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Preface

During the last two decades the explorations of different processes accompa-
nying ion–atom collisions at high-impact energies have been a subject of much
interest. This interest was generated not only by the advent of accelerators
of relativistic heavy ions which enabled one to investigate these collisions in
an experiment and possible applications of obtained results in other fields of
physics, but also by the variety of physical mechanisms underlying the atomic
collisional phenomena at high impact energies.

Often highly charged projectiles produced at accelerators of heavy ions
are not fully stripped ions but carry one or more very tightly bound elec-
trons. In collisions with atomic targets, these electrons can be excited or lost
and this may occur simultaneously with electronic transitions in the target.
The present book concentrates on, and may serve as an introduction to, theo-
retical methods which are used to describe the projectile–electron transitions
occurring in high-energy collisions between ions and neutral atoms. Special at-
tention is given to relativistic impact energies and highly charged projectiles.
Experimental results are used merely as illustrations and tests for theory.

This book will be useful to graduate students and professional scientists
who are interested in studying atomic collisions occurring at high-impact en-
ergies. It assumes that the reader possesses the basic knowledge in classical
electrodynamics and nonrelativistic and relativistic quantum mechanics.

This book could not have been written without the cooperation and
support of our professional colleagues B. Najjari, N. Grün, E. Montenegro,
R. Moshammer, C. Müller, and W. Scheid. We are especially indebted to
B. Najjari and N. Grün for the close and long-term collaboration on atomic
collision theory, numerous discussions and the careful readings of the draft
version of this book.

Heidelberg, Alexander Voitkiv
May 2008 Joachim Ullrich
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1

Introduction

During the last several decades the ion–atom collisions, occurring at impact
velocities substantially exceeding the typical orbiting velocities of outer-shell
atomic electrons, have been a subject of extensive research, both experimental
and theoretical. The studies of different processes, accompanying such colli-
sions, are of great interest not only for the basic atomic physics research but
also have many applications in other fields of physics such as plasma physics,
astrophysics and radiation physics.

With the advent of accelerators of relativistic heavy ions much higher
impact energies and projectile charge states had become accessible for the
explorations in experiments on ion–atom collisions. This, as well as the variety
of physical processes governing atomic collisions at high impact energies, have
triggered both great interest from and, simultaneously, become a source of
substantial challenges for atomic physics theorists.

Three basic atomic physics processes can occur in collisions between a bare
projectile-nucleus and a target-atom. (i) The atom can be excited or ionized
by the interaction with the projectile. (ii) One or more atomic electrons can be
picked up by the projectile-nucleus and form bound or low-lying continuum
states of the corresponding projectile-ion. The pick-up process can proceed
with or without emission of radiation and is called radiative or nonradiative
electron capture, respectively. A combination of (i) and (ii) can also occur. Be-
sides, in relativistic collisions the pair production becomes possible with cross
sections reaching quite substantial values in the case of extreme relativistic
impact energies when the collision velocity approaches very closely the speed
of light in vacuum.

Highly charged projectiles produced at accelerators of heavy ions often are
not fully stripped ions but carry one or more very tightly bound electrons.
If such projectiles collide with atomic targets these electrons can be excited
and/or lost. In the rest frame of the ion this can be viewed as excitation or
‘ionization’ of the ion by the impact of the incident atom. In addition to the
nucleus the atom has electrons which may influence the motion of the electrons
of the ion in different ways. As a result, the physics of the ion excitation and
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‘ionization’ by the neutral atom impact will in general strongly differ from that
for excitation and ionization in collisions with a bare atomic nucleus. Thus,
in collisions of partially stripped ions with neutral atoms, a qualitatively new
process – the projectile-electron excitation and/or loss – becomes possible.

Recently there have been published several books on energetic ion–atom
collisions, [1–5]. Two of them, [3, 4], are almost entirely devoted to the field
of relativistic atomic collisions. Besides, some aspects of such collisions were
reviewed in an earlier book [6].

In the present book we concentrate our consideration on the projectile-
electron transitions occurring in high-energy collisions between ions and atoms
whose electrons also actively or passively participate in the collision process.
The especial attention is given to relativistic impact energies and highly
charged projectiles. Except for a very short discussion in [3], in the previ-
ous books on the relativistic atomic collisions this subject was practically
untouched.

For nonrelativistic ion–atom collisions the projectile-electron transitions
were considered in [1,2]. However, the theoretical considerations in these books
were mostly restricted just to the simplest theoretical model, the first-order
(first Born) approximation. Besides, since the time when these books were
published, there have been new interesting developments in the field. There-
fore we feel that a more extensive coverage in a book-format manuscript of
certain theoretical models, applied to study the nonrelativistic collisions of
structured atomic particles, may be quite appropriate.

The present book describes various theoretical methods which can be ap-
plied to consider collisions between an ion and an atom, both of which have
initially electrons actively or passively participating in the collision process.
Experimental results are used mainly as illustrations and tests for theory.

We hope that the book can be useful to graduate students and professional
scientists who are interested in studying atomic collisions occurring at high
impact energies.

In ion–atom collisions nuclear reactions may also take place. However,
compared to the atomic processes these reactions are normally characterized
by much smaller cross sections and will not be considered. Throughout the
book the nuclei of the colliding particles will be regarded just as point-like
charges which cannot be excited or broken in the collision.

The book consists of two parts which are organized as follows. In Part I
we discuss several theoretical approaches which were developed to study the
projectile-electron transitions occurring in the nonrelativistic ion–atom colli-
sions. In Chap. 2 we consider descriptions of these collisions within the frame-
work of the first order perturbation theory in the projectile–target interaction.
In Chap. 3 a number of theoretical approaches, which go beyond the first order
theory, is introduced. Part I by no means pretends to be an exhaustive review
of all up-to-date developments in this vast field with long history. Instead, in
this part we focus our consideration on introducing and discussing some basic
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ideas and theoretical methods. The literature cited in this part is extremely
far from being complete, but can furnish a starting point for a further search.

In Part II we consider descriptions of projectile-electron transitions in
relativistic collisions. This part represents the main subject of the book.

It begins with Chap. 4, where we very briefly discuss the three ‘corner-
stones’ – the special theory of relativity, the Maxwell and Dirac equations –
which form the basis of the theory of relativistic atomic collisions. This chapter
cannot serve as a substitute for textbooks. Its intention is rather modest:
merely to remind the reader about some basic ideas and facts which he or she
is already well aware of from the textbook literature.

In Chap. 5 we give a detailed consideration of relativistic collisions be-
tween a projectile-ion and a target-atom, which both initially have electrons
actively or passively participating in the collision. In this chapter the ion–atom
interaction is treated within the first order perturbation approach, i.e. by as-
suming that the interaction occurs via just a single virtual photon exchange.
In Chap. 5, amongst several topics, we discuss the quantum and semi-classical
versions of the first-order theory and show their equivalence, consider its non-
relativistic limit, touch upon questions concerning the choice of appropriate
gauges and the gauge (in)dependence of obtained results, possible simplifi-
cations in the full expression for the first order relativistic transition ampli-
tude, etc.

Chapter 6 describes several methods for treating the projectile-electron
excitation and loss in relativistic collisions which extend beyond the frame-
work of the first order theory. In the case of a strong ion–atom interaction
these methods, compared to the first order theory, enable one to treat this
interaction in a better way. Therefore, they can be applied to collisions in
which the fields of the colliding particles become effectively too strong, lead-
ing to the failure of the first order considerations. In this chapter we discuss
(a) a recently developed symmetric eikonal model in which the four-transition
current of the atom includes distortions of the initial and final atomic states
caused by the field of a highly charged ion, (b) the so called light-cone ap-
proximation, which becomes ‘exact’ when the collision velocity is equal to
the speed of light, and (c) three-body distorted-wave models which are based
on the reduction of the projectile-electron excitation and loss processes to
a three-body problem. Besides, Chap. 6 also contains a very brief discussion
of relativistic nonperturbative methods, represented by coupled channel ap-
proaches and numerical solutions of the Dirac equation on a lattice, and a
comparison between results of these methods and the distorted-wave models
for the projectile-electron excitation and loss cross sections.

Chapters 7 and 8 contain mainly applications of the theoretical approaches,
considered in the previous chapters of Part II, to concrete collision processes.
In Chap. 7 we discuss impact parameter dependencies for probabilities of the
projectile-electron excitation and loss in relativistic collisions. Cross sections
are considered in Chap. 8, where results of calculations are also compared with
available experimental data.
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Chapter 8 also includes sections in which we consider bound-free and free-
free electron-positron pair production in collisions between a bare nucleus
and a neutral atom and the excitation and break-up of pionium colliding with
neutral atoms at relativistic velocities. All these processes have much in com-
mon with the projectile-electron excitation and loss and can be treated using
rather similar methods. For example, in the Dirac sea picture the bound-free
pair production is very closely related to the projectile-electron loss process.
On the other hand, although the strong interaction is of crucial importance
for the physics of the π+ and π− pions constituting pionium, the interaction
between the pionium and atoms, which is responsible for the pionium excita-
tion and break-up, occurs predominantly via the electromagnetic interaction
and in this sense the pionium–atom collisions just represent some exotic case
of relativistic atomic collisions.

Chapter A is an Appendix. Besides two sections, in which rather technical
questions are considered, it also contains in-depth discussions of two topics
which both had been a subject of much controversy in the atomic collision
physics community for a very long time. The first is a proper form of the wave
equation for a nonrelativistic electron, which is initially bound by an attracting
center and is subjected in the collision to the field of an extreme relativistic
projectile. The second topic concerns a very delicate and intimate interrelation
between Galilean and gauge transformations in the case when radiative atomic
processes, like e.g. the radiative electron capture, are considered. Although
this topic is not directly related to the rest of this book, it touches upon some
of the most fundamental questions in physics – reference frame and gauge
transformations – and we found it appropriate to include the discussion of
this topic into the present book.

This book presupposes that the reader possesses the university level knowl-
edge in Classical Electrodynamics and in Nonrelativistic and Relativistic
Quantum Mechanics, including Quantum Theory of Scattering. The famil-
iarity with the basic principles of Quantum Electrodynamics is also very
desirable.

There exist a number of good textbooks in which the above fields of physics
are nicely discussed. Based on our own experience we may recommend the fol-
lowing books: [7–17]. Besides, such topics like the correspondence between the
field-theoretical approach of Quantum Field Theory and less general methods
used in the theory of atomic collisions, the Dirac equation and its solutions
in the case of a relativistic electron moving in an external Coulomb field can
be also found in [3, 4].

Our last remark in this introductory part concerns the system of units.
Unless otherwise is stated, throughout the book we shall use the atomic system
of units in which � = me = e = 1, where � is the Planck’s constant, me is the
electron rest mass and e is the absolute value of the electron charge. In this
system the typical velocity of an electron, which is bound in the ground state
of an hydrogen-like ion with a nuclear charge Z, is equal to Z and the speed
of light in vacuum is approximately equal to 137.
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First Order Considerations

2.1 Quantum Plane-Wave Born Approximation

In quantum considerations of atomic collisions all atomic particles, electrons
and nuclei, are treated quantum mechanically. The simplest quantum me-
chanical approach for considering nonrelativistic collisions of two structured
atomic particles – first order plane-wave (plane-wave Born) approximation –
was formulated long ago by Bates and Griffing [18–20]. Later on this ap-
proximation was used in many papers which were devoted to the different
aspects of the projectile-electron excitation and loss in collisions with neutral
atoms and simplest molecules. Earlier reviews, discussing the applications of
the first order approximations to the projectile–target collisions, are presented
in [1, 2, 21, 22], where also references to very many original papers, published
before the middle of the nineties, can be found.

Although already first order calculations can be quite formidable for prac-
tical implementations, the formulation of the plane-wave Born approximation
for nonrelativistic collisions is per se elementary. Here we sketch very briefly
how one can derive first order cross sections using an approach which permits
a natural generalization for the case of relativistic collisions.

Let us consider a collision between a projectile-ion and a target-atom. The
charges of the nuclei of the colliding particles are ZI and ZA, respectively,
and v is the collision velocity. For simplicity we will assume for the moment
that each of the colliding atomic particles has initially only one electron. The
S-matrix element, describing transitions in the colliding system, can be quite
generally written as

Sfi = −i
∫ +∞

−∞
dt
∫

d3x�I(x, t) ϕA(x, t). (2.1)

Here �I(x, t) is the transition charge density, created by the projectile at time
t and space point x, and ϕA(x, t) is the transition scalar potential, generated



8 2 First Order Considerations

by the target atom at the same t and x.1 Throughout the book the indices A
and I stand for the atom and ion, respectively. The scalar potential, created
by the target in the collision, is a solution of Poisson’s equation

∆ϕA(x, t) = −4π�A(x, t), (2.2)

where �A(x, t) is the transition charge density of the target.
Assuming that the collision velocity is sufficiently high, such that the elec-

trons belonging to the ion and atom can be treated as distinguishable particles,
the charge densities are written according to

�I(x, t) =
∫

d3RI d3rΨ�
I,f(RI, r, t) [ZIδ(x − RI) − δ(x − r)]ΨI,i(RI, r, t),

�A(x, t) =
∫

d3RA d3λΨ�
A,f(RA,ρ, t) [ZAδ(x−RA)− δ(x−ρ)]ΨA,i(RA,λ, t).

(2.3)

Within the first-order treatment ΨI,i, ΨA,i and ΨI,f , ΨA,f are approximated
by unperturbed initial and final states, respectively, of the colliding particles.
The form of these states is well known: they are a product of a plane-wave,
representing the motion of the center of mass of the atomic particle, and a
function describing the internal motion of the electron in the particle. Further,
in (2.3) RI is the coordinate of the projectile nucleus, r is the coordinate of the
projectile electron with respect to the projectile nucleus, RA the coordinate
of the target nucleus and ρ the coordinate of the target electron with respect
to the target nucleus.

The target scalar potential and the integrals in (2.1) are conveniently eval-
uated by using Fourier transforms for the charge densities �I, �A and the scalar
potential ϕA, e.g.

�A(x, t) =
1

4π2

∫
dωd3k exp(ik · x − iωt)ξA(k, ω),

where ξA is the Fourier transform of �A. Using the standard procedure of
obtaining a cross section from a known S-matrix transition element, one can
show that the cross section for a collision, in which the electron of the projectile
makes a transition from an initial internal state ψ0 into a final internal state
ψn and the electron of the target makes a transition from its internal initial
state u0 to a final state um, is given by

σ0→m
0→n =

4
v2

∫
d2q⊥

| F I
0n(q) FA

0m(−q) |2
q4

. (2.4)

Here q = (q⊥, qmin) is the momentum transfer to the projectile where, q⊥
is the two-dimensional part of the momentum, which is perpendicular to the
1 Of course, one can take the S-matrix element in a fully equivalent form where

the target charge density is coupled with the projectile scalar potential.
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collision velocity v, and qmin is the minimum momentum transfer to the pro-
jectile given by

qmin =
εn − ε0 + εm − ε0

v
. (2.5)

In (2.5) ε0(n) and ε0(m) are the initial (final) electron energies in the internal
states of the projectile and target, respectively. Further, in (2.4)

F I
0n(q) = ZIδn0 − 〈ψn |exp(iq · r)|ψ0〉 ,

FA
0m(q) = ZAδm0 − 〈um |exp(iq · ρ)|u0〉 (2.6)

are the form-factors of the ion and atom.
When we consider collisions of a projectile carrying initially an electron

with a target, we will be interested in the study of those collisions, where
the projectile electron makes a transition, i.e. when it gets excited or lost
and n �= 0. In what follows we will not consider collisions where n = 0, i.e.
collisions which are elastic for the projectile. While final states of the projectile
are observed in experiment, there is often no experimental information about
the final state of the target. Therefore, in order to describe theoretically such
a situation, one has to calculate the cross section

σ0→n =
∑
m

σ0→m
0→n , (2.7)

where the summation has to be performed over all possible final states of the
target including the continuum. It is convenient to split the first order cross
section (2.7) into two parts and discuss them separately.

2.1.1 Elastic Target Mode

One part represents the contribution to the cross section (2.7) from collisions
in which the target electron remains in the initial state, i.e. from collisions,
where this electron can be considered as ‘passive’. This part reads

σs
0→n =

4
v2

∫
d2q⊥Z2

A,eff(q0)
| 〈ψn | exp(iq0 · r) | ψ0〉 |2

q4
. (2.8)

Here q0 =
(
q⊥, εn−ε0

v

)
and ZA,eff = ZA−〈u0 |exp(−iq0 · ρ)|u0〉 is the effective

charge of the target which is ‘seen’ by the electron of the projectile in collisions
where the target does not change its internal state. Considering this effective
charge as a function of the momentum transfer, one can note the following
important points (see also [2, 21]). The value of the effective charge ZA,eff

varies in the limits ZA − 1 < ZA,eff < ZA.2 The charge ZA,eff approaches
its lower and upper limits in collisions where the momentum transfer q0 is
2 If the target contains NA electrons then ZA − NA < ZA,eff < ZA.
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much lower and much larger, respectively, than a typical electron momentum
in the initial target state. It is seen that the effect of the target electron(s) in
collisions, where the target remains in its initial internal state, is to weaken
the field of the target nucleus acting on the projectile electron, i.e. to partially
or completely screen the nucleus.

The projectile–target collision mode, in which the target does not change
its internal state (while the projectile does), is often called the elastic mode,
implying that it is elastic only for the target. This mode is also referred to as
screening because of the screening (or shielding) role of the atomic electrons,
which in this mode counteract to the field of the atomic nucleus and reduce
the total atomic field acting on the electron of the ion. Below we will use both
these expressions.

2.1.2 Inelastic Target Mode

The second part of the cross section (2.7) describes collisions in which the
target electron makes transitions. It reads

σa
0→n =

∑
m �=0

σ0→m
0→n

=
4
v2

∑
m �=0

∫
d2q⊥

| 〈um | exp(−iq · ρ) | u0〉〈ψn | exp(iq · r) | ψ0〉 |2
q4

.

(2.9)

Equation (2.9) deals with the collision mode where not only the electron of the
projectile but also that of the target are ‘active’ in the collision. This collision
mode is called doubly inelastic or simply inelastic.

According to the first order approximation, the inelastic mode is not influ-
enced by the interaction between the electron of the projectile and the nucleus
of the target and the projectile electron undergoes a transition solely due to
the interaction with the electron of the target. The latter is sometimes referred
to as the two-center dielectronic interaction (TCDI) [1].

Contributions from collisions, in which the target changes its initial in-
ternal state, increase the total cross section (2.7). This action of the target
electron is just opposite to that in the elastic mode, where the electron by
screening the target nucleus decreases the cross section value compared to
that in collisions with the bare atomic nucleus. Therefore, the inelastic colli-
sion mode is also often termed as antiscreening.

2.1.3 Collisions with Large Momentum Transfer.
Free Collision Model

Let us consider collisions in which the minimum momentum transfer qmin,
given by (2.5), and, thus, the total momentum transfer q are much larger than
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a typical momentum of the target electron in the initial target state. Such a
situation can occur if the atomic number ZI of the projectile substantially
exceeds that of the target ZA and the collision velocity is not too high.

Elastic Mode. For the elastic mode the effective charge ZA,eff = ZA −
〈u0 |exp(−iq0 · ρ)|u0〉, because of the rapid oscillations of the integrand due
to the factor exp(−iq0 ·ρ), becomes approximately equal to the charge ZA of
the bare target nucleus. Therefore, in collisions with a large momentum trans-
fer the shielding effect of the target electron is very weak and the transition
of the electron of the projectile is almost solely caused by its interaction with
the nucleus of the atomic target.

Inelastic Mode. In collisions with large momentum transfers the rapid oscil-
lations of the term exp(−iq · ρ) in the integrands of the transition matrix
elements 〈um | exp(−iq · ρ) | u0〉 can make them negligible. These oscilla-
tions, however, can be compensated in the case when final states of the target
electron are continuum states, where the electron momentum k with respect
to the target nucleus is close to −q, i.e. where k ≈ −q or, by separating the
transverse and longitudinal parts, k⊥ ≈ −q⊥ and kz ≈ −qmin.

The condition k⊥ ≈ −q⊥ simply implies that nearly the whole transverse
momentum transfer to the target has to be taken by the target electron alone.

More insight into the collision physics can be obtained by considering the
condition kz ≈ −qmin. Taking into account the explicit form of qmin, this
condition can be rewritten as a quadratic equation for kz with the solutions

k±z ≈ −v ±
√
v2 − k2

⊥ − 2(εn − ε0 − ε0). (2.10)

If v2

2 < (εn − ε0 − ε0) ≈ (εn − ε0), then both roots in (2.10) are complex.
Physically it means that in such a case, due to the restrictions imposed by
the energy-momentum conservation in the collision, there are no target states
where the rapidly oscillating factor exp(−iq · ρ) can be compensated by a
similar term arising from the final motion of the target electron. As a result,
the inelastic contribution (2.9) to the cross section (2.7) is negligible in this
case.

The roots k±z , given by (2.10), become real if v2

2 > (εn−ε0 +k2
⊥/2−ε0). If,

in addition, we assume that v2

2 � (εn − ε0 + k2
⊥/2− ε0), then these roots are

given by k+
z ≈ −(0.5k2

⊥ + εn − ε0 − ε0)/v and k−z ≈ −2v. In the rest frame of
the projectile these roots correspond to an electron having the z-component
of the momentum approximately equal to v and −v, respectively, where v > 0
is the velocity of the incident target. Analysis shows that the contribution
of the electrons with kz ≈ k−z to the inelastic cross section is much smaller
than that of the electrons with kz ≈ k+

z and can be neglected. A rough
estimate for the contribution to the inelastic cross section (2.9) from collisions
in which kz ≈ −(0.5k2

⊥ + εn − ε0)/v can be easily obtained if one neglects the
dependence of qmin on the final energy of the target electron. In such a case
the integration over the final continuum states of the target electron in (2.9)
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is elementary performed by assuming that, because of large k, these states
can be approximated by plane waves. The result is

σa
0→n � 4

v2

∫
d2q⊥

| 〈ψn | exp(iq0 · r) | ψ0〉 |2
q4
0

, (2.11)

where q0 = (q⊥, εn − ε0/v). This cross section can be interpreted as describ-
ing transitions of the electron in the projectile under the action of a fast free
electron which has initially velocity v with respect to the projectile.

Combining (2.11) and (2.8) and taking into account that ZA,eff ≈ ZA, we
see that the cross section (2.7) in collisions with large momentum transfers
can be approximated by

σ0→n ≈ (Z2
A + 1)σpr

0→n. (2.12)

In the above expression σpr
0→n is the cross section for collisions in which the

projectile electron makes a transition 0 → n due to the interaction with a
point-like unit charge moving with velocity v in the projectile frame. Accord-
ing to (2.12) the target nucleus and the target electron act incoherently in
the collision. If the atom has initially ZA electrons the factor Z2

A +1 in (2.12)
should be replaced by Z2

A + ZA. Equation (2.12) is the essence of the free
collision model introduced long ago by Bohr [23]. This model, in particular,
suggests that the relative importance of the elastic mode in the projectile–
target collisions should rapidly increase with increasing atomic number of the
neutral target.

The free collision model is quite simple and physically appealing but not
very accurate. Better results for the cross sections can be obtained by applying
the so called impulse approximation which is closely related to the free collision
model. The application of the impulse approximation to the projectile electron
excitation and loss was discussed in a review article [22] where also references
to original articles were given. The impulse approximation takes into account
the inner motion of the electrons in the target atom by averaging the projectile
cross sections over the momentum distribution of these electrons in their initial
bound state. An insightful discussion of the relationship between the plane-
wave Born and impulse approximations was presented in [24].

2.2 Semi-Classical Approach

In the theory of fast ion–atom collisions quite often only electrons are treated
quantum mechanically whereas the nuclei of the colliding partners are re-
garded as classical particles and their relative motion is described in terms
of a classical trajectory. Such an approach is called semi-classical. Although
the impact parameter, according to quantum mechanics, in general does not
represent a measurable quantity, the semi-classical approach has important
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merits. First, by considering transition probabilities as a function of the im-
pact parameter, one can get an additional insight into the collision physics.
Second, the impact parameter consideration is usually more convenient for
developing treatments which go beyond the first order approximation in the
projectile–target interaction. Third, formulating a theory in terms of impact
parameter allows one to apply the independent electron approximation for
evaluating cross sections of multielectron transitions.

Let us now consider the projectile–target collision using the semi-classical
approach3. We shall assume that the target nucleus, having a charge ZA, is at
rest and taken as the origin of our reference frame. In this frame the nucleus
of the projectile-ion with a charge ZI (ZI � 1) moves along a straight-line
classical trajectory R(t) = b+vt, where b is the impact parameter and v the
projectile velocity. A straight-line trajectory becomes a good approximation
starting with collision energies of a few thousand electron volts and is certainly
an excellent approximation for the collision energies of interest for this book.
The projectile initially carries an electron bound in the ground state.

For simplicity we shall consider that the target also has only one electron.
We denote the coordinates of the electron of the target and that of the pro-
jectile, given with respect to the target nucleus, by ρ and ξ, respectively (see
Fig. 2.1). Further, s and r are coordinates of the target and projectile electrons
with respect to the projectile nucleus.

The electronic system of the colliding particles is described by the time-
dependent Schrödinger equation(

i
∂

∂t
−Hel

I −Hel
A − V

)
Ψ(r,ρ, t) = 0, (2.13)

where Ψ(r,ρ, t) is the time-dependent wave function describing the electronic
degrees of freedom. In (2.13) Hel

I and Hel
A are the electronic Hamiltonians of

the ion and atom, respectively, and

V =
ZI ZA

R(t)
− ZI

s
− ZA

ξ
+

1
| ξ − ρ | (2.14)

Fig. 2.1. Schematic representation of space coordinates characterizing the
projectile–target collision.

3 To our knowledge, for the projectile-electron excitation and loss the semi-classical
approach was for the first time applied in [25].
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is the interaction between the ion and the atom. The term ZI ZA/R(t), rep-
resenting the inter-nuclear interaction, is independent of the electron coordi-
nates. In fast collisions this interaction does not influence cross sections for
the electron transitions (integrated over the impact parameter) and below will
be ignored.

Within the first order approximation, and assuming again that the elec-
trons of the ion and atom are distinguishable, the initial and final states of
the electrons of the colliding particles are approximated by the product of the
undistorted initial and final states of the colliding particles

χi(t) = u0(ρ) exp(−iε0t)ψ0(ξ − R(t)) exp(−iε0t) exp(iv · ξ − iv2t/2),
χf(t) = um(ρ) exp(−iεmt)ψn(ξ − R(t)) exp(−iεnt) exp(iv · ξ − iv2t/2).

(2.15)

In (2.15) u0 and um are the initial and final internal states of the target,
respectively, given in the target frame. Further, ψ0 and ψn have similar mean-
ings but are for the projectile and given in the projectile rest frame. The term
exp(iv · ξ) exp(−iv2t/2) is the so called translational factor4 (see e.g. [6, 16]).

The semi-classical first order amplitude reads

a
(1)
fi (b) = −i

∫ +∞

−∞
dt〈χf(t) | V (t) | χi(t)〉. (2.16)

Inserting the states (2.15) into expression (2.16) and keeping in mind that we
consider only collisions, in which the internal state of the projectile changes
(n �= 0), it is not difficult to obtain that

a
(1)
fi (b) = i

∫ +∞

−∞
dt exp(i(εn + εm − ε0 − ε0)t)

×
〈
ψnum

∣∣∣∣ ZA

|R(t) + r| −
1

| R(t) + r − ρ |
∣∣∣∣ψ0u0

〉
. (2.17)

The straightforward generalization of expression (2.17) to the case, when the
atom has ZA electrons, yields

a
(1)
fi (b) = i

∫ +∞

−∞
dt exp(i(εn + εm − ε0 − ε0)t)

×
〈
ψnum

∣∣∣∣∣∣
ZA

|R(t) + r| −
ZA∑
j=1

1
| R(t) + r − ρj |

∣∣∣∣∣∣ψ0u0

〉
. (2.18)

4 This factor appears because it is the wave function ψn(ξ − R(t)) exp(iv · ξ)
exp(−iv2t/2 − iεnt) (and not merely ψn(ξ − R(t)) exp(−iεnt)), which represents
an exact solution of the Schrödinger equation for an undistorted atomic system
moving with a constant velocity v in an inertial reference frame.
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By applying the integral representation

1
|x| =

1
2π2

∫
d3k

exp(ik · x)
k2

(2.19)

to the Coulomb potentials 1/|R(t) + r| and 1/ |R(t) + r − ρj |, the amplitude
(2.18) is transformed into

a
(1)
fi (b) =

i
πv

∫
d2q⊥ exp(−iq⊥ · b)

〈
um

∣∣∣∣∣∣ZA −
ZA∑
j

exp(−iq · ρj)

∣∣∣∣∣∣u0

〉

×〈ψn |exp(iq · r)|ψ0〉
q2

, (2.20)

where q = (q⊥, qmin) with qmin given by (2.5). It is easy to show [25] that the
semi-classical first-order cross section

σ0→m
0→n =

∫
d2b

∣∣∣a(1)
fi (b))

∣∣∣2 (2.21)

coincides with that following from the plane-wave Born approximation.
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Considerations Beyond First Order
Perturbation Theory

Theoretical considerations, based on the first-order perturbation theory in the
projectile–target interaction, are expected to represent a good approximation
to treat the different aspects of the projectile–target collisions only provided
the conditions ZI/v � 1 and ZA/v � 1 are fulfilled. If at least one of them
is violated, then one has to look for better approaches which go beyond the
first order perturbation theory. It is the goal of this chapter to briefly discuss
some of such approaches.

3.1 Second Order Approximation

The exact transition amplitude (in the prior form) may be written as

afi = −i
∫ +∞

−∞
dt
〈
Ψ

(−)
f |V |χi

〉
, (3.1)

where Ψ (−)
f is an exact solution of the full Schrödinger equation with the total

Hamiltonian Ĥ, which satisfies appropriate boundary conditions, and χi is the
initial state of the system. The latter is a solution of the Schrödinger equation
with the ‘free’ Hamiltonian Ĥ0 which does not contain the interaction term V .

The formal solution for the state Ψf is given by

|Ψf〉 = (1 + ĜV )|ψf〉, (3.2)

where Ĝ is the Green operator of the full Schrödinger equation and ψf is an
appropriate solution of the Schrödinger equation with the Hamiltonian Ĥ0.
Taking into account that the full Green operator can be expressed as

Ĝ = Ĝ0 + Ĝ0V Ĝ, (3.3)

where Ĝ0 is the Green operator for the Schrödinger equation with the
Hamiltonian Ĥ0, (3.2) can be expanded in the perturbation series in the
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interaction V . Terminating this expansion after the first order term, we obtain
the second order transition amplitude:

afi = −i
∫ +∞

−∞
dt
〈
χf

∣∣∣(V + V Ĝ0V
)∣∣∣χi

〉
= a

(1)
fi + a

(2)
fi , (3.4)

where a(1)
fi and a

(2)
fi denote the parts of the transition amplitude which are of

first and second order, respectively, in the interaction V .
The explicit expression for the second order transition amplitude is quite

cumbersome even in simplest cases. For instance, within the semi-classical
approach applied to collisions between an ion and an atom, each of which has
initially just one electron, the second order part of this amplitude is given by

a
(2)
fi = (−i)2

atom∑
α

ion∑
β

∫ +∞

−∞
dt
∫ t

−∞
dt′ exp(i(εn + εm − εβ − εα)t)

× exp(i(εβ + εα − ε0 − ε0)t′)

×
(〈

ψnum

∣∣∣∣ 1
| R(t) + r − ρ |

∣∣∣∣ψβuα

〉〈
ψβuα

∣∣∣∣ 1
| R(t′) + r − ρ |

∣∣∣∣ψ0u0

〉

+
〈
ψnum

∣∣∣∣ 1
| R(t) + r − ρ |

∣∣∣∣ψβuα

〉〈
ψβ

∣∣∣∣ −ZA

| R(t′) + r |
∣∣∣∣ψ0

〉
δα0

+
〈
ψnum

∣∣∣∣ 1
| R(t) + r − ρ |

∣∣∣∣ψβuα

〉〈
uα

∣∣∣∣ −ZI

| R(t′) − ρ |
∣∣∣∣u0

〉
δβ0

+
〈
ψn

∣∣∣∣ −ZA

| R(t) + r |
∣∣∣∣ψ0

〉
δmα

〈
ψβuα

∣∣∣∣ 1
| R(t′) + r − ρ |

∣∣∣∣ψ0u0

〉

+
〈
um

∣∣∣∣ −ZI

| R(t) − ρ |
∣∣∣∣uα

〉
δnβ

〈
ψβuα

∣∣∣∣ 1
| R(t′) + r − ρ |

∣∣∣∣ψ0u0

〉

+
〈
ψn

∣∣∣∣ −ZA

| R(t) + r |
∣∣∣∣ψβ

〉
δmα

〈
ψβ

∣∣∣∣ −ZA

| R(t′) + r |
∣∣∣∣ψ0

〉
δα0

+
〈
ψn

∣∣∣∣ −ZA

| R(t) + r |
∣∣∣∣ψβ

〉
δmα

〈
uα

∣∣∣∣ −ZI

| R(t′) − ρ |
∣∣∣∣u0

〉
δβ0

+
〈
um

∣∣∣∣ −ZI

| R(t) − ρ |
∣∣∣∣uα

〉
δnβ

〈
ψβ

∣∣∣∣ −ZA

| R(t′) + r |
∣∣∣∣ψ0

〉
δα0

+
〈
um

∣∣∣∣ −ZI

| R(t) − ρ |
∣∣∣∣uα

〉
δnβ

〈
uα

∣∣∣∣ −ZI

| R(t) − ρ |
∣∣∣∣u0

〉
δβ0

)
. (3.5)

Expression (3.5) describes the second order contribution to the transition am-
plitude from a collision in which the electron of the projectile-ion makes a
transition ψ0 → ψn while the electron of the target-atom undergoes a transi-
tion u0 → um. The transitions proceed via the double pair-wise interactions
between the constituents of the ion and atom and the physical meaning of the
each term in the amplitude (3.5) is quite transparent.
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In (3.5) R(t) = b + vt denotes the coordinate of the nucleus of the ion
with respect to the nucleus of the atom (the origin), ρ is the coordinate of the
electron of the atom with respect to the origin and r is the coordinate of
the electron of the ion with respect to the nucleus of the ion (see Fig. 2.1).
The summations run over the complete sets of the intermediate states of the
ion ({ψβ}) and the atom ({uα}).

Note that the double summation in (3.5) is actually present only for the
part of (3.5) whose integrand is proportional to the first term in the paren-
theses. This part yields the contribution to the transition amplitude caused
by two consequent interactions between the electrons. In the part of the am-
plitude (3.5), which describes transitions due to the interaction between the
electron of the ion and the nucleus of the atom accompanied by the interaction
between the electron of the atom with the nucleus of the ion, the intermediate
states simply coincide with either the initial or final states. In the other parts
the summation goes over the complete set of either atomic or ionic interme-
diate states. Note also that (since it is assumed that n �= 0) the last term in
the parentheses in fact vanishes. Besides, the term which describes two inter-
actions between the electron of the ion and the nucleus of the atom is nonzero
only in the elastic atomic mode. Nevertheless, although expression (3.5) is not
as ‘scaring’ as it might seem at the first glance, the practical evaluation of the
second order transition amplitude becomes feasible provided some additional
assumptions, like e.g. the closure approximation, are made in (3.5).

According to the first order approximation, the simultaneous electron tran-
sitions in the projectile and target may occur only due to the interaction
between the ionic and atomic electrons. The inspection of the amplitude (3.5)
shows that for such reactions there exist also other paths. In particular, the
simultaneous electron transitions can be caused by the two-center electron–
nucleus interactions: the electron of the target undergoes a transition due to
its interaction with the projectile nucleus and, simultaneously, the electron of
the projectile makes a transition induced by the interaction with the target
nucleus. The importance of this channel increases when the atomic numbers
of the projectile and/or target increase.1 As we see, in a Born approximation
formalism such a reaction channel becomes possible only starting with the
second order terms in the projectile–target interaction.

Equation (3.4) represents the standard form of the second order Born
amplitude.2 One of the familiar features of this amplitude is that, according
to it, the projectile electron in its intermediate states is governed by the
field of the projectile nucleus while the interaction with the field of the atom
acts merely as a perturbation. In the case of light ions impinging on atomic
targets with relatively large atomic numbers, the screened field of the atomic

1 In particular, in the next section we shall see that this channel becomes of especial
importance in collisions involving highly charged ions when ZI ∼ v.

2 This amplitude, for instance, was used in [26,27] to evaluate the spectrum of the
electron emitted from the projectile in collisions with neutral atoms.
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nucleus, acting on the electron of the projectile during the collision, may
become effectively stronger than the field of the ionic nucleus. Then, a possible
alternative to the amplitude (3.4) would be to return to expression (3.3) and
to replace the expansion for the full Green operator given by (3.3) by a new
expansion

Ĝ = Ĝ′
0 + Ĝ′

0V
′Ĝ, (3.6)

where the interaction between the electron of the projectile and the atom is
included into the definition of the new ‘free’ Green operator Ĝ′

0, corresponding
to the new ‘free’ Hamiltonian Ĥ ′

0. The interaction with the nucleus of the ion
is now a part of the new perturbation V ′. In such a way one arrives at the so
called second-order strong-field Born approximation which was used in [28] to
consider the projectile-electron loss in collisions with relatively heavy atoms.
The consideration of the second-order strong-field Born approximation also
enables to establish a link (see [28]) with the impulse approximation of [29].

3.2 Distorted-Wave Approach

We shall now consider collisions between a hydrogen-like projectile-ion and a
light atom. We shall suppose that, while the condition ZA/v � 1 is fulfilled,
the ion has a sufficiently high nuclear charge so that the condition ZI/v � 1
is no longer met and instead we have a much softer condition ZI/v

∼
< 1.

In the standard Born series the expansion parameter is essentially given
by the ration ν = ZI/v. Since this ratio can be now close to unity, one has
to develop an approach which does not rely on the standard Born expansion.
At the same time, it is very desirable to keep such an approach from being
too complicated. As we shall see below, suitable candidates for an approach
satisfying the above two requirements can be found by using the ideology of
distorted wave models.

Note that such models (see e.g. [30–36]) have been proved to be quite suc-
cessful in considering atomic ionization, excitation and electron capture in en-
ergetic collisions with highly charged bare nuclei. The success of these models
owes to the fact that in these models the initial and final states of an electron,
which moves initially in the atomic field and is subjected in the collision to
the field of the incident nucleus, already account for the important parts of
the interaction between the electron of the atom and the incident nucleus.
As a result, the residual interaction, treated in these models perturbatively,
is effectively much weaker compared to that appearing in the standard Born
expansion. This makes the distorted wave models much faster convergent and
very often already the first term of the distorted-wave expansions does a very
good job (for a review on the distorted-wave models in nonrelativistic base
ion-atom collisions see [37–39]).

We again adopt the semi-classical treatment and assume that the target
nucleus, having a charge ZA, is at rest and taken as the origin. In the frame
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of the nucleus of the target the projectile nucleus with a charge ZI (ZI � 1)
moves along a straight-line classical trajectory R(t) = b + vt, where b is the
impact parameter and v is the projectile velocity.

For simplicity we shall consider that the target has only one (active) elec-
tron. As before, we denote the coordinates of the electron of the target and
that of the projectile, given with respect to the target nucleus, by ρ and
ξ, respectively, and s and r are the coordinates of the target and projectile
electrons with respect to the projectile nucleus (see Fig. 2.1).

The prior form of the semi-classical transition amplitude is given by

afi(b) = −i
∫ +∞

−∞
dt〈Ψ (−)(t) |

(
Ĥ − i∂/∂t

)
φi(t)〉. (3.7)

In (3.7) Ψ (−)(t) is the solution of the Schrödinger equation (2.13) and φi(t) is
the solution of

i
∂φi

∂t
=
(
ĤA + ĤI +W (t)

)
φi, (3.8)

where W (t) is a distortion potential.
In the simplest approach the states φi(t) and Ψ (−)(t) would be replaced

by the undistorted initial and final states (2.15), which would lead to the first
order amplitude (2.17). In order to treat collisions, in which the ratio ZI/v
may be not small, we take the initial and final states as [40].

χi(t) = Li u0(ρ) exp(−iε0t)ψ0(ξ − R(t)) exp(iv · ξ) exp(−iv2t/2 − iε0t),
χf(t) = Lf um(ρ) exp(−iεmt)ψn(ξ − R(t)) exp(iv · ξ) exp(−iv2t/2 − iεnt).

(3.9)

These states differ from those given by expression (2.15) just in one, however,
important point. Namely, they include the distortions of the initial and final
states of the target electron caused by its interaction with the strong field
of the projectile nucleus. The distortion factors Li and Lf depend on the
coordinates s of the target electron with respect to the projectile nucleus,
Li = Li(s) and Lf = Lf(s), but at this point the explicit form of these factors
is not yet specified.

Inserting the states (3.9) into (3.7) and remembering our assumption that
n �= 0 we obtain for the transition amplitude

afi = aee
fi + aeN

fi , (3.10)

where

aee
fi(b) = −i

∫ +∞

−∞
dt exp(i(εn + εm − ε0 − ε0)t)

×
∫

d3r
∫

d3ρψ∗
n(r)u∗m(ρ)L∗

f (s)
1

|R + r − ρ|Li(s)u0(ρ)ψ0(r)

(3.11)
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and

aeN
fi (b) = i

∫ +∞

−∞
dt exp(i(εn + εm − ε0 − ε0)t)

×
∫

d3r
∫

d3ρψ∗
n(r)u∗m(ρ)L∗

f (s)
ZA

|R + r|Li(s)u0(ρ)ψ0(r). (3.12)

The part aee
fi of the amplitude (3.10) describes transitions caused by the in-

teraction between the electrons of the ion and atom. Such transitions may
occur already within the first order consideration. However, in contrast to the
latter, now the action of the electron–electron interaction is ‘modulated’ by
the multiple interactions between the target electron and the projectile nu-
cleus which are accounted for by the distortion factors. The remaining part,
aeN

fi , contains the contribution to the transition which is due to the interaction
between the projectile electron and the target nucleus.

It is obvious that for collisions, which are inelastic also for the target
(m �= 0), the part aeN

fi would simply vanish if the distortion factors are re-
placed by 1. In such a case we would recover the first order result which
predicts that the simultaneous transitions in the projectile and target may
be caused by the electron–electron interaction only. However, if we keep the
distortion factors s-dependent, then aeN

fi becomes nonzero suggesting that the
distorted-wave amplitude (3.10) contains yet another mechanism for the dou-
bly inelastic collisions to proceed. Indeed, in general, the part aeN

fi of the
amplitude describes the simultaneous transitions in the projectile and target
as occurring due to the joint effect of the single interaction between the pro-
jectile electron and the target nucleus and the multiple interactions of the
target electron and the projectile nucleus. Thus, we see that merely by the
introduction of the distortion factors for the target electron one is directly
led to the transition amplitude, in which not only the two-center electron–
electron interaction but also the two-center electron–nucleus interactions are
automatically taken into account in a relatively simple way.

Another point of interest to be mentioned here is that the integrands in
(3.11) and (3.12) do not contain derivatives of the distortion factors. Such
derivatives are well known to contribute to the transition amplitude in the
case when distorted-wave models are applied to collisions with bare projectile-
nuclei ([31–36]). In the case under consideration, however, the terms containing
the derivatives vanish because of orthogonality of the initial and final internal
states of the structured projectile-ion.

The transition amplitude (3.10) can be converted to the momentum space
by performing the Fourier transformation

Sfi(q⊥) =
1
2π

∫
d2bafi(b) exp(iq⊥ · b). (3.13)

The quantity q⊥ can be thought of as the two-dimensional transverse
(q⊥ · v = 0) momentum transfer to the target. Using (3.10)–(3.13) one can
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show that the transition amplitude in the momentum space reads

Sfi(q⊥) = − i
4π3v

∫
d3κ

1
κ2
Id(q + κ) Ip(κ) It(q,κ), (3.14)

where

Id(p) =
∫

d3s exp(−ip · s)L∗
f (s)Li(s),

Ip(p) =
∫

d3rψ∗
n(r) exp(ip · r)ψ0(r),

It(p1,p2) =
∫

d3ρu∗m(ρ) exp(ip1 · ρ) (1 − ZA exp(ip2 · ρ))u0(ρ) (3.15)

and q = (q⊥; qmin) with qmin given by (2.5).
In order to move further one has to specify the distortion factors Li and Lf .

The choice of these factors is not unique. In theory of atomic ionization and
excitation by collisions with bare ions the following distorted-wave approx-
imations have been very extensively and successfully used: the continuum-
distorted-wave model [31], the continuum-distorted-wave-eikonal-initial-state
model [33] and the symmetric eikonal model [35,36]. Below, following the con-
sideration of projectile–target collisions given in [40], we shall take the distor-
tion factors Li and Lf as in the symmetric eikonal model.

3.2.1 Symmetric Eikonal Model

In the spirit of the symmetric eikonal model we set

Li(s) = exp(−iν ln(vs+ v · s)),
Lf(s) = exp(+iν ln(vs− v · s)), (3.16)

where ν = ZI/v. From the point of view of computation such a choice of the
distortion factors is the simplest one. This choice is also quite a natural one for
considering collisions in which the target is finally in a bound state. Besides,
(3.16) may also be applied to treat collisions leading to ionization of the target,
provided the velocity of the target electron in the final state is much less than
the projectile velocity. Note also that, since the net charge of a hydrogen-like
projectile with ZI � 1 is approximately equal to the charge of its nucleus, the
distortion factors (3.16) can be viewed as imposing the Coulomb boundary
conditions on the initial and final states of the target electron.

It is worth mentioning that the symmetric eikonal model represents the
first order term of the corresponding distorted wave series with the expansion
parameter ∼ ZI/v

2 and, therefore, seems to be well suited to consider the ion–
atom collisions in the intermediate-to-high velocity regime ZI/v

<∼ 1 where one
has ZI/v

2 � 1 for v � 1.
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One can show [40] that with the distortion factors defined by (3.16) the
transition amplitude (3.14) is given by

Sfi(q⊥) = − 2i
v1+2iν∫
d2p⊥f(p⊥, ν)〈ψn(r) | exp(i(p⊥ − q) · r) | ψ0(r)〉

× 1
(q − p⊥)2

〈um(ρ) | ZA exp(ip⊥ · ρ) − exp(iq · ρ) | u0(ρ)〉, (3.17)

where the function f(p⊥, ν) is defined in Eq. (6.4).
In order to get some insight into the physical picture of the collision de-

scribed by the amplitude (3.17) we rewrite the last line in (3.17) by using the
completeness relation for the target states which yields

〈um | ZA exp(ip⊥ · r) − exp(iq · r) | u0〉

=
∑
m′

〈um | ZA − exp(i(q − p⊥) · r) | um′〉〈um′ | exp(ip⊥ · r) | u0〉. (3.18)

Here the sum runs over the complete set {um′} of the atomic states. According
to (3.18), the transition amplitude (3.17), due to the presence of the eikonal
distortion factors, can be interpreted as taking into account the virtual ex-
citation of the target by the field of the projectile nucleus. Correspondingly,
the vector p⊥ can be thought of as the virtual momentum transfer at the
intermediate stage of the collision process.

One should emphasize that, while both the inelastic (m �= 0) and elastic
(m = 0) target collision modes can be described by (3.17), the expression
(3.17) is only valid under the assumption that the initial and final internal
states of the projectile are different, i.e. n �= 0. Indeed, it was the latter
assumption which resulted in the absence of terms with derivatives in the in-
tegrands of (3.11) and (3.12), as well as in the integrand of (3.17). In contrast,
terms with derivatives do contribute to the transition amplitude obtained in
the symmetric eikonal approximation in the case of collisions with a projectile
which either does not have atomic structure (see e.g. [37]) or when its atomic
structure remains ‘frozen’ in the collision.

3.2.2 Symmetric Eikonal Model: ‘Electrostatic’ Approach

Now we shall very briefly discuss how the transition amplitude (3.17) can be
derived by using another approach [41]. Compared to the ‘standard’ consider-
ation which employs the transition amplitude in the form given by (3.7), the
valuable merit of this approach is that it is suitable for a natural generaliza-
tion to relativistic collision velocities.
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We start with the following expression for the transition amplitude

afi(b) = −i
∫ +∞

−∞
dt
∫

d3x�A(x, t) ϕI(x, t). (3.19)

Here �A(x, t) is the transition charge density created by the target at a time
t and a space point x and ϕI(x, t) is the transition scalar potential generated
by the projectile at the same t and x3.

The charge density of the target is given by

�A(x, t) =
∫

d3rφ∗
f (r, t)

[
ZAδ

(3)(x) − δ(3)(x − r)
]
φi(r, t), (3.20)

where φi and φf are the initial and final states of the target, respectively, and
δ(3) is the 3-dimensional delta-function. According to the symmetric eikonal
approximation we choose these states as

φi(r, t) = exp(−iν ln(vs+ v · s))ϕ0(r) exp(−iε0t),
φf(r, t) = exp(+iν ln(vs− v · s))ϕn(r) exp(−iεnt). (3.21)

Inserting the states (3.21) into (3.20) one can show (see [41]) that

�A(x, t) = exp(i(εn − ε0)t)
∫

d2p⊥f(p⊥, ν) exp(−ip⊥ · b)

×
∫

d3rφ∗
f (r) exp(ip⊥ · r)φi(r)

[
ZAδ

(3)(x) − δ(3)(x − r)
]
. (3.22)

The scalar potential, created by the projectile in the collision, is a solution of
Poisson’s equation

∆ϕI(x, t) = −4π�I(x, t), (3.23)

where �I(x, t) is the transition charge density of the projectile. In contrast to
the charge density of the target, the transition charge density of the projectile
is evaluated with the undistorted electron states. Applying the 3-dimensional
Fourier transformation to both sides of (3.23) we obtain that

ϕ̃I(k, t) =
4π
k2

�̃I(k, t), (3.24)

where �̃I(k, t) and ϕ̃I(k, t) are the Fourier transforms of the charge density
and the scalar potential of the ion, respectively.

3 One can take the transition amplitude in a fully equivalent form where the pro-
jectile charge density is coupled to the scalar potential of the target. Note also
that (3.19) is similar in form to (2.1).
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By expanding the charge density and the scalar potential in (3.19) into
the Fourier integrals the transition amplitude is rewritten as

afi(b) = −4πi
∫ +∞

−∞
dt
∫

d3k�̃A(k, t)
1
k2
�̃I(−k, t), (3.25)

where �̃A(k, t) is the Fourier transform of the charge density of the atom.
It is not difficult to show that in the k-space the charge density of the

target is given by

�̃A(k, t) =
1

(2π)3/2

∫
d3x�A(x, t) exp(−ik · x)

=
exp(i(εn − ε0)t)

(2π)3/2

∫
d2p⊥f(p⊥, ν) exp(−ip⊥ · b)

×〈ϕn(r) | ZA exp(ip⊥ · r) − exp(i(p⊥ − k) · r) | ϕ0(r)〉 (3.26)

and the transition charge density of the projectile for the case m �= 0 is given
by

�̃I(k, t) =
1

(2π)3/2

∫
d3x�I(x, t) exp(−ik · x)

=
exp(i(εm − ε0)t) exp(−ik · R(t))

(2π)3/2
〈χm(ξ) | exp(−ik · ξ) | χ0(ξ)〉.

(3.27)

Using the above two expressions and taking into account the relation (3.13),
the eikonal transition amplitude in the q⊥-space is obtained to be

Sfi(q⊥) =
1
2π

∫
d2b afi(b) exp(iq⊥ · b)

= −2i
v

∫
d2p⊥f(p⊥, ν)〈χm(ξ) | exp(i(p⊥ − q) · ξ) | χ0(ξ)〉 1

(q − p⊥)2

×〈ϕn(r) | ZA exp(ip⊥ · r) − exp(iq · r) | ϕ0(r)〉. (3.28)

The amplitude (3.28) is identical to that given by (3.17).
One has to add that the two approaches to derive the symmetric eikonal

transition amplitude, which have been considered in the last subsections, lead
to the same expression for the transition amplitude only in the case of colli-
sions in which the projectile changes its internal state, m �= 0. This peculiarity
is not just the property of the symmetric eikonal model: the same relation be-
tween results of the ‘standard’ and ‘electrostatic’ approaches holds in any
distorted-wave model in which the initial and final distortion factors are func-
tions depending only on s. Note also that within the first Born approximation
the two approaches yield identical results independent of whether m = 0 or
m �= 0.
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3.2.3 An Example of Applications: Electron Angular Distribution

Important information about the interactions governing the ion–atom colli-
sions can be obtained by considering the cross section, d2σ/dεdΩ, which is
differential in energy and angle of the electron emitted from the target. An
example of the cross section d2σ/dεdΩ is shown in Fig. 3.1 for the reaction
3.6 MeV C5+(1s)+He(1s2) → C6+ + He+(1s)+2e− (v = 12 a.u.). In this figure
the cross section is given for a fixed electron energy of ε= k2/2= 40 eV as a
function of the polar emission angle of the target electron, θ= arccos (k ·v/kv),
where k is the electron momentum with respect to the target nucleus and
k = |k|. Compared to the result of the first order consideration (dash curve)
the eikonal theory shows very substantial differences, both in the magni-
tude and the shape of the cross section (see solid curve). In particular, it
predicts the very strong enhancement of the target emission into the back-
ward direction. This enhancement is due to the contribution of the two-center

Fig. 3.1. Angular distribution of 40 eV electrons emitted from the target in
3.6 MeV u−1 C5+(1s)+He(1s2) →C6++He+(1s) + 2e− collisions. Solid curve:
calculation using the amplitude (3.17). Dash curve: the first Born result. Dot
curve: calculation with the amplitude (3.17) neglecting the two-center dielectronic
interaction. Dash–dot curve: calculation with the amplitude (3.17) neglecting the
interaction between the projectile electron and the target nucleus. Dash–dot–dot
curve: the sum of the dot and dash–dot curves.
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electron–nucleus interactions and reflects the fact that in this reaction channel
the target electron does not get a large recoil in the forward direction since the
momentum transfer necessary to remove the tightly bound projectile electron
is provided by the target core. The angular distribution calculated with the
amplitude (3.17) has rather an unusual shape which is due to the interplay
between the two different reaction channels. One of the interesting features of
this distribution is the clear interference between the contributions to the two-
center dielectronic transitions arising due to the two-center electron–electron
and electron–nucleus interactions (compare solid and dash–dot–dot curves
in Fig. 3.1).

3.3 Coupled Channel Approach

In the previous section we have considered collisions between a highly charged
hydrogen-like ion (ZI/v

<∼ 1) and a light atom (ZA/v � 1). We have seen that,
despite the field of the atom acting on the electron of the ion is weak, the
projectile-electron excitation and loss processes in general cannot be treated
within the first order theory.

In the rest of this chapter we consider how the projectile-electron excitation
and loss can be dealt with when the target atom is heavy enough to violate
the condition ZA/v � 1.

When, for a given collision velocity, the target atomic number substantially
increases, the interaction between the electron of the projectile and the target
becomes too strong, making first-order theories irrelevant. In reality, each
transition from the initial electron state of the projectile would lead to a
reduction of the population of this state making further transitions from this
state less probable. Such a reduction is not taken into account in first-order
theories. The latter ones do not preserve unitarity and, therefore, often result
in strongly overestimated cross sections in the case of large perturbations. This
may be especially true for the elastic mode, where the screened field of the
target nucleus can become so strong in collisions with small impact parameters
that first order calculations yield elastic cross sections which are an order of
magnitude larger than the experimental total cross sections (see [42]).

We return to considering a collision between a projectile-ion with a nuclear
charge ZI, which initially has one electron, and a neutral target atom with
atomic number ZA. We shall again use the semi-classical approximation and
describe the electronic system of the colliding particles containing ZA+1 elec-
trons by the time-dependent Schrödinger equation of the form given by (2.13).
The time-dependent wave function Ψ el(r, {ρ}, t) now describes the motion of
ZA+1 electrons, the atomic Hamiltonian Hel

a depends on the 3ZA coordinates
of the atomic electrons {ρ} = {ρ1,ρ1,...} with respect to the atomic nucleus
and the interaction between the ion and atom reads
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V = − ZA

| R(t) + r | −
ZA∑
j=1

ZI

| R(t) − ρj | +
ZA∑
j=1

1
| R(t) − ρj + r | , (3.29)

where the nucleus–nucleus interaction has again been omitted.
One way to solve the time-dependent Schrödinger equation is to expand

the wavefunction in a complete set, {ϕα(r, {ρ})}, of internal wavefunctions of
the noninteracting ion–atom system

Ψ el =
∑
α

aα(t) exp(−iEαt)ϕα, (3.30)

where Eα is the sum of internal electronic energies of the ion and atom. We
assume that the electron translational factors as well as kinetic energies of
the relative motion of the electrons are included in the wavefunctions ϕα. It
is implied that the summation in (3.30) runs also over continuum states of
the electron in the ion and those of the electrons in the atom. Inserting (3.30)
into the Schrödinger equation one obtains for the unknown time-dependent
coefficients aα the following system of differential equations

i
daα

dt
=
∑
α′

Vαα′(t) exp(i(Eα − Eα′)t)aα′ (3.31)

with the initial conditions

a0(t → −∞) = 1,
aα′ �=0(t → −∞) = 0. (3.32)

At sufficiently large collision velocities transitions of the electrons between
different centers (charge exchange channels) are suppressed because of the
electron translational factors and can be neglected. For electron transitions at
the same centers the translational factors for initial and final states as well as
kinetic energies of the relative motion of the electrons in the corresponding
exponents mutually cancel. Therefore, the remaining terms Vαα′ = 〈ϕα |
V (t) | ϕα′〉 can be rewritten as Vαα′ = 〈χα | V (t) | χα′〉, where the functions
χα describe the internal motion of the electrons within the colliding particles.

The system of the differential equations (3.31), in principle, is equivalent
to the Schrödinger equation and, in this sense, is exact. However, it includes
an infinite number of channels and, even after the implementation of the
simplifications discussed in the previous paragraph, cannot be solved without
making further approximations.

One way to solve approximately the system (3.31) would be to keep all the
channels and to develop a perturbation series by using an iteration procedure.
Coupled channel approaches represent an alternative. They consist of (i) a
restriction of the number of channels considered and (ii) an exact (numerical)
solution of the resulting finite set of the coupled equations. Coupled channel
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approaches preserve unitarity and, compared to first order treatments, are
much better suited for considering strong perturbations.

For instance, coupled channel calculations for the electron loss from
0.25–1 MeV u−1 He+(1s) projectiles colliding with Ne, Ar and Kr atoms, which
were performed in [43], enabled one to get a much better agreement with ex-
periment than that obtained in the first order calculations. Coupled channel
approaches turned out to be also rather powerful at lower impact energies,
where the electron capture starts to play an important role [44–46].

3.4 Sudden Approximation

Equation (3.31) can be solved analytically if we assume that the exponents
of the oscillating factors on the right hand side of (3.31) are small and can
be neglected. This is the case if the effective collision time T (b), when the
interaction V (t) reaches considerable magnitudes, is short compared to typical
electron transition times ταα′ � |Eα − Eα′ |−1, i.e. if |Eα −Eα′ |T � 1. If we
neglect these oscillating factors then the solution of the infinite set of equations
(3.31) reads [47]

aSA
0→n,0→m(t) = < χα | exp

(
−i
∫ t

−∞
dt V (t)

)
| χ0 >

=
〈
um ψn

∣∣∣∣exp
(
−i
∫ t

−∞
dt′ V (t′)

)∣∣∣∣ψ0 u0

〉
. (3.33)

The corresponding cross section is given by

σSA
0→n,0→m =

∫
d2b

∣∣∣∣
〈
um ψn

∣∣∣∣exp
(
−i
∫ +∞

−∞
dt V (t)

)∣∣∣∣ψ0 u0

〉∣∣∣∣
2

. (3.34)

The amplitude (3.33) has the familiar form of the transition amplitude ob-
tained within the first order of the Magnus (or sudden) approximation [48].
For a discussion of this approximation and its applications to various processes
see a review [49], this approximation is very briefly considered also in [50,51].
In the weak interaction limit the exponent in (3.33) can be expanded in se-
ries keeping only the first order term in V . The resulting amplitude coincides
with the first order amplitude (2.16), provided one drops in the latter the
oscillating factors exp(−i(εn + εm − ε0 − ε0)t).

The valuable merit of the sudden approximation is that it preserves uni-
tarity. Using the completeness of the states of the ion and atom it is easy to
show that the total probability to find the electronic system of the colliding
particles in any of its possible states satisfies the condition

P SA
tot (b) =

∑
n,m

∣∣aSA
0→n,0→m(t)

∣∣2 ≡ 1. (3.35)
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Working within the sudden approximation it is convenient to split the ion–
atom interaction according to

V = Vscr + ∆V, (3.36)

where

Vscr = = − ZA

| R + r | + 〈u0

∣∣∣∣∣∣
ZA∑
j=1

1
|R − ρj + r|

∣∣∣∣∣∣u0〉 (3.37)

and

∆V = −
ZA∑
j=1

ZI

| R−ρj | +
ZA∑
j=1

1
| R−ρj + r | −

〈
u0 |

ZA∑
j=1

1
| R+ ρj − r | | u0

〉
.

(3.38)

Here, the term Vscr represents the interaction between the electron of the ion
and the atom which occupies its initial state. It includes the interaction with
the atomic nucleus as well as with the atomic electrons averaged over the
atomic ground state u0. The latter can be considered as an uncorrelated part
of the two-center electron–electron interaction. In collisions with heavy atoms
(ZA � 1) the interaction Vscr can be very strong.

The term ∆V contains the interaction of the electrons of the atom with
the nucleus of the ion and the r-dependent part of this term describes the
correlated part of the interaction between the electron of the ion and the
electrons of the atom.

3.4.1 Elastic Contribution from the Target

Using (3.33) and (3.36)–(3.38), the elastic amplitude (m = 0) for the
projectile-electron excitation or loss can be presented as

aSA
0→n,0→0 =

〈
ψnu0

∣∣∣∣exp
(
−i
∫ +∞

−∞
V (t)dt

)∣∣∣∣ψ0u0

〉

=
〈
ψn

∣∣∣∣exp
(
−i
∫ +∞

−∞
Vscr(t)dt

)
G(r)

∣∣∣∣ψ0

〉
, (3.39)

where

G(r) =
∫ ZA∏

j=1

dρj | u0 |2 exp
(
−i
∫ +∞

−∞
∆V dt

)
. (3.40)

Considering the r-dependent part of the interaction ∆V (r) as a weak per-
turbation acting on the electron of the projectile, one can show [52] that
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the elastic contribution to the excitation or loss probability, P SA
0→n,0→0 =

| aSA
0→n,0→0 |2, can be approximated by

P SA
0→n,0→0 =

∣∣∣∣〈ψn

∣∣∣∣exp
(
−i
∫ +∞

−∞
Vscr(t)dt

)∣∣∣∣ψ0〉
∣∣∣∣
2

×
⎛
⎝1 −

∑
m �=0

| 〈um |
∫ +∞

−∞
V0(t)dt | u0〉 |2

⎞
⎠ , (3.41)

where

V0(t) =
ZA∑
j=1

(
− ZI

| R(t) − ρj | + 〈ψ0

∣∣∣∣ 1
| R(t) − ρj + r |

∣∣∣∣ψ0〉
)

(3.42)

is the net potential which the projectile in the ground state exerts on the
target electrons.

Equation (3.42) has a very simple meaning: the elastic probability is equal
to the probability for the projectile electron to make a transition in the field
of the target atom in the ground state multiplied by the probability for the
target atom to remain in this state during the collision. Within the sudden
approximation (3.41) appears rather naturally. On the other hand, such a
product of probabilities is often introduced in an ad hoc way, in connection
with the independent electron model (see e.g. [2, 21]).

3.4.2 Total Contribution from the Target

Let us now turn to the consideration of the total contribution to the excitation
or loss. With the ‘partial’ cross sections of the form (3.34) the summation over
the final states of the atom can be done with the help of the closure relation
which yields

σSA
0→n =

∑
m

σSA
nm = 2π

∫ ∞

0

db b P SA
0→n(b), (3.43)

where the total probability for the transition ψ0 → ψn of the electron of the
ion is given by

P SA
0→n(b) =

∫ ∏
j=1

dρj | u0 |2
∣∣∣∣
∫

drψ∗
n(r) exp

(
−i
∫ +∞

−∞
dt V

)
ψ0(r)

∣∣∣∣
2

. (3.44)

Compared to collisions with light atoms, in collisions with many-electron
atoms the strength of the interaction Vscr strongly increases while the relative
role of the two-center electron correlations diminishes. Therefore, in such a
case one can try to omit in (3.44) the term ∆V . This results in the drastic
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simplification for the transition probability (3.44), where the integral over the
coordinates of the atomic electrons reduces to∫ ∏

j=1

dρj | u0 |2= 1,

and from (3.43) and (3.44) we obtain

σSA
0→n � σscr

0→n = 2π
∫ ∞

0

db b |< ψn | exp
(
− i
v

∫ +∞

−∞
dZ Vscr(r)

)
| ψ0 >|2 .

(3.45)

Two points may be noted here. First, the cross section (3.45) might seem
to look like the purely elastic contribution. Moreover, in the limit of a weak
ion–atom interaction it indeed goes over into the first order elastic cross sec-
tion. However, in the case of a strong interaction this cross section actually
represents much more than just the elastic part of the projectile-electron ex-
citation/loss cross section. Equation (3.45) describes the cross sections for
the transitions of the projectile-electron caused by its interaction with the
atom whose electronic density is ‘frozen’ in space during the effective collision
time, which does not imply that the atom will finally remain in its initial state.
Therefore, expression (3.45) can still be denoted as the screening cross section.
However, one should keep in mind that now, in contrast to the first order
treatment, the screening cross section is no longer the elastic cross section
because it has been obtained by taking into account transitions to all final
states of the atom.

Second, despite the summation performed over all states of the atom, in the
limit of a weak ion–atom interaction (3.45) does not reproduce the inelastic
contribution to the total cross section. That is in contrast to (3.43)–(3.44)
which in this limit show both the elastic and inelastic contributions [52]. The
obvious reason is that the term ∆V , which represents the two-center electron–
electron correlations, has been neglected in (3.45).

3.5 Glauber Approximation

Collisions between two atomic systems both carrying electrons can be also
described by the time-independent Schrödinger equation

(E −Hi −Ha − V )Ψ(R, r, {ρ}) = 0. (3.46)

In (3.46), Ψ(R, r, {ρ}) is the wavefunction describing both the nuclear and
electronic motion of the colliding partners (for instance, in the center-of-mass
frame), E is the total energy of the colliding particles, R is the internuclear
coordinate which now does not depend explicitly on time, the quantities r
and {ρ} = {ρ1,ρ1,...} have the same meaning as in the previous subsection,



34 3 Considerations Beyond First Order Perturbation Theory

Hi and Ha are the total Hamiltonians of the free ion and atom, respectively.
In (3.46) V = V (R, r, {ρ}) is the total time-independent interaction between
the ion and the atom.

The key approximations of the Glauber approach for collisions between
composite atomic systems are [9, 54–55]

kia0 � 1, Ei � V and
a0∆ε

v
� 1. (3.47)

Here ki = Mv and Ei are the incident momentum and energy of the relative
motion, respectively, M is the reduced mass of the relative motion. V is a
typical potential strength in the problem, a0 is a typical dimension of the do-
main, where the interaction occurs between the colliding particles (in our case
a0 ∼ 1 a.u. is the dimension of the neutral atom), and ∆ε is the difference
between final and initial internal electron energies of the colliding systems.
The first two inequalities in (3.47) represent the “short wavelength” (semi-
classical) condition and the “high-energy” requirement, respectively [9, 53].
Both these inequalities are well fulfilled for energetic heavy-particle collisions
with velocities of several atomic units and higher. In contrast, the last inequal-
ity in (3.47) can be rather restrictive in this region of the collision velocity.
This inequality implies that during the collision the inner electronic motion
of the colliding particles can be viewed as ‘frozen’. The effective collision time
can be estimated as T ∼ a0/v and the last inequality in (3.47) then reads:
T � τ0, where τ0 ∼ ∆ε−1 is an electron transition time in the colliding par-
ticles. The latter inequality is also the condition for the applicability of the
sudden approximation.

Assuming that the minimum and maximum momenta transferred into the
inner motion of the colliding particles are equal to 0 and ∞, the cross section
for collisions, in which the ion and the atom make transitions ψ0 → ψn and
u0 → um, respectively, reads

σGA
nm =

∫
d2b |< ψn um | exp

(
− i
v

∫ +∞

−∞
dZ V (R, r, {ρ})

)
| ψ0 u0 >|2.

(3.48)

Here R = b + v
vZ, where b is interpreted as the impact parameter. In (3.48)

the integration over b is implied to run from 0 to bmax. In general, the upper
limit bmax should not be very large, bmax � v/∆ε, in order that the inner
electron motion in the colliding particles can be considered as frozen during the
collision and, thus, the Glauber approximation can be applied. Setting Z = vt
in the integrand of (3.48) and assuming that, since for ionic transitions (n �= 0)
the ion–atom interaction is effectively short ranged, one can take bmax →∞, we
see that expression (3.48) is precisely the result (3.34) obtained in the sudden
approximation. Such a coincidence is actually not very surprising because the
last relation in (3.47) represents also the condition for the applicability of the
sudden perturbation.
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3.6 Classical Trajectory Monte Carlo Approach

Both purely quantum mechanical and semi-classical approaches to the
projectile–target collisions in general become very complicated when more
than two electrons actively participate in the collision. In such a case descrip-
tions based on classical mechanics may represent an alternative.

The applications of classical mechanics to atomic collisions date back to
J. Thomson and N. Bohr. With the advent of quantum mechanics the attrac-
tion of classical models for atomic collisions had waned but, nevertheless, had
never completely disappeared. The renewed interest in descriptions of atomic
collisions on the base of classical mechanics started when the Classical Trajec-
tory Monte Carlo method (CTMC) was proposed for atomic collisions in [55].
Since then, a lot of papers has appeared which treat the motion of electrons
classically, no matter how small are their de Broglie wave lengths compared
to the other characteristic dimensions of the problem (for a brief review of the
CTMC in atomic collisions see [56]).

