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Preface 

Foundation of logic historically dates back to the times of Aristotle, who 
pioneered the concept of truth/falsehood paradigm in reasoning. Mathematical 
logic of propositions and predicates, which are based on the classical models of 
Aristotle, underwent a dramatic evolution during the last 50 years for its 
increasing applications in automated reasoning on digital computers.   

The subject of Logic Programming is concerned with automated reasoning with 
facts and knowledge to answer a user’s query following the syntax and semantics 
of the logic of propositions/predicates. The credit of automated reasoning by logic 
programs goes to Professor Robinson for his well-known resolution theorem that 
provides a general scheme to select two program clauses for deriving an inference. 
Until now Robinson’s theorem is being used in PROLOG/DATALOG compilers 
to automatically build a Select Linear Definite (SLD) clause based resolution tree 
for answering a user’s query. 

The SLD-tree based scheme for reasoning undoubtedly opened a new era in 
logic programming for its simplicity in implementation in the compilers. In fact, 
SLD-tree construction suffices the need for users with a limited set of program 
clauses. But with increase in the number of program clauses, the execution time of 
the program also increases linearly by the SLD-tree based approach. An inspection 
of a large number of logic programs, however, reveals that more than one pair of 
program clauses can be resolved simultaneously without violating the syntax and 
the semantics of logic programming. This book employs this principle to speed up 
the execution time of logic programs. 

One question that naturally arises: how does one select the clauses for 
concurrent resolution? Another question that crops up in this context: should one 
select more than two clauses together or pairs of clauses as groups for concurrent 
resolution? This book answers these questions in sufficient details. In fact, in this 
book we minimize the execution time of a logic program by grouping sets of 
clauses that are concurrently resolvable. So, instead of pairs, groups of clauses 
with more than two members in a group are resolved at the same time. This may 
give rise to further questions: how can we ensure that the selected groups only are 
concurrently resolvable, and members in each group too are maximal? This in fact 
is a vital question as it ensures the optimal time efficiency (minimum execution 
time) of a logic program. The optimal time efficiency in our proposed system is 
attained by mapping the program clauses onto a specialized structure that allows 
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each group of resolvable clauses to be mapped in close proximity, so as to 
participate in the resolution process. Thus n-groups of concurrently resolvable 
clauses form n clusters in the network. Classical models of Petri nets have been 
extended to support the aforementioned requirements. 

Like classical Petri nets, the topology of network used in the present context is 
a bipartite graph having two types of nodes, called places and transitions, and 
directed arcs connected from places to transitions and transitions to places 
respectively. Clauses describing IF-THEN rules (knowledge) are mapped at the 
transitions, with predicates in IF and THEN parts being mapped at the input and 
the output places of the transitions. Facts described by atomic predicates are 
mapped at the places that too share predicates of the IF or the THEN parts of a 
rule. As an example, let us consider a rule: (Fly(X) ¬Bird(X).) and a fact: 
(Bird(parrot)¬.). The above rule in our terminology is represented by a transition 
with one input and one output place. The input and the output places correspond to 
the predicates: Bird(X) and Fly(X) respectively. The fact: Bird(parrot) is also 
mapped at the input place of the transition. Thus, a resolution of the rule and the 
fact is possible because of their physical proximity on the Petri net architecture. It 
can be proved by method of induction easily that all members in a group of 
resolvable clauses are always mapped on the Petri net around a transition. Thus a 
number of groups of resolvable clauses are mapped on different transitions and the 
input-output places around them. Consequently, a properly designed firing rule 
can ensure concurrent resolution of the groups of clauses and generation and 
storage of the inferences at appropriate places. The book aimed at realizing the 
above principle by determining appropriate control signals for transition firing and 
resulting token saving at desired places. 

It is indeed important to note that the proposed scheme of reasoning covers the 
notion of AND-, OR-, Stream- and Unification-parallelisms. It is noteworthy that 
there are plenty of research papers with hundreds of scientific jargons to prohibit 
the unwanted bindings in AND-parallelisms, but very few of them are realistic. 
Implementation of the Stream-parallelism too is difficult, as it demands design of 
complex control strategies. Fortunately, because of the structural benefits of Petri 
nets, AND- and Stream-parallelisms could have been realized by our proposed 
scheme of concurrent resolution automatically. The most interesting point to note 
is that these parallelisms are realized as a byproduct of the adopted concurrent 
resolution policy, and no additional computation is needed to implement the 
former. 

The most important aspect of this book, probably, is the complete realization of 
the proposed scheme for concurrent resolution on a massively parallel 
architecture. We verified the architectural design with VHDL and the 
implementations were found promising. The VHDL source code is not included in 
the book for its sheer length that might have enhanced its volume three times its 
current size. Finally, the book concludes on the possible application of the 
proposed parallel and distributed logic programming for the next generation 
database machines. 



The book comprises of six chapters. Chapter 1 provides an introduction to logic 
programming. It begins with a historical review on the last 50 years evolution of 
symbolic paradigms in Artificial Intelligence. The chapter then outlines the logic 
of propositions and predicates, the resolution principles and its application in 
automated theorem proving. Gradually, the chapter progresses through a series of 
reviews on logic programs, its realization with stacks, the PROLOG language, and 
stability of interpretations in a logic program. The chapter also reviews four 
typical parallel architectures used for conventional programs. It also includes 
discussions on possible types of parallelisms in logic programs. 

Chapter 2 extensively reviews the existing models of parallelisms in logic 
programs, such as the RAP-WAM architecture, Parallel AND-OR logic 
programming language, Kale’s AND-OR tree model, CAM based architecture for 
a PROLOG machine. A performance analysis of PROLOG programs on different 
machine architectures is also introduced in this chapter. It then highlights the need 
of Petri nets in logic programming and ends with a discussion on the scope of the 
book. 

Chapter 3 provides formal definitions to Petri nets and related terminologies. 
Main emphasis is given on concurrency in resolution. The chapter introduces an 
extended Petri net model for logic programming and explains resolution of 
program/data clauses with forward and backward firing of transitions in the Petri 
net model. An algorithm for automated reasoning is then proposed and explained 
with a typical Petri net. The chapter includes a performance analysis of the 
proposed algorithm with special references to speed up and resource utilization 
rate for both the cases of limited and unlimited resources.  

Chapter 4 is devoted to the design of a massively parallel architecture that 
automates the reasoning algorithm presented in chapter 3. It begins with an 
introduction to the overall architecture in a nutshell.  

The chapter then gradually explores the architectural details of the modules⎯
namely Transition History File, Place Token Variable Value Mapper, Matcher, 
Transition Status File, First Pre-Condition Synthesizer and Firing Criteria Testing 
Logic. The chapter then analyzes the performance of the hardwired engine by 
computing a timing analysis with respect to the system clock. 

Prior to mapping the user’s logic program to the architecture proposed in 
Chapter 4, a pre-processing software is needed for parsing the user’s source codes 
and mapping the program components on to the architecture. Chapter 5 provides a 
discussion on the design aspects of a pre-processor. The chapter outlines the 
design of a Parser to be used for our application. It then introduces the principles 
of mapping program components, such as clauses, predicates, arc function 
variables and tokens onto the appropriate modules of the architecture. 

Chapter 6 indicates the possible direction of the book in the next generation 
database machines. It begins with an introduction to Datalog language, 
highlighting all its specific features in connection with logic program based data 

Preface                                                        VII 
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 models. The LDL system architecture is presented, emphasizing its characteristics 
in negation by failure, stratification and bottom-up query evaluation. Principles of 
designing database machines with Petri nets are also narrated in the chapter. The 
scope of Petri net based models in data mining is also examined at the end of the 
chapter. 

January 1, 2006 

Artificial Intelligence Lab.                        Alakananda Bhattacharya, 
ETCE Department                         Amit Konar, 
Jadavpur University                            and Ajit K. Mandal.
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1

An Introduction to Logic Programming 

This chapter provides an introduction to logic programming. It reviews the 
classical logic of propositions and predicates, and illustrates the role of the 
resolution principle in the process of execution of a logic program using a stack. 
Local stability analysis of the interpretations in a logic program is undertaken 
using the well-known “s-norm” operator. Principles of “data and instruction 
flow” through different types of parallel computing machines, including SIMD, 
MIMD and data flow architectures, are briefly introduced. Possible parallelisms 
in a logic program, including AND-, OR-, Stream- and Unification-parallelisms, 
are reviewed with an ultimate aim to explore the scope of Petri net models in 
handling the above parallelisms in a logic program. 

1.1 Evolution of Reasoning Paradigms  
in Artificial Intelligence 

The early traces of Artificial Intelligence are observed in some well-known 
programs of game playing and theorem proving of the 1950’s. The Logic Theorist
program by Newell and Simon [26] and the Chess playing program by Shannon 
[33] need special mention. The most challenging task of these programs is to 
generate the state-space of problems by a limited number of rules, so as to avoid 
the scope of combinatorial explosion. Because of this special characteristic of 
these programs, McCarthy coined the name Artificial Intelligence [2] to describe 
programs showing traces of intelligence in determining the direction of moves in a 
state-space towards the goal. 

Reasoning in early 1960’s was primarily accomplished with the tools and 
techniques of production systems. The DENDRAL [4] and the MYCIN [35] are 
the two best-known and most successful programs of that time, which were 
designed using the formalisms of production systems. The need for logic in 
building intelligent reasoning programs was realized in early 1970’s. Gradually, 
the well-known principles of propositional and predicate logic were reformed for 
applications in programs with more powerful reasoning capability. The most 
successful program exploring logic for reasoning perhaps is MECHO. Designed 
by Bundy [5] in late 1970’s, the MECHO program was written to solve a wide 
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range of problems in Newtonian mechanics. It uses the formalisms of meta-level 
inference to guide search over a range of different tasks, such as common sense 
reasoning, model building and the manipulation of algebraic expressions for 
equation solving [14]. The ceaseless urge for realizing human-like reasoning on 
machines brought about a further evolution in the traditional logic of predicates in 
late 1980s. A new variety of predicate logic, which too deals with the binary truth 
functionality of predicates but differs significantly from the reasoning point of 
view, emerged in the process of evolution.  The fundamental difference in 
reasoning of the deviant variety of logic with the classical logic is that a reasoning 
program implemented with the former allows contradiction of the derived 
inferences with the supplied premises. This, however, is not supported in the 
classical logic. The new class of logic includes non-monotonic logic [1], default 
logic [3], auto-epistemic logic [23], modal logic [30] and multi-valued logic [16].  

In late 1980’s, a massive change in database technology was observed with the 
increasing use of computers in office automation. Commercial database packages, 
which at that time solely rested on hierarchical (tree-structured) and network 
models of data, were fraught with the increasing computational impacts of the 
relational paradigms. The relational model reigned the dynasty of database 
systems for around a decade, but gradually its limitations too in representing 
complex integrity constraints were shortly discovered. To overcome the 
limitations of the relational paradigms, the database researchers took active 
interest in employing logic to model database systems. Within a short span of 
time, one database package, called Datalog, that utilizes the composite benefits of 
relational model and classical logic emerged. The Datalog programs are similar to 
PROLOG programs that answer a user’s query by a depth-first traversal over the 
program clauses. Further, for satisfaction of a complex goal, that includes 
conjunction of several predicates, the Datalog program needs to backtrack to the 
previous program clauses. Unfortunately, the commercial work stations/main 
frame machines that usually offers array as their elementary data structure are 
inefficient to run Datalog programs that requires tree/stack as the primary program 
resources.  

To facilitate the database machines with the computational power of efficiently 
running Datalog programs, a significant amount of research was undertaken in 
various research institutes of the globe since 1990. Some research groups 
emphasized the scope of parallelism in runtime [30, 36, 38] of a Datalog program, 
some considered the scope of resolving parallelism in the compile-time phase [10, 
37], and the rest took interest to model parallelism in the analysis phase [34]. 
However, no concrete solution to the problem was reported till this date. The book 
attempts a new approach to design a parallel architecture for a Datalog-like 
program, which is capable of overcoming all the above limitations of the last 30 
years’ research on logic program based machines.

1 An Introduction to Logic Programming
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1.2 The Logic of Propositions and Predicates-
A Brief Review 

The word ‘proposition’ stands for a fact, having a binary valuation space of {true, 
false}. Thus a fact, that can be categorized to be true or false, is a proposition. 
Since the beginning of the last century philosophers have devised several methods 
to determine the truth or falsehood of an inference [27] from a given set of facts. 
The process of deriving the truth-value of a proposition from the known truth-
values of its premises is called reasoning [20]. Both semantic and syntactic 
approaches to reasoning are prevalent in the current literature of Artificial 
Intelligence. The semantic approach [11] employs a truth table for estimation of 
the truth-value of a rule from its premise clauses. When a rule depends on n 
number of premise clauses, the number of rows in the table becomes as large as 2n.
The truth table approach thus has its inherent limitation in reasoning applications.  

The syntactic approach on the other hand employs syntactic rules to logically 
derive the truth-value of a given clause from the given premises. One simple 
syntactic rule, for instance, is the chain rule, given below: 

Chain rule: p→ q, q→ r  p→ r.                                         (1.1) 
           
where p, q and r are atomic propositions, ‘→’ denotes an if-then operator and  ‘ ’
denotes an implication function. 

The linguistic explanation of the above rule is “given: if p then q and if q then r,
we can then infer if p then r”. With such a rule and a given fact p, we can always 
infer r. Formally, 

  p, p→ q,  q→ r  r.                                        (1.2)

The statement (1.2) is an example of inferencing by a syntactic approach. In 
fact, there exists around 20 rules like the chain rule, and one can employ them in a 
reasoning program to determine the truth-value of an unknown fact. A complete 
listing of these rules is available in any standard textbook on AI [15]. 

Propositional logic was well accepted, both in the disciplines of Philosophy and 
Computer Science. But shortly its limitations in representing complex real world 
knowledge became pronounced. Two major limitations of propositional logic are  
(i) incapability of representing facts with variables as arguments and (ii) lack of 
expressing power of quantifiers like ‘for all (∀)’ and ‘for some (∃)’. These two 
limitations led the researchers to extend the syntactical power of propositional 
logic. The logic that came up shortly free from these limitations is called ‘the logic 
of predicates’ or ‘predicate logic’ in brief. The following statements illustrate the 
power of expressing complex statements by predicate logic. 
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Statement 1: All boys like flying kites. 

 Representation in predicate logic: 

∀X (Boy (X)→ Likes (X, flying -kites)).                          (1.3)                      
               
Statement 2: Some boys like sweets. 

 Representation in predicate logic: 

∃X (Boy (X)→ Likes (X, sweets)).                           (1.4)                      

In the last two statements, we have predicates like Boy and Likes that have a 
valuation space of {true, false} and terms like X, sweets, and flying-kites. In 
general, a term can be a variable like X or a constant like sweets or flying-kites or 
even a function or function of function (of variables). The next example illustrates 
functions as terms in the argument of a predicate. 

Statement 3: For all X if  (f (X) > g (X)) 
             then (f (g (X) ) = g ( f (X) )). 

Representation in predicate logic: 

               ∀X (Greater-than (f (X), g (X ) )→
               Equal ( f ( g (X)), g (f (X)))).                                                               (1.5) 

The last statement in predicate logic been self-explanatory, needs no further 
explanation. 

Given a set of facts and rules (piece of knowledge), we can easily derive the 
truth or falsehood of a predicate, or evaluate the value of the variables used in the 
argument of predicates. The process of evaluation of the variables or testing the 
truth or falsehood of predicates is usually called ‘inferencing’ [32]. There exists 
quite a large number of well-known inferential procedures in predicate logic. The 
most common among them is the ‘Robinson’s inference rule’, popularly known as 
the ‘resolution principle’. The resolution principle is applicable onto program 
clauses expressed in Conjunctive Normal Forms (CNF).  

Informally, a CNF of a clause includes disjunction (OR) of negated or non-
negated literals. A general clause that includes conjunction of two or more CNF 
sub-clauses is thus re-written as a collection of several CNF sub-clauses.  

For example the following two program clauses, containing literals Pij and Qij

for 1≤ i ≤ n and 1≤ j ≤ m, are expressed in CNF. 

            ¬P11 ∨¬ P12∨…..∨ ¬P1n ∨ Q11 ∨ Q12∨…..∨ Q1m.                                                                                        
                                                                                                                            (1.6)
            ¬P21 ∨ ¬P22∨ …..∨¬P2n ∨ Q21∨ Q22 ∨…...∨Q2m.   

1 An Introduction to Logic Programming
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It may be noted from statement (1.6) above that program clauses expressed in 
CNF are free from conjunction (AND) operators. The principle of resolution of 
two clauses expressed in CNF is now outlined. 

1.2.1 The Resolution Principle 

Consider predicates P, Q1, Q2 and R. Let us assume that with appropriate 
substitution S, 

 Q1 [S] = Q2 [S]. 

 Then (P ∨ Q1) ∧ (¬Q2 ∨  R) with Q1 [S] = Q2 [S]    yields ( P  ∨  R) [S]. 
                                                        
                               P ∨ Q1, ¬Q2 ∨  R      Q1 [S] = Q2 [S] 
 Symbolically,        ______________________________                                 (1.7) 
                                                  (P ∨  R) [S] 

Example 1.1 illustrates the resolution principle. 

Example 1.1: Let P = Loves (X, Father-of (X)),  
                             Q1 = Likes (X, Mother-of (X)),                                              (1.8) 
                             Q2 = Likes (john, Y), 
                              R = Hates (X, Y). 

      After unifying Q1 and Q2, we have  

Q = Q1 = Q2 = Likes (john, Mother-of (john)). 

where the substitution S is given by 

            S = {john/X, Mother-of (X)/Y} 
               = {john/X, Mother-of (john)/Y}. 

      The resolvent (P ∨ R) [S] is, thus, computed as follows: 

            (P ∨ R) [S] = 
      Loves (john, Father-of (john)) ∨ Hates (john, Mother-of (john)).        

The substitution S in many books is denoted by s and Q [S] is denoted by Qs. 
In fact, we shall adopt the latter notion later in this book.              

Suppose, we have to prove a theorem Th from a set of axioms. We denote it by 

       { A1, A2, ...., An}  Th  

with the Resolution Principle 
1.2.2 Theorem Proving in the Classical Logic
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      Let  
          A1 = Biscuit  (coconut-crunchy) 
          A2 = Child (mary)  ∧ Takes (mary, coconut-crunchy) 
          A3 = ∀ X (Child(X) ∧ ∃ Y  (Takes (X,Y) ∧ Biscuit (Y)))                       (1.9)             
                 → Loves (john, X) 
and  
          Th = Loves (john, mary) = A4 (say). 

      Now, to prove the above theorem, we first express clauses A1 through A4 in 
CNF. Expressions A1 and A4 are already in CNF. Expression A2 can be converted 
into CNF by breaking it into two clauses:  

                   Child (mary)   
and             Takes (mary, coconut-crunchy).  

      Further, the CNF of expression A3 is 

¬Child (X) ∨ ¬Takes (X,Y) ∨ ¬Biscuit (Y)  ∨ Loves (john, X) 

    

                               

¬ Loves (john, mary) ¬Child (X) ∨ ¬Takes (X,Y) ∨
¬Biscuit (Y) ∨ Loves (john, X) 

¬Child ( mary ) ∨ ¬Takes 
(mary, Y) ∨ ¬Biscuit (Y) 

Biscuit (coconut-crunchy) 

¬Child (mary)  ∨ ¬Takes  ( mary, 
coconut-crunchy) 

Child (mary) 

¬Takes (mary, coconut-crunchy) Takes (mary, coconut-crunchy) 

∅

1 An Introduction to Logic Programming

Fig. 1.1: A resolution tree constructed to prove that Loves (john, mary)
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Now it can be easily shown that the negation of the theorem (goal) if resolved 
with the CNF form of expressions A1 through A3, the resulting expression would 
be a null clause for a valid theorem. To illustrate this, we will now form pairs of 
clauses, one of which contains a positive predicate, while the other contains the 
same predicate in negated form.  Thus by the resolution principle, both the 
negated and positive literals will drop out and the value of the variables used for 
unification should be substituted in the resulting expression. The principle of 
resolution is illustrated in Fig. 1.1 to prove the goal that Loves (john, mary).  

The resolution principle has a logical basis, and a mathematical proof of its 
soundness and completeness is also available in [2]. We instead of proving these 
issues once again, just state their definitions only. 

Definition 1.1: The resolution theorem is sound if any inference α that has been 
proved from a set of axioms S by the resolution theorem, i.e., S α , we can show 
that α logically follows from S, by notation, S α . 

Definition 1.2: The resolution theorem is called complete, if for any inference α, that 
follows logically from S, i.e., S α , we can prove by the resolution theorem S α . 

      Because of the aforementioned two characteristics of the resolution theorem, it 
found a wide acceptance in automating the inferencing process in predicate logic. 

1.3 Logic Programming 

The statements in predicate logic have the following form in general 

   Q (P1 (arguments) Λ P2 (arguments) Λ ……. ΛPn (arguments)→
   (Q1 (arguments) V Q2 (arguments) V.……V Qm (arguments))).                   (1.10) 
              
where Q is the quantifier (∀, ∃), Pi and Qj are predicates. It is to be noted that the 
above rule includes a number of ‘V’ operators in the right-hand side of the ‘→’
operator. Since the pre-condition of any Qj are all the Pi s , we can easily write the 
above expression in CNF form as follows. 

  Q (P1 (arguments) Λ P2 (arguments) Λ ……Λ Pn (arguments)  
                                → Q1(arguments)). 

  Q (P1 (arguments) Λ P2 (arguments) Λ……...Λ Pn (arguments)  
                               → Q2(arguments)).                                                            (1.11) 
     . 
     . 
   Q (P1 (arguments) Λ P2 (arguments) Λ …..Λ Pn (arguments) 
                              → Qm (arguments)). 
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In such a representation there exists only one predicate in the then part 
(consequent part) of each clause. Such representation of clauses, where the then 
part contains at most one literal, is the basis of logic programs.        

1.3.1 Definitions 

The definitions1 that best describe a logic program are presented below in order. 

Definition 1.3: A horn clause is a clause with at most one literal in the then part 
(head) of the clause. For instance 

 P (X, Y) ←Q (Y, X).                           (1.12)                                     
 P (X, Y) ←Q (Y, X), R (X, Z), S (Z).                                                (1.13) 
              P (a, b)  ←.                                                (1.14) 

←Q (Y, X).                                                     (1.15) 
                             
are some of the typical example of horn clauses. It is to be noted that in the clauses 
(1.12) to (1.15), (1.12) and (1.13) are rules, (1.14) is a fact and (1.15) is a query. 

Definition 1.4: A logic program is a collection of horn clause statements.  

An example of a typical logic program with a query is in example 1.2. 

Example 1.2:  The clauses listed under (1.16) describe a typical logic program 
and clause (1.17) denotes its corresponding query. 

  Can-fly (X) ←Bird (X), Has-wings (X). 
  Bird (parrot) ←.                                                                   (1.16) 
  Has-wings (parrot) ←.                                                                   
       

Query: ←Can-fly (parrot).                                                    (1.17)
                                                                                                                                                                                
Definition 1.5: When there exists one literal in the heads of all the clauses, the 
clauses are called definite, and the corresponding logic program is called a 
definite program.

The logic program given in example 1.2 is a definite program as all its constituent 
clauses are definite. 

1 These definitions are formally given once again in chapter 3 for the sake of 
completeness. 

1 An Introduction to Logic Programming
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1.3.2 Evaluation of Queries with a Stack 

Given a logic program and a user’s query. A resolution tree is gradually built up 
and traversed in a depth first manner to answer the user’s query. For realization of 
the depth first traversal on a tree we require a stack. The principle of the tree 
building process and its traversal is introduced here with an example presented 
later. The stack to be employed for the tree construction has two fields, one field 
containing the orderly traversed nodes (resolvents) of the tree, and the other field 
holds the current set of variable bindings needed for generating the resolvents.  

Like conventional stacks the stack pointer (top) here also points to the top of 
the stack, up to which the stack is filled in. Initially, the query is pushed into the 
stack. Since it has no variable bindings until now, the variable bindings’ field is 
empty. The query clause may now be resolved with one suitable clause from the 
given program clauses, and the resulting clause and the variable bindings used to 
generate it are then pushed into the stack. Thus as the tree is traversed downward a 
new  node  describing  a  new  resolvent  is  created  and  pushed into the stack. 
The process of pushing into the stack continues until a node is reached which 
either yields a null clause, or cannot be resolved with any available program 
clause. Such nodes are called leaves/dead ends of the tree. Under this 
circumstance, we may require to move to the parent of a leaf node to take a look 
for an alternative exploration of the search space. The moving up process in the 
tree is accomplished by popping the stack out. The popped out node denotes the 
parent of the current leaf node. The process of alternative resolution with the 
popped out node is then examined and the expansion of the tree is continued until 
the root node in the tree is reached again. Example 1.3 illustrates resolution by 
stack.  

Example 1.3:  Resolution by Stack 

Logic Program: 

1. P (X, Y) ←Q (Y, Z), R (Z). 
2. R (C) ←.                                                                                (1.18)                  
3. Q (b, b) ←.
4. R (b) ←.                                                                                      

A traversal on the tree for answering the query: ←P (a, b) is presented in Fig. 
1.2. When a node is expanded by resolution the child of the said node is pushed 
into the Stack Pointer (SP) moves up one position to indicate the latest 
information in the stack. When a node cannot be expanded, it is popped out from 
the stack, and the next node in the stack is considered for possible expansion. The 
resolution tree is terminated when construction process of the stack top is filled 
with a null clause.                                                                                          
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               Fig. 1.2: Depth-first traversal on a tree to answer the user’s query 

1.3.3 PROLOG ⎯⎯⎯⎯ An Overview

‘PROLOG’ is an acronym for PROgramming in LOGic.  It is the most popular 
programming language for logic programming. The advantage of PROLOG over 
the conventional procedural programming languages like C or Pascal and the 
functional programming language like LISP is manifold. The most useful benefit 
that the programmer can derive from PROLOG is the simplicity in programming. 
Unlike the procedural languages, where the procedure for a given problem has to 
be explicitly specified in the program, a PROLOG program only defines the 
problem by facts and if-then rules, but does not include any procedure to solve the 
problem. In fact, the compiler of PROLOG takes the major role of automatically 
matching the part of one clause with another to execute the process of resolution. 
The execution of a PROLOG program thus is a sequence of steps of resolution 

1

4

←P (a, b).

2

Z = c 

3

Z = b

←Q (b, Z), R(Z).

X = a
Y = b

←Q ( b, c ). ←R(b).

Ø

 SP ←P (a, b). 

←P (a, b). 

←Q (b, Z),
R(Z). 

X = a 
Y = b  SP 

←P (a, b). 

←Q (b, Z),   
      R(Z). 

X = a 
Y = b 

←Q (b, c). Z = c  SP 

←P (a, b). 

←Q (b, Z),
R(Z). 

X = a 
Y = b 

←R (b). Z = b  SP 

←P (a, b). 

←Q (b, Z),
R(Z). 

X = a 
Y = b 

←R (b). Z = c 

Ø SP 

1 An Introduction to Logic Programming
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over the clauses in the program, which is usually realized with a stack, as 
discussed in section 1.3.2. One step of resolution over two clauses thus calls for a 
PUSH operation on the stack. On failure (in the process of matching) the control 
POPs the stack return to the parent of the currently invoked clause. One most 
useful built-in predicate in PROLOG is ‘CUT’. On failure it helps the control to 
return to the root of the ‘resolution tree’ for re-invoking the search and resolution 
process beginning from the root. This, however, has a serious drawback as a part 
of the ‘resolution tree’ (starting from the root where the resolution fails) remains 
unexplored. To avoid unwanted return to the root for subsequent search for 
resolution, the clause comprising of the CUT predicate has a special structure. For 
example, consider the following clause using propositions and CUT predicate only 
(for brevity). 

Cl  ←p, q, !, r, s                                                   ( 1.19 ) 

where ‘Cl’ is the head of the given clause, p, q, ! (CUT), r and s are in the body. It 
is desired that if any proposition preceding CUT fails, the control returns to the 
parent of the present clause. But if all literals (p and q) preceding CUT are 
satisfied, then CUT is automatically satisfied. Consequently, if any literal like r or 
s fails, the control returns to the root of the resolution tree. 

Further, unlike arrays in most procedural languages, tree is the basic data 
structure of PROLOG and depth first traversal is the built-in feature of PROLOG 
for clause invocation and resolution process.  

The early versions of PROLOG compiler did not have the provision for 
concurrent invocation of the program clauses. The later version of PROLOG (for 
instance PARLOG [6]) includes the feature of concurrency in the resolution 
process. In this book, we will present some schemes for parallel realizations of 
logic programs in runtime. 

One interesting point to note is that all the resolvents obtained through 
resolution principle may not be equally stable. Consequently a question  
of relative stability [25] appears in the interpretation of a logic program.  
The next section provides a brief introduction to determining stable 
interpretation of a logic program. A detailed discussion on this, which is 
available elsewhere ([7], [8]), is briefly outlined below for the sake of 
completeness of the book. 

1.3.4 Interpretation and their Stability in a Logic Program

Usually a logic program consists of a set of Horn clauses. An interpretation of the 
logic program thus refers to the intersection of the interpretations of the individual 
clauses. Example 1.4 illustrates the aforementioned principles.  
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Example 1.4: Consider the following two clauses: 

1.    q ←p.                                                                                                                 

2.    p ←.                    

We need to determine the common interpretation of the given clauses. 

Let the interpretation of the clauses (1) and (2) be denoted by I1 and I2

respectively. Here, I1 = {(p, d)} where d denotes the don’t care state of q, and I2 = 
{(p, q), (¬p, q), (¬p, ¬q)}. Therefore, the common interpretation of two clauses is 
given by 

 I = I1 ∩ I2

   = {(p, d)} ∩ {(p, q), (¬p, q), (¬p, ¬q)}
   = {(p, q)}, 

signifying that p and q are both true.                                                        

The interpretation of the given logic program has been geometrically 
represented in Fig. 1.3. 

An important aspect of logic programs that need special consideration: 
whether all interpretations of a given clause are equally stable? Some works on 
stability analysis of logic programs have already been reported in [1], [3] and 
[19]. Unfortunately the methodology of stability analysis applied to logic 
programs is different, and there is no unified notion of stability analysis until 
this date. On the other hand a lot of classical tools of cybernetic theory such as, 
energy minimization by Liapunov energy function (vide [18]), Routh-Hurwitz 
criterion (vide [17]), Nyquist criterion [28] etc. are readily available for 
determining stability of any complex nonlinear system. In recent times 
researchers are taking keen interest to use these classical theories in the stability 
analysis of logic programs as well [9]. In this section we briefly outline a 
principle of stability analysis by replacing AND-operator by t-norm and OR-
operator by s-norm. It may be added here that the advantage of using  
these norms is to keep the function continuous and hence differentiable. 
Example 1.5 briefly outlines the principle of determining stable points in a logic 
program. 

Example 1.5: We consider to determine the stable (or at least relatively more stable) 
interpretation of the clause ‘q ←p.’. Replacing ‘q ←p.’ by ‘¬p∨ q’ and then further 
replacing ‘OR (∨)’ by s-norm [16], where for any two propositions a and b,  

1 An Introduction to Logic Programming
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Fig. 1.3:  Geometric representation of the common interpretation for the given logic 

(1, 1) 

(0, 0) (1, 0)

   (0, 1) 

p →

  q↑ Interpretation 
of q ←p. 

(a)

 q↑ Interpretation 
 of  p ←.

(1, 1) 

(0, 0) (1, 0) p →

(0, 1) 

(b)

Common 
interpretation

(1, 1)

 q↑

(0, 0) (1, 0) p →

(0, 1)

(c)

program 
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      a s b = a + b – ab, we can construct a relation F(p, q) as follows: 

 F(p, q) = (1 − p) sq 
            = (1 − p) + q − (1 − p) q                     
            = 1 − p +  pq. 

It can be verified that F(p, q) = 1 − p +  pq satisfies all the three interpretations 
of ‘q ←p.’ To determine the stable points, if any, on the constructed surface of 
F(p, q), let us presume that there exists at least one stable point (p*, q*). We now 
perturb (p*, q*) by (h, δ), i.e., 

 p = p* + h 
 q = q* + δ

Thus, we obtain: 

 F(p* + h, q* + δ) = 1 − p* + p*q* − h + hq* + δp* + hδ
                = F(p*, q*) − h + hq* + δp* + hδ                           (1.20) 

Now for stability of the given clause at (p*, q*), we need to satisfy the 
following condition:  

 F(p* + h, q* + δ) = F(p*, q*), 

which ultimately demands  

           (−h + hq* + δp* + hδ) = 0.                                                                     (1.21) 

It can be verified that the aforementioned condition is satisfied only at (p*, q*) 
= (¬p, q), irrespective of any small value of h and δ. However, if we put other two 
interpretations of ‘q ←p.’, such as (p, q), (¬p, ¬q) in condition (1.21), we note 
that it imposes restriction on h and δ, which are not feasible. Thus the 
interpretation (¬p, q) is a stable point. More interesting results on stability 
analysis are shortly to appear in a forthcoming paper [9] from our research team.  

The problem of determining stability for non-monotonic and default logic is 
more complex. This, however, is beyond the scope of the present book. Very few 
literatures dealing with the analysis of stable points of default and non-monotonic 
logic are available in the current realm of Artificial Intelligence [22, 31]. 

In this book our main emphasis is on the design of a high speed parallel 
architecture for the logic programming machines. For the convenience of the 
readers we briefly outline the principles of parallelism and pipelining, and various 
configurations of parallel computing machines. 

1 An Introduction to Logic Programming
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1.4 Introduction to Parallel Architecture 

Parallelism and pipelining are two important issues in high-speed computation of 
programs. Usually, these two concepts rest on the principles of Von Neumann 
machines [13], where the instructions are fetched from a given storage (memory) 
and subsequently executed by a hardwired engine called the central processing 
unit (CPU). The execution of an instruction in a program thus calls for four major 
steps: (i) instruction fetching, (ii) instruction decoding, (iii) data/operand fetching 
and (iv) activating the arithmetic and logic unit (ALU) for executing the 
instruction. These four operations are usually in pipeline (vide Fig. 1.4).  

It needs mention that the units used in a pipelined system must have different 
tasks and each unit (except the first) should wait for another to produce the input 
for it. 

Unlike pipelining, the concept of parallel processing calls for processing 
elements (PE) having similar tasks. A task allocator distributes the concurrent 
(parallel) tasks in the program and allocates them to the different processing 
elements. As an example, consider the program used for evaluation of Z where 

   Z = P * Q + R * S,                                     (1.22) 

where P, Q, R and S are real numbers.  

Memory 

Address      Content 

C021              20 

C022              96 
                   
   .                      . 
   .                      . 

C024               38 

Instruction  
fetch 

Instruction 
decode 

Data/ 
Operand 

fetch

Execution 

Results 

Pipelining of 
tasks 

Fig. 1.4: The pipelining concept
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Suppose we have two PEs to compute Z. Since the first part (P * Q) is 
independent from the second (R * S) in the right hand side of the expression, we 
can easily allocate these two tasks to two PEs, and the results thus obtained may 
be added by either of them to produce Z. 

A schematic diagram depicting the above concept is presented in Fig. 1.5.  
For the last figure after computation of (P * Q) and (R * S) by PE1 and PE2

respectively, either of the results (Temp1 = P * Q or Temp2 = R * S) needs to be 
transferred to PE1/PE2 for the subsequent addition operation. So, the task allocator 
has to re-allocate the task of addition to either of PE1 or PE2 in the second cycle. It 
is undoubtedly clear that the two cycles are required to complete the task, which in 
absence of either of the PEs would require three cycles. 

      Thus the speed-up factor = (2/3) × 100 = 66.66% . 

Generally, a switching network is connected among the processing elements for 
the communication of data from one PE to the others. Depending on the type of 
concurrency among the tasks, parts of the switching network needs to be activated 
in time sequence. Among the typical switching networks cubes, barrel shifters, 
systolic arrays, etc. need special mention.  

Depending on the flow of instructions and data among the processing elements 
and memory units, four different topologies of machines are of common interest to 
the professionals of computer architecture. These machines are popularly known 
as Single Instruction Single Data (SISD), Single Instruction Multiple Data 
(SIMD), Multiple Instruction Single Data (MISD) and Multiple Instruction 
Multiple Data (MIMD) machines respectively. Among these SIMD and MIMD 
machines are generally used for handling AI problems [21]. In the next section, 
we briefly outline the features of SIMD and MIMD machines.

     
     

*
P

Q

PE1

Temp1

*

PE2

Temp2

R

S

+Temp1

Temp2

Z

PE1 / PE2

Fig. 1.5: The concept of parallel processing 
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1.4.1 SIMD and MIMD Machines

An SIMD machine comprises of a single control unit (CU) and a number of 
synchronous processing elements (PE). Typically there exist two configurations of 
SIMD architecture. The first configuration employs local (private) memory for 
each PEs, whereas the second configuration allows flexibility in the selection of 
memory for a PE by using an alignment network. The user program for both the 
configurations is saved in a separate memory assigned to the control unit. The CU 
thus fetches operation codes, decodes and executes the scalar instructions stored in 
its memory. The decoded vector instructions, however, are mapped to the 
appropriate PEs by the switching mechanism through a network. Two typical 
SIMD configurations are presented vide Fig. 1.6 to demonstrate their structural 
differences.  

       

                                           
(a) Configuration I (Illiac IV) 

Interconnection network 
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                        (b) Configuration II  (BSP)  

          
Fig. 1.6: Architectural configurations of SIMD array processors 

An MIMD machine (as shown in Fig. 1.7), on the other hand employs a number 
of CUs and PEs, where each CU commands its corresponding PE for executing a 
specific task on data elements. Usually an MIMD machine allows interactions 
among the PEs, as all the memory streams are derived from the same data space 
shared by all the PES. Had the data streams been derived from disjoint subspace 
of the memories, then we would have called it multiple SISD operation.  
An MIMD machine is referred to as tightly coupled if the degree of interaction 
among the PEs is very high. Otherwise they are usually called loosely  
coupled MIMD machines. Unfortunately, most commercial MIMD machines are 
loosely coupled.       
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1.4.2 Data Flow Architecture 

It has already been discussed that the conventional Von Neumann machines fetch 
instructions from the memory and decodes and executes them in sequence. 
Because of the sequential organization of the stored programs in memory, possible 

CU: Control unit 
PU: Processor unit 
MM: Memory module 
IS: Instruction Stream 
DS: Data Stream  

  ISn                      ISn               DSn

IS1

CU2 PU2

PU1 MM1

MM2

CUn PUn MMm

IS1 DS1 IS1

IS2     IS2                    IS2            DS2

CU1

ISn

Fig. 1.7: MIMD Computer

parallelism among instructions cannot be represented by the program. Dataflow  
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Fig. 1.8: A dataflow graph for the program : z ←(x+y) * k with x = 5,  y = 3 and k = 2

        
architecture, on the other hand represents the possible parallelism in the program 
by a dataflow graph. Figure 1.8 describes a dataflow graph to represent the 
program segment: 

Example 1.6:  Dataflow Graph for a Typical Program.  

      Consider the program as follows: 

              x :=    5 ; 
              y :=    3 ;                                                                                              (1.23)                                       
 k :=    2 ; 
 z :=    (x + y) ∗ k  
                
      where := denotes the assignment operator. 

                                           
Variables in the dataflow graph are usually denoted by circles (containing variable 
names). The dark dots over the arcs denote the token value of the variables located 
at the beginning of the corresponding arcs. The operators are mapped at the 
processing elements depending on their freedom of accessibility. Generally, each 
processing element has a definite address. The communication of message from 
one processing element to another is realized by a packet transfer mechanism. 
Each packet includes the destination address, the input and output parameters and 
the operation to be executed by the processing elements. A typical packet structure 
is presented  (vide Fig. 1.9) for convenience. 

3
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+ *
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Fig. 1.9: A typical packet used for message passing among the PEs     

                                                                                                                                           

                             
                                      

      
                         

                                                               
              
     

                                 
                                                            

        Fig. 1.10: The Arvind dataflow machine 

Among the well-known data flow machines, Arvind machine of the MIT and 
the Manchester University machine are most popular. The basic difference 
between the two machine architectures lies in the arbitration unit. In the 
Manchester machine, token queues (TQ) are used to streamline tokens from the 
queues through matching unit (MU), node storage (NS) and the processing units 
(PU). Transfer of resulting tokens to another PU is accomplished by an exchange 
switching network. The Arvind machine, however, allows packet transfer through 
an N × N switching network. The details of the architecture of the two machines 
are presented in the Fig. 1.10 and Fig. 1. 11 for convenience.  
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                   Fig. 1.11: The Manchester machine with multiple ring architecture 

1.5 Petri Net as a Dataflow Machine 

A Petri net is a directed bipartite graph consisting of two types of nodes: places 
and transitions. Usually, tokens are placed inside one or more places of a Petri net 
denoted by circles. The flow of tokens from the input to the output places of a 
transition is determined by a constraint, called enabling and firing condition of the 
transition. 

The token-flow in a Petri net has much similarity with the data/token flow in a 
dataflow architecture. Since token flow in a dataflow machine depends on the 
presence of the operands (tokens) at a given processing element, token flow may 
not be continuous in a dataflow machine. Consequently, dataflow architecture is 
usually categorized under the framework of asynchronus systems. In a Petri net 
model, the enabling and firing conditions of all the transitions in tandem may not 
always be satisfied because of resource (token) constraints. This results in 
asynchronus firing of transitions. Consequently Petri nets too are classified under 
the framework of parallel asynchronus machines. 

The principles of dataflow and asynchronism characteristic of a Petri net being 
similar to that of a dataflow architecture, Petri nets may be regarded as a special 
type dataflow machine. 

The book attempts to utilize the dataflow characteristics of a Petri net model for 
realizing the AND-, OR- and Stream-parallelism of a logic program. The scope of 
Petri nets to model the above types of parallelisms are discussed in detail later in 
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this chapter. The Unification parallelism in logic program does not require any 
special characteristic of a Petri net model for its realization and fortunately its 
realization on a Petri net does not invite any additional problem. 

1.5.1 Petri Nets- A Brief Review 

Petri nets are directed bipartite graphs consisting of two types of nodes called 
places and transitions. Directed arcs (arrows) connect the places and transitions, 
with some arcs directed from the places to the transitions and the remaining arcs 
directed from the transitions to the places. An arc directed from a place pi to a 
transition trj defines the place to be an input of the transition.  On the other hand, 
an arc directed from a transition trk to place pl indicates it to be an output place 
of trk. Arcs are usually labeled with weights (positive integers), where a k-
weighted arc can be interpreted as the set of k-parallel arcs. A marking (state) 
assigns to each place a non-negative integer. If a marking assigns to place pi an 
integer k (denoted by k-dots at the place), we say that pi is marked with k 
tokens. A marking is denoted by a vector M, the pi-th component of which, 
denoted by M(pi), is the number of tokens at place pi.  Formally, a Petri net is a 
5-tuple, given by 

PN = (P, Tr, A, W, M0)
where 
                    P = {p1, p2, …., pm} is a finite set of places, 
                   Tr = {tr1, tr2, …., trn} is a finite set of transitions, 
                   A ⊆ (P × Tr) ∪ (Tr × P) is a set of arcs, 
                   W: A→ {1, 2, 3, ….} is a weight function,  
                   M0: P→ {0, 1, 2, 3,…} is the initial marking, 
                   P ∩ Tr = ∅ and P ∪ Tr ≠ ∅.

Dynamic behaviour of many systems can be described as transition of system 
states. In order to simulate the dynamic behaviour of a system, a state or marking 
in a Petri net is changed according to the following transition firing rules: 

1) A transition trj is enabled if each input place pk of the transition is marked 
with at least w(pk, trj) tokens, where w(pk, trj) denotes the weight of the arc 
from pk to trj.

2) An enabled transition fires if the event described by the transition and its 
input/ output places actually takes place. 

3) A firing of an enabled transition trj removes w(pk, trj) tokens from each 
input place pk of trj, and adds w(trj, pl) tokens to each output place pl of trj,
where w(trj, pl) is the weight of the arc from trj to pl.
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                   (a) 

     
            (b) 

Fig. 1.12: Illustration of transition firing rule in a Petri net. The markings: (a) before the 
transition firing and (b) after the transition firing          

Example 1.7:  Consider the well-known chemical reaction: 2H2 + O2 = 2H2O. We 
represent the above equation by a small Petri net ( Fig. 1.12 ).  Suppose  two 
molecules of H2 and O2 are available. We assign two tokens to the places p2 and p1

representing H2 and O2 molecules respectively. The place p3 representing H2O is 
initially empty (Fig. (1.12(a)). Weights of the arcs have been selected from the 
given chemical equation. Let the tokens residing at place H2 and O2 be denoted by 
M(p2) and M(p1) respectively. Then we note that 

M(p2) = W(p2, tr1) and   M(p1) > W(p1, tr1). 
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• •
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Consequently, the transition tr1 is enabled, and it fires by removing two tokens 
from the place p2 and one token from place p1. Since the weight W(tr1, p3) is 2, 
two molecules of water will be produced, and thus after firing of the transition, the 
place p3 contains two tokens. Further, after firing of the transition tr1, two 
molecules of H2 and one molecule of O2 have been consumed and only one 
molecule of O2 remains in place p1.                                                                                                  

The dynamic behaviour of Petri nets is usually analyzed by a state equation, 
where the tokens at all the places after firing of one or mores transitions can be 
visualized by the marking vector M. Given a Petri net consisting of n transitions 
and m place.  

    Let  
         A = [aij] be an (n × m) matrix of integers, called the incidence matrix, with 

entries   
         aij = aij

+ − aij
−   

where 
          aij

+ = w(tri, pj) is the weight of the arc from transition tri to place pj,
and   aij

− = w(pj, tri) is the weight of the arc to transition tri from its input place pj.    

It is clear from the transition firing rule described above that aij
−, aij

+ and aij

respectively represent the number of tokens removed, added and changed in place 
j when transition tri fires once. Let M be a marking vector, whose j-th element 
denotes the number of tokens at place pj.  The transition tri is then enabled at 
marking M if 

            aij
− ≤ M(j), for j = 1, 2, …, m.                                                              (1.24) 

      In writing matrix equations, we write a marking Mk as an (m × 1) vector, the  
j-th entry of which denotes the number of tokens in place j immediately after the 
k-th firing in some firing sequence. Let uk be a control vector of (n × 1) dimension 
consisting of (n−1) zeroes and a single 1 at the i-th position, indicating that 
transition tri fires at the k-th firing. Since the i-th row of the incidence matrix A 
represents the change of the marking as the result of firing transition tri, we can 
write the following state equation for a Petri net: 

Mk = Mk−-1 + ATuk, k = 1,2,…                                                                           (1.25) 

      Suppose we need to reach a destination marking Md from M0 through a firing 
sequence {u1, u2, …, ud}. Iterating k = 0 to d in incremental steps of 1, we can 
then write: 
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           M1 = M0 + ATu1

           M2 = M1 + ATu2

           …  …..   ….  … 
           …  .….   ….  …                                                                                      (1.26) 

          Md−1 = Md−2 + ATud−1

             Md  = Md−1 + ATud

have: 
                           d 
         Md = M0 + ATuk                                                                                     (1.27) 
                          k=1 

                               d 
  or, Md – M0 = AT uk                                                                                      (1.28) 
                              k=1  

  or,  ∆M = ATx,                                                                                                (1.29)  

where  
            ∆M = Mk − M0,                                                                                     (1.30) 

                        d 
and           x = uk.                                                                                            (1.31) 
                      k=1  

Here x is a (n × 1) column vector of non-negative integers, and is called the 
firing count vector [24]. The i-th entry of x denotes the number of times that 
transition tri must fire to transform M0 to Md.

Example 1.8:  The state equation (1.25) is illustrated with the help of Fig. 1.13. It 
is clear from the figure that M0 = [ 2  0  1  0 ]T. After firing of transition tr3, we 
obtain the resulting marking M1 by using the state equation as follows: 

 M1 = M0 + ATu1

       =  [ 2  0  1  0 ]T +      -2   1   1          [ 0  0  1 ]T

                                          1  -1   0  
                                          1   0  -1 
                                          0  -2   2 

       = [ 3  0  0  2 ]T.             

Equating the left hand sum with the right hand sum of the above equations we 
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                     Fig. 1.13: A Petri net used to illustrate the state equation       

1.6 Parallelism in Logic Programs ⎯⎯⎯⎯  A Review  

A typical logic program (vide section 1.3.1) is a collection of Horn clauses. The 
resolution process presented in section 1.2 was illustrated with Select Linear 
Definite (SLD) clauses. Under this scheme, a given set of clauses S including the 
query is the input to a resolution system, where two clauses having oppositely 
signed common literals, present in the body of one clause Cl1 and the head of 
another clause Cl2, are resolved to generate a resolvent Cl3 . The Cl3 is then 
resolved with another clause from S having oppositely signed common literals. 
The process terminates when no further resolution is feasible or a null clause is 
produced yielding a solution for the argument terms of the predicate literals. The 
whole process is usually represented by a tree structure, well-known as SLD-tree.
The SLD-tree thus allows binary resolution of clauses, with the resolvent carried 
forward for resolution with a third clause.  

The SLD-resolution is a systematic tool for reasoning in a logic program 
realized on a uniprocessor architecture. However, the principle can easily be 
extended for concurrent resolution of multiple program clauses. Various 
alternative formulations for concurrent resolution of multiple program clauses are 
available in the literature [22]. One typical scheme is briefly outlined. In this 
scheme, we first select m number of pair of clauses (including the goal) that can 
participate in the resolution process. If such m pairs are available, then we would 
have (m/2) number of resolvents. If the resolvents can again be paired so that they 
are resolvable we could find (m/4) resolvents, and so on, until we find two clauses 

• •

p3

p2

p1

tr2

tr3
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which on resolution finally may give rise to a null clause. Had it been so, we 
require only k units of time, to resolve m = 2k clauses. The total time of resolution 
k = log2 (m) can be reduced further if we can resolve more than two clauses 
together by some mechanism. In fact this too can be realized, if appropriate 
hardware/software resources are available. The above two types of concurrent 
resolution is illustrated in example 1.9: 

Example 1.9:  The SLD-tree for the given logic program: 

                                                            

                                                                                

Fig. 1.14: An SLD resolution-tree depicting resolution of two clauses, and the resolvent 
been passed on for resolution with a third clause until a null clause is derived, or no further 

←Has-beaks (X). Has-beaks (X) ←Lay-eggs (X). 

Lay-eggs (X) ←Has-wings 
(X),             Build-nests (X). 

←Lay-eggs (X). 

←Has-wings (X), Build-nests (X). Build-nests (X) ←.

←Has-wings (X). 

Has-wings (X) ←Can-
fly(X), Has-feather (X). 

←Can-fly (X), Has-feather (X). Has-feather (X) ←.

←Can-fly (X).

Can-fly (X) 
←Bird (X). 

←Bird (X). Bird (X) ←.

∅
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Logic Program: 

 Can-fly (X) ←Bird (X).                                                     (1.32) 
 Bird (X) ←.                                        (1.33) 
 Has-feather (X) ←.                                       (1.34) 
 Has-wings (X) ←Can-fly (X) , Has-feather (X).                                (1.35) 
 Has-beaks (X) ←Lay-eggs (X).                                      (1.36) 
 Lay-eggs (X) ←Has-wings (X), Build-nests (X).                       (1.37) 
 Build-nests (X) ←.                                       (1.38) 

Query: ←Has-beaks (X).                                                      (1.39)

For the given logic program, the SLD resolution tree is given in Fig. 1.14. 

When we take two clauses concurrently as available for resolution, the 
resolution tree looks like Fig. 1.15 as illustrated here. 

                                                                               

Can-fly(X) 
←Bird(X). 

Has-wings(X) ←Can-fly(X), 
Has-feather(X). 

Has-feather(X) ←.

Has-beaks(X) ←Lay-eggs(X).

←Has-beaks(X). 

Lay-eggs (X) ←Has-wings (X), Build-nests (X). 

Build-nests(X) ←.

Can-fly(X) ←. Has-wings(X) 
←Can-fly(X).

←Lay-eggs(X). Lay-eggs(X) ←
          Has-wings(X). 

Has-wings (X) ←. ←Has-wings (X). 

∅

  Bird(X) ←.

Fig. 1.15: Illustrating the process of resolving multiple (>2) program clauses together  
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The process of composite resolution of multiple program clauses is illustrated 
vide Fig. 1.16. 

            

                                                                                                                    
          

Fig. 1.16: Illustrating the process of composite resolution of multiple program clauses                                           

1.6.1 Possible Parallelisms in a Logic Program  

Besides the above forms of concurrent resolution of clauses, there exist four other 
types of parallelisms in a logic program. These are AND-, OR-, Stream- and 
Unification-parallelisms. 

(a) AND–parallelism 

The literals (predicates) separated by commas in the body of a Horn clause are 
usually called AND-literals. The AND-literals of a clause may be searched against 

Multi-
resolution 

Resolution

Multi-
resolution 

Lay-eggs (X) ←Has-wings   (X), 
Build-nests (X).

Has-beaks (X) ←Lay-eggs (X). 

←Has-beaks (X). 

Can-fly (X) ←Bird (X). 

Bird (X) ←.

Has-feather (X) ←.

Has-wings(X) ←Can-fly 
(X), Has-feather (X). 

∅

Has-wings (X) ←.

←Has-wings (X). 

Build-nests (X) ←.
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the heads of the available clauses for resolution. The concurrent resolution of the 
AND-literals of a clause with the heads of other clauses is usually called AND-
parallelism. Example 1.10 illustrates AND-parallelism in a typical logic program. 

Example 1.10:  Let us consider the following logic program. 

Parent (M, F, X) ←Father (F, X), Mother (M, X).                             (1.40) 
Mother (jaya, tom) ←.                                       (1.41) 
Mother (ipsa, bil) ←.                                       (1.42) 
Father (asit, tom) ←.                                       (1.43) 
Father (amit, bil) ←.                                       (1.44) 

Query:  ←Parent (M, F, bil).                                      (1.45) 

In Fig. 1.17 the clause ‘←Father (F, bil), Mother (M, bil).’ is instantiable by 
clauses (1.42) and (1.44) concurrently. Thus a concurrent resolution of three 
clauses take place jointly resulting in a null clause. The results of instantiation of 
the variables F and M in the present case are F = amit and M = ipsa.                               

                        
             

             

             

Fig. 1.17: Illustrating AND-parallelism in a logic program 

    F = amit 

    M = ipsa 

←Parent (M, F, bil). 

←Father (F, bil), Mother (M, bil). 

(1.40)

Concurrent resolution

(1.44) (1.42) 

∅
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In case the body of the clause contains AND-literals having shared variables, 
then a binding conflict in the process of instantiation might arise. For instance, 
consider the following logic program 

 F (X) ←A (X), B (X).                                                     (1.46) 
 A (1) ←.                                        (1.47) 
              B (2) ←.                                         (1.48) 

Here, the possible instantiation of the AND literals are X = 1 or X = 2. But both 
X = 1 and X = 2 jointly cannot hold as it violates (1.46). 

In AND-parallelism, where the goals/sub-goals that include shared variables, 
are allowed to be resolved independently in parallel, is called unrestricted AND-
parallelism. A considerable runtime overhead is incurred for synchronization of 
shared variables and filtering the set of variable bindings to answer the query in 
such systems. To avoid such overhead, AND-parallelism is allowed when variable 
bindings are conflict-free. Such AND-parallelism is referred to as the restricted 
AND-parallelism. For the implementation of conflict freedom, a program 
annotation is necessary to denote which goals/sub-goals produce or consume 
variables. 

(b) OR-parallelism 

In a sequential logic program, the literals in the body of a clause are unified in 
order with the head part of other clauses during the process of resolution. 
Consider, for instance, the program shown in example 1.11. 

Example 1.11:  Illustrating OR-parallelism. 

Consider the following logic program. 

 1.          Main ←A (X), P (X).                                      (1.49) 

 2.          A (1) ←b, c, d.                                       (1.50) 

 3.          A (2) ←e, f, g.                                       (1.51) 

 4.          A (3) ←h, i.                                       (1.52) 

              5.           P (3) ←p, c.                                       (1.53) 

In the above program to satisfy the goal: Main, one attempts to unify the first 
sub-goal A (X) with A (1), and then he/she should start searching P (1) in the head 
of the subsequent clauses. Unfortunately no such clause with P (1) in the head is 
available; so the search fails to satisfy Main with X  = 1. The same process is then 
repeated for X  = 2, but main is not satisfied again as P (2) is not available as the 
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head of some clauses. The goal, however, succeeds by unifying A (X) and P (X) 
with heads A  (3) and P (3) respectively. 

However, given sufficient computing resources, it is possible to perform the 
unification of A (X) with A (1), A (2) and A (3) in parallel. Such concurrent 
unification of A (X) with OR-clauses A (1), A (2) and A (3) in parallel is called 
OR-parallelism. The difficulty of OR-parallelism, with respect to the last example, 
is the propagation of the correct bindings of variable X  to P (X). This, however, 
calls for some knowledge about the existence of P (3) as a head of some clauses. 
Perhaps, by allowing concurrency of AND- as well as OR-parallelism, this could 
be made possible in future logic programming machines.                                                                                        
                                                                                                                  
(c) Stream-parallelism 

Stream-parallelism occurs in a logic program, when the literals pass a stream of 
variable bindings to other literals, each of which is operated on concurrently. 
Literals producing the variable bindings are called producers, while the literals 
that use the bound value of variables are called consumers (vide [12]). Example 
1.12 illustrates Stream-parallelism. 

Example 1.12: Illustrating Stream-parallelism. 

 1. Main ←Int (N), Test (N), Print (N).                                     (1.54) 

              2. Int (0) ←.                                       (1.55) 

              3. Int (N) ←(M), N is M + 1.                                      (1.56) 

In the last program to satisfy Main, one needs to satisfy Int (N), Test (N) and 
Print (N) in sequence. Once Int (N) is unified with Int (0) ←. , the value of the 
parameter N = 0 is passed on to Test (N) and then Print (N) in succession. 

Thus when Test (N) and Print (N) are executed with old bindings of N, new 
bindings of N may be generated concurrently by unifying Int (N) of clause (1.54) 
with the head of the clause (1.56). Such parallelism where the clauses in the body 
of a clause are unified with the result of binding, of their preceding clauses in the 
body is called Stream-parallelism. Stream-parallelism has similarity with 
pipelining. Test (N) and Print (N), for instance, are similar with processes, where 
they wait for the data streams to be produced by the preceding process Int (N).                                              

                                                                                                                        
(d) Unification-parallelism 

In unification-parallelism, the terms in the argument of a predicate are instantiated 
in parallel with the corresponding terms of another predicate. For instance, the 
Petri net corresponding to the logic program presented allows binding of the 
variables X and Y in the arc function concurrently with the tokens a and b 
respectively at place P. 
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Consider the following logic program. 

Logic Program: 

        1. R (Z, X) ←P (X, Y), Q (Y, Z).                                                             (1.57) 

        2. P (a, b) ←.

Here, the two clauses can resolve if the predicate P in both the clauses can be 
unified. In case of unification-parallelism, the variables (X and Y) in the argument 
of P under the first clause are bound concurrently with the constants (a and b) in 
the argument of P under the second clause.                                                  

1.7 Scope of Parallelism in Logic Programs  
using Petri Nets 

After a careful observation of various types of logic programs, we arrive at the 
conclusion that Petri net model truly resemble all the features that a concurrent 
logic program requires for execution. The classical model of Petri net, we 
introduced in section 1.5, however, needs an extension for its suitability to realize 
the parallelisms in a logic program. 

A number of authors have already suggested several models of Petri net for 
parallel realization of logic programs. A detailed discussion on this is given in 
section 2.8. For the sake of completeness of this chapter, we have briefly outline 
one typical model of Petri net and demonstrate its application in synthesis of 
AND-, OR-, Stream-parallelism of logic programs.  

Example 1.13:  This example illustrates a logic program using Petri net

Logic Program: 

R(Z, X), S(X, Z) P(X, Y), Q(Y, Z). 
P(a, b) .
Q(b, c) .
¬R(c, a) .

The Petri net representation of the above logic program is given by the Fig. 1.18.
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AND-parallelism using Petri net 

The literals present in the body part of a clause are referred to as AND-literals. 
During resolution the AND-literals of a given clause may be searched against the 
literals present in the heads of other available clauses. 

      In AND-parallelism the binding of terms AND-literals takes place 
concurrently with those of the literals present in the heads of other clauses. The 
example below illustrates the concept of AND-parallelism. 

      Consider the following three program clauses. 

 F(X) ←A(X), B(Y).                                                                            (1.58) 
 A(1) ←.                                                                                               (1.59) 
 B(1) ←.                                                                                               (1.60) 

p2    Q

p1    P

tr

p3    R

p4    S

(X, Y) ¬(Z, X) 

(Y, Z) ¬(X, Z) 

<a, b> 

<b, c> 

¬<c, a> 

Fig. 1.18: The Petri net for a given logic program
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For simplicity we consider only one literal in the heads of the second and third 
clauses. It is clear that the variable X shared by the AND-literals may be searched 
with the literals present in the heads of the second and the third clauses. It is 
indeed important to note that an extended Petri net supports AND-parallelism as 
the input arc functions of a transition can be matched concurrently with the 
available resources of its corresponding input places.      

After the mapping of the three clauses onto the Petri net is over, the network 
looks like Fig. 1.19. Hence the input arc functions X and Y of the transition tr can 
be matched with the tokens residing at place A and B concurrently. It may be 
noted that the tokens appeared at the places A and B of the Petri net because of 
mapping of the rules (1.59) and (1.60) onto the Petri net respectively. Thus it is 
clear that, in absence of conflict in binding, AND-parallelism can easily take place 
in a Petri net. 

When the AND-literals of a clause contain shared variables, a binding conflict 
in the process of instantiation may arise. For instance, consider the following 
program containing three program clauses. 

 F(X) ←A(X), B(X).                                                                            (1.61) 
 A(1) ←.                                                                                               (1.62) 
 B(1) ←.                                                                                               (1.63) 

      When the variable X of literals A and B corresponding to the first clause is 
attempted to match against A(1) and B(1) of the second and third clauses, the 
resolution succeeds and there is no restriction in AND- parallelism when AND-
clauses share common variables. 

A

B

(X)

(Y)

¬(X) 

F

tr

<1> 

<1> 

Fig. 1.19: A Petri net illustrating AND-parallelism 
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OR-Parallelism using Petri net 

In case of OR-parallelism a literal present in the body of one clause may be 
searched concurrently against the literals present in the heads of more than one 
clause. The latter clauses are usually referred to as OR-clauses. For example 
consider the following program. 

 F(X) ←A(X), B(Y).                                                                            (1.64) 
 A(1) ←.                                                                                               (1.65) 
 A(2) ←.                                                                                               (1.66) 
 B(1) ←.                                                                                               (1.67) 

      Here, the variable X present in the body of the first clause is matched 
concurrently with the arguments of the literal A in the second and third clauses. It 
may be mentioned here that the Petri net representation of the above program 
clauses, (vide Fig. 1.20) allows concurrent matching of the arc function variable X 
with the tokens <1>, <2> residing at place A. However, such concurrent matching 
requires additional system resources. 

(X)

(X)

¬(X)

tr

B

A

F
<1> 
<2> 

<1> 

Fig. 1.20: A Petri  net illustrating OR-parallelism 
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Stream-Parallelism using Petri net 

In SLD resolution, the resolvent of two clauses participates in a subsequent 
resolution with a third clause. In case the second resolution takes place on a 
sequential stream of tokens generated by the first resolution we say that a pipeline 
exists between the two successive resolutions. 

Let pi for i = 1, 2, …..,m be the input places of a transition trk and pj for j = 
m+1, m+2,.…., n be the output places of the same transition. Also assume that 
there exists another transition trk+1, which has an input place pj for some j, where 
m+1 < j < n. Under this case we call the two transitions to be in pipeline. In case 
the transition trk+1 waits for a number of firing of transition trk to produce a token, 
we say that a Stream-parallelism persists in the Petri net model.

The example below illustrates the realization of Stream-parallelism in the Petri 
net model. 

Int(0) ←.                                                                                             (1.68) 
 Int(M+1) ←Int(M).                                                                             (1.69) 
 Compute(N × N) ←Int(N).                                                                 (1.70) 

The above logic program generates integers N and computes its square. Since 
these two processes are in pipeline, and integer N is generated for all successive 
values of N counting from zero, the corresponding Petri net model includes 
Stream-parallelism. 

In Fig. 1.21 the place-transition pair p1-tr1 corresponds to the generation of 
integers: 1, 2, ….., ∝ at place p1. The resulting token at place p1 is then used up for 
computing its square. 

< 0

Int 
p1

Compute 
p2

tr1

(M) 

¬(M+1) 

(N) 
¬(N×N) 

tr2

Fig. 1.21: A Petri  net illustrating Stream-parallelism 
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Unification-Parallelism using Petri net

In a Petri net model the constant arguments of a predicate are usually mapped as 
tokens of places. Thus variable arguments of the same predicate used in another 
rule is represented as arc functions of an arc connected between the place 
representing the predicates and the transition describing the rule. In the process of 
resolution of a clause with a fact of constant arguments, the variables present in 
the literal of the first clause is unified with the same literal present in the fact. In 
the Petri net model the variables in the arc function are matched with the tokens of 
the connected places. When an arc function contains a number of variables the 
instantiation of each variable takes place with the position-wise constant of the 
tokens. 

      The Petri net in Fig. 1.22 represents the logic program given below. 

Logic program: 

 R(Y, X) P(X, Y).                                                                            (1.71) 
 P(a, b) .                                                                                           (1.72) 

In Fig. 1.22, the predicate P(X, Y) of (1.71) is unified with predicate P(a, b) of 
(1.72). The instantiation of all the variables can be done in the Petri net model 
concurrently with sufficient system resources. The variable argument of predicate 
P of (1.71) is represented by an arc function (X, Y), and the constant token (a, b) 
of (1.72) is denoted by a token of place p1. The instantiation of variables X and Y 
can be done concurrently with the tokens a and b located at place p1.

In this book we consider Petri net models capable of representing multiple 
antecedent and multiple consequent clauses. Usually the commas present in the 
antecedent clauses denote conjunction and in consequent clauses denote 
disjunction. Thus in presence of tokens at all but one input-output places of an 

<a, b> 

(X, Y) ¬(Y, X) 

P     p1                           tr                        p2        R 

Fig. 1.22:  Petri net demonstrating Unification-parallelism
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enabled transition, the transition will fire generating a new token. Such firing of 
transition includes typical AND- and a different type of OR-parallelism. Here, 
independent facts mapped at the output places of the transition behave like typical 
OR-clauses, and a set of concurrent resolution takes place between the OR-clauses 
and a given rule containing those literals present in the OR-clauses as 
consequents. 

Unification-parallelism can always be maintained in the Petri net model, and 
Stream-parallelism exists only when the network includes pipelined transitions 
where a transition in the pipeline waits for the other to generate a sequence of 
tokens.

1.8 Conclusions 

The chapter explores different models of parallel architecture and finally identifies 
Petri nets as a suitable architecture for concurrent resolution of logic programs. 
The execution of a logic program using resolution principles introduced and the 
scope of different parallelisms in a logic program are identified. Finally the 
chapter comes to an end with a discussion on the realization of possible 
parallelisms in a logic program using Petri nets. 

Exercises 

1.    Given two clauses P ∨ Q1 and ¬Q2 ∨ R with P = A (X, Y), Q1 = B (Y, X), Q2

= B (b, a), R = C (Y, X). Determine the substitution set S and evaluate (P ∨
R)[S]. 

[Hints: From the resolution principle, we can see that after unifying Q1 and 
Q2, the resolvent (P ∨ R)[S] = A (a, b) ∨ C (b, a). 
Here, the substitution set S = {a/X, b/Y}.] 

2. Unify the following two predicates: 

i)  P1 = Loves (X, son-of (X)) and 
    P2 = Loves (mam, Y). 

ii) P1 = P(a, X, f(g(X))) and 
    P2 = P(Z, f(Z), f(U)). 

1 An Introduction to Logic Programming
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[Hints: 

i) Here, these two predicates can be unified as follows: 
    P = P1 = P2 = Loves (mam, son-of (mam)) 
    where the substitution is given by  
     S = {mam/X, son-of(mam)/Y}. 

ii) Here, these two predicates can be unified as follows: 
    P = P1 = P2 = P(a, f(a), g(f(a)) 
    where the substitution is given by  
    S = {a/Z, f(a)/X, g(f(a))/U}.] 

3.   Given the logic program and the query. How will you employ resolution 
principle to answer the query?  

Logic program: 

Triangle (XYZ) ←Has-three-sides (XY, YZ, ZX), Has-three-angles 
(∠XYZ, ∠YZX, ∠ZXY), Equal (∠XYZ + ∠YZX + ∠ZXY, 180°). 
Has-three-sides (ab, bc, ca) ←.
Has-three-angles (∠abc, ∠bca, ∠cab) ←.
Equal (∠abc + ∠bca + ∠cab, 180°) ←.
Query:   ←Triangle (abc).  

      [Hints:  Let  P: Has-three-sides 
                           Q: Has-three-angles  
                          R: Equal  
                          T: Triangle  

      ∴ The logic program:  

T (XYZ) ←P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), R (∠XYZ +
∠YZX + ∠ZXY, 180°). 

≡ ¬(P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), R (∠XYZ + ∠YZX + 
∠ZXY)) ∨ T (XYZ) 
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        P (ab, bc, ca) ←.
         ≡ P (ab, bc, ca) 

   Q (∠abc, ∠bca, ∠cab) ←.
         ≡ Q (∠abc, ∠bca, ∠cab) 

    R (∠abc + ∠bca + ∠cab, 180°) ←.
    ≡ R (∠abc + ∠bca + ∠cab, 180°)

         and the query: ←T (abc). 
         ≡ ¬T (abc) 

Fig. 1.23: The resolution tree of the given logic program 

¬T(abc)             ¬(P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), 
                          R (∠XYZ + ∠YZX + ∠ZXY, 180°)) ∨ T (XYZ)    

¬(P (ab, bc, ca), 
Q (∠abc, ∠bca, ∠cab, 180°),  
R (∠abc + ∠bca + ∠cab))                P (ab, bc, ca) 

¬(Q (∠abc, ∠bca, ∠cab),  
R (∠abc + ∠bca + ∠cab, 180°))       Q (∠abc, ∠bca, ∠cab) 

¬R (∠abc + ∠bca + ∠cab, 180°)      R (∠abc + ∠bca + ∠cab, 180°)   

∅

1 An Introduction to Logic Programming

Fig. 1.23 represents the resolution tree for the given logic program. 
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∴ According to the resolution principle, resolution of  

¬(P (XY, YZ, ZX), Q (∠XYZ, ∠YZX, ∠ZXY), R (∠XYZ + ∠YZX + 
∠ZXY, 180°)) ∨ T (XYZ)  

and  

¬T (abc)  

yields a resolvent  

¬(P (ab, bc, ca), Q (∠abc, ∠bca, ∠cab), R (∠abc + ∠bca + ∠cab, 180°)). 

 The resolvent then resolves with  

P (ab, bc, ca), Q (∠abc, ∠bca, ∠cab)  

and R (∠abc + ∠bca + ∠cab, 180°)

successively to yield a null result which signifies that 

 ‘abc is a triangle’ is the answer to the query. ] 

4.    Given the following logic program and the query. Show that the contents of 
the stack corresponding to each node in the process of expanding the 
resolution tree. 

Logic program:  

     1. R (Z, X) ←P (X, Y), Q (Y, Z). 
     2. P (a, c) ←.
     3. P (a, b) ←.
     4. Q (b, c) ←.

    Query: ←R (c, a). 

[Hints:  

Based on the principles outlined in section 1.3.2, the resolution tree is 
constructed using stack (Fig. 1.24). 
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Fig. 1.24: The resolution tree showing the contents of the stack corresponding to each node ]

5. Draw the SLD-tree for the following logic program and mark on the 
tree the part of the search space that remains unexplored because of 
using the CUT(!) statement. 

←Q (b, c). ←Q (c, c). 

←P (a, Y), Q (Y, c). 

←R (c, a). 

←P (a, Y),    
Q (Y, c). 

X = a 
Z = c SP

←R (c, a). 

←P (a, Y), 
Q (Y, c). 

X = a 
Z = c 

←Q (c, c). Y = c 
SP

←R(c, a). SP

←R (c, a).

←Q (b, c). Y = b 

←P (a, Y), 
Q (Y, c). 

X = a 
Z = c 

SP

←R (c, a).

←Q (b, c). Y = b 

←P (a, Y), 
Q (Y, c). 

X = a 
Z = c 

SP ∅

←R (c, a). 

1 X = a 
Z = c

2

Y = c 

3

Y = b 

4

∅
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Cl1: P ←Q, R. 
……. 
……. 
Cl4: Q ←S, !, T. 
……. 
……. 
Cl7: S ←.
and  
Goal: ←P. 

[Hints:  Fig. 1.25 shows to control backtracking by using CUT.          

Literals preceding CUT are unifiable with the same literals in the head of 
other clauses. So, ! is automatically satisfied. Since ←T, R. cannot be 
resolved with any more clauses, the control returns to the root of the tree ←P. 
for generating alternative solution.] 

6.    Construct the SLD-tree for the following logic program and show that when a 
failure occurs before the ‘CUT’ statement the control returns to the parent of 
the clause under consideration. 

This part of the Sub-
tree with root ←Q, R. is 
not searched here 
because of the CUT. 

Cl7

←Q, R.

Cl1

Failed Sub-tree 

←P.

When CUT is encountered 
on backtracking, search is 
resumed here. 

Cl4

←S, !, T, R.

←!, T, R.

←T, R.

Fig. 1.25: Controlling backtracking by using CUT 

Logic program: 
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Cl1: A ←B, C. 
……. 
……. 
Cl4: B ←D, E, !, F. 
……. 
……. 
Cl7: D ←.
Cl8: B ←M. 
and  
Goal: ←A. 

[Hints:  

On Failure at ‘←E, !, F, C.’ the control returns to its parent and attempts to 
expand it. Unfortunately the parent, too, cannot be expanded; so the control 
again starts exploring the grandparent of  ‘←E, !, F, C.’ node and fortunately 
can expand the node ‘←B, C.’ by Cl8.] 

7.   ‘Fail’ is another built-in predicate used in conjunction with ‘CUT’ in order to 
intentionally cause a failure of the root clause and force the control to 
backtrack to the root for finding alternative solutions. 

When CUT is encountered 
on backtracking, search is 
resumed here. 

Cl8

←A.

←B, C.

Cl1

Cl4

←D, E, !, F, C.

←E, !, F, C.

Cl7
←M, C.

On failure the control 
returns to the parent 

Logic Program:

1 An Introduction to Logic Programming

Fig. 1.26: Controlling backtracking by using CUT 
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      Consider the logic program involving ‘CUT’ with ‘Fail’ predicate shown 
as follows. Show the steps of backtracking on the SLD-tree for the programs 
and hence find the solution to the problem. 

Logic program: 

Cl1: Tax-payer(X) ←Annual-inc(X, Earnings), Earnings ≤ 30000, !, Fail. 
Cl2: Tax-payer(X) ←Annual-inc(Family-members-of(X), Earnings), 

Earnings  < 40000, !, Fail. 
Cl3: Tax-payer(X) ←Annual-inc(X, Earnings), Earnings > 30000. 
Cl4: Annual-inc(titir, 25000) ←.
Cl5: Annual-inc(Family-members-of(tunir), 30000) ←.
Cl6: Annual-inc(tapur, 50000) ←.

[Hints: The tree for the tax-payer problem is constructed by the following 
policy. 

      When a predicate before a ‘CUT’ predicate is satisfied, we drop the 
predicate from the list using SLD-resolution. The ‘CUT’ is automatically 
satisfied on getting a ‘FAIL’ after a ‘CUT’, the control returns to the root of 
the tree for exploring the possibility of alternative solutions. When the clause 
at the leading edge of the tree is satisfied, a null clause is generated, causing 
the termination of the tree.    

←Annual-inc(X, Earnings), 
Earnings > 30000. 

Cl3

Cl2

←Taxpayer(X). 

Cl1

←Annual-inc(X, Earnings), 
Earnings ≤ 30000, !, Fail. 

Cl4

25000 ≤ 30000, !, 
←Annual-inc(Family-members-

of(X), Earnings), Earnings  

       < 40000, !, Fail. 

Cl5

30000 < 40000, !, Fail.

∅
50000 > 30000. 

Cl6

Fig. 1.27: Controlling backtracking using ‘CUT’ and ‘Fail’ ]
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8.   Identify the stable points for the following logic programs: 

a) ¬p ←¬q. 
       p ←.

b)   q ←p. 
    r ←q. 
    ¬r ←.

c)    r ←(q ←p).  
    ¬r ←.

d)   p ←q. 
      q ←p. 

[Hints: 

a) We obtain from the first clause the interpretations (p, q)  {(0, d), (d, 1)} 
where d denotes a don’t care state for the respective proposition. The 
interpretation from the second clause is {(1, d)}. The intersection of these 
two interpretations yield a stable point  

              (p, q) = (1, 1). 

b) The interpretations from the first clause are (p, q, r) = {(0, d, d), (d, 1, 
d)}. The interpretations from the second and the third clauses are {(d, 0, 
d), (d, d, 1)} and {(d, d, 0)}. The intersection of the above three 
interpretations yield a stable point  

              (p, q, r) = (0, 0, 0). 

c)
   r ←(q ←p). 
≡ r ∨ ¬(q ←p).
≡ r ∨ ¬(q ∨ ¬p). 
≡ r ∨ (p ∧ ¬q). 
≡ (p ∨ r) ∧ (¬q ∨ r). 

1 An Introduction to Logic Programming
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Truth Table of the expression is given below: 

                                                        
p q r  r ←(q ←p). 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

Therefore, the intersection of these two interpretations yield a stable point 

 (p, q, r) = (1, 0, 0). 

d)
p ←q. 
The stable point for the above expression  
(p, q) ∈ {(0, 0), (1, 0), (1, 1)} 

 q ←p. 
The stable point for the above expression  
(p, q) ∈ {(0, 0), (0, 1), (1, 1)} 

Therefore, the stable point (p, q) belongs to the intersection of the above 
two interpretations, i.e.,  
(p, q) ∈ {(0, 0),(1, 1)}.] 

 9.  Given  a dynamical system of two propositions p (t) and q (t) where t denotes  
time. Determine the stable points of the dynamics. 

 p (t + 1) = 1, if f (p (t), q (t)) = 1; 
      = 0, otherwise. 

q (t + 1) = 1,if g (p (t), q (t)) = 1; 
      = 0, otherwise. 

where f (p (t), q (t)) = q (t) ←(q (t) ←p (t)). 
and g (p (t), q (t)) = ¬q (t) ←(¬q (t) ←¬p (t)). 



50                                   

[Hints: f (p (t), q (t)) ≡ q (t) ←(q (t) ←p (t)). 
                  ≡ q (t) ∨ ¬(q (t) ←p (t)). 
                  ≡ q (t) ∨ ¬(q (t) ∨ ¬p (t)). 
                  ≡ q (t) ∨ (¬q (t) ∧ p (t)). 
                  ≡ (q (t) ∨ ¬q (t)) ∧ (q (t) ∨ p (t)). 
                  ≡ 1 ∧ (p (t) ∨ q (t)). 
                  ≡ (p (t) ∨ q (t)). 

       g (p (t), q (t)) ≡ ¬q (t) ←(¬q (t) ←¬p (t)). 
                  ≡ ¬q (t) ∨ ¬(¬q (t) ←¬p (t)). 
                  ≡ ¬q (t) ∨ ¬(¬q (t) ∨ ¬(¬p (t))). 
                  ≡ ¬q (t) ∨ (q (t) ∧ ¬p (t)). 
                  ≡ (¬q (t) ∨ q (t)) ∧ (¬q (t) ∨ ¬p (t)). 
                  ≡ 1 ∧ (¬q (t) ∨ ¬p (t)). 
                  ≡ ¬p (t) ∨ ¬q (t). 
     
         Now, p (t + 1) = f (p (t), q (t)) = (p (t) ∨ q (t)). 
                  q (t + 1) = g (p (t), q (t)) = ¬p (t) ∨ ¬q (t). 

Let p (t) = p*(t) and q (t) = q*(t) be the stable points, if any. 

p*(t) = p*(t) ∨ q*(t) 
p*(t) = p*(t) or p*(t) = q*(t). 

q*(t) = ¬p*(t) ∨ ¬q*(t) 
q*(t) = ¬p*(t) or q*(t) = ¬q*(t) which is absurd. 

p*(t) = p*(t) ∨ q*(t) = Max (p*(t), q*(t)) holds 
if p* = Max (p*(t), q*(t)) = p*(t) 
     i.e., Max (p*(t), q*(t)) = p*(t) 
     or, p*(t) ≥ q*(t)  
     or,  (p*(t), q*(t)) ∈ {(1, 0), (1, 1)}.                                                       (1.73) 
      
Again, q*(t) = ¬p*(t) ∨ ¬q*(t) = Max (¬p*(t) ∨ ¬q*(t)) 
if Max (¬p*(t) ∨ ¬q*(t)) = ¬p*(t) = q*(t)  

Solution of ¬p*(t) = q*(t) are {(0, 1), (1, 0)}.                                           (1.74) 
The common solution of (1.71) and (1.72) is (p, q) = (1, 0).] 

1 An Introduction to Logic Programming
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10. Consider  an arithmetic unit inside a CPU, capable of multiplying and adding 
two hexadecimal numbers. Given a program 

X = a + b; 
Y = a − b; 
Z = X ∗ Y; 
Print Z. 

      Using two processing units of the given type how many computational 
cycles will you require to execute the program? Is there any time saving if we 
employ three such processing elements? 

[Hints:  

Using two processing units of the given type, two computational cycles will 
be needed to execute the program as the two processing units will be used to 
evaluate the values of X and Y in parallel and then any one of the processor 
will compute the value of Z.  

      As the evaluation of Z depends on the evaluation of X and Y, the value of 
X and Y will have to be computed first before the computation of the value of 
Z. So, even if we use three processing elements, the third one will have to 
wait for the completion of the task of computation of X and Y first. 
Consequently, there will be no time saving at all.] 

11. Construct a dataflow graph for a given program and evaluate the result. 

Logic Program:

 o := (a + b) ∗ (c − d), 
 a := 4, 
 b := 2, 
 c := 3, 
 d := 1. 

[Hints: A dataflow graph for the given program is given here vide Fig. 1.28. 

Given, o := (a + b) ∗ (c − d) 

∴ The result = (4 + 2) *  (3 – 1) 
                      = 8 *  2 
                     = 16.
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12. Show  how concurrent resolution can be accomplished for the following logic 
programs. Mention where AND/OR/Stream parallelism is employed. 

      a)  
Cl1:Likes-mountaineering(X) ←Likes-adventure(X), Likes-snow(X),  
                                                    Likes-climbing(X). 
Cl2: Likes-adventure(t) ←.
Cl3: Likes-snow(t) ←.
Cl4: Likes-climbing(t) ←.

     b) 
Cl1: Likes-mountaineering(X) ←Likes-adventure(X), Likes-snow(X), 
                                                     Likes-climbing(X). 
Cl2: Likes-adventure(a) ←.

Cl3: Likes-adventure(t) ←.
Cl4: Likes-snow(t) ←.
Cl5: Likes-climbing(t) ←.

c)  
Cl1: Int(1) ←.
Cl2: Int(N) ←Int(N-1). 

  o 

3

1

4

2

a

b

c

d

+

_

*

Fig. 1.28: A dataflow graph for the given program         ]

1 An Introduction to Logic Programming
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Cl3: Evaluate-fact(N) ←Int(N). 
Cl4: Evaluate-fact(N) ←N * Evaluate-fact(N-1). 

[Hints:  

a) AND-parallelism takes place when Cl2, Cl3, Cl4 are resolved in parallel 
with Cl1 during concurrent resolution. 

b) OR-parallelism takes place when Cl2 and Cl3 are tried to resolve 
concurrently with Cl1.

c)   Stream-parallelism takes place when the factorial computation of say,  
      (N-1) takes place with the generation of the integer N.] 
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2
Parallel and Distributed  Models for Logic 
Programming- A Review 

The chapter provides a review of some well-known models of parallel and 
distributed logic programming. It begins with the well known RAP-WAM 
architecture and gradually explores the scope of parallelism in AND-OR logic 
program languages, CAM based PROLOG machines and many others. The latter 
part of the chapter provides a Petri net like framework for distributed reasoning 
using logic programs. The discussion on Petri net based models includes Murata’s 
work and its extensions by Jefferey et al. The chapter comes to an end with a 
discussion on the scope of the book with special emphasis on concurrent 
resolution of logic program clauses using Petri nets. 

2.1 Introduction 

Classical models of logic programs employ SLD (Select Linear Definite clauses) 
resolution to execute the program in a sequential manner. Because of the 
sequential participation of the program clauses in SLD resolution tree, the time 
complexity of an SLD program is proportional to the number of program clauses. 
An examination of typical logic programs reveals that there exists ample scope of 
concurrently resolving a number of program clauses. Such concurrent resolution 
of program clauses can save significant computational time in the process of 
execution of a logic program.  

The chapter explores the different types of parallelisms in a logic program and 
their possible implementation/realization by efficient hardware/software means. 

In the last chapter we have examined AND-, OR- and Stream-parallelism and 
noted that random selection of AND/OR clauses in concurrent resolution may 
sometimes result in a conflict in the variable bindings. This conflict can be 
avoided by restricting unwanted concurrent resolution of AND-parallel or OR-
parallel program clauses. The main emphasis of this chapter is to design proper 
control strategies to implement restricted AND/OR parallelism in concurrent 
resolution. 

Several methods of AND-OR parallelism in logic programming languages have 
been addressed in this chapter. Takeuchi’s work [15, 16, 17, 18], for instance, in 

A. Bhattacharya et al.: Parallel and Distributed Models for Logic Programming — A Review, Studies 
in Computational Intelligence (SCI) 24, 57–105 (2006) 
www.springerlink.com               © Springer-Verlag Berlin Heidelberg 2006 
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this regard needs special mention. To implement restriction in the selection of 
program clauses for concurrent resolution, Takeuchi employed a guard part in the 
body of program clauses. This guard part of the clause helps avoiding unwanted 
resolution of AND/OR parallel program clauses. 

Kale’s AND-OR tree model [7] also provides a new approach to the solution of 
a query using a directed acyclic graph. This graph provides a framework for 
orderly selection of program clauses to answer a query. The advantage of Kale’s 
method lies in its inherent parallelism and pipelining in the execution of a logic 
program. 

Classical SLD resolution usually requires a stack like structure for its efficient 
execution. To enhance the speed of execution of program clauses, Naganuma et al. 
[12] suggest an alternative framework for execution of PROLOG programs using 
Content Addressable Memory (CAM) instead of a stack. The advantage of this 
CAM based machine includes an automatic realization on (i) argument unification 
of two predicates and (ii) removal of unused variable bindings. It is important to 
note that unused variable bindings is mandatory in concurrent resolution of 
clauses, and an automatic removal of this garbage ensures restricted AND/OR 
parallelism in the PROLOG program. 

In a recent paper, Patt [13] provides a benchmark analysis of a set of typical 
PROLOG programs on standard or modified architectures of commercial 
machines. The theme of his analysis includes the levels of pipelined stages in the 
execution of program. Patt compiles a PROLOG program to WAM (Warren 
Abstract Machine) code and then provides options to run the code on a machine or 
to recompile it for execution on a commercial machine. The main advantage of his 
analysis is  to determine an optimal sequence of execution of a PROLOG program 
to utilize parallelism at all four possible levels: (i) the language level, (ii) the 
compilation level, (iii) the processor implementation level and (iv) the system 
configuration level. 

An alternative scheme to execute concurrent resolutions in a logic program is to 
use a Petri like net model. Murata [10, 14] has shown that all possible solution of a 
query in a logic program can be determined by time invariant solutions of a 
nonlinear equation A X = 0, where A is an incidence matrix representing the 
structure of a Petri net and X is a solution vector containing the variable bindings 
for the desired goal. Various modifications of Murata’s pioneering work in Petri 
net modeling in logic program are available in the current literature on machine 
intelligence. Jefferey and Murata’s Petri net model [6] that allows deferred 
substitution of variables in the resolution of two other program clauses, in this 
regard, needs special mention. 

The chapter examines all the above works with examples and discusses the 
scope of the book in view of the above works. It suggests further modification of 
Petri net models to realize many other forms of parallelism which remained 
unexplored in the above reviews. Potential parallelism in a PROLOG program in 
view of a RAP-WAM architecture is addressed in section 2.2. The mapping of a 
PROLOG program onto a parallel processing engine is outlined in section 2.3. The 
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scope of parallelism in AND-OR logic programming languages is introduced  
in section 2.4. Kale’s AND-OR tree model for logic programming is outlined  
in section 2.5. The CAM based architecture of PROLOG machines is outlined in 
section 2.6. Performance analysis of a PROLOG program on different machine 
architectures is presented in section 2.7. Section 2.8 introduces the scope of logic 
programming using Petri net. The scope of the book is discussed in section 2.9. 
Concluding remarks are appended in section 2.10. 

2.2 The RAP-WAM Architecture 

Yan [19] presented a detail survey on the scope of parallel realization of 
knowledge computing on multiprocessor architecture. A part of his survey 
focussed on the scope of parallel processing in both compilation phase and 
runtime phase of PROLOG programs. Yan stressed the needs for concurrent 
realization of PROLOG on a RAP-WAM machine. The WAM (Warren Abstract 
Machine) generates an intermediate code during the compilation phase of a 
PROLOG program that exhibits the fullest degree of parallelism in the program 
itself. The RAP (Restricted AND Parallelism), on the other hand, reduces the 
overhead associated with the run time management of variable binding conflict 
between goals. RAP includes a compile time analysis to identify the clauses 
entangled in the ‘binding conflict problem’ and determine the valuation space of 
the variables at run time level. This has significantly extended the WAM with the 
implementation of RAP by the above scheme.   

Hermenegildo and Tick [5] proposed a new scheme for parallel realization of a 
PROLOG program on a multiprocessor architecture by employing the composite 
benefits of WAM and RAP machines. The design considerations proposed by 
them needs special mention, and are as follows:  

(a) Potential parallelism in a PROLOG program can be represented by a graph, 
where the take-off arcs from a vertex on the graph represents the parallel 
tasks in the program.  

(b) Goal stacks may be attached with each processing element (PE). When a 
parallel call is invoked, the concurrent tasks are mapped autonomously to 
the stacks of the less busy or idle processing elements.  

(c) Since the processing elements require non-uniform time to handle different 
tasks, a buffer is allocated to each PE to check the pending messages, if 
any, received from other PEs.  

(d) Synchronization and co-ordination of parallel call needs to be incorporated. 
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(e) Markers are employed to identify the point in the program at which 
backtracking should start. Hermenegildo [5] also described how the register 
contents of the PEs are appropriately saved before another clause is 
executed. 

2.3 Automated Mapping of a Logic Program  
onto a Parallel Architecture 

Ganguly, Silberschatz and Tsur [3] presented a new algorithm for automated 
mapping of given logic program onto a parallel processing architecture. Their 
entire work can be sub-divided into two major heads. First they presumed a given 
architecture with a fixed interconnection topology where the processors connected 
by a direct link can only communicate between them. Thus partitioning the 
program into modules that need to share variables are mapped onto adjacent 
processors. This is required to transfer the result of variable bindings by a 
processor to another that cannot proceed without the result of bindings from the 
former processor. The proposed architecture, thus, to some extent includes a 
pseudo-pipelining along with parallel processing.  

In the latter part of their paper [3], Ganguly, Silberschatz and Tsur relaxed the 
restriction of communication between the adjacent processors only. They have 
shown that a significant speed up is possible by relaxing the above constraint, 
which however puts extra burden to on-line network management. However, they 
did not address the problem of network management in the above paper. 

2.4 Parallel AND-OR Logic Programming Language 

Takeuchi in his recent book on parallel logic programming [15] presented a new 
concept on realization of parallel AND-OR logic programs. Takeuchi et al. [17, 
18] designed a new language AND OR-II that includes the complete realization of 
the proposed AND-OR parallelism. A schematic review of their work is outlined 
below.   

According to Takeuchi et al. a world is defined by the conjunction of its atomic 
clauses. These atoms in a world are executed in parallel. This indirectly has 
correspondence with AND-parallelism. During the process of resolution of an OR-
clause with similar clauses in the body of a program, a non-determinism appears 
as the world proliferates into different worlds. The naive implementation of this 
proliferation is to make a copy of a conjunction of all atoms, but this creates an 
extra overhead and thus is not acceptable. An alternative realization of OR-
parallelism can be carried out using the graph coloring scheme.

To illustrate the coloring process let us consider the following logic program 
that includes both AND- and OR-parallelisms. 
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Program AND-OR parallelism 

     Compute (X, Z) ←Pick-up (X, Y), Square (Y, Y2), 
                                     Cube (Y, Y3), Add (Y2, Y3, Z).                         (2.1) 
               
              Square (X, Y) ←Y = X * X.                                 (2.2) 
           
 Cube (X, Y) ←Y = X * X * X.                                        (2.3) 
            
              Add (X, Y, Z) ←Z = X + Y.                                                      (2.4) 
                               
              Pick-up ([X|L], Y) ←Y = X.                                                      (2.5) 
                             
 Pick-up ([- | L], Y) ←Pick-up (L, Y).                                                   (2.6)        
              
      In the above logic program pick-up is an OR-predicate, while Pick-up, Square, 
Cube, Add are AND-predicates. Let us consider the list L = [1, 2, 3]. The 
instantiation of X = 1, X = 2 and X = 3 should be done in the above program in 
sequence if there was no parallelism. However, when AND- and OR-parallelisms 
are allowed together, the parameter passing by the pickup OR-predicate to the 
evaluation process of square and cube should be done in pipeline, and then the 
addition process should be active. Thus we want to implement a three-stage 
pipeline with a parallel operation between computing square and cube. A 
schematic diagram of the overall system is presented in Fig. 2.1. 

 To implement the coloring scheme in Fig. 2.1, let us consider a notion of  
vectors, where the positions of the elements in the vector are time-tagged. Such  
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time-tagging ensures true pipelining in the system. Alternatively, the elements of 
the vector may be colored and the addition operation should be executed on tokens 
of same color. Thus assigning a vector X = [1, 2, 3] we find three colored tokens 
in vector form at Y, given by 

              Y = [ v (1, α1 ), v (2, α2 ), v (3, α3 ) ]                                                   (2.7) 

where α1, α2 and α3 denote three colors.  The Y2 and Y3 vectors thus take the form 
of  

 Y2 = [ v ( 1, α1 ) , v ( 4, α2 ) , v ( 9, α3 ) ] ,                                           (2.8) 
and  
              Y3 = [ v ( 1, α1 ), v ( 8, α2 ), v (27, α3 ) ]                                              (2.9) 

and consequently Z takes the form 

 Z = [ v ( 2, α1 ) , v ( 12, α2 ) , v ( 36, α3 ) ].                                       (2.10) 

Takeuchi [16] in his work on AND-OR parallel language and its realization 
presented the operational semantics of parallel computations in a logic program. 
As already discussed earlier, the conjunction of atoms together defines the world 
of the program. Thus, replacement of a body clause by two or more conjunctive 
atoms is called proliferation into new worlds. Determining the sequence of 
execution of the goal clauses, however, is a crucial issue in controlling the 
concurrency in a logic program. The two semantic rules containing guard clauses 
can, however, be employed to handle these problems. 

According to Takeuchi two semantic rules, called the rule of suspension and the 
rule of commitment for controlling the concurrency in AND-OR -parallelism are 
discussed in this section. 

In order to understand the semantics of AND-OR parallel computation in a 
logic program, following Takeuchi we define the syntax of guarded and non-
guarded clauses. 

Definition 2.1: A guarded clause can be represented by a head Go, a guard part 
G1 ,………,Gn and a body B1 , …….,Bm . Thus formally, a guarded clause takes the 
following form: 

 Go ←G1, G2, ……… ,Gn. ⏐ B1 , B2, …….,Bm.                                     (2.11)

Definition 2.2: A non-guarded clause comprises of a head Go and a body 
consisting of literals like B1 ,  B2 ,……,Bm. Thus, 

 Go ←B1 , B2 , ……….. ,Bm.                                                                  (2.12)
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An atom in the body part in both a guarded and a non-guarded clause can be an 
AND-predicate and an OR-predicate. 

In AND-parallelism, atoms in the body clause that together forms a world are 
executed in parallel. On the contrary, in OR-parallelism, the predicates in the body 
being the OR clauses, a given clause can give rise to a number of new clauses by 
unifying the body OR-clauses of a goal clause with several heads of other clauses. 
When a goal clause is invoked, the parent world corresponding to the goal clause 
proliferates into several new worlds following the resolution of new clauses with 
the body clauses of the goal. This is usually referred to as OR-parallelism. 

In case there are more than one way to resolve a goal clause, some restrictions 
are imposed on the selection of the clauses that can satisfy the goal. For instance, 
let us consider a goal clause G that calls a guarded AND clause C. 

Formally, 

 G ←C.                                                                                                 (2.13) 
                
 C ←G1 , G2 , ………… ,Gn. ⏐  B1 , B2 , …… .…, Bm..

where the notations in the above clauses have their usual meaning. 
In connection with realization of AND and OR parallel computation of a logic 

program Takeuchi presents two rules for both AND- and OR-operational 
semantics.  

This can be best represented by the rule of suspension and the rule of commitment
introduced as follows.  

      Let us consider a logic program comprising of clauses like 

 . 
 . 

G ←C.                                                                                                 (2.14) 
C ←G1 ,G2 , …….. , Gn. ⏐ B1 , B2 , ……., Bm.

where G = head atom, C = guarded clause, G1 , G2 , ……, Gn = guard part and   B1

, B2 , …… , Bm = body part. 

Rule of suspension: To describe this rule we first define the term: Guard 
computation. ‘Guard computation’ of a clause C stands for both the head (G) 

Operational semantics for AND-predicates 



64         

unification and execution of the guard part, (G1, G2, …., Gn) in the last example 
program (2.14).

The rule of suspension states that the clause C that includes a guard 
computation should not instantiate the head G, even if the guard part G1, G2,
….,Gn can be instantiated directly or indirectly by other clauses. Thus the goal 
unification process for the above set of rules is suspended. 

Rule of commitment: The rule of commitment states that in case there exists no 
other rules that can instantiate the head G, then the clause C should be committed, 
provided its guard part is satisfied through unification with other clauses. 

      The rule of commitment should always supercede the rule of suspension. 

The operational semantics of OR-predicates must obey the following two rules. 

Rule of suspension: 

Consider two rules  

G ←C.                                                                                                (2.15) 
                      
C ←B1 , B2 , ……., Bm.

where the second rule contains only non-guarded body clauses. The rule of 
suspension states that the second rule should not satisfy the head atom G unless 
there is no other rules that can satisfy the head G. Thus the unification process of 
the head G is suspended.  

Rule of proliferation: In case there exists N number of non-guarded clauses that 
succeed in unifying the goal G, then all the rules should be used for goal 
unification in parallel. 

      For instance consider the set of rules: 

 G ← C. 
 C ← B1, B2, ………, Bm.
 C ← C1, C2, ………., Cm.                                                                              
               .                                                                            N rules                   (2.16) 
               .  
              C ← D1, D2 , ………., Dm.
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In the present example the world represented by the clause C of the rule ‘G 
←C.’ should be proliferated by the N set of rules after the head unification is over.  

2.5 Kale’s AND-OR Tree Model for Logic Programming  

Kale in one of his recent book chapters [7] presented an alternative formulation of 
problem solving using parallel AND-OR trees. The special feature of his scheme 
lies in ordering the search process for the OR-nodes that together constitutes the 
AND-node. The scheme of Kale is briefly outlined below. The following 
definitions are in order to explain the characteristic features of Kale’s model. 

Definition 2.3: An AND-OR tree is a tree rooted with AND-nodes. The root node 
usually denotes a query of the form 

←G1, G2, …….. , Gn.

Each literal Gi, for i = 1 to n under the root node is written separately at the 
next level of the tree describing the queries 

←Gi. for i = 1 to n. 

Each Gi is called an OR-node. OR-nodes have a single child AND-nodes that 
satisfy the following characteristics. 

Let a  Head ←Qi for i = 1 to n be an AND–node at depth 2 of the AND-OR tree 
under the node Gi, such that the Head uses the same literal as Gi but different 
terms, having possible variable bindings. Thus, on resolution of 

                             ←Gi.                      
          and    
                   Head ←Qi.

           we find    ←Qi [ . ⏐ . ]. 

where [ . ⏐ . ] denotes the results of substitution of the variables of Gi by the terms 
in the Head. The substitution [ . ⏐ . ] is attached with the arcs connected from the 
OR-nodes to their child. 

When Qi = φ , the corresponding AND-node is called a leaf. Such clause C 
where C = Head ←Qi reduces to Head ← , which is a fact.
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Figure 2.2 describes a typical AND-OR tree rooted with ←G1, G2,…….. , Gn

and only one AND-node at depth 2 for illustration purpose.  

Definition 2.4: A candidate solution-tree for a literal G or for a query Q is a 
sub-graph of the AND-OR tree for G or Q that satisfies the following constraints: 

      The graph should include the root of the AND-OR tree.  

In case it includes an AND-node A, then it should also include the children 
nodes of node A. 

…..

….. 

AND-nodes 

…..

….. 

←G1 , G2,………………..,Gn.

←G1. ←Gn.←G2.

And-node 

OR-nodes 

Match arc 
mgu {(•⏐•) , (•⏐•)} 
of C & Gi

                                                       

←Q1.

     Clause  C 

Resulting substitution 

        Fig. 2.2: An illustrative AND-OR tree

Head 

The AND-node: Head ←Q1 at depth 2 of the AND-OR tree is 
resolved with clause ←G1 of depth 1, with the resolvent ←Q1[. | .] 
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In case it includes an OR node O, it should also include exactly one child node 
of node O. 

Definition 2.5: This arc connected from an OR-node to an AND-node is called a 
match arc. This arc is labeled with the most general unifier (mgu), to be defined 
later(in chapter 3), obtained through the process of unification of a clause ← Gi

and the head part of the clause 
                                                                                                                                   
                      ←Q1 located at the OR-node and its AND-child respectively. 

Definition 2.6: A consistent solution-tree is a candidate solution tree so  
that the labels attached with the matched arcs have a common unifying 
composition.  

Definition 2.7: A query Q is called solved if the AND-OR tree having a root at Q 
has a consistent solution-tree. 

Definition 2.8: Let θi be the mgu labeled with the match arc i. Assuming that 
there exist n number of OR-nodes in the solution-tree, we define a set S as 

                                         n        
             S= ∩ θi

                                       i=1 

      The projection of S on the variables of the query Q is called a solution to Q. 

Example 2.1:  Let us consider a problem of finding the value of variable A, such 
that the number A is both prime and belongs to the fibonacci series. There are two 
ways to solve the problem. First the problem can be subdivided into two heads, so 
that Prime (A) and Fibonacci (A) for A = 233, say, can be checked in parallel. A 
resulting truth value of the predicate 

  Fibonacci-and-Prime (233) 

will be found only when the solution to Prime (233) and Fibonacci (233) both 
exist.  

      An alternative analogous problem may be to find the possible solutions of  

  Fibonacci-and-Prime (A). 

where A is within a given range, say 0 < A < 500 . One way to solve this problem 
efficiently is to generate Fib(N, X), where X is the N-th Fibonacci number and 
then the result X may be passed on to the predicate Prime (X) for testing of X for a 

Head
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prime number. This scheme is similar to pipelining of two processes. A question 
then naturally arises: is there any definite rule for the judicious ordering of the 
predicates to be placed in the pipeline? For instance, should we test Prime (X) 
prior to Fib (N, X)? Obviously, this is a wrong choice, as most of the prime 
numbers do not belong to the fibonacci series.                                                                                    

The problem is exaggerated further when the body of the clause includes a 
number of predicates. For example, consider the problem of selection of a venue 
at a given date by two friends. This can be formally represented by the following 
clause 

Dinner-date (I, Y, Restaurant, Day) ←Likes (I, Y), Free (Y, Day), Enjoys (Y, 
Restaurant), Open (Restaurant, Day).                       (2.17) 

   
Here, the problem is manifold. First we have to identify person “Y” whom “I” 

likes. This may result in many solutions. Then for each Y we must check whether 
Y is free on a given date and then we need to identify the restaurant that Y likes 
and only after that we must check whether the restaurant is open on that date.  
Thus if we maintain a strict pipelining of the predicates Likes, Free, Enjoys and 
Open in order, then perhaps we can find a time-efficient solution for the problem 
easily. Kale introduces a new representation of the partial ordering of the 
predicates by a graph where the ordering stands for sequencing the predicates in 
the way they will give rise to solutions. Such graphs are usually called Data Join 
Graphs (DJG). 

      A formal definition of DJG is presented as follows.  

Definition 2.9: A DJG is a directed acyclic graph where the nodes denote the 
ordering of events, here the solutions of predicates and the directed arcs 
connected between any two nodes are labeled with a predicate. Each DJG has a 
single start node and a finish node. The parallel activities (finding the solution of 
more than one predicate) are denoted by parallel arcs between two nodes of a 
DJG. 

Example 2.2:  In this example we describe the DJG of the following query (vide 
Fig. 2.3): 

 Query 1: ←Fib (N, F), Perf (P), X is F + P, Prime (X).                     (2.18)   

The query 1 calls for finding the solutions X such that X = F + P, where F is the 
N-th fibonacci number and P is any perfect number.  
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For example F = 1, 5 are two fibonacci numbers while P = 6 is a perfect 
number. Under this case, we have two solutions for X = (1 + 6) = 7 and X = (5 + 
6) = 11. In this example computation of Fib (N, F) and testing of Perf (P) can be 
done concurrently. So the DJG has two arcs connected between nodes 1 and 2. 
Finding an efficient DJG for a given query, itself is a complex problem, and no 
formal solution to such problems is known till date.                                                                  

2.6 CAM-based Architecture for a PROLOG Machine

In the process of SLD resolution, the AND-clauses are selected and unified with 
the heads of other clauses in sequence. For example, let us consider an AND-
clause: 

 P (X, Y) ←Q (Y, Z), R (X, Y).                                                           (2.19)                   

where Q and R are selected for variable unification in sequence. The process of 
involving an AND-literal for search in the head of existing clauses and its 
unification with a selected clause are two major steps in the resolution process. 
The first step may, hereafter, be referred to as clause invocation, while the latter 
may be described as argument unification. Unlike conventional Prolog, Naganuma 
et al. [12] considered the scope of argument unification of AND-clause Q (Y, Z) 
in parallel with the clause invocation of the AND-literal R (X, Y). Such time 
overlapping between these two processes is beneficial for increasing the 
computational time-efficiency of a logic program. Fortunately, the work presented 
in [12] employs this principle, thereby speeding up the process of inferential 
reasoning to as high as 100 KLIPS (Kilo Logical Inferences Per Second). Another 
interesting feature of their work lies in automatic re-instantiation and checking of 
the bound variables of Q as possible bindings of R. Let Y = α, Z = β be the 

1 2 3 41

X is F + P Prime (X)

 1 

Perf (P) 

0 0

  Fib (N, F) 

Fig. 2.3: The DJG corresponding to the given query  
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resulting binding of Q. Under this circumstance, R (X, α) needs to be searched in 
the existing clauses. If no matched literal R (X, α) is detected in the head of some 
clause, the previous bindings of literal Q becomes of no use and thus should be 
destroyed. This is usually realized with a variable binding stack in a conventional 
PROLOG machine. In this reference [12], the binding stack has been realized with 
a Content Addressable Memory (CAM) instead of a stack. The destruction of the 
unused bindings here has been implemented with an automatic clearing of the CAM.  

The principle of clause invocation, argument unification and removal of unused 
bindings in a CAM is presented below with reference to the following PROLOG 
program: 
   
PROLOG Program: 

←P (X, Y).                                                      (2.20) 
P (U, V) ←Q (U, V, W), R (W).                                                    (2.21) 
Q (a, b, c) ←.                                                                                      (2.22) 
Q (d, e, f) ←.                                                                                       (2.23) 
R (f) ←.                                                                                               (2.24) 

Fig. 2.4: The SLD-tree for a given PROLOG  program  

←P (X, Y). 

←Q (U, V, W), R (W). 

←R (c ). ←R (f ). 

failure 
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In the aforementioned program ‘←P (X, Y).’ is the query, and the remaining 
clauses (2.21) to (2.24) constitute the logic program. Figure 2.4 describes the 
execution process of the above program by an SLD tree.  The phrase: Inference 
depth, which will be used in our   subsequent  discussion  is  now  informally  
defined. 

Inference depth denotes the depth of nodes in an SLD tree. The root node, 
which corresponds to a query, has an inference depth zero. All other nodes in 
the tree that describe inferred clauses have an inference depth equal to the depth 
of the respective nodes counted from the root in the SLD tree. Here, the goal 
clause ←P (X,Y) is placed at depth zero, and it is resolved with the clause (2.21) 
to yield a new clause ←Q (U, V, W), R (W). The variables X and Y now have 
the bindings X = U and Y = V. The resulting clause thus obtained occupies an 
inference depth one in the given tree. This clause is then further resolved with 
clause (2.22) to yield ←R(c) and the variable values U, V, W obtained the 
bindings: U = a, V = b and W = c. The clause ←R (c) occupies a depth two in 
the SLD tree. The clause R (c) is now searched in the heads of the existing set of 
clauses, but unfortunately there is no such atomic clause in the existing heads, 
and consequently the resolution fails with a backtracking to the clause at depth 
one. The SLD-tree is then further expanded by invoking clause (2.23) for 
resolution with the clause at inference depth one to yield ←R (f). Finally, the 
clause (2.24) is resolved with the resulting clause ←R (f) of depth 2 to yield a 
null clause that occupies a depth 3 in the SLD tree. The bound value of variables 
thus obtained are X = U = d and Y = V = e. 

The CAM employed to handle the above problems in an SLD tree includes five 
distinct fields. The first field denotes the inference depth of the clauses. It has a 
minimum value 1 as the first inferred clause occupies an inference depth 1. The 
second field of the CAM denotes variables present in the parent clause of the node 
under consideration. The third field denotes the depth of the parent clause 
containing the variables listed in field 2. The fourth field of the CAM represents 
the bound value of the variables considered in field 2. The fifth field of the CAM 
describes the depth of the clause that includes the resulting bindings of the 
variables present in field 4. 

The execution of the given logic program starts with an empty CAM. After first 
resolution, the clause listed at inference depth 1 is generated. Thus field 1 of CAM 
(vide Fig. 2.5(a)) contains 1. The parent clause here being ←P (X, Y), the variable 
X, Y are inserted in the second field of the CAM. Since the depth of ←P (X, Y) is 
zero, zeroes are entered in the third field. The fourth field includes the bound 
values: U and V for the variables X and Y respectively. The fifth field denotes the 
inference depth of the clause containing the bound values U and V. Thus it is 
affixed with one.  



72                  

After the second resolution, the CAM obtained in step (a) is expanded with 
three more rows. It should be mentioned here that once constant bindings are 

1

1

Y    0 V 1

X  0 U     1 

                 

               (c ) After garbage collection (backtracking) 

Fig. 2.5: CAM-based backtracking without trial stacks  
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obtained, no further declaration of the depth of the clauses containing those 
bindings is needed. Thus the last two fields are merged into a single field 
describing the values of the variables only. Since the resulting clause after the 
second resolution is ←R (c), it has an inference depth 2, and thus the first field is 
now filled in with 2 (vide Fig. 2.5(b)). Further, as we have three variables U, V 
and W, three rows are employed to describe the variable bindings and other 
necessary information. The second field thus is filled in with variable names U, V 
and W present in the parent clause ←Q (U, V, W), R (W). Since the depth of the 
above clause containing U, V and W is one, the third fields are filled in with one. 
Further, the resulting bindings of U, V and W are a, b and c respectively, and thus 
they are stored in the fourth field of the CAM. It may be noted that after ←R (c), 
the resolution process cannot proceed further, and consequently we need to 
backtrack to the node at depth 1 of the SLD-tree. Since the bindings obtained in 
the left-side of the clause  ←Q (U, V, W), R (W) are no longer useful, in case of a 
stack realization two consecutive POPs could destroy the garbage bindings. This 
has been represented in the present CAM-based architecture by removal of all the 
top three rows (vide Fig. 2.5(c)). The storage of the CAM in the subsequent two 
steps can now easily be visualized and thus is not included in the present 
discussion.  

2.7 Performance Analysis of PROLOG Programs

The work presented in [4] addresses various alternative models for execution of a 
PROLOG program. Performance of a PROLOG program can be improved by 
detecting and analysing parallelisms at different levels. These levels include   (i) 
language level, (ii) compilation level, (iii) processor implementation level and (iv) 
system configuration level. The language level is concerned with detection of four 
typical forms of parallelisms namely (i) AND-parallelism, (ii) OR-parallelism, 
(iii) Stream-parallelism and (iv) Unification-parallelism. All these parallelism 
have already been discussed in section 1.6.1. At compilation level a data 
dependency graph may be employed to detect the independence of the 
intermediate machine codes, and thereby allowing them to be mapped to different 
hardwared units subsequently. Backtracking, that needs the control to trace back 
to the previous step, can also be analyzed in the compilation phase. There exist 
ample evidence of analysing data-dependency and backtracking in a PROLOG 
program vide [2]. The processor level parallelism deals with execution of the 
machine codes on different hardwared units in parallel within the processor. The 
system level parallelism on the other hand employs a multiprocessing system with 
a number of processors to take care of the data flow among the processors through 
an interconnection network. A parallel program is mapped onto the distributed 
processors of a multiprocessor system to enhance the speed of execution of a 
PROLOG program. 

on Different Machine Architectures 
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Patt [13] provides a bench mark analysis of a set of typical PROLOG programs 
on standard/modified architectures on popular commercial machines. The basic 
theme of his analysis lies in determining the levels of pipelined stages in the 
process of execution of a PROLOG program. His analysis is restricted to an 
uniprocessor architecture only. Patt compiles a given PROLOG program to 
Warren Abstract Machine (WAM) code and then selects options whether to run 
the WAM code directly on a machine or to recompile it to the machine code of 
commercially available machine for execution. While recompiling the WAM code 
Patt prefers the well known ISA code for machine implementation. Thus three 
typical levels of organisations of a PROLOG program emerge from his analysis. 
These are schematically described in Fig. 2.6. 

While experimenting on NCR/32 machine at the University of California, 
Berkeley Campus Patt noted that the first mode (Fig. 2.6(a)) exhibited a poor 
performance in comparison to the others. 

2.8 Logic Programming Using Petri Nets 

Coined after the seminal work of Karl Adam Petri, the phrase Petri nets has 
already proved itself successful in mathematical modeling and simulation of 
various systems. Some important application of Petri nets include (a) 
representation of programs for dataflow computing, (b) deadlock avoidance in 
operating systems, (c) Time-scheduling of discrete event systems, (d) protocol 
management in a communication system, (e) representation of a context sensitive 
language, and (f) resource sharing in a multi-process system. Unfortunately, the 
use of Petri nets in knowledge engineering in general and in logic programming in 
particular has started only in the last decade. This section highlights the 
significance of Petri nets in efficient reasoning with logic programs. 

PROLOG  program 
↓

WAM code 
↓

ISA code 
↓

Onchip ROM 
↓

Execution 

(a) 

PROLOG  program 
↓

WAM code 
↓

Onchip ROM 
↓

Execution 

(b)

PROLOG  program 
↓

Compiled Machine code 
↓

Execution 

(c) 

Fig. 2.6: Three different levels of organization of PROLOG programs  
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A Petri net is a directed bipartite graph comprising of two types of nodes: 
places and transitions and directed arcs to represent connectivity from places to 
transitions and vice-versa. The importance of Petri nets in knowledge engineering 
arises because of the distributed organization of its structure, capable of holding 
the smallest fragments of a program clause onto several components of its 
structure. Such fragmentation of program resources onto smaller components of a 
Petri net is needed for two reasons. First all possible parallelism in a program can 
be fully exploited because of modular organization of the program onto several 
structural units of a Petri net. Secondly, the fragmentation of the program helps in 
protecting parts of the program, instead of destruction of the entire program due to 
hardware failure. 

Besides, Petri nets when used in logic programming offers some additional 
benefits. A Petri net graph, for instance, is an ideal choice of representing 
structural pipelining of program data resources [8].  The firing sequence of 
transitions, as if, denote the firing sequence of the modus ponens rules and the 
derived inferences, thus, traverse through the net following the firing sequence of 
transitions. Further, because of the structural benefits of Petri net models, all 
typical parallelisms of a logic program, such as AND-, OR-, Stream- and 
Unification-parallelisms can be realized on the proposed structure. The provisions 
for concurrent firing of transitions in a Petri net facilitates the users with the 
additional benefits of resolving multiple program clauses in bunches on isolated 
transitions. The book, in fact, emphasizes these issues in more detail in the 
subsequent chapters. 

Murata first examined the scope of reasoning in logic programs using Petri 
nets. In one of his early papers [10, 14], he took a bold attempt to represent a logic 
program by a set of state equations, whose time-invariant solutions provide 
answers to the users’ query. His model can be best introduced with example 2.3. 

Example 2.3:  Consider the following logic program comprising the following 
five Horn clauses, the last clause being the query. 

Logic Program: 

(1) Parent (david, mary) ←.                                                                (2.25) 
                    
              (2) Parent (mary, tom) ←.                                       (2.26) 
                                         

(3) Ancestor (X, Y) ←Parent (X, Y).                                                 (2.27) 
                   

(4) Ancestor (X, Z) ←Parent (X, Y), Ancestor (Y, Z).                      (2.28) 

(5) ←Ancestor (X, tom).                                                                    (2.29) 
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                   Fig. 2.7: Petri net corresponding to the given logic program

The generic state equation of a logic program realized with a Petri net (vide 
Fig. 2.7) is given by 

                         A o X = O                                                                                 (2.30) 

where A = [aij]  is an incidence matrix, X  provides a solution to the users’ query 
and o denotes a matrix product with substitution. For construction of the incidence 
matrix A, Murata employed the following principles: 

Given a logic program consisting of n clauses and m distinct predicate symbols, 
the (n × m) incidence matrix A of a high-level net corresponding to the logic 
program can be obtained by invoking the following procedure. 

• Each clause in the program will be one row of the matrix (one transition in 
the net). 

• Each distinct predicate symbol in the program will be one column of the 
matrix (one place of the net). 

• The (i, j)th entry aij is the argument of the i-th clause and in the j-th 
predicate symbol, where an argument to the right of the ← is prefixed with 
a negative sign. If the j-th predicate symbol appears more than once in the 
i-th clause, then aij will be the formal sum of all those arguments in the i-th 
row and j-th column. 

      The procedure presented above converts the given logic program into the 
incidence matrix as follows: 

<d, m> 

<m, t > 

 <X, t > 

Parent Ancestor 

<X, Y> 

<X, Y> 

<Y, Z> 

<X, Y> 

tr1

tr2
 tr4

 tr3

 tr5p1

p2

<X, Z> 
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where d, m, t denotes  David, Mary and Tom respectively. 

           tr1         ∅
            tr2          {}
        X1 =         tr3          {m | X, t | Y}
           tr4          ∅
           tr5         {m | X}

           tr1         {}
           tr2          {}
        X2 =         tr3          {m | X, t | Y}
           tr4          {d | X, m | Y, t | Z}
          tr5          {d | X}

where ∅ denotes no firings and  { } denotes a firing with no substitutions. The 
above vectors can be interpreted as “T-invariants” of the high-level net since they 
satisfy AToX1 = 0 and AToX2 = 0, where o denotes “matrix-product with 
substitutions.”                                                                                            

Murata and Yamaguchi [11] in early 1990s presented an alternative approach to 
automatic reasoning using Petri nets. They devised a new model of Petri net for 
handling the forward and backward reasoning problems that supports the 
resolution theorem under the framework of classical logic. The work reported in 
the work [11] is primarily based on the following principles.

       • A general program clause, containing one or more literals in both the 
body and the head part, can be denoted by a Petri net with a number  
of input places equal to the number of antecedent literals and a 
number of output places equal to the number of consequent literals. 

Parent(p1)  Ancestor(p2)

 tr1 <d, m>          0 

 tr2           <m, t>                       0 
A = tr3         −<X, Y>                   <X, Y> 
 tr4         −<X, Y>           −<Y, Z> + <X, Z> 
 tr5      0                 −<X, t> 
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        • Resolution of two or more clauses has been symbolized by firing of a 
transition. 

        • On firing of a transition the tokens possessed by the input and output 
places of the fired transition are updated by the following principle. 

For a propositional logic based programs, the derived token M/(.)  (markings in  
Petri net terminology) at input place p and output place q of a fired transition can 
be expressed as a function of its value M(.) before firing:  

                      M/(p) =  (M(p) + {-1}) ∪ M(p)                                                   (2.31)

                      M/(q) =  (M(q) + {+1}) ∪ M(q)                                                  (2.32)

                
      The tokens at all other places r (≠ p or q) remain unchanged. 

Murata et al. extended the above model for automated reasoning with predicate 
logic based programs. The detailed discussion on the model goes outside the scope 
of the book, and is omitted.  

Li [9] demonstrated a new approach to automated reasoning in Logic program 
for both Horn and non-Horn clauses with negation in the body of the clause. This 
is an uniform approach that is applicable jointly to monotonic and non-monotonic 
systems with negated literals in the body of the clauses.  

Jeffrey et al. [6] presented an alternative scheme for goal directed reasoning in 
a Horn clause based logic program. The representation scheme proposed by them 
significantly differs with the currently available models of Petri nets. For instance, 
a typical Horn Clause ‘R (X, U) ←P (X, Y), Q (U, V).’ following Jeffrey et al. can 
be represented as shown in the Fig. 2.8.     

It may be noted in Fig. 2.8 that, unlike conventional Petri net representation, the 
direction of the arcs are reversed. The following aspects of the reasoning 
undertaken by Jeffrey et al. need special mention.  
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The instantiation space of the variables in most Petri net based logic programs 
are determined locally after taking into consideration the binding of the variables 
of all arc functions associated with a transition. One major drawback of such a 
policy of instantiation lies in long deferred substitution of variables until the 
bound tokens propagate to the associated places of the same transition after 
several firings. Jeffrey's scheme however handles the situation in a faster and 
robust approach. In absence of proper constant bindings, they replace the variable 
component of tokens in a place by a renamed variable [1] and later substitute it by 
the value that is attained at some other places associated with the same transition. 
Consequently the variable components of token gets updated by a revised renamed 
variable until a constant binding of the same variable is attained transitively in a 
long chain of transitions.  

Jeffrey et al. described the SLD resolution of program clauses by 
transformation of markings in the places. The updated tokens in the places usually 
are renamed variables or constants. In the process of updating of tokens in the 
places, the renamed variables in the token are transformed to constants. When all 
the variables/ renamed variables in the token of a place are replaced by constants, 
a goal or sub-goal may be obtained, and the place becomes empty. Consequently, 
when the (renamed) variables at all places become constants, all places become 
empty, and no further results can be derived from the Petri net.  It may be added 
here that an empty place may regain tokens due to firing of a transition connected 
to the place.

Example 2.4:  This example illustrates the principle of Jeffrey and Murata’s 
model outlined above with a typical logic program. Consider, for instance the 
following logic program:   

←tc (a, Y).   (≡ Q1)                        (2.33) 
tc(X, Y)  ←r(X, Y).                (tr1)                                     (2.34) 
tc (X, Y)  ←r(X, Z), tc ( Z, Y).          (tr2)                                     (2.35) 
r(a, b) ←.    (tr3)                                           (2.36) 
r(b, c) ←.    (tr4)                                     (2.37) 
r(a, d) ←.    (tr5)                                           (2.38) 

Figure 2.9 describes the given logic program and the query ←tc (a, Y). One 
possible firing sequence of the transitions that leads to a successful evaluation of  
the query is presented in Fig. 2.10. Let the arc function <X, Y> present in the 
input arc of transition tr1 has a possible instance of solution X = X1 and Y = Y1.
Thus after resolution  of  the program clause (2. 34) with the query (2. 33), X1 and  
Y1 are instantiated with one pair of new value and the resulting set is given by 
{X1/a, Y1/Y}. Consequently, a new token <a, Y> arrives at the place 
corresponding to the predicate r. Transition tr3 is then fired and a new instantiation 
of Y = b is obtained.
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Fig. 2.9: Representation of the queried program by a Petri net  

According to Jeffrey et al. [6], since a complete solution  <X1, Y1>  now has 
been obtained the places are kept free from tokens to allow subsequent firing of 
other transitions for generating new solutions of the given query. Other solutions 
of the query ←tc (a, Y) are not presented here for lack of space; rather a case of 
failure is demonstrated vide Fig. 2.11. In this figure, the topmost configuration 
describes a initial situation in the Petri net. On firing of transition tr5, Z1 is 
instantiated with d, by matching <a, Z1> for place r with the input arc function <a, 
d> of transition tr5.

The value of Z1 = d is now updated in all places containing the variable Z1. It is 
indeed important to note that in Jeffrey’s model the variables in places correspond 
to a global variable in the entire logic program, in contrast to conventional Petri 
net models where variables are defined locally with reference to transitions. 

The second module in Fig. 2.11 describes the resulting situation in the Petri net 
after firing of the transition tr5. The transition tr1 is now fired, and the second 
alternative instance <X, Y> = <X1, Y1> is now presumed. The input arc function 
<X1, Y1> of transition tr1 thus constructed is now unified with <d, Y> of place tc

and  the  resulting  set of substitution obtained is given by {X1/d, Y1/Y}.  This 
token value X1= d and Y1= Y is now inserted in place r following the guiding 
output arc function of transition tr1.  The token  <d, Y>  is now matched  with  all 
the input arc functions of transitions tr3, tr4 and tr5 respectively, but no possible 
variable bindings could be derived in the present context. This has been referred to 
as a failing computation in the work undertaken by Jeffrey et al. [6].     
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tr1 {X1/a, Y1/Y}

<a, Y>
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Fig. 2.10: A successful firing sequence Mo→M1→M2 of the given program. The 
arcs between frames are labeled with the fired transition and the variable 
substitutions made on firing of a transition  
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Fig. 2.11: A failing computation for the given queried Program through frames M0→ M3→
M4→ M5. M0 to M3 transition is not shown in the figure for clarity. It is to be noted that 
after firing of transition t5, the variable Z1 in tokens at both places r and tc are updated in 
frame M4
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2.9 Scope of the Book 

Reasoning in typical logic programming languages such as PROLOG or 
DATALOG is usually accomplished by automatically expanding an SLD-tree in 
the runtime phase of the program execution. Construction process of the SLD-tree 
involves sequential resolution of each pair of program clauses, and the resultant 
clause thus derived is passed on for resolution with a third program clause, 
judiciously selected from the program based on certain prerequisites for 
resolution. The process is continued until all possible solutions to the given query 
are evaluated.  The SLD-tree building algorithm requires a linear order of time 
proportional to the number of program clauses that participate in the resolution 
process. Logic programs used in commercial/industrial applications generally 
include as many as 10,000 clauses. The computational time of an SLD-tree 
building algorithm thus been highly expensive prohibits the scope of logic 
programming in real time applications.  Fortunately, the resolution principle in 
logic programming supports various types of parallelism. An appropriate 
realization of these parallelisms on an architecture, thus, may provide a new 
avenue to the aforementioned practical problem. 

The objective of the book is to design a high-speed computational engine for 
logic programming that is capable of utilizing all possible parallelisms in the 
program. For a suitable implementation of the parallel processing inference 
engine, the book adopted a specialized data structure that can represent and reason 
with the program clauses by fully exploiting AND-, OR-, Stream- and 
Unification-parallelisms in the program. The data structure employed in the 
present context is a Petri net that besides having the above benefits supports the 
distributed organization of the program resources, such as predicates and their 
variable and constant arguments (here after called tokens) onto different modules 
of the network. Such fragmentation of the program into minute resources enhances 
the fault-tolerant behavior of the program, as reasoning may still be continued in 
absence of some program components, crashed because of hardware failure of a 
few units.  

The book examined the scope of concurrent resolution of program clauses on 
a Petri net.  The transitions in a Petri net keep track of the program clauses, 
where the literals in the head (body) part are mapped at its output (input) places. 
Places of the Petri net are shared by multiple program clauses.  For instance, two 
program clauses having one common literal in the body of one clause and in the 
head of the other clause is denoted by a common place. This place is an input 
place of the transition describing the former clause and an output place of the 
transition describing the latter clause. The constant arguments of predicates 
present in body-less clauses are also mapped at the input place of transitions 
representing clauses having common literal in its body. Such organization of the 
Petri net framework facilitates the scope of concurrent resolution of multiple 
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associated with more than one transition may also participate in the concurrent 
resolution process, thereby increasing the throughput of the system to a great 
extent.  

The concurrent resolution introduced above automatically takes care of the 
AND-, OR-, Stream- and Unification-parallelisms. Consequently, the Petri net 
architecture provides a strong foundation to logic programming with high degree 
of parallelism. A suitable realization of the Petri net topology on logic 
architecture, therefore, is a good choice for an alternative hardwired inference 
engine for logic programming. The latter part of the book is, therefore, devoted to 
designing logic architecture for Petri net like inference engine. The proposed logic 
architecture comprises of six main modules, where multiplicity of the modules are 
needed to handle the concurrent resolution of clauses at more than one transition 
simultaneously.  

For convenience of computational benefits, the concurrent resolution process 
in the proposed architecture has been realized in two elementary steps.  The first 
step attempts to identify the possible bindings of the variable arguments of the 
predicates mapped at the places of the Petri net. The second step checks the 
consistency of the variable bindings in the arguments of the predicates mapped 
at the input and the output place of each transition. The first step is called the 
local matching (assignment, to be more specific), and the second step is referred 
to as global matching. The global matching helps in determining the most 
general unifier (mgu) of the resolved clauses, which later provides a solution to 
the goal/sub-goal predicate, mapped at the input/output place of each transition. 
After a sub-goal at a given place is determined in the manner described above, it 
becomes part of another clause sharing that place. Consequently, the clause thus 
re-organized may participate in the resolution process in a subsequent  
time, when its descriptor transition has a consistent set of variable bindings in 
the predicates mapped at its connected input/output places. The mgu
thus obtained at one transition helps a neighboring transition to fire (resolve 
clauses), and the process continues until no new mgu at the transitions can be 
derived.  

The architecture designed for the proposed inference engine comprises of four 
pipelined stages. In the first stage the places associated with each transition are 
activated for local token matching, whereas the second stage executes the local 
token matching. The third stage performs the global token matching, and the last 
stage ensures firing of appropriate transitions for token transfer to its associated 
(inert) place that did not participate in the resolution process.  The approximate 
time required for firing a transition is around 25 Tc, where Tc denotes the time 
period of the system clock. The speed-up factor for the proposed inference engine 
for a program with n clauses and k number of concurrent set of resolvable clauses 
is O (n/k). 

program clauses mapped onto the input/output or both types of places associated 
with the transitions. Further, under favorable conditions the program resources 

 2 Parallel and Distributed Models for Logic Programming



Parallel and Distributed Logic Programming                                                       85

2.10 Conclusions 

An examination of the existing parallel models of logic programs reveals that none 
of the models are sufficient to realize all four possible parallelisms in a logic 
program. This indicates that a specialized architecture capable of supporting all 
the four parallelisms is yet to be inherited. The data structure of a Petri net model 
in view of the above requirement is examined in this chapter. It is indeed 
important to note that a Petri net model, if properly designed, can be utilized to 
realize the above four parallelisms of a logic program. The rest of the book 
stresses the importance of Petri net model and proposes a new framework of 
extended Petri met to support the parallelisms in a logic program.

1. Consider the following logic program containing concurrent AND-OR   
parallelism. 

Logic program: 

Compute (X, Z) ←Pick-up (X, Y), Square (Y, Y2), Cube (Y, 
Y3), Subtract (Y3, Y2, Z). 

Square (X, Y) ←Y = X * X. 
Cube (X, Y) ←Y = X * X * X. 
Subtract (X, Y, Z) ←Z = X − Y. 
Pick-up ([X L], Y) ←Y = X. 
Pick-up ([- L], Y) ←Pick-up (L, Y). 

(a)  Draw a schematic dataflow graph for the above program representing 
both pipelining and parallelism of operations to execute the program. 

(b)  Given X = [1, 2, 3] and Y = [v (1, α1), v (2, α2), v (3, α3)], where  α1, α2,
α3 denote three colors, using graph coloring scheme on the dataflow 
graph how can you compute the result as an outcome of this graph? 

[Hints:  

(a) Here, Pick-up is an OR-predicate and Pick-up, Square, Cube, Subtract are 
AND-predicates. If we consider the list L = [1, 2, 3]. When AND- and 
OR-parallelisms are allowed together, the parameter passing by the Pick-
up OR- predicate to the evaluation process of Square and Cube is done in 
pipeline, and then the subtraction process becomes active. A schematic 
diagram of the overall system is presented in Fig. 2.12. 

Exercises
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(b) With X = [1, 2, 3] and Y = [v (1, α1), v (2, α2), v (3, α3)],  
      we evaluate Y2 and Y3 vectors, and finally Z as follows: 
            Y2 = [v (1, α1), v (4, α2), v (9, α3)]
     and  
            Y3 = [v (1, α1), v (8, α2), v (27, α3)]
     and consequently Z takes the form 
             Z = [v (0, α1), v (4, α2), v (18, α3)].         ] 

2.  For the following logic program, identify the guarded clause and also indicate 
the head part, the guard part and the body part. Show the possible parallelism 
in concurrent resolution of the guarded clause, if any, with others. 

    Logic program: 

Cl1: Find (Sum (X-square, Y-cube), Z) ←Int (X), Int (Y), 
        Greater-than (Y, X) Find (X-square, Z1),  

               Find (Y-cube, Z2), Sum (Z1, Z2, Z3). 
        Cl2: Int (1) ←.
        Cl3: Int (2) ←.
        Cl4: Int (3) ←.

[Hints: According to the definition 2.1, Cl1 is a guarded clause where Find 
(Sum (X-square, Y-cube), Z) is the head part; Int (X), Int (Y), Greater-than 
(Y, X) is the guarded part and Find (X-square, Z1), Find (Y-cube, Z2), Sum 
(Z1, Z2, Z3) is the body part.  

      In the process of resolution, AND-parallelism takes place when Cl2, Cl3;
Cl3, Cl4; Cl2, Cl4 are resolved in parallel with Cl1. Again, OR-parallelism 
takes place when the clauses Cl2, Cl3, Cl4 are attempted to resolve with Cl1 for 
Int (X) or Int (Y) in parallel.] 

Pick-up 

Square 

Cube 

Subtract
X

Z
Y

Y2

Y3

2 Parallel and Distributed Models for Logic Programming

Fig. 2.12: The data flow graph of compute
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3.   Apply rule of suspension to determine the order of computation of the given 
guarded clause.  

Cl1: G ←Find (Sum (X-square, Y-cube, Z)). 
                                                  Cl2: Find (Sum (X-square, Y-cube), Z) ←Int (X), Int (Y), Greater-than 

(Y, X)  Find (X-square, Z1), Find (Y-cube, Z2), Sum (Z1, Z2, Z3). 
Cl3: Int (1) ←.
Cl4: Int (2) ←.
Cl5: Int (3) ←.

[Hints: Let us assume that there exists no other clauses except clauses Cl3,
Cl4 and Cl5, to instantiate the guarded part of Cl2. Under this case Cl2 will  
be instantiated first with Cl3 and Cl4 using AND-parallelism and next Cl2
will be reinstantiated with Cl4 and Cl5 and finally with Cl3 and Cl5. Only after 
all these three sets of concurrent resolutions (AND-parallelism) the guarded 
clause Cl2 can be instantiated with Cl1. Thus the instantiation of Cl2 with Cl1
is withheld (suspended) for a time duration until instantiation of the guarded 
part of Cl2 with all possible clauses is over.] 

4.  Apply the rule of commitment to justify the computation of the guarded    
clause. 

Cl1: G ←Find (Sum (X-square, Y-cube), Z), Find-product (Z ∗ 2, P).  
Cl2: Find (Sum (X-square, Y-cube), Z) ←Int (X), Int (Y), Greater-than 

(Y, X)  Find (X-square, Z1), Find (Y-cube, Z2), Sum (Z1, Z2, Z3). 
Cl3: Int (1) ←.
Cl4: Int (2) ←.
Cl5: Int (3) ←.

[Hints: Since ‘Find-product (Z * 2, P)’ of clause Cl1 cannot be instantiated 
with any other available clauses, ‘Find (Sum (X-square, Y-cube), Z)’ of Cl1

will be instantiated with the head of Cl2. Thus Cl2 is committed to 
instantiation with Cl1.] 

5.   Represent the following logic program as an AND-OR tree of three levels   
where each level indicates the exploration of the AND/OR literals through 
resolution with suitable clauses. 

       Logic Program: 

Cl1: A ←a1.
Cl2: A ←a2.
Cl3: B ←b1.
Cl4: B ←b2.
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Cl5: C ←c1.
Cl6: C ←c2.

Query: ←A, B, C. 

[Hints: Figure 2.13 represents the AND-OR tree for the given logic program. 

      The first level is the AND node, the second level denotes the OR nodes 
and the third level denotes the AND nodes. The AND clauses at the first level 
are searched for exploring them in parallel. Then the clauses are resolved with 
the appropriate clauses. 

6.  The logic program given below includes both AND- and OR-parallelism. 
Construct an AND-OR tree using Kale’s formula and show that for the    
following clauses unrestricted AND-/OR- parallelism can be exploited. 

   Logic Program: 

Cl1: A(a, b) ←.
Cl2: A(c, d) ←.
Cl3: B(d, e) ←.
Cl4: B(f, g) ←.

Query: ←A(X, Y), B(U, V). 

[Hints:  Figure 2.14 demonstrates the AND-OR tree constructed using Kale’s 
formula and it is evident from the Fig.2.14 that the AND nodes and the OR 
nodes are searched in parallel for resolution according to the Fig. 2.14. 

7.  The following logic program includes both AND-OR parallelism, but a search 
is needed to determine the consistent bindings of the variables. Using Kale’s 
AND-OR tree show how restricted AND-OR parallelism can be handled to 
find a solution for the problem. 

Logic Program: 

Cl1: A(a, b) ←.
Cl2: A(c, d) ←.
Cl3: B(b, a) ←.
Cl4: B(d, c) ←.   
Cl5: B(d, e) ←.

Query: ←A(X, Y), B(Y, X). 

[Hints: The AND-OR tree is constructed for the given logic program vide 
Fig. 2.15. 
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Cl3

←A, B, C. And-node 

Exploration 
for ←A. 

Exploration 
for ←B. 

Exploration 
for ←C. 

OR-nodes 

←a1. ←a2. ←b1 ←b2. ←c1. ←c2. And-nodes 

Resulting substitution 

Fig. 2.13: The AND-OR tree of three levels   ]

Cl1 Cl2 Cl4 Cl5
Cl6

X = c 
Y = d 

Cl2

X = a 
Y = b 

Cl1

←A(X, Y), B(U, V). And-node 

Exploration for 
←A(X, Y). 

Exploration for 
←B(U, V). 

OR-nodes 

∅ ∅ ∅ ∅

And-nodes 

Fig. 2.14: The AND-OR tree of three levels  ]

U = d 
V = e 

Cl3

U = f 
V = g 

Cl4
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Let θ1 be the possible instantiations of the OR node ‘←A(X, Y).’ and θ2 be the 
possible instantiation of the OR node ‘←B(Y, X).’. Thus,  

θ1 = {(X, Y): <a, b>  <c, d>} 
θ2 = {(X, Y): <a, b>  <c, d>  <e, d>} 

Therefore, the solution set S is given by  

  S = θ1 ∩ θ2

     = {(X, Y): <a, b> ⏐ <c, d>} i.e., X = a, Y = b and 
 X = c, Y = d are the possible solution of the given program.  ] 

8. Given the following logic program and the query: 

Logic Program: 

Cl1: Equal(X, Least-of(X, Y, Z)) ←X<Y, X<Z. 

Query: ←Equal(X, Least-of(6, 4, 9)). 

∅ ∅
X = c          Cl4

Y = d 

X = c 
Y = d 

Cl2

X = a 
Y = b 

Cl1

←A(X, Y), B(Y, X). And-node 

Exploration for 
←A(X, Y). 

Exploration for 
←B(Y, X). 

OR-nodes 

∅ ∅

And-nodes 

Fig. 2.15: The AND-OR tree  

X = a 
Y = b 

Cl3

X = e 
Y = d 

Cl5

∅
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(a) Construct an SLD-tree for the above logic program and show 
failure and backtracking to the root, and also success, when a 
suitable value of X is found. 

(b) Construct an AND-OR tree following Kale and show how 
AND- and OR-parallelism can take place in this context. Does 
this program include Restricted AND parallelism?  

 [Hints: 

(a) The SLD-tree for the aforementioned logic program has been 
constructed as shown in the Fig. 2.16. 

When X = 6 is considered, failure takes place as 6 is not less than 4. 
Considering X = 4, we get success as 4 is less than both 6 and 9. Again, 
when we consider X = 9, we get failure as 9 is not less than 4 or 6. When 
failure occurs, backtracking takes place to the root of the SLD-tree as 
shown in the Fig. 2.16. 

Cl1

X = 4

←Equal (X, Least-of (6, 4, 9)).

Cl1

X = 6 
Cl1

X = 9

6<4, 6<9 4<6, 4<9 9<6, 9<4 

Failure 4<9 Failure

Success

Fig. 2.16: The SLD-tree for the given problem  
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(b)  An AND−OR tree following Kale is shown in Fig. 2.17.  

An AND-OR tree following Kale is constructed as shown in Fig. 2.17. Here, 
as the initial AND node is absent, the OR nodes are shown determining the 
value of X given in the logic program.  

This program does not include Restricted AND-parallelism.] 

9.   Consider the following logic program for testing Pythagorean triplets (X, Y, 
Z). 

Logic Program: 

Cl1: Find Pythagorean-triplets(X, Y, Z) ←Integer(X), Integer(Y), 
Integer(Z), Y>X, Z>Y, Z2 = X2 + Y2.

Query: ←Find Pythagorean-triplets (X, Y, Z). 

(a) List the order of generating and testing the values of (X, Y, Z) to satisfy 
Pythagorean-triplets (X, Y, Z).  

(b) Construct a Data Join Graph (DJG) to represent the order of generating 
and testing (X, Y, Z) for the given problem. 

(c) Verify whether the following goal instances satisfy the Pythagorean-
triplets (X, Y, Z) on the DJG. 

Exploration for
← Equal (X, Least-of (6, 4, 9).

Cl1

X = 4 
Y = 6 
Z = 9 

∅

Cl1

X = 4 
Y = 9 
Z = 6 

∅

Fig. 2.17: The AND-OR tree for the given problem  

OR node 

AND node 
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Pythagorean-triplets (1, 2, 3) ←.
Pythagorean-triplets (3, 4, 5) ←.
Pythagorean-triplets (6, 8, 10) ←.   

 [Hints: 

(a) The order of the generation and testing of (X, Y, Z) are presented in 
consecutive lines. 

Generate an integer X. 
Generate an integer Y>X. 
Generate an integer Z>Y. 
Test whether Z2 = X2 + Y2.

(b)  A Data Join Graph is constructed (vide Fig. 2.18) to represent the order of 
generating and testing (X, Y, Z) for the given problem. 

(c) Here we verify with the second instance only (vide Fig. 2.19). 

The reader can verify the other two instances himself/herself.] 

Integer(Z)Integer(Y)

Integer(X) Y>X Z>Y Z2 = X2 + Y2

Fig. 2.18: Data Join Graph representing the order of generating and testing 
(X, Y, Z) for the given problem  

1 2 3 4 5

Integer(Z) 
Z = 5

Integer(Y)
Y = 4 

Integer(X) 
X = 3 

Y>X
Y = 4

Z>Y 
Z = 5

Z2 = X2 + Y2

52 = 32 + 42

Fig. 2.19: Data Join Graph verifying the second instance for the given 
problem  

1 2 3 4 5
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10. (a)  Construct an SLD-tree for the following logic program and mark the 
inference depth of the nodes in the tree. 

Logic Program: 

Cl1: Equal(X, Sum(1, 2)) ←.
Cl2: Equal(X, Sum(3, 2)) ←.

Query: ←Equal(X, Sum(A, B), A>B). 

(b) Also construct a CAM with appropriate fields to describe backtracking 
on the SLD-tree. 

[Hints: 

(a) The SLD-tree for the given logic program is given in the Fig. 2.20. The 
inference nodes are also marked in the Fig. 2.20. 

(b) A CAM is constructed as shown in the Fig. 2.21 for the given problem. 

The garbage collected in the second step is removed in the third step. In 
the fourth step, a new set of value for A and B is considered. 

by Cl2

A = 3 
B = 2 

←Equal(X, Sum(A, B), A>B). 

by Cl1

A = 1 
B = 2 

Failure Success

Fig. 2.20: The SLD-tree for the given logic program  

Inference depth 

0

1
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  ] 

            

1 B 0 2 1

1 0A 1 1

1 B 0 2 1

1 0A 3 1

1 B 0 2 1

1 0A 1 1

Fig. 2.21: A CAM for the given problem

CAM 
garbage 
collection

CAM 
garbage 
removal
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11. (a)   Construct an SLD-tree for the following logic program and mark the 
inference depth of the nodes in the tree. 

Logic Program: 

Cl1: P(X, Y, Z) ←W(Y, X), R(Z, X). 
Cl2: W(d, e) ←.
Cl3: W(b, a) ←.
Cl4: R(c, a) ←.

Query: ←P(X, Y, Z). 

(b)  Also construct a CAM with appropriate fields to describe backtracking on 
the SLD-tree. 

[Hints:  

(a) The SLD-tree for the given problem is constructed as shown in the Fig. 
2.22. 

by Cl4

Z = c

←P(X, Y, Z). 

←W(Y, X), R(Z, X).

by Cl1

by Cl2

X = e 
Y = d 

←R(Z, e).

Failure

by Cl3

X = a
Y = b

←R(Z, a).

Success

Inference 
depth 

0

1

2

3

Fig. 2.22: The SLD-tree for the given problem  
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When Cl2 was considered for resolution, no clause is available for resolving 
with the resolvent. Therefore, failure takes place. But when Cl3 is considered, 
Cl4 readily resolves with the resolvent and ‘success’ is obtained at the level 
three as shown in the Fig. 2.22. 
(b) A CAM is constructed as shown in the Fig. 2.23 for the given problem. 

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

(c) After garbage collection 

(b) After second resolution

(a) After first resolution 

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

2

2

2 Z

Y

X

1

1

1

d

e

CAM 
garbage 
collection 

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

(d) After backtracking and third resolution 

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

2

2

2 Z

Y

X

1

1

1

b

a

(e) After fourth resolution

1

1

1 Z

Y

X

0

0

0

Z

Y

X

1

1

1

2

2

2 Z

Y

X

1

1

1

b

a

3 Z 2 c

Fig. 2.23: The CAM demonstrating the CAM garbage removal   ]
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12.  (a)   Represent the following logic program by the Petri Net model of Murata. 

  (b)  Construct the incidence matrix A for the network of part (a), and   hence 
determine the time invariant solution X, where A X = 0. 

Logic Program: 
Cl1: Father(X, Y) ←Son(Y, X), Male(X). 
Cl2: Brother(Y, Z) ←Father(X, Y), Mother(W, Z), Wife(W, X). 
Cl3: Son(l, r) ←.
Cl4: Son(k, r) ←.
Cl5: Male(r) ←.
Cl6: Mother(s, l) ←.
Cl7: Mother(s, k) ←.
Cl8: Wife(s, r) ←.

[Hints: Two possible sets of clauses following same firing sequence of the 
transitions are listed below: 

Sequence: tr1/tr2 – tr3 – tr6/tr7 – tr4 – tr5.

      A Petri net is drawn for the given logic program considering the clauses 
Cl1, Cl2, Cl3, Cl5, Cl7, Cl8 vide Fig. 2.24. 

tr1                    Son 
       <l, r> 

tr2                         Male
         <r>          

<Y, X> 
          tr3    <X, Y> Father

<X>       Mother  

                   
       tr7         <s, k>
                     Wife
                        

                <s, r>     
       tr6

<X, Y> 
           tr4                Brother              tr5

               <Y, Z>               <Y, Z>         
    <W, Z>

 <W, X> 

Fig. 2.24: Petri net corresponding to the given logic program
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      Here, as the generic state equation of a logic program realized with a Petri 
net is given by 
 A ο X = 0 

where A = [aij] is an incidence matrix, X provides a solution to the user’s 
query and ο denotes a matrix product with substitution. The following 
incidence matrix is worked out from the said logic program also. 

Now, AT, the transpose of A can be written as follows: 

            Son        Male    Father    Mother   Wife   Brother
                            

          tr1               <l, r> 0 0 0 0 0 

          tr2 0 <r> 0 0 0 0 

          tr3            -<Y, X> -<X>   <X, Y> 0 0 0 

A =    tr4  0 0         -<X, Y> -<W, Z> -<W, X> <Y, Z> 

          tr5  0 0 0 0 0         -<Y, Z> 

          tr6  0 0 0 0         <s, r> 0 

          tr7  0 0 0         <s, k> 0 0 

 tr1 tr2 tr3 tr4 tr5 tr6 tr7

         Son        <l, r> 0    -<Y, X> 0 0 0 0 

          Male 0 <r>   -<X> 0 0 0            0 

        Father 0 0      <X, Y>   -<X, Y> 0 0 0 

 AT=Mother 0 0 0       -<W, Z> 0 0      <s, k> 

          Wife 0 0 0       -<W, X>     0         <s, r> 0 

       Brother 0 0 0        <Y, Z>    -<Y, Z> 0 0 
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The solution vector X1 for the above firing sequence is computed as follows:  

A Petri net is drawn for the given logic program considering the clauses Cl1,
Cl2, Cl4, Cl5, Cl6, Cl8 vide Fig. 2.25 for obtaining the second solution X2

Here, once again, as the generic state equation of a logic program realized 
with a Petri net is given by 

                                                      
                                                  A ο X = 0 

 tr1 ∅

 tr2 { } 

 tr3 {l/Y, r/X} 
X1 = 
 tr4 {r/X, l/Y, k/Z, s/W} 

 tr5 { } 

 tr6 {s/W, r/X} 

 tr7 { } 

tr1                 Son   
       <k, r> 

tr2                         Male
         <r>          

<Y, X> 
           tr3  <X, Y> Father

<X>       Mother 

                 
        tr7        <s, l>
                    Wife
                        
                    
        tr6        <s, r> 

<X, Y> 
                             Brother                
            tr4   <Y, Z>          <Y, Z>    tr5   

<W, Z>

  <W, X> 

Fig. 2.25: Petri net corresponding to the given logic program
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where A = [aij] is an incidence matrix, X provides a solution to the user’s 
query and ο denotes a matrix product with substitution, the following 
incidence matrix is worked out from the said logic program also. 

Now, AT, the transpose of A can be written as follows: 

                                    Son        Male Father Mother Wife Brother 

           tr1      <k, r> 0 0 0 0 0 

           tr2          0           <r> 0 0 0 0 

           tr3         -<Y, X>   -<X>   <X, Y> 0 0 0 
A =
           tr4           0             0       -<X Y>  -<W, Z>  -<W, X>   <Y, Z> 

           tr5           0             0              0 0 0        -<Y, Z> 

           tr6           0             0              0 0 <s, r> 0 

           tr7           0             0              0 <s, l> 0 0 

  tr1 tr2 tr3 tr4 tr5 tr6 tr7

        Son           <k, r> 0       -<Y, X> 0 0 0 0 

        Male 0 <r>      -<X> 0 0 0 0 

       Father 0 0      <X Y>    -<X, Y> 0 0 0 
AT =  
      Mother 0 0 0      -<W, Z> 0 0        <s, l>

        Wife 0 0 0      -<W, X> 0 <s, r> 0

      Brother 0 0 0       <Y, Z>  -<Y, Z> 0 0 
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Now, the solution X2 is given by, 

                                                                                             

It was indeed important to note that the above two solutions are time invariant 
and therefore were generated by satisfying the equations ATοX1 = 0 and 
ATοX2 = 0. 

13. Given a logic program:

Cl1: Brother(Y, Z) ←Father(X, Y), Mother(W, Z), Wife(W, X). 
Cl2: Mother(s, l) ←.
Cl3: Mother(s, k) ←.
Cl4: Wife(s, r) ←.
Cl5: Father(r, l) ←.
Cl6: Father(r, k) ←.

(a) Using the following firing sequence of the transitions, determine the 
answer of the query: 

Brother(l, Z) ←.

Firing order of transitions: tr1 ⎯ tr5

(b) Is this firing order unique? 

           tr1 ∅

           tr2 { } 

           tr3 {k/Y, r/X} 
X2 = 
           tr4      {r/X, k/Y, l/Z, s/W} 

           tr5 { } 

           tr6 {s/W, r/X} 

           tr7 { } 
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[Hints: 
(a) With the given query as the token in the place indicated by the predicate, 

transition tr1 fires and a new token is generated in the place ‘Mother’. As 
the token can be matched with the arc function <s, k>, tr5 can be fired. 
Then the Petri net will have an empty marking indicating a successful 
sequence of firing (vide Fig. 2.26). 

                                                                                              

                                                                                               tr2

                                                                                                               
                                                                     Father         <r, l>
                                                                                      
                                                                                                          tr3

                                                                                                                   
                                         <X, Y>                                    <r, k> 
     Brother                  tr1                                          Mother 
                       <Y, Z>                                                      <s, l>
                                           <W, Z> 
                                                                                                           tr4

                                                                                         <s, k> 
                                         <W, X>           
                                                                                           <s, r>      tr5     
                                                                                    
                                                                                                                  
                                                                      Wife                            tr6

<W, Z1>

                                                                                                 tr2

                                                                                                                   
                                                                    Father          <r, l>

                                           
                                                                                                          tr3     
                                                                                       
                                         <X, Y>                                    <r, k>
     Brother                  tr1                                        Mother 
                     <Y, Z>               <W, Z>                       <s, l>
                                           
                                                                                                          tr4

                                                                    
                                                                    Wife             <s, k> 
                                        <W, X>                                                              
                                                                                                          tr5     
                                                                                       
                                                                                        <s, r>               
                                                                                                          tr6

tr1 {Z/Z1}

<l, Z1>
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(b)  No, because on firing of the transition tr1 traversal of token to no other 
place except ‘Mother’ is feasible.] 
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3

The Petri Net Model-A New Approach 

The chapter presents a new approach to reason with logic programs using a 
specialized data structure similar to Petri nets. Typical logic programs include a 
number of concurrently resolvable clauses. A priori detection of these clauses 
indeed is useful for their subsequent participation in the concurrent resolution 
process. The chapter explores the scope of distributed mapping of program clause 
components onto Petri nets so as to automatically select the participant clauses 
for concurrent resolution. An algorithm for concurrent resolution of clauses on 
Petri nets has been undertaken with a motive to improve the speed-up factor of 
execution of the program without sacrificing the resource utilization rate. All the 
new concepts have been illustrated with examples. The exercise at the end of the 
chapter includes a number of interesting problems provided with sufficient hints to 
enable the readers to verify their understanding. 

3.1 Introduction 

Logic programming has already gained much importance for its increasing 
applications in data and knowledge engineering. A logic program usually consists 
of a special type of program clauses known as Horn clauses.  Programs built with 
Horn clauses only are called normal logic programs. Complex knowledge having 
multiple consequent literals cannot be represented by normal logic programs 
because of its structural restriction imposed by Horn clauses.  

In spite of its limitations in knowledge representation, normal logic programs 
are still prevalent in relational languages like PROLOG and designing DATALOG 
for simplicity in their compilers. Generally, compilers for logic programming 
employ SLD-resolution that resolves each pair of program clauses at a time. 
Execution of a program by SLD-resolution thus requires a considerable amount of 
time. Most logic programs usually include a number of concurrently resolvable 
clauses; unfortunately there is hardly any literature on parallel and distributed 
models of logic programming, capable of resolving multiple program clauses 
concurrently.  

In early nineties, Patt [13] examined a non-conventional execution model of a 
uniprocessor micro-engine for a PROLOG program and measured its performance 
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(SCI) 24, 107–175 (2006) 
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realization of PROLOG on a RAP-WAM machine. The WAM generates an 
intermediate code during the compilation phase of a PROLOG program that 
exploits the fullest degree of parallelism in the program itself. The RAP, on the 
other hand, reduces the overhead associated with the run-time management of 
variable binding conflict between goals. 

Hermenegildo and Tick proposed an alternative model [4] for concurrent 
execution of PROLOG programs by RAP-WAM combinations by representing the 
dependency relationship of the program clauses by a graph, where the take-off 
arcs at the vertex in the graph denotes parallel tasks in the program. They 
employed goal stacks with each processing element. When a parallel call is 
invoked, the concurrent tasks are mapped autonomously to the stacks of the less 
busy or idle processing elements. A synchronization and co-ordination for parallel 
calls was also implemented in their scheme. 

Recently Ganguly, Silberschatz and Tsur [3] presented a new algorithm for 
automated mapping of logic programs onto a parallel processing architecture. In 
their first scheme, they considered the mapping of program clauses having shared 
variables onto adjacent processors. This reduces the communication overhead 
among the program clauses. In the latter part of their work, they eliminated the 
above constraints at the cost of extra network management time. 

Takeuchi in his recent book [15] presented a new language for AND-OR 
parallelism. Kale in a book chapter [7] discussed the scope of an alternative 
formulation of problem-solving using parallel AND-OR trees. Among the existing 
speed-up schemes of logic programming machines, the content addressable 
memory (CAM)–based architecture of PROLOG machines by Naganuma et al. 
[12] needs special mention. To speed up the execution performance of PROLOG 
programs, they employed hierarchical pipelining and garbage collection 
mechanism of a CAM for efficient backtracking on a SLD tree. 

Though a number of techniques are prevalent for the realization of logic 
programs on a parallel architecture, none of these are capable of representing the 
theoretically possible maximum parallelism in a program. For realization of all 
types of parallelism in a logic program, a specialized data structure appropriate for 
representing the possible parallelism is needed. Petri net has already proved itself 
as a successful data structure for reasoning with complex rules. For instance, rules 
having more than one antecedent and consequent clause with each clause 
containing a number of variables can easily be represented by a Petri net structure 
[9]. Murata [11] proposed the scope of Petri net models for knowledge 
representation and reasoning under the framework of predicate logic.   

There is also a good many literature [6, 10, 14] dealing with much more 
complex reasoning problems using Petri nets. Because of the distributed structure 
of a Petri net, pieces of knowledge fragmented into components can easily be 
mapped onto this structure [8]. For example, a transition firing in a Petri net may 
synonymously be used as rule firing in an expert system. The transitions may be 
regarded as the implication operator of a rule, while its input and output places 
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with a set of 14 benchmarks. Yan [16] provided a novel scheme for concurrent 
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may respectively be regarded as the antecedent and consequent clauses of a rule 
[1]. The arguments associated with the predicates of a clause are also assigned at 
the arcs connecting the place containing the predicate and the transition describing 
the implication rule. Such fragmentation and mapping of the program components 
onto different modules of a Petri net enhances the scope of parallelism in a logic 
program. The objective of the chapter is to fragment a given logic program to 
smallest possible units, and map them onto a Petri net to fully exploit its parallelism. 

The methodology of reasoning presented in the chapter is an extension of 
Murata’s classical models on Petri nets [11, 14], applied to logic programming. 
Murata defined a set of rules to synonymously describe the resolution of horn 
clauses in a normal logic program with the firing of transitions in a Petri net. The 
chapter attempts to extend Murata’s scheme for automated reasoning to non-Horn 
clause based programs as well. 

Section 3.2 provides related definitions of important terminologies used in this 
chapter. The concept of concurrency in resolution process is introduced in section 
3.3. A new model for concurrent resolution on Petri nets is presented in section 
3.4. An algorithm for concurrent resolution is presented in section 3.5. 
Performance analysis of the Petri net-based model is covered in section 3.6. 
Conclusions are listed in section 3.7. A set of numerical problems has been 
undertaken in the exercise of the chapter. 

3.2 Formal Definitions 

In this section, we provide relevant definitions to logic programming and different 
methodologies to execute logic programs by resolution of program clauses. 

Definition 3.1: A clause cli is represented by

               Ai ←Bi .                                                                                                 (3.1)

where Bi denotes the body, Ai denotes the head and ‘←’ denotes the implication 
operator. 

      The body Bi usually is a conjunction of literals Bij ∃j, i.e., 

               Bi = Bi1 ∧ Bi2 ∧…..∧ Bij                                                                                           (3.2) 

               The head Ai usually is a disjunction of literals Aik ∃k, i.e.,  

Ai = Ai1 ∨ Ai2 ∨…..∨ Aik                                                                       (3.3)                

3.2.1 Preliminary Definitions 
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 The literals Aik and Bij have arguments containing terms that may include 
variables (denoted by capital letters), constants (denoted by small letters), 
function of variables and function of function of variables (in a recursive form). 

Example 3.1: This example illustrates the constituents of a clause. For instance, 

         Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z).   (3.4) 

is an example of a general clause, where the body consists of Father (X, Y) and 
Grandfather (X, Z) and the head consists of Father (Y, Z) and Uncle (Y, Z). The 
clause states that if X is the father of Y and X is the grandfather of Z, then either Y 
is the father of Z or Y is the uncle of Z.                                                

      In case all the terms are bound variables or constants, the literals Aik or Bij are 
called ground literals.

Example 3.2: The following is an example of a clause with all variables been 
bound by constants, thereby resulting in ground literals: Father (n, a) and Son (a, 
n). 

            Father(n, a) ←Son(a, n).                                                                         (3.5) 

      The above clause states that if a is son of n then n is the father of a.

Special cases: 

(i) In case of a goal clause (query) the consequent part Ai is absent. 

            The clause (3.6) presented below contains no consequent part, and hence it 
is a query. 

             ←Grandfather(X, Z).                                                                             (3.6) 

            Given that X is the grandfather of Z, the clause (3.6) questions the value of 
X and Z.                                                                                     

                                                            
(ii) A clause with an empty body and consisting of ground literals in the head is 

regarded as a fact.

            The clause (3.7) below contains no body part and the variable arguments 
are bound by constants. Thus it is a fact.

 Grandfather(r, a) ←.                                                                             (3.7) 
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            It states that r is grandfather of a.                                                                

(iii) When the consequent part Ai includes a single literal, the resulting clause is 
called a Horn clause. The details about Horn clause are given in definition 
3.2.                                          

                                                                                                                    
(iv) When Aik and Bij do not include arguments, we call them propositions and the 

clause ‘Ai ←Bi.’ is then called a propositional clause.

            The clause (3.8) below for instance is a propositional clause as it does not 
contain any arguments.    

P ←Q, R.                                                                                              (3.8) 
                
Definition 3.2: A Horn clause contains a head and a body with at most one literal 
in its head. 

Example 3.3: The clause (3.9) is an example of a Horn clause. 

            P ←Q1, Q2, ….., Qn.                                                                                (3.9) 
    
    It represents a Horn clause where P and the Qi are literals or atomic formulas. It 
means if all the Qis are true, then P is also true. Qi is the body part and P is the 
head in this Horn clause.                                                                                                 

Definition 3.3: The clauses containing more than one literal in its head are known 
as Non-Horn Clauses.

Example 3.4: The clause (3.10) for instance is a non-Horn clause. 
         
        P1, P2,….., Pm ←Q1, Q2,….., Qn.                                                               (3.10) 
                                                                                                                                                                          
Definition 3.4: An Extended Horn Clause (EHC) contains a head and a body  
with at least one clause in the body and zero or more number of  clause in its 
head. Commas are used to denote conjunction of the literals in the body and 
disjunction of literals in the head. 

Example 3.5: The general format of an EHC is  

 A1, A2,….., An ←B1, B2,….., Bm.                                                       (3.11) 

      Here the head and the body contain n and m number of literals respectively.  
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      It is important to note that an extended Horn clause includes both Horn clause 
and its extension as well.                                                                                      

Definition 3.5: A program that contains extended Horn clauses, as defined above, 
is called an Extended Logic Program.

Example 3.6: The clauses (3.12 − 3.15) together represent an extended logic 
program.  It includes extended Horn clause (3.12) with facts (3.13 − 3.15). 

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z).                (3.12) 
Father(r, d) ←.                                                                                           (3.13) 
¬Father(d, a) ←.                                                                                        (3.14) 
Grandfather(r, a) ←.                                                                                  (3.15) 

      To represent the query “whether d is uncle of a?” the goal clause of the 
following form may be constructed. 

         Goal: ←Uncle(d, a).                                                                                 (3.16) 

      The answer to the query can be obtained by taking negation of the goal and 
then resolving it with the supplied clauