

Parallel and Distributed Logic Programming
Alakananda Bhattacharya, Amit Konar, Ajit K. Mandal

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 10. Andrzej P. Wierzbicki, Yoshiteru
Nakamori
Creative Space, 2005
ISBN 3-540-28458-3

Vol. 11. Antoni Lig za
Logical Foundations for Rule-Based
Systems, 2006
ISBN 3-540-29117-2

Vol. 12. Jonathan Lawry
Modelling and Reasoning with Vague Con-
cepts, 2006
ISBN 0-387-29056-7

Vol. 13. Nadia Nedjah, Ajith Abraham,
Luiza de Macedo Mourelle (Eds.)
Genetic Systems Programming, 2006
ISBN 3-540-29849-5

Vol. 14. Spiros Sirmakessis (Ed.)

ISBN 3-540-30605-6

Vol. 15. Lei Zhi Chen, Sing Kiong Nguang,
Xiao Dong Chen
Modelling and Optimization of
Biotechnological Processes, 2006
ISBN 3-540-30634-X

Vol. 16. Yaochu Jin (Ed.)
Multi-Objective Machine Learning, 2006
ISBN 3-540-30676-5

 Vol. 17. Te-Ming Huang, Vojislav Kecman,
Ivica Kopriva
Kernel Based Algorithms for Mining Huge
Data Sets, 2006
ISBN 3-540-31681-7

Vol. 18. Chang Wook Ahn
Advances in Evolutionary Algorithms, 2006
ISBN 3-540-31758-9

Vol. 19. Ajita Ichalkaranje, Nikhil
Ichalkaranje, Lakhmi C. Jain (Eds.)
Intelligent Paradigms for Assistive and

ISBN 3-540-31762-7

Vol. 20. Wojciech Penczek, Agata Pó rola
Advances in Verification of Time Petri Nets
and Timed Automata, 2006
ISBN 3-540-32869-6

Adaptive and Personalized Semantic Web, 2006

�

Vol. 21. C ndida Ferreira

Preventive Healthcare, 2006

Modeling by an Artificial Intelligence, 2006
ISBN 3-540-32796-7

Vol. 22. N. Nedjah, E. Alba, L. de Macedo
Mourelle (Eds.)
Parallel Evolutionary Computations, 2006
ISBN 3-540-32837-8

Vol. 23. M. Last, Z. Volkovich, A. Kandel (Eds.)
Algorithmic Techniques for Data Mining, 2006
ISBN 3-540-33880-2

Vol. 24. Alakananda Bhattacharya, Amit Konar,
Ajit K. Mandal

2006

â
Gene Expression on Programming: Mathematical

Parallel and Distributed Logic Programming,

ISBN 3-540-33458-0

Vol. 8. Srikanta Patnaik, Lakhmi C. Jain,
Spyros G. Tzafestas, Germano Resconi,
Amit Konar (Eds.)
Innovations in Robot Mobility and Control,
2005
ISBN 3-540-26892-8

Vol. 9. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu (Eds.)
Foundations and Novel Approaches in Data
Mining, 2005
ISBN 3-540-28315-3

Studies in Computational Intelligence, Volume 24

123

Alakananda Bhattacharya

Amit Konar
Ajit K. Mandal

Parallel and Distributed
Logic Programming

Machines

Towards the Design of a Framework

With 121 Figures and 10 Tables

for the Next Generation Database

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

 5 4 3 2 1 0 89/SPI
Typesetting by the authors and SPI Publisher Services
Cover design: deblik, Berlin

Dr. Alakananda Bhattacharya
Artificial Intelligence Laboratory
ETCE Department

Calcutta 700032
India

 Prof. Dr. Amit Konar

Jadavpur University

ETCE Department

Calcutta 700032
India

 Artificial Intelligence Laboratory

E-mail: ajit.k.mandal@vsnl.com
 ajit.k.mandal@ieee.org

Library of Congress Control Number: 2006925432

ISBN-10 3-540-33458-0 Springer Berlin Heidelberg New York

Printed on acid-free paper SPIN: 11588498

Jadavpur University

ISBN-13 978-3-540-33458-3 Springer Berlin Heidelberg New York

E-mail: b_ alaka2@hotmail.com

 Prof. Dr. Ajit K. Mandal

 Visiting Professor
Department of Math. and Computer
Science
University of Missouri, St. Louis

 8001 Natural Bridge Road, St. Louis
 Missouri 63121-4499

E-mail: konaramit@yahoo.co.in

USA

Permanently working as
Professor
Department of Electronics and

Jadavpur University

India
Calcutta 700032

Tele-communication Engineering

Preface

Foundation of logic historically dates back to the times of Aristotle, who
pioneered the concept of truth/falsehood paradigm in reasoning. Mathematical
logic of propositions and predicates, which are based on the classical models of
Aristotle, underwent a dramatic evolution during the last 50 years for its
increasing applications in automated reasoning on digital computers.

The subject of Logic Programming is concerned with automated reasoning with
facts and knowledge to answer a user’s query following the syntax and semantics
of the logic of propositions/predicates. The credit of automated reasoning by logic
programs goes to Professor Robinson for his well-known resolution theorem that
provides a general scheme to select two program clauses for deriving an inference.
Until now Robinson’s theorem is being used in PROLOG/DATALOG compilers
to automatically build a Select Linear Definite (SLD) clause based resolution tree
for answering a user’s query.

The SLD-tree based scheme for reasoning undoubtedly opened a new era in
logic programming for its simplicity in implementation in the compilers. In fact,
SLD-tree construction suffices the need for users with a limited set of program
clauses. But with increase in the number of program clauses, the execution time of
the program also increases linearly by the SLD-tree based approach. An inspection
of a large number of logic programs, however, reveals that more than one pair of
program clauses can be resolved simultaneously without violating the syntax and
the semantics of logic programming. This book employs this principle to speed up
the execution time of logic programs.

One question that naturally arises: how does one select the clauses for
concurrent resolution? Another question that crops up in this context: should one
select more than two clauses together or pairs of clauses as groups for concurrent
resolution? This book answers these questions in sufficient details. In fact, in this
book we minimize the execution time of a logic program by grouping sets of
clauses that are concurrently resolvable. So, instead of pairs, groups of clauses
with more than two members in a group are resolved at the same time. This may
give rise to further questions: how can we ensure that the selected groups only are
concurrently resolvable, and members in each group too are maximal? This in fact
is a vital question as it ensures the optimal time efficiency (minimum execution
time) of a logic program. The optimal time efficiency in our proposed system is
attained by mapping the program clauses onto a specialized structure that allows

VI Preface

each group of resolvable clauses to be mapped in close proximity, so as to
participate in the resolution process. Thus n-groups of concurrently resolvable
clauses form n clusters in the network. Classical models of Petri nets have been
extended to support the aforementioned requirements.

Like classical Petri nets, the topology of network used in the present context is
a bipartite graph having two types of nodes, called places and transitions, and
directed arcs connected from places to transitions and transitions to places
respectively. Clauses describing IF-THEN rules (knowledge) are mapped at the
transitions, with predicates in IF and THEN parts being mapped at the input and
the output places of the transitions. Facts described by atomic predicates are
mapped at the places that too share predicates of the IF or the THEN parts of a
rule. As an example, let us consider a rule: (Fly(X) ¬Bird(X).) and a fact:
(Bird(parrot)¬.). The above rule in our terminology is represented by a transition
with one input and one output place. The input and the output places correspond to
the predicates: Bird(X) and Fly(X) respectively. The fact: Bird(parrot) is also
mapped at the input place of the transition. Thus, a resolution of the rule and the
fact is possible because of their physical proximity on the Petri net architecture. It
can be proved by method of induction easily that all members in a group of
resolvable clauses are always mapped on the Petri net around a transition. Thus a
number of groups of resolvable clauses are mapped on different transitions and the
input-output places around them. Consequently, a properly designed firing rule
can ensure concurrent resolution of the groups of clauses and generation and
storage of the inferences at appropriate places. The book aimed at realizing the
above principle by determining appropriate control signals for transition firing and
resulting token saving at desired places.

It is indeed important to note that the proposed scheme of reasoning covers the
notion of AND-, OR-, Stream- and Unification-parallelisms. It is noteworthy that
there are plenty of research papers with hundreds of scientific jargons to prohibit
the unwanted bindings in AND-parallelisms, but very few of them are realistic.
Implementation of the Stream-parallelism too is difficult, as it demands design of
complex control strategies. Fortunately, because of the structural benefits of Petri
nets, AND- and Stream-parallelisms could have been realized by our proposed
scheme of concurrent resolution automatically. The most interesting point to note
is that these parallelisms are realized as a byproduct of the adopted concurrent
resolution policy, and no additional computation is needed to implement the
former.

The most important aspect of this book, probably, is the complete realization of
the proposed scheme for concurrent resolution on a massively parallel
architecture. We verified the architectural design with VHDL and the
implementations were found promising. The VHDL source code is not included in
the book for its sheer length that might have enhanced its volume three times its
current size. Finally, the book concludes on the possible application of the
proposed parallel and distributed logic programming for the next generation
database machines.

The book comprises of six chapters. Chapter 1 provides an introduction to logic
programming. It begins with a historical review on the last 50 years evolution of
symbolic paradigms in Artificial Intelligence. The chapter then outlines the logic
of propositions and predicates, the resolution principles and its application in
automated theorem proving. Gradually, the chapter progresses through a series of
reviews on logic programs, its realization with stacks, the PROLOG language, and
stability of interpretations in a logic program. The chapter also reviews four
typical parallel architectures used for conventional programs. It also includes
discussions on possible types of parallelisms in logic programs.

Chapter 2 extensively reviews the existing models of parallelisms in logic
programs, such as the RAP-WAM architecture, Parallel AND-OR logic
programming language, Kale’s AND-OR tree model, CAM based architecture for
a PROLOG machine. A performance analysis of PROLOG programs on different
machine architectures is also introduced in this chapter. It then highlights the need
of Petri nets in logic programming and ends with a discussion on the scope of the
book.

Chapter 3 provides formal definitions to Petri nets and related terminologies.
Main emphasis is given on concurrency in resolution. The chapter introduces an
extended Petri net model for logic programming and explains resolution of
program/data clauses with forward and backward firing of transitions in the Petri
net model. An algorithm for automated reasoning is then proposed and explained
with a typical Petri net. The chapter includes a performance analysis of the
proposed algorithm with special references to speed up and resource utilization
rate for both the cases of limited and unlimited resources.

Chapter 4 is devoted to the design of a massively parallel architecture that
automates the reasoning algorithm presented in chapter 3. It begins with an
introduction to the overall architecture in a nutshell.

The chapter then gradually explores the architectural details of the modules⎯
namely Transition History File, Place Token Variable Value Mapper, Matcher,
Transition Status File, First Pre-Condition Synthesizer and Firing Criteria Testing
Logic. The chapter then analyzes the performance of the hardwired engine by
computing a timing analysis with respect to the system clock.

Prior to mapping the user’s logic program to the architecture proposed in
Chapter 4, a pre-processing software is needed for parsing the user’s source codes
and mapping the program components on to the architecture. Chapter 5 provides a
discussion on the design aspects of a pre-processor. The chapter outlines the
design of a Parser to be used for our application. It then introduces the principles
of mapping program components, such as clauses, predicates, arc function
variables and tokens onto the appropriate modules of the architecture.

Chapter 6 indicates the possible direction of the book in the next generation
database machines. It begins with an introduction to Datalog language,
highlighting all its specific features in connection with logic program based data

Preface VII

VIII Preface

 models. The LDL system architecture is presented, emphasizing its characteristics
in negation by failure, stratification and bottom-up query evaluation. Principles of
designing database machines with Petri nets are also narrated in the chapter. The
scope of Petri net based models in data mining is also examined at the end of the
chapter.

January 1, 2006

Artificial Intelligence Lab. Alakananda Bhattacharya,
ETCE Department Amit Konar,
Jadavpur University and Ajit K. Mandal.

Acknowledgements

The authors would like to thank many of their friends, colleagues and co-workers
for help, cooperation and support, without which the book could not be completed
in the present form.

First and foremost the authors wish to thank Professor A. N. Basu, Vice
Chancellor, Jadavpur University for providing them the necessary support to write
the book. They are equally indebted to Professor M. K. Mitra, Dean, Faculty of
Engineering and Technology, Jadavpur University for encouraging them to write
the book. During the preparation of the manuscript, Professor C. K. Sarkar, the
present HOD and Professor A. K. Bandyopadhyay and Professor H. Saha, the past
two HODs helped the authors in various ways to successfully complete the book.

The authors would like to thank Saibal Mukhopadhyay and Rajarshi Mukherjee
for simulating and verifying the proposed architecture with VHDL. They are also
indebted to a number of undergraduate students of ETCE department, Jadavpur
University for helping them in drawing some of the figures of the book. They are
equally indebted to Saswati Saha, an M. Tech. student of ETCE department for
providing support in editing a part of the book.

The first author is indebted to her parents Mrs. Indu Bhattacharya and Mr.
Nirmal Ranjan Bhattacharya for providing her all sorts of help in building her
academic career and their moral and mental support to complete the book in the
present form. She is equally grateful to her in-laws Mrs. Kabita Roy and Mr. Sunil
Roy for all forms of supports they extended to household affairs and their patience
and care for the author’s beloved child Antariksha. The first author would also like
to thank her elder brother Mr. Anjan K. Bhattacharya, brother-in-law Mr. Debajit
Roy and her sister-in-law Mrs. Mahua Roy for their encouragement in writing this
book. She would like to pay her vote of thanks to her uncle Late N. K. Gogoi, who
always encouraged her to devote her life for a better world rather than living a
routine life only. She also thanks her cousin brother Gunturu (Sudeet Hazra) and
her friend Madhumita Bhattacharya who continued insisting for successful
completion of the book. Lastly, the author thanks her husband Abhijit for his
understanding to spend many weekends lonely. The acknowledgement will remain
incomplete if the author fails to record the help and support she received from her
onetime classmate and friend Sukhen (Dr. Sukhen Das). Lastly, the author would
like to express her joy and happiness to her dearest son Antariksha and her
nephew Anjishnu whose presence helped her wade through the turbulence of
home, office and research during the tenure of her work.

The second and the third authors would also like to thank their family members
for extending their support to write this book.

The authors gratefully acknowledge the academic support they received from
UGC sponsored projects on i) AI and Expert Systems Applied to Image
Processing and Robotics and ii) University with Potential for Excellence Program
in Cognitive science.

Artificial Intelligence Lab. Alakananda Bhattacharya,
ETCE Department, Amit Konar,
Jadavpur University. and Ajit K. Mandal.

Acknowledgement X

Contents

1.2.2 Theorm Proving in the Classical Logic

1.3 Logic Programming...7
1.3.1 Definitions..8
1.3.2 Evaluation of Queries with a Stack ...9

1.3.4 Interpretation and their Stability in a Logic Program..................11
1.4 Introduction to Parallel Architecture ..15

1.4.1 SIMD and MIMD Machines ...17
1.4.2 Data Flow Architecture...19

1.6.1 Possible Parallelisms in a Logic Program30
1.7 Scope of Parallelism in Logic Programs using Petri Nets34
1.8 Conclusion ..40

Exercise..40
References ..53

2 Parallel and Distributed Models for Logic Programming —

2.1 Introduction...57
2.2 The RAP-WAM Architecture ..59
2.3 Automated Mapping of Logic Program onto a Parallel Architecture60
2.4 Parallel AND-OR Logic Programming Language.................................60
2.5 Kale’s AND-OR Tree Model for Logic Programming65
2.6 CAM-based Architecture for a PROLOG Machine...............................69
2.7 Performance Analysis of PROLOG Programs on Different Machine
 Architectures...73
2.8 Logic Programming using Petri Nets..74

2.10 Conclusions...85
Exercises ..85
References .. 104

1 An Introduction to Logic Programming...1
1.1 Evolution of Reasoning Paradigms in Artificial Intelligence...................1

 with the Resolution Principle ...5

1.5.1 Petri Nets A Brief Review ...23 —

 A Review ..57

2.9 Scope of the Book... 83

1.3.3 PROLOG — An Overview ...10

1.5 Petri Net as a Dataflow Machine..22

1.2 The Logic of Propositions and Predicates-A Brief Review..................3

1.6 Parallelism in Logic Programs — A Review ..27

1.2.1 The Resolution Principle...5

Contents

3.1 Introduction... 107
3.2 Formal Definitions .. 109

3.2.1 Preliminary Definitions... 109

3.2.3 SLD Resolution .. 115
3.3 Concurrency in Resolution .. 120

3.3.1 Preliminary Definitions... 120

3.4 Petri Net Model for Concurrent Resolution .. 129
3.4.1 Extended Petri Net.. 130
3.4.2 Mapping a Clause onto Extended Petri Net 130
3.4.3 Mapping a fact onto Extended Petri Net 131

3.5 Concurrent Resolution on Petri Nets .. 133

3.5.3 Properties of the Algorithm... 136
3.6 Performance Analysis of Petri Net-based Models 138

3.6.1 The Speed-up ... 139
3.6.2 The Resource Utilization Rate... 140
3.6.3 Resource Unlimited Speed-up and Utilization Rate 141

3.7 Conclusions... 142
Exercises .. 142
References .. 174

4.1 Introduction... 177
4.2 The Modular Architecture of the Overall System 178
4.3 Transition History File... 180
4.4 The PTVVM ... 181

4.4.1 The First Sub-unit of the PTVVM... 181
4.4.2 The Second Sub-unit of the PTVVM....................................... 183
4.4.3 The Third Sub-unit of the PTVVM ... 184

4.5 The Matcher.. 184
4.6 The Transition Status File.. 185
4.7 The First Pre-condition Synthesizer ... 186
4.8. The Firing Criteria Testing Logic.. 187
4.9 Timing Analysis for the Proposed Architecture 200
4.10 Conclusions... 202
Excercises... 203
References .. 210

5 Parsing and Task Assignment on to the Proposed
Parallel Architecture... 211
5.1 Introduction... 211
5.2 Parsing and Syntax Analysis.. 213

XII

3.5.2 Algorithm for Concurrent Resolution 134

3.3.2 Types of Concurrent Resolution.. 123

3 The Petri Net Model — A New Approach ... 107

3.2.2 Properties of Substitution Set..113

4 Realization of a Parallel Architecture for the Petri Net Model 177

3.5.1 Enabling and Firing Condition of a Transition......................... 133

5.2.1 Parsing a Logic Program using Trees 214
5.2.2 Parsing using Deterministic Finite Automata........................... 216

5.3 Resource Labeling and Mapping.. 219
5.3.1 Labeling of System Resources .. 221
5.3.2 The Petri Net Model Construction... 221
5.3.3 Mapping of System Resources .. 222

5.4 Conclusions... 223
Exercises .. 223
Refercences .. 228

6.1 Introduction... 229
6.2 The Datalog Language... 229
6.3 Some Important Features of Datalog Language 232
6.4 Representational Benefit of Integrity Constraints

6.5 The LDL System Architecture ... 235
6.5.1 Declarative Feature of the LDL... 237
6.5.2 Bottom-up Query Evaluation in the LDL................................. 238
6.5.3 Negation by Failure Computational Feature............................. 241
6.5.4 The Stratification Feature.. 242

6.6 Designing Database Machine Architectures using Petri Net Models ... 243
6.7 Scope of Petri Net-based Model in Data Mining................................. 247
6.8 Conclusions... 251
Exercises .. 251
References .. 256

Appendix A: Simulation of the Proposed Modular Architecture 259
A.1 Introduction.. 259
A.2 VHDL Code for Different Entities in Matcher................................... 260
A.3 VHDL Code to Realize the Top Level Architecture of Matcher 265
A.4 VHDL Code of Testbench to Simulate the Matcher 268

B.2 Problem 2: A Matrix Approach for Petri Net Representation.............. 273
Exercises .. 283

Contents XIII

6 Logic Programming in Database Applications 229

 in Datalog Programs ... 234

B.1 Problem 1: The Diagnosis Problem ... 271

Index..285

About the Authors...289

Appendix B: Open-ended Problems for Dissertation Works 271

Reference ... 270

References..284

1

An Introduction to Logic Programming

This chapter provides an introduction to logic programming. It reviews the
classical logic of propositions and predicates, and illustrates the role of the
resolution principle in the process of execution of a logic program using a stack.
Local stability analysis of the interpretations in a logic program is undertaken
using the well-known “s-norm” operator. Principles of “data and instruction
flow” through different types of parallel computing machines, including SIMD,
MIMD and data flow architectures, are briefly introduced. Possible parallelisms
in a logic program, including AND-, OR-, Stream- and Unification-parallelisms,
are reviewed with an ultimate aim to explore the scope of Petri net models in
handling the above parallelisms in a logic program.

1.1 Evolution of Reasoning Paradigms
in Artificial Intelligence

The early traces of Artificial Intelligence are observed in some well-known
programs of game playing and theorem proving of the 1950’s. The Logic Theorist
program by Newell and Simon [26] and the Chess playing program by Shannon
[33] need special mention. The most challenging task of these programs is to
generate the state-space of problems by a limited number of rules, so as to avoid
the scope of combinatorial explosion. Because of this special characteristic of
these programs, McCarthy coined the name Artificial Intelligence [2] to describe
programs showing traces of intelligence in determining the direction of moves in a
state-space towards the goal.

Reasoning in early 1960’s was primarily accomplished with the tools and
techniques of production systems. The DENDRAL [4] and the MYCIN [35] are
the two best-known and most successful programs of that time, which were
designed using the formalisms of production systems. The need for logic in
building intelligent reasoning programs was realized in early 1970’s. Gradually,
the well-known principles of propositional and predicate logic were reformed for
applications in programs with more powerful reasoning capability. The most
successful program exploring logic for reasoning perhaps is MECHO. Designed
by Bundy [5] in late 1970’s, the MECHO program was written to solve a wide

A. Bhattacharya et al.: An Introduction to Logic Programming, Studies in Computational Intelligence
(SCI) 24, 1–55 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

2

range of problems in Newtonian mechanics. It uses the formalisms of meta-level
inference to guide search over a range of different tasks, such as common sense
reasoning, model building and the manipulation of algebraic expressions for
equation solving [14]. The ceaseless urge for realizing human-like reasoning on
machines brought about a further evolution in the traditional logic of predicates in
late 1980s. A new variety of predicate logic, which too deals with the binary truth
functionality of predicates but differs significantly from the reasoning point of
view, emerged in the process of evolution. The fundamental difference in
reasoning of the deviant variety of logic with the classical logic is that a reasoning
program implemented with the former allows contradiction of the derived
inferences with the supplied premises. This, however, is not supported in the
classical logic. The new class of logic includes non-monotonic logic [1], default
logic [3], auto-epistemic logic [23], modal logic [30] and multi-valued logic [16].

In late 1980’s, a massive change in database technology was observed with the
increasing use of computers in office automation. Commercial database packages,
which at that time solely rested on hierarchical (tree-structured) and network
models of data, were fraught with the increasing computational impacts of the
relational paradigms. The relational model reigned the dynasty of database
systems for around a decade, but gradually its limitations too in representing
complex integrity constraints were shortly discovered. To overcome the
limitations of the relational paradigms, the database researchers took active
interest in employing logic to model database systems. Within a short span of
time, one database package, called Datalog, that utilizes the composite benefits of
relational model and classical logic emerged. The Datalog programs are similar to
PROLOG programs that answer a user’s query by a depth-first traversal over the
program clauses. Further, for satisfaction of a complex goal, that includes
conjunction of several predicates, the Datalog program needs to backtrack to the
previous program clauses. Unfortunately, the commercial work stations/main
frame machines that usually offers array as their elementary data structure are
inefficient to run Datalog programs that requires tree/stack as the primary program
resources.

To facilitate the database machines with the computational power of efficiently
running Datalog programs, a significant amount of research was undertaken in
various research institutes of the globe since 1990. Some research groups
emphasized the scope of parallelism in runtime [30, 36, 38] of a Datalog program,
some considered the scope of resolving parallelism in the compile-time phase [10,
37], and the rest took interest to model parallelism in the analysis phase [34].
However, no concrete solution to the problem was reported till this date. The book
attempts a new approach to design a parallel architecture for a Datalog-like
program, which is capable of overcoming all the above limitations of the last 30
years’ research on logic program based machines.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 3

1.2 The Logic of Propositions and Predicates-
A Brief Review

The word ‘proposition’ stands for a fact, having a binary valuation space of {true,
false}. Thus a fact, that can be categorized to be true or false, is a proposition.
Since the beginning of the last century philosophers have devised several methods
to determine the truth or falsehood of an inference [27] from a given set of facts.
The process of deriving the truth-value of a proposition from the known truth-
values of its premises is called reasoning [20]. Both semantic and syntactic
approaches to reasoning are prevalent in the current literature of Artificial
Intelligence. The semantic approach [11] employs a truth table for estimation of
the truth-value of a rule from its premise clauses. When a rule depends on n
number of premise clauses, the number of rows in the table becomes as large as 2n.
The truth table approach thus has its inherent limitation in reasoning applications.

The syntactic approach on the other hand employs syntactic rules to logically
derive the truth-value of a given clause from the given premises. One simple
syntactic rule, for instance, is the chain rule, given below:

Chain rule: p→ q, q→ r p→ r. (1.1)

where p, q and r are atomic propositions, ‘→’ denotes an if-then operator and ‘ ’
denotes an implication function.

The linguistic explanation of the above rule is “given: if p then q and if q then r,
we can then infer if p then r”. With such a rule and a given fact p, we can always
infer r. Formally,

 p, p→ q, q→ r r. (1.2)

The statement (1.2) is an example of inferencing by a syntactic approach. In
fact, there exists around 20 rules like the chain rule, and one can employ them in a
reasoning program to determine the truth-value of an unknown fact. A complete
listing of these rules is available in any standard textbook on AI [15].

Propositional logic was well accepted, both in the disciplines of Philosophy and
Computer Science. But shortly its limitations in representing complex real world
knowledge became pronounced. Two major limitations of propositional logic are
(i) incapability of representing facts with variables as arguments and (ii) lack of
expressing power of quantifiers like ‘for all (∀)’ and ‘for some (∃)’. These two
limitations led the researchers to extend the syntactical power of propositional
logic. The logic that came up shortly free from these limitations is called ‘the logic
of predicates’ or ‘predicate logic’ in brief. The following statements illustrate the
power of expressing complex statements by predicate logic.

4

Statement 1: All boys like flying kites.

 Representation in predicate logic:

∀X (Boy (X)→ Likes (X, flying -kites)). (1.3)

Statement 2: Some boys like sweets.

 Representation in predicate logic:

∃X (Boy (X)→ Likes (X, sweets)). (1.4)

In the last two statements, we have predicates like Boy and Likes that have a
valuation space of {true, false} and terms like X, sweets, and flying-kites. In
general, a term can be a variable like X or a constant like sweets or flying-kites or
even a function or function of function (of variables). The next example illustrates
functions as terms in the argument of a predicate.

Statement 3: For all X if (f (X) > g (X))
 then (f (g (X)) = g (f (X))).

Representation in predicate logic:

 ∀X (Greater-than (f (X), g (X))→
 Equal (f (g (X)), g (f (X)))). (1.5)

The last statement in predicate logic been self-explanatory, needs no further
explanation.

Given a set of facts and rules (piece of knowledge), we can easily derive the
truth or falsehood of a predicate, or evaluate the value of the variables used in the
argument of predicates. The process of evaluation of the variables or testing the
truth or falsehood of predicates is usually called ‘inferencing’ [32]. There exists
quite a large number of well-known inferential procedures in predicate logic. The
most common among them is the ‘Robinson’s inference rule’, popularly known as
the ‘resolution principle’. The resolution principle is applicable onto program
clauses expressed in Conjunctive Normal Forms (CNF).

Informally, a CNF of a clause includes disjunction (OR) of negated or non-
negated literals. A general clause that includes conjunction of two or more CNF
sub-clauses is thus re-written as a collection of several CNF sub-clauses.

For example the following two program clauses, containing literals Pij and Qij

for 1≤ i ≤ n and 1≤ j ≤ m, are expressed in CNF.

 ¬P11 ∨¬ P12∨…..∨ ¬P1n ∨ Q11 ∨ Q12∨…..∨ Q1m.
 (1.6)
 ¬P21 ∨ ¬P22∨ …..∨¬P2n ∨ Q21∨ Q22 ∨…...∨Q2m.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 5

It may be noted from statement (1.6) above that program clauses expressed in
CNF are free from conjunction (AND) operators. The principle of resolution of
two clauses expressed in CNF is now outlined.

1.2.1 The Resolution Principle

Consider predicates P, Q1, Q2 and R. Let us assume that with appropriate
substitution S,

 Q1 [S] = Q2 [S].

 Then (P ∨ Q1) ∧ (¬Q2 ∨ R) with Q1 [S] = Q2 [S] yields (P ∨ R) [S].

 P ∨ Q1, ¬Q2 ∨ R Q1 [S] = Q2 [S]
 Symbolically, ______________________________ (1.7)
 (P ∨ R) [S]

Example 1.1 illustrates the resolution principle.

Example 1.1: Let P = Loves (X, Father-of (X)),
 Q1 = Likes (X, Mother-of (X)), (1.8)
 Q2 = Likes (john, Y),
 R = Hates (X, Y).

 After unifying Q1 and Q2, we have

Q = Q1 = Q2 = Likes (john, Mother-of (john)).

where the substitution S is given by

 S = {john/X, Mother-of (X)/Y}
 = {john/X, Mother-of (john)/Y}.

 The resolvent (P ∨ R) [S] is, thus, computed as follows:

 (P ∨ R) [S] =
 Loves (john, Father-of (john)) ∨ Hates (john, Mother-of (john)).

The substitution S in many books is denoted by s and Q [S] is denoted by Qs.
In fact, we shall adopt the latter notion later in this book.

Suppose, we have to prove a theorem Th from a set of axioms. We denote it by

 { A1, A2,, An} Th

with the Resolution Principle
1.2.2 Theorem Proving in the Classical Logic

6

 Let
 A1 = Biscuit (coconut-crunchy)
 A2 = Child (mary) ∧ Takes (mary, coconut-crunchy)
 A3 = ∀ X (Child(X) ∧ ∃ Y (Takes (X,Y) ∧ Biscuit (Y))) (1.9)
 → Loves (john, X)
and
 Th = Loves (john, mary) = A4 (say).

 Now, to prove the above theorem, we first express clauses A1 through A4 in
CNF. Expressions A1 and A4 are already in CNF. Expression A2 can be converted
into CNF by breaking it into two clauses:

 Child (mary)
and Takes (mary, coconut-crunchy).

 Further, the CNF of expression A3 is

¬Child (X) ∨ ¬Takes (X,Y) ∨ ¬Biscuit (Y) ∨ Loves (john, X)

¬ Loves (john, mary) ¬Child (X) ∨ ¬Takes (X,Y) ∨
¬Biscuit (Y) ∨ Loves (john, X)

¬Child (mary) ∨ ¬Takes
(mary, Y) ∨ ¬Biscuit (Y)

Biscuit (coconut-crunchy)

¬Child (mary) ∨ ¬Takes (mary,
coconut-crunchy)

Child (mary)

¬Takes (mary, coconut-crunchy) Takes (mary, coconut-crunchy)

∅

1 An Introduction to Logic Programming

Fig. 1.1: A resolution tree constructed to prove that Loves (john, mary)

Parallel and Distributed Logic Programming 7

Now it can be easily shown that the negation of the theorem (goal) if resolved
with the CNF form of expressions A1 through A3, the resulting expression would
be a null clause for a valid theorem. To illustrate this, we will now form pairs of
clauses, one of which contains a positive predicate, while the other contains the
same predicate in negated form. Thus by the resolution principle, both the
negated and positive literals will drop out and the value of the variables used for
unification should be substituted in the resulting expression. The principle of
resolution is illustrated in Fig. 1.1 to prove the goal that Loves (john, mary).

The resolution principle has a logical basis, and a mathematical proof of its
soundness and completeness is also available in [2]. We instead of proving these
issues once again, just state their definitions only.

Definition 1.1: The resolution theorem is sound if any inference α that has been
proved from a set of axioms S by the resolution theorem, i.e., S α , we can show
that α logically follows from S, by notation, S α .

Definition 1.2: The resolution theorem is called complete, if for any inference α, that
follows logically from S, i.e., S α , we can prove by the resolution theorem S α .

 Because of the aforementioned two characteristics of the resolution theorem, it
found a wide acceptance in automating the inferencing process in predicate logic.

1.3 Logic Programming

The statements in predicate logic have the following form in general

 Q (P1 (arguments) Λ P2 (arguments) Λ ……. ΛPn (arguments)→
 (Q1 (arguments) V Q2 (arguments) V.……V Qm (arguments))). (1.10)

where Q is the quantifier (∀, ∃), Pi and Qj are predicates. It is to be noted that the
above rule includes a number of ‘V’ operators in the right-hand side of the ‘→’
operator. Since the pre-condition of any Qj are all the Pi s , we can easily write the
above expression in CNF form as follows.

 Q (P1 (arguments) Λ P2 (arguments) Λ ……Λ Pn (arguments)
 → Q1(arguments)).

 Q (P1 (arguments) Λ P2 (arguments) Λ……...Λ Pn (arguments)
 → Q2(arguments)). (1.11)
 .
 .
 Q (P1 (arguments) Λ P2 (arguments) Λ …..Λ Pn (arguments)
 → Qm (arguments)).

8

In such a representation there exists only one predicate in the then part
(consequent part) of each clause. Such representation of clauses, where the then
part contains at most one literal, is the basis of logic programs.

1.3.1 Definitions

The definitions1 that best describe a logic program are presented below in order.

Definition 1.3: A horn clause is a clause with at most one literal in the then part
(head) of the clause. For instance

 P (X, Y) ←Q (Y, X). (1.12)
 P (X, Y) ←Q (Y, X), R (X, Z), S (Z). (1.13)
 P (a, b) ←. (1.14)

←Q (Y, X). (1.15)

are some of the typical example of horn clauses. It is to be noted that in the clauses
(1.12) to (1.15), (1.12) and (1.13) are rules, (1.14) is a fact and (1.15) is a query.

Definition 1.4: A logic program is a collection of horn clause statements.

An example of a typical logic program with a query is in example 1.2.

Example 1.2: The clauses listed under (1.16) describe a typical logic program
and clause (1.17) denotes its corresponding query.

 Can-fly (X) ←Bird (X), Has-wings (X).
 Bird (parrot) ←. (1.16)
 Has-wings (parrot) ←.

Query: ←Can-fly (parrot). (1.17)

Definition 1.5: When there exists one literal in the heads of all the clauses, the
clauses are called definite, and the corresponding logic program is called a
definite program.

The logic program given in example 1.2 is a definite program as all its constituent
clauses are definite.

1 These definitions are formally given once again in chapter 3 for the sake of
completeness.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 9

1.3.2 Evaluation of Queries with a Stack

Given a logic program and a user’s query. A resolution tree is gradually built up
and traversed in a depth first manner to answer the user’s query. For realization of
the depth first traversal on a tree we require a stack. The principle of the tree
building process and its traversal is introduced here with an example presented
later. The stack to be employed for the tree construction has two fields, one field
containing the orderly traversed nodes (resolvents) of the tree, and the other field
holds the current set of variable bindings needed for generating the resolvents.

Like conventional stacks the stack pointer (top) here also points to the top of
the stack, up to which the stack is filled in. Initially, the query is pushed into the
stack. Since it has no variable bindings until now, the variable bindings’ field is
empty. The query clause may now be resolved with one suitable clause from the
given program clauses, and the resulting clause and the variable bindings used to
generate it are then pushed into the stack. Thus as the tree is traversed downward a
new node describing a new resolvent is created and pushed into the stack.
The process of pushing into the stack continues until a node is reached which
either yields a null clause, or cannot be resolved with any available program
clause. Such nodes are called leaves/dead ends of the tree. Under this
circumstance, we may require to move to the parent of a leaf node to take a look
for an alternative exploration of the search space. The moving up process in the
tree is accomplished by popping the stack out. The popped out node denotes the
parent of the current leaf node. The process of alternative resolution with the
popped out node is then examined and the expansion of the tree is continued until
the root node in the tree is reached again. Example 1.3 illustrates resolution by
stack.

Example 1.3: Resolution by Stack

Logic Program:

1. P (X, Y) ←Q (Y, Z), R (Z).
2. R (C) ←. (1.18)
3. Q (b, b) ←.
4. R (b) ←.

A traversal on the tree for answering the query: ←P (a, b) is presented in Fig.
1.2. When a node is expanded by resolution the child of the said node is pushed
into the Stack Pointer (SP) moves up one position to indicate the latest
information in the stack. When a node cannot be expanded, it is popped out from
the stack, and the next node in the stack is considered for possible expansion. The
resolution tree is terminated when construction process of the stack top is filled
with a null clause.

10

 Fig. 1.2: Depth-first traversal on a tree to answer the user’s query

1.3.3 PROLOG ⎯⎯⎯⎯ An Overview

‘PROLOG’ is an acronym for PROgramming in LOGic. It is the most popular
programming language for logic programming. The advantage of PROLOG over
the conventional procedural programming languages like C or Pascal and the
functional programming language like LISP is manifold. The most useful benefit
that the programmer can derive from PROLOG is the simplicity in programming.
Unlike the procedural languages, where the procedure for a given problem has to
be explicitly specified in the program, a PROLOG program only defines the
problem by facts and if-then rules, but does not include any procedure to solve the
problem. In fact, the compiler of PROLOG takes the major role of automatically
matching the part of one clause with another to execute the process of resolution.
The execution of a PROLOG program thus is a sequence of steps of resolution

1

4

←P (a, b).

2

Z = c

3

Z = b

←Q (b, Z), R(Z).

X = a
Y = b

←Q (b, c). ←R(b).

Ø

 SP ←P (a, b).

←P (a, b).

←Q (b, Z),
R(Z).

X = a
Y = b SP

←P (a, b).

←Q (b, Z),
 R(Z).

X = a
Y = b

←Q (b, c). Z = c SP

←P (a, b).

←Q (b, Z),
R(Z).

X = a
Y = b

←R (b). Z = b SP

←P (a, b).

←Q (b, Z),
R(Z).

X = a
Y = b

←R (b). Z = c

Ø SP

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 11

over the clauses in the program, which is usually realized with a stack, as
discussed in section 1.3.2. One step of resolution over two clauses thus calls for a
PUSH operation on the stack. On failure (in the process of matching) the control
POPs the stack return to the parent of the currently invoked clause. One most
useful built-in predicate in PROLOG is ‘CUT’. On failure it helps the control to
return to the root of the ‘resolution tree’ for re-invoking the search and resolution
process beginning from the root. This, however, has a serious drawback as a part
of the ‘resolution tree’ (starting from the root where the resolution fails) remains
unexplored. To avoid unwanted return to the root for subsequent search for
resolution, the clause comprising of the CUT predicate has a special structure. For
example, consider the following clause using propositions and CUT predicate only
(for brevity).

Cl ←p, q, !, r, s (1.19)

where ‘Cl’ is the head of the given clause, p, q, ! (CUT), r and s are in the body. It
is desired that if any proposition preceding CUT fails, the control returns to the
parent of the present clause. But if all literals (p and q) preceding CUT are
satisfied, then CUT is automatically satisfied. Consequently, if any literal like r or
s fails, the control returns to the root of the resolution tree.

Further, unlike arrays in most procedural languages, tree is the basic data
structure of PROLOG and depth first traversal is the built-in feature of PROLOG
for clause invocation and resolution process.

The early versions of PROLOG compiler did not have the provision for
concurrent invocation of the program clauses. The later version of PROLOG (for
instance PARLOG [6]) includes the feature of concurrency in the resolution
process. In this book, we will present some schemes for parallel realizations of
logic programs in runtime.

One interesting point to note is that all the resolvents obtained through
resolution principle may not be equally stable. Consequently a question
of relative stability [25] appears in the interpretation of a logic program.
The next section provides a brief introduction to determining stable
interpretation of a logic program. A detailed discussion on this, which is
available elsewhere ([7], [8]), is briefly outlined below for the sake of
completeness of the book.

1.3.4 Interpretation and their Stability in a Logic Program

Usually a logic program consists of a set of Horn clauses. An interpretation of the
logic program thus refers to the intersection of the interpretations of the individual
clauses. Example 1.4 illustrates the aforementioned principles.

12

Example 1.4: Consider the following two clauses:

1. q ←p.

2. p ←.

We need to determine the common interpretation of the given clauses.

Let the interpretation of the clauses (1) and (2) be denoted by I1 and I2

respectively. Here, I1 = {(p, d)} where d denotes the don’t care state of q, and I2 =
{(p, q), (¬p, q), (¬p, ¬q)}. Therefore, the common interpretation of two clauses is
given by

 I = I1 ∩ I2

 = {(p, d)} ∩ {(p, q), (¬p, q), (¬p, ¬q)}
 = {(p, q)},

signifying that p and q are both true.

The interpretation of the given logic program has been geometrically
represented in Fig. 1.3.

An important aspect of logic programs that need special consideration:
whether all interpretations of a given clause are equally stable? Some works on
stability analysis of logic programs have already been reported in [1], [3] and
[19]. Unfortunately the methodology of stability analysis applied to logic
programs is different, and there is no unified notion of stability analysis until
this date. On the other hand a lot of classical tools of cybernetic theory such as,
energy minimization by Liapunov energy function (vide [18]), Routh-Hurwitz
criterion (vide [17]), Nyquist criterion [28] etc. are readily available for
determining stability of any complex nonlinear system. In recent times
researchers are taking keen interest to use these classical theories in the stability
analysis of logic programs as well [9]. In this section we briefly outline a
principle of stability analysis by replacing AND-operator by t-norm and OR-
operator by s-norm. It may be added here that the advantage of using
these norms is to keep the function continuous and hence differentiable.
Example 1.5 briefly outlines the principle of determining stable points in a logic
program.

Example 1.5: We consider to determine the stable (or at least relatively more stable)
interpretation of the clause ‘q ←p.’. Replacing ‘q ←p.’ by ‘¬p∨ q’ and then further
replacing ‘OR (∨)’ by s-norm [16], where for any two propositions a and b,

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 13

Fig. 1.3: Geometric representation of the common interpretation for the given logic

(1, 1)

(0, 0) (1, 0)

 (0, 1)

p →

 q↑ Interpretation
of q ←p.

(a)

 q↑ Interpretation
 of p ←.

(1, 1)

(0, 0) (1, 0) p →

(0, 1)

(b)

Common
interpretation

(1, 1)

 q↑

(0, 0) (1, 0) p →

(0, 1)

(c)

program

14

 a s b = a + b – ab, we can construct a relation F(p, q) as follows:

 F(p, q) = (1 − p) sq
 = (1 − p) + q − (1 − p) q
 = 1 − p + pq.

It can be verified that F(p, q) = 1 − p + pq satisfies all the three interpretations
of ‘q ←p.’ To determine the stable points, if any, on the constructed surface of
F(p, q), let us presume that there exists at least one stable point (p*, q*). We now
perturb (p*, q*) by (h, δ), i.e.,

 p = p* + h
 q = q* + δ

Thus, we obtain:

 F(p* + h, q* + δ) = 1 − p* + p*q* − h + hq* + δp* + hδ
 = F(p*, q*) − h + hq* + δp* + hδ (1.20)

Now for stability of the given clause at (p*, q*), we need to satisfy the
following condition:

 F(p* + h, q* + δ) = F(p*, q*),

which ultimately demands

 (−h + hq* + δp* + hδ) = 0. (1.21)

It can be verified that the aforementioned condition is satisfied only at (p*, q*)
= (¬p, q), irrespective of any small value of h and δ. However, if we put other two
interpretations of ‘q ←p.’, such as (p, q), (¬p, ¬q) in condition (1.21), we note
that it imposes restriction on h and δ, which are not feasible. Thus the
interpretation (¬p, q) is a stable point. More interesting results on stability
analysis are shortly to appear in a forthcoming paper [9] from our research team.

The problem of determining stability for non-monotonic and default logic is
more complex. This, however, is beyond the scope of the present book. Very few
literatures dealing with the analysis of stable points of default and non-monotonic
logic are available in the current realm of Artificial Intelligence [22, 31].

In this book our main emphasis is on the design of a high speed parallel
architecture for the logic programming machines. For the convenience of the
readers we briefly outline the principles of parallelism and pipelining, and various
configurations of parallel computing machines.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 15

1.4 Introduction to Parallel Architecture

Parallelism and pipelining are two important issues in high-speed computation of
programs. Usually, these two concepts rest on the principles of Von Neumann
machines [13], where the instructions are fetched from a given storage (memory)
and subsequently executed by a hardwired engine called the central processing
unit (CPU). The execution of an instruction in a program thus calls for four major
steps: (i) instruction fetching, (ii) instruction decoding, (iii) data/operand fetching
and (iv) activating the arithmetic and logic unit (ALU) for executing the
instruction. These four operations are usually in pipeline (vide Fig. 1.4).

It needs mention that the units used in a pipelined system must have different
tasks and each unit (except the first) should wait for another to produce the input
for it.

Unlike pipelining, the concept of parallel processing calls for processing
elements (PE) having similar tasks. A task allocator distributes the concurrent
(parallel) tasks in the program and allocates them to the different processing
elements. As an example, consider the program used for evaluation of Z where

 Z = P * Q + R * S, (1.22)

where P, Q, R and S are real numbers.

Memory

Address Content

C021 20

C022 96

 . .
 . .

C024 38

Instruction
fetch

Instruction
decode

Data/
Operand

fetch

Execution

Results

Pipelining of
tasks

Fig. 1.4: The pipelining concept

16

Suppose we have two PEs to compute Z. Since the first part (P * Q) is
independent from the second (R * S) in the right hand side of the expression, we
can easily allocate these two tasks to two PEs, and the results thus obtained may
be added by either of them to produce Z.

A schematic diagram depicting the above concept is presented in Fig. 1.5.
For the last figure after computation of (P * Q) and (R * S) by PE1 and PE2

respectively, either of the results (Temp1 = P * Q or Temp2 = R * S) needs to be
transferred to PE1/PE2 for the subsequent addition operation. So, the task allocator
has to re-allocate the task of addition to either of PE1 or PE2 in the second cycle. It
is undoubtedly clear that the two cycles are required to complete the task, which in
absence of either of the PEs would require three cycles.

 Thus the speed-up factor = (2/3) × 100 = 66.66% .

Generally, a switching network is connected among the processing elements for
the communication of data from one PE to the others. Depending on the type of
concurrency among the tasks, parts of the switching network needs to be activated
in time sequence. Among the typical switching networks cubes, barrel shifters,
systolic arrays, etc. need special mention.

Depending on the flow of instructions and data among the processing elements
and memory units, four different topologies of machines are of common interest to
the professionals of computer architecture. These machines are popularly known
as Single Instruction Single Data (SISD), Single Instruction Multiple Data
(SIMD), Multiple Instruction Single Data (MISD) and Multiple Instruction
Multiple Data (MIMD) machines respectively. Among these SIMD and MIMD
machines are generally used for handling AI problems [21]. In the next section,
we briefly outline the features of SIMD and MIMD machines.

*
P

Q

PE1

Temp1

*

PE2

Temp2

R

S

+Temp1

Temp2

Z

PE1 / PE2

Fig. 1.5: The concept of parallel processing

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 17

1.4.1 SIMD and MIMD Machines

An SIMD machine comprises of a single control unit (CU) and a number of
synchronous processing elements (PE). Typically there exist two configurations of
SIMD architecture. The first configuration employs local (private) memory for
each PEs, whereas the second configuration allows flexibility in the selection of
memory for a PE by using an alignment network. The user program for both the
configurations is saved in a separate memory assigned to the control unit. The CU
thus fetches operation codes, decodes and executes the scalar instructions stored in
its memory. The decoded vector instructions, however, are mapped to the
appropriate PEs by the switching mechanism through a network. Two typical
SIMD configurations are presented vide Fig. 1.6 to demonstrate their structural
differences.

(a) Configuration I (Illiac IV)

Interconnection network

 CU memory

 CU

Data bus
 I/0

Data &
Instructions

PEo

PEM0

PE1

PEM1

PE N-1

PEMN-1

Control bus

Control

18

 (b) Configuration II (BSP)

Fig. 1.6: Architectural configurations of SIMD array processors

An MIMD machine (as shown in Fig. 1.7), on the other hand employs a number
of CUs and PEs, where each CU commands its corresponding PE for executing a
specific task on data elements. Usually an MIMD machine allows interactions
among the PEs, as all the memory streams are derived from the same data space
shared by all the PES. Had the data streams been derived from disjoint subspace
of the memories, then we would have called it multiple SISD operation.
An MIMD machine is referred to as tightly coupled if the degree of interaction
among the PEs is very high. Otherwise they are usually called loosely
coupled MIMD machines. Unfortunately, most commercial MIMD machines are
loosely coupled.

MP-1

PEo PEN-1

Alignment network

Mo M1

PE1

CU memory

CU
Control

Data bus

 I/O

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 19

1.4.2 Data Flow Architecture

It has already been discussed that the conventional Von Neumann machines fetch
instructions from the memory and decodes and executes them in sequence.
Because of the sequential organization of the stored programs in memory, possible

CU: Control unit
PU: Processor unit
MM: Memory module
IS: Instruction Stream
DS: Data Stream

 ISn ISn DSn

IS1

CU2 PU2

PU1 MM1

MM2

CUn PUn MMm

IS1 DS1 IS1

IS2 IS2 IS2 DS2

CU1

ISn

Fig. 1.7: MIMD Computer

parallelism among instructions cannot be represented by the program. Dataflow

20

Fig. 1.8: A dataflow graph for the program : z ←(x+y) * k with x = 5, y = 3 and k = 2

architecture, on the other hand represents the possible parallelism in the program
by a dataflow graph. Figure 1.8 describes a dataflow graph to represent the
program segment:

Example 1.6: Dataflow Graph for a Typical Program.

 Consider the program as follows:

 x := 5 ;
 y := 3 ; (1.23)
 k := 2 ;
 z := (x + y) ∗ k

 where := denotes the assignment operator.

Variables in the dataflow graph are usually denoted by circles (containing variable
names). The dark dots over the arcs denote the token value of the variables located
at the beginning of the corresponding arcs. The operators are mapped at the
processing elements depending on their freedom of accessibility. Generally, each
processing element has a definite address. The communication of message from
one processing element to another is realized by a packet transfer mechanism.
Each packet includes the destination address, the input and output parameters and
the operation to be executed by the processing elements. A typical packet structure
is presented (vide Fig. 1.9) for convenience.

3

5

2

+ *

k

x

y

 z

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 21

Fig. 1.9: A typical packet used for message passing among the PEs

 Fig. 1.10: The Arvind dataflow machine

Among the well-known data flow machines, Arvind machine of the MIT and
the Manchester University machine are most popular. The basic difference
between the two machine architectures lies in the arbitration unit. In the
Manchester machine, token queues (TQ) are used to streamline tokens from the
queues through matching unit (MU), node storage (NS) and the processing units
(PU). Transfer of resulting tokens to another PU is accomplished by an exchange
switching network. The Arvind machine, however, allows packet transfer through
an N × N switching network. The details of the architecture of the two machines
are presented in the Fig. 1.10 and Fig. 1. 11 for convenience.

(N-1)(N-1)

N × N

network

PE

PE

PE

00

1
 1

Destination ID:

Input variables:

Output variables:

Function:

22

 Fig. 1.11: The Manchester machine with multiple ring architecture

1.5 Petri Net as a Dataflow Machine

A Petri net is a directed bipartite graph consisting of two types of nodes: places
and transitions. Usually, tokens are placed inside one or more places of a Petri net
denoted by circles. The flow of tokens from the input to the output places of a
transition is determined by a constraint, called enabling and firing condition of the
transition.

The token-flow in a Petri net has much similarity with the data/token flow in a
dataflow architecture. Since token flow in a dataflow machine depends on the
presence of the operands (tokens) at a given processing element, token flow may
not be continuous in a dataflow machine. Consequently, dataflow architecture is
usually categorized under the framework of asynchronus systems. In a Petri net
model, the enabling and firing conditions of all the transitions in tandem may not
always be satisfied because of resource (token) constraints. This results in
asynchronus firing of transitions. Consequently Petri nets too are classified under
the framework of parallel asynchronus machines.

The principles of dataflow and asynchronism characteristic of a Petri net being
similar to that of a dataflow architecture, Petri nets may be regarded as a special
type dataflow machine.

The book attempts to utilize the dataflow characteristics of a Petri net model for
realizing the AND-, OR- and Stream-parallelism of a logic program. The scope of
Petri nets to model the above types of parallelisms are discussed in detail later in

Labeled tokens Exchange
Switch

network
TQ

TQ

PU NS MU

PU NS MU

PU NS MU

Output Input

TQ

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 23

this chapter. The Unification parallelism in logic program does not require any
special characteristic of a Petri net model for its realization and fortunately its
realization on a Petri net does not invite any additional problem.