In the simplest case of the projectile–target collisions, when two hydrogen-
like systems interact with each other, the CTMC method consists of the
following main ingredients. First, the initial condition at t → −∞ is given
by simulating the noninteracting atomic systems by suitably chosen micro-
canonical momentum distributions. Second, the dynamical description of the
collision between the systems is given by the classical Hamilton equations:

dra

dt
=

∂H

∂pa
, a = 1, 2,

dpa

dt
= −∂H

∂ra
, a = 1, 2,

dRa

dt
=

∂H

∂Pa
, a = 1, 2,

dPa

dt
= − ∂H

∂Ra
, a = 1, 2. (3.49)

Here, a = 1, 2 refer to the ‘first’ and the ‘second’ hydrogen-like systems, ra

and pa are the coordinates and momenta of the ath electron, Ra and Pa

are the coordinates and momenta of the ath nucleus and H is the Hamilton
function,

H =
p2

1

2
+

P2
1

2
− Z1

|R1 − r1| +
p2

2

2
+

P2
1

2
− Z2

|R2 − r2|

+
Z1Z2

|R1 − R2| +
1

|r1 − r2| −
Z1

|R1 − r2| −
Z2

|R2 − r1| , (3.50)
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where Za is the charge of the ath nucleus. In energetic ion–atom collisions
trajectories of the heavy nuclei are, to a very good approximations, straight
lines. This can be explicitly taken into account in (3.49)–(3.50) leading to
substantial simplifications.

When, for a given set of the initial conditions, the system of (3.49)–(3.50)
has been solved, its solutions have to be sorted out in order to interpret the
result in terms of ionization/loss and excitation. For instance, if at t → ∞
it is found that both the electrons are far away from the nuclei, this event is
interpreted as mutual projectile–target ionization.

Since in the CTMC one deals with microcanonical distributions of the ini-
tial electron orbits, very many individual collision trajectories must be consid-
ered in order to obtain sufficient statistics on various cross sections. Compared
to the total cross sections, calculations of the differential cross sections demand
even more trajectories to be considered.

The advantage of the CTMC approach is the relative simplicity of the
classical equations (3.49)–(3.50). This, in particular, enables one to take di-
rectly into account all the pair-wise interactions between the colliding atomic
particles which may have initially several electrons.

The disadvantages of this approach are of fundamental character and are
directly related to the limited ability of classical physics to yield reasonable
results when applied to treat atomic objects. For instance, it is well known
that an hydrogen atom, according to classical physics, is unstable because of
the emission of radiation by the electron moving around the nucleus. It is
only if we ‘forget’ about the interaction with the radiation field, becomes it
possible to model the atom classically.

Moreover, according to classical physics, any bound state of an atom with
two and more electrons will not be stable also because of the Coulomb in-
teraction between the electrons. Since the latter belongs to the same kind
of interaction which also governs ion–atom collisions, it cannot simply be
ignored. Therefore, certain ‘tricks’ are introduced in CTMC calculations in
order to allow atoms with two and more electrons to ‘survive’ in the absence
of the collision.

Nevertheless, after such tricks are implemented, applications of the CTMC
approach may enable one to get a reasonable agreement with experiment in
situations when quantum theories turn out to be too complicated to apply.

In the case of collisions between a bare nucleus and a hydrogen-like system
the relationship between classical and quantum descriptions was studied in
[57]. In particular, it has been shown in [57] that, as quite expected, the
classical description fails to yield reasonable results for collisions with large
impact parameters. When such collisions dominate in the process, as is the
case at very high impact energies where the collision velocity greatly exceeds
the typical electron velocity in the atomic ground state, the CTMC approach
clearly fails to reproduce experimental data (see, for instance, [58,59]).
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3.7 Projectile Electron Loss.
Comparison with Experiment

3.7.1 Total Loss Cross Section

In Fig. 3.2 experimental and theoretical results are shown for the total cross
section of the electron loss from 3.5 MeV He+(1s) projectiles colliding with
different atomic targets ranging from Ne (ZA = 10) to Xe (ZA = 54). The
impact energy corresponds to the collision velocity of 5.94 a.u. and, thus, the
parameter ZA/v varies between 1.68 and 9.1.

Three sets of theoretical results are shown in Fig. 3.2. Results shown by
diamonds were obtained in [42] by using the first Born approximation and
considering the elastic target contribution only.

The results of [43] are displayed by circles. These results were obtained
by applying a coupled channel approach to the electron transitions in the
projectile. It was assumed in [43] that the atom has a rigid structure, i.e. the

Fig. 3.2. The total cross section for the electron loss from incident 3.5 MeV He+(1s)
projectiles colliding with Ne, Ar, Kr and Xe atoms. Solid squares with error bars are
experimental data from [42]. Results of the coupled-channel calculations of [43] are
shown by circles. Results of the calculations using (3.45) are displayed by triangles.
Results of the first order calculations for the screening target mode are shown by
diamonds. The lines connecting the theoretical results are just to guide the eye.
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electrons of the atom do not undergo transitions and are always in the ground
atomic state. This enabled the authors of [43] to replace in their calculations
the atom by an external potential acting on the electron of the projectile in
the collision.

The results of [47] are shown by triangles. In order to obtain the loss
cross sections the authors of [47] used the sudden approximation and their
calculations were based on (3.45).

All the three calculations have one common point: the contribution to the
loss cross section arising from the ‘active’ behavior of the atomic electrons in
the collision – the two-center electron–electron correlations – were neglected.

One immediately sees in Fig. 3.2 that the first order calculation strongly
fails. Already in collisions with Ne the results of this calculation substantially
overestimate the experimental data. When the atomic number of the target
increases, these results become even more inaccurate: for collisions with Xe
the first order result for the elastic target mode is by an order of magnitude
larger than the experimental total loss cross section.

Compared to the first order results, the other two theoretical treatments
certainly represent drastic improvements. Indeed, their results differ by no
more than about 30% from the experimental data.

However, both these treatments fully ignore the ‘active’ role which the
electrons of the atom might play in the projectile-electron loss process. This
seems to be the main reason why the considerable differences between the
experiment and theory exist in the case of the Ne target. Compared to the
other target atoms Ne has the substantially smaller number of electrons and
this increases the relative role of the two-center electron correlations in the
loss process.

The similarity in the magnitudes for the loss cross sections obtained by
using the sudden approximation and the coupled-channel approach deserves
a brief discussion. At the first glance these two approaches seem to be quite
different. Indeed, the cross section (3.45) was obtained in the sudden ap-
proximation by summing over all possible final target states4 whereas the
coupled channel approach of [43] assumed the rigid target structure which is
not influenced by the collision and, hence, might seem to account only for the
contribution of the elastic target mode.

However, one can obtain the same form for the sudden cross section (3.45)
by considering that the target has a rigid inner structure, which cannot be
changed by any collision. In this case the problem is reduced to the projectile-
electron transitions in collisions with a structureless particle which creates a
short-range potential Vscr. Then, if one applies the sudden approximation, the
excitation or loss cross sections are given by precisely the same (3.45). If one
now takes into account that the sudden approximation can be derived from
the coupled-channel formalism (see Sects. 3.3 and 3.4), then the close values
for the loss cross sections, obtained with the sudden and coupled-channel

4 Although neglecting the two-center electron correlations.
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approaches, are already looking quite natural. Moreover, the coupled-channel
calculations of [43] can now be viewed as calculations for the total loss rather
than calculations for the elastic target mode alone, as they were regarded
in [43]. This point allows one to understand the unexpectedly good agreement
between the results of the coupled-channel calculations for the “elastic” target
mode and the experimental data on the total loss cross sections.

3.7.2 Loss Cross Section Resolved over the Final Charge States
of the Target

The results in Fig. 3.2 show the total loss cross sections but do not provide
any information about what happens with the target atom in such collisions.
More insight into the dynamics of the ion–atom collision process is obtained
when the projectile-electron loss cross section is resolved over the final charge
states of the target. Such cross sections were studied, both experimentally and
theoretically, in [60] for collisions of 1–4 MeV He+(1s) ions with Ne atoms and
are shown in Fig. 3.3.

He++Ne → Ηe2++Nei+ + (i+1) e−

Total

σ 
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8  
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Fig. 3.3. The cross section for projectile-electron loss in He+(1s)–Ne collisions. The
cross section is given as a function of the impact energy and is resolved over the
final charge states of the target in the interval Ne0–Ne3+. Symbols with error bars
denote the experimental results. Curves show results of the (n)CTMC calculations.
From [60].
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According to the results of this figure, the main contribution to the
projectile-electron loss is given by collisions in which the target atoms either
keep the net charge zero or get singly ionized. Besides, at the lowest impact
energies considered in [60], the noticeable contribution to the loss cross sec-
tion arises also from collisions resulting in the double ionization of Ne atoms.
However, when the impact energy increases, the relative role of this reaction
channel rapidly diminishes. Results of the CTMC calculations performed by
the authors of [60] are in surprisingly good agreement with their experimental
data.

Compared to the exploration of the total cross sections, much more in-
formation about the various mechanisms, which govern the projectile–target
collisions, can be obtained by studying differential cross sections. During the
last two decades experimental techniques have reached quite a high level of
sophistication [61,62]. In particular, in the study of ion–atom collisions these
techniques enable one to detect in coincidence electrons emitted from the
projectile and the target and the target recoil ions. In principle, experimen-
tal explorations of the projectile-electron excitation and loss processes have
become possible even at the most basic level of the fully differential cross
sections.

In the next subsections we shall consider some of the differential cross sec-
tions for the projectile-electron loss process which have been recently studied
experimentally and theoretically.

3.7.3 Longitudinal Momentum Distribution of Target Recoil Ions

The electron loss from fast highly charged hydrogen-like projectiles, occurring
simultaneously with the target ionization, was studied in [63, 64], where the
cross section differential in the longitudinal component P‖ of the target recoil
momentum, dσ/dP‖, was measured.

In Fig. 3.4 experimental data from [64] for the reaction 75 MeV O7+(1s)
+He(1s2) →O8++He+ + 2e− are shown. This impact energy corresponds to
a collision velocity of v = 13.7 a.u. The collision velocity is sufficiently high,
ZA/v � 1, and the atomic number of the target is much less than that
of the projectile. This means that the total cross section for the projectile-
electron loss is well described by the first order theory in the projectile–target
interaction.

However, the latter strongly fails in an attempt to describe the loss cross
section differential in the longitudinal component P‖ of the target recoil mo-
mentum (see Fig. 3.4). Indeed, the first order theory predicts a single max-
imum in the spectrum of the recoil ions which is centered close to the zero
momentum. This is in contrast to the experimental data which show not only
the maximum at the small recoil momentum but also one more maximum at
substantially larger values of P‖.

The reason of the failure of the first order theory is that, according to this
theory, the simultaneous transitions of the electrons in the projectile and the
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Fig. 3.4. Longitudinal momentum distribution of the recoil ions. Solid curve: cal-
culation using the amplitude (3.17). Dash curve: first Born calculation. Circles with
error bars: experimental results reported in [64]. From [40].

target may only occur via the two-center electron–electron interactions.5 In
order to remove the tightly bound electron from the projectile it is necessary
to transfer to this electron a sufficiently large momentum. If this momentum is
transferred via the two-center electron–electron interaction, then the electron
of the target gets a recoil. On the target scale this recoil is strong enough in or-
der that the target electron leaves the atom with the longitudinal momentum
approximately equal to the longitudinal component of the total momentum
transfer to the atom. In such a collision the residual target ion acts merely
as a spectator carrying almost no longitudinal momentum. This is the basic

5 Note that this point was already emphasized when we discussed the inelastic
target mode (Sect. 2.1.2 of Chap. 2) and also when the distorted-wave approach
was considered (see Sect. 3.2).
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physics lying behind the one-peak structure of the first order prediction for
the longitudinal momentum spectrum of the target recoil ions.

However, as was already discussed in Sects. 3.1 and 3.2, there is another
mechanism which may also cause the simultaneous transitions of the projectile
and target electrons. Within this mechanism the electron of the projectile is
removed due to its interaction with the (screened) target nucleus whereas
the electron of the target is transferred to the continuum via the interaction
with the nucleus of the projectile. Such a mechanism is predicted by the
second order theory in the projectile–target interaction. This mechanism also
appears very naturally in the general distorted-wave model (see (3.14)–(3.14))
discussed in Sect. 3.2, as well as in its particular case – the symmetric eikonal
model – described in Sect. 3.2.1.

Within this mechanism the origin of the second maximum in the recoil
momentum spectrum is easily understood [64] as arising due to the large
recoil transferred to the atomic core in the process of the removal of the
tightly bound electron from the projectile via the direct interaction between
the core and the projectile electron.

Results of calculations performed in [40] based on the symmetric eikonal
amplitude (3.17) are shown in Fig. 3.4 by the solid curve. In these calculations
the helium target was regarded as a hydrogen-like ion, where the ‘active’
electron moves in the field of the atomic core with an effective core charge
of ZA = 1.69. The loss of a tightly bound electron from O7+(1s) projectiles
occurs in collisions with momentum transfers much larger than typical electron
momenta in the ground state of helium. Therefore, the effective charge of the
atomic core, which is ‘seen’ by the projectile electron in the collision, was
set to 2.

It is seen in Fig. 3.4 that the calculations of [40] do show the two-peak
structure and are in reasonably good agreement with the experimental data.

3.7.4 Two-Center Interactions in 3.6 MeV u−1 C2+ + He → C3+

+ He+ + 2e− Collisions

In [65] the reaction C2+ + He → C3+ + He+ + 2e− was studied. The impact
energy was 3.6 MeVu−1 corresponding to the collision velocity of 12 a.u. One
of the main goals of [65] was to learn whether e-2e processes on ions, e− +
An+ → A(n+1)+ + 2 e−, can be experimentally explored in ion–atom collisions
using the atoms as a source of a very dense beam of ‘quasi-free’ electrons.

In particular, in [65] an attempt was made to separate the loss events,
appearing due to the interaction of the projectile electron with the active
electron of the target, from the loss events, which are caused by the inter-
action of the projectile electron with the atomic core. For the former events
it was expected that their signature should be a strong correlation between
the momenta of the electrons emitted from the projectile and target. In the
latter events such a correlation was expected to be between the momenta of
the electron of the projectile and the target recoil ion.
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The conditions |p| > |P| and |p| < |P|, where p is the momentum of the
electron emitted from the target and P is the momentum of the target recoil
ion, were chosen in [65] as approximate criteria for these two types of the
collision events.

Perhaps, the simplest way to look into the correlations is to consider the
projections of the momenta p, P and k, where the latter is the momentum
of the electron emitted from the projectile, on a plane perpendicular to the
collision velocity v. Figure 3.5 shows experimental and theoretical results
of [65] for the correlation between the azimuthal angles Φ(n, e) = arccos(P⊥ ·
k⊥/P⊥k⊥) and Φ(e, e) = arccos(p⊥ · k⊥/p⊥k⊥), where a⊥ = a− (a · v)v/v2.

It is seen in the figure that the conditions |p| > |P| and |p| < |P| indeed
lead to two qualitatively different emission patterns. For the events, which
correspond to |p| > |P|, the emission pattern along Φ(e, e) is concentrated in
the narrow interval of angles around Φ(e, e) = 180◦, but is almost a constant
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Fig. 3.5. 3.6 MeV u−1 C2+ + He → C3+ + He+ + e−+e− collisions. The azimuthal
angle Φ(n, e) between the momenta of the electron emitted from the projectile and
the target recoil ion He+ versus the azimuthal angle Φ(e, e) between the momenta
of the electrons emitted from the projectile and the target. Left column: experiment.
Middle column: CTMC. Upper row: all events. Middle row: events with |p| > |P|.
Lower row: events with |p| < |P|. For more information the right column shows
CTMC results for 3.6 MeV u−1 C2+ + H(2s) → C3+ + p+ + e− + e− collisions.
From [65].
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along Φ(n, e). In contrast, for the events selected by the condition |p| < |P| we
observe exactly the opposite. Now the emission pattern strongly depends on
Φ(n, e), with most of the events concentrated close to Φ(n, e) = 1800, but is a
very smooth function of Φ(e, e). We observe, roughly speaking, that compared
to the previous case, the emission pattern in the plane Φ(n, e)-Φ(e, e) was
rotated by 90◦.

Because of the relatively high impact velocity and not very different val-
ues of the binding energies of the outer electrons in C2+ and the electrons
in helium, the momentum transferred to the target is on overall not much
larger than the typical momentum of the target electrons in the ground state.
Therefore, in the case of the carbon-helium collisions the active electron of
the target atom cannot be regarded as quasi-free and the experiment of [65]
cannot be really viewed as exploring e−–2e− processes on C2+.

In this respect another collision system – 3.6 MeV u−1 C2+ + H(2s) → C3+

+ p+ + 2e−, which was considered in [65] using the CTMC approach – is much
more suitable to mimic the e−–2e− process on C2+ since the binding energy
of the H(2s) target is much smaller. Indeed, it is seen in the right column
of Fig. 3.5 that in this case the emission pattern is almost fully determined
by the two-center electron–electron correlation whereas the target nucleus in
practically all collisions acts merely as a spectator.

3.7.5 Mutual Electron Removal in 0.2 MeV H− + He Collisions

Compared to neutral atoms and positively charged ions, negative ions rep-
resent an atomic system possessing qualitatively new properties [66]. The
electron removal from negative ions by fast collisions with bare nuclei was
studied, experimentally and theoretically, in a number of publications (see,
for instance, [67–70] and references therein).

If a negative ion collides with an atom the electron detachment from
the negative ion can proceed simultaneously with ionization of the atom.
An example of such an detachment-ionization process was considered in [71],
where the reaction 0.2 MeV H− + He → H0 + He+ + 2 e− was investigated
in some detail.

The collision system consists of six particles. In the past it had been found
out that the CTMC method, which enables one to deal relatively easily with
few-particle systems, was not successful when applied to collisions with neg-
ative ions [67].

In a quantum consideration it is difficult to explicitly include all these
particles. Therefore, in an attempt to analyze the experimental data, it was
assumed in [71] that both helium and negative hydrogen can be regarded
as consisting of just two particles: the ‘active’ electron and the core. The
interaction of the active electron with the core of its parent atomic system
was described by using a model potential.

The impact energy corresponds to a collision velocity of about 2.8 a.u.
This velocity value is certainly not sufficiently large in order that the sudden
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approximation can be applied. The distorted-wave models, discussed in
Sect. 3.2, are also not expected to yield good results in this case. Therefore,
an attempt of theoretical analysis undertaken in [71] was based on two very
simplified models: (a) the first order approximation for H−–He collisions and
(b) the continuum-distorted-wave-eikonal-initial-state approximation [33], as-
suming that the action of H− on the active electron of He can in some cases
be approximated by that of an equivelocity antiproton.

Results of this model calculations are shown in Figs. 3.6 and 3.7, where
they are compared with the corresponding experimental data.

Figure 3.6 shows the spectrum of the electrons emitted from H− and He
given as a function of the longitudinal component pez = pe ·v/(pev) of the elec-
tron momentum pe. The experimental data show that this spectrum consists
of two parts which are relatively well separated. It is, therefore, plausible to
interpret these parts as related mainly either to the emission from the target
(pez

<∼ 1 a.u.) or from the projectile (pez
>∼ 1 a.u.).

It is seen in this figure that the first order calculation reproduces rather
well the longitudinal spectrum of the electrons emitted from the projectile.

Fig. 3.6. Longitudinal momentum spectra of electrons emitted in 0.2 MeV H− + He
→ H0 + He+ + e−+e− collisions. Open and solid circles are the experimental data.
Triangles connected by dash curves are results of the first order calculation for the
H− + He collisions. Besides, solid and dash curves show continuum-distorted-wave-
eikonal-initial-state results for the ionization of helium by the impact of 0.2 MeV
antiproton and proton, respectively, and cross–dash curve displays the first order
results for the last two systems. From [71].
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Fig. 3.7. 0.2 MeV H− + He → H0 + He+ + 2 e− collisions. The angle between
the ejected electrons φe−e versus the angle between the electron emitted from the
target and the target recoil ion He+ φet−rec [panel (a)] and versus the angle between
the electron emitted from the projectile and the projectile core φep−H [panel (b)]
in the azimuthal plane. Panels (c) and (d) show the corresponding theoretical spec-
tra calculated in the first order approximation in the projectile–target interaction.
From [71].

In particular, it describes the bump-like structure observed in the experi-
mental spectrum at pez � v. According to the analysis of [71] this structure is
connected with a short-range character of the potential which binds the active
electron in H−.

However, the same first order calculation obviously fails to reproduce that
part of the longitudinal spectrum which is related to the emission from the
target. For that part of the spectrum a much better agreement between ex-
periment and theory is obtained, if the action of the H− on the active electron
of helium in the collision is modeled by that of an equivelocity antiproton and
the CDW-EIS approximation is applied.
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It follows from Fig. 3.7 that the first order theory also leads to mixed results
when applied to describe the relative strength of the correlations between the
various particles by projecting the momenta of these particles onto a plane
perpendicular to the collision velocity (azimuthal plane).

It is seen in this figure that the first order results are rather similar to
the experimental data when φe−e and φet−rec variables are considered, where
φe−e is the angle between the ejected electrons in the azimuthal plane and
φet−rec is the angle in this plane between the electron emitted from the target
and the target recoil ion He+. However, the same first order model strongly
fails to describe the experiment in the case when φe−e and φep−H are chosen
as variables, where φep−H is the angle between the electron emitted from the
projectile and the projectile core in the azimuthal plane.

The possible reasons for the failure of the first order approximation are
discussed in [71], where the interested reader is referred to.
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Introduction to Relativistic Collisions

The space and time used to describe nonrelativistic collisions are the classical
space and absolute time; transitions between different inertial reference frames
are mediated by a well known Galilean transformation. The space and time, in
which relativistic collisions take place, is the four-dimensional flat space–time
of the special theory of relativity.

The dynamics of nonrelativistic ion–atom collisions is fully described by
the corresponding Schrödinger equation. This wave equation is of Hamiltonian
type and explicitly contains all the interactions between the elementary par-
ticles (electrons and nuclei) the ion and atom are composed of, including
interactions acting both between and within the colliding atomic particles.

In relativistic collisions such a ‘single-equation’ description is possible only
if the fields acting on the colliding particles can be regarded as external per-
turbations, which themselves are not influenced by the collision. For instance,
in collisions between a bare nucleus and an hydrogen-like ion the behavior of
the electron can be treated by using the Dirac equation in which the inter-
actions between the electron and the nuclei are taken as independent of the
electron motion.

In ion–atom collisions, in which both the ion and atom carry electrons,
the fields acting on the colliding particles in general cannot be regarded as
external. If the latter is the case, the description of ion–atom collisions cannot
be based merely on the Dirac equation. Instead, it has to include self-consistent
considerations for charged particles and the electromagnetic field.

In this chapter we shall very briefly consider the special theory of relativity
and the Maxwell and Dirac equations.

4.1 Elements of the Special Theory of Relativity

In this section we shall remind of some basic facts related to the special theory
of relativity.
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4.1.1 The Lorentz Transformation

Let us consider two inertial reference frames, K and K ′, which move with
respect to each other with a constant velocity. Let O be the origin of the
frame K and the coordinate axes in this frame be (X,Y, Z). Similarly, O′ and
(X ′, Y ′, Z ′) are the origin and the coordinate axes in the frame K ′. Both these
frames are also equipped with clocks which measure the time in these frames.

For simplicity we shall assume that the coordinate axes of the frames K
and K ′ are chosen in a such way that the axes Z and Z ′ coincide and the axes
X and Y are parallel to the axes X ′ and Y ′, respectively. With respect to the
frame K the frame K ′ moves with a constant velocity V = (0, 0, V ) along the
Z-axis of the frame K. The clocks in both frames are set to zero when the
origins O and O′ coincide.

Let (x, y, z, t) be the space coordinates and time of some physical event
observed in the frame K. Let (x′, y′, z′, t′) be the space coordinates and the
time of the same event but viewed in the frame K ′. According to the special
theory of relativity the coordinates and time of the event in the frames K and
K ′ are related by (see e.g. [7, 8])

x′ = x,

y′ = y,

z′ = γV (z − V t),
t′ = γV (t− V z/c2), (4.1)

where c is the speed of light, which is independent of a reference frame, and
γV = 1/

√
1 − V 2/c2. The transformation (4.1) is referred to as the Lorentz

transformation. The inverse Lorentz transformation is obtained from (4.1) by
replacing V → −V

x = x′,
y = y′,
z = γV (z′ + V t′),
t = γV (t′ + V z′/c2). (4.2)

Equations (4.1) and (4.2) represent the simplest case of the Lorentz trans-
formation. If the axes in the frames K and K ′ are chosen as before, but the
components of the velocity V of the frame K ′ in the frame K are all nonzero,
the corresponding (more general) Lorentz transformation is given by (see [7])

r′ = r + (γV − 1)V V · r − γV Vt,

t′ = γV

(
t− V · r/c2) . (4.3)

In order to distinguish the transformations (4.1) and (4.3) the former is often
referred to as a Lorentz boost.
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4.1.2 Four-Dimensional Space and Four-Vectors

The fact of fundamental importance is that the Lorentz transformation leaves
unaltered the quadratic form s2 = c2t2 − x2 − y2 − z2: c2t2 − x2 − y2 − z2 =
c2t′2−x′2−y′2−z′2. Similarly to a vector r = (x, y, z) in the three-dimensional
(Euclidean) space, whose length r is obtained from r2 = x2 + y2 + z2, the
quadratic form s2 = c2t2−x2−y2−z2 can be viewed as the squared length of
the four-vector (ct, x, y, z) in the four-dimensional space–time. Since rotations
do not vary the length of a vector, Lorentz transformations (4.1)–(4.3) can be
regarded as rotations in the four-dimensional space–time.

In contrast to the square of the length in the Euclidean space, given by
x2 + y2 + z2, the quadratic form s2 = c2t2 − x2 − y2 − z2 contains terms
with both positive and negative signs.1 In order to account for the latter,
two different forms of a given four-vector are introduced: the contravariant
vector, defined by xµ = (x0, x1, x2, x3) = (ct, x, y, z), and the covariant vector
xµ = (x0, x1, x2, x3) = (ct,−x,−y,−z). With these two vectors the quadratic
form is given by s2 = xµx

µ = xµxµ, where µ = 0, 1, 2, 3 and the summation
over the repeated Greek indices is implied, and can be interpreted as a four-
scalar product x · x.

According to the special theory of relativity the space and the time to-
gether form a four-dimensional flat space–time continuum. The geometrical
properties of this space–time are described by the metric tensor g which is a
symmetric tensor of rank 2. The covariant and contravariant versions of this
tensor coincide, gµ ν = gµ ν , and their elements presented in a matrix form
read

gµ ν = gµ ν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (4.4)

The metric tensor with mixed components is simply equal to the Kronecker’
δ-symbol: g ν

µ = gµ
ν = 1 for µ = ν and g ν

µ = gµ
ν = 0 for µ �= ν.

The metric tensor enables one to calculate the scalar product of two four-
vectors: x ·y = gµ νx

µyν = gµ νxµyν . In particular, with the help of the metric
tensor the element of length in the four-dimensional space is expressed as
ds2 = dxµdxµ = gµνdxµdxν = gµνdxµdxν , where dx0 = dx0 = cdt and
dxj = −dxj with j = 1, 2, 3.

The element ds2 is invariant under transformations, which combine (a)
rotations in the three-dimensional space and in the space–time and (b) shifts
in the space–time (translations):

x′α = Λα
βx

β + yβ . (4.5)

1 Note that this is not the case if the four-vector is defined as (x, y, z, ict) and, thus,
s2 = x2 + y2 + z2 + (ict)2 In this book, however, such a definition will not be
used.
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The transformations (4.5) form a group. The matrix Λ in (4.5) satisfies the
orthogonality conditions

ΛT gΛ = g, (4.6)

where ΛT is the transposed matrix. Note, that for a Lorentz boost in the
Z-direction one has [7]

Λ ν
µ =

⎛
⎜⎜⎝

γV 0 0 −V
c γV

0 1 0 0
0 0 1 0

−V
c γV 0 0 γV

⎞
⎟⎟⎠ . (4.7)

Obviously, that the four-vector formed using the space and time coordinates
of a physical point is not the only four-vector of physical significance. There
are other quantities which under the transformation from one reference frame
to another behave like the four-vector (ct, x, y, z). In general, if a set of four
quantities (a0, a1, a2, a3) behaves under the Lorentz transformation like the
space–time vector (ct, x, y, z), i.e.

a′α =
∂x′α

∂xβ
aβ ,

a′α =
∂x′β

∂xα
aβ , (4.8)

these four quantities form a four-vector. By multiplying the left and right
hand parts of the above two equations we see that the length of the vector is
invariant: a′αa

′α = aαa
α.

For instance, the energy ε and the three-momentum p = (px, py, pz) of a
particle can be combined into the energy–momentum four-vector pα = (ε/c,p)
(pα = (ε/c,−p)). If the particle moves with a velocity u = (ux, uy, uz) with
respect to a frame K its momenta and energy in this frame are given by

p = m0γuu,

ε = m0γuc
2, (4.9)

where γu = 1/
√

1 − u2/c2 and m0 is the rest mass of the particle. For the
squared length of the four-momentum one obtains pαp

α = ε2/c2−p2 = m2
0c

2.
One more example of a four-vector, which is of great physical importance,

is the four-current which is built using the charge density ρ and the current
density j:

jα = (cρ, j),
jα = (cρ,−j). (4.10)

Partial derivatives in the three-dimensional space and time can also be com-
bined into a four-vector. Indeed, since the differential of a four-scalar function
F (x), given by
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dF =
∂F

∂xα
dxα =

∂F

∂xα
dxα,

is also a four-scalar, it is not difficult to convince oneself that

∂α ≡ ∂

∂xα
=
(

∂

c∂t
,−∇

)
,

∂α ≡ ∂

∂xα
=
(

∂

c∂t
,∇
)

(4.11)

represent contravariant and covariant four-vectors, respectively.

4.1.3 Relativistic Addition of Velocities

Let a point move in the frame K ′ with a velocity u′. Using the transformation
(4.1) one can easily calculate the velocity of this point in the frame K in which
the frame K ′ moves with a velocity V along the Z-axis. The result is

uz =
dz
dt

=
γV (dz′ + V dt′)

γV (dt′ + V dz′/c2)
=

u′z + V

1 + V u′z/c2
,

ux =
dx
dt

=
u′x

γV (1 + V u′z/c2)
,

uy =
dy
dt

=
u′y

γV (1 + V u′z/c2)
. (4.12)

4.1.4 Transformation of Energy–Momentum

As was already mentioned, the energy and three-momentum of a particle form
a four-vector which is referred to as the four-momentum of the particle. Let
in the frame K the four-momentum be given by pµ = (ε/c,p). This four-
momentum can be recalculated to any other inertial frame according to the
Lorentz transformation. For instance, in the frame K ′, which moves in the
frame K with a velocity V = (0, 0, V ), this four-momentum is represented by
p′µ = (ε′/c,p′) with the components given by

p′x = px,

p′y = py,

p′z = γV (pz − V ε/c2),
ε′/c = γV (ε/c− V pz/c). (4.13)

Taking into account that p = (px, py, pz) = (p sin θ cosφ, p sin θ sinφ, p cos θ)
and p′ = (p′x, p

′
y, p

′
z) = (p′ sin θ′ cosφ′, p′ sin θ′ sinφ′, p′ cos θ′), where θ, φ and

θ′, φ′ are the polar and azimuthal angles of the three-momentum in the frames
K and K, respectively, (4.13) can be also rewritten as
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p′ sin θ′ = p sin θ,
p′ cos θ′ = γV (p cos θ − V ε/c2),
ε′/c = γV (ε/c− V p cos θ/c). (4.14)

A particular case of the transformations (4.13)–(4.14) is encountered when
one considers the energy–momentum of a photon. Let in the frame K the
photon have a frequency ω and propagate under the angle θ with respect to
the Z-axis. Then, using (4.14) it is not difficult to show that in the frame K ′

the frequency ω′ and the propagation angle θ′ of the photon are given by

ω′ = γV ω

(
1 − V

c
cos θ

)
,

tan θ′ =
sin θ

γ
(
cos θ − V

c

) . (4.15)

The first equation in (4.15) describes the relativistic Doppler effect.

4.1.5 Transformations of Cross Sections

When exploring ion–atom collisions one needs to be able to relate cross sec-
tions calculated in one reference frame to the same cross sections but con-
sidered in another reference frame. For instance, it is often more convenient
to perform calculations for cross sections of the projectile-electron loss in the
rest frame of the projectile nucleus. However, since in an experiment cross
sections are not, of course, measured in the rest frame of the projectile, it
is necessary to transform these cross sections from the latter frame to the
laboratory frame.

Let us consider two inertial reference frames, K and K ′. As before, we
choose the Z and Z ′ coordinate axes of these frames to coincide and the X
and Y axes to be parallel to X ′ and Y ′, respectively. We also suppose that
the frame K ′ moves with respect to K with a velocity V = (0, 0, V ).

Let N ′(ε′, θ′, φ′) be the density of particles (for instance, electrons or pho-
tons) emitted in ion–atom collisions which are observed in the frame K ′. In
this frame the particles have energies in the interval (ε′, ε′ + dε′) and propa-
gate within the solid angle dΩ′ = sin θ′dθ′dφ′ around the polar angle θ′ and
the azimuth angle φ′. Let N(ε, θ, φ) be the density of the same particles, but
observed in the frame K in which they have energies in the interval (ε, ε+dε)
and move within the solid angle dΩ = sin θdθdφ.

The number of emitted particles is a quantity which is naturally conserved
under the transformation of a reference frame. Therefore, one has

N(ε, θ, φ)|dεdΩ| = N ′(ε′, θ′, φ′)|dε′dΩ′| (4.16)

or

d2σ

dεdΩ
|dεdΩ| =

d2σ′

dε′dΩ′ |dε′dΩ′|. (4.17)
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In the above equation d2σ/dεdΩ and d2σ′/dε′dΩ′ are the doubly differential
cross sections given in the frame K and K ′, respectively.

The energy and angle differentials are related by

dεdΩ =
∂(ε, cos θ)
∂(ε′, cos θ′)

dε′dΩ′ (4.18)

with the Jakobian

∂(ε, cos θ)
∂(ε′, cos θ′)

=

∣∣∣∣∣
∂ε
∂ε′

∂ cos θ
∂ε′

∂ε
∂ cos θ′

∂ cos θ
∂ cos θ′

∣∣∣∣∣ =
p′

p
=

sin θ
sin θ′

. (4.19)

Taking into account (4.17) and (4.19) one obtains that the cross section dif-
ferential in the emission energy and angle is transformed according to

1
p

d2σ

dεdΩ
=

1
p′

d2σ′

dε′dΩ′ . (4.20)

The above expression and the transformations (4.14) contain all necessary in-
formation enabling one to recalculate the emission spectra from one reference
frame to another.2

4.2 The Electromagnetic Field

4.2.1 The Maxwell Equations and the Conservation
of Electric Charge

In ion–atom collisions the interaction between the atomic particles is trans-
mitted by the electromagnetic field. An arbitrary electromagnetic field is de-
scribed by the Maxwell equations which read (see e.g. [7])

∇ · E = 4πρ,

∇ × E = −1
c

∂B
∂t

,

∇ · B = 0,

∇ × B = −4π
c

j − 1
c

∂E
∂t

. (4.21)

Here, E is the electric field strength, B is the magnetic field strength, ρ is the
density of the electric charge and j is the density of the electric current.

Taking the partial time derivative of both sides in the first equation in
(4.21), acting with the operator ∇ on both sides of the fourth equation in

2 One should add that (4.20) is valid only provided the pairs of variables (ε, cos θ)
and (ε′, cos θ′) are in a one-to-one relationship. A more careful analysis should be
undertaken when a multivalued relationship between these pairs occurs (see [72]).
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(4.21) and taking into account that div curl ≡ 0 we arrive at the so called
continuity equation

∂ρ

∂t
+ ∇ · j = 0, (4.22)

which expresses the local conservation of electric charge. With the help
of (4.10) and (4.11), (4.22) can be rewritten in the four-dimensional form
∂αj

α = 0 (or ∂αjα = 0) which demonstrates that the continuity equation is
manifestly covariant.

4.2.2 Potentials of the Electromagnetic Field.
Gauge Transformations

Since div curl ≡ 0, the third equation in (4.21) will be automatically fulfilled
if we set

B = ∇ × A. (4.23)

The three-dimensional vector A is called the vector potential. Inserting the
right hand side of (4.23) into the second line of (4.21) we obtain

∇ ×
(
E +

1
c

∂A
∂t

)
= 0. (4.24)

Taking into account that curl grad ≡ 0, the electric field can be expressed as

E = −1
c

∂A
∂t

− ∇Φ, (4.25)

where Φ is called the scalar potential.
In (4.21) the electromagnetic field is represented by six quantities: the

three components of the electric field and the three components of the mag-
netic field. If the scalar and vector potentials are known, the strengths of
the magnetic and electric fields are unambiguously obtained from (4.23) and
(4.25). Thus, the electromagnetic field can be described by introducing just
four quantities, the vector potential A and the scalar potential Φ.

Moreover, there still remains a certain freedom in choosing these poten-
tials. It is easy to check that if these potentials are transformed according to

Φ → Φ′ = Φ− 1
c

∂f

∂t
,

A → A′ = A + ∇f, (4.26)

where f is an arbitrary function (whose space and time derivatives exist), the
fields E and B remain unchanged. The transformation (4.26) is called a gauge
transformation for the field potentials and f is a gauge function.
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In Classical Physics the introduction of the electromagnetic potentials is
in essence just a matter of convenience. However, in quantum theory this
introduction becomes mandatory since these potentials enter the quantum
wave equations. In particular, the fact, that the electromagnetic field can be
fully described by introducing the vector and scalar potentials which are not
uniquely defined and maybe subjected to a gauge transformation, plays one
of the key roles in quantum theory of electromagnetic processes.

4.2.3 Maxwell Equations for the Field Potentials

The electromagnetic potentials were introduced by using the second and third
equations in (4.21). The rest two lines in (4.21) can be used to obtain the
differential equations which these potentials have to obey to. Inserting (4.23)
and (4.25) into the first and fourth equations in (4.21) and making use of the
identity curl curl ≡ grad div −∆, we get

∆Φ+
1
c

∂

∂t
∇ · A = −4πρ,

∆A − 1
c2
∂2A
∂t2

− ∇
(

∇ · A +
1
c

∂Φ

∂t

)
= −4π

c
j. (4.27)

By introducing the four-potential

Aν = (Φ,A), (4.28)

which may be shown to be a contravariant four-vector, and taking into account
that the differential operators ∂/(c∂t) and −∇ form the components of a four-
vector ∂µ (see (4.11)), (4.26) and (4.27) can be written in a four-dimensional
form:

�Aµ + ∂µ∂νA
ν =

4π
c
jµ (4.29)

and

Aµ → A′µ = Aµ − ∂µf. (4.30)

In (4.29)

� =
∂2

c2∂t2
−∆ (4.31)

is the D’Alembert operator and the four-current jµ is given by the first line
in (4.10).

The equations for the field potentials can be simplified using the freedom
to choose an appropriate gauge. For instance, the Lorentz condition, which is
given by
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∂νA
ν = ∇ · A +

1
c

∂Φ

∂t
= 0,

leads to the equations

∆Φ− 1
c2
∂2Φ

∂t2
= −4πρ,

∆A − 1
c2
∂2A
∂t2

= −4π
c

j, (4.32)

in which the scalar and vector potentials are fully disentangled. The Lorentz
condition is obviously invariant under a Lorentz transformation.

Another ‘popular’ gauge condition, ∇ · A = 0 (the Coulomb gauge),
results in

∆Φ = −4πρ

∆A − 1
c2
∂2A
∂t2

= −1
c

(
4πj − ∇∂Φ

∂t

)
. (4.33)

In atomic collision theory the Coulomb gauge, in which the scalar potential
remains exactly the same as if the speed of light were infinity, is convenient
to analyze relativistic effects caused by the relative ion–atom motion.

4.3 The Dirac Equation

4.3.1 The Hamiltonian Form

The Hamiltonian form of the Dirac equation for an electron in the presence
of an external electromagnetic field reads

i
∂ψ(r, t)

∂t
= Ĥψ(r, t). (4.34)

Here, r is the electron coordinate, t is the time. The Dirac Hamiltonian is
given by

Ĥ = cα · ∇
i

+ c2β − Φ+ α · A, (4.35)

where Φ and A are the scalar and vector potentials, respectively, of the exter-
nal field, and α = (αx, αy, αz) and β are the Dirac matrices. These matrices
satisfy the anticommutation relations:

αj αk + αk αj = 2δjk Id (j, k = 1, 2, 3),
αj β + β αj = 0d,

β2 = α2
j = Id, (4.36)



4.3 The Dirac Equation 61

where δjk is the Kronecker’s delta and 0d and Id denote, respectively, the zero
and unit matrices of a dimension d. The smallest dimension, in which matrices
fulfilling (4.36) can be found, is d = 4 and, therefore, the Dirac matrices are
normally represented by 4×4 matrices. Consequently, a state ψ corresponding
to such a choice of matrices is a four-component column:

ψ =

⎛
⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ , (4.37)

which is called the Dirac spinor (or four-spinor).
One of the representations of the Dirac matrices, which is commonly used

in the theory of relativistic atomic collisions, is provided by (see e.g. [3, 10])

α =
(

02 σ
σ 02

)
,

β =
(
I2 02

02 I2

)
, (4.38)

where 02 and I2 are the two-dimensional zero and unit matrices, respectively,
and σ = (σx, σy, σz) are the set of the two-dimensional Pauli spin matrices.
These matrices are normally taken as

σx =
(

0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
(4.39)

and possess the following basic properties

σ2
x = σ2

y = σ2
z = I2,

σy σz = iσx, σz σx = iσy, σx σy = iσz,

σj σk + σk σj = 2δjkI2. (4.40)

The Hermitian conjugate of the spinor (4.37) is ψ†, which is defined by

ψ† = (ψ∗
1 , ψ

∗
2 , ψ

∗
3 , ψ

∗
4) (4.41)

and satisfies the equation

−i
∂ψ†

∂t
= ic(∇ψ†) · α + c2ψ†β − Φψ† + ψ†α · A. (4.42)

Multiplying both sides of (4.34) by ψ† (from the left) and both sides of (4.42)
by ψ (from the right) and subtracting the resulting equations from each other
we obtain the continuity equation

∂ρ

∂t
+ ∇ · j = 0, (4.43)

where

ρ = ψ†ψ,
j = cψ†αψ. (4.44)
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4.3.2 Gauge Invariance of the Dirac Equation

As was briefly discussed in the previous section, the electromagnetic field is
not changed when the field potentials Φ and A are subjected to a gauge
transformation given by (4.26). It is easy to check that, under the gauge
transformation (4.26) of the potentials, the form of the Dirac equation (4.34)
will not be altered if the wave function ψ is simultaneously subjected to the
transformation:

ψ → ψ′ = exp(−if/c)ψ, (4.45)

where f is the same gauge function as in (4.26).

4.3.3 The Covariant Form

If we multiply both sides of (4.34) by the matrix β and introduce matrices γν

(ν = 0, 1, 2, 3) according to

γ0 = β,

γj = βαj (j = 1, 2, 3), (4.46)

we obtain the following equation(
iγν∂ν +

1
c
γνAν − c

)
ψ = 0, (4.47)

where Aν = (Φ,−A) is the four-potential. Equation (4.47) is referred to as
the covariant form of the Dirac equation. Equation (4.47) is a convenient
starting point to establish the covariance of the Dirac equation under a Lorentz
transformation (see, for instance, [13]). Note also that the matrices γν , as it
follows from their definition (4.46), satisfy the anticommutation relations:

γν γµ + γµ γν = 2gν µ I4, (4.48)

where I4 is the 4 × 4 unit matrix.

4.3.4 Classification of States in a Spherical Potential

At t → ±∞, i.e. long before and after a collision between an ion and an atom
occurs, these atomic particles are well separated and the interaction between
them can be neglected. Then the internal motion of the electron(s) in the ion
and in the atom can be described by considering a time-independent Dirac
equation. A relatively simple but often arising problem is the motion of an
electron in a spherically symmetric external field which is described by the
equation:

εχ = Ĥ0χ, (4.49)
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where

Ĥ0 = cα · ∇
i

+ c2β − V (r). (4.50)

In these equations −V is the potential energy of the electron in the external
field, ε is the total electron energy and χ is the electron wave function.

The total angular momentum of a relativistic electron is given by

J = L +
1
2
Σ, (4.51)

where L is the orbital electron momentum3 and

Σ =
(

σ 02

02 σ

)
(4.52)

are the 4×4 spin matrices representing the spin part of the angular momentum.
One can show that the Hamiltonian Ĥ0 commutes with J2 and one of the

components of J (say, Jz). Therefore, eigenstates of J2 and Jz,

J2 χj mj
=

((
L + 1

2σ
)2 02

02

(
L + 1

2σ
)2
)
χj mj

= j(j + 1)χj mj
,

Jz χj mj
=
(
Lz + 1

2σz 02

02 Lz + 1
2σz

)
χj mj

= mj χj mj
(4.53)

with the total momentum j and its projection mj are simultaneously eigen-
states of the Hamiltonian Ĥ0.

Besides, one can show (see e.g. [50]) that the operator Ξ, defined by

Ξ = γ0 (Σ · L + I4) =
(

(σ · L + I2) 02

02 −(σ · L + I2)

)
, (4.54)

also commutes with Ĥ0 (as well as with J2 and Jz, see (4.59)). Note that it
is customary to denote an eigenvalue of Ξ by −κ,

Ξχ = −κχ. (4.55)

Taking into account what has been said in the above two paragraphs, quantum
states in a spherically symmetric potential can be classified according to their
energy and quantum numbers j, mj and −κ.

From the basic properties of the Pauli matrices, given by (4.40), it follows
that (see e.g. [9])

(σ · a)(σ · b) = a · b + iσ · [a × b] , (4.56)

3 In (4.51) and below it is assumed that the operator L is multiplied by 4 × 4 (or
2 × 2) unit matrix where necessary.
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where a and b are two arbitrary vectors. Using (4.56) it can be shown that

Ξ2 = L2 + Σ · L + I4. (4.57)

Comparing the above expression with

J2 = L2 + Σ · L +
3
4
I4, (4.58)

we see that

Ξ2 = J2 +
1
4
I4 (4.59)

and, therefore,

κ = ±
(
j +

1
2

)
. (4.60)

By decomposing the four-spinor χ into the upper and lower components,

χ =
(
χu

χd

)
, (4.61)

the eigenvalue problem of (4.55) reduces to the two eigenvalue equations

(σ · L + I2)χu = −κχu,

(σ · L + I2)χd = κχd. (4.62)

Besides, in terms of the upper and lower components, (4.53) can be re-
written as (

L +
1
2
σ

)2

χu(d) = j(j + 1)χu(d),(
Lz +

1
2
σz

)
χu(d) = mj χu(d). (4.63)

Comparing the first of the equations in (4.63) with equations in (4.62), we see
that, since σ2 = 3, the two-component spinors χu and χd are also eigenstates
of the operator L2. The latter can be expressed as

L2 χu = lu (lu + 1)χu,

L2 χd = ld (ld + 1)χd, (4.64)

where lu and ld are the orbital angular momenta of the upper and lower
components, respectively. Using (4.62) and (4.64) and the equations in the
first line of (4.63) we obtain that

lu (lu + 1) = j (j + 1) + κ+
1
4
,

ld (ld + 1) = j (j + 1) − κ+
1
4
. (4.65)
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Considering the quantum number κ in the above equations as a given value
and taking into account that for any κ we have j = |κ| − 1/2 (see (4.60)), the
solutions of these equations are

lu = κ,

ld = κ− 1 (4.66)

for positive values of κ and

lu = |κ| − 1,
ld = |κ| (4.67)

for negative values of κ.
As was already mentioned, quantum states of a relativistic electron moving

in a spherically symmetric potential are fully specified by their energies (or the
principal quantum number) and the angular quantum numbers j, mj and κ.
However, since the upper, χu, and lower, χd, components of the relativistic
four-spinor χ are eigenstates of the orbital angular momentum and since in
the nonrelativistic limit one has |χd| � |χu|, relativistic wave functions are
normally denoted by specifying the total angular momentum and the orbital
angular momentum of the upper component χu. For instance, the notation
2p3/2(1/2) corresponds to a state with the principal quantum number n = 2,
the orbital momentum lu = 1 (a p-state), the total momentum j = 3/2 and
its projection mj = 1/2.4 Such a convention for notations will also be used in
this book.

A particularly important case of a central field is represented by a Coulomb
potential, −Z/r. Detailed considerations of solutions of the Dirac equation for
an electron moving in a Coulomb potential can be found in [10,12,73,74] and
also in [3].

4 Using (4.60), (4.66) and (4.67) one can obtain that in this state κ = −2.
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Descriptions of Collisions Within the First
Order Approximation in the Projectile–Target
Interaction

5.1 Preliminary Remarks

The processes of ionization and excitation of atoms in relativistic collisions
with bare nuclei have been theoretically studied for several decades (for re-
views see [3–6] as well as [75–77]). Theoretical studies of the projectile-electron
transitions in relativistic collisions with neutral atoms represent a compara-
tively new field of research which does not yet have a long history and for
which only a few review papers are available [78,79].

The first attempt to formulate a theory for relativistic collisions of an ion
and an atom, which both initially have electrons actively or passively partici-
pating in the collision process, was undertaken in [80,81]. The approach of [80]
to this problem was based on the first order perturbative treatment of ioniza-
tion in relativistic collisions with structureless point-like charges [82, 83]. In
order to take into account the fundamental difference between the actions of a
point-like charge and a neutral atom in the collision, results for the projectile-
electron loss in nonrelativistic collisions with neutral atoms were employed
and some intuitive assumptions were introduced to adapt the nonrelativistic
results to relativistic collisions. The most complete set of results for the loss
process in relativistic collisions, obtained in this way, was presented in [84].
In that paper the electron loss in ultrarelativistic collisions was considered
for a variety of projectile–target pairs for collision energies up to those cor-
responding to γ ≤ 1, 000, where γ is the collisional Lorentz factor. The key
finding of [84] was that the loss cross section for any projectile–target pair can
be well approximated for the range 10 � γ � 1, 000 by the following simple
formula: σloss = A + B ln γ, where the parameters A and B depend on the
projectile–target pair but are γ-independent.

One should note that the structure of the above expression closely re-
sembles that of the cross section for single ionization of atoms (e.g. K-shell
ionization) by point-like charged particles moving at relativistic velocities. In
particular, the above loss cross section includes the term ln γ which is well
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known to appear in the cross section for atomic ionization by relativistic
charged particles. In the loss cross section such a term would arise if collisions
with large impact parameters bmax ∼ vγ/ωfi, where v is the collision velocity
and ωfi is the energy transfer to the electron of the projectile (in the rest
frame of the projectile), would substantially contribute to the loss process.

Elementary estimates show, however, that even in the case when one
considers the electron loss from the heaviest hydrogen-like projectiles, for
which the energy transfers ωfi reach the largest values (and, therefore,
bmax are smaller than those for lighter projectiles), the impact parameters
bmax ∼ vγ/ωfi can substantially exceed the size of a neutral atom already
in collisions where the Lorentz factor is still far below 1, 000. Therefore, it is
rather obvious that the simple expression for the loss cross section, suggested
in [84], in general cannot be valid for ultrarelativistic collisions. In particular,
as the same estimates suggest, this expression should not be applied to eval-
uate cross sections for the electron loss from very heavy ions at γ � 30 and
higher and its applicability may become even more questionable in cases of
the electron loss from lighter ions (for illustrations see Figs. 5.1 and 5.2).

The main reason for this is that the theory of [84] does not account for
important peculiarities in the screening effect of the atomic electrons in col-
lisions with large γ. However, this shortcoming had not been revealed for

yy

Fig. 5.1. Total cross section for the electron loss from 7–1,000GeV u−1 Sn49+ ions
(ZI = 50) colliding with Ne atoms (ZA = 10). The dash line was obtained by using
the results of [84]. The solid line shows the correct results.
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Fig. 5.2. Same as in Fig. 5.1 but for the electron loss from Hg79+ (ZI = 80).

more than 10 years until an experiment [85] on the electron loss from ultra-
relativistic hydrogen-like Pb ions unveiled the considerable difference between
the predictions of the theory of [84] and the experimental observations.

It was, for the first time, pointed out in [86], that the loss cross section,
obtained in [84], does not correctly describe screening effects in ultrarelativis-
tic collisions. As an alternative to the theory of [84], a simple model was
suggested in [86] to describe, within the framework of the first order pertur-
bation approach, the elastic target mode of the electron loss cross section.1

Within this model the contribution of the elastic target mode to the loss cross
section is separated into contributions from ‘close’ and ‘distant’ collisions. The
dividing distance between the ‘close’ and ‘distant’ collisions was chosen in [86]
to be essentially the radius of the electron bound state in the projectile. The
close-collision contribution was evaluated by regarding the projectile electron
as free and by assuming that the action of the neutral atom on the projec-
tile electron is equivalent to that of the atomic nucleus whereas the atomic
electrons play no role. The distant-collision contribution was estimated by
using the method of equivalent photons [88, 89].2 The contribution to the
loss cross section given by the inelastic target mode cannot be treated within
such an approach. Therefore, the total loss cross section σt was estimated as
σt = (1 + 1/ZA)σel where σel is that part of the loss cross section, which is
given by the elastic target mode, and the rest accounts for the incoherent
action of ZA ‘active’ atomic electrons.

1 The model of [86] is also briefly discussed in a review article [87].
2 This method is also described in a number of books, see for instance [7].
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The model briefly described above is appealing by its simplicity. However,
it has a number of obvious and serious shortcomings. For example, although
the result for the total loss cross section in the model is dependent on the
impact parameter, which separates ‘close’ and ‘distant’ collisions, the latter is
not strictly defined. Further, the projectile electron can be treated as (quasi-)
free only in collisions where the momentum transfer to the electron is much
larger than its typical momentum in the initial bound state of the projectile
(all the momenta are considered in the projectile frame). However, even for
‘close’ impact parameters this is not the case for the overwhelming majority
of the collisions. In addition, there is also an arbitrariness in estimating the
contribution arising from the ‘distant’ collisions.

In ‘practical’ terms the main deficiency of the oversimplified model of [86]
is that the accuracy of its predictions is difficult to estimate and, therefore, it
should in general be used merely to provide first rough estimates for the loss
cross section.

From the theoretical point of view the shortcomings of this model are much
less tolerable. In particular, this model by no means can serve as a substitute
for more regular and rigorous theoretical methods. It is, therefore, the main
goal of this and the next chapters to discuss some of such methods.

5.2 Simplified Semi-Classical Consideration

We start with a simplified semi-classical first-order consideration for the con-
tribution of the elastic target mode to the projectile-electron excitation or
loss in relativistic collisions with an atomic target [90]. It is convenient to
consider the collision in the projectile-ion frame. The nucleus of the ion with
charge ZI is assumed to be at rest and taken as the origin. The translational
motion of the neutral atom is treated classically. The nucleus of the incident
neutral atom with atomic number ZA moves on a straight-line trajectory
R(t) = b+vt, where b is the impact parameter and v = (0, 0, v) the collision
velocity. This nucleus is ‘dressed’ by the electrons, the positions of which are
assumed to be ‘frozen’ with respect to the nucleus. The coordinates of the
electrons with respect to the origin are rj = R(t) + ηj , where ηj are the
coordinates of the electrons with respect to the nucleus of the atom.

The fields created by the incident atom are described by the scalar po-
tential Φ(r, t) and the vector potential A(r, t) obeying the Maxwell equations
which in the Lorentz gauge3 read

3 As is well known, the Lorentz condition divA+ 1
c

∂Φ
∂t

= 0, which enables one to get
the Maxwell equations in the form (5.1), is not sufficient to uniquely define the
potentials. In fact there exists an infinite number of gauges for which the Lorentz
condition is fulfilled. In this book, whenever words ‘Lorentz gauge’ are used, that
particular gauge of the Lorentz family of gauges is implied which in the case of a
point-like charge would yield the Lienard–Wiechert potentials (see (5.86)).
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∆Φ(r, t) − 1
c2
∂2Φ(r, t)

∂t2
= −4πρ(r, t),

∆A(r, t) − 1
c2
∂2A(r, t)

∂t2
= −4π

c
J(r, t), (5.1)

where c � 137 a.u. is the speed of light. Considering for the moment that
the incident atom is represented by a beam of point-like classically moving
charges, which all have the same velocity v, the charge and current densities
of the incident atom are simply given by

ρ(r, t) = ZAδ(r − R(t)) −
NA∑
j

δ(r − R(t) − ηj),

J(r, t) = ρ(r, t)v, (5.2)

where the sum runs over all atomic electrons (NA = ZA for a neutral atom).
Equation (5.1) can be solved by using Fourier transformations:

Φ(r, t) =
1

4π2

∫
d3q

∫ +∞

−∞
dωF (q, ω) exp(i(q · r − ωt))

ρ(r, t) =
1

8π3

∫
d3q

∫ +∞

−∞
dωδ(ω − q · v) exp(i(q · (r − b) − ωt))

×
⎛
⎝ZA −

NA∑
j

exp(−iq · ηj)

⎞
⎠ . (5.3)

Inserting (5.3) into (5.1) we get for the Fourier transform F (q, ω)

F (q, ω) =
2 δ(ω − q · v) exp(−iq · b)

q2 − ω2

c2

⎛
⎝ZA −

NA∑
j

exp(−iq · ηj)

⎞
⎠ (5.4)

and obtain the integral representation for the scalar potential:

Φ(r, t) =
1

2π2

∫
d3q

exp(iq · (r − b − vt))

q2 − (qv)2

c2

⎛
⎝ZA −

NA∑
j

exp(−iq · ηj)

⎞
⎠. (5.5)

In the Lorentz gauge the vector potential is very simply related to the scalar
one by

A(r, t) =
v
c
Φ(r, t). (5.6)
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The quantum nature of the ‘frozen’ electrons of the incident atom can be
explicitly taken into account by using the following replacement:

NA∑
j

exp(−iq · ηj) →
∫

d3η1

∫
d3η2...

∫
d3ηNϕ

†
0(ζN )ϕ0(ζN )

× (exp(−iq · η1) + exp(−iq · η2) + · · · + exp(−iq · ηN ))

= 〈ϕ0|
NA∑
j

exp(−iq · ηj)|ϕ0〉. (5.7)

In (5.7) ϕ0(ζN ) is the electronic wavefunction of the ground state of the
incident atom, transformed into the rest frame of the ion, ζN = {η1,η2,...,ηN}
is the 3-N dimensional vector representing the coordinates of the N electrons
of the incident atom with respect to the nucleus of the atom (ζN is given in
the rest frame of the ion).

We will assume that the ion has a single electron. In the ion frame the
interaction of this electron with the incident atom is given by

Vint(r, t) = −Φ(r, t)
(

1 − 1
c
v · α

)
, (5.8)

where r are the coordinates of the electron, α = (αx, αy, αz) are the Dirac
matrices (see (4.38)) and the scalar potential Φ is given by (5.5) with the
replacement (5.7).

Within the first order perturbation theory the electron transition ampli-
tude a0→n is given by

a0→n =
i

2π2

∫ +∞

−∞
dt exp(iωn0t)

∫
d3q

< ψn | exp(iq · r) (1 − 1
cv · α) | ψ0 >

q2 − ω2
n0
c2

×ZA,eff(q) exp(−iq · (b + vt)), (5.9)

where ψ0(r)e−iε0t and ψn(r)e−iεnt are the initial and final electron states of
the ion, r is the electron coordinate with respect to the nucleus of the ion and
ωn0 = εn−ε0 is the transition frequency of the electron of the ion. The indices
0 and n denote all quantum numbers of the corresponding states including
spin.

In (5.9) the quantity

ZA,eff(q) = ZA − 〈ϕ0|
NA∑
j

exp(−iq · ηj)|ϕ0〉 (5.10)

represents an ‘effective charge’ of the incident atom which is ‘seen’ by the
electron of the ion. The magnitude of this charge depends on the momentum q.

Integration over time in (5.9) gives the factor 2πδ(qv + ε0 − εn) which
allows one to integrate easily over the longitudinal component, qz = qv/v, of
the momentum transfer q. The result of these two integrations is
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a0→n =
i
πv

∫
d2q⊥

< ψn | exp(iq · r) (1 − 1
cv · α) | ψ0 >

q2
⊥ + ω2

n0
v2γ2

×ZA,eff(q) exp(−iq⊥ · b). (5.11)

Here, γ = 1√
1−v2/c2

and now q = (q⊥, qz) has a fixed z-component, qz =

εn − ε0/v, which represents the minimum momentum transfer to the ion in
the ion frame. In (5.11) the integration runs over the transverse momentum
transfer q⊥ (0 ≤ q⊥ < ∞) and q⊥ · v = 0.

The corresponding cross section, σ0→n, is given by

σ0→n =
∫

d2b | a0→n |2 . (5.12)

Inserting the transition amplitude (5.11) into (5.12) and performing the inte-
gration over the impact parameter in (5.12) we finally obtain

σ0→n =
4
v2

∫
d2q⊥ Z2

A,eff (q)
|< ψn | exp(iq · r) (1 − 1

cv · α) | ψ0 >|2(
q2
⊥ + ω2

n0
v2γ2

)2 . (5.13)

The above discussed semi-classical approach for the projectile-electron excita-
tion and loss in relativistic collisions is rather simple. However, this approach
is not appropriate to treat the inelastic atomic mode of the collisions. Besides,
it is not quite clear how the assumption, that the atomic electrons are ‘frozen’
and do not represent a source of the charge current in the atomic rest frame,
could influence the result obtained for the elastic mode. Keeping these two
points in mind, we now proceed to discuss more general first order theories.

5.3 Plane-Wave Born Approximation

In this subsection we consider the first order quantum treatment for relativistic
collisions of two atomic particles, which both carry (active) electrons [91]. The
general form of the transition S-matrix element which describes collisions of
atomic particles, interacting via the electromagnetic field, is given by (see
e.g. [13])

Sfi =
(
− i
c

∫
d4xJ I

µ(x)Aµ
A(x)

)
fi

. (5.14)

This formula represents the natural generalization of the nonrelativistic ex-
pression (2.1) for the relativistic case. Here, J I

µ(x) (µ = 0, 1, 2, 3) is the electro-
magnetic four-current of the projectile-ion at a space–time point x and Aµ

A(x)
is the four-potential of the electromagnetic field created by the target-atom
at the same point x. In (5.14) and below the summation over repeated Greek
indices is implied.
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The four-potential of the target-atom obeys the Maxwell equations which,
in the Lorentz gauge, read

�Aµ
A(x) = +

4π
c
Jµ

A(x), (5.15)

where Jµ
A(x) is the four-current of the target-atom and � denotes the

D’Alembert operator given by (4.31).
Since the nuclear and atomic scales are very different, Coulomb collisions

between the ion and the atom, resulting in excitation of nuclear degrees of
freedom, are normally of negligible importance for cross sections of electron
transitions. Therefore, the nuclei of the atom and the ion can be regarded as
point-like unstructured charges.

Simple estimates show that in a reference frame, where the atom or the
ion is initially at rest, its typical recoil velocity after the collision is not only
nonrelativistic but is also orders of magnitude less than the Bohr velocity
v0 = 1 a.u.

Taking into account the two points mentioned above, the transition ma-
trix element (5.14) can be calculated as follows. First, the ion current J I

µ(x)
is evaluated in the reference frame KI, where the ion is initially at rest and
where this current is denoted by J I

µ(xI) with xI = (ctI,xI) being the coor-
dinates of the space–time point x in KI. Second, the atom current J ′µ

A(xA)
is calculated in the reference frame KA, where the atom is initially at rest,
and then the atom potential A′µ

A(xA) is evaluated in this frame. Finally, this
potential is transformed to the frame KI in order to calculate the transition
matrix elements and corresponding cross sections in KI.

Assuming that the ion carries only one electron the transition four-current
J I

µ of the ion in the frame KI is written as

J I
0(xI) = c

∫
d3RI

∫
d3rΨ †

f (RI, r, tI)

×
(
ZIδ

(3)(xI − RI) − δ(3)(xI − RI − r)
)
Ψi(RI, r, tI),

J I
l (xI) = c

∫
d3RI

∫
d3rΨ †

f (RI, r, tI)αl

×δ(3)(xI − RI − r)Ψi(RI, r, tI); l = 1, 2, 3. (5.16)

In (5.16) ZI is the atomic number of the ion, RI is the coordinate of the ion
nucleus, r is the coordinate of the electron of the ion with respect to the ion
nucleus, αl are the Dirac matrixes for the electron of the ion, and δ(3) is the
three-dimensional delta-function. The mass of the nucleus is much larger than
that of the electron. Therefore, in the frame KI the three-velocity of the ion
nucleus is negligible compared to that of the electron and we have neglected
in the second line in (5.16) the contribution to the ion current due to the
motion of the nucleus. The large mass of the nucleus also permitted us to
omit that part of the ion current, which is connected with the spin degrees of
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the nucleus of the ion. Further, in a first order treatment the initial and final
states in (5.16) are just unperturbed states of the ion and are given by

Ψj(RI, r, tI) =
1√
VI

exp(iPI
j · RI − iEI

j tI)ψ0,n(r). (5.17)

Here the symbol j stands for both i and f, which refer to the initial and
final states of the ion, respectively. PI

i and PI
f are the total three-momenta

(PI
i = 0), EI

i and EI
f are the total energies (including the rest energies) of the

ion, ψ0 and ψn are the initial and final internal states of the ion and VI is a
normalization volume for the plane wave describing a free motion of the ion
before and after the collision. The ansatz (5.17) represents a common form of
a wavefunction for a free atomic system moving with a nonrelativistic velocity,
where we have neglected the spin of the nucleus and the difference between
the coordinate of the nucleus of the ion and the coordinate of the center of
mass of the ion. The justification of both approximations lies in the extremely
large difference between the masses of nuclei and of electrons.

As we mentioned, in this book we are not interested in discussing collisions
where the ion remains in its initial internal state and, therefore, in what follows
consider only n �= 0. Inserting (5.17) into (5.16) and integrating over RI we
obtain

J I
µ(xI) = c

F I
µ

(
n0;PI

f − PI
i

)
VI

exp(i
(
PI

i − PI
f

) · xI − i
(
EI

i − EI
f

)
tI). (5.18)

We will refer to the four-component quantity F I
µ(n0;Q) with components

F I
0(n0;Q) = −

∫
d3rψ†

n(r) exp(iQ · r)ψ0(r),

F I
l (n0;Q) =

∫
d3rψ†

n(r) exp(iQ · r)αlψ0(r) (5.19)

as to the inelastic form-factor of the ion.
Now we turn to the evaluation of the potential A′µ

A(xA), which describes
the field created by the atom in the frame KA where the atom is initially
at rest. Here, xA = (ctA,xA) is the space–time four-vector in KA. In a way
similar to that used to get the ion current (5.18), one can show that, within
the first-order consideration, the transition four-current of the atom in the
frame KA reads

J ′
A

µ(xA) = c
Fµ

A

(
m0;P′A

f − P′A
i

)
V ′

A

× exp
(
i
(
P′A

i − P′A
f

)
· xA − i

(
E′A

i − E′A
f

)
tA

)
. (5.20)

In (5.20) P′A
i,f

(
P′A

i = 0
)

are the three-momenta and E′A
i,f the total energies

(including the rest energies) of the atom in the initial and final states, re-
spectively, and V ′

A is a normalization volume for the atom in the frame KA.
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The components of the form-factor of the atom FA
µ (m0;Q) are defined by

FA
0 (m0;Q) = ZAδm0 −

∫ NA∏
i=1

d3ξi u
†
m(τNA)

NA∑
j=1

exp(iQ · ξj)u0(τNA),

FA
l (m0;Q) =

∫ NA∏
i=1

d3ξi u
†
m(τNA)

NA∑
j=1

αl(j) exp(iQ · ξj)u0(τNA), (5.21)

where ZA is the atomic number, NA is the number of electrons of the atom,
αl(j) are the Dirac matrices for the jth electron, u0,m are the initial and final
internal states of the atom, τNA =

{
ξ1, ξ2, . . . , ξNA

}
represents the coordi-

nates of the NA atomic electrons with respect to the atomic nucleus.
The potential A′A

µ (xA) of the atom in the frame KA, is to be calculated
from the Maxwell equations(

∆A − ∂2

c2∂t2A

)
A′A

µ (xA) = −4π
c
J ′A

µ (xA), (5.22)

where the transition four-current of the atom, J ′A
µ (xA), is defined by (5.20)

and (5.21). Equation (5.22) can be solved by using four-dimensional Fourier
transformations for the potential and the current

A′µ
A(xA) =

1
(2π)2

∫
d4k Bµ

A(k) exp(ikxA),

J ′
A

µ(xA) =
c

V ′
A

∫
d4k exp(ikxA) δ(4)(k + P ′A

f − P ′A
i )Fµ

A(m0;−k), (5.23)

where P ′A
i,f are the four-momenta of the atom in the frame KA, k is the ‘spa-

tial’ part of k and k xA = kµx
µ
A. Inserting (5.23) into the Maxwell equation,

the Fourier transform Bµ
A(k) is found to be

Bµ
A(k) = 4π

(2π)2 δ(4)(k + P ′A
f − P ′A

i )
k2 − iς

Fµ
A(m0;−k)

V ′
A

. (5.24)

Correspondingly, the four-potential is given by

A′µ
A(xA) = 4π

exp
(
i
(
P ′A

i − P ′A
f

)
xA

)
(
P ′A

i − P ′A
f

)2 − iς

Fµ
A

(
m0;P′A

f − P′A
i

)
V ′

A

. (5.25)

In (5.24) and (5.25) the term −iς with ς → +0 gives a prescription to handle
the singularity.

