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1. In his treatment of the problem of the equivalence of two quadratic
differential forms, E. B. Christoffell was led in 1869 to a sequence of in-
variants which we now designate as the curvature tensor and its successive
covariant derivatives. The process .of forming any invariant of this
sequence after the first, or curvature tensor, is known as covariant differ-
entiation and can be applied to any arbitrarily given tensor to deduce a
tensor of higher rank; however, the significance and indeed the justifica-
tion of this process of covariant differentiation lies in the fact that it leads
to the construction of a sequence of invariants suitable for the complete
algebraic characterization of the quadratic differential form, or of the
Riemann space, to adopt a more geometrical terminology. We mention
this fact in particular because the point of view hereby expressed is funda-
mental in the following work.
The analogous problem of constructing a sequence of tensor invariants

capable of characterizing the conformal Riemann space has been recognized
for a number of years among geometers. Various aspects of this problem
have been treated by Cartan, Schouten, J. M. Thomas, Veblen, Weyl
and others. The following discussion will, however, be related primarily
to two of my previous notes in These PROCEEDINGS and on this account we
shall give a brief statement of the contents of these notes.2 In the first of
these it was recognized that the underlying analytical theory of the con-
formal Riemann space could be described as the invariant theory of a
quadratic differential form

EI >jGaj5dX"ddx:
al- 0=1

2Of wei,ght --, where n denotes the dimensionality number of the space;

the second note led to the definition of a connection with components
Or;a obeying a law of transformation

bJuiorUqu== -i; + orPzpU, (1.1)

under an arbitrary analytic transformation of the x coordinates. In
the above equations (1.1), as in all following equations, we adopt the sum-
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mation convention with the understanding that Greek indices assume

the values 0, 1, . . ., n and Latin indices the values 0, 1, . . ., n, co unless
the contrary is indicated; here is introduced as a convenient symbol
in place of n + 1 as used by some writers. The quantities i4 in (1.1) are

defined as the elements of the matrix-

0 1

0

1

n

CO

n co

in such a way that ui stands for the element in the ith

row of this matrix; also
column and kth

a log (xx) - t
,-G

(o,r = 1, ..., n)

where (xi) denotes the jacobian determinant of the coordinate trans-
formation. As a knowledge of certain of the components Or;a is necessary
in our later work we shall observe that these are defined by

oPko = -
as; or0' --
-nn

Orz= KB^; 0i4, = (- t2)Q z; OP0S = -- (a,:3,' = ,..,n
orc, a (_ )

f ; oro ,In=
,or

c

O,-y(a,,/3,y1= ...
. . ,)

Reference may be had to the second of the above-mentioned papers

for the explicit definition of the quantities Q and K in the above expressions.
The quantities Go(a,,B = 1, ..., n) which have the law of transformation

2

Gc = (xx) X G,,,u,u (indices = 1, ..., n) (1.2)

1 0 . . 0 0

0 bil axi

axi axn
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,
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constitute the components of the fundamental conformal tensor. In
addition to the above equations we shall also need the equations

2

a$ = (xx) Gup ua, u (indices = 1, ..., n) (1.3)

which give the law of transformation of the contravariant components
G(7 of the fundamental conformal tensor.

It is evident that equations (1.1) can be used in the usual manner to
construct from an arbitrarily given tensor T, a covariant derivative for
which the values 0, 1, ..., n only will be assumed by the added index
of the differentiation; on account of the restricted range of this index,
this process of covariant differentiation cannot, however, be used to form
a second covariant derivative of tensor character. This suggests that we
"complete" the above covariant derivative by defining the values of its
components for the value o of the index of differentiation.3 Using the
idea of completing this covariant derivative we introduce in this note a
method which succeeds for all cases for which a certain constant K does
not vanish, the constant K depending on the dimensionality number n of
the space, the number of contravariant indices, the number of covariant
indices and the weight of the given tensor. An extension of this method
which enables us to complete a tensor whose components involve two Greek
indices of restricted range 0, 1, . . ., n is given in § 3. Corresponding to
the above case, this latter method fails to apply whenever another con-
stant L, depending on the same quantities as K, is equal to zero. This
method can in general be applied to the conformal curvature tensor
as defined in the second of my above-mentioned notes in These PROCEED-
INGS, since for this tensor L = 0 only if n = 4; hence we arrive at covariant
derivatives of the conformal curvature tensor having the significance that
the equations of transformation of their components express integrability
conditions of (1.1). It turns out that if the dimensionality number n is
odd our method leads to the formation of an infinite sequence of covariant
derivatives of the conformal curvature tensor. For n even but different
from 4, the constant K will always vanish at some stage of the process
of forming this sequence so that our method of constructing successive
covariant derivatives cannot be continued.
A slight formal modification of a well-known lemma on partial differ-