1.5.1 Petri Nets- A Brief Review

Petri nets are directed bipartite graphs consisting of two types of nodes called
places and transitions. Directed arcs (arrows) connect the places and transitions,
with some arcs directed from the places to the transitions and the remaining arcs
directed from the transitions to the places. An arc directed from a place pi to a
transition trj defines the place to be an input of the transition. On the other hand,
an arc directed from a transition trk to place pl indicates it to be an output place
of trk. Arcs are usually labeled with weights (positive integers), where a k-
weighted arc can be interpreted as the set of k-parallel arcs. A marking (state)
assigns to each place a non-negative integer. If a marking assigns to place pi an
integer k (denoted by k-dots at the place), we say that pi is marked with k
tokens. A marking is denoted by a vector M, the pi-th component of which,
denoted by M(pi), is the number of tokens at place pi. Formally, a Petri net is a
5-tuple, given by

PN = (P, Tr, A, W, M0)
where
 P = {p1, p2, …., pm} is a finite set of places,
 Tr = {tr1, tr2, …., trn} is a finite set of transitions,
 A ⊆ (P × Tr) ∪ (Tr × P) is a set of arcs,
 W: A→ {1, 2, 3, ….} is a weight function,
 M0: P→ {0, 1, 2, 3,…} is the initial marking,
 P ∩ Tr = ∅ and P ∪ Tr ≠ ∅.

Dynamic behaviour of many systems can be described as transition of system
states. In order to simulate the dynamic behaviour of a system, a state or marking
in a Petri net is changed according to the following transition firing rules:

1) A transition trj is enabled if each input place pk of the transition is marked
with at least w(pk, trj) tokens, where w(pk, trj) denotes the weight of the arc
from pk to trj.

2) An enabled transition fires if the event described by the transition and its
input/ output places actually takes place.

3) A firing of an enabled transition trj removes w(pk, trj) tokens from each
input place pk of trj, and adds w(trj, pl) tokens to each output place pl of trj,
where w(trj, pl) is the weight of the arc from trj to pl.

24

 (a)

 (b)

Fig. 1.12: Illustration of transition firing rule in a Petri net. The markings: (a) before the
transition firing and (b) after the transition firing

Example 1.7: Consider the well-known chemical reaction: 2H2 + O2 = 2H2O. We
represent the above equation by a small Petri net (Fig. 1.12). Suppose two
molecules of H2 and O2 are available. We assign two tokens to the places p2 and p1

representing H2 and O2 molecules respectively. The place p3 representing H2O is
initially empty (Fig. (1.12(a)). Weights of the arcs have been selected from the
given chemical equation. Let the tokens residing at place H2 and O2 be denoted by
M(p2) and M(p1) respectively. Then we note that

M(p2) = W(p2, tr1) and M(p1) > W(p1, tr1).

• •

• •

H2

O2

H2O2

1

2

tr1

p2

p1

p3

•

H2

O2

H2O2

1

2

••

 tr1

p2

p1

p3

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 25

Consequently, the transition tr1 is enabled, and it fires by removing two tokens
from the place p2 and one token from place p1. Since the weight W(tr1, p3) is 2,
two molecules of water will be produced, and thus after firing of the transition, the
place p3 contains two tokens. Further, after firing of the transition tr1, two
molecules of H2 and one molecule of O2 have been consumed and only one
molecule of O2 remains in place p1.

The dynamic behaviour of Petri nets is usually analyzed by a state equation,
where the tokens at all the places after firing of one or mores transitions can be
visualized by the marking vector M. Given a Petri net consisting of n transitions
and m place.

 Let
 A = [aij] be an (n × m) matrix of integers, called the incidence matrix, with

entries
 aij = aij

+ − aij
−

where
 aij

+ = w(tri, pj) is the weight of the arc from transition tri to place pj,
and aij

− = w(pj, tri) is the weight of the arc to transition tri from its input place pj.

It is clear from the transition firing rule described above that aij
−, aij

+ and aij

respectively represent the number of tokens removed, added and changed in place
j when transition tri fires once. Let M be a marking vector, whose j-th element
denotes the number of tokens at place pj. The transition tri is then enabled at
marking M if

 aij
− ≤ M(j), for j = 1, 2, …, m. (1.24)

 In writing matrix equations, we write a marking Mk as an (m × 1) vector, the
j-th entry of which denotes the number of tokens in place j immediately after the
k-th firing in some firing sequence. Let uk be a control vector of (n × 1) dimension
consisting of (n−1) zeroes and a single 1 at the i-th position, indicating that
transition tri fires at the k-th firing. Since the i-th row of the incidence matrix A
represents the change of the marking as the result of firing transition tri, we can
write the following state equation for a Petri net:

Mk = Mk−-1 + ATuk, k = 1,2,… (1.25)

 Suppose we need to reach a destination marking Md from M0 through a firing
sequence {u1, u2, …, ud}. Iterating k = 0 to d in incremental steps of 1, we can
then write:

26

 M1 = M0 + ATu1

 M2 = M1 + ATu2

 … ….. …. …
 … .…. …. … (1.26)

 Md−1 = Md−2 + ATud−1

 Md = Md−1 + ATud

have:
 d
 Md = M0 + ATuk (1.27)
 k=1

 d
 or, Md – M0 = AT uk (1.28)
 k=1

 or, ∆M = ATx, (1.29)

where
 ∆M = Mk − M0, (1.30)

 d
and x = uk. (1.31)
 k=1

Here x is a (n × 1) column vector of non-negative integers, and is called the
firing count vector [24]. The i-th entry of x denotes the number of times that
transition tri must fire to transform M0 to Md.

Example 1.8: The state equation (1.25) is illustrated with the help of Fig. 1.13. It
is clear from the figure that M0 = [2 0 1 0]T. After firing of transition tr3, we
obtain the resulting marking M1 by using the state equation as follows:

 M1 = M0 + ATu1

 = [2 0 1 0]T + -2 1 1 [0 0 1]T

 1 -1 0
 1 0 -1
 0 -2 2

 = [3 0 0 2]T.

Equating the left hand sum with the right hand sum of the above equations we

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 27

 Fig. 1.13: A Petri net used to illustrate the state equation

1.6 Parallelism in Logic Programs ⎯⎯⎯⎯ A Review

A typical logic program (vide section 1.3.1) is a collection of Horn clauses. The
resolution process presented in section 1.2 was illustrated with Select Linear
Definite (SLD) clauses. Under this scheme, a given set of clauses S including the
query is the input to a resolution system, where two clauses having oppositely
signed common literals, present in the body of one clause Cl1 and the head of
another clause Cl2, are resolved to generate a resolvent Cl3 . The Cl3 is then
resolved with another clause from S having oppositely signed common literals.
The process terminates when no further resolution is feasible or a null clause is
produced yielding a solution for the argument terms of the predicate literals. The
whole process is usually represented by a tree structure, well-known as SLD-tree.
The SLD-tree thus allows binary resolution of clauses, with the resolvent carried
forward for resolution with a third clause.

The SLD-resolution is a systematic tool for reasoning in a logic program
realized on a uniprocessor architecture. However, the principle can easily be
extended for concurrent resolution of multiple program clauses. Various
alternative formulations for concurrent resolution of multiple program clauses are
available in the literature [22]. One typical scheme is briefly outlined. In this
scheme, we first select m number of pair of clauses (including the goal) that can
participate in the resolution process. If such m pairs are available, then we would
have (m/2) number of resolvents. If the resolvents can again be paired so that they
are resolvable we could find (m/4) resolvents, and so on, until we find two clauses

• •

p3

p2

p1

tr2

tr3

p4

2

2

2

tr1

28

which on resolution finally may give rise to a null clause. Had it been so, we
require only k units of time, to resolve m = 2k clauses. The total time of resolution
k = log2 (m) can be reduced further if we can resolve more than two clauses
together by some mechanism. In fact this too can be realized, if appropriate
hardware/software resources are available. The above two types of concurrent
resolution is illustrated in example 1.9:

Example 1.9: The SLD-tree for the given logic program:

Fig. 1.14: An SLD resolution-tree depicting resolution of two clauses, and the resolvent
been passed on for resolution with a third clause until a null clause is derived, or no further

←Has-beaks (X). Has-beaks (X) ←Lay-eggs (X).

Lay-eggs (X) ←Has-wings
(X), Build-nests (X).

←Lay-eggs (X).

←Has-wings (X), Build-nests (X). Build-nests (X) ←.

←Has-wings (X).

Has-wings (X) ←Can-
fly(X), Has-feather (X).

←Can-fly (X), Has-feather (X). Has-feather (X) ←.

←Can-fly (X).

Can-fly (X)
←Bird (X).

←Bird (X). Bird (X) ←.

∅

1 An Introduction to Logic Programming

resolution is possible

Parallel and Distributed Logic Programming 29

Logic Program:

 Can-fly (X) ←Bird (X). (1.32)
 Bird (X) ←. (1.33)
 Has-feather (X) ←. (1.34)
 Has-wings (X) ←Can-fly (X) , Has-feather (X). (1.35)
 Has-beaks (X) ←Lay-eggs (X). (1.36)
 Lay-eggs (X) ←Has-wings (X), Build-nests (X). (1.37)
 Build-nests (X) ←. (1.38)

Query: ←Has-beaks (X). (1.39)

For the given logic program, the SLD resolution tree is given in Fig. 1.14.

When we take two clauses concurrently as available for resolution, the
resolution tree looks like Fig. 1.15 as illustrated here.

Can-fly(X)
←Bird(X).

Has-wings(X) ←Can-fly(X),
Has-feather(X).

Has-feather(X) ←.

Has-beaks(X) ←Lay-eggs(X).

←Has-beaks(X).

Lay-eggs (X) ←Has-wings (X), Build-nests (X).

Build-nests(X) ←.

Can-fly(X) ←. Has-wings(X)
←Can-fly(X).

←Lay-eggs(X). Lay-eggs(X) ←
 Has-wings(X).

Has-wings (X) ←. ←Has-wings (X).

∅

 Bird(X) ←.

Fig. 1.15: Illustrating the process of resolving multiple (>2) program clauses together

30

The process of composite resolution of multiple program clauses is illustrated
vide Fig. 1.16.

Fig. 1.16: Illustrating the process of composite resolution of multiple program clauses

1.6.1 Possible Parallelisms in a Logic Program

Besides the above forms of concurrent resolution of clauses, there exist four other
types of parallelisms in a logic program. These are AND-, OR-, Stream- and
Unification-parallelisms.

(a) AND–parallelism

The literals (predicates) separated by commas in the body of a Horn clause are
usually called AND-literals. The AND-literals of a clause may be searched against

Multi-
resolution

Resolution

Multi-
resolution

Lay-eggs (X) ←Has-wings (X),
Build-nests (X).

Has-beaks (X) ←Lay-eggs (X).

←Has-beaks (X).

Can-fly (X) ←Bird (X).

Bird (X) ←.

Has-feather (X) ←.

Has-wings(X) ←Can-fly
(X), Has-feather (X).

∅

Has-wings (X) ←.

←Has-wings (X).

Build-nests (X) ←.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 31

the heads of the available clauses for resolution. The concurrent resolution of the
AND-literals of a clause with the heads of other clauses is usually called AND-
parallelism. Example 1.10 illustrates AND-parallelism in a typical logic program.

Example 1.10: Let us consider the following logic program.

Parent (M, F, X) ←Father (F, X), Mother (M, X). (1.40)
Mother (jaya, tom) ←. (1.41)
Mother (ipsa, bil) ←. (1.42)
Father (asit, tom) ←. (1.43)
Father (amit, bil) ←. (1.44)

Query: ←Parent (M, F, bil). (1.45)

In Fig. 1.17 the clause ‘←Father (F, bil), Mother (M, bil).’ is instantiable by
clauses (1.42) and (1.44) concurrently. Thus a concurrent resolution of three
clauses take place jointly resulting in a null clause. The results of instantiation of
the variables F and M in the present case are F = amit and M = ipsa.

Fig. 1.17: Illustrating AND-parallelism in a logic program

 F = amit

 M = ipsa

←Parent (M, F, bil).

←Father (F, bil), Mother (M, bil).

(1.40)

Concurrent resolution

(1.44) (1.42)

∅

32

In case the body of the clause contains AND-literals having shared variables,
then a binding conflict in the process of instantiation might arise. For instance,
consider the following logic program

 F (X) ←A (X), B (X). (1.46)
 A (1) ←. (1.47)
 B (2) ←. (1.48)

Here, the possible instantiation of the AND literals are X = 1 or X = 2. But both
X = 1 and X = 2 jointly cannot hold as it violates (1.46).

In AND-parallelism, where the goals/sub-goals that include shared variables,
are allowed to be resolved independently in parallel, is called unrestricted AND-
parallelism. A considerable runtime overhead is incurred for synchronization of
shared variables and filtering the set of variable bindings to answer the query in
such systems. To avoid such overhead, AND-parallelism is allowed when variable
bindings are conflict-free. Such AND-parallelism is referred to as the restricted
AND-parallelism. For the implementation of conflict freedom, a program
annotation is necessary to denote which goals/sub-goals produce or consume
variables.

(b) OR-parallelism

In a sequential logic program, the literals in the body of a clause are unified in
order with the head part of other clauses during the process of resolution.
Consider, for instance, the program shown in example 1.11.

Example 1.11: Illustrating OR-parallelism.

Consider the following logic program.

 1. Main ←A (X), P (X). (1.49)

 2. A (1) ←b, c, d. (1.50)

 3. A (2) ←e, f, g. (1.51)

 4. A (3) ←h, i. (1.52)

 5. P (3) ←p, c. (1.53)

In the above program to satisfy the goal: Main, one attempts to unify the first
sub-goal A (X) with A (1), and then he/she should start searching P (1) in the head
of the subsequent clauses. Unfortunately no such clause with P (1) in the head is
available; so the search fails to satisfy Main with X = 1. The same process is then
repeated for X = 2, but main is not satisfied again as P (2) is not available as the

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 33

head of some clauses. The goal, however, succeeds by unifying A (X) and P (X)
with heads A (3) and P (3) respectively.

However, given sufficient computing resources, it is possible to perform the
unification of A (X) with A (1), A (2) and A (3) in parallel. Such concurrent
unification of A (X) with OR-clauses A (1), A (2) and A (3) in parallel is called
OR-parallelism. The difficulty of OR-parallelism, with respect to the last example,
is the propagation of the correct bindings of variable X to P (X). This, however,
calls for some knowledge about the existence of P (3) as a head of some clauses.
Perhaps, by allowing concurrency of AND- as well as OR-parallelism, this could
be made possible in future logic programming machines.

(c) Stream-parallelism

Stream-parallelism occurs in a logic program, when the literals pass a stream of
variable bindings to other literals, each of which is operated on concurrently.
Literals producing the variable bindings are called producers, while the literals
that use the bound value of variables are called consumers (vide [12]). Example
1.12 illustrates Stream-parallelism.

Example 1.12: Illustrating Stream-parallelism.

 1. Main ←Int (N), Test (N), Print (N). (1.54)

 2. Int (0) ←. (1.55)

 3. Int (N) ←(M), N is M + 1. (1.56)

In the last program to satisfy Main, one needs to satisfy Int (N), Test (N) and
Print (N) in sequence. Once Int (N) is unified with Int (0) ←. , the value of the
parameter N = 0 is passed on to Test (N) and then Print (N) in succession.

Thus when Test (N) and Print (N) are executed with old bindings of N, new
bindings of N may be generated concurrently by unifying Int (N) of clause (1.54)
with the head of the clause (1.56). Such parallelism where the clauses in the body
of a clause are unified with the result of binding, of their preceding clauses in the
body is called Stream-parallelism. Stream-parallelism has similarity with
pipelining. Test (N) and Print (N), for instance, are similar with processes, where
they wait for the data streams to be produced by the preceding process Int (N).

(d) Unification-parallelism

In unification-parallelism, the terms in the argument of a predicate are instantiated
in parallel with the corresponding terms of another predicate. For instance, the
Petri net corresponding to the logic program presented allows binding of the
variables X and Y in the arc function concurrently with the tokens a and b
respectively at place P.

34

Consider the following logic program.

Logic Program:

 1. R (Z, X) ←P (X, Y), Q (Y, Z). (1.57)

 2. P (a, b) ←.

Here, the two clauses can resolve if the predicate P in both the clauses can be
unified. In case of unification-parallelism, the variables (X and Y) in the argument
of P under the first clause are bound concurrently with the constants (a and b) in
the argument of P under the second clause.

1.7 Scope of Parallelism in Logic Programs
using Petri Nets

After a careful observation of various types of logic programs, we arrive at the
conclusion that Petri net model truly resemble all the features that a concurrent
logic program requires for execution. The classical model of Petri net, we
introduced in section 1.5, however, needs an extension for its suitability to realize
the parallelisms in a logic program.

A number of authors have already suggested several models of Petri net for
parallel realization of logic programs. A detailed discussion on this is given in
section 2.8. For the sake of completeness of this chapter, we have briefly outline
one typical model of Petri net and demonstrate its application in synthesis of
AND-, OR-, Stream-parallelism of logic programs.

Example 1.13: This example illustrates a logic program using Petri net

Logic Program:

R(Z, X), S(X, Z) P(X, Y), Q(Y, Z).
P(a, b) .
Q(b, c) .
¬R(c, a) .

The Petri net representation of the above logic program is given by the Fig. 1.18.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 35

AND-parallelism using Petri net

The literals present in the body part of a clause are referred to as AND-literals.
During resolution the AND-literals of a given clause may be searched against the
literals present in the heads of other available clauses.

 In AND-parallelism the binding of terms AND-literals takes place
concurrently with those of the literals present in the heads of other clauses. The
example below illustrates the concept of AND-parallelism.

 Consider the following three program clauses.

 F(X) ←A(X), B(Y). (1.58)
 A(1) ←. (1.59)
 B(1) ←. (1.60)

p2 Q

p1 P

tr

p3 R

p4 S

(X, Y) ¬(Z, X)

(Y, Z) ¬(X, Z)

<a, b>

<b, c>

¬<c, a>

Fig. 1.18: The Petri net for a given logic program

36

For simplicity we consider only one literal in the heads of the second and third
clauses. It is clear that the variable X shared by the AND-literals may be searched
with the literals present in the heads of the second and the third clauses. It is
indeed important to note that an extended Petri net supports AND-parallelism as
the input arc functions of a transition can be matched concurrently with the
available resources of its corresponding input places.

After the mapping of the three clauses onto the Petri net is over, the network
looks like Fig. 1.19. Hence the input arc functions X and Y of the transition tr can
be matched with the tokens residing at place A and B concurrently. It may be
noted that the tokens appeared at the places A and B of the Petri net because of
mapping of the rules (1.59) and (1.60) onto the Petri net respectively. Thus it is
clear that, in absence of conflict in binding, AND-parallelism can easily take place
in a Petri net.

When the AND-literals of a clause contain shared variables, a binding conflict
in the process of instantiation may arise. For instance, consider the following
program containing three program clauses.

 F(X) ←A(X), B(X). (1.61)
 A(1) ←. (1.62)
 B(1) ←. (1.63)

 When the variable X of literals A and B corresponding to the first clause is
attempted to match against A(1) and B(1) of the second and third clauses, the
resolution succeeds and there is no restriction in AND- parallelism when AND-
clauses share common variables.

A

B

(X)

(Y)

¬(X)

F

tr

<1>

<1>

Fig. 1.19: A Petri net illustrating AND-parallelism

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 37

OR-Parallelism using Petri net

In case of OR-parallelism a literal present in the body of one clause may be
searched concurrently against the literals present in the heads of more than one
clause. The latter clauses are usually referred to as OR-clauses. For example
consider the following program.

 F(X) ←A(X), B(Y). (1.64)
 A(1) ←. (1.65)
 A(2) ←. (1.66)
 B(1) ←. (1.67)

 Here, the variable X present in the body of the first clause is matched
concurrently with the arguments of the literal A in the second and third clauses. It
may be mentioned here that the Petri net representation of the above program
clauses, (vide Fig. 1.20) allows concurrent matching of the arc function variable X
with the tokens <1>, <2> residing at place A. However, such concurrent matching
requires additional system resources.

(X)

(X)

¬(X)

tr

B

A

F
<1>
<2>

<1>

Fig. 1.20: A Petri net illustrating OR-parallelism

38

Stream-Parallelism using Petri net

In SLD resolution, the resolvent of two clauses participates in a subsequent
resolution with a third clause. In case the second resolution takes place on a
sequential stream of tokens generated by the first resolution we say that a pipeline
exists between the two successive resolutions.

Let pi for i = 1, 2, …..,m be the input places of a transition trk and pj for j =
m+1, m+2,.…., n be the output places of the same transition. Also assume that
there exists another transition trk+1, which has an input place pj for some j, where
m+1 < j < n. Under this case we call the two transitions to be in pipeline. In case
the transition trk+1 waits for a number of firing of transition trk to produce a token,
we say that a Stream-parallelism persists in the Petri net model.

The example below illustrates the realization of Stream-parallelism in the Petri
net model.

Int(0) ←. (1.68)
 Int(M+1) ←Int(M). (1.69)
 Compute(N × N) ←Int(N). (1.70)

The above logic program generates integers N and computes its square. Since
these two processes are in pipeline, and integer N is generated for all successive
values of N counting from zero, the corresponding Petri net model includes
Stream-parallelism.

In Fig. 1.21 the place-transition pair p1-tr1 corresponds to the generation of
integers: 1, 2, ….., ∝ at place p1. The resulting token at place p1 is then used up for
computing its square.

< 0

Int
p1

Compute
p2

tr1

(M)

¬(M+1)

(N)
¬(N×N)

tr2

Fig. 1.21: A Petri net illustrating Stream-parallelism

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 39

Unification-Parallelism using Petri net

In a Petri net model the constant arguments of a predicate are usually mapped as
tokens of places. Thus variable arguments of the same predicate used in another
rule is represented as arc functions of an arc connected between the place
representing the predicates and the transition describing the rule. In the process of
resolution of a clause with a fact of constant arguments, the variables present in
the literal of the first clause is unified with the same literal present in the fact. In
the Petri net model the variables in the arc function are matched with the tokens of
the connected places. When an arc function contains a number of variables the
instantiation of each variable takes place with the position-wise constant of the
tokens.

 The Petri net in Fig. 1.22 represents the logic program given below.

Logic program:

 R(Y, X) P(X, Y). (1.71)
 P(a, b) . (1.72)

In Fig. 1.22, the predicate P(X, Y) of (1.71) is unified with predicate P(a, b) of
(1.72). The instantiation of all the variables can be done in the Petri net model
concurrently with sufficient system resources. The variable argument of predicate
P of (1.71) is represented by an arc function (X, Y), and the constant token (a, b)
of (1.72) is denoted by a token of place p1. The instantiation of variables X and Y
can be done concurrently with the tokens a and b located at place p1.

In this book we consider Petri net models capable of representing multiple
antecedent and multiple consequent clauses. Usually the commas present in the
antecedent clauses denote conjunction and in consequent clauses denote
disjunction. Thus in presence of tokens at all but one input-output places of an

<a, b>

(X, Y) ¬(Y, X)

P p1 tr p2 R

Fig. 1.22: Petri net demonstrating Unification-parallelism

40

enabled transition, the transition will fire generating a new token. Such firing of
transition includes typical AND- and a different type of OR-parallelism. Here,
independent facts mapped at the output places of the transition behave like typical
OR-clauses, and a set of concurrent resolution takes place between the OR-clauses
and a given rule containing those literals present in the OR-clauses as
consequents.

Unification-parallelism can always be maintained in the Petri net model, and
Stream-parallelism exists only when the network includes pipelined transitions
where a transition in the pipeline waits for the other to generate a sequence of
tokens.

1.8 Conclusions

The chapter explores different models of parallel architecture and finally identifies
Petri nets as a suitable architecture for concurrent resolution of logic programs.
The execution of a logic program using resolution principles introduced and the
scope of different parallelisms in a logic program are identified. Finally the
chapter comes to an end with a discussion on the realization of possible
parallelisms in a logic program using Petri nets.

Exercises

1. Given two clauses P ∨ Q1 and ¬Q2 ∨ R with P = A (X, Y), Q1 = B (Y, X), Q2

= B (b, a), R = C (Y, X). Determine the substitution set S and evaluate (P ∨
R)[S].

[Hints: From the resolution principle, we can see that after unifying Q1 and
Q2, the resolvent (P ∨ R)[S] = A (a, b) ∨ C (b, a).
Here, the substitution set S = {a/X, b/Y}.]

2. Unify the following two predicates:

i) P1 = Loves (X, son-of (X)) and
 P2 = Loves (mam, Y).

ii) P1 = P(a, X, f(g(X))) and
 P2 = P(Z, f(Z), f(U)).

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 41

[Hints:

i) Here, these two predicates can be unified as follows:
 P = P1 = P2 = Loves (mam, son-of (mam))
 where the substitution is given by
 S = {mam/X, son-of(mam)/Y}.

ii) Here, these two predicates can be unified as follows:
 P = P1 = P2 = P(a, f(a), g(f(a))
 where the substitution is given by
 S = {a/Z, f(a)/X, g(f(a))/U}.]

3. Given the logic program and the query. How will you employ resolution
principle to answer the query?

Logic program:

Triangle (XYZ) ←Has-three-sides (XY, YZ, ZX), Has-three-angles
(∠XYZ, ∠YZX, ∠ZXY), Equal (∠XYZ + ∠YZX + ∠ZXY, 180°).
Has-three-sides (ab, bc, ca) ←.
Has-three-angles (∠abc, ∠bca, ∠cab) ←.
Equal (∠abc + ∠bca + ∠cab, 180°) ←.
Query: ←Triangle (abc).

 [Hints: Let P: Has-three-sides
 Q: Has-three-angles
 R: Equal
 T: Triangle

 ∴ The logic program:

T (XYZ) ←P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), R (∠XYZ +
∠YZX + ∠ZXY, 180°).

≡ ¬(P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), R (∠XYZ + ∠YZX +
∠ZXY)) ∨ T (XYZ)

42

 P (ab, bc, ca) ←.
 ≡ P (ab, bc, ca)

 Q (∠abc, ∠bca, ∠cab) ←.
 ≡ Q (∠abc, ∠bca, ∠cab)

 R (∠abc + ∠bca + ∠cab, 180°) ←.
 ≡ R (∠abc + ∠bca + ∠cab, 180°)

 and the query: ←T (abc).
 ≡ ¬T (abc)

Fig. 1.23: The resolution tree of the given logic program

¬T(abc) ¬(P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY),
 R (∠XYZ + ∠YZX + ∠ZXY, 180°)) ∨ T (XYZ)

¬(P (ab, bc, ca),
Q (∠abc, ∠bca, ∠cab, 180°),
R (∠abc + ∠bca + ∠cab)) P (ab, bc, ca)

¬(Q (∠abc, ∠bca, ∠cab),
R (∠abc + ∠bca + ∠cab, 180°)) Q (∠abc, ∠bca, ∠cab)

¬R (∠abc + ∠bca + ∠cab, 180°) R (∠abc + ∠bca + ∠cab, 180°)

∅

1 An Introduction to Logic Programming

Fig. 1.23 represents the resolution tree for the given logic program.

Parallel and Distributed Logic Programming 43

∴ According to the resolution principle, resolution of

¬(P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), R (∠XYZ + ∠YZX +
∠ZXY, 180°)) ∨ T (XYZ)

and

¬T (abc)

yields a resolvent

¬(P (ab, bc, ca), Q (∠abc, ∠bca, ∠cab), R (∠abc + ∠bca + ∠cab, 180°)).

 The resolvent then resolves with

P (ab, bc, ca), Q (∠abc, ∠bca, ∠cab)

and R (∠abc + ∠bca + ∠cab, 180°)

successively to yield a null result which signifies that

 ‘abc is a triangle’ is the answer to the query.]

4. Given the following logic program and the query. Show that the contents of
the stack corresponding to each node in the process of expanding the
resolution tree.

Logic program:

 1. R (Z, X) ←P (X, Y), Q (Y, Z).
 2. P (a, c) ←.
 3. P (a, b) ←.
 4. Q (b, c) ←.

 Query: ←R (c, a).

[Hints:

Based on the principles outlined in section 1.3.2, the resolution tree is
constructed using stack (Fig. 1.24).

44

Fig. 1.24: The resolution tree showing the contents of the stack corresponding to each node]

5. Draw the SLD-tree for the following logic program and mark on the
tree the part of the search space that remains unexplored because of
using the CUT(!) statement.

←Q (b, c). ←Q (c, c).

←P (a, Y), Q (Y, c).

←R (c, a).

←P (a, Y),
Q (Y, c).

X = a
Z = c SP

←R (c, a).

←P (a, Y),
Q (Y, c).

X = a
Z = c

←Q (c, c). Y = c
SP

←R(c, a). SP

←R (c, a).

←Q (b, c). Y = b

←P (a, Y),
Q (Y, c).

X = a
Z = c

SP

←R (c, a).

←Q (b, c). Y = b

←P (a, Y),
Q (Y, c).

X = a
Z = c

SP ∅

←R (c, a).

1 X = a
Z = c

2

Y = c

3

Y = b

4

∅

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 45

Cl1: P ←Q, R.
…….
…….
Cl4: Q ←S, !, T.
…….
…….
Cl7: S ←.
and
Goal: ←P.

[Hints: Fig. 1.25 shows to control backtracking by using CUT.

Literals preceding CUT are unifiable with the same literals in the head of
other clauses. So, ! is automatically satisfied. Since ←T, R. cannot be
resolved with any more clauses, the control returns to the root of the tree ←P.
for generating alternative solution.]

6. Construct the SLD-tree for the following logic program and show that when a
failure occurs before the ‘CUT’ statement the control returns to the parent of
the clause under consideration.

This part of the Sub-
tree with root ←Q, R. is
not searched here
because of the CUT.

Cl7

←Q, R.

Cl1

Failed Sub-tree

←P.

When CUT is encountered
on backtracking, search is
resumed here.

Cl4

←S, !, T, R.

←!, T, R.

←T, R.

Fig. 1.25: Controlling backtracking by using CUT

Logic program:

46

Cl1: A ←B, C.
…….
…….
Cl4: B ←D, E, !, F.
…….
…….
Cl7: D ←.
Cl8: B ←M.
and
Goal: ←A.

[Hints:

On Failure at ‘←E, !, F, C.’ the control returns to its parent and attempts to
expand it. Unfortunately the parent, too, cannot be expanded; so the control
again starts exploring the grandparent of ‘←E, !, F, C.’ node and fortunately
can expand the node ‘←B, C.’ by Cl8.]

7. ‘Fail’ is another built-in predicate used in conjunction with ‘CUT’ in order to
intentionally cause a failure of the root clause and force the control to
backtrack to the root for finding alternative solutions.

When CUT is encountered
on backtracking, search is
resumed here.

Cl8

←A.

←B, C.

Cl1

Cl4

←D, E, !, F, C.

←E, !, F, C.

Cl7
←M, C.

On failure the control
returns to the parent

Logic Program:

1 An Introduction to Logic Programming

Fig. 1.26: Controlling backtracking by using CUT

Parallel and Distributed Logic Programming 47

 Consider the logic program involving ‘CUT’ with ‘Fail’ predicate shown
as follows. Show the steps of backtracking on the SLD-tree for the programs
and hence find the solution to the problem.

Logic program:

Cl1: Tax-payer(X) ←Annual-inc(X, Earnings), Earnings ≤ 30000, !, Fail.
Cl2: Tax-payer(X) ←Annual-inc(Family-members-of(X), Earnings),

Earnings < 40000, !, Fail.
Cl3: Tax-payer(X) ←Annual-inc(X, Earnings), Earnings > 30000.
Cl4: Annual-inc(titir, 25000) ←.
Cl5: Annual-inc(Family-members-of(tunir), 30000) ←.
Cl6: Annual-inc(tapur, 50000) ←.

[Hints: The tree for the tax-payer problem is constructed by the following
policy.

 When a predicate before a ‘CUT’ predicate is satisfied, we drop the
predicate from the list using SLD-resolution. The ‘CUT’ is automatically
satisfied on getting a ‘FAIL’ after a ‘CUT’, the control returns to the root of
the tree for exploring the possibility of alternative solutions. When the clause
at the leading edge of the tree is satisfied, a null clause is generated, causing
the termination of the tree.

←Annual-inc(X, Earnings),
Earnings > 30000.

Cl3

Cl2

←Taxpayer(X).

Cl1

←Annual-inc(X, Earnings),
Earnings ≤ 30000, !, Fail.

Cl4

25000 ≤ 30000, !,
←Annual-inc(Family-members-

of(X), Earnings), Earnings

 < 40000, !, Fail.

Cl5

30000 < 40000, !, Fail.

∅
50000 > 30000.

Cl6

Fig. 1.27: Controlling backtracking using ‘CUT’ and ‘Fail’]

48

8. Identify the stable points for the following logic programs:

a) ¬p ←¬q.
 p ←.

b) q ←p.
 r ←q.
 ¬r ←.

c) r ←(q ←p).
 ¬r ←.

d) p ←q.
 q ←p.

[Hints:

a) We obtain from the first clause the interpretations (p, q) {(0, d), (d, 1)}
where d denotes a don’t care state for the respective proposition. The
interpretation from the second clause is {(1, d)}. The intersection of these
two interpretations yield a stable point

 (p, q) = (1, 1).

b) The interpretations from the first clause are (p, q, r) = {(0, d, d), (d, 1,
d)}. The interpretations from the second and the third clauses are {(d, 0,
d), (d, d, 1)} and {(d, d, 0)}. The intersection of the above three
interpretations yield a stable point

 (p, q, r) = (0, 0, 0).

c)
 r ←(q ←p).
≡ r ∨ ¬(q ←p).
≡ r ∨ ¬(q ∨ ¬p).
≡ r ∨ (p ∧ ¬q).
≡ (p ∨ r) ∧ (¬q ∨ r).

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 49

Truth Table of the expression is given below:

p q r r ←(q ←p).
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Therefore, the intersection of these two interpretations yield a stable point

 (p, q, r) = (1, 0, 0).

d)
p ←q.
The stable point for the above expression
(p, q) ∈ {(0, 0), (1, 0), (1, 1)}

 q ←p.
The stable point for the above expression
(p, q) ∈ {(0, 0), (0, 1), (1, 1)}

Therefore, the stable point (p, q) belongs to the intersection of the above
two interpretations, i.e.,
(p, q) ∈ {(0, 0),(1, 1)}.]

 9. Given a dynamical system of two propositions p (t) and q (t) where t denotes
time. Determine the stable points of the dynamics.

 p (t + 1) = 1, if f (p (t), q (t)) = 1;
 = 0, otherwise.

q (t + 1) = 1,if g (p (t), q (t)) = 1;
 = 0, otherwise.

where f (p (t), q (t)) = q (t) ←(q (t) ←p (t)).
and g (p (t), q (t)) = ¬q (t) ←(¬q (t) ←¬p (t)).

50

[Hints: f (p (t), q (t)) ≡ q (t) ←(q (t) ←p (t)).
 ≡ q (t) ∨ ¬(q (t) ←p (t)).
 ≡ q (t) ∨ ¬(q (t) ∨ ¬p (t)).
 ≡ q (t) ∨ (¬q (t) ∧ p (t)).
 ≡ (q (t) ∨ ¬q (t)) ∧ (q (t) ∨ p (t)).
 ≡ 1 ∧ (p (t) ∨ q (t)).
 ≡ (p (t) ∨ q (t)).

 g (p (t), q (t)) ≡ ¬q (t) ←(¬q (t) ←¬p (t)).
 ≡ ¬q (t) ∨ ¬(¬q (t) ←¬p (t)).
 ≡ ¬q (t) ∨ ¬(¬q (t) ∨ ¬(¬p (t))).
 ≡ ¬q (t) ∨ (q (t) ∧ ¬p (t)).
 ≡ (¬q (t) ∨ q (t)) ∧ (¬q (t) ∨ ¬p (t)).
 ≡ 1 ∧ (¬q (t) ∨ ¬p (t)).
 ≡ ¬p (t) ∨ ¬q (t).

 Now, p (t + 1) = f (p (t), q (t)) = (p (t) ∨ q (t)).
 q (t + 1) = g (p (t), q (t)) = ¬p (t) ∨ ¬q (t).

Let p (t) = p*(t) and q (t) = q*(t) be the stable points, if any.

p*(t) = p*(t) ∨ q*(t)
p*(t) = p*(t) or p*(t) = q*(t).

q*(t) = ¬p*(t) ∨ ¬q*(t)
q*(t) = ¬p*(t) or q*(t) = ¬q*(t) which is absurd.

p*(t) = p*(t) ∨ q*(t) = Max (p*(t), q*(t)) holds
if p* = Max (p*(t), q*(t)) = p*(t)
 i.e., Max (p*(t), q*(t)) = p*(t)
 or, p*(t) ≥ q*(t)
 or, (p*(t), q*(t)) ∈ {(1, 0), (1, 1)}. (1.73)

Again, q*(t) = ¬p*(t) ∨ ¬q*(t) = Max (¬p*(t) ∨ ¬q*(t))
if Max (¬p*(t) ∨ ¬q*(t)) = ¬p*(t) = q*(t)

Solution of ¬p*(t) = q*(t) are {(0, 1), (1, 0)}. (1.74)
The common solution of (1.71) and (1.72) is (p, q) = (1, 0).]

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 51

10. Consider an arithmetic unit inside a CPU, capable of multiplying and adding
two hexadecimal numbers. Given a program

X = a + b;
Y = a − b;
Z = X ∗ Y;
Print Z.

 Using two processing units of the given type how many computational
cycles will you require to execute the program? Is there any time saving if we
employ three such processing elements?

[Hints:

Using two processing units of the given type, two computational cycles will
be needed to execute the program as the two processing units will be used to
evaluate the values of X and Y in parallel and then any one of the processor
will compute the value of Z.

 As the evaluation of Z depends on the evaluation of X and Y, the value of
X and Y will have to be computed first before the computation of the value of
Z. So, even if we use three processing elements, the third one will have to
wait for the completion of the task of computation of X and Y first.
Consequently, there will be no time saving at all.]

11. Construct a dataflow graph for a given program and evaluate the result.

Logic Program:

 o := (a + b) ∗ (c − d),
 a := 4,
 b := 2,
 c := 3,
 d := 1.

[Hints: A dataflow graph for the given program is given here vide Fig. 1.28.

Given, o := (a + b) ∗ (c − d)

∴ The result = (4 + 2) * (3 – 1)
 = 8 * 2
 = 16.

52

12. Show how concurrent resolution can be accomplished for the following logic
programs. Mention where AND/OR/Stream parallelism is employed.

 a)
Cl1:Likes-mountaineering(X) ←Likes-adventure(X), Likes-snow(X),
 Likes-climbing(X).
Cl2: Likes-adventure(t) ←.
Cl3: Likes-snow(t) ←.
Cl4: Likes-climbing(t) ←.

 b)
Cl1: Likes-mountaineering(X) ←Likes-adventure(X), Likes-snow(X),
 Likes-climbing(X).
Cl2: Likes-adventure(a) ←.

Cl3: Likes-adventure(t) ←.
Cl4: Likes-snow(t) ←.
Cl5: Likes-climbing(t) ←.

c)
Cl1: Int(1) ←.
Cl2: Int(N) ←Int(N-1).

 o

3

1

4

2

a

b

c

d

+

_

*

Fig. 1.28: A dataflow graph for the given program]

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 53

Cl3: Evaluate-fact(N) ←Int(N).
Cl4: Evaluate-fact(N) ←N * Evaluate-fact(N-1).

[Hints:

a) AND-parallelism takes place when Cl2, Cl3, Cl4 are resolved in parallel
with Cl1 during concurrent resolution.

b) OR-parallelism takes place when Cl2 and Cl3 are tried to resolve
concurrently with Cl1.

c) Stream-parallelism takes place when the factorial computation of say,
 (N-1) takes place with the generation of the integer N.]

References

1. Antoniou, G., Nonmonotonic Reasoning, MIT Press, Cambridge, MA, pp. 21-
160, 1997.

2. Bender, E. A., Mathematical Methods in Artificial Intelligence, IEEE
Computer Society Press, Los Alamitos, CA, chapter 1, pp. 26, 1996.

3. Besnard, P., An Introduction to Default Logic, Springer-Verlag, Berlin, 1989.
4. Buchanan, B. G. and Feigenbaum, E. A., “DENDRAL and Meta-DENDRAL:

Their applications dimension,” Artificial Intelligence, vol. 11, pp. 5-24, 1978.
5. Bundy, A., “Will it reach the top? Prediction in the mechanics world,”

Artificial Intelligence, vol. 10, pp. 129-146, 1978.
6. Clark, K. and Gregory, S., PARLOG Parallel Programming in Logic, Dep.

Computing, Imperial College of Science and Tech., doctoral report, 1984/4,
April 1984.

7. Chakraborty, A., Cognitive Cybernetics- A Study of the Behavioural Models
of Human-machine Interactions, Ph. D. thesis, Jadavpur University, 2005.

8. Chakraborty, A., Konar, A., Emotional Intelligence: A Cybernetic Approach,
Springer, Heidelberg, 2006.

9. Chakraborty, A., Sanyal, S. and Konar, A., “Semantic stability of logic,” J. of
Institute of Engineering (to appear).

10. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S. and
Zaniolo, C., “The LDL system prototype,” IEEE Trans. on Knowledge and
Data Engg., vol.2, no. 1, March 1990.

11. Dougherty, E. R. and Giardina, C. R., Mathematical Methods for AI and
Autonomous Systems, Prentice-Hall, Englewood Cliffs, NJ, 1988.

12. Halder, S., On the Design of Efficient PROLOG Machines, M.E. dissertation,
Jadavpur University, Calcutta, India, 1992.

54

13. Hwang, K. and Briggs, F. A., Computer Architecture and Parallel
Processing, McGraw-Hill, NY, 1986.

14. Jackson, P., Introduction to Expert Systems, Addision-Wesley Publishing Co.,
Great Britain, 1988.

15. Konar, A., Artificial intelligence and Soft Computing: Behavioral and
Cognitive Modeling of the Human Brain, chapter 5, CRC Press, Boca Raton,
Florida, 1999.

16. Konar, A., Computational Intelligence: Principles, Techniques and
Applications, Springer, 2005.

17. Kuo, B. C., Automatic Control Systems, Prentice-Hall, Englewood Cliffs, NJ,
1975.

18. Kuo, B. C., Digital Control Systems, Holt-Saunders, Tokyo, 1980.
19. Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, NY,

1987.
20. Mark, S., Introduction to Knowledge Systems, Morgan Kaufmann, San Mateo,

CA, 1995.
21. Mahanti, A. and Daniels, J. C., “A SIMD approach to parallel heuristic

search,” Artificial Intelligence, vol. 60, pp. 243-282, 1993.
22. McDermott, D. and Doyle, J., “Nonmonotonic Logic I,” Artificial

Intelligence, vol. 13(1-2), 1980.
23. Moore, R. C., Possible-world semantics for autoepistemic logic, in Readings

on Nonmonotonic Reasoning, Ginsberg, M. (Ed.), Morgan Kauffmann, San
Mateo, CA, pp. 137-142, 1987.

24. Murata, T., “Petri nets: Properties, Analysis and Applications,” IEEE Proc.,
vol. 77, no. 4, April 1989.

25. Nagrath, I. J. and Gopal, M., Control Systems Engineering, Wiley Eastern,
New Delhi, 1983.

26. Newell, A. and Simon, H. A., “The Logic Theory Machine,” IRE Trans. on
Information Theory, 1956.

27. Nilson, N. J., Principles of Artificial Intelligence, Morgan Kaufmann, San
Mateo, CA, 1995.

28. Nyquist, H., “Regeneration Theory,” Bel System Technical Journal, vol. 11,
pp. 126-147, 1932.

29. Oldfield, I. V., Mem, S., “Logic programs and an experimental architecture
for their execution,” IEEE Proc., vol. 133, part E, pp. 163-167, May 1986.

30. Patterson, D. W., Intro. to Artificial Intelligence and Expert Systems, chapter
5, pp. 92-95, Prentice-Hall, Englewood Cliffs, NJ, 1990.

31. Reiter, R., “A logic for default reasoning,” Artificial Intelligence, vol. 13, pp.
81-133, 1980.

32. Rich, E., Artificial Intelligence, McGraw-Hill, NY, 1983.
33. Shannon, C. E., “Automatic Chess Player,” Scientific American, vol. 48, p.

182, 1950.
34. Shapiro, E. Y., A Subset of Concurrent PROLOG and its Interpreter, Tech.

Report TR-003, Inst. for New Generation Comput. Technol., Jan 1983.

1 An Introduction to Logic Programming

Parallel and Distributed Logic Programming 55

35. Shortliffe, E. H., Computer-based Medical Consultations: MYCIN, Elsevier,
New York, 1976.

36. Tick, E. and Warren, D. H. D., “Toward a pipeline PROLOG processor,” in
Proc. 1984 Int. Symp. on Logic Programming, pp. 29-40, Feb. 1984.

37. Warren, D. H. D., Implementing PROLOG- Compiling Predicate Logic
Programs, Res. Rep. 39 and 40, Department of Artificial Intelligence, Univ.
of Edinburgh, 1977.

38. Yasuura, H. et al., “A hardware algorithm for unification on logic
programming languages,” WGEC’84-67-2, Inst. Electron. Inform. Commun.
Engg., Japan, March 1985.

2
Parallel and Distributed Models for Logic
Programming- A Review

The chapter provides a review of some well-known models of parallel and
distributed logic programming. It begins with the well known RAP-WAM
architecture and gradually explores the scope of parallelism in AND-OR logic
program languages, CAM based PROLOG machines and many others. The latter
part of the chapter provides a Petri net like framework for distributed reasoning
using logic programs. The discussion on Petri net based models includes Murata’s
work and its extensions by Jefferey et al. The chapter comes to an end with a
discussion on the scope of the book with special emphasis on concurrent
resolution of logic program clauses using Petri nets.

2.1 Introduction

Classical models of logic programs employ SLD (Select Linear Definite clauses)
resolution to execute the program in a sequential manner. Because of the
sequential participation of the program clauses in SLD resolution tree, the time
complexity of an SLD program is proportional to the number of program clauses.
An examination of typical logic programs reveals that there exists ample scope of
concurrently resolving a number of program clauses. Such concurrent resolution
of program clauses can save significant computational time in the process of
execution of a logic program.

The chapter explores the different types of parallelisms in a logic program and
their possible implementation/realization by efficient hardware/software means.

In the last chapter we have examined AND-, OR- and Stream-parallelism and
noted that random selection of AND/OR clauses in concurrent resolution may
sometimes result in a conflict in the variable bindings. This conflict can be
avoided by restricting unwanted concurrent resolution of AND-parallel or OR-
parallel program clauses. The main emphasis of this chapter is to design proper
control strategies to implement restricted AND/OR parallelism in concurrent
resolution.

Several methods of AND-OR parallelism in logic programming languages have
been addressed in this chapter. Takeuchi’s work [15, 16, 17, 18], for instance, in

A. Bhattacharya et al.: Parallel and Distributed Models for Logic Programming — A Review, Studies
in Computational Intelligence (SCI) 24, 57–105 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

58

this regard needs special mention. To implement restriction in the selection of
program clauses for concurrent resolution, Takeuchi employed a guard part in the
body of program clauses. This guard part of the clause helps avoiding unwanted
resolution of AND/OR parallel program clauses.

Kale’s AND-OR tree model [7] also provides a new approach to the solution of
a query using a directed acyclic graph. This graph provides a framework for
orderly selection of program clauses to answer a query. The advantage of Kale’s
method lies in its inherent parallelism and pipelining in the execution of a logic
program.

Classical SLD resolution usually requires a stack like structure for its efficient
execution. To enhance the speed of execution of program clauses, Naganuma et al.
[12] suggest an alternative framework for execution of PROLOG programs using
Content Addressable Memory (CAM) instead of a stack. The advantage of this
CAM based machine includes an automatic realization on (i) argument unification
of two predicates and (ii) removal of unused variable bindings. It is important to
note that unused variable bindings is mandatory in concurrent resolution of
clauses, and an automatic removal of this garbage ensures restricted AND/OR
parallelism in the PROLOG program.

In a recent paper, Patt [13] provides a benchmark analysis of a set of typical
PROLOG programs on standard or modified architectures of commercial
machines. The theme of his analysis includes the levels of pipelined stages in the
execution of program. Patt compiles a PROLOG program to WAM (Warren
Abstract Machine) code and then provides options to run the code on a machine or
to recompile it for execution on a commercial machine. The main advantage of his
analysis is to determine an optimal sequence of execution of a PROLOG program
to utilize parallelism at all four possible levels: (i) the language level, (ii) the
compilation level, (iii) the processor implementation level and (iv) the system
configuration level.

An alternative scheme to execute concurrent resolutions in a logic program is to
use a Petri like net model. Murata [10, 14] has shown that all possible solution of a
query in a logic program can be determined by time invariant solutions of a
nonlinear equation A X = 0, where A is an incidence matrix representing the
structure of a Petri net and X is a solution vector containing the variable bindings
for the desired goal. Various modifications of Murata’s pioneering work in Petri
net modeling in logic program are available in the current literature on machine
intelligence. Jefferey and Murata’s Petri net model [6] that allows deferred
substitution of variables in the resolution of two other program clauses, in this
regard, needs special mention.

The chapter examines all the above works with examples and discusses the
scope of the book in view of the above works. It suggests further modification of
Petri net models to realize many other forms of parallelism which remained
unexplored in the above reviews. Potential parallelism in a PROLOG program in
view of a RAP-WAM architecture is addressed in section 2.2. The mapping of a
PROLOG program onto a parallel processing engine is outlined in section 2.3. The

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 59

scope of parallelism in AND-OR logic programming languages is introduced
in section 2.4. Kale’s AND-OR tree model for logic programming is outlined
in section 2.5. The CAM based architecture of PROLOG machines is outlined in
section 2.6. Performance analysis of a PROLOG program on different machine
architectures is presented in section 2.7. Section 2.8 introduces the scope of logic
programming using Petri net. The scope of the book is discussed in section 2.9.
Concluding remarks are appended in section 2.10.

2.2 The RAP-WAM Architecture

Yan [19] presented a detail survey on the scope of parallel realization of
knowledge computing on multiprocessor architecture. A part of his survey
focussed on the scope of parallel processing in both compilation phase and
runtime phase of PROLOG programs. Yan stressed the needs for concurrent
realization of PROLOG on a RAP-WAM machine. The WAM (Warren Abstract
Machine) generates an intermediate code during the compilation phase of a
PROLOG program that exhibits the fullest degree of parallelism in the program
itself. The RAP (Restricted AND Parallelism), on the other hand, reduces the
overhead associated with the run time management of variable binding conflict
between goals. RAP includes a compile time analysis to identify the clauses
entangled in the ‘binding conflict problem’ and determine the valuation space of
the variables at run time level. This has significantly extended the WAM with the
implementation of RAP by the above scheme.

Hermenegildo and Tick [5] proposed a new scheme for parallel realization of a
PROLOG program on a multiprocessor architecture by employing the composite
benefits of WAM and RAP machines. The design considerations proposed by
them needs special mention, and are as follows:

(a) Potential parallelism in a PROLOG program can be represented by a graph,
where the take-off arcs from a vertex on the graph represents the parallel
tasks in the program.

(b) Goal stacks may be attached with each processing element (PE). When a
parallel call is invoked, the concurrent tasks are mapped autonomously to
the stacks of the less busy or idle processing elements.

(c) Since the processing elements require non-uniform time to handle different
tasks, a buffer is allocated to each PE to check the pending messages, if
any, received from other PEs.

(d) Synchronization and co-ordination of parallel call needs to be incorporated.

60

(e) Markers are employed to identify the point in the program at which
backtracking should start. Hermenegildo [5] also described how the register
contents of the PEs are appropriately saved before another clause is
executed.

2.3 Automated Mapping of a Logic Program
onto a Parallel Architecture

Ganguly, Silberschatz and Tsur [3] presented a new algorithm for automated
mapping of given logic program onto a parallel processing architecture. Their
entire work can be sub-divided into two major heads. First they presumed a given
architecture with a fixed interconnection topology where the processors connected
by a direct link can only communicate between them. Thus partitioning the
program into modules that need to share variables are mapped onto adjacent
processors. This is required to transfer the result of variable bindings by a
processor to another that cannot proceed without the result of bindings from the
former processor. The proposed architecture, thus, to some extent includes a
pseudo-pipelining along with parallel processing.

In the latter part of their paper [3], Ganguly, Silberschatz and Tsur relaxed the
restriction of communication between the adjacent processors only. They have
shown that a significant speed up is possible by relaxing the above constraint,
which however puts extra burden to on-line network management. However, they
did not address the problem of network management in the above paper.

2.4 Parallel AND-OR Logic Programming Language

Takeuchi in his recent book on parallel logic programming [15] presented a new
concept on realization of parallel AND-OR logic programs. Takeuchi et al. [17,
18] designed a new language AND OR-II that includes the complete realization of
the proposed AND-OR parallelism. A schematic review of their work is outlined
below.

According to Takeuchi et al. a world is defined by the conjunction of its atomic
clauses. These atoms in a world are executed in parallel. This indirectly has
correspondence with AND-parallelism. During the process of resolution of an OR-
clause with similar clauses in the body of a program, a non-determinism appears
as the world proliferates into different worlds. The naive implementation of this
proliferation is to make a copy of a conjunction of all atoms, but this creates an
extra overhead and thus is not acceptable. An alternative realization of OR-
parallelism can be carried out using the graph coloring scheme.

To illustrate the coloring process let us consider the following logic program
that includes both AND- and OR-parallelisms.