If we denote by Λµν the matrix for the Lorentz transformation from the
frame KA to the frame KI, then the potential of the atom in the frame KI is
given by
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Aµ
A(xI) = Λµ

ν A
′ν
A(Λ−1 xI)

= 4π
exp

(
i
(
PA

i − PA
f

)
x
)

(
PA

i − PA
f

)2 − iς
Λµ

ν

F ν
A

(
m0;P′A

f − P′A
i

)
γ VA

. (5.26)

In (5.26) PA
i and PA

f are the initial and final four-momentum of the atom in
the frame KI, VA = V ′

A/γ is the normalization volume for the atom in KI,

γ = 1/
√

1 − v2

c2 is the Lorentz factor and v = (0, 0, v) the velocity of the
incident atom in KI.

The three-momentum transfer to the atom qA = P′A
f − P′A

i in the frame
KA can be rewritten in terms of the atom momentum in the frame KI and
the atomic initial and final internal energies, given in the frame KA,

qA =
(
PA

f⊥ − PA
i⊥,

1
γ

(
PA

f‖ − PA
i‖
)

+
v

c2

(
E′A

i − E′A
f

))

=
(
PA

f⊥ − PA
i⊥,

1
γ

(
PA

f‖ − PA
i‖
)

+
v

c2
(ε0 − εm)

)
. (5.27)

Here PA
⊥ and PA

‖ are the parts of the three-momentum PA of the atom in the
frame KI, which are perpendicular and parallel to the velocity v, respectively.
Further, ε0 and εm are the initial and final electron energies of the atom given
in the atomic frame. In the second line of (5.27) the recoil energy of the atom
in the frame KA has been neglected because it is negligible due to very large
atomic mass.

By inserting the right hand sides of (5.18) and (5.26) into (5.14) and
performing there the integration over d4x we obtain

Sfi = −i
4π
VIVA

(2π)4 δ(4)
(
P I

i + PA
i − P I

f − PA
f

)
Gfi, (5.28)

where

Gfi =
F I

µ(n0;qI) γ−1 Λµ
ν F

ν
A(m0;qA)(

PA
i − PA

f

)2 − iς
(5.29)

and qI = PI
f −PI

i = PA
i −PA

f is the three-dimensional momentum transfer to
the ion in the frame KI. Having derived the transition S-matrix, one can now
obtain the cross section for a process where the electron of the ion and those
of the atom make a transition ψ0 → ψn and u0 → um, respectively. This cross
section reads [91]

d2σ0→m
0→n

d2q⊥
=

4
v2

EA
f

EA
i

| Gfi |2= 4
v2

EA
f

EA
i

×
|F I

µ

(
n0;q⊥, qI

min

)
γ−1Λµ

νF
ν
A

(
m0;−q⊥,− qI

min
γ − v

c2 (εm − ε0)
)
|2(

q2
⊥ +

(
qI
min

)2 − (EI
f − EI

i

)2
/c2
)2

+ ς2
.

(5.30)
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Here EA
i and EA

f = EA
i +EI

i −EI
f are the initial and final total energies of the

atom given in the ion frame and q⊥ is the transverse part of the momentum
transfer qI, which is perpendicular to the initial momentum PA

i of the incident
atom. Note that the factor EA

f /E
A
i in (5.30) can be approximated by unity.

Neglecting the recoil energy of the ion in the frame KI, the difference between
the total ion energies in that frame, EI

f − EI
i , is replaced by εn − ε0, where

ε0 and εn are the energies of the electron of the ion in the initial and final
internal states, ψ0 and ψn, respectively. The component qI

min of the momentum
transfer qI, which is parallel to the initial momentum of the incident atom
and represents the minimum momentum transfer to the ion in the frame KI,
is determined from the energy conservation in the collision and is given by [91]

qI
min =

εn − ε0
v

+
εm − ε0
vγ

. (5.31)

The quantity

qA
min =

qI
min

γ
+

v

c2
(εm − ε0)

=
εm − ε0

v
+
εn − ε0
vγ

, (5.32)

represents the absolute value of the minimum momentum transfer to the atom
in the frame KA.

If we choose the corresponding pairs of the coordinate axes in the frames
KI (xI, yI, zI) and KA (xA, yA, zA) to point in the same direction and assume
that in the frame KI the atom moves along the ZI-axis in the positive direction
the total momenta, which are transferred to the ion in the frame KI and to
the atom in the frame KA, will be given by

qI = (qI,x, qI,y, qI,z) =
(
q⊥; qI

min

)
,

qA = (qA,x, qA,y, qA,z) =
(−q⊥;−qA

min

)
. (5.33)

Note that in contrast to the nonrelativistic consideration the absolute values
of the momenta qA

min and qI
min are no longer equal. Instead, in the relativistic

treatment they are related according to

(
qA
min

)2 − (εn − ε0)2

c2
=
(
qI
min

)2 − (εm − ε0)2

c2
. (5.34)

The above equality just expresses the fact that the quantity k2
3 − k2

0, where
k0 and k3 are the components of the virtual photon four-momentum kµ, is
invariant under a Lorentz transformation.

Using (5.32) the cross section (5.30) can be rewritten in quite a symmetric
form:
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d2σ0→m
0→n

d2q⊥
=

4
v2

| F I
µ (n0;qI) γ−1 Λµ

ν F
ν
A (m0;qA) |2(

q2
I − (εn−ε0)2

c2

)2

+ ς2

=
4
v2

| F I
µ (n0;qI) γ−1 Λµ

ν F
ν
A (m0;qA) |2(

q2
A − (εm−ε0)2

c2

)2

+ ς2

=
4
v2

| F I
µ (n0;qI) γ−1 Λµ

ν F
ν
A (m0;qA) |2(

q2
⊥ + (εn−ε0+εm−ε0)2

v2γ2 + 2(γ − 1) (εn−ε0)(εm−ε0)
v2γ2

)2

+ ς2
.

(5.35)

5.3.1 The Form-Factor Coupling

The nonzero elements of the Lorentz transformation matrix Λµ
ν are (see (4.7)):

Λ0
0 = Λ3

3 = γ, Λ1
1 = Λ2

2 = 1, and Λ0
3 = Λ3

0 = − v
cγ. Taking this into account,

the explicit form of the relativistic coupling of the form-factors in (5.48) is
given by

F I
µ γ

−1 Λµ
ν F

ν
A =

(
F I

0 +
v

c
F I

3

)(
F 0

A +
v

c
F 3

A

)
+
F I

3F
3
A

γ2
+
F I

1F
1
A + F I

2F
2
A

γ
. (5.36)

5.4 Semi-Classical Approximation

Additional important information about physics of the ion–atom collisions can
be obtained by considering impact parameter dependencies of the projectile-
electron excitation and loss. Such dependencies can be studied within the
semi-classical approximation where both nuclei are regarded as classical
particles. In Sect. 5.2 we have discussed the simplified version of the semi-
classical approximation. That treatment, however, is not appropriate for con-
sidering the inelastic atomic mode. In addition, even for the elastic mode
m = 0 the first order cross section (5.35) contains the more complicated cou-
pling between the form-factors of the ion and atom and in general does not
coincide with the cross section (5.13) obtained within the simplified semi-
classical approximation. Therefore, we now will turn to the consideration
of the general version of the first order semi-classical approximation for the
projectile-electron excitation and loss in relativistic collision [92].

The starting expression for the semi-classical transition amplitude is
formally the same as that used to develop the first order plane-wave approxi-
mation in the previous section

afi = − i
c

∫
d4xJ I

µ(x)Aµ
A(x). (5.37)

As before, J I
µ(x) denotes the electromagnetic transition four-current of the

ion at a space–time point x and Aµ
A(x) is the four-potential of the electro-

magnetic field created by the atom at the same point x. Now, however, these



80 5 Descriptions of Collisions

quantities and the transition amplitude (5.37) have to be evaluated within the
first order perturbation theory where only the electrons are treated quantum
mechanically whereas the nuclei are regarded as classical particles and their
relative motion is assumed to be a straight-line.

The evaluation of the semi-classical matrix element (5.37) can be split
into steps exactly similar to those used to obtain the first order results in
the previous subsection. Namely, the ion current J I

µ(x) is evaluated in the
reference frame KI, where the ion nucleus is at rest. The current J ′µ

A(xA)
and potential A′A

µ (xA) of the atom are calculated in the reference frame KA,
where the atomic nucleus is at rest. Then the atom potential is transformed
to the frame KI, where the transition matrix elements and corresponding
probabilities are evaluated.

Assuming that the nucleus of the ion in the frame KI rests at the origin,
the transition four-current J I

µ of the ion in this frame reads

J I
0(xI) = c

∫
d3rΨ †

n(r, tI)
(
ZIδ

(3)(xI) − δ(3)(xI − r)
)
Ψ0(r, tI),

J I
l (xI) = c

∫
d3rΨ †

n(r, tI)αl δ
(3)(xI − r)Ψ0(r, tI); l = 1, 2, 3. (5.38)

In (5.38) ZI is the atomic number of the ion, r is the coordinate of the electron
of the ion with respect to the ion nucleus, αl are the Dirac matrices for the
electron of the ion and δ(3) is the three-dimensional delta-function. Further,
Ψ0,n(r, t) = ψ0,n(r) exp(−iε0,nt) are the initial and final electronic states of
the ion with the energies ε0,n. As in the previous sections we will be interested
only in collisions where the internal state of the ion is changed: n �= 0.

It is convenient to rewrite the four-current (5.38) using the integral repre-
sentation

δ(3)(x) =
1

(2π)3

∫
d3k exp(−ik · x) (5.39)

for the δ-functions in (5.38). This yields

J I
µ(xI) =

c

(2π)3

∫
d3k exp (i(εn − ε0)tI − ik · xI)F I

µ(n0;k). (5.40)

In (5.40) the four components F I
µ(n0;k) of the inelastic form-factor of the ion

are the same as in (5.19).
Similarly, for the transition four-current of the atom in the atom rest frame

KA one obtains

J ′A
µ (xA) =

c

(2π)3

∫
d3k exp (i(εm − ε0)tA − ik · xA)FA

µ (m0;k)

=
c

(2π)3

∫
d4k exp(ikxA)FA

µ (m0;k)δ
(
ω + ε0 − εm

c

)
. (5.41)
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In (5.41) xA = (ctA,xA), k = (ω/c,k) and kxA = ωtA − k · xA and the
components of the atomic form-factor FA

µ are given in (5.21).
The four-potential, A′A

µ (xA), of the atom in its rest frame is obtained
from the Maxwell equations with the source terms given by the transition
four-current J ′A

µ (xA) of the atom which is defined by (5.41) and (5.21). Like
in the quantum consideration, in the semi-classical treatment the Maxwell
equations can be easily solved with the help of a four-dimensional Fourier
transformation. The result is

A′A
µ (xA) =

exp(i(εm − ε0)tA)
2π2

∫
d3k exp(−ik · xA)

FA
µ (m0;k)

k2 − (εm−ε0)2

c2 − iς
. (5.42)

Note that the solutions for the four-potentials in the quantum and semi-
classical considerations, given by (5.25) and (5.42), of course, do not
coincide.

Let the atom move in the frame KI along a straight-line trajectory with
velocity v = (0, 0, v) and impact parameter b = (b1, b2, 0). Let Λµν be the
Lorentz transformation matrix from the frame KA to the frame KI. Then,
taking into account that tA = γ(tI − v

c2xI3), xA1 = xI1 − b1, xA2 = xI2 − b2
and xA3 = γ(xI3 − vtI), the atomic four-potential in the frame KI is given by

Aµ
A(xI1, xI2, xI3, tI) =

1
2π2

exp (i(Em − E0)tI + i(pi − pf)xI3)

×
∫

d3k exp (−ik⊥ · (xI,⊥ − b) − ik3γ(xI3 − vt))

× Λµ
νF

ν
A(m0;k)

k2 − (εm−ε0)2

c2 − iς
. (5.43)

Here, xI,⊥ = (xI1, xI2, 0), E0 = γε0 and Em = γεm are the total energies of
the atomic electrons in the initial and final states, respectively, given in the
frame KI. Further, pi = v

c2E0 and pf = v
c2Em. In (5.43) the component k3

is parallel and k⊥ is perpendicular to the collision velocity. Introducing the
vector q = (q⊥, q3) = (k⊥, γk3) (5.43) is rewritten as

Aµ
A(xI) =

1
2π2

∫
d3q

Λµ
νγ

−1F ν
A(m0;q⊥, γ−1q3)

q2
⊥ + q2

3
γ2 − (εm−ε0)2

c2 − iς

× exp (−iq⊥(x⊥ − b) − i(q3 − pi + pf)xI3)
× exp (i(Em − E0 + q3v)tI) . (5.44)
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Inserting (5.40) and (5.44) into (5.37), we obtain for the transition amplitude

afi(b) = a0→m
0→n (b) =

− i

2π2(2π)3

∫
d4xI

∫
d3k

∫
d3q

F I
µ(n0;k⊥, k3)Λ

µ
νγ−1F ν

A(m0;q⊥, γ−1q3)

q2
⊥ +

q2
3

γ2 − (εm−ε0)2

c2
− iς

× exp (−i(k⊥ + q⊥) · (xI,⊥ − b) − i(q3 + k3 − pi + pf)xI3)

× exp (i(Em + εn − E0 − ε0 + q3v)tI) . (5.45)

This transition amplitude describes the collision process where the electron
of the ion makes a transition 0 → n and the electrons of the atom make a
transition 0 → m. After performing the eightfold integration over x, k and q3
in (5.45) and re-denoting q⊥ = −q⊥ one arrives at the following expression
for the transition amplitude [92]:

a0→m
0→n (b) = − i

πv

∫
d2q⊥ exp(−iq⊥ · b)

× F I
µ

(
n0;q⊥, qI

min

)
γ−1 Λµ

ν F
ν
A

(
m0;−q⊥,−qA

min

)
q2
⊥ + (εn−ε0+εm−ε0)2

v2γ2 + 2(γ − 1) (εn−ε0)(εm−ε0)
v2γ2 − iς

. (5.46)

In (5.46) the integration runs over the two-dimensional vector q⊥ (0≤ q⊥<∞),
which is perpendicular to the collision velocity. The minimum momentum
transfers qI

min and qA
min are defined by (5.31) and (5.32), respectively.

By comparing the semi-classical transition amplitudes, given by (5.46) and
(5.11), one can draw two main conclusions. First, in contrast to the simplified
semi-classical treatment the more general version of the semi-classical ap-
proximation allows one to consider also collisions in which both projectile and
target electrons make transitions. Second, even for the elastic target mode
the transition amplitude (5.11) is, in general, not equivalent to that given
by (5.46) since the latter includes a more complicated coupling between the
form-factors of the ion and atom.

5.4.1 Equivalence of the Semi-Classical
and the Plane-Wave Born Treatments

Very often it is more convenient to use in calculations the transition amplitude
written in the momentum space Sfi(q⊥). The latter is related to the ampli-
tude in the impact parameter space (5.46) by the two-dimensional Fourier
transformation (3.13); q⊥ has the physical meaning of the transverse part of
the total three-momentum transfer in the collision. Taking into account (5.46)
and (5.47) we obtain

Sfi(q⊥) = −2i
v

F I
µ (n0;qI) γ−1 Λµ

ν F
ν
A (m0;qA)

q2
⊥ + (εn−ε0+εm−ε0)2

v2γ2 + 2(γ − 1) (εn−ε0)(εm−ε0)
v2γ2 − iς

. (5.47)
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For a process, where the electron of the ion makes a transition ψ0 → ψn and
those of the atom make a transition u0 → um, the semi-classical cross section
differential in the transverse momentum transfer is then given by

d2σ0→m
0→n

d2q⊥
= | Sfi(q⊥) |2

=
4
v2

| F I
µ (n0;qI) γ−1Λµ

νF
ν
A (m0;qA) |2(

q2
⊥ + (εn−ε0+εm−ε0)2

v2γ2 + 2(γ − 1) (εn−ε0)(εm−ε0)
v2γ2

)2

+ ς2
. (5.48)

The cross section (5.48), which was obtained assuming that the relative
projectile–target motion is described by a classical straight-line trajectory,
is identical to that given by (5.35). The latter was obtained within the plane-
wave Born treatment under the usual assumptions that the recoils of the nu-
clei can be neglected in the rest frames of these nuclei and that the maximum
momentum transfer in the collision can be set to infinity.

The cross section (5.48), the amplitude (5.47) as well as the integrand
of the amplitude (5.46) contain in their denominators the square qµq

µ =
(εn − ε0)2/c2 − q2

I ≡ (εm − ε0)2/c2 − q2
A of the four-momentum of the virtual

photon which transmits the ion–atom interaction. If this photon is on mass
shell, qµq

µ = 0, the singularity might appear.
However, if the condition (εn − ε0)(εm − ε0) ≥ 0 is fulfilled in the col-

lision, one can have qµq
µ = 0 only if the three quantities q⊥, (εm − ε0) and

(εn − ε0) are all simultaneously equal to zero. The latter would merely mean
that the collision simply does not occur and such a situation is, of course, of
no interest. From the physical point of view it means that in the case when
(εn − ε0)(εm − ε0) ≥ 0 is fulfilled, the restrictions, imposed by the energy-
momentum conservation in the collision, do not permit the electromagnetic
interaction between the systems to be transmitted by an on-mass-shell photon.

For the moment we assume that (εn − ε0)(εm − ε0) ≥ 0 and the terms iς
and ς2 may be omitted in the amplitudes and the cross section. The case when
the singularity is present and the physics corresponding to the singularity will
be discussed in detail in Sect. 5.14.2.

5.5 Relativistic Features and the Nonrelativistic Limit

Compared to the nonrelativistic cross section given by (2.4) and (2.6), the
cross section (5.48), in which the explicit form of the coupling of the form-
factors is given by (5.36), contains two types of relativistic effects. The first
type depends on the collision velocity v and disappears when v/c � 1. In
detail it includes the following:

1. The so called retardation effect described by the term ω2
fi/c

2. This effect
leads to the appearance of the Lorentz factor in the denominator in the
integrand of (5.48) and decreases its value, thus, tending to increase the
cross section.
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2. In contrast to the nonrelativistic consideration, the minimum values of the
momenta qI

min and qA
min, transferred to the ion and to the atom in the

corresponding reference frames, are no longer equal (compare (5.31) and
(5.32)). Because of the presence of the Lorentz factor now these momenta
depend differently on the transition energies εn−ε0 and εm−ε0. As a result,
the dependences of the form-factors of the ion and of the atom on these
transition energies are also different which has important consequences for
the shielding effects in relativistic collisions.
At the extreme relativistic impact energies, γ → ∞, one has qI

min = (εn −
ε0)/c and qA

min = (εm − ε0)/c. This means that the collision kinematics
for the ion and atom along the v-direction completely decouple from each
other: the colliding particles no longer ‘know’ about the final internal states
of their collision partner.

3. The coupling between the zeroth and third components of the form-factors
in (5.36).

The second type is due to relativistic effects in the inner motions of the electron
of the ion and those of the atom. Since the cross section (5.48) not only
accounts for the effects related to the closeness of the collision velocity to the
speed of light but also describes relativistic effects connected with the inner
motion of electrons within each of the colliding centers this type of the effects
does not vanish when v/c � 1 and is reflected in the cross section by the
coupling between the space components of the corresponding form-factors.4

The relativistic effects in the inner motion become less important for atomic
systems having low atomic numbers. Therefore, in the case of relatively light
projectiles and targets the influence of these terms on the cross section (5.48)
is very weak at any collision velocity.

In the full nonrelativistic limit c → ∞ both types of the relativistic ef-
fects vanish and the cross section (5.48) coincides with the corresponding
nonrelativistic result obtained from (2.4) by differentiating in the transverse
momentum transfer.

5.6 Consideration on the Base
of Quantum Electrodynamics

The semi-classical transition amplitudes given by (5.46) and (5.47) and the
cross section (5.48) have been derived using the classical description of
the electromagnetic field. Besides, the electrons were described without us-
ing the second quantization. One can show that the same amplitudes and
cross section are obtained if both the electromagnetic field and the elec-
trons are treated using Quantum Electrodynamics. Below we shall briefly

4 For instance, the second and third terms in (5.36) vanish at γ → ∞ but do not
disappear when v/c � 1.
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discuss how the projectile–target collisions can be treated using Quantum
Electrodynamics.

We start our consideration with the standard picture of fast atomic colli-
sion in a rarefied gaseous medium which involves just one particle from the
beam and one particle from the target and shall consider only those collisions
in which both colliding particles change their internal states. In the target
frame the projectile nucleus is assumed to move along a straight-line clas-
sical trajectory R(t) = b + vt, where v = (0, 0, v) is the collision velocity
and b = (b1; b2; 0) the impact parameter with respect to the target nucleus
which is at rest and taken as the origin. At v � 1 the ion–atom interaction in
collisions, in which both these particles change their internal states, basically
reduces to the two-center dielectronic interaction. The latter directly couples
two electrons initially bound to the different colliding centers and occurs pre-
dominantly via the single photon exchange. Thus, such ion–atom collisions are
in essence collisions of two electrons, which are bound to the heavy centers
moving at a given relative velocity, and can be treated in the framework of
the Quantum Electrodynamics.

According to Quantum Electrodynamics the general S-matrix operator for
a scattering process is given by (see e.g. [73–94])

Ŝ = T̂
{

exp
(
−i
∫

d4xĤI(x)
)}

, (5.49)

where T̂ {} denotes the time-ordered product. The density of the interaction
Hamiltonian ĤI at a space–time point x, defined in the interaction picture,
is given by the normal product, ĤI(x) = N(ĵµ(x)Âµ(x)), µ = 0, 1, 2, 3. Fur-
ther, ĵµ = (ĵ0, ĵ), where ĵ0(x) = ψ̂†(x) ψ̂(x) and ĵ(x) = ψ̂†(x)α ψ̂(x) are
the operators for the lepton four-current density, ψ̂†(x) and ψ̂(x) are the sec-
ondly quantized lepton fields and Âα is the quantized four-potential of the
electromagnetic field.

In our case the initial, | in〉, and final, | out〉, states of the total ‘projec-
tile+target+electromagnetic field’ system are the following. At t → −∞ the
target is in its initial internal state which in the target rest frame is described
by a four-spinor ϕ0 with an energy ε0. The initial internal state of the pro-
jectile in the projectile rest frame is given by a four-spinor ψ0 and has in
this frame an energy ε0. At t → +∞ the internal states of the target and
projectile in the corresponding rest frames are given by four-spinors ϕm (with
an energy εm) and ψn (εn), respectively. At both t → −∞ and t → +∞ the
electromagnetic field subsystem occupies its lowest possible state, the vacuum
state |0ph〉.

The second order term in the expansion of the S-matrix operator (5.49),

Ŝ(2) = −1
2

∫
d4x

∫
d4y T

{
ĤI(x)ĤI(y)

}
, (5.50)
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is the lowest order term yielding a nonzero contribution to the transition
amplitude in the case under consideration. By restricting our treatment to
the lowest order term the transition amplitude is given by

a0→m
0→n (b) = 〈out | Ŝ(2) | in〉. (5.51)

The transition amplitude (5.51) contains the so called direct and exchange
parts. The exchange part describes the scattering process in which the elec-
trons are exchanged between the binding centers during the collision process.
In high-velocity collisions such an exchange is unlikely and by neglecting it in
(5.51) the transition amplitude is obtained to be

a0→m
0→n (b) = lim

ς→+0

−i
πv

∫
d2q⊥ exp(−iq⊥ · b)

G

q2 + iς
. (5.52)

The integration in (5.52) runs over the two-dimensional transverse momentum
transfer q⊥ (q⊥ · v = 0) in the collision.

The denominator in the integrand of (5.52) depends on the square q2 =
qµq

µ of the four-momentum transfer qµ in the collision. This term arises from
the Fourier transform of the photon vacuum expectation value〈

0ph|T
{
Âλ(x)Âη(y)

}
|0ph

〉
and is thus directly related to the Stückelberg–Feynman propagator Dλη in
the four-momentum space

Dλη(q) ∝ lim
ς→+0

gλη

q2 + iς
, (5.53)

where gλη is the metric tensor.
One can also show that the factor G represents the coupling between the

form-factors of the projectile and the target and its form simply coincides with
the form-factor coupling given by (5.36). Then, comparing (5.52) and (5.46),
we see that the transition amplitude (5.52) obtained within the formalism of
Quantum Electrodynamics is equivalent to the amplitude (5.46) which was
derived describing the electromagnetic field classically (and without using the
second quantization for the electron field).

5.7 Gauge Independence and the Continuity Equation

The electromagnetic four-potentials Aµ directly enter both the quantum and
semi-classical transition amplitudes (5.14) and (5.37). However, the four-
potential is not uniquely defined and depend on a choice of gauge. Namely, as
was discussed in Sect. 4.2.2, any transformation of the form Aµ → A′µ =
Aµ − ∂µf , where f is an arbitrary scalar function of x, leaves the electromag-
netic field unchanged.
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Formally the gauge independence of the transition matrix elements (5.14)
and (5.37) can be proven by noting that one has∫

d4xJµ(x) (Aµ(x) − ∂µf(x))

=
∫

d4xJµ(x)Aµ(x) −
∫

d4x ∂µ (Jµ(x)f(x)) +
∫

d4x f(x)∂µJµ(x)

=
∫

d4xJµ(x)Aµ(x), (5.54)

where we used the charge conservation condition, expressed by the continuity
equation,

∂µJµ(x) = 0 (5.55)

and the usual assumption that the terms Jµ(x)f(x) vanish on the four-
dimensional hyper-sphere of infinite radius surrounding the charges. Using
(5.18)–(5.21) (or their semi-classical counterparts) and the wave equations
for the electron of the ion and those of the atom one can easily show that
the first-order transition currents of the ion and atom obey the continuity
equation (5.55) provided exact electronic states of the ion and atom are used.

Expanding the four-current Jµ(x) into a four-dimensional Fourier integral
one can show that in the momentum space the continuity equation for the
current is given by

qµF
µ =

ωfi

c
F 0(fi;q) − qxF

1(fi;q) − qyF
2(fi;q) − qzF

3(fi;q) = 0. (5.56)

Here, qµ =
(ωfi

c , qx, qy, qz

)
is the four-momentum transfer to the particle (ion

or atom) in the collision where the particle makes a transition i → f between
its internal states and Fµ(fi;q) are the form-factors of the particle. Both
qµ and Fµ(fi;q) are given in the rest frame of the particle. Equation (5.56)
represents a very useful relationship between the components of the form-
factors.

In actual calculations one is often forced to use some approximations, e.g.
for initial and final electron states of the colliding particles. In such a case the
charge current in general will not be conserved and calculated results will not
be gauge-independent. Since the Lorentz gauge is manifestly covariant, it is
especially suited for a general consideration. However, in actual calculations
this gauge may not always represent the best possible choice. For example,
as is well known in the theory of ionization of atoms (or electron removal
from ions) by collisions with point-like charges (see [83,103,104]), special care
must be taken when treating ultrarelativistic collisions in the Lorentz gauge
in the case when approximate electronic states of the atom/ion are used.
The origin of the difficulties with the application of the Lorentz gauge is the
near cancellation occurring in this gauge between the contributions from the
scalar and vector potentials of an ultrarelativistically moving charge to that
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component of its electric field which is parallel to the velocity of the charge.
Calculations with approximate states in general are not capable of dealing
properly with this delicate point and yield much larger values for the field
component which leads to very large errors in calculated cross sections [104].

Such a delicate interrelation between the potentials and the field is absent
in other gauges which can make them more attractive in practical calculations.

5.8 Calculations in the Coulomb Gauge

As is known [83,103,104], results of calculations, performed for the ionization
of atoms by point-like charges in the so called Coulomb gauge, are not so
crucially sensitive to the accuracy of the electronic states as those performed
in the Lorentz gauge. Therefore, in this section we briefly discuss the semi-
classical transition amplitude and the cross section which are obtained by
using the Coulomb gauge for the description of the field of the incident atom
in the ion rest frame KI.5

In the Coulomb gauge the potentials of the electromagnetic field are cali-
brated by the condition of transversality of the vector potential,

divA(x, t) = 0, (5.57)

and the Maxwell equations for the field potentials in this gauge are given by
(4.33). Using a method very similar to that discussed in Sect. 5.4 one can show
that in the Coulomb gauge the first order semi-classical transition amplitude,
written in the impact parameter space, is given by

a0→m
0→n (b) = − i

πv

∫
d2q⊥ exp(−iq⊥ · b)

×
{
F I

0 (n0;qI)L0

q2
I

+
1

q2
I − ω2

n0
c2

3∑
s=1

F I
s (n0;qI)Ls

}
, (5.58)

where the inelastic form-factors of the ion are defined in (5.19), ωn0 = εn − ε0
and qI =

(
q⊥, qI

min

)
are the energy and momentum transfer to the ion in the

ion frame. Further,

L0 = FA
0 (m0;qA) − v

c
FA

3 (m0;qA)

L1(2) = − 1
γ
FA

1(2) (m0;qA) − ωn0

c

qI,1(2)

q2
I

(
FA

0 (m0;qA) − v

c
FA

3 (m0;qI)
)

L3 = −FA
3 (m0;qA)

(
1 − vωn0

c2
qI
min

q2
I

)
+ FA

0 (m0;qA)
(
v

c
− ωn0

c

qI
min

q2
I

)
,

(5.59)

5 We remind that the Coulomb gauge is not covariant.
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where the form-factors of the atom are defined in (5.21), qA =
(−q⊥,−qA

min

)
,

as before, is the momentum transfer to the atom in its rest frame. The
minimum momentum transfers qI

min and qA
min are given by (5.31) and (5.32).

Provided exact states for the electron of the ion are used, the transition am-
plitudes (5.46) and (5.58) are identical.

Using the analogy with ionization–excitation processes in collisions with
point-like charges, the first and second terms on the right-hand side of (5.58)
can be termed as longitudinal and transverse, respectively. The first term
represents the contribution to the transition amplitude which is due to the
interaction of the electron of the ion with the scalar potential of the incident
atom. In the Coulomb gauge the latter is the instantaneous (nonrelativistic)
Coulomb potential that is reflected in (5.58) by the absence of the retardation
correction −ω2

n0/c
2 in the photon propagator q−2

I . The transverse contribution
arises due to the interaction with the vector potential of the incident atom. In
the Coulomb gauge this interaction can be regarded as transmitted by a virtual
photon with polarization vector perpendicular to the photon momentum qI,
i.e. by a photon with transverse polarization. Indeed, one can show that the
following condition holds

qI · L = 0, (5.60)

where L = (L1, L2, L3). Such a condition is inherent to a transverse photon
with polarization vector ∝ L. Note that (5.60) is just the consequence of the
continuity equation for the charge and current densities of the atom. There-
fore, the condition given by (5.60) may be not fulfilled if any approximation
for these densities are used (for example, if these densities are calculated with
approximate electronic states).

The cross section, which corresponds to the transition amplitude (5.58),
reads

σ0→m
0→n =

4
v2

∫
d2q⊥

×
∣∣∣∣∣ 〈ψn |L0 exp(iqI, · r)|ψ0〉

q2
I

− 〈ψn |L · α exp(iqI · r)|ψ0〉
q2

I − ω2
n0
c2

∣∣∣∣∣
2

,

(5.61)

where the form-factors F I
0(n0;q) and F I

s(n0;q) of the ion have been expressed
using (5.19).

5.8.1 The Longitudinal and Transverse Contributions
to the Loss Cross Section

In some cases the terms in the integrand of (5.61), which are proportional
to 1/q2

I and 1/(q2
I − ω2

n0/c
2), can be squared separately. This is possible, for

example, if one calculates the total cross section for the electron loss from an
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unpolarized initial state ψ0. In this case one can choose the quantization axis
for the initial and final electron states of the ion to be along the total momen-
tum transfer qI. In the case of a transverse photon with linear momentum
qI the projection of its angular momentum on the direction of qI may take
values ±1. However, for the case of a longitudinal photon such a projection
is zero. Therefore, for electron states ψ0 and ψn, which are quantized along
qI and characterized by definite values of the magnetic quantum number, the
matrix elements 〈ψn| exp(iqI · r)|ψ0〉 and 〈ψn|L ·α exp(iqI · r)|ψ0〉 will satisfy
different selection rules and the corresponding terms in the integrand of (5.61)
can be squared separately. This will result in splitting the total loss cross sec-
tion into two parts. These parts, where the corresponding integrands contain
the terms proportional to 1/q4

I and 1/(q2
I−ω2

n0/c
2)2, can be called longitudinal

and transverse contributions, respectively, to the loss cross section.
Note that a similar separation of the ionization cross section into the lon-

gitudinal and transverse contributions6 has been widely used in the theory of
atomic K-shell ionization by relativistic collisions with point-like charges [76].
In the latter case such a separation was introduced in a paper by Fano [99]
whose results in turn were based on the consideration of relativistic collisions
given by Bethe and Fermi [100]. Note also that the separation of the ionization
cross sections into the longitudinal and transverse contributions was a subject
of certain confusion [95–98], for a brief discussion of its roots see [78].

5.9 Simplification of the Atomic Transition
Four-Current: The ‘Nonrelativistic Atom’
Approximation

In general, the full relativistic coupling (see (5.36) and (5.58)–(5.59)) of the
form-factors of the ion and atom is rather complicated. It is not only much
more involved than its nonrelativistic limit but is also substantially more
complicated even compared to the corresponding coupling obtained in the
simplified version of the semi-classical approximation for the screening target
mode in relativistic collisions. Although the keeping of the full relativistic
coupling is still possible (and sometimes even necessary) when collisions with
very simple (one- or two-electron) targets are treated, this becomes impractical
if the projectile-electron excitation or loss occurs in collisions with multi- or
many-electron targets.

In order to get simpler equations for the projectile-electron excitation and
loss cross sections it was suggested in [91] to neglect the space components

6 Sometimes the spin-flip part of the transverse contribution is separated and the
ionization cross section is regarded as a sum of the longitudinal, transverse and
spin-flip terms [83]. It is, however, more consistent to speak about just the lon-
gitudinal and transverse terms of the cross section since the spin-flip term is a
natural part of the coupling of the electron to the transverse photon.
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of the atomic form-factor, i.e. to disregard the three-current of the atom in
the atom rest frame.7 This step would break the symmetry between the de-
scriptions of the ion and the atom in our consideration because the space
components of the current of the ion in the ion frame are kept. However, one
could immediately argue that, since we are interested in the study of the elec-
tron excitation (loss) processes mainly in (from) heavy and very heavy ions
colliding with neutral atoms, this symmetry breaking in most cases should
not be important because the electron of a highly charged ion and those of a
neutral atom are not expected to behave similarly in the collision.

Let us first make some rough estimates for the atomic form-factors in
(5.21). The component F 0

A(m0;qA) of the atomic form-factor is connected
with the charge distribution inside the atom. The components F l

A(m0;qA)
are connected with the current, created by the motion of the electrons in-
side the atom in the rest frame of the atom. One can estimate roughly the
magnitude of F l

A(m0;qA) as F l
A(m0;qA) ∼ ve

c F
0
A(m0;qA) where ve is a char-

acteristic velocity of the atomic electrons. For light and not too heavy atoms
one has ve � c for all atomic electrons and the absolute values of all three
components F l

A(m0;qA) are much smaller compared to that of F 0
A(m0;qA). In

heavy atoms the very inner electrons can have relativistic velocities. However,
because the number of these electrons is relatively small compared to the to-
tal number of atomic electrons they are not expected to increase considerably
the absolute value of F l

A(m0;qA). Therefore, the neglect of F l
A(m0;qA) seems

to be approximately justified also for heavy atoms. In [91] the neglect of the
space components of the atomic form-factor was termed ‘the nonrelativistic
atom (NRA) approximation’.

In the elastic target mode the electron of the ion makes a transition
whereas the atomic electrons do not, and the symmetry between the highly
charged ion and the neutral atom in the consideration becomes even more for-
mal. Therefore, it seems to be obvious that the NRA approximation should
be better suited for the elastic mode. Indeed, the analysis of the elastic atomic
form-factors (see Sect. A.1 in the Appendix) and test calculations for the elas-
tic mode suggest that in some cases the space components of the elastic atomic
form-factor vanish per se and, thus, the NRA ‘approximation’ may actually
even become exact.

In general, more care should be taken when using the NRA approxima-
tion for the inelastic mode. In the very rough estimates given above typ-
ical electron velocities in the free atom were chosen to draw conclusions
about the relative importance of the form-factor components of the atom.
However, in collisions with heavy projectile-ions the minimum momentum
transfer qA

min = εn−ε0
vγ + εm−ε0

v can be large compared to the typical elec-
tron momenta in the atom. Because of this, the atomic electrons can acquire

7 It is not very surprising that for the screening mode this would reduce the tran-
sition amplitudes and the corresponding cross sections exactly to the results fol-
lowing from the simplified semi-classical consideration of the Sect. 5.2.
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velocities ∼qA =
√

q2
⊥ +

(
qA
min

)2, which are considerably higher than the typ-
ical electron velocities in the atomic ground state. Since it has been assumed,
that the atomic electrons are nonrelativistic in the collisions, it means that the
condition qA � c has to be fulfilled. The contributions of the atomic currents
J ′1

A and J ′2
A to the transition matrix elements are suppressed by a factor of γ

(see (5.36)) and the range of relatively large perpendicular momentum trans-
fers q⊥ ∼ ZI is not of great importance for the collision process. Therefore,
the condition qA � c can be replaced by qA

min � c. Further, if we estimate
the energy difference εn − ε0 as ∼Z2

I then the following condition

γ � Z2
I

vc

is obtained for the use of the NRA approximation in relativistic collisions. It
is certainly fulfilled for collisions with, say, γ > 4 for any heavy ion.

Another limitation for the application of the NRA approximation for
the inelastic mode is also expected. As was already mentioned, it is well
known in the theory of atomic ionization by a point-like charged particle
that an important near cancellation may occur in the Lorentz gauge between
the contributions of the scalar and vector potentials of the charged particle.
A similar situation we may encounter here because of the presence of the term(
F 0

A + v
cF

3
A

)
. Using (5.56) one can show that

F 0
A(qA) +

v

c
F 3

A(qA) = 〈um |exp(iqA · ξ)|u0〉 +
v

c
〈um |αz exp(iqA · ξ)|u0〉

= 〈um |exp(iqA · ξ)|u0〉
(

1 +
v

c2
εm − ε0
qA
min

)

+
v

cqA
min

〈um |(αxqA,x + αyqA,y) exp(iqA · ξ)|u0〉 ,
(5.62)

where for simplicity we assumed that the atom has just one electron. The
right-hand side of (5.62) will be close to F 0

A(qA) if one has simultaneously
that (i)

v(εm − ε0)/
(
c2
∣∣qA

min

∣∣)� 1

and
(ii)

|F 0
A(qA)| � v

c
∣∣qA

min

∣∣ |〈um |(αxqA,x + αyqA,y) exp(iqA · ξ)|u0〉| .

The inequality (i) means that the condition γ � c2

v2
εn−ε0
εm−ε0

must be fulfilled.
Estimating the transition energies εn − ε and εm − ε0 as roughly given by
∼Z2

I and ∼Z2
A, respectively, the above condition reads γ � c2

v2
Z2

I
Z2

A
. Taking

into account that cα represents the velocity operator, assuming that a typical
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‘transition’ velocity of the electron in the atom can be approximated as ∼ZA

and keeping in mind the restriction set by the inequality (i), one can show
that the inequality (ii) reduces to γ � c2

v2
Z2

I
Z2

A
which is just the same condition

as that obtained from the inequality (i). Thus, F 0
A(qA) + v

cF
3
A(qA) can be

approximated by F 0
A(qA) provided one has

γ � c2

v2

Z2
I

Z2
A

.

By combining results of the previous two paragraphs, we obtain the follow-
ing estimate for the range of the validity of the NRA approximation for the
inelastic mode

Z2
I

vc
� γ � Z2

I

vc

c3

vZ2
A

, (5.63)

where for collisions with many-electron atoms the atomic number ZA should
be replaced by some ‘averaged’ nuclear charge 〈ZA〉 of the atom which is
‘seen’ by the majority of the atomic electrons. For light atoms, where 〈ZA〉
does not substantially exceed 1, the condition (5.63) is not very restrictive. For
collisions with heavy atoms the limitations imposed by (5.63) become rather
formal since the inelastic target mode (antiscreening) is of minor importance
for such collisions.

In Fig. 5.3 we illustrate the validity of the NRA approximation for the
inelastic mode of 100 GeV u−1 As32+ + H(1s) collisions.

5.9.1 The Effective Atomic Charge

Within the nonrelativistic atom approximation, in which the description of
the ion–atom collisions focuses mainly on the electron transitions in the ion,
the form-factor coupling reduces according to

F I
µ γ

−1 Λµ
ν F

ν
A → F 0

A

(
F I

0 +
v

c
F I

3

)
. (5.64)

The quantity

F 0
A = Z0→m

A,eff = ZAδm0 − 〈um|
ZA∑
j=1

exp(iqA · ξj)|u0〉 (5.65)

represents in essence the effective charge of the atom which is ‘seen’ by the
electron of the ion and which depends on the momentum transfer in the
collision.

In the elastic mode of the collision this charge can be cast into a form which
is very convenient for practical calculations. This can be done by noting that
for m = 0 this charge is simply the elastic form-factor of the atom and can be
presented as (see e.g. [9])
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Fig. 5.3. Doubly differential cross section d2σdq⊥dεk for the electron loss from the
projectile-ion in 100 GeV u−1 As32+ +H(1s) collisions. The cross section is given
in the projectile frame as a function of the perpendicular part of the momentum
transfer for a fixed energy of εk = 10.8 keV for the electron emitted from the ion.
Dash and dot curves: the cross section for collisions, where the hydrogen is ionized,
calculated by using the full form-factor coupling (5.36) and the NRA approximation,
respectively. In these two calculations the integration over all hydrogen continuum
states has been performed. Dash–dot curve: the cross section for the elastic mode.
For a comparison, the cross section in collisions with bare hydrogen nuclei is shown
by a solid curve.

ZA,eff(qA0) = ZA −
∫

d3ξ ρel(ξ) exp(iqA0 · ξ), (5.66)

where qA0 = (−q⊥;−(εn − ε0)/vγ) and ρel(ξ) is the charge density of the
electrons in the ground state of the atom (as viewed in the frame KA). In
[101,102] the charge density was approximated according to

ρel(ξ) =
ZA

4πξ

3∑
j=1

Ajκ
2
j exp(−κjξ), (5.67)

where the parameters Aj satisfy
∑3

j=1 Aj = 1.
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The screening parameters Aj and κj were found in [101] by using the
Thomas–Fermi model whereas in [102] they were obtained for all neutral
atoms ranging between hydrogen and uranium by fitting the Dirac–Hartree–
Fock–Slater data. Compared to the results of [102] the Thomas–Fermi–Moliere
parametrization is somewhat less accurate and should not be applied for light
atoms. However, its advantage is that the values of Aj are fixed and are same
for all atoms,

A1 = 0.10, A2 = 0.55, A3 = 0.35, (5.68)

and the inverse screening radii κj have a very simple analytical dependence
on the atomic number ZA,

κ1 = 6.7771Z1/3
A , κ2 = 1.3554Z1/3

A , κ3 = 0.3389Z1/3
A , (5.69)

and can be easily used also for atoms heavier than uranium (for which the
information is absent in [102]).

With the electron charge density in the form of (5.67) the integral in (5.66)
is easily performed resulting in

ZA,eff(qA0) = ZAq
2
A0

3∑
j=1

Aj

κ2
j + q2

A0

= ZA

(
q2
⊥ +

(εn − ε0)2

v2γ2

) 3∑
j=1

Aj

κ2
j + q2

⊥ + (εn−ε0)2

v2γ2

. (5.70)

With the effective charge in the form (5.70) expressions for the elastic ampli-
tude and cross sections are substantially simplified. For instance, expression
(5.47) for the elastic transition amplitude goes over into

Sfi(q⊥) =
2iZA

v

3∑
j=1

Aj

〈
ψn

∣∣(1 − v
cαz

)
exp(iqI0 · r)

∣∣ψ0

〉
κ2

j + q2
⊥ + (εn−ε0)2

v2γ2

, (5.71)

where qI0 = (q⊥; (εn − ε0)/v).
A few points can be mentioned here. (a) If we neglect the presence of the

atomic electrons by setting all κi to be equal to zero, we recover the first
order transition amplitude for collisions with a bare nucleus having a charge
ZA (see (5.83) of Sect. 5.11.1). (b) In the limit c = ∞ the elastic transition
amplitude reduces to its nonrelativistic counterpart. (c) In contrast to the
case where only a bare nucleus ZA would be involved, in the limit γ → ∞
the amplitude (5.71) becomes independent of the impact energy and does not
have any singularity. This means that in the limit γ → ∞ the elastic cross
section in collisions with a neutral atomic system becomes a (finite) constant.

There exists an important general feature of the screening effect of the
atomic electrons in relativistic collisions. This feature is caused by the pres-
ence of the Lorentz factor in the denominator of the right-hand side of (5.70).
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In nonrelativistic collisions (γ = 1), if the ion is a highly charged ion and the
atom is a light atom with all screening constants κi not exceeding substantially
unity, the screening effect is not important because the term (εn−ε0)

2

v2 ∼ Z4
I

v2

would dominate over all κ2
i in the denominator of the right-hand side of (5.70).

This reflects the fact that, according to the nonrelativistic consideration, tran-
sitions of a tightly bound electron caused by collisions with light atoms at
γ � 1 occur at so small impact parameters where the electrons of the atom
are not able to screen the field of its nucleus.

However, the situation qualitatively changes for ultrarelativistic collisions:
it is obvious that for any projectile–target pair the terms κ2

i will be larger than
ω2

n0
v2γ2 ∼ Z4

I
v2γ2 provided γ reaches sufficiently high values. The physics behind

this formal observation is rather simple. Due to the Lorentz contraction, the
range of the field produced by a high-energy point-like charge is effectively
reduced by a factor of γ in the direction along its velocity and is increased by
the same factor in the plane perpendicular to the velocity. Because of this the
upper boundary of the range of impact parameters, at which the point-like
charge is effective in inducing the electron transitions, grows linearly with γ
and in principle may exceed any given value. However, due to the screening
effect of atomic electrons, in collisions with neutral atoms this upper boundary
cannot exceed the atomic size.

Thus, in a sharp contrast to nonrelativistic collisions, in ultrarelativistic
collisions the shielding of the atomic nucleus by atomic electrons becomes
of great importance for any ion–atom pair and, in particular, substantially
reduces the excitation and loss cross sections compared to collisions with the
unscreened nuclei.

5.10 Manipulations with the Transition Matrix Elements
as a Change of Gauge

In the nonrelativistic atom approximation the cross section (5.35), (5.48)
reduces to

σ0→m
0→n =

4
v2

∫
d2q⊥

∣∣Z0→m
A,eff (qA)

∣∣2 ∣∣〈ψn

∣∣(1 − v
cαz

)
exp(iqI · r)

∣∣ψ0

〉∣∣2(
q2

I − ω2
n0
c2

)2 , (5.72)

where ωn0 = εn − ε0 is the change in the energy of the electron of the ion.

Let us consider the term〈
ψn

∣∣(1 − v
cαz

)
exp(iqI · r)

∣∣ψ0

〉
q2

I − ω2
n0
c2

. (5.73)
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By applying the continuity equation (5.56) to the ion, which yields

〈ψn |α · qI exp(iqI · r)|ψ0〉 =
ωn0

c
〈ψn |exp(iqI · r)|ψ0〉 , (5.74)

this term can be cast into different forms which may be more convenient for
further calculations. Here we will briefly discuss three of them.

1. One of the forms is obtained as follows. We first rewrite the term in (5.73),
which contains the Dirac matrix αz, according to

v

c
αz =

1
c
v · α = λ · α +

ωn0

cq2
I

qI · α, (5.75)

where

λ =
1
c

(
v − ωn0

q2
I

qI

)
. (5.76)

Then, with the help of (5.75) and making use of the continuity equation (5.74),
we obtain〈

ψn

∣∣(1 − v
cαz

)
exp(iqI · r)

∣∣ψ0

〉
q2

I − ω2
n0
c2

=
〈ψn |exp(iqI · r)|ψ0〉

q2
I − ω2

n0
c2

− ωn0

cq2
I

〈ψn |qI · α exp(iqI · r)|ψ0〉
q2

I − ω2
n0
c2

−〈ψn |λ · α exp(iqI · r)|ψ0〉
q2

I − ω2
n0
c2

=
〈ψn |exp(iqI · r)|ψ0〉

q2
I − ω2

n0
c2

(
1 − ω2

n0

c2q2
I

)
− 〈ψn |λ · α exp(iqI · r)|ψ0〉

q2
I − ω2

n0
c2

=
〈ψn |exp(iqI · r)|ψ0〉

q2
I

− 〈ψn |λ · α exp(iqI · r)|ψ0〉
q2

I − ω2
n0
c2

. (5.77)

Inserting the right-hand side of (5.77) into (5.72) we arrive at

σ0→m
0→n =

4
v2

∫
d2q⊥

∣∣Z0→m
A,eff (qA)

∣∣2

×
∣∣∣∣∣ 〈ψn |exp(iqI · r)|ψ0〉

q2
I

− 〈ψn |λ · α exp(iqI · r)|ψ0〉
q2

I − ω2
n0
c2

∣∣∣∣∣
2

. (5.78)

It is important to note that the above form of the cross section directly
follows from the consideration in the Coulomb gauge. Indeed, by using the
nonrelativistic atom approximation for the cross section (5.61), which was
derived using explicitly the Coulomb gauge, the latter reduces to exactly
the same cross section given by (5.78). Thus, simple manipulations (5.74)–
(5.77) with the transition matrix elements for the electron of the ion turn
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out to be effectively equivalent to the transformation of the four-potentials
of the incident atom from (a particular case of) the Lorentz gauge to the
Coulomb one.

Since within the nonrelativistic atom approximation only the zero compo-
nent of the atomic current is kept, the condition (5.60) will in general not be
fulfilled. Instead, we obtain that λ · qI = (εm − ε0)/γ. Thus, in collisions in
the inelastic mode the ‘polarization’ vector λ of the ‘transverse’ virtual pho-
ton is not strictly perpendicular to the photon three-momentum qI. However,
for high-energy ion–atom collisions involving highly charged ions the angle ϑ
characterizing the deviation of the polarization vector λ from the transverse
direction is estimated to be given by ϑ ∼ εn−ε0

γ(εn−ε0)
. Therefore, in collisions at

high values of γ the deviation is very small and one may assume that one has
λ · qI = 0 also for the inelastic target mode.

2. One more form of the term (5.73) can be obtained by removing, with the
help of the continuity equation (5.74), that part of the term (5.73) which does
not contain the Dirac matrix:〈

ψn

∣∣∣(1 − v

c
αz

)
exp(iqI · r)

∣∣∣ψ0

〉
=

c

ωno

〈
ψn

∣∣∣∣exp(iqI · r)
(
qI,xαx + qI,yαy +

1
γ
qA
minαz

)∣∣∣∣ψ0

〉
. (5.79)

Here qA
min is the minimum momentum transferred to the atom (as viewed in

its rest frame) which is given by the second line of (5.32).8 Taking into account
(5.79) the cross section is given by

σ0→m
0→n =

4 c2

v2ω2
n0

∫
d2q⊥

∣∣∣Z0→m
A,eff (qA)

∣∣∣2(
q2

I − ω2
n0
c2

)2

×
∣∣∣∣
〈
ψn

∣∣∣∣exp(iqI · r)
(
qI,xαx + qI,yαy +

1
γ
qA
minαz

)∣∣∣∣ψ0

〉∣∣∣∣
2

. (5.80)

As we have seen, the application of the continuity equation for the ion current
in the form given by (5.77) is effectively equivalent to the transformation of
the four-potentials of the incident atom to the Coulomb gauge. In turn the
transformation (5.79) effectively corresponds to the transition to the electro-
magnetic gauge where the scalar potential created by the atom in the rest
frame of the ion is chosen to be zero. We shall return to a more detailed

8 Note that with the help of the first line of (5.32) the term qA
min/γ can be rewritten

as 1
γ2 qI

min + v
c2γ

(εm − ε0) where qI
min is the minimum momentum transfer to the

ion (in the rest frame of the ion) and ε0 and εm are the initial and final energies
of the atom (in the rest frame of the atom).
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discussion of the correspondence between the manipulations with the transi-
tion matrix elements and gauge transformations in Sect. 5.11.1.

3. The third form can be obtained by using for the ion a transformation
similar to that given by (5.62) for the atom〈

ψn

∣∣∣(1 − v

c
αz

)
exp(iqI · r)

∣∣∣ψ0

〉
=

v

cqI
min

(
〈ψn(r) |exp(iqI · r)|ψ0〉 c

v

qA
min

γ

+ 〈ψn(r) |(qI,xαx + qI,yαy) exp(iqI · r)|ψ0〉
)
. (5.81)

As a result, the cross section (5.72) can be rewritten as

σ0→m
0→n =

4
c2(qI

min)2

∫
d2q⊥

∣∣∣Z0→m
A,eff (qA)

∣∣∣2(
q2

I − ω2
n0
c2

)2

×
∣∣∣∣〈ψn| exp(iqI · r)|ψ0〉 c

v

qA
min

γ

+ 〈ψn|(qxαx + qxαy) exp(iqI · r)|ψ0〉|2 . (5.82)

One can show that the use of the continuity equation for the ion current in
the form given by (5.81) actually corresponds to the transformation of the
four-potentials of the atom to the gauge in which the z component of the
vector potential is zero and which is related to the gauge used in (5.72) by
the transformation A′µ = Aµ − ∂µf where the gauge function f is defined by
∂f
∂t = v2

c A
0.

5.10.1 Calculations with Approximate States
for the Projectile Electron

In order to derive (5.78) and (5.82) from (5.72) we used the continuity equation
for the transition current of the ion. Therefore, the cross sections (5.72), (5.78),
(5.80) and (5.82) will yield identical results only if exact electronic states of
the ion are used. Approximate electronic states in general cannot provide the
near cancellation occurring in the Lorentz gauge between the contributions
of the scalar and vector potentials to the term (5.73). Consequently, if in
calculations one needs to apply approximations for the states ψn and ψ0,
then (5.78), (5.80) or (5.82), where the ‘near-cancellation problem’ is already
not present, should be used as a starting point. Of course, the cross sections
(5.78), (5.80) and (5.82) in general are not expected to yield identical results
if any approximations are employed for the electron states of the ion. In such
a case a careful analysis is necessary in order to find out which of these cross
sections leads to a better result.
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5.11 Projectile-Electron Transitions
as a Three-Body Problem

Here we consider a further simplification in the transition four-current of the
atom. This simplification may become possible if the excitation or loss of a
very tightly bound electron is considered.

Let us consider a collision between an incident heavy hydrogen-like ion and
a many-electron atom. We assume for the moment that we have no interest in
what happens with the target-atom in such a collision and concentrate solely
on the description of the electron transitions in the projectile-ion. Then, as
will be seen below, the consideration of the projectile-electron excitation and
loss can, under certain conditions, be reduced to a three-body problem.

As follows from (5.31) the removal (or excitation) of an electron initially
occupying a very deeply bound state in a highly charged ion, which is caused
by ion–atom collisions, becomes only possible if a sufficiently large momentum
qI is transferred to the electron in the rest frame of the ion. In turn, the
atom in its rest frame gets a recoil momentum qA. Although the relativistic
effects caused by the ion–atom motion make qI and qA unequal and for a
given value of qI tend to weaken the atomic recoil momentum, it may well be,
especially in collisions at low and moderate values of the impact energies, that
the momentum qA is much larger than the typical momenta of the electrons
in the ground state of the atom.

If the latter is the case, then the elastic form-factor of the atom can be
approximated with a good accuracy by just its nuclear part, ZA, and the
projectile-electron excitation and loss in collisions with a neutral atom which
are elastic for the atom can be evaluated as occurring in collisions with a bare
nucleus of the atom. If the projectile is initially a hydrogen-like ion, then the
elastic mode of the projectile-electron excitation and loss reduces in essence
to the relativistic three-body problem involving the electron and two nuclei
of the projectile and target.

Of course, in order to really establish the range of the collision parameters,
where in a theoretical analysis the elastic collisions with a neutral atom can
be substituted by collisions with a nucleus of the atom, one has to evaluate
the size of the shielding effect of the atomic electrons.

In Fig. 5.4 results are presented for the elastic contributions to the loss
cross section in U91+(1s) – Au and U91+(1s)−C collisions for a very broad
interval of the impact energies ranging from 1 to 500 GeVu−1. Note, that ac-
cording to the consideration given in Sect. 6.5 for collisions with Au the first
order approximation may noticeably overestimate the loss cross sections at
impact energies �1 GeV u−1. Nevertheless, the application of this approxima-
tion can still yield valuable information about the role of the atomic electrons
in the loss process.

It is seen in Fig. 5.4 that the shielding effect of the atomic electrons reduces
the loss cross section at all the impact energies shown. As expected, this
effect becomes especially important at very high impact energies where it
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Fig. 5.4. The electron loss from U91+(1s) occurring in collisions with gold (ZA = 79)
and carbon (ZA = 6) atoms. The cross section is given as a function of the collision
energy. Dash curves display the results of the calculation for collisions with bare
Au79+ (a) and C6+ (b) nuclei. Solid curves in (a) and (b) show the contributions to
the loss cross section given by the elastic target mode in collisions with neutral gold
and carbon atoms, respectively. The cross sections have been calculated within the
first order approximation in the projectile–target interaction. The elastic contribu-
tion was evaluated using the nonrelativistic atom approximation and the screening
parameters from [102].

is responsible for the saturation of the loss cross section: the cross section,
considered as a function of the impact energy, becomes a constant. At the
same time, the calculation assuming the unshielded atomic nucleus predicts an
unlimited (logarithmic) grows of the cross section with increasing the impact
energy.

For our present goal, however, it is more important to note that the shield-
ing effect is rather modest for impact energies close to 1 GeV u−1. At these
energies the effect is negligible in collisions with light carbon atoms, moreover,
even in collisions with very heavy gold atoms it does not exceed 5%. Since the
shielding effect decreases with decreasing the impact energy, the first order
theory suggests that at all impact energies

∼
<1 GeV u−1 the role of the atomic

electrons in the elastic mode of the electron loss from U91+(1s) is rather weak
and can be neglected in collisions with both light and heavy atoms.
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For a given ion at a given impact energy the shielding effect is larger
in collisions with heavier atoms. Therefore, for the most heavy ions, like
e.g. hydrogen-like uranium in the ground state, the elastic mode of the loss
process in collisions with practically all atoms at energies relatively low (below
1 GeVu−1) can be described in an approximate way as occurring due to the
interaction with the unscreened atomic nucleus.9

According to the first order consideration the inelastic mode of the
projectile-electron excitation and loss comes into play at collision energies
above the effective threshold starting with which the ion can be excited or
lose an electron by the impact of a free electron having in the rest frame
of the ion a velocity equal to that of the incident atom. In collisions with
ions carrying tightly bound electrons the relative contribution of this mode to
the excitation and loss cross sections scales, roughly speaking, as 1/ZA. This
means that the inelastic atomic mode of the collision may yield an important
contribution to the excitation and loss cross sections only in collisions with
light atoms.

Thus, summarizing the above brief discussion, one can say that, provided
one is not interested in what happens to the target atom and concentrates
just on the transitions in the projectile ion, the projectile-electron excitation
and loss in ion–atom collisions can be treated as a three-body problem in
the following two situations. First, for collisions involving very highly charged
ions and many-electron atoms at not very large impact energies where the
elastic mode effectively reduces to the interaction with the unscreened atomic
nucleus whereas the inelastic mode of the excitation and loss of a very tightly
bound electron in collisions with such atoms is always relatively weak and
can simply be ignored. Second, for collisions of highly charged ions with few-
electron atoms occurring at impact energies below the effective threshold for
the inelastic mode.

5.11.1 Relativistic, Nonrelativistic and Semi-Relativistic
Electron Descriptions

Here we shall briefly consider the different electron descriptions used to treat
the projectile-electron excitation and loss processes. The consideration will be
carried out taking, as the simplest example, the three-body model of these
processes discussed in the previous section.

The collision process will be considered in the rest frame of the nucleus
of the ion. We take the position of the nucleus as the origin, denote the
coordinates of the electron with respect to the origin by r and assume that
in this frame the nucleus of the atom moves along a classical straight-line
trajectory R(t) = b + vt, where b = (bx, by, 0) is the impact parameter,
v = (0, 0, v) is the collision velocity and t is the time.
9 Of course, much more care should be taken when considering the electron excita-

tion and loss from not very heavy projectile-ions. Indeed, if such ions collide with
heavy atoms the shielding will in general be important at any impact energy.
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The expression for the first order transition amplitude afi(b), written in
the impact parameter space, follows from (5.46) after implementing there the
necessary simplifications corresponding to the reduction to the three-body
problem. Below, however, we shall discuss not the amplitude afi(b) but its
Fourier transform Sfi(q⊥) written in the momentum space.

Relativistic Electron Description

Within the three-body model the general first-order amplitude (5.47) takes
on the much simpler form:

Sfi(q⊥) =
2iZA

v

〈ψf | exp(iqI · r)
(
1 − v

cαz

) | ψi〉
q2

I − (εf − εI)2/c2
, (5.83)

where ψi and ψf are the initial and final undistorted states of the electron in the
ion with corresponding energies εi and εf and the momentum qI, transferred
to the ion in its rest frame, is now given by

qI = (qI,x, qI,y, qI,z) =
(
q⊥; qI

min

)
,

qI
min =

εf − εi
v

. (5.84)

The form of the amplitude (5.83) corresponds to the case when the scalar,
Φ, and vector, A, potentials of the electromagnetic field generated by the
incident atomic nucleus, which enter the interaction between the electron of
the ion and the atomic nucleus

Ŵd(t) = −Φ(r, t) + α · A(r, t), (5.85)

are taken in the Lienard–Wiechert form in which they read (see e.g. [7])

Φ(r, t) =
γZA

s

A(r, t) =
v
c
Φ(r, t). (5.86)

In (5.86) ZA is the charge of the atomic nucleus,

s = (sx, sy, sz) = (x− bx, y − by, γ(z − vt)) (5.87)

are the electron coordinates with respect to the nucleus of the atom (given in
the rest frame of the atom) and γ = 1/

√
1 − v2/c2 is the collisional Lorentz

factor.
By using the conservation of the electron charge expressed as the continuity

equation given by (5.74), one can get other forms of the first order transition
amplitude. Here we restrict ourselves to quoting three of them10:
10 Which directly correspond to the forms of the transition amplitude considered in

Sect. 5.10.
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Sfi(q⊥) =
2iZAc

v2qI,z

〈ψf | exp(iqI · r) (qI,xαx + qI,yαy + qI
minαz/γ

2) | ψi〉
q2

I − (εf − εi)2/c2
, (5.88)

Sfi(q⊥) =
2iZA

v

〈ψf | exp(iqI · r)
(

1
γ2 + v

cqI
min

(qI,xαx + qI,yαy)
)
| ψi〉

q2
I − (εf − εI)2/c2

(5.89)

and

Sfi(q⊥) =
2iZA

v

( 〈ψf | exp(iqI · r) | ψi〉
q2

I

− 〈ψf | exp(iqI · r) λ · α | ψi〉
q2

I − (εf − εi)2/c2

)
,

(5.90)

where the vector λ is given by (5.76).11

The changes in the form of the first order transition amplitude (compare
(5.88)–(5.90) with (5.83)) correspond to gauge transformations of the poten-
tials of the electromagnetic field of the nucleus of the atom:

Φ(r, t) → Φ′(r, t) = Φ(r, t) − 1
c

∂f

∂t
A(r, t) → A′(r, t) = A(r, t) + ∇f, (5.91)

where Φ(r, t) and A(r, t) are given by (5.86).
Indeed, the amplitude (5.88) can be arrived at directly if the field potentials

entering (5.85) are obtained from (5.86) using the transformation (5.91) in
which the gauge function f is taken as

f = − c

v
ZA ln (vs+ vsz) . (5.92)

The transformation (5.91) with the function (5.92) leads to the gauge in which
the scalar potential of the atomic nucleus is zero and the electromagnetic field
generated by this nucleus is described solely by the vector potential:

Φ′(r, t) = 0

A′(r, t) = −cZA

vs

(
sx

s+ sz
;

sx

s+ sz
;
1
γ

)
. (5.93)

On the other hand, the amplitude (5.89) is obtained directly if the field poten-
tials entering (5.85) are derived from (5.86) using the transformation (5.91)
with the gauge function f given by

f =
vγ

c

∫ vt−z

0

dξ
ZA√

(x− bx)2 + (y − by)2 + γ2ξ2
. (5.94)

11 And is now strictly perpendicular to the momentum transfer qI. The term in
(5.90) containing the vector λ describes the contribution to the transition ampli-
tude given by that part of the electromagnetic field of the atomic nucleus which
is transversely polarized.
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The above choice of a gauge function leads to the gauge in which the scalar
potential, compared to its Lienard–Wiechert form, is reduced by a factor of
1/γ2 and the z-component of the vector potential is simply equal to zero:

Φ′(r, t) =
ZA

γs

A′
z(r, t) = 0

A′
x,y(r, t) = −v

c

ZA

γs

(vt− z)sx,y

s2x + s2y
. (5.95)

Finally, in the case of (5.90) one can prove that this form of the amplitude can
be obtained directly provided the field potentials entering (5.85) are chosen
to be in the coulomb gauge in which they read

Φ′(r, t) = −ZA

ξ
,

A′
x(r, t) = −ZAc

v

ξxξz

ξ2
x + ξ2

y

(
1
ξ
− γ

s

)
,

A′
y(r, t) = −ZAc

v

ξyξz

ξ2
x + ξ2

y

(
1
ξ
− γ

s

)
,

A′
z(r, t) =

ZAc

v

(
1
ξ
− 1
γs

)
, (5.96)

where

ξx = x− bx, ξy = y − by, ξz = z − vt, ξ =
√
ξ2
x + ξ2

y + ξ2
z . (5.97)

The continuity equation holds provided ψi and ψf are exact eigenstates of
the Hamiltonian Ĥ0

d . Therefore, if exact Coulomb–Dirac wavefunctions are
employed to describe the initial and final undistorted states of the atom, the
first order electron current is conserved, the first order transition amplitude is
gauge-independent and expressions (5.83) and (5.88)–(5.90) for the amplitude
are fully equivalent. The same, of course, holds true for any other expressions
for this amplitude which can be obtained by manipulations with the continuity
equation.

Nonrelativistic Electron Description

If the ion is relatively light, one can attempt to describe bound states of
the electron using the nonrelativistic Schrödinger–Pauli equation. Then the
description of the process of the excitation of the electron of the ion will
contain two parts: relativistic and nonrelativistic. The electromagnetic field
of the atomic nucleus will be described as before by relativistic potentials
whereas the response of the electron to this relativistic field will be treated
purely nonrelativistically.
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Moreover, even for the electron loss process the overwhelming majority of
the emission from relatively light ions is represented by electrons having non-
relativistic velocities in the ionic rest frame. Since the nonrelativistic electron
description in most cases is much simpler, it is tempting to treat not only the
excitation but also the loss processes by considering the electron dynamics
purely nonrelativistically.

One has to note, however, that too a straightforward application of the
Schrödinger–Pauli equation for calculating the cross sections in relativistic
collisions can easily lead to a certain confusion. Indeed, the first applications
of the Schrödinger–Pauli equation for relativistic collisions had encountered
substantial difficulties of principal character and had been for long time a
subject of certain controversy.12 All this is discussed in detail in Sect. A.2 of
the Appendix and here we restrict ourselves just to briefly quoting correct re-
sults for the first order transition amplitude obtained with the nonrelativistic
description of the electron.

Choosing the potentials of the projectile field in the Lienard–Wiechert
form one obtains that the amplitude for electron transitions without spin-flip
is given by

Sno-flip
fi (q⊥) =

2iZA

v

1
q2

I − (εf − εi)2/c2
(
〈ϕf | exp(iqI · r) | ϕi〉

− v

2c2
〈ϕf | (exp(iqI · r)p̂z + p̂z exp(iqI · r)) | ϕi〉

)
. (5.98)

Here ϕi and ϕf are (the space parts of) the initial and final electron states
and qI is defined by (5.84) where the relativistic energies εi and εf have to be
replaced by their nonrelativistic counterparts.

It is also useful to have the expression for this amplitude obtained in the
coulomb gauge:

Sno-flip
fi =

2iZA

v

( 〈ϕf | exp(iqI · r) | ϕi〉
q2
I

+
〈ψf | exp(iqI · r) λ · p̂ | ϕi〉

q2
I − (εf − εi)2/c2

)
,

(5.99)

where λ is defined similarly as in (5.76). Further, using the gauge with zero
scalar potential Φ = 0 one can show that this amplitude reads

Sno-flip
fi =

iZA

v2

1
qI,z

〈ϕf | Ĝ exp(iqI · r) + exp(iqI · r) Ĝ | ϕi〉
q2

I − (εf − εi)2/c2
, (5.100)

where

Ĝ = qI,xp̂x + qI,y p̂y +
qI,z
γ2

p̂z. (5.101)

12 For instance, there had been attempts to claim that even the very form of the
nonrelativistic Schrödinger equation for the electron in such collisions has to be
corrected.
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Using the charge conservation condition for spin-no-flip transitions of the non-
relativistic electron the following continuity equation is obtained

(εf − εi) 〈ϕf | eiqI·r | ϕi〉 =
1
2
〈ϕf |

(
qI · p̂ eiqI·r + eiqI·r qI · p̂

) | ϕi〉. (5.102)

(5.102), like its relativistic counterpart (5.74), enables to manipulate easily a
form of the first order transition amplitude obtained by treating the electron
nonrelativistically. In particular, one can show that, provided ϕi and ϕf are
exact solutions of the Schrödinger equation, the above expressions for the
transition amplitude without spin-flip are equivalent.

The amplitude for electron spin-flip transitions is obtained to be

Sflip
fi (q⊥) = − iZA

c2
qI,x + iqI,y

q2
I − (εf − εi)2/c2

〈ϕf | exp(iqI · r) | ϕi〉. (5.103)

The initial expression for this amplitude directly involves the magnetic field
strength rather than the field potentials. Therefore, (5.103) is obviously gauge
independent.

