required beyond the framework of this approximation.

The cross section differential in the fraction x = 2(pq)/q2 of energy carried by the
hadron h and in the solid angle " of its flight is given by

dσh

xdxd"
= α2

s
β

(
F1 + xβ2 sin2 θ

4
F2

)
, (8.69)

where β = √
1 − 4M2/sx2 is the velocity of h in the c.m.s. of the initial beams.

In the parton picture, the cross section is represented in the form of

dσh

dxd"
=
∑

a

∫ 1

x

dz

z
f̄ h
a (

x

z
)

dσa

dzd"
, (8.70)

where dσa is the cross section for the production of type a partons, f̄ h
a is the fragmentation

function of parton a to produce hadron h. For partons with spin 1/2 and electric charge Ze
in Born approximation we have

dσ1/2

dxd"
= z2α2

4s
(2 − β2 sin2 θ)δ(1 − x), (8.71)

while for the partons with spin 0 the result is

dσ0

dxd"
= z2α2

8s
β3 sin2 θ δ(1 − x). (8.72)

Experiment gives evidence of spin 1/2 partons.



8.7 Colour coherence 417

The representation (8.70) is valid in QCD, but the fragmentation functions depend on s.
Evolution of the fragmentation functions in ln s has the same form as the evolution of
parton distributions in hadrons [44]–[48]:

d f̄ h
a (x, q

2)

d ln q2
= αs(q2)

2π

∫ 1

x

dz

z
P̄b

a

(
x

z

)
f̄ h
b (z, q

2), (8.73)

where P̄b
a (x) are the splitting functions for the time-like evolution. In leading order they

coincide with the splitting functions Pb
a (x) for the space-like evolution (Gribov–Lipatov

reciprocity):

P̄a
b (z) = Pa

b (z), (8.74)

such that “the number of partons in a hadron is equal to number of hadrons in a parton.”
The reciprocity is broken beyond the leading order [49]. However, there is hope [50] for
getting simpler splitting functions satisfying the reciprocity relations (8.74) as a result of
reformulation of the evolution equations (8.73) by generalizing the structure on the right-
hand side. It is discussed in more detail in Chapter 7.

At sufficiently small x , when ln(1/x) ∼ ln(q2/�2
QC D), the expansion parameter in the

parton distribution becomes double logarithmic. Then the evolution equations (8.73) must
be modified. The reason is that in their derivation it was assumed that the angular integra-
tions give ln s. This is evidently not correct in the case of small x . Naively, one could think
that the equation can be improved by changing the expansion parameter to ln(q2x2/�2

QC D)

instead of ln(q2/�2
QC D). But this is not the case. At small x a new phenomenon called

colour coherence becomes important.

8.7 Colour coherence

The simplest process where the colour coherence phenomenon becomes apparent is the
two-gluon emission in the one-photon annihilation e+e− → γ ∗ → qq̄ . Let us consider
this process in the center of mass system. To elucidate typical properties of the process, we
restrict the consideration to the region giving the main (double-logarithmic) contribution
to the cross section. In this region, which is called soft-collinear region, all gluon ener-
gies as well as their emission angles are strongly ordered. The matrix element of any hard
process where the particle of momentum p is emitting a gluon with momentum k in the
soft-collinear region contains the factor 1/|k⊥|, where the subscript ⊥ denotes perpendic-
ularity to p; |k⊥| = ωθkp. The double logarithm appears as a result of integration over the
energyω and the emission angles θkp of the radiated gluon. All this is quite analogous to the
QED case. However, the analogy does not work further. In QED, the soft-emission proba-
bility is given by the product of independent factors for the accompanying bremsstrahlung.
In QCD, the gluon self-interaction leads to violation of the Poisson distribution for soft
emission [51].

Denote the quark, antiquark, and gluon momenta by p−, p+, ki , i = 1, 2, respectively,
and the gluon-polarization vectors and colour indices by ei and ai . It is convenient to use
some physical gauge both for the produced gluons (i.e. for their polarization vectors) and
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for the intermediate ones (propagators). A choice of an appropriate gauge is very helpful
for the analysis. Note that one can use different gauges in different kinematical regions.
A great advantage of physical gauges is the possibility for estimating matrix elements of
separate diagrams. In the Feynman gauge, these matrix elements contain artificial singu-
larities which cancel in the calculation of cross sections due to gauge invariance. These
artificial singularities are related to wrong gluon helicities present in the Feynman gauge.
In the massless limit, due to helicity and angular momentum conservation, gluon-emission
vertices for physical polarizations vanish at collinear momenta. This is not so for unphys-
ical polarizations. As a result, collinear singularities in matrix elements for unphysical
polarizations are too strong: 1/θ2 instead of 1/θ for physical polarizations. The 1/θ2 singu-
larities related to the presence of unphysical polarizations in gluon propagators cancel due
to gauge invariance of the total matrix element represented by the set of Feynman diagrams.
This cancellation makes the consideration of matrix elements for separate diagrams mean-
ingless even for physical polarizations of external gluons. The 1/θ2 singularities related to
unphysical polarizations of external gluons remain even after this. Absence of 1/θ4 singu-
larities (or suppression of terms 1/(θ2 + m2/ε2

p)
2 by factors of m2/ε2

p for massive quarks)
in cross sections after Feynman summation over polarizations is determined by cancella-
tion of contributions of time-like and longitudinal polarizations. The main remaining 1/θ2

contributions in the cross sections come from interference of different diagrams, which
evidently makes a physical interpretation impossible.

Use of a physical gauge and of physical polarization vectors makes it possible to con-
sider separately gluon emission by quark and antiquark neglecting interference. In the case
when both gluons are emitted along the quark momentum, the process is depicted by the
diagrams in Fig. 8.1. The matrix elements corresponding to the diagrams Fig. 8.1a and
Fig. 8.1b can be easily written for any relation between ω2 and ω1:

Ma = M (0)
α g2 e2 p−

k2 p−
e1 p−

(k1 + k2)p−
〈β|ta2 ta1 |α〉,

Mb = M (0)
α g2 e1 p−

k1 p−
e2 p−

(k1 + k2)p−
〈β|ta1 ta2 |α〉, (8.75)

where M (0)
α is the matrix element of the hard production of a quark in the colour state |α〉,

ta are the group generators in the fundamental representation, and |β〉 is the final quark
colour state. Of course, the sum over α is implied.

k1 k2

−p+ p−

q

(a)

−

k2 k1

p+ p−

q

(b)

k1 k2

−p+ p−

q

(c)

Fig. 8.1. Emission of two gluons by a quark of momentum p− produced in
e+e−-annihilation.
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To estimate the matrix element for the diagram Fig. 8.1c let us take for definiteness
ω2 � ω1. Besides this, we have to specify the physical gauge for the intermediate gluon
propagator. It is convenient to use the light-cone gauge with the gauge-fixing vector p+,
so that

dμν(k) = −δμν + kμ p+ν + p+μkν
p+k

. (8.76)

Let us use the decomposition

dμν(k) =
3∑
λ=1

e∗
λμ(k)eλν(k), (8.77)

where for i = 1, 2 the polarization vectors ei are transverse to the (p+, k)–plane and are
orthonormal:

(p+ei (k)) = (kei (k)) = 0,
(
e∗

1(k)e2(k)
) = 0,

(
e∗

1(k)e1(k)
) = (

e∗
2(k)e2(k)

) = −1,

(8.78)

and e3(k) = p+
√

k2/(kp+).
Consider the convolutions of the three-gluon vertex

γμνρ(k,−k1,−k2) = −δμν(k + k1)ρ + δμρ(k + k2)ν − δνρ(k2 − k1)μ, (8.79)

where k = k1 + k2, with the corresponding polarization vectors, assuming that the gluon
momenta are close to p−, i.e. (ki p−) � (ki p+) and that their energies are strongly
ordered: (kp+) $ (k1 p+) � (k2 p+). Consider the most general case, when all momenta
ki are off mass-shell. Using the notation

γλλ1λ2(k; k1, k2) = eλμ(k)γμνρ(k,−k1,−k2)e
∗
λ1ν
(k1)e

∗
λ2ρ
(k2), (8.80)

and choosing the transverse polarization vectors such that they coincide in the collinear
limit, we find that for the transverse polarizations within the accuracy up to corrections
suppressed either by ω2/ω1 or by θ12 we have

γi i1i2 $ δi i1 2(e∗
i2
(k2)k1) ∼ ω1θ12, (8.81)

where θ12 is the angle between k1 and k2. It is easy to see that γλλ1λ2 is nonzero only if no
more than one polarization is not transverse; then

γ3i1i2 $ −δi1i2

√
k2, γi3i2 $ δi i2

√
k2

1, γi i13 $ −δi i1 2
√

k2
2 . (8.82)

In the case under consideration, only the first of these terms is different from zero. Since
k2 $ ω1ω2θ

2
12, it is easy to see that this contribution is negligible compared with (8.81), so

that the matrix element corresponding to the diagram Fig. 8.1c can be written as

Mc = M (0)
α g2 e∗

2k1

k2k1

e∗
1 p−

(k1 + k2)p−
〈β|[ta1, ta2]|α〉. (8.83)
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As 2ki p− $ ε ωiθ
2
i , where θi is the angle between ki and p−, the region where Mc gives

the double-logarithmic contribution is restricted by the inequalities
ω1

ω2
θ2

1 � θ2
2
>∼ θ2

1 . (8.84)

Indeed, for θ2
2 � θ2

1 the denominators in (8.83) do not depend on the emission angle of
the second gluon, so that integration with respect to it does not give logarithms. Similarly,
when ω2θ

2
2
>∼ ω1θ

2
1 , then integration with respect to the emission angle of the first gluon

becomes nonlogarithmic.
The total contribution of the diagrams of Fig. 8.1 in the case ω2 � ω1 is given by

the sum

M = Ma + Mb + Mc, (8.85)

where Ma and Mb are given by (8.75). The regions where they give double-logarithmic
contributions satisfy the inequalities

θ2
1 � ω2

ω1
θ2

2 (8.86)

and

θ2
2 � ω1

ω2
θ2

1 , (8.87)

respectively.
Despite the simple form of Ma, Mb, and Mc, it is not suitable to use (8.85) because

of the interference of Ma,Mb, and Mc. The contributions of separate Feynman diagrams
interfere since the regions, where their contributions are significant, are overlapping. From
(8.86) and (8.84) it is easy to see that the double-logarithmic regions for diagrams Fig. 8.1a
and Fig. 8.1c indeed overlap. Recall that we consider the case ω1 � ω2; evidently, in the
opposite case, it would be necessary to account for the interference of the contributions of
Fig. 8.1b and Fig. 8.1c.

It is possible, however, to simplify the matrix element (8.85) dividing the momentum
space into nonoverlapping regions according to angular ordering of the emitted gluons [52].
For the case of two-gluon emission in the cone along p− there are three such regions,
regions I, II, and III:

I. θ1 � θ2,

II. θ12 � θ2 $ θ1,

III. θ2 � θ1. (8.88)

In each of these regions, M acquires the simple form of M0 times corresponding factors of
the accompanying bremsstrahlung.

Indeed, it is easy to see that in region I only Ma is essential; taking into account that in
this region k1 p− � k2 p−, we find

MI = M (0)
α g2 e∗

2 p−
k2 p−

e∗
1 p−

k1 p−
〈β|ta2 ta1 |α〉. (8.89)
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Evidently, in region I I the whole amplitude is given by Mc; since in this region also
k1 p− � k2 p−, we have

MI I = M (0)
α g2 e∗

2k1

k2k1

e∗
1 p−

k1 p−
T a2

a1c〈β|tc|α〉. (8.90)

Region I I I requires a more complicated consideration. Here we must consider two cases:

(i) θ2
2 � ω1

ω2
θ2

1 � θ2
1 , (ii)

ω1

ω2
θ2

1 � θ2
2 � θ2

1 . (8.91)

Note that the region ω2θ
2
2 ∼ ω1θ

2
1 does not require consideration because it cannot give

double logarithms. In case i, only the diagram Fig. 8.1b contributes; in this case, k2 p− �
k1 p−, and we have:

MI I I = M (0)
α g2 e∗

1 p−
k1 p−

e∗
2 p−

k2 p−
〈β|ta1 ta2 |α〉. (8.92)

In case ii, two other diagrams of Fig. 8.1 (Fig. 8.1a and Fig. 8.1c) contribute. However,
since here θ12 $ θ2, we have

e∗
2k1

k2k1
$ e∗

2 p−
k2 p−

, (8.93)

so that taking account of the inequality k1 p− � k2 p− and of the commutation relations
for ta , the sum Ma + Mc is given by (8.92) also in this case. Therefore, (8.92) is valid in
the whole region I I I .

Thus, Eqs. (8.89), (8.90), and (8.92) determine the two-gluon emission amplitude in
double-logarithmic approximation (DLA) for the case when gluons are emitted along the
quark direction. Note that, strictly speaking, in this derivation the gauge-fixing vector p+
was assumed for the gluon-polarization vectors ei . It is clear, however, that the results are
valid in a wide class of physical gauges. The change of the gauge-fixing vector p+ → n
means the change of the polarization vectors ei → ei − ki (ei n)/(ki n). If the momentum
of the emitting particle is p, then this change does not affect the matrix elements until∣∣∣∣ei p

ki p

∣∣∣∣ �
∣∣∣∣ei n

ki n

∣∣∣∣ . (8.94)

This means, in particular, that we can take the gauge-fixing vector as n = q, where q is the
virtual photon momentum. The convenience of this choice is the symmetry between quark
and antiquark, which permits us to use it in any kinematical region. This choice is assumed
in the following. Then the matrix elements for gluon emission by antiquarks are obtained
from the corresponding matrix elements for emission by quarks using the replacement
p− → p+, ta

αβ → −ta
βα .

Let us emphasize that in case ii (8.91) the result (8.92) appears as the sum of the contri-
butions of the diagrams Fig. 8.1b and Fig. 8.1c, which implies the importance of their
interference. As was noted in [52], there is no gauge where the two-gluon production
matrix element in region III is given by the contribution of only one Feynman diagram.
This means, in particular, that the diagrams of Fig. 8.2a and Fig. 8.2b must be taken into
account when calculating the total cross section and the inclusive spectrum in the DLA.
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k1

k2

(a)

k2 k2

(b)

Fig. 8.2. The interference contributions in the total cross section (a) and in the inclusive
spectrum (b).

At first sight this looks strange, since it is known that in physical gauges only planar
diagrams contribute to the inclusive spectra in leading logarithmic approximation (see,
for instance, [53]). Indeed, this is correct when the inclusive spectra are calculated at
x = ω/ε ∼ 1. At such x the case ii (8.91) does not exist at all. But studying
phenomena sensitive to the small x region (such as multiplicity distributions) it is impos-
sible to use familiar ideas of the leading logarithmic approximation and consider only
planar Feynman diagrams. The importance of nonplanar Feynman diagrams for the eval-
uation of jet multiplicity was realized in [54] in a three-loop calculation in an axial
gauge.

The fact that the matrix element MI I I in case ii is given by the sum of the contribu-
tions of the Feynman diagrams Fig. 8.1a and Fig. 8.1c is related to an important physical
property of soft gluon emission – colour coherence. The discussion above shows explicitly
that in this case the second gluon is emitted coherently by the quark and the first gluon.
This is clearly seen from the colour structure of the matrix element (8.92): the genera-
tor ta2 corresponding to emission of the second gluon, is enclosed between the colour
states 〈β|ta1 and |α〉. In general, the colour structure of the matrix elements (8.89) and
(8.92) confirms that the gluon flying out at a large angle is emitted by a jet of particles
flying out at smaller angles. This statement is almost trivial for region I, as well for region
III in case i. Indeed, since a typical time τ for the emission of a gluon with energy ω
and emission angle θ is τ ∼ 1/(ωθ2), therefore in region I the first gluon is emitted
much earlier than the second one, so that the colour factor 〈β|ta2 ta1 |α〉 is quite natural.
In region III for case i, we have the opposite situation: the second gluon is emitted much
earlier than the first one, and here the natural colour factor is 〈β|ta1 ta2 |α〉. But in case ii,
the sequence of emission is the same as in region I, i.e. it is opposite to case i, whereas
the colour factor has the same form as in case i. It takes this form only due to the fact
that the second gluon is emitted coherently by the quark and the first gluon, or by a jet
consisting of them.

The crucial difference between soft-gluon emission in QCD and soft-photon emission
in QED is determined by the fact that gluons are coloured. This appears strikingly in the
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existence of region II, which is absent in QED. This region shows that the first gluon creates
its own jet. As for the regions I and III, they are the same as in QED; the difference is only
that the QCD matrix elements have the colour factors.

8.8 Soft-gluon approximations

The matrix elements (8.75) are written in the eikonal approximation. In this approach,
the matrix elements for gluon bremsstrahlung off the quark are obtained neglecting gluon
momenta in the numerators of quark propagators and keeping in the denominators only
terms linear in gluon momenta. After that the matrix elements are simplified using the anti-
commutation relations for the γ matrices and the Dirac equation. As a result, the Feynman
rules in the eikonal approximation have the following form:

β, j α, ip + kı = iδi j
δαβ

2p
∑

kı + i0
, (8.95)

c, ρ

p + k p
β, j α, i = −ig(tc)i jδ

αβ2pρ. (8.96)

Since soft emission is classical, and is therefore has a spin-independent effect, the Feynman
rules (8.8), (8.8) differ only by a factor of δαβ from the corresponding rules for the case of
a scalar quark. One can easily write also the Feynman rules for soft-gluon emission by a
hard gluon:

ν, b μ, ap + kı = iδab −δμν
2p
∑

kı + i0
, (8.97)

p, c

p + k p
ν, b μ, a = −ig(T c)ab(−δμν)2p p. (8.98)

Four-gluon vertices evidently can be omitted in the soft-collinear region since they give
neither a collinear nor a soft singularity.

The eikonal rules (8.8)–(8.8) give the matrix elements (8.75) and (8.83). Actually,
they can be used in the DLA for the production of an arbitrary number of gluons.
Although this looks quite natural, a strict proof of this statement requires some work.
This was done in [59] using physical gauges both for the final and intermediate gluons.
The simplicity of the rules (8.8)–(8.8) appears as a great advantage; but this advantage
is accompanied by a substantial shortcoming: the matrix elements obtained according to
these rules are not gauge invariant. Actually, the rules suppose physical gluon-polarization
vectors.

Note that the rules (8.8)–(8.8) differ from the so-called soft insertion rules, where only
diagrams obtained by successive insertions of lines of a softer gluon in external lines of
diagrams with harder particles are kept, and the dependence on momentum of this gluon is
retained only in denominators of propagators adjacent to the emission vertices.

In contrast to the eikonal rules, the soft-insertion rules produce matrix elements possess-
ing a QED-like gauge invariance with respect to soft gluons: the matrix elements turn to
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zero at the substitutions ei → ki for any gluon independently of the polarizations of other
gluons.

Using the soft-insertion rules is evidently correct in the region where the most important
parameters are ratios of gluon energies. However, in DLA the ratios of emission angles
θi are equally important. Here the kinematical regions where the values ωiθ

2
i are ordered

opposite to ωi become important. At first sight, this makes use of the soft-insertion rules
doubtful.

But it happens that they give correct results for the emission of arbitrary numbers of
gluons in all double-logarithmic regions. Let us demonstrate this in the case of two-gluon
emission. Using the soft-insertion rules, we obtain instead of (8.75) and (8.83)

M (s.i.)
a = M (0)

α g2 e∗
2 p−

k2 p−
e∗

1 p−
k1 p−

〈β|ta2 ta1 |α〉,

M (s.i.)
b = 0,

M (s.i.)
c = M (0)

α g2 e∗
2k1

k2k1

e∗
1 p−

k1 p−
〈β|[ta1, ta2]|α〉. (8.99)

For M = Ma + Mb + Mc, the difference between (8.75), (8.83), and (8.99) is

�M = M (0)
α g2

(
e∗

2 p−
k1 p−

− e∗
2k1

k2k1

k2 p−
k1 p−

)
e∗

1 p−
(k1 + k2)p−

〈β|[ta1, ta2 ]|α〉. (8.100)

Both terms in (8.100) must be kept only in the region k2 p− ≥ k1 p−; however, in this
region they cancel each other.

This means that the soft-insertion rules can be used in a much larger region than one
could naively expect. This phenomenon has the same nature as the expansion of the region
of applicability of the usual formulas for soft photon accompanying bremsstrahlung in
high-energy hadron scattering, discovered by Gribov [55]; he has shown that at large c.m.s.
energy

√
s = √

(pA + pB)2 of colliding hadrons with momenta pA and pB this region is
restricted by the inequalities

2pAk

s
� 1,

2pBk

s
� 1,

k 2⊥ ≈ 2(pAk) · 2(pBk)

s
� μ2, (8.101)

where k⊥ is transverse to the (pA, pB)-plane photon momentum, and μ is a typical hadron
mass. Before the paper [55], it was generally accepted (see, for example, Ref. [56]) that for
the applicability of the accompanying bremstrahlung formulas it is necessary to have

2pAk � μ2, 2pBk � μ2. (8.102)

Therefore, Gribov proved that the applicability region of these formulas is considerably
extended at large energies. Indeed, the conditions (8.102) are much more stringent than the
conditions (8.101), if s � μ2.
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The formulas for soft photons accompanying bremsstrahlung are obtained when only
those Feynman diagrams are kept where the photon is attached to external charged parti-
cles. Furthermore, in calculating the contributions of these diagrams one has to keep the
nonradiative part of the amplitude on the mass shell, i.e. one must neglect virtualities of
radiating particles. This means nothing else than using the soft-insertion rules for photon-
emission amplitudes. Gribov pointed out that these rules give amplitudes which are correct
everywhere when they are large. This statement is quite nontrivial and is determined by the
gauge invariance of the emission amplitudes [55].

At first sight, the Gribov theorem cannot be extended to QCD, despite the fact that
QCD is a gauge theory like QED. An evident obstacle is the masslessness of particles
having colour charge. In other words, the typical mass μ in Eq. (8.101) is equal to zero in
QCD. The main point in the proof of the Gribov theorem is the smallness of the transverse
momentum k⊥ of the emitted quantum of the gauge field (photon or gluon) in comparison
with the essential transverse momenta of the other particles. In massive theories, the latter
momenta are of the order of (or greater than) μ. Conversely, in QCD essential transverse
momenta of virtual particles can be arbitrarily small (this appears as infrared and collinear
divergences).

Nevertheless, the soft-insertion rules can be used in QCD. At the Born level, considered
so far, the problem of arbitrarily small momenta of virtual particles does not exist at all. It
appears when virtual corrections must be considered. In this case, one has to introduce the
infrared cut-off μ for transverse momenta of virtual gluons. In the DLA, because of the
strong ordering of transverse momenta, one can find the dependence of QCD amplitudes
on this cut-off, using the infrared evolution equations ( [57],[58]) in different regions of
ordering of μ and of soft-gluon transverse momenta of soft real gluons.

The amplitudes obtained by soft-insertion rules are correct since the dependence on the
virtuality of matrix elements that correspond to diagrams with photon emission off external
lines cancels the matrix elements that correspond to diagrams with photon emission off
internal lines (inner emission). It is instructive to follow this cancellation in the case of
emission of two gluons. Here the cancellation takes place between the dependence on
k2 p− of the denominator (k1 + k2)p− in Ma and Mc and the matrix element of the inner
emission Mb. The former effect is

Ma + Mc − M (s.i.)
a − M (s.i.)

c = − M (0)
α g2

(
e∗

2 p−
k2 p−

〈β|ta2 ta1 |α〉 + e∗
2k1

k2k1
〈β|[ta1, ta2 ]|α〉

)
× e∗

1 p−
(k1 + k2)p−

k2 p−
k1 p−

, (8.103)

and the latter one is given by Mb (8.75). Both of these become important at k2 p− >∼ k1 p−,
but just in this region they cancel each other as is seen from their sum given by (8.100).

The proof of the Gribov theorem is based on dispersion relations and is reduced to the
proof of the smallness of all singularities of bremsstrahlung amplitudes in the variables
related to the emitted photon apart from those related to poles at k = 0. The smallness
appears as a result of cancellation of different contributions due to gauge invariance. The
proof of validity of the soft-insertion rules in QCD with the infrared cut-off μ can be
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constructed similarly. In the example under consideration, this means cancellations in the
amplitude of the process q(p′−) → q(p−) + g(k1) + g(k2), analytically continued to the
point p′ 2− = (p− + k1 + k2)

2 = 0 (for the massless case). In the case of soft gluons with
ω2 � ω1, this amplitude, presented by the diagrams of Fig. 8.1 with omitted photon line
and −p+ replaced by p′−, contains the factor

e∗
1 p−

(
e∗

2k1

k2k1
− e∗

2 p−
k2 p−

)
. (8.104)

For ω2 � ω1, the condition k2 p− + k1 p− = 0 can be fulfilled only in the region where
k1 is much closer to p− than k2. In this region, the two terms in the above equation cancel
each other. This cancellation is the cancellation of residues in the pole k2 p− + k1 p− = 0
in the sum of (8.75) and (8.83).

Thus, amplitudes for the emission of any number of gluons with strongly ordered ener-
gies can be obtained by successive use of the soft insertion technique. The amplitudes
obtained in this way are gauge invariant. However, it will be convenient afterwards to give
up the gauge invariance and use physical polarization vectors for the produced gluons,
whence the colour coherence effect becomes apparent. This means that in some kinemati-
cal regions the amplitudes are given by contributions of several diagrams. In these regions,
it is convenient to find the sum of the diagrams. The colour coherence presents a perfect
guide to this.

To describe n-gluon production it is convenient to use the jet terminology. In the DLA,
both the gluon energies and emission angles are strongly ordered. Let for definiteness

ωn � ωn−1 � . . . ω1 � ε± $ ε =
√

q2

2
. (8.105)

In each jet there is a particle carrying almost the entire energy of the jet. Let us call that
particle the leading particle, and its momentum the jet momentum, and say that the leading
particle creates the jet. Jets are called quark or gluon jets according to the kind of leading
particles. Let us call the emission angles of the leading particles jet emission angles, and
the largest possible angle between momenta of particles constituting the jet the jet-opening
angle. Jets can differ by their energies and opening angles, so that there is a sequence
of jets, starting from the quark jet, which includes all produced gluons until “elementary
jets” consisting of only one gluon or quark. Besides energies and opening angles, jets are
characterized by colour states, triplet and octet for quark and gluon jets, respectively. Let
us emphasize that the jet colour states coincide with colour states of leading particles only
in the case of elementary jets.

Distribution of produced particles into jets can be done recursively. Here it is possible
to start both from the largest jet or from elementary ones. Let us start from the largest
quark jet. Then the distribution looks like jet branching. The largest quark jet includes
all outgoing gluons at small angles with respect to the quark momentum. Let its opening
angle be θ0 < 1 (here and in the following we use simple inequalities instead of strong
ones which should be used in the DLA) and the angles between momenta kl and km ,
l,m = 0, 1, 2, . . . n, k0 ≡ p−, are θlm . Provided θ1 = max θ j0, j = 1, . . . n, all gluons
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can be divided into two jets, quark and gluon ones, both with opening angles θ1. The first
of these includes gluons flying with respect to the quark at smaller angles than θ1 (in the
DLA it means much smaller). The second one consists of gluons flying with respect to
the quark at angles $ θ1. The hardest of these gluons is the leading gluon which creates
the jet. We will say that this jet (as well as its leading gluon) is emitted by the quark jet
with opening angle θ1. This is the first step of branching. At the second step, each of the
jets obtained after the first branching is divided similarly into two even-smaller jets. The
only difference is that the gluon jet is divided into two jets which are both gluon ones (and
not quark and gluon ones). They have equal opening angles (small compared with θ1),
but different energies. By definition, the jet with smaller energy is emitted by the jet with
greater energy. The jet branching proceeds until each jet contains only one particle (quark
or gluon).

The matrix elements of the processes with soft gluons are given by the products of the
hard parts and the jet factors describing soft-gluon emission by the particles produced in
the hard processes. The jet factors are independent. Unfortunately, they cannot be written
explicitly. However, the rules for writing them are easily formulated recursively. It is suf-
ficient to present the rules for quark and gluon jet branching. They differ only by colour
structures. Each branching looks like the emission of a gluon jet. Let the emitted jet have
colour index c and momentum k, and let the polarization vector of the leading gluon in the
jet be e. If it is emitted by the quark jet with momentum p, then the emission is described
by the factor

g
(e∗ p)

(kp)
〈β|tc|α〉, (8.106)

where |α〉 and |β〉 are the colour states of the quark jet before and after emission. The case
when the emitting jet (with the same momentum p) is a gluon jet differs from (8.106) only
by the replacement

〈β|tc|α〉 → T c
ba, (8.107)

where a and b are the colour indices of the emitting jet before and after emission. As
already noted, in the antiquark case tc

βα → −tc
αβ . Summation over all intermediate colour

states is implied. These rules permit one to write martix elements for the production of
arbitrary numbers of gluons.

In contrast to the QED case, the jet factors cannot be written explicitly, but they can be
represented as matrix elements of jet-production operators. This representation is similar
to that well known in QED, but unlike the case of QED the jet-production operators are
not given in an explicit form and are defined by operator relations. Recall that in QED the
operator for a jet with opening angle θ created by a particle of charge e and momentum p
is given by

J †(p, θ) = exp

(
e
∫ d3k!k

p,θ

(2π)32ω
a†
λ(k)

e∗
λ p

kp

)
, (8.108)

where
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!k
p,θ = θ(| p| − |k|)θ(θ − θkp), (8.109)

a†
λ(k) are the photon-creation operators with normalization[

aλ2(k2)a
†
λ1
(k1)

]
= (2π)32ω1δλ1λ2δ(k1 − k2), (8.110)

k and λ are the photon momentum and polarization, eλ are the polarization vectors, and
summation over λ is assumed. The factors corresponding to emission of n photons with
momenta ki and polarizations vectors ei are given by the matrix elements of this operator
between vacuum |0〉 and the n-photon states 〈Nγ |,

〈Nγ | = 〈k1, λ1; . . . ; kn, λn| = 〈0|
n∏

i=1

aλi (ki ). (8.111)

In QCD, the jet-production operators are matrices in colour space. The fact that gluons
are coloured leads to two important differences: first, the gluon-creation operators in the
exponent must be accompanied by operators for the production of gluon jets, and second,
because of the colour coherence the exponents must be angular ordered. Thus, for the quark
jet, omitting as usual the quark colour indices, we have

J †
q (p, θ) = P̂θkp exp

(
g
∫ d3k!k

p,θ

(2π)32ω
a†a
λ (k)

(
J †

g (k, θkp)
)

ab
tb e∗

λ p

kp

)
, (8.112)

where the angular-ordering operator P̂θ orders exponents from left to right by way of
increasing θ , J †

g (k, θkp) is the production operator of the gluon jet with opening angle
θkp and momentum k. For this operator, we have

(
J †

g (p, θ)
)

ab
=
[

P̂θkp exp

(
g
∫ d3k!k

p,θ

(2π)32ω
a†c
λ (k)

(
J †

g (k, θkp)
)

cd
T d e∗μ

λ pμ
kp

)]
ab

.

(8.113)

The factors corresponding to emission of n soft gluons accompanying production of par-
tons P, P = q, g, with momentum p in any hard processes is given by the matrix elements
of the operators J †

P(p, θ) between vacuum |0〉 and the n-gluon states 〈Ng|,

〈Ng| = 〈k1, λ1, c1; . . . ; kn, λn, cn| = 〈0|
n∏

i=1

aci
λi
(ki ). (8.114)

These factors can be represented in terms of functional derivatives of the jet generating
functionals. The relations 〈k, λ, ac| = 〈0|ac

λ(k), [ac
λ(k), a

†c′
λ′ (k′)] = (2π)32ω1δ(k −

k′)δλλ′δcc′ and ac
λ(k)|0〉 = 0, 〈0|a†c

λ (k) = 0, allow one to write

〈Ng|J †
P (p, θ)|0〉 = δ

δua1
λ1
(k1)

. . .
δ

δuan
λn
(kn)

JP (p, θ |u),

where JP (p, θ |u) is the generating functional for jets created by partons P ,
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Jq(p, θ |u) = P̂θkp exp

(
g
∫

d3k!k
p,θu

a
λ(k)

(
Jg(k, θkp|u)

)
ab tb e∗

λ p

kp

)
, (8.115)

and Jg(k, θkp|u) is the generating functional for gluon jets defined by the equation

(
Jg(p, θ |u)

)
ab =

[
P̂θkp exp

(
g
∫
(p,θ)

d3k!k
p,θu

c
λ(k)

(
Jg(k, θkp|u)

)
cd T d e∗μ

λ pμ
kp

)]
ab

.

(8.116)

The above discussion does not concern virtual corrections caused by soft gluons. Inclu-
sion of these corrections in the DLA does not present a problem and can be done quite
analogously to QED. In fact, the virtual corrections are determined by the requirement
of their cancellation with real corrections in inclusive cross sections and locality of this
cancellation in momentum space. Taking account of the virtual corrections, the generating
functionals become

Jq(p, θ |u) = e− 1
2wq (p,θ) Jq(p, θ |u), Jg(p, θ |u) = e− 1

2wg(p,θ) Jg(p, θ |u), (8.117)

where wq(p, θ) and wg(p, θ) are the Born probabilities of soft-gluon emission by quark
and gluon respectively inside a cone of half-angle θ :

wq(p, θ) =
∫

2CFαs

π

d3k!k
p,θ

4πω2

εp

kp
, wg(p, θ) =

∫
2CAαs

π

d3k!k
p,θ

4πω2

εp

kp
, (8.118)

where CF = (N 2
c − 1)/(2Nc) and CA = Nc are the values of the Casimir operators in the

fundamental and in the adjoint representations.
It follows from (8.117) that

〈Ng|J †
P (p, θ)|0〉 = 〈Ng|J †

P(p, θ)|0〉F(P,Ng), (8.119)

where F(P,Ng) is the double-logarithmic formfactor accounting for the virtual correc-
tions,

F(P,Ng) = exp

⎡⎣−1

2
wP (p, θ)− 1

2

n∑
i−1

wg(ki , θi )

⎤⎦ , (8.120)

and θi are emission angles of gluons with momenta ki . This form of the virtual correction
was conjectured in [59] and proved afterwards in [60].

8.9 Soft-gluon distributions

The parton spectra are inclusive characteristics. In principle, calculation of such quantities
does not require knowledge of amplitudes with fixed numbers of participating particles;
moreover, cancellation of various contributions, virtual and real, to these quantities can
be used without explicit evaluation of such contributions. The exclusive approach, which
requires knowledge of all amplitudes, is much more detailed. In DLA, the parton (gluon)
distributions can be described on a completely exclusive level.



430 QCD jets

In the following summation over colours and polarizations of soft gluons is assumed.
Their distributions can be represented in a simple form using the generating functionals for
jet production [61]–[63]. Let us define the generating functional  {Pa}({pa}, {θa}|u) for
jets with momenta pa and opening angles θa created by partons Pa produced in the hard
process with cross section dσ (0) by the relations

dσ (n) = dσ (0)
n∏

i=1

δ

δu(ki )
 {Pa}({pa}, {θa}|u)

∣∣∣
u=0
, (8.121)

where dσ (n) is the cross section of the process with n soft gluons in the accompanying
bremstrahlung and ki are the gluon momenta. The gluon distributions in different jets are
independent, so that

 {Pa}({pa}, {θa}|u) =
∏

a

 Pa (pa, θa |u), (8.122)

where  Pa (pa, θa |u) are the generating functionals for separate jets. Having Eqs. (8.115),
(8.116), and (8.117), it is easy to write the corresponding equations for  P (p, θ |u):

 q(p, θ |u) = e−wq (p,θ) exp

(∫
2CFαs

π

d3k!k
p,θ

4πω2

εp

kp
u(k) g(k, θkp|u)

)
, (8.123)

 g(p, θ |u) = e−wg(p,θ) exp

(∫
2CAαs

π

d3k!k
p,θ

4πω2

εp

kp
u(k) g(k, θkp|u)

)
, (8.124)

where !k
p,θ is given by (8.109), wq(p, θ) and wg(p, θ) by (8.118). As one can see from

(8.123), (8.124),

 q(p, θ |u) = (
 g(p, θ |u)

)CF/CA . (8.125)

From (8.123), (8.124), it also follows that the functionals satisfy the boundary conditions

 P (p, θ |u)
∣∣∣
u=0

= e−wP (p,θ),  P (p, θ |u)
∣∣∣
u=1

= 1. (8.126)

Sometimes it is convenient to use the representation

 g(p, θ |u) = exp[−wg(p, θ)+ W (p, θ |u)], (8.127)

where W (p, θ |u) is defined to be the perturbative solution of the following equation:

W (p, θ |u) =
∫

2CAαs

π

d3k!k
p,θ

4πω2

εp

kp
u(k) exp[−w(k, θkp)+ W (k, θkp|u)], (8.128)

and has the boundary conditions

W (p, θ |u)
∣∣∣
u=0

= 1, W (p, θ |u)
∣∣∣
u=1

= wg(p, θ). (8.129)
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The generating functionals allow one to write easily the inclusive as well as exclusive cross
sections. Thus, the totally inclusive cross section (cross section with production of arbitrary
numbers of gluons) can be written as (compare with (8.121))

dσincl = dσ (0) exp

(∫
d3k

δ

δu(k)

)
 {Pa}({pa}, {θa}|u)

∣∣∣
u=0

= dσ (0) {Pa}({pa}, {θa}|u)
∣∣∣
u=1

= dσ (0). (8.130)

The last equality follows from (8.126). For the inclusive production of n gluons, we have

dσ (n)incl = dσ (0)
n∏

i=1

δ

δu(ki )
exp

(∫
d3k

δ

δu(k)

)
 {Pa}({pa}, {θa}|u)

∣∣∣
u=0

= dσ (0)
n∏

i=1

δ

δu(ki )
 {Pa}({pa}, {θa}|u)

∣∣∣
u=1
. (8.131)

These equations provide a simple qualitative picture of soft-gluon emission and have a
clear probabilistic interpretation. Hard-production cross sections are not affected by soft-
collinear gluons if emission of any number of such gluons is permitted. In this case under
quite crude angular resolution, each hard parton P accompanied by soft-collinear glu-
ons looks like a jet created by this parton. A finer resolution shows that this jet contains
nonoverlapping gluon jets with ordered emission angles. The angular size of each of these
jets is small compared with its emission angle. The jets are emitted by the parton indepen-
dently with probabilities equal to the Born probability of production of the leading gluons
in the jets. The probability of fixed configurations of jets is suppressed by the Sudakov
formfactor exp[−wP (p, θ)]. In turn, each gluon jet with leading gluon having momen-
tum k consists of jets emitted independently by the leading gluon; the probability of fixed
configurations of these jets is suppressed by the Sudakov formfactor exp[−wg(k, θkp)],
and so on.

The functional method is easily generalized to account for the running of the coupling
constant. A plausible choice of the argument of αs is k 2⊥, where k⊥ is the gluon momentum
transverse to the momentum of the radiating particle.

The mean gluon multiplicity in the parton P jet of angular size θ and momentum p is

n P (p, θ) =
∫

d3k
δ

δu(k)
 P (p, θ |u)

∣∣∣
u=1

; (8.132)

with

nq(p, θ) = CF

CA
ng(p, θ), (8.133)

ng(p, θ) =
∫

d3k
δ

δu(k)
W (p, θ |u)

∣∣∣
u=1

≡ n(p, θ). (8.134)

It follows from (8.128) that n(p, θ) obeys the equation

n(p, θ) =
∫

2CAαs(k 2⊥)
π

d3k!k
p,θ

4πω2

εp

kp

[
1 + n(k, θkp)

]
. (8.135)
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Evidently, this equation contains infrared and collinear divergences, which must be regular-
ized. A natural way of regularization is the infrared cut-off k 2⊥ > Q2

0. Then the integration
region is

ε2θ2 ≥ ω2θ2 ≥ k 2⊥ ≥ Q2
0. (8.136)

The integral in (8.135) can be rewritten as∫ d3k!k
p,θ

2πω2

εp

kp
=
∫ ε2θ2

Q2
0

dk 2⊥
k 2⊥

∫ εθ

k⊥

d(ωθ)

ωθ
, (8.137)

such that n(p, θ) actually depends only on the product εθ . Thus, equation (8.135) is
reduced to

n(p, θ) =
∫ ε2θ2

Q2
0

dk 2⊥
k 2⊥

CAαs(k 2⊥)
2π

ln

(
ε2θ2

k 2⊥

)
[1 + n(k, θkp)]. (8.138)

Using the variables Y = ln εθ/Q0 and denoting n(p, θ) = n(Y ), we can rewrite (8.138) as

n(Y ) =
∫ Y

0
dy

2CAαs(k2⊥)
π

(Y − y)[1 + n(y)], (8.139)

where k2⊥ = Q2
0e2y . This equation can be reduced to the differential one

d2

dY 2
n(Y ) = 2CAαs(ε

2θ2)

π
[1 + n(Y )], (8.140)

supplemented by the initial conditions n(0) = 0, n′(0) = 0. With the one-loop running
coupling in the form of

αs(ε
2θ2) = 2π

b(Y + λ) , λ = ln

(
Q0

�QC D

)
, b = 11

3
Nc − 2

3
n f , (8.141)

the solution of (8.140) is written as

n(Y ) = a
√

Y + λ
(

I1(a
√

Y + λ)K0(a
√
λ)+ K1(a

√
Y + λ)I0(a

√
λ)
)

− 1, (8.142)

where Ki and Ii are the modified Bessel functions and a = √
16CA/b. In the perturbative

region λ� 1, so that

n(Y ) $
(

Y + λ
λ

)1/4

cosh
[
a
(√

Y + λ− √
λ
)]

− 1. (8.143)

In the region Y � λ, where the running of αs is negligible, we have

n(Y ) $ cosh

(√
2CA

π
αsY

)
− 1. (8.144)

Asymptotically, for Y � λ,

n(Y ) ∼
(

Y

λ

)1/4

exp

√
16CA

b
Y . (8.145)
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The exponent
√
(16CA/b)Y in (8.145) differs by a factor of 1/

√
2 from the results obtained

in [64]–[68] by summation of contributions of planar diagrams in axial gauges, i.e. without
account of the coherence effect.

According to (8.132), (8.133) the gluon multiplicity in e+e−-annihilation is given by
n(Y ) with the factor 2CF/CA. Note, however, that it was assumed in (8.133) that the quark
mass M does not exceed Q0 significantly. In the case MQ � Q0, the large quark mass
suppresses emission of gluon jets because of the angular distribution dθ2/(θ2 + M2

Q/ε
2
Q),

reducing therefore the mean multiplicity, which becomes equal to [62]

nQ Q̄(2ε) $ nqq̄(2ε)− nqq̄(2MQ). (8.146)

Actually, one should expect that it is even smaller, since the effective energy for the
evolution of the gluon cascade is [69]

εe f f $ ε(1− < xQ >), < xQ >$
(
αs(ε

2)

αs(M2
Q)

) 32
81

. (8.147)

Note that the exponent in (8.145) does not depend on λ, i.e. is infrared safe and so is cal-
culable in perturbation theory. Therefore, one can affirm that it determines the asymptotic
behaviour of the mean hadronic multiplicity < Nh(s) > in e+e−-annihilation

ln < Nh(s) >$
√

8CA

b
ln s, (8.148)

for any hadron.

8.10 Hump-backed shape of parton spectra

Quite analogously to the mean multiplicity, the inclusive one-gluon distribution D with
respect to the gluon energy ω in a jet of energy ε and opening angle θ depends only on the
variables y and Y defined by

y = ln

(
ωθ

Q0

)
, Y = ln

(
εθ

Q0

)
. (8.149)

Normalizing the distribution so that

n(Y ) =
∫ Y

0
dy D(y, Y ), (8.150)

we have, from (8.131) and (8.127),

D(y, Y ) =
∫

d3kδ

(
1 − k0

ω

)
δ

δu(k)
W (p, θ |u)

∣∣∣
u=1
. (8.151)

With the help of (8.122) and (8.125), the inclusive gluon spectra for any hard process can
be expressed in terms of D. In particular, for e+e−-annihilation

1

σ
x

dσ

dx
= 2

CF

CA
D(y, Y ), (8.152)

where y, Y are given by (8.149) with θ ∼ 1 and ε = ε±.
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Using Eqs. (8.128) and (8.129), we come from (8.151) to the equation for D. Including
in D(y, Y ) the term δ(y − Y ) to account for the leading gluon, we obtain

D(y, Y ) = δ(y − Y )+ 2CA

π

∫ y

0
dy1

∫ Y−y+y1

y1

dY1αs(k
2⊥)D(y1, Y1), (8.153)

where k2⊥ = Q2
0e2Y1 . Taking αs(k2⊥) in the one-loop approximation, and defining

G(y, z) = 4CA

b(z + y + λ)D(y, z + y), (8.154)

we have

b

4CA
(λ+ y + z)G(y, z) = δ(z)+

∫ y

0
dy1

∫ z

0
dz1G(y1, z1), (8.155)

where z = ln(ε/ω), y = ln(ωθ/Q0). For the Mellin image of G(y, z)

L(α, β) =
∫ ∞

0
dz
∫ ∞

0
dye−αz−βy G(y, z) (8.156)

we obtain (
λ− ∂

∂α
− ∂

∂β

)
L(α, β) = a2

4αβ
L(α, β)+ a2

4β
, (8.157)

where a2 = 16CA/b. The perturbative solution of this equation can be written as

L(α, β) =
∫ ∞

0
ds exp

[
−s

(
λ− ∂

∂α
− ∂

∂β
− a2

4αβ

)]
a2

4β
. (8.158)

Denoting

f (s) = exp

[
s

(
∂

∂α
+ ∂

∂β
+ a2

4αβ

)]
exp

[
−s

(
∂

∂α
+ ∂

∂β

)]
, (8.159)

we have

d f (s)

ds
= f (s) exp

[
s

(
∂

∂α
+ ∂

∂β

)]
a2

4αβ
exp

[
− s

(
∂

∂α
+ ∂

∂β

)]
= f (s)

a2

4(s +α)(s +β),
(8.160)

such that

f (s) = exp

[
a2

4(α − β) ln

(
α(β + s)

β(α + s)

)]
, (8.161)

and hence

L(α, β) = a2

4

∫ ∞

0

ds

β + s
exp

[
−sλ+ a2

4(α − β) ln

(
α(β + s)

β(α + s)

)]
. (8.162)
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Thus we come to the following representation for D(y, Y ):

D(y, Y ) = (Y + λ)
∫ γ+i∞

γ−i∞
dα

2π i

∫ δ+i∞

δ−i∞
dβ

2π i
eα(Y−y)+βy

×
∫ ∞

0

ds

β + s
e−sλ

(
α(β + s)

β(α + s)

) a2
4(α−β)

. (8.163)

Evaluating the integral by the steepest-descent method and neglecting the pre-exponential
factor gives

D(y, Y ) $ eφ(α0,β0,y,Y ), (8.164)

where

φ(α, β, y, Y ) = α(Y − y)+ βy + a2

4(α − β) ln

(
α(β + s0)

β(α + s0)

)
− λs0,

s0 = 1

2

⎛⎝√a2

λ2
+ (α − β)2 − (α + β)

⎞⎠ , (8.165)

and α0, β0 are defined by the equations

∂

∂α
φ(α, β, y, Y ) = 0,

∂

∂β
φ(α, β, y, Y ) = 0. (8.166)

It is suitable to introduce new variables μ, ν by the relations

2
√

Y + λ
a

α0 =
(

2
√

Y + λ
a

β0

)−1

= eμ,
2
√
λ(α0 + s0)

a
=
(

2
√
λ(β0 + s0)

a

)−1

= eν .