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 61

Program AND-OR parallelism

 Compute (X, Z) ←Pick-up (X, Y), Square (Y, Y2),
 Cube (Y, Y3), Add (Y2, Y3, Z). (2.1)

 Square (X, Y) ←Y = X * X. (2.2)

 Cube (X, Y) ←Y = X * X * X. (2.3)

 Add (X, Y, Z) ←Z = X + Y. (2.4)

 Pick-up ([X|L], Y) ←Y = X. (2.5)

 Pick-up ([- | L], Y) ←Pick-up (L, Y). (2.6)

 In the above logic program pick-up is an OR-predicate, while Pick-up, Square,
Cube, Add are AND-predicates. Let us consider the list L = [1, 2, 3]. The
instantiation of X = 1, X = 2 and X = 3 should be done in the above program in
sequence if there was no parallelism. However, when AND- and OR-parallelisms
are allowed together, the parameter passing by the pickup OR-predicate to the
evaluation process of square and cube should be done in pipeline, and then the
addition process should be active. Thus we want to implement a three-stage
pipeline with a parallel operation between computing square and cube. A
schematic diagram of the overall system is presented in Fig. 2.1.

 To implement the coloring scheme in Fig. 2.1, let us consider a notion of
vectors, where the positions of the elements in the vector are time-tagged. Such

X

Cube

Square

Pick-up Add

Y3

Y

Fig. 2.1: The data flow graph of compute

Y2

Z

62

time-tagging ensures true pipelining in the system. Alternatively, the elements of
the vector may be colored and the addition operation should be executed on tokens
of same color. Thus assigning a vector X = [1, 2, 3] we find three colored tokens
in vector form at Y, given by

 Y = [v (1, α1), v (2, α2), v (3, α3)] (2.7)

where α1, α2 and α3 denote three colors. The Y2 and Y3 vectors thus take the form
of

 Y2 = [v (1, α1) , v (4, α2) , v (9, α3)] , (2.8)
and
 Y3 = [v (1, α1), v (8, α2), v (27, α3)] (2.9)

and consequently Z takes the form

 Z = [v (2, α1) , v (12, α2) , v (36, α3)]. (2.10)

Takeuchi [16] in his work on AND-OR parallel language and its realization
presented the operational semantics of parallel computations in a logic program.
As already discussed earlier, the conjunction of atoms together defines the world
of the program. Thus, replacement of a body clause by two or more conjunctive
atoms is called proliferation into new worlds. Determining the sequence of
execution of the goal clauses, however, is a crucial issue in controlling the
concurrency in a logic program. The two semantic rules containing guard clauses
can, however, be employed to handle these problems.

According to Takeuchi two semantic rules, called the rule of suspension and the
rule of commitment for controlling the concurrency in AND-OR -parallelism are
discussed in this section.

In order to understand the semantics of AND-OR parallel computation in a
logic program, following Takeuchi we define the syntax of guarded and non-
guarded clauses.

Definition 2.1: A guarded clause can be represented by a head Go, a guard part
G1 ,………,Gn and a body B1 , …….,Bm . Thus formally, a guarded clause takes the
following form:

 Go ←G1, G2, ……… ,Gn. ⏐ B1 , B2, …….,Bm. (2.11)

Definition 2.2: A non-guarded clause comprises of a head Go and a body
consisting of literals like B1 , B2 ,……,Bm. Thus,

 Go ←B1 , B2 , ……….. ,Bm. (2.12)

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 63

An atom in the body part in both a guarded and a non-guarded clause can be an
AND-predicate and an OR-predicate.

In AND-parallelism, atoms in the body clause that together forms a world are
executed in parallel. On the contrary, in OR-parallelism, the predicates in the body
being the OR clauses, a given clause can give rise to a number of new clauses by
unifying the body OR-clauses of a goal clause with several heads of other clauses.
When a goal clause is invoked, the parent world corresponding to the goal clause
proliferates into several new worlds following the resolution of new clauses with
the body clauses of the goal. This is usually referred to as OR-parallelism.

In case there are more than one way to resolve a goal clause, some restrictions
are imposed on the selection of the clauses that can satisfy the goal. For instance,
let us consider a goal clause G that calls a guarded AND clause C.

Formally,

 G ←C. (2.13)

 C ←G1 , G2 , ………… ,Gn. ⏐ B1 , B2 , …… .…, Bm..

where the notations in the above clauses have their usual meaning.
In connection with realization of AND and OR parallel computation of a logic

program Takeuchi presents two rules for both AND- and OR-operational
semantics.

This can be best represented by the rule of suspension and the rule of commitment
introduced as follows.

 Let us consider a logic program comprising of clauses like

 .
 .

G ←C. (2.14)
C ←G1 ,G2 , …….. , Gn. ⏐ B1 , B2 , ……., Bm.

where G = head atom, C = guarded clause, G1 , G2 , ……, Gn = guard part and B1

, B2 , …… , Bm = body part.

Rule of suspension: To describe this rule we first define the term: Guard
computation. ‘Guard computation’ of a clause C stands for both the head (G)

Operational semantics for AND-predicates

64

unification and execution of the guard part, (G1, G2, …., Gn) in the last example
program (2.14).

The rule of suspension states that the clause C that includes a guard
computation should not instantiate the head G, even if the guard part G1, G2,
….,Gn can be instantiated directly or indirectly by other clauses. Thus the goal
unification process for the above set of rules is suspended.

Rule of commitment: The rule of commitment states that in case there exists no
other rules that can instantiate the head G, then the clause C should be committed,
provided its guard part is satisfied through unification with other clauses.

 The rule of commitment should always supercede the rule of suspension.

The operational semantics of OR-predicates must obey the following two rules.

Rule of suspension:

Consider two rules

G ←C. (2.15)

C ←B1 , B2 , ……., Bm.

where the second rule contains only non-guarded body clauses. The rule of
suspension states that the second rule should not satisfy the head atom G unless
there is no other rules that can satisfy the head G. Thus the unification process of
the head G is suspended.

Rule of proliferation: In case there exists N number of non-guarded clauses that
succeed in unifying the goal G, then all the rules should be used for goal
unification in parallel.

 For instance consider the set of rules:

 G ← C.
 C ← B1, B2, ………, Bm.
 C ← C1, C2, ………., Cm.
 . N rules (2.16)
 .
 C ← D1, D2 , ………., Dm.

 2 Parallel and Distributed Models for Logic Programming

Operational semantics for OR-predicates

Parallel and Distributed Logic Programming 65

In the present example the world represented by the clause C of the rule ‘G
←C.’ should be proliferated by the N set of rules after the head unification is over.

2.5 Kale’s AND-OR Tree Model for Logic Programming

Kale in one of his recent book chapters [7] presented an alternative formulation of
problem solving using parallel AND-OR trees. The special feature of his scheme
lies in ordering the search process for the OR-nodes that together constitutes the
AND-node. The scheme of Kale is briefly outlined below. The following
definitions are in order to explain the characteristic features of Kale’s model.

Definition 2.3: An AND-OR tree is a tree rooted with AND-nodes. The root node
usually denotes a query of the form

←G1, G2, …….. , Gn.

Each literal Gi, for i = 1 to n under the root node is written separately at the
next level of the tree describing the queries

←Gi. for i = 1 to n.

Each Gi is called an OR-node. OR-nodes have a single child AND-nodes that
satisfy the following characteristics.

Let a Head ←Qi for i = 1 to n be an AND–node at depth 2 of the AND-OR tree
under the node Gi, such that the Head uses the same literal as Gi but different
terms, having possible variable bindings. Thus, on resolution of

 ←Gi.
 and
 Head ←Qi.

 we find ←Qi [. ⏐ .].

where [. ⏐ .] denotes the results of substitution of the variables of Gi by the terms
in the Head. The substitution [. ⏐ .] is attached with the arcs connected from the
OR-nodes to their child.

When Qi = φ , the corresponding AND-node is called a leaf. Such clause C
where C = Head ←Qi reduces to Head ← , which is a fact.

66

Figure 2.2 describes a typical AND-OR tree rooted with ←G1, G2,…….. , Gn

and only one AND-node at depth 2 for illustration purpose.

Definition 2.4: A candidate solution-tree for a literal G or for a query Q is a
sub-graph of the AND-OR tree for G or Q that satisfies the following constraints:

 The graph should include the root of the AND-OR tree.

In case it includes an AND-node A, then it should also include the children
nodes of node A.

…..

…..

AND-nodes

…..

…..

←G1 , G2,………………..,Gn.

←G1. ←Gn.←G2.

And-node

OR-nodes

Match arc
mgu {(•⏐•) , (•⏐•)}
of C & Gi

←Q1.

 Clause C

Resulting substitution

 Fig. 2.2: An illustrative AND-OR tree

Head

The AND-node: Head ←Q1 at depth 2 of the AND-OR tree is
resolved with clause ←G1 of depth 1, with the resolvent ←Q1[. | .]

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 67

In case it includes an OR node O, it should also include exactly one child node
of node O.

Definition 2.5: This arc connected from an OR-node to an AND-node is called a
match arc. This arc is labeled with the most general unifier (mgu), to be defined
later(in chapter 3), obtained through the process of unification of a clause ← Gi

and the head part of the clause

 ←Q1 located at the OR-node and its AND-child respectively.

Definition 2.6: A consistent solution-tree is a candidate solution tree so
that the labels attached with the matched arcs have a common unifying
composition.

Definition 2.7: A query Q is called solved if the AND-OR tree having a root at Q
has a consistent solution-tree.

Definition 2.8: Let θi be the mgu labeled with the match arc i. Assuming that
there exist n number of OR-nodes in the solution-tree, we define a set S as

 n
 S= ∩ θi

 i=1

 The projection of S on the variables of the query Q is called a solution to Q.

Example 2.1: Let us consider a problem of finding the value of variable A, such
that the number A is both prime and belongs to the fibonacci series. There are two
ways to solve the problem. First the problem can be subdivided into two heads, so
that Prime (A) and Fibonacci (A) for A = 233, say, can be checked in parallel. A
resulting truth value of the predicate

 Fibonacci-and-Prime (233)

will be found only when the solution to Prime (233) and Fibonacci (233) both
exist.

 An alternative analogous problem may be to find the possible solutions of

 Fibonacci-and-Prime (A).

where A is within a given range, say 0 < A < 500 . One way to solve this problem
efficiently is to generate Fib(N, X), where X is the N-th Fibonacci number and
then the result X may be passed on to the predicate Prime (X) for testing of X for a

Head

68

prime number. This scheme is similar to pipelining of two processes. A question
then naturally arises: is there any definite rule for the judicious ordering of the
predicates to be placed in the pipeline? For instance, should we test Prime (X)
prior to Fib (N, X)? Obviously, this is a wrong choice, as most of the prime
numbers do not belong to the fibonacci series.

The problem is exaggerated further when the body of the clause includes a
number of predicates. For example, consider the problem of selection of a venue
at a given date by two friends. This can be formally represented by the following
clause

Dinner-date (I, Y, Restaurant, Day) ←Likes (I, Y), Free (Y, Day), Enjoys (Y,
Restaurant), Open (Restaurant, Day). (2.17)

Here, the problem is manifold. First we have to identify person “Y” whom “I”

likes. This may result in many solutions. Then for each Y we must check whether
Y is free on a given date and then we need to identify the restaurant that Y likes
and only after that we must check whether the restaurant is open on that date.
Thus if we maintain a strict pipelining of the predicates Likes, Free, Enjoys and
Open in order, then perhaps we can find a time-efficient solution for the problem
easily. Kale introduces a new representation of the partial ordering of the
predicates by a graph where the ordering stands for sequencing the predicates in
the way they will give rise to solutions. Such graphs are usually called Data Join
Graphs (DJG).

 A formal definition of DJG is presented as follows.

Definition 2.9: A DJG is a directed acyclic graph where the nodes denote the
ordering of events, here the solutions of predicates and the directed arcs
connected between any two nodes are labeled with a predicate. Each DJG has a
single start node and a finish node. The parallel activities (finding the solution of
more than one predicate) are denoted by parallel arcs between two nodes of a
DJG.

Example 2.2: In this example we describe the DJG of the following query (vide
Fig. 2.3):

 Query 1: ←Fib (N, F), Perf (P), X is F + P, Prime (X). (2.18)

The query 1 calls for finding the solutions X such that X = F + P, where F is the
N-th fibonacci number and P is any perfect number.

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 69

For example F = 1, 5 are two fibonacci numbers while P = 6 is a perfect
number. Under this case, we have two solutions for X = (1 + 6) = 7 and X = (5 +
6) = 11. In this example computation of Fib (N, F) and testing of Perf (P) can be
done concurrently. So the DJG has two arcs connected between nodes 1 and 2.
Finding an efficient DJG for a given query, itself is a complex problem, and no
formal solution to such problems is known till date.

2.6 CAM-based Architecture for a PROLOG Machine

In the process of SLD resolution, the AND-clauses are selected and unified with
the heads of other clauses in sequence. For example, let us consider an AND-
clause:

 P (X, Y) ←Q (Y, Z), R (X, Y). (2.19)

where Q and R are selected for variable unification in sequence. The process of
involving an AND-literal for search in the head of existing clauses and its
unification with a selected clause are two major steps in the resolution process.
The first step may, hereafter, be referred to as clause invocation, while the latter
may be described as argument unification. Unlike conventional Prolog, Naganuma
et al. [12] considered the scope of argument unification of AND-clause Q (Y, Z)
in parallel with the clause invocation of the AND-literal R (X, Y). Such time
overlapping between these two processes is beneficial for increasing the
computational time-efficiency of a logic program. Fortunately, the work presented
in [12] employs this principle, thereby speeding up the process of inferential
reasoning to as high as 100 KLIPS (Kilo Logical Inferences Per Second). Another
interesting feature of their work lies in automatic re-instantiation and checking of
the bound variables of Q as possible bindings of R. Let Y = α, Z = β be the

1 2 3 41

X is F + P Prime (X)

 1

Perf (P)

0 0

 Fib (N, F)

Fig. 2.3: The DJG corresponding to the given query

70

resulting binding of Q. Under this circumstance, R (X, α) needs to be searched in
the existing clauses. If no matched literal R (X, α) is detected in the head of some
clause, the previous bindings of literal Q becomes of no use and thus should be
destroyed. This is usually realized with a variable binding stack in a conventional
PROLOG machine. In this reference [12], the binding stack has been realized with
a Content Addressable Memory (CAM) instead of a stack. The destruction of the
unused bindings here has been implemented with an automatic clearing of the CAM.

The principle of clause invocation, argument unification and removal of unused
bindings in a CAM is presented below with reference to the following PROLOG
program:

PROLOG Program:

←P (X, Y). (2.20)
P (U, V) ←Q (U, V, W), R (W). (2.21)
Q (a, b, c) ←. (2.22)
Q (d, e, f) ←. (2.23)
R (f) ←. (2.24)

Fig. 2.4: The SLD-tree for a given PROLOG program

←P (X, Y).

←Q (U, V, W), R (W).

←R (c). ←R (f).

failure

∅

U = d
V = e
W = f

0

1

2

3

X = U
Y = V

by (2.21)

U = d
V = e
W = f

by (2.22) by (2.23)

by (2.24)

Inference depth

U = a
V = b
W= c

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 71

In the aforementioned program ‘←P (X, Y).’ is the query, and the remaining
clauses (2.21) to (2.24) constitute the logic program. Figure 2.4 describes the
execution process of the above program by an SLD tree. The phrase: Inference
depth, which will be used in our subsequent discussion is now informally
defined.

Inference depth denotes the depth of nodes in an SLD tree. The root node,
which corresponds to a query, has an inference depth zero. All other nodes in
the tree that describe inferred clauses have an inference depth equal to the depth
of the respective nodes counted from the root in the SLD tree. Here, the goal
clause ←P (X,Y) is placed at depth zero, and it is resolved with the clause (2.21)
to yield a new clause ←Q (U, V, W), R (W). The variables X and Y now have
the bindings X = U and Y = V. The resulting clause thus obtained occupies an
inference depth one in the given tree. This clause is then further resolved with
clause (2.22) to yield ←R(c) and the variable values U, V, W obtained the
bindings: U = a, V = b and W = c. The clause ←R (c) occupies a depth two in
the SLD tree. The clause R (c) is now searched in the heads of the existing set of
clauses, but unfortunately there is no such atomic clause in the existing heads,
and consequently the resolution fails with a backtracking to the clause at depth
one. The SLD-tree is then further expanded by invoking clause (2.23) for
resolution with the clause at inference depth one to yield ←R (f). Finally, the
clause (2.24) is resolved with the resulting clause ←R (f) of depth 2 to yield a
null clause that occupies a depth 3 in the SLD tree. The bound value of variables
thus obtained are X = U = d and Y = V = e.

The CAM employed to handle the above problems in an SLD tree includes five
distinct fields. The first field denotes the inference depth of the clauses. It has a
minimum value 1 as the first inferred clause occupies an inference depth 1. The
second field of the CAM denotes variables present in the parent clause of the node
under consideration. The third field denotes the depth of the parent clause
containing the variables listed in field 2. The fourth field of the CAM represents
the bound value of the variables considered in field 2. The fifth field of the CAM
describes the depth of the clause that includes the resulting bindings of the
variables present in field 4.

The execution of the given logic program starts with an empty CAM. After first
resolution, the clause listed at inference depth 1 is generated. Thus field 1 of CAM
(vide Fig. 2.5(a)) contains 1. The parent clause here being ←P (X, Y), the variable
X, Y are inserted in the second field of the CAM. Since the depth of ←P (X, Y) is
zero, zeroes are entered in the third field. The fourth field includes the bound
values: U and V for the variables X and Y respectively. The fifth field denotes the
inference depth of the clause containing the bound values U and V. Thus it is
affixed with one.

72

After the second resolution, the CAM obtained in step (a) is expanded with
three more rows. It should be mentioned here that once constant bindings are

1

1

Y 0 V 1

X 0 U 1

 (c) After garbage collection (backtracking)

Fig. 2.5: CAM-based backtracking without trial stacks

1

1

Y 0 V 1

X 0 U 1

 (a) After first resolution

Inference
depth

 Variable

 Value

 Binding

1

1

Y 0 V 1

X 0 U 1

2 U 1 a

2 V 1 b

2 W 1 c CAM
garbage
collection

 (b) After second resolution

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 73

obtained, no further declaration of the depth of the clauses containing those
bindings is needed. Thus the last two fields are merged into a single field
describing the values of the variables only. Since the resulting clause after the
second resolution is ←R (c), it has an inference depth 2, and thus the first field is
now filled in with 2 (vide Fig. 2.5(b)). Further, as we have three variables U, V
and W, three rows are employed to describe the variable bindings and other
necessary information. The second field thus is filled in with variable names U, V
and W present in the parent clause ←Q (U, V, W), R (W). Since the depth of the
above clause containing U, V and W is one, the third fields are filled in with one.
Further, the resulting bindings of U, V and W are a, b and c respectively, and thus
they are stored in the fourth field of the CAM. It may be noted that after ←R (c),
the resolution process cannot proceed further, and consequently we need to
backtrack to the node at depth 1 of the SLD-tree. Since the bindings obtained in
the left-side of the clause ←Q (U, V, W), R (W) are no longer useful, in case of a
stack realization two consecutive POPs could destroy the garbage bindings. This
has been represented in the present CAM-based architecture by removal of all the
top three rows (vide Fig. 2.5(c)). The storage of the CAM in the subsequent two
steps can now easily be visualized and thus is not included in the present
discussion.

2.7 Performance Analysis of PROLOG Programs

The work presented in [4] addresses various alternative models for execution of a
PROLOG program. Performance of a PROLOG program can be improved by
detecting and analysing parallelisms at different levels. These levels include (i)
language level, (ii) compilation level, (iii) processor implementation level and (iv)
system configuration level. The language level is concerned with detection of four
typical forms of parallelisms namely (i) AND-parallelism, (ii) OR-parallelism,
(iii) Stream-parallelism and (iv) Unification-parallelism. All these parallelism
have already been discussed in section 1.6.1. At compilation level a data
dependency graph may be employed to detect the independence of the
intermediate machine codes, and thereby allowing them to be mapped to different
hardwared units subsequently. Backtracking, that needs the control to trace back
to the previous step, can also be analyzed in the compilation phase. There exist
ample evidence of analysing data-dependency and backtracking in a PROLOG
program vide [2]. The processor level parallelism deals with execution of the
machine codes on different hardwared units in parallel within the processor. The
system level parallelism on the other hand employs a multiprocessing system with
a number of processors to take care of the data flow among the processors through
an interconnection network. A parallel program is mapped onto the distributed
processors of a multiprocessor system to enhance the speed of execution of a
PROLOG program.

on Different Machine Architectures

74

Patt [13] provides a bench mark analysis of a set of typical PROLOG programs
on standard/modified architectures on popular commercial machines. The basic
theme of his analysis lies in determining the levels of pipelined stages in the
process of execution of a PROLOG program. His analysis is restricted to an
uniprocessor architecture only. Patt compiles a given PROLOG program to
Warren Abstract Machine (WAM) code and then selects options whether to run
the WAM code directly on a machine or to recompile it to the machine code of
commercially available machine for execution. While recompiling the WAM code
Patt prefers the well known ISA code for machine implementation. Thus three
typical levels of organisations of a PROLOG program emerge from his analysis.
These are schematically described in Fig. 2.6.

While experimenting on NCR/32 machine at the University of California,
Berkeley Campus Patt noted that the first mode (Fig. 2.6(a)) exhibited a poor
performance in comparison to the others.

2.8 Logic Programming Using Petri Nets

Coined after the seminal work of Karl Adam Petri, the phrase Petri nets has
already proved itself successful in mathematical modeling and simulation of
various systems. Some important application of Petri nets include (a)
representation of programs for dataflow computing, (b) deadlock avoidance in
operating systems, (c) Time-scheduling of discrete event systems, (d) protocol
management in a communication system, (e) representation of a context sensitive
language, and (f) resource sharing in a multi-process system. Unfortunately, the
use of Petri nets in knowledge engineering in general and in logic programming in
particular has started only in the last decade. This section highlights the
significance of Petri nets in efficient reasoning with logic programs.

PROLOG program
↓

WAM code
↓

ISA code
↓

Onchip ROM
↓

Execution

(a)

PROLOG program
↓

WAM code
↓

Onchip ROM
↓

Execution

(b)

PROLOG program
↓

Compiled Machine code
↓

Execution

(c)

Fig. 2.6: Three different levels of organization of PROLOG programs

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 75

A Petri net is a directed bipartite graph comprising of two types of nodes:
places and transitions and directed arcs to represent connectivity from places to
transitions and vice-versa. The importance of Petri nets in knowledge engineering
arises because of the distributed organization of its structure, capable of holding
the smallest fragments of a program clause onto several components of its
structure. Such fragmentation of program resources onto smaller components of a
Petri net is needed for two reasons. First all possible parallelism in a program can
be fully exploited because of modular organization of the program onto several
structural units of a Petri net. Secondly, the fragmentation of the program helps in
protecting parts of the program, instead of destruction of the entire program due to
hardware failure.

Besides, Petri nets when used in logic programming offers some additional
benefits. A Petri net graph, for instance, is an ideal choice of representing
structural pipelining of program data resources [8]. The firing sequence of
transitions, as if, denote the firing sequence of the modus ponens rules and the
derived inferences, thus, traverse through the net following the firing sequence of
transitions. Further, because of the structural benefits of Petri net models, all
typical parallelisms of a logic program, such as AND-, OR-, Stream- and
Unification-parallelisms can be realized on the proposed structure. The provisions
for concurrent firing of transitions in a Petri net facilitates the users with the
additional benefits of resolving multiple program clauses in bunches on isolated
transitions. The book, in fact, emphasizes these issues in more detail in the
subsequent chapters.

Murata first examined the scope of reasoning in logic programs using Petri
nets. In one of his early papers [10, 14], he took a bold attempt to represent a logic
program by a set of state equations, whose time-invariant solutions provide
answers to the users’ query. His model can be best introduced with example 2.3.

Example 2.3: Consider the following logic program comprising the following
five Horn clauses, the last clause being the query.

Logic Program:

(1) Parent (david, mary) ←. (2.25)

 (2) Parent (mary, tom) ←. (2.26)

(3) Ancestor (X, Y) ←Parent (X, Y). (2.27)

(4) Ancestor (X, Z) ←Parent (X, Y), Ancestor (Y, Z). (2.28)

(5) ←Ancestor (X, tom). (2.29)

76

 Fig. 2.7: Petri net corresponding to the given logic program

The generic state equation of a logic program realized with a Petri net (vide
Fig. 2.7) is given by

 A o X = O (2.30)

where A = [aij] is an incidence matrix, X provides a solution to the users’ query
and o denotes a matrix product with substitution. For construction of the incidence
matrix A, Murata employed the following principles:

Given a logic program consisting of n clauses and m distinct predicate symbols,
the (n × m) incidence matrix A of a high-level net corresponding to the logic
program can be obtained by invoking the following procedure.

• Each clause in the program will be one row of the matrix (one transition in
the net).

• Each distinct predicate symbol in the program will be one column of the
matrix (one place of the net).

• The (i, j)th entry aij is the argument of the i-th clause and in the j-th
predicate symbol, where an argument to the right of the ← is prefixed with
a negative sign. If the j-th predicate symbol appears more than once in the
i-th clause, then aij will be the formal sum of all those arguments in the i-th
row and j-th column.

 The procedure presented above converts the given logic program into the
incidence matrix as follows:

<d, m>

<m, t >

 <X, t >

Parent Ancestor

<X, Y>

<X, Y>

<Y, Z>

<X, Y>

tr1

tr2
 tr4

 tr3

 tr5p1

p2

<X, Z>

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 77

where d, m, t denotes David, Mary and Tom respectively.

 tr1 ∅
 tr2 {}
 X1 = tr3 {m | X, t | Y}
 tr4 ∅
 tr5 {m | X}

 tr1 {}
 tr2 {}
 X2 = tr3 {m | X, t | Y}
 tr4 {d | X, m | Y, t | Z}
 tr5 {d | X}

where ∅ denotes no firings and { } denotes a firing with no substitutions. The
above vectors can be interpreted as “T-invariants” of the high-level net since they
satisfy AToX1 = 0 and AToX2 = 0, where o denotes “matrix-product with
substitutions.”

Murata and Yamaguchi [11] in early 1990s presented an alternative approach to
automatic reasoning using Petri nets. They devised a new model of Petri net for
handling the forward and backward reasoning problems that supports the
resolution theorem under the framework of classical logic. The work reported in
the work [11] is primarily based on the following principles.

 • A general program clause, containing one or more literals in both the
body and the head part, can be denoted by a Petri net with a number
of input places equal to the number of antecedent literals and a
number of output places equal to the number of consequent literals.

Parent(p1) Ancestor(p2)

 tr1 <d, m> 0

 tr2 <m, t> 0
A = tr3 −<X, Y> <X, Y>
 tr4 −<X, Y> −<Y, Z> + <X, Z>
 tr5 0 −<X, t>

78

 • Resolution of two or more clauses has been symbolized by firing of a
transition.

 • On firing of a transition the tokens possessed by the input and output
places of the fired transition are updated by the following principle.

For a propositional logic based programs, the derived token M/(.) (markings in
Petri net terminology) at input place p and output place q of a fired transition can
be expressed as a function of its value M(.) before firing:

 M/(p) = (M(p) + {-1}) ∪ M(p) (2.31)

 M/(q) = (M(q) + {+1}) ∪ M(q) (2.32)

 The tokens at all other places r (≠ p or q) remain unchanged.

Murata et al. extended the above model for automated reasoning with predicate
logic based programs. The detailed discussion on the model goes outside the scope
of the book, and is omitted.

Li [9] demonstrated a new approach to automated reasoning in Logic program
for both Horn and non-Horn clauses with negation in the body of the clause. This
is an uniform approach that is applicable jointly to monotonic and non-monotonic
systems with negated literals in the body of the clauses.

Jeffrey et al. [6] presented an alternative scheme for goal directed reasoning in
a Horn clause based logic program. The representation scheme proposed by them
significantly differs with the currently available models of Petri nets. For instance,
a typical Horn Clause ‘R (X, U) ←P (X, Y), Q (U, V).’ following Jeffrey et al. can
be represented as shown in the Fig. 2.8.

It may be noted in Fig. 2.8 that, unlike conventional Petri net representation, the
direction of the arcs are reversed. The following aspects of the reasoning
undertaken by Jeffrey et al. need special mention.

R

Q

P

(X, U)
p1

p2

p3tr (U, V)

(X, Y)

 2 Parallel and Distributed Models for Logic Programming

 Fig. 2.8: Petri net representation of a Horn clause as advocated by Jeffrey et al.

Parallel and Distributed Logic Programming 79

The instantiation space of the variables in most Petri net based logic programs
are determined locally after taking into consideration the binding of the variables
of all arc functions associated with a transition. One major drawback of such a
policy of instantiation lies in long deferred substitution of variables until the
bound tokens propagate to the associated places of the same transition after
several firings. Jeffrey's scheme however handles the situation in a faster and
robust approach. In absence of proper constant bindings, they replace the variable
component of tokens in a place by a renamed variable [1] and later substitute it by
the value that is attained at some other places associated with the same transition.
Consequently the variable components of token gets updated by a revised renamed
variable until a constant binding of the same variable is attained transitively in a
long chain of transitions.

Jeffrey et al. described the SLD resolution of program clauses by
transformation of markings in the places. The updated tokens in the places usually
are renamed variables or constants. In the process of updating of tokens in the
places, the renamed variables in the token are transformed to constants. When all
the variables/ renamed variables in the token of a place are replaced by constants,
a goal or sub-goal may be obtained, and the place becomes empty. Consequently,
when the (renamed) variables at all places become constants, all places become
empty, and no further results can be derived from the Petri net. It may be added
here that an empty place may regain tokens due to firing of a transition connected
to the place.

Example 2.4: This example illustrates the principle of Jeffrey and Murata’s
model outlined above with a typical logic program. Consider, for instance the
following logic program:

←tc (a, Y). (≡ Q1) (2.33)
tc(X, Y) ←r(X, Y). (tr1) (2.34)
tc (X, Y) ←r(X, Z), tc (Z, Y). (tr2) (2.35)
r(a, b) ←. (tr3) (2.36)
r(b, c) ←. (tr4) (2.37)
r(a, d) ←. (tr5) (2.38)

Figure 2.9 describes the given logic program and the query ←tc (a, Y). One
possible firing sequence of the transitions that leads to a successful evaluation of
the query is presented in Fig. 2.10. Let the arc function <X, Y> present in the
input arc of transition tr1 has a possible instance of solution X = X1 and Y = Y1.
Thus after resolution of the program clause (2. 34) with the query (2. 33), X1 and
Y1 are instantiated with one pair of new value and the resulting set is given by
{X1/a, Y1/Y}. Consequently, a new token <a, Y> arrives at the place
corresponding to the predicate r. Transition tr3 is then fired and a new instantiation
of Y = b is obtained.

80

Fig. 2.9: Representation of the queried program by a Petri net

According to Jeffrey et al. [6], since a complete solution <X1, Y1> now has
been obtained the places are kept free from tokens to allow subsequent firing of
other transitions for generating new solutions of the given query. Other solutions
of the query ←tc (a, Y) are not presented here for lack of space; rather a case of
failure is demonstrated vide Fig. 2.11. In this figure, the topmost configuration
describes a initial situation in the Petri net. On firing of transition tr5, Z1 is
instantiated with d, by matching <a, Z1> for place r with the input arc function <a,
d> of transition tr5.

The value of Z1 = d is now updated in all places containing the variable Z1. It is
indeed important to note that in Jeffrey’s model the variables in places correspond
to a global variable in the entire logic program, in contrast to conventional Petri
net models where variables are defined locally with reference to transitions.

The second module in Fig. 2.11 describes the resulting situation in the Petri net
after firing of the transition tr5. The transition tr1 is now fired, and the second
alternative instance <X, Y> = <X1, Y1> is now presumed. The input arc function
<X1, Y1> of transition tr1 thus constructed is now unified with <d, Y> of place tc

and the resulting set of substitution obtained is given by {X1/d, Y1/Y}. This
token value X1= d and Y1= Y is now inserted in place r following the guiding
output arc function of transition tr1. The token <d, Y> is now matched with all
the input arc functions of transitions tr3, tr4 and tr5 respectively, but no possible
variable bindings could be derived in the present context. This has been referred to
as a failing computation in the work undertaken by Jeffrey et al. [6].

tr2

tr1

<X, Y>

<X, Z>

<a, b>

<b, c>

<a, d> tr5

tr4

tr3

<X, Y>

<X, Y>

<Z, Y>

<a, Y>

rtc

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 81

tr1 {X1/a, Y1/Y}

<a, Y>

tr2

tr1 <X, Y>

<X, Z>

<a, b>

<b, c>

<a, d> tr5

tr4

tr3<X, Y>

<X, Y>
< Z, Y>

tc r

M1

tr3 {Y/b}

tr2

tr1 <X, Y>

<X, Z>

 <a, b>

<b, c>

<a, d>
tr5

tr4

tr3
<X, Y>

<X, Y>
<Z, Y>

rtc

M2

Fig. 2.10: A successful firing sequence Mo→M1→M2 of the given program. The
arcs between frames are labeled with the fired transition and the variable
substitutions made on firing of a transition

 <a, Y> tr2

 tr1
<X, Y>

<X, Z>

<a, b>

<b, c>

<a, d> tr5

tr4

tr3 <X, Y>

<X, Y>

< Z, Y>

Mo

 tc r

82

Fig. 2.11: A failing computation for the given queried Program through frames M0→ M3→
M4→ M5. M0 to M3 transition is not shown in the figure for clarity. It is to be noted that
after firing of transition t5, the variable Z1 in tokens at both places r and tc are updated in
frame M4

<Z, Y>

r
<b, c>

<a, d>

<X, Z>

<X, Y>

<X, Y> <X, Y> <a, b>

<Z1, Y> <a, Z1>

tc

 tr2

tr1

M3

 tr3

 tr4

 tr5

tr1 { X1/d, Y1/Y }

<b, c>

<X, Y>

 tr5 {Z1/d}

r

<Z, Y>
<a, d>

 <X, Z>

<X, Y> <X, Y>
<a, b>

 tc

tr2

 tr1
M4

tr3

tr4

tr5

<d, Y>

 r

<X, Y>

<X, Z>

<b, c>

 <d, Y>

<Z, Y>
<a, d>

<X, Y>
<X, Y> <a, b>

tc

tr2

tr1
M5

tr4

tr5

tr3

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 83

2.9 Scope of the Book

Reasoning in typical logic programming languages such as PROLOG or
DATALOG is usually accomplished by automatically expanding an SLD-tree in
the runtime phase of the program execution. Construction process of the SLD-tree
involves sequential resolution of each pair of program clauses, and the resultant
clause thus derived is passed on for resolution with a third program clause,
judiciously selected from the program based on certain prerequisites for
resolution. The process is continued until all possible solutions to the given query
are evaluated. The SLD-tree building algorithm requires a linear order of time
proportional to the number of program clauses that participate in the resolution
process. Logic programs used in commercial/industrial applications generally
include as many as 10,000 clauses. The computational time of an SLD-tree
building algorithm thus been highly expensive prohibits the scope of logic
programming in real time applications. Fortunately, the resolution principle in
logic programming supports various types of parallelism. An appropriate
realization of these parallelisms on an architecture, thus, may provide a new
avenue to the aforementioned practical problem.

The objective of the book is to design a high-speed computational engine for
logic programming that is capable of utilizing all possible parallelisms in the
program. For a suitable implementation of the parallel processing inference
engine, the book adopted a specialized data structure that can represent and reason
with the program clauses by fully exploiting AND-, OR-, Stream- and
Unification-parallelisms in the program. The data structure employed in the
present context is a Petri net that besides having the above benefits supports the
distributed organization of the program resources, such as predicates and their
variable and constant arguments (here after called tokens) onto different modules
of the network. Such fragmentation of the program into minute resources enhances
the fault-tolerant behavior of the program, as reasoning may still be continued in
absence of some program components, crashed because of hardware failure of a
few units.

The book examined the scope of concurrent resolution of program clauses on
a Petri net. The transitions in a Petri net keep track of the program clauses,
where the literals in the head (body) part are mapped at its output (input) places.
Places of the Petri net are shared by multiple program clauses. For instance, two
program clauses having one common literal in the body of one clause and in the
head of the other clause is denoted by a common place. This place is an input
place of the transition describing the former clause and an output place of the
transition describing the latter clause. The constant arguments of predicates
present in body-less clauses are also mapped at the input place of transitions
representing clauses having common literal in its body. Such organization of the
Petri net framework facilitates the scope of concurrent resolution of multiple

84

associated with more than one transition may also participate in the concurrent
resolution process, thereby increasing the throughput of the system to a great
extent.

The concurrent resolution introduced above automatically takes care of the
AND-, OR-, Stream- and Unification-parallelisms. Consequently, the Petri net
architecture provides a strong foundation to logic programming with high degree
of parallelism. A suitable realization of the Petri net topology on logic
architecture, therefore, is a good choice for an alternative hardwired inference
engine for logic programming. The latter part of the book is, therefore, devoted to
designing logic architecture for Petri net like inference engine. The proposed logic
architecture comprises of six main modules, where multiplicity of the modules are
needed to handle the concurrent resolution of clauses at more than one transition
simultaneously.

For convenience of computational benefits, the concurrent resolution process
in the proposed architecture has been realized in two elementary steps. The first
step attempts to identify the possible bindings of the variable arguments of the
predicates mapped at the places of the Petri net. The second step checks the
consistency of the variable bindings in the arguments of the predicates mapped
at the input and the output place of each transition. The first step is called the
local matching (assignment, to be more specific), and the second step is referred
to as global matching. The global matching helps in determining the most
general unifier (mgu) of the resolved clauses, which later provides a solution to
the goal/sub-goal predicate, mapped at the input/output place of each transition.
After a sub-goal at a given place is determined in the manner described above, it
becomes part of another clause sharing that place. Consequently, the clause thus
re-organized may participate in the resolution process in a subsequent
time, when its descriptor transition has a consistent set of variable bindings in
the predicates mapped at its connected input/output places. The mgu
thus obtained at one transition helps a neighboring transition to fire (resolve
clauses), and the process continues until no new mgu at the transitions can be
derived.

The architecture designed for the proposed inference engine comprises of four
pipelined stages. In the first stage the places associated with each transition are
activated for local token matching, whereas the second stage executes the local
token matching. The third stage performs the global token matching, and the last
stage ensures firing of appropriate transitions for token transfer to its associated
(inert) place that did not participate in the resolution process. The approximate
time required for firing a transition is around 25 Tc, where Tc denotes the time
period of the system clock. The speed-up factor for the proposed inference engine
for a program with n clauses and k number of concurrent set of resolvable clauses
is O (n/k).

program clauses mapped onto the input/output or both types of places associated
with the transitions. Further, under favorable conditions the program resources

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 85

2.10 Conclusions

An examination of the existing parallel models of logic programs reveals that none
of the models are sufficient to realize all four possible parallelisms in a logic
program. This indicates that a specialized architecture capable of supporting all
the four parallelisms is yet to be inherited. The data structure of a Petri net model
in view of the above requirement is examined in this chapter. It is indeed
important to note that a Petri net model, if properly designed, can be utilized to
realize the above four parallelisms of a logic program. The rest of the book
stresses the importance of Petri net model and proposes a new framework of
extended Petri met to support the parallelisms in a logic program.

1. Consider the following logic program containing concurrent AND-OR
parallelism.

Logic program:

Compute (X, Z) ←Pick-up (X, Y), Square (Y, Y2), Cube (Y,
Y3), Subtract (Y3, Y2, Z).

Square (X, Y) ←Y = X * X.
Cube (X, Y) ←Y = X * X * X.
Subtract (X, Y, Z) ←Z = X − Y.
Pick-up ([X L], Y) ←Y = X.
Pick-up ([- L], Y) ←Pick-up (L, Y).

(a) Draw a schematic dataflow graph for the above program representing
both pipelining and parallelism of operations to execute the program.

(b) Given X = [1, 2, 3] and Y = [v (1, α1), v (2, α2), v (3, α3)], where α1, α2,
α3 denote three colors, using graph coloring scheme on the dataflow
graph how can you compute the result as an outcome of this graph?

[Hints:

(a) Here, Pick-up is an OR-predicate and Pick-up, Square, Cube, Subtract are
AND-predicates. If we consider the list L = [1, 2, 3]. When AND- and
OR-parallelisms are allowed together, the parameter passing by the Pick-
up OR- predicate to the evaluation process of Square and Cube is done in
pipeline, and then the subtraction process becomes active. A schematic
diagram of the overall system is presented in Fig. 2.12.

Exercises

86

(b) With X = [1, 2, 3] and Y = [v (1, α1), v (2, α2), v (3, α3)],
 we evaluate Y2 and Y3 vectors, and finally Z as follows:
 Y2 = [v (1, α1), v (4, α2), v (9, α3)]
 and
 Y3 = [v (1, α1), v (8, α2), v (27, α3)]
 and consequently Z takes the form
 Z = [v (0, α1), v (4, α2), v (18, α3)].]

2. For the following logic program, identify the guarded clause and also indicate
the head part, the guard part and the body part. Show the possible parallelism
in concurrent resolution of the guarded clause, if any, with others.

 Logic program:

Cl1: Find (Sum (X-square, Y-cube), Z) ←Int (X), Int (Y),
 Greater-than (Y, X) Find (X-square, Z1),

 Find (Y-cube, Z2), Sum (Z1, Z2, Z3).
 Cl2: Int (1) ←.
 Cl3: Int (2) ←.
 Cl4: Int (3) ←.

[Hints: According to the definition 2.1, Cl1 is a guarded clause where Find
(Sum (X-square, Y-cube), Z) is the head part; Int (X), Int (Y), Greater-than
(Y, X) is the guarded part and Find (X-square, Z1), Find (Y-cube, Z2), Sum
(Z1, Z2, Z3) is the body part.

 In the process of resolution, AND-parallelism takes place when Cl2, Cl3;
Cl3, Cl4; Cl2, Cl4 are resolved in parallel with Cl1. Again, OR-parallelism
takes place when the clauses Cl2, Cl3, Cl4 are attempted to resolve with Cl1 for
Int (X) or Int (Y) in parallel.]

Pick-up

Square

Cube

Subtract
X

Z
Y

Y2

Y3

2 Parallel and Distributed Models for Logic Programming

Fig. 2.12: The data flow graph of compute

Parallel and Distributed Logic Programming 87

3. Apply rule of suspension to determine the order of computation of the given
guarded clause.

Cl1: G ←Find (Sum (X-square, Y-cube, Z)).
 Cl2: Find (Sum (X-square, Y-cube), Z) ←Int (X), Int (Y), Greater-than

(Y, X) Find (X-square, Z1), Find (Y-cube, Z2), Sum (Z1, Z2, Z3).
Cl3: Int (1) ←.
Cl4: Int (2) ←.
Cl5: Int (3) ←.

[Hints: Let us assume that there exists no other clauses except clauses Cl3,
Cl4 and Cl5, to instantiate the guarded part of Cl2. Under this case Cl2 will
be instantiated first with Cl3 and Cl4 using AND-parallelism and next Cl2
will be reinstantiated with Cl4 and Cl5 and finally with Cl3 and Cl5. Only after
all these three sets of concurrent resolutions (AND-parallelism) the guarded
clause Cl2 can be instantiated with Cl1. Thus the instantiation of Cl2 with Cl1
is withheld (suspended) for a time duration until instantiation of the guarded
part of Cl2 with all possible clauses is over.]

4. Apply the rule of commitment to justify the computation of the guarded
clause.

Cl1: G ←Find (Sum (X-square, Y-cube), Z), Find-product (Z ∗ 2, P).
Cl2: Find (Sum (X-square, Y-cube), Z) ←Int (X), Int (Y), Greater-than

(Y, X) Find (X-square, Z1), Find (Y-cube, Z2), Sum (Z1, Z2, Z3).
Cl3: Int (1) ←.
Cl4: Int (2) ←.
Cl5: Int (3) ←.

[Hints: Since ‘Find-product (Z * 2, P)’ of clause Cl1 cannot be instantiated
with any other available clauses, ‘Find (Sum (X-square, Y-cube), Z)’ of Cl1

will be instantiated with the head of Cl2. Thus Cl2 is committed to
instantiation with Cl1.]

5. Represent the following logic program as an AND-OR tree of three levels
where each level indicates the exploration of the AND/OR literals through
resolution with suitable clauses.

 Logic Program:

Cl1: A ←a1.
Cl2: A ←a2.
Cl3: B ←b1.
Cl4: B ←b2.

88

Cl5: C ←c1.
Cl6: C ←c2.

Query: ←A, B, C.

[Hints: Figure 2.13 represents the AND-OR tree for the given logic program.

 The first level is the AND node, the second level denotes the OR nodes
and the third level denotes the AND nodes. The AND clauses at the first level
are searched for exploring them in parallel. Then the clauses are resolved with
the appropriate clauses.

6. The logic program given below includes both AND- and OR-parallelism.
Construct an AND-OR tree using Kale’s formula and show that for the
following clauses unrestricted AND-/OR- parallelism can be exploited.

 Logic Program:

Cl1: A(a, b) ←.
Cl2: A(c, d) ←.
Cl3: B(d, e) ←.
Cl4: B(f, g) ←.

Query: ←A(X, Y), B(U, V).

[Hints: Figure 2.14 demonstrates the AND-OR tree constructed using Kale’s
formula and it is evident from the Fig.2.14 that the AND nodes and the OR
nodes are searched in parallel for resolution according to the Fig. 2.14.

7. The following logic program includes both AND-OR parallelism, but a search
is needed to determine the consistent bindings of the variables. Using Kale’s
AND-OR tree show how restricted AND-OR parallelism can be handled to
find a solution for the problem.

Logic Program:

Cl1: A(a, b) ←.
Cl2: A(c, d) ←.
Cl3: B(b, a) ←.
Cl4: B(d, c) ←.
Cl5: B(d, e) ←.

Query: ←A(X, Y), B(Y, X).

[Hints: The AND-OR tree is constructed for the given logic program vide
Fig. 2.15.

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 89

Cl3

←A, B, C. And-node

Exploration
for ←A.

Exploration
for ←B.

Exploration
for ←C.

OR-nodes

←a1. ←a2. ←b1 ←b2. ←c1. ←c2. And-nodes

Resulting substitution

Fig. 2.13: The AND-OR tree of three levels]

Cl1 Cl2 Cl4 Cl5
Cl6

X = c
Y = d

Cl2

X = a
Y = b

Cl1

←A(X, Y), B(U, V). And-node

Exploration for
←A(X, Y).

Exploration for
←B(U, V).

OR-nodes

∅ ∅ ∅ ∅

And-nodes

Fig. 2.14: The AND-OR tree of three levels]

U = d
V = e

Cl3

U = f
V = g

Cl4

90

Let θ1 be the possible instantiations of the OR node ‘←A(X, Y).’ and θ2 be the
possible instantiation of the OR node ‘←B(Y, X).’. Thus,

θ1 = {(X, Y): <a, b> <c, d>}
θ2 = {(X, Y): <a, b> <c, d> <e, d>}

Therefore, the solution set S is given by

 S = θ1 ∩ θ2

 = {(X, Y): <a, b> ⏐ <c, d>} i.e., X = a, Y = b and
 X = c, Y = d are the possible solution of the given program.]

8. Given the following logic program and the query:

Logic Program:

Cl1: Equal(X, Least-of(X, Y, Z)) ←X<Y, X<Z.

Query: ←Equal(X, Least-of(6, 4, 9)).

∅ ∅
X = c Cl4

Y = d

X = c
Y = d

Cl2

X = a
Y = b

Cl1

←A(X, Y), B(Y, X). And-node

Exploration for
←A(X, Y).

Exploration for
←B(Y, X).

OR-nodes

∅ ∅

And-nodes

Fig. 2.15: The AND-OR tree

X = a
Y = b

Cl3

X = e
Y = d

Cl5

∅

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 91

(a) Construct an SLD-tree for the above logic program and show
failure and backtracking to the root, and also success, when a
suitable value of X is found.

(b) Construct an AND-OR tree following Kale and show how
AND- and OR-parallelism can take place in this context. Does
this program include Restricted AND parallelism?

 [Hints:

(a) The SLD-tree for the aforementioned logic program has been
constructed as shown in the Fig. 2.16.

When X = 6 is considered, failure takes place as 6 is not less than 4.
Considering X = 4, we get success as 4 is less than both 6 and 9. Again,
when we consider X = 9, we get failure as 9 is not less than 4 or 6. When
failure occurs, backtracking takes place to the root of the SLD-tree as
shown in the Fig. 2.16.

Cl1

X = 4

←Equal (X, Least-of (6, 4, 9)).

Cl1

X = 6
Cl1

X = 9

6<4, 6<9 4<6, 4<9 9<6, 9<4

Failure 4<9 Failure

Success

Fig. 2.16: The SLD-tree for the given problem

92

(b) An AND−OR tree following Kale is shown in Fig. 2.17.

An AND-OR tree following Kale is constructed as shown in Fig. 2.17. Here,
as the initial AND node is absent, the OR nodes are shown determining the
value of X given in the logic program.

This program does not include Restricted AND-parallelism.]

9. Consider the following logic program for testing Pythagorean triplets (X, Y,
Z).

Logic Program:

Cl1: Find Pythagorean-triplets(X, Y, Z) ←Integer(X), Integer(Y),
Integer(Z), Y>X, Z>Y, Z2 = X2 + Y2.

Query: ←Find Pythagorean-triplets (X, Y, Z).

(a) List the order of generating and testing the values of (X, Y, Z) to satisfy
Pythagorean-triplets (X, Y, Z).

(b) Construct a Data Join Graph (DJG) to represent the order of generating
and testing (X, Y, Z) for the given problem.

(c) Verify whether the following goal instances satisfy the Pythagorean-
triplets (X, Y, Z) on the DJG.

Exploration for
← Equal (X, Least-of (6, 4, 9).

Cl1

X = 4
Y = 6
Z = 9

∅

Cl1

X = 4
Y = 9
Z = 6

∅

Fig. 2.17: The AND-OR tree for the given problem

OR node

AND node

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 93

Pythagorean-triplets (1, 2, 3) ←.
Pythagorean-triplets (3, 4, 5) ←.
Pythagorean-triplets (6, 8, 10) ←.

 [Hints:

(a) The order of the generation and testing of (X, Y, Z) are presented in
consecutive lines.

Generate an integer X.
Generate an integer Y>X.
Generate an integer Z>Y.
Test whether Z2 = X2 + Y2.

(b) A Data Join Graph is constructed (vide Fig. 2.18) to represent the order of
generating and testing (X, Y, Z) for the given problem.

(c) Here we verify with the second instance only (vide Fig. 2.19).

The reader can verify the other two instances himself/herself.]

Integer(Z)Integer(Y)

Integer(X) Y>X Z>Y Z2 = X2 + Y2

Fig. 2.18: Data Join Graph representing the order of generating and testing
(X, Y, Z) for the given problem

1 2 3 4 5

Integer(Z)
Z = 5

Integer(Y)
Y = 4

Integer(X)
X = 3

Y>X
Y = 4

Z>Y
Z = 5

Z2 = X2 + Y2

52 = 32 + 42

Fig. 2.19: Data Join Graph verifying the second instance for the given
problem

1 2 3 4 5

94

10. (a) Construct an SLD-tree for the following logic program and mark the
inference depth of the nodes in the tree.

Logic Program:

Cl1: Equal(X, Sum(1, 2)) ←.
Cl2: Equal(X, Sum(3, 2)) ←.

Query: ←Equal(X, Sum(A, B), A>B).

(b) Also construct a CAM with appropriate fields to describe backtracking
on the SLD-tree.

[Hints:

(a) The SLD-tree for the given logic program is given in the Fig. 2.20. The
inference nodes are also marked in the Fig. 2.20.

(b) A CAM is constructed as shown in the Fig. 2.21 for the given problem.

The garbage collected in the second step is removed in the third step. In
the fourth step, a new set of value for A and B is considered.

by Cl2

A = 3
B = 2

←Equal(X, Sum(A, B), A>B).

by Cl1

A = 1
B = 2

Failure Success

Fig. 2.20: The SLD-tree for the given logic program

Inference depth

0

1

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 95

]

1 B 0 2 1

1 0A 1 1

1 B 0 2 1

1 0A 3 1

1 B 0 2 1

1 0A 1 1

Fig. 2.21: A CAM for the given problem

CAM
garbage
collection

CAM
garbage
removal

96

11. (a) Construct an SLD-tree for the following logic program and mark the
inference depth of the nodes in the tree.

Logic Program:

Cl1: P(X, Y, Z) ←W(Y, X), R(Z, X).
Cl2: W(d, e) ←.
Cl3: W(b, a) ←.
Cl4: R(c, a) ←.

Query: ←P(X, Y, Z).

(b) Also construct a CAM with appropriate fields to describe backtracking on
the SLD-tree.

[Hints:

(a) The SLD-tree for the given problem is constructed as shown in the Fig.
2.22.

by Cl4

Z = c

←P(X, Y, Z).

←W(Y, X), R(Z, X).

by Cl1

by Cl2

X = e
Y = d

←R(Z, e).

Failure

by Cl3

X = a
Y = b

←R(Z, a).

Success

Inference
depth

0

1

2

3

Fig. 2.22: The SLD-tree for the given problem

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 97

When Cl2 was considered for resolution, no clause is available for resolving
with the resolvent. Therefore, failure takes place. But when Cl3 is considered,
Cl4 readily resolves with the resolvent and ‘success’ is obtained at the level
three as shown in the Fig. 2.22.
(b) A CAM is constructed as shown in the Fig. 2.23 for the given problem.