ential equations4 suffices to show that, for n odd, the conformal curvature
tensor and its successive covariant derivatives constitute, when combined
with the fundamental conformal tensor G, a complete set of tensor invariants
of the conformal Riemann space.

In a second note on this same subject we shall treat the exceptional
cases K = 0 and L = 0 on the basis of the fundamental idea of covariant
differentiation, namely, the construction of conditions of integrability
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in tensorial form of the equations of transformation of the components
of a tensor.

2. Covariant derivative of an arbitrary tensor T. DEFINITION. A
compkte relative conformal tensor T of weight W or simply a relative conformal
tensor of weight W, is an entity with components TP:: : which depend on the
co6rdinates x', . .., xX alone and which have the transformation

rk - us . ... Uq = I U4 W T,'... ... us (2.1)
when the coordinates undergo an arbitrary analytic transformation whose
jacobian determinant does not vanish identicaUy. If, however, one or more
of the indices in these equations are limited to the restricted range 0, 1,
n the entity T so defined is called an incomplete conformal tensor of weight W.
The quantity I ub in (2.1) denotes the determinant of order n + 2 formed
from the quantities ub and in fact is such that

aUbI = (X7X)
Observing first that

bI| = wlu6a|wtorh
-

orhA U},

we find by differentiating (2.1) with respect to xa and eliminating de-
rivatives of the u' which occur, by means of (1.1), that

TsfUP uq = a JW Tt............qr s ....(2)Tk u~u-IITI:Ur ... 4u , (2.2)
where

T7@@_ a S + Th .q orp+ + TP4'orqTrp. . ..s,- ax . s hp s h;A

- T::,s orr; -.. Tr s'4or,-Wr.q Orp, (2.3)
and there is an analogous expression for the components appearing in the
left members of (2.2); in the following it will be assumed without special
mention that whenever a set of quantities such as TP :,,, are defined by
equations of the type (2.3) the corresponding barred quantities are de-
fined in an analogous manner.

LetN denote the number of indices p ... g andM the number of indices
r. . . s appearing in the components of the above tensor T. Then (2.3) show
that

Tp SqO =[M-N+(n+2)W] T...:- (2.4)

Now we can form a conformal tensor from the incomplete conformal
tensor whose components occur in (2.2) if we can define a set of quantities
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V-g. depending on the o6rdiaatesxl,...,ealone and having equations
of transformation

Jk. Ut. .. Uq = I Ua WT. .s 8+ t. . ...o u°

E TrUe-qI } k *--Uls- (2-5)
_-1

In fact (2.2) and (2.5) combine to give

. U= |Ub T qg Ur *u (2.6)
The conformal tensor whose components appear in (2.2) will be called
the incomplete covariant derivative and the tensor whose components
appear in (2.6), the complete covariant derivative, or simply the covariant
derivative of the given tensor T.
To construct the desired quantities TP'..q% transforming by (2.5) we

first differentiate (2.2) with respect to t, obtaining

r4k. ...j,aOUs..***U =|Ub | {rP--sq,.Pu p+ Tr.--- S raO } k ..*-ul, (2.7)
where

6Tq... t--s h-foP11r-* Iq

r . . . s,rw- axw Tr ... s,p kv | * r. ..s, ha,

- TP q oj'hk -_P-q orkTk $JA ry * -rhSY

-Pq...Q p -WTj- orkPr...s, r...s,P k,-

In particular we can deduce from these latter equations and (2.4) that

Tta= [M-N+(n+2)W+]]r...sq (2.9)
T~~~..il00=[MN+(qfM+ N)W +2][M +(l+72)W]T- :4
Tsa_ rM-N + ~(n + 2)W+ 1 rM-N +(n +2)W1 T,::. qr~...s,o.q L S..s

(2.10)

Now restrict the values of a and 3 in (2.7) to the range 1, . .., n and re-
write the right members of these equations so as to obtain a corresponding
restriction of range for the indices ,u and ', i.e., we form the equations