(8.167)

In these variables we have

ln D(y, Y ) $ a
(√

Y + λ− √
λ
) μ− ν

sinhμ− sinh ν
, (8.168)

where μ, ν satisfy the equations

2y − Y

Y
= (sinh(2μ)− 2μ)− (sinh(2ν)− 2ν)

2(sinh2 μ− sinh2 ν)
,

sinh ν√
λ

= sinhμ√
Y + λ. (8.169)

It is easy to see that D has a maximum at y = Y/2 (
√
λ μ = √

Y + λ ν = 0). Expanding
the exponent in (8.164) around this point and restoring the pre-exponential factor from the
normalization condition (8.150), we obtain

D(y, Y ) = n(Y )
( c

π

)1/2
exp

(
−c

(
y − Y

2

)2
)
, (8.170)
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where

c =
√

16Nc

b

3

2
(
(Y + λ) 3

2 − λ 3
2

) , b = 11

3
Nc − 2

3
n f . (8.171)

Note that a fixed-coupling constant αs corresponds to the limit Y � λ. In this case, it is
easy to obtain an exact expression for D(y, Y ):

D(y, Y ) =
(

2CAαs y

π(Y − y)

)1/2

I1

(√
8CAαs

π
y(Y − y)

)
, (8.172)

where I1 is a modified Bessel function. The most striking feature of D(y, Y ) is the max-
imum at y $ Y/2 and the collapse in the region of small energies (instead of the usually
assumed plateau), see Fig. 8.3. This is a direct consequence of the coherence. Note that the
position of the maximum is approximately the same for fixed and running αs ; the width of
the distribution is ∝ Y 1/2 in the former case and ∝ Y 3/4 in the latter (at large Y � λ).

Using the fact that the distribution D in the gluon jet with energy ε and opening angle
θ depends only on the variables εθ/Q0 and ωθ/Q0, one can obtain the double-differential
gluon distribution (with respect to the gluon energy ω and the angle θ between the flight
direction and the jet axis). Thus in the process of e+e−-annihilation we have

1

σ

dσ

dyd ln θ
= CF

CA

∂

∂ ln θ
D(y + ln θ,Y + ln θ), (8.173)

where y = lnω/Q0, Y = ln ε/Q0. Similarly, for the angular distribution we get

1

σ

dσ

d ln θ
= CF

CA

∂

∂ ln θ
n(Y + ln θ). (8.174)

The functional method described above makes it possible to obtain also more compli-
cated inclusive distributions. As an example, let us present without derivation the following
two-particle distribution:

ω1ω2

σ

dσ

dω1dω2
$= ω1

σ

dσ

dω1

ω2

σ

dσ

dω2

[
1 + CF

6CA

1

1 + 4
3 sinh2 (μ1−μ2

2

)] , (8.175)
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Fig. 8.3. The distributions D(y, Y ) (8.172) at αs = 0.1 (left) and αs = 0.2 (right). Dot-
dashed, dashed, and solid lines correspond to Y = 8, Y = 9 and Y = 10, respectively.
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where μ1,2 are the solutions of Eq.(8.169) at y = y1,2 respectively. The factor in square
brackets describes damping of two-particle correlations with increasing |η|, η = lnω1/ω2.
At η = 0 (μ1 = μ2) it coincides with the value of the multiplicity correlator

〈n(n − 1)〉qq̄

〈n〉2
qq̄

=
(

1 + CA

6CF

)
. (8.176)

Fixing only the ratio of gluon energies in the region of maximal contribution, it is easy to
obtain

1

σ

dσ

dη
$ 〈n(n − 1)〉qq̄

√
c

2π
e−cη2/2, (8.177)

where c is defined in (8.171). It is clear from the above statements that the coherence
phenomenon leads to striking qualitative predictions for inclusive distributions: appear-
ance of a maximum in the rapidity distribution and the collapse in the region of small
rapidities, dependence of the distribution on the jet-transverse momentum instead of the
total jet energy, characteristic behaviour of the double-inclusive spectra, and so on. These
predictions are confirmed experimentally, which supports the soft-blanching hypothesis
[53],[70], affirming the similarity of hadron and parton spectra.

8.11 Multiplicity distributions and KNO scaling

As we have seen, the coherence leads to substantial reduction of multiplicity with respect
to predictions based on extension to the low x region of LLA selection rules for Feynman
diagrams. The question arises: what is the influence of coherence on multiplicity moments
nk = 〈n(n − 1) . . . (n − k + 1)〉. To investigate this question it is possible to take u(k) = u
independent of k in the generating functionals, so that the functionals become functions of
u. For the gluon jet, the function  (Y, u) is defined by the equation

ln (Y, u) =
∫ Y

0
dy(Y − y)

2CAαs(k2⊥)
π

(u (y, u)− 1) , (8.178)

where Y = ln(εθ/Q0), k2⊥ = Q2
0e2y . If there are several jets with energies and opening

angles of the same order, then the corresponding function is

 (nq ,ng)(Y, u) = [ (Y, u)]
CF
C A

nq+ng
, (8.179)

where nq and ng are the numbers of quark (antiquark) and gluon jets, respectively.
The probabilities of exclusive production of k gluons are given by the coefficients of the

expansion of (Y, u) in powers of u, whereas the moments nk are given by the coefficients
of the expansion in powers of (u − 1):

 (Y, u) =
∞∑

k=0

Pk(Y )u
k =

∞∑
k=0

nk(Y )
(u − 1)k

k! ,

n0(Y ) = 1, n1(Y ) = n(Y ) ≡ n̄(Y ). (8.180)
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Using equation (8.178), one can show [63] that although the coherence has a substantial
influence on the energy dependence of each nk , it does not change the normalized ratios
nk/n̄k , which were found in [65],[66], without taking account of coherence. In particular,
the Koba–Nielsen–Olesen (KNO) [71] scaling function

f (x) = lim
Y→∞, n→∞ [n̄(Y )Pn(Y )] , (8.181)

where the limit is taken at fixed x = n/n̄(Y ), is also not affected. Here f (x), as well as the
ratios nk/n̄k which appear as the moments of f , do not depend on the interaction at all. At
x � 1 (i.e. n � n̄), we have

f (x) ∼ 1

x
e− 1

2 ln2 x , (8.182)

which is related to the Sudakov suppression of small multiplicity events. At x � 1
(i.e. n � n̄)

f (x) $ eβ0x 2β0

(
β0x + 1 + 1

3β0x
+ . . .

)
, (8.183)

where β0 < 0,

ln |β0| =
∫ ∞

1

dx

x

(
1√

2(x − 1 − ln x)
− 1

x − 1

)
,

β0 $ −2.552. (8.184)

The expression (8.183) differs from that obtained in [67] (without account of the colour
coherence) because of the approximations used there.

8.12 Moments of fragmentation functions at small j − 1

The hadron multiplicity in e+e−-annihilation is defined by the relation

< Nh(s) >= 1

σt

∫ 1

0
dx

dσh

dx
, (8.185)

where σt ≡ σe+e−→hadrons is the total cross section of e+e−-annihilation into hadrons,
dσh ≡ dσe+e−→h+X is the inclusive cross section for hadron h-production, x = εh/ε± is
the fraction of the electron (positron) energy carried by the hadron. According to (8.70),
the cross section dσh/(dx) can be written as

dσh

dx
=
∫

d"
dσh

dxd"
=
∑

q

∫ 1

x

dz

z
f̄ h
q

(
x

z
, s

)∫
d"

dσe+e−→qq̄

dzd"

= σt

∑
q e2

q f̄ h
q (x, s)∑

q e2
q

, (8.186)

where we have used that

dσe+e−→qq̄

dzd"
= α2e2

q Nc

4s
(1 + cos2 θ)δ(1 − z). (8.187)
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Therefore, we can write

< Nh(s) >

∑
q e2

qnh
q(s)∑

q e2
q

, (8.188)

where

nh
q(Q

2) =
∫ 1

0
dx f̄ h

q (x, Q2) (8.189)

is the hadron multiplicity in the quark jet. This multiplicity can be considered to be the
limit of the Mellin image Mq of the fragmentation function f̄ h

q ,

Mq( j, Q2) =
∫ 1

0
dxx j−1 f̄ h

q (x, Q2) (8.190)

at j → 1. The fragmentation functions obey the equations (8.73). For the Mellin images,
the equations is of the following form:

d Ma( j, Q2)

d ln Q2
= αs(Q2)

2π
Ab

a( j)Mb( j, Q2), (8.191)

where

Ab
a( j) =

∫ 1

0

dz

z
z j P̄b

a (z). (8.192)

At small x , the leading contributions in (8.73) come from the splitting functions P̄g
q and

P̄g
g with 1/x singularities:

P̄g
q (x) $ 2CF

x
, P̄g

q (x) $ 2CA

x
. (8.193)

The small x region is related to j $ 1. Correspondingly, the functions Ag
q( j) and Ag

g( j)
are singular at j = 1:

Ag
q( j) $ 2CF

j − 1
, Ag

g( j) $ 2CA

j − 1
. (8.194)

In perturbation theory, the Mellin transforms Ma are defined in the half-plane Re j > 1.
Thus we have for the terms most singular at j = 1:

d Mq( j, Q2)

d ln Q2
= αs(Q2)

2π
Ag

q( j)Mg( j, Q2),
d Mg( j, Q2)

d ln Q2
= αs(Q2)

2π
Ag

g( j)Mg( j, Q2),

(8.195)

such that

Mg( j, Q2) = exp

(∫ Q2

Q2
0

d Q2

Q2

αs(Q2)

2π
Ag

g( j)

)
Mg( j, Q2

0). (8.196)

This means that in the one-loop approximation the leading anomalous dimension is
divergent at j → 1, such as

γ
(1)
j (αs) $ CAαs

π

1

j − 1
. (8.197)
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The existence of the double logarithms means that in the n-loop approximation

γ
(n)
j (αs) ∼

(
CAαs

2π

)n 1

( j − 1)2n+1
. (8.198)

Thus, in perturbation theory the anomalous dimension is singular at j = 1, and the singu-
larity increases with powers of αs . But from (8.148) it follows that the sum of the singular
fixed-order contributions must give the following finite result:

γ1(αs) = lim
j→1

∞∑
n=1

γ
(n)
j (αs) =

√
CAαs

2π
. (8.199)

To analyze the behaviour of γ j (αs) near j = 1 let us rewrite Eq. (8.153) in terms of the
variables x = ω/ε and Q2 = ε2θ2,

Y = 1

2
ln(Q2/Q2

0), y = ln x + Y, (8.200)

D(x, Q2) = δ(x − 1)+ CA

π

∫ 1

x

dz

z

∫ Q2z2

Q2
0z2/x2

dk2⊥
k2⊥
αs(k

2⊥)D(
x

z
, k2⊥), (8.201)

Taking account of the difference in the normalization (8.189) and (8.150), we have

M( j, Q2) =
∫ 1

0

dx

x
x j−1 D(x, Q2). (8.202)

so that

Q2 d M( j, Q2)

d Q2
=
∫ 1

0

dz

z

∫ z

0

dx

x
x j−1 CA

π
αs(Q

2z2)D(
x

z
, Q2z2)

=
∫ 1

0

dz

z
z j−1 CA

π
αs(Q

2z2)M( j, Q2z2)

=
∫ Q2

0

dk2⊥
k2⊥

(
k2⊥
Q2

) j−1
2 CA

2π
αs(k

2⊥)M( j, k2⊥). (8.203)

The second derivative gives(
Q2 d

d Q2

)2

M( j, Q2) = − ( j − 1)

2
Q2 d

d Q2
M( j, Q2)+ CAαs(Q2)

2π
M( j, Q2). (8.204)

The leading singularities of γ j are not affected by the running of αs . At fixed αs , looking
for solutions of this equation with M j (Q2) ∝ (Q2)γ j , we obtain

γ 2
j + ( j − 1)

2
γ j − CAαs

2π
= 0, (8.205)

which gives for the leading anomalous dimension

γ j = 1

4

(√
( j − 1)2 + 8CAαs

π
− ( j − 1)

)
. (8.206)

At j = 1 we come to (8.199).
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8.13 Modified Leading Logarithmic Approximation (MLLA)

The double-logarithmic approximation (DLA) discussed above gives the qualitative pic-
ture of particle production in hard interactions with relatively small momenta. But this
approximation is too rough for reasonable quantitative predictions. In order to obtain reli-
able predictions one needs to take into account nonleading logarithms. Evidently, there is
no hope to sum all of such logarithms. What one can hope for is to understand and identify
those which are essential.

At first sight this task looks hopeless. In order to take into account nonleading loga-
rithms one has to consider a huge number of interference contributions. But then it looks
impossible to maintain a probabilistic interpretation.

Therefore, it seems striking that a scheme, taking into account essential single logarithms
and based on the parton-shower picture, does exist. Moreover, it looks like a simple gener-
alization of the DLA. This scheme, called the modified leading logarithmic approximation
(MLLA), was developed in Refs. [72]–[73].

The results of this approach agree with the renormalization-group approach developed
in Refs. [74]–[76]. The undoubted advantage of the latter approach is its rigor and the
possibility to study higher-order corrections. However, it has a limited application region
and is not as transparent as the approach based on parton branching. The MLLA has the
advantage that the most important contributions come from small angles. To find sublead-
ing logarithms coming from this region one needs to take into account the running of αs

and to consider hard-parton decays.
The DLA can be improved by the generalization of Eqs. (8.123), (8.124) for the

generating functionals. These equations can be rewritten in the form of

Z P (p, θ |u) = e−wP (p,θ)

(
u(p)+

∫
2CPαs

π

d3k!k
p,θ

4πω2

εp

kp
Zg(k, θkp|u)ewP (p,θkp)Z P (p, θkp|u)

)
,

(8.207)

where

Z P (p, θ |u) = u(p) P (p, θ |u). (8.208)

Taking the derivative with respect to θ and using z = ω/ε,
d3k

4πω2

εp

kp
u(k) = dz

z

dθkp

θkp
, dwP (p, θ) = 2CPαs

π

dz

z

dθ

θ
, (8.209)

we obtain

θ
d

dθ
Z P (p, θ |u) = 2CPαs

π

∫ 1

0

dz

z

(
Zg(zp, θ |u)− 1

)
Z P (p, θ |u). (8.210)

The forms (8.207), (8.210) resemble the equations of jet calculus [65],[77]. These equa-
tions could be considered as more general than (8.207), since they are written for partons
with x ∼ 1. However, they do not take into account the colour coherence. Therefore, the
evolution parameter in these equations is the jet invariant mass, whereas at small x it should
be the jet opening angle. At large x the difference in the evolution parameters disappear.



442 QCD jets

Therefore, the MLLA generalization of (8.210) looks like the jet calculus equations, where
the jet-opening angle is taken as the evolution parameter:

θ
d

dθ
Za(p, θ |u) =

∑
b,c

∫ 1

0
dz
αs(k2⊥)
π

Pbc
a (z) (Zb(zp, θ |u)Zc((1 − z)p, θ |u)

−Za(p, θ |u)) . (8.211)

Here, as before, Za(p, θ |u) is the generating functional for the jet of opening angle θ
created by parton a with momentum p; but it describes now the production of partons with
any energy fraction and of any species. Therefore, now u is the set of the functions {u P (k)}
for all species.

In (8.211), k2⊥ = z(1 − z)ε2θ2 and the splitting functions Pbc
a (z) are defined by the

following relations (see Chapter 7)

θ2 d2wbc
a

dzdθ2
= αs

2π
Pbc

a (z), (8.212)

where wbc
a are the Born probabilities of the decays a → bc with εb/εa ≤ z and θba ≤ θ .

(The splitting functions were presented in Chapter 7.) Equation (8.211) requires initial
conditions. They are imposed at θ = Q0/p:

Za(p, θ |u)|pθ=Q0 = u(p). (8.213)

Together with Eq. (8.211), these conditions provide for the generating functionals the same
boundary values as in the double-logarithmic approximation:

Za(p, θ |u)|u=1 = 1. (8.214)

For a system of jets produced in some hard interaction, the generating functional is given
by the product of the generating functionals for separate jets, analogously to (8.122).

For the inclusive distributions

Db
a(x, Q2) =

∫
d3kδ(

k0

ε
− x)

δ

δu(k)
Za(p, θ |u)

∣∣∣
u=1
, (8.215)

where Q2 = ε2θ2, taking account of (8.214) we obtain from (8.211)

Q2 d

d Q2
Db

a(x, Q2) =
∑

C

∫ 1

x

dz

z

αs(k 2⊥)
2π

Pc
a

(
x

z

)
Db

c

(
z, Q2z2

)
. (8.216)

Here Pb
a (z) are the regularized splitting functions:

Pb
a (z) =

∑
c

Pbc
a (z)− δ(1 − z)δb

a
1

2

∑
c,d

∫ 1

0
dz′ Pcd

a (z
′), (8.217)

which were given by Eqs. (7.135) in Chapter 7.
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Since the region of small (1 − z) is not essential in the integral (8.216), k 2⊥ = Q2z2

(1−z)2 in the argument of αs can be changed for Q2z2. After that, for the Mellin transforms

Mb
a ( j, Q2) =

∫ 1

0
dxx j−1 Db

a(x, Q2). (8.218)

Eqs. (8.216) give

Q2 d

d Q2
Mb

a ( j, Q2) =
∑

c

∫ 1

0
dzz j−1αs(Q2z2)

2π
Pc

a (z)M
b
c

(
j, Q2z2

)
. (8.219)

In the case of j not close to 1, which corresponds to values of x less than 1 but of the order
of 1, we have in the essential integration region z ∼ 1. Neglecting the z-dependence of M
and of αs , we come from (8.219) to the usual DGLAP equations (8.191). But for j → 1,
the region of small z becomes important for the terms ∝ 1/z in Pc

a (z). For these terms it
is not correct to neglect the z-dependence of M and of αs . They can be considered in the
same way as in (8.203), (8.204). Note that such terms are present only in Pg

a (z) and are
equal to 2Ca/z. In the integrals with remaining terms of Pb

a (z), the z-dependence of M
and of αs can be neglected as well as for j not close to 1. Thus for the gluon distributions
we come to the following equations (compare with (8.204) and (8.191)):

d2 Ma( j, Q2)

d(ln Q2)2
= − ( j − 1)

2

d Mg( j, Q2)

d ln Q2
+ Caαs(Q2)

2π
Mg( j, Q2)

+ αs(Q2)

2π

∑
c

(
Ac

a( j)− δc
g

2Ca

j − 1

)(
( j − 1)

2
+ d

d ln Q2

)
Mc( j, Q2),

(8.220)

where Ac
a( j) is given by (8.192). In the derivation of (8.220), we neglect

d lnαs(Q2)

d ln Q2
∼ αs(Q

2) (8.221)

in comparison with

d ln Ma( j, Q2)

d ln Q2
∼
√
αs(Q2). (8.222)

At small j − 1, the last term in this equation can be considered as a small correction. It
determines the correction to the leading anomalous dimension (8.206). Taking (8.220) with
a = g and considering that according to (8.219) in the leading approximation, we have

d Mq( j, Q2)

d ln Q2
= CF

CA

d Mg( j, Q2)

d ln Q2
, (8.223)

and that in the limit j − 1 = 0,

Ag
g( j)− 2CA

j − 1
= −11

6
Nc − n f

3
, Aq

g( j) = 1

3
, (8.224)
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we obtain instead of (8.205) the following:

γ 2
j

(
αs(Q

2)
)

+ ( j − 1)

2
γ j

(
αs(Q

2)
)

− CAαs(Q2)

2π
+ dγ j

(
αs(Q2)

)
d ln Q2

+ αs(Q2)

2π

(
j − 1

2
+ γ j (αs(Q

2)

)(
11

6
Nc + n f

3N 2
c

)
= 0. (8.225)

Using the relation

dγ j
(
αs(Q2)

)
d ln Q2

= −β0
α2

s (Q
2)

4π

dγ j
(
αs(Q2)

)
dαs(Q2)

, β0 = 11

3
Nc − 2n f

3
, (8.226)

and denoting (11/6)Nc + n f /(3N 2
c ) by a, one gets

γ j (αs) = γ DL A
j + αs

4π

[
−a

(
1 + j − 1√

( j − 1)2 + 16γ 2
0

)
+ β0

4γ 2
0

( j − 1)2 + 16γ 2
0

]
,

(8.227)

where γ DL A
j is given by (8.206) and γ0 = √

CAαs/(2π).
The change of the anomalous dimension means, in particular, the change of the hump-

backed x-spectrum and the multiplicity. At large Y, Y � ln2(Q0/�QC D),

n(Y ) ∝ Y − B
2 + 1

4 exp

√
16Nc

β0
Y , (8.228)

where B = 2a/β0. In terms of the running coupling,

ln n(Y ) =
√

32πNc

αs(Q2)

1

β0
+
(

B

2
− 1

4

)
lnαs(Y )+ O(1). (8.229)

The MLLA effect shifts the peak in the fragmentation function from the DLA position
ln 1

x = Y
2 , Y = ln(Q/Q0), to the larger value

ln
1

xmax
= Y

⎛⎝1

2
+ a

√
αs(Q2)

8Ncπ
− a2αs(Q2)

8Ncπ
+ . . .

⎞⎠ , (8.230)

thus softening the spectrum. The shape of the peak is also affected by the MLLA
corrections: the peak is narrowed and skewed towards higher values of x .
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9

BFKL approach

9.1 Introduction

The Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [1]–[4] became famous owing
to the prediction of the rapid growth of the γ ∗ p cross section at increasing energy,
subsequently discovered experimentally. Therefore, the BFKL equation is usually asso-
ciated with the evolution of the unintegrated gluon distribution. The parton distributions
serve now as the inherent part in the theoretical description of hard QCD processes.
In hadron collisions, cross sections of processes with a hard scale Q2 are given by the
convolution

dσAB(s) =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb f a

A(xa, Q2) f b
B(xb, Q2)σ̂ab(xa xbs, Q2), (9.1)

where s is the squared total energy in the centre of mass system, f a
A(x, Q2) is the density

of the probability to find the parton a in the hadron A carrying a fraction xa of its momen-
tum, and σ̂ab(xa xbs, Q2) is the partonic cross section. Evolution of the parton distributions

with τ = ln
(

Q2/�2
QC D

)
is determined by the DGLAP [5]–[9] equations discussed in

Chapter 7. The DGLAP equations permit to sum the terms strengthened in each order of
the perturbation series by powers of ln Q2. These logarithms are called collinear since they
are picked up from the region of small angles between parton momenta. There are log-
arithms of another kind, which are called soft ones, arising at integration over ratios of
parton energies. These logarithms are present both in parton distributions and in partonic
cross sections. At small values of the ratio x = Q2/s, the soft logarithms appear to be even
more important than the collinear ones.

At small x the gluons are the dominant partons. The unintegrated gluon density F(x, k)
is defined in such a way that the gluon distribution f g(x, Q2) is given by the inte-
gral

∫ F(x, k)dk/(πk 2)θ(Q2 − k 2). The equation describing evolution of F(x, k) as
a function of ln(1/x) has the structure

∂F
∂ ln(1/x)

= K
⊗

F, (9.2)

where K is the BFKL kernel and
⊗

means convolution with respect to transverse
momenta. Originally, the kernel was found in the NLA. The equation with this kernel

448
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permits to sum the leading terms (αS ln(1/x))n . The summation leads to rising cross
sections

σ ∼ sωP , ωP = 4Nc
αs

π
ln 2. (9.3)

Just this result brought fame to the BFKL equation since the sharp rise of the proton struc-
ture function with decreasing x was discovered in the experiments on deep inelastic e − p
scattering at the collider HERA [10].

But the region of applicability of the BFKL approach is much wider. The approach
gives the description of QCD-scattering amplitudes in the region of large s and fixed
momentum transfer t, s � |t | (Regge region), with various colour states in the t
channel. The evolution equation for the unintegrated gluon distribution appears in this
approach as a particular result for the imaginary part of the forward-scattering ampli-
tude (t = 0 and vacuum quantum numbers in the t channel). It is worthwhile to
add that the approach was developed, and is more suitable, for the description of
processes with only one hard scale, such as γ ∗γ ∗-scattering with both photon virtu-
alities of the same order, where the DGLAP evolution (i.e. evolution in Q2) is not
appropriate. The forward BFKL kernel can carry only restrictive information about the
BFKL dynamics. Moreover, the nonforward case has an advantage of smaller sensitiv-
ity to large-distance contributions, since the diffusion in the infrared region is limited
by

√|t |.
The leading logarithmic approximation (LLA) can provide only qualitative predictions,

because it does fix neither the scale of energy nor the scale of significant transverse
momenta which determine the value of the coupling αs . They can be determined in the
next-to-leading approximation (NLA), when the terms αS(αS ln(1/x))n are resummed.
Therefore, the normalization of cross sections and the exponent ωP in (9.3), called
pomeron intercept, can be fixed only in the NLA.

Evidently, the power growth (9.3) of cross sections violate the Froissart bound [11]

σtot < const (ln s)2 (9.4)

which follows from unitarity. The violation of the Froissart bound cannot be removed
by calculation of radiative corrections at any fixed N N N . . . N L order and requires
other methods. Most popular at present are nonlinear generalizations of the BFKL equa-
tion, related to the idea of saturation of parton densities [12]. A general approach to
the unitarization problem is the reformulation of QCD in terms of a gauge-invariant
effective field theory for the reggeized gluon interactions [13],[14]. It is discussed in
Chapter 10.

Another well-known equation for the unintegrated gluon distribution is the Ciafaloni–
Catani–Fiorani–Marchesini (CCFM) equation [15]–[17] based on an angular ordering,
which follows from colour coherence effects discussed in Chapter 8. This equation interpo-
lates between DGLAP and BFKL and unifies descriptions of the small and large x domains.
It reduces to the DGLAP formalism at moderate x and give the same results as the BFKL
approach at small x [18]–[20].
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9.2 Gluon reggeization

The basis of the BFKL approach is the gluon reggeization. The notion reggeization of
elementary particles in perturbation theory was introduced in [21]. In terms of the relativis-
tic partial wave amplitude A j (t), analytically continued to complex j values, this means
that the nonanalytic terms (proportional to Kronecker delta symbols), arising in the Born
approximation on account of one-particle exchanges in the t channel, disappear as a conse-
quence of radiative corrections. In other words, reggeization of an elementary particle with
spin j0 and mass m means that at large s and fixed t Born amplitudes with exchange of this
particle in the t channel acquire a factor s j (t)− j0 , with j (m2) = j0, as a result of radiative
corrections. This phenomenon was discovered originally in QED in backward Compton
scattering [21]. It was called reggeization because just such form of amplitudes is given
by the Regge poles – moving poles in the complex angular momentum plane ( j-plane)
introduced by Regge [22]; therefore, these poles are called Regge poles (reggeons), and
the functions j (t) are Regge trajectories. The value j (0) is the intercept, and the derivative
j ′(0) is the slope of the trajectory.

For relativistic particles, the theory of complex angular momenta was developed by Gri-
bov. This theory had outstanding significance in elementary particle physics. In the 1960s
it was the main and almost unique tool of the theoretical analysis of strong interactions.

Recall that, as compared with ordinary particles, reggeons possess an additional quan-
tum number, called a signature. The signature means parity with respect to the substitution
cos θt ↔ − cos θt , where θt is the t-channel-scattering angle. At large s, this substitution
is equivalent to the substitution s ↔ u, and at the same time s = −u. The reason for the
appearance of this quantum number is that t-channel partial waves f j (t) cannot be repre-
sented at all integer j as values of analytical functions f ( j, t) with the required properties
in the complex j-plane. Such representation is possible only separately for even (positive
signature) and odd (negative signature) values of angular momentum. Therefore, for any
2 → 2 process, amplitudes with definite signatures are introduced in the Gribov–Regge
theory as even and odd with respect to the substitution cos θt ↔ − cos θt parts of the
amplitude of this process. In the following, for brevity, we will use the words “process
with definite signature” assuming the corresponding amplitude.

The fundamental role in the Gribov theory belongs to the reggeon with vacuum quan-
tum numbers and positive signature, which is called pomeron after I. Ya. Pomeranchuk.
The pomeron determines behaviour of total cross sections at high energy. Originally,
it was introduced (with intercept equal to one) [23],[24] to provide constant cross sec-
tions at asymptotically high energies. Very important and intriguing is another reggeon,
differing from the pomeron by C and P-parity and called odderon [25],[26]. The odd-
eron is responsible for the difference of particle-particle and particle-antiparticle cross
sections.

QCD is a unique theory where all elementary particles reggeize. In contrast to QED,
where the electron does reggeize in perturbation theory [21], but the photon remains ele-
mentary [27], in QCD the gluon does reggeize [28]–[30],[1],[2] as well as the quark
[31],[32],[33]. The reggeization is very important for the theoretical description of
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pA pA

pB pB

Fig. 9.1. The process A + B → A′ + B′ with colour octet in the t channel and negative
signature. The zigzag line represent reggeized gluon exchange.

high-energy processes with fixed momentum transfer. Especially important is the gluon
reggeization, because gluon exchanges provide nondecrease of cross sections with energy.
In each order of perturbation theory, amplitudes with negative signature do dominate,
owing to cancellation of the leading logarithmic terms in amplitudes with positive signa-
ture (these amplitudes turn out to be pure imaginary in the LLA due to this cancellation).
Therefore, the primary reggeon in QCD turns out to be the reggeized gluon, which has
negative signature. The pomeron and the odderon emerge as compound states of two and
three reggeized gluons, respectively.

The gluon reggeization determines the form of QCD amplitudes at large energies and
limited transverse momenta. For the process A + B → A′ + B ′, amplitudes with a colour
octet t-channel exchange and negative signature can be depicted by the diagram of Fig. 9.1
and have the Regge form

AA′ B′
AB = s

t
�c

A′ A

[(−s

−t

)ω(t)
+
(

s

−t

)ω(t)]
�c

B′ B , (9.5)

which is valid in the NLA as well as in the LLA. In (9.5), s = (pA + pB)
2; ω(t) is called

gluon trajectory (in fact, the trajectory is j (t) = 1 +ω(t)), c is a color index, and �c
P ′ P are

the particle–particle–reggeon (PPR) vertices (we also will call them scattering vertices)
which do not depend on s. Note that the form (9.5) represents correctly the analytical
structure of the scattering amplitude, which is quite simple in the elastic case.

The gluon reggeization determines the form not only of elastic, but also inelastic, ampli-
tudes in the multi-Regge kinematics (MRK), which is the most important at high energy.
We call MRK the kinematics where all particles have limited transverse momenta and are
combined into jets with limited invariant mass of each jet and large (increasing with s)
invariant mass of any pair of jets. This kinematics gives dominant contributions to cross
sections of QCD processes. In the LLA, each jet is actually one particle. In the NLA, one of
the jets can contain a couple of particles. Such kinematics is called also quasi-multi-Regge
kinematics (QMRK). We use the notion of jets and extend the notion of MRK, so that it
includes QMRK, in order to unify our considerations.

In perturbation theory, the MRK amplitudes are determined by gluon exchanges in
channels with fixed momentum transfer. Despite a great number of contributing Feynman
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diagrams, it turns out that in MRK these amplitudes have a simple factorized form. Quite
uncommonly, the radiative corrections to these amplitudes do not destroy this form but give
only simple Regge factors. The form (9.5) remains valid for the case when any of the par-
ticles A′, B ′, or A, B is replaced by a jet. In this case, the PPR vertices �c

A′ A and �c
B′ B are

the effective vertices for particle-jet, jet-particle or jet-jet transitions owing to interactions
with the reggeized gluons.

A suitable tool for analysis of MRK processes is the Sudakov decomposition of
momenta. For any momentum p, the decomposition is given by

p = βp1 + αp2 + p⊥, (9.6)

where p1 and p2 are light-like vectors,

(p1 + p2)
2 = 2p1 p2 = s, p2 = sαβ + p2⊥ = sαβ − p2. (9.7)

Here and below to emphasize the Euclidean properties of components of momenta trans-
verse to the p1, p2 plane, we will use vector notation. We also will use fixed (not
connected with s) light-cone momenta n1 and n2 along p1 and p2, respectively, with
n2

1 = n2
2 = 0, (n1n2) = 1, and denote (pn2) ≡ p+, (pn1) ≡ p−.

Let us consider the amplitude A2→n+2 of the process A + B → A′ + J1 + . . .+ Jn + B ′
of production of n jets (see Fig. 9.2). We assume that the initial momenta pA and pB

have dominant components p+
A and p−

B . Generally, it is not assumed that the components
pA⊥, pB⊥ transverse to the (p1, p2) plane are zero:

pA = p1 + p2 A − p2 A⊥
s

p2 + pA⊥, pB = p2 + p2 B − p2 B⊥
s

p1 + pB⊥,

(pA + pB)
2 $ s = 2p1 p2. (9.8)

Moreover, A and B, as well as A′ and B ′, can represent jets. Denoting momenta of the final
jets ki , i = 0 . . . , n + 1,

ki = βi p1 + αi p2 + ki⊥, sαiβi = k2
i − k2

i⊥ = k2
i + k 2

i , (9.9)

A

B

A

B

q1

qi

qi+1

qn+1

J1

Ji

Jn

Fig. 9.2. Schematic representation of the process A + B → A′ + J1 + · · · + Jn + B′ in
MRK. The zigzag lines represent reggeized gluon exchange; the black circles denote the
reggeon vertices; qi are reggeon momenta.
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we have

1

s
∼ α0 � α1 · · · � αn � αn+1 $ 1,

1

s
∼ βn+1 � βn · · · � β1 � β0 $ 1. (9.10)

Eqs. (9.9) and (9.10) ensure the squared invariant masses of neighbouring jets,

si = (ki−1 + ki )
2 ≈ sβi−1αi = βi−1

βi

(
k2

i + k 2
i

)
, (9.11)

to be large compared with the squared transverse momenta:

si � k2
i ∼ | ti |=| q2

i |, (9.12)

where

ti = q2
i ≈ q2

i⊥ = −q 2
i , (9.13)

and their product is proportional to s:

n+1∏
i=1

si = s
n∏

i=1

(k2
i + k2

i ). (9.14)

Amplitudes dominant in each order of perturbation theory can be represented by Fig. 9.2.
Multiparticle amplitudes have a complicated analytical structure. They are not simple even
in MRK (see, for instance, [34]–[36], [37]). Fortunately, only real parts of these amplitudes
are used in the BFKL approach in NLA as well as in LLA. Restricting ourselves to the real
parts (although it is not explicitly indicated below), we can write (see [38] and references
therein)

AA′ B′+n
AB = 2s�c1

A′ A

⎡⎣ n∏
i=1

1

ti
γ Ji

ci ci+1
(qi , qi+1)

(
si

s0
i

)ω(ti )⎤⎦ 1

tn+1

(
sn+1

s0
n+1

)ω(tn+1)

�
cn+1
B′ B ,

(9.15)

where the vertices �a
A′ A and �b

B′ B are the same as in (9.5), s0
i , i = 1, . . . , n + 1 are

energy scales, and γ Ji
ci ci+1(qi , qi+1) are the reggeon–reggeon–particle (RRP) vertices, i.e.

the effective vertices for production of jets Ji with momenta ki =qi − qi+1 in collisions
of reggeons with momenta qi and −qi+1 and colour indices ci and ci+1. Actually, in the
LLA, only one gluon can be produced in the RRP vertex; in the NLA, a jet can contain two
gluons or a qq̄ pair. Note that we have taken definite energy scales in the Regge factors
in Eq. (9.15) as well as in Eq. (9.5). In the LLA the energy scales are not important at all.
In the NLA we could take, in principle, an arbitrary scale sR ; in this case the PPR and
RRP vertices would become dependent on sR . Of course, physical results must be scale
independent. We will use the following scales:

s0
1 =

√
q2

1k2
1, s0

j =
√

k2
j−1k2

j , j = 2, . . . n, s0
n+1 =

√
k2

nq2
n+1. (9.16)

For brevity in the following, we call the forms (9.5) and (9.15) reggeized forms, and when
speaking about gluon reggeization we mean these forms. The gluon-reggeization hypoth-
esis is extremely powerful since an infinite number of amplitudes is expressed in terms



454 BFKL approach

of the gluon Regge trajectory and several reggeon vertices. The gluon reggeization was
proved in [39] (see also [40]) in the LLA and recently also in the NLA (see [41] and ref-
erences therein). The proof is based on “bootstrap” relations, required by compatibility of
the gluon reggeization with s-channel unitarity. It turns out that fulfillment of all these rela-
tions ensures the reggeized form of energy-dependent radiative corrections order by order
in perturbation theory. It is quite nontrivial that an infinite number of bootstrap relations
for the multiparticle production amplitudes can be fulfilled if the reggeon vertices and tra-
jectory satisfy several bootstrap conditions. All these conditions are derived and are proved
to be satisfied.

9.3 Reggeon vertices and trajectory

9.3.1 Reggeon vertices in Born approximation

The idea of gluon reggeization arose as the result of the fixed-order calculations in
non-Abelian gauge theories with spontaneously broken gauge invariance [2],[30]. The dis-
persion method of calculations based on unitarity and analyticity suggested in [30] and
developed in [2] appeared to be very effective. It greatly simplifies calculations even in the
case of Born amplitudes, which can be easily found using t-channel unitarity. For elastic-
scattering amplitudes AA′ B′

AB (s, t) the t-channel discontinuities are shown by Fig. 9.3,
where the dashed line representing the t-channel discontinuity means the substitution

1

t + i0
−→ −2π iδ(t) (9.17)

in the gluon propagator. The straight lines can represent either quarks or gluons.
Note that in order to preserve usual analyticity properties of the amplitude we have to

use covariant gauges for the intermediate gluons. We will use the Feynman gauge. In the
Regge region, it is convenient to exploit the substitution

gμν −→ 2

s
p2μ p1ν (9.18)

for the tensor gμν in the numerator of the gluon propagator between vertices with indices
μ and ν and momenta close to p1 and p2, respectively. This is possible because in the
decomposition

pA pA

pB pB

Fig. 9.3. The t-channel discontinuity of the amplitude of the process A + B → A′ + B′.
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gμν = 2

s

(
p2μ p1ν + p1μ p2ν

)+ g⊥
μν (9.19)

the last two terms give negligible contributions. Therefore, we obtain

2i Imt AA′ B′
AB (s, t) = −4π isδ(t) �c

A′ A �
c
B′ B, (9.20)

where Imt denotes the t-channel imaginary part and the vertices �c
A′ A and �c

B′ B are the
interaction vertices of the t-channel gluon with the gluon colour index c and polariza-
tion vectors i p2/s and i p1/s, respectively. Renormalizability of the theory ensures against
existence of terms of order s not decreasing with t , so that (9.20) determines the amplitude
unambiguously:

AA′ B′
AB (s, t) = 2s

t
�c

A′ A�
c
B′ B = 2p+

A�
c
A′ A

1

t
2p−

B�
c
B′ B . (9.21)

From comparison with (9.5), one can see that in fact the vertices �c
A′ A and �c

B′ B are the
RRP vertices in the leading order, i.e. the RRP vertices can be easily found assuming the
form (9.5). In the helicity basis, all these vertices have identical form:

�c
P ′ P = gT c

P ′ PδλP ′λP , (9.22)

where T c
P ′ P represents now the matrix elements of the colour-group generators in the corre-

sponding representations and λ are parton helicities. Except for a common coefficient, the
vertices (9.22) can be written down without calculation because they are given by forward-
matrix elements of the conserved current. Note that Eq. (9.22) implies a definite choice of
the relative phase of spin-wave functions of particles P ′ and P . Evidently, the phase is zero
at t = 0. In (9.22), the s-channel helicity conservation is exhibited explicitly. Note that for
gluons and for massive quarks it is valid only in the leading order.

It is easy to rewrite (9.22) in terms of Dirac spinors for quarks and of physical polariza-
tion vectors for gluons. The vertex for the q(p)→ q(p′) quark transition with momenta p
and p′ having dominant components along p1 can be represented as

�c
Q′ Q = gū(p′)tc p/2

2pp2
u(p), 2p+�c

Q′ Q = gū(p′)tcγ/+u(p), (9.23)

where tc are the colour-group generators in the fundamental representation; for antiquarks
we have correspondingly

�c
Q̄′ Q̄ = −gv̄(p)tc p/2

2pp2
v(p′), 2p+�c

Q̄′ Q̄ = −gv̄(p)tcγ/+v(p′). (9.24)

Evidently, the vertices for the quark and antiquark transitions with momenta having
dominant components along p2 are obtained from (9.23) and (9.24) by the replacement
1 ↔ 2, + ↔ −. Eqs. (9.21), (9.23), (9.24) make obvious that in the leading order the
reggeon acts as a gluon with polarization vector in2,1 when it interacts with a particle with
momentum p that has a large component along p1,2, respectively. Then, because of the
factor 2s in (9.21), the reggeon vertices are obtained from gluon vertices with polarization
vectors i p2,1/(2pp2,1).



456 BFKL approach

The vertices for gluon transitions acquire a simple form in physical gauges. For gluons
G and G ′ having momenta k and k′ with predominant components along p1 we will take
their polarization vectors e and e′ in the light-cone gauge: (ep2) = 0 , (e′ p2) = 0 , so that

e = e⊥ − (e⊥k⊥)
kp2

p2, e′ = e′⊥ − (e′⊥k′⊥)
k′ p2

p2, (9.25)

and

�c
G ′G = −g(e′∗⊥e⊥) T c

G ′G , (9.26)

with the colour generators in the adjoint representation. Conversely, for gluons with
predominant components along p2 we will take their polarization vectors in the gauge
(ep1) = 0, (e′ p1) = 0, i.e.

e = e⊥ − (e⊥k⊥)
kp1

p1, e′ = e′⊥ − (e′⊥k′⊥)
k′ p1

p1. (9.27)

The form (9.26) of the gluon–gluon–reggeon (GGR) vertex remains unchanged. Note,
however, that in different gauges the transverse parts of the polarization vectors are dif-
ferent. Therefore, to be rigorous one should indicate somehow the gauge that is used. We
do not do this to avoid overloading the notation. It is easy to see that the polarization vectors
in the gauges (9.25) and (9.27) are connected by a gauge transformation:

e → e − 2
(e⊥k⊥)

k2⊥
k, e′ → e′ − 2

(e′⊥k′⊥)
k

′2⊥
k′. (9.28)

For transverse components, this means

e⊥μ → "μνe⊥ν, e′⊥μ → "′
μνe

′⊥ν, (9.29)

where

"μν = "νμ = δ⊥μν − 2
k⊥μk⊥ν

k2⊥
, "μν"νρ = δμρ. (9.30)

The dispersion approach requires knowledge of production amplitudes in the MRK.
Again in the Born approximation they can be calculated in the leading order without great
effort using the t-channel unitarity. In the leading order, only gluons can be produced. The
amplitudes AA′G B′

AB are calculated using the t1- and t2-channel discontinuities. Schemat-
ically, they are represented in Fig. 9.4, where the reggeized form (9.5) of the 2 → 2
amplitudes must be taken in the lowest order, so that it is given by (9.21), evidently with
the replacements s → s2 = (p′

B + k)2 = (pB + q1)
2, t → t2 in the case of Fig. 9.4a

and s → s1 = (p′
A + k)2 = (pA − q2)

2, t → t1 in the case of Fig. 9.4b.
Here we meet a complication. Until now the gluon–gluon–reggeon vertices were defined

only for physical gluon polarizations. But in order to use the Feynman gauge in the ampli-
tudes of Fig. 9.4 it is necessary to have the vertices in gauge invariant form. It is easy to
see that the required form can be obtained from (9.26) by the replacement

(e
′∗⊥e⊥) −→ (e

′∗e)− (pi e
′∗)(p′

e)

(pi p′
)

− (pe
′∗)(pi e)

(pi p)
+ (pp

′
)

(pi p)(pi p′
)
(pi e

′∗)(pi e), (9.31)
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pA pA

k

pB pB

(a)

pA pA

k

pB pB

(b)

Fig. 9.4. Schematic representation of the discontinuities of the A + B → A′ + G + B′
amplitude in the t1 (a) and t2 (b) channels.

where pi = p2 (pi = p1) for the gluons with dominant components of momenta along
p1 (p2), such that (pi p) $ (pi p′) � (pp′). Using the vertices in the covariant form
(9.31), one can easily find the contributions Aa and Ab with discontinuities corresponding
to the diagrams Fig. 9.4a and Fig. 9.4b:

Aa = 2s�c1
A′ A

1

t1
gT c

c1c2
e∗
μ(k)

(
−q1μ − q2μ+ 2p1μ

kp2

p1 p2
− p2μ

(
q2

2

kp2
+ 2

kp1

p1 p2

))
1

t2
�

c2
B′ B,

(9.32)

Ab = 2s�c1
A′ A

1

t1
gT c

c1c2
e∗
μ(k)

(
−q1μ − q2μ+ p1μ

(
q2

1

kp2
+ 2

kp2

p1 p2

)
− 2p2μ

kp1

p1 p2

)
1

t2
�

c2
B′ B .

(9.33)

Here k = q1 − q2, e(k), and c are the gluon momentum, polarization vector, and colour
index, respectively. It is easy to see that the amplitude AA′G B′

AB ,

AA′G B′
AB = 2s�c1

A′ A
1

t1
γ c

c1c2
(q1, q2)

1

t2
�

c2
B′ B, (9.34)

with

γ c
c1c2
(q1, q2) = gT c

c1c2
e∗
μ(k)Cμ(q2, q1), (9.35)

Cμ(q2, q1) = −q1μ − q2μ + p1μ

(
q2

1

kp1
+ 2

kp2

p1 p2

)
− p2μ

(
q2

2

kp2
+ 2

kp1

p1 p2

)
= −q1⊥μ − q2⊥μ − p1μ

2(kp1)

(
k2⊥ − 2q2

1⊥
)

+ p2μ

2(kp2)

(
k2⊥ − 2q2

2⊥
)
, (9.36)

has the correct discontinuities both in the t1- and t2-channels. This means that it is the cor-
rect amplitude, because contributions ∼ s without singularities in the t1- and t2-channels
are forbidden by renormalizability. Therefore, the vertex (9.35) is in fact the RRG vertex.
In the leading order it is the only RRP vertex.
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The vertex is gauge invariant: Cμ(q2, q1)kμ = 0. In the physical light-cone gauges the
vertex simplifies. In the gauge e(k)k = e(k)p2 = 0, we have

e∗
μ(k)Cμ(q2, q1) = −2e∗⊥(k)

(
q1⊥ − k⊥

q2
1⊥

k2⊥

)
, (9.37)

and in the gauge e(k)k = e(k)p1 = 0

e∗
μ(k)Cμ(q2, q1) = −2e∗⊥(k)

(
q2⊥ + k⊥

q2
2⊥

k2⊥

)
. (9.38)

Thus, assuming gluon reggeization, the leading order reggeon vertices are found without
noticeable effort.

9.3.2 One-loop gluon trajectory

It is quite easy also to find the gluon trajectory in the leading order. To do this it is suf-
ficient to find the lowest-order contribution to the s-channel discontinuity of some elastic
amplitude with negative signature and to compare it with (9.5). Of course, the trajectory
must be process independent. This requirement serves as a check of self-consistency of the
reggeization hypothesis.

In the lowest order, only two-particle intermediate states contribute in the unitarity
relation:

ImsAA′ B′
AB = 1

2

∑
Ã,B̃

∫
A Ã B̃

AB

(
A Ã B̃

A′ B′
)∗

d Ã B̃, (9.39)

where Ims stands for the s-channel imaginary part,
∑

Ã,B̃ means the sum over discrete
quantum numbers of the intermediate particles, and d Ã,B̃ is the element of their phase
space:

d Ã B̃ = (2π)DδD(pA + pB − pÃ − pB̃)
d D−1 pÃ

(2π)D−12ε Ã

d D−1 pB̃

(2π)D−12εB̃

. (9.40)

Here and in the following in this Chapter D = 4+2ε is the space-time dimension taken dif-
ferent from 4 to regularize the infrared, collinear, and ultraviolet divergences. Supposing,
without any loss of generality, that β Ã � βB̃ , using (9.21) and the equalities

d D p = s

2
dαdβd D−2 p⊥, δD(p) = 2

s
δ(α)δ(β)δD−2(p⊥),

d D−1 p

(2π)D−12εp
= δ(sαβ + p2⊥ − m2)d D p = dβ

2β
d D−2 p⊥ = dα

2α
d D−2 p⊥, (9.41)

we obtain

d Ã B̃ = d D−2q1⊥
2s(2π)(D−2)

, (9.42)

where q1 = pA − pÃ , and
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Ims AA′ B′
AB = s

∑
Ã

�c
ÃA
�c′

A′ Ã

∑
B̃

�c
B̃ B
�c′

A′ Ã
1

(2π)(D−2)

∫
d D−2q1

q 2
1 (q − q1)

2
. (9.43)

Eq. (9.43) gives the s-channel discontinuity of the amplitude of the process A + B →
A′ + B ′. Usually this amplitude does not have a definite signature. If we want to study
reggeization, we need to perform “signaturization,” i.e. to construct amplitudes of definite
parity with respect to the replacement cos θt ↔ − cos θt , where θt is the t-channel scat-
tering angle. In general, the signaturization is not a simple task. It requires partial-wave
decomposition of amplitudes in the t-channel with subsequent symmetrization (antisym-
metrization) in cos θt and analytical continuation into the s-channel. This procedure is
relatively simple only in the case of elastic scattering of spin-zero particles. But, generally
speaking, even in this case the amplitudes of definite signature cannot be expressed in terms
of physical amplitudes related by crossing, because the substitution cos θt ↔ − cos θt does
not necessarily mean transition to the cross channel. Fortunately, the signaturization can be
easily done in the Regge kinematics. As well as crossing properties, it is more convenient to
formulate the signaturization in terms of truncated amplitudes, i.e. amplitudes with omitted
wave functions (polarization and colour vectors and Dirac spinors). In Regge kinematics,
the substitution cos θt ↔ − cos θt means s ↔ −s. The crucial point is that s = 2p+

A p−
B

is determined by the longitudinal components of momenta, which are conserved in the
scattering: p+

A′ = p+
A , p−

B′ = p−
B . Therefore, for the truncated amplitudes the substitution

s ↔ −s is equivalent to the change of signs of the longitudinal components of pA and pA′
(or, equivalently, pB and pB′ ) without changing the transverse components. At the same
time, all particles remain on their mass-shell, so that the substitution is equivalent to the
transition into the cross channel.