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

(c) After garbage collection

(b) After second resolution

(a) After first resolution

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

2

2

2 Z

Y

X

1

1

1

d

e

CAM
garbage
collection

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

(d) After backtracking and third resolution

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

2

2

2 Z

Y

X

1

1

1

b

a

(e) After fourth resolution

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

2

2

2 Z

Y

X

1

1

1

b

a

3 Z 2 c

Fig. 2.23: The CAM demonstrating the CAM garbage removal]

98

12. (a) Represent the following logic program by the Petri Net model of Murata.

 (b) Construct the incidence matrix A for the network of part (a), and hence
determine the time invariant solution X, where A X = 0.

Logic Program:
Cl1: Father(X, Y) ←Son(Y, X), Male(X).
Cl2: Brother(Y, Z) ←Father(X, Y), Mother(W, Z), Wife(W, X).
Cl3: Son(l, r) ←.
Cl4: Son(k, r) ←.
Cl5: Male(r) ←.
Cl6: Mother(s, l) ←.
Cl7: Mother(s, k) ←.
Cl8: Wife(s, r) ←.

[Hints: Two possible sets of clauses following same firing sequence of the
transitions are listed below:

Sequence: tr1/tr2 – tr3 – tr6/tr7 – tr4 – tr5.

 A Petri net is drawn for the given logic program considering the clauses
Cl1, Cl2, Cl3, Cl5, Cl7, Cl8 vide Fig. 2.24.

tr1 Son
 <l, r>

tr2 Male
 <r>

<Y, X>
 tr3 <X, Y> Father

<X> Mother

 tr7 <s, k>
 Wife

 <s, r>
 tr6

<X, Y>
 tr4 Brother tr5

 <Y, Z> <Y, Z>
 <W, Z>

 <W, X>

Fig. 2.24: Petri net corresponding to the given logic program

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 99

 Here, as the generic state equation of a logic program realized with a Petri
net is given by
 A ο X = 0

where A = [aij] is an incidence matrix, X provides a solution to the user’s
query and ο denotes a matrix product with substitution. The following
incidence matrix is worked out from the said logic program also.

Now, AT, the transpose of A can be written as follows:

 Son Male Father Mother Wife Brother

 tr1 <l, r> 0 0 0 0 0

 tr2 0 <r> 0 0 0 0

 tr3 -<Y, X> -<X> <X, Y> 0 0 0

A = tr4 0 0 -<X, Y> -<W, Z> -<W, X> <Y, Z>

 tr5 0 0 0 0 0 -<Y, Z>

 tr6 0 0 0 0 <s, r> 0

 tr7 0 0 0 <s, k> 0 0

 tr1 tr2 tr3 tr4 tr5 tr6 tr7

 Son <l, r> 0 -<Y, X> 0 0 0 0

 Male 0 <r> -<X> 0 0 0 0

 Father 0 0 <X, Y> -<X, Y> 0 0 0

 AT=Mother 0 0 0 -<W, Z> 0 0 <s, k>

 Wife 0 0 0 -<W, X> 0 <s, r> 0

 Brother 0 0 0 <Y, Z> -<Y, Z> 0 0

100

The solution vector X1 for the above firing sequence is computed as follows:

A Petri net is drawn for the given logic program considering the clauses Cl1,
Cl2, Cl4, Cl5, Cl6, Cl8 vide Fig. 2.25 for obtaining the second solution X2

Here, once again, as the generic state equation of a logic program realized
with a Petri net is given by

 A ο X = 0

 tr1 ∅

 tr2 { }

 tr3 {l/Y, r/X}
X1 =
 tr4 {r/X, l/Y, k/Z, s/W}

 tr5 { }

 tr6 {s/W, r/X}

 tr7 { }

tr1 Son
 <k, r>

tr2 Male
 <r>

<Y, X>
 tr3 <X, Y> Father

<X> Mother

 tr7 <s, l>
 Wife

 tr6 <s, r>

<X, Y>
 Brother
 tr4 <Y, Z> <Y, Z> tr5

<W, Z>

 <W, X>

Fig. 2.25: Petri net corresponding to the given logic program

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 101

where A = [aij] is an incidence matrix, X provides a solution to the user’s
query and ο denotes a matrix product with substitution, the following
incidence matrix is worked out from the said logic program also.

Now, AT, the transpose of A can be written as follows:

 Son Male Father Mother Wife Brother

 tr1 <k, r> 0 0 0 0 0

 tr2 0 <r> 0 0 0 0

 tr3 -<Y, X> -<X> <X, Y> 0 0 0
A =
 tr4 0 0 -<X Y> -<W, Z> -<W, X> <Y, Z>

 tr5 0 0 0 0 0 -<Y, Z>

 tr6 0 0 0 0 <s, r> 0

 tr7 0 0 0 <s, l> 0 0

 tr1 tr2 tr3 tr4 tr5 tr6 tr7

 Son <k, r> 0 -<Y, X> 0 0 0 0

 Male 0 <r> -<X> 0 0 0 0

 Father 0 0 <X Y> -<X, Y> 0 0 0
AT =
 Mother 0 0 0 -<W, Z> 0 0 <s, l>

 Wife 0 0 0 -<W, X> 0 <s, r> 0

 Brother 0 0 0 <Y, Z> -<Y, Z> 0 0

102

Now, the solution X2 is given by,

It was indeed important to note that the above two solutions are time invariant
and therefore were generated by satisfying the equations ATοX1 = 0 and
ATοX2 = 0.

13. Given a logic program:

Cl1: Brother(Y, Z) ←Father(X, Y), Mother(W, Z), Wife(W, X).
Cl2: Mother(s, l) ←.
Cl3: Mother(s, k) ←.
Cl4: Wife(s, r) ←.
Cl5: Father(r, l) ←.
Cl6: Father(r, k) ←.

(a) Using the following firing sequence of the transitions, determine the
answer of the query:

Brother(l, Z) ←.

Firing order of transitions: tr1 ⎯ tr5

(b) Is this firing order unique?

 tr1 ∅

 tr2 { }

 tr3 {k/Y, r/X}
X2 =
 tr4 {r/X, k/Y, l/Z, s/W}

 tr5 { }

 tr6 {s/W, r/X}

 tr7 { }

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 103

[Hints:
(a) With the given query as the token in the place indicated by the predicate,

transition tr1 fires and a new token is generated in the place ‘Mother’. As
the token can be matched with the arc function <s, k>, tr5 can be fired.
Then the Petri net will have an empty marking indicating a successful
sequence of firing (vide Fig. 2.26).

 tr2

 Father <r, l>

 tr3

 <X, Y> <r, k>
 Brother tr1 Mother
 <Y, Z> <s, l>
 <W, Z>
 tr4

 <s, k>
 <W, X>
 <s, r> tr5

 Wife tr6

<W, Z1>

 tr2

 Father <r, l>

 tr3

 <X, Y> <r, k>
 Brother tr1 Mother
 <Y, Z> <W, Z> <s, l>

 tr4

 Wife <s, k>
 <W, X>
 tr5

 <s, r>
 tr6

tr1 {Z/Z1}

<l, Z1>

104

(b) No, because on firing of the transition tr1 traversal of token to no other
place except ‘Mother’ is feasible.]

References

1. Bender, E. A., Mathematical Methods in Artificial Intelligence, IEEE
Computer Society Press, Los Alamitos, CA, chapter 1, pp. 26, 1996.

2. Chang, J. H. and Despain, A., “Extending a PROLOG machine for parallel
execution,” Proc. 1978 of Int. Symp. on Logic Prog., Boston, MA, July 1985.

3. Ganguly, S., Silberschatz, A. and Tsur, S., “Mapping datalog program
execution to networks of processors,” IEEE Trans. on Knowledge and Data
Engg., vol. 7, no. 3, June 1995.

4. Halder, S., On the Design of Efficient PROLOG Machines, M.E. dissertation,
Jadavpur University, Calcutta, India, 1992.

Fig. 2.26: The Petri net representation for the successful firing sequence of the given
logic program

 tr2

 Father
 <r, l>
 tr3

 <X, Y> <r, k>

Brother tr1

 Mother <s, l>
 <Y, Z>

 tr4

 <W, Z>
 <s, k>

 <W, X> tr5

 <s, r>

 Wife tr6

tr7 {W/s, Z1/k}

 2 Parallel and Distributed Models for Logic Programming

Parallel and Distributed Logic Programming 105

5. Hermenegildo, M. and Tick, E., “Memory performance of AND-parallel
PROLOG on shared-memory architecture,” Proc. of the 1988 Int. Conf. on
Parallel Processing, vol. II, Software, pp. 17-21, Aug. 15-19, 1988.

6. Jeffrey, J., Lobo, J., Murata, T., “A high-level Petri net for goal-directed
semantics of Horn clause logic,” IEEE Trans. on Knowledge and Data Engg.,
vol. 8, no. 2, April 1996.

7. Kale, M. V., “Parallel problem solving,” in Parallel Algorithms for Machine
Intelligence and Vision, Kumar, V., Gopalakrishnan, P. S. and Kanal, L. N.,
(Eds.), Springer-Verlag, Heidelberg, 1990.

8. Konar, A. and Mandal, A. K., “Uncertainty management in expert systems
using fuzzy Petri nets,” IEEE Trans. on Knowledge and Data Engg., vol.8,
no. 1, Feb. 1996.

9. Li, L., “High-level Petri net model of logic program with negation,” IEEE
Trans. on Knowledge and Data Engg., vol. 6, no. 3, June 1994.

10. Murata, T., “Petri nets: Properties, Analysis and Applications,” IEEE Proc.,
vol. 77, no. 4, April 1989.

11. Murata, T. and Yamaguchi, H., “A Petri net with negative tokens and its
application to automated reasoning,” Proc. of the 33rd Midwest Symp. on
Circuits and Systems, Calgary, Canada, Aug. 12-15, 1990.

12. Naganuma, J., Ogura, T., Yamada, S-I., Kimura, T., “High-speed CAM-based
architectutre for a PROLOG machine (ASCA),” IEEE Trans. on Computers,
vol. 37, no. 11, Nov. 1988.

13. Patt, Y. N., “Alternative implementations of PROLOG: the micro architecture
perspectives,” IEEE Trans. on Systems, Man and Cybernetics, vol. 19, no. 4,
July/ Aug. 1989.

14. Peterka, G. and Murata, T., “Proof procedure and answer extraction in Petri
net model of logic programs,” IEEE Trans. on Software Engg., vol. 15, no. 2,
Feb. 1989.

15. Takeuchi, A., Parallel Logic Programming, Wiley, NY, 1992.
16. Takeuchi, A., “On an extension of stream-based AND-parallel logic

programming languages,” in proc. of the First National Conf. of Japan
Society for Software Science and Technology, pp. 291-294, 1984.

17. Takeuchi, A., Takahashi, K. and Shimizu, H., A parallel problem solving
language for concurrent systems, in Concepts and Characteristics of
Knowledge-based Systems, Tokoro, M., Anzai, Y. and Yonezawa, A., (Eds.),
Elsevier, North Holland, pp. 267-296, 1989.

18. Takeuchi, A. and Takahashi, K., An operational semantics of AND-OR II: A
parallel logic programming language with AND- and OR- parallelism, in
Concurrency: Theory, Language and Architecture, UK/Japan Workshop,
Lecture Notes in Computer Science, Springer-Verlag, vol. 491, Oxford, UK,
Sept. 1989.

19. Yan, J. C., “Towards parallel knowledge processing,” in Advanced series on
Artificial Intelligence, Knowledge Engineering Shells: Systems and
Techniques, Bourbakis (Ed.), vol. 2, World Scientific, Singapore, 1993.

3

The Petri Net Model-A New Approach

The chapter presents a new approach to reason with logic programs using a
specialized data structure similar to Petri nets. Typical logic programs include a
number of concurrently resolvable clauses. A priori detection of these clauses
indeed is useful for their subsequent participation in the concurrent resolution
process. The chapter explores the scope of distributed mapping of program clause
components onto Petri nets so as to automatically select the participant clauses
for concurrent resolution. An algorithm for concurrent resolution of clauses on
Petri nets has been undertaken with a motive to improve the speed-up factor of
execution of the program without sacrificing the resource utilization rate. All the
new concepts have been illustrated with examples. The exercise at the end of the
chapter includes a number of interesting problems provided with sufficient hints to
enable the readers to verify their understanding.

3.1 Introduction

Logic programming has already gained much importance for its increasing
applications in data and knowledge engineering. A logic program usually consists
of a special type of program clauses known as Horn clauses. Programs built with
Horn clauses only are called normal logic programs. Complex knowledge having
multiple consequent literals cannot be represented by normal logic programs
because of its structural restriction imposed by Horn clauses.

In spite of its limitations in knowledge representation, normal logic programs
are still prevalent in relational languages like PROLOG and designing DATALOG
for simplicity in their compilers. Generally, compilers for logic programming
employ SLD-resolution that resolves each pair of program clauses at a time.
Execution of a program by SLD-resolution thus requires a considerable amount of
time. Most logic programs usually include a number of concurrently resolvable
clauses; unfortunately there is hardly any literature on parallel and distributed
models of logic programming, capable of resolving multiple program clauses
concurrently.

In early nineties, Patt [13] examined a non-conventional execution model of a
uniprocessor micro-engine for a PROLOG program and measured its performance

A. Bhattacharya et al.: The Petri Net Model — A New Approach, Studies in Computational Intelligence
(SCI) 24, 107–175 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

realization of PROLOG on a RAP-WAM machine. The WAM generates an
intermediate code during the compilation phase of a PROLOG program that
exploits the fullest degree of parallelism in the program itself. The RAP, on the
other hand, reduces the overhead associated with the run-time management of
variable binding conflict between goals.

Hermenegildo and Tick proposed an alternative model [4] for concurrent
execution of PROLOG programs by RAP-WAM combinations by representing the
dependency relationship of the program clauses by a graph, where the take-off
arcs at the vertex in the graph denotes parallel tasks in the program. They
employed goal stacks with each processing element. When a parallel call is
invoked, the concurrent tasks are mapped autonomously to the stacks of the less
busy or idle processing elements. A synchronization and co-ordination for parallel
calls was also implemented in their scheme.

Recently Ganguly, Silberschatz and Tsur [3] presented a new algorithm for
automated mapping of logic programs onto a parallel processing architecture. In
their first scheme, they considered the mapping of program clauses having shared
variables onto adjacent processors. This reduces the communication overhead
among the program clauses. In the latter part of their work, they eliminated the
above constraints at the cost of extra network management time.

Takeuchi in his recent book [15] presented a new language for AND-OR
parallelism. Kale in a book chapter [7] discussed the scope of an alternative
formulation of problem-solving using parallel AND-OR trees. Among the existing
speed-up schemes of logic programming machines, the content addressable
memory (CAM)–based architecture of PROLOG machines by Naganuma et al.
[12] needs special mention. To speed up the execution performance of PROLOG
programs, they employed hierarchical pipelining and garbage collection
mechanism of a CAM for efficient backtracking on a SLD tree.

Though a number of techniques are prevalent for the realization of logic
programs on a parallel architecture, none of these are capable of representing the
theoretically possible maximum parallelism in a program. For realization of all
types of parallelism in a logic program, a specialized data structure appropriate for
representing the possible parallelism is needed. Petri net has already proved itself
as a successful data structure for reasoning with complex rules. For instance, rules
having more than one antecedent and consequent clause with each clause
containing a number of variables can easily be represented by a Petri net structure
[9]. Murata [11] proposed the scope of Petri net models for knowledge
representation and reasoning under the framework of predicate logic.

There is also a good many literature [6, 10, 14] dealing with much more
complex reasoning problems using Petri nets. Because of the distributed structure
of a Petri net, pieces of knowledge fragmented into components can easily be
mapped onto this structure [8]. For example, a transition firing in a Petri net may
synonymously be used as rule firing in an expert system. The transitions may be
regarded as the implication operator of a rule, while its input and output places

108

with a set of 14 benchmarks. Yan [16] provided a novel scheme for concurrent

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 109

may respectively be regarded as the antecedent and consequent clauses of a rule
[1]. The arguments associated with the predicates of a clause are also assigned at
the arcs connecting the place containing the predicate and the transition describing
the implication rule. Such fragmentation and mapping of the program components
onto different modules of a Petri net enhances the scope of parallelism in a logic
program. The objective of the chapter is to fragment a given logic program to
smallest possible units, and map them onto a Petri net to fully exploit its parallelism.

The methodology of reasoning presented in the chapter is an extension of
Murata’s classical models on Petri nets [11, 14], applied to logic programming.
Murata defined a set of rules to synonymously describe the resolution of horn
clauses in a normal logic program with the firing of transitions in a Petri net. The
chapter attempts to extend Murata’s scheme for automated reasoning to non-Horn
clause based programs as well.

Section 3.2 provides related definitions of important terminologies used in this
chapter. The concept of concurrency in resolution process is introduced in section
3.3. A new model for concurrent resolution on Petri nets is presented in section
3.4. An algorithm for concurrent resolution is presented in section 3.5.
Performance analysis of the Petri net-based model is covered in section 3.6.
Conclusions are listed in section 3.7. A set of numerical problems has been
undertaken in the exercise of the chapter.

3.2 Formal Definitions

In this section, we provide relevant definitions to logic programming and different
methodologies to execute logic programs by resolution of program clauses.

Definition 3.1: A clause cli is represented by

 Ai ←Bi . (3.1)

where Bi denotes the body, Ai denotes the head and ‘←’ denotes the implication
operator.

 The body Bi usually is a conjunction of literals Bij ∃j, i.e.,

 Bi = Bi1 ∧ Bi2 ∧…..∧ Bij (3.2)

 The head Ai usually is a disjunction of literals Aik ∃k, i.e.,

Ai = Ai1 ∨ Ai2 ∨…..∨ Aik (3.3)

3.2.1 Preliminary Definitions

110

 The literals Aik and Bij have arguments containing terms that may include
variables (denoted by capital letters), constants (denoted by small letters),
function of variables and function of function of variables (in a recursive form).

Example 3.1: This example illustrates the constituents of a clause. For instance,

 Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z). (3.4)

is an example of a general clause, where the body consists of Father (X, Y) and
Grandfather (X, Z) and the head consists of Father (Y, Z) and Uncle (Y, Z). The
clause states that if X is the father of Y and X is the grandfather of Z, then either Y
is the father of Z or Y is the uncle of Z.

 In case all the terms are bound variables or constants, the literals Aik or Bij are
called ground literals.

Example 3.2: The following is an example of a clause with all variables been
bound by constants, thereby resulting in ground literals: Father (n, a) and Son (a,
n).

 Father(n, a) ←Son(a, n). (3.5)

 The above clause states that if a is son of n then n is the father of a.

Special cases:

(i) In case of a goal clause (query) the consequent part Ai is absent.

 The clause (3.6) presented below contains no consequent part, and hence it
is a query.

 ←Grandfather(X, Z). (3.6)

 Given that X is the grandfather of Z, the clause (3.6) questions the value of
X and Z.

(ii) A clause with an empty body and consisting of ground literals in the head is

regarded as a fact.

 The clause (3.7) below contains no body part and the variable arguments
are bound by constants. Thus it is a fact.

 Grandfather(r, a) ←. (3.7)

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 111

 It states that r is grandfather of a.

(iii) When the consequent part Ai includes a single literal, the resulting clause is
called a Horn clause. The details about Horn clause are given in definition
3.2.

(iv) When Aik and Bij do not include arguments, we call them propositions and the

clause ‘Ai ←Bi.’ is then called a propositional clause.

 The clause (3.8) below for instance is a propositional clause as it does not
contain any arguments.

P ←Q, R. (3.8)

Definition 3.2: A Horn clause contains a head and a body with at most one literal
in its head.

Example 3.3: The clause (3.9) is an example of a Horn clause.

 P ←Q1, Q2, ….., Qn. (3.9)

 It represents a Horn clause where P and the Qi are literals or atomic formulas. It
means if all the Qis are true, then P is also true. Qi is the body part and P is the
head in this Horn clause.

Definition 3.3: The clauses containing more than one literal in its head are known
as Non-Horn Clauses.

Example 3.4: The clause (3.10) for instance is a non-Horn clause.

 P1, P2,….., Pm ←Q1, Q2,….., Qn. (3.10)

Definition 3.4: An Extended Horn Clause (EHC) contains a head and a body
with at least one clause in the body and zero or more number of clause in its
head. Commas are used to denote conjunction of the literals in the body and
disjunction of literals in the head.

Example 3.5: The general format of an EHC is

 A1, A2,….., An ←B1, B2,….., Bm. (3.11)

 Here the head and the body contain n and m number of literals respectively.

112

 It is important to note that an extended Horn clause includes both Horn clause
and its extension as well.

Definition 3.5: A program that contains extended Horn clauses, as defined above,
is called an Extended Logic Program.

Example 3.6: The clauses (3.12 − 3.15) together represent an extended logic
program. It includes extended Horn clause (3.12) with facts (3.13 − 3.15).

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z). (3.12)
Father(r, d) ←. (3.13)
¬Father(d, a) ←. (3.14)
Grandfather(r, a) ←. (3.15)

 To represent the query “whether d is uncle of a?” the goal clause of the
following form may be constructed.

 Goal: ←Uncle(d, a). (3.16)

 The answer to the query can be obtained by taking negation of the goal and
then resolving it with the supplied clauses (3.12 − 3.15). In the present context, the
answer to the query will be true.

 To explain this, we need to introduce the principles of resolvability of two
clauses. In order to explain resolvability of clauses we further need to introduce
substitution sets and most general unifier.

Definition 3.6: A substitution represented by a set of ordered pairs s{t1/v1,
t2/v2,….., tn/vn}, is called the substitution set. The pair ti/vi means that the term ti is
substituted for every occurrence of the variable vi throughout.

Example 3.7: There exists four substitution sets for the predicate P(a, Y, f(Z)) in
the following instances:

 P(a, X, f(W))
 P(a, Y, f(b))
 P(a, g(X), f(b))
 P(a, c, f(b))

 Substitution sets for the aforementioned examples are

 s1 = {X/Y, W/Z}
 s2 = {b/Z}
 s3 = {g(X)/Y, b/Z}
 s4 = {c/Y, b/Z}

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 113

 To denote a substitution instance of an expression w, using a substitution s we
write ws.

Example 3.8: Let the expression w = P(a, Y, f(Z)) and the substitution set s =
{X/Y, W/Z}. Then the substitution instance ws = P(a, X, f(W)).

3.2.2 Properties of the Substitution Set

Property 1: (ws1)∆s2 = w(s1∆s2) where w is an expression and s1∆s2 are two
substitutions.

Example 3.9: To illustrate the property 1,

let,
 w = P(X, Y),

 s1 = {f(Y)/X}

and s2 = {a/Y}.

 Now, (ws1)∆s2 = (P(f(Y), Y)){a/Y}
 = (P(f(a), a)).

Again, w(s1∆s2) = (P(X, Y)){f(a)/X, a/Y}
 = P(f(a), a).

Therefore, (ws1)∆s2 = w(s1∆s2).

 The composition of two substitutions s1 and s2 in order is denoted by s1∆s2,
which is the substitution obtained by first applying s2 to the terms of s1 and then
adding the ordered pairs from s2 not occurring in s1. Example 3.10 illustrates the
said concept.

Example 3.10: Let s1 = {f(X, Y)/Z} and s2 = {a/X, b/Y, c/W, d/Z}.

Then s1∆s2 = {f(a, b)/Z, a/X, b/Y, c/W}.
Property 2: Composition of substitutions is associative i.e.,

 (s1∆s2)∆s3 = s1∆(s2∆s3).

114

Example 3.11: To illustrate the associative property of composition in
substitutions,
let,
 s1 = {f(Y)/X}
 s2 = {a/Y}
 s3 = {c/Z}
and w = P(X, Y, Z).

Here, (s1∆s2) = {f(a)/X, a/Y}
 (s1∆s2)∆s3 = {f(a)/X, a/Y, c/Z}

Again, (s2∆s3) = {a/Y, c/Z}
 s1∆(s2∆s3) = {f(a)/X, a/y, c/Z}

Therefore, (s1∆s2)∆s3 = s1∆(s2∆s3).

Property 3: Commutability fails in case of the substitutions i.e.,

 s1∆s2 ≠ s2∆s1.

Example 3.12: We can illustrate the third property following the substitution sets
used in example 3.11.

Here,

 (s1∆s2) = {f(a)/X, a/Y} and (s2∆s1) = {a/Y, f(Y)/X}
 So, s1∆s2 ≠ s2 ∆s1.

Definition 3.7: Given two predicates P(t1, t2,, tn) and P(r1, r2,, rn) and s =
{ti/ri} is a substitution set, which on substitution in the predicates makes them
identical (unifies them). Then the substitution set s is called a unifier. The most
general unifier (mgu) is the simplest unifier g, so that any other unifier g satisfies
g = g ∆ s for some substitution s .

Example 3.13: For the predicates P(X, f(Y), b) and P(X, f(b), b), g = {a/X,
b/Y}definitely is a unifier as it unifies the predicates to P(a, f(b), b), but the mgu
in this case is g = {b/Y}. If is to be noted further that a substitution s = {a/X}
satisfies g = g ∆ s .

Definition 3.8: Let cli and clj be two clauses of the following form:

 Cli ≡ Ai1 ∨ Ai2 ∨…..∨ Aix ∨…..∨ Aim ←Bi1 ∧ Bi2 ∧…..∧ Bil (3.17)
 Clj ≡ Aj1 ∨ Aj2 ∨…..∨ Ajm

/ ←Bj1 ∧ Bj2 ∧…..∧ Bjy ∧…..∧ Bjl
/ (3.18)

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 115

and P be the common literal present in the head of cli and body of clj. For instance,
let for a substitution s

 [Aix]s = [Bjy]s = [P]s

 The resolvent of cli and clj, denoted by R(cli, clj) = clij (say), is computed as
follows under the substitution s = sij, say.

Clij =
 [(Ai1 ∨ Ai2 ∨…..∨ Ai(x-1) ∨ Ai(x+1) ∨…..∨ Aim)∨(Aj1 ∨ Aj2 ∨…..∨ Ajm

/) ←
 (Bi1 ∧ Bi2 ∧…..∧ Bil)∧(Bj1 ∧ Bj2 ∧…..∧ Bj(y-1) ∧ Bj(y+1) ∧…..∧ Bjl

/)] (3.19)

 If clij can be computed from the given cli and clj, we say that the clauses cli and
clj are resolvable.

Example 3.14: The clauses given are as follows:

 Cli: Fly(X) ←Bird(X). (3.20)
 Clj: Bird(parrot) ←. (3.21)
 Clij: Fly(parrot) ←. where sij ={parrot/X} (3.22)

 The clauses cli and clj in this example, are resolvable with the substitution sij

yielding the resolvent clij.

Definition 3.9: If in a set of clauses there is at least one clause clj for each clause
cli such that resolution holds on cli and clj, producing a resolvent clij, then the set
is called the set of resolvable clauses.

Example 3.15: In the following set of clauses each clause is resolvable with at
least one other clause:

 Mother(Y, Z) ←Father(X, Z), Wife(Y, X). (3.23)
 Father(r, l) ←. (3.24)
 Wife(s, r) ←. (3.25)

 Here, clause number 3.23 is resolvable with clause number 3.24 and clause
number 3.25. It is an example of the set of resolvable clauses.

Now, we briefly underline Select Linear Definite (SLD)-resolution.

3.2.3 SLD Resolution

To understand SLD resolution we first have to learn a few definitions.

116

Definition 3.10: A definite program clause is a clause of the form

 A ←B1, B2,, Bn.,

which contains precisely one atom (viz. A) in its consequent (head) and may
contain a null, one or more literals in its body (viz. B1 or B2 or …..or Bn).

Definition 3.11: A definite program is a finite set of definite program clauses.

Definition 3.12: A definite goal is a clause of the form

←B1, B2,, Bn.

i.e., a clause with an empty consequent.

Definition 3.13: SLD resolution stands for SL resolution for definite clauses,
where SL stands for resolution with linear selection function.

Example 3.16: This example illustrates the linear resolution. Here, the following
OR clauses (clauses connected by OR operator), represented by a set-like notation
are considered.

A1 A2

P(X) ←. A3

Q(X) ←. A4

←P(X). P(X) ←.

∅

Fig. 3.1: The linear selection of clauses in the resolution tree

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 117

Let S = {A1, A2, A3, A4},
where A1 = P(X), Q(X) ←.
 A2 = P(X) ←Q(X).
 A3 = Q(X) ←P(X).
 A4 = ←P(X), Q(X).

and goal = ←¬P(X).

 By linear selection, a resolution tree can be constructed as shown in Fig. 3.1.

 It is clear that two clauses from the set S1 = S ∪{¬Goal} are first used for
resolution with a third clause from the same set S1. The process is continued until
a null clause is generated. In the linear selection process, one clause, however, can
be used more than once for resolution.

Definition 3.14: Let S = {cl1, cl2,, cln} be a set of resolvable clauses, and there
exists one or more definite orders to select the clauses pair-wise for SLD
resolution, without which the SLD resolution of all the n clauses fail to generate a
resolvent. Under this circumstance, we say that an orderly resolution exists
among the clauses in S.

 The resolvent of clauses cli and clj is hereafter denoted by clij or R(cli, clj), where R
represents a binary resolution operator. The order of resolution in R (R (cli, clj), clk) is
denoted by i-j-k for brevity. It may be noted that i-j ≡ j-i and i-j-k ≡ k-i-j ≡ k-j-i.

Example 3.17: Given the following clauses cl1 through cl3, we would like to
illustrate the principle of orderly resolution with these clauses.

 Cl1: Paternal-uncle(X, Y), Maternal-uncle(X, Y) ←Uncle(X, Y).
 Cl2:¬Paternal-uncle(n, a) ←. ≡ ←Paternal-uncle(n, a).
 Cl3:¬Maternal-uncle(n, a) ←. ≡ ←Maternal-uncle(n, a).

 We now demonstrate two different orders of resolution, and show that the
result is unique in both the cases. One of the orders of resolution could be 1-2-3.
This is computed as follows:

 R(cl1, cl2): Maternal-uncle(n, a) ←Uncle(n, a). with s12 = {n/X, a/Y}
 R(R(cl1, cl2), cl3): ←Uncle(n, a). ≡ ¬Uncle(n, a) ←.

 An alternative order of resolution is 3-1-2. To compute this, we proceed as
follows:

 R(cl3, cl1): Paternal-uncle(n, a) ←Uncle(n, a). with s31 = {n/X, a/Y}
 R(R(cl3, cl1), cl2): ←Uncle(n, a). ≡ ¬Uncle(n, a) ←.

118

 So, both the orderly resolutions return the same resolvent: [¬Uncle(n, a) ←.]
which means n is not the uncle of a.

 It is important to note that resolution of multiple clauses by different orders
always do not return unique resolvent.

Definition 3.15: If there exists only one definite order of resolution among a set
of resolvable clauses, it is said to have single sequence of resolution. On
occasions, we can obtain the same resolvent by taking a reversed order of
resolution. For instance R(…(R(R(R(cl1, cl2), cl3), cl4)…..cln-1), cln) =
R(…(R(R(cln, cln-1), …cl3),cl2),cl1) is valid if the resolvents can be computed for
each resolution. We, however, consider it a single order of resolution.

Example 3.18: To understand the single sequence of resolution, let us take the
following clauses.

 Cl1: W(Z, X) ←P(X, Y), Q(Y, Z).
 Cl2: P(a, b) ←S(b, a).
 Cl3: S(Y, X) ←T(X).

 The resolution of clauses in the present context follows a definite order: 1-2-3
(or 3-2-1). It may be noted that

 R(R(cl1, cl2), cl3) = R(R(cl3, cl2), cl1) = W(Z, a) ←Q(b, Z), T(a).

 Consequently, a single sequence is maintained in the process of resolution of
multiple program clauses.

Definition 3.16: When in a set of resolvable clauses, resolution takes place
following different orders, multiple sequence is said to be present.

Example 3.19: The following clauses are taken to illustrate the multiple
sequences in a set of resolvable clauses.

 Given Cl1: S(Z, X) ←P(X, Y), Q(Y, Z), R(Z, Y).
 Cl2: P(a, b) ←T(c, a), U(b).
 Cl3: Q(b, c) ←V(b), M(c).
 Cl4: R(Z, Y) ←N(Y), O(Z).

Sequence 1: Order: 1-2-3-4.

R(cl1, cl2):S(Z, a) ←Q(b, Z), R(Z, b), T(c, a), U(b).⏐s12={a/X, b/Y}

R(R(cl1, cl2), cl3): S(c, a) ←R(c, b), T(c, a), U(b), V(b), M(c).⏐s12,3={c/Z}

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 119

R(R(R(cl1, cl2), cl3), cl4):
S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).⏐s12,3,4={c/Z,b/Y}

Sequence 2: Order: 3-1-2-4.

R(cl3, cl1): S(c, X) ←P(X, b), R(c, b), V(b), M(c).⏐s31={c/Z, b/Y}

R(R(cl3, cl1), cl2):
S(c, a) ←T(c, a), U(b), P(a, b),R(c, b), V(b), M(c).⏐s31,2={a/X}

R(R(R(cl3, cl1), cl2), cl4):
S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).⏐s31,2,4={c/Z, b/Y}

Sequence 3: Order: 1-2-4-3.

R(R(cl1, cl2), cl4):
S(Z, a) ←Q(b, Z), T(c, a), U(b), N(b), O(Z).⏐s12,4={b/Y}

R(R(R(cl1, cl2), cl4), cl3):
S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).⏐s1,2,4,3={c/Z}

The results of the above computation reveal that

 R(R(R(cl1, cl2), cl3), cl4)
 = R(R(R(cl3, cl1), cl2), cl4)
 = R(R(R(cl1, cl2), cl4), cl3)
 = S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).

 Consequently, multiple orders exist in the resolution of clauses.

 Readers may please note that resolution between cl2 and cl3, cl3 and cl4, cl2 and
cl4 are not possible.

Definition 3.17: Let S = {cl1, cl2,, cln} be a set of resolvable clauses and the
clis are ordered in a manner that cli and cli+1 are resolvable for i = 1, 2,, (n-1).
If cln is also resolvable with cl1 we call it circular resolution. Circular resolution
is not allowed as it invites multiple resolutions between two clauses.

Example 3.20: Consider the following propositional clauses.

 Cl1: Q ←P.
 Cl2: R ←Q.
 Cl3: P ←R.

Let Cl12 = R(Cl1, Cl2)
 = R ←P.

120

However, evaluation of R(Cl12, Cl3) cannot be performed as it invites more than
one resolution between the two clauses[2].

Definition 3.18: Let S be a set of resolvable clauses such that their pair-wise
selection for SLD resolution from S is random. Under this condition S is called the
set of an order-less or order independent clauses.

Example 3.21: Let S be the set of the following clauses:

Cl1: U ←P, Q, R.
Cl2: S, M, P ←V.
Cl3: Q ←W, M, T.
Cl4: T ←U, S.

 In this example, we attempt to resolve each clause with others.

 Cl12: U, S, M ←V, Q, R.
 Cl13: U ←P, R,W, M, T.
 Cl14: T ←P, Q, R, S.
 Cl23: S, P, Q ←V, W, T.
 Cl34: Q ←W, M, U, S.
 Cl24: M, P, T ←V, U.

 As each of the clauses is resolvable with each other, order-less condition for
resolution holds here.

3.3 Concurrency in Resolution

To speed up the execution of logic programs, we in this section take a look at
possible parallelism/concurrency in the resolutions involved in the program.

3.3.1 Preliminary Definitions

Definition 3.19: If S includes multiple ordered sequence of clauses for SLD
resolution and for each such sequence the final resolvent is identical then the
clauses in S are concurrently resolvable. Under this case resolution of all the
clauses can be done concurrently yielding the same resolvent.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 121

Example 3.22: In this example we consider concurrent resolution of propositional
clauses.

 Cl1: R ←P, Q.
 Cl2 : P ←S.
 Cl3 : Q ←T.
 Cl4 : T ←U.

Sequence 1: Order: 1-2-3-4.

R(Cl1, Cl2): R ←Q, S.
R(R(Cl1, Cl2), Cl3): R ←T, S.
R(R(R(Cl1, Cl2), Cl3), Cl4): R ←U, S.

Sequence 2: Order: 3-1-4-2.

 R(Cl3, Cl1): R ←P, T.
 R(R(Cl3, Cl1), Cl4): R ←P, U.
 R(R(R(Cl3, Cl1), Cl4), Cl2): R ←U, S.

Sequence 3: Order: 3-1-2-4.

R(R(Cl3, Cl1), Cl2): R ←S, T.
 R(R(R(Cl3, Cl1), Cl2), Cl4): R ←U, S.

Sequence 4: Order: 3-4-1-2.

 R(Cl3, Cl4): Q ←U.
 R(R(Cl3, Cl4), Cl1): R ←P, U.
 R(R(R(Cl3, Cl4), Cl1), Cl2): R ←U, S.

 Illustration of concurrent resolution:

 R ← P, Q.
 P ← S.
 Q ← T.
 T ← U.
 R ← U, S.

122

 Fig. 3.2: Concurrent resolution

For all the four sequences the resolvent is unique ‘R ←U, S.’, which is illustrated
vide Fig. 3.2.

Definition 3.20: In case multiple sequences exist in orderly resolution and the
resolvent is not unique, then the substitutions used in resolution in each pair of
clauses may be propagated downstream in the process of SLD resolution. The
composition of the substitution sets for every two sequential substitutions is also
carried forward along the SLD tree until the final resolvent is obtained. The final
substitution may now be used as the instantiation space of the resolvent and the
resulting clause thus generated for each such sequence is compared. In case the
instantiated resolvent generated following multiple sequences yields a unique
result then the clauses in S are also called concurrently resolvable set of
resolution. The final substitution set is called the deferred substitution set.

Example 3.23: To illustrate the aforementioned situation, let

 Cl1: R(Z, X) ←P(X, Y), Q(Y, Z).
 Cl2: P(a, b) ←S(b, a).
 Cl3: Q(b, c) ←T(c, b).
 Cl4: T(Z, Y) ←U(X, Y).

Sequence 1: Order: 1-2-3-4.

R(Cl1, Cl2): R(Z, a) ←Q(b, Z), S(b, a).⏐s12={a/X, b/Y}

R(R(Cl1, Cl2), Cl3): R(c, a) ←T(c, b), S(b, a).⏐s12,3={c/Z}

R(R(R(Cl1, Cl2), Cl3), Cl4):R(c, a) ←S(b, a), U(X, b).⏐s12,3,4={c/Z,b/Y}

 ∴Composition of the substitutions, s12 ∆ s12,3 = {a/X, b/Y, c/Z} and the final
composition of the substitutions, s12 ∆ s12,3∆ s12,3,4 = {a/X, b/Y, c/Z}.

R ←P, Q.

P ←S.

Q ←T.

T ←U.

Concurrent
resolution R ←U, S.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 123

Sequence 2: Order: 3-1-2-4.

R(Cl3, Cl1): R(c, X) ←P(X, b), T(c, b).⏐s31={b/Y, c/Z}

R(R(Cl3, Cl1), Cl2): R(c, a) ←T(c, b), S(b, a).⏐s31,2={a/X}

R(R(R(Cl3, Cl1), Cl2), Cl4):R(c, a) ←S(b, a), U(X, b).⏐s31,2,4={c/Z, b/Y}

 ∴Composition of the substitutions, s31 ∆ s31,2 = {a/X, b/Y, c/Z} and the final
composition of the substitutions, s31 ∆ s31,2∆ s31,2,4 = {a/X, b/Y, c/Z}.

Sequence 3: Order: 3-4-1-2

 R(Cl3, Cl4): Q(b, c) ←U(X, b).⏐s34={b/Y, c/Z}

 R(R(Cl3, Cl4), Cl1): R(c, X) ←P(X, b), U(X, b).⏐s34,1={b/Y, c/Z}

 R(R(R(Cl3, Cl4), Cl1), Cl2):R(c, a) ←S(b, a), U(a, b).⏐s34,1,2={a/X}

 ∴Composition of the substitutions, s34 ∆ s34,1 = {b/Y, c/Z} and the final
composition of the substitutions, s34 ∆ s34,1,2∆ s34,1,2 = {a/X, b/Y, c/Z}.

 Now, if we compute the deferred substitution set for the three sequences, we
find it to be equal, the value of which is given by s ={a/X, b/Y, c/Z}. When the
resolvents are instantiated by this deferred substitution set, they become equal and
the final resolvent is given by R(c, a) ←S(b, a), U(a, b).

3.3.2 Types of Concurrent Resolution

There are three types of concurrent resolution:

(1) Concurrent resolution of a rule with facts,
(2) Concurrent resolution of multiple rules,
(3) Concurrent resolution of both multiple rules and facts.

 Various well-known types of parallelisms are involved in the concurrent
resolutions.

 Whenever more than one variable in a rule are instantiated with the constants,
Unification-Parallelism takes place.

Definition 3.21: When the predicates of a rule are attempted for matching with
predicates contained in the facts, concurrent resolution of the rule with facts is
said to take place.

124

It can occur in two ways. In the first case, the literals present in the body part of
a clause (AND-literals) may be searched against the literals present in the heads of
the available facts, which is a special case of AND-Parallelism.

Example 3.24: To illustrate AND-parallelism let us consider the following
clauses:

Mother(Z, Y) ←Father(X, Y), Married-to(X, Z). (3.26)
Father(r, n) ←. (3.27)
Married-to(r, t) ←. (3.28)

 Here, predicates in the heads of the facts given by the clauses 3.27 and 3.28
are concurrently resolved with the predicates in the body of the rule given by 3.26
yielding the resolvent

 Mother(t, n) ←.

Again, when a literal present in the body of one rule may be searched concurrently
against the literals present in the heads of more than one fact OR-Parallelism is
invoked.

Example 3.25: We can illustrate OR-parallelism with the help of the following
clauses:

Son(X, Y) ←Father(Y, X). (3.29)
 Father(r, n) ← . (3.30)

Father(n, a) ← . (3.31)

Here, the variables present in the body of the rule given by equation number
3.29 can be matched concurrently with the arguments in the heads of the facts
given by equation numbers 3.30 and 3.31.

Definition 3.22: When more than one rule are resolved concurrently in a given set
of resolvable clauses, we say that concurrent resolution of multiple rules has
taken place.

Example 3.26: The following clauses are considered to explain the concurrent
resolution of multiple rules:

 Mother(Z, Y) ←Father(X, Y), Wife(Z, X). (3.32)
 Wife(Y, X) ←Female(Y), Married-to(Y, X). (3.33)
 Married-to(X, Y) ←Marries(X, Y). (3.34)

 3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 125

Here, the concurrent resolution can take place between the rules 3.32 and 3.33
in parallel with the rules 3.33 and 3.34. Moreover, the above three rules can be
concurrently resolved together yielding the resolvent

 Mother(Z, Y) ←Father(X, Y), Female(Z), Marries(X, Z). (3.35)

A special kind of parallelism, known as Stream-parallelism can be encountered
while discussing concurrent resolution of multiple rules. It is explained with the
example 3.27.

Example 3.27: Let us consider the following clauses:

 Integer(X+1) ←Integer(X). (3.36)
 Evaluate-square(Z.Z) ←Integer(Z). (3.37)
 Print(Y) ←Evaluate-square(Y). (3.38)
 Integer(0) ←. (3.39)

Here, the resolvent obtained by resolving the rule 3.36 and the fact 3.39 is
propagated to resolve the rule 3.37. The resolvent thus obtained is resolved further
with 3.38. The process is repeated in a streamline for the integer sequence 0, 1, 2,
…… up to infinity. After one result is printed, the pipeline becomes busy rest of
the time, and resolution of three pairs of clauses take place.

Definition 3.23: If more than one rule is resolved concurrently with more than
one fact, concurrent resolution of both multiple rules and facts takes place.

Example 3.28: To illustrate the concurrent resolution of multiple rules and facts,
let us take the following clauses:

R(Z, X) ←P(X, Y), Q(Y, Z). (3.40)
P(a, b) ←. (3.41)
Q(b, c) ←. (3.42)
S(U, V), T(U, V) ←R(U, V). (3.43)
←S(d, e). (3.44)
←T(d, e). (3.45)

Here, concurrent resolution can take place in several ways. At first, the rules
given by (3.40) and (3.43) can resolve generating the resolvent S(Z, X),T(Z, X)
←P(X, Y), Q(Y, Z). Again, the rule (3.40) is resolved with the facts given by
(3.41) and (3.42) in parallel while the rule (3.43) is resolved with the facts given
by (3.44) and (3.45). The resolvents in these two cases are, respectively:

 R(c, a) ←Q(b, c). and ←R(d, e).

126

When the predicates present in the body of one rule does also occur in the head
of a second rule the latter and the former rules are said to be in pipeline [9]. Rules
in pipeline are resolvable. But in case there exists matching ground clause for the
common literals of both the rules, it is preferred to resolve the ground clause with
either of (or both) the rules. The Petri net model for extended logic programming
that we would like to introduce shortly is designed based on the aforementioned
concept.

 The observations which can be made from example 3.28 are as follows:

(1) Resolution of a rule with one or more facts provides a scope for
yielding intermediate ground inferences.

 For instance, the rule (3.40) in example 3.28 when resolved with

(3.41) and (3.42) yields a ground intermediate R (c, a) ←Q (b, c).

(2) Resolution of two or more rules yields new rules containing literals
with renamed variables. The effort in doing so, on many occasions,
may be fruitless.

 For instance, if rule (3.40) and (3.43) were resolved, a new rule

would be generated with no further benefits of re-resolving the
resulting rule with available facts.

(3) In case there exist concurrently resolvable group of clauses, where
each group contains a rule and a few facts, then the overall
computational speed of the system can be significantly improved.

Example 3.29 provides an insight to this issue.

Example 3.29: Let us take the following clauses

R(Z, X) ←P(X, Y), Q(Y, Z). (3.46)
P(a, b) ←. (3.47)
Q(b, c) ←. (3.48)
S(U, V), T(U, V) ←R(U, V). (3.49)
←S(c, a). (3.50)
←T(c, a). (3.51)

Unlike example (3.28), where the resulting resolvents after concurrent
resolution of two groups of clauses could not participate in further resolution, here
the resolvents due to concurrent resolution of (3.46 − 3.48) and (3.49 − 3.51) can
also take part in the resolution game, resulting in a null clause. To have an idea of

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 127

speed-up, we construct a graph (vide Fig. 3.3) indicating the concurrency in
resolution.

It is apparent from the graph (Fig. 3.3) that the concurrent resolution of clauses
(3.46-3.48) and (3.49-3.51) can take place in one unit time, and the resolution of
the resulting clauses require one unit time. Thus, the time taken for execution of
the logic program on a parallel engine is two unit times. The same problem, if
solved by SLD tree, takes as many as five unit times to perform five resolutions of
binary clauses (Fig. 3.4).

0 R(Z, X) ←P(X, Y), Q(Y, Z). P(a, b) ← .

1 R(Z, a) ←Q(b, Z). Q(b, c) ←.

2 R(c, a) ←. S(U, V), T(U, V) ←R(U, V).

3 S(c, a), T(c, a) ←. ←S(c, a).

4 T(c, a) ←. ←T(c, a).

5 ∅

Fig. 3.4: The SLD Tree

∅

R(Z, X) ←P(X,Y), Q(Y,Z).

P(a, b) ←. Q(b, c) ←.

S(U, V), T(U, V) ←R(U, V).

←S(c, a). ←T(c, a).

R(c, a) ←. ←R(c,a).

Fig. 3.3: A graph illustrating concurrency in resolution

128

The example shows that definitely there is a scope in speed-up due to
concurrent resolution at the cost of additional expenses for hardware resources.

The most important problem in concurrent resolution is the identification of the
clauses that participate in the resolution process. When there exist groups of
concurrently resolvable clauses, search cost to detect the participating clauses in
each group sometimes is too high to be amenable in real time. A specialized data
structure, capable of performing concurrent resolution of multiple groups of
clauses, thus is recommended. In fact, we are in search of a suitable structure
where participating facts and rules under one group of resolvable clauses can be
represented by neighboring structural units. The search cost needed in concurrent
resolution thus can be saved by the above mentioned data structure.

Petri nets which have already proved itself successful in solving many complex
problems of knowledge engineering, can equally be used in the present context to
efficiently handle the problems of concurrent resolution. Let us for example
consider a clause ‘P (X, Y), Q (X, W) ←R (X, Y), S (Y, W).’, which is
represented in a Petri net by a transition and four associated places, where P and Q
are represented by output places, and R and S are denoted by input places of the

Place
R

Place
P

(Y, W) ¬(X, W)
Arc function Arc function

Arc function Arc function
(X, Y) ¬(X, Y)

Place
S

Place
Q

<a, b>

<b, c>

¬<a, b>

Transition

transition. The argument of each literal in a rule is represented by a specialized

3 The Petri Net Model A New Approach⎯

Fig. 3.5: Mapping of a rule on Petri net

Parallel and Distributed Logic Programming 129

function, called arc function, which is associated with the arc connecting the
transition with the respective places. The arc functions are needed for generation
of variable bindings in the process of resolution of clauses. If ‘¬P (a, b) ←.’, ‘R
(a, b) ←.’ and ‘S (b, c) ←.’ are supplied as additional facts then they could be
mapped in the places connected with the proposed transition, and the arguments
¬<a, b>, <a, b> and<b, c> of the facts are saved as tokens of the respective places
P, R and S. Such neighbourhood mapping of the rule and facts described in Fig.
3.5 help concurrent resolution with no additional time for searching the
concurrently resolvable clauses.

Reasoning in Logic program with Petri nets was first proposed by Murata [11].
In this chapter, we extended Murata’s model on the following counts.

♦ In Murata’s model arc functions associated with the arcs of a Petri net are
positive irrespective of the type1 of the arcs. The model to be proposed
shortly, however, assigns a positive sign to the arc function attached with a
place-to-transition connective arc, and a negative sign to the arc function
attached with a transition-to-place connective arc. The attachment of sign
with the arc functions facilitates the scope of matching of signed tokens of
the respective places with the arc functions of the connected arcs following
the formalisms of predicate logic.

♦ Unlike Murata’s model, where the arguments of body-less clauses were
also represented as arc functions, in the present model these are
represented as tokens of the appropriate places. Thus in the present model,
we can save additional transition firings for all those arc functions
corresponding to the body-less clauses.

♦ The extension of Murata’s model presented here allows AND-, OR-,
Unification- and Stream-parallelism in a logic program.

 The chapter takes into account the aforementioned features and presents a new
algorithm for automated reasoning, capable of handling parallelisms in a logic
program. The definitions which are needed to design the algorithm for automated
reasoning are given in the following section.

3.4. Petri net Model for Concurrent Resolution

This section provides a new algorithm for concurrent resolution of program
clauses using a specialized model of extended Petri net.

1 The directed arcs in a Petri net denote connectivities from: (i) places to
transitions, and (ii) transitions to places, and thus are of two basic types.

130

3.4.1 Extended Petri Net

Definition 3.24: An Extended Petri Net (EPN), which will be used here for reasoning with
a First Order Logic (FOL) program, is a 9-tuple, given by

 EPN = {P, Tr, D, f, m, A, a, I, O}

where
 P = {p1, p2,, pm} is a set of places;
 Tr = {tr1, tr2,, trn} is a set of transitions;
 D = {d1, d2,, dm} is a set predicates;
 P ∩ Tr ∩ D = ∅; Cardinality of P = Cardinality of D;
 f: D → P∝ represents a mapping from the set of predicates to the set of places;
 m: P → < xi, ...,yi, X,,Y,f,,g > is an association function, represented by the

mapping from places to terms, which may include signed constant(s) like xi,,
yi, variable(s) like X,,Y and function f,,g of variables;

 A ⊆ (P × Tr) ∪ (Tr × P) is the set of arcs, representing the mapping from the
places to the transitions and vice versa;
a: A → (X, Y,, Z) is an association function of the arcs, represented by the
mapping from the arcs to terms. For arcs A ∈ (P × Tr) the arc functions a are
positively signed, while for arcs A ∈ (Tr × P) the arc functions a are negatively
signed;

 I: Tr → P∝ is a set of input places, represented by the mapping from the
transitions to their input places;

 O: Tr → P∝ is a set of output places, represented by the mapping from the
transitions to their output places.

3.4.2 Mapping a Clause onto Extended Petri Net

Consider a first order clause cli where the arguments of the predicates contain
variables/constants only.

 Cli: pm+1(Z, X), ….., pm+n (Z, Y) ←p1(X, Y), ….., pm(Y, Z).

To construct a Petri net corresponding to the above clause we use the following
procedure.

Procedure Petri net construction for a rule

Input: A given first order clause with predicates containing variables and
constants.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 131

Output: An extended Petri net.

Begin

1. Construct a transition and label it as tri corresponding to clause cli.

2. Check whether any place pk, ∃k already exist in the so far constructed net.
If yes, construct places p1 through pm excluding pk. Else draw m places and
arcs emanating from those places to the transitions. Attach labels p1, p2,
….., pm to designate the places. Attach the argument of the predicate pi as
the arc function in the arc connected between place pi and the given
transition. Repeat it for all i from 1 to m.

3. Check whether any place pj already exists in the so far constructed net. If
yes, construct places pm+1 through pm+1 through pm+n excluding pj. Else
construct n number of places and connect these places from the transition
by outgoing arcs. Label the places as pm+1, pm+2, ….., pm+n. Attach negated
argument of predicate pj in the arc connected between the given transition
and place pj. Repeat at for all j between m+1 to m+n.

