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Preface to the Third Edition

Since the first edition of this work, kinetic theory has maintained its position as
a cornerstone of a number of disciplines in science and mathematics. In physics,
such is the case for quantum and relativistic kinetic theory. Quantum kinetic
theory finds application in the transport of particles and radiation through
material media, as well as the non-stationary quantum–many-body problem.
Relativistic kinetic theory is relevant to controlled thermonuclear fusion and to
a number of problems in astrophysics. In applied mathematics, kinetic theory
relates to the phenomena of localization, percolation, and hopping, relevant to
transport properties in porous media. Classical kinetic theory is the foundation
of fluid dynamics and thus is important to aerospace, mechanical, and chemical
engineering. Important to the study of transport in metals is the Lorentz–
Legendre expansion, which in this new edition appears in an appendix. A new
section in Chapter 1 was included in this new edition that addresses constants of
motion and symmetry. A number of small but important revisions were likewise
made in this new edition. A more complete description of the contents of the
text follows.

The text comprises seven chapters. In Chapter 1, the transformation theory
of classical mechanics is developed for the purpose of deriving Liouville’s the-
orem and the Liouville equation. Four distinct interpretations of the solution
to this equation are presented. The fourth interpretation addresses Gibbs’s no-
tion of a distribution function that is the connecting link between the Liouville
equation and experimental observation. The notion of a Markov process is
discussed, and the central-limit theorem is derived and applied to the random
walk problem.

In Chapter 2, the very significant BBKGY hierarchy is obtained from the
Liouville equation, and the first two equations of this sequence are applied in
the derivation of conservation of energy for a gas of interacting particles. In
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nondimensionalizing this sequence, parameters emerge that differentiate be-
tween weakly and strongly coupled fluids. Correlation functions are introduced
through the Mayer expansions. Examining a weakly coupled fluid composed
of particles interacting under long-range interaction leads to the Vlasov equa-
tion and the closely allied concept of a self-consistent solution. Prigogine’s
diagrammatic technique and related operator formalism for examining the
Liouville equation are described. The Bogoliubov ansatz concerning the equi-
libration of a gas, as well as the Klimontovich formulation of kinetic theory,
are also included in this chapter.

The Boltzmann equation is derived in Chapter 3 and applied to the derivation
of fluid dynamic equations and the H theorem. Poincaré’s recurrence theorem
is proved and is discussed relative to Boltzmann’s H theorem. Transport coeffi-
cients are defined, and the Chapman–Enskog expansion is developed. Results
of this technique of solution to the Boltzmann equation are compared with
experimental data and are found to be in good agreement for various molec-
ular samples. Grad’s method of solution of the Boltzmann equation involving
expansion in tensor Hermite polynomials is described. The chapter continues
with a derivation of the Druyvesteyn distribution relevant to a current carrying
plasma in a dc electric field. In the last section of the chapter, the topic of irre-
versibility is revisited. Ergodic and mixing flows are discussed. Action-angle
variables are introduced, and the notions of classical degeneracy and resonant
domains in phase space are described in relation to the chaotic behavior of
classical systems. A statement of the closely allied KAM theorem is also given.

In the first half of Chapter 4, the Vlasov equation is applied to linear
wave theory for a two-component plasma composed of electrons and heavy
ions. Landau damping and the Nyquist criterion for wave instabilities are
described. The chapter continues with derivations of other important ki-
netic equations: Krook–Bhatnager–Gross (KBG), Fokker–Planck, Landau, and
Balescu–Lenard equations. A table is included describing the interrelation of
the classical kinetic equations discussed in the text. The chapter concludes with
a description of the widely used Monte Carlo numerical analysis in kinetic
theory.

Quantum kinetic theory is developed in Chapter 5. A brief review of ba-
sic principles leads to a description of the density matrix, the Pauli equation,
and the closely related Wigner distribution. Various equivalent forms of the
Wigner–Moyal equation are derived. A quantum modified KBG equation is
applied to photon transport and electron propagation in solids. Thomas–Fermi
screening and the Mott transition are also discussed. The Uehling–Uhlenbeck
quantum modified Boltzmann equation is developed and applied to a Fermi
liquid. The chapter continues with an overview of classical and quantum hier-
archies of equations connecting reduced distributions. A table of hierarchies
is included where the reader is easily able to view distinctions among these
sets of equations. The Kubo formula, described previously in Chapter 3, is
revisited and applied to the derivation of a quantum expression for electrical
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conductivity. The chapter concludes with an introduction to Green’s function
analysis and related diagrammatic representations.

Chapter 6 addresses relativistic kinetic theory. The discussion begins with el-
ementary concepts, including a statement of Hamilton’s equations in covariant
form. Stemming from a covariant distribution function in four space, together
with Maxwell’s equations in covariant form, a relativistic Vlasov equation
is derived for a plasma in an electromagnetic field. An important compo-
nent of this chapter is the derivation and compilation of a table of Lorentz
invariants in kinetic theory. The chapter continues with a derivation of the
relativistic Maxwellian and concludes with a brief description of relativity in
non-Cartesian coordinates.

Chapter 7 has been added in this new edition, and addresses kinetic and
thermal properties of metals and amorphous media. The first component
of the chapter begins with a review of the notion of thermopower, and the
Wiedermann–Franz law is derived. The discussion continues with a formula-
tion for electrical and thermal conductivity in metals (encountered previously
in Chapter 5), stemming from the quantum Boltzmann equation, in which
Bloch’s classic low-temperature T 5 dependence of metallic resistivity and
canonical high-temperature linear T dependence are derived. In addition, the
formalism yields a residual resistivity at 0 K. The chapter continues with a
discussion of properties of amorphous media and related processes of local-
ization, hopping, and percolation. Bloch waves and the notion of extended
states are reviewed. Anderson’s parameter of the ratio of the spread-of-states
to the band width is introduced. Localization occurs at some critical value of
this parameter. At smaller values of the parameter, energies of localized and
extended states are separated at the “mobility edge.” Transition of the Fermi
energy from the domain of extended states to the domain of localized states
represents the Mott metal–insulator transition. Mechanisms of electrical con-
duction are discussed in three temperature intervals in which the notions of
thermally assisted and variable-range hopping emerge. The chapter continues
with the concepts of bond and site percolation. A number of percolation scal-
ing laws are discussed. The chapter concludes with a review of localization
in second quantization. Throughout the chapter, many discussions related to
material science are included.

Each chapter is preceded by a brief introductory statement of the subject
matter contained in the chapter. Problems appear at the end of each chapter,
many of which carry solutions. A number of problems include self-contained
descriptions of closely allied topics. In such cases, these are listed in the chapter
table of contents under the heading, Topical Problems. In addition to references
cited in the text, a comprehensive list of references is included in Appendix E.
Assorted mathematical formulas are included in Appendices A and B, includ-
ing a list of properties of Laguerre and Hermite polynomials (B4). Appendix
D, addressing the Lorentz–Legendre expansion in kinetic theory, is new to this
edition.
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Stemming from the observation that science and society are inextricably
entwined, a time chart is included (Appendix E) listing early contributors to
science and technology of the classical Greek and Roman eras. The reader will
note that a central figure in this display is the Greek philosopher, Democritus,
who, at about 400 BCE, was the first to propose an atomic theory of matter.
Readers of my earlier work [Introduction to the Theory of Kinetic Equations,
Wiley, New York (1969)] will recall that it, too, included a time chart describing
contributions to dynamics from the fifteenth to the nineteenth centuries. The
appendix on Mathematical Formulas has been expanded in this new edition to
include a list of properties of Laguene and Hermite polynomials (Appendix
B4).

Many individuals have contributed to the development of this work. I remain
indebted to these kind colleagues and would like here to express my sincere
gratitude for their encouragement, support, and constructive criticism: Sidney
Leibovich, Terrence Fine, Robert Pay, Christof Litwin, Kenneth Gardner, Neal
Maresca, K. C. Liu, Danny Heffernan, Edwin Dorchek, Philip Bagwell, Ronald
Kline, Steve Seidman, S. Ramakrishna, G. George, Timir Datta, William Mor-
rell, Wayne Scales, Daniel Koury, Erich Kunhardt, Marvin Silver, Hercules
Neves, James Hartle, Kenneth Andrews, Clifford Pollock, Veit Elser, Chuntong
Ying, Michael Parker, Jack Freed, Richard Zallen, Abner Shimony, Philip
Holmes, Lloyd Hillman, Arthur Ruoff, L. Pearce Williams, Lloyd Motz, John
Guckenheimer, Isaac Rabinowitz, Gregory Schenter, and Ilya Prigogine.

Some of these individuals are former students. It is due to my association
with these gifted and talented colleagues that the talmudic inscription for this
work is motivated.

Peace,

Richard L. Liboff
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CHAPTER 1

The Liouville Equation

Introduction

This chapter begins with a review of the basic principles and equations of
classical mechanics. These lead naturally to the Liouville theorem, which to-
gether with the notions of ensemble and phase space, give rise to the Liouville
equation. This equation is perhaps the most significant relation in all of clas-
sical kinetic theory, and in the remainder of the chapter various techniques
of solution to this equation, as well as various interpretations of its solution,
are presented. Thus, for example, it is found that the Liouville equation is an
equation of motion for the N -particle joint-probability distribution, where N
denotes the number of particles in the system. Integration of this distribution
over subdomains in phase space gives reduced distributions whose equations
of motion (BBKGY Eqs.) are developed in Chapter 2.

A discussion is included of the Chapman–Kolmogorov equation and the
closely allied master equation, which is applied to the random-walk problem.
The master equation emerges again in Chapter 5 in analysis of the quantum
mechanical density matrix.

The chapter concludes with a brief description of probability theory and a
derivation of the central-limit theorem. This theorem is applied to obtain the
long-time displacement of the random walk and yields the Gaussian distribu-
tion. This distribution is fundamental to diffusion theory and is encountered
again in Chapter 3. The central-limit theorem is likewise again encountered in
Chapter 3 in a derivation of the distribution of center-of-mass momenta of a
stationary gas of molecules. The discrete Poisson distribution is obtained from
random-walk results and applied to small shot noise.



2 1. The Liouville Equation

Classical mechanics and probability theory are the foundations of kinetic
theory. Consequently, a firm grasp of the basic principles and relations of these
formalisms will lead to a richer working knowledge of kinetic theory.

1.1 Elements of Classical Mechanics

1.1.1 Generalized Coordinates and the Lagrangian

The number of degrees of freedom a given system has is equal to the min-
imum number of independent parameters necessary to uniquely determine
the location and orientation of the system in physical space. Such indepen-
dent parameters are called generalized coordinates. Thus, for example, a rigid
dumbbell molecule free to move in three-space has five degrees of freedom:
three to locate the center of mass of the molecule and two (angles) to determine
the orientation of the molecule. A fluid of N such molecules has 5N degrees
of freedom. A rigid triangular molecule has six degrees of freedom: five to
locate an edge of the triangle and an additional angle to fix the orientation of
the plane of the molecule about this axis.

For a system withN degrees of freedom, generalized coordinates are labeled
q1, q2, . . . , qN . These parameters may be taken to comprise the components
of an N -dimensional vector,

q � (q1, q2, . . . , qN ) (1.1)

The corresponding generalized velocities also comprise components of an
N -dimensional vector, and we write

q̇ � (q̇1, q̇2, . . . , q̇N ) (1.2)

The composite vector (q, q̇) determines the state of the system.
Let the system at hand exist in a conservative force field with kinetic energy

T (q, q̇) and potential V (q). The Lagrangian of the system is then given by

L(q, q̇) � T (q, q̇)− V (q) (1.3)

The dynamics of the system may be formulated in terms of Hamilton’s prin-
ciple. This principle states that the motion of the system between two fixed
points, (q, t)1 and (q, t)2, renders the action integral:

S �
∫ 2

1
L(q, q̇, t) dt (1.4)

an extremum.1 That is,

δ

∫ 2

1
L(q, q̇, t) dt � 0 (1.5)

1More precisely, a minimum.
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FIGURE 1.1. End points q1 and q2 are held fixed in the variation (1.5).

where δ denotes a variation about the motion of the system.2 See Fig. 1.1

Lagrange’s equations

The dynamical principle (1.5) may be employed to obtain a differential
equation for L(q, q̇, t). That is, let q(t) be the motion that renders S an
extremum.

Effecting the variation (1.5) and Taylor-series expanding the integrand gives

δS �
∫ 2

1
L(q + δq, q̇ + δq̇, t) dt −

∫ 2

1
L(q, q̇, t) dt

�
∫ 2

1

(
L+ δL

δq
· δq + δL

δq̇
· δq̇

)
dt −

∫ 2

1
L(q, q̇, t) dt (1.6)

Note that

∂L

∂q̇

d

dt
(δq) � d

dt

(
∂L

∂q̇
· δq)

)
− d

dt

(
∂L

∂q̇

)
· δq

Inserting this expression into the preceding equation gives[
∂L

∂q̇
· δq

]2

1

+
∫ 2

1

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt � 0

Since the end points of the trajectory are held fixed in the variation, the first
bracketed “surface terms” vanish. Insofar as the remaining integral must vanish
for any arbitrary, infinitesimal variation δq, it is necessary that

d

dt

(
∂L

∂q̇l

)
− ∂L
∂ql

� 0 (l � 1, 2, . . . , N) (1.7)

2Furthermore, the variation is a virtual displacement, that is, on that occurs in
zero time.
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Here we have returned to the component representation of (q.q̇). Equa-
tions (1.7) are called Lagrange’s equations.

1.1.2 Hamilton’s Equations

When written in the form

d

dt

(
∂L

∂q̇l

)
� ∂L

∂ql
(1.8)

Lagrange’s equations (1.7) reveal the following important observation: If the
coordinate ql is missing in the Lagrangian, the quantity ∂L/∂q̇l is constant in
time. In this event, we say that the coordinate q1 is cyclic or ignorable.

To better exhibit this symmetry principle of mechanics, we effect the
following transformation:

(ql, q̇l) → (ql, pl) (1.9)

where

pl ≡ ∂L

∂q̇l
(1.10)

The variable pl , so defined, is called the canonical momentum or momentum
conjugate to the coordinate ql .

The transformation (1.9) is accomplished through a Legendre transforma-
tion (familiar to thermodynamics). This transformation carries the Lagrangian
L(q, q̇) to the Hamiltonian H (q, p) by the following recipe:

H �
∑
l

∂L

∂q̇l
q̇ l − L (1.11)

Equations of motion in terms of the Hamiltonian are obtained by forming
the differential of the latter equation.

dH (q, p, t) �
∑
l

[
d

(
∂L

∂q̇l

)
q̇ l + ∂L

∂q̇l
dq̇l − ∂L

∂q̇l
dq̇l − ∂L

∂ql
dql − ∂L

∂t
dt

]

With Lagrange’s equations (1.7) and the definition (1.10), we obtain

dH (q, p, t) �
∑
l

(q̇ l dpl − ṗl dql)− ∂L
∂t
dt

Expanding the left side of this equation and identifying terms gives

ṗl � −∂H
∂ql
, q̇l � ∂H

∂pl
(1.12)

together with ∂H/∂t � −∂L/∂t . Equations (1.12) are called Hamilton’s
equations.
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The Hamiltonian and the energy

An important theorem concerning the Hamiltonian is as follows. Consider a
system of particles with radii vectors {ri}. Consider that the transformation to
the set of generalized coordinates,

ri � ri(q1, . . . , qN ) (1.13)

is independent of time and that the Lagrangian of the system is not an explicit
function of time. Then, with Lagrange’s equations (1.7), we obtain

dL

dt
�
∑
l

∂L

∂ql
q̇l + ∂L

∂q̇l

dq̇l

dt

�
∑
l

[
d

dt

(
∂L

∂q̇l

)
q̇ l +

(
∂L

∂q̇l

)
dq̇l

dt

]

�
∑ d

dt

(
∂L

∂q̇l
q̇ l

)
It follows that

d

dt

(∑ ∂L

∂q̇l
q̇ l − L

)
� 0 � d

dt
H (q, p) (1.14)

We may conclude that for such systems H is constant in time. This constant
may further be identified with the energy, E (see Problem 1.32).

H � E � constant (1.15)

Electrodynamic and relativistic Hamiltonian

Two important Hamiltonians that emerge in physics are as follows. The
Hamiltonian of a particle of charge e and mass m that moves in an elec-
tromagnetic field with vector potential A and scalar potential  is given by
(see Problem (1.22)

H � 1

2m

(
p− e

c
A
)2
+ e 

p � mv + e
c

A
(1.16)

The electric E and magnetic field B are related to the fields through the relations

E � −∇ − 1

c

∂A
∂t

B � ∇× A
(1.17)

Hamilton’s equations applied to the preceding Hamiltonian returns the Lorentz
force law

F � e
(
E+ v

c
× B

)
(1.18)
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The second example addresses a relativistic particle with rest mass m. It is
given by3,4

H �
√
p2c2 +m2c4 + V (r) (1.19)

The relativistic momentum has the form

p � γmv, γ 2 ≡ 1

1− β2
, β ≡ v

c
(1.19a)

In the preceding expressions, c is the speed of light.
A transformation of the potentials  and A in which the fields E , B

are invariant is called a ‘gauge transformation.’ Consider, for example, the
transformation

 →  ′ �  − 1

c

∂%

∂t
A → A′ � A+ ∇% (1.19b)

Substitution of these expressions into (1.17) indicates that the fields E , B remain
the same. (See Problem 1.22).

1.1.3 Constants of the Motion

If a dynamical function

W � W (q1, . . . , qN, p1, . . . , pN, t)

remains constant as the motion of the system unfolds in time,W is a constant
of the motion or an integral of the system.

How many such constants are there? For a system withN degrees of freedom,
integration of Hamilton’s equations (1.12) gives

ṗl � −∂H
∂q1

→ pl(t) � pl(0)−
∫ t

0

∂H

∂q1
dt

q̇l � ∂H
∂pl

→ ql(t) � ql(0)+
∫ t

0

∂H

∂pl
dt

(1.20)

Thus we find that the state of the system is specified by 2N constants,
{ql(0), pl(0)}.5 This conclusions may also be inferred geometrically.

In 2N + 1-dimensional space, 2N surfaces define a curve. For example, in
three-space, the two surfaces

f (x, y, z) � C1

g(x, y, z) � C2

3An alternative expression forH written in covariant form is given in Chapter 6.
4The Hamiltonian of an aggregate of N interacting particles is given by (4.27).
5Although initial values are constant, subsequent motion may grow chaotic. These

topics are further discussed in Section 3.8
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FIGURE 1.2. For a harmonic oscillator, the state of the system lies on an ellipse in
�-space.

define a curve. Only one of three variables x, y, z is independent. A curve is a
one-dimensional locus. Thus the intersection of the two surfaces written above
may be written in parametric form as

x � x(t), y � y(t), z � z(t)
Before proceeding further with this geometric construction, we define�-space.

1.1.4 �-Space

For a system with N degrees of freedom. �-space is a 2N dimensional Carte-
sian space whose axes are the {ql, pl} variables. Thus the state of the system at
any given instant (q1, . . . , qN, p1, . . . , pN ) is a single point in 2N -dimensional
�-space.

Let the system be a single harmonic oscillator for which �-space is two-
dimensional. The orbit of the oscillator may be written

q � a cosωt, p � b sinωt

from which we find (q
a

)2
+
(p
b

)2
� 1

Thus the state of the system (q, p) lies on an ellipse in �-space. See Fig. 1.2.
This example illustrates that time is suppressed in �-space. All we know

from the curve shown in Fig. 1.2 is that the particle has q, p values that lie
somewhere on the ellipse. We do not know what these values are at a specific
time.
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FIGURE 1.3. The system trajectory is a curve in �̃-space. At any instant of time, the
curve intersects �-space at a single point (q, p).

FIGURE 1.4. Dynamical trajectory of a harmonic oscillator in three-dimensional
(2+ 1) �̃-space. Projection onto �-space is an ellipse.

Time is exhibited explicitly in 2N + 1 �̃-space. This Cartesian space is
comprised of �-space and an additional orthogonal time axis. The system
trajectory or dysfunctional orbit,

[q1(t), . . . , qN (t);p1(t), . . . , pN (t)]

is a curve in �̃-space. See Fig. 1.3. The system trajectory for the harmonic
oscillator is shown in Fig. 1.4.

A constant of the motion

W1(q, p, t) � C1

is constant on the system trajectory. ButW � C1 is a surface in �̃-space (that
is, a 2N -dimensional locus). The intersection of 2N such independent surfaces
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FIGURE 1.5. Dynamical path of a free particle in three-dimensional �̃-space.

(W1,W2, . . . ,WN ) determines a curve (one-dimensional locus) in �̃-space.6

This curve may be written

ql � ql(η), pl � pl(η), t � t(η), l � 1, . . . , N (1.21)

which is the system trajectory. So again we find that the dynamical orbit is deter-
mined by 2N constants of the motion. In practice, we are often more interested
in the projected motion in �-space. This motion, we recall, is determined by
2N − 1 constants. See also Section 3.8.6.

These concepts are well illustrated by the simple example of a free particle
moving in one dimension. Since this system has one degree of freedom, it has
only two constants of motion:

x0 � x − vt
p0 � p

Intersection of these two surfaces in three-dimensional �̃-space reveals the
orbit

x � x0 + p0

m
t

See Fig. 1.5. These topics are returned to in Section 3.8.

1.1.5 Dynamic Reversibility

Consider a system whose Hamiltonian is invariant under time reversal. That
is, H (t) � H (−t). Suppose {q(t), p(t)} is a trajectory for this system. Then
another solution is {q(−t),−p(−t)}. To establish this property first, set t ′ � −t

6Such constants that intersect the energy surface are called isolating integrals.
Constants such as f (H ), where f is any smooth function, are evidently constant on
the energy surface and therefore have no intersection with it.
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FIGURE 1.6. (a) A motion and (b) dynamically reversed motion.

in Hamilton’s equations (1.12). There results

−dp
dt ′
� −∂H

∂q
, −dq

dt ′
� ∂H
∂p

So if we set p′ � −p, q ′ � q, Hamilton’s equations (1.12) are returned.
It follows that, if {q(t), p(t)} is a solution to Hamilton’s equations, then
{q(−t),−p(−t)} is also a solution. This situation is depicted in Fig. 1.6.

1.1.6 Equation of Motion for Dynamical Variables

Let u(q, p, t) denote a dynamical variable. Then we may write

du

dt
�
∑
l

(
∂u

∂ql
q̇l + ∂u

∂pl
ṗl

)
+ ∂u
∂t

(1.22)

With Hamilton’s equations, the preceding equation may be rewritten

du

dt
�
∑
t

(
∂u

∂ql

∂H

∂pl
− ∂H
∂ql

∂u

∂pl

)
+ ∂u
∂t

(1.23)

Let us introduce the following Poisson bracket notation relevant to two
dynamical variables A and B:

[A,B] �
∑
l

(
∂A

∂ql

∂B

∂p1
− ∂B
∂ql

∂A

∂pl

)
(1.24)
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Then (1.23) may be written

du

dt
� [u,H ]+ ∂u

∂t
(1.25)

This is the equation of motion for the dynamical variable u(q, p, t). The
following properties of Poisson brackets are easily verified:

[A,B] � −[B,A] (1.26a)

[A, c] � 0 (c is constant) (1.26b)

[A+ B,F ] � A[B,F ]+ [B,F ] (1.26c)

[AB,F ] � A[B,F ]+ [A,F ]B (1.26d)

[A, [B,F ]]+ [B[F,A]]+ [F, [A,B]] � 0 (1.26e)
∂

∂t
[A,B] �

[
∂A

∂t
, B

]
+
[
A,
∂B

∂t

]
(1.26f)

[A,B(A)] � 0 (1.26g)

The relation (1.26e) is called Jacob’s identity. In (1.26g), the function B(A) is
assumed to have a Taylor series expansion.

In the event that a dynamical variable u is not explicitly dependent on time,
then ∂u/∂t � 0 and (1.25) becomes

du

dt
� [u,H ] (1.27)

If, further, u � u(H ), then with the property (1.26e) we may write

du

dt
� 0 (1.28)

So we may conclude that any dynamical variable that is function only of the
Hamiltonian is a constant of the motion.

With (1.25), Hamilton’s equations (1.12) may be rewritten

q̇ � [q,H ] (1.29a)

ṗ � [p,H ] (1.29b)

Note also the fundamental Poisson bracket relations:

[ql, ql′] � [pl, pl′] � 0, [ql, pl′] � δll′ (1.30)

1.2 Canonical Transformations

1.2.1 Generating Functions

Consider the transformation of variables

q, p→ q ′, p′ (2.1)
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If these two sets of variables are to describe the dynamics of the same system,
then when

δ

∫ t2

t1

L(q, q̇) dt � 0 (2.2)

we must also find

δ

∫ t2

t1

L′(q ′, q̇ ′) dt � 0 (2.3)

When this agreement is obeyed, the transformation (2.1) is said to be canonical.
The variational equality (2.3) will follow from (2.2) provided a function

G1(q, q ′, t) exists such that

L(q, q̇) � L′(q ′, q̇ ′)+ dG1(q, q ′, t)
dt

(2.4)

Substituting this relation into (2.2) gives

δ

∫
Ldt � 0 � δ

∫
L′(q ′, q̇ ′) dt + δ{G1[q, q ′(q), t]t2 −G1[q, q ′(q), t]t1}

� δ
∫
L′(q ′, q̇ ′) dt (2.5)

We may conclude that the existence of a functionG1(q, q ′, t) that satisfies (2.4)
guarantees that the transformation (2.1) is canonical.

The specifics of this transformation are obtained by casting (2.4) in terms
of the Hamiltonian of the system (deleting summational indexes):∑

pq̇ −H (p, q) �
∑
p′q̇ ′ −H ′(q ′, p′)+ dG1(q, q ′, t)

dt
(2.6)

Transposing terms gives∑
p dq −

∑
p′ dq ′ + (H ′ −H ) dt � dG1(q, q ′, t) (2.7)

With the left side of (2.7) written for the expansion of dG(q, q ′, t), we may
conclude that

p � ∂G1(q, q ′)
∂q

, p′ � −∂G1(q, q ′)
∂q ′

(2.8)

Here we have assumed that G1 is not explicitly dependent on time.
Otherwise, (2.7) further implies that

∂G1

∂t
� H ′ −H (2.9)

Equations (2.8) indicate the manner in which G1(q, q ′) “generates” the
transformation (2.1). For G1 non-time dependent, (2.7) gives∑

p dq −
∑
p′ dq ′ � dG1(q, q ′) (2.10)
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From the development leading to this equation, we conclude that if the dif-
ferences of differential forms on the left side of (2.10) are equal to a total
differential, then the transformation is canonical.

We wish to examine more carefully the nature of the generating function
G1(q, q ′). For a system withN degrees of freedom, (2.8) comprises 2N equa-
tions. Thus consider that (2.8) refers specifically to the components (qs, ps)
and q ′s, p

′
s . The left equation of (2.8) is an implicit relation for obtaining

q ′s � q ′s(q, p). Such inversion is possible if and only if7

det

∣∣∣∣ ∂2G1

∂qs∂q ′r

∣∣∣∣ �� 0 (2.11)

Once having obtained q ′s � q ′s(q, p), the right equation of (2.8) gives p′s �
p′s(q, p), thereby completing the transformation (2.1).

As an example of a continuous function of q, q ′ that does not generate a
canonical transformation, consider

G1(q, q ′) � f (q)+ h(q ′)

where f (q) and h(q ′) are arbitrary continuous functions. This function does
not satisfy (2.11) and does not give a canonical transformation. Thus, when it
is stated that the relations (2.10) guarantees the transformation to be canonical,
it is tacitly assumed that G1(q, q ′) obeys (2.11).

Exchange transformation

An instructive example of the relation (2.8) is given by the generating function

G1(q, q ′) � −qq ′
There results

p′ � q, q ′ � −p
Save for a sign reversal, the roles of p and q are reversed. Accordingly, this
transformation is called the exchange transformation.

Hamiltonian criterion

In the preceding description it was stated that, for a transformation to be canon-
ical, Hamilton’s principle must be obeyed in both coordinate frames [that is,
(2.2) and (2.3)]. Equivalently, we say that the transformation (q, p) → (q ′, p′)
is canonical if and only if there exists a function H ′(q ′, p′) such that the
equations of motion in the new frame maintain the Hamiltonian form (1.12):

ṗ′l � −
∂H ′

∂q ′l
, q̇ ′l �

∂H ′

∂p′l
(2.12)

7For further discussion, see E. C. G. Sudarshan and N. Mukunda, Classical
Dynamics: A Modern Perspective, Wiley, New York (1974).
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1.2.2 Generating Other Transformations

It is possible through Legendre transformations of (2.10) to effect generating
functions that are functions of parts of “new” and “old” variables other than
q, q ′. Thus, for example, rewriting (2.10) as∑

p dq − d
(∑

p′q ′
)
+
∑
q ′dp′ � dG1(q, q ′)

gives ∑
p dq +

∑
q ′dp′ � d

(
G1 +

∑
p′q ′

)
It is evident from the differentials on the left side of this equation that the
variables of the functions on the right are q, p′. Thus we may write∑

pdq +
∑
q ′dp′ � dG2(q, p′) (2.13)

so that

p � ∂G2(q, p′)
∂q

, q ′ � ∂G2(q, p′)
∂p′

(2.14)

where again, G2 obeys (2.11) with respect to variables q, p′.
An instructive example of this transformation is given by the ordinary

transformation of coordinates:

q ′l � fl(a1, . . . , qN )

This transformation may be effected by the generating function

G2(q, p′) �
∑
l

p′lfl(q) (2.15)

With (2.14) we find

q ′k �
∂

∂p′k

∑
l

p′lfl(q)

q ′k � fk(q)

pk � ∂

∂qk

∑
l

p′lfl(q) �
∑
l

p′l
∂

∂qk
fl(q)

The second of these three equations returns (2.15), whereas the third completes
the total canonical transformation:

(q, p) → (q ′, p′)

We return to the generating relations (2.14) in our derivation of Liouville’s
theorem (Section 1.3).
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1.2.3 Canonical Invariants

A canonical invariant is a dynamical quantity that remains invariant under a
canonical transformation. An important example of a canonical invariant is the
Poisson brackets of two dynamical functions A, B. That is, if

A(q, p)
C−→A′(q ′, p′)

B(q, p)
C−→B ′(q ′, p′)

then

[A,B]qp
C−→[A′, B ′]q ′,p′ � [A,B]q,p (2.16)

A simple proof of this statement can be constructed if we keep in mind that
a canonical transformation is a change in variables related to a given system.
Consider that B is the Hamiltonian of the system at hand. Then by (1.27) (for
time-independent B)

dA

dt
� [A,B]qp

But the time rate of change of A can only depend on the properties of motion
of the system and not on a particular choice of variables. So dA/dt is the same
in all coordinate frames and (2.16) follows.

1.2.4 Group Property of Canonical Transformations

Let the canonical transformation

(q, p)
C1−→(q ′, p′) (2.17)

be associated with the generating function G(q, q ′). That is,∑
p dq −

∑
p′dq ′ � dG(q, q ′) (2.18)

Similarly, let

(q ′, p′)
C2−→(q ′′, p′′) (2.19)

be related to the generating function K(q ′, q ′′) so that∑
p′dq ′ −

∑
p′′dq ′′ � dK(q ′, q ′′) (2.20)

Adding dG to dK gives∑
p dq −

∑
p′′dq ′′ � d (q, q ′′) (2.21)

where we have set

d � d[G+K]

The relation (2.21) implies that the transformation

(q, p)
C3−→(q ′′, p′′) (2.22)
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is also canonical. Since the transformation C3 is obtained by first effecting C1

and then effecting C2, we may say that C3 is the product of C1 and C2. This is
written as

C3 � C1 ⊗ C2 (2.23)

Thus we find that canonical transformations obey the group property; that is,
the product of any two canonical transformations is itself canonical.

1.2.5 Constants of Motion and Symmetry

Constants of motion of a system may be associated with symmetries of a
system. Consider a system described by the coordinates: (q1, q2, · · · , qn) and
suppose that ∂H/∂qj � 0. With (1.2) we conclude that pj � constant. It
follows that if a system is symmetric with respect to displacements of a given
coordinate, the momentum conjugate to that displacement is constant. As noted
in Problem 1.2, such coordinates are called cyclic. Conservation principles
follow from this symmetry rule.

For example, consider an aggregate of N particles. The coordinates of the
system are (R, q ′1, q

′
2 · · · q ′3N ), where {q ′i} are particle Cartesian coordinates

relative to the center-of-mass and R, P are coordinates and momenta of the
center-of-mass, respectively. The Hamiltonian for this system is obtained from
the kinetic energy form given in Problem 1.7, namely,

H � P 2

2M
+
∑
i

p′2i /2mi +
∑
i ��j
V (r ′ij ) (2.24)

r ′ij ≡ |r′i − r′j |
where M is mass of the center-of-mass and V (r ′ij ) is interparticle potential.
Thus, with homogeneity of space,H is independent of R and one may conclude
that the momentum of the center-of-mass is constant.

In the study of conservation of angular momentum we write the angular
momentum of the system as [see (P1.9)]

J � JCM + {j′1 + j′2 + · · · + j′N} (2.25)

where JCM � R× P is the angular momentum of the center-of-mass and j′i is
the angular momentum of the i th particle relative to the center-of-mass. We note
that rotation of all particles in the system about a given origin that is not coin-
cident with the center-of-mass, is equivalent to rotation of the center-of-mass
about this same origin. As space is isotropic if follows that the Hamiltonian of
the system is invariant to this rotation. The related conservation rule may be
obtained in the study of infinitesimal variation. Thus, consider the change in
angular momentum of the center-of-mass due to infinitesimal displacement of
the center-of-mass in the time interval, δt ,

δJCM � R ×MṘδt ∝ R × δR � R × Rδθ (2.26)
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where δθ is the angle swept out by δR. The vectors (δJCM,R, Rδθ) form an
orthogonal triad. Again, as space is isotropic, system dynamics are invariant
to changes in θ . With (2.26), we conclude that the angular momentum of the
center-of-mass is constant. (See also Problem 1.2)

Invariance of a Hamiltonian to a given variable may be examined through
Hamilton’s equations (1.12) or the Poisson-bracket equations (1.25). For the
latter case, if H is independent of a variable u that is not explicitly time
dependent, then

du

dt
� [u,H ] � 0

and u � constant [see (1.27).] A similar situation occurs in quantum mechan-
ics. If u andH commute, (the Poisson brackets become the commutator) then
H is independent of u. In this event if u is not an explicit function of time,
then the expectation of u is constant. (See Section 5.1.)

1.3 Liouville Theorem

1.3.1 Proof

The Liouville theorem states that the Jacobian of a canonical transformation is
unity. For a system withN degrees of freedom, we write (in various notations)

J

(
q ′, p′

q, p

)
� ∂(q ′, p′)
∂(q, p)

�

∣∣∣∣∣∣∣∣∣∣∣

∂q ′1
∂q1

∂q ′2
∂q1

· · · ∂p′1
∂q1

· · · ∂p′N
∂q1

...
...

∂q ′1
∂pN

∂q ′2
∂pN

· · · ∂p′1
∂pN

· · · ∂p′N
∂pN

∣∣∣∣∣∣∣∣∣∣∣
� 1

(3.1)
This is a 2N × 2N determinant. To prove the Liouville theorem, we note the
following:

1. Jacobians may be treated like fractions so that

J � [∂(q ′, p′)]
[∂(q, p′)]

/
[∂(q, p)]

[∂(q, p′)]
(3.2)

2. When the same quantities appear in both partial derivatives, the Jacobian
reduces to one in fewer variables with repeated variables taken as constant. It
follows that (3.2) may be rewritten

J � ∂q
′/∂q|p′

∂p/∂p′|q ≡
Jn

Jd
(3.3)
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The subscript p′ on the “numerator” term Jn denotes that all N of the p′

variables are held fixed in q differentiation. The ik element of Jn is

J ikn �
∂q ′i
∂qk

Since (q, p) → (q ′p′) is a canonical transformation, we may employ the
generating equations (2.14) to obtain

J ikn �
∂2G2

∂p′1∂qk

In a similar manner, the denominator term may be written

J ikd �
∂2G2

∂qi∂p
′
k

So we find

J ikn � J kid
and we may conclude that Jn differs from Jd by an interchange of rows and
columns, which as may be recalled, has no effect on a determinant. Thus (3.3)
gives

J � Jn
Jd
� 1 (3.4)

which establishes Liouville’s theorem.

1.3.2 Geometric Significance

This theorem has an important geometrical consequence. Under an arbitrary
transformation (q, p) → (q ′, p′), a volume integral in �-space transforms as
follows: ∫∫

�

dq dp �
∫∫
�′

J

(
qp

q ′p′

)
dq ′ dp′ (3.5)

In this expression, � denotes volume in phase space.
If the transformation is canonical, then (3.5) becomes∫∫

�

dq dp �
∫∫
�′

dq ′ dp′ (3.6)

We may conclude that volume elements in �-space are canonical invariants.
See Fig. 1.7.
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FIGURE 1.7. Volume elements in �-space are canonical invariants. � � �′.

1.3.3 Action Generates the Motion

We now come to an important relation that is a central point in connecting
dynamics to kinetic theory.

Consider the action integral corresponding to motion in the interval from t
to t + T .

S(t, T ) �
∫ t+T

t

L(q, q̇) dτ

�
∫ t+T

0

[∑
pq̇ −H

]
dτ −

∫ t

0

[∑
pq̇ −H

]
dτ (3.7)

Differentiating, we obtain

dS

dt
�
∑
p′q̇ ′ −

∑
pq̇ + (H −H ′) (3.8)

Here we have labeled

p′ ≡ p(t + T ), q ′ ≡ q(t + T ) (3.9)

Assuming that H is time independent, (3.8) gives

dS �
∑
p′dq ′ −

∑
p dq (3.10)

Three important conclusions are evident from this relation:

1. The action S is a generating function for the actual physical motion in
time.

2. The differential motion in time is a canonical transformation.
3. Because of the group property of canonical transformations, (2.23), the

extended motion in time is a canonical transformation in time.

These properties will come into play in our first derivation of the Liouville
equation to follow.
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FIGURE 1.8. The ensemble comprises N points in �-space.

1.4 Liouville Equation

1.4.1 The Ensemble: Density in Phase Space

As mentioned previously, the state of a system is a single point in �-
space. As time evolves, the system point moves on the system trajectory:
[q1(t), . . . , qN (t);p1(t), . . . , pN (t)].

Now imagine a large number of independent replicas of the same system.
Such an abstract collection of identical systems is called an ensemble. Suppose
there are N systems in the ensemble. Then at t � 0 the state of the ensemble
is N points in �-space. See Fig. 1.8.

1.4.2 First Interpretation of D(q, p, t)

Let us introduce the function D(q, p, t), which is defined as follows. The
product

D(q, p, t) dq dp ≡ D(q, p, t) d� (4.1a)

represents the number of system points in the phase volume d� about the point
(q, p) at the time t . We may write

D(q, p, t) � dN
d�

(4.1b)

An important property of the ensemble is that trajectories of the ensemble
never cross in �-space. This follows from the fact that for a system with N
degrees of freedom the system trajectory [given by (1.2)] is uniquely specified
by 2N pieces of data: [q(0), p(0)]. See Fig. 1.9.

Consider that, at a given instant of time, ensemble points in a differential
volume of �-space are contained within a continuously closed surface. As
time evolves, with the property that trajectories do not cross, we conclude that
points interior to the surface remain interior and that surface points remain
surface points. See Fig. 1.10.
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FIGURE 1.9. An impossible situation in �-space. Only one system trajectory passes
through (q0, p0).

FIGURE 1.10. Interior points remain interior as time evolves. dN � dN ′.

If dN represents the number of enclosed system points, then we may
conclude that in the evolution of the system

dN → dN ′ � dN (4.2)

Letd�denote the volume occupied by these ensemble points. As established
by (3.10), the motion of these points comprises a canonical transformation.
Consequently, with the Liouville theorem (3.6), we may write

d�→ d�′ � d� (4.3)

Combining these relations, we find

dN
d�

→
(
dN
d�

)
� dN
d�

(4.4)

Recalling the definition (4.1),

D � dN
d�
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we may conclude that D(q, p, t) is constant on a system trajectory or,
equivalently, that

dD

dt
� 0 (4.5)

on a system trajectory. This is the Liouville equation. It may be rewritten in
Poisson bracket form. We have found previously (1.25) that if u(q, p, t) is any
dynamical variable, then

du

dt
� [u,H ]+ ∂u

∂t
(4.6)

With (4.5) we may then write the Liouville equation in the form

∂D

∂t
+ [D,H ] � 0 (4.7)

1.4.3 Most General Solution: Second Interpretation of D(q, p, t)

We wish to establish the following important theorem: g(q, p, t) is a solution
of the Liouville equation if and only if g is a constant of the motion.

1. Let g be a constant of the motion. Then,

dg

dt
� 0

But

dg

dt
� ∂g
∂t
+ [g,H ]

Therefore,

∂g

∂t
+ [g,H ] � 0

and g is a solution to the Liouville equation.
2. Let g be a solution to the Liouville equation. Then

∂g

∂t
+ [g,H ] � 0

But

dg

dt
� ∂g
∂t
+ [g,H ]

so that

dg

dt
� 0

and we may conclude that g is a constant of the motion.
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We may conclude that the most general solution to the Liouville equation
is an arbitrary function of all the constants of the motion. We may write this
most general solution in the form

D � D(g1, g2, . . . , g2N ) (4.8)

Thus, knowledge of the most general solution of the Liouville equation is
equivalent to knowledge of all the constants of the motion:

g1 � g1(q, p, t)

g2 � g2(q, p, t)

...

g2N � g2N (q, p, t)

(4.9)

Inverting these equations gives the dynamical orbits:

q1 � q1(g1, . . . , g2N, t)
...

qN � qN (g1, . . . , g2N, t)

p1 � p1(g1, . . . , g2N, t)
...

pN � pN (g1, . . . , g2N, t)

Thus we may conclude that knowledge of the most general solution to the
Liouville equation is equivalent to knowledge of all the orbits of the system.
This is our second interpretation of D(q, p, t).

1.4.4 Incompressible Ensemble

A second derivation of the Liouville equation stems from a fluid-dynamic
interpretation of ensemble flow in �-space.

Since system points in an ensemble are neither created nor destroyed, the
rate of change of the number of system points in the volume �,

∫
�
D d�

is equal to the net flux of points that pass through the closed surface S that
bounds �. Let u denote the velocity of system points in the neighborhood of
the element of surface dS, where, in general,

u � (q̇1, q̇2, . . . , q̇N ; ṗ1, ṗ2, . . . , ṗN ) (4.10)

Then the net flux out of the volume through the closed surface S is
�

u ·D dS.
We conclude that

∂

∂t

∫
�

D d� � −
�

S

u ·D dS � −
∫
�

∇ · uD d�
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∫
�

d�

[
∂

∂t
D +∇ · (uD)

]
� 0

Passing to the limit �→ 0, together with the mean-value theorem, gives the
equation

∂D

∂t
+∇ · uD � 0 (4.11)

Consider the term ∇ · u. With (4.10) and Hamilton’s equation (1.12), we find

∇ · u �
N∑
l�1

(
∂q̇l

∂ql
+ ∂ṗl
∂pl

)

�
∑(

∂2H

∂pl∂ql
− ∂2H

∂ql∂pl

)
� 0 (4.12)

Thus the fluid of system points is incompressible. Combining the latter two
equations returns the Liouville equation, which now appears as

∂D

∂t
+ u · ∇D � 0 (4.13)

Note that

u · ∇ �
∑
l

(
q̇ l
∂

∂ql
+ ṗl ∂

∂pl

)

�
∑
l

(
∂H

∂pl

∂

∂qi
− ∂H
∂ql

∂

∂pl

)
(4.14)

which renders (4.13) in the Poisson-bracket form (4.7).

1.4.5 Method of Characteristics

The property (4.8) that the most general solution to the Liouville equation is an
arbitrary function of the 2N constants of motion may be seen in another way.
In 2N + 1 dimensional �̃-space, the gradient of D(q, p, t) has components

∇D �
(
∂D

∂t
,
∂D

∂q1
, . . . ,

∂D

∂pN

)
(4.15)

In the notation, the Liouville equation (4.7) appears as

V · ∇D � 0 (4.16)

where

V ≡
(

1,
∂H

∂p1
, . . . ,− ∂H

∂qN

)
(4.16a)

The relation (4.16) says that the gradient of D is normal to the vector V in
�̃-space. This will be the case if D is a function of orbits that are tangent at
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every point to the vector V. With (4.16a), we see that such orbits are given by

dt

1
� dq1

∂H/∂p1
� dq2

∂H/∂p2
� · · · � − dpN

∂H/∂qN
(4.17)

These are evidently Hamilton’s equations (1.12), whose solutions in the present
context are called characteristic curves.

In general, the gradient of a function is normal to surfaces on which the
function is constant. If D is a function of all the constants of the motion, then
all orbits lie on a surface of constantD. Tangents to this surface therefore have
components in �̃-space given by (4.17).8

So, once again, we find that solution to the Liouville equation is an arbitrary
function of the orbits of the system or, equivalently, the constants of motion of
the system.

1.4.6 Solutions to the Initial-Value Problem

In what follows, we present four approaches to solving the initial-value problem
for the Liouville equation.

Taylor series expansion: Case 1

Let the initial distribution be

D(q, p, 0) ≡ D0(q, p) (4.18)

Expanding D(q, p, t) about t � 0 at fixed values of (q, p) gives

D(q, p,>t) � D(q, p, 0)+ ∂D
∂t

∣∣∣∣
0

>t + 1

2

∂2D

∂t2

∣∣∣∣
0

(>t)2 + · · · (4.19)

Employing the Liouville equation (4.7), we find

∂D

∂t
� [H,D]

∂2D

∂t2
� ∂

∂t
[H,D] �

[
H,
∂D

∂t

]
� [H, [H,D]]

Inserting these relations into the expansion (4.19) gives the solution

D(q, p,>t) � {1+>t[H, ]+ (>t)2

2
[H, [H, ]]+ · · ·}D0(q, p) (4.20)

This solution may be viewed geometrically as the evolution of D in time at a
point in the hyper (q, p) �-plane in �̃-space. See Fig. 1.11.

8The method of characteristics play a key role in the analysis of the wave equation.
For further discussion, see R. Courant and K. O. Friedrichs, Supersonic Flow and
Shock Waves, vol. I, Wiley-Interscience, New York (1956).
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FIGURE 1.11. The series solution (4.20) givesD(q, p,>T ) along a line of constant
(q, p) in �̃-space.

Solution from trajectories: Case 2.

In this method of solution, it is assumed that the orbits

q � q0 + q̃(t)

p � p0 + p̃(t)
(4.21)

as well as the initial distribution (4.15) are known. The functions q̃(t) and p̃(t)
vanish at t � 0, so

q(0) � q0, p(0) � p0

Solution in this case is derived based on the property thatD(q, p, t) is constant
along system trajectories. Thus, we write

D(q, p, t) � D0[q − q̃(t), p − p̃(t)] (4.22)

This function has the following properties:

1. At t � 0,

D(q, p, 0) � D0(q, p) (4.22a)

which is the correct initial value.
2. For values of q, p on the system trajectory,

q − q̃(t) � q0

p − p̃(t) � p0

(4.22b)

It follows that on the system trajectory in �̃-space

D(q, p, t) � D0(q0, p0) � constant (4.22c)
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FIGURE 1.12. Graphical display of the solution (4.22) with D(q, p, t) constant
along a system trajectory.

We may conclude that (4.22) is the solution to the Liouville equation corre-
sponding to the initial value (4.18). This solution may be viewed geometrically
as depicted in Fig. 1.12.

1.4.7 Liouville Operator

The Liouville operator emerges in writing the Liouville equation in the form
of the Schroedinger equation:

i
∂D

∂t
� i[H,D] ≡ ?̂D (4.23)

Thus

?̂ � i[H, ] � i
∑(

∂H

∂q

∂

∂p
− ∂H
∂p

∂

∂q

)
(4.23a)

Properties of ?̂.

We wish to show that ?̂ is Hermitian in the space L2N . A function ψ(q, p) is
an element of L2N if and only if the norm of ψ ,

‖ψ‖2 � 〈ψ | ψ〉 �
∫
ψ∗ψ dq dp <∞

An operator ?̂ is Hermitian providing

?̂ � ?̂† (4.24)

where ?̂† is the Hermitian adjoint of ?̂. The quantity ?̂† may be defined in
terms of its matrix elements in L2N . Let

?kl �
∫
u∗k?̂ul dq dp (4.25)
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where uk and ul are elements of a set that spans L2N . The matrix representation
of (4.24) is given by

?kl � (?lk)
∗ (4.26)

or, equivalently, ∫
u∗k?̂ul dq dp �

∫
ul?̂

∗u∗k dq dp (4.26a)

We consider an N -body Hamiltonian

H �
N∑
l�1

p2
l

2m
+

N∑∑
i<j

 (xi , xj ) (4.27)

where is potential of interaction between particles. With (4.23a) and (4.27),
we obtain

?kl � i
∫
u∗k

∑(
∂H

∂q

∂ul

∂p
− ∂ul
∂q

∂H

∂p

)
dq dp (4.28)

Writing

u∗k
∂ul

∂p
� ∂

∂p
(u∗kul)− ul

∂u∗k
∂p

in the first term in (4.28) and

u∗k
∂ul

∂q
� ∂

∂q
(u∗kul)− ul

∂u∗k
∂q

in the second term and dropping surface terms gives9

?kl � i
∫
ul
∑(

−∂H
∂q

∂u∗k
∂p
+ ∂u

∗
k

∂q

∂H

∂p

)
dq dp

�
[
i

∫
u∗l

∑(
∂H

∂q

∂uk

∂q
− ∂uk
∂q

∂H

∂p

)
dq dp

]∗
� ?∗lk (4.29)

We may conclude that ?̂ is a Hermitian operator. An immediate consequence
of this property is that (see Problem 1.15):

1. Eigenvalues of ?̂ are real.
2. Eigenfunctions of ?̂ are orthogonal.

These properties will be employed in Section 1.5 in construction of an
eigenfunction expansion for D(q, p, t).

9Here we are assuming that ∂H/∂p is independent of q.
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Two points should now be made concerning the preceding derivation. First,
note that the property (4.24) is quite general. That is, in its derivation noth-
ing was said of the particulars of the interaction between molecules. We
merely assumed two-body conservative interactions. The second point is some-
what more pragmatic. Thus, if eigenvalues of ?̂ are real, then eigenvalues of
−i?̂ � [H, ] are purely imaginary. With the structure of the Liouville
equation (4.7), it follows that there are solutions to this equation that oscil-
late in time. The reader may witness a common phenomenon that stems from
this property, sound propagation. Sound waves carry pressure-density distur-
bances. The manner in which these fluid-dynamic variables are related to the
Liouville equation is fully discussed in Chapter 2.

1.5 Eigenfunction Expansions and the Resolvent

1.5.1 Liouville Equation Integrating Factor

With the Liouville equation written as (4.20), our third (case 3) solution to the
initial-value problem may be obtained as follows. Multiplying (4.20) through
by the integrating factor (assuming ?̂ to be time-dependent)

exp

(
i

∫ t

0
dt ′?̂

)
permits the equation to be rewritten

∂

∂t

[(
exp i

∫ t

0
dt ′?̂

)
D(t)

]
� 0

Integration gives the solution

D(q, p, t) � e−i
∫ t

0 dt
′?̂D(q, p, 0) (5.1)

For short time intervals we may write∫ >t

0
dt ′?̂ � >t?̂

Expanding the exponential in (5.1) about >t � 0 then gives

D(q, p, t) �
[

1− i>t?̂+ 1

2
(−i>t?̂)2 + · · ·

]
D(q, p, 0) (5.2)

With (4.20) this expansion may be written

D(q, p, t) �
{

1+>t[Ĥ , ]+ (>t)2

2
[H, [H, ]]+ · · ·

}
D(q, p, 0)

(5.3)
This relation was previously obtained (4.20) through Taylor-series expansion
of D(q, p, t).
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For longer time intervals, we revert to eigenproperties of ?̂ discussed
in the preceding section. Again, we consider the initial-value problem with
D(q, p, 0) as given by (4.22a). Furthermore, it is assumed that the (orthogo-
nal) eigenfunctions and (real) eigenvalues of ?̂ are known. Here we are taking
?̂ to be time independent. Thus we may write

?̂ψn � ωnψn (5.4)

Assuming that the set {ψn} spans the Hilbert space containing D(q, p, 0), we
may write

D0(q, p) �
∑
∀n
Dnψn (5.5)

By virtue of the orthogonality of the functionsψn, the coefficientsDn are given
by

Dn � 〈ψn | D0(q, p)〉 (5.6)

Substituting the series (5.5) into (5.1), we obtain

D(q, p, t) � e−it?̂
∑
∀n
Dnψn

which gives the solution10

D(q, p, t) �
∑
∀n
Dne

−itωnψn (5.7)

This completes our third method of solution for D(q, p, t).

1.5.2 Example: The Ideal Gas

As an example of the application of (5.7), we will construct the solution to
the Liouville equation for a collection of N noninteracting molecules (that is,
an ideal gas). The gas is confined to a cubical box of edge length L and of
sufficiently large size. The Hamiltonian is purely kinetic and is given by

H �
N∑
s�1

p2
s

2m
, 0 ≤ x(i)

s ≤ L (5.8)

where x(i)
s denotes any Cartesian component of xs . Let us call the ?̂ operator

for this case ?̂0. Thus

?̂0 � −i
∑
s

∂H

∂ps
· ∂
∂xs

� −i
∑
s

vs · ∂
∂xs

(5.9)

10Here we recall that, with f (x) denoting any continuous function, f (?̂)ψn �
f (ωn)ψn.
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Here we have reverted to velocity vs � ps/m. Eigenfunctions of ?̂0 satisfy
the eigenvalue equation

?̂0ψ(k) � ω(k)ψ(k) (5.10)

where (k) represents a sequence of wave-vectors:

(k) ≡ (k1.k2, . . . ,kN ) (5.10a)

With (5.9), (5.10) becomes

− i
∑
s

vs · ∂
∂xs
ψ(k) � ω(k)ψ(k) (5.11)

Substituting the trial solution

ψ(k) � A exp

(
i
∑
s

ks · xs

)
(5.12)

into (5.11) gives the eigenvalues

ω(k) �
N∑
s�1

vs · ks (5.13)

Assuming that ψ(k) satisfies periodic boundary conditions gives (see Prob-
lem 1.17)

ks � 2π

L
ns (5.14)

where the components of the vector ns are integers. The constant A in (5.12)
is fixed by normalization. We obtain

ψ(k) � 1

L3N/2
exp

(
i
∑
s

ks · xs

)
(5.15)

Substituting these eigenfunctions in the expansion (5.7) gives the explicit form:

D(xN, pN, t) �
∑
(k)

D(k)(pN )ψ(k)(xN )e−iω(k)t (5.16)

where xN and pN represent 3N -dimensional vectors. To employ the initial
data (4.22a), we examine (5.16) at the time t � 0.

D0(xN, pN ) �
∑
(k)

D(k)(pN )ψ(k)(xN ) (5.17)

With the orthogonality of the eigenfunctions ψ(k), (5.17) gives

D(k)(pN ) � 1

L3N/2

∫
dxN

[
exp

(
−i

∑
s

ks · xs

)]
D0(xN, pN ) (5.18)
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Having obtained the coefficients D(k), the solution (5.16) is complete. Substi-
tuting (5.13) for ω(k) and (5.15) for ψ(k) into (5.16) permits the solution to be
more explicitly written:

D(xN, pN, t) � 1

L3N/2

∑
(k)

D(k)(pN )ei
∑
s ks ·(xs−vx t) (5.19)

Thus we find that our eigenfunction solution to the initial-value problem for
the Liouville equation is a function of the 2× (3N ) constants of the motion:

(p1, p2, . . . ,pN, x1 − v1t, x2 − v2t, . . . , xN − vNt)

1.5.3 Free-Particle Propagator

Again consider the free-particle Hamiltonian (5.8) and related operator ?̂0

given by (5.9). The formal solution to the initial-value problem is given by (5.1),
which in the present case we write as

D(x1, x2, . . . , v1, . . . , vN, t) � e−it?̂0D(x1, . . . , vN, 0) (5.20)

−it?̂0 � −
N∑
s�1

tvs · ∂
∂xs

(5.20a)

As particle variables are mutually independent, the factors in exp(−it?̂0) com-
mute. Thus we may examine the evolution of the coordinates and momenta of
particle 1.

D(x1, v1, t) � exp

(
−tv1 · ∂

∂x1

)
D(x1, v1, 0)

Expanding the exponential gives

exp

(
−tv1 · ∂

∂x1

)
D(x1, v1, 0)

�
[

1− tv1 · ∂
∂x1

+ 1

2

[
tv1 · ∂

∂x1

]2

+ · · ·
]
D(x1, v1, 0)

� D(x1,−tv1, v1, 0) (5.21)

Repeating this construction for all N particles indicates that the value of
D(xN, vN, t) is the value it had t seconds earlier on a free-particle trajectory.
Note also that

e−it?̂0f (xN, pN, 0) � f (xN − vNt, pN, 0) � f (xN, pN, t) (5.22)

so that exp(−it?̂0) propagates variables backward in time.11 For this reason,
exp(−it?̂0) is called the free-particle propagator.

11This operator occurs again in Section 2.4, where we label exp(−it?̂) ≡ ?̂−t .
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1.5.4 The Resolvent

Our last technique of solution (case 4) to the initial-value problem for the
Liouville equation stems from the Laplace transform defined by

D̃(s) �
∫ ∞

0
dte−stD(t) (5.23)

To obtain an equation for D̃(s), we operate on the Liouville equation (4.20) as
follows ∫ ∞

0
dte−st

(
i
∂D

∂t
� ?̂D

)
Substituting the expansion

e−st
∂D

∂t
� ∂

∂t
(De−st )+ se−stD

into the preceding equation gives

i

∫ ∞

0

(
∂

∂t
De−st

)
dt + is

∫ ∞

0
e−stD dt � ?̂

∫ ∞

0
e−stD dt

iDe−st
∣∣∣∣
∞

0

+isD̃(s) � ?̂D̃(s)

With Re s > 0, we obtain

− iD(0) � (?̂− is)D̃(s) (5.24)

or, equivalently,

D̃(s) � −i(?̂− is)−1D(0)

D̃(s) � −iR̂D(0)
(5.25)

where

R̂ � (?̂− is)−1

represents the resolvent operator.
The inverse of (5.23) is written12

D(t) � 1

2πi

∫ γ+i∞

γ−i∞
dsetsD̃(s)

where the line s � γ in the complex s-plane lies to the right of all the
singularities of R̂. See Fig. 1.13.

As noted previously, since ?̂ is Hermitian, its eigenvalues are real. In this
event we may conclude that the singularities of R̂ occur for s purely imaginary.

12The Laplace transform comes into play again in discussion of Landau damping
(Section 4.1.3).
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FIGURE 1.13. Path of integration in inverse Laplace transform (5.22) lies to the right
of all singularities of R̂.

FIGURE 1.14. Closing the path of the inverse Laplace transform for singularities of
R̂ corresponding to s pure imaginary and finite in number.

This permits us to close the path of (5.22) as shown in Fig. 1.14. Here we are
assuming that R̂ has a finite number of singularities and that R̂ is a bounded
operator for all nonreal s.13

13The operator R̂ is bounded in L2N , if for any elementψ of L2N with finite norm,
‖ψ‖, there exists a finite constantM such that ‖R̂ψ‖ < m‖ψ‖.
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FIGURE 1.15. System points lie in the energy shell in �-space.

1.6 Distribution Functions

1.6.1 Third Interpretation of D(q, p, t)

To this point in our discourse, we have discovered two interpretations of
D(q, p, t): (1) A density of system points in�-space, and (2) a function whose
general form for a given system implies a complete description of the state of
the system in time.

In this section we come to yet another interpretation of D(q, p, t). We will
find that, apart from a multiplicative constant, it is the joint probability density
for the system.

The energy shell

Consider an isolated system with N degrees of freedom with Hamiltonian

H (q, p) � E � constant

The system lies on this surface in �-space. Quantum mechanics prescribes an
uncertainty to E, so we consider a small spread of energies about the mean
value of E.14 This generates an energy shell in �-space. System points of
the ensemble lie in the energy shell, which we take to be of volume �. See
Fig. 1.15.

As previously noted (Section 1.4), we call the number of system points in the
ensemble N andD(q, p, t) the ensemble density function. Since an individual
member of the ensemble is at a given point q, p in �-space, and since such
points may be identified with the classical state of the system, we may write

N �
∫
�

D dq dp � total number of occupied states in � (6.1)

14Thus, for example, the smallest volume in six-dimensional phase space for which
the state of a single particle can be defined is h3, where h is Planck’s constant. This
concept is further discussed in Section 5.3.2.
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It follows that in the volume >� ⊂ �,

>N �
∫
>�

D dq dp � number of occupied states in >� (6.1a)

Dividing these two expressions, we find

>N
N � ratio of number of states occupied in >� to the

total number of occupied states of the ensemble
(6.2)

We may equate (6.2) to the to the probability that an unspecified state is
occupied in >�.15 We label this entity

∫
>�
fN dq dp (each member of the

ensemble is comprised of N particles) so that∫
>�

fN dq dp �
∫
>�
D dq dp∫

�
D dq dp

(6.3)

Taking >� to be infinitesimal (6.3) gives

fN dq dp � D dq dp∫
�
D dq dp

(6.4)

We may conclude that

fN (q, p, t) � CD(q, p, t) (6.5)

whereC is a constant. It follows that fN (q, p, t) satisfies the Liouville equation

∂fN

∂t
− [fN,H ] � 0 (6.6)

1.6.2 Joint-Probability Distribution

What does it mean to say that fN d� is the probability that a state is occupied
in the volume d�? We have been writing (q, p) for (x1, x2, . . . , xN ; p1, . . . ,
pN ). So if the state (q, p) is occupied, then particle 1 is in the state x1, p1,
particle 2 is in the x2,p2, and so on. It follows that fN (q, p, t) dq dp is the
probability that particle 1 is in the volume dx1 dp1 about the point x1, p1 and
particle 2 is in the volume dx2 dp2 about the point x2, p2, and so on, at the
time t . Therefore, we may label fN the N -body joint-probability density for
the N -body system. Thus, whereas D(q, p, t) is relevant to an ensemble of
system points, fN (q, p, t) addresses a single system.

Note that with (6.4), fN enjoys the proper probability-density normalization∫
�

fN dq dp � 1 (6.7)

The integration is over the entire space accessible to the system. That is, the
energy shell.

15This interpretation is due to J. W. Gibbs. See Collected Works of J. Willard
Gibbs, Dover, New York (1960).
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If G(q, p, t) is any dynamical variable, then with fN a probability density
we may write the following for the expectation or average of G.

〈G〉 �
∫
fNGdq dp (6.8)

The experimental meaning of 〈G〉 is given by

〈G〉 � lim
N→∞

1

N

N∑
i�1

Gi (6.9)

In this expression,Gi represents the observed value ofG in the ith experimental
run, each run performed under identical circumstances.16

The last equations say that if we solve the Liouville equation for fN and
with (6.8) calculate 〈G〉, the same value will be found if we perform the
experimental evaluation (6.9).

1.6.3 Reduced Distributions

Let us introduce the notation

d1 ≡ dx1 dp1, d2 ≡ dx2 dp2, . . .

relevant, respectively, to particle 1, 2, . . . .
Consider a system ofN identical particles. We direct our attention to the sub-

system comprised of s < N particles. The probability of finding this subsystem
in the phase volume d1 d2 · · · ds about the state (1, 2, . . . , s) is

fs(1, . . . , s) d1 · · · ds
To construct fs from fN , we must integrate out information on the state of
particles s + 1, . . . , N from fN (1, 2, . . . , N). That is,

fs(1, . . . , s) �
∫
fN (1, . . . , N) d(s + 1) · · · dN (6.10)

This relation is returned to in Chapter 2 in the derivation of the equations of
motion for the reduced distributions.

1.6.4 Conditional Distribution

In addition to the joint-probability distribution fN (1, 2, . . . , N, t), we also
encounter conditional distributions. Thus, for example, the product

h
(N )
1 (1 | 2, 3, . . . , N) d1

16Phase averages, as relevant to the ergodic theorem, are further discussed in
Section 3.8.1.
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represents the probability that particle 1 is in the phase volume d1 about the
phase point 1, granted that particles 2, . . . , N are in the volume d2 . . . dN
about the point 2, . . . , N . If particles are statistically independent, then

h
(N )
1 (1 | 2, 3, . . . , N) � f1(1) (6.11)

More generally, Bayes’s formula relates h(N ) to fN as follows:17

h
(N )
1 (1 | 2, . . . , N) � fN (1, . . . , N)

fN−1(2, . . . , N)
(6.12a)

h
(N )
2 (1, 2 | 3, . . . , N) � fN (1, . . . , N)

fN−2(3, . . . , N)
(6.12b)

and so forth. These distributions are returned to later in our discussion of a
Markov process.

1.6.5 s-Tuple Distribution

The s-tuple distribution, Fs(1, . . . , s), is defined as follows: The product

Fs(1, . . . , s) d1 · · · ds
represents the probable number of s-tuples of particles such that one of the
particles is in the phase volume d1 about the point 1, another in d2 about 2,
and so on, at a given time. Thus, for example, F1(1) d1 is the probable number
of particles in the phase element d1 about 1 at a specific time. The product
F2 d1 d2 is the probable number of pairs of particles such that in each pair one
particle is in the state d1 about 1 and the other is in d2 about 2 at a specific
time.

The relation between the joint-probability s-particle distribution function fs
and the s-tuple distribution function Fs is as follows: The function fs relates to
the s-particle state of a specific group of s particles. The functionFs refers to the
same s-particle state but is independent of the specific particles occupying this
state and independent of the manner in which these particles occupy this state.
Thus the function f2(1, 2) is a property of the configuration where particle 1
occupies the state 1, and particle 2, the state 2. The function F2(1, 2) is a
measure of the number of pairs of particles that occupy these states. To find
the relation betweenFs andfs , we first note that the number of ways of choosing
s particles from the total number N is given by(

N

s

)
� N !

s!(N − s)!

17Explicit time dependence is tacitly assumed in all distributions.
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Assuming identical particles, each such choice gives the same value for fs .
Thus

F̄ s �
(
N

s

)
fs (6.13)

Here we have used a bar over Fs to denote that a given s-tuple state has only
been counted once in (6.13). The number of ways of distributing each subgroup
of s particles while still obtaining the same s-tuple state is s! This gives the
desired relation

Fs � s!
(
N

s

)
fs � N !

(N − s)!fs (6.14)

Thus, for example,

F1 � Nf1 (6.14a)

F2 � N (N − 1)f2 (6.14b)

Normalization is given by∫
Fs d1 · · · ds � s!

(
N

s

)∫
fsd1 · · · ds � N !

(N − s)! (6.15)

The average kinetic and potential energies of a collection of particles are best
written in terms of the Fs functions. Thus, for example,

Ek � 1

2

∫
F1(x, p, t)

p2

m
dx dp

E � 1

2

∫
F2(x, x′, p, p′, t) (x, x′) dx dp dx′ dp′

(6.16)

where  (x, x′) is the two-particle interaction potential. These relations are
returned to in Chapter 2 in our proof of the conservation of total kinetic and
potential energy, EK and E , respectively, from the equations of motion for
F1 and F2.

1.6.6 Symmetric Properties of Distributions

As the s-tuple distribution Fs does not address the state of individual particles,
it must be a symmetric function of its arguments. Thus, in the relations (6.14)
and following, it is assumed thatfs is properly symmetrized. Supposefs is not a
symmetric function of its arguments; then a symmetric function is constructed
as follows:

fs(1, 2, . . . , s) � 1

s!

∑
P (1,...,s)

f̃s(1, . . . , s) (6.17)

where the sum is over the permutations P of the numbers, 1 . . . s and f̃s is the
given asymmetric distribution.
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Example

Consider the example that one molecule in an ideal gas ofN identical molecules
is moving with velocity v0 and is at the origin at time t � 0. The remaining
molecules are stationary at given positions, (x0

2, . . . , x
0
N ). Let us construct a

symmetric distribution fN that describes this state of the system. From this
distribution, let us then obtain f1 and the number density n(x, t).

The symmetric distribution is given by

fN (1, . . . , N) � 1

N !

∑
P (1,...,N )

δ(v1 − v0)δ(x1 − v0t)

× δ(v2) · · · δ(vN )δ(x2 − x0
2) · · · δ(xN − x0

N ) (6.18)

The permutation operator permutes the phase variables (z1, . . . , zN ), where
zi ≡ (xi , vi). Note, in particular, that (6.18) may be written in determinant
form. Setting

Di1 ≡ δ(vi − v0
1)δ(xi − v0

1t)

Dij ≡ δ(vi)δ(xi − x0
j ), j �� 1

(6.19)

we find

fN (1, . . . , N) � 1

N !

∣∣∣∣∣∣∣∣∣∣∣∣

D11 D21 D31 · · · DN1

D12 D22 D32 · · · DN2

D31 D23 D33 · · · DN3

...

D1N · · · · · DNN

∣∣∣∣∣∣∣∣∣∣∣∣⊕
(6.20)

The symbol ⊕ reminds us that only positive signs are employed in the
expansion of the determinant. To obtain f1, we must evaluate

f1(1) �
∫
fN (1, . . . , N) d2 · · · dN

All terms in (6.20) integrate to unity except for terms in the first column. The
minor of each such term is of dimension (N − 1). There results

f1(1) � 1

N !
(N − 1)!

N∑
k�1

D1k

f1(1) � 1

N
[δ(v1 − v0

1)δ(x1 − v0
1t)+ δ(v1)δ(x1 − x0

2)

+ · · · + δ(v1)δ(x1 − x0
N )]

(6.21)
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This result is closely akin to a superposition state in quantum mechanics where
the particle in question has equal probability of being in one of a number of
states.18

The macroscopic variable number density, n(x, t), is such that n(x, t) dx is
the number of molecules in the volume dx about x at time t . It is obtained from
f1(1) as follows.19

n(x, t) � N
∫
f1(1) dv1 (6.22)

Returning to our example, inserting f1(1) as given by (6.21) into the preceding
formula gives

n(x, t) � δ(x − v0
1t)+

N∑
i�2

δ(x − x0
i ) (6.23)

The number density is peaked along the trajectory x � v0
1t and at the fixed

sites x0
i . Furthermore, note that∫

n(x, t) dx � N (6.24)

which is the correct normalization for the number density.

1.7 Markov Process

1.7.1 Two-Time Distributions

Let us introduce the phase vector

z � (1, 2, . . . , N)

In terms of this variable, the two-time, or conditional, distribution functions
may be written

∏
(z, t | z0, t0). The product∏

(z, t | z0, t0) dz (7.1)

represents the probability of finding the system in the state dz about the point
z at time t , granted that it was in the state z0 at t0.

1.7.2 Chapman–Kolmogorov Equation

The two-time distribution has three fundamental properties:

18The superposition principle is discussed in Section 5.1.4.
19Macroscopic variables are more fully described in Chapter 3.
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FIGURE 1.16. Summing over intermediate states in the CK equation.

1. The system undergoes a transition to some state in the interval (t − t0).∫
∀z all z

∏
(z, t | z0, t0) dz � 1 (7.2)

2. The system does not change its state in zero time.∏
(z, t0 | z0, t0) � δ(z− z0) (7.3)

3. The
∏

function obeys the Chapman–Kolmogorov (CK) equation:∏
(z, t | z0, t0) �

∫ ∏
(z, t | z′, t ′)

∏
(z′, t ′ | z0, t0) dz′ (7.4)

The integral in (7.4) represents a sum over intermediate states z′, as depicted
in Fig. 1.16. Note that the integral in (7.4) is independent of the arbitrary
intermediate time, t ′.

Careful examination of (7.4) indicates that it contains an approximation.
That is, the integrand function should more accurately be written∏

(z, t | z′, t ′; z0, t0) (7.5)

That is, this term should include the information that the system was in the
state z0 at t0. The approximate form of the function (7.5) as written in (7.4)
is appropriate to systems with “short memories”. A process so characterized
is called a Markov process. In this sense property 3 is not an exact relation,
as opposed to the precise properties 1 and 2. Note further that in the situation
depicted in Fig. 1.16 it is uncertain which orbit passes from z0 to z. In the
event that

∏
(z | z0) is equivalent to the joint-probability function (6.4), which

satisfies the Liouville equation (4.7), then as we have found previously there
is only one orbit through z0. We may conclude that the CK equation is more
relevant to systems governed by probabilistic laws, such as occur in random
processes and quantum systems. Thus, the equivalent differential equation



1.7 Markov Process 43

to (6.6), derived below for discrete processes [see (7.20)], is first applied to
the random-walk problem. It is returned to in Chapter 4 in the derivation of
the Fokker–Planck equation and in Chapter 5, where it is applied to quantum
processes.

1.7.3 Homogeneous Processes in Time

For systems whose behavior is homogenous in time, processes can only depend
on time intervals, not on initial or final times. In such cases we write∏

(z2, t2 | z1, t1) →
∏

(z1 | z1; |t2 − t1|) (7.6)

With |t2 − t1| ≡ >t and setting t0 � 0, the CK equation (7.4) becomes∏
(z | z0; t +>t) �

∫ ∏
(z | z′;>t)

∏
(z′ | z0; t) dz′ (7.7)

1.7.4 Master Equation

Our aim at this point is to obtain a differential equation for
∏

appropriate to
the case where phase variables go over to a countable set:

{z} → {l}, l � 0, 1, 2, . . . (7.8)

The integral equation (7.7) then becomes∏
(l | l0; t +>t) �

∑
∀j

∏
(l | j ;>t)

∏
(j | l0; t) (7.9)

Conditions 1 and 2 become∑
∀l

∏
(l | l0; t) � 1 (7.10)

∏
(l | l0; 0) � δll0 (7.11)

For l �� j , we note that∏
(l | j ;>t) → 0 as >t → 0 (7.12)

so we may write ∏
(l | j ;>t) � wjl>t + · · · , l �� j (7.13)

From the property ∏
(l | l;>t) → 1 as >t → 0 (7.14)

we may write∏
(l | l;>t) � 1− (probability that there is a transition out of l in >t)

(7.15)
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Equivalently, ∏
(l | l;>t) � 1−>t

∑
l′ ��l
wll′ (7.16)

Equations (7.13) and (7.16) may be combined to give (note that the summation
now includes all l′ values)

∏
(l | j ;>t) � wjl>t + δlj

(
1−>t

∑
∀l′
wll′

)
(7.17)

Let us check this equation. For j � l,∏
(l | l;>t) � wll>t + 1−>t

∑
∀l
wll′ � 1−>t

∑
l′ ��l
wll′

which is (7.17).
Substituting the key result (7.17) into the CK equation (7.9) gives

∏
(l | l0; t +>t) �

∑
j

{
wjl>t + δlj

[
1−>t

∑
∀l′
wll′

]}∏
(j | l0; t)

(7.18)
Summing the δlj factor gives∏

(l | l0, t +>t)
� >t

∑
j

wjl
∏

(j | l0; t)+
∏

(l | l0; t)−>t
∑
∀l′
wll′

∏
(l | l0; t)

Changing the dummy variable l′ to j in the second sum gives∏
(l | l0; t +>t)−∏

(l | l0; t)

>t
�
∑
j

[
wjl

∏
(j | l0; t)− wlj

∏
(l | l0; t)

]
(7.19)

Passing to the limit >t → 0, we obtain

∂
∏

(l | l0; t)

∂t
�
∑
j

[wjl
∏

(j | l0; t)− wlj
∏

(l | l0; t)] (7.20)

which is a canonical form of the master equation. Its meaning is best revealed
again through a diagram. See Fig. 1.17. Thewjl coefficient in (7.20) represents
the probable rate at which transitions from j to l occur. The master equation in
a form closely allied to (7.20) comes into play in a number of instances in our
discussion of application of kinetic theory to quantum systems in Chapter 5.

1.7.5 Application to Random Walk

We wish to apply the master equation (7.20) to the random-walk problem in
one dimension. For this problem, time is replaced by the total number of steps,
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FIGURE 1.17. Geometrical description of terms in the master equation (7.20).

FIGURE 1.18. The random walk in one dimension (at n � 10, l � 2).

n � t/>t , with >n � 1. Furthermore, we set

P (l, n) ≡
∏

(l + l0 | l0; n>t)

which denotes the probability that the particle has moved through the displace-
ment l in n steps. (See Fig. 1.18.) Setting w̄jl � wjl>t and with reference
to (7.19), we write

P (l, n)− P (l, n− 1) �
∞∑

j�−∞
[w̄jlP (j, n− 1)− w̄ljP (l, n− 1)] (7.21)

The transition probability w̄jn has the value

w̄jl � 1

2
[δj,l+1 + δj,l−1] (7.22)

Inserting this form into (7.21) and summing over j gives

P (l, n)− P (l, n− 1) � 1

2
[P (l + 1, n− 1)+ P (l − 1, n− 1)]− P (l, n− 1)



46 1. The Liouville Equation

There results

P (l, n) � 1

2
[P (l + 1, n− 1)+ P (l − 1, n− 1)] (7.23)

This equation states that step n follows step n− 1 and that the displacement l
comes from l ± 1 with equal probability. We wish to establish the following
key result for the random-walk problem:

〈l2〉 ∝ n (7.24)

To this end, we define the moments:

M1(n) �
∑
l

lP (l, n) � 〈l〉

M2(n) �
∑
l

l2P (l, n) � 〈l2〉
(7.25)

Stemming from the property P (l, 0) � δl0 it is readily shown that

M1(n) � 0 (7.26)

ForM2, with (7.23), we write

M2(n) � 1

2

∑
l

[l2P (l − 1, n− 1)+ l2P (l + 1, n− 1)] (7.27)

which may be rewritten

M2(n) � 1

2

∑
l

[(l − 1)2P (l − 1, n− 1)− (1− 2l)P (l − 1, n− 1)

+ (l + 1)2P (l + 1, n− 1)− (1+ 2l)P (l + 1, n− 1)]

Setting k ≡ l − 1, k̃ ≡ l + 1 allows the preceding to be written

M2(n) � 1

2

{∑
k

[k2P (k, n− 1)+ 2kP (k, n− 1)+ P (k, n− 1)]

+
∑
k

[k̃2P (k̃, n− 1)− 2k̃P (k̃, n− 1)+ P (k̃, n− 1)]

}

We note that ∑
k

2kP (k, n− 1) � 2M1(n− 1) � 0

and ∑
k

P (k, n− 1) � 1
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There results

M2(n) �
∑
k

k2P (k, n− 1)+ 1

M2(n) � M2(n− 1)+ 1
(7.28)

SinceM2(0) � 0, we find

M2(n) � n (7.29)

which was to be shown. This relation, or equivalently (7.24), plays an important
role in the theory of diffusion and will be returned to in our discussion of
transport coefficients (Chapter 3).

1.8 Central-Limit Theorem

1.8.1 Random Variables and the Characteristic Function

In the preceding example we did not obtain an expression for the probability
P (l, n) relevant to the random-walk problem. That is, we did not obtain a
solution to the discrete equation (7.23).

This result is readily obtained from elementary notions of probability theory,
whereas the long-time behavior ofP (l, n) may be found with aid of the central-
limit theorem. To obtain these results, we first describe some basic language
of probability theory.

A random variable (rv) is a mapping, ξ , from a sample space to the real
line. The sample space is a space of objects or outcomes of experiments. Thus,
for example, in a coin flip the sample space consists of two results, which we
may label H and T . The mapping ξ maps H and T onto, say, the values 1,
2. For a sample space comprised of elements of the alphabet, ξ maps A, B,
C, . . . onto, say, the numbers 1, 2, 3, . . . . See Fig. 1.19. These are examples
of discrete rv’s, in which case ξ maps the sample space onto integers. For a
sample space comprised of a continuum of elements, ξ maps the sample space
onto the continuous real line.

We may associate a probability with such mappings, which we write P (ξ ),
or P (ξ � x) (where x are elements of the real line) or, more simply, P (x).
Thus

∞∑
−∞
P (x) � 1 or

∫ ∞

−∞
dxP (x) � 1 (8.1)

1.8.2 Expectation, Variance, and the Characteristic Function

The expectation or average of ξ is written

E(ξ ) � 〈ξ〉 (8.2a)
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FIGURE 1.19. Examples of sample spaces.

whereas the variance is written

D(ξ ) � E[(ξ − E(ξ ))2]

� 〈(ξ − 〈ξ〉)2〉
�
∑
∀x

(x − 〈x〉)2P (x) (8.2b)

The characteristic function φ(a) of the probability function P (x) is given by

φ(a) � E(eia) �
∑
∀x
P (x)eiax (8.3)

Thus we see that the characteristic function is the Fourier transform of P (x).
Inverting (8.3) gives

P (x) � 1

2π

∫ π

−π
daφ(a)e−iax (8.4)

From (8.3), we find

E(ξ ) � −i
(
d ln φ

da

)
a�0

D(ξ ) � −
(
d2 ln φ

da2

)
a�0

(8.5)

Consider the expression

ln φ(a) � ln
∑
P (x)eiax

ln φ(0) � ln
∑
P (x) � ln 1 � 0

(8.6)
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FIGURE 1.20. The random variable ξ maps pairs of elements from the sample spaces
S ′ and S ′′ onto the real line.

Continuing in this manner, we obtain the series expansion

ln φ(a) � 0+ iE(ξ )a − 1

2
D(ξ )a2 + · · · (8.7)

This expansion will come into play in the derivation of the central-limit theorem
in Section 8.5.

1.8.3 Sums of Random Variables

Let ξ ′ have the probability distribution P ′(x) and ξ ′′ the distribution P ′′(x).
Let ξ � ξ ′ + ξ ′′. Then ξ is a valid rv because it maps pairs of elements from
a sample space S onto the real line. See Fig. 1.20. Let us obtain P (ξ � x). If
ξ ′ � k, then ξ � k, providing ξ ′′ � x − k, [ξ ′ + ξ ′′] � ξ � x]. It follows that

P (x) �
∑
∀k
Pjoint(ξ

′ � k, ξ ′′ � x − k) (8.8)

where Pjoint represents a joint-probability distribution. If ξ ′ and ξ ′′ are
statistically independent, then

Pjoint(ξ
′, ξ ′′) � P ′(ξ ′)P ′′(ξ ′′) (8.9)

Consider the characteristic function

φ(a) � E(eiaξ ) � E[eia(ξ ′+ξ ′′)]

φ(a) � E[(eiaξ
′
)(eiaξ

′′
)]

(8.10)

If ξ ′ and ξ ′′ are statistically independent, then (8.10) reduces to

φ(a) � E(eiaξ
′
)E(eiaξ

′′
) � φ′(a)φ′′(a) (8.11)

So the characteristic function of a sum of statistically independent rv’s is equal
to the product of characteristic functions related respectively to individual rv’s.
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More generally, we may write, for n statistically independent rv’s.

φ(a) �
n∏
r�1

φr (a), ξn �
n∑
r�1

ξr (8.12)

The related probability that measurement finds the sum ξn � x is given by (8.4).
Thus, for example, consider the following problem involving three slot ma-

chines. The first can show the numbers 1, 3, 5, and 7, the second the numbers
1, 2, and 3, and the third the numbers 0, 8, and 9. What is the probability that
the sum of readings is 4 in any single turn of the machines? To answer this
question, we note first that the respective probability distributions for the three
machines are P ′(x) � 1

4 , P ′′(x) � 1
3 , and P ′′′(x) � 1

3 . Thus

φ′(a) �
∑
x

P ′(x)eiax � 1

4
(eia + e3ia + e5ia + e7ia)

φ′′(a) �
∑
x

P ′′(x)eiax � 1

3
(eia + e2ia + e3ia)

φ′′′(a) �
∑
x

P ′′′(x)eiax � 1

3
(e8ia + e9ia + e0ia)

The answer to our problem is then given by

P (4) � 1

4
× 1

3
× 1

3
× 1

2π

∫ π

−π
2e0iada � 1

18

We turn next to application of the notion of a summed rv to the random-walk
problem discussed previously in Section 7.4.

1.8.4 Application to Random Walk

Each step in the random walk is considered an independent event. The rv of
the rth step, ξr , maps the sample space (L,R) onto the numbers −1, +1. The
probability distribution of ξr is

P (ξr � +1) � P (1) � p

P (ξr � −1) � P (−1) � q (8.13)

P (ξr �� ±1) � 0

It follows that in any single step∑
∀x
P (x) � p+ q � 1 (8.14)

Here we are assuming that the random walk is biased so that p and q need
not be equal. For an unbiased random walk, p � q � 1

2 . The characteristic
function for this process is

φr (a) �
∑
∀x
P (x)eiax � qe−ia + peia (8.15)
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so that

E(ξr ) � −i
(
d ln φr
da

)
a�0

� p− q

D(ξr ) � −
(
d2 ln φr
da2

)
a�0

� 4pq

(8.16)

The probability that the net displacement to the right is l after n total steps
is written P (l, n) [as in (7.23)]. The displacement rv after n steps, ξ , is given
by (8.12). As ξr are statistically independent rv’s, and all φr (a) are equal,
with (8.12) we write

φ(a) � [φr (a)]n � [peia + qe−ia]n (8.17)

Recalling (8.4), we write

P (l, n) � 1

2π

∫ π

−π
daφ(a)e−ial (8.18)

From the binomial expansion, we may write

[peia + qe−ia]n �
∑
m

(
n

m

)
qme−iampn−mei(n−m)a (8.19)

Inserting this result into (8.18) indicates that the integrand contains the factor
exp ia(n− 2m− l) so that integration gives a nonzero result only when m �
(n− l)/2. There results

P (l, n) � n!

[(1/2)(n+ 1)]![(1/2)(n− l)]!p
(n+l)/2q(n−l)/2 (8.20)

The meaning of the p and q factors are as follows. The net displacement to
the right is l. Remaining steps are n − l. Of these, (n − l)/2 must be to the
right and (n − l)/2 must be to the left. The total number of steps to right is
l + (n − l)/2 � (n + l)/2). For an unbiased random walk, p � q � 1

2 . In
general, (8.20) is called the binomial distribution.

Simple substitution indicates that the distribution (8.20) satisfies (7.23)
rewritten for a biased random walk:

P (l, n) � qP (l + 1, n− l)+ pP (l − 1, n+ 1) (7.23a)

See Problems 1.26 and 1.27.

Poisson distribution

An important distribution relevant to many applications may be obtained
directly from (8.20). Let

r ≡ n+ l
2
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denote the total number of steps to the right. Then (8.20) gives

P (l, n) � n!

r!(n− r)!p
r (1− p)n−r (8.21)

We may interpret this form to give the probability that an event with probability
p occurs r times in n trials.

Let us consider the limit n→∞, p→ 0, with np ≡ λ� n, constant. The
meaning of this assumption is best illustrated by viewing the given process as
one in time so that n is the total number of subintervals (say, seconds) in a total
time interval. The probability p of an event occurring in one of the subintervals
will decrease if the number of these subintervals is increased. It is evident,
however, that in this process, the average, λ � np � 〈r〉, remains fixed.

With the preceding assumption, we write

ln(1− p) � −p

1− p � e−p
Thus we obtain

(1− p)n−r � e−p(n−r) � e−pn � e−λ
Furthermore,

n!

(n− r)! � n(n− 1) . . . [n− (r − 1)]

� nr
Inserting these results into (8.21) gives

P

(
r,
λ

p

)
� λ

′

r!
e−λ ≡ P (r) (8.22)

This distribution gives the probability of finding a total number of events r in
λ/p trials, where p is the probability of an event.

The distribution (8.22) is called the Poisson distribution. As it stems
from (8.20), it is relevant to spontaneous events with no memory, like rain-
drops on a roof or particles emitted by a radioactive sample or electrons by a
hot cathode.

Note that (8.22) is properly normalized. That is,∑
r

P (r) � e−λ
∑
r

λr

r!
� 1

Furthermore,

E(r) � 〈r〉 � e−λ
∑
r

rλr

r!
� λ

which agrees with our previous interpretation of λ. In addition, the variance,

D(r) � 〈(r − 〈r〉)2〉 � λ
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so that

D(r) � E(r) � λ (8.23)

in a Poisson distribution.

Small shot noise

As an elementary example of these results, consider that a hot cathode emits
electrons to a collecting plate in an elementary dc circuit. We label

〈I 〉 � average emission current

〈Q〉 � τ 〈I 〉 � total charge collected by anode in time τ

Thus the average number of electrons collected in time τ (which we identify
with 〈r〉) is

1

e
〈Q〉 � τ

e
〈I 〉 � 〈r〉

〈I 〉 � e

τ
〈r〉

where e is electronic charge. If we assume electrons are emitted in a Poisson
distribution, then with (8.23) we obtain20

δI �
√
e

τ

√
〈I 〉 (8.24)

Under ordinary circumstances,

δI

〈I 〉 �
√
e/τ√〈I 〉 � 1

and δI is not readily observable. However, with careful observation, Hull and
Williams in 192521 were able to employ (8.24) to infer the value of electronic
charge e. They found

e � τ (δI )2

〈I 〉 � 1.585× 10−19 C

which is seen to differ from present-day values,

e � 1.602× 10−19 C

by only 1%.

20Noise stemming from fluctuations in the number of particles (or charges, as in
the present case) is termed shot noise. Noise stemming from fluctuations in velocities
is called Johnson noise (see Section 3.4.4).

21A. W. Hull and N. W. Williams, Phys. Rev. 25, 147 (1925).



54 1. The Liouville Equation

1.8.5 Large n Limit: Central-Limit Theorem

The central-limit theorem addresses a sum of n statistically independent rv’s,
{ξr}, which all have the same probability distributions, P (ξr ), and same ex-
pectations, E(ξr ), and same variances, D(ξr ). Furthermore, it is assumed
that D(ξr ) < ∞ for all r . The theorem addresses the asymptotic domain
n → ∞ relevant to the displacement rv and related characteristic function
given by (8.12). We find that

E(ξn) � −i
(
d ln φ

da

)
a�0

� −i
(
d ln

∏
φr

da

)
a�0

� −i
n∑
r�1

(
d ln φr
da

)
a�0

�
∑

E(ξr )

Likewise,

D(ξn) � −
(
d2 ln φ

da2

)
a�0

� −
∑(

d2 ln φr
da2

)
a�0

�
∑
D(ξr )

It follows that if all E(ξr ) are equal and all D(ξr ) are equal, as in the stated
assumptions above, then

E(ξn) � nE(ξr ) (8.25a)

D(ξn) � nD(ξr ) (8.25b)

where ξr denotes any of the rv’s of the process. The result (8.25a) reflects the
fact that ξn is a sum of n statistically independent rv’s. To understand (8.25b),
we recall that D(ξn) [see (8.2b)] is a measure of the deviation from the mean
of ξn, which, we expect, should also grow with n. From the definition of the
characteristic function, we write

P (ξn � l) ≡ P (l, n) � 1

2π

∫ π

−π
dae−ialφ(a) (8.26)

With our previous result (8.7), the preceding integral becomes

P (l, n) � 1

2π

∫ π

−π
dae−ial exp

[
iaE(ξn)− 1

2
D(ξn)a

2 + · · ·
]

(8.27)

We have found [see (8.25)] thatD(ξn) increases withn under the stated assump-
tions. Thus, as n→∞, only the a � 0 values contribute to the integral (8.27).
In this event, the limits of integration in (8.27) may be replaced by (−∞,+∞)
without incurring gross error in the result. Setting

i(l − E) � u
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permits (8.27) to be rewritten

P (l, n) � 1

2π

∫ ∞

−∞
da exp

{
−D

2

[(
a + u

D

)2
−
( u
D

)2
]}

� 1

2π
eu

2/2D

√
2

D

∫ ∞

−∞
dλe−λ

2 � 1√
2πD

eu
2/2D

(8.28)

where λ is the dummy variable as implied. Thus we obtain the key result of
the central-limit theorem:

P (l, n) � 1

[2πD(ξn)1/2]
exp

{−[l − E(ξn)]2

2D(ξn)

}
(8.29a)

With (8.25), this result may be written

P (l, n) � 1

[2πnD(ξ )]1/2
exp

{−[l − nE(ξ )]2

2nD(ξ )

}
(8.29b)

Here we have written ξ for any of the n statistically independent rv’s, {ξr}.
The central-limit theorem is employed in the following to obtain the asymp-
totic displacement in the random-walk problem. It comes into play again in
Chapter 3 in a derivation of the distribution for center-of-mass momentum of
a fluid.

1.8.6 Random Walk in Large n Limit

The result (8.29) is the widely employed relation of the central-limit theorem.
It gives the probability that the rv, ξ , has the value l after n steps (with n! 1)
of the given process.

In applying this result to the random-walk process, we recall (8.16)

E(ξr ) � p− q

D(ξr ) � 4pq

Combining these results with (8.25) and substituting into the central-limit
formula (8.29), we find

P (l, n) � 1

[8πpqn]1/2
exp

{−[l − n(p− q)]2

8npq

}
(8.30)

For an unbiased random walk, we set p � q � 1
2 and (8.30) becomes

P (l, n) � 1

(2πn)1/2
exp

(
− l

2

2n

)
(8.31)

The continuum limit

For large n, we may assume that the displacement l grows large compared to
the unit step interval, which we label δ. In this limit, it is consistent to introduce
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a continuous displacement variable x in place of the discrete variable l so that
x � lδ. Let >x be an interval that contains many δ intervals, but sufficiently
small so thatP (l, n) does not change appreciably over>x. Then the probability
that the net displacement lies in the interval (x, x +>x) at the nth step is

P (x, n)>x �
∑
∀l∈>x

P (l, n) � P (l, n)
>x

δ

where the integer>x/δ is the number of intervals in the displacement>x and
therefore represents the number of terms in the partial sum. Substituting (8.31)
into this equation gives

P (x, n) � 1

δ(2πn)1/2
exp

(
− x2

2δ2n

)
(8.32)

Associating n with the time interval of the walk, n � t , and setting δ2 ≡ A
gives the probability distribution

P (x, t) � 1

(2πAt)1/2
exp

(
− x2

2At

)
(8.33)

The functionP (x, t) at any instant of time is a well-known distribution. That
is, with

σ 2 ≡ At
(8.33) becomes

P (x) � 1√
2πσ

e−x
2/2σ 2

(8.34)

which we recognize to be the Gaussian distribution. Note in particular that
P (x) as given by (8.34) maintains normalization.∫ ∞

−∞
P (x) dx � 1

Furthermore,

D(x) � 〈x2〉 − 〈x〉2 � 〈x2〉

〈x2〉 �
∫ ∞

−∞
x2P (x) dx � σ 2

〈x〉 � 0

(8.35)

so that we may associate σ 2 with the variance of the Gaussian (and σ with
standard deviation). Note that the preceding result returns the fundamental
finding (7.24), now written as

〈x2〉 ∝ t (8.36)

This result, as well as the Gaussian distribution (8.34), will be encountered
again in our discussion of diffusion (see Section 3.4.3).
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Stemming from the central-limit theorem, the Gaussian distribution (8.34),
as well as the Poisson distribution (8.22), is relevant to independent events
with no memory.

Asymptotic values

Let us consider application of the Gaussian (8.34) to the problem of evaluating
the probability that observation finds x in the domain |x| < x0, where x0 is
some constant value. This probability is given by

P (|x| < x0) � 2
∫ x0

0
P (x) dx � 2√

π

∫ x0/σ
√

2

0
e−y

2
dy ≡ erf

x0

σ
√

2
(8.37)

where erf is written for the error function. Thus, at x0 � σ , we find

P (|x| < σ ) � erf
1√
2
� 0.68 (8.38)

There is � 70% probability of finding |x| < σ .
For large z, we note (see Appendix B, Section B.2)

erf z � 1− e−z
2

z
√
π

(
1− 1

2z2
+ · · ·

)
Thus, in the large x0 domain, we find

P (|x| > x0) � 1− erf
x0

σ
√

2
�
√

2

π

e−
1
2 (x0/σ )2

x0/σ

(
1− 1

(x0/σ )2
+ · · ·

)
(8.39)

This result will come into play in Section 3.3.12 in application of the central-
limit theorem to a fluid.

1.8.7 Poisson and Gaussian Distributions

The Poisson distribution (8.22) is relevant to discrete events with r � 0, 1, 2,
. . . , whereas the Gaussian (8.34) is a continuous function ofx. Furthermore, the
Poisson distribution gives the main value 〈r〉 � λ > 0, whereas the Gaussian
gives 〈x〉 � 0. See Fig. 1.21.

We wish to illustrate a limiting transformation in which the Poisson dis-
tribution goes to the Gaussian distribution with unit variance, σ � 1. The
transformation is

x � r − λ√
λ

(8.40)

in the limit that λ becomes large. Note that in this limit the new variable x
grows continuous. Two approximations come into play in this transformation:
The first is Stirling’s approximation for large r ,

r! ∼
√

2πr
(r
e

)r
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FIGURE 1.21. Collapse of the Poisson to Gaussian distribution under the transfor-
mation x � (r − λ)/

√
λ, λ→∞.

or, equivalently,

ln r! ∼ 1

2
ln(2πr)+ r(ln r − 1) (8.41a)

The second approximation in the expansion

ln(1+ x) � x − x
2

2
+ · · · (8.41b)

for x � 1.
We recall the Poisson distribution (8.22).

P (r) � λ
re−λ

r!

We wish to transform this distribution under (8.40):

r � x
√
λ+ λ (8.42)

Let us call the new distribution P (x) so that

P (r) dr � P (x) dx

P (x) � P (r)
dr

dx
� P (r)

√
λ (8.43)
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P (x) � λ
(r+ 1

2 )e−λ

r!
with r � r(x), as given by (8.42). Taking the ln of (8.43) gives

lnP (x) �
(
r + 1

2

)
ln λ− λ− ln r! (8.44)

With (8.42) and (8.41), we write

ln r � ln λ+ x√
λ
− x

2

2λ
+ · · ·

and

ln r! � ln
√

2π +
(
r + 1

2

)[
ln λ+ x√

λ
− x

2

2λ

]
− r

Substituting these results into (8.44) and neglecting terms of 0(x/
√
λ) gives

P (x) � e
−x2/2

√
2π

(8.45)

which agrees with the Gaussian (8.34) for σ � 1.

1.8.8 Covariance and Autocorrelation Function

Another important function entering in probability theory is the covariance of
two rv’s written cov(ξ ′, ξ ′′). It is defined as

cov(ξ ′, ξ ′′) � E[(ξ − E(ξ ′))(ξ ′′ − E(ξ ′′))]

More concisely, we may write

cov(ξ ′, ξ ′′) � 〈(ξ ′ − 〈ξ ′〉)(ξ ′′ − 〈ξ ′′〉)〉
� 〈ξ ′ξ ′′〉 − 〈ξ ′〉〈ξ ′′〉 (8.46)

Note in particular that if ξ ′ and ξ ′′ are statistically independent or uncorrelated
then

cov(ξ ′, ξ ′′) � 0 (8.47)

The correlation function of two rv’s is given by the dimensionless ratio

C(ξ ′, ξ ′′) � cov(ξ ′, ξ ′′)√
D(ξ ′)D(ξ ′′)

(8.48)

where D(ξ ) is the variance (8.2b).
The random variable of a stochastic process is a function of time. Thus, for

example, in a stochastic process one writes

E[ξ (t)] �〈ξ (t)〉
D[ξ (t)] �〈ξ 2(t)〉 − 〈ξ (t)〉2

(8.49)
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FIGURE 1.22. The coordinates for Problem 1.1.

The autocorrelation function of a stochastic process is the image of the
covariance and we write

cov[ξ (t1), ξ (t2)] � 〈ξ (t1)ξ (t2)〉 − 〈ξ (t1)〉〈ξ (t2)〉 (8.50)

If 〈ξ (t)〉 � 0, we may set t2 � t1 + τ and the preceding becomes

cov[ξ (t1), ξ (t2)] � 〈ξ (t1)ξ (t1 + τ )〉 � 〈ξ (t)ξ (t + τ )〉 (8.51)

In the limit of no correlation between the distinct stochastic processes,

〈ξ (t)ξ (t + τ )〉 � 〈ξ (t)〉〈ξ (t + τ )〉 (8.52)

which vanishes by previous assumption.
The autocorrelation function is returned to in Section 3.4.4 concerning

analysis of transport coefficients and in Section 4.2.5 in derivation of the
Balescu–Lenard equation. In the quantum domain it may be reformulated in
terms of the Green’s function. See Problem 5.42.

Problems

1.1. A weightless rigid rod with a frictionless movable bead on it is constrained to
rotate in a fixed plane with one end fixed. The plane of rotation is parallel to
the gravity field. The bead has mass m.

(a) Choose a set of generalized coordinates and write down the Lagrangian
for the system.

(b) What are Lagrange’s equations for this system?

Answer

(a) Generalized coordinates are r, θ (see Fig. 1.22).
(b) The r-equation

∂L

∂r
� mṙθ̇ 2 −mg cos θ

d

dt

(
∂L

∂ṙ

)
� d

dt
(mṙ)
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This equation gives

d

dt
(mṙ) � mrθ̇ 2 −mg cos θ

The first term on the right side represents centripetal force, whereas the
second term is the gravity force.
The θ equation:

∂L

∂θ
� mgr sin θ,

∂L

∂θ̇
� mr2θ̇

d

dt
(mr2θ̇ ) � mgr sin θ

That is, the rate of change of angular momentum is equal to the applied
torque.

1.2. (a) What is the Hamiltonian for a free particle expressed in spherical
coordinates?

(b) What are the constant momenta of the particle in this representation?
(c) What are the constant momenta in Cartesian coordinates?

Answer

(a) The Hamiltonian is given by

H � p2
r

2m
+ p2

θ

2mr2
+ p2

φ

2mr2 sin2
θ

which may be rewritten

H � p2
r

2m
+ L2

2mr2

where L denotes the total angular momentum of the particle.
(b) Since φ is a cyclic coordinate, pφ is constant. With

φ̇ � ∂H

∂pφ

we find

pφ � mr2φ̇ sin2
θ � constant

Two remaining constant are H and L2.
(c) In Cartesian coordinates

H � p
2
x + p2

y + p2
z

2m

Since x, y, z are cyclic,

p � constant

which again comprises three independent constants.
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1.3. Show that the Lorentz force law (1.18) follows from the electrodynamic
Hamiltonian (1.16).

1.4. An inductively coupled double-circuit network has the Lagrangian

L � 1

2

2∑
i�1

[
Liİ

2
i −

I 2
i

2Ci
+ V̇i(t)Ii

]
+

2∑ 2∑
j ��k

Mjkİj İk

In this expression, I is current, V is voltage,L is inductance,C is capacitance,
andMjk is mutual inductance.

(a) What are Lagrange’s equations for this system?
(b) What is the Hamiltonian for this system?

1.5. Establish (a) Jacobi’s identity (1.26e), and (b) the relation (1.26g).

Answer (partial)

(b) Let B(A) have the Taylor-series expansion

B(A) �
∑
∀n
bnA

n

Then (1.26g) appears as∑
bn[A,A

n] �
∑
bnA[A,An−1]

�
∑
bnA

2[A,An−2] � · · ·
�
∑
bnA

(n−1)[A,A] � 0

Here we have used the expansion (1.26d).

1.6. Show that [q, p] is a canonical invariant.

Answer

[q, p] � ∂q
∂q

∂p

∂p
− ∂p
∂q

∂q

∂p
� 1

In the primed frame, we have

[q, p]q ′p′ � ∂q

∂q ′
∂p

∂p′
− ∂p

∂q ′
∂q

∂p′
� J

(
pq

q ′p′

)
� 1

which proves the statement.

1.7. Consider a collection of N mass points each of mass m. Let radii vectors to
these points be written ri . Then the radius to the center of mass is given by

R �
∑

i
miri∑
i
mi

�
∑
mixi
M

The summation runs over all N particles. Let

r′i ≡ ri − R
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FIGURE 1.23. Coordinates relative to the center of mass.

designate the particle radius vector relative to the center of mass. See Fig. 1.23.
Show that the kinetic energy of the system may be written

2T � MṘ2 +
∑
i

mi ṙ
′2
i

1.8. A rigid weightless wheel of radius a carries a dumbbell of radius 2a. The
dumbbell rotates with its end points constrained to move on the rim of the
wheel. The arm of the dumbbell is weightless, but its end points each have
mass m. The system moves in three-space.

(a) How many degrees of freedom does this system have?
(b) Choose generalized coordinates for this system that include the coordi-

nates of the center of mass, X, Y , Z.
(c) The system moves free of gravity. What is the Lagrangian of this system

in the coordinates you have chosen? Hint: See Problem 1.7.
(d) Which momenta are conserved for this system in the coordinate frame

you have chosen?

1.9. (a) With the notation of Problem 1.7, show that the total angular momentum
of a system of N particles may be written

J � R × P +
N∑
i�1

r′i × p′i (P9.1)

In this expression

P � MṘ

is the total linear momentum of the system, and

p′i � miṙ′i

is the linear momentum of the ith particle relative to the center of mass.
(b) For a finite rigid body with number density n(r), show that (P9.1) may

be written

J � L+ S
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where L � R × P and

S �
∫
dr′n(r′)r′ × p′(r′)

1.10. Show that the Poisson bracket relation

[p, q] � −1

is invariant under the transformation generated by

G2(q, p′) � q sinp′

Answer

We find

p � sinp′, q � q

cosp′

Thus

[p, q] →
[

sinp′,
q ′

cosp

]′

� ∂

∂q ′
sinp′

∂

∂p′

(
q ′

cosp′

)
− ∂

∂q ′

(
q ′

cosp′

)
∂

∂p′
(sinp′) � −1

1.11. Is the transformation generated by

G2(q, p′) � A ln[f (q)h(p′)]

canonical? The parameter A is constant and f and h are arbitrary but
continuous functions.

1.12. Show that the transformation

q ′ � ln

(
1

q
sinp

)
, p′ � q cot p

is canonical.

1.13. Use the generating function

G1 � mωq
2

2
cot q ′

to obtain the orbits of the Hamiltonian

H � p2

2m
+ kq

2

2

1.14. (a) Show that the equality

pxdx + pydy + pzdz � prdr + pθdθ + pφdφ
follows from the transformation equations from Cartesian to spherical
coordinates.

(b) Argue that this transformation is canonical.
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1.15. Show that if ?̂ is a Hermitian operator, then:

(a) Eigenvalues of ?̂ are real.
(b) Eigenfunctions of ?̂ are orthogonal.
(c) What additional assumption comes into play in your answer to (b)?

1.16. Show that if

?̂ ≡ iL̂
is Hermitian then:

(a) Eigenvalues of L̂ are purely imaginary.
(b) Eigenstates of L̂ are orthogonal.
(c) ?̂ and L̂ have common eigenstates.
(d) What type of operator is L̂?

1.17. Assuming that ψ(k) as given by (5.12) satisfies periodic boundary conditions,
show that wave vectors have the values

ks � 2π

L
ns

where the components of ns are integers and L3 is the volume of cubical
confinement.

1.18. Let a surface be generated by rotating a curve that passes through the points
(x1, y1); (x2, y2) about the y axis. Show that the curve that makes the surface
area a minimum is y � a cosh−1(x.a)+ b.

1.19. If u and v are two dynamical functions that are both constants of the motion
for a given system, show that [u, v] is also a constant of the motion.

1.20. Show that the Poisson brackets of two Cartesian components of the angular
momentum L of a particle about a specified origin obey the relation

[Li, Lj ] � Lk
where (i, j, k) are the variables (x, y, z) in cyclic order.

1.21. Constants of the motion for a free particle moving in one dimension are

g1 � p
g2 � pt

m
− x

Show that

∂g2

∂t
+ [g2, H ] � 0

1.22. This problem addresses generalized potentials, which come into play for cer-
tain nonconservative systems. Consider that the force Fs in the direction of
the generalized coordinate qs may be written

Fs � −∂U
∂qs

+ d

dt

∂U

∂qs
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where U is the generalized potential. If this condition is satisfied, then the
dynamics of the system is still given in terms of Lagrange’s or Hamilton’s
equations with

L � T − U
ps � ∂L

∂q̇s

H �
∑
piq̇i − L

Consider a particle of mass m and charge e that moves in an electromagnetic
field. The force on the particle is given by (cgs)

F � e
[
E+ 1

c
(v × B)

]

where c is the speed of light. Working with the potentials A and � given by

E � −∇ − 1

c

∂A
∂t

B � ∇× A

∇ · A+ 1

c

∂ 

∂t
� 0 (Lorentz gauge)

(a) Show that the generalized potential for the charged particle is

U � e
(
 − 1

c
v · A

)

(b) Show that the canonical momentum of the particle is

p � mv + e
c

A

(c) Show that the Hamiltonian for the particle is given by(1.16).
(d) Show that the preceding defining equations for A and� remain invariant

under the transformation �→ �′ � �− ∂ψ/c∂t ; A → A′ + ∇ψ.
(e) What equations of motion for A and �, respectively, do Maxwell’s

equations give?

1.23. Three identical particles move in one dimension and are confined to the interval
(0, L). At a given instant of time, the joint-probability distribution for this
system is known to be

f3(1, 2, 3) � [exp−a(p2
1 + p2

2 + p2
3)]

× [sin bx1 sin bx2 sin bx3 cos c(x1x2 + x2x3 + x1x3)]

where a, b, and c are constants.

(a) Is this distribution symmetric under exchange of particles?
(b) What is the value of the constant b
(c) What is the pair distribution function F2(x, x ′) for this system?
(d) What is the conditional distribution function F2(x, x ′) for this system?
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In your answer to (c) and (d), integral expressions will suffice.

1.24. A collection of four identical particles moving in one dimension are known
to be in the following state at a given time t > 0. One particle is moving with
velocity v0

1 and another with v0
2 . Both these particles were at the origin x � 0

at t � 0. The remaining two particles are stationary at x0
3 and x0

4 , respectively.

(a) Write down a determinantal joint-probability distribution that describes
this state.

(b) Obtain an expression for f1(x, v) from your answer to (a).

1.25. A student argues the following: It has been stated that the relation∑
pdq �

∑
p′ dq ′

establishes the transformation (q, p) → (q ′, p′) to be canonical. He argues
that this is in violation of the criterion (2.11). Punch a hole in the student’s
argument.

Answer

Assuming that the given transformation stems from G1(q, q ′) leads to incon-
sistencies. For with q, q ′ as independent variables, the transformation gives
p � p′ � 0 On the other hand,G2(q, p′) may be shown to be consistent with
the given transformation. Consider, for example (for one degree of freedom),

G2(q, p′) � p′f (q)

The given relation becomes

p dq − p′ dq ′ � p′ df
dq
dq − p′ df � 0

which is seen to be consistent.

1.26. Show that the probability distribution (8.20), relevant to the random walk,
satisfies (7.23a).

1.27. Show that the difference equation (7.23) gives the diffusion equation22

∂P (x, t)

∂t
� D ∂2

∂x2
P (x, t) (P27.1)

where time t and displacement x are related to the integers n and l through
the interval constants δ1 and δx as

n � t

δ1

, l � x

δx

and

D ≡ lim
δt ,δx→0

[
δ2
x

2δt

]

22Suggested by G. K. Schenter.
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is assumed to be a finite parameter.

Answer

Rewrite (7.23) as

P (l, n)−P (l, n− 1) � 1

2
[P (l+ 1, n− 1)− 2P (l, n− 1)+P (l− 1, n− 1)]

(P27.2)
Now note that

>P (n) � P (n)− P (n− 1)

>[>P (l) � >[P (l + 1)− P (l)]

� P (l + 1)− 2P (l)+ P (l − 1)

Thus, with >n � >l � 1, (P27.2) becomes

>P

>n
� 1

2

>(>P/>l)

(>l)2

or, equivalently,

δt
>P

>t
� δ

2
x

2

>2P

>x2

which, in the said limit, gives the diffusion equation (P27.1). Note in particular
that, with correspondence between the difference equation (7.23) and the
diffusion equation (P27.1) established, we may conclude that the diffusion
equation describes a Markov process.

1.28. (a) What is the equation of motion in � space for the ensemble density func-
tion D that corresponds to the fact that system points are neither created
nor destroyed?

(b) How does this equation differ from the Liouville equation?

1.29. This problem concerns the integral invariants of Poincaré.

(a) Consider a dynamical system with N degrees of freedom. Prove Liou-
ville’s theorem for the subsystem comprised of s < N particles. That is
show that

J

(
q ′, p′

q, p

)
� 1

where (q, p) → (q ′, p′) is a canonical transformation for the s-particle
subsystem.

(b) What is the geometrical significance of this statement in �-space?
(c) If we attempt a derivation of Liouville’e equation for the subsystem fol-

lowing the first derivation given in the text, where does the argument
collapse?

1.30. Consider an N -body system whose Hamiltonian is given by

H � H0 +
N∑
i�1

λ(xi − api)2
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The function H0 is given by (4.24) and λ and a are constants.

(a) What are Hamilton’s equations for this system?
(b) Is the Liouville operator (4.20a) Hermitian for this Hamiltonian?

1.31. (a) Construct a generating functionG2(qN, p′N ) that gives the transformation

q ′1 � αq1, q ′n � qn
p′1 �

1

α
p1, p′n � pn

where 2 ≤ n ≤ N .
(b) Show explicitly that the Jacobian of this transformation is unity.

1.32. Show that the Hamiltonian of anN -particle isolated system with conservative
forces may be identified with the energy of the system. Hint: To establish this
result, recall Euler’s theorem which states that, if F (x1, x2, . . . , xN ) is a linear
combination of products of xi variables with the sum of exponents of each
product equal to n, then

N∑
i�1

xi
∂F

∂xi
� nF

and employ the Hamiltonian–Lagrangian relation.

1.33. Show that the Gaussian distribution in three dimensions

n(r, t) � N0

(4πDt)3/2
exp

(
− r2

4Dt

)
has the following properties:

(a)
∫
n(r, t) dr � N0

(b)
(
∂

∂t
−D∇2

)
n(r, t) � 0

(c) n(r, 0) � N0δ(r)

1.34. Ifp(n) is a discrete probability density for the rv ξ , andφ(a) is its characteristic
function, then show that

(a) φ(0) � 1

(b) E(ξ ) � −i
(
dφ

da

)
a�0

� −i
(
d ln φ

da

)
a�0

(c) |φ(a)| ≤ 1

(d) D(ξ ) � −
[
d2(ln φ)

da2

]
a�0

1.35. Consider the Poisson distribution for the random variable r ,

P (r) � λ
′e−λ

r!
(a) Construct the characteristic function for this distribution as a sum over r .
(b) Use your answer to obtain E(r) and D(r). (Compare your findings with

values given in the text.)
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Answer (partial)

(a) ln φ(a) � −λ(1− eia)
1.36. The faces of a six-sided cubical die are numbered 1 to 6, and the faces of

a four-sided tetrahedral die are numbered 1 to 4. Consider the numbers that
appear on the bottom faces of the dice in a random throw.

(a) What are the respective characteristic functions φ ′(a) and φ ′′(a) corre-
sponding to throws of the individual dice?

(b) What is the probability that the sum of numbers on the bottom faces adds
to 8 in a throw of the dice?

1.37. Do the canonical transformations on a system comprise a group? Explain you
answer.

1.38. Show that the discrete random-walk probability P (l, n) given by (8.20) goes
over to the asymptotic form (8.30) for large n.

1.39. This problem addresses classical field dynamics and the Sine–Gordon equa-
tion. Consider a field φ(x, t) with time and space derivatives denoted by φt
and φx , respectively, which has the Lagrangian

L �
∫ [

1

2
(φ2
t − k1φ

2
x )− k2 cosφ

]
dx

The field coordinate and its conjugate momentum are (φ,O), where

O(x, t) � δL

δφt

Variation on the right denotes functional differentiation.

(a) What is the form of O for the given Lagrangian?
(b) What is the Hamiltonian for this field?
(c) Write down Hamilton’s equations for a field (in functional form).
(d) From the relations found in part (c) obtain an equation of motion for the

field φ(x, t).

Answer

(a) O(x, t) � δL

δφt
�

1

2

∫
[(φt + δφt )2 − B]dx ′ − 1

2

∫
[(φ2

t − B]dx ′

δφt

where B represents constant terms in the variation. There results

O(x, t) �
∫
φt (x

′)

[
δφt (x ′)

δφt (x)

]
dx ′

�
∫
φt (x

′)δ(x − x ′) dx ′ � φt (x, t)

Thus

O(x, t) � φt (x, t)
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(b) H �
∫
Oφtdx − L

H �
∫ [

1

2
(O2 + k1φ

2
x )+ k2 cosφ

]
dx

(c)
δH

δO
� φt

δH

δφ
� −Ot

(d) We must evaluate

H (φ + δφ)−H (φ)

�
∫ [

1

2
(O2 + k1(φ + δφ)2

x)+ k2 cos(φ + δφ)

]
dx

−
∫ [

1

2
(O2 + k1φ

2
x )+ k2 cosφ

]
dx

�
∫

(k1φxx + k2 sin φ)δφ dx

There results

δH

δφ
� −(k1φxx + k2 sin φ)

Combining this finding with preceding results gives

φtt − k1φxx − k2 sin φ � 0

which is the celebrated Sine–Gordon (nonlinear partial differential) equa-
tion. Note:23 The classical field φ(x, t) may be viewed as appropriate to
a system with an infinite number of degrees of freedom. Thus, for exam-
ple, the Lagrangian given in the statement of this problem is related to
an infinite set of freely rotating pendula coupled to each other by springs
with force constant k1. The function φ(x, t) is related to the angle of a
pendulum at x, t .

1.40. Chebyshev’s inequality states that, for an arbitrary probability distribution
with E(x) � x̄ and D(x) � σ 2,

P (x − x̄| > λσ ) ≤ 1

λ2

Show that this inequality is valid for a Gaussian distribution.

1.41. A system with N degrees of freedom has coordinates {xi} and momenta
{pi}, i � 1, . . . , N . Consider that {xi} is written as a column vector x. A

23For further discussion, see P. G. Drazin, Solitons, Cambridge University Press,
New York (1983). The phase “Sine–Gordon” was coined as a pun on the Klein–
Gordon equation of relativistic quantum mechanics.
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transformation to new coordinates x̄ is given by

x̄ � ¯̄M x̄

where the elements of the N ×N matrix, ¯̄M , are constants.

(a) If we write

p̄ � ¯̄Qp

what is the relation between ¯̄Q and ¯̄M that ensures that the transformation
is canonical?

(b) Under what conditions will the transformation be canonical if ¯̄Q � ¯̄M?

Answer

(a) For a canonical transformation, in matrix notation, we write

x̄†dp̄ � x† dp

where, in general, ¯̄A†
is written for the Hermitian adjoint of ¯̄A. [Recall,

( ¯̄A†
)ij � A∗ji .] Inserting the given transformations into the preceding

equation gives

( ¯̄Mx)† d( ¯̄Qp) � x† dp

x† ¯̄M† ¯̄Qdp � x† dp

which implies that

¯̄M† ¯̄Q � ¯̄I
or, equivalently,

¯̄Q−1 � M†

(b) If ¯̄Q � ¯̄M , the preceding condition becomes

¯̄M† ¯̄M � 1

That is, ¯̄M must be unitary.

1.42. If fN (1, 2, . . . , N) is translationally invariant,

fN (x1 + a, p1; x2 + a, p2; . . . ; xN + a, pN ) � fN (x1, p1; x2, p2; . . . ; xN, pN )

and rotationally invariant,

fN (x1, p1; x2, p2; . . .) � fN (x1 + ε× x1, p1; x2 + ε× x2, p2, . . .)

where ε is infinitesimal, then show that

(a) f1(x1, p1) � g(p1)
and
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(b) f2(x1, p1; x2, p2) � h(|x1 − x2|, p1, p2)
The functions g and h are arbitrary.

Answer

Consider an arbitrary transformation from variables (x, p) to variables (x̄, p̄)
such that (as in this problem)

fN (x1, . . . , xN ; p1, . . . ,pN ) � fN (x̄1, . . . , x̄N ; p̄1, . . . , p̄N )

Suppose further that the Jacobian of the transformation is unity, as in this
problem (show this). Then we have the following (for s ≤ N );

fs(1, . . . , s) �
∫
d(s + 1) . . . dNfN (1, . . . , N)

�
∫
d(s + 1) . . . dNfN (1̄, . . . , N̄ )

�
∫
d(s + 10 . . . dN̄fN (1̄, . . . , N̄ ) � fs(1̄, . . . , s̄)

Thus the translational and rotational invariance of fN is obeyed by reduced
distributions as well, and we may write

f1(x1, p1) � f1(x1 + a, p1)

which implies that

∂f1

∂x1

� 0

Thus

f1(x1, p1) � g(p1)

which is property (a).
To establish (b), first we write

f2(x1, x2, p1, p2) � h(x1 + x2, x2 − x2, p1, p2)

Translational invariance of f2 then implies, with y ≡ x1 + x2, that

h(y, x1 − x2, p1, p2) � h(y+ 2a, x1 − x2, p1, p2)

Thus

∂h

∂y
� 0

and the preceding becomes, with w ≡ x1 − x2,

f2(x1, x2, p1, p2) � (w, p1, p2)

Let R̂ denote the infinitesimal rotation

x → x′ � R̂x � x + ε× x
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Then rotational invariance of f2 gives

h(w, p1, p2) � h(R̂w, p1, p2)

Thus h is independent of the direction of w, whence it can only depend on
|w|, and we conclude

f2(x1, x2, p1, p2) � h(|x1 − x2|p1, p2)

which is property (b).