Recall here that the amplitudes of Q̄′ → Q̄ transitions are not obtained from amplitudes
of Q → Q′ transitions simply by crossing (i.e. they are not given by the same analytical
functions in different regions of kinematical variables), but acquire an additional factor
of −1 because of Fermi statistics. This must be taken into account in the definition of
signaturization. Therefore, the truncated amplitudes AA′ B′

AB are signaturized by the operator

Ŝτ = 1

2

(
1 + τ R̂A R̂′

A

)
, (9.44)

where τ = ±1 is the signature and R̂P transfers the particle P from initial (final) state into
the antiparticle P̄ in the final (initial) state with the same longitudinal and opposite trans-
verse momenta (which is equivalent to changing of the signs of the longitudinal momenta
and accounting for Fermi statistics). From this definition, it follows that the s-channel
discontinuity of the signaturized amplitude

AA′ B′
AB (τ ) = Ŝτ AA′ B′

AB , AA′ B′
AB =

∑
τ=±1

AA′ B′
AB (τ ), (9.45)

for τ = +1 (τ = −1) is equal to half the sum (half the difference) of the s- and u-channel
discontinuities of AA′ B′

AB . Moreover, the s- and u-channel discontinuity of the amplitude
(9.45) coincide (differs by sign), so one needs to find only one of them.
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Using the vertices (9.23), (9.24), and (9.26), we derive that the s-channel discontinuity
of the amplitude with negative signature is obtained from (9.43) by antisymmetrization
in the colour indices in the first (or second) sum. In fact, it could be anticipated. Indeed,
from the t-channel point of view, negative signature means antisymmetry with respect to
exchange of momenta of gluons interacting with particles AA′ (B B ′). In the Regge region,
these gluons have identical polarizations; therefore, due to Bose statistics the antisymmetry
with respect to exchange of momenta implies antisymmetry with respect to exchange of
colour indices. The commutation relations of the colour-group generators give

1

2

(
�c

ÃA
�c′

A′ Ã − �c′
ÃA
�c

A′ Ã

)
= −i

g

2
fcc′a�

a
A′ A, −i

g

2
fcc′a�

c
B̃ B
�c′

B′ B̃ = −g2 Nc

4
�a

B′ B,

(9.46)

where fcc′a are the group-structure constants, fcc′a fcc′b = Nc, Nc in the number of
colours. Comparing (9.43) with (9.5) and taking account of (9.46) we obtain

ω(t) = g2 Nct

2(2π)D−1

∫
d D−2q1

q 2
1 (q − q1)

2

= −g2 Nc�(1 − ε)
(4π)D/2

�2(ε)

�(2ε)
(q 2)ε $ −g2 Nc�(1 − ε)

(4π)2+ε
2

ε
(q 2)ε. (9.47)

Thus we see that, assuming the gluon reggeization, all the Reggeon vertices and the Regge
trajectory can be easily obtained in the leading order. To find the vertices, it is sufficient to
calculate elastic and one-gluon production amplitudes in the Born approximation; to find
the trajectory, it is enough to calculate in the lowest-order the s-channel discontinuity of
some signaturized elastic-scattering amplitude.

Originally, the reggeized form of elastic amplitudes was established in the leading order
in two loops [30]. The three-loop calculations [2] confirmed this form and permitted
formulation of the reggeization hypothesis for inelastic amplitudes.

9.3.3 Next-to-leading order Reggeon vertices

In the NLA, the gluon trajectory and the reggeon vertices emerging already in the LLA
must be taken in the next-to-leading order. Again, assuming the gluon reggeization, they
can be extracted from the fixed-order results: the vertices from the elastic and the one-gluon
production amplitudes in the one-loop approximation and the trajectory from the two-loop
s-channel discontinuities of elastic amplitudes. Of course, neither the calculations, nor
the results are as simple as in the leading order. Therefore, we do not present here the
calculations and give below simplified versions of the results.

To find the PPR vertices, one has to calculate nonlogarithmic terms in the one-loop
elastic amplitudes. Various processes can be used; the results must be process indepen-
dent. The QQR vertex can be extracted both from quark-quark and quark–gluon scattering
amplitudes. It was obtained in [42] at arbitrary space-time dimension D = 4 + 2ε and
quark masses; in the case of massless quarks, it can be written in the form of
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�a
Q′ Q = �a(B)

Q′ Q

(
1 + ω(1)(t)

2

[
1

ε
+ ψ(1 − ε)+ ψ(1)− 2ψ(1 + ε)+ 2 + ε

2(1 + 2ε)(3 + 2ε)

− 1

N 2
c

(
1

ε
− (3 − 2ε)

2(1 + 2ε)

)
− n f

Nc

(1 + ε)
(1 + 2ε)(3 + 2ε)

])
, (9.48)

where the superscripts (B) and (1) mean the Born and the one-loop approximations, ψ(x)
is the logarithmic derivative of the Eueler �-function and n f is the number of quark
flavours. Evidently, the helicity of massless quarks is conserved, so that the one-loop vertex
is proportional to the Born vertex. This is not so in the case of massive quarks [42].

To find the GGR vertex, both quark-gluon and gluon-gluon scattering can be used. This
vertex was also found ([37],[43]) for arbitrary D and quark masses; in the massless case,
it takes the form of

�a
G ′G = �a(B)

G ′G

{
1 + ω(1)(t)

2

[
2

ε
+ ψ(1)+ ψ(1 − ε)− 2ψ(1 + ε)

− 9(1 + ε)2 + 2

2(1 + ε)(1 + 2ε)(3 + 2ε)
+ n f

Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]}
(9.49)

+ gT a
G ′Ge′⊥

∗
μe⊥ν

(
δ⊥μν − (D − 2)

q⊥μq⊥ν
q2⊥

)

× ε ω(1)(t)

2(1 + ε)2(1 + 2ε)(3 + 2ε)

(
1 + ε − n f

Nc

)
.

The last term here exhibits violation of helicity conservation.
The PPR vertices presented above are the most simple Reggeon vertices. The

gluon-production vertex γ G
ab(q1, q2) is much more complicated. The simplest piece of

γ G
ab(q1, q2) – the quark part of the vertex – was found immediately at arbitrary D [44], just

as the vertices (9.48) and (9.49). The calculation of the gluon part, which is much more
involved, has a long history. First, only the terms not vanishing at ε → 0 were found [37].
But in the process of calculation of the next-to-leading order BFKL kernel it was realized
that at small transverse momentum k of the produced gluon the RRG vertex must be known
at arbitrary D. After this, the vertex at small k was calculated [45] at arbitrary D. Later the
results of [37],[45] were obtained by another method in [46]. But then it became clear that
for verification of the bootstrap condition for the BFKL kernel the vertex must be known at
arbitrary D in a wider kinematical region. Finally, it was calculated at arbitrary D in [47].
Unfortunately, a complete expression for the vertex at arbitrary D is very complicated. We
present it here in the form where in the gluon part only terms singular at small k are given
at arbitrary D, but the other terms in the limit ε → 0. It can be written as

γ G
c1c2
(q1, q2) = γ G(B)

c1c2
(q1, q2)

[
1 + 2g2 Nc� (1 − ε)

(4π)2+ε ( f1 + f2)

]
+ gT a

c1c2

g2 Nc�(1− ε)
(4π)2+ε

×
[

f3 − (2k2 − q 2
1 − q 2

2 ) f2

]( pA

(kpA)
− pB

(kpB)

)
μ

e∗
μ(k), (9.50)
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where γ G(B)
ab (q1, q2) is the Born vertex (9.35). This form is explicitly gauge invariant.

As compared with the Born vertex (9.35) it contains new vector structure. The functions
fn, n = 1, 2, 3, are given by the sums of the quark and gluon parts:

fn = n f

Nc

r2(1 + ε)
(−ε) (4 + 2ε)

f Q
n + f G

n , (9.51)

where

f Q
1 = (q 2

1 + q 2
2 )

(q 2
1 − q 2

2 )
(1 + ε)2φ0, f Q

2 = k 2

(q 2
1 − q 2

2 )
3

[
εφ2 − q 2

1 q 2
2 (2 + ε)φ0

]
,

f Q
3 = 1

(q 2
1 − q 2

2 )

[
q 2

1 q 2
2 (2 + ε)2φ0 + εk2φ1

]
, φn = (q 2

1 )
n+ε − (q 2

2 )
n+ε. (9.52)

For the complete functions fn , taking the limit ε → 0, but admitting ε ln(1/k 2) ∼ 1, we
have:

2 f1=
(

11

6
− n f

3Nc

)
(q 2

1 + q 2
2 )

(q 2
1 − q 2

2 )
ln

(
q 2

1

q 2
2

)
−1

2
ln2

(
q 2

1

q 2
2

)
−
(

k 2
)ε ( 1

ε2
− 3ζ(2)+ 2εζ(3)

)
,

2 f2 =
(

1 − n f

Nc

)
k2

3(q 2
1 − q 2

2 )
2

[
q 2

1 + q 2
2 − 2

q 2
1 q 2

2

(q 2
1 − q 2

2 )
ln

(
q 2

1

q 2
2

)]
,

f3 =
(

11

3
− 2n f

3Nc

)
q 2

1 q 2
2

(q 2
1 − q 2

2 )
ln

(
q 2

1

q 2
2

)
+
(

1 − n f

Nc

)
k 2

6
, (9.53)

where ζ(n) is the Riemann zeta-function. The overall factor of the new vector structure in
(9.50) is infrared finite, as it should be.

9.3.4 Gluon trajectory in two loops

The next-to-leading order correction ω(2)(t) to the gluon trajectory was calculated in
Refs. [48]–[52]. This correction can be determined from the s-channel discontinuity of
the two-loop scattering amplitude of any the elastic-scattering processes (quark-quark,
gluon-gluon, or quark-gluon) with colour octet and negative signature in the t-channel.
The coincidence of the results served as a check of the reggeization.

With the assumption of gluon reggeization, the elastic scattering amplitudes with colour
octet and negative signature are given by (9.5). In the helicity basis, the vertices �c

P ′ P can
be represented as

�c
P ′ P = g T c

P ′ P

[
δλP ′ ,λP

(
1 + �(+)P P (t)

)
+ δλP ,−λP ′�

(−)
P P (t)

]
, (9.54)

where �(+)P P (t) are the radiative corrections to the helicity conserving leading order vertices

(9.22), �(−)P P (t) are the helicity nonconserving next-to-leading order parts. To calculate the
two-loop correction to the trajectory ω(2)(t), we can consider only the part of the scattering
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amplitude (9.5) conserving helicities of each of the colliding particles. Let us write the
two-loop contribution to the s-channel discontinuity of this part in the following form:

discs AA′ B′
AB = −2π ig2 T c

A′ AT c
B′ B

s

t
�AB . (9.55)

Calculating this contribution from Eq. (9.5) with the help of Eq. (9.54) we find

ω(2)(t) = �AB −
(
ω(1)(t)

)2
ln

(
s

−t

)
−
[
�
(+)
AA (t)+ �(+)B B (t)

]
ω(1)(t), (9.56)

where ω(1)(t) is the one-loop contribution (9.47). Having the one-loop corrections to
the PPR vertices, one can obtain ω(2)(t) calculating the discontinuity (9.55) for any of
the elementary scattering processes in QCD. Of course, the trajectory cannot depend
on the colliding particles; therefore, comparing the results of the calculation one can verify
the gluon reggeization.

With the correction ω(2)(t) found in this way, the trajectory can be written at arbitrary
D in terms of integrals over transverse momenta:

ω(t) = g2 Nct

2(2π)D−1

∫
d(D−2)q1

q 2
1

(
q1 − q

)2 (1 + f (q1, q)− 2 f (q1, q1)
)
, (9.57)

where

f (q1, q) = − g2 Ncq 2

2(2π)D − 1

∫
d(D − 2)q2

q 2
2 (q2 − q)2

×
[

ln

(
q 2

(q1 − q2)
2

)
− 2ψ(1 + 2ε)−ψ(1 − ε)+ 2ψ(ε)+ψ(1)

+ 1

1 + 2ε

(
1

ε
+ 1 + ε

2(3 + 2ε)

)]
+ 4g2n f �(2 − D

2 )�
2
( D

2

)
(4π)

D
2 �(D)

(q2)(D/2 − 1). (9.58)

The integrals in (9.57) can be expressed in terms of elementary functions [52] only in the
limit ε → 0, where they give

ω(t) = ω(1)(t)
{

1 + ω(1)(t)

4

[
11

3
+
(
π2

3
− 67

9

)
ε

+
(

404

27
− 2ζ(3)

)
ε2 − 2n f

3Nc

(
1 − 5

3
ε + 28

9
ε2
)]}

. (9.59)

The remarkable fact which occurred during the calculation is the cancellation of the third-
order poles in ε arising in separate contributions in (9.57). This cancellation is necessary
for the absence of infrared divergences in the corrections to the BFKL equation for the
colour singlet channel. As a result of this cancellation, the gluon and quark contributions to
ω(2)(t) have similar infrared behaviour. Moreover, the coefficient of the leading singularity
in ε is proportional to the coefficient of the one-loop β function. This means that infrared
divergences are strongly correlated with the ultraviolet ones.
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Equation (9.59) gives the most economic representation of the trajectory. Note, however,
that in order to retain terms finite at ε → 0 one has to conserve the terms of order ε in ω(1)

taking the square of ω(1). This implies that one cannot use the last expression in (9.47).
The result (9.59) was confirmed in [53]. Then it was obtained quite independently by

taking the high-energy limit of the two-loop amplitudes for parton–parton scattering [54].
Up to now we have systematically used the perturbative expansion in terms of the bare

coupling, so that g is the bare-coupling constant related to the renormalized coupling gμ
in the MS scheme by the relation

g = gμμ
−ε
(

1 + β0
ḡ2
μ

2ε

)
, β0 =

(
11

3
− 2

3

n f

N c

)
, ḡ2

μ = g2
μNc�(1 − ε)
(4π)2+ε . (9.60)

We will use also the notation

ḡ2 = g2 Nc�(1 − ε)
(4π)2+ε , ḡ2 = ḡ2

μ μ
−2ε

(
1 + β0

ḡ2
μ

ε

)
. (9.61)

As well as the cross sections, the reggeon vertices and trajectories themselves must
not be renormalized, therefore the renormalization procedure for them is reduced to the
transition from the bare-coupling constant g to the the renormalized one gμ using (9.60).
For the gluon trajectory in two-loop approximation, we obtain

ω(t) = −ḡ2
μ

(
q2

μ2

)ε
2

ε

{
1 + ḡ2

μ

ε

[(
11

3
− 2

3

n f

N

)(
1 − π2

6
ε2
)

−
(

q2

μ2

)ε
×
(

11

6
+
(
π2

6
− 67

18

)
ε +

(
202

27
− 11π2

18
− ζ(3)

)
ε2

− n f

3N

(
1 − 5

3
ε +

(
28

9
− π2

3

)
ε2
))]}

. (9.62)

The correlation of the infrared and ultraviolet divergences is unique in the sense that it
provides the independence on q2 of singular contributions to ω(t). Indeed, expanding
Eq. (9.62) we have

ω(t) = −ḡ2
μ

(
2

ε
+ 2 ln

(
q 2

μ2

))
−ḡ4

μ

[(
11

3
− 2

3

n f

N

)(
1

ε2
− ln2

(
q2

μ2

))
+
(

67

9
− π2

3
− 10

9

n f

N

)(
1

ε
+ 2 ln

(
q2

μ2

))
−404

27
+ 2ζ(3)+ 56

27

n f

N

]
. (9.63)

Eq. (9.63) exhibits explicitly all singularities of the trajectory in the two-loop approxima-
tion and gives its finite part in the limit ε → 0. In the BFKL equation for the colour singlet
channel, the singularities of the trajectory must be cancelled by the infrared singularities
of the part related to real particle production.
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9.3.5 Vertices in quasi-multi-Regge kinematics

The vertices and the trajectory presented above allow us to describe in the NLA the pro-
duction of particles strongly ordered in rapidity space, i.e. in the same kinematics which
contributes in the LLA. To obtain production amplitudes in this kinematics in the NLA
it is sufficient to take one of the vertices or the trajectory in (9.15) in the next-to-leading
order. But in the NLA another kinematics becomes important: one of the produced jets can
contain two particles. Such a jet can be produced either in the fragmentation regions of the
initial particles or in the central region, i.e. with rapidities far away from those of the col-
liding particles. Production amplitudes are given by (9.15), where the two-particle jet is in
the first case either A′ or B ′ and in the second case is one of the Ji . Note that because any
two-particle jet in the unitarity relations leads to the loss of a large logarithm, the energy
scales in (9.15) are unimportant in the NLA; moreover, the trajectory and the vertices are
needed there only in the leading order.

Let us begin with vertices for the production of two-particle jets in the fragmentation
region. To be definite, we take the fragmentation region of particle A. If particle A is a
quark, only a quark–gluon jet can be produced; but if it is a gluon, then the jet can contain
either two gluons or a qq̄ pair. In all three cases, for generality, we take pA as

pA ≡ k = βp1 + k 2 + m2
A

βs
p2 + k⊥, (9.64)

the momenta of produced particles as

k1 = β1 p1 + k 2
1 + m2

1

β1s
p2 + k1⊥, k2 = β2 p1 + k 2

2 + m2
2

β2s
p2 + k2⊥, (9.65)

and we use the notation

β1 = x1β, β2 = x2β, x1 + x2 = 1. (9.66)

In all three cases, we take polarization vectors of the participating gluons in the light-cone
gauge (9.25).

In the case of quark–gluon production, let k1 and k2 be the momenta of the final quark
and gluon respectively, such that m A = m1 = m , m2 = 0. Then one has [55]

�c{QG}Q = (tatc)i1i2

(
Ab
(
(x2k1 − x1k2)⊥

)− Ab
(
(k1 − x1k)⊥

))
− (

tcta)
i1i2

(
Ab
(
(−k2 + x2k)⊥)− Ab

(
(k1 − x1k)⊥

))
, (9.67)

where i1 and i2 are the colour indices of the outgoing and incoming quarks, a is the colour
index of the produced gluon G, and the amplitudes Ab have the form:

Ab(p⊥) = − g2

p2⊥ − x2
2 m2

ū(k1)
p/2

βs

(
x1e/∗⊥ p/⊥ + p/⊥e/∗⊥ + e/∗⊥x2

2 m

)
u(k). (9.68)

Here e is the polarization vector of the produced gluon.
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The reggeon vertex for qq̄ production was found in [56]. It is of the form

�c
{Q Q̄}G = (tatc)i1i2

(
Ap((k1 − x1k)⊥)− Ap((x2k1 − x1k2)⊥)

)
− (

tcta)
i1i2

(
Ap((−k2 + x2k)⊥)− Ap((x2k1 − x1k2)⊥)

)
, (9.69)

where i1, i2 are now the quark and antiquark colour indices, and a is the colour index of
the incoming gluon G. The amplitudes Ap(p⊥) in the light-cone gauge (9.25) are:

Ap(p⊥) = g2

p2⊥ − m2
ū(k1)

p/2

βs

(
x1e/⊥ p/⊥ − x2 p/⊥e/⊥ − e/⊥m

)
v(k2). (9.70)

The amplitudes Ap and Ab are related by crossing.
The vertex �c{G1G2}G for two-gluon production can be represented in the same form as

(9.69), with the difference that k1 and k2 now are the momenta of the produced gluons, i1

and i2 are their colour indices. Taking their polarization vectors e1 and e2 in the light-cone
gauge (9.25), we have [56]

�c{G1G2}G = (
T aT c)

i1i2

(
A((k1 − x1k)⊥)− A((x2k1 − x1k2)⊥)

)
− (

T cT a)
i1i2

(
A((−k2 + x2k)⊥)− A((x2k1 − x1k2)⊥)

)
, (9.71)

where the amplitudes A(p⊥) now have the form

A(p⊥) = 2g2

p2⊥

[
x1x2

(
e∗

1⊥e∗
2⊥
)
(e⊥ p⊥)− x1

(
e∗

1⊥e⊥
) (

e∗
2⊥ p⊥

)− x2
(
e∗

2⊥e⊥
) (

e∗
1⊥ p⊥

)]
.

(9.72)

In the central region, jets are produced by two reggeons. Denoting reggeon momenta by
q1 and q2, we can put

q1 = βp1 + q1⊥, q2 = −αp2 + q2⊥, β = β1 + β2, α = α1 + α2, (9.73)

where βi and αi are the Sudakov parameters for the produced particles, i = 1, 2. The
particles can be either qq̄ or two gluons. For simplicity, we discuss below the case of
massless quarks, although the massive case can be considered quite analogously. Then, for
momenta k1 and k2 of the produced particles, we have:

k = k1 + k2 = q1 − q2, ki = βi p1 + αi p2 + ki⊥,

sαiβi = −k2
i⊥ = k 2

i , βi = xiβ, x1 + x2 = 1. (9.74)

The reggeon vertex for quark-antiquark production in reggeon-reggeon collisions was
obtained in [57]–[59]. If k1 and k2 are the quark and antiquark momentum respectively,
then the vertex has the form

γ Q Q̄
c1c2
(q1, q2) = 1

2
g2ū(k1)

[
tc1 tc2a(q1; k1, k2) − tc2 tc1a(q1; k2, k1)

]
v(k2), (9.75)

where a(q1; k1, k2) and a(q1; k2, k1) can be written [58] in the following way:

a(q1; k1, k2) = 4 �p1 �Q1 �p2

st̃1
− 1

k2
��, a(q1; k2, k1) = 4 �p2 �Q2 �p1

st̃2
− 1

k2
��, (9.76)
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with

t̃1 = (q1 − k1)
2, t̃2 = (q1 − k2)

2, Q1 = q1⊥ − k1⊥, Q2 = q1⊥ − k2⊥,

� = 2

[
(q1 + q2)⊥ − βp1

(
1 − 2

q2
1

sαβ

)
+ αp2

(
1 − 2

q2
2

sαβ

)]
. (9.77)

Using the notation D(p, q) and d(p, q),

D(p, q) = x1 p2⊥ + x2q2⊥, d(p, q) = (x1 p⊥ − x2q⊥)2, (9.78)

for the denominators in the vertex, and noting that for arbitrary p⊥ we have

ū(k1)p/⊥v(k2) = ū(k1)
p/2

sβ

(
k/1⊥ p/⊥

x1
+ p/⊥k/2⊥

x2

)
v(k2), (9.79)

we can represent a(q1; k1, k2) and a(q1; k2, k1) as

a(q1; k1, k2) = 4

sβ
p/2b(q1; k1, k2), a(q1; k2, k1) = 4

sβ
p/2b(q1; k2, k1), (9.80)

where

b(q1; k1, k2) = k/1⊥(k/1⊥ − q/1⊥)
D(k1 − q1, k1)

− x1x2

d(k2, k1)

(
q2

1⊥k/1⊥k/2⊥
D(k2, k1)

− k/1⊥q/1⊥
x1

− q/1⊥k/2⊥
x2

− q2
1⊥ + 2(q2⊥(k1 + k2)⊥)

)
− 1,

b(q1; k2, k1) = (k/2⊥ − q/1⊥)k/2⊥
D(k2, k2 − q1)

− x1x2

d(k2, k1)

(
q2

1⊥k/1⊥k/2⊥
D(k2, k1)

− k/1⊥q/1⊥
x1

− q/1⊥k/2⊥
x2

− q2
1⊥ + 2(q1⊥(k1 + k2)⊥)

)
− 1. (9.81)

The vertex for two-gluon production was obtained in [60]. It possesses QED-like gauge
invariance, i.e. it turns into zero when the polarization vector of one of the gluons is
replaced by its momentum, independently of the polarizations of other particles. For the
one-gluon vertex, such property could be considered as the consequence of the factoriza-
tion of MRK amplitudes, although the matter is not quite simple. One could think that
this property is not worthy of notice, because one can always obtain vertices with QED-
like gauge invariance starting from noninvariant ones by addition of terms giving zero at
physical polarizations. Let us consider, for example, the vertex e∗

1μe∗
2νCμν , where Cμν

does not possesses QED-like gauge invariance. Let k1μCμν = k2ν f1, k2νCμν = k1μ f2,
in accordance with usual QCD gauge invariance, which requires vanishing of k1μCμνe∗

2ν
and e∗

1μCμνk2ν at physical e1 and e2. Physical results do not change under the
replacement

Cμν → C̄μν = Cμν − k2μk2ν

(k1k2)
f1 − k1μk1ν

(k1k2)
f2, (9.82)

where C̄μν is QED-like gauge invariant. But, generally speaking, C̄μν contains unphysical
singularities because of (k1k2) in the denominator and does not correspond to Feynman
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diagrams. In general terms, it contains singularities in overlapping channels and contradicts
the Steinmann rule [61]. But it is not so nether for the one-gluon vertex (9.35), (9.36), not
for the two-gluon vertex obtained in [60]. One can say that for them the QED-like gauge
invariance is natural.

In the light-cone gauge (9.25) for both gluons the vertex takes the form [62]:

γ G1G2
c1c2

(q1, q2) = 4g2(e∗
1⊥)α(e∗

2⊥)β

×
[(

T i1 T i2
)

c1c2
bαβ(q1; k1, k2)+

(
T i2 T i1

)
c1c2

bβα(q1; k2, k1)

]
, (9.83)

where e1,2 are the polarization vectors of the produced gluons, i1,2 are their colour
indices, and

bαβ(q1; k1, k2) = 1

2
g⊥
αβ

[
x1x2

d(k2, k1)

(
2q1⊥(x1k2 − x2k1)⊥ + q2

1⊥

(
x2 − x1k2

2⊥
D(k2, k1)

))

− x2

(
1 − k2

1⊥
D(q1 − k1, k1)

)]
− x2k1⊥αq1⊥β − x1q1⊥α(q1 − k1)⊥β

D(q1 − k1, k1)

− x1q2
1⊥k1⊥α(q1 − k1)⊥β

k2
1⊥D(q1 − k1, k1)

− x1q1⊥α(x1k2 − x2k1)⊥β + x2q1⊥β(x1k2 − x2k1)⊥α
d(k2, k1)

+ x1q2
1⊥k1⊥αk2⊥β

k2
1⊥D(k2, k1)

+ x1x2q2
1⊥

d(k2, k1)D(k2, k1)

×
((

x1k2 − x2k1
)
⊥αk2⊥β + k1⊥α

(
x1k2 − x2k1

)
⊥β
)
. (9.84)

Here we use the notation (9.78). Note that one can come to (9.84) starting from the vertex
in the gauge e(k1)p1 = 0, e(k2)p2 = 0 [63]. Our bαβ(q1; k1, k2) can be obtained from
cαβ(k1, k2) defined in [63] by the gauge transformation

bαβ(q1; k1, k2) =
(

g⊥
αγ − 2

k1⊥αk1⊥γ
k2

1⊥

)
cγβ(k1, k2). (9.85)

The vertex (9.83) describes production of a two-gluon jet. The squared invariant mass of
the jet

(k1 + k2)
2 = (x2k1 − x1k2)

2

x1x2
(9.86)

becomes large at small x1 or x2. Let us consider the behaviour of the vertex (9.83) in the
limits x1 → 1, x2 → 0 and x1 → 0, x2 → 1. The former corresponds to the case
when the first gluon is much closer in rapidity space to particle A than the second gluon.
Therefore, in this limit, the two-gluon production vertex must be factorized as

γ
G1G2
i j (q1, q2) = γ G1

il (q1, q1 − k1)
1

(q1 − k1)
2⊥
γ

G2
l j (q1 − k1, q2), (9.87)

where γ G
i j (q1, q2) is the one-gluon production vertex. Indeed, at x1 = 1, x2 = 0 we have

D(p, q) = d(p, q) = p2⊥, which gives
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bβα(q1; k2, k1)|x1=1 = 0, (9.88)

such that

γ
G1G2
i j (q1, q2) = 4g2e∗

1⊥αe∗
2⊥β

(
T i1 T i2

)
i j

bαβ(q1; k1, k2)|x1=1, (9.89)

where

bαβ(q1; k1, k2)|x1=1= 1

(q1 − k1)
2⊥

[
q1⊥−q2

1⊥
k2

1⊥
k1⊥

]
α

[
q1⊥−k1⊥− (q1⊥ − k1⊥)2

k2
2⊥

k2⊥

]
β

.

(9.90)

Comparing with the one-gluon production vertex (9.35), (9.37), we see that the factor-
ization property (9.87) is fulfilled. In the second limit, i.e. x1 = 0, x2 = 1, we get
D(p, q) = d(p, q) = q2⊥, bαβ(q1; k1, k2)|x2=1 = 0,

bβα(q1; k2, k1)|x2=1= 1

(q1 − k2)
2⊥

[
q1⊥−q2

1⊥
k2

2⊥
k2⊥

]
β

[
q1⊥−k2⊥ − (q1⊥ − k2⊥)2

k2
1⊥

k1⊥

]
α

(9.91)

and

γ
G1G2
i j (q1, q2) = γ G2

il (q1, q1 − k2)
1

(q1 − k2)
2⊥
γ

G1
l j (q1 − k2, q2). (9.92)

9.4 BFKL equation

9.4.1 BFKL kernel and impact factors

The gluon reggeization determines amplitudes with colour octet states and negative sig-
nature in the t-channels. Amplitudes with other quantum numbers are found in the BFKL
approach using s-channel unitarity. In the unitarity relations, the contribution of order s,
in which we are interested, is given by the MRK. Large logarithms come from integra-
tion over longitudinal momenta of the produced jets. For elastic amplitudes the s-channel
unitarity relation gives (see Fig. 9.5)

ImsAA′ B′
AB = 1

2

∞∑
n=0

∑
{ f }

∫
A Ã B̃+n

AB

(
A Ã B̃+n

A′ B′
)∗

d Ã B̃+n, (9.93)

where
∑

{ f } means sum over discrete quantum numbers of intermediate particles, the

amplitudes A Ã B̃+n
AB and

(
A Ã B̃+n

A′ B′
)

are defined by (9.15) and d Ã B̃+n is the phase-space

element of the produced jets. In the LLA, where production of each additional particle
must give a large logarithm, each jet is in fact a gluon, so that

d Ã B̃+n = (2π)DδD

(
pA + pB −

n+1∑
i=0

ki

)
n+1∏
i=0

d D−1ki

(2π)D−12εi
. (9.94)
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Fig. 9.5. Schematic representation of the s-channel discontinuity of the amplitude of the
process A + B → A′ + B′.

In the MRK, with account of the strong ordering (9.10) and equalities (9.41), we have

d Ã B̃+n = π

s

n∏
i=1

dβi

2βi

n+1∏
i=1

d D−2qi⊥
(2π)D−1

, (9.95)

where qi = pA −∑i−1
l=0 kl .

The integrand in (9.93) contains products of the Regge factors and convolutions of
the reggeon vertices, which must be integrated over momenta of particles in intermedi-
ate states. In order to represent the result in a compact way it is convenient to use the
operator notation and to define operators ω̂ for the gluon trajectory and K̂r for the convolu-
tions of the production vertices. We will also use notation which accumulates all reggeon
quantum numbers. Let |G〉 denote the reggeized gluon state with transverse momentum q⊥
and colour index c, and let us use the normalization

〈G|G′〉 = −q2⊥δ(q⊥ − q ′⊥)δcc′ . (9.96)

The operator ω̂ is naturally defined as

ω̂ = ω
(

q̂2⊥
)
, (9.97)

such that

ω̂|G〉 = ω(q2⊥)|G〉, (9.98)

where ω(t) is the gluon trajectory. Then, 〈G1G2| and |G1G2〉 are bra- and ket-vectors for
the t-channel states of two reggeized gluons with transverse momenta q1⊥ and q2⊥ and
colour indices c1 and c2, respectively. It is convenient to distinguish the states |G1G2〉 and
|G2G1〉. We will associate the former with the case when the reggeon G1 is contained in
the amplitude with initial particles (in the left part of Fig. 9.5), and the latter with the case
when it is contained in the amplitude with final particles (in the right part of Fig. 9.5). The
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states |G1G2〉 form a complete set of states. If their scalar products are defined according to
(9.96), i.e.

〈G1G2|G′
1G′

2〉 = q2
1⊥q2

2⊥δ(q1⊥ − q ′
1⊥)δ(q2⊥ − q ′

2⊥)δc1c′
1
δc2c′

2
, (9.99)

then the completeness means

〈#| 〉 =
∫

d D−2q1⊥d D−2q2⊥
q2

1⊥q2
2⊥

〈#|G1G2〉〈G1G2| 〉, (9.100)

where summation over colours c1 and c2 is implied. In the following, we will also use the
letters Gi instead of ci .

The operator K̂r is defined by the relations

〈G1G2|K̂r |G′
1G′

2〉 = δ(q1⊥ + q2⊥ − q ′
1⊥ − q ′

2⊥)Kr (q1⊥, q ′
1⊥; q⊥), (9.101)

Kr (q1⊥, q ′
1⊥; q⊥) = 1

2(2π)D−1

∑
G

γ G
c1c′

1
(q1, q

′
1)
(
γ G

c2c′
2
(−q2,−q ′

2)
)∗
, (9.102)

where q⊥ = q1⊥ +q2⊥ = q ′
1⊥ +q ′

2⊥ is the total t-channel momentum, the vertices γ G
cc′ are

defined in (9.35) and the sum is taken over spin and colour states of the gluon G. To carry
out the summation, it is convenient to use one of the light-cone gauges (9.37) and (9.38).
The result is

Kr (q1⊥, q ′
1⊥; q⊥) = T a

c1c′
1
(T a

c2c′
2
)∗ 2g2

(2π)D−1

(
q1⊥ − k⊥

q2
1⊥

k2⊥

)(
q2⊥ + k⊥

q2
2⊥

k2⊥

)

= −T a
c1c′

1
(T a

c2c′
2
)∗ g2

(2π)D−1

(
q2

1⊥q
′2
2⊥ + q2

2⊥q
′2
1⊥

k2⊥
− q2⊥

)
, (9.103)

where k⊥ = q1⊥ − q ′
1⊥ = q ′

2⊥ − q2⊥. Note that Kr (q1⊥, q ′
1⊥; q⊥) remains a matrix in

colour space. To simplify formulas we do not indicate the matrix indices explicitly.
We also have to describe the transitions A → A′ and B → B ′, shown by the upper and

lower lines of Fig. 9.5. To do this, we introduce the impact factors  A′ A and  B′ B . For
amplitudes with signature τ , they are defined by

 A′ A(q1, q2) =
∑

Ã

(
�

c1

ÃA
�

c2

A′ Ã + τ�c2

ÃA
�

c1

A′ Ã

)
, (9.104)

where q1 = pA − pÃ, q2 = pÃ − pA′ , and

 B′ B(q1, q2) =
∑

B̃

(
�

c1

B̃ B
�

c2

B′ B̃ + τ�c2

B̃ B
�

c1

B′ B̃

)
, (9.105)

where q1 = pB̃ − pB , q2 = pB′ − pB̃ . For simplicity, we omit the signature τ and the
colour indices of the impact-factor symbols. Finally, we define the states |B̄ ′B〉 and 〈A′ Ā|
by the relations

〈G1G2|B̄ ′B〉 = δ(qB⊥− q1⊥− q2⊥) B′ B(q1, q2),
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Fig. 9.6. Schematic representation of the process A + B → A′ + B′.

〈A′ Ā|G1G2〉 = δ(qA⊥− q1⊥− q2⊥) A′ A(q1, q2), (9.106)

where qB = pB′ − pB, qA = pA − pA′ .
With the definitions given above, the s-channel discontinuities of signaturized scattering

amplitudes for the processes A+ B → A′+ B ′ can be represented in the form (see Fig. 9.6)

− 2i(2π)D−2δ(q A − q B)discsAA′ B′
AB = s〈A′ Ā|Ĝ(Y )|B̄′B〉, (9.107)

where Y = ln(s/s0), s0 is an appropriate energy scale (which cannot be specified in the
LLA), and Ĝ(Y ) represents the Green function of two interacting reggeized gluons. It is
given by the series

Ĝ(Y ) = e"̂Y +
∞∑

n=1

Y∫
0

e"̂(Y−y1)K̂r dy1

y1∫
0

dy2e"̂(y1−y2)K̂r . . .

yn−1∫
0

dyne"̂(yn−1−yn)K̂r e"̂yn .

(9.108)
Here "̂ = ω̂1 + ω̂2, yi = Y + lnβi , and we have used the relations

si = s0
βi−1

βi
= s0eyi−1−yi , y0 = Y, (9.109)

which are fulfilled in the LLA.
From (9.108) it is easy to see that Ĝ(Y ) obeys the equation

dĜ(Y )/dY = K̂Ĝ(Y ), (9.110)

where

K̂ = "̂+ K̂r = ω̂1 + ω̂2 + K̂r , (9.111)

with the initial condition Ĝ(0) = 1. Therefore,

Ĝ(Y ) = eK̂Y . (9.112)
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Eq. (9.110) is the operator form of the BFKL equation, and (9.111) is the BFKL kernel. As
is seen from (9.111), it consists of two parts; the former contains the gluon trajectory (this
part is called virtual), and the latter is expressed in terms of effective vertices for particle
production in reggeon–reggeon interaction (this part is called real). An unfolded form of
the BFKL equation in momentum representation and of the corresponding initial condition
is written as

d

dY
G
(
Y ; q1⊥, q ′

1⊥; q⊥
) =

∫
d D−2r⊥

r2⊥(q⊥ − r⊥) 2
K (q1⊥, r⊥; q⊥)G

(
Y ; r⊥, q ′

1⊥; q⊥
)
,

(9.113)

G
(
0; q1⊥, q ′

1⊥; q⊥
) = q2

1⊥q2
2⊥δ(D−2) (q1⊥ − q ′

1⊥
)
, (9.114)

where G
(
Y ; q1⊥, q ′

1⊥; q⊥
)

is defined by the relation

〈G1G2|Ĝ(Y )|G′
1G′

2〉= δ(q1⊥+ q2⊥− q ′
1⊥ − q ′

2⊥)G
(
Y ; q1⊥, q ′

1⊥; q⊥
)
, q⊥= q1⊥ + q2⊥,

(9.115)

and the BFKL kernel is

K (q1⊥, q ′
1⊥; q⊥

) = q2
1⊥q2

2⊥δ(D−2) (q1⊥ − q ′
1⊥
) (
ω(q2

1⊥)+ ω(q2
2⊥)
)

+ Kr
(
q1⊥, q ′

1⊥; q⊥
)
. (9.116)

Here the real part Kr of the kernel is defined in (9.101), (9.103).

9.4.2 Representation of scattering amplitudes

Scattering amplitudes A(s, t) with definite signatures τ are expressed in terms of their
s–channel discontinuities. Defining the Mellin transforms fω(t) of the discontinuities as

fω(t) =
∫ ∞

0
dY e−ωY Ims A(s, t)

s
, (9.117)

one has

A(s, t) = AB(s, t)+ s

2π i

δ+i∞∫
δ−i∞

dω

sin(πω)

(
τ

(
s

s0

)ω
−
(−s

s0

)ω)
fω(t), (9.118)

where AB(s, t) is the Born contribution and the integration contour lies on the right of
the point ω = 0. Eq. (9.118) is the high-energy limit of the analytic continuation of the
t-channel partial-wave expansion, and fω(t) is the partial wave with j = 1 + ω. The
limit s → ∞ means the limit j → 1, or ω → 0; the LLA means summation of terms
(αs/ω)

n . In our case, the Born contribution exists only for the gluon exchange (colour octet
and negative signature). The gluon reggeization means that one can omit this contribution
shifting the integration contour to the left from the point ω = 0. It will be accepted in
the following. The proof of the gluon reggeization in the NLA as well as in the LLA is
discussed in Section 9.6.
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For the Mellin transform Ĝω of Ĝ(Y ),

Ĝω =
∞∫

0

dY e−ωY Ĝ(Y ), Ĝ(Y ) = 1

2π i

δ+i∞∫
δ−i∞

dωeωY Ĝω, (9.119)

we have from (9.112)

Ĝω = 1

ω − K̂
. (9.120)

In momentum representation, the Mellin transform Gω
(
q1⊥, q ′

1⊥; q⊥
)

is determined by
the equation:

ωGω
(
q1⊥, q ′

1⊥; q⊥
) = q2

1⊥q2
2⊥δ(D−2) (q1⊥ − q ′

1⊥
)

+
∫

d D−2r⊥
r2⊥(q⊥ − r⊥) 2

K (q1⊥, r⊥; q⊥)Gω
(
r⊥, q ′

1⊥; q⊥
)
. (9.121)

From (9.107), (9.120) we obtain for the amplitudes with signature τ at s > 0

δ(q A − q B)AA′ B′
AB = s

4(2π)D−2

δ+i∞∫
δ−i∞

dω

2π i

eωY (τ − e−iπω)

sin(πω)
〈A′ Ā| 1

ω − K̂
|B̄ ′ B〉, (9.122)

where qA = pA − pA′ , qB = pB′ − pB , Y = ln(s/s0), s0 is an energy scale, 〈A′ Ā| and
|B̄ ′B〉 are the t-channel states representing impact factors of the colliding particles, and K̂
is the BFKL kernel.

9.4.3 Colour decomposition

So far we allowed all possible colour states in the t-channel, so that K̂ is an operator in
colour space. Due to colour conservation, one can write

K̂ =
∑

R

K̂ (R)P̂R , (9.123)

where P̂R are the projection operators of the two-reggeon colour states on the irreducible
representations R of the colour group, and K̂ (R) are the operators in momentum space (but
not operators in colour space any more). Then, we have

P̂R =
∑
λ

P̂λR, (9.124)

where λ enumerates basis states of the representation R. Defining

|B̄ ′B〉λR = P̂λR |B̄ ′ B〉, 〈A′ Ā|λR = 〈A′ Ā|P̂λR, (9.125)

we finally obtain from (9.122)
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δ(q A − q B)AA′ B′
AB = s

4(2π)D−2

δ+i∞∫
δ−i∞

dω

2π i

eωY (τ − e−iπω)

sin(πω)

∑
R,λ

〈A′ Ā|λR
1

ω − K̂ (R)
|B̄ ′B〉λR .

(9.126)

Since the virtual part of K̂ is the unit matrix in colour space, we can write

K̂ (R) = "̂+ K̂ (R)r , (9.127)

where K̂ (R) is determined by the decomposition of the colour structure of K̂r . It is seen
from (9.101)–(9.103) that K̂r can be written as

K̂r = T̂ a
1 (T̂

a
z )

∗

Nc
K̂r , (9.128)

where T̂ a
i , i = 1, 2 are the colour-group generators for the i-th reggeon, and K̂r is

defined as

〈q1⊥q2⊥|K̂r |q ′
1⊥q ′

2⊥〉 = δ(q1⊥ + q2⊥ − q ′
1⊥ − q ′

2⊥)Kr (q1⊥, q ′
1⊥; q⊥),

Kr (q1⊥, q ′
1⊥; q⊥) = − g2 Nc

(2π)D−1

(
q2

1⊥(q − q ′
1)

2⊥ + (q − q1)
2⊥q

′2
1⊥

(q1 − q ′
1)

2⊥
− q2⊥

)
. (9.129)

Here the remarkable properties of the kernel

Kr (0, q
′
1⊥; q⊥) = Kr (q1⊥, 0; q⊥) = Kr (q⊥, q ′

1⊥; q⊥) = Kr (q1⊥, q⊥; q⊥) = 0, (9.130)

and

Kr (q1⊥, q ′
1⊥; q⊥) = Kr (q⊥ − q1⊥, q⊥ − q ′

1⊥; q⊥) = Kr (q
′
1⊥, q1⊥; q⊥) (9.131)

are explicitly exhibited. They remain valid also in the next-to-leading order. The proper-
ties (9.130) mean that the kernel turns to zero at zero transverse momentum of any the
reggeons; they follow from gauge invariance; equalities (9.131) are the consequences of
the symmetry of the reggeon–reggeon scattering amplitude.

Using the decomposition

T a
c1c′

1
(T a

c2c′
2
)∗ = Nc

∑
R

cR〈c1c2|P̂R |c′
1c′

2〉, (9.132)

we obtain

K̂ (R) = "̂+ cR K̂r . (9.133)

The most interesting representations are the singlet (pomeron) and antisymmetrical octet
(reggeized gluon) representations. For the former we have

〈c1c2|P̂1|c′
1c′

2〉 = δc1c2δc′
1c′

2

N 2
c − 1

(9.134)

and for the latter

〈c1c2|P̂8|c′
1c′

2〉 = fac1c2 fac′
1c′

2

Nc
. (9.135)
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Using the identities of Section 1.13 one can easily find

c1 = 1, c8a = 1

2
. (9.136)

The projection operators P̂R for other representations are given in Section 1.13. Using
these operators and the identities presented there, one can find

c8s = c8a = 1

2
, c10 = c10 = 0, c27 = −cNc>3 = − 1

4Nc
. (9.137)

Here it is worth noting the equality c8s = c8a . Due to this equality, the total kernels (9.133)
coincide for antisymmetric and symmetric octet representations. It was already mentioned
that amplitudes with definite colour symmetry have definite symmetry in the t-channel
scattering angle, i.e. they have definite signatures (see section 9.3.2). Therefore, equality
of the kernels for antisymmetric and symmetric octet representations means equality of the
octet kernels for odd and even signatures, i.e. the same energy behaviour of the s-channel
imaginary parts and therefore the same partial waves. This phenomenon is called degen-
eracy in signature. In the limit of large Nc (Nc → ∞, g2 → 0, g2 Nc is fixed), this
phenomenon is not restricted by the LLA framework, but appears to be exact. As is well
known, in the large Nc limit only planar Feynman diagrams contribute to scattering ampli-
tudes. These diagrams have no simultaneous s- and u-channel discontinuities. The signa-
ture degeneracy for the diagrams with only s- (or u-) channel discontinuities is evident.