End.

3.4.3 Mapping a Fact onto Extended Petri Net

Procedure mapping fact onto EPN

Begin
If the predicate name used to denote the fact is already existing in a given
EPN
Then

If the fact occurs in the body of the given clause
Then the negated argument of the clause is used as token and inserted
into the corresponding place of the EPN.
Else the positive argument of the clause is used as token and inserted into
the corresponding place of the EPN.
Endif

Endif
End.

The algorithms introduced above can be used to map all the rules and facts on to
an EPN.

132

Example 3.30: Mapping of the aforementioned parameters onto an EPN is
illustrated (vide Fig. 3.6) in this example with the following FOL clauses:

 Son(Y, Z), Daughter(Y, Z) ←Father(X, Y), Wife(Z, X). (3.52)
 Father(r, l) ←. (3.53)
 Wife(s, r) ←. (3.54)
 ¬Daughter(l, s) ←. (3.55)

Here, P = {p1, p2, p3, p4};
 Tr = {tr1};
 D = {d1, d2, d3, d4} with d1 = Father, d2 = Wife, d3 = Son and d4 = Daughter;
 f(Father) = p1, f(Wife) = p2, f(Son) = p3, f(Daughter) = p4;
 m(p1) = <r, l>, m(p2) = <s, r>, m(p3) = < ∅ >, m(p4) = ¬<l,s> initially and

can be computed subsequently by resolution of clauses on the EPN;
 A = {A1, A2, A3, A4}, and
 a(A1) = (X, Y), a(A2) = (Z, X), a(A3) = ¬(Y, Z), a(A4) = ¬(Y, Z) are the arc

functions;
 I(tr1) = {p1, p2}, and O(tr1) = { p3, p4}.

It is to be noted that if-then operator of the knowledge has been represented in the
Fig. 3.6 by tr1 and the antecedent-consequent pairs of knowledge have been
denoted by input(I)-output(O) places of tr1. Moreover, the arguments of the
predicates have been represented by arc functions.

¬(Y, Z)

Father
p1

Wife
p2

Son
p3

Daughter
p4

d1

d2

d3

d4

(X, Y)

(Z, X) ¬(Y, Z)

tr1

A1

A2

A3

A4

3 The Petri Net Model A New Approach⎯

Fig. 3.6: Parameters of an EPN used to represent knowledge in FOL

Parallel and Distributed Logic Programming 133

3.5 Concurrent Resolution on Petri Nets

The enabling and firing conditions of transitions are explained below to describe
the resolution principles on an EPN.

3.5.1 Enabling and Firing Conditions of a Transition

In order to determine the enabling and firing conditions of a transition we need to
define the following items:

Consistent bindings
Let aj ∃j be an arc function of arc Aj associated with a transition tri in an EPN,
and m(pj) denotes the token at place pj where

Aj ∈ {pj} × {tri} ∪ {tri} × {pj}.

1. If number of elements in aj is equal to that of m(pj), then we assign the kth
element of m(pj) to aj∀k.

2. The assignment of step 1 is repeated for all j.

3. Let X, Y, …., Z be the list of variables present in ∪aj, ∀j. If X = k is present
in all excluding at most one aj, then variable X is said to have a consistent
value.

 If all the variables X, Y, …., Z have consistent values, then we say that the arc
function variables associated with a transition have consistent bindings.

Current-bindings (c-b) denote the set of instantiation of all the variables
associated with the transitions.

Used-bindings (u-b) denote the set of union of the current-bindings up to the last
transition firing.

Properly signed token means tokens with proper signs, i.e., positive tokens for
input places and negative tokens for output places of a transition.

Inactive arc functions represent the arc functions associated with a transition, which
do not participate in the process of generation of consistent bindings of variables.

Inert place represent the place connected with the inactive arc function.

Enabling Conditions: A transition is enabled, if i) all excluding at most one inert
place associated with the transition tri possesses properly signed tokens and ii) the

134

variables associated with the arc functions of the transition have consistent
bindings.

Firing Condition: A transition is fired if it is enabled and the current-bindings is
not a subset of used-bindings.

3.5.2 Algorithm for Concurrent Resolution

The algorithm for automated reasoning to be presented shortly allows concurrent
firing of multiple transitions. The algorithm in each pass checks the enabling
conditions of all the transitions. If one or more transitions are found enabled, the
unifier (here referred to as current-bindings) for each transition is searched against
the union of the preceding unifiers (used-bindings) of the said transition. If the
current-bindings are not members of the respective used-bindings, then the
enabled transitions are fired concurrently. The tokens for the inert places are then
computed following the current-bindings of the fired transitions.

One question that naturally arises: how long should we continue firing of the
transitions? The firing may continue until no new inferences are derived. This is
taken into account in the procedure Automated-Reasoning.

Procedure Automated-reasoning

Begin
For each transition do

Par Begin
used-bindings:= Null;
Flag:= true; // transition not firable.//

Repeat
If (a transition is enabled) AND (current-bindings is not a member of
used-bindings)

 Then do Begin
 Fire the transition and send tokens to the inert place
 using the set current-bindings and following the
 inactive arc function with a presumed opposite sign;
 Update used-bindings by taking union with current-bindings;
 Flag:= false; //record of transition firing//
 Increment no-of-firing by 1;
 End
 Else Flag:= true;
End;
Until no transition fires;

Par End;
End.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 135

The algorithm is now verified taking the following rules with the help of Fig. 3.7.

Rules:
Father (Y, Z), Uncle (Y, Z) ←Father (X, Y), Grandfather (X, Z). (3.56)
Paternal-uncle (X, Y), Maternal-uncle (X, Y) ←Uncle (X, Y). (3.57)
Father (r, n) ←. (3.58)
Father (r, d) ←. (3.59)
¬Father (d, a) ←. (3.60)
Grandfather (r, a) ←. (3.61)
¬ Paternal-uncle (n, a) ←. (3.62)
¬Maternal-uncle (n, a) ←. (3.63)
¬Maternal-uncle(d, a) ←. (3.64)

 Grandfather

 Father

tr1

¬ (Y,Z)

< r, n >
< r, d >

¬< d, a>

< r, a>

¬<n, a> ¬<n, a>
¬<d, a>

Maternal-uncle Paternal-uncle

 p4

p5

tr2

p3

p2

p1

Uncle

¬(Y, Z)

(X, Z) (X, Y)

¬(X, Y) ¬(X, Y)

Fig. 3.7: An illustrative Petri net with initial assignment of tokens used to

(X, Y)

verify the procedure automated-reasoning

136

Table 3.1: Trace of the algorithm on example net of Fig. 3.7.

The Petri net shown in Fig. 3.7 is constructed with a set of rules (3.56 − 3.64).
The reasoning algorithm presented earlier is then invoked and the trace of the
algorithm thus obtained is presented in Table 3.1. It is clear from the table that the
current-bindings (c-b) are not members of used bindings (u-b) in the first two
Firing Criteria Testing (FCT) iterations. Therefore, flag = 0. Thus following the
algorithm, transitions tr1 and tr2 both fire concurrently. In the third iteration
current-bindings become members of used-bindings, and consequently flag = 1; so
no firing takes place during the third iteration. Further, number of transition in the
Petri net (vide Fig. 3.7) being two only, control exits the repeat-until loop in
procedure Automated-reasoning after two FCT iterations.

3.5.3 Properties of the Algorithm

Theorem 1 is provided to demonstrate that the proposed algorithm includes all
types of parallelisms and theorem 2 shows the completeness of the same.

THEOREM 1: The procedure Automated-reasoning supports AND, OR and
Stream-parallelisms.

Proof: Let
pi ∈ I(trk) for i =1,2,…..,m (3.65)

and po∈ O(trk) for o =m+1, m+2,….., m+n. (3.66)

Time
slot

Tran. Set of c-b Set of u-b Flag = 0, if c-b ∉ u-b
 = 1, if c-b ∈ u-b

≠{φ}
 or c-b={φ}

First
cycle

tr1

tr2

{r/x,d/y,a/z}

{n/x,a/y}

{{φ}}

{{φ}}

0

0

Second
cycle

 tr1

tr2

{r/x,n/y,a/z}

{d/x,a/y}

{{r/x,d/y,a/z}}

{{n/x, a/y}}

0

0

tr1 {r/x,d/y,a/z}
/
{r/x,n/y,a/z}

{{r/x,d/y,a/z},
{r/x,n/y,a/z}}

1
Third
cycle

tr2 {n/x, a/y}/
{d/x, a/y}

{{n/x, a/y},
{d/x, a/y}}

1

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 137

pj ∈ I(trk+1) for ∃j, where {pj}∩{po}≠∅,i.e., there exists some common place
between the output place of transition trk and input place of transition trk+1. So the
two transitions trk and trk+1 are in pipeline.

 Let pl∈{pj}∩{po} for ∃l.

From (A) and (B), we obtain the general clause represented by the predicates
mapped at the input and the output places of the transition trk. If di denotes the
predicates corresponding to place pi ∀I, then the rule under consideration is given
by (C).

dm + 1(.), …., dm + n (.) ←d1(.), …., dm(.). (3.67)

Now assume that the knowledge base includes the following excluding at most
one fact.

 d1(.) ← .
 d2(.) ← .
 .
 .
 dm(.) ← .
 ¬dm+1(.) ← .
 ¬dm+2(.) ← .
 .
 .
 ¬dm+n(.) ← .

Further, let trk+l be another transition where for ∃u, pu∈ I(trk)∩O(trk)∩I(trk+1),
i.e., pu is a common input-output place of the transition trk. Without any loss of
generality, let us assume that, p1 = pm+n = pu. In case new stream of tokens are
generated by p1-trk-pm+n, then the transition trk+1 under favorable condition of
consistent binding will also fire concurrently with transition trk but on new sets of
data. Thus stream-parallelism if exists in the logic program, can definitely be
realized with our proposed algorithm.

Note: It is to be noted that unification-parallelism can always be maintained in a
Petri net model with additional resources for concurrent instantiation of variables
with tokens.

Example 3.31: If we consider the clauses given in (3.56-3.64), we can find out
that AND-parallelism takes place when (3.59) and (3.61) are resolved together
with (3.56). OR-parallelism takes place when (3.58) and (3.59) are tried for
resolution together with (3.56). Also OR-parallelism takes place when (3.63) and

138

(3.64) are resolved together with (3.57). In each case whenever a variable is being
matched with a constant or another variable, unification–parallelism takes place.

In this book we consider Petri net models capable of representing multiple
antecedent and multiple consequent clauses. Usually the commas present in the
antecedent clauses denote conjunction and in consequent clauses denote
disjunction. Thus in presence of tokens at all but one input/output places of an
enabled transition, the transition will fire generating a new token. Such firing of
transition includes typical AND- and a different type of OR-parallelism. Here,
independent facts mapped at the output places of the transition behave like typical
OR-clauses, and a set of concurrent resolution takes place between the OR-clauses
and a given rule containing those literals present in the OR-clauses as
consequents.

Unification-parallelism can always be maintained in the Petri net model, and
Stream-parallelism exists only when the network includes pipelined transitions
where a transition in the pipeline waits for the other to generate a sequence of
tokens.

THEOREM 2: The procedure Automated-reasoning is complete.

Proof: When a transition in procedure Automated-reasoning fires, concurrent
resolution takes place among a number of tokens with the main clause represented
by the transition and its input-output places. It is important to note that the
concurrent resolution mentioned above is similar with a number of binary
resolutions of clauses following SLD resolution technique. Secondly when two
transitions having common input places are enabled they can fire, since the
concurrent firing of transitions in the present context is conflict-free. Thus firing
of one transition does not present another to fire. Thirdly, after firing of one
transition, tokens are entered into an inert place connected with the transition, and
the old tokens in the places associated with the transition are not removed. This
ensures that the tokens non utilised in one transition firing may be utilized in
subsequent firing of the same and other transition(s). Consequently, all possible
inferences that can be derived from the given set of clauses using SLD resolution,
can also be derived by procedure Automated-reasoning. Since SLD resolution is
complete, the proof of completeness of the procedure Automated–reasoning
naturally follows.

3.6 Performance Analysis of Petri Net-based Models

In this section we outline two important issues: the speed-up factor and the
resource utilization rate of the proposed algorithm when realized on a parallel
architecture.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 139

3.6.1 The Speed-up

A complexity analysis of a logic program of n clauses comprising of predicates of
arity p reveals that the time Tu required for execution of the program by SLD-
resolution on a uniprocessor architecture is given by

 Tu = O(p.n). (3.68)

The product (p.n) in the order of complexity appears because of SLD-resolution
of n clauses with p sequential matching of arguments of predicates involved in the
resolution process.

The same program comprising of m1, m2, …, mk number of concurrently
resolvable clauses is executed2 on a pipelined (multiprocessor) architecture,
capable of resolving max {mi: 1≤ i ≤ k} number of clauses in a unit time. Let mi

include si number of supplied clauses and di number of derived clauses. Thus Σmi

= Σsi +Σdi. Under this circumstance the total computational time Tm for execution
of the logic program is given by

 Tm = O [p (n – (s1+ s2+ s3 +…..+sk) -1 + 1 × k)]

 = O[p(n- i

k
=1 si + k-1)]

 ≈ O[p (n- i
k
=1 si + k)] (3.69)

When Σsi approaches Σmi, Tm is maximum.

The above result presumes a k-stage pipeline of the k-sets of concurrently
resolvable clauses. If the k-sets of clauses are independent, then the concurrent
resolution of all the k-set of clauses can be accomplished within a unit time, and
thus the computational complexity further reduces to O[p(n - i

k
= 1 si)]. Thus

irrespective of a program, it can easily be ascertained that the computational time
Tm of a typical logic program always lies in the interval:

 O[p(n - i
k
=1 si)] ≤≤≤≤ Tm ≤≤≤≤ O [p (n - i

k
=1 si +k)] (3.70)

2

resolution of one concurrent set of clause is dependent on a second set, and thus
all sets of concurrent clauses cannot be resolved in parallel.

The k sets of concurrent clauses here is assumed to be resolved in sequence, i.e.,

140

 Thus, Speed-up3 in the worst case is found to be

S = Tu/Tm

 = (p.n)/ [p(n - i
k

=1 si +k)]

 = n / [n- i
k
=1 si + k)] (3.71)

 In case all the n number of program clauses are exhausted by resolution, i.e.
i
k
=1 mi approaches n, then S is maximized, and the speed-up factor, Smax is given

by

 Smax = n / k. (3.72)

 The last expression reveals that smaller is the k, larger is the Smax. The best
case corresponds to k =1, when there is a single set of concurrently resolvable
clauses. But since i

k
=1 si = n and k =1 in the present context, i

k
=1 si = i

1
=1 si =

s1 = n, which means all the n set of clauses are resolvable together. Consequently
the speed-up factor is n.

 On the other extreme end, when k = n, i.e., there are s1, s2, …, sn number of
concurrently resolvable sets of clauses, then Smax = n/n = 1, and there is no speed-
up. In fact this case corresponds to typical SLD-resolution and the number of
clauses s1 = s2 = … = sn = 2.

3.6.2 The Resource Utilization Rate

Let us assume that the number of resources available for concurrent resolution in
the present context is max {sk : 1 ≤ k ≤ n}. Thus maximum degree of parallelism
[5] P is given by

 P = max {sk : 1 ≤ k ≤ n}. (3.73)

 The average degree of parallelism Pav is defined below following Hwang and
Briggs [5] as

 Pav = (i
k
=1 si)/ k. (3.74)

3 In case of unification-parallelism (realized in our architecture, vide chapter 4),
Tm reduces to O[(n- i

k
=1 si + k)] and consequently the worst-case speed-up

factor becomes Smax = (p. n) / (n- i
k
=1 si + k).

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 141

 The Resource Utilization Rate µµµµ thus is found to be

 µ = Pav / P

 = (i
k
=1 si)/ [k. max {sk : 1 ≤ k ≤ n}]. (3.75)

 When si for all i approaches to max {sk : 1 ≤ k ≤ n}, i
k

=1 si = k. max{sk: 1 ≤ k ≤
n}, and consequently, µ approaches 1.

3.6.3 Resource Unlimited Speed-up and Utilization Rate

Suppose the number of resources ≥ n, the no. of program clauses. Then the
concurrent resolution of different sets of clauses may take place in parallel.
Suppose, out of s1, s2, …,sk number of concurrent sets of resolvable clause, r-sets
of clauses on an average can participate in concurrent resolutions at the same time.
Then the average time TRU required to execute the program = O[p (n- i

k
=1 si +

k/r)]. Then, Resource Unlimited Speed-up

 SRU = Tu / TRU

 = (p.n)/ [p(n - i
k
=1 si +k/r)]

 = n / (n- i
k
=1 si + k/r) (3.76)

 Consequently, maximum speed-up occurs when i
k

=1 si approaches n, and the
result is

 (SRU)max = (n/k)r. (3.77)

 Further, maximum degree of parallelism in a resource unlimited system is PRU

= i
k
=1 si, and the average degree of parallelism Pav = i

r
=1si. Thus Resource

Utilization Rate is given by

 µ = Pav / PRU

 = (i
r
=1 si)/ (i

k
=1 si) (3.78)

 In a special case, when si = s for all i = 1 to k, the above ratio reduces to (r /
k). It is to be noted that when more than one group of concurrently resolvable
clauses participate in the resolution process at the same time, max{sk: 1 ≤ k ≤ n}
assumes the maximum of the sum of the concurrently resolvable group of clauses.

142

Example 3.32: Let s1 and s5 be two groups of clauses that can independently be
resolved at the same time. Further, if we assume that s1 + s5 ≥ s2, s3, s4,…..
Consequently max{sk} will take the value s1 + s5.

3.7 Conclusions

The chapter presented a new algorithm for automated reasoning in a logic program
using extended Petri net models. Because of the structural advantage of Petri net
models, the proposed algorithm is capable of handling AND-, OR-, unification-
and stream-parallelisms in a logic program. A complexity analysis of a logic
program with n number of clauses and k sets of concurrently resolvable clauses
reveals that the maximum speed-up factor of the proposed algorithm in the worst
case is O (n/k). Under no constraints on resources, the speed-up factor is improved
further by an additional factor of r, where r denotes an average number of the
concurrent sets of resolvable clauses. In absence of any constraints to resources,
the maximum resource utilization rate for the proposed algorithm having s1 = s2 =
… = sn is O(r/k). With limited resource architecture, the proposed algorithm can
execute safely at the cost of extra computational time. The selection of dimensions
of such limited resource architecture depends greatly on the choice of r. Selection
of r in typical logic programs, in turn, may be accomplished by running Monte
Carlo simulations for a large set of programs. A complete study of this, however,
is beyond the scope of the present work.

With the increasing use of logic programs in data modeling, its utility in the
next generation commercial database systems will also increase in pace. Such
systems require specialized engine that supports massive parallelisms. The
proposed computational model, being capable of handling all possible parallelisms
in a logic program, is an ideal choice for exploration in commercial database
systems. To meet up this demand, a hardware realization of the proposed
algorithm is needed. The next chapter of the thesis extends the theoretical EPN
model of automated reasoning to a specialized MIMD architecture of a central
processing unit to be explored in the next generation database machines.

Exercises

1. Given below a set of clauses:

(i) r ∨ s ←p ∧ q.
(ii) R(Z, f(X)) ←P(X, Y), Q(Y, Z).
(iii) Above(a, c) ←Above(a, b), Above(b, c).
(iv) N(f(Y), X) ←L(X, Y, Z), M(f(X), Z).

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 143

(a) Identify the literals in the head part,
(b) Identify the literals in the body part,
(c) List the functions,
(d) List the arguments of the head literals,
(e) List the arguments of the body literals.

 [Answer:

(a) The literals in the head part:
(i) r, s;
(ii) R(Z, f(X));
(iii) Above(a, c);
(iv) N(f(Y), X).

(b) The literals in the body part:
(i) p, q;
(ii) P(X, Y), Q(Y, Z);
(iii) Above(a, b), Above(b, c);
(iv) L(X, Y, Z), M(f(X), Z).

(c) The functions:
(i) Nil;
(ii) f(X);
(iii) Nil;
(iv) f(Y), f(X).

(d) The arguments of the head literals:
(i) Nil;
(ii) Z, f(X);
(iii) a, c;
(iv) f(Y), X.

(e) The arguments in the body literals:
(i) Nil;
(ii) X, Y and Y, Z;
(iii) a, b and b, c;
(iv) (X, Y, Z) and f(X), Z.]

2. Identify the following from the given set of clauses

(i) ground literal,
(ii) goal clause or query,
(iii) fact,

144

(iv) Horn clause,
(v) Non-Horn clause,
(vi) Propositional clause.

(a) Boy(X) ←Male-child(X), Non-adult(X).
(b) Boy(X), Girl(X) ←Male-child(X), Non-adult(X).
(c) S ←P, Q, R.
(d) Boy(X) ←.
(e) Boy(ram) ←.
(f) ←Boy(Y).

[Answer:

(i) Ground literal: Boy(ram)

(ii) Goal clause or query: ←Boy(Y).

(iii) Fact: Boy(ram) ←.

(iv) Horn clause: Boy(X) ←Male-child(X), Non-adult(X).
 S ←P, Q, R.
 Boy(X) ←.
 Boy(ram) ←.
 ←Boy(Y).

(v) Non-Horn clause: Boy(X), Girl(X) ←Male-child(X), Non-adult(X).

(vi) Propositional clause: S ←P, Q, R.]

3. Translate the following clauses into English:

 Mother (Z, Y) ←Father (X, Y) ∧ Wife (Z, X).
 Mother (s, l) ←.
 Wife (s, r) ←.
 Query: ←Father (r, l).

[Hints: If X is the father of Y and Z is the wife of X, then Z is the mother of
Y.

 s is the mother of l.
 s is the wife of r.
 Whether r is the father of l?]

4. Construct an Extended Logic Program from the following statements:

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 145

 The animals that eat plants are herbivorous, the animals that eat animals are
 carnivorous and the animals that eat plants and animals both are omnivorous.

 [Hints: Herbivorous (X) ←Animals (X)∧Plant (Y)∧Eats (X, Y).
 Carnivorous (X) ←Animals (X)∧Plant (Z)∧Eats (X, Z).
 Omnivorous (X) ←Animals (X)∧Plant (Y)∧Animals (Z)∧
 Eats (X, Y)∧Eats (X, Z).]

5. Given an expression
 w = P (X, f (Y, Z), d)
 and three substitution sets
 s1 = {a/X, b/Y, c/Z}
 s2 = {g(Y)/X}
 s3 = {g(W)/X, b/Y, c/Z}.
 Evaluate ws1, ws2 and ws3.

 [Answer: ws1 = P(a, f(b, c), d),
 ws2 = P(g(Y), f(Y, Z), d) and
 ws3 = P(g(W), f(b, c), d).]

6. Let w be an expression and ws be an expression after substitution, what is
 the substitution set?

 w: M(Z, Y) ←F(X, Y), K(Z, X).
 ws: M(s, j) ←F(r, j), K(s, r).

 [Answer: s:{r/X, j/Y, s/Z}.]

7. Let s1 and s2 be two substitutions such that
 s1: { r/X }, and
 s2: {u(X)/Y}.

Evaluate the composition of the substitutions:
(a) s1∆s2,

 and (b) s2∆s1.

 [Answer: The composition of the substitutions:

(a) s1∆s2 = {r/X, u(X)/Y},
(b) s2∆s1 ={u(r)/Y, r/X}.]

146

8. Verify the substitution set property 1, i.e., (ws1)∆s2 = w(s1∆s2) using the
 following items:

 Let the expression w: P(X, Y, Z)
 And the substitution sets s1: {u(X)/Y, v(X)/Z},
 s2: {r/X}.

 [Answer: (ws1)∆s2 = P(X, u(X), v(X)){r/X}
 = P(r, u(r), v(r)).

 w(s1∆s2) = (P(X, Y, Z)){r/X, u(r)/Y, v(r)/Z}
 = P(r, u(r), v(r)).
 ∴ (ws1)∆s2 = w(s1∆s2).]

9. Verify the substitution set property 2, i.e., (s1∆s2)∆s3 = s1∆(s2∆s3) using the
 following items:

 Let the substitution sets s1: {r/X },
 s2: {u(X)/Y} and
 s3: {l/Z}.

 [Answer: s1∆s2 = {r/X, u(X)/Y}
 (s1∆s2)∆s3 = {r/X, u(X)/Y, l/Z}.

 s2∆s3 = {u(X)/Y, l/Z}
 s1∆(s2∆s3) = {r/X, u(X)/Y, l/Z}.
 ∴(s1∆s2)∆s3 = s1∆(s2∆s3).]

10. Verify the substitution set property 3, i.e., s1∆s2 ≠ s2∆s1 using the
 following items:

 Let the substitution sets s1: {r/X }, and
 s2: {u(X)/Y}.

 [Answer:
 s1∆s2 = {r/X, u(X)/Y} and

 s2∆s1 = {u(r)/Y, r/X}.
 ∴ s1∆s2 ≠ s2∆s1.]

11. Which of the following clauses are resolvable and what is the resolvent?

(i) Cl1: R(Y, X) ←P(X, Y).
(ii) Cl2: P(r, n) ← .
(iii) Cl3: R(n, r) ←.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 147

[Hints: As the same predicate is present in the head and the body part of the
clause number cl2 and cl1 respectively, they are resolvable whereas due to
presence of the same predicate in the head part of the clauses, cl1and cl3, they
are not resolvable.]

12. By definition 3.9, show that the following is a set of resolvable clauses.

(i) Cl1: R(Z, X) ←P(X, Y), Q(Y, Z).
(ii) Cl2: P(r, s) ← .
(iii) Cl3: ¬R(l, r) ←.
(iv) Cl4: Q(s, l) ←.

[Hints: Cl12: R(Z, r) ←Q(s, Z).
 Cl13: ←P(r, Y), Q(Y, l).
 Cl14: R(l, X) ←P(X, s).

As each of the clauses is resolvable with at least one of the set of clauses,
producing a resolvent, according to definition 3.9, it is a set of resolvable
clauses.]

13. Identify the definite program clause with definite goal.

 Cl1: R, S ←P, Q.
 Cl2: R ←P, Q.
 Cl3: ←P, Q.

[Hints: According to definition 3.10, Cl2: R ←P, Q. is a definite clause
containing one atom in its head and Cl3: ←P, Q. is a definite goal with empty
consequent (see definition 3.12).]

14. Construct the resolution tree for linear selection,

 R ←P, Q.
 S ←R.
 T ←S.
 Q ←.
 P ←.

 Goal: ←T.

 [Answer: The resolution tree is constructed vide Fig. 3.8.

148

15. Determine whether the following are orderly or order independent clauses? If

orderly, verify whether single or multiple sequence? Determine the various
orders of resolution in the following set of clauses.

 Cl1: R(Z, X) ←P(X, Y), Q(Y, Z).
 Cl2: P(r, a) ←.
 Cl3: Q(a, k) ←.
 Cl4: ¬R(k, r) ←.

[Hints: The clauses are to be selected pair-wise according to some definite
order from the set of resolvable clauses. Otherwise they fail to generate a
solution. As for example, cl2, cl3 or cl3, cl4 cannot be resolved. But, we can get
results by resolving the clauses following some definite orders.

 The multiple orders are:

Sequence 1: Order 1: 1-2-3-4/ 2-1-3-4
 Cl12-3-4: ∅

 R ←P, Q. S ←R.

S ←P, Q. T ←S.

T ←P, Q. Q ←.

T ←P. P ←.

T ←. ←T.

∅

3 The Petri Net Model A New Approach⎯

Fig. 3.8: The SLD resolution tree]

Parallel and Distributed Logic Programming 149

Sequence 2: Order 2: 1-2-4-3/ 2-1-4-3
 Cl12-4-3: ∅

Sequence 3: Order 3: 1-3-2-4/ 3-1-2-4
 Cl13-2-4: ∅

Sequence 4: Order 4: 1-3-4-2/ 3-1-4-2
 Cl13-4-2: ∅

Sequence 5: Order 5: 1-4-2-3/ 4-1-2-3
 Cl14-2-3: ∅

Sequence 6: Order 6: 1-4-3-2/ 4-1-3-2
 Cl14-3-2: ∅]

16. Determine the final resolvent from the given set of clauses. If not possible,
 indicate why.

 Cl1: Son(Y, X) ←Father(X, Y).
 Cl2: Mother(i, a) ←Son(a, n), Husband(n, i).
 Cl3: Father(Z, Y) ←Mother(X, Y), Wife(X, Z).

[Hints: Here,

Cl12: Mother(i, a) ←Father(n, a), Husband(n, i).
 Cl12-3 is not possible as double resolution takes place.]

17. Show that the following clauses are order independent. Explain the reason
 for non-validity.

 Cl1: Boy(X), Girl(X) ←Child(X).
 Cl2: Likes-to-play-indoor(X) ←Boy(X), Introvert(X).
 Cl3: Likes-to-play-doll(X) ←Girl(X), Likes-to-play-indoor(X),
 Has-doll(X).

 [Hints: Each clause is resolvable with any other clause.
 Non-validity: Ultimately double resolution takes place.]

18. Show whether the following set of clauses are concurrently resolvable.

 Cl1: R(Z, X) ←P(X, Y), Q(Y, Z).
 Cl2: P(r, a) ←.
 Cl3: Q(a, k) ←.
 Cl4: ¬R(k, r) ←.

150

[Hints: As the instantiated resolvent generated following multiple sequences
yields a unique result, the set includes a concurrent set of resolution.]

19. Test whether the following clauses are concurrently resolvable.

(a) Cl1: Mother(Z, Y) ←Father(X, Y), Son(Y, Z), Married-to(X, Z).
 Cl2: Father(r, l) ←Has-one-son(r, l), Male(r).
 Cl3: Female(Z) ←Mother(Z, Y).
 Cl4: Son(l, s) ←.

(b) Cl1: Mother(Z, Y) ←Father(X, Y), Son(Y, Z), Married-to(X, Z).
 Cl2: Father(r, l) ←Has-one-son(r, l), Male(r).
 Cl3: Female(Z) ←Mother(Z, Y).
 Cl4: Son(k, s) ←.

[Hints:

(a) As the set includes multiple ordered sequence of clauses for SLD
resolution and for each such sequence the final resolvent is identical, then
the orderly resolution is concurrent resolution.

(i) Sequence 1: Order 1: 1-2-3-4.

 Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),
 Married-to(r, Z).
 Cl12-3: Female(Z) ←Son(l, Z), Has-one-son(r, l), Male(r),
 Married-to(r, Z).
 Cl12-3-4: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s).

(ii) Sequence 2: Order 2: 1-2-4-3.

 Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),
 Married-to(r, Z).
 Cl12-4: Mother(s, l) ←Has-one-son(r, l), Male(r),
 Married-to(r, s).
 Cl12-4-3: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s).

(iv) Sequence 3: Order 3: 1-3-4-2.

 Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z).
 Cl13-4: Female(s) ←Father(X, l), Married-to(X, s).

 Cl13-4-2: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s).

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 151

(v) Sequence 4: Order 4: 1-3-2-4.

 Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z).
 Cl13-2: Female(Z) ←Male(r), Has-one-son(r, l), Son(l, Z),
 Married-to(r, Z).
 Cl13-2-4: Female(s) ←Male(r), Has-one-son(r, l), Son(l, s),
 Married-to(r, s).

(vi) Sequence 5: Order 5: 1-4-2-3.

 Cl14: Mother(s, l) ←Father(X, l), Married-to(X, s).
 Cl14-2: Mother(s, l) ←Has-one-son(r, l), Male(r), Married-to(r, s).
 Cl14-2-3: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s).

(vii) Sequence 6: Order 6: 1-4-3-2.

 Cl14: Mother(s, l) ←Father(X, l), Married-to(X, s).
 Cl14-3: Female(s) ←Father(X, l), Married-to(X, s).
 Cl14-3-2: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s).

(b) As the final resolvent is not identical, the clauses are not concurrently
resolvable.

(i) Sequence 1: Order 1: 1-2-3-4.

Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),
 Married-to(r, Z).
Cl12-3: Female(Z) ←Son(l, Z), Has-one-son(r, l), Male(r),
 Married-to(r, Z).
Cl12-3-4: Not possible.

(ii) Sequence 2: Order 2: 1-2-4-3.

Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),
 Married-to(r, Z).
Cl12-4: Not possible.

(iii) Sequence 3: Order 3: 1-3-4-2.

Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z).
Cl13-4: Female(s) ←Father(X, k), Married-to(X, s).
Cl13-4-2: Not possible.

152

(iv) Sequence 4: Order 4: 1-3-2-4.

Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z).
Cl13-2: Female(Z) ←Male(r), Has-one-son(r, l), Son(l, Z),
 Married-to(r, Z).
Cl13-2-4: Not possible.

(v) Sequence 5: Order 5: 1-4-2-3.

Cl14: Mother(s, k) ←Father(X, k), Married-to(X, s).
Cl14-2: Not possible.

(vi) Sequence 6: Order 6: 1-4-3-2.

Cl14: Mother(s, k) ←Father(X, k), Married-to(X, s).
Cl14-3: Female(s) ←Father(X, k), Married-to(X, s).
Cl14-3-2: Not possible.

So, we can easily find out that the clauses are not concurrently resolvable in
case of (b) as there is no unique result after the resolution following different
sequences.]

20. Indicate (a) the AND-parallel clauses and (b) the OR-parallel clauses, to
concurrently resolve the rule cl1 with the rest of the clauses cl2 through cl5.

 Cl1: Likes-to-play(X, Y) ←Child(X), Game(Y).
 Cl2: Child(r) ←.
 Cl3: Child(t) ←.
 Cl4: Game(c) ←.
 Cl5: Game(l) ←.

 [Answer:

 (a) The AND-parallel clauses:
(i) Cl1, Cl2, Cl4,
(ii) Cl1, Cl2, Cl5,
(iii) Cl1, Cl3, Cl4,
(iv) Cl1, Cl3, Cl5.

 (b) The OR-parallel clauses:
(i) Cl1, Cl2 and Cl1, Cl3,
(ii) Cl1, Cl4 and Cl1, Cl5.]

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 153

21. (a) Verify whether concurrent resolution is valid for the following clauses:

 Cl1: Game(Y) ←Child(X), Likes-to-play(X, Y).
 Cl2: Outdoor-game(Y), Indoor-game(Y) ←Game(Y).
 Cl3: Child(X) ←Boy(X).
 Cl4: Child(X) ←Girl(X).

Cl5: Boy(X) ←Likes-to-play(X, Y), Outdoor-game(Y).
 Cl6: Girl(X) ←Likes-to-play(X, Y), Indoor-game(Y).
 Cl7: Likes-to-play(t, c) ←.
 Cl8: Likes-to-play(r, l) ←.
 Cl9: Outdoor-game(c) ←.
 Cl10:¬ Indoor-game(c) ←.

(b) If yes, then identify the types of the concurrent resolution for the
following sequences:

(i) Cl5, Cl7, Cl9,
(ii) Cl1, Cl2, Cl5,
(iii) Cl3, Cl5, Cl7, Cl9,
(iv) Cl1, Cl2, Cl6,
(v) Cl1, Cl2, Cl3, Cl7.

 [Hints:

(a) For the following ordered sequence of clauses for SLD resolution, the
final resolvent is identical. So, concurrent resolution is possible in the
following cases:

(i) Sequence 1: Order 1: 1-3-7.
 Sequence 2: Order 2: 1-7-3.

(ii) Sequence 3: Order 3: 1-3-8.
 Sequence 4: Order 4: 1-8-3.

(iii) Sequence 5: Order 5: 1-4-7.
 Sequence 6: Order 6: 1-7-4.

(iv) Sequence 7: Order 7: 1-4-8.
 Sequence 8: Order 8: 1-8-4.

(v) Sequence 9: Order 9: 5-8-9.
 Sequence 10: Order 10: 5-9-8.

154

 (b)
(i) Concurrent resolution between a rule and facts,
(ii) Concurrent resolution between rules,

(iii) Concurrent resolution between rules and facts,
(iv) Concurrent resolution between rules,
(v) Concurrent resolution between fact and rules.]

22. Map the following FOL clauses on to an EPN and state the result after
resolution.

 Cl1: Game(Y) ←Child(X), Likes-to-play(X, Y).
 Cl2: Outdoor-game(Y), Indoor-game(Y) ←Game(Y).
 Cl3: Child(t) ←.
 Cl4: Likes-to-play(t, c) ←.
 Cl5:¬ Indoor-game(c) ←.

 [Hints: An EPN is constructed with the FOL clauses vide Fig. 3.9.

Child
p1 d1

<t>

<t, c>

Likes-to-play
 p2 d2

(X) tr1

(X, Y)

¬(Y)

Game
p3 d3

(Y)

 tr2 ¬(Y)

Outdoor-game
p4 d4

¬(Y)

Indoor-game
p5 d5

¬<c>

3 The Petri Net Model A New Approach⎯

Fig. 3.9: Mapping on to an Extended Petri net

Parallel and Distributed Logic Programming 155

 Here, P = {p1, p2, p3, p4, p5};
 Tr = {tr1, tr2};
 D = {d1, d2, d3, d4, d5};
 f(Child) = p1, f(Likes-to-play) = p2, f(Game) = p3,
 f(Outdoor-game) = p4, f(Indoor-game) = p5;
 m(p1) = < t >, m(p2) = <t, c>, m(p3) = <∅>, m(p4) = <∅>,
 m(p5) = ¬< c > initially and can be computed in the process of

resolution;
 A = {A1, A2, A3, A4, A5, A6}; and
 a(A1) = (X), a(A2) = (X, Y), a(A3) = ¬(Y), a(A4) = (Y), a(A5) =

¬(Y) and a(A6) = ¬(Y) are the arc functions;
 I(tr1) = {p1, p2}, I(tr2) = {p3};
 O(tr1) = {p3}, O(tr2) = {p4, p5}.

 Resolution between the rules cl1, cl2 and the facts cl3, cl4, cl5 takes place
concurrently yielding resulting token at the place ‘Outdoor-game’: ‘<c>’.]

23. Map the given program clauses onto an EPN. What result do you obtain after
execution of the program by the algorithm: ‘Procedure Automated-
Reasoning’.

 The program clauses are:

Cl1: Reproduce-by-laying-eggs(X) ←Build-nests(X), Lay-eggs(X).
Cl2: Has-wings(X) ←Can-fly(X), Has-feather(X).
Cl3: Bird(X) ←Reproduce-by-laying-eggs(X), Has-beaks(X),
 Has-wings(X).
Cl4: Build-nests(p) ←.
Cl5: Lay-eggs(p) ←.
Cl6: Can-fly(p) ←.
Cl7: Has-feather(p) ←.
Cl8: Has-beaks(p) ←.

 [Hints: An EPN vide Fig. 3.10 is constructed with the given program clauses.

156

Here, P = {p1, p2, p3, p4, p5, p6, p7, p8};
 Tr = {tr1, tr2, tr3};
 D = {d1, d2, d3, d4, d5, d6, d7, d8};

 f(Build-nests) = p1, f(Lay-eggs) = p2, f(Can-fly) = p3,
 f(Has-feather) = p4, f(Reproduce-by-laying-eggs) = p5,
 f(Has-beaks) = p6, f(Has-wings) = p7, f(Bird) = p8;

 m(p1) = <p>, m(p2) = <p>, m(p3) = <p>, m(p4) = <p>, m(p5) = <∅>,
 m(p6) = <p>, m(p7) = <∅>, m(p8) = <∅> initially;
A = {A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8 };

 a(A1) = (X), a(A2) = (X), a(A3) = (X), a(A4) = (X), a(A5) = ¬(X),
 a(A6) = ¬(X), a(A7) = (X), a(A8) = (X), a(A9) = (X), a(A10) = ¬(X);

 I(tr1) = {p1, p2}, I(tr2) = {p3, p4}, I(tr3) = {p5, p6, p9};
 O(tr1) = {p5}, O(tr2) = {p7}, O(tr3) = {p8}.

 Has-beaks
 p6

 d6

(X) A3 tr2

p5

d5

 A7

(X)

(X)
A8

(X) A2

Build-nests
 p1

 d1

(X) A1 (X) A5 Reproduce-by-
 tr1 laying-eggs

Lay-
eggs
p2
d2

Can
-fly
p3
d3

Has-feather
 p4

 d4

tr3 ¬(X) A10

¬(X) A6 Has-wings (X) A9

 p7 d7(X) A4

<p>

<p>

<p>

<p>

<p>

Bird
p8 d8

3 The Petri Net Model A New Approach⎯

 Fig. 3.10: The Extended Petri Net illustrating the problem

Parallel and Distributed Logic Programming 157

At first the transitions tr1 and tr2 will fire satisfying the three conditions
required for transition firing. Then after firing of tr3, the resultant token will
be obtained at the place p8 : <p>.]

24. Given a set of clauses(Cl1-Cl13):

Cl1: Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z).
Cl2: Paternal-uncle(X, Y), Maternal-uncle(X,Y) ←Uncle(X, Y).
Cl3: Mother(Z, Y) ←Father(X, Y), Married-to(X, Z).
Cl4: Father(X, Y) ←Mother(Z, Y), Married-to(X, Z).
Cl5: Father <r, n> ←.
Cl6: Father <r, d> ←.
Cl7: ¬ Father <d, a> ←.
Cl8: Grandfather <r, a> ←.
Cl9: ¬Paternal-uncle <n, a> ←.
Cl10: ¬Maternal-uncle <n, a> ←.
Cl11: ¬Maternal-uncle <d, a> ←.
Cl12: Married-to <r, t> ←.
Cl13: Married-to <n, i> ←.

(a) List the possible resolutions that take place in the network.
(b) Identify the concurrent resolutions among those in the above list.
(c) Represent the concurrent resolutions in tabular form like Table 2.1.

 [Hints:
(a) The possible resolutions are:

 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 2-9, 2-10, 2-11, 3-12, 3-13, 4-12, 4-13.

(b) The concurrent resolutions are:

 Sequence 1: Order 1: 1-6-7-8.
 Cl1-6-7-8 = Uncle(d, a) ←.

 Sequence 2: Order 2: 2-9-10.
 Cl2-9-10 = ←Uncle(n, a). ≡ ¬ Uncle(n, a) ←.

 Sequence 3: Order 3: 3-5-12.
 Cl3-5-12 = Mother(t, n) ←.

Sequence 4: Order 4: 3-6-12.
 Cl3-6-12 = Mother(t, d) ←.

158

(c) The concurrent resolutions are given in Table 3.2.

Table 3.2: Trace of the algorithm on example net of Fig. 3.12.

]

Time
slot

Tra
ns.

Set of c-b Set of u-b Flag = 0, if c-b
∉ u-b

 =1,
 if c-b∈ u-b

≠ {∅}
 or c-b =

{∅}

First
cycle

tr1

tr2

tr3

{r/X, d/Y, a/Z}

{n/X, a/Y}

{r/X, n/Y, t/Z}/
{r/X, d/Y, t/Z}

{{∅}}

{{∅}}

{{∅}}

0

0

0

Seco-
nd
cycle

tr1

tr2

tr3

{r/X, n/Y, a/Z}

{d/X, a/Y}

{∅ }

{{r/X, d/Y,
a/Z}}

{{n/X, a/Y}}

{{r/X, n/Y, t/Z},
{r/X, d/Y, t/Z}}

0

0

0

Third
cycle

tr1

tr2

tr3

{∅ }

{∅ }

{n/X, a/Y, i/Z}

{{r/X, d/Y,
a/Z}}

{{n/X, a/Y}}

{{r/X, n/Y, t/Z},
{r/X, d/Y, t/Z},
{n/X, a/Y, i/Z}}

1

1

1

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 159

25. (a) For answering the goal(←M(t, n).), draw the SLD-tree from the given set
of clauses,

 (b) Use ‘Procedure Automated-Reasoning’ to verify the goal,

 (c) Assuming unit time to perform a resolution, determine the computational
time involved for execution of the program by SLD-tree approach,

(d) Compute the computational time required for execution of the program
clauses on EPN using ‘Procedure Automated-Reasoning’,

(e) Determine the percentage time saved in the EPN approach ((a-b)/a × 100)
where ‘a’ stands for SLD, ‘b’ for EPN.

 [Hints: (a) We obtain the result as M(t, n) ←. From the SLD-tree given below
vide Fig.3.11.

Mother(Z, Y) ←Father(X, Y), Married-to(X, Z). Married-to <r, t> ←.

M(t, Y) ←F(r, Y).

0

X = r
Z = t

1

M(t, n) ←.

Y = n

2

Father <r, n> ←.

Fig. 3.11: The SLD-tree for answering the goal: ←M(t, n)

160

(b) After mapping onto the Extended Petri net as in the Fig. 3.12, we can
easily find out that in the pass 1, all three transitions (tr1, tr2 and tr3)
satisfy the three conditions for transition firing:

Token at place p1 = <r, n>, <r, d>, ¬<d, a>,
Token at place p2 = <r, a>,
Token at place p4 = ¬<n, a>,
Token at place p5 = ¬<n, a>, ¬<d, a>,
Token at place p6 = <r, t>, <n, i>.

 Fig. 3.12: The set of given clauses mapped onto an Extended Petri Net

(X, Y)

Maternal-uncle
p5

Paternal-uncle
 p4

 ¬(Y, Z) (X, Y)
 (X, Z) tr1 tr2 ¬(X, Y)

 (Z, Y)

 ¬(Z, Y)

 (X, Z)

 (X, Y)

 ¬(X, Y)

Married-to (X, Z)
 p6

Grandfather
p2

 tr3

 ¬(Y, Z)
 Uncle ¬(X, Y)
 p3

Father
p1

 Mother
 p7

tr4

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 161

(i) All but one input and output places contain properly signed
tokens,

(ii) The variables in the arguments of the arc functions contain
consistent bindings,

(iii) The current bindings are not the sub set of the used bindings.

Therefore, the transitions tr1, tr2 and tr3 fires concurrently yielding tokens at
the places:

<d, a> at p3,
¬<n, a> also at p3 and
<t, n>, <t, d> at p7.

 From the above we can see that the required goal (←M(t, n).) can be
obtained by the algorithm ‘Procedure Automated-Reasoning’.

(c) Assuming unit time to perform a resolution, the computational time

involved for execution of the program by SLD-tree approach can easily
be found out from the Fig. 3.11 and is found to be 2.

(d) The computational time required for execution of the program clauses on
EPN (Fig. 3.12) using ‘Procedure Automated-Reasoning’ to obtain the
required goal (as only one pass is required for one set of concurrent
resolution) is found out to be 1.

(e) The percentage time saved in the EPN approach:
 ((a-b)/a ×100), where ‘a’ stands for SLD, ‘b’ for EPN

 = ((2-1)/2) ×100 %
 = 50 %.]

26. (a) Show that after complete execution of the algorithm ‘Procedure
Automated-Reasoning’ on the given EPN (Fig. 3.12) the following
conclusions are obtained,

(i) Mother(i, a) ←.
(ii) Paternal-uncle(d, a) ←.
(iii) Mother(t, n) ←.
(iv) Mother(t, d) ←.

 (b) Assuming the above four predicates as four independent goals, construct
SLD-tree for each case,

 (c) Compute the computational time involved in part (a) and part (b) and
hence determine the computational time saved by EPN approach.

162

[Hints:

(a) After mapping on to the Extended Petri net as in the Fig. 3.12, we can
easily find out that in the pass 1, all three transitions satisfy the three
conditions for transition firing:

(i) All but one input and output places contain properly signed tokens,
(ii) The variables in the arguments of the arc functions contain

consistent bindings,
(iii) The current bindings are not the subset of the used bindings.

Therefore, the transitions tr1, tr2 and tr3 fire concurrently yielding tokens at the
places:

 For tr1: <d, a> at p3,
 For tr2: ¬<n, a> also at p3 and
 For tr3: <t, n> (i.e., Mother(t, n) ←.), <t, d> (i.e., Mother(t, d) ←.) at p7.

 In the pass 2, only tr1 and tr2 fires satisfying the required conditions
generating the tokens:

 For tr1: <n, a> at p1,
 For tr2: <d, a> (i.e., Paternal-uncle(d, a) ←.) at p4.
 In the final pass 3, tr3 fires only yielding the token:
 For tr3: <i, a> (i.e., Mother(i, a) ←.) at p7.

(b) (i) The SLD-tree for generating the goal ‘Mother(i, a) ←.’ is constructed
in Fig. 3.13.

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 163

Fig. 3.13: The SLD-tree for generating the goal Mother(i, a) ←.

Paternal-uncle(X, Y), Maternal-uncle(X, Y)
 ←Uncle(X, Y). ¬Paternal-uncle <n, a> ←.

0
X = n
Y = a

1 Maternal-uncle(n, a) ←Uncle(n, a). ¬Maternal-uncle <n, a> ←.

2

←Uncle(n, a). Father(Y, Z),
Uncle(Y,Z)←Father(X, Y),
Grandfather(X, Z).

Y = n
Z = a

3 Father(n, a) ←Father(X, n), Grandfather(X, a).
 Grandfather <r, a> ←.

X = r

4 Father <r, n> ←. Father(n, a) ←Father(r, n).

5 Father(n, a) ←. Mother(Z, Y) ←Father(X, Y),
 Married-to(X, Z).

X = n
Y = a

6
Mother(Z, a) ←Married-to(n, Z). Married-to <n, i> ←.

Mother(i, a) ←.
7

164

(ii) The SLD-tree for generating the goal ‘Paternal-uncle(d, a) ←.’ is
constructed in Fig. 3.14.

 Fig. 3.14: The SLD-tree for generating the goal: Paternal-uncle(d, a) ←.

(iii) Same as the Fig.3.11.

(iv) The SLD-tree for generating the goal ‘Mother(t, d) ←.’ is constructed
in Fig. 3.15.

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y),
Grandfather(X, Z).

Grandfather <r, a> ←.

Father(Y, a), Uncle(Y, a) ←Father(r, Y).

O
X = r
Z = a

1 ¬Father(d, a) ←.

Y = d

2 Uncle(d, a) ←Father(r, d).

Paternal-uncle(X, Y), Maternal-
uncle(X, Y) ←Uncle(X, Y).

Father(r, d) ←.

Uncle(d, a) ←.
3

X = d
Y = a

4
Paternal-uncle(d, a), Maternal-uncle(d, a) ←. ¬Maternal-uncle <d, a> ←.

Paternal-uncle <d, a> ←. 5

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 165

 Fig. 3.15: The SLD-tree for evaluating the goal M(t, d) ←.

(c) For part (a), assuming unit time to perform a resolution, computational
time involved for execution of the program by SLD-tree approach will be
seen as seven steps are needed according to the SLD tree shown in the Fig.
3.13.

 But, for part (b), only three passes are needed for execution of the
program on EPN using Procedure ‘Automated Reasoning’. Therefore, the
computational time required for execution of the program on EPN using
‘Procedure Automated-Reasoning’ is found to be three.

∴The percentage time saved in the EPN approach:
 ((7-3)/7) × 100 = 57.14%.]

27. Point out in the Fig. 3.12 when the AND/OR/Unification-parallelism takes
place.

 [Hints: AND-parallelism takes place when cl6 and cl8 are resolved together
with cl1.

 OR-parallelism takes place when cl5 and cl6 are tried for resolution
together with cl1.

Mother(Z, Y) ← Father(X, Y), Married-to(X, Z). Married-to <r, t> ←.

M(t, Y) ← F(r, Y).

0
X = r
Z = t

1

M(t, d) ←.

Y = d

2

Father <r, d> ←.

166

 Also OR-parallelism takes place when cl10 and cl11 are resolved together
with cl2 and when cl12 and cl13 are resolved together with cl14.

 In each case whenever an variable is being matched with a constant or
another variable, unification-parallelism takes place.]

28. From the given clauses of Fig. 3.7 draw the SLD-tree.

 Cl1: Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z).
 Cl2: Paternal-uncle(X, Y), Maternal-uncle(X,Y) ←Uncle(X, Y).

Cl3: Father <r, n> ←.
Cl4: Father <r, d> ←.
Cl5: ¬ Father <d, a> ←.
Cl6: Grandfather <r, a> ←.
Cl7: ¬Paternal-uncle <n, a> ←.
Cl8: ¬Maternal-uncle <n, a> ←.
Cl9: ¬Maternal-uncle <d, a> ←.

[Hints: Here, two parallel SLD-trees will be formed vide Figs. 3.16 and 3.17.

(i)

3 The Petri Net Model A New Approach⎯

Parallel and Distributed Logic Programming 167

Fig. 3.16: One SLD-tree

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z).

Father <r, d> ←.

Father(d, Z), Uncle(d, Z) ←Grandfather(r, Z).

Grandfather <r, a> ←.

Father(d, a), Uncle(d, a) ←.

←Father(d, a).

Uncle(d, a) ←.

Paternal-uncle(X, Y),
Maternal-uncle(X,Y)
←Uncle(X, Y).

Paternal-uncle(d, a), Maternal-uncle(d, a) ←.

←Maternal-uncle(d, a).

Paternal-uncle(d, a) ←.

168

(ii)

Paternal-uncle(X, Y), Maternal-uncle(X, Y) ←Uncle(X, Y).

←Paternal-uncle(n, a).

Maternal-uncle(n, a) ←Uncle(n, a).

←Maternal-uncle(n, a).

←Uncle(n, a).

Father(Y, Z), Uncle(Y, Z) ←
Father(X, Y), Grandfather(X, Z).

Father(n, a) ←Father(X, n), Grandfather(X, a). Grandfather <r, a> ←.