Semi-Relativistic Electron Description

The description of the motion of the electron on the base of the Dirac equa-
tion very often involves the application of the Darwin [105] and Furry (or
Furry–Sommerfeld–Maue) [106,107]) approximate wave functions. In particu-
lar, these functions have been extensively used in considerations of the various
aspects of relativistic ion–atom collisions (see, for instance, [4, 76] and refer-
ences therein).

The main reason for the ‘popularity’ of the Darwin and Furry wave func-
tions is that, compared to the exact Coulomb–Dirac wave functions, their form
is much simpler and, as a result, calculations which employ these wave func-
tions are much easier to perform. Both the Darwin and Furry wave functions
are termed as semi-relativistic as well as the calculations performed using
these wave functions.

Assuming that the spin of the electron in the initial state is quantized along
the collision velocity v, within the semi-relativistic Darwin approximation
[105], which is accurate to first order in ZI/c, the wavefunction is approximated
by13

ψ(r) =
(

1 +
1

2mc
α · p̂

)
u(±)ϕ(r). (5.104)

13 The wavefunctions (5.104) are often multiplied by normalization factors of the

form
(
1 + Z2

I /4c2
)−1/2

and
(
1 + k2/4c2

)−1/2
, where k (k ∼ ZI) is the electron

momentum in the continuum. The introduction of such factors, however, is clearly
not compatible with the accuracy of the Darwin approximation.
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Here ϕ(r) is the solution of the Schrödinger equation for the undistorted atom
with the Hamiltonian:

Ĥ0
s =

p̂2

2m
− ZI

r
, (5.105)

(u(+))† = (1, 0, 0, 0) and (u(−))† = (0, 1, 0, 0).
The Furry wave function describes the electron motion in a Coulomb con-

tinuum. In the case of an electron state with the incoming boundary conditions
this function reads

ψ
(−)
k (r) =

1
(2π)3/2

exp (πη/2)Γ (1 + iη) exp(ik · r)

×
(

1 − c

2Ek
α · ∇

)
1F1 (−iη, 1;−i(kr + k · r)) u(λ)(k). (5.106)

Here k = ve/
√

1 − v2
e/c

2 is the asymptotic momentum of the electron, ve is
the asymptotic electron velocity, Ek = c

√
k2 + c2 is the total electron energy,

and η = ZIEk/(kc2) = ZI/ve is the Sommerfeld parameter. Further,

u(λ)(k) =

√
Ek + c2

2c2

(
ξ(λ)

cσ·k
Ek+c2 ξ

(λ)

)
(5.107)

is the relativistic four-component spinor for a free electron moving with a
momentum k. In (5.107) σ = (σx, σy, σz) are the spin matrices given by
(4.39), ξ(λ) (λ = ±) are the Pauli spinors,

ξ(+) =
(

1
0

)
, ξ(−) =

(
0
1

)
, (5.108)

and 1F1 is the confluent hypergeometric function (see e.g. [108], [109]). In
contrast to the Darwin approximation, the Furry approximation is not just
an expansion in ZI/c and can be used even for ZI/c ∼ 1 provided the motion
of the electron with respect to the nucleus ZI is ultrarelativistic [110].

The semi-relativistic amplitudes for the loss process obtained with using
the Darwin and Furry wave functions in the three gauges discussed above are
(formally) given by the expressions (5.83), (5.88) and (5.90). Important to
keep in mind, however, that since these wave functions are not exact solutions
of the same Hamiltonian, now all these forms of the transition amplitude are
no longer equivalent.

Although (5.104) is normally considered as a bound state approximation,
it is quite often used to write down electron continuum states as well and then
applied to calculate the ionization/loss cross sections. Such an approach, in
which both the initial and final electron states are approximated by Darwin
wave functions, is also termed ‘semirelativistic’ and its results are widely re-
garded in the literature as being superior to those obtained for the excitation
and loss/ionization cross sections using the purely nonrelativistic electron de-
scription. However, the latter in fact is not true [111], as will be seen below.
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In the expansion over ZI/c the Darwin states only account for the zero and
first order terms and, thus, the transition matrix elements, amplitudes and
cross sections evaluated with these states are accurate only to order of ZI/c.
Taking this into account and using the Lienard–Wiechert form for the projec-
tile potentials one can show [111] that the amplitudes for electron transitions
without and with spin flip are given by

Sno-flip
fi (q⊥) =

2iZA

v

1
q2

I − (εf − εi)2/c2
(〈ϕf | exp(iqI · r) | ϕi〉

− v

2c2
〈ϕf | (exp(iqI · r)p̂z + p̂z exp(iqI · r)) | ϕi〉

)
(5.109)

and

Sflip
fi (q⊥) = − iZA

c2
qI,x + iqI,y

q2
I − (εf − εi)2/c2

〈ϕf | exp(iqI · r) | ϕi〉. (5.110)

Comparing (5.109)–(5.110) with (5.98) and (5.103) we see that if the ini-
tial and final states in the relativistic transition amplitude are approxi-
mated by the Darwin wave functions then the corresponding expressions
for the transition amplitudes simply coincide with those obtained with the
Schrödinger–Pauli equation [111]. Thus, within the first order consideration
of the excitation and loss/ionization processes the ‘semi-relativistic’ electron
description employing the Darwin approximation for both the initial and final
electron states in fact does not represent any improvement over the nonrela-
tivistic electron description based on the Schrödinger–Pauli equation.

Comparison of the Relativistic and Nonrelativistic
Electron Descriptions

In Fig. 5.5 we show cross sections for the electron excitation from the ground
state into states with the principal quantum number n = 2 and the total
angular momentum j = 1/2 and j = 3/2 in collisions with protons. These cross
sections were calculated by using the relativistic (Dirac) and nonrelativistic
(Schrödinger–Pauli) descriptions of the electron and are given in the figure
as a function of the collision energy for different hydrogen-like ions whose
atomic number ranges from 20 to 92. One interesting observation which can
be drawn from the figure is that the difference between the results of both
electron descriptions for the excitation into the states with j = 1/2 remains
rather small even for ZI = 92 whereas the corresponding difference in the case
of the excitation into the states with j = 3/2 becomes noticeable already at
ZI � 30 and reaches about a factor of 2 at ZI = 92.

For the excitation of light and intermediately heavy ions both the rela-
tivistic and nonrelativistic descriptions of the electron predict that the total
cross section for the excitation into the states with n = 2, j = 3/2 is larger
than that for the excitation into the states with n = 2, j = 1/2. For the excita-
tion of very heavy ions (like Bi82+ and U91+ in the figure) the nonrelativistic
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.5. Cross sections for the proton-impact excitation of hydrogen-like ions ((a)
Ca19+, (b) Zn29+, (c) Zr39+, (d) Xe53+, (e) Bi82+, (f) U91+) from the ground state
into the states with n = 2, j = 1/2 and n = 2, j = 3/2. Results of the calculation
with the Dirac equation are displayed by thick curves (dashed curve: n = 2, j = 3/2;
dot curve: n = 2, j = 1/2). Results obtained with the Schrödinger–Pauli equation
are shown by thin curves (dashed curve: n = 2, j = 3/2; dot curve: n = 2, j = 1/2).
In figure (e) there are also experimental results from [95, 96] for the excitation
of 119MeV u−1 Bi82+(1s) into the states with n = 2, j = 1/2 (solid square) and
n = 2, j = 3/2 (open circle). These results were measured in collisions with carbon
(ZA = 6) and have been scaled in the figure by a factor of 1/36. From [111].

description suggests that the above correspondence between the cross section
still holds for the whole impact energy interval shown in the figure. However,
according to the relativistic electron description, at the lower impact ener-
gies the excitation into the states with n = 2, j = 1/2 turns out to be larger
compared to that into the states with n = 2, j = 3/2.

In Fig. 5.6 we display cross sections for the electron loss from Au79+(1s)
and Pb81+(1s) in collisions with carbon calculated by using the relativistic
and nonrelativistic descriptions for the electron of the ion. In these calcu-
lations (except that depicted in Fig. 5.6a) it was assumed that the loss of
the electron of the ion in collisions with neutral carbon atoms is caused only
by the interaction between this electron and the unscreened nucleus of the
atom. For such very asymmetric collision systems this assumption is very well
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Fig. 5.6. Cross sections for the electron loss from Au78+(1s) (a) and Pb81+(1s)
(b) in collisions with carbon given as a function of the collision energy. Dash
curve: the nonrelativistic electron description. Dot curve: the nonrelativistic elec-
tron description, only no-spin-flip transitions are taken into account. Solid curve:
the relativistic electron description. Experimental data are from [112] (triangles)
and [113] (squares). In panel (a) dash–dot curve displays results which include also
the contribution to the electron loss due to the interaction with the atomic electrons
(the inelastic target mode). From [111].

fulfilled below the threshold energy for the antiscreening target mode of the
loss process which in the case of collisions with Au78(1s) and Pb81(1s) is �170
and �185 MeV u−1, respectively. Above this impact energy the antiscreening
mode gives a noticeable contribution increasing the total loss cross section
(see dash–dot curve in Fig. 5.6a). Compared to the relativistic electron de-
scription, the description with the Schrödinger–Pauli equation yields larger
loss cross sections and this difference tends to increase with the impact en-
ergy. Except the lowest energy experimental point in Fig. 5.6a the comparison
with experimental data is in favor of the relativistic electron description. Note,
however, that although there is no question of which kind of the description
is better suited for the electron in a very heavy ion, the results of this com-
parison per se should be taken with certain reservation since the experimental
data shown in the figure were obtained in collisions with solid state carbon
target.

In Fig. 5.7 the comparison of the relativistic and nonrelativistic electron
descriptions is presented for the case of the loss from Nd59+(1s). It is seen
that in collisions with moderate γ the difference between the results of these
descriptions does not exceed 25–30% which is close to typical accuracy of
collisional experiments with heavy ions at these γ.
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Fig. 5.7. The total cross section for the electron removal from Nd59+(1s) by the
proton impact given as a function of the collision energy. Dot curve: the nonrelativis-
tic electron description, the spin-flip transitions are not included. Dash–dot curve:
the nonrelativistic electron description, the contribution of the spin-flip transitions.
Dash curve: the nonrelativistic electron description, the total contribution. Solid
curve: the relativistic electron description. From [111].

5.12 Relativistic Ion–Atom Collisions
and Nonrelativistic Form-Factors

If in high-velocity collisions both the ion and atom are light atomic particles,
the three-body model is clearly not applicable. However, for such collisions one
can still considerably simplify the treatment by taking into account that: (a)
in the rest frame of the ion the motion of the electron(s) of the ion is nonrel-
ativistic before the collision and remains nonrelativistic also during and after
the collision; (b) the same holds true for the motion of the atomic electrons
considered in the rest frame of the atom.

The form-factors of the ion and atom, which enter the expressions (5.35),
(5.47), (5.48) and (5.36) for the transition amplitudes and cross sections, are
given in the corresponding rest frames where, in the case of light ions and
atoms, the behavior of the electrons is practically nonrelativistic. Therefore,
the form-factors in these formulas, which were obtained by assuming that
the electrons should be described relativistically, can be replaced by their
nonrelativistic counterparts which follow from the Schrödinger equation. For
the most important part of the electron phase-space this step introduces no
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noticeable inaccuracy into the description while making practical calculations
much simpler to perform.

Neglecting the electron spin degrees of freedom it is not difficult to show
that in the Lorentz gauge the nonrelativistic form-factors are given by

F I
0(n0;q) = −

∫
d3rϕ∗

n(r) exp(iq · r)ϕ0(r) = −〈ϕn | exp(iq · r) | ϕ0〉,

F I
l (n0;q) =

1
2c

〈ϕn | (exp(iq · r)p̂z + p̂z exp(iq · r)) | ϕ0〉,

FA
0 (m0;q) = ZAδn0 −

〈
φm |

ZA∑
j

exp(iq · rj) | φ0

〉
,

FA
l (m0;q) =

1
2c

〈φm | (
ZA∑
j

exp(iq · rj)p̂z,j +
ZA∑
j

p̂z,j exp(iq · r)) | φ0〉.

(5.111)

5.13 Electron–Positron Pair Production in Collisions
of Bare Ions with Neutral Atoms

The general expressions (5.35), (5.47), (5.48) and (5.36), which were derived
within the first order theory in the projectile–target interaction for the cross
sections of the projectile-electron excitation and loss and their consequent sim-
plifications can be applied, with minimum changes, to the process of electron–
positron pair production occurring in relativistic collisions between a bare
ionic nucleus and a neutral atom.

Indeed, within the famous Dirac sea picture the pair production is viewed
as a transition between electronic states with negative and positive total en-
ergy. If we (a) make the assumption that these states are strongly influenced
only by the field of the ionic nucleus while the field of the atom acts merely
as a collisional perturbation (which couples these states leading to the pair
production) and (b) neglect the interaction between the created electron and
positron, then the very close analogy with the projectile-electron excitation
and loss processes becomes obvious.

In the case of the free pair production, in which both created particles move
in the continuum, the above assumption looks quite natural for asymmetric
collisions where the charge of the ionic nucleus is larger than that of the
neutral atom. This assumption is also valid for the free-bound pair production
where the electron is created in a bound state of the ion. Besides, since the
difference in the velocities of the electron and positron is typically much larger
than 1 a.u., the neglect of the electron–positron interaction clearly represents
a good approximation.

Although in the case of the pair production the simplification of the cor-
responding general expressions can be done in a way very similar to that
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discussed for the projectile-electron excitation and loss, a few particular points
should be mentioned. First, the momenta transfers necessary to produce an
electron–positron pair are on overall substantially larger compared to those
typical for the process of the projectile-electron excitation and loss. This
means that the shielding effect of the atomic electrons will become of im-
portance at larger impact energies and the effective three-body model for the
pair production in collisions between a bare ion and a neutral atom will be
valid for a broader range of the impact energies. Second, since a substantial
part of the positron emission (and, in the case of free–free pair production, of
the electron emission) occurs into states with high energies, the nonrelativistic
description of the electron and positron is not expected to yield reasonable
results for the pair production, even if the process takes place in collisions of
relatively light ions and atoms.

On the other hand, since in collisions with very high impact energies most
of the particles created in the continuum have ultrarelativistic energies, the
pair production at such impact energies can be successfully calculated using
the Furry wave function [75,114–116].

5.14 Two-Center Dielectronic Transitions

In high-velocity collisions between sufficiently light projectile ion and target
atom (ZI � v, ZA � v) the interaction between the projectile and the target
normally proceeds only via the exchange of a single virtual photon. However,
already just the single photon exchange between two electrons, one of which is
initially bound in the projectile and the second one belongs to the target, may
result in simultaneous electron transitions in the projectile and the target.
Therefore, in relative terms the two-center dielectronic interaction (TCDI)
becomes of especial importance in high-energy collisions.

5.14.1 Mutual Projectile–Target Ionization

Here, following [118,119], we shall consider the two-center dielectronic interac-
tion in the case of mutual projectile–target ionization occurring at relativistic
collision velocities.

The most basic situation for studying the TCDI is to explore collisions of
hydrogen-like ions with hydrogen atoms. From the theoretical point of view it
is also the simplest situation since the internal states of both colliding particles
are exactly known.

In the target reference frame KA the incident projectile-ion is assumed to
have a velocity v = (0, 0, v) whose magnitude can be comparable to the speed
of light c � 137 a.u. The corresponding Lorentz factor of the collision is given
by γ = 1/

√
1 − v2/c2.
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According to (5.35) and (5.36) the fully differential cross section for the
mutual ionization of the target and projectile in a single collision event can
be written as

dσ
d3kad3kid2q⊥

=
4
v2

1

(q2
A − (εka − ε0)2/c2)

2

×
∣∣∣(F I

0(ki,qI) − v

c
F I

3(ki,qI)
)(

F 0
A(ka,qA) − v

c
F 3

A(ka,qA)
)

+
F I

3(ki,qI)F 3
A(ka,qA)

γ2

+
F I

1(ki,qI)F 1
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∣∣∣∣
2
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Here, ε0 and εka are initial and final internal energies of the atom, respectively,
ka is the three-momentum of the electron emitted from the atom and qA is the
three-momentum transferred to the atom; all these quantities are given in the
atomic rest frame. The quantities ε0, εki , ki and qI have similar meanings but
are for the ion and given in the rest frame of the ion. Since we consider light
ions and atoms the inelastic form-factors for these particles can be evaluated
with the nonrelativistic wave functions (see (5.111)).

Below we shall concentrate on the electron transitions in the target and it
is more convenient to redefine the momentum transfers to the atom and ion
according to qA = (q⊥, qA

min) and qI = (−q⊥,−qI
min), where qI

min and qA
min

are given by (5.31) and (5.32), respectively.14

Fivefold Differential Cross Section

Let us begin with the cross section

dσ
d3kad2q⊥

=
∫

d3ki
dσ

d3kad3kid2q⊥
, (5.113)

where the integration is performed over all possible final continuum states
of the electron emitted from the projectile. Compared to the fully differential
cross section, given by (5.112), the cross section (5.113) yields less detailed but
more ‘compressed’ and ‘compact’ information about the collision dynamics.15

14 Note that this definition of the momentum transfers differs from that in (5.33)
by the change in sign. This change as well as the minus signs in the form-factor
coupling in (5.112) are caused by the fact that now v denotes the velocity of the
ion in the frame KA.

15 Besides, one should also note that theoretical results for the cross section (5.112)
would be hard to verify in experiment since it is very difficult to analyze fragments
of a very fast projectile simultaneously with those of a target. At the same time
the cross section of the type given by (5.113) is expected to be more accessible
for observations with state-of-the-art experimental techniques which allow one to
detect relatively easy target fragments in coincidence with a charge state of the
residual projectile-ion.
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The very substantial part of the electron emission from the atom occurs
in collisions where the momentum of the emitted electron lies in the plane
defined by the vectors of the incident projectile velocity v and the momentum
transfer qA. In this plane the cross section (5.113) reaches its largest values.
Such a collision geometry is commonly referred to as the coplanar geometry.
For this collision geometry the cross section (5.113) is displayed in Fig. 5.8a–c
for O7+(1s) + H(1s) → O8+ + e− + H+ + e− collisions. The energy of the
electron emitted from hydrogen is taken to be 5 eV and the magnitude of the
transverse momentum transfer is q⊥ = 0.1 a.u.

Let us first consider the cross section (5.113) in the nonrelativistic limit
c → ∞. According to the nonrelativistic consideration the cross section (5.113)

a)

c) d)

b)

Fig. 5.8. (a)–(c) ‘Fully’ differential cross section (in arb. units), as a function of the
polar electron emission angle, ϑa = arccos(ka ·v/(kav), in the coplanar geometry for
ionization of hydrogen in O7+(1s) +H(1s) → O8+ + H+ + 2e− collisions, εka = 5 eV,
q⊥ = 0.1 a.u. (a) 100 MeV u−1 (v � 60 a.u., γ � 1.11); (b) 1GeV u−1 (v � 120 a.u.,
γ � 2.07); (c) 5 GeV u−1 (γ � 6.37). (d) Fully differential cross section (in arb.
units) in the coplanar geometry for ionization of hydrogen by a free electron impact,
εka = 5 eV, q⊥ = 0.1 a.u. and γ = 1, 000. Results of relativistic (c � 137 a.u.)
and nonrelativistic (c = ∞) calculations are depicted by solid and dashed curves,
respectively.
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reaches its largest value along the nonrelativistic mean momentum transfer
〈qA〉 which is obtained by averaging the momentum qA over the final states
of the electron emitted from the projectile-ion. This maximum in the cross
section can be called the binary peak (see Fig. 5.8a–c). The second and smaller
maximum appears in the direction opposite to 〈q〉 (the recoil peak). The
binary peak is to a large extend determined only by a (single) collision between
the electron of the atom and that of the ion: in collisions leading to the binary
peak the role of the atomic nucleus in the final atomic state is rather modest.
In contrast, the ‘post-collision’ interaction between the atomic electron and
the atomic nucleus is crucial for the very existence of the recoil peak since it
is the only mechanism capable of producing the back-scattering of the atomic
electron after it has collided with the electron of the projectile.

Let us now turn to the relativistic consideration. Figure 5.8a–c show that
relativistic effects in ionization of hydrogen via the TCDI can be noticeable
already at γ � 1.1 and may become very substantial at γ � 2 and higher.
They can change both the shape and absolute values of the calculated cross
section. For instance, we observe that the positions of the binary and recoil
peaks are shifted compared to predictions of the nonrelativistic treatment.
At the collisions parameters considered in Fig. 5.8a–c, the main effect arises
due to the presence of the Lorentz factor in the momentum qA

min. For rather
asymmetric collision systems, this can result in a substantial reduction of
the magnitude of 〈qA

min〉 (which is obtained by averaging qA
min over the final

states of the electron emitted from the projectile) compared to its value in
the nonrelativistic theory.16 This may have a very pronounced impact on
ionization of the lighter partner.

The relativistic reduction of 〈qA
min〉 can substantially affect both the shape

and absolute values of the cross section (5.113). In particular, it changes posi-
tions of the binary and recoil peaks with respect to predictions of the nonrel-
ativistic treatment. However, in Fig. 5.8a–c the positions of relativistic peaks
still remain to be determined by the direction of the momentum transfer 〈qA〉
and, in this respect, the predictions of the relativistic consideration are similar
to those of the nonrelativistic treatment according to which the positions of
the peaks are also determined by the direction of the (nonrelativistic) mo-
mentum transfer.

When the collision Lorentz factor increases, the virtual photon transmit-
ting the TCDI interaction may closely resemble a real photon. In particu-
lar, under certain conditions polarization of the virtual photon can be nearly
perpendicular to its three-momentum vector and the photon becomes almost
transversal. In the target rest frame the overwhelming majority of electrons

16 The reduction in the momentum transfer is directly related to the relativistic
compression of the atomic electron cloud which occurs in the projectile frame
along the target velocity. In that frame this compression changes for the atomic
electron the scale of the momentum transfer along the velocity (which in this
frame is given by qI

min).
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emitted from a light target has energies which are very far from being relativis-
tic (see Fig. 5.11). The dynamics of the interaction between a nonrelativistic
electron and a photon are governed mainly by photon polarization properties
rather than by the photon three-momentum. Therefore, if the atomic electron
absorbs a transversal photon the maxima in the electron emission pattern will
be not along the vector of the momentum transfer but perpendicular to it.
For ionization of light targets by point-like projectiles such an effect has been
discussed in detail in [117]. A similar effect may occur in the emission pattern
produced via the TCDI at high γ provided q⊥ � 〈qA

min〉. We, however, will
not discuss such an effect here because, as we shall show below, for the target
ionization via the TCDI the range of so small q⊥ is of minor importance for
the total ionization cross section.

The profound modifications in the electron emission pattern, observed in
Fig. 5.8b–c for the case of the target ionization by a ‘bound’ electron, can be
contrasted with the limited changes which are introduced by the relativity in
the target ionization by a free electron with the same transverse momentum
transfer q⊥ = 0.1 a.u. In the latter process, even at γ = 1, 000 the dynamics of
the emission remain basically nonrelativistic (see Fig. 5.8d). Moreover, at such
transverse momentum transfers like q⊥ = 0.1 a.u., which are large compared
to the minimum momentum transfer (εka − ε0)/v ∼ 0.01 a.u. to the target in
collisions with a free point-like charge, no noticeable signatures of the relativ-
ity appear with a further increase in the impact energy and they remain very
weak in the limit γ → ∞.

Doubly Differential Cross Section. The Saturation Effect

Important information about the collision dynamics is obtained by considering
the cross section differential in energy and solid angle of the emitted electron,

d2σ

dεkadΩka

=
∫

d2q⊥
∫

d3ki
dσ

d3kad3kid2q⊥
. (5.114)

In Fig. 5.9a–c this doubly differential cross section is shown for the reaction
O7+(1s) +H(1s) → O8+ + H+ + 2e−. It is plotted as a function of the
polar emission angle, ϑa = arccos(ka · v/(kav) of the electron for a fixed
emission energy of 5 eV. The relativistic effects in the TCDI tend to make the
angular distribution of the emitted electrons more symmetric with respect to
the direction perpendicular to the collision velocity (ϑa = 90◦).

At relatively low values of γ the relativistic effects rapidly increase with
increasing collision energy. However, for the collision system under considera-
tion the calculations predict (see Fig. 5.9c) that starting with collision energies
�5–10 GeV u−1 these effects ‘saturate’: the shape and absolute values of the
cross section do not change with a further increase in the collision energy.

One has to stress that such a ‘saturation effect’ in the emission spectra is
absent in the case of the target ionization by a free electron impact. In the
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Fig. 5.9. Angular distribution of 5 eV electrons emitted from hydrogen in O7+(1s)
+H(1s) → O8+ + H+ + 2e− collisions. (a) 100MeV u−1; (b) 1GeV u−1; (c)
10 GeV u−1 (γ � 11.7); Results of relativistic and nonrelativistic calculations are
depicted by solid and dashed curves, respectively. In addition, the dot curve in fig-
ure (c) shows results of relativistic calculation for a collision energy of 1 TeV u−1

(γ ≈ 1, 000).

latter case the emission spectra depend on γ and change when the collision
energy increases, whatever the magnitude of the energy is. In collisions with
a high-energy free electron the dependence on γ appears due to the con-
tribution given by collisions with very small momentum transfers (or very
large impact parameters) and has its origin in the Lorentz contraction of the
electromagnetic field generated by relativistic point-like charges: compared to
nonrelativistic predictions the range of this field is effectively reduced by a
factor of γ in the longitudinal direction and is increased by the same factor
in the transverse direction.

The origin of the saturation effect in the ionization by a ‘bound’ electron
becomes apparent if we consider the role played by the distant collisions for
this process. It turns out that for ionization via the TCDI such collisions are
just of minor importance. The basic physical reason, why very large impact
parameters (or very small q⊥) are essentially cut off in the target ionization via
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the TCDI, is that the projectile is also excited in the collision. In particular,
this excitation manifests itself in the following two important points.

Firstly, by using the continuity equation (5.74) for the transition four-
current of the projectile, one can easily show that at γ � (εka − ε0)/(εki − ε0)
one has

F I
0 − v

c
F I

3 = −〈ψf | exp(iqI · r)|ψi〉
(

1
γ2

+
εka − ε0

γ(εki − ε0)

)

− v2/c

εki − ε0
〈ψf | exp(iqI · r)q⊥ · αtr|ψi〉, (5.115)

where αtr = (α1, α2). Thus, the term
(
F I

0 − v
cF

I
3

) (
F 0

A − v
cF

3
A

)
in the second

line of (5.112) is small if γ is high and q⊥ is low. Besides, because of the
factors γ−1 and γ−2, those terms in (5.112) which are proportional to F I

3F
3
A

and (F I
1F

1
A +F I

2F
2
A) are also small at high γ. Remark that (5.112) can be used

also for the treatment of target ionization by a point-like charged projectile
with a charge Zp if we replace F I

0 by Zp and set F I
1 = F I

2 = F I
3 = 0 and

εki − ε0 = 0.17 Considering the corresponding couplings of the target and
projectile form-factors in (5.112) we see that, compared to the ionization by a
free point-like charge, at sufficiently high γ the target ionization via the TCDI
in collisions with small q⊥ is strongly suppressed.

Secondly, let us compare the photon propagator for target ionization by a
point-like charged projectile, which is proportional to

1
qµqµ

=
1

q2
⊥ + (εka−ε0)2

v2γ2

, (5.116)

with the photon propagator in (5.112), which is proportional to

1
qµqµ

=
1

q2
A − (εka − ε0)2/c2

=
1

q2
⊥ + (εka−ε0+εki−ε0)2

v2γ2 + 2(γ − 1) (εka−ε0)(εki−ε0)

v2γ2

. (5.117)

We see that in collisions where both the target and projectile are excited,
εka − ε0 > 0 and εki − ε0 > 0, the length of the four-momentum of the photon
transmitting the TCDI at equal values of q⊥ more strongly differs from the
mass shell condition qµq

µ = 0 inherent for a real photon. Thus, compared
to the photon exchanged in collisions with a point-like projectile, the photon
responsible for the TCDI has a more pronounced virtuality. This fact also
reduces the range of this interaction compared to the range of the interaction
with a point-like charged projectile.
17 After such replacements one obtains a point-like charged particle of spin zero.

However, collisions with very small momentum transfers, qA � mpv (mp is the
projectile mass), in which the projectile suffers just a very small deflection, are of
semi-classical character. Therefore, the actual spin value of a point-like projectile
is of minor importance for such collisions.
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Singly Differential Cross Sections

Valuable insights into the collision dynamics can be also obtained by calculating
cross sections which are singly differential in the longitudinal, ka,lg = ka cosϑa,
and transverse, ka,tr = ka sinϑa, components of the electron momentum and
the emission energy, εka = k2

a/2. We start the discussion of these spectra with
consideration of the cross section differential in the longitudinal component
ka,lg

dσ
dka,lg

=
∫

d2ka,tr

∫
d2q⊥

∫
d3ki

dσ
d3kad3kid2q⊥

, (5.118)

which often provides most important information about the collision dynam-
ics. The cross section (5.118) is displayed in Fig. 5.10a–c for N6+(1s) +H(1s)
→ N7+ + H+ + 2e− collisions. In the calculation the integration over the
absolute value of the transverse part ka,tr of the momentum ka of the emit-
ted electron was performed for 0 ≤ ka,tr ≤ 7 a.u. According to nonrelativistic

longitudinal electron momentum (a.u)

Fig. 5.10. Longitudinal momentum distribution of electrons emitted from hydrogen
in N6+(1s) +H(1s) → N7+ + H+ + 2e− collisions. (a) 100 MeV u−1; (b) 1GeV u−1;
(c) 10GeV u−1. Results of relativistic and nonrelativistic calculations are depicted
by solid and dashed curves, respectively. In addition, the dotted curve in (c) shows
results of relativistic calculations for 1TeV u−1.
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calculations, even at v = 137 a.u. there should be a strong forward–backward
asymmetry in the longitudinal electron spectrum. However, relativistic calcu-
lations predict that starting with γ ∼ 1.5–2 this asymmetry should be less
pronounced and that it can be substantially reduced when γ increases fur-
ther. Clearly, this ‘symmetrization’ in the longitudinal spectrum corresponds
to the ‘symmetrization’ effect which was discussed for the angular distribution
of the emitted electron (see Fig. 5.10a–c). Similarly to the consideration of the
doubly differential cross section (5.114), we observe that for the collision sys-
tem in question the relativistic effects in the longitudinal emission spectrum
saturate at collision energies of ∼5–10 GeVu−1 and that a further increase
in the collision energy actually changes the shape and absolute values of this
spectrum very weakly.

To complete this subsection let us briefly discuss the energy spectrum of
electrons emitted from hydrogen. This spectrum is represented by the singly
differential cross section

dσ
dεka

=
∫

dΩka

∫
d2q⊥

∫
d3ki

dσ
d3kad3kid2q⊥

. (5.119)

The cross section (5.119) is shown in Fig. 5.11 for O7+(1s) +H(1s) → O8+

+ H+ + 2e− collisions. Hydrogen ionization by relativistic point-like charged
projectiles occurs mainly in such collisions where the momentum transfer to
the target is smaller (or even much smaller) than the typical momentum of the
electron in the ground state of hydrogen. However, hydrogen ionization via
the TCDI involves on average substantially larger momentum transfers (q⊥

y

Fig. 5.11. Energy distribution of electrons emitted from hydrogen in 10 GeV u−1

O7+(1s) +H(1s) → O8+ + H+ + 2e− collisions. Results of relativistic and nonrela-
tivistic calculations are depicted by solid and dashed curves, respectively. In addition,
the dotted curve (which is almost indistinguishable from the solid one) shows results
of relativistic calculations for 1 TeV u−1.
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up to ∼ ZI � 1 a.u.). This results in the extension of the electron emission
spectrum to much larger energies.18

It follows from the calculations that the relativistic effects in the TCDI
enhance the lower energy part of the spectrum. This enhancement is rather
modest already for small emission energies (about 10% at εka ≈ 1 eV) and
becomes negligible at εka � 20 eV. Since the energy spectrum produced via
the TCDI extends to relatively large energies, the influence of the above en-
hancement on the total cross section for hydrogen ionization via the TCDI is
quite weak and increases the total emission from the target by no more than
a few per cent for the collision system under consideration.

As one could expect and as Fig. 5.11 illustrates, the ‘saturation’ effect holds
also for the energy spectrum.

Thus, summarizing the above consideration, we see that for the ionization
of a light target by an electron bound in a light projectile the theory predicts
noticeable relativistic effects already in collisions with low values of γ and
that these effect ‘saturate’ at not very high γ-s. It is known that both these
features do not hold for the ionization of a light target by a free electron.

In the case of collisions between light projectile-ion and target-atom the
relativistic effects in the emission spectrum of the target electron are solely
caused by the collision velocity approaching the speed of light and are mainly
of ‘redistributive’ character: compared to predictions of nonrelativistic calcu-
lations, they affect rather weakly the total amount of emitted electrons but
may substantially redistribute the electron emission between different parts
of the electron momentum space.

5.14.2 Radiation Field and Resonant Two-Center
Dielectronic Transitions

The square of the four-momentum transfer in the collision, q2 = qµq
µ, is given by

q2 = q2
I −

ω2
n0

c2
= q2

A − Ω2
m0

c2

= q2
⊥ +
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γ2v2
+ 2

ωn0Ωm0

γv2

= q2
⊥ +

(ωn0 +Ωm0)2

γ2v2
+ 2

ωn0Ωm0

v2

(
1
γ
− 1
γ2

)
, (5.120)

where ωn0 = εn − ε0, Ωm0 = εm − ε0.
As we have seen in the previous subsection, in the ion–atom collisions

resulting in the excitation of both these particles (ωn0 and Ωm0 are positive),
the square of the four-momentum qµq

µ is never zero and the effective range

18 For example, in hydrogen ionization by a fast point-like charge the energy spec-
trum of electrons ejected from hydrogen also reaches its maximum values at very
small emission energies but decreases by almost an order of magnitude when the
emission energy increases from, say, ≈1 to ≈13.6 eV.
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of the ion–atom interaction does not exceed a few atomic units becoming a
constant at sufficiently high impact energies.

The projectile–target interaction acquires qualitatively new features when
qµq

µ = 0. For instance, in such a case the singularity at real q⊥ appears in
the integrand of the amplitude (5.46). This occurs when the sum of the last
two terms in (5.120) is negative and is only possible if ωn0Ωm0 < 0, i.e. when
in the collision one of the colliding centers gets excited and the other one is
de-excited. Such collisions were studies in some detail in [120–122] and below
we shall follow the considerations given in these papers.

Let us for the moment assume for definiteness that the projectile is excited
(ωn0 > 0) and the target is de-excited (Ωm0 < 0) in the collision. Then we
obtain that the equality qµq

µ = 0 holds if the following conditions are fulfilled

ωn0 Ωm0 < 0

| ωn0 |
√
c− v

c+ v
≤ Ωm0 ≤ | ωn0 |

√
c+ v

c− v
. (5.121)

In such a case the projectile and target exchange in the collision an on-mass-
shell photon. As a result, the denominator in the integrand of the amplitude
(5.46) becomes singular and, since the numerator in the integrand remains in
general non-zero, we face a particular case of a resonance in atomic collisions.

The physical meaning of the above inequalities becomes obvious if we recall
that, according to the relativistic Doppler effect (see (4.15)), the radiation
spectrum, which is monochromatic, say, in the projectile frame where it has
a frequency ωP, in the target frame spreads to a continuous spectrum with
frequencies ωT occupying the interval given by

ωP

√
c− v

c+ v
≤ ωT ≤ ωP

√
c+ v

c− v
. (5.122)

Comparing (5.120) and (5.122) we see that the ion–atom interaction can be
interpreted as occurring via the emission of a photon with the energy ωn0 =
| εn − ε0 | by the projectile in its rest frame and the absorption of the same
photon, but now having the energy Ωm0 = εm−ε0, by the target in the target
frame. Thus, it is the Doppler effect which makes the resonance possible in
collisions between systems with different energy scales.

One should mention that according to the standard nonrelativistic con-
sideration of the collision the above resonance is not possible. Indeed, within
the latter the nonrelativistic limit of the transition amplitude is obtained by
setting c → ∞ in (5.46) that yields

a0→m
0→n (b) = lim

ς→+0

−i
πv

∫
d2q⊥ exp(−iq⊥ · b)

×〈um| exp(−iq · r)|u0〉〈ψn| exp(iq · ξ)|ψ0〉
q2 + iς

, (5.123)
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where ψ0,n and u0,m are solutions of the Schrödinger equation for the inner
motion of the electrons in the projectile and target, respectively, and q denotes
the three-momentum transfer to the projectile.19 Since at c → ∞ the ‘time’
component of the four-momentum transfer has vanished, the singularity in
the photon propagator can arise only if the three-momentum transfer q is
equal to zero. The latter, however, means that actually no collision occurs
and thus there is no transitions related to the ‘collision’. This is seen in the
expression (5.123) for the transition amplitude where at q = 0 the transition
form-factors become equal to zero that, together with the factor q⊥ from d2q⊥,
overcompensates the singularity in the photon propagator.

When the exchanged photon is on mass shell, one can expect that the range
of the ion–atom interaction is much longer than that in collisions where the
atomic systems interact via the transmission of an off-shell photon. Indeed, in
the resonance case at large impact parameters the transition amplitude (5.46)
turns out to be proportional to 1/

√
b. The corresponding transition probability

| a0→m
0→n |2∝ 1/b and at any arbitrarily large b the product b | a0→m

0→n |2 remains
a constant. This shows that the physical ‘agent’ transmitting the ion–atom
interaction in the resonance case is the radiation field.

The attempt to calculate the cross section according to the standard pro-
cedure, σ0→m

0→n ∝ ∫∞
0

dbb | a0→m
0→n |2, leads to an infinite result. This infinity

arises not because the transition probability itself is large (at any b it is, in fact,
very small compared to 1) but because at large b it decreases too slowly with
increasing the impact parameter. Therefore, it cannot be regularized by con-
sidering higher order terms in the projectile–target interaction (two-photon
exchanges e.t.c.). Indeed, not only the contributions of such terms to the tran-
sition amplitude are very small even at small b but also they decrease very
rapidly when b increases and become completely negligible at those large im-
pact parameters which are ‘responsible’ for the problem. The striking situation
with the diverging cross section makes it necessary to look for some physical
factors which normally are not taken into account and even not mentioned.

The appearance of infinite cross sections on a certain step of a theoretical
consideration, of course, does not necessarily mean that actual cross sections
are infinite. As it is known, in real physical systems there always exists a kind
of ‘damping’ factor which becomes of especial importance when a resonance
process is considered setting finite limits on cross section values in the vicinity
of resonances. In our case such a ‘damping’ factor can formally be introduced
by adding a finite imaginary part iI into the denominator in the integrand of
(5.46). The physical reasons leading to the appearance of the imaginary part
are discussed below.

The Size Effect

The most obvious way to make the cross section finite is to point out that the
integration over the impact parameter must, in fact, be restricted to b ≤ b0
19 Note that in the nonrelativistic approximation qI = −qA.
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where b0 is related to the transverse target size (the size in the direction
perpendicular to v) and the projectile beam diameter. Then the cross section
can be written as

σ0→m
0→n = A+Bb0, (5.124)

where A and B are some parameters with A accounting for the contribution
to the cross section in collisions with small b. Such a size effect can be in-
corporated into the consideration in a more convenient way if the integration
over b is still performed for 0 ≤ b < ∞ but the photon propagator is regular-
ized by adding the imaginary part iI1, where I1 � 2|ωn0|

cb0
, in the denominator

of (5.46).

Finite Lifetime of the Excited State

The inspection of (5.120) suggests that an imaginary part in the denominator
of the photon propagator can appear if the natural width of the excited state
is taken into consideration by the replacement ωn0 → ωn0 + iΓ/2. The result-
ing contribution I2 to the total ‘damping’ factor I is then given by I2 � 2
| ωn0 | Γ/c2. The term I2 introduces the new characteristic length, D � c/Γ ,
into the consideration. If this length is of the order of or smaller than other
characteristic lengths in the problem, then the natural width of the excited
state will noticeably influence the resonance collisions.

Target Density Effect

One more ‘damping’ factor and thus yet one more contribution to the imag-
inary part I appears if we take into account the following. In obtaining the
transition amplitude (5.46) it was assumed that the collision between the pro-
jectile and the target is not influenced by the presence of other atoms in the
target medium and other particles in the projectile beam. Thus, the other
target atoms and projectile particles are considered to be completely ‘passive’
when the ‘active’ projectile and target collide. This is the standard procedure
in the physics of energetic ion–atom collisions and it is normally supposed to
be quite suitable for considering collisions of ionic beams with rarefied gaseous
targets. However, when the range of the projectile–target interaction becomes
‘abnormally’ long, as it is for the resonance case considered here, the pres-
ence of the ‘passive’ atoms in the target medium may in general no longer be
ignored. Indeed, this presence may be of especial importance in our case be-
cause the electromagnetic field transmitting the projectile–target interaction
‘works’ on a frequency which is resonant to the atomic transition and, there-
fore, the cross section for the interaction between the field and the ‘passive’
atoms becomes rather large.

In our case the mean free path of the electromagnetic field in the target
medium is given by Λ = 1/(NgrσR), where
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σR = π
c2

ω2

Γ 2

(ω0 − ω)2 + Γ 2/4
(5.125)

is the cross section for the scattering of the electromagnetic field by the atom in
the vicinity of the resonance atomic transition frequency ω0 andNgr is the den-
sity of the atoms. At distances of order Λ and larger the target medium ceases
to be ‘transparent’ for the projectile–target interaction. Therefore, when the
impact parameter b for the collision between the ion and the ‘active’ atom
starts to exceed Λ this interaction essentially vanishes. Thus, the presence
of the ‘passive’ atoms effectively cuts the impact parameters at bd ∼ Λ.
Since Λ depends on the target density, this reduction in the effective range
of the ion–atom interaction can be called the density effect.20 The density
effect can be incorporated into the treatment by adding the ‘damping’ term
iI3 = i2 | ωn0 | NgrσR/c into the denominator of the photon propagator.21

Equation (5.125) does not account for the broadenings of the spectral
line ω0 caused by the atom–atom interaction/collisions in the medium and
by the Doppler effect due to the thermal motion of the atoms. For rarefied
gases the collision broadening can normally be neglected. The thermal Doppler
broadening should be taken into account if it becomes close or larger than the
natural linewidth Γ . In such a case results for cross sections, obtained by
using (5.125), should be averaged over the thermal velocity distribution of
the target atoms. Note that the thermal motion does not affect the resonance
condition (5.120) if γ � √

c/u, where u ∼ √
T is the mean thermal velocity

of the target atoms.
In Fig. 5.12 results are shown for the electron loss from B4+(1s) projectiles.

It is supposed that (a) the target has a 15% fraction of the excited (H(2p1)
or H(2p0) atoms and is contained in a cylindric volume; the excited states
are quantized along the collision velocity. Further, the target has a density of
5×1012 cm−3 and is characterized by a Maxwell distribution with temperature
of 40 K. A narrow beam of B4+(1s) ions penetrates the target volume along
its symmetry axis. Under these target conditions the mean free path Λ of the
radiation field at the frequency resonant to 2p → 1s transition in the hydrogen
medium is �5 cm. Assuming that the target transverse size is larger than Λ
the resonance loss cross section will be independent of the target size.

Considering the inequalities (5.121) at a fixed value of the ratio χ = ωn0/
| Ωm0 | we obtain that the threshold Lorentz factor for the resonance to

20 A well known example of an effect related to the target density is the response
of target medium to the field of a point-like ultra-relativistic projectile. At large
impact parameters this response leads to the screening of the projectile field and
reduces the projectile energy loss in the medium. This effect was first estimated
in [123] and is nicely discussed in [124] (see also [7]).

21 Concerning the effect of the projectile beam density on the resonance interaction
one can note that the density of ions in a projectile beam is normally orders of
magnitude smaller than the density of target atoms. Under such conditions the
presence of ‘passive’ particles in the projectile beam can be neglected.
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Fig. 5.12. Cross sections for the electron loss from B4+(1s) as a function of the
impact energy. Solid curve: collisions in which H(2p1) → H(1s). Dash curve collisions
in which H(1s) → H(2p1). Dot curve: collisions in which H(2p0) → H(1s). Dash–dot
curve: collisions in which H(1s) → H(2p0). The excited states are quantized along
the collision velocity. From [120].

occur is given by γth = (χ2 + 1)/(2χ). For the electron loss from B4+(1s),
accompanied by the de-excitation of H(2p), we get γth � 16.7 that corresponds
to the threshold impact energy of �14.6 GeVu−1. At this energy the loss cross
sections begin to increase tremendously and reach values of about 5.5 kb before
starting to decrease slowly with a further increase in the impact energy.

In symmetric collisions, where ωn0 = −Ωm0 and, thus, the Doppler shift
would just spoil the resonance effect, the coupling to the radiation field can
occur at much smaller impact energies.22 In Fig. 5.13 results are displayed
for the transfer of excitation in H(1s)+H(2p) collisions. It is supposed that
(a) the target consisting of 90% atoms in the ground state and 10% atoms
in 2p0 (or 2p1) state is contained in a cylindric volume with the diameter of
10 mm, (b) the target has the total density of 1011 cm−3 (c) and is character-
ized by a Maxwell distribution with temperature of 40 K, (d) a narrow beam
of H(1s) penetrates the target volume along its symmetry axis. For a com-
parison, in Fig. 5.13 results are shown (a) for H(1s)+H(2p1) → H(2p1)+H(1s)
collisions obtained assuming c → ∞, (b) for H(1s)+H(1s) → H(2p1)+H(2p1)
and H(1s)+H(1s) → H(2p1)+H(2p1) collisions.

It is seen that under the condition of Fig. 5.13 the coupling to the radia-
tion field turns out to be much more important mechanism for the transfer
22 It is known that for symmetric atomic systems, which are at rest with respect to

each other, the atom–atom interaction can acquire much longer range compared
to that of the ‘normal’ Van der Waals force (see e.g. [125] pp. 522–524). Such
kind of an atom–atom coupling, however, rapidly becomes nonresonant when one
of the atoms starts to move and is negligible for collision velocities which are
considered here.
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Fig. 5.13. Cross sections for the transfer of excitation in hydrogen–hydrogen col-
lisions: H(1s)+H(2p0) → H(2p0)+ H(1s) and H(1s)+H(2p1) → H(2p1)+ H(1s).
These cross sections are plotted as a function of the collision energy. For a com-
parison, results for H(1s)+H(1s) → H(2p0)+ H(2p0) and H(1s)+H(1s) → H(2p1)+
H(2p1) collisions are also shown. The excited states are quantized along the collision
velocity.

of excitation than one would expect. Note also that at the above collision
parameters the cross section for the transfer of excitation is independent of
the target density and temperature but rather strongly (linearly) depends on
the target diameter.

In contrast to the situation considered in Fig. 5.12, the role of the resonance
coupling to the radiation field in the case considered in Fig. 5.13 monotonously
diminishes with the increase in the collision energy. This is because the col-
liding system consisting of atomic particles with equal energy differences, due
to the increase of the Doppler broadening of the spectrum of the radiation
field, gradually comes out of the resonance that makes the radiation field less
effective in the transfer of excitation.

Thus, the excitation and loss cross sections, which are microscopic quan-
tities, may in principle become dependent on such macroscopic parameters as
the target density, temperature and size. Except the well known process of
the radiative electron capture,23 we are not aware about any other processes
occurring in fast ion–atom collisions where the coupling to the radiation field
might be of importance for the transitions between internal states of the col-
liding particles.
23 For a review on the topic of the radiative electron capture see [126].



6

Theoretical Methods Extending beyond
the First Order Approximation

6.1 Collisions with Light Atoms: Preliminary Remarks

In the previous chapter the relativistic collisions between an ion and an atom
both carrying electron(s) were considered within the first order theory in which
the interaction between the ion and atom is restricted just to a single photon
exchange. The latter implies that for the first order results to be reliable the
ion–atom interaction should be sufficiently weak.

The parameters ZA/v and ZI/v are often used to characterize the effective
strength of the field of the atom acting on the ion and that of the ion acting
on the atom during the collision. Although it is not always very clear what
the words ‘sufficiently weak’ mean, normally one assumes that the first order
theories should be strictly valid provided both the conditions ZA/v � 1 and
ZI/v � 1 are simultaneously fulfilled.

Of course, in order to really establish the correct limits for the validity
of the first order theory one has to have more general theories which would
go beyond the first order approximation in the ion–atom interaction. The
development of such theories is of basic interest and importance and is also
necessary from the point of view of applications since in experiments on the
electron excitation and loss in relativistic collisions the net charge of the pro-
jectile is usually so high (for instance, Pb81+, Bi82+, U91+ projectiles are often
used) that the ratio ZI/v may not be much smaller than 1 since the collision
velocity v cannot exceed the speed of light in vacuum.

If such a very highly charged ion collides with a light atom, for which the
condition ZA/v � 1 is fulfilled, the atom per se represents merely a weak
perturbation for the electron of the ion. This, however, does not mean that all
cross sections for the projectile-electron excitation and loss can be calculated
within the first order theory.

Indeed, the field exerted by the highly charged ion during the collision on
the electrons of the atom can effectively be quite strong on the atomic scale.
The latter may lead to considerable deviations in the behavior of the atomic
electrons from predictions of the first order theory. A different behavior of the
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atomic electrons means that the atomic field acting on the ion will also differ
from that predicted by the first order theory. As a result, since the atom and
the ion are strongly coupled in the collision, the electron of the ion will in
general also be affected differently compared to the case when the collision
process proceeds in accord with first order predictions.

In the next section we shall consider various aspects of collisions between
highly charged projectiles and light atoms using an eikonal-like model which
will be discussed in great detail. Compared to the first order approximation
the advantage of this model is based on taking into account the distortion of
the atomic transition four-current by the field of the projectile.

6.2 Symmetric Eikonal Model

Let us consider a collision between a highly charged ion and a light atom.
We begin with the semiclassical approximation and assume that in the target
frame KA, in which the target nucleus rests at the origin, the projectile nucleus
moves along a straight-line classical trajectory R(t) = b + vt. For the sake
of simplicity we shall give a detailed derivation of results only for targets and
projectiles with one electron.

The starting point of our consideration is the semiclassical transition am-
plitude given by (5.37). Since the atom is assumed to be light and, hence,
its field is weak (ZA/v � 1) the expressions for the transition current of the
ion and its field will formally remain exactly the same as in the first order
consideration. Now, however, the transition current of the atom JA

µ (x) will be
evaluated by using initial and final states of the atom which include additional
factors describing the distortion of these states by the field of the ion, i.e. the
atom will be described by a distorted transition four-current.

The transition amplitude, which makes use of the distorted transition four-
current, can be calculated making steps similar to those used to derive the first
order transition amplitude. Namely, we first evaluate the atomic transition
four-current JA

µ (x) in the target frame KA, where the atomic nucleus is at
rest. Then the transition four-current J ′µ

I (xI) and the four-potential A′I
µ(xI)

of the ion are calculated in the ion frame KI in which the ionic nucleus is at
rest (xI are the coordinates in KI). Finally, the four-potential of the ion is
transformed into the frame KA where the transition amplitude is evaluated.

In the frame KA the four-current JA
µ of the atom reads

JA
0 (x) = c

∫
d3rφ†

f (r, t)
(
ZAδ(3)(x) − δ(3)(x − r)

)
φi(r, t),

JA
l (x) = c

∫
d3rφ†

f (r, t)αl δ(3)(x − r)φi(r, t); l = 1, 2, 3. (6.1)

In (6.1) r is the coordinate of the atomic electron with respect to the atomic
nucleus given in the frame KA and αl are the Dirac matrices for the electron
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of the atom. The initial and final internal states of the target, in the spirit of
the symmetric eikonal approximation, are now taken as

φi(r, t) = (vs+ v · s)−iν
u0(r) exp(−iε0t),

φf(r, t) = (vs− v · s)iν un(r) exp(−iεnt), (6.2)

where u0 and un represent the solutions of the Dirac equation for the undis-
torted atom having energies ε0 and εn, respectively. The three-dimensional
space vector s is the coordinate of the atomic electron with respect to the
ionic nucleus given in the frame KI and ν = ZI/v.

Inserting (6.2) into (6.1) and using the Fourier representation for the
eikonal phase-factor s−2iν

⊥ ,

s−2iν
⊥ =

∫
d2p⊥f(p⊥, ν) exp(ip⊥ · s⊥) (6.3)

with

f(p⊥, ν) = lim
α→+0
λ→+0

Γ (1 − iν)Γ (1/2 + iν)
2πΓ (1/2)Γ (2iν)

pα−2+2iν
⊥ exp(−λp⊥), (6.4)

where Γ (x) is the gamma-function (see e.g. [108]) and the integration is per-
formed over the two-dimensional transverse vector p⊥ (p⊥ ·v = 0), we obtain

JA
0 (x) = c exp(i(εn − ε0)t)

∫
d2p⊥f(p⊥, ν) exp(−ip⊥ · b)

×
∫

d3ru†n(r) exp(ip⊥ · r)
(
ZAδ(3)(x) − δ(3)(x − r)

)
u0(r),

JA
l (x) = c exp(i(εn − ε0)t)

∫
d2p⊥f(p⊥, ν) exp(−ip⊥ · b)

×
∫

d3ru†n(r)αl exp(ip⊥ · r)δ(3)(x − r)u0(r); l = 1, 2, 3. (6.5)

With the help of the integral representation (e1) the atomic four-current (6.5)
can be cast into

JA
µ (x) =

c

(2π)3

∫
d2p⊥f(p⊥, ν) exp(−ip⊥ · b)

×
∫

d3k exp (i(εn − ε0)t− ik · x)ΦA
µ (n0;k;p⊥), (6.6)

where the components of the eikonal form-factor of the atom ΦA
µ (n0;k;p⊥)

are defined according to

ΦA
0 (n0;k;p⊥) =

∫
d3ru†n(r) (ZA exp(ip⊥ · r) − exp(i(k + p⊥) · r) u0(r),

ΦA
l (n0;k;p⊥) =

∫
d3ru†n(r) exp(i(k + p⊥) · r)αlu0(r). (6.7)
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Our present consideration assumes that the field of the atom is weak and,
therefore, the initial and final states of the electron of the ion are simply
taken as undistorted ionic states. As a result, within the present model the
four-potential Aµ

I (x) generated by the projectile-ion in the frame KA can be
found along the lines which are exactly similar to those used to derive such a
potential within the first order semiclassical treatment and the final expression
for Aµ

I (x) is given by (5.44).1

Inserting this four-potential as well as (6.7) into the general expression
(5.37) for the transition amplitude, we obtain that the eikonal transition am-
plitude in the impact parameter space is given by [41]

afi(b) = − i
πv

∫
d2p⊥f(p⊥, ν) exp(−ip⊥ · b)

∫
d2k⊥ exp(−ik⊥ · b)

×ΦA
µ

(
n0;k⊥, qA

min;p⊥
)
γ−1 Λµ

α F
α
I

(
m0;−k⊥,−qI

min

)
k2
⊥ + (qA

min)2 − (εn−ε0)2

c2

, (6.8)

where the integration runs over the two-dimensional transverse vectors k⊥ and
p⊥. In turn, the eikonal transition amplitude converted into the momentum
space reads [41]

Sfi(q⊥) =
1
2π

∫
d2b afi(b) exp(iq⊥ · b)

= −2i
v

∫
d2p⊥f(p⊥, ν)

×ΦA
µ (n0;qA − p⊥;p⊥) γ−1 Λµ

α F
α
I (m0;qI + p⊥)

(q⊥ − p⊥)2 + (qA
min)2 − (εn−ε0)2

c2

. (6.9)

As before, qI = (−q⊥;−qI
min) and qA = (q⊥; qA

min) denote the total momenta
transferred to the ion (in KI) and the atom (in KA), respectively. qI

min and qA
min

represent their (absolute) minimum values, which are, of course, the same as in
the first order consideration, and q⊥ is the transverse part of the momentum
transfer to the atom. The explicit form of the coupling of the atomic and ionic
form-factors in (6.9) reads

ΦA
µ γ−1 Λµ

α F
α
I =

(
ΦA

0 +
v

c
ΦA

3

)(
F 0

I +
v

c
F 3

I

)
+
ΦA

3 F
3
I

γ2
+
ΦA

1 F
1
I + ΦA

2 F
2
I

γ
.

(6.10)

6.2.1 The Nonrelativistic Limit

In the limit c → ∞, when all relativistic effects vanish, the following simplifi-
cations occur in the transition amplitude (6.9). In the denominator of the inte-
grand in (6.9) the retardation term (εn−ε0)2/c2 disappears and the minimum
1 Where the obvious changes have to be done.
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momentum qA
min takes on its nonrelativistic limit qA

min = (εn−ε0+εm−ε0)/v. In
the coupling (6.10) only the time components survive, ΦA

µ γ−1 Λµ
α F

α
I → ΦA

0 F
0
I .

Besides, now these components are evaluated using the nonrelativistic states
of the atom and ion. As a result, after all these simplifications the amplitude
(6.9) reduces to (3.17) which was obtained in Chap. 1 using the nonrelativistic
symmetric eikonal approximation.

Let us remind that we arrived at the amplitude (3.17) by assuming that the
initial and final internal states of the ion are different, n �= 0, (while there were
no such restrictions on the final state of the atom). This important condition
was explicitly embodied in the derivation of the distorted wave amplitude
(3.11) from which the amplitude (3.17) was obtained by choosing the eikonal
distortion factors.

In the derivation of the relativistic eikonal amplitude given in this section
the condition n �= 0 was not explicitly used and, in this sense, the situation
with the applicability of the amplitude (6.9) is somewhat less clear. However,
comparing the amplitude (6.9) with the symmetric eikonal amplitude (6.86),
obtained for collisions with point-like charges (see Sect. 6.5), it is not difficult
to find out that in the case n = 0 the amplitude (6.9) does not reduce to (6.86).

Taking this into account and also remembering that the nonrelativistic
amplitude (3.17) may not be used for collisions with n = 0 we may infer
that the relativistic amplitude (6.9) is only valid to describe collisions in which
the final and initial internal states of the projectile are different, m �= 0.
At the same time, there is no restrictions on the possible final internal state
of the atom: this state may differ from the initial state (n �= 0) or be the
same (n = 0).

6.2.2 The Relationship with the First Order Theory

The transition amplitude in the momentum space, following from the first
order theory in the ion–atom interaction, is given by (5.47), in which the form-
factor of the ion Fα

I is exactly the same as in the amplitude (6.9). Besides, it is
not difficult to convince oneself that the first order (undistorted) form-factor
of the atom, FA

µ , represents the simple limiting case of the eikonal atomic
form-factor, ΦA

µ :

FA
µ

(
n0;q⊥, qA

min

)
= lim

p⊥→0
ΦA

µ

(
n0;q⊥ − p⊥, qA

min;p⊥
)
. (6.11)

The peculiarity of the first order consideration is that for collisions, in
which the internal state of the projectile is changed (m �= 0), it predicts
that the interaction between the projectile nucleus and the atomic target
does not have impact on the collision physics no matter how high the charge
of the projectile is. Besides, the first order consideration also suggests that
the interaction between the target nucleus and the projectile electron in the
inelastic target mode, n �= 0, does not contribute to the amplitude (5.47)
as well. Thus, according to the first order treatment, the projectile–target
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interaction in collisions, where both projectile and target change their internal
states, reduces to the two-center dielectronic interaction.

The first order transition amplitude is remarkably symmetric with respect
to the (mutual) exchange of the quantities of the atom and ion in (5.47). In
contrast, such a symmetry is broken in the eikonal transition amplitude (6.9)
since within the eikonal model the projectile and the target are not treated
on an equal footing due to the high charge state of the projectile ion.

There are two important general differences between the eikonal amplitude
(6.9) and the first order one (5.47). Firstly, according to (6.9), the interac-
tion of the projectile nucleus with the target does influence the physics of
the projectile–target collision. Secondly, the interaction between the target
nucleus and the projectile electron contributes to the projectile-electron exci-
tation and loss also in the case of inelastic (for the target) collisions. Note, that
actually these two points cannot be disentangled since the contribution of the
latter interaction appears automatically once the eikonal distortion factors due
to the field of the projectile nucleus are included into the initial and final states
of the target (6.2). Thus, also in the relativistic consideration of ion–atom col-
lisions, the incorporation of the interaction between the highly charged pro-
jectile nucleus and the target electron ‘wakes up’ the interaction between the
target nucleus and the projectile electron in the inelastic target mode.

The actual differences between results, obtained with the eikonal and first
order transition amplitudes, depend on the magnitude of ν = ZI/v and the
momentum transfer q in the collision. The true perturbative limit in our
case is given by the condition ν = ZI/v → 0. The analysis of the amplitude
(6.9) shows that in this limit the contribution to the integral over the virtual
transverse momentum transfer p⊥ is given solely by the infinitesimally small
vicinity of the point p⊥ = 0. At p⊥ = 0 the form-factors and the denominator
of the integrand in (6.9) become identical to those of (5.47). The integration
over the infinitesimally small range p⊥ = 0 is easily performed yielding 1. As
a result, in the limit ν = ZI/v → 0 the eikonal transition amplitude (6.9)
reduces to the first order amplitude (5.47).

6.2.3 Projectiles with More Than One Electron

Let us now assume that the projectile initially carries more than one electron
but that the absolute value of the total charge of these electrons is still much
less than the charge of the projectile nucleus. In order to generalize the am-
plitude (6.9) to such a case one has just to replace there the single-electron
ionic form-factor by the many-electron form-factor

F I
0 (m0;k) = −

∫ NI∏
i=1

d3ξi χ
†
m(τNI)

NI∑
j=1

exp(ik · ξj)χ0(τNI),

F I
l (m0;k) =

∫ NI∏
i=1

d3ξi χ
†
m(τNI)

NI∑
j=1

αl(j) exp(ik · ξj)χ0(τNI), (6.12)
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where χ0 and χm are the initial and final internal states of the undistorted
ion, τNI =

{
ξ1, ξ2, . . . , ξNI

}
represents the set of coordinates of the NI ≥ 1

electrons of the ion with respect to the ionic nucleus given in the frame KI

and αl(j) is the Dirac matrix for the jth electron. The sum and the product
in (6.12) run over the projectile electrons.

6.2.4 Inclusion of the Nuclear–Nuclear Interaction

Like in the case of nonrelativistic collisions, the inclusion of the interaction
between the nuclei of the projectile ion and the target atom into the treatment
becomes necessary when cross sections differential in the projectile deflection
angle (in the transverse momentum transfer) are considered. This inclusion is
also necessary when cross sections differential in the transverse momentum of
the target recoil ions are studied. In fast ion–atom collisions this interaction,
however, influences neither spectra of emitted electrons integrated over the
transverse momentum transfer nor the distribution of the target recoil ions
over the longitudinal momentum.

The inclusion of the nuclear–nuclear interaction can be done within the
symmetric eikonal approximation by incorporating additional eikonal phases
associated with this interaction into the initial and final distorted states of
the target according to

φi(r, t) = (vs+ v · s)−iν (vs0 + v · s0)
iη
ϕ0(r) exp(−iε0t),

φf(r, t) = (vs− v · s)iν (vs0 − v · s0)
−iη

ϕn(r) exp(−iεnt). (6.13)

In (6.13) the three-dimensional space vector s0 is the coordinate of the target
nucleus relative to the nucleus of the ion given in the rest frame of the ion
and η = ZIZA/v.

Using (6.13) one can obtain (see [41]) that the transition amplitude is now
given by

Sfi(q⊥) = −2i
v

∫
d2p⊥f(p⊥, ν)

∫
d2t⊥f(t⊥,−η)

×ΦA
µ

(
n0;QA;p⊥

)
γ−1 Λµ

α F
α
I

(
m0;QI

)
(q⊥ + t⊥ − p⊥)2 + (qA

min)2 − (εn−ε0)2

c2

, (6.14)

where QA =
(
q⊥ + t⊥ − p⊥, qA

min

)
, QI = − (q⊥ + t⊥ − p⊥, qI

min

)
and t⊥ is

the two-dimensional transverse momentum vector, t⊥ · v = 0.

6.2.5 Collisions with Two-Electron Atoms

In the case when the target atom has two electrons the initial and final internal
states of the atom are chosen within the symmetric eikonal approximation as

φi(r1, r2, t) = (vs1 + v · s1)
−iν (vs2 + v · s2)

−iν
ϕ0(r1, r2) exp(−iε0t),

φf(r1, r2, t) = (vs1 − v · s1)
iν (vs2 − v · s2)

iν
ϕn(r1, r2) exp(−iεnt). (6.15)



138 6 Theoretical Methods Extending beyond the First Order Approximation

In the above expression ϕ0 and ϕn are the initial and final undistorted states
of the atomic target with the energies ε0 and εn, respectively. The three-
dimensional vectors s1 and s2 represent the space coordinates of the first and
second target electron with respect to the ionic nucleus given in the rest frame
of the ion and ν = ZI/v.

The derivation of the transition amplitude with the atomic two-electron
states (6.15) is similar to that given for atoms with one active electron. There-
fore, we shall not discuss this derivation and directly quote the final result

Sfi(q⊥) = −2i
v

∫
d2p⊥

∫
d2κ⊥

f(p⊥, ν)f(κ⊥, ν)

(q⊥ − p⊥ − κ⊥)2 + (qA
min)2 − (εn−ε0)2

c2

×ΦA
µ

(
n0;KA;p⊥;κ⊥

)
γ−1 Λµ

α F
α
I

(
m0;KI

)
, (6.16)

where KA =
(
q⊥ − p⊥ − κ⊥, qA

min

)
and KI = − (q⊥ − p⊥ − κ⊥, qI

min

)
. The

integration in (6.16) runs over the two-dimensional transverse vectors p⊥ and
κ⊥ (p⊥ · v = 0 and κ⊥ · v = 0). Further, the two-electron atomic form-factor
in (6.16) reads

ΦA
0 (n0;k;p⊥;κ⊥) =

∫
d3r1d3r1 ϕ

†
n(r1, r2)ϕ0(r1, r2) exp(ip⊥ · r1 + iκ⊥ · r2)

×{ZA − exp(ik · r1) − exp(ik · r2)} ,
ΦA

l (n0;k;p⊥;κ⊥) =
∫

d3r1

∫
d3r2 ϕ

†
n(r1, r2) exp(ip⊥ · r1 + iκ⊥ · r2)

×{αl,1 exp(ik · r1) + αl,2 exp(ik · r2)}ϕ0(r1, r2), (6.17)

where the indices 1 and 2 refer to the first and second atomic electron. In
(6.16) the inelastic form-factor of the ion F I

α(m0;KI) is the same as in (6.9).

6.2.6 Some Applications

Below we shall consider a few applications of the eikonal model and compare
its results with those given by the first order treatment.

Spectra of Electrons Emitted from the Target

We start with the basic process: the collision between an hydrogen-like highly
charged ion and a hydrogen atom. As an example, we consider the excitation
of Kr35+(1s) projectile into its states with the principal quantum number
n = 2. In Fig. 6.1a we show the contributions to the excitation cross section
from the elastic target mode: Kr35+(1s) + H(1s) → Kr35+(n = 2) + H(1s).
The elastic contributions were calculated using the relativistic eikonal and
first order transition amplitudes and are depicted in Fig. 6.1a by solid and
dash curves, respectively. They are given as a function of the collision energy.
For comparison, dot and dash-dot curves in the figure display results of the



6.2 Symmetric Eikonal Model 139

Fig. 6.1. Projectile excitation in Kr35+(1s) + H(1s) → Kr35+(n = 2) + H(1s)
collisions. (a) Solid curve: the relativistic eikonal approximation. Dash curve: the
relativistic first order approximation. Dot curve: the nonrelativistic (c → ∞) eikonal
approximation. Dash-dot curve: the nonrelativistic first order approximation. (b)
The ratio of the elastic target mode contributions to the projectile excitation cross
section calculated in the relativistic first order and relativistic eikonal approxima-
tions. From [41].

nonrelativistic (c → ∞) eikonal and first order calculations, respectively. In
Fig. 6.1b shown is the ratio of the relativistic eikonal and first order cross
sections for the elastic atomic mode. It is seen in the figure that the ratio de-
creases from more than 2 at an impact energy of 100 MeV u−1 (v ≈ 59 a.u.) to
1.15 at asymptotically high impact energies where the ratio becomes already
energy-independent. Thus, according to the eikonal theory, the interaction be-
tween the projectile nucleus and the target electron decreases the contribution
of the elastic target mode to the projectile excitation cross section.

The calculation of the contribution to the projectile excitation from the in-
elastic target mode is much more complicated. Therefore, we performed such a
calculation only for a few impact energies ranging between 1 and 100 GeV u−1.
According to the calculation, the eikonal model predicts that the contribution
of the inelastic target mode is larger than that suggested by the first order
consideration.
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Fig. 6.2. Energy distribution of electrons emitted from the target in 1 Ge u−1 MeV
Kr35+(1s)+H(1s) → Kr35+(n = 2)+p+ + e− collisions. Solid curve: calculation
using the eikonal amplitude. Dash curve: first order calculation. From [41].

The difference between the inelastic target contributions, calculated with
the eikonal and first order theories, is illustrated in Fig. 6.2 where the energy
spectrum of the electron emitted from the target is shown (the spectrum is
given in the target frame). It is seen in this figure that the eikonal model
predicts the very strong enhancement of the low-energy part of the target
emission. This enhancement can be understood if we note the following. In
order to excite a tightly bound electron in a highly charged projectile the
hydrogenic target must transfer to the projectile electron a momentum which
is large on the momentum scale of hydrogen. According to the first order
consideration, in the inelastic target mode this momentum transfer can only
occur via the two-center dielectronic interaction (TCDI) which was discussed
in Sect. 5.14 and which directly couples the electrons of the projectile and the
target. Because of this direct coupling, the target electron acquires a large re-
coil momentum and tends to populate highly lying energy states in the target
continuum. This is clearly seen in Fig. 6.2 where the maximum of the emis-
sion spectrum, predicted by the first order treatment, is reached at energies of
∼100 eV and even at emission energies as high as 1 keV the number of emitted
electrons is still larger than at 1–10 eV. Within the eikonal model, in addition
to the first order process caused by the TCDI, the more complicated process
becomes possible in which the projectile electron is excited by the interaction
with the target nucleus and, simultaneously, the target electron is emitted due
to its interaction with the projectile nucleus. Within such a two-step process
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the direct momentum exchange between the electrons does not occur and the
momentum transfer to the target electron is smaller, compared to that in the
first order process, since the large recoil is now taken by the target nucleus.
As a result, the two-step process strongly enhances the low-energy part of the
target emission.