9.5 BFKL pomeron

9.5.1 BFKL kernel in the pomeron channel

With the definition

〈q1⊥q2⊥| f 〉 = f (q1⊥, q2⊥), (9.138)

we have in the singlet (pomeron) channel (in this section we consider only this channel and
omit the superscript (1) of the singlet representation)

〈q1⊥q2⊥|K̂ | f 〉 =
(
ω(q2

1⊥)+ ω(q2
2⊥)
)

f (q1⊥, q2⊥)+
∫

d D−2k⊥
(q1 − k)2⊥(q2 + k)2⊥

× Kr (q1⊥, (q1 − k)⊥; q⊥) f ((q1 − k)⊥, (q2 + k)⊥), (9.139)

where q⊥ = q1⊥ + q2⊥. Using the integral representation (9.47) for the gluon trajectory
and (9.129) for Kr , we obtain:

〈q1⊥q2⊥|K̂ | f 〉 = g2 Nc

(2π)3+2ε

∫
d D−2k⊥

[(
q2⊥ − q2

1⊥q
′2
2⊥ + q2

2⊥q
′2
1⊥

k2⊥

)
f (q ′

1⊥, q ′
2⊥)

q ′2
1⊥, q ′2

2⊥

+
(

q2
1⊥

2k2⊥q ′2
1⊥

+ q2
2⊥

2k2⊥q ′2
2⊥

)
f (q1⊥, q2⊥)

]
, (9.140)

where q ′
1⊥ = (q1 − k)⊥, q ′

2⊥ = (q2 + k).
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The important fact, which follows from (9.140), is the cancellation of the infrared sin-
gularities. Recall that the real kernel turns to zero at zero transverse momentum of any
the reggeons. Therefore, it gives the singular at ε → 0 contribution only at k = 0. It is
easy to see that this contribution is completely cancelled by the singular contribution of the
virtual part. Therefore, we can take in (9.140) the limit ε → 0. Moreover, we can simply
put ε = 0, regularizing the singularities at k2⊥ = 0, (q1 − k)2⊥ = 0 and (q2 + k)2⊥ = 0
by limiting the integration region |k2⊥| > λ2, |(q1 − k)2⊥| > λ2, |(q2 + k)2⊥| > λ2 with
λ → 0, or in an equivalent way (for example, changing k2⊥ → k2⊥ − λ2, (q1 − k)2⊥ →
(q1 −k)2⊥ −λ2, (q2 +k)2⊥ → (q2 +k)2⊥ −λ2). In the following such kind of regularization
is implied.

In the particular case of forward scattering, q⊥ = q1⊥ + q2⊥ = 0, we have

K (q1, q ′
1) ≡ Kr (q1⊥, q ′

1⊥; 0)

q2
1⊥q ′2

1⊥
+ 2 ω(q2

1⊥)δ(q1⊥ − q ′
1⊥)

= g2 Nc

(2π)3

(
2

k2
−
∫

q2
1d l

l2(q1 − l)2
δ(k)

)
, (9.141)

where k = q1 − q ′
1. Until we consider azimuthal correlations, we can average over the

angle φ between q ′
1 and q1. Writing

∫
d l

l2(q1 − l)2
=
∫

d l

l2 + (q1 − l)2

(
1

(q1 − l)2
+ 1

l2

)
= 2

∫
d l

(l2 + (q1 − l)2)(q1 − l)2

= 2
∫

d l

l2

(
1

(q1 − l)2
− 1

l2 + (q1 − l)2

)
(9.142)

and using

π∫
0

dφ

a + b cosφ
= π√

a2 − b2
, (9.143)

we arrive at the form introduced in [3] and widely used in the literature:

∫
d l K (q, l) f (l2) = Ncαs

π

∫
d l2

⎡⎣ f (l2)

|q2 − l2| − f (q2)
q2

l2

⎛⎝ 1

|q2 − l2| − 1√
q4 + 4l4

⎞⎠⎤⎦ .
(9.144)

Evidently, the representation used here for the virtual part (coefficient of f (q2)) is not
unique. One can easily see that it is possible to put this coefficient equal to g(l2/q2)|l2 −
q2|−1 with any function g satisfying the requirements g(1) = 1 and∫ ∞

0

dx

|x − 1| g(x) θ(|x − 1| − δ) = 2 ln
1

δ
(9.145)
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at δ → 0. A possible choice [64] is∫
d l K (q, l) f (l2) = Ncαs

π

∫
d l2

|q2 − l2|

[
f (l2)− 2

min(q2, l2)

q2 + l2
f (q2)

]
. (9.146)

Of course, the representations (9.144) and (9.146) are equivalent. Both of them make
explicit the scale invariance of the kernel, due to which its eigenfunctions are powers of l2.
Usually they are written as l2(γ−1), and the corresponding eigenvalues as

ω(γ ) = Ncαs

π
χ(γ ). (9.147)

From (9.146) it is easy to obtain

χ(γ ) =
1∫

0

dx

1 − x

(
xγ−1 + x−γ − 2

)
= 2ψ(1)− ψ(γ )− ψ(1 − γ ), (9.148)

where ψ(z) = �′(z)/�(z).
The values γ = 1/2 + iν, −∞ < ν < ∞ are especially important for investigations

of the high-energy behaviour of cross sections because the functions (l 2)−1/2+iν form a
complete set. At that, the eigenvalues of the kernel

ω

(
1

2
+ iν

)
= Ncαs

π

∞∑
k=0

k + 1
2 − 2ν2

(k + 1)((k + 1
2 )

2 + ν2)
(9.149)

form a continuous spectrum in the region −∞ < ω(ν) < ωB
P with the maximal value

ωB
P = 4Nc

αs

π
ln 2 $ 2.77Nc(αs/π) (9.150)

which is reached at ν = 0 (see Fig. 9.7).
Generally, amplitudes with zero momentum transfer can contain azimuthal correlations,

so that one can be interested in eigenfunctions and eigenvalues of the nonaveraged ker-
nel (9.141). They were found in [4]. The kernel K (q, l) is invariant under the scale
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Fig. 9.7. Plot of ω(1/2 + iν) dependence on ν for αs = 0.15.
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transformations and rotation in the transverse momentum plane. Therefore, the eigen-
functions can be taken in the form ei nφ l2(γ−1), where φ is the azimuthal angle of the
momentum l . Denoting the corresponding eigenvalues by

ω(γ, n) = αc Nc

π
χ(γ, n) (9.151)

and using
2π∫

0

dφeinφ

(q − l)2
= 2π

|q2 − l2|

(
min(q2, l2)

max(q2, l2

) |n|
2

, (9.152)

we obtain

χ(γ, n) = χ(γ, |n|) =
∫ 1

0

dx

1 − x

(
x

|n|
2 +γ−1 + x

|n|
2 −γ − 2

)
= 2ψ(1)− ψ

(
γ + n

2

)
− ψ

(
1 − γ + n

2

)
. (9.153)

At γ = 1/2 + iν, we have

ω(γ, n) = Ncαs

π

∞∑
k=0

(1 − |n|)(k + |n|+1
2 )− 2ν2

(k + 1)((k + |n|+1
2 )2 + ν2)

, (9.154)

the maximal value is reached at ν = 0. As it should be, these eigenvalues are less than ωB
P

by the amount of �(n),

�(n) = Ncαs

π

∞∑
k=0

4|n|
(1 + 2k)(1 + 2k + |n|) . (9.155)

9.5.2 Rising cross section and diffusion

According to (9.126), the total cross section

σAB(s) = ImAAB
AB

s
(9.156)

is represented in the form of

σAB(s) = 1

4(2π)2

δ+i∞∫
δ−i∞

dω

2π i
eωY

∫
dq
q2

∫
d l

l2
 A(q)Gω(q, l) B(l), (9.157)

where  A(q) =  A′ A(q,−q),  B(q) =  B′ B(q,−q) are the colour-singlet impact
factors and Gω is the Mellin transform of the Green function for forward scattering. Gω
has the spectral representation

Gω(q, l) = 1

2π2

+∞∑
n=−∞

∫ +∞

−∞
dν

ω − ω(γ, n)e
inφq2(− 1

2 +iν)l2(− 1
2 −iν), γ = 1

2
+ iν.

(9.158)
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As is seen from this representation, Gω as a function of ω has a cut from −∞ to ωB
P . This

means that ωB
P is the leading singularity of the colour-singlet partial waves with positive

signature at t = 0, which is called the pomeron intercept. The singularity is a branch point.
Moreover, it is a fixed branch point (i.e. not depending on t). Actually, in the LLA it can be
predicted from dimensional reasons. Indeed, the positions of singularities of partial waves
in the complex momentum plane can depend on t , but not on the colliding particles. There-
fore, in the LLA there are no dimensionless parameters to describe singularities moving
with t . On the other hand, fixed singularities can be only branch points and not poles.

At large s, the main contribution to the forward Green function

G(Y ; q, l) =
δ+i∞∫
δ−i∞

dω

2π i
eωY Gω(q, l) = 1

2π2

+∞∑
n=−∞

+∞∫
−∞

dνeω(γ,n)Y einφq2(− 1
2 +iν)l2(− 1

2 −iν)

(9.159)
comes from n = 0 and the region of small ν. In this region,

ω(γ ) $ ωB
P − Dν2 + O(ν4), (9.160)

where ωB
P is given by (9.150) and

D = 14ζ(3)Nc(αs/π) $ 16.8Nc(αs/π). (9.161)

Therefore,

G(Y ; q, l) $ 1

2π
√
πY Dq2l2

exp

⎡⎢⎣ωB
P Y −

(
ln q2 − ln l2

)2

4DY

⎤⎥⎦ . (9.162)

This equation demonstrates explicitly two main problems of the approximation. First, since
the impact factors are energy independent, one can see from (9.162) and (9.157) that

σAB(s) ∼ sω
B
P√

ln s
. (9.163)

This is just the famous result (9.3), where ωP = ωB
P (9.150), which signifies violation

of the Froissart bound [11]. The second problem is the broadening with Y of the width
of the | ln q2| distribution. This broadening means the appearance of large contributions
from small transverse momenta at sufficiently high energies. In other words, it is diffusion
into the large distance region where perturbative calculations may be unreliable. Actually,
G(Y ; q, l) in (9.162) is up to the coefficient exp[ωP Y ]/(π |q||l|), the Green function for
the diffusion equation, where ln q2, Y and D are respectively the coordinate, time and
diffusion coefficient. The diffusion property was recognized already in [3]. Numerically,
its importance was analyzed in [65].

The singularity in the ω-plane is changed if one considers the running of the coupling
constant. Strictly speaking, account of the running oversteps the limits of the LLA. Never-
theless, it is not unreasonable to take it into account just in the leading order BFKL kernel
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in order to understand qualitative effects of the running (see [12],[66]–[73]). One impor-
tant effect ([66]) is the conversion of the cut [0, ωB

P ] into an infinite series of moving poles
with limiting point at ω = 0. The pomeron trajectories found in ([66]) are represented in
the form

ωk(t) = c

k + η(q2)+ 1/4
, k = 0, ±1, ±2 . . . , (9.164)

where c is the calculable constant. The function η(q2) is determined by large distances,
but is limited by the inequalities −1 ≤ 4η ≤ 3 at small |t |. In the region of large |t |
(αs(|t |)� 1), the family of poles is approximated by the moving cut with the branch point

ω(t) = 4Nc

π
ln 2 αs(|t |). (9.165)

9.5.3 Resummation of terms αn
s /( j − 1)n in anomalous dimensions

The remarkable result of the BFKL approach is the resummation of the most singular at
j = 1 terms in the anomalous dimension of the twist-2 operators [74]. Let us consider deep
inelastic scattering, and let particle A be a photon with virtuality Q2; consequently particle
B represents a hadron target. Then the Q2-dependence of the deep inelastic moments

Mω(Q
2) =

∞∫
Q2

ds

s

(
s

Q2

)−ω
σAB(s) (9.166)

is determined by the anomalous dimensions of the twist-2 operators. At small ω, we have
from (9.157)

Mω(Q
2) = 1

4(2π)2

∫
dq
q2

∫
d l

l2
 A(q)Gω(q, l) B(l). (9.167)

Essential regions of integrations (in 9.167) are q2 ∼ Q2 and l2 ∼ M2
t , where Mt is the

target mass. Therefore, the large Q2 behaviour is determined by Gω(q, l) in the region
Q2 ∼ q2 � l2.

After averaging over φ, we obtain from (9.158)

Gω(q2, l2) = 1

2π2q2

1/2+i∞∫
1/2−i∞

dγ

ω − αs Nc
π
χ(γ )

exp
[
γ (ln q2 − ln l2)

]
. (9.168)

One can shift the integration contour in the γ plane to the left, picking up contributions of
singularities remaining on the right. At large q2, the main contribution

Gω(q2, l2) ∼
(

q2
)γω

(9.169)

comes from the rightmost singularity, which is the pole at γω defined by the equation

ω = Ncαs

π
χ(γω). (9.170)
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Eq. (9.169) gives just the renormalization group behaviour for fixed αs , and γω appears
as the resummed anomalous dimension. Expanding γω in powers of ᾱ/ω, where ᾱ =
αs Nc/π , we obtain from (9.170)

γω = ᾱs

ω
+ 2.4

(
ᾱs

ω

)4

+ 7

(
ᾱs

ω

)6

+ . . . (9.171)

9.5.4 Colour-dipole model and colour glass condensate (CGC)

The power growth of cross sections (9.163) conflicts with unitarity and should be modi-
fied. Starting from pioneer paper [12], this modification of the growth is known as gluon
saturation. In deep inelastic scattering (DIS), the saturation is reached when the density
becomes so large that gluons “overlap” with each other, i.e. their interaction cross section
∼ αs/Q2 multiplied by the density is comparable with the geometrical cross section of the
target. At fixed x = Q2/s, it determines the saturation scale Qs(x) [12]:

αs(Q2
s )xG(x, Q2

s )

Q2
s

∼ πR2
t , xG(x, Q2) =

∫
F(x, k 2)dk 2θ(Q2−k 2)/k 2. (9.172)

Here G(x, Q2) = f g(x, Q2) is the gluon distribution function and F(x, k 2) is the
unintegrated gluon density. A more refined definition of the saturation scale takes into
account dependence of their interaction cross section on gluon transverse momentum and
is formulated in terms of F(x, k 2):

F(x, Q2
s )

Q2
sπR2

t
∼ 1

αs(Q2
s )
. (9.173)

Here the left-hand side is the gluon occupation number. Therefore, this definition shows
that the saturation is reached at large occupation numbers, admitting (semi)classical
description.

It follows from (9.163) that Q2
s (x) ∼ Q2

0 x−ωB
P . The (x, Q2) plane is divided by the

curve Q2
s (x) into two parts. In the low-density domain Q2 > Q2

s (x), the gluon-density
evolution is described by the DGLAP and BFKL equations; in the region Q2 < Q2

s (x),
the high density leads to large nonlinear effects which restrict the growth of the density
and produce some equilibrium (saturated) state of partons. The first equation taking into
account the nonlinear effects was obtained in the double-logarithmic approximation [12].
It is called Gribov–Levin–Ryskin (GLR) equation and looks as follows [12],[75]:

∂2(xG(x, Q2))

∂ ln(1/x)∂ ln Q2
= αs Nc

π
xG(x, Q2)− 4α2

s Nc

3CF R2

1

Q2
[xG(x, Q2)]2, (9.174)

where R is the hadron radius. The last term in this equation takes into account not only
ladder-type diagrams, representing the BFKL pomeron, but also so-called fan diagrams,
describing the pomeron splitting into two pomerons.

Further development of the nonlinear generalization of the BFKL equation is related
to the colour-dipole model. This model gives a simple physical picture of γ ∗ interactions
with nucleus at small x allowing to derive the BFKL equation in impact-parameter space
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Fig. 9.8. Schematic representation of γ ∗ interaction with nucleus.

[76]–[79]. In the colour-dipole picture γ ∗ interaction with a nucleus is described as follows
(see Fig. 9.8): in the reference frame in which the virtual photon carries sufficiently large
energy it dissociates into a qq̄ pair (colour dipole) much earlier than the pair scatters off
the gluon field in the nucleus. Therefore, one has for the total cross section

σγ ∗(Y, Q2) =
∫

d2r
∫ 1

0
dz|#γ ∗(r, z, Q2)|2σdp(r, Y ), (9.175)

where #γ ∗(r, z, Q2) is the qq̄ component of the γ ∗ wave function, z is the quark momen-
tum fraction, r = r1 − r2, r1 and r2 are the quark-pair transverse coordinates, Y =
log(s/Q2) and σdp(r, Y ) is the dipole cross section. The important property of the interac-
tion at high energy is the conservation of transverse coordinates of quark-antiquark pairs.
The cross section σdp(r, Y ) is expressed in terms of the dipole elastic scattering S-matrix:

σdp(r, Y ) =
∫

d2b
(

1 − S(r1, r2; Y )
)
, (9.176)

where b = (r1 + r2)/2 is the impact parameter, S(r1, r2; Y ) is the S-matrix element,
which can be presented as the average of the product of two Wilson lines:

S(r1, r2; Y ) = 〈 tr
(

U n(r1)U
n†(r2)

)
〉
/

Nc, (9.177)

where

U n(x⊥) = P exp

[
ig
∫ +∞

−∞
du nμAc

μ(un + x⊥)tc
]
. (9.178)

Here P stands for ordering along the straight line, n is the particle velocity.
In Ref. [80], the equation for evolution of the product U nU n† with respect to the slope

of the straight line was derived. However, it is not a closed equation, because it contains
products of four Wilson lines. In general, there is the infinite hierarchy of coupled equations
with increasing number of U nU n†. In the approximation of factorization, when the four-
line average is replaced by the product of two-line averages (which is justified when a
target is a large nucleus) in the limit of large Nc the evolution takes a simple form of the
Balitsky–Kovchegov (BK) equation

∂

∂Y
N (r1, r2; Y ) = αs Nc

2π2

∫
d r0

(r1 − r2)
2

(r1 − r0)2(r2 − r0)2

× (N (r1, r0; Y )+ N (r0, r2; Y )− N (r1, r2; Y )− N (r1, r0; Y )N (r0, r2; Y )) , (9.179)
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where N (r1, r2; Y ) = 1 − S(r1, r2; Y ). This equation was derived independently in [81]
with use of the generating functional for the colour-dipole distribution [78]. For small
N , equation (9.179) is reduced to the colour-dipole version of the BFKL equation. The
nonlinear effects not only restrict the growth of the gluon density, but also diminish the dif-
fusion of transverse momenta into the infrared region and eliminate the infrared problem;
Qs(x) appears effectively as the infrared cut-off. The solutions to the BK equation have the
remarkable property [82] called geometrical scaling [83]: N (r1, r2; Y ) = f (r2 Q2

s (x; b)).
In fact, this property holds not only in the saturation region Q2 < Q2

s (x), but in the much
wider kinematical region [82]–[85] up to Q2 ∼ Q4

s (x)/�
2
QC D , where 1 − S(r1, r2, Y ) $

(r2 Q2
s (x, b))

γ , with γ $ 0.64.
An evident imperfection of the BK equation is its target-projectile asymmetry. Like the

GLR equation, it allows only summing of the fan diagrams. The equation contains the
pomeron splitting, but does not contain the pomeron fusion, i.e. pomeron loops which are
necessary from the point of view of the Gribov reggeon calculus.

Another approach to the saturation problem, which was much developed in the past
decade (see for instance [86]–[105]), is called colour glass condensate (CGC) [92]–[94]. It
is worthwhile to note that the saturation phenomenon is not necessary related to the growth
of the gluon density at small x . For a nucleus with A � 1, it can be reached even at x ∼ 1.
In the model of independent sources in Born approximation

F(x, Q2) = ANc
αsCF

π
, (9.180)

so that using RA ∼ A1/3 M−1
N one obtains from (9.173)

Q2
s ∼ A1/3

(
αs(Q2

s )Nc

π

)2

M2
N . (9.181)

At sufficiently large A, we can have αs(Q2
s ) � 1, so that the use of perturbation theory is

justified [86]–[88]. At small x summation of the term (αs ln(1/x))n gives in the right-hand
side of (9.181) the factor (1/x)ω

B
P .

The CGC approach is based on a model for the small-x hadronic wavefunction of a fast
hadron. The small-x short-lived gluons are radiated semiclassically by a “frozen” config-
uration of faster partons (glass) with a random distribution WY [ρ] of the colour charge
ρa(r). For the gluonic modes with |k⊥|< Qs(x) the occupation numbers are ∼ 1/αs

(condensate), corresponding to strong classical fields Aμa [ρ] ∼ 1/g. Evolution of WY [ρ]
with Y is governed by the functional evolution equation which was derived [89]–[94],
using the Wilson renormalization group. It is known as Jalilian–Marian–Iancu–McLerran–
Weigert–Leonidov–Kovner (JIMWLK) equation. The JIMWLK equation includes the BK
equation and is equivalent to the Balitsky hierarchy. Nevertheless, the JIMWLK equation is
incomplete, as was recognized in Refs. [97]–[101], because it misses the effects of gluon-
number fluctuations. After this, new equations have been proposed [101]–[105], which can
be interpreted [103]–[105] as an effective theory which involves the pomeron loops.

For virtual photon interaction cross section (9.157) can be rewritten in the form (9.175)
of the colour-dipole model. Evidently σAB (9.157) makes a sense only if the impact factors
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vanish at zero momentum transfer; otherwise it tends to infinity. In fact, it is infinite for
scattering of colour particles, as it should be, and finite for colourless ones, because for
these we have

 P (q2) ∼ q2 (9.182)

at small q2 due to the gauge invariance. Physically, this means that long-wave gluons do
not interact with a system of zero total colour. A remarkable example of impact factors
for scattering of colourless particles is  γ ∗ – the virtual photon impact factor. Having
an important physical implication, this impact factor can be unambiguously calculated in
perturbation theory.

If particle A is a photon with virtuality Q2, then the upper line in Fig. 9.5 represents a
quark-antiquark pair. Let the quark and antiquark momenta will be l1 and l2, respectively,

pA = p1 − Q2

s
p2, l1 +l2 = k = p1 + k2 + k2

s
p2 +k⊥, li = xi p1 + l2

i + m2

sxi
p2 +li⊥.
(9.183)

In this case, we have to replace in the phase-space element (9.94)

d D−1k

(2π)D−12ε
→ δD(k − l1 − l2)d

Dk
2∏

i=1

d D−1li
(2π)D−12εi

= d D−1k

(2π)D−12εk

dxd D−2l⊥
2x(1 − x)(2π)D−1

,

(9.184)

where x ≡ x1, l⊥ ≡ l1⊥. Accordingly, the last factor appears in the impact-factor
definition (9.104). For the case of forward scattering, we obtain

 γ ∗(q) = 2√
N 2

C − 1

∑
{a}

∫
|�c
γ ∗ R→qq̄ |2 dxd D−2l⊥

2x(1 − x)(2π)D−1
, (9.185)

where �c
γ ∗ R→qq̄ is the amplitude of qq̄ production in the γ ∗ R collision, and the sum {a} is

over all discrete quantum numbers of the produced pair. As was already mentioned, in the
leading order the reggeized gluon acts as an ordinary gluon, so that �c

γ ∗ R→qq̄ is given by
the amplitude γ ∗g → qq̄ with the gluon-colour index c and the polarization vector p2/s.
Therefore, we have (see Fig. 9.9)

�c
γ ∗ R→qq̄ = 〈tc〉 (�a + �b), (9.186)

pA

q, c

l1

−l2

(a)

pA

q, c

−l2

l1

(b)

Fig. 9.9. The diagrams corresponding to the vertex γ ∗ R → qq̄.
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where 〈tc〉 is the colour matrix element, and

�a = eq g

s
ū(x1, l1⊥)

� eγ ∗(� l2+ �q − m) �p2

m2 − (pA − l1)2
v(x2, l2⊥), (9.187)

�b = − eq g

s
ū(x1, l1⊥)

�p2(� l1+ �q + m) � eγ ∗

m2 − (pA − l1)2
v(x2, l2⊥). (9.188)

Here eq is the electric charge of the quark, eγ ∗ is the polarisation vector of the photon,
l1⊥ + l2⊥ +q⊥ = 0, u(x1, l1⊥) = u(l1), v(x2, l2⊥) = v(l2) are usual Dirac spinors. Using
the equalities

m2 − (pA − li )
2 = l 2

i + m2 + x1x2 Q2

xi
,

(� l2+ �q − m) �p2 = (x2 �p1− � l1⊥ − m) �p2 =
∑
λ

vλ(x2,−l1⊥)v̄λ(x2,−l1⊥) �p2,

�p2(� l1+ �q + m) =�p2(x1 �p1− � l2⊥ + m) =�p2

∑
λ

uλ(x1,−l2⊥)ūλ(x2,−l1⊥), (9.189)

and

v̄λ(x2,−l1⊥) �p2v
λ′
(x2, l2⊥) $ x2sδλλ′ , ūλ(x1, l1⊥) �p2uλ

′
(x1,−l2⊥) $ x1sδλλ′ ,

(9.190)

we obtain

�c
γ ∗ R→qq̄ = eq gx1x2

[
ū(x1, l1) � eγ ∗ tcv(x2,−l1)

l 2
1 + x1x2 Q2

− ū(x1,−l2) � eγ ∗ tcv(x2, l2)

l 2
2 + x1x2 Q2

]
.

(9.191)

This representation of the vertex appears most naturally in the old-fashioned or light-cone
perturbation theory. It makes obvious that the vertex turns to zero at q⊥ = l1⊥ + l2⊥ = 0.
Moreover, this representation permits us to write the BFKL cross section for virtual photon
interaction σγ ∗ in the same form as the colour-dipole model. In momentum representation,
the qq̄ component of the γ ∗ wave function is

#γ ∗(x, k) = eq

(2π)3/2

√
x(1 − x)

2

ū(x, k) � eγ ∗v(1 − x,−k)

k 2 + x(1 − x)Q2
, (9.192)

such that one can write �c as

�c
γ ∗ R→qq̄ = √

2x1x3(2π)
3
2 g〈tc〉

[
#γ ∗(x1, l1)−#γ ∗(x1,−l2)

]
(9.193)

and the impact factor in the form

 γ ∗(q) = g2
√

N 2
c − 1

∫ 1

0
dx
∫

d r |#γ ∗(x, r)|2 |1 − e−iqr |2, (9.194)

where

#γ ∗(x, r) =
∫

dk

(2π)
3
2

ei kr #γ ∗(x, k). (9.195)
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Using Eq. (9.194), one can rewrite the BFKL representation of the cross section (see
(9.157)) in the colour-dipole form, identifying the dipole cross section with the convolution
of the Green function with the target impact factor:

σdp(r, Y ) =
∫

d2q

2πq 2
|1 − e−iqr |2F(q), (9.196)

where

F(q) = g2
√

N 2
c − 1

4

δ+i∞∫
δ−i∞

dω

2π i

∫
d2l

2π l2

(
s

Q2

)ω
Gω(q, l) B(l). (9.197)

Eq. (9.194) can be easily generalized to the nonforward case, when instead of (9.185)
we have

 
γ ∗′
γ ∗(q1, q2) = 1√

N 2
C − 1

∑
{a}

∫
dxd D−2l⊥

2x(1 − x)(2π)D−1
�c
γ ∗ R→qq̄

×
(
�c
γ ∗′ R′→qq̄

)∗ + (q1 ↔ q2), (9.198)

where �c
γ ∗ R→qq̄ is given by (9.191) at l1 + l2 + q1 = 0 and �c

γ ∗′ R′→qq̄
is obtained by the

substitution q1 → −q2, Q2 → Q′2; Q′2 is the γ ∗′
virtuality. Then it is easy to see that

instead of (9.194) the impact factor takes the form

 
γ ∗′
γ ∗(q1, q2) = g2

2

√
N 2

c − 1
∫ 1

0
dx
∫

d r
(
#γ ∗(x, r)#∗

γ ∗′ (x, r)+#
γ ∗′ (x, r)#∗

γ ∗(x, r)
)

×
(

1 − e−iq1r
) (

1 − e−iq2r
)
, (9.199)

and the scattering amplitude γ ∗B → γ ∗′
B ′ (see (9.122)) with the momentum transfer q is

written as

Aγ ∗′
B′

γ ∗ B = s
∫

d2r
∫ 1

0
dx#γ ∗(x, r)#∗

γ ∗′ (x, r)

×
∫

d2q1

2πq 2
1 (q − q1)

2

(
1 − e−iq1r

) (
1 − e−i(q−q1)r

)
F(q1, q − q1), (9.200)

where

F(q1, q − q1) = g2
√

N 2
c − 1

4

δ+i∞∫
δ−i∞

dω

2π i

(1 − e−iπω)

sinπω

∫
d2q ′

1

2πq ′2
1 (q − q ′

1)
2

(
s

Q2

)ω
Gω(q1, q ′

1; q) B′ B(q
′
1, q − q ′

1). (9.201)

As was already mentioned, the nonforward case has an advantage of smaller sensitivity
to large-distance contributions, since the diffusion in the infrared region is limited by
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√|t |. The momentum transfer acts as an effective infrared cut-off which ensures that the
dominant contribution arises from short-distance physics [106].

9.5.5 BFKL kernel in Möbius representation

It was found that for scattering of colourless particles the leading order BFKL equation
can be solved in a general form not only for the forward case, considered above, but for
general momentum transfer [66]. This striking fact is related to the remarkable property of
the BFKL equation discovered in [66]: the two-dimensional conformal invariance in the
impact parameter space.

To discuss this question it is convenient to change the definition of the kernel and the
state normalization. We will use the following notation: q ′

i and qi , i = 1, 2, represent the
transverse momenta of reggeons in initial and final t-channel states, while r ′

i and r i are
the corresponding conjugate coordinates. The state normalization is

〈q|q ′〉 = δ(q − q ′), 〈r|r ′〉 = δ(r − r ′), (9.202)

so that

〈r|q〉 = eiq r

(2π)1+ε . (9.203)

We will also use the notation q = q1 + q2, q ′ = q ′
1 + q ′

2; k = q1 − q ′
1 = q ′

2 − q2 and,
for brevity, we will usually write pi j ′ = pi − p ′

j . The s-channel discontinuities (9.107) are
written in the form

− 2i(2π)D−2δ(q A − q B)discsAA′ B′
AB = s (A′ Ā|eY K̂|B̄ ′ B), (9.204)

where (cf. (9.106))

〈q1, q2|B̄ ′ B) = δ(q B − q1 − q2)
 B′ B(q1, q2)

q 2
1 q 2

2

,

(A′ Ā|q1, q2〉 = δ(q A − q1 − q2) A′ A(q1, q2), (9.205)

and

〈q1, q2|K̂|q ′
1, q ′

2〉 = δ(q − q ′) 1

q 2
1 q 2

2

K (q1, q ′
1; q), (9.206)

where K (q1, q ′
1; q) is defined by (9.116). For colourless particles the impact factors

 A′ A(q1, q2) turn into zero at zero transverse momentum of one of the reggeons, i.e.
 A′ A(0, q) =  A′ A(q, 0) = 0. This means that (A′ Ā|#〉 = 0 for any |#〉 if in the coordi-
nate space 〈r1, r2|#〉 does not depend either on r1 or on r2. As it can be seen from (9.130),
the BFKL kernel conserves this property, which permits the change in (9.204) |B̄′B) for
|B̄ ′B)d , where the subscript d means the dipole property 〈r, r|B̄ ′B)d = 0. Then, one can
omit in the matrix elements 〈r1, r2|K̂d |r ′

1, r ′
2〉 the terms proportional to δ(r1′2′), and turn

〈r, r|K̂d |r ′
1, r ′

2〉 into zero adding terms not depending on either r1 or r2. This form of the
kernel is called dipole or Möbius form.
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It was indicated after Eq. (9.140) that we can put there ε = 0 due to the cancellation of
the infrared singularities. Using (9.140), we obtain

1

q 2
1 q 2

2

K (q1, q ′
1; q) = g2 Nc

(2π)3

[
2

k 2
− 2(kq1)

k 2q 2
1

+ 2(kq2)

k 2q 2
2

− 2(q1q2)

q 2
1 q 2

2

− δ(k)
∫

d l
(

2

l 2
+ (l(q1 − l))

l 2(q1 − l)2
− (l(q2 + l))

l 2(q2 + l)2

)]
, (9.207)

where the cancellation is obvious. The kernel in the coordinate representation is given by
the integral

〈r1, r2|K̂|r ′
1, r ′

2〉 =
∫

dq1 dq2 dk
(2π)4

1

q 2
1 q 2

2

K (q1, q ′
1; q) ei (q1r11′+q2r22′+kr1′2′ ).

(9.208)
The last term in the real part of the kernel (9.207) gives here δ(r1′2′) and can be omit-
ted in the Möbius form. The first terms in the real and virtual parts give the contribution
g2 Ncδ(r11′)δ(r22′)V (r12)/(2π)3, where

V (r12) = 2
∫

dk
1

k 2

(
ei k r12 − 1

)
(9.209)

contains ultraviolet divergence. This divergence is artificial: it appears as a result of the
separation of both real and virtual parts of the kernel (9.207) into several pieces. To make
evident cancellation of ultraviolet singularities of separate terms in (9.208) we represent
V (r12) in the integral form:

V (r12) = −
∫

dk1 dk2 d r0

(2π)2
(k1 k2)

k 2
1 k 2

2

(
2ei(k1 r10+k2 r20) − ei(k1+k2)r10 − e(k1+k2)r20

)
= −

∫
d r0

r 2
12

r 2
10r 2

20

. (9.210)

The second terms in the real and virtual parts give

− g2 Nc

(2π)3
δ(r22′)

∫
dq1 dk
(2π)2

(k q1)

k 2 q 2
1

ei q1 r11′
(

2e−i k r21′ + ei k r11′
)

= g2 Nc

(2π)3
δ(r22′)

(
r 2

12

r 2
11′ r 2

21′
− 1

r 2
21′

)
. (9.211)

In the Möbius form the last term must be omitted. The contribution of the third terms is
obtained by the substitution 1 → 2. Finally, we have

〈r1, r2|K̂M |r ′
1, r ′

2〉 = αs Nc

2π2

∫
d r0

r 2
12

r 2
10r 2

20

(δ(r11′)δ(r02′)

+ δ(r22′)δ(r01′)− δ(r11′)δ(r22′)) , (9.212)

where the subscript M denotes the Möbius form. Remarkably, this form exactly coin-
cides with the kernel of the dipole approach (see (9.179)). Moreover, in the forward



490 BFKL approach

scattering case, there is a remarkable functional identity between the Möbious form and
the BFKL kernel in the momentum representation. Defining for this case 〈r |K̂M |r ′ 〉 =∫

d�r0 〈r, �0|K̂M |r ′ + �r0, �r0〉
)

we have the equality

�r ′2

�r2
〈�r |K̂M |�r prime〉 = �q2

�q ′2 K (�q, �q ′)
∣∣∣∣
�q→�r ,�q ′→�r ′

,

where K (�q, �q ′) is defined in (9.141). It is worth noting that the ultraviolet singularities of
separate terms in (9.212) cancel in their sum with account of the dipole property of the
target impact factors.

The transformations of the Möbius group in the two-dimensional space r = (x, y) can
be written as

z → az + b

cz + d
, (9.213)

where z = x + iy, a, b, c, d are complex numbers, with ad − bc �= 0. Under these
transformations, one has

z1 − z2 → z1 − z2

(cz1 + d)(cz2 + d)
(ad − bc),

dzdz∗ → dzdz∗ |ad − bc|2∣∣(cz + d)2
∣∣2 , (9.214)

so that the conformal invariance of (9.212) is evident.
The eigenfunctions of the kernel K̂M can be obtained from the eigenfunctions of the for-

ward scattering kernel by transformations of the Möbius group, in particular, by inversion
and shift. In [66], they were chosen in the form

En,ν(r10, r20) = (−1)n
(

z12

z10z20

) 1
2 +iν− n

2
(

z∗
12

z∗
10z∗

20

) 1
2 +iν+ n

2

, (9.215)

where the vector r0 is introduced for indexing of the wave functions, r i j = r i − r j , n is
integer and ν is real. The eigenvalues coincide with the eigenvalues of the forward kernel
ω(γ, n), γ = 1/2 + iν (9.154). One can see it by noticing that the eigenvalues do not
depend on r0 and that integration over r0 gives∫

d r0 En,ν(r10, r20) = Cn,ν (z12)
1
2 −iν+ n

2 (z∗
12)

1
2 −iν− n

2 = Cn,ν ei nφ12 r2(1−γ )
12 , (9.216)

where φ12 is the azimuthal angle of the vector r12. Then the problem is reduced to the
calculations of the integrals (9.152), (9.153) of the forward case. The form of the integral
(9.216) can be easily obtained using the change of the integration variables z10 = z12z;
the coefficient Cn,ν is irrelevant for the calculation of the eigenvalues. In fact, it was found
in [66]:

Cn,ν = π24 i ν

|n| − 2 i ν

�(κ)

�(κ∗)
�(κ∗ − 1/2)

�(κ − 1/2)
, κ = 1

2
− iν + |n|

2
. (9.217)
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One can easily show that

z2
12
∂

∂z1

∂

∂z2
En,ν = λn,νEn,ν, z∗ 2

12
∂

∂z∗
1

∂

∂z∗
2

En,ν = λn,−νEn,ν,

λn,ν = 1

4
−
(n

2
− iν

)2
. (9.218)

The completeness condition derived in [66] has the form

4
+∞∑

n=−∞

∫ +∞

−∞
dν
∫

d2r0
n2 + 4ν2

r2
12r2

1′2′
En,ν(r10, r20)E

∗
n,ν(r1′0, r2′0) = (2π)4δ(r11′)δ(r22′).

(9.219)

Using (9.218) and (9.219) one obtains〈
r1, r2

∣∣∣∣∣ 1

ω − K̂M

1

q̂1
2q̂2

2

∣∣∣∣∣ r ′
1, r ′

2

〉

= 4
+∞∑

n=−∞

∫ +∞

−∞
dν
∫

d2r0
(n2 + 4ν2)En,ν(r10, r20)E∗

n,ν(r1′0, r2′0)

[(n + 1)2 + 4ν2][(n − 1)2 + 4ν2](ω − ω(γ, n)) . (9.220)

For n = ±1 the integral over ν here must be taken in the sense of its principal value.

9.6 Bootstrap of the gluon reggeization

9.6.1 Multi-Regge form of QCD amplitudes

The BFKL pomeron discussed in the preceding section contributes to amplitudes with
positive signature, τ = +1. It gives the main contribution to total cross sections. But in
each order of perturbation theory its contribution to scattering amplitudes is subleading,
because of cancellation of leading terms in the positive signature. This cancellation is evi-
dent from (9.126). In this section, we will consider MRK amplitudes with τ = −1 in all
ti -channels. These amplitudes are leading in each order. They are especially interesting
because their investigation permits us to check the compatibility of the gluon reggeization
with s–channel unitarity. Moreover, it lets us to prove the reggeization hypothesis, i.e. the
reggeized form (9.15) of QCD amplitudes in the MRK.

First, we have to define the signaturization procedure. As already mentioned, although
in general signaturization is not a simple problem, it is greatly simplified in Regge kine-
matics. For 2 → 2 amplitudes the signaturization procedure was defined in Section 9.2. It
can be easily generalized for MRK amplitudes, due to the fact that in the MRK all energy
invariants si, j = (ki + k j )

2 are large and determined only by the longitudinal compo-
nents of momenta (si, j = 2k+

i k−
j , i < j). Due to largeness of si, j signaturization in

the ql channel means symmetrization (antisymmetrization) with respect to the substitution
si, j ↔ −si, j , i < l ≤ j . Since si, j are determined by longitudinal components, this substi-
tution is equivalent to the replacement k±

i ↔ −k±
i , i < l, p±

A ↔ −p±
A (or, equivalently,

k±
j ↔ −k±

j , j ≥ l, p±
B ↔ −p±

B ) in the truncated amplitudes without change of transverse
components. Note that such substitution does not violate the total momentum conservation
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due to the strong ordering of the longitudinal components. At the same time, all parti-
cles remain on their mass-shell, so that the substitution is equivalent to the transition to
the cross-channel. Therefore, signaturization of the truncated amplitudes A2→n+2 of the
process A + B → A′ + J1 + . . .+ Jn + B ′ in the tl -channel is performed by the operator

Ŝτl = 1

2

(
1 + τl R̂A R̂′

A

l−1∏
i=1

R̂Ji

)
, (9.221)

with the operator R̂ introduced in (9.44). Note that in the NLA it can act on jets; in this
case, it transfers each particle of the jet from the initial (final) state into the antiparticle in
the final (initial) state with the same longitudinal and opposite transverse momenta. The
amplitude A2→2+n is given by the sum of the signaturized amplitudes over signatures in
all ti channels:

A2→2+n =
∑
τi =±1

A2→2+n(τ1, τ2, . . . τn+1), (9.222)

where

A2→2+n(τ1, τ2, . . . τn+1) =
n+1∏
i=1

ŜτiA2→2+n . (9.223)

At τi = +1 (τi = −1 ) the amplitude (9.223) has si -channel discontinuities equal to (dif-
fering by sign from) the ui -channel ones and equal to the half-sum (half-difference) of the
si - and ui -channel discontinuities of A2→n+2. Recall that the signaturization is performed
for truncated amplitudes.

Repeat that we use light-cone momenta n1 and n2, with n2
1 = n2

2 = 0, (n1n2) = 1,
denote (pn2) = p+, (pn1) = p− and assume that the initial momenta pA and pB have
predominant components p+

A and p−
B . For generality it is not assumed that the compo-

nents pA⊥, pB⊥ that transverse to the (n1, n2) plane are zero. Moreover, A and B, as well
as A′ and B ′, can represent jets. We define rapidities of the final jets Ji , i = 1, 2, . . . n
with momenta ki as yi = 1

2 ln
(
k+

i /k−
i

)
. It is supposed that they decrease with i :

y0 > y1 > · · · > yn > yn+1. As for y0 and yn+1, it is convenient to define them as

y0 = yA ≡ ln
(√

2p+
A/|q1⊥|

)
and yn+1 = yB ≡ ln

(
|q(n+1)⊥|/√2p−

B

)
. Let us rewrite

(9.15) in the form

AR
2→n+2 = 4(pA pB)�

R1
A′ A

(
n∏

i=1

eωi (yi−1−yi )

q2
i⊥

γ
Ji
Ri Ri+1

)
eωn+1(yn−yn+1)

q2
(n+1)⊥

�
Rn+1
B′ B . (9.224)

Here ωi ≡ ω(q2
i⊥), �R

B′ B and �R
A′ A are the scattering vertices, γ Ji

Ri Ri+1
are the produc-

tion vertices. For particles and reggeons we use notation which accumulates all their
parameters. All reggeon vertices, as well as the gluon trajectory, are known with the
next-to-leading order accuracy and are presented in Section 9.2.

We will call (9.224) the multi-Regge form. Our aim is to prove both in the LLA and in
the NLA that this form is correct for real parts of the A2→n+2 amplitudes in the MRK. Let
us emphasize that only the real parts have such a simple form, and only these parts are given
by the reggeized gluon contributions. As for imaginary parts, they come into amplitudes
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both from the parts with positive and negative signatures. They can be calculated using the
unitarity relations and the real parts of the A2→n+2. As one can see from preceding section,
they are complicated even for the LLA elastic amplitudes. Fortunately, both in the LLA and
in the NLA only real parts of the MRK amplitudes contribute to the unitarity relations. Note
that the real parts of amplitudes with positive signature even in one of ti -channels must be
taken into account only in the next-to-next-to leading approximation. Therefore, with our
accuracy only amplitudes with negative signature in all ti -channels must be considered. In
the following the negative signature is assumed.

The proof is based on the bootstrap relations. These relations are derived from the
requirement of the compatibility of the multi-Regge form (9.224) with s-channel unitar-
ity. We show that the fulfilment of the bootstrap relations guarantees this form. Then we
demonstrate that an infinite set of the bootstrap relations are fulfilled if several conditions
imposed on the reggeon vertices and the trajectory (bootstrap conditions) hold true. All
these conditions are proved to be satisfied.

Our aim is to prove the form (9.224) for real parts of the A2→n+2 amplitudes, whereas
s-channel unitarity determines the imaginary parts. Evidently, to derive the bootstrap rela-
tions we need connection between the real and imaginary parts. It is well known that
because of analyticity these parts are connected by dispersion relations. These relations
have an integral form and are very complicated in the inelastic case. Fortunately, in the
high-energy limit the real and imaginary parts are connected also by differential relations
(differential analyticity), which will be used below.

9.6.2 Bootstrap for elastic amplitudes

Let us begin with the 2 → 2 amplitude. To derive the differential analyticity relation here
it is sufficient to note that with the next-to-leading order accuracy

1

−2π i
discs (ln

n(−s)+ lnn s) = 1

2

∂

∂ ln s
Re
[
lnn(−s)+ lnn s

]
, (9.225)

where discs denotes the s-channel discontinuity. Eq. (9.225) gives the differential relation:

1

−2π is
discs A2→2 s = 1

2

∂

∂ ln s
Re A2→2, (9.226)

Using in the right-hand side the Regge form (9.5) we come to the bootstrap relation:

1

−2π i
discsA2→2 = 1

2
ω(t)AR

2→2. (9.227)

Note that it is not exact relation; we can not demand it in approximations higher than the
NLA.

The important point is that the left-hand side of (9.227) can be calculated using
the amplitudes (9.224) in the unitarity condition. Since the amplitudes are expressed
through the gluon–Regge trajectory and the vertices of reggeon interactions, the relation
(9.227) imposes strong restrictions on the trajectory and the vertices. Thus, using for the
discontinuity in (9.227) Eqs. (9.107) and (9.112) and for AR

2→2 Eq. (9.224), one obtains
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1

2(2π)D−1
〈A′ Ā|eK̂Y |B̄ ′B〉 = −δ(qA⊥ − qB⊥)�c

A′ A
ω(q2⊥)

q2⊥
eω(q

2⊥)Y �c
B′ B, (9.228)

where q⊥ = qA⊥ = qB⊥, qA⊥ = pA⊥ − pA′⊥, qB⊥ = pB′⊥ − pB⊥. In the leading order
this relation requires fulfilment of the following bootstrap conditions. The impact factors
of the colliding particles must contain as coefficients the corresponding reggeon vertices:

|B̄ ′B〉 = g�R
B′ B |Rω(qB⊥)〉, 〈A′ Ā| = g�R

A′ A〈Rω(qA⊥)|, (9.229)

where 〈Rω(q⊥)| and |Rω(q⊥)〉 are the bra- and ket-vectors of the universal (process
independent) colour-octet state (the sum over colour indices R is implied) with the total
t-channel momentum q⊥. This state must be an eigenstate of the kernel K̂ with the
eigenvalue ω(q2⊥),

K̂|Rω(q⊥)〉 = ω(q2⊥)|Rω(q⊥)〉, 〈Rω(q⊥)|K̂ = 〈Rω(q⊥)|ω(q2⊥). (9.230)

And finally, it must have the normalization

g2q2⊥
2(2π)D−1

〈Rω(q
′⊥)|Rω(q⊥)〉 = −δ(q⊥ − q ′⊥)δR R′

ω(q2⊥). (9.231)

Eqs. (9.230) and (9.229) are called respectively the first and the second bootstrap condi-
tions. In the leading order it is not difficult to see that all these conditions are satisfied.
Indeed, fulfilment of (9.229) is evident from (9.104), (9.105), and (9.46). Moreover, it
follows from these equations, that

〈G1G2|Rω(q⊥)〉= T R
G1G2

δ(q⊥ − q1⊥ − q2⊥), 〈Rω(q⊥)|G1G2〉= T R
G1G2

δ(q⊥− q1⊥− q2⊥).
(9.232)

With account of the scalar product definition (9.100) and the explicit form of the trajec-
tory (9.47) one can see that (9.232) ensures the fulfilment of the normalization condition
(9.231). Then, using (9.232) and the kernel definition (9.111), (9.101), (9.103), the first
bootstrap condition (9.230) is written as

g2 Nc

2(2π)D−1

∫
d D−2k⊥
q

′2
1⊥q

′2
2⊥

(
q2

1⊥q
′2
2⊥ + q2

2⊥q
′2
1⊥

k2⊥
− q2⊥

)
= ω(q2

1⊥)+ ω(q2
2⊥)− ω(q2⊥),

(9.233)

where q
′
1⊥ = q1⊥ − k⊥, q

′
2⊥ = q2⊥ + k⊥, q⊥ = q1⊥ + q2⊥. This equality is evidently

satisfied by taking into account (9.47).

9.6.3 Bootstrap relations

Fulfilment of the bootstrap conditions (9.229)–(9.231) guarantees that the Regge form (9.5)
is reproduced by calculations using (9.15) and s-channel unitarity. Clearly, it gives only a
limited though important consistency check of the reggeization hypothesis. Actually, this
check carried out in [2] was the first successful test of the BFKL equation. However, for
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consistency of the whole approach, we must be sure that the amplitudes (9.15) are repro-
duced not only in the case of 2 → 2 processes but for 2 → 2+n processes with arbitrary n.

This can be checked using the unitarity conditions in all si, j -channels, si, j = (ki + k j )
2.