Father(n, a) ←Father(r, n). Father(r, n) ←.

 Father(n, a) ←.

3 The Petri Net Model A New Approach⎯

Fig. 3.17: Another SLD-tree]

Parallel and Distributed Logic Programming 169

29. Represent the concurrently resolvable clauses in the EPN in Fig. 3.7 for the
following clauses by a tree structure.

 [Hints: Two parallel reasoning will take place giving rise to two parallel tree-
like structures vide Fig. 3.18 and Fig. 3.19.

One tree:

Fig. 3.18: SLD-tree for one set of concurrently resolvable clauses

Another tree:

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y),
Grandfather(X, Z).

Father <r, d> ←.
 ¬ Father <d, a> ←.
 Grandfather <r, a> ←.

Paternal-uncle(X, Y),
Maternal-uncle(X,Y)
←Uncle(X, Y).

Uncle(d, a) ←.¬Maternal-uncle <d, a> ←.

Paternal-uncle(d, a) ←.

170

30. From the given Petri nets (vide Fig. 3.20 and Fig. 3.21), calculate the speed-up
and the Resource utilization rate from the definition given in the equation no.
(3.71) and (3.75).

Paternal-uncle(X, Y),
Maternal-uncle(X,Y)
←Uncle(X, Y).

¬Paternal-uncle <n, a> ←.
 ¬Maternal-uncle <n, a> ←.

←Uncle(n, a) .Father(Y, Z), Uncle(Y, Z)
←Father(X, Y),
Grandfather(X, Z).

Grandfather <r, a> ←.

Father(n, a) ←.

3 The Petri Net Model A New Approach⎯

Fig. 3.19: SLD-tree for another set of concurrently resolvable clauses]

Parallel and Distributed Logic Programming 171

Token at the place p1 = <a, b>, Token at the place p2 = <b, c>,
 Token at the place p 3 = <c, a>, Token at the place p 5 = <c, d>,

 Token at the place p7 = <e, d>.

Fig. 3.20: A Petri net.

Token at the place p1 = <a, b>, Token at the place p2 = <b, c>, Token at the place
p3 = <c, a>,
Token at the place p5 = <c, d>, Token at the place p7 = <e, d>, Token at the place
p8 = ¬<a, e>.

[Hints: The pipelining of transitions for the first and the second case are
given in Fig. 3.22 and Fig. 3.23 respectively.

 tr3

(Y, Z)

 (X, Y) p8

 ¬(Z,X)
p7

(X, Y)

 (Y, Z) tr2 ¬(Z, X) p6

p5

(Z, X) tr1

(Y, Z)

p1

p2

p3

(X, Y) p4

 ¬(X, Z)

 tr3

(Y, Z)

 (X, Y) p8

 ¬(Z,X)
p7

(X, Y)

(Y, Z) tr2 ¬(Z, X) p6

p5

(Z, X) tr1

(Y, Z)

p1

p2

p3

(X, Y) p4

 ¬(X, Z)

Fig. 3.21: A Petri net

172

Here, in the case of the first Petri net, as per definition:

 n = 8,
 si = s1 + s2 + s3 = 4 + 2 + 2 = 8,
 mi = si + di = 8 + 3 = 11,
 k = 3

∴Speed-up factor S = Tu/Tm = n /(n − si +k) = 8/3 = 2⋅66.
& Resource utilization rate µ = si /[k⋅max {sk: 1≤k≤n}]
 = 8/(3 × 4) = 8/12 = 0⋅66.

 tr3

 tr2

tr1

Time

 tr3

 tr2

 tr1

Time

3 The Petri Net Model A New Approach⎯

Fig. 3.22: Diagram showing pipelining of transitions for the first case

 Fig. 3.23: Diagram showing pipelining of transitions for the second case

Parallel and Distributed Logic Programming 173

 Now, for the second case,

 n = 9,
 si = 4+2+3 = 9,
 k = 2.

∴ The speed-up factor S = Tu/Tm = n /(n − si+k)
 = 9/(9 − si +k) = 9/2 = 4⋅5.
and Resource utilization rate µ = si /[k⋅max {sk: 1 ≤ k ≤ n}]
 = 9/(2 × 7) = 9/14 = 0⋅64.]

31. The Petri net shown in Fig. 3.12 includes sets of concurrently resolvable
clauses.

(a) Using the proposed algorithm ‘Procedure Automated-Reasoning’,
identify the transitions where concurrent resolutions take place in
parallel.

(b) Also show in the diagram the pipelining of transitions where
concurrent resolution takes place.

(c) Assume that the time required for concurrent resolution in a
transition is proportional to the number of input and output
concurrently resolvable clauses and hence determine the overall
time of execution of the given logic program.

 [Hints:

(a) If we use the proposed algorithm ‘Procedure Automated-Reasoning’, we
can easily observe that in the first pass through the algorithm the transitions
tr1, tr2 and tr3 are concurrently resolvable as all those three transitions
satisfy the three conditions required for firing according to the proposed
algorithm. In the second pass, the transitions tr1 and tr2 are concurrently
resolvable as can be easily found out. Then in the final third pass only the
transition tr3 resolves followed by the stopping condition of the algorithm.

(b) Figure 3.24 shows the pipelining of transitions where concurrent
resolution takes place.

174

Time to fire a transition which has been taken to be equal to the number
of the clauses involved in the resolution process.

(c) Assuming that the time required for concurrent resolution in a transition is
proportional to the number of input concurrently resolvable clauses, the
overall time of execution of the given logic program becomes:

 11t, where t = time taken for each input clause consideration for
resolution.]

References

1. Bhattacharya, A., Konar, A. and Mandal, A. K., “A parallel and distributed
computational approach to logic programming,” proc. of International
Workshop on Distributed Computing (IWDC 2001), held in Calcutta,
December 2001.

2. Bender, E. A., “Mathematical Methods in Artificial Intelligence,” IEEE
Computer Society Press, Los Alamitos, CA, 1996.

3. Ganguly, S., Silberschatz, A., Tsur, S., “Mapping datalog program
execution to networks of processors,” IEEE Trans. on Knowledge and Data
Engineering, vol. 7, no. 3, June 1995.

4. Hermenegildo, M. and Tick, E.,”Memory performance of AND-parallel
PROLOG on shared-memory architecture,” Proc. of the 1988 International

tr3

tr2

tr1tr1

tr2

tr3

 Time

3 The Petri Net Model A New Approach⎯

Fig. 3.24: Diagram showing pipelining of transitions for concurrent resolution

Parallel and Distributed Logic Programming 175

Conference, on Parallel Processing, vol. II, Software, pp. 17-21, Aug. 15-19,
1988.

5. Hwang, K. and Briggs, F. A., Computer Architecture and Parallel
Processing, McGraw-Hill, pp. 27-35, 1986.

6. Jeffrey, J., Lobo, J. and Murata, T., “A high–level Petri net for goal-directed
semantics of Horn clause logic,” IEEE Trans. On Knowledge and Data
Engineering, vol. 8, no. 2, April 1996.

7. Kale, M. V., “Parallel Problem Solving,” in Parallel Algorithms for
Machine Intelligence and Vision, Kumar, V., Gopalakrishnan, P. S. and
Kanal, L.N., (Eds.), Springer-Verlag, Heidelberg, 1990.

8. Konar, A., Uncertainty Management in Expert Systems Using Fuzzy Petri
Nets, Ph.D. thesis, Jadavpur University, 1994.

9. Konar, A. and Mandal, A.K., “Uncertainty management in expert systems
using fuzzy Petri nets,” IEEE Trans. on Knowledge and Data Engg., vol. 8.,
no.1, Feb. 1996.

10. Li, L., “High level Petri net model of logic program with negation,” IEEE
Trans. on Knowledge and Data Engg., vol. 6, no. 3, June 1994.

11. Murata, T. and Yamaguchi, H., “A Petri net with negative tokens and its
application to automated reasoning,” proc. of the 33rd Midwest Symp. on
Circuits and Systems, Calgary, Canada, Aug. 12-15,1990.

12. Naganuma, J., Ogura, T., Yamada, S-I., and Kimura, T., “High-speed CAM-
based Architecture for a Prolog Machine (ASCA),” IEEE Transactions on
Computers, vol. 37, no.11, November 1988.

13. Patt, Y. N., “Alternative Implementations of Prolog: the micro architecture
perspectives,” IEEE Trans. on Systems, Man and Cybernetics. vol. 19, no.4,
July/August 1989.

14. Peterka, G. and Murata, T., “Proof procedure and answer extraction in Petri
net model of logic programs,” IEEE Trans. on Software Engineering, vol. 15,
no. 2, Feb. 1989.

15. Takeuchi, A., Parallel Logic Programming, Wiley, 1992.
16. Yan, J. C., “Towards parallel knowledge processing,” chapter 4, Advanced

series on Artificial Intelligence, vol. 2, Knowledge Engineering Shells:
Systems and Techniques, Bourbakis, N. G., (Ed.), World Scientific,
Singapore, 1993.

for the Petri Net Model

The chapter provides hardwired design of a parallel computational engine for
logic programming based on the reasoning algorithm outlined in chapter 3. The
proposed engine takes care of the following two architectural considerations: (i)
concurrent resolutions of multiple program clauses mapped onto a transition and
its associated places, and (ii) concurrent resolution of several groups of program
clauses distributed throughout the Petri net. Such concurrent resolution ensures
AND-, OR-, Stream- and Unification-parallelisms of a logic program. The
proposed architecture includes several stages of pipelines and thus supports
massive parallelism among the modules within a pipelined stage. It also provides
parallelism among the modules of different stages. A timing analysis of pipelining
in the proposed architecture reveals that one complete transition firing cycle, that
begins with a system reset and continues till writing of tokens onto an inert place,
is approximately 100 Tc, where Tc denotes the time period of the system clock. A
typical logic program that requires several transition firing cycles thus consumes
a time proportional to 100 Tc. The constant of proportionality is fixed by the
degree of parallelism of the proposed program and available system resources.
The higher is the degree of parallelism, the lower is the proportional constant.
Further, a reduction in system resources requires mapping part of the program
onto same resources in real time, causing an increase in execution time.

4.1 Introduction

Chapter 1 introduced four ideal machines of parallel architecture depending on the
instruction and data flow in a computer. The computational engines of these
machines are popularly referred to as SISD, SIMD, MISD and MIMD
architectures [1]. In this chapter we propose a new architecture for parallel
processing, useful for logic programming applications. The architecture to be
proposed shortly includes different control and data paths among its constituent
modules, and thus it falls within the category of MIMD machines.

A typical logic program comprises of a set of clauses. Chapter 3 has
demonstrated the scope of concurrent resolution of multiple program clauses on a

4

Realization of a Parallel Architecture

A. Bhattacharya et al.: Realization of a Parallel Architecture for the Petri Net Model, Studies in
Computational Intelligence (SCI) 24, 177–210 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

graphical engine like Petri nets. The current chapter provides an architectural
framework for realization of the concurrent resolution of the program clauses.
Since the framework is designed following the algorithm for automated reasoning
presented in chapter 3, it ensures the concurrent execution of the four possible
types of parallelisms in a logic program.

Before closing this section, we briefly address some important and essential
issues related to syntax. Logic programs, like any other programs, first needs to be
compiled and the object codes may be run on a given machine. The source code in
our system is a pseudo PROLOG program with all syntax identical, excluding the
:- symbol, which we have intentionally replaced by ←, where A← B, C has a
conventional meaning, as discussed in chapter 3. After the given program passes
the compilation phase, a task allocation unit is employed to distribute and map the
program clauses and data clauses onto different units of the architecture. The
architecture is then ready to function. When the execution of the program is
terminated, the control returns the response to the users. In this chapter, we,
however, restrict our discussion to the architecture only.

The chapter is categorized into ten sections. Section 4.2 provides an overview
to the overall architecture with special reference to six typical modules embedded
therein. The detailed design of the individual modules is presented in Sections 4.3
through 4.8. The timing analysis of the proposed architecture is covered in Section
4.9. Conclusions are listed in Section 4.10.

4.2 The Modular Architecture of the Overall System

The proposed architecture consists of six major modules:

(i) Transition History File (THF) for transition trj, 1≤ ∀ j ≤ n;
(ii) Place Token Variable Value Mapper (PTVVM) for place pi,

 1≤ ∀i ≤ m;
(iii) Matcher (M) for transition trj, 1≤ ∀j ≤ n;

178

An examination of logic programs used in commercial database systems
reveals that typical program clauses usually do not have more than five
predicates/literals. Further, most applications employ binary predicates,
i.e. predicates having two arguments. Taking into consideration of the degree of
parallelism and utilization of hardwired resources, we restricted the number
of predicates per clause = 5 and number of arguments per predicate = 2 in the
proposed architecture. For practical reasons of resource limits, we consider at
most two arcs a1 and a2 between a given place pi and a transition trj, such that a1 ∈
(pi × trj) and a2 ∈ (trj × pi). Thus, multiplicity of parallel arcs directed similarly
between a given place and a transition is not allowed. We further presumed that
one place may be connected with at most two transitions. Extension of any of the
above system resources, however, is permissible with minor changes in the system
design.

4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

(iv) First Pre-condition Synthesizer (FPS), realized with AND-OR Logic
for transition trj, 1≤ ∀j ≤ n;

(v) Transition Status File (TSF) for transition trj, 1≤ ∀j ≤ n;
(vi) Firing Criteria Testing Logic (FCTL) for transition trj, 1≤ ∀j ≤ n.

Before execution of a logic program, a compiler, specially constructed for this
purpose, is employed to parse the given program for syntax analysis. On
successful parsing, the variables used in the programs are mapped onto a
specialized hardwired unit, called Transition History File (THF) register. The
compiler assigns the value of the variables, hereafter called tokens, at specialized
hardwired units, called Place Token Variable Value Mapper (PTVVM). The sign
of the arc function variables is assigned to the PTVVM by the compiler. The
compiler also constructs logic function for First Pre-condition Synthesizer (FPS)
and assigns null value in the current and used binding fields of Transition Status
File (TSF), the details of which will be discussed in chapter 5. The functional
behavior of the modules in the proposed architecture is outlined here.

On reset the THF for each transition activates the PTVVMs for the places
associated with the given transition through appropriate place-name lines.
Consequently, the activated PTVVMs address their internal place buffers for
initiating the matching of arc function variables with the tokens already saved in
the place buffers (places in Petri net terminology). These tokens are now
compared with arc functions mapped at the arcs connected between one place and
one transition (hereafter, referred to as adjacent place/ transition of an arc) to
check consistency of variable bindings. The process of determining the
consistency of the variable bindings of arc functions connected between an
adjacent place/transition pair with the tokens residing at the said place is called
local matching. Thus in case there exists two arc functions between a place and a
transition, then the same initial token values of the adjacent place will be loaded
into two place buffers (vide Fig. 4.4) for possible local matching of the two arc
function variables. To maintain the identity of these two buffers, arc function tags
are required. The THF generates these arc function tags through its control lines
for subsequent labeling of the signed arc function variables in the place buffers.
The detail of the labeling process, which is omitted here to avoid complexity, is
covered in section 4.4.1. When there exists a single arc function between a place
and a transition, the two arc function tags will have the same value; consequently
the arc function variables will have an identical binding with respect to the tokens
residing at the buffers inside the PTVVM.

Since a transition may have a number of associated places, the variable
bindings generated for the arc functions connected between the given transition
and its associated places need further to be compared to determine the consistent
bindings (most general unifier [5] of the clauses participating in the resolution
process). This is referred to as global matching. For global matching of the arc
function variables, say X, Y, Z, a matcher circuit M is employed with each
transition. This circuit receives the local variable bindings of the arc functions,

179

associated with all the arcs connected with the transition from the PTVVMs, and
then determines the global consistency of the variables present in the arc
functions.

The PTVVM for each place associated with a transition generates a flag signal,
indicating existence of tokens at that place. The FPS circuit for each transition
grabs these flags from the PTVVMs to determine whether all excluding at most
one place contains tokens of same arity as that of the respective arc functions. In
our implementation, we consider all arc functions comprising of two variables,
and thus we need to check only the presence of tokens at all places, leaving at
most one, and need not bother on arity matching.

On reset, the TSF for trj checks whether the current set of binding received
from the matcher M for trj is a member of the used (cumulative) set of binding for
the same transition. It also issues a single bit flag signal to represent the status of
the condition referred to above. The Firing Criteria Testing Logic (FCTL) circuit
is employed for each trj to test the joint occurrence of the three preconditions
received from FPS Logic, the matcher M and the TSF. If all these three conditions
are jointly satisfied, the FCTL issues a ‘fire trj’ command, indicating the right time
of firing the transition.

The PTVVM of the inert place associated with the fired transition on receiving
this signal saves the new (signed) token at its internal buffer. The value of the
consistent current-bindings set generated at the matcher M is sent to the TSF of
the corresponding trj. The process is continued until no new consistent bindings
are generated. It may be added here that a number of transitions that jointly satisfy
all the three pre-conditions, fire concurrently (vide chapter 3) and the complete
control of token generation and their placement at the inert places is taken care of
by the proposed architecture.

4.3 Transition History File

The Transition History File (THF) keeps track of the histories for all transitions in
the Petri net. It is realized with a register file comprising of n registers, where the
register rj, 1≤ j ≤n, contains the history of transition trj. For instance, the THF in
Fig. 4.2 has two registers corresponding to the transitions tr1 and tr2 in the Petri net
of Fig. 3.7 (vide chapter 3). Each register comprises of three distinct types of
fields namely (i) transition name trj, (ii) place pi associated with the transition
denoted by APpi and (iii) arc function associated with pi denoted by AFAWpi.

For simplicity and convenience, the fields of the registers in Fig. 4.2 have been
designated with reference to the Petri net in Fig. 3.7. Since tr1 in Fig. 3.7 has three
associated places p1, p2, p3, the respective APpk, APpl and APpm fields contain p1,
p2 and p3 respectively. In general, we consider at most five places associated with
the transition, the last two been APpr and APpo respectively. In the present context

180 4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

neatness and clarity of presentation. These additional fields should be assigned
with null values.

The arc functions corresponding to the five places called AFAWpk, AFAWpl,
AFAWpm, AFAWpr, AFAWpo presume values A, B, C, ∅ and ∅ respectively.
The details of A, B and C are presented in the label of Fig. 4.2 itself. The control
lines that carry the signals for the signed arc functions, such as +XY¬YZ for the
label A in Fig. 4.2 corresponds to the two arc functions associated with place p1

and transition tr1 in Petri net of Fig. 3.7. The sub-field definitions of label A must
be ordered to ensure the variables in an arc function occupy the next immediate
position of its sign bit, as shown in the last example. The other arc functions
AFAWpr have similarly been constructed and shown in Fig. 4.2 accordingly.

When a logic HIGH level appears at the input of all the registers, the associated
place fields (APpi), having non-null values, yield a HIGH logic level for activation
of the appropriate PTVVM for a place. Thus when p1 line from register for tr1 in
Fig. 4.2 is HIGH, the PTVVM for place p1 is activated.

The control signals AFAWpi are also generated concurrently with the place
fields APpi just after power-on. The AFAWpi fields are thus transferred as the
control signals to the PTVVM for subsequent actions.

4.4 The PTVVM

The PTVVM comprises of three main sub-units (vide Fig.4.3). The first sub-unit
holds the data in its internal buffers to initiate the local token matching. It also
controls the mode selection to initiate either of the following two alternatives: i)
local token matching and ii) generation of signed token for the inert place. The
second sub-unit performs the local token matching, while the third sub-unit
determines the existence of tokens in the concerned place, and submits the status
to the FPS by a flag. The design of these modules is presented as follows.

4.4.1 The First Sub-Unit of the PTVVM

While designing the architecture, two arcs between a place and a transition is
presumed to limit system resources. Since the variables in the arc function of these
two arcs might have different bindings, two place buffers are needed to realize
this, which is depicted in the first module of the PTVVM in Fig. 4.4. It is
assumed here that there is a provision for a maximum of five tokens in a place,
accordingly, the place buffers (vide grid-like units in Fig. 4.4) are designed to
have five accessible locations. Further, for limiting the width of a signed token to
a maximum of three, the words of the place buffers are presumed to have three
fields. The first field of the token holds the sign of the token, while the last two
fields stand for the constant bindings of the variables in the arc function. When

181

APpr and APpo assume null values. These places are not shown in the figure for

there exists only one arc between a place and a transition, the contents of the two
place buffers are made identical for the generalization of the system design. It
may further be noted that arc function tags are also recorded in separate registers.

The arc function tags (AFT1 and AFT2) shown in the Fig. 4.4 correspond to the
signed arc functions associated with the arcs connected between a place and a
transition. For instance, the arc function tags AFT1 and AFT2 hold + X Y and ¬
Y Z (not shown for lack of space) respectively corresponding to the arc functions
for the arcs connected between transition tr1 and place p1 of Fig. 3.7 (vide chapter
3). It may be emphasized here again that the signed arc functions are received
from the THF through control lines after power-on. Since the design allows a
connectivity of at most two transitions with a place, two more arc function tags for
the second transition are needed. These arc function tags are not shown in the
figure to avoid clumsiness in the drawing.

The following three major tasks are required to be performed with the help of
the place buffers. First, the place buffers are needed to hold the initial tokens like
the markings recorded in a place. Secondly, the place buffers play an important
role in local token matching, which, however, is executed in the second sub-unit
of the PTVVM. Lastly, consequent to firing of a transition, the resulting new
tokens may be saved in the place buffers of the place associated with the
transition. The control logic circuit, shown at the right bottom part of Fig. 4.4,
generates the necessary control commands to execute the last two tasks.

For enabling the local token matching to be executed in the second sub-unit of
the PTVVM, a mode selector logic (MSL) (vide bottom part of Fig. 4.4) resets the
flip flop FF, which subsequently activates both the switches S2 (located near FF)
and S2

/ (located at left top corner). On closure of the switch S2, the synchronous
clock source (SCS) activated by the logic HIGH signal APX received from the
THF resets counter C3 (located close to the OR-gate) to initiate counting. The
switch S2

/ being closed, the counter C2 also gets reset for subsequent counting. It
needs mention that the clock rate for the counter C2 is 1/5th of the clock rate for
the counter C3. The counters C2 and C3 are used for generating the address of the
place buffers PB1 and PB2 respectively. The speed of the counter C2 being 1/5th of
the speed of C3, the contents of all the five locations of PB2 are compared with
each content of PB1. This is needed to test the consistency in local token matching.

To store a new value in the place buffer, the MSL in bottom of Fig. 4.4 presets
the flip flop FF for subsequent comparison of the content of the matched value
register (MVR) (located at top of Fig. 4.4) with the content of place buffer PB2.
On presetting, the flip flop FF closes the switch S1 to initiate counting at the
counter C3. The content of the MVR, assuming switch S3 is closed, is compared
with the token of the place buffer PB2 from the location addressed by the counter
C3. A control circuit, not shown in Fig. 4.4, is needed to match the respective
fields of the MVR and the PB2. The objective of the comparison is to determine
whether the content of the MVR already resides in place buffer PB2. If the result is
in the negative, the contents of the MVR needs to be saved in one blank location
within the place buffer PB2.This has been realized here by generating a control

182 4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

command (zz) at the output of the comparator. A value of zz = 1 indicates that the
content of the MVR is different from that of the current value of place buffer PB2.
This control command enables a null register R2 to output a null value designated
by a 4-bit data-stream 1111 for comparison with the current content of the place
buffer PB2 via register R1 with the help of the null checker circuit NC.

If R1 (beside TSB) contains a null value 1111, the NC issues a HIGH control
command to close the switch S4 (near TSB), which establishes a data path from the
MVR to the register D in the second sub-unit of the PTVVM, provided S3 is still
closed. If at least one transition associated with the place of the corresponding
PTVVM fires, the switch S3 gets closed. In order to prevent the scrambling of new
token values entering a common place through multiple firable transitions, AND
gates are used to steer the value of the variables to the Local Token Matcher
(LTM) circuit of the second sub-unit for the respective firable transitions.

The counter C3 is also used in the third sub-unit of the PTVVM for flag
generation signifying existence of tokens at a place.

4.4.2 The Second Sub-Unit of the PTVVM

The second sub-unit of the PTVVM (vide Fig. 4.5) comprises of separate Local
Token Matcher circuits (LTM) for different transitions associated with the place
corresponding to the PTVVM (vide Fig. 4.6). The signs of the arc functions are
stored in the arc function registers AF1 and AF2 (vide Fig. 4.6) in the respective
fields of the arc functions A and C of the LTM in the second sub-unit. Using the
control lines 1 and 2, the signed tokens are stored in the appropriate fields (Sign,
X, Y and Z) of the registers B and D associated with AF1 and AF2 respectively in
accordance with the tags such as AFT1 and AFT2 of the place buffers (vide Fig.
4.4). The sign comparators together with the value comparators followed by the
AND logic determine the consistent bindings of X, Y, Z which are transferred to
the matcher circuit. For a common place pi connected to a number of transitions
the appropriate hardware are replicated.

A little thought will reveal that only one out of all the places associated with a
transition, will be prevented from generating variable bindings of the arc function.
The arc function unsuccessful in the variable binding process is called the inactive
arc function. A token while entering a place takes the opposite sign of the inactive
arc function that steers it to the place. Sign complementers and additional
registers R3 and R4 are employed in Fig. 4.6 to ensure this during the traversal of
the signed tokens to the place buffers. The tri-state buffers, incorporated in the
circuit, have their generic use of prohibiting signal flow in undesirable directions.

When an arc-function-register, AF contains a null value or no appropriately
matched (signed) token, a control command is issued for transferring the properly
signed token to the place buffers following the inactive arc function. The control
logic is governed by two issues: first it checks whether the incoming token-stream
at the arc function register is null (1111) and whether there already exist a

183

matching token in the place buffer corresponding to the arc function. If the former
condition is found true and the latter is false, then the signed token held by the
additional registers R3 or R4 are passed on to the place buffers. The control logic
circuit includes a null checker (NC) and a few logic gates to identify the inactive
arc function in each PTVVM module. It also allows the relevant bus lines to
transmit the signed tokens to the place buffers. Otherwise the transmission of the
signed tokens is aborted.

The tokens held by the place buffers are transferred to the third sub-unit one by
one as addressed by the first sub-unit for subsequent checking of the existence of
at least one token at the place. The existence of tokens at the places associated
with a transition is required for testing one pre-condition of firing of the transition.

4.4.3 The Third Sub-Unit of the PTVVM

The status Flag Generating Circuits (FGC), incorporated in the third sub-unit of
the PTVVM (vide Fig. 4.7), checks if there exists at least one non-null token in
place pi.. This circuit receives the content of all the locations of place buffer PB2

(copy of which is retained in place buffer PB1) with the help of a counter (vide
Fig. 4.4) and a decoder. The decoder activates the switches S6 to S10 in sequence,
so as to get the proper contents from each locations of the place buffer PB2 in
corresponding registers of FGC. The AND gates connected with this register
checks whether the content of the location is null (1111). Thus a ZERO in the
output of any one AND gate will propagate as a ZERO through next level AND
gates making the output status line of FGC to be ONE indicating that at least one
of the tokens in place pi is non-null.

4.5 The Matcher

The matcher circuit M receives signal for a single variable, say X, from different
places associated with a given transition trj. Since the value of the variable X
could assume either a constant or null bindings, an arrangement has been made to
ensure consistency among these possible bindings. For instance, if the value of a
variable X obtained from one place associated with the transition is “a” and the
value of X obtained from the remaining places connected with the transition is
“null”(denoted by 1111), then the resulting binding for X is “a”. However, if
value of X obtained from the places associated with a transition is “a”, “b” and
“null values” respectively, no consistent bindings can be formed. On evaluation of
a consistent binding for a variable, the Matcher circuit (vide Fig. 4.8) generates a
logic level HIGH signal at its output for subsequent activation of the FCTL circuit.
This is realized in the Matcher circuit of Fig. 4.8 in two phases.

In the first phase the value of variable X, denoted by 4-bit strings, are received
from the PTVVM of the respective places at the Xp1, Xp2,…,Xp5 lines of the

184 4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

Matcher (Fig. 4.8). These values are stored in the internal registers R1, R2,…, R5
of the Matcher respectively. The Matcher in the first phase checks whether the
contents of the registers are null. If yes, the AND gates below the matcher yields a
logic value HIGH, else it is ZERO. The OR gates above the MOS switches control
the closure/opening of the switches based on the output of the AND gates below
the registers. If a register contains a null value (i.e., 1111), and its right neighbor
contains a constant (non-null) value (other than 1111), then the OR gate activates
the MOS switches to short-circuit their drain-source terminals, thereby providing
a wired-ANDing [3] of 4-bit contents of a register with its right neighbor. In case
two successive registers contain different non-null values, the OR-gates’ both
input being ZERO, it remains inactive, and thus the MOS switches remain open.

The Matcher circuit in the second phase is engaged to compare the contents of
each two successive registers. This is realized by using 4-bit comparators employing
XOR gates. Since similar inputs of a XOR gate results in ZERO at its output, we
need to invert them and AND the resulting signals to describe the results of
comparison of two registers’ contents by a single bit. An AND tree employed in Fig.
4.8 finally determines whether a variable X has any consistent bindings.

It may be added here that one of the pre-conditions for firing a transition is to
determine a consistent binding of all variables associated with its arc functions.
Assuming that arc functions contain three variables: X, Y, and Z, we need to
determine the consistent bindings for all the three variables X, Y and Z. A
transition can fire only after determining a consistent binding of all the three
variables associated with its arc functions. This has been realized in the circuit
diagram presented in Fig. 4.9 by employing three Matcher circuits for the three
variables, and by one AND gate. The AND gate checks whether the outputs of

Fig. 4.9 ensures satisfaction of all the three pre-conditions of firing (see chapter 3
for details) a transition trj. The latter AND gate is referred to as the Firing Criteria
Testing Logic (FCTL).

4.6 The Transition Status File

On reset, the Transition Status File (TSF) for each transition begins checking
whether the set of current binding is a member of the set of used binding. In Fig.
4.10 we kept provision for four such X-Y-Z triplet fields that hold the used
bindings and one additional triplet to represent the current binding. To test the
existence of the current triplet in the used four triplets, a counter (C), an address
decoder and a multiplexure (MUX) are needed. The MUX on receiving an address
i, 0≤ i ≤3, from the counter transfers the i-th triplet of the used binding to the
three step comparator (3SC). The 3SC compares the respective X-, Y- and Z-
fields of the current and used binding space. In case the current set is not a
member of the used bindings, then the current set should be placed in an empty

185

of the AND gate satisfies one pre-condition for firing. The other AND gate shown in
each matcher resulted in a consistent bindings. Thus a HIGH level at the output

slot of the used bindings. The empty slots actually contain a null value (1111) and
thus we can easily check its status by employing a null checker NC2 that works in
parallel with the 3SC. It is clear from the Fig. 4.10 that both NC2 and the 3SC
receive common input from the MUX. Now, suppose at count = j, the current set is
detected not to be a member of the used bindings, and the j-th slot has been found
empty (denoted by a null value). Consequently, the counter remains held up at count
= j, and the j-th slot of the set of used binding is filled in with the current value.

It may be noted that initially the current triplet and the used four triplets are all
initialized to be null (1111) by the compiler. The circuit thus starts functioning
with null values, until a new value is received at the current triplet field from the
matcher M. The fields of current binding are subsequently updated by the
respective contents of the matcher M.

A flag is used to indicate two special circuit conditions: (i) whether the set of
current binding is non-null and (ii) whether the set of current binding is available
in one of the fields of the used binding. When any of the aforementioned
conditions are found to be true, the flag is HIGH, else it remains LOW. Thus in
case all transitions’ current binding are members of a corresponding set of used
binding, the flag signal for each transition will be 1. An AND-gate (vide Fig. 4.11)
is used to test the joint occurrence of all the HIGH flags. The resulting output of
the AND-gate needs to be inverted to pass it on to a Low logic level message to
the FCTL, signifying that all transitions’ current bindings are members of their
used bindings, and consequently firing of transitions are no longer needed.

4.7 The First Pre-condition Synthesizer

One important prerequisite for firing a transition is the existence of tokens at all
places barring at most one. This has subsequently been referred to as the first pre-
condition for firing a transition. To illustrate this principle, let us consider a
transition having a total of five input and/or output places. Let a, b, c, d and e be
five Boolean variables designating presence/ absence of tokens at those five

denotes its complementation.

 abcde + acbcde +abccde+ abccde+ abcdce+ abcdec (4.1)

 The expression (4.1) can be simplified easily to the following form by ORing
abcde to each term of (4.1) starting from the second term.

 bcde+ acde+ abde+ abce+ abcd. (4.2)

186

be described by Boolean expression (4.1), where the superscript “c” over a variable
places. Thus the condition that all except at most one place possess tokens can

4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

The Petri net we used in Fig. 3.7, however, has three places associated with
each transition. Thus expression (4.1) reduces to a three-variable Boolean
function, described by
 abc + ac bc+ abcc+ abcc

 (4.3)

which can be simplified to

 ab +ac+ bc. (4.4)

The Boolean variables in the present context are flags generated by the
PTVVM, indicating whether the place contains any tokens. For convenience in
understanding, we denote the flags generated by a place by the place name itself.
Thus the Boolean function for tr1 and tr2 (vide Fig. 3.8) are given by

 p1p2 + p2p3 + p3p1 (4.5)
 p3p4 + p4p5 + p5p3 (4.6)

Figure 4.12 presents a logic circuit for the above two Boolean expressions. The
circuit receives flags from the respective PTVVMs of places p1, p2, p3, p4 and p5

respectively, and communicates the status of presence/ absence of tokens at all
excluding one input/output places of a transition to the Firing Criteria Testing
Logic (FCTL). It is to be noted that the FPS includes the logic circuitry
corresponding to all the transitions in the Petri net.

4.8 The Firing Criteria Testing Logic

The Firing Criteria Testing Logic (FCTL), vide Fig. 4.9, is needed to decide the
possible firing of a transition based on the joint occurrence of the following three
criteria.

(1) All excepting at most one place associated with the transition possess
tokens;

(2) All the variables in the arc functions associated with a transition yields a
globally consistent value; and

(3) The current binding is not a member of the used binding or the current
binding is a null vector.

For each of the aforementioned three conditions one flag is generated, the joint
occurrence of which is tested by the FCTL. The circuit is simple. It just includes a
3-input AND gate for each transition. The output of the AND gate carries the

187

current status of firing of the corresponding transition. The status signal thus
generated is carried to the PTVVM for requisite subsequent actions.

New
value

AFT1

COMPILER

1,if c-b∉u-b;
o, otherwise.

Activates
“place-name”
lines

Activates “transition-name” lines Activates “transition-name” lines

 Reset

Control

Status of
flags

 of token

1, if matching
is consistent;
0, otherwise.

1, if all but one places
contain tokens;
o, otherwise.

Fire trj

Value of
variables
at each place

Assigns null value in set of current- and used-binding fields

THF ≡ Transition History File
PTVVM ≡ Place Token Variable Value Mapper
FPS ≡ First Pre-condition Synthesizer
TSF ≡ Transition Status File
FCTL ≡ Firing Criteria Testing Logic
M ≡ Matcher

 tr2

 tr3

TSF for tr1

 TSF for tr1

 tr2

 tr3

PTVVM p1

 p2

 p3

 p4

 p5

 tr2

 tr3

 FPS for tr1

 tr3

 M for tr1

 tr2

 FCTL for tr1

 tr2

 tr3

188 4 Realization of A Parallel Architecture for the Petri Net Model

Fig 4.1: Functional architecture of the complete system

Parallel and Distributed Logic Programming

V cc

TRN ≡ TRANSITION NAME,
APpi ≡ ASSOCIATED PLACE Pi FOR i = k, l , m ,
AFAWpi ≡ ARC FUNCTION ASSOCIATED WITH pi FOR i = k, l, m,
TSF ≡ TRANSITION STATUS FILE,
PTVVM ≡ PLACE TOKEN VARIABLE VALUE MAPPER

To TSF

Activates
“Place-name”
 lines

Activates
“Place-name”
 lines

Control
lines

Control
lines

To PTVVM

 A ≡

B ≡

 C ≡

D ≡

E ≡

+ X Y ¬ Y Z

+ X Z φ φ φ

¬ Y Z φ φ φ

+ X Y φ φ φ

¬ X Y φ φ φ

Activates
“Transi-
tion-name”
lines

 TRN

tr1

 APpk

p1

 AFAWpk

 A

 APpl

p2

 AFAWpl

 B

 AFAWpm

C

 APpm

 p3

 TRN

tr2

 APpk

 p3

AFAWpk

 D

 AFAWpl

 E

 APpl

p4

 APpm

 p5

 AFAWpm

 E

189

Fig 4.2: Transition History File

1st sub-unit

 2nd sub-unit

LTM for trk

LTM for trj

FGC
3rd sub-unit

Control line 3 From THF

From
Compiler Control line 4

APX

AFA
WX

From
THF

From Matchers for trj & trk
From FCTL
for trj & trk

To
Matcher

for
trj

To
Matcher

for
trk

Control
line 1
for trk

Control
line 1
for trj

Control
line 2
for trj

 Control
line 2
for trk

Address bus

To
FPS

From
Power
line

190 4 Realization of A Parallel Architecture for the Petri Net Model

Fig. 4.3: Place Token Variable Value Mapper

Parallel and Distributed Logic Programming 191

Fig 4.4: First sub-unit of the PTVVM

Predivider

 From Matchers for trj & trk From Firing Criteria Testing Logic

 THF ≡ Transition History File SCS ≡ Synchronized Clock Source R1 ≡ Register ABC R2 ≡ Null Register
 Ci ≡ Counter i for i = 1,2,3 MVR ≡ Matched Value Register TSB ≡ Tri State Buffer R ≡ Reset
 MSL ≡ Mode Selector Logic FGC ≡ Flag Generating Circuit NC ≡ Null Checker FF ≡ Flip Flop
 PTVVM ≡ Place Token Variable Value Mapper PBi ≡ Place Buffer i for i = 1, 2
AFTi ≡ Arc Function Tag for i = 1, 2

 Control
 line 3
for trj

 Control
line 4
 for trk

R

1,if ABC
= null

Control
lines 1 for

trj

To Register D and D′

To
FGC

To register D and D′

From THF

Control
lines 2 for

trk

S2′

First 3-
fields of

both place
buffers are
obtained
from the

THF, while
the 4th

sign field
and

5th, 6th data
fields (not
shown by

bus) of
tokens are
obtained
from the
compiler

ADDRESS
BUS

S1 S2

PB1

 PB2

S3

zz

zz = 1, when
Field 1 = Value 1

 S4

Field 1

Value 1

÷ 5

SCS

C 1 MVR for pi

C 2

TSB R1 R2

NC

 C3

OR
gate

 FF MSL

C
O
M
P

AFT2AFT1

Local Token
Matcher for trj

Local Token
Matcher for trk

From and to Place Buffer 1 of
first sub-unit of PTVVM

From and to Place Buffer 2
of first sub-unit of PTVVM

From Tri-state Buffer of
first sub-unit of PTVVM

Control line 3
from first sub-
unit of PTVVM

X
Y
Z

To Matcher
for trj

To FGC of
 third sub-unit
of PTVVM

Control lines 2
for trk

Control lines 1
for trk

Control line 4
from first sub-
unit of PTVVM

X
Y
Z

To
Matcher
for trk

Control lines 2
for trj

Control lines 1
for trj

THF = Transition History File
PTVVM = Place Token Variable Value Mapper
TSF = Transition Status File
FGC = Flag Generating Circuit

i

192 4 Realization of A Parallel Architecture for the Petri Net Model

Fig. 4.5: Second Subunit of PTVVM for p

Parallel and Distributed Logic Programming

Fig 4.6: Local Token Matcher for trj in 2nd subunit of PTVVM for pi

193

Fig 4.7: Third sub-unit of the PTVVM for p

Sub-unit of
PTVVM

Address Bus
from First

Tokens from
Second

Sub-unit of

PTVVM

DECODER

S6

Power Line

S9

S10

Flag p1{1=Has
token;
0 =No token}

A
N
D

To First
Precondition
Synthesizer

S7

S8

X
O
R

194 4 Realization of A Parallel Architecture for the Petri Net Model

i

Parallel and Distributed Logic Programming

MATCHE
R(X)

For
X

MATCHE
R(Y)

MATCHE
R(Z)
For

From LTM for trj of the second sub-
unit of PTVVMFrom TSF

For Y

X1

Y1

Z1

FCTL

To
Matche
d value
Register
of the
first
sub-unit
of
PTVV
M

Zpi Ypi Xp5 Xp4 Xp3 Xp2

X

&

To TSF
for trj

Matcher for X
To PTVVM X1

R5R4R3R2R1

XOR XOR XOR XOR

From
PTVV

M

1, if X-matching for trj is consistent

Xp1

Xp2

Xp3

Xp4

Xp5

PTVVM ≡ Place Token Variable Value Mapper
 Ri ≡ Register i for i = 1,2,3,4,5

Fig. 4.8: Matcher for variable X for trj

195

PTVVM ≡ PLACE TOKEN VARIABLE VALUE MAPPER
TSF ≡ TRANSITION STATUS FILE
LTM ≡ LOCAL TOKEN MATCHER

From LTM for trj of the second sub-unit of
PTVVM

From TSF

From First Pre-
condition
Synthesizer for
trj

To
Matched

value
Register of

the first sub-
unit of

PTVVM
&
To

TSF
for trj

Z1

Zpi ≡ Zp5 Zp4 Zp3 Zp2 Zp1

Ypi ≡ Yp5Yp4 Yp3 Yp2 Yp1

MATCHER(X)

For X

MATCHER(Y)

For Y

X1

To PTVVM

Zpi Ypi
Xp5 Xp4 Xp3 Xp2 Xp1

Fig. 4.9: Matcher for trj

MATCHER(Z)

 For Z

Y1Fire
trj FCTL

196 4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

Control

Address

1 if c-b
= non–null Yes when null

 3SCNC1 NC2

 Decoder

 MUX C CI

Clk

Tr- name

trjReset Oj

 SOCB Set of used-bindings

From Matcher

Tr-name ≡ Transition name Clk ≡ Clock
SOCB ≡ Set of current bindings NC1 ≡ Null checker 1
C ≡ Counter CI ≡ Clock inhibitor
NC2 ≡ Null checker 2 3SC ≡ 3 step comparator

 r d a ∅ ∅ ∅

Fig. 4.10: Transition Status File for trj

 Control

Flag=1 if c-b∈ u-b≠{∅};
Flag=0 if c-b ∉ u-b or c-b={∅}

197

Reset

From
Matcher

for trj

From
Matcher

for trk

To
FCTL

FCTL ≡ Firing Criteria Testing Logic

Transition status file
for trk

Transition status file
for trj

Oj

Ok

198 4 Realization of A Parallel Architecture for the Petri Net Model

Fig. 4.11: Transition Status File

Parallel and Distributed Logic Programming

From
FGC
(the third
sub-unit
of
PTVVM)

For trj For trk

To FCTL for trj To FCTL for trk

FGC ≡ Flag Generating Circuit
FCTL ≡ Firing Criteria Testing Logic
PTVVM ≡ Place Token Variable Value Mapper

199

Fig. 4.12: First Pre-condition Synthesizer

4.9 Timing Analysis for the Proposed Architecture

For the determination of the execution time of logic programs on the proposed
architecture, we need to identify pipelined stages embedded therein, and estimate
the computational time required for each stage within the pipeline. Figure 4.13
provides a schematic diagram of the pipelined stages in the proposed architecture.
A look at Fig. 4.13 reveals that the architecture offers three main pipelines. The
first one comprises of the THF, the PTVVM, the Matcher and the TSF. The
second one comprises of the THF, the PTVVM and the Matcher, while the third
one includes the THF, the PTVVM and the FPS in order. It is also evident from
Fig. 4.14 that the Matcher and the FPS both work in parallel, but the FPS
completes its task earlier than the Matcher. The TSF, which is employed to test the
firability of an enabled transition, works in two phases. The first phase, which is
activated on system reset, is a waste phase (cycle) [4]. It is incorporated
intentionally to avoid complexity in designing the control logic for the TSF. The
second phase, which is initiated on receiving current-bindings from the Matcher,
is an effective component of a transition firing cycle1. The FCTL, shown in Fig.
4.13, starts functioning on receiving the pre-conditions for firing from the
Matcher, the FPS and the TSF.

PTVVM THF

TSF

Matcher

FPS

FCTL

Fig. 4.13: Pipelining among the major modules of the architecture for the
execution of FOL programs. The solid bold line denotes data lines, the solid thin
line denotes data line for transmission of data for the next cycle, and the dotted

200 4 Realization of A Parallel Architecture for the Petri Net Model

line denotes ‘fire transition’ control signal

Parallel and Distributed Logic Programming

A timing analysis of the proposed architecture reveals that maximum time of a
transition firing cycle is consumed by the PTVVM. An insight view of Fig. 4.3
and 4.5 further reveals that local matching of tokens in a PTVVM is primarily
accomplished by determining the common variable bindings of two arc functions
associated with one place and a transition. In our architectural realization, we
presumed that a place contains at most five tokens. Thus, the variables in an arc
function can have at most five bindings. Consequently, to determine the common
variable bindings of two arc functions connected between a place and a transition,

1 A transition firing cycle is defined as the interval of time between the issue of a system
reset signal to placement of tokens at an inert place after firing of a transition.

THF PTVVM

Matcher

FPS
TSF

(2nd phase)
FCTL

TSF
(1st phase)

b c d e f g a

 A
ct

iv
at

ed
 p

ip
el

in
ed

 u
ni

ts

 Time →

Fig. 4.14: Gantt chart showing concurrent and pipelined activation of
different units in one transition firing cycle for evaluation of the cycle

Token
placement

in
PTVVM

h

201

time

we need (5 × 5) = 25 comparisons. Assuming that the place buffers in the PTVVM
(Fig. 4.4) are realized with RAMs driven by a system clock of time period Tc, it
can easily be ascertained that 25 memory read cycles 2 (or 75 Tc) are needed to
complete the local matching of tokens. Further, for storing an inferred token into a
place buffer (Fig. 4.4) we need to compare the content of Matched Value Register
(MVR) with the content of one place buffer. Since a place buffer contains 5
tokens, we need 5 comparisons and consequently 5 memory read cycles in the
worst case for matching. One memory write cycle is also employed (time slot g to
h in Fig. 4.14) to enter the inferred token into the blank place of the place buffer.
The time consumed for 5 memory read and memory write cycles is 15 + 4 = 19
clock cycles. Thus PTVVM approximately requires (75 + 19) Tc = 94 Tc.

Among the other modules in Fig. 3.13, the THF requires 1 register access cycle,
and the FPS, the FCTL and the Matcher consume approximately 2, 1 and 10 gate
delays respectively. Assuming that the TSF circuit (Fig. 4.10) is realized with
register files, a simple analysis shows that the TSF approximately consumes 4
clock cycles (or 4 Tc), 1 register write cycle (or 1 Tc),1 MUX-delay, 1 comparison
and 3 gate delays.

Thus ignoring gate delays and other switching delays involved in comparison,
the time incurred in a transition firing cycle, starting from reset to token placement
at a place is approximately (94 + 4 + 1)Tc = 99 Tc ≈ 100 Tc. Since a number of
transitions are concurrently firable, it is expected that the execution of a complete
logic program will require an integer multiple of this transition firing cycles.
Assuming that a logic program requires p transition firing cycles, the time needed
for execution of the program thus is approximately 100 p Tc. Further, assuming a
1000M-Hz clock frequency, the time required for execution of a logic program on
the proposed architecture is (100 × p × 10-9) = 0.1 p µ-sec (microsecond). To have
an idea about the execution time of commercial programs on the proposed
architecture, let us consider a database program containing 2000 rule clauses and
8000 data clauses. Such programs can be configured on a Petri net with 2000
transitions3 and approximately 2000 places4, each place been mapped with 4 data

program on the proposed architecture = 0.1 × 2000 µ-sec = 200 µ-sec only.

4.10 Conclusions

This chapter presented a parallel architecture for logic programming based on the
reasoning formalisms of Petri net discussed in the last chapter. The proposed
architecture supports concurrent resolution of multiple program clauses associated

2 Memory read and write cycle require 3 and 4 clocks respectively.
3 No. of transitions = No. of rule clauses.
4 Usually number of places in a Petri net is approximately equal to the number of
transitions [2].

202

clauses. Since the worst case value of p cannot exceed the number of transitions
(= 2000), we assume p = 2000. Consequently, time required for execution of the

4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

with each transition. Thus groups of concurrently resolvable clauses mapped at
transitions and their adjacent input/output places can be resolved concurrently,
thereby increasing the throughput to a great extent. An analysis of the proposed
architecture reveals that there exist two multi-stage pipelines and parallelism
among the modules of the architecture. Consequently with number of program
clauses equal to the number of transitions, the architecture achieves a high degree
of parallelism. The Gantt chart [6] shown in section 4.9 (vide Fig. 4.14) reveals
that the time required for execution of a logic program on the proposed
architecture is approximately 100 p Tc,, where p and Tc denote the number of
concurrent transition firing cycles and time period of the system clock
respectively. Since p usually is of the order of 1000s, and Tc is of the order of
microseconds, the resulting time is only of the order of one tenth of a second.
Thus the proposed architecture will find massive applications in the database
systems realized with Datalog programs.

Exercises

1. Given a Petri net with necessary labels of arc functions and associated places
of transitions. Construct the Transition History Files. You need not show the
input and output lines of the register files.

[Hints: The Transition History File for the Petri net given in Fig. 4.15 is
constructed in the next page vide Fig. 4.16.

p2

(X, Y) p5

 ¬(X, Z)
 (Z, Y) tr2

(X, Y)

 ¬(Z, X)

(Y, Z) tr1

p1

p3

p4

203

Fig. 4.15: A given Petri net

2. Suppose the place/transition names and arc functions are coded as binary
strings of 3 and 12 bits respectively in a Transition History File register
(THF).

(a) Determine the word-length of the Transition History File registers.

(b) Using flip-flops as the basic elements, design a complete register to realize
the THF.

Transition APpk AFAWpk APpl AFAWpl APpm AFAWpm

tr1 p1 A p2 B p3 C

tr2 p3 D p4 E p5 F

Where,

A ≡
+ X Y ∅ ∅ ∅

B ≡
+ Y Z ∅ ∅ ∅

C ≡
¬ Z X ∅ ∅ ∅

D ≡
+ X Y ∅ ∅ ∅

E ≡
+ Z Y ∅ ∅ ∅

F ≡
¬ X Z ∅ ∅ ∅

204 4 Realization of A Parallel Architecture for the Petri Net Model

Fig. 4.16: Transition History File]

Parallel and Distributed Logic Programming

[Hints:

(a) Word-length of transition history file register = Word-length for one
transition + Word-length for 3 place-names + Word-length for 3
associated arc functions = (3 + 3 × 3 + 3 × 12) bits = 48 bits.

(b) To design the THF register the following points may be taken into
account.

(i) All flip-flops in each register should be activated simultaneously by
the same clock.

(ii) Except transition-name, other information of the THF need to be
transferred to other units of the circuit, all in the same time.]

3. Suppose the predicates in a logic program include only three variables X, Y
and Z. Assuming a ‘+’ signed arc function corresponds to the input arc
function and a ‘¬’ signed arc function corresponds to the output function of a
transition, determine the word-length required to represent the ‘AFAWpi’ in
THF. Note that an arc function contains only two variables out of X, Y and Z.

[Hints: AFAWpi includes 2 arc functions, the format of which is given
below.

where (X, Y) and (Y, Z) denote the input and the output arc functions
respectively of the given transition.

 To represent three variables we, minimally require two bits. Thus, let X,
Y and Z be denoted by 00, 01 and 10 respectively. The ‘+’ and the ‘¬’ and
‘don’t care’ sign requires two bits, say, ‘00’ for ‘+’, ‘11’ for ‘¬’ and ‘01’ for
‘don’t care’. Thus the word-length becomes

Bit requirement: 2 + 2 + 2 + 2 + 2 + 2

Thus, summing the bit requirements for individual bit we get the result to be
12 bits.

X Y+ ¬ Y Z

X Y+ ¬ Y Z

205

The individual numbers in the last expression corresponds to the bit
requirement for the respective element in the given string.

It is to be noted that a null variable and sign can be denoted by “11’ and ‘01’
respectively.]

4. Consider the Petri net shown in Fig. 3.7. Given the time required for the
following operations:

Determine the overall time required for firing transition tr1.

[Hints: The order of execution at the modules inside the PTVVM given in the
timing diagram (Fig. 4.17). It is clear from the diagram that the total time
consumed = (30 + 10 + 20) µS = 60 µS.

Operations Time required for the
operation

Local Token matching 30 µS

Testing the first and the third
precondition

20 µS

Global token matching at the
Matcher unit

10 µS

206 4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

5. Given the following timings in connection with transition firing in a Petri net.
Assuming that the LTMs and Matchers of transitions tr1 and tr2 work in
parallel, determine the total time needed for firing of both the transitions in
Fig. 3.7.

Time
consumed
by

LTM

 30 µS 10
µS

20 µS

60 µS

Time

Token matching

Second firing
condition testing

First and
third firing
condition

testing

Fig. 4.17: Timing diagram describing order of execution at the modules

Matcher

207

inside PTVVM for the Petri Net of Fig. 3.7]

[Hints: The local token matching of the arc functions (X, Y), (X, Z) and ¬(Y,
Z) can be done concurrently and the time needed for doing so

= (5 µS/variable) × 2 variables
= 10 µS.