1.43. Show that for nonvelocity-dependent potentials, canonical momenta are de-
pendent only on the kinetic energy of the system at hand. Thus, in general,
canonical momentum may be considered a kinematic variable. (An exam-
ple where this property does not hold is the case of a charged particle in an
electromagnetic environment, for which the related “generalized potential” is
velocity dependent. See Problem 1.22).

1.44. A particle of mass m moves on a two-dimensional plane surface.

(a) Transforming from Cartesian to polar coordinates, obtain expressions
for new momenta (pr, pθ ) employing the generating function G2 given
beneath (2.15). State explicitly forpr andpθ directly from the Lagrangian,
L, written in polar coordinates. State explicitly what the arguments ofG2

are for this problem.
(b) Obtain expressions for pr and pθ directly from the Lagrangian,L, written

in polar coordinates. State explicitly what the arguments of L are.
(c) Do your answers to the preceding change if the particle moves in a

potential field? Explain.

1.45. A pendulum consists of a weightless rod of length a and a massm at one end.
The other end is fixed and the pendulum moves in a fixed plane whose normal
is normal to the gravity field.

(a) Write down the Hamiltonian of the pendulum in polar coordinates (θ, pθ )
(with θ � 0 corresponding to the direction of gravity).

(b) Solve for the motion θ (t) in quadrature.
(c) Sketch the orbits of the pendulum in (θ, pθ ) phase space. Show that orbits

divide into sets: closed (vibration) curves and open (rotation) curves. The
orbit that separates these classes of curves is called the separatrix.

(d) Show that the separatrix [in θ � (−π,+π )] includes one fixed point
(pθ � 0). Such orbits are called homoclynic as opposed to heteroclynic
orbits, which include more than one fixed point.

(e) Show that for motion on the separatrix it takes infinite time to reach the
fixed point.

1.46. Given that dL(q, q̇, t)/dt � 0, show that the null variation of∫ t2

t1

Ldt and
∫ t2

t1

f (L) dt
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give the same Lagrange’s equations, where f (L) is any continuous function
of L.

1.47. (a) Suppose M̂ is an arbitrary square matrix. If there exists a matrix Ĉ such
that

?̂ � Ĉ−1M̂Ĉ

is diagonal, describe the matrices Ĉ and ?̂.
(b) If Â, B̂ are two square matrices and Â is nonsingular, then show that

exp ÂB̂Â−1 � Â(exp B̂)Â−1

(c) Consider the N -dimensional dynamical equation

v̇ � M̂v

where M̂ is a time-dependentN ×N matrix, a dot represents time differ-
entiation, and v is an N -dimensional column vector. Write the solution
of this equation in terms of (exp ?̂t) and v(0).

(d) If M̂ is Hermitian, how is your answer to (c) simplified?

Answers (in part)

(a) The matrix Ĉ is comprised of columns that are eigenvectors of M̂ , whereas
?̂ is comprised of the eigenvalues of M̂ .

(c) v(t) � etM̂v(0)
From (a), M̂ � C?̂C−1 so that

v(t) � [exp t(C?̂C−1)]v(0)

� [exp(Ct?̂C−1)]v(0)

with (b) we may then write

v(t) � Ĉet?̂Ĉ−1v(0)

(d) The preceding form involves Ĉ−1, which may not be trivial to calculate.
However, if M̂ is Hermitian, then ?̂ is real and Ĉ is unitary. In this event,
if Ĉ is known, so is Ĉ−1 � Ĉ†.

1.48. The initial value of an ensemble density is given on the spherical surface in
�-space,

∑
p2
i +

∑
q2
i � a2, to be

D0(q, o) �
∑
q2
i exp[−

∑
p2
i ]

System points of the ensemble are comprised of N independent harmonic
oscillators with potential V � q2/2 and unit mass. What is the solution
D(q, p, t) to the Liouville equation?

1.49. A canonical set of coordinates and momenta obey the fundamental Pois-
son bracket relations (1.12). Expressions for the Poisson brackets of the
components of angular momentum are given in Problem 1.20.

(a) Are the components of angular momentum valid canonical momenta?
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(b) The energy of a rigid molecule, free to rotate about its center of mass, is
given by

E � L
2
x + L2

y

2I1

+ L2
z

2I3

where moments of inertia, (I1, I2, I3) are evaluated in principal axis with
I1 + I2 and the origin at the center of mass. Is the preceding expression a
valid Hamiltonian form?

(c) Write down the proper Hamiltonian for this molecule. Hint: Evaluate
[L2, L

2].

Answers (partial)

(b) As Lx , Ly , Lz are not canonical momenta, the given form is not a valid
Hamiltonian.

(c) The appropriate Hamiltonian is given by

H � L
2 − L2

z

2I1

+ L2
z

2I3



CHAPTER 2

Analyses of the
Liouville Equation

Introduction

This chapter begins with a derivation of the sequence of equations called the
BBKGY equations (also called the hierarchy). These are equations for the
reduced distributions encountered in Section 1.6.3 and play a key role in the
kinetic theory of gases and fluids. The first two equations of this sequence are
employed in the derivation of the conservation of energy of a gas of interacting
particles. This description serves as a good example of basic techniques used in
kinetic-theory problems. A nondimensionalization procedure is introduced in
Section 2.2, which leads to the notions of strongly and weakly coupled fluids.
Correlation functions are defined through the Mayer–Mayer expansion, and
the Vlasov kinetic equation is found to result in the limit of weak coupling and
long-range interaction. This equation leads to the notion of a self-consistent
solution. The section concludes with a brief account of spatial correlation
functions important to the theory of the equilibrium structure of fluids. These
are the radial distribution and total correlations functions.

In the following two sections, techniques are described that attempt to de-
velop solutions to the hierarchy through perturbation-expansion techniques.
A diagrammatic representation of integrals occurs in the Prigogine technique.
Summing diagrams corresponding to the rare-gas limit gives the Boltzmann
equation. Diagrams relevant to a plasma are also discussed.

Temporal intervals are introduced in the Bogoliubov analysis, relevant to
the equilibrium of a fluid. Expanding in powers of inverse specific volume and
keeping leading terms again give rise to the Boltzmann equation.

The chapter continues with a description of the Klimontovich picture of
kinetic theory. This formalism involves phase densities that are delta-function
expressions of the state of the system. Moments of these phase densities are
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found to be related to multiparticle distribution functions. The discussion
concludes with rederivation of the first equation in the hierarchy.

In the concluding section of the chapter, Grad’s derivation of the Boltzmann
equation from the Liouville equation is presented. It is concluded that all three
techniques are given by Prigogine, Bogoliubov, and Grad contain procedures
for obtaining higher-order corrections to the Boltzmann equation appropriate
to denser fluids.

In Chapter 3 the very important Boltzmann equation is rederived more
directly and studied in detail.

2.1 BBKGY Hierarchy

The reduced joint-probability distributions fs(1, . . . , s), s < N , were intro-
duced in Section 1.6.3. It was noted that f1 and f2 determine the kinetic and
potential energy of an aggregate of particles. In Chapter 3 the extreme rele-
vance of these first two distributions to all fluid dynamics will be discussed.
Thus it is important to obtain equations of motion for these distributions. With
the definition of fs , as given by (1.6.10), we see that an equation of motion
for fs is obtained by integrating the Liouville equation over the phase volume
d(s + 1) . . . dN . Prior to so proceeding, we introduce a few key operators
important to obtaining the desired equations.

2.1.1 Liouville, Kinetic Energy, and Remainder Operators

First we rewrite the Liouville equation (1.6.6)

∂fN

∂t
+ [fN,H ] � 0 (1.1)

in terms of a slightly modified Liouville operator

∂fN

∂t
− L̂NfN � 0 (1.2)

Comparison of L̂N so defined with ?̂ given by (1.4.23) indicates that iL̂N �
?̂. With Problem 1.16, we find that L̂N has purely imaginary eigenvalues
corresponding to oscillatory solutions of (1.2). [Recall (1.5.7))].

With (1.1) and (1.2), we find

L̂N � [H, ] (1.3)

which for an aggregate of N particles gives

L̂N �
N∑
l�1

(
∂H

∂xl
· ∂
∂pl

− ∂H
∂pl

· ∂
∂xl

)
(1.4)
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Again, the Hamiltonian, H , is given by (1.4.27):

H �
N∑
i�1

p2
i

2m
+

N∑∑
i<j

�ij (1.5)

where

�ij ≡ �(|xi − xj |) (1.5a)

is the two-particle interaction potential. We obtain

L̂N � −
N∑
l�1

pl
m
· ∂
∂xl
+

N∑∑
i<j

N∑
l�1

∂

∂xl
�ij · ∂

∂pl
(1.6)

Consider the operator

Ôij ≡
∑
l

∂

∂xl
�ij · ∂

∂pl

Terms in the sum are nonzero only when l � i or l � j . Thus

Ôij � ∂

∂xi
�ij · ∂

∂pi
+ ∂

∂xj
�ij · ∂

∂pj

With the equality

∂

∂xi
�ij � − ∂

∂xj
�ij

we obtain

Ôij � −Gij ·
(
∂

∂pi
− ∂

∂pj

)
(1.7)

Here we have written

Gij � − ∂

∂xi
�ij (1.7a)

for the force on the ith particle due to the j th particle. With (1.7), (1.6) may
be written

L̂N � −
N∑
l�1

pl
m
· ∂
∂xl
+

N∑∑
i<j

Ôij (1.8)

or, equivalently,

LN � −
∑
l

K̂ l +
∑∑
i<j

Ôij (1.9)

where K̂l , the kinetic energy operator, is as implied. As we are interested in
an equation for fs , we partition L̂N as follows:

L̂N � L̂s + L̂N,s+1 (1.10)
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FIGURE 2.1. Enumeration of terms in the remainder operator R̂N,s+1.

where, the s-particle Liouville operator, L̂s , is given by

L̂s � −
s∑
l�1

K̂l +
s∑∑
i<j

Ôij (1.11)

The remainder operator, L̂N,s+1, is given by

L̂N,s+1 � −
N∑

l�s+1

K̂l + R̂N,s+1 (1.12)

To delineate the Ôij terms in R̂N,s+1, we refer to Fig. 2.1. Thus we find

R̂N,s+1 �
s∑
i�1

N∑
j�s+1

Ôij +
N∑

i�s+1

N∑
j�s+1

(i<j )

Ôij (1.13)

2.1.2 Reduction of the Liouville Equation

With these operators at hand, we are prepared to carry out the integration of
(1.2) as described above. Specifically with (1.10) and (1.12) substituted into
the Liouville equation (1.2), integration gives(

∂

∂t
− L̂s

)
fs �

∫
d(s + 1) . . . dNL̂N,s+1fn

�
∫
d(s + 1) . . . dN

(
−

N∑
l�s+1

K̂l + R̂N,s+1

)
fN (1.14)



2.1 BBKGY Hierarchy 81

Inserting (1.13) gives

RHS(1.14) �
∫
d(s + 1) . . . dN

·
(
−

N∑
l�s+1

pl
m
· ∂
∂xl
+

s∑
i�1

N∑
j�s+1

Ôij +
N∑

i�s+1

N∑
j�s+1

Ôij

)
fN

The first and third terms in this expression contribute only surface terms and
vanish. Thus we obtain(

∂

∂t
− L̂s

)
fs �

∫
d(s + 1) . . . dN

s∑
i�1

N∑
j�s+1

ÔijfN (1.15)

Inserting the representation (1.7) for Ôij gives

RHS(1.15) � −
∫
d(s + 1) . . . dN

s∑
i�1

N∑
j�s+1

Gij ·
(
∂

∂pi
− ∂

∂pj

)
fN

As the pj derivatives run over j ≥ s+1, they too are surface terms and vanish.
We are left with(

∂

∂t
− L̂s

)
fs � −

s∑
i�1

∂

∂pi
·
∫
d(s + 1) . . . dN

N∑
j�s+1

Gij fN (1.16)

This is a key equation in the present development for the following reasons.
First, we note that up to this point the mass of particles in our aggregate, written
m, many have been written with an index, such asmi in the expression for the
Hamiltonian (1.5). That is, in obtaining (1.16) it was not necessary to assume
that particles are of equal mass. Second, it is apparent from (1.16) that the
dynamics of the fluid partitions so that the interaction of the subgroup of s
particles, described by fs(1, . . . , s), with the remaining particles in the fluid is
given by the right side of (1.16).

2.1.3 Further Symmetry Reductions

To further reduce (1.16), it is necessary to assume that the constituent particles
in the fluid are identical and that fs(1, 2, . . . , s) is symmetric under interchange
of particle phase numbers. Thus, for example, in fs(1, 3, 2), particle 2 is in state
3 and particle 3 is in state 2. With the preceding assumptions, we may write

f3(1, 2, 3) � f3(1, 3, 2) (1.17)

To examine the equivalence of the integrals under the j sum in (1.16), we must
show, for example, that∫

d2 d3 . . .G12fN (1, 2, 3, . . .) �
∫
d2 d3 . . .G13fN (1, 2, 3, . . .)
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or, equivalently, that∫
d2 d3G12f3(1, 2, 3) �

∫
d2 d3G13f3(1, 2, 3) (1.18)

Integrating the left side over d3 and the right side over d2 gives∫
d2G12f2(1, 2) �

∫
d3G13f2(1, 3)

Changing the dummy variable from 3 to 2 in the right integral establishes
the equality. This result may also be argued geometrically, as demonstrated in
Fig. 2.2. Thus, in (1.16) each term in the (N − 1)j summation gives identical
terms and we obtain(

∂

∂t
− L̂s

)
fs + (N − s)

s∑
i�1

∂

∂pi
·
∫

Gi,s+1fNd(s + 1) . . . dN � 0 (1.19)

Here we have set j in Gi,j equal to s+1 to facilitate further reduction. Thus, for
example, with this choice, integration of (1.19) over the volume d(s+2) . . . dN
leaves fs+1 in the integrand and we obtain(

∂

∂t
− L̂s

)
fs + (N − s)

s∑
i�1

∂

∂pi
·
∫

Gi,s+1fs+1 d(s + 1) � 0 (1.20)

1 ≤ s ≤ N
The coupledN equations given by (1.20) are called the BBKGY equations.

This abbreviation is written for N. N. Bogoliubov, M. Born, G. Kirkwood, H.
S. Green, and J. Yvon. These equations are also called the hierarchy. We will
use the shorthand notation BYs to denote the sth equation in the hierarchy.

We first note three basic properties of these equations:

1. They are a coupled sequence of N equations, the N th of which is the
Liouville equation for fN .

2. Writing

Dfs

Dt
≡ ∂fs
∂t
− L̂sfs (1.21)

relevant to a subgroup of s < N particles, with (1.20) we note that

Dfs

Dt
�� 0

This indicates that fs(1, 2, . . . , s) is not constant along the subsystem
trajectory in �̃-space. The termDfs/Dt does not vanish due to interaction
of the s subgroup of particles with the remaining aggregate. As noted
previously, this interaction is represented by the sum of integrals in (1.20).

3. The third property is of special significance to the present work. It concerns
the first equation in the sequence (1.20), BY1. This equation is the generic
form for all kinetic equations. A kinetic equation is a closed equation of
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FIGURE 2.2. Graphical representation of force terms in (1.16). Arrows represent
momenta; dashed arrows, interaction; and circles, position. Integrating over the phase
variables of 2 and 3 gives equal results.

motion for f1(x, p, t). The manner in which this occurs is as follows. Let
us rewrite BY1 as

∂f1

∂t
+ p1

m
· ∂
∂x1
f1 � −Â1f2(1, 2) (1.22)

where Â1 is the operator implied by (1.20) with s � 1. A kinetic equation
results if we are able to effect the transformation

Â1f2(1, 2) � Ĵ (f1) (1.23)

where Ĵ , typically called collision integral, maps functions onto functions.
The simplest way to effect this mapping is merely to write f2(1, 2) as
some functional of f1(1). Thus, for example in the Vlasov approximation
to be considered below, we set f2(1, 2) � f1(1)f1(2). In the Bogoliubov
ansatz (Section 2.4), we assume that f2(1, 2) may be written in the general
functional form fs(1, 2) � f2[1, 2, f1]. Both these assumptions serve to
close BY1 and produce kinetic equations. The first assumption leads to the
Vlasov equation and the second leads to the Boltzmann equation.

2.1.4 Conservation of Energy from BY1 and BY2

We turn now to the explicit form of BY1 and BY2:

BY1 :
∂f1

∂t
+ p1

m
· ∂f1

∂x1
+ (N − 1)

∂

∂p1
·
∫

G12f2(1, 2) d2 � 0 (1.24)

BY2 :
∂f2

∂t
+ 1

m

(
p1 · ∂

∂x1
+ p2 · ∂

∂x2

)
f2 +G12 ·

(
∂

∂p1
− ∂

∂p2

)
f2

+ (N − 2)

{
∂

∂p1
·
∫

G13f3 d3+ ∂

∂p2
·
∫

G23f3 d3

}
� 0 (1.25)
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We wish to apply these equations to establish conservation of energy for an
isolated collection of N interacting particles.

Equations (1.6.16) relate kinetic energy density EK and potential energy
density E , respectively,to the single and pair distributions F1 and F2 [see
(1.6.14)]. In the present discussion it is more convenient to work with velocities
in place of momenta. Thus we write (for a fluid whose mean macroscopic
velocity is zero)

EK (x, t) � 1

2

∫
mv2F1 dv (1.26)

E�(x, t) � 1

2

∫
�(x, x′)F2 dv dv′ dx′ (1.27)

To obtain BY1 for F1, we multiply (1.24) by N and remove particle labels.
To obtain BY2 for F2, we multiply (1.25) by N (N − 1) and again remove
labels. There results

∂F1

∂t
+ v · ∂

∂x
F1 − 1

m

∂

∂v
·
∫ (

∂

∂x
�

)
F2 dx′ dv′ � 0 (1.28)

∂F2

∂t
+
(

v · ∂
∂x
+ v′ · ∂

∂x′

)
F2 + ∂

∂v
· X+ ∂

∂v′
· Y � 0 (1.29)

where X and Y are implied interaction terms (which contain F3). To find the
equation for EK , we we operate (1.28)with

∫
dv(mv2/2). There results

∂

∂t
EK + ∂

∂x
·
∫

1

2
mv2vF1 dv − 1

2

∫
dvv2 ∂

∂v
·
∫ (

∂

∂x
�

)
F2 dx′ dv′

Now note that

1

2
v2 ∂

∂v
·G � ∂

∂v
·
(
v2

2
G
)
−G · v

Inserting this relation in the preceding equation and dropping the surface terms
gives

∂

∂t
EK + ∂

∂x
·
∫

1

2
mv2vF1 dv +

∫
dv dv′ dx′v ·

(
∂�

∂x

)
F2 � 0 (1.30)

Operating on BY2 as giving by (1.29) with

1

2

∫
dx′ dv dv′�(x, x′)

and dropping the X and Y surface terms, we find

∂E�

∂t
+ 1

2

∫
dv dv′ dx′�(x, x′)

(
v · ∂
∂x
+ v′ · ∂

∂x′

)
F2 � 0 (1.31)

Now note that

�
∂

∂x
F2 � ∂

∂x
(�F2)− F2

∂

∂x
� (1.32a)
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�
∂

∂x′
F2 � ∂

∂x′
(�F2)− F2

∂

∂x′
� (1.32b)

When the first of these relations is substituted into (1.31), the ∂(�F2)/∂x term
remains, as x is not integrated. However, the corresponding term in (1.32b)
yields a surface term, and we obtain

∂

∂t
E� + 1

2

∂

∂x
·
∫
dv dv′ dx′v�F2

− 1

2

∫
dv dv′ dx′F2

(
v · ∂
∂x
�+ v′ · ∂

∂x′
�

)
� 0 (1.33)

Equations (1.31) and (1.33) have the form

∂EK

∂t
+∇ ·QK +

∫
dx′ dv′ dvF2v�F2v · ∂

∂x
� � 0 (1.34a)

∂E�

∂t
+∇ ·Q� − 1

2

∫
dx′ dv′ dvF2

(
v · ∂
∂x
�+ v′ · ∂

∂x
�

)
� 0 (1.34b)

where the flow vectors QK and Q� are as implied. We label the total energies

ĒK (t) �
∫
EK (x, t) dx

(1.35)
Ē�(t) �

∫
E�(x, t) dx

Thus, operating on (1.34a,b) with
∫
dx and adding the resulting equations

gives

d

dt
(ĒK + Ē�) � 1

2

∫
dx dx′ dv dv′F2

(
v · ∂�
∂x
+ v′ · ∂�

∂x′

)
(1.36)

−
∫
dx dx′ dv dv′F2v · ∂�

∂x

Owing to the symmetry relations F2(z, z′) � F2(z′, z), where z ≡ (x, y), and
�(x, x′) � �(|x− x′|) � �(x′, x), we find that all three integrals on the right
side of (1.36) have the same value. Thus we obtain the desired result:

d

dt
(ĒK + Ē�) � 0

(1.37)
Ētotal � ĒK + Ē� � constant

A more precise statement of conservation of energy in classical kinetic
theory may be obtained directly from the dynamic equation (1.1.25). Iden-
tifying the Hamiltonian H (xN, pN ) with the energy of the system, we
find

dH

dt
� [H,H ]+ ∂H

∂t
� 0 (1.38)
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Here we have observed thatH is not an explicit function of the time. The finding
(1.38) is a more exact result than (1.37) in that (1.38) identifies the total precise
energy (1.5) as being constant as opposed to (1.37), which identifies merely
the average of total energy as being constant.

2.2 Correlation Expansions: The Vlasov Limit

2.2.1 Nondimensionalization

In this section we introduce the correlation function representation of dis-
tribution functions. To motivate this representation, it proves valuable to
nondimensionalize BYs as given by (1.20), which, with N ! s, we first
rewrite as (

∂

∂t
− L̂s

)
fs � Îsfs+1 (2.1)

where

Îs ≡ −N
s∑
i�1

∂

∂pi
·
∫
d(s + 1)Gi,s+1 (2.2)

With (1.11), (2.1) is more explicitly written(
∂

∂t
+

s∑
l−1

K̂l −
s∑∑
i<j

Ôij

)
fs � Îsfs+1 (2.3)

where Ôij is the momentum operator (1.7).
The fluid being considered is comprised of N particles, which we now

assume occupies a volume V . This permits us to introduce a characteristic
number density

n0 ≡ N
V

(2.4a)

We further assume that we may assign a mean thermal speed, C, and
corresponding temperature, T , to the fluid, which are related as

mC2 ≡ kBT (2.4b)

where kB is Boltzmann’s constant.
The strength of potential �0 and characteristic scale length r0 are defined

by

Gij � �0

r0
Ḡij (2.5c)

where Ḡij is nondimensional.
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Finally, we renormalize fs so that1

Fs ≡ V sfs (2.6)

For a spatially homogeneous fluid,

f1(x, p) � 1

V
F1(p)

In general, number density, n(x, t), is given by

n(x, t) � N
∫
f1 dp � n0

∫
F1 dp (2.6a)

To convert (2.3) to an equation for Fs , we multiply both sides by V s to obtain(
∂

∂t
+
∑
l

K̂ l −
∑∑
i<j

Ôij

)
Fs � 1

V
ÎsFs+1 (2.7)

The nondimensionalization scheme we introduce is given by the following
relations (barred variables are nondimensional):

x � r0x̄, p � mCp̄
t � r0

C
t̄, Fs � (mC)−3s F̄ s

(2.8)

Note that a number of choices for characteristic length enter this analysis. We
may set r0 equal to the range of interaction or we may set

r0 � n−1/3
0

or we may set

r0 � V 1/3

These choices are noted by the following scheme:

range of interaction

r0 V 1/3 (2.9)

n
−1/3
0

Substituting the relations (2.8) into (2.7) gives(
∂

∂t̄
+
∑
l

ˆ̄Kl −  0

mC2

∑∑
i<j

ˆ̄Oij

)
F̄ s � (nor

3
0 )

(
 0

mC2

)
ˆ̄I sF̄ s+1 (2.10)

The factor r3
0 stems from nondimensionalization of dx, whereas the V −1 factor

in n0 stems from the definition of Fs . It is evident that this equation suggest

1This Fs distribution should not be confused with the s-tuple distribution
introduced in Chapter 1, which was also labeled Fs .
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we identify the parameters

α ≡  0

kBT
, γ −1 ≡ n0r

3
0 (2.11)

Dropping bars over dimensionless variables, (2.10) becomes(
∂

∂t
+

s∑
l�1

K̂l − α
s∑∑
i<j

Ôij

)
Fs � α

γ
ÎsFs+1 (2.12)

Consider the coefficient

α

γ
� n0r

3
0 0

kBT
(2.13)

With the first choice for ro in (2.9), we obtain

N0 ≡ n0r
3
0

which is the number of particles in a range sphere. Inserting this result into
(2.13) gives

α

γ
� N 2

0 0

N0kBT
� 〈E 〉〈Eκ〉 (2.14)

The numerator of this expression represents pair-interaction energy per range
volume, and the denominator represents thermal energy per range volume. We
take this ratio to be a measure of the ratio of average potential to kinetic energy
in the fluid. Note that if N0 is small than few particles in the fluid interact, and
〈E�〉 must likewise be small.

With (2.14), we may term the fluid strongly coupled when α/γ ≥ 1, and
weakly coupled when a/γ � 1. Thus we write

α/γ � 1, strongly coupled
α

γ
(2.15)

α/γ � 1, weakly coupled

A representation that well exploits this partitioning is that of correlation
functions discussed below.

First let us delineate coupling domains of the fluid generated by varying
the magnitudes of α and γ in the coupling constant α/γ . These domains are
shown in Fig 2.3.2

2The ε-ordering diagram appeared previously in R. L. Liboff, Introduction to
the Theory of Kinetic Equations, Wiley, New York, (1969). More recently, it was
employed in an analysis of galaxy correlations: M. A. Guillen and R. L. Liboff,
Mon. Not. Roy. Astr. Soc. 231, 957 (1988), 234, 1119 (1988).
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FIGURE 2.3. Coupling domains in a fluid. In the (∗) boxes, α/γ � 0(1).

2.2.2 Correlation Functions

If particles in a gas are statistically independent, the conditional probability
(see Section 1.6.4)

h
(N )
1 (1|2, . . . , N) � fN (1, . . . , N)

fN−1(2, . . . , N)
� f1(1) (2.16)

This follows since the state of particle 1 is in no way dependent on the state
of the remaining particles in the fluid. For (2.16) to hold for all particles in the
fluid, we must have, in general,

fs(1, 2 . . . , s) �
s∏
i�1

f1(i), 1 ≤ s ≤ N (2.17)

Another way to say that particles in the fluid are statistically independent is to
say that they are uncorrelated. Let us define the correlation function between
two particles, C2(1, 2), according to the relation

f2(1, 2) � f1(1)f1(2)+ C2(1, 2) (2.18)

Thus, whenC2 � 0, particles are uncorrelated and the preceding returns (2.17).
Continuing in this way gives a transformation of distributions:

(f1, f2, f3, . . . , fN ) → (f1, C2, C3, . . . , CN )
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These relations are given by [repeating (2.18)]3

f2(1, 2) � f1(1)f1(2)+ C2(1, 2)

f3(1, 2, 3) � f1(1)f1(2)f1(3)+
∑
P (1,2,3)

f1(1)C2(2, 3)+ C3(1, 2, 3) (2.19)

...

where P (1, 2, 3) denotes permutations of 1, 2, 3.
We may represent these equations with the aid of diagrams. Thus, the

equation for f5, say has the representation

f5 � o o o o o+
∑
P

o o–o–o–o+
∑
P

o–o o–o–o+
∑
P

o o o–o–o

+
∑
P

o–o o o–o+
∑
P

o–o o o o+ o–o–o–o–o (2.20)

where, for example, o–o representsC2 and o o represents f1f1 and P is written
for P (1, 2, 3, 4, 5).

2.2.3 The Vlasov Limit

We wish to consider the limit 0/kBT � 1 with long-range interaction so that
n0r

3
0 ! 1. We may describe this limit by settingα→ εα andγ −1 → (1/ε)γ −1,

where ε is a parameter of smallness (see Fig. 2.3). Note that α/γ is of order
unity. As kBT !  0, we suspect that correlation between particles in the fluid
is small. This condition may be described by attaching an ε factor with each
coupling bar in the corresponding diagram equation. In this manner we find

f2 � f1f1 + εC2

f3 � f1f1f1 + ε
∑
P

f1C2 + ε2C3 (2.21)

Substituting these equations into (2.12) and keeping terms ofO(ε), we obtain
[reverting to FS distributions defined by (2.6)]4(

∂

∂t
+ κ̂1

)
F1 � α

γ
Î1[F1(1)F1(2)+ εC2(1, 2)](
∂

∂t
+ κ̂2 − εαÔ12

)
[F1(1)F1(2)+ εC2(1, 2)]

� α
γ
Î2[F1(1)F1(2)F1(3)+ εF1(1)C2(2, 3)

+ εF1(2)C2(3, 1)+ εF1(3)C2(1, 2)]
... (2.22)

3J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York (1940).
4Here we have assumed that (2.21) is written in nondimensional form, in which

case f̄s � F̄ s .
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where

κ̂s ≡
s∑
i�1

K̂i (2.22a)

Keeping lowest-order terms in (2.22) gives(
∂

∂t
+ κ̂1

)
F1(1) � α

γ
Î1F1(1)F1(2) (2.23a)(

∂

∂t
+ κ̂2

)
F1(1)F2(2) � α

γ
Î2F1(1)F1(2)F1(3) (2.23b)

...(
∂

∂t
+ κ̂s

) s∏
i�1

F1(i) � α
γ
Îs

s+1∏
i�1

F1(i) (2.23c)

...

These equations compromiseN equations for the single unknown F1. For this
sequence to be logically consistent, it follows that these N equations must be
redundant.5 To establish this redundancy for the sequence (2.23), we note the
following two equalities:(

∂

∂t
+ κs

) s∏
i�1

F1(i) �
s∑
l�1

F1(1) . . . F1(l − 1)

× F1(l + 1) . . . F1(s)

(
∂

∂t
+ K̂l

)
F1(l) (2.24)

Îs

s+1∏
i�1

F1(i) �
s∑
l�1

F1(1) . . . F1(l − 1)

× F1(l + 1) . . . F1(s)Î lsF1(l)F1(s + 1)

where we have written

Î ls ≡ −
∂

∂pl
·
∫
d(s + 1)Gi,s+1 (2.25)

Substituting (2.24) into (2.23c) gives
s∑
l�1

F1(1) · · ·F1(l − 1)F1(l + 1) · · ·F1(s)

(
∂

∂t
+ K̂l

)
F1(l)

� −α
γ

2∑
l�1

F1(1) · · ·F1(l − 1)F1(l + 1) · · ·F1(s)Î lsF1(l)F1(s + 1)

5The problem of redundancy in BBKGY expansions was critically examined by
R. L. Liboff and G. E. Perona, J. Math. Phys. 8, 2001 (1967).
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or, equivalently∑∏
F1

[(
∂

∂t
+ K̂l

)
F1(l)− α

γ
ÎsF1(l)F1(s + 1)

]
� 0 (2.26)

With reference to (2.23a), we see that the bracketed term vanishes. Thus, if
Fl(i) satisfies (2.23a), it also satisfies (2.23c), and we may conclude that the
sequence (2.23 is consistent.

2.2.4 The Vlasov Equation: Self-Consistent Solution

We have found that the equation that emerges from the BBKGY sequence
in the limit α � 0(ε), γ � 0(1/ε) is (2.23a), which we now write in fully
dimensional form (deleting the subscript on F1):(
∂

∂t
+ v · ∂

∂x

)
F (x, v, t) � −n0

m

∂

∂v
·
∫
dx′ dv′G(x, x′)F (x, v, t)F (x′, v′, t)

(2.27)
[Here we have recalled the equality F (p) dp � F (v) dv.] Equation (2.27) is
the Vlasov equation. Its physical significance is revealed when cast in terms
of the number density [see (2.6a)],

n(x′, t) � n0

∫
F (x′, v′, t) dv′ (2.28a)

and the mean force field

G(x, t) �
∫
n(x′, t)G(x, x′) dx′ (2.28b)

The integral in (2.27) then becomes

∂

∂v
F1(x, v, t) · n0

∫
F1(x′, v′, t) dv′

∫
G(x, x′) dx′

� ∂

∂v
F1(x, v, t) ·

∫
n(x′, t)G(x, x′) dx′

� ∂

∂v
F1(x, v, t) ·G(x, t) (2.29)

Thus (2.27) may be written(
∂

∂t
+ v · ∂

∂x
+ G
m
· ∂
∂v

)
F (x, v, t) � 0 (2.30)

where G is given by (2.28). The preceding equation indicates the following:
F (x, v, t) develops under a force field that is the instantaneous average of all
two-particle forces in the fluid, as given by (2.28). This force field is sometimes
called a “snapshot” field. As this cumulative force changes slowly, we may
except particle trajectories in a Vlasov fluid to likewise change smoothly. See
Fig 2.4.
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FIGURE 2.4. Snapshot total force in the Vlasov equation gives a smoothly varying
trajectory.

The Vlasov equation (2.30) bears a striking similarity to the one-particle
Liouville equation, which is relevant to a single particle moving in an externally
supported force field. The Hamiltonian for this system is given by

H � p2

2m
+�(x)

where

G̃(x) � − ∂
∂x
�(x)

is the externally supported force field. The Liouville equation

∂F

∂t
+ [F,H ] � 0 (2.31)

for this system returns (2.30) with G replaced by G̃. That is,(
∂

∂t
+ v · ∂

∂x
+ G̃
m
· ∂
∂v

)
F (x, v, t) � 0 (2.30a)
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The solution to both (2.30) and (2.30a) is obtained by solving the
characteristic equations

dt � dx
v
� mdv

G
(2.32)

(where a/b � ax/bx � ay/by � az/bz). These are equivalent to the orbit
equations

v � dx
dt
, G � mdv

dt

which give

m
d2x
dt2

� G(x) � −∂ 
∂x

(2.33)

These equations have the integral

E � m
2

(
dx
dt

)2

+ (x) (2.34)

Thus any function of the form

F � F
[
p2

2m
+ (x)

]
(2.35)

is a solution to the one-particle Liouville equation (2.30a). In this case,  (x)
is a given known function.

Returning to the Vlasov equation, we see that for (2.35) to be a solution to
this equation  (x) must satisfy (2.28):

∂ 

∂x
� −n0

∫
F (x′, v′, t)G(x, x′) dx′ dv′ (2.36)

So in this case knowledge of demands knowledge of the distribution function.
An additional requirement for (2.35) to be a solution to the Vlasov equation is
that any explicit time dependence of  be negligible. Consider, for example,
the force equation (2.33). Multiplying this equation by ẋ gives

mẋ · ẍ + ẋ · ∂
∂x
 � 0 (2.37)

If  �  (x, t), then

d 

dt
� ẋ · ∂

∂x
 + ∂ 

∂t
(2.38)

which does not allow (2.37) to be integrated. However, for

∂ 

∂t
� ẋ · ∂

∂x
 (2.39)

(2.37) returns the integral (2.34).
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FIGURE 2.5. Flow chart illustrating the notion of a self-consistent solution to the
Vlasov equation.

Another important distinction between the Vlasov and one-particle Liouville
equations is that the former is nonlinear. That is, when writing the Vlasov
equation in the form (2.30), we must keep in mind that the force field G is a
functional of the distribution F . Thus we may write

G(x, t) � G[F (x, v, t)]

which exposes the nonlinearity of (2.30).
Let us return to the condition (2.36). This is a statement of self-consistency,

which is demonstrated by the flow chart for the construction of a solution to
the Vlasov equation shown in Fig 2.5.

The Vlasov equation is returned to in Chapter 4 where applications of this
equation are made to a plasma.

2.2.5 Debye Distance and the Vlasov Limit

We have found that the Vlasov equation results in the limit

γ −1 � n0r
3
0 � O(1/ε) (2.40a)

α �  0

kBT
� O(ε) (2.40b)

αγ −1 � O(1) (2.40c)

In a plasma comprised of electrons in a neutralizing, fixed, positive background,
the strength of the interaction potential between electrons is the Coulomb form

 0 � e2

λd
(2.41)

where we have set the range of interaction r0 equal to the Debye distance λd .
For γ −1, we write

γ −1 � 4πn0λ
3
d (2.42)

Note that, in the present case, weak coupling corresponds to the limit
4πn0λ

3
d ! 1. Substituting the latter two relations into (2.40c) and solving
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for λd , we find

4πλ2
d �

kBT

e2n0
(2.43)

This characteristic distance comes into play a number of times in the text.6

2.2.6 Radial Distribution Function

In concluding this section we return to the theory of correlations introduced
in Section 2.2. An important correlation function that often comes into play
in the theory of the equilibrium structure of liquids is the radial distribution
function.7 This is a two-particle spatial correlation function that, for a fluid in
equilibrium, is defined by

f2(1, 2) � f0(p1)f0(p2)g(r) (2.44)

where g(r) is the radial distribution function.
In (2.44), we have labeled

r ≡ |x2 − x1|
and have introduced the Maxwellian distribution8

f0(p) � 1

V (2πm2C2)3/2
exp

(
− p2

2m2C2

)
(2.45)

whereV is the volume occupied by the fluid, and the thermal speedC is defined
by (2.4b). The Maxwellian (2.45 has the normalization∫∫

f0(p) dp dx � 1 (2.46)

The total correlation function h(r) is defined by

h(r) � g(r)− 1 (2.47)

which, with the first to the sequence (2.19), gives the relation

C2(1, 2) � f0(p1)f0(p2)h(r) (2.48)

Thus g(r) is directly related to f2(1, 2), whereas h(r) is directly related to
C2(1, 2). For a fluid with no spatial correlation between molecules, h(r) � 0

6Thus, for example, the Debye distance is encountered again in Section 3.9 in
application of the diagrammatic approach to a plasma and in Chapter 4 in application
of the KBG equation to a plasma. Numerical values of λd as a function of T/n are
given in (4.1.37). Note: With λ2

d andC2/λ2
d taken as constant, (2.40) et seq. is referred

to as the Rosenbluth-Rostoker limit. (See Phys. Fluids, 3, 1, 1960.)
7For further discussion on this topic, see D. L. Goodstein, States of Matter,

Prentice-Hall, Englewood Cliffs, N.J. (1975).
8The derivation of this one-particle equilibrium distribution is given in Section

3.3.
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and g(r) � 1. As two molecules in a fluid that are separated by a distance large
compared to their interaction length may be assumed not to be correlated, we
write

g(∞) � 1 (2.49)

Furthermore, as two molecules cannot occupy the same position in space,
f2(r � 0) � 0, which, with (2.44) gives

g(0) � 0 (2.50)

These latter two statements are standard boundary conditions in studies of the
radial distribution function.

An important property of these correlation functions is their Fourier
transform, the structure factor:

S(k) � 1+ n
∫
h(r)eik·r dr (2.51)

where k is the Fourier transform wave vector and n is the number density of
molecules in the fluid. The function S(k) serves to relate data from scattering
experiments to the correlation functions. For an ideal gas, there is no interaction
between particles, and (2.44) givesg(r) � 1, which, with (2.51), gives the value
S(k) � 1.

Two key relations involving the radial distribution function, which may be
obtained either from the partition function of equilibrium statistical mechanics9

or BY1 (see Problem 3.44), are as follows:

E

nkBT
� 3

2
+ n

2kBT

∫ ∞

0
 (r)g(r)4πr2 dr (2.52)

P

nkBT
� 1− n

6kBT

∫ ∞

0
 ′(r)g(r)4πr2 dr (2.53)

The first of these gives the energy density of the fluid. The second gives the
equation of state of the fluid, whereP is scalar pressure.10 Note that the integral
in (2.52) gives the interaction potential contribution to fluid energy, whereas
the integral in (2.53) gives the interaction potential contribution to pressure.

2.3 Diagrams: Prigogine Analysis

In this section we offer an introduction to a perturbation technique of solution to
the Liouville equation. A diagrammatic representation of interaction integrals

9D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York (1973). See
also T. M. Reed and K. E. Gubbins, Applied Statistical Mechanics. McGraw-Hill,
New York (1973). See also Problem 2.12.

10The notion of scalar pressure, as well as other dynamic variables, is discussed
in Section 3.4.
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occurring in the perturbation expansion is given. It is found possible to associate
the topology of these diagrams with the order of interaction between particles
(that is, two particle, three particle, an so on). Application of this formalism is
made in derivation of the Boltzmann equation and the temporal evolution of a
plasma.

2.3.1 Perturbation Liouville Operator

Let us recall the Liouville equation (1.2):

∂fN

∂t
� L̂NfN (3.1)

where L̂N is given by (1.3).

L̂N � [H, ] (3.2)

The operator L̂N has the explicit representation [see (1.9)]

LN �
N∑
l�1

K̂l +
N∑∑
i<j

Ôij (3.3)

We rewrite this operator in this form

L̂N � L̂0 + δL̂ (3.4)

where L̂0 is the free-particle, kinetic-energy operator and

δL̂ �
N∑∑
i<j

∂

∂xi
 ij ·

[
∂

∂pi
− ∂

∂pj

]
(3.5)

represents the perturbation to L̂0.
Eigenfunctions of L̂0 are given by (see Section 1.5.2)

L̂0ψ(k) � −iω(k)ψ(k)

ψ(k) � L−3N/2 exp
[
i
∑

kl · xl
]
≡ |(k)〉 (3.6)

ω(k) �
∑

kl · vl
where vl � pl/m. Here, as in (1.5.10a), we are writing (k) for the sequence

(k) � (k1, k2, . . . ,kN ) (3.7)

ki � 2π

L
ni (3.7a)

where, with (1.5.14), the components of ni are integers.
We wish to employ the basis functions (3.6) to solve the Liouville equation

(3.1), with L̂N given by the general form (3.3). Following (1.15.16) relevant
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to the free-particle case, we write

fN (1, . . . , N) �
∑
(k)

a(k)(pN, t)ψ(k)(xN )e−iω(k)t (3.8)

Terms in this series may be regrouped so that coefficients in this new series
bear special physical significance.

2.3.2 Generalized Fourier Series

The regrouped series is given by

fN � 1

V N

[
a0(pN, t)+ 1

V̄

N∑
j�1

∑
kj

a1(kj , pN, t)eikj ·xj e−iωj t

+ 1

V̄ 2

∑∑
j<l

∑
kjkl

([1− δkj+kl ]+ δkj+kl )

× a2(kj , kl , pN, t)ei[kj ·xj+kl ·xl ]e−iωjl t + · · ·
]

(3.9)

The coefficients in this series have the property that an(kn, pN, t), for exam-
ple, contains only n nonzero k vectors. Thus the coefficient a2 contains only
two nonvanishing k vectors. The Kronecker symbol

δk � 1, k � 0

δk � 0, k �� 0

Thus the bracketed terms in the second sum in (3.9) contains no contributions
with kj + kl � 0. The volume V̄ ≡ V/(2π )3.

Terms in the second summation of (3.9) with kj +kl � 0 are relevant to the
homogeneous limit. This may be seen as follows. If the system is homogeneous,
then fN is invariant under translation of coordinates, (xl) → (x′l) � (xl + b).
Thus, for a typical term in (3.9), we have∑

(k)

a(k)e
i
∑

kl ·xl �
∑
(k)

a(k)e
i
∑

kl ·xl eib·
∑

kl

This equality is satisfied for all kl and xl , providing
∑

kl � 0 for all (k)
sequences.

2.3.3 Interpretation of al Coefficients

Integration of (3.9) overall xN gives∫
fN dxN �

∫
dxN

V N

[
a0(pN, t)+ 1

V̄

∑
j

∑
kj

a1(kj , pN, t)eikj ·xj e−iωj t + · · ·
]

(3.10)
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The meaning of the double sum in this equation is that for each value of j the
vector kj is summed over all values given by (3.7a).

In the limit of large volume,

1

V̄

∑
k

→
∫
dk (3.11a)

Furthermore, in this same limit

1

(2π )3

∫
eik·x dx � δ(k) (3.11b)

so that the second term in (3.10) gains a δ(k) factor upon spatial integration.
Thus the only terms that enter this sum are those for which kj � 0. But
a1(0, pN, t) � 0 by definition. It follows that

a0(pN, t) �
∫
fN dxN (3.12a)∫

a0(pN, t) dpN � 1 (3.12b)

represents the N -particle momentum distribution.
Let us introduce the momentum integrals of al:

ā1(kj , t) ≡
∫
dpNa1(kj , pN, t)e−iωj t

ā2(kj , kl , t) ≡
∫
dpNa2(kj , kl , pN, t)e−iωjl t (3.13)

...

The number density n1(x) is given by

n1(x) � n1(xl) � N
∫
fN dp

N dx1 dx2 · · · dxl−1 dxl+1 · · · dxN (3.14)

whereas the pair distribution is given by

n2(x, x′) � n2(xs, xn) (3.15)

� N (N − 1)

2

∫
fN dpN dx1 . . . dxs−1 dxs+1 . . . dxn−1 dxn+1 . . . dxN

We turn first to evaluation of n1(x). Integrating (3.9) in accord with (3.14)
gives

n1(xs) � N

V N

∫
dpN

∏
i ��s
dxi

·
[
a0(pN, t)+ 1

V̄

N∑
j�1

∑
kj

a1(kj , pN, t)ei(kj ·xi−ωj t )+ · · ·
]

(3.16)
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In the limit of large volume with (3.11) and (3.12), we see that all terms in
the j -sum except for the j � s term give a1(0, pN, t), which vanishes by
definition.

Each term in the sum over a2(kj , kl , pN, t) contains either a δ(kj ) or δ(kl)
factor, which stem respectively from

∫
dsj or

∫
dkl integrations. It follows

that all terms in this sum vanish since

a2(0, kl) � a2(kj , 0) � 0

again by definition. The same argument applies to all higher-order terms. There
results

n1(x) � N
V

[
1+

∫
ā1(k, t)eik·x dk

]
(3.17)

In the limit of spatial homogeneity, ā1 � 0 and

n1 � N
V

(homogeneous case)

Next we turn to evaluation of n2(x, x′). Integrating (3.9) over

N (N − 1)

2

∫
dpN

∫ ∏
j ��s,n

dxj

gives

n2(xs, xn) � N (N − 1)

2

{
1

V

[
n1(xs, t)
N

+ n1(xn, t)
N

− 1

V

]

+ 1

V 2

[∫ ′
ā2(ks, kn, t)ei[ks ·xs+kn·xn] dks dkn

+
∫
ā2(ks,−ks, t)eiks ·(xs−xn) dks

]}
(3.18)

The prime on the first integral stipulates that the value kj+kl has been deleted.
Returning to (3.18) and passing to the homogeneous limit gives

n2(x, x′) � N (N − 1)

2V 2

[
1+

∫
ā2(k,−k, t)eik·(x−x′) dk

]
(3.19)

The integral term represents the deviation from the state of no two-particle
correlation and is seen to be a function of |x−x′|. In the state of no two-particle
correlation, ā2 � 0 and

n2(x, x′) � N (N − 1)

2V 2
(3.20)

which has the normalization∫∫
n2(x, x′) dx dx′ � N (N − 1)

2
(3.21)

This is the total number of pairs of particles in the system.
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Having obtained the key relations [(3.17), and following] connecting ā1 and
ā2 to the fluid variables n1 and n2, we return to formulation of equations of
motion for the general a(k) coefficients.

2.3.4 Equations of Motion for a(k) Coefficients

Substituting the series (3.9) into the Liouville equation (3.1) gives

∂

∂t

∑
(k′)

a(k′)e
−iω(k′ )t |(k′)〉 � (L̂0 + δL̂)

∑
|(k′)〉a(k′)e

−iω(k′ )t (3.22)

Differentiating the left side and then operating from the left with 〈(k)| and
noting the orthogonality of these eigenstates and the eigenvalue relation (3.6),
we obtain

∂

∂t
a(k) �

∑
(k′)

eiω(k)t〈(k)|δL̂|(k′)〉(eiω(k′ )t a(k′)) (3.23)

The operator δL̂ is given by (3.5). Fourier expanding the interparticle potential
we obtain

 ln � 1

V̄

∑
K

�Ke
iK·(xl−xn) (3.24)

so that

δL̂ � 1

V̄

∑∑
l<n

∑
K

 KiKeiK·(xl−xn) · θ̂ln
(3.25)

θ̂ln ≡ ∂

∂pl
− ∂

∂pn
Inserting this form into the equation of motion (3.23) gives

∂a(k)

∂t
� 1

V̄

∑
(k′)

∑
K

∑∑
l<n

eiω(k)t |〈(k)|eiK·(xl−xn)|(k′)〉 KiK · θ̂ln(a(k′)e
−iω(k′ )t )

(3.26)
Let us evaluate the matrix element

〈(k)|eiK·(xl−xn)|(k′)〉 � 1

V N

∫
dxNe−i

∑
ks ·xs eiK·(xl−xn)ei

∑
k′s ·xs (3.27)

For sufficiently large but finite volume, we introduce the representation∫
L3

dxeik·x � V δ(k) (3.28a)

Note that

lim
V→∞

V̄ δ(k) � (2π )3δ(k) (3.28b)
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We partition terms in the exponential of (3.27) as[∑
j ��l,n

xj · (k′j − kj )

]
+ xl · (k′l − kl +K)+ xn · (k′n − kn −K)

With the representation (3.28a), we obtain

〈(k)|eiK·(xl−xn)|(k′)〉 � δ(K − kl − k′l)δ(k
′
n − kn −K)

N∏
j ��l,n

δ(k′j − kj )

≡ >nlK (3.29)

2.3.5 Selection Rules for Matrix Elements

The preceding finding implies a very important result: nonvanishing matrix
elements occur only for (k), (k′) sequences that satisfy the relations

k′l � kl −K

k′n � kn +K (3.30)

k′j � kj , j �� l, n
We may conclude that in any nonvanishing matrix element the sequence (k′)

is the same as the sequence (k) except for two k′ vectors. Furthermore, these
two vectors satisfy the conservation equation

k′l + k′n � kl + kn (3.31)

Equation (3.26) now has the explicit form

∂a(k)

∂
� 1

V̄

∑
lnK

′
eiω(k)t KiK · θ̂ln(eiω(k′ )t>lnKa (k)) (3.32)

The summation
∑′
lnK is written for∑

lnK

′ ≡
∑∑
l<n

∑
K

∑
(k′)

For the case of weak interactions, we set

 ln→ ε ln

where ε � 1. Equation (3.32) then assumes the form

∂a(k)

∂t
� εĜa(k) � ε

∑
lnK

′〈(k)|δL̂lnK|(k′)〉t a(k′)(t) (3.33)

where we have written

〈(k)|δLlnK|(k′)〉t a(k′) ≡ �κ

V̄
eiω(k)t iK · θ̂ln(eiω(k′ )t>lnKa(k′)) (3.34)
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Note that this matrix element now carries an explicit time dependence.
Substituting the perturbation expansion

a(k) � a(0)
(k) + εa(1)

(k) + ε2a
(2)
(k) (3.35)

into (3.33) and equating coefficients of equal power in ε gives the following
series of coupled equations.

∂a
(0)
(k)

∂t
� 0,

∂a
(1)
(k)

∂t
� Ĝa(0)

(k),
∂a

(2)
(k)

∂t
� Ĝa(1)

(k), . . . (3.36)

These equations are simply integrated to obtain

a
(1)
(k) �

∫ l

0
dt ′Ĝ(t ′)a(0)

(k′)

a
(2)
(k) �

∫ t

0
dt ′

∫ t ′

0
dt ′′G(t ′)⊗ Ĝ(t ′′)a(0)

(k′′) (3.37)

...

Setting t � 0 in these expressions and in (28) indicates that a(0)
(k) is the initial

value of a(k); that is, a(k)(0). The symbol⊗ reminds us that, since Ĝ is a matrix,
intermediate summation must be made in effecting the product Ĝ(t)Ĝ(t ′′).
Thus, the explicit form for a(2)

(k) is given by

a
(2)
(k) �

∫ t

0

∫ t ′

0
dt ′ dt ′′

∑
lnK

′′〈(k)|δL̂lnK|(k′)〉t ′
(∑
ln̄K̄

′′〈(k′)|δL̂ln̄K̄ |(k′′)〉t ′′a(0)
(k′′)

)
(3.38)

We may represent the sum ∑
lnK

′〈(k)|δL̂lnK|(k′)〉t (3.39)

by a diagram as described in the following section.

2.3.6 Properties of Diagrams

As noted above, we may represent the matrix element (3.39) by a diagram.
Due to the section rules (3.30), such diagrams have one of the six forms shown
in Fig. 2.6. These diagrams have the following four basic properties:

1. Each dot or vertex of a diagram represents an interaction in which two
particles with given k values interact with each other and emerge with two
different but conserved k values.

2. Two lines must always enter and emerge from any vertex.
3. If only three lines are connected to a dot as in the vertex • , then one

of the “emerging” k vectors is zero.
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FIGURE 2.6. Six diagrammatic representations of the matrix element (3.39).

4. Since diagrams connect the initial a(0)
(k′) state to the present a(t)

(k′) state, we
may associate the right ket side of any given diagram with an earlier time
than the left bra side. Every vertex is a function of kl , kn, K and times.

As an example of the use of these diagrams, consider that at t � 0 the only
a(k) coefficient that is different from zero is the a1 coefficient. Then in equation
(3.38), for the second-order coefficient a(2)

(k), the initial Fourier coefficient a(0)
(k′)

becomes a(0)
1 and its adjacent matrix element has only two possible diagrams,

shown in Fig. 2.7. Due to the matrix product form |(k′′)〉〈(k′′)| in (3.38), these
two diagrams can only couple to the five terms shown in Fig. 2.8. We thus
obtain five possible contributions to a(2)(t). If we ask for a(2)

1 (t), then only two
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FIGURE 2.7. Diagrams coupling a(2)
(k) to a1(0).

FIGURE 2.8. Coupling diagrams of those in Figure 2.7.

diagrams contribute.

a
(2)
1 (t) �

∫∫
dt ′ dt ′′

{
• • + •✖✕

✗✔
•

}
(3.40)

Summation over (ln), (l̄, n̄) is tacitly assumed. Each diagram in (3.40)
represents a second-order interaction. For example, consider the diagram

�
〈
kl , 0

∣∣∣∣ δL̂
∣∣∣∣kl −K

2
,

kl +K
2

〉
,

〈
kl −K

2
,

kl +K
2

∣∣∣∣ δL̂
∣∣∣∣ kl , 0

〉
t ′′

Consider the example of a homogeneous gas for which fN (1 · · ·N ) is
independent of xN . We may write

fN (pN, t) � a(0)(pN, t)

which is seen to be consistent with (3.12) [setting fN (xN, pN � V −Nf (pN )].
The equation of motion for a0 or equivalently a0 is given by (3.33). Let us
assume that the only a(k) coefficients that are not zero initially are the a0

coefficients. In the expressions (3.37), matrix elements serve to couple the
state 〈0| to the state |0〉. Some fourth-order diagrams that come into play
in this coupling are shown in Fig 2.9. These terms contribute to the a(4)

0 (t)
approximation. The meaning of the first diagram is shown in Fig. 2.10.

The meanings of the four segments of Fig. 2.10 are as follows:

D :

〈
0, 0, 0

∣∣∣∣ δL̂
∣∣∣∣
(

K + k
2

)
,−

(
K + k

2

)
, 0

〉
t1
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FIGURE 2.9. Fourth-order diagrams.

FIGURE 2.10. Interpretation of a diagram.

C :

〈(
K + k

2

)
,−

(
K + k

2

)
, 0

∣∣∣∣ δL̂
∣∣∣∣
(

K + k
2

)
,−K

(
K − k

2

)〉
t2

B :

〈(
K + k

2

)
,−K,

(
K − k

2

) ∣∣∣∣ δL
∣∣∣∣K,−K, 0

〉
t3

A : 〈K,−K, 0|δL|0, 0, 0〉t4
The time integration of this term is∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4

This term is of order ε4. Note that each strip (A, B, C, D) involves the interplay
of three particles. Thus, of the four fourth-order interaction diagrams shown
in Fig. 2.9, only the term•✐••✐••✐• represents a fourth-order interaction that
includes exclusively two-particle interactions.

2.3.7 Long-Time Diagrams: The Boltzmann Equation

If we restrict our discussion to rare gases, we expect that only two-body in-
teractions are pertinent. Thus, in the homogenous, rare-gas limit, we consider
diagrams like

• • • • • • • • •
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Let us consider the second-order approximation to a0. In the stated approxi-
mation, (3.38) becomes

a
(2)
0 (t) �

∫
dt ′

∫
dt ′′•✐• a0(0)

�
∫
dt ′

∫
dt ′′

∑
lnK

〈00|δL̂| −K,K〉t ′ 〈−K,K|δL̂|00〉t ′′a0(0)

�
∫
dt ′

∫
dt ′′

∑
lnK

〈00|δL̂| −K,K〉t ′ 〈00|δL̂| −K,K〉∗t ′′a0(0) (3.41)

Here we have written a complex conjugate equality for matrix elements, which,
we recall, are operators. Thus, for example,

〈00|δL̂lnK| −K,K〉t ′ � �κ

V̄
iK · θ̂lneigin·Kt ′

〈00|δL̂lnK| −K,K〉t ′ � −e
−igin·Kt ′′

V̄
�−κ iK · θ̂ln (3.42)

where, since only two k vectors enter these matrix elements,

ω(k) � K · vl −K · vn � K · gln
Substituting these values into (3.41) gives

a
(2)
0 (t) � 1

V̄ 2

∫∫
dt ′ dt ′′

∑
lnK

|�κ |2(K · θ̂ln)eigln·K(t ′−t ′′)K · θ̂lna0(0) (3.43)

2.3.8 Reduction of Time Integrals

The time integrals in the preceding expressions may be reduced in the following
manner. First note that the time integral in (3.43) is given by

I (t) �
∫ t

0
dt ′

∫ t ′

0
dt ′′eiα(t ′−t ′′) (3.44)

The triangular domain of integration is shown in Fig. 2.11. To evaluate the
integral, we change variables to (τ, T ).

τ � t ′ − t ′′
T � t ′ + t ′′

This transformation carries the Jacobian

J

(
t ′, t ′′

τ, T

)
� 1

2
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FIGURE 2.11. Domain of integration for (3.44).

FIGURE 2.12. New domain of integration for (3.44).

The new domain of integration is shown in Fig 2.12. There results

I (t) � 1

2

∫ t

0
dτ

∫ 2t−τ

τ

dT eiτα �
∫ t

0
dτeiτα(t − τ )

I (t) �
(
t + i ∂

∂α

)∫ t

0
eiταdτ

(3.45)

In the limit t →∞,

I (t) � π
[
tδ(α)+ ∂

∂α
δ(α)

]
� πtδ(α) (3.46)

As volume grows large, we may set the sum over K equal to an integral over
K in accordance with (3.11a). Thus (3.43 becomes

a
(2)
0 (t) � πt

V̄

∑
ln

∫
dK| κ |2(K · θ̂ln)(δ(gln ·K)K · θ̂lna0(0)) (3.47)

Having obtained this explicit form, we conjecture on the form of a0(t) to all
orders in ε. For weak concentrations, we expect the relaxation of the system
to go as exp−(t/tr ), where tr ∼ n−1, the inverse of the number density. So tr
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decreases as n increases. Thus

a0(t) ∼ e−tn �
∑ (−tn)l

l!

This form suggests the following. In the sum (3.35), keep all terms that contain
(tn)l amplitudes, irrespective of order in ε, but discard terms like nm(nt)l . From
the expression (3.47) for a(2)

0 (t), we find the nt dependence (note that this is
not a dimensional statement):

a
(2)
0 (t) ∼ t

L3

∑
ln

∼ tN
2

L3
∼ N (tn)

Note in particular that the integral term cannot contribute any other V , t or N
dependence. In like manner, we find that the density time dependence of the
third-order term

• • •
also goes as Ntn. In this interaction, two particles start with momenta kl �
kn � 0, then gain wave numbers K and −K, respectively, then through a
second interaction gain wave numbers K′,−K, and through a third interaction
reassume the values kl � kn � 0. The diagram is therefore called a two-body
diagram. On the other hand, the three-body diagram

has the density time dependence Ntn2. The fourth-order product two-body
diagram

has time dependence N 2(tn)2. Continuing in this way, we find that only two-
body diagrams must be retained in the low-density limit. It follows that in the
expansion (3.35) of a0(t), terms giving density time dependence which goes
as (tn)l , may be grouped in the following manner (with summations over K,
l, n understood). Note also that explicit time dependence has been extracted
from diagrams.

Long-time limit

a0(t) � a0(0)+ t[ •✐•+•✐••✐•+•✐••✐••✐•+ · · ·]a0(0)

+ t
2

2

[ •✐•+•✐••✐•+ · · ·][ •✐•+•✐••✐•+ · · ·]a0(0)

+ · · · (3.48)
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Let us call

Ŝ ≡•✐•+•✐••✐•+•✐••✐••✐•+ · · · (3.49)

Then the above terms may be collected and rewritten

a0(t) � etŜa0(0) (3.50)

Differentiation gives

∂a0(t)

∂t
� Ŝa0(t) (3.51)

Keeping only the 0(ε) term•✐•gives

∂a0

∂t
�•✐•a0 (3.52)

∂a0(t)

∂t
� π

V̄

∑∑
l<n

∫
dK|�κ |2K · θ̂lnδ(K · gln)K · θ̂lna0

� π

m2V̄

∑∑
l<n

∫
dK|�κ |2K ·

(
∂

∂vl
− ∂

∂vn

)

× δ[K · (vl − vn)]K ·
(
∂

∂vl
− ∂

∂vn

)
a0(t) (3.53)

Note that these terms have the correct dimensions. With V −1 � dK, the
dimensions of the right side of (3.53) may be written(∫

dKK · θ̂�κ
)2

δ(K · g) �
(

1

V

1

L

1

p
VE

)2

t � 1

t

To obtain an equation for the one-particle distribution, we operate on (3.53)
with ∫

dv1 . . . dvr−1 dvr+1 . . . dvN

The contributions from the l, n summations may be listed in a triangle as shown
in Fig. 2.13. All terms except those on the hatched lines are surface terms and
give no contribution. The remaining terms give the summations

r−1∑
l�1

(
∂

∂vl
− ∂

∂vr

)
· · ·

(
∂

∂vl
− ∂

∂vr

)
+

N∑
n�r+1

(
∂

∂vr
− ∂

∂vn

)
· · ·

(
∂

∂vr
− ∂

∂vn

)

where the three dots represent between the explicit θ̂ operators. In the l sum,
the lead ∂/∂vl derivatives give surface terms, as do the lead ∂/∂vn derivatives in
the n sum. (Only the lead derivatives in these sums correspond to divergence.)
So we are left with

r−1∑
l�1

(
− ∂

∂vr

)
· · ·

(
∂

∂vl
− ∂

∂vr

)
+

N∑
l�r+1

(
∂

∂vr

)
· · ·

(
∂

∂vr
− ∂

∂vn

)
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FIGURE 2.13. Triangle for enumerating terms in (3.53).

Changing the dummy variable n to l in the n sum gives

r−1∑
l�1

(
− ∂

∂vr

)
· · ·

(
∂

∂vl
− ∂

∂vr

)
+

N∑
l�r+1

(
∂

∂vr

)
· · ·

(
∂

∂vr
− ∂

∂vl

)

�
N∑
l�1

(
∂

∂vr

)
· · ·

(
∂

∂vr
− ∂

∂vl

)

In this manner we obtain

∂f1(vr )
∂t

� π

m2V̄

∑
l

∫
dvl

∫
dK|�K |2K · ∂

∂vr

(
δ(K · (vl − vn))

×K ·
(
∂

∂vr
− ∂

∂vl

)
f2(vr , vl)

)
(3.54)

where f1 and f2 are now normalized with respect to velocity. The presence of
f2 in the integrand stems from the fact that vr and vl have not been integrated
out. The above equation may be rewritten

∂f (v)

∂t
� π

m2V̄
N

∫
dv′

∫
dK|φK |2K· ∂

∂v

(
δ(K·g)K·

(
∂

∂v
− ∂

∂v′

)
f2(v, v′)

)
(3.55)

With molecular chaos, f2(v, v′) � f1(v)f1(v′), we obtain the Boltzmann equa-
tion. Corrections to this equation may be obtained incorporation third-order
diagrams•✐••✐•. The Boltzmann equation is discussed at length in Chapter 3.
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FIGURE 2.14. Time intervals and equations for a plasma.

2.3.9 Application of Diagrams to Plasmas

A plasma is a collection of ions and electrons maintained in separation by
sufficiently high temperature. There are two fundamental times for a plasma:
The plasma response time, tp and the dielectric time, td .

If an extraneous electron is introduced into the plasma, the response time of
the plasma to this disturbance is ω−1

p , where (in cgs)

ω2
p �

4πne2

m
(3.56)

The parameter ωp is called the plasma frequency. So we write

tp � 1

ωp
(3.57)

A shielding occurs about the foreign particle in what may be termed the
dielectric time,

td � tp
?
� 1

ωp?
(3.58)

Here ? is the plasma parameter:

? � 1

4πnλ3
d

(3.59)

where λd is the Debye distance.11 We note the relation

λ2
dω

2
p � C2 � kBT

m
(3.60)

At high temperatures and low densities, ? � 1, and the plasma is said to
be weakly coupled. At low temperatures and high densities, ? ≥ 1, and the
plasma is said to be strongly coupled.

The relevant kinetic equations that come into play in these intervals are listed
in Fig. 2.14, appropriate to the weakly coupled domain.

So for early times, t < tp, we look for decay behavior like

e−t/tp � e−ωpt �
∑
l

(−ωpt)l
l!

(3.61)

11The Debye distance was encountered previously in Section 2.5.
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FIGURE 2.15. Diagrams contributing to long-range interactions.

The terms correspond to diagrams with (ennt)l dependence.
For problems concerning the relaxation of an inhomogeneous plasma to a

homogeneous plasma, the initial a1(t) coefficient that comes into play is a1(0),
l �� 0. Due to the long-range nature of the unshielded Coulomb potential, many
particles interact and relevant diagrams are of the form shown in Fig 2.15. Sum-
ming such diagrams with proper e2nt dependence gives the Vlasov equation
encountered in Section 2.2.

For longer-time behavior, we look for decay like

e−t/td � e−tωp? �
∑
l

(tωp?)l

l!

ωp? � ωp

nλ3
d

� ω4
p

nλ3
dω

3
p

� ω4
p

nC3
�
(

4πne2

m

)2 1

nC3
∼ e4n (3.62)

Thus, dependence of relevant terms in this interval is (e4nt)l . The kinetic equa-
tion for a homogeneous plasma in this time domain stems from diagrams that
couple the initial interaction • to a final interaction • . Predominance of
“grazing” collisions indicates that k � 0 terms dominate the development of
the plasma. Separation of terms with common (e4nt)l dependence gives the
series:

(3.63)
This is called the ring approximation and leads to the Landau equation.

Equations describing more general long-time behavior stem from summa-
tion of diagrams that carry dependence like (e2n)p(e2t)q . Summation of these
terms leads to the Balescu-Lenard equation. This equation includes a shielding
kernel in its interaction integral.12

12For more extensive discussion of the diagrammatic technique and its applica-
tions, see I. Prigogine, Non Equilibrium Statistical Mechanics, Wiley-Interscience,
New York (1963); and R. Balescu, Statistical Mechanics of Charged Particles,
Wiley-Interscience, New York (1963).



2.4 Bogoliubov Hypothesis 115

All these kinetic equations relevant to a plasma are discussed more fully
in Chapter 4. The Landau equation is derived in Section 4.2.4. The Balescu-
Lenard equation is derived in Section 4.2.5. The plasma parameter and the
notions of strongly versus weakly coupled plasmas are more fully discussed
in Chapter 4. Recall that the concepts of weakly and strongly coupled fluids
were discussed earlier in the present chapter (Section 2.1).

2.4 Bogoliubov Hypothesis

2.4.1 Time and Length Intervals

In this section we turn to the Bogoliubov hypothesis for the equilibration of a
nonequilibrium gas.1314 The hypothesis addresses an enclosed gas and defines
three time intervals, which we label τ1, τ2, and τ3. In the interval τ1, two
molecules are in each others interaction domain. The interval τ2 is the mean-
free-collision times, which is the mean times between collisions. The time τ3 is
the average time taken for a molecule to traverse the container in which the gas
is confined. For a mole sample of a gas confined to a macroscopic container,
we may write

τ1 � τ2 � τ3

We may relate three respective displacements to these three time intervals,
which we labelλ1,λ2, andλ3. The displacementλ1 is the range of interaction,15

λ2 is the mean free path,16 and λ3 is the edge length of the confining container.
Typical values of these parameters are listed in Table 2.1.

2.4.2 The Three Temporal Stages

The Bogoliubov hypothesis addresses the functional dependence of the N -
particle distribution function, fN (1, . . . , N) relevant to three stages in the
temporal development of the gas toward equilibrium. These stages are defined
in Table 2.2.

The hypothesis relevant to the initial stage in well described by the following
example. Consider that initially one of the N molecules in the gas is moving

13N. N. Bogoliubov in Studies in Statistical Mechanics, vol. 1, J. de Boer and G. E.
Uhlenbeck, (eds.), Wiley, New York (1962), See also E. D. G. Cohen in Fundamental
Problems in Statistical Mechanics, E. D. C. Cohen, (ed.), Wiley, New York (1962).

14An extension of the Bogoliubov hypothesis to dense fluids was made by R. L.
Liboff, Phys. Rev. A 31, 1883 (1985); A32, 1909 (1985).

15The range of interaction was introduced previously in Section 2.1, where it was
labeled r0.

16The mean free path is discussed at length in the description of transport
coefficients in Chapter 3, where it is labeled l.
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TABLE 2.1. Bogoliubov length and time intervals for a gas with mean molecular
speed of 300 m/s at standard conditions (container edge length is λ3 � 3 cm)

λ1 λ2 λ3

cm 3× 10−8 3× 10−5 3

τ1 τ2 τ3

sec 10−12 10−9 10−4

TABLE 2.2. Epochs in the Bogoliubov Hypothesis

0 < t < τ1 Initial stage

τ1 < t ≤ τ2 Kinetic stage

τ2 < t Hydrodynamic stage

in free flight (between collisions) at a speed greatly in excess of the mean
speed of the remaining molecules. The N -body distribution function for this
nonequilibrium configuration is given by (1.6.7).17 In the initial interval there
is no collisional exchange between molecules, and the initial nonequilibrium
state experiences no equilibrating force. Thus it is hypothesized that in the
initial stage no less than the full N -body distribution function is required to
describe the state of the gas.

In the kinetic stage, molecules experience collisions and there is a ten-
dency toward equilibration. It is hypothesized that in this interval all s-particle
distributions are functionals of f1(1). That is

fs � fs(1, . . . , s; f1) (4.1)

with explicit time dependence of fs contained entirely in f1. An example of
the functional dependence of (4.1) is given by the case where molecules are
statistically independent. For this case, we write

fs �
s∏
i�1

f1(i) (4.2)

In the hydrodynamic stage, it is hypothesized that all distributions depend
only on the hydrodynamic variables n, u, and T , where n is number density,
u is macroscopic fluid velocity, and T is temperature.18

Thus we have the following description. As the system passes from the initial
nonequilibrium state to the finial equilibrium state, there is a diminishment in

17Note, however, that in (1.6.7) remaining molecules in the gas are at rest. A more
correct distribution would include finite but small speeds of remaining molecules.

18Fluid dynamic variables are defined and more fully discussed in Chapter 3.
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the level of description appropriate to the state of the fluid. In the initial stage,
the full N -body distribution is required to describe the state. In equilibrium,
the far less informative macroscopic variables n, u, and T suffice.

2.4.3 Bogoliubov Distributions

Again we turn to the Fs distribution defined by (2.6):

Fs � V sfs (4.3)

Note that, for a homogeneous fluid, Fs is dependent only on momentum.
Rewriting BYs (1.20) in terms of these distributions gives(

∂

∂t
− L̂s

)
Fs − N − s

V

s∑
i�1

∫
Ôi,s+1Fs+1 d(s + 1) � 0 (4.4)

where Ôij is given by [see (1.7)]

Ôij � −Gij ·
(
∂

∂pi
− ∂

∂pj

)
(4.5)

and we have recalled the steps (1.15) and (1.16).
In the thermodynamic limit,

lim
N→∞
V→∞

(
N − s
V

)
� lim

(
N

V

)
� 1

v
(4.6)

where v, the specific volume (mean volume occupied per particle) is a finite
parameter. In this limit, (4.4) becomes(

∂

∂t
− L̂s

)
Fs − 1

v

s∑
i�1

∫
Ôi,s+1Fs+1 d(s + 1) � 0 (4.7)

2.4.4 Density Expansion

In the kinetic stage, (4.1) is relevant, and we write, equivalently,

Fs � Fs(1, . . . , s;F1) (4.8)

Since the explicit time dependence of Fs is contained entirely in F1, we write

∂Fs

∂t
�
〈
δFs

δF1
,
∂F1

∂t

〉
(4.9)

The bracket notation denotes an inner product over allF1 functions. As a simple
example, again consider the case of statistical independence of molecules. In
this event we write

Fs �
s∏
l�1

F1(l) (4.10a)
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Substituting into (4.9), we obtain

∂Fs

∂t
�
∑
k

∂F1(k)

∂t

∏
l ��k
F1(l) (4.10b)

As noted previously, the Bogoliubov analysis is relevant to a rare gas. With
this motivation, we introduce the expansion

Fs(1, . . . , s;F1) � F 0
s +

1

v
F (1)
s +

1

v2
F (2)
s + · · · (4.11)

Substituting (4.11) into BY1 [obtained from (4.7)], gives

∂F1

∂t
� −p1

m
· ∂F1

∂x1
+ 1

v
Î12

[
F

(0)
2 + 1

v
F

(1)
2 + · · ·

]

≡ A(0) + 1

v
A(1) + · · · (4.12)

Î12 ≡
∫
d2Ô12

which serves to identify the A(s) coefficients. Substituting the preceding two
expansions into the inner product (4.9), gives

∂Fs

∂t
�
〈
δF (0)

s

δF1
, A(0)

〉
+ 1

v

{〈
δF (1)

s

δF1
, A(0)

〉
+
〈
δF (0)

s

δF1
, A(0)

〉}
+ · · · (4.13)

This expansion may be written in the alternative operational form

∂Fs

∂t
� D̂(0)F (0)

s +
1

v

[
D̂(0)F (1)

s + D̂(1)F (0)
s

]
+ · · · (4.14)

where the D(s) operators are as implied.
Now we return to (4.7) and, inserting the expansion (4.11), obtain

∂Fs

∂t
� L̂s

[
F (0)
s +

1

v
F (1)
s + · · ·

]
+ 1

v

s∑
i�1

Îi,s+1

[
F

(0)
s+1 +

1

v
F

(1)
s+1 + · · ·

]
(4.15)

with this equation at hand, we note that, together with (4.14) [which stems
from (4.19) and BY1], it comprises two equations for ∂Fs/∂t . Setting

∂Fs

∂t
(4.14) � ∂Fs

∂t
(4.15) (4.16)

and equating terms of equal power in 1/v gives the sequence

D̂(0)F (0)
s � L̂sF (0)

s (4.17a)

D̂(0)F (1)
s + D̂(1)F (0)

s � L̂sF (1)
s +

s∑
i�1

Îi,s+1F
(0)
s+1 d(s + 1) (4.17b)

...
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n∑
k�0

D̂(k)F (n−k)
s � L̂sF (n)

s +
s∑
i�1

Îi,s+1F
(n−1)
s+1 (4.17c)

...

Equations (4.17) are self-contained functional equations that, in principle,
determine the sequence {F (n)

s } in the expansion (4.11). A key element of this
analysis, as will be found below, concerns the operator L̂s . We recall that this
operator, as given by (1.11), pertains to a collection of s particles that interact
with each other but are otherwise independent of the remaining aggregate.

We will not apply the sequence (4.17) to find a closed kinetic equation for
F1 in the low-density limit valid to order v−1.

2.4.5 Construction of F (0)
2

Our program for obtaining the said kinetic equation is as follows. ToO( 1
v
), the

relation (4.12) becomes

∂F1

∂t
+ p1

m
· ∂F1

∂x1
� 1

v

∫
d2Ô12F

(0)
2 (4.18)

Thus, if we obtain F (0)
2 (F1), a closed kinetic equation for F1 is established. To

these ends, we recall (4.17a) and with s � 2 write

D̂(0)F
(0)
2 � L̂2F

(0)
2 (4.19)

We must solve this equation for F (0)
2 (F1) subject to an appropriate boundary

condition. We take this to be the condition that, when carried sufficiently far
back in time, particles in a given aggregate are uncorrelated.

The Liouville operator, L̂N , was introduced in (3.1). For an isolated system
of s we may write

∂Fs

∂t
� [Hs, Fs] ≡ L̂sFs (3.2a)

whose solution is given by

Fs(t) � etL̂sFs(0) ≡ >̂(s)
−tFs(0) (4.20)

We have found previously in Section 1.5.3 that exp tL̂s propagates particle
phase variables back in time19 through the interval t to values determined by
the Hamiltonian for the s-particle system. So we label the operator >̂(s)

−t . Here
are some properties of this operator:

>̂0 � 1 (4.21a)

19With reference to Section 1.5.3, we note that ?̂s � iL̂s . Recall also that L̂s
operates on the phase variables of Fs .
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>̂−t1>̂−t2 � >̂−(t1+t2) (4.21b)

∂>̂−t
∂t

� L̂>̂−t � >̂−tL̂ (4.21c)

Let us employ the >̂t operator to express the boundary condition on Fs
described above:

lim
t→∞

>̂
(s)
−tFs(1, . . . , s;F1) � lim

t→∞
>̂

(s)
−t

s∏
k�1

F1(k) (4.22)

Since this boundary condition holds for all F1(k), it also holds for F ′1 �
limt→∞ >̂

(1)
t F1(k). Substituting this value into (4.22) gives

lim
t→∞

>̂
(s)
−tFs

(
1, . . . , s; >̂(1)

t F1

)
� lim
t→∞

>̂
(s)
−t

s∏
k�1

>̂(1)
t F1(k) (4.23)

As >̂(1)
t relates to a one-particle system, it operates on free particle phase

variables. Thus

RHS (4.23) � lim
t→∞

>̂
(s)
−t

s∏
k�1

F1

(
xk + pk

m
t, pk

)

� lim
t→∞

s∏
k�1

F1

[
>̂

(s)
−t
(

xk + pk
m
t
)
, >̂

(s)
−tpk

]

�
s∏
k�1

F1(x(s)
k , p

(s)
k ) (4.24)

where x(s)
k and p(s)

k are phase values of the kth particle traced back in time to
t � −∞, under the interaction of s particles from respective starting values
xk + (pk/m)t and pk.

With these expressions at hand, we return to (4.19) and with the identification
of (4.13), 4.14 write

D̂(0)F (0)
s (1, . . . , s;F1) �

〈
δF (0)

s

δF1
, A(0)(F1)

〉
�
〈
δF (0)

s

δF1
,
(
L̂1F1

)〉
(4.25)

A tractable representation of the functional derivative in the preceding equation
is obtained as follows. Again we note that since (4.25) is true for all F1 it is
also true for >̂(1)

t F1. This permits us to write

D̂(0)F (0)
s

[
1, . . . , s; >̂(1)

−tF1

]
�
〈

δF (0)
s

δ
[
>̂

(1)
−1F1

] , [L̂1>̂
(1)
−1F1

]〉
(4.26)
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With the property (4.21c), the preceding may be rewritten

D̂(0)F (0)
s �

〈
δF (0)

s

δ
[
>̂

(1)
−tF1

] , ∂
[
>̂

(1)
−tF1

]
∂t

〉
(4.27)

which gives the desired representation

D̂(0)F (0)
s

[
1, . . . , s; >̂(1)

−tF1

]
� ∂

∂t
F (0)
s

[
1, . . . , s; >̂(1)

−tF1

]
(4.28)

Substituting this relation into (4.17a) gives

∂

∂t
F (0)
s

[
1, . . . , s; >̂(1)

−tF1

]
� L̂sF (0)

s

[
1, . . . , s; >̂(1)

−1F1

]
(4.29)

With (4.20) it is evident that the solution to (4.29) is given by

F (0)
s

[
1, . . . , s; >̂(1)

−tF1

]
� >(s)

−tF
(0)
s [1, . . . , s;F1] (4.30)

Equivalently, we may write

F (0)
s [1, . . . , s;F1] � >(s)

−1F
(0)
s

[
1, . . . , s; >̂(1)

t F1

]
As this solution is valid for all t intervals, the limiting form

F (0)
s [1, . . . , s;F1] � lim

t→∞
>̂−1F

(0)
s

[
1, . . . , s; >̂(1)

t F1

]
(4.31)

is likewise a solution. Incorporating our previously stated boundary-condition
relations (4.23) and (4.24) gives the final desired solution:

F (0)
s (1, . . . , s;F1) �

s∏
k�1

F1

[
x(s)
k , p

(s)
k

]
(4.32)

Thus, the lowest-order solution F (0)
s in the Bogoliubov analysis is given by a

product of one-particle distributions with phase variables (x(s), p(s)) displaced
back in time and coupled through the subspace s-particle Hamiltonian.

2.4.6 Derivation of the Boltzmann Equation

The final step in our program for obtaining a closed kinetic equation is to obtain
a consistent representation for the L̂2 operator in (4.19).

To these ends, with (1.11) we write

L̂2 � −κ̂2Ô12 (4.33)

where, we recall,

κ̂2 � p1

m
· ∂
∂x1

+ p2

m
· ∂
∂x2
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and Ô12 is given by (4.5). With (4.33) we write

Ô12F
(0)
2 � κ̂2F

(0)
2 + L̂2F

(0)
2 (4.34)

We now find separate expressions for the two terms on the right of (4.34).
With these expressions at hand, we return to (4.18) to obtain the desired kinetic
equation. We start with L̂2F

(0)
2 .

Returning to (4.19) and employing (4.13) gives

L̂2F
(0)
2 � D̂(0)F

(0)
2 �

〈
δF

(0)
2

δF1
, A(0)

〉
(4.35)

where with (4.12) we write

A(0) � − p
m
· ∂F1(x, p)

∂x
(4.36)

Employing the solution for F (0)
2 given by (4.32) in the inner product in (4.35)

gives

L̂2F
(0)
2 �− p(2)

1

m
F1

[
x(2)

2 , p
(2)
2

]
· ∂

∂x(2)
1

F1

[
x(2)

1 , p
(2)
1

]

− p(2)
2

m
F1

[
x(2)

1 , p
(2)
1

]
· ∂

∂x(2)
2

F1

[
x(2)

2 , p
(2)
2

]
(4.37)

We wish now to find an alternative expression for the operator κ̂2. Introducing
the transformation of variables (x1, x2, p1, p2) → (r, x1, g, p1), where

r � x2 − x1

g � p2 − p1

m
(4.38)

permits κ̂2 to be written

κ̂2 � g · ∂
∂r
+ p1

m
· ∂
∂x1

≡ K̂B + K̂1 (4.39)

The subscript B on the operator K̂B � g · ∂/∂r denotes Boltzmann.
Inserting this expression into (4.34) and substituting the resulting form into

(4.18) gives

∂F1

∂t
+ p1

m
· ∂F1

∂x1
� 1

v

∫
d2K̂BF

(0)
2 + 1

v

∫ (
L̂2 − K̂1

)
F

(0)
2 d2 (4.40)

If F (0)
2 is homogeneous (that is, independent of x1 and x2) over the interaction

domain, the second integral on the right side of (4.40) vanishes and the collision
integral reduces to∫

d2K̂BF
(0)
2 �

∫
dx2 dp2g · ∂

∂r

[
F1

(
p2

1

)
F1

(
p(2)

2

)]
(4.41)
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FIGURE 2.16. Asymptotic z values in the Bogoliubov derivation.

where g is the relative velocity defined in (4.38). The spatial integral in (4.41)
may be evaluated as follows. We work in cylindrical coordinates with the
cylinder axis parallel to g. For the projection of r onto this axis, we have

z ≡ g · r
g

(4.42a)

The cylinder radius b and azimuthal angle φ complete the description, and the
spatial volume in (4.41) becomes

dx2 � dr � b dφ db dz
(4.42b)

g · ∂
∂r
� g ∂

∂z

Integrating the right side of (4.41) over z gives∫ ∞

−∞
dz
d

dz

[
F1

(
p(2)

1

)
F1

(
p

(2)
2

)]
� F1

(
p(2)

1

)
F1

(
p

(2)
2

)
|+∞−∞ (4.43)

The value z � +∞ corresponds to the domain after interaction (see Fig 2.16).
If p1 and p2 are traced back to the interval prior to collision, they assume values
that give p1 and p2 after collision. Let us label these values of momenta p′1
and p′2. The value z � −∞ corresponds to the domain prior to collision. What
values do p1 and p2 attain if traced back to the infinite past from this domain?
As particles are assumed not to be in each other’s interaction domain prior to
collision they move as free particles and the answer is p1, p2. Thus we write

F1

(
p(2)

1

)
F1

(
p(2)

2

) ∣∣∣+∞
−∞
� F1

(
p′1
)
F1

(
p′2
)− F1(p1)F1(p2) (4.44)

Substituting these values into (4.41) and then into (4.39) (with the L̂2 − K̂ ′2
integral neglected and dp2 � mdg) gives the standard form of the Boltzmann
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equation:

∂F1

∂t
+ p1

m
· ∂F1

∂x1
� 2π

v

∫
dp2

∫
b dbg

[
F1(p′1)F1(p′2)− F1(p1)F1(p2)

]
(4.45)

This equation is in a more canonical form than the previously obtained Fourier-
structured equation (3.55). Again it is noted that a more direct derivation of the
Boltzmann equation together with a full discussion of collision terms is given
in Chapter 3.

As with the Prigogine technique, the Bogoliubov analysis also provides a
recipe for generating corrections to the Boltzmann equation to higher density
configurations.20

Bogoliubov’s hypothesis relevant to the hydrodynamic stage finds strong
corroboration in discussion of the Boltzmann H-theorem in Section 2.5. Here
it is found that the one-particle distribution of a fluid in local equilibrium is
a functional of n, u, and T , as stipulated by the Bogoliubov hypothesis. This
important distribution is called the local Maxwellian and is discussed in detail
in Section 3.3.10.

2.5 Klimontovich Picture

In this section we turn to an alternative description of kinetic theory formulated
by Klimontovich.21 In this formalism, phase densities are introduced, moments
of which are found to be related to multiparticle distribution functions intro-
duced earlier. Moments of deviations from the mean of these phase densities
are similarly found to be related to previously encountered correlation func-
tions. Applying these algorithms to an equation of motion for the first moment
of the phase densities is found the first equation of the hierarchy (BY1).

2.5.1 Phase Densities

The Klimontovich phase density for a system comprised ofN particles is given
by the following delta-function expression:

N (z, {zi}) �
N∑
i�1

δ(z− zi) (5.1)

where

zi ≡ [xi(t), pi(t)] (5.2a)

20See, for example, E. D. G. Cohen, Acta Physica Austriaca, Suppl. X, 157 (1973);
J. R. Dorfman, Physica 106A , 77 (1981).

21Yu L. Klimontovich, Statistical Theory of Non-Equilibrium Processes in a
Plasma, MIT Press, Cambridge, Mass. (1967).
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represents the phase point of the ith particle and

δ(z− zi) ≡ δ(x − xi)δ(p− pi) (5.2b)

The phase variable z � (x, p) is a point in six-dimensional (for point particles)
µ-space.

The normalization of N (z, {zi}) (dropping the {zi} notation) is given by∫
N (z) dz �

N∑
i�1

∫
δ(z− zi) dz � N (5.3)

Integrating over an infinitesimally small domain,>z, of µ-space and recalling
the mean-value theorem gives

N (z)>z � >N (5.4)

where >N is the number of particles in the infinitesimal phase volume�z.

2.5.2 Phase Density Averages

The average of N (z) is given by the rule (1.6.8), and we write22

N (z) �
∫
dz1 · · · dzNfN (z1, . . . , zN )

N∑
i�1

δ(z− zi) (5.5)

�
∫
dz2 dz3 · · · fN (z, z2, . . .)+

∫
dz1 dz3 · · · fN (z1, z, z3, . . .)+ · · ·

Collecting terms gives

N (z) � Nf1(z) (5.6)

To obtain a parallel relation for the second moment,23 N (z)N (z′), we first
effect a division of double-sum delta functions as follows:

N∑
i�1

N∑
j�1

δ(z− zi)δ(z′ − zj )

�
∑
i

∑
j

i ��j

δ(z− zi)δ(z′ − zj )+ δi,j
∑
i

δ(z− zi)δ(z′ − z) (5.7)

Again, with (1.6.8) we write

N (z)N (z′) �
∫
dz1 · · · dzNfN (z1, . . . , zN )

×
[∑∑

i ��j
δ(z− zi)δ(z′ − zj )+ δi,j

∑
δ(z− zi)δ(z′ − z)

]

22Time dependence of distributions is tacitly assumed.
23That is, moments with respect to the N -particle distribution.
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� N (N − 1)
∫
dzi dzjf2(zi , zj )δ(z− zi)δ(z′ − zj )

+Nδ(z− z′)
∫
dzif1(zi)δ(z− zi) (5.8)

In the last equality, zi and zj represent two arbitrary terms in the summations.
Integrating gives the desired result:

N (z)N (z′) � N (N − 1)f2(z, z′)+Nδ(z− z′)f1(z) (5.9)

Continuing in this manner, for the third moment of N (z) we find

N (z)N (z′)N (z′′)

� 3!

(
N

3

)
f3(z, z′, z′′)+ 2!

(
N

2

)
[δ(z− z′)f2(z, z′′) (5.10)

+ δ(z−z′′)f2(z, z′)+ δ(z′−z′′)f2(z, z′′)]+Nδ(z− z′)δ(z′ − z′′)f1(z)

Equations (5.6), (5.9), and (5.10) may be concisely written in terms of the
s-tuple distributions (1.6.14). There results

N (z) � F1(z) (5.6a)

N zN (z′) � F2(z, z′)+ δ(z− z′)F1(z) (5.9a)

N zN (z′)N (z′′) � F2(z, z′, z′′)+ δ(z− z′)F2(z, z′′)+ δ(z− z′′)F2(z, z′)
+ δ(z′ − z′′)F2(z, z′′)+ δ(z− z′)δ(z′ − z′′)F1(z) (5.10a)

Continuing in this way, we obtain a mapping between the moments of N (z)
and the s-particle distribution functions.

2.5.3 Relation to Correlation Functions

Let us introduce the deviation of the phase density N (z) from its mean, which
we label

δN (z) � N (z)−N (z)

With δN (z) � 0, we obtain

N (z)N (z′) � N (z)N (z′)+ δN (z)δN (z′) (5.11)

In the limit N ! 1, (5.6) and (5.9) give

N (z) � Nf1(z)

N (z)N (z′) � N2f2(z, z′)+Nδ(z− z′)f1(z) (5.12)

Recalling the first equation in the sequence (2.19), which defines the corre-
lation functionC2(1, 2) (written in terms of the z, z′ variables), and comparing
with (5.11) and (5.12), we obtain

δN (z)δN (z′) � N2C2(z, z′)+Nδ(z− z′)f1(z) (5.13)
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In similar manner, equations may be obtained connecting the higher-order
correlation functions with higher-order mean products of deviation from the
mean of the phase functions.

2.5.4 Equation of Motion

Finally, we turn to an equation of motion for the phase density (5.1). With
arguments leading to the Liouville equation (1.4.7) taken to be appropriate to
N (z) in µ-space, we obtain

∂N (z)

∂t
+ v · ∂N (z)

∂x
+ ṗ · ∂N (z)

∂p
� 0

(5.14)

ṗ �
∫

N (z′)G(x, x′) dz′

The two-particle force G(x, x′) is assumed to be of the symmetric form

G(x, x′) � G(|x − x′|) (5.14a)

Combining the latter two equations, we obtain

∂N (z)

∂t
+ v · ∂N (z)

∂x
+ ∂

∂p
·
∫

G(x, x′)N (z)N (z′) dz′ � 0 (5.15)

Taking the average of this equation gives

∂N (z)

∂t
+ v · ∂N (z)

∂x
+ ∂

∂p
·
∫

G(x, x′)N (z)N (z′) dz′ � 0 (5.16)

With (5.6) and (5.9), (5.16) gives (in the limit N ! 1)

∂f1(z)

∂t
+ v · f1(z)

∂x
+N ∂

∂p
·
∫

G(x, x′)f2(z, z′) dz′ � 0 (5.17)

Here we have dropped the delta-function term in the integral owing to assumed
symmetry (5.14a) of the interaction force (see Problem 2.8. Comparing (5.17)
with the first of the hierarchy (1.24), BY1, reveals them to be the same.

2.6 Grad’s Analysis24

2.6.1 Liouville Equation Revisited

To this point we have encountered two derivations of the Boltzmann equation
stemming from the BBKGY hierarchy. In the present section, Grad’s derivation

24H. Grad, Hand. d. Physik, vol. 12, Springer, Berlin (1958).
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FIGURE 2.17. Configuration domain in Grad’s derivation of the Boltzmann equation:
(a) domain D; (b) domain D2; (c) domain Dr .

is described. The starting point is the Liouville equation written in the form

∂fN

∂t
+

N∑ ∂

∂xi
· (vifN )+ 1

m

N∑
Gi · ∂fN

∂vi
� 0 (6.1)

The following formulas are needed in the derivation.∫
|y−x|>�

∂

∂y
· A(x, y) dy �

∫
|y−x|>�

div A dy � −
�

|y−x|��
A · dS (6.2a)

∂

∂x
·
∫
|y−x|>�

A(x, y) dy �
∫
|y−x|>�

∂

∂x
· A dy−

�

|y−x|��
A · dS (6.2b)

2.6.2 Truncated Distributions

The derivation is further based on the introduction of the truncated distribution
f�1 (z1), where z1 ≡ (x1, v1). This function is the probability of finding no
molecules within a distance � of particle 1, with particle 1 in the state z. To
obtain the equation f�1 satisfies, we integrate the Liouville equation over the
domainD. This domain contains all states of particles (2, . . . , N) in which no
particle is closer than� to particle 1 (see Fig. 2.17). There results∫

D

d2 . . . dN

{
∂fN

∂t
+

N∑ ∂

∂xi
· (vifN )+ 1

m

N∑
Gi · ∂fN

∂vi

}
� 0 (6.3)

f�1 �
∫
D

fN d2 . . . dN (6.3a)

D � {|x1 − x2| >�; |x1 − x3| >�, . . . , |x1 − xN | >�}
If Dr denotes the domain |x1 − xr | >�, then we may write

D � D2 ×D3 × · · · ×DN (6.4)
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From these equations we obtain

∂f1

∂t
+

N∑∫
D

{
∂

∂xi
· (vifN )+ 1

m

∂

∂vi
·GifN

}
d2 · · · dN � 0 (6.5)

Let Si be the sphere |xi − x1| ��. Now consider the first term in the sum
N∑
i�1

∂

∂xi
· vifN (6.6)

whose integral gives∫
D

∂

∂x1
· (v1fN ) d2 . . . dN � ∂

∂x1
· (ξ1f

�
1 )+

N∑
i�2

∫�
Si

f�2 (1, i)vi · dS dvi

(6.7)
Here we have employed (6.2b), identifying the integral on the left of (6.7 with
the first term on the right of (6.2b). The remaining terms in the sum (6.6 may
be similarly integrated to obtain [with (6.2a)]

N∑
i�2

∫
D

∂

∂xi
· (vifN ) d2 . . . dN � −

N∑
i�2

∫�
Si

f�2 (1, i)vi · dS dvi (6.8)

In the force term in (6.5), all save the ∂/∂v1 term reduce to surface integrals
that vanish. The relevant factor in the remaining term is integrated to obtain∫

D

G1fN d2 . . . dN �
N∑
i�2

∫
D

G1i(x1, xi)fN d2 . . . dN

� (N − 1)
∫
D2

G12(x1, x2)f2(1, 2) d2 (6.9)

The domain D2 contains all states of particles 1 and 2 in which they are not
closer than the distance� (that is, |x2− x1| >�). The two-particle truncated
distribution f�2 is defined through the integral

f�2 (1, 2) �
∫
D′
fN (1, . . . , N) d3 . . . dN

D′ � D3 ×D4 × · · · ×DN (6.10)

The domainD′ contains all states of molecules (3, . . . , N) in which no particle
is closer than� to particle 1.

2.6.3 Grad’s First and Second Equations

Combining (6.5) and (6.9) gives Grad’s first equation:

∂f�1

∂t
+ v1 · ∂f

�
1

∂x1
+ (N − 1)

∫�
S2

f�2 dS · (v1 − v2) dv2
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FIGURE 2.18. The S2 sphere in Grad’s derivation of the Boltzmann equation.

+N − 1

m

∂

∂v1
·
∫
D2

G12f
�

2 d2 � 0 (6.11)

In obtaining this form, the surface integrals on the right side of (6.7) and
(6.8) were recognized to be N − 1 identical terms. This identity is made for
much the same reasons as were employed in obtaining theN−s identical terms
in BBKGY sequence (1.20). The domainD2 in (6.11) includes |x2−x1| >�,
while the surface integral in this same equation is over the surface |x2− x1| �
�. Suppose that G12 � 0 for |x2 − x1| > � (such as for rigid spheres of
diameter�). We then obtain Grad’s second equation (see Problem 3.51).

∂f�1

∂t
+ v1 · ∂f

�
1

∂x1
� −(N − 1)

∫�
S2

f�2 dS · (v1 − v2) dv2 (6.12)

The left side is the total time derivative of the function f�1 . The surface integral
indicates that the rate at which a set of particles in a given phase element
changes is due only to the loss and gain of a pair of particles as they enter and
leave each other’s sphere of influence. Here we are interpreting � to be the
range of interaction, previously labeled r0 in Section 2.2.

2.6.4 The Boltzmann Equation

Grad’s second equation is a precursor to the Boltzmann equation. To establish
this property, we consider the sphere S2 shown in Fig. 2.18. The points on S2

are mapped onto the meridian disk by simple projection. Points on the disk
have the radial coordinate (impact parameter) s and azimuth ϕ. To make the
mapping one-to-one, the two hemispheres are distinguished according to

S+2 : g · dS > 0 (after collision)

S−2 : g · dS < 0 (before collision)



2.6 Grad’s Analysis 131

The relative velocity g is given by

g � v2 − v1 (6.13)

For fixed g,

S2 � S+2 + S−2
The point on S+2 that projects onto (s, ϕ) is called x+2 (s, ϕ), and the point on S−2
that projects onto this point is called x−2 (s, ϕ). There results (see Problem 2.16)

(v1 − v2) · dS � −gs ds dϕ on S+2
(v1 − v2) · dS � +gs ds dϕ on S−2

(6.14)

If 2+ denotes (v2, x+2 ) and 2− denotes (v2, x−2 ), then, in the previously described
coordinates, (6.12) appears as

∂f�1

∂t
+ v1 · ∂f

�
1

∂x1
� −(N − 1)

{∫
S+2

+
∫
S−2

}
(6.15)

� (N − 1)
∫

[(f�2 (1, 2+)− f�2 (1, 2−)] gs ds dϕ dv2

At this point the following constraints are imposed:

1. Replace the arguments in f�2 (1, 2+t) by the values they must be at the
start of a binary collision (say 1̄, 2̄, t̄) in order that they have the values
(1, 2+) at the time t .

2. Set

f�2 (1, 2−) � f�1 (1)f�1 (2−)

f�2 (1̄, 2̄) � f >1 (1̄)f�1 (2̄)

which is the assumption of molecular chaos.
3. In the four functions f�1 (1, t), f�1 (2−, t), f�1 (1̄, t̄),and f�1 (2̄, t̄),replace

x̄2, x̄1, x−2 by x1 and t̄ by t .

Inserting these changes into (6.15) and neglecting one compared to N gives
the Boltzmann equation (recall F1 � Nf1):

∂F1

∂t
+ v1 · ∂F1

∂x1
�
∫

[F1(v̄1)F1(v̄2)− F1(v1)F1(v2)] gs ds dϕ dv2 (6.16)

This completes the Grad derivation of the Boltzmann equation. As noted
previously, the Boltzmann equation is discussed in greater detail in Chapter 3.

Note in particular that as (6.12) is a precursor to the Boltzmann equation, the
neglected force integral in Grad’s first equation (6.11) is a measure of the error
associated with the Boltzmann equation. However, we may easily envision
a perturbative technique of solution to Grad’s first equation (6.11) in which
Grad’s second equation (6.12) [and resulting Boltzmann equation (6.16)] is
the lead term. Thus, all three techniques as given by Prigogine, Bogoliubov,



132 2. Analyses of the Liouville Equation

and Grad offer a means of obtaining higher-order corrections to the Boltzmann
equation appropriate to denser fluids.

Problems

2.1. Establish the following antinormalization properties for the correlation
functions Cs given by (2.21).25∫

Cs(1, . . . , s) d1 �
∫
Cs(1, . . . , s) d2 � · · · �

∫
Cs(1, . . . , s) ds � 0

2.2. (a) Write down BY3. Define terms.
(b) Integrate BY3 to obtain BY2.

2.3. Write down the explicit form of the Liouville equation for a two-component
gas that contains N/2 molecules of mass m and N/2 molecules of mass M .
The interparticle conservative forces are labeled Gm, GM , and GI relevant to
m−m,M −M and m−M interactions, respectively.

2.4. A dumbbell molecule comprised of atoms with respective masses m1 and m2

that is in a uniform gravity field has the Lagrangian

L � µ
2

(a2θ̇ 2 + a2θ̇ 2 sin2
θ )+ k

2
ξ 2 + M

2
(Ẋ2 + Ẏ 2 + Ż2)−MgZ

The center of mass of the molecule isX, Y ,Z, and ξ is the displacement from
equilibrium separation of the two atoms.

(a) Obtain expressions for the canonical momenta pθ , pφ , pξ , pX, pY , and
pZ in terms of generalized velocities.

(b) What is the Hamiltonian of the molecule?
(c) A gas of N noninteracting identical molecules of this type occupy a

cubical volume V � L3. What is the one-particle Liouville equation for
f1, the one-particle probability density of the gas?

(d) Let the molecules interact through the potential V (Rij ), where Rij is the
intermolecular center-of-mass separation. What is the explicit form of the
Liouville equation for the gas? Leave triple sums intact.

2.5. Consider a system that containsN particles in equilibrium whose Hamiltonian
is given by

H (xN, pN ) � K(pN )+�(xN )

Kinetic and potential energy terms have been written asK and�, respectively.
Show that if the distribution function is of the product form

fN (xN, pN ) � X(xN )P (pN )

25For further discussion, see R. L. Liboff, Phys. Fluids 8, 1236 (1965); 9, 419
(1966). See also Problem 2.23.
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FIGURE 2.19. Prigogine diagram from Problem 2.6.

where

P (pN ) �
N∑
i�1

gi(p
2
i )

then the Liouville equation implies the canonical distribution

fc(xN, pN ) � A exp[−βH (xN, pN )]

where A and β are constants.26

2.6. Consider the diagram in the Prigogine analysis of the Liouville equation shown
in Fig. 2.19.

(a) What is the order of this diagram?
(b) How many particles come into play in this diagram?
(c) Calling the perturbation Liouville operator δL̂, write down the product

matrix element (in Dirac notation) that this diagram represents.
(d) What is the integration in time that accompanies this diagram (list only

differentials and limits of integration)?

2.7. Consider a system whose ensemble fluid occupies a simply connected domain
R of �-space. A domain R is simply connected if any two points in R may
be connected by a path contained entirely in R. Show that in the motion of
the system R remains simply connected. That is, R does not separate into
disconnected segments.

2.8. In the Klimontovich formulation, show that BY1 as given by (5.17) follows
from (5.16). Justify all steps.

2.9. A space is said to be a metric space if for any two points (x, y) in the space a
“distance” function d(x, y) exists that maps pairs of points in the space onto
numbers and has the following properties:

(1) d(x, y) ≥ 0; d(x, x) � 0; d(x, y) > 0 if x �� y (positivity)
(2) d(x, y) � d(y, x) (symmetry)
(3) d(x, z) ≤ d(x, y)+ d(y, z) (triangle inequality)

Introduce a distance function for 2N -dimensional �-space. Show that your
choice satisfies the preceding properties, thereby establishing that �-space is
a metric space. (Hint: Recall that �-space is a Euclidean space.)

26This theorem was previously discussed by R. L. Liboff and D. M. Heffernan,
Phys. Letts. 79A, 29 (1980).



134 2. Analyses of the Liouville Equation

2.10. (a) What is the Bogoliubov boundary condition on the state of particles at
t � −∞? In what sense is this condition included in the Boltzmann
equation?

(b) Establish the properties (4.21) relevant to the time-displacement operator
>̂

(s)
−t .

2.11. What is the structure factor, S(k), for an ideal gas?

2.12. Show that the equation of state of a fluid comprised of rigid sphere of radius
a is given by

P

nkBT
� 1+ 2πna3

3
g(a+)

where g(a+) is the value of g(r) at r � a + ε, ε→ 0. (Hint: Recall that the
derivative of a step function is a delta function.)

2.13. For low-density fluids, the following form is found to be a reasonably good
approximation for the radial distribution function.

g(r) � exp[−�(r)/kBT ]

Consider that the interaction potential �(r) has a rigid repulsive core and
a long-range “attractive tail.” What are the corresponding values g(0) and
g(∞)?

2.14. Show that the total correlation function h(r) has at least one zero on the open
r interval (0+,∞).

Answer

It follows from Problem 2.1 that∫
C2(1, 2) d1 d2 � 0

Inserting the defining relation (2.48) into this equation gives∫
f0(p1)f0(p2)h(r) d1 d2 � 0

Introducing the transformation

r � x2 − x1

2R � x2 + x1

(which carries a unit Jacobian), we find

dx1 dx2 � dr1 dR

and the preceding integral gives∫ ∞

0

4πr2 drh(r) � 0

Here we have assumed a sufficiently large volume permitting the upper limit
of the integral to be set equal to infinity. As h(0) � −1, the above integral
implies that h(r) is zero at least once on the said open r interval.
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2.15. What is the radial distribution function g(r) corresponding to the structure
factor

S(k) � e−ak

where a is a constant length.

2.16. Establish the validity of (6.14).

Answer

The relation

g · dS � g>2 d cos θ dφ cos θ

together with

s2 � >2 sin2
θ

gives the desired result. Note that the angle θ is inscribed between > and the
polar axis in Fig. 2.18.

2.17. A Lie derivative is defined as the form

L̂ ≡ A(x) · ∂
∂x

where A(x) is a vector function of x. Show that Lie derivatives have the
property

etL̂f (x) � f (etL̂x) � f [X(x, t)]

where

∂X(x, t)
∂t

� A[X(x, t)]

X(x, 0) � x

2.18. (a) Show that the s-particle (s ≤ N ) distribution function satisfies the
equation

∂fs

∂t
+∇s · usfs � 0

where ∇s represents the gradient in s-dimensional �-space. In your
derivation of the given kinetic equation, what does us represent?

(b) What is the physical interpretation of the given kinetic equation?
(c) Is the ensemble fluid for this subsystem incompressible? That is, does

∇s · us � 0? If not, what is an appropriate expression for this term?

2.19. In the Bogoliubov analysis, we encounter the functional inner product (4.9).
What is the explicit representation of the form〈

δF1(1)F1(2)

δF1

,
p
m
· ∂
∂x
F1(x, p)

〉

2.20. (a) Is symmetry of theN -body distribution function in its arguments assumed
in the derivation of the Liouville equation? If so, where?



136 2. Analyses of the Liouville Equation

(b) Is this property assumed in the derivation of the BBKGY sequence? If
so, where?

Answer

(a) This assumption was not made. Recall that it was found that any arbitrary
function of the constants of motion of the system is a solution to the
Liouville equation.

(b) This assumption was made. Thus, for example, if f3(1, 2, 3) is a symmet-
ric distribution, then

∫
f3(1, 2, 3) d1 d3 and

∫
f3(1, 2, 3) d1 d2 give the

same functional dependence on the remaining variable.

2.21. In BYs (1.20), discuss the difference between the force terms in the sum on
Oij and the force terms in the integral.

2.22. Obtain BY2 within the Klimontovich formalism. Hint: Write the equation
of motion for N (z)N (z′) in twelve-dimensional (z, z′) phase space, take the
ensemble average, assume that (z �� z′) and introduce appropriate forms for
terms containing ṗ and ṗ′.

2.23. The correlation normalizations of Problem 2.1 as well as those implied by
Problem 2.14 and equation (2.47) are valid for systems with vanishingly small
fluctuations. More generally,27 for the radial distribution function, one writes∫

[g(r)− 1] dr + 1

n
� kBT κT

where

κT ≡ − 1

V

(
∂V

∂P

)
T

is isothermal compressibility.

(a) What relation for κT is implied by the preceding integral equation for an
ideal gas?

(b) In what limit is the normalization on the radial distribution implied by
Problem 2.14 valid?

Answers

(a) For an ideal gas, g(r) � 1 and we obtain, nkBT κT � 1.
(b) For a dense medium in which number density, n, is very large for which

κT � 0.

27D. L. Goodstein, State of Matter, Prentice Hall, Englewood Cliffs, NJ (1975);
F. Mohling, Statistical Mechanics, Wiley, New York (1982).



CHAPTER 3

The Boltzmann Equation, Fluid
Dynamics, and Irreversibility

Introduction

This chapter begins with a review of scattering concepts important to deriva-
tion of the Boltzmann equation. Collisional invariants are then introduced that
aid in obtaining fluid dynamic conservation equations and the H theorem.
This theorem in turn leads to the well-known Maxwellian distribution. The
central-limit theorem encountered previously in Chapter 1 is employed in the
evaluation of the distribution of center-of-mass velocities of a finite stationary
gas of molecules. A derivation of Poincaré’s recurrence theorem stemming
from the Liouville equation is given and is contrasted with the irreversibility
of the H theorem of the Boltzmann equation.

Transport coefficients are introduced in the context of response to gradient
perturbations of fluid variables. Maxwell’s elementary mean-free-path esti-
mate of transport coefficients is presented, as well as a brief account of their
relation to autocorrelation functions. These notions serve as an introduction to
the Chapman–Enskog expansion of the Boltzmann equation. Values obtained
for transport coefficients through this method are shown to be in good agree-
ment with experiment. The theory of the linear Boltzmann collision operator
is discussed, and spectral properties of hard and soft potentials are noted. The
chapter next turns to application of the Boltzmann equation to an electron gas
immersed in an ionic fluid in the presence of a dc electric field. The result-
ing Druyvesteyn distribution is then employed in the derivation of an integral
expression for electrical conductivity.

In the last section of the chapter the notion of irreversibility, previously
discussed in reference to the H theorem, is reintroduced, and more recent
contributions to this subject are noted. Ergodic and mixing flows are described
and Birkhoff’s contribution to the theory is reviewed. Action-angle variables
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are introduced together with Bruns’s theorem on a limited number of constants
of motion and the closely related concept of an integrable system. Numerical
results relevant to a two-dimensional anharmonic oscillator lead to the concepts
of resonant domains, chaotic motion, and the closely allied, often quoted, KAM
theorem.

3.1 Scattering Concepts

3.1.1 Separation of the Hamiltonian

Basic notions of scattering theory are prerequisite to derivation of the Boltz-
mann equation. The theory of two-particle collisions is best formulated in the
center-of-mass frame.

First we note that the Hamiltonian of two particles interacting under a central
potential V (r), in the “lab frame,” is written

H (r1, r2, p1, p2) � p2
1

2m1
+ p2

2

2m2
+ V (r) (1.1)

Particle masses arem1 andm2, respectively, and r is the relative displacement

r � |r2 − r2|
Transformation to the center of mass is effected through the mapping

p � m1p2 −m2p1

m1 +m2
� µṙ

r � r2 − r1

P � p1 + p2

R � m1r1 +m2r2

m1 +m2

(1.2)

Substituting (1.2) into (1.1) gives

H (R,P, r, p) � P 2

2M
+ p

2

2µ
+ V (r) (1.3)

where [as in (1.12)]

P � MṘ ≡ (m1 +m2)Ṙ

is the momentum of the center mass,

µ � m1m2

m1 +m2

is the reduced mass, and

HCM � P 2

2M
(1.4)
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is the kinetic energy of the center of mass. The remaining part of the
Hamiltonian,

Hrel � p2

2µ
+ V (r)

represents the Hamiltonian of a particle of mass µ in the potential field V (r).
Hrel is the Hamiltonian of the two-particle system relative to a frame moving
with the center of mass. With this notation, (1.3) becomes

H � HCM +Hrel (1.5)

Since H is cyclic in R, we may conclude that P is conserved, whence

HCM � constant

This constant may be absorbed in V (r) without affecting resulting equations
of motion. Thus we may write

H � Hrel � p2

2µ
+ V (r) (1.6)

So we find that the original two-body problem is reduced to a one-body
problem of a particle of massµmoving in the field of a central potential, V (r).
Since the force on this particle is radial, angular momentum is conserved, and
we may conclude that the particle moves in a plane of constant orientation.
See Fig.3.1. Thus the µ particle has two degrees of freedom, which we label
r and φ. The angle φ is the inclination of r to an arbitrary axis in the plane. In
terms of these coordinates, the Hamiltonian becomes

H � p2
r

2µ
+ p2

φ

2µr2
+ V (r) (1.7)

Since φ is a cyclic variable, pφ is constant, and we set

pφ ≡ L
Furthermore,H is constant and may be identified with the energy of the system
measured in the center-of-mass frame. Thus we write

E � p2
r

2µ
+ L2

2µr2
+ V (r) (1.8)

With (1.7), Hamilton’s equations (1.1.12) gives

pr

µ
� dr
dt
�
√

2

µ
(E − V )− L2

µ2r2

dφ

dt
� L

µr2
, dφ � Ldt

µr2

(1.9)
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FIGURE 3.1. The radius vector r moves in a plane of constant orientation in the
center-of-mass frame.

Substituting dφ for dt in the first expression gives

φ �
∫

Ldr/r2√
2µ[E − V (r)]− (L2/r2)

+ constant (1.10)

Note in particular that we are addressing scattering or unbound trajectories.
With the convention that V (∞) � 0, an unbound orbit is characterized by
E > 0, where E is the energy as given by (1.8). A bound state corresponds to
E < 0 (see Problem 3.1).

3.1.2 Scattering Angle

We wish to apply (1.9) to obtain the angle of scatter that two particles suffer in
collision. A scattering event is divided into three epochs: before, during, and
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FIGURE 3.2. Scattering in the lab frame.

FIGURE 3.3. (a) Relative radius vector r before and after collision in the center-of-
mass frame. (b) Scattering in the center-of-mass frame illustrating relative velocities
of masses m1 and m2.

after the interaction. Both before and after collision, particles are free and do
not interact with one another. A typical scattering in the lab frame is depicted
in Fig. 3.2. The situation in the center-of-mass frame is depicted in Fig. 3.3.

The meaning of before and after collision is given in terms of the potential
of interaction V (r) or the range of interaction r0. Before collision denotes
the interval in which the particles are approaching one another and r > r0,
or, equivalently, V (r) � 0. After collision denotes the interval in which the
particles are receding from one another and, again, V (r) � 0 and r > r0.

It proves convenient in discussing scattering events to introduce the relative
velocity vector before and after collision. Assuming that the interaction occurs
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FIGURE 3.4. Scattering in the frame of the relative vector r. Note that we may write

g′ � ¯̄Sg, where ¯̄S is the scattering matrix ¯̄S � ¯̄I − 2aa.

in an interval about t � 0, we write

g � ṙ, t � ±∞ (1.11)

In that V � 0 before and after collision, with (1.8) we find

1

2
µg2 � 1

2
µg′2 (1.12)

and conclude that the magnitude of relative velocity is conserved over a
collision.

A scattering event in the frame where the origin of the relative vector r is
fixed (equivalent to the center-of-mass frame) is depicted in Fig. 3.4. The unit
vector α bisects the angle between−g and g′. The impact parameter s is such
that the angular momentum of the system in this frame has magnitude µgs.
The impact parameter s as well as the relative velocity vectors g and g′ are
properties of the asymptotic collision states. The speed g and impact parameter
s are both preserved in a given collision, and these two scalar quantities may
be termed properties of a collision.

The scattering diagram (Fig. 3.4) is symmetric about the apse, rmin, so that,
at rmin, ṙ � 0. This symmetry is a consequence of the conservation of angular
momentum L � µgs � µg′s ′ and the relative speed g � g′, so that s � s ′.
Inasmuch as ṙ vanishes at the apse, it follows from (1.9) that at this point
the denominator of the integral (1.10) vanishes. However, the integral remains
bounded.

The angle ψ depicted in Fig. 3.4 is obtained by integrating (1.10) from rmin

to∞. There results

φ(r∞)− φ(rmin) � ψ �
∫ ∞

rmin

(L/r2) dr√
2µ(E − V )− (L2/r2)

(1.13)

The scattering angle θ is related to ψ as shown in Fig. 3.4.

θ + 2ψ � π (1.14)
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A better representation of the integral (1.13) is given in terms of the inverse
radius u � r−1. Furthermore, the angular momentum L � µgs is related to
the energy E � 1

2µg
2 through

E � L2

2µs2
(1.15)

Substituting these relations in (1.13) gives

ψ �
∫ ū

0

s du√
1− s2u2 − (V/E)

1− s2ū2 − V (ū)

E
� 0

(1.16)

For potentials of the form

V (r) � K(r)−N ≡ KuN (1.17)

(1.16) becomes

ψ �
∫ ū

0

s du√
1− s2u2 − (KuN/E)

(1.18)

Substituting the nondimensional inverse radius

β ≡ su (1.19)

and the nondimensional impact parameter

b ≡ s
(
E

K

)1/N

(1.20)

in (1.18) gives

ψ(b) �
∫ β̄

0

dβ√
1− β2 − (β/b)N

(1.21)

1− β̄2 −
(
β̄

b

)N
� 0 (1.21a)

This general result is employed below.

3.1.3 Cross Section

Differential scattering cross section is defined in the following manner. Imagine
a uniform beam of particles of energyE and intensity I number/s-cm2), which
is incident on a scatterer located at the origin. The number of particles scattered
into the element of solid angle d� about � is proportional to the incident
intensity I and the element of solid angle d�. The proportionality factor is σ ,
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the differential scattering cross section (see Fig. 3.5). That is,

Iσ (�)d� � number deflected into d� about � per second (1.22)

This number is the same number that passed through the differential of annulus,
s ds dφ, so that

Iσ d� � I dφs ds (1.23)

The azimuthal angle φ, which locates a section of the incident beam, is the
same angle that appears in a spherical coordinate frame fixed with origin at
the scatterer. That is, d� � d cos dφ. Inserting this equality into (1.23) gives

σ (E, θ ) � s(E, θ )
ds(E, θ )

sin θ dθ
(1.24)

This is the classical formula for the differential scattering cross section. The
functional form s(E, θ ) stems from the scattering integral (1.16).

Whereas σ pertains to the number of particles scattered into a specific
direction, the total scattering cross section,

σT �
∫

4π
σ d� � πr2

0 (1.25)

relates to the total number scattered out of the incident beam. The range of the
interaction is r0, so particles with impact parameters s > r0 are not scattered
out of the beam. The total cross section σT represents the obstructional area
that the scatterer presents to the incident beam. For a uniform beam of cross-
sectional area A ≥ σT , the quantity σT /A is the fraction of particles scattered
(in all directions) out of the beam.

An important factor that enters the Boltzmann equation is gσd cos θ . With
(1.24), we write

gσ d cos θ � gs ds (1.26)

Recalling the nondimensional parameter b (1.20) permits (1.26) to be written

gσ d cos θ �
(

2K

µ

)2/N

g(N−4)/Nb db (1.27)

It is evident that the case N � 4 merits special attention. Molecules that
interact under this potential are called Maxwell molecules.1 For such molecules,
the scattering weight gσ d cos θ is independent of g. This property greatly
facilitates calculations related to the linearized Boltzmann equation. These
topics are fully discussed later in this chapter.

1For Maxwell’s introduction of this potential, see Scientific Papers of James Clark
Maxwell, W. D. Niven (ed.), Dover Publications, New York (1952).
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FIGURE 3.5. Coordinates for a scattering experiment .

The Coulomb cross section

Let us calculate σ for the Coulomb potential

V � K
r

Integrating (1.21), with N � 1, gives

b2 � 1

4
tan2 ψ (1.28)

In terms of θ (θ + 2ψ � π ), this relation appears as

b2 � 1

4
ctn2 θ

2
(1.29)

Inserting this result into (1.27),

σ �
(
K

E

)2
b db

d cos θ
(1.30)

gives

σ �
(
K

4E

)2 1

sin4(θ/2)

σd cos θ � d cosψK2

4 cos3 ψE2

(1.31)

This is the well-known Rutherford cross section for Coulomb scattering. The
divergence at θ � 0 stems from the long-range nature of the Coulomb force.