In the examples considered above the ratio ν = ZI/v ranges between 0.6
and 0.3 when the impact energies run between 100 MeVu−1 and 1 GeV u−1,
and even at the asymptotically high energies, where v → c, this ratio is still not
very small (0.26). Therefore, the substantial deviations of the eikonal results
from the first order ones are not unexpected. Below we shall see, however,
that the deviations can be noticeable even at much smaller values of ν.

Let us consider the cross section, d2σ/dεdΩ, which is differential in energy
and angle of the electron emitted from the target and which is obtained by
integrating over all final continuum states of the electron of the projectile.
This cross section is shown in Fig. 6.3 for the reaction O7+(1s)+He(1s2) →
O8+ + He+(1s)+2e− at collision energies of 100 MeV u−1, 1 and 10 GeV u−1

corresponding to collision velocities of 59, 120 and 136.5 a.u., respectively.
In this figure the cross section is given for a fixed electron energy of ε =
k2/2 = 5 eV as a function of the polar emission angle of the target electron,
θ = arccos (k · v/kv), where k is the electron momentum with respect to the
target nucleus and k = |k|.

The collision system under consideration involves five bodies and is diffi-
cult to treat without making additional approximations. It follows from ex-
perimental data on O7+(1s)+He(1s2) collisions [64] that at an impact energy
of 1.25 MeV u−1 (v = 7.1 a.u.) the numbers of the electron loss events accom-
panied by single and double ionization of helium are approximately equal.
However, when for the same collision system the collision energy increases to
4.7 MeV u−1 (v = 13.9 a.u.) the number of the electron loss events accompa-
nied by double ionization of helium becomes already just a quarter of that for
the loss events resulting in helium single ionization [64]. Thus, one can expect
that for O7+(1s)+He(1s2) collisions at much higher impact energies only one
target electron will be ‘active’ in the electron loss process. Therefore, in our
estimate we assume that there is one active and one passive electron in the
helium target and that the vectors p⊥ and κ⊥ in the amplitude (6.16) are
related to the active and passive electrons, respectively. Taking into account
that the main contribution to the eikonal amplitude (6.16) at ν = ZI/v � 1
is given by the region of small values of κ⊥, one can reduce the amplitude
(6.16) to the amplitude (6.9) where the charge of the target nucleus ZA is
replaced by the effective charge Zeff of the target core (the nucleus and the
passive electron of the target). The latter is given by the (nonrelativistic)
form-factor of the target core and, in contrast to the charge of the nucleus,
depends on the momentum transfer q in the collision, Zeff = Zeff(q), that
reflects the compound nature of the core. We approximate the charge Zeff(q)
by the elastic nonrelativistic form-factor of a hydrogen-like ion with the nu-
cleus charge of 1.69. Further, we assume that the active target electron moves
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Fig. 6.3. Angular distribution of 5 eV electrons emitted from helium in O7+(1s)
+He(1s2) → O8+ + He+(1s) + 2 e− collisions. (a) 100 MeV u−1; (b) 1 GeV u−1

(v = 120 a.u., γ � 2.1); (c) 10GeV u−1 (v = 136.5 a.u., γ � 11.7); Solid curve:
the relativistic eikonal calculation. Dash curve: the first order result. Dot curve: the
nonrelativistic (c = ∞) eikonal calculation. Dash-dot curve: the nonrelativistic first
order result. From [41].

in the Coulomb field created by the target core which acts on the active elec-
tron as a point-like charged object with an effective core charge Zc = 1.345
chosen to fit the ionization potential of helium.

According to Fig. 6.3a there is the very substantial difference between
results of the first order and eikonal calculations at an impact energy of
100 MeVu−1 where the ratio ZI/v ≈ 0.14. Moreover, the difference remains
quite noticeable even at 1 GeVu−1 (see Fig. 6.3b) where the ratio is just 0.067.
Besides, at this impact energy there is also the substantial difference between
results of the relativistic and nonrelativistic calculations. Thus, at 1 GeV u−1
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both the higher order and relativistic effects are clearly visible in the angular
distribution of the electron emitted from the target. While at 1 GeV u−1 the
appearance of the relativistic effects is not surprising the noticeable deviation
from the first order predictions at this impact energy is rather unexpected.2

Comparing relativistic and nonrelativistic results of the first order theory
one can conclude that the relativistic effects make the angular distribution of
the emitted electrons more symmetric with respect to the direction perpendic-
ular to the collision velocity (θ = 900) [118]. Comparing first order and eikonal
results we see that the higher order terms in the projectile–target interaction
tend in general to break this symmetry. However, since the virtual momen-
tum transfer p⊥ is a transverse vector, the higher order effects contained in
the eikonal theory are per se not able to break the symmetry and can only
enhance the asymmetry already present in the first order calculation. At very
high impact energies the latter becomes negligible and the eikonal spectrum
also becomes symmetric (see Fig. 6.3c).

At comparatively low values of the collision Lorentz factor γ the relativistic
effects rapidly increase and the higher order effects rapidly decrease with
increasing the collision energy. However, when the collision energy increases
further the corresponding increase and decrease become slower and, starting
with collision energies �10 GeVu−1, the relativistic and higher order effects
in the collision under consideration saturate: the shape and absolute values
of the cross section do not change substantially with a further increase in the
collision energy.

Target Recoil Momentum Spectroscopy in Collisions
with Relativistic Highly Charged Ions

In the previous section we have considered, as an example, collisions with
not very heavy ions and have seen that the deviations from the first order
predictions in general may take place already at rather small values of the
parameter ν = ZI/v (ν < 0.1).

Now we turn to the consideration of collisions of hydrogen and helium
atoms with very highly charged hydrogen-like ions for which the parameter
ν is not much smaller than 1 even when the collision velocity approaches
the speed of light and, therefore, the deviations from predictions of the first
order theory may be especially pronounced. We shall consider only collisions
in which the target atom gets ionized.

Important information about the physics of such collision can be obtained
by studying the distributions of the emitted electron(s). However, below we
shall restrict ourselves to the discussion of the spectra of the target recoil
ions concentrating, following to [127], on the spectrum of such ions given as

2 In particular, the latter point was not taken into account in [118] where the
mutual projectile–target ionization in O7+–He collisions was considered within
the first order theory.
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Fig. 6.4. The longitudinal momentum spectrum of the target recoil ions produced
in 100 MeV u−1 Nd59+(1s)+H(1s) collisions. Dash, dot and dash-dot curves at large
pR,‖ correspond to the Nd59+(n=2), Nd59+(n=3) and Nd60+ + e− states of the
projectile, respectively. Besides, solid curve displays the total contributions of the
above channels to the recoil spectrum at small pR,‖. From [127].

a function of the longitudinal component pR,‖ of the recoil momentum which
is parallel to the velocity of the projectile-ion.

In Fig. 6.4 results are shown for the longitudinal momentum spectrum of
the target recoil ions, dσ/dpR,‖, generated in the processes of the projectile
electron loss and excitation to states with n = 2 and n = 3, where n is
the principal quantum number, in collisions of 100 MeVu−1 Nd59+(1s) with
atomic hydrogen. The recoil peak centered at pR,‖ = 0 arises due to the two-
center dielectronic interaction and thus is basically the effect of the first order
in the projectile–target interaction.3 The peaks at much larger pR,‖, however,
are not predicted by the first order theory and appear in the calculation only
if all the interactions between the nuclei and the electrons are taken into
account. Hence, these peaks represent clear signatures of the higher order
effects in the interaction between the colliding particles.

In Fig. 6.5 we display results for the projectile excitation into states with
n = 2 accompanied by the single ionization of helium target. We see that the
relativistic and nonrelativistic calculations predict rather different positions
and shape of the target recoil peak.

The relativistic effects influencing the form of the recoil spectrum can be
subdivided into those depending on the collision velocity v and those related
to the inner motions of electrons within the colliding centers. As is seen in
Fig. 6.5, in the momentum spectrum these two groups of the effects counteract.

3 In collisions with highly charged ions the two-center dielectronic interaction is
modulated by multiple interactions between the ionic nucleus and the electron of
the target which, under the conditions of Fig. 6.4, decreases the height of the peak
at pR,‖ � 0 by about 25% compared to the prediction of the first order theory.
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Fig. 6.5. The projectile excitation into states with the principal quantum number
n = 2 accompanied by target single ionization in collisions of 100 MeV u−1 Nd59+(1s)
(a) and 325MeV u−1 U91+(1s) (b) with He(1s2). Dash and solid curves display re-
sults of the purely nonrelativistic (c = ∞) and fully relativistic calculations, respec-
tively. Dot curves were obtained by assuming c = ∞ only in the description of the
internal electron states. Dash-dot curves were calculated by setting c = ∞ only in
the treatment of the relative ion–atom motion. From [127].

The relativistic effects in the inner motion of the electron in the ion lead to
the energy splitting of the levels having the total angular momentum j = 1/2
and j = 3/2 and increase the energy differences between them and the ground
state. Because of the splitting the peak in the recoil momentum spectrum
becomes broader and the splitting is also partly responsible for the decrease
in the height of the peak. As a result of the increase in the energy differences
the peak position is shifted to larger values of pR,‖. However, the relativistic
effects due to the relative ion–atom motion soften the recoil of the residual
atomic core which shifts the peak position to lower values of pR,‖. In the
examples shown in Fig. 6.5 the value of the collision velocity is very close to
the value of the typical orbiting velocity of the electron in the ground state
of the ion but the shift of the recoil peak due to the relativistic effects in the
relative ion–atom motion turns out to be larger by about a factor of 2.

The processes considered above are of course not the only ones which
produce target recoil ions. Therefore, the important question is whether the
signatures of the projectile-electron excitation and loss in the momentum spec-
trum of the target recoil ions will not be masked by other processes (especially
if the final state of the projectile is not detected). To answer this question one
needs to perform a more extensive study of the target recoil momentum spec-
trum produced in collisions in which the internal state of the projectile may
change or may remain the same. Some results of such a study are shown in
Fig. 6.6 which actually illuminates the very general features in the formation
of the longitudinal recoil spectrum in collisions with very heavy hydrogen-like
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Fig. 6.6. The longitudinal momentum spectrum of He+ recoils produced in
430 MeV u−1 Th89+(1s)+He collisions. Dash and dot curves show the contributions
to the spectrum from the singly inelastic channel given by the interaction between
the ionized electron and the residual atomic ion and by the nucleus–nucleus Ruther-
ford scattering, respectively. Thin solid curves: the contribution from the projectile
electron loss and excitations into n = 2, 3. Thick solid curve: the total contribution
from the above channels. The contribution from the projectile excitation into bound
states with n ≥ 4 was not calculated. From [127].

ions at moderate values of γ. According to this figure one can separate four
different regions of pR,‖ in which the formation is dominated by qualitatively
different mechanisms.

(a) At small values of pR,‖ the recoil spectrum is generated via the indirect
coupling between the projectile, whose internal state is unchanged, and the
target core: the projectile induces a transition of the target electron and the
electron exchanges its momentum with the target core. In relativistic collisions
this channel is characterized by very large impact parameters (�1 a.u.) and
is very efficient in transferring small values of the momentum to the target
recoil. At larger pR,‖, however, it rapidly loses its effectiveness which leads to
the very strong decrease in the longitudinal spectrum when pR,‖ grows.

(b) Eventually with increasing pR,‖ the direct coupling between the nuclei
of the ion and atom (the Rutherford scattering) may start to dominate the
formation of the spectrum. This channel ‘works’ in collisions with very small
impact parameters (∼ZIZA/v

√
MAvpR,‖, where MA is the mass of the atomic

nucleus) and, provided ZI ∼ v, the nuclear scattering is accompanied by target
ionization with the probability close to 1 but the inner state of the projectile
remains unchanged.4

4 To describe this channel of momentum transfer equations (5.32) have to be cor-
rected by adding a term q2

⊥/(2MAv) into the equation for qA
min (a similar change

has to be made also in (5.31)). Note that this correction becomes important only
at very small impact parameters whose contribution to the doubly inelastic cross
sections is negligible and, therefore, can safely be neglected when the latter are
calculated.
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(c) With the further increase in pR,‖ (3Z2
I /8v � pR,‖ � Z2

I /v) the channel
involving the excitation and loss of the tightly bound electron of the projectile
comes into play. Compared to the nucleus-nucleus collisions this channel is
characterized by much larger values of the typical impact parameters, which
at ZI ∼ v are of the order of the size of the projectile ground state, and is
much more effective. Since the absolute charge of the electron constitutes just
about 1% of the net ion charge and its mass is negligibly small compared to
the mass of the nuclei, such an effectiveness is quite surprising and may have
interesting consequences.

Consider, for instance, two very heavy projectiles whose atomic numbers
differ just by 1 and whose masses are very close (e.g. 209

83Bi (A = 208.98) and
209
84Po (A = 208.98), A is the atomic mass). Let one of them be represented

by a bare nucleus with a charge Z
(1)
I and the second be a hydrogen-like ion

with a net charge Z
(2)
I − 1 = Z

(1)
I . Thus, the projectiles possess practically

equal charge-to-mass ratios and seem to behave almost identically in external
electric fields. However, if these projectiles collide with atoms, the atoms can
easily ‘recognize’ whether the projectile is a bare nucleus or an hydrogen-like
ion since in the latter case the spectrum of the target recoil ions possesses a
prominent resonance-like structure, reflecting the excitation and loss of the
projectile’s electron (superimposed on the smooth background from collisions
elastic for the projectile).

(d) At even higher pR,‖ the recoil spectrum is formed almost solely by the
nucleus-nucleus scattering 5.

In very asymmetric collisions (MI � γMA, where MI is the mass of the ion
nucleus) the contributions to the cross section dσ/dpR,‖ due to the nuclear
Rutherford scattering and due to the excitation of the electron of the ion
scale as Z2

A/MA and Z2
A, respectively. Therefore, the relative strength of the

latter channel in the spectrum formation is weakest for collisions with atomic
hydrogen.

In collisions of very highly charged ions with atoms the doubly inelastic
cross sections are by several orders of magnitude smaller than the cross sec-
tion for the pure atomic ionization. However, since at moderate γ the regions
of pR,‖ relevant to the singly and doubly inelastic processes are well sepa-
rated and because of the ‘prominent’ behavior of the projectile electron in
the transfer of large pR,‖, the theoretical consideration predicts that a great

5 So far we have not mentioned the capture of a target electron by the projectile.
This process occurs via the radiative and coulomb capture channels. At the impact
energies under consideration the last channel is quite weak and is characterized
by very small recoil peaks located at large negative pR,‖ (pR,‖ = −(If/γ− Ii)/v−
mec

2(1 − 1/γ)/v, where Ii and If are the initial and final binding energies of the
electron). The relatively strong radiative capture channel results only in quite low
values of the target recoil momenta where its effect is fully masked by the direct
target ionization.
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deal of information about the doubly inelastic collisions with relativistic heavy
ions could be obtained in an experiment just by measuring the longitudinal
momentum spectrum of the target recoil ions.

6.3 Collisions with Heavy Atoms: Preliminary Remarks

The first order treatment of the ion–atom collisions is in principle valid only
provided the following two conditions are simultaneously fulfilled: (a) ZI/v �
1 and (b) ZA/v � 1, where ZI and ZA are the atomic numbers of the projectile
ion and target atom. Therefore, strictly speaking, the first order theory should
be applied neither to collisions of very highly charged ions (for which the ratio
ZI/v can never be much smaller than 1) with arbitrary atoms nor to collisions
of arbitrary ions with very heavy atoms (for which the ratio ZA/v is not much
smaller than 1).

In collisions between highly charged projectiles and light atoms the first
order approach faces difficulties because the target atom is exposed in the
collision to the field of the projectile nucleus which is very strong on the
atomic scale. Therefore, the first order perturbation theory is not capable of
a correct description of electronic transitions in the target. As a result, for
a fixed final state of the target the first order theory does not yield proper
results also for transitions occurring in the projectile.

Fortunately, however, for collisions with light atoms the situation actually
is much more favorable with respect to the ‘practical’ applications of the first
order theories to calculate the electron loss and excitation cross sections. In-
deed, results of calculations, performed in the first order approximation and
using the eikonal model of the previous section, suggest that the difference
between these two descriptions becomes not very essential if one is not inter-
ested in what exactly happens to the target in such collisions and just sum
over all possible final target states. It turns out that, after such a summation,
results for the cross sections the projectile-electron transitions obtained in the
eikonal approach and the first order theory become quite similar.

Such a close coincidence of the eikonal and first order results is not fortu-
itous. In fact, such a coincidence even looks quite expected as long as (a) the
atomic field per se represent just a weak perturbation for the electron of the
ion and (b) the space distribution of the atomic electrons can be regarded as
‘frozen’ during the short effective collision time when the electron of the ion is
exposed to the short-range field of the neutral atom. The point (a) is fulfilled
for ZA/v � 1 and the assumption (b) is a very reasonable one at the high
impact velocities v � ZA where the effective collision time is much shorter
than typical orbiting times of the electrons in a light atomic system These are
the basic physical reasons why in collisions with light atoms the first order
theory can yield reasonable results for the projectile cross sections summed
over the final target states even in the case when ZI/v ∼ 1.
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The situation becomes quite different when collisions with heavy atoms are
considered. In collisions with very heavy atoms the atomic field acting on the
electron of the ion can effectively reach quite large values which makes the first
order approximations invalid. However, even if we would be ready to sacrifice
our knowledge about electronic transitions in the target we still want to get a
reliable description of the electron transitions occurring in the projectile. The
problem now lies not only in the fact that we cannot take a proper account of
the action of the highly charged projectile on the atom containing very many
electrons but also in the fact that, independent of whether or not the atomic
response to the projectile field is treated properly, already the very strength of
the atomic field per se may make the first order considerations questionable.

Therefore, the question which will be addressed in the next sections of this
chapter is how one can describe electron transitions in the projectile when it
collides with so heavy atomic target that one has ZA/c ∼ 1. The general
approach for attacking this problem will be to sacrifice the description of
the behavior of the atom in the collision and instead fully concentrate on
the treatment of the projectile-electron transitions by making some plausible
assumptions about the character of the action of the atom on the electron of
the projectile during the collision. Such an approach would be sufficient if we
are interested only in the study of electron transitions in the projectile-ion
but are not concerned by what will happen with the atomic target.

In what follows we shall consider the projectile-electron excitation and
loss which occur either at the extremely high or rather low relativistic impact
energies.

6.4 Extreme Relativistic Collisions with Heavy Atoms

Except the resonance transitions, which were discussed in Sect. 5.14.2 of
Chap. 5, the projectile-electron excitation and loss caused by collisions with
neutral atoms occur at impact parameters typically not exceeding the size of
the atom. Because of the effectively short-range character of the interaction
between the atom and ion, at any impact energy (including the asymptotic
limit γ → ∞) the first order treatments may not always be appropriate.

In the case of the extreme relativistic collisions, where γ � 1, the analysis
of the atomic action on the electron(s) of the projectile is greatly simplifies
by the ultrashort duration of the ion–atom collision. Indeed, although it is
highly unlikely that the initial quantum state of the atomic target will not be
changed by the collision with a highly charged projectile penetrating the target
electron cloud, it is, nevertheless, still reasonable to assume that the spatial
distribution of the target electrons will not be considerably altered during the
very short effective collision time when the field of a neutral target acts on
the projectile electron.6 Besides, at the extreme relativistic impact energies
6 In collisions at the extreme relativistic energies this time will be very short even

on the time scale of the most tightly bound electrons in a heavy atomic target.
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the minimum momenta transferred to the ion and atom reduce respectively,
to qI

min = (εn − ε0)/c and qA
min = (εm − ε0)/c which, in particular, means that

the momentum transfer to the ion does not depend on the final internal state
of the atom.7

Therefore, the projectile-electron excitation and loss cross sections can be
evaluated using the assumption that the electrons of the atomic target are
‘frozen’ during the effective collision time and, hence, the spatial distribution
of these electrons during this time can be represented by the wave function of
the initial atomic state.

One should note that the assumption that the spatial distribution of the
atomic electrons is ‘frozen’ during the collision does not imply that these
electrons will finally remain in the atomic initial state. Therefore, in contrast
to the first order theory, the screening mode, as it will be regarded in this
section, is no longer equivalent to the elastic mode.8

The assumption about the ‘frozen’ atomic electrons enables one to treat the
field of the atom during the collision as an external field and, thus, to single
out the degrees of freedom of the electron of the ion as the only quantum
degrees of freedom in the collision. As a result, the many-body problem of
the two colliding atomic particles reduces to the much simpler problem of the
motion of the electron of the ion in two fields, the field of the nucleus of the
ion and the field of the ‘frozen’ atom.

It is obvious that within such an approach the contribution to the tran-
sitions of the electron of the projectile, which is given by the two-center
electron–electron correlations, will be lost. Remark, however, that we are now
going to consider the higher-order effects in projectile-electron excitation and
loss and, therefore, shall concentrate on collisions with very heavy atoms where
these effects should be more pronounced.

According to the first order consideration, provided the dimension of the
electron orbit in the projectile is much less than the dimension of the neu-
tral target, the interaction of the projectile-electron with the target nucleus
screened by the ‘frozen’ atomic electrons is by far the dominant one in colli-
sions with atoms containing very many electrons. In addition, the deviation
from results of the first order consideration is first of all expected for very
small impact parameters where, as it will be discussed in detail in Chap. 7,
the relative contribution of the two-center electron correlations is even weaker
compared to that in the total excitation and loss cross sections. Therefore, the
neglect of the contributions yielded by the two-center electronic correlations
does not seem to be too a big shortcoming.

7 One could say that the collision becomes so extremely short that the electron is
not able to ‘accumulate’ all the information about the collision.

8 In this sense the situation which we consider now is very similar to that encoun-
tered when discussing the sudden and Glauber approximations in Sects. 3.4 and
3.5 of Chap. 3.
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In the rest frame of the nucleus of the ion the motion of its electron is
described by the Dirac equation

i
∂Ψ(r, t)

∂t
=
(
cα ·

(
p +

1
c
A(r, t)

)
+ βc2 − ZI

r
− Φ(r, t)

)
Ψ(r, t), (6.18)

where α and β are the Dirac’s matrices, r is the coordinate of the electron
with respect to the nucleus of the ion, Φ and A are the scalar and vector
potentials describing the field of the incident neutral atom. We assume that
in the rest frame of the atom its scalar potential is well approximated by a
short-range interaction

Φ′ =
ZAφ(r′)

r′
, (6.19)

where

φ(r′) =
∑

j

Aj exp(−κjr
′) (6.20)

with the screening parameters Aj (
∑

j Aj = 1) and κj which have already
been introduced in Sect. 5.2. An interaction of the type (6.19)–(6.20) can be
regarded as originating from the exchange of ‘massive photons’ with masses
Mj = κj : a photon with mass Mj has the source characterized by a charge
Zj = ZAAj (

∑
j Zj = ZA).

The scalar and vector potentials of a source Zj of massive photons with
mass Mj , which moves with relativistic velocity v, are described by the Proca
equation [7]

∆Φj − 1
c2
∂2Φj

∂t2
−M2

j Φj = −4πZjδ(r − R(t))

Aj =
v
c
Φj . (6.21)

We will assume that in the projectile frame the atom moves along a straight-
line trajectory R = b + vt, where b = (bx, by) is the impact parameter and
v = (0, 0, v) is the velocity of the atom.

With the help of the Fourier transformation the solution of (6.21) can be
written as

Φj(r, t) =
Zj

2π2

∫
d2k⊥ exp(ik⊥(r⊥ − b))

∫ +∞

−∞
dkz

exp(ikz(z − vt))

k2
⊥ + k2

z

γ2 +M2
j

, (6.22)

where r = (r⊥, z) with r⊥ · v = 0.
The straightforward integration of (6.22) results in

Φj(r, t) =
γZj√

γ2(z − vt)2 + (r⊥ − b)2
exp

(
−Mj

√
γ2(z − vt)2 + (r⊥ − b)2

)
.

(6.23)
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The potential (6.23) could be easily derived directly from (6.19) and (6.20) by
using the Lorentz transformation. However, the advantage of the Fourier rep-
resentation (6.22) is that, for collision velocities v which very closely approach
the speed of light, it allows one to obtain straightforwardly the substantial sim-
plification for the form of the scalar and vector potentials, whereas the limit
v → c of (6.23) is rather delicate.

6.4.1 Light-Cone Potentials

For infinite γ one can drop the term k2
z

γ2 in the integrand of (6.22) and obtain
[132]

Φj(r, t) =
Zj

2π2

∫
d2k⊥ exp(ik⊥(r⊥ − b))

∫ +∞

−∞
dkz

exp(ikz(z − ct))
k2
⊥ +M2

j

= 2Zjδ (ct− z)K0 (Mj | r⊥ − b |) , (6.24)

where δ is the delta-function and K0 is Macdonald’s function [108]. Then the
scalar and vector potentials describing the field of the incident atom in the
rest frame of the ion are given by

Φ(r, t) = 2ZAδ (ct− z)
∑

j

AjK0 (Mj | r⊥ − b |)

Az(r, t) = Φ(r, t),
Ax(r, t) = Ay(r, t) = 0. (6.25)

Using a gauge transformation for the potentials (6.25) with the gauge function
f chosen as

f = 2ZAθ (ct− z)
∑

j

AjK0 (Mj | r⊥ − b |) (6.26)

we obtain another convenient set of the potentials

A′
x(r, t) = 2ZAθ (ct− z)

∑
j

Aj ∂xK0 (Mj | r⊥ − b |)

A′
y(r, t) = 2ZAθ (ct− z)

∑
j

Aj ∂yK0 (Mj | r⊥ − b |) ,

Φ′(r, t) = A′
z(r, t) = 0, (6.27)

where θ(a) is the Heaviside step function: θ(a) = 0 for a < 0 and θ(a) = 1
otherwise. Note that the electric and magnetic fields described by the poten-
tials (6.25) (or (6.27)) have nonzero components only in the (x, y)-plane. The
strengths of the electric and magnetic field are mutually perpendicular.

The case when the field is produced by a point-like charged particle can
be described by (6.25) (or (6.27)) by taking the limit Mj → 0.
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The potentials (6.25) and (6.27) possess some interesting properties. In
particular, their dependence on the coordinates (x, y, z) and time t is given
by the product(s) of two factors. One of them is a function of the transverse
coordinates (x, y) only. The other one depends on the coordinate z and time t
and this dependence appears only through the light-cone combination ct− z.
If, when addressing a real problem, the interaction can be approximated as
being transmitted by the light-cone potentials, the resulting model problem
can often be solved exactly.

Before we proceed with the application of the light-cone potentials to the
extreme relativistic ion–atom collisions we shall briefly consider the motion
of a free electron in the field generated by a point-like particle moving at the
speed of light.

6.4.2 Classical Electron in the Field of a Particle Moving
with the Speed of Light

We start with the classical consideration of the electron dynamics. As before
we assume that the external electromagnetic field acting on the electron is
produced by a particle which move at the speed along a given straight-line
classical trajectory R = (X,Y, ct) = (b, ct).

For the sake of definiteness we shall choose the light-cone potentials, which
describe this field at a time t at a point with the coordinates (x, y, z) = (r⊥, z),
in the form similar to (6.27)

A1 = −2Z ∂xΛ(|r⊥ − b|) θ(η),
A2 = −2Z ∂yΛ(|r⊥ − b|) θ(η),
A0 = A3 = 0, (6.28)

where Z is the charge of the particle and the explicit form of the function Λ
depends on whether the light-cone field is of the Coulomb or Yukawa type.
The phase of the field η = ct − z can be rewritten as η = nµx

µ, where
nµ = (1, 0, 0,−1) is a null-vector (nµn

µ = n2 = 0). Note that nµ and Aµ are
orthogonal: nµAµ = 0.

Neglecting the radiation force the motion of a classical electron is described
by the Lorentz equations. In our case it is convenient to use these equations
in the four-dimensional form, in which they read (see e.g. [8])

dpµ

dτ
=

e

mc
Fµνp

ν . (6.29)

Here, e and m are the charge9 and mass of the electron, respectively, pµ is
the electron four-momentum, Fµν = ∂µAν −∂νAµ is the electromagnetic field
tensor and τ is the proper time.
9 In this and the next subsections we keep the explicit notation e for the electron

charge.
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We first multiply both sides of (6.29) by nµ. Taking into account that
nµAµ = 0 and (∂0 + ∂3)Aj = 0 (j = 1, 2) we obtain from (6.29) that

dnµpµ

dτ
= 0. (6.30)

Hence, the quantity

nµpµ = p0 + p3 =
E

c
− pz, (6.31)

where E is the total electron energy and pz is the z-component of its mo-
mentum, is conserved in this process. Further, since pµ = m

dxµ

dτ , we see that
nµpµ = mdη

dτ and have

dη
dτ

=
E − cpz

mc
. (6.32)

Taking into account (6.28)–(6.29) and (6.31)–(6.32) we obtain

dp0

dη
=

2Ze
E − cpz

δ(η) (p1 ∂xΛ+ p2 ∂yΛ) δ(η)

dp1

dη
= −2Ze

c
δ(η) ∂xΛ

dp2

dη
= −2Ze

c
δ(η) ∂yΛ

dp3

dη
= −dp0

dη
. (6.33)

The transverse components of the electron momentum are easily found from
(6.33). The electron energy and the longitudinal component of its momentum
can be conveniently derived from the set of equations, which are obtained from
(6.33) if we, instead of the first equation there, employ the energy-momentum
relation (E/c)2 − p2 = m2c2 and also make use of the fact that the quantity
E/c− pz represents the integral of motion (see (6.31)). Then we have

px = pin
x +

2Ze
c

θ(ct− z) ∂xΛ,

py = pin
y +

2Ze
c

θ(ct− z) ∂yΛ,

E − cpz = Ein − cpin
z ,

E + cpz = c2
m2c2 + p2

x + p2
y

Ein − cpin
z

, (6.34)

where the derivatives ∂xΛ and ∂yΛ are taken at the position (x, y) of the
electron at ct = z and the superscript ‘in’ denotes the initial values of the
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electron energy and momentum. According to (6.34) the electron, as a result
of its collision with the light-cone field, suddenly changes its momentum and
energy. The magnitude of these changes depends on the the value of the charge
Z of the moving particle and the relative position of the electron with respect
to this particle in the plane perpendicular to the velocity of the latter.

The expressions for the electron energy and momentum after the collision
have the most simple form if the electron is initially at rest. In such a case
from (6.34) we obtain

px =
2Ze
c

∂xΛ,

py =
2Ze
c

∂yΛ,

pz =
p2

x + p2
y

2mc
,

E = mc2 +
p2

x + p2
y

2m
. (6.35)

Note that while in (6.35) the transverse components of the electron momentum
are of the first order in Ze, the longitudinal momentum is proportional to
(Ze)2. This difference reflects the fact that, as was already mentioned, the
electric and magnetic strengths of the light-cone field are nonzero only in the
transverse plane. Therefore, the electron, which is initially at rest, first starts
to move in the transverse direction due to the interaction with the electric
part of the Lorentz force and only then the magnetic component of this force
becoming nonzero can drive the electron in the z-direction. Note also that
along the z-axis the electron will be always pushed by the Lorentz force in
the direction of the motion of the light-cone particle, no matter what is the
sign of the charge of the particle.

In the case, when the light-cone field is created by a point-like charged
particle, its potentials can be obtained from (6.27) by taking the limitMj → 0.
The latter yields ∂xΛ(|r⊥ − b|)) = (x − bx)/|r⊥ − b|2, ∂yΛ(|r⊥ − b|)) =
(y − by)/|r⊥ − b|2 and from (6.35) we obtain

px =
2Ze
c

x− bx
|r⊥ − b|2

py =
2Ze
c

y − by
|r⊥ − b|2

pz =
2Z2e2

mc3
1

|r⊥ − b|2

E = mc2 +
2Z2e2

mc2
1

|r⊥ − b|2 . (6.36)
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6.4.3 Quantum Electron in the Field of a Particle Moving
with the Speed of Light

In order to consider the behavior of a quantum electron in the field (6.28) we
start with the Dirac equation written in the covariant form (see (4.47))[

γµ
(
p̂µ − e

c
Aµ

)
−mc

]
ψ = 0. (6.37)

By acting on (6.37) from the left by the operator
[
γµ
(
p̂µ − e

cAµ

)
+mc

]
and

making use of the anticommutation relations (4.48) for the matrices γµ we
obtain(

p̂2 − 2
e

c
A · p̂− i

e

c
(∂ ·A) +

e2

c2
A2 −m2c2 − i

e

c
σµνFµν

)
ψ = 0, (6.38)

where Fµν is the electromagnetic field tensor and

σµν =
1
4

(γµγν − γµγν) . (6.39)

Similarly to the classical consideration we shall assume that the light-cone
potentials Aµ are taken in the form (6.28).

It is convenient to introduce the so called light-cone coordinates

η = ct− z,

ξ = ct+ z. (6.40)

Using these coordinates the operator p̂2 can be rewritten according to

p̂2 ≡ p̂2
0 − p̂2

z − p̂2
x − p̂2

y

= −4
∂2

∂η∂ξ
− p̂2

x − p̂2
y. (6.41)

It is also not difficult to show that the result of the double summation in the
last interaction term in parentheses of (6.38) is

Π ≡ σµνFµν = −(1 + αz)
∂

∂η
(αxAx + αyAy)

= −2Zδ(η)(1 + αz)
(
αx

∂

∂x
+ αy

∂

∂y

)
Λ. (6.42)

Taking into account (6.41) and (6.42) and also the fact that ∂ · A = 0, we
arrive at(

−4
∂2

∂η∂ξ
− p̂2

x − p̂2
y − 2

e

c
(Axp̂x +Ayp̂y) −m2c2 − i

e

c
Π

)
ψ = 0. (6.43)
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The interaction terms in (6.43) do not depend on ξ. This means that the
quantity Kξ = 1

2 (p0 + p3), which is the momentum component conjugate to
ξ, is conserved in the collision.

Making in (6.43) the ansatz

ψ = ϕ exp
(
−iKξξ − i

m2c2

4Kξ
η

)
(6.44)

and denoting 2Kξ = M we obtain for ϕ the following equation:

i
∂ϕ

∂η
=

(
p̂⊥ − e

cA⊥
)2

2M
ϕ+ i

e

2Mc
Πϕ, (6.45)

where p̂⊥ = (p̂x, p̂y) and A⊥ = (Ax, Ay). The last term in (6.45) appears
because the electron has spin 1/2 and it would be absent for a zero-spin ‘elec-
tron’. If, for the moment, we disregard this term, then the resulting equation
formally coincides with the nonrelativistic Schrödinger equation for a spin-
less particle with charge e and mass M which moves in the ‘time’ η and
two-dimensional space (x, y) interacting with the ‘time’-dependent electro-
magnetic field described by the vector potentials Ax and Ay.

In (6.45) the interaction of the electron with the light-cone field consists
of the terms, which contain the field potentials and are proportional to θ(η),
and the terms which contain the field strengths and are proportional to δ(η).
In the gauge, which we have employed, the field potentials suddenly ‘jump’
from zero at η < 0 to nonzero values at η > 0. If the change in the interaction
at η = 0 would be limited merely to this step-wise behavior of the poten-
tials, the solution of (6.45) would be continuous at all η, including the point
η= 0. However, because the spin terms contain the factor δ(η), the function
ϕ is discontinuous at η = 0.10 Since these terms, which couple the electron
spin to the electric and magnetic field strengths, are gauge invariant, this
discontinuity cannot be removed by a gauge transformation.

At η < 0 the solution of (6.45), which describes a free electron with a well
defined transverse momentum p⊥ and polarization ρ, reads

ϕ = ϕp⊥,ρ = exp(ip⊥ · r⊥) exp
(
−i

p2
⊥

2M
η

)
u(ρ)(p), (6.46)

where u(ρ)(p) is a coordinate-independent four-spinor.
At η > 0 an electron having a transverse kinetic momentum κ⊥ and

polarization λ is described, according to (6.45), by

ϕ = ϕκ⊥,λ = exp(iκ⊥ · r⊥) exp
(
−i

2Ze
c

Λ

)
exp

(
−i

κ2
⊥

2M
η

)
u(λ)(κ). (6.47)

10 Since α2
z = 1 and, hence, one has (1 − αz)Π ≡ 0, the four-spinor (1 − αz)ϕ

represents a solution of the ‘Schrödinger’ equation. In the gauge, which we use,
this solution remains continuous at η = 0. Note also that the latter would not be
the case if the field potentials would be chosen in the form (6.25).



158 6 Theoretical Methods Extending beyond the First Order Approximation

Using the partial solutions (6.46) and (6.47) one can construct a solution of
the (6.45) describing the behavior of the electron under the action of the
light-cone field.

Let us, as an example, consider the solution of (6.45) corresponding to an
electron which has before the collision (at η → −∞) a well defined kinetic
momentum p0 = (p0,⊥; p0,z) and polarization λ. This solution can be written
in the following form:

ϕ = exp(ip0,⊥ · r⊥) exp

(
−i

p2
0,⊥

2M
η

)
u(ρ)(p); η < 0 (6.48)

and

ϕ =
∫

d2κ⊥a(κ⊥, λ) exp(iκ⊥ · r⊥) exp
(
−i

2Ze
c

Λ

)

× exp
(
−i

κ2
⊥

2M
η

)
u(λ)(κ); η > 0, (6.49)

where a(κ⊥, λ) are the unknown expansion coefficients to be determined.
To find these coefficients one cannot simply equate the right-hand-side

parts of (6.48) and (6.49) at η = 0 because, as was already mentioned, ϕ is
not continuous in this point. Therefore, in order to determine a(κ⊥, λ) we
first note that at η = 0 the last term on the right-hand-side of (6.45) becomes
infinite. Hence only this interaction term and the derivative over η should be
kept when we consider (6.45) at η = 0 and in the infinitely small vicinity of
this point. This enable us to find the solution of (6.45) which is valid not only
at η < 0 but also in the interval [0 − ε < η < 0 + ε], where ε → +0. This
solution reads

ϕ = exp(ip0,⊥ · r⊥) exp

(
−i

p2
0,⊥

2M
η

)

× exp
(
−Zeθ(η)

Mc
(1 + αz)

(
αx

∂Λ

∂x
+ αy

∂Λ

∂y

))
u(ρ)(p); η ≤ ε. (6.50)

Since αzαx = −αxαz, αzαy = −αyαz and 1−α2
z = 0, only the first two terms

are nonzero in the expansion of that exponent in (6.50), which contains the
Dirac matrices. Therefore, the above solution can also be rewritten as

ϕ = exp(ip0,⊥ · r⊥) exp

(
−i

p2
0,⊥

2M
η

)

×
(

1 − Zeθ(η)
2Mc

(1 + αz)
(
αx

∂Λ

∂x
+ αy

∂Λ

∂y

))
u(ρ)(p); η ≤ ε. (6.51)

Now, by matching the solutions (6.49) and (6.51) at η = ε one can determine
the coefficients a(κ⊥, λ). The wave function ψ is then obtained by using (6.48),
(6.49) and (6.44).
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A somewhat more complicated problem of the motion of an electron in
the field of two charged particles, which move in the observer’s frame with
the speed of light in the opposite directions, was considered in [128]– [129]
focusing on the pair production.

6.4.4 Light-Cone Approximation for Ion–Atom Collisions

Let us now return to the ion–atom collisions and consider transitions of an
electron which is initially bound by the field of the ionic nucleus and interacts
with so fast atom that the field of the latter can be described by the light-
cone potentials. The wave function of the electron is a solution of the Dirac
equation (6.18).

This problem can be solved exactly using a method proposed in [131]
to calculate electron transitions caused by collisions with a point-like charge
moving at the speed of light. This method relies on the light-cone potentials
in the form similar to (6.25) and the gauge, in which A0 = −A3 ∼ δ(ct − z)
and A1 = A2 = 0, shall be used below.

Following this method we first expand the electron wave function accord-
ing to

Ψ(r, t) =
∑

n

an(t) exp(−iεnt)ψn(r), (6.52)

where ψn(r) are the states of the electron in the undistorted ion with energies
εn and we assume that the sum includes also the continuum states 11. Inserting
the expansion (6.52) into the left hand side of (6.18), multiplying both sides
of the resulting equation by an arbitrary state ψ†

f (r) exp(iεft) and integrating
over the spatial coordinates of the electron we obtain

i
af(t)
dt

= exp(iεft)〈ψf | cG δ(ct− z) (1 − αz) | Ψ(t)〉, (6.53)

where

G = G(r⊥ − b) =
2ZA

c

∑
j

AjK0 (Mj | r⊥ − b |) . (6.54)

Assuming that before the collision the electron is in a state ψ0, the initial
conditions are given by

an(t → −∞) = δn0,

Ψ(t → −∞) = exp(−iε0t)ψ0(r). (6.55)

Due to the presence of the delta-function in expression (6.53) all what one
needs to know, in order to obtain the transition amplitude, is the product
11 with both positive and negative energies.
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(1 − αz)Ψ at z = ct. For this purpose we rewrite the Dirac equation (6.18)
using the light-cone coordinates (see Eqs.(6.40)) which yields

i(1 − αz)
∂Ψ

∂η
−Gδ(η)Ψ

= −i(1 + αz)
∂Ψ

∂ξ
+
(

α⊥ · p⊥ + βc− ZI

cr

)
Ψ. (6.56)

We shall now integrate the above equation over the infinitesimally small vicin-
ity of the point η = 0 (which includes both η ≤ 0 and η > 0). Taking into
account that the integration of the right hand side part of (6.56) obviously
yields an infinitely small quantity, which can be neglected, and making use of
the initial conditions one obtains that in the vicinity of ct = z

(1 − αz)Ψ(t) = (1 − αz) exp(−iθ(ct− z)G)ψi exp(−iεit), (6.57)

where θ is the theta-function. With the help of (6.57) one has

i
af(t)
dt

= exp(iωfit)〈ψf | Gδ(ct− z) (1 − αz) exp(−iGθ(ct− z)) | ψi〉, (6.58)

where ωfi is the transition frequency.
Taking into account that dθ(ct − z)/dt = cδ(ct − z) and using (6.55),

one can easily integrate (6.58) over time from −∞ to +∞ and obtain that
the exact amplitude a0→n for the electron of the ion to undergo a transition
between states ψ0 and ψn is given by

a0→n(b) = δ0n +
〈
ψn

∣∣∣(1 − αz) exp
(
i
ωn0z

c

)
(exp(−iG) − 1)

∣∣∣ψ0

〉
. (6.59)

By making use of the identity

〈ψn | αz exp
(
i
ωn0z

v

)
| ψ0〉 ≡ v

c
〈ψn | exp

(
i
ωn0z

v

)
| ψ0〉, (6.60)

which holds for n �= 0 12, and taking into account that 〈ψ0 | 1 − αz | ψ0〉 = 1
the expression (6.59) for the transition amplitude can be reduced to

a0→n(b) =
〈
ψn

∣∣∣(1 − αz) exp
(
i
ωn0z

c

)
exp(−iG)

∣∣∣ψ0

〉
, (6.61)

which is fully equivalent to (6.59) both at n �= 0 and n = 0.
Similarly as in the case of the exchange of gravitons or zero mass photons

(see [133–135]), the expression (6.61) can be seen as the ‘eikonalization’ of
the transition amplitude in the case of the exchange of massive photons in
collisions at γ → ∞. Below, the transition amplitude (6.61) is referred to as
the light-cone amplitude.
12 Equation (6.60) is a particular case of the continuity equation (5.56) for the

electron transition current. More simply it can be obtained from (5.74) by setting
there q⊥ = 0 and qI

min = ωn0/v.
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The Transition Amplitude in the Momentum Space

In general, in addition to the transition amplitude given in the impact para-
meter space, it is useful to have also the corresponding amplitude written in
the momentum space, S0→n(q⊥), which is the two-dimensional Fourier trans-
form of the amplitude a0→n(b). It is not difficult to show that, within the
light-cone approximation, the amplitude S0→n(q⊥) is given by

S0→n(q⊥) =
1
2π

∫
d2b exp(iq⊥ · b) a0→n(b)

= F (q⊥) 〈ψn |(1 − αz) exp(iq · r)|ψ0〉 . (6.62)

In the above expression q =
(
q⊥; ωn0

c

)
is the momentum transfer and

F (q⊥) =
1
2π

∫
d2s exp (−iq⊥ · s) (exp(−iG(s)) − 1) , (6.63)

where the integration runs over the two-dimensional transverse vector s (s·v =
0, 0 ≤ s < ∞, 0 ≤ φs ≤ 2π). The expressions (6.63)–(6.63) were obtained
using (6.59) as the starting point.

In the light-cone amplitude (6.63) the term 〈ψn |(1 − αz) exp(iq · r)|ψ0〉 is
exactly the same as in the first order consideration (compare e.g. with (5.72)
or (5.83)). It is the function F given by (6.63) which accounts for the higher
order effects in the interaction between the electron of the ion and the field of
the fast moving atom.

Unitarity of the Light-Cone Approximation

The total probability for the electron to occupy, after the collision with a given
impact parameter b, any of the states of the ion (including bound states and
states with positive and negative energies) reads

P (b) =
∑

n

| a0→n(b) |2 . (6.64)

Since the amplitude (6.61) represents the exact solution (although formally
only for γ = ∞) the total probability P (b) is expected to be equal to 1.
In what follows we shall briefly discuss how the unitarity of the light-cone
approximation can be proved.

Following [136] we define the operator,

D̂ =
∑

k

ik

ckk!
Ĥk

0 z
k, (6.65)

where Ĥ0 is the electronic hamiltonian of the ion. Its hermitian conjugate is
given by

D̂† =
∑

k

(−i)k

ckk!
zkĤk

0 . (6.66)
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Taking into account that (1)
∑

n | ψn〉〈ψn |= 1, (2) D̂† | ψn〉 =
exp(−izεn/c) | ψn〉, (3) 〈ψn | D̂ = 〈ψn | exp(iεnz/c) and using (6.61) we
obtain∑

n

| a0→n |2 =
∑

n

〈
ψ0

∣∣∣exp
(
i
ε0z

c

)
exp(iG) (1 − αz) exp

(
−i

εnz

c

)∣∣∣ψn

〉

×
〈
ψn

∣∣∣exp
(
i
εnz

c

)
(1 − αz) exp(−iG) exp

(
−i

ε0z

c

)∣∣∣ψ0

〉
=
〈
ψ0

∣∣∣exp
(
i
ε0z

c

)
exp(iG) (1 − αz) D̂†

×D̂ (1 − αz) exp(−iG) exp
(
−i

ε0z

c

)∣∣∣ψ0

〉
. (6.67)

Using the identity

(1 − αz)D̂†D̂ = 1, (6.68)

which follows from the transformation

(1 − αz)D̂† = D̂−1D̂(1 − αz)D̂†

= D̂−1
∑
n,m

| ψm〉〈ψm | D̂(1 − αz)D̂† | ψn〉〈ψn |

= D̂−1
∑
n,m

| ψm〉〈ψm | exp(iωmnz/c)(1 − αz) | ψn〉〈ψn |

= D̂−1
∑
n,m

| ψm〉δnm〈ψn |= D̂−1, (6.69)

we finally arrive at∑
n

| a0→n |2 = 〈ψ0| exp(iε0z/c) exp(iG)

×(1 − αz) exp(−iG) exp(−iε0z/c) | ψ0〉
= 〈ψ0 | 1 − αz | ψ0〉 = 1. (6.70)

Thus, the light-cone amplitude (6.61) does preserve the unitarity, as it should
be for an exact solution.

The Limit of the Vanishing Screening

In the limit of vanishing screening (Mj → 0) one can use the relation K0(x) ≈
− ln

(
x
2

) − Γ for | x |� 1 (see e.g. [108]), where Γ is Euler’s constant. Then
the transition amplitude (6.61) can be transformed into

aC
0→n(b) =

〈
ψn

∣∣∣∣(1 − αz) exp
(
i
ωn0z

c

)
exp

(
2iZA

c
ln
( |r⊥ − b|

b

))∣∣∣∣ψ0

〉
.

(6.71)
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The transition amplitude (6.71) coincides with that derived in [131] for the
electron transition in collisions with a point-like charge.

It is well known that in the case, when electron transitions are caused by
collisions with particles, whose net electric charge is not zero, calculations with
the first order amplitude in the limit γ → ∞ may yield infinite cross sections.
In particular, this occurs when the electron loss (or ionization) cross section
is evaluated. The loss cross section behaves like ln γ and the mild logarithmic
divergence arises because at γ → ∞ for any impact parameter the collision
becomes sudden for the electron and, for the dipole allowed transitions, effec-
tively all the impact parameters contribute to the loss cross section. In the
literature on the ion–atom collisions this divergence is sometimes considered
as a peculiarity of the first order consideration which should disappear when
the higher order contributions in the projectile–target interaction are properly
addressed. It is important to keep in mind, however, that such a divergence
is also inherent for the light-cone amplitude (6.71).13

Effective Collision Time and Collisions at Finite γ

The light-cone approximation if formally exact only when γ = ∞. In practical
terms such a situation never happens. However, the valuable property of this
approximation is that it can, under certain conditions, be used for collisions
with finite values of γ [132,137]. Based on the general grounds one can expect
that the light-cone transition amplitude (6.61) will yield good results provided
the effective duration time of the interaction between the electron and the field
of the incident particle, T (b) ∼ b/(vγ), is small compared to the characteristic
electron transition time in the ion τ ∼ ω−1

n0 . The latter condition holds for
impact parameters b � b0 = vγ/ωn0 and at these impact parameters the
collision is sudden for the electron.

For collisions with neutral atoms there is another characteristic distance,
the dimension of the neutral atom a0. If b0 � a0 then the amplitude (6.61)
can be used for any impact parameter because for larger impact parameters
b � b0, where collisions are no longer sudden for the electron, the electron–
atom interaction is already negligible.

13 One should add that although from the point of view of theory the above diver-
gence is certainly of interest, this unlimited growth in the excitation/ionization
cross sections appearing in the atomic physics calculations cannot be observed
in experiment. The reasons for this are similar to those discussed in Sect. 5.14.2
of Chap. 5: (a) the impact parameter cannot exceed the size of an experimental
camera where the collisions are studied and (b) even in a very dilute gas target
the field of a point-like charge moving with a velocity very closely approaching the
speed of light will be completely screened at sufficiently large impact parameters
because of the collective response of the target medium [7,123,124].
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Comparison with the First Order Amplitude

The light-cone amplitude (6.61) is to be compared with the transition ampli-
tude for the screening mode, which is obtained in the first order semiclassical
perturbation theory (see (7.7) of Chap. 7),

a1
0→n(b) =

2iZA

v

∑
j

Aj

×〈ψn

∣∣∣(1 − v

c
αz

)
exp

(
i
ωn0z

v

)
K0 (Bj | r⊥ − b |)

∣∣∣ψ0〉, (6.72)

where Bj =
√

ω2
n0

v2γ2 +M2
j .

For collisions at infinite γ the transition amplitude, given by (6.61), is valid
for any impact parameter b. For collisions with light atoms, where 2ZA

c � 1,
or at large impact parameters, where the condition 2ZA

c

∑
j AjK0(Mj

|r⊥ − b|) � 1 holds for any atom, the transition amplitude (6.61) reduces
to the first order amplitude (6.72). Note that in the limit γ → ∞, in con-
trast to collisions with point-like charges, the transition amplitude (6.61) for
a screened interaction does not result in infinite cross sections for dipole al-
lowed transitions.

6.4.5 Collisions at High but Finite γ:
Combination of the Light-Cone and First Order Approaches

For collisions with high but finite values of γ both transition amplitudes (6.61)
and (6.72) are not exact. In such a case the expressions (6.61) and (6.72), in
general, are better suited to describe the transition amplitude at small and
large impact parameters, respectively. In a comparative analysis for these two
amplitudes we first consider colliding systems where b0 = γv

ωn0
� a0. In such

a case one has Bj � Mj since Mj � 1. For large impact parameters b � ZA
ZIc

,
where the atomic field acting on the electron of the ion is weak compared to
the interaction between the electron and the nucleus of the ion, the exponent
in (6.61) can be expanded in series and one sees that the transition amplitude
(6.61) is approximately equivalent to the first order transition amplitude for
these impact parameters (if in the latter one neglects terms proportional to
1
γ2 ). For collisions with smaller impact parameters, where the atomic field can
reach considerable magnitudes during the collisions, the first order transition
amplitude (6.72) is inferior to the amplitude (6.61). Therefore, for colliding
systems, which satisfy the condition b0 � a0 ∼ 1, the light-cone amplitude
(6.61) should be used for all impact parameters.

Let us now consider colliding systems where b0 � a0. One should note
that in ultrarelativistic collisions such a condition can be fulfilled only for
very heavy ions. If, in addition, b0 � aI, where aI ∼ 1

ZI
is the typical di-

mension of the ground state of the electron in the ion, then a simple method
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can be applied to calculate cross sections (see e.g. [138–141]). Namely, for
collisions with small impact parameters b � b0, where the atom-electron in-
teraction can be strong, the transition probability is calculated according to
the nonperturbative expression (6.61). For collisions with larger impact pa-
rameters b � 1

ZI
� ZA

ZIc
, where the perturbation is already weak, the first

order perturbation theory can be used to calculate the transition probability.
This method of combining the light-cone and first-order treatments can be
employed if there exists an overlap between the regions b � b0 and b � 1

ZI
,

i.e. when ZIb0 � 1. Then, taking into account (6.61) and (6.72), the screening
contribution to the cross section can be written as

σ0→n = 2π
∫ b1

0

db b | aLC
0n (b) |2 +2π

∫ ∞

b1

db b | a1
0n(b) |2, (6.73)

where aLC
0n and a1

0n are the light-cone and first order amplitudes, respec-
tively, and the magnitude b1 has to be in the range of the impact parameters
where the transition probabilities calculated with these amplitudes are ap-
proximately equal. The existence of such an overlap region is very important.
Indeed, only if this region exists does become the cross section (6.73) indepen-
dent of a particular choice made for the value of b1. This point is discussed
in detail in Appendix B where it is shown that, for the electron loss in ultra-
relativistic collisions with a point-like charged particle, one can always find a
range of impact parameters where the light-cone and first order transition am-
plitudes are approximately equal and that in collisions with neutral atoms a
similar range of impact parameters does exist for the loss from very heavy ions.

6.4.6 The Light-Cone Approximation
for a Nonrelativistic Electron

The light-cone approximation assumes that the incident atomic particle
moves with the speed of light but does not necessarily imply that the mo-
tion of the electron is relativistic. Indeed, as it was already remarked in
Sect. 5.11.1, provided the electron is initially bound in a relatively light ion
(ZI/c� 1), its motion before, during and after the collision remains practically
nonrelativistic.

One could start to analyze the motion of a nonrelativistic electron in col-
lisions with a particle moving at the speed of light using the corresponding
Schrödinger equation with the light-cone potentials taken, for instance, in the
form (6.27). However, the exact solution (6.61) for the electron transition am-
plitude became possible because both the Dirac and Maxwell equations are
covariant under the same space–time transformation (the Lorentz transfor-
mation) and thus possess the same symmetry. In particular, the derivation
of the light-cone amplitude, which was discussed in Sect. 6.4.4, explicitly in-
volved the fact that the time and space derivatives enter the Dirac equation
symmetrically.
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All this is of course not the case when one considers the nonrelativistic wave
equation. Now the wave equation and the electromagnetic potentials are char-
acterized by the different symmetries. In particular, if we were to calculate the
transition amplitude by considering the Schrödinger equation, we would im-
mediately encounter a difficulty with using the light-cone coordinates (6.40).

In order to derive the (analog of the) light-cone amplitude in the case of
a nonrelativistic electron there is an alternative way. Instead starting with
the Schrödinger equation we can simply begin with the relativistic light-cone
amplitude (6.61) and perform a transition to the nonrelativistic description
of the electron motion directly in (6.61).

Having in mind a possible extension of the light-cone amplitude to colli-
sions with velocities v < c, in this subsection we shall denote the speed of
light, which is related to the collision velocity, by a symbol vc. In all other
places the usual notation c will be kept. Note that it is the velocity vc which
enters the minimum momentum transfer qmin = ωn0/c = ωn0/vc and the fac-
tor G (given by (6.54)) in the exact amplitude (6.61). Besides, the term in
(6.61), which is proportional to αz, now gets multiplied by a factor vc/c.

In the amplitude (6.61) we shall first present the initial and final electron
states according to

ψ0,n =
(
χ0,n

ξ0,n

)
, (6.74)

where χ and ξ are the large and small two-component spinors, respectively,
of the Dirac four-spinor ψ. According to the standard consideration of the
transformation of the Dirac equation into the Schrödinger one (see, for in-
stance, [10], [73]) these components are approximated by(

p̂2

2
− ZI

r

)
χm = εmχm,

ξm =
σ · p̂
2mc

χm, (6.75)

where the first line is the Schrödinger equation for the electron moving in the
(undistorted) ion with εm being its nonrelativistic energy, σ = (σx, σy, σz) are
the Pauli matrices and p̂ is the electron momentum operator.

We now approximate the states ψ0 and ψn in the exact amplitude (6.61)
with the help of (6.74) and (6.75). Then, after performing some simple ma-
nipulations with the transition matrix elements, we arrive at the following
approximate expression for the transition amplitude

a0→n(b) = 〈χn | exp(iωn0z/vc) exp(−iG) | χ0〉
− vc

2c2
〈χn | exp(iωn0z/vc) exp(−iG)p̂z | χ0〉

− vc

2c2
〈χn | p̂z exp(iωn0z/vc) exp(−iG) | χ0〉

+ i
vc

2c2
〈χn | exp(iωn0z/vc) exp(−iG) F | χ0〉
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=
(
1 − ωn0

2c2
)
〈χn | exp(iωn0z/vc) exp(−iG) | χ0〉

−vc

c2
〈χn | exp(iωn0z/vc) exp(−iG)p̂z | χ0〉

+ i
vc

2c2
〈χn | exp(iωn0z/vc) exp(−iG) F | χ0〉. (6.76)

In the above expression G = G(r⊥ −b) is defined in (6.54) (with c → vc) and
the 2 × 2 matrix F = F (r⊥ − b) is given by

F = σx
∂G

∂y
− σy

∂G

∂x
. (6.77)

Before we continue with further simplifications of the transition amplitude
(6.76) it is of interest to attempt to trace the origin of the different terms in
this amplitude by relating them to the interaction terms of the Schrödinger
equation

i
∂φ(t)
∂t

=
(

p̂2

2
− ZI

r
− Φ+

1
2c

(A · p̂ + p̂ · A) +
1

2c2
A2 − µ · H

)
φ(t). (6.78)

This equation describes a nonrelativistic electron which moves in the field of
the ionic nucleus with a charge ZI and is subjected in the collision to the field
of the incident atom. The electromagnetic field of the atom is described by
the scalar and vector potentials Φ and A given e.g. by Eqs. (6.27). The last
term on the right hand side of (6.78) represents the interaction between the
spin magnetic moment of the electron, µ = −σ/2c, and the magnetic field

H = (Hx,Hy,Hz) = δ(vct− z)
(
∂G

∂x
,
∂G

∂y
, 0
)
, (6.79)

which is generated by the atom moving with the speed of light in the rest
frame of the ion.

Comparing the structure of (6.76) with that of (6.78) we see that the
term in the fourth line of the amplitude (6.76) obviously describes transitions
caused by the interaction between the spin of a nonrelativistic electron and the
magnetic field of the moving atom. It is also plausible to assume that the two
terms in the second and third lines of (6.76) are related to those interaction
terms of the Schrödinger equation which are proportional to A · p̂ and p̂ ·A,
respectively. Then, the remaining part of the amplitude (6.76) (the first line
of (6.76)) should have its origin in the interaction terms −Φ and A2/2c2 of
the Schrödinger equation.

Similarly to the amplitude (6.61), the light-cone amplitude for a nonrel-
ativistic electron is expected to be a good approximation also for collisions
with velocities v < c provided the effective collision time b

vγ is much less than
the typical electron transition time 1/ωn0. Then the amplitude (6.76) can be
used if the replacement vc → v is done in the expressions for the minimum
momentum transfer and the function G.
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Besides, similarly to the amplitude (6.61), the amplitude (6.76) is also
expected to yield infinite cross sections for dipole allowed transitions occurring
in collisions with atomic systems which are not electrically neutral.

It is known (see e.g. [142–144]) that a nonzero value of the minimum
momentum transfer is responsible for the angular asymmetry in the calculated
spectra of electrons emitted in ion–atom collisions. However, in high-energy
collisions this asymmetry does not have a substantial impact on the total
cross section for the ionization/loss of an electron which was initially not very
tightly bound (ZI � v). Therefore, when evaluating the total loss cross section
in collisions with neutral atoms one can set qmin = 0 in (6.76).

Further, as a rough estimate one has 1
c p̂zχ0 ∼ ZI

c χ0. Therefore, one can
drop in the amplitude (6.76) the terms containing the electron momentum
operator. Moreover, since the spin-flip transitions contribute very little to the
loss process, the last term in (6.76) can also be omitted.

Finally, as a result of all these simplifications, we obtain

a0→n(b) = 〈ϕn | exp(−iG(r⊥ − b)) | ϕ0〉

=

〈
ϕn

∣∣∣∣∣∣exp

⎛
⎝−2iZA

v

∑
j

AjK0 (Mj | r⊥ − b |)
⎞
⎠
∣∣∣∣∣∣ϕ0

〉
, (6.80)

where ϕ0 and ϕn are the space parts of the initial and final states of the
electron. It is worth to point to the similarity between the above formula and
the corresponding results for the transition amplitude which were obtained in
Chap. 3 by using the (nonrelativistic) sudden approximation.

6.5 Collisions at Relatively Low Energies:
Three-Body Distorted-Wave Models

In the previous section we considered the projectile-electron excitation and
loss in collisions at extreme relativistic energies. Because of the effectively
short-range force, which a neutral atom exerts on the electron of the pro-
jectile, the electron–atom interaction is restricted to relatively small impact
parameters and this holds true at any impact energy. Therefore, provided the
atom has a sufficiently high atomic number, the atomic field may be too strong
leading to deviations from the first order predictions which can survive even
in the limit γ → ∞.

In general the deviations from the first order predictions increase when
the impact energy decreases and now we shall consider the region of the
collision parameters where the first order approximation, being applied to
calculate cross sections for the projectile-electron excitation and loss, is ex-
pected to fail especially strongly. This region is represented by collisions of
very highly charged ions with heavy atoms at relatively low impact energies
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0.1-1 GeV u−1 14. The electron excitation of and loss from very heavy ions
occurring in collisions with many-electron atoms at these impact energies are
the topic of this section.

In order to treat these processes we shall use, following [145–147], a simpli-
fied picture of the collision which consists of the following main ‘ingredients’.
Firstly, the electron of the ion is regarded as the only particle having the dy-
namical degrees of freedom which are described by a wave equation. Secondly,
the nuclei of the ion and the atom are treated as classical particles which move
along given (straight-line) trajectories and are just the sources of the external
electromagnetic field acting on the electron of the ion. Thirdly, as was already
discussed in Sect. 5.11, in the range of the relatively low impact energies the
influence of the electrons of the atom on the excitation and loss processes is
of minor importance and, therefore, the presence of the atomic electrons can
be ignored. Thus, within the simplified picture the process of the electron
excitation/loss effectively reduces to a three-body problem of the motion of
the electron in the electromagnetic fields generated by two point-like classical
particles.

The basic assumption underlying our approach to this problem is that the
motion of the electron in the collision is determined mainly by its interac-
tion with the field of the ionic nucleus. This interaction, therefore, should be
treated as accurate as possible whereas the interaction of the electron with the
nucleus of the atom is supposed to be less important for the electron motion
and thus can be taken into account in an approximate way. For calculations of
the total loss cross section such an ‘asymmetric’ approach seems be certainly
reasonable as long as the charge ZI of the ionic nucleus noticeably exceeds the
charge ZA of the atomic nucleus and the collision velocity is not too low.

It is convenient to treat the electron loss process using a reference frame KI

in which the nucleus of the ion is at rest. We take the position of the nucleus
as the origin and assume that in the frame KI the nucleus of the atom moves
along a straight-line classical trajectory R(t) = b+vt, where b = (bx, by, 0) is
the impact parameter, v = (0, 0, v) is the collision velocity and t is the time.

The Dirac equation for the electron of the ion reads

i
∂Ψ

∂t
=
(
Ĥ0 + Ŵ (t)

)
Ψ. (6.81)

Here Ĥ0 denotes the electronic Hamiltonian for the undistorted ion and Ŵ (t)
is the interaction between the electron of the ion and the nucleus of the atom
given by (5.85).

The semi-classical transition amplitude can be written as

afi(b) = −i
∫ +∞

−∞
dt

∫
d3x

(
ρfi(x, t)Φ(x, t) − 1

c
jfi(x, t) · A(x, t)

)
. (6.82)

14 One should note that the main bulk of the existing experimental data on the loss
from highly charged ions is related exactly to this region.
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Here ρfi(x, t) and jfi(x, t) are the transition charge and current densities, re-
spectively, created by the electron of the ion at a space point x at a time t,
and Φ(x, t) and A(x, t) are the scalar and vector potentials of the field of the
nucleus of the atom. In what follows we shall again work with the transition
amplitude in the momentum space, Sfi(q⊥), which is related to the amplitude
(6.82) by the two-dimensional Fourier transformation (3.13).

6.5.1 Symmetric Eikonal Approximation

In an attempt to improve the description of the interaction between the elec-
tron of the ion and the nucleus of the atom we first approximate the electron
states within the symmetric eikonal approach (SEA). According to the SEA,
the interaction Ŵ between the electron and the atomic nucleus is taken using
the Lienard–Wiechert potentials (5.86) and the initial and final states of the
electron are given by

χeik
i (t) = ψi(r) exp(−iεit) × (vs+ v · s)−iνt

χeik
f (t) = ψf(r) exp(−iεft) × (vs− v · s)iνt (6.83)

with νt = ZA/v. The states χeik
i and χeik

f take fully into account the inter-
action between the electron and the nucleus of the ion whereas the effect of
the interaction with the nucleus of the atom is treated in an approximate way
by introducing the eikonal distortion factors. Correspondingly, the transition
charge and current densities of the electron in the SEA read

ρsea
fi (x, t) = (vs⊥)−2iνt ψ†

f (x)ψi(x) exp(i(εf − εi)t)

jseafi (x, t) = (vs⊥)−2iνt ψ†
f (x) cαψi(x) exp(i(εf − εi)t), (6.84)

where s⊥ =
√
s2x + s2y.

According to the spirit of the SEA, one starts with the Dirac equation
with the electromagnetic potentials Φ and A taken in the Lienard–Wiechert
form (5.86) and chooses the distortion factors (vs ± v · s)∓iνt in such a way
as to eliminate from the Dirac equation the term with the scalar potential Φ
(see e.g. [145]). This effectively corresponds to a gauge transformation from
the field potentials in the Lienard–Wichert form to the field potentials given
by (5.93). Therefore, when building the eikonal transition amplitude we shall
couple the charge and current densities (6.84) with the potentials (5.93) that
yields

asea
fi (b) =

icZA

v

∫ +∞

−∞
dt exp(i(εf − εi)t)

×
∫

d3x(vs⊥)−2iνtψ†
f (x)

(
sxαx + syαy

s+ sz
+
αz

γ

)
ψi(x). (6.85)
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The above expression and the relation (3.13) enable one, after some manipu-
lations, to obtain the symmetric eikonal amplitude in the momentum space

Ssea
fi (q⊥) =

2iZAc

v2

1
q′2qz

(
q′

2

)2iνt

Γ 2(1 − iνt)

×
(

(1 − iνt)2F1

(
1 − iνt, iνt; 2;Q2/q′2

)
×〈ψf | exp(iq · r)(qxαx + qyαy) | ψi〉
+ 2F1

(
1 − iνt, iνt; 1;Q2/q′2

)
× 1
γ2

〈ψf | exp(iq · r)qzαz | ψi〉
)
, (6.86)

where Γ and 2F1 are the gamma and hypergeometric functions, respectively
(see e.g. [108]).

Modified Eikonal Amplitude

The symmetric eikonal approximation is known to yield unphysical results for
the electron capture occurring in relativistic collisions (see for discussions e.g.
[3, 4]). It has been pointed out [145] that the difficulties with the application
of the SEA approximation to treat the capture are mainly caused by the
problem of gauge dependence since in the case of capture the initial and final
undistorted states of the electron in the symmetric eikonal approximation are
described by wavefunctions belonging to different Hamiltonians.