 The variable bindings thus obtained are transmitted to the Matcher for
global token matching. It is indeed important to note that the three tokens of
place p1 require 3 × 3 = 9 matching cycles for instantiation of (X, Y) and
¬(Y, Z). Naturally the total time consumed for transition tr1 includes these 9
matching cycles at the LTM. Therefore the total time consumed for firing of
tr1

= Time required for 9 matching cycles at LTM + Time required
for 1 matching cycle at the Matcher

= Time required for (9 × 2) = 18 variable matchings
= (18 × 5) µS + 1 × 10 µS
= 90 µS + 10 µS
= 100 µS.

 Since the preprocessing for firing at tr2 works in parallel to that of tr1, tr2

does not consume any additional time. Thus the time required for firing tr1and
tr2 together

 = 100 µS.]

Operations Time required for the
operation

Matching a single variable in
an arc function

5 µS

Testing the first and the third
precondition for firing 20 µS

Global token matching at the
Matcher unit 10 µS

208 4 Realization of A Parallel Architecture for the Petri Net Model

Parallel and Distributed Logic Programming

6. Consider the Local Token Matcher in Fig. 4.6. The doted box in the Fig. 4.6
against which the label is attached, contains two components A and B. A
denotes the sign of the arc function variables and the first component of B
denotes the sign of the token in the associated place of the transition. The last
three components of B contains the values of variables X, Y and Z
respectively.

 Let AF1 and AF2 denote the registers containing respective sign and value
of arc functions (X, Y) and ¬(Y, Z) respectively. Assuming that the time
required for sign matching is 2 µS, value matching is 3 µS and propagation
delay for 1 AND gate is 1 µS, determine the time needed to obtain a
consistent binding of the two arc function variables.

[Hints: The sign and value matching here can be done in parallel in Fig. 4.6.
We note that the time needed for value matching is more than that of sign
matching, the total detrimental factor in timing is given by the values only.
Hence the time needed to generate a consistent binding, if possible

= Max (time required for sign matching and value matching)
 + (3 AND-delay)
= Max (3 µS, 2 µS) + 3 × 1 µS
= 3 µS + 3 µS
= 6 µS.]

7. Consider the TSF in Fig. 4.10. The set of the current and the used bindings for
transition tr1 of Fig. 3.7 in the second firing cycle is listed below.

Set of current bindings: {(r/X, n/Y, a/Z)/(r/X, d/Y, a/Z)}
Set of used bindings: {{r/X, d/Y, a/Z}, {r/X, n/Y, a/Z}}

The time required for matching of three variables X, Y and Z in parallel = 3
µS, determine (a) the master clock frequency. Also (b) determine the time
required for generating the flag from the TSF.

[Hints:

(a) The master clock should be sufficiently wide to hold the address at the
input of the MUX for comparison of its corresponding content with the
Set of current bindings (SOCB).

Given the time required for concurrent matching of three variables, we
can determine the clock frequency

= 1/ (3 µS)

209

= 0.33 × 106 Hz
= 0.33 MHz.

(b) For the generation of the flag it is needed to check whether the current
binding is a subset of used bindings. In the present context it requires two
matching cycles of three variables. Thus the time needed for generation
of flag = (2 × 3) µS = 6 µS.]

References

1. Hwang, K. and Briggs, F. A., Computer Architecture and Parallel
Processing, McGraw-Hill, Singapore, 1986.

2. Konar, A., Uncertainty Management in Expert Systems Using Fuzzy Petri
Nets, Ph.D. thesis, Jadavpur University, 1994.

3. Mano, M. M., Computer System Architecture, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

4. Mathur, A. P., Microprocessors, Tata McGraw-Hill, 1985.
5. Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach,

Prentice-Hall, Englewood-Cliffs, NJ, 1994.
6. Silberschatz, A. and Galvin, P. B., Operating System Concepts, Addison-

Wesley, Reading, MA, 1994.

210 4 Realization of A Parallel Architecture for the Petri Net Model

Parsing and Task Assignment on
to the Proposed Parallel Architecture

5.1 Introduction

This chapter provides details of the pre-processing needed prior to execution of a
pseudo PROLOG program. Classical PROLOG programs like programs in
traditional languages such as C or Pascal are first compiled to obtain the target
object code for running them on a given processor. The processor in turn generates
its micro-codes for execution of the object codes from a micro-programmable
ROM, and issues appropriate control signals for bus opening and closing for data
transfer and execution. A number of alternative execution models of PROLOG
programs (vide Fig. 5.1) are prevalent in the current realm of Artificial
Intelligence. Most of the models, however, include transformation of a PROLOG
program into an intermediate code suitable for Warren Abstract Machine (WAM)
[5,7], and then translation of the WAM code into the object code of the host
machine. The WAM provides a framework for automatic detection of concurrency

codes on a parallel architecture.

5

The chapter provides an outline to parsing users’ pseudo PROLOG codes and
mapping segments of the program onto the parallel architecture introduced in the
last chapter. To avoid online mapping of the program segments onto the
architecture, we presume no constraints on system resources. If the situation is
different, then a specially designed task-assignment policy is needed to identify the
usable (non-utilized) hardwired resources and a dynamic task assignment
program is to be invoked for mapping the non-executed program modules onto
the usable system resources. It is indeed important to note that such type of online
mapping of system resources causes a significant delay in the execution of the
program. A speed-size tradeoff is commonly used to optimize the size of
the architecture and minimize the execution time of the program. The architecture
we presented in the last chapter is economized based on the resource demand in
the execution phase of the program. Consequently, no online mapping of
resources is needed in the present context.

in a PROLOG program, thereby facilitating the users to run the concurrent object

A. Bhattacharya et al.: Parsing and Task Assignment on to the Proposed Parallel Architecture, Studies
in Computational Intelligence (SCI) 24, 211–228 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

The chapter proposes a new model for execution of a pseudo PROLOG
program (vide rightmost part of Fig. 5.1). Here, the program is first passed on to
parser for lexical analysis and syntax checking. An emulation program then
transforms the bug-free source code into a Petri net. Hardware resource
requirements for execution of the program thus can be traced from the emulated
Petri net model. A task assignment program then determines the hardware
requirements from the emulation model and maps the program resources onto the
hardwired system resources. For instance, the binary coded place names are
mapped to the associated place fields (APpi) of the Transition History File (THF).
The signed arc functions detected from the Petri net model of the pseudo
PROLOG program are also mapped to the arc function associated with a place
(AFAWpi) of the THF. The signed tokens are mapped at the place buffers of the
appropriate Place Token Variable Value Mappers (PTVVMs). The current and
used binding fields of the Transition Status File (TSF) are assigned null values
prior to execution of the program.

One point that needs to be addressed here is whether to add flavor to static or
dynamic assignments. In case of static assignments, the program resources can be
mapped onto the architecture once only and prior to the execution of the program.
Dynamic assignment [4] on the other hand is complex as it involves many issues

Compilencr Compile68000 DEL8600 DelPLM

General
Host
µcode

General
Host

Transformation
into Petri nets WAM

Classical
model

Optimal Proposed
execution model

8600
µcode

PLM
µcode

Optimal
Host
µcode

Gates

Prolog/
Pseudo
-Prolog

Parsing

Task
assignment

Execution on
the proposed
parallel
architecture

Fig. 5.1: A comparison of various alternative execution models of PROLOG

212 5 Parsing and Task Assignment

including the proposed model

Parallel and Distributed Logic Programming 213

like deciding usability of system resources and their dynamic interconnectivity.
On occasions, there exist options in resource assignments, and consequently an
optimal policy in assignment strategy is framed to resolve the issue. Both
deterministic and stochastic models [2] are employed in policy design, and the
choice of the policy greatly depends on usable resource count, their type and the
user resources such as arc function variables, tokens and predicates. To keep our
design simplified, we in this chapter do not consider dynamic assignment of
program resources onto the proposed architecture.

It also needs mention here that the First Pre-condition Synthesizer (FPS)
introduced in the last chapter generates a flag based on the existence of tokens at all
the places, excepting at most one. The pre-processor provides the necessary logic
function to the FPS to check the above status, which is subsequently synthesized by
the FPS for its realization. The flag to indicate the status of the FPS is then generated
for satisfying the subsequent firing condition of the transition under reference.

5.2 Parsing and Syntax Analysis

Parsing is a fundamental step in the process of translation/compilation of a source
code to a target code. It ensures correctness in the source code and performs
lexical and syntactic analysis to detect the bugs in the source codes. The program
that is used for parsing is called a Parser. Parsers usually require a grammar to
check the correctness of the source codes. The source code in the present context
is in pseudo PROLOG format of the following type.

Sample Program

Symbols X, Y, Z, a, b, c.
Predicates P (X, Y), Q (Y,Z), R (X, Y, Z).
Clauses
 P (a, b) ←. (5.1)
 Q (b, c) ←. (5.2)
 R (X, Y, Z) ←P (X, Y), Q (Y, Z). (5.3)
 P (X, Z), Q (X, Y) ←R (X, Y, Z). (5.4)

It is clear from the sample pseudo PROLOG program presented above that the
symbols including variables X, Y, Z and constants like a, b and c are separated by
commas and terminated by a period (.). Further, the predicates are also separated
by commas and the last predicate is identified from the period following it. The
clauses are separated by a period, and literals in the body of a clause are separated
by comma. Each clause is terminated by a period. The main difference of the
present pseudo code with respect to a PROLOG code is that the current coding
allows more than one literal in the head.

Quite a large number of parsing techniques is available in the current literature of
compilation [1, 3]. Among these parse tree- and deterministic finite automata (DFA)–

214

parsing is presented in Fig. 5.2. Given a pseudo PROLOG statement, a parse tree
is constructed by gradually expanding a clause using the re-write rules. Usually
the re-write rules are constructed judiciously to describe all possible vocabulary of
a given language, and they together are called the grammar of the language. A
simple grammar to test the syntax of a pseudo PROLOG language is presented as
follows:

 Grammar

 Symbols X⏐Y⏐Z⏐a⏐b⏐c (5.5)
 Predicates (Pre (arg1, arg2)) (,Pre (arg1, arg2))* (5.6)
 arg1 Symbols (5.7)
 arg2 Symbols (5.8)
 Pre P⏐Q⏐R (5.9)
 Head ∈⏐Pre (arg1, arg2)⏐Pre (5.10)
 Tail Pre⏐Pre (arg1, arg2) ⏐Predicates (5.11)
 Clause Head ←Tail Period ⏐Head ←Period (5.12)
 Query ←Tail Period (5.13)

 where the upper case letters like X, Y and Z stand for variables, and lower
case letters like a, b, c represent constants;

 “|” denotes an OR operator;

 “ ” sign stands for a replacement operator. This in other words means that
the left hand side of the re-write rule can be replaced by its right hand side;

 “*” above a symbol here denotes one or more number of occurrences of the
symbol, and

 “∈” denotes a null string.

5.2.1 Parsing a Logic Program using Trees

This section provides a discussion on the construction of parse trees for
statements in a pseudo-PROLOG program. As already discussed, the parse tree is
constructed by expanding a clause using the grammar supplied. The left-hand side
of the re-write rules is compared with the available string or its part located at a
node (initially at the root) of tree. A rule whose left hand side matches with the
given clause is selected, and the matched clause in the source code is replaced by
the right-hand side of the selected rule. The updated clause is placed in the tree as
an offspring of its previous form. The nodes in the parse tree are thus expanded until
the whole source code appears at the leaves in the left-to-right traversal of the tree.

5 Parsing and Task Assignment

based schemes need special mention. An illustrative tree based scheme for

Parallel and Distributed Logic Programming 215

Both top-down1 and bottom-up parsing can be employed for the construction of
parse trees. In this section, we illustrate top-down parsing (vide Fig. 5.2) with
respect to the following pseudo PROLOG statement.

 Grandfather (X, Z) ←Father (Y, Z), Father (X, Y). (5.14)

 In fact any typical top-down parser such as L-R parser [1] that offers
predictive matching capability and is free from back-tracking is suitable for our
purpose. Since the algorithms for such parsers are available in any standard text on
compiler [1, 3], we for the sake of brevity omit its discussion here.

1 In top-down (bottom-up) parsing, the tree is expanded from the root (leaves) and

parsed.

 Clause

 Head ←←←← Tail Period

Pre (arg1 , arg2) Predicates

Grandfather X Z Pre (arg1 , arg2) , Pre (arg1 , arg2)

Father Y Z Father X Y

Fig. 5.2: Parse tree used to analyze the syntax of a user defined clause:

construction of the tree is continued until the whole expression is completely

Grandfather (X, Z) ←Father (Y, Z), Father (X, Y)

216

5.2.2 Parsing using Deterministic Finite Automata

Instead of a parse tree, a DFA can equally be used to handle the parsing problem
of the pseudo PROLOG codes. A DFA is defined as a 5-tuple, denoted by

 DFA = {S, N, A, T, E}

where
 S is the start symbol denoted by an arrow to a state,
 N is the set of states denoted by circles,
 A is the set of arcs,

transition of states, and
 E is the termination/ end symbol, denoted by 2 concentric circles.

 The DFAs presented in Fig. 5.3 to Fig. 5.9 are designed using the grammar
defined earlier.

) ,

1 2 3 4 5 6 7 8

 Pre

 (arg1 arg2 ∈

∈

5 Parsing and Task Assignment

 T is the set of transition symbols marked against the arcs that cause a

Fig. 5.3: A finite automation for tail part of a given clause

Parallel and Distributed Logic Programming 217

period

1 2 3 4 5

head ←←←← tail period

1 2 3 4 5 6 7

Pre (arg1 , arg2

∈

∈

)

P

Q

R

1 2

Fig. 5.4: A DFA for the head part of a clause

Fig. 5.5: A DFA of a goal / general clause

Fig. 5.6: Finite automation of Pre following definition (5.9)

218

1 2

a

b

c

X

Y

Fig. 5.7: A DFA for symbols like constants a, b, c and variables like X and Y

1 2

Symbols

Fig. 5.9: The Argument-DFA for the rules: arg1 Symbols and arg2 Symbols

← Tail Period

Fig. 5.8: A DFA for a query

1 2 3 4

5 Parsing and Task Assignment

Parallel and Distributed Logic Programming 219

To illustrate the implication of the above automata in parsing a given statement,
let us consider the following pseudo PROLOG query:

 Query: ←P (X, Y), Q (Y, Z). (5.15)

Now when the query (5.15) is submitted in runtime, the control automatically
consults the automation of a standard query (Fig. 5.8). The implication sign (←)
is matched with the arc connected between state 1 and state 2 of Fig. 5.8. If a
successful match occurs, then a DFA for tail matching is explored. So, a
switching, demonstrated by a dotted line, occurs from state 2 of a query-DFA to
state 1 of the tail-DFA. Again, when a Pre is encountered in the tail-DFA, a
transition takes place following state 1 of tail-DFA to state 1 of Pre-DFA, and
on matching of the appropriate predicate symbol in the Pre-DFA, a further
transition to state 2 of tail-DFA takes place. The left parenthesis “(” of the input
string automatically matches in the arc between state 2 and 3 of the tail-DFA.
Then on encountering an argument in the input string, a transition following
state 3 of tail-DFA to the argument-DFA (for lack of space in Fig. 5.10) takes
place. The argument-DFA calls the symbol-DFA for term (variables/ constants)
matching of the input string with those enlisted in the symbol-DFA. The control
then returns from the symbol-DFA to Argument–DFA (not shown) and from the
argument-DFA to state 4 of the tail-DFA. The rest of the matching in the tail
part of the input string is obvious. If the tail matching is alright, a transition
from the end state of the tail-DFA to state 3 of query-DFA takes place.
On finding a successful match of a period of the input query with the same in
the query-DFA, the parser accepts the query for subsequent evaluation. The
method of testing any other clause is analogous and thus is not discussed
in detail.

5.3 Resource Labeling and Mapping

Prior to initiate reasoning on the architecture proposed in chapter 4, the resources
of the architecture should be properly labeled. The resources in the present
context are of two distinct types: (i) hardwired resources, and (ii) simulated Petri
net resources such as arc function variables and constants. The hardwired
resources include PTVVM, TSF, MATCHER, FPS and THF and Firing Criteria
Testing Logic (FCTL). The modules of the simulated Petri net are mapped onto
appropriate hardwired resources. For convenience in subsequent operations,
hardwired and arc function resources are named in binary codes before the
mapping is accomplished.

220

1 2 3 4

← Tail Period

8

,

Query-DFA

Tail-DFA

1 2 3 4 5 6 7

(arg1 ,
arg2

) ∈

1 2

a

b

c

X

Y

Symbol-DFA

 Q

 Pre

∈

P

R

1
 2

Pre-DFA

5 Parsing and Task Assignment

Fig.5.10: A complete DFA for testing the syntax of a query statement

Parallel and Distributed Logic Programming 221

5.3.1 Labeling of System Resources

Once parsing is over and the logic program is detected to be free from syntactical
errors, the pre-processing program starts labeling the system resources. In order to
label the places and transitions, we need to construct a pseudo Petri net from the
given program clauses. The number of places found in the Petri net is first
counted, and consequently the places are named by binary numbers. In case there
are n places in the pseudo Petri net, the places are numbered from 0 to (n –1) in
binary code, so that all places have a distinct place name. The number of
transitions in the Pseudo Petri net are also counted and numbered similarly.

For identifying the variables in an arc function, the arguments of each predicate
are identified separately in the process of parsing. A buffer is then initialized with
each transition, and the variables associated with a transition are saved in the
buffer in a manner so that the buffer does not contain the multiplicity (multiple
copies) of a variable. The variables thus saved in the buffer are counted and
named in binary code so that all of them have a distinct binary variable name.
Suppose there are altogether m buffers. Once the naming of variables of the first
buffer is over, the variable naming of the second buffer starts. Thus if the last
variable taken from buffer 1 is given a variable name r (in binary code), then the
first element of the second buffer will have a variable name r + 1. The rest of the
variables of the buffer 2 will thus have distinct variable names r + 2, r + 3, etc.
The process of variable naming is thus continued until the last variable of the last
buffer is exhausted.

5.3.2 The Petri Net Model Construction

Petri net model construction is an intermediate step in mapping program clauses
on to the hardwired resources. In fact this intermediate step has a number of
advantages, specially in planning and organizing the hardwired resources
according to the user’s need. The construction of Petri net is accomplished first by
transforming head ←tail period type program clauses on to a sub-net. The
algorithm used for the above mapping is trivial. It checks, whether there exists any
transition in the net with input places corresponding to the enlisted predicates in
the tail, and output places describing the literal present in the head. If no such
transition is found, a new is created. Places labeled with a predicate name same as
in the head or tail are then searched in the existing sub-net so far created. If one or
more predicates enlisted in the clause are absent, new places are created and the
places are labeled with appropriate predicate names following the current list of
unfound literals associated with the given program clause. When all literals of the
given clauses are available as places, the places are attached to the transition as
input or output places depending on their presence in the body or head parts of the
clause respectively. Arguments of each predicate are then labeled as arc functions

222

against the arcs connected between the appropriate place containing the same label
and the transition under reference.

The process of mapping program clauses on to the Petri net is continued until
the whole set of clauses, described above, are transformed into Petri net
construct. The atomic program clauses, having only a head literal, are now
searched in the Petri net, and the arguments of such clause are mapped as token
at the appropriate place containing the same predicate label. The sign of arc
functions are also labeled, depending on their association with the arc types such
as place to transition arcs or transition to place arcs of the selected clause.
For the former type the sign should be positive, and for the latter case it is
negative.

On completion of the Petri net construction, the hardwired resources can
directly be mapped from the simulation model of the Petri net, rather than
mapping the same from the user-supplied source code.

5.3.3 Mapping of System Resources

The register files in the architecture of the proposed scheme needs to be initialized
before the hardwired execution of the reasoning program starts. For instance, the
place names are initialized at the appropriate register file associated with a
transition. In other words place names are mapped to the APpi fields of the
transition history register files.

The signed arc functions are first detected from the program clauses in the
process of parsing, and saved in temporary buffers. Later these signed arc
functions are transferred from the temporary buffer to the appropriate AFAWpi

fields of the transition history file.
For determining the signed constants in the given clauses, the parser should

identify the body-less clauses (i.e. clauses with a head, an arrowhead and a period
only) and the sign of the tokens, which is explicitly available within the program
clause. For example, the signed token part in the body-less program clause:
¬Likes (r, l) ←. is ¬<r, l>. These signed tokens are mapped at the place buffers
of the PTVVM.

The current and used instantiation fields of the TSF are also initialized with null
values prior to initiate the execution of the program.

The compiler also synthesizes the logic for testing one of the firing conditions
of a transition. The condition in the present context refers to checking whether all
but one place associated with a transition possess tokens. As an example, let a
transition tri has r number of input places p1, p2,…., pr and s number of output
places pr+1, pr+2 r+s. Then the condition that ensures tokens at all but one place
is presented below.

5 Parsing and Task Assignment

,…, p

Parallel and Distributed Logic Programming 223

(p2 p3…..pr) (pr+1 pr+2….pr+s) + (p1 p3…..pr) (pr+1 pr+2….pr+s) + (p1p2 p4…..pr)
(pr+1 pr+2….pr+s) + ….+ (p1p2p3…..pr – 1) (pr+1 pr+2….pr+s) + (p1p2 p3….pr)
(pr+2….pr+s) + (p1p2p3….pr) (pr+1pr+3 ….pr+s) + ……+ (p1p2 p3….pr) (pr+1

pr+2….pr+s-1)=True (5.16)

In the above Boolean condition, pi = 1denotes that the place pi possesses tokens,
and obviously pi = 0 indicates that place pi has no tokens. Sum and product operators
in the last condition represent Boolean OR and AND operations respectively.

After the compiler generates the above condition, it is passed on to the First
Pre-condition Synthesizer (FPS) logic that implements the above logic for
verifying the pre-condition for transition firing. In fact thope FPS includes a set of
logic gates that is automatically configured to satisfy the desired logic function.

5.4 Conclusions

Prior to execution of a pseudo PROLOG program on the proposed architecture,
the source code needs to be parsed and the symbols extracted from the source code
are required to be mapped onto the said architecture. In the present context, a
deterministic finite automation was employed to check the syntactical errors in the
source code during the process of parsing. In case the source code is free from
syntactical error, the pertinent parameters of the program such as arc function
variables are represented by distinct binary numbers and mapped at the
appropriate units in the architecture. In fact a pseudo Petri net is created by the
compiler to trace the places and transitions in the architecture with respect to those
in the Petri net. Such correspondence helps in identifying the fired transition and
the resulting bindings easily for answering a user’s query. In our elementary
design, we do not consider construction of a symbol table to hold the program
variables, as we have a limited number of variables in example programs.
However, for practical systems, symbol tables [6] need to be constructed to
determine the location of the symbols in the memory. Symbol table construction is
not discussed here as we worked with limited number of variables.

Exercises

1. Construct the grammar and build a parse tree using the grammar for the
following logic program:

Variable : X, Y;
Constant : a, b, c;
Predicates: P(,), Q(,);
Clauses : P(X, Y) ← Q(Y, X).;
 Q(a, b) ←.;
 Q(b, c) ←.;

Query : ← P(a, c).;

224

[Hints:

Grammar:

Symbols X⏐Y⏐a⏐b⏐c
Predicates (Pre(arg 1, arg 2))(, Pre(arg 1, arg
2))*
arg 1 Symbols
arg 2 Symbols
Pre P⏐Q
Head ∈⏐Pre(arg 1, arg 2)⏐Pre
Tail ∈⏐Pre(arg 1, arg 2)⏐Pre⏐ Predicates
Clause Head ←Tail Period⏐Head ←Period
Query ← Tail Period

P X Y

Clauses

Head ← Period Head ← Tail Period

Pre (arg 1 , arg 2) Predicates

Pre (arg 1 , arg 2)

Q Y X

Predicates

Pre (arg 1 , arg 2)

Q a c

Fig. 5.11: A parse tree

5 Parsing and Task Assignment

A parse tree is constructed using the grammar vide Fig. 5.11]

Parallel and Distributed Logic Programming 225

2. Using the deterministic finite automata for clause, head/tail part of clauses,
predicates, variables/constants, queries and symbols, as given in the text
represent the following clause by deterministic finite automata.

 P(X, Y) ←Q(Y, X).

[Hints: A deterministic finite automata is constructed to represent the given
clause vide Fig. 5.12.

3. (a) Given a set of clauses and facts, construct an algorithm for representing
them using a Petri net.

 (b) Defining the necessary parameters of a given program, evaluate the
complexity of your algorithm.

[Hints:

(a) The algorithm for Petri net construction greatly depends on the list of
rules and facts. The algorithm begins with scanning literals and operators
in the rule one by one, until the rule is terminated by a period or
semicolon. Since the rules are scanned following the grammar, the types
of the literals such as predicates, arguments etc. can easily be identified.
After detection of each predicate, the same is searched as a place name in

Expand the tail
from the text

Head ← Tail Period

51 2 3 4

Expand the head
from the text

Fig. 5.12: A DFA for a clause]

226

the Petri net so far constructed. If the place of the desired name is not
available in the Petri net, then the Petri net is augmented with the new
place name. When all the predicates of the rule are found to be available
on the Petri net, a transition is constructed to connect the predicates in the
antecedent part to the predicates in the consequent part by placing one
transition in between. A simple algorithm that serves the above need is
presented below.

Procedure EPN-construction
Begin

While no-of –rules is not exhausted do
Begin
For each rule

If the predicates found in the rule is not
available in the Petri net
Then construct the place and label it to augment
the Petri net
If the predicate corresponding to the place now
constructed belongs to the antecedent part of the
rule
Then mark the place as the input place
Else mark the place as the output place
Place a transition to connect the input places to
the output places of the transition and attach a
label to the transition
Attach Arc-function

End-for;
End-while;

End.

Now to attach the arc functions with the arc and to map the tokens in the places,
we need to consider the facts available in the system. The following procedure
may then be invoked to attach arc functions and map tokens in the places.

Function Attach Arc-function

Begin
Identify the tokens associated with the predicates and according to the type of
the corresponding places attach a suitable sign (+ for arc function
corresponding to the input places and − for the arc function corresponding to
the output places);
Also attach the arguments of the predicates in order with the arc containing
the place and the transition under reference.

End.

5 Parsing and Task Assignment

Parallel and Distributed Logic Programming 227

Function Attach Tokens

For each fact
Repeat

Isolate the argument of the predicate representing the fact and map it with the
given sign at the corresponding place in the EPN.

End.

(b) Let ai be the no. of predicates in the antecedent part and ci be the no. of
predicates in the consequent part of the ith rule. Let the maximum no. of
places in the EPN be N. Now to map a place into the EPN, we atmost
need N comparisons. Thus to map ai + ci no. of places, we require (ai + ci)
N number of searches in the worst case. Let the number of rules be M.
Thus for mapping M rules on to the EPN we need at most

M
 (ai + ci) N comparisons.

i = 1

Let ai ≤ A and ci ≤ C for all i =1 to M.
Thus the above result reduces to

 MN (A + C).

Thus the complexity is

 O (MN).

 To identify an arc for mapping an arc function we need MN searches.
Thus for all clauses together the total search cost will be MN (A + C).

 For mapping the tokens we need to identify the place on the EPN. Since
there N places, the total search cost for mapping (A + C) no. of tokens we

 Summing up the three search costs we find the order of complexity
remains MN (A + C) ≈ O(MN) since (A + C) is much negligible in
comparison with MN.]

4. For the following logic program,

(A+ C).
need N(A + C) search cost. Thus for M rules the search cost becomes MN

228

(a) Encode the system resources into appropriate binary strings, and outline
the mapping of these strings on to appropriate modules of the
architecture.

(b) Which information during the execution of the program are mapped online
onto the architecture?

Logic Program:

Son(Y, X) Father(X, Y).
Father(d, r) .

[Hints:

(a) The number of places and transitions required to realize the given logic
program are first determined. The necessary word-length of the
appropriate units is then fixed in the respective architecture. The
variables, arc functions and their signs are encoded into binary strings of
appropriate length. These are then mapped onto appropriate modules of
the architecture for initialization of the execution process.

(b) The current variable bindings and the set of used bindings which are
computed online are also mapped onto appropriate registers in real time.]

References

1. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles, Techniques
and Tools, Addison-Wesley Longman, Singapore, 1999.

2. Culler, D. E. and Singh, J. P., Parallel Computer Architecture: A
Hardware/Software Approach, Morgan-Kaufmann, CA, 1999.

3. Dhamdhere, D. M., Systems Programming and Operating Systems, Tata
McGraw-Hill, New Delhi, 2002.

4. Hwang, K. and Briggs, F. A., Computer Architecture and Parallel
Processing, McGraw-Hill, Singapore, 1986.

5. Patt, Y. N., “Alternative Implementations of Prolog: the micro architecture
perspectives,” IEEE Trans. on Systems, Man and Cybernetics. vol. 19, no. 4,
July/August 1989.

6. Tremblay, J-P. and Sorenson, P. G., An Introduction to Data structures with
Applications, McGraw-Hill, NY, 1984.

7. Yan, J. C., “Towards parallel knowledge processing,” in Advanced series on
Artificial Intelligence, Knowledge Engineering Shells: Systems and
Techniques, Bourbakis (Ed.), vol. 2, World Scientific, Singapore, 1993.

5 Parsing and Task Assignment

Logic Programming in Database Applications

The chapter addresses the scope of logic programs in database systems. It begins
with syntax and semantics of the Datalog language, and highlights the special
features of the language in answering database queries. The LDL system
architecture, which until this date is the most popular system for execution of
Datalog programs, is then briefly introduced. Next the scope of Petri net models
in designing database systems is examined. The techniques to overcome the
limitations of the LDL system architecture by Petri net models are also presented.
The chapter ends with a discussion on the use of Petri net based models in Data
Mining applications.

6.1 Introduction

The book introduces the scope of parallel and distributed logic programming with
a special emphasis on the architectural issues of logic program machines. This
chapter deals with Datalog language, which has proved its significance in database
applications. The chapter attempts to justify the significance of the proposed logic
programming machine for realization of Datalog programs.

The chapter begins with an introduction to Datalog language. The semantics of
Datalog program and the principles of answering user-made queries in Datalog
language have been outlined and illustrated with many examples. The
representational benefit of integrity constraints in Datalog programs is also
illustrated. The LDL system architecture is taken as a case study to understand the
execution of a Datalog program on a practical system. The scope of Petri net
models in designing database machines is also outlined in this chapter. Finally the
chapter stresses the need of data mining on the modified architecture supported by
Petri nets.

6.2 The Datalog Language

Datalog [1-25] is one typical logic program based query language that supports the
formalisms of Horn clause based logic programs. The syntax of Datalog resembles

6

A. Bhattacharya et al.: Logic Programming in Database Applications, Studies in Computational
Intelligence (SCI) 24, 229–258 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006

230

the syntax of Prolog. This section presents the basic structure of Datalog programs
and the principles by which the answer to a query is determined.

Consider for instance an account relation consisting of three attributes branch-
name, account-number and balance, as shown in table 6.1.

Suppose, we design a view relation: view1 that contains account-number and
balances for the accounts at the Park Circus branch with a balance more than Rs
7000. The following rule is a representative description of the given problem:

view1(A, B) account(Park Circus, A, B), B > 7000. (6.1)

To retrieve the balance of account-number 0201 we use the following query:

view1(0201, B). (6.2)

 The answer to the above query can automatically be generated by resolution of
the clauses (6.1) and (6.2), which yields:

account(Park Circus, 0201, 8500).

Table 6.1: The ‘account’ relation.

Branch-name
(N)

Account-number
(A)

Balance in
rupees

(B)

Jadavpur 0101 5000

Sodpur 0215 1000

Maniktala 0102 9000

Park Circus 0322 6500

C R Avenue 0305 4500

Park Circus 0201 8500

Park Street 0222 7500

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 231

Thus account-number 0201 in Park Circus branch has a balance of Rs 8500.

Now suppose we want to identify the account numbers whose balance is >
7500. This can be represented by the following query:

view1(A, B), B > 7500.

The owner to the above query can directly be obtained from the account
relation. The answers to the query are given below:

account(Maniktala, 0102, 9000).
account(Park Circus, 0201, 8500).

The Datalog programs are also capable to compute answers of a query not
directly available in the given relation (table 6.1). For example, let us consider the
problem of computing interest of an account using the following rule:

Rule1: If balance < 2000, then interest-rate = 0%.

Rule2: If balance 2000, then interest-rate = 4%.

These types of rules can be coded in Datalog program as outlined below:

interest-rate(A, 0) account(N, A, B), B < 2000.
interest-rate(A, 4) account(N, A, B), B 2000.

Using the above rule, we can evaluate interest of all the account numbers cited
in the account relation.

Sometimes negation is also used in a Datalog program [20]. For example, let us
try to construct a Datalog program to identify all customers in a bank who have a
deposit but have no loans. The following Datalog program serves the purpose:

customer(N) depositor(N, A), not is-borrower(N).
is-borrower(N) borrower(N, L).

where N, A, L denote customer-name, customer account-number and customer
loan-number respectively.

We have presumed that the relations depositor(N, A) and borrower(N, L) are
available in table 6.2 and 6.3 respectively.

232

Table 6.2: The ‘depositor’ relation.

Table 6.3: The ‘borrower' relation.

 The answer to the given query:

customer(N).

 with respect to the above relation are presented below:

customer(madhu),
customer(ganga),
customer(hari).

6.3 Some Important Features of Datalog Language

From a syntactic point of view the positive and negative literals are represented in
the following format

Name
(N)

Loan
(L)

ram 0101

shyam 0200

jadu 0021

sita 0012

mira 0002

kali 0202

Name
(N)

Account-number
(A)

ram 0101

shyam 0200

jadu 0021

madhu 0201

ganga 0120

hari 0221

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 233

 p(t1, t2, ……, tn)

 not p(t1, t2, ……, tn)

where the relation p has n attributes: t1, t2, ……, tn.

 Algebraic operations such as summation or subtraction can be represented in
the Datalog language as relations. For example,

 X = Y + Z can be represented in Datalog as

 + (Y, Z, X).

where the ‘+’ denotes a relation of three attributes X, Y and Z.

 Datalog language supports Boolean conditions using >, =, < relations. One
example program indicating the use of algebraic and Boolean relation is presented
below to illustrate the computation of banking-interest in a given branch of a bank.

Example 6.1: Consider the relations given in connection with accounts and
interest for each account in a given bank.

Relations

interest(A, I) represents the interest I for the account-number A.
account-status(A, B) indicates the balance B for the given account-number A.
interest-rate(A, R) denotes the rate of interest R over an account-number A.
account(N, A, B) denotes an account of person N having account-number A
with a balance B.

 The logic program below is developed to determine the interest of all the
accounts in the “Jadavpur” branch.

 interest(A, I) account-status(A, B), interest-rate(A, R), I = B * R/100.
 account-status(A, B) account(“Jadavpur”, A, B).
 interest-rate(A, 0) account(N, A, B), B < 5000.
 interest-rate(A, 4) account(N, A, B), B >= 5000.

 Another interesting feature of Datalog program is recursive use of relations in
the same clause. Example 6.2 illustrates the aforementioned principles.

Example 6.2: Consider the following relations describing employers and
managers.

234

Relations

emp(X, Y) denotes X is an employer of Y.
manager(X, Y) denotes X is a manager of Y.

 The following two rules together represent the linkage between employer and
manager relations.

 emp(X, Y) manager(X, Y).
 emp(X, Y) manager(X, Z), emp(Z, Y).

 Here, the employer relation appears in both the left and right hand side of the
“ ” in the second clause, and hence we say that employer is a recursive relation
in the given rule.

 One important use of recursion in a Datalog program is the generation of
numbers or sequences. For example, the following program generates all even
numbers counting from zero.

 even-number(2) .
 even-number(A) even-number(B), A = B + 2.

 Given a query

 ‘ even-number(N).’,

the above program generates the sequence 2, 4, 6, 8, ……., . i.e., the whole set
of even numbers.

6.4 Representational Benefit of Integrity Constraints
in Datalog Programs

Integrity constraints are usually introduced in a database system to guard or
protect accidental damage to the database [22-23]. Representation of integrity
constraints in a relational database is not as easy as in logic program based
database. The reason behind it lies in the representational advantage of
rules/constraints by logic programming languages. Consider for instance, a
supplier database consisting of the following relations

supplier(S-no, Name, City-address) indicating the supplier’s number, his
name and the city-address.

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 235

spj(S-no, P-no, J-no, Q) indicating a relation of supplier, part, job and the
quantity of part supplied.
job(J-no, J-name, J-city) denotes that a job having number J-no and name J-
name has a demand in city J-city.
local-supplier(S) denotes the name of local-supplier, S.

 Suppose we want to construct integrity constraints in connection with a
supplier-database by suitable Datalog statements.

Statement 1: No local-supplier supplies part p3.

not spj(S, p3, _ , _) local-supplier(S).

Statement 2: Supplier s3 supplies every job in Calcutta.

 spj(s3, _ , j, _) job(j, _ , Calcutta).

Statement 3: Supplier s4 supplies job in Calcutta only.

 job(j, _ , Calcutta) spj(s4, _ , j, _).

6.5 The LDL System Architecture

The current expert database systems are usually realized on loosely coupled
architecture [21]. Such systems consist of a front end and a back end, where the
front end includes domain-specific knowledge and the back end contains general-
purpose DataBase Management Systems (DBMS). Users submit queries to the
front end. The queries in direct or indirect form then look for the appropriate data
on the database through the back end. The results of the queries are transferred
back to the users through the front end. A schematic view of a typical loosely
coupled architecture is given in Fig. 6.1.

Queries

Results
User Front end

Domain-
specific

Knowledge

Back end

General-
purpose
DBMS

Database

Fig. 6.1: A loosely coupled expert Database system

236

The loosely coupled architecture introduced earlier suffers from a number of
limitations:

(1) There always exists a semantic mismatch between the front-end
programming language and the back-end database systems. Usually the
front-end language embodies a procedural programming paradigm in
which the solution to a problem is expressed as a sequence of operations
on a global state. The back-end database system, in contrast, embodies a
declarative programming paradigm in which the solution is expressed in
a fashion that describes the problem without specifying the intermediate
steps to obtain the results.

(2) The level of granularity of the data objects in the front end and the back
end may also have a mismatch in Fig. 6.1. The front-end usually specifies
a computation on tuples of data values, while the back end does
computation on a set of tuples.

(3) In the realization of the overall system, the implementer is bounded by
the data model of the back-end database system. Thus, the front end must
be ‘tailored’ to complement the limitation of the back end.

To overcome the aforementioned limitations, the Microelectronics and
Computer Technology Corporation (MCC) provided a new approach to design a
tightly coupled architecture for logic programming database system. A schematic
view of a tightly coupled system is given in Fig. 6.2.

The system described in Fig. 6.2 does not have clearly defined front-end and
back-end components. The mismatch in the object granularity of loosely coupled
system is thus removed from Fig. 6.2. Here, a single programming paradigm
instead of two paradigms, as in loosely coupled system, is used for query
generation and obtaining results from the database. Logic Data Language (LDL),

Sets

Queries

Compiler + Optimizer

Database

User

 6 Logic Programming in Database Applications

Fig. 6.2: A tightly coupled system

Parallel and Distributed Logic Programming 237

proposed by MCC is one typical language, capable of performing both query
generation and management and extraction of results from the database. Some
typical characteristics of the LDL are given in order:

(1) The LDL is a declarative language that employs logic programming for
data manipulations and management.

(2) The LDL has a fixed point semantics based on the notion of bottom-up
query computation.

(3) The data-model in LDL is quite rich as it includes atoms, complex
objects, lists and sets of objects.

(4) The LDL is enriched by full negation support and constraint specification
capability in the form of equality and inequality predicates.

(5) The LDL also supports compilation techniques for semantic analysis and
optimization of user-supplied queries.

(6) A procedural capability for updating is an inherent feature of the LDL
system.

(7) The LDL system provides a convenient interface for higher application
specific interfaces.

In the next section we examine some of the interesting features of the LDL
system.

6.5.1 Declarative Feature of the LDL

As already introduced earlier, the LDL system provides a declarative linguistic
support, i.e., user need not specify the detail steps in solving a problem, but needs
to mention the problem only using relational constraints [8]. Example 6.3
illustrates the declarative feature of the LDL.

Example 6.3: Consider, for instance, an employee-relation given by

 employee(Name, SSN, Age, Department)

where SSN denotes Social-Security-number.

238

Suppose that the user generates a query: Determine all employee-names
working in the hardware department having age below 30 years.

The above query can be represented in a declarative manner as

?{employee.Name employee.Department = hardware, employee.Age < 30}

The procedure to evaluate the query is left to the system and hence the LDL
system is said to be declarative.

It is indeed important to note that the basic Horn clause-based programming
style of PROLOG has been extended in the LDL system from the given viewpoint.

A Prolog program just mentions the rules and the facts but leaves the control of
program execution with the programmer. In LDL, the control program is
automatically invoked to identify the order of selection of the program clauses.

6.5.2 Bottom-up Query Evaluation in the LDL

The answer to a query in a PROLOG program is generated in a top-down left to
right order. On the contrary, the query evaluation in the LDL system is
accomplished in a bottom-up fashion, starting from the stored database through
the relevant rule-bodies to the rule-heads until no new results are produced in the
head corresponding to the queries. This form of computation can be formally
described as the fixpoint operator [21]. The semantics of LDL is described in
terms of such fixpoints. Example 6.4 briefly illustrates the comparative merits of
the bottom-up evaluation over top-down evaluation.

Example 6.4: Consider the following program clauses describing the definitions
of ancestor using the definition of parent.

Cl1: ancestor(X, Y) parent(X, Y).
Cl2: ancestor(X, Y) parent(X, Z), ancestor(Z, Y).
Cl3: parent(jk, jl) .
Cl4: parent(jk, je) .
Cl5: parent(jl, pr) .
Cl6: parent(jl, my) .
Cl7: parent(my, jn) .

The Prolog equation of the above program for the query

 ?ancestor(jk, X).

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 239

can be described as a top-down evaluation following the formalisms of SLD-tree.
The SLD-tree shown in Fig. 6.3 presents all the solutions to the problem at the
leaves of the tree. On occasions, the tree may be repeatedly expanded by invoking
the same rule. To overcome the problem of infinite expansion, the bottom-up
approach is adopted in LDL.

Cl6

Z = my

Cl2

X = my
Y = X

Cl2

X = je
Y = X

Cl1

Z = X
X = Y

Cl1

Z = X
X = Y

Cl1

X = je
Y = X

Cl4

Z = je
Cl3

Z = jl

Cl2

X = jn
Y = X

Cl1

X = jn
Y = X

Cl7

Z = jn

Cl7

X = jn

Cl1

X = my
Y = X

Cl2

X = pr
Y = X

Cl1

X = pr
Y = X

Cl5

Z = pr

Cl2

X = jl
Y = X

Cl6

X = my
Cl5

X = pr

Cl1

X = jl
Y = X

Cl4

X = je
Cl3

X = jl

Cl2

X = jk
Y = X

Cl1

X = jk
Y = X

ancestor(jk, X).

parent(jk, X). parent(jk, Z), ancestor(Z, X).

Ø Ø ancestor(jl, X). ancestor(je, X).

parent(jl, X).

Ø Ø

parent(jl, Z), ancestor(Z, X).

ancestor(pr, X).

parent(pr, X).

parent(pr, Z), ancestor(Z, X).

Fail

Fail

ancestor(my, X).

parent(my, X). parent(my, Z), ancestor(Z, X).

Ø
ancestor(jn, X).

parent(jn, X). parent(jn, Z), ancestor(Z, X).

Fail Fail

parent(je, X).

parent(je, Z), ancestor(Z, X).

Fail

Continues as before

Fig. 6.3: Top-down evaluation

240

In the bottom-up approach, (Fig 6.4 (a) and (b)) we satisfy the rules by
instantiating with the ground literals. The process is repeated until no new
solutions are produced.

Cl7

X = my
Y = jn

Cl6

X = jl
Y = my

Cl5

X = jl
Y = pr

Cl4

X = jk
Y = je

Cl3

X = jk
Y = jl

Cl1

ancestor(X, Y) parent(X, Y).

Cl13

ancestor(jk, jl) .
Cl17

ancestor(my, jn) .

Cl14

ancestor(jk, je) .
Cl16

ancestor(jl, my) .

Cl15

ancestor(jl, pr) .

 (a)

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 241

6.5.3 Negation by Failure Computational Feature

The LDL also supports the well known Closed World Assumption (CWA) [13],
where literals not supplied as facts are presumed to be false to answer a query.
Example 6.5 provides an insight to this problem.

Example 6.5: Given below a logic program, where person (b) is not clearly
defined. We thus following CWA presume that ¬person (b) to be true.

Cl16

Y = my

Cl15

Y = pr

Cl3

X = jk
Z = jl

Cl2

ancestor(X, Y) parent(X, Z), ancestor(Z, Y).

 Cl23

ancestor(jk, Y) ancestor(jl, Y).
 Cl17, 2

ancestor(X, jn) parent(X, my).

Cl23, 15

ancestor(jk, pr) .
Cl23, 16

ancestor(jk, my) .
Cl17, 2, 6

ancestor(jl, jn) .

Y = jn

Cl23, 17, 2, 6

ancestor(jk, jn) .

Cl17

Y = jn
Z = my

Cl6

X = jl

(b)

Fig. 6.4: Bottom-up approach

242

Logic Program:

 mammal (X) person (X).
 mammal (b) .

 person (a) .

 Now suppose user makes the following queries:

Query 1: ? ¬ person(b).

 The answer to the query definitely is true.

Query 2: ? mammal (X), ¬ person (X).

The answer to the query definitely is X = b, which is obtained from the direct
specification of mammal (b) and absence of person (b).

6.5.4 The Stratification Feature

The stratification feature ensures that every predicate used in the program in its
negated form will first be computed in its positive form. Consider, for example, a
logic program with stratification over reachability [21] between two nodes in a
given graph. Example 6.6 illustrates the stratification used in LDL.

Example 6.6: Consider the following logic program:

 reachable (X, Y) edge (X, Y).
 reachable (X, Y) edge (X, Z), reachable (Z, Y).
 exclusive-pairs (X, Y, Z) reachable (X, Y), ¬ reachable (Z, Y).

a

b

e

dc

Fig. 6.5: A sample graph

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 243

where edge (X, Y) denotes that there is a directed edge from node X to node Y,
reachable (X, Y) means Y is reachable from node X along some path, and
exclusive-pairs derives all pairs of nodes (X, Y) such that Y can be reached from
X except for all those pairs that can be reached from node Z.

Figure 6.5 describes a sample graph over which the aforementioned logic
program is applied. Suppose we are interested to compute exclusive-pairs (X, Y,
d). To answer the query, we first determine edge and reachable relations. By
inspection on the graph, the edge relation is found to be

 edge = {(a, b), (a, c), (a, d), (b, c), (d, e), (e, b), (e, c)}
 and reachable = edge U {(a, e), (d, b), (d, c)}.

 It is important to note that exclusive-pairs include all reachable relations
except {(d, e), (d, b)}. Thus,

 exclusive-pairs = reachable – {(d, e), (d, b)}.

6.6 Designing Database Machine Architectures using
Petri Net Models

The LDL language provides a historical landmark on logic program based data
language [26-27] for efficient execution of database programs on specialized
database machines. Undoubtedly LDL on many circumstances could outperform
the traditional PROLOG based logic program machines. The Petri net approach to
logic programming introduced in the text, however, provides a more elegant
architecture for high performance database machines. Here, unlike Horn clauses,
we can directly execute predicate logic based syntax with multiple literals in the
head of a clause. The top-down or bottom-up approach for execution of a program
is irrelevant in the proposed architecture. The most interesting feature of the Petri
net based architecture is that the program clauses need not wait for resolution,
rather when suitable data clauses are available concurrent resolution takes place
among all the clauses associated with a transition. This particular feature of Petri
net based machine significantly enhances the computational speed for the next
generation database machines. The negation by failure and stratification feature
can easily be implemented in the proposed Petri net based database machines. To
illustrate the computational power of a database program on a Petri net based
architecture, let us consider, example 6.7.

Example 6.7: The ancestor finding problem introduced in example 6.4 is solved
here using the Petri net approach (vide Fig. 6.6).

244

Here, following Procedure Automated-Reasoning of chapter 3, we first fire
transition tr1 generating the following tokens in place p2:

 ancestor (jk, jl),
 ancestor (jk, je),
 ancestor (jl, pr),
 ancestor (jl, my),
 ancestor (my, jn).

 Next, transition tr2 fires generating the following tokens as the solution to the
goal

 ‘ ancestor (X, Y).’:

 ancestor (jk, pr),
 ancestor (jk, my),
 ancestor (jl, jn).

<jk, jl>, <jk, je>,
<jl, pr>, <jl, my>,
<my, jn>

parent ancestor

(X, Y) ¬(X, Y) tr1

(X, Z) (Z, Y)tr2

¬(X, Y)

 6 Logic Programming in Database Applications

Fig. 6.6: The Petri net approach

Parallel and Distributed Logic Programming 245

Thus only two firing cycles are required to execute the logic program. It may be
noted that both top-down approach of PROLOG and the bottom-up approach of
LDL requires significant computational time to execute the aforementioned
program.

Example 6.8: In this example we consider a practical database problem with
respect to a banking system.

 Given the following relations:

account (branch-name, account-number, balance)
interest-rate (account-number, percentage-rate)

 Suppose the following Datalog rules are given

 interest-rate (A, 0) account (N, A, B), B < 2000.
 interest-rate (A, 5) account (N, A, B), B >= 2000.

The aforementioned rules and facts, as given in table 6.4, are mapped onto a
Petri net (before firing Fig. 6.7 (a) and after firing Fig 6.7 (b)) and the ‘Procedure
Automated-reasoning’ (vide chapter 3) is invoked to answer the user-made query:

? interest-rate (A, I).

Table 6.4: The ‘account’ relation.

The machine in turn responds with table 6.5.

Branch-name
(N)

Account-
number

(A)

Balance in
Rupees

(B)
Sodpur 0215 1000

C R Avenue 0305 4500

Park Circus 0201 8500

246

Table 6.5: The ‘interest-rate’ relation.

The Petri net after firing is presented in Fig. 6.7 (b)).

Account-number
(A)

Interest-rate in
percentage

(I)

0215 0

0305 5

0201 5

<B, 2000>

<S, 0215, 1000>
<C, 0305, 4500>
<P, 0201, 8500>

<B, 2000>

(B, X)

(N, A, B)

(N, A, B)

(B, X)

tr1

tr2

¬(A, 0)

¬(A, 5)

Less-than

Account

Greater-or-equal-to

Interest-rate

Fig. 6.7 (a): The Petri net before firing

S = Sodpur
C = C R Avenue
P = Park Circus

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 247

6.7 Scope of Petri Net-based Model in Data Mining

The term Data Mining loosely refers to discovering knowledge from a large
volume of data. It has similarity with knowledge discovery in artificial intelligence
[3]. There are many methods of data mining. Some of them include statistical
techniques, clustering, Bayessian scheme, neural net approach and many others. In
recent times, researchers are taking keen interest to automatically extract
knowledge from a given set of first order rules and facts. This is well known as
Inductive Logic Programming (ILP). In ILP, the well-known resolution theorem is
employed in a backward sense. To illustrate the scope of ILP in data mining let us
consider example 6.9.

<B, 2000>

<S, 0215, 1000>
<C, 0305, 4500>
<P, 0201, 8500>

<B, 2000>

(B, X)

(N, A, B)

(N, A, B)

(B, X)

tr1

tr2

¬(A, 0)

¬(A, 5)

Less-than

Account

Greater-or-
equal-to

Interest-rate

Fig. 6.7 (b): The Petri net after firing

< 0215, 0 >
< 0305, 5 >
< 0201, 5 >

S = Sodpur
C = C R Avenue
P = Park Circus

248

Example 6.9: Consider the following facts:

 Grandfather (janak, lab) .
 Father (janak, sita) .
 Mother (sita, lab) .

We are interested to construct any new knowledge by applying resolution
theorem in an inverted manner onto the above clauses. Figure 6.8 presents a
schematic view of the knowledge generation process in two discrete steps.

The same scheme can also be realized using Petri net model with a slight
modification in the nomenclature of the Petri net model introduced earlier. A
simple scheme illustrating the procedure of knowledge extraction using Petri net is
introduced here. The Petri net in the present context needs to be fired in backward
direction. In other words given one fact located at the input place of a transition

Grandfather (X, Z) ∨ ¬ Mother (Y, Z) ∨ ¬ Father (X, Y)

Mother (sita, lab)

Grandfather (X, lab) ∨ ¬ Father (X, sita)

Father (janak, sita)

Grandfather (janak, lab)

{Y / sita, Z/ lab}

{X / janak}

Fig. 6.8: An inverse resolution procedure applied to the given facts finally to
derive a knowledge: Grandfather (X, Z) Mother (Y, Z) ∧ Father (X, Y)

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 249

and a resulting inference located at the output place of the transition, we can
always generate a rule at the other input place of the same transition. Here the
resulting rule is generated by oring the negation of the input fact and the inferred
fact at the input place denoted by a box. For generalization, the common value of
tokens at the given input and the output place may be replaced by a variable.

Example 6.10: Given the same knowledge base as introduced in example 6.9. We
in the present example discuss the scope of Petri nets to extract the same
knowledge (vide Fig. 6.9).