These conditions provide us with the discontinuities discsi, j of the amplitudes A2→n+2

(recall that here we consider signaturized amplitudes with negative signature in all ti -
channels). Note that, generally speaking, in the NLA these discontinuities are not pure
imaginary, since a discontinuity in one of the channels can have, in turn, a discontinuity in
another channel. But it is clear that these double discontinuities are sub-subleading, so that
we will neglect them in the following.

Turning to amplitudes with n > 0 we meet a complication: analytical properties of the
production amplitudes are very intricate even in the MRK [34]–[36]. But, fortunately, if
in the MRK we confine ourselves to the NLA, these properties are greatly simplified and
allow us to express partial derivatives ∂/∂y j of the amplitudes, considered as functions of
rapidities y j ( j = 0, . . . , n + 1) and transverse momenta, in terms of the discontinuities of
the signaturized amplitudes [107]:

1

−π i

⎛⎝ n+1∑
l= j+1

discs j,l −
j−1∑
l=0

discsl, j

⎞⎠A2→n+2

/
(pA pB) = ∂

∂y j

(
A2→n+2

/
(pA pB)

)
.

(9.234)

Note that taking the sum of the equations (9.234) over j from 0 to n + 1 it is easy to see
that A2→n+2 depends only on differences of the rapidities yi , as it must be. The division
by (pA pB) is performed in Eq. (9.234) in order to differentiate the rapidity dependence of
radiative corrections only.

Equalities (9.234) can be easily proved using the Steinmann theorem [61], or, more
definitely, the statement [34] that the amplitudes can be represented as sums of contribu-
tions corresponding to various sets of the n + 1 nonoverlapping channels sik , jk , ik < jk ,
k = 1, . . . , n + 1; then each of the contributions can be written as a signaturized series
in logarithms of the energy variables sik , jk with coefficients which are real functions of
the transverse momenta. Recall that two channels si1, j1 and si2, j2 are called overlapping if
either i1 < i2 ≤ j1 < j2, or i2 < i1 ≤ j2 < j1. Since scattering amplitudes enter in the
relations (9.234) linearly and uniformly, it is sufficient to prove these relations separately
for the contribution of one of the sets. Two observations now are important. First, the coef-
ficients which depend only on transverse momenta enter equally in both sides of (9.234),
therefore we can omit them calculating both the discontinuities and the derivatives with
respect to y j . Second, the energy variables sik , jk entering in each set are independent, i.e.
there are no relations between the differences yik − y jk for nonoverlapping channels sik , jk ;
this means, in particular, that we need to consider only leading and next-to leading orders
in these variables.

Therefore, it is sufficient to prove the equalities (9.234) with next-to-leading order
accuracy for the symmetrized products

S P = Ŝ
n+1∏

i< j=1

(
si, j

|ki⊥| |k j⊥|
)αi j

(9.235)
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instead of A2→n+2/(pA pB). Here the exponents αi j ∼ αS are different from zero only
for some set of nonoverlapping channels and are arbitrary in all other respects; Ŝ means
symmetrization with respect to simultaneous change of signs of all si, j with i < k ≤ j ,
performed independently for each k = 1, . . . , n + 1. Indeed, due to the above-mentioned
arbitrariness of αi j the fulfilment of the equalities (9.234) for S P guarantees it for any
logarithmic series.

Since we consider only real parts of discontinuities in the invariants si, j , calculating the
discontinuity of S P in one of the si, j at real αi j ∼ αS , we can neglect the signs of the other
invariants not only in the LLA, but also in the NLA, so that we have

1

−π i

⎛⎝ n+1∑
l= j+1

discs j,l −
j−1∑
l=0

discsl, j

⎞⎠ S P =
⎛⎝ n+1∑

l= j+1

α jl −
j−1∑
l=0

αl j

⎞⎠ S P. (9.236)

On the other hand, taking into account that(
si, j

|ki⊥| |k j⊥|
)αi j

= eαi j (yi −y j ), (9.237)

we have for the real part

S P = e
∑n+1

i< j=1 αi j (yi −y j )
(

1 + O(α2
S)
)
, (9.238)

such that, within the NLA accuracy

∂

∂y j
S P =

⎛⎝ n+1∑
l= j+1

α jl −
j−1∑
l=0

αl j

⎞⎠ S P. (9.239)

It is clear from Eqs. (9.236) and (9.239) that the equalities (9.234) are fulfilled.
The important point is that the relations (9.234) give a possibility to find in the next-to-

leading order all MRK amplitudes to all orders of the coupling constant if they are known
(for all n) in the one-loop approximation. Indeed, these relations express all partial deriva-
tives of the real parts for some number of loops in terms of the discontinuities, which can
be calculated using the s-channel unitarity in terms of amplitudes with a smaller number
of loops; moreover, in the NLA only the MRK is important and only real parts of the
amplitudes contribute in the unitarity relations. To find A2→n+2 in addition to the deriva-
tives determined by Eq. (9.234) suitable initial conditions are required, but since they can
be taken at fixed yi , they are needed in the NLA only with one-loop accuracy. Therefore,
the relations (9.234) together with the one-loop approximation for the MRK amplitudes
unambiguously determine all A2→n+2.

Thus, in order to prove the multi-Regge form (9.224) in the NLA it is sufficient to know
that it is valid in the one-loop approximation and satisfies the equalities (9.234), where the
discontinuities are calculated using this form in the unitarity relations.

Substituting Eq. (9.224) in the right-hand side of Eq. (9.234), we obtain the bootstrap
relations

1

−π i

⎛⎝ n+1∑
l= j+1

discs j,l −
j−1∑
l=0

discsl, j

⎞⎠A2→n+2 = (
ω(t j+1)− ω(t j )

)AR
2→n+2. (9.240)
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The discontinuities in these relations must be calculated using the s-channel unitarity and
the multi-Regge form of the amplitudes (9.15). Evidently, there is an infinite number of
bootstrap relations, because there is an infinite number of amplitudes A2→n+2. At first
sight, it seems a miracle to satisfy all of them, since all these amplitudes are expressed
through several reggeon vertices and the gluon Regge trajectory. Moreover, it is quite non-
trivial to satisfy even some definite bootstrap relation for a definite amplitude, because it
connects two infinite series in powers of yi , and therefore it leads to an infinite number of
equalities between coefficients of these series.

In fact, two miracles must occur in order to satisfy all the bootstrap relations: first, for
each particular amplitude A2→n+2 it must be possible to reduce the bootstrap relation
to a limited number of restrictions (bootstrap conditions) on the gluon trajectory and the
reggeon vertices, and second, starting from some n = n0 these bootstrap conditions must
be the same as those obtained for amplitudes with n < n0. Finally, all bootstrap conditions
must be satisfied by the known expressions for the trajectory and the vertices.

It is necessary to add here that the amplitude in the right-hand side of Eq. (9.240) con-
tains only colour octets in each of the qi channels. The discontinuities in the left-hand side,
taken separately, along with the colour octet hold other representations of the colour group,
which cancel in the sum.

9.6.4 Calculation of s-channel discontinuites

Thus, we have to calculate the discontinuities in any of si, j channel. They must be found
using multi-Regge form (9.224). It worth noting that the calculation given below can be
applied in the case of a positive signature as well, with the only difference in symmetriza-
tion of the impact factors. Each of the si, j -channel discontinuities, being expressed with
the help of the s-channel unitarity through the product of amplitudes (9.224), contains two
reggeons in the channels ql at i < l ≤ j . As an example, the s j,n+1-channel disconti-
nuity is represented schematically in Fig. 9.6. Large blobs are meant to account for the
signaturization.

In order to represent the discontinuities in a compact way, we will use the operator
notation introduced in Section 9.4. Our goal is to write them as matrix elements of operator
expressions, consisting of the operators Ĵi for jet-Ji production and of the operator K̂ for
the reggeon–reggeon interaction kernel, between bra- and ket-vectors, describing either
particle-particle or reggeon-particle transitions (actually “particle” here can denote a jet,
as was already mentioned) due to interaction with reggeized gluons (R j → J j and B →
B ′ transitions in Fig. 9.10). We will call these states particle-particle or reggeon-particle
impact factors.

To calculate the discontinuity we need to convolute reggeon vertices with account of the
signaturization and to integrate over momenta of particles in intermediate states. Since the
convolutions of the reggeon vertices depend on the transverse components of momenta
only, the signaturization is reduced to antisymmetrization with respect to the attached
reggeon lines. In order to escape double counting in the next-to-leading order, we intro-
duce an auxiliary parameter�� 1 which constrains the difference in rapidities of particles
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Fig. 9.10. Schematic representation of the s j,n+1−channel discontinuity. The zigzag lines
depict reggeized gluon exchanges. The right and left blobs represent the B → B′ and
R j → J j transitions respectively. The intermediate blobs depict jet productions.

belonging to one jet. Note that the largeness of� is numerical, but not parametrical (related
to s), so that terms of order αS� are considered as subleading. Of course, the final answer
must not depend on �.

We denote the momenta of the intermediate jets lα , their rapidities zα , with zα =
1
2 ln(l+α / l−α ). Rapidities of the intermediate jets related neither to jet-jet or reggeon-jet tran-
sitions, nor to the jet production (in the example depicted in Fig. 9.10 not contained in the
blobs) are confined in the intervals [yk+1 + �, yk − �], where for the si, j -channel dis-
continuity k takes values from i to j − 1. In each interval, we need to perform integration
over rapidities and summation over number of jets from 0 to ∞. Denoting by r1⊥ and r2⊥
the momenta of reggeons between the jets lα and lα+1 we write all corresponding Regge
factors in the same form exp[(ω(r2

1⊥)+ω(r2
2⊥))(zα−zα+1)]. Instead, the Regge factors for

the reggeons interacting either with the colliding particles or reggeons or with the produced
particles (in Fig. 9.10 attached to the blobs) are not uniform. In order to unify them, we
include uniformity-violating multipliers in the definitions of jet-production operators and
impact factors for particle-particle and reggeon-particle transitions. After that, the two-
reggeon exchange in the q j -channel is represented by the operator (compare with (9.108))

Ĝ(Y j )
� =

∞∑
n=0

y j−1−�∫
y j +n�

e"̂(y j−1−z1)K̂�r dz1

z1−�∫
y j +(n−1)�

dz2e"̂(z1−z2)K̂�r . . .

zn−1−�∫
yi +�

dzne"̂(zn−1−zn)K̂�r e"̂(zn−y j ), (9.241)

where the term for n = 0 is equal to e"̂Y j , with Y j = y j−1 − y j , "̂ = ω(r̂2
1 ) + ω(r̂2

2 ).

The operator K̂�r takes into account production of the intermediate jets J with intervals of
particle rapidities �J in them less than �:
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〈G1G2|K̂�r |G′
1G′

2〉 = δ(r1⊥ + r2⊥ − r ′
1⊥ − r ′

2⊥)
∑

J

∫
γ J
G1G′

1
γ
G2G′

2
J

dφJ

2(2π)D−1
θ(�−�J ).

(9.242)

Here the sum is taken over all discrete quantum numbers; γ
G2G′

2
J is the effective vertex

for absorption of the jet J in the reggeon transition G′
2 → G2. It is related to γ J̄

G2G′
2

by

the crossing described above (i.e. by the change of signs of longitudinal momenta and the
corresponding change of wave functions). Then, we have

dφJ = dk2
J

2π
(2π)DδD(kJ −

∑
i

pi )
∏

i

d D−1 pi

(2π)D−1 2εi
(9.243)

for a jet J with total momentum kJ consisting of particles with momenta pi . The integra-
tion limits in Eq. (9.241) correspond to the limits on the intervals of particle rapidities in
Eq. (9.242).

As already mentioned, terms of order αS� are subleading, therefore we need to retain
in Eq. (9.241) only terms linear in � with coefficients of order αS . With this accuracy
we can write Ĝ(Y j )

� = (
1 − K̂B

r �
)
Ĝ(Y j )

(
1 − K̂B

r �
)
; the superscript B here and below

denotes leading order, so that KB
r is given by O(αS) terms in Eq. (9.242), and Ĝ(Y j ) is

obtained from Eq. (9.241) by the omission of� in the integration limit and the replacement
K̂�r → K̂r , where

K̂r = K̂�r − K̂B
r K̂B

r �. (9.244)

We include the factors
(
1 − K̂B

r �
)

in the definitions of jet-production operators and
impact factors for particle–particle and reggeon–particle transitions. Then the two-reggeon
exchange in the q j channel is represented by the operator Ĝ(Y j ). It is easy to see that it
obeys the same equation (9.110) as in the LLA, with the same form of the kernel (9.111)
and the same initial condition Ĝ(0) = 1, so that Ĝ(Y j ) = exp(K̂Y j ).

With account of the terms discussed before Eq. (9.241) and after Eq. (9.244) the impact
factor for the B → B ′ transition is defined as

|B̄ ′ B〉 = |B̄ ′B〉� −
(
ω(r̂2

1⊥) ln

∣∣∣∣ r̂1⊥
qB⊥

∣∣∣∣+ ω(r̂2
2⊥) ln

∣∣∣∣ r̂2⊥
qB⊥

∣∣∣∣+ K̂B
r �

)
|B̄ ′B〉B, (9.245)

where ω(t) is the one-loop trajectory (9.47),

〈G1G2|B̄ ′B〉�= δ(qB⊥−r1⊥−r2⊥)
∑

B̃

∫ (
�
G1

B̃ B
�
G2

B′ B̃ −�G2

B̃ B
�
G1

B′ B̃

)
dφB̃

∏
l

θ
(
�−(zl−yB)

)
.

(9.246)
Here qB = pB′ − pB and zl are the rapidities of particles in intermediate jets. The terms
with ω in Eq. (9.245) take into account the difference of the Regge factors related to the
reggeons interacting with the particles B and B ′ and the “uniform” factors used in the
series (9.241) for Ĝ(Yn+1)

�. The term with K̂B
r in Eq. (9.245) comes from the relation

between Ĝ(Yn+1)
� and Ĝ(Yn+1). Note that in the case when B or B ′ is a two-particle jet,

only the first term must be kept in Eq. (9.245); moreover, only the Born approximation for
this term must be taken in Eq. (9.246).
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It is clear that for the impact factor of the A → A′ transition we have

〈A′ Ā| = 〈A′ Ā|� − 〈A′ Ā|B

(
ω(r̂2

1⊥) ln

∣∣∣∣ r̂1⊥
qA⊥

∣∣∣∣+ ω(r̂2
2⊥) ln

∣∣∣∣∣ r̂2
2⊥

qA⊥

∣∣∣∣∣+ K̂B
r �

)
, (9.247)

〈A′ Ā|G1G2〉�= δ(qA⊥−r1⊥−r2⊥)
∑

Ã

∫ (
�
G1

ÃA
�
G2

A′ Ã−�G2

ÃA
�
G1

A′ Ã

)
dφ Ã

∏
l

θ
(
�−(yA−zl)

)
,

(9.248)
where qA = pA − pA′ .

The antisymmetrization with respect to the permutation G1 ↔ G2 in Eqs. (9.246) and
(9.248) takes into account the signaturization. The important fact is that due to the signa-
turization only the antisymmetric colour octet survives of all possible colour states of the
two reggeons G1 and G2. For quark and gluon impact factors this follows from results of
Refs. [55],[56]. For the case when some state is a two-particle state this can be seen from
results presented in Ref. [108].

Accordingly, the reggeon-particle impact factors are defined as

| J̄i Ri+1〉 = | J̄i Ri+1〉s − | J̄i Ri+1〉u, | j̄i Ri+1〉s = | J̄i Ri+1〉�s

−
((
ω
(

q2
(i+1)⊥

)
− ω

(
r̂2

1⊥
))

ln

∣∣∣∣ ki⊥
q(i+1)⊥ − r̂1⊥

∣∣∣∣− ω(r̂2
2⊥) ln

∣∣∣∣ki⊥
r̂2⊥

∣∣∣∣+ K̂B
r �

)
| J̄i Ri+1〉B

s ,

(9.249)

〈G1G2| J̄i Ri+1〉u = 〈G1G2| J̄i Ri+1〉s, 〈G1G2| J̄i Ri+1〉�s = δ (q(i+1)⊥ + ki⊥ − r1⊥ − r2⊥
)

×
∑

J

∫
γ J
G1 Ri+1

�
G2
Ji J dφJ

∏
l

θ
(
�− (zl − yi )

)
, (9.250)

and

〈Ji Ri | = 〈Ji Ri |s − 〈Ji Ri |u, 〈Ji Ri |s = 〈Ji Ri |�s

−〈Ji Ri |B
s

((
ω
(

q2
i⊥
)

− ω
(

r̂2
1⊥
))

ln

∣∣∣∣ ki⊥
qi⊥ − r̂1⊥

∣∣∣∣− ω (r̂2
2⊥
)

ln

∣∣∣∣ki⊥
r̂2⊥

∣∣∣∣+ K̂B
r �

)
,

(9.251)

〈Ji Ri |G1G2〉u = 〈Ji Ri |G1G2〉s, 〈Ji Ri |G1G2〉�s = δ(r1⊥ + r2⊥ − qi⊥ + ki⊥)

×
∑

J

∫
γ J

RiG1
�
G2
Ji J dφJ

∏
l

θ
(
�− (yi − zl)

)
. (9.252)
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Finally, the operators Ĵi for production of jets Ji are defined as

Ĵi = Ĵ �i −
(
K̂B

r Ĵ B
i + Ĵ B

i K̂B
r

)
�, 〈G1G2|Ĵ �i |G′

1G′
2〉= δ(r1⊥+ r2⊥− ki⊥− r ′

1⊥− r ′
2⊥)

×
[
γ

Ji
G1G′

1
δ(r2⊥ − r ′

2⊥)r 2
2⊥δG2G′

2
+ γ Ji

G2G′
2
δ(r1⊥ − r ′

1⊥)r 2
1⊥δG1G′

1

+
∑

G

∫ yi +�

yi −�
dzG

2(2π)D−1

(
γ

{Ji G}
G1G′

1
γ
G2G′

2
G + γ G

G1G′
1
γ
G2G′

2
Ji G

) ]
. (9.253)

Here the last term appears only in the case when Ji ≡ Gi is a single gluon, the sum in
this term goes over quantum numbers of the intermediate gluon G and the vertices must
be taken in the Born approximation. At that γ {Ji G}

G1G′
1

is the vertex for production of the jet

consisting of the gluons Gi and G, γ
G2G′

2
Gi G is the vertex for absorption of gluon G and

production of gluon Gi in the G2 → G′
2 transition; it can be obtained from γ

{Gi G}
G2G′

2
by

crossing with respect to the gluon G.
With the definitions given above, we obtain

− 4i(2π)D−2δ

⎛⎝qi⊥ − q( j+1)⊥ −
l= j∑
l=i

kl⊥

⎞⎠ discsi, jA2→n+2 = 2 s�R1
A′ A

eω1(y0−y1)

q2
1⊥

×
(

i∏
l=2

γ
Jl−1
Rl−1 Rl

eωl (yl−1−yl )

q2
l⊥

)
〈Ji Ri |

⎛⎝ j−1∏
l=i+1

eK̂(yl−1−yl )Ĵl

⎞⎠ eK̂(y j−1−y j )| J̄ j R j+1〉

×
⎛⎝ n∏

l= j+1

eωl (yl−1−yl )

q2
l⊥

γ
Jl
Rl Rl+1

⎞⎠ eωn+1(yn−yn+1)

q2
(n+1)⊥

�
Rn+1
B′ B , (9.254)

where ωi = ω(q2
i⊥). If i = 0 we must omit all factors to the left of 〈J0 R0| and replace

〈J0 R0| by 〈A′ Ā|, k0 −q0 by pA′ − pA; in the case j = n +1 we must omit all factors to the
right of | J̄n+1 Rn+2〉 and perform the substitutions | J̄n+1 Rn+2〉 → |B̄ ′B〉, kn+1 +qn+2 →
pB′ − pB .

9.6.5 Proof of the gluon reggeization

Using the representation (9.254) for the discontinuities, we prove below that an infinite
number of the bootstrap relations (9.240) are satisfied if the following bootstrap condi-
tions are fulfilled: the impact factors for colliding particles satisfy equations (9.229), where
〈Rω(q⊥)| and |Rω(q⊥)〉 are the bra- and ket-vectors of the process independent eigen-
state of the kernel K̂ with the eigenvalue ω(q2⊥) (see (9.230)), the normalization condition
(9.231) is fulfilled and the reggeon-gluon impact factors and the gluon-production vertices
satisfy the equations

Ĵi |Rω(q(i+1)⊥)〉 g q2
(i+1)⊥ + | J̄i Ri+1〉 = |Rω(qi⊥)〉 g γ Ji

Ri Ri+1
,

g q2
i⊥〈Rω(qi⊥)|Ĵi + 〈Ji Ri | = g γ Ji

Ri Ri+1
〈Rω(q(i+1)⊥)|, (9.255)
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where q(i+1)⊥ = qi⊥ − ki⊥. Actually, the second of Eqs. (9.229), (9.230) and (9.255) are
not independent since bra- and ket-vectors are related to each other by the change of +
and − momentum components.

To prove that the bootstrap conditions (9.229)–(9.231), (9.255) provide the fulfilment
of the entire infinite set of bootstrap relations (9.240), consider first the terms with l = n
and l = n + 1 in Eq. (9.240). Using the representation (9.254) for the discontinuities and
applying the bootstrap conditions (9.229) and (9.230) to the sk,n+1-channel discontinuity,
we find that the sum of the discontinuities in the channels sk,n and sk,n+1 contains

g Ĵn |Rω(q(n+1)⊥)〉 + | J̄nRn+1〉 1

q2
(n+1)⊥

= |Rω(qn⊥)〉 g γ Jn
Rn Rn+1

1

q2
(n+1)⊥

. (9.256)

The equality here follows from the bootstrap condition (9.255). Now the procedure can
be repeated: we can apply to this sum the bootstrap condition (9.230), and to the sum of
the obtained result with the sk,n−1-channel discontinuity again Eq. (9.255). Thus the entire
sum over l from j + 1 to n + 1 in the representation (9.240) is reduced to one term. A
quite analogous procedure (with the use of the bootstrap conditions for bra-vectors) can
be applied to the sum over l from 0 to j − 1. As a result, we find that the left part of
the representation (9.240) with the coefficient −2(2π)D−1δ(q j⊥ − q( j+1)⊥ − k j⊥), where

q( j+1)⊥ = pB′⊥ − pB⊥ + ∑l=n
l= j+1 kl⊥ and q j⊥ = pA⊥ − pA′⊥ − ∑l= j−1

l=1 kl⊥, can be
obtained from the right-hand side of the multi-Regge form (9.224) by the replacement

γ
J j
R j R j+1

−→ 〈J j R j |Rω(q( j+1)⊥)〉gq2
( j+1)⊥ − gq2

j⊥〈Rω(q j⊥)| J̄ j R j+1〉. (9.257)

Taking the difference of the first equality in the condition (9.255) for i = j multiplied by
gq2

j⊥〈Rω(q j⊥)| and the second equality multiplied by |Rω(q( j+1)⊥)〉gq2
( j+1)⊥ and using

the normalization (9.231), we obtain

〈J j R j |Rω(q j+1)〉 g q2
( j+1)⊥ − g q2

j⊥ 〈Rω(q j )| J̄ j R j+1〉
= −2(2π)D−1δ(q j⊥ − q( j+1)⊥ − k j⊥)

(
ω(q2

( j+1)⊥)− ω(q2
j⊥)
)
γ

J j
R j R j+1

. (9.258)

That concludes the proof.
Thus, the fulfilment of the bootstrap conditions (9.229)–(9.231), (9.255) guarantees the

implementation of the entire infinite set of the bootstrap relations (9.240).
In the leading order there is only one production vertex, the reggeon–reggeon–gluon

(RRG) vertex. The definition of the reggeon–gluon impact factor 〈G R| and the gluon
production operator Ĝ are reduced to the following:

〈G R|G1G2〉 = δ(q⊥ − r1⊥ − r2⊥ − k⊥)
∑
G ′

(
γ G ′

RG1
�
G2
GG ′ − γ G ′

RG2
�
G1
GG ′

)
, (9.259)

where q, r1, r2 and k are the momenta of the reggeons R, G1, G2 and the gluon G;

〈G′
1G′

2|Ĝ|G1G2〉 = δ(r1⊥ + r2⊥ + k⊥ − r ′
1⊥ − r ′

2⊥)

×
[
γ G
G′

1G1
δ(r2⊥ − r ′

2⊥)r 2
2⊥δG2G′

2
+ γ G

G′
2G′

2
δ(r1⊥ − r ′

1⊥)r 2
1⊥δG1G′

1

]
. (9.260)
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Using the reggeon vertices in the form (9.26), (9.35), (9.37), we have

〈G R|G1G2〉 = −δ(q⊥ − r1⊥ − r2⊥ − k⊥)2g2e∗⊥ ×
[

T G ′
RG1

TG2
GG ′

(
q⊥ − q2⊥

q⊥ − r1⊥
(q⊥ − r1⊥)2

)
−T G ′

RG2
TG1

GG ′

(
q⊥ − q2⊥

q⊥ − r2⊥
(q⊥ − r2⊥)2

)]
, (9.261)

〈G′
1G′

2|Ĝ|G1G2〉 = −δ(r1⊥+ r2⊥+ k⊥ − r ′
1⊥− r ′

2⊥)2ge∗⊥

×
[

T G
G′

1G1

(
r ′

1⊥ − k⊥
r

′2
1⊥
k2⊥

)
δ(r2⊥ − r ′

2⊥)r2
2⊥δG2G′

2
+ T G

G′
2G2

×
(

r ′
2⊥ − k⊥

r
′2
2⊥
k2⊥

)
δ(r1⊥ − r ′

1⊥)r 2
1⊥δG1G′

1

]
. (9.262)

Taking account of (9.232) gives

〈Rω(q⊥)|Ĝ|G1G2〉 = δ(q − r1⊥ − r2⊥ − k⊥)2ge∗⊥ (9.263)

×
[

T R
G′

1G2
T G
G′

1G1

(
k⊥
k2⊥

− r1⊥ + k⊥
(r1⊥ + k⊥)2

)
+ T R

G1G′
2
T G
G′

2G2

(
k⊥
k2⊥

− r2⊥ + k⊥
(r2⊥ + k⊥)2

)]
,

such that

gq2⊥〈Rω(q⊥)|Ĝ|G1G2〉 + 〈G R|G1G2〉 = − δ(q⊥ − r1⊥ − r2⊥ − k⊥)2g2e∗⊥T R1
G1G2

× T G
R R1

(
q⊥ − q2⊥

k⊥
k2⊥

)
. (9.264)

Comparing the right-hand side of this equation with the right side of the bootstrap condi-
tion (9.255) and taking account of (9.232), (9.35) and (9.37) one sees that the bootstrap
condition is fulfilled.

In the next-to-leading order the bootstrap conditions (9.229) and (9.230) have been
known for a long time [38],[109]–[111] and have been proved to be satisfied in Refs.
[55, 56],[111]–[115]. The bootstrap relations for elastic amplitudes require only a weak
form of the conditions (9.229) and (9.230), namely only the projection of these conditions
on |Rω〉. It was recognized [107] that in addition to the conditions (9.229) and (9.230),
the bootstrap relations for one-gluon production amplitudes require also a weak form of
the condition (9.255). Thus, the bootstrap relations for one-gluon production amplitudes
play a twofold role: they strengthen the conditions imposed by the elastic bootstrap and
give a new one. One could expect that history will repeat itself upon addition of each next
gluon in the final state. If this were so, we would have to consider the bootstrap relations
for production of an arbitrary number of gluons and would obtain an infinite number of
bootstrap conditions. Fortunately, the history is repeated only partly: it was shown [116]
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that already the bootstrap relations for two-gluon production require the strong form of the
last condition (i.e. Eq. (9.255)) and do not require new conditions.

The bootstrap conditions with two-particle jets are required in the NLA only with the
reggeon vertices taken in the Born approximation. They were checked and proved to be
satisfied in Refs. [62] and [108]. After that only the condition (9.255) remained not evident.
Its fulfilment was proved recently [117]. Thus, now it is shown that all bootstrap conditions
are fulfilled.

9.7 Next-to-leading order BFKL

9.7.1 One-gluon contribution

The correctness of the multi-Regge form (9.224) means that the representation (9.126)
for elastic amplitudes and the decomposition (9.127) for the BFKL kernel remain valid in
the NLA. The difference is that the gluon trajectory is taken in the next-to-leading order
(9.63), and the real part includes the contributions, coming from one-gluon, two-gluon, and
quark-antiquark pair production:

K̂r = K̂G + K̂Q Q̄ + K̂GG . (9.265)

The former part is present already in the LLA (see (9.102)). Here we must take account
of radiative corrections. It is easy to do substituting the one-loop production vertex (9.50)
in (9.102). Then the quark contribution to K̂G can be obtained for arbitrary D. Writing
K̂G = K̂Q

G + K̂G
G , we obtain for the representation R of the colour group

K (R)QG

(
q1, q ′

1; q
) = cR

g4n f Nc

(2π)D−1

�(−ε)
(4π)2+ε

[�(1 + ε)]2

�(4 + 2ε)

×
{ [

k2
(

2k2 − q 2
1 − 2q 2

2 − q ′ 2
1 − 2q ′ 2

2 + 2q 2
)

+ (q 2
1 − q ′ 2

1 )(q
2
2 − q ′ 2

2 )
]

×
[
2(1 + ε)q 2

1 q ′ 2
1 φ0 − ε(q 2

1 + q ′ 2
1 )φ1

]
(q 2

1 − q ′ 2
1 )

3
+ (k2 − q 2

2 − q ′ 2
2 )

(q 2
1 − q ′ 2

1 )
εφ1 + 2(1 + ε)2

×
(

q 2
1 q ′ 2

2 − q 2
2 q ′ 2

1

k2
+ 2q 2

1 q ′ 2
1 − q 2(q 2

1 + q ′ 2
1 )

(q 2
1 − q ′ 2

1 )

)
φ0 + (1 ←→ 2)

}
. (9.266)

where φn = (q2
1 )

n+ε − (q ′2
1 )

n+ε . The substitution 1 ←→ 2 here and below means q1 ↔
q2, q ′

1 ↔ q ′
2 (and then k ↔ −k because k = q1 − q ′

1 = q ′
2 − q2). Since the one-loop

vertex (9.50) has the same colour structure as the Born vertex, the coefficients cR here are
given by (9.137).

The gluon contribution is very complicated at arbitrary D. Of course, for physical appli-
cations the limit ε → 0 must be considered. But here one needs to recognize that it would
be wrong to take this limit in KG . The reason is the singularity of the real part of the kernel
at k2 = 0. One has to retain all terms giving nonvanishing contributions in the limit ε → 0
after integration over d2+εk. Within this accuracy, one has
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K (R)G (q1, q ′; q) = g2 NccR

(2π)D−1

{(
q 2

1 q ′ 2
2 + q 2

2 q ′ 2
1

k 2
− q 2

)

×
[

1

2
+ ḡ2

2

(
−(k 2)ε

(
2

ε2
− π2 + 4 ε ζ(3)

)
− ln2

(
q 2

1

q ′ 2
1

))]

+ ḡ2

6

[(
11 − 2

n f

Nc

)(
2q 2

1 q ′ 2
1

q 2
1 − q ′ 2

1

+ q 2
1 q ′ 2

2 − q ′ 2
1 q 2

2

k 2
− q 2

1 + q ′ 2
1

q 2
1 − q ′ 2

1

q 2

)
ln

(
q 2

1

q ′ 2
1

)

+
(

1 − n f

Nc

)((
(q 2

2 − q ′ 2
2 )

(q 2
1 − q ′ 2

1 )
− k 2

(q 2
1 − q ′ 2

1 )
2

(
q 2

1 + q ′ 2
1 + 4q2q ′

2 − 2q 2
))

×
(

2q 2
1 q ′ 2

1

q 2
1 − q ′ 2

1

ln

(
q 2

1

q ′ 2
1

)
− q 2

1 − q ′ 2
1

)
− 2q2q ′

2

)]
+ (1 ←→ 2)

}
. (9.267)

For arbitrary D this part of the kernel can be found in [47].

9.7.2 Two-particle production

The new contributions which appear in the next-to-leading order are K̂Q Q̄ and K̂GG . They
have the form (9.244), where � � 1 is the auxiliary parameter and �J are the intervals
of particle rapidities in the jets. Passing from the limitation � on rapidity intervals to the
limitation s� on invariant masses of the jets, one obtains

KGG(q1, q ′
1; q) + KQ Q̄(q1, q ′

1; q) = K�GG(q1, q ′
1; q)+ K�

Q Q̄
(q1, q ′

1; q)

− 1

2

∫
d D−2r

r 2(q − r)2
KB

r (q1, r; q) KB
r (r, q ′

1; q) ln

(
s2
�

(q1 − r)2(q ′
1 − r)2

)
, (9.268)

where for the representation R of the colour group the nonsubtracted kernel K�J is

K (R)�J (q1, q ′
1; q) = 〈b, b′|P̂R |aa′〉

nR

∑
J

∫
γ J

ab

(
q1, q

′
1

) (
γ J

a′b′
(−q2,−q ′

2

))∗ dφJ

2(2π)D−1
.

(9.269)

Here J is GG or Q Q̄, P̂R projects two-gluon colour states on the representation R; a, a′
and b, b′ are the reggeon colour indices; nR is the number of independent states in R;
γ J

ab (q1, q2) is the effective vertex for production of the state J in the collision of reggeons
with momenta q1 = βp1 +q1⊥, q ′

1 = −αp2 +q ′
1⊥; dφJ is the corresponding phase space

element; the sum is over all discrete states in J . The operators P̂R are defined in Section
1.13 for any R; in the most important cases of singlet and antisymmetric octet they are
given in (9.134) and (9.135), respectively. For a jet J consisting of particles with momenta
li , i = 1, 2, with total momentum k = q1 − q ′

1, we have

dφJ = dk2

2π
θ(s� − k2)(2π)DδD(k −

∑
i

li )
∏

i

d D−1li
(2π)D−1 2εi
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= dx1dx2

2x1x2
δ(1 − x1 − x2)

d D−2l1d D−2l2
(2π)(D−1)

δD−2(k⊥ − l1⊥ − l2⊥)θ(s� − k2), (9.270)

where xi are fractions of the jet longitudinal momentum k+. Here the “+” component is
taken only for definiteness; evidently, of course, Eq. (9.270) remains valid with the replace-
ment xi → yi , where yi are the fractions of k−. In the case of two-gluon jet dφJ contains
an additional factor of 1/2! to accounting for the identity. The intermediate parameter s�
in Eq. (9.268) must be taken tending to infinity. The second term on the right-hand side of
Eq. (9.268) serves to subtract the large k2 contribution, in order to avoid double counting
of this region. Such contribution is important only in the case of two-gluon production, so
that this term must be included in KGG .

The vertices γ Q Q̄
ab and γ GG

ab are given in (9.75), (9.80), (9.81) and (9.83), (9.84) respec-

tively. Each of them contains two colour structures; accordingly, K (R)
QQ̄

and K (R)GG are written
as sums of two terms with coefficients depending on R. We can write

K (R)�J (q1, q ′
1; q) = 8g4 N 2

c

∫ (
aR F J

a (l1, l2)+ bR F J
b (l1, l2)

) dφJ

(2π)D−1
, (9.271)

where aR and bR are the group coefficients. If they are defined as

aR = 〈b, b′|P̂R |aa′〉
2N 2

c nR
Tr
(

T a′
T aT bT b′ + T aT a′

T b′
T b
)
,

bR = 〈b, b′|P̂R |aa′〉
2N 2

c nR
Tr
(

T aT bT a′
T b′ + T bT aT b′

T a′)
, (9.272)

where T a
i j = −i fai j for gluons, and T a

αβ = ta
αβ for quarks, then

F Q Q̄
a (l1, l2) = n f

x1x2

8
Tr
[
−b(q1; l1, l2)b(−q2; l1, l2)− b(q1; l2, l1)b(−q2; l2, l1)

]
,

F Q Q̄
b (l1, l2) = n f

x1x2

8
Tr
[
b(q1; l1, l2)b(−q2; l2, l1)+ b(q1; l2, l1)b(−q2; l1, l2)

]
,

FGG
a (l1, l2) = bαβ(q1; l1, l2)bαβ(−q2; l1, l2)+ bαβ(q1; l2, l1)bαβ(−q2; l2, l1),

FGG
b (l1, l2) = bαβ(q1; l1, l2)bβα(−q2; l2, l1)+ bαβ(q1; l2, l1)bβα(−q2; l1, l2), (9.273)

where n f are the number of quark flavours; the matrices b and b for quarks and tensors bαβ

for gluons are defined in (9.81) and (9.84), respectively. The explicit forms of the functions

F QQ̄
a,b and FGG

a,b are given in [113] and [118],[119], respectively.
Using the commutation relations for colour generators and the trace normalization

Tr
(

T aT b
)

= T δab, (9.274)

T = TF = 1/2 for quarks and T = TA = Nc for gluons, and remembering that the leading
order colour coefficient cR is given by

cR = 〈b, b′|P̂R |aa′〉
NcnR

f c
ab f c

a′b′, (9.275)
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we obtain from (9.272)

bR = aR − T

2Nc
cR . (9.276)

The coefficients aR are easily found. The colour structure of these coefficients correspond
to the Q Q̄ and GG t-channel states. In the first case, only singlet and octet representations
are admitted. A simple colour algebra calculation gives

aQ
1 = N 2

c − 1

4N 3
c
, aQ

8a
= 1

8Nc
, aQ

8s
= N 2

c − 4

8N 3
c
, bQ

1 = −1

4N 3
c
, bQ

8a
= 0, bQ

8s
= −4

8N 3
c
.

(9.277)

Note that the coefficients bQ
R are suppressed in the limit of large Nc, because they corre-

spond to nonplanar diagrams. Further, the coefficients for symmetric and antisymmetric
colour octets coincide only in this limit; this means that the signature degeneracy is broken
by terms nonleading in Nc. And, finally, an important fact: the equality bQ

8a
= 0. This

equality plays a crucial role in the proof of the gluon reggeization.
As for the coefficients aR in the gluon case, one can easily see from comparison of

the first equality in (9.272) with (9.275) that aG
R = c2

R . This relation is important for the
cancellation of the s�-dependence in the kernel (9.268). Taking account of (9.276) we have
finally:

aG
R = c2

R, bG
R = aG

R − 1

2
cR = cR

(
cR − 1

2

)
. (9.278)

With the results (9.136), (9.137) this gives, in particular,

aG
1 = 1, aG

8a
= aG

8s
= 1

4
, bG

1 = 1

2
, bG

8a
= bG

8s
= 0. (9.279)

Therefore, for both symmetric and antisymmetric colour-octet representations the coef-
ficients bG

R are zero. This is especially important for the antisymmetric case, since the
vanishing of b8a is crucial for the gluon reggeization. The vanishing of bG

8s
means that in

pure gluodynamics the signature degeneracy exists in the NLA as well as in the LLA.

9.7.3 Colour-octet kernel

The vanishing of b8a simplifies drastically the calculations of the kernel K (8a)
J . The Q Q̄

contribution to this kernel was obtained in [113] at arbitrary D:

K (8a)

Q Q̄
(q1, q ′

1; q) = g2n f

(2π)D−1

ḡ2

2ε

[�(1 + ε)]2

�(4 + 2ε)

×
{

2(1 + ε)2
(
(k2)ε

k2
(q 2

1 q ′ 2
2 + q 2

2 q ′ 2
1 )+ (q 2)1+ε

)
+
[

k2
(

2k2 − q 2
1 − 2q 2

2 − q ′ 2
1 − 2q ′ 2

2 + 2q 2
)

+ (q 2
1 − q ′ 2

1 )(q
2
2 − q ′ 2

2 )
]
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× [2(1 + ε)q 2
1 q ′ 2

1 φ0 − ε(q 2
1 + q ′ 2

1 )φ1]
(q 2

1 − q ′ 2
1 )

3
+ ε(k2 − q 2

2 − q ′ 2
2 )− 4(1 + ε)2q 2

(q 2
1 − q ′ 2

1 )
φ1

+ 4(1 + ε)2 q 2
1 q ′ 2

1

(q 2
1 − q ′ 2

1 )
φ0 + (1 ←→ 2)

}
, (9.280)

where the functions φn are defined after (9.266).
The quark part of the real kernel contains the sum of K Q Q̄ and the virtual quark contri-

bution to KG , which is given by (9.266). The sum is greatly simplified in comparison with
(9.280) and (9.266). Denoting it by K (8a)

Q we have

K (8a)
Q (q1, q ′

1; q) = g2n f

(2π)D−1

ḡ2

ε

[�(2 + ε)]2

�(4 + 2ε)

×
{

2
(k2)ε

k2
(q 2

1 q ′ 2
2 + q 2

2 q ′ 2
1 )+ q 2

(
2q 2ε − q 2ε

1 − q 2ε
2 − q ′ 2ε

1 − q ′ 2ε
2

)
− (q 2

1 q ′ 2
2 − q 2

2 q ′ 2
1 )

k 2

(
q 2ε

1 − q 2ε
2 − q ′ 2ε

1 + q ′ 2ε
2

)}
. (9.281)

This simplification indicates that the splitting of the next-to-leading order corrections into
real and virtual ones is not the best way of doing the calculations. Now the method
of finding the total contribution without complicated calculations of separate pieces is
known [120].

The kernel K (8)GG was calculated in [121],[122]. At arbitrary D it can be found in [122].
Here we present the kernel in the limit ε → 0, retaining, as always, the terms giving
nonvanishing contributions after integration over d2+εk:

K (8)GG(q1, q ′
1; q) = g2 Nc

(2π)D−1

ḡ2

2

{(
k 2
)ε−1 (

q 2
1 q ′2

2 + q 2
2 q ′ 2

1 − q 2k 2
)( 1

ε2
− 11

6ε
+ 67

18

−4ζ(2)+ ε
(

−202

27
+ 9ζ(3)+ 11

6
ζ(2)

))
+ q 2

[
11

6

(
ln

(
q 2

1 q ′ 2
1

k 2q 2

)
+
(
q 2

1 + q ′ 2
1

)(
q 2

1 − q ′ 2
1

)
× ln

(
q 2

1

q ′ 2
1

))
+ 1

2
ln

(
q 2

1

q 2

)
ln

(
q ′ 2

1

q 2

)
− 1

8
ln2

(
q 2

1

q 2
2

)
− 1

8
ln2

(
q ′ 2

1

q ′ 2
2

)]
− q1q ′

1

3

− 11

6
(q 2

1 + q ′ 2
1 )−

1

6

(
11 − k 2(

q 2
1 − q ′ 2

1

)2 (q 2
1 + q ′ 2

1 + 4(q2q ′
2)− 2q 2

)

+ q 2
2 − q ′ 2

2(
q 2

1 − q ′ 2
1

))( 2q 2
1 q ′ 2

1(
q 2

1 − q ′ 2
1

) ln

(
q 2

1

q ′ 2
1

)
− q 2

1 − q ′ 2
1

)
− q 2

1 q ′ 2
2 − q 2

2 q ′ 2
1

4k 2
ln

(
q 2

1

q ′ 2
1

)

× ln

(
q 2

1 q ′ 2
1

k 4

)
+ 1

2
I (q 2

1 , q ′ 2
1 ; k2)[q 2(k 2 − q 2

1 − q ′ 2
1 )
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+ 2q 2
1 q ′ 2

1 − q 2
1 q ′ 2

2 − q 2
2 q ′ 2

1 + q 2
1 q ′ 2

2 − q 2
2 q ′ 2

1

k 2
(q 2

1 − q ′ 2
1 )]

}
+ g2 Nc

(2π)D−1

ḡ2

2

{
1 ←→ 2

}
, (9.282)

where

I (a, b, c) =
1∫

0

dx

a(1 − x)+ bx − cx(1 − x)
ln

(
a(1 − x)+ bx

cx(1 − x)

)
. (9.283)

The integral I (a, b, c) is invariant with respect to any permutation of its arguments, as it
can be seen from the representation [115]

I (a, b, c) =
∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3δ(1 − x1 − x2 − x3)

(ax1 + bx2 + cx3)(x1x2 + x1x3 + x2x3)
. (9.284)

Combining (9.282) with the gluon part of (9.267) and taking account of the equality
c8 = 1/2, we obtain the complete real part of the kernel in gluodynamics:

K (8)G (q1, q ′; q) = g2 Nc

2(2π)D−1

{(
q 2

1 q ′ 2
2 + q 2

2 q ′ 2
1

k 2
− q 2

)[
1

2
+ ḡ2

(
k 2
)ε (−11

6ε
+ 67

18

−ζ(2)+ ε

(
−202

27
+ 7ζ(3)+ 11

6
ζ(2)

))]
+ ḡ2

[
q 2

(
11

6
ln

(
q 2

1 q ′ 2
1

k 2q 2

)

+ 1

4
ln

(
q 2

1

q 2

)
ln

(
q 2

2

q 2

)
+ 1

4
ln

(
q ′ 2

1

q 2

)
ln

(
q ′ 2

2

q 2

)
+ 1

4
ln2

(
q 2

1

q 2
2

)
− q 2

1 q ′ 2
2 + q 2

2 q ′ 2
1

2k2

×ln2

(
q 2

1

q ′ 2
1

)
+ q 2

1 q ′ 2
2 − q 2

2 q ′ 2
1

k2
ln

(
q 2

1

q ′ 2
1

)(
11

6
− 1

4
ln

(
q 2

1 q ′ 2
1

k4

))
+ 1

2
I (q 2

1 , q ′ 2
1 ; k2)

×
[
q 2(k 2 − q 2

1 − q ′ 2
1 )+ 2q 2

1 q ′ 2
1 − q 2

1 q ′ 2
2 − q 2

2 q ′ 2
1

+ q 2
1 q ′ 2

2 − q 2
2 q ′ 2

1

k 2
(q 2

1 − q ′ 2
1 )

]}
+ g2 Nc

2(2π)D−1

{
1 ←→ 2

}
. (9.285)

Note that the 1/ε2 terms in (9.282) and (9.267) cancel in the sum. As we will see, this
cancellation is crucial for the infrared safety of the colour-singlet BFKL kernel.

9.7.4 Colour-singlet kernel

As we have seen, the kernel is relatively simple for amplitudes with colour octet and neg-
ative signature. This simplicity is evidently related to the gluon reggeization. Technically,
the reason for the simplicity is the absence of nonplanar diagrams, which are represented
by the Fb term (9.271). But most important for physical applications is the singlet represen-
tation, and the Fb term is necessary in this case. It turns out, however, that it is much better
to consider not Fb alone, but the combination F = Fa + Fb. This combination appears
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naturally in the singlet kernel. Indeed, looking at the colour coefficients (9.277), (9.279)
and at the nonsubtracted kernels (9.271) one can obtain the relation

K (0)�J = 2K (8a)�
J + K (s)�J , (9.286)

where K (s)�J is given by (9.271)

K (s)�J (q1, q ′
1; q) = 8g4 N 2

c dJ

∫
F J (l1, l2)

dφJ

(2π)D−1
, (9.287)

and F J (l1, l2) = F J
a (l1, l2)+ F J

b (l1, l2), dQ Q̄ = −1/(4N 3
c ) and dGG = 1/2. Furthermore,

K̂G in (9.265) and the leading order kernels of the subtraction term in (9.268) have the
colour coefficients c1 = 1, c8 = 1/2. Remembering that the Q Q̄ contribution does not
require subtraction, one can therefore write:

K (0)r = 2K (8a)
r + K (s), K (s) = K (s)

Q Q̄
+ K (s)GG , K (s)

QQ̄
= K (s)�

Q Q̄
, (9.288)

and

K (s)GG(q1, q ′
1; q) = K (s)�GG (q1, q ′

1; q)− 1

4

∫
d D−2r

r 2(q − r)2
K B(0)

r (q1, r; q)

× K B(0)
r (r, q ′

1; q) ln

(
s2
�

(q1 − r)2(q ′
1 − r)2

)
. (9.289)

It turns out, that F J has a simpler form in comparison with F J
a and F J

b . Even more impor-
tant is the infrared safety of K (s), whereas F J

a and F J
b are infrared singular. Finally, K (s)

has no ultraviolet singularities, in contrast to K (8).
In the case of massless quarks, we have [113]:

F Q Q̄(l1, l2) = n f

4
x1x2

{
x1x2

(
2(q1l1)− q 2

1

σ11
+ 2(q1l2)− q 2

1

σ21

)

×
(

2(q2l1)+ q 2
2

σ12
+ 2(q2l2)+ q 2

2

σ22

)
+ x1q 2(2(q1l1)− q 2

1 )

2σ11

(
1

σ22
− 1

σ12

)

+ x1q 2(2(q2l1)+ q 2
2 )

2σ12

(
1

σ11
− 1

σ21

)
+ 1

σ11σ22

(
− 2(q1l1)(q2q ′

2 )

− 2(q2l1)(q1q ′
1)+ (q 2

2 − q 2
1 )(l1k)+ q 2

1 q ′ 2
2 − k2q 2

2

)}
, (9.290)

where

σi j = (l i + (−1) j xi q j )
2 + x1x2q 2

j . (9.291)

It is easy to see that F Q Q̄ decreases as l−4
i at l2

i → ∞, such that the integral (9.287) is well
convergent in the ultraviolet region. This is not surprising because (9.287) describes real
particle production. Less evident is the fact exhibited by (9.290) that F Q Q̄ does not contain
infrared singularities. However, this fact is also predictable, because up to a numerical
coefficient K (s)�

Q Q̄
coincides with the imaginary part of virtual photon-scattering amplitudes.
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Therefore K (s)
Q Q̄

is called the abelian part of the quark contribution to the colour-singlet

kernel, in contrast to the non-Abelian part 2K (8a)

Q Q̄
(see (9.280)).