;k Ua IW T q U; + Tu-.-.go,u Up
+ Tt. . .-SqF0aU00 + TrL-.-.s,ooUa Up
+TP.--.5fsw ¢ra4u + T... . q °ratOf a }uOI .k.. u-1 (2.11)
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with the understanding that the indices a,#, 1,,v assume values 1, ..., n.
If we multiply (2.11) by G"a and sum on the indices a and 6, taking ac-
count of (1.3), (2.4), (2.8), (2.9) and (2.10) we obtain a system of equations
which can be written

..U]p = I aIW IT __.q Gp cVk'::' Il!< G ui ..*. u, = b r{ '&Tt c2sG<o

[2M-2N + 2(n + 2)W+ 2 - (n ..o

+ TP. Ysvu)}Uk***l. (2.12)

Hence, if the constant K defined by

K = 2M- 2N + 2(n + 2)W + 2-n

does not vanish, we can put

P.--sXaz(K,E r.........G...qq (2.13)

and the components Tt*.:S. so defined will transform by (2.5). We
thus obtain the complete covariant derivative with components Tr' s,,g
transforming in accordance with (2.6).

If K = 0, equations (2.12) show the existence of a conformal tensor
2

S: of weight W + n+ 2 having the components

n o
E E Tt. . .SA,G
,=1 l=1

The constant K will not vanish for the tensor Z so that it is possible to
construct the complete conformal covariant derivative of this tensor.
It is, in fact, evident that we can form the infinite sequence of successive
covariant derivatives of the tensor Z:.

3. An Extension of the Preceding Method.-Before applying the above
theory to the problem of constructing conformal tensor invariants suitable
for the characterization of the conformal space we must consider the
problem of completing a tensor D having components DP:...q.S which
are skew-symmetric in the indices ju and v and such that

DP- sfoq DP. ... qo -O

Differentiation of the equations of transformation of the components
of the tensorD, namely,

P ...q r£=and eliminationof the derivasuq= o theuP c cur b 1g

and elimination of the derivatives of the uk which occur, by (1.1), gives
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Dk-.lee Uf . . . q = | Ua|W {qDqzvT pU.. qt.w oa< 0Dk...a. U;..uj b=Zr.sjv(r u

+ -Y°rPrUaU X ) Uk * * * Ut,'(3.2)
where

p r.= . .SP +Dh orP + + r .. hr

- . . . - . sr

If as before N and M denote the number of indices p... q and r. .s, re-
spectively, then it follows from the last formula that

Dr...4~~.qor D=.D qor

Dt 2 _ 1 Dt~~.. S.'
...sr. h s

n

DP...q~~~~~~. qD WDq.r.~~~~~~~~~pr.s.L PIKr r ..r..u

DrqO= [M-N+(n+2)W+2]Drp ..w.

Equations (3.2) can accordingly be written

D$.lnrUi ** q= I|IUb|W{DPqsa pU + - Dt. . .T,aw au?pI4

+ (OPqv (° s" u,s+ 0ry u u~)} uk . .. ul(3.3)

in which it is to be understood that the indices a admit only the

Dk...laSy 7DP * J= _DP- {PsqxG a8
restricted range..1, ... .Mulirplyn 33 yG adsmigo h

D'~~~~ G~~ i4...s =- ruI{...spG"vUpUo

where the indices a,#,',y,bL,v,7r admit the range 1, . . ., n only and the inlteger
L is defined by

L M- N+ (n+2)W+4-n.
Since

D ... ;Apo o
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owing to the skew-symmetric property of the components of the incomplete
conformal tensor D, it follows that (3.4) holds also when regarded as
equations for the transformation of the quantities

r... spyrGf (3.5)
where the index , takes on the full range of values 0, 1, . . ., n in conformity
with the general convention; in the following we shall regard (3.4) as
holding in this sense.

If L 5 0, we put

DP..., - DP...qX, LD GPr,

DP ...q -D . =.q 0.