<s, l>

<j, s>

<j, l>

p1

Mother

Father

p5

Grandfather

tr1

tr2

(a)

p2

p3

p4

250

<j, s>

Grandfather (X, l)

∨ ¬ Father (X, s)

<s, l>

<j, l>

p1

Mother

p5

Grandfather

tr1

(b)

p2

p3

p4

Father

{X/j} tr2

{Y / s, Z / l}

Grandfather (X, Z)
∨ ¬ Mother (Y, Z) ∨
¬ Father (X, Y)

<j, s>

Grandfather (X, l)

∨ ¬ Father (X, s)

<s, l>

<j, l>

p1

Mother

p5

Grandfather

tr1

(c)

p2

p3

p4

Father

{X / j} tr2

Fig. 6.9: The order of transition firing to generate the knowledge:
 Grandfather (X, Z) ∨ ¬ Mother (Y, Z) ∨ ¬ Father (X, Y).
 where s = sita, l = lab, j = janak

(a) Initial configuration of the extended Petri net
(b) After firing of transition tr2

 (c) After firing of transition tr1

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 251

Data mining using Petri nets can also be extended for general predicate logic
based system. Under this circumstance a transition can have more than one output
place and tokens must conform with the respective arc function variables at all
input and output places excluding only one input place of the transition. The
process of backward transition firing will be continued from the concluding place
until no further transition firing is possible. The sequential firing of transitions in a
backward sense, supporting the rules of resolution theorem, thus ensures
soundness of the derived knowledge.

6.8 Conclusions

Typical database programs are executed on loosely coupled system architecture,
where the front-end and the back-end can be easily isolated from each other. Such
architectures have several limitations, which can be overcome by realizing database
programs on a tightly coupled system. The LDL is one such tightly coupled data
language that supports logic programming for data manipulation and management.
The LDL system has a number of advantages over other traditional logic program
systems, but it is incapable to detect all possible parallelisms in a logic program.
Petri net based models for logic programming is introduced in chapter 3 of the
book, however, provide a framework for massive parallelism of logic programming
and can ensure the execution of all possible parallel resolutions in the logic
program. Thus in absence of any constraint on hard ware resources, Petri net based
model is the ideal choice for logic program based database machines.

Exercises

1. Consider the following two relations:

 supervises (X, Y) and superior (X, Y).

 The following facts and rules are given in a database.

 Cl1: supervises (f, n) .
 Cl2: supervises (f, r) .
 Cl3: supervises (f, b) .
 Cl4: supervises (e, k) .
 Cl5: supervises (e, h) .
 Cl6: supervises (a, f) .
 Cl7: supervises (a, e) .
 Cl8: superior (X, Y) supervises (X, Y).
 Cl9: superior (X, Y) supervises (X, Z), superior (Z, Y).
 Cl8: subordinate (X, Y) superior (Y, X).

252

Given the query:

? superior (a, Y) .

Construct a top-down traversal tree to answer the query.

[Hints: A top-down traversal tree is constructed with the facts and rules given
in the database vide Fig. 6.10.

Here, the answers to the query are:

 superior (a, f) .
superior (a, e) .
superior (a, n) .

 superior (a, r) .
 superior (a, b) .
 superior (a, k) .
 superior (a, h) .]

Cl5

Y = h
Cl2

Y = r

Cl1

Y = n
Cl3

Y = b
Cl4

Y = k

Cl6

Z = f

Fig. 6.10: The supervisory-tree based on the given facts

superior (a, Y).

Cl8

X = a
Cl9

X = a

supervises (a, Y). supervises (a, Z), superior (Z, Y).

Ø Ø superior (f, Y). superior (e, Y).

Cl6

Y = f
Cl7

Y = e
Cl7

Z = e

Ø Ø Ø Ø Ø

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 253

2. Consider the following relations in a banking system:

account (branch-name, account-number, customer-name, balance),
depositor (customer-name, account-number),
borrower (customer-name, loan).

Construct the following queries using the above relations.

(a) Identify the account-number whose balance is above Rs 10000 and is not
enlisted in the borrower relation.

(b) Determine the account-number whose balance is above Rs 1500 and has
taken a loan less than Rs 5000.

(c) Also construct necessary tables to describe the relations and answer the
aforementioned queries using the tables.

[Hints: Let us abbreviate the attributes of the relations as follows:

 N for branch-name,
 A for account-number,
 C for customer-name,
 B for balance,
 L for loan.

a) account (N, A, C, B) B > 10000, not-is –borrower (C, L).
b) account (N, A, C, B) B > 1500, borrower (C, L), L < 5000.
c) Representative Tables 6.6 to 6.8 have been constructed to answer the

queries listed in parts (a) and (b).

254

Table 6.6: The ‘account’ relation.

Table 6.7: The ‘depositor’ relation.

Branch-name
(N)

Account-
number

(A)

Customer-name
(C)

Balance in
rupees

(B)

Jadavpur 0101 ram 19000

Sodpur 0215 sabi 1000

Maniktala 0102 rai 9000

Park Circus 0322 ali 26500

C R Avenue 0305 sush 4500

Park Circus 0201 madhu 8500

Park Street 0222 john 7500

Customer-name
(N)

Account-number
(A)

ram 0101

shyam 0200

jadu 0021

madhu 0201

ganga 0120

hari 0221

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 255

Table 6.8: The ‘borrower' relation.

The answer to the first query: account (Park Circus, 0322, ali, 26500).
The answer to the second query: account (Jadavpur, 0101, ram, 19000).]

3. Consider the following rules and facts:

Herbivore (X) Lives-on-grass (X), Four-footed (X).
Lives-on-grass (cow) .
Lives-on-grass (buffalo) .
Four-footed (cow) .

 Using closed-world assumption and negation by failure answer the
following three queries:

(a) Query 1: ? Herbivore (cow).
(b) Query 2: ? Four-footed (buffalo).
(c) Query 3: ? Herbivore (buffalo).

[Hints: By closed-world assumption we state that ¬Four-footed (buffalo) is
true. Consequently answer to part (b) and (c) are false. The answer to part (a),
however, is true as the premises to derive Herbivore (cow) are supplied in the
database.]

Customer-name
(N)

Loan
(L)

ram 4000

shyam 500

jadu 2000

sita 5000

mira 3000

rai 7000

kali 1200

256

4. Use stratification strategy of LDL to answer query for the given logic
program:

Rules: One-way-route (X, Y) Route (X, Y), ¬Destination (X).
 Two-way-route (X, Y) Route (X, Y).

Query: ? One-way-route (X, Y).

Facts: Route (a, b) .
 Route (b, d) .
 Route (c, d) .
 Route (d, a) .
 Destination (a) .
 Destination (c) .
 Destination (d) .

[Hints: First identify X, for which destination X is not available in the
database. The routes thus generated using the first rule yield one-way-route.
The remaining routes are two-way.]

References

1. Aho, A. and Ullman, J., “Universality of Data Retrieval Languages,”
proceedings of the POPL conference, San Antonio Tx, ACM, 1979.

2. Bancilhon, F. and Ramakrishnan, R., “An Amateur’s Introduction to
Recursive Query Proceeding Strategies,” in proceedings of the ACM
SIGMOD International Conference on Management of Data, 1986.

3. Bry, F., “Query Evaluation in Recursive Databases: Bottom-up and Top-
down reconciled,” IEEE Transactions on Knowledge and Data Engineering,
2, 1990.

4. Ceri, S., Gottlob, G., Tanca, L., Logic Programming and Databases,
Springer-Verlag, 1990.

5. Chang, C., “ On the Evaluation of Queries containing Derived Relations in a
Relational Database,” in Advances in Database Theory, Gallaire, H., Minker,
J. and Nicolas, J. (Eds.), vol. 1, Plenum press, 1981.

6. Chimenti, D. et al., “An Overview of the LDL System,” MCC Technical
Report # ACA-ST-370-87, Austin, Tx, November 1987.

7. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S. and
Zaniolo, C., “The LDL system Prototype,” IEEE Trans. on Knowledge and
Data Engineering, vol. 2, no. 1, pp. 76-90, March 1990.

8. Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The
Benjamin/Cummings, CA, 1994.

 6 Logic Programming in Database Applications

Parallel and Distributed Logic Programming 257

9. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (Eds.),
Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT
Press, Menlo Park, CA, pp. 117-152, 1996.

10. Gallaire, H., Minker, J. (Eds.), Logic and Databases, Plenum press, 1978.
11. Gallaire, H., Minker, J. and Nicolas, J., “Logic and Databases: A Deductive

Approach,” ACM Computing Surveys, 16:2, June1984.
12. Kifer, M. and Lozinskii, E., “A Framework for an Efficient Implementation of

Deductive Databases,” proceedings of the sixth Advanced Database
Symposium, Tokyo, Japan, August 1986.

13. Konar, A., Artificial Intelligence and Soft Computing: Behavioral and
Cognitive Modeling of the Human Brain, CRC Press, Boca Raton, Florida,
1999.

14. Krishnamurthy, R. and Naqvi, S., “Database Updates in Logic Programming,
Rev. 1,” MCC Technical Report # ACA-ST-010-88, Rev. 1, September 1988.

15. Krishnamurthy, R. and Naqvi, S., “Non-Deterministic Choice in Datalog,”
proceedings of the 3rd International Conference on Data and Knowledge
Bases, June 27-30, Jerusalem, Israel, 1989.

16. Levesque, H., “The Logic of Incomplete Knowledge Bases,” in On
Conceptual Modeling, Broadie, M., Mylopoulos, J., and Schmidt, J. (Eds.),
SpringerVerlag, 1984.

17. Ramkrishnan, R., Srivastava, D. and Sudarshan, S., “{CORAL}: {C}ontrol,
{R}elations and {L}ogic,” in proceedings of the International Conference on
Very Large Data Bases, 1992.

18. Ramkrishnan, R., Srivastava, D., Sudarshan, S., and Sheshadri, P.,
“Implementation of the {CORAL} deductive database system,” in
proceedings of the ACM SIGMOD International Conference on Management
of Data, 1993.

19. Reiter, R., “Towards a Logical Reconstruction of Relational Database
Theory,” in On Conceptual Modeling, Broadie, M., Mylopoulos, J., and
Schmidt, J. (Eds.), SpringerVerlag, 1984.

20. Silberschatz, A., Korth, H. F. and Sudarshan, S., Database System Concepts,
McGraw-Hill, Singapore, 1997.

21. Tsur, S., “LDL – A Technology for the Realization of Tightly Coupled Expert
Database Systems,” IEEE Expert Magazine, pp. 41-51, Fall 1988.

22. Ullman, J., Principles of Database and Knowledge-Base Systems, vol. 1,
Computer Science Press, 1988.

23. Ullman, J., Principles of Database and Knowledge-Base Systems, vol. 2,
Computer Science Press, 1989.

24. Vielle, L., “Recursive Axioms in Deductive Databases: The Query-Subquery
Approach,” in proceedings of the International Conference on Expert
Database Systems, 1986.

25. Vielle, L., “Database Complete Proof Production based on SLD-resolution,”
in proceedings of the 4th International Conference on Logic Programming,
1987.

258

26. Whang, K. and Navathe, S., “Integrating Expert Systems with Database
Management Systems- an Extended Disjunctive Normal Form Approach,” in
Information Sciences, 64, March 1992.

27. Zaniolo, C., “Design and Implementation of a Logic Based Language for Data
Intensive Applications,” MCC Technical Report # ACA-ST-199-88, June
1988.

 6 Logic Programming in Database Applications

Simulation of the Proposed Modular Architecture

This appendix provides an outline to the simulation aspects of the proposed
architectures using VHDL. The VHDL source codes for all the modules are too
large to be included in this appendix. For convenience of the readers, we provide
the source code for the matcher circuit only.

A.1 Introduction

The architecture proposed in chapter 4 was simulated in both C and VHDL1

languages. The C-realization was necessary to verify the functional behavior of
the individual modules. The VHDL-realization, on the other hand, provides a
detailed implementation of the modules with logic gates. The timing details of the
proposed functional architecture was also tested and verified using the VHDL
simulation.

The VHDL language benefits the users on the following counts: (i) simplicity
in submission of a formal description of the structure to be designed, (ii) the scope
of decomposition of a design into sub-designs and (iii) simplicity in establishing
interconnections among the sub-designs. The advantage of VHDL simulation lies
in testing and verifying the logic implementation without the expense of hardware
prototyping.

The sub-units, such as Transition History File (THF), Place Token Variable
Value Mapper (PTVVM), etc., presented in chapter 4 have been developed under
separate projects. The different entities of each sub-unit were coded either by
structures or functional behaviors in one or two modules under the specific
project. The port connections among the entities were accomplished through
signals in a different module, referred to as the top-level module, containing the
top-level entity. To test the correctness of realization, the top-level entity that
represents a sub-unit of the architecture was simulated. The simulation was
performed on a module called the test-bench. The test-bench was excited with

1 VHDL is a language for describing digital electronic systems. It arose out of the
United States Government’s Very High-Speed Integrated Circuits (VHSIC)
Program. The VHSIC Hardware Description Language (VHDL) was developed
for testing and verifying the structure and function of Integrated Circuits.

Appendix A

260 Appendix A: Simulation of the Proposed Modular Architecture

sample inputs and its logical output waveforms were verified through VHDL
simulation.

The VHDL implementation of one typical circuit (the Matcher) is presented
below for convenience. The complete code for the VHDL-implementation is
available in one recent undergraduate thesis [1], prepared under the active co-
ordination by the authors.

A.2 VHDL Code for Different Entities in Matcher

library ieee;

use ieee.std_logic_1164.all;

----------ENTITY TWO INPUT AND GATE----------
entity and_2_gate is
 port(A:in std_ulogic;
 B:in std_ulogic;
 C:out std_ulogic);

end and_2_gate;

architecture behaviour of and_2_gate is
 begin
 C <= A and B after 10ns;
 end behaviour;

----------ENTITY FIVE INPUT AND GATE----------
use ieee.std_logic_1164.all;

entity and_5_gate is
 port(A : in std_ulogic;
 B : in std_ulogic;
 C : in std_ulogic;
 D : in std_ulogic;
 E : in std_ulogic;
 F : out std_ulogic);
end and_5_gate;

architecture behaviour of and_5_gate is
 begin
 F <= A and B and C and D and E after 10 ns;
 end behaviour;

Parallel and Distributed Logic Programming 261

----------ENTITY XNOR GATE----------

use ieee.std_logic_1164.all;

entity not_xor is
 port (I1 : in std_ulogic_vector(4 downto 0);

 I2 : in std_ulogic_vector(4 downto 0);
 X1 : out std_ulogic_vector(4 downto 0));
 end not_xor;

architecture behaviour of not_xor is
 signal temp_X1 : std_ulogic_vector(4 downto 0);
 begin
 temp_X1 <= I1 xor I2;
 X1 <= not temp_X1;
 end;

----------ENTITY AND TREE----------

use ieee.std_logic_1164.all;

entity AND_TREE is
 port (TI1 : in std_ulogic_vector (4 downto 0);
 TI2 : in std_ulogic_vector (4 downto 0);
 TI3 : in std_ulogic_vector (4 downto 0);
 TI4 : in std_ulogic_vector (4 downto 0);
 TI5 : in std_ulogic_vector (4 downto 0);
 TO1 : out std_ulogic);
 end AND_TREE;

architecture structure of AND_TREE is
 component and_2_gate
 port(A:in std_ulogic;
 B:in std_ulogic;
 C:out std_ulogic);
 end component;

 component and_5_gate
 port(A : in std_ulogic;
 B : in std_ulogic;
 C : in std_ulogic;

262 Appendix A: Simulation of the Proposed Modular Architecture

 D : in std_ulogic;
 E : in std_ulogic;
 F : out std_ulogic);
 end component;

component not_xor
 port (I1 : in std_ulogic_vector(4 downto 0);
 I2 : in std_ulogic_vector(4 downto 0);
 X1 : out std_ulogic_vector(4 downto 0));
 end component;

 signal Q1,Q2,Q3,Q4:std_ulogic_vector (4 downto 0);
 signal TEMP_0_1,TEMP_0_2,TEMP_0_3,TEMP_0_4 :
std_ulogic;
 signal TEMP_1_1,TEMP_1_2,TEMP_1_3,TEMP_2_1,TEMP_2_2:
std_ulogic;

 begin

 INST1_not_xor : not_xor port map (I1 => TI1 , I2 =>
TI2 , X1 => Q1);
 INST2_not_xor : not_xor port map (I1 => TI2 , I2 =>
TI3 , X1 => Q2);
 INST3_not_xor : not_xor port map (I1 => TI3 , I2 =>
TI4 , X1 => Q3);
 INST4_not_xor : not_xor port map (I1 => TI4 , I2 =>
TI5 , X1 => Q4);
 INST1_and_5_gate:and_5_gate port
map(A=>Q1(0),B=>Q1(1),C=>Q1(2),D=>Q1(3),E=>Q1(4),F=>TEM
P_0_1);
 INST2_and_5_gate:and_5_gate

 port map (
A=>Q2(0),B=>Q2(1),C=>Q2(2),D=>Q2(3),E=>Q2(4),F=>TEMP_0_
2);
 INST3_and_5_gate:and_5_gate

 port map (
A=>Q3(0),B=>Q3(1),C=>Q3(2),D=>Q3(3),E=>Q3(4),F=>TEMP_0_
3);
 INST4_and_5_gate:and_5_gate

 port map (
A=>Q4(0),B=>Q4(1),C=>Q4(2),D=>Q4(3),E=>Q4(4),F=>TEMP_0_
4);

Parallel and Distributed Logic Programming 263

 INST1_and_2_gate:and_2_gate port map(
A=>TEMP_0_1,B=>TEMP_0_2,C=>TEMP_1_1);
 INST2_and_2_gate:and_2_gate port map(
A=>TEMP_0_2,B=>TEMP_0_3,C=>TEMP_1_2);

INST3_and_2_gate:and_2_gate port map(
A=>TEMP_0_3,B=>TEMP_0_4,C=>TEMP_1_3);
 INST4_and_2_gate:and_2_gate port map(
A=>TEMP_1_1,B=>TEMP_1_2,C=>TEMP_2_1);
 INST5_and_2_gate:and_2_gate port map(
A=>TEMP_1_2,B=>TEMP_1_3,C=>TEMP_2_2);
 INST6_and_2_gate:and_2_gate port map(
A=>TEMP_2_1,B=>TEMP_2_2,C=>TO1);

 end structure;

----------ENTITY REGISTER MATCH----------

 library ieee;
use ieee.std_logic_1164.all;

 entity register_match is
 port(A1 :in std_ulogic_vector (4 downto 0);
 A2 :in std_ulogic_vector (4 downto 0);
 A3 :in std_ulogic_vector (4 downto 0);
 A4 :in std_ulogic_vector (4 downto 0);
 A5 :in std_ulogic_vector (4 downto 0);
 C1 :out std_ulogic_vector (4 downto 0);
 C2 :out std_ulogic_vector (4 downto 0);
 C3 :out std_ulogic_vector (4 downto 0);
 C4 :out std_ulogic_vector (4 downto 0);
 C5 :out std_ulogic_vector (4 downto 0));
 end register_match;
 architecture behaviour of register_match is

 signal
reg_val1,reg_val2,reg_val3,reg_val4,reg_val5:std_ulogic
_vector (4 downto 0);
 signal AND1,AND2,AND3,AND4,AND5:std_ulogic;
 signal check:std_ulogic := 'X';
 begin

 reg_val1<= A1;

264 Appendix A: Simulation of the Proposed Modular Architecture

 reg_val2<= A2;
 reg_val3<= A3;
 reg_val4<= A4;

 reg_val5<= A5;

 LOADPROCESS:process

 begin

 AND1 <= reg_val1(0) and reg_val1(1) and
reg_val1(2) and reg_val1(3) and reg_val1(4);

 AND2 <= reg_val2(0) and reg_val2(1) and
reg_val2(2) and reg_val2(3) and reg_val2(4);-- after 10
ns;
 wait for 10 ns;
 if (AND1 = '1') then
 reg_val1 <= reg_val2;
 end if;
 if (AND2 = '1') then
 reg_val2 <= reg_val1;
 end if;
 AND2 <= reg_val2(0) and reg_val2(1) and
reg_val2(2) and reg_val2(3) and reg_val2(4) ;--after 10
ns;
 AND3 <= reg_val3(0) and reg_val3(1) and
reg_val3(2) and reg_val3(3) and reg_val3(4) ;--after 10
ns;
 wait for 10 ns;

 if (AND2 = '1') then
 reg_val2 <= reg_val3;
 end if;
 if (AND3 = '1') then
 reg_val3 <= reg_val2;
 end if;

 AND3 <= reg_val3(0) and reg_val3(1) and
reg_val3(2) and reg_val3(3) and reg_val3(4) ;--after 10
ns;

Parallel and Distributed Logic Programming 265

 AND4 <= reg_val4(0) and reg_val4(1) and
reg_val4(2) and reg_val4(3) and reg_val4(4) ;--after 10
ns;
 wait for 10 ns;

 if (AND3 = '1') then
 reg_val3 <= reg_val4;
 end if;
 if (AND4 = '1') then
 reg_val4 <= reg_val3;
 end if;

 AND4 <= reg_val4(0) and reg_val4(1) and
reg_val4(2) and reg_val4(3) and reg_val4(4) ;--after 10
ns;
 AND5 <= reg_val5(0) and reg_val5(1) and
reg_val5(2) and reg_val5(3) and reg_val5(4) ;--after 10
ns;
 wait for 10 ns;

 if (AND4 = '1') then
 reg_val4 <= reg_val5;
 end if;
 if (AND5 = '1') then
 reg_val5 <= reg_val4;
 end if;
 check <= '1';
 wait for 10 ns;
 if (check ='1') then
 C1 <= reg_val1;
 C2 <= reg_val2;
 C3 <= reg_val3;
 C4 <= reg_val4;
 C5 <= reg_val5;
 end if;
 end process;
 end behaviour;

library ieee;

use ieee.std_logic_1164.all;
use work.all;

of Matcher
A.3 VHDL Code to Realize the Top Level Architecture

266 Appendix A: Simulation of the Proposed Modular Architecture

----------ENTITY TOP LEVEL ARCHITECTURE----------

entity TOP is
 port(X1 : in std_ulogic_vector (4 downto 0);
 X2 : in std_ulogic_vector (4 downto 0);
 X3 : in std_ulogic_vector (4 downto 0);
 X4 : in std_ulogic_vector (4 downto 0);
 X5 : in std_ulogic_vector (4 downto 0);
 OUTFINAL: out std_ulogic_vector (4 downto 0);
 OUTBIT: out std_ulogic);
end TOP ;

architecture STRUCTURE of TOP is

component register_match
 port(A1 :in std_ulogic_vector (4 downto 0);
 A2 :in std_ulogic_vector (4 downto 0);
 A3 :in std_ulogic_vector (4 downto 0);
 A4 :in std_ulogic_vector (4 downto 0);
 A5 :in std_ulogic_vector (4 downto 0);
 C1 :out std_ulogic_vector (4 downto 0);
 C2 :out std_ulogic_vector (4 downto 0);
 C3 :out std_ulogic_vector (4 downto 0);
 C4 :out std_ulogic_vector (4 downto 0);
 C5 :out std_ulogic_vector (4 downto 0));
end component;

component AND_TREE
 port (TI1 : in std_ulogic_vector (4 downto 0):=
"XXXXX";
 TI2 : in std_ulogic_vector (4 downto 0):=
"XXXXX";
 TI3 : in std_ulogic_vector (4 downto 0):=
"XXXXX";
 TI4 : in std_ulogic_vector (4 downto 0):=
"XXXXX";
 TI5 : in std_ulogic_vector (4 downto 0):=
"XXXXX";
 TO1 : out std_ulogic);
 end component;

signal t_TI1,t_TI2,t_TI3,t_TI4,t_TI5 :
std_ulogic_vector (4 downto 0);

Parallel and Distributed Logic Programming 267

SIGNAL t_OUTBIT : std_ulogic ;

begin

 INST_REGISTER_MATCH:register_match
 port map(A1 => X1,
 A2 => X2,
 A3 => X3,
 A4 => X4,
 A5 => X5,
 C1 => t_TI1,
 C2 => t_TI2,
 C3 => t_TI3,
 C4 => t_TI4,
 C5 => t_TI5);

 INST_AND_TREE: AND_TREE
 port map(TI1 => t_TI1,
 TI2 => t_TI2,
 TI3 => t_TI3,
 TI4 => t_TI4,
 TI5 => t_TI5,
 TO1 => t_OUTBIT);

 INST : process(t_outbit)
 begin
 if (t_OUTBIT = '1') then
 OUTBIT <= t_OUTBIT ;
 elsif (t_OUTBIT = '0') then
 OUTBIT <= t_OUTBIT ;
 else
 OUTBIT <= 'X';
 end if;
 if (t_OUTBIT = '1') then
 OUTFINAL <= t_TI5;
 elsif (t_OUTBIT = '0') then
 OUTFINAL <= "XXXXX";
 end if;
 end process;
end STRUCTURE;

268 Appendix A: Simulation of the Proposed Modular Architecture

A.4 VHDL Code of Testbench to Simulate the Matcher

library ieee;

use ieee.std_logic_1164.all;
use std.textio.all;
use work.all;

--------ENTITY TESTBENCH OF MATCHER--------
entity test is
end test;

architecture matcher_stimulus of test is

 component TOP
 port(X1 : in std_ulogic_vector (4 downto 0);
 X2 : in std_ulogic_vector (4 downto 0);
 X3 : in std_ulogic_vector (4 downto 0);
 X4 : in std_ulogic_vector (4 downto 0);
 X5 : in std_ulogic_vector (4 downto 0);
 OUTFINAL : out std_ulogic_vector (4 downto 0);
 OUTBIT: out std_ulogic);
 end component;

 signal T_TI1X,T_TI2X,T_TI3X,T_TI4X,T_TI5X,MATCHOUTX:
std_ulogic_vector (4 downto 0);
 signal RESULTX: std_ulogic;
 signal T_TI1Y,T_TI2Y,T_TI3Y,T_TI4Y,T_TI5Y,MATCHOUTY:
std_ulogic_vector (4 downto 0);
 signal RESULTY: std_ulogic;
 signal T_TI1Z,T_TI2Z,T_TI3Z,T_TI4Z,T_TI5Z,MATCHOUTZ:
std_ulogic_vector (4 downto 0);
 signal RESULTZ: std_ulogic;
 signal ANDMATCH : std_ulogic;

begin

 INST1_TOPX : TOP port map(X1 => T_TI1X,
 X2 => T_TI2X,
 X3 => T_TI3X,
 X4 => T_TI4X,
 X5 => T_TI5X,
 OUTFINAL => MATCHOUTX,
 OUTBIT => RESULTX);

Parallel and Distributed Logic Programming 269

 INST1_TOPY : TOP port map(X1 => T_TI1Y,
 X2 => T_TI2Y,
 X3 => T_TI3Y,

 X4 => T_TI4Y,
 X5 => T_TI5Y,
 OUTFINAL => MATCHOUTY,
 OUTBIT => RESULTY);

 INST1_TOPZ : TOP port map(X1 => T_TI1Z,
 X2 => T_TI2Z,
 X3 => T_TI3Z,
 X4 => T_TI4Z,
 X5 => T_TI5Z,
 OUTFINAL => MATCHOUTZ,
 OUTBIT => RESULTZ);

 ANDMATCH <= RESULTX and RESULTY and RESULTZ;
 MATCHER_PROCESS: process
 Begin

 T_TI1X <= "10001";
 T_TI2X <= "11111";
 T_TI3X <= "10001";
 T_TI4X <= "11111";
 T_TI5X <= "10001";
 T_TI1Y <= "10001";
 T_TI2Y <= "11111";
 T_TI3Y <= "10001";
 T_TI4Y <= "11111";
 T_TI5Y <= "10001";
 T_TI1Z <= "10001";
 T_TI2Z <= "11111";
 T_TI3Z <= "10001";
 T_TI4Z <= "11111";
 T_TI5Z <= "10001";

 wait for 200 ns;
 T_TI1X <= "10101";
 T_TI2X <= "10001";
 T_TI3X <= "10001";
 T_TI4X <= "11111";
 T_TI5X <= "11111";
 T_TI1Y <= "10101";
 T_TI2Y <= "10001";

270 Appendix A: Simulation of the Proposed Modular Architecture

 T_TI3Y <= "10001";
 T_TI4Y <= "11111";
 T_TI5Y <= "11111";
 T_TI1Z <= "10101";
 T_TI2Z <= "10001";
 T_TI3Z <= "10001";
 T_TI4Z <= "11111";
 T_TI5Z <= "11111";

 wait for 200 ns;
 T_TI1X <= "10001";
 T_TI2X <= "10001";
 T_TI3X <= "10011";
 T_TI4X <= "11111";
 T_TI5X <= "11111";
 T_TI1Y <= "10001";
 T_TI2Y <= "10001";
 T_TI3Y <= "10011";
 T_TI4Y <= "11111";
 T_TI5Y <= "11111";
 T_TI1Z <= "10001";
 T_TI2Z <= "10001";
 T_TI3Z <= "10011";
 T_TI4Z <= "11111";
 T_TI5Z <= "11111";

 wait for 200 ns;
 end process;
end matcher_stimulus ;

Reference

1. Mukherjee, R. and Mukhopadhyay, S., VHDL-implementation for a parallel
architecture for logic programming, undergraduate thesis, Jadavpur University,
2000.

Open-ended Problems for Dissertation Works

B.1 Problem 1: The Diagnosis Problem

There exist two alternative approaches to solve a diagnosis problem. The first
approach, well known as model-based approach [1] attempts to develop a forward
(simulation) model of the system to be diagnosed, and then employs a diagnostic
algorithm on this model to determine the abnormal behavior in the systems, if any.
The cause of abnormality is diagnosed at a later stage to identify the system
components responsible for the abnormality.

Unlike the model-based approach, an alternative approach to handle the
diagnosis problem is to construct a set of diagnostic rules, depicting the
knowledge of a skilled engineer, to correctly detect the defective components in a
system, if any. The rule-based paradigm can directly be realized on Petri nets for
automated reasoning in a diagnosis problem.

In this section, we illustrate the scope of Petri net models in solving diagnosis
problems [2]. The diagnostic rules for a full wave two-diode rectifier system are
given below.

Rule 1: Transformer-output (0V), Open (one-half-of-secondary-coil)
←Defective (transformer), Primary (230V).

Rule 2: Defective (one-diode) ←Defective (rectifier).

Rule 3: Defective (two-diodes) ←Defective (rectifier).

Rule 4: Rectifier-output (0V) ←Transformer-output (0V).

Rule 5: Rectifier-output (6V) ←Open (one-half-of-secondary-coil).

Rule 6: Rectifier-output (6V) ←Defective (one-diode).

This appendix provides some open-ended problems of common interest and
is recommended for extension by graduate students, pursuing their research in
 the area of parallel and distributed logic programming. Research directions to
solve these problems are also provided to motivate young researchers to
undertake these problems for their research.

Appendix B

272 Appendix B: Open-ended Problems for Dissertation Works

Rule 7: Rectifier-output (0V) ←Defective (two-diodes).

 The diagnostic knowledge given by Rules 1 to 7 can be represented in a
structured manner by a Petri net model shown in Fig. B.1.

d1 = Defective (transformer), d2 = Primary (230V), d3 = Defective (rectifier), d4 =
Transformer-output (0V), d5 = Open (one-half-of-secondary-coil), d6 = Defective (one-
diode), d7 = Defective (two-diodes), d8 = Rectifier-output (0V), d9 = Rectifier-output (6V)

Fig. B.1: A Petri net representing diagnostic knowledge of a two-diode full wave
rectifier

 Show various steps of forward and backward chaining when the tokens are
given in the places p2, p5 and p8, and hence comment on the solution to the
problem.

[Hints: First fire transitions tr4 and tr7 in parallel both and in backward manner.
Then fire transitions tr3 and tr1 both in backward manner. Thus we obtain the truth
value of the predicates: Defective-rectifier (place p3) and Defective-transformer
(place p1).]

p1

p2

p3

p4

p5

p6

p7

p8

p9

d1

d3

d2

d4

d5

d6

d7

d8d9

tr1

tr3

tr2

tr4

tr7

tr6

tr5

Parallel and Distributed Logic Programming 273

B.2 Problem 2: A Matrix Approach for Petri Net
Representation

The classical models of modus ponens informally described by the following two
rules:

 q ←p.

 p ←.

 q ←.

where p and q denotes two propositions. We can represent the same concept by
vector-matrix approach as follows.

 Let R (p, q) denotes a binary implication relation between the propositions p
and q. Assuming ‘q ←p.’ to be equivalent to ¬p ∨ q, where ‘¬’ and ‘∨’ have
usual meanings, we can represent R (p, q) by

R (p, q) =

where the elements of the matrix are evaluated by the formula ¬p ∨ q.

 Suppose, p is true, and we need to evaluate the truth value of q by vector-
matrix approach, satisfying modus ponens. Since we do not know the truth value
of q beforehand. We consider it as don’t care (d). Thus the initial value of [p q] is
given by

 p q

 1 d

 The inferred value of q now is obtained by taking max-min composition [3] of
the above vector with the matrix R (p, q).

 The inferred value of [p q] is thus given by

p

0

1

q
 0 1

1 1

0 1

274 Appendix B: Open-ended Problems for Dissertation Works

 q→
 p q p↓ 0 1

 1 d ο 0 1 1

 1 0 1

 p q
 = [1 1],

which yields the inferred value of q to be 1.

 The same principle can be extended for Petri net models by using two binary
matrices P and Q where P denotes a connectivity from transition to places and Q
denotes a connectivity from places to transitions respectively.

 Fig. B.2: A Petri net to illustrate the construction of P and Q matrices

 For illustration, we consider an arbitrary Petri net (Fig. B.2) and evaluate its
corresponding P and Q matrices for the convenience of the readers.

p1

p4

tr5

p2

tr2

tr1

p3

p5

tr3

tr4

tr6

Parallel and Distributed Logic Programming 275

 From trans.
To tr1 tr2 tr3 tr4 tr5 tr6

places
 p1 0 1 0 1 1 0

 p2 1 0 0 0 0 0

P =
 p3 0 0 0 0 0 1

 p4 0 0 0 1 0 0

 p5 0 0 1 0 0 0

 From places
 To p1 p2 p3 p4 p5

 trans.

 tr1 1 0 0 0 0

 tr2 0 1 0 0 0

Q = tr3 0 1 1 0 0

 tr4 0 0 0 0 1

 tr5 0 0 0 1 0

 tr6 0 0 0 1 0

276 Appendix B: Open-ended Problems for Dissertation Works

 Since the modus ponens of propositional logic is similar with forward firing of
a Petri net, we can evaluate the next token in each place when the current token of
their predecessors are given.

 One general rule for computing binary tokens at the places is given by [2]

N (t + 1) = P ° [Q ° Nc (t)]c (B.1)

where N (t) = [n1(t) n2 (t)…..nm (t)] denotes the tokens (truth/falsehood) n1(t),
n2(t), …….., nm (t) at respective places p1, p2, ……, pm at time t. The ‘c’ above a
vector denotes its binary complement.

 Graduate students are advised to construct a forward chaining model of Petri
net and verify that the given equation (B.1) supports modus ponens in a transitive
sense for a sequence of forward firable transitions.

Example B.1: Consider a Petri net model as shown in Fig. B.3. Given the N (0)
vector, determine N (1) and N (2) and notice the changes in the places p3 and p5 in
two successive iterations of computing N.

p4

• 1

0

• 1

0

• 1

p1

p2

tr1

tr2

p3

p5

 Fig. B.3: An illustrative Petri net

Parallel and Distributed Logic Programming 277

 n1 n2 n3 n4 n5

N (0) = [1 1 0 1 0]

 From transitions

 tr1 tr2

 To places

P1 0 0

P2 0 0

P =

p3 1 0

 p4 0 0

 p5 0 1

 From places

 p1 p2 p3 p4 p5

 To transitions

tr1 1 1 0 0 0

Q =

tr2 0 0 1 1 0

N (1) = P ο (Q ο NC(0))C

278 Appendix B: Open-ended Problems for Dissertation Works

 =

=

 =

 =

1 1 0 0 0
0 0 1 1 0

ο
1
1
0
1
0

C

C

0 0
0 0
1 0
0 0
0 1

ο

1 1 0 0 0
0 0 1 1 0

ο
0
0
1
0
1

C

0 0
0 0
1 0
0 0
0 1

ο

0 0
0 0
1 0
0 0
0 1

ο 0
1

C

0 0
0 0
1 0
0 0
0 1

ο 1
0

Parallel and Distributed Logic Programming 279

 =

which indicates that firing of transition tr1 generates a token at place p3. In the
second iteration, we can generate token at place p5. This can be accomplished by

N (2) = P ο (Q ο NC (1))C

 =

 =

0 0 1 0 0

T

1 1 0 0 0
0 0 1 1 0

ο
0
0
1
0
0

C

C

0 0
0 0
1 0
0 0
0 1

ο

1 1 0 0 0
0 0 1 1 0

ο
1
1
0
1
1

C

0 0
0 0
1 0
0 0
0 1

ο

280 Appendix B: Open-ended Problems for Dissertation Works

 =

 =

 =

 We are afraid! What is this?

 The aforementioned experiment shows that after the second firing, the token at
place p5 is zero, but by modus ponens we should expect it to be one. The
aforementioned problem occurs as the starting places of the network such as p1, p2

and p4 cannot hold the tokens forever. In fact they loose their tokens only after
corresponding transition firing. In order to restore the tokens at the starting places
even after transition firing, we have to provide self-loops around the starting
places through virtual transitions [1]. Fig. B.4 provides the corresponding network
of Fig. B.3 with virtual transitions.

0 0
0 0
1 0
0 0
0 1

ο 1
1

C

0 0
0 0
1 0
0 0
0 1

ο 0
0

0 0 0 0 0

T

Parallel and Distributed Logic Programming 281

 The P and Q matrices for the given Fig. B.4 are changed as follws

p4

• 1

0

• 1

0

• 1

p1

p2

tr1

tr2

p3

p5

Fig. B.4: Modified Fig. B.3 with virtual transitions around places p1, p2 and p4

tr5

tr3

tr4

282 Appendix B: Open-ended Problems for Dissertation Works

 From transitions

 tr1 tr2 tr3 tr4 tr5

 To places

p1 0 0 1 0 0

p2 0 0 0 1 0

P =

p3 1 0 0 0 0

 p4 0 0 0 0 1

 p5 0 1 0 0 0

 From places

 p1 p2 p3 p4 p5

 To transitions

tr1 1 1 0 0 0

tr2 0 0 1 1 0

Q =

tr3 1 0 0 0 0

tr4 0 1 0 0 0

tr5 0 0 0 1 0

Parallel and Distributed Logic Programming 283

 N (0) = [1 1 0 1 0]

 Here, N (1) = P ο (Q ο NC (0))C

 n1 n2 n3 n4 n5

 = [1 1 1 1 0]

 N (2) = P ο (Q ο NC (1))C

 n1 n2 n3 n4 n5

 = [1 1 1 1 1]

which indicates that the new tokens at places p3 and p5 after firing of two
transitions are one. Further, places p1, p2 and p4 hold their tokens forever, without
being hampered by transition firing.

1. Extend the aforementioned idea for backward chaining using classical modus
tollens and combine both forward and backward chaining on Petri net models
for reasoning in a logic program.

2. Assuming that the tokens may be non-binary with real values in [0, 1], use
equation (B.1) for generating fuzzy inferences in a cycle-free Petri net.

3. Let P−1 and Q−1 be the inverses [4] of matrices P and Q with respect to max-
min composition operation. Assuming that P−−−−1 = PT and Q−−−−1 = QT, we obtain
a backward reasoning formalism as follows:

 N (t + 1) = P ο (Q ο NC (t))C

 P−−−−1 ο N (t + 1) = (Q ο NC (t))C

(P−−−−1 ο N (t + 1))C = Q ο NC (t)

Q ο NC (t) = (P−−−−1 ο N (t + 1))C

T

T

Exercises

 n1 n2 n3 n4 n5

284 Appendix B: Open-ended Problems for Dissertation Works

NC (t) = Q−−−−1 ο (P−−−−1 ο N (t + 1))C

N (t) = [Q−−−−1 ο (P−−−−1 ο N (t + 1))C]C (B.2)

Given the token vector N (t + 1), we can obtain N (t) by using Q−−−−1 = QT and
P−−−−1 = PT.

Construct a Petri net without cycles (loops) and submit token vector N (0).
Consider self-loop around the starting places through virtual transitions. Now,
construct P and Q matrices, make several forward passes by iteratively updating
equation (B.1) until N (t + 1) = N (t) at some time t = t*.

Now use equation (B.2) to retrieve N (0) by backward computation of N vector.
Check whether the computed N (0) is same as the submitted N (0).

References

1. Hamscher,. W., Console, L., de Kleer, J., Readings in Model-based
Diagnosis, Morgan-Kaufmann, CA, 1992.

2. Konar, A., Artificial Intelligence and Soft Computing− Behavioral and
Cognitive Modeling of the Human Brain, CRC Press, Boca Raton, Fl, 2000.

3. Konar, A., Computational Intelligence: Principles, Techniques and
Applications, Springer, Heidelberg, 2005.

4. Saha, P. and Konar, A., “A heuristic algorithm for computing the max-min
inverse fuzzy relation,” International Journal of Approximate Reasoning, vol.
20, pp. 131-147, 2002.

Index

A

A don’t care state, 48
AND OR-II, 60
AND-literals, 30
AND-node, 65
AND-OR logic programming languages,

89
AND-OR tree, 65
AND-parallel clauses, 57
AND-parallelism, 30
AND-predicate, 61
Arbitration unit, 21
Argument unification, 69
Artificial Intelligence, 1
Arvind dataflow machine, 21
Atomic propositions, 3
Auto-epistemic logic, 2

B

Bayessian scheme, 247
Binding conflict problem, 59
Built-in predicate, 11

C

C, 10
CAM based machines, 57
Candidate solution-tree, 67
Chess Playing program, 1
Circular resolution, 119
Clause invocation, 69
Clause, 116
Closed World Assumption (CWA), 241
Combinatorial explosion, 1

Complete, 7
Concurrent resolution of both multiple

rules and facts, 123, 125
Concurrent resolution of multiple rules,

123, 124
Concurrent resolution of a rule with facts,

123
Concurrently resolvable clauses, 120
Concurrently resolvable set of resolution,

122
Conjunction of literals, 109
Conjunctive normal form, 4
Consistent solution-tree, 67
Consumers, 33
Content Addressable Memory (CAM), 58,

69
Current-bindings (c-b), 133
CUT predicate, 11

D

Data Join Graphs (DJG), 68
Data Mining, 229, 247
Data/operand fetch, 15
Database Management Systems (DBMS),

235
Dataflow Graph, 20
Datalog, 2, 229
Default logic, 2
Deferred substitution set, 122
Definite goal, 116
Definite program clause, 116
Definite program, 8 116
DENDRAL, 1
Depth-first traversal, 2

Deterministic Finite Automata (DFA),
216

Deterministic finite automation, 223
Directed bipartite graph, 23
Disjunction of literals, 111

E

Exchange switch network, 22
Execution, 15
Extended Horn Clause (EHC), 111
Extended Logic Program, 112

F

Fact, 110
Failing computation, 80
Firing Criteria Testing (FCT) iterations,

136
Firing Criteria Testing Logic (FCTL),

179, 187
First Order Logic (FOL) program, 130
First Pre-condition Synthesizer (FPS),

179, 187
Fixpoint operator, 238

G

Gantt chart, 203
Garbage collection mechanism, 72, 73,

108
Global matching, 179
Goal clause (query), 110
Graph coloring Scheme, 60
Ground literals, 110
Guard computation, 63
Guarded clause, 62

H

Hardware prototyping, 259
Hierarchical pipelining, 108
Horn clauses, 8, 112

I

Implication operator, 108
Inactive arc functions, 133
Inductive Logic Programming (ILP), 247
Inert place, 133
Inference depth, 71
Inferencing, 4
Instruction decode, 15
Instruction fetch, 15
Integrity constraints, 2, 234
Interpretations, 11

L

LDL system architecture, 229, 235
Leaf of an AND-OR tree, 67
Liapunov energy function, 12
LISP, 10
Local matching, 179
Logic Data Language (LDL), 236
Logic of predicates, 1
Logic of propositions, 1
Logic program, 8
Logic programming, 1
Logic Theorist program, 1
Loosely coupled machine, 18

M

Manchester University machine, 21
Match arc, 66, 67
Matcher, 178, 184
Matching unit (MU), 21
MECHO, 1
Memory read cycle, 202
Memory write cycle, 202
Meta-level inference, 2
Micro code, 211
Microelectronics and Computer

Technology Corporation (MCC), 236
Modal logic, 2
Modus ponens, 75
Monte Carlo simulations, 142
Most General Unifier (MGU), 84, 114

Extended Petri Net (EPN), 129

286 Index

Multiple Instruction Multiple Data
(MIMD) machines, 17

Multiple Instruction Single Data (MISD)
machines, 17

Multiple ring architecture, 22
Multiple sequence, 118
Multi-valued logic, 2
MYCIN, 1

N

Negation by failure computational feature,
241

Neural net approach, 247
Newtonian mechanics, 2
Node storage (NS), 21
Non-guarded clause, 62
Non-Horn clauses, 111
Non-monotonic logic, 2
Nyquist criterion, 12

O

Object code, 211
Online mapping, 211
OR-clauses, 33
Order independent clauses, 120
Order of resolution, 118
Order-less clauses, 120
Orderly resolution, 117
OR-node, 65
OR-parallel clauses, 58
OR-parallelism, 1, 33
OR-predicate, 61

P

Parallelisms in a logic program, 1
PARLOG, 11
Parse tree, 213
Parse, 179
Parser, 213
Parsing, 213
Pascal, 10

Place Token Variable Value Mapper
(PTVVM), 178, 181

Processing elements (PE), 15
Processing units (PU), 21
Producers, 33
Production systems, 2
Proliferation into new worlds, 62
PROLOG, 2, 10
Properly signed token, 133
Propositional clause, 111
Pseudo PROLOG program, 211. 212
Pseudo PROLOG statement, 214

R

RAP-WAM architecture, 59
Resolution principle, 1, 4
Resolution tree, 6
Resolvability of two clauses, 112
Resolvent, 27, 115
Resource Unlimited Speed-up, 141
Resource utilization rate, 141
Restricted AND-parallelism, 32
Robinson’s inference rule, 4
Routh-Hurwitz criterion, 12
Rule of commitment, 63, 64
Rule of Proliferation, 64
Rule of suspension, 62, 63

S

Scalar instructions, 17
Select Linear Definite (SLD) clauses, 27
Semantic approach, 3
Semantics, 229
Set of resolvable clauses, 115
Shared variables, 32
Single Instruction Multiple Data (SIMD)

machines, 17
Single Instruction Single Data (SISD)

machines, 16
Single sequence, 118
SLD resolution, 116
SLD-tree, 27
S-norm, 12

Index 287

Sound, 7
Speed-up factor, 138
Stability, 11
Stable points, 12
Stack, 1
State-space, 1
Stratification feature, 242
Stream-parallelism, 1, 33
Structural pipelining, 75
Substitution sets, 112
Syntactic rule, 3
Syntax, 229

T

Term, 4
Test-bench, 259
Tightly coupled machine, 18
T-invariants, 77
T-norm, 2
Token queue (TQ), 21
Tokens, 129, 179
Transition Firing Cycle, 202
Transition firing rules, 25
Transition History File (THF) register,

179, 180

Transition Status File (TSF), 179, 180
Truth-value, 3

U

Unification-parallelism, 1, 33
Unifier, 114
Unrestricted AND-parallelism, 32
Used-bindings (u-b), 133

V

Variable binding conflict, 108
Vector instructions, 17
Very High-Speed Integrated Circuits

(VHSIC) Program, 259
VHSIC Hardware Description Language

(VHDL), 259
Von Neumann machines, 15

W

Warren Abstract Machine (WAM), 58
Waste phase (cycle), 211

288 Index

About the Authors

Alakananda Bhattacharya is currently a senior research associate in a
U.G.C.(University Grants Commission)-sponsored project on Artificial
Intelligence applied to Imaging and Robotics, housed in the department of
Electronics and Telecommunications Engineering, Jadavpur University, Calcutta,
India. She received her Ph. D. degree on Artificial Intelligence in the sub area of
Parallel Architecture for Logic Programming in 2002 from the same university.
Alakananda has published a number of papers in international journal and
conferences in the area of logic programming, database systems and parallel and
distributed computing.

The work presented in this book is an extension of Alakananda’s research work
leading to her Ph. D. degree. It was an extensive work, undertaken over a large
period for around ten years to complete the theoretical formalizations, verification
and validation of the proposed architecture, and the construction of the compiler
for the Datalog type programs.

Alakananda provides peer review for journals and conferences in her field. Her
current research interest includes data mining by inductive logic programming.

Amit Konar is presently a Professor in the Department of Electronics and Tele-
Communication Engineering, Faculty of Engineering and Technology, Jadavpur
University, Calcutta, India, and Joint Coordinator, Center for Cognitive Science,
Jadavpur University. He is the founding Coordinator of the M.Tech program in
Intelligent Automation and Robotics, offered as part-time course to engineering
graduates, working in different industries around Calcutta. Dr. Konar has been
teaching and carrying out research work at this University for the past 20 years.
Jadavpur University is one of the top three universities in India. The faculty of
Engineering and Technology, with more than 100 externally funded research
projects, earned recognition as a “Center of excellence” from the Government of
India, and the university got the “Five Star” rating. The doctoral, master’s, and
bachelor’s programs offered by the university are acknowledged as one of the very
best in the country. Books by professors of the university are used as graduate-
level texts in Asian, European and American universities. The university runs
collaborative programs with European and Canadian universities. Amartya Sen,
the 1998 Nobel Laureate in Economics, taught at Jadavpur University for some
time.

Dr. Konar’s research areas include the study of artificial intelligence algorithms
and their applications to the entire domain of Electrical Engineering and Computer
Science. Specifically, he worked on logic programming, fuzzy sets and logic,
neuro-computing, genetic algorithms, Dempster-Shafer theory and Kalman
filtering, and applied the principles of computational intelligence in image
understanding, control engineering, VLSI CAD, mobile robotics, bio-informatics
and mobile communication systems.

Dr. Konar has published over hundred research papers and several books &
invited book chapters on various aspects of computer science and control
engineering. His books/ book chapters have been (are in the process of being)
published from top publishing houses such as Springer-Verlag, CRC Press,
Physica-Verlag, Academic Press, Kluwer Academic Press and Prentice-Hall of
India. He regularly provides peer review for journals in his field (e.g., journals
from IEEE, Kluwer and Elsevier), and has frequently been invited to review books
published by Springer-Verlag and McGraw-Hill. In recognition of his teaching
and research, he has been given the AICTE Career Award (1997-2000), the
highest honor offered to young talented academicians by the All India council of
Technical Education, Government of India.

Dr. Konar is a Principal Investigator or Co-Principal Investigator of four
external projects funded by University Grants Commission (the UGC is one of the
main federal funding agencies in India) and two projects funded by the All India
Council of Technical Education, Government of India. The research areas of these
projects include decision support system for criminal investigation, navigational
planning for mobile robots, AI and image processing, neural net based dynamic
channel allocation, human mood detection from facial expressions and DNA-
string matching algorithms. Under his supervision, seven graduate students have
already earned the degree of Ph.D., and three Ph.D. dissertations are in progress.
Currently, he serves on the editorial board of the International Journal of Hybrid
Intelligent Systems. Dr. Konar is the coordinator of the image processing part of
the “Second Hooghly Bridge Project”, one of the major projects of West Bengal
Government.

Dr. Konar served as a member of Program Committee of several International
Conferences and workshops, such as Intl. Conf. on Hybrid Intelligent Systems
(HIS 2003), held in Adelaide, Australia and Int. Workshop on Distributed
Computing (IWDC 2002), held in Calcutta.

earned a Ph.D. from the University of Calcutta, India. He is currently a Professor
in the ETCE Department, Jadavpur University, Kolkata and served it as its Head
from August 1992 to July 1994.

He was the chief investigator of a number of research projects funded by UGC,
DST and AICTE and was the Scientist in Charge of the Eastern Regional Center
of "Appropriate Automation Promotion Programme" funded by Dept of
Electronics Govt. of India in collaboration with UNDP (1988-1990).

Ajit K. Mandal holds an M. Tech Degree in Radio Physics and Electronics and

290 About the Authors

His teaching and research interests are Fuzzy Logic, Neural Networks,
Evolutionary computing and Machine learning with applications to pattern
recognition and digital image processing. He has about 36 years of research and
teaching experience in the above areas. He has published numerous Technical
papers in National and International Journals of repute and supervised numerous
Ph. D. and Master of Engineering thesis. He has also authored a book “
Introduction to Control Engineering – Modeling , Analysis and Design”, New Age
International (P) Ltd. New Delhi.

He has chaired sessions in number of National and International Conferences
and delivered seminar lectures at reputed national and international institutes

Dr. Mandal is a senior member of IEEE (USA) and acted as the Chairperson of
Computer Chapter of IEEE Calcutta Section from January 2001 to December
2004. He is a Fellow of the Institution of Engineers, India and Fellow of the
Institution of Electronics and Telecommunication Engineers, India.

Parallel and Distributed Logic Programming 291

	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	back-matter.pdf