Nevertheless, certain shortcomings remain in the SEA even if the initial
and final undistorted states of the electron belong to the same Hamiltonian.
Indeed, the recent application of the amplitude (6.86) to evaluate cross sec-
tions for the collision-induced excitation [145] has unveiled that the SEA may
face difficulties in treating bound–bound electron transitions involving spin-
flip even if exact eigenstates of the Hamiltonian Ĥ0 are employed in the cal-
culation. After the analysis of these difficulties it was shown in [145] that the
following ‘modified’ SEA amplitude,

Smsea
fi (q⊥) =

2iZAc

v2

1
q′2qz

(
q′

2

)2iνt

×(1 − iνt)Γ 2(1 − iνt)2F1

(
1 − iνt, iνt; 2;Q2/q′2

)
×
〈
ψf | exp(iq · r)

(
qxαx + qyαy +

qz

γ2
αz

)
| ψi

〉
, (6.87)

does not have problems with the description of spin-flip transitions and sug-
gested that, on overall, the amplitude (6.87) may yield substantially better
results for excitation cross sections. Below this amplitude will be applied to
calculate the total electron loss cross sections.
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6.5.2 Continuum-Distorted-Wave-Eikonal-Initial-State
Approximation

In order to reflect the influence of the nucleus of the atom on the electron
of the ion, within the symmetric eikonal approximation the initial and final
electron states are distorted similarly. Besides, the final distortion factor is the
same for all electron continuum states and does not depend on the electron
velocity with respect to the nucleus of the atom. From the physical grounds
this may be not very reasonable, especially, if one tries to calculate differential
loss cross sections. Therefore, in an attempt to obtain a better description
of the continuum, we now approximate the initial and final states in (6.82)
in the spirit of the continuum-distorted-wave-eikonal-initial-state (CDW-EIS)
approach by

χeik
i (t) = ψi(r) exp(−iεit) × (vs+ v · s)−iνt

χcdw
f (t) = ψf(r) exp(−iεft)

×Γ (1 + iηt) exp(πηt/2) 1F1 (−iηt, 1,−i(ps+ p · s)) . (6.88)

Here, ηt = ZA/v
′
e where v′e is the electron velocity in the rest frame of the

nucleus of the atom, p is the kinetic momentum of the electron in the rest
frame of the atomic nucleus and 1F1 is the confluent hypergeometric function
(see e.g. [108]).

The electron transition charge and current densities entering the amplitude
(6.82) are now constructed with the states (6.88) and are given by

ρcdw-eis
fi (x, t) = G(νt, ηt,v,p, s)ψ

†
f (x)ψi(x) exp(i(εf − εi)t)

jcdw-eis
fi (x, t) = G(νt, ηt,v,p)ψ†

f (x) cαψi(x) exp(i(εf − εi)t), (6.89)

where

G(νt, ηt,v,p, s)
= Γ (1 − iηt) exp(πηt/2) 1F1 (iηt, 1, i(ps+ p · s)) (vs+ v · s)−iνt . (6.90)

Because of the same reason as in the case with the SEA transition amplitude,
it is natural to combine in the CDW-EIS amplitude the charge and current
densities (6.90) with the potentials (5.93) to obtain

acdw−eik
fi (b) =

icZA

v

∫ +∞

−∞
dt exp(i(εf − εi)t)

×
∫

d3xG(νt, ηt,v,p, s)ψ
†
f (x)

(
sxαx + syαy

s+ sz
+
αz

γ

)
ψi(x).

(6.91)

Taking into account (6.91) and (3.13) one can show that the CDW-EIS tran-
sition amplitude, written in the momentum space, is given by



6.5 Collisions at Relatively Low Energies 173

Scdw-eis
fi (q⊥) =

2iZAc

γv

(
A

C

)iνt
(
A+B

A

)−iηt

〈ψf |Jxαx + Jyαy + Jzαz|ψi〉.
(6.92)

Here,

Jx(y) =
Γ (−iνt)

C

(
Ωx(y) 2F1 (iνt, iηt, 1, Z) +Ω′

x(y) 2F1 (iνt + 1, iηt + 1, 2, Z)
)
,

Jz =
Γ (1 − iνt)

Aγv
2F1 (iνt, iηt, 1, Z) , (6.93)

A = q′2, B = −2iq′ · p, C = −2iq′zv, D = 2iv(pz − p), Z =
BC −AD

C(A+B)
(6.94)

and

Ωx(y) = (νt + ηt)
∂ ln(A)
∂qx(y)

− ηt
∂ ln(A+B)

∂qx(y)
+ ηt

Z

1 − Z

∂ ln(Z)
∂qx(y)

,

Ω′
x(y) = iηtZ

(
Ωx(y) +

νt

1 − Z

∂ ln(Z)
∂qx(y)

)
. (6.95)

6.5.3 The Relationship with the First Order Approximation
and with Other Distorted-Wave Models

Using the known properties of the gamma and hypergeometric functions, it
is not difficult to show that in the weak perturbation limit, when νt � 1 and
ηt � 1, all distorted-wave amplitudes (6.86), (6.87) and (6.92) reduce to the
first order amplitude in the form given by (5.88). If, in addition, the initial
and final states of the electron in the undistorted ion are described by the
Coulomb–Dirac states, the amplitude (5.88) and other forms of the first order
amplitude (for instance, (5.83), (5.89)–(5.90) become fully equivalent and,
thus, in the limit νt � 1 and ηt � 1 the distorted-wave amplitudes (6.86),
(6.87) and (6.92) reduce also to all other forms of the first order amplitudes.

The amplitudes (6.86) and (6.92) can be derived also by using the ‘stan-
dard’ approach in which the distorted-wave transition amplitude is given (in
the prior form) by

afi(b) = −i
∫ +∞

−∞
dt〈χf(t) |

(
Ĥ0 + Ŵ (t) − i∂/∂t

)
χi(t)〉, (6.96)

where χi(t) and χf(t) are the corresponding distorted states.
The CDW-EIS and SEA approximations were initially introduced to study

the atomic ionization and excitation and the electron capture from atoms
which occur in nonrelativistic collisions with point-like ions [33–36] (see also
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[37] where a historic overview of the nonrelativistic distorted-wave models
is presented). Attempts to extend and apply these approximations to the
domain of relativistic collisions (see e.g. [148–153]) have been the subject of
much controversy (see discussions in [3, 4, 160] and referenced therein).

To our knowledge, the SEA model employed in [147] had not been used
previously to treat relativistic collisions in which electronic transitions involve
continuum states. A very detailed discussion of the CDW-EIS approximation
in the problem of the K-shell ionization of intermediately heavy atoms in
relativistic collisions with highly charged ions can be found in [4]. There are
two main differences between the CDW-EIS model for the ionization consid-
ered in [4] and the present CDW-EIS model for the electron loss which was
employed in [147] and is used here.

First, in order to treat the initial and final undistorted electron states
within the present CDW-EIS model one does not resort to the semi-relativistic
Darwin and Sommerfeld–Maue–Furry approximations. Instead, these states
are described by using the Coulomb–Dirac wave functions. The importance
of such a fully relativistic description in the case of very heavy ions will be
shown below.

Second, the present model does not contain the distortion terms containing
the Dirac matrices αx, αy and αz. Such terms would arise if the α-dependent
parts of the Furry wave function and of its eikonal asymptotics would be
kept in the distortion factors. In the present CDW-EIS model the distortions
are also introduced with the help of the Furry wave function and its eikonal
asymptotics, but their αj-dependent parts were omitted. One should note,
however, that the analysis of the distortion factors undertaken in [4] suggests
that the inclusion of the matrix distortion terms does not have a noticeable
impact on the calculated cross sections.

6.5.4 Comparison of Relativistic and Semi-Relativistic
Electron Descriptions

In order to get an idea about the importance of the relativistic electron de-
scription, we have calculated the electron loss from U91+(1s) by proton im-
pact at the impact energies ranging between 0.1 and 1 GeV u−1. In these
calculations the states ψi and ψf were described (1) by using the relativistic
(Coulomb–Dirac) wave functions, (2) by employing the semi-relativistic ap-
proach in which the states ψi and ψf are approximated by the Darwin and
Furry wave functions, respectively, and (3) by applying the purely nonrel-
ativistic description of these states when the loss process is considered by
describing the electron transitions using the Schrödinger–Pauli equation (see
Fig. 6.7).

It is seen in Fig. 6.7 that the application of both nonrelativistic and
semi-relativistic approximations to the uranium ion leads to a considerable
overestimation of the loss cross section. The semi-relativistic results are about
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Fig. 6.7. The total cross sections for the electron loss from U 91+(1s) ions by
proton impact given as a function of the impact energy. Solid, dash and dot curves
display results of the first order calculations which employ the relativistic, the semi-
relativistic and the nonrelativistic wave functions, respectively, to describe the initial
and final states of the undistorted ion. From [147].

Fig. 6.8. The total cross sections for the electron loss from U 91+(1s) ions in colli-
sions with atoms of gold (ZA = 79) given as a function of the impact energy. Dash
(solid) and dot (dash-dot) curves display results of the first order (eikonal) calcula-
tions which employ the relativistic and semi-relativistic wave functions, respectively,
to describe the initial and final states of the undistorted ion. From [146].

a factor 1.5 larger compared to those obtained by employing the Dirac states
and this ratio remains basically a constant for the whole range of impact en-
ergies considered in the figure. Besides, for this range of impact energies the
semi-relativistic description in fact does not represent an improvement over
the purely nonrelativistic electron treatment. A similar relationship between
results obtained with the relativistic and semi-relativistic descriptions remains
also when the distorted-wave approaches are applied (see Fig. 6.8).
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Fig. 6.9. Total cross section for the electron loss from U91+(1s) in collisions with
atoms of gold given as a function of the collision energy. Dash and dot curves dis-
play results of the first order calculations without and with taking into account the
screening effect of the atomic electrons, respectively. For more information, results of
the calculation with the amplitudes (6.87) (dash dot curve) and (6.90) (solid curve)
are also shown. From [147].

6.5.5 Higher Orders versus Screening

In collisions with heavy atoms the first order approximation for the electron
loss becomes less inaccurate when the impact energy increases. However, as
follows from Fig. 6.9, even at 1 GeV u−1 the first order approximation, com-
pared to results of more elaborate treatments, is still likely to overestimate the
electron loss cross section in collisions with atoms of gold by a factor of about
1.35–1.4. The magnitude of this factor as well as that of the difference between
the loss cross sections calculated with the relativistic and semi-relativistic elec-
tron descriptions are to be compared with the screening effect of the atomic
electrons which does not exceed 5%. Besides, because of a very large number
of electrons in heavy atoms their antiscreening effect always remains weak.
Therefore, one can expect that for a proper description of the electron loss
from such very heavy ions, like hydrogen- and helium-like uranium, occurring
in collisions with heavy atoms at impact energies below 1 GeV u−1 it is more
important to treat with a necessary care the interaction of the electron of
the ion with the bare atomic nucleus and to address the relativistic effects
in the motion of this electron than to account for the presence of the atomic
electrons.

6.6 The High-Energy Limit
of the Distorted-Wave Models

In the previous section we have considered two distorted-wave models: the
symmetric eikonal and the continuum-distorted-wave-eikonal-initial-state ap-
proximations. In particular, we have seen that at the relatively low impact
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energies these approximations result in cross section values which strongly
differ from predictions of the first order calculations. In Chap. 8 we will also
see that the application of these distorted-wave models yields a much better
description of experimentally measured cross sections.

Here we shall briefly discuss the high-energy limit (γ � 1) of these
distorted-wave approximations. This point is of great interest from the purely
theoretical point of view. Besides, its discussion may be also quite useful hav-
ing in mind possible applications of these models to study various electromag-
netic processes occurring at extreme relativistic energies which are becoming
experimentally accessible with the advent of Relativistic Super-Colliders.

At very high impact energies (γ � 1) the difference between the continuum-
distorted-wave-eikonal-initial-state and symmetric eikonal models vanishes.
Therefore, it is quite sufficient to consider the high-energy limit of the sym-
metric eikonal model.

At the collision energies of interest it is possible (and convenient) to start
with the electromagnetic potentials in the form which they attain at γ → ∞,
i.e. with

Φ(r, t) = 2ZAδ (ct− z)G (| r⊥ − b |) ,
Az(r, t) = Φ(r, t),
Ax(r, t) = Ay(r, t) = 0 (6.97)

(compare with (6.25)). Indeed, at extreme relativistic impact velocities the
difference between the electromagnetic potentials and their light-cone approx-
imation is proportional to 1/γ2 (see [154,155]) and, thus, becomes quite small
already at γ � 10.

Within the symmetric eikonal approximation the standard representation
of the transition amplitude is given by

asea
fi (b) = −i

∫ +∞

−∞
dt
〈
Ψf

∣∣∣∣
(
Ĥ − i

∂

∂t

)∣∣∣∣Ψi

〉
. (6.98)

In (6.98) Ĥ is the total Hamiltonian of the electron, which moves in the field
of the nucleus of the ion and is also affected by the field of the moving atom.
Further, the initial, Ψi, and final, Ψi, states of the electron are approximated by

Ψi(r, t) = ψi(r) exp(−iεit) exp
(

i
∫ t

−∞
dt′Φ(r, t′)

)

= ψi(r) exp(−iεit) exp
(

i
2ZA

c
θ(ct− z)G (| r⊥ − b |)

)

Ψf(r, t) = ψf(r) exp(−iεft) exp
(

i
∫ t

+∞
dt′Φ(r, t′)

)
,

= ψf(r) exp(−iεft) exp
(

i
2ZA

c
(θ(ct− z) − 1)G (| r⊥ − b |)

)
(6.99)
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where ψi and ψf are the initial and final electronic states of the undistorted
ion with the energies εi and εf , respectively.

Inserting (6.99) into (6.98) we obtain

asea
fi (b) = −2iZA

∫ +∞

−∞
dt
∫

d3r exp(iωfit) θ(ct− z)ψ†
f (r)ψi(r)

×
(
∂G (| r⊥ − b |)

∂x
αx +

∂G (| r⊥ − b |)
∂y

αy

)

× exp
(

i
2ZA

c
G (| r⊥ − b |)

)
, (6.100)

where ωfi = εf − εi. As before, we convert the symmetric eikonal amplitude
into the momentum space which gives

Ssea
fi (q⊥) =

1
2π

∫
d2b asea

fi (b) exp(iq⊥ · b)

=
1
2π

〈ψf |exp(iq · r)α⊥|ψi〉 · J⊥(q), (6.101)

where q = (q⊥, ωfi/c), α⊥ = (αx, αy) and the two-dimensional vector J⊥ =
(Jx, Jy) is given by

J⊥(q) =
∫

d3s exp(−iq · s) θ(−sz)∇s⊥

[
exp

(
i
2ZA

c
G (s⊥)

)
− 1
]
. (6.102)

In (6.102) the integration runs over the three-dimensional space (s = (s⊥, sz)
and s⊥ · v = 0) and ∇s⊥ denotes the two-dimensional gradient operator.

The integration over sz in (6.102) is performed to yield the factor ic/ωfi.15

Further, assuming that limξ→∞G(ξ) = 0 the integral over s⊥, after the inte-
gration by parts, can be transformed according to

α⊥ ·
∫

d2s⊥ exp(−iq⊥ · s⊥) ∇s⊥

[
exp

(
i
2ZA

c
G (s⊥)

)
− 1
]

= iα⊥ · q⊥
∫

d2s⊥ exp(−iq⊥ · s⊥) exp
(

i
2ZA

c
G (s⊥)

)

≡ iα⊥ · q⊥
∫

d2s⊥ exp(−iq⊥ · s⊥)
[
exp

(
i
2ZA

c
G (s⊥)

)
− 1
]
. (6.103)

Taking all this into account we obtain that

Ssea
fi (q⊥) =

1
2π

∫
d2s⊥ exp(−iq⊥ · s⊥)

[
exp

(
i
2ZA

c
G (s⊥)

)
− 1
]

× c

ωfi
〈ψf |exp(iq · r)α⊥q⊥|ψi〉 . (6.104)

15 We suppose that ωfi 	= 0.
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According to the continuity equation (see (5.56)) the last line in (6.104) is
equal to 〈ψf |exp(iq · r) (1 − αz)|ψi〉 and we finally arrive at the following sym-
metric eikonal amplitude:

Ssea
fi (q⊥) =

1
2π

∫
d2s⊥ exp(−iq⊥ · s⊥)

[
exp

(
i
2ZA

c
G (s⊥)

)
− 1
]

×〈ψf |exp(iq · r) (1 − αz)|ψi〉 . (6.105)

By comparing this expression with (6.62)–(6.63) we see that the amplitude
(6.105) coincides with the light-cone amplitude. Thus, in the limit of very
high impact energies the symmetric eikonal model yields the same results
as the ‘exact’ light-cone transition amplitude. The same can also be said about
the continuum-distorted-wave-eikonal-initial-state model because at γ � 1
the latter becomes essentially identical to the symmetric eikonal model.

6.7 Nonperturbative Approaches

6.7.1 Classical Description

As was already mentioned in Sect. 3.6, in the case of nonrelativistic ion–atom
collisions the classical-trajectory Monte Carlo (CTMC) approach can, un-
der certain conditions, yield results which are in reasonable agreement with
experimental.

The CTMC approach can also be applied to relativistic collisions in which,
for instance, a heavy hydrogen-like ion collides with a high-energy nucleus
[156]. In such collisions the nuclei move along straight-line trajectories and
their fields can be regarded as external. Therefore, a relativistic version of the
CTMC approach appears after the implementation of the necessary changes
which account for the relativistic electron dynamics and the relativistic char-
acter of the external fields acting on the electron.

If both colliding particles carry initially active electrons, the electromag-
netic field transmitting the interactions in general can no longer be considered
as an external field. In such a case, in addition to the equations for the elec-
trons and nuclei, a classical treatment of relativistic collisions should also
include the description of the degrees of freedom of the electromagnetic field.

We are not aware about any classical calculation performed for the
projectile-electron transitions occurring in relativistic collisions with atoms.

6.7.2 Collisions at Relatively Low Energies: Nonperturbative
Quantum Descriptions

When the projectile-electron excitation and loss may be reduced to a three-
body problem of the motion of a single electron in the combined fields of two
nuclei, these processes can be described by considering the Dirac equation
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i
∂Ψ(r, t)

∂t
=
(
Ĥ0 +W (t)

)
Ψ(r, t). (6.106)

In this equation

Ĥ0 = cα · p̂ − ZA

r
+ βc2 (6.107)

is the electronic Hamiltonian of the undistorted initial hydrogen-like ion which
has a nucleus with a charge ZA, α = (αx, αy, αz) and β are the Dirac matrices,
and r are the coordinates of the electron with respect to the nucleus ZA, which
is taken as the origin. Further,

W (t) = −γZB

s

(
1 − v

c
αz

)
(6.108)

is the interaction between the electron and the incident nucleus. This nucleus
has a charge ZB and moves in the rest frame of the nucleus ZA along a classical
straight-line trajectory R(t) = b + vt, where b is the impact parameter and
v the collision velocity. In (6.108) s represents the electron coordinates with
respect to the nucleus ZB (given in the rest frame of this nucleus) and is
defined similarly as in (5.87). In (6.108) the scalar and vector potentials of
the field generated by the nucleus ZB are chosen to be in the Lienard–Wiechert
form (see (5.86)).

The (6.106) can be solved by using two basically nonperturbative quantum
approaches, (1) coupled channel methods and (2) numerical integrations of
this equation on a lattice.

Coupled Channel Methods

Coupled channel methods have been used in a number of articles devoted to
the study of the ionization, excitation, charge exchange and pair production
occurring in relativistic ion–ion collisions (see e.g. [157]– [162]).

There are two main types of coupled channel expansions which have been
used in the literature to treat relativistic collisions between a hydrogen-like
ion and a bare nucleus. They are considered in some detail in [3] and [5] and
here we restrict ourselves just to a very brief discussion.

One type of the coupled channel calculations involves the expansion of the
time-dependent wave function Ψ(r, t) using eigenstates of both (ZA + e−)
and (ZB + e−) hydrogen-like ions. In addition to the description of the ex-
citation and loss/ionization, such an expansion enables one also to address
the problem of the charge exchange, in which the electron is finally captured
by the nucleus ZB forming a bound (or low-lying continuum) state of the ion
(ZB + e−).

Within the other type, the expansion is restricted to using only eigenstates
ϕj(r, t) of the initial ion (ZA + e−):

Ψ(r, t) =
∑

j

aj(t)ϕj(r, t). (6.109)
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Concerning the choice between these two types in our case, one has to keep
in mind that we have arrived at the three-body problem by simplifying the
consideration of the projectile-electron transitions occurring in collisions with
neutral atoms. The capture of an electron by a neutral atom is unlikely.16

Therefore, in our case the expansion of the type of (6.109) is relevant.
Inserting the expansion (6.109) into the Dirac equation (6.106) and as-

suming that i∂tϕj(r, t) = Ĥ0ϕj(r, t) we obtain

i
daj

dt
=
∑

k

ak 〈ϕj |W |ϕk〉 ,

aj(t → −∞) = δj0. (6.110)

Provided all the terms are kept in the expansion (6.109), (6.110) are equiv-
alent to the Dirac equation. In practice, however, the expansion (6.109) of
course must be truncated which limits the accuracy of coupled channel cal-
culations. Besides, in such calculations there also exists the problem of how
to incorporate continuum states into the consideration. These points are dis-
cussed in some detail in [3,5] where the interested reader can also find further
references.

In the case of applications of coupled channel approaches it is in general
not very easy to estimate the accuracy of calculated results. The same can also
be said about results which are obtained when the distorted wave approaches
are used. The main ideas lying behind the distorted wave and coupled channel
approaches are quite different and these approaches also face quite different
difficulties. Therefore, it is of interest to compare results of coupled chan-
nel calculations with those obtained when the distorted wave approaches are
employed.

To this end we show in Table 6.1 results of various calculations for the
excitation of U91+(1s1/2(+1/2)) by 1 GeVu−1 U92+ nuclei. In the first column
the excited states are displayed. The second column contains results of the first
Born calculation performed with the amplitude (5.88). The next two column
present results obtained with the eikonal amplitudes (6.86) and (6.87). The
last two columns show results of the coupled channel calculations of [161] (see
also Table 8.3 in [3]).

The latter calculations were performed using the expansions into the un-
perturbed or boundary corrected states and in the table the correspond-
ing results are referred to as CC-1 and CC-2 results, respectively.17 The
16 A direct electron capture leading to the formation of a negative ion is either

impossible or has very small cross section. The latter can also be said about the
more complicated process, in which the removal of an electron from the atom is
accompanied by the consequent capture of the electron from the ion.

17 The authors of [161] actually used a two-center expansion. However, at a collision
energy of 1 GeV u−1 the capture is already much weaker that the excitation and,
therefore, the expansion states centered on the incident nucleus are not expected
to substantially influence the excitation cross sections.
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Table 6.1. Theoretical cross sections (in b) for the excitation of U91+(1s1/2(+1/2))
by 1 GeV u−1 U92+ ions. The first column: final states of U91+. The second column:
first Born results. The third and fourth columns: results of the SEA and the mod-
ified SEA approximations, respectively. The fifth and sixth columns: results of the
coupled-channel calculations performed in [161] with the undistorted and boundary
corrected basis sets, respectively. The last line contains the sum of the corresponding
excitation cross sections

Final state 1B SEA SEA-mod CC1 CC2

2s1/2(+1/2) 2, 133 1, 646 1, 682 4, 950 1, 660
2s1/2(−1/2) 64.3 105 58.2 394 114
2p1/2(+1/2) 427 583 216 3, 120 648
2p1/2(−1/2) 5, 682 3, 827 3, 748 5, 830 4, 710
2p3/2(+3/2) 6, 152 4, 002 3, 979 5, 510 4600
2p3/2(+1/2) 951 569 437 7540 1, 480
2p3/2(−1/2) 1, 363 864 883 1, 160 1, 010
2p3/2(−3/2) 117 143 94.4 106 99.4
2s+2p1/2+2p3/2 16, 889 11, 739 11, 097 28, 610 13, 821

undistorted and boundary corrected expansion states differ by a phase-
factor exp(−iνB ln(R′ − vt′)), ϕBC

j = exp(−iνB ln(R′ − vt′))ϕj , where R′ =√
b2 + v2t′2 is the asymptotic distance (at t → −∞) between the electron

and the nucleus ZB as it is viewed in the rest frame of this nucleus and
t′ = γ(t − vz/c2) is the electron time measured in the rest frame of the nu-
cleus ZB (see [3]).

The introduction of the distortion factor has an important advantage en-
abling one to replace the Lienard–Wiechert potentials of the field of the inci-
dent ion in the Dirac equation by the scalar and vector potentials which fall
off more rapidly with the distance s. It is obvious that such an introduction
can be also regarded as a gauge transformation.

The table shows that there exists a large discrepancy between the results
of the coupled channel calculations. This suggests that the calculations with
the restricted basis sets, performed in [161], are strongly gauge dependent.
Comparing the cross sections yielded by the coupled channel and the first
Born approximations we see that, with respect to the first Born results, the
CC-1 (CC-2) on overall gives substantially larger (lower) values. Taking into
account that, compared to the first Born predictions, the inclusion of the
higher order effects normally leads to a decrease in the values of calculated
cross sections, the CC-1 results seem to be very questionable and we may
safely rule out these results from the further comparison.

The difference between the two sets of the eikonal results becomes substan-
tial only for electronic transitions which are characterized by relatively small
cross sections. On overall, the difference turns out to be just about several per
cent. On average, the eikonal results also differ by about 20% from the CC-2
results. Compared to the first Born results, the eikonal cross sections are on
overall by about 45% lower.
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Numerical Integration on a Lattice

Processes occurring with an electron in relativistic collisions between a bare
nucleus and an hydrogen-like ion have been also considered by integrating
numerically the Dirac equation on a lattice. There are various grid methods
and such integrations have been performed for the Dirac equation written
in the configuration space as well as in the momentum space (see, for in-
stance, [163–167]).

Numerical Integration on a Lattice in Configuration Space

In a numerical integration of the Dirac equation on a lattice in the config-
uration space one starts with replacing the whole space by a finite volume,
to which the processes of interest are supposed to be mainly restricted, and
introducing in this volume an equidistant grid.

Within the finite-element method one defines basis functions with re-
spect to each coordinate on a grid. For instance, in the simplest case of
one-dimensional Cartesian space the interval of interest [xmin ≤ x ≤ xmax]
is divided into subintervals (xj , xj+1) of length a (j = 1, . . . , Nx with
Nx = (xmax − xmin)/a). The basis functions on this interval may be chosen
according to

fj(x) =
x− xj−1

a
, if xj−1 ≤ x ≤ xj ,

fj(x) =
xj+1 − x

a
, if xj ≤ x ≤ xj+1,

fj(x) = 0, for all other x. (6.111)

This definition, in particular, implies that the functions fj(x) satisfy the con-
dition

fj′(xj) = δjj′ . (6.112)

Note that (6.111) represents the simplest choice which is not necessarily the
best one and other definitions for the basic functions, fulfilling the condition
(6.112), are possible (see e.g. [167]).

In the case of three-dimensional Cartesian space (x, y, z) the corresponding
basis functions are written as products fj(x)fk(y)fl(z) (j ≤ Nx, k ≤ Ny,
l ≤ Nz). The time dependent components Ψα(t) (α = 1, 2, 3, 4) of the four-
spinor Ψ(t), which satisfies the Dirac equation (6.106), are expanded in terms
of the basis functions

Ψα(t) =
∑
j,k,l

Bα
jkl(t) fj(x)fk(y)fl(z), (6.113)

where Bα
jkl(t) are unknown time-dependent coefficients to be determined. In-

serting this expansion into (6.106), and projecting onto the basis functions
one obtains for these coefficients the following equation: [167]
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iM
dB
dt

= H(t)B(t). (6.114)

Here,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1
111

B2
111

B3
111

B2
111

.

.

.
B4

Nx,Ny,Nz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.115)

and

M = Mx ⊗ My ⊗ Mz,

H = c P x ⊗ My ⊗ Mz ⊗ αx + cMx ⊗ P y ⊗ Mz ⊗ αy

+cMx ⊗ My ⊗ P z ⊗ αz +mc2 Mx ⊗ My ⊗ Mz ⊗ β

+(Vt + Vp) ⊗ I4 − v

c
Vpαz, (6.116)

where the sign ⊗ denotes matrix multiplication. The matrices Mn and Pn

(n = x, y, z) are the overlap and momentum operator matrices, respectively,
and Vt and Vp are the matrices containing the transition matrix elements
of the scalar potentials of the target and projectile nuclei, respectively. For
instance,

Mx
jj′ =

∫
dxfj(x)fj′(x),

Vjkl, j′k′l′ =
∫

dx
∫

dy
∫

dz fj(x)fl(x)fk(x)V fj′(x)fk′(y)fl′(z), (6.117)

where V = Vt or V = Vp.18

If one knows B(t) for a given value of t, then the formal solution of (6.114)
for t + ∆t, where ∆t is sufficiently small such that H can be regarded as a
constant during the interval ∆t, reads:

B(t+ ∆t) = exp
(−iM−1H∆t

)
B(t). (6.118)

Equation (6.118) can be solved by using appropriate numerical techniques
[167].

18 It worth noting that the method briefly outlined above has a certain similarity to
a coupled-channel approach in which the initial Dirac equation is also replaced
by the first order differential equation (6.110) for unknown time-dependent coef-
ficients of the corresponding coupled channel expansion.
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One of the main problems of a numerical integrations on a grid in the
configuration space is the fact that the wave function in this space is poorly
localized and may spread over the whole integration volume. If during the
propagation time a part of the wave function reaches the boundaries, it will
be reflected back leading to unphysical solutions. Therefore, once a noticeable
part of the wave function reaches the boundaries, the propagation in time
has to be stopped (or some absorbing potential should be introduced on the
boundaries).

Such a problem does not arise if the Dirac equation is considered on a
lattice in the momentum space [166]. This advantage appears because in the
momentum space the wave function is very well localized around the origin.
Being transformed into the momentum space, the Dirac equation reads

i
∂ψ(p, t)

∂t
=
(
cα · p + βc2

)
ψ(p, t)

− 1
2π2

∫
d3p′

(
ZA

q2
+
(
1 − v

c
αz

) ZB exp(−iq · R(t))
q2
x + q2

y + q2
z/γ

2

)
ψ(p′, t),

(6.119)

where q = p − p′, R is the trajectory of the nucleus ZB and

ψ(p, t) =
1

(2π)3/2

∫
d3r Ψ(r, t) exp(−ip · r) (6.120)

is the Dirac spinor in the momentum space. While in the momentum space
the wave function ψ(p, t) does not tend to escape from the integration volume,
the calculation of the momentum integrals is more demanding to the quality
of a coordinate mesh and takes more computing time.

Like in the case with coupled channel calculations it is of interest to com-
pare cross sections computed by means of numerical integrations of the Dirac
equation on a lattice with results of the distorted-wave models discussed in
Sect. 6.5.

In [166] collisions of 0.93 GeVu−1 Au79+ with uranium ions U91+(1s)
were studied by using a numerical integration on a lattice in the momentum
space. In particular, the authors of [166] calculated cross section values for
the excitations into the 2s1/2 and 3s1/2 states of U91+ as well as for the
electron loss. It was reported in [166] that their nonperturbative excitation
cross sections are 1.37 kb (for 1s1/2 → 2s1/2) and 0.25 kb (for 1s1/2 → 3s1/2).
The nonperturbative loss cross section, obtained in [166], is 14.4 kb.

Note that the first order predictions for the bound–bound transitions
amount to 1.65 and 0.3 kb, respectively, and the first order result for the
electron loss is 15.3 kb.

Calculations with the distorted-wave amplitudes (6.86) and (6.87) for the
same bound–bound transitions yield 1.36 and 0.245 and 1.35 and 0.243, re-
spectively. A calculation with the CDW-EIS amplitude (6.92) results in the
loss cross section of 12.2 kb.
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We thus see that in the case of excitations the results of the distorted-wave
models and of the integration on a grid are mutually supportive yielding quite
close cross section values. However, in the case of the electron transitions to
the continuum the agreement between the results of these approaches is not
that good with the CDW-EIS ionization cross section being noticeably lower
than the nonperturbative ionization cross section reported in [166].

Note that a similar correspondence between results of the distorted-wave
approaches and the numerical integrations on a grid holds also for the colli-
sion system 0.466 GeVu−1 U92+ + U91+(1s). The nonperturbative results for
excitation and ionization cross section for this system were reported in [167]
where (6.118) was solved numerically. Here again the distorted-wave cross sec-
tions for the excitation turned out to be rather close to those obtained with
the nonperturbative calculation whereas in the case of the electron loss the
distorted-wave models, compared to the grid calculation, predict a noticeably
lower cross section.

At present it is not clear whether the discrepancy observed for the loss cross
section should be interpreted as a deficiency of the distorted-wave models for
transitions which involve continuum states,19 or it simply reflects the lack of
a necessary accuracy in the nonperturbative calculations for the ionization
cross sections performed in [166, 167]. This discrepancy, of course, may also
be a signature that both these points are simultaneously present.

19 In particular, we remind the reader that in the derivation of the CDW-EIS am-
plitude (6.92) the influence of the nuclei on the electron in the continuum was not
treated symmetrically arguing that we consider the case when ZA is noticeably
larger than ZB. The latter, however, is certainly not true for U92+ on U91+(1s)
collisions.



7

Impact Parameter Dependence
of Projectile-Electron Excitation
and Loss in Relativistic Collisions

7.1 Preliminary Remarks

For a collision in which the electron of the projectile ion makes a transition
0 → n and those of the target atom make a transition 0 → m, the semi-
classical transition probability1 reads

P 0→m
0→n (b) =| a0→m

0→n (b) |2, (7.1)

where the transition amplitude a0→m
0→n (b) is given by (5.46).

In experiments on the projectile-electron excitation and loss in relativis-
tic collisions performed until now final internal states of the atom were not
observed. In order to describe an experiment in such a case one has to sum
over all possible states of the atom. The total probability for the ion to make
a transition 0 → n in the collision then reads

P0→n(b) =
∑
m

| a0→m
0→n (b) |2 . (7.2)

This transition probability can be split into the sum of the contributions given
by the elastic,

P s
0→n(b) =| a0→0

0→n(b) |2, (7.3)

and inelastic,

P a
0→n(b) =

∑
m �=0

| a0→m
0→n (b) |2, (7.4)

target modes.

1 If the final state of the projectile or of the target is a continuum state, then (7.1)
represents the probability density.
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7.2 Transition Amplitudes

Except Sect. 7.4, throughout this chapter we shall use only the first order de-
scription of the ion–atom collisions. In what follows the probability P0→n(b)
will be evaluated within the nonrelativistic atom approximation. Within this
approximation the semi-classical first order transition amplitude (5.46) is sub-
stantially simplified and reduces to

a0→m
0→n (b) = − i

πv

∫
d2q⊥ exp(−iq⊥b)

〈
um

∣∣∣∣∣∣ZA −
NA∑
j=1

exp(iqA · ξj)

∣∣∣∣∣∣u0

〉

×
〈
ψn

∣∣(1 − v
cαz

)
exp(iqI · r)

∣∣ψ0

〉
q2
⊥ + (εn−ε0+εm−ε0)2

v2γ2 + 2(γ − 1) (εn−ε0)(εm−ε0)
v2γ2

. (7.5)

We remind the reader that qI = (q⊥, qI
min) and qA = (−q⊥,−qA

min) are the
momenta transferred to the ion (in the ion frame) and to the atom (in the
atom frame), respectively, with qI

min and qA
min given by (5.31) and (5.32).

Besides, ξj are the coordinates of the atomic electrons with respect to the
atomic nucleus (given in the atomic frame).

7.2.1 Elastic Target Mode

In this case m = 0 and the corresponding transition amplitude is given by

a0→0
0→n(b) = − i

πv

∫
d2q⊥ exp(−iq⊥b)ZA,eff(qA)

×< ψn | (1 − v
cαz

)
exp(iqI · r) | ψ0 >

q2
⊥ + (εn−ε0)2

v2γ2

, (7.6)

where the effective charge ZA,eff of the atom in the ground state is defined by
(5.70).

With the effective charge given by (5.70) it is easy to perform the inte-
gration over the transverse part q⊥ of the momentum transfer in expression
(7.6) and obtain that the elastic transition amplitude is given by

a0→0
0→n(b) =

2iZA

v

3∑
j=1

Aj

×
〈
ψn

∣∣∣∣exp
(

i
εn − ε0

v
z

) (
1 − v

c
αz

)
K0

(
Bj

0,n | b − r⊥ |
)∣∣∣∣ψ0

〉
,

(7.7)

where K0 is the modified Bessel function, r = (r⊥, z) with r⊥ · v = 0 are the
coordinates of the electron of the ion,
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Bj
0,n =

√
(εn − ε0)2

v2γ2
+ κ2

j

and Aj and κj are the screening parameters. Note that if we neglect in (7.7)
the screening effect of the atomic electrons by setting all κj = 0 then, taking
into account that

∑
j Aj = 1, we obtain the amplitude for a transition 0 → n

of the electron of the ion in collisions with a bare nucleus with a charge ZA

a0→0
0→n(b) =

2iZA

v

×
〈
ψn

∣∣∣∣exp
(

i
εn − ε0

v
z

) (
1 − v

c
αz

)
K0

(
BC

0,n | b − r⊥ |)∣∣∣∣ψ0

〉
,

(7.8)

where

BC
0,n =

(εn − ε0)
γv

.

7.2.2 Inelastic Target Mode

In this case m �= 0. Taking into account that∫
d2q⊥

exp(−iq⊥(b − r⊥ + ξ⊥,j))
q2
⊥ +B2

m,n

= 2πK0(| b − r⊥ + ξ⊥,j | Bmn), Bm,n > 0, (7.9)

where ξj = (ξ⊥,j , ξz,j) with ξ⊥,j · v = 0, the transition amplitude can be
written as

a0→m
0→n (b) =

〈
um

∣∣∣∣∣∣
NA∑
j=1

e−i( εm−ε0
v +

εn−ε0
vγ )ξz,jαj

n0(b + ξ⊥,j ,m0)

∣∣∣∣∣∣u0

〉
. (7.10)

In the above formula

αj
n0(b + ξ⊥,j ,m0) =

2i
v

〈
ψn

∣∣∣e−i( εn−ε0
v +

εm−ε0
vγ )z

(
1 − v

c
αz

)
×K0

(| b − r⊥ + ξ⊥,j | Bm,n

)∣∣ψ0

〉
, (7.11)

where

Bm,n =

√
(εn − ε0 + εm − ε0)2

v2γ2
+ 2(γ − 1)

(εn − ε0)(εm − ε0)
v2γ2

.

It worth noting that the form of the expression (7.11) resembles the semi-
classical transition amplitude for the electron of the ion in collisions with a
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point-like particle with a charge −1 which moves along a classical straight-line
trajectory with the velocity v and the impact parameter b + ξ⊥,j .

In order to find the total probability of the electron transition in the ion
from all collisions, where the atom can finally be in any of its excited states
including the atomic continuum, one has to perform the summation in (7.4).
This can be done by using the closure method (see [22] and references therein).
In the simplest form of this method the same averaged energy ∆ε is assumed
for all possible transitions of the atomic electrons. In nonrelativistic collisions
this approximation yields good results for the electron loss at collision veloci-
ties well above the energy threshold for the projectile ionization by a beam of
free electrons. Therefore, one can expect this approximation to give reasonable
results for relativistic collisions when the kinetic energy T of an equivelocity
electron is much larger than the transition energy of the electron in the ion:
T = mec

2(γ − 1) � εn − ε0. Starting with γ ∼ 2 − 3 the latter condition is
fulfilled even for the heaviest single-electron ions. Since we already have the
condition γ ≥ 3 − 4 imposed by the application of the nonrelativistic atom
approximation for the antiscreening mode, no additional restrictions on the
collision energies are introduced here.

Within the closure approximation the closure relation for the electron
states of the atom ∑

m

| um >< um |= I (7.12)

is applied in order to perform the summation over the final states of the
atom. In addition, if the antisymmetrization in the ground state of the atom
is ignored and the wavefunction of the ground state is expressed as

u0 =
∏
λ

φλ(ξλ), (7.13)

where φλ(ξ) are the single electron orbitals, the antiscreening probability takes
the much simpler form [92]

P a
0→n(b) =

∑
m �=0

| a0→m
0→n (b) |2

=
∑

λ

〈
φλ

∣∣∣| e−i(∆ε
v +

εn−ε0
vγ )ξzαn0(b + ξ⊥) |2

∣∣∣φλ

〉

−
∑

λ

∣∣∣〈φλ

∣∣∣e−i(∆ε
v +

εn−ε0
vγ )ξzαn0(b + ξ⊥)

∣∣∣φλ

〉∣∣∣2 . (7.14)

Here αn0(b + ξ⊥) is defined by (7.11) with the replacements εm − ε0 → ∆ε
and

Bmn →
√

(εn − ε0 + ∆ε)2

v2γ2
+ 2(γ − 1)

(εn − ε0)∆ε

v2γ2
.
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The expression (7.14) still contains the sixfold integration over the electronic
coordinates and an additional threefold integration needs to be performed if
one considers the electron loss.

7.3 Excitation of Bi82+(1s) in Collisions with Cu and He

In this section we shall discuss probabilities for the electron excitation in Bi82+

in relativistic collisions with two neutral atoms, Cu and He. For a comparison
the excitation of Bi82+ in collisions with the corresponding bare nuclei, Cu29+

and He2+, will also be considered. In addition, results will be presented for the
antiscreening probability of the projectile-electron excitation in collisions with
helium. Helium as a target was chosen because of three main reasons. First,
helium is a few-electron system where the contribution from the antiscreening
mode is expected to be comparable in magnitude with that of the screening
mode. Second, helium target is widely used in experiments on atomic collision
physics. Third, in the helium case orbitals φλ(ξ) are 1s-orbitals and the sixfold
integral in (7.14) can be reduced analytically to a fourfold integration [25].
The latter, however, has to be done numerically.

In contrast to helium, a copper atom has many electrons. Therefore, in
collisions of Bi82+, which has a very tightly bound electron, with copper the
antiscreening mode is of minor importance and will not be considered here.

Throughout this section relativistic units � = me = c = 1 are used except
in Fig. 7.5 where the impact parameter is given in fermi (1 rel. unit. � 386 fm).

7.3.1 Screening in Ultrarelativistic Collisions with Moderately
Heavy Atoms

In Fig. 7.1 weighted probabilities bP (b) are shown for the excitation of a
1s1/2(mj = −1/2) electron of a Bi82+ projectile incident on Cu at a colli-
sion energy corresponding to γ = 10. The different full curves show results
for excitation to different states of Bi82+ where the screening effect has been
included. The dashed curves show the excitation without any screening, i.e.
in collisions with a bare nucleus Cu29+. It can be seen from this figure that
the main effect of the screening is to reduce the transition probabilities at
larger impact parameters. For transitions to the 2s1/2(mj = −1/2)-state the
screening effect plays almost no role. This suggests that these transitions occur
effectively at very small impact parameters where the electrons of the neutral
copper atom cannot screen their nucleus.

In Fig. 7.2 results of similar calculations are displayed for the same
projectile–target system but at a collision energy corresponding to γ = 100.
Because of the retardation effect, in collisions with Cu29+ the probabilities of
transitions to p-states have considerably longer tails at large b compared to the
previous case. However, in collisions with a neutral atom the screening of the
nucleus of Cu by its electrons reduces the transition probabilities in collisions
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Fig. 7.1. Weighted probabilities for projectile excitation in collisions of a Bi82+

projectile with Cu at a collision energy corresponding to γ = 10. Solid lines: the
screening mode, dashed lines: collisions with a bare atomic nucleus Cu29+. The
numbers in brackets denote the magnetic quantum numbers of the final electron
states in the Bi82+ ion. From [92].

Fig. 7.2. As in Fig. 7.1 but at a collision energy corresponding to γ = 100. From [92].

with larger impact parameters. Thus, one obtains almost the same results
for the screened probabilities at γ = 10 and γ = 100. For a many-electron
atom like Cu the antiscreening mode is not expected to play a noticeable role.
Therefore, one may conclude that at γ � 10 the corresponding cross sections
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for the excitation, considered as a function of collision energy, are very close
to or already have entered the ‘saturation’ region where the cross sections
become γ-independent (for more discussion of the cross section saturation
see 8.9).

7.3.2 Screening and Antiscreening in Ultrarelativistic Collisions
with Very Light Atoms. ‘Separation’ of the Screening
and Antiscreening Modes in the Impact Parameter Space

In Fig. 7.3 the weighted probabilities are depicted for the excitation of a
1s1/2(mj = −1/2) electron of a Bi82+ projectile incident on He at a collision
energy corresponding to γ = 10. Similarly to the case of Bi82+–Cu collisions,
the full and dashed lines represent results of calculations with and without the
screening, respectively. The helium atom is much lighter than copper and the
orbits of helium electrons are much larger than the orbits of inner electrons in
copper. Therefore, in contrast to collisions with Cu, in collisions with He the
screening effect plays a very modest role at γ = 10 for all transitions shown
in the figure.

The situation changes drastically for Bi82+–He collisions at γ = 100 (see
Fig. 7.4). In collisions with He2+ at γ = 100, larger impact parameters (com-
pared to the case with γ = 10) considerably contribute to transitions to
the p-states in Bi82+. These impact parameters are already comparable in
magnitude with the dimension of the electron orbits in the ground state of
neutral He. Therefore, in collisions at such impact parameters, electrons of
He are able to effectively screen their nucleus and considerably reduce the
transition probabilities.

In Fig. 7.4 we compare the screening and antiscreening effects in the prob-
abilities of the electron transitions in Bi82+ in collisions with He at a collision

Fig. 7.3. As in Fig. 7.1 but for collisions with He. From [92].
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Fig. 7.4. Weighted probabilities for projectile excitation in collisions of a Bi82+

projectile with He. Dashed lines: the screening mode, dotted lines: the antiscreening
mode, solid lines: collisions with He2+. The numbers in brackets denote the magnetic
quantum numbers of the final states of the Bi82+ ion. From [92].
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magnetic quantum numbers of the final states of the Bi82+ ion. From [96].
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energy corresponding to γ = 100. There are some interesting features in the
antiscreening probabilities, which should be mentioned. First, at small impact
parameters these probabilities are much lower than the screening probabili-
ties. Second, the antiscreening probabilities spread to much larger impact
parameters. At b ∼ 100 the antiscreening probabilities for the 1s–2p transi-
tions are comparable in magnitude to the probabilities in collisions with the
unscreened helium nucleus. And only at b � 300 (which is not shown in the
figure) the antiscreening probabilities become much smaller than the proba-
bilities in collisions with the unscreened helium nucleus. Thus, it turns out
that the screening and antiscreening contributions to the excitation are to
large extent separated in the b-space.

This relationship between the screening and antiscreening contributions
can be understood by noting that, whereas the atomic nucleus is point-like
(on a typical atomic scale), the atomic electrons spread over a large volume.
Because of this reason in collisions with small impact parameters the action
of the atomic electrons on the electron, which is bound in a highly charged
ion, cannot effectively compete with that of the atomic nucleus. However, due
to the same reason, the atomic electrons become more effective, compared to
the atomic nucleus, at larger impact parameters.

Estimates show that, because of the long tails at large impact parameters,
the antiscreening mode contributes considerably (about 25–30%) to the total
cross sections for the (electric) dipole allowed electron transitions in Bi82+ in
collisions with He at γ = 100. The relative contribution of the antiscreening
mode to the total cross section for the 1s–2s transition is about 15%, i.e. it
is considerably smaller. The latter point can be understood by noting that
the contribution of large impact parameters, where the antiscreening mode
could become more important, to the 1s1/2(−1/2) → 2s1/2(−1/2) transition
is strongly suppressed compared to the case of the excitation of the dipole
allowed transitions.

7.3.3 Comparison between Excitation of Heavy Ions in Collisions
with Neutral Atoms at Low and High γ

Excitation of hydrogen-like Bi ions in collisions with copper at a collision en-
ergy of 119 MeVu−1 corresponding to γ = 1.13 was studied in [95, 96]. Since
the excitation energies of Bi82+ are very big and the value of γ is quite low,
only collisions with momentum transfers which are large on the atomic scale
of copper can effectively excite the ion. Therefore, under these conditions the
screening effect is expected to be very weak and, as our calculations show, can
be neglected. In addition, the collision velocity corresponding to the energy
119 MeVu−1 is below the threshold for the ionization of Bi82+ by a free elec-
tron having the same velocity in the ion frame as the atom. Therefore, under
the experimental conditions of [95, 96] the antiscreening effect is very weak
as well and the main contribution to the excitation is given by the interac-
tion with the unscreened target nucleus. Thus, the physics of the excitation
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of 119 MeV u−1 Bi82+ in collisions with a neutral copper atom is basically
reduced to that in collisions with a bare copper nucleus.

Probabilities for the excitation of 119 MeVu−1 Bi82+ in collisions with a
point-like copper nucleus Cu29+ were calculated in [95, 96] within the first
order of the perturbation theory (see Fig. 7.5). As was just discussed above,
at this collision energy these results can be directly applied for collisions with
neutral atoms of copper. It is of interest to state briefly the main differences
between the excitation of very heavy hydrogen-like ions in collisions at low γ
and in ultrarelativistic collisions. First, in contrast to collisions at low γ, at
high values of γ the screening effect of the atomic electrons becomes important
even for very light atomic targets. Second, the antiscreening mode is always
of considerable importance in ultrarelativistic collisions with few-electron tar-
gets. Third, in collisions at low γ the 1s–2s transition in Bi82+ were shown to
dominate over the transitions to 2p-states [96]. In ultrarelativistic collisions
this situation is changed. Now the 1s–2p transitions contribute most to the
excitation with the transition 1s1/2(mj = −1/2) → 2p3/2(mj = −3/2) being
the most probable one. Compared to collisions with γ = 1.13, in collisions
with γ = 10 the maximum of the distribution bP (b) for transition to 2s state
is reduced by a factor of about 4 and the position of the maximum and the
width of this distribution are practically unchanged. In contrast, the distrib-
utions bP (b) for the main transitions to 2p states are not reduced in height
but are shifted towards larger b and acquire larger widths. This behaviour
of the probabilities for transitions to 2s and 2p states is connected with the
increase of the collision velocity (energy). At γ = 1.13 the collision velocity
is considerably less than the speed of light (v/c = 0.46) and the increase of
this velocity leads to a decrease of all the transition probabilities at small
impact parameters. However, when the collision velocity approaches the light
velocity and cannot be noticeably increased further, the retardation effect is
the only important effect and it increases the transition probabilities for the
dipole-allowed transitions. For large enough values of γ the retardation effect,
which would lead to longer and longer tails for the probabilities of the dipole-
allowed transitions, is neutralized by the screening effects discussed earlier in
this section.

Since a 2s-state can be effectively excited in collisions with very small im-
pact parameters only, the influence of the retardation effect on the excitation
to a 2s-state is quite weak.

7.4 Higher-Order Effects in the Loss Probability
in Collisions at Asymptotically Large γ

The asymptotic limits of a theory are a matter of general interest. In the case
of ion–atom collisions one of the natural asymptotic limits is represented by
the domain of (infinitely) high impact energies.
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The nonrelativistic theories of ion–atom collisions assume that c→∞. Ac-
cording to such theories the high-energy limit of ion–atom collisions (Ecol →∞),
which is this case coincides with the high-velocity collision limit v → ∞, is
well described by the first order approximation in the ion–atom interaction.
This, in particular, means that with increasing the impact energy the differen-
tial and total loss probabilities for any ion–atom collision pair will ultimately
be very well described by applying merely a first order theory.

In the relativistic description the impact energy can in principle take on
any value but the collision velocity has the upper limit given by the speed
of light in vacuum. Therefore, the high-energy limit of relativistic theories is
given by Ecol → ∞ (γ → ∞) which corresponds to v → c. Below we shall see
that the existence of the upper limit for the collision velocity in general does
not enable one to get a satisfactory description of the ion–atom collisions
within the first order of the perturbation theory, no matter how high the
impact energy is.

The electromagnetic field acting on the electron of the ion is stronger in
collisions with heavier atoms. Therefore, in order to see whether the higher-
order effects in the ion–atom interaction can ‘survive’ in the limit γ → ∞,
we shall consider only collisions with very heavy atoms in which these effects
are strongest. At the same time, in the case of very heavy atoms the inelas-
tic atomic mode of the collision is of minor importance and shall be simply
neglected.

p(
b)

Fig. 7.6. Collisions at γ → ∞. The probability for the total electron loss from
Pb81+(1s) projectiles colliding with gold atoms (ZA = 79). Dashed line: first order
result, solid line: the light-cone result.
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Figure 7.6 shows the probability for the electron loss from Pb81+ in col-
lisions with Au at γ = ∞. Two results for the loss probability are displayed
in this figure. One was obtained using the first order theory and considering
only the elastic contribution. The second was calculated within the light-cone
approximation, discussed in Sect. 6.4. The latter represents an ‘exact’ solution
for γ → ∞ and can serve as a reference for the first order calculation.

The deviation from the first order prediction is clearly seen at the impact
parameters of the order or smaller than the typical dimension of the electron
orbit in the ground state of Pb81+. Yet, these impact parameters are so small
that they actually contribute very little to the total loss cross section whose
‘exact’ and first values are thus very close.

This observation, however, by no means imply that at the asymptotically
high energies (γ → ∞) the first order and exact loss cross sections always
tend to coincide. In the case considered in Fig. 7.6 the closeness in the values
of the loss probabilities, observed for almost all impact parameters, is simply
the direct consequence of the fact that at γ → ∞ even such a heavy target,
like Au, does not represent a sufficiently strong perturbation for the electron
which is initially very tightly bound by the lead nucleus. Therefore, for a
fixed atomic number of the projectile-ion, it is merely a question of how far
one has to (or one can) increase the target atomic number in order to see that
a noticeable deviation from the first order prediction is present at any impact
energy.

The latter point is illustrated in Fig. 7.7. Now the difference between the
first order and light-cone loss probabilities has ‘survived’ also at larger impact
parameters such that the corresponding cross sections differ roughly by a
factor of 1.16. It is also worth noting that, as is seen in this figure, even at the
infinite impact energy the first order approximation still violates the unitarity
in collisions with very small impact parameters.

Another possibility to observe a noticeable deviation from the first order
predictions is not to increase the atomic number of the target but to de-
crease the atomic number of the projectile. This is because in a lighter ion the
electron is weaker bound which makes the electron behavior more ‘vulnerable’
to the higher order effects in its interaction with the atomic field.2

In Fig. 7.8 the probability for the electron loss from a much lighter ion,
Kr35+(1s), in collisions with gold atoms at γ → ∞ is presented. Compared to
the electron in Pb81+(1s) the electron in Kr35+(1s) is much weaker bound.
As a result, now the deviation from the first order prediction for the loss
probability in collisions with atoms of gold becomes more substantial which

2 Important to note that, compared to a tighter bound electron, a weaker bound
electron is relatively more exposed to the higher order effects only provided the
condition of the suddenness of the collision is well fulfilled for both electrons.
For instance, in the case of relatively slow collisions considered in Sect. 6.5 the
situation is just opposite: the first order approximation is less suitable for the
description of a tighter bound electron.
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Fig. 7.7. Collisions at γ → ∞. The probability for the total electron loss from
Au78+(1s) projectiles colliding with neutral atomic targets having ZA = 112. Dashed
line: the first order result, solid line: the light-cone result.

Fig. 7.8. Collisions at γ → ∞. The probability for the total electron loss from
Kr35+(1s) projectiles colliding with gold atoms. Dashed line: the first order result,
solid line: the light-cone result.

implies a noticeable difference between the first order and the light-cone cross
sections.

By comparing Figs. 7.6 and 7.8 one can also infer that the loss proba-
bility in collisions with very small impact parameter is larger for the more
tightly bound electron. The latter is suggested by both the first order and the
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light-cone calculations. It is plausible to assume that the lower values of the
loss probability, observed in Fig. 7.8 for the lighter ion,3 are caused by the
larger screening effect of the atomic electrons. Indeed, since the dimension
of the electron orbit increases with decrease of the ion charge, the screening
of the atomic nucleus by the atomic electrons in collisions with small impact
parameters should become more effective in the case of a lighter ion.

One should note that, although we considered the case when γ → ∞,
the above discussion is not just of academic interest. This is because for
the projectile-electron excitation and loss occurring in collisions with neutral
atoms the high-energy limit is actually reached at finite (and sometimes rel-
atively modest) values of the impact energy.

In the case of the elastic target mode the latter can be clearly seen in the
form of the transition amplitude (7.7). Indeed, at sufficiently high (but finite)
values of γ the factor Bj

0,n reduces to the screening parameter κj . Besides,
starting with γ ∼ 5–10 the collision velocity becomes practically equal to
the speed of light and does not change when the impact energy increases
further. As a result, provided the conditions γ� (εn − ε0)/(cκj) and γ > 5–10
are simultaneously fulfilled, the elastic target mode already ‘functions’ in the
asymptotic regime.

Compared to the elastic amplitude (7.7), the form of the inelastic ampli-
tude (7.10) is much more cumbersome and does not enable one to get the
idea about the asymptotic limit so easily. However, in the case of the inelastic
target mode one can apply the knowledge which we have gained when the two-
center dielectronic interaction was considered (see Sect. 5.14.1). In particular,
it was shown there that at sufficiently high (and finite) impact energies the
cross sections ‘saturate’ and do no change any more with a further increase in
the collision energy. The saturation in the cross sections, of course, also im-
plies that the corresponding probabilities become energy-independent. Thus,
both for the elastic and inelastic target contributions to the probabilities of
the projectile-electron excitation and loss the asymptotic high-energy limit
γ → ∞ is in fact reached at finite impact energies.

3 It is of interest to compare the loss probabilities at b → 0 in the case of collisions
with neutral atoms and bare atomic nuclei. It was predicted in [103, 158] that
for ‘ionization’ of a hydrogen-like ion with a charge ZI > 12–15 by a nucleus
with a charge ZA at collision energies corresponding to γ > 5 the ionization(loss)
probability at b = 0 is very weakly dependent on γ and ZI.
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Cross Sections and Comparison
with Experiment

8.1 Electron Loss in Collisions at Low γ

As was discussed in Chap. 5 (see Sect. 5.11), under certain conditions the pro-
jectile excitation and loss in collisions with neutral atoms can be well approxi-
mated as occurring solely due to the interaction with the (unscreened) atomic
nucleus since the atomic electrons play just a minor role. This, for instance,
is the case for the electron loss from 105 MeV u−1 U90+(1s2) projectiles for
which the total loss cross sections were measured in [168–171].1

Indeed, according to Fig. 6.9, at this impact energy the screening effect
of the atomic electrons has a negligible impact on the electron loss process.
Besides, since the effective energy threshold for the inelastic target mode in
the electron loss from U 90+(1s2) is about 240 MeV u−1, the antiscreening
effect of the atomic electrons in these collisions is also very weak and can
safely be neglected not only for many-electron but also for few-electron atomic
targets. Thus, the process of the electron loss can really be regarded as an
effectively three-body problem and, therefore, one may apply the three-body
approximations discussed in Sects. 5.11 and 6.5.

Results of calculations for the total cross section for the single electron loss
from 105 MeVu−1 U90+(1s2) ions in collisions with different atomic targets
ranging between beryllium and gold are presented in Fig. 8.1. The calcula-
tions were performed using the first order transition amplitude (5.83) and the
distorted-wave amplitudes (6.86), (6.87) and (6.90). In this figure the theo-
retical results are also compared with experimental data for the loss cross
section reported in [168] for collisions of 105 MeV u−1 U90+(1s2) with solid
state targets of beryllium, carbon, aluminum, copper, silver and gold. In the
calculation the electron loss was considered as occurring from the ground
state of a hydrogen-like ion whose effective nuclear charge was determined
from the binding energy of the electrons in U90+(1s2).

1 For a discussion of the electron loss cross sections measured in collisions with
relatively light atoms see [172,173].
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Fig. 8.1. The total cross section (per electron) for the single electron loss from
105 MeV u−1 U90+(1s2) ions colliding with different targets. Circles show experi-
mental results for the loss in collisions with solid state targets of carbon, aluminum,
copper, silver and gold which were measured in [168]. Dot, dash, dash–dot and solid
curves display results of calculations using the amplitudes (5.83), (6.86), (6.87) and
(6.90), respectively.

It is seen in Fig. 8.1 that in collisions with atomic targets having not very
large atomic numbers, for which one has ZA/v � 1, all the theoretical models
yield very similar loss cross section values. When the ratio ZA/v increases,
the difference between the results of the first order approximation and the
distorted-wave models rapidly grows. Compared to the first order result, for
collisions with atoms of gold the SEA and CDW-EIS models yield the loss
cross sections which are smaller by about a factor of 3.7 and 10, respectively.

A comparison with the experimental data clearly shows a complete failure
of the first order approximation. This approximation, predicting the depen-
dence ∼Z2

A for the loss cross section, does not reproduce the ‘saturation’ of
this cross section, which is clearly visible in the experimental data at ZA � 40,
and overestimates these data by more than the order of magnitude in collisions
with the gold target.

The results obtained with the symmetric eikonal amplitude (6.86) are also
not in agreement with the experimental data. Although compared to the first
order approximation this amplitude predicts a much weaker growth of the
loss cross section with increasing ZA, at very large ZA this cross section does
substantially overestimate the experimental results.

In contrast, the application of the modified eikonal amplitude (6.87) leads
to the results which are much closer to the experimental data. The application
of the CDW-EIA model in this case is also quite successful yielding cross
section values which are closer to the experimental data than all the other
theoretical results.

Taking into account that the experimental data shown in Fig. 8.1 possess
a possible systematic error of up to 20% (see [3]), one can say that the results
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Fig. 8.2. The total cross section for the electron loss from 220MeV u−1 U91+(1s)
ions colliding with different targets. Circles show experimental results measured in
[168] for the loss in collisions with solid state targets of beryllium, carbon, aluminum,
copper and gold. Dot, dash, dash–dot and solid curves display results of calculations
with the amplitudes (5.83), (6.86), (6.87) and (6.90), respectively.

for the loss obtained with the amplitudes (6.87) and (6.90) are in reasonable
agreement with the experiment.

Figure 8.2 displays results for the total cross section for the electron loss
from 220 MeV u−1 U91+(1s) ions. The impact energy of 220 MeV u−1 is not
yet sufficiently large to make the screening effect of the atomic electrons im-
portant for the electron loss process. Besides, this impact energy is still below
the effective threshold of 240 MeVu−1 for the antiscreening collision mode.
Therefore, like in the case with 105 MeV u−1 U90+(1s2) ions, the presence of
the atomic electrons can be neglected and again the projectile-electron loss
process can be considered using the three-body models.

Similarly to the electron loss from 105 MeV u−1 U90+(1s2) ions, all the the-
oretical models again yield very close results for collisions with targets having
low atomic numbers (ZA/v � 1). When the atomic number of the target in-
creases, the difference between the results of the first order approximation, on
one hand, and the distorted-wave amplitudes, on the other, rapidly increases
and reaches about a factor of 2.5–3 for collisions with the gold target. Com-
pared to the case at 105 MeVu−1, the smaller differences between the first
order and the other results are probably related to the fact that at an impact
energy of 220 MeV u−1 the effective strength of the interaction between the
electron of the ion and the nucleus of the atom is weaker. This point also
seems to be responsible for the smaller difference between the predictions of
the SEA and CDW-EIS models.

Taking into account the possible systematic error of up to 20% in the
experimental data one may conclude the following. First, the first order
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Fig. 8.3. The total cross section for the electron loss from 105 MeV u−1 U89+(1s22s)
ions colliding with different targets. Circles show experimental results measured
in [168] for the loss in collisions with solid state targets of beryllium, carbon, alu-
minum, copper, silver and gold. Dot, dash, dash–dot and solid curves display results
of calculations with the amplitudes (5.83), (6.86), (6.87) and (6.90), respectively.

approximation strongly fails also in the case of the loss from 220 MeVu−1

U91+(1s) ions. Second, the results obtained with all distorted-wave am-
plitudes (6.86), (6.87) and (6.90) are in reasonable agreement with the
experiment.

The total cross sections for the single electron loss from 105 MeV u−1

U89+(1s22s) are shown in Fig. 8.3. Note that at this relatively low impact
energy there is a very large difference between the cross sections for the elec-
tron loss from the K and L shells. Therefore, following [146], it was assumed
in the calculations, results of which are presented in Fig. 8.3, that the loss
occurs only from the L shell. The 2s-electron in the initial and final states
of the undistorted ion was described by considering this electron as moving
in the Coulomb field of the ionic core (the nucleus plus the two K-shell elec-
trons) whose effective charge was determined from the binding energy of the
2s-electron in U89+(1s22s).

Compared to the K-shell electrons, the 2s-electron of the uranium ion is
substantially less tightly bound. However, due to the relatively low value of
the impact energy, the typical minimum momentum transfer to this electron,
which is necessary to remove it from the ion, is still very large on the atomic
scale. Therefore, although the screening effect is now substantially larger than
in the case of the electron loss from the K-shell, it nevertheless still remains
quite modest and can be neglected.2

2 According to the first order calculations, the reduction of the loss cross section
caused by the screening effect reaches about 11%. This effect is to be compared
with the difference of a factor of 2–4 between the first order result and the
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The important difference between the previous cases and the electron loss
from 105 U89+(1s22s) ions is that the effective threshold for the antiscreening
mode is about 60 MeV u−1 and, thus, this mode is now open.

In theoretical results shown in Fig. 8.3 the contribution of the antiscreening
mode was estimated by treating this mode within the first order perturbation
theory. Note that, since the relative contribution of this mode to the loss cross
section scales approximately as 1/ZA, the antiscreening effect has to be taken
into account in collisions with light targets, like beryllium and carbon, but
may be simply neglected in collisions with atoms of silver and gold.

It is seen in Fig. 8.3 that, similarly to the case with 105 MeVu−1 U90+(1s2)
ions, both the first order and distorted-wave calculations yield very close cross
section values for collisions with atomic targets having low atomic numbers.
When the ratio ZA/v increases the difference between the results of these
models rapidly starts to grow. Yet, compared to the case of the electron loss
from 105 MeVu−1 U90+(1s2), this difference remains substantially smaller
reaching ‘merely’ a factor of 2–4 for collisions with atoms of gold. The smaller
difference could be attributed to the fact that the loss from the L-shell occurs
in collisions with smaller momentum transfers corresponding to larger impact
parameters, where the interaction between the electron of the ion and the
nucleus of the atom is weaker.

An interesting peculiarity in the theoretical data shown in Fig. 8.3 is that
now the CDW-EIS model overestimates the loss cross section by up to a factor
of 2. Compared to the other distorted-wave calculations, this model now yields
the worst agreement with the experiment. This is rather surprising, especially
taking into account the good results obtained with the CDW-EIS amplitude
for the loss from 105 MeV u−1 U90(1s2) ions. The reasons for this failure are
not clear.

In contrast, the application of the amplitude (6.87) yields good agreement
with the experiment also in the case of the electron loss from the lithium-like
uranium ion.

Compared to the simple first order approach, the more elaborated distorted-
wavemodels are supposed to improve the treatment of the interaction between
the electron and the nucleus of the atom. As a result, these models are ex-
pected to yield better descriptions for the loss process. As we have just seen,
this is indeed the case.

What, however, is important to keep in mind is that, similarly to the
first order theory, the distorted-wave models represent in essence high-energy
(or high-velocity) approximations which in general have solid grounds only
provided the impact energy is ‘sufficiently high’.

Indeed, such models, like the CDW-EIS and SEA, were first proposed (and
turned out to be very successful) to treat ionization and excitation of very light

predictions of the distorted-wave models which do not take the screening effect
into account but instead attempt to describe the interaction between the electron
of the ion and the nucleus of the atom in a better way.
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atomic systems (hydrogen and helium) occurring in collisions with fast bare
nuclei whose impact velocities are much larger than the typical velocities of
the ‘active’ atomic electron. In such collisions the range of the ‘sufficiently
high’ impact energies is of course reached.

When we consider the excitation or loss of an electron, which is initially
bound by a very strong field (like e.g. in a few-electron uranium ions), even
collision energies about ∼100 MeV u−1 can hardly be considered as ‘sufficiently
high’ since the typical collision time is not yet (much) smaller than the typical
electron transition time. In such a case results of the distorted-wave models
should be taken with due caution.

8.2 Excitation and Simultaneous Excitation-Loss
in Collisions at Low γ

8.2.1 Excitation

Compared to the electron loss, the process of the projectile-electron excitation
involves smaller changes in the electron energy. This means that the excita-
tion is characterized by smaller values of the momentum transfer or, viewed
from a different perspective, occurs in collisions with effectively larger impact
parameters. As a result, the excitation process is in general more sensitive to
the presence of the atomic electrons.

However, if the projectile-ion has a very high charge and the collision en-
ergy is relatively low, the screening effect of the atomic electrons is weak and
can be neglected (see for illustration Fig. 8.4). At the same time at such ener-
gies the higher-order effects in the projectile–target interaction may become
quite important leading to the failure of the first order approximation.

Experimental data for the excitation of relativistic heavy hydrogen-like
ions were reported in [95,96] (see also [112]) for collisions of 82 and 119 MeV u−1

Bi82+(1s) with solid state targets of carbon, aluminum and nickel. As was
mentioned in [96], the accuracy of the experimental data for the 82 MeV u−1

projectiles was substantially affected by the electron capture process which,
because of the very high projectile charge, is still very strong at this impact
energy. Therefore, in what follows we restrict a comparison of the theoretical
results only to the excitation of 119 MeV u−1 Bi82+(1s).

At this energy the screening effect of the atomic electrons is quite weak.
The effective energy threshold for the antiscreening mode in collisions with
Bi82+(1s) is about 140 MeVu−1. Therefore, the antiscreening effect is very
weak as well and the influence of the atomic electrons on the excitation process
can be safely neglected. All this enables one to calculate cross sections by
treating the excitation process as a three-body problem.

In Fig. 8.5 results are shown for the excitation of 119 MeV u−1 Bi82+(1s)
and are given as a function of the atomic number of the target. Figure 8.5
consists of two parts. In part (a) dash and dot curves show results obtained
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Fig. 8.4. Cross section for the total excitation into the 2p3/2-states of Bi82+(1s1/2)
in collisions with krypton (ZA = 36) given as a function of the collision energy. Dash
and dot curves display results of the first order calculations without and with taking
into account the screening effect of the atomic electrons, respectively. Results of the
calculation with the amplitude (6.87) are shown by the solid curve. From [145].

with the first order amplitude for the excitation of the Bi ion into the states
with n = 2, j = 1/2 and n = 2, j = 3/2, respectively, where n is the principal
quantum number and j the total angular momentum of the electron. Dash and
dot curves in Fig. 8.5b display results for the same transitions but calculated
with the eikonal amplitude (6.87). In both parts of Fig. 8.5 solid curves show
the total cross section for the transitions to all the states with n = 2 obtained
with the corresponding amplitudes. Both these parts also display the (same
set of) experimental data from [95,96].