Cross section for rigid spheres

The calculation of the scattering cross section for rigid spheres proceeds
directly from geometry. If the two spheres have diameters σ01 and σ02, re-
spectively, then interaction does not occur for r ≥ (σ01+σ02)/2, where r is the
displacement between sphere centers. A sketch of the scattering is depicted
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FIGURE 3.6. Scattering of rigid spheres.

in Fig. 3.6. The cross section is obtained directly from the triangular insert in
Fig. 3.6, according to which

σ12 � σ01 + σ02

2
s � σ12 sinψ (1.32)

s ds � σ 2
12 sinψ cosψ dψ � σ

2
12

4
sin θ dθ

With (1.24), we find

σ (θ ) � σ
2
12

4
(1.33)

So the scattering is isotropic in the center-of-mass frame. The total cross section
σT is

σT � 2π
∫ 1

−1
σ d cos θ � πσ 2

12 (1.34)

the area of a disk of radius σ12.

3.1.4 Kinematics

Two particles with respective momenta p1 and p2 collide. After collision
the momenta are p′1 and p′2 collide. Conversation of momentum and energy
equations for this event are

p1 + p2 � p′1 + p′2

p2
1

2m1
+ p2

2

2m2
� p′21

2m1
+ p′22

2m2

(1.35)
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In the event that m1 � m2, these conservative equations become

v1 + v2 � v′1 + v′2

v2
1 + v2

2 � v′21 + v′22
(1.36)

Solving for v′1 and v′2 gives

v′1 � v1 +α(α · g)

v′2 � v2 −α(α · g)
(1.37)

The unit apsidal vector α is shown in Fig. 3.4. Subtracting these equations,
we find

g′ � g − 2α(α · g) (1.38)

which, as noted previously in Fig. 3.4, may be written in the scattering matrix
form

g′ � (I − 2αα)g ≡ Sg (1.38a)

Inverse and reverse collision

Two symmetry properties of collisions are important in kinetic theory. In de-
scribing these symmetries, it proves convenient to speak of a collision in terms
of two-particle momenta before (p1, p2) and after (p′1, p

′
2) collision. Thus we

characterize a collision by the form

[(p1, p2) → (p′1, p
′
2)]s

The subscript s indicates that an impact parameter is a property of the collision.
The inverse of a collision [(p1, p2) → (p′1, p

′
2)]s is a collision containing the

final state (p1, p2). We see that if [(p1, p2) → (p′1, p
′
2)]s satisfies the conserva-

tion equations (1.35) then [(p′1, p
′
2) → (p1, p2)]s also satisfies them (read the

conservation equations from right to left).
Symbolically, we may write

inverse of [(p1, p2) → (p′1, p
′
2)]s � [(p′1, p2) → (p1, p2)]s (1.39)

See Fig. 3.7.
The second type of collision that is important is the reverse collision. The

reverse of a collision [(p1, p2) → (p′1, p
′
2)]s is a collision containing the final

state (−p1,−p2). Again referring to the conservation equations, we conclude
that (−p′1,−p′2)s are the desired initial momenta (see Fig. 3.8). That is, if
(−p′1, p

′
2) interact with the impact parameter s, they will yield (−p1,−p2)s .

Symbolically, we have

reverse of [(p1, p2) → (p′1, p
′
2)]s � [(−p′1, p

′
2) → (−p1, p2)]s (1.40)

We recognize the reverse collision to be the time-reversed orbits of the original
collision (see Section 1.1.5).
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FIGURE 3.7. A collision and its inverse.

FIGURE 3.8. A collision and its reverse.

Due to their kinematic equivalence, we may conclude that the differential
cross sections for the original, reverse, and inverse collisions are the same.
These equalities relevant to the lab and center-of-mass frames are graphically
depicted in Fig. 3.9.

The equality of these cross sections may be related to fundamental opera-
tions. Thus, equality of cross sections for the original and reverse collisions is
due to invariance of physical laws under time reversal. Equality of cross sec-
tions for the original and inverse collisions is due to symmetric properties of

the scattering matrix S (1.38a). Thus, for example, S � S−1, so that if g′ � Sg

then g � Sg′ (see Problem 3.2).
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FIGURE 3.9. Scattering cross section is the same for all three collisions.

3.2 The Boltzmann Equation

The Boltzmann equation is an equation of motion for the one-particle distri-
bution function and is appropriate to a rare gas. Various efforts have attempted
to derive this equation from first principles. Three of these, due respectively
to I. Prigogine, N. N. Bogoliubov, and H. Grad were described in Chapter 2.
An assortment of assumptions come into play in all such derivations, which
renders the analyses somewhat ad hoc.

In the present discourse, we revert to a more heuristic derivation, which
follows the spirit of Boltzmann’s work, that is physically revealing and equally
ad hoc to more fundamental derivations.

3.2.1 Collisional Parameters and Derivation

In the limit of no interactions, particles are mutually independent andF (x, v, t)
(normalized to the total number of particles,N ) satisfies the one-particle Liou-
ville equation. This equation states that the net number of particles that enter
the phase element δvδx following a particle’s trajectory, in the time interval
δt , is zero. Let us denote this number by δR. Then we may write

δR � δxδvδt
(
∂F

∂t
+ v · ∂F

∂x
+ K
m
· ∂F
∂v

)
� 0 (2.1)

where K is an externally supported force field. Consider now that particles
interact. Specifically, let r0 denote the range of interaction. This parameter is
defined so that, for interparticle displacement r > r0, interaction vanishes.
When particles enter the interaction domain (r � r0), they experience a colli-
sion. Let the mean distance between collisions be l. This distance is also called
the mean free path. Our first criterion for the validity of the derivation of the
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Boltzmann equation to follow is that

l ! r0 (2.2)

This constraint ensures rectilinear trajectories between collisions. If C is
thermal speed, then we may introduce the times

τ � l

C
, τ0 � r0

C
(2.3)

An equivalent criterion to (2.2) may then be written

τ ! τ0 (2.4)

Collision terms

If interactions are turned on then the one-particle Liouville equation changes
by virtue of collisions between molecules in the fluid. A measure of this effect
is given by the interaction term in BY1 (2.1.24). In the present model, this
phenomenon is represented by the net rate at which collisions increase or
decrease the number of molecules entering the phase volume δxδv. Thus in
(2.1) we write

δR � δR+ − δR− (2.5)

The number of particles injected into δvδx due to collisions in the interval δt
is δR+, while those ejected is δR−.

First we consider δR−. The velocity of all particles in the gas may be divided
into two groups, the small band of velocities that fall into the interval δv about
v and all other velocities denoted by the variable v1. The number of particles
that are removed from the phase element δxδv in the time δt is simply the total
number of collisions that the v particles have with all other particles (that is,
the v1 particles) in the time δt . It follows that to calculate δR− we must account
for all collisions between pairs of particles that eject one of them out of the
interval δv about v, in other words, in every pair with the following properties:

1. One particle is in the phase element δvδx about (v, x) and the other is in
the phase element δv1δx1 about (v1, x1).

2. The v1 particles in δx1 undergo a collision with the v particles in δx in the
time δt .
By definition, the number of such particles is given by

δR− �
∫

1
F2(z, z1) δv1 δx1 δvδx (2.6)

To construct δx1 so that it has property 2, we view a scattering event in the
frame of the v particle (see Fig. 3.10). In (2.6) we have reintroduced the phase
variable z ≡ (x, v). Furthermore, recall that F2 is normalized to N (N − 1),
where N is the total number of particles.

With the aid of Fig. 3.10 we note that all v1 particles in the cylinder shown
of height g δt and base area s ds dφ undergo a collision with the v particle in
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FIGURE 3.10. Scattering in the v-particle frame.

the time δt . Here we are writing

g � |v1 − v|
It follows that

δx1 � gδt sds dφ (2.7)

and (2.6) becomes

δR− �
(∫

F2 dv1g sds dφ

)
δv δx δt (2.8)

To calculate δR+, we must account for all two-particle collisions that send
one particle into the velocity interval δv about v in the time δt . But this is just
the inverse of the original collision

(v, v1) → (v′, v′1)

That is,

(v′′, v′1) → (v, v1)

It follows that

δR+ �
∫

1′
F2(z′, z′1)δv′1δx

′
1δv

′δx′ (2.9)

Here it is understood that primed variables refer to the inverse collision of
unprimed variables in (2.8).
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The next point in our derivation is to recall the integral invariants of Poincaré.
These include the phase volume δxδvδx1δv1 relevant to an N -particle system
That is, we may write

δxδvδx1δv1 � δx′δv′δx′1δv′1 (2.10)

Substituting these results into (2.5), (2.1) gives

DF

DT
≡ ∂F
∂t
+v·∂F

∂x
+K
m
·∂F
∂v
�
∫

[F2(z′, z′1)−F2(z, z1)] dv1gsds dφ (2.11)

We now assume that F2 is homogeneous over the dimensions of the collision
domain and write

F2(z, z1) � F2(v, v1)

F2(z′, z′1) � F2(v′, v′1)
(2.12)

Finally, we impose the assumption of molecular chaos, which states that
particles in a rare gas are not correlated. That is,

F2(v, v1) � N − 1

N
F (v)F (v1)

F2(v′, v′1) � N − 1

N
F (v′)F (v′1)

(2.13)

Substituting (2.13) into (2.12) and neglecting 1 compared to N gives the
Boltzmann equation:

DF

Dt
�
∫∫

dv1gσ d�[F ′1F
′ − F1F ] (2.14)

Here we have recalled that s ds dφ � σ d� and have introduced the notation

F1 ≡ F (v1), F ′ ≡ F (v′), F ′1 ≡ F (v′1) (2.14a)

Note also that, with the conservation solutions (1.37),

v′1 � v1 +α(α · g)

v′ � v −α(α · g)
(2.14b)

These latter three equations, (2.14, 2.14a, 2.14b), comprise the Boltzmann
equation.

Key assumptions brought into play in the derivation of this equation are as
follows:

1. Range of interaction/mean free path� 1.
2. Particle trajectories are rectilinear before and after collision, as depicted

in Fig. 3.10. This assumption is called the stosszahlansatz.
3. F (x, v) is homogeneous over the range of interaction.
4. Molecular chaos: F2(1, 2) � F (1)F (2).
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3.2.2 Multicomponent Gas

Generalization of (2.14) to Ñ species is accomplished with aid of the following
notation. First we rewrite (2.14) as

DF

Dt
� Ĵ (F | F ) (2.15)

where

Ĵ (F | G) ≡
∫∫

dv1gσ d�(F ′G′1 − FG1) (2.16)

Then for a gas comprised of N̄ species we have

DFi

Dt
�

N̄∑
j�1

Ĵ (Fi | Fj ) (2.17)

Note in particular that

Ĵ (Fi | Fj ) �
∫∫

dvjgijσij d�ij (F ′i F
′
j − FiFj ) (2.18)

The set of N̄ coupled equations (2.17) comprises the generalization of the
Boltzmann equation to N̄ species. These relations are returned to in Section 3.7
in the derivation of the Druyvesteyn distribution relevant to electron transport
in an ionic medium immersed in an electric field.

3.2.3 Representation of Collision Integral for Rigid Spheres

Consider a gas comprised of rigid spheres of diameter σ01. With (1.33), we
recall

σ (θ ) � σ
2
01

4
(2.19)

We wish to work with the angle ψ in place of the scattering angle θ (see
Fig. 3.4).

θ + 2ψ � π
so that

cos θ � 1− 2 cos2 ψ

and

d cos θ � −4 cosψ d cosψ

and

d� � −dφ d cos θ � 4 cosψd cosψ dφ (2.20)
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The collision integral is a function of v and angles may be defined with respect
to this vector. Thus, with v as the polar axis, v1 is given the polar angle λ and
azimuth κ . Combining results, we write

J (F | F ) � σ 2
01

∫
gv2

1dv1 d cos λ dκ
∫

cosψ d cosψ dφ[F ′1F
′ − F1F ]

(2.21)
Recalling the definition of g,

g � v1 − v (2.22)

we obtain

g2 � v2 + v2
1 − 2vv1 cos λ (2.23)

Referring to Fig. 3.4, we see that

α · g � g cosψ (2.24)

This permits (2.14b) to be rewritten

v′1 � v1 +α cosψ

v′ � v −αg cosψ

so that

F ′1 �F [v1 +αg cosψ]

F ′ �F [v −αg cosψ]
(2.25)

To measure α, we choose the polar axis g. The azimuth φ is measured with
respect to the plane specified by the vectors v, v1 (see Fig. 3.11). The Cartesian
components of α in this frame are

α � (sinψ cosφ, sinψ sin φ, cosψ) (2.26)

In the spirit of this representation, we integrate over ψ , holding v1 and g fixed
prior to integrating over v1.

Explicit representation of F ′ and F ′1 as given by (2.25) requires knowledge
of α · v and α · v1. With the aid of Fig. 3.11 and the addition law of cosines,
we find

α · v � v[cosψ cos λ+ sinψ sin λ cosφ]

α · v1 � v1[cosψ cos(λ+ γ )+ sinψ sin(λ+ γ )γ cosφ]

where

cos γ � v
2
1 − v2 + g2

2v1g

This completes our representations of Ĵ (F | F ) for the scattering of rigid
spheres. Note that, in the more general case, in place of σ given by (2.19)
we have σ � σ (θ, g), in which case σ remains in the integrand of the cosψ
integration.
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FIGURE 3.11. The coordinates of the apsidal vector α.

It should be noted that the preceding derivation addresses smooth spheres.
Such types of spheres exchange no angular momentum in collision (see Prob-
lems 3.53 and 3.54). We note also that Grad’s second equation (2.6.12) is better
suited to the study of interacting rigid spheres than is the Boltzmann equation.2

3.3 Fluid Dynamic Equations and the Boltzmann H
Theorem

3.3.1 Collisional Invariants

We wish to derive the fundamental fluid dynamic equations from the Boltz-
mann equation (2.14). Such equations express the basic conservation principles

2As has been previously noted, the assumption of Maxwell molecules greatly
simplifies the collision integral [see (1.27)]. With the additional assumption that
gσ � constant, the Boltzmann equation has been solved exactly for a spatially
uniform fluid: A. V. Bobylev, Doc. Acad. Nauk. SSSR 225, 1296 (1975); M. Krook
and T. S. Wu, Phys. Fluids 20, 1589 (1977). See also R. M. Ziff, Phys. Rev. A 24,
509 (1981).
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of physics: mass (or number) of particles, momentum, and energy. Thus a nec-
essary requirement for a kinetic equation to be a valid physical relation is that
it imply these conservation equations. To show that this requirement is sat-
isfied by the Boltzmann equation, we introduce the notion of collisional (or
summational) invariants.

Toward these ends, we recall the collisional integral of (2.14):

Ĵ (F ) ≡
∫∫

σ d�dv1g(F ′1F
′ − F1F ) (3.1)

Let us identify the linear operator:

Î [φ(v)] ≡
∫∫

Ĵ (F )φ(v) dv

�
∫∫∫

σ d�dv1 dvg(F ′1F
′ − F1F )φ(v) (3.2)

Changing variables,

(v, v1) → (v1, v)

gives the equality

Î (φ) � I (φ1) (3.3)

Consider next the integral

Î (φ′) �
∫∫∫

σ d�dv1 dvgφ(v′)(F ′1F
′ − F1F ) (3.4)

The change of variables

(v, v1) → (v′, v′1)

carries a unit Jacobian due to Liouville’s theorem for a two-particle system.
Therefore,

dv1 dv � dv′1 dv′

The measure gσ d� is also invariant under this change in variables and (3.4)
becomes

Î (φ′) �
∫∫∫

σ ′ d�′ dv′1 dv′g′φ′(F1F − F ′1F ′)

� −Î (φ) (3.5)

Finally, exchanging variables (v′1, v
′) → (v′, v′1) gives

Î (φ′) � Î (φ′1) (3.6)

Combining (3.3), (3.5), and (3.6) gives

4Î (φ) � Î (φ)+ Î (φ1)− Î (φ′)− Î (φ′1)
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FIGURE 3.12. (a) The absolute frame is fixed in the lab frame. (b) The relative frame
moves with the local mean velocity of the fluid.

Due to the linearity of the Î operator, this latter result may be rewritten

Î (φ) � 1

4
Î (φ + φ1 − φ′ − φ′1) (3.7)

A function ψ(v) is a summation (or collisional) invariant if

ψ1 + ψ � ψ ′1 + ψ ′ (3.8)

That is, ψ(v) is a property of a molecule that is preserved in a collision, such
as mass, momentum, and energy.

If ψ(v) is a collisional invariant, then with (3.7) and (3.8) we see that

Î (ψ) � 0, ψ � collisional invariant (3.9)

The three fundamental collisional invariants described above correspond to
ψ � 1, ψ � v, and ψ � v2, and we write

Î (1) � Î (v) � Î (v2) � 0 (3.10)

3.3.2 Macroscopic Variables and Conservative Equations

Prior to learning the manner in which collisional invariants come into play in
obtaining the conservation equations, we turn to the definition of fluid-dynamic
variables and the equations they satisfy. Fluid dynamic (or macroscopic) vari-
ables are commonly defined in one of two frames: the absolute and relative
(or co-moving) frames. In the absolute frame the fluid moves with respect to a
coordinate frame fixed in the lab frame. In the relative frame, fluid variables are
measured with respect to a coordinate frame that moves with the local velocity
of the fluid (see Fig. 3.12).

Conservation equations typically appear in the form

∂A

∂t
+∇ · �A � 0 (3.11)



158 3. The Boltzmann Equation, Fluid Dynamics, and Irreversibility

where �A is a flux vector corresponding to the quantity A. Integrating this
equation over a small volume V and employing Gauss’ theorem gives

∂

∂t

∫
N

Adx � −�
S

�A · dS (3.11a)

This equation says that the quantity
∫
V
A dx can change only by virtue of the

net flow out of the volume as measured by the flux integral over the surface S.
Consider the number density n(x, t) [encountered previously in (1.6.12)]

and macroscopic mean velocity u(x, t). These variables are defined by (with
F � Nf )

n(x, t) �
∫
F dv (3.12)

nu(x, t) �
∫
Fv dv (3.13)

and obey the continuity equation

∂n

∂t
+∇ · nu � 0 (3.14)

This equation is an expression of the conservation of matter. It says that the
mass in a given volume can change only by virtue of a net flux of mass out of
the volume.

Note that with (3.13) we may write [recall (1.6.8)]

u �
∫
Fv dv∫
F dv

� 〈v〉 (3.13a)

Thus u is appropriately termed mean macroscopic velocity.
Next we consider the pressure tensor ¯̄p, heat flow vector q, and kinetic

energy density eK , all measured in the absolute frame. These are given by the
integrals3

¯̄p �
∫
Fmvv dv � n〈mvv〉 (3.15)

q �
∫
F

1

2
mu2v dv � n

〈
1

2
mv2v

〉
(3.16)

eK �
∫
F

1

2
mv2 dv � n〈1

2
mv2〉 (3.17)

The pressure component pxy , say, represents the transport of x momentum per
second across a y surface (the unit vector ŷ is normal to a y surface). Evidently,
q represents a flux of kinetic energy.

3The energy density eK was previously introduced in (1.6.16) where it was labeled
EK .
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Conservation of momentum gives

∂

∂t
ρu+∇ · ¯̄p � ρK (3.18)

Here we have writtenmK for an externally supported force field that permeates
the fluid, where m is molecular mass and

ρ(x, t) � mn(x, t) (3.18a)

is mass density.
The conservation equation for energy is given by

∂eK

∂t
+∇ · q � ρK · u (3.19)

which, together with (3.14) and (3.18), constitutes the three fundamental
conservation equations of fluid dynamics (in the absolute frame).

3.3.3 Conservation Equations and the Boltzmann Equation

To obtain the conservation equations (3.14), (3.18), and (3.19) from the
Boltzmann equation (2.14), first we rewrite the Boltzmann equations as

DF

Dt
� Ĵ (F ) (3.20)

DF

Dt
≡ ∂F
∂t
+ v · ∂F

∂x
(3.20a)

First note that the left side of (3.20) gives

∫
dv
DF

Dt




1

mv

mv2

2


 �




∂n

∂t
+∇ · nu

∂ρu
∂t
+∇ · ¯̄p

∂eK

∂t
+∇ · q


 (3.21)

The right side of (3.20) gives

∫
dvĴ (F )




1

mv
m

2
v2


 �




Î (1)

mÎ (v)
m

2
Î (v2)


 �




0

0

0


 (3.22)

Equating (3.21) to (3.22) reproduces the three conservation equations (3.14),
(3.18), and (3.19). We may conclude that the Boltzmann equation satisfies the
required property of implying the conservation equations.
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Relative macroscopic variables

We turn next to rewriting these conservation equations in terms of more
physically pertinent relative macroscopic variables defined in terms of the
deviation-from–the-mean microscopic velocity c given by

c � v − u � v − 〈v〉 (3.23)

The velocity c is that of a fluid element measured in a frame moving with

the mean velocity of the fluid, u. The relative pressure tensor ¯̄P , heat flow
vector Q, and (kinetic) energy density EK are given by the parallel equations
to (3.15), (3.16), and (3.17), with v replaced by c. There results

¯̄P �
∫
FFmcc dc � ρ〈cc〉 (3.24)

Q �
∫
F

1

2
mc2c dc � ρ

〈
1

2
c2c

〉
(3.25)

EK �
∫
F

1

2
mc2 dc � ρ

〈
1

2
c2

〉
(3.26)

Substituting c as given by (3.23) into these expressions gives

¯̄p � ¯̄P + ρuu (3.27)

q � Q+ ¯̄p · u+ u(eK − ρu2) � Q+ ¯̄P · u+ uEK + u
ρu2

2
(3.28)

eK � EK + ρu
2

2
(3.29)

The relation (3.27) says that absolute pressure is greater than relative pressure
by the flow energy ρuu. Consider water flowing in a pipe with u � (ux, 0, 0).
Thus ρuu � ρu2. If ¯̄p is measured, the fixed pressure meter measures this
additional momentum flux due to the macroscopic flow of the water in the
pipe. This is not what we mean by pressure. We measure pressure in a frame

moving with the fluid. The meter that measures ¯̄P does not see the macroscopic
flow velocity v.

Inserting the relation (3.27), (3.28), and (3.29) into the macroscopic equa-
tions (3.14), (3.18), and (3.19) gives the normal form of the conservation
equations:

ρ

(
∂

∂t
+ u · ∇

)
u+∇ · ¯̄P � pK (3.30)

∂

∂t
EK + ∇ · (uEK )+ ¯̄P : ∇u +∇ · Q � 0 (3.31)
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(see Problem 3.3). The tensor notation of the double inner product ¯̄P : ∇u is
as follows:

¯̄P : ∇u � Tr( ¯̄P∇u ) � Pij ∂
∂xj
ui

The right side of the preceding equations is written in the Einstein convention
in which repeated indexes are summed. 4

Equations (3.30) and (3.31) will be returned to in Section 3.5 in our
discussion of transport coefficients.

3.3.4 Temperance: Variance of the Velocity Distribution

The temperature T of a fluid comprised of molecules with no internal degrees
of freedom is given by

EK �
∫
F (c)

m2

2
dc � 3

2
nkBT (3.32)

where

kB � 1.381× 10−16 erg/K

represents Boltzmann’s constant.
The significance of defining T as given by (3.32) in the relative frame is as

follows. Consider a distribution of molecules that are all at rest. Now let the
fluid move as a rigid body with a speed u. With (3.32), we see thatT ∝ EK � 0,
but that eK as given by (3.29) is greater than zero. So had we defined T with
respect to absolute variables we would obtain the erroneous result that the
temperature of a gas of stationary molecules is greater than zero, by virtue of
the macroscopic motion of the whole body of molecules.

Note that, (3.23), (3.32) may be rewritten

3kBT

m
� 〈(v − 〈v〉)2〉 (3.32a)

which, recalling (1.8.2b), indicates that 3kBT /m is a measure of the variance
of the velocity probability density. Thus, in general, T is a measure of the
spread of this density about the mean. Thus a wide distribution (many velocities
contribute toF ) corresponds to a high temperature. If the distribution of speeds
is sharply peaked about the mean 〈v〉, then temperature is small (see Fig. 3.13).

Having defined the fundamental fluid-dynamic variables (n, u, T , EK,Q,

and ¯̄P ) as velocity moments of F (x, c, t) it is evident that such relations may
be generalized to define additional macroscopic variables. Thus consider the

4Tensor notation is reviewed in Appendix A.
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FIGURE 3.13. In (a) most molecules move with mean speed 〈v〉 corresponding to low
temperature. In (b) the variance of F (c) is large, as is the temperature. Measurement
of v in this instance finds large fluctuations about the mean, 〈v〉.

tensor form

n?i1,i2,...,in �
∫
dcF (c, x, t)ci1ci2 . . . cin (3.33)

The fluid variable ?(x, t) is an nth-rank tensor in three dimensions.5,6 The
indexes ik run from 1 to 3, corresponding to the Cartesian components of c.

The preeminence of the lower-order variables (n, u, T , EK,Q, and ¯̄P ) is
due to their presence in the three conservation equations.

3.3.5 Irreversibility

Preparatory to our discussion of the H theorem, it is appropriate at this point to
discuss the concept of irreversibility. Consider that 1 mole of gas is comprised
of identical inert molecules save for the fact that half of the sample molecules
are labeled color A and the remaining half color B. The entire gas is confined
to an isolated enclosure withAmolecules andB molecules separated by a par-
tition located at the midplane of the enclosure. The entire gas is in equilibrium
at some given temperature. The partition is removed (ideally, without incurring
any other perturbation on the system). After sufficient time, the gases mix and
theA andB molecules become uniformly distributed over the entire enclosure
(see Fig. 3.14).

It is universally observed that the starting state of this process does not
reoccur. Why is this observation peculiar to the laws of nature? In Section 1.1.5,
we found that if a system’s Hamiltonian has a trajectory [q(t)p(t)] then it also
has a trajectory [q(−t),−p(−t)]. It is evident that we may view the starting

5Thus we have the quip, “A distribution function is worth a thousand macroscopic
variables.”

6Grad’s method of moments takes advantage of the tensor quality of (3.33). See
Section 5.10.
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FIGURE 3.14. (a) Confined gases. (b) Gases expand to fill the whole interior region.
For mole concentrations, state (a) is not observed to reoccur.

state (a) in Fig. 3.7 as the time-reversed state of (b). Thus, for example, say
that in the state (b), at a given instant, the momentum of all particles in the
gas is reversed. Then, as depicted in Fig. 1.5, the motion should reverse itself,
thereby restoring the initial coordinate configuration. However, such reversal
does not occur and we conclude the motion is irreversible.

More generally, an irreversible law is characterized by an equation that
has a solution peculiar to a particular direction of time. This is a quality of
irreversibility, because if the motion corresponding to this solution is observed,
we may conclude that time is flowing, say, in the forward direction. A reversible
law on the other hand implies no such distinction.

3.3.6 Poincaré Recurrence Theorem

The evident irreversibility of the process described in Fig. 3.14 also plays havoc
with a theorem due to Poincaré. This theorem states the following: The system
trajectory of a bounded isolated system of finite energy will, after sufficient
time, return arbitrarily close to its initial location in �-space.

To establish this theorem, we consider that the initial state z0 ≡ (q0, p0) is
contained in the set of phase points�0. That is, z ∈ �10. Due to the preceding
description, the system point moves on a surface of finite measure in�-space. It
follows that after sufficient time the path swept out by the set�0 must intersect
itself. Let us show this. Let T̂ denote an operator that displaces�0 in unit time.
Then, due to Liouville’s theorem

�0, T̂ �0, T̂
2�0, . . .

all have the same measure. If these sets did not intersect, the surface on
which they move would have to be of infinite measure. This contradicts our
assumption.

Therefore, we may write

T̂ k�0 ∩ T̂ n�0 � �̄ �� ∅ (3.34)

for some value of the integers k and n. The empty set is ∅. Due to uniqueness of
trajectories, as previously described in Chapter 1, T̂ is a one-to-one mapping.
This property permits us to write

T̂ (A ∩ B) � T̂ (A) ∩ T̂ (B) (3.35)
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FIGURE 3.15. Shaded domain represents the intersection T̂ 10�0 ∩�0.

Operating on (3.34) with T̂ −n gives

T̂ −n(T̂ k�0 ∩ T̂ n�0) � T̂ −n�̄ �� ∅

With (3.35), the preceding equation becomes

T̂ k−n�0 ∩�0 �� ∅ (3.36)

Thus, after k − n units of time, the set �0 has a finite intersection with itself.
Taking the measure of �0 to be arbitrarily small establishes the theorem. The
process described by (3.36) is depicted in Fig. 3.15. (The group property of the
T̂ operators is discussed in Problem 3.4). Applying this result to the process
described in Fig. 3.14 indicates that, after sufficient time, the system point
returns arbitrarily close to configuration (a).

Another approach to the question of irreversibility is offered by the
Boltzmann H theorem, which is described in the following section.

3.3.7 Boltzmann and Gibbs Entropies

The Gibbs entropy, HN , is given by

HN �
∫
fN ln fNd1 . . . dN (3.37)

To discover how this function changes in time, we first recall the Liouville
equation

dfN

dt
� ∂fN
∂t
+ [fN,H ] � 0 (3.38)

Operating on this equation with∫
d1 · · · dN (1+ ln fN )
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reveals that7

dHN

dt
�
∫

(1+ ln fN )
dfN

dt
d1 · · · dN � 0 (3.39)

Thus HN obeys a reversible equation [that is, if HN (t) is a solution to (3.39),
so is HN (−t)] and is constant.

The Gibbs entropy is related to thermodynamic entropy through the formula

S � −kBHN (3.40)

This is the kinetic prescription for the entropy of an isolated N -body system.
The second law of thermodynamics stipulates that, for any process of an iso-
lated system,>S ≥ 0, the equality holding for reversible processes. Since the
Liouville equation is reversible, the fact that it implies S � constant is seen to
be consistent with the second law of thermodynamics.

For vanishing correlations,

fN �
N∏
i�1

f1(i)

and

HN �
N∑
i�1

∫ N∏
j�1

f1(j ) ln f1(i)d1 · · · dN

�
N∑
i�1

H(i) � NH (3.41)

where

H �
∫
f1 ln f1 dx dp (3.42)

denotes Boltzmann entropy and with (3.40) gives the Boltzmann formula

S � −NkBH (3.43)

We will find later that, away from equilibrium, Boltzmann’s equation implies
that dH/dt ≡ Ḣ < 0. This is an irreversible equation because, as noted
above, it implies one distinct motion with the positive flow of time, that is,
a decaying solution. On the other hand, a reversible equation that implies a
decaying solution must also imply a growing solution. That the laws of nature
are reversible indicates then that there is no experiment to discern if time is
flowing in one direction. On the other hand, the law H < 0 does imply a
preferred direction in time, since with time flowing in the forward direction,

7Note that this same result occurs for any functional ψ(fN ) with a bounded
derivative |dψ/dfN | <∞. See Problem 3.58



166 3. The Boltzmann Equation, Fluid Dynamics, and Irreversibility

H(t) decreases. If we were to observe H(t) increasing, we could conclude by
virtue of the statement Ḣ < 0 that time was flowing backward.

With this background, we turn to derivation of the H theorem (put forth by
Boltzmann near the turn of the century).

3.3.8 Boltzmann’s H Theorem

This proof begins with the Boltzmann equation (2.14)

∂f

∂t
+ v · ∂f

∂x
+ K
m
· ∂f
∂v
� Ĵ (f ) (3.44)

where Ĵ (f ) has been written for the collision integral on the right side of
(2.14). (Note also that we are working in velocity space.) Operating on (3.44)
with ∫

dx dv(1+ ln f )

gives

∂

∂t

∫
dx dvf ln f+

∫
dx dv

∂

∂x
· v ln f + K

m
·
∫
dx dv

∂

∂v
f ln f

�
∫
dx dvĴ (f )(1+ ln f )

�
∫
dxÎ (1+ ln f ) (3.45)

where Î is defined by (3.2). Passing to large volume and dropping surface
terms in (3.45) gives

1

m

d

dt
H �

∫
dxÎ (1+ ln f ) (3.46)

With the property (3.7), we may write

4Î (1+ ln f ) � Î (1+ ln f )+ Î (1+ ln f1)− Î (1+ ln f ′)− Î (1+ ln f ′1)

� Î
(

ln
f1f

f ′1f ′

)
� −Î

(
ln
f ′1f

′

f1f

)
(3.47)

Thus we may write

4Î (1+ ln f ) � −
∫
dv

∫
dv1gσ d�(f ′1f

′ − f1f ) ln

(
f ′1f

′

f1f

)
Setting X ≡ f ′1f ′ and Y ≡ f1f , this equation may be rewritten

4Î � −
∫
dv

∫
dv1gσ d�(X − Y ) ln

(
X

Y

)

� −
∫
dv

∫
dv1gσd�L(X, Y ) (3.48)
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Here we have defined

L(X, Y ) ≡ (X − Y ) ln

(
X

Y

)
(3.49)

With X and Y positive, we examine X � Y , X > Y , and X < Y . For all three
cases, L ≥ 0. It follows that

Î (1+ ln f ) ≤ 0 (3.50)

since dv dv1gσ d� is a positive measure. The equality in (3.50) corresponds
to X � Y ; that is, f ′1f

′ � f1f . Inserting (3.50) into (3.46) gives

1

m

d

dt
H �

∫
dxÎ (1+ ln f ) ≤ 0

or, more simply,

dH
dt
≤ 0 (3.51)

which is Boltzmann’s H theorem.8 The relation (3.51) states that, for arbitrary
initial f (x, v, t), H decreases until

f ′1f
′ � f1f (3.52)

whereafter it remains constant.

Source of irreversibility

Equation (3.51) is evidently an irreversible statement. What is the source of
this irreversibility? To answer this question, we recall that (3.51) stems from
the Boltzmann equation (3.44), which is irreversible. To see this, consider
the transformation, the left side of (3.44), which is irreversible. To see this,
consider the transformation x → x′ � x, v → v′ � −v, and t → t � −t .
Under the transformation, the left side of (3.44) changes sign, whereas the
collision integral on the right side maintains its sign. This is so because the
integration measure of Ĵ (f ) is positive and f ≥ 0.

3.3.9 Statistical Balance

The statement (3.52) is sometimes called statistical balance. At this value,
δR+ � δR− in (2.5). That is, this rate of gain of particles into the volume
element δxδv is equal to the rate of loss of particles from this volume element.

Note in particular that with

1

m

dH
dt
� ∂

∂t

∫
dx dvf ln f �

∫
dx dv

∂f

∂t
(1+ ln f ) (3.53)

8An H theorem relevant to quantum systems is derived in Section 5.4.3.
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the condition of equilibrium, ∂f/∂t � 0, implies that dH/dt � 0. We have
found above that this latter condition is satisfied only when

f ′1f
′ � f1f (3.54)

Thus the conditions (3.54) is necessary for equilibrium. For a force-free
spatially homogeneous fluid, this condition is evidently also sufficient for
equilibrium, and we may conclude that statistical balance is necessary and
sufficient for the equilibrium of such a fluid.

3.3.10 The Maxwellian

To find the equilibrium distribution that is a solution to (3.54), we first take the
ln of both sides. Labeling the solution f0 gives

ln f ′01 + ln f ′0 � ln f01 + ln f0 (3.55)

This equation asserts that ln f0 is a collisional invariant [see (3.8)]. Thus we
may write

ln f0(v) � −A(v − v0)2 + lnB (3.55a)

or, equivalently,

f0(v) � Be−A(v−v0)2
(3.56)

The constantsA andB are determined through the relations (3.12), (3.13), and
(3.26).

n � N
∫
Be−A(v−v0)2

dv (3.57a)

nu � N
∫
Bve−A(v−v0)2

dv (3.57b)

3

2
nKBT � N

∫
B
mc2

2
e−A(v−v0)2

dc

With these equations, we obtain

F0(v) � Nf0(v) � n

(2πRT )3/2
exp

(
− (v − u)2

2RT

)
(3.58)

where9

R ≡ kB
m

The distribution (3.58) is quite important in kinetic theory. It goes by either
of the names the Maxwellian, the Boltzmann distribution, or the Maxwell–
Boltzmann distribution.

9In kinetic theory, the symbol R often denotes the gas constant kBN0, where N0

is Avogadro’s number.
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Although the Maxwellian (3.58) is a solution to the statistical balance equa-
tion, (3.54), there is another more general and physically relevant solution.
Thus we observe that the distribution (3.58) remains is a solution to the sta-
tistical balance equation, (3.54), there is another more general and physically
relevant solution. Thus we observe that the distribution (3.58) remains a solu-
tion to (3.54) with the constant values of n, u, and T replaced by corresponding
functions of x and t . The resulting equilibrium distribution is called the local
Maxwellian and is given by

F 0(x, v, t) � n(x, t)
[2πRT (x, t)]3/2

exp

(
− (v − u(x, t))2

2RT (x, t)

)
(3.59)

With the normalization conditions (3.57), we find

n(x, t) �
∫
F 0(x, v, t) dv (3.60a)

n(x, t)u(x, t) �
∫
F 0(x, v, t)v dv (3.60b)

3

2
n(x, t)kBT (x, t) �

∫
F 0(x, c, t)

mc2

2
dc (3.60c)

In the Maxwellian given by (3.58), the parameters n, u, and T are constant
in x and t . To distinguish this distribution from (3.59), it is called the absolute
Maxwellian. To recapitulate,

F0(v) :absolute Maxwellian, n, u, T � constants

F 0(x, v, t) :local Maxwellian, n, u, T � functions of x, t

We recall that Ḣ(F 0) � Ḣ(F0) � 0. Thus both these distributions may be
termed equilibrium distributions. However, thermodynamic equilibrium for
a force-free fluid implies constant values of all macroscopic variables. This
equilibrium is better described by F0(v). Prior to this state, the fluid is in
a local equilibrium described by F 0(x, v, t). This sequence of states in the
approach to equilibrium of a fluid is well described in a sketch of H(t) (see
Fig. 3.16).

We may speculate on the forms of the relaxation times τL and τA shown in
Fig. 3.16. Let the fluid be confined to the volume V � L3, and let l denote the
mean free path of molecules between collisions. For n ! 1, it is evident that
l � L. With the thermal speed given by (3.32a),

〈c2〉 � 3kBT

m
≡ 3C2 (3.61a)

we write

τL � l

C
τA � L

C
(3.61b)



170 3. The Boltzmann Equation, Fluid Dynamics, and Irreversibility

FIGURE 3.16. The approach to equilibrium of a fluid.

Having found that the local Maxwellian (3.59) is an equilibrium solution
to the Boltzmann equation, we momentarily return to the Bogoliubov hy-
pothesis (Section 2.4). We recall that this hypothesis states that, in the final
hydrodynamic stage of a fluid’s approach to equilibrium, distributions become
functionals of the fluid variables n, u, and T . It is evident that this conjecture
finds corroboration in the structure of the local Maxwellian given by (3.59),
which is seen to be a functional of the said fluid dynamic variables.

Local equilibrium and macroscopic variables

We have found that the local equilibrium (3.59) satisfies statistical balance
(3.55) and therefore renders the collision integral of the Boltzmann equation
zero. However, when substituted into the Boltzmann equation (2.14), it is
evident that, in general, the left side of this equation does not vanish. As space
dependence of F 0 is contained entirely in the macroscopic variables n, u, and
T , it suffices to find their dependence on space to obtain a complete equilibrium
solution. For non-force-free fluids, this may accomplished directly from the
Boltzmann equation as demonstrated in the following section.

As we will find in Section 3.5, the local Maxwellian also comes into play
in the Chapman–Enskog expansion of the Boltzmann equation. In this proce-
dure, F 0 emerges as the lowest-order solution with n, u, and T occurring as
functions of (x, t). Accompanying lowest-order conservation equations serve
to determine these macroscopic variables, thereby establishing F 0(x, v, t) as
the corresponding lowest-order solution to the Boltzmann equation in the
nonequilibrum limit.

3.3.11 The Barometer Formula

Consider that an externally supported conservative force field K permeates a
fluid. We may write

K � −∂ 
∂x
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Let us call the equilibrium distribution for this configuration F̄ 0, so that
∂F̄ 0/∂t � 0. The remaining terms in the left side of the Boltzmann equation
(2.14) give zero, providing

mv · ∂F̄ 0

∂x
� ∂ 
∂x
· ∂F̄ 0

∂v
(3.62a)

A more general solution to the statistical balance equation (3.55) is given by

ln F̄ 0 � −A(v − v0)2 + lnB − 2Aψ(x)

m
(3.62b)

Substituting this form into (3.62a) indicates that ψ(x) �  (x), providing
v0 ·∇ � 0. With this constraint imposed, (3.62b) is the desired equilibrium
solution.

Fitting F̄ 0 to the constraints (3.57) gives

F̄ 0(x, v) � n0

(2πRT0)3/2
exp

{−[m(v − u0)2/2+ (x)]

kBT0

}
(3.63)

where n0, u0, and T0 are constants and u0 is normal to ∇ (x).
The equilibrium number density that follows from (3.63) is given by

n(x) �
∫
F̄ 0(x, v) dv � n0 exp

[
− (x)

kBT

]
(3.64)

so that n0 is the value of n(x) where  (x) � 0. The equilibrium temperature
is given by

3n(x)RT �
∫
F̄ 0(x, c)c2 dc � 3n0RT0 exp

[
− (x)

kBT

]
(3.65)

so that T � T0 � constant. Thus we may write

F̄ 0(x, v) � n(x)

(2πRT )3/2
exp

[
− (v − u0)2

2RT

]
(3.66)

where T � T0 and n(x) is given by (3.64).
For a stationary column of gas in a gravity field, we have

 (z) � mg(z− z0)

where g is acceleration due to gravity and z is vertical displacement. Inserting
this potential into (3.64) gives

n(z) � n0 exp

[
−mg(z− z0)

kBT

]
(3.67)

This exponential decay in number density is commonly called the barometer
formula (also, the law of atmospheres).
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3.3.12 Central-Limit Theorem Revisited

We wish to apply the central-limit theorem (Section 1.8 to the problem of find-
ing the probability distribution of the total momentum of a fluid ofN molecules
in equilibrium at temperature T . As P denotes probability, to avoid confu-
sion in terminology, we will call total momentum K and individual molecular
momentum ki . Thus

K �
N∑
i�1

ki (3.68)

If we assume that individual momenta are uncorrelated, then K as given by
(3.68) may be viewed as a sum of statistically independent random variables,
and the central-limit theorem is appropriate.

The characteristic function for the random variable ki is (deleting the
subscript i)

φ(a) �
∫
dkeik·aP (k) (3.69)

where P (k) is single-particle probability density. Expanding φ(a) about a � 0
gives

φ(a) � 1+ i(k) · a − 1

2
〈kk〉 : aa + · · · (3.70)

from which we obtain10

ln φ(a) � i〈k〉 · a − 1

2
〈kk − 〈k〉〈k〉〉 : aa + · · · (3.71)

If the fluid is at rest, then 〈k〉 � 0, whereas if the fluid is isotropic, we may
set

〈kk〉 � 1

3
〈k2〉I (3.72)

which gives the consistent statement

Tr〈kk〉 � Tr
1

3
〈k2〉I � 〈k2〉

Substituting these results into (3.71) gives

ln φ(a) � −1

6
〈k2〉a2 (3.73)

Comparing this finding with (1.8.7) gives

E(k) � 0

D(k) � 1

3
〈k2〉

(3.74)

10Let φ � 1+ ψ . Then, with ψ < 1, ln φ � ln(1+ ψ) � ψ − (ψ2/2)+ · · ·.
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With these results at hand, we turn to the central-limit theorem. The gen-
eralization of (1.8.29b) to three dimensions for the present problem is given
by

P (K, N ) � 1

[2πND(k)]3/2
exp

{−[K −NE(k)]2

2ND(k)

}
(3.75)

Substitution of our findings (3.74) into the preceding gives

P (K, N ) � 1

[(2π/3)N〈k〉]3.2
exp

[
−
(

K2

2
3N〈k2〉

)]
(3.76)

With the equipartition theorem, we write

〈k2〉 � 3mkBT (3.77)

WithM � Nm representing total mass of the fluid, substitution of (3.77) into
(3.76) gives the desired result:

P (K) � 1

(2πMkBT )3/2
exp

(
− K2

2MkBT

)
(3.78)

This finding may be written in a more concise form in terms of the variable

κ2 ≡ MkBT
which permits (3.78) to be written

P (K) � 1

(2πκ2)3/2
e−K

2/2κ2
(3.78a)

With reference to (1.8.29), we see that the latter distribution is Gaussian (in
three dimensions) with normalization∫

P (K) dK � 1

(2πκ2)3/2

∫ ∞

0
4πK2 dKe−K

2/2κ2 � 1

and variance

σ 2 � κ2 (3.79)

(which has dimensions of squared momentum).
Consider that the fluid has a mass of 1 g and is at room temperature (300

K). We find

σ � 2× 10−7 g-cm/s

Referring to (1.8.38), the preceding result indicates that there is a 70% prob-
ability that the center-of-mass speed (K/M) of the fluid is less than 2× 10−7

cm/s. Furthermore, with the asymptotic relation (1.8.39) we find the probability
that this period is in excess of 1 cm/s is given by

P (K/M > 1cm/s �
√

2

π

e−λ
2/2

λ

(
1− 1

λ2
+ · · ·

)
� 1 (3.80)
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where λ � 0.5 × 107. Thus there is an immeasurably small probability that
the fluid surges in a given direction with a macroscopic speed.

Statistical and dynamical pictures

The preceding example indicates that there is a finite probability that measure-
ment finds K �� 0. This is an evident contradiction of the law of conservation
of momentum as the system was assumed to be at rest. This situation arises
as a result of the probabilistic nature of the analysis. Molecular momenta are
viewed as random variables with given expectations and variances. This is
the statistical approach. In the dynamical picture, we calculate momenta as a
function of time from dynamical equations. In this representation, there is no
uncertainty in the outcome of measurement, and momentum is conserved.

3.4 Transport Coefficients

3.4.1 Response to Gradient Perturbations

Consider that a fluid is in equilibrium (or steady state) at given uniform values of
n, u, and T . Gradients of these variables develop under perturbation. The fluid
responds to these gradients in a manner to restore equilibrium (Le Chatelier’s
principle). Thus, with R written for “response” we may write

R[∇n] � nu (4.1a)

R[∇u ] � S (4.1b)

R[∇T ] � Q (4.1c)

R[∇ ] � J (4.1d)

That is, fluid motion will develop in response to gradients in density; compo-
nents of the strain tensor will develop in response to gradients in fluid velocity;
heat flow will develop in response to gradients in temperature, and currents
will develop in response to a gradient in electric potential.

The coefficients that relate gradients of the perturbation to response motions
are called transport coefficients, which are defined as follows.

Diffusion coefficient

This coefficient stems from the response relation (4.1a). It reads

nu � −D∇n (4.2)

The specific configuration that this equation describes is as follows. Consider
a two-component gas. Let us call atoms of one component, 1-particles and
atoms of the other component, 2-particles. These components have respective
densities n1 and n2. In equilibrium, species 1 and 2 are homogeneously in-
tersperse. Let the gas suffer a perturbation in density subject to the constraint
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n1 + n2 � constant. Then velocities will develop in the gas to restore the
homogeneous state in accord with (4.2).

In a one-component gas, one may conceptually label a certain subset of
particles with 1 and the complement, 2. The resulting motion of the con-
ceptually labeled subgroup of particles is called self-diffusion. Diffusion in a
two-component system is called mutual diffusion.

Thermal conductivity

This coefficient stems from (4.1c) and we write

Q � −κ∇T (4.3)

In the event that internal energy is proportional to T , (4.3) indicates that heat
flow will emerge in response to gradients in internal energy.

Coefficient of viscosity

It is conventional to partition the pressure tensor in the following manner:

P � Ip − S (4.4)

In this expression, p denotes scalar pressure and S represents the component

of P that emerges in response to gradients in velocity. The following two

properties are assumed for S:

1. S contains no terms other than ∇u terms since S � 0 if ∇u � 0.
2. S � 0 if the fluid is in a state of uniform rotation. Rigid-body rotation of

a fluid is characterized by a constant rotational frequency vector,�, such
that the macroscopic motion of an element of fluid at r is

u � �× r

Thus, property 2 states that S � 0 if u � �× r. This property is satisfied
by the tensor

a

(
∂ui

∂xk
+ ∂uk
∂xi

)
+ bδik∇ · u

where a and b are arbitrary constants. With this form at hand, we write

Sik � η
(
∂ui

∂xk
+ ∂uk
∂xi

− 2

3
δik
∂ul

∂xl

)
+ ζ δik ∂ul

∂xl
(4.5)

In this expression, η is the coefficient of shear viscosity and ζ is the coefficient
of bulk viscosity. Recall that a fluid is incompressible, providing ∇ · u � 0.
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The expression (4.5) may be written in terms of the symmetric strain tensor:11

?ik � 1

2

(
∂ui

∂xk
+ ∂uk
∂xi

)
(4.6a)

Tr? � ∇ · u (4.6b)

This permits (4.4) to be written in vector form:

P � Ip − 2η(?− 1
3I∇ · u)− ζ I∇ · u (4.7)

Note that this form has the property

Tr P � 3p − 2η[(Tr?)−∇ · u]− 3ζ∇ · u � 3p − 3ζ∇ · u

For an incompressible fluid,

Tr P � 3p

The term in (4.7) containing the coefficient of shear viscosity η should, by
arguments surrounding (4.1), enter as a response force that tends to diminish
gradients in fluids velocity. Let us consider a simple example that illustrates
this property.

The force on a fluid element stems from the pressure tensor ¯̄P . For an
incompressible fluid, (4.7) reduces to

¯̄P � ¯̄Ip − 2η ¯̄?
Consider further that the fluid is in a state of shear given by the fluid velocity

u � [ux(z), 0, 0]

The force on an infinitesimally thin slab of fluid of area>x>y that lies normal
to the z axis at a specific value of z is given by

Fx � Pxz>x>y � −η∂ux
∂z
>x>y

We see that the force Fx is opposite to the gradient of ux . It slows down the
slab, thereby diminishing the gradient in ux . A molecular mechanism for this
viscous, frictional force is described in Section 4.2.

Momentum equation

An important consequence of transport coefficients is that their defining rela-
tions serve as additional equations that contribute to closing the conservation

11Multiplying ? by >t gives the symmetric strain tensor relevant to solid-state
physics. For further discussion, see R. P. Feynman, R. B. Leighton, and M. Sands,
Feynmann Lectures on Physics, Vol. II, Addison–Wesley, Reading, Mass. (1964),
Chapters 38 and 39. In general, strain is the deformation of a medium that occurs in
response to stress.
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equations. Thus, for example, with (4.7) inserted into the momentum equation
(3.30), we find

ρ

[
∂u
∂t
+ (u · ∇)u

]
+∇p − η∇2u−

(
ζ + η

3

)
∇(∇ · u) � 0 (4.8)

This vector equation represents three equations in five unknowns. The conti-
nuity equation that relates ρ and u together with a remaining scalar equation
in these variables closes the system. With ζ � 0, (4.8) is part of a system of
fluid dynamic equations called the Navier–Stokes equations, which are more
fully described later in this chapter.

Electrical conductivity and mobility

We recall Ohm’s law,

J � σcE (4.9)

where σc is conductivity. The mobility coefficient µ is defined through the
equation

u � 〈v〉 � µE (4.10)

Drude model

The Drude model permits a simple relation between σ and µ to be found. We
adopt the following Langevin equation:

m〈v̇〉 � eE − vm〈v〉 (4.11)

where the second term on the right side represents a friction term. In
equilibrium, 〈v̇〉 � 0 and (4.11) reduces to12

u � e

vm
E

µ � e

vm

(4.12)

and

J � enu � e
2n

vm
E (4.13)

σ2 � e
2n

vm
� enµ (4.14)

Values of these parameters for some typical metals are listed in Table 5.1 in
Chapter 5.

12This topic is returned to in Section 3.7 of the present chapter and in Chapter 5.
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Electrochemical potential

Suppose a gradient in density is present in an aggregate of charge, in addition
to an electric field. In this event, two driving forces act on the charges, one due
to electric force and the other due to diffusion. To describe this situation, the
Langevin equation (4.11) is generalized to read

m〈v̇〉 � eε− vm〈v〉 + 〈FD〉
An expression for the diffusion force 〈FD〉 is obtained from (4.2). Thus

〈FD〉 � −vm〈x〉D � vmD∇n
n

Combining the latter two expressions, together with (4.13), in steady state we
find13

J � e
2n

vm
ε+ eD∇n (4.15)

Introducing the electric potential

ε � −∇ 
and recalling (4.14), we obtain

J � σc
e

∇(ψDe ) (4.15a)

where

ψD ≡ e
2Dη

σ

and ψD − e is called the electrochemical potential. Note, in particular, that
if ψ0 � e + constant, electric force is balanced by diffusion force and there
is no current flow. The notion of electrochemical potential plays an important
role in the theory of the diffusion of ions through semipermeable membranes.14

3.4.2 Elementary Mean-Free-Path Estimates

Basic notions

This formulation of transport coefficients rests on two key concepts. First,
consider a small volume of a fluid in equilibrium with number density of

13The relation (4.15) is often employed in the study of charge carriers in a semi-
conductor where it is termed the drift-diffusion equation. For further discussion, see
S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer Verlag,
New York (1984).

14See A. Katchalsky and P. Curran, Non-Equilibrium Thermodynamics in
Biophysics, Harvard University Press, Cambridge, Mass. (1965).
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FIGURE 3.17. A flux of nC/6 particles passes through the upper face per second.

particles, n. We introduce the mean speed C,15

〈v2〉 � C2

For point particles, equipartition of energy gives the relation16

mC2 � 3kBT

If particles have the mean speed C, what is the mean flux of particles, �
(number/cm2-s) that move in any of six Cartesian directions at any instant of
time? To answer this question consider a cylinder of height C and unit cross-
sectional area (see Fig. 3.17). Since particles have the mean speed C, on the
average, one-sixth of the particles in the cylinder will pass through the upper
surface per second. If we call this direction the z direction, we have

�z � 1

6
nC (4.16)

The second concept that comes into play in this analysis is the mean free
path, l. It is assumed that the only means for transport of information in the
fluid is via collisions. Thus, for example, equilibration of a gradient in n will
be made through collisions that carry particles from domains of large n to
domains of small n.

Another relation important to transport phenomena relates total scattering
cross section17 σ to particle number density and mean free path. It appears as

nσ l � 1 (4.17)

15More accurately, C here represents the rms molecular speed. In other parts of
the text, for purposes of writing the Maxwellian in concise form, we setmC2 ≡ kBT
[see (3.61a) and Problem 3.57].

16Each degree of freedom of a fluid in equilibrium has kBT /2 units of energy.
17Previously labeled σT . See (1.25). Recall also that σc denotes electrical

conductivity.
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FIGURE 3.18.

FIGURE 3.19. A particle that has a collision at z − l has no further collisions until
it reaches z.

The argument that supports this relation is that, on the average, one particle
will be found in the volume lσ (see Fig. 3.18).

Self-diffusion

Here we are speaking of the self-diffusion of a conceptually labeled subgroup
of particles of a single species. Let the density of such particles be n, and let
there be a gradient of n of these particles in the z direction (see Fig. 3.19).
The flux of particles in the +z direction that crosses the z-plane is equal to
the number that reach the z plane from (z− l), minus those that reach it from
(z+ l). That is,

�z � �z−1 − �z+l
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With (4.16), we have

�2 � 1

6
C[n(z− l)− n(z+ l)]

�z � 2lC

6

[
n(z− l)− n(z+ l)

2l

]

�z � nuz � −1

3
lC
∂n

∂z

Comparing with (4.2), we may conclude

D + 1

3
lC (4.18)

Mutual diffusion

We consider two distinct gases with respective densities n1 and n2. The gas
occupies a cylindrical volume with unit cross section. Labeling the midplane
of the cylinder z � 0, the system is initially constrained so that particles 1
occupy the domain z > 0 and particles 2 the domain z < 0. This constraint
is removed, and the two species diffuse across the midplane subject to the
previously mentioned conditions:

n1 + n2 � n � constant (4.19)

Thus we require that the net flux of particles 1 across the midplane be balanced
by the flux of particles 2 across the midplane.

�1 � n1u1, �2 � n2u2

�1 � −�2

(4.20)

Signs in this equation denote direction of flow. With this constraint and the
defining equaltities

�1 � −D12
dn1

dz
, �2 � −D21

dn2

dz
(4.21a)

we find that the mutual diffusion coefficients are equal:

D12 � D21 (4.21b)

Furthermore, in the limit that the two species become identical, D12 must
reduce to the coefficient of self-diffusion (4.18).

Let us consider the force exerted on gas 1 due to transfer of momentum
between the two components.18 First, let M12 denote average z momentum
transferred from gas 1 to gas 2 per unit volume per unit time due to collisions.

18This derivation follows that of J. C. Maxwell, Phil. Trans. Roy. Soc. 157, 49
(1867). An account of this approach may also be found in R. D. Present, Kinetic
Theory of Gases, McGraw–Hill, New York (1958).
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With the law of partial pressures for ideal gases (that is, p1 � n1kBT ), we may
write this force as

dp1 � kBT dn1 � −M12 dz (4.22)

We will calculateM12 for the case of rigid spheres. As was shown in Section 3.1,
the scattering of rigid spheres in the center-of-mass frame is isotropic. So the
average velocity of a molecule in the lab frame after collision is equal to the
velocity of the center of mass. We may conclude that the average decrement
in momentum suffered by a type 1 molecule per collision is

>p1 � m1(u1 − uc) � µ(u1 − u2) (4.23)

where µ is reduced mass and uc is the speed of the center of mass.19

Let σ represent the total scattering cross section for the interaction of these
two types of particles. Then the related collision frequency per unit volume is
given by

v12 � n1n2σC12 (4.24)

where

C2
12 �

3kBT

µ
(4.25)

is an effective two-particle thermal speed. Thus the average rate of momentum
transfer per unit volume is

M12 � v12>p1

M12 � n1n2(u1 − u2)κ12

(4.26)

where

κ12 ≡ µC12σ

Recalling the equality (4.20) permits (4.26) to be rewritten as

M12 � n�1κ12 (4.27)

where n � n1 + n2 is total particle density. Inserting (4.22) into the latter
equation gives

kBT
dn1

dz
� −M12 � −n�1κ12

whence

�1 � −kBT
nκ12

dn1

dz
� −D12

dn1

dz
(4.28)

19Recall (1.2); Ṙ ≡ uc � (m1u1 +m2u2)/(m1 +m2).
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This gives the desired symmetric expression

D12 � (kBT /3µ)1/2

nσ
(4.29)

The cross section for scattering of rigid spheres is given by (1.34):

σ � π
(
σ01 + σ02

2

)2

≡ πσ 2
12 (4.30)

where σ01 and σ02 are respective particle diameters. The result (4.29) then
becomes

D12 � (kBT /3µ)1/2

nπσ 2
12

(4.31)

which is seen to be independent of the proportions of the mixture. In the limit
that the two gases become identical, σ12 → σ0, the diameter of a sphere, n,
becomes the particle density of a single species (with n1 � n2 � n/2), and

kBT

3µ
→ 2kBT

3m
� 2

9
C2

Thus, with (4.18) we may write

D12 � D
in the said limit. The approximate form of the equality reflects the rough
estimates made in obtaining these coefficients.

As will be found later in the text, a more accurate form of the mutual diffusion
coefficient compared to the form (4.31) is given by

D12 � 3

8

(πkBT /2µ)1/2

nπσ 2
12

(4.31a)

Setting µ � m/2 and σ12 � σ0 gives the related self-diffusion coefficient.

Viscosity

We consider a spatially uniform fluid in a state of shear such that

u � [ux(z), 0, 0]

The fluid velocity that is only in the x direction varies only in the z direction
(see Fig. 3.20). Note first that for this configuration (4.7) (for an incompressible
fluid) reduces to

Pxz � −Sxz � −η∂ux
∂z

(4.32)

Each particle at z− l that suffers a collision and moves in the+z direction, on
the average, carries an x component of momentum from the region at z − l,
that is, mux(z − l). The flux of particles carrying this momentum, again, is
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FIGURE 3.20. The state of shear in a fluid.

given by (4.16). Thus, the mean x component of momentum flux across the z
plane due to transport of particles in the z direction is the difference between
the gain term

�+p �
1

6
nCmux(z− l)

and the loss term

�−p �
1

6
nCmux(z+ l)

The net force per area on the z plane (in the x direction) is20

Pxz � �+p − �−p
Pxz � 1

6
ρC2l

[
ux(z− l)− ux(z+ l)

2l

]

Pxz � −1

3
ρCl

∂ux

∂z

Comparing with (4.32) gives Maxwell’s classic estimate:

η � 1

3
ρCl (4.33)

With (4.17), we see that our expression for η is independent of fluid density.

20This force is akin to the retardation of a moving train due to loading of heavy
parcels from rest onto the train.
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Thermal conductivity

Continuing in this manner, and assuming a gradient in energy per particle
eK (z), we find (with �Q � 1

6nueK )

Qz � −1

3
nCl

∂eK

∂z

With

cV � ∂eK
∂T

written for the specific heat per particle, the preceding equation becomes

Qz � −1

3
nClcV

∂T

∂z

With (4.3), we may then write

κ � 1

3
nClcV (4.34)

Setting ρ � mn and comparing with (4.33) gives the relation

κ

η
� cV
m
≡ c̄V (4.35)

A compilation of the preceding expressions is given in Table 3.1.

Kinetic-theory parameters

The preceding relations suggest that certain ratios of transport coefficients are
constants. Thus we find

ηc̄V

κ
� 1 (4.36)

A closely related parameter, called the Prandtl number, is given by

P ≡ ηc̄p
κ
� ηc̄V

κ

c̄p

c̄V
� γ (4.37a)

Here γ is written for the ratio of specific heats, c̄p/c̄V , which for monatonic
ideal gases has the value 5

3 .
Another closely allied parameter in kinetic theory is the Schmidt number,

L ≡ η

ρD
� 1 (4.37b)

Values of η, κ , and the ratio κ/ηc̄V for some common gases are listed in
Table 3.2. Values of P and L are listed in Table 3.3. In Table 3.2 we see that
the ratio κ/ηc̄V is closer to 2.5 than 1 for monatomic gases. As we will find
in the following section, a more detailed kinetic analysis gives the value 5

2
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TABLE 3.1. Elementary Mean-Free-Path Expressions of Transport Coefficients

Coefficient Expressions

Self-diffusion D � 1

3
lC

Mutual-diffusion D12 � (kBT /3µ)1/2

nσ

Viscosity η � 1

3
ρCl

Heat conductivity κ � 1

3
nClcV

Ratio
κ

η
� cV
m
� c̄V

Electrical conductivity σc � e
2n

vm

Mobility µ � e

vm

Ratio
µ

D
� e

kBT
(Einstein relation)

TABLE 3.2. Observed Values of Viscosity and Thermal Conductivity
η × 107 κ × 103, 9γ − 5

4g/cm-s cal/cm-s-K κ/ηc̄V

He 1875 0.344 2.44 2.49
H2 840 0.416 2.06 1.92
CO2 1377 0.034 1.64 1.70
CH4 1027 0.072 1.75 1.70

for this ratio.21 The last column of Table 3.2 suggests that a uniformly good
approximation for this ratio is the value (9γ − 5)/4.22 In Table 3.3 we see that
P andL lie close to unity for all materials listed. A more detailed kinetic study
gives the values P � 2

3 � 0.67 and L � 5
6 � 0.83.22

3.4.3 Diffusion and Random Walk

In Section 1.7.5, we found that, relevant to the displacement l in n steps of
a random walk, 〈l2〉 � n. Equivalently, with displacement written x and n
replaced by time t , 〈x2〉 � t . We wish now to show the relation between this
result and diffusion.

21See Table 3.4.
22For further discussion see A. Isihara, Statistical Physics, Academic Press, New

York (1971).
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TABLE 3.3. Observed Values of the Schmidt and Prandtl Numbers
L P

Ne 0.73 0.66
Ar 0.75 0.67
N2 0.74 0.71
CH4 0.70 0.74
O2 0.74 0.72
CO2 0.71 0.75
H2 0.73 0.71

Combining (4.2) with the continuity equation (3.14) gives the diffusion
equation

∂n

∂t
� D∇2n (4.38)

Consider that, at time t � 0,

n(r, 0) � N0δ(r) (4.39)

The solution to (4.38) corresponding to this intial value is the Gaussian
distribution [recall (1.8.34)]

n(r, t) � N0

(4πDt)3/2
exp

[
−
(
r2

4Dt

)]
(4.40)

Note that this distribution maintains the normalization∫ ∞

0
dr4πr2n(r, t) � N0 (4.41)

We may identify

4πr2n(r, t) dr

N0
� P (r, t) dr (4.42)

as the probability of finding a particle in the shell dr about r at the time t . This
probability density permits calculation of the mean square displacement

〈r2〉 �
∫ ∞

0
P (r, t)r2 dr �

∫ ∞

0

4πr4e−r
2/4Dt

(4πDt)3/2
dr � 6Dt

〈r2〉 � 6Dt

(4.43)

which is relevant to a three-dimensional random walk23 and is seen to maintain
the fundamental relation 〈r2〉 ∝ t , with 6D playing the role of a proportionality
constant. This result was found previously (1.8.31) employing the central-limit
theorem.

23Random walk in various dimensions is discussed by R. L. Liboff, Phys. Rev.
141, 222 (1966).
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3.4.4 Autocorrelation Functions, Transport Coefficients, and
Kubo Formula

Self-diffusion

In this section we present a brief description of an alternative approach to the
evaluation of transport coefficients. We begin with the diffusion coefficient.24

Our starting equation is (4.38).
With the Fourier transform

n̄(k, t) �
∫
dreik·rn(r, t) (4.44)

we find that the transform of (4.38) is given by

∂n̄

∂t
� −k2Dn̄ (4.45)

which has the solution

n̄(k, t) � exp(−k2Dt) (4.46)

We wish to recapture the result (4.43). From (4.46), we find

∂2n̄

∂k2

∣∣
k�0
� −2Dt (4.47)

whereas differentiation of (4.44) gives [with n(r, t) isotropic]

∂2n̄

∂k2

∣∣
k�0
� −1

3

∫ ∞

0
4πr4n(r, t) dr (4.48)

Assuming that ∫ ∞

0
4πr2n(r, t) dr � 1

again permits us to interpret n(r, t) as a probability density. Thus (4.48) gives

∂2n̄

∂k2

∣∣∣∣
k�0

� −1

3
〈r2(t)〉 (4.49)

Equating this result to (4.47) recaptures (4.43):

〈r2(t)〉 � 6Dt

If the particle begins its random walk at r0 instead of at the origin we obtain

〈|r(t)− r0|2〉 � 6Dt (4.50)

We wish to express this result in terms of a time correlation function.

24An extensive review of these techniques is given by R. Zwanzig, Ann. Rev. Phys.
Chem 16, (1965). Our presentation follows that of E. Helfand, Phys. Fluids 4, 681
(1961).
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Suppose that the velocity v(t) of the particle in question is known. Then we
may write

r(t)− r0 �
∫ t

0
v(t ′) dt ′

and it follows that

[r(t)− r0]2 �
∫ t

0
dt ′

∫ t

0
dt ′

∫ t

0
dt ′′v(t ′′) · v(t ′)

Taking the ensemble average of both sides of this equation gives

〈[r(t)− r0]2〉 �
∫ t

0
dt ′

∫ t

0
dt ′′〈v(t ′′) · v(t ′)〉 (4.51)

Assuming the process to be homogeneous in time, we write

〈v(t ′) · v(t ′′)〉 � 〈v(t ′ − t ′′) · v(0)〉 (4.52)

Introducing the variable t̃ � t ′ − t ′′ and T � t ′ + t ′′ (see Fig. 2.12) gives the
integral equality∫ t

0
dt ′

∫ t

0
dt ′′g(t ′ − t ′′) � 2t

∫ 1

0

(
1− t̃

t

)
g(t̃) dt̃

This relation permits (4.51) to be written as

〈[r(t)− r0]2〉 � 2t
∫ t

0

(
1− t̃

t

)
〈v(0) · v(t̃)〉 dt̃

whence, with (4.50),

6D � 2
∫ t

0

(
1− t̃

t

)
〈v(0) · v(t̃)〉 dt̃

Assuming rapid decay of the time correlation 〈v(0) · v(t̃)〉 permits the
preceeding to be written (with t̃ replaced by t) as

D � 1

3

∫ ∞

0
〈v(0) · v(t)〉 dt (4.53)

which is the desired result, expressingD in terms of the velocity autocorrelation
function (see Section 1.8.8 and Problem 3.63 addressing “long-time tails”).

Recalling the Einstein relation in Table 3.1, which relates mobility and
diffusion coefficients, the preceding equation permits us to write25

µ � e

3kBT

∫ ∞

0
〈v(0) · v(t)〉 dt (4.53a)

25As noted in Section 1.8.4, fluctuation in the number of particles is termed shot
noise. Fluctuation in velocities, such as included in (4.53), is termed Johnson noise
(named for J. B. Johnson).
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As a simple application of (4.53), consider that

v(t) � v(0)e−t/τ

where τ is a relaxation time. Substituting this result into (4.53) gives

D � 1

3

∫ ∞

0
〈v2(0)e−t/τ 〉 dt

Taking the integral inside the ensemble average gives

D � 1

3
〈τv2(0)〉

Assuming that the relaxation time, τ , is independent of the starting velocity,
we find

D � 1

3
τ 〈v2(0)〉 � 1

3
τC2

D � 1

3
lC

in agreement with Maxwell’s result (4.18). Proceeding in a manner similar
to that in obtaining (4.53), time-correlation expressions for other transport
coefficients, such as viscosity and thermal conductivity, may also be so
expressed.26

Linear response theory

The preceding development may be generalized to arbitrary Hamiltonian sys-
tems in the following manner. Let A(q, p) be a dynamical function that is not
explicitly dependent on time. With (1.1.25), we write

dA

dt
� −[H,A] � −L̂A (4.54)

whose solution may be written

A(t) � e−tL̂A(0) (4.55)

The Liouville operator, L̂, was introduced previously in the Liouville equation
(2.1.3), whose solution in turn may be written

f (t) � etL̂f (0) (4.56)

The expectation of A at the time t is given by

〈A〉 �
∫
A(0)f (t) dq dp (4.57)

26See, for example, D. A. McQuarrie, Statistical Mechanics, Harper & Row, New
York (1973).
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Here we have introduced the notation

A(0) � A(q, p) (4.57a)

With (4.56), (4.57) may be written

〈A〉 �
∫
A(0)(etL̂f (0)) dq dp (4.58)

Consider that the Hamiltonian, H0, of a given system is perturbed so that

H � H0 − εH̄F (t) (4.59)

where ε is a parameter of smallness, H̄ (q, p) is time independent, and F (t) is
independent of q and p. The distribution is likewise perturbed and we write

f � f (0) + ε>f (4.59a)

Substituting the latter two relations into the Liouville equation gives the
following 0(ε) equation:

∂>f

∂t
− L̂0>f − [f (0), H̄ ]F (t) � 0 (4.60)

where L̂0 is the Liouville operator corresponding to H0. Operating on (4.60)
with exp−tL̂0 gives

∂

∂t
[e−tL̂0>f ] � e−tL̂0 [f (0), H̄ ]F (t)

Integrating, we find

>f �
∫ t

0
e(t−t ′)L̂0 [f (0), H̄ ]F (t ′) dt ′ (4.61)

The average of a response B to the perturbation is then given by

〈B〉 �
∫
B>f (t) dq dp

where we have assumed that 〈B〉 � 0 in equilibrium and have dropped the
bookkeeping parameter ε. Substituting (4.61) into this relation gives [in the
notation of (4.57)]

〈B〉 �
∫
B(0)

∫ t

0
e(t−t ′)L̂0 [f (0), H̄ ]F (t ′) dt ′ dq dp (4.62)

or, equivalently,

〈B(t)〉 �
∫ t

0
φ(t − t ′)F (t ′) dt ′ (4.63)

where the function φ is as implied. As (4.63) is a convolution integral, the
Fourier transform gives the following widely employed result:

〈B(ω)〉 � φ(ω)F (ω) (4.64)
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The term F (ω) is the transform of the perturbing force, B(ω) is the transform
of the response to the perturbation, and φ(ω) plays the role of the transform of
the related transport coefficient.

A concise form of φ(t − t ′) ≡ φ(t̃) is obtained as follows. With (4.62) and
(4.63), we write (with t̃ replaced by t)

φ(t) �
∫
B(0)etL̂0 [f (0), H̄ ] dq dp

A single parts integration gives, with (4.55),

φ(t) �
∫
B(t)[f (0), H̄ ] dq dp (4.65)

Again integrating by parts, we find

φ(t) �
∫

[H̄ , B(t)]f (0) dq dp

or, equivalently,

φ(t) � 〈[H̄ , B(t)]〉0 (4.66)

which is the desired result. The zero subscript reminds us that the average is
calculated with the equilibirum distribution, f (0).

The quantum analog of (4.66) is given by

φ(t) � 1

ih̄
Tr{ρ̂(0)[H̄ , B̂(t)]} (4.67)

where ρ̂ is the density matrix and Tr denotes the trace.27 The preceding relation
is often referred to as Kubo’s formula. 28

Electrical mobility

Let us apply (4.64) in the calculation of the Fourier transform of electrical
mobility. We identify the electric field, eE , as the perturbing force, and particle
velocity v is the response. We will make our calculation with respect to the
Cartesian coordinate xi . In the notation of (4.59), we then identify

H̄ � xi, Fi � εEi
and the response B � vj . With these relations, (4.64) gives

〈vj (ω)〉 � µji(ω)Ei(ω) (4.68)

where µji is the mobility tensor:

µji(ω) � eφji(ω) (4.69)

27These quantum concepts are fully developed in Section 5.2.
28R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). For further discussion, see R.

Kubo, Statistical Mechanics, Wiley, New York (1965), Chapter 6.
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The Fourier transform φ(ω) is obtained from (4.66). That is, with our
identifications,

φji(t) � 〈[xi, vj (t)]〉0 (4.70)

Again assuming a simple relaxation model, we write

v(t) � v(0)e−t/τ

where τ is a constant relaxation time. Thus (4.70) becomes

φji(t) � 〈[xi, vj ]e−t/τ 〉0
where, in the spirit of (4.57a), we have set v(0) � v. The preceding equation
gives

φji(t) � δij
m
e−t/τ (4.71)

Introducing the Fourier transform

φji(ω) �
∫ ∞

0
dtφji(t)e

iωt

and inserting (4.71), we obtain

φji(ω) � δij
m

[
1

(1/τ )− iω
]

(4.72)

which is the desired result. In the DC limit, we set ω � 0 to obtain

φji(0) � δij τ
m

Inserting this result into (4.69), we find

µji(0) � δij eτ
m

which with (4.68) gives

〈v〉 � eτ
m
ε (4.73)

These latter two relations agree with our previous mean-free-path estimates
listed in Table 3.1.

With these elementary notions of transport coefficients behind us, we turn
to one of the more powerful techniques of solving the Boltzmann equation.
As will be demonstrated, an integral component of this method of solution
addresses the calculation of transport coefficients.
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3.5 The Chapman–Enskog Expansion

3.5.1 Collision Frequency

The collision integral of the Boltzmann equation (2.14) may be written

Ĵ (F | F ) ≡ −F
∫∫

σ d�g dv1F (v1)+
∫∫

σ d�g dv1F
′F ′1 (5.1)

It is evident from Fig. 3.10 that the quantity

ν(v) �
∫∫

σ d�g dv1F (v1) (5.2)

represents a collision frequency.29

Let us rewrite the Boltzmann equation as

DF

Dt
�
∫∫

σ d�g dv1(F ′F ′1 − F − FF1) ≡ ÎF (5.3)

which serves to define the collision–integral operator Î . With (5.2), we see that
Î has dimensions of frequency s−1. Thus we may write

Î � v0
ˆ̄I (5.4)

where ˆ̄I is nondimensional and v0 has been written for a constant with
dimensions s−1. In this notation, (5.3) appears as

DF

Dt
� v0

ˆ̄IF (5.5)

The Chapman–Enskog expansion is relevant to the domain of large collision
frequency. With C taken as thermal speed, we write

C � lv (5.6a)

or, equivalently, with (4.17),

v � nσC (5.6b)

The relation (5.6a) indicates that large collision frequency is equivalent to
small mean free path, whereas (5.6b) indicates that such extremes are attained
in the limit that the product nσC grows large.

29Discussion of this parameter is returned to in Section 4.2.1 in derivation of
the Krook–Bhatnager–Gross equation and in Section 6.4 relevant to the distinction
between hard soft potentials.
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3.5.2 The Expansion30

The first step in the Chapman–Enskog expansion is to write the Boltzmann
equation as (

∂

∂t
+ D̂

)
F � 1

ε
ÎF (5.7)

where the dimensionless parameter ε � 1. This parameter may be thought of
as a bookkeeping parameter in that it is eventually set equal to 1. With (5.5),
we see that the form (5.7) is equivalent to stipulating that the gas is dominated
by large collision frequency. The parameter D̂ in (5.7) is given by

D̂ ≡ v · ∂
∂x
+K · ∂

∂v
(5.7a)

Step 2 in the Chapman–Enskog procedure is to introduce the expansion

F � F (0) + εF (1) + ε2F (2) + · · · (5.8)

The normalization ofF follows (1.6.14a). Furthermore,F satisfies the moment
relations (3.12), (3.13) and (3.32):

n �
∫
F dv, nu �

∫
Fv dv,

3

2
nkBT �

∫
mc2

2
F dv (5.9)

Step 3 in the Chapman–Erskog expansion stipulates that the variables
(n, u, T ) are all 0(1) quantities and stem from F (0), whereas terms in the series

(5.8) corresponding to F (i), i > 0, contribute to the higher moments Q and ¯̄P .
Thus we write ∫

F (0)

(
1
v
c2

)
dv �

(
n

nu
3nkBT /m

)
(5.10a)

∫
F (i)

(
1
v
c2

)
dv �

(
0
0
0

)
, i > 0 (5.10b)

Q �
∑
l

εlQ(l) � 1

2

∑
l

εl
∫
F (l)cmc2 dc (5.10c)

¯̄P �
∑
l

εl ¯̄P (l) �
∑
l

εl
∫
F (l)mcc dc (5.10d)

30This technique was developed in a series of independent papers by S. Chapman
and D. Enskog over the second decade of this century. See references. This method
of solution is also described in S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases, 3rd ed., Cambridge University Press, New York
(1970).
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Expansion of D̂ and Ĵ

Substitution of the series (5.8) into D̂F gives

D̂F � D̂F (0) + εD̂F (1) + · · · (5.11)

For the collision integral, we obtain

Ĵ (F | F ) � Ĵ
( ∞∑
l�0

εlF (l)

∣∣∣∣
∞∑
n�0

εnF (n)

)
�

∞∑
l�0

∞∑
n�0

εl+nĴ (F (l) | F (n))

(5.12)
It proves convenient to introduce the ordered operator

Ĵ (s)(F (0), F (1), . . . , F (s)) �
∑
n

∑
l

(n+l�s

Ĵ (F (l) | F (n)) (5.13)

The expansion (5.12) may then be written

Ĵ (F | F ) � Ĵ (0)(F (0))+ εĴ (1)(F (0), F (1))

+ ε2Ĵ (2)(F (0), F (1), F (2))+ · · · (5.14)

Thus, for example,

J (1)(F (0), F (1)) � Ĵ (F (0) | F (1))+ Ĵ (F (1) | F (0)) (5.14a)

Expansion of the time derivative

The fourth step in the Chapman–Enskog expansion addresses the time deriva-
tive in (5.7). It stipulates that the time dependence of F is solely dependent on
the hydrodynamic variables n, u, T so that

∂F

∂t
� ∂F
∂n

∂n

∂n
+ ∂F
∂u
· ∂u
∂t
+ ∂F
∂T

∂T

∂t
(5.15)

The time derivatice is expanded as

∂

∂t
� ∂0

∂t
+ ε ∂1

∂t
+ ε2 ∂2

∂t
+ · · · (5.16)

The physical meaning of this expansion is that lowest-order terms vary most
rapidly, whereas higher-order terms are more slowly varying. Explicit ex-
pressions for the time derivations in (5.15) follow from ε-ordering of the
conservation equations (3.14), (3.30), and (3.31). We obtain [recall (3.31) for
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notation]

∂0n

∂t
� −∇ · nu,

∂rn

∂t
� 0, r > 0

∂0u
∂t
� −(u · ∇)u+ K̃ − 1

ρ
∇ · ¯̄P (0)

∂ru
∂t
� −1

ρ
∇ · ¯̄P (r)

, r > 0

∂0T

∂t
� −u · ∇T − 2

3

1

nkB
[ ¯̄P (0)

: ∇u +∇ · Q(0)]

∂rT

∂t
� − 2

3nkB
[ ¯̄P (r)

: ∇u +∇ · Q(r)], r > 0

(5.17)

When written in terms of the symmetric strain tensor ¯̄? (4.6a), the last two
equalities in (5.17) appear as

∂0T

∂t
� −u · ∇T − 2

3

1

nkB
[∇ · Q(0) + ¯̄? : ¯̄P (0)

]

∂rT

∂t
� − 2

3nkB
[∇ · Q(r) + ¯̄? : ¯̄P (r)

], r > 0

(5.17a)

Substituting the preceding expansions for F , ∂F/∂t , ∂/∂t , D̂F , and Ĵ (F | F )
into the Boltzmann equation (5.7) gives

ε

[(
∂0

∂t
+ ε ∂1

∂t
· · ·

)
(F (0) + εF (1) + · · ·)+ (D̂F (0) + εD̂F (1) + · · ·)

]
+ [Ĵ (0)(F (0))+ εĴ (1)(F (0), F (1))+ · · ·] (5.18)

where, with (5.16), we write

∂lF
(r)

∂t
� ∂F

(r)

∂n

∂1n

∂t
+ ∂F

(r)

∂u
· ∂lu
∂t
+ ∂F

(r)

∂T

∂1T

∂t
(5.18a)

Equating coefficients of equal powers of ε gives the desired series of coupled
integral equatins for F (r):

0 � Ĵ (0)(F (0)) (5.19a)(
∂0

∂t
+ D̂

)
F (0) � Ĵ (1)(F (0), F (1)) (5.19b)(

∂0

∂t
+ D̂

)
F (1) + ∂1

∂t
F (0) � Ĵ (2)(F (0), F (1), F (2)) (5.19c)
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The first-order solution is obtained by solving (5.19a):

Ĵ (F (0) | F (0)) � 0 (5.20)

First-order solution

Recalling our discussion of the Boltzmann H theorem (Section 3.4), the
solution to (5.20) is the local Maxwellian F 0 (3.58):

F (0) � F 0 � n

(2πRT )3/2
exp

( −c2

2RT

)
(5.21)

In this manner we find that the first-order solution in the small mean-free-path
approximation is the local MaxwellianF 0. This solution may be used to obtain
a first-order set of hydrodynamical equations for the purpose of evaluating n,
u, and T . To construct these, we first calculate the heat conductivity Q and the

stress ¯̄P . From previous definitions (3.24) and (3.25), we write

Q � m
2

∫
c2cF dc

¯̄P � m
∫

ccF dc

Substituting F 0 into these two formulas gives

Q(0) � 0 (5.22a)

¯̄P (0) � ¯̄Ip � ¯̄InkBT (5.22b)

To lowest order, there is no heat flow and the pressure tensor is diagonal.
Substituting these values into the conservation equatins (3.14), (3.30), and
(3.31) gives the first-order approximation to these equations, which are called
the Euler equations:

∂n

∂t
+∇ · nu � 0 (5.23a)

ρ

(
∂

∂t
+ u · ∇

)
u+∇p � ρK (5.23b)(

∂

∂t
+ u · ∇

) ( p
n5/3

)
� 0 (5.23c)

The adiabatic quality of flow (5.23c) in this approximation is seen to be con-
sistent with the property that there is no heat flow (5.22a). Equations (5.21)
to (5.23) constitute the first-order solutions to the Boltzmann equation in
the Chapman–Enskog procedure. Solving the Euler equations (5.23) gives
n � n(x, t), u � u(x, t), and T � T (x, t), which when substituted in (5.21)
completely determines F 0(x, v, t).

Each successive iterate in the Chapman–Enskog expansion yields a more
detailed set of hydrodynamic equations, better suited to higher-order spatial



3.5 The Chapman–Enskog Expansion 199

fluctuations in the fluid. As noted above, the first iterate gives the Euler equa-
tions (5.23). Equations stemming from higher-order approxiamtions are named
as follows. The second iterate gives the Navier–Stokes equations [of which (4.8)
is the momentum equation]. The third iterate gives the Burnett equations.

3.5.3 Second-Order Solution

The second-order solution is obtained from (5.19b):(
∂0

∂t
+ D̂

)
F (0) � Ĵ (1)(F (0), F (1)) (5.24)

We introduce the function  ,

F (1) � F 0 (5.25a)

and [with (5.14a)] the �̂ operator

�̂ ≡ 1

F 0
Ĵ (1)(F 0, F 0 ) � 1

F 0
|Ĵ (F 0 | F 0 )+ Ĵ (F 0 | F 0)]∫∫

σ d�g dv1F
0(v1)[ ′1 + ′ − 1 − ]

(5.25b)

The starting equation (5.24) may then be written

1

F 0

(
∂0

∂t
+ D̂

)
F 0 � �̂ (5.26)

Note in particular that �̂ is a linear operator. Terms on the left of (5.26) give

1

F 0

∂0F
0

∂t
�
[

1

n

∂0n

∂t
+ 2ξ · ∂0u

∂t
+
(
ξ 2 − 3

2

)
1

T

∂0T

∂t

]

1

F 0
v · ∂F

0

∂x
� v ·

[
1

n

∂n

∂x
+ 2ξ · ∂u

∂x
+
(
ξ 2 − 3

2

)
1

t

∂T

∂x

] (5.27)

where31

ξ 2 ≡ c2

2RT
≡ c2

C̄2
(5.28)

and ξ · ∂u/∂x is summed over parallel components of ξ and u. Replacing time
derivatives in (5.27) by related expressions in (5.17) gives (with K � 0)

√
2RT

(
ξ 2 − 5

2

)
ξ · ∇ ln T + 2

(
ξξ − 1

3
ξ 2 ¯̄I

)
: ∇u � �̂ (5.29)

31In most of the text, mC2 ≡ kBT (save for Section 4.2, where C was used to
denote rms molecular speed). To avoid confusion here, we set mC̄2 � 2kBT .
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which is seen to be a linear inhomogeneous integral equation for the
distribution  .

If this equation is solved for  , then F is known to second order:

F � F 0[1+ ] (5.30)

The general solution to (5.29) is a linear combination of homogeneous, h,
and inhomogeneous,  i , solutions, where

�̂ h � 0 (5.31)

and  i is a particular solution of (5.29).
From the structure of �̂, it is evident that  h is any linear combination of

the three summational invariants.

 h � α + β ·mc + 1

2
γmc2 (5.32)

where α, β, γ are arbitrary constants. To arrive at the particular solution to
(5.29), we note that the left side is in the form

LHS (5.29) � X(ξ ) · (2RT )1/2∇ ln T + ¯̄Y (ξ) : ∇u (5.33)

Since �̃ is a linear operator and  is a scalar, (5.33) suggests that we take the
particular solution to (5.29) to have the form32

 i � A(ξ) · (2RT )1/2∇ ln T + 2B(ξ) : ∇u (5.34)

Thus, to find the inhomogeneous solution i , we must obtain the vector func-

tion A and the tensor function B. Inserting this form into (5.29) and equating

coefficients of the different components of ∇ ln T and ∇u gives the following

equations for A and B :

�̂A � ξ
(
ξ 2 − 5

2

)
(5.35a)

�̂B �
(
ξξ − 1

3
ξ2I

)
≡ °
ξξ (5.35b)

Note that the only variables in A are ξ, n, and T . The only vector that can
be formed from these elements is ξ itself. Thus we write

A �′ bsA(ξ 2)ξ (5.36)

where A is some scalar function.
The linearity of (5.35b) and the form of its inhomogeneous term imply that

B is a symmetric, traceless tensor. Again B depends only on ξ, n, and T . The

32Note that the dimension of �̂ is frequency and that of A and B is time.
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only symmetric traceless tensor that can be constructed from these variables

is ξξ− 1
3ξ

2I , so

B � B(ξ 2)

(
ξξ − 1

3
ξ 2I

)
(5.36a)

The scalar functions A and B satisfy the integral equations

�̂(ξA) � ξ
(
ξ 2 − 5

2

)
(5.37a)

�̂
[(
ξξ− 1

3
ξ 2I

)
B
]
�
(
ξξ − 1

3
ξ 2I

)
(5.37b)

Returning to the homogeneous solution (5.30), we note that the constants α,
β, and γ contained in h are determined by the constraint conditions (5.10b).
Inserting

F1 � F 0[ h + i] (5.38)

into these constraint equations yields the three integral conditions (see
Appendix B, Section B.1): ∫

F 0

(
α + γ 1

2
mc2

)
dc � 0 (5.39a)∫

F 0[A(ξ 2)∇ ln T +mβ]mc2 dc � 0 (5.39b)∫
F 0

(
α + 1

2
mc2γ

)
1

2
mc2 dc � 0 (5.39c)

Equations (5.39a) and (5.39c) imply that

α � γ � 0 (5.40)

whereas (5.39b) implies that β is in the direction of ∇ ln T , so it may be
absorbed into the ∇ ln T term in  i .

The total solution of the Boltzmann equation to terms of second order then
appears as

F � F 0[1+ (2RT )1/2A · ∇ ln T + 2B : ∇u ]

� F 0

[
1+ (2RT )1/2A(ξ )ξ · ∇ ln T + B(ξ )

(
ξξ − 1

3
ξ 2I

)
: ∇u

]
(5.41)

where A and sB are particular solutions to integral equations (5.37).
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3.5.4 Thermal Conductivity and Stress Tensor

With the form of the second-order solution (5.41) at hand, it is possible to obtain
expressions for corresponding nonvanishing second-order contributions to Q

and P . These are obtained by inserting (5.41) into the defining equations (4.3)
and (4.7) (with ζ � 0).

Q � 1

2
m(2RT )3/2

∫
ξ 2ξF dc � 0+Q(1) (5.42a)

P � m2RT
∫
ξξF dc � Ip + P (1) (5.42b)

Coefficient of thermal conductivity

Substituting (5.41) into (5.42), we find

Q � mC̄
4

2
∇ ln T · F 0ξ 2ξξA(ξ 2) dc (5.43)

(Recall that
∫
F 0 dc has dimensions of number density.) With reference to

(B.B1.3), the preceding reduces to

Q � 2

3

k2
BT

m
∇T

∫
F 0ξ 4A(ξ 2) dc (5.44)

With
∫
F 0A(ξ 2)ξ 2 dc � 0 [which corresponds to setting β � 0 in (5.39b)],

the preceding equation may be rewritten

Q � 2

3

k2
BT

m
∇T

∫
ξA(ξ 2) · F 0

(
ξ 2 − 5

2

)
ξ dc (5.45)

With (5.35a), we find

Q �
(

2

3

k2
BT

m

∫
F 0A · �̂A dc

)
∇T (5.46)

or, equivalently,

Q � 2

3

k2
BT

m
〈A | �̂A〉∇T (5.47)

Note, in particular, that the bracket symbol 〈|〉 in (5.47) includes the local
Maxwellian and an inner product. The latter expression implies the following
form for the coefficient of thermal conductivity:

κ � −2

3

k2
BT

m
〈A | �̂A〉 (5.48)
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Viscosity

To obtain the related expression for viscosity, we recall (5.42b) and write

P (1) �
∫
Fmcc dc � m

∫
F 0 cc dc (5.49)

With (5.41), the latter equation may be written (deleting the superscript 1)

P � 4kBT
∫
F 0B(ξ 2)(

°
ξξ : ∇u )ξξ dc (5.50)

Employing the results of Problem 3.6 permits (5.50) to be written

P � 4kBT

5

°∇u
∫
F 0B(ξ 2)(

°
ξξ :

°
ξξ) dc (5.51)

� 4kBT

5

°∇u
∫
F 0 °
ξξ : B dc

With (5.35b), we write

P � 4kBT

5

°∇u
∫
F 0B : �̂B dc

P � 4kBT

5
〈B | �̂B〉 °∇u

(5.52)

Note that the inner product 〈|〉 now includes the trace operation, which renders
it a scalar. Note that we have written [recall (4.6a)]

°∇u � ?− 1

3
I Tr ∇u

The shear stress component of (4.7) may then be written

P � −2η
°∇u

which with (5.52) gives

η � −2

5
kBT 〈B | �̂B〉 (5.53)

3.5.5 Sonine Polynomials

In this manner we find that transport coefficients depend on the matrix elements
of the interaction operator �̂. To evaluate these expressions, we work with
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Sonine polynomials,33 defined as follows (see Problems 3.7):

S(n)
m (x) �

n∑
p�0

(m+ n)!(−x)p

(m+ p)!(n− p)!p!
(5.54a)

Some leading values are

S(0)
m (x) � 1, S(1)

m (x) � m+ 1− x
S(2)
m (x) � (m+ 1)(m+ 2)

2
− x(m+ 2)+ x

2

2
The orthogonality of these polynomials is given by∫ ∞

0
xme−xS(n)

m (x)S(q)
m (x) dx � 0, n �� q

� (m+ n)!

n!
, n � q (5.54b)

Expansions of A and B (r) are given by

A �
∞∑
r�1

arS
(r)
3/2(ξ 2)ξ ≡

∑
arA(r) (5.55a)

B �
∞∑
r�1

brS
(r−1)
5/2 (ξ 2)

°
ξξ ≡

∑
brB

(r) (5.55b)

Note that A(r) and B (r) are dimensionless.

First approximation for A

To find the ar coefficients, we multiply (5.35a) by F 0A(l) and integrate:

〈A(l) | �̂A〉 �
∫
F 0

(
ξ 2 − 5

2

)
ξ · A(l) dc ≡ nαl (5.56)

Note that αi , as well as A(l), is dimensionless and n denotes number density.
Inserting (5.55a) into (5.56) gives

nαl �
∑
r

ar〈A(l) | �̂A(r)〉 ≡
∞∑
r�1

Alrar (5.57)

33N.J. Sonine, Math. Ann. 16, 41 (1880). First introduced in the present con-
text by D. Burnett, Proc. London Math. Soc.. Ser. 2, 39, 385 (1935). Subsequently
shown by C. S. Wang Chang and G. E. Uhlenbeck to be eigenfunctions of the �̂
operator for Maxwell molecules. Univ. Michigan Engr. Rept. CM-681 (1952). This
topic is discussed in the present work in Section 6.5. We note further that, apart
from a multiplicative constant, Sonine and Laguerre polynomials are identical. La-
guerre polynomials come into play in the solution of the Schroedinger equation for
the hydrogen atom. See R. L. Liboff, Introductory Quantum Mechanics, 4th ed.,
Addison-Wesley, San Francisco, CA. (2002).
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The αl are known parameters (5.56) as are the A(l) functions (5.55a). Thus
(5.57) comprises an infinite-dimensional matrix equation for the coefficients
ar .

Varying orders of solution (within the second-order Chapman–Enskog ap-
proximation) are obtained by cutting off the Alr matrix. Thus, for example,
keeping only the leading terms in (5.57) gives

a1 � nα1

A11

Substituting into (5.55a), we find

A � nα1

A11
A(1)

whence 〈
A | �̂A

〉
� a2

1A11 � n
2α2

1

A11
(5.58)

Evaluating α1 from (5.56), we find (see Problem 3.8)〈
A | �̂A

〉
�
(

15

4

2
)
n2

A11
(5.59)

Substituting into (5.48) gives the following generic form for the lowest-order
approximation to the coefficient of thermal conductivity within the second
Chapman–Enskog approximation:

κ � −25

4

c̄vkBT n
2

A11
(5.60)

Here we have written c̄V for cV /mass, which for particles with no internal
structure has the value 3kB/2m. The A11 element contains specifics of the
particle interaction. However, a very explicit form of this term may be written
in terms of integration over scattering parameters. We obtain

A11 � −4n2�(2,2) (5.61)

where, in general (for study of one-component gases)

�(l,q) ≡
√

4πkBT

m

∫ ∞

0

∫ ∞

0
e−y

2
y2q+3(1− cosl θ )s ds dy (5.62a)

where

y2 ≡ q2

2C̄2
� mg2

4kBT

With (1.16) and following, we recall that the scattering angle θ � θ (s, g). Thus
(5.62a) may be rewritten

�(l,q) �
√

4πkBT

m

∫ ∞

0
e−y

2
y2q+3Q(l) dy (5.62b)
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whereQ(l) is the weighted cross section.34

Q(l) �
∫ ∞

0
(1− cosl θ )s ds (5.62c)

Note that the dimensions of �(l,q) are the same as v/n.
Substituting (5.62a) into (5.60) gives

κ � 25

16

c̄V kBT

�(2,2)
(5.63)

First approximation for B

To find the br coefficients in (5.55b), we multiply (5.35b) by F 0B (l) and
integrate.

〈B (l) | �̂B (l)〉 �
∫
F 0 °
ξξ : B (l) dc ≡ nβl (5.64)

Introducing (5.55b) gives∑
r

br〈B (l) | �̂B (r)〉 � nβl

nβl �
∑
r

Blrbr

(5.65)

Again we obtain a matrix equation of infinite dimension for the coefficients
br . Keeping the leading term in (5.65) gives

b1 � nβ1

B11
(5.66)

With (5.55b), we find

〈B | �̂B〉 � b2
1B11 � n

2β2
1

B11

Evaluating β2
1 , we find (see Problem 3.9)

〈B | �̂B〉 � 25

4

n2

B11
(5.67)

Substituting this expression into (5.53) gives the following lowest-order ex-
pression for the coefficient of viscosity, within the second approximation of

34Comparison of notation for Q(l) as given by (5.62c) [that is, Q(l) here ] with
that found in Chapman and Cowling (CC) and Hirshfelder, Curtis, and Bird (HCB)
is as follows: Q(l) (here) � (2π )−1Q(l)(HCB) � g−1Q(l)(CC). Note also that: 〈|〉
(here) � −n2[, ]1(CC).
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the Chapman–Enskog expansion.

η � −5

2

kBT n
2

B11
(5.68)

Further reduction of B11 gives

B11 � −4n2�(2,2) (5.69)

and we find

η � 5

8

kBT

�(2,2)
(5.70)

Comparison with (5.63) gives

κ

η
� 5

2
c̄V

Note that our earlier elementary mean-free-path calculation (Table 3.2) is in
good agreement with this more detailed finding.

3.5.6 Application to Rigid Spheres

We wish to evaluate the integrals (5.62) for the case of a gas of rigid spheres
of diameter σ0. Recalling (1.32), we write

s ds � σ
2
0

4
d cos θ

Substituting into (5.62b) gives

Q(l) �
∫

(1− cosl θ )s ds

� σ
2
0

4

∫ 1

−1
(1− µl) dµ

� σ
2
0

4

[
2− 1

l + 1
(−1)l)

]

≡ σ
2
0

4
H (l) (5.71a)

Note that we set µ ≡ cos θ . For �(l,q), we obtain

�(l,q) � σ
2
0

4

(
πkBT

m

)1/2

H (l)(q + 1)! (5.71b)

Thus for interactions of rigid spheres we find |H (2) � 4
3 ]

�(2,2) � 2σ 2
0

(
πkBT

m

)1/2

(5.72)
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Substituting into (5.63) gives

κ � 25

32

c̄V

σ 2
0

(
mkBT

π

)1/2

κ � 75

64

1

σ 2
0

(
k3
BT

mπ

)1/2
(5.73)

With (5.70) we find

η � 5

16

1

σ 2
0

(
mkBT

π

)1/2

(5.74)

3.5.7 Diffusion and Electrical Conductivity

As discussed previously, mutual diffusion is a property of a two-component
medium. In this case, coupled Boltzmann equations come into play as described
in Section 3.2.2. Following a procedure similar to that described above, we find
that the interaction integrals (5.62) again emerge with the modification

y2 �
(
µ

2kBT

)
g2

g � v2 − v1

(5.75)

where, we recall, µ is reduced mass. The relation (5.62b) becomes

�
(l,q)
12 � σ

2
12

4

(
πkBT

2µ

)1/2

H (l)(q + 1)1 (5.76)

For interacting rigid spheres, (5.71b) becomes

�
(l,q)
12 � σ

2
12

4

(
πkBT

2µ

)1/2

H (l)(q + 1)! (5.76a)

Specifically,

�
(1,1)
12 � σ 2

12

(
πkBT

2

)1/2

(5.77)

where, we recall,

σ12 ≡ 1

2
(σ01 + σ02)

The lowest-order estimate within the second Chapman–Enskog approximation
for the coefficient of mutual diffusion is then given by

D12 � 3kBT

16nµ�(1,1)
12

(5.78)
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For spherical molecules, there results

D12 � 3

16nσ 2
12

(
2kBT

πµ

)1/2

(5.79)

n � n1 + n2

This finding was previously cited in (4.31a). In the limit that n1 � n2 � n/2
and σ01 � σ02 ≡ σ0, (5.79) gives the coefficient of self-diffusion:

D � 3

8nσ 2
0

(
kBT

πm

)1/2

(5.79a)

Electrical conductivity

Again stemming from the study of a two-component gas comprised of ions
of charge Ze and electrons of charge e, we find that conductivity is directly
related to mutual diffusion as

σc � ninen

ρ2kBT
(Zem− eM)2Die (5.80)

where ρ is mass density and M is ion mass. In the limit that m/M � 1, this
relation reduces to

σc � nen
2
e

kBT ni
Die (5.80a)

For singly charged ions,ne � ni . Further settingµ � m in (5.77), the preceding
relation reduces to

σc � 3

8

e2

m�(1,1)
(5.81)

Comparison with the Drude model result (4.15) indicates that �(1,1) takes the
place of collision frequency times volume per particle. These results relevant
to rigid spheres are listed in Table 3.4

3.5.8 Expressions of �(l,q) for Inverse Power Interaction Forces

Consider the interaction potential between molecules to be given by (1.17),

V � Kr−N (5.82)

corresponding to the radial force of magnitude

F � KNr−(N+1)
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TABLE 3.4. Transport Coefficients in the Chapman–Enskog Expansion for Rigid-
Sphere Interactiona

Coefficient Value

κ , thermal
75

64

1

σ 2
0

(
k3
BT

mπ

)1/2

conductivity

η, viscosity
5

16

1

σ 2
0

(
mkBT

π

)1/2

D12, mutual
3

16nσ 2
12

(
2kBT

πµ

)1/2

diffusion

D, self-diffusion
3

8nσ 3
0

(
kBT

πm

)1/2

σc, electrical
ninen

ρ2kBT
(ZeM − eM)2Die

conductivity

σc (m/M � 1)
nene

2

kBT ni
die

aWith c̄V � 3kB/m, these results give κ/nc̄V � 5
2 � 2.5,

P � 2
3 � 0.67 and L � 5

6 � 0.83, which are seen to

be in reasonable agreement with measured values given in

Table 3.3.

Then, forQ(l), with (1.20) and following, we find

Q(l) �
∫ ∞

0
(1− cosl θ )s ds

�
(

2K

µ

)2/N

g−4/N

∫ ∞

0
(1− cosl θ )b db

Q(l) ≡
(

2K

µ

)2/N

g−4/NAl(N )

Al(N ) ≡
∫ ∞

0
(1− cosl θ )b db

(5.83)

Inserting this result into (5.76) gives

�(l,q) �
√
πAl(N )(2K)2/N (2kBT )(N−4)/2N

µ1/2

∫ ∞

0
e−y

2
y2q+3−(4/N ) dy

�(l,q) �
√
πAl(N )(2K)2/N (2kBT )(N−4)/2N

2µ1/2
�

(
q + 2− 2

N

) (5.84)

where �(x) is the gamma function. Note in particular the simplifying property
for Maxwell molecules, N � 4.
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Nature of approximation

Having come to this point in the Chapman–Enskog expansion, it is evident that
the technique of solution involves nested approximations within each iterate
(5.19) of the expansion. As we have seen, the second approximation yields
the integral equations (5.35). To solve these equations, an additional approx-
imation comes into play: casting these equations in matrix form permits an
approximation corresponding to the order of the truncation of the related in-
finite matrices. In the results presented above, related approximation within
the second Chapman–Enskog iterate involved the lowest approximation, 1×1
matrices.

3.5.9 Interaction Models and Experimental Values

Combining preceding results with various models of interactions between
molecules gives the following list for viscosities to lowest-order results within
the second Chapman–Enskog approximation.

1. Rigid elastic spheres of diameter σ0.

η � 5

16σ 2
0

(
kBmT

π

)1/2

(5.85)

2. Repulsive potential, V � Kr−N .

η � 5

8

(
mkBT

π

)1/2 (
kBT

K

)2/N /
A2(N )�

(
4− 2

N

)
(5.86)

3. Sutherland model.35 Attractive spheres of diameter σ0 and interaction
potential V � −K/rN .

η � 5

16σ 2
0

(
mkBT

π

)1/2 / (
1+ S

kBT

)
(5.87)

In (5.87), S is the temperature-independent Sutherland constant36

S � I (N )K

σN0
(5.88)

Note that S is proportional to the potential energy of the molecules in contact.
The function I (N ) is given by

I (N ) � 4
∫ 1

0
β̄4−N (2β̄2 − 1)(1− β̄2)1/2

∫ β̄

0
βN (1− β2)−3/4 dβ dβ̄

35W. Sutherland, Phil. Mag. 36, 507 (1893); 17, 320 (1909).
36S. Chapman and T. G. Cowling, ibid., Sec. 10.41. In this work, the Sutherland

constant is written as (5.88) divided by kB . In the present work, S carries dimensions
of energy.
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TABLE 3.5. Viscosity of CO2 and N2 in the Sutherland Model

CO2

η × 107 η × 107

T (◦C) (observed) (evaluated)
−20.7 1294 1284

15.0 1457 1462
99.1 1861 1857

182.4 2221 2216
302.0 2681 2686

N2

η × 107 η × 107

T (◦C) (observed) (evaluated)
−76.3 1275 1269
−37.9 1465 1469

16.1 1728 1728
51.6 1880 1884

100.2 2084 2086
200.0 2461 2461
250.1 2629 2633

Some leading values of I (N ) are as follows:

N I (N )

2 1
8
(π 2 − 8) � 0.2337

3 8
3
(3 ln 3− 2) � 0.2118

4 3
2
(10− π 2) � 0.1956

6 5
24

(9π 2 − 88) � 0.1722

8 7
45
� 0.1556

In applying (5.87) to experimental observation, it proves convenient to re-
move the dependence on numerator coefficients of this expression by rewriting
it in the form

η(T ) � η(T ′)
(
T

T ′

)3/2
S + kBT ′
S + kBT (5.89)

With values,

η(T � 273K, CO2) � 1388× 10−7 g cm−1s−1

η(T � 273K, N2) � 1654× 10−7 g cm−1s−1

and

S(CO2) � 239.7kB, S(N2) � 104.7kB

the expression (5.89) gives the values shown in Table 3.5, in very good
agreement with experiment.
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3.5.10 The Method of Moments

In this concluding portion of the present section, we present a brief description
of an alternative solution to the Boltzmann equation due to Grad,37 which has
come to be known as the method of moments.

We begin by defining another nondimensional microscopic velocity, c̄,
closely related to ξ introduced above: c̄ ≡ c/C � √2ξ. The nondimensional
distribution function f̄ (x, c̄, t) is given by

F (x, c̄, t) � n

C3
f̄ (x, c̄, t) (5.90)

The Maxwellian (5.2) may be written

F 0 � n

C3
f̄ 0(c̄) ≡ n

C3
ω(c̄) (5.91a)

ω(c̄) ≡ 1

(2π )3/2
e−c̄

2/2 (5.91b)

Tensor Hermite polynomials

In the method of moments, the distribution function f̄ (x, c̄, t) is expanded in
a series of tensor Hermite polynomials, H (n)

i (c̄). The double index of H (n)
i (c̄)

reflects the fact that it is a tensor polynomial of rank n in three-dimensional
space. The subscript i denotes a sequence of n indexes (i1, . . . , in), where
ik may have any of the values (1, 2, 3) corresponding to the three Cartesian
directions.

Here are some fundamental properties of these polynomials. They are
defined with respect to ω(c) given by (5.91b). Thus

H
(n)
i1,i2,...,in

(c) � (−)n
1

ω(c)

(
∂

∂ci1

∂

∂ci1
. . .

∂

∂c1n

)
ω(c) � (−)n

ω
∇nω (5.92)

These polynomials also follow from the generating function:

exp

[
−1

2
(σ 2 − c2)

]
�

∞∑
n�0

H
(n)
i1,...,in

(c)c′i1c
′
i2
· · · c′in

σ � c′ − c

(5.93)

The orthogonality of the tensor Hermite polynomials is given by∫
H

(n)
i1···inH

(n)
j1···jnω(c) dc � n!>i1,i2,...,inj1,j2,...,jn

(5.94)

where

>
i1,...,in
j1,...,jn

� 1

37H. Grad, Comm. Pure and App. Math. 2, 331 (1949).
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for {ik} a permutation of {jk} and zero otherwise.
The first four polynomials of this set are

H (0)(c) � 1 (5.95a)

H
(1)
i (c) � ci (5.95b)

H
(2)
ij (c) � cicj − δij (5.95c)

H
(3)
ijk (c) � cicj ck − (ciδjk + cj δki + ckδij ) (5.95d)

Here are some recurrence relations among these polynomials [deleting the
subscript on H (n)

i (c)].

∂

∂c1
H (n) � IiH (n−1) (5.96a)

ciH
(n) � H (n+1) + IiH (n−1) (5.96b)

ci
∂

∂ci
H (n) � nH (n) + 2IH (n−2) (5.96c)

Here we have written I for the identity matrix. It is such that the expression IiA
represents the sum of all products in which i is attached to I. This operation is
demonstrated in application of (5.96b) to the case n � 2:

ciH
(2)
jk � H (3)

ijk +
(∑

IiH
(1)
)
ijk

H
(3)
ijk � ciH (2)

jk − (δijH
(1)
k + δikH (1)

j )

� ci(cjck − δjk)− δij ck − δikcj
which agrees with (5.95d).

The expansion

The distribution f̄ (x, c̄, t) is expanded in Hermite polynomials as follows:

f̄ (x, c̄, t) � f̄ 0(c̄)
∞∑
n�0

1

n!
a

(n)
i (x, t)H (n)

i (c̄) (5.97)

which in explicit form appears as

f̄ � f̄ 0

[
a(0)H (0) + a(1)

i H
(1)
i +

1

2!
a

(2)
ij H

(2)
ij +

1

3!
a

(3)
ijkH

(3)
ijk + · · ·

]
(5.97a)

Inverting the series (5.98) gives

a
(n)
i (x, t) �

∫
f̄ (x, c̄, t)H (n)

i (c̄) dc (5.98)

Since H (n)
i (c̄) are polynomials in the velocity c̄, the coefficients a(n)

i (x, t) are
moments of the distribution f̄ . Each such moment corresponds to a macro-
scopic fluid dynamic variable [recall (3.33)]. Thus, for example, we may make
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the following identifications:

a(0) � 1

a
(1)
i � 0

a
(2)
ij �

Pij − pδij
p

, Tr a(2) � 0 (5.99)

a
(3)
ijj �

2Qi

p
√
RT

(a repeated index gives the trace).

Macroscopic equations

With (5.97), we see that construction of the distribution f̄ (x, c̄, t) depends on
knowledge of the tensor coefficients a(n)

i . These coefficients are obtained as
follows. The series (5.97) is substituted into the Boltzmann equation (2.14).
Following this substitution, we operate on the equation with

∫
d c̄H (n)

i (c̄) to
obtain (with, we recall, C � √RT )

Da(n)

Dt
+
(
∂u
∂xi

)
a

(n)
i +

n

2C2

(
DC2

Dt

)
a(n) + C ∂a

(n+1)
i

∂xi

+ Ca(n+1)
i

∂

∂xi
ln(ρCn+1) � C

∑
> a(n−1)

+
[

1

C

Du
Dt
+ C

∑
> ln(ρCn+1)

]
a(n−1) + 1

C

(
∂C2

∂x1

)
Ia(n+1)
i

+
(

1

C2

DC2

Dt
I+

∑
> u

)
a(n−2) + 1

C

(∑
> C2

)
δa(n−3) � J (n) (5.100)

Note that all terms in this equation have dimensions of t−1 and the nth-order
tensor polynomials. [The coefficient n in the third term of (5.100) is tensor
order, not number density.] Subscripts on tensor terms are tacitly assumed
save for repeated indexes, in which case products are summed. Indexes of the
I term are unequal to remaining indexes of a term. Thus, for example, consider
the term

∂

∂xi
C2Ia(n+1)

i � ∂

∂xi
C2δlka

(n−1)
imro··· � T (n)

klmro···

where T (n) is written for an nth-order tensor.
The convective derivative is D/Dt , while the symbol

∑
> represents the

symmetric sum of gradients. For instance,

∑
> a(2) ≡ ∂a

(2)
ij

∂xk
+ ∂a

(2)
kl

∂xj
+ ∂a

(2)
jk

∂xi
(5.101)
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The collision term J (n) is written for

J (n) ≡ n
2

∫
f̄ (c̄)f̄ (c̄1)I (n)(c̄, c̄1) d c̄ d c̄1 (5.102)

where

I (n) ≡
∫
gσ d�[H (n)]

[H (n)] ≡ H (n)(c̄′)+H (n)(c̄′1)−H (n)(c̄)−H (n)(c̄1)

(5.102a)

Nature of approximation

The technique of solution is to approximate the series (5.97) with a finite
amount of terms. Inasmuch as the leading term in the expansion is the local
Maxwellian, the closer the has is to the equilibrium state, the less terms suffice
to describe the state.

The simplest approximation is the “second-order” one, where we set

f̄ � f̄ 0

[
1+ 1

2
a

(2)
ij H

(2)
ij

]
(5.103)

Dropping all terms containing a(3) in (5.100) gives

∂a
(2)
ij

∂t
+ ur ∂

∂xr
a

(2)
ij + a(2)

ir

∂uj

∂xr
+ a(2)

ri

∂uj

∂xr

+ ∂ui
∂xj

+ ∂uj
∂xi

+ [a(2)
ij + δij ]

1

C2

DC2

Dt
� J (2)

ij (5.104)

If all terms beyond a(2) are neglected in the calculation of J (2), then this
last equation involves {ρ, u, T , a(2)

ij } or, equivalently, {ρ, u, T , Pij } Inasmuch

as a(2)
ij is a symmetric, traceless tensor, there are only six relevant components

of a(2). These, together with the five variables {ρ, u, T }, constitute eleven
scalar quantities. These eleven variables define the state of the system in the
second-order approximation.

Equation (5.104) comprises six scalar equations. These equations together
with the continuity equation

∂ρ

∂t
+∇ · ρu � 0

the momentum equation

ρ

(
∂u
∂t
+ u · ∇u

)
+∇ · P � 0

and the condition Tr a(2) � 0 are eleven scalar equations, which serve to close
the system.
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3.6 The Linear Boltzmann Collision Operator

We return to the linear collision operator (5.25) introduced in the Chapman-
Ernskog solution of the Boltzmann equation.

�̂ ≡
∫∫

σ d�g dv1F
0(v1)[ ′1 + ′ − 1 − ] (6.1)

As evidenced by the expressions (5.53) and (5.56), this operator plays a key
role in evaluation of transport coefficients. In this section a number of basic
properties of the �̂ operator are derived.

3.6.1 Symmetry of the Kernel

Let us label

dµ ≡ F 0(v) dv (6.2)

Then (6.1) may be written

�̂ � −
∫
dµ1K̂(v, v1) (v1) (6.3)

where the kernel K̂ is as implied. We wish to show that K̂ is symmetric; that
is,

K̂(v, v1) � K̂(v1, v) (6.4)

Let φ and ψ be any two elements of L2 space. The matrix element of the
operator �̂ with respect to these two functions is given by

�φψ �
∫
dµφ�̂ψ

� −
∫∫

dµ dµ1φ(v)K̂(v, v1)ψ(v1)

� −
∫∫∫

dµ dµ1σ d�gφ[ψ1 + ψ − ψ ′1 − ψ ′] (6.5)

We first wish to establish that �φψ is a symmetric matrix; that is,

�φψ � �ψφ (6.6)

Repeating arguments described in Section 3.1 on collisional invariants, we
obtain

�φψ � −1

4

∫∫∫
dµ dµ1σ d�g(φ1+φ−φ′1−φ′)(ψ1+ψ−ψ ′1−ψ ′) (6.7a)

This may be rewritten

�φψ � −
∫∫∫

dµ dµ1σ d�gψ(φ1 + φ − φ′1 − φ′) � �ψφ (6.7b)
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which establishes the validity of (6.6).
With (6.7a), we may conclude that the diagonal elements �φφ are negative

except when φ is a linear combination of summational invariants. That is,

�φφ ≤ 0 (6.8a)

�φφ � 0 only if φ � α + β · v + γ v2 (6.8b)

Proceeding with our derivation, we consider the difference

0 � �ψφ −�φψ �
∫∫

dµ1 dµ(φK̂ψ1 − ψK̂φ1) (6.9)

Interchanging v and v1 in the second integral permits (6.9) to be written

0 �
∫∫

dµ1 dµ[K̂(v, v1)− K̂(v1, v)]φ(v)φ(v1) (6.10)

Here it is understood that K̂(x, y) operates only on functions of y.
Introducing the operator

T̂ (v, v1) ≡ K̂(v, v1)− K̂(v1, v) (6.11)

permits (6.10) to be written∫∫
dµ dµ1T̂ (v, v1)G(v, v1) � 0

G(v, v1) ≡ φ(v)ψ(v1)

(6.12)

Suppose T̂ is not identically zero. This means that a function G exists such
that T̂ G �� 0 over a domain of v, v1 phase space. It follows that there is a
subdomain D of this domain in which T̂ G does not change sign. Let G̃ ≡ G
inD and G̃ ≡ 0 elsewhere. Then for this choice of function

∫
TG �� 0, which

violates (6.12). We may conclude that the only way to ensure that
∫
T̂ ψφ

vanishes for all ψ and φ in L2 is for T̂ to vanish identically. Thus K̂ is a
symmetric operator.

3.6.2 Negative Eigenvalues

Let us suppose that the collision operator �̂ has a discrete spectrum. Then we
may write

�̂ψn � νnψn (6.13)

Due to the symmetry of �̂ (6.6), the eigenfunctionsψn comprise an orthogonal
sequence. Thus we obtain

�nm �
∫
dµψn�̂ψm � νm

∫
dµψnψm

� νmδnm‖ψm‖2 (6.14)



3.6 The Linear Boltzmann Collision Operator 219

where ‖ψm‖ represents the norm of ψm. The diagonal elements of �̂ obey the
properties (6.8), and we may write

0 ≥ �nn � νn
∫
dµψ2

n ≡ νn‖ψn‖2

so that

νn ≤ 0 (6.15)

The equality in this relation occurs if ψn is any of the five independent scalar
summational invariants. Thus the �̂ operator has a fivefold degenerate eigen-
value as the origin on the real ν line. All remaining eigenvalues are negative.
We conclude that the eigenvalues of �̂ lie on the negative real axis with a
fivefold degeneracy as the origin.

The significance of the negative quality of these eigenvalues is seen from
the following discussion. Let a spatially homogeneous gas suffer a small
displacement from equilibrium in velocity space. We recall the perturbation
(5.30)

F � F (0)(1+ ) (6.16)

Substituting this form into the Boltzmann equation (2.14) and keeping terms
linear in  , we obtain

∂ 

∂t
� �̂ (6.17)

With this equation at hand, we may conclude that the nonpositive spectrum of
�̂ implies that decays in time and that consequently the system returns to the
Maxwellian state. This conclusion, stemming from the linearized Boltzmann
equation (6.17), is seen to be consistent with our previous finding concerning
the decay of Boltzmann H and accompanying reduction to the Maxwellian
state, stemming from the nonlinear Boltzmann equation (Section 3.8).

3.6.3 Comparison of Boltzmann and Liouville Operators

It is interesting at this point to offer a brief comparison of properties of the
Boltzmann collision operator (both linear �̂ and nonlinear Ĵ ) with those of
the Liouville operator L̂N (2.1.3). The Liouville operator contains the full
N -particle Hamiltonian, and the related Liouville equation is reversible. That
is, if FN (xN, pN, t) is a solution, then so is FN (xN,−pN,−t) [recall Sec-
tion 1.1.5]. We also found that eigenvalues of L̂N are pure imaginary (see
Section 2.3.1), which evidently permits oscillatory behavior of the N -particle
distribution function. Furthermore, by virtue of the Poincaré recurrence theo-
rem [Section 3.6], we may conclude that for a bounded system, solutions to
the Liouville equation exist that, after sufficient time, return arbitrarily close
to their initial values.
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The Boltzmann collision operator, on the other hand, accounts only for
two-particle interactions. Furthermore, owing to the assumption of molecular
chaos [F2(1, 2) � F1(1)F1(2)], we may say that particles in collision lose
memory of this collision after interaction. This property evidently contributes
to irreversibility.

Distinctions between Ĵ (f ) and L̂N (fN ) were also evident in our preceding
discussion of the H theorem (Sections 3.7 and 3.8). There we found that the
Gibbs entropy, as implied by the Liouville equation, is constant, whereas the
Boltzmann entropy, as implied by the Boltzmann equation, increases with time
(recall that S ∝ −H).