In spite of the fact that F Q Q̄ has nice ultraviolet and infrared behaviour, and the integra-
tion in (9.271) can be performed at D = 4, the result is very complicated. The complexity
is evidently related to nonplanar diagrams as is well known. In fact, K (s)

Q Q̄
was calculated

many years ago [123],[124] within the framework of QED and can be obtained from the
results found there. We have

K (s)
Q Q̄
(q1, q ′

1; q) = α2
s

2π3

(
− n f

N 3
c

)
K1

(
q1 − q

2
,−q ′

1 − q
2

)
, (9.292)

with the function K1 given by Eq. (A39) of Ref. [124], where on the right-hand side the
substitutions

q → q1 − q
2
, q ′ → q ′

1 − q
2
, r → q

2
, Q → q1 −q(1− y), Q ′ → q ′

1 −q(1−x)

(9.293)
must be done. Note that the Abelian part of the quark contibution is suppressed at large Nc.
It is worthwhile to note that right side of Eq. (9.292) contains a nonzero fermion mass and,
at first sight, has a logarithmic singularity when the mass tends to zero; but the singularity
is spurious because of cancellations among various terms.

The piece K (s)GG of the gluon contribution to the singlet kernel is called the symmetric
part. It also has neither ultraviolet nor infrared singularities. For the former ones the reason
is evident: K (s)GG , as well as K (s)

Q Q̄
, describes real particle production. But absence of the

infrared singularities is achieved in a much more intricate way. Indeed, FGG is infrared
singular; in K (s)GG the singularities are absent due to the cancellation between K (s)�GG and
the subtraction term in (9.289). It is possible, however, to perform the cancellation before
integration ([119]). The matter is that due to the factorization property (9.87) and (9.92) of
the two-gluon production vertex one has(

2g2 NccR

(2π)D−1

)2

FGG
a (l1, l2)

∣∣∣
x1=1

= K (R)Br
(
q1, q1 − l1; q

)
K (R)Br

(
q1 − l1, q ′

1; q
)

(q1 − l1)2(q2 + l1)2
.

(9.294)

and(
2g2 NccR

(2π)D−1

)2

FGG
a (l1, l2)

∣∣∣
x2=1

= K (R)Br
(
q1, q1 − l2; q

)
K (R)Br

(
q1 − l2, q ′

1; q
)

(q1 − l2)2(q2 + l2)2
.

(9.295)

From the expression (9.84) one can see that the tensors bαβ(q; l1, l2) drop as 1/l 2
i for

l 2
i → ∞ at fixed xi . Therefore, the integral over l i in Eq. (9.271) is well convergent

in the ultraviolet region, so that the restrictions imposed by the theta-function can be
written as

xi ≥ l 2
i

s�
, (9.296)

and the subtraction term in (9.268) acquires the form
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g4 N 2
c c2

R

(2π)D−1

∫
d2+2εl1
(2π)D−1

(
FGG

a (l1, l2)|x1=1 + FGG
a (l1, l2)|x2=1

)
ln

(
s2
�

l2
1l2

2

)

= 8g4 N 2
c aR

∫
dφGG

(2π)D−1

(
x1 FGG

a (l1, l2)|x1=1 + x2 FGG
a (l1, l2)|x2=1

)
+ g4 N 2

c aR

(2π)D−1

∫
d2+2εl1
(2π)D−1

(
FGG

a (l1, l2)|x1=1 − FGG
a (l1, l2)|x2=1

)
ln

(
l2
2

l2
1

)
. (9.297)

Here the equality aR = c2
R , the expression (9.270) for the phase-space element with

account of the identity factor 1/2! and the restrictions given by the inequality (9.296)
on xi were taken into account. Note that the second integral on the right-hand side of
Eq. (9.297) is completely antisymmetric with respect to the substitution q1 ↔ −q ′

1,
q ↔ −q. Therefore, the subtraction term can be obtained by symmetrization of the first
integral. Consequently, using the definition(

f (x)

x(1 − x)

)
+

≡ 1

x
[ f (x)− f (0)] + 1

(1 − x)
[ f (x)− f (1)], (9.298)

we can write the two-gluon contribution to the kernel (9.268) in the limit s� → ∞ in the
form of

K (R)GG(q1, q ′
1; q) = 2g4 N 2

c

(2π)D−1
Ŝ

1∫
0

dx
∫

d2+2εl1
(2π)D−1

(
aR FGG

a (l1, l2)+ bR FGG
b (l1, l2)

x(1 − x)

)
+
,

(9.299)

where x ≡ x1 and the operator Ŝ symmetrizes with respect to the substitution q1 ↔ −q ′
1,

q ↔ −q. We have used here that FGG
b (l1, l2)|x1=0 = FGG

b (l1, l2)|x1=1 = 0, according to
the definition (9.273) and the properties bαβ(q1; l1, l2)|x1=0 = bβα(q1; l2, l1)|x1=1 = 0 .
Consequently, for the symmetric part, one has

K (s)GG(q1, q ′
1; q) = g4 N 2

c

(2π)D−1
Ŝ
∫ 1

0
dx
∫

d2+2εl1
(2π)D−1

(
FGG(l1, l2)

x(1 − x)

)
+
, (9.300)

where the function FGG(l1, l2) = FGG
a (l1, l2)+ FGG

b (l1, l2) is given by the convolution

FGG(l1, l2) = (
bαβ(q1; l1, l2)+ bβα(q1; l2, l1)

) (
bαβ(q

′
1; l1, l2)+ bβα(q

′
1; l2, l1)

)
.

(9.301)
The calculation of K (s)GG(q1, q ′

1; q) is more convenient because the sum

bαβ(q1; l1, l2)+ bβα(q1; l2, l1) = q2
1⊥l1⊥αl2⊥β

l2
1⊥l2

2⊥

+ 1

2
g⊥
αβx1x2

q2
1⊥ − 2q1⊥l1⊥

σ11
+ x2l1⊥αq1⊥β − x1q1⊥α(q1 − l1)⊥β

σ11
+ x1

q2
1⊥l1⊥α(q1 − l1)⊥β

k2
1⊥σ11
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+ 1

2
g⊥
αβ x1x2

q2
1⊥ − 2q1⊥l2⊥

σ12
+ x1q1⊥αl2⊥β − x2(q1 − l2)⊥αq1⊥β

σ12
+ x2

q2
1⊥(q1 − l2)⊥αl2⊥β

l2
2⊥σ12

,

(9.302)

looks simpler than bαβ(q1; l1, l2) and bβα(q1; l2, l1) taken separately. Nevertheless, it evi-
dently contains infrared singularities. Therefore, in contrast to the quark case, the function
FGG contains the piece FGG

sing which is infrared singular. But one can check that this piece

does not depend on x . On the other hand, the boundary values FGG |x=0 and FGG |x=1

do not contain new (i.e. different from FGG
sing) nonintegrable infrared singularities in the

limit ε → 0. Therefore, such singularities are absent in
(
FGG/[x(1 − x)])+, such that

the integration in (9.300) can be performed at D = 4, as in the quark case. Nevertheless,
because of the contribution of nonplanar diagrams the result is very complicated. As could
be expected, the result is more complicated than in the quark case, because besides contri-
butions of cross-box diagrams it contains contributions of cross-hexagon and cross-octagon
diagrams. The result is given in the Appendix.

9.7.5 Möbius representation of the next-to-leading order kernel

The singlet kernel is strongly simplified in the Möbius representation, i.e. in the space of
impact parameters r1, r2 and functions vanishing at r1 = r2 [125]–[127]. In the next-to-
leading order, a general form of the kernel in this representation is (compare with (9.213)):

〈r1r2|K̂M |r ′
1 r ′

2〉 = δ(r11′)δ(r22′)
∫

d r0g0(r1, r2; r0)

+ δ(r11′)g1(r1, r2; r ′
2)+ δ(r22′)g1(r2, r1; r ′

1)+
1

π
g2(r1, r2; r ′

1, r ′
2) (9.303)

with the functions gi turning into zero when their first two arguments coincide. The first
three terms here contain ultraviolet singularities which cancel in their sum, as well as in
the leading order, with account of the dipole property of the target impact factors. The
coefficient of δ(r11′)δ(r22′) is written in the integral form in order to make the cancellation
evident. The function g2 is absent in the leading order because the leading order kernel in
the momentum space does not contain terms depending on all three independent momenta
simultaneously.

Note that the next-to-leading order kernel is ambiguious. In the BFKL approach, scatter-
ing amplitudes are invariant (see, for example, (9.123)) under the operator transformation
of the kernel

K̂ → Ô−1K̂Ô (9.304)

accompanied by corresponding transformations of the impact factors. Even if the kernel
is fixed in the leading order by the requirement of the conformal invariance of its Möbius
form, transformations with Ô → 1 − Ô , where Ô ∼ g2, are still possible. Then

K̂ → K̂ − [K̂B Ô], (9.305)
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where K̂B is the leading order kernel. These transformations rearrange next-to-leading
order corrections to the kernel and impact factors and can be used for simplification of the
kernel. The operator adopted in [125]–[127] is:

Ô = − αs

8π
β0 ln

(
q̂1

2q̂2
2
)
, β0 =

(
11

3
Nc − 2n f

3

)
. (9.306)

At first sight, there is one more ambiguity of the next-to-leading order kernel, related to
the choice of the energy scale. But it was shown [128] that changes of the energy scale
can be compensated by corresponding redefinitions of the impact factors. It means that the
ambiguity in the energy scale gives nothing new as compared with (9.305).

With the transformation (9.305), (9.306) one has

g1(r1, r2; r ′
2) = αs(4e−2γ /r 2

12)Nc

2π2

r 2
12

r 2
22′ r 2

12′

[
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2
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+ r 2

12′

2r 2
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12

r 2
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))]
,

(9.307)

where γ $ 0.577216 is Euler’s constant,

αs(q 2) = αs(μ
2)

(
1 − β0

αs(μ
2)

4π
ln

(
q2

μ2

))
. (9.308)

The function g0 can be taken in different forms giving the same integral contribution. One
can take

g0(r1, r2; r0) = −g(r1, r2; r0)+ α2
s N 2

c

8πr3

r 2
12

r 2
10r 2

10

ln

(
r 2

10

r 2
12

)
ln

(
r 2

20

r 2
12

)
. (9.309)

The function g2 is not so simple (although it is incomparably simpler than the kernel in the
momentum representation):

g2(r1, r2; r ′
1, r ′

2) = α2
s N 2
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4π3

⎡⎢⎢⎣ 1

2r 4
1′2′

(
r 2

12′ r 2
21′

d
ln

(
r 2

12′ r 2
21′

r 2
11′ r 2

22′

)
− 1

)(
1 + n f

N 3
c

)

−
(
(4 + n f /N 3

c )

4r 4
1′2′

r 2
12 r 2

1′2′
d

− 1

4r 2
11′ r 2

22′

(
r 4

12

d
− r 2

12

r 2
1′2′

))
ln

(
r 2

12′ r 2
21′

r 2
11′ r 2

22′

)

+
ln

(
r 2

12
r 2

1′2′

)
4r 2

11′ r 2
22′

+
ln

(
r 2

12 r 2
1′2′

r 2
11′ r 2

22′

)
2r 2

12′ r 2
21′

(
r 2

12

2r 2
1′2′

+ 1

2
− r 2

22′

r 2
1′2′

)
+

r 2
12 ln

(
r 2

12r 2
1′2′

r 2
12′ r 2

21′

)
4r 2

11′ r 2
22′ r 2

1′2′



9.7 Next-to-leading order BFKL 515
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⎤⎥⎥⎦ , (9.310)

where d = r 2
12′ r 2

21′ − r 2
11′ r 2

22′ . The quark part of K̂M agrees with the results obtained in
Refs. [129],[130] by the direct calculation of the quark contribution to the dipole kernel in
the coordinate representation.

Evidently, the conformal invariance is violated in the next-to-leading order by renor-
malization. It is seen, however, that the renormalization is not the only source of the
violation. Note that the abelian part of the quark contribution to the dipole kernel
in the coordinate representation. But the gluon part of the dipole kernel, which was
found then in [131], disagrees with Eq. (9.310). However, it was shown [132] that with
account of the correction made in [133] the transformations (9.305) permit to match
these parts also. Moreover, these transformations allow to present the kernel in the
form where the conformal invariance is violated only by renormalization. It is espe-
cially interesting for the QED Pomeron and Yang-Mills theories with N = 4 extended
supersymmetry.

9.7.6 Impact factors

In the BFKL approach, scattering amplitudes are given by the convolution of the impact
factors of interacting particles with the Green’s function of two interacting reggeized glu-
ons. All energy dependence is defined by the universal (i.e. process independent) Green’s
function, which is determined by the BFKL kernel. The impact factors describing the scat-
tering of particles by the reggeized gluons contain all the dependence on the nature of the
particles and are energy independent. For a consistent description of scattering amplitudes
in the BFKL approach one needs to know the impact factors with the same accuracy as the
kernel.

On the parton level, the next-to-leading order impact factors have been calcu-
lated for quarks and gluons [55],[56],[134] and for forward-jet production [135],[136].
As a rule, the next-to-leading order impact factors are rather complicated and we
don’t present them here. The exception is the impact factors for partons (quarks
and gluons) in scattering amplitudes with a colour-octet t-channel exchange and neg-
ative signature. Because of the gluon reggeization, they are expressed in terms of
the reggeon vertices and the process-independent eigenstate |Rω(q⊥)〉 of the colour-
octet kernel (see (9.230)). The reggeon vertices for quarks and gluons are given
by Eqs. (9.48) and (9.48) correspondingly. In the leading order the matrix elements
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〈G1G2|Rω(q⊥)〉 are defined in (9.233). In the next-to-leading order they acquire the
factor [111]:

Rω(q1, q2) = 1 + ω(t)

2

[
K̃1 +

((
q 2

1

q 2

)ε
+
(

q 2
2

q 2

)ε
− 1

)

×
{

1

2ε
+ ψ(1 + 2ε)− ψ(1 + ε)+ 11 + 7ε

2(1 + 2ε)(3 + 2ε)
− n f

Nc

(1 + ε)
(1 + 2ε)(3 + 2ε)

}

− 1

2ε
+ ψ(1)+ ψ(1 + ε)− ψ(1 − ε)− ψ(1 + 2ε)

]
, (9.311)

where q = q1 + q2, ω(t) is the one-loop gluon trajectory,

K̃1 = (4π)2+ε�(1 + 2ε)ε
(
q 2
)−ε

4�(1 − ε)�2(1 + ε)
∫

d D−2k

(2π)D−1
ln

(
q 2

k 2

)
q 2

(k − q1)
2(k + q2)

2
. (9.312)

The result of integration in (9.312), in form of expansion in ε, can be found in Ref. [56].
Among the impact factors of colourless objects, the most important one from the phe-

nomenological point of view is the virtual-photon impact factor, because it is determined
from the first principles in perturbative QCD and opens the way to predictions of the γ ∗γ ∗
total cross section. Its calculation turned out to be a very complicated problem, which
is not yet completely solved after long-standing efforts [137]–[142]. Recently, important
progress was reached in solution of a related problem: the next-to-leading order impact
factor for the transition of a virtual photon to a light-vector meson was found as a closed
analytical expression in the case of t = 0 and longitudinal polarizations [143],[144],[143].
The knowledge of the γ ∗ → V impact factor allows determination completely within
perturbative QCD and with NLA accuracy the amplitude γ ∗γ ∗ → V V [145]–[147].

9.7.7 Next-to-leading order BFKL pomeron at zero momentum transfer

The kernel simplifies considerably in the case of forward scattering. Actually, just this case
was considered at first. The quark-antiquark pair production contribution was calculated
in Refs. [57],[58],[59],[148]–[151], for massive as well as for massless quarks. Denoting,
as well in the leading order, K (q1, q ′

1 ) = K (q1, q ′
1 ; 0)q −2

1 q ′ −2
1 , we have for massless

quark flavours

K Q Q̄(q1, q2) = 4ḡ4
μμ

−2εn f

π1+ε�(1 − ε)N 3
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+ 1
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2 )

[
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]
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2
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, (9.313)

where k = q1 − q2. The right-hand side of Eq. (9.313) exhibits several terms with unphys-
ical singularities at q 2

1 = q 2
2 . It is not difficult to see that the only real singularity is at

k 2 = 0. All others are spurious and singular terms cancel each other. As for the singularity
at k 2 = 0, the region of such small k 2 where ln(1/k 2) ∼ 1/ε is essential in the subse-
quent integration over k. In order to retain all terms which give nonzero contributions in
the physical case ε → 0 we must not expand (k2/μ2)ε in powers of ε in such terms and
have to keep the terms of order ε in the coefficient.

Investigation of the two-gluon production contribution was started in [60]; the next step
was done in [57]. The final result obtained in [63] is:

KGG(q1, q2) = 4ḡ4
μμ

−2ε
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(
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where Li2(z) = −
z∫

0

dt

t
ln(1 − t) is the dilogarithm and ζ(n) =

∞∑
k=1

k−n is the Riemann

ζ -function.
From (9.265), using K (R)G (9.267) for the forward case (singlet representation and q = 0)

we obtain the total real part of the forward kernel Kr (q1, q2) [152]:

Kr (q1, q2) = 4g2
μ μ
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(
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where β0 = (11/3)Nc − 2n f /3 is the first coefficient of the β-function,
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, (9.316)

f2(q1, q2) = −
(
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. (9.317)

As usual, the terms ∼ ε are taken into account in the coefficient at k −2 in order to save all
contributions nonvanishing in the limit ε → 0 after the integrations. The remarkable fact
exhibited by Eq. (9.315) is the cancellation of the 1/ε2 terms which are present in KG and
KGG . After cancellation of the terms ∼ 1/ε2 the leading singularity of the kernel is 1/ε.
Because of the singular behaviour of the kernel at k 2 = 0 it turns again into ∼ 1/ε2 after
subsequent integrations of the kernel and cancels with the singularity in the virtual part of
the kernel.

There is the representation of the gluon trajectory [127] which allows the cancellation
explicitly. Taking into account the charge renormalization (9.60) in Eqs. (9.57), (9.58) and
retaining in the integrand only terms giving nonvanishing contribution to the trajectory in
the limit ε → 0, one has
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ω(−q 2) = − ḡ2
μ q 2

π1+ε�(1 − ε)
∫

d2+2εk μ−2ε

k 2(k − q)2

(
1 + ḡ2

μ fω(k, k − q)
)
, (9.318)

where

fω(k1, k2) = β0
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and k12 = k1 − k2. The representation (9.318)–(9.319) is extremely convenient, since it
enables to get easily the expression (9.63) for the trajectory in the limit ε → 0. But its
main advantage is that it gives the possibility to perform explicitly the cancellation of the
infrared singularities and writing of the kernel at the physical space-time dimension D = 4.
Let us introduce the cut-off λ→ 0, making it tending to zero after taking the limit ε → 0,
and divide the integration region in the integral representation of the trajectory (9.318) into
three domains. In two of them either k 2 ≤ λ2, or (k − qi )

2 ≤ λ2, and in the third one both
k 2 > λ2 and (k − qi )

2 > λ2. Then in the third domain we can take the limit ε = 0 in
(9.319) and put fω(k1, k2) = f (0)ω (k1, k2), where
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. (9.320)

In the first domain we have

fω(k, k − q) = β0

εNc
−
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)ε [
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(9.321)

and in the second domain we have the same expression with the substitution k 2 → (k −
q)2. Comparing (9.315) with (9.320), we see that the contribution of (9.315) from the
region k 2 < λ2 cancels almost completely the contributions of the regions k 2 ≤ λ2

and (k − qi )
2 ≤ λ2 in the doubled trajectory ω(−q 2). The only piece which remains

uncanceled at ε → 0 in the trajectory is

ḡ4
μ
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∫
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2
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On account of this cancellation and using the equality∫
d2k

4π
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k 2(k − q)2
ln
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)
ln
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)
= ζ(3), (9.323)
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we can put

K(q, l) = αs(μ
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This representation facilitates calculation of the eigenvalues of the kernel. Strictly speak-
ing, because of the charge renormalization the eigenfunctions of the leading order kernel
not are any more eigenfunctions of the next-to-leading order kernel. But with required
accuracy we can write

αs(μ
2) = αs(q 2)

(
1 + β0

4π
αs(q 2) ln

(
q 2

μ2

))
, (9.325)

and obtain [152],[153]∫
d2l K(q, l)

(
l 2

q 2

)γ−1

= ω(q 2, γ ) = αs(q 2) Nc

π
χ(γ ),

χ(γ ) = χB(γ )+ αs Nc

π
χ(1)(γ ). (9.326)

Here χB(γ ) is given by (9.148) and the correction χ(1)(γ ) is:

χ(1)(γ ) = −1
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where

φ(γ ) = −
1∫
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]
. (9.328)

Note that almost all the terms in χ(1)(γ ) except the contribution −β0/(8Nc)χ
′
B(γ ) are

symmetric with respect to the transformation γ ↔ 1 − γ . It is possible to remove this
contribution [152] redefining the function l 2(γ−1) by including in it the logarithmic factor
(αs(l 2)/αs(μ

2))−1/2.
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For the relative correction r(γ ) defined by χ(1)(γ ) = −r(γ )χB(γ ) in the symmetrical
point γ = 1/2, corresponding to the largest eigenvalue of the leading order kernel, we have

r
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n f
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c
. (9.329)

This shows that the correction is very large.
The great value of the correction became the subject of intensive discussion (see, for

example, [154]–[162]) just after appearance of the result. Some authors paid attention to
various problems related to the next-to-leading order BFKL (negative values for the gluon-
splitting function Pgg(x, αs) [154], which was considered an incompatibility of the BFKL
approach with the Q2 evolution of structure functions and absence of any phenomeno-
logical relevance in the ln(1/x) summation [155]; appearance of a cut in the complex j
plane along the whole real axis, which makes questionable the use of the complex angu-
lar momentum variable [156]). There was an attempt [157] to overcome the problem of
the large and negative correction to the pomeron intercept using the fact that the cor-
rected eigenvalue function (9.326) completely changes its ν-dependence (see Fig. 9.11).
In the leading order, the point ν = 0 corresponds to the maximal eigenvalue of the
kernel (pomeron intercept). In the next-to-leading order, this is true only at very small
αs (αs ≤ 0.05). For values of αs above 0.5 instead of having a single maximum at ν = 0
the function ω(q 2, γ ), γ = 1/2 + iν, has a local minimum here. Near ν = 0, we have

ω(q 2, γ ) $ ω0 + aν2 − bν4, (9.330)

where for αs = 0.15 ω0 = 0.021, a = 4.19, b = 47.4. The maximum of the
eigenfunction is at ν2 = a/2b and

σ ∼ s(ω0+a2/4b) $ s0.12. (9.331)
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Fig. 9.11. Dependence ω(q 2, 1/2 + iν) on ν for αs = 0.15.
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However, the solution obtained in [157] contains oscillations which can lead to negative
cross sections. The oscillation were confirmed in [158] with the conclusion that the next-
to-leading order BFKL has a serious pathology.

In [159], the iteration formalism for the complete next-to-leading order kernel was
developed and the resummed Green’s function was obtained. It was discovered that the
running coupling part of the kernel leads to a non-Regge term in the energy dependence of
high-energy hard scattering:

G(q1, q2) $ 1

2π
√
πDq 2

1 q 2
2 Y

exp

[
ωP Y −

(
ln q 2

1 − ln q 2
2

)2
4DY

+ D

3

(
αs(μ

2)ωB
P

)2
Y 3

]
,

(9.332)
where D is the diffusion coefficient (9.161), so that the Regge asymptotics is valid only in
a limited region of energy Y ≤ (αs)

−5/3.
Other authors tried to make the next-to-leading order BFKL sensible. It is necessary for

this to reduce the relative value of the next-to-leading order correction, i.e. to rearrange the
perturbation expansion in some way. One of the first attempts [160] to do it was based on a
suggestion of Lipatov to limit from below the relative rapidities of produced particles in the
LLA. The idea was to include in the LLA only the interval of rapidity where correlations
in the hadron production processes become unimportant. Evidently it reduces the leading
order intercept and consequently the next-to-leading order correction. Unfortunately, this
approach did not gain further development.

There is a possibility to reduce the correction by the choice of an appropriate renormal-
ization scheme and scale setting [161]. As is well known (see Chapter 1), any physical
value calculated in a fixed order of perturbation theory depends on a renormalization
scheme and scale taken for a coupling. In the eigenvalue function (9.326) χ(1)(γ ) is scheme
and scale dependent. In the non-Abelian physical renormalization schemes (such as the
ϒ-scheme) with the BLM scale setting

χ BL M
1 (γ ) = χ(1)(γ )− (β0-dependent terms) (9.333)

the corresponding corrections are not large; this gives an opportunity to apply the next-
to-leading order BFKL to high-energy phenomenology (such as γ ∗γ ∗ scattering) [161].
Moreover, the conformal invariance of the NLA is approximately conserved in this scheme:

ω
next−to−leadingorder
P $ 0.13 ÷ 0.18 (9.334)

in a wide range of virtualities.
To date, the most extended are two approaches to small x resummation. One of them

[162]–[169] is based on the BFKL framework and uses the renormalization group to
improve the BFKL eigenvalue function. The approach was initiated by the observation
[162] that a large part of the next-to-leading order correction to ωP comes from collinear
region. Indeed, the terms with ψ ′′(γ ) and ψ ′′(1 − γ ) in (9.327) are responsible for about
half the next-to-leading order correction to the pomeron intercept. These terms are associ-

ated with double transverse logarithms (ln2
(

q 2/l 2
)
) in (9.324)). Their resummation with

the help of the renormalization group considerably improves properties of the kernel.
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Another approach [170]–[176] is based on the DGLAP framework with use of the BFKL
results for improvement of the anomalous dimensions in the region of j close to 1. Now
there is a complete agreement between these two approaches.

Until recently, the small x resummation was not necessary for DIS phenomenology,
because next-to-leading order DGLAP description of data was quite satisfactory. The rea-
son is the absence of the second and third order terms in the expansion (9.171). However,
with the advent of next-to-next-to-leading order [177] the resummation became necessary.

As well as in the leading order (see subsection 9.5.3), the eigenvalue function ω(q 2γ )

(9.326) can be applied to the calculation of anomalous dimensions of the twist-2 operators
in the vicinity of the point ω = j − 1 = 0. However, here we meet a complication. In the
LLA, the energy scale s0 entering in the Green’s function (9.112) (recall that Y = ln(s/s0))

and in the discontinuity (9.107) is optional. It is not so in the NLA. As it is seen from the
general representation (9.254) at n = 0, i = 0, j = n + 1, in the NLA s0 = Q A Q B ,
where Q A and Q B are typical momenta for the impact factors  A and  B . Therefore for
the deep inelastic moments (9.166) instead of (9.167) we obtain

Mω(Q
2) = 1

4(2π)2

∫
dq
q2

∫
d l

l2
 A(q)eω ln(Q/Q B )Gω(q, l) B(l), (9.335)

where Gω after averaging over the azimuthal angle takes the form (9.168), with αs =
αs(q 2) and χ(γ ) given by (9.326). As the result, for the anomalous dimension γω(αs) one
obtains

γω = ω

2
+ χ−1

(
πω

Ncαs

)
, (9.336)

where χ−1 is the inverse function. In other words, the anomalous dimensions γω(αs) of
the twist-2 operators near the point ω = 0 are determined from the solution of the equation
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(9.337)

for γ → 0. This equation was derived in [152] and used to reproduce the known results
and predict the higher-loop correction for ω → 0:
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. (9.338)

The result for the three-loop correction was confirmed later in [177],[178].
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The representation (9.324) is useful for finding all eigenvalues of the kernel. Defining∫
d2l K (q, l)
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where χB(γ, n) is given by (9.153), and using the integrals∫
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(
l 2

q 2

)γ−1

ein(φl−φq ) ln2
(

q 2

l 2

)
= χ ′′

B(γ, n)), (9.341)

∫
d l
π

(
l 2

q 2

)γ−1

ein(φl−φq ) f2(q, l) = F(n, γ ), (9.342)

where

F(n, γ ) = π2 cos (πγ )

sin2 (πγ ) (1 − 2γ )

[
γ (1 − γ ) (δn,2 + δn,−2

)
2 (3 − 2γ ) (1 + 2γ )

×
(

1 + n f

N 3
c

)
−
(

3γ (1 − γ )+ 2

(3 − 2γ ) (1 + 2γ )

(
1 + n f

N 3
c

)
+ 3

)
δn,0

]
, (9.343)

and ∫
d l
π

(
l 2

q 2

)γ−1

ein(φl−φq ) f1(q, l) = −2 ( (n, γ )+ (n, 1 − γ )) , (9.344)

where

 (n, γ ) =
∫ 1

0

dt

1 + t
tγ−1+n/2

{
π2

12
− 1

2
ψ ′
(

n + 1

2

)
− Li2 (t)− Li2 (−t)

−
(
ψ (n + 1)− ψ (1)+ ln (1 + t)+

∞∑
k=1

(−t)k

k + n

)
ln t −

∞∑
k=1

tk

(k + n)2

[
1 − (−1)k

]}
,

(9.345)
we come to the correction obtained in [179]:

4χ(1) (γ, n) = − β0

2Nc

(
χ2

B(γ, n)+ χ ′
B(γ, n)

)
+ 6ζ (3)− χ ′′

B(γ, n)

+
(

67

9
− π2

3
− 10

9

n f

Nc

)
χB(γ, n)− 2 (n, γ )− 2 (n, 1 − γ )+ F (n, γ ) . (9.346)

The integrals (9.340)–(9.345) can be calculated using the expansions

1 − t2

1 − 2t z + t2

∣∣∣∣
|t |<1

= 1 + 2
∞∑

n=1

tnTn (z) , ln
(

1 − 2t z + t2
) ∣∣∣∣

|t |<1

= −2
∞∑

n=1

tn

n
Tn (z) ,

(9.347)
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where Tn(z) are the Chebyshev polynomials with the properties

2Tn(z)Tm(z) = Tn+m(z)+ T|n−m|(z), T0(z) = 1, T−n(z) = Tn(z),∫ π

−π
dφ

π
einφTm(cosφ) = 2

∫ π

0

dφ

π
einφTm(cosφ) = δnm (1 + δn0) . (9.348)

9.7.8 Appendix

The result of integration in (9.300) is written [119] in the form:

K (s)GG(q1, q ′
1; q) = α2

s N 2
c

4(2π)3

{[(
q 2

2

(
4q 2

1 q ′ 2
1 − (k 2 − q 2

1 − q ′ 2
1 )

2

k 2
I (k 2, q 2

1 , q ′ 2
1 )

− k 2 + q ′ 2
1 − q 2

1

k 2
ln

(
k 2

q ′ 2
1

)
ln

(
q 2

1

q ′ 2
1

))
+ q 2 ln

(
q 2

1

q 2

)
ln

(
q 2

2

q 2

)

−(q 2
1 + q 2

2 − q 2)

(
100

9
− 2ζ(2)

)
+ 11

3

(
q 2

1 ln

(
q 2

1

k 2

)
+ q 2

2 ln

(
q 2

2

k 2

)
− q 2 ln

(
q 2

k 2

))

−4J (q1, q ′
1; q)

)
+
(

qi ↔ −q ′
i )

)]
+
[

1 ↔ 2

]}
, (9.349)

where 1 ↔ 2 means q1 ↔ q2, q ′
1 ↔ q ′

2 (and consequently k ↔ −k; remind that
k = q1 − q ′

1 = −q2 + q ′
2); the integral I (a, b, c) is defined in (9.283), (9.284), and

J (q1, q ′
1; q) =

∫ 1

0
dx
∫ 1

0
dz

{
q1q2

(
(x1x2 − 2) ln

(
Q2

k 2

)
+ 2

x1
ln

(
Q2

Q2
0

))

− 1

2Q2
x1x2(q 2

1 − 2q1 p1)(q
2
2 + 2q2 p2)+

2

x1

[(
x2q1q2( p1(q2 + p2))− q 2

2 q1 p2

) 1

Q2

+
(

q 2
2 (zq1k − (1 − z)q1q2)− z(1 − z)q ′ 2

2 q1q2

) 1

Q2
0

]
− 1

Q2

(
q 2

2 q1
(

p1 + 2q2
)

− 4x1q 2
1 (q2 p2)+ q2q1(q2q1 − q2 p1 + q1 p2)− 2(q2 p1)(q1 p2)+ 2(q2 p2)(q1 p1)

)
+ q 2

2

[
1

μ2
2 Q2

(
2

x2

x1
(q1 p2)q2k + x2(q2 p2)(q

′ 2
1 − k 2)− 2(q ′

1 p2)q1q
)

− 2

μ2
0 Q2

0

1

x1
(q1 p0)q2k + q1(q2 − k)

x1

(
x2

p 2
2

ln

(
Q2

μ2
2

)
− 1

p 2
0

ln

(
Q2

0

μ2
0

))

+ 1

p 2
2

(
1

p 2
2

ln

(
Q2

μ2
2

)
+ 1

Q2

)(
2

x2

x1
(q1 p2)(k − q2) p2 + 2((x2q2 − q ′

1) p2)q1 p2

)
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− 1

p 2
0

(
1

p 2
0

ln

(
Q2

0

μ2
0

)
+ 1

Q2
0

)(
2

1

x1
(q1 p0)(k − q2) p0

)
− (x2q2 − q ′

1)q1

p 2
2

ln

(
Q2

μ2
2

)

− q 2
1

d

(
(q ′

1k)(q ′
2k)

(
Q2

d
L − 1

k 2

)
+ (q ′

1 p2)(q
′
2k)

(
1

μ2
2

− μ2
1

d
L
)

+ (q ′
1k)(q ′

2 p1)

×
(

1

μ2
1

− μ2
2

d
L
)

+ (q ′
1 p2)(q

′
2 p1)

(
k 2

d
L − 1

Q2

)
+ (q ′

1q ′
2)

2
L
)]}

. (9.350)

Here we use the following notations:

p1 = zxq1 + (1 − z)(x k + (1 − x)q ′
2), p2 = z((1 − x)k − xq ′

1)− (1 − z)(1 − x)q2;
p1+ p2 = k, Q2 = x(1−x)(q 2

1 z+q 2
2 (1−z))+z(1−z)(q ′ 2

1 x +q ′2
2 (1−x)−q 2x(1−x)),

μ2
i = Q2 + p 2

i , p0 = zk − (1 − z)q2; Q2
0 = z(1 − z)q ′ 2

2 , μ2
0 = zk 2 + (1 − z)q 2

2 ,

d = μ2
1μ

2
2 − k 2 Q2 = z(1 − z)x(1 − x)

(
(k 2 − q 2

1 − q ′ 2
2 )(k

2 − q ′ 2
1 − q 2

2 )+ k 2q 2
)

+ q 2
1 q ′ 2

1 xz(x + z − 1)+ q 2
2 q ′ 2

2 (1 − x)(1 − z)(1 − x − z), L = ln

(
μ2

1μ
2
2

k 2 Q2

)
. (9.351)

In pure gluodynamics, the real part of the colour-singlet kernel K (0)r can be written in
the limit D = 4 + 2ε → 4 as the sum of two parts:

Kr = K sing
r + K (reg)

r . (9.352)

Here the first contains all singularities:

K sing
r (q1, q2; �q) = 2ḡ2

μμ
−2ε

π1+ε�(1 − ε)

(
q 2

1 q ′ 2
2 + q ′ 2

1 q 2
2

k 2
− q 2

){
1 + ḡ2

μ

[
11

3ε

+
(

k 2

μ2

)ε {
−11

3ε
+ 67

9
− 2ζ(2)+ ε

(
−404

27
+ 14ζ(3)+ 11

3
ζ(2)

)}]}
, (9.353)

and the second, putting ε = 0 and ḡ2
μ = αs(μ

2)Nc/(4π), is given by

K reg
r (q1, q ′

1; q) = α2
s (μ

2)N 2
c

16π3

[
2(q 2

1 + q ′ 2
1 − q 2)

(
ζ(2)− 50

9

)
+ 11

3

(
q 2

1 ln

(
q 2

1

k 2

)

+ q ′ 2
1 ln

(
q ′ 2

1

k 2

)
+ q 2 ln

(
q 2

1 q ′ 2
1

q 4

)
+ q 2

1 q ′ 2
2 − q ′ 2

1 q 2
2

k 2
ln

(
q 2

1

q ′ 2
1

))
+q 2

(
ln

(
q 2

1

q 2

)
ln

(
q 2

2

q 2

)

+ ln

(
q ′ 2

1

q 2

)
ln

(
q ′2

2

q 2

)
+ 1

2
ln2

(
q 2

1

q ′ 2
1

))
+ ln

(
q 2

1

q ′ 2
1

)(
q 2

2
2

ln

(
q ′ 2

1

k 2

)
− q ′2

2
2

ln

(
q 2

1

k 2

)
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− q 2
1 q ′ 2

2 + q ′ 2
1 q 2

2

2k 2
ln

(
q 2

1

q ′ 2
1

)
+ q 2

2 (q
2
1 − 3q ′ 2

1 )

2k 2
ln

(
k 2

q ′ 2
1

)
+ q ′ 2

2 (3q 2
1 − q ′ 2

1 )

2k 2
ln

(
k 2

q 2
1

))

+
(

q 2(k 2 − q 2
1 − q ′ 2

1 )+ 2q 2
1 q ′ 2

1 − (q 2
1 − q ′ 2

1 )(q 2
1 + q ′ 2

1 )(q 2
2 − q ′ 2

2 )

2k 2
+ q 2

1 q 2
2 + q ′ 2

1 q ′ 2
2

− k 2

2 (q
2
2 + q ′ 2

2 )

)
I (k 2, q ′ 2

1 , q 2
1 )− 2J (q1, q ′

1; q)− 2J (−q ′
1,−q1; −q)

]
+
{

1 ↔ 2

}
.

(9.354)
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10

Further developments in high-energy QCD

10.1 Effective-action approach

10.1.1 Amplitudes with the multi-Regge unitarity

In the Born approximation of QCD, the amplitude for a two-coloured particle scattering is
factorized in the Regge kinematics s � −t (see Fig. 10.1):

M A′ B′
AB (s, t)|Born = �c

A′ A
2s

t
�c

B′ B, �c
A′ A = g T c

A′ A δλA′λA , (10.1)

where T c are the generators of the colour-group SU (Nc) in the corresponding represen-
tation and λr are the helicities of the colliding and final-state particles (see Chapter 9).
Helicity conservation is related to the fact that at small t = −q2 the t-channel gluon inter-
acts with the conserved colour charge. As a result, the matrix elements of this operator
between different states vanish at t = 0 and do not depend on the helicities.

In LLA, the scattering amplitude has the Regge form [1] (see Fig. 10.2 and Chapter 9):

M A′ B′
AB (s, t) = M A′ B′

AB (s, t)|Born sω(t), αs ln s ∼ 1, (10.2)

where the gluon Regge trajectory is

ω(−|q|2) = −
∫

d2k

4π2

αs Nc |q|2
|k|2|q − k|2 ≈ −αs Nc

2π
ln

|q2|
λ2
. (10.3)

Here the fictitious gluon mass λ is introduced to regularize the infrared divergence. This tra-
jectory was calculated also in a two-loop approximation in QCD [2] and in supersymmetric
gauge theories [3].

The gluon production at high energies can be investigated in the multi-Regge kinematics
(see Fig. 10.3)

s � s1, s2, . . . , sn+1 � −t1, −t2, . . . , −tn+1, (10.4)

where sr is the square of the sum of neighbouring particle momenta kr−1, kr , and −tr is
the square of the momentum transfer qr , r = 1, 2, . . . , n + 1. Furthermore, the gluon-
production amplitude in multi-Regge kinematics can be written in factorized form [1]:

M2→1+n = 2s �c1
A′ A

sω1
1

|q1|2 gT d1
c2c1

Cμ1(q2, q1) eμ1 . . .Cμn−1(qn, qn−1) eμn−1

sωn
n

|qn|2 �
cn
B′ B,

(10.5)
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Fig. 10.1. Elastic amplitude.

Fig. 10.2. Regge pole exchange.

pA

pB

q1
k1

k2

s1

s2

kn

q2
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Fig. 10.3. Multi-particle production.

where the gluon–gluon–reggeon (GGR) vertices � contain the Kronecker symbols δλλ′
corresponding to helicity conservation for each of the colliding particles. The reggeon–
reggeon–gluon (RRG) vertex is proportional to the vector

C(q2, q1) = −(q2 + q1)⊥ + PA

(
k PB

PA PB
+ q2

1

k PA

)
− PB

(
k PA

PA PB
+ q2

2

k PB

)
. (10.6)

This vector is gauge invariant: C(q2, q1)k1 = 0. Therefore, we can use arbitrary gauges
for the polarization vector e(k1). There are two convenient light-cone gauges – left-hand
(L) and right-hand (R) ones. The corresponding polarization vectors satisfy the conditions
PAeL = PBeR = 0 and are expressed in terms of their transverse components

eL(k) = e⊥
L − eLk⊥

PAk
PA, eR(k) = e⊥

R − eRk⊥
PBk

PB, keL = keR = 0. (10.7)

The gauge transformation relating these two polarization vectors is given by

eR = eL − 2
k⊥eL

k2⊥
k, k⊥eR = −k⊥eL . (10.8)

In particular, this gives the following relation between their transverse components

ei
R =

(
δir − 2

ki kr

k2

)
er

L . (10.9)
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We can introduce complex coordinates for two-dimensional vectors a

a = a1 + ia2, a∗ = a1 − ia2, a⊥
μ b⊥
μ = −1

2
(ab∗ + a∗b). (10.10)

In these complex notations, one obtains for the RRG vertex

CμeμL (k1) = C∗
L(q2, q1) eL + CL(q2, q1) eL∗, CL(q2, q1) = q∗

1 q2

k∗
1

(10.11)

and

CμeμR(k1) = C∗
R(q2, q1)e

R + CR(q2, q1)e
R∗, CR(q2, q1) = −q1q∗

2

k∗
1
. (10.12)

The above expressions are in agreement with the gauge transformations

eR(k) = − k

k∗ e∗
L(k), CL(q2, q1) = − k1

k∗
1

C∗
R(q2, q1). (10.13)

It is obvious that in multi-Regge kinematics the production amplitude is significantly
simplified. Moreover, with the use of the above relations and the s- and t-channel unitar-
ity conditions one can easily construct the equations of Balitsky–Fadin–Kuraev–Lipatov
(BFKL) [1] and Bartels–Kwiecinskii–Praszalowicz (BKP) [4] in a generalized LLA.
However, in each step of this iterative procedure the imaginary part of the production
amplitude is neglected in comparison with its real part, because one of the energy loga-
rithms is replaced by iπ in the corresponding contribution. As a result, the Froissart bound
σt < c ln2 s for the total cross section is violated in the region g2 ln s � 1.

A natural idea to restore the s-channel unitarity in multi-Regge kinematics is to take
account of the terms g2 ln s and ig2π on equal footing in the above iteration proce-
dure. This so-called iπ approximation was constructed explicitly for amplitudes with
quasi-elastic unitarity [5].

Another possibility to unitarize the scattering amplitudes is to use an effective field
theory in which the Feynman vertices coincide with the above reggeon–gluon effective
vertices � and C [6] (see also Ref. [8]). For this purpose one can introduce new fields A±:

A± = A∓ = A0 ± A3, PμA Aμ =
√

s

2
A−, PμB Aμ =

√
s

2
A+, (10.14)

which describe the production and annihilation of the reggeized gluons in the t-channel.
In multi-Regge kinematics the gluon momentum components αr , βr of the Sudakov
decomposition

qr = βr PA + αr PB + q⊥
r

are strongly ordered:

βr−1 � βr , αr � αr−1. (10.15)

This means that we can neglect the Sudakov component β of the reggeized gluon in prop-
agators and vertices of the particles which emit this t-channel gluon and the Sudakov



536 Further developments in high-energy QCD

component α in corresponding quantities for the particles which absorb it. This kinematical
constraint can be expressed by the relations

∂− A+ = ∂+ A− = 0, A± = A0 ± A3, ∂± = ∂1 ∓ ∂2. (10.16)

Because in propagators of the reggeized gluons one can neglect longitudinal momenta,
their free Green function has the form

〈Aa+(ρ, z) Ab−(0, 0)〉 = −i
δab

2π
ln

1

|ρ|2 δ
2(z), δ2(z) = δ(x3) δ(x0), (10.17)

where a, b are colour indices and ρ is the transverse relative coordinate. We shall assume
also the ordering in the rapidity y+ − y− = �y > 0 for the fields A+ and A−.

To describe the physical gluons with two helicities living in the s-channel intermediate
states it is convenient to introduce a complex scalar field φ in such a way that the corre-
sponding transverse gluon fields V = V1 + iV2 and V ∗ = V1 − iV2 are expressed in terms
of φ as follows:

VR = i∂∗φ, VL = i∂∗φ∗, ∂ = ∂

∂ρ
, ∂∗ = ∂

∂ρ∗ . (10.18)

These definitions are in agreement with the gauge relation ∂VR = −∂∗V ∗
L discussed above.

The extraction of the transverse derivatives from the fields VR and VL is related to the fact
that the above RRG vertex is nonlocal but becomes local in terms of the fields φ, φ∗.

The effective action that describes the interaction of the physical and reggeized gluons
in multi-Regge kinematics is the sum of four contributions [6]:

Sm R
ef f = S f ree + Ss

int + S p
int + Sext . (10.19)

Here S f ree corresponds to kinetic terms for the introduced fields:

S f ree =
∫

d4x

(
1

2
(∂+∂φa)(∂−∂a∗φ∗)+ 2(∂Aa+) (∂∗ Aa−)

)
. (10.20)

From this expression one can derive the propagators of the reggeized and physical gluons.
Note that the kinetic term for the field φ contains four derivatives, which leads to the prop-
agator being a product of two usual propagators for the particle that lives independently in
the longitudinal and transverse subspaces. The propagator in the longitudinal subspace is
obtained after neglecting transverse momenta of the produced gluons in the multi-Regge
kinematics. The second propagator in the transverse subspace appears due to the factors
∂, ∂∗ that arise in the transition from VR and VL to the fields φ∗ and φ.

The term Ss
int

Ss
int =

∫
d4x

(
ja+(x) Aa−(x)+ ja−(x) Aa+(x)

)
(10.21)

with

ja+ = g (∂∗φ∗)T ai∂+∂φ, ja− = g (∂φ∗)T ai∂−∂∗φ (10.22)

describes the physical gluon scattering caused by the emission or absorption of a reggeized
gluon. Due to the kinematical constraint on the fields A± the derivatives ∂± can be applied
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also to the fields φ∗ by integration by parts. Note that helicity conservation of the fields V
is transformed here into charge conservation for the complex field φ.