Similarly to the case with the electron loss, it is seen in the figure that
the first order and eikonal transition amplitudes yield very close results for
the excitation cross sections in collisions with very light atoms (ZA � 10)
where the interaction of the electron with the nucleus of the atom is weak.
In collisions with atoms having larger atomic numbers the difference between
the predictions of the first order and eikonal approaches starts to appear.
When the atomic number of the target increases further, this difference rapidly
increases and reaches almost a factor of 2 at ZA � 50.

Amongst targets, for which experimental data are available, nickel
(ZA = 28) has the highest atomic number. For the excitation of 119 MeVu−1

Bi82+(1s) in collisions with this target the eikonal calculation predicts the re-
duction of the excitation cross section approximately by 30% compared to the
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Fig. 8.5. Cross sections for the excitation into states with n = 2, j = 1/2, with n =
2, j = 3/2 and for the total excitation into n = 2-states of 119MeV u−1 Bi82+(1s1/2)
in collisions with atomic targets whose atomic numbers run between 1 and 54. (a)
Results of the first order calculation. Dashed curve: n = 2, j = 1/2; dot curve:
n = 2, j = 3/2 and solid curve: n = 2. (b) Results obtained with the amplitude
(6.87). Dashed curve: n = 2, j = 1/2; dot curve: n = 2, j = 3/2 and solid curve:
n = 2. Circles, squares and triangles (with the corresponding error bars) in (a) and
(b) display experimental results from [95,96] for the excitation into the states with
n = 2 and j = 1/2, n = 2 and j = 3/2, and n = 2, respectively, which were measured
in collisions with solid state targets of carbon (ZA = 6), aluminum (ZA = 13) and
nickel (ZA = 28). From [145].

results of the first order model. However, the uncertainty in the experimental
data is also about 30% and both the eikonal and first order calculations are
in good overall agreement with the experiment. Thus, the accuracy of the ex-
perimental data does not enable one to conclude which calculation describes
better the experiment.

In Fig. 8.6 we compare results for the ratio σ(n = 2, j = 3/2)/σ(n = 2,
j = 1/2) where σ(n = 2, j = 1/2) and σ(n = 2, j = 3/2) are the cross sections
for the excitation to the states with n = 2, j = 1/2 and n = 2, j = 3/2,
respectively. The figure shows that, for the excitation to different final states,
the deviations between the results, obtained with the first order and eikonal
transition amplitudes, are accumulating at a different pace. In particular,
this deviation is somewhat stronger for the excitation into the states with
n = 2, j = 3/2. Note also that, in contrast to the case of the absolute cross
sections, for which the available experimental data do not allow us to prefer
one of the two calculations, the experimental data for the cross section ratio
seem to be more in favor of the results obtained using the amplitude (6.87).
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Fig. 8.6. The ratio σ(n = 2, j = 3/2)/σ(n = 2, j = 1/2) between the cross sections
for the excitation of 119MeV u−1 Bi82+(1s1/2) into the states with n = 2, j = 1/2
and n = 2, j = 3/2. The ratio is given as a function of the atomic number of the
target. Dashed line: results of the first order calculation. Solid curve: results obtained
with the amplitude (6.87). Circles with error bars: experimental data from [95] and
[96]. From [145].

8.2.2 Simultaneous Excitation-Loss

If a heavy ion initially carries several electrons, then more than one electron of
the ion can be simultaneously excited and/or lost in a collision with a neutral
atom. In [97] simultaneous excitation and loss of the projectile electrons was
investigated experimentally for 223.2 MeV u−1 U90+ ions impinging on atomic
targets of Ar, Kr and Xe. In the collision between the projectile-ion and the
target-atom one of the two electrons of U90+ was ejected and the other was
simultaneously excited into the L-subshell states of U91+. Note that such a
process represents one of the simplest and basic processes which can occur
with projectiles having initially more than one electron.

There are essentially two qualitatively different possibilities to get the si-
multaneous two-electron transitions. The first is that the atom in the collision
effectively interacts with only one electron inducing its transition while the sec-
ond electron undergoes a transition due to the electron–electron-correlations
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in the ion and/or due to rearrangement in the final state of the ion.3 These
processes are often called the two-step-1 and shake-off, respectively (see e.g. [2]).

The other possibility is that the field of the atom has enough power to
interact simultaneously with each of the two electrons and to become the
main driving force for both electrons to undergo transitions. In case when the
interaction with the atomic nucleus involves the exchange of only two virtual
photons (one per electron) such a process is often referred to as the two-step-2
process (see e.g. [2]).

It was shown in [174] that, provided the condition ZIZA
v > 0.4 is ful-

filled (where ZI and ZA are the charges of the ionic and atomic nuclei, re-
spectively, and v the collision velocity), two-electron transitions in a heavy
helium-like ion occurring in collisions with an atom are governed mainly by
the ‘independent’ interactions between the atom and each of the electrons of
the ion. This condition, in particular, was very well fulfilled in the experi-
ment [97].

When the electron transitions are governed by the independent interac-
tions the application of the independent electron model often yields reason-
able results. According to this model the cross section for the simultaneous
loss-excitation is evaluated as

σ = 2π
∫ ∞

0

dbbP (b), (8.1)

where the probability P (b) for the two-electron process is given by

P (b) = 2Pexc(b)Ploss(b). (8.2)

Here, Pexc(b) and Ploss(b) are the single-electron excitation and loss probabil-
ities, respectively, in a collision with a given value of the impact parameter b.

Considering transitions of a single electron, which was initially very tightly
bound by the field of a highly charged nucleus, we have already seen that
in collisions with many-electron atoms, provided the collision energy is not
too large, these transitions are caused mainly by the interaction between the
electron of the ion and the nucleus of the atom. Compared to single-electron
transitions the two-electron processes are characterized by larger momentum
and energy transfers and, thus, by even smaller impact parameters. Therefore,
when considering the simultaneous loss-excitation one can also neglect the
presence of the atomic electrons.

Thus, in the simplified picture of the ion–atom collision, sketched in the
above paragraphs, the theoretical treatment of the process of the simultaneous
loss and excitation is reduced to the finding of the single-electron transition

3 The second electron ‘tries’ to adjust its wave function to the Hamiltonian which
was ‘suddenly’ changed because of the rapid removal of the first electron which
leads to the population of excited states of the new Hamiltonian.
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probabilities within the three-body problem in which a relativistic electron is
moving in the external electromagnetic fields generated by the nuclei of the
colliding ion and atom.

In addition to the experimental data the authors of [97] also reported
results of their calculations for the simultaneous excitation-loss cross sections.
These calculations were performed by using (8.1) and (8.2) and evaluating the
single-electron transition probabilities Pexc(b) and Ploss(b) in the first order
interaction between the electron of the ion and the nucleus of the atom.

However, this two-electron process occurs at effectively very small impact
parameters, where the field of the atomic nucleus acting on the electrons of
the ion may be quite strong and where the first order results for the transi-
tion probabilities may be not very reliable. Indeed, the calculations and the
experimental data of [97] were in agreement only for collisions with Ar atoms
while for collisions with Kr and, especially, Xe target the theoretical results
of [97] very substantially overestimated the experimental data.

Recently, the problem of the simultaneous excitation and loss of the pro-
jectile electrons in collisions of 223.2 MeV u−1 U90+ ions with atoms was con-
sidered theoretically in [175]. The consideration of [175] was also based on
the independent electron model. However, in addition to using the first or-
der theory, the transition probabilities were also evaluated in [175] by using
the distorted-wave models. The results of [175] are shown in Fig. 8.7 where
they are compared with the experimental data from [97]. It is clearly seen in
the figure that, compared to the first order calculations, the distorted-wave
models are capable of a much better description of the experimental data.

8.3 Electron Loss in Collisions at Moderately High γ

Unless the range of asymptotically high energies is reached, where the higher
order and screening effects ‘saturate’ (see Sects. 8.9 and 8.11), the increase
in the impact energy diminishes the influence of the higher-order effects in
the interaction between the projectile-electron and a neutral atomic target
on the electron transitions but increases the role of the atomic electrons (the
screening effect).

In experiment of Claytor et al. [176] the loss cross section was measured
for incident 10.8 GeV u−1 (γ = 12.6) Au78+(1s) ions penetrating different
solid state targets. At this collision energy the typical impact parameters
b � bmax = γv/ωeff (v is the collision velocity and ωeff ∼ Z2

I is the averaged
transition frequency), which would give the main contribution to the cross
sections for the total electron loss in collisions with an unscreened atomic
nucleus, are already much larger than the size of the inner shells in very
heavy elements.4 This means that in collisions with very heavy targets (like

4 Although still substantially smaller than 1 a.u.
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Fig. 8.7. Total cross sections for the reactions 223.2 U90+(1s2) + Zt → U91+(n =
2, j) + e− + · · · , where j = 1/2 and j = 3/2 are the angular momentum of the
L-shell states of the hydrogen-like uranium ion. The cross sections are given as a
function of the atomic number Zt of the target atom. Circles and squares with
the corresponding error bars are experimental data for the j = 3/2 and j = 1/2
cases, respectively, reported in [97] for collisions with argon, krypton and xenon
gas targets. Dot (j = 1/2) and dash-dot (j = 3/2) curves show the cross sections
calculated with the single-electron transition probabilities obtained in the first order
of perturbation theory in the interaction between the electron and the nucleus of the
atom. Solid (j = 1/2) and dash (j = 3/2) curves display theoretical results obtained
using the symmetric eikonal approximation to estimate the excitation probability
and the CDW-EIS approximation to calculate the loss probability.

e.g. gold) the influence of the screening effect of the atomic electrons on the
electron loss process has to be taken into account and the three-body models,
used in the previous sections, should no longer be applied.

The targets used in the experiment [176] were ranging from carbon to
gold. Taking into account that the influence of the higher order effects on
the total electron loss in collisions with these targets is obviously strongest
for the gold target, the upper boundary for this influence can be estimated
by considering 10.8 GeVu−1 Au78+(1s) + Au collisions and by comparing
the first order result with that obtained by using the method described in
Sect. 6.4.5. The ‘exact’ cross section obtained in such a way turned out to be
just several percent less than the first order result.
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Simple estimates show that an impact energy of �10 GeV u−1 is not yet
sufficiently high to expect the method of Sect. 6.4.5 to be a very good ap-
proximation for considering the loss from very heavy ions like Au78+(1s). As
a result, such a comparison cannot yield a very precise description of the
change in the first order loss cross section caused by the higher order effects.

According to the first order calculation, the screening effect reduces the
loss cross section by �30% compared to the result obtained for the unscreened
atomic nucleus. In collisions with heavy atoms at this impact energy the
screening effect of the atomic electrons is obviously more important than
the higher order effects in the interaction between the electron of the projec-
tile and the nucleus of the atom. Therefore, in what follows in this section,
we shall simply restrict our attention just to the first order results.

The first order consideration is based on (5.72). In order to compare theo-
retical results with the experiment, the cross section (5.72) has to be summed
over all possible states of the target. The resulting loss cross section can be
split into the elastic (screening, m = 0) and inelastic (antiscreening, all m �= 0)
target contributions. In the gauge, where the scalar potential of the atomic
field in the rest frame of the ion is chosen to be zero, the screening part reads
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where ωk0 = εk − ε0, qI
0 = (q⊥, ωk0/v) = (qx, qy, ωk0/v), qA

0 = (−q⊥,
−ωk0/vγ). The final continuum states are normalized according to 〈ψk|ψk′〉 =
δ3(k − k′). It is implied in (8.3) and throughout the section that an averaging
over the initial and sum over the final spin states of the electron of the ion
is performed. The effective charge ZA,eff of the atom in the ground state is
defined by (5.70).

Using the closure approximation in order to sum over all excited final states
of the atom (including the atomic continuum), the antiscreening contribution
to the loss cross section can be written as
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and
qA
min,1 =

∆ε

v
+
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vγ
,

where ∆ε is the mean excitation energy for transitions of atomic electrons,
and
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is the so called incoherent scattering function. These functions are tabulated
in [177, 178] for all atomic elements. The mean energy, which is used in cal-
culations of the stopping power and is tabulated for a variety of atoms (see
e.g. [179]), has been taken as the mean excitation energy, ∆ε.

Figure 8.8 shows a comparison between the experimental data of [176] and
different theoretical results. The theoretical results include those of [84,86] as
well as results obtained by using (8.3) and (8.4).

The results of [84] are based on the theory for the projectile-electron loss
proposed in [80, 81, 84] and the semi-relativistic description of the initial and

Fig. 8.8. Cross section for the electron loss from 10.8 GeV u−1 Au78+(1s) in col-
lisions with neutral atoms of C, Al, Cu, Ag and Au. Solid circles: experimental
data from [176]. Open squares connected by dash lines: results of [84]. Open circles
connected by dot lines are results of [86]. Open triangles connected by solid lines:
results of the calculation with (8.3) and (8.4). Lines connecting the theory points
are intended just to guide the eye. For more explanations see the text.
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final electronic states in the gold ion. The results of [86] are cross section
estimates using the simple method which was briefly outlined in Sect. 5.1. In
the calculations with (8.3) and (8.4) the ground and continuum states of the
electron in Au78+ were described by the relativistic (Coulomb–Dirac) wave
functions, the atomic screening coefficients for the effective charge ZA,eff were
taken from [102].

It is seen in the figure that the results of [84, 86] are rather close to each
other and agree well with the experimental data. At the same time the results
obtained using (8.3) and (8.4) are noticeably lower than the other theoretical
predictions and the experiment.

Concerning the comparison of the different calculations, it is quite expected
that the results obtained with (8.3) and (8.4) turned out to be noticeably lower
than those of [84].5 Indeed, compared to the semi-relativistic description of
the electron, its fully relativistic treatment yields smaller loss cross sections.
Besides, the theory of [84] predicting the dependence σloss ∼ A+B ln γ largely
ignores the relativistic peculiarities (discussed in Sect. 5.9.1) in the screening
effect which also leads to an overestimation of the cross section.

What is more surprising is that the most rigorous set of theoretical data
has the largest deviations from the experimental results. The most probable
reason for this is that the calculations have been done for the projectiles
colliding with atoms whereas in the experiment the projectiles were stripped
in solids. When penetrating solids the projectile may suffer multiple collisions.
As a result, the electron transitions to the continuum states can proceed not
only directly from the ground state but also via intermediate excited bound
states. Since cross sections for the electron loss from excited states are larger
than that for the loss from the ground state, the population of the intermediate
states effectively enhances the loss process.

We shall postpone the discussion of the influence of the multiple collisions
with atoms inside solids on the charge state of the projectiles to Sect. 8.6,
where much higher impact energies are considered for which this influence is
already rather strong.

8.4 Collisions at High γ:
Electron Loss and Capture Cross Sections

In this and the next sections we consider in some detail the cases studied
experimentally in [85, 180], where a much higher collision energy was consid-
ered. In these experiments the loss and capture cross sections were measured
for Pb81+ and Pb82+ ions incident on solid and gas targets at an impact
energy of 33 TeV, where the corresponding collisional Lorentz factor is very
high (γ = 168).
5 As was discussed in Sect. 5.1, the method of [86] involves a number of approxima-

tions whose accuracy is not very clear. Therefore, it is not easy to find out why
results of this method are (or are not) in agreement with other calculations.
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Explorations of ion–atom collisions at such very high impact energies are
of special interest because during the interaction between a projectile-ion and
a target-atom both these particles can be exposed to extremely intense and
extraordinarily short pulses of the electromagnetic field.

For instance, in collisions of 33 TeV Pb81+(1s) ions Au atoms the typical
duration of the electromagnetic pulses, generated by the atoms in the rest
frame of the ions, are �10−21 s. The peak intensities of these pulses reach
∼1031 W cm−2.6 These intensities are so large that such pulses, despite the
very short interaction time, not only enable one to induce transitions between
electron states with positive energies leading to the excitation of and the
electron loss from very tightly bound Pb81+(1s) ions but also cause transitions
between negative and positive states resulting in the electron–positron pair
production with quite noticeable cross sections.

8.4.1 Electron Loss Cross Sections

In Fig. 8.9a shown are experimental data from [180] on the electron loss cross
sections measured for 33 TeV Pb projectiles (γ = 168) which were penetrating
three gas targets (Ar, Kr and Xe). The loss cross sections were measured for
the ‘ionization’ scenario, in which the incident projectiles were Pb81+(1s) ions.
These cross sections were also obtained in the ‘capture’ scenario, in which a
beam of initially bare Pb82+ nuclei was traversing the same targets: in the
latter case the electron had to be captured into a bound state of the projectile
before it could be lost in a consequent collision. The experimental loss data
extracted in both scenarios are rather close to each other.

Figure 8.9a also shows results of calculations for the loss from 33 TeV
Pb81+(1s) projectiles for a more extended set of atomic targets (Be, C, Al,
Ar, Cu, Kr, Ag, Sn, Xe and Au). These calculations were performed by using
(8.3) and (8.4) in which the initial and final electron states were described by
the Coulomb–Dirac wave functions.

In addition to the results, already shown in Fig. 8.9a, 8.9b contains also
experimental data from [85] as well as theoretical results from [84] for the
electron loss from the ground state of the hydrogen-like lead ions. In the ex-
periment of [85] beams of incident 33 hydrogen-like (‘ionization’ scenario) and
bare (‘capture’ scenario) lead ions were penetrating solid state targets. The
figure presents results for the loss cross sections extracted from the measure-
ments carried out in both scenarios.

Two main conclusions can be drawn from the Fig. 8.9. First, according to
Fig. 8.9a, there is a good agreement between the experimental data obtained
for the gaseous targets and the results of the calculation using (8.3) and (8.4).
Second, the experimental loss cross sections measured in collisions with solid

6 These field parameters may be compared with the parameters of state of the art
laser systems whose shortest pulse lengths are about ∼10−16–10−15 s and whose
peak intensities do not exceed ∼1021–1022 W cm−2.
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Fig. 8.9. Cross sections for the electron loss from 33TeV Pb81+(1s) projectiles. (a)
Circles represent experimental data from [180] on the electron loss in gas targets (Ar
(ZA = 18), Kr (ZA = 36) and Xe (ZA = 54)) where the open and solid symbols refer
to the ‘ionization’ and ‘capture’ experimental scenarios, respectively. Up triangles
connected by guiding solid line are results of the calculation with (8.3) and (8.4)
for ZA = 4, 6, 13, 18, 29, 36, 47, 50, 54 and 79. (b) Circles and up triangles: same
as in the part (a) of the figure. Squares show the experimental data from [85] on
the electron loss in solid state targets (Be, C, Al, Cu, Sn and Au). Down triangles
connected by guiding dash line display theoretical results of [84]. Note that both in
(a) and (b) the open and solid symbols denoting the experimental data refer to the
‘ionization’ and ‘capture’ experimental scenarios, respectively. See the text for more
explanations.

targets are substantially larger that those obtained for gas targets. Besides,
concerning the two theoretical calculations presented in the figure, one has to
note that at this very high impact energy the results of [84] are already about
a factor of 2 larger than those of the more rigorous treatment (and, thus, the
difference is even much more pronounced than for the loss from 10.8 GeV u−1

Au78+(1s)).

8.4.2 Electron Capture from Pair Production

In the Dirac sea picture the electron–positron pair production is considered as
a transition of a negative-energy electron into a state with a positive energy.
If this final state is in the continuum, the process is termed as free pair pro-
duction. The final state can also be a bound state of the ion which means that
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the electron is created directly in the bound state changing the net charge of
the ion. Such a process is called bound-free pair production.

In contrast to the free pair production, not much attention has been paid
to this process until the eighties when it had began to attract great interest.
The latter was caused, in particular, because of the importance of this process
for the design and operation of relativistic heavy-ion colliders.7

The pair production processes have been considered in very many papers.
For detailed discussions of the different aspects of these processes occurring in
collisions between bare nuclei one can refer, for instance, to [3,5,75,182–184]
where also many references to original papers can be found. In particular,
starting with the first studies [185,186] the bound-free pair production in high-
energy nuclear–nuclear collisions has been a subject of extensive theoretical
research.

There have also been several experimental studies on the bound-free pair
production, in which the total cross sections for this process were reported
[85,180,187–190]. In these experiments bare ions (La57+, Au79+, Pb82+, U92+)
were incident on solid foils of different chemical elements ranging from beryl-
lium to gold. In these experiments also a very broad interval of impact energies
was considered starting with relatively low energy collisions (∼0.5 GeV u−1)
up to extreme relativistic collisions (∼160 GeV u−1 Pb82+).

Ions penetrating foils ‘see’ atomic nuclei surrounded by electrons and the
process of the pair production may be better regarded as occurring in collisions
with neutral atoms rather than with the bare atomic nuclei. In ion–atom
collisions the bound-free pair production may be influenced by the presence
of atomic electrons. Since this influence increases when the impact energy
increases, below we shall restrict our attention to the discussion of the bound-
free pair production by incident 33 TeV Pb82+ ions.

Taking into account the close analogy between the projectile-electron exci-
tation/loss and the pair production, which was briefly discussed in Sect. 5.13,
the cross section for the pair production occurring in ion–atom collisions can
be calculated using the straightforward modifications of (8.3) and (8.4). For
instance, within the elastic atomic mode the cross section for the pair produc-
tion in the rest frame of the ion is given by
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7 If an ion in a beam circulating in a storage ring decreases its charge (because of
the electron capture) it may be lost from the beam. Contrary to other processes,
which also lead to the electron capture, the cross section for the bound-free pro-
duction does not decrease when the impact energy increases. Therefore, at ex-
treme relativistic impact energies it becomes the main mechanism in the electron
capture process setting limits on the beam’s luminosity and lifetime [76].
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Fig. 8.10. Cross sections for the electron capture from the pair production in colli-
sions of 33TeV Pb82+ projectiles with gas and solid state targets given as a function
of the target atomic number. (a) Open circles are experimental data from [180] for
collisions with Ar, Kr and Xe gas targets. Solid triangles connected by solid curve are
results of the calculations for collisions with atoms having atomic numbers ZA = 4,
6, 13, 18, 29, 36, 47, 50, 54 and 79. Open triangles connected by dash curve are
results for the pair production in collisions with the bare atomic nuclei. The curves
are just to guide the eye. (b) Open circles and solid triangles connected by solid
curve represent the same results as in (a). Solid circles are data from [85] obtained
for collisions with solid state targets (Be, C, Al, Cu, Sn and Au). From [191].

where ψ0, as before, refers to a bound state of the electron having a total
energy ε0 but now ψ

(p)
k is an outgoing continuum state of the positron with

a momentum k and total energy εk > 0, the transition frequency is given by
ωk0 = εk + ε0 and the minimum momentum transfer in the rest frame of the
ion reads qI

min,0 = ωk0/v.
In Fig. 8.10 we show results for the total cross section for the electron cap-

ture via the pair production by 33 TeV Pb82+ projectiles incident on different
targets. At this very high impact energy the pair production represents the
main capture mechanism: its contribution to the capture amounts from �60%
in collisions with Be atoms up to �96% in collisions with Au atoms. Exper-
imental data for these cross sections were reported in [85, 180] for collisions
with solid state and gas targets, respectively.

The theoretical cross sections shown in the figure were obtained using (8.6)
and also the analog of (8.4) for the pair production. These cross sections were
calculated in [191] using the Coulomb–Dirac wave functions for the states of
the electron and positron. In the rest frame of the ion the energy spectrum
of the positrons extends to tens of mc2. Such positrons carry in general a big
amount of angular momentum which makes it necessary to take into account



220 8 Cross Sections and Comparison with Experiment

continuum states with large values of the angular quantum number κ.8 The-
oretical results shown in the figure were obtained by directly integrating over
the interval of the total positron energies [mc2; 30mc2] and summing over the
positron angular momenta corresponding to κ ≤ κmax = 30. The contributions
from the positron states with higher energy and/or larger κ were evaluated
by an extrapolation. The capture cross sections were calculated to all bound
states with the principal quantum number n ≤ 6. According to our estimates,
the capture into the states with larger n is negligible and can safely be ne-
glected. In the figure only the total capture cross section is displayed.

Calculations in the light-cone approximation show that the pair production
in collisions between 33 TeV Pb82+ and atoms ranging between Be and Au
can be well described within the first order theory in the interaction between
the lepton transition current and the field of the atom. The reasons for this
are the very high values of the impact energy and of the projectile charge
so that even such a heavy atom like gold still represents an effectively weak
perturbation.

The calculations for the capture cross section were done assuming the
single-collision condition. Therefore, they should be first of all compared with
the experimental results obtained for collisions with gas targets. Such a com-
parison is shown in Fig. 8.10a where a good agreement is seen between the
experiment and theory. Moreover, in contrast to the experimental loss cross
sections, the experimental capture cross sections in collisions with both solids
and gases fall on the same curve. Therefore, in contrast to the calculated loss
cross sections, the calculated cross sections are in agreement also with the
experimental data for solid targets.

Comparing calculated results for the pair production with neutral atoms
and the corresponding bare atomic nuclei we see that the atoms are more
effective at smaller values of ZA. This reflects the relative importance of the
contribution from the antiscreening mode. In the case of collisions with atoms
having small ZA the antiscreening overcompensates a small decrease in the
cross section caused by the screening of the atomic nucleus by the atomic
electrons inherent to the elastic atomic mode. For heavy targets the screening
effect becomes stronger while the antiscreening contribution decreases (in rela-
tive terms) which leads to the reduction of the capture cross section compared
to the case with the bare nuclei.

Compared to the electron loss, the pair production with capture involves
much larger momentum transfers. Therefore, the screening effect of the atomic
electrons is much weaker. For instance, for the pair production in collisions of
33 TeV Pb with Be and Au atoms this effect reduces the cross section for the
capture to the ground state by about 5% and 24%, respectively.

Note also that the magnitude of the screening effect obtained in the cal-
culations, which employ the exact Coulomb–Dirac wave functions, turns out

8 The quantum number κ is an eigenvalue of the operator defined in (4.54), see
Sect. 4.3.
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to be somewhat larger compared to that reported in the calculation of [192],
where the Darwin and Furry wave functions were used. This increase can be
attributed to the fact that, compared to the semi-relativistic, the fully rela-
tivistic treatment of the pair production predicts an enhancement in the emis-
sion of positrons with the intermediate energies (∼1–20mc2 in the rest frame
of the ion), whereas according to the semi-relativistic description there should
be more positrons with higher energies. Since the creation of more energetic
positrons implies larger values of the momentum transfers in the collision, the
screening effect tends to be weaker in the semi-relativistic consideration.

The magnitude of the screening effect for the pair production may be
compared to the corresponding reduction by a factor of about 1.4 and 2 due
to the screening effect of the atomic electrons in the elastic target mode in
the case of the electron loss from the ground state of Pb81+ in collisions
with the same atoms. It is obvious that such large differences in the magnitude
of this effect are caused by the fact that, compared to the electron loss process,
the pair production involves much larger momentum transfers (or, in other
words, proceeds at much smaller impact parameters).

8.5 Screening Effects in Free–Free Pair Production

Compared to the bound-free pair production, the free (or free–free) electron–
positron pair production, in which both the leptons are created in the con-
tinuum states, involve larger momentum transfers. Therefore, if this process
occurs in collisions between a nucleus and a neutral atom, one may expect
that the screening effect of the atomic electrons should be smaller.

The value of this effect was estimated in [75] by using the Weizsäcker–
Williams approximation of equivalent photons [88, 89]. The main conclusions
of [75] were: (a) the screening effect is important at all energies (where the
Weizsäcker–Williams approximation is valid) reducing the free pair production
by at least a factor of 1.5–2 and (b) the screening effect decreases when the
collision energy increases.

Both the size and the energy dependence of the screening effect predicted
in [75] were rather unexpected. They were not confirmed by a later theoret-
ical study performed in [193]. In the latter paper the free pair production in
nucleus-atom collisions was also calculated in the lowest order of perturba-
tion theory (but without using the Weizsäcker–Williams approximation). The
authors of [193] found that the screening effect increases with increasing the
collision energy and, unless one considers extreme high impact energies, is
rather modest.

In particular, the reduction of cross sections by the screening effect found in
[193] is substantially lower compared to what we discussed for the bound-free
pair production. According to [193] in Au79+ on Au0 collisions the screening
effect reduces the cross section for the free pair production by 4.5% at a
collision energy of E = 200 GeVu−1, by 13.5% at E = 2 TeV u−1 and by
31.4% at E = 200 TeV u−1.
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8.6 Charge States of 33 TeV Pb Projectiles Penetrating
Solid Targets: Multiple Collision Effects

As we have seen in Sect. 8.4, the theoretical results for the projectile-electron
loss cross sections agree quite well with the experimental data obtained for
collisions with gas targets but substantially underestimate the experimental
data reported for collisions with solid state targets.

A possible reason for this might be excitations suffered by the projectiles
when they penetrate solids. Compared to the cross section for the loss from
the ground state, the cross sections for the loss from excited states are larger.
Therefore, if the beam of the hydrogen-like projectiles can attain, due to
collisions with atoms of the foil, a noticeable fraction of excited-state ions, the
cross section for the electron loss from such a beam may effectively become
larger.

Yet, for quite a long time such a possibility was not considered seriously.
Indeed, in the high-energy experiments [85, 180] quite noticeable differences
between the loss cross sections measured in gases and solids were found already
for collisions with light elements (see Fig. 8.9). However, according to the
experience (see e.g. [198]) which was gained in the investigations of relativistic
collisions at comparatively low energies, excitations of very heavy hydrogen-
like ions inside thin foils of relatively light elements were expected to have no
substantial impact on the electron loss process.

The reasons for this expectation were: (i) in such collisions the excitation
cross sections are quite small and (ii) the lifetimes of the excited states of
such ions with respect to the radiative decay are very short. Both (i) and
(ii) certainly play not in a favor of the role of the excitations. In particular,
these two points strongly diminish the possible role of the excitations of the
heavy ions compared to the case when much lighter projectile-ions would be
involved. Moreover, even in the latter case the effect caused by the excitations
was quite noticeable but not dramatic.9

The different aspects of the penetration of fast ions through solids have
been studied for several decades [195,196]. In particular, there has been quite
an extensive research, both experimental and theoretical, aimed at exploring
the influence of solid state effects on the charge states of and the electron emis-
sion from energetic ions penetrating solid targets and the differences between
the processes of the penetration of solid and gas targets (for recent references
see [194, 197–203]). One has to note, however, that all these studies dealt
with the domain of relatively low impact energies where the corresponding
collisional Lorentz factor was still rather close to 1 (�1.5).10

9 For instance, in the experimental–theoretical study [194] on 200 MeV u−1

Ni27+(1s) ions incident on gaseous and solid targets it was found that the fraction
of the ions excited inside the solids is about 5–6%.

10 We let apart numerous papers which explore various aspects of the penetration
of high-energy ions through a crystal where a periodic structure of the crystal has
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In order to clarify the reasons for the substantial differences between the
calculated and experimental cross sections observed in Fig. 8.9b a detailed
theoretical analysis was performed in [208] for the electron loss from 33 TeV
Pb81+(1s) and Pb82+ ions incident on Al and Au foils, respectively. In this
section we shall follow this analysis.

The consideration of the change in the charge states of the projectiles, per-
formed in [208], assumes that the foil materials are amorphous (not crystals)
and consists of two main steps.

First, the basis of the consideration is represented by calculations of cross
sections for the projectile-electron excitation (de-excitation) and loss occur-
ring in the ion–atom collisions. Cross sections for the bound-free pair pro-
duction are also calculated. In all these calculations the Dirac–Coulomb wave
functions are employed to describe bound and continuum states of the electron
(and the positron) in the field of the bare lead nucleus. The ion–atom inter-
action is described in the first order approximation with taking into account
the shielding of the atomic nucleus by the atomic electrons. The antiscreening
contributions of the atomic electrons to these processes is included as well.

In addition to the electron capture via the pair production, the radiative
and kinematic capture channels are also considered [208]. At this very high
impact energy the radiative capture, whose cross section scales as 1/γ at
γ � 1, is much weaker than the bound-free pair production: in collisions
with aluminum and gold atoms the radiative capture cross section, compared
to the capture cross section via the pair production, is smaller roughly by a
factor of 5 and 30, respectively. The kinematic capture is even weaker than
the radiative one and can simply be neglected.

Besides, within the basic atomic physics analysis, rates for the spontaneous
radiative decay of excited hydrogen-like lead ions to all possible internal states
with lower energies are also calculated [208].

The second step of the consideration consists of solving kinetic equations.
These equations describe the population of the internal states of the ion in-
side the foil given as a function of time t or of the ionic coordinate z = vt
inside the foil (z and t are measured in the laboratory frame, v = (0, 0, v) is
the projectile velocity). These equations read

dP0

dt
= − P0

τ capt
+

Nmax∑
j=1

Pj

τ loss
j

,

dPj

dt
=

P0

τ capt
j

− Pj

τ loss
j

− Pj

i<j∑
i=1

1
τ sp
j→i

−Pj

Nmax∑
i=1(i�=j)

1
τj→i

+
Nmax∑

i=1(i�=j)

Pi

τi→j
. (8.7)

a very profound effect on the projectile charge states and the electron emission
(for recent references see [204–207]).
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Here, P0 is the number of the bare ions, Pj is the number of the lead ions
with one electron in the jth internal state (j = 1, 2, .., Nmax) and Nmax is
the total number of the involved bound states. Further, τ capt

j is the mean
time for the electron capture into the jth state, τ capt is the mean time for the
electron capture into any state

(
1/τ capt = 1/τ capt

1 + 1/τ capt
2 + ...

)
, τ loss

j is the
mean time for the electron loss from the state j into the continuum, τj→i is
the mean time for the collision induced transition from the internal state i to
the internal state j and τ sp

j→i is the lifetime of the state j with respect to the
spontaneous radiative transition to any possible state i.

Note that the beam losses due to the nuclear reactions are not included in
(8.7). Although cross sections for such losses are per se even somewhat larger
(see [85,180,213]) than the corresponding capture cross sections, these losses,
as calculations show, start to affect the populations P0 and Pj at much larger
foil thicknesses than those which are considered below.

The elementary cross sections and spontaneous decay rates obtained dur-
ing the first step of the consideration enable one to get the above mean
excitation/de-excitation loss and capture times in the usual way. For instance,
τ sp
j→i = γ/Γ sp

j→i where Γ sp
j→i is the spontaneous decay rate for the transition

j → i calculated in the rest frame of the ion and γ = 1/
√

1 − v2/c2 is the
collision Lorentz factor, and τ loss

j = 1/
(
naσ

loss
j v

)
, where σloss

j is the cross sec-
tion for the electron loss from the jth internal state of the ion and na is the
atomic density of the target.

8.6.1 Fraction of Hydrogen-Like Ions

In the case of 33 TeV Pb81+(1s) ions incident on a gold foil calculated results
for the fraction of the hydrogen-like lead ions, Ph =

∑Nmax
j=1 Pj , which were

obtained in [208], are shown in Fig. 8.11. The dash curve corresponds to the
situation when all bound states with the principal quantum numbers n larger
than 1 were ignored in the analysis, the dot curve displays the results obtained
when only the bound states with n = 1 and n = 2 were taken into account,
and so on. It is seen in the figure that the inclusion of the excited states into
the analysis reduces the calculated values for the fraction of the hydrogen-like
lead ions. This reduction is caused by the fact that, compared to the ground
state, the excited states are characterized by larger loss cross sections.

Normally excited states in such very heavy ions like Pb81+ do not play a
noticeable role in the loss process, in particular, because of the spontaneous
radiative decay of these states, which is very strong. In the case under consid-
eration, however, the situation drastically changes because of the relativistic
time dilatation. The latter effectively increases by a factor of ≈170 the life-
time of the excited states with respect to the radiative decay. As a result, the
population of the excited states very substantially increases having a much
stronger impact on the charge states of the projectiles.

Note also that for 33 TeV Pb projectiles the capture cross sections are
about three orders of magnitude smaller than the loss and excitation cross
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Fig. 8.11. The fraction of the hydrogen-like ions given as a function of the target
thickness for 33 TeV Pb81+(1s) projectiles incident on a gold foil. The different
curves correspond to taking into account different numbers of bound states in the
theoretical analysis. Dash curve: only states with the principal quantum number
n = 1 are included. Dot curve: the states with n = 1 and n = 2 are included.
Dash–dot curve: states with n = 1–3 are included. Dash–dot–dot curve: states with
n = 1–4 are included. Short-dash curve: states with n = 1–5 are included. Circles:
experimental data from [85]. For more explanations see the text. From [208].

sections. Therefore, under the conditions of the ‘ionization’ experiment
(P1s(t = 0) = 1, Pj �=1s(t = 0) = 0) the capture may become important only
if rather thick foils are used in which the dynamical equilibrium is effectively
reached for the transitions between the bound and continuum states. This is
not the case under the conditions of Fig. 8.11 where, according to the theoreti-
cal analysis of [208], the electron capture channels play just a very minor role.

In Fig. 8.11 the theoretical results are also compared with the experimen-
tal data measured in [85]. It is seen that the inclusion of the excited states
in the theoretical analysis results in a noticeably better agreement with the
experiment.

Data, similar to those displayed in Fig. 8.11 but obtained for the case
of 33 TeV Pb82+ projectiles incident on a gold foil, are shown in Fig. 8.12.
We again observe that the inclusion of the excited states into the theoretical
analysis leads to the reduction of the calculated results for the fraction of the
hydrogen-like ions and yields a better agreement with the experimental data.

8.6.2 Effective Loss Cross Section

In addition to the data on the fractions of the hydrogen-like ions, the authors
of [85] presented also values for the loss and capture cross sections. It is
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Fig. 8.12. Same as in Fig. 8.11 but for the case of 33 Pb82+ bare nuclei incident on
a gold foil. Circles: experimental data from [85]. Curves: results of [208]. From [208].

important to keep in mind, however, that the ion fractions, given as a function
of the foil thickness, were the only data which had been directly measured in
the experiment [85].

Values for the loss cross sections, which were reported in [85] and which
are shown in Fig. 8.9, were obtained in [85] by fitting the measured data for
the fraction of the hydrogen-like ions using solutions of the two-charge-state
model. This very simplified model considers just two populations, the popu-
lation of the bare ions and that of the hydrogen-like ions without separating
the latter ones over their internal states. The capture and (effective) loss cross
sections were considered in this model as independent of the foil thickness.

Indeed, by replacing in (8.7) the coefficients Pj by their sum the system
of equations (8.7) can formally be reduced to merely two equations

dP0

dt
= − P0

τ capt
+

Ph

τ loss
eff

,

dPh

dt
=

P0

τ capt
− Ph

τ loss
eff

. (8.8)

Here

Ph =
Nmax∑
j=1

Pj (8.9)

is the total population of the bound states,

τ loss
eff =

1
naσloss

eff v
(8.10)
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and

σloss
eff =

∑Nmax
j=1 Pjσ

loss
j∑Nmax

j=1 Pj

(8.11)

is the effective loss cross section.
In [85] the system of two equations (similar to (8.8)) was considered as-

suming that the corresponding cross sections are independent of the thickness
of the target foil. This assumption enabled the authors of [85] to get analyt-
ical solutions for P0 and Ph. For instance, in the ‘ionization’ scenario such
solutions read

P0(t) =
σloss

eff

σc + σloss
eff

(1 − exp(−t/T )),

Ph(t) =
σc

σc + σloss
eff

+
σloss

eff

σc + σloss
eff

exp(−t/T ),

where σc is the total capture cross section (i.e. the sum of the capture cross
sections to all bound states) and T = τ captτ loss

eff /
(
τ capt + τ loss

eff

)
. However, the

above solutions, of course, are sensible only if the effective loss cross section,
given by (8.11), can indeed be well approximated as independent of time and
thus of the target thickness.

In Fig. 8.13 results are shown for the effective loss cross section calculated
in [208] for 33 TeV u−1 Pb81+(1s) (Fig. 8.13a) and Pb82+ (Fig. 8.13b) ions
incident on an aluminum foil. It follows from the figure that the calculated
value of the effective loss cross section in general depends on (a) the number
of bound states involved in the analysis, (b) the target thickness and (c) it
may be quite sensitive to the scenario (‘ionization’ or ‘capture’) used in an
experiment.

In Fig. 8.14 results are shown for the effective loss cross section calculated
for 33 TeV Pb81+(1s) and Pb82+ projectiles incident on a gold foil. The above
conclusions drawn from Fig. 8.13 for the electron loss under the penetration
of the aluminum foil are also valid in the case of the gold foil. At the same
time, there are also important differences between these two cases. First, the
changes in the effective loss cross section, which occur when one allows for
more bound states in the theoretical analysis, are accumulating at a different
pace. The largest change in the effective cross section now comes from the
inclusion of the states with n = 2 and with further addition of bound states
the effective cross section converges faster. Second, the total influence of the
excitations on the effective loss cross section in collisions with the gold foil
turns out to be even larger. All this is caused by the fact that in collisions with
atoms of gold, which are much heavier and therefore are a source of the much
stronger field acting on the ion, all the elementary collision cross sections are
much larger whereas the radiative decay rates remain exactly the same.

Summarizing the above consideration one can conclude that the use of the
simplified two-state model in [85] had, in fact, introduced quite a substantial
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Fig. 8.13. The effective cross section (8.11) for the electron loss from 33 TeV lead
projectiles penetrating an aluminum foil: (a) incident Pb81+(1s) ions; (b) incident
Pb82+ ions. The cross section is given as a function of the foil thickness. The different
curves correspond to taking into account different numbers of bound states in the
analysis. Solid curve: bound states with n = 1. Dash curve: n = 1 and n = 2. Short
dash curve: n = 1–3. Dash–dot curve: n = 1–4. Dash–dot–dot curve: n = 1–5. Dot
curve: n = 1–6. From [208].

Fig. 8.14. Same as in Fig. 8.13 but for 33 TeV lead projectiles penetrating a gold
foil. From [208].
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error into the values of the loss cross sections reported there. This also explains
the very substantial deviations between the theoretical and experimental re-
sults for the loss cross sections observed in Fig. 8.9b.

8.7 Differential Loss Cross Sections
in Collisions at High γ

In general, much more information about the projectile-electron loss process
can be obtained by considering differential loss cross sections. Energy spec-
tra of electrons, emitted when extreme relativistic highly charged projectiles
penetrate matter, possess important information about the collision physics
and represent the very topic of this section.

Results of the first (and, up to now, the only) measurement of the spectrum
of electrons emitted by 33 TeV (γ = 168) lead projectiles penetrating thin foils
were reported in [209] (see also [181]). Having in mind these experimental
results, in this section we restrict our attention to projectiles with γ = 168.
Our consideration will be based on the first order theory in the projectile–
target interaction. Electrons emitted in such collisions from the target atoms
will not be taken into account since they do not really contribute to the range
of electron energies considered below.

8.7.1 Energy Spectra of Electrons Emitted by Projectiles
Under the Single-Collision Conditions

In this subsection we shall discuss spectra of electrons emitted from relatively
light and very heavy hydrogen-like projectiles, which move with velocities
corresponding to γ = 168 and collide with neutral atoms of aluminum. We
shall assume that the single-collision conditions are fulfilled which corresponds
to the projectiles penetrating gas targets or extremely thin solid foils. The
first order perturbation theory for treating the loss process in such collisions
is justified and will be used below.

In order to obtain the differential cross section in the laboratory frame KA

it is convenient to calculate first the differential cross section in the rest frame
KI of the projectile ion. Then, by using the relation d2σ′

dε′dΩ′ = k′
k

d2σ
dεdΩ (compare

with formula (4.20)) one can transform the results into the laboratory frame.
In these expression ε, k, dΩ and d2σ

dεdΩ are the total energy of the electron, the
absolute value of the electron momentum, the solid electron emission angle
and the cross section, respectively. The primed and unprimed quantities refer
to the laboratory and projectile frames, respectively.

Figure 8.15a shows the cross section differential in energy in the labo-
ratory frame for the electron loss from the Pb81+ projectiles colliding with
Al atoms. The following main features of the calculated spectrum can be
noted. First, the electron energy distribution has a maximum at an electron
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Fig. 8.15. Cross section differential in energy for the electron loss from 160 GeV u−1

Pb81+(1s) colliding with Al atoms. The cross section is given in the laboratory frame,
where the atoms are at rest. (a) Calculations of [210]. (b) Full curve: experimental
results of [209] which we normalised according to the total cross section for the
electron loss from 33 TeV Pb81+ colliding with Al solid target reported in [85]; dashed
curve: our calculation; dotted curve: the Compton profile of Pb81+(1s) mapped into
the laboratory frame [209]. From [210].

energy ε′max = mc2γ which corresponds to the emitted electron moving with
a velocity equal to the velocity of the projectile. Second, this distribution
is asymmetric with the majority of the lost electrons having energies lower
than ε′max. Third, the width of the distribution is much larger (about a factor
2.5–3) than it was measured experimentally in [209] for 33 TeV Pb81+ pro-
jectiles penetrating an aluminum foil (Fig. 8.15b). Fourth, this distribution
also differs rather strongly from that calculated in [209] (see Fig. 1b) where,
as the authors of [209] state, a Pb81+(1s) Compton profile was mapped into
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Fig. 8.16. Doubly differential cross section for the electron emission from
160 GeV u−1 Pb81+ colliding with Al atoms. The cross section is given in the projec-
tile frame as a function of the electron emission angle for several electron energies.
The zero angle corresponds to the direction of the velocity of the incident atom.
From [210].

the laboratory frame assuming that the angular emission distribution in the
projectile frame is of a dipole form.

In order to obtain some insight into the origin of the shape of the cal-
culated loss peak in the laboratory frame, results for the double differential
loss cross sections for 160 GeVu−1 Pb81+ in the projectile rest frame are
shown in Fig. 8.16. The following points are worth to mention. First, the an-
gular distribution of the emitted electrons in the projectile frame is rather
asymmetric: the main part of the electrons in this frame is emitted into the
forward semi-sphere (in the direction of the motion of the incident neutral
atom). The angular asymmetry in the emission increases with increasing the
electron kinetic energy. Second, the number of the emitted electrons rapidly
decreases with increasing this energy and the main part of the emitted elec-
trons has kinetic energies not substantially higher than the electron binding
energy (≈0.2mc2 in Pb81+).
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The first point allows one to understand the asymmetry in the electron
energy spectra in the laboratory frame: since the majority of the electrons in
the projectile frame is emitted in the direction of the motion of the incident
atom then the main part of the electrons in the laboratory frame has energies
which are less than ε′max = mc2γ. The second point states that a consider-
able part of the emitted electrons in the projectile frame has relatively low
kinetic energies and this makes it clearer why the electron spectrum in the
laboratory frame has a maximum near ε′max = mc2γ. In addition, the fact
that the main part of the emitted electrons has low energies in the rest frame
of the projectile shows that the Compton profile of Pb81+(1s) is not a rele-
vant physical quantity for the loss process. The Compton profile of an initial
state would be reflected directly in the ionization (loss) spectra only if the
electron would be ejected mainly in collisions where the momentum transfer
to the electron (in the projectile frame) is large compared to the typical elec-
tron momentum in the initial bound state. This would lead to the population
of high-energy continuum states of the ion which could be approximated by
plane waves. As a result, the Compton profile of the initial state would follow
from the corresponding transition matrix elements. However, since, accord-
ing to Fig. 8.16, the emitted electrons have relatively low energies, the above
scenario is certainly not the case here.

As a typical example of the electron loss from relatively light ions, let us
now consider the electron loss from 160 GeV u−1 S15+ colliding with Al atoms.
The electron loss spectrum in the laboratory frame is displayed in Fig. 8.17.
One can note two main differences between the spectra displayed in Figs. 8.15a
and 8.17. First, the width of the energy distribution of the electrons emitted
from the sulphur ions is much smaller than that shown in Fig. 8.15a. Second,
the spectrum given in Fig. 8.17 is more symmetric compared to that shown in
Fig. 8.15a.

The origin of these differences can be found by inspecting the double dif-
ferential loss spectra in the rest frame of the projectile which are shown in
Fig. 8.18. Similarly to the loss from the Pb81+ ions the number of the emitted
electrons rapidly decreases with increasing electron kinetic energy. Again the
main part of the emitted electrons has kinetic energies smaller or of the order
of the initial binding energy of the electron. Since now this energy (≈3.5 keV)
is much less than that in Pb81+ (≈100 keV) the spectrum of the electron emit-
ted from 160 GeVu−1 S15+ is much narrower in energy than that originating
from 160 GeV u−1 Pb81+. In Fig. 8.18 one also sees that the angular spectra of
the emitted electrons are nearly symmetrical in the rest frame of the projectile
with respect to the direction θ = π/2 and that this is the case for the whole
range of emission energies of importance which gives practically all the con-
tribution to the total loss. This is in contrast to the angular spectra displayed
in Fig. 8.16. The reason for this contrast is the following. The energy and
minimum momentum which are transferred to the ion in an ultrarelativistic
collision are related by qmin = εk−ε0

c , where one has εk − ε0 ∼ Z2
I for the

majority of electrons emitted from the ions with a charge ZI. For light ions
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Fig. 8.17. Cross section differential in energy for the electron loss from 160 GeV u−1

S15+ colliding with Al atoms. The cross section is given in the laboratory frame,
where the atoms are at rest. From [210].

one has qmin/kz ∼ ZI/c � 1, where kz ∼ ZI is the typical absolute value for
the z-component of the momentum of the emitted electron. A similar relation
also holds between the absolute value of the transverse momentum transfer
q⊥ and the typical absolute value of the transverse component of the electron
momentum. Therefore, in the case of the emission from light ions the electron
momentum is balanced mainly by the recoil of the residual ion resulting in
dipole-like angular spectra in the rest frame of the ion [211]. For very heavy
ions, where ZI ∼ c, typical values of the momentum transfers to the ion are
already rather close to typical values of the momentum of the emitted elec-
tron in the ion frame. Therefore, the emitted electron momentum is no longer
balanced by the recoil of the residual nucleus and the angular spectra show
considerable shifts to angles less than π/2.

The nearly symmetrical shape of the loss spectra in the rest frame of the
projectile for light projectiles is reflected in the electron loss spectrum in the
laboratory frame resulting in a nearly symmetrical distribution of the electron
energies with respect to the ‘central’ energy ε′max = mc2γ (Fig. 8.17).
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Fig. 8.18. Doubly differential cross section for the electron emission from
160 GeV u−1 S15+ colliding with Al atoms. The cross section is given in the pro-
jectile frame as a function of the emission angle for several kinetic energies of the
emitted electron. The zero angle corresponds to the direction of the velocity of the
incident atom. From [210].

8.7.2 The Spectrum of Electrons Emitted by 33 TeV Lead Ions
Penetrating Thin Foils. The Role of Excited States
of the Projectile

As was already mentioned, the first experimental results on the spectra of
electrons emitted by ultrarelativistic heavy ions were reported in [209]. In
that experiment beams of incident 33 TeV Pb81+(1s) and 33 TeV Pb82+ ions
were penetrating Al and Au foils, respectively. In both cases it was found that
the penetration is accompanied by the emission of ultrarelativistic electrons
whose energy distributions have the form of a cusp with a maximum at an
energy corresponding to the electrons moving in the laboratory frame with
velocities equal to that of the ions.
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One of the interesting results reported in [209] was that the measured
distribution of the high-energy electrons produced under the bombardment
of an aluminum foil by the incident Pb81+(1s) ions was found to be much
narrower than it was expected [209]. Indeed, as seen in Fig. 8.15, the electron
spectrum calculated assuming the single-collision conditions turns out to be
much broader than that observed in the experiment [209].

Another intriguing finding of [209] was that for 33 TeV Pb82+ ions incident
on a gold foil the shape of the measured energy distribution of high-energy
electrons emerging from the foil was very similar to that obtained for the
beam of 33 TeV Pb81+(1s) ions incident on the Al foil.

Since it is well known, that the form of the electron emission spectrum
depends on the bound state from which the electron leaves the ion, it was
speculated in [209] that in the case of the incident 33 TeV Pb82+ ions the very
narrow shape of the electron cusp might be a signature of the electron capture
into excited states. However, for the Pb81+(1s) ions incident on the Al foil
the possible influence of excited states of these ions on the electron cusp was
not considered seriously.11

In this subsection we shall follow the consideration of the electron energy
spectra given in [212]. Similarly to the two-step consideration for the charge
states of the projectiles, which was described in Sect. 8.6, this consideration
assumes that the foil materials are amorphous and is based on the calcula-
tions of the total and differential cross sections. Besides, it includes also some
analysis of the passage of the emitted high-energy electrons through the foils.

Once the functions Pj(z) entering (8.7) are known, the (preliminary) esti-
mate for the energy spectrum of the electrons emitted from the ion traversing
a solid foil of a thickness L is given by [212]

dne

dεp
= na

Nmax∑
j=1

dσloss
j

dεp

∫ L

0

dzPj(z), (8.12)

where εp is the total electron energy in the laboratory frame and dσloss
j

dεp
is the

energy distribution of the electrons emitted from the internal state j.
The third step of the consideration deals with the transport of the emitted

electrons through the foil. The detailed analysis of this step represents in gen-
eral quite a delicate task but in the case under consideration is substantially
simplified by the fact that the electrons leaving the ions have in the labora-
tory frame extremely high values of energy. There are two main effects which
can influence the shape of the electron energy distribution when the electrons
penetrate the foil.

The first concerns energy losses of the ultrarelativistic electrons traversing
the foil. These losses are caused by (a) the excitation of the electrons of the
foil and (b) the emission of the radiation by the ultrarelativistic electrons
11 Because of the reasons which were already mentioned in the discussion of the

projectile charge states in Sect. 8.6.
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because of their acceleration during the interactions with the atoms in the
foil. However, for the foil parameters used in the experiment [209] the energy
losses can simply be ignored because they are very small (� 0.5%) compared
to the initial energies of these electrons [212].

The second effect which may possibly influence the shape of the measured
energy distributions is that collisions in the foil broaden the distribution of
the ultrarelativistic electrons along the transverse components (px, py) of their
momenta. For the foil parameters used in [209], the multiple collisions suffered
by the ultrarelativistic electrons inside the foil substantially increase the width
of their (px, py)-distribution compared to that which these electrons have when
leaving the 33 TeV nuclei.

Nevertheless, even after this increase the transverse components (∼102 a.u.)
remain very small compared to the total electron momenta (�2 × 104 a.u.).
This means that the broadening of the (px, py)-distribution may have an
impact on the measured electron momentum distribution only if special geo-
metric conditions are employed in an experiment.12 Since the authors of [212]
did not possess all necessary information about the real conditions of the ex-
periment [209], in the calculations for the energy spectra performed in [212]
simply all electrons (whichever angle they have after leaving the foil) were
taken into account.

Under such conditions the changes in the electron momenta during the
electron transport through the foil do not have an impact on the final electron
energy distribution. Therefore, the main difference between the calculation
for the shape of the electron cusp in the case of 33 Pb81+(1s) incident on
Al atoms, which was discussed in Sect. 8.7.1 under the assumption that the
electron loss occurs in the single-collision regime, and the model of [212] is
that the latter takes into account electron transitions to the continuum not
only directly from the ground state of the ions but also via the intermediate
excitations to higher bound states occurring when the ions penetrate the foil.

In Fig. 8.19 results are shown for the electron energy spectrum in the
case of 33 Pb81+(1s) ions incident on an aluminum foil having a thickness
of 2.85 × 10−2 cm. The expectations of [209, 210], that in the case of very
heavy ions their excitations are of minor importance for the formation of
the electron cusp, seems to be just confirmed when we compare in this figure

12 For instance, if an experiment detects only those high-energy electrons, which
finally move inside a very narrow cone centered along v, the expansion of the
electron (px, py)-distribution inside the foil will first of all impact the detected
numbers of the electrons emitted from the ground state of the lead ions (both in
absolute and relative proportions) because these electrons right after the emission
from the ions have larger transverse momenta and, besides, are the first to ap-
pear in the continuum. Compared to the emission from excited states the electrons
ejected from the ground state have the largest width of the energy distribution.
Therefore, a comparatively stronger removal of those electrons, which were emit-
ted from the ground state, occurring when the electron beam traverses the foil
will effectively decrease the width of the measured electron energy distribution.
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Fig. 8.19. The energy distribution of the electron cusp produced in collisions
between an incident beam of 33 TeV Pb81+(1s) with Al foil with a thickness of
2.85×10−2 cm (for more explanation see the text). Circles show the electron energy
distribution measured in [209] for 33TeV Pb81+ colliding with the Al foil of the same
thickness. All the distributions are given in the laboratory frame and are normalized
to 1 at the maximum. From [212].

curves labeled ‘1’ and ‘1–2’. The curve ‘1’ was obtained by ignoring all excited
bound states while in the calculation resulting in the curve ‘1–2’ the states
with the principal quantum number n = 2 were also taken into account. Yet,
there is just a tiny difference in the widths of these two curves.

However, when the states with n = 3 are added into the analysis (the curve
in Fig. 8.19 labeled ‘1–3’) the width-reducing effect becomes quite visible.
Adding into the analysis the states with n = 4 leads to a further reduction
in the calculated width and this reduction is even larger than that observed
when the states with n = 3 were added. The reduction of the width continues
further when the states with n = 5 and n = 6 are included (see Fig. 8.19).
However, it proceeds at a smaller pace compared to that when the states with
n = 3 and n = 4 were added.

It is of course not possible to increase indefinitely the number of bound
states in the analysis. Therefore, an extrapolation procedure was applied in
[212] in order to get the asymptotic limit for the electron cusp shape which
effectively corresponds to taking into account all bound states (n = 1–∞).
The result of this extrapolation is shown in Fig. 8.19 by the solid curve labeled
‘asymp’.

Comparing the energy distributions in Fig. 8.19 we see that their asymp-
totic width is about a factor of 3 smaller than the width obtained by assuming
that the cusp is produced under the single-collision conditions. This strong
effect is caused by the excitation of the ions inside the foil which involves
rather highly lying bound states: when the ions move in the foil the electron
cloud surrounding the ionic nuclei has enough time to expand tremendously
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Fig. 8.20. Same as in Fig. 8.15 but for an incident beam of 33TeV Pb82+ penetrating
Au foil with a thickness of 8.81 × 10−4 cm corresponding to the conditions of the
capture experiment [209]. For more information, circles show the electron spectrum
measured in [209] for 33 TeV Pb81+(1s) ions incident on the Al foil. From [212].

in size before it will almost completely disappear due to the transitions to
the continuum. The key factor making this possible is the relativistic time
dilatation. It effectively decreases the spontaneous decay rates of the excited
states of the ions by a factor of ≈170 making them, thus, much more ‘visible’
in the process of the electron emission.

Compared to the ground state, the excited states have larger loss cross
sections (and, thus, shorter free paths with respect to the loss) and narrower
Compton profiles which, as well as the relative decrease in the population of
the ground state due to the excitations, lead to the narrowing of the electron
energy distribution.

One more point which should be mentioned is that cross sections for the
electron capture are relatively very small. As a result, in the formation of
the electron cusp in the case of the hydrogen-like ions incident on the Al foil
the capture channels do not play any noticeable role.

In Fig. 8.20 results are shown for the energy spectrum calculated for 33 TeV
Pb82+ incident on a gold foil. Of course, now the electron capture becomes
of paramount importance for the very existence of the electron cusp. One
should note, however, that the capture cross sections decrease very rapidly
when n and je increase (je is the total angular momentum of the electron in
a bound state). Therefore, the most of the excited bound states having a very
important impact on the energy spectrum are populated not by capturing
the electron directly from the vacuum but via the excitations from few states
with the lowest values of n and je for which the capture is efficient. This
indirect way becomes especially effective because in collisions with Au atoms
the excitation cross sections are much larger than in the case with Al.
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Comparing the spectra shown in Fig. 8.20 with those displayed in Fig. 8.19
we see that the changes in the form of the calculated spectrum in Fig. 8.20
(occurring when more bound states are taken into account in the analysis)
are accumulating at a different pace. Besides, the asymptotic cusp shape in
Fig. 8.20 has less pronounced wings. These differences are related to two basic
reasons: (a) the excitation/loss cross sections in a gold foil are much larger
while the spontaneous decay rates remain exactly the same as in the case of an
aluminum foil and (b) the initial step in the cusp formation is now represented
by the capture process which also somewhat increases the relative population
of the excited states compared to the case when the beam of Pb81+(1s) ions
was incident on the Al foil.

Curiously, however, that the asymptotic width in Fig. 8.20 is again about
three times smaller than the ‘initial’ width and the shape of the asymptotic
spectra in both cases looks similar (which is also in agreement with the exper-
imental observations of [209]). In general such a similarity will not hold when
the foil parameters (for instance, their thicknesses) are changed and, in this
sense, is accidental. Yet, in both cases the strong reductions in the widths of
the energy distributions are caused by the excitations of the electrons to rather
high lying bound ionic states occurring when the ions penetrate the foils.13

Thus, the energy spectra of the ultrarelativistic electrons emitted when
incident 33 TeV Pb81+(1s) and Pb82+ ions penetrate thin foils are much nar-
rower than those which would be produced under the single-collision condi-
tions and the strong width reduction is caused by the excitations of the ions
when they penetrate the target foils suffering multiple collisions with the tar-
get atoms. In the case under consideration the excitations become so effective
because of the relativistic time dilatation which decreases very strongly the
spontaneous decay rates of excited states in the ions moving with velocities
closely approaching the speed of light.

Although the results discussed above shed some light on the origin of the
unexpectedly narrow shape of the electron cusp produced by the ultrarelativis-
tic heavy ions, a more careful analysis taking into account all real conditions
of the experiment [209] is necessary in order to make a detailed comparison
between the experiment and theory.

8.8 On the Longitudinal and Transverse Contributions
to the Total Loss Cross Section

When the potentials of the electromagnetic field are written in the Coulomb
gauge, the corresponding expression for the scalar potential does not contain
retardation and, independently of how fast the source of the electromagnetic

13 In the case of the incident Pb82+ ions the electron capture into excited states
(mainly 2s and 3s) also leads to a noticeable contribution to the reduction of the
width of the cusp.
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field is, the form of the scalar potential remains like if the speed of light were
infinity. Therefore, the coulomb gauge can, to certain extend, be viewed as
the most ‘nonrelativistic’ gauge and is especially suited to discuss differences
between the relativistic and nonrelativistic considerations.

As was discussed in Sect. 5.8, the total loss cross section calculated in the
Coulomb gauge can be presented as an incoherent sum of the longitudinal and
transverse contributions which arise in this gauge due to the coupling of the
charge and current densities of the electron to the atomic scalar and vector
potentials, respectively.

By calculating separately these contributions some additional informa-
tion of interest can be obtained about the process of the projectile-electron
loss in collisions with neutral atoms. For example, for the electron loss from
200 GeVu−1 Pb81+ in collisions with Au0 the exchange of the transverse pho-
ton accounts for more than 60% of the total loss. However, for the electron
loss from 200 GeV u−1 S15+ and 200 GeVu−1 O7+ ions the transverse part
contributes only about 4% and less than 1%, respectively, to the total loss
cross section. In collisions of light hydrogen-like ions with neutral atoms the
exchange of the transverse virtual photon always represents the minor mech-
anism for the total electron loss from the ions. For collisions at low γ (γ ∼ 1)
the exchange of the longitudinal photon dominates in the total loss because
in the ion frame the motion of the electron of the ion is nonrelativistic both in
the initial and final states of the ion14 and γ is small compared to v/ve where
ve ∼ ZI is a ‘typical velocity’ of the electron of the ion in the process. In
collisions with charged particles at larger values of γ the relative contribution
to the loss cross section, caused by the exchange of the transverse photon, be-
comes much more important and with a further increase of γ will eventually
dominate the cross section. However, the exchange of the transverse photon
becomes very efficient only at large impact parameters. Therefore, in collisions
with neutral atoms the coupling of the electron of a light ion with the atom
via the transverse photon is essentially cut off by the screening effect of the
atomic electrons.

The latter may have important consequences for ‘practical’ calculations.
Indeed, according to the above discussion, in order to estimate the cross sec-
tion for the electron loss from light ions (and also from outer shells of heavy
multiply charged ions) in collisions with neutral atoms at any collision energy,
one can take the interaction with the instantaneous (unretarded) scalar po-
tential of the incident atom as the full interaction acting on the electron of the
ion. The form of the corresponding transition amplitude will remain exactly
the same as in the nonrelativistic first order theory.15

14 Formally the electron in the final state could acquire a relativistic velocity with
respect to the nucleus of the ion. Such a situation, however, is rather unlikely and
contributes negligibly to the total loss cross section.

15 It is worth noting that the approximate light-cone amplitude (6.80) also coincides
in form with the amplitude obtained in the sudden approximation within the
framework of the purely nonrelativistic consideration.
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Compared to the relativistic treatment, the nonrelativistic description of
atomic collisions is normally much easier to deal with. Therefore, its appli-
cation can be especially convenient when one has to estimate cross sections
for multi-electron losses occurring from outer shells of many-electron (but
comparatively low-charged) ions colliding with neutral targets at high and
very high impact energies. Reliable estimates for such cross sections are of
great importance for predicting the lifetimes of beams of heavy many-electron
ions [214–219].

Of course, all this is in sharp contrast with the case of the loss (ionization)
occurring in collisions with relativistic charged particles. In the latter colli-
sions the exchange of the transverse virtual photon gives the very important
contribution, which is asymptotically dominant at γ → ∞ for the loss from
both heavy and light ions.

8.9 Loss Cross Sections at Asymptotically High γ:
Saturation Effect

In Figs. 8.21 and 8.22 the cross sections for the electron loss from
1–2, 000 GeV u−1 Au78+(1s) and 1–100 GeVu−1 Ne9+(1s) ions in collisions
with neutral atoms are shown as functions of the collision energy.

For a comparison we also display the loss cross section in collisions with
bare nuclei. In the latter case the cross sections show a continuous logarith-
mic increase with energy. Such an increase of ionization cross sections in ul-
trarelativistic collisions is well known and is due to the Lorentz contraction
of the electromagnetic field generated by a bare nucleus moving at veloc-
ities approaching the speed of light. Because of this contraction the effec-
tive time for a collision with a point-like charge is not given by T (b) ∼ b/v
as in the nonrelativistic case but is estimated according to T (b) ∼ b/(γv)
(b is the impact parameter) and this time continues to decrease with in-
crease of the collision energy even at v ≈ c where the collision velocity
cannot be noticeably increased further. The external time-dependent field
of the incident atomic nucleus is effective in inducing electron transitions in
the ion only provided this field contains high enough frequency components.
Therefore, the electron can make a transition with a noticeable probabil-
ity only if the typical transition time τ ∼ ω−1

n0 , where ωn0 = εn − ε0 is
the energy transfer to the electron, does not exceed substantially the effec-
tive collision time T (b). The latter condition means that the impact para-
meter range, contributing most to the loss, is given by b � γv/ωeff , where
ωeff is of the order of the binding energy of the electron in the ion. This
range of impact parameters gives rise to the dependence σloss ∼ ln γ (see
e.g. [99, 139,140,211,220]).

Compared to the electron removal by collisions with bare nuclei, the
distinct feature of the loss process in collisions with neutral atoms is the
saturation of the loss cross section at sufficiently high impact energies where
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Fig. 8.21. Cross section for the electron loss from Au78+ shown as a function
of the incident energy for collisions with neutral atoms of carbon and gold. The
experimental points for lower and higher energies are from [112, 176], respectively.
For a comparison the loss cross sections in collisions with bare gold and carbon
nuclei, Au79+ and C6+, are also displayed. All the results for collisions with carbon
have been multiplied by a factor of 50. The calculated results were obtained by using
the Coulomb–Dirac wave functions for the electron states in Au78+.

this cross section becomes independent of the collisional Lorentz factor γ. One
can denote this domain of collision energies as the region of asymptotically
high γ.

In the elastic target mode, which dominates the total loss cross section in
collisions with heavy atoms, the saturation of the loss cross section is caused
by the following two factors.

One of them is that the collision velocity has the natural upper limit v ≤ c.
In practical terms this limit is reached already at γ ∼ 5–10 which means that
the collision velocity entering expressions for the form-factors and momentum
transfers becomes a constant and no longer varies when the impact energy
increases further.

The second factor leading to the saturation is that the net charge of a
neutral atom is zero. In the elastic target mode the screening effect of the
atomic electrons, whose total negative charge counter balances the positive
charge of the atomic nucleus, simply ‘puts out of play’ collisions with impact
parameters noticeably larger than the geometrical size of a neutral atom.
Therefore, in contrast to collisions with bare atomic nuclei, the range of impact
parameters contributing to the elastic part of the loss cross section in collisions
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Fig. 8.22. Cross section for the electron loss from Ne9+(1s) shown as a function of
the incident energy for collisions with neutral atoms of gold. For a comparison the
loss cross section by a bare gold nucleus, Au79+, is also displayed.

with neutral atoms cannot increase indefinitely with the increase in the impact
energy. This, as well as the ‘stabilization’ of the effective strength of the ion–
atom interaction in the limit v → c, keeps the cross section constant at very
high impact energy.

The screening effect becomes very substantial in such collisions where the
impact parameters of importance are not too small and the electron of the
ion, when penetrating the atom, ‘sees’ that a considerable part of the atomic
electron cloud is situated between this electron and the atomic nucleus. In the
electron loss from different ions, colliding with the same atom and at the same
value of γ, relatively smaller impact parameters would contribute to the loss
from a heavier ion. As a result, the screening effect in such collisions is smaller
for heavier ions. On the other hand, if the electron loss from an ion occurs in
collisions with different atoms but at the same collision energy per nucleon,
then the screening effect is strongest for collisions with the heaviest atom.

At the asymptotically high γ-s the saturation effect is also present in the
inelastic target mode of the ion–atom collisions. Compared to the case with
the elastic mode, the origin of the saturation effect in the inelastic mode
is somewhat less obvious. Although the existence of the upper limit for the
collision velocity plays the same role here, now, according to the first order
theory, the inelastic target mode of the collision is governed by the two-center
electron-electron interaction. This means that the atomic nucleus ‘drops out’
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of the electron loss process and, hence, one cannot argue that the saturation
is caused by the electric neutrality of the atom.16

The reasons for the saturation of the loss cross sections at the asymptoti-
cally high γ were discussed in detail in Sect. 5.14.1, where the relativistic pecu-
liarities in the two-center dielectronic interaction were considered. Therefore,
here we just note that the explanations for the saturation effect, which were
obtained there in terms of the momentum transfers, can be also interpreted
as showing that the saturation in the inelastic target mode appears because
the electrons, which are initially bound in the different colliding atomic par-
ticles, have to have collisions with not too large impact parameters in order
that they would be able to undergo simultaneous transitions with a noticeable
probability.