Then (3.1) and (3.4) combine to give

Dk. .k Ui- **J=|b|Dr... sfgUk *UiUCUdW

and we have succeeded in completing the incomplete conformal tensor
D; from their definition the components of the complete conformal
tensor D are skew-symmetric in their last two indices, i.e.,

DP...q - DP... qJr...sfg - Jr. . .sgf-

When L = 0, equations (3.4) lead to the definition of an incomplete
2

conformal tensor of weight W + n + 2 with components (3.5); it is

obvious that a method analogous to the above can in general be used to
complete this tensor after which its successive covariant derivatives can
be constructed.

4. An Application of the Method of § 3.-As a first application of the
method of the preceding paragraph we can consider the components of an
incomplete conformal tensor D to be defined by

D ::J, =T q (4.1)

Cf. equation (2.7). The tensor D is then the direct analogue of the skew-
symmetric part of the second covariant derivative of a given conformal
tensor T. It is therefore always possible to complete the tensor D defined
by (4.1) even when our method for constructing the complete covariant
derivative of the tensor T fails to apply, since the integers K and L cannot
vanish simultaneously.

5. The Complete Conformal Curvature Tensor (n $ 4).-The important
application of the method of § 3 and the one in fact for which this method
was designed, is to complete the curvature tensor whose components
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0Bko were deduced in the second of my above mentioned notes in These
PROCEEDINGS (see § 1). That is, we put

the requisite conditions on the components Dk, are then satisfied-since
the components 0Bki' in addition to being skew-symmetric in the indices
a and ,B, are equal to zero whenever the values a = 0 or ,B = 0 are assumed.
For this case L = 4 - n and hence we can use the method of § 3 to com-
plete the curvature tensor whenever n is different from 4. We thus
obtain the components OB' m of the complete conformal curvature tensor.

6. Tensors Derived from the Conformal Curvature Tensor.-Starting
with the complete conformal curvature tensor, n 7d 4, let us consider the
problem of forming its successive covariant derivatives.. We have N = 1
and W = Oso that the integerK is equal to 2 M-n for this case. Hence
if n is an odd integer, greater than or equal to 3, we can construct the
infinite sequence of complete covariant derivatives of the complete con-
formal curvature tensor. Let us indicate this by writing

|nodd 0B|1*; OB'Imp; 0Bempq ....

as the components of the curvature tensor and its successive covariant
derivatives.

If n is even and greater than 4 the constantK will always vanish at some
stage of the process of forming the infinite sequence of complete covariant
derivatives of the curvature tensor. For example, if n = 6, K = 0 for
the conformal curvature tensor; if n = 8, we can construct the first
complete conformal covariant derivative of the conformal curvature
tensor but then find that K = 0 for this covariant derivative, etc. The
following indications for n = 6, 8 and 10 enable us to see at a glance the
behavior of these sequences for the above and higher values of the di-
mensionality number.

in = 61 OB,klmJ

in = 81 OBkim; BkImp

| n-10m; OBmp;.OBin______I kim kIdp klmpq*

As shown these sequences end after a finite number of terms after which
our method for completing the covariant derivative fails to apply. Use
of the quantities Pik defined in the second of my above-mentioned notes
in These PROCEEDINGS will evidently lead to an entirely covariant form of
the components of the conformal curvature tensor and its covariant
derivatives.
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Under certain conditions this method enables one to complete the covariant derivative
of a tensor T in a very satisfactory manner. However, Veblen's method does not lead
to a sequence of conformal tensor invariants, analogous to the Riemann curvature
tensor and its successive covariant derivatives, by means of which the equivalence or
non-equivalence of two conformal spaces can be determined. On this account the
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ON THE CHANGES OF SIGN OF THE DERIrVATIVES OF A
FUNCTION DEFINED BY A LAPLACE INTEGRAL

BY D. V. WIDDER

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY

Communicated November 21, 1931

Let a real function f(x) be defined by a Laplace integral

cof(x) = e_X p(t)dt,

where so(t) is a real continuous function in the interval 0 < t < , the
integral converging for x > 0. The purpose of this note is to announce
certain results concerning the changes of sign of f(x) and its derivatives
as affected by the changes of sign of So(t).

It was known to Laguerrel that f(x) cannot have more changes of sign
than so(t). Since

P*)(x)= ( kl)k/ exL t1k0(t) dt,

it follows that f(k) (x) cannot have more changes of sign than So(t). We
are able to show that it has exactly as many as (p(t) for all k sufficiently
large. Moreover, we show that if a change of sign of p(t) is at t = a, then
one of the changes of sign off(k) (X) will be at a point Xk such that
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