The term S p
int

S p
int =

∫
d4x

(
ja(x) φ∗a(x)+ j∗a(x) φa(x)

)
(10.23)

with the currents

ja = g (∂∗ A−)T a∂A+, j∗a = g (∂∗ A+)T a∂A− (10.24)

describes the gluon production in the collision of two reggeized gluons.
Finally, the term Sext describes the production and annihilation of the reggeized gluons

by external particles:

Sext =
∫

d4x
(

j ext+ (PB, x)A−(x)+ j ext− (PA, x)A+(x)+ . . .
)
, (10.25)

where j ext± are the colour currents generated by quarks and gluons existing inside the
colliding hadrons.

The S-matrix constructed with the use of the effective action Smr
e f f is a generalization

of LLA amplitudes in QCD because it has multi-Regge unitarity in all subchannels. Other
approaches to unitarization of the amplitudes do not have this property. Note that it is diffi-
cult to formulate this effective theory in a gauge-invariant way. However, such formulation
is possible in a more general approach developed in the next subsection.

10.1.2 Gauge-invariant effective action for reggeized gluons

Initially, calculations of scattering amplitudes in Regge kinematics were performed by an
iterative method based on analyticity, unitarity, and renormalizability of the theory [1]
(see Chapter 9). The s-channel unitarity was incorporated partly in the form of bootstrap
equations for the amplitudes generated by the gluon exchanges. But later it turned out that
for this purpose one can also use an effective field theory for reggeized gluons [7],[9].

The high-energy effective action is written below. It is valid for interactions of particles
having their rapidities y in a certain interval η around the rapidity y0,

y = 1

2
ln
εk + |k|
εk − |k| , |y − y0| < η, η � ln s. (10.26)

The corresponding gluon and quark fields are

vμ(x) = −iT ava
μ(x), ψ(x), ψ̄(x), [T a, T b] = i fabcT c. (10.27)

In the case of supersymmetric models, one should take into account also the gluinos
and scalars with known Yang–Mills and Yukawa interactions. Let us introduce the fields
describing the production and annihilation of reggeized gluons

A±(x) = −iT a Aa±(x). (10.28)
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Under global colour-group rotations, the introduced fields are transformed in the stan-
dard way:

δvμ(x) = [vμ(x), χ], δψ(x) = −χ ψ(x), δA(x) = [A(x), χ], (10.29)

but under local gauge transformations with χ(x)→ 0 for x → ∞ we have [7]

δvμ(x) = 1

g
[Dμ, χ(x)], δψ(x) = −χ(x) ψ(x), δA±(x) = 0. (10.30)

This means that the reggeon fields are gauge invariant.
In quasi-multi-Regge kinematics, the particles are produced in groups (clusters) with

fixed invariant masses. These clusters have significantly different rapidities in accor-
dance with their multi-Regge ordering. Similar to the previous subsection, one obtains
the following kinematical constraints on the reggeon fields:

∂∓ A±(x) = 0, ∂± = nμ±∂μ, (10.31)

where nμ± = δ
μ
0 ± δμ3 . In QCD, the gauge-invariant effective action local in the rapidity y

is of the following form [7]:

Sef f =
∫

d4x (L0 + Lind) , (10.32)

where L0 is the usual Yang–Mills Lagrangian

L0 = iψ̄ � ∇ψ + 1

2
Tr G2

μν, Dμ = ∂μ + gvμ, Gμν = 1

g
[Dμ, Dν] (10.33)

and the induced contribution is given by

Lind = Tr (Lk
ind + LG R

ind ), Lk
ind = 2 ∂μA+∂μA−. (10.34)

Here the gluon–reggeon interaction can be represented in terms of the Wilson P exponents
and their perturbative expansions

LG R
ind = − 1

g
∂+ P exp

(
−g

2

∫ x+

−∞
v+(x ′)dx ′+

)
∂2
σ A−

− 1

g
∂− P exp

(
−g

2

∫ x−

−∞
v−(x ′)dx ′−

)
∂2
σ A+

=
(
v+ − gv+

1

∂+
v+ + g2v+

1

∂+
v+

1

∂+
v+ − . . .

)
∂2
σ A−

+
(
v− − gv−

1

∂−
v− + g2v−

1

∂−
v−

1

∂−
v− − . . .

)
∂2
σ A+. (10.35)

Note that the contribution of LG R
ind to Sef f is gauge invariant and real, which can be verified

by taking its Hermitian conjugate with subsequent integration by parts. It is important also
that the nonlocal factors ∂−1± appear together with the Laplacians ∂2

σ applied to the reggeon
fields A∓ which are functions of coordinates of gluons situated on the light-cone integra-
tion paths in the P exponents. The Laplacians cancel the nearest reggeon propagators in
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momentum space and the P exponents can be interpreted as a coherent contribution of
the diagrams in which the gluons belonging to the given interval |y − y0| of rapidities are
emitted by particles with other rapidities. In principle, these physical properties of LG R

ind are
sufficient for its restoration.

The classical equations of motion for the above effective action can be written as
follows [7]: [

Dμ,G ⊥
μσ

]
= 0, [Dμ,Gμ±] = j ind± , (10.36)

where the induced gauge-invariant currents are

j ind± (x) = S(v∓)∂2
σ A±(x)S+(v∓) (10.37)

and

S(v∓) = P exp

⎛⎜⎝−g

2

x∓∫
−∞

v∓(x ′)dx ′∓

⎞⎟⎠ = 1 − g

∂∓
v∓ +

(
g

∂∓
v∓
)2

− . . . . (10.38)

Note that the two equations (10.36) for the light-cone components of the Yang–Mills
current jσ can be written in another form:

[D∓, j±] = [
D∓, [Dμ,Gμ±]] = 0. (10.39)

As a result, the fields A± can be considered as functions which parametrize their classical
solutions [7]. Indeed, the equations of motion have nontrivial solutions

v± = A± + V±, (10.40)

where the correction V± is of the order of g and can be calculated within the framework of
perturbation theory. This means that A± can be considered as a classical value of the field
v± for weak couplings. Inserting the above decomposition of v± in the effective action we
can expand it in the fields A± and V± [7]:

Sef f = Tr
∫

d4x
(

j+ A− + j− A+ + L2(A+, A−, V )+ O(g2)
)
, (10.41)

where

1

g
j± = −∂2

σ

(
V±

1

∂±
V±
)

+ [Vν, ∂±Vν − 2∂νV±] + [V±, ∂νVν] (10.42)

and

1

g
L2(A+, A−, V ) = −

(
∂2
σ A−

) [
V+,

1

∂+
A+
]

−
(
∂2
σ A+

) [
V−,

1

∂−
A−
]

+ (∂+V− − ∂−V+)[A−, A+] + Vν

(
[A−, ∂ν A+] + [A+, ∂ν A−]

)
. (10.43)

One can verify that under the abelian gauge transformation

Vσ −→ Vσ + ∂σχ (10.44)
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the contribution L2(A+, A−, V ) is invariant and therefore it is possible to use an arbitrary
gauge for Vμ. In the left-hand light-cone gauge V+ = 0 the fields describing the gluon on
its mass-shell and having a physical polarization satisfy the equations(

∂+∂− − ∂2
i

)
Vμ = 1

2
∂+V− − ∂V = 0. (10.45)

With the use of these constraints the production contribution to the action can be
transformed to the form of

S p
e f f = 2g Tr

∫
d4x

(
(∂∗−1VL)[∂∗ A−, ∂A+] + (∂−1V ∗

L )[∂A−, ∂∗ A+]
)
, (10.46)

where we used the complex notation ∂ = (∂1 − i∂2)/2 and ∂∗ for derivatives in the
transverse subspace. Correspondingly, in the right-hand light-cone gauge V− = 0 we
obtain

S p
e f f = −2g Tr

∫
d4x

(
(∂−1V ∗

R)[∂A−, ∂∗ A+] + (∂−1VR)[∂∗ A−, ∂A+]
)
. (10.47)

By going to the new fields φ and φ∗ defined by Eq. (10.18) one can derive the production
term (10.23) in the effective action for multi-Regge processes.

Now let us consider the contribution linear in the reggeon fields A±. This term is not
invariant under the above gauge transformation of the field Vμ. But such invariance appears
provided that the corresponding gluons are on mass-shell and have physical polarization
(∂2
σVμ = ∂μVμ = 0). In this case, it is convenient to choose the left-hand gauge V+ = 0

for the gluon field interacting with the reggeon field A− and the right-hand gauge V− = 0
for the field interacting with A+. The corresponding contribution to the action is simplified
as follows:

Ss
e f f = g Tr

∫
d4x

(
− A−[VL , ∂+V ∗

L ] − A+[VR, ∂−V ∗
R ]
)
. (10.48)

After the transition to the fields φ and φ∗, the above expression gives the corresponding
term (10.21) in the action for the amplitudes with multi-Regge unitarity discussed in the
previous subsection.

The kinetic contribution to the effective action for the field V appears from the free term
in the Yang–Mills action for the field v. The corresponding expressions for the fields A±
include also the bilinear contribution arising from the free action for the fields vσ after the
shift vσ = Aσ + Vσ (cf. (10.20)):

S f ree = −Tr
∫

d4x

(
∂+V ∗∂−V + 4(∂A+)(∂∗ A−)

)
. (10.49)

Thus, the effective action for the amplitudes with multi-Regge unitarity can be derived from
the more general gauge-invariant effective action for the quasi-multi-Regge processes.

From this effective field theory it is possible also to obtain the Bartels–Kwiecinskii–
Praszalowicz (BKP) equation for the colourless composite states of n reggeized gluons [4].
In this equation only the pairwise interaction of gluons is taken into account. The effective
action for the interaction of k reggeized gluons is the sum of the effective actions for pairs
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of gluons in arbitrary colour states. As in the case of the BFKL equation, here the infrared
divergences are cancelled between the virtual contributions corresponding to the gluon
Regge trajectories and the terms appearing from the real gluon emission. We shall discuss
this equation in the next sections.

One can formulate the Feynman rules for the above effective theory directly in momen-
tum space [9]. It is important to take into account the gluon-momentum conservation in
induced vertices

k±
0 + k±

1 + . . .+ k±
r = 0. (10.50)

Some simple examples of the induced reggeon–gluon vertices are

�ν0+
a0c = q2⊥ δa0c (n

+)ν0 , �ν0ν1+
a0a1c = q2⊥ T c

a1a0
(n+)ν1

1

k+
1

(n+)ν0 , (10.51)

�ν0ν1ν2+
a0a1a2c = q 2⊥ (n+)ν0(n+)ν1(n+)ν2

(
T a

a2a0
T c

a1a

k+
1 k+

2

+ T a
a2a1

T c
a0a

k+
0 k+

2

)
. (10.52)

They can be used to construct the effective vertices of various gluon–reggeon interac-
tions [7]. In the general case, the induced vertices are factorized in the form

�ν0ν1...νr +
a0a1... ar c = (−1)r q 2⊥

r∏
s=0

(n+)νs 2 Tr
(
T cGa0a1... ar

)
, (10.53)

where T c are the colour-group generators in the fundamental representation. In more
details, Ga0a1... ar can be written as [9]

Ga0a1... ar =
∑

{i0,i1,...,ir }

T ai0 T ai1 T ai2 . . . T air

k+
i0
(k+

i0
+ k+

i1
) . . . (k+

i0
+ k+

i1
+ . . .+ k+

ir−1
)
. (10.54)

The induced vertices satisfy the recurrence relations (Ward identities) [7]

− k+
r �

ν0ν1... νr +
a0a1... ar c (k

+
0 , . . . , k

+
r )

= n+νr

r−1∑
i=0

i faar ai�
ν0...νr−1+
a0... ai−1aai+1... ar−1c

(
k+

0 , . . . , k
+
i−1, k

+
i + k+

r , k
+
i+1, . . .

)
. (10.55)

With the use of the effective theory developed above one can calculate tree amplitudes
for the production of a cluster of three gluons or of a gluon and a pair of fermions or
scalar particles (in the case of an extended supersymmetric model) in the collision of two
reggeized gluons [9]. It is possible also to derive the gluon-production vertex in the colli-
sion of three reggeons [10]) and the signature structure of production amplitudes [11]. The
square of the amplitude of three-particle production integrated over the momenta of these
particles is one of the main ingredients for the BFKL kernel in the next-to-next-to-leading
approximation. Using this action, it is also possible to calculate loop corrections to various
reggeon-particle vertices. For N = 4 SUSY one can apply for this purpose also the results
obtained by Bern–Dixon–Smirnov [12].
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10.2 BFKL dynamics and integrability

10.2.1 Möbius invariance

Because the production amplitudes in QCD are factorized in the multi-Regge kinematics,
one can write a Bethe–Salpeter-type equation for the total cross section σt in LLA. Using
also the optical theorem the result can be presented as the BFKL equation for the pomeron
wave function [1] (see Chapter 9)

E #(ρ1, ρ2) = H12#(ρ1, ρ2), ω = −αs Nc

2π
E, � = maxω, (10.56)

where the intercept � enters in the expression for the total cross-section σt ∼ s� and the
BFKL Hamiltonian in the coordinate representation is given by [13] (see Chapter 9)

H12 = ln |p1 p2|2 + 1

p1 p∗
2

(
ln |ρ12|2

)
p1 p∗

2

+ 1

p∗
1 p2

(ln |ρ12|2)p∗
1 p2 − 4ψ(1), ρ12 = ρ1 − ρ2. (10.57)

Here the kinetic term ln |p1 p2|2 is the contribution of two-gluon Regge trajectories and the
potential term corresponds to the Fourier transform of the product of two effective RRG
vertices C . Note that the infrared divergence in H12 is cancelled. We used here complex
notations for the transverse coordinates and their canonically conjugate momenta:

ρr = xr + iyr , ρ∗
r = xr − iyr , pr = i∂r , p∗

r = i∂∗
r . (10.58)

The Hamiltonian H12 is invariant under the Möbius transformation [14]

ρk −→ aρk + b

cρk + d
. (10.59)

The corresponding generators for n reggeized gluons are

M =
∑

r

Mn
r=1, M3

r = ρr∂r , M+
r = ∂r , M−

r = −ρ2
r ∂r . (10.60)

As a consequence of the Möbius invariance, solutions f of the above Schrödinger equation
for the pomeron are also eigenfunctions of two Casimir operators

M2 =
(∑

r

Mr

)
2 = −

∑
r<r ′

ρ2
rr ′∂r∂r ′ , M∗2 =

(
M2
)∗
, (10.61)

M2 fm,m̃ = m(m − 1) fm,m̃, M∗2 fm,m̃ = m̃(m̃ − 1) fm,m̃ . (10.62)

Here m and m̃ are the conformal weights defined by the relations [14]

m = γ + n/2, m̃ = γ − n/2, γ = 1/2 + iν (10.63)

for the principal series of unitary representations of the Möbius group. The quantity γ is
the anomalous dimension of the twist-2 operators and the integer n is their conformal spin.
The eigenfunctions of the Casimir operators are well known [14]:
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#m,m̃(ρ1, ρ2) =
(
ρ12

ρ10ρ20

)m (
ρ∗

12

ρ∗
10ρ

∗
20

)m̃

, (10.64)

where ρ0 in the differences ρ10 and ρ20 can be considered the pomeron coordinate. The
eigenvalues E of the Hamiltonian H12 have the holomorphic separability property [15]

Em,m̃ = εm + εm̃, εm = ψ(m)+ ψ(1 − m)− 2ψ(1), (10.65)

where the Euler function ψ(m) = (ln�(m))′ can be written in the integral form

ψ(m)− ψ(1) =
∫ 1

0
dx

1 − xm−1

1 − x
. (10.66)

The ground-state energy is negative

E0 = E 1
2 ,

1
2

= −8 ln 2 (10.67)

and therefore the intercept � = g2 Nc ln 2 /π2 of the BFKL pomeron in LLA is positive
(� ≈ 0.5 for αs ≈ 0.2). This means that the Froissart theorem in this approximation is
not fulfilled. In the next-to-leading approximation [16] the value of the intercept, obtained
with the use of the BLM procedure, is significantly smaller: � ≈ 0.2 [17]. For the unita-
rization of scattering amplitudes we should take into account also the diagrams with many
reggeized gluons which will be considered below.

10.2.2 Large-Nc limit and holomorphic factorization

The Bartels–Kwiecinski–Praszalowicz (BKP) equation for colourless composite states of
several reggeized gluons has the following form [4]:

E #(ρ1, . . . , ρn) = H #(ρ1, . . . , ρn), H =
∑
k<l

T k T l

−Nc
Hkl . (10.68)

Here Hkl is the BFKL Hamiltonian. The intercept � of the corresponding colourless
t-channel state giving the contribution ∼ s� to the total cross section σt is proportional
to the ground-state energy of this equation:

�m,m̃ = −g2 Nc

8π2
Em,m̃, (10.69)

where m and m̃ are the conformal weights.
To simplify the structure of the equation for composite states of n reggeized gluons, we

consider the multicolour limit Nc → ∞ [15]. According to ’t Hooft only planar diagrams
are essential in multicolour QCD. It is convenient to describe the colour structure of the
gluon r by an Hermitian matrix AaT a

r of rank Nc with its Green function represented
by a pair of quark and antiquark lines. At Nc → ∞ only cylinder-type diagrams for the
colourless t-channel exchange survive. It is enough to study an irreducible case in which
the wave function has the following colour structure:

#m,m̃(ρ1, . . . , ρn; ρ0) =
∑

{i1, ... ,in}
fm,m̃(ρi1

, . . . , ρin
; ρ0) Tr

(
T ai1 . . . T ain

)
, (10.70)
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where the summation is performed over all noncyclic permutations {i1 . . . in} of gluons
1, 2, . . . , n. Note that we consider solutions with fixed values of the conformal weights
m, m̃. At large Nc each term in the sum satisfies the Schrödinger equation and therefore
for the function fm,m̃(ρ1, ρ2, . . . , ρn; ρ0) symmetric under the cyclic permutations

fm,m̃(ρ1, ρ2, . . . ρn; ρ0) = fm,m̃(ρn, ρ1, . . . ρn−1; ρ0) (10.71)

one can derive the following simplified BKP equation

Em,m̃ fm,m̃ = H fm,m̃, H = 1

2

n∑
r=1

Hr,r+1. (10.72)

It is obvious that for Nc → ∞ only neighbouring gluons interact with each other and the
factor 1/2 is related to the fact that in this case, the pair of neighbouring gluons is in an
adjoint representation of the gauge group. We implied also that Hn,n+1 = H1,n .

Remarkable is that the Hamiltonian H in multicolour QCD has the property of
holomorphic separability [15]:

H = 1

2
(h + h∗),

[
h, h∗] = 0, (10.73)

where the holomorphic and antiholomorphic Hamiltonians

h =
n∑

k=1

hk,k+1, h∗ =
n∑

k=1

h∗
k,k+1 (10.74)

are expressed in terms of the corresponding BFKL contributions (see (10.57)) [13]

Hk,k+1 = hk,k+1 + h∗
k,k+1,

hk,k+1 = ln(pk pk+1)+ p−1
k ln(ρk,k+1) pk + p−1

k+1 ln(ρk,k+1) pk+1 + 2 γ. (10.75)

Owing to the holomorphic separability of H , the wave function fm,m̃ has the property
of holomorphic factorization [15]:

fm,m̃(ρ1, . . . , ρn; ρ0) =
∑
r,l

cr,l f r
m(ρ1, . . . , ρn; ρ0) f l

m̃(ρ
∗
1 , . . . , ρ

∗
n ; ρ∗

0 ), (10.76)

where r and l enumerate degenerate solutions of the Schrödinger equation in the
holomorphic and antiholomorphic subspaces:

εm fm = h fm, εm̃ fm̃ = h∗ fm̃, Em,m̃ = 1

2
(εm + εm̃). (10.77)

Similarly to the case of two-dimensional conformal field theories, the coefficients cr,l are
fixed by the single-valuedness condition for the wave function fm,m̃(ρ1, ρ2, . . . , ρn; ρ0) in
the two-dimensional ρ-space [18]. Note that in these conformal models the holomorphic
factorization of the Green functions is a consequence of the invariance of the operator
algebra under the infinitely dimensional Virasoro group [18].



10.2 BFKL dynamics and integrability 545

10.2.3 Integrability of the BKP equation

One can easily verify that the pair Hamiltonian can be written in another form:

hk, k+1 = ρk,k+1 ln(pk pk+1) ρ
−1
k,k+1 + 2 ln(ρk,k+1)+ 2 γ. (10.78)

As a result, there are two different normalization conditions for the wave function [13]:

‖ f ‖2
1 =

∫ n∏
r=1

d2ρr

∣∣∣∣∣
n∏

r=1

ρ−1
r,r+1 f

∣∣∣∣∣
2

, ‖ f ‖2
2 =

∫ n∏
r=1

d2ρr

∣∣∣∣∣
n∏

r=1

pr f

∣∣∣∣∣
2

(10.79)

compatible with the hermicity properties of H . This is related to the fact that the transposed
Hamiltonian ht is related to h by two different similarity transformations [13]

ht =
n∏

r=1

pr h
n∏

r=1

p−1
r =

n∏
r=1

ρ−1
r,r+1 h

n∏
r=1

ρr,r+1. (10.80)

Therefore h commutes with the differential operator A defined by [13]

A = ρ12ρ23 . . . ρn1 p1 p2 . . . pn, (10.81)

i.e. we have

[h, A] = 0. (10.82)

Furthermore, [19], there is a family {qr } of mutually commuting integrals of motion:[
qr , qs

] = 0,
[
qr , h

] = 0. (10.83)

They are given by

qr =
∑

i1<i2< ... < ir

ρi1i2 ρi2i3 . . . ρir i1 pi1 pi2 . . . pir . (10.84)

In particular, qn is equal to A and q2 is proportional to the Casimir operator M2 of the
Möbius group.

The generating function for these integrals of motion coincides with the so-called
transfer matrix T (u) of the integrable X X X model [19]

T (u) = Tr
(
L1(u)L2(u) . . . Ln(u)

) =
n∑

r=0

un−r qr , (10.85)

where the L-operators are constructed in terms of the Möbius group generators

Lk(u) =
(

u + ρk pk pk

−ρ2
k pk u − ρk pk

)
. (10.86)

Here the variable u is the spectral parameter.
The transfer matrix is the trace of the so-called monodromy matrix t (u):

T (u) = Tr (t (u)), t (u) = L1(u)L2(u) . . . Ln(u). (10.87)
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It can be verified from similar relations for the operators L(u) and L(v) that t (u) satisfies
the Yang–Baxter (YB) equation [19]

t s1
r ′

1
(u) t s2

r ′
2
(v) l

r ′
1r ′

2
r1r2 (v − u) = ls1s2

s′
1s′

2
(v − u) t

s′
2

r2 (v) t
s′
1

r1 (u), (10.88)

where l(w) is the L-operator of the well-known Heisenberg spin model

ls1s2
s′
1s′

2
(w) = w δs1

s′
1
δ

s2
s′
2
+ i δs1

s′
2
δ

s2
s′
1
. (10.89)

In this model, the local Hamiltonian is H = λ∑k σ kσ k+1, where σ are the Pauli matrices.
The commutativity of T (u) and T (v),

[T (u), T (v)] = 0 (10.90)

is a consequence of the Yang–Baxter equation, which can be easily verified with the use of
the property that the trace of an operator is invariant under its similarity transformation.

The BKP Hamiltonian coincides with the local Hamiltonian of the integrable Heisenberg
spin model in which spins are generators of the Möbius group [20] (see also [21]). The
general method for solving such models was suggested by Sklyanin [22].

10.2.4 Hidden Lorentz symmetry

If one would parametrize t (u) in the form of

t (u) =
(

j0(u)+ j3(u) j−(u)
j+(u) j0(u)− j3(u)

)
, (10.91)

then the Yang–Baxter equation would be reduced to the following Lorentz covariant
relations for the currents jμ(u) [23]:[

jμ(u), jν(v)
] = [

jμ(v), jν(u)
] = − i εμνρσ

2(u − v)
(

jρ(u) jσ (v)− jρ(v) jσ (u)
)
. (10.92)

Here εμνρσ is the antisymmetric tensor (ε0123 = 1) in the four-dimensional Minkowski
space and the metric tensor ημν has the signature (1,−1,−1,−1). This form is compatible
with the invariance of the Yang–Baxter equations under Lorentz transformations.

The generators of the spatial rotations coincide with that of the Möbius transformations
M. The commutation relations for the Lorentz algebra are given by

[Ms,Mt ] = iεstu Mu, [Ms, N t ] = iεstu N u, [N s, N t ] = iεstu Mu, (10.93)

where N are the Lorentz boost generators.
The commutativity of the transfer matrix T (u) with the Hamiltonian h,

[T (u), h] = 0 (10.94)

is a consequence of the relation[
Lk(u) Lk+1(u), hk,k+1

] = −i (Lk(u)− Lk+1(u)) (10.95)

for the pair Hamiltonian hk,k+1, which is easily verified by direct calculations.
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In turn this relation follows from the Möbius invariance of hk,k+1 and from the
identity [23] [

hk,k+1,
[(

Mk,k+1
)2
, Nk,k+1

]]
= 4 Nk,k+1, (10.96)

where

Mk,k+1 = Mk + Mk+1, Nk,k+1 = Mk − Mk+1 (10.97)

are the Lorentz-group generators for the two-gluon state. To check this identity, one should
take into account that the pair Hamiltonian hk,k+1 depends only on the Casimir operator(
Mk,k+1

)2 and is therefore diagonal:

hk,k+1
∣∣mk,k+1

〉 = (
ψ(mk,k+1)+ ψ(1 − mk,k+1)− 2ψ(1)

) ∣∣mk,k+1
〉

(10.98)

in the conformal weight representation:(
Mk,k+1

)2 ∣∣mk,k+1
〉 = mk,k+1(mk,k+1 − 1)

∣∣mk,k+1
〉
. (10.99)

Further, using the commutation relations of Mk,k+1 with Nk,k+1 and taking into account
that (Mk)

2 = 0, one can verify that the operator Nk,k+1 has nonvanishing matrix elements
only between the states

∣∣mk,k+1
〉

and
∣∣mk,k+1 ± 1

〉
. As a result, the above identity (10.96)

for Nk,k+1 turns out to be a consequence of the well-known recurrence relations for the
ψ-functions:

ψ(m) = ψ(m − 1)+ 1/(m − 1), ψ(1 − m) = ψ(2 − m)+ 1/(m − 1). (10.100)

10.2.5 Algebraic Bethe ansatz

The pair Hamiltonian hk,k+1 can be expressed in terms of a small-u asymptotics for the
fundamental L̂-operator of the integrable Heisenberg model with spins being the generators
of the Möbius group [20],[21]

L̂k,k+1(u) = Pk,k+1(1 + i u hk,k+1 + . . .). (10.101)

The operator L̂ contrary to Lk(u) has the same representations in the basic and auxiliary
subspaces and acts as an integral operator on the functions f (ρk, ρk+1). The permutation
operator Pk,k+1 is defined by the relation

Pk,k+1 f (ρk, ρk+1) = f (ρk+1, ρk). (10.102)

The fundamental operator L̂k,k+1 satisfies the linear Yang–Baxter equation

Lk(u) Lk+1(v) L̂k,k+1(u − v) = L̂k,k+1(u − v) Lk+1(v) Lk(u). (10.103)

This equation can be solved in terms of � functions in a way similar to what was done
above for hk,k+1, and the proportionality constant is fixed from the triangle Yang–Baxter
equation

L̂13(u) L̂23(v) L̂12(u − v) = L̂12(u − v) L̂23(v) L̂13(u). (10.104)
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To find a representation of the operators obeying the Yang–Baxter commutation rela-
tions, the algebraic Bethe ansatz can be used [21]. To begin with, in the above parametriza-
tion (10.91) of the monodromy matrix t (u) in terms of the currents jμ(u), one should
construct the pseudovacuum state |0〉 satisfying the equation

j+(u) |0〉 = 0. (10.105)

However, these equations have a nontrivial solution only if the above L-operators are
regularized [23] by introducing a small conformal weight δ → 0 for reggeized gluons:

Lδk(u) =
(

u + ρk pk − i δ pk

−ρ2
k pk + 2 i ρkδ u − ρk pk + iδ

)
. (10.106)

Another possibility is to use the dual space corresponding to δ = −1 [20]. For the above
regularization, the pseudovacuum state is

|δ〉 =
n∏

k=1

ρ2δ
k . (10.107)

It is also an eigenstate of the transfer matrix:

T (u) |δ〉 = 2 j0(u) |δ〉 = (
(u − i δ)n + (u + i δ)n

) |δ〉. (10.108)

Furthermore, excited states are obtained by applying the product of the currents
j−(v) to |δ〉

|v1v2 . . . vk〉 = j−(v1) j−(v2) . . . j−(vk) |δ〉. (10.109)

They are eigenfunctions of the transfer matrix T (u) with the eigenvalues:

T̃ (u) = (u + iδ)n
k∏

r=1

u − vr − i

u − vr
+ (u − iδ)n

k∏
r=1

u − vr + i

u − vr
, (10.110)

providing that the spectral parameters v1, v2, . . . , vk are chosen to be solutions of the set
of the Bethe equations [21] (

vs − iδ

vs + iδ

)n

=
∏
r �=s

vs − vr − i

vs − vr + i
(10.111)

for s = 1, 2 . . . k.
One can define the Baxter function

Q(k)(u) =
k∏

r=1

(u − vr ), (10.112)

where vr are the Bethe roots. Due to above relations, it satisfies the Baxter equation
[20],[21]

T̃ (u) Q(u) = (u − iδ)n Q(u + i)+ (u + iδ)n Q(u − i). (10.113)

Here T̃ (u) is an eigenvalue of the transfer matrix T (u). One can slightly simplify the
Baxter equation by choosing δ = −1 [20].
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The eigenfunctions of h and qk can be expressed also in terms of the Baxter function
Q(k)(u) using the Sklyanin ansatz [22]

|v1v2 . . . vk〉 = Q(k)(̂u1) Q(k)(̂u2) . . . Q(k)(̂un−1) |δ〉, (10.114)

where the integral operators ûr are zeros of the current j−(u) entering in the monodromy
matrix (10.91)

j−(u) = c
n−1∏
r=1

(u − ûr ). (10.115)

Providing that the Baxter function is a polynomial (k <∞), the Baxter–Sklyanin approach
is equivalent to the method based on the solution of the Bethe equations. But we need the
wave functions belonging to the principal series of unitary representations which cannot be
constructed within the framework of the traditional Bethe ansatz. In this case, one should
use the Baxter–Sklyanin procedure.

Thus, the problem of finding the wave functions and intercepts of composite states
of reggeized gluons is reduced to the search of nonpolynomial solutions of the Baxter
equation [20],[21]. We shall consider the Baxter–Sklyanin approach later.

10.2.6 Duality symmetry

The integrals of motion qr and the Hamiltonian h are invariant under the cyclic permutation
of gluon indices i → i + 1 (i = 1, 2 . . . n), corresponding to the Bose symmetry of the
reggeon wave function at Nc → ∞. It is remarkable that these operators are invariant also
under the more general canonical transformation [23]:

ρi−1,i → pi → ρi,i+1, (10.116)

combined with reversing the order of the operator multiplication.
This duality symmetry is realized as an unitary transformation only for a vanishing total

momentum:

p =
n∑

r=1

pr = 0. (10.117)

The wave function ψm,m̃ of the composite state with p = 0 can be written in terms of the
eigenfunction fmm̃ of the integrals of motion qk and q∗

k for k = 1, 2 . . . n as follows:

ψm,m̃(ρ12, ρ23, . . . , ρn1) =
∫

d2ρ0

2π
fm,m̃(ρ1, ρ2, . . . , ρn; ρ0). (10.118)

Taking into account the hermicity of the total Hamiltonian [19]:

H+ =
n∏

k=1

∣∣ρk,k+1
∣∣−2

H
n∏

k=1

∣∣ρk,k+1
∣∣2 =

n∏
k=1

|pk |2 H
n∏

k=1

|pk |−2 , (10.119)
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the solution ψ+
m̃,m of the complex conjugate Schrödinger equation for p = 0 can be

expressed in terms of ψm̃,m as follows:

ψ+
m̃,m(ρ12, ρ23, . . .) =

n∏
k=1

∣∣ρk,k+1
∣∣−2 (

ψm̃,m(ρ12, ρ23, . . .
)∗
. (10.120)

Because ψm,m̃ is also an eigenfunction of the integrals of motion A = qn and A∗ with
their eigenvalues λm and λ∗

m = λm̃ [13],

Aψm,m̃ = λm ψm,m̃, A∗ ψm,m̃ = λm̃ ψm,m̃, A = ρ12 . . . ρn1 p1 . . . pn, (10.121)

one can verify that the duality symmetry takes the form of the following integral equation
for ψm,m̃ [23]:

ψm,m̃(ρ12, . . . , ρn1)

|λm | 2n
=
∫ n−1∏

k=1

d2ρ′
k−1,k

2π

n∏
k=1

eiρk,k+1 ρ ′
k∣∣∣ρ′

k,k+1

∣∣∣2 ψ ∗̃
m,m(ρ

′
12, . . . , ρ

′
n1). (10.122)

In the next section we consider the application of the integrability to the three-gluon
composite state in QCD.

10.3 The odderon in QCD

10.3.1 Three-reggeon composite states

In the particular case of the odderon, being a composite state of three reggeized gluons
with charge parity C = −1 and signature Pj = −1 [24], the colour factor coincides with
the well-known completely symmetric tensor dabc. Therefore, taking into account that for
this state each pair of gluons belongs to the adjoint representation, the equation for the
function fm,m̃ that multiplies dabc is simplified as follows [4]:

Em,m̃ fm,m̃ = 1

2
(H12 + H13 + H23) fm,m̃, �m,m̃ = −g2 Nc

8π2
Em,m̃ . (10.123)

The eigenvalue of this equation is related to the high-energy behaviour of the difference of
the total proton-proton and proton-antiproton cross sections σpp and σp p,

σpp − σp p ∼ s�m,m̃ . (10.124)

According to the Pomeranchuck theorem, the odderon intercept should be negative. Below
we shall calculate �m,m̃ in the perturbative QCD.

Due to the Bose symmetry the wave function is completely symmetric

fm,m̃(ρ1, ρ2, ρ3; ρ0) = fm,m̃(ρ2, ρ1, ρ3; ρ0) = fm,m̃(ρ1, ρ3, ρ2; ρ0). (10.125)

Note that the other solution proportional to the structure constants fabc is completely
antisymmetric and describes a state with pomeron quantum numbers C = Pj = 1.



10.3 The odderon in QCD 551

In the case of the odderon, the conformal invariance fixes the solution of the Schrödinger
equation [14]

fm,m̃(ρ1, ρ2, ρ3; ρ0) =
(
ρ12 ρ23 ρ31

ρ2
10 ρ

2
20 ρ

2
30

)m/3 (
ρ∗

12 ρ
∗
23 ρ

∗
31

ρ∗2
10 ρ

∗2
20 ρ

∗2
30

)m̃/3

fm,m̃(x) (10.126)

up to an arbitrary function fm,m̃(x) of one complex variable where x is the anharmonic
ratio of four coordinates

x = ρ12 ρ30

ρ10 ρ32
. (10.127)

Owing to the Bose symmetry, the function fm,m̃(x) has simple transformation properties
under the substitutions x → 1 − x, x → 1/x [23],[25]. This function is known explicitly
for one of the odderon solutions [26].

The wave function ψm,m̃(ρi j ) at q = 0 can be written as

ψm,m̃(ρi j ) =
(
ρ23

ρ12ρ31

)m−1 ( ρ∗
23

ρ∗
12ρ

∗
31

)
m̃−1χm,m̃(z), z = ρ12

ρ32
, (10.128)

where

χm,m̃(z) =
∫

d2x fm,m̃(x)

2π |x − z|4
(
(x − z)3

x(1 − x)

)
2m/3

(
(x∗ − z∗)3

x∗(1 − x∗)

)
2m̃/3. (10.129)

In fact, this function is proportional to f1−m,1−m̃(z):

χm,m̃(z) ∼ (x(1 − x))2(m−1)/3 (x∗(1 − x∗)
)2(m̃−1)/3

f1−m,1−m̃(z), (10.130)

which is a certain realization of the linear dependence between two representations
(m, m̃) and (1 − m, 1 − m̃). The corresponding reality property for the Möbius group
representations can be represented by the integral relation

χm,m̃(z) =
∫

d2x

2π
(x − z)2m−2 (x∗ − z∗)2m̃−2 χ1−m,1−m̃(x) (10.131)

for an appropriate choice of phases for the functions χm,m̃ and χ1−m,1−m̃ .

10.3.2 Duality equation for the odderon

The duality equation (10.122) for χm,m̃(z) can be written in a pseudodifferential form [23]:

|z(1 − z)|2 (i∂)2−m (i∂∗)2−m̃ ϕ1−m,1−m̃(z) = ∣∣λm,m̃
∣∣ (ϕ1−m,1−m̃(z)

)∗
, (10.132)

where

ϕ1−m,1−m̃(z) = (z(1 − z))1−m (z∗(1 − z∗)
)1−m̃

χm,m̃(z) (10.133)

and λm,m̃ is the eigenvalue of the integral of motion A3.
The following definition of the norm for the odderon wave function∥∥ϕm,m̃

∥∥2
1 =

∫
d2x

|x(1 − x)|2
∣∣ϕm,m̃(x)

∣∣2 (10.134)
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is compatible with the duality symmetry. Another definition, namely∥∥ϕm,m̃
∥∥2

2 =
∫

d2xϕ∗
m,m̃(x) (−∂∗∂) ϕm,m̃(x), (10.135)

is equivalent to the former, providing that ϕm,m̃ satisfies the duality equations.
For the holomorphic factors ϕ(m)(x), the duality equations are simplified [23]:

amϕ
(m)(x) = λmϕ(1−m)(x), a1−mϕ

(1−m)(x) = λ1−mϕ(m)(x), (10.136)

where

am = x(1 − x) p1+m, p = i
∂

∂x
. (10.137)

As a result, the eigenvalue equation for the integral of motion A can be written in the
form of

a1−m amϕ
(m)(x) = λϕ(m)(x). (10.138)

If we consider p as a coordinate and x − 1/2 as a momentum, then this equation for the
most important case m = 1/2 can be reduced to the Schrödinger equation with potential
V (p) = √

λ p−3/2 [23].
For each eigenvalue λ of the integral of motion A3 (10.81) there are three independent

solutions ϕ(m)i (x, λ) of the third-order ordinary differential equation corresponding to the
diagonalization of the operator A [13]:

A ϕ = −i x(1 − x)
(

x(1 − x)∂2 + (2 − m) ((1 − 2x)∂ − 1 + m)
)
∂ ϕ = λ ϕ. (10.139)

In the region x → 0, they can be chosen as follows [25]:

ϕ(m)r (x, λ) =
∞∑

k=1

d(m)k (λ) xk, d(m)1 (λ) = 1. (10.140)

ϕ(m)s (x, λ) =
∞∑

k=0

a(m)k (λ) xk + ϕ(m)r (x, λ) ln x, a(m)1 = 0, (10.141)

ϕ
(m)
f (x, λ) =

∞∑
k=0

c(m)k+m(λ) xk+m, c(m)m (λ) = 1. (10.142)

Due to the above differential equation (10.139), the coefficients ak, ck , and dk satisfy
certain recurrence relations. From the single-valuedness condition near x = 0, we obtain
the following representation for the wave function in x, x∗-space:

ϕm,m̃(x, x∗) = ϕ(m)f (x, λ) ϕ(m̃)f (x∗, λ∗)+ c2 ϕ
(m)
r (x, λ) ϕ(m̃)r (x∗, λ∗)

+ c1

(
ϕ(m)s (x, λ) ϕ(m̃)r (x∗, λ∗)+ ϕ(m)r (x, λ) ϕ(m̃)s (x∗, λ∗)

)
+ (λ→ −λ) . (10.143)

The complex coefficients c1, c2 and the eigenvalues λ are completely fixed by the
single-valuedness condition for fm,m̃(ρ1, ρ2, ρ3; ρ0) at ρ3 = ρi (i = 1, 2) and the Bose
symmetry [25].
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With the use of the duality equations (10.136) we obtain [23]

|c1| = |λ|. (10.144)

Another relation

Im
c2

c1
= Im (m−1 + m̃−1) (10.145)

can be derived if one takes into account that the complex conjugate representations ϕm,m̃

and ϕ1−m,1−m̃ of the Möbius group are related by the linear transformation (10.131) dis-
cussed above. It is possible to verify from the numerical results of Ref. [25] that both
relations for c1 and c2 are satisfied [23].

If we introduce for general n the time-dependent pair Hamiltonian hk,k+1(t) by the
definition

hk,k+1(t) = exp(i T (u) t) hk,k+1 exp(−i T (u) t), (10.146)

then the total holomorphic Hamiltonian h is not changed after the substitution

hk,k+1 → hk,k+1(t) (10.147)

due to the commutativity of h and T (u). On the other hand, as a result of the rapid oscil-
lations at t → ∞ each pair Hamiltonian hk,k+1(t) is diagonalized in the representation
where the transfer matrix T (u) is diagonal:

hk,k+1(∞) = fk,k+1(q̂2, q̂3, . . . q̂n). (10.148)

This gives a possibility to express h in terms of integrals of motion. Below we shall use
another approach for this purpose.

10.3.3 Odderon Hamiltonian

Generally, one can present the holomorphic Hamiltonian for n reggeized gluons in a form
explicitly invariant under the Möbius transformations [23]:

h =
n∑

k=1

(
log

(
ρk+2,0 ρ

2
k,k+1

ρk+1,0 ρk+1,k+2
∂k

)
+ log

(
ρk−2,0 ρ

2
k,k−1

ρk−1,0 ρk−1,k−2
∂k

)
− 2ψ(1)

)
(10.149)

by introducing the coordinate ρ0 of the composite state.
In the case of the odderon hk,k+1(∞) is a function of the total conformal momentum

M2 and of the integral of motion q3 = A, which can be written as follows:

A = i3

2

[
M2

12, M2
13

]
= i3

2

[
M2

23, M2
12

]
= i3

2

[
M2

13, M2
23

]
. (10.150)

Let us simplify the Schrödinger equation for the odderon using the conformal ansatz for
its wave function

fm(ρ1, ρ2, ρ3; ρ0) =
(
ρ23

ρ20ρ30

)
mϕm(x), x = ρ12ρ30

ρ10ρ32
. (10.151)
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By applying h to fm one can derive the following Hamiltonian acting on the function ϕm(x)
in the space of the anharmonic ratio x [13]

h = 6γ + log
(

x2∂
)

+ log
(
(1 − x)2∂

)
+ log

(
x2
(
∂ + m

1 − x

))
+ log

(
∂ + m

1 − x

)
+ log

(
(1 − x)2

(
∂ − m

x

))
+ log

(
∂ − m

x

)
. (10.152)

It is convenient to introduce the logarithmic derivative P ≡ x∂ as a new momentum.
With the use of relations of the type of

log(∂) = − log(x)+ ψ(−x∂), log(x2∂) = log(∂)+ 2 log(x)− 1

P
,

and expanding h in a series in x , one can transform the odderon Hamiltonian to the normal
order [23]:

h

2
= − log(x)+ ψ(1 − P)+ ψ(−P)+ ψ(m − P)− 3ψ(1)+

∞∑
k=1

xk fk(P), (10.153)

where

fk(P) = −2

k
+ 1

2

(
1

P + k − m
+ 1

P + k

)
+

k∑
t=0

ct (k)

P + t
(10.154)

and

ct (k) = (−1)k−t �(m + t) ((t − k) (m + t)+ m k/2)

k �(m − k + t + 1) �(t + 1) �(k − t + 1)
. (10.155)

10.3.4 Expansion in the inverse integral of motion

The holomorphic Hamiltonian h is a function of B = i A because h and B commute with
each other. In particular, for large B this function should be of the form

h

2
= log(B)+ 3γ +

∞∑
r=1

cr

B2r
. (10.156)

The first two terms of this asymptotic expansion were calculated in [13]. The series is
constructed in inverse powers of B2, because h should be invariant under all modular trans-
formations, including the inversion x → 1/x under which B changes its sign. The same
functional relation should be valid for the eigenvalues ε/2 and μ = i λ of these operators.

For large μ it is convenient to consider the corresponding eigenvalue equations in the P
representation, where x is the shift operator

x = exp

(
− d

d P

)
, (10.157)

after extracting from eigenfunctions (10.151) of B and h the common factor

ϕm(P) = �(−P) �(1 − P) �(m − P) exp(iπ P)  m(P). (10.158)
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The function  m(P) can be expanded in a series in 1/μ

 m(P) =
∞∑

n=0

μ−n n
m(P),  0

m(P) = 1, (10.159)

where the coefficients  n
m(P) turn out to be polynomials of order 4n satisfying the

following recurrence relation:

 n
m(P)=

P∑
k = 1

(k − 1)(k − 1 − m)
(
(k − m) n − 1

m (k − 1)+ (k − 2) n − 1
1 − m(k − 1 − m)

)
− 1

2

m∑
k = 1

(k − 1)(k − 1 − m)
(
(k − m) n − 1

m (k − 1)+ (k − 2) n − 1
1 − m(k − 1 − m)

)
,

(10.160)

which is valid due to the duality equations (10.136). These equations are written below
after the substitution x μ→ x in (10.136) for a definite choice of the phase of  m(P):

 1−m(P + 1 − m)− 1

μ
P (P − 1) (P − m) 1−m(P − m) =  m(P),

 m(P + m)− 1

μ
P (P − 1) (P + m − 1) m(P + m − 1) =  1−m(P). (10.161)

The recurrence relation (10.160) in difference form can be obtained from Eqs. (10.161) by
changing the argument P → P − m in the second line and adding it to the first line, hence

 m(P)− m(P − 1) = 1

μ
(P − 1) (P − 1 − m)

×
(
(P − m) m(P − 1)+ (P − 2) 1−m(P − m − 1)

)
.

(10.162)

Note that the summation constants  n
m(0) in (10.160) have the antisymmetry property

 n
m(0) = − n

1−m(0), (10.163)

which guarantees the fulfilment of the relation

 n
m(m) =  n

1−m(0 ), (10.164)

as a consequence of the duality relation. On the other hand, taking into account the last
relation and the fact that rm =  n

1−m(0) −  n
m(0 ) is an antisymmetric function, we can

choose  n
m(0 ) = −rm/2 because adding a symmetric contribution will redefine only the

initial condition 0
m(P) = 1 for the recurrence relation (10.160). The most general solution

of the duality equation is the function m(P)multiplied by an arbitrary constant symmetric
to the substitution m → 1 − m.

Note that with the use of the recurrence relation we obtain

 m(1) =  m(0).
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10.3.5 Expressions for the odderon energy

The odderon energy can be expressed with the use of (10.153) in terms of  m(P) as
follows [23]

ε

2
= log(μ)+ 3γ + ∂

∂P
log m(P)

+
∞∑

k=1

μ−k fk(P − k)
 m(P − k)

 m(P)

k∏
r=1

(P − r)(P − r + 1)(P − r − m + 1) (10.165)

and this expression does not depend on P due to the commutativity of h and B.
Since for P → 1 we have

f1(P − 1)→ c0(1)

P − 1
= m

2

1

P − 1
, fk(P − k) �= ∞

and  m(1) =  m(0), one can obtain a simpler expression for ε:

ε

2
= log(μ)+ 3γ +  ′

m(1)

 m(1)
+ m(1 − m)

2μ
. (10.166)

It is possible to express ε in terms of the values of the function  m(P) in other integer
points s

ε

2
= log(μ)+ 3γ +  ′

m(s)

 m(s)

+ (1 − m) c0(k)

μs

 m(0)

 m(s)

s−1∏
r=1

(s − r)(s − r + 1)(s − r − m + 1)

+
s−1∑
k=1

μ−k fk(s − k)
 m(s − k)

 m(s)

k∏
r=1

(s − r)(s − r + 1)(s − r − m + 1).

This representation is equivalent to the previous one due to the recurrence relations for
 m,1−m(P) following from the duality equation.

One can fix  (P) at some point in accordance with the duality relation without loss of
generality:

 m(1 + m) =  m(m) =  m(1) =  m(0) = 1. (10.167)

For other integer arguments of  m we have the recurrence relations following from the
eigenfunction equation for the integral of motion

 m(2) =
(

1 + (1 − m) (2 − m)

μ

)
,  m(s + 1)

=
(

1 + s(s − m)

μ
(2s − m)

)
 m(s)− s(s − 1)2(s − m)2(s − m − 1)

μ2
 m(s − 1),

The solution of these equations is a polynomial in μ−1 and m

 m(s) =
2(s−1)−1∑

k=0

2k∑
l=0

ckl μ
−k ml .
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Defining

 ′
m(1) = e(m), (10.168)

we can calculate also the derivatives in integer points:

 ′
m(2) =

(
1 + (1 − m)(2 − m)

μ

)
e(m)+ m2 − 6m + 6

μ
(10.169)

and

 ′
m(s + 1) =

(
1 + s(s − m)

μ
(2s − m)

)
 ′

m(s)−
s(s − 1)2(s − m)2(s − m − 1)

μ2

× ′
m(s − 1)+ 1

μ
(s(s − m) (2s − m))′  m(s)

− 1

μ2

(
s(s − 1)2(s − m)2(s − m − 1)

)′
 m(s − 1). (10.170)

The parameter e(m) is fixed by the condition that the duality equation for m(s) is valid at
P → ∞. This requirement can be formulated in a simpler way if one returns to the initial
definition of the eigenfunction (10.158) and presents φm(P) as a sum over poles of the first
and second order with residues satisfying the recurrence relations obtained from the above
relations for  m(s) and  ′

m(s).
It is plausible that the holomorphic energies for the different meromorphic solutions

 m(P) are generally different. Since the odderon wave function constructed as a bilin-
ear combination of these solutions in the holomorphic and antiholomorphic subspaces
should have a definite total energy, the quantization of μ should arise as a result of the
coincidence of the holomorphic energies for different solutions similar to the case of the
Baxter–Sklyanin approach [21],[22],[27].

By solving the recurrence relation (10.160) for  n
m(P) and putting the result in the

expression (10.166) for the energy, we obtain the following asymptotic expansion for
ε/2 [23]:

lim
μ→∞

ε

2
= log(μ)+ 3γ +

(
3

448
+ 13

120
(m − 1/2)2 − 1

12
(m − 1/2)4

)
1

μ2

+
(

− 4185

2050048
− 2151

49280
(m − 1/2)2 + . . .

)
1

μ4

+
(

965925

37044224
+ . . .

)
1

μ6
+ . . . . (10.171)

This expansion can be used with a certain accuracy even for the smallest eigenvalue μ =
0.20526 that corresponds to the energy ε = 0.49434 [25]. For the first excited state with
the same conformal weight m = 1/2, where ε = 5.16930 and μ = 2.34392 [9], the energy
can be calculated from the above asymptotic series with good precision. The behaviour of
the holomorphic energy in the other limit μ = 0 can be obtained from the Baxter equation
(see the next section and Ref. [27])

ε|μ=0 = π

sin(πm)
+ ψ(m)+ ψ(1 − m)− 2ψ(1). (10.172)
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In particular, for m = 1/2 we have a positive value for the energy:

ε|m=1/2 = π − 4 ln 2 = 0.369804 (10.173)

and for m = 0 and m = 1 the result is

ε|m=0 = ε|m=1 = 0. (10.174)

The corrections to ε of the order of μ2 have also been calculated [27]. Note, that odderons
considered in this subsection have negative intercepts � being in an agreement with the
Pomeranchuck theorem, but below we shall construct another odderon solution with the
intercept equal to zero.

10.3.6 New odderon solution

From the above expression (10.152) for h one can derive a representation of the odderon
Hamiltonian in the two-dimensional space x [29]:

2H = h + h∗ = 12γ + ln
(
|x |4|∂|2

)
+ ln

(
|1 − x |4|∂|2

)
+ |(x − 1)m (x∗ − 1)m̃

(
ln(|∂|2)+ ln(|x |4|∂|2)

)
(x − 1)−m (x∗ − 1)−m̃

+ (−x)m (−x∗)m̃
(

ln(|1 − x |4|∂|2)+ ln(|∂|2)
)
(−x)−m (−x∗)−m̃ . (10.175)

The logarithms in this expression can be represented as integral operators with the use of
the relation∫

d2 p

2π
exp(i p y)

(
2γ + ln

( p)2

4

)
= −2

(
θ(|y| − ε)

|y|2 − 2π ln
1

ε
δ2( y)

)
. (10.176)

This representation can be used to find the eigenvalue of the Hamiltonian for the fol-
lowing eigenfunction of the integrals of motion B and B∗ with vanishing eigenvalues
μ = μ∗ = 0:

ϕ
(0)
m,m̃(x) = 1 + (−x)m(−x∗)m̃ + (x − 1)m(x∗ − 1)m̃ . (10.177)

The corresponding wave function with nonamputated propagators fm,m̃(ρ1, ρ2, ρ3; ρ0)

is, in fact, a linear combination of the corresponding pomeron wave functions
fm,m̃(ρ1, ρ2; ρ0), fm,m̃(ρ2, ρ3; ρ0) and fm,m̃(ρ1, ρ3; ρ0). It is invariant under the cyclic
permutation of coordinates ρ1 → ρ2 → ρ3 → ρ1. But fm,m̃(ρ1, ρ2, ρ3; ρ0) is symmetric
under the permutation ρ1 ↔ ρ2 only for even value of the conformal spin n = m̃ − m,
where the norm

∥∥ϕm,m̃
∥∥

1 (10.134) is divergent due to the singularities of ϕ at x = 0, 1, ∞.
This is the reason why the solution φ(0) exists only for the case

m̃ − m = 2k + 1, k = 0,±1,±2, . . . , (10.178)

where the wave function f is antisymmetric under the permutations of the two coordinates
ρk . Owing to the Bose symmetry of the wave function, this state corresponds to f -coupling
and has positive charge-parity C similar to the pomeron. It could be responsible for the
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small-x behaviour of the structure function g2(x) [29]. Using the above representation
(10.175) for H , we obtain

H ϕ
(0)
m,m̃(x) = E p

m,m̃ ϕ
(0)
m,m̃(x), (10.179)

where E p
m,m̃ is the corresponding eigenvalue of the pomeron Hamiltonian

E p
m,m̃ = ε p

m + ε p
m̃ (10.180)

and

ε
p
m = ψ(1 − m)+ ψ(m)− 2ψ(1). (10.181)

The minimal value of E p
m,m̃ is obtained at m̃ − m = ±1 and corresponds to the odderon

intercept ω = 0.
For the case of odd n = m̃ − m , the norm

∥∥ϕm,m̃
∥∥

1 (10.134) of ϕm,m̃(x) is finite:

∫
d2x

∣∣ϕm,m̃(x)
∣∣2

3π |x(1 − x)|2 = Re (ψ(m)+ ψ(1 − m)+ ψ(m̃)+ ψ(1 − m̃)− 4ψ(1)) ,

(10.182)

but the other norm
∥∥ϕm,m̃

∥∥
2 (10.135) is divergent because the solution is the sum of the

pomeron solutions which do not depend on one of the coordinates ρi . Therefore, this
solution is nonphysical. However, it is possible that the divergence disappears for a more
general solution with a nonvanishing value of λ.

Using the duality transformation (10.122) in the form of [26]

Qm,m̃ φ
odd
m,m̃ = am(x) am̃(x

∗) φodd
m,m̃ = φ(0)m,m̃(x, x∗), (10.183)

where am(x) is defined in Eq. (10.137), one can obtain from the function ϕ(0)m,m̃(x) (10.177)

a new odderon solution φodd
m,m̃ symmetric in the coordinates ρk . The function φodd

m,m̃ corre-

sponds to the eigenfunction with nonamputated propagators f odd
m,m̃ . The amputation of the

propagators leads to the result

Fodd
m,m̃(ρ1, ρ2, ρ3; ρ0) =

∣∣∣∣ 1

ρ12ρ23ρ31

∣∣∣∣2 |A|2 f odd
m,m̃(ρ1, ρ2, ρ3; ρ0)

=
∣∣∣∣ 1

ρ12ρ23ρ31

∣∣∣∣2 ( ρ23

ρ20ρ30

)
m
(
ρ∗

23

ρ∗
20ρ

∗
30

)
m̃  odd

m,m̃(x, x∗), (10.184)

where

 odd
m,m̃(x, x∗) = |Qm,m̃ |2 φodd

m,m̃ . (10.185)

One can verify the relation

(i∂)2−m (i∂∗)2−m̃(x, x∗) ∼ δ2(x)− δ2(1 − x)+ xm x∗m̃

|x |6 δ2
(

1

x

)
. (10.186)
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Using it we obtain [26]

Fodd
m,m̃(ρ1, ρ2, ρ3; ρ0) = Em,m̃(ρ20, ρ30)

|ρ23|4 δ2(ρ12)+ Em,m̃(ρ10, ρ20)

|ρ12|4 δ2(ρ31)

+ Em,m̃(ρ30, ρ10)

|ρ31|4 δ2(ρ23) (10.187)

where

Em,m̃(ρ20, ρ30) =
(
ρ23

ρ20ρ30

)
m
(
ρ∗

23

ρ∗
20ρ

∗
30

)
m̃ (10.188)

is the BFKL wave function. As this is an eigenfunction of the corresponding Casimir
operator, the solution Fodd

m,m̃ can be written as follows:

Fodd
m,m̃(ρ1, ρ2, ρ3; ρ0) =

∑
i,k �=l

δ2(ρli )|∂i |2|∂k |2 Em,m̃(ρi0, ρk0). (10.189)

In momentum space the solution with the amputated gluon propagators is the sum of the
corresponding solutions for the pomeron [26]:

Fodd
m,m̃(k1, k2, k3) ∼

∑
i,k �=l

Fm,m̃(ki + kl , kk), (10.190)

where

Fm,m̃(k1, k2) = (k1)
2(k2)

2
∫

d2ρ1d2ρ2

(2π)2
exp

(
i

2∑
r=1

(kr , ρr )

)
Em,m̃(ρ1, ρ2). (10.191)

The spectrum of the ω-plane singularities for this solution is given by

ω(ν, n) = αs Nc

π

(
2ψ(1)− 2Reψ

(
1

2
+ iν + |n|

2

))
, (10.192)

which coincides with the BFKL pomeron spectrum but for odd values of the conformal
spin n. The rightmost singularity is situated at

ω(0, 1) = 0, (10.193)

which corresponds to an approximate constant behaviour of the difference σpp − σp p̄ of
the total cross sections for particle–particle and particle–antiparticle interactions. Asymp-
totically this difference is much smaller then the sum of the corresponding cross sections
σt ∼ s�B F K L in an agreement with the Pomeranchuck theorem formulated in the form

σpp − σp p̄

σpp + σp p̄
→ 0.

The solution we have constructed is normalized according to the norm
∥∥ϕm,m̃

∥∥
2 (10.135)

compatible with the hermicity properties of the BFKL Hamiltonian. The normalization
constant can be obtained from (10.182) with the use of the duality transformation. Note
that the intercept j0 for the new solution exceeds the intercepts for the solutions vanishing
at ρi j → 0 constructed in Ref. [25]. Solutions of the BKP equation for pomeron and
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odderon with n = 1 have the same energies, which is related to the interpretation of the
duality symmetry at large Nc as a symmetry between two reggeons having gluon quantum
numbers and opposite signatures [26].

10.4 Baxter–Sklyanin representation

10.4.1 Sklyanin ansatz

According to the previous discussion, the problem of finding solutions of the Schrödinger
equation for reggeized gluon interactions is reduced to the search of a representation of
the monodromy matrix satisfying the Yang–Baxter bilinear relations (10.92) [19],[21]. For
this purpose, it is convenient to work in the conjugated space [20], where the monodromy
matrix is parametrized as follows:

t̃(u) = L̃n(u) . . . L̃1(u) =
(

A(u) B(u)
C(u) D(u)

)
(10.194)

and L̃k(u) is given by

L̃k(u) =
(

u + pkρk0 −pkρ
2
k0

pkρ
2
k0 u − pkρk0

)
. (10.195)

The pseudovacuum state annihilated by the operators C(u) and C∗(u) has the form
of [20]

#(0)(ρ1, ρ2, . . . , ρn; ρ0) =
n∏

k=1

1
|ρk0|4 . (10.196)

To construct the colourless n-reggeon states with physical values of conformal weights
m, m̃ within the framework of the Bethe ansatz (10.109), one can use the Baxter–Sklyanin
approach [21],[22]. To begin with, we should introduce the Baxter function satisfying the
equation (see [20],[27],[28]) (cf. (10.113))

�(n)(λ; μ) Q (λ; m,μ) = (λ+ i)n Q (λ+ i; m,μ)+ (λ− i)n Q (λ− i; m,μ) ,
(10.197)

where �(n)(λ) is the eigenvalue of the monodromy matrix

�(n)(λ; μ) =
n∑

k=0

(−i)k μk λ
n−k, μ0 = 2, μ1 = 0, μ2 = m(m − 1). (10.198)

Here we assume [27], that the eigenvalues μk = i k qk of the integrals of motion are real.
The eigenfunctions of the holomorphic Schrödinger equation can be expressed in terms

of the Baxter function Q(λ) using the Sklyanin ansatz [22] (see (10.114))

f (ρ1, ρ2, . . . , ρn; ρ0) = Q
(̂
λ1; m,μ

)
Q
(̂
λ2; m,μ

)
. . . Q

(̂
λn−1; m,μ

)
#(0), (10.199)
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where λ̂r are the operator zeros of the matrix element B(u) in t̃(u) (10.194)

B(u) = −P
n−1∏
r=1

(
u − λ̂r

)
, P =

n∑
k=1

pk . (10.200)

10.4.2 Holomorhic factorization and quantization

In Ref. [27], a unitary transformation was suggested for the transition from the usual coor-
dinate representation to the Baxter–Sklyanin representation. In the latter representation, the
operators λ̂r are diagonal (see also Ref. [28]). As a consequence of the single-valuedness
condition for the corresponding integral kernel the arguments of the Baxter functions
Q(λ) and Q(λ∗) in the holomorphic and antiholomorphic subspaces are quantized (see
[27],[28]):

λ = σ + i
N

2
, λ∗ = σ − i

N

2
, (10.201)

where σ and N are real and integer numbers, respectively.
In Ref. [27], a general method of solving the Baxter equation for the n-reggeon com-

posite state was proposed and the wave functions and intercepts of the composite states of
three and four reggeons were calculated. It turns out [27] that there is a set of independent
Baxter functions Q(t) (t = 0, 1, . . . , n − 1) that have multiple poles simultaneously in the
upper (+) and lower (−) half-λ planes in the points λ = ik (k = 0,±1,±2, . . .). The
orders of these poles are n+ = r and n− = n − 1 − r , respectively. Using all n indepen-
dent functions Q(t) one can construct the normalizable total Baxter function Qm, m̃,μ(λ)

without the pole at σ = 0 [27]

Qm, m̃,μ(λ) =
∑
t,l

Ct,l Q(t) (λ; m,μ) Q(l)
(
λ∗; m̃,μs) (10.202)

by adjusting for this purpose the coefficients Ct,l .
The total energy Em,m̃ can be expressed in terms of this Baxter function (see Ref. [27])

E = i lim
λ,λ∗→i

∂

∂λ

∂

∂λ∗ ln
[
(λ− i)n−1(λ∗ − i)n−1|λ|2 n Qm, m̃,μ(λ)

]
. (10.203)

Let us rewrite the Baxter equation for the n-reggeon composite state in a real form
introducing the new variable x ≡ −iλ,

"(x,μ) Q(x,μ) = (x + 1)n Q(x + 1,μ)+ (x − 1)n Q(x − 1,μ), (10.204)

where

"(x,μ) =
n∑

k=0

(−1)k μk xn−k (10.205)

and

μ0 = 2, μ1 = 0, μ2 = m(m − 1),

assuming that the eigenvalues of the integrals of motion μk (k > 2) are real numbers.
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10.4.3 Meromorphic solutions of the Baxter equation

To solve the Baxter equation we introduce a set of the auxiliary functions fr for
r = 1, 2, . . . , n − 1 [27]

fr (x,μ) =
∞∑

l=0

[
ãl(μ)

(x − l)r
+ b̃l(μ)

(x − l)r−1
+ . . .+ g̃l(μ)

x − l

]
, (10.206)

where the coefficients ãl , . . . , g̃l satisfy recurrence relations obtained by inserting fr

instead of Q(x) in the Baxter equation with the following initial conditions:

ã0 = 1, b̃0 = . . . = g̃0 = 0. (10.207)

Note that all functions fr (x,μ) are expressed in terms of a subset of pole residues
ãl , . . . , z̃l of fn−1(x,μ), and therefore they can be obtained from that function.

There are n “minimal” independent solutions Q(t)(x,μ) (t = 0, 1, 2, . . . , n − 1) of the
Baxter equation having t-order poles at positive integer x and (n − 1 − t)-order poles at
negative integer x [27]:

Q(t)(x,μ) =
t∑

r=1

C (t)r (μ) fr (x,μ)+ β(t)(μ)
n−1−t∑

r=1

C (n−1−t)
r (μs) fr (−x,μs), (10.208)

where the meromorphic functions fr (x,μ) were defined above and μs
r = (−1)rμr . Such

form of the solution is related to the invariance of the Baxter equation under the substitution
x → −x , μ → μs .

The coefficients C (t)r (μ), C (n−1−t)
r (μs) and β t (μ) are obtained by imposing the validity

of the Baxter equation at x → ∞,

lim
x→∞ xn−2 Q(t)(x,μ) = 0. (10.209)

This leads to a system of n − 2 linear equations for the coefficients C (t)r . We normalize
Q(t)(x,μ) by choosing

C (t)t (μ) = C (n−1−t)
n−1−t (μ) = 1. (10.210)

It is important to note that three subsequent solutions Q(r) for r = 1, 2, . . . , n − 2 obey
a linear relation [27] similar to the case of orthogonal polynomials:[
δ(r)(μ)+ π cot(πx)

]
Q(r)(x,μ) = Q(r+1)(x,μ)+ α(r)(μ) Q(r−1)(x,μ). (10.211)

Indeed, the left-hand and right-hand sides satisfy the Baxter equation everywhere including
x → ∞ and have the same singularities. Therefore, due to the uniqueness of the “mini-
mal” solutions, the quantity π cot(πx) Q(r)(x,μ) can be expressed as a linear combination
of Q(r−1)(x,μ), Q(r)(x,μ) and Q(r+1)(x,μ). Furthermore, the coefficient in front of
Q(r+1)(x,μ) is chosen to be unity taking into account our normalization of Q(r)(x,μ).

The Baxter function in the two-dimensional space �x is a bilinear combination of
holomorphic and antiholomorphic functions Q(r). Therefore, the holomorphic energy
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expressed in terms of the residues a0 = 1, b0, a1, b1 of the poles closest to zero
(cf. (10.203)),

ε = b1

a1
+ n = b0 − μn−1

μn
(10.212)

should be the same for all solutions ε(0) = ε(1) = . . . = ε(n). This leads to a quantization
of the integrals of motion μk and of the energy E [27].

The total energy (10.203) of the composite state of n reggeons is the sum of the
holomorphic and antiholomorphic energies

Em,m̃ = εm(μ)+ εm̃(μ
s∗). (10.213)

It can be obtained from the Schrödinger equation for the wave function φm,m̃ in the
Baxter–Sklyanin representation in the limit λ, λ∗ → i [27]. We can obtain the analogous
expression

Em,m̃ = εm(μ
s)+ εm̃(μ

∗) (10.214)

by taking instead another limit λ, λ∗ → −i . These two expressions for energies were
derived from the Schrödinger equation with a Hermitian Hamiltonian and should coincide
for the quantized values of μ [27]

εm(μ)+ εm̃(μ
s∗) = εm(μ

s)+ εm̃(μ
∗). (10.215)

This gives an additional constraint on the spectrum of the integrals of motion. One of the
possible solutions of this constraint is that μ is real or purely imaginary. Note however
that, providing that the wave function Q(x) does not contain all possible bilinear combi-
nations of the Baxter functions Q(r) and Q(s)∗, the quantization conditions should be not
so restrictive.

10.4.4 Anomalous dimensions and intercepts of reggeons

The Q2-dependence of the inclusive probabilities ni (x, ln Q2) to have a parton i with the
momentum fraction x inside a hadron with large momentum | p| → ∞ can be found from
the evolution equations [30]. The eigenvalues of its integral kernels describing probabilities
of inclusive parton transitions i → k coincide with the matrix elements γ ki

j (α) of the

anomalous dimension matrix for the twist-2 operators O j with Lorentz spins j = 2, 3, . . . .
For example, in the case of the pure Yang–Mills theory with the gauge group SU (Nc)

we have only one multiplicatively renormalized operator. Similarly in the N = 4 super-
symmetric gauge theory [31] there is one supermultiplet of twist-2 operators [32]. Its
anomalous dimension is singular at the nonphysical point ω = j − 1 → 0. In this limit,
one can calculate the anomalous dimension in all orders of perturbation theory [33],

γω→0 = αNc

πω
−# ′′(1)

(
αNc

πω

)4

+ . . . (10.216)
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from the eigenvalue of the integral kernel of the BFKL equation in LLA [1] at n = 0:

ωB F K L = α Nc

π

[
2#(1)−#(γ )−#(1 − γ )]. (10.217)

Using next-to-leading corrections [16] it is possible also to predict the residues of the less
singular terms ∼ αn/ωn−1.

Using the BFKL equation, one can find the anomalous dimensions of higher-twist
operators by solving the eigenvalue equation near the other singular points γ = −k
(k = 1, 2, . . .). But for the unitarization program it is more important to calculate the
anomalous dimensions of the quasipartonic operators (see Ref. [34]) constructed from sev-
eral gluonic or quark fields. The simplest operator of such type is the product of the twist-2
gluon operators. In the limit Nc → ∞ this operator is multiplicatively renormalized [35].

Let us return now to the high-energy asymptotics of irreducible Feynman diagrams in
which each of n reggeized gluons at Nc → ∞ interacts only with two neighbours. In the
Born approximation, the corresponding Green function is a product of free-gluon prop-
agators

∏n
r=1 ln

∣∣ρr − ρ′
r

∣∣2. For small coupling constants αs , the full dimension of the
operator related to the composite state of n reggeized gluons is approximately equal to
the position of the pole (m + m̃)/2 ≈ n/2 in the eigenvalue ω of the Schrödinger equation
ω(m, m̃;μ3, . . . μn) (see [27]):

m + m̃

2
= n

2
− γ (n), γ (n) = c(n)

αs Nc

ω
+ O

([
αs Nc

ω

]2
)
. (10.218)

Here γ (n) is the anomalous dimension of the corresponding operator. This expression can
be obtained also from the equation for matrix elements of the quasipartonic operators [34]
written with double-logarithmic accuracy [35]. For the odderon, we find from the Baxter
equation that c(3) = 0. Note, however, that in the case of the solution found in Ref. [26] γ
has a singularity at ω = 0. In a similar way, a pole singularity was found also for n = 4
near m+m̃

2 = 2 [27]. Moreover, the anomalous dimensions γ3 and γ4 were calculated for
arbitrary α/ω (see [27]), which is important for the study of multireggeon contributions to
deep inelastic processes at small Bjorken x .

Using the above quantization condition (10.212) for the odderon integral of motion μ,
one can calculate the first roots numerically for m = m̃ = 1/2 (see [27])

μ1 = 0.205257506 . . . , μ2 = 2.3439211 . . . , μ3 = 8.32635 . . . (10.219)

with the corresponding energies (compare the discussion after (10.171))

E1 = 0.49434 . . . , E2 = 5.16930 . . . , E3 = 7.70234 . . . (10.220)

in agreement with Ref. [25]. The eigenvalues with odderon quantum numbers have been
computed as functions of m for 0 < m < 1 (see [27]), which corresponds to the analytic
continuation to the region of real γ . The energy decreases from E = E1 at m = 1/2 in
a monotonic way. Only m = 0, 1 and 1

2 are physical values. For other m the function
E(m) describes the behaviour of the anomalous dimension of the corresponding higher-
twist operators. The energy vanishes at m = 0, 1 (n = ±1), which follows from its explicit
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expression (10.172) for μ = 0 [27]. Note that E(m, μ ≡ 0) corresponds to the bilinear
solution, in which the function Q(1) having the poles in both semi-planes of the λ-plane is
absent and therefore here our general method of quantization does not work.

We obtain numerically at m → 0

E(m) = 2.152 m − 2.754 m2 + . . . , μ(m) = 0.375
√

m − 0.0228 m + . . . . (10.221)

The state with m = 1 and m̃ = 0 (or vice versa) is therefore the ground state of the
odderon corresponding to |n| = 1. It has a vanishing energy for ν → 0 and is situated
below the eigenstates with m = m̃ = 1/2. Note that generally this solution is different
from that found in Ref. [26] because for it μ is nonzero. The first eigenstate with n = 2 was
also investigated [27]. The energy proceeds to decrease with increasing m. The physical
eigenstate with |n| = 2 is absent on this trajectory because μ is pure imaginary in this
interval and vanishes only at m = 1 and m = 2.

Let us consider now the Baxter equation for the quarteton (four-reggeon state) [27]. A
new integral of motion μ4 = q4 appears here. The eigenvalues μ and q4 are assumed to
be real, which is compatible with the single-valuedness condition of the wave function
in ρ space. Following the general method presented above one can search solutions of
the Baxter equation for the quarteton in the form of a series of poles. As a result of our
quantization procedure (10.212) we obtain for m = m̃ = 1/2 [27]

μ = 0, q4 = 0.1535892, E = −1.34832.

μ = 0.73833, q4 = −0.3703, E = 2.34105.

One finds for the first eigenvalue with m = 0, m̃ = 1 corresponding to |n| = 1

μ = 0, q4 = 0.12167, E = −2.0799.

The state of the quarteton with |n| = 1 has m = 0, m̃ = 1. Its energy is lower than the
energy of the above state with m = m̃ = 1

2 .
The eigenvalue with μ = 0 as a function of m in the interval 0 < m < 1

2 was also
calculated (see [27]). Contrary to the odderon case, the energy eigenvalue does not vanish
for m = 0. It decreases with m for 0 < m < 1

2 and takes the value E = −2.0799 at m = 0.
The state with m = 3/2 (corresponding to n = 2, ν = 0) can be considered as the

ground state for the quarteton because for it the eigenvalue of q4 is real. It has a large
negative energy E = −5.863, lower than the energy E = −5.545 of the BFKL pomeron
constructed from two reggeized gluons [27]. But to prove that this state is a physical ground
state, one should construct a bilinear combination of the corresponding Baxter functions to
verify the normalizability of the corresponding solution (cf. [28]).

10.4.5 Pomeron in the thermostat

One of the footprints of the quark–gluon plasma is a decrease of the number of produced
ψ mesons due to breaking the confining quark-antiquark potential at large temperature T .
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Therefore, it is interesting to investigate the properties of composite states of reggeized
gluons, in particular the intercept of the pomeron at a nonzero t channel temperature [36].

The correlators of colourless currents at a finite temperature satisfy an additional sym-
metry. Namely, they are periodic functions under a shift of the Euclidean time x4 →
x4 + 1/T . This periodicity leads to the quantization of the corresponding Euclidean ener-
gies El = 2πl T [37] in the t-channel, where we introduced a nonzero temperature.
After analytic continuation of these correlators to the s-channel with the Regge kinematics
s � T 2 ∼ −t > 0 one should impose on them the periodicity under the transformation
y → y + 1/T of an impact parameter coordinate. Correspondingly, its canonically con-
jugate momentum should be quantized: k(l)y = 2π l T . In this cylinder-type topology it is
convenient to introduce the rescaled variables ρ and p:

ρ = x + iy → 1

2π T
ρ, p(l) = p(l)x − i p(l)y

2
→ π T p(l) (10.222)

with the temperature constraints

0 < Im ρ < 2π, Im p(l) = l

2
, [p, ρ] = i. (10.223)

In the case of nonzero temperatures the BFKL equation is modified, but the holomorphic
separability remains [36]:

H12# = #, H12 = h12 + h∗
12. (10.224)

Now the holomorphic Hamiltonian is

h12 =
2∑

r=1

[
"(qr )+ 1

pr
G(ρ12) pr

]
. (10.225)

Here the kinetic energy corresponds to two reggeon trajectories

"(q) = πT

2λ
+ 1

2

[
ψ(1 + iq)+ ψ(1 − iq)− 2ψ(1)

]
(10.226)

and the potential energy is expressed in terms of the Green function for the cylinder
topology

G(ρ12) = −π T

2λ
+ ln

(
2 sinh

ρ12

2

)
. (10.227)

It turns out that the BFKL equation at a nonzero temperature can be solved exactly [36].
The reason is that one can find the conformal transformation

ρr = ln ρ′
r , (10.228)

after which the Hamiltonian and the integral of motion take the form, corresponding to
zero temperature

h12 = ln
(

p′
1 p′

2

)+ 1

p′
1

log
(
ρ′

12

)
p′

1 + 1

p′
2

log
(
ρ′

12

)
p′

2 − 2ψ(1), (10.229)
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A = −(ρ′
12)

2 ∂

∂ρ′
1

∂

∂ρ′
2
. (10.230)

To verify it, one can use the following operator identity

1

2

[
ψ

(
1 + z

∂

∂z

)
+ ψ

(
−z
∂

∂z

)]
= ln z + ln

∂

∂z
. (10.231)

Moreover, for the case of n reggeized gluons the Hamiltonian at a finite temperature
coincides with the local Hamiltonian of the integrable Heisenberg spin model consid-
ered above, but with the spins realizing a different representation of the Möbius group
generators [36]

Mk = ∂k, M+ = e−ρk ∂k, M− = −eρk ∂k . (10.232)

It is interesting that in the pomeron case the eigenvalue equation for the integral of
motion M2 at t = 0 coincides with the Baxter equation (10.197) for the Heisenberg spin
model [36].

10.4.6 BFKL pomeron in supersymmetric models and graviton

One can calculate the integral kernel for the BFKL equation also in two loops [16]. Its
eigenvalue can be written as follows

ω = 4 â χ(n, γ )+ 4 â2�(n, γ ), â = g2 Nc/(16π2), (10.233)

where

χ(n, γ ) = 2ψ(1)− ψ(γ + |n|/2)− ψ(1 − γ + |n|/2) (10.234)

and ψ(x) = �′(x)/�(x). The one-loop correction �(n, γ ) in QCD contains the
nonanalytic terms – the Kronecker symbols δ|n|,0 and δ|n|,2 [3] (see Chapter 9).

It is interesting to find a theoretical model in which such nonanalytic terms are absent.
Supersymmetric gauge models are considered now as possible generalizations of QCD
and the electroweak theory. In these models, a symmetry transformation between bosons
and fermions is introduced in such way that these particles can be considered as different
components of the same supermultiplet. In the simplest case, such a multiplet includes the
gluon and gluino being the Majorana fermion in the adjoint representation of the gauge
group. It turns out that in this model the coefficient in front of δ|n|,2 is indeed zero [3]. To
cancel the coefficient in front of δ|n|,0, one can consider the N -extended supersymmetric
theories in which the supermultiplet includes also scalar particles belonging to the adjoint
representation of the gauge group. In the maximally extended N = 4 supersymmetric the-
ory (SUSY) we have four gluinos and six scalar particles. Apart from the gauge interaction
they participate also in the Yukawa interactions with the gauge-coupling constant g. The
Lagrangian of the N = 4 model is completely fixed by the supersymmetry. One of the
remarkable properties of this model is the absence of the coupling constant renormaliza-
tion. According to the Maldacena hypothesis, the N = 4-supersymmetric gauge model is
dual to the superstring theory living in the ten-dimensional anti-de-Sitter space [31].
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It turns out that in N = 4 SUSY, all Kronecker symbol contributions to ω are cancelled
and it is an analytic function of the conformal spin n. The final result for �(n, γ ) in this
model has the hermitially separable form [3],[38]

�(n, γ ) = φ(M)+ φ(M∗)− ρ(M)+ ρ(M∗)
2â/ω

, M = γ + |n|
2
, (10.235)

ρ(M) = β ′(M)+ 1

2
ζ(2), β ′(z) = 1

4

[
# ′( z + 1

2

)
−# ′( z

2

)]
. (10.236)

It is important that all functions entering in these expressions have the property of maximal
transcendentality [38]. The maximal transcendentality of an expression means, by defini-
tion, that the special functions and numbers with lower complexities do not contribute to
it. In particular, φ(M) can be written as follows:

φ(M) = 3ζ(3)+ ψ ′′
(M)− 2 (M)+ 2β

′
(M)

(
ψ(1)− ψ(M)

)
, (10.237)

 (M) =
∞∑

k=0

(−1)k

k + M

(
ψ ′(k + 1) − ψ(k + 1)− ψ(1)

k + M

)
. (10.238)

By definition, ψ(M) has the transcendentality equal to 1, the transcendentalities of ψ(n)

and ζ(n + 1) are n + 1 and the additional poles in the sum over k increase the transcenden-
tality of the function (M) up to 3. The maximal transcendentality hypothesis is valid also
for the anomalous dimensions of twist-2 operators in N = 4 SUSY [39],[40], contrary to
the case of QCD [41]. These quantities will be discussed in the next subsection.

Generally, the BFKL equation in the diffusion approximation can be written in the
simple form [1]

j = 2 −�− D ν2, (10.239)

where ν is related to the anomalous dimension of the twist-2 operators as follows [16]:

γ = 1 + j − 2

2
+ iν. (10.240)

The parameters � and D are functions of the coupling constant â and are known up to
two loops [3]. For large coupling constants, one can expect [42] that the leading pomeron
singularity in N = 4 SUSY is moved to the point j = 2 and asymptotically the pomeron
coincides with the graviton. This assumption is related to the AdS/CFT correspondence,
formulated within the framework of the Maldacena hypothesis [31],[43],[44]. It is natural
to impose on (10.239) the physical constraint that for the conserved energy-momentum
tensor ϑμν(x) having j = 2 the anomalous dimension γ is zero. As a result, we find that
the parameters � and D coincide [40]. In this case, one can calculate γ from the above
BFKL equation:

γ = ( j − 2)

(
1

2
− 1/�

1 + √
1 + ( j − 2)/�

)
. (10.241)

Using the dictionary developed within the framework of the AdS/CFT correspondence
between anomalous dimensions of local operators and energies of superstring states [43],
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one can present the eigenvalue equation (10.239) in the form of the graviton Regge
trajectory [40]

j = 2 + α′

2
t, t = E2/R2, α′ = R2

2
�. (10.242)

On the other hand, Gubser–Klebanov–Polyakov predicted the following asymptotics of the
anomalous dimension at large â and j [45]:

γ|â, j→∞ = −√ j − 2�−1/2
| j→∞ = √

2π j â1/4, â = αs Nc

4π
. (10.243)

By comparing this prediction with (10.241), one can obtain the explicit expression for the
pomeron intercept at large coupling constants [40],[46]

j = 2 −�, � = 1

2π
â−1/2. (10.244)

10.5 Maximal transcendentality and anomalous dimensions

10.5.1 Anomalous dimensions of twist-2 operators

The anomalous dimension of twist-2 operators in N = 4 SUSY in one-loop approxima-
tion was calculated comparatively recently [32]. The final expression is proportional to
ψ( j − 1)− ψ( j). In Ref. [32] it was argued using this result that in this model the evolu-
tion equations for the so-called quasipartonic operators [34] are integrable in LLA. Later
the integrability for N = 4 SUSY was generalized to other operators [47] and to higher
loops [48].

The anomalous dimension of twist-2 operators was calculated in two loops in Ref. [39]
confirming the result obtained with the use of the maximal transcendentality hypothe-
sis [38].

The universal anomalous dimension for the twist-2 operators was found with the use of
the maximal transcendentality hypothesis in N =4 SUSY up to three loops [38],[39],[40]

γ ( j) = α̂γ1( j)+ α̂2γ2( j)+ α̂3γ3( j)+ . . . , α̂ = αs Nc

4π
, (10.245)

where

γ1( j + 2) = −4S1( j), (10.246)
γ2( j + 2)

8
= 2S1

(
S2 + S−2

)− 2S−2,1 + S3 + S−3 (10.247)

γ3( j + 2)

32
= −12

(
S−3,1,1 + S−2,1,2 + S−2,2,1

)
+ 6

(
S−4,1 + S−3,2 + S−2,3

)− 3 S−5 − 2 S3 S−2 − S5

− 2 S2
1

(
3 S−3 + S3 − 2 S−2,1

)− S2
(
S−3 + S3 − 2 S−2,1

)
+ 24 S−2,1,1,1 − S1

(
8S−4 + S2−2 + 4S2S−2 + 2S2

2

)
− S1

(
3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1

)
. (10.248)
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The harmonic sums are defined below in a recursive way

Sa( j) =
j∑

m=1

1

ma
, Sa,b,c,···( j) =

j∑
m=1

1

ma
Sb,c,···(m),

S−a( j) =
j∑

m=1

(−1)m

ma
, S−a,b,···( j) =

j∑
m=1

(−1)m

ma
Sb,···(m),

S−a,b,c···( j) = (−1) j S−a,b,...( j)+ S−a,b,···(∞)
(

1 − (−1) j
)
. (10.249)

During the past several years there was great progress in the investigation of the N=4
Super Symmetric Yang–Mills (SYM) theory in a framework of the AdS/CFT correspon-
dence [31],[43],[44]. This model at a strong-coupling regime αs Nc → ∞ is equivalent to
classical supergravity on the anti-de Sitter space AdS5 × S5. In particular, a very interest-
ing prediction [49] was obtained for the large- j behaviour of the anomalous dimension of
twist-2 operators

γ ( j) = a(z) ln j, z = αs Nc

π
(10.250)

in the strong coupling regime:

lim
z→∞ a = −

(
αs Nc

π

)1/2

+ . . . . (10.251)

Note that in our normalization γ ( j) contains the extra factor −1/2 in comparison with that
in Ref. [49].

On the other hand, with the use of the information about the asymptotic behaviour of the
two-loop anomalous dimension γ2 one can formulate a resummation procedure based on
the solution of the following algebraic equation for a [39]:

αs Nc

π
= −ã + π2

12
ã2. (10.252)

Using this equation, the following large-αs behavior of ã can be obtained:

lim
αs→

ã ≈ −1.1632

(
αs Nc

π

)1/2

+ . . . (10.253)

in rather good agreement with the above prediction based on the AdS/CFT correspondence.
Moreover, the small-̃a expansion of the solution of this equation

ã = −αs Nc

π
+ π2

12

(
αs Nc

π

)2

− 1

72
π4

(
αs Nc

π

)3

+ . . . (10.254)

also coincides with good accuracy with exact calculations up to three loops [40]:

a = −αs Nc

π
+ π2

12

(
αs Nc

π

)2

− 11

720
π4

(
αs Nc

π

)3

+ . . . . (10.255)

The anomalous dimension is zero at j = 2 due to energy-momentum conservation. One
can consider its slope b = γ ′(2) in this point. To resum the perturbation theory for this
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quantity we use the same procedure as above. Namely, it is possible to write the following
algebraic equation [39]:

π2

6

αs Nc

π
= −b̃ + 1

2
b̃2. (10.256)

Its perturbative solution

b̃ = −π
2

6

αs Nc

π
+ π4

72

(
αs Nc

π

)2

− 1

432
π6

(
αs Nc

π

)3

+ . . . (10.257)

is in rather good agreement with the exact result up to three loops [40]:

b = −π
2

6

αs Nc

π
+ π4

72

(
αs Nc

π

)2

− 1

540
π6

(
αs Nc

π

)3

+ . . . . (10.258)

Therefore, one can attempt to estimate the strong coupling behaviour of b from the above
resummation

lim
αs→∞ b̃ = π√

3

√
αs Nc

π
. (10.259)

This should be compared with the exact result obtained from AdS/CFT correspondence
(see (10.241) and (10.244)) [40]

lim
αs→∞ b = π

2

√
αs Nc

π
. (10.260)

It is important also that the behaviour of the anomalous dimension near the singularity
at ω = j − 1 → 0 is in agreement with the prediction of the BFKL equation in the
next-to-leading logarithmic approximation [38] with the use of relation (10.240)

lim
ω→0

γ ( j) = 4

ω

αs Nc

π
+ 0

(
αs Nc

π

)2

+ 32ζ(3)

ω2

(
αs Nc

π

)3

+ . . . . (10.261)

10.5.2 Beisert–Eden–Staudacher equation

Using integrability and maximal transcendentality the integral equation for the anomalous
dimension at large j was constructed to all orders of perturbation theory [50],[51]. Its
asymptotic behaviour in this region is given by

lim
j→∞ γ ( j) = −1

2
γK ln j, γK = 8 g f (0), g =

√
αs Nc

4π
. (10.262)

Here γK is the so-called cusp anomalous dimension introduced by A. M. Polyakov. It is
expressed in terms of the solution of the Eden–Staudacher (ES) equation

ε f (x) = t

et − 1

⎛⎝ J1(x)

x
−

∞∫
0

dx ′ K (x, x ′) f (x ′)

⎞⎠ , t = ε x, (10.263)

K (x, y) = J1(x) J0(y)− J1(y) J0(x)

x − y
, ε = 1

2g
, (10.264)
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where Jn(x) are the Bessel functions.
Using the Mellin transformation

f (x) =
i∞∫

−i∞

d j

2π i
ex j φ( j), lim

j→∞φ( j) = γK

8g j
, (10.265)

one can represent φ( j) as the following sum [52]:

φ( j) =
∞∑

n=1

φn,ε( j)
(
δn,1 − an,ε

)
, γK = 8g2(1 − a1,ε), (10.266)

where

φn,ε( j) =
∞∑

s=1

(√
( j + s ε)2 + 1 + j + s ε

)−n

√
( j + s ε)2 + 1

. (10.267)

The coefficients an,ε satisfy the set of linear algebraic equations [52]

an,ε =
∞∑

n′=1

Kn,n′(ε)
(
δn′,1 − an′,ε

)
, (10.268)

where the kernel is given by the expression

Kn,n′(ε) =
∞∑

R=0

(−1)R
ζ(2R + n + n′)
(2ε)2R+n+n′ SR

n,n′ , (10.269)

which allows one to find the perturbative expansion of γK . The coefficients SR
n,n′

SR
n,n′ = 2n

(2R + n + n′ − 1)! (2R + n + n′)!
R! (R + n)! (R + n′)! (R + n + n′)! (10.270)

are integer numbers. As a result, the anomalous dimension has the property of maximal
transcendentality in all loops

γK (ε) = 8
∞∑

k=1

(
− 1

4ε2

)k ∑
[st ]

c[st ]
∏

r

ζ(sr ),
∑

t

st = 2k − 2 (10.271)

with the integer coefficients c[st ] expressed as sums of products of SR
n,n′ [52].

It turns out that the solution of the ES equation does not have a consistent asymptotic
behaviour at large coupling constants [52] in accordance with the fact that the correct
equation should include effects of the so-called dressing phase. The necessity of these
corrections was understood in direct four-loop calculations [53]. Beisert–Eden–Staudacher
calculated the dressing phase and constructed a new equation for γK [51]. Its perturbative
solution for γK is different from the solution of the ES equation only by the change of the
sign in the contributions in which the zeta-functions with odd integer arguments appear in
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products twice modulo 4. One can derive from this equation the following asymptotics of
the cusp-anomalous dimension at large coupling constants [52],[54]

lim
αs Nc→∞ γK = 2

(
αs Nc

π

)1/2

(10.272)

in agreement with the AdS/CFT prediction [43].

10.5.3 Anomalous dimension in four loops

To calculate the anomalous dimension of the twist-2 operators for N = 4 SUSY in four
loops one can use the integrability approach based on the asymptotic Bethe ansatz [48].
The corresponding equations for the Bethe roots uk are given below (cf. (10.111))(

x+
k

x−
k

)2

=
j−2∏
r=1

x−
k − x+

r

x+
k − x−

r

1 − g2/x+
k x−

r

1 − g2/x−
k x+

r
exp (2 i θ(uk, ur )) . (10.273)

Here we used the notation

x±
k = u±

k

2
+
√
(u±

k )
2

4
− g2, u± = u ± i

2
(10.274)

and the dressing phase expansion [51]

θ(uk, u j ) = 4 ζ(3) g6(q2(uk) q3(u j )− q3(uk) q2(u j )
)+ . . . , (10.275)

where q2(u) and q3(u) are eigenvalues of integrals of motion. The calculated Bethe roots
u±

k allow one to find the anomalous dimensions:

γ (g,M) = 2 g2
M∑

k=1

(
i

x+
k

− i

x−
k

)
. (10.276)

In particular, for four loops one can obtain [55]

γ4

256
= 4S−7 + 6S7 + 2 (S−3,1,3 + S−3,2,2 + S−3,3,1 + S−2,4,1)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
− 80 S1,1,−4,1 − ζ(3) S1 (S3 − S−3 + 2S−2,1), (10.277)

where the argument of the harmonic sums is M = j − 2 and dots mean the omitted terms
(their number exceeds 100). All these terms satisfy the maximal transcendentality property.
The last term appears from the dressing phase.

It turns out that after the analytic continuation of this expression to the complex j-plane
from the first two most singular terms we obtain the pole ∼ 1/ω7 for ω = j − 1 → 0,
which does not agree with the singularity at this point predicted from the BFKL equation
(10.233), (10.236)

lim
j→1

γ4( j) = − 32

ω4

(
32ζ3 + π4

9
ω

)
+ . . . . (10.278)
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This means that the asymptotic Bethe ansatz should be modified starting from four loops.
Namely, one should take into account so-called wrapping effects [55]. The contributions
corresponding to the wrapping diagrams were calculated in the paper of Janik with col-
laborators [56]. It turns out that the total expression for γ4( j) is now in a full agreement
with the BFKL prediction (10.278). Thus, the anomalous dimension for twist-2 operators
in N = 4 SUSY is known exactly up to four loops. Moreover, the method developed in
Ref. [57] seems to allow one to calculate γ in all loops.

Interesting results in N = 4 SUSY were obtained also for scattering amplitudes [12].
These amplitudes were used in Ref. [58] to construct higher-loop corrections to the BFKL
kernel in this model. However, it was shown [58] that the Bern–Dixon–Smirnov (BDS)
ansatz [12] does not satisfy correct factorization properties in the multi-Regge kinemat-
ics. The two-gluon production amplitude in the multi-Regge kinematics was calculated
exactly in LLA [12]. It was shown that in the planar limit the production amlitudes con-
tain generally contributions of the Mandelstam cuts. Moreover, the Schrödinger equation
for the composite states of n-reggeized gluons in the adjoint representation is completely
integrable and corresponds to the open spin chain [59].

10.6 Discussion of obtained results

We have shown above that the gluon Regge trajectory and various reggeon couplings can
be obtained from the effective-action approach. In LLA, the BFKL equation is invariant
under the Möbius transformation which allows one to find its exact solution. Moreover, in
LLA the BKP equations for reggeized gluon composite states in multicolour QCD have
the property of the holomorphic separability and are integrable. Further, the corresponding
Hamiltonian is equivalent to the local Hamiltonian of an integrable Heisenberg spin model.
In particular, it has the duality symmetry. For the three-reggeon case, the duality equation
allows one to construct solutions of the Schrödinger equation and calculate the odderon
intercepts in terms of expansions in the inverse eigenvalue λ of the integral of motion. In
the next-to-leading approximation for N = 4 SUSY, the eigenvalue of the pomeron kernel
has remarkable properties including its analyticity in the conformal spin n and the maxi-
mal transcendentality. In this model, the pomeron coincides with the reggeized graviton,
which gives a possibility to calculate its intercept at large coupling constants. Maximal
transcendentality together with integrability allow one to find the anomalous dimensions
of twist-2 operators in this model up to four loops. Production amplitudes in the pla-
nar limit for this supersymmetric model also have remarkable properties related to the
integrability.
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Notations

Feynman notation is used in the book: aμ = {a0, a}, δμν = (1,−1,−1,−1), ε0123 =
1 aμbμ = a0b0 − ab, γμ = {β, βα}, γμγν + γμγν = 2δμν , γ5 = (0 −1

−1 0

)
, � a =

aμγμ; the covariant derivative: in fundamental representation—∇μ = ∂μ + ig λ
n

2 Aμ;
in adjoint representation: Dnm

μ = ∂μδ
nm—g f nlm Al

μ, λ
n—Gell-Mann matrices, f nlm—

SU (3) multiplication factors.
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