Let us now make two remarks concerning the behavior of the loss cross
sections before they enter the saturation region and the values of the impact
energies where the saturation is practically reached.

First, Fig. 8.21 shows that for the collision energies under consideration
the cross section for the loss from very heavy ions increases with increase of
the collision energy before this cross section enters the saturation region. In
contrast, for the loss from much lighter ions like Ne9+ the loss cross section
decreases before reaching a constant value (see Fig. 8.22).

Second, for different projectile–target pairs the region of the asymptot-
ically high γ-s means in general different energies. For instance, while for
collisions between very highly charged ions and light atoms this region ap-
proximately begins with impact energies of ∼100 GeV u−1, for the loss from
light ions the asymptotically high γ-s can be reached already at 5–10 GeVu−1.

We conclude this section by remarking that the saturation effect is obvi-
ously also present for the pair production processes occurring in collisions
with neutral atoms. Since, compared to the projectile-electron loss, these
processes are characterized by much larger momentum transfers, the satu-
ration in the cross sections for the pair production begins at noticeably higher
impact energies.

8.10 Excitation and Break-Up of Pionium in Relativistic
Collisions with Neutral Atoms

The DIRAC experiment at CERN, aimed at measuring the lifetime of pio-
nium [221], has sparked considerable interest in the study of excitation and
break-up of pionium colliding with neutral atoms at relativistic velocities
(γ ∼ 15–20). Since the pionium-atom collisions occur predominantly via the
electromagnetic interaction, the excitation and break-up of pionium in such
collisions are closely related to the ion–atom collisions and we will briefly
comment on these processes.

16 In the inelastic target mode the saturation effect exists also for ion–ion collisions.
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From the point of view of the common atomic physics, pionium, which
is a bound state of π+ and π− both having zero spin, represents rather an
exotic object. The lifetime of pionium in the ground state is of the order of
10−15 s. Compared to a ‘normal’ hydrogen-like system, consisting of a heavy
nucleus and a light electron, pionium has other important differences. The
masses of π+ and π− are equal, mπ± � 270me (me = 1 is the electron mass),
that may bring in considerable features into the dynamics of excitation and
break-up of pionium, which would be absent in the case of the excitation or
‘ionization’ of a hydrogen-like ion. Since the reduced mass of pionium is large,
µπ � 137me = 137 a.u., the typical dimension of the ground state of the
pionium is even smaller than that of the electron orbit in the ground state
of U91+. At the same time, the relative velocity of π+ and π− in the ground
state of pionium is of the order of 1 a.u. and in this sense pionium represents,
with an excellent accuracy, a nonrelativistic object.

Excitation and break-up of pionium by collisions with atoms is conve-
niently described using the pionium frame [222–227]. In this reference frame
the motion of the π+ and π− is practically always nonrelativistic. Because
of this, in collisions with neutral atoms, the exchange of the transverse vir-
tual photon affects pionium transitions much weaker than the exchange of
the longitudinal photon. In particular, using the first order perturbation ap-
proach, it was shown in [224, 226] that the relative contributions of the ex-
change of the transverse photon to pionium transitions is substantially less
than 1%.

In [224–226] it was argued that, within the first order approximation, one
can calculate cross sections for pionium with accuracy better than 1% for
both the elastic and inelastic modes. However, substantial deviations from
predictions of the first order consideration can occur in collisions with heavy
atoms. In such a case it becomes important to take into account the exchange
of more than one longitudinal photon between the pionium and the incident
atom. Using the Glauber approximation it was shown in [222, 223, 227] that
the account of the many-photon exchanges may reduce cross sections by much
more than 10% (see Fig. 8.23).17

All the calculations of the pionium cross sections briefly discussed above
are atomic physics calculations and in general can be directly compared with
experiment only provided the pionium interacts with a dilute gas target. In
experiment, however, the created pionium atoms propagate in solids. Discus-
sions of some questions concerning the propagation of pionium through the
media can be found in [229–231].

17 Concerning the use of the Glauber approximation in relativistic collisions one can
also note that (a particular version of) this approximation was incorporated in
an approach proposed in [228] to treat the ionization of light atoms by relativistic
highly charged ions.
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Fig. 8.23. The relative correction δfi to the excitation cross sections as a function
of the atomic number Z of the target. The correction δfi is the difference between
the first-order and Glauber cross sections normalized to the first-order cross section.
In the figure this correction is shown for the 1s− 2p, 2p− 3d and 2s− 3p transitions
by solid, dot and dash curves, respectively. From [227].

8.11 Higher-Order Effects at Asymptotically High γ

When we discussed the probabilities for the projectile-electron loss in collisions
with neutral atoms (see Chap. 7), it was already pointed out (see Sect. 7.4) that
the differences between results of the first order and light-cone approximations
in general do not disappear when the impact energy increases.

This point is illustrated by results shown in Table 8.1. This table contains
the total cross sections for the electron loss from different hydrogen-like ions
colliding with neutral atoms of uranium at the infinite impact energy (γ = ∞).
These cross sections were calculated using the first order approximation and
the light-cone approach. The contribution to the cross section arising due to
the correlations between the electron of the projectile and the electrons of the
atom (the antiscreening atomic contribution) was neglected.

It follows from the table that the discrepancy between the first order and
light-cone results increases when the atomic number of the projectile decreases
reaching about 33% for the Ne9+(1s) projectiles. Thus, one may conclude that
even the total loss cross section in collisions between a relatively light ion and
a very heavy atom cannot be well described within the first order approach,
no matter how high the impact energy is.

As we have seen in the beginning of this chapter, in relativistic collisions
with heavy atoms at relatively low energies (γ ∼ 1) the difference between
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Table 8.1. The total cross section (in kb) for the electron loss from hydrogen-like
projectile-ions in collisions with neutral uranium atoms at the infinite impact energy.
The first column: the incident projectile. The second column: the target. The it third
column: results of the first order approximation. The fourth column: results of the
light-cone approximation

Projectile First order Light-cone

U91+(1s) 29 27
Xe54+(1s) 90.9 80.7
Kr35+(1s) 187.4 162.7
Ar18+(1s) 629 478
Ne9+(1s) 1,450 1,090

the experimental data and first order results for the total cross sections for
the electron loss may reach an order of magnitude. At extreme high collision
energies such very large differences are not possible. However, even at asymp-
totically high energies there still may remain a substantial deviation between
the first order and exact results for the total loss cross section.

Similar conclusions can be also drawn in the case of the excitation and
break-up of pionium. The asymptotically high impact energies are in essence
reached when the interaction between the pionium and the atom becomes
‘sudden’ for the pionium for all impact parameters which contribute to the
cross sections, i.e. for all impact parameters which are of order or less than
the atomic size.

The condition of the suddenness is given by T (b) � τ , where T (b) ∼ b/(γv)
is the effective collision time and τ ∼ 1/ωn0 is the typical transition time.
Typical pionium transition frequencies are of order of µπv

2
π ∼ 100 a.u. Taking

all this into account one can conclude that in the case of the excitation and
break-up of pionium the asymptotically high impact energies are reached
already at γ � 10. A further increase of γ changes neither the cross sec-
tions nor the deviations between predictions of the first order and Glauber
approximations.

This, in particular, means that the calculations for the pionium cross sec-
tions, reported in [222–227], can actually be viewed as performed for the
infinite impact energy, γ → ∞. Correspondingly, the results displayed in
Fig. 8.23 clearly show the necessity to treat such collisions beyond the first
order approximation.

The above discussion for the projectile-electron loss was concerned with
projectiles which initially carry only one electron. Highly charged projectiles
may initially carry two and more electrons. When such a projectile collides
with an atom, more than one projectile electron may undergo transitions. In
such a case the range of the asymptotically high impact energies is charac-
terized by much more substantial deviations from the first order predictions
(see [174,232,233]).
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Appendix

A.1 Nonrelativistic Atom Approximation
for the Screening Mode

For simplicity we shall restrict our discussion to single electron targets. In
such a case we have to consider the following three matrix elements:

〈φ0 |αx exp(iq0 · ξ)|φ0〉 ,

〈φ0 |αy exp(iq0 · ξ)|φ0〉 ,
and

1
c
〈φ0 |vαz exp(iq0 · ξ)|φ0〉 ,

where q0 = (−q⊥,−(εn − ε0)/(vγ)).
Let us start with the matrix element containing αz. First we rewrite the

term vαz as follows:

vαz = v · α =
(
v − Ω

q2
0

q0

)
· α +

Ω

q2
0

q0 · α, (A.1)

where Ω is a parameter to be determined below. Taking into account (5.56)
we immediately see that 〈φ0 |q0 · α exp(iq0 · ξ)|φ0〉 = 0 and obtain

1
c
〈φ0 |vαz exp(iq0 · ξ)|φ0〉 =

1
c
〈φ0 |e · α exp(iq0 · ξ)|φ0〉 , (A.2)

where e = v − Ω
q2
0
q0. Now we define the parameter Ω by demanding that

the vector e is perpendicular to the momentum transfer q0 that yields Ω =
v ·q0 = − εn−ε0

γ . With such a choice of the ‘polarization’ vector e the structure
of the matrix element on the right-hand side of (A.2) becomes quite similar
to that appearing in the study of the interaction between the atom and a real
photon which has linear polarization ∼e and momentum q0.
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Let us now turn to the consideration of 〈φ0 |αy exp(iq0 · ξ)|φ0〉. Without
any loss of generality we can assume that the total momentum transfer q0

is in the plane xz. But then, by writing αy = λ · α with λ = (0, 1, 0) and,
thus, λ ⊥ q0, we arrive at the same situation as that discussed in the previous
paragraph.

The continuity equation (5.56) for the atomic current in the elastic mode
reads

〈φ0 |q0xαx exp(iq0 · ξ)|φ0〉 + 〈φ0 |q0yαy exp(iq0 · ξ)|φ0〉
+ 〈φ0 |q0zαz exp(iq0 · ξ)|φ0〉 = 0. (A.3)

Taking into account that the ratio q0x/q0z can be arbitrary we conclude that
the x-component of the elastic atomic form-factor will not be zero provided
that the z component is also not zero.

Thus, for the elastic mode all three space parts of the atomic form-factor
of hydrogen-like targets will not be zero only when the known selection rules
for the interaction with a real photon permit the ‘transition’ φ0 → φ0. If
such a ‘transition’ is forbidden, then the nonrelativistic atom ‘approximation’
becomes in fact exact for the elastic mode.

A.2 The Schrödinger–Pauli Equation
and Relativistic Collisions

It is known that, in relativistic collisions involving light atomic systems, the
electron dynamics in the processes of excitation and ionization/loss (described
in appropriate reference frames) remains practically purely nonrelativistic.
Therefore, in an attempt to make simplifications in the treatment of relativis-
tic atomic collisions, it was proposed in [103] to use the Schrödinger–Pauli
equation for calculating cross sections for ionization and excitation of atoms
by relativistically moving nuclei provided the atoms are relatively light.

On this way, however, the authors of [103] had encountered a problem.
Namely, they found out that the contribution to the ionization cross section,
which arose in their first order perturbation theory due to the term propor-
tional to A2 (A is the vector potential of the field generated by the incident
nucleus), possesses wrong asymptotic dependences on the collision energy and
the nucleus charge. In order to solve this problem it was argued [103] that a
more careful analysis is needed for the transition from the relativistic Dirac to
the nonrelativistic Schrödinger–Pauli equation. After analyzing such a tran-
sition, the authors of [103] had concluded that the correct wave equation for
a nonrelativistic electron should include an additional term which is propor-
tional to −Φ2, where Φ is the scalar potential of the field generated by the
incident nucleus.

Another group of authors [226] studied the problem of the excitation and
break-up of pionium in relativistic collisions. Since pionium consists of π+
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and π−, which are particles having spin zero, the consideration of this problem
should in general be based on the Klein–Gordon equation. In a reference frame,
where initially the pionium is at rest, the velocities of both pions during and
after the collision remain to be much less than the speed of light. Taking this
into account, the authors of [226] attempted to describe the excitation and
break-up of pionium by using the Schröidnger equation but faced the same
problem with the contribution from the term proportional to A2, which was
previously encountered in [103]. They, therefore, decided to reconsider the
transition from the Klein–Gordon to the Schrödinger equation. By analyzing
this transition the authors of [226] have come to to the same conclusion that
the term proportional to −Φ2 should be added into the Schrödinger equation.

The form of a wave equation is a matter of principle and any attempt
to alter the Schrödinger (or Schrödinger–Pauli) equation for a nonrelativistic
electron should be very carefully analyzed. Therefore, following [111] in this
section we consider in detail some delicate points concerning the form of a
wave equation which enables one to describe the motion of a nonrelativistic
electron in collisions between an atomic system, where the electron is initially
bound, and a point-like charge moving with a relativistic velocity with re-
spect to the atomic system. Besides, we shall also very briefly comment on
the considerations for the transition from the Klein–Gordon equation to the
Schrödinger equation given in well known textbooks [74,125].

The Schrödinger–Pauli equation for an electron, which moves in the field
of the nucleus with a charge ZI and is subjected in the collision to the field of
a relativistically moving nucleus with a charge ZA, reads

i
∂Ψs

∂t
=
(
Ĥ0

s + Ŵs(t)
)
Ψs, (A.4)

where the nonrelativistic electronic Hamiltonian Ĥ0
s for the undistorted atom

is given by (5.105) and the interaction Ŵs between the electron and the pro-
jectile reads

Ŵs(t) = −Φ(r, t) +
1
2c

(A(r, t) · p̂ + p̂ · A(r, t)) +
A2(r, t)

2c2
+

1
2c

σ · H(r, t).

(A.5)

Here σ = (σx, σy, σz) are the Pauli matrices, Φ and A are the scalar and
vector potentials of the electromagnetic field generated by the nucleus ZA

and H = ∇ × A is the magnetic part of this field.
Similarly to the applications of the Schrödinger equation to relativistic

collisions, reported in the literature, we adopt for the moment that the first
order atomic transition amplitude in the impact parameter space is given by

afi(b) = −i
∫ +∞

−∞
dt exp(i(εf − εi)t)〈χf | Ŵs(t) | χi〉. (A.6)

where χi and χf are the initial and final nonrelativistic states, respec-
tively, of the electron in the undistorted atom, which are eigenstates of the
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nonrelativistic atomic Hamiltonian Ĥ0
s with corresponding eigenvalues de-

noted by εi and εf . We shall assume that the spin of the electron in the initial
state is quantized along the velocity v.

The momentum–space transition amplitudes for no-spin-flip and spin-flip
electron transitions are obtained from (A.5), (A.6) and the relation (3.13)
which connects the amplitudes in the b and q⊥ spaces. Choosing the potentials
of the projectile field in the Lienard–Wiechert form (see (5.86) we obtain that
the amplitude for electron transitions without spin-flip is written as

Sno−flip
fi (q⊥) = S

(1)
fi (q⊥) + S

(2)
fi (q⊥), (A.7)

where S(1)
fi is given by (5.98)) and

S
(2)
fi (q⊥) =

−iπZ2
Aγv

c4
1√

q2
I − (εf − εi)2/c2

〈ϕf | exp(iqI · r) | ϕi〉. (A.8)

Here ϕi and ϕf are the space parts of the initial and final electron wavefunc-
tions and qI is defined by (5.84). Further, the amplitude for electron spin-flip
transitions is obtained to be

Sflip
fi (q⊥) = − iZA

c2
qI,x + iqI,y

q2
I − (εf − εi)2/c2

〈ϕf | exp(iq · r) | ϕi〉. (A.9)

The amplitude for the electron transition without spin flip contains the part
S

(2)
fi which is proportional to Z2

A and which arises due to the contribution from
the A2/2c2 term in the interaction (A.5). It was noticed long ago in [103] that
at asymptotically high impact energies this term leads to wrong dependences
of calculated cross sections on the collision energy and the projectile charge.
This does not represent a big obstacle for ‘practical’ calculations since the
wrong term dominates cross sections only at very high values of γ. However,
from the basic point of view such a behavior is quite interesting and deserves
a detailed discussion.

A.2.1 Wave Equation for a Nonrelativistic Electron
and the − Φ2

2c2 Ψ Term

As was already mentioned, there have been two attempts to address the prob-
lem with the A2/2c2-term. The authors of [103] pointed to the fact that in
collisions at high γ the scalar potential given in (5.86) may become comparable
with or even exceed the rest energy of the electron. They argued that because
of this the transformation of the relativistic Dirac equation into the nonrela-
tivistic Schrödinger–Pauli equation must be done more carefully compared to
the standard text-book analysis. According to [103], when the potentials enter-
ing the Schrödinger equation describe the electromagnetic field generated by a
relativistically moving projectile, the canonical form of this equation has to be
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corrected by introducing the additional term −Φ2/2c2 into the Hamiltonian.
Then the corrected wave equation for a nonrelativistic electron would read

i
∂Ψs

∂t
=
(

p̂2

2m
− ZI

r
− Φ+

1
2c

(A · p̂ + p̂ · A) +
A2

2c2
− Φ2

2c2
+

1
2c

σ · H
)
Ψs.

(A.10)

The same correction −Φ2/2c2 to the nonrelativistic Hamiltonian has been
also proposed in [226], where the excitation and break-up of pionium in rel-
ativistic collisions with atoms was studied and where the transition from the
Klein–Gordon to the Schrödinger equation was analyzed.

Both the authors of [103] and the authors of [226] employed in their consid-
erations the Lienard–Wiechert potentials (5.86). For these potentials one has
A2/2c2−Φ2/2c2 = −Φ2/(2c2γ2). Therefore, at γ � 1 the two terms quadratic
in the potentials mutually ‘neutralize’ each other and the term ∼Z2

A in the
transition amplitude calculated by using (A.10) becomes of minor importance
also at asymptotically high collision energies. As a result, the problem seems
to be solved (see also a brief discussion of this subject in [3], p. 157).

However, a closer look at this problem leads to serious doubts about the
validity of the wave equation (A.10). In order to see this, let us consider in
some detail the transition from the relativistic to the nonrelativistic descrip-
tion of the electron. Let us start with the Dirac equation and let Ψu(r, t) and
Ψd(r, t) be the upper and lower components, respectively, of the Dirac spinor
Ψ(r, t). These components satisfy the following system of coupled equations(

i
∂

∂t
+ Φt − c2

)
Ψu = cσ ·

(
p̂ +

1
c
A
)
Ψd(

i
∂

∂t
+ Φt + c2

)
Ψd = cσ ·

(
p̂ +

1
c
A
)
Ψu, (A.11)

where Φt = Φ+ZI/r. By acting from the left with the operator
(
i ∂
∂t + Φt + c2

)
on both sides of the first equation in (A.11) we obtain

i
∂Ψ0

∂t
+ i

Φt

c2
∂Ψ0

∂t
− 1

2c2
∂2Ψ0

∂t2
=
(

p̂2

2
− Φt +

A
c
· p̂ − i

2c
(∇ · A)

)
Ψ0

+
(

A2

2c2
+

1
2c

σ ·H
)
Ψ0 −

(
i

2c2
∂Φt

∂t
+

Φ2
t

2c2

)
Ψ0

−i
1
2c

σ · EΨd exp(ic2t), (A.12)

where Ψ0 = Ψu exp(ic2t) and E = −∇Φ1 − 1
c

∂A
∂t is the strength of the total

electric field acting on the electron. No approximations have been done on the
way from (A.11) to (A.12) and, hence, the latter is still exact.

Had we started from the Klein–Gordon equation, we would have arrived
at a result which can formally be obtained from (A.12) by omitting the spin
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terms. Since in the present context the spin term in the Schrödinger–Pauli
equation does not represent any problem, we may simply ignore those terms
in (A.12), which contain the Pauli matrices, obtaining

i
∂Ψ0

∂t
=
(

p̂2

2
− Φt +

A
c
· p̂ − i

2c
(∇ · A) +

A2

2c2

)
Ψ0

−
(

i
2c2

∂Φt

∂t
+

Φ2
t

2c2

)
Ψ0 − i

Φt

c2
∂Ψ0

∂t
+

1
2c2

∂2Ψ0

∂t2
(A.13)

and analyze the transformation of the Dirac and Klein–Gordon equations in
a unified manner.

In (A.13) the first line coincides in form with the Schrödinger equation
while the second line contains the additional terms which do not appear in
the latter. Comparing (A.13) and (A.10), we observe that the modified wave
equation proposed in [103,226] includes only the term ∼(−Φ2/c2) whereas the
other additional terms contained in (A.13) are absent in (A.10).

The basic condition underlying our consideration (as well as those of [103,
226]) is that the motion of the quantum particle is nonrelativistic. Taking into
account the relation between Ψ0 and Ψu, this condition implies that

1
c2

| i
∂Ψ0

∂t
|�| Ψ0 |, 1

c2
| ∂

2Ψ0

∂t2
|�| i

∂Ψ0

∂t
| . (A.14)

In order to get an idea about the character of the difference between (A.13)
and the Schrödinger equation in the case of the description of a nonrelativistic
electron and, in particular, about the relative importance of the different terms
in the second line of (A.13), we first assume that the magnitude of the scalar
potential is not large, | Φ |� c2. Then, taking into account (A.14), it is obvious
that the terms in the second line of (A.13) represent just small corrections to
those in its first line. Therefore, the second line of (A.13) can be estimated
by setting in this line Ψ0 = ψs, where ψs is the solution of the Schrödinger
equation

i
∂ψs

∂t
=

((
p̂ + A

c

)2
2

− Φt

)
ψs. (A.15)

With the help of (A.15), after somewhat lengthy but straightforward calcula-
tions, one can show that

1
2c2

∂2ψs

∂t2
− i

Φt

c2
∂ψs

∂t
=
(

i
2c2

∂Φt

∂t
+

Φ2
t

2c2

)
ψs

− 1
8c2

(
p̂ +

A
c

)4

ψs +
i

2c2
E ·
(
p̂ +

A
c

)
ψs

+
∇ · E
4c2

ψs. (A.16)
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For a nonrelativistic electron, taking into account that its kinetic momentum
k̂ = p̂+ A

c is much smaller than c, the last three terms on the right-hand side
of (A.16) represent corrections ∼1/c2 and should not be taken into account
in the description of a nonrelativistic electron. Concerning the first two terms
with the scalar potential on the right-hand side of (A.16) we see that these
terms being inserted into the second line of (A.13) cancel the first two terms
in this line. This cancellation clearly shows that for | Φ | /c2 � 1 the differ-
ence between the Schrödinger equation and (A.13) does not contain the term
∼Φ2/c2 (and even does not explicitly depend on the scalar potential).

Further, as long as the basic condition of the nonrelativistic character of
the electron motion remains fulfilled, the above consideration and its conclu-
sion are in fact fully valid also in the case when the absolute magnitude of the
scalar potential Φ approaches (or exceeds) the electron rest energy. Indeed,
this magnitude per se does not determine the real strength of the field of the
incident nucleus and cannot serve as a measure of the difference between the
Schrödinger equation and (A.13) because (i) (A.13) as well as the Schrödinger
equation are gauge invariant and (ii) one can always find a gauge in which the
absolute magnitude of the scalar potential can be made as small as desired
for the whole space and time (see e.g. [8]). Therefore, for any Φ one can al-
ways resort to an appropriate gauge transformation obtaining in a new gauge
| Φ′ |� c2. Then one can repeat the above analysis and arrive at the same
conclusion that in the case of the description of a nonrelativistic electron the
difference between the Schrödinger equation and (A.13) essentially vanishes.
Since both these wave equations are gauge invariant, the sum of the terms
in the second line of (A.13) is gauge invariant as well and it is obvious that
for any magnitude of the scalar potential the description of the motion of a
nonrelativistic electron may not contain the term ∼Φ2.

In addition to the above discussion one should also note that the basic
properties of the nonrelativistic Schrödinger equation (for instance, its com-
patibility with the minimal coupling of electrodynamics and gauge invariance)
are violated in the wave equation (A.10). Taking all this into account it be-
comes clear that from the fundamental point of view the attempts to ‘amend’
the Schrödinger equation by incorporating the interaction term −Φ2/2c2 into
the Hamiltonian cannot be regarded as satisfactory and by no means represent
a solution of the problem with the unphysical contribution of the A2/2c2-term
into the transition amplitudes (A.6)–(A.7).

Moreover, the wave equation (A.10) cannot be viewed even as a ‘technical’
solution of this problem. Indeed, at high collision energies the near cancella-
tion between A2 and −Φ2 terms occurs only provided the potentials of the
projectile field are taken in the Lienard–Wiechert form. The latter, however,
merely represents a particular choice within the Lorentz family of gauges.
For instance, it is not difficult to convince oneself that in the Coulomb gauge
given by (5.96) the addition of the term −Φ2/2c2 does not lead to the near
cancellation. Calculations performed in this gauge using the amplitude (A.6)
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again lead to wrong cross section dependences on the energy and charge.1

What is more, when using the gauge described by (5.93) one encounters an
even more severe problem with the term A2/2c2 whose contribution into the
amplitude (A.7) in this gauge can be shown to be infinite for any projectile
charge and collision energy! In this gauge Φ = 0 and the incorporation of the
term −Φ2/2c2 would have no impact on the result. This example also clearly
shows that the problem with the A2/2c2 term in the amplitude (A.7) is not
specific for fields generated by relativistically moving projectiles but has a
more general character.

A.2.2 ‘First Order’ Amplitude and Nonconserved
Electron Current

In order to get insight into the true root of the problem with the term A2/2c2

let us consider the coupling between an electron and an electromagentic field
generated by an external source. The variation in the interaction between the
electron and the field is given by (see e.g. [9])

δw = ρ(r, t) δΦ(r, t) − 1
c
j(r, t) δA(r, t), (A.17)

where ρ and j are the charge density and the current density, respectively,
and δΦ and δA are infinitesimally small variations in the scalar and vector
potentials of the field. For a nonrelativistic electron the quantities ρ and j
are evaluated by using the Schrödinger–Pauli equation. Expression (A.17)
depends explicitly on the field potentials and, as is well known, leads to gauge
independent results only provided the electron charge and current densities
satisfy the continuity equation

∂ρ(r, t)
∂t

+ ∇ · j(r, t) = 0, (A.18)

i.e. if the electron charge is conserved.
Equation (A.18) will certainly be fulfilled if the charge and current densi-

ties are constructed by using exact solutions of the Schrödinger–Pauli equa-
tion. However, in first order considerations the exact solutions are replaced by
states of the undistorted atom. If, in an attempt to get the transition charge
density and current which could be associated with the first order considera-
tion, we simply replace the exact solutions by the undistorted atomic states,
the corresponding transition charge density and current will be given by

ρ
(1)
fi (r, t) = exp(i(εf − εi)t)χ

†
f (r)χi(r)

j(1)fi (r, t) = exp(i(εf − εi)t)
(

1
2i

(
χ†

f (r)∇χi(r) −
(
∇χ†

f (r)
)
χi(r)

)

−1
c
A(r, t)χ†

f (r)χ(r) +
1
2c

∇ ×
(
χ†

f (r)σχi(r)
))

. (A.19)

1 Although the result in the Coulomb gauge does not coincide with that obtained
by using the Lienard–Wiechert potentials.
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According to the form of the interaction (A.17) it is natural to expect that,
within the first order coupling between the atomic electron and the field of
the projectile, the electron transition charge and current densities should be
independent of the field of the projectile. It indeed would be true for the
charge and current densities appearing in the description based on the Dirac
equation. It is also true for the nonrelativistic charge density in (A.19) but not
for the nonrelativistic transition current which in (A.19) explicitly depends
on the vector potential. Since this is the only dependence on the field which
this current possesses, it cannot be compensated by any other terms in the
current. As a result, because of the presence of the term proportional to A,
the current (A.19) is gauge dependent and, moreover, the condition (A.18) of
the charge conservation is violated.

However, it is the part of the electron current (A.19) proportional to A,
which is directly associated with the term ∼A2 in the Schrödinger equation.
Therefore, the root of the problem with the unphysical contribution of the
A2/2c2 term into the amplitude (A.6) can be identified as the nonconservation
of the electron charge and the concomitant gauge dependence.

A.2.3 Correct Form of the First Order Amplitude

The obvious way to cure this problem is to notice that the current in the
form given by (A.19) is simply not compatible with the rigorous first order
consideration in which only a one-photon exchange between the projectile and
the electron may be treated in a consistent way. Therefore, within the first
order projectile-electron coupling, the A-dependent term in the electron tran-
sition current (A.19) has to be omitted. This step, provided exact states of the
undistorted atom are employed, restores the charge conservation and yields
gauge independent results for the transition amplitudes and cross sections.
In particular, the latter ones possess the correct asymptotic dependences on
the projectile charge and energy and at ZI/c � 1 coincide with the cross sec-
tions calculated by using the relativistic transition amplitude (5.83) (or (5.88)
and (5.90)).

In other words, within the self-consistent first order treatment the term
of the Schrödinger equation quadratic in the vector potential should not be
taken into account just because it is alien to such a treatment. In our case this
simply means that the correct first order amplitude for the electron transitions
without spin flip is given merely by the first term in (A.7).

In order to avoid any possible misinterpretation of the above discussion,
one should add that the term ∼A2/2c2 must of course be kept in consid-
erations of relativistic atomic collisions which go beyond the first order in
the projectile-electron coupling. Within such considerations this term is not
expected to lead to any unphysical results. For instance, it is known that
no problem with this term arises when the projectile-electron interaction is
treated within the symmetric eikonal approximation [234,235].
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As soon as the A-dependent term in the current (A.19) is omitted and
exact states of the undistorted atom are employed, the charge conservation is
restored and for electron transitions without spin-flip the following continuity
equation holds

(εf − εi) 〈ϕf | eiqI·r | ϕi〉 =
1
2
〈ϕf |

(
qI · p̂ eiqI·r + eiqI·r qI · p̂

) | ϕi〉. (A.20)

Equation (A.20) expresses the conservation of charge in the case of a non-
relativistic electron and enables to manipulate easily with the form of the
nonrelativistic first order transition amplitude. In particular, by using (A.20)
and (5.98) one can obtain the amplitudes (5.99) and (5.100).

A.2.4 Few Remarks on the Treatment of the Transformation
from the Klein–Gordon Equation to the Schrödinger
Equation given in Some Textbooks

The relativistic (Dirac and Klein–Gordon) and nonrelativistic (Schrödinger)
wave equations have been discovered very long ago. In particular, the reduc-
tions of the relativistic wave equations into the nonrelativistic one in the case,
when the velocity of a quantum particle is much less than the speed of light,
seem to be well established procedures which enter most textbooks on quan-
tum mechanics. However, sometimes this question is improperly treated not
just in a specialized literature but even in well known (and otherwise very
good) textbooks.

An example of the latter situation can be found in [74] where on pages
50–51 there is an attempt to argue that the Schrödinger equation for a zero-
spin particle in the presence of an electromagnetic field should read

i�
∂ϕ

∂t
=
[

1
2m

(
i�∇ +

e
c
A
)2

+ eΦ+
i�e

2mc2
∂Φ

∂t

]
ϕ (A.21)

(see (1.140) on p. 51 of [74]). It is further claimed in [74] that in the Coulomb
gauge (∇ · A = 0) the term proportional to ∂Φ

∂t must be kept while in the
Lorentz family of gauges

(∇ · A + ∂Φ
∂t = 0

)
, the corresponding Schrödinger

equation must not contain the term proportional to ∇ · A = 0 because in
(A.21) it is canceled by the term proportional to ∂Φ

∂t = 0.
Two remarks concerning (A.21) should be made. First of all, the obvious

defects of the ‘Schrödinger equation’ (A.21) is that (i) it is not compatible with
the minimum coupling of Electrodynamics and (ii) it is not gauge invariant.
Therefore, (A.21) cannot represent the correct form of a wave equation for a
nonrelativistic electron.

The second remark concerns the more technical question about where
there was a mistake in the transformation of the Klein–Gordon equation into
the Schrödinger equation, performed in [74], which had lead to the incor-
rect (A.21). This point can be answered by comparing the transition from
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the Klein–Gordon to the Schrödinger equation discussed in Sect. A.2.1 (see
(A.13)–(A.16)) with the corresponding discussion given in [74]. The latter
simply does not take into account the delicate cancellation which occurs be-
tween the terms in the second line of (A.13) under the assumption that the
motion of a quantum particle is nonrelativistic.

Finally let us note that a mistake quite similar to that made in [74] had
also been done in [125] (see (58.7) and (58.9) on p. 210 of that book).

A.3 On the Existence of the ‘Overlap’ Region

A.3.1 Collisions with a Point-Like Charge

Let us first consider collisions with a point-like charge ZA. In this case the
light-cone transition amplitude is given by (6.61), the first order amplitude is
given by (6.72) where one should setMj = 0. Due to the presence of the ground
state in the transition matrix element, the electron coordinates are effectively
restricted to r

<∼ 1
ZI

. Therefore, for collisions with impact parameters b � 1
ZI

one can approximately write

K0 (B0 | r⊥ − b |) ≈ K0(B0b) +
B0K1(B0b)

b
b · r⊥, (A.22)

where B0 = ωn0
γv and K1 is a modified Bessel function. Further, one can also

expand

ln
| b − r⊥ |

b
≈ −b · r⊥

b2
. (A.23)

Using (A.22) and the condition
∑

j Aj = 1 one obtains for the first order
transition amplitude (6.72)

ap
0n(b) ≈ 2iZA

v
K0(B0b) < ψn |

(
1 − v

c
αz

)
exp

(
i
ωn0z

v

)
| ψ0 >

+
2iZA

vb
B0K1(B0b) < ψn |

(
1 − v

c
αz

)
exp

(
i
ωn0z

v

)
(r⊥ · b) | ψ0 > .

(A.24)

Applying the identity < ψn | αz exp
(
iωn0z

v

) | ψ0 >≡ v
c < ψn | exp

(
iωn0z

v

) |
ψ0 > one sees that the first term in (A.24) is proportional to 1

γ2 . We will
neglect this term and choose b to satisfy not only the relation b � 1

ZI
but also

b � γv
ωn0

. Estimating ωn0 ∼ Z2
I one can see that it is always possible to find the

range 1
ZI

� b � γv
ωn0

for ultrarelativistic collisions when one has γc � ZI for
any ZI. SinceB0 = ωn0

γv , it is easy to see that in this range of impact parameters
B0b � 1. Correspondingly, one can approximate K1(B0b) ≈ 1

B0b [108] and the
first order transition amplitude reads
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ap
0n(b) ≈ 2iZA

cb2
< ψn | (1 − αz) exp

(
i
ωn0z

c

)
(r⊥ · b) | ψ0 >, (A.25)

where we set v ≈ c.
On the other hand, taking into account (A.23), the light-cone transition

amplitude (6.61) becomes

aCoul
0n (b) ≈< ψn | (1 − αz) exp

(
i
ωn0z

c

)
exp

(
2iZA

c

b · r⊥
b2

)
| ψ0 > . (A.26)

Since r⊥ ∼ 1
ZI

, then, for b � ZA
ZIc

, one can expand the exponential function in
(A.26) and the light-cone transition amplitude (A.26) recovers the first order
transition amplitude (A.25). Thus, one can conclude that, for collisions with
a point-like charge

1. The first order perturbation theory can be used for b � ZA
ZIc

and
2. The light-cone and first order transition amplitudes are approximately

equal at 1
ZI

� b � γv
ωn0

.

A.3.2 Collisions with a Neutral Atom

Let us now discuss briefly the electron excitation and loss in ultrarelativistic
collisions with neutral atoms. Since for collisions with a neutral atom having
atomic number ZA the screened atomic field for any impact parameter is
not stronger than the field of a point-like charge ZA then the conclusion (1) is
applicable for collisions with neutral atoms as well. In the light-cone amplitude

aeik
0n (b) =

〈
ψn | (1 − αz) exp

(
i
ωn0z

c

)

× exp

⎛
⎝2iZA

c

∑
j

AjK0 (Mj | r⊥ − b |)
⎞
⎠ | ψ0

〉
. (A.27)

we expand the functions K0(Mj | r⊥ − b |) for b � 1
ZI

similarly to (A.22).
Since b � 1

ZI
> ZA

ZIc
one can further expand the exponential function in (A.27)

and obtain

aeik
0n (b) ≈ 2iZA

cb

∑
AjMjK1(Mjb) < ψn | (1 − αz) exp

(
i
ωn0z

c

)
b · r⊥ | ψ0 >.

(A.28)

For the same region of impact parameters b � 1
ZI

the first order transition
amplitude is approximately given by

ap
0n(b) ≈ 2iZA

cb

∑
j

AjBjK1(Bjb) < ψn | (1 − αz) exp
(
i
ωn0z

c

)
b · r⊥ | ψ0 >.

(A.29)
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As it follows from (A.28) and (A.29) the light-cone and first order amplitudes
are approximately equal for b � 1

ZI
if Bj � Mj . If the latter condition is not

fulfilled the amplitudes (A.28) and (A.29) can still be approximately equal if
there exists an overlap between b � 1

ZI
and b � 1

Mj
, and b � 1

ZI
and b � 1

Bj
.

In the ranges b � 1
Mj

and b � 1
Bj

the amplitudes (A.28) and (A.29) can be
further simplified using for small arguments K1(x) ≈ 1

x . This yields

aeik
0n (b) ≈ ap

0n(b) ≈ 2iZA

cb2
< ψn | (1 − αz) exp

(
i
ωn0z

c

)
b · r⊥ | ψ0 >. (A.30)

The inspection of the screening constants given in [102] shows that the strict
conditions 1

ZI
� b � 1

Mj
and 1

ZI
� b � 1

Bj
are in general not fulfilled.

However, the less restrictive conditions for the overlap 1
ZI

< b < 1
Mj

and 1
ZI

<

b < 1
Bj

are fulfilled for very heavy projectile-ions where ZI is considerably
larger than max{Mj}.

In general the cross section (6.73) can be calculated according to the follow-
ing simple rule. At any impact parameter the transition amplitude should be
represented by the value obtained either from the light-cone or the first order
transition amplitudes whichever gives the smallest transition probability.

A.4 Radiative Atomic Processes and Galilean
and Gauge Transformations

A relativistically covariant quantum-electrodynamic description of processes,
in which atomic particles possessing both internal and translational degrees of
freedom interact with the electromagnetic field, is in general quite a nontrivial
task. On the other hand, particles with nonzero rest masses can often be well
described by the nonrelativistic equations, which are in general much simpler
to deal with compared to their relativistic counterparts. Therefore, atomic
processes, in which charged particles moving with nonrelativistic velocities
interact with photons, are normally considered by using the nonrelativistic
Schrödinger equation.

However, within the scope of such an approach one encounters the prin-
cipal difficulty connected with the problem of covariance of the calculated
results. Indeed, the nonrelativistic equations of motion are covariant under
a Galilean transformation whereas the Maxwell equations describing electro-
magnetic fields are Lorentz covariant. Since any calculation for the radiative
processes is to be performed in a certain reference frame, it is in general not
clear how reliable results of the calculation are.

One example of the problem of covariance arises in the theoretical studies
of the radiative electron capture in nonrelativistic ion–atom collisions. The
common statement, which can be found in the literature (see e.g. [4,77,236]),
is that the application of the Schrödinger equation to treat this process yields
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values for the total cross section which in general strongly depend on a par-
ticular choice of a Galilean reference frame and that the rest frame of the ion
is much more appropriate to calculate the cross section than other frames.

Amongst other radiative processes, for which the same problem of covari-
ance arises, are the radiative electron–ion recombination in crossing nonrel-
ativistic beams of electrons and ions and the spontaneous radiative decay
of a moving excited atom. All the radiative processes mentioned above have
much in common. In particular, the radiative recombination and capture are
rather closely related and can be viewed as different types of one-photon
bremsstrahlung.

In this section, following the discussion given in [237, 238], we consider
the radiative electron capture in ion–atom collisions, the electron–ion(atom)
recombination and the spontaneous radiative decay of an excited atom(ion).
Based on the Schrödinger equation we shall explore the behavior of the total
cross sections (of the total decay rate in the case of the spontaneous decay)
under a Galilean transformation. We shall also consider in detail the important
and delicate interrelation between Galilean and gauge transformations. In
particular, we will show that this interrelation can easily cause the confusion
of the problem of gauge dependence with the problem of Galilean covariance
if a sufficient care is not taken in the analysis.

A.4.1 One Radiating Atomic System and Two Reference Frames:
Galilean Invariance

The relativistic effects related to the reference frame transformations (like
e.g. time dilation and Lorentz contraction) begin with terms ∼(v/c)2, where
v is the velocity of one frame with respect to the other and c is the speed of
light. The relativistic corrections to the energy and momentum of a particle
with a nonzero rest mass, which moves with a velocity v0 with respect to the
origin of a given reference frame, start with terms ∼(v0/c)2. Therefore, in our
consideration all terms of the order of (v/c)2, (v0/c)2, vv0/c

2 (and higher) will
be neglected. The speed of light will be taken as reference frame-independent.
One should remark that for the analysis given below the latter assumption
is in fact not necessary and is made here just for the sake of simplicity. One
could regard the speed of light as frame dependent, however, as long as terms
∼(v/c)2, (v0/c)2 and vv0/c

2 are neglected, this would have no impact on the
final result.

We begin with the detailed consideration of the transition amplitudes for
the radiative processes using the semi-classical approach. Within this ap-
proach the heavy subsystem (consisting for the processes in question of one
or two nuclei) is regarded as classical and assumed to move along a given
trajectory generating the Coulomb potential for the electron. Because of com-
paratively very large nuclear mass, the coupling of the heavy subsystem to the
radiation field is much weaker than that of the electron and will be neglected.
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Within the semi-classical approach the transition amplitude, obtained in
the first order approximation in the interaction between the electron and the
electromagnetic field, is given by

afi = −i
∫ +∞

−∞
dt〈Ψf(t)|Ŵ |Ψi(t)〉. (A.31)

Here

Ŵ = − e

2mc
(p̂ · A + A · p̂) + eϕ (A.32)

is the interaction between the electron and the electromagnetic field, where
p̂ is the operator of the electron momentum, A and ϕ are the vector and
scalar potentials of the electromagnetic field, e is the electron charge and m
its mass. The term e2A2/2mc2 does not contribute to one-photon processes
and, therefore, is omitted in (A.32).2 Further, Ψi(t) and Ψf(t) are the initial
and final states of the electron which are solutions of the Schrödinger equation

i
∂

∂t
Ψ =

(
p̂2

2m
+ Vc(t)

)
Ψ, (A.33)

where Vc(t) is the interaction between the electron and the heavy subsystem.

Spontaneous Radiative Recombination and Decay

We start with the consideration of the spontaneous radiative transition oc-
curring in the atomic system consisting of an electron and a nucleus. This can
be either the transition between continuum and bound states of the system
(the radiative recombination) or the transition between two bound states (the
spontaneous radiative decay).

At first we consider the radiative transition using a reference frame K ′

where the nucleus, for the sake of definiteness, is supposed to be at rest (this
restriction is not essential and can easily be removed). We take the position
of the nucleus as the origin of this frame and denote the electron coordinates
with respect to the origin by s. The initial and final states describing the
electron, which interacts with the nucleus, read

Ψ ′
i (t) = e−iεitχi(s)

Ψ ′
f (t) = e−iεf tχf(s), (A.34)

where εi and εf are the initial and final energies of the electron.
In order to describe the potentials of the electromagnetic field in the frame

K ′ we employ the radiation gauge. In this gauge the operators for the vector
and scalar potentials of the field are given by (see e.g. [94])

2 In our analysis we also disregard the spin degrees of freedom of the electron which
are known to be not important for the processes considered here.
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ÂK′(s, t) =
∑
κρ

ακρ

(
c+κρe

i(ωκt−κ·s) + C.C.
)

ϕ̂K′(s, t) = 0, (A.35)

where ακρ =
√

2πc2

V ωκ
eκρ, c+κρ is the photon creation operator, eκρ is the po-

larization vector (eκρ1 ·eκρ2 = δρ1,ρ2 , eκρ ·κ = 0) and V is the normalization
volume for the field. The sum in (A.35) runs over all photon modes.

The field potentials A and ϕ, which enter expressions (A.31)–(A.32), are
‘generated’ on the transition between the photon vacuum state | 0〉 and a state
| k′, λ〉 describing one photon which has in the frame K ′ a momentum k′,
frequency ω′ = ck′ and polarization ek′λ. These potentials in K ′ are obtained
according to

AK′(s, t) = 〈k′, λ | ÂK′(s, t) | 0〉 = αk′λ exp(i(ω′t − k′ · s))
ϕK′(s, t) = 〈k′, λ′ | ϕ̂K′(s, t) | 0〉 = 0. (A.36)

Taking into account (A.31)–(A.32) and (A.36), for the transition amplitude
in the frame K ′ we obtain

aK′ = −i
∫ +∞

−∞
dt〈Ψf(t)|ŴK′ |Ψi(t)〉

= 2πi
e

mc
δ(ω′ + εf − εi)

∫
d3sχ∗

f (s)e
−ik′·sαk′λ · p̂χi(s), (A.37)

where the delta-function expresses the energy conservation for the emission
process observed in the frame K ′.

Now we assume that in another reference frame K the motion of the
nucleus is represented by a classical straight-line trajectory R(t) = b + vt,
where v is the velocity of the nucleus and b is its impact parameter with
respect to the origin of the frame K. We denote by r the electron coordinates
with respect to the origin. The electron coordinates with respect to the nucleus
are as before given by s. Note that r = s + R.

In the frame K the initial and final states of the electron are given by

Ψi(t) = χi(r − R)eimv·re−iEit

Ψf(t) = χf(r − R)eimv·re−iEf t, (A.38)

where Ei = εi +mv2/2, and Ef = εf +mv2/2.
For the evaluation of the transition amplitude in the frame K one should

take into account that the transformation from K ′ to K alters not only the
electron wave functions but also the potentials of the electromagnetic field.
Indeed, with accuracy of up to the order of v/c the transformation of the
potentials (A.35) to the frame K are given by AK = AK′ and ϕK = 1

cv ·AK′

(see e.g. [7]), where AK and ϕK are the vector and scalar potentials in the
frame K. This transformation yields
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AK(r, t) = αkλ exp(ik · b) exp(i(ωt − k · r))
ϕK(r, t) =

1
c
v · AK(r, t), (A.39)

where ω = ω′ +k ·v. The latter relation describes the nonrelativistic Doppler
shift. Note also that the transformation (A.39) does not affect the photon
momentum: k = k′.

The interaction between the electron and the nucleus should also be trans-
formed to the new reference frame. As a result, in the frame K this interaction,
in addition to the term Vc, will include the current–current term (the so-called
Darwin or Breit term, see e.g. [7]). The latter one, however, is a correction to
Vc of the order of vv0/c

2 and has to be omitted.
Taking into account (A.31)–(A.32) and (A.38)–(A.39), for the transition

amplitude in the frame K we obtain

aK = −i
∫ +∞

−∞
dt〈Φf(t)|ŴK |Φi(t)〉

= i
e

mc
eik·b

∫ +∞

−∞
dt ei(ω+εf−εi)t

×
{∫

d3rχ∗
f (r − R)e−imv·re−ik·r αkλ · p̂ (eimv·rχi(r − R)

)
−αkλ · v

∫
d3rχ∗

f (r − R)e−ik·rχi(r − R)
}

= 2πi
e

mc
δ(ω − k · v + εf − εi)

∫
d3sχ∗

f (s)e
−ik·s αkλ · p̂χi(s), (A.40)

where αkλ =
√

2πc2

V (ω−v·k)ekλ. The delta-function in (A.40) expresses the en-
ergy conservation for the observer in the frame K.

It is seen in (A.40) that in the consideration given in the frame K an
important cancellation occurs between the term arising from the action of the
electron momentum operator on the electron translational factor eimv·r and
the term due to the scalar potential.

Radiative Electron Capture

Now we turn to the radiative capture in ion–atom collisions. For simplicity
we assume that the colliding atomic system consists just of one electron and
two nuclei. Let an inertial frame K ′ have the origin in the point O′. Let the
initial and final electronic wave functions be given in this frame by ψi(s, t)
and ψf(s, t), respectively, where s is the electron coordinate with respect to
the point O′. ψi,f are solutions of the Schrödinger equation for the electron
moving in the combined time-dependent potential Vc(t) of the nuclei of the
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atom and ion. In the frame K ′ the initial and final states, which describe the
electron moving in the potential of the nuclei, read

Ψ ′
i (t) = ψi(s, t)

Ψ ′
f (t) = ψf(s, t). (A.41)

Using (A.31)–(A.32) and (A.41) and assuming that the field potentials in K ′

are given by (A.36), for the capture transition amplitude in this frame we
obtain

aK′ = i
e

mc

∫ +∞

−∞
dt eiω′t

∫
d3sψ∗

f (s, t)e−ik′·sαk′λ · p̂ψi(s, t). (A.42)

Now we take another inertial frame K, with respect to which the frame K ′

moves with a velocity v, and let the point O be the origin of the new frame.
The coordinates of the origin O′ are given in K by R(t) = b + vt and we
denote by r the electron coordinates with respect to the origin O. In the frame
K the initial and final electron states are given by

Ψi(t) = ψi(r − R, t)eimv·re−imv2t/2

Ψf(t) = ψf(r − R, t)eimv·re−imv2t/2. (A.43)

The potentials of the radiation field in the frame K are related to those in K ′

by the transformation (A.39).
Using (A.31)–(A.32), (A.39) and (A.43) we obtain that the capture tran-

sition amplitude in the frame K is given by

aK = i
e

mc
eik·b

∫ +∞

−∞
dt eiωt

×
{∫

d3rψ∗
f (r − R, t)e−imv·re−ik·r αkλ · p̂ (eimv·rψi(r − R, t)

)
−αkλ · v

∫
d3rψ∗

f (r − R, t)e−ik·rψi(r − R, t)
}

= i
e

mc

∫ +∞

−∞
dt ei(ω−k·v)t

∫
d3sψ∗

f (s, t)e−ik·s αkλ · p̂ψi(s, t), (A.44)

where αkλ =
√

2πc2

V (ω−v·k)ekλ. The relation ω− k · v = ω′ between the photon
frequencies in K and K ′, which follows from the comparison of the last line
of (A.44) with (A.42), describes the Doppler shift.

Analogously to the case of the radiative recombination and decay, we ob-
serve in (A.44) that in the consideration of the radiative capture given in the
frame K the term, which arises from the action of the electron momentum
operator on the electron translational factor eimv·r, is canceled by the term,
which appears due to the scalar potential. Comparing (A.44) and (A.42) we
see that the form of the capture transition amplitude in both frames is similar.

One can show that the form of the transition amplitudes for the radiative
processes, described in different Galilean reference frames K ′ and K, remains
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similar also in the case when these amplitudes are obtained in the full quantum
considerations in which all the particles are described quantum mechanically.
Besides, the same result also follows if the coupling of the heavy nuclues
(nuclei) to the electromagnetic field is taken into account.

The similarity in the form of the transition amplitudes in different refer-
ence frames originates from the mutual cancellation between the terms, which
arise due to the change in the wave functions of the charged particles, and
the terms, which appear because of the change in the potentials of the elec-
tromagnetic field. This cancellation (particular cases of which was explicitly
demonstrated in (A.40) and (A.44)) is of course not fortuitous. The reason for
this cancellation is that, with accuracy of up to v/c, a Galilean transforma-
tion does not affect the form of the first-order interaction between the charged
particles and the radiation field

Ŵ = ρ̂ϕ̂− ĵ · Â/c, (A.45)

where ρ̂ and ĵ are (the operators for) the total charge and current densities
of the particles and ϕ̂ and Â are the scalar and vector potentials of the field.
Indeed, under a Galilean transformation from K ′ to K one has ρ̂ = ρ̂′ and
ĵ = ĵ′ + ρ̂v, where v is the velocity of K ′ with respect to K. Taking also into
account the corresponding transformation of the potentials we obtain

ρ̂ϕ̂− 1
c
ĵ · Â = ρ

(
ϕ̂′ +

v
c
· Â′

)
− 1
c

(
ĵ′ + ρ̂′v

)
·
(
Â′ +

v
c
ϕ̂′
)

= ρ̂′ϕ̂′ − ĵ′ · Â′/c. (A.46)

Note that in the last line of (A.46) we omitted the terms ∼(v/c)2 and ∼vv0/c
2,

where v0 � c are characteristic velocities of the charged particles in K ′.
The similarity of the radiative transition amplitudes established above of

course does not mean that these amplitudes are covariant under a Galilean
transformation. The reason is obvious: it is the presence of the photon or,
more precisely, the momentum of the photon. However, taking into account
that ω − v · k = ω′ and keeping in mind that the transformation (A.39) does
not change the photon momentum and thus one has ω′ = ck, it becomes clear
that in both reference frames the corresponding amplitudes yield identical
total cross sections and decay rates. We, therefore, may conclude that the total
cross sections for the radiative electron recombination and capture and the
total decay rate for the spontaneous radiative decay are invariant under a
Galilean transformation.

One remarkable point in the establishing of the Galilean invariance for
the radiative processes, which should be especially mentioned, is that we have
arrived at this result without imposing any conditions on the initial and final
wave functions describing the charged particles (except the obvious one that
these wave functions are nonrelativistic). Therefore, this result is valid, no
matter whether the wave functions are exact or approximate and, in the latter
case, which particular approximations for these functions are employed.
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A.4.2 Two Radiating Systems and One Reference Frame:
The Problem of Gauge Dependence

In the previous subsection, by describing a single radiating system using two
different reference frames, we explored the behavior of the radiative transi-
tion amplitudes and cross sections under a Galilean transformation. Now we
consider the complementary situation where one reference frame is used to
describe two radiating systems which have different translational velocities
but otherwise are identical.

For the sake of simplicity in this section we shall give the detailed consid-
eration only for the spontaneous radiative decay and at first treat this process
for an atom which rests at the origin of a given reference frame K0. The atom
is initially in its excited internal state χi with an energy εi and by emitting
a photon makes a transition into an internal state χf with an energy εf . The
amplitude for the spontaneous transition with emission of a photon having
momentum k and polarization vector ekλ reads

aRA = 2πi
e

mc

√
2πc2

V ω
δ(ω − ωif ) 〈χf(r) | e−ik·r ekλ · p̂ | χi(r)〉, (A.47)

where ω = c | k | and ωif = εi − εf is the atomic transition frequency. The
total decay rate for the atom at rest is then given by

WRA = lim
T→∞

V

8π3

2∑
λ=1

∫
d3k

| aRA |2
T

=
e2ωif

2πm2c3

2∑
λ=1

∫
dΩk | 〈χf(r) | e−ik·r ekλ · p̂ | χi(r)〉 |2 . (A.48)

The integration and the sum run over the solid angle dΩk and polarization,
respectively, of the emitted photon. Note that in the second line of (A.48)
| k |= ωfi/c.

Let us now consider the spontaneous decay of an atom which moves in the
frame K0 with a constant velocity u along a classical trajectory S(t) = ut.
With respect to its inner degrees of freedom the moving atom is fully identical
to that considered above and initially and finally is in the same internal states
χi and χf .

In the frame K0 the initial and final states of the moving atom read

ψi(r, t) = χi(r − S)e−iεiteimu·re−imu2t/2

ψf(r, t) = χf(r − S)e−iεf teimu·re−imu2t/2. (A.49)

Using (A.49) the amplitude for the spontaneous transition of the moving atom
with emission of a photon having momentum k′ and polarization vector ek′λ
is obtained to be
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aMA = 2πi
e

mc

√
2πc2

V ω′ δ(ω
′ − ωif − k′ · u)

×
(
〈χf(r) | e−ik′·r ek′λ · p̂ | χi(r)〉 +m ek′λ · u 〈χf(r) | e−ik′·r | χi(r)〉

)
.

(A.50)

Compared to the amplitude (A.47) the transition amplitude for the moving
atom contains the additional term proportional to the product of the transi-
tion density and the atomic velocity which describes the contribution to the
electron current caused by the motion of the atom. Taking into account the
consideration of the previous section, this term can also be viewed from a
different perspective as reflecting the presence of the nonzero scalar potential
of the radiation field in the rest frame of the atom. The amplitude (A.50) can
be cast into the form pretty similar to that of (A.47) by using the condition
of charge conservation. According to the latter the atomic transition charge
density and current have to obey the continuity equation which, being written
in the momentum space, in our case yields(

ωif − q2

2m

)
〈χf(r) | e−iq·r | χi(r)〉 =

1
m
〈χf(r) | e−iq·r q · p̂ | χi(r)〉. (A.51)

With the help of (A.51) (in which the term q2/2m ≈ ω2
if/mc2 has to be

neglected compared to ωif ) the transition amplitude (A.50) can be rewritten
as

aMA = 2πi
e

mc

√
2πc2

V ω′ δ(ω
′ − ωif − k′ · u) 〈χf(r) | e−ik′·r Ek′λ · p̂ | χi(r)〉,

(A.52)

where

Ek′λ = ek′λ +
u · ek′λ

ωif
k′. (A.53)

The term in (A.50), which is proportional to the translational velocity u of
the atom, arises because the moving atom actually does not ‘see’ the same
field potentials as the atom at rest and, as was already mentioned, reflects the
appearance of the nonzero scalar potential of the radiation field in the rest
frame of the moving atom. After the relation (A.51) had been employed, the
term related to the scalar potential has disappeared in (A.52) which implies
that the field was in fact subjected to a certain gauge transformation. Within
the accuracy of the nonrelativistic consideration, in which terms ∼1/c2 are
neglected, the vector Ek′λ has the properties (i) E2

k′λ = e2
k′λ = 1, (ii) Ek′λ ·

k′ = 0 and represents the polarization vector for the gauge transformed field.
Using (A.52) the total decay rate for the moving atom is obtained to be

WMA =
e2ωif

2πm2c3

2∑
λ=1

∫
dΩ′

k

| 〈χf(r) | e−ik′·r Ek′λ · p̂ | χi(r)〉 |2
(1 − u cos θk′/c)2

, (A.54)
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where θk′ is the angle between the momentum of the emitted photon and the
atomic velocity u. Within the accuracy of the nonrelativistic consideration the
absolute value of the photon momentum in (A.54) is given by | k′ |= ωfi/c,
i.e. is the same as that in (A.48).

In order to show that, within the accuracy of the nonrelativistic treatment,
the decay rates (A.48) and (A.54) are equal one should take the following
points into account. First, for a nonrelativistic atom one has k′·r ∼ k·r ∼ v0/c,
where v0 is the characteristic electron velocity inside the atom. Therefore,
in order to be consistent with the nonrelativistic consideration, one has to
expand the transition matrix elements in (A.48) and (A.54) and to keep there
only the absolute square of the dipole transition element and the correction
of the order of v0/c to the dipole term. Second, within the nonrelativistic
consideration one also has to expand the term (1 − u cos θk′/c)−2 in (A.54)
and to neglect in this expansion all terms of the order of (u/c)2 and higher.
Then, taking into account that the dipole transition matrix element cannot
depend on the direction of the photon momentum, it is a straightforward
task to show that in the nonrelativistic consideration the total decay rate is
independent of the velocity of the atom.

One should emphasize that we would not have arrived at this natural
conclusion without using the relationship (A.51). However, the latter, being
a particular case of the continuity equation for the conservation of charge,
generally holds only if χi and χf are exact atomic eigenstates. Therefore, if
a numerical calculation employs approximate atomic states one could come
to the spurious result that the total decay rate in the nonrelativistic theory
depends on the atomic velocity3. As we have seen above, the replacement of
the charge density via the current density in the expression for the transition
amplitude and the corresponding change in the form of the transition ampli-
tude for the moving atom (compare (A.50) and (A.52)) amounts to a gauge
transformation. Therefore, the spurious velocity dependence of the total de-
cay rate, which is obtained when approximate wave functions are used, is the
direct consequence of the problem of gauge dependence.

Considerations, which are basically similar to that presented above for
the spontaneous decay, can be also given for the radiative recombination and
capture. They lead to the same result: if these processes are treated within
one reference frame the total cross section will in general be independent of
the center-of-mass velocity only provided exact wave functions are used to
describe the initial and final states of the charged particles. This velocity-
independence is directly related to the gauge independence with the general
3 Note that this spurious velocity dependence would by no means contradict to the

invariance of the decay rate under a Galilean transformation from one reference
frame to another. It would also be fully acceptable from the purely logic point
of view (implying, for instance, that there is a special Galilean frame (‘ether’)
in which the absolute translational motion of atoms is ‘marked’ by ‘setting’ their
decay rates according to their velocities with respect to this frame and that all
other frames simply ‘copy’ these rates).
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condition for the latter to be fulfilled given by the conservation of the total
electric charge in the process and expressed as the continuity equation

∂ρfi

∂t
+ div jfi = 0 (A.55)

for the transition charge density ρfi and current jfi.
If approximate wave functions are used, the condition (A.55) will in general

be violated, the charge will not be conserved and the results will be gauge
dependent. This will not violate the invariance of the calculated total cross
sections and decay rates under a Galilean transformation. However, if the
consideration is restricted to one reference frame, it may lead to the wrong
conclusion that the nonrelativistic cross sections and decay rates depend on
the velocity of the center-of-mass motion of the atomic system in this frame.

Since exact solutions of the three-body problem are not known, the prob-
lem of gauge dependence is especially critical for calculations of the radiative
electron capture.

A.4.3 Example: Radiative Electron Capture

As it follows from the above analysis, the Galilean and gauge transformations
are very intimately interrelated. This interrelation, if overlooked, can easily
lead to the confusion of the problem of covariance of calculated results under
a Galilean transformation with the problem of gauge dependence of these
results. The latter seems to have happened in the studies of the radiative
capture in ion–atom collisions and below we shall discuss this point in some
detail.

In the literature on the ion–atom collisions there had been a long-standing
and widely spread opinion (see, for instance, [4,236]) that the Galilean invari-
ance of the total cross sections for the radiative electron capture is possible
only if the initial and final wave functions ψi,f obey some special conditions.
This opinion had arisen from the first calculations of the total capture cross
section performed in [239] and has gained a strong support due to the analysis
of this problem undertaken in [240].

The authors of [239] calculated the capture cross section in the rest frames
of the ion-projectile and the target-atom and found that the results may
strongly differ. The obvious reason for this difference is that, while they took
into account the Galilean transformation of the wave functions, they regarded
the electromagnetic field and its potentials as frame-independent (and used
the radiation gauge in both frames). As a result, in their calculation the terms
∼v/c arising from the Galilean transformation of the wave functions to a new
frame were included but the corrections of the same order v/c, appearing due
to the change in the field potentials, were ignored.

The authors of [240] approached the problem of Galilean invariance by
considering the radiative recombination and capture just in one Galilean frame
and focusing on the dependence of the amplitudes and the cross sections on
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the translational velocity of the atomic system. They found that, unless the
wave functions are exact (or satisfy some special conditions), the total cross
section will be velocity-dependent but did not relate this result to the problem
of gauge dependence which was not even mentioned. Instead, this result was
interpreted as the problem of Galilean noninvariance.

The confusion of the problems related to the frame and gauge transfor-
mations also arises when two different Galilean frames are considered but the
field potentials are regarded as frame-independent (as, for instance, it was
done in [239]). Indeed, a Galilean transformation alters the potentials of the
radiation field. Therefore, in order to keep these potentials unchanged after
the transformation of a reference frame, the potentials in the new frame have
to be subjected to an appropriate gauge transformation.

The radiation gauge is extremely popular in atomic physics calculations.
In particular, this gauge was used in all treatments of the radiative capture
which we are aware of. However, taking into account what has been said
above, it becomes clear that if in a theoretical study the radiation gauge is
imposed on the field potentials simultaneously in different reference frames,
then such a study does not address the problem of covariance under a Galilean
transformation but represents a certain check of gauge independence. The
latter is also useful since it can serve as a test for theoretical models of the
radiative electron capture.

A.4.4 A Gauge Test for the 1B and CDW Models of the Radiative
Electron Capture

In order to illustrate the latter point we show in Fig. A.1 results of our cal-
culation for the total cross sections for the radiative electron capture into the
K shell occurring in fast collisions between a highly charged ion-projectile
and a molecular hydrogen target. In the calculation molecular hydrogen was
regarded as two independent hydrogen atoms which is a very good approxima-
tion to evaluate the total cross section for the radiative capture in high-velocity
collisions.

The calculations were performed as follows. The transition amplitude for
the capture was evaluated in the rest frame of the projectile-ion and the rest
frame of the target using the same radiation gauge for each reference frame.
Two models were considered to approximate the electron states: the so called
first Born (1B) and the Continuum Distorted Wave (CDW) approximations.

Within the 1B model the initial and final electron states are approxi-
mated by undistorted eigenstates of the target and projectile, respectively.
For instance, in the projectile-ion reference frame with the origin taken at the
position of the projectile nucleus the first Born states are given by

ψ
(+)
i (t) = exp

(−i(εi + v2
a/2)t

)
exp(iva · s)φi(r)

ψ
(−)
f (t) = exp(−iεft)χf(s). (A.56)
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Fig. A.1. The total cross section for the radiative electron capture into the K-shell
of the projectile in collisions between Ge31+(1s) and molecular hydrogen. The cross
section is given as a function of the collision velocity. Solid and dashed curves (which
almost coincide) are results of the CDW model calculated in the projectile and target
frames, respectively (both results are scaled by a factor of 0.75). Dot and dash-dot
curves are results of the 1B model calculated in the projectile and target frames,
respectively (note that in the figure the latter results are multiplied by a factor of
100). Circles are experimental data reported in [241]. From [238].

Here r is the electron coordinate with respect to the nucleus of the atom,
which moves in the projectile frame with a velocity va, and s is the electron
coordinate with respect to the nucleus of the ion. Further, φi(r) is the initial
bound state of the electron in the atom with an energy εi and χf(s) is the
final bound state of the electron in the ion with an energy εf .

Within the CDW model the initial and final electron wave functions are
approximated by two-center states. For instance, the initial and final states
in the rest frame of the projectile are given by

ψ
(+)
i (t) = φi(r)χ(+)

va
(s) exp

(−i(εi + v2
a/2)t

)
,

ψ
(−)
f (t) = χf(s) exp(iva · r)φ(−)

−va
(r) exp(−iεft), (A.57)

where χ(+)
va (s) (φ(−)

−va
(r)) is the Coulomb continuum state of the electron mov-

ing in the field of the ionic (atomic) nucleus with an asymptotic momentum
mva (−mva) which satisfies the corresponding ‘in’ (‘out’) boundary condition
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(see e.g. [9]). For more details on the CDW approximation and its applications
to the Coulomb (nonradiative) capture in nonrelativistic ion–atom collisions
we refer to [38,39], a detailed discussion of distorted-wave models in the case
of relativistic collisions can be found in [4].

It is seen in Fig. A.1 that the 1B model strongly failed to pass the test
yielding cross section values which differ by orders of magnitude and have
quite different dependencies on the collision velocity. The enormous difference
between results for the total capture cross section obtained in the first Born
approximation by performing calculations in the rest frames of the projectile-
ion and the target (a particular case of which is seen in Fig. A.1) has been for
very long time attributed to the Galilean noninvariance of this approxima-
tion [4, 77, 236]. However, since these calculations always employed the same

Fig. A.2. The cross sections for the radiative electron capture into the L-shell of
the projectile in collisions between Ge31+(1s) and molecular hydrogen. The cross
sections are given as a function of the collision velocity. Solid triangles with error
bars are experimental data from [241]. Results of the CDW calculations in the target
frame are shown by solid curve for the total capture into the L-shell), by dash curve
for the capture into the 2s-state), by dot curve for the capture into the 2p0-state)
and by dash-dot curve for the sum of the capture into the 2p+1 and 2p−1 states.
(Note that the states are quantized along the collision velocity.) The corresponding
results of the CDW calculations in the projectile frame are displayed by solid circles,
open squares, open circles and open triangles. Solid triangles with error bars are
experimental data from [241] Note that all the theoretical results are scaled by a
factor of 0.75. From [238].
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radiation gauge for both reference frames, the difference is simply a signature
of the very strong gauge dependence of this approximation.

In contrast to the first Born approximation, the application of the CDW
model was quite successful leading to very close values of the capture cross sec-
tion which, in addition, are in a reasonable agreement with the experimental
data (see Fig. A.1).

In Fig. A.2 the cross sections for the radiative capture into the L-shell are
plotted as a function of the collision velocity for the same colliding system
as in Fig. A.1. It is seen in the figure that the CDW model has again passed
the gauge test quite successfully yielding close results not only for the total
capture into the L-shell but also for the ‘partial’ capture cross sections into
states with definite values of the angular momentum and magnetic quantum
number. In contrast, results of the 1B model (now shown in the figure) are
very strongly gauge-dependent also for the capture to the L-shell.

Thus, in the case of a particular gauge transformation considered above
the CDW approach turned out to be almost gauge independent and has clearly
demonstrated its great advantage over the simple first Born approximation.
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113. H. Bräuning et al., Phys. Scripta T92, 43 (2001)
114. A.L. Nikishov, N.V. Pichkurov, Sov. J. Nucl. Phys. 35, 561 (1982)
115. F. Decker, Phys. Rev. A 44, 2883 (1991)
116. D. Ionesku, J. Eichler, Phys. Rev. A 48, 1176 (1993)
117. A.B. Voitkiv, J. Ullrich, J. Phys. B 34, 4513 (2001)
118. A.B. Voitkiv, B. Najjari, J. Ullrich, Phys. Rev. Lett. 92, 213202 (2004)
119. A.B. Voitkiv, B. Najjari, J. Phys. B 37, 3339 (2004)
120. A.B. Voitkiv, B. Najjari, J. Ullrich, Phys. Rev. Lett. 94, 163203 (2005)
121. A.B. Voitkiv, J. Phys. B 38, 1773 (2005)
122. A.B. Voitkiv, Phys. Rev. A 74, 012728 (2006)
123. E. Fermi, Phys. Rev. 57, 485 (1940)
124. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon,

Oxford, 1971)
125. A.S. Davydov, Quantum Mechanics (Pergamon, Oxford, 1965)
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