3.6.4 Hard and Soft Potentials

We may distinguish between hard and soft interaction potentials in the
following manner. Consider the set of potentials (1.17)

V (r) � Kr−N (6.18)

where in general the constantK is dependent on the numberN . We have found
previously (1.27) that for Maxwell molecules (N � 4) the integration measure
gσ d cos θ is independent of the relative speed g. Let us adopt the convention
that potentials with N > 4 be labeled hard and those with N < 4 be labeled
soft.

The separation potential with N � 4 corresponding to Maxwell molecules
permits exact evaluation of the spectrum of the �̂ operator. Results of this
calculation are prescribed in the following section.

3.6.5 Maxwell Molecule Spectrum

As noted above, for Maxwell molecules the integration measure gσ d cos θ is
independent of relative speed g. For this case, the eigenvalue spectrum of the
�̂ operator is discrete. Eigenvalues and eigenfunctions for this case were first
discovered by S. C. Wang Chang and G. E. Uhlenbeck.38

Working in spherical coordinates (ξ, θ, φ), eigenfunctions of the �̂ collision
operator are given by

ψnlm(ξ, θ, φ) � NnlmS(n)
l+(1/2)(ξ

2)ξ lYml (θ, φ) (6.19)

38C. S. Wang Chang and G. E. Uhlenbeck (1952), ibid. These reports are reprinted
in J. deBoer and G. E. Uhlenbeck, Studies in Statistical Mechanics, North-Holland,
Amsterdam (1970). A concise description of these findings may be found in G.
E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, American Math.
Soc., Providence, R. I. (1963). See also L. Waldman, Hand. der Physik XIII, 295
Springer-Verlag, Berlin (1958).
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where Ym(θ, φ) are the spherical harmonics,39 Nnlm are normalization
constants, S(n)

l+(1/2)(x) are Sonine polynomials, encountered previously in Sec-
tion 5.5 and defined by (3.54). With the integration measure dµ (6.2), the
sequence (6.19) is an orthogonal set and is a basis of L2 space.

Eigenvalues corresponding to the functions (6.19) are given by

〈ψnlm|�̂|ψnlm〉 � νnl � 2π
∫ π

0
dθ sin θF (θ )

[
cos2n+l θ

2
Pl

(
cos

θ

2

)

+ sin2n+l θ
2
Pl

(
sin
θ

2

)
− 1− δn0δl0

]
(6.20)

where Pl(x) are Legendre polynomials (see Table 3.6) and F (θ ) is given by
[recall (1.27)]

gσ (g, θ ) �
√

2K

µ
F (θ ), F (θ ) � b db

d cos θ
(6.21)

Since the azimuthal m number is absent from νnl , we see that each eigenvalue
is 2l + 1 degenerate.40

As is evident from (1.23), all classical total cross sections corresponding to
potentials with unbounded range are infinite. This singular behavior resides
in the eigenvalues (6.20) through their dependence on F (θ ), whose properties
are now discussed.

The function F (θ ) was first evaluated by Maxwell.41 It is given by

F (θ ) � 1

4

(cos 2θ̄ )1/2

sin θ sin 2θ̄ [cos2 θ̄ K̄(sin θ )− cos 2θ̄ Ē(sin θ̄ )]
(6.22)

where

ψ � π − θ
2

� (cos 2θ̄ )1/2K̂(sin θ̄ ) (6.22a)

and K̄(x), Ē(x) are, respectively, complete elliptic integrals of the first and
second kind.42

Ē(k) �
∫ π/2

0
(1− k2 sin2 φ)1/2 dφ, K̄(k) �

∫ π/2

0

dφ

(1− k2 sin2 φ)1/2

39A concise list of properties of these functions may be found in R. L. Liboff,
Introductory Quantum Mechanics (2002) ibid., Chapter 9.

40This degeneracy corresponds to the rotational symmetry of the �̂ operator with
respect to φ. Such degeneracy is often encountered in quantum mechanics; see R. L.
Liboff, ibid.

41Scientific Papers of James Clerk Maxwell, W. D. Niven, (ed.), Dover, New York
(1952). See Chapter XXVIII.

42E. T. Whittaker and G. N. Watson, A course of Modern Analysis, Cambridge
University Pres, New York (1952), Chapter 22. See also M. Abramoxitz and I. A.
Stegun, Handbook of Mathematical Functions, Dover, New York (1965), Chapter 17.
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Evaluation of F (θ ) as given by (6.22) indicates that it is a monotonic
decreasing function of θ . For small θ , we obtain

F (θ ) � (3π )1/2

16
θ−5/2

(
1+ 35

24π
θ + · · ·

)
(6.23)

At θ � π ,

F (π ) � 1

4K̄2(π/4)
� 0.0727

The result (6.23) indicates thatF (θ ) diverges at small θ , which, as noted above,
is related to the unbounded range of V (r). With the property (6.23), we see that
the eigenvalue (6.20) likewise diverges at θ � 0. Resolution of this singular
behavior is discussed at the close of this section.

3.6.6 Further Spectral Properties

We return to the notion of hard and soft potentials introduced above. Our
discussion involves the collision frequency (5.2) now written relative to a
Maxwellian state.

ν(v) �
∫∫

σ d�g dv1F
0(v1) (6.24)

We first evaluate ν(v) for a gas of rigid spherical molecules of diameter σ .
Recalling (1.33), we write

σ (θ ) � σ
2

4
(6.25)

where σ is the diameter of a molecule. Inserting this value into (6.24) and
performing the integration, we find (see Problem 3.12)

ν(ξ ) � ν0

[
e−ξ

2 +
(

2ξ + 1

ξ

) √
π

2
erf(ξ )

]
(6.26)

where erf(ξ ) represents the error function (see Appendix B):

erf(ξ ) ≡ 2√
π

∫ ξ

0
e−x

2
dx

with ξ given by (5.28) and

ν0 ≡ nσ 2
√

2πRT

At large ξ , (6.26) gives

ν(ξ ) ∼ √πν0ξ, ξ ! 1 (6.27)

whereas at ξ � 0

erf(ξ ) � 2√
π

(
ξ − ξ

3

3
+ · · ·

)
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FIGURE 3.21. Sketch illustrating the eigenvalue spectra of −�̂ for hard and soft
potentials, respectively. For hard potentials, the fivefold degenerate null eigenvalue
is seen to be isolated from the continuum.

which gives

ν(0) � 2ν0 (6.28)

We may attribute this persistence of collision frequency for a stationary particle
to the fact that the particle is situated in a gaseous medium at finite temperature.
Note in particular that, as T → 0, ν(0) → 0.

The preceding results demonstrate that for a gas of rigid sphere molecules
ν(ξ ) ranges from ν(0) � 2ν0 > 0 to infinity.

A similar property for hard potentials, in general, has been established by
Grad.43 These properties address the spectrum of the linear collision operator,
�̂. They are as follows:

1. For hard potentials the null eigenvalue, ν � 0 is isolated from the rest
of the spectrum of �̂. In addition to ν � 0, the spectrum of −�̂ includes a
continuum, which is the values of the collision frequency ν(ξ ) and, consistent
with our finding above, ranges from a minimum ν(0) to infinity. For soft po-
tentials, the eigenvalue continuum ranges from a maximum ν(0) to zero. These
properties are sketched in Fig. 3.21.

43H. Grad, Phys. Fluids 6, 147 (1963), “Asymptotic Theory of the Boltzmann
Equation, II,” in Rarefied Gas Dynamics Symposium, vol. I, J. Laurmann (ed.),
Academic Press, New York (1963).
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We have noted previously that the eigenvalue νn contributes a term like
exp(−νnt) to the solution of an initial-value problem. The same is true for a
continuous spectrum, where the exponential term contributes to an integral in
place of a sum. Thus, for hard potentials, where ν is bounded away from zero,
the slowest decay of the distribution goes as exp[−ν(0)t]. For soft potentials
(such as for the Coulomb or Newtonian interaction), ν is not bounded away
from zero, and we may expect long-time nonexponential decay for such cases.

2. Write �̂ in the form

�̂ � K̂ − v(ξ ) (6.29)

where ν(ξ ) is given by (6.24). Then

(a) The operator K̂ is bounded. That is, for any ψ in L2 a constantM exists
such that ‖K̂ψ‖ ≤ M‖ψ‖.

(b) The operator K̂ is completely continuous. A bounded linear operator K̂
is completely continuous if, for any bounded sequence {ψn} of elements
of L2 (that is, ‖ψn‖ ≤ R for some R and all n), the sequence {K̂ψn}
contains at least one convergent subsequence. As a consequence of this
property and the spectrum theorem44 K̂ has a discrete point spectrum
with the origin as the only accumulation point.

3. In Section 6.5, we found that the unbounded range of the Maxwell
molecule force law gave rise to singular eigenvalues. This singular behavior
is circumvented if the force law is cut off at some finite range. The resulting
eigenfunctions are tensor Hermite polynomials, H (n)

i , encountered earlier in
Section 5.10. Eigenvalues of the collision operator �̂ may then be written

ν
(n)
i � 〈H (n)

i |�̂|H (n)
i 〉 (6.30)

Tensor Hermite polynomials are relevant to expansion of the velocity compo-
nent of the distribution function in Cartesian coordinates. Sonine polynomials
[as seen in (6.19)] are relevant to expansion in spherical coordinates. Thus,
for example, working with the nondimensional distribution, (5.90), these
respective expansions appear as

f̄ (x, c̄, t) �
∑
n,l,m

n!

�(n+ l + (3/2))
anlm(x, t)e−c̄S(n)

l+(1/2)(c̄
2)c̄lY ml (θ, φ)(6.31a)

f̄ (x, c̄, t) �
∞∑
n�0

1

n!
a

(n)
i (x, t)ω(c̄)H (n)

i (c̄) (6.31b)

44This theorem and related topics are discussed by H. H. Stone, Linear Transfor-
mations in Hilbert Space and Their Application to Analysis, American Mathematical
Society, New York (1932); I. Stakgold, Boundary Value Problems of Mathematical
Physics, vol. 1, Macmillan, New York (1967), Section 2.10.
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In either representation, coefficients of expansion, a, are related to fluid dy-
namic variables. Factorial factors and weight functions in (6.31) are related to
orthogonality properties [recall (5.54b) and (5.94)].

3.7 The Druyvesteyn Distribution45

3.7.1 Basic Parameters and Starting Equations

To this point in our discourse, we have considered only the kinetic theory
of one-component fluids. As an application of the kinetic theory of a two-
component fluid, we turn to an important problem related to the theory of
conduction of electrons through a medium consisting of heavier ions or neutral
particles.46

Our two basic assumptions are (1) electron–electron collisions may be
neglected compared to electron–ion collisions, and (2) the background in
distribution is given by the Maxwellian

F (v1) � n
(

M

2πkBT

)3/2

exp

(
− Mv

2
i

2kBT

)
(7.1)∫

F (v1) dv1 � n (7.1a)

Here we have writtenM and v1 for ion mass and velocity, respectively, and n
is ion number density.

Our starting equation is the Boltzmann equation (2.17) for a two-component
fluid comprised of ions and electrons in the presence of an electric field E .
Neglecting electron–electron collisions, only one collision integral remains in
(2.17) and, passing to the equilibrium limit, we obtain

eE
m
· ∂f
∂v
�
∫∫

(f ′F ′1 − fF1)σg d�dv1 (7.2)

where f (v) is the electron distribution function and e/m is electron charge-
to-mass ratio. In this discussion we take f (v), as F (v) [see (7.1a)], to be
normalized to n.

45Named for M. J. Druyvesteyn, Physica 10, (1930). For further discussion of this
topic, see S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform
Gases, (1974) ibid.; L. B. Loeb, Fundamental Processes of Electrical Discharges in
Gases, Wiley, New York (1947); W. P. Allis, Hand. d. Physik vol. XXI, Springer-
Verlag, Berlin (1956); M. J. Druyvesteyn and F. M. Penning, Rev. Mod. Phys. 12, 87
(1940).

46We will in general call these particles “ions.”
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Writing

a ≡ m

m+M
a1 � M

m+M
(7.3)

so that

a + a1 � 1

and

V ≡ av + a1v1 � mv +Mv1

m+M (7.4)

is the velocity of the center of mass of a colliding electron–ion pair of particles.
The kinematic relations connecting these velocities may be written(

g
V

)
�
(

1 −1
a a1

)(
v
v1

)
(7.5a)(

g′

V′

)
�
(

1 −1
a a1

)(
v′

v′1

)
(7.5b)(

v
v1

)
�
(
a1 1
−a 1

)(
g
V

)
(7.5c)(

v′

v′1

)
�
(
a1 1
−a 1

)(
g′

G

)
(7.5d)

Energy conservation gives

g � g′ (7.6a)

whereas conservation of momentum gives

V � V′ (7.6b)

The Jacobian of these transformations (7) are all seen to be unity. Thus, for
example, we may write

dv dv1 � dg dV (7.7)

From the defining relations

g � v − v1 (7.8a)

g′ � v′ − v′1 (7.8b)

V � av a1v1 (7.8c)

V′ � av′ + a1v′1 (7.8d)

we obtain

g − g′ � v′ − v′1 − v − v1 (7.9a)

0 � av′ + a1v′1 − av − a1v′1 (7.9b)
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Multiplying (7a) by a and −a1, respectively, and adding to (7b) gives

v′ − v � a1(g′ − g) (7.10a)

v′1 − v1 � −a(g′ − g) (7.10b)

From the relations

v′ � V+ a1g′ (7.11a)

v � V+ a1g (7.11b)

we find

v′2 � V 2 + 2a1V · g′ + a2
1g
′2 (7.12a)

v2 � V 2 + 2a1V · g + a2
1g

2 (7.12b)

Subtracting these equations and recalling the conservation equation (7.6) gives

v′2 − v2 � 2a1V · (g′ − g) (7.13)

Our third assumption concerns the electron-to-ion mass ratio m/M . We set

m

M
� 1− a1 � ε2 (7.14)

where ε is a parameter of smallness. Finally, we assume thermal equilibrium
between electrons and set

3

2
kBT �

〈
1

2
Mv2

1

〉
�
〈

1

2
mv2

〉
(7.15)

With the preceding relations we find

v1 � εv (7.16)

a � ε2

a1 � 1− ε2 (7.17)

And with (7.10) and (7.14) we obtain the order-of-magnitude relations

g � v + 0(ε) (7.18a)

g′ � v′ + 0(ε) (7.18b)

V � v1 � v′1 � 0(ε) (7.18c)

See Fig. 3.22. Having obtained these kinematic relations, we turn next to the
Legendre expansion of f (v).

3.7.2 Legendre Polynomial Expansion

Let Ê and v̂ denote unit vectors. Then we define

µ � Ê · v̂ (7.19)
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FIGURE 3.22. Approximate vector equalities in the scattering diagram form/M �
1. Note that the scattering element of the solid angle, d�, lies in the direction of g′.

With µ so defined, toward the end of solving (7.2), we introduce the following
expansion of f (v) in Legendre polynomials Pl(µ) (see Table 3.6).47,48

f (v) �
∞∑
l�0

Pl(µ)fl(v) (7.20)

In the present study, E is taken to be a moderate field, in which case we expect
small departure from isotropy of f (v). Accordingly, we keep terms only to
l � 1 in (7.20) and obtain

f (v) � f0(v)+ µf1(v) (7.21)

Substituting this expansion into the left side of (7.2), we find (see Problem 3.13)

eE
m
· ∂f
∂v
� eE
m

[
µ
df0

dv
+ 1

3

(
df1

dv
+ 2f1

v

)]
(7.22)

For the collision terms, we obtain

Ĵ (f, F ) �
∫∫

(f ′F ′1 − fF1)σg d�dv1

�
∫∫

(f ′0F
′
1 − f0F1)σg d�dv1

+
∫∫

(µ′f ′1F
′
1 − µf1F1)σg d�dv1 (7.23)

47This expansion for an anisotropic distribution function was first introduced by
H. A. Lorentz, The Theory of Electrons, B. G. Teubner, Leipzig (1909). See Appendix
D.

48The convergence of such expansions is discussed by W. P. Allis in Electrical
Breakdown and Discharges in Gases, E. E. Kunhardt and L. H. Leussen (eds.),
Plenum, New York (1983).
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TABLE 3.6. Properties of the Legendre Polynomials

Generating formulas:

(1− 2µs + s2)−1/2 �
∞∑
l�0

Pl(µ)sl

Pl(µ) � 1

2l l!

dt

dµl
(µ2 − 1)l

{−1 ≤ µ ≤ 1
l � 0, 1, 2, 3, . . .

Legendre’s equation:

(1− µ2)
d2Pl(µ)

dµ2
− 2µ

dPl(µ)

dµ
+ l(l + 1)Pl(µ) � 0

Recurrence relations:
(l + 1)Pl+1(µ) � (2l + 1)µPl(µ)− lPl−1(µ)

(1− µ2)
d

dµ
Pl(µ) � lµPl(µ)+ lPl−1(µ)

Normalization and orthogonality:∫ 1

−1
Pl(µ)Pm(µ) dµ � 2

2l + 1
(l � m)

� 0 (l �� m)

First few polynomials:
P0 � 1 P2 � 1

2 (3µ2 − 1) P4 � 1
8 (35µ4 − 30µ2 + 3)

P1 � µ P3 � 1
2 (5µ3 − 3µ) P5 � 1

8 (63µ5 − 70µ3 + 15µ)

Special Values:
Pl(µ)(−1)lPl(−µ) Pl(1) � 1

where

µ′ � Ê · v̂′

A note of caution is in order here: we should keep in mind that f1 in (7.23)
denotes the first-order correction to f as given in (7.21) so that (as opposed
to Boltzmann notation) f ′1 ≡ f1(v′). However, in keeping with Boltzmann
notation, F1 ≡ F (v1) and F ′ � F (v′1). In parallel form to (7.23), we set

Ĵ (f | F ) � Ĵ0(f0 | F )+ Ĵ1(f1 | F ) (7.24)

where

Ĵ0(f0 | F ) �
∫∫

(f ′0F
′
1 − f0F1)σg d�dv1 (7.25a)

Ĵ1(f1 | F ) �
∫∫

(µ′f ′1F
′
1 − µf1F1)σg dv1 (7.25b)
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FIGURE 3.23. The angles of g′ and E .

Combining (7.2), (7.22), and (7.24) gives the expanded form

eE
m

[
µ
df0

dv
+ 1

3

(
df1

dv
+ 2f1

v

)]
� Ĵ0(f0 | F )+ Ĵ1(f1 | F ) (7.26)

We turn next to reduction of the Ĵ1(f1 | F ) collision integral. With (7.6a)
and (7.18a, b), we may write

|v + 0(ε)| � |v′ + 0(ε)|
whence

v � v′ + 0(ε)

and

f1(v′) � f1(v)+ 0(ε) (7.27a)

With (7.18c), we write

F ′1 � F1 + 0(ε) (7.27b)

Thus (7.25a) becomes

Ĵ1(f1 | F ) � nf1

∫
(µ′ − µ)σg d�+ 0(ε) (7.28a)

To further reduce this integral, we go into a representation where g is taken as
the polar axis (see Fig. 3.23). We note [recall (7.19)]

µ � v̂ · Ê � ĝ · Ê+ 0(ε) � cosα + 0(ε) (7.29a)

µ′ � v̂′ · Ê � ĝ′ · Ê+ 0(ε) (7.29b)
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From Fig. 3.23 we note the Cartesian components of Ê and ĝ′,

Ê � (sin α, 0, cosα)

ĝ′ � (sin θ cosφ, sin θ sin φ, cos θ )

where

ĝ′ · ε � cosα cos θ + sin α sin θ cosφ (7.30)

Substituting this value into (7.29b) permits the� integral of the µ′ component
of (7.28) to be written∫

µ′ d� �
∫∫∫

sin θ dθ dφ(cosα cos θ + sin α sin θ cosφ)+ 0(ε)

which reduces to ∫
µ′ d� �

∫
µ cos θ d�+ 0(ε) (7.31)

Substituting this result into (7.28) gives

Ĵ1(f1 | F ) � −nf1µ

∫
(1− cos θ )σg d�+ 0(ε) (7.32)

This finding may be written in the more serious form:

J1 � −nf1µνQ+ 0(ε) (7.33)

whereQ is the weighted cross section,

Q ≡
∫

(1− cos θ )σ d� (7.34)

[compare with (5.83)].
Further introducing the relaxation time τ and mean free path l [recall (2.2)

and following],

τ ≡ 1

nvQ
, l ≡ 1

nQ
� vτ (7.35)

allows (7.33) to be rewritten

Ĵ1(f1 | F ) � −µf1

τ
+ 0(ε) (7.36)

With this result at hand, we return to the starting equation (7.26). Equating
terms of equal Legendre polynomial order and keeping terms of 0(1), we find

eE
3m

(
df1

dv
+ 2f1

v

)
� Ĵ0(f0 | F ) (7.37a)

eE
m

df0

dv
� −f1

τ
(7.37b)
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3.7.3 Reduction of Ĵ0(f0 | F )

It is evident from the preceding two equations that elimination of f1 would lead
to a second-order integrodifferential equation for f0. However, an alternative
path leads to a simpler relation. We note that (7.37a) may be rewritten

eE
3m

1

v2

d

dv
(v2f1) � Ĵ0(f0 | F ) (7.38)

We wish to integrate this equation from v � 0 to a finite value, which we label
ṽ. Introducing the notation∫

v<ṽ

dv ≡
∫ ṽ

0

∫
dvv2 d�

there results

I ≡ eE
3m

∫
v<ṽ

1

v2

d

dv
[v2f1(v)] dv �

∫∫∫
v<ṽ

(f ′0F
′
1−f0F1)σg d�dv1 dv (7.39)

Switching primed and unprimed velocties in (7.39) gives∫∫∫
v<ṽ

f ′0F
′
1σg d�dv1 dv �

∫∫∫
v′<ṽ

f0F1σg d�dv1 dv (7.40)

Here we have noted the invariance of the measure σg d�dv1 dv under the said
transformation. Now note that with

v′ � v −>v
the condition v′ < ṽ becomes

v < ṽ +>v (7.40a)

where >v is to be determined. Writing

dv � v2 dv d�v

together with the preceding equation, we find

I �
∫∫∫ [∫ ṽ+>v

ṽ

f0F1σgv
2 dv

]
d�d�v dv1 (7.41)

To evaluate >v, we recall (7.13)

v′2 − v2 � 2a1V · (g′ − g)

and (7.18)

V � v1 � 0(ε)

To keep this order of magnitude in mind, we write

v1 → εv1
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(and eventually set ε � 1). To this same order, we find

v′2 − v2 � 2a1εv1 · (v′ − v)

� 2(1− ε2)εv1 · (v′ − v)

v′2 � v2 + 2εv1 · (v′ − v)

v′ � v + εv1 · (v̂′ − v̂)+ 0(ε2)

Thus the condition v′ < ṽ is equivalent to

v + εv1 · (v̂′ − v̂) < ṽ

or

v < ṽ + εv1 · (v̂ − v̂′)

which, with (7.40a), implies that

>v � εv1 · (v̂ − v̂′)

That is, >v is an 0(ε) quantity. Recalling our previous rule, we set ε � 1 to
obtain

>v � v1 · (v̂ − v̂′) (7.42)

3.7.4 Evaluation of I0 and I1 Integrals

Having obtained this expression for>v, we return to (7.41) and expand f0(v)
about v � ṽ. As the integral is evaluated over a small interval about ṽ, we
write

f0(v) � f0(ṽ)+ (v − ṽ)
df0

dv

∣∣∣∣
ṽ

+ · · ·

Substituting this expansion into (7.41) gives corresponding I0 and I1 integrals.
We first examine I0.

I0 � f0(ṽ)
∫∫∫ [∫ ṽ+>v

ṽ

F1σgv
2 dv

]
d�d�v dv1

I0 ≡ f0(ṽ)ψ(ṽ)

(7.43)

where ψ(ṽ), as implied, is independent of electric field E.
Next we turn to evaluation of I1, given by

I1 �
∫∫∫ [∫ ṽ+>v

ṽ

(v − ṽ)
df0

dṽ
F1σgv

2 dv

]
d�d�v dv1 (7.44)

where we have set

df0

dv

∣∣∣∣
ṽ

≡ df0

dṽ
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Note that with (7.18)

gv2 � v3 + 0(ε)

Furthermore, we write

σ (g′) � σ (v, ĝ′)+ 0(ε)

and expand the v-dependent part of σ about v � ṽ.

σ (v) � σ (ṽ)+ dσ
dṽ

(v − ṽ)+ · · ·

There results∫ ṽ+>v

ṽ

(v − ṽ)v3σ (g′) dv � σ (ṽ)
∫ ṽ+>v

ṽ

(v − ṽ)v3 dv

+ dσ
dṽ

∫ ṽ+>v

ṽ

(v − ṽ)v3(v − ṽ) dv

However, note that over the interval of integration

v − ṽ ≤ >v
Thus ∫ ṽ+>v

ṽ

(v − ṽ)v3(v − ṽ) dv ≤ >v
∫ ṽ+>v

ṽ

(v − ṽ) dv

And we may write∫ ṽ+>v

ṽ

(v − ṽ)v3σ (g′) dv � σ (ṽ)
∫ ṽ+>v

ṽ

(v − ṽ)v3 dv + 0(ε)

� σ (ṽ)
ṽ3

2
(>v)2 (7.45)

providing49

‖dσ
dṽ
‖ ≤ ‖σ‖

Substituting the result (7.45) into (7.44) yields

I1 � ṽ
3

2

df0

dṽ

∫∫∫
F1σ (ṽ, ĝ′)[v1 · (v̂ − v̂′)]2 d�d�v dv1 (7.46)

Now note that we may write

[v1 · (v̂ − v̂′)]2 � v2
1(v̂ − v̂′) · v̂1v̂1 · (v̂ − v̂′)

49Note that this condition fails for the Coulomb cross section (1.31) at low energies.
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With the relation (see Problem 3.15)∫
v̂1v̂1 dv1 � I

3

∫
dv1

(7.46) may be rewritten

I1 � ṽ3 df0

dṽ

∫∫∫
F1σ

v2
1

6
(v̂ − v̂′) · (v̂ − v̂′) d�d�v dv1

� ṽ3 df0

dṽ

∫∫∫
F1σ

v2
1

3
(1− v̂ · v̂′) d�d�dv1 (7.47)

Noting

v̂ · v̂′ � ĝ · ĝ′ + 0(ε) � cos θ + 0(ε)

and writing ∫
d�v

∫
F1(v1)

M

2
v2

1 dv1 � 4π

(
3

2

)
nkBT

gives, finally,

I1 � ṽ3 df0

dṽ
4π
nkBT

M

∫
σ (1− cos θ ) d�

which, with (7.34), may be written

I1 � ṽ3 df0

dṽ

nkBT

M
4πQ

Recalling (7.35),Q � 1/nl, the preceding relation becomes

I1 � 4π
kBT

M

ṽ3

l

df0

dṽ
(7.48)

With (7.39) we write

4π

3

eE
m
ṽ2f1(ṽ) � I0 + I1 � f0(ṽ)ψ(ṽ)+ 4π

kBT

M

ṽ3

l

df0

dṽ
(7.49)

Let us find an expression for ψ(ṽ). In that this function is independent of E ,
we may evaluate it at E � 0. At this value

f0(ṽ) � n
(

m

2πkBT

)3/2

exp

(
− mṽ

2

2kBT

)
so that

df0

dṽ
� − mṽ

kBT
f0

With this value substituted into (7.49), we find

ψ(ṽ) � 4π
m

M

ṽ4

l
(7.50)
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Inserting this value into (7.49) with E �� 0 gives the desired equation (replacing
ṽ with v):

1

3

eε

m
f1 � kBT

M

v

l

df0

dv
+ m

M

v2

l
f0 (7.51)

which is equivalent to the integration of (7.37a).

3.7.5 Druyvesteyn Equation

Having reduced (7.37a) to (7.51), we are now prepared to obtain a single
equation for f0. Substituting (7.51) into (7.37b) gives[

1

3

l

v

(
eE
m

)2

+ kBT
M

v

l

]
df0

dv
+ m

M

v2

l
f0 � 0 (7.52)

where we have written, with (7.35),

v � l

τ

Introducing the speeds

C2
1 ≡

kBT

m
C4

2 �
1

3

M

m

(
eE l
m

)2

permits (7.52) to be rewritten

(C4
2 + C2

1v
2)
df0

dv
� −v3f0

With the mean free path l given by (7.35), we may not, in general, assume that
it is independent of v. Integrating (7.53) gives the Druyvesteyn distribution

f0(v) � K exp

(
−
∫

v3 dv

C4
2 + v2C2

1

)
(7.53)

where K is a normalization constant.
The Druyvesteyn equation (7.52) may be cast in still simpler form when

written in terms of the nondimensional electric field

s ≡ M

6m

(
eE l
kBT

)2

(7.53a)

and nondimensional energy

x ≡ mv2

2kBT
(7.53b)

With these parameters at hand, (7.52) becomes

(s + x)
df0

dx
+ xf0 � 0 (7.54)
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FIGURE 3.24. Sketch of the variation of the Druyvesteyn distribution with varying
electric field (s).

which, assuming l to be independent of velocity, is simply integrated to yield
that which we term the absolute Druyvesteyn distribution:

f0(x) � K(x + s)se−x (7.55)

A sketch of this distribution is given in Fig. 3.24 at various values s, illustrating
the manner in which the spread of the energy distribution increases with electric
field. This behavior evidently stems from acceleration of electrons due to the
electric field.

Review of assumptions

A brief recapitulation of the assumptions that led to the Druyvesteyn
distribution (7.53) is in order at this point. These are as follows:

1. Neglect electron–electron collisions.
2. Background ions are in a Maxwellian distribution (7.1).
3. m/M � 1 (7.14).
4. Moderate electric field. Small anisotropy in f (v) (7.21).
5. Introduction of phenomenological coefficients τ and l (7.35), with v �
l/τ .

6. Electrons scatter elastically from ions.

3.7.6 Normalization, Velocity Shift, and Electrical Conductivity

The normalization of f0(x) is obtained as follows. Returning to (7.21) and with
(7.37b), we write

f (v) � f0(v)− µτ eE
m

df0

dv
(7.56)
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Thus

n �
∫∫ (

f0(v)− µτ eE
m

df0

dv

)
v2 dv d�

The second term vanishes and we obtain

n � 4π
∫ ∞

0
f0(v)v2 dv (7.57)

Converting to x notation, (7.53b), we find

3

2
x1/2 dx +

(
m

2kBT

)3/2

3v2 dv

so that

n � 4π

2

(
2kBT

m

)3/2 ∫
f0(x)

√
x dx (7.58)

With (7.55), we write

n � 2π

(
2kBT

m

)3/2

K

∫ ∞

0
(x + s)e−x√x dx (7.59)

which determines the normalization constant K . At s � 0 (no electric field),
(7.59) gives

n � 2π

(
2kBT

m

)3/2

K

√
π

2

n �
(

2πkBT

m

)3/2

K

K � N

(2πkBT /m)3/2

which is the correct normalization for the Maxwellian [see (7.1)].
Finally, we turn to the shift in electron drift velocity and closely allied

electrical conductivity due to the presence of the electric field. With (3.13), we
write

nu �
∫
f (v)v dv (7.60)

Substituting the form for f (v) as given by (7.56) into the preceding gives

nu �
∫
f0(v)v dv − eE

m

∫
τµ
df0

dv
v dv

As f0 is rotationally symmetric, the first term in the preceding equation
vanishes, and we obtain

nu � −eE
m

∫ ∞

0
τ dvv3 df0

dv

∫ 1

−1
d cos θ cos θ

∫ 2π

0
dφ(v̂x, v̂y, v̂z)
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Here we have taken E to lie in the z direction. [Recall (7.19).] All but the z
integral vanish, and we obtain

nu � −2πeE
m

∫ ∞

0
τ dvv3 df0

dv

∫ 1

−1
dµµ2

So we find

u � Êµ nu � −4π

3

eE
m

∫
τ dvv3 df0

dv
(7.61)

Integrating by parts and dropping surface terms gives

nu � 4πeE
m

∫ ∞

0
τf0v

2 dv (7.62)

Substituting the expression for τ given by (7.35), we obtain

nu � 4πeE l
m

∫ ∞

0
f0v dv (7.63)

Thus we may conclude that a nonvanishing mean speed of electrons is incurred
due to the presence of the electric field.

In the Drude model of conductivity [see (4.11) and following], we write

J � enu � σcE
where σc is electrical conductivity. With (7.63), we obtain

σc � 4π
e2E ln
mC

∫ ∞

0
f̄0v̄ dv̄

where (7.64)

f0 � n

C3
f̄0, v � Cv̄

With

ν � C
l

(7.64) becomes

σc � ασ (0)
c (7.65)

where α is the Druyvesteyn correction factor,

α ≡ 4π
∫ ∞

0
f̄0v̄ dv̄ (7.65a)

and

σ (0)
c � e

2n

mv
(7.65b)

is the Drude conductivity as given previously in (4.15).
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FIGURE 3.25. The normal displacement δn between constant energy surfaces varies
as δH/|∇H |.

3.8 Further Remarks on Irreversibility

In this final section of the present chapter we return to the problem of irre-
versibility encountered earlier in Sections 3.5 and 3.8. First, a brief review of
ergodic and mixing flows is presented. We then pass to a description of action-
angle variables in preparation for a discussion of more recent developments in
the theory of irreversibility.

3.8.1 Ergodic Flow

Prior to discussion of ergodic theory, it is necessary to introduce the follow-
ing geometrical notion. As noted in Chapter 1, volumes in phase space are
invariant under a canonical transformation or the natural motion of the system.
In keeping with this property, an energy shell was introduced in �-space to
describe the motion of an ensemble relevant to an isolated system. However,
the language of ergodic theory addresses an energy surface. Accordingly, a
measure-preserving element of surface must be introduced. Let the energy
shell be defined by the surfaces H � E and H � E + δE. The displacement
between constant energy surfaces varies as δH/|∇H |. Thus, if dS represents
differential surface on the energy shell, invariant differential volume of the en-
ergy shell d�, varies as dEdS/|∇H | (see Fig. 3.25). This description permits
identification of

dW ≡ dS

|∇H | (8.1)

as the invariant measure of the element of surface dS.50 Thus we have two
differential elements in �-space that are invariant under the natural motion of

50A quantum version of this construction is given in Section 5.3.
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the system:

d�→ d�′ � d�
dW→ dW′ � dW (8.2)

The invariant measure of a set, A, of points on the energy surface is given by

µ(A) �
∫
A∈E

dS

|∇H | (8.3a)

The measure of the set of points E comprising the whole energy surface is

µ(E) �
∫
E

dS

|∇H | (8.3b)

Let the natural motion of the set A be governed by the operator T̂ [introduced
in Section 3.6], which we now write as T̂ (t). Then, if in the interval t ,A→ A′,
we may write

A→ A′ � T̂ (t)A (8.4)

By virtue of the Liouville theorem, it follows that

µ(A′) � µ(A) (8.5)

We are now prepared to discuss the ergodic hypothesis.

Ergodic hypothesis

This hypothesis states that almost all orbits (that is, except for a set of measure
zero) on the energy surface pass through every domain of positive measure and
remain in these regions for an average time equal to the ratio of their measure
to that of E.

An equivalent statement may be made in terms of the average of a dynam-
ical variable g(z). It is evident that the ergodic hypothesis implies that all
domains on the energy surface of equal measure are equally probable. The
corresponding distribution function is51

f (z) � 1

µ(E)
, for z on H � E (8.6)

which has the normalization ∫
H�E

f (z) dW � 1 (8.6a)

With (8.3), the phase average of g(z) is given by

〈g〉� � 1

µ(E)

∫
H�E

g(z) dW (8.7)

51In equilibrium statistical mechanics, (8.6) is called the microcanonical
distribution. This distribution is further discussed in Section 5.2.1.
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In equilibrium, we may also define a time average of g(z) as

〈g〉τ � lim
τ→∞

1

τ

∫ t0+τ

t0

g[z(t)] dt (8.8)

The ergodic theorem seeks to establish the equality of 〈g〉� and 〈g〉τ . For
this equality to be valid, it is evident that 〈g〉τ must be independent of the initial
time t0 and its phase point z(0).

Birkhoff’s theorem

Birkhoff’s theorem addresses these questions.52 The theorem rests on the as-
sumption that the displacement transformations T̂ (t) for the system at hand
are metrically transitive (or, equivalently, that the energy surface is metrically
indecomposable). The transformation T̂ (t) on the energy surface is metrically
transitive if the only sets left invariant under T̂ (t) are the whole set or sets of
measure zero.53 Alternatively, we may say that the energy surface is metrically
indecomposable if it cannot be divided into two invariant parts each of pos-
itive measure. An invariant part of phase space means that all points in this
part remain in that part during the motion of the system. With this assumption,
Birkhoff’s theorem states that the limit 〈g〉τ exists everywhere on the energy
surface, except for a set of measure zero, and that 〈g〉τ is independent of the
initial time t0 as well as the initial phase point z0.

Furthermore, the theorem implies that

〈〈g〉τ 〉� � 〈g〉� (8.9)

Since 〈g〉τ is independent of z0, it is constant on the energy surface:

〈g〉τ � A � constant

Thus

〈〈g〉τ 〉� � A
and we obtain

〈〈g〉τ 〉� � 〈g〉τ (8.9a)

52G. D. Birkhoff, Proc. Nat. Acad. Sci. U.S.A. 17, 656 (1931). For a more ex-
tensive discussion of these topics, see I. E. Farquhar, Ergodic Theory in Statistical
Mechanics, Wiley-Interscience, New York (1964).

53I. Oxtoby and S. Ulam suggest that almost every group of continuous transfor-
mations is metrically transitive: Ann. of Maths. 42, 874 (1941). M. Kac indicates
that it is virtually impossible to decide if a given Hamiltonian generates metrically
transitive transformations: Probability and Related Topics in Physical Theory, Wiley-
Interscience, New York (1959). G. Sinai has argued that this property is satisfied by an
aggregate of colliding hard spheres: Statistical Mechanics, T. Bak, (ed.), Benjamin,
Menlo Park, Calif. (1967).
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With (8.9), the latter relation gives the desired result.54

〈g〉τ � 〈g〉� (8.10)

The significance of this relation to irreversibility is as follows. First note that
(8.6) is an equilibrium distribution.55 It follows that in writing (8.10), we assert
that, independent of initial conditions, the time average goes to the equilibrium
average (8.7). This result identifies (8.6) as a preferred state, which is an alien
notion to reversible dynamics.

The following property is important to subsequent discussion. A bounded
system with no integral of the motion other than the energy is ergodic.56 The
reason for this is as follows. Let there be an additional constant of the motion,
B, other than the energy for the given system. Then the system point moves
on the hypersurface which is the intersection of the surfaces B � constant and
H � E. This intersection is a subdomain of the energy surface that the system
point is constrained to move on, and the motion is nonergodic. Ergodic motion
results if this constraint is removed.

We may conclude from these statements that, for an ergodic system, points
move about the energy surface visiting all domains of equal measure with
equal frequency with no preference given to any single domain. Whereas
this description suggests that a given distribution will spread with time to
cover the whole energy surface, counterexamples57 exhibit distributions that,
although ergodic, retain their initial geometrical shape and do not approach an
equilibrium distribution.

3.8.2 Mixing Flow and Coarse Graining

Mixing flow causes any initial distribution to spread throughout the energy
surface. Note in particular that mixing flow is ergodic but ergodic flow is not
always mixing. A system is mixing if for any two functions h(z) and f (z) in
L2, and defined on H � E,

lim
t→±∞

1

µ(E)

∫
H�E

h(z)f [z(t)] dW �
∫
H�E h(z) dW

∫
H�E f (z) dW

[µ(E)]2
(8.11)

An immediate consequence of this definition is as follows. In the above equal-
ity, let f (z) be a nonequilibrium distribution with normalization (8.6a). Then

54Birkhoff’s theorem does not imply that the system point passes through every
point in the energy surface. Thus, whereas 〈g〉τ involves a single trajectory, it is
known that a curve that cannot intersect itself cannot fill a surface in two or more
dimensions.

55In equilibrium statistical mechanics (8.6) incorporates the principle of equi-a
priori probabilities; that is, all states on the energy surface are equally probable. The
corresponding distribution is called the microcanonical distribution.

56For further discussion, see N. G. Van Kampen, Physica 53, 98 (1971).
57See, for example, L. Reichl, A Modern Course in Statistical Physics, Chapter 8,

University of Texas Press, Austin (1980).
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with (8.11) we may write

〈h〉 �
∫
H�E

h(z)f [z(t)]dW −→
t→±∞

1

µ(E)

∫
H�E

h(z) dW (8.12)

Thus, for mixing flow, 〈h〉 approaches an average with respect to the
equilibrium distribution (8.6): f � [µ(E)]−1.

However, the following should be borne in mind. For either ergodic or mix-
ing flow, the ensemble density does not change in the neighborhood of a moving
phase point. This is a consequence of the Liouville equation, which, in addition
to incorporating the incompressibility of the ensemble fluid, further implies
an unchanging Gibbs entropy (3.39). The mixing flow of an initial ensemble
distribution in phase space with time is often compared to the mixing of water
and oil. After sufficient stirring,58 the fluids appear to be homogeneous. How-
ever, more precise observation reveals that the oil and water have remained
separate. Furthermore, we may envision a careful stirring that reestablishes
the original configuration.

Irreversibility in classical mechanics my be attained under coarse graining.
Coarse graining begins with dividing the energy shell into subdomains {En}
such that the nth subdomain has volume�n. IfD(z, t) is the ensemble density
at the time t , then the coarse-grained density is given by

O(z, t) ≡ 1

�n

∫
z∈En

D(z′, t) dz′ (8.13)

We note thatO(z, t) is constant over each cell and has the same normalization
as D(z, t).

The Gibbs’s coarse-grained entropy is defined by

η(t) �
∑
n

�nOn lnOn (8.14)

which may alternatively be written

η(t) �
∫
O(z, t) lnO(z, t) dz

�
∫
D(z, t) lnO(z, t) dz (8.14a)

Consider the special case that D(z, t) is initially constant over each cell.59

Then D(z, t) � O(z, 0) and we may write

η(t)− η(0) �
∫
O(t) lnO(t) dz−

∫
D(0) lnD(0) dz

58For consistency of this model, the oil must not separate into disconnected
segments at any time during the stirring. See Problem 2.7.

59In this event,D is a simple set function. For further discussion, see R. L. Liboff,
J. Stat. Phys. 11, 343 (1974).
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�
∫

[D(t) lnO(t) dz−D(t) lnD(t)] dz (8.15)

where we have employed (8.14a). Adding∫
D dz−

∫
Odz � 0

to the right side of (8.15) gives

η(t)− η(0) �
∫
D

[
ln
( π
D

)
+ 1−

(
O

D

)]
dz (8.16)

Since 1+ ln y ≥ y and D ≥ 0, we may write

η(t)− η(0) ≤ 0 (8.17)

We may conclude that, with D initially constant over individual cells, if η
changes, it decreases. Furthermore, it ceases to increase whenO(z) is uniform
(see Problem 3.16).

It is evident that the irreversible statement (8.17) is a consequence of the
coarse-graining definition (8.12). In going into this representation, the level
of information on the state of the system is reduced. It is further evident that
O(z, t) is less informative thanD(z, t) is about the state of the system. It appears
to be a general rule that irreversibility occurs when working in a representation
that is less informative than the Liouville picture.

3.8.3 Action-Angle Variables

In this section, we consider finite systems that occupy a bounded region of
phase space and that undergo periodic or nearly periodic motion. A system
of coordinates and momenta particularly well suited to periodic motion are
action-angle variables. These variables are closely related to a formalism called
Hamilton–Jacobi theory. In this formalism, we seek to discover a canonical
transformation that renders all new coordinates (q ′) cyclic. As all new momenta
are then constants of the motion, Hamilton’s equation (1.1.12) is simply inte-
grated to yield the orbits in the new coordinate frame, that is, q ′ � q ′(t). The
dynamical problem is then reduced to algebraically transforming the q ′ � q ′(t)
motion to the original q � q(t) frame.

Such a canonical transformation may be obtained from an appropriate gen-
erating function. Consider specifically the function G2(q, p′) (introduced in
Section 1.2.1) relevant to a system withN degrees of freedom. For uniformity
with commonly adopted notation, G2 is relabeled S. Recalling (1.2.14), we
write

pi � ∂Si(q
N, p′N )

∂qi
(8.18)

q ′i �
∂Si(qN, p′N )

∂p′i
(8.19)
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We assume that this generating function renders all momenta constant. Let us
call these constant momenta αN , in which case S � S(qN, αN ). Assuming the
motion to be separable, we write

S(qN, αN ) �
∑
i

Si(qi, α
N ) (8.20)

The relation (8.18) gives

pi � dSi(qi, α
i)

dqi
(8.21)

or, equivalently,

Si �
∫
pi dqi (8.22)

The motion is periodic if pi(qi, αN ) is a periodic function of qi (rotation) or is a
closed orbit in the (qi, pi) plane (vibration). In either event, the integrals (8.22)
about cyclic orbits are evidently constant and are taken as the new momenta.
These are assigned the symbol Ji and are called action variables.

>Si ≡ Ji �
∮
pi dqi (8.23)

With the new Hamiltonian cyclic in new coordinates, we write

H ′ � H ′(J1, . . . , JN ) (8.24)

Coordinates conjugate to action variables, Ji , are called angle variables,
labeled Xi . With (8.19), we write

Xi � ∂S(qN, JN )

∂Ji
,

[
pi � ∂S(qN, JN )

∂qi

]
(8.25)

Hamilton’s equations for the new coordinates are given by

Ẋi � ∂H
′

∂Ji
� νi(J1, . . . , JN ) (8.26)

which are simply integrated to yield

Xi � viT +Xi(0) (8.27)

To discover the physical meaning of Xi , we evaluate δiXj , the net change
in Xj due to carrying qi through a complete cycle.

δiXj �
∮
∂Xj

∂qi
dqi �

�
∂2S

∂qi∂Jj
dqi

which, assuming separability (8.20), reduces to

δiXj � ∂

∂Jj

∮
pi dqi � ∂

∂Jj
Ji � δji (8.28)
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So Xj changes by unity if qi goes through a complete cycle, but remains
unchanged otherwise.

Let τi be the period of oscillation of qi . Then with (8.27) and (8.28) we have

Xi(τi)−Xi(0) � viτi � 1 (8.29)

Thus we may identify vi as the frequency of oscillation ofqi . Angular frequency
is given by ωi � 2πvi so that, with (8.27), θi � 2πXi may be identified with
angular displacement of the periodic motion. When written in terms of these
angular variables, (8.26) through (8.29) become

θ̇ i � ∂H
′

∂Ji
� ωi(J1, . . . , JN ) (8.26a)

θi � ωit + θi(0) (8.27a)

δiθj � 2πδij (8.28a)

θI (τi)− θi(0) � ωiτi � 2π (8.29a)

In (8.26a), H ′ was written for 2π ×H ′ of (8.26).
A note of caution is in order at this point. In the canonical mapping

(q, p) → (J, θ ), the variable θ is a many-valued function of old variables
so that the transformation (q, p) → (J, θ ) is not one to one and θ is not a
well-defined dynamical variable. This situation is easily remedied for peri-
odic motion. Consider that the θ interval corresponding to (q, p) periodicity
is 2π . The mapping is rendered one to one either by introducing the function
θ mod 2π or by working with any trigonometric function of θ . The function
θ mod 2π of, say, θ � θ1 + n2π , where n is an integer and θ1 < 2π , is θ1.

It is evident that a well-defined canonical transformation must be a one to
one mapping between old and new variables. Thus, for example, if the mapping
(q, p) ↔ (θ, J ) is not one to one, then knowledge of a constant in the (θ, J )
frame does not determine an image constant in the (q, p) frame.

As described in Section 3.1, the two-body problem is reduceable to the
motion in a plane of an effective particle with reduced mass µ. It might be
thought that action-angle variables are relevant only to interactions that give a
closed orbit in the plane of motion. The fact is that of all attractive interactions
of the form V � Krn only n � 2 (harmonic oscillator) and n � −1 (Kepler
problem) give closed orbits.60 However, for nonclosed orbits, r(t) and θ (t) may
still be periodic but with incommensurate frequencies, in which case action-
angle variables remain appropriate. (See Problem 3.17.) We now turn briefly
to the technique of obtaining the generating function S, which renders all new
coordinates cyclic.

60V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag,
New York (1978).
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3.8.4 Hamilton–Jacobi Equation

For all generating functions previously discussed, old and new Hamiltonians,
H and H ′, respectively, are related through H ′ � H + ∂S/∂t . With S not
explicitly dependent on time, we obtainH � H ′. We may identify the constant
H ′ with, say, the first of the ordered constant momenta of the system. Calling
this constant E, we obtain

H

(
q1, . . . , qN,

∂S

∂q1
, . . . ,

∂S

∂qN

)
� E (8.30)

This equation is called the Hamilton–Jacobi equation for Hamilton’s charac-
teristic function S. The solution to this first-order partial differential equation
in N independent variables is a function of N constants. Thus we may write

S � S(q1, . . . , qN ;α1, . . . , αN ) (8.31)

This is the desired structure of S with {αi} identified as the new constant
momenta and new coordinates given by q ′i � ∂S/∂αi . As previously assigned,
the new Hamiltonian H ′ � α1, which, as sought, is cyclic in all q ′i . Note in
particular that

ṗ′i � −
∂H ′

∂q ′i
� −∂α1

∂q ′1
� 0

q̇ ′i �
∂H ′

∂p′i
� ∂α1

∂αi
� δi1

(8.32)

which give

q ′1 �
∂S

∂α1
� t + β1

q ′1 �
∂S

∂αi
� βi (i �� 1)

(8.32a)

Harmonic oscillator

Let us apply the Hamilton–Jacobi equation (8.30) to the problem of finding
the orbit q � q(t) of the harmonic oscillator with the Hamiltonian

H � p2

2m
+ kq

2

2
(8.33)

where m is mass and k is the spring constant. The relation (8.30) becomes

1

2m

(
∂S

∂q

)2

+ kq
2

2
� E

which gives

S(q,E) �
√
mk

∫
dq

√
2E

k
− q2 + A (8.34)
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where A is a constant of integration. Differentiating, we find, with (8.32a),

∂S

∂E
� t + β � 1

ω

∫
dq√

(2E/k)2 − q2

� 1

ω
sin−1 q

√
K

2E
(8.35)

where we have set

ω2 ≡ k

m
(8.35a)

Inverting (8.35) gives the desired solution:

q �
√

2E

k
sinω(t + β) (8.36)

In action-angle formalism,

J �
∮
∂S

∂q
dq �

√
mk

∮
dq

√
2E

k
− q2

J � 2πE

ω
� E
ν

(8.37)

The new Hamiltonian is

H ′(J ) � νJ (8.37a)

which on differentiation returns (8.27) for angle variable X(t).

3.8.5 Conditionally Periodic Motion and Classical Degeneracy

We return to the discussion of Section 8.1 relevant to systems that are separable
(8.20) and whose independent coordinates execute periodic motion.

Consider a dynamical function of the state of this system,F (qN, pN ). When
expressed in terms of action-angle variables, this function is periodic in the
angle variables with the period of each θi variable equal to 2π . Thus the
function F (qN, pN ), when expressed in terms of action-angle variables, may
be expanded as a multiple Fourier series:

F (JN, θN ) �
∞∑

n1�−∞
· · ·

∞∑
nN�−∞

An1···nN exp[i(n1θ1 + · · · + nNθN )] (8.38)

where {ni} are integers. The time dependence of this function is obtained from
(8.26) and (8.27). Again, setting H ′ � E gives

θi � ∂E
∂Ji
t + ai (8.39)
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where ai is a constant. Substituting these value into (8.38) and absorbing {ai}
into the Fourier coefficients A{n} gives the time-dependent form

F (t) �
∑
n1

· · ·
∑
nN

An1···nN exp[it(n1ω1 + · · · + nNωN )] (8.40)

where, with (8.26a), we have labeled

ωi � ∂E
∂Ji

(8.40a)

Thus we see that each term in the sum (8.39) is a periodic function with
frequency

ωn1···nN � n1ω1 + · · · + nNωN (8.41)

Since these frequencies are in general not commensurate, the sum (8.40) is not
in general a periodic function. However, with Poincaré’s recurrence theorem
(Section 3.6), we may conclude that after a sufficient time the system, in
developing from a given initial state, will return arbitrarily close to the initial
state. Thus the dynamical function F (t) is said to be conditionally periodic.

Degeneracy

In the event that two or more frequencies are commensurate (for example,
n̄1ω1 � n̄2ω2, where n̄1 and n̄2 are integers), the system is said to be degenerate.
For complete degeneracy, all frequencies are commensurate, and we may write

ωn1···nN � ω1(n1 + n2k̄2 + n3k̄3 + · · · + nKk̄N ) ≡ sω1 (8.42)

where k̄i and s are rational numbers and ω1 represents the minimum of the
values {ω1}. In this event, F , as given by (8.40) is periodic. Let us calculate the
frequency of this periodic oscillation. Toward these ends, we set s � n̄a/n̄b,
where n̄a and n̄b are integers, to obtain

ωn1···n2 � n̄a
(
ω1

n̄b

)
(8.42a)

So, for complete degeneracy, we may associate a frequency with each term in
the sum (8.40), which is equal to either the fundamental, ω1/n̄b, or one of its
harmonics, n̄a(ω1/n̄b). Thus the angular frequency of the function (8.40) for
complete degeneracy is ω1/n̄b ≤ ω1.

Consider the specific example of twofold degeneracy withω1 � kω2, where
k is a rational number. Again we set k � n̄2/n̄1. The frequency sum (8.41)
becomes

ω � ω1

n̄2
n+ n3ω3 + · · · + nNωN (8.43)

where n is an integer that replaces the n̄1 and n̄2 integers in the multiple
Fourier series (8.40). Thus degeneracy leads to reduction in the number of
independent frequencies for the system. As we will find immediately below,
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a similar property pertains to the number of independent constants of motion
on which the energy depends.

Again considering the case that only two frequencies are commensurate [see
(8.40)], we write

n̄1
∂E

∂J1
� n̄2

∂E

∂J2

This relations yields E � E(n̄2J1 + n̄1J2). Thus

E � E(n̄2J1 + n̄1J2, J3, . . . , JN ) (8.44)

and we may conclude that, when degeneracy occurs, there is a reduction of the
number of independent constants on which the energy depends.61

In addition to the preceding properties concerning degeneracy, we note the
following. With (8.39), we see that the form

A12 � θ1
∂E

∂J2
− θ2

∂E

∂J1
(8.45)

is a constant of motion. With degeneracy, n̄1ω1 � n̄2ω2, the preceding gives

B12 ≡ n̄2A12

ω1
� n̄1θ1 − n̄2θ2 (8.46)

If either θ1 or θ2 changes by 2π , B12 changes by an integer× 2π . So replacing
the right side of (8.46) with its value mod 2π gives a single-valued integral of
the motion. On the other hand, for nondegeneracy, it is evident that (8.45) does
not yield a single-valued integral of the motion.

An example of an additional constant for degenerate systems occurs for the
Kepler problem. In this case the additional constant is the Laplace–Runge–
Lenz vector62

A � p× L− µrV (r) (8.47)

where L � r × p is angular momentum, µ is reduced mass, and the potential
V (r) � −K/r . With the Hamiltonian of the system given by

H � p2

2µ
+ V (r)

61A similar situation occurs in quantum mechanics. The Hamiltonian of a particle
moving in a central potential is invariant under rotation about the origin. This in-
variance is a twofold symmetry. Consequently, eigenenergies are dependent only on
the principal quantum number and are independent of orbital or azimuthal quantum
numbers.

62Properties of this vector are discussed by R. J. Finkelstein, Nonrelativistic
Mechanics, Benjamin, Menlo Park, Calif (1973). See also H. Golstein, Classical Me-
chanics, 2nd. ed., Addison-Wesley, Reading, Mass. (1980). An additional example
of this degeneracy property is given in Problem 3.17.
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FIGURE 3.26. Angular displacements lie on the surface of a torus, which is a two-
dimensional hypersurface in four-dimensional phase space.

the equation of motion (1.1.25) returns Ȧ � 0. Incorporating relations among
the constants A and L and the energyE indicates that only one scalar property
of A is independent of L and E as, for example,

A2 � µ2K2 + 2mEL2 (8.48)

This observation permits the following conclusion. The constant A2 is an
example of a dynamical function that commutes with the Hamiltonian but
that, nevertheless, is not a function of the Hamiltonian. When coupled with
(1.1.26g), the preceding remarks indicate that whereas G � G(H ) ⇒
[G,H ] � 0 the converse is not in general a valid statement.63

Invariant tori

Consider a system with two degrees of freedom with coordinates q1, q2, which
individually execute periodic motion. The related angular displacements θ1,
θ2 (mod 2π ) lie on a constant toroidal surface, which may be identified with
the constant actions J1 and J2 (see Fig. 3.26). If the motion is degenerate,
then n̄1ω1 � n̄2ω2. It follows that in the time interval 2πn̄2/ω1, over which
θ1 makes n̄2 revolutions, θ2 makes n̄1 revolutions, resulting in a closed orbit.
As the (θ, J ) ↔ (q, p) mapping is one to one, a closed orbit likewise results
in (q, p) space, with which we may associate a new constant J value. Again,
degeneracy leads to an additional constant of motion.

63The same rule applies in quantum mechanics. For a particle moving in a central
potential, [L̂z, Ĥ ] � 0, which gives d〈Lz〉/dt � 0. The degeneracy of the eigenstates
of Ĥ stems from rotational symmetry, which infers that Ĥ is invariant under operation
by L̂z. This is the reason for the null commutation property, and not that L̂z � L̂z(Ĥ ).
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3.8.6 Bruns’s Theorem

The three-body problem refers to the following configuration: three bodies
of given masses interacting under attractive potentials and executing bounded
motion. This system has 9 degrees of freedom and, in general, trajectories are
given in terms of 18 constants of motion. Ten such constants are given by

P,
Pt
M
− R, L, E (8.49)

where R, P, and M are center-of-mass displacement, momentum, and mass,
respectively, L is total angular momentum, and E is energy.

In 1887, Heinrich Bruns showed that the only algebraic integrals for the
three-body problem are the ten known integrals (8.49).64 We may conclude
that, in general, the three-body problem is nonintegrable so that the N -body
problem is nonintegrable for N ≥ 3. [See Problem 3.61.]

Integrable motion may be defined as follows. If a canonical transformation
to a representation exists in which all coordinates are cyclic, then the motion
of the related system is said to be integrable. For bounded integrable systems,
we may identify new momenta with action variables so that the transformed
Hamiltonian appears as

H � H (J1, . . . , JN )

Therefore, in general, a bounded system is integrable providing a canonical
transformation exists in which the new Hamiltonian is given as above. As
discussed in the previous section, when such constants are expressed in terms
of angle variables, they are referred to an invariant tori (see Fig. 3.26).

3.8.7 Anharmonic Oscillator

We may gain deeper insight into the preceding discussion through study of
certain anharmonic oscillator systems. Thus, for example, consider a system
with two degrees of freedom with the Hamiltonian65

H � 1

2
(p2

1 + p2
2 + q2

1 + q2
2 )+ q1q

2
2 −

1

3
q3

1 (8.50)

64H. Bruns, Berichte der Kgl. Sächs. Ges. der Wiss. (1887). See also H. Poincaré,
Les Method Nouvelles de la Mechanique Céleste, Gauthier-Villars et fils, Paris (1892,
1893, 1899). Reprinted by Dover Publications, New York (1957), Vol. 1, Chapter
V; E. T. Whitaker, A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, 4th ed., Dover, New York (1944). Note: Special solutions to the three-body
problem were shown to exist for restricted motion on a plane by Lagrange (1772).
This configuration was cast in a symmetric more revealing form by R. Broucke and
H. Lass, Celestial Mech. 8, 5 (1973). For further discussion, see D. Hestenes, New
Foundations for Classical Mechanics, D. Reidel, New York (1986).

65M. Hénon and C. Heiles, Astron. J. 69, 73 (1964). A closely allied problem was
examined by E. N. Lorentz, J. Atmos. Science 20, 130 (1963).
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FIGURE 3.27. Development of chaotic motion corresponding to the Hénon–Heiles
Hamiltonian (8.50). From M. Hénon and C. Heiles, Astron. J. 69, 73 (1964). Used
by permission of Carl E. Heiles.

Trajectories lie on the surface H � E � constant in four-dimensional �-
space. We may obtain a two-dimensional image (that is, a Poincaré map) of
the trajectory in the following manner. Observe the trajectory each time it
passes through the q2 � 0 surface with p2 > 0 in the q1, p1 plane. (We will
refer to this plane as the q1p1 plane.) If the energy is the only constant of
motion, then the projection of the system point is free to roam about the q1p1

plane corresponding to the surface H � E. However, if an additional integral
of motion exists, then the system trajectory lies on the three-dimensional hy-
persurface which is the intersection of this constant and the energy surface.
The intersection of this hypersurface and the q1p1 plane is a smooth curve.
So if plots of trajectory points in the q1p1 plane show no systematic order,
we conclude that the system has only one constant of motion, H � E. If,
however, the trajectory points follow a smooth curve, we may conclude that
an additional constant of the motion exists.

Three numerical readouts due to Hénon and Heiles are shown in Fig. 3.27. At
lowest energy, E � 0.0833, the existence of a smooth curve in the q1p1 plane
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implies, to within computer accuracy, an additional constant of the motion.
Each closed loop in these figures corresponds to one trajectory (that is, one set
of initial data). As energy is increased, at E � 0.125, there is disintegration of
the smooth curves. The random dots correspond to one trajectory. At slightly
higher energy, E � 0.167, nearly all motion is chaotic, and the additional
constant of motion is lost. Note in particular that these numerical data indicate
a fairly abrupt transition to chaos.

3.8.8 Resonant Domains and the KAM Theorem

The loss of a constant of motion with the change in a parameter in the Hamil-
tonian, as in the preceding example, is well described as follows. With aid of
the transformation

pi � −(2mωiJi)
1/2 sin θi

qi �
(

2Ji
mωi

)1/2

cos θi
(8.51)

The Hamiltonian of a general two-dimensional anharmonic oscillator may be
cast in the form

H (J1, J2, θ1, θ2) � H0(J1, J2)+ λV (J1, J2, θ1, θ2) (8.52)

where λ is a coupling constant. The potential V is periodic in θ1 and in θ2,
whereas H0 has a polynomial dependence on J1 and J2. At λ � 0, in accord
with (8.39), we find66 (for i � 1, 2)

θI � ωi(J1, J2)t + ai

ω1(J1, J2) � ∂H0

∂Ji

(8.53)

Before proceeding further, we introduce a more definite perturbing potential
in the form of a multiply periodic series [see (8.38)]:

V �
∑
n1

∑
n2

Vn1n2 (J1, J2) cos(n1θ1 + n2θ2) (8.54)

The sum runs over all positive and negative integers n1, n2. Note that this form
of potential maintains periodicity in θ1 and in θ2.

Let us attempt the construction of a generating function S(J ′1, J
′
2, θ1, θ2),

which renders J ′1 and J ′2 constants of the motion for sufficiently small values
of the interaction parameter λ. We choose the form

S � J ′1θ1 + J ′2θ2 +
∑
n1

∑
n2

Bn1n2 sin(n1θ1 + n2θ2) (8.55)

66Note that ωi entering the present discussion is not relevant to the entire
Hamiltonian (8.52) but only to the unperturbed term, H0.
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and determine the coefficients Bn1n2 to give the desired cyclic property. With
the preceding expression, we obtain

Ji � ∂S

∂θi
� J ′i +

∑
n1

∑
n2

niBn1n2 cos(n1θ1 + n2θ2) (8.56)

θ ′i �
∂S

∂J ′i
(8.56a)

where J ′i , θ
′
i are new canonical variables.

Substituting the potential (8.54) into the Hamiltonian (8.52) and first
expanding the resulting form about Ji � J ′i , we obtain

H � H0(J ′1, J
′
2)+ ∂H0

∂J1
>J1 + ∂H0

∂J2
>J2 + · · · + λV

With >Ji inferred from (8.56) and keeping terms to 0(λ), we find

H � H0(J ′1, J
′
2)+

∑
n1

∑
n2

[(n1ω1 + n2ω2)Bn1n2 + λVn1n2 ] cos(n1θ1 + n2θ2)

(8.57)
Thus, to lowest order in λ, J ′1 and J ′2 are constants, providing we set

Bn1n2 � −
λVn1n2

n1ω1 + n2ω2
(8.58)

in which case

H � H0(J ′1, J
′
2)+ 0(λ2)

Expansions for the new action variables are obtained by substituting the
coefficients (8.58) into (8.56). There results

J ′i � Ji +
∑
n1

∑
n2

λniVn1n2

(n1ω1 + n2ω2)
cos(n1θ1 + n2θ2)+ 0(λ2) (8.59)

It follows that the choice of S as given by (8.55) with coefficients (8.58)
has the desired property of rendering J ′1 and J ′2 constants for sufficiently small
λ. However, note that with (8.53) ωi � ωi(J1, J2), and it is possible that
n1ω1 + n2ω2 may vanish. In general, the series (8.59) diverges if

|n1ω1(J1, J2)+ n2ω2(J1, J2)| ≤ λniVn1n2 (8.60)

The region of phase space where (8.59) is obeyed is called the resonance zone,
and n1ω1 + n2ω2 � 0 is the resonance condition.67 In the resonance zone, J ′i
as given by (8.59) ceases to be a well-defined constant and chaotic behavior
ensues.

Suppose, in the expansion of J ′ given by (8.59), we exclude small regions
in phase space about each resonance given by (8.60). In this event, we obtain

67This resonant condition is evidently equivalent to degeneracy of H0 previously
described in Section 8.3.
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a well-behaved expansion for J ′1. For smooth potentials, the amplitudes Vn1n2

decreases rapidly with increasing n1 and n2, and we may expect that, with
larger n1, n2, smaller regions of phase space are excluded, thereby extending
the domain of convergence of the series (8.59).

In three independent works, A. N. Kolmogorov,68 V. I. Arnold,69 and
J. Moser70 (KAM) established the following: In the limit λ → 0, and pro-
viding H0 has a nonzero Hessian (or, equivalently, that ωi has a nonvanishing
Jacobian)

det

∣∣∣∣∂ωi∂Jj

∣∣∣∣ � det

∣∣∣∣ ∂2H0

∂Ji∂Jj

∣∣∣∣ �� 0 (8.61)

then the measure of excluded phase space approaches zero, or, equivalently,
we may say that the invariant tori ofH0 are conserved.71 In this event, we may
expect orbits to remain well behaved in the limit λ → 0 over most of phase
space. Note that this theorem is consistent with (8.60). In the opposite case
that λ grows away from zero, the theorem states that not all invariant tori of
H0 are destroyed. The ensuing motion of the system is a consequence of the
remaining and lost invariant tori.

Two significant properties of resonance zones are as follows: Consider two
points in phase space with arbitrarily small initial relative displacement. For
chaotic motion, the subsequent displacement of trajectories stemming from
these initial points grows exponentially with time.72 This property is relevant
to points within a resonant zone.73 As this property maintains for arbitrarily
small initial displacement, we may conclude that there is no finite-difference
integration accuracy that suffices to retrace a trajectory back to its initial point
in a resonant zone.

Second, it has been ascertained74 that, as the number of resonances grow
dense in phase space, integrals of the motion become nonanalytical or patho-
logical, as do their intersection. As this intersection represents the system

68A. N. Kolmogorov in Foundations of Mechanics, R. Abraham (ed.), Benjamin,
Menlo Park, Calif. (1967). See Appendix D.

69V. I. Arnold, Russian Math. Surv. 18, 9 (1963); 18, 85 (1963).
70J. Moser, Akad. Wiss. Gottingen II, Math. Physik Kl. 1 (1962).
71For further discussion of this theorem, see G. M. Zaslavsky, Chaos in Dynamical

Systems, Harwood Academic Publishers, New York (1985); and H. G. Schuster,
Deterministic Chaos, Physik-Verlag, Weinheim (1984).

72The log of this exponential displacement is called the Liapunov exponent. For
further discussion see: S. Chandra (ed.), Chaos in Nonlinear Dynamical Systems,
SIAM, Philadelphia (1984).

73This behavior was demonstrated for the Hénon–Heiles system by C. H. Walker
and J. Ford, J. Math. Phys. 13, 700 (1974).

74I. Prigogine, From Being to Becoming, W. H. Freeman, San Francisco (1980).
This work includes a descriptive overview of irreversibility and a comprehensive
reference list.
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trajectory, it is evident that neither the trajectory nor its time reversal are well
defined for this situation.

Problems

3.1. For the Hamiltonian given by (1.7) and potential of interaction given by (1.17),
with K � −|K|, offer a geometrical argument that illustrates that orbits are
bound for E < 0 and (conditionally) unbound for E > 0. Hint: Introduce the
effective potential

Veff (r) � V (r)+ L2

2µr2

and make a sketch of Veff (r) versus r .

3.2. (a) Show that the scattering matrix

S � I − 2αα

has the following properties:

S � S̃, S · S � I
(b) What consequence do these properties have on the collision statement

g′ � Sg?

3.3. Show that the external force K drops out in the derivation of (3.31).

3.4. This problem addresses the group property of the time-displacement operator
T̂ (t) introduced in Section 3.6 (where they were labeled T̂ n) and in Section 8.1.
Show that these operators satisfy the group property T̂ (t1)T̂ (t2) � T̂ (t1 + t2).

Answer

Consider the form T̂ (>t2)T̂ (>t1)�0, where>t1 and>t2 are small time inter-
vals and �0 represents a volume in �-space. Let (q0, p0) ∈ �0. Integrating
Hamilton’s equations (1.1.20) over >t1 gives

q1 ≡ q(>t1) � q0 +Hp(q0, p0)>t1 ≡ q0 +Hp(0)>t1

with a similar equation for p1. We have writtenHp for ∂H/∂p. For the second
displacement, we find

q2 � q1 +Hp(q1, p1)>t2

Substituting for (q1, p1) in Hp gives

q2 � q1 +Hp[q0 +Hp(0)>t1, p0 −Hq(0)>t1]>t2
q2 � q1 +Hp(0)>t2 + 0(>t1>t2)

Dropping the last term and substituting for q1 gives

q2 � q0 +Hp(0)(>t1 +>t2)
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with a similar relation for p2. These are the same forms that result for T̂ (>t1+
>t2)�0.

3.5. The value of viscosity for liquid D2 at 20K is η � 370 × 10−6 g/cm-s.75

How does this value compare with that obtained from Maxwell’s formula
(4.33)? The diameter of a D2 molecule may be taken to be � 3.5 Å. Offer an
explanation for this (good/bad) agreement.

3.6. Show that the following five integrals represent identical tensors. In these

expressions, G is a tensor independent of c, and F � F (c2).

(1)
∫
F cc( °cc : G) dc (2)

∫
F

°cc(cc : G) dc

(3)
2

15
°
Gs

∫
Fc4 dc (4)

∫
F

°cc( °cc : G) dc

(5)
1

5
°
Gs

∫
( °cc : °cc)F dc

We have written

°
A ≡ A− 1

3
(TrA)I

which is traceless and

°
As ≡ 1

2
(A+ Ã)− 1

3
(TrA)I

which is symmetric and traceless as well. The transpose of A is written Ã.

Hint: See Appendix B, Section B.1. Note that ifA is symmetric then
°
A � °

As .

3.7. (a) Show that the Sonine polynomials

S(n)
m (x) �

n∑
p�0

(m+ n)!(−x)p

(m+ p)!(n− p)!p!

occur as coefficients of expansion of the generating function

S(x) � (1− s)−m−1e−xs/(1−s)

where s is a positive number less than unity. That is, show that

S(x) �
∞∑
n�0

S(n)
m (x)sn

3.8. Show that the coefficient α in (5.58) has the value −15/4.

Answer

First note that

F 0

n
dc � 4√

π
ξ 2 dξe−ξ

2

75H. M. Roder et al., NBS Technical Note 641 (1973).
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With (5.56), we then obtain

α1 � 4√
π

∫ ∞

0

e−ξ
2

(
ξ 2 − 5

2

)
ξ · S(1)

3/2(ξ 2)ξξ 2 dξ

With the values of S(n)
m (x) given beneath (5.54a), we note

S
(1)
3/2(ξ 2) � 5

2
− ξ 2

Thus

α1 � − 4√
π

∫ ∞

0

e−ξ
2
ξ 4[S(1)

3/2(ξ 2)]2 dξ

Let x � ξ 2 so that 2ξ 2 dξ � √x dx, whence

α1 � − 2√
π

∫ ∞

0

e−xx3/2[S(1)
3/2(x)]2 dx

� − 2√
π

(5/2)!

1!
� − 2√

π

5

2
· 3

2
· 1

2

√
π

� −15

4

3.9. Show that the coefficient β1 in the equation preceding (5.67) has the value 5
2
.

Answer

From (5.64),

β1 � 4√
π

∫
°
ξξ :

°
ξξS0

5/2(ξ 2)ξ 2 dξ

°
ξξ :

°
ξξ �

(
ξiξj i − 1

3
δij ξ

2

)(
ξiξj − 1

3
δij ξ

2

)

� ξ 4 − 1

3
ξ 4 − 1

3
ξ 4 + 1

9
· 3ξ 4

� 2

3
ξ 4

Again, with x ≡ ξ 2, we obtain

β1 � 4

3
√
π

∫ ∞

0

e−x[S(0)
5/2(x)]2x5/2 dx

� 4

3
√
π

(
5

2

)
! � 4

3
√
π
· 15

8
· √π

� 5

2

3.10. Establish (5.61). That is, show that A11 � −4n2�(2,2).

3.11. A vial of radioactive O19 breaks. Employing mean-free-path relations, estimate
the velocity (cm/s) with which the O19 diffuses through air.
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3.12. Show that the collision frequency ν(ξ ) for interacting rigid spheres is given
by (6.26).

3.13. Show that substitution of the Legendre expansion (7.21)

f (v) � f0(v)+ µf1(v)

into the left side of the equilibrium Boltzmann equation (7.22) yields the right
side [keeping terms to P1(µ)]:

eE
m

[
µ
df0

dv
+ 1

3

(
df1

dv
+ 2f1

v

)]

3.14. (a) Obtain an integral expression for the normalization constant K in the
absolute Druyvesteyn distribution

f0(x) � K(x + s)se−x

x ≡ mv
2

kBT

in terms of n, T , and m. Hint: Recall the normalization∫
f (v) dv � n

and the connecting formula

f1(v) � τeε
m

df0

dv

(b) What does your expression for K reduce to in the limit of no electric
field?

3.15. Establish the equality ∫
g(v2)v̂v̂ dv � I

3

∫
g(v2) dv

where v̂ is a unit vector, I is the identity operator, and g(v2) is any scalar
function. (A generalization of this result is given in Appendix B, Section B.1).

3.16. Show that the coarse-grained entropy η(t) as given by (8.14) is minimum
whenO(z) is uniform. Hint: LetO(z) be uniform. Introduce a variationO→
O′ � O exp κ , where κ is an arbitrary function of z. With O and O′ obeying
the same normalization, obtain

δη �
∫

(κeκ + 1− eκ )O(z) dz

Then show that this form is greater than or equal to zero.

3.17. Show that for two-particle potential motion, periodic in r , the angle variable
θ (t) satisfies the relation

θ (t + T ) � θ (t)+ A
where T is the period of r and A is a constant.
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Answer

With Lz � µr2θ̇ , we obtain

θ (t) � Lz
µ

∫ t

0

r−2(t) dt

It follows that

θ (t + T )− θ (t) � L2

µ

∫ t+T

t

r−2(t) dt ≡ A

Note in particular that

Jθ �
∫ θ (t+T )

θ (t)

pθ dθ � L2

∫ θ (t+T )

θ (t)

dθ � LzA

which is constant.
3.18. A two-dimensional harmonic oscillator has the Hamiltonian

H (1, 2) � H1 +H2

H1 � 1

2
(p2

1 + ω2
1q

2
1 )

H2 � 1

2
(p2

2 + ω2
2q

2
2 )

Another constant of the motion, independent of H , is given by

A � H1 −H2

(a) What is the Poisson bracket of A and H (1, 2)?
(b) Demonstrate a dynamical form that for degeneracy n̄1ω1 � n̄2ω2 gives

a third constant independent of A and H , but that in the event of
nondegeneracy, is not constant.

Answer (partial)

(b) Introduce the complex phase variable

zj (t) � pj (t)+ iωjqj (t), j � 1, 2

The dynamical trajectory may be written

zj (t) � zj (0)eiωj t

Consider the form

B ≡ z
n̄1
1

z
n̄2
2

� z1(0)n̄1ein̄1ω1t

z2(0)n̄2ein̄2ω2 t

In the degenerate limit, we find that B is constant.
Note that H and A may be written

H � 1

2
(z1z

∗
1 + z2z

∗
2)

A � 1

2
(z1z

∗
1 − z2z

∗
2)
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With these relations, it is evident that the modulus of B is a function of
H and A, but that the phase angle of B is independent of H and A.

3.19. Show that the differential measure of the cross-collision integral of the
Boltzmann equation for a two-component fluid may be written

σg d�dv1 �
∫ ∞

0

σδ(>E) dq dv1

Here q is the momentum increment,

m1(v1 − v′1) � m2(v′ − v) ≡ q � Mu � µ(g′ − g)

M � m1 +m2, µ � m1m2

M

and >E is the energy increment,

>E � µ
2

(g′2 − g′2)

The integration is over the scalar component of q.
Recall ∫

h(y)δ[f (y)− a] dy � h(y)

|df/dy|
}

y�y0
f (y0)�a

Answer

First note that

dg′ � g′2 dg′ d�
(See Fig. 3.4) and recall

δ

(
g′2 − g2

2

)
� 1

g′
δ(g′ − g)

It follows that

σg d� �
∫ ∞

0

σδ(g′ − g)g′ dg′ d�

�
∫ ∞

0

σδ

(
g′2 − g2

2

)
dg′

Now

dg′ � d(g′ − g) � M
µ
du

so that

σg d� �
∫ ∞

0

σδ

(
g′2 − g2

2

)
M

µ
du

�
∫ ∞

0

σδ
[µ

2
(g′2 − g2)

]
M du

�
∫
σδ

[µ
2

(g′2 − g2)
]
dq



264 3. The Boltzmann Equation, Fluid Dynamics, and Irreversibility

Note that

>E � µ
2

(g′2 − g2)

and we may write

σg d�dv1 �
∫
σδ(>E) dv1 dq

which was to be shown. Inserting this finding into the cross-collision integral
gives the form [see (2.16)]

J (f | F ) �
∫

(f ′F ′1 − fF1)σδ(>E) dv1 dq

3.20. A point particle of mass m with speed v moves inside a spherical cavity of
radius a with perfectly reflecting walls. Initial normal displacement of the
particle trajectory from the origin (that is, impact parameter) is s.

(a) What are the constants of the motion for this system? Is angular
momentum of the particle constant? Why?

(b) Consider the coordinate components of the energy surface in �-space for
this system. Is the particle motion on this surface ergodic? Why? Describe
the exact motion of the particle.

(c) How do your answers to the above change if the cavity is a rectangular
parallelpiped?

Answers (partial)

(a) In addition to the kinetic energy of the particle, angular momentum, L,
is also a constant. The reason for this is that the force due to the wall is
radial.

(b) Since there is a constant other than energy, the motion is nonergodic. The
motion sweeps out an annulus that lies in a plane of constant orientation
and has inner radius s.

3.21. (a) Employ (3.40) to calculate the change in entropy corresponding to the
expansion process depicted in Fig. 3.14. Assume that the process occurs
with both gases in Maxwellian states at fixed temperature T . Let the
number ofA andBmolecules beNA andNB , respectively, withNA � NB ,
and call the total volume V .

(b) How does your answer change if labels in the molecules are removed
(Gibb’s paradox)?

3.22. Establish the following properties of the symmetric strain tensor (4.6a).

(a)

P : ∇u � P : ?

(b) If P � Ip, then P : ? � p∇ · u, where

p � 1
3

Tr P
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(c) Evaluate the Tr?.

3.23. Relevant to the Chapman–Enskog expansion [see (5.44)], show that∫
F 0A(ξ 2)ξ 2 dc � 0

3.24. Show that the functional operation (3.2)

Î (φ) ≡
∫
Ĵ (f )φ(v) dv

has the following properties:

(a) Î (φ) � 1
2

∫
(φ ′ + φ ′1 − φ − φ1)ff1gσ d�dv dv1

(b) Î (φ) � ∫
(φ′ − φ)ff1gσ d�dv dv1

3.25. Show that the stress tensor

S � 2η

(
?− 1

3
I∇ · u

)
+ ζ∇ · u

vanishes if u � �× v, where � is a constant angular velocity vector and ¯̄?
is the symmetric strain tensor (4.6a).

3.26. (a) The equipartition theorem assigns kBT /2 units of energy on the average
to each degree of freedom for a system in equilibrium. Using this rule,
obtain the value of cV , the specific heat per molecule, for a gas of rigid
diatomic molecules.

(b) For gaseous N2 at room temperature, viscosity η � 1.78× 10−4 g/cm-s.
Employing elementary mean-free-path estimates, obtain the value of
thermal conductivity κ for a gas of N2 at these conditions.

3.27. Consider a collection of N noninteracting particles confined to cubical box
of edge length a, with perfectly reflecting walls. The speeds of the particles
have values {v0i}, 1 ≤ i ≤ N . Express the motion {xi(t)} of this aggregate of
particles in action-angle variables.

3.28. (a) Construct a simple kinetic model to show that the xx component of stress
interior to a gas at rest is

pxx � 2m
∫
dv⊥

∫ ∞

0

dvxv
2
xF (v)

where v⊥ � (vy, vz).
(b) The working definition of pxx is that it is the force exerted on a unit area

within the gas whose normal is parallel to the x axis. State a property of
F (v) at the surface of the test area that permits the preceding integral to
be written

pxx � m
∫
dv⊥

∫ ∞

−∞
dvxv

2
xF (v) � mn〈v2

x〉

3.29. Employing the continuity equation, together with the energy equation (3.31),
derive the adiabatic law (5.23c).
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Answer

Our starting equations are(
∂

∂t
+ u · ∇

)
Ek + Ek∇ · u+ p∇ · u � 0(
∂

∂t
+ u · ∇

)
n+ n∇ · u � 0

Substituting

p � nkBT � 2

3
Ek

into the first of these relations gives

D

Dt

(
3
2
p
)+ 5

2
p∇ · u � 0

whereas the continuity equation gives

∇ · u � − D
Dt

ln n

Eliminating ∇ · u from these latter two equations gives the desired result:

D

Dt
ln

(
P

n5/3

)
� 0

3.30. Under what conditions is a dynamical system with N degrees of freedom
integrable?

3.31. The orbits of a dynamical system with two degrees of freedom are given by

q1 � q1(0) cosω1t

q2 � q2(0) cosω2t

(a) If ω2 � 2ω1, what is the nature of the motion in the q1 − q2 plane?
(b) What is the minimum frequency associated with this motion?

3.32. A fluid is in a state of shear. A narrow slab of the fluid moves in the x direction
with the velocity profile

vx(y) � −a
τ
ξe−w

2/2

where a and τ are characteristic length and time intervals, respectively, and
w ≡ y/a. The slab is centered at w � 0. The related xy component of stress
in the fluid has the value

Sxy � 2.6ρ
(a
τ

)2

e−w
2/2

where ρ is the mass density of the fluid. If a � 2.4 Å, and the thermal speed of
moleculesC � 1.5a/τ , estimate the value of the mean free path of molecules,
l, in the fluid. What are the assumptions of your estimate?
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3.33. Employ the Hamilton–Jacobi equation (8.30) to solve for the orbit of a particle
of mass m in the one-dimensional potential well

V (x) � κ
(
x2

2
+ ax

)
where a and κ are constants.

3.34. Repeating the development leading to the Fourier transform of electrical con-
ductivity (4.72), derive a parallel expression for viscosity for a fluid in a state
of shear. Identify all terms in your derivation. Show that your finding returns
Maxwell’s expression (4.33) in the mean-free-path estimate.

3.35. For attractive potentials (1.21a), the nondimensional inverse minimum
displacement appears as

β̄2 � 1+
(
β̄

b

)N
Show that this equation has no positive solutions for N ≥ 2, b < 1, and
E > 0.

3.36. Consider the scattering of two particles with respective masses m1 and m2.
The angle of scatter in the lab frame of particle 1 is the angle between p′1
and p1. Calling this angle θ1 and the corresponding angle of scatter in the
center-of-mass frame θ , show that

tan θ1 � m2 sin θ

m1 +m2 cos θ

3.37. Calling the cross section in the lab frame σL and that in the center-of-mass
frame σC , obtain the equality

σL(θ1) d cos θ1 � σC(θ ) d cos θ

3.38. What is σC(θ ) for:

(a) Scattering of rigid spheres with respective diameters σ01 and σ02?
(b) Scattering of Maxwell molecules of mass m?
(c) Coulomb scattering of particles with charge q and mass m?

3.39. Show that BY1 [the first equation in the sequence (2.1.20)] implies the three
conservation equations (3.14) (3.18), and (3.19). Note that the pressure tensor
p and heat flow vector q must be redefined to obtain these equations. See, for
example, (2.1.34).

3.40. Show that the �(l,q) cross section integrals (5.62) satisfy the equation

T ∂�(l,q)

∂T
+
(
q + 3

2

)
�(l,q) � �(l,q+1)

3.41. (a) Equilibrium values of a fluid at rest are n̄ � n0 and T̄ � T0. Working with
the Euler equations and assuming one-dimensional motion, obtain linear
equations of motion for the perturbation variables n, u, and T , where ,
after a small disturbance, n̄ � n0 + n, ū � 0+ u, and T̄ � T0 + T .
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(b) From your equations, show that the sound speed a is given by the
isentropic derivative

a2 � ∂p
∂ρ

where ρ is mass density.

3.42. A bomb containing 1 mole of argon atoms at pressure p � 3 atm and temper-
ature T � 300K has a release valve of circular area 10−4πcm2. The valve is
open for 10−4s. The gas cools and then returns to the ambient temperature of
300 k.
Data: Atomic mass of argon � 40 amu. 1 amu � 1.66×10−24 g. 1 atm � 106

dyn/cm2.

(a) Let the gas be ideal prior to the valve being open. What is the volume of
the bomb in cubic centimeters?

(b) Write down the Maxwellian distribution function f for the gas prior to
the valve opening. [The units of f are cm−3(cm/s)−3].

(c) Consider the flux J+, of particles that pass through the valve opening. We
may write

J+ � n〈v+x 〉.
The superscript denotes the fact that we are looking for the average veloc-
ity of particles in the vx > 0 direction. Use this expression to obtain the
mole fraction of particles that escape the bomb while the valve is open.
Sketch the function f (vx) immediately after the valve is shut.

(d) Approximate the immediate drop in temperature, δT , of the bomb. Hint:
Assume 〈v2〉 is constant and guess the value of 〈v〉2 from your answer to
part (c). Introduce the speed C2 ≡ 2kBT /m.

3.43. Let λ denote an eigenvalue of the K̂ operator defined by (6.29). Imagine circles
of varying radii drawn about the origin in complex λ-space. What may be said
about the number of eigenvalues of K̂ in each domain described by these
circles?

3.44. In Section 2.2 an equation of state was given (2.2.53) for a liquid in
equilibrium, which we now rewrite as

P � Pk + P 
PK � nkBT
P � −n

2

6

∫
 ′(r)g(r)4πr3 dr

Derive the latter expression for P from BY1 (2.1.24). That is, take the appro-
priate moment of BY1 to obtain the momentum equation and put the resulting
collision integral in gradient form to identify P .
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Answer

Operating on BY1 with
∫
dcmc and performing a parts integration ont he

collision integral, we obtain

ρ

(
∂

∂t
+ u · ∇

)
u+∇ · PK −N 2

∫
dc1 dc2 dx2G12f2(1, 2) � 0

We may write this equation in the form

ρ

(
∂

∂l
+ u · ∇

)
u+∇ · (PK + P ) � 0

where we have set

∇ · P � −N 2

∫
dc1 dc2 dx2G12f2(1, 2)

(Note that ∇ is written for ∇1). For a nonequilibrium fluid, we assume
anisotropy in the fluid and write the following generalization of (2.2.44):

f2(1, 2) � f0(c1)f0(c2)g(x1, x2)

Substituting this relation into the preceding equation and integrating out the
velocities gives

∇ · P � N
2

V 2

∫
dx2G12(r)g(x1, x2)

Recalling the transformation introduced in Problem 2.14 from x1, x2 → r,R,
we write g(x1, x2) → g(r,R) and, with r � x2 − x1, set dx2 � dr. In
equilibrium, the radial distribution function goes to the isotropic form g(r),
which causes the preceding integral to vanish. To obtain a finite result, we
return to the form g(r,R) and expand about R � x1. There results

g(r,R) � g(r, x1)+ r
2

· ∇1g(r, x1)+ · · ·
(Note that r and x1 are new independent variables.) Further setting G12(r) �
r̂ d (r)/dr and substituting these relations into the preceding equation gives

∇1 · P � −N
2

V 2

∫
dr ′(r)r̂g(r, x1)− N 2

2V 2
∇1 ·

∫
dr ′(r)

rr
r
g(r, x1)

As the fluid becomes isotropic, g→ g(r) and the first integral vanishes. There
remains

P � − N
2

2V 2

∫
dr ′(r)

rr
r
g(r)

Taking the trace and passing to the thermodynamic limit gives the desired
result:

P � 1

3
Tr P � −n

2

6

∫ ∞

0

dr4πr3 (r)g(r)
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3.45. (a) Write down an expression for the force F on a small volume of fluid in

terms of a closed surface integral of the pressure tensor P .
(b) What form does your expression for F reduce to if the fluid is in

equilibrium and at rest.

Answer

(a) F �
�
P · dS

(b) F �
�
pI · dS � 0

3.46. (a) An ideal gas ofN molecules is in equilibrium at temperature T for which
〈Ẽ〉 � 3

2
kBT and 〈(Ẽ−〉Ẽ〉)2〉 � kBT 〈Ẽ〉, where Ẽ is single-particle

energy. Using the central-limit theorem, obtain the probability density
P (E,N ) for this system, where E represents total energy.

(b) What are the assumptions that make this theorem relevant to this system?
(c) What is the variance σ 2 of the distribution you have found? In what

manner does σ/〈E〉 make 〈E〉 a good thermodynamic variable in the
limit N →∞?

Answers

(a) From the central-limit theorem, we obtain

P (E,N ) � 1

[2πND(Ẽ)]1/2
exp{− [E −NE(Ẽ)]2

2ND(Ẽ)
}

Inserting the given information, we find

P (E,N ) � 1

[3πN (kBT )2]1/2
exp{− [E − 3

2
NkBT ]2

3N (kBT )2
}

(b) Assumptions that permit use of the central-limit theorem are:

(i) E �∑N

i�1 Ẽi , N ! 1.
(ii) 〈Ei〉 are all equal.

(iii) 〈D(Ẽi)〉 are all equal.

(c) From our answer to part (a), we write

〈E〉 � 3

2
NkBT

σ 2 � 3

2
N (kBT )2

so that
σ

〈e〉 �
1√

(3/2)N
� 1

Thus the Gaussian is sharply peaked about E � 〈E〉 so that E is effec-
tively constant and therefore may be taken to be a good thermodynamic
variable. Note: For the system at hand,Emust be positive. However, from
part (a) there is a finite probability that measurement find E < 0. The
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central-limit theorem addresses the caseN ! 1, in which case 〈E〉 grows
large and P (E < 0) ∼ 0.

3.47. (a) Obtain the expression for viscosity that the repulsive-core model (5.86)
gives for N � 4 (Maxwell molecules). Set K � V0a

4, where V0 and
a are constant energy and length, respectively. [Hint: You should find
η(T ) � constant.]

(b) What value of viscosity does your formula give when applied to a gas of
argon atoms at room temperature? Take a � 1 Å and V0 � 10 eV. Give
your answer in cgs units. [Hint: You should find η(T ) � AT −1/3.]

3.48. Employing fluid dynamical equations derive the following:

(a) T
D

Dt
σ � 1

n

(
∇u : S −∇ · Q

)
(b) m

Du
Dt
+∇h− T∇σ − 1

n
∇ · S � mK

wheremK is an applied force field and σ , h, and n−1 are entropy, enthalpy,
and volume per particle. The heat flow vector is Q (3.25).

(c) For σ � constant and K conservative and S symmetric, show that

∇×
(
Du
Dt

)
� 0

[where D/Dt is the conservative derviative given by (3.20a)]. From this
result, show that ∮

C(t)

u · dl � 0

where C(t) denotes a closed loop moving with the fluid (Kelvin’s
theorem).76

Hint: Recall the energy equation (3.31), the defining relation for the stress
tensor (4.4), and the first law of thermodynamics

dẼK � T dσ − p dn−1

Enthalpy per particle, h, is given by

h � ĒK + p
n

and ĒK denotes kinetic energy per particle.

3.49. Using the moment expansion (5.103), show that for the special case of
Maxwell interaction [see (1.27)] the related collision integral (5.102) reduces
to

J
(2)
ij � −

3

2
b1na

(2)
ij

76For further discussion, see L. D. Landau and E. M. Lifshitz, Fluid Mechanics,
Section 8, Addison-Wesley, Reading, Mass. (1959).



272 3. The Boltzmann Equation, Fluid Dynamics, and Irreversibility

where

b1 � π
∫ π

0

gσ sin2
θ cos2 θ dθ

3.50. Determine if the following equations are reversible. That is, show that, if y(t)
is a solution, then so is y(−t). (Primes denote time derivatives.)

(a) y ′ �
∫ a

0

y(x) dx (c) y ′ �
∫ t

0

y(x) dx

(b) y ′ �
∫ a

0

xy(x) dx (d) y ′ �
∫ a

0

y(x − t) dx

Answer

In part (a) we question whether y(−t) is also a solution. Substituting y(−t)
for y(t), we obtain

dy(−t)
dt

�
∫ a

0

y(−x) dx

or, equivalently,

dy(τ )

dτ
�
∫ −a

0

y(z) dz

which is not Eq. (a), so y(−t) is not a solution and Eq. (a) is irreversible.
Alternatively, we might have shown that the given equation is not invariant
under the time-reversal transformation, t → t ′ � −t . In a manner similar to
the first, we find that (b) is irreversible, (c) is reversible, and (d) is irreversible.
Note that differentiation of (a) gives a reversible equation.

3.51. Is the Boltzmann equation (2.14) reversible? That is, if f � f (x, v, t) is a
solution, is f (x,−v,−t) also a solution?

3.52. Is Grad’s second equation (2.6.12) reversible. That is, if f1(v1, t); f2(v1, v2, t)
is a solution, is f1(−v1,−t); f2(−v1, v2,−t) also a solution? If your answer
is yes, explain this result in light of the fact that Grad’s second equation is
approximate.

3.53. Derive an expression for the Hamiltonian of a freely moving rigid sphere of
radius a and massM in terms of the kinetic energy of its center of mass and
the spin angular momentum S. State explicitly what the variable S2 is written
for.

Answer

From Problem 1.7 we know that the Hamiltonian of the sphere may be written

H � P 2

2M
+Hrel

where the subscript rel denotes motion relative to the center of mass. This
relative motion is purely rotational, and for a rigid sphere we may write

Hrel � T � I
2

(φ̇2 sin2
θ + θ̇ 2)
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where I is the moment of inertia, which for a sphere is 2
3
Ma2. Angles (θ, φ)

specify the orientation of the rotational frequency vector of the sphere, ω, in
terms of which T � Iω2/2. Taking derivatives of the preceding gives

∂T

∂θ
� I θ̇ � pθ

∂T

∂φ̇
� I (sin2

θ )φ̇ � pφ

which gives the Hamiltonian

Hrel � p
2
θ

2I
+ p2

φ

2I sin2
θ
� S2

2I

3.54. This problem concerns “rough” and “smooth” hard spheres, where the quoted
adjectives refer to the nature of surfaces of respective spheres. As noted in
Section 2.3, smooth spheres do not exchange angular momentum in collision.
Let all spheres have volume τ � 4πa3/3, mass M , and moment of inertia
I . Consider a gas of N smooth spheres confined to a volume V ! Nτ in
equilibrium at temperature T .

(a) Write down the Hamiltonian for this fluid.
(b) Write down an integral expression for the pair distribution function for

this fluid, f2(x1, x2; S1, S2).
(c) If spheres in the fluid described above are rough, is your answer to part

(a) maintained? If not, why not?

Answers

(a) With reference to Problem 3.53, we write

H (1, . . . , N) �
n∑
i�1

(
P 2
i

2M
+ S

2
i

2I

)
+

N∑∑
i<j

θ (rij − 2a)

where

rij � |xi − xj |
and

θ (x) � ∞, for x ≤ 0

θ (x) � 0, for x > 0

(b) The equilibrium N -body distribution function (see Problem 2.5) for this
fluid is given by

fN (1, . . . , N) � AN exp

[
−H (1, . . . , N)

kBT

]

where AN is a normalization constant.
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Thus, with r � r12, we obtain

f2(P1,P2, S1, S2, r) �
∫
d3 · · · dNAN exp

[
−H (1, . . . , N)

kBT

]
Integration over P1 and P2 gives the desired result. See Appendix B,
Section B.3.

(c) For rough spheres there is interaction between angular momentum of
spheres in collision, and the above expression for HN is not appropriate.

3.55. (a) Which dynamical systems corresponding to the following Hamiltonians
satisfy the criterion for the KAM theorem?

(b) What is the consequence of the failure of a dynamical system to satisfy
this theorem?

(c) Are any of the orbits corresponding to these systems homoclynic (see
Problem 1.45)?

(i) Harmonic oscillator:

H � p2

2m
+ kx

2

2
(ii) Pendulum:

H � p2
θ

2ma2
−mga cos θ

where θ � 0 corresponds to the gravity direction.
(iii) Anti Hénon–Heiles Hamiltonian:

H � 1

2
(q2

1 + p2
1 + q2

2 + p2
2)+ q

3
1

3
+ q1q

2
2

where we have written

q2
i ≡ ki x̄2

i , p2
i ≡

p̄2
i

mi

with x̄ and p̄ denoting physical displacement and momentum,
respectively. Hint: In part (iii), introduce the change of variables

Q1 � q1 + q2, P1 � p1 + p2

Q2 � q1 − q2, P2 � p1 − p2

to obtain

2H � H1(Q1, P1)+H2(Q2, P2)

H1 � 1

2
[Q2

1 + P 2
1 ]+ 1

3
Q3

1

H2 � 1

2
[Q2

2 + P 2
2 ]+ 1

3
Q3

2

3.56. Show that the Sonine polynomials S(n)
m (x) satisfy the equation (deleting

subscripts and superscripts)

xS ′′ + (m+ 1− x)S ′ + nS � 0
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3.57. With f0 denoting the Maxwellian,

f0(v, x) � 1

V

e−v
2/2C2

(2π )3/2C3

where mC2 ≡ kBT and V is the volume of the fluid, show that:

(a) 〈v〉 � 3C2

(b) 〈v〉2 � 8
π
C2

3.58. Show that the generalized Gibbs entropy

Hψ ≡
∫
ψ(fN ) lnψ(fN ) d1 . . . dN

is constant in time, providing the functional ψ(f ) has a bounded derivative.

Answer

First note that
Dψ lnψ

Dt
� (1− lnψ)

dψ

df

Df

Dt

Operating on the Liouville equation with∫
d1 · · · dN (1+ lnψ)

dψ

df

establishes the result.

3.59. (a) What is equilibrium distribution f1 for a gas of N identical molecules of
mass m and temperature T confined to a volume V ? Assume that f1 is
normalized to unity.

(b) The gas described in part (a) adiabatically expands to a volume 2V and
comes to equilibrium at the same temperature T . What is the new distri-
bution, f̄1? Employing the Boltzmann H function, calculate the entropy
change of the gas, >S, due to expansion.

Answers (partial)

(a) With R ≡ kB/m,

f1(x, v) � 1

V (2πRT )3/2
e−v

2/2RT

(b) Calculating

>S � −kBN
[∫

f̄1 ln f̄1 dx dv −
∫
f1 ln f1 dx dv

]
gives the result

>S � kBN ln 2

3.60. Three particles move on a plane and interact through conservative forces.
In general, are there sufficient constants of motion to render the system
integrable? Justify your answer.
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3.61. The Liouville theorem77 (concerning integrability of system) states that for a
system withN degrees of freedom, ifN independent constants, including the
Hamiltonian, exist, each of which has zero Poisson brackets with each other,
then the motion of the system may be reduced to quadratures. (See top p. 244.)

(a) Consider Problems 1.1 and 1.8. In each case verify the preceding theorem
and reduce the second to quadrature.

(b) Do the 10 constants for the three-body problem (8.49) satisfy criteria
for the Liouville theorem? How many of these constants do satisfy the
criteria?

Hint: In Problem 1.1 note than px(r, θ ) is constant. In Problem 1.8 consider
motion relative to the center of mass.
Note: Previously we have noted that 2N constants are required to specify the
trajectory in �̄ space. The Liouville theorem states that N constants satis-
fying certain conditions, are sufficient to reduce the problem to quadratures.
A quadrature is an integral which, for each degree of freedom, implies an
added constant bringing the total to 2N . In action-angle formalism, these 2N
constants are [Ji ;Xi(0)]. See (8.24) et seq.

3.62. (a) Consider a force-free spatially homogenous fluid at rest. Employing the
equipartition theorem, the conservation equation (3.19) and the definition
of the coefficient of thermal conductivity, derive the heat equation,

∂eK

∂t
� α∇2eK

(b) What is your expression for α?
(c) What property of the structure of molecules in the fluid does your

expression for α assume?

Answer (partial)

(b) α �
(

2κ

3nkB

)

3.63. (a) The diffusion coefficient is written in terms of the autocorrelation function
in (4.53). This relation is more formally written

D � 1

3
lim
δ→∞

∫ ∞

0

dt e−δt〈v(0) · v(t)〉

Write down the corresponding autocorrelation function definition of the
coefficient of viscosity, η [see (4.7) et seq.], related to shear force in the
x direction due to y-momentum transported by x velocity components.
In this construction introduce the momentum transfer component �xy ≡
pxpy/m.

77For further discussion see, V. I. Arnold, Mathematical Methods of Classical
Mechanics, Chapter 10, ibid (1978).
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(b) Write down a component force equation in which this expression for η
enters. What are the dimensions of the expression for η you have written
down. [Check your answer with Maxwell’s result (4.33)]

Answer (partial)

η � lim
δ→0

1

kBT

∫ ∞

0

dte−δt〈�xy(0)�xy(t)〉

where the average is taken with respect to an equilibrium distribution.
Note: Numerical simulation calculation78 of the velocity autocorrelation func-
tion has observed short-time exponential decay (over a few collision times)
and a slower t−3/2 long-time delay. This secular long-time decay of the
autocorrelation function is labeled “long-time tails.”79

78B. J. Adler, and T. E. Wainwright, Phys. Rev. Lett. 18, 988 (1967).
79M. H. Ernst, E. H. Hauge and J. M. J. van Leeuwen, Phys. Rev. A4, 2055 (1971).



CHAPTER 4

Assorted Kinetic Equations
with Applications to
Plasmas and Neutral Fluids

Introduction

The notion of a plasma was considered previously in Section 2.3 in describing
fundamental plasma intervals and kinetic equations relevant to these intervals.
The present chapter begins with applications of the Vlasov equation to an
equilibrium charge-neutral plasma.

The plasma frequency and Debye length emerge in construction of the
Fourier-transformed dielectric constant. The Debye parameter appears as a
shielding length in the construction of the perturbed Coulomb potential due
to the presence of an extraneous charge in the plasma. The dielectric constant
further permits analysis of unstable and damped modes. Landau damping of
an electric wave in a plasma is described, and the section concludes with the
Nyquist analysis of unstable modes.

Various kinetic equations relevant to the description of a plasma are de-
rived. Interrelations between these equations are obtained and illustrated in a
flow-chart diagram (Fig. 4.9). The Fokker-Planck (FP) equation is obtained
in expansion of the Boltzmann equation about grazing collisions. Equivalence
between the FP and Landau equations is demonstrated. The Balescu-Lenard
equation is obtained from an expansion of the hierarchy equations incorpo-
rating construction of the E-field auto correlation function. Divergence of
plasma kinetic equations is discussed, and techniques for removing related
singularities are reviewed.

The Krook-Bhatnager-Gross equation is applied to shock waves in a neutral
fluid, and the chapter continues with a rederivation of the FP equation from the
Chapman-Kolmogorov equation. This derivation illustrates the application of
the FP equation to systems other than plasmas.
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Due to its present-day widespread application, the final section of the chapter
addresses the Monte-Carlo technique in kinetic theory. The discussion con-
cludes with a flow chart for determination of the distribution function of a
fluid immersed in an external force field.

4.1 Application of the Vlasov Equation to a Plasma

In this first section we employ the previously derived Vlasov equation in ap-
plication to various wave and particle problems in plasma physics. Thus we
consider a charge-neutral plasma comprised of electrons and ions in equilib-
rium at a given temperature. The plasma suffers an infinitesimal perturbation,
and the resulting electric field and electron distribution are examined, which
gives the very important plasma response dielectric function. When applied
to perturbation in the form of an extraneous charge, this function yields the
Debye potential, which reveals that the Coulomb field in a plasma is exponen-
tially attenuated with a scale length equal to the Debye distance. The dielectric
function is next applied to waves in a plasma, and the dispersion relation for
long-wavelength longitudinal waves is found, which reveals that dispersion of
waves grows with temperature. It is then shown that single-peaked electron
distributions (in velocity space) are stable to infinitesimal perturbations.

The Vlasov equation is returned to and, working with a Laplace-Fourier
transform, it is concluded that waves in a plasma experience (Landau) damping.
An expression for the damping rate is obtained, and a physical description is
included, which ascribes the damping of the electric-field wave in a plasma to
increased kinetic energy of electrons.

The section concludes with a derivation of the Nyquist criterion, which,
stemming from a theorem of complex analysis, offers a geometrical construc-
tion for the number of unstable modes in a plasma. Application of this result
is made to multipeaked electron distributions.

4.1.1 Debye Potential and Dielectric Constant

We consider a charge-neutral plasma of electrons and ions in equilibrium at
some temperature T . Ion (+) and electron (−) distribution functions are given
by (assuming singly ionized atoms)

F+0 �
n0

(2πR+T )3/2
exp

[
− v2

2R+T

]
(1.1a)

F−0 �
n0

(2πR−T )3/2
exp

[
− v2

2R−T

]
(1.1b)

R± � kB/m±,
∫
F±0 dv � n0
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We assume that distribution functions satisfy the Vlasov equations [see
(2.2.31)]:

DF+
Dt

+ e

m+
E · ∂F+

∂v
� 0 (1.2a)

DF−
Dt

− e

m−
E · ∂F−

∂v
� 0 (1.2b)

where e is written for |e| and we have set

D

Dt
≡ ∂

∂t
+ v · ∂

∂x
Gauss’s law links the distribution functions to E.

∇ · E � 4πe[n+ − n−] � 4πe

[∫
F+ dv −

∫
F− dv

]
(1.3)

The equilibrium value of the electric field is zero, and n± represent number
densities.

We assume that the plasma suffers a small perturbation away from
equilibrium. Variables assume the form1

F− � F−0 + εg, F+ � F+0
(1.4)E � 0+ εE

Due to their large mass, the ions are assumed to remain in their unperturbed
state. Substituting the forms (1.4) into (1.2) gives the 0(ε) equations (deleting
the superscript on F−0 ):

∂g

∂t
+ v · ∂

∂x
g − e

m
E · ∂F0

∂v
� 0 (1.5a)

∇ · E � −4πe
∫
g dv (1.5b)

Substituting the transforms2

g � 1

(2π )4

∫
dk

∫
dωḡ(ω, k, v)ei(k·x−ωt) (1.6a)

E � 1

(2π )4

∫
dk dωĒ(ω, k)ei(k·x−ωt) (1.6b)

into (1.5), we find

(ω − k · v)ḡ � i e
m

Ē · ∂F0

∂v
(1.7)

1The present discourse is restricted to linearized theory. For further discussion,
see R. C. Davidson, Methods in Nonlinear Plasma Theory, Academic Press, New
York (1972).

2Here we are assuming a response that persists indefinitely.
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We may decompose the Ē vector as

Ē � k(k · Ē)

k2
+ (k × Ē)× k

k2
(1.8)

Assuming that only longitudinal waves emerge in the perturbation, (1.7)
gives

ḡ � i(e/m[(k · Ē)/k2]k · (∂F0/∂v)

ω − k · v (1.9)

With

F0 ≡ n0f̃0(v)

we find

∂F0

∂v
� n0

∂f̃0

∂v
and (1.9) assumes the form

ḡ � ien0

m

(k · Ē)k
k2(ω − k · v)

· ∂f̃0

∂v
(1.10)

We assume that the perturbation is due to an extraneous electron. The
corresponding charge density may be written

ρ � ρs + ρp (1.11)

where

ρs � −eδ(x − v0t) (1.12)

represents the electron source and ρp denotes the charge density of the
remaining plasma:

ρp � −e
∫
g dv

The transform of the delta function (1.12) is

ρ̄s(k, ω) � −e
∫
δ(x − v0t)e

−i(k·x−ωt) dx dt (1.13)

Integrating first over x, we obtain

ρ̄s(k, ω) � −e
∫
e−i(k·v0−ω)t dt

(1.14)
ρ̄s(k, ω) � −2πeδ(ω − k · v0)

The generalization of Gauss’ law to account for the extraneous test charge
(1.12) appears as

∇ · E � 4π (ρs + ρp) � −4πeδ(x − v0t)− 4πe
∫
g dv (1.15)
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With (1.16) and (1.14), the transform of this equation becomes

ik · Ē � −e8π2δ(ω − k · v0)− 4πe
∫
ḡ dv (1.16)

With (1.10), we obtain

ik · Ē � −e8π2δ(ω − k · v0)− i ω
2
pk · Ē
k2

∫
k · ∂f̃0/∂v dv
ω − k · v (1.17)

where ωp represents the plasma frequency3 (deleting the subscript on n0):

ω2
p �

4πne2

m−
(1.18)

Solving (1.17) for k · Ē gives

ik · Ē � −8π 2eδ(ω − k · v0)

1+ ω2
p

k2

∫ k·∂f̃0/∂v dv
ω−k·v

(1.19)

The response of the plasma to the test charge may be given in terms of the
dielectric response function defined by

ε(k, ω) ≡ ρ̄s(k, ω)/ρ̄(k, ω) (1.20)

The transform of (1.15) then gives

ik · Ē � 4πρ̄s(k, ω)

ε(k, ω)
(1.21)

Rewriting (1.19) in the form [see (1.14)]

ik · Ē � 4πρ̄s(k, ω)

1+ ω2
p

k2

∫ k·∂f̃0/∂v dv
ω−k·v

(1.22)

permits the identification

ε(k, ω) � 1+ ω
2
p

k2

∫
k · ∂f̃0/∂v dv
ω − k · v (1.23)

which is our explicit expression for the plasma response dielectric function.

The response electric field

With the decomposition (1.18), the transform integrals of the electric field
assume the form

E(x, t) � 1

(2π )4

∫∫
dk dω ei(k·x−ωt)

k · Ē
k2

k (1.24)

3Encountered previously in Section 2.3.9.
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Substituting the expression (1.21) into (1.24) gives

E(x, t) � i

(2π )4

∫∫
dk dω8π2ekδ(ω − k · v0)ei(k·x−ωt)

k2ε(k, ω)
(1.25)

Integrating first over ω gives

E(x, t) � 2ie

(2π )2

∫
keik·(x−v0t) dk
k2ε(k, k · v0)

(1.26)

With the plasma dielectric constant (1.23), and mC2 � kBT , and

f̃0 ≡ exp(−v2/2C2)

(2π )3/2C3
,

∂f̃0

∂v
� − v

C2
f̃0,

∫
f̃0 dv � 1 (1.27)

we find

ε(k, k · v0) � 1+ ω2
p

C2k2

∫
k · vf̃0 dv

k · (v − v0)
(1.28)

If the extraneous charge is stationary, v0 � 0, then

ε(k) � 1+ ω2
p

C2k2

∫
f̃0 dv � 1+ ω2

p

C2k2
(1.29)

Thus (1.26) becomes

E(x) � 2e

(2π )2

∫
ikeik·x dk
k2 + k2

d

(1.30)

Here we have introduced the Debye wave number

k2
d �

ω2
p

C2
(1.31)

Setting

E(x) � −∇� � −∇ 1

(2π )3

∫
�̄(k)eik·x dk

� − 1

(2π )3

∫
ik�̄(k)eik·x dk (1.32)

and comparing with (1.30) gives the transform

�̄(k) � −2e
2π

k2 + k2
d

(1.33)

Solving for �(x) gives the response potential

�(x) � 1

(2π )3

∫
�̄(k)eik·x dk

� −2e

(2π )2

∫
eik·x dk
k2 + k2

d

(1.34)
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FIGURE 4.1. Bare Coulomb and Debye shielded potentials.

In spherical coordinates with x taken as the polar axis, we find∫
eik·xdk
k2 + k2

d

� 2π
∫ 1

−1
d cos θ

∫ ∞

0

dkk2eikx cos θ

k2 + k2
d

� 2π

x

∫ ∞

0

2k sin kx

k2 + k2
d

dk � 2π2

x
e−xkd

Substituting into (1.34) gives the desires result (writing r in place of x):

�(r) � −e exp(−kdr)
r

,

(1.35)

V (r) � (−e)�(r) � e
2

r
exp(−kdr)

where V (r) denotes potential energy (see Fig. 4.1). This is the Debye potential
that surrounds a charge in a plasma. The distance

λd � 1

kd

is called the Debye distance and represents a shielding length of the Coulomb
potential. [Recall (2.2.43).] With (1.18) and (1.31), we find

λ2
d �

C2

ω2
p

� kBT

mω2
p

� kBT

4πne2
(1.36)
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This is an important parameter in plasma physics. We note, in particular,

λd � 6.9

(
T

n

)1/2

cm (T in K)

λd � 740

(
T

n

)1/2

cm (T in eV) (1.37)

4.1.2 Waves, Instabilities, and Damping

Waves in a warm plasma

We next consider the response of a plasma to an arbitrary perturbation. Thus,
omitting the point-charge delta function in (1.16) and (1.17), the result (1.21)
may be rewritten

ε(k, ω)k · Ē � 0 (1.38)

The plasma dielectric constant ε(k, ω) is given by (1.23).
Equation (1.38) indicates that a finite longitudinal electric field will be

present in the plasma, providing

ε(k, ω) � 1+ ω
2
p

k2

∫
k · ∂f̃0/∂v dv
ω − k · v � 0 (1.39)

With (1.27), we obtain

1+ ω2
p

C2k2

∫
k · vf̃0 dv
k · v − ω � 0 (1.40)

To reduce the integral, we choose k to lie along the Cartesian z axis. We may
then integrate f̃0(v) over vx and vy . There results∫ ∞

−∞

∫ ∞

−∞
dvx dvyf̃0(v) � e−µ

2/2

√
2πC

where4

µ ≡ vz
C

(1.41)

which permits the dispersion relation (1.40) to be written

1+ ω2
p

C2k2

1√
2π

∫ ∞

−∞

dµµe−µ
2/2

µ− β � 0 (1.42)

Here we have set

β ≡ ω

Ck
(1.42a)

4Recalling the nondimensional velocity ξ (3.5.28), we note ξ 2
z � µ2/2.
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We consider the limit β ! 1 corresponding to ω/k/ ! C. Rewriting (1.42)
as

1 � ω2
p

C2k2

1√
2π

∫
dµ
µ

β
e−µ

2/2 1

1− (µ/β)
(1.43)

then permits the Taylor series expansion

1 � ω2
p

C2k2

1√
2π

∫
dµ
µ

β
e−µ

2/2

[
1+

(
µ

β

)
+
(
µ

β

)2

+
(
µ

β

)3

+ · · ·
]

(1.43a)
Only the even integrands contribute to the integration, and we obtain to terms
of 0(β−4),

1 � ω2
p

C2k2

[
1

β2
+ 3

β4

]
(1.44)

This equation may be rewritten

ω2 � ω2
p +

3ω2
p(Ck)2

ω2
(1.45)

Again expanding about small k gives

ω2 � ω2
p + 3C2k2 (1.46)

This is the dispersion relation that governs the propagation of longitudinal
waves in a plasma at finite temperature and in the said ω − k domain.

A theorem for unstable plasma modes

The transform equation (1.6) indicates that the growth of waves in time (insta-
bility) corresponds to Im(ω) > 0, or equivalently, Imβ > 0. Thus, to examine
unstable modes, we set

β � α + iτ, τ > 0 (1.47)

Our theorem states that an arbitrary single-peaked, one-dimensional equilib-
rium distribution f1(µ) gives no unstable modes. Retracing steps leading
to (1.42), we find that the generalized dispersion relation appears as [the
one-dimensional velocity µ is defined by (1.41)]

1 � ω2
p

C2k2

1√
2π

∫ ∞

−∞

dµf̃ ′1
µ− β f1 � 1√

2πC
f̃1 (1.48)

where a prime denotes differentiation.5 In a Maxwellian state, f̃1 �
exp(−µ2/2). Substituting the form of β given by (1.47) into (1.48) and

5Note that f̃1 is the one-dimensional analog of f̃0 as given in (1.27).
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FIGURE 4.2. In either case, (µm − µ)f̃ ′1 > 0 for a single-peaked distribution.

rationalizing the integrand gives

1 � β2
p√
2π

∫ ∞

−∞

dµ(µ− α + iτ )f̃ ′1
(µ− α − iτ )(µ− α + iτ )

(1.49)

1 � β2
p√
2π

∫ ∞

−∞

dµf̃ ′1[(µ− α)+ iτ ]

(µ− α)2 + τ 2

Here we have set

β2
p ≡

(ωp
Ck

)2
� 1

k2λ2
d

(1.50)

Equation (1.49) gives the two equations

1 � β2
p√
2π

∫ ∞

−∞

dµf̃ ′1(µ− α)

(µ− α)2 + τ 2
(1.51a)

0 � β2
pτ√
2π

∫
dµf̃ ′1

(µ− α)2 + τ 2
(1.51b)

Let f̃1(µm) be the maximum value of f̃1. Multiply (1.51b) by τ−1(α−µm) and
add the result to (1.51a). There results

1 � − β2
p√
2π

∫ ∞

−∞

dµ(µm − µ)f̃ ′1
(µ− α)2 + τ 2

(1.52)

If f̃1(µ) has only a single maximum, then

(µm − µ)f̃ ′1(µ) > 0 (1.53)

and the integrand of (1.52) is always positive, whence it has no solution. We
may conclude that an infinitesimal perturbation of a single-peaked distribution
results in no unstable modes (see Fig 4.2).
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4.1.3 Landau Damping6

If we assume that the perturbation g(t) initiates at t � 0, then g(t < 0) � 0 and
E(t < 0) � 0. In this case it is appropriate to work with the Laplace-fourier
transform, and we write

ḡ(ω, k) �
∫
dxe−ik·x

∫ ∞

0
dteiωtg(x, v, t)

(1.54)

E(ω, k) �
∫
dxe−ik·x

∫ ∞

0
dteiωtE(x, t)

The inverse of the time component of ḡ(ω) is given by7

g(t) � 1

2τ

∫ iω1+∞

iω1−∞
ḡ(ω)e−iωt dω (1.55)

with a similar expression for E(t). The line ω � iω1 in (1.55) lies above the
singularities of ḡ(ω) in the ω plane. This condition ensures8 that g(t < 0) � 0
(see Fig. 4.3).

Multiplying (1.5a) by the exponential operator in (1.54) gives∫
dx

∫ ∞

0
dtei(ωt−k·x)

(
∂g

∂t
+ v · ∂

∂x
g − e

m
E · ∂F0

∂v

)
� 0 (1.56)

Integrating the first two terms by parts and neglecting surface terms, we find

ḡ(ω, k) �
ie

m
Ē · ∂F0

∂v + ig(0)

ω − k · v (1.57)

where the initial distribution g(0) remains a function of v. Inserting this
expression into the divergence equation

ik · Ē � −4πe
∫
ḡ dv

and recalling (1.8) gives

− k · Ē � 4πe
∫
g(0) dv
ω−k·v

ε(k, ω)
(1.58)

with ε(k, ω) given by (1.23).
If this form is substituted into the companion equation to (1.55) for the

transform of the longitudinal component of E, again we find that its time
development is determined by the zeros of ε(k, ω) (that is, the poles of k · Ē).

6L. Landau, J. Phys. (USSR) 10, 25 (1946).
7The Laplace transform was encountered previously in the discussion concerning

the resolvent operator (Section 1.5.4).
8Consider the pole, Imω > ω1. For t < 0, exp(−iωt) gives convergence in (1.55)

for Imω > 0. Thus, completion of the contour in (1.55) in the upper half-plane would
give a finite contribution to g(t < 0).
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FIGURE 4.3. The line ω � iω1 lies above the singularities of ḡ(ω).

FIGURE 4.4. The analytic continuation of the integral in (1.42) for Im β < 0.

Here we envision that the contour of (1.55) shown in Fig. 4.3 is closed in a
semicircle in the lower-half ω plane.

So once more we are led to the dispersion relation (1.42). With the Laplace
transform (1.54), we see that convergence now demands that Imω > 0. Thus
we realize that the integral in (1.42) is defined with Imβ > 0.

However, with (1.55) we note that decaying modes correspond to Imβ < 0.
The integral in (1.42) for this case is evaluated by analytic continuation. This
is effected through distortion of the contour of (1.42) to that shown in Fig. 4.4.
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There results

1 � ω2
p

C2k2

1√
2π

[∫ ∞

−∞

dµµe−µ
2/2

β − µ + 2πif̃ ′1(β)

]
(1.59)

Where we have set f̃1 � exp(−µ2/2). For weakly damped modes, β hovers
just beneath the Re µ axis, and the pole in the integration is well represented
by one-half the residue at that point. For Im β � Re β, we obtain9

1 � β2
p√
2π

[∫ ∞

−∞

dµµe−µ
2/2

β − µ + iπf̃ ′1(β)

]
(1.60)

In this same limit, the expansion (1.43a) applies and (1.60) may be written

1 � β2
p

[
1

β2
+ 3

β4
+ · · · + i

√
π

2
f̃ ′1(β)

]
(1.61)

Assuming f̃ ′1(β) � 1, in the first approximation we neglect the imaginary
contribution, which again yields the solution (1.46), which we now write as

β̄2 � β2
p + 3 (1.62)

This is the first-order solution to (1.61). The second-order solution is con-
structed by reinserting this solution into the imaginary term in (1.61). We
obtain

1 � β
2
p

β2
+ iβ2

p

√
π

2
f̃ ′1(β̄) (1.63)

or, equivalently,

β � βp[
1− iβ2

p

√
π

2 f̃
′

1

]1/2

Expanding the radical about small f̃ ′1 gives

β � βp
[

1+ i β
2
p

2

√
π

2
f̃ ′1

]
(1.64)

To within this approximation, we find

Im β � β3
p

√
π

8
f̃ ′1(β̄) (1.65)

9This equation is exact for Im β � 0. We assume that it is also appropriate to
the said limit with finite Im β. Note also that the integrals in (1.59) and (1.60) are
principle values.
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FIGURE 4.5. Variation in f1 due to Landau damping in linear theory.

which, with the assumed Maxwellian form for f̃1, gives the desired result:

Imω � −
√
π

8
e−3/2ωpβ

3
pe
−β2

p/2 ≡ −�, β2
p �

1

k2λ2
d

(1.66)

The exponential form of the solution as given by (1.55) indicates that, at a given
frequency, perturbation fields decay as exp−�t , where �, the decay constant,
is defined by (1.66).

The form of the solution as given by (1.65) suggests that damping will occur
for f̃ ′1 < 0. Thus, with f̃ ′1 negative for µ > 0, we expect the perturbation to
be damped for v ≡ Cµ � vφ � ω/k > 0. Here vφ denotes phase velocity.
At these values, the E wave is damped and electric energy is lost to particle
motion. This situation is depicted in Fig. 4.5, which illustrates the manner
in which the perturbation alters the equilibrium distribution function. At the
phase speed vφ , the electric field loses energy, and electrons are driven to higher
speeds, thereby depleting the region v � vφ and increasing the region v � vφ .
For vφ � ω/k < 0, βp < 0. Since f̃ ′1 > 0 for v < 0, again (1.65) indicates
wave damping.

Unstable modes

A brief recapitulation is in order: We have solved (1.60) for β through an
approximation scheme in which its is assumed that Im β � Re β. The first-
order iterate in this solution (1.62) gives the real part of β. This leads to Im β
as given by (1.65).

From this result, we many conclude that damping results if β3
pf̃

′
1(β̄) < 0. If

the reverse of this inequality holds, then we may expect the mode at β � β̄ to
be unstable. (Unstable modes are discussed in the following section.)

For a single-peaked distribution, we find β3
pf̃

′
1(β̄) < 0 for all β̄, thereby

recapturing our previously stated result that single-peaked equilibrium distri-
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bution functions are stable. A double-peaked distribution may or may not be
unstable.

4.1.4 Nyquist Criterion

This criterion is a scheme for determining the number of unstable modes as-
sociated with a given unperturbed distribution function. The criterion stems
from the observation that, for an arbitrary analytic function ψ(z) with isolated
poles

1

2πi

∮
C

dz
ψ ′(z)
ψ(z)

� Nz −Np (1.67)

where Nz denotes the number of zeros of ψ(z) within the contour C and Np
denotes the number of singularities within C.

From (1.39), we infer that the zeros of the dielectric constant ε(k, ω) are
solutions to the plasma dispersion relation. With (1.48), we may write

ε(β) � 1+ ω2
p

C2k2

1√
2π

∫ ∞

−∞

dµf̃ ′1
β − µ

(1.68)
ε(β) � 1+ β2

pF (β)

where the function F (β) is as implied.
It ε(β) has no singularities in the upper-half β plane,10 then, by (1.67),

1

2πi

∫
C

dβε′(β)

ε(β)
� Nz (1.69)

represents the number of zeros ε(β) has in the upper-half β plane. But by
previous argument, each such value of β, with Im β > 0, corresponds to an
unstable mode. The contour C includes the entire real β axis and an infinite
semicircle in the upper-half β plane (see Fig. 4.6).

Convergence on the semicircular contourA demands11 that βε′/ε→ 0 with
increasing β. With (1.68) we find that this is the case and we may proceed with
the evaluation of (1.69).

Now

1

2πi

∫
C

dβε′

ε
� 1

2πi

∫
C̄

dε

ε
� Nz (1.70)

In the ε plane, the function ε−1 has a simple pole at the origin. So the right
equality in (1.70) indicates thatNz is equal to the number of times the contour
C̄ encircles the origin in the ε plane.

10It is conventional in the Nyquist analysis of a plasma to label ε(β) asH (β). The
present description stays with ε(β).

11See, for example, I. Sokolnikoff and R. Redheffer, Mathematics of Physics and
Modern Engineering, 2nd ed., McGraw-Hill, New York (1968).
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FIGURE 4.6. The contour C in (1.67) has a circular contribution A and a line
contribution B.

We may use (1.68) to define a mapping from theβ to the ε plane. Specifically,
we wish to discern what curve C̄ the contour C becomes in the ε plane. Let
us perform this exercise for the single-peaked distribution described following
(1.59).

As discussed above, the contour C for the β integration in (1.69) and (1.70)
has two components. An infinite semicircle, which we have labeledA, and the
real axis, labeled B (see Fig. 4.6).

With the single-peaked distribution inserted in F (β), as defined in (1.68),
we see that F (β) → 0 on A.

On B, with β real, we recall (1.60), which may be rewritten as

F (β) � P : F (β)+ i
√
π

2
βe−β

2/2 (1.71)

where P: denotes “principal part.”
Thus the dielectric constant (1.68) along B becomes

ε(β) � [1+ β2
pP : F ]+ iβ2

p

√
π

2
βe−β

2/2 (1.72)

so that

Imε(β) � β2
p

√
π

2
βe−β

2/2 (1.73)

which is an odd function of β. Furthermore, ε(0) > 1 and real. In this manner
we obtain a sketch of the mapping of C into C̄ as shown in Fig. 4.7.

So we find that the curve C̄ in the ε plane does not encircle the origin for
single-peaked distributions, and we again conclude that such equilibrium states
are stable.



294 4. Applications to Plasmas and Neutral Fluids

FIGURE 4.7. Inferred sketch of C̄ for a single-peaked distribution

A Nyquist analysis for a double-peaked distribution was performed by J. D.
Jackson12 and was further described by T. H. Stix.13 The results of this study
are summarized in Fig 4.8. From these sketches, we see that the inner loop
widens in the ε plane and drifts toward the origin as the peaks of f̃1 separate.
We may conclude that a sufficient separation of the two peaks is necessary for
instability to occur. The related phenomena is called the two-stream instability.

4.2 Further Kinetic Equations of Plasmas and Neutral
Fluids

In the discussion to follow, we find that certain limiting forms of the Boltzmann
equation lead directly to kinetic equations relevant to neutral fluids and plas-
mas. The first equation derived in this scheme is the Krook-Bhatnager-Gross
equation, appropriate to near-equilibrium states.

For gases dominated by long-range interactions or, equivalently, grazing
collisions, we obtain the Fokker-Planck equation. With the aid of some tensor
properties of the kernel of the Fokker-Planck equation, we obtain the Landau
equation.

Returning to the BBKGY sequence, we finally obtain the Balescu-Lenard
equation appropriate to the “long-time” limit of a plasma. This equation is
found to include a shielding factor in its interaction integral representative of
the Debye shielding discussed previously. In the limit of large number, the
Balescu-Lenard equation is found to reduce to the Landau equation.

12J. D. Jackson, J. Nuclear Energy C, 1, 171 (1960).
13T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York (1962).
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FIGURE 4.8. The loop C̄ encircles the origin in the ε plane for sufficient separation
of two maxima of f̃1. Reprinted with permission of J. Nuclear Energy C1, J. D.
Jackson, “Longitudinal Plasma Oscillations,” copyright 1960, Pergamon Press, plc.

Logarithmic singularities of terms in plasma kinetic equations are discussed,
and a review of various techniques of removing these singularities is included.

Connecting routes between the various kinetic equations derived in this
section are graphically described in Fig 4.9.

4.2.1 Krook–Bhatnager–Gross Equation14

We recall the form of the Boltzmann collision integral (3.3.1):

Ĵ (f1) �
∫
f ′f ′1 dµ1 −

∫
ff1 dµ1

dµ1 ≡ σ d�g dv1

Near equilibrium, the fluid is close to a local Maxwellian state. The primed
component of Ĵ (f ), relevant to the after-collision interval, describes a situation
closer to equilibrium than the unprimed component of Ĵ (f ). Thus we set∫

dµ1f
′

1f
′ �

∫
dµ1f

0′
1 f

0′ (2.1)

14P. L. Bhatnager, E. F. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
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FIGURE 4.9. Relations among kinetic equations.

Since

Ĵ (f 0) �
∫
dµ1

(
f 0′

1 f
0′ − f 0

1 f
0
) � 0

we may write (2.1) as ∫
dµ1f

′
1 �

∫
dµ1f

0
1 f

0 (2.2)

15J. G. Kirkwood, J. Chem. Phys. 15, 72 (1947). N. N. Bogoliubov, Problems
of a Dynamical Theory in Statistical Physics, E. Gora (trans.), Providence College,
Providence College, Providence, R.I. (1959). See also Section 2.4. H. Grad, Hand.
der Physik, vol. XII, Springer Verlag, Berlin (1958). See also Section 2.5. I. Pri-
gogine, Non-Equilibrium Statistical Mechanics, Wiley, New York (1962). See also
Section 2.3.
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Turning to the unprimed component of Ĵ (f ), we note, in general,∫
dµ1f1f � f

∫
dµ1f1 (2.3)

Next we recall that f 0 and f have the same first five moments. That is,

∫
f 0




1

v

v2


 dv �

∫
f




1

v

v2


 dv (2.4)

This common property motivates the final step of our derivation: in (2.3) we
set ∫

dµ1f1 �
∫
dµ1f

0
1 (2.5)

With the relation (2.2) and substituting (2.51) into (2.3), we find

Ĵ (f ) �
(∫

dµ1f
0

1

) [
f 0 − f ] (2.6)

which gives the KBG equation:

Df

Dt
� ν(v)

[
f 0(v)− f (v)

]
(2.7)

In this expression, we have written ν(v) for the collision frequency:

ν(v) ≡
∫∫

σ d�g dv1f
0(v1) (2.8)

Conservation equations

Owing to the moment equalities between f 0 and f as given by (2.4) and the
defining relation (2.8), it may be shown that the KBG equation returns the
conservation equations (3.3.14), (3.3.30), and (3.3.31). Specifically, consider
the case that ν is velocity independent.

N

∫
dv




1

mv

mv2

2


 DfDt �




∂n

∂t
+∇ · nu

∂ρu
∂t
+∇ · ¯̄p

∂neκ

∂t
+∇ · q




� νN
∫
dv




1

mv

mv2

2


(
f 0 − f ) �




0

0

0


 (2.9)
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It should be noted that, although the KBG equation appears simpler in form
than the Boltzmann equation, it still maintains a strong nonlinear quality. That
is, we note that the local Maxwellian, f 0, is a nonlinear function of the first
five moments of f .

Time behavior of f

For a spatially homogeneous gas, the KBG equation becomes

∂f

∂f
+ νf � νf 0 (2.10)

Multiplying through by the integrating factor eνt gives

∂f eνt

∂t
� νf 0eνt

Integrating, we find

f (t) � f (0)e−νt + f 0
(
1− e−νt) (2.11)

Thus, the KBG equation parallels the conclusion of theH theorem and indicates
that the fluid approaches a Maxwellian equilibrium state.

4.2.2 KBG Analysis of Shock Waves

We found previously (Problem 3.41) that relatively small disturbances in a
fluid propagate at the sound speed. This process is isentropic. For disturbances
of larger magnitude, the process becomes nonisentropic and the velocity of
propagation exceeds the sound speed. Such phenomena are called shock waves.

A parameter important to the description of shock waves is the Mach number,
M . This dimensionless parameter is the ration of the local fluid velocity u to
the sonic velocity a:

M � u
a

If M < 1, the flow is called subsonic. If M � 1, the flow is transonic. If
M > 1, the flow is supersonic, and ifM ! 1, the flow is hypersonic.

Whereas fluid dynamic equations provide a good description of changes in
macroscopic variables across a shock front,16 a kinetic theory must be called on
to examine corresponding changes in the distribution function. In the following
analysis, we offer a brief description of application of the KBG equation to a
one-dimensional shock wave. The fluid on either side of constant values of the
macroscopic variables: ρ, u, and T .

We imagine a very long straight pipe filled with fluid that is at rest with a
piston at one end. The piston undergoes a momentary acceleration carrying

16H. W. Liepman and A. Roshko, Elements of Gas Dynamics, Wiley, New York
(1957).
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FIGURE 4.10. Steady-state shock-wave configuration. Analysis is performed in
frame (b) where the shock front is stationary.

it from zero to finite speed. The information that the piston has suffered this
acceleration moves ahead of the piston in the form of a shock wave. In the
subsequent steady-state configuration, the piston moves with constant velocity,
pushing fluid ahead of it with the same speed, up to the shock front. Ahead
of the shock front, information that the piston is moving has not yet reached
the fluid and the fluid ahead of the shock remains at rest (see Fig. 4.10). It is
conventional to view this steady-state configuration in the frame of the shock
front. We call this speed up (“upstream”).17 The speed on the downstream side
of the front we label ud . Thus we have the boundary conditions

at x � +∞, u � ud � constant
(2.12)

at x � −∞, u � up � constant

Since a steady-state condition maintains in this frame, the KBG equation
reduces to

vx
∂

∂x
f � ν (f 0 − f ) (2.13)

Assuming a Maxwellian distribution for velocities normal to the macroscopic
flow, we set

f (x, v) � g(x, vx)
1

2πRT
exp

(
− v2

⊥
2RT

)
≡ gf⊥

(2.14)

f 0(x, v) � g0(x, vx)
1

2πRT
exp

(
− v2

⊥
2RT

)
≡ g0f⊥

17These labels refer to flow in the frame of the shock wave. Labels are reversed
in the lab frame (see Fig. 4.10).
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Thus ∫
dv⊥f (x, v) � g(x, vx) (2.15a)

and

nux �
∫
f vx dv �

∫
f⊥ dv⊥

∫
gux dvx �

∫
gvx dvx

Substituting (2.14) into (2.13), with (2.15a) we find

∂g

∂x
+ ν
v
g � ν

v
g0 (2.16)

Here it is important to recall that g0 is a local Maxwellian that contains actual
values of macroscopic variables. Such variables change in value across the
shock front.

Before examining (2.16), we more carefully consider the collision frequency
ν. With Maxwell’s expression for viscosity (3.4.33),

η � 1

3
ρCl

and l � C/ν,mC2 � 3kBT , we find

ν � nkBT
η

Thus ν � ν(n, T ), and we may conclude that in the present application ν varies
with x. This property must be kept in mind when integrating (2.16).

Multiplying (2.16) by the integrating factor

exp
∫ x

a

ν

v
dx ′

where a is an arbitrary length, gives

d

dx

(
g exp

∫ x

a

ν

v
dx ′

)
�
(

exp
∫ x

a

ν

v
dx ′

)
ν

v
g0 (2.16a)

In the microscopic velocity domain: v > 0, we integrate (2.16a) over the
interval (−∞, x) to obtain∫ x

−∞
dx̄
d

dx̄

(
g exp

∫ x̄

a

ν

v
dx ′

)
�
∫ x

−∞
dx̄

(
exp

∫ x̄

a

ν

v
dx ′

)
ν

v
g0

g(x) exp
∫ x

a

ν

n
dx ′ − g(−∞) exp

∫ −∞

a

ν

v
dx ′ �

∫ x

−∞
dx̄

(
exp

∫ x̄

a

ν

v
dx ′

)
ν

v
g0

For ν > 0, exp
∫ −∞
a

(ν/v) dx ′ → 0, and we obtain

g(x, v) �
(

exp−
∫ x

a

ν

v
dx ′

)∫ x

−∞
dx̄

(
exp

∫ x̄

a

ν

v
dx ′

)
ν

v
g0
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which gives, for v > 0

g+(x, v)
∫ x

−∞
dx̄

(
exp−

∫ x

x̄

ν

v
dx′

)
ν

v
g0 (2.17a)

For v < 0, we integrate (2.16a) over (∞, x). There results for v < 0,

g−(x, v)
∫ x

∞
dx̄

(
exp−

∫ x

x̄

ν

v
dx′

)
ν

v
g0 (2.17b)

Number density and fluid velocity are contained in the equation

n(x)u(x) �
∫ ∞

0
dvvg+(x, v) �

∫ 0

−∞
dvvg−(x, v) (2.18)

Boundary conditions ar given by the relations

ndud �
∫ ∞

0
g+(v,+∞)v dv +

∫ 0

−a
g−(v,+∞)v dv

(2.19)

npup �
∫ ∞

0
g+(v,−∞)v dv +

∫ 0

−∞
g−(v,−∞)v dv

Since g0 contains n, u, and T , which in turn are moments of g, (2.17)–(2.19)
are integral equations for the distribution function. This formalism was applied
by Leipmann et al.18 to an argon gas. Equations were solved through numerical
iteration, giving good agreement with results of the Navier-Stokes analysis at
moderate Mach number (M � 1.5). At higher Mach number (M � 5.0),
deviation from the Navier-Stokes equation was found to occur in the high-
density side of the shock wave.19

4.2.3 The Fokker-Planck Equation20

Owing to the long-range nature of the Coulomb potential, we find that grazing
collisions dominate in determining the kinetic properties of a plasma. The
kinetic equation that best incorporates this collisional property is the Fokker-
Planck equation. This equation may be obtained through expansion of the
Boltzmann equation about small-angle, grazing collisions.

The cross section for the Coulomb interparticle force,

Gij � e
2

r3
(xi − xj ) (2.20)

18H. W. Liepmann, R. Narasimha, and M. T. Chahine, Phys. Fluids 5, 1313 (1962).
19For further discussion, see W. G. Vincenti and C. H. Kruger, Jr., Introduction to

Physical Gas Dynamics, Wiley, New York, (1965).
20A. D. Fokker, Ann. Physik 43, 912 (1914); M. Planck, Sitzungsber. Preuss. Akad.

Wiss., p. 324 (1917). See also S. Chandrasekhar, Revs. Mod. Phys. 15, 1 (1943). The
present derivation is due to H. Grad (unpublished).
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is given by [see (3.1.31)]

gσ d cos θ � κ
2 d cosψ

(g cosψ)3
(2.21)

κ ≡ 2e2

m
(2.21a)

The interparticle force given by (2.20) describes repulsion between two par-
ticles of charge e and reduce mass m/2. This description is relevant to a
one-component plasma (OCP), which is a collection of like charges in a neutral-
izing background.21 Substituting (2.21) into the Boltzmann collision integral
gives

Ĵ (f ) � κ2

∫
(f ′1f

′ − f1f )
dφ d cosψ dv1

(g cosψ)3
(2.22)

where, we recall, ψ and φ are the polar angles of the apsidal vector α.
With the kinematic relations

>v1 � v′1 − v1 � −α(α · g)
(2.23)

>v � v′ − v � α(α · g)

we conclude that for grazing collisions, α(α · g) may be taken as parameter
of smallness. Consider first

f ′ ≡ f (v′) � f [v +α(α · g)]

Taylor series expanding this form about E ≡ α(α · g) � 0 gives

f ′ � exp(E ·∇)f � f + (E ·∇)f + 1

2
(E ·∇)2f + · · ·

� f + (α · g)(α ·∇)f + 1

2
(α · g)2(α ·∇)2f + · · ·

� f + g cosψ(α ·∇)f + 1

2
g2 cos2 ψ(α ·∇)2f + · · · (2.24)

For f ′1, we find

f ′1 ≡ f (v′1) � f [v1 +α(α · g)]

f ′ � exp(−E ·∇1)f � f1 − g cosψ(α ·∇1)f1 (2.25)

+ 1

2
g2 cos2 ψ(α ·∇1)2f1 + · · ·

In these expressions we have written

∇ � ∂

∂v
∇1 � ∂

∂v1

21An extensive review of the theory of one-component plasmas is given by S.
Ichimaru, Revs, Mod. Phys. 54, 1017 (1982).
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FIGURE 4.11. For grazing collisions, ψ � π

2
− ε, at which value cosψ � ε.

The Cartesian components of the unit vector α are

α � (sinψ, cosφ, sinψ sin φ, cosψ)

with g taken as the z axis [recall (3.2.26)].
Substituting (2.16) and (2.25) into the collision integral (2.22), keeping terms

of 0(ε2), and integrating over φ gives∫ 2π

0
dφ(f ′1f

′ − f1f )

� π cos2 ψ

{
2g · (∇−∇1)+ 1

2
[sin2 ψ( ¯̄Ig2 − gg)+ 2 cos2 ψgg] :

[∇1∇1 − 2∇∇1 +∇∇ ]

}
ff1 (2.26)

Here we have set∫ 2π

0
dφgα · D̂ � 2πg cosψD̂z � 2 cosψg · D̂

where D̂ is written for ∇ or ∇1. Integrating over cosψ , we encounter the
forms ∫ 1

0

d cosψ

cos3ψ

(
cos2 ψ, cos2 ψ sin2 ψ, cos4 ψ

)
(2.27)

At grazing collisions, ψ � π/2− ε, where ε is an infinitesimal angle (see Fig.
4.11). This value of ψ corresponds to the lower limit in (2.27) and gives rise
to the singularity: ∫ 1

cosψ,

d cosψ

cosψ
� − ln cos

(π
2
− ε

)
� − ln sin ε (2.28)

� ln ε−1
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For weakly coupled plasmas, we choose ε to be given by

ε � ? � 1

4πnλ3
d

∝ n
1/2

T 3
(2.28a)

The plasma parameter?was defined previously in (2.3.59). Having completed
the angular integrations in (2.22), a final integration over v1 completes our
derivation. Integration by parts reveals the form [keeping only the singular
terms in (2.26)]

Ĵ (f ) � − ∂
∂v
·αf + 1

2

∂2

∂v∂v
:
( ¯̄bf ) (2.29)

In this expression, α represents the friction coefficient and ¯̄b the diffusion
coefficient. They are given by

α � 2πκ2 ln ε−1

∫
g
g3
f1 dv1 (2.30a)

¯̄b � πκ2 ln ε−1

∫ (
g2 ¯̄I − gg
g3

)
f1 dv1 (2.30b)

In the absence of an external force field, the Fokker-Planck equation then has
the form

∂f

∂t
+ v · ∂f

∂x
+ ∂

∂v
·αf − 1

2

∂2

∂v∂v
: ¯̄bf � 0 (2.31)

To discover the physical significance of theα and ¯̄b coefficients, we consider
them separately and choose the simplest forms. Among the simpler forms we
may choose for the friction coefficients α is that corresponding to Rayleigh
dissipation:

α � −νv (2.32)

With ¯̄b � 0 and assuming spatial homogeneity, the Fokker-Planck equation
(2.31) then reads

∂f

∂t
− ν ∂

∂v
· vf � 0 (2.33)

Choosing a local velocity frame, v � (v, 0, 0), and setting h ≡ vf , (2,23)
becomes (with v and t as independent variables)

∂h

∂t
− µv ∂

∂v
h � 0 (2.33a)

The general solution for this equation is an arbitrary function of the solution
to the characteristic equations

ν dt

1
� −dv

v
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FIGURE 4.12. The friction coefficient causes particles to cluster near the origin in
velocity space.

Thus h is constant on the curves v0 � v exp νt , and we write

h(v, t) � h(v0, 0) � h(ν exp vt, 0)

We conclude that the friction coefficient (2.32) causes particles to slow down.
Thus an initially square distribution in velocity space would tend to peak toward
the origin (see Fig. 4.12).

The simplest form we may choose for the diffusion tensor ¯̄b is that of a
diagonal matrix with equal elements. That is,

¯̄b � ¯̄Ib
With a � 0, the Fokker-Planck equation becomes

∂f

∂t
� 1

2
b∇2f (2.34)

where∇2 represents the Laplacian in velocity space. For the initial distribution
given by

f (v, 0) � V −1δ(v) (2.35)

the solution to the diffusion equation (2.34) is given by the Gaussian
distribution22

f (v, t) � V − 1

(2πbt)3/2
exp

(−v2

2bt

)
(2.36)

In these expressions, V represents the volume of the system. So the diffusion
coefficient causes a distribution function initially peaked at the origin to flatten
out (see Fig. 4.13).

Combining both the a and b coefficients gives (with a � −āv and again
working in a local velocity frame)

∂f

∂t
� ā ∂

∂v
vf + 1

2
b
∂2f

∂v2
(2.37)

22Encountered previously in (1.8.7) and (3.4.40).
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FIGURE 4.13. The diffusion coefficient causes a flattening of f (v) in velocity space.

At equilibrium, this equation becomes

∂

∂v

(
āvf + 1

2
b
af

av

)
� 0

Thus

āvf + 1

2
b
af

av
� A (2.38)

where A is independent of v. At v � ∞, we have

vf � 0
af

av
� 0

It follows that the constant A � 0. Multiplying the resulting form of (2.38)
through by the integrating factor

exp
∫

2āv

b
dv

reduces the equation to

∂

∂v
(eāv

2/bf ) � 0

which gives the Maxwellian distribution

f � Be−āv2/b

Thus incorporation of the friction coefficient that tends to peak f (v) about the
origin and the diffusion coefficient that tends to normalize f (v) leads naturally
to the Maxwellian distribution.
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4.2.4 The Landau Equation23

The Fokker-Planck equation (2.31) may be cast in a more symmetric form
known as the Landau equation. To demonstrate this transformation, we must
first establish some tensor properties of the relative velocity

g � v1 − v

and the tensor

¯̄T ≡ g2 ¯̄I − gg (2.39)

which enters the Fokker-Planck diffusion coefficient ¯̄b given by (2.30b).
These are as follows:

∂

∂vµ
gν � −δµν (2.40)

∇ · g � ∂

∂vµ
gµ � −3 (2.41)

∂

∂vµ
g � ∂

∂vµ
(g2)1/2 � 1

2
(g2)−1/2 ∂

∂vµ
gνgν � 2gν

2g

∂gν

∂vµ
� −gµ

g
(2.42)

∂

∂vµ
g2 � −2gν

∂gν

∂vµ
� −2gµ

If f (g) is any scalar function, then

∂f (g)

∂vµ
� −∂f (g)

∂v1µ
(2.43)

Next we turn to the calculation of ∇ · ¯̄T .

∂

∂vµ
Tµν � ∂

∂vµ
δµνg

2 − ∂

∂vµ
gµgν

� ∂

∂vµ
g2 − gµ ∂

∂vµ
gν − gν ∂

∂vµ
gµ

� −2gν + gν + 3gν � 2gν

Combining results, we have (see Problem 4.10

∇ · ¯̄T � 2g (2.44)

g · ¯̄T � 0 (2.45)

∇ · f (g) ¯̄T � f (g)∇ · ¯̄T (2.46)

23L. Landau, Z. Eksp. i Teoret. Fiz. 7, 203 (1937)
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An illustrative exercise involving these properties concerns the Fokker-Planck

α and ¯̄b coefficients (2.30). Let us establish the relation

∇ · ¯̄b � α (2.47)

or, equivalently,

∂

∂vµ
K

∫
Tµν

g3
f (v1) dv1 � 2K

∫
gν

g3
f (v1) dv1

K ≡ πκ2 ln ε−1

(2.47a)

With (2.44) and (2.46), we find

∇ ·
( ¯̄T
g3

)
� 1

g3
∇ · ¯̄T � 2g

g3
(2.48)

which establishes (2.47).
Finally, we turn to an explicit representation of ¯̄T . Specifically, let us discover

the matrix representation of ¯̄T in a form in which g is parallel to the z axis;
that is g � (0, 0, g).

In general, we have

¯̄T �



g2 − g2

x −gxgy −gxgz
−gygx g2 − g2

y −gygz
−gzgx −gzgy g2 − g2

z




In the said coordinate frame, ¯̄T is seen to reduce to the simple form

¯̄T �



g2 0 0

0 g2 0

0 0 0


 (2.49)

This form will be returned to in our discussion of the Balescu-Lenard equation.

Symmetrization of the collision terms

We rewrite the Fokker-Planck equation in the form

1

K

Df

Dt
� −2

∂

∂vν
f

∫
gν

g3
f1 dv + 1

2

∂

∂vν

∂

∂vµ
f

∫
Tµνf1 dv1

g3

� ∂

∂vν

[
−2f

∫
gν

g3
f1 dv1 + 1

2

∂

∂vµ
f

∫
Tµν

g3
f1 dv1

]
(2.50)

The second term within the brackets may be expanded to give

1

2

∫
dv1f1

(
Tµν

g3

∂

∂vµ
f + f ∂

∂vµ

Tµν

g3

)
� 1

2

∫
dv1f1

(
Tµν

g3

∂

∂vµ
f + 2fgν

g3

)
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The second term in this expression combines with the first term within the
brackets in (2.50), and we are left with

1

K

DF

Dt
� 1

2

∂

∂vµ

(∫
dv1
Tµν

g3
f1
∂

∂vµ
f − f

∫
f1
∂

∂vµ

Tµν

g3
dv1

)

The second term may be transformed as follows:

−
∫
f1
∂

∂vµ

(
Tµν

g3

)
dv1 � +

∫
f1

∂

∂v1µ

(
Tµν

g3

)
dv1

�
∫

∂

∂v1µ

(
11Tµν

g3

)
dv1 −

∫
Tµν

g3

∂f1

∂v1µ
dv1

Dropping the first surface term and collecting remaining terms gives the
Landau equation:

2

K

Df

Dt
� ∂

∂uν

∫
dv1
Tµν

g3

[
f1
∂f

∂vµ
− f ∂f1

∂v1µ

]
(2.51)

Thus we find an alternate symmetric form of the Fokker-Planck equation whose
nonlinear collision integral more closely resembles that of the Boltzmann
equation.

The question arises as to whether a Maxwellian distribution is an equilibrium
solution of the Landau equation. Setting f � A exp(−v2/2C2), we find that,
after differentiation with respect to vµ and v1µ, the integrand contains the factor
¯̄T · g, which by (2.45) vanishes. Thus we find that the Landau equation shares
this additional property with the Boltzmann equation.

4.2.5 The Balescu–Lenard Equation24

In Section 2.3.9, we noted that the Balescu-Lenard equation is relevant to the
time interval where shielding comes into play (see Fig. 2.14). This equation
is now derived in a correlation expansion of the hierarchy relevant to a high-
temperature rare-density plasma.

We return to the nondimensionalized BBKGY equation (2.2.12) and the
BYs write (

∂

∂t
+ κ̂s − a�̂s

)
Fs � −α

γ
ÎsFs+1

24A. Lenard, Ann. Phys. 10, 390 (1960); R. Balescu, Phys. Fluids 3, 52 (1960).
The spectrum of the linearized Balescu-Lenard equation was examined by A. H.
Merchant and R. L. Liboff, J. Math. Phys. 14, 119 (1973).
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where κs is given by (2.2.22a), and we recall that the interaction term ÎsFs+1

has the form

Îs �
s∑
i�1

∂

∂vi
·
∫
d(s + 1)Gi,s+1

and Gi,j represents the two-particle interaction force for particle j on particle i.
We examine a one-component rare plasma with

1

γ
≡ n0r

3
0 � 0(ε)

and weak coupling (or high temperature)

α ≡ �0

kBT
� 0(ε)

where r0 is the range of interaction [recall (2.2.9) and ε is a parameter of
smallness. As particle coupling is small, the correlation expressions (2.2.21)
for F2 and F3 are written

F2(1, 2) � F1(1)F1(2)+ εC2(1, 2)

F3(1, 2, 3) � F1(1)F1(2)F1(3)+ ε
∑
P (ijk)

F1(i)C2(j, k)+ ε2C3(1, 2, 3) (2.52)

The variables P (ijk), we recall, denote permutations of (1,2,3).
The equations BY1 and BY2 then appear as(
∂

∂t
+ K̂1

)
F1 � ε2 α

γ
Î1 [F1(1)F1(2)+ εC2(1, 2)] (2.53a)(

∂

∂t
+ K̂1(1)+ K̂1(2)− εα�2

)
[F1(1)F1(2)+ εC2(1, 2)]

� ε2 α

γ
Î2

[
F1(1)F1(2)F1(3)+ ε

∑
P

F1(i)C2(j, k)+ ε2C3(1, 2, 3)

]
(2.53b)

To terms of O(ε), we find (returning to dimensional variables)(
∂

∂t
+ K̂1

)
f1(1) � 0 (2.54a)[

∂

∂t
+ K̂1(1)+ K̂1(2)

]
C2(1, 2)+ G1,2

m
·
(
∂

∂v1
− ∂

∂v2

)
f1(1)f2(2) � 0

(2.54b)

The technique of solving these equations is as follows: (1) Solve (2.54b) with
the aid of (2.54a) to obtain C2 � C2(t). (2) Insert this solution into (2.53a) to
obtain a kinetic equation that is valid to O(ε3).
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The solution to (2.54a) is the streming solution, which contains only free-
particle trajectories with v̇1 � v̇2 � 0. Thus, in this instance,

d

dt
C2(1, 2) �

(
∂

∂t
+ v1 · ∂

∂x1
+ v2 · ∂

∂x2

)
C2(1, 2)

�
[
∂

∂t
+ K̂1(1)+ K̂1(2)

]
C2(1, 2) (2.55)

It follows that (2.54b) may be rewritten

dC2

dt
� 1

m

∂�(1, 2)

∂x1
·
(
∂

∂v1
− ∂

∂v2

)
f1(1)f1(2)

≡ A(1, 2, t) (2.56)

Integrating this equation, we find

C2(1, 2, t) �
∫ t

−∞
A(t ′)dt ′ + C2(1, 2,−∞) (2.57)

If we assume that particles are uncorrelated at t + −∞, then C2(−∞), then
C2(−∞) � 0. Changing variables to

τ ≡ t − t ′, dτ � −dt ′
gives

C2(1, 2, t) �
∫ ∞

0
A(t − τ ) dτ (2.58)

Proceeding with our solution prescription, we substitute (2.58) into (2.53a).
There results[

∂

∂t
+ K̂1 − α

γ
Î1f1(2)

]
f1(1) � α

γ
Î1

∫ ∞

0
A(t − τ ) dτ (2.59)

The left side of this equation is identical to that which appears on the left side
of the Vlasov equation (2.2.30). Thus (2.59) may be rewritten (setting f1 ≡ f )

∂f

∂t
+v1· ∂

∂x1
f+ e

m
E· ∂f
∂v1

� 1

m

∂

∂v1
·
∫
dx2

∫
dv2
∂�(x12)

∂x1

[∫ ∞

0
A(t − τ ) dτ

]
(2.60)

where eE is the Vlasov self-consistent force field. It the two-particle separation
is x12 at t , then in the straight-line approximation, at t−τ , its value is x12−gτ .
Thus, with the identification (2.56), and writingDf/Dt |VL for the left side of
(2.60), this equation becomes

Df

Dt

∣∣∣∣
VL

� 1

m

∂

∂v1
·
∫
dx2

∫
dv2

{
−eE(x12)

∫ ∞

0

1

m

[
− eE(x12 − gτ )

·
(
∂

∂v1
− ∂

∂v2

)
f (1, t − τ )f (2, t − τ )dτ

]}
(2.61)
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where eE here represents the two-particle force field.
Assuming that f (1)f (2) is uniform over the x2, τ integration domain, we

find

Df

Dt

∣∣∣∣
VL

�
( e
m

)2 ∂

∂v1
·
∫
dv2〈EE〉·

[
f (2)

∂

∂v1
f (1)− f (1)

∂

∂v2
f (2)

]
(2.62)

where

〈EE〉 �
∫
dx2

∫ ∞

0
dtE(x12)E(x12 − gτ ) (2.63)

represents the E field autocorrelation function in the straight-line approxima-
tion. We may rewrite (2.62) in a form that strongly resembles the Landau
equation (2.50):

Df

Dt

∣∣∣∣
VL

� ∂

∂v
·
∫
¯̄Q ·

(
∂

∂v
− ∂

∂v1

)
f (v)f (v1) dv1

(2.64)
¯̄Q ≡

( e
m

)2
∫
dx1

∫ ∞

0
dτE(x − x1)E∗(x − x1 − gτ )

where we have changes notation: x1, v1 → x, v; x2, v2 → x1, v1. Note that the
complex conjugate has no effect on the real E field.

Inserting the Fourier transform [see (1.32)]

eE(x) � −∇�(x) � 1

(2π )3

∫
dkikeik·x�̄(k) (2.65)

into the autocorrelation function ¯̄Q gives

¯̄Q � 1

m2

∫
dτ

∫
dk k
(2π )3

∫
dk′ k′

(2π )3
�̄(k)�̄∗(k′)

∫
dx1e

ix1·(k′−k)eix·(k
′−k)eik·gτ

(2.66)
With ∫

dx1e
ix1·(k′−k) � (2π )3δ(k′ − k)

integration of (2.66) over k′ gives

¯̄Q � 1

m2(2π )3

∫
dk kk|�̄(k)|2

∫ ∞

�
dτeik·gτ

which gives, finally,

¯̄Q � 1

8π 2m2

∫
dk kkδ(k · g)|�̄(k)|2 (2.67)

Recalling (1.21), we reintroduce the dielectric constant ε(k, ω), obtained
from linearized perturbation theory of the Vlasov equation, and set

�̄(k) → �̄(k)

ε(k, ω)
(2.68)
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where ε(k, ω) is given by (1.23):

ε(k, ω) � 1+ ω
2
p

k2

∫
k · ∂f̃0/∂v dv
ω − k · v

Substitution of the form of �̄(k), so augmented, into (2.67) gives the Balescu-

Lenard ¯̄Q tensor.

¯̄QBL �
1

8π 2m2

∫
dk kk |�̄(k)|2δ(k · g)∣∣∣1− ω2

p

k2

∫ k·(∂f̃0/∂v) dv
k·v−ω

∣∣∣2 (2.69)

The Fourier transform �̄(k) is that of the bar Coulomb potential energy
[compare (1.33) with kd � 0]:

�̄(k) � 4πe2

k2
(2.70)

With ¯̄QBL substituted into (2.64), we obtain the Balescu-Lenard equation:

Df

Dt

∣∣∣∣
VL

� ∂

∂v
·
∫
¯̄QBL ·

(
∂

∂v
− ∂

∂v1

)
f (v)f (v1) dv1 (2.71)

Note that this equation includes the effects of shielding as contained in the
¯̄QBL coefficient.

Reduction of ¯̄QBL to ¯̄QL

An instructive example at this point concerns the reduction of ¯̄QBL as given by
(2.69) to the corresponding Landau form (2.51). First note that this equation
may be written

Df

Dt
� ∂

∂v
·
∫
¯̄QL ·

(
∂

∂v
− ∂

∂v1

)
f1f dv1 (2.72a)

¯̄QL �
K

2

¯̄T
g3

(2.72b)

At k ! λ−1
d , ε(k, ω) → 1. In this limit, (2.68) and (2.69) give

¯̄QBL → ¯̄Q′BL �
2e4

m2

∫
dk

kk
k4
δ(k · g)

We obtain the Cartesian components of this matrix through evaluation of the
integral in spherical coordinates. With g taken as the polar axis, there results

¯̄Q′BL �
2e4

m2

∫ ∞

0

dkk2

k4

∫ 1

−1
d cos θ

∫ 2π

0
dφkkδ(kg cos θ )
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� 2e4

m2

∫
dk

k

∫
dφ

∫
d cos θ

g
k̂k̂δ(cos θ )

Here k̂ represents a unit k vector. The k̂k̂ matrix is given by

k̂k̂ �




sin2 θ cos2 φ sin2 θ sin φ cosφ sin θ cos θ cosφ

sin2 θ cosφ sin φ sin2 θ sin2 φ sin θ cos θ sin φ

cos θ sin θ cosφ cos θ sin θ sin φ cos2 θ




Integration over cos θ leaves

∫
k̂k̂δ(cos θ ) d cos θ �




cos2 φ sin φ cosφ 0

cosφ sin φ sin2 φ 0

0 0 0




Completing the φ integration gives

¯̄Q′BL �
2πe4

m2

∫
dk

k

1

g3



g2 0 0

0 g2 0

0 0 0




With the identification (2.49), the latter equation may be written

¯̄Q′BL �
2πe4

m2

¯̄T (g)

g3

∫ k0

kd

dk

k
(2.73)

Here we have introduced the cutoff parameters

k2
0 ≡

(
kBT

e2

)2

, k2
d ≡ 4π

e2n

kBT
(2.73a)

corresponding, respectively, to the wave number of closest approach and the
Debye wave number, introduced previously in (1.31). It follows that

k0

kd
� (kBT )3/2

e3n1/2
� 4πnλ3

d �
1

?
� ε−1 (2.73b)

The plasma parameter?was introduced previously in (2.3.59). We recall that,
for a weakly coupled plasma, such as is presently considered, ? is a small
parameter. We write ∫ k0

kd

dk

k
� ln ε−1

and ¯̄Q′BL reduces to the form

¯̄Q′BL �
(

2πe4

m2
ln ε−1

) ¯̄T
g3
� K

2

¯̄T
g3
� ¯̄QL (2.74)
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We recognize this to be the Landau kernel given by (2.72b). This reduction was
obtained in the limit k ! λ−1

d , ε→ 1, relevlant to a plasma with no shielding
effects, such as described by the Landau or, equivalenty, the Fokker-Planck
equations.

This finding brings our analysis around full circle. As illustrated in
Fig 4.9, the Landau equation follows both from the Boltzmann equation (Sec-
tion 2.3) and, as shown immediately above, from the Balescu-Lenard equation.
This connecting loop indicates that, as previously described, the Boltzmann
equation too, rests under the aegis of the BBKGY hierarchy.

4.2.6 Convergent Kinetic Equation

It is evident that the kinetic equations we have discussed relevant to plasma
dynamics all suffer divergence. In deriving the Fokker-Planck equation, we
found that the Boltzmann collision integral exhibits divergence at small-angle
collisions or, equivalently, at large impact parameter collisions [see, for exam-
ple, (2.28)]. When written in terms of impact parameter, this singularity has
the form

∫
ds/s.

In the limit of large k, the Balescu-Lenard collision operator (2.69) exhibits
a ∼ ∫

dk/k divergence. Since ε(k, ω) � 1 in this limit, the Landau equation

exhibits a like logarithmic divergence. At small k, ¯̄QBL is nonsingular, whereas
the Landau equation remains logarithmically singular.

The regular behavior of ¯̄QBL at small k is due to the inclusion of dielectric
shielding in its kernel, thereby lessening the effects of long-range collisions.
Its remaining singularity at lark k reflects the fact that the equation does not
incorporate effects of wide-angle collisions. This conclusion follows from
our derivation of the Landau equation from the Boltzmann equation at small-
angle collisions and the demonstration of the equivalence of the Landau and
Balescu-Lenard equations at ε(k, ω) � 1.

Resoultion of these divergent forms was considered by Hubbard,25 Frieman
and Book,26 Gould and DeWitt,27 and Aono,28 among others.

We first write the convergent kinetic equation in the form

Df

Dt
� I � I0 + Ĩ − Ĩ0 (2.75)

where the collision I terms denote the following:

I0 � Boltzmann collision integral, s ≤ s0
Ĩ � Balescu-Lenard integral, k < 1/s0

25J. Hubbard, Proc. Roy. Soc. A261, 371 (1961).
26E. A. Friedman and D. C. Book, Phys. Fluids 6, 1700 (1963).
27H. A. Gould and H. E. DeWitt, Phys. Rev. 155, 68 (1967).
28O. Aono, Phys. Fluids 11, 341 (1968).
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Ĩ0 � renormalization term cancels singularities in I0 and Ĩ

The inequalities on the right denote domains of convergence, with s0
representing an intermediary value of the impact parameter.

We may write I0 as an integral over impact parameter:

I0 �
∫ ∞

0
B(s) ds (2.75a)

For s ! s0, small-angle collisions are predominant and the Fokker-Planck
expansion is relevant, which in turn yields the Landau equation (2.51). In
developing this equation, the related singularity was absorbed in the coefficient
K (2.47a). Rewriting this coefficient as an integral over the impact parameter,

K � πκ2

∫
ds

s

indicates that

B(s) ∼ A
s

relevant to the large s, grazing-collision domain. The integral A is written for
the Landau form:

A � πκ
2

2

∫
∂

∂v
·
¯̄T
g3
·
(
∂

∂v
− ∂

∂v1

)
f (v)f (v1) dv1

Similarly, we write

Ĩ �
∫
G(k)k (2.75b)

whereG(k) is the implied Balescu-Lenard form. For large k, ε(κ, ω) → 1 and,
as shown above, the Balescu-Lenard equation reduces to the Landau equation.
Thus, in this domain, Ĩ suffers the same logarithmic singularity as the Landau
collision form. That is , we may write

G(k) ∼ A
k

For Ĩ0 to cancel the s singularity in I0 and the k singularity in Ĩ , it should have
a dual form. This property may be satisfied with the aid of the Bessel function
J1(x) by virture of its following property.

∫ ∞

0
J1(x) dx � 1 ↗↘

ds

∫ ∞

0
J1(ks) dk � ds

s

∫ ∞

0
J1(ks) d(ks) � ds

s

dk

∫ ∞

0
J1(ks) ds � dk

k

∫ ∞

0
J1(ks) d(ks) � dk

k

Accordingly, we write

Ī0 � A
∫ ∞

0

∫ ∞

0
J1(ks) ds dk
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� A
∫ s0

0
ds

∫ ∞

0
dkJ1(ks)+

∫ ∞

0
dk

∫ s0

0
dsJ1(ks)

so that

I �
∫ s0

0
B(s) ds +

∫ ∞

s0

[
B(s)− A

∫ ∞

0
dkJ1(ks)

]
ds

+
∫ ∞

0

[
G(k)− A

∫ s0

0
dsJ1(ks)

]
dk (2.76)

The integral over k in the first bracket leaves A/s, which cancels the B(s)
singularity for large s. In the singular domain of G(k), that is, ks0 ! 1, the
integral over s in the second bracket cancels the A/k singularity of G(k). So
we find that the combination integrals (2.76) gives a reasonable model for a
convergent plasma kinetic equation.

4.2.7 Fokker–Planck Equation Revisited

Of the various kinetic equations described in Fig 4.9, the Boltzmann, KBG, and
Fokker-Planck equations are relevant to neutral fluids as well as to plasmas. To
exhibit this property for the Fokker-Planck equation, we revert to the Chapman-
Komogorov equation (1.7.7) relevant to scattering processes homogeneous in
time.

Let
∏

(v,>v) denote the probability that in the interval >t , v → v +>v.
The Chapman-Kolmogorov equation (1.7.7) may then be written

f (v, t) �
∫
f (v −>v, t −>v)

∏
(v −>v,>v) d>v (2.77)

If we assume that only small velocity changes>v contribute to this integration
then

∏
(v−>v,>v) will be sharply varying in its second variable but smoothly

varying in its first variable. This permits expansion of the integrand in (2.77)
about v −>v � v and t −>t � t . There results

f (v, t) �
∫
d(>v)

{
f (v, t)

∏
(v,>v)−>t ∂f (v, t)

∂t

∏
(v,>v) (2.78)

−>v · ∂f (v, t)
∏

(v,>v)

∂v
+ 1

2
>v>v :

∂2[f (v, t)
∏

(v,>v)]

∂v∂v

}

Dividing this equation through by >t and then integrating over >v, with∫ ∏
(v,>v) d>v � 1

we obtain

∂f

∂t
� − ∂

∂v
·
(〈
>v
>t

〉
f

)
+ 1

2

∂2

∂v∂v
:

(〈
>v>v
>t

〉
f

)
(2.79)
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Here we have set 〈
>v
>t

〉
�
∫ (

>v
>t

)∏
(v,>v) d>v

(2.80)〈
>v>v
>t

〉
�
∫ (

>v>v
>t

)∏
(v,>v) d>v

Identifying (>v/>t) with the friction coefficient a and 〈>v>v/>t〉 with the

diffusion coefficient ¯̄b, permits (2.79) to be recognized as the Fokker-Planck
equation (2.31). However, the present derivation indicates that the Fokker-
Planck equation has wider use than mere application to plasma physics.

A more tractable form of the average quantities (2.80) may be obtained as
follows. With (2.23), we may write

>v � α(α · g)

for velocity change due to collision. For the remaining factor in (2.80), we
write ∏

(v,>v) d(>v) � >tδν (2.81)

Here δν represents the increment in collision frequency in which a v1 particle
collides with a v particle, causing the change v → v+>v. This factor is given
by

δν � σ d�g dv1f (v1) (2.82)

Completing the integral in (2.80) gives

a �
〈
>v
>t

〉
�
∫∫

σ d�dv1gα(α · g)f (v1) (2.83a)

Repeating this contruction for the second integral in (2.80), we obtain

¯̄b �
〈
>v>v
>t

〉
�
∫∫

σ d�dv1g(α · g)2ααf (v1) (2.83b)

Let us employ these expressions to show that, for a plasma, a is given by
(2.30a). With (2.21),

gσ d� � κ
2 d cosψ dφ

(g ·α)3
(2.84)

Then (2.83a) becomes

a �
∫∫∫

κ2 d cosψ dφ

(g cosψ)2
αf (v1) dv1 (2.85)

Again, choosing g as the polar axis for theψ , φ integration gives the Cartesian
components

α � (sinψ cosφ, sinψ sin φ, cosψ)
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Thus only the z component of a survives integration, and we may write

a � 2πκ2

∫∫
d cosψ

cosψ

g
g3
f (v1) dv1 (2.86)

which with (2.28) returns (2.30a). The same identification follows for the dif-
fusion coefficient ¯̄b. Thus we find that the generalized Fokker-Planck equation
(2.79) reduces to the plasma Fokker-Planck equation when the Coulomb cross
section (2.84) is employed.

4.3 Monte Carlo Analysis in Kinetic Theory

In this concluding section of the present chapter we turn to a computational
method in kinetic theory that has experienced wide use in the recent past. It is
known as the Monte Carlo technique.

4.3.1 Master Equation

Primary use of this analysis addresses a spatially homogeneous fluid in an
externally supported constant force field K. The distribution function for this
fluid, f (v, t), obeys the masterlike equation29

∂f

∂t
+ a · ∂f

∂v
�
∫
dv′[w(v′, v)f (v′, t)− w(v, v′)f (v, t)] (3.1)

wherew(v′, v) represents the probability rate for scattering30 from the velocity
v′ to v and a ≡ K/m.

An important parameter that enters this analysis is the total scattering rate
from the velocity v to all other velocities:

λ(v) �
∫
w(v, v′) dv′ (3.2)

To simplify (3.1), we introduce

w̃(v, v′) ≡ w(v, v′)+ [� − λ(v)]δ(v − v′)
(3.3)

w̃(v′, v) ≡ w(v′, v)+ [� − λ(v′)]δ(v′ − v)

29The master equation was encountered in Chapter 1 (1.7.20). It is used extensively
in Chapter 5 for problems in quantum kinetic theory; see (5.2.28), (5.2.86), and
(5.3.58).

30For inelastic scattering, we cannot assume w(v, v′) � w(v′, v). In an inelastic
scattering, initial and final scattering constituents are not the same. Such is the case,
for example, in ionizing collisions or collisions where an atom undergoes transition
to an excited state.
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where � is an arbitrary constant. The delta function component in these ex-
pressions permits no change in velocity in scattering and is referred to as a
self-scattering mechanism.31

Note that the integration corresponding to (3.2) gives

λ̃(v) �
∫
w̃(v, v′) dv′ � � (3.3a)

Substituting (3.3) into (3.1) gives

∂f

∂t
+ a · ∂f

∂v
�
∫
dv′w̃(v′, v)f (v′, t)− �f (v, t) (3.4)

In order for the probability scattering rate w̃ to be positive, as the constant �
is arbitrary, we choose

� � max
v

[λ(v)] (3.4a)

Equation (3.4) may be rewritten in the purely integral equation form

f (v, t) �
∫∫

dv′ dv′′
∫ t

0
dt ′f (v′, t)w̃(v′, v′′)δ[v′ − v′′ − (t − t ′)a]e−�(t−t ′)

(3.5)
It is the interpretation of terms in (3.5) that forms the basis for the Monte Carlo
analysis in kinetic theory

4.3.2 Equivalence of Master and Integral Equations

Prior to offering an interpretation of terms in the integral equation (3.5), let
us demonstrate the equivalence of this equation to its precursor, the master
equation (3.4). Towards these ends, we first set

τ ≡ t − t ′
and integrate (3.5) over v′. There results

f (v, t) �
∫
dv′

∫ t

0
dτf (v′, t − τ )w̃(v′, v − τa)e−�τ (3.6)

Now note that

a · ∂
∂v
w̃(v′, v − τa) � − ∂

∂τ
w̃(v′, v − τa)

Operating on (3.6) with a · (∂/∂v) then gives

a · ∂
∂v
f (v, t) � −

∫
dv′

∫ t

0
dτf (v′, t − τ )

[
∂

∂τ
w̃(v′, v − τa)

]
e−�τ

31H. D. Rees, J. Phys. Chem. Solids 30, 643 (1969). For further discussion, see C.
Jacoboni and L. Reggiani, Revs. Mod. Phys. 55, 645 (1983).
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Integrating the right side of the latter equation by parts (over τ ), we obtain

a · ∂
∂v
f (v, t) � −

∫
dv′f (v′, 0)w̃(v′, v − ta)e−�τ

+
∫
dv′f (v′, t)w̃(v′, v)−

∫
dv′

∫
dτw̃(v′, v − τa)

×
[
�e−�τf (v′, t − τ )− e−�τ ∂

∂τ
f (v′, t − τ )

]
≡ I+ II + III+ IV (3.7)

where the Roman numerals stand for corresponding respective integrals. Now
recall that for any integrable function g(t),

∂

∂t

∫ t

0
h(t − τ )g(τ ) dτ � h(0)g(t)+

∫ t

0
g(τ )

∂

∂t
h(t − τ ) dt (3.8)

We are now prepared to reconstruct (3.4). First we note that from (3.6)

III � −�f (v, t)

Next we employ (3.8) with h � f (v′, t) and g � w̃(v′, v − t) and g �
w̃(v′, v − ta)e−�τ and obtain

I + IV � − ∂
∂t

∫∫ t

0
f (v′, t − τ )w̃(v′, v − τa)e�τ dv′ � − ∂

∂t
f (v′, t)

the last equality following from (3.6). Collecting terms (with II) remaining
intact) returns (3.4). Thus we find that (3.5) is equivalent to (3.4)

4.3.3 Interpretation of Terms

We wish to interpret the terms in (3.5). First we note that the probability of a
particles of velocity v undergoing a collision in the time >t is

P (>t) � λ̃(v)>t

It follows that probability, P̄ , that the particles has no collision in the interval
>t is

P̄ (>t) � 1− λ̃(v)>t

Over a finite interval t � N >t ,
P̄ (t) �

[
1− λ̃(v1)>t

] [
1− λ̃(v2)>t

]
· · ·

[
1− λ̃(vN )>t

]
(3.9)

where

vn � v(n>t) � v(0)+ a n>t (3.9a)

and n � 1, . . . , N . With (3.3a), the preceding becomes

P̄ �
(

1 � �t
N

)N



322 4. Applications to Plasmas and Neutral Fluids

FIGURE 4.14. A particle undergoes a collision at t ′ and changes velocity from v′ to
v′′(—). In the interval (t − t ′), the particle undergoes free-flight acceleration from v′′

to v (—).

FIGURE 4.15. Three scattering free-flight events.

which in the limit N →∞ gives

P̄ � e−�t (3.10)

Thus, the exponential factor in (3.5) represents the probability that the particle
drifts with no collision for the time (t − t ′). The delta function tells us that
during this collisionless flight the particle undergoes an acceleration due to the
external field from velocity v′′ to v. The factor f (v′, t)w̃(v′, v′′) describes a
particle with velocity v′ being scattered to the velocity v′′. This series of events
may be described in a v − t diagram as shown in Fig. 4.14. The continuation
of this collision-free flight process to three such events is shown in Fig. 4.15.

It is evident that the integration (3.5) carries this process over all v′, v′′ and
0 ≤ t ′ ≤ t . In the Monte Carlo analysis the distribution product f (v)>v is
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constructed by measuring the time a typical trajectory spends in the interval
>v about the value v, and we write

f (v)>v ∝
∑
v−bin

>t (3.11)

The summation is over all time intervals >t that the trajectory spends in the
velocity interval, v, v +>v, which is termed a velocity bin (v-bin).

4.3.4 Application of Random Numbers

As noted above, in this Monte Carlo process the computer follows the trajectory
of a single particle. The intervals of free flight in this trajectory are related to a
sequence of random numbers in the following manner. Consider that we have a
distribution of random numbers, x, in the interval (0, 1) with a uniform proba-
bilityP (x) � 1. With (3.10), we note that the probability that the particle drifts
for a time t and then suffers collision in the interval dt is equal to the product

(e−�t )� dt

With t also considered a random variable, we write

P (x) dx � �e−�t dt � d(1− e−�t )
Thus [recalling P (x) � 1] we find

t � − 1

�
ln(1− x) (3.12)

which is the desired mapping from the random variables x to the free flight
intervals t .

Another step where random numbers come into play concerns the scattering
rate w̃(v, v′) dv′ (dimensions, s−1). Consider now that there is at our disposal
a distribution of three sets of random numbers [all in the interval (0,1)]. Let
us call a triplet of such values the vector y. Viewing the final velocity v′ as a
random variable permits us to write

w̃(v, v′) dv′ � P (y) dy

where again P (y) is taken to be uniform. The preceding equation implies the
relation

v′ � v′(v, y) (3.13)

which effects a mapping from the random variables (v, y) to the random
variables v′. [As we are constructing f (v), the velocity v is a known vector]32

32It is this use of random numbers that motivates the gambling label ofthe analysis.
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FIGURE 4.16. Flow chart for Monte Carlo determination of distribution function.
Starting given values are constant acceleration α; starting velocity v0; random vari-
able distributions P (x), P (y); final time Ts . Elapsed time of trajectory in any given
loop is t .

4.3.5 Program for Evaluation of Distribution Function

Having interpreted the terms in (3.5) and described the manner in which random
numbers enter the analysis, we are now prepared to construct a flow chart for
the determination of the distribution function. Such a flow chart is shown in
Fig. 4.16. The algorithm command x → y (also written x � y in FORTRAN
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FIGURE 4.17. Typical bin storage histogram for one-dimensional Cartesian dis-
tribution component, f (v), for force-free fluid. Velocity mesh is 10>v units long.
Smooth solid curve represents the distribution exp−(v/10)2.

and BASIC or y :� x in PASCAL) means “replace y by x.” Recall also that
the probability distributions P (x) and P (y) are uniform.

Note that the procedure displayed in Fig. 4.16 is directed at the construction
of an equilibrium distribution. Furthermore, owing to the stochastic nature of
these processes, it is assumed that f (v) is independent of the starting velocity
v0 for sufficiently large Ts . If this is so, then the distributions f (v; v0, Ts) and
f (v; v0 + v̄, Ts) are equal for arbitrary velocity v̄. To verify the equilibrium
property of the distribution, we compare f (v; v0, Ts) and f (v; v0, Ts + τ ),
which for equilibrium are equal for arbitrary time interval τ .

The manner in which f (v) is constructed from time-interval storage in
velocity bins is illustrated in Fig. 4.17.

Problems

4.1. (a) With F (β) in (1.71) given by

F (β) � 1√
2π

∫ ∞

0

dµµe−µ
2/2

µ− β
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show that

P : F (β) � 1− 2β2e−β
2/2

√
2π

∫ ∞

−∞
dye−y

2/2

[
sinh βy

βy

]

Hint: Introduce the variable

y ≡ µ− β
(b) With the preceding result, what is the explicit form of ε(β) for a

Maxwellian plasma?
(c) Establish the following rules concerning principle value:

P :
∫ a

−a
fe(x) dx � 2 lim

ε→0

∫ a

ε

fe(x) dx

P :
∫ a

−a
fo(x) dx � 0

where fe(x) and f0(x) are even and odd functions, respectively, and are
regular in the open interval about the orgin.

4.2. What is the explicit form of the response dielectric function ε(k, k · v0), as
given by (1.28), for v0 �� 0?

4.3. What does the static Debye potential �(r), given by (1.35), become for
extraneous charge velocity v0 �� 0?

4.4. Show that the derivation of the Landau decay constant �, preceding (1.66),
remains valid providing � � ωp.

4.5. Can the contour in (1.69) be closed in the lower-half β plane? Explain your
answer.

4.6. (a) Show that ∫
f ln f 0 dv �

∫
f 0 ln f 0 dv

(b) With the preceding property, show that the KBG equation implies an H
theorem.
Hint: Multiply both sides of the KBG equation by f dv ln f and note that,
with part (a), ∫

(f 0 − f ) ln f dv �
∫

(f 0 − f ) ln(f0) dv

4.7. A longitudinal electric wave with phase velocity vφ � 0.8ωp/k and wave-
length λ � 1µm propagates through a plasma at T � 20,000 K and electron
density n � 4.2× 1018 cm−3.

(a) What is the plasma frequency, ωp, of this plasma?
(b) What is the Debye distance, λd , for this plasma?
(c) In how many seconds will the amplitude of the electric wave decay by

the factor e−1 due to Landau damping?
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4.8. Consider the following one-dimensional plasma distribution:

f1(µ) � 0, |µ| > 1

f1(µ) � 1

2
, |µ| ≤ 1

where µ is the nondimensional velocity given by (1.41). Employ the Nyquist
criterion to determine the number of unstable modes corresponding to this
distribution.

4.9. Determine whether or not the Fokker-Planck equation (2.79) implies the
conservation equations.

4.10. Establish the validity of (2.46),

∇ · f (g) ¯̄T � f (g)∇ · ¯̄T
where f (g) has continuous first derivatives, the ∇ operator represents single-

particle velocity differentiation, and ¯̄T is given by (2.39).

4.11. Show that the Fokker-Planck coefficients a and ¯̄b (2.30) satisfy the relation

∇ · ¯̄b � a

4.12. Show that the Maxwellian distribution reduces the Landau collision integral
[see (2.51)] to zero.

4.13. Show that the matrix ¯̄T lies in a plane normal to g. That is, show that

g · ¯̄T � 0

4.14. Write down an explicit expression for the integrand G(k) in (2.75b).

4.15. What is the physical significance of ε(ω, k) → 1 for a plasma, in the limit of
large k. That is, what is the behavior of a wave in a plasma at such k?

4.16. Show that the electric-field auto correlation tensor in the straight-line
approximation bay be written

〈EE〉 � 2πe2 ln ε−1

g




1 0 0

0 1 0

0 0 0




or, equivalently

〈EE〉 � 2πe2 ln ε−1

g

(
g2 ¯̄I − gg
g2

)

Hint: Recall that

〈EE〉 �
∫
dx2

∫ ∞

0

dτE(x12)E(x12 − gτ )

Use cylindrical as shown in Fig 4.18. Introduce cutoff parameters in the s
integration at the distance of closest approach, k−1

0 , and the Debye distance,
λd .
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FIGURE 4.18. Configuration for Problem 4.16.

4.17. Relevant to the Monte-Carlo numerical procedure, write a flow chart cor-
responding to the output shown in Fig. 4.17. Assume three-dimensional
scattering.

4.18. Determine if the KBG equation [(2.7),(2.8)] satisfies the conservation
equations. Discuss your answer.



CHAPTER 5

Elements of Quantum
Kinetic Theory

Introduction

This chapter begin with a review of some basic principles of quantum mechan-
ics important to the formulation of quantum kinetic theory. In the following
section the density operator is introduced and applied to problems involv-
ing beams of spinning particles. The Wigner distribution is described, and an
equation of motion is derived for this function, which is found to reduce to the
Liouville equation in the classical limit. The Wigner-Moyal equation and the
notion of Weyl correspondence are described as well.

In the third section of the chapter, different manifestations of the KBG
equation are applied respectively to the kinetic theory of photons interacting
with a gas and electron transport in metals. In the former case, the canoni-
cal criterion for lasing is obtained from the relevant photon kinetic equation.
In application to electron transport in metals, expressions are obtained for
electrical and thermal conductivities and their ratio, the Lorentz number. The
phenomenon of Thomas–Fermi screening is described, and forms for the re-
lated screening length and static potential are obtained. Dispersion relations
for waves in quantum plasmas are discussed, and the close similarity between
these equations and their classical counterparts is noted. A quantum modifica-
tion of the Boltzmann equation due to Uehling and Uhlenbeck is introduced.
This quasi-classical equation is found to give the correct quantum equilibrium
distributions. The chapter continues with an overview of classical and quan-
tum hierarchies, which includes a description of second quantization. With this
formalism at hand, a quantum analysis of electrical conductivity is discussed,
stemming from the Kubo formula derived earlier in Chapter 3. The chapter
concludes with a brief introduction to the Green’s function formalism relevant
to quantum properties of many-body systems. Included in this description are
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diagrammatic representations of equations of motion for Green’s functions.
The discussion concludes with a derivation of the lifetime and energy of a
particle interacting with its surroundings.

5.1 Basic Principles1

5.1.1 The Wave Function and Its Properties

In quantum mechanics, information concerning a given system is obtained
from its wave function. Such information is derived from expectation values.
Let

ψ(x1, . . . , xN, t) ≡ ψ(xN, t)

be the wave function of a system comprised of N particles. Then, if A(xN )
is some dynamical property of the system, the expectation of A in the state
ψ(xN, t) is given by

〈A〉 �
∫
ψ∗(xN, t)Âψ(xN, t) dxN (1.1)

Here we have written Â for the operator corresponding to the observable A.
The quantity 〈A〉 is interpreted as an ensemble average.

In Dirac notation, (1.1) appears as

〈A〉 � 〈ψ |Âψ〉 (1.2)

Another important manner in which information is derived from the wave
function is through the Born postulate. This postulate indicates that the
configurational probability of the system is given by

P (xN, t) � |ψ(xN, t)|2 (1.3)

This probability density is defined in the same manner as that obtained from
the classical N particle distribution function fN (xN, pN, t):

P (xN, t) �
∫
fN (xN, pN, t) dpN

The wave function evolves in time according to the time-dependent
Schrödinger equation,

ih̄
∂ψ

∂t
� Ĥψ (1.4)

where Ĥ is the Hamiltonian operator of the system.

1For further discussion, see P. A. M. Dirac, The Principles of Quantum Mechanics,
4th ed., Oxford, New York (1958); E. Merzbacher, Quantum Mechanics, 2nd ed.,
Wiley, New York (1970); R. L. Liboff, Introductory Quantum Mechanics, 4th ed.,
(2002), ibid.
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Dynamic reversibility

Reversibility in quantum mechanics is given by the following description.
With Ĥ (t) � Ĥ (−t), we see that setting t → t ′ � −t and taking the complex
conjugate of (1.4) gives

ih̄
∂ψ∗(x,−t)

∂t
� Ĥψ∗(x,−t)

This is the same equation as (1.4). We may conclude that if%(x, t) is solution
to the Schrödinger equation then %∗(x,−t) is also a solution.

Time development of expectations

With (1.1) and (1.4), we obtain

ih̄
d〈A〉
dt

�
〈[
Â, Ĥ

]+ ih̄ ∂Â
∂t

〉
(1.5)

Here we have introduced the commutator[
Â, Ĥ

] ≡ ÂĤ − Ĥ Â (1.6)

The list of properties (1.1.26) obeyed by the Poisson brackets are also obeyed
by the commutator.

Suppose Â is not an explicit function of time. Then (1.5) indicates that if
Â commutes with Ĥ then the expectation of A is constant in time. This is the
quantum mechanical analog of the classical theorem discussed in Chapter 1
which states that if a dynamical variable has a zero Poisson bracket with the
Hamiltonian then it is a constant of the motion.

Measurement and operators

A fundamental postulate of quantum mechanics concerns measurement. Thus,
if Â is the operator corresponding to the observable A, then measured values
of A, which we will call a, are eigenvalues of Â. The eigenvalue equation for
Â is given by

Âϕa � aϕa (1.7)

where ϕa is the eigenfunction corresponding to the eigenvalue a.
The operator corresponding to energy is the Hamiltonian so that energy

values of a given system are obtained from the time-independent Schrödinger
equation:

ĤϕE � EϕE (1.8)

These eigenstates are called stationary states for the following reason.
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The solution to the time-dependent Schrödinger equation (1.4) correspond-
ing to the initial value ψ(xN, 0) is given by (for time-independent Ĥ )

ψ(xN, t) � e(−itĤ )/h̄ψ(xN, 0) (1.9)

Suppose ψ(xN, 0) is a solution to (1.8). Then

ψE(xN, t) � e(−itĤ )/h̄ϕE(xN )

� e(−itE)/h̄ϕE(xN ) (1.10)

Forming the expectation 〈E〉 as given by (1.2), we find

〈E〉 � 〈ψE|ĤψE〉 � E (1.11)

We may conclude that in a stationary state 〈E〉 is constant in time.

5.1.2 Commutators and Measurement

An important rule concerning measurement involves the commutator. Thus, if

[Â, B̂] � 0

then Â and B̂ share common eigenstates.
As a simple example of this theorem, consider the configuration comprised

of a single free particle whose Hamiltonian is

Ĥ � p̂2

2m
, p � −ih̄∇

It follows that

[Ĥ , p̂] � 0

Eigenstates of p̂ and Ĥ are given by

ϕk(x) � 1√
2π
eik·x

ϕE(x) � Aeik·x + Be−ik·x
corresponding to

p̂ϕk � h̄kϕk

ĤϕE � h̄
2k2

2m
ϕE

Thus p̂ and Ĥ share common eigenstates. That is, any eigenstate of the form
C exp ik · x is an eigenstate of both p̂ and Ĥ .

Note, however, that ϕE(x) as given above is an eigenstate of Ĥ but
not of p̂. This property results from the degeneracy of free-particle energy
eigenfunctions. A Venn diagram well illustrates this situation (see Fig. 5.1).



5.1 Basic Principles 333

FIGURE 5.1. Venn diagram depicting the eigenstates of Ĥ and p̂ for a free particle.

A simple example serves to illustrate the consequence on measurement that
the commutator theorem has. Consider that the free particle is in the state

ψk(x) � Aeik·x

Measurement of the momentum of the particle in this state is certain to find
the value p � h̄k. Such measurement2 leaves the system in the state �k(x).
Subsequent measurement of E is certain to find the value E � h̄2k2/2m.

We conclude that there are states of a free particle in which E and p may be
prescribed simultaneously. There is no uncertainty related to measurement of
these observables in states that are common eigenstates of Ĥ and p̂.

Uncertainty in quantum mechanics

The uncertainty of measurement of an observable A in quantum mechanics is
given by the variance of A [recall (1.8.2b)]:

(>A)2 � 〈
(A− 〈A〉)2

〉
(1.12)

For the example of the free particle considered above, in the common eigenstate
C exp ik · x,

>E � >p � 0

Clearly, this result is a consequence of the fact that for a free particle [Ĥ , p̂] �
0. More generally, the Robertson-Schrödinger theorem tells us the following:
Suppose two operators have a nonvanishing commutator. That is,

[Â, B̂] � Ĉ (1.13)

The theorem then states that

>A>B ≥ 1

2
|〈C〉| (1.14)

2Here we mean measurement in the ideal sense, that is, measurement that least
perturbs the system.
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The most famous application of this result follows from the fundamental
commutator relation

[x̂, p̂] � ih̄ (1.15)

Here we are writing x andp for parallel components of x, p. With the preceding
relation, we conclude

>x>p ≥ h̄
2

(1.16)

That is, states do not exist in which x and pmay be prescribed simultaneously.
Another important illustration of (1.14) concerns the Cartesian components

of angular momentum, whose commutator relations are given by

[Ĵx, Ĵy] � ih̄Ĵz
[Ĵy, Ĵz] � ih̄Ĵx
[Ĵz, Ĵx] � ih̄Ĵy (1.17)

[Ĵ 2, J] � 0

From the first commutator we obtain

>Jx>Jy ≥ h̄
2
|〈Jz〉|

Thus, in general, Jx and Jy cannot be simultaneously designated in any quan-
tum state. However, from the last of the four relations (1.17) we find, for
example, that

>J 2>Jz � 0

So states exist in which J 2 and J z may be simultaneously designated.

5.1.3 Representations

Consider that the eigenstates of Â comprise a discrete sequence. We may then
write

Â |an〉 � an |an〉 (1.18)

where n is an integer. In this notation, |an〉 represents the eigenstate of Â
corresponding to the eigenvalue an. The eigenstates |an〉 may be taken to be
the basis of a Hilbert space H. That is, {|an〉} spans the Hilbert space H. Let
the operator B̂ operate on elements of H. We may represent B̂ by a matrix
with elements

Bnn′ � 〈an| B̂
∣∣a′n〉

These are the matrix elements of B̂ in a representation that diagonalizes Â.
This description is due to the following. Consider the matrix elements of Â in
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this same basis. With Â taken to be Hermitian, its eigenstates are orthogonal,
and we find

Ann′ � 〈an| Â
∣∣a′n〉 � a′n〈an|a′n〉

Ann′ � anδnn′ (1.19)

which is a diagonal matrix.
Suppose the three operators Â, B̂, and Ĉ compromise a complete set of

commuting operators. This means that no other independent operator exists that
commutes with Â, B̂, and Ĉ. Recalling the commutator theorem stated above,
we may conclude that such commuting operators have common eigenstates,
which may be written |abc〉. As such states cannot be further resolved, they
are maximally informative and comprise quantum states of the system.

Consider, for example, the angular momentum operators (1.17). For a
particle with spin Ŝ and orbital angular momentum L̂, we write

Ĵ � L̂+ Ŝ, Ĵz � L̂z + Ŝz
Ĵ 2 � L̂2 + Ŝ2 + 2L̂ · Ŝ (1.20)

Commuting operators for this system are

{Ĵ 2, Ĵz, L̂
2, Ŝ2} (1.21)

Common eigenstates of these operators may be written |jmj ls〉 with
eigenvalues 


Ĵ 2

Ĵz

L̂2

Ŝ2


 |jmj ls〉 � h̄2



j (j + 1)

mj/h̄

l(l + 1)

s(s + 1)


 |jmj ls〉 (1.22)

It is quite clear that the four operators (1.21) are diagonal in a representation
comprised of the basis {|jmj ls〉}.

5.1.4 Coordinate and Momentum Representations3

It is instructive at this point to include a brief review of the coordinate (x̂) and
momentum (p̂) representations and their interplay. Thus let |x ′〉 represent an
eigenket of x̂. Then with (1.18) we write

x̂|x ′〉 � x ′|x〉 (1.23)

Eigenstates are orthogonal and obey the relation

〈x ′|x〉 � δ(x − x ′) (1.24)

3The relations developed here play an important role in Section 5.2.3 on the
Wigner distribution and in Section 5.7 concerning the Green’s function formalism.
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appropriate to continuous eigenvalues spectra. Matrix elements of x̂ are given
by

〈x|x̂|x ′〉 � x ′〈x|x ′〉 � x ′δ(x − x ′) (1.25)

The coordinate representation of the ket vector |ψ〉 is given by

〈x ′|ψ〉 �
∫
〈x ′|x〉〈x|ψ〉 dx �

∫
δ(x ′ − x)ψ(x) dx � ψ(x ′) (1.26)

The matrix of the momentum operator p̂ in the coordinate representation is

〈x|p̂|x ′〉 � −ih̄ ∂
∂x
δ(x − x ′) (1.27)

This relation allows us to calculate an explicit representation of the inner
product 〈x|p〉:

p〈x|p〉 � 〈x|p̂|p〉 �
∫
dx ′〈x|p̂|x ′〉〈x ′|p〉

With (1.27), this integral reduces to

p〈x|p〉 �
∫
dx ′

[
−ih̄ ∂

∂x
δ(x − x ′)

]
〈x ′|p〉

� −ih̄ ∂
∂x

∫
dx ′δ(x − x ′)〈x ′|p〉

� −ih̄ ∂
∂x
〈x|p〉

Solving the differential equation gives

〈x|p〉 � 1√
2πh̄

eipx/h̄ (1.28)

Let us show that 〈x|p〉 is unitary. That is,∫
〈p|x〉∗〈p|x ′〉 dp �

∫
〈x|p〉〈p|x ′〉 dp

� δ(x − x ′)
which indicates that 〈x|p〉 is unitary. We may employ the transfer matrix (1.28)
to reestablish (1.27).

〈x|p̂|x ′〉 �
∫
〈x|p̂|p′〉〈p|x ′〉 dp′

�
∫
p′〈x|p′〉〈p′|x ′〉 dp′ �

∫
p′

1√
2πh̄

e(ip′/h̄)(x−x ′) dp

� −ih̄ ∂
∂x

(
1

2πh̄

∫ ∞

−∞
e(ip′/h̄)(x−x ′) dp′

)
� −h̄ ∂

∂x
δ(x − x ′)
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Here are some simple examples of the preceding formalism. First let us find
the coordinate representation of p̂|ψ〉.

〈x|p̂|ψ〉 �
∫ ∞

−∞
dx ′〈x|p̂|x ′〉〈x ′|ψ〉

� −ih̄
∫ ∞

−∞
dx ′
∂

∂
δ(x − x ′)ψ(x ′)

� −ih̄ ∂
∂x
ψ(x) (1.29)

Next consider the matrix elements of [x̂, p̂] in the coordinate representation.
First we calculate

〈x|x̂p̂|x ′〉 �
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx ′′ dp′ dp〈x|x̂|x ′′〉〈x ′′|p′〉〈p′|p̂|p〉〈p|x ′〉

� x

2πh̄

∫ ∞

−∞
dp p exp[ip(x − x ′)/h̄]

� −ih̄x ∂
∂x
δ(x − x ′)

Similarly, we find

−〈x|p̂x̂|x ′〉 � −ih̄x ′ ∂
∂x
δ(x − x ′)

Combining results gives〈
x|[x̂, p̂]|x ′〉 � −ih̄(x − x ′) ∂

∂x
δ(x − x ′)

� +ih̄δ(x − x ′) (1.30)

which is the continuous coordinate representation of the fundamental
commutator relation (1.15).

5.1.5 Superposition Principle

Suppose a system is in an eigenstate |an〉 of the operator Â. If A is measured,
we are certain to find the value an. Suppose the operator B̂ corresponding to
the observable B has a nonvanishing commutator with Â. That is,

[Â, B̂] �� 0

Then, with (1.14), outcome of measurement of B is uncertain. In this case, it
is meaningful to ask of the probability that measurement of B finds the value
bn. The answer to this question is simply obtained by writing the given stage,
|an〉, in a superposition of the eigenstates of B̂:

|an〉 �
∑
k

|bk〉〈bk|an〉 (1.31)
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Clearly, the coefficients 〈bk|an〉 represent the projections of the state |an〉 onto
the state |bn〉. The probabilityP (bk) of finding bk in measurement ofB is given
by the square of the projection:

Pbk � |〈bx |an〉|2 (1.32)

The expansion (1.31) is the essential statement of the superposition principle.
We may describe the state |an〉 as being partly in the various eigenstates of
B̂. The degree to which |an〉 contributes to one of the specific states of B̂
is a measure of the probability that measurement of B will find the value
corresponding to this specific state. The measure of this probability is given
by (1.32).

An informative example of this principle concerns spin 1/2 particles, such
as electrons. Eigenvalue equations for this case are given by

Ŝ2αz � 3

4
h̄2αz, Ŝzαz � h̄

2
α

(1.33)

Ŝ2βz � 3

4
h̄2βz, Ŝzβz � −h̄

2
βz

Working in a representation in which Ŝ2 and Ŝz are diagonal, we have the
matrix forms

Ŝ2 � 3

4
h̄2

(
1 0

0 1

)
, Ŝz � h̄

2

(
1 0

0 − 1

)

αz �
(

1

0

)
, βz �

(
0

1

) (1.34)

Let a beam of electrons be polarized with spins in the+x direction. Measure-
ment of Sz is made. What values will be found and with what probabilities will
these values occur?

In the given representation, eigenstates of Ŝx corresponding to Sx � h̄/2 are
given by

αx � 1√
2

(
1

1

)

To answer the said problem, we must expand αx in accord with the
superposition statement (1.31). There results

αx � 1√
2
αz + 1√

2
βz

Thus

P

(
Sz � +h̄

2

)
� 1

2
, P

(
Sz � −h̄

2

)
� 1

2

It is equally likely that measurement finds either of the two values Sz � ±h̄/2.
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5.1.6 Statistics and the Pauli Principle

In quantum mechanics, identical particles are indistinguishable. As a con-
sequence, probability densities cannot change under exchange of particles.
Consider, for example, the two-particle state ψ(x1, x2). Then we must have

|ψ(x1, x2)|2 � |ψ(x2, x1)|2 (1.35)

Consequently,

ψ(x1, x2) � ±ψ(x2, x1) (1.36)

The + sign corresponds to a symmetric wave function, whereas the − sign
corresponds to an antisymmetric wave function.

The Pauli principle state the following. Particles with spin quantum num-
ber equation to one-half an odd integer are described by antisymmetric wave
functions, whereas particles with integral spin quantum numbers are described
by symmetric wave functions. Particles in the first class are called fermions,
and particles in the second class are called bosons. Electrons and protons are
examples of fermions. Photons,

∏
, and K mesons are examples of bosons.

For a system comprised ofN identical particles, properly symmetrized wave
functions may be put in the form of Slater determinants. Let νk denote the
quantum numbers for the kth particle in the aggregate. For fermions, we write

ψA(1, . . . , N) � 1√
N !

∑
P (ν1,ν2,...,νN )

(−1)|P |ψν1 (1)ψν2 (2) · · ·ψνN (N ) (1.37)

The summations run over the permutations of (ν1 · · · νN ). The symbol |P | is
zero or one depending on whether P is even or odd, respectively, and “1”
represents x1, “2” represents x2, and so forth.

Since ψA is a determinant, it changes sign under exchange of two rows or
two columns. So particle exchange in the wave function (1.37) carries a sign
change.

Furthermore, ψA vanishes if two rows or columns are the same. This occurs
it, for example, we set ν1 � ν7. Thus, in an aggregate of N fermions, no two
particles can be in the same quantum state. This property of fermions is called
the Pauli exclusion principle.

The wave function for an aggregate of N identical bosons may be written

ψS(1, . . . , N) � 1

N !

∑
P (ν1,...,ν2)

ψν1 (1) · · ·ψνN (N ) (1.38)

This function remains unchanged under exchange of any two particles, so
bosons do not obey the exclusion principle.

5.1.7 Heisenberg Picture

In addition to change in representation through transformation of basis in
Hilbert space, as described in Section 1.3, we also speak of alternative “pic-
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tures” in quantum mechanics. In the Schrödinger picture wave functions obey
the Schrödinger equation (1.4) and evolve in time through (1.9).

Consider the unitary operator

Û ≡ exp

(
itĤ

h̄

)
(1.39)

with properties

Û † � Û−1

Û †Û � 1 (1.40)

With Û so defined, we may rewrite (1.9) as

ψ(t) � Û †(t)ψ(0) (1.41)

In the Heisenberg picture, wave functions are related to their Schrödinger
counterpart through the equation

ψH (t) � Û (t)ψ(t) (1.42)

With (1.41), we obtain the important result

ψH (t) � Û (t)ψ(t) � Û (t)Û−1(t)ψ(0) � ψ(0) � ψH (0) (1.42a)

That is, in the Heisenberg picture wave functions remain fixed at their initial
values.

Operators in the Heisenberg picture.

ÂH (t) � Û (t)ÂU−1(t) (1.43)

are seen to vary in time. That is, an operator that is stationary in the Schrödinger
picture varies in time in the Heisenberg picture.

An important result that emerges in the Heisenberg picture concerns the
equation of motion for an operator. In the Schrödinger picture, this equation is
given by (1.5). To obtain the corresponding equation in the Heisenberg picture,
first we calculate the time derivative of (1.43).

dÂH

dt
� dÛ
dt
ÂÛ−1 + Û ÂdÛ

−1

dt
+ Û ∂Â

∂t
Û−1

With (1.39), we find

−ih̄dÛ
dt
� Ĥ Û

−ih̄dÛ
†

dt
� Ĥ Û †
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FIGURE 5.2. The whole system has the wave function ψ(x, y). If ψ(x, y) ��
ψ1(x)ψ2(y), then system X does not have a wave function. In this event, X is said
to be in a mixed state.

Inserting these relations into the preceding equation gives the desired equation
of motion:

ih̄
dÂH

dt
� [ÂH , Ĥ ]+ ih̄ ∂ÂH

∂t
(1.44)

where we have written4

∂ÂH

∂t
≡ Û ∂Â

∂t
Û−1 (1.44a)

Equation (1.44) plays an important role in the interpretation of the correspond-
ing equation of motion for the density operator described in Section 5.2.5

5.2 The Density Matrix

Mixed states

Consider a system that is coupled to an external environment, such as a gas of
N particles maintained at a constant temperature through contact with a heat
bath. If x denotes coordinates of the gas and y coordinates of its environment,
then, whereas the closed composite of system plus environment has a self-
contained Hamiltonian and wave function ψ(x, y), this wave function does
not, in general, fall into a product ψ1(x)ψ2(y). Under such circumstances, we
say that the system does not have a wave function (see Fig. 5.2). A system that
does not have a wave function is said to be in a mixed state. A system that does
have a wave function is said to be in a pure state.

It may also be the case that, owing to certain complexities of the system, less
than complete knowledge of the state of the system is available. This situation
arises for systems with a very large number of degrees of freedom, such as,
for example, a mole of gas. The quantum state of such a system involves
specification of ∼ 1023 momenta.

4For further discussion, see R. L. Liboff, Found. Physics 17, 981 (1987).
5Additional concepts in basic quantum mechanics appear below. Thus, for

example, second quantization and closely allied Fock space are introduced in
Section 5.5.
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5.2.1 The Density Operator

For such cases as described above, in place of the wave function, we introduce
the density operator ρ̂. IfA is some property of the system, the density operator
determines the expectation of A through the relation

〈A〉 � Tr(ρ̂Â) (2.1)

and

Tr ρ̂ � 1 (2.2)

Let us calculate the matrix elements of ρ̂ for the case of a system whose
wave function ψ is known. In this case we may write

〈A〉 � 〈ψ |Âψ〉
Let the basis {|n〉} span the Hilbert space containing ψ . We may expand ψ in
this basis to obtain

|ψ〉 �
∑
n

|n〉〉n | ψ〉

Substituting this expansion into the preceding equation gives

〈A〉 �
∑
q

∑
n

〈ψ | q〉〈q | Â | n〉〈n | ψ〉

�
∑
q

∑
n

ρnqAqn � Tr ρ̂Â � Tr Âρ̂

Have we have made the identification

ρnq � 〈q | ψ〉∗〈n | ψ〉 � a∗qan (2.3)

The coefficient an represents the projection of the stateψ onto the basis vector
|n〉. The nth diagonal element of ρ̂ is

ρnn � |〈ψ | n〉|2 � a∗nan � Pn (2.4)

which we recognize to be the probability Pn of finding the system in the state
|n〉. Thus the diagonal elements of ρ̂ are probabilities and must sum to 1.6 This
is the rationale for the property (2.2), Tr ρ̂ � 1.

We note in passing that the representation of ρ̂ given by (2.3) refers to the
basis {|n〉}. Suppose these states are eigenstates of the Hamiltonian. As noted
previously, we would say that ρ as given in (2.3) is written in a representation
in which energy is diagonal or, more simply, the energy representation.

Now consider that the system is in a mixed state. Thus we may assume that
the projections an are not determined quantities. In this case we define the

6The off-diagonal elements of ρ̂ relevant to a given system have been shown to be
related to the long-range order of the system (this phenomenon carries the acronym
ODLRO). For further discussion, see C. N. Yang, Revs. Mod. Phys. 34, 694 (1962).
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elements ρnq to be the ensemble averages:

ρnq � a∗qan (2.5)

The diagonal element

ρnn � a∗nan (2.6)

represents the probability that a system chosen at random from the ensemble
is found in the nth state.

Equation of motion

Suppose again that a system is in a pure state and has the wave function ψ .
Again, let N̂ be a measurable property of the system with eigenstates {|n〉}.
Expanding ψ in terms of the projections an gives

|ψ〉 �
∑
n

an(t)|n〉

From the Schrödinger equation for ψ , we obtain

ih̄
∑
n

∂an

∂t
|n〉 �

∑
n

anĤ |n〉

Operating on this equation from the left with 〈l| gives

ih̄
∂al

∂t
�
∑
n

Hlnan, −ih̄ ∂a
∗
l

∂t
�
∑
n

H ∗
lna

∗
n (2.7)

We may use these relations to obtain an equation of motion for the matrix
elements of ρ̂

ih̄
∂ρql

∂t
� ih̄ ∂a

∗
l aq

∂t
� ih̄

(
∂a∗l
∂t
+ a∗l

∂aq

∂t

)
(2.8)

Substituting the expressions (2.7) for the time derivatives of the projections an
and setting H ∗

lk � Hkl , together with forming the ensemble average, gives

ih̄
∂ρql

∂t
�
∑
k

(Hqkρkl − ρqkHkl) (2.9)

or, equivalently,

ih̄
∂ρ̂

∂t
� [Ĥ , ρ̂] (2.10)

As ρ̂ depends only on time [the projections an in the defining relation (2.5)
are spartially independent], the partial derivative in the preceding equation is
understood to be a total time derivative [as is the case for (2.12) et seq.].

In the Heisenberg picture, wavefunctions remain fixed [see (1.42a)] so that
ρ̂H is constant and we write

ih̄
dρ̂H

dt
� 0 (2.11)
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which, again, is in the form of the Liouville equation (1.4.7). Whereas these
resemblances are very strong, we should not lose sight of the fact that in
classical physics fN (xN, pN, t) gives information of both xN and pN at the time
t . In the quantum domain, simultaneous specification of xN and pN cannot be
made. However, soon after the emergence of quantum mechanics, E. P. Wigner
developed a theory which gives a formal connection between the density matrix
and the classical distribution function. We return to this topic in Section 2.2.

Some elementary examples

Given the form of the equation (2.9) some elementary solutions are evident.
Thus, as with the classical Liouville equation, any operator of the form

ρ̂ � ρ̂(Ĥ ) (2.12)

gives

dρ̂

dt
� [Ĥ , ρ̂] � 0

so that the form (2.10) may be termed an equilibrium distribution. Two
important examples of this distribution are relevant to statistical mechanics:

1. Canonical distribution:

ρ̂ � Ae−βĤ (2.13)

This distribution is relevant to a system in equilibrium with a temperature
bath at temperature T ≡ 1/kBβ.

2. Microcanonical distribution:

ρ̂ � Aδ(Ĥ − E) (2.14)

This distribution is relevant to an isolated system of total energy E.
Let us consider these operators in the energy representation. Energy

eigenstates obey the eigenvalue equation

Ĥ |En〉 � En|En〉 (2.15)

With these eigenstates at hand, diagonal elements of ρ̂ in the canonical
distribution are given by [recall (2.4)]

P (En) � 〈En|ρ̂|En〉 � Ae−βEn
whereas, in the microcanonical distribution, we find

P (En) � Aδ(En − E)

All energy states are equally probable in this distribution.

Initially diagonal density matrix

Consider a quantum system whose density is initially diagonal:

ρnl(0) � Pnδnl (2.16)
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The density matrix evolves according to (2.8). For the case at hand, we find
that at t � 0,

ih̄
dρnl

dt

∣∣∣∣
0

�
∑
k

(HnkPkδkl − PnδnkHkl)

Summing over k gives

ih̄
dρnl

dt

∣∣∣∣
0

� Hnl(Pl − Pn) (2.17)

For n � l, we find

dρll

dt

∣∣∣∣
0

� 0

So diagonal elements have zero slope in time initially. For n �� l, (2.17) indi-
cates that if Pl �� Pn, off-diagonal elements of ρ̂ develop and (2.16) cannot be
termed an equilibrium distribution. If, however, all states are equally probable,7

then (2.16) becomes

ρnl � P0δnl (2.18)

which gives ∂ρ̂/∂t � 0 so that (2.18) is a valid equilibrium distribution.

Random phases

An important case in which ρ̂ is diagonal enters in the assumption of random
phases. Consider the matrix elements of ρ̂ (2.5):

ρnm � a∗man
The indeterminacy of the state of the system may be manifest in a corresponding
indeterminacy of the phases {φn} of the projections {an}. These phases are
defined through

an � cneiφn
where cn and φn are real. Consider the matrix element

ρnm � c∗mcn exp[i(φn − φm)] � c∗mcn[cos(φn − φm)+ i sin(φn − φm)]

If phases are random, then in averaging over the ensemble cos(φn − φm) oc-
curs with positive value equally often as with negative value and similarly for
sin(φn − φm), so that

cos(φn − φm) � sin(φn − φm) � 0

except when n � m. In this case

ρnn � c∗ncn cos(φn − φn) � c∗ncn
It follows that for the case of random phases ρ is diagonal

7The condition of equal a priori probabilities.
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5.2.2 The Pauli Equation

We wish to examine how an initially diagonal density matrix evolves under
the influence of a perturbation. Matrix elements of ρ̂ and the Hamiltonian of
the system at t < 0 are given by

ρnl � ρnl(0)δnl, (t < 0)
(2.19)

Ĥ � Ĥ0, [Ĥ0, ρ̂] � 0

The vanishing commutator ensures that the system is in equilibrium prior to
t � 0.

A harmonic perturbation is turned on at t � 0 and the Hamiltonian of the
system becomes

Ĥ � Ĥ0 + Ĥ ′, t ≥ 0 (2.20)

The probability for transition from the nth to the kth state of the system, in
short interval >t after H ′ is turned on, is given by

wnk � >t |H
′
nk|2

h̄2 (2.21)

Taylor-series expanding the density matrix about t � 0 gives

ρ(t)− ρ(0) �
(
∂ρ

∂t

)
0

>t +
(
∂2ρ

∂t2

)
0

(>t)

2
+ · · ·

With (2.9), this equation may be rewritten

ρ(>t) � ρ(0) � >t
ih̄

[H, ρ(0)]− (>t)2

2h̄2 [H, [H, ρ(0)]]+ · · · (2.22)

With the commutation property (2.19), (2.22) may be written

ρ(>t)− ρ(0)

>t
� 1

ih̄
[H ′, ρ(0)]− >t

2h̄2 [H0, [H
′, ρ(0)]]

− >t
2h̄2 [H ′, [H ′, ρ(0)]]+ · · ·

Taking diagonal elements and passing to the limit >t → 0 gives

dρnn

dt

∣∣∣∣
0

� lim
>t→0

{
1

ih̄
[H ′, ρ(0)]nn − >t

2h̄2 [H0, [H
′, ρ(0)]]nm

(2.23)

− >t
2h̄2 [H ′, [H ′, ρ(0)]]nn

}
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Consider first the leading term:

[H ′, ρ(0)]nn �
∑
q

[〈n|H ′|q〉〈q|ρ(0)|n〉 − 〈n|ρ(0)|q〉〈q|H ′|n〉]

�
∑
q

[H ′
nqρnn(0)δqn − ρnn(0)δnqH

′
qn]

� ρnn(0)[H ′
nn −H ′

nn] � 0

Similarly, we find

[H0, [H
′, ρ(0)]]nn � 0

With the first two elements on the right side of (2.23) vanishing, there remains

dρnn(0)

dt
� − lim

>t→0

>t

2h̄2 [H ′[H ′ρ(0)]]nn

� − lim
>t

2h̄2 {H ′, [H ′, ρ(0)− ρ(0)H ′]− [H ′ρ(0)− ρ(0)H ′]H ′}nn

� lim
>t

2h̄2 [−H ′2ρ(0)+H ′ρ(0)H ′ +H ′ρ(0)H ′ − ρ(0)H
′2]nn

� lim
>t

2h̄2 [2H ′ρ(0)H ′ −H ′2ρ(0)− ρ(0)H
′2]nn (2.24)

Expanding products in terms of basis states gives

dρnn

dt
� lim

>t

2h̄2

∑
k

∑
q

[2〈n|H ′|k〉〈k|ρ(0)|q〉〈q|H ′|n〉

− 〈n|H ′|k〉〈k|H ′|q〉〈q|ρ(0)|n〉
− 〈n|ρ(0)|q〉〈q|H ′|k〉〈k|H ′|n〉] (2.25)

With (2.19), we find

dρnn

dt
� lim

>t

2h̄2

∑
k

∑
q

[2H ′
nkH

′
qnρkk(0)δkq

−H ′
nkH

′
kqρqq(0)δqn − ρnn(0)δnqH

′
qkH

′
kn] (2.26)

Summing over q gives

dρnn

dt
� lim

>t

2h̄2

∑
k

[2H ′
nkH

′
knρkk(0)−H ′

nkH
′
knρnn(0)− ρnn(0)H ′

nkH
′
kn]

� lim
>t

h̄2

∑
k

[|H ′
nk|2ρkk(0)− |H ′

nk|2ρnn(0)]

With (2.21), we obtain

dρnn

dt
−
∑
k

wnk[ρkk(0)− ρnn(0)] (2.27)
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Since the left side of this equation represents the derivative of ρnn at t � 0, we
may generalize this finding to the form

dρnn

dt
�
∑
k

(ρkkwkn − ρnnwnk) (2.28)

Here we have further made the identification wkn � wnk corresponding to the
hermiticity of Ĥ ′. The latter equation is called the Pauli equation or the Master
equation [compare with (1.7.20)]. An H theorem for this equation is derived
in Problem 5.48. Application of (2.28) follows.

Density matrix for spinning particles

Spin matrices for a spin 1
2 particle are given by

Ŝz � h̄
2

(
1 0

0 −1

)
, Ŝx � h̄

2

(
0 1

1 0

)
, Ŝy � ih̄

2

(
0 −1

1 0

)
(2.29)

Once again we are working in a repesentation in which Ŝ2 and Ŝz are diagonal.
These matrices may also be written

Ŝ � h̄
2
σ̂ (2.30)

The components of σ are called the Pauli spin matrices. Thus

σ̂z �
(

1 0

0 −1

)
, σ̂x �

(
0 1

1 0

)
, σ̂y � i

(
0 −1

1 0

)
(2.31)

Eigenvectors of Ŝz (or, equivalently, σ̂z) are given by (1.33). We repeat,

αz �
(

1

0

)
, βz �

(
0

1

)
(2.32)

where

Ŝzαz � h̄
2
αz, Ŝzβz � −h̄

2
βz (2.33)

Consider a beam of electrons whose spins are isotropically polarized. The
corresponding density matrix is

ρ̂ � 1

2

(
1 0

0 1

)
(2.34)

Since this is written in a representation where Ŝz is diagonal, diagonal elements
of ρ̂ give probabilties relevant to the components of Sz. For the matrix (2.34),
these probabilities have the values

P

(
Sz � ±h̄

2

)
� 1

2
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Furthermore, we find

〈Sx〉 � Tr ρ̂Ŝx � 0

〈Sy〉 � 〈Sz〉 � 0

These values are relevant to an isotropic beam.

Elementary application of the Pauli equation

Consider an electron beam with the density matrix

ρ̂ �
(
a 0

0 1− a
)

The beam enters an infinitesimal region of space that contains a uniform B
field that points in the z direction.

B � (0, 0, B0)

Let us find the z-component spin populations when the beam emerges from
the field.

The perturbation Hamiltonian is given by

Ĥ ′ � −µ̂ · B
The electron’s magnetic moment is given by

µ̂ � −µbσ̂
where µb is the Bohr magneton. Thus we may write

Ĥ ′ � µbσ̂zB0 � µbB0

(
1 0

0 −1

)

The Pauli equation for the case at hand gives

dρ11

dt
�
∑
q

wq1(ρqq − ρ11) � w21(ρ22 − ρ11)

(2.35)
dρ22

dt
�
∑
q

wq2(ρqq − ρ22) � w12(ρ11 − ρ22)

With (2.21), we have

w12 � w21 � >t
h̄2 |H ′

12|2

Since ρ̂ is calculated in the basis (α, β), we find

H ′
12 � µbB0〈α|σ̂z|β〉 � −µbB0〈α|β〉
H ′

12 � 0

Thus, with (2.36), we see that ρ11 and ρ22 remain constant under the given
perturbation.
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More generally, under an arbitrary perturbation, we note that the Pauli
equation (2.28) indicates that the Tr ρ̂ remains constant.

The projection representation

As noted previously, an ensemble description is relevant to a system in a mixed
state. Let the states ψ of the ensemble be distributed with the probability Pψ .
In this event, we may write the density operator as the following projection
sum over states of the ensemble:

ρ̂ �
∑
ψ

|ψ〉Pψ〈ψ | (2.36)

Consider, for example, that the probability of finding the energy En in
measurement on a given system is Pn. For this case, (2.36) gives

ρ̂ �
∑
n

|En〉Pn〈En|

where |En〉 are energy eigenstates for the given system. As these states com-
prise and orthogonal sequence, it follow that ρ̂ is diagonal with diagonal
elements equal to Pn.

The projection representation of the density matrix given by (2.34) is

ρ̂ � |αz〉1
2
〈az| + |βz〉1

2
〈βz|

Again we find

Sz � Tr ρ̂Ŝz � 〈αz|ρ̂Ŝz|αz〉 + 〈βz|ρ̂Ŝz|βz〉
� 1

2
〈αz|Ŝz|αz〉 + 1

2
〈βz|Ŝz|βz〉 � 0

If a system is in a pure state, the wave function exists, and we write

ρ̂ � |ψ〉〈ψ | (2.37)

In a representation with basis {|n〉}, matrix elements of ρ̂ are then given by

ρnq � 〈n|ψ〉〈ψ |q〉 � a∗qan

in agreement with (2.3).
The projection representation comes into play again in Section 5.5 in

consideration of generalized hierarchies.
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5.2.3 The Wigner Distribution

Coordinate representation of ρ̂

Another important form of the density matrix is found in the coordinate
representation. The related density matrix appears as8

ρ(x, x′) � 〈x|ψ〉〈ψ |x′〉 � ψ(x)ψ∗(x′) (2.38)

(x and x′ are viewed as the indices of the matrix of ρ̂.) The basic property (2.2)
is written

Tr ρ̂ �
∫
δ(x − x′)ρ(x, x′) dx dx′ � 1 (2.39)

For the property (2.1), we write

〈A〉 � Tr(ρ̂Â) � Tr(Âρ̂) �
∫
A(x, x′)ρ(x′, x) dx′ dx (2.40)

where A(x, x′) is the coordinate representation of Â:

A(x, x′) � 〈x|Â|x′〉 (2.41)

In a pure state, (2.40) becomes [recall (2.37)]

Tr(Âρ̂) �
∫
〈x|Â|x′〉〈x′|ψ〉〈ψ |x〉 dx′ dx (2.42)

Here we have written 〈x′|ψ〉 for the coordinate representation of ψ , more
commonly written simply as ψ(x′) (recall Section 1.3).

The last relation may be rewritten

Tr(Âρ̂) �
∫
〈ψ |x〉〈x|Â|x′〉〈x′|ψ〉 dx′ dx � 〈ψ |Âψ〉 � 〈A〉 (2.43)

One further preparatory remark is in order prior to our discussion of the
Wigner distribution. This concerns the momentum representation of a wave
function:

ϕ(p) � 〈p|ψ〉 �
∫
〈p|x〉〈x|ψ〉 dx (2.44)

The transfer 〈p|x〉 is given by (1.28):9

〈p|x〉 � 1

(2πh̄)3/2
e−ip·x/h̄ (2.44a)

8This is the form of ρ̂ as originially put forth by J. von Neumann, Mathematical
Foundations of Quantum Mechanics, R. T. Beyer, (trans.), Princeton University Press,
Princeton, N.J. (1955).

9The relation (1.28) is relevant to one dimension, whereas (2.44a) is written in
three dimensions.
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Thus (2.44) becomes

ψ(p) � 1

(2πh̄)3/2

∫
e−ip·x/h̄ψ(x) dx (2.45)

This function is the amplitude of the momentum probability density, |ϕ(p)|2.

The Wigner distribution and its properties

To apply the following formalism to kinetic theory, we extend the analysis to
N -particle systems. With ρ̂ written in the coordinate repesentation, the Wigner
distribution is given by10

F (xN, pN, t) �
(

1

πh̄

)3N ∫
e2ipN ·yN lh̄ρ(xN− , x

N
+ , t) dyN (2.46)

where

xN± ≡ xN ± yN, ρ(xN− , x
N
+ , t) � 〈xN−|ρ̂|xN+〉

Note that in a pure state (2.46) becomes

F (xN, pN, t) �
(

1

πh̄

)3N ∫
e2ipN ·yN/h̄ψ∗(xN+ )ψ(xN− ) dyN (2.47)

The inverse of (2.46) is given by

ρ(xN+ , x
N
− , t) �

∫
F (xN, pN, t) exp

(−2ipN · yN
h̄

)
dpN (2.48)

The Wigner distribution serves as a bridge between quantum and classical
kinetic theory. Four key properties that demonstrate this connection are as
follows.11

1. Integration over momenta gives the configurational probability density:∫
F (xN, pN, t) dpN � |ψ(xN, t)|2 (2.49)

2. Integration over spatial coordinates gives the momentum probability
density: ∫

F (xN, pN, t) dxN � |ϕ(pN, t)|2 (2.50)

10E. P. Wigner, Phys. Rev. 40, 749 (1932). In this paper we are informed that (2.46)
is due to a joint efford of Wigner and L. Szilard. Note in particular that, as F (x, p, t)
is not positive definite, it cannot be view as a probability density.

11For further discussion, see Studies in Statistical Mechanics, vol I., J. de Boer
and G. E. Uhlenbeck (eds.), North Holland, Amsterdam (1962); and B. Kursunoglu,
Modern Quantum Theory, W. H. Freeman, San Francisco (1962).
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3. The expectation of a dynamical function, A(xN, pN ), is given by

〈A〉 �
∫
A(xN, pN, t)F (xN, pN, t) dxN, dpN (2.51)

The preceding three properties indicate how the Wiegner distribution
bears a striking resemblance to the classical N -particle joint probability
distribution.

4. The derivation of a dynamical equation for F (xN, pN, t) begins with
Schrödinger’s equation written for an N -body system with an interaction
potential V (xN ):12

ih̄
∂ψ(xN, t)
∂t

�
[
−h̄2

2m

N∑
k�1

∂2

∂x2
k

+ V (xN )

]
ψ(xN, t) (2.52)

Assuming the system to be in pure state, and with the identifications (2.52),
(2.38), and (2.47) in mind, we obtain

∂F

∂t
�
(

1

πh̄

)3N ∫
dyN exp

(
2ipN · yN

h̄

)

·
{
ih̄

2m

∑
k

[
−
(
∂2ψ∗+
∂x2
k

)
ψ− + ψ∗+

(
∂2ψ−
∂x2
k

)]

+ i
h̄

[V (xN+ )− V (xN− )]ρ(xN− , x
N
+ )

}
(2.53)

Next we replace x differentiation with y differentiation once and then
perform a single parts integration over y. Combining this operation with
replacement of ρ(xN+ , x

N
− ) with its inverse (2.48) and noting that

∂ψ±
∂xk

� ±∂ψ±
∂yk

gives

∂F (xN, pN, t)
∂t

� −
∑
k

pk
m
· ∂F
∂xk

+ i
h̄

(
1

πh̄
)3N

∫ ∫
dyN dp

′N

× exp

[
2iyN · (pN − p

′N )

h̄

]
[V (xN+ )− V (xN− )]F (xN, p

′N, t)

(2.54)
This is an integrodifferential equation for the Wigner distribution function.
[The hierarchy equations for this distribution are given in (5.33).]

12Note that ∂2/∂x2
k � ∇k · ∇k .
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5.2.4 Weyl Correspondence13

A note of caution is in order concerning the rule (2.51) for obtaining averages
of dynamical variables: For consistency, this expression must agree with (2.1).
Such agreement is quaranteed if the dynamical variableA(xN, pN ) in (2.51) is
appriopriately related to the operator Â in (2.1.)

Without loss in generality, we work in one dimension and introduce the
Wigner counterpart of Â, written (Â)W , and given by the linear operation

(Â)W � 2
∫
e2ipx̄/h̄〈x − x̄|Â|x + x̄〉 dx̄ (2.55)

where (Â)W is a function of (x, p). Note that the matrix element of Â in (2.55)
is written in the coordinate representation. When written in the momentum
representation, (2.55) appears as

(Â)W � 2
∫
e2ip̄x/h̄〈p + p̄|Â|p − p̄〉 dp̄ (2.55a)

When the dynamical variable A(x, p) in (2.51) satisfies the correspondence

(Â)W � A(x, p) (2.56)

Weyl correspondence is obeyed and the expectation of Â is given by (2.51).
Let us establish this rule. Again consider (2.51)

〈Â〉 � 1

πh̄

∫ ∫ ∫
dx dp dy A(x, p)e2ipy/h̄ρ(x−, x+) (2.57)

Working in the coordinate representation, we insert (2.55) for A in (2.57).
There results

〈Â〉 � 2

πh̄

∫ ∫ ∫ ∫
dx dx̄ dp dy e2ip(y+x̄)/h̄〈x − x̄|Â|x + x̄〉ρ(x − y, x + y)

(2.58)
Integrating over p and recalling the delta-function normalization (2.3.11b), we
obtain

〈Â〉� 2(2π )

πh̄

(
h̄

2

)∫ ∫ ∫
dx dx̄ dy δ(y + x̄)〈x − x̄|Â|x + x̄〉ρ(x−y, x+y)

� 2
∫ ∫

dx dx̄ 〈−xx̄|Â|x + x̄〉〈x + x̄|ρ̂|x − x̄〉

�
∫ ∫

dx− dx+〈x−|Â|x+〉〈x+|ρ̂|x+〉 � Tr Âρ̂ � Tr ρ̂Â (2.59)

13For further discussion, see N. L. Balazs and B. K. Jennings, Phys. Repts, 104,
347 (1984); and M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys.
Repts. 106, 121 (1984)
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which is seen to agree with (2.1). Note that in the last step the change in
variables x, x̄ → x−, x+ carries a Jacobian of 1

2 . Thus we see that if the rule
(2.56) is obeyed the average given by (2.51) agrees with that given by (2.1)

Correspondence forms

Here we wish to list some relations relevant to Weyl correspondence. First let
us establish that operators of the form f (x̂) or g(p̂) obey Weyl correspondence.
That is,

[f (x̂)]W � f (x), [g(p̂)]W � g(p) (2.60)

Consider the first relation for f (x̂).

[f (x̂)]W � 2
∫
e2ipx̄/h̄〈x − x̄|f (x̂)|x + x̄〉 dx̄

� 2
∫
e2ipx̄/h̄f (x − x̄)〈x − x̄|x + x̄〉 dx̄

� 2
∫
e2ipx̄/h̄f (x − x̄)δ(2x̄) dx̄

� f (x)

A similar argument applies to g(p̂). An important operator in this discussion
is given by

.0 � ∂

∂x

.∂
∂p
− ∂

∂p

.∂
∂x

where ∂/∂x operates to the left, and so forth.
With [Â, B̂]∓ written for the commutator (−) and anticommutator (+), we

may then write

([Â, B̂]−)W � (A)W

(
2i sin

h̄

2
.0
)

(B)W (2.61a)

([Â, B̂]+)W � (A)W

(
2 cos

h̄

2
.0
)

(B)W (2.61b)

Thus, for example, (
1

ih̄
[x̂, p̂]−

)
W

� x
(

2

h̄
sin
h̄

2
.0
)
p

� x.0p � 1

whereas

([x̂, p̂]+)W � 2x

(
cos
h̄

2
.0
)
p � 2xp
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Thus

(x̂p̂)W � xp + ih̄
2

We may conclude that the operator x̂p̂ does not obey Weyl correspondence,
whereas the symmetric form [x̂, p̂]+ does.

Stemming from (2.61), we write

(ÂB̂)W � (Â)W

(
exp

ih̄.0
2

)
(B̂)W (2.62)

Here are some additional relations:

〈Â〉 � Tr(ρ̂Â �
∫
dx dp

2πh̄
(ρ̂)W (Â)W (2.63a)

Tr(Â†B̂) �
∫
dx dp

2πh̄
(Â)∗W (B̂)W (2.63b)

(B̂†)W � (B̂)∗W (2.63c)

Let us establish (2.63c).

(B̂†)W � 2
∫
e2ipx̄/h̄〈x − x̄|B̂†|x + x̄〉 dx̄

� 2
∫
e2ipx̄/h̄〈x + x̄|B̂†|x − x̄〉∗ dx̄

�
(

2
∫
e−2ipx̄/h̄〈x + x̄|B̂|x − x̄〉 dx̄

)∗
� (B̂)∗W

In the last step we employed the change in variables: x̄ → −x̄. Additional
properties of these correspondence froms are left to the problems.

The classical limit

Let us see how (2.54) reduces to the Liouville equation in the classical domain
h̄ � 0. With the change of variables

ξN � 2yN

h̄

we may write

xN± � xN ± 1

2
h̄ξN

and the integral term in (2.54) becomes

∂F

∂t

∣∣∣∣
Int

� i
h̄

(
1

2π

)3N ∫
dξN dp

′N

× exp[iξN · (pN − p
′N )][V (xN+ )− V (xN− )]F (xN, p

′N, t) (2.64)
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In the limit h̄→ 0, there results

V [xN + (h̄ξN/2)]− V [xN − (h̄ξN/2)]

h̄
→ ξN · ∂

∂xN
V (xN )

and (2.64) reduces to

∂F

∂t

∣∣∣∣
Int

�
(

1

2π

)3N
∂

∂pN
·
∫ ∫

∂

∂xN
V (xN )

× exp[iξN · (pN − p
′N )]F (xn, p

′N, t) dξN dp
′N

� ∂

∂pn
·
∫

∂

∂xN
V (xN )δ(pN − p

′N )F (xN, p
′N, t) dp

′N

� ∂

∂xN
H (xN, pN ) · ∂

∂pN
F (xN, xN, t) (2.65)

Combining (2.65) with (2.54) gives

∂F

∂t
� [H,F ]C (2.66)

where C denotes the classical Poisson bracket. We may conclude that the
Wigner distribution function satisfies the Liouville equation in the classical
domain h̄ � 0.

5.2.5 Wigner–Moyal Equation

The Wigner-Moyal equation in quantum kinetic theory is the analogue of the
particle Liouville equation in kinetic theory. To derive this equation we examine
the Wigner equation (2.54) for the case N � 1.

Three results

DF

Dt
−i
h̄

(
1

πh̄

)3∫
dy dp′ exp

(
2iy · (p− p′)

h̄

)
[V (x+)−V (x−)]F (x, p′, t) � 0

(2.67)
where

DF

Dt
≡
(
∂

∂t
+ p
m
· ∂
∂x

)
F (2.67a)

We wish to reduce (2.67) to a more concise form. Noting the relation

exp

(
a · ∂
∂x

)
f (x) � f (x + a)

permits us to write

V (x+)− V (x−) � V (x + y)− V (x − y) � [ey·(∂/∂x) − e−y·(∂/∂x)]V (x)

� −2i sin

(
iy · ∂

∂x

)
V (x)
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Thus (2.67) becomes

DF

Dt
− 2

h̄

(
1

πh̄

)3 ∫
dy dp′ exp

(
2iy · (p− p′)

h̄

)

× sin

(
iy · ∂

∂x

)
V (x)F (x, p′, t) � 0 (2.68)

where ∂/∂x operates onV (x) only. To further reduce (2.68), we note the relation∫
eiyp

′
iyF (p′) dp′ �

∫ (
∂

∂p′
eiyp

′
)
F (p′) dp′

� −
∫
eiyp

′ ∂

∂p′
F (p′) dp′

Thus, if g(y) is a regular function, we obtain∫
eiyp

′
g(iy)F (p′) dp′ �

∫
eiyp

′
g

(
− ∂

∂p′

)
F (p′) dp′

Incorporating this property into (2.68) gives

DF

Dt
− 2

h̄

(
1

πh̄

)3 ∫
dy dp′ exp

(
2iy · (p− p′)

h̄

)

× sin

(
h̄

2

∂

∂p′
· ∂
∂x

)
V (x)F (x, p, t) � 0 (2.69)

Recalling the delta function representation

1

(2π )3

∫
dzeiz·(p−p′) � δ(p− p′)

and setting z � 2y/h̄ gives

DF

Dt
− 2

h̄

(
1

πh̄

)3

(2π )3

(
h̄

2

)3 ∫
dp′δ(p− p′)

× sin

(
h̄

2

∂

∂p′
· ∂
∂x

)
V (x)F (x, p, t) � 0

Performing the final p′ integration gives the desired result:[(
∂

∂t
+ p
m
· ∂
∂x

)
− 2

h̄
sin

(
h̄

2

∂

∂p
· ∂
∂x

)
V (x)

]
F (x, p, t) � 0 (2.70)

where, again, we recall that ∂/∂x act only on V (x). The relation (2.70) is
sometimes called the Wigner-Moyal equation. It is instructive to note that for
Hamiltonians of the form

H � p2

2m
+ V (x)
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(2.70) may be rewitten14 (see Problem 5.8) as

∂F

∂t
+ 2

h̄
sin

[
h̄

2

(
∂

∂x
· ∂
∂p
− ∂

∂p
· ∂
∂x

)]
FH � 0 (2.71)

Here it is understood, as in its classical counterpart, that the right operators in
the two products operate on H , whereas the left operators operate on F .

The classical limit of the Wigner-Moyal equation as given by (2.71) is par-
ticularly simple. Setting h̄→ 0 and keeping the leading term in the expansion
of sin[ ] returns the classical Liouville equation (2.66).

Note that all the above analysis can be generalized to an N -body problem
with interaction potential V (xN ) by setting x → xN and p → pN [see (5.33)].

Let us return to the quantum one-particle Liouville equation (2.70). An
ad hoc kinetic equation may be obtained from this relation by inserting an
appropriate collision form on the right side which, in the Boltzmann formalism,
is written Ĵ (F ). In the KBG approximation, for example, we write

DF

Dt
− 2

h̄
sin

(
h̄

2

∂

∂p
· ∂
∂x

)
V (x)F (x, p, t) � ν[F0(x, p, t)− F (x, p, t)]

(2.72)
where F0(x, p, t) is an appropriate equilibrium distribution and ν−1 is
relaxation time.

An additional note is in order concerning the Wigner-Moyal equation (2.71).
As x and p cannot be simultaneously specified in quantum mechanics, we
expect the quantum distributionF (x, p, t) to be defined for volumes in�-space,
� � h̄3.

The Wigner-Moyal equation has found wide application in the analysis of
charge carrier transport in a semiconductor.15

5.2.6 Homogeneous Limit: Pauli Equation Revisited

In this section we employ the equation of motion for the Wigner distribution
function (2.70) to derive a kinetic equation for the matrix elements of the
density matrix in the limit of spatial homogeneity. With this motivation and with
reference to (2.46), we write the single-particle Wigner distribution function in
momentum representation, which, together with the change in variable 2y →
k, appears as

F (x, p, t) �
(

1

πh̄

)3 ∫
dkeix·k/h̄

〈
p+ k

2

∣∣∣∣ρ̂
∣∣∣∣p− k

2

〉
(2.73)

14A hierarchy of equations for reduced Wigner distributions stemming from the
Wigner-Moyal equation in N dimension is given in Section 5.5.4; see specifically
(5.33).

15See, for example, The Physics of Submicron Structures, H. L. Grubin, K. Hess,
G. J. Iafrate, and D. K. Ferry (eds.), Plenum, New York (1984).
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Note that k has dimensions of momentum. Let us call〈
p+ k

2

∣∣∣∣ρ̂
∣∣∣∣p− k

2

〉
≡ ρ(k, p) (2.74)

With these identifications,taking the Fourier transform of (2.70) (and recalling
the convolution theorem) yields(

∂

∂t
+ ip
m
· k
h̄

)
ρ(k, p)−

∫
dk′

2

h̄
sin

(
ik′

2
· ∂
∂p

)
V̄ (k′)ρ(k − k′, p) � 0

(2.75)
where V̄ (k) represents the Fourier tansform of the interaction potential V(x).

We wish to obtain an equation for the density matrix relevant to the
homegeneous limit. This is performed through a process of iteration. In the
homogeneous limit, the k � 0 contribution to the integral (2.75) dominates,
and we write

∂

∂t
ρ(p) �

∫
dk′Ŝ(k′)V̄ (k′)ρ(−k′, p) (2.76)

where

ρ(0, p) ≡ ρ(p) (2.76a)

is written for the diagonal elements of the density matrix and Ŝ(k) represents
the operator

Ŝ(k) ≡ 2

h̄
sin

(
ik
2
· ∂
∂p

)
(2.76b)

Changing variables k′ → −k′ in (2.76) gives [with V̄ (−k) � V̄ ∗(k)]

∂

∂t
ρ(p) � −

∫
dk′Ŝ(k′)V̄ ∗(k′)ρ(k′, p) (2.77)

This equation contains two distributions, one relevant to k � 0 and the other
relevant to k �� 0. We assume that the k �� 0 distribution, ρ(k, p), varies in
time as exp(iωt), where the interval ω−1 may be associated with characteristic
times of the fluid. The time dependence of the k � 0 distribution ρ(p) is
determined from its equation of motion (to be derived). For ρ(k, p), we return
to (2.75) and write16

ρ(k, p) � 1

i[ω + (p/m) · (k/h̄)]

∫
dk′V̄ (k′)Ŝ(k′)ρ(k − k′, p)

16Note that the time dependence of ρ(p), as well as the ω dependence of ρ(k, p),
is tacitly assumed.
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Expanding the integrand about k � k′ and then keeping the first term with
ρ(k − k′, p) � δ(k − k′)ρ(p), we obtain

ρ(k, p) � 1

i[ω + (p/m) · (k/h̄)]
V̄ (k)Ŝ(k)ρ(p)

Inserting this value into (2.77) gives

∂

∂t
ρ(p) � −

∫
dk′Ŝ(k′)

[
V̄ ∗(k′)

1

i[ω + (p/m) · (k′/h̄)]
V̄ (k′)Ŝ(k′)ρ(p)

]
(2.78)

Now we note

h̄

2
Ŝ(k) � sin

ik
2
· ∂
∂p
� i sinh

k
2
· ∂
∂p

� i

2

[
exp

(
k
2
· ∂
∂p

)
− exp

(
−k

2
· ∂
∂p

)]

whence

h̄

2
Ŝ(k)ρ(p) � i

2

[
ρ

(
p+ k

2

)
− ρ

(
p− k

2

)]
(2.79)

Employing this relation in (2.78) gives

∂

∂t
ρ(p) �− 2

h̄

∫
dk′|V̄ (k′)|2Ŝ(k′)

1

i[ω + (p/m) · (k′/h̄)]

× i
2

[
ρ

(
p+ k′

2

)
− ρ

(
p− k′

2

)]
(2.80a)

Performing the remaining Ŝ operation gives

∂

∂t
ρ(p) � 1

h̄2

∫
dk′|V̄ (k′)|2

{
[ρ(p+ k′)− ρ(p)]

i
[
ω + k′

h̄m
· (p+ k′

2

)] − [ρ(p)− ρ(p− k′)]

i
[
ω + k′

h̄m
· (p− k′

2

)]
}

(2.80b)
Changing variables in the second term, k′ → −k′, gives

∂

∂t
ρ(p) � 1

h̄2

∫
dk′|V̄ (k′)|2[ρ(p+ k′)− ρ(p)]{

1

i
[
ω + k

h̄m
· (p+ k′

2

)] + 1

i
[
ω − k′

h̄m
· (p+ k′

2

)]
}

(2.81)

We may view k′ as a momentum transfer in a scattering from the potential
V (x). The change in particle energy in this scattering is given by

>E � (p+ k′)2

2m
− p2

2m
� k′

m
·
(

p+ k′

2

)
(2.82)
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Thus (2.81) may be written

∂

∂t
ρ(p) � 1

h̄2

∫
dk′|V̄ (k′)|2[ρ(p+k′)−ρ(p)]

[
1

i
(
ω + >E

h̄

) + 1

i
(
ω − >E

h̄

)
]

(2.83)
As k′ has been identified as momentum transfer in a collision, it follows that
h̄/>E is a measure of the corresponding collision time. Assuming this interval
to be short compared to characteristic times of the fluid, we write

h̄

>E
� 1

ω

To incorporate this property into the analysis, we set

iω→ ε > 0

where ε is a parameter of smallness. We may then write

1

i
(
ω ± >E

h̄

) → 1

i
(−iε ± >E

h̄

) � ±1

i
(
>E

h̄
∓ iε)

Recall the representation (Plemelj’s formula)

lim
ε→0

(
1

x ± iε
)
� P

(
1

x

)
∓ iπδ(x)

where P denotes principal part. Inserting these relations into (2.83) gives the
desired result:

∂ρ(p)

∂t
� 2π

h̄

∫
dk′|V̄ (k′)|2 δ(>E)[ρ(p+ k′)− ρ(p)] (2.84)

This completes our derivation of a closed kinetic equation for the diagonal
matrix elements of ρ̂ relevant to the homogeneous limit.17

The kinetic equation (2.84) may be cast in a more physically revealing form
by virtue of the following observation. We note that the factor

w(p, p+ k′) ≡ 2π

h̄
|V̄ (k′)|2 δ(>E) (2.85)

that appears in (2.84) is an expression for the rate of scattering from p to p+k′

(or the reverse) (see Fig. 5.3).
With the relation (2.85) at hand, (2.84) may be identified with the Pauli

equation (2.28). In the present case, the kinetic equation (2.85) is the momen-
tum representation of the Pauli equation for which the scattering rate (2.85) is
the continuum form of the discrete rate (2.21).

17For further discussion, see P. Carruthers and F. Zachariasen, Rev. Mod. Phys.
55, 245 (1983); and W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
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FIGURE 5.3. Diagrams for scattering by the potential V . For elastic interactions,
the rate for collision and its reverse are equal.

Owing to the symmetric property of the scattering rate w(p, p+ k′), (2.84)
may be written

∂ρ(p)

∂t
�
∫
dk′[w(p+ k′, p)ρ(p+ k′)− w(p, p+ k′)ρ(p)] (2.86)

The first factor in the integrand contributes to scattering into momentum p states
and represents again, whereas the second factor contributes to scattering out of
momentum p states and represents a loss. The latter equation is returned to in
Section 3.6 in the derivation of the relaxation time for charge carrier-phonon
interactions.

5.3 Application of the KBG Equation to Quantum
Systems

5.3.1 Equilibrium Distributions

One of the more significant problems in statistical mechanics concerns the
distribution function for an appregate of particles in equilibrium at a given
temperature T . There cases important in this study relate, respectively, to (1)
classical particles, (2) bosons, and (3) fermions.

For aggregates of noninteracting particles, equilibrium distributions for
these cases, giving mean occupation number per energy level, are given by18

f0(E) � 1

eβ(E−µ) + a (3.1)

β ≡ (kbT )−1

where

a � 0 corresponds to classical particles

a � 1 corresponds to fermions (3.2)

a � −1 corresponds to bosons

18For further discussion, see K. Huang, Statistical Mechanics. Wiley, New York
(1967); and D. A. Mcquarrie, Statistical Mechanics, Harper & Row, New York
(1976).
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and the variable µ is the chemical potential.19

Note that quantum distributions reduce to the classical distribution in the
limit

eβ(E−µ) ! 1 (3.3)

or, more simply, f0(E) � 1. That is, the classical distribution occurs when the
mean occupation number per energy level is small compared to unity.20

The condition (3.3) may be shown to be equivalent to the criterion21

λ3
d �

V

N
(3.4)

where

λd � h

(2πmkBT )1/2
(3.5)

is the thermal de Broglie wavelength, V is volume, and N is total number of
particles. The condition (3.4) states that the classical picture results when the
de Broglie wavelength is small compared to interparticle spacing.

We wish to apply the distributions (3.1) to two key problems: (1) an
interacting gas of atoms and photons, and (2) electrons in a metal.

Planck distribution

Photons are bosons, so the related distribution is given by (3.1) with a � −1.
Furthermore, for photons we may set22 µ � 0. With E � h̄ω, the appropriate
distribution is given by

f0(ω) � 1

eβh̄ω − 1
(3.6)

We wish to obtain the number of photons per frequency interval, per volume,
F (ω). The distribution (3.6) gives the mean number of photons per frequency
mode. Thus we may set

F (ω) � g(ω)f (ω) (3.7)

In this equation, g(ω) represents the number of normal modes per frequency
interval, per unit volume. An expression for the density of states, g(ω), may be

19The chemical potential enters the first law of thermodynamics for cases involving
varying number of particles: dE � T dS−P dV +µdN . Here S represents entropy.

20For bosons with µ � 0, the classical limit occurs for small β. See, for example,
(3.68).

21R. K. Pathria, Statistical Mechanics, Pergamon Press. Elmsford, N. Y. (1978).
22This is a consequence of thermodynamics. Consider a gedanken process in

which the number of photons in a monoenergetic field at frequency ω is doubled as
ω→ ω/2. With dE � dS � dV � 0, and dN > 0, we obtain µ � 0.
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obtained in the following manner. First recall that the momentum of a photon
of angular frequency ω is

p � h̄ω
c

(3.8)

It follows that the volume in momentum-coordinate phase space containing
photons with frequencies in the intervalω,ω+dω is equal to the product of d3x

and the momentum volume corresponding to values in the intervalp,p+dp or,
equivalently, 4πp2 dp d3x. The number of states in the said interval is obtained
by dividing this latter volume by the minimum of volume per state, h3. Since
photons have two possible polarizations, this minimum volume becomes h3/2.
Thus we may write

g(ω) dω d3x � 4πp2 dp d3x

h3/2

� ω
2 dω d3x

π2c3
(3.9)

which gives the desired form for the density of states (Rayleigh’s formula):

g(ω) � ω2

π2c3
(3.10)

Combining (3.7) and (3.10) gives the Planck distribution:

F0(ω) � ω
2/π 2c3

eβh̄ω − 1
(3.11)

Here we have inserted a zero subscript to denote that (3.9) is a thermal
equilibrium distribution.

An immediate result that follows from the Planck radiation law (3.11) is the
total radiant energy density, U (T ), of a radiation field in equilibrium at the
temperature T .

U (T ) �
∫
F0(ω)h̄ω dω (3.12)

Introducing the nondimensional parameter

x ≡ βh̄ω
gives

U (T ) � T 4

(
k4
B

π 2c3h̄3

∫ ∞

0

x3 dx

ex − 1

)
(3.13)

U (T ) �
(

ı2k4
B

15h̄3c3

)
T 4
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FIGURE 5.4. Three radiative collision processes are included in (3.18): (a) resonant
absorption, (b) stimulated decay, (c) spontaneous emission.

[see (B2.23)]. The power radiated per unit area by the radiation field is given
by

P � 1

4
cU (t) �

(
π 2k4

B

60h̄3c2

)
T 4

(3.14)
P � σT 4

Here c is the speed of light and σ if the Stefan-Boltzmann constant, which has
the value

σ � 0.567× 10−4 erg/s− cm2 −K4 (3.15)

5.3.2 Photon Kinetic Equation

We consider a radiation field interacting with a gas of hydrogenic atoms whose
excited states are characterized by the outer atomic electron. The density of
the atoms in the ith excited state is written Ni .

In our kinetic model we discuss photons that are either entirely absorbed by
an atom or give rise to stimulated decay of an atom. Furthermore, phontons
may be generated through spontaneous decay of atoms. Thus the model does
not included, for example, scattering of photons by atoms (see Fig 5.4).

The momentum of a photon of (angular) frequency ω is given by (3.8),
which we now writes as

p � sh̄ω
c

(3.16)

where s is the unit vector

s � p
p

(3.17)

Our kinetic equation is then written23

∂

c∂t
f (x, s, ω)+ s ·∇f (x, s, ω) �

∑
l<n

>ln (3.18)

23D. H. Sampson, Radiative Contributions to Energy and Momentum Transport
in a Gas, Wiley-Interscience, New York (1965). See also D. M. Heffernan and R. L.
Liboff, J. Plasma Physics 27, 473 (1982).
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The collision term >ln is defined below.
Let us first concentrate on the distribution function in (3.18). It is normalized

with the differential measure (3.9). The quantity

2f dp dx
h3

represents the number of photons in the phase volume dp dx about the value
(p, x). In the present description the distribution function f relates to photons
progagating in the direction p with frequency cp/h̄. As previously described,
the factor 2 in the above expression is included to account for two possible
polarizations at any given frequency.

Returning to (3.18), first we note that the double sum on l and n runs over
all atomic states, and we have written

>ln ≡ Nnσnl(ω)[1+ f (ω)]−Nlσln(ω)f (ω) (3.19)

The first two terms in this expression represent spontaneous and induced decay,
respectively. The third therm represents resonant absorption, and σln is writ-
ten for the absorption cross section at frequency ν corresponding to atomic
transition from the lth to the nth state.

Writing gl for the degeneracy of the lth atomic state and recalling the
symmetry relation24

glσln � gnσnl (3.20)

permits (3.18) to be written in the KBG form:

1

c

Df (ω)

Dt
� κ(f̄0 − f ) (3.21)

The parameters κ and f̄0 are written for

κ ≡
∑
l<n

N1

(
1− glNn

gnNl

)
σln (3.22)

f̄0 ≡ 1

κ

∑
l<n

Nn
gl

gn
σln (3.23)

The distribution f̄0 appears explicitly as

f̄ �
∑
l<n Nn(gl/gn)σln∑

l<n Nl[1− (glNn/gnNl)]
(3.24)

Let us examine this distribution for the case of monochromatic radiation, which
is resonant with two atomic states. That is

h̄ω � Eb − Ea (3.25)

24H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms,
Springer, New York (1957).
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Cross sections in (3.24) are peaked about his value of ω, and the expression
(3.24) reduces to the simpler form

f̄0 � Nb(ga/gb)σab
Na[1− (gaNb/gbNa)]σab

(3.26)

f̄0 � 1

(Nagb/Nbga)− 1

With atomic states taken to be in a Boltzmann distribution,

Na � gae−βEa (3.27)

the relation (3.26) is seen to return the Planck equilibrium distribution (3.11).
Thus (3.23) may be interpreted as a generalized Planck distribution relevant to
the dynamics of an electromagnetic field interacting with an atomic species.

Lasing criterion

Consider a laser beam of radiation interacting with a gas of atoms. Let the
radiation be resonant with two atomic states as described by (3.25). In this
case, the absorption coefficient κ given by (3.22) becomes

κ � Na
(

1− gaNb
gbNa

)
σab (3.28)

and f̄0 is given by (3.26).
In steady state, our kinetic equation (3.18) reduces to

∂

∂s
f (s, ω)+ κf (s, ω) � κf̄0(ω) (3.29)

Here we have written s for displacement in the direction of s. The homogeneous
solution to (3.29) gives the spatial dependence

f (s, ω) � f (0, s)e−κs (3.30)

It follows that the number of photons with the resonant frequency ω propagat-
ing in the direction s will grow, providing κ < 0. With (3.28), this gives the
canoncial lasing criterion25

Nb

gb
>
Na

ga
(3.31)

So, in fact, radiative gain demands something more than simply an excess of
atoms in the higher lasing state than in the lower state.

25A. Yariv, Quantum Electronics, 2nd ed., Wiley, New York (1975).
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FIGURE 5.5. (a) Free-particle spectrum. (b) Energies corresponding to a periodic
potential. Band energies occur at k � nπ/a, where a is the lattice constant and n is
an integer. (c) Related band-gap spectrum of energies.

5.3.3 Electron Transport in Metals

In Section 5.1, the following energy spectrum was obtained for free particles:

E(k) � h̄
2k2

2m

When plotted as a function of k, this expression describes a parabola. If particles
are not free, but propagate through a periodic potential, not all energies are
allowed. The resulting E(k) curve exhibits gaps that affect a band structure as
illustrated in Fig 5.5.

The lattice of a metallic crystal presents a periodic potential to conduction
electrons. Consequently, the energy spectrum of these electrons exhibits a bad
structure containing forbidden and allowed bands. In a metal the band of highest
energy is called the conduction band and is only partially filled. An applied
electric field may therefore increase the energy of topmost electrons without
violating the exclusion principle. The band structure of the metal sodium is
shown in Fig. 5.6.

In semiconductors, the conduction band is empty at low temperature. How-
ever, due to the relatively small value of the energy gap separating valence
and conduction bands, at higher temperatures, statse in the conduction band
are populated, thereby increasing the conductivity of the sample. Vancancies
left in the valence band due to promotion of electrons to the conduction band
affect the presence of positive charge and are called holes. Such holes may
act as charge carries and contribute to the net current, and we write for the
conductivity

σ � |e|(nµn + pµp)

where n and p and hole concentrations (cm−3), respectively, and µn and µp
are related mobilities.
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FIGURE 5.6. The band structure of sodium as a fuction of internuclear spacing.
Note the overlapping of bands with (extreme) increase in density. Quantum states of
atomic levels are also shown [J. C. Slater, Rev. Mod. Phys. 6, 209 (1934)].

The quasi-classical description

For many cases of practical interest, a quasi-classical description of conduction
in solid-state materials proves adequate. Since the presence of band gaps is a
purely quantum mechanical effect, it is important to the self-consistency of a
classical description that electron motion be confinded to a single band.

LetK(k) denote the energy spectrum of a given band. Two parameters play
an important role in the semiclassical model. These are the velocity,

v(k) � 1

h̄
∇kE(k)

and the effective mass tensor(
1

m∗

)
µν

� ∂
2E/∂kµ ∂kν

h̄2

For motion in one dimension, the effective mass tensor becomes a scalar, which
is labeled m∗. For free-particle motion, m∗ reduces to the classical mass, m.

As with our preceding analysis for photon kinetic theory, the following
quantity is written for the number of electrons in the phase volume dp dx (in
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the conduction band) about the phase point (p, x) (in the quasi-classical limit).

2f (p, x)
dp dx
h3

� 2fh̄3 dk dx
h3

� f (k, x)
dk dx
4π 3

(3.32)

In (3.32), the factor 2 stems from the two possible spin projections relevant
to electrons. Since dk dx/4π3 represents a density of states, we may identify
f (k, x) as the mean occupation number of electrons per state.

The Fermi-Dirac equilibrium distribution for an aggregate of electrons at
temperature T is obtained from (3.1) and is given by

f0[E(k)] � 1

eβ[E(k)−µ] + 1
(3.33a)

With the relation

� 2× 4πp2 dp

h3

4π (2m)3/2E1/2 dE

h3
(3.33b)

the preceding two equations give

N

V
�
∫
f0(p)

2 dp
h3

�
∫ ∞

0

4π (2m)3/2E1/2 dE

h3(eβ(E−µ) + 1)

This relation serves to relate the chemical potential µ to the number density
of N free electrons confined to the volume V . At 0 K , µ � EF , the Fermi
energy, and the preceding relation gives

n � 4π (2m)3/2

h3

∫ EF

0
E1/2 dE

EF � h2

2m

(
3n

8π

)2/3

� h̄2

2m
(3π 2n)2/3 (3.34)

where we have written n for particle number density. The preceding expression
may be written in terms of the Fermi momentum pF .

n �
∫ pF

0

2dp
h3
� 2

h3
× 4

3
πp3

F

EF � p2
F

2m
(3.34a)

Values of EF for some typical metals are listed in Table 5.1.
Working with the distribution functionf (k, x, t), the KBG equation assumes

the form26

∂f

∂t
+ v · ∂f

∂x
+ k̇ · ∂f

∂k
� 1

τ
(f0 − f ) (3.35)

26In the most solid-state works, this analysis is referred to as the relaxation-time
approximation.
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TABLE 5.1. Properties of Characteristic Conducting Metals: Resistivity, Relaxation
Times and Fermi Values

σ (µ�− cm) kF vF
Element Z n(1022/cm3) 273 K τ (10−14s) EF (eV) (×108cm−1) (×108cm/s)
Li 1 4.70(78 K) 8.55 0.88 4.74 1.12 1.29
Na 1 2.65(5 K) 4.2 3.2 3.24 0.92 1.07
K 1 1.40(5 K) 6.1 4.1 2.12 0.75 0.86
Rb 1 1.15(5 K) 11.0 2.8 1.85 0.70 0.81
Cs 1 0.91(5 K) 18.8 2.1 1.59 0.65 0.75
Cu 1 8.47 1.56 2.7 7.00 1.36 1.57
Ag 1 5.86 1.51 4.0 5.49 1.20 1.39
Au 1 5.90 2.04 3.0 5.53 1.21 1.40
Be 2 24.7 2.8 0.51 14.3 1.94 2.25
Mg 2 8.61 3.9 1.1 7.08 1.36 1.58
Ca 2 4.61 3.43 2.2 4.69 1.11 1.28
Sr 2 3.55 23 0.44 3.92 1.02 1.18
Ba 2 3.15 60 0.19 3.64 0.98 1.13
Nb 1 5.56 15.2 0.42 5.32 1.18 1.37
Fe 2 17.0 8.9 0.24 11.1 1.71 1.98
Zn 2 13.2 5.5 0.49 9.47 1.58 1.83
Cd 2 9.27 6.8 0.56 7.47 1.40 1.62
Hg 2 8.65 Melted 7.13 1.37 1.58
Al 3 18.1 2.45 0.80 11.7 1.75 2.03
Ga 3 15.4 13.6 0.17 10.4 1.66 1.92
In 3 11.5 8.0 0.38 8.63 1.51 1.74
Ti 3 10.5 15 0.22 8.15 1.46 1.69
Sn 4 14.8 10.6 0.23 10.2 1.64 1.90
Pb 4 13.2 19.0 0.14 9.47 1.58 1.83
Bi 5 14.1 107 0.023 9.90 1.61 1.87
Sb 5 16.5 39 0.055 10.9 1.70 1.96

where

h̄k̇ � eE (3.35a)

and E represents electric field strength. The relaxation time τ is in general
a function of k [see, for example, (3.81)]. Assuming steady state and spatial
homogeneity, (3.34) reduces to

eE
h̄
· ∂f
∂k
� 1

τ
(f0 − f ) (3.36)

For short relaxation times, we may set τ → ετ , where ε is a small bookkeeping
parameter. Repeating the Chapman-Enskog expansion (3.5.8),

f � f (0) + εf (1) + ε2f (2) + · · · (3.37)



5.3 Application of the KBG Equation to Quantum Systems 373

TABLE 5.2. Thermal Conductivities and Lorenz Numbers

273 K 373 K
κ κ/σT κ κ/σT

Element (W-cm/K) (W-�/K2) (W-cm/K) (W-�/K2)
Li 0.71 2.22× 10−8 0.73 2.43× 10−8

Na 1.38 2.12
K 1.0 2.23
Rb 0.6 2.42
Cu 3.85 2.20 3.82 2.29
Ag 4.18 2.31 4.17 2.38
Au 3.1 2.32 3.1 2.36
Be 2.3 2.36 1.7 2.42
Mg 1.5 2.14 1.5 2.25
Nb 0.52 2.90 0.54 2.78
Fe 0.80 2.61 0.73 2.88
Zn 1.13 2.28 1.1 2.30
Cd 1.0 2.49 1.0
Al 2.38 2.14 2.30 2.19
In 0.88 2.58 0.80 2.60
Tl 0.5 2.75 0.45 2.75
Sn 0.64 2.48 0.60 2.54
Pb 0.38 2.64 0.35 2.53
Bi 0.09 3.53 0.08 3.35
Sb 0.18 2.57 0.17 2.69
Source: N. V. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart,
and Winston, New York (1976); and G. W. C. Kaye and T. H. Laby, Table of
Physical and Chemical Constants, Longmans Green, London (1966).

and inserting into (3.36) and equating powers of ε gives

f (0) � f0

τeE
h̄
· ∂f

(0)

∂k
� −f (1)

...

Thus, with (3.37), we find, to 0(ε),

f (k) � f0 − τeE
h̄
· ∂f0

∂k
� f0

(
k − τeE

h̄

)
(3.38)

Here we have recognized that the middle expression represents the first two
terms in a Taylor series expansion of the function on the right about τeE/h̄ � 0.
This finding indicates that the Fermi sphere has been displaced by the amount
τeE/h̄ in k-space (see Fig. 5.7). It is evident from this figure that only electrons
at the top of the Fermi sea contribute to conduction. Electrons sufficiently below
the Fermi surface cannot be accelerated to nearby higher-lying levels. Such
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FIGURE 5.7. The Fermi sphere in k space suffers a displacement in the presence of
an electric field. Electrons in the darkened area contribute to conduction.

promotion would violate the exclusion principle as these levels are already
occupied.

We may use (3.38) to calculate conductivity. Current density is given by

J � e

4π 3

∫
v(k)f (k) dk

Inserting (3.38) into this expression gives

J � − e2

4π3h̄

∫
τ (k)v(k)E · ∂f0

∂k
dk (3.39)

Here we have noted that f0 has a vanishing first velocity moment. Let us picture
the Fermi surface, E � EF , in k space. If dS is an element of area on this
surface, then a differential of volume dk generated by a normal, displacement
δk is |δk| dS.27 The related change in energy is given by dE � |δk||∇kE|.
Thus we may write for the volume element

dk � dSdE

|∇kE| (3.39a)

At 0 K, the Fermi-Dirac distribution (3.33) gives

∂f0

∂E
� −δ(E − EF ) (3.39b)

Thus
∂f0

∂k
� ∂f0

∂E

∂E

∂k
� −vh̄δ(E − EF ) (3.39c)

27A similar argument was given previously in Section 3.8.1.
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and (3.39) becomes

J � e2

4π 3

∫
τ (k)v(k)E · v(k)δ(E − EF )

dE dS

|∇kE| (3.39d)

Integrating over energy gives

J � e2

4π 3

∫
E�EF

τ (k)v(k)E · v(k)

|∇kE| dS (3.40)

Writing Ohm’s law in tensoral form,

Jµ � σµνEν
and comparing with (3.40) implies the following for the conductivity tensor:28

σµν � e2

4π 3

∫
EF

� τ (k)vµ(k)vν(k)

|∇kE| dS (3.41)

Here, we recall, dS is an element of area in k space. Only electrons near the
Fermi surface contribute to conductivity. (See Problem 5.52.)

Weidemann-Franz law

If a temperature gradient is present in the solid-state plasma, then the space
gradient term in (3.35) is written

v · ∂f
∂x
� v · ∂f

∂T

∂T

∂x
The analog of (3.36) becomes

∂f

∂T
v · ∂T
∂x
� 1

τ
(f0 − f )

Writing the heat conductivity equation (3.4.3) in tensorial form,

Qµ � −κµν ∂
∂xν
T

and following the procedure that led to (3.41), we find

κµν � k
2
BT

12π

∫
E�EF

τ (k)vµ(k)vν(k)

|∇kE| dS (3.42)

Providing relaxation times in (3.41) and (3.42) are equal, we may conclude

κ

σT
� π

2

3

(
kB

e

)2

≡ L0 � 2.445× 108W−�/K2 (3.43)

28Electrical conductivity in Chapter 3 was labeled σc. A generalized tensor form
for σ is given in Section 5.6. See also Section 7.1.2, 7.1.6, 7.2.3.
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where L0 is the Lorenz number (see Tables 5.1, 5.3). The relation (3.43) is the
Weidemann-Franz law. An expression for the relaxation time τ (k) is obtained
in Section 3.6.

5.3.4 Thomas–Fermi Screening

In this section we consider the repsonse to an extraneous electron placed in
a charge-neutral degenerate Fermi gas. The analysis parallels the calculation
(Section 4.1.1) relevant to a classical plasma. Converting from velocity to
momentum, together with the transformation relevant to the quantum domain,

f0(v) dv → 2f0(p)
dp
h3

permits (4.1.23) to be written (in the static limit) as

ε − 1 � −8πme2

k2

∫
k · ∂f0/∂p

k · p
dp
h3

(3.44)

Here we have written f0 for the Fermi-Dirac distribution (3.33). With

∂f0

∂p
� p
m

∂f0

∂E

and

dp � 2π (2m)3/2E1/2 dE

(3.44) becomes

ε − 1 � −16π 2e2(2m)3/2

k2h3

∫
∂f0

∂E
E1/2 dE (3.45)

For sufficiently low temperature, again we write

∂f0

∂E
� −δ(E − EF )

and (3.45) may be written

ε − 1 � 6πne2/EF

k2
�
(
kT F

k

)2

(3.46)

where EF is given by (3.34) and

k2
T F �

6πne2

EF
, λ2

T F �
1

k2
T F

(3.46a)

are the Thomas–Fermi screening wave number and screening distance, respec-
tively. It follows that the static dielectric constant for a degenerate plasma, in
the quasi-classical limit, is given by

ε � 1+ k
2
T F

k2
(3.47)
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Repeating the analysis leading to (4.1.35) gives the static potential

φ(r) � −e exp(−kT F r)
r

(3.48)

Whereas this form greatly resembles the classical result (4.1.35), a more
detailed quantum mechanical description29 indicates that, at relatively large
distance, the interparticle potential oscillates as

φ(r) ∼ 1

r3
cos 2kF r (3.49)

Here kF is written for the Fermi wave number, EF � h̄2k2
F /2m.

Nonstatic limit

In the nonstatic, long-wavelength (k2 � ω2
p/v

2
F ) limit, we obtain30 the

following dispersion relation for a degenerate plasma:

ω2 � ω2
p

(
1+ 3

5

v2
F k

2

ω2
p

)
(3.50)

This relation bears a striking similarity to the parallel relation for long-
wavelength waves in a classical plasma (4.1.46):

ω2 � ω2
p

(
1+ 3C2k2

ω2
p

)
(3.51)

However, as T → 0,C → 0 and (3.51) gives nonpropagating standing waves,
whereas in the quantum domain vF persists at T � 0K . Progagation of waves
at 0 K in a degenerate plasma have been compared to the phenomenon of
“zero sound” relevant to a fluid of uncharged fermions at 0 K (discussed in
Section 4.2). Furthermore, longitudinal waves in a degenerate plasma (3.50)
also suffer Landau damping.31

The similarity in relations of parallel quantities in classical and degenerate32

plasmas is illustrated by the following:

29J. Linhard, Kgl. Danske Videnskab. Selskab. Mat.-Fyd. Medd. 28, No. 8 (1954).
The behavior (3.49) is often referred to as Friedel oscillations.

30L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Physical Kinetics, Pergamon
Press, Elmsford, N. Y. (1981).

31P. M. Platzman and P. A. Wolf, Waves and Interactions in Solid State Plasmas,
Academic Press, New York (1973).

32Degenerate here refers to the quantum domain.



378 5. Elements of Quantum Kinetic Theory

Classical

1

k2
d

� λ2
d �

C2

ω2
p

� kBT

4πne2
,

(
ω

ωp

)2

� 1+ 3C2k2

ω2
p

, k2 � ω2
p

C2

(3.52)

Degenerate

1

k2
T F

� λ2
T F �

1

3

v2
F

ω2
p

� EF

6πne2
,

(
ω

ωp

)2

� 1+ 3

5

v2
F k

2

ω2
p

, k2 � ω2
p

v2
F

(3.53)

5.3.5 Mott Transition33

An instructive application of the Thomas–Fermi potential (3.48) comes into
play in the derivation of the criteria for what is commonly called the Mott
transition. Consider a conducting lattice with one free electron per atom, such as
is the case with the alkali metals. The band structure typical to such conductors
is shown in Fig 5.6. Let the crystal undergo an ideal expansion at 0 K. The
question we wish to consider is, at which point in the expansion does the sample
become an insulator? We will assume that the change of state, termed a Mott
transition occurs when a conduction electron of the metal forms a bound state
with an ion in the lattice.

At reasonably good expression for the potential of interaction between a
conduction electron and an ion in a metal for the present model is given by the
Thomas–Fermi potential (3.48) (now written as potential energy)

V (r) � −e
2 exp(−kT F r)

r
(3.54)

It has been shown34 that an electron and ion interacting under this potential
will permit a bound state providing

kT F <
1

a0
(3.55)

where a0 is the Bohr radius. With (3.46a), we may rewrite

k2
T F �

6πne2

EF
� 4

a0

(
3n

π

)1/3

33Named for N. F. Mott.
34J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, p. 55, Wiley, New

York (1953).
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The criterion (3.55) may then be rewritten

n <
( π

12

)2
n0 (3.56)

where

n0 ≡ 3

4
πa3

0

is the number density corresponding to one atom per “Bohr volume,” 4πa3
0/3,

which is relevant to a hydrogen-like lattice. Thus n represents both electron
and ion densities. The relation (3.56) indicates that in the present crude model
the Mott transition occurs for ion number density ≤ 0.1n0.35

5.3.6 Relaxation Time for Charge-Carrier Phonon Interaction

For temperatures in excess of � 100K , one of the more important scat-
tering mechanisms of charge carriers in a semiconductor is that of phonon
scattering.36 Recall the phonons are quantized lattice vibrations. The disper-
sion relation for phonons contains two branches corresponding to acoustic and
optical phonons, respectively.37 For relatively small phonon wave number q,
acoustic phonons satisfy the dispersion relation

ω � uq (3.57a)

where u is constant wave speed, whereas optical phonons in this same domain
satisfy the relation

ω � ω0 (3.57b)

where ω0 is a constant frequency.
For elemental semiconductors (for example, silicon and germanium), charge

carriers interact with phonons through what is commonly termed the defor-
mation potential interaction or, more simply, the strain interaction. Thus one
speaks of strain-acoustic and strain-optical interactions.

35Whereas experiments are presently underway, the monatomic metallic phase of
hydrogen has not been observed in the laboratory. It has been estimated that solid
H2 undergoes a transition to the metallic phase at approximately 3 Mbar. For further
discussion, see B. I. Min, J. F. Jansen, and A. J. Freeman, Phys. Rev. B. 33, 6383
(1986); and D. Ceperely and B. Alder, Phys. Rev. B. 36, 2092 (1986).

36At lower temperature, scattering is dominated by interaction with impurity atoms
in the lattice. For futher discussion, see K. Seeger, Semiconductor Physics 3rd ed.,
Springer-Verlag, New York (1985); and R. L. Liboff, J. Phys. Chem. Solids 46, 1327
(1985).

37For further discussion, see J. M. Ziman, Principles of the Theory of Solids,
Cambridge, New York (1964).
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FIGURE 5.8. Diagrams corresponding to (a) absorption of a phonon, and (b) emission
of a phonon.

In this section we derive an expression for the relaxation time τ (k), in-
troduced in (3.35), appropriate to the acoustic strain interaction38 for a
semiconductor in the presence of an applied electric field E.

Neglecting spin, the collision integral for this scattering proces may be
written [compare with (2.86)]

Ĵ (f ) � V

(2π )3

∑
±

∫
[w±(k′, k)f (k′)− w±(k, k′)f (k)] dk′ (3.58)

where V is the volume of the sample and with (3.32) we have written h̄k
for the momentum of charge carriers. The probability rate or charge carrier
scattering from the k to k′ state accompained by the absorption (+) or emission
(−) of a phonon is written w±(k, k′). We may associate diagrams with these
interactions, as illustrated in Fig. 5.8.

The rate coefficient w±(k, k′) may be written in terms of matrix elements
of the perturbation Hamiltonian H ′, as follows [recall (2.85)]:

w±(k, k′) � |H ′
k′,k|2

2π

h̄
δ(>E±) (3.59)

Here H ′
k′,k is the matrix element corresponding to the transition k → k′. The

delta function factor in (3.59) ensures conservation of energy where, with m
written for effective mass of charge carriers,

>E± �
[
h̄2k

′2

2m
∓h̄ω(q)

]
− h̄

2k2

2m
(3.60)

Our plan is to convert the right side of (3.58) to that of (3.35). To incorporate
the anisotropy of the distribution function to the applied electric field, we recall

38It has been demonstrated that for cubic semiconductors the acoustic strain inter-
action dominates in the quasi-classical domain. See G. K. Schenter and R. L. Liboff,
J. Appl. Phys. 62, 1977 (1987).
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(3.7.21) and write

f (k) � f0(k)+ µf1(k) (3.61)

where, again,µ is the cosine of the angle between E and k. If we identify f0(k)
as the equilibrium distribution, then by statistical balance (Section 3.3.9) we
may set

w±(k, k′)f0(k) � w±(k′, k)f0(k′) (3.62)

Substituting (3.61) into (3.58) and incorporating (3.62), we obtain

Ĵ (f ) � V

(2π )3

∑
p

m

∫
[w±(k′, k)f1(k′)µ′ − wpm(k, k′)f1(k)µ] dk′

� V

(2π )3

∑
p

m

∫ [
f0(k)

f0(k′)
f1(k′)µ′ − f1(k)µ

]
wpm(k, k′) dk′(3.63)

In the high-energy limit, E ! h̄ω(q), we may further assume

f0(k′) � f0(k)

f1(k′) � f1(k) (3.64)

Substituting these relations into (3.63)gives

Ĵ (f ) � − V

(2π )3

∑
±
µf1(k)

∫ (
1− µ

′

µ

)
w±(k, k′) dk′ (3.65)

Recalling (3.61), we note

−µf1(k) � f0(k)− f (k)

Thus (3.65) gives the desired expression:

1

τ
� V

(2π )3

∑
(±)

∫ (
1− µ

′

µ

)
wpm(k, k′) dk′ (3.66)

Explicit formula for 1/τ

To further reduce the integral in (3.66), we cite the specific form of the transition
probability rate (3.59) for strain-acoustic interactions.39

∑
pm

w±(k, k′) � 2πAq

h̄
[nqδ(>E+)+ (nq + 1)δ(>E−)] (3.67)

39E. M. Conwell in High Field Transport in Semiconductors. Solid State Physics,
Vol. 9, Suppl., F. Seitz, D. Turnbull, and H. Ehrenreich (eds.), Academic Press, New
York (1967).
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where nq is the Bose-Einstein distribution (3.6)40 relevant to phonons, and
>E± are given by (3.60). The coefficient A is given by

A � E2
1h̄

2Vρu
(3.67a)

where ρ is crystal mass density and E1/V is the shift in band edge41 per unit
dilation of the lattice. Note that E1 has dimensions of energy and A that of
energy squared times length.

For sufficiently large crystal temperature, we may write

kBT ! h̄qu
This permits the Bose-Einstein distribution to be expaned42 as

nq � kBT
h̄uq

− 1

2
+ · · · ! 1 (3.68)

which in turn allows (3.67) to be collapsed, and we obtain∑
w±(k, k′) � 2πAq

h̄
nq[δ(>E+)+ δ(>E−)] (3.69)

We turn next to the delta functions δ(>E±). Substituting the dispersion
relation (3.57a) into >E± given by (3.60) permits us to write

>E± � h̄2

2m
[(k ± q)2 − k2]∓h̄uq

� h̄2

2m
[q2 ± 2KQµ̄)∓h̄uq

� ∓h̄
2kq

m

[
± q

2k
− µ̄+ mu

h̄k

]
where we have written

µ̄ ≡ k̂ · q̂
Taking the delta function of >Epm gives

δ(>E±) � 2m

h̄2

1

2kq
δ
[
µ̄−

(mu
h̄k
∓ q

2k

)]
(3.70)

Here we have recalled the delta-function relation

δ(ax) � 1

|a|δ(x) (3.71)

40That is, nq (here) is written for f0[ω(q)] in (3.6).
41For a one-dimensional lattice, band edgers occur at k � nπ/a, where a is the

lattice constant (see Fig. 5.5).
42Neglecting 1

2
in (3.68) gives the phonon equipartition theorem: kBT � nqh̄ω �

energy/frequency modes.
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FIGURE 5.9. The angles θ , θ ′, α, and β for reduction of (3.66).

Finally, in our evaluation of the integral in (3.66), we seek a relation between
µ and µ′. To these ends we refer to Fig. 5.9. Vectors are defined with respect
to k taken as the polar axis. With this figure at hand, the cosine addition law
gives

µ′ � µ cosα + sin θ sin α cosβ (3.72)

Furthermore,

q2 � |k − k′|2 � k2 + k ′2 − 2kk′ cosα (3.73)

At high energy, k � k′, and the preceding relation gives

cosα � 1− q2

2k2
(3.74)

Substituting this relation into (3.72) and neglecting the cos β term owing to
the dβ integration in (3.66), we obtain

µ′

µ
� 1− q2

2k2
(3.75)

With the relations (3.68) through (3.75) at hand, we return to (3.66) and
write (with dk′ � dq)

1

τ
� B

k3

∑
±

∫
dq qδ

[
µ̄−

(mu
h̄k
∓ q

2k

)]
(3.76)
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where

B ≡ mVAkBT
2(2π )2h̄4u

(3.76a)

With k taken as the polar axis, we write

dp � 2πq2 dq dµ̄

and (3.76) gives

1

τ
� 2πB

k3

∑
±

∫ ∞

0
dqq3

∫ 1

−1
dµ̄δ

[
µ̄−

(mu
h̄k
∓ q

2k

)]
(3.77)

Integration over µ̄ leads to bounds on the dq integration, and (3.77) reduces
to

1

τ
�
∑
±

2πB

k3

∫ q2(±)

q1(±)
dqq3 (3.78)

where q(±) are the two solutions at the bounds of the inequalities

−1 ≤ mu

h̄k
∓ q

2k
≤ +1

q ≥ 0
(3.78a)

There results

q1(±) � 0, q2(±) � 2k ± 2mu

h̄
(3.78b)

(see Problem 5.9). Substituting these values into (3.78) and integrating yields

1

τ
�
∑
p

m
8πB

k3h̄4 (h̄k ±mu)4

In the limit u� h̄k/m, the preceding reduces to

1

τ
� 16πBk

Substituting the value for A (3.67a) into B (3.76a) gives

1

τ
�
(
mkBT

πh̄3

E2
1

ρu2

)
k (3.79)

This result may be cast in a more revealing form if we identify

l � πh̄4ρu2

m2kBT E
2
1

(3.80)

as the acoustic phonon mean free path. Thus we may write

1

τ
� h̄k/m

l
(3.81)
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This finding is often employed in the literature.43

Here is a brief recapitulation of assumptions leading to (3.81): (1) E !
h̄ω(q), k′ � k, (2) kBT ! h̄ω(q), (3) h̄k/m ! u. These inequalities are
satisfied in most practical cases.

5.4 Quantum Modifications of the Boltzmann Equation

5.4.1 Quasi-Classical Boltzmann Equation

Normalizations

In the preceding analysis of photon (boson) and electron (fermion) kinetic
theory a general rule was found describing the transformation of classical to
quantum distribution functions. In the quasi-classical limit, it reads as follows:

fCL(x, v) dx dv → fQM(x, p)
dx dp
h2

(4.1)

Here we recall that dx dp/h3 represents the number of available states in the
phase volume dx dp. Note thatfQM(x, p) is dimensionless. In the pure quantum
domain, x and p may not be prescribed simultaneously, and the preceding rule
becomes

fCL(v) dv → fQM(p)
dp
h3

(4.2)

(This transformation was used previously in Section 3.4.) In our preceding
examples, the density of states dp/h3 was increased by a degeneracy factor,
which we now label G. For photons, G � 2, corresponding to two degrees
of polarization, whereas for electrons, G � 2, corresponding to two spin
projections. Thus, for photons, we found (3.9)

G
dp
h3
� 2 dp

h3
� ω

2 dω

π2c3

whereas, for electrons (3.33b),

G
dp
h3
� 2 dp

h3
� 4π (2m)3/2E1/2 dE

h3

These notions play an important role in Uehling and Uhlenbeck’s quantum
generalization of the Boltzmann equation.44

43See, for example, L. Reggiani (ed.), Hot-Electron Transport in Semiconductors,
Springer-Verlag, New York (1985).

44E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).
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Collision integral

We concentrate on the collision integral in the Boltzmann equation (3.2.14)
(reverting to dimensional form):

Ĵ (f ) �
∫ ∫

(f ′f ′1 − ff1)gσ d�dv1

Here we recall that f ′f ′1 relates to a collision in which particles are restored
to velocity volumes dv about v and dv1 about v1, respectively. Suppose these
particles are fermions. Then we must ensure that the exclusion principle is
not violated when particles enter respective phase volumes. The number of
available states in the volume dx dp is

G
dx dp
h3

� Gm
3

h3
dx dv (4.3)

(Here we are writing dx for the collision-domain volume.) Thus, if f �
Gm3/h3, the phase volume is filled and there can be no further reentry of
fermions. This property can be incorported in the Boltzmann equation through
the change in collision phase volume relevant to the term f ′1f

′:

dx1 dv1 →
[

1− h
3f (v)

Gm3

] [
1− h

3f (v1)

Gm3

]
dx1 dv1 (4.4)

A similar argument applies to the direct collision product ff1. Inserting these
changes into the derivation (3.2.1) et seq. yields the quasi-classical collision
form

Ĵ (f ) �
∫ ∫

[f ′f ′1(1+ξf )(1+ξf1)−ff1(1+ξf ′)(1+ξf ′1)]gσ d�dv1 (4.5)

Here we have labeled

ξ ≡ δ h
3

Gm3
(4.6a)

where

δ �



+1 for bosons

0 for Boltzmann statistics

−1 for fermions

(4.6b)

The enhancement value δ � +1 for bosons stems from a statistical affinity
that identical bosons have to be in a common domain.45

45G. E. Uhlenbeck and L. Groper, Phys. Rev. 41, 79 (1932). See also K. Huang,
Statistical Mechanics, ibid.
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Equilibrium distributions

The condition for statistical balance that follows from (4.5) is given by(
f

1+ ξf
)(

f1

1+ ξf1

)
�
(

f ′

1+ ξf ′
)(

f ′1
1+ ξf ′1

)
(4.7a)

Taking the log of both sides reveals the collisional invariant:46

ln

(
f

1+ ξf
)
� β(µ− E)− ln |ξ | (4.7b)

Here β ≡ (kbT )−1, E is written for single-particle energy, and µ is a constant
that may be identified with the chemical potential. Inverting the preceding
relation gives

|ξ |f � 1

eβ(E−µ) − δ �
1

eβ(E−µ) ∓ 1
(4.7c)

With our definition of ξ and taking |δ| � 1 gives the correct quantum
distributions [Bose-Einstein (−), Fermi-Dirac (+)]:

f0 dv � Gdp/h3

eβ(E−µ) ∓ 1
(4.8)

In the following section, an equation closely allied to the Uehling-Uhlenbeck
equation is discussed relevant to a Fermi liquid.

5.4.2 Kinetic Theory for Excitations in a Fermi Liquid

Elementary excitations

In quantum mechanics, a weakly excited state of a macroscopic body may be
considered as an aggregate of individual elementary excitations. Such excita-
tions are a consequence of a quantum mechanical description of the collective
motion of the system and should not be identified with individual atoms.

Excitations behave like quasi-particles with definite momenta p and energy
ε(p). We may introduce a nondimensional distribution function for quasi-
particles such that f 2 dp/h3 represents the number of quasi-particles per unit
volume with momentum in the volume dp. In the quasi-classical limit, f may
be written as a function of both x and p. In the present case, the quasi-classical
domain is characterized as follows. Let L be the length over which f varies
appreciably. Writing k ∼ 1/L for the equivalent wave number, the condition

46We may assume that the scattering potential is x dependent. It follows that p
does not commute with the Hamiltonian and cannot be specified together with E in
(4.7b).
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becomes

h̄k � pF

where pF is the Fermi momentum (3.34).
When the liquid suffers a small displacement from equilibrium, we write

f (x, p) � f0(p)+ δf (x, bp) (4.9)

where f0(p) is the equilbrium distribution. In like manner, we write

ε(x, p) � ε0(p)+ δε(x, p) (4.10)

where ε0(p) corresponds to the equilibrium state. The change in excitation
energy is given by

δε(x, p) �
∫
K(p, p′)δf (x, p′)

2 dp′

h3
(4.11)

where K(p, p′) is the quasi-particle interaction function.
Let the liquid occupy the volume V . For the total energy of the liquid we

write UV so that U is energy density. The variation of U is then given by

δU �
∫
εδf

2 dp
h3

(4.12)

The quantity ε(x, p) plays the role of the Hamiltonian of a quasi-particle in
the field of other particles, and its as well as (4.12) are employed below to
construct an equation of motion for the distribution f .

Kinetic equation

A kinetic equation for quasi-particles in a Fermi liquid was presented by
Landau in 1957.47 It is given by48

∂f

∂t
+ ∂ε
∂p
· ∂f
∂x
− ∂ε
∂x
· ∂f
∂p
� Ĵ (f )

47L. D. Landau, J. Exp. Theor. Phys. (USSR) 32, 59 (1957). Repringed in, D.
Pines, The Many-Body Problem, W. A. Benjamin, Menlo Park, Calif. (1961).

48Note the resemblance between (4.13) and the Uehling-Uhlenbeck form (4.5).
See also, F. Bloch, Z. Physik 58, 555 (1929); 59, 208 (1930).
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Ĵ (f ) �
∫
w(p, p1; p′, p′1)[f ′f ′1(1− f )(1− f1] (4.13)

− ff1(1− f ′)(1− f ′1)]δ(ε + ε1 − ε′ − ε′1)

δ(p+ p1 − p′ − p′1) dp1 dp′ dp′1

Delta functions indicate that momentum and energy are conserved over a col-
lison. The function w gives the collision probability and obeys the symmetry
relation

w(p, p1; p′, p′1 � w(p′, p′1; p, p1)

That is, the probability of a collision and its reverse are equal.
As with the Uehling-Uhlenbeck collision term (4.5), the Landau form (4.13)

likewise ensures that collisions satisfy the exclusion principle relevant to
fermions. Note also that f in (4.13) is dimensionless.

The condition of statistical balance obtained from (4.13) again yields the
Fermi distribution (3.33a).

Conservation equations

Equations of motion for macroscopic variables in a Fermi liquid are obtained
by taking moments of (4.14). Integrating over momentum gives the continuity
equation

∂n

∂t
+∇ · n〈v〉 � 0 (4.14)

where n represents quasi-particle number density,

n �
∫
f (x, p)

2 dp
h3

(4.15)

and

n〈v〉 �
∫
f v

2 dp
h3

(4.16)

is particle flux, where we have set

v � ∂ε

∂p
(4.17)

for quasi-particle velocity.
Multiplying (4.13) by pi , and integrating gives

∂

∂t
n〈pi〉 +

∫
pi

(
∂f

∂xj

∂ε

∂pj
− ∂f

∂pj

∂ε

∂xj

)
2 dp
h3

� 0 (4.18)

The integrand in this expression may be rewritten

∂

∂xj

(
pi
∂ε

∂pj
f

)
+ f ∂ε

∂xi
− ∂

∂pj

(
pi
∂ε

∂xj
f

)
(4.19)
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Integration removes the last term. To transform the middle term, first, with
(4.12), we write

∂U

∂xi
�
∫
ε
∂f

∂xi

2 dp
h3

(4.20)

It follows that ∫
f
∂ε

∂xi

2 dp
h3

� ∂

∂xi
[n〈ε〉 − U ] (4.21)

where we have set

n〈ε〉 �
∫
εf

2 dp
h3

(4.22)

The relation (4.21) permits the middle term in (4.11) to be recast and (4.18)
becomes

∂

∂t
n〈pi〉 + ∂

∂xj

∏
ij

� 0 (4.23)

Here
∏
ij represents the momentum flux (or stress) tensor∏

ij

� n〈pivj 〉 + δij [n〈ε〉 − U ] (4.24)

Finally, we multiply (4.13) by ε and integrate. In like manner to (4.20), we
write

∂U

∂t
�
∫
ε
∂f

∂t

2 dp
h3

(4.25)

There results
∂U

∂t
+∇ · q � 0 (4.26)

where

q �
∫
εf v

2 dp
h3

(4.27)

represents the energy flux vector.
In this manner, we obtain the classical-like49 conservation equations relevant

to a Fermi liquid:

∂n

∂t
+∇ · n〈v〉 � 0

∂

∂t
n〈p〉 +∇ ·

∏̄
� 0 (4.28)

49The similarity of macroscopic equations in classical and quantum physics is
discussed in J. H. Irving and R. W. Zwanzig, J. Chem. Phys. 19, 1173 (1951).
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∂

∂t
U +∇ · q � 0

In the quantum equilibrium state, all three flux vectors in (4.28) vanish.

Zero sound

We wish to apply the kinetic equation (4.13) to small perturbations away from
equilibrium of a Fermi liquid at 0 K. If the frequency of the perturbation far
exceeds the collision frequency of quasi-particles, then we may neglect the
collision integral in (4.13). With this condition at hand, we obtain

∂δf

∂t
+ ∂ε0

∂p
· ∂δf
∂x
− ∂δεδ
∂x

· ∂f0

∂p
� 0 (4.29)

The quantitities δf and δε represent variations away from equilibrium, as in
(4.9) and (4.10).

At T � 0 K, we have

∂f0

∂p
� −nδ(p − pF ) � −vδ(ε − EF ) (4.30)

where n is a unit vector in the direction of p. We seek a wave solution in the
form

δf � δ(ε − EF )α(n)ei(k·v−ωt) (4.31)

where n is a unit vector in the direction of p, and α(n), which is to be de-
termined, represents displacement of the Fermi surface in the direction of n.
Combining the last three equations and recalling (4.11) for δε, we find

(ω − vFn · k)α(n) � v · k
∫
K(p, p′)α(n′)δ(ε − EF )

2 dp′

h3

where we have set

vF � ∂ε0

∂p

Again transforming to surface area in p-space [see equation following (3.39)],

dp � dSp dε|∇pε| �
dSp dε

v
� p

2 d�dε

v

permits the preceding equation to be written

(ω − vFn · k)α(n) � n · k 2p2
F

h3

∫
K(θ̄ )α(n′) d�′

Here we have written θ̄ for the angle between p and p′. With k taken as the
polar axis and setting

s ≡ ω

kvF
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gives

(s − cos θ )α(θ, φ) � cos θ
∫
K̄(θ̄ )α(φ′, φ′)

d�′

4π
(4.32)

where we have set

K̄ ≡ 2p2
F

h3
4πK (4.32a)

Let us examine the case that K̄ is constant and equal to the value K̄0. We may
then assume that the interaction integral in (4.32) is likewise independent of
angle. This gives the solution

α(θ ) � A cos θ

s − cos θ
(4.33)

where A is an arbitrary constant. The Fermi surface corresponding to this
solution is elongated in the direction of wave propagation.

Substitution of the trial solution (4.33) into (4.32) gives the condition

K̄0

∫ π

0

cos θ

s − cos θ

2π sin θ dθ

4π
� 1

Integration gives

1

2
s ln

s + 1

s − 1
− 1 � 1

K̄0

As s varies from 1 to infinity (corresponding to undamped waves), the left side
of the last equation varies from infinity to zero. It follows that waves exist only
for K̄0 > 0. In the limit of vanishing interactions, K̄0 → 0 and s tends to unity
corresponding to the zero sound speed ω/k � vF . For a moderately nonideal
Fermi fluid, the zero sound speed is vF /

√
3.50

5.4.3 H Theorem for Quasi-Classical Distribution

In this section we return to the quasi-classical Boltzmann equation (4.5) and
present a derivation of the related H theorem. The appropriately generalized
expression for entropy, S � −kBH, is given by51,52

S

kB
�
∑
i

gi[(fi ± 1) ln(1+ fi)− fi ln fi] (4.34)

In this expression, the sum is over all quantum states, gi denotes of the ith state,
and the + sign is relevant to bosons and the − sign is relevant to fermions.

50Yu. L. Klimontovich and V. P. Silin, Zh. Eksper. Teor. Fiz. 23, 151 (1952).
51K. Huang, Statistical Mechanics, p. 196, Wiley, New York (1967).
52A. Akhiezer and S. Peletminskii, Methods of Statistical Physics, p. 134,

Pergamon, Elmsford, N.Y. (1981).
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In the quasi-classical limit, the sum over discrete quantum states reduces to
an integral accordng to the rule∑

i

gi → 2V

h3

∫
dp (4.35)

Here we are assuming a spatially homogeneous system confined to the volume
V . Employing the preceding relation, (4.34) becomes

S

kB
� 2V

h3

∫
dp[(f ± 1) ln(1± f )− f ln f ] (4.36)

With this expression at hand, we recall the generalized Boltzmann equation
(4.5) and the relation (4.1):

DF

Dt
� Ĵ (f ) (4.37)

Ĵ (f ) ≡
∫
σ d�g dp1

h3
[f ′f ′1(1± f )(1± f1)− ff1(1± f ′)(1± f ′1)] (4.38)

The distribution functions in these equations are dimensionless.
Employing the relation

∂

∂y
[±(a ± f ) ln(a ± f )] � [1+ ln(a ± f )]

∂f

∂y
(4.39)

where a is a constant, indicates that to obtain an equation of motion for S, as
given by (4.36), we must multiply (4.37) from the left by

2V

h3

∫
dp{−(1+ ln f )+ [1+ ln(1± f )]}

There results

D

Dt

S

kB
� 2V

h3

∫
dp ln

(
1± f
f

)
Ĵ (f ) (4.40)

Recalling the Î operator (3.3.2),

Î (φ) ≡
∫
Ĵ (f )φ(p) dp (4.41)

[with Ĵ (f ) given by (4.38)] and repeating the symmetry operations (3.3.3 et
seq.), again we find

Î (φ) � Î (φ1) � −Î (φ′) � −Î (φ′1) (4.42)

which gives

Î (φ) � 1

4
[Î (φ)+ Î (φ1)− Î (φ′)− Î (φ′)]

(4.43)
Î (φ) � 1

4
Î (φ + φ1 − φ′ − φ′1)
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Substituting this result into (4.40) gives

D

Dt

S

kB
� V

2h3

∫
dpĴ (f )

[
ln

(
1± f
f

)
+ ln

(
1± f1

f1

)

− ln

(
1± f ′
f ′

)
− ln

(
1± f ′1
f ′1

)]
(4.44)

� V

2h3

∫
dpĴ (f )

[
ln

(
1± f
f

)(
1± f1

f1

)(
f ′

1± f ′
)(

f ′1
1± f ′1

)]

Substituting (4.38) for Ĵ (f ) and labeling

dp dp1σ d�g

h3
≡ dµ

we obtain
D

Dt

S

kB
� V

2h3

∫
dµ[f ′f ′1(1± f )(1± f1)− ff1(1± f ′)(1± f ′1)]

− ln

[(
1± f
f

)(
1± f1

f1

)(
f ′

1± f ′
)(

f ′1
1± f ′1

)]
(4.45)

Setting

f ′f ′1(1± f )(1± f1) ≡ X
ff1(1± f ′)(1± f ′1) ≡ Y

permits (4.45) to be written as

D

Dt

S

kB
� V

2h3

∫
dµ(X − Y ) ln

X

Y
≥ 0 (4.46)

which establishes the H theorem in the quasi-classical domain. Note also that
the implied equilibrium solution,X � Y , returns (4.7), which gives the correct
quantum equilibrium distributions (4.8).

5.5 Overview of Classical and Quantum Hierarchies53

5.5.1 Second Quantization and Fock Space

Consider the wave function relevant to N identical particles. In accord with
the Pauli principle, the appropriately symmetrized wave function is given by

|x1, . . . , xN ;N〉 � 1

N !

∑
P (1,...,N )

(±)P |x1, . . . , xN 〉 (5.1)

53An expanded presentation of these topics is given by G. K. Schenter, Thesis,
Cornell University, Ithaca, N.Y. (1988). For further discussion, see L. E. Reichl, A
Modern Course in Statistical Physics, University of Texas Press, Austin (1980).
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The ket vector |x1, . . . , xN 〉 on the right side of (5.1) is of arbitrary symme-
try. The sum is over N ! permutations of (1, . . . , N). The + and − signs are
appropriate to bosons and fermions, respectively.

Let the wave function relevant to nx particles at x, n′x particles at x′, and
so on, be written | . . . , nx, . . .〉F . The subscript F denotes that this wave func-
tion exists in Fock space. This is a space whose independent variables are
occupation numbers. The relation of this wave function to that given in (5.1)
is

|x1, . . . , xN ;N〉 �
√∏

x nx!

N !
| . . . , nx, . . .〉F

(5.2)
N �

∑
x

nx

The only occupation numbers in the right ket vector of (5.2) which are nonzero
are those with x-values equal to those in the left ket vector. The wave function
(5.2) may be generated by the field creation operator φ̂†(x). Thus

|x1, . . . , xN ;N〉 � 1√
N !
φ̂†(xN ) . . . , φ̂†(x1)|0〉F (5.3)

where |0〉F denotes the vacuum state. Note in particular that

φ̂†(x)| . . . , nx, . . .〉F �
√

1± nx| . . . , (1± nx), . . .〉F
(5.4)

φ̂(x)| . . . , nx, . . .〉F � √nx| . . . , (∓1± nx), . . .〉F
The operator φ̂†(x) creates a particle at x, whereas φ(x) annihilates a parti-
cle at x. These operators are appropriate to the representation called second
quantization.54 For fermions,nx � 0 or 1, whereas for bosons,nx � 0, 1, 2, . . .

Commutation relations of field operators are given by

[φ̂(x)φ̂†(y)∓ φ̂†(y)φ̂(x)] ≡ [φ̂(x), φ̂†(y)]∓ � δ(x − y) (5.5a)

where the upper sign corresponds to bosons and the lower sign to fermions.
The wave functions of (5.4) carry the following normalizations:

〈x1, . . . , xN |x′1 · · · x′N 〉 � δ(x1 − x′1) · · · δ(xN − x′N ) (5.5b)

〈· · · nx · · · | · · · n′x · · ·〉F � · · · δnx,n′x · · · (5.5c)

5.5.2 Classical and Quantum Distribution Functions

To this point in our discussion, we have encountered: (1) the classical
distribution function, fN (xN, pN, t), (2) the quantum mechanical density

54An overview of quantum kinetic theory in second quantization is given in T.-J
Lie and R. L. Liboff, Annals of Physics (1971).
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matrix

ρN (xN, yN, t) � 〈xN |ρ̂|yN 〉 (5.6)

and (3) the quantum mechanical Wigner distribution, FN (xN, pN, t).
With the preceding description of second quantization operators φ̂†(x) and

φ̂(x), we may introduce a fourth distribution-like form: (4) the N -particle F -

space operator ˆ̄GN (xN, yN, t), where F -space denotes Fock space. It is given
by55

ˆ̄GN (xN, yN, t) � φ̂†
H (y1) · · · φ̂†

H (yN )φ̂H (xN ) · · · φ̂H (x1) (5.7)

where φ̂H (x) has been written for

φ̂H (x, t) � e(iĤ t)/h̄φ̂(x)e−(iĤ t)/h̄ (5.7a)

which is the Heisenberg representation of φ̂(x) and Ĥ is the corresponding
N -body Hamiltonian in Fock space.

The equation of motion for φ̂H (x) is given by the Heisenberg equation of
motion (1.44):56

ih̄
∂φ̂H

∂t
� [φ̂H , Ĥ ] (5.8)

It should be noted that, whereas the distributions fN , ρn, FN are defined with

respect to a given number of N particles, ˆ̄GN is defined for unbounded N .

To obtain a relation between the F -space operator ˆ̄Gs(xs, ys, t) and the
density matrix ρs(xs, ys, t), we first note that reduced density operators obey
the relation

ρs � Tr(N−s) ρ̂N (5.9)

where Tr(N−s) denotes a trace over the (N − s) dimensions (s + 1, . . . , N).
Thus, for example in the coordinate representation,

ρs(xs, ys)�
∫
dxs+1 dys+1 · · · dxN dyNδ(xs+1−ys+1) · · · δ(xN−yN)ρN(xN, yN)

The presence of the delta functions in this relation indicates that the integral
is a trace operation.

At this point we introduce an s-particle observable equivalent operator. First
we recall that the N -body potential is written

VN �
N∑∑
i<j

uij (|xi − xj |)

55This operator is closely allied to the N -body Green’s function described in
Section 5.7.

56Note that in (5.8), the partial time derivative is used to distinguish between x
and t differentiation. It is not the same as that occurring on the right side of (1.44).
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where uij are two-body potentials. Motivated by this form we introduce the
s-particle operator

Â(s) �
N∑
· · ·

∑
il<···<is

Âil ···is (5.10)

The time-dependent expectation of Â(s) is given by

〈A(s)〉t � Tr(N )[ρ̂N (t)Â(s)]

�
(
N

s

)
Tr(s) ρ̂sÂ1...s

�
(
N

s

)∫
dxs dys〈ys |Â1···s |xs〉ρs(xs, ys, t) (5.11)

Here we have taken advantage of the symmetry of the system so that Â1·s
operates only on the first s particles of the N -particle sample.

In Fock space, the analogy of (5.10) is given by

Â(s) � 1

s!

∫
dxs dys ˆ̄Gs(xs, ys, 0)〈ys |Â1···s |xs〉 (5.12)

Stemming from the first equality in (5.11), we write

〈Â(s)〉t � Tr(N )[ρ̂N (t)Â(s)]

� Tr(N )[ρ̂N (0)eiĤN t/h̄Â(s)e−iĤN t/h̄] � Tr(N )[ρ̂N (0)Â(s)
H ] (5.13)

Here we have recalled that Tr[ÂB̂] � Tr[B̂Â]. Inserting (5.12) into (5.13) and
recalling (5.7) gives

〈Â(s)〉t � 1

s!

∫
dxs dys Tr(N )[ρ̂N (0) ˆ̄Gs(xs, ys, t)]〈ys |Â1···s |xs〉 (5.14)

Comparison of this latter result with (5.11) indicates that

ρs(xs, ys, t) � (N − s)!
N !

Tr(N )[ρ̂N (0) ˆ̄G(xs, ys, t)] (5.15)

which is the desired relation between the density matrix and ˆ̄Gs . Note, in

particular, that ˆ̄Gs determines the density matrix ρs , but the converse is not
true.

As an elementary example, consider the problem of obtaining ρ1(x, y, 0) for
a system of N particles in the pure state | . . . , nx, . . .〉. Writing ρ̂N (0) in the
projection representation (2.37), we obtain

ρ1(x, y, 0) � 1

N
Tr(N )[ρ̂N (0) ˆ̄G1(x, y, 0)]

� 1

N
Tr(N )[| . . . , nx, . . .〉〈. . . , nx, . . . |φ̂†

H (y)φ̂H (x)]
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� 1

N
[〈, . . . , nx, . . . |φ̂†

H (y)φ̂H (x)| . . . , nx, . . .〉] (5.16)

A nonzero result occurs only if x � y. Thus we find

ρ1(x, y) � nx

N
δx,y

This result has the proper normalization

Tr ρ1(x, y) � Tr
[nx

N
δx,y

]
�
∑

x

nx

N
� 1

As a second example of this formalism, let us apply (5.14) to evaluate the
average total two-body interaction potential

V̂ �
N∑∑
i>j

û(q̂i − q̂j )

Here q̂i represents the coordinate operator. Thus we must evaluate

〈y1y2|û(q̂1 − q̂2)|x1x2〉 � δ(y1 − x1)δ(y2 − x2)u(x1 − x2)

Substituting this result into (5.14), and with reference to (5.7), we find

〈V 〉t � 1

2!

∫ ∫ ∫ ∫
dx1 dx2 dy1 dy2 Tr(N )

[ρ̂N (0)φ̂†
H (y1, t)φ̂

†
H (y2, t)φ̂H (x2, t)φ̂H (x1, t)]

× δ(y1 − x1)δ(y2 − x2)u(x1 − x2) (5.17)

Again, as in (5.16), let ρ̂N (0) be relevant to a pure state. Substituting this form
into (5.17) gives

〈V 〉 � 1

2
dx1 dx2〈· · · , nx, . . . |
φ̂

†
H (x1, t)φ̂

†
H (x2, t)u(x1 − x2)φ̂H (x2, t)φ̂H (x1, t)| . . . , nx, . . .〉(5.18)

This integral may be further reduced by setting t � 0. With (5.4) there results

〈V 〉 � 1

2

∫ ∫
dx1 dx2 nx1nx2u(x1 − x2) (5.19)

which has a self-evident interpretation. Had we not worked in a pure state,
an additional probability factor would have appeared in the preceding integral
[see (2.36)], together with a sum over nx1 and nx2 .

Let us consider calculation of 〈H 〉t . With (5.13) we write

〈H 〉t � Tr[ρ̂(t)Ĥ ] � Tr[ρ̂(0)eiĤ t/h̄Ĥ e−iĤ t/h̄] � Tr[ρ̂(0)Ĥ ] � 〈H 〉0
Thus we find that 〈H 〉 is constant in time.
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5.5.3 Equations of Motion

We recall that the density operator and classical distribution function satisfy
similar equations, the Liouville equation (1.4.7) and its quantum analog (2.11),
[see (1.44)]

∂fN

∂t
� −[fN,H ] (5.20)

ih̄
∂ρ̂N

∂t
� −[ρ̂N , Ĥ ] (5.21)

The classical Hamiltonian for our system is given by

H (1, . . . , N) �
N∑
i�1

p2
i

2m
+

N∑∑
i<j

uij (|xi − xj ) ≡ KN + VN (5.22)

whereKN andVn are respective kinetic and potential energy terms. Substituting
the quantum analog of (5.22) into (5.21) and forming matrix elements gives

∂ρN (xN, yN )

∂t
� 1

ih̄
{[K̂N (xN )− K̂∗N (yN )]+ [V̂N (xN )− V̂ ∗N (yN )]}ρN (xN, yN )

(5.23)
The operators in (5.23) are give by

K̂N (xN ) �
N∑
i�1

K̂i(xi)

K̂i(xi) � − h̄
2

2m
∇2xi (5.24)

V̂N (xN ) �
∑∑
i<j

uij (|xi − xj |)

The equation of motion for the Wigner distribution, FN , is given by the
Wigner-Moyal equation (2.70):

∂FN

∂t
� −pN

m
· ∂FN
∂xN

+ 2

h̄
sin

(
h̄

2

∂

∂pN
· ∂
∂xN

)
VN (xN )FN (5.25)

As noted previously, momentum and space derivatives in the sine function
operate, respectively, on FN and VN .

To obtain the representation of the Hamiltonian (5.22) relevant to Fock
space, we note the following second quantization rules: With F̂ (x) andL(x, v)
representing one- and two-particle functions, respectively, we write

N∑
i�1

F̂ (xi) →
∫
dxφ̂+H (x)F̂ (x)φ̂H (x)

(5.26)
N∑∑
i<j

L(xi , xj ) → 1

2

∫ ∫
dx dyφ̂+H (x)φ̂+H (y)L(x, y)φ̂H (y)φ̂H (x)
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where φ̂H (x) is the time-dependent operator (5.7a). There results

Ĥ �
∫
φ̂

†
H (x)K̂(x)φ̂H (x) dx + 1

2

∫ ∫
φ̂

†
H (x)φ̂†

H (y)u(x, y)φ̂H (y)φ̂H (x) dx dy

(5.27)
As an elementary example of the workings of these operators, consider that
the double integral potential-energy operator in (5.27), which we label hQ,
operates on the ket vector

|0 . . . , 1′x, 0 . . . , 1y′, 0 · · ·〉 ≡ |1x′, 1y′ 〉
There results

Q̂|1x′, 1y′ 〉 �
[

1

2
u(x′, y′)+ 1

2
u(y′, x′)

]
|1x′, 1y′ 〉

� u(x′, y′)|1x′, 1y′ 〉

We turn next to construction of equations of motion for φ̂H (x) and ˆ̄GN . With
the Hamiltonian (5.27) at hand, we employ (5.8) first to obtain an equation of
motion for φ̂H (x). With the commutation relations (5.5), there results (see
Problem 5.46)

ih̄ φ̂H (x) � K̂(x)φ̂H (x)+
∫
φ̂

†
H (y)u(x, y)φ̂H (y)φ̂H (x) dy (5.28)

Employing this equation and the defining relation (5.7) gives the following

equation of motion for ˆ̄GN (xN, yN, t) (see Problem 5.47):

∂ ˆ̄GN
∂t

� 1

ih̄
{[K̂N (xN )− K̂∗N (yN )]+ [V̂N (xN )− V̂ ∗N (yN )]} ˆ̄GN (5.29)

Whereas this equation is equivalent in form to (5.23), we should bear in
mind that (5.29) is relevant to Fock space, where, as noted previously, N
is unbounded.

5.5.4 Generalized Hierarchies

In the following, we write zi for the single-particle state (xi , pi). Thus

DN � DN (z1, z2, . . . , zN ) ≡ DN (xN )

where DN is written for any of the preceding distributions. Reduced
distributions are given by

Ds(zs) �
∫
dµs+1 · · · dµNDN (zN ) (5.29a)

where the integration measure dµ is specific to the distribution at hand. In
the following, we assume that DN (zN ), as well as the Hamiltonian H (zN ), is
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symmetric with respect to zi , zj interchange. Furthermore, we take∫
[DN, K̂i]dµi � 0 (5.30a)∫

[DN,µij ] dµi dµj � 0 (5.30b)

With the preceding relations at hand, hierarchies stemming from the Liou-
ville equation (5.20), the density matrix equation (5.23), the Wigner–Moyal
equation (5.25), and the equation for the Fock space operator (5.29) are
obtained. We list first the hierarchy for the classical distributions:

∂fs

∂t
+

s∑
i�1

[fs,Ki]+
x∑∑
i<j

[fs, uij ]+ (N − s)
s∑
i�1

[fs+1, ui,s+1] dzs+1 � 0

(5.31)
[compare with (2.1.20)]. This equation poses as a generic form for quantum
heirarchy equations as well. Thus, withDs representing any of the distribution
functions considered, we write

∂fs

∂t
+

s∑
i�1

βiDs +
x∑∑
i<j

γijDs +
s∑
i�1

(N − s)
∫

[Ds+1, ui,s+1] dµs+1 � 0

(5.32)
The αs , βi , γij , and dµs+1 terms are listed in Table 5.3 relevant to the specific
case at hand. Here are some comments concerning the various hierarchies in
Table 5.3.

In the equation for Fs(xs, ps), first note that(
∂

∂pi
· ∂
∂xi
+ ∂

∂pj
· ∂
∂xj

)
uij �

(
∂

∂pi
− ∂

∂xi

)
· ∂
∂xi
uij

This relation gives the correct correspondence between case (a) and (c) in the
classical limit, h̄→ 0. As in the example following (5.9), the delta functions
in dµs+1 stem from the trace operation in (5.9).

For a specific example from Table 5.3, we consider the hierarchy equations
for the Wigner distribution. It appears as

∂Fs

∂t
+

s∑
i�1

pi
m
· ∂Fs
∂xi

−
x∑∑
i<j

2

h̄
sin

[
h̄

2

(
∂

∂pi
· ∂
∂xi
+ ∂

∂pj
· ∂
∂xj

)]

× uij (|xi − xj |)Fs(xs, ps)+
s∑
i�1

(N − s)
∫

[Fs+1, ui,s+1] dxs+1 dps+1 (5.33)

As in (2.71), in the double sum in (5.33), the ∂/∂x operators in the sine function
operate only on uij .

In obtaining the hierarchy for ˆ̄Gs , the equation of motion (5.29) was applied

to ˆ̄Gs as given by (5.7).
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TABLE 5.3. Elements of Classical and Quantum Hierarchies with Reference to the Generic Equation (5.32)

Case Ds βi γij dµs+1

a fs(xs , ps)
pi
m
· ∂
∂xi

−∂uij
∂xi

·
(
∂

∂pi
− ∂

∂pj

)
dxs+1dps+1

b ρs(xs , ys) − 1

ih̄
[K̂i(xi)− K̂∗

i (yi)] [ûij (xi , xj )− û∗ij (yi , yj )] dxx+1 dyx+1 δ(xs+1 − ys+1)

c Fs(xs , ps)
pi
m
· ∂
∂xi

−2

h̄
sin

[
h̄

2

(
∂

∂pi
· ∂
∂xi
+ ∂

∂pj
· ∂
∂xj

)]
uij dxs+1dps+1

d ˆ̄Gs(xs , ys) − 1

ih̄
[K̂i(xi)− K̂∗

i (yi)] [ûij (xi , xj )− û∗ij (yi , yj )]
1

N − s dxx+1 dyx+1 δ(xs+1 − ys+1)

(a) Classical distribution; (b) density matrix; (c) Wigner distribution; (d) s-particle F -space operator
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As noted above, the hierarchies for ρs and ˆ̄Gs are nearly identical in form.
However, as seen from the generic relation (5.32), at s � N a closed equation

for ρN results. This is not true for the Fock-space operator ˆ̄Gs . The particle
number N is unbounded in this case, as are the number of equations in the
hierarchy for this operator.

5.6 Kubo Formula Revisited

Having discussed second quantization in Section 5.1, we return to Kubo’s
formula (3.4.67) and develop a quantum expression for electrical conductivity.

5.6.1 Charge Density and Current

The Hamiltonian for a particle of charge e and mass m in an electromagnetic
field is given by [recall (1.1.16)]

Ĥ � 1

2m

[
p̂ − e

c
A(x, t)

]2
+ e (x, t) (6.1)

Working in coordinate representation, together with the time-dependent
Schrödinger equation, we obtain

∂ρ

∂t
+∇ · J � 0 (6.2)

where

ρ � eψ∗ψ (6.3)

J � eh̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)− e2

mc
Aψ∗ψ (6.4)

We may view (6.1) as consisting of an unperturbed free-particle component
Ĥ0 and perturbed component V̂ so that

Ĥ � Ĥ0 + V̂ (6.5)

where

H0 � p2

2m
(6.5a)

V̂ � −e
2mc

(p̂ · A+ A · p̂)+ e2

2mc2
A2 + e (6.5b)

In second quantized coordinate representation appropriate to Fock space,
(6.5a,b) become

Ĥ0 � −
∫
ψ̂† h̄

2m
∇2ψ̂ dx (6.6a)
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V̂ �
∫ { −eh̄

2mic
[ψ̂†∇ · (Aψ̂)+ ψ̂†A ·∇ψ̂]+ e2

2mc2
A2ψ̂†ψ̂ + e ψ̂†ψ̂

}
dx

(6.6b)

where

ψ̂† � ψ̂†(x), ψ̂ � ψ̂(x)

Recall that the wave functions for these operators obey the properties (5.4).
Stemming from (6.4), we write

Ĵ � Ĵ(0) − e2

mc
Aψ̂†ψ̂ (6.7)

where

Ĵ(0) � eh̄

2mi
[ψ̂†(∇ψ̂)− (∇ψ̂†)ψ̂] (6.8)

This latter expression permits (6.6b) to be written

V̂ �
∫ (

−1

2
Ĵ(0) · A+ e2

2mc2
A2ψ̂†ψ̂ + e ψ̂

)
dx (6.9)

5.6.2 Identifications for Kubo Formula

With these expressions at hand, we return to the Kubo formula and identify
terms for the purpose of obtaining an expression for electrical conductivity.
Employing (3.4.63) and (3.4.67) and assuming that 〈B〉0 �� 0, we write the
quantum version of the Kubo formula:

〈B〉 − 〈B〉0 �
∫ t

0

1

ih̄
Tr{ρ̂(0)[ ˆ̄H, B̂(t − t ′)]}F (t ′)dt ′ (6.10)

where B̂(t) is given by the quantum analog of (3.4.55),

B̂(t) � exp

(−t
ih̄

[Ĥ0, ]

)
B̂ ≡ exp(−t ˆ̂S)B̂ (6.11)

which serves to identify the superoperator ˆ̂S.57 The exponential commutator
operator in (6.11) was defined previously by (1.4.20).

The following three relations allow (6.10) to be written in a more concise
form. First we note that with [ρ̂(0), Ĥ0] � 0 we may write

e−t
ˆ̂
Sρ̂(0) � ρ̂(0) (6.12a)

The second relation is given by (see Problem 5.31)

Tr{(e−t ˆ̂SÂ)(e−t
ˆ̂
SB̂) � Tr{ÂB̂} (6.12b)

57Superoperators operate on operators.



5.6 Kubo Formula Revisited 405

and the third by

e−t
ˆ̂
S[Â, B̂] � [Â(t), B̂(t)] (6.12c)

Applying the latter three relations to (6.10), we obtain

〈B〉 − 〈B〉0 �
∫ t

0

1

ih̄
Tr{ρ̂(0)[ ˆ̄H (t ′), B̂(t)]}F (t ′)dt ′ (6.13)

With the identifications

ˆ̄H (t)F (t) → 7− haV (t)

B̂(t) → Ĵ(t)
(6.14)

(6.13) becomes

〈J〉 − 〈J〉0 � 1

ih̄

∫ t

0
Tr{ρ(0)[Ĵ(t), V̂ (t ′)]}dt ′ (6.15)

where 〈L〉0 represents current flow in equilibrium.

5.6.3 Electrical Conductivity

Substituting (6.7) through (6.9) for Ĵ and V̂ into the preceding expression, we
find

〈J〉 − 〈J〉0 � 1

ih̄

∫ t

0
dt ′ Tr

{
ρ̂(0)

[
Ĵ(0)(x, t)− e2

mc
A(x, t)ψ̂†(x, t)ψ̂(x, t)

×
∫
dx′

(
− 1

c
Ĵ(0)(x′, t ′) · A(x′, t′)

+ e2

2mc
A2(x′, t′)ψ̂†(x′, t ′)ψ̂(x′, t ′)

+ e (x′, t ′)ψ̂†(x′, t ′)ψ̂(x′, t ′)
)]}

(6.16)

Working in the Coulomb gauge,

∇ · A � 0,  � 0 (6.17a)

with

E � −1

c

∂

∂t
A, B � ∇× A (6.17b)

and neglecting terms of 0(A2), (6.16) reduces to

〈J〉 − 〈J〉0 � i

h̄c

∫ t

0
dt ′

∫
dx′ Tr{ρ̂(0)[Ĵ(0)(x, t), Ĵ (0)

β (x′, t ′)]}Aβ(x′, t ′) (6.18)

where subscript β represents Cartesian components and is summed from 1 to
3. We note that the time integral of the α component of (6.18) may be rewritten
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as

〈Jα〉 − 〈Jα〉0 � i

h̄c

∫ ∞

−∞
dt ′

∫
dx′θ (t − t ′) Tr{· · ·}θ (t)Aβ(x′, t ′) (6.19)

where

θ (t ≥ 0) � 1 and θ (t < 0) � 0

To bring (6.18) closer to the form of Ohm’s law, we assume that

i

h̄c
θ (t − t ′) Tr{ρ̂(0)[Ĵ (0)

α (x, t), Ĵ (0)
β (x′, t ′)]} ≡ Qαβ(x − x′, t − t ′) (6.20a)

and that

θ (t)A(x, t) � A(x, t) (6.20b)

Inserting these values into (6.19) gives

〈Jα〉(x, t)− 〈Jα〉(x, t) �
∫ ∞

−∞
dt ′

∫
dx′Qαβ(x− bx ′, t− t′)Aβ(x′, t ′) (6.21)

We recognize this to be convolution integral, in which case the transform of
(6.21) becomes

〈Jα〉(ω, k) � 〈Jα〉0(ω, k)+Qαβ(ω, k)Aβ(ω, k) (6.21a)

where

A(x, t) �
∫ ∫

dk dω
(2π )4

e−iωt+ik·xA(ω, k)

With (6.17b), we may write

E(ω, k) � iω
c

A(ω, k) (6.22)

Substituting this transform into (6.21a) gives

〈Jα〉(ω, k) � 〈Jα〉0(ω, k)+ c

iω
Qαβ(ω, k)Eβ(ω, k) (6.23)

The first term on the right may be further reduced as follows. Recalling (6.7),
we write

〈J〉0 � Tr{ρ̂(0)Ĵ } � Tr{ρ̂0Ĵ
(0)} − e2

mc
Tr{ρ̂0Aψ̂†ψ̂}

� 〈J(0)〉0 − e2

mc
Tr{ρ̂0Aψ̂†ψ̂} (6.24)

It is evident for (6.7) that 〈J 0〉0 is the equilibrium value of current with fields
turned off. Without loss in generality, we may set this term equal to zero.
Consider the remaining term in (6.24), which contains the form

Tr{ρ̂0Aψ̂†ψ̂} ≡ n(x, t)
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where n(x, t) represents particle number density. The remaining term in (6.23)
may then be written

e2

mc
n(x, t)A(x; t)

The transform of this product is the convolution integral

e2

mc

∫ ∫
dk dω
(2π )4

n(ω − ω′, k − k′)A(ω′, k′)

In the homogeneous limit

n(ω − ω′, k − k′) � (2π )4n0δ(ω − ω′)δ(k − k′)

Recalling (6.22), the preceding expression then reduces to

e2

mc
n0A(k, ω) � e2

mic
n0E(ω, k) (6.25)

Substituting (6.24) in (6.23) with 〈J(0)〉0 � 0 and the remaining term transferred
as given by (6.25), we obtain

〈Jα〉(ω, k) �
[
c

iω
Qαβ(ω, k)− δαβ e

2

mic
n0

]
Eβ(ω, k) (6.26)

This relation is a tensor form of Ohm’s law,

〈J〉 � ¯̄σαβE (6.27)

[compare with (3.41)], and we may write

σαβ � σ̂αβ + δαβσ0 (6.28)

The terms in (6.26) may be identified by comparison with (6.24), with Qαβ
given by (6.20a).

5.6.4 Reduction to Drude Conductivity

The relation (6.26) may be reduced to the Drude formula (3.4.14) as follows.
First we neglect the off-diagonalQαβ terms in (6.26). To incorporate collisions,
we set

iω→ iω→ v (6.29)

where, again, v represents collision frequency. In the dc limit, ω � 0, and
(6.28) reduces to

σ � e
2n0

vm
(6.30)

in agreement with (3.4.14) [as well as with (3.7.65)].58

58In these formulas, conductivity was labeled σc
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5.7 Elements of the Green’s Function Formalism

The quantum mechanical Green’s function comes into play in two classes of
problems:

1. In constructing solutions to the Schrödinger equation for an isolated
collection of few particles.59

2. In calculating average properties of many-body systems.60

As well be found below, for case 2, a significant property of the Green’s function
is that it gives few-particle properties of a many-body system. Out discussion
begins with a brief review of topic 1.

5.7.1 Schrödinger Equation Green’s Function

This Green’s function enters in constructing solutions to equations of the form

R̂ψ(x, t) � I (x, t) (7.1)

where R̂ typiclly is a linear differential operator and I (x, t) is a given inho-
mogeneous term. The Green’s function corresponding to (7.1) satisfies the
equation

R̂(x, t)G(x, t ; x′, t ′) � δ(x − x′)δ(t − t ′) (7.2)

If G is known, then the solution to (7.1) is given by

ψ(x, t) �
∫ ∫

G(x, t ; x′, t ′)I (bx ′, t ′) dx′ dt ′ (7.3)

which is readily seen to be a solution if this expression is substituted into (7.1).
Application of the Green’s function to quantum theory is chiefly perturva-

tive. Consider the Schrödinger equation for a single particle in a potential field
V (x): (

ih̄
∂

∂t
+ h̄2

2m
∇2

)
ψ(x, t) � V (x)ψ(x, t) (7.4)

59See, for example, E. Marzbacher, Quantum Mechanics, 2nd ed., Wiley, New
York (1970).

60For further discussion, see P. H. E. Meijer, Quantum Statisical Mechanics, Gor-
don and Breach, New York (1966); L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics, W. A. Benjamin, Menlo Park, Calif., (1962); E. Em. Lifshitz an dL. P.
PEtaevskii, Physical Kinetics, Pergamon Press, Elmsford, N.Y. (1981); and A. L.
Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems, McGraw-hill,
New York (1978).
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For weak interaction, the lowest-order solution to (7.4) is given by the free-
particle equation (

ih̄
∂

∂t
+ h̄2

2m
∇2

)
ψ0(x, t) � 0 (7.5)

The second-order solution satisfies the equation(
ih̄
∂

∂t
+ h̄2

2m
∇2

)
ψ1(x, t) � V (x)ψ0(x, t) (7.6)

which has the structure of (7.1). Thus we may write[
ih̄
∂

∂t
+ h̄2

2m
∇2 ± iε

]
G

(0)
R

A

(x, t ; x′, t ′) � δ(x − x′)δ(t − t ′) (7.7)

where ε is an infinitesimal parameter of smallness that is evertually set equal to
zero and, as we will see, ensures the boundedness of the transform ofG(x, t).
We have also writtenGR,GA for the retarded and advanced Green’s functions
and corresponding to +iε and −iε in (7.7), respectively. This terminology
is motivated belwo. The zero superscript on G(0)

R

A

indicates that it is the free-

particle Green’s function.

Transformed Green’s function

The Fourier transform of G(0)
R

A

is given by

G
(0)
R

A

(x, t ; x ′, t ′) �
∫ ∫

dω

2π

dk
(2π )3

e−iω(t−t ′)ik·(x−x′)G̃
(0)
R

A

(k, ω) (7.8)

Taking the transform of (7.7) gives (where the limit ε→ 0 is understood)(
h̄ω − h̄

2k2

2m
± iε

)
G̃

(0)
R

A

(k, ω) � 1 (7.9)

Separating solutions and subtracting, we obtain

[G̃(0
R − G̃(0

A ] � lim
ε→0

[
1

h̄ω − (h̄2k2/2m)+ iε −
1

h̄ω − (h̄2k2/2m)− iε
]

(7.10)

Now recall the relation [preceding (2.84)]

lim
ε→0

1

x ± iε � P
(

1

x

)
∓ iπδ(x) (7.11)

where P denotes principal part. Employing this relation in (7.10) gives

A0(k, ω) ≡ i[G̃(0)
R − G̃(0)

A ] � 2πδ

(
h̄ω − h̄

2k2

2m

)
(7.12)

This form is generally known as the spectral function as it displays the
dispersion relation of ω and k.
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5.7.2 The s-Body Green’s Function61

The s-body Green’s function Gs , relavant to a many-body system is given by
the following form written in second quantization:

ish̄Gs(1, . . . , s; 1′, . . . , s ′) � 〈T̂ [φ̂H (1) · · · φ̂H (s)φ̂†
H (s ′) · · · φ̂†

H (1′)]〉 (7.13)

where

(j ) ≡ (xj , tj ) (7.13a)

and T̂ is the time-ordering operator:

T̂ [φ̂H (t1)φ̂†
H (t2)] �

{
φ̂H (t1)φ̂†

H (t2) t1 > t2

±φ̂†
H (t2)φ̂H (t1) t2 > t1

(7.14)

which ensures that operators in (7.13) are chronologically ordered with the
earliest operator acting first. We recall that φ̂H satisfies the equation of motion
(5.8). The signs + and − refer to bosons and fermions, repectively. The latter
relation may alternatively be written

T̂ [φ̂H (t1)φ̂†
H (t2)] � θ (T1 − t2)φ̂(t1)φ̂†

H (t2)± θ (t2 − t1)φ̂†
H (t2)φ̂H (t1) (7.15)

where θ (x) was introduced previously [beneath (6.19)]. Note that the
dimensions of h̄Gs are (volume)−s .

The average in (7.13) is written with respect to an N -body system in the
Heisenberg representation and is given by (5.13):

〈�̂〉 � Tr(N )[ρ̂N (0)�̂] (7.16a)

Working in Fock space, we obtain

〈�̂〉 �
∑
n,n′
〈n| ρ̂N (0)

∣∣n′〉 〈n′∣∣ �̂ |n〉 (7.16b)

where |n〉 represents the many-body ket vector on the right side on (5.2).

5.7.3 Averages and the Green’s Function

In this section we wish to obtain a relation between the average of a s-particle
dynamical variable and the Green’s function (7.13). Toward these ends, we

note that the Fock-space operator, ˆ̄Gs , defined by (5.7), is closely allied to the

61The many-body Green’s function was originally formulated for relativistic quan-
tum field theory where the use of multiple times is well motivated. See S. S. Schweber,
An Introduction to Relativisitic Quantum Field Theory, Harper & Row, New York
(1961). This analysis has found use in nonrelativisitic many-body theory as well.
See, for example, H. Haken, Quantum Field Theory of Solids, North Holland, New
York (1976); and C. Kettel, Quantum Theory of Solids, Wiley, New York (1963).
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Green’s function (7.13). The average of an s-particle dynamical variable is
given by (5.14). This expression involves the form

Tr(N )[ρ̂N (0) ˆ̄Gs(xs, ys, t)] � 〈 ˆ̄Gs(xs, ys, t)〉 (7.17)

To relate this to the Green’s function (7.13), first we make the notational change
xs � xs , ys � x′s and let variables include time so that (5.7) becomes

ˆ̄Gs(xs, x′s) � φ̂†
H (1′) · · · φ̂†

H (s ′)φ̂H (s) · · · φ̂H (1) (7.18)

where again we have set (j ) � (xj , tj ) with

t ′1 � t ′2 � · · · � t ′s � t1 � t2 � · · · � t
The form (7.18) can be made congruent with (7.13) if in the latter we set

t ′1 > t
′
2 > · · · > t ′s > ts > · · · > t1 � t

Let LIM represent the process

lim
ε→0



t ′i � t ′i+1 + ε
t ′s � ts + ε
ti � ti−1 + ε
t1 � t




this limiting process brings the ordering of variables in (7.17) in agreement
with those in (7.13), and we may write

〈ish̄LIM ˆ̄Gs(xs, x′s, t)〉 � ish̄Gs(xs, x′s, t) (7.19)

Note in particular that averages of one-body observables such as particle mo-
mentum stem fromG1(1, 1′), whereas averages of two-body observables such
as pair potential stem from G2(1, 2, 1′, 2′), and so on.

Combining the preceding results, we write [recall (5.14)]

〈A(s)〉 � 1

s!

∫
dxs dx

′s ish̄Gs(xs, x
′s, t)〈x ′s |A1 · · · s|xs〉 (7.20)

Note in particular that the s-dimensional summation in (5.10) is absorbed in
the integral of (7.20).

Let us employ (7.20) to calculate (1) the total momentum and (2) the total
potential energy of an N -particle system. For total momentum,

P̂ �
N∑
i�1

p̂i

and (7.20) gives

〈P̂〉 �
∫
dx1 dx′1ih̄G1(x1, x′2, t)〈x′1|p̂1|x1〉 (7.21)
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The coordinate representation of p̂1 is [recall (1.27)]

〈x′1|p̂1|x1〉 � −ih̄ ∂
∂x1
δ(x′1 − x1)

Integrating (7.21) by parts we then obtain

〈P̂〉 � −(ih̄)2

∫
dx1 dx′1

(
∂

∂x1
G1(x1, x′1, t)

)
δ(x′1 − x1)

� −(ih̄)2

∫
dx1

∂

∂ x̄1
G1(x̄, x1, t)

∣∣∣∣
x̄1�x1

(7.21a)

Our second example addresses total potential energy:

V̂ �
N∑∑
i<j

uij (x̂i , x̂j )

Again employing (7.20) and dropping the subscripts on uij , we find (with
s � 2)

〈V 〉 � 1

2

∫
dx1 dx2 dx′1 dx′2i

2h̄G2(x1, x2, x′1, x
′
2, t)〈x′1x′2|u(x̂1, x̂2)|x1x2〉

� −h̄
2

∫
dx1 dx2 dx′1 dx′2G2(x1, x2x′1, x

′
2, t)u(x′1, x

′
2)δ(x′1 − x1)δ(x′2 − x2)

(7.22)

which reduces to

〈V 〉 � −h̄
2

∫
dx1 dx2G(x1, x2, x1, x2, t)u(x1, x2)

Substituting the defining relation (7.19) into the preceding gives

〈V 〉 � 1

2

∫
dx1 dx2〈φ̂†

H (x1)φ̂†
H (x2)φ̂H (x2)φ̂H (x1)〉u(x1, x2) (7.23)

which agrees with our previous finding (5.18).
The preceding two example illustrate the manner in which the Green’s

function determines one- and two-particle properties of a many-body system.

Compilation of relations

One also defines the Green’s functions (dropping the subscript on G1)

G(1, 1′) � G>(1, 1′), for t1 > t1′

G(1, 1′) � G<(1, 1′), for t1 < t1′
(7.24)

Note in particular that number density may be written

〈n(x, t)〉 � lim
ε→0
〈φ̂†
H (x, t + ε)φ̂H (x, t)〉

� ±ih̄G<(1, 1) (7.25)
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Here is a compliation of relations among the assorted Green’s functions
introduced to this point.

G>(1, 2) � 1

ih̄
〈φ̂H (1)φ̂†

H (2)〉 (7.26a)

G<(1, 2) � ± 1

ih̄
〈φ̂†
H (2)φ̂H (1)〉 (7.26b)

G(1, 2) � θ (t1 − t2)G>(1, 2)+ θ (t2 − t1)G<(1, 2) (7.26c)

G>(1, 2) + G(1, 2) � 1

ih̄
〈[φ̂H (1), φ̂†

H (2)]±〉 (7.26d)

G>(1, 2) − G<(1, 2) � 1

ih̄
〈[φ̂H (1), φ̂†

H (2)]∓〉 (7.26e)

GR(1, 2) � θ (t1 − t2)[G>(1, 2)−G<(1, 2)] (7.27a)

GA(1, 2) � θ (t2 − t1)[G<(1, 2)−G>(1, 2)] (7.27b)

G>(1, 2) − G<(1, 2) � GR(1, 2)−GA(1, 2) (7.28)

5.7.4 The Quasi-Free Particle

In this and the following section we see how the Green’s function is related
to distribution functions of momentum. Consider the operators φ̂(x) and φ̂†(x)
given in (5.4). Fourier analyzing these operators gives

φ̂(x) �
∫

dk
(2π )3

eik·xâ(k) (7.29a)

φ̂†(x) �
∫

dk
(2π )3

eik·xâ†(k) (7.29b)

where, with (5.5a), we write

[â(x), â†(k′)]mp � (2π )3δ(k − k′) (7.30)

The signs (−,+) refer respectively to bosons and fermions.
Note that in this representation the Hamiltonian of a free particle may be

written

Ĥ0 �
∫

dk
(2π )3

h̄2k2

2m
â†(k)â(k) (7.31)

For a quasi-free particle, we write

Ĥ �
∫

dk
(2π )3

E(k)â†(k)â(k) (7.32)

which is a good approximate Hamiltonian for the actual system.
Stemming from the Heisenberg equation of motion (5.8), the relation (7.32)

gives (see Problem 5.32)

φ̂H (x, t) �
∫

dk
(2π )3

e−(i/h̄)E(k)t+ik·xâ(k) (7.33)
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We recall that 〈a†(k)a(k)〉 represents the number of particles with momentum
k. For a spatially uniform system, we may write

〈â†(k)â(k′)〉 � (2π )3δ(k − k′)f (k) (7.34a)

from which, with (7.30), we obtain

〈â(k)â†(k′)〉 � (2π )3δ(k − k′)[1± f (k)] (7.34b)

where f (k) represents the one-particle distribution function in k space. These
findings are used below.

5.7.5 One-Body Green’s Function

To obtain the related one-particle Green’s function, we recall (7.13) with s � 1
and (7.15) to obtain

ih̄G(x, t ; x′, t ′) � θ (t − t ′)〈φ̂H (x, t)φ̂†
H (x′, t ′)〉 ± (t ′ − t)〈φ̂†

H (x′, t ′)φ̂H (x, t)〉
(7.35)

Substituting (7.33) into this equation, together with (7.34), we find

ih̄G(x, t ; x′, t ′) �
∫

dk
(2π )3

exp

{
ik · (x − x′)− i

h̄
E(k)(t − t ′)

}
× {θ (t − t ′)[1± f (k)]± θ (t ′ − t)f (k)} (7.36)

Now note the repesentation of θ (t − t ′) ≡ θ (τ ):

θ (±τ )e(−iEτ )/h̄ � lim
ε→0

(±ih̄)
∫
dω

2π

eiωτ

h̄ω − E ± iε (7.37)

Substituting this representation into (7.36), we find

G(x, t ; x′, t ′) �
∫ ∫

dk
(2π )3

dω

2π
exp{ik ·(x−x′) � iω(t−t ′)}G(k, ω) (7.38)

G(k, ω) � lim
ε→0

[
1± f (k)

h̄ω − E(k)+ iε ∓
f (k)

h̄ω − E(k)− iε
]

(7.39)

This equation gives the desired relation between the one-body Green’s function
G(k, ω) and the one-body distribution function f (k) with normalization.

V

∫
f (k)

dk
(2π )3

� N (7.39a)

where N is total number of particles and V is volume.
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5.7.6 Retarded and Advanced Green’s Functions

Retarded and advanced one-body Green’s functions are given by

GR(1, 1′) � θ (t1 − t1′) 1

ih̄
〈[φ̂H (1), φ̂†

H (1′)]mp〉
(7.40)

GA(1, 1′) � θ (t1 − t1′)
(
− 1

ih̄

)
〈[φ̂H (1), φ̂†

H (1′)]mp〉

where, again, averages are with respect to an N -body system and are given by
(7.16). For the quasi-free-particle problem considered above, we find

GR

A
(ω, k) � lim

ε→0

(
1

h̄ω − E(k)± iε
)

(7.41)

which, for a free particle, agrees with (7.9) relevant to a single-particle system.
Note that the Green’s function (7.41) obeys the equation

[h̄ω − E(k)]G(k, ω) � 1 (7.42)

Again, for a free particle, with

E(k) � h̄
2k2

2m

the Fourier inversion of (7.42) returns (7.7).
Let us return to the motivation for advanced and retarded terminology intro-

duced above. With (7.37), we see that +iε, −iε in the integral representation
of the θ function corresponds to t > 1′ and t < t ′, respectively, in the Green’s
function expression (7.35). If we revert back to (7.7), it is evident that t ′ may
be associated with a source. Thus the Green’s function in the interval t < t ′

describes a response prior to the source being turned on and is called advanced.
For the case t > t ′, the Green’s function obeys causality and the response is
retarded in time with respect to the source.

5.7.7 Coupled Green’s Function Equations

In this section we construct an equation of motion for the one-body Green’s
function, which, we will be seen is dependent on the two-body Green’s func-
tion. The analysis begins with (5.28) [dropping the hat and H subscript on
φ̂H (x, t)]; we write(

ih̄
∂

∂t1

)
φ(1) �

∫
dx2φ

†(2)u(x1, x2)φ(2)φ(1)

∣∣∣∣
t2�t1

(7.43)

where, again, we are using the notation of (7.13a).
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Now we note the relation (see Problem 5.34) relevant to differentiation of
time-ordered products:

∂

∂t1
[T̂ φ(1)φ†(1′)]

� δ(1− 1′)± θ (t1′ − t1)φ†(1′)
∂φ(1)

∂t
+ θ (t1 − t1′)∂φ(1)

∂t1
φ†(1′) (7.44)

where again the + sign refers to bosons and the − sign to fermions, and we
have set

δ(1− 1′) � δ(x − x′)δ(t − t ′)
Employing (7.43) for the time derivative terms in (7.44), after some

rearrangement we obtain(
ih̄
∂

∂t1
+ K̂1

)
[T̂ φ(1)φ†(1′)] � ih̄δ(1− 1′)

±
∫
dx2 u(x1, x2)[T̂ φ(1)φ(2)φ†(2+)φ†(1′)]

∣∣∣∣
t2�t1

(7.45)

The time t+2 of φ† is infinitesimally greater than t2 in order to maintain the
order of operators in (7.43). From the defining relations (7.13), we write

ih̄G1(1, 1′) � 〈T̂ φ(1)φ†(1′)〉
−h̄G2(1, 2; 1′, 2′) � 〈T̂ φ(1)φ(2)φ†(2′)φ†(1′)〉 (7.46)

Constructing the average of (7.45) and substituting the preceding definitions
gives the desired result:(
ih̄
∂

∂t1
+ K̂1

)
G(1, 1′) � δ(1− 1′)± i

∫
dx2 u(x1, x2)G(1, 2; 1′, 2+)

∣∣∣∣
t1�t2

(7.47)
Note in particular that when particles become isolated, u(x1, x2) → 0, and
(7.47) returns (7.7) relevant to a free particle. Note further that carrying out
the LIM process defined in (7.19) returns the first equation in the hierarchy for
ˆ̄Gs , as given in Table 5.2 (see Problem 5.35).

5.7.8 Diagrams and Expansion Techniques

We continue this section with a brief discussion of diagrammatic represen-
tations of equations of motion for Green’s functions. Toward these ends,
(7.57) must be rewritten in a form that better lends itself to diagrammatic
interpretation.
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Consider first that the interaction in (7.47) is turned off. The resulting free-
particle equation may then be written∫

G−1
0 (1, 1′′)Go(1′′, 1′) d1′′ � δ(1− 1′) (7.48)

where G0(1, 1′) is the solution to the free-particle equation and

G−1
0 (1, 1′′) �

(
ih̄
∂

∂t1
+ K̂1

)
δ(1− 1′′) (7.49)

Let us further define

U (1, 2) ≡ u(x1, x2)δ(t1 − t2) (7.49a)

With the preceding identifications, (7.47) may be rewritten (see Problem 5.37)∫
d2G−1

0 (1, 2)G(2, 1′) � δ(1− 1′)± i
∫
d2U (1, 2)G(1, 2; 1′2+) (7.50)

Operating on this equation with
∫
d1G0(3, 1) gives

∫ ∫
d1 d2G0(3, 1)G−1

0 (1, 2)G(2, 1′)

�
∫
d1G0(3, 1)δ(1− 1′)± i

∫
d1 d2G0(3, 1)U (1, 2)G(1, 2; 1′2+)

which, with (7.48), gives the desired relation (exchanging 1 and 3):

G(1, 1′) � G0(1, 1′)± i
∫ ∫

d2 d3G0(1, 3)U (2, 3)G(3, 2; 1′, 2+) (7.51)

This equation is the starting point for our description of diagrammatic rep-
resentation of terms, which is described in Table 5.4. Note that in the box
diagram a dashed line represents the interaction U (1, 2) and implies integra-
tion. The direction of an arrow is associated with the order of arguments in
the related Green’s function. With these rules at hand, (7.51) has the following
diagrammatic equivalent:

(7.51a)
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TABLE 5.4. Fundamental Green’s Function Diagrams

Term Diagram

G(1; 1′)
G0(1; 1′)

∫
d1 d2U (1, 2)G(1, 2; 1′, 2+)

The diagrammatic representation for the equation of motion forG(1,2; 1′,2′)
is given by

(7.52)
The equation corresponding to this representation is given by

G(1, 2; 1′, 2′) � h̄G0(1, 1′)G(2, 2′)±h̄G0(1, 2′)G(2, 1′)

± i
∫ ∫

d3 d4G0(1, 4)U (3, 4)G(4, 2, 3; 1′, 2′, 3+) (7.52a)

The explicit equation of motion corresponding to the preceding equation [in
analogy with the structure (7.47) is obtained by operating on (7.52a) with∫
d1G−1

0 (5, 1). There results∫
d1G−1

0 (5, 1)G(1, 2; 1′, 2′) � h̄δ(5− 1′)G(2, 2′)±h̄δ(5− 2′)G(2, 1′)

± i
∫
d3U (3, 5)G(5, 2; 1′, 2′, 3+)

With (7.49), and changing 5 → 1, the preceding reduces to the desired
equations of motion:(

ih̄
∂

∂t1
+ K̂1

)
G(1, 2; 1′, 2′) � h̄δ(1− 1′)G(2, 2′)±h̄δ(1− 2)G(2, 1′)

± i
∫
d3U (3, 1)G(1, 2, 3; 1′, 2′, 3+)

Approximations

Let us return to (7.51a). For weak interaction it is consistent to expand the
equations in powers of the interaction or, equivalently, expand the correspond-
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ing diagrms in terms of the dashed element. Thus, to lowest order, (7.51a)
gives

(7.53a)

With this simplification, the lowest-order form of (7.52) is given by

(7.53b)

Employing these diagrams in (7.51a) gives the following first-order diagram-
matic equivalent for the equation of motion for G(1, 1′):

(7.54)

which has the topological equivalent

(7.54a)

In this latter representation, we have joined 2 and 2+ as they represent the same
space–time point. The equation corresponding to (7.54) is

G(1, 1′) � G0(1, 1′)± ih̄
∫ ∫

d2 d3G0(1, 3)G0(3, 1′)U (3, 2)G0(2, 2+)

+ ih̄
∫ ∫

d2 d3G0(1, 3)G0(3, 2)U (3, 2)G0(2, 1′) (7.55)

The full equation of motion, in diagrammatic form, for G(1, 2, 3, 1′, 2′, 3′)
appears as

(7.56)
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Furthermore, note that the integration in the final term in (7.56) over 4 and
5 leaves a function of (1, 2, 3; 1′, 2′, 3′) in accord with the left side of this
equation. To lowest order, employing the decomposition (7.53b), (7.56) gives
(keeping order of 1′, 2′, 3′ on the right of each diagram).

(7.57)

The corresponding functional relation may be written in the following
determinant form:

G0(1, 2, 3; 1′, 2′, 3′) � h̄2

∣∣∣∣∣∣∣
G0(1, 1′) G0(1, 2′) G0(1, 3′)
G0(2, 1′) G0(2, 2′) G0(2, 3′)
G0(3, 1′) G0(3, 2′) G0(3, 3′)

∣∣∣∣∣∣∣
±

(7.58)

It may be evident at this point that the equations of motion (7.56), (7.56),
and (7.56) follow a general pattern given by the following rule: In the equation
of motion for the N -body Green’s function, the first N terms are products of
the free one-body Green’s function and the (N − 1)-body Green’s function
with the 1′ variable of G0(1, 1′) exchanged in each product with one of the
primed variables of the (N − 1)-body Green’s function. In the last term of
the equation, the free one-body Green’s function attaches to the (N + 1)-body
Green’s function via interaction. This last term contains the factor±i. The sth
term (s � 1, . . . , N) in the sum of products contains the factor (±1)s+1h̄.
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Following these rules of construction gives the following diagrammatic
representation of the equation of motion of the N -body Green’s function:62

(7.59)

As noted previously, in each column of variables on the right side of the
firstN terms of the preceding equation, 1′ is exchanged with an element of the
right column of a box diagram with the order of the remaining variables main-
tained. Note also that the space–time coordinate 1 is preferred in the preceding
equation due to the fact that this equation includes implicit differentiation with
respect to x1, t1.

5.8 Spectral Function for Electron–Phonon Interactions

5.8.1 Hamiltonian

We conclude this section with a derivation of an approximate form of the
spectral function [see (7.12)] relevant to electrons interacting with phonons in
a lattice (described previously in Section 3.6). The first step in this derivation
is the construction of the related Green’s function which in turn is obtained
from its equation of motion. With (5.8) and (7.13) we see that formulation
of this equation stems from the Hamiltonian of the system. Thus, with b̂†(q)
representing the creation operator of a phonon with momentumh̄q and energy

62An alternative development of (7.56) follows from Wick’s theorem, which ad-
dresses the appropriate expansion of time-ordered product of operators. G. C. Wick,
Phys. Rev. 80, 268 (1950). See also A. L. Fetter and J. D. Walecka, Quantum Theory
of Many Particle Systems, McGraw-Hill, New York (1971).
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h̄ω(q), (7.32) is extended to read

Ĥ �
∫

dk
(2π )3

E(k)â†(k)â(k)+
∫

dq
(2π )3

h̄ω(q)b̂†(q)b̂(q)

+
∫

dk
(2π )3

dq
(2π )3

[C(q)â†(k + q)â(k)b̂(q)

+ C∗(q)â†(k)â(k + q)b̂†(q)] (8.1)

The coefficientC(q) represents the strength of the electron–phonon interaction.
The interpretation of the interaction terms in (8.1) is as follows. Consider, for

example, the third integral on the right side of the equation. In this interaction, a
phonon of momentumh̄q is annihilated in scattering with an electron, which in
turn suffers momentum change fromh̄(k) to h̄(k+q). A diagram corresponding
to this process was sketched previously in Fig. 5.7a.

In the Heisenberg picture [recall (5.7a)], we write

âH (k, t) � e(iĤ t)/h̄â(k)e−(iĤ t)/h̄ (8.2)

This operator has the equation of motion [recall (5.8)]

ih̄
∂

∂t
âH (k, t) � [âH (k, t), Ĥ ] (8.2a)

with parallel relations held by â†
H , b̂H , and b̂†

H . As â(k) relates to fermions and
b̂(q) to bosons, recalling (7.30), we write

[â(k), â†(k′)]+ � (2π )3δ(k − k′) (8.3a)

[b̂(k), b̂†(q′)]− � (2π )3δ(q− q′) (8.3b)

All other commutators are equal to zero.
Combining the preceding relations and recalling the expansion

[Â, B̂Ĉ]− � [Â, B̂]±Ĉ ∓ B̂[Â, Ĉ]±

gives the following four equations of motion:

ih̄
∂

∂t
âH (k, t) � E(k)âH (k, t)+

∫
dq

(2π )3
[C(q)âH (k − q, t)b̂H (q, t)

+ C∗(q)âH (k + q, t)b̂†
H (q, t)]

ih̄
∂

∂t ′
â

†
H (k′, t ′) � −E(k′)â†

H (k′, t ′)−
∫

dq
(2π )3

[C(q)â†
H (k′ + q, t ′)b̂H (q, t ′)

+ C∗(q)âH (k′ − q, t ′)b̂†
H (q, t ′)] (8.4)

ih̄
∂

∂t
b̂H (q, t) � h̄ω(q)b̂H (q, t)+ C∗(q)

∫
dk

(2π )3
â

†
H (k, t)âH (k + q, t)

ih̄
∂

∂t ′
b̂

†
H (q, t ′) � −h̄ω(q)b̂†

H (q, t ′)− C(q)
∫

dk
(2π )3

â
†
H (k + q, t ′)âH (k, t ′)
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5.8.2 Green’s Function Equations of Motion

As in 7.13 we introduce [dropping the tilda notation of (7.8)]

ih̄G(k, t ; k′, t ′) � 〈T̂ [âH (k, t)â†
H (k′, t ′)]〉 (8.5)

With the property (7.44), we obtain the equation of motion

ih̄
∂

∂t
G(k, t ; k′, t′) � (2π )3δ(k − k′)δ(t − t ′)+ E(k)G(k, t ; k′, t ′)

+
∫

dq
(2π )3

[C∗(q)Y′(k + q, t ; k′, t′; q, t)

+ C(q)Y(k − q, t ; k′, t ′; q, t)] (8.6)

where

ih̄Y(k, t ; k′, t ′; q, τ ) ≡ 〈T̂ [âH (k, t)â†
H (k′, t ′)b̂H (q, τ )]〉

ih̄Y′(k, t ; k′, t ′; q, τ ) ≡ 〈T̂ [âH (k, t)â†
H (k′, t ′)b̂†

H (q, τ )]〉 (8.7)

With (8.6) we note that in order to determine G(k, t ; k′, t ′) it is necessary
to know Y and Y′. Equations of motion for these variables follow from the
defining relations (8.7) and the equations of motion (8.2a). There results

ih̄
∂

∂τ
Y′(k, t ; k′, t ′; q, τ ) � −h̄ω(q)Y′(k, t ; k′, t ′; q, τ ) (8.7a)

+ i
∫
dK

(2π )3
C(q)G2(k, t,K, τ ; k′, t ′,K + q, τ+)

ih̄
∂

∂τ
Y(k, t ; k′, t ′; q, τ ) � h̄ω(q)Y(k, t ; k′, t ′; q, τ ) (8.7b)

− i
∫
dK

(2π )3
C∗(q)G2(k, t,K+q, τ ; k′, t ′,K, τ+)

For differentiation with respect to t , we find

ih̄
∂

∂t
Y(k, t ; k′, t ′; q, τ )

� (2π )3δ(k − k′)δ(t − t ′)〈b̂H (q, τ )〉 + E(k)Y(k, t ; k′, t ′; q, τ )

+
∫
dQ

(2π )3

{
C∗(Q)

ih̄
〈T̂ [âH (k +Q, t)â†

H (k′, t ′)b̂†
H (Q, t)b̂H (q, τ )]〉

+C(Q)

ih̄
〈T̂ [âH (k −Q, t)â†

H (k′, t ′)b̂H (Q, t ′)b̂H (q, τ )]〉
}

(8.8a)

The equation of motion for Y′(k, t ; k′, t ′; q, τ ) is the same as the preceding
with b̂H (q, τ ) replaced by b̂†

H (q, τ ). [We will refer to this implicit equation as
(8.8b).] Thus the equations of motion forY andY′, (8.7) and (8.8), involve ad-
ditional unknowns and, with (8.6), do not comprise a closed system. To remedy
this situation, we set t � τ and assume a homogeneous phonon distribution
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and write

〈b̂†
H (q′)b̂H (q)〉 � (2π )3δ(q− q′)n(q)

〈b̂H (q)b̂†
H (q′)〉 � (2π )3δ(q− q′)[n(q)+ 1]

〈b̂H (q)b̂H (q′)〉 � 0 (8.9)

〈b̂†
H (q)b̂†

H (q′)〉 � 0

〈b̂H (q)〉 � 〈b̂†
H (q′)〉

where n(q) is phonon number density. Assuming further that the time-ordering
terms in (8.7) factor into products such as

〈T̂ [âH (k +Q, t)â†
H (k′, t ′)b̂†

H (Q, t)b̂H (q, t)]〉
� 〈T̂ [âH (k +Q, t)â†

H (k′, t ′)]〉〈b̂†
H (Q, t)b̂H (q, t)〉 (8.10)

and neglecting the two-body Green’s functions in (8.7), we obtain

ih̄
D

Dt
Y(k − q, t ; k′, t ′; q, t)

� Y(k − q, t ; k′, t ′; q, t)[h̄ω(q)+ E(k − q)]+ C∗(q)n(q)G(k, t ; k′, t ′)
(8.11a)

ih̄
D

Dt
Y′(k + q, t ; k′, t ′; q, t)

� Y′(k+q, t ; k′, t ′; q, t)[−h̄ω(q)+E(k+q)]+C(q)[n(q)+1]G(k, t ; k′, t ′)
(8.11b)

Here we have set

D

Dt
≡ ∂

∂t
+ ∂

∂τ

and, after differentiation, set t � τ .
Introducing the time transformation

G(k, t ; k′, t ′) �
∫
dω

2π
e−iω(t−t ′)G(k, k′, ω)

G(k, k′, ω) �
∫
d(t − t ′)eiω(t−t ′)G(k, t,k′, t ′)

into (8.6) and (8.11), we obtain

h̄ωG(k, k′, ω) � (2π )3δ(k − k′)+ E(k)G(k, k′, ω)

+
∫

dq
(2π )3

[C∗(q)Y′(k + q, k′, q, ω)

+ C(q)Y(k − q, k′, q, ω)] (8.12a)

h̄ωY(k − q, k′, q, ω) � [h̄ω(q)+ E(k − q)]Y(k − q, k′, q, ω)

+ C∗(q)n(q)G(k, k′, ω) (8.12b)
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h̄ωY′(k + q, k′, q, ω) � [−h̄ω(q)+ E(k + q)]Y′(k + q, k′, q, ω)

+ C(q)[n(q)+ 1]G(k, k′, ω) (8.12c)

5.8.3 The Spectral Function

These equations comprise three equations for G, Y, Y′. Solving for G, we
obtain [

h̄ω − E(k)−
∑

(k, ω)
]
G(k, k′, ω) � (2π )3δ(k − k′) (8.13)

where∑
(k, ω) ≡

∫
dq

(2π )3
|C(q)|2 (8.13a)

×
[

n(q)+ 1

h̄ω − E(k + q)+h̄ω(q)
+ n(q)

h̄ω − E(k − q)−h̄ω(q)

]

In the homogeneous limit, we integrate (8.13) over k′ to obtain[
h̄ω − E(k)−

∑
(k, ω)

]
G(k, ω) � 1 (8.14)

In analogy with (7.39), we write

G(k, ω) � 1± f (k)

h̄ω − E(k)−∑
(k, ω + iη)

∓ f (k)

h̄ω − E(k)−∑
(k, ω − iη)

(8.15)
and note that in the limit η → 0, G(k, ω), as given by (8.15), is a solution to
(8.14). Furthermore, in the limit that interaction is turned off, C � 0, whence∑ � 0 and

G(k, ω) → G0(k, ω)

the free-particle Green’s function.
We now make the identification

lim
η→0

∑
(k, ω ± iη) � >(k, ω)∓ i�(k, ω) (8.16)

where > and � are real parameters and � ≥ 0.
With (8.16), (8.15) may be written

G(k, ω) � 1± f (k, q)

h̄ω − E(k)−>(k, ω + i�(k, ω)

∓ 1± f (k)

h̄ω − E(k)−>(k, ω)− i�(k, ω)
(8.17)

In analogy with (7.41), we write

GR

A
(k, ω) � 1

h̄ω − E(k, ω)−>(k, ω)± i�(k, ω)
(8.18)
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which, in the limit C → 0, returns the free particle functions G(0)
R

A

as given by

(7.41). With (8.18), (8.17) may be written

G(k, ω) � [1± f (k)]GR(k, ω)∓ f (k)GA(k, ω) (8.19)

Explicit time dependence

To revert to the time-dependent Green’s function, we write

G(k, t) �
∫
dω

2π
e−iωtG(k, ω)

Noting thatGR(k, ω) has no poles in the upper-half ω plane and thatGA(k, ω)
has no poles in the lower-half ω plane, we write

G(k, t) � θ (t)
∮

LH

dω

2π
e−iωt [1± f (k)]GR(k, ω)

+ θ (−t)
∮

UH

dω

2π
e−iωt [∓f (k)]GA(k, ω) (8.20)

Here we have written LH to denote a path that includes the real ω axis and
a great semicircle in the lower-half ω plane, whereas UH includes a great
semicircle in the upper-half ω plane.

To recapture the spectral function, with the property∮
LH

dω

2π
GA(k, ω) �

∮
UH

dω

2π
GR(k, ω) � 0

we write

G(k, t) � θ (t)
∮

LH

dω

2π
e−iωt [1± f (k)][GR(k, ω)−GA(k, ω)]

� θ (−t)
∮

UH

dω

2π
e−iωt [±f (k)][GR(k, ω)−GA(k, ω)] (8.21)

With (7.27), this expression permits the identification

G>(k, ω) � [1± f (k)][GR(k, ω)−GA(k, ω)]

G<(k, ω) � ±f (k)[GR(k, ω)−GA(k, ω)] (8.22)

Furthermore, we note that (8.21) implies that the time dependence ofG(k, ω)
is contained in the spectral function [recall (7.12)]

A(k, ω) � i[GR(k, ω)−GA(k, ω)] (8.23)

5.8.4 Lorentzian Form

We conclude this discussion with a derivation of an explicit expression for the
spectral function (8.23). From (8.18), we write

i[GR(k, ω)−GA(k, ω)] � i
[

1

h̄ω − E(k)−>(k, ω)+ i�(k, ω)
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− 1

h̄ω − E(k)−>(k, ω)− i�(k, ω)

]

which gives the main result of the preceding analysis:

A(k, ω) � 2�(k, ω)

[h̄ω − E(k)−>(k, ω)]2 + �2(k, ω)
(8.24)

This Lorentzian form is the desired generalization of the free-particle spectral
function (7.12). Note that with (8.18a),

∑
(k, ω) [or, equivalently, >(k, ω)

and �(k, ω)] contains the specifics of the phonon–electron interaction for the
problem at hand. Thus, to recapture the spectral function appropriate to no
interaction, we consider the limit

lim
�,>→0

[
2�(k, ω)

[h̄ω − E(k)−>]2 + �2(k, ω)

]
� 2πδ[h̄ω − E(k)] (8.25)

which agrees with our preceding free-particle expression (7.12), with the free-
particle energy h̄2k2/2m replaced by the quasi-free-particle energy E(k).

To gain deeper physical insight into these results, first we substitute the
general form (8.24) into the Green’s function (8.21) to obtain

G(k, t) � θ (t)
∫

LH

dω

2πi
e−iωt [1± f (k)]A(k, ω)

+ θ (−t)
∫

UH

dω

2πi
e−iωt [±f (k)A(k, ω)] (8.26)

Again consider the limit of no interaction. With (8.25) substituted in (8.26)
and integrating over ω, we find

G0(k, t) � θ (t)

ih̄

(
exp−i E(k)t

h̄

)
[1± f (k)]

+ θ (−t)
ih̄

(
exp−i E(k)t

h̄

)
[±f (k)] (8.27)

We note that this form is identical to that obtained from the Fourier inversion
of (7.36). Thus (8.27) is a representation of the quasi-free-particle Green’s
function.

For further interpretation of the variables> and � in the interaction
∑

[see
(8.16), let us assume that both these variables are frequency independent. In
this event

A(k, ω) � 2�(k)

[h̄ω − E(k)−>(k)]2 + �2(k)
(8.28)

With

z2 ≡ [h̄ω − E(k)−>(k)]2

h̄2
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the inverse frequency transform of A(k, ω) is written

A(k, t) �
∫ ∞

−∞

dω

2π
e−iωtA(k, ω) � 1

πh̄

(
exp−i (E +>)t

h̄

)∫ ∞

−∞

γ e−iztdz
z2 + γ 2

(8.29)
where γ ≡ �/h̄. Thus

A(k, ω) � 1

πh̄

(
exp−i (E +>)t

h̄

)∫ ∞

−∞

γ e−iztdz
z2 + γ 2

(8.30)

Consider the integral

I ≡ 1

π

∫ ∞

−∞

γ e−iztdz
z2 + γ 2

� 1

π

∫
γ e−iztdz

(z− iγ )(z+ iγ )

�
∫

1

2πi

(
1

z− iγ −
1

z+ iγ
)
e−iztdz

�
∮

UH
(t<0)

1

2πi

e−izt

z− iγ dz−
∮

LH
(t>0)

1

2πi

e−izt

z− iγ dz

That is, the first integral in the last equality is evaluated on UH [defined below
(8.20) with t < 0 (for convergence), whereas the second integral is defined on
LH with t > 0. Thus we obtain

A(k, t) � 1

h̄

(
exp−i (E +>)t

h̄

)
[θ (−t)e�t/h̄ + θ (t)e−�t/h̄] (8.31)

Substituting this result into (8.26) and recalling the property θ (t)θ (−t) � 0,
we obtain

G(k, t) � θ (t)

ih̄
[1± f (k)]

(
exp−i (E +>)t

h̄

)
e−�t/h̄

± θ (−t)f (k)

(
exp−i (E +>)t

h̄

)
e�t/h̄ (8.32)

5.8.5 Lifetime and Energy of a Quasi-Free Particle

To discover the meaning of the expression (8.32), we assume that the system
at hand is in the pure state | 〉. Consider that at time t ≡ 0 an electron with
momentum h̄k is added to the system. The initial state of the new system is
then given by

|φk(0)〉 � â†
H (k, t � 0) |�〉 (8.33a)

With the electron now contained in the system, we view it as a quasi-free
particle with energy E(k)+>(k). At t > 0, (8.33a) becomes

|φk(t)〉 � â†
H (k, t) |�〉 (8.33b)
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Now we ask the question, what is the probability density for finding the particle
with momentumh̄k′ at t > 0 if it had momentumh̄k at t � 0? This probability
is given by

P (t) � |〈ψk′(t) | ψk(0)〉|2
� |〈�|âH (k′, t)â†

H (k, 0)|�〉|2 (8.34)

With (8.5), we may then write

P (t) � |ih̄G(k′, t ; k, 0)|2 (8.35)

For a system homogeneous in space and time, we write

G(k′, t ′; k, t) � (2π )2δ(k′ − k)G(k, t ′ − t) (8.36)

Substituting G(k, t) as given by (8.32) into this equation, for t > 0, the latter
two equations give

P (t) �
∣∣∣∣(2π )3δ(k − k′)[1± f (k)] exp

{
− i
h̄

[E(k)+>(k)]t − �(k)t

h̄

}∣∣∣∣
2

� e−2�(k)t/h̄P (0) (8.37)

With k � k′, P (t) gives the desired expression for the probability density that
the particle remains with momentumh̄k at time t . In this sense, the lifetime of
our quasi-particle is given by h̄/2�.

With reference to (8.17), we may conclude that the poles of the Green’s
function in the complex ω-plane give the lifetime h̄/2� and energy E +> of
a particle interacting with its surroundings.

Problems

5.1. (a) Integrate Heisenberg’s equation of motion (1.44) for a free-particle
Hamiltonian to obtain q̂(t) and p̂(t) as a function of q̂(0) and p̂(0).

(b) Show that in this case

[q̂(t), q̂(0)] � − ih̄
m
t

Answer (partial)

Inserting

Ĥ � p̂2

2m

into (1.44), we find

ih̄
dp̂

dt
� 0, p̂ � p̂(0)
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ih̄
dq̂

dt
� [q̂, Ĥ ] � ih̄ p̂

m

q̂(t) � q̂(0)+ p̂(0)t

m

5.2. A homogeneous beam of electrons has the density matrix

p̂ �
(
a 0

0 1− a

)

in a representation where Ŝz and Ŝ2 are diagonal. If 〈Sz〉 � 0.75h̄, what is the
value of a?

5.3. (a) If a density matrix is initially diagonal, what are the values of the
derivatives ∂pnn/∂t at t � 0?

(b) Is your answer to part (a) consistent with the Pauli equation (2.28)? If
not, explain this discrepancy.

5.4. (a) Show that, in a pure state, p̂2 � p̂.
(b) Show that for spinors this property is obeyed by the matrix

p̂ �
(

cos2 θ eiφ1 sin θ cos θ

e−iφ2 sin θ cos θ sin2
θ

)

providing the phases φ1 and φ2 are equal.

5.5. In a representation where Ŝ2 and Ŝz are diagonal, the density matrix for a
neutron in a homogeneous beam is

p̂ �




3

4
0

0
1

4




The beam enters a region of space containing a magnetic field B � (0, B0, 0).

(a) What are the values of 〈Sx〉, 〈Sy〉, and 〈Sz〉 before the beam enters the B
field?

(b) The Hamiltonian for a neutron in a B field may be taken to be of the form

Ĥ � −µ̂n · B
where µ̂n is the magnetic moment of the neutron. Employing the Pauli
equation (2.28), determine the probabilities of finding Sz � +(h̄/2) and
Sz � −(h̄/2) after the beam leaves the B-field domain. Data:

µ̂n � g
(µN
h̄

)
Ŝ

where

µN � 0.505× 10−23erg/gauss

and

g � 2(−1.91)
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FIGURE 5.10. Graphical solution to Problem 5.9. Recall that the relevant domain is
x ≥ 0.

5.6. Show that integration over momentum of the Wigner distribution gives the
spatial probability density. That is, establish the equality (2.49).

5.7. Show that the integral of the Wigner distribution function over coordinate
space gives the momentum probability density. That is, establish (2.50).

5.8. Show that the Wigner–Moyal equation (2.70) goes to the form (2.71) for the
canonical Hamiltonian given between these two equations.

5.9. Show that the inequalities (3.78a) relevant to the relaxation-time integral
(3.78) imply the solutions (3.78b). Hint: Employ a graphical technique.

Answer

First label

x ≡ q

2k
≥ 0

A ≡ mu
h̄k

We must find the minimum and maximum of x (that is, q) corresponding to

−1 ≤ φ± ≤ +1

where

φ± ≡ A± x
This function is plotted against x in Fig. 5.10, from which we see that

xmin � 0 ⇒ qmin � 0

xmax � 1± A⇒
qmax � 2k(1± A) � 2k
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5.10. Employing the expression for the relaxation time τ (k) obtained in Section 3.6
and assuming free-particle motion near the Fermi surface, with (3.40) obtain
an expression for electrical conductivity σ , in terms of mean-free path, l, and
kF � pF/h̄, the Fermi wave vector.

Answer

Substituting

dS � k2
F d�

E � h̄
2k2

2m

together with (3.81)

τ (k) � lm
h̄k

into (3.40) gives

J � e2l

4π 3h̄

∫
vE · v
v2

k2
F d�

� e
2lk2

F

4π 3h̄
E ·

∫
v̂v̂d�

Recalling Problem 3.15 (see also Appendix B, Section B.1) we write

E ·
∫

v̂v̂d� � E ·
¯̄I
3

4π � 4π

3
E

which gives the desired result:

σ � e
2lk2

F

3π 2h̄

5.11. Employing the rule (2.51) show that the first three moments of the Wigner–
Moyal equation (2.71) return the classical fluid dynamical equations (3.3.14),
(3.3.18), and (3.3.19).

5.12. Show that the s-particle density matrix (5.15) may be written as

ρs(xs , ys , t) � (N − s)!
N !

Tr(N )[ρ̂N (t) ˆ̄Gs(xs , ys , 0)]

5.13. Employing results of Problem 5.12, show that in a pure state, with ρ̂N �
|n〉 〈n|:
(a) Nρ1(x, y) � δxynx
(b) N (N − 1)ρ2(x1, x2, y1, y2) � (δx1y1δx2y2 ± δx1y2δx2y1 )

[
nx1 (nx2 − δx1x2 )

nx1nx2

]
In part (b), the top term and+ sign are relevant to bosons and the bottom
term and − sign to fermions.
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(c) Show that (for x1 �� x2)

ρ2(x1, x2, y1, y2) �
∣∣∣∣∣ ρ1(x1, y1) ρ1(x1, y2)

ρ1(x2, y2) ρ1(x2, y2)

∣∣∣∣∣
±

where (+,−) are relevant to bosons and fermions, respectively. Hint: For,
part (b) note that for fermions we may write

n2 � n
n(1− n) � 0

n(2− n) � n
5.14. Show that the Fock-space Hamiltonian (5.27) remains invariant under the

change

φ̂H (x) → φ̂(x)

Hint: Note that, in Û , Ĥ is the Fock-space Hamiltonian in the Schrödinger
representation.

5.15. Obtain a quasi-classical kinetic equation valid to 0(h̄3) from the Wigner–Moyal
equation (2.71).

5.16. Write down the specific form of the first equation (BY1) in the hierarchy (3.33)
for the Wigner distributions. In what limit does this relation become a closed
equation?

5.17. (a) The thermodynamic properties of a system comprised of N molecules
in equilibrium at temperature T and confined to a fixed volume V is
contained in the partition function63

ZN �
∑
r

gre
−βHr (1,...,N )

where the sum on r is over all states of the system, and gr is the degeneracy
of the rth state. Establish the following relations:

〈E〉 � −∂ lnZ

∂β
, βP � ∂ lnZ

∂V

S � −kBβ2 ∂

∂β

(
1

β
lnZ

)

(b) The grand partition function,Q, is relevant to an equilibrium fluid under
the same constraints that hold forZN but whose total number of molecules
may vary. It is given by

Q �
∑
N

zNZN

63More generally, ZN � Tr exp(−βĤ ). The expression given for ZN in the
problem assumes a representation in which Ĥ is diagonal.
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where

z � expβµ

is fugacity and µ is chemical potential. Show that

〈N〉 � z ∂
∂z

lnQ

(>N )2 ≡ 〈(N − 〈N〉)2〉 � z ∂
∂z
〈N〉

5.18. Consider a two-dimensional gas of noninteracting spin 1/2 fermions confined
to an area A at temperature T and chemical potential µ.

(a) What is lnQ for this system written as a sum over single-particle momenta
p? (lnQ is defined in Problem 5.17.)

(b) Convert the sum in your answer to part (a) to an integral employing the
following rule: ∑

p

→ gA

h2

∫
d2p

where g is spin degeneracy.
(c) Obtain an expression for the average number of particles 〈N〉 as a function

of fugacity z and inverse temperature β ≡ (kBT )−1.
(d) Obtain an expression for the Fermi energy EF from your answer to part

(c) in terms of n0 ≡ 〈N〉0/A, where the zero subscript denotes zero
temperature. Recall that EF � µ (0 K).

Answers

(a) lnQ �
∑
p

ln(1+ ze−βp2/2m)

(b) lnQ � 2A

h2

∫ ∞

0

2πp dp ln(1+ ze−βp2/2m)

(c) 〈N〉 � mA

πβh̄2

∫ ∞

0

ze−xdx

(1+ ze−x)
〈N〉 � mA

πh̄2β
ln(1+ z)

(d) 〈N〉T→0 ≡ 〈N〉0 � lim
β→∞

mA

πh̄2

ln(1+ e−βEF )

β

� mA
πh̄2EF

Thus we find

EF � πh̄
2n0

m

5.19. Show that in a mixed state

>A>B ≥ 1

2
|〈[Â, B̂]〉|
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where >A is the uncertainly

(>A)2 � 〈(Â− 〈Â〉)2〉
and Â and B̂ are heritian.

Answer

Define

S ≡ Â+ izB̂
Ŝ+ � Â− izB̂

where z is a real variable. It follows that

Ŝ+Ŝ � Â2 + iz[Â, B̂]+ z2B̂2

For a mixed state, with (2.36), we write

ρ̂ �
∑
µ

Pµ
∣∣ψµ〉 〈ψµ∣∣

so that

〈Ŝ+Ŝ〉 �
∑
µ

Pµ〈Ŝψµ | Ŝψµ〉 ≥ 0

Choosing the value

z � −〈i[Â, B̂]〉/2〈B̂2〉
we find

〈Ŝ+Ŝ〉 � −〈i[Â, B̂]〉2
4〈B̂2〉 + 〈Â2〉 ≥ 0

Now let Â→ Â− 〈Â〉 and B̂ → B̂ − 〈B̂〉. Then

>A>B ≥ 1

2
|〈[Â, B̂]〉|

5.20. Show that the uncertainty relation>x>p ≥ h̄/2 is consistent with the Wigner
distribution function.

Answer

From Problem 5.19, we obtain

>x>p ≥ 1

2
|〈[x, p]〉| � h̄

2

where

(>x)2 � 〈x2〉 − 〈x〉2

However, as established in (2.61a), bothx2 andx obey Weyl correspondence so
that averages may be written with respect to the Wigner distribution function
as given by (2.51).
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5.21. A system is in an eigenstate of its Hamiltonian. Show that the Wigner
distribution is constant in time for this state.

Answer

For an eigenstate, with (1.10), we write

ψ(x, t) � ϕ(x)E−itE/h̄

Substitution of this form into (2.47) indicates that the Wigner distribution is
constant in time for an eigenstate of the Hamiltonian. Note that this conclusion
also follows from (2.51):

〈A〉 �
∫
A(x, p)F (x, p, t) dx dp

For a stationary state, 〈A〉 is constant, so F (x, p, t) must be stationary.

5.22. Show that the Wigner distribution is real.

Answer

We refer to the defining relation (2.46). Deleting vector notation, we write

F (x, p, t) ∝
∫
e2ipy/h̄ρ(x−, x+, t) dy

Taking the complex conjugate, we obtain

F ∗(x, p, t) ∝
∫
e−2ipy/h̄ρ∗(x−, x+, t) dy

ρ∗(x−, x+, t) � 〈x−| ρ̂ |x+〉∗
� 〈x+| ρ̂ |x−〉
� 〈x + y| ρ̂ |x − y〉

Changing variables in the above integral expression for F ∗(x, p, t) from y →
−y gives F ∗ � F .

5.23. A student argues that the Wigner distribution function is not consistent with
quantum mechanics for the following reasons. In the absence of interactins,
the equation of motion (2.54) reduces to(

∂

∂t
+ p
m
· ∂
∂x

)
F (x, p, t) � 0

As was discussed in Chapter 1, the general solution to this equation is given
by

F � F
(

x − p
m
t − x0, p0

)
In particular, we may take F to be a delta function for which F �� 0 only on
the system trajectory, in which case x and p may be specified simultaneously
in violation of quantum mechanics. Is the student’s argument sound? Why?



Problems 437

Answer

It was established in Problem 5.20 that the Wigner formalism is consistent
with the uncertainty relation between x and p. This finding disavows solutions
(2.54) that imply a classical trajectory.

5.24. Show that

([x̂ + f (p̂)]2)W � [x + f (p)]2

Answer

First note that

1

2
[Â, Â]+ � Â2

Then employ (2.61b)(
1

2
[Â, Â]+

)
W

� (Â)W

(
cos
h̄

2
.0
)

(Â)W � (Â)2
W

5.25. Show that the Wigner distributions given by (2.46) is normalized to unity.

Answer

Working in one dimension, we find∫ ∫
F (x, p) dx dp � 1

πh̄

∫ ∫ ∫
dy dx dp e2ipy/h̄ 〈x−| ρ |x+〉

Integrating over p gives∫ ∫
F (x, p)dx dp �

∫ ∫
dx dy δ(y) 〈x−| ρ̂ |x+〉

�
∫
dx 〈x| ρ̂ |x〉 � Tr ρ̂ � 1

5.26. In quantum mechanics the continuity equation is given by

∂p

∂t
+∇ · J � 0

where ρ is particle density

ρ � ψ∗ψ
and J is particle current

J � h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)

Working in a pure state, show that J and ρ may be written

J �
∫
dp

p
m
F (x, p)

ρ �
∫
dpF (x, p)
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where F (x, p) is the Wigner distribution function.

5.27. Show that the z component of angular momentum

L̂x � x̂p̂y − ŷp̂x
obeys Weyl corrrespondence.

5.28. Employing the projection representation (2.36), derive the following expres-
sions for the density matrix ρ(x, x ′) for a canonical distribution [see (2.13)]
of (a) free particles of mass m, and (b) particles of mass m confined to a
one-dimensional box of length L.

(a) ρ(x, x ′) � 1

Z

∫
e−βh̄

2k2/2meik(x−x
′) dk

(b) ρ(x, x ′) � 1

Z

∞∑
n�1

e−βEnϕn(x)ϕn(x
′)

where

En � n2E1, E1 � 1

2m

(
πh̄

L

)2

ϕ(x) �
√

2

L
sin
nπx

L

and Z is a normalization factor that ensures that Tr ρ̂ � 1 (that is, the
partition function).

5.29. Write down the eigenvalue equation that the Fock-space ket vector given on
the right side of (5.2) obeys.

5.30. The quantum mechanical s-body Green’s function is given by (7.13) and
(7.14). With s � 1 we obtain

G1(x, t, y, t ′) � 1

ih̄
θ (t − t ′)〈φ̂H (x, t)φ̂†

H (y, t ′)〉

± 1

ih̄
θ (t ′ − t)〈φ̂†

H (y, t ′)φ̂H (x, t)〉

With t ′ � t + ε, where ε is an infinitesimal, show that

G(x, y, t) � ± 1

ih̄
〈 ˆ̄G1(x, y, t)〉

where the F -space operator ˆ̄G1 is given by (5.7).

5.31. (a) Show that

e−t
ˆ̂
SÂ � e−(t/ih̄)Ĥ0Âe(t/ih̄)Ĥ0

where ˆ̂S is defined by (6.11).
(b) With the preceding result, establish (6.12b), that is,

Tr{(e−ˆ̂SÂ)(e−i
ˆ̂
SB̂)} � Tr{ÂB̂}
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5.32. Employing the fundamanetal time-development equation (5.8), show that
(7.33) follows from (7.32).

5.33. If the operator R̂ in (7.1) is nonlinear, is the Green’s function integral (7.3)
still a solution of (7.1)? Explain your answer.

5.34. Employing the relation (7.15) for a time-ordered product, establish the
differentiation rule (7.44).

5.35. Show that (7.47) coupling the first two Green’s functions may be transformed

to the first of the hierarchy for the ˆ̄Gs functions as given in Table 5.3. The
specifics of this tranformation are given in the text.

5.36. This problem addresses composite bosons; that is, bosons comprised of two
coupled fermions. Consider such a two-component composite system with
respective creation operators â† and b̂† with the model Hamiltonian64

Ĥ � E0

∑
i

(â†
i âi + b̂†

i b̂i)+ g
∑
i

∑
j

b̂
†
i (â

†
i âj b̂j ) (P36.1)

where E0 and g are constants and âi and b̂i both satisfy fermion anticommu-
tation relations. Let

Â ≡ 1√
N0

∑
i

âi b̂i , A† ≡ 1√
N0

∑
i

b̂
†
i â

†
i (P36.2)

and

Ĥ0 ≡ E0

∑
(â†
i âi + b̂†

i b̂i) (P36.3)

where N0 is the number of free-particle states.

(a) Show that (P36.1) may be written

Ĥ � Ĥ0 + gN0Â
†Â (P36.4)

(b) Show that

[Â†, Â] � Î − N̂

N0

(P36.5)

where N̂ is the operator Ĥ0/E0.
(c) Given the above findings, what may be said of the bose quality of

composite bosons with strong coupling (g ! E0)?

Answer (partial)

(c) The noncanonical form of (P36.5) indicates that Â† is not a pure creation
operator and in this sense invalidates the interpretation of Â†A in (P36.4)
as representing a quasi-particle number operator. Thus we may conclude

64For further discussion on this topic, see A. K. Kerman, Annals of Physics 12,
300 (1961).
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that to within the consistency of the stated model the composite boson
does not satisfy boson properties.

5.37. Show that (7.50) is equivalent to (7.47).

5.38. Obtain the explicit time-dependent equation of motion forG(1, 2, 3; 1′, 2′, 3′)
[in a form parallel to (7.47)] corresponding to (7.56).

5.39. Write down the diagrammatic equation of motion for the four-particle Green’s
function G(1, 2, 3, 4; 1′, 2′, 3′, 4′).

5.40. Write down the lowest-order diagrammatic expansion for the equation of
motion forG(1, 2; 1′, 2′), as given by (7.52), in the topological form given by
(7.54a).

Answer

The last six diagrams in this expansion stem from the three-body interaction
term in (7.52). Consider, for example, reorientation of the term

Maintaining the format of (7.52) gives the topologically equivalent form
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which is the third from the last diagram in the given expansion.

5.41. The Green’s function for a quasi-free electron propagating through a medium
is given by (with I denoting a constant length)

G(k, ω) �

 iθ (k − kF )

h̄ω −
(
h̄2k2

2m
+>

)
+ ih̄2k

2ml




(a) What is the single-particle distribution for the medium? What is its
significance?

(b) What is the energy of the quasi-free particle?
(c) What is the lifetime of the quasi-free particle? Why is this so?
(d) What is the minimum excitation energy of a quasi-particle described by

the Green’s function above?

5.42. (a) Show that

T̂ [φ̂H (t1)φ̂†
H (t2)] � ±T̂ [φ̂†

H (t2)φ̂H (t1)]

(b) Does validity of the preceding equation depend on the commutation
properties on φ̂H and φ̂†

H?

5.43. (a) Write the correlation function for velocity operator 〈v(t)v(0)〉, corre-
sponding to particles of mass m, in terms of an integral over Heisenberg
operators â†

H (k, t), aH (k, t).
(b) Show that this correlation function may be written in terms of a two-

particle Green’s function.

Answer

(a) 〈v̂(t)v̂(0)〉 �
∫ ∫

dk1dk2

(2π )3(2π )3

h̄

m2

× k1k2〈â†
H (k1, t)âH (k1, t)â

†
H (k2, 0)âH (k2, 0)〉

(b) First recall

i2h̄G2(1, 2; 1′, 2′) � 〈T̂ [âH (1)âH (2)â†
H (2′)â†

H (1′)]〉
with the results of Problem 5.42, the right side of the preceding equation
may be rewritten as

RHS � 〈T̂ [âH (1)â†
H (1′)âH (2)â†

H (2′)]〉
� 〈T̂ [â†

H (1′)âH (1)â†
H (2′)âH (2)]〉

Now choose 1′ � (k1, t
+), 1 � (k1, t), 2′ � (k2, 0+), 2 � (k2, 0) to to

obtain

〈v̂(t)v̂(0)〉 �
∫ ∫

dk1dk2

(2π )3(2π )3

h̄

m2

× k1k2i
2h̄G2[(k1, t), (k2, 0); (k1, t

+), (k2, 0
+)]

which is the desired relation.
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5.44. We have seen that in both the Chapman–Enskog expansion [see (3.5.37)] and
in the study of electron–phonon interaction [see (3.58)] integral equations of
the following form typically emerge (for elastic interactions):

R(v) �
∫

[f (v)− f (v′)]w(v, v′)dv′

R(v) � K̂f (v) (P44.1)

These relations define the integral operator K̂ . WithR(v) taken to be a known
function, the preceding is a linear inhomogeneous integral equation. Let us
work in Dirac notation with the inner product given by

〈φ | ψ〉 ≡
∫
φ(v)ψ(v) dv

(We assume that all functions are real.) Given that w is a symmetric kernel:

(a) Show that K̂ is self-adjoint. That is,

〈φ|K̂ψ〉 � 〈K̂φ | ψ〉 � 〈ψ | K̂φ〉
(b) Show that K̂ is a nonnegative operator. That is,

〈φ | K̂φ〉 ≥ 0

(c) Consider the equation

〈φ | K̂φ〉 � 〈φ | R〉 (P44.2)

Not all solutions to this equation are solutions to (P44.1). (Two distinct
vectors can have the same projection onto a third vector.) Show that of all
solutions, φ(v), to (P44.2), the solution that satisfies (P44.1) maximizes
〈φ | K̂φ〉.

(d) Show that solutions to (P44.1) render the functional

I [φ] ≡ 〈φ | K̂φ〉
[〈φ | R〉]2 (P44.3)

minimum.

Answer

(a) We may easily establish

〈φ | K̂ψ〉 � 1

2

∫ ∫
[φ(v)− φ(v′)]w(v, v′)[ψ(v)− ψ(v′)] dv dv′

from which the self-adjoint property of K̂ follows. Setting ψ � φ into
the preceding representation [with w(v, v′) positive and multiplicative]
establishes part (b).

(c) Let φ(v) be a solution to (P44.1) and let ψ(v) be a solution to (P44.2) but
not to (P44.1). Then

0 ≤ 〈(φ − ψ) | K̂(φ − ψ)〉
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� 〈φ | K̂φ〉 + 〈ψ |K̂ψ〉 − 〈φ | K̂ψ〉 − 〈ψ | K̂φ〉
� 〈φ | K̂φ〉 + 〈ψ |K̂ψ〉 − 2〈ψ | K̂φ〉
� 〈φ | K̂φ〉 + 〈ψ |K̂ψ〉 − 2〈ψ | R〉
� 〈φ | K̂φ〉 + 〈ψ |K̂ψ〉

Thus

〈φ | K̂φ〉 ≥ 〈ψ | K̂ψ〉
which was to be shown.

(d) To show this, we consider the functional variation

δI [φ] � I [φ + δφ]− I [φ]

� 〈δφ | K̂φ〉 + 〈φ | K̂δφ〉
(〈φ | R〉)2

− 2〈φ | K̂φ〉〈δφ | R〉
(〈φ | R〉)3

� 2

(〈φ | R〉)3
[〈δφ | K̂φ〉〈φ | R〉 − 〈φ | K̂φ〉〈δφ | R〉]

Thus, for Î [φ] to be stationary, we must have

〈δφ | K̂φ〉〈φ | R〉 � 〈δφ | R〉〈φ | K̂φ〉
Viewing this equation in function space, with |δφ〉 an arbitrary infinitesial
element of the space, the preceding equality implies that

|K̂φ〉〈φ | R〉 � |R〉 〈φ | K̂φ〉 (P44.4)

We wish to show that this equation implies that

|K̂φ〉 � c |R〉 (P44.5)

where c is a constant. First note that substituting (P44.5) into (P44.4)
gives an equality. Now assume that (P44.4) does not imply (P44.5). Then
we may write

K̂ |φ〉 � a |R〉 + |δ〉 (P44.6)

where 〈δ | R〉 � 0. Substituting this form into (P44.4) gives

|δ〉 〈φ | R〉 � |R〉 〈φ | δ〉
which implies that 〈δ | R〉 �� 0, whence the assumption (P44.6) is incon-
sistent, and we may conclude that (P44.4) implies (P44.5). Inserting the
solution (P44.5) into (P44.3) indicates that I [φ] is insensitive to the con-
stant c, and we may conclude that I [φ] is stationary when K̂ |φ〉 � |R〉,
in which case

I [φ] � 1

〈φ | K̂φ〉 (P44.7)

As we have shown, 〈φ | K̂φ〉 is maximum for K̂ |φ〉 � |R〉, so we
conclude that (P44.7) is minimum, which was to be shown. Note: The
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fact that (P44.3) is minimum affords a means of obtaining an approximate
solution to (P44.1): Choose a trial function comprised of known functions
and a number of arbitrary parameters. Insert this trial solution into (P44.3)
and vary the parameters until a minimum of this form is obtained. If the
trial solution was a good guess, then the solution so obtained is a good
approximate solution to (P44.1).65

5.45. Show that

ρ̂(t) � Û †ρ̂(0)Û

where Û is given by (1.39).

Answer

Working in a pure state, we write

ρ̂(t) � |t〉 〈t |
Recalling (1.41), it follows that

ρ̂(t) � Û † |0〉 〈0| Û � Û †ρ̂(0)Û

5.46. Employing the Fock-space Hamiltonian (5.27), derive the equation of motion
(5.28).

Answer

With (5.8), we write

ih̄
∂

∂t
φ̂H (x) � [φ̂H , Ĥ ]

Consider the kinetic energy term in Ĥ given in (5.27). Forming the
commutator gives

φ̂H (x)
∫
dx′φ̂†

H (x′)K̂(x′)φ̂H (x′)−
∫
dx′φ̂†

H (x′)K̂(x′)φ̂H (x′)φ̂H (x)

�
∫
dx′[φ̂H (x)φ̂†

H (x′)− φ̂†
H (x′)φ̂H (x)]K̂(x′)φ̂H (x′)

�
∫
dx′δ(x − x′)K̂(x′)φ̂H (x′) � K̂(x)φ̂H (x)

which is the first term in the right side of (5.28). A similar construction gives
the potential integral of (5.28).

5.47. Obtain the equation of motion for ˆ̄GN given by (5.29) and expressions for
K̂N (xN ) and V̂N (xN ).

65This technique has been employed in the calculation of electrical and thermal
conductivity in metals. For further discussion, see A. Haug, Theoretical Solid State
Physics, vol. 2, Pergamon, Elmsford, N.Y. (1972).
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Answer

Consider the case N � 2. Dropping the subscript on φ̂H , we write

ih̄
∂

∂t

ˆ̄G2 � ih̄[ ˙̂φ
†

(y1)φ̂†(y2)φ̂(x2)φ̂(x1)

+ φ̂†(y1) ˙̂φ
†

(y2)φ̂(x2)φ̂(x1)

+ φ̂†(y1)φ̂†(y2)+ ˙̂φ(x2)φ̂(x1)

+ φ̂†(y1)φ̂†(y2)φ̂(x2) ˙̂φ(x1)]

With (5.28), we obtain

ih̄
∂

∂t

ˆ̄G2 � [−K̂∗(y1)− Q̂∗(y1)− K̂∗(y2)− Q̂∗(y2)

+ K̂∗(x1)+ Q̂∗(x1)+ K̂∗(x2)+ Q̂∗(x2)] ˆ̄G2

where Q̂(x) is written for the integral operator in (5.28). Generalizing this
finding indicates that

K̂N (xN ) �
N∑
i�1

K̂(xi)

V̂N (xN ) �
N∑
i�1

∫
φ̂†(x′)u(xi , x′)φ̂(x′)dx′

5.48. Show that the master equation (2.28) implies the H theorem.

Answer

We label ρnn ≡ Pn and define

H �
∑
n

Pn lnPn

Operating on (2.28) with ∑
n

(1+ lnPn)

gives

dH
dt
�
∑
k

∑
n

(1+ lnPn)(Pkwkn − Pnwnk)

With ∑
n

∑
k

Pkwkn �
∑
n

∑
k

Pnwnk

the preceding reduces to

dH
dt
�
∑
k

∑
n

lnPn(Pkwkn − Pnwnk)
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To obtain the H-theorem, first exchange indices in the second term on the
right. This gives

dH
dt
�
∑
k

∑
n

Pkwkn ln

(
Pn

Pk

)

Now we exchange indices in the first term on the right to obtain

dH
dt
�
∑
k

∑
n

Pnwnk ln

(
Pk

Pn

)

Adding the latter two equations and setting wnk � wkn gives

dH
dt
� 1

2

∑
k

∑
n

wnk(Pk − Pn) ln

(
Pn

Pk

)

Noting that [recall (3.3.49)]

(Pk − Pn) ln

(
Pn

Pk

)
≤ 0

gives the desired result

dH
dt
≤ 0

5.49. (a) Show that the Master equation (2.28) implies that Tr ρ̂ is constant in time.
(b) What is the physical significance of this result?
(c) What property of the perturbing Hamiltonian does you proof of part (a)

depend on?

5.50. (a) A system comprisesN identical, interacting particles. Write down relation
(5.1) and (5.2) in the energy representation, in which nE represents the
number of particles with energy E, and Ei denotes the energy of the ith
particle.

(b) What is the coordinate representation of the (unsymmetrized) wavefunc-
tions for this system if the particles are non-interacting? Give your answer
in terms of the single-particle energy states, ϕEi (xi).

(c) What is your answer to part (b) if it is known that all particles of the
system are in the ground state?

(d) Under the conditions of part (b), what is the coordinate representation of
the Fock-space vector, |. . . , nE, . . .〉F ?

Answer (partial)

(a) |E1, . . . , En;N〉 � 1

N !

∑
P

(±)P |E1, . . . , EN 〉

|E1, . . . , En;N〉 �
√
OEnE

N !
|. . . , nE, . . .〉F

∑
E

nE � N
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(b) 〈x1, . . . , xN | E1, . . . ,EN 〉 � ϕE1 (x1)ϕE2 (x2) · · ·ϕEN (xN )

5.51. Again consider a system of N interacting, identical particles. Wavefunctions
for this system exist in a Hilbert space spanned by products of 1-body func-
tions, {ϕni (xi)}. In this representation, field operators, φ(x), φ†(x) may be
expanded in the form

φ(x) �
∑
n

anϕn(x)

(In the preceding and following, hats over operators are omitted.)

(a) What is the representation of the number operator N in this representa-
tion?

(b) What are the companion commutator relations to (7.30)?
(c) Employing this representation, write down the form of the N -body

Hamiltonian (5.22) in second quantization.
(d) For which basis functions ϕn(x), does the kinetic energy term in your

answer to the preceding question, reduce to a diagonal sum?

Answer

(a) N �
∑
n

an
†
nan

(b) [an, an′
†]∓ � δnn′

(c) H �
∑
n

∑
n′

∫
dxan†ϕn

† p
2

2m
an′ϕn′

+
∑
n

∑
n′

∑
λ

∑
λ′

∫
dx dx′ an†ϕn

†(x)an′
†ϕn′

†(x′)u(x, x′)aλϕλ(x)aλ′ϕλ′ (x′)

(d) Plane waves.

5.52. Show that if the collision time, τ (k) is constant, then the expression for
conductivity (3.41) reduces to

σ � e2l

12π 3h̄
SF

where l � τvF is mean fee path on the Fermi surface, and SF � 4πkF 2.

Answer

We return to (3.40) and assume that the electric field is in the x-direction. It
follows that

ε−1[v(E · v)]x � v2
x �

1

3
v2

Note further that

|∇kE|EF �
h̄kF

m
� vF

There results

σ � e2τvF

12π 3h̄
SF � e2l

12π 3h̄
SF
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which was to be shown.

5.53. Consider a dense fluid with zero isothermal compressibility (recall Problem
2.23).

(a) What is the normalization condition of the radial distribution function
under these constraints?

(b) Establish a relation between the radial distribution function, g(r), and the
quantum mechanical two-body wavefunction, ψ2(x1, x2).

(c) What is the physical meaning of g(r)? What does your statement reduce
to for an isotropic fluid?

(d) Write down an expression for the number of pairs of particles in the
volume element>v � V , in terms of g(r), where V is the volume of the
whole system.

Answer (partial)

(b) We note that the function |ψ2(x1, x2)|2 is a joint probability density. It
follows that the normalization of this wavefunction is given by∫

|ψ2(x1, x2)|2dx1 dx2 � 1

With the unit Jacobian change in variables (see Problem 2.14)

r � x1 − x2

2R � x1 + x2

the preceding normalization becomes∫
|ψ2(r,R)|2dr dR � 1

The radial distribution function is then given by

g(r) � V
∫
|ψ2(r,R)|2 dR

which gives the correct normalization (under the said conditions)∫
g(r) dr � V

(c) The factor g(r) dr/V gives the probability of finding a pair of particles
with one particle at the origin and the other at r+dr, where dr represents
a volume element. For an isotropic fluid, the preceding probability factor
is given by g(r)4πr2dr/V which represents the probability of finding a
pair of particles with one of the particles at the origin and the other in the
sperical differential shell of volume 4πr2dr .

(d) The number of pairs of particles, >N2, in >V is given by

>N2 � N 2>V

V
g(r ′)

where r ′ is a radial measure of >V .



CHAPTER 6

Relativistic Kinetic Theory

Introduction

This concluding chapter addresses elements of relativistic kinetic theory.1 This
component of kinetic theory plays a significant role in areas of astrophysics,
free-electron lasing, and certain approaches to controlled thermonuclear fu-
sion. The chapter begins with elementary notions of relativity including
postulates, Lorentz transformation, covariance, and invariance. Hamilton’s
equations are written in covariant form. With these preliminaries at hand, the
discussion turns to a covariant description of relativistic kinetic theory. This
formalism is employed to obtain a covariant one-particle Liouville equation,
which when integrated yields the relativistic Vlasov equation for a plasma
in an electromagnetic field. A covariant Drude formulation of Ohm’s law is
given in relation to a relativistic monoenergetic beam. The following section
addresses Lorentz invariants in kinetic theory and a compilation of these forms
is presented in a table. The chapter continues with a derivation of the relativis-
tic Maxwellian. Relativity in non-Cartesian coordinates is discussed in the
concluding section. Here the reader is introduced to the metric tensor and the
notion of contra and covariant tensors. Lagrange’s equations are derived, from
which a one-particle Liouville equation is obtained relevant to non-Cartesian
space–time.

1For further discussion, See S. R. de Groot, W. A. van Leewen, and Ch. G. van
Weert, Relativistic Kinetic Theory: Principles and Applications, North-Holland, New
York (1980); and P. G. Bergman, Introduction to the Theory of Relativity, Prentice-
Hall, Englewood Cliffs, N.J. (1955).
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FIGURE 6.1. The world line of a particle moving in one dimension.

6.1 Preliminaries

6.1.1 Postulates

There are two postulates of special relativity. These are as follows:

1. The laws of physics are invariant under inertial transformations.
2. The speed of light is independent of the motion of the source.

The first postulate states that the result of an experiment in a given inertial
frame of reference is independent of the constant translation motion of the
system as a whole. An inertial frame is one in which a mass at rest experiences
no force. Thus there is no absolute frame in the universe with respect to which
motion of an arbitrary inertial frame is uniquely defined. Only relative motion
between frames is relevant.2

Concerning the second postulate, consider a light source fixed in a frame
S. The frame moves relative to the observer in a frame S ′ with speed v. The
observer measures the speed of light c, independent of the speed v. This situ-
ation is evidently equivalent to one in which S ′ moves relative to S with speed
v. Thus the speed of light is independent of the motion of the receiver, as well
as that of the source. This conclusion is alien to our intuitive picture of either
wave or particle motion.

6.1.2 Events, World Lines, and the Light Cone

Einstein defined an event as a point in space–time coordinates. The locus of
events of a particle is called the world line of the particle. For one-dimensional
motion, the world line of a particle is a curve in (x, ct) space, where c is the
speed of light (see Fig. 6.1).

Of particular interest in the study of relativity is the concept of the light
cone. This is the world line of the leading edge of a light wave stemming from

2Unless otherwise stated, frames referred to in this description are inertial.
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FIGURE 6.2. Light pulse is initiated at 0. Points in the domain marked “elsewhere”
cannot be reached from 0 at speed less than c.

a source switched on at a given instant at a given location. The notion of past
and future may be defined with respect to the light cone (see Fig. 6.2).

6.1.3 Four-Vectors

An event at a given location x and time t may be described by the four-
dimensional vector3

x̄ � (x, ict) (1.1)

which is called a four-vector. The momentum four-vector is given by

p̄ �
(

p,
iE

c

)
(1.2)

Here we have written

E � γmc2 � mc2 + T (1.3)

for the total energy of a particle (in the absence of potential) of rest mass m,
with kinetic energy T . The parameter γ is written for [recall (1.1.19a)]

γ 2 ≡ 1

1− β2
, β ≡ v

c
(1.4)

Note that γ increases monotonically from 1 to β � 0 to ∞ at β � 1. The
relativistic momentum three-vector is given by

p � γmv, v � dx
dt

(1.5)

3An alternative formalism in terms of the metric tensor avoids use of imaginary
time. See Section 6.4.
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FIGURE 6.3. The frame S ′ moves at velocity v with respect to the frame S.

where t is time measured in the lab frame.
Let us write pµ for the components of the four-vector p̄. Thus

p4 � iE
c
, −p2

4c
2 � E2 � p2c2 +m2c4 (1.6)

In this notation we may write

pµ � muµ (1.7)

where uµ is the velocity four-vector,

uµ � pµ
m
� dxµ
dτ

≡ ẋµ (1.8)

and τ denotes proper time. This is the time measured on a clock attached to
the moving particle (described in Section 1.5).

Three other important four-vectors are4

J̄ � (J, icρ) (1.9a)

Ā � (A, i ) (1.9b)

k̄ �
(

k,
iω

c

)
(1.9c)

In these expressions, J is current density, ρ is charge density, A is vector
potential,  is scalar potential, k is a wave vector, and ω is frequency.

6.1.4 Lorentz Transformation

Consider that a frame S ′ moves at constant speed v in the z direction with
respect to a frame S, as shown in Fig. 6.3. It is readily shown from the two
postulates above that if Aµ is a four-vector in S an observer in S ′ observes the
components

A′µ � LµνAν (1.10)

4The manner in which electric and magnetic fields are related to vector and scalar
potentials is described in Problem 1.22. See also Section 2.3.
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where

L �




1 0 0 0
0 1 0 0
0 0 γ iγβ

0 0 −iγβ γ


 (1.11)

Note that L is orthogonal; that is

L̃ � L−1 (1.12)

where L̃ is the transpose of L. Note further that

detL � 1 (1.13)

(see Problem 6.1). Thus L effects a rotation in complex four-dimensional
space. Consequently, the “length” of a four-vector is preserved under a Lorentz
transformation. That is

A′µA
′
µ � AµAµ (1.14)

Let us show this formally:

A′µA
′
µ � LµνAνLµλAλ � LµνLµλAνAλ � L−1

νµLµλAνAλ � δνλAνAλ−AλAλ
For example, consider the length of the momentum four-vector,

pµpµ � γ 2m2v2 − γ 2m2c2 � −m2γ 2c2(1− β2) � −m2c2 (1.15a)

This returns the useful relation

E2 � c2p2 +m2c4 (1.15b)

For x̄, we find

xµxµ � x2 − c2t2 (1.16)

Such entities, which remain invariant under a Lorentz transformation, are called
Lorentz invariants. Note in particular that the Lorentz invariant xµxµ as given
by (1.16) is a reiteration of the second postulate stated above that the speed of
light is c in all frames.

The Lorentz matrices (1.11) have the following group property.

L̂(β1)L̂(β2) � L̂(β12) (1.17)

where

β12 � β1 + β2

1+ β1β2
(1.18)

(see Problem 6.2). Note that (1.18) precludes the speed of any object from
exceeding c. Consider that one of the frames moves with relative speed c, so
that, for example, β1 � 1. Then (1.18) returns the value β12 � 1. Furthermore,
in that L(0) � I , the identity operator, and L−1 � L̃, we see that the Lorentz
transformations comprise a group, called the Lorentz group.
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6.1.5 Length Contraction, Time Dilation, and Proper Time

With relative interframe motion again confined to the z direction, Lorentz
transformation of the even four-vector gives(

z′

ict ′

)
� γ

(
1 iβ

−iβ 1

)(
z′

ict

)
(1.19)

We find

z′ � γ (z− βct) (1.20a)

ict ′ � iγ (−βz+ ct) (1.20b)

Let a rod of given length>z′ lie fixed in a frame that we label S ′. The frame S ′

moves with speed βc relative to the frame S. At a given instant, the length of
the rod is measured in the S frame. This means that the locations of the ends
of the rods are measured simultaneously in S. Calling the length so measured
>z � zb − za , with tb � ta (1.20a), gives

>z � 1

γ
>z′ ≤ >z′ (1.21)

The rod moving past the frame S is measured to be shortened by an observer
in S. This is the phenomenon of length contraction.

Consider next a clock that is at a fixed location in the moving S ′ frame
(z′b � z′a). To find the manner in which intervals τ ′ on this clock are observed
in S, we write the inverse of (1.20b):

ict � iγ (βz′ + ct ′)
There results

τ � γ τ ′ ≥ τ ′ (1.22)

Thus an observer in S concludes that intervals on his clock, τ , are longer than
those on the S ′ clock or that the S ′ clock is “running slow.”

An important parameter in relativity is that of proper time. The proper time
of a particle is the time measured on a clock that moves with the particle. Thus,
if t denotes time in the lab frame and τ proper time, we write

dt � γ dτ (1.23)

Comparison with (1.22) reveals that we have identified proper time with the
single clock fixed in S ′.

6.1.6 Covariance, Hamiltonian, and Hamilton’s Equations

It is important to the first postulate that laws of physics be written in a manner
that guarantees that invariance under Lorentz transformation. Relations so writ-
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ten are said to be covariant.5 For example, the covariant forms of Hamilton’s
equations are given by6

dxλ

dτ
� ∂H̃
∂pλ

,
dpλ

dτ
� ∂H̃
∂xλ

(1.24)

For a free particle, the covariant Hamiltonian is given by

H̃ � pµpµ
2m

(1.25)

For a charged particle in an electromagnetic field,

H̃ � [pµ − (e/c)Aµ][pµ − (e/c)Aµ]

2m
(1.26)

where Aµ is the four-vector potential (1.9b).
In three-vector form, the relativistic Hamiltonian is given by (1.1.19). When

working with this form, Hamilton’s equations must be written with respect to
the lab time t , as in (1.1.12)7 (see Problem 6.3).

6.1.7 Criterion for Relativistic Analysis

Prior to our discussion of relativistic kinetic theory, let us ask the question,
when is it necessary to use this formalism? The answer to this question is
given in terms of a simple rule of thumb. Compare the rest-mass energy of
particles whose kinetic theory is being studied to their kinetic energy. Thus,
with (1.3), the criterion for nonrelativistic theory is written

T � (γ − 1)mc2 � mc2 (1.27a)

or, equivalently,

1 ≤ γ � 2 (1.27b)

or, more simply, v � c. The left inequality in (1.27b) stems from the definition
of γ .

5Not to be confused with covariant and contravariant vectors discussed in
Section 6.4.

6For further discussion, see H. Goldstein, Classical Mechanics, 2nd ed., Addison-
Wesley, Reading, Mass. (1981).

7See, for example, A. O. Barut, Electrodynamics and Classical Theory of Fields
and Particles, Dover Publications, New York (1980).
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6.2 Covariant Kinetic Formulation

6.2.1 Distribution Function8

We consider a distribution F(xµ, pµ) with the following properties:

F ≥ 0 (2.1a)

F → 0 as pµ→∞ (2.1b)

It has the normalization∫
Wx

∫
Fuµdσµd4p � constant (2.2)

where Wx is a hypersurface in four-dimensional x̄-space, with differential
element dσµ.

The definition of F(xµpµ) is as follows. The product

F(xµ, pµ)uµ dσµ d
4p (2.3a)

represents the probability that the world line of a particle intersects the
hypersurface element dσµ at xµ about the point pµ. Furthermore, the product

F(xµ, pµ)ṗµ dσ̃µ d
4x (2.3b)

represents the probability that the world line of a particle intersects the hy-
persurface element dσ̃µ at pµ about the point xµ, where dσ̃µ represents an
element of hypersurface in four-dimensional p̃-space. As in (1.8), the dot in
(2.3b) represents differentiation with respect to proper time.

In (2.3a), the inner product

uµ dσµ � u1(dx2 dx3 dx4)+ · · · + u4(dx1 dx2 dx3) (2.4)

where, for example, dx2 dx3 dx4 is the element of the hypersurface dσµ
parallel to u1.

The relation of F(xµ, pµ) to the classical distribution f (x, p, t) is given by

f (xµ, p) �
∫ ∞

−∞
F dp4 (2.5)

With the normalization condition (2.2), we write9∫
Wx

∫
1

∫
2

∫
3

∫
4
Fuµ dσµ d3p dp4 � constant

8B. Kursunoglu, Nuclear Fusion, 1 (1961). This formulation takes the four com-
ponents ofpµ to be independent. An alternative description that directly incorporates
the constraint (1.15a) was given by Y. Klimontovich, JETP, 37, 524 (1960).

9Choosing Wx to be a plane normal to the time axis (2.6) gives
∫
γf d3x d3p �

constant, which in the nonrelativistic limit returns the classical normalization∫
f d3x d3p � constant.
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FIGURE 6.4. A three-dimensional depiction of four-dimensional x̃ and p̃ spaces and
closed Wx and Wp hypersurfaces. The net number of world lines entering the closed
hypersurfaces Wx and Wp is zero.

�
∫
Wx

∫
1

∫
2

∫
3
f uµ dσµ d

3p � constant (2.6)

6.2.2 One-Particle Liouville Equation

Consider that the hypersurfaceWx in the normalization (2.2) is a closed hyper-
surface. In this case the net number of world lines entering Wx is zero. With
the definition (2.3a), we find∫

d4p

∮
Wx

Fuµ dσµ � 0 (2.7)

See Fig. 6.4.
Gauss’s theorem in four dimensions permits (2.7) to be written∫

d4p

∫
d4x

∂

∂xµ
(Fuµ) � 0 (2.8)

A similar argument stemming from the definition (2.3b) gives∫
d4x

∮
Wp

F ṗµ dσ̃µ �
∫
d4x

∫
d4p

∂

∂pµ
(F ṗµ) � 0 (2.9)

Since F � F(xµ, pµ), we may write

dF
dτ
� ẋµ ∂F

∂xµ
+ ṗµ ∂F

∂pµ
(2.10)

With Hamilton’s equations (1.24), the preceding equation becomes

dF
dτ
� ∂F ẋµ
∂xµ

+ ∂F ṗµ
∂pµ

(2.11)
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Integration of this equation gives∫
dF
dτ
d4x d4p �

∫
∂Fuµ
∂xµ

d4x d4p +
∫
∂F ṗµ
∂pµ

d4x d4p (2.12)

With (2.8) and (2.9), the right side of (2.12) vanishes, and we obtain∫
dF
dτ
d4x d4p � 0

Passing to zero volume gives

dF
dτ
� 0 (2.13)

or, equivalently, with (2.10)

uµ
∂F
∂xµ

+ ṗµ ∂F
∂pµ

� 0 (2.14)

This equation represents a covariant one-particle Liouville equation. The term
following ṗµ will be related to electrodynamic field variables, which in turn
will be related to the distribution through the current. With these substitutions,
the preceding equation is more properly termed the Vlasov equation.

6.2.3 Covariant Electrodynamics

To apply the above finding to a plasma, we must first write Maxwell’s equations
in covariant form. To these ends, we introduce the electromagnetic field tensor
Fνλ. For l, j running from 1 to 3,

Flj � εljkBk (2.15a)

where Bk represents the kth component of magnetic field and εijk is the Levi-
Civita symbol [see beneath (A.10′)]. With Ej written for the j th component of
the electric field, we write

F4j � −Fj4 � iEj (2.15b)

These terms correspond to the matrix

Fµν �




0 B3 −B2 −iE1

−B3 0 B1 −iE2

B2 −B1 0 −iE3

iE1 iE2 iE3 0


 (2.16)

The covariant form of (2.15) is given

Fµν � ∂Aν
∂xµ

− ∂Aµ
∂xν

(2.17)
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where Aµ is the four-vector potential (1.9b). In these variables, Maxwell’s
equations assume the form (cgs)

∂Fµν

∂xµ
� 4π

c
Jν (2.18)

where Jν is the four-current (1.9a). The preceding covariant relation gives the
two Maxwell equations:

∇ · E � 4πρ, ∇ × B− 1

c

∂E
∂t
� 4π

c
J (2.18a)

The covariant structure of the remaining Maxwell equations is

∂Fµν

∂xλ
+ ∂Fλµ
∂xν

+ ∂Fνλ
∂xµ

� 0 (2.19)

which gives

∇ · B � 0, ∇× E+ 1

c

∂B
∂t
� 0 (2.19a)

The covariant form of the Lorentz force law is

ṗµ � e

mc
Fµνpν (2.20)

(see Problem 6.4).

6.2.4 Vlasov Equation

Combining the Lorentz force law (2.20) with the equation of motion (2.14)
gives

uµ
∂F
∂xµ

+ e

mc
Fµνpν

∂F
∂pµ

� 0

or equivalently,

pµ
∂F
∂xµ

+ e
c
Fµνpν

∂F
∂pµ

� 0 (2.21)

This scalar equation has the explicit form

∂F
∂t
+ v · ∂F

∂x
+
(
eE+ e

c
v × B

)
· ∂F
∂p
+ e
c

(v · E)
∂F
∂p4

� 0 (2.21a)

Integrating over p4 and recalling the connecting relation (2.5) gives the desired
form (with components of p̃ taken to be independent):

∂f

∂t
+ v · ∂

∂x
f +

(
eE+ e

c
v × B

)
· ∂f
∂p
� 0 (2.22)
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(see Problem 6.5). Note that the sole difference between the form of (2.22)
and the classical Vlasov equation (2.2.30) is contained in the presence of p in
(2.22), which is the relativistic momentum (1.5).

One further note is relevant to (2.2). For this equation to be properly termed
the Vlasov equation, the fields E and B must be self-consistently defined.
That this is so in the present case follows from the fact that (2.22) includes
the force equation (2.20), with field variables coupled to the current density
through (2.18). The picture is made complete if current and charge densities
are expressible as functionals over the distribution function. These relations
are given by

J(x, t) � eN
∫

p
mγ

f (x̄, p)dp (2.23a)

icρ(x, t) � eN
∫
p4

mγ
f (x̄, p)dp (2.23b)

whereN is the total number of particles in the system. Recall that p/mγ � v,
the velocity in the lab frame. It will be shown that f (xµ, p) and dp/γ are both
relativistic invariants.

6.2.5 Covariant Drude Formulation of Ohm’s Law

A monoenergetic beam of electrons of number density n and velocity v with
respect to the lab frame has the current density

J � env (2.24a)

If n0 is density measured in a frame moving with the beam, then

n � γ n0 (2.24b)

due to length contraction along the direction of motion as given by (1.21). With
(1.7), we may write

u � γ v

and the current (2.24a) may be rewritten

J � en0u (2.25)

With (1.7), the preceding expression for current may be written

J � en0

m
p (2.26)

which is the vector component of the four-vector [see (1.9a)]:

Jµ � en0

m
pµ (2.27)

This form gives the invariant

JµJµ � −e2n2
0c

2 (2.27a)
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We may write down a covariant form of Rayleigh dissipation (4.2.32) in
terms of proper frequency ν0. This is frequency measured on a clock moving
with the beam. The equation appears as

dpµ

dτ
� −ν0pµ (2.28)

Combining this relation with Lorentz force law (2.20) gives

dpµ

dτ
� e

mc
Fµαpα − ν0pµ (2.29)

The fourth component of this equation reads

dE

dτ
� eu · E− ν0E (2.30)

That is, in a frame moving with the beam, energy increases at a rate at which
the electric field does work on the particles and decreases due to collisions at
a rate proportional to the energy.

To obtain the covariant form of Ohm’s law, first we assume steady state and
set dpµ/dτ � 0. Combining (2.29) and (2.27) then gives the desired relation:

Jµ � σFαµ uα
c

(2.31)

where we have written

σ � e
2n0

ν0m
(2.31a)

The vector component of (2.31) returns the standard form of Ohm’s law,

J � σ
(

E+ v × B
c

)
(2.32)

which, we see, is a relativistically valid equation. Note in particular that J,
E, and B in this equation are lab-frame values and that σ contains rest-frame
parameters.

The fourth component of (2.31), with J4 given by (2.27), returns the energy
balance equation [right side of (2.30)]

ν0E � eu · E (2.33)

6.2.6 Lorentz Invariants in Kinetic Theory

First we note

F (p)d3p � d3p

∫
V

F (x, p)d3x (2.34)

represents the number of particles in the spatial volumeV and in the momentum
volume d3p about the point p. [Note thatF (x, p) is normalized to total number
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of particles.] As this is a pure number, it is the same in all reference frames
and thus may be termed a Lorentz invariant.

The same argument leads us to conclude that

F (x)d3x � d3x

∫
F (x, p)d3p (2.35)

is likewise a Lorentz invariant.
Consider next how the volume element d3p transforms under a Lorentz

transformation. To answer this question, we note a general rule of invariance:10

if Cµ and Dµ are two four-vectors, then the ratio of two parallel components,
Cl/Dl is a Lorentz invariant.

With (1.15a), we see that d3p is an element of surface on the hypersurface

pµpµ � p2 −
(
E

c

)2

� −m2c2

Thus we may write

dpx dpy dpz � dσ4 (2.36)

where dσ4 is a differential of hypersurface in four-dimensional p̄-space. With
the above-stated rule of invariance, we conclude that

dσ4

p4
� d

3p

p4
� d3p

iE/c
(2.37)

is a Lorentz invariant. That is, under a Lorentz transformation we find

d2p

iE/c
� d3p′

iE′/c
(2.38a)

or, equivalently,

d3p′ � γ
′

γ
d3p (2.38b)

The invariant d3p/E may be cast in four-dimensional form as follows. First
we write (see Problem 6.8)

d3p

iE/c
�
∫
p4

δ(p2
µ +m2c2)d4p (2.39a)

which is evidently a Lorentz invariant. In this expression we are treating the
four components of pµ as independent. As in (2.22), the delta function in
(2.39a) maintains the constraint (1.15a). As the integration in (2.39a) is only

10L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, 4th ed., Pergamon
Press, Elmsford, N.Y. (1975).
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FIGURE 6.5. Particles described by (2.41) are at rest in S0.

over p4, we obtain the alternative form

d3p

iE/c
� d3p

∫
δ(p2

µ +m2c2)dp4

With the invariants (2.34) and (2.37) at hand, we write

F (p)d3p � EF (p)
d2p

E

This equality indicates that EF (p) is a Lorentz invariant. That is, under a
Lorentz transformation

F ′(p′)E′ � F (p)E (2.40)

In addition to the distribution invariants (2.34) and (2.35), it is evident that

F (x, p)d3x d3p (2.41)

is likewise a Lorentz invariant. To discover the manner in which F (x, p) trans-
forms, we must examine the manner in which d3x transforms in kinetic theory.

To these ends, we note that in relativistic kinetic theory it is necessary to dis-
cern between three frames of reference. The independent variables of F (x, p)
are defined with respect to the lab frame, S. An inertial frame, S ′, moves rel-
ative to the lab frame, where measured variables have values x′ and p′. An
additional frame, S0, is introduced such that particles with momenta defined
by (2.41) are at rest (see Fig. 6.5). The proper volume d3x0 lies in this frame.
Recalling the description leading to (1.21) indicates that the primed frame of
that expression is the frame of the proper volume in the present discussion.
Since both S and S ′ move relative to S0, where the differential of particles
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(2.41) are at rest, our previous result (1.21) gives the relations

d3x � 1

γ
d3x0 (2.42a)

d3x ′ � 1

γ ′
d3x0 (2.42b)

Thus we find

γ d3x � γ ′d3x ′ (2.43)

so that γ d3x is a Lorentz invariant. With (2.41) and (2.43), we obtain

F (x, p)d3x d3p � F ′(x′, p′)d3x ′ d3p′ � F ′(x′, p′)d3x d3p (2.44)

We may conclude that both the distribution

F (x, p)

as well as the phase volume

d3x d3p

are Lorentz invariants. A compilation of these Lorentz invariants is given in
Table 6.1. The time dependence of these distributions is tacitly assumed. Recall
also that F is normalized to total number of particles in the system at hand.
The volume elements d4x and d4p are invariant due to the orthogonal property
of the Lorentz transformation, detL � 1 [see (1.13)].

6.2.7 Relativistic Electron Gas and Darwin Lagrangian

Let us consider a collection of N charges interacting with each other through
the Coulomb interaction. Charge and current densities due to the j th particle
are given by

ρ(j )(x, t) � qjδ[x − xj (t)] (2.45)

J(j )(x, t) � qjvj (t)δ[x − xj (t)] (2.46)

where xj (t) and vj (t) are written for the coordinate and velocity of the j th
particle of charge qj .

We work in the Coulomb gauge11 defined by the condition

∇ · A(j ) � 0

where A(j ) is the vector potential due to the j th particle. In this gauge, potentials
are given by

φ(j )(x, t) �
∫
dx′
ρ(j )(x′, t)
|x − x′| (2.47)

11The Lorentz gauge was defined in Problem 1.22.
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TABLE 6.1. Lorentz Invariants in Kinetic Theory

A. Distribution Functions and Volume Elements

F (x)d3x; F (p)d3p; F (x, p)d3x d3p

F (p)E; F (x, p)

d4x; d4p; d3x d3p;
d3p

E
; E d3x

d3p

iE/c
�
∫
p4

δ(p2
µ +m2c2)d4p

B. Invariants for N -body Systems

N∑
i�1

(p2
i +m2

i c
2) �

N∑
i�1

E2
i

c2

or, equivalently,a

N∑
i�1

p
µ

i piµ � −
N∑
i�1

m2
i c

2

With

ptotal �
N∑
i�1

pi

Etotal �
N∑
i�1

Ei

we may write[
N∑
i�1

p
µ

i

][
N∑
j�1

pjµ

]
� p2

total −
E2

total

c2
≡ −M2c2

whereM is called the invariant mass.

C. Collisional Invariants
N∑
i�1

piµ �
N∑
i�1

p′iµ

With N � 2, we findb

(p1µ + p2µ)2 � (p′1µ + p′2µ)2 ≡ −s
(p1µ − p′1µ)2 � (p′2µ − p′2µ)2 ≡ −t
(p1µ − p′2µ)2 � (p′1µ − p2µ)2 ≡ −u

a Contra and covariant notation is described in Section 6.4.
b The terms s, t and u are called Mandelstam variables. Note
in particular that only two of these variables are independent
since s + t + u � 2c2(m2

1 +m2
2) (see Problem 6.24).
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A(j )(x, t) �
∫
dx′ dt ′

δ(t − t ′ − (1/c)|x − x′|)
|x − x′|

×
[

J(j )(x′, t ′)
c

− 1

4πc

∂

∂t ′
∇′φ(j )(x′, t ′)

]
(2.48)

With these parameters at hand, the relativistic Lagrangian is written

L(xN, vN, t) �
N∑
i�1

{
−mc2

√
1− v

2
i

c2
−

N∑
i<j

×
[
qiφ

(j )(xi , t)− qi
c

A(j )(xi , t) · vi(t)
]}

(2.49)

We wish to obtain the form (2.49) to 0(1/c2). Toward this end, as is evident
from (2.49), it is necessary only to obtain the vector potential to 0(1/c), which
in turn is obtained from (2.48). With x written for xi , we write

A(j )(x, t) �
∫
dx′ dt ′

δ(t − t ′)
c|x − x′|

[
J(j )(x′, t ′)− 1

4π

∂

∂t ′
∇′φ(j )(x′, t ′)

]
+O

(
1

c2

)

Performing the t ′ integration, we find

A(j )(x, t) �
∫
dx′

1

c|x − x′|
[

J(j )(x′, t)− 1

4π

∂

∂t
∇′φ(j )(x′, t)

]
+O

(
1

c2

)
(2.50)

Let us evaluate φ(x, t). Inserting (2.45) into (2.47) gives

φ(j )(x, t) � qj

|x − xj (t)| (2.51)

Substituting this expression together with (2.46) for J(j ) into (2.50), we obtain

A(j )(x, t) � qjvj (t)
c|x − xj (t)|−

1

4πc

∂

∂t

∫
dx′

1

|x − x′|∇
′
(

qj

|x′ − xj (t)|
)
+O

(
1

c2

)
(2.52)

Now note that

∂

∂t

(
1

|x′ − xj (t)|
)
� vj (t) · [x′ − xj (t)]

|x′ − xj (t)|3
Substituting this result into the integral term of (2.52) (labeled I) gives

I � − 1

4πc

∫
dx′

qj

|x − x′| ∇
′
(

vj (t) · [x′ − xj (t)]
|x′ − xj (t)|3

)

Changing variables,

y � x′ − xj (t)
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and integrating by parts, we obtain

I � − 1

4πc
∇
∫
dy

vj (t) · y
y3

qj

|rj − y|
Here we have labeled

rj � x − xj (t) (2.52a)

Integrating the preceding expression gives

I � −qj
2c
∇
(

vj (t) · rj
rj

)

which when differentiated gives

I � −qj
2c

[
vj (t)
rj

− rj (vj · rj )
r3
j

]
(2.53)

Substituting this result into (2.52), we obtain

A(j )(x, t) � qj
2c

[
vj (t)
rj

+ rj (vj · rj )
r3
j

]
(2.54)

Combining this result with (2.51) and substituting into the Lagrangian (2.49)
gives

L(xN, vN, t) �
N∑
i�1


−mc2

√
1− v

2
i

c2


 (2.55)

+
∑
i<j

{
−qiqj
rij
+ qiqj

2c2

[
vi · vj
rij

+ (vi · rij )(vj · rij )
r3
ij

]}

where vi ≡ vi(t) and rij is given by (2.52a) with x rewritten xi [as in (2.49)]. The
preceding expression is the desired structure of the Lagrangian of anN -charged
particle gas valid to O(1/c2). It was first obtained by C. G. Darwin.12

6.3 The Relativistic Maxwellian13

6.3.1 Normalization

With (1.1.19), we write

H � c
√
m2c2 + p2

12C. G. Darwin, Phil. Mag. 39, 537 (1920).
13J. L. Synge, The Relativistic Gas, North Holland, Amsterdam (1957).
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� mc2

√
1+ p2

m2c2
≡ mc2

√
1+ µ2 (3.1)

where

µ2 ≡ p2

m2c2
� β2

1− β2
(3.2)

With (3.1), the Maxwellian may be written

f0(µ) � Ae−H (µ)/kBT

� A exp

[
−mc

2

kBT

√
1+ µ2

]
(3.3)

The normalization of f0 may be written∫
f0 d

3µ � 1 (3.4a)

or, equivalently,

4πA
∫ ∞

0
dµµ2 exp

[
−mc

2

kBT

√
1+ µ2

]
� 1 (3.4b)

We wish to evaluate the normalization parameter A. Let us define

s2 ≡ 1+ µ2

s ds � µdµ
so that (3.4b) becomes

4πA
∫ ∞

1

(
exp−mc

2s

kBT

)
(s2 − 1)1/2s ds � 1 (3.5)

Noting that ∫
(s2 − 1)1/2s ds � 1

3
(s2 − 1)3/2

permits (3.5) to be integrated by parts. There results

4πAmc2

3kBT

∫ ∞

1

(
exp−mc

2s

kBT

)
(s2 − 1)3/2ds � 1 (3.6)

We recall the integral expression for the Bessel function Kν(z)14

Kν(z) � (z/2)ν�(1/2)

�[ν + (1/2)]

∫ ∞

1
e−zt (t2 − 1)ν−(1/2)dt

[
Re

(
ν + 1

2

)
> 0, |arg z| < π

2

]
(3.7)

14I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products,
Academic Press, New York (1965), Eq. (3), section 8.432.



6.3 The Relativistic Maxwellian 469

The asymptotic value of Kν(z) for large z is given by15

Kν(z) ∼
√
π

2z
e−z

[
1+ 1

2z
+ · · ·

]
(3.8)

Employing (3.7) permits the normalization (3.6) to be written

A � mc2

kBT

[
1

4πK2(mc2/kBT )

]
(3.9)

Our complete relativistic Maxwellian then appears as

f0(µ) � mc2/kBT

4πK2(mc2/kBT )
exp

(
−mc

2

kBT

√
1+ µ2

)
(3.10)

6.3.2 The Nonrelativistic Domain

With the definition (3.2), we see that

1+ µ2 � 1+ β2

1− β2
� 1

1− β2

which, in the nonrelativistic domain, gives

1+ µ2 � 1+ β2

µ2 � β2 (3.11)√
1+ µ2 �

√
1+ β2 � 1+ β

2

2

Setting

z � mc2

kBT

permits (3.10) to be rewritten

f0(µ) � z

4πK2(z)
e−z
√

1+µ2
(3.12)

Inserting the asymptotic formulas (3.8) and (3.11) [corresponding to kBT �
mc2] into the preceding result gives

f0(µ) ∼ z

4π
√
π/2ze−z

e−ze−zβ
2/2

� c3

(2πRT )3/2
e−mv

2/2kBT (3.13)

15Ibid., Eq. (6), section 8.451.
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In this same limit,

d3µ→ d2v

c3

and d3µf0(µ) → d3vf0(v), where f0(v) is the classical Maxwellian (3.3.58).
The relativistic Maxwellian (3.10) may be employed with velocity differen-

tial through the transformation

(mc)3d3µ � d3p � m3γ 5d3v

(see Problem 6.10).

6.4 Non-Cartesian Coordinates

We close this chapter with a brief introduction to relativity in non-Cartesian
coordinates.

6.4.1 Covariant and Contravariant Vectors

Vectors that transform as the gradient are called covariant vectors and are writ-
ten with a subscript, for example, Bα. Vectors that transform as displacement
are called contravariant vectors and are written with a superscript.16 Thus, for
example, coordinate components are written xα.

Consider the transformations of coordinates

x ′µ � x ′µ(xα) (4.1)

For differential of displacement, we write

dx ′µ � ∂x
′µ

∂xα
dxα (4.2)

Thus contravariant vectors transform as

A′µ � ∂x
′µ

∂xα
Aα (4.3)

For the gradient of a scalar function φ, we obtain

∂φ

∂x ′µ
� ∂φ

∂xα

∂xα

∂x ′µ
(4.4)

Thus covariant vectors transform as

B ′µ �
∂xα

∂x ′µ
Bα (4.5)

16In the following section, we find that a contravariant vector may be transformed
to a covariant vector, and vice versa. A more basic definition of these vectors is given
in terms of the transformation equations (4.3) and (4.5).
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A contravariant second-rank tensor Aαβ (with 16 components) transforms
as

A′αβ � ∂x
′α

∂xµ

∂x ′β

∂xν
Aµν (4.6)

A contravariant second-rank tensor transforms according to

B ′αβ �
∂x ′µ

∂xα

∂x ′ν

∂xβ
Bµν (4.7)

whereas the mixed second-rank tensor Kα
β transforms as

K ′αβ �
∂x ′α

∂xµ

∂xν

∂x ′β
Kµ
ν (4.8)

We take the inner product of two vectors to be defined as the product of their
contravariant and covariant forms

B · A ≡ BµAµ (4.9)

Note in particular that the inner product

B′ · A′ � ∂xα

∂x ′µ
∂x ′µ

∂xν
BαA

ν

� ∂x
α

∂xν
BαA

ν � δανBαAν

� BνAν � B · A (4.10)

is a Lorentz invariant.

6.4.2 Metric Tensor

In (1.16), we wrote the invariant internal

(ds)2 � (dx)2 − c2(dt)2 (4.11)

This expression is a special case of the more general relation

(ds)2 � gαβdxα dxβ (4.12)

Here we have introduced the metric tensor gαβ � gβα. In Cartesian space, such
as employed in the earlier components of this chapter, gαβ is diagonal with (no
summation)

gαβ � gααδαβ (4.13a)

where

g11 � g22 � g33 � 1, g44 � −1 (4.13b)

The contravariant four-vector event is then given by (x, ct), whereas the
covariant event four-vector is given by (x,−ct). Thus

xµxµ � x2 − c2t2
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An additional property of the metric tensor for flat space is given by

gαβ � gαβ
More generally,

gανg
νβ � δβα (4.14)

where δβα is the four-dimensional Kronecker delta symbol.
The procedure for changing an index on a tensor from contravariant to

covariant, or vice versa, is obtained by contraction with the metric tensor.
Thus, for example,

Aα � gαβAβ
Fαβ � gανAνβ (4.15)

Fαβ � gανgβγAνγ

6.4.3 Lagrange’s Equations

With the preceding preliminaries at hand, we return to the relativistic action
integral [recall (1.1.4)]. In arbitrary geometry, it is given by

S �
∫
−mc

√
−gαβ(x̄)ẋαẋβ dλ (4.16)

where λ parameterizes the curve

xµ � xµ(λ) (4.16a)

and

ẋµ ≡ dx
µ

dλ
(4.16b)

The effective covariant form implied by (4.16) is given by (see Problem 6.23)

L̄ � −mc
√
−gαβẋαẋβ (4.17)

As noted previously, any function of L (satisfying conditions described in
Problem 1.46), when substituted into the action integral returns Lagrange’s
equations. Thus, in place of (4.17), we work with

L̃ ≡ m
2
gαβẋ

αẋβ (4.18)

Elements of Lagrange’s equations are then given by

∂L̃

∂ẋα
� mgαβẋβ (4.19a)

∂L̃

∂xα
� m

2

(
∂

∂xα
gβµ

)
ẋβ ẋµ (4.19b)
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d

dλ

(
∂L̃

∂ẋα

)
� mgαβẍβ +m ∂gαβ

∂xµ
ẋµẋβ (4.19c)

Inserting these into Lagrange’s equations gives

mgαβẍ
β � m

(
1

2

∂gβµ

∂xα
− ∂gαβ
∂xµ

)
ẋµẋβ (4.20)

This is the equation of motion for a free particle in a geometry described by
the metric tensor gαβ . In flat space, components of gαβ are given by (4.13), and
(4.20) reduces to

mgαβẍ
β � mgααẍα � 0

(no sum over α). We obtain

mẍ1 � mẍ2 � mẍ3 � 0, −mẍ4 � 0

If in the last equation we choose the constant of integration to be mc, then we
find t � λ, and the first three equations return conservation of momentum.

6.4.4 The Christoffel Symbol

The equation of motion (4.20) may be cost in a more symmetric form. First
note that it may be rewritten

mgαβẍ
β � m

c

(
∂gβµ

∂xα
− ∂gαβ
∂xµ

− ∂gαµ
∂xβ

)
ẋβ ẋµ

Multiplying this equation by gαν gives

gανgαβẍ
β � δνβ ẍβ �

1

2
gαν

(
∂gβµ

∂xα
− ∂gαβ
∂xµ

− ∂gαµ
∂xβ

)
ẋβ ẋµ

There results

ẍν + �νβµẋβ ẋµ � 0 (4.21)

where �νβµ is the Christoffel symbol:

�νβµ ≡
1

2
gαν

(
∂gαβ

∂xµ
+ ∂gαµ
∂xβ

− ∂gβµ
∂xα

)
(4.21a)

The relation (4.21) is the equation for a “free” particle in a geometry described
by the Christoffel symbol. We may also view it as an equation for the geodesic in
the given geometrical environment. A geodesic is the shortest internal between
two points in the space-time continuum. This may be seen from the fact that
(4.21) follows from rendering the action (4.16) stationary.
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6.4.5 Liouville Equation

With the effective Lagrangian (4.18), we may construct the corresponding
Hamiltonian. First note that canonical momenta are given by

pα � ∂L̃

∂q̇α
� mgαβẋβ (4.22)

where, we recall, a dot represents differentiation with respect to the parameter
λ. Thus we obtain

H � pαẋα − L̃ � pαg
αβpβ

2m
(4.23)

[Note that the preceding reduces to (1.25) in flat space.]
The one-particle Liouville equation is then written

∂

∂λ
f (xα, pβ, λ) � [H, f ]

� ∂H

∂xα

∂f

∂pα
− ∂f

∂xα

∂H

∂pα
(4.24)

Inserting the Hamiltonian (4.23) into this expression gives

∂f

∂λ
+ g

αβpβ

m

∂f

∂xα
− pαpβ

2m

∂gαβ

∂xγ

∂f

∂pγ
� 0 (4.25)

which is the one-particle Liouville equation appropriate to non-Cartesian
space. As noted in Section 1.4.5, the most general solution of the preced-
ing equation is an arbitrary function of solution to its characteristic equations.
These are given by

ẋα � g
αβpβ

m
� ∂H

∂pα
(4.25a)

ṗγ � −pαpβ
2m

∂gαβ

∂xγ
� − ∂H

∂xγ
(4.25b)

As the inserts on the right of these equations indicate, they are Hamilton’s
equations derived from the Hamiltonian (4.23).

The formalism introduced in this section finds application in general
relativity, where space–time curvature derives from large energy–mass
concentration.17

Problems

6.1. Show that the determinant of the matrix L̂ of a Lorentz transformation is unity.

17For further discussion, see C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation, W. H. Freeman and Co., San Francisco (1973).
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6.2. If L̂(β1) and L̂(β2) represent two Lorentz transformations with respect to a
common reference frame, then show that

L̂(β1)L̂(β2) � L(β12)

β12 � β1 + β2

1+ β1β2

Note that this example establishes the group property of Lorentz transforma-
tions.

6.3. With the relativistic Hamiltonian for a charged particle in an electromagnetic
field given by (1.26), show that Hamilton’s equations give

dp
dt
� eE+ e

c
v × B

dx
dt
� 1

γm

(
p− e

c
A
)
� v

6.4. Show that the vector components of the covariant form (2.20)

dpµ

dτ
� e

mc
Fµνpν

return the Lorentz force law.

6.5. (a) Show that (2.21) and (2.21a) are equivalent.
(b) Integrate (2.21a) over p4 to obtain the relativistic Vlasov equation (2.22).

6.6. Show that J4 as given by (2.31) is the same as that given by (1.9a).

6.7. What is the relation between the conductivity parameter with proper values,

σ0 � e
2n0

v0m

and σ with lab-frame values, σ � e2n/vm?

6.8. Show that

d3p

E
� i d

3p

c

∫
δ(p2

µ +m2c2)dp4

Answer

First write

p2
µ +m2c2 � p2 +m2c2 + p2

4 �
(
E

c

)2

+ p2
4

With the expression

δ(y2 − a2) � 1

2a
[δ(y − a)+ δ(y + a)]

the preceding integral over p4 gives

i

∫
δ

[(
E

c

)2

− (ip4)2

]
dp4 � 1

E/c
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6.9. Obtain an expression for the relativistic Maxwellian for a gas of noninteract-
ing particles of rest mass m confined to a volume V that is immersed in an
externally supported potential field  (x).

6.10. Show that

d3p � m3γ 5d3v

Answer18

With

pi � γmvi
we obtain

∂pi

∂vj
� γm

[
δij + γ 2 vivj

c2

]
� γm

[
δij + (γ 2 − 1)

vivj

c2

]
≡ Rij

Introduce the matrix

Q̂ � vv
c2

which has the properties

Q̂n � Q̂, Tr Q̂ � 1

We may then write

R̂ � γ n[Î + (γ 2 − 1)Q̂]

Thus

detR � γ 3m3 det[Î + (γ 2 − 1)Q̂]

Now define

K̂ ≡ ln[Î + (γ 2 − 1)Q̂]

so that

K̂ �
∞∑
n�1

(−1)n−1 (γ 2 − 1)n

n
Q̂n

� Q̂
∞∑
n�1

(−1)n−1 (γ 2 − 1)n

n
� Q̂ ln γ 2

Note that

det R̂ � γ 3m3 det eK̂

18Due to C. Litwin.
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Now use the identity

det eK̂ � eTr K̂

But

Tr K̂ � ln γ 2Tr Q̂ � ln γ 2

We conclude that

det R̂ � γ 3m3eln γ 2 � m3γ 5

6.11. An electron plasma exits at temperature of 106K . Is it necessary to use
relativistic kinetic theory for this plasma?

6.12. A student argues that relativistic kinetic theory for a many-particle system
is inconsistent because proper time can only be defined with respect to one
particle. Thus the notion of a relativistic distribution function is not well
defined. Is the student’s argument valid? If not, why not?

Answer

This problem is obviated if we work with distribution functions with variables
defined with respect to the lab frame. The time that enters this distribution is
the single lab time t . The distributions f and F � Nf encountered in this
chapter were so defined.

6.13. For the monoenergetic beam described in Section 2.5, show that JµJµ �
−e2n2

0c
2.

6.14. If Aµ is a four-vector, then show that d4A is a Lorentz invariant.

6.15. (a) What is the value of the relativistic Maxwellian f0(µ) at v � c.
(b) Why is f0(µ) physically unrealistic at v > c?

6.16. (a) Argue that an electromagnetic wave that is a plane wave in a given frame
is a plane wave in all inertial frames.

(b) With property (a), argue the existence of the four-wave vector (1.9c).
(c) Let the frameS ′ move with velocity v relative toS. If a stationary oscillator

in S emits a wave of frequency ω, then show that the observed frequency
in S ′ is

ω′ � [1− β cos θ ]ω

γ

where cos θ � k · v/kv. The preceding formula for ω′ is the relativistic
expression of the Doppler effect. At θ � π/2, this phenomenon is referred
to as the transverse Doppler shift.

6.17. Show that the Lorentz transformation is orthogonal. That is, establish (1.12).

6.18. Derive the form that the relativistic Maxwellian (3.10) assumes in the
nonrelativistic limit, β � 1.

6.19. The relativistic Lagrangian for a neutral particle of rest mass m in a potential
field, V (r) is given by

L � −γ −1mc2 − V (r)
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(a) Show that in the nonrelativistic limit this form reduces to the classical
expression (1.1.3).

(b) Employing Lagrange’s equations, show that the given relativistic La-
grangian leads to

d

dt
(mu) � −∇V

6.20. Show that Lagrange’s equations applied to the N -body Lagrangian (2.49)
return the Lorentz force law.

6.21. In the vicinity of a black hole, the differential interval in spherical coordinates
is given by

(ds)2 � α−1(dr)2 + r2[(dθ )2 + (sin θ dφ)2]− α(c dt)2

α ≡ 1− 2mG

c2r

whereM is the mass of the black hole,G is the gravitational constant, and c is
the speed of light. From this expression, write down the Schwarzchild metric
gαβ .

6.22. What equations do the fourth components of the left equalities in (4.25)
correspond to for the case that the parameter λ � τ , proper time?

6.23. In flat space, the single free-particle Lagrangian is given by (see Problem 6.19)

L � −γ −1mc2

(a) Does the effective Lagrangian L̃ given by (4.17) reduce to the preceding
form in the flat-space limit? Explain your answer.

(b) How can your finding to part (a) be corrected?

Answer

(a) In the flat space limit we find

L̃ � −mc
√
−
(
dx

dλ

)2

+ c2

(
dt

dλ

)2

which is not the desired form.
(b) The canonical action integral is written S � ∫

Ldt . So, to bring L̃ to
canonical form, the integral (4.16) must be multiplied by dt/dt , resulting
in the flat-space canonical Lagrangian

L � L̃ dλ
dt
� −mc2γ −1

6.24. Establish the relation

−s − t − u � −2m2
1c

2 − 2m2c
2

where s, t and u are Mandelstam variables discussed in Table 6.1.
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Answer

With given definitions, we write

−s − t − u � 3(p1µ)2 + 1(p′1µ)2 + (p2µ)2 + (p′2µ)2

+2p1µp2µ − 2p1µp
′
1µ − 2p1µp

′
2µ

with

(p1µ)2 � (p′1µ)2 � −m2c2

(p2µ)2 � (p′2µ)2 � −m2c2

and

2p1µ(p′1µ + p′2µ) � 2p1µ(p1µ + p2µ)

the result follows.



CHAPTER 7

Kinetic Properties of Metals
and Amorphous Media

Introduction

Solid state matter falls into the categories: metals, semi-metals, semiconduc-
tors and insulators. Structures of solids may be separated into the groups:
single crystal, polycrystal, and amorphous. A sample of single-crystal ma-
terial comprises a periodic array of molecules (simple cubic, body-centered
cubic, hexagonal, etc.). A sample of polycrystalline material is composed of
single-crystal “grains” of material separated by “grain boundaries.” An amor-
phous (“without form”) material does not have a regular array of molecules.
The single-crystal phase of alumina, Al2O3, with Fe impurities, is the gem
sapphire, and with Cr impurities, it is the gem ruby. In polycrystalline form,
this material is employed as a high-temperature resistant ceramic. Window
glass is amorphous SiO2 (fused silica). A common crystalline form of silica is
quartz (the dominant component of sand).

A graphical means of distinguishing between these solid-state phases is
given in terms of the radial distribution function defined in Section 2.2.C. The
radial distribution function for a single-crystal sample is sketched in Fig. 7.1a,
that of a polycrystalline sample in Fig. 7.1b, and that of an amorphous material
in Fig. 7.1c.

A homogeneous mixture of two or more metals is called an alloy. The
symbol for a “binary” alloy comprising metals A and B, is written A1−xBx
which indicates that in the alloy, x mole fraction of B atoms replace x mole
fraction A atoms. Alloys are grouped into two classes: ordered and disordered.
For example, the alloy brass, Cu−Zn, has an ordered phase, “β brass,” which
has a simple cubic lattice with a cesium chloride crystal structure. The alloy
bronze is a multicomponent alloy composed of copper and a number of other
elements, including, tin, aluminum, silicon, and nickel. Other alloys, such
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FIGURE 7.1. Sketches of the radial distribution for: (a) single-crystal, (long-range
order) (b) polycrystal (partial order) and (c) amorphous material (short-range or-
der). Characteristic intermolecular displacement a, is defined with respect to the
displacement, r . The value g(r) � 1 is relevant to a perfect gas. Note that case (b) is
dependent on the choice of origin-site. As g(r) is an average entity, one may expect
distortion of this curve, beyond a few intermolecular displacement.

as Cu−Pb and Zn−Cd are heterogeneous mixtures of grains of nearly pure
single-metal components.

In the present chapter we are concerned with kinetic properties of met-
als and amorphous media. In the first of these descriptions, expressions for
temperature-dependent electrical resistivity and thermal conductivity are de-
rived for a class of metals with spherical-like Fermi surfaces. In the second
part of the chapter, concepts are discussed relevant to amorphous media. Such
notions include hopping, percolation, localization, and the related concept of
the mobility edge. The chapter begins with a general discussion of the phe-
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nomenon of thermopower, which relates to the electric field developed in a
metal due to a temperature gradient across the material.

7.1 Metallic Electrical and Thermal Conduction

7.1.1 Background

A number of processes contribute to metallic resistivity: electron scattering
from impurities and lattice imperfections, electron–electron collisions, and
electron–phonon collisions. This latter interaction has both umklapp and nor-
mal contributions.1 In this section of the present chapter, metallic resistivity
of a pure metal will be described, for which electron–phonon collisions are
dominant. Umklapp processes are negligible at low temperature and are ne-
glected in the discourse. Expressions for electrical and thermal conductivity in
a metal were described briefly in Section 5.3.3. In the present discussion we
are concerned with temperature dependence of these parameters.

Domains of thermal and electrical properties of a metal divide according
to the Debye temperature of the metal,XD. The Debye temperature partitions
classical from quantum behavior of a given material. Classical properties occur
in the domain T ! XD, and quantum properties in the T � XD interval.
As was first derived by Bloch,2 low-temperature electrical resistivity, ρ, of
a pure metal (with a spherical, or nearly spherical Fermi surface) at T �
XD, varies as T 5. A rough derivation of this dependence may be obtained
employing mean-free-path estimates. At low temperature, electron dynamics
is restricted to the Fermi surface. Let lk denote mean-free-path displacement
in k-space on the Fermi surface and let ν denote the electron–phonon collision
frequency so that one may define an effective speed, u ∝ ν/lk. One may then
write, kBT ∝ h̄ulk. Recalling (3.4.18) for the diffusion coefficient, we write
Dk ∝ lku ∝ l2k ν relevant to diffusion in k-space on the Fermi surface. At
lower temperature it may be shown that3 electron–phonon collision frequency,
ν ∝ T 3, which gives Dk ∝ T 5. For electrical conductivity we recall (3.4.14),
σ � e2n/νm ∝ e2nνF τ/pF where τ is the time for an electron to diffuse
a distance pF on the Fermi surface. In diffusion motion, the mean square
displacement is proportional to time (1.8.36) and we may write, p2

F ∝ Dkτ .
There results σ ∝ ne2p2

F /mDk, so that low-temperature metallic resistivity,
ρ � 1/σ ∝ T 5.

In the high-temperature domain, T ! XD, it is generally observed that
ρ varies as T . This increase in resistivity follows from the behavior of
the Bose–Einstein distribution for phonons at high temperature. As note in

1W. A. Harrison, Solid State Theory, Dover, New York (1979).
2F. Bloch, Z. Phys. 59, 208 (1930).
3E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon, New York

(1981).
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(5.3.68) one finds that the number of phonons at high temperature is given by,
nq ∝ kBT /h̄ω(q). Since this number of scatterers increases with T so does the
resistivity.

Here is a summary of these findings.

T � XD ρ ∝ T 5

T ! XD ρ ∝ T (1.1)

Whereas electrical conduction in a metal is due only to electron transport,
both electrons and phonons contribute to thermal conduction. However, a sim-
plifying property comes into effect. Heat transfer in a metal is due primarily
to electron transport, owing to relativity high electron speeds (Fermi speed)
compared to phonon speeds. Likewise, at low temperature, specific heat due to
electrons exceeds that due to phonons. For pure metals, thermal and electrical
conductivity are related according to the Weidemann–Franz law (5.3.43)

κ

σT
� π

2

3

(
kB

e

)2

(1.2a)

where κ denotes coefficient of thermal conductivity. This relation is valid over a
wide temperature domain,4 whereas in the low-temperature domain, T � XD,
the Lorenz equation5

κ

σT
� A

(
T

XD

)2

(1.2b)

is appropriate, where A is a constant. With (1.1) and the preceding relations
we note the following characteristic values of κ .

T � XD κ ∝ 1/T 2

T ! XD κ � constant (1.2c)

Measurements of κ indicate that at low temperature, κ behaves linearly in T
and reduces to zero at 0K. This behavior is attributed to impurity scattering.

The main thrust of this component of the present chapter is to derive an ex-
pression for electrical conductivity in a metal relevant to the entire temperature
range. Before doing so, we discuss a closely related phenomenon in metals for
the situation when a gradient of temperature is present.

For future reference we note the following properties of the Fermi–Dirac
distribution (5.3.1). We define

Gn ≡ 1

n!

∫ ∞

0
(E − µ)n

(
−∂f0

∂E

)
dE (1.3a)

4N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and
Winston, New York (1976).

5J. M. Ziman, Principles of the Theory of Solids, Cambridge, New York, (1964),
Section 7.8.
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Then

Gn � (kBT )n

n!

∫ ∞

−∞

zndz

(ez + 1)(1− e−z) (1.3b)

Gn �
(

2bn(kBT )n, n even
0, n odd

)
(1.3c)

Values of the constant bn are readily calculated, e.g., 2b0 � 1, 2b2 � π 2/6.
[See Problem 7.1 and recall (5.3.39b).] The following integrals are also noted.

Bn ≡ 1

4π 3

1

h̄

∫ ∫
τvv(E − µ)n

(
−∂f0

∂E

)
dS

v
dE (1.3d)

where Bn is a tensor and
∫
dS represents an integral over the Fermi surface.

With (1.3) we obtain,∫
 (E)

(
−∂f0

∂E

)
dE �  (EF )+ π

2

6
(kBT )2

[
∂2 

∂E2

]
EF

+ · · · (1.3e)

Employing (1.3e) we find

B0 � 1

4π 3

1

h̄

∫
τvv

dS

v
(1.3f)

B1 � π
2

3
(kBT )2

[
∂B0

∂E

]
EF

(1.3g)

B2 � π
3

3
(kBT )2B0 (1.3h)

In the preceding we have recalled the relation (5.3.39a)

dk � dS dE|∇kE| �
dS dE

h̄v
(1.3i)

where the right equality is relevant to a spherical energy surface and, we recall,
dS is a surface element on the Fermi surface in k-space.

7.1.2 Thermopower

Thermopower refers to the electric field developed in a metal due to a tem-
perature gradient present in the material. (A closely allied phenomenon,
electrochemical potential, was discussed previously in Section 3.4. We recall
that in this phenomenon current flow occurs in a medium in which a density
gradient exists in addition to an electric field.) Consider a long, thin metal bar
along which there is a temperature gradient. Due to resulting charge flow, an
electric field is generated in the direction opposite to the temperature gradient.
At equilibrium there is an electric field with no charge flow. This electric field
is called the thermoelectric field. One writes

E � Q∇T (1.3j)
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where Q is labeled the thermopower. In typical metals, observed values of Q
are of order µV/K .

Relaxation-time approximation

We wish to study thermopower in the relaxation-time approximation (5.3.35).
The equilibrium distribution for conduction electrons in a metal in which there
is a temperature gradient and an electric field is given by the (k, r)-dependent
Fermi-Dirac distribution

f0[E(k), T (r), µ(r)] � 1

exp[(E − µ)/kBT ]+ 1
(1.4)

In this model one is concerned with the change in the distribution due to
diffusion effects for which one writes, (∂f0/∂t)Diff � −v · ∇f , etc.5 The
corresponding steady-state version of (5.3.35) is then given by

−
(

v · ∇f + eE
h̄
· ∂t
∂k

)
� 1

r
[f0 − f ] (1.5)

where E denotes electric field. We introduce the perturbation distribution

f (r, k) � f0 + g(r, k) (1.6)

and the relations [see equation above (5.3.32)]

v(k) � 1

h̄

∂E

∂k
,

∂f0

∂k
� h̄v

∂f0

∂E
(1.7a)

where v is group velocity. We note the derivative

∇f0 � ∂f0

∂T
∇T + ∂f0

∂µ
∇µ (1.7b)

Substituting the latter three equations in (1.5), and keeping O(1) terms, one
obtains

v ·
(
∂f0

∂T
∇T + ∂f0

∂µ
∇µ

)
+ eE · v ∂f0

∂E
� 1

τ (E)
g(k, r) (1.8)

With

∂f0

∂E
� −f

2
0 exp[(E − µ)/(kBT )]

kBT
(1.9a)

we find
∂f0

∂T
� −

(
E − µ
T

)
∂f0

∂E
(1.9b)

∂f0

∂µ
� −∂f0

∂E
(1.9c)

5J. M. Ziman, Principles of the Theory of Solids, Cambridge, New York, (1964),
Section 7.8.
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Substituting these findings into (1.8) gives

∂f0

∂E
v ·

[
−
(
E − µ
T

)
∇T + e

(
E− 1

e
∇µ

) ]
� 1

τ (E)
g(k, r) (1.10a)

For future reference this equation is rewritten as

g(k, r) � αv ·
[

1

T
�(−∇T )+ e

(
E− 1

e
∇µ

) ]
(1.10b)

α ≡ τ df0

dE
, � ≡ E − µ (1.10c)

To calculate thermal conductivity in a solid one imagines a small region
over which temperature is effectively constant. Recalling the thermodynamic
relation between a differential of heat, dQ and a differential of entropy, dS

dQ � T dS
permits one to write the corresponding relation between thermal and entropy
current densities, JQ and JS

J � T JS (1.11a)

(JQ was previously labeled Q). With the entropy relation

T dS � dE − µdN
one writes

T JS � JE − µJN (1.11b)

where JN is particle current density. With (1.11a) it follows that

JQ � JE − µJN (1.11c)

Local energy and particle current-density are given by [with r-dependence of
f tacitly implied] (

JE
JN

)
�
∫
dk
4π 3

(
E(k)

1

)
v(k)f (k) (1.12)

With (1.11c) we may then write

JQ �
∫
dk
4π 3

�(E)v(k)f (k) (1.13)

As f0 (1.4) is an even function of k, only the perturbation distribution g enters
in the preceding integral. With (1.10b) we obtain

JQ �
∫
dk
4π 3

�α(E)v(k)v(k) ·
[

1

T
�(−∇T )+ e

(
E− 1

e
∇µ

) ]
(1.14)

Electric current density is given by [recall equation preceding (5.3.39)]

J � e
∫
dk
4π 3

v(k)f (k) (1.15)
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Again with reference to (1.10b) we find

J � e
∫
dk
4π 3

α(E)v(k)v(k) ·
[

1

T
�(−∇T )+ e

(
E− 1

e
∇µ

) ]
(1.16)

It may be assumed that in measurement of electric field in a metal, gradients in
chemical potential are subsumed in the field. Consequently this term is ignored
in the following relations. With (1.14) and (1.16) we write

J � L11E+ L12(−∇T ) (1.17a)

JQ � L21E+ L22(−∇T ) (1.17b)

where the Lij coefficients are as implied and are, in general, tensor forms. In the
absence of a gradient of temperature, L11 is electrical conductivity, whereas in
the absence of an electric current, L22 is the coefficient of thermal conductivity.
Here one assumes, |L22| ! |L21L−1

11 L12|. The off-diagonal elements relate to
the interplay of these two effects when both fields are present. Note that in
general, L21 � TL12.

For L11 we find

L11 � e2

4π 3

1

h̄

∫ ∫
dkτ

∂f0

∂E
vv (1.18a)

which with (5.3.39b) and (1.3i), may be written

L11 � e2

4π 3

1

h̄

∫ ∫
τvv

dS

v
� e2B0 (1.18b)

so that

σ � e2B0 (1.18c)

which is in accord with our previous finding (5.3.41).
For L22 we find [with (1.3d) and (1.3i)]

L22 � κ � 1

T
B2 � T π2k2

BB0 (1.18d)

which, with (1.18c) returns the Wiedemann-Franz law, (1.2a).

7.1.3 Electron–Phonon Scattering Matrix Elements

The analysis of the following sections addresses temperature-dependent elec-
trical resistivity in monovalent metals. These include a subset of the alkali
metals: Na, K, Rb, Cs, which each have bcc structures, and the noble metals:
Cu, Ag, Au, which have have fcc structures. Alkali metal atoms include a sin-
gle electron outside a closed shell noble-atom electron configuration. Thus,
for example, potassium has the electronic configuration, [Ar] 4s1. Noble metal
atoms include a single electron exterior to closed shell composed of a corre-
sponding noble atom electronic configuration and a closed d10 shell. Thus, for
example, copper has the electronic configuration, [Ar] 3d104s1. The metallic
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FIGURE 7.2. Fermi surface for a noble metal showing necks at contact with Bragg
planes of the first Brillouin zone (truncated octahedron). Also shown are de Hass–van
Alphen electron orbits due to an imposed magnetic field, H , in the [111] direction.
(Reproduced with permission of N. W. Ashcroft and N. D. Mermin.)

state of both classes of elements is characterized by tightly bounded bands that
lie significantly below conduction electron levels of the metal.

The Fermi surfaces for the alkali metals are spheres and lie, respectively,
within the first Brillouin zone (regular rhombic dodecahedron). The Fermi
surfaces for the noble metals are spherical except for “necks,” which extend to
the Bragg planes of the first Brillouin zone (truncated octahedron) in the [111]
directions (Fig. 7.2). As noted earlier, temperature dependence of phenomena
in solid materials separates according to weather temperature in less than or
greater than the Debye temperature. Our analysis will rediscover this property
as well as a residual resistivity, which comes into play near 0K.6,7 Characteristic
low-temperature alkali-metal resistance is shown in Fig. 7.3.

Interaction Hamiltonian

Our study begins with the derivation of an expression for the interaction Hamil-
tonian between electrons and ions in the lattice, in which ion displacement from
equilibrium is incorporated in the analysis. Working in second quantization,

6Components of this analysis appeared previously in R. L. Liboff and
G. K. Schenter, Phys. Rev. B54, 16591 (1996).

7For a review of these topics see: J. Bass, W. P. Pratt, Jr. and P. A. Schroeder,
Revs. Mod. Phys. 62, 645 (1990).
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FIGURE 7.3. Characteristic relative resistance as a function of temperature for an
alkali metal in the low-temperature domain at relatively small impurity concentration.
For further discussion see D. K. C. MacDonald and K. Mendelssohn, Proc. Roy. Soc.
(London) 202, 103 (1950); J. S. Dugdale, Electrical Properties of Metals and Alloys,
Edward Arnold, London, 1977 Chap. 10; J. L. Olsen, Electron Transport in Metals,
Interscience, New York (1962), Chap. 2.

the potential Hamiltonian component for the system may be written

Ĥ �
∫
dx ψ̂†(x)ψ̂(x)

∑
y

 [x − y− ẑ(y)] (1.19)

where is electron–ion interaction potential, ψ̂† is electron creation operator,
x denotes electron position, y denotes ion equilibrium position and ẑ(y), ion
displacement from equilibrium. For small ion displacements we write

ĤINT � Ĥ − Ĥ (ẑ � 0) �
∫

dx ψ̂†(x)ψ̂(x)
∑

y

ẑ(y) · ∂
∂y
 (x − y) (1.20)

Fourier expanding electron operators

ψ̂†(x) �
∫

dk2

(2π )3
e−ik2·xψ̂†(k2)

ψ̂(x) �
∫

dk1

(2π )3
eik1·xψ̂(k1)

(1.21a)

and quantizing ion displacements

ẑ(y) �
∑
q,µ

√
h̄

2MNω

[
êµ(q)ei(q·y)âµ(q)+ êµ(−q)e−iq·yâ†

µ(q)
]

(1.21b)
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gives

ĤINT �
∫
dx

∫
dk1dk2

(2π )6

∑
y

∑
±

∑
q,µ

√
h̄

2MNω
êµ(±q)

[
ψ†(k2)ψ(k1)

]

×
[
âµ(q)
â†
µ(q)

]
(∓iq exp i[±q · y− k2 · x + k1 · x]) (x − y) (1.22)

where êµ is a phonon polarization unit vector, q denotes phonon wave vector,
ω � uq, N represents total number of free electrons and M is ion mass. The
column vector notation in (1.22) is such that the upper âµ(q) term corresponds
to the (+) phonon absorption mode and the lower â†

µ(q) term corresponds to
the (−) phonon emission mode. In these expressions,

ρM � MnM, nM � n

Z
, n � N

V
(1.22a)

where ρM is ion mass density, nM is ion number density, n is electron number
density,Z is atomic valence,µ is polarization index andω is phonon frequency.
Now we note that, with u ≡ x − y,∑

y

e±iq·y (x − y) � −e±iq·x
∑

u

e∓iq·u (u) � N
V
e±iq·x ̃(±q) (1.23)

where V is total crystal volume and

 ̃(q) �
∫
dx e−iq·x (x) (1.24)

is the Fourier transform of the potential. The preceding combines with the
exponentials (1.23) to give

HINT �
∫
dk1dk2

(2π )6

∑
±

∑
q

δ(±q− k2 + k1)

√
h̄

2MNω
(1.25)

×
{
∓iq · êµ(±q)

N

V
 (±q)

[
ψ̂†(k2)ψ̂(k1)

] [
âµ(q)
â†
µ(q)

]}
With this equation we see that only longitudinal modes contribute so we may
set

∓iq · êµ(±q) � ∓iq
Thus, rewriting (1.25) in the form

HINT �
∫ ∫

dk1dk2

(2π )6

∑
±
Cqδ(±q− k2 + k1)ψ̂†(k2)ψ̂(k1)

[
âµ(q)
â†
µ(q)

]
(1.26)

gives the coefficient

Cq � ∓
√

h̄

2MNω
iq
N

V
ω,  ̃(±q) (1.27)
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For the shielded Coulomb potential one writes

 ̃(q) � 4πZe2

q2 + q2
TF

(1.28)

where qTF is the Thomas–Fermi shielding wavenumber

q2
TF �

(
4

a0

)(
3n

π

)1/3

(1.28a)

and a0 is the Bohr radius. With ω � uq we obtain

|Cq |2 � h̄(M�2)2

2Z2ρMu

q

(q2 + q2
TF)2

(1.29)

where � is the ion plasma frequency

�2 � 4πnM (Ze)2

M
(1.29a)

As we will see below, the expression (1.29) comes into play in electron–phonon
scattering matrix elements.

Scattering-rate matrix elements

Electron–phonon scattering-rate matrix elements are written S
(α)
k′k (with

dimensions of inverse time) and are given by

S
(α)
kk′ � |〈k′, n′|HINT|k, n〉|2 2π

h̄
δ(>E) (1.30a)

δ(>E) � δ(E′ − E − αh̄ω) (1.30b)

whereE is electron energy,HINT is given by (1.26). [S(α)
kk′ was previously labeled

w(k, k) in (5.3.59).] The equality

S
(α)
kk′ � S(−α)

k′k (1.30c)

corresponds to symmetry of the electron–phonon interaction under time re-
versal and α � (+,−) corresponds to phonon (absorption, emission) in an
electron–phonon scattering event. Momentum conservation in a collision is
given by

k′ � k + αq (1.31)

where h̄q is phonon momentum.
In the relation (1.30a), |n〉 denotes the many-phonon state

|n〉 � |nq, nq ′, . . .〉 (1.32)

where

nq � 1

eh̄ω/kBT − 1
(1.33)
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is the Bose–Einstein distribution. For the dispersion relation for phonons we
write

ω � uq (1.34)

An estimate of the phonon speed u is given by the Bohm–Staver relation

u2 � 2

3

ZEF

M
(1.34a)

Fast relaxation of phonons to the distribution (1.33) is assumed in the analysis
(the so-called “Bloch condition”).

For metals, the matrix elements (1.30a) have the value8

S
(α)
kk′ � |Cq |2

(
nq + 1

2
− α 1

2

)
2π

h̄
δ(>E) (1.35)

where with (1.29)

|Cq |2 � RG(q) (1.36a)

G(q) ≡ q/V

(q2 + q2
TF)2

(1.36b)

R ≡ h̄(M�2)2

2ρMuZ2
(1.36c)

Note that R has dimensions of (energy)2, G, is dimensionless and Cq has
the units of energy. The quantity h̄�/2 may be identified with ion zero-point
energy.

With (1.33) we see that phonon occupation numbers, nq � 0, at T �
0K. Nevertheless, from (1.35) we note that the phonon emission (α � −1)
matrix element persists at this temperature. Thus, inelastic electron–phonon
scattering maintains at T � 0K. The fact that phonon absorption scattering
matrix elements vanish in this limit is consistent with the 0K limit. That is, as
the ground phonon state at T � 0K is the state of lowest energy, no energy
may be extracted from it in any interaction. The phonon emission at T � 0K
is due to zero-point fluctuations which induce an electron to decay, consistent
with (1.30b). As will be noted below, this phenomenon gives rise to a residual
resistivity in a pure metal at T � 0K.

Assumptions

Here is a brief review of assumptions included in following analysis. In the
absence of an electric field, it assumed that conduction electrons in the metal
are in the Fermi–Dirac distribution

f0(k) � 1

1+ exp[(E − EF )/kBT ]
(1.37)

8F. Sietz, The Modern Theory of Solids, Dover, New York (1987); J. M. Ziman,
Electrons and Phonons, Oxford, New York (1960).



7.1 Metallic Electrical and Thermal Conduction 493

with normalization ∫
f0(k)

dk
(2π )3

� n (1.38)

where EF is the Fermi energy.
For metals with a spherical or nearly spherical energy surface we may write

dk � 4πk2dk � 2π
√
E dE

(h̄2/2m)3/2
(1.39)

and (1.39) may be rewritten∫
f0(E)

√
E dE � n(2π )2(h̄2/2m)3/2 (1.40)

With ω written for phonon frequency, the following relations are assumed

h̄ω <h̄ωD � EF � E (1.41)

where ωD is the Debye frequency. Furthermore, as electron wave vectors lie
predominantly on the Fermi surface, we also conclude that: q � kF and
electron scattering is predominantly small angle, or, equivalently, k · q � kq.

Scattering matrix elements (1.35), (1.36), are employed in construction of
the quantum Boltzmann equation presented in the following section, relevant
to derivation of the distribution function for conduction electrons in a metal.

7.1.4 Quantum Boltzmann Equation

Our starting equation is the quantum Boltzmann equation

∂f

∂t
+ eE
h̄
· ∂f
∂k
� Ĵ (f ) (1.42)

Ĵ (f ) �
∑
α

∫
dk′

(2π )3
[f ′(1− f )S(α)

k′k − f (1− f ′)S(α)
kk′] (1.43)

which is noted to have the generic form of (5.4.5). As noted above, the sum over
α � +1,−1, corresponds to emission and absorption of a phonon, respectively,
in an electron-phonon scattering event. The electric field is E and

f ′ ≡ f (k′, t), etc. (1.44)

represents the electron distribution function where k′ corresponds to “after”
collision. We recall that the term, (1− f ) in the “birth” term on the right side
of (1.43) is a quantum inhibiting factor relevant to fermions (Section 5.4).

Substituting (1.35), (1.36) into (1.43) gives

Ĵ (f ) �
∑
α

Îα

[
f ′(1− f )

(
nq + 1

2
+ α 1

2

)
− f (1− f ′)

(
nq + 1

2
− α 1

2

)]
(1.45)
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where

Îα[ϕα(q)] ≡ V
∫

dq
(2π )3

|Cq |2δ(>E)ϕα(q) (1.45a)

In this expression, with (1.31), we have set dk′ � dq and

f ′(k) ≡ f (k′) � f (k + αq) (1.45b)

so that f ′(k) is α-dependent.

Lorentz–Legendre expansion9

To account for anisotropy of the distribution function due to the imposed E-
field, we employ the Lorentz expansion

f (k) � f0(k)+ µf1(k)+ · · · (1.46a)

µ � k̂ · Ê � cos θ (1.46b)

f (k′) � f0(k′)+ µ′f1(k′)+ · · · (1.46c)

µ′ � k̂′ · Ê (1.46d)

where hatted variables are unit vectors.
Keeping terms toO(µ) in (1.46) and substituting the resulting form into the

collision integral (1.45) gives

Ĵ [f (k)] � Ĵ0(f0)+ Ĵ1(f0, f1) (1.47)

where

Ĵ0(f0) �
∑
α

Îα

[
(f ′0 − f0)

(
nq + 1

2

)
+ α 1

2
(f ′0 + f0)− αf ′0f0

]
(1.47a)

Ĵ1(f0, f1) � µ
∑
α

Iα

[(
µ′

µ
f ′1 − f1

)(
nq + 1

2

)
+ α 1

2

(
µ′

µ
f ′1 + f1

)

−α
(
µ′

µ
f ′1f0 + f ′0f1

)]
(1.47b)

Note that

f ′(E) ≡ f (E′) � f
(
E + α h̄ω

kBT

)
(1.47c)

Substituting these expressions into (1.43) and passing to the steady-state limit,
with the orthogonality of Legendre polynomials, we obtain the two equations
(see Appendix D)

2eE
3h̄k

∂

∂E
(Ef1) � Ĵ0(f0) (1.48a)

9H. A. Lorentz, The Theory of Electrons, B. G. Teubner, Leipzig (1909).
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µ
2eE
h̄k

E
∂

∂E
f0 � Ĵ1(f0, f1) (1.48b)

It is assumed that f0(E) is the Fermi-Dirac distribution (1.38). In that Ĵ0(f0)
vanishes for this choice of f0, (1.48a) corroborates the fact that the Fermi-Dirac
distribution is relevant to the zero-field situation, E � 0. The relation (1.48b)
suffices to determine the correction f1.

Reduction to integrals

To reduce the integral (1.47b) occurring in the right side of (1.48b), we first
note that ∫

dq �
∫ qD

0
dq q2

∫ 2π

0
dβ

∫ 1

−1
d cos γ (1.50a)

where

q̂ · k̂ � cos γ (1.50b)

Furthermore, we note that

δ(E′ − E − αh̄ω) � k

2qE
δ

[
cos γ −

(
−α q

2k
+ ε k

2q

)]
(1.51)

where we have set

ε ≡ h̄ω
E

(1.51a)

The delta function in Îα restricts the domain of integration. With (1.51) we
write

cos γ � −α q
2k
+ ε k

2q
(1.52)

Noting that

−1 < cos γ < +1

and that ε is infinitesimally small, we obtain the upper (U) and lower (L) limits
on the q integration:

qU � 2k + α εk
2
+O(ε2) (1.53)

qL � 0+O(ε2)

Thus, (1.45a) reduces to

Îα(ϕα) � V k

4πh̄E

∫ qD

0
dq q|Cq |2ϕα (1.54)

where qD represents the Debye wavenumber,

qD � ωD
u
� [6π2nM ]1/3 (1.55)
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Inserting the preceding expression into (1.47b) and summing over α, we
obtain

Ĵ1(f0, f1)� Î nq
{〈
µ′f (+)

1

[
ey(1− f0)+ f0

]− µf1

[
eyf

(+)
0 + (1− f (+)

0 )
]〉
+

+
〈
µ′f (−)

1

[
euf0 + (1− f0

]− µf1

[
ey(1− f (−)

0 )+ f (−)
0

]〉
−

}
(1.56)

where 〈 〉± correspond to α � ±1 and

y ≡ h̄ω

kBT
� h̄uq
kBT

� q

Q
(1.56a)

Q ≡ kBT
h̄u

(1.56b)

and, with (1.47c)

f (±) � f (E ±h̄ω) (1.56c)

Note further thatQ has the dimensions of wavenumber.
In (1.56) we introduced

Î ≡ V k

4πh̄E

∫ qD

0
dq q|Cq |2 (1.57)

With (1.36), the preceding is written

Î � kRV

4πh̄E

∫ qD

0
dq qG(q) (1.58)

Since most of electron scattering occurs on the Fermi surface, we may write
k′ � k. With (1.31) we then obtain

µ′ ≈ µ
(

1− q2

2k2

)
� µ

[
1− Q

2y2

2k2

]
(1.59)

Substituting this expression into (1.56) permits the starting equation (1.48b)
to be written

eE ∂f0

∂E
� VRmQ

2

4πEh̄2

∫ yD

0

dy yG(y)

ey − 1

(
L1 − Q

2y2

2k2
L2

)
(1.60)

where

L1 ≡ f (+)
1 [ey(1− f0)+ f0]− f1[ey(1− f (−)

0 )+ f (−)
0 ]

+ f (−)
1 [eyf0 + (1− f0)]− f1[eyf (+)

0 + (1− f (+)
0 )] (1.61)

L2 ≡ f (+)
1 [ey(1− f0)+ f0]+ f (−)

1 [eyf0 + (1− f0)] (1.62)

7.1.5 Perturbation Distribution

The relations (1.60), (1.62) comprise a self-contained integro-difference
equation for the perturbation distribution, f1(E). When written in terms of
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nondimensional variables (x, y) the definition (1.56c) is given by

f (±)(x) � f (x ± y) (1.63)

x ≡ E/kBT , y ≡ h̄ω/kBT
With (1.41) we note

x ! y (1.63b)

Thus, in this same limit, (1.56c) becomes

f (±)(x) � f (x) (1.64)

(both for f0 and f1).
Substituting (1.64) and (1.61), (1.61), reduces to L1 to zero. For L2 there

results

L2 � f1(ey + 1) (1.65)

Defining

F (E) ≡ −f1(E)/E

∂f0/∂E
(1.66)

and

B ≡ Rm

4πh̄2 (1.67)

(1.60) becomes

eE
B
� QW

2k2
F (E) (1.68)

whereW is the dimensionless integral

W (T ) ≡ Q3V

∫ yD

0
dy y3G(y)

(
ey + 1

ey − 1

)
(1.69)

or, equivalently,

W (T ) �
∫ yD

0

dy y4

(y2 + y2
TF)2

(
ey + 1

ey − 1

)
(1.69a)

yTF ≡ XTF

T
, yD ≡ XD

T
(1.69b)

kBXTF � h̄uqTF, kBXD � h̄uqD (1.69c)

It follows that

f1(E) � −16πeEE2∂f0/∂E

RK(T )
(1.70a)
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where the temperature-dependent term

K(T ) ≡ QW (T ) � Q̄TW (T ) (1.70b)

Q̄ ≡ kB/h̄u (1.70c)

Note that K(T ) has dimensions of wavenumber.10 With (1.38) and (1.46), the
expression (1.70a) gives the corrected electron distribution to the given order
in µ.

7.1.6 Electrical Resistivity

Current density is given by [recall (1.15)]

J �
∫

dk
(2π )3

eh̄k
m
f (k) (1.71)

Substituting (1.69) into the preceding we obtain

J �
∫

dk
(2π )3

eh̄k

m
k̂ · Êf1(k)

� eh̄

m(2π )3
Ê ·

∫
dk k̂k̂f1(k)k (1.72)

� 1

3

eh̄

m(2π )3
Ê · ¯̄I

∫
dk f1(k)k

where ¯̄I is the unit matrix. A double-barred variable represents a dyad. [See
(B.1.1) et seq.] There results

J � 1

3

eh̄

m(2π )3
Ê
∫
dk f1(k)k (1.73)

With (1.39) we write

k dk � 4πk3dk � 2π

(
2m

h̄2

)
E dE

It follows that

J � em

3π 2h̄3 Ê
∫
dE Ef1(E) (1.74)

In estimating f1 it is further assumed that

∂f0

∂E
� −δ(E − EF ) (1.74a)

Since kBT � EF , f0 is sharply peaked in the temperature range of interest
(0K ≤ T ≤ 300K) and (1.74a) remains a good approximation. Substituting

10The relation (1.70a) contradicts Bloch’s principal assumption, f1(E) �
α∂f0(E)/∂E, where α is a constant. See: F. Block, Ref. 2.
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the preceding relations in (1.70) gives the desired solution for the perturba-
tions distribution f1(E). When substituted into (1.74) this solution gives the
conductivity (σ ); resistivity (ρ) expression

σ � 1

ρ
� 16

3π

e2mE3
F

h̄3RK(T )
�
(
e2mE3

F

3πh̄3R

)(
16h̄u

kBTW (T )

)
(1.75)

whose temperature dependence is contained entirely in TW (T ) [see (1.70b)].
As will be shown below, the preceding expression for ρ gives both Bloch’s T 5

dependence at (T/XD) � 1 as well as canonical T dependence at (T/XD) !
1 in addition to a residual resistivity at T � 0K.

Properties ofW(T) and S1(λ)

The function W (T ) is singular at T � 0K. To expose this singularity first we
note the relation

ey + 1

ey − 1
� 1+ 2

ey − 1
so that [recall (1.69)]

W (T ) �
∫ yD

0

dyy4

(y2 + y2
TF)2

(
1+ 2

ey − 1

)
≡ W1(T )+W2(T ) (1.76)

The W2(T ) contribution corresponds to the exponential term and is finite at
T � 0K. The singularity ofW (T ) lies inW1(T ). To obtain the T -dependence
of this singularity we introduce the variable

z ≡ Ty
There results (relabeling zD ≡ XD, etc.)

W1 � 1

T

∫ XD

0

z4 dz

[z2 +X2
TF]2

≡ XDS1

T
(1.77)

where S1 is the implied nondimensional temperature-independent integral. The
relation (1.77) indicates that W (T ) has a simple pole at T � 0K. Evaluating
the integral S1 gives

S1(λ) � 1+ 1

2(1+ λ2)
− 3

2λ
tan−1 λ (1.77a)

λ ≡ XD

XTF
� ωD

ωTF
� qD

qTF
� yD

yTF
(1.77b)

The parameter qTF is given by (1.28a), qD by (1.68c) and we have set tan−1(0) �
0.

The function S1(λ) is a positive monotonic function with properties

S1(0) � S ′1(0) � 0

S1(λ) ∼ 1, S ′1(λ) ∼ 0, λ! 1 (1.77c)
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For λ� 1, one obtains

S1(λ) � λ
4

5
+O(λ6) (1.77d)

Values of S1(λ) pertinent to the problem at hand are obtained as follows: First
we note

λ2 �
(

3π 5

16

)1/3

a0

( n
Z2

)1/3
(1.78a)

or, equivalently (with Z � 1)

λ � 1.43× 10−4n1/6 (1.78b)

where n is electron density in cm−3.
Among the alkali and noble metals, n is maximum for Cu, for which we

obtain λCu � 0.96. In this group n is minimum for Cs, for which we obtain
λCs � 0.66. We may conclude that the expansion (1.77d) is appropriate to
the metals addressed in this analysis. A more accurate description of S1(λ) is
obtained by curve fitting this function to a parabola in the λ-domain of interest.
There results

S1(λ) � −0.042λ+ 0.11λ2, 0.60 ≤ λ ≤ 1.00 (1.78c)

Thus

S1(λCs) � 0.020

S1(λCu) � 0.061
(1.78d)

Combining (1.77b) and (1.77c) we obtain

104S1(λ) � −0.06n1/6 + 0.16× 10−4n1/3 (1.78e)

values from which are seen to agree with (1.78d).
We note thatW1 as given by (1.76), with (1.70b) gives

K1(T ) � Q̄XDS1 � kBXD
h̄u

S1(λ) (1.78f)

which is independent of temperature. The temperature dependence of the
distribution f1, resides entire inW2.

Temperature dependence of theW2 integral

To examine the finite integralW2 we revert to y dependence and write

W2 �
∫ XD/T

0

2dy y4

[y2 + (XTF/T )2]2

1

(ey − 1)
(1.79a)

With these results at hand, we consider first the high temperature limit.
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Case (a) T ! XD: In this limit, expanding the integral (1.78a) about yD � 0
we obtain

W2 � − λ2

1+ λ2
+ log(1+ λ2)+O(yD) (1.79b)

In the limit of λ� 1,

W2 → 1

2
λ4 +O(λ6) (1.79c)

With the preceding, in the said limit, (1.75) gives the result

ρ � 3π

16

(
h̄3R

e2mE3
F

)(
kBT

h̄u

)(
λ4

2
+ XDS1

T

)
→ πλ4

32

(
h̄R

e2mE3
F

)(
kBT

h̄u

)
(1.80)

which is noted to have the canonical form ρ ∝ T .

Case (b) T � XD: In this limit we obtain

W2 �
(
T

XTF

)4 ∫ ∞

0

2dy y4

ey − 1
≡
(
T

XTH

)4

S2 (1.81)

where S2 is the implied non-dimensional, temperature-independent integral
with the value

1

2
S2 � �(5)ζ (5) � 24.886 (1.81a)

and � and ζ are Gamma and Zeta functions, respectively (see Appendix B).

General resistivity expressions

Employing results from the preceding sections we now obtain explicit expres-
sions for the residual and Bloch components of resistivity. With (1.69a), (1.75)
we write

ρ � K(T )

A
� Q̄TW

A
(1.82)

Note the relations

Q̄XD � ωD
u
� qD

Q̄XTF � ωTF

u
� qTF (1.83)

A ≡ 16e2mE3
F

3πh̄3R
(1.84)

The parameter A has dimensions of wavenumber, so that K/A has the cor-
rect resistivity dimensions (cgs): time. The parameter R is defined in (1.36c).
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Collecting results we write

K(T ) � Q
[
XDS1

T
+
(
T

XTF

)4

S2

]
(1.85a)

K(T ) ≡ K0 +KB(T ) (1.85b)

where K0 is independent of T and KB(T ) heads to the Bloch result. Inserting
this finding into (1.53) gives

ρ � Q̄
A

[
XDS1 +XTF

(
T

XTF

)5

S2

]
(1.86a)

≡ ρ0 + ρB(T ) (1.86b)

where

ρ0 � qDS1(λ)

A
(1.86c)

is the component of resistivity due to electron–phonon scattering that survives
at 0K and ρB is the Bloch contribution. We note that ρB may be written in the
more canonical form

ρB � ωTF

uA

(
XD

XTF

)5 (
T

XD

)5

(1.86d)

where, with (1.28a), (1.55) one notes that

(XD/XTF)6 �
(
qD

qTF

)6

� (3π5/16)(a3
0n

2
M/n) (1.86e)

The relations (1.57) indicate that ρ0 dominates over ρB for temperatures(
T

XTF

)5

� λS1(λ)

S2
� λS1(λ)

250
(1.87a)

or, equivalently

T

XD
�

[
S1(λ)

250λ4

]1/5

≡ τ (λ) (1.87b)

For Cs we find τ � 0.25. For Cu we find τ � 0.20. Thus, one expects ρ0 to
come into play at

yD ! 5 (1.87c)

for the class of metals considered.
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7.1.7 Scale Parameters of ρ0

We wish to obtain the manner in whichρ0 scales with basic metallic parameters.
To these ends we write

ρ0 � ρ̄0S1(λ) (1.88)

First, consider the ρ̄0 factor. With (1.86c) we write

ρ̄0 � 3π 2

8

kBXD

mu2

h̄(h̄�)2

E3
F

(1.89a)

To find the manner in which ρ̄0 scales with metallic parameters, in (1.89a) we
set all parameters that are constant with respect to change of metallic samples
(e, m, kB , etc.) equal to one. There results

ρ̄0 ∝ nMXDZ
E4
F

(1.89b)

To further reduce this relation recall (1.22a) and note that

EF ∝ n2/3

XD ∝ n2/3Z1/6/M1/2

It follows that

ρ̄0 ∝ Z1/6/nM1/2 (1.89c)

Large-mass consistency limit

As ion mass grows large,�→ 0, and electrons do not interact with the lattice
[see (1.29)]. It follows that in this limit one should find that ρ0 → 0. To
explore this situation we examine the limit, M → ∞, at otherwise fixed ion
parameters: nM and Z. With these constraints we note that

ρ̄0 ∝ XD
u2
�2 � q

2
D�

2

u
(1.90a)

We recall that u ∝ √Z/M , q2
D ∝ n2/3

M , �2 ∝ nMZ2/M , and that

λ � XD

XTF
� qD

qTF
∝ n1/3

M (1.90b)

which together with S1(λ) are constant under the said constraints. There results

ρ̄0 ∝ constant

M1/2
→ 0 (1.90c)

This property agrees with the preceding observation that in the given limit,
electrons do not interact with the lattice so that ρ0 → 0. In this same limit,
ρB → 0, as T → 0, providing T/M < 1 [as follows from (1.86)].



504 7. Kinetic Properties of Metals and Amorphous Media

7.1.8 Electron Distribution Function

Returning to the expansion (1.46) and inserting the solution (1.70) gives the
electron distribution

f (E,µ) � f0(E)+ Dµ

K(T )
E2 ∂f0

∂E
(1.91a)

D ≡ 32eE
R

(1.91b)

where f0(E) is the Fermi-Dirac distribution (1.37) and R is given by (1.36c).
Consider the function K(T ) as given by (1.85). Let us suppose that there
is no residual term and set K0 � 0. Then as T → 0K, K(T ) → 0 and
the perturbation term in (1.91a) grows singular at all E thereby violating the
Lorentz expansion (1.46). At T � 0K, ∂f0/∂E is zero except at E � EF .
However, with K0 � 0, this zero is divided by KB(0) � 0 and the distribution
(1.85) is indeterminate. For the case K0 > 0, as found in the present analysis,
this pathological behavior of f (E) is circumvented and, save for the singular
point E � EF at T � 0K, a well-defined distribution results for all E.

Reduced resistivity

We note that the reciprocal of the right side of (1.75) may be written

ρ � H (XD,XTF)
W (yD, λ)

yD
(1.92a)

where the coefficientH (XD,XTF) is an implied and dimensionless “reduced”
resistivity is given by

ρ̃ ≡ ρ

H (XD,XTF)
� W (yD, λ)

yD
� W1(yD, λ)

yD
+ W2(yD, λ)

yD
(1.92b)

and we have recalled that

(XTF/T )2 � y2
D/λ

2

The termW1 includes the residual resistivity result whereasW2 includes both
Bloch’s T 5 result as well as the linear T high-temperature dependence. When
ρ̃ is plotted vs temperature (1/y), the preceding result (1.92) exhibits the
characteristic behavior depicted in Fig. 7.3.

It should be borne in mind that the resistivity results presented above are
relevant to ideal monovalent metals free of defects, dislocations and impurities.

7.1.9 Thermal Conductivity

It has been noted that the thermionic properties of metals are complex and not
well explained by standard analyses.8 With the preceding results at hand we
return to the problem of metallic thermal conductivity and describe a model
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which gives agreement with characteristics of the coefficient of thermal con-
ductivity for a metal over three basic ranges of temperature. We recall that
the Weidemann–Franz law for κ/σT as given by (1.2a) is valid over a wide
temperature range. Having found a residual resistivity at T � 0K, we revert to
this law, which when taken with the preceding results (1.86c) returns the ex-
perimentally correct low-temperature thermal conductivity linear-temperature
dependence10

κ � π2

3ρ0

(
kB

e

)2

T (1.93)

Application of this relation to specific metals is derived from the λ-dependence
contained inρ0. At higher temperatures but still beneath the Debye temperature,
whereW2 [see (1.92b)] comes into play, one reverts to the augmented Lorenz
relation (1.2b) which returns the correct T −2 thermal conductivity behavior.
Above the Debye temperature, we return the Weidemann–Franz relation and
write

κ � π
2

3

T

ρ(T )

(
kB

e

)2

(1.94)

where ρ(T ) again includes the W2(T ) component but is now relevant to the
limit, T ! XD. At these conditions (1.94) gives the correct behavior (1.2c),
κ � constant.

The preceding results imply a thermal conductivity vs. temperature curve
which rises linearly from the origin and then decays as T −2 from a maximum
value and levels off to a constant at T � XD, in agreement with characteristics
of measured values (Fig. 7.4).

To assist the reader in this analysis, a list of key parameter-relations and
definitions is presented in Table 7.1.

7.2 Amorphous Media

7.2.1 Background

As noted in the introduction to this chapter, the amorphous structure is a com-
mon form of material. We recall that window glass is a fused alloy of Na2O and
SiO2. Other types of glass that are of interest because of their semiconducting
properties are compounds of S, Se, and Te with elements such as As and Ge.
Such compounds are called chalcogenide glasses (compounds of any of the
group 6 elements of the periodic chart, excluding oxides). Common liquids
are amorphous. Liquid crystals are composed of rodlike molecules (length!
diameter). In the smectic phase, liquid crystals have long-range order along the
molecular axis, as well as molecular orientational order, but are disordered in
the plane normal to the molecular axis. At higher temperature, in the nematic
phase, the liquid crystal remains only with molecular orientational order.



506 7. Kinetic Properties of Metals and Amorphous Media

FIGURE 7.4. Sketch of observed temperature dependence of the coefficient of ther-
mal conductivity of a metal. At low temperature κ ≈ T whereas at T ! XD ,
κ ≈ constant. At intermediate temperature κ ≈ T −2. The central peak of the graph
is observed to rise with increased purity of the metal. Fur further discussion, see
J. M. Ziman, Electrons and Phonons, ibid., Chapter 9; H. M. Rosenberg, The Solid
State, 3rd ed., Oxford, New York (1992), Chapter 8; G. K. White, Proc. Phys. Soc.
(London) A66, 559 (1953).

As shown in Fig. 7.1, the radial distribution function of ions in an amorphous
material has short range order, and is void of long-range periodicity. In what
manner may one expect to find properties of crystal structures in an amorphous
sample? As noted in Fig. 5.5, the energy spectrum of crystalline material has
a band structure. The fact that window glass is transparent to visible light is
indicative of a quasi band spectrum with an effective band gap of the order of
several eV. Liquid mercury, as well as other molten metals, have high electrical
conductivity, again indicative of a quasi band spectrum with a partially filled
conduction band.

An assortment of phenomena are relevant to amorphous materials. These
include the nature of the band structure and related concepts of: localization,
mobility edge, hopping, percolation, and the metal-insulator transition.

Extended states

The notions of extended and localized states play an important role in the study
of electrical properties of amorphous material. Here is a brief review of these
concepts. Consider the Schrödinger equation for a particle of mass m moving
in a periodic potential, V (x) � V (x+ a), where a is the lattice constant of the
array.

ϕ′′(x)−Wϕ(x)+K2ϕ(x) � 0 (2.1)



7.2 Amorphous Media 507

TABLE 7.1. Key Parameter-Relations and Definitions for Section 1.3 et seq.

ρM � MnM, nM � n

Z
, n � N

V
(1.22a)

q2
TF �

(
4

a0

)(
3n

π

)1/3

(1.28a)

�2 � 4πnM (Ze)2

M
(1.29a)

u2 � 2

3

ZEF

M
(1.34a)

G(q) ≡ q/V

(q2 + q2
TF)2

(1.36b)

R ≡ h̄(M�2)2

2ρMuZ2
(1.36c)

qD � ωD
u
� [6π2nM ]1/3 (1.55)

y ≡ h̄ω

kBT
� h̄uq
kBT

� q

Q
(1.56a)

Q ≡ kBT
h̄u

(1.56b)

x ≡ E/kBT , y ≡ h̄ω/kBT
B ≡ Rm

4πh̄2 (1.67)

yTF ≡ XTF

T
, yD ≡ XD

T
(1.69b)

kBXTF � h̄uqTF, kBXh̄ � h̄uqD (1.69c)

λ ≡ XD

XTF
� ωD

ωTF
� qD

qTF
� yD

yTF
(1.77b)

λ2 �
(

3π 5

16

)1/3

a0

( n
Z2

)1/3
(1.78a)

Q̄XD � ωD
u
� qD (1.83)

Q̄XTF � ωTF

u
� qTF

A ≡ 16e2mE3
F

3πh̄3R
(1.84)

(XD/XTF)6 �
(
qD

qTF

)6

� (3π5/16)(a3
0n

2
M/n) (1.86e)

(XTF/T )2 � y2
D/λ

2

W ≡ 2m

h̄2 V, E ≡ h̄
2K2

2m

Substituting the periodic function ϕ(x) � ϕ(x+a), into (2.1) returns the orig-
inal equation, indicating that any periodic function with period a is a solution
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to this equation. To gain further information on the eigenvalue problem we set

ϕ(x) � eikxu(x) (2.2a)

The following equation results for u(x).

u′′ + 2iku′ − (k2 +W −K2)u � 0 (2.2b)

It follows that u(x) is also periodic and dependent on k.
The solutions (2.2a) are called Bloch waves. Each such wavefunction is

present throughout the periodic array and is an example of an extended state.
As depicted in Fig. 5.5, allowed k-values comprise a band structure. Electron
wavefunctions in valence or conduction bands are Bloch waves. An example
of localized wavefunctions is given by electronic states of unionized n-type
impurities in a host semiconductor, such as, for example, antimony atoms
in crystalline silicon. After bonding to the silicon host, one electron remains
weakly bound to the antimony atom, and is in a localized state. Energy levels
of this electron are discrete and hydrogen like. On promotion to the conduction
band, this electron goes into an extended state. If disorder is introduced into
the regular crystal, localization of the wavefunction occurs and k is not a good
quantum number.

As first discovered by P. W. Anderson,11 the wavefunction of an electron
in a lattice of sufficient disorder, is localized. The real part of an extended
wavefunction is shown in Fig. 7.5a and that of a localized wavefunction is
shown in Fig. 7.5b. Note that the envelope of the localized wavefunction decays
exponentially. The exponential coefficient α is called the inverse localization
length. As will be denoted below, Anderson localization is relevant to intrinsic
type material.

7.2.2 Localization

Consider the array of quantum wells shown in Fig. 7.6. For the regular array,
(Fig. 7.6a) the band width is labeled B, whereas for the disordered array,
(Fig. 7.6b), the related width of the spread of states is labeledW . We consider
the parameter

� ≡ W/B
In the limit � � 1, extended states prevail. We work in the tight-binding
approximation in which the overlap of atomic wavefunctions is considered
negligible except for nearest neighbors. This approximation is consistent
with Fig. 7.1c, which indicates short-range order in an amorphous material.
Approximate solutions of the time-independent Schrödinger equation, relevant

11P. W. Anderson, Phys. Rev. 109, 1492 (1958). See also: J. M. Ziman, J. Phys.
C2, 1230 (1969); D. C. Herbert and R. Jones, J. Phys. C4, 1145 (1971); N. F. Mott
and E. A. Davis, Electronic Properties in Non-Crystalline Materials, Oxford, New
York (1979); P. A. Lee and T. .V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
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FIGURE 7.5. (a) Real part of a Bloch extended-state wavefunction of a single-particle
in a periodic potential. (b) Real part of a localized wavefunction of a particle in a
disordered potential array, exhibiting an exponentially decaying envelope. From:
R. Zallen (1983). Reprinted by permission of John Wiley and Sons, Inc.12

FIGURE 7.6. Energy of states of a particle in a one-dimensional quantum-well array.
(a) For the periodic array the band width is labeled B. (b) For the disordered array the
width of the spread of states is labeled W. Localization occurs in the limitW/B ≥ 1.
From: R. Zallen (1983). Reprinted by permission of John Wiley and Sons, Inc.

to electrons in a given band, at � < 1, are given by

% �
∑
n

exp(ik · an)ψ(|r − an|) (2.3)
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where an are atomic sites and ψ(r) wavefunctions are centered at these points.
The width B is given by

B � 2zI (2.4a)

where z is coordination number and I is the transfer integral

I �
∫
ψ(|r − an|)Hψ(|r − an+1|) (2.4b)

whereH is the Hamiltonian of the system. For a lattice composed of hydrogen
atoms, for S-like wavefunctions, one obtains

I � 2[1+ (ρ/a0)] exp(−ρ/a0) (2.4c)

where I is measured in Rydberg units (Ry � e2/2a0), a0 is the Bohr radius and
ρ is atomic separation. This expression exhibits a sharp decay of the overlap
integral with increase in separation, which is consistent with the tight-binding
approximation.

To examine the disordered case for which � � 1, as noted above, one
introduces a random distribution of potential depths at each site, with variance
W . In this limit, the wavefunction (2.3) loses phase coherence in passing from
one atomic site to the next and assumes the form

% �
∑
n

cn exp(iφn)ψ(|r − an|) (2.5)

where φn are random phases and cn are constants.
The primary finding of Anderson is that as � is increased, at some critical

value, wavefunctions become localized. Let us call this critical value, �c. For
coordination number 6, Anderson found �c � 5. Edwards and Thouless13

obtained the value �c � 2. More recently, Elyutin et al.,14 found the value
�c � 1.7.

Localized wavefunctions have the form

% � exp(−|r − r0|/ξ )
∑
n

cn exp(iφn)ψ(|r − an|) (2.6)

Each such wavefunction is localized about a point r0 in space. The parameter
ξ is called the localization length and decreases with increasing disorder, W ,
thereby increasing the rate of decay of % away from atomic sites.

Metal-insulator transition

As was shown by Mott,15 if the value of � is insufficient to give localiza-
tion throughout the band, at band edges, energies of localized and extended

12R. Zallen, The Physics of Amorphous Solids, Wiley, New York (1983).
13J. T. Edwards and D. Thouless, J. Phys. C5, 807 (1972).
14P. V. Elyutin, et al., Phys. Status Solidi B124, 279 (1984).
15N. F. Mott, Adv. Phys. 16, 49C (1967).
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FIGURE 7.7. Density of states vs. energy depicting the metal-insulator transition
for an amorphous material. Shaded areas represent localized states. Valence and
conduction mobility-edges are labeled Ev and Ec, respectively and Evm, Ecm denote
respective tail-edges of localized states of valence and conduction band-edges. Fermi
energies of respective semiconductor and metal phases are written ESCF , EMF . Tran-
sition of the Fermi energy from EMF to the domain of localized states corresponds
to the metal–insulator (M–I) transition. As noted in the text, widths of tail edges of
localized states are greatly exaggerated in this figure.

states are separated at critical respective energies, Ev and Ec, labeled “mobil-
ity edges.” For crystalline metals the Fermi energy, EF , lies in the conduction
band. For crystalline semiconductors (in the “nondegenerate limit”), EF lies
in the band gap. These properties are roughly maintained in amorphous ma-
terials, so that again, for an amorphous metal EF lies in the conduction band.
However, in an amorphous metal, the band-edges have tails, composed of lo-
calized states (Fig. 7.7) and properties of the sample are critically dependent
on the location of EF relative to Ec. The region between Ev and and Ec is
called the “mobility gap.” In typical amorphous materials, tail edges extend to
a very small fraction of the mobility gap.

IfEF > Ec, the material acts as a metal. IfEF < Ec, electrical conductivity
of the material decreases, with transport of charge carriers limited either to
hopping or excitation of carriers to Ec. In this case the material may be con-
sidered an insulator. Consider that the value of EF can be varied, (Fig. 7.7)
and be made to fall from a value in excess of Ec to a value below Ec. In this
event there is a sudden change of the material from a metal to an insulator.
This transition is called the metal-insulator transition. The value ofEF may be
made to change in a number of ways. Thus, for example,EF will change value
by altering the allow composition, by applying external stress to the sample,
or by the application of electric or magnetic fields. In Fig. 7.7 we have recalled
that the Fermi energy of an intrinsic semiconductor lies near the midpoint of
the energy gap. As noted previously, this type of localization is relevant to
intrinsic conduction materials.

7.2.3 Conduction Mechanisms and Hopping

A number of experiments indicate that at low temperatures, conductivity of
amorphous alloys does not fall beneath a temperature-independent minimum
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value of 5× 105 �−1 m−1. With (5.6.30) and Problem 5.52, we write

σ � e2l

12π 3h̄
SF (2.7a)

where SF is a measure of the Fermi surface. The preceding relation is relevant
to extended states in a metal sample. In this event, the mean free path, l � a,
where a is atomic spacing, or the distance over which the wavefunction loses
phase memory. As l reduces to a, states become localized. At the Ioffe-Regel
minimum,16 kl ∼� 1 and 1 ∼� a where k denotes wavevector. Substituting these
relations into (2.7a) gives the conductivity

σmin � e2

3π 2ah̄
(2.7b)

This value of σ is the minimum on the delocalized side of Ec.17

Mechanisms for conductivity in amorphous media separate according to
temperature. Three basic intervals are: high, lower and very low temperature,
relevant to the respective degrees to which thermal energy can excite electrons
to domains within or above regions of localized states. For conductivity due to
motion of electrons within domains of localized states, the primary mechanism
is that of hopping. This mode of conductivity depends to a large degree on
thermal excitation. In the event that thermal fluctuations are insufficient to
supply hopping activation energy, a fourth mechanism for conductivity may
be available which depends on electrons tunneling to states at nearby or distant
sites of similar energy. (We recall that activation energy refers to the energy
required to carry a particle above a given potential barrier.)

High temperature

For temperature sufficiently high, thermal energy excites electrons above Ec
to extended states in the conduction band and standard ohmic current flows in
response to a potential gradient. In this event conductivity is given by

σ � σ0 exp{−(Ec − EF )/kBT } (2.8)

where σ0 is a constant. Such conductivity applies to Ge and Si at room
temperature.

Lower temperature

At lower temperatures, thermal energy is sufficient only to excite electrons
if the interval of localized states (Ec,m, Ec) to the conduction-extended states

16A. F. Ioffe and A. R. Regel, Progress in Semiconductors, Heywood, London
(1960).

17For further discussion see, N. F. Mott and E. A. Davis, Electronic Properties
in Non-Crystalline Materials, ibid; S. R. Elliott, Physics of Amorphous Materials,
Longman, New York (1983).
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domain E > Ec. For conductivity to occur, electrons must absorb sufficient
energy,>W1, to enable hopping from one localized state to the next. Activation
energy is, Ec,m +>W1, with related conductivity given by

σ � σ1 exp{−(Ec,m +>W1 − EF )/kBT } (2.9)

The constant σ1 is approximately one thousand times smaller than σ0. This
mode of conductivity is called, thermally assisted hopping.

Very low temperature

In semiconducting materials the Fermi energy typically lies in the band gap.
In an amorphous semiconductor the same is true and it is argued that there
is a high concentration of localized states in the vicinity of the Fermi energy.
Thermally assisted hopping may still occur for transitions to states close to the
Fermi energy with resulting conductivity

σ � σ2 exp(−>W2/kBT ) (2.10)

where >W2 is approximately half the spread of the distribution of localized
states aboutEF . The constants σ1 and σ2 both depend on the hopping frequency
of electrons.

Variable-range hopping

At still lower temperature, for which thermal fluctuations are insufficient to
supply hopping activation energy, (kBT � >W2), there is an additional mech-
anism which permits electrical conductivity. In this mechanism, electrons in a
given energy state tunnel to nearby, or possibly distant sites, to states of sim-
ilar energy. This process is called, variable-range hopping. The temperature
dependence of this mechanism was first derived by N. F. Mott.18

Since electrons are in localized states, their wavefunction varies with dis-
placementR, as exp(−αR), whereα is a constant. It follows that the probability
of hopping to a site atR, is given by exp(−2αR). Again it is assumed that states
are concentrated at EF . With the density of states written g(EF ) the number
of states in the interval dE about EF is Vg(EF )dE, where V is volume. To
obtain the energy of hopping, we assume that V contains one state, and write

Vg(EF )dE � 1 (2.11)

in which case dE is the spread between one state and the next. It follows that
the average separation (in energy) between neighboring states, >W3, is

>W3 � 1/[Vg(EF )] (2.12)

18N. F. Mott, Conduction in Non-Crystalline Materials, Oxford, New York,
(1987).
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If we concentrate on states in the volume V � 4πR3/3, the latter expression
becomes

>W3 � 3/[4πR3g(EF )] (2.13)

This expression indicates that the farther an electron tunnels, the greater is
the probability that it finds a site with small >W3. The probability of a given
value of >W3 is exp{−>W3/kBT }. It follows that the probability of hopping
through the displacement R to a nearby site at >W3 is

P (R,>W3) � exp{−2αR − (>W3/kBT )} (2.13a)

Substituting the value >W3 from (2.13) into the preceding relation gives the
probability

P (R) � exp{−[2αR + (3/4πR3g(EF )kBT )]} (2.13b)

This probability is maximum at the minimum of the exponent. There results

R � (9/8παg(EF )kBT )1/4 ∼� (1/παg(EF )kBT )1/4 (2.14a)

On substituting this value ofR into (2.13) and then inserting the resulting value
of >W3 into the generic form

σ � σ3 exp(−>W3/kBT ) (2.14b)

gives

σ � σ3 exp(−B/T 1/4) (2.14c)

B � 2

(
3

2π

)1/4 (
α3

kBg(EF )

)1/4

(2.14d)

ThisT −1/4 behavior of conductivity has been observed in amorphous Ge film.19

With the preceding discussion it is noted that a plot of log σ versus T −1

should reveal four distinct regions, three of which should display straight-line
behavior with respective slopes (Ec −EF ) [see (2.8)], (Ea +>W1−EF ) [see
(2.9)], and >W2 [see (2.10)]. This behavior has likewise been observed20 for
conductivity in the amorphous alloy, (As2Se3)0.95Tl0.05 with slight curvature at
large T −1 due to variable-range hopping.

7.2.4 Percolation Phenomena

Consider a network comprising a random array of independent resistors. Each
component either has a finite resistance (probability, p) or an open-circuit in-
finite resistance (probability, 1 − p). A voltage source is placed across the
network. Current flows providing there is a connecting path of finite resis-
tance elements between terminals, which occurs at some critical value of p.

19M. H. Gilbert and C. J. Adkins, Phil. Mag 34, 143 (1976).
20M. F. Kotakata, et al., Semicond. Sci. Tech. 1, 313 (1986).
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TABLE 7.2. Applications of Percolation Theory
System Critical Phenomenon

Mobility edge in amorphous Localized to extended
semiconductors states

Dilute magnetic allows Para-ferromagnetic transition
Resistive-open circuit array No current-current transition
Liquid flow in porous media Static to continuous flow
Supercooling of molten glass Glass transition
Polymer gelatin Liquid-gel transition
Disease spread in a population Containment-epidemic transition
Composite superconductor-metal Normal-superconducting transition

materials
Variable-range hopping No current-current transition
Hydrofracturing of a rock Generation of a crack
Neural networks No current-current transition

The event of current flow at the critical value of p is an example of the phe-
nomenon of percolation. Another example of this phenomenon is that of the
phase transition of a dilute magnetic alloy from a paramagnetic to a ferromag-
netic state, with p now denoting the fraction of magnetic atoms in the alloy.
The occurrence of a phase transition to the ferromagnetic state depends on
the existence of a sufficiently large connected cluster of interacting magnetic
atoms. This transition configuration occurs at a critical value of p. The phrase
percolation was first used by J. M. Hemmersly21 in the study of the passage of
a fluid through a network of channels, some of which are blocked, and some
of which are open. Numerous other examples of percolation are described in
the literature.21,22 (See Table 7.2.)

Bond and site percolation; clusters

Percolation divides into two categories: bond and site percolation. In site per-
colation sites are either occupied or unoccupied. In bond percolation, bonds in
an array are either connected or disconnected.

Occupied sites fall into a cluster if any two sites belonging to that cluster have
a chain of occupied states connecting them. A measure of the size of a cluster is
given by the number of occupied sites in the cluster. Consider a uniform infinite
square array of lattice points with site occupation probability, p. Three finite
rectangular subsections of this array are shown in Fig. 7.8, with respective p-

21J. M. Hemmersly, Proc. Cambridge Phil. Soc. 54, 642 (1957).
22D. Stauffer, Introduction to Percolation Theory, Taylor and Francis, London

(1985); J. W. Essam, Percolation and Cluster Size, in Phase Transitions and Crit-
ical Phenomena, Vol. 2, ed., C. Dumb and M. S. Green, Academic, New York
(1972); H. L. Frisch and J. M. Hemmersly, J. Soc. Indust. Appl. Math. 11, 894
(1963); G. Grimmett, Percolation, Springer, New York (1989); M. F. Thorpe and
M. I. Mitkova, eds. Amorphous Insulators and Semiconductors, Kluwer Academic,
Dordrecht (1997).
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FIGURE 7.8. Rectangular subsections of infinite-two-dimension arrays illustrating
site percolation on the square lattice. Cluster size (s) is shown for three clusters, and
occupation probability (p) is for the three lattices. For the square lattice, percolation
(s � ∞) occurs at p � 0.59. From: R. Zallen (1983). Reprinted by permission of
John Wiley and Sons, Inc.

values: 0.25, 0.50, 0.75. It is evident that the cluster size for case (c) is infinite
and percolation has occurred. One may conclude that percolation for the two-
dimensional square array occurs at p-value, 0.50 < pc ≤ 0.75. The critical
value if pc � 0.59.21 If pBc and pSc represent, respectively, critical p-values
for bond and site percolation, respectively, then it may be shown that pBc ≤
pSc .23 Examples of this property are shown for four periodic two-dimensional
configurations and the Bethe lattice in Fig. 7.9. (At every branching of a Bethe
lattice a stem bifurcates into two branches.)

23J. W. Essam, Percolation and Cluster Size (ibid).
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FIGURE 7.9. Critical site and bond percolation p-values, and coordinate number (z)
for four two-dimensional periodic arrays. Also shown in the Bethe lattice with effec-
tive infinite dimensionality (no closed loop exists for this lattice). From: R. Zallen
(1983). Reprinted by permission of John Wiley and Sons, Inc.

We wish to obtain a relation for the mean size of a finite cluster, with site
probability p. (For bond percolation, p represents edge probability.) To this
end we introduce the number of clusters of size s, per lattice site, ns(p). It
follows that the probability that a given site in a cluster of size s is occupied
in sns(p). (In a lattice of 100 sites, which at a given value of p has, say,
three clusters of size s, ns(p) � 0.03. If s � 10, then sns(p) � 0.3.) Let
P (p) represent the fraction of occupied sites for the infinite cluster. Note that
P (1) � 1 and P (p) � 0, for p < pc. The probability that a site is occupied
for the infinite cluster is pP (p). The probability p, that a site is occupied is
the sum of occupation probabilities overall cluster sizes. That is,∑

s

sns(p)+ pP (p) � p (2.15a)

Since sns(p) represents the probability that a given site in a cluster of size s is
occupied, it follows that the mean size of finite clusters is given by

S(p) �
∑
s s

2ns(p)∑
s sns(p)

(2.15b)

7.2.5 Pair-Connectedness Function and Scaling

Percolation is closely akin to critical phenomena in statistical physics which
is characterized by the behavior of thermodynamic variables as a function of
the temperature-displacement variable, t � (T − Tc)/Tc where Tc is criti-
cal temperature.24 A universality of such behavior is present in which such
thermodynamic variables scale with t , near the critical point, independent of

24K. Huang, Statistical Mechanics, 2nd ed. Wiley, New York (1987); M. Plischke
and B. Bergersen, Equilibrium Statistical Physics, Prentice Hall, Englewood Cliffs,
NJ (1989); H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena,
Oxford, New York (1987).
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material, but dependent on dimension, d. The exponents of these scaling terms
are called critical exponents and are conventionally labeled: (α, β, γ, η, ν, σ ).
Of these six critical exponents, only two are independent.

In a similar vein, percolation phenomena likewise exhibits critical behavior
with related scaling relations.24 To demonstrate these relations the following
analogues with variables of statistical physics are noted. The total number of
clusters per site is analogous to the free energy per site.

G(p) �
∑
s

ns(p) (2.16)

A parameter relevant to a given cluster is the pair connectedness function,
C(p, r), which is the probability that occupied sites a distance r apart are in a
common cluster. This function is analogous to the pair correlation function of a
statistical physics.25,26 The mean size of finite clusters is analogous to the sus-
ceptibility parameter in magnetic systems. It is then implied that these variables
have the following power-law singularities at the percolation transition.26

G(p) � |p − pc|2−α (2.17a)

P (p) � (p − pc)β (2.17b)

S(p) � (p − pC)−γ (2.17c)

C(p, r) � exp[−r/ξ (p)]

rd−2+η (2.17d)

where d is dimension and the correlation length ξ , which, with comparison to
known physical systems, is expected to diverge as

ξ (p) � (p − pc)−ν (2.17e)

Universality of critical exponents for the percolation phenomenon indicates
that the percolation exponents α, β, etc., should depend only on the dimen-
sionality of the system, not the lattice specifies nor whether the percolation is
site or bond type.

Rushbrooke, Fisher, and Josephson scaling laws

The basic premise of percolation scaling theory26 is that for given correlation
length, ξ , for p near pc, a cluster size sξ exists which is the dominant contri-
bution to the percolation functions (2.17a), (2.17b), (2.17c). The cluster size
sξ diverges as p→ pc and is assumed to have the power-law behavior

sξ � |p − pc|−1/σ (2.18)

which defines the critical exponent σ . It is further suggested that

ns(p) � ns(pc)φ
(
s

sξ

)
(2.19)

25R. L. Liboff, Phys. Rev. A39, 4098 (1989).
26D. Stauffer, Phys. Rev. 54, 1 (1979).
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where the function φ(x) → 0, as x → ∞, and φ(x) → 1, as x → 0 but is
otherwise unspecified. Simulation calculations indicate that for large cluster
size, s, the probable number of occupied sites at the critical percolation state
behaves as, ns(pc) � s−τ , where the parameter τ depends on the dimension, d,
of the system. Inserting this behavior of ns(p), together with (2.18) into (2.19)
gives

ns(p) � s−τφ(s|p − pc|1/σ ) (2.20)

With (2.17a) and (2.20) we obtain for the total number of clusters per site,

G(p) �
∑
s

s−τφ(s|p − pc|1/σ )

� |p − pc|( τ−1
σ )

∫
dx χ−τφ(x) (2.21a)

where

x � s/sξ (2.21b)

and χ is as implied and is the analogue of zero-field susceptibility. Assuming
a convergent integral, with (2.17a), we obtain

α � 2− τ − 1

σ
(2.22a)

In like manner there results

γ � (3− τ )/σ, β � (τ − 2)/σ (2.22b)

These equations give Rushbrooke’s scaling law27

α + 2β + γ � 2 (2.23)

Another relation among these exponents may be obtained as follows. Integra-
tion of the pair-connectedness function over the volume of the sample gives a
measure of the mean cluster size, S(p), in dimension, d

S(p) � |p − pc|−γ �
∫
dr rd−1

(
exp[r/ξ (p)]

rd−2+η

)
� |p − pc|−ν(2−η) (2.24)

which gives Fisher’s scaling law28

γ � ν(2− η) (2.25)

Lastly, assuming a slowly varying integrand (2.18) and (2.21) give for the
concentration of clusters of dominant size,

nsξ (p) � |p − pc|−τ/σ

27G. S. Rushbrook, J. Chem. Phys. 29, 842 (1963).
28M. E. Fisher,Phys. Rev. 180, 594 (1969).
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Assuming that this concentration is inversely proportional to the volume, ξd(d),
(in dimension d) occupied by these clusters, gives

|p − pc|τ/σ � |p − pc|νd

which gives Josephson’s hyperscaling law29

νd � 2− α (2.26)

Equations (2.22), (2.25), and (2.26) are coupled relations for the six critical
exponents relevant to percolation scaling theory.

7.2.6 Localization in Second Quantization

Working in second quantization, the Hamiltonian of a one-dimensional
potential array may be written30

H � −
∑
i ��j
tij (c

†
i cj + c†

j ci)+
∑
j

εj c
†
j cj (2.27)

relevant to an electron in a given band. In the preceding, εj is the energy of
an electron at j sites, with a corresponding Wannier wavefunction centered
at these sites. The tij matrix couples the ith and j th sites, and c†

j and cj are
operators which create and annihilate an electron at the j th site, respectively.
[tij matrices are also called: the transfer integral, the overlap energy integral
or the hopping integral, cf., (2.4b)] Sums in (2.27) are over the sites of a
perfect lattice with disorder introduced by taking either or both of the εj and
tij coefficients as random variables subject to a given probability distribution.

We recall the following fermion anticommutation relation rules:

[c†
i , c

†
j ]+ � [ci, cj ]+ � 0

[c†
i , cj ]+ � δij

(2.27a)

Note also that

c
†
i |0〉 � |i〉 , ci |i〉 � |0〉 (2.27b)

where |0〉 includes the empty ith site and the ket vector, |i〉, describes an
electron at the ith site.

In the tight-binding approximation of (2.27) one sets tij � t , for nearest
neighbors and zero otherwise. Energies εj are set equal to εA with probability
PA, of εB with probability PB independent of the site j . This labeling provides
a one-dimensional model of a disordered binary allow.

29B. D. Josephson, Proc. Phys. Soc 92, 269 (1967).
30A review of one-dimensional disordered systems is given by: K. Ishii, Prog.

Theor. Phys. Supplement, 53, 77 (1973).
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Extended states for the uniform case

Let us show that for the uniform case, for which either PA � 1 or PB � 1, and
in the tight-binding approximation, one does not obtain localization. In this
event the Hamiltonian (2.27) reduces to

H � −t
∑
m

(c†
m+1cm + c†

mcm+1)+ εA,B
∑
j

c
†
j cj (2.28)

We consider a lattice of length Na, corresponding to a chain of N atoms and
lattice constant a. The Hamiltonian (2.26) may then be diagonalized through
the transformation

cj � 1√
N

∑
k

bke
−ikja (2.29a)

c
†
j �

1√
N

∑
k

b
†
ke
ikja (2.29b)

k � 2πn

(Na)
n � 0,±1,±2, . . . ,±[(N/2)− 1],±N/2 (2.29c)

Note that the latter sequence corresponds to periodic boundary conditions.
There results

H �
∑
k

ε(k)b†
kbk �

∑
k

ε(k)nk (2.30)

where nk is the occupation number of the kth site, 0 or 1. Eigenenergies are
given by

ε(k) � εA − 2t cos ka, for PA � 1

(k) � εB − 2t cos ka, for PB � 1
(2.31a)

For either case energies lie in a band of width 4t . The eigenfunction corre-
sponding to ε(k) is obtained by operating on the state |0〉 with the creation
operator b+k . There results

|kε〉 � b†
k |0〉 �

1√
N

∑
j

b
†
j exp(ikεja)|0〉 (2.31b)

The coordinate representation of this eigenstate is given by the Dirac product

〈x|kε〉 �
∑
m

〈x|m〉〈m|kε〉 (2.31c)

This relation permits one to identify the probability amplitude of finding the
site m occupied as the product

〈m|kε〉 � 1√
N

exp(imkεa) (2.31d)
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It follows that the probability of finding an electron on themth site is the con-
stant 1/N , independent ofm or kε. We may therefore identify the wavefunction
〈x|kε〉 as an extended state.

Disordered One-Dimensional Lattice

Transfer-matrix method

As noted above, to describe the disordered situation one sets energies εm �
εA with probability PA, and εm � εB with probability PB , for all m. We
outline the transfer matrix method31 for examining eigenfunctions and related
eigenenergies,E, of the Hamiltonian (2.27) in the tight-binding approximation.
Eigenfunctions are written in the form

|kE〉 �
N∑
n�1

An|n〉 �
N∑
n�1

Anc
†
n|0〉 (2.32)

so that 〈m|kE〉 � Am. With (2.27a) we obtain

〈m|H |kE〉 � EAm � εmAm − t(Am+1 + Am−1) (2.33)

where m � 1, 2, . . .. To satisfy periodic boundary conditions we set AN+1 �
A1 and AN � A0. Introducing the two-component column vector

ψm ≡
(
Am+1

Am

)
(2.34a)

gives the recursion relation

ψm � T̂mψm−1 (2.34b)

T̂m(εm,E) �
(
εm−E
t

−1
1 0

)
(2.34c)

Note that det T̂j � 1, so that eigenvalues, µ(±), of T̂ satisfy the relation

µ+µ− � 1 (2.35a)

which gives the forms

µ± � e±iθ (2.35b)

In the transfer-matrix method, solution for eigenenergies E is reduced to
finding solutions to the equation

ψN � [T̂N (εN,E)T̂N−1(εN−1, E) . . . T̂1(ε1, E)]ψN (2.36a)

31J. Ziman, Models of Disorder, Cambridge, New York (1979), Section 8.2:
M. Plischke and B. Bergersen, Equilibrium Statistical Mechanics, ibid; M. L. Mehta,
Random Matrices, Academic, New York (1991).
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or, equivalently,

N∑
m�1

T̂m(εm,E) � Î (2.36b)

where Î is the identity matrix.

Band gap for the uniform array

We wish to demonstrate the existence of a gap in the spectrum of energies for
the case of a uniform array. In this event, εj � εA for all m. With (2.34c) and
(2.35) it follows that the eigenvalues of T̂ are given by

µ+ � R + iK � eiθ (2.37a)

µ− � R − iK � e−iθ

R � εA − E
2t

, K �
√

1− R2 (2.37b)

Addition of equations (2.37a), with (2.37b) gives

E � εA − 2t cos θ (2.38)

Periodic boundary conditions (µN � 1), imply the discrete θ -spectrum, θm �
2πm/N .

The condition

|εA − E| > 2t (2.39)

implies that K is purely imaginary, in which case eigen µ-values are real. For
K purely imaginary, K � i|K| and µ+µ− � −1 which violates (2.35a). We
may conclude that for real eigen µ-values, eigenenergies do not exist. This
corresponds to the existence of an energy gap for the uniform potential array.

Disordered chain

For the disordered case, in the product (2.36b), transfer matrix components are
either of the form T̂m � T̂A or T̂B , depending respectively on whether sitem is
occupied by atomA or atom B. To examine this situation we recall the Saxon-
Hunter theorem which states that any spectral region that is a spectral gap for
both a pure A-type chain and a pure B-type chain, is also a gap for any mixed
lattice of A- and B-type atoms.32 Consider the case that an eigenenergy lies
in such a forbidden domain. In this case, with real eigen µ-values, one again
encounters a violation of (2.35a). However, let us consider for the moment that
solutions for this situation do exist.

32J. M.Luttinger, Phillips Res. Repts. 6, 303 (1951).
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Let W± denote eigenvectors of T̂ corresponding respectively to the eigen-
values, µ±. The column wavefunction ψn may be written, in general, as a
superposition of these eigenvectors and we write

ψn � α(+)
n W+ + α(−)

n W− (2.40)

where α(±)
n are n-dependent parameters. It follows that

ψn+1 � T̂ ψn � α(+)
n µ+W+ + α(−)

n µ−W− (2.41a)

Returning to the situation of real eigen µ-values, we examine the case that
|µ+| > |µ−| so that

|µ+| � 1/|µ−| > 1 > |µ−| (2.41b)

Consider that a wavefunction of the form (2.40) starts at the beginning of the
chain and passes through p such forbidden cells. In this case

ψp � (T̂ )pψ0 � α(+)
n (µ+)pW+ + α(−)

n (µ−)pW− (2.41c)

The larger eigenvalue quickly dominates and ψp grows as (exp γp) where the
growth coefficient γ � ln |µ+|This hypothetical analysis hints at the existence
of localized states in forbidden domains of the energy spectrum.

Extensive numerical work of Ishii30 indicates that solutions do in fact exist in
such domains, and that corresponding solutions are localized. This conclusion
is akin to our previous observation that in a disordered material, localized states
occur at the edges of the forbidden band gap (mobility edge). In a closely
allied, fundamental work by Matsuda and Ishii33 it was demonstrated that all
one-dimensional disordered systems are localized.

Problems

7.1. Show the equivalence between the integral relations (1.3b) and (1.3a). Hint:
Introduce the parameter � ≡ E − µ.

7.2. Derive the Fermi–Dirac integral series representation (1.3e).

7.3. Establish the Fermi–Dirac vector coefficients (1.3f)–(1.3h).

7.4. Establish validity of the time-reversal scattering-rate symmetry relation
(1.30c).

7.5. Working in second quantization, write down the total Hamiltonian for an
electron-phonon system, incorporating the potential Hamiltonian component,
(1.19). Hint: See (5.6.6b).

7.6. For each of the cases listed in Table 7.1, indicate if the related transition site
or bond percolation.

33H. Matsuda and K. Ishii, Prog. Theor. Phys. Suppl 45, 56 (1970).
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7.7. Employ the transformation equations (2.29) to obtain the diagonalized
Hamiltonian (2.30) and related eigenenergies (2.31a).

7.8. Show that in the tight-binding approximation, the Hamiltonian (2.27) reduces
to the Hamiltonian (2.28).

7.9. Derive the eigenenergy relation (2.33) from the wavefunction (2.32) and
Hamiltonian (2.27) under the said conditions.

7.10. What is the width of the energy gap for the uniform array described in (2.37),
et seq.?

7.11. Show that Grüneisen’s34 integral for metallic resistivity

ρ � AT 5

∫ X/T

0

x5 dx

(ex − 1)(1− e−x)
reduces to Bloch’s form at T � X, and has the correct linear T dependence
at T ! X where X represents the Debye temperature.

7.12. (a) Describe conditions under which extended states exist in an amorphous
material.

(b) Describe conditions under which an amorphous metal does not conduct.
In both answers, define parameters.

7.13. A student argues that tearing a piece of paper is percolative. Is the student
correct. Explain your answer.

Answer

Tearing a piece of paper is a local and not a global event. For this reason the
process is not percolative.

34E. Grüneisen, Ann. Physik 16, 530 (1932).
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Location of Key Equations

Name Location
Balescu–Lenard equation (4.2.71)
BBKGY equations (2.1.20)
Boltzmann equation (3.2.14)
Chapman–Kolmogorov equation (1.7.4)
Conservation equations (in absolute variables) (3.14, 3.18, 3.19)
Conservation equations (in relative variables) (3.14, 3.30, 3.31)
Density matrix, N -body, equation of motion (5.5.23)
Euler equations (3.5.23)
Fock-space function, equation of motion (5.5.29)
Fokker–Planck equation (5.2.31)
Grad’s second equation (2.6.12)
Green’s function equation, coupled one- and two-particle (5.7.46)
Green’s function, N -body, equation of motion (5.7.59)
Hamilton’s equations (1.1.12)
Hierarchies of classical and quantum distributions (Table 5.2)
Kinetic equations, connecting relations (Figure 4.9)
Krook–Bhatnager–Gross equation (4.2.7)
Kubo formula, classical (3.4.66)
Kubo formula, quantum mechanical (5.6.10)
Lagrange’s equations (1.1.7)
Landau equation (4.2.51)
Landau equation, Fermi liquid (5.4.13)
Liouville equation (1.4.7)
Liouville equation, quantum mechanical (5.2.9)
Liouville equation, relativistic (6.4.25)
Master equation (1.7.20, 5.2.28)
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Navier–Stokes equation (3.4.8)
Pauli equation (5.2.28)
Photon kinetic equation (5.3.18)
Plasma convergent kinetic equation (4.2.75)
Relaxation-time model kinetic equation (5.3.35)
Uehling–Uhlenbeck equation (5.4.5)
Vlasov equation (2.2.30)
Vlasov equation, relativistic (6.2.22)
Wigner distribution, equation of motion (5.2.54)
Wigner distribution, hierarchy (5.5.33)
Wigner–Moyal equation (5.2.71)



List of Symbols

(See also Table 7.1, page 487)

A, A Vector and scalar functions in Chapman–Enskog
expansion (3.5.36a).

A Vector potential.
A(k, ω) Spectral density function (5.7.12, 5.8.23).
(Â)W Wigner counterpart of Â (5.2.55).
Â(s) s-particle operator (5.5.10).
a Acceleration. Friction coefficient in Fokker–Planck

equation (4.2.30).
â†, â Creation and annihilation operators.
âH, â†

H Operators â and â† in the Heisenberg representation.
a(k) Fourier coefficient in Prigogine expansion (2.3.8).
¯̄B, B Tensor and scalar functions in Chapman–Enskog

expansion (3.5.36b).
B Magnetic field.
BE Boltzmann equation.
BL Balescu–Lenard equation.
BYs sth equation in BBKGY hierarchy.
b Nondimensional impact parameter.
¯̄b Friction coefficient in Fokker–Planck equation (4.2.30).
C mC2 � kBT in most of text. mC2 � 3kBT when C is

thermal speed (3.4.2).
C2(1, 2) Two-particle correlation function (2.2.18).
C12 Effective two-particle speed (3.4.25).
C(q) Coefficient of electron–phonon interaction (5.8.1).
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C̄ C̄2 � 2RT (3.5.28).
CK Chapman–Kolmogorov equation.
c c � v − 〈v〉. Deviation from mean microscopic velocity.
c̄ � c/C Nondimensional microscopic velocity (3.5.90).
c Speed of light.
cV Specific heat per molecule (3.4.34).
c̄V Specific heat per molecule per mass (3.4.35).
D Self-diffusion coefficient (3.4.2). Density of points in

phase space (Chapter 1).
D(ξ ) Variance of rvξ .
D12 Mutual diffusion coefficient (3.4.29).
D/Dt Convective time derivative.
D̂ Differential operator in Boltzmann equation (3.5.7a).
E Energy.
EF Fermi energy.
E Perturbative electric field (4.1.4). Two-particle electric

field (4.2.61).
Ē Fourier transform of E (4.1.6b).
E Expectation (1.8.2a).
EK Relative kinetic energy density (3.3.26).
Ē(x) Elliptic integral (3.6.22).
eK Absolute kinetic energy density.
F (t) Time-dependent component of perturbation Hamiltonian

(3.4.59).
F (θ ) Term in collision cross section (3.6.212).
F (ω) Number of photons per frequency interval (Chapter 5).
F (β) Integral in dielectric constant (4.1.68).
F̄s s-tuple distribution function (1.6.12).
Fs Fs � Vsfs . Bogoliubov s-particle distribution.
F Distribution function normalized to total number of

particles.
F Relativistic distribution (6.2.1).
f Classical one-particle distribution function in most of

text.
f̄ Nondimensional distribution function (3.5.90).
f 0, F 0 Local Maxwellians.
f0, F0 Absolute Maxwellians.
f̃0 Exponential component of Maxwellian (4.1.27).
f1 Arbitrary single-peaked one-dimensional distribution

(4.1.48). One-particle distribution function.
f̃1 Velocity component of f1 (4.1.48).
f0(E) Equilibrium occupation number per energy level

(Chapter 5).
f0(ω) Equilibrium distribution for number of photons per

frequency mode (Chapter 5).
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fs s-particle distribution function normalized to unity in
most of text.

f >n Truncated distribution in Grad’s analysis (Chapter 2).
G1,G2 Generating functions (Chapter 1).
Gij Two-particle force (2.1.7a).
G(x, x′) Two-particle force (2.2.27).
G(x, t) Mean force field (2.2.28b).
GR,A Green’s function, retarded and advanced.
ˆ̄G s-particle Fock space operator (5.5.7).
gi Constant of motion (Chapter 1).
g(r) Radial distribution function (2.2.44).
g(ω) Number of normal modes per frequency interval

(Chapter 5).
gµν Metric tensor (Chapter 6).
g Relative two-particle velocity.
H Hamiltonian.
H

(n)
i1,i2,...

Tensor Hermite polynomial (3.5.92).
H̄ Time-independent component of perturbation

Hamiltonian (3.4.59).
h(r) Total correlation function (2.2.47).
h(N )
s s-particle conditional distribution function (1.6.10).
h Enthalpy per particle (Problem 3.48).
H Boltzmann H function (3.3.42).
H Hilbert space [beneath (5.1.18)].
Îs Collision term in BYs (2.2.2).
Î ns Collision term in BYs (2.2.25).
¯̄I Identity operator.
I Integral [above (6.2.52a)]. Tensor term (3.5.100).
Ĵ (f ) Collision integral.
J Current density.
K Externally supported force field (3.2.1). Acceleration

(3.5.7a). Momentum of center of mass (3.3.68).
K Constant in Coulomb interaction (4.2.7a). Constant in

inverse radial potential (3.1.7).
K̂s Kinetic energy operator of sth particle (2.1.9).
K̂(v, v1) Collision-integral kernel operator (3.6.3).
K(p, p′) Quasi-particle interaction function (5.4.11).
K̄, K̄0 Quasi-particle interaction function and constant

(5.4.32a).
K̄(x) Elliptic integral (3.6.22).
k0 Wave number of closest approach (4.2.73a).
kd Debye wave vector (5.3.52).
kB Boltzmann’s constant.
kTF Thomas–Fermi wave number (5.3.46).



532 List of Symbols

ki Momentum of ith molecule (3.3.68).
k Momentum (5.2.73, and following).
KBG Krook–Bhatnager–Gross equation.
K̂ Operator in Boltzmann collision integral (3.6.29).
l Mean free path (3.2.2).
L2 Space of square integrable functions.
LIM Limiting process [defined above (5.7 to 5.19)].
L(q, q̇, t) Lagrangian (1.1.3).
L̂N N -particle Liouville operator (2.1.3).
δL̂ Perturbation Liouville operator (2.3.4).
M Mach number (Chapter 4).
M1(n),M2(n) Moments of probability distribution (1.7.24).
M12 Rate of momentum transport per unit volume (3.4.26).
N (z) Phase density (2.5.4).
N Number of ensemble points in phase space (1.4.1b).
N Total number of particles.
Nz Number of zeros (4.1.67).
Np Number of poles (4.1.67).
n Particle number density.
Ôij Operator in Liouville equation (2.1.7).
¯̄p Pressure tensor in lab frame (3.3.15).
p Scalar pressure (3.4.4).
p Probability of step to right (1.1.8 to 1.1.14). Momentum

(3.4.23).
pN 3N -dimensional momentum vector relevant to N point

particles (5.2.46).
pF Fermi momentum (5.3.34a).
pµ Four-momentum (Chapter 6).
p̄ Momentum four-vector (6.1.2). Momentum three-vector,

Problem 1.40.
p Momentum.
¯̄P Relative pressure tensor (3.3.24).
P Probability.
P Principal part (4.1.71).
q Probability of step to left (1.8.14).
q Heat flow vector in lab frame (3.3.16).
Q Relative heat flow vector.
QK Kinetic energy flow vector (2.1.34a).
Qφ Potential energy flow vector (2.1.34b).
¯̄QL Landau collision tensor (4.2.72).
¯̄Q Collision form in derivation of the Balescu–Lenard

equation (4.2.64).
¯̄QBL Balescu–Lenard collision term (4.2.69).
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¯̄QL Landau collision term (4.2.72).
r Interparticle displacement vector. Radius vector.
r Total number of events (1.8.21).
rv Random variable.
R kB/m.
R Radius to center of mass (Problem 1.7).
Ŝ(k) Momentum operator (5.2.76b).
S Action integral (1.1.4).
S(k) Structure factor (2.2.51).
S(n)
m Sonine polynomial (3.5.54a).

Ŝ Spin operator (Chapter 5).
ˆ̂
S Superoperator (5.6.11).
¯̄S Response component of pressure tensor (3.4.4).
s Impact parameter.
T Temperature. Kinetic energy.
¯̄T Tensor of products of relative velocity, g (Chapter 4).
T̂ Integral-kernel operator (3.6.11). Time ordering operator

(Chapter 5).
U (T ) Total radiant energy density (5.3.12).
U Generalized potential (Chapter 1).
U (1, 2) Single-time interaction potential (5.7.49a).
Û Unitary operator for Schroedinger equation (5.1.39).
u(x, t) Macroscopic fluid velocity (Chapter 3).
ud Downstream fluid speed (4.2.12).
up Upstream fluid speed (4.2.12).
V̄ Renormalized volume (2.3.9).
V Vector in �-space (1.4.16a).
vF Fermi velocity [beneath (5.4.31)].
v Microscopic velocity (Chapter 3).
w(v′, v) Probability scattering rate (4.3.1), (5.3.5).
w̃(v′, v) Augmented scattering probability rate (4.3.3).
w̃ij Scattering rate (1.7.20).
w̃ij Transition probability (1.7.22).
wnk Transition probability (5.2.20).
xk kth particle position vector (5.2.55).
xN 3N particle position vector relevant to N point particles.
xµ Four-displacement (Chapter 5).
x̄ Displacement four-vector (6.1.1). Displacement

three-vector (Problem 1.40).
ZN N -body partition function (Chapter 3).
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Greek and Other Symbols

α,β, γ Constants in homogeneous distribution (3.5.32).
α Nondimensionalization parameter (2.2.11).
αn Matrix element in Chapman–Enskog expansion (3.5.56).
α Apsidal vector (3.1.38).
α(n) Displacement of Fermi surface in direction of n (5.4.31).
αx , etc. Components of spin eigenvector (5.1.33).
βx , etc. Components of spin eigenvector (5.1.33).
β Dimensionless frequency (4.1.42).
βn Matrix element in Chapman–Enskog expansion (3.5.64).
βp Dimensionless plasma frequency (4.1.50).
δk Kronecker symbol (2.3.9).
δij Kronecker-delta symbol.
δ(r) Three-dimensional delta function.
ε Dielectric constant (Chapters 4 and 5). Parameter of

smallness.
ε(x, p) Quasiparticle energy (5.4.10).
E Electric field.
�(xi , xj ) Interaction potential (1.4.24).
�K Fourier transform of interaction potential (2.3.24).
φ̂† Field creation operator (5.5.3).
φ̂H Field operator in Heisenberg picture (5.5.7a).
ϕE(xN ) Stationary energy eigenstate (5.1.8).
γ Relativistic parameter (Chapter 6).

Nondimensionalization parameter (2.2.11).
� Flux vector (No./cm2-s) (3.3.11).
� Maximum total scattering rate (4.3.4a).
�νβµ Christoffel symbol (6.4.21).
η Coefficient of viscosity Chapter 3.
η(t) Coarse-grained entropy (3.8.12).
κ Coefficient of thermal conductivity (3.4.3). Constant in

Coulomb cross section (4.2.21a). Absorption coefficient
(5.3.28).

κ̂s Kinetic energy operator (2.2.22a).
κ12 Coefficient in mutual diffusion expression (3.4.26).
κµν Coefficient of thermal conductivity tensor (5.3.42).
λ(v) Total scattering rate (4.3.2).
λ̃(v) Maximum scattering rate (3.3a).
λd Thermal de Broglie wavelength (5.3.5). Debye distance

(4.1.36).
λTF Thomas–Fermi wavelength (5.3.46a).
? Plasma parameter (Chapters 2 and 4).
?̂ Liouville operator (1.4.20).
¯̄? Symmetric strain tensor (3.4.6).
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µ Reduced mass. Mobility (Chapter 3). Chemical potential
(5.3.1). Relativistic parameter (6.3.2).

µ(A) Measure of set A (3.8.3a).
ν Collision frequency (3.5.2).
ν12 Collision frequency for mutual diffusion (3.4.24).
�(n,q) Element of collision integral in Chapman–Enskog

expansion (3.5.62).
ωp Plasma frequency (4.1.18).
ω(c) Maxwellian (3.5.91)
%(xN, t) Wavefunction (5.1.1).
ψD Electrochemical potential (3.4.15a).∏
ij Momentum flux (5.4.23).∏
(z, t | z0, t0) Two-time distribution (1.7.2).∏
(z, t) Coarse-grained entropy (3.8.13).

ρ Mass density (3.3.18a).
ρ̂ Density operator (5.2.1).
ρnq Density matrix (5.2.3).
σ Stefan–Boltzmann constant (5.3.15).
σ01, σ02 Molecular diameters (3.4.30).
σ12 Sum of molecular radii (3.4.30).
σµν Electrical conductivity tensor (5.3.41).
σ (E, θ ) Scattering cross section (3.1.24).
σ (θ ) Scattering cross section (3.1.31).
σ12 Scattering cross section for rigid spheres (3.4.30).
σT Total scattering cross section (3.1.34).
σ̂ Pauli spin operator (5.2.39).
dσµ Element of hypersurface in x̄ space (6.2.2).
dσ̃µ Element of hypersurface in p̄ space (6.2.3b).
dW Element of surface area (3.8.7).
τ Relaxation time (5.3.35a; 5.3.79). Proper time (6.1.23).
ξ Dimensionless velocity (Chapter 3). Quantum parameter

(5.4.6a).
Y Time-ordering operator (5.8.7).
�̂ Collision operator (3.6.1).∑
> Symmetric sum of gradients (3.5.101).

> Collision term in photon kinetic equation (5.3.19).
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APPENDIX A

Vector Formulas
and Tensor Notation

A.1 Definitions

The vector function of position A(r) is a set of three functionsAµ;µ � 1, 2, 3.
These represent the projection of the vector A onto the Cartesian axis, so that
A1 ≡ Ax , A2 ≡ Ay , A3 ≡ Az. The tensor notation of the vector A is Aµ.

More generally, the set of 3n functions

ψi1i2···in(r)

in which each of the n indexes {ip} run from 1 to 3, is called an nth-rank tensor
in three dimensions. A scalar carries no indexes and so is a zeroth-rank tensor.
A vector is a first-rank tensor.

In the text the vector notation for a second-rank tensor φµν is

¯̄φ
A popular second-rank tensor has as its nine components the products of the
components to two vectors, A and B and is call a dyad.

¯̄D ≡ AB (A.1)

Dµν ≡ AµBν (A.2)

A second rank tensor ψµν is symmetric if

ψµν � ψνµ (A.3)

It is antisymmetric (or skew) if

ψµν � −ψνµ (A.4)



538 A. Vector Formulas and Tensor Notation

a symmetric or antisymmetric tensor can always be constructed from an
arbitrary tensor in the following manner:

ψ (s)
µν �

1

2
(ψmuν + ψνµ) (A.5)

ψ (α)
µν �

1

2
(ψmuν − ψνµ) (A.6)

The trace of a tensor is the sum of its diagonal components:

Tr φµν ≡
3∑
µ�1

ψµµ (A.7)

A tensor of zero trace can be made from ¯̄ψ :

ψ (0)
µν � ψµν −

1

3
(Tr ¯̄φ)δµν (A.8)

(Repeated indexes are summed.) The second-rank Kronecker delta symbol δµν
is defined as

δµν � 1 for µ � ν
δµν � 0 otherwise

(A.9)

A symmetric tensor of zero trace is

ψ (s0)
µν � ψ (s)

µν −
1

3
(Tr ¯̄φ)δµν (A.10)

In vector notation, equations (A.8) and (A.10) appear as

¯̄φ(0) � ¯̄φ − 1

3
(Tr ¯̄φ) ¯̄I (A.8’)

¯̄φ(s0) � ¯̄φ(s) − 1

3
(Tr ¯̄φ) ¯̄I (A.10’)

The third rank Levi–Civita symbol εlνµ is defined as

εlνµ � +1 if lνµ is an even permutation of 1, 2, 3

� −1 if lνµ is an odd permutation of 1, 2, 3

� 0 if any two indexes are equal

The vector or “cross product to two vectors is defined by

A× B �

∣∣∣∣∣∣∣
i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣ (A.11)

The triad of unit vectors (i, j, k) lies along the Cartesian axis with i in the x
direction, j in the y direction, and k in the z direction. In tensor notation the
cross product appears as

(A× B)µ � εµlpAlBp (A.12)
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The inner or dot product of two vectors is defined by

A · B � AxBx + AyBy + AzBz (A.13a)

A · B � AµBµ (A.13b)

The del operator ∇ is written for

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(A.14a)

∇ � ∂

∂xµ
(A.14b)

The gradient of a scalar function φ is defined by

grad φ ≡ ∇φ(grad φ)µ � ∂

∂xµ
φ (A.15b)

The curl of a vector is defined by

curl A ≡ ∇× A (A.16a)

(curl A)µ � εµlν ∂
∂xl
Aν (A.16b)

The divergence of a vector is defined by

div A ≡ ∇ · A (A.17a)

div A ≡ ∂

∂xµ
Aµ (A.17b)

A.2 Vector Formulas and Tensor Equivalents

Some useful vector formulas together with their tensor-notation equivalents
are given below:

∇ · φA � φ(∇ · A)+ (A ·∇)φ (A.18a)
∂

∂xl
φAl � φ ∂

∂xl
Al + Al ∂

∂xl
φ (A.18b)

∇ × φA � φ∇ × A− A × ∇φ (A.19a)

εαβν
∂

∂xβ
φAν � εαβνφ ∂

∂xβ
Aν + εαβνAν ∂

∂xβ
φ (A.19b)

∇ · A × B � B ·∇ × A− A ·∇ × B (A.20a)
∂

∂xµ
εµντAνBτ � εµντAν ∂

∂xµ
Bτ + εµντBτ ∂

∂xµ
Aν (A.20b)

∇(A · B) � (A ·∇)B+ (B ·∇)A+ A × (∇ × B)+ B × (∇ × A) (A.21a)
∂

∂xl
AµBµ � Aµ ∂

∂xl
Bµ + Bµ ∂

∂xl
Aµ (A.21b)
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∇ × (∇φ) � 0 (A.22a)

εlµν
∂

∂xµ

∂

∂xν
φ � 0 (A.22b)

∇ · (∇ × A) � 0 (A.23a)
∂

∂xµ
εµlp

∂

∂xl
Ap � 0 (A.23b)

∇ × (∇ × A) � ∇(∇ · A)− (∇ ·∇)A (A.24a)

εµlk
∂

∂xl
εknp

∂

∂xn
Ap � εµlkεknp ∂

∂xl

∂

∂xn
Ap (A.24b)

εκµlεknp � δµnδlp − δµpδln (A.25)

(Use equation A.25 in A.24b to obtain A.24a.)

∇ · r � 3 (A.26a)
∂

∂xµ
xµ � 3 (A.26b)

∇ × r � 0 (A.27a)

εklp
∂

∂xl
xp � εklpδlp � 0 (A.27b)

(A ·∇)r � A (A.28a)

Aµ
∂

∂xµ
xl � Aµδµl � Al (A.28b)

∇ × (A × B) � −B∇ · A− A ·∇B+ A∇ · B+ B ·∇A (A.29a)

εlnp
∂

∂xn
εpkhAkBh � ∂

∂xa
BaAl − ∂

∂xd
AdBl

� ∂

∂xa
(BaAl − AaBl)

(A.29b)

∇ × (A × B) � ∇(BA− AB)

(A × B) × (C × D) � (A · C)(B · D)− (A · D)(B · C)
(A.30a)

εµklAkBlεµdpCdDp � AϕCϕBkDk − AnDnBjCj (A.30b)

(A × B) × (C × D) � [A · (B × D)]C− [A · (B × C)]D (A.31a)

εhµϕεµklεϕnpAkBlCnDp � εibaAiBbDaCh − εjdeAjBdCeDh (A.31b)

The symmetric sum of gradients operator
∑
> is defined by(∑

> ¯̄φ
)
kµν
≡ ∂φµν
∂xk

+ ∂φνk
∂xµ

+ ∂φkµ
∂xν

(A.32)



APPENDIX B

Mathematical Formulas

B.1 Tensor Integrals and Unit Vector Products

Let

Ai1i2···iN ≡
∫
v̂i1 v̂i2 · · · v̂iN f (v2)dv (B1.1)

where v̂ik are Cartesian components of the unit vector v̂ so that the index ik
runs from 1 to 3. Then

Ai1i2···iN � 0, for N odd

whereas, for N even,

Ai1i2···iN �
1

(N + 1)!!

∑
P

δi1i2δi3i4 · · · δiN−1iN

∫
f (v2)dv (B1.2)

where the summation is over the P permutations of the integers i1 · · · iN and
(N + 1)!! denotes the skip factorial

(N + 1)!! � (N + 1)(N − 1)(N − 3) · · ·
With these formulas, the case N � 2 gives

Ai1i2 �
1

3
δi1i2

∫
f (v2)dv (B1.3)

For N � 4, we obtain

Ai1i2i3i4 �
1

15
[δi1i2δi3i4 + δi1i3δi4i4 + δi2i4δi2i3 ]

∫
f (v2)dv (B1.4)
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B.2 Exponential Integral, � Function, ζ Function,
and Error Function1

B.2.1 Exponential Integral

The definition of this function is

E1(z) �
∫ ∞

z

e−t

t
dt (B2.1)

where | arg z| < π . E1(z) has the expansion

E1(z) � −γ − ln z−
∞∑
n�1

(−1)nzn

nn!
(B2.2)

where γ is Euler’s constant, which is given by

γ � lim
m→∞

(
1+ 1

2
+ 1

3
+ · · · + 1

m
− lnm

)
� −

∫ ∞

0
dt e−t ln t

� 0.5772157

Here are a few other integral properties of E1(z):∫ ∞

0

e−at

b + t dt � e
abE1(ab) (B2.3)∫ z

0

1− e−t
t

dt � E1(z)+ ln z+ γ
(B2.4)∫ ∞

0
E2

1 (t)dt � 2 ln 2

E1(z) is a member of the set of integrals

En(z) �
∫ ∞

1

e−zt

tn
dt, n � 0, 1, 2, . . . (B2.5)

with Re z > 0. These functions have the recurrence relation

En+1(z) � 1

n
[e−z − zEn(z)], n � 1, 2, . . . (B2.6)

Furthermore,

dEn(z)

dz
� −En−1(z) (B2.7)

1For additional properties, see M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions, Dover, New York (1970).
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and

En(0) � 1

n− 1
, n > 1

E0(z) � e
−z

z

(B2.8)

and∫ ∞

0
e−atEn(t) dt � (−1)n−1

an

[
ln(1+ a)+

n−1∑
k�1

(−1)kak

k

]
, a > −1

(B2.9)
The asymptotic expansion of En(t) for large z is given by

En(z) ∼ e
−z

z

[
1− n

z
+ n(n+ 1)

z2
− n(n+ 1)(n+ 2)

z2
+ · · ·

]
(B2.10)

for (| arg z| < 3π/2). Two functions closely related to the exponential integral
are given by

Ei(x) � −P
∫ ∞

−x

−e−t dt
t

� P
∫ x

−∞

et dt

t
(B2.11)

for x > 0, where P denotes principal part, and

li(x) � P
∫ x

0

dt

ln t
� Ei(ln x) (B2.12)

for x > 1. Expansion of Ei(x) is given by

Ei(x) � γ + ln x +
∞∑
n�1

xn

nn!
(B2.13)

for x > 0. We note also that∫ x

0

et − 1

t
dt � Ei(x)− ln x − γ (B2.14)∫ ∞

0

eiat dt

t ∓ ib � e
±ab

[
E1(ab)

−Ei(ab)+ iπ
]

(B2.15)

In the latter relation the− sign on the left side corresponds to the+ exponential
and top member of the column and a > 0, b > 0.

�-Function

The � is defined by

�(z) �
∫ ∞

0
t z−1e−t dt, Re z > 0 (B2.16)



544 B. Mathematical Formulas

For z � n, an integer,

�(n) � (n− 1)! (B2.17)

so that

�(n+ 1) � n�(n) (B2.18)

Here are some typical values:

�

(
1

2

)
� √π, �(1) � 1

�

(
3

2

)
� 1

2
�

(
1

2

)
�
√
π

2

(B2.19)

Stirling’s asymptotic expression for z → ∞ in the domain | arg z| < π is
given by

�(z) ∼ e−zzz+(1/2)(2π )1/2

[
1+ 1

12z
+ 1

288z2
+ · · ·

]
(B2.20)

Riemann ζ Function

This function is defined by

ζ (z) �
∞∑
k�1

1

kz
(B2.21)

for Re z > 1. First we note that

ζ (z) �
∏
p

(
pz

pz − 1

)
(B2.22)

where the product is over all primes p. We may also write

ζ (z) � 1

�(z)

∫ ∞

0

xz−1

ex − 1
dx (B2.23)

Here are some special values:

ζ (1) � ∞ ζ (2) � π
2

6

ζ

(
3

2

)
� 2.612 ζ (4) � π

4

90

ζ

(
5

2

)
� 1.341 ζ (6) � π6

945
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Error Function

The error function is defined by

erf z � 2√
π

∫ z

0
e−t

2
dt (B2.24)

We also define

erfc z � 1− erf z � 2
√
π

∫ ∞

z

e−t
2
dt (B2.25)

The error function has the series expansions

erf z � 2√
π

∞∑
n�0

(−1)nz2n+1

n!(2n+ 1)
(B2.26)

Asymptotic expansions are given by

x � 1 : erf x ∼ 2√
π

(
x − 1

3
x3 + 1

10
x5 + · · ·

)
(B2.27)

x ! 1 : erf x ∼ 1− e−x
2

x
√
π

(
x − 1

2x2
+ · · ·

)
(B2.28)

Some integral relations for this function are as follows:∫ ∞

0
e−at erf bt dt � 1

a
exp

(
a2

4b2

)
erfc

( a
2b

)
(B2.29)∫ ∞

0
sin(2at) erfc bt dt � 1

2a

[
1− exp

(−a2

b2

)]
(B2.30)

∫ ∞

0
e−at erf

√
bt dt � 1

a

√
b

a + b (B2.31)

∫ ∞

0
e−at erfc

√
b

t
dt � 1

a
e−2

√
ab (B2.32)

B.3 Other Useful Integrals

∫ ∞

−∞
e−y

2
dy � √π (B3.1)

E(n) ≡
∫ ∞

0
e−ax

2
xn dx, n ≥ 0, a > 0 (B3.2)

E(n) � 1

2
�

(
n+ 1

2

)
a−(n+1)/2 (B3.3)

E(0) � 1

2

√
πa−1/2 E(3) � 1

2
a−2
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E(1) � 1

2
a−1 E(4) � 3

8

√
πa−5/2 (B3.4)

E(2) � 1

4

√
πa−3/2 E(5) � a−3

∫ ∞

0

xn−1 dx

ex + 1
� �(n)λ(n) (B3.5)

λ(n) ≡
∞∑
k�1

(−1)k−1

kn
(B3.6)

λ(1) � ln 2, λ(4) � 7π4

720

λ(2) � π
2

12
λ(6) � 31π6

30,240
(B3.7)

Green’s Identities

Green’s First Identity

∫
V

(
φ∇2ψ + ∇φ · ∇ψ) dV � ∫

S

(φ∇ψ) · dS (B3.8)

Green’s Second Identity

∫
V

(
φ∇2ψ − ψ∇φ) dV � ∫

S

(φ∇ψ − ψ∇φ) · dS (B3.9)

Other Identities ∫
V

∇ × A dV �
∫
S

dS× A∫
C

φ dl �
∫
S

dS×∇φ (B3.10)

B.4 Hermite and Laguerre Polynomials and the
Hypergeometric Function

Hermite polynomials

These polynomials are defined by the relation

Hn(z) � (−1)nez
2

(
dn

dzn
e−z

2

)
, n � 1, 2, 3, . . . (B4.1)
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They satisfy the differential equation(
d2

dz2
− 2z

d

dz
+ 2n

)
Hn(z) � 0 (B4.2)

and have the generating function

exp
(−s2 + 2sz

) �∑ sn

n!
Hn(z) (B4.3)

Recurrence relations are given by

d

dz
Hn � 2nHn−1(

2z− d

dz

)
Hn � Hn−1

2zHn � Hn+1 + 2nHn−1

(B4.4)

Here is a list of the first few polynomials

H0 � 1 H1 � 2z

H2 � 4z2 − 2 H3 � 8z3 − 12z

H4 � 16z4 − 48z2 + 12 H5 � 32z5 − 160z3 + 120z

(B4.5)

Tensor Hermite polynomials are discussed in Section 3.5.10.

Laguerre Polynomials

These polynomials are defined by the relation

L0
n � ez

dn

dzn

(
e−zzn

)
Lkn � (−1)k

dk

dzn
L0
n+k

k, n � 0, 1, 2, . . . (B4.6)

These functions satisfy the differential equation[
z
d2

dz2
+ (k + 1− z) d

dz
+ n

]
Lkn � 0 (B4.7)

and have the generating function

e−zt/(1−s)

(1− s)k+1
�

∞∑
n�0

sn

(n+ k)!L
k
n(z), |s| < 1 (B4.8)

Orthogonality relations for these polynomials are given by∫ ∞

0
e−zzkLknL

k
m dz �

[(n+ k)!]3

n!
δnm (B4.9)
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Hypergeometric Function

These functions are defined by the series (for |z| < 1)

F (a, b, c; z) � 1+ ab
c

z

1!
+ a(a + 1)b(b + 1)

c(c + 1)

z2

2!

+ a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

z3

3!
+ · · · (B4.10)

and are related to the differential equation[
z(1− z) d

2

dz2
+ (c − (a + b + 1)z)

d

dz
− ab

]
ϕ � 0 (B4.11)

where c �� −n, (n � 1, 2, . . .). The function F (a, b, c; z) is the solution of
(B4.11) for ϕ(0) � 1.

The general solution of the differential equation (B4.11) is given by

ϕ � A1F (a, b, c; z)+ A2z
1−cF (a + 1− c, b + 1− c, 2− c; z) (B4.12)

for |z| < 1 and c �� 0,±1,±2, . . . .
For large z,

F (a, b, c; z) ∼ �(c)�(b − a)

�(b)�(c − a)
(−z)−a + �(c)�(a − b)

�(a)�(c − b)
(−z)−b (B4.13)

The relation of these functions to associated Legendre polynomials is given
by [for | arg(z± 1)| < π ]

Pml (z) � �(l +m+ 1)

�(l −m+ 1)
· (z2 − 1)m/2

2m�(1+m)
F

(
m− l, m+ l + 1,m+ 1,

1− z
2

)
(B4.14)

whereas the relation to the Legendre polynomials is given by

Pl(z) � F
(
−l, l + 1, 1;

1− z
2

)
(B4.15)

Confluent Hypergeometric Function

These functions are defined by the series (convergent in the whole complex
plane)

 (a, c; z) � 1+ a
c

z

1!
+ a(a + 1)

c(c + 1)

z2

2!
+ a(a + 1)(a + 2)

c(c + 1)(c + 2)

z3

3!
+ · · · (B4.16)

and stem from the differential equation[
z
d2

dz2
+ (c − z) d

dz
− a

]
ϕ � 0 (B4.17)

The general solution of (B4.17) is given by (for c noninteger)

ϕ � A1 (a, c; z)+ A2x
1−c (a − c + 1, 2− c; z) (B4.18)



B.4 Hermite and Laguerre Polynomials and the Hypergeometric Function 549

The relation of these functions to the hypergeometric series is given by

ϕ(a, c; z) � lim
b→∞

F
(
a, b, c;

z

b

)
(B4.19)

For large z

 (a, c; z) ∼ e−iπa �(c)

�(c − a)
z−a + �(c)

�(a)
ezza−c (B4.20)
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Physical Constants

Velocity of light in vacuum c 2.9979× 108 m/s
2.9979× 1010 cm/s

Planck’s constant h 6.6261× 10−34 J s
6.6261× 10−27 erg sec
4.1357× 10−15 eV s

h̄ 1.0546× 10−34 j S
1.0546× 10−27 erg s
6.5821× 10−16 eV s

Avogadro’s number N0 6.0221× 1023 atoms/mol
Boltzmann’s constant kB 1.3807× 10−23 J/K

1.3807× 10−16 erg/K
8.6174× 10−5 eV/K

Gas constant R � N0kb 8.3145 J/mol K
8.3145× 107 erg/mol K
1.9870 cal/mol K

Volume of 1 mole of perfect gas, at
normal temperature and pressure

22.241 liters

Electron charge e 1.6022× 1019 C
4.8032× 10−10 esu

Electron rest mass m 9.1094× 10−31 kg
9.1094× 10−28 g
0.511 MeV

Proton rest mass Mp 1.6726× 10−27 kg
1.6726× 10−24 g
1.0073 amu
938.27 MeV
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Neutron rest mass Mn 1.675× 10−27 kg
1.675× 10−24 g
939.57 MeV

Bohr magneton µB � eh̄

2mc 2.273× 10−21 erg gauss−1

Ratio of proton mass to electron
mass

Mp

m
1836.1

Charge-to-mass ratio of electron e

m
1.7588× 1011 C/kg
5.2730× 1017 esu/g

Stephan-Boltzmann constant σ 5.6697× 10−5 erg cm−2 s−1 K−4

Rydberg constant Ry 109,737.32 cm−1

Bohr radius a0 0.52918 Å
Triple point of water 273.16 K
Atomic mass unit 1 amu 1.6605× 10−24 g

931.5 MeV

Useful Conversion Constants and Units

Constants, mks units ε0 8.8542× 1012 F/m
µ0 4pi × 10−7 H/m

1 electron volt eV 1.6022× 10−12 erg
1.6022× 10−19 J
3.829× 10−20 cal
11.605 K

1 coulomb 0.1 abcoulomb (emu)
2.9979× 109 statcoulomb (esu)

1 weber per square meter 104 gauss
1 eV/molecule 96.485 kJ/mol

23.06 kcal/mol
1 entropy unit ≡ 1 eu N0kB � 2 cal/K
1 poise (unit of viscosity) 1 dyne-s/cm2

1 bar (unit of pressure) 106 dynes/cm2 � 0.9869 atm.
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Lorentz–Legendre Expansion

In this appendix we wish to outline the precursor relations leading to (7.1.48).
The expansion (7.1.47) is formally written

f (E,µ, φ) �
∞∑
l�1

εlfl(E, φ)Pl(µ) (D1.1a)

µ � Ê · k̂ � cos θ (D1.1b)

where hatted variables are unit vectors and Pl(µ) are Legendre polynomials.
The variables (k, θ, φ) in (D1.1) are spherical coordinates of the k vector
(Fig. D.1). These unit vectors have the following Cartesian components:

k̂ � [cosφ
√

1− µ2, sin φ
√

1− µ2, µ] (D1.2a)

FIGURE D.1. In this diagram, Ê, k̂, and θ̂ lie in a plane and φ̂ lies in a plane normal
to Ê.



D. Lorentz–Legendre Expansion 553

θ̂ � [µ cosφ,µ sin φ,−
√

1− µ2] (D1.2b)

φ̂ � [− sin φ, cosφ, 0] (D1.2c)

Furthermore,

∂

∂k
�
[

k̂
∂

∂k
+ θ̂ ∂

k∂θ
+ φ̂ ∂

(k sin θ )∂φ

]
(D1.3a)

We choose E to lie in the z direction so that

E · d
dk
� E

[
ẑ · k̂ ∂

∂k
+ ẑ · θ̂ ∂

k∂θ
+ ẑ · φ̂ ∂

(k sin θ )∂φ

]
(D1.3b)

With (D1.2c) the third term in (D1.3b) vanishes and one is left with

E · d
dk
� E

[
µ
∂

∂k
−
√

1− µ2
∂

k∂θ

]
(D1.3c)

With the given orientation of E one may take fl � fl(E) in the expansion
(D1.1a). With

∂

∂k
� 2E

k

∂

∂E
(D1.4a)

∂

∂θ
� −

√
1− µ2

∂

∂µ
(D1.4b)

one obtains

E · d
dk
� 2E
k

[
µE

∂

∂E
+
(

1− µ2

2

)
∂

∂µ

]
(D1.5a)

It follows that

E · d
dk

(f0 + µf1) � 2E
k

[
µE

∂

∂E
+
(

1− µ2

2

)
∂

∂µ

]
(f0 + µf1) (D1.5b)

or equivalently,

E · d
dk

(f0 + µf1) � 2E
k

[
µE
∂f0

∂E
+ µ2E

∂f1

∂E
+
(

1− µ2

2

)
f1

]
(D1.5c)

where it was noted that ∂µf1(E)/∂µ � f1(E) and that ∂f0/∂µ � 0. The first
few Legendre polynomials are given by

P0(µ) � 1, P1(µ) � µ, P2(µ) � 1

2
(3µ2 − 1)

u2 � 2

3
P2(µ)+ 1

3
P0(µ)

(D1.5d)

Keeping Legendre polynomials up to order l � 1, we note that µ2 � 1
3P0(µ).

The relation (D1.5c) reduces to

E · d
dk
f � 2E

k

[
1

3

∂(Ef1)

∂E
P0 + E∂f0

∂E
P1

]
+ · · · (D1.6)

This relation gives rise to (7.1.48).
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(b) “Mémoire sur la théorie du son,” Nouv. Bull. Sci. Soc. Philomat. (Paris)
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(d) Théorie mathematique de la chaleur, Paris, Bachelier, 1835.

2. Kinetic Theory of Matter

Boltzmann, L.
(a) Lectures on Gas Theory, translated by S. G. Brush, University of Cali-

fornia Press, Berkeley, 1964. This text contains an excellent history of
the theory and a very extensive bibliography.

(b) “Further Studies on the Thermal Equilibrium Among Gas-molecules,”
Wien. Ber., 66, 275 (1872).

(c) “On the Thermal Equilibrium of Gases Subject to External Forces,” Wien.
Ber., 72, 427 (1875).

(d) “On the Formulation and Integration of Equations Which Determine the
Molecular Motion in Gases,” Wien. Ber., 74, 503 (1876).

(e) Wien. Ber., 81, 117 (1880).
(f) Wien. Ber., 84, 40 (1881).
(g) Wien. Ber., 84, 1230 (1881).
(h) Wien. Ber., 86, 63 (1882).
(i) Wien. Ber., 88, 835 (1883).
(j) Jahresb, d. D. Math. Verein, 6, 130 (1889).

Maxwell, J. C.
(a) The Scientific Papers of James Clerk Maxwell, Cambridge University

Press, 1890; reprinted by Hermann, Paris, 1927, and by Dover, New
York, 1952.

(b) “Illustrations of the Dynamical Theory of Gases. I. On the Motions and
Collisions of Perfectly Elastic Spheres. II. On the Process of Diffusion
of Two or More Kinds of Moving Particles Among One Another. III. On
the Collision of Perfectly Elastic Bodies of Any Form.” Phil. Mag. [4],
19, 19; 20, 21, 33 (1860); Brit. Assoc. Rept. 29 (2), 9 (1859); Athenaeum,
p. 468 (Oct. 8, 1859); L’Institut 364 (1859).

(c) “Viscosity or Internal Friction of Air and Other Gases,” Phil. Trans., 156,
249 (1866); Proc. Roy. Soc. (London), 15, 14 (1867).

(d) “On the Dynamical Theory of Gases,” Phil. Trans., 157, 49 (1867); Proc.
Roy. Soc. (London), 15, 146 (1867).

(e) “A Discourse on Molecules,” Nature, 8, 437 (1873); Phil Mag. [4], 46,
453 (1873); Les Mondes, 32, 311, 409 (1873); Pharmaceut, J., 4, 404,
492, 511 (1874).



556 E. Additional References

(f) “On the Dynamical Evidence of the Molecular Constitution of Bodies”
(lecture). Nature, 11, 357, 374 (1875); J. Chem. Soc., 13, 493 (1875);
Gazz. Chim. Ital., 5, 190 (1875).

(g) “On Stresses in Rarified Gases Arising from Inequalities of Tempera-
ture,” Phil. Trans., 170, 231 (1880); Proc. Roy. Soc. (London), 27, 304
(1878).

(h) “On Boltzmann’s Theorem on the Average Distribution of Energy in a
System of Material Points,” Trans. Cambridge Phil. Soc., 12, 547 (1879);
Phil. Mag. [5], 14, 299 (1882); Ann. Physik Beibl., 5, 403 (1881).

3. Theory of Rare Gases and Solution to the Boltzmann Equation

Burnett, D.
(a) “The Distribution of Velocities in a Slightly Non-Uniform Gas, Proc.

Lond. Math. Soc., 39, 385 (1935).
(b) “The Distribution of Molecular Velocities and the Mean Motion in a

Non-Uniform Gas,” Proc. Lond. Math. Soc., 40, 382 (1935).

Chapman, S.
(a) Phil. Trans. Roy. Soc. A, 211, 433 (1912).
(b) On the Law of Distribution of Velocities, and on the Theory of Viscosity

and Thermal Conduction, in a Non-Uniform Simple Monatomic Gas,”
Phil. Trans. Roy. Soc. A., 216, 279 (1916).

(c) Phil. Trans. Roy. Soc. A, 217, 115 (1917).
(d) Phil. Mag., 34, 146 (1917).
(e) Phil. Mag., 34, 182 (1919).
(f) “On Certain Integrals Occurring in the Kinetic Theory of Gases,”

Manchester Mem., 66, 1 (1922).
(g) Manchester Mem., 7, 1 (1929).
(h) “On Approximate Theories of Diffusion,” Phil. Mag., 5, 630 (1928).
(i) “On the Convergence of the Infinite Determinants in the Lorentz Case,”

J. Lond. Math. Soc., 8, 266 (1933).

Chapman, S., and Hainsworth, W.
“Some Notes on the Kinetic Theory of Viscosity, Conduction, and
Diffusion,” Phil. Mag., 48, 593 (1924).

Enskog, D.
(a) Phys. Zeri., 12, 56 and 633 (1911).
(b) Ann. der Phys., 38, 731 (1912).
(c) The Kinetic Theory of Phenomena in Fairly Rare Gases, Dissertation,

Uppsala, 1917.
(d) “The Numerical Calculation of Phenomena in Fairly Rare Gases,” Svensk.

Vet. Akad. (Arkiv. f. Mat., Ast. och. Fys.), 16, 1 (1921).
(e) “Kinetic Theory of Thermal Conduction, Viscosity, and Self-Diffusion

in Certain Dense Gases and Liquids,” Svensk. Akad. Handl., 63, No. 4
(1922).



E.1 Early Works 557

(f) Svensk. Akad. (Arkiv. f. Mat., Ast. och. Fys.), 21A, No. 13 (1928).

Hasse, H. R.
Phil. Mag., 1, 139 (1926).

Hasse, H. R., and Cook, W. R.
(a) Phil. Mag., 3, 977 (1927).
(b) Proc. Roy. Soc., 196 (1929).
(c) Phil. Mag., 12, 554 (1931).

Hilbert, D.
Math. Ann., 72, 562 (1912).

James, C. G. F.
Proc. Camb. Phil. Soc., 20, 477 (1921).

Jeans, J.
(a) An Introduction to the Kinetic Theory of Gases, Cambridge University

Press, New York, 1952.
(b) Kinetic Theory of Gases, Cambridge University Press, New York, 1946.
(c) Phil. Trans. Roy. Soc. A, 196, 399 (1901).
(d) Quart. J. Math., 25, 224 (1904).

Kennard, E. H.
Kinetic Theory of Gases, McGraw-Hill, New York, 1938.

Loeb, L. B.
The Kinetic Theory of Gases, 2d ed., McGraw-Hill, New York, 1934.

Lorentz, H. A.
(a) “On the Equilibrium of Kinetic Energy Among Gas-Molecules,” Wien.

Ber., 95, 115 (1887).
(b) “The Motions of Electrons in Metallic Bodies,” Proc. Amsterdam Acad.,

7, 438, 585, 684 (1905).
(c) The Theory of Electrons, B. G. Teubner, Leipzig, 1909.

Massey, H. S. W., and Mohr, C. B. O.
(a) “On the Rigid Sphere Model,” Proc. Roy. Soc. A, 141, 434 (1933).
(b) “On the Determination of the Laws of Force between Atoms and

Molecules,” Proc. Roy. Soc., 144, 188 (1934).

Pidduck, F. B.
(a) “The Kinetic Theory of the Motions of Ions in Gases,” Proc. Lond. Math.

Soc., 15, 89 (1916).
(b) “The Kinetic Theory of a Special Type of Rigid Molecule,” Proc. Roy.

Soc. A., 101, 101 (1922).



558 E. Additional References

E.2 Recent Contributions to Kinetic Theory and
Allied Topics

Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinskii, I. E., Methods of Quantum
Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, N.J.
(1963). Reprinted by Dover, New York (1975).

Akhiezer, A. I., and Peletminskii, S. V., Methods of Statistical Physics,
Pergamon, Elmsford, N.Y. (1981).

Arnold, V. I., Mathematical Methods of Classical Mechanics, Springer-Verlag,
New York (1978).

Allis, W. P., “Motion of Ions and Electrons,” Hand. Physik, vol. XXI, Springer-
Verlag, Berlin (1956).

Balescu, R., Statistical Mechanics of Charged Particles, Wiley, New York
(1967).

Barut, A. O., Electrodynamics and Classical Theory of Fields and Particles,
Dover, New York (1980).

Bellman, R., G. Birkhoff and Abu-Shumays, I., eds., Transport Theory,
American Mathematical Society, Providence, R.I. (1969).

Bernstein, J., Kinetic Theory in the Expanding Universe, Cambridge, New
York (1988).

Brenig, W., Statistical Theory of Heat: Non-Equilibrium Phenomena, Springer,
New York (1989).

Burgers, J. M., The Nonlinear Diffusion Equation, D. Reidel, Dordrecht, The
Netherlands (1974).

Burshtein, A. I., Introduction to Thermodynamics and Kinetic Theory of
Matter, Wiley, New York (1996).

Carruthers, P., and Zachariasen, F., “Quantum Collision Theory with Phase-
Space Distributions,” Rev. Mod. Phys. 55, 245 (1983).

Cercignani, C., Mathematical Methods in Kinetic Theory, Plenum, New York
(1969).

——, Theory and Application of the Boltzmann Equation, Elsevier, New York
(1975).

Case, K. M., and Zweifel, P. F., Linear Transport Theory, Addison-Wesley,
Reading, Mass. (1967).

Chapman, S., and Cowling, T. G., The Mathematical Theory of Non-Uniform
Gases, 3rd ed., Cambridge University Press, New York (1974).

Cohen, E. D. G., Fundamental Problems in Statistical Mechanics, Wiley, New
York (1962).

Cohen, E. G. D., and Thiring, W. (eds.), The Boltzmann Equation: Theory and
Application, Springer-Verlag, New York (1973).

Curtiss, C. F., Hirschfelder, J. O., and Bird, R. B., The Molecular Theory of
Gases and Liquids, Wiley, New York (1969).

Davidson, R. C., Methods in Nonlinear Plasma Theory, Academic Press, New
York (1972).



E.2 Recent Contributions to Kinetic Theory and Allied Topics 559

de Boer, J., and Uhlenbeck, G. E., Studies in Statistical Mechanics, North-
Holland, Amsterdam (1970).

de Groot, S. R., and Mazur, P., Non-Equilibrium Thermodynamics, North
Holland, Amsterdam (1962).

Doniach, S., and Sondheimer, E. H., Green’s Functions for Solid State
Physicists, Benjamin-Cummings, Menlo Park, Calif. (1974).

Dresden, M., “Recent Developments in the Quantum Theory of Transport and
Galvonomagnetic Phenomena” Rev. Mod. Phys. 33, 265 (1961).

Duderstadt, J. J., and Martin, W. R., Transport Theory, Wiley, New York (1979).
Ebeling, W., Transport Properties of Dense Plasma, Birkhauser, Boston,

(1984).
Ecker, G., Theory of Fully Ionized Plasmas, Academic Press, New York (1972).
Eu, B. C., Kinetic Theory and Irreversible Thermodynamics, Wiley, New York

(1992).
Family, F., and Landau, D. P., eds. Kinetics of Aggregation and Gelation, North

Holland, Amsterdam (1984).
Farquhar, I. E., Ergodic Theory in Statistical Mechanics, Wiley-Interscience,

New York (1964).
Ferziger, J. H., and Kaper, H. G., Mathematical Theory of Transport Processes

in Gases, North Holland, Amsterdam (1962).
Fetter, A. L., and Walecka, J. D., Quantum Theory of Many-Particle Systems,

McGraw-Hill, New York (1971).
Finkelstein, R. J., Nonrelativistic Mechanics, Benjamin, Menlo Park, Calif.

(1973).
Frenkel, J., Kinetic Theory of Liquids, Oxford, New York (1946).
Fujita, S., Introduction to Non-Equilibrium Statistical Mechanics, W. B.

Saunders, Philadelphia (1966).
Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Mass.

(1973).
Gombosi, T. I., Gas Kinetic Theory, Cambridge, Now York (1994).
Grad, H., “On the Kinetic Theory of Rarefied Gases,” Comm. Pure and Appl.

Math. 2, 331 (1949).
——, “Principles of the Kinetic Theory of Gases,” Hand. Physik, vol. XII,

Springer-Verlag, Berlin (1958).
——, “The Many Faces of Entropy,” Comm. Pure Appl. Math. 14, 323 (1961).
Grandy, W. T., Foundations of Statistical Mechanics, Vol. 2, Nonequilibrium

Phenomena, D. Reidel, Boston (1988).
Groot, S. R. de, and Leeuwen, W. A. Van., Relativistic Kinetic Theory:

Principles and Applications, North Holland, New York (1980).
Haken, H., Quantum Field Theory of Solids, North-Holland, Amsterdam

(1976).
Harris, S., Introduction to the Theory of the Boltzmann Equation, Holt, Rinehart

and Winston, New York (1971).
Harrison, L. G., Kinetic Theory of Living Patterns, Cambridge, New York

(1993).



560 E. Additional References

Haug, A., Theoretical Solid State Physics, H. S. H. Massey (trans.), Pergamon,
Elmsford, N.Y. (1972).

Hillery, M., O’Connell, R. F., Scully, M. O., and Wigner, E. P., “Distribution
Functions in Physics: Fundamentals,” Phys. Repts. 106, 122 (1984).

Kac, M., Probability and Related Topics in Physical Sciences, Wiley
Interscience, New York (1959).

Kadanoff, L. P., and Baym, G., Quantum Statistical Mechanics, Benjamin,
Menlo Park, Calif. (1962).

Keldysh, L. V., “Diagram Technique for Nonequilibrium Processes,” Sov. Phys.
JETP 20, 1018 (1965).

Klimontovich, Y., Statistical Theory of Non-Equilibrium Processes in Plasma,
MIT Press, Cambridge, Mass. (1969).

Koga, T., Introduction to Kinetic Theory. Stochastic Processes in Gaseous
Systems, Pergamon Press, Elmsford, N.Y. (1970).

Kogan, M. N., Rarefied Gas Dynamics, Plenum, New York (1969).
Kohn, W., and Luttinger, J. M., “Quantum Theory of Electron Transport

Phenomena,” Phys. Rev. 108, 570 (1975).
Kubo, R., Statistical Mechanics, Wiley, New York (1965).
Liboff, R. L., Introduction to the Theory of Kinetic Equations, Wiley, New

York (1969); Mir, Moscow (1974), Krieger, Melbourne, Fla. (1979).
——, Introductory Quantum Mechanics, 4th ed., Addison-Wesley, San

Francisco (2002).
——, and Rostoker, N. (eds.), Kinetic Equations, Gordon and Breach, New

York (1971).
Lie, T-J., and Liboff, R. L., “Consideration of Particle Exchange in Quantum

Kinetic Theory,” Ann. Phys. 67, 349 (1971).
Lifshitz, E. M., and Pitaevskii, L. P., Physical Kinetics, Pergamon, Elmsford,

N.Y. (1981).
——, and ——, Statistical Physics, Part Two, Pergamon, Elmsford, N.Y.

(1980).
Mahan, G. D., “Quantum Transport Equation for Electric and Magnetic Fields,”

Phys. Repts. 145, 251 (1987).
——, Many-Particle Physics, Plenum, New York (1981).
Mitchner, M., and Kruger, C. H., Jr., Partially Ionized Gases, Wiley, New York

(1973).
McQuarrie, D. A., Statistical Mechanics, Harper & Row, New York (1976).
Montgomery, D. C., and Tidman, D. A., Plasma Kinetic Theory, McGraw-Hill,

New York (1964).
Negele, J. W., and Orland, H., Quantum Many-Particle Systems, Addison-

Wesley, Reading, Mass. (1988).
Nicholson, D. R., Introduction to Plasma Theory, Wiley, New York (1983).
O’Raifeartaigh, L., General Relativity. Papers in Honor of J. L. Synge, Oxford

University Press, New York (1972).
Pathria, R. K., Statistical Mechanics, Pergamon, Elmsford, N. Y. (1972).



E.2 Recent Contributions to Kinetic Theory and Allied Topics 561

Peletminskii, S., and Vatsenko, A., “Contribution to the Quantum Theory of
Kinetic and Relaxation Processes,” Sov. Phys. JETP, 26, 773 (1968).

Pines, D., The Many-Body Problem, Benjamin-Cummings, Menlo Park, Calif.,
(1962).

Pomraning, G. C., The Equations of Radiation Hydrodynamics, Pergamon,
Elmsford, N.Y. (1973).

Pozhar, L.A., Transport of Inhomogeneous Fluids, World Scientific, Singapore
(1994).

Present, R. D., Kinetic Theory of Gases, McGraw-Hill, New York (1958).
Prigogine, I., Non-Equilibrium Statistical Mechanics, Wiley, New York (1962).
——, From Being to Becoming, W. A. Freeman, San Francisco (1980).
Rammer, J., and Smith, H., “Quantum Field-Theory Methods in Transport

Theory of Metals,” Rev. Mod. Phys., 58, 323 (1986).
Reed, T. M., and Gubbins, K. E., Applied Statistical Mechanics, McGraw-Hill,

New York (1973).
Reichl, L., A Modem Course in Statistical Physics, University of Texas Press,

Austin (1986).
Resibois, P., and de Leener, M., Classical Kinetic Theory of Fluids, Wiley,

New York (1977).
Rickayzen, G., Green’s Functions and Condensed Matter, Academic Press,

New York (1980).
Riskin, H., The Fokker-Planck Equation, 2nd ed., Springer-Verlag, New York

(1989).
Roos, B. W., Analytic Functions and Distributions in Physics and Engineering,

Wiley, New York (1969).
Sampson, D. H., Radiative Contributions to Energy and Momentum Transport

in a Gas, Wiley-Interscience, New York (1965).
Schenter, K. G., A Unified View of Classical and Quantum Kinetic Theory with

Application to Charge-Carrier Transport in Semiconductors, Thesis,
Cornell (1988).

Sinai, Ya. G., Introduction to Ergodic Theory, Princeton University Press,
Princeton, N.J. (1976).

Stewart, J. M., Non-Equilibrium Relativistic Kinetic Theory, Springer-Verlag,
New York (1971).

Sudarshan, E. C. G., and Mukunda, N., Classical Dynamics, Wiley, New York
(1974).

Synge, J. L., Relativity, the Special Theory, 2nd ed., North-Holland, Amster-
dam (1965).

——, Relativity, the General Theory, North-Holland, Amsterdam (1966).
Thornber, K. K., and Feynman, R. P., “Velocity Acquired by an Electron in a

Finite Crystal in a Polar Field,” Phys. Rev. B1, 4900 (1970).
Thouless, D. J., Quantum Mechanics of Many Body Systems, Academic Press,

New York (1961).
Uehling, E. A., and Uhlenbeck, G. E., “Transport Phenomena in Einstein-Bose

and Fermi-Dirac Gases. I,” Phys. Rev., 43, 552 (1933).



562 E. Additional References

Uhlenbeck, G. E., and Ford, G. W., Lectures in Statistical Mechanics, American
Mathematical Society, Providence, R.I. (1963).

van Leewen, W. A., van Weert, Ch. G., and de Groot, S. R., Relativistic Kinetic
Theory, North-Holland, Amsterdam (1980).

Vincenti, W. G., and Kruger, C. H., Introduction to Physical Gas Dynamics,
Wiley, New York (1965).

Wing G. M, An Introduction to Transport Theory, Wiley, New York (1962).
Wolfram, S., “Cellular Automaton Fluids 1: Basic Theory,” J. Stat Phys., 4,

471 (1986).
Wu, T. Y., Kinetic Equations of Gases and Plasmas, Addison-Wesley Reading,

Mass. (1966).
Zaslavsky, G. M., Chaos in Dynamical Systems, Harwood Academic, New

York (1984).
Ziff, R. M., New Class of Solvable-Model Boltzmann Equations, Phys. Rev.

Letts, 45 306 (1980).
Zimon, J. M., Electrons and Phonons, Oxford University Press, New York

(1960).
——, Elements of Advanced Quantum Theory, Cambridge University Press,

New York (1969).
Zubarev, D. N., Nonequilibrium Statistical Thermodynamics, P. J. Shepard

(trans.), Consultants Bureau, New York (1974).
——, and Kalashnikov, V. P., “Derivation of the Nonequilibrium Statistical

Operator from the Extremum of the Information Entropy,” Physica, 46,
550 (1970).



APPENDIX F



This page intentionally left blank 



Index

Acoustic phonons, 379
Action-angle variables, 245
Action integral, 2, 478
Activation energy, 512
Adiabatic law, 198, 265
Alkali metals, 487
Alloy, 480

binary, 480
ordered and disordered, 480, 520

Alumina, 480
Amorphous media, 506ff
Anderson, P. W., 508
Apsidal vector, 142, 302
Atmospheres, law of (See Barometer

formula)
Autocorrelation function, 59, 189,

312, 327
and Green’s function, 441

Averages (See also Expectation)
ensemble, 343
phase, 37, 241
phase density, 125
time, 242

Balazs, N. L., 354
Balescu-Lenard equation, 313, 316
Barometer formula, 171
Barut, A. O., 455
BBKGY hierarchy, 78

Bergman, P. G., 449
Bethe lattice, 517
Birkhoff’s theorem, 242
Black hole, 478
Bloch

condition, 492
waves, 508

Bogoliubov distribution, 117
Bogoliubov hypothesis, 115
Boltzmann equation, 112, 124, 131,

152
assumptions in derivation, 152
quasi-classical, 385, 493

Bose-Einstein distribution, 382, 387
(See also Planck distribution)

Boson, composite, 439
β-Brass, 480
Brass, 480
Brillouin zone, 488
Bronze, 480
Bruns’s theorem, 253
Burnett equations, 199

Canonical distribution, 133, 344
Canonical invariants, 15
Canonical transformation, 11, 247
Carbon dioxide, viscosity, 212
Central limit theorem, 54, 172, 270
Chapman-Enskog expansion, 194,

265
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Chapman-Kolmogorov equation, 41,
317

Characteristic curves, 25
Characteristic function, 48, 69
Characteristics, method of, 24, 94,

304
Chebyshev’s inequality, 71
Christoffel symbol, 473
Coarse graining, 243
Collision:

inverse, 147
reverse, 148

Collisional invariants, 155
Collision frequency, 194, 297
Collision operator, linear, 217

negative eigenvalues, 218
spectrum for Maxwell molecules,

220
symmetry, 217

Completely continuous operator, 224
Conductivity, 177, 209, 238
Conservation equations:

absolute, 159
from BY and BY, 83
relative, 160

Constants of motion, 4, 243, 254
Contravariant vectors, 470
Convergent kinetic equation, 315
Convolution integral, 191
Coordinates, generalized, 1
Correlation expansion, 89, 310
Correlation function, 59, 89

total, 96, 134
Coulomb gauge, 464
Covariance, 59, 452
Covariant vectors, 470
Cross section, scattering:

Coulomb, 145, 234
differential, 143
rigid sphere, 145
total, 144

Current density
entropy, 486
particle, 486
thermal, 486

Darwin Lagrangian, 467
deBroglie wavelength, 364
Debye

distance, 95, 113, 326
frequency, 493
shielding potential, 284
temperature, 482, 498
wave number, 283, 314, 495

Deformation potential, 379
Degeneracy:

classical, 250
quantum, 377

Degenerate plasma, 377
Degrees of freedom, 1
de Groot, S. R., 449
Density expansion, 117
Density matrix, 395, 430

equation of motion, 399
Density operator, 331
Deuterium, liquid, 259
Diagrammatic analysis (See

Prigogine analysis)
Dielectric function, plasma (See

Plasma)
Dielectric time, 113
Diffusion, 175

coefficient, 483
mutual, 181, 208
self, 180, 188

Diffusion coefficient, 304, 327
Diffusion equation, 67, 187
Dispersion relation:

degenerate plasma, 377
warm plasma, 286, 377

Distribution functions, classical (See
also Quantum distributions)

conditional, 37
joint probability, 36
reduced, 37
s-tuple, 38

Doppler effect, 477
Drift-diffusion equation, 177
Drude conductivity, 177, 239, 407

covariant, 460
Druyvesteyn distribution, 236

absolute, 237

Edwards, J. T., 510
Electrical conductivity, 487

temperature domains, 512
Electrochemical potential, 178, 484
Electrodynamics, covariant, 458
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Electron gas, 464
Electron mobility (See Mobility,

electrical)
Electron-phonon scattering rate (See

Scattering rate)
Elliptic integrals, complete, 221
Elyutin, P. V., 510
Energy bands, 369
Energy equation, 97
Energy shell, 35, 240
Ensemble, 20

average, 189, 343
Entropy:

Boltzmann, 165
change, 275
Gibbs, 164, 275

Equal a priori probabilities, 345
Equation of state, 97, 134
Equipartition of energy, 179, 382
Ergodic hypothesis, 241
Ergodic motion, 240, 264
Error function, 545
Euler equations, 198
Euler’s constant, 542
Event, relativistic, 450
Exchange transformation, 13
Expectation:

of a classical function, 37
of a random variable, 47
and wave function, 330
and Wigner distribution, 353

Exponential integral, 542
Exponents, critical, 518
Extended states, 506, 521

Fermi-Dirac distribution, 371, 387,
483, 492

Fermi energy, 371, 4343
Fermi liquid, 387
Fermi momentum, 388
Fermi sphere, 374
Field tensor, electromagnetic, 458
Flow chart, 333
Fluid dynamical variables (See

Macroscopic variables)
Fock space, 395, 433

Hamiltonian, 433
operator, 396, 438

Fokker-Planck equation, 304, 308,
315, 317, 327

Four-current, 453
Four-vector, 451

covariant and contravariant, 471
Four-vector potential, 453, 459
Four-wave vector, 453
Free energy, 518
Friction coefficient, 304, 327
Friedel oscillations, 377

Gamma function, 543
Gauss’ equation, 280, 281
Gaussian distribution, 56, 59, 173
Generalized coordinates, 1
Generalized potential (See Potential)
Generating function, 11
Goldstein, H., 455
Grad’s first and second equations,

129, 262
Grad’s method of moments, 213
Grains, 480
Grazing collisions, 301, 303
Green’s function equations, coupled,

415, 422
Green’s functions:

and averages, 410
diagrammatic representation, 416,

440
retarded and advanced, 415
s-body, 410, 438
and Schroedinger equation, 408

Group property:
canonical transformations, 15
Lorentz transformations, 475

Hamiltonian, 4, 61, 66, 139, 254,
262, 272, 274, 396, 399

relativistic, 5, 455, 467
Hamilton-Jacobi equation, 248
Hamilton’s equations, 4

covariant, 455
Hamilton’s principle, 2, 76
Hard potential (See Potential)
Heisenberg picture, 339, 396, 422,

429
Hénon-Heiles Hamiltonian, 254

anti, 274
Hermite polynomials, tensor, 213, 546
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Hermiticity, 27
Hessian, 257
Heteroclinic orbit, 74
Hierarchies, quantum and classical,

table of, 402
Hillery, R. F., 354
Histogram, bin storage, 323
Hole mobility, 369
Homoclinic orbit, 74
Honeycomb lattice, 517
Hopping, 506

thermally assisted, 513
variable range, 513

H-theorem, 166, 392, 446
Hydrofracturing of a rock, 515
Hypergeometric function, 548

confluent, 548
Hypersonic flow, 298

Ideal gas, 30, 270
Impact parameter, 142
Incompressible phase density, 24, 136
Inelastic scattering, 319
Insulators, 480
Integrable motion, 254
Integral invariants of Poincaré, 68
Integral of motion (See Constants of

motion)
Inverse scattering, 147
Ioffe-Regel minimum, 512
Irreversibility, 162, 167, 240

Jacobian, 17
Jacobi’s identity, 11
Jennings, B. K., 354
Joint probability distribution (See

Distribution functions)

Kagomé lattice, 517
KAM theorem, 257, 274
KBG equation (See Krook-

Bhatnager-Gross
equation)

Kinetic equation:
convergent, 315
definition, 82
photon, 366
table of, 296

Klimontovich picture, 124, 136

Kronicker-delta symbol, four
dimensional, 472

Krook-Bhatnager-Gross equation,
96, 194, 295, 328

Kubo formula:
classical, 192
quantum, 404

Kursunoglu, B., 456

Lagrange’s equations, 3
covariant, 472

Lagrangian, 2, 60, 62, 132
relativistic, 466, 472

Laguerre polynomials, 204, 547
Landau damping, 288, 326, 377
Landau equation, 309, 315
Laplace-Runge-Lenz vector
Large-mass consistency limit, 503
Lasing criterion, 368
Lattice:

Bethe, 517
Honeycomb, 517
Kagomé, 517
one-dimensional, 522

Legendre expansion, 227, 261
Legendre polynomials, 229
Legendre transformation, 14
Length contraction, 454
Levi-Civita symbol, 538
Liapunov exponent, 257
Lie derivative, 135
Light cone, 450
Liouville equation, 22, 78, 344, 399

in non-Cartesian coordinates, 474
one-particle, 93
relativistic, 457

Liouville operator, 27, 98
resolvent, 33

Liouville theorem, 17, 276
Localization, 508

length, 510
in second quantization, 520ff

Localized states, 506
Logarithmic singularity, 295, 303
Long-time limit, 110
Long-time tails, 189, 277
Lorentz

expansion, 494
force, 5, 62
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gauge, 66, 464
invariants, 453

in kinetic theory, table of, 465
transformation, 452, 475

Lorentzian form (See Spectral
function)

Lorenz
number, 373, 376
relation, 483

Mach number, 298
Macroscopic variables:

absolute, 159
relative, 160

Magnetic alloys, dilute, 515
Mandelstam variables, 465, 478
Markov process, 41
Master equation, 43, 319, 446
Maxwellian, 96, 225, 275, 306, 327

absolute, 169
local, 169
relativistic, 467, 475

Maxwell interaction, 144, 219, 221,
271

Maxwell molecules (See Maxwell
interaction)

Maxwell’s equations, 66, 459
Mean-free-path, 179

acoustic phonon, 384
estimates, 178

Measurement:
and commutators, 332
and operators, 331

Measure of a set, 241
Metal-insulator transition, 506, 510
Metals, 480

electron transport in, 369
Method of moments, Grad’s, 213
Metrically indecomposable sets, 242
Metrically transitive transformations,

242
Metric space, 133
Metric tensor, 471
Microcanonical distribution, 344
Mixed states, 341, 434
Mixing flow, 243
Mobility

edge, 506, 511
electrical, 177, 192

electron, 369
gap, 511
hole, 369

Monte Carlo analysis, 319, 328
Mott, N. F., 510
Mott transition, 378

Navier-Stokes equations, 199
Neural networks, 515
Neutron, magnetic moment, 430
Nitrogen, viscosity, 212
Noble metals, 487
Non-Cartesian coordinates, 474
Nyquist criterion, 292, 327

Occupation numbers, 395
O’Connell, M. O., 354
Optical phonons, 379

Pair connectedness, 518
Partition function, 432

grand, 433
Pauli principle, 339, 394
Percolation, 506, 514ff

bond, 515
cluster, 515
site, 515

Periodic motion, conditional, 249
Phase average (See Averages)
Phase density averages, 125
Phonon polarization, 490
Phonon scattering (See Relaxation

time)
Planck distribution, 364, 379
Plasma:

dielectric function, 282
frequency, 113, 282, 326
parameter, 113, 304, 314

Plasma waves, 285
stable modes, 286
unstable modes, 291

Plemelj’s formula, 362
Poincaré map, 254
Poincaré recurrence theorem, 163
Poisson brackets, 10, 64
Poisson distribution, 52, 58, 69
Polycrystalline material, 480
Polymer gelatin, 515
Potential:
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Potential: (continued)
generalized, 66
hard, 220
soft, 220

Prandtl number, 185
Pratt, W. P., 488
Pressure tensor, 175
Prigogine analysis, 97
Principal part, 326
Projection representation, 350, 438
Proper frequency, 461
Proper time, 454
Proper volume, 463
Pure state, 341, 397, 398, 432

Quantum distributions (See
Bose-Einstein distribution;
Fermi-Dirac distribution;
Planck distribution)

Quantum-modified Boltzmann
equation (See Boltzmann
equation)

Quantum statistics, 386
Quartz, 480
Quasi-classical kinetic equation,

433 (See also Boltzmann
equation)

Quasi-classical limit, 386, 392
Quasi-free particle, 413

energy, 428
lifetime, 428

Radial distribution function, 96, 135,
448, 480

Radiation field, 366
Random numbers, 323
Random phases, 345, 510
Random variables:

definition, 47
sums of, 49

Random walk, 44, 50, 55, 187
Range of interaction, 86
Rayleigh dissipation, 304
Rayleigh’s formula, 365
Reichl, L. E., 394
Relativistic Maxwellian (See

Maxwellian)
Relativistic Vlasov equation (See

Vlasov equation)

Relativity, postulates, 450
Relaxation time approximation, 485

phonon scattering, 379
Representations:

coordinate, 335
momentum, 335

Resistivity, metallic, 481
Bloch component of, 501
electrical, 498, 501
low-temperature, 483
reduced, 504
residual, 488, 501

Resolvent of Liouville operator (See
Liouville operator)

Riemann zeta function, 544
Rigid spheres:

collision integral, 153
transport coefficients, 210

Rosenbluth-Rostoker limit, 96
Rough spheres, 273

Sample space, 47
Saxon-Hunter theorem, 523
Scattering:

angle, 140
inelastic, 319
matrix, 142, 258, 488, 493
rate, 362

Scattering cross section (See Cross
section)

Schenter, G. K., 394, 488
Schmidt number, 185
Schroeder, P. A., 488
Schwartzchild metric, 478
Scully, M. O., 354
Second quantization, 395
Self-consistent solution, 92
Self-scattering mechanism, 320
Semiconductor, 369, 480
Semimetals, 480
Shock front, 298
Shock waves, 298
Sine-Gordon equation, 70, 71
Single-crystal material, 480
Small shot noise, 53
Smooth spheres, 273
Sodium, band structure, 370
Soft potential (See Potential)
Solids: categories of, 480
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Sonine polynomials, 204, 221, 224,
259, 266

Sound speed, 268
Spectral function, 409, 425

Lorentzian form, 426
Spectral theorem, 224
Spherical harmonics, 220
Spin, 338

and density matrix, 348, 430
and density of states, 371

Spinor, 430
Spontaneous decay, 366
Stable modes (See Plasma)
Statistical balance, 167, 381, 387
Stefan-Boltzmann law, 366
Stimulated decay, 366
Stirling’s approximation, 57, 544
Stosszahlansatz, 152
Strain, 176
Strain-acoustic interaction, 379
Strain-optical interaction, 379
Strain tensor, symmetric, 176
Stress tensor, 175, 203, 265, 266
Structure factor, 97, 135
Subsonic flow, 298
Superposition principle, 41, 337
Sutherland model, 211
Symmetry properties of distribution

functions, 39, 66, 73, 75
Synge, J. L., 467

Temperature, 161
Tensor:

covariant and contravariant, 472
equivalents, 539
integrals, 471
metric, 471

Thermal conductivity, 175, 185, 202
coefficient of, 483, 487, 505

Thermal speed, 169, 179, 275
Thermopower, 484
Thomas-Fermi potential, 377, 378
Thomas-Fermi screening:

distance, 376, 377
wave number, 376, 377

Thouless, D., 510
Three-body problem, 253
Tight-binding approximation, 508,

520

Time dilation, 454
Tori, invariant, 252, 257
Transfer integral, 510
Transfer matrix method, 522
Transonic flow, 298
Transport coefficients, 174

Chapman-Enskog estimates, 210
mean-free-path estimates, 186

Uehling-Uhlenbeck equation, 388
Uhlenbeck, G. E., 204, 220
Umklapp process, 482
Uncertainty, in quantum mechanics,

333, 334
Unstable modes (See Plasma waves)

Van Leewen, W. A., 449
van Weert, Ch. G., 449
Variance, 48, 161
Variational technique, 442
Vector potential, 66, 452, 466, 475
Velocity autocorrelation function,

441
Viscosity coefficient, 175, 184, 204,

211
observed values, 212

Vlasov equation, 92
for a plasma, 279
relativistic, 459, 475

Vlasov fluid, 92

Walker, C. H., 257
Wang Chang, C. S., 204, 220
Wave number of closest approach,

314
Weidemann-Franz Law, 483
Weyl correspondence, 354, 435, 438
Wigner distribution, 351, 396, 435,

436, 437, 438
equation of motion, 353, 396

Wigner-Moyal equation, 358, 399,
431

World line, 450

Zallen, R., 510
Zero-point energy, ion, 492
Zero sound, 377, 391
Ziman, J. M., 508
Zwanzig, R., 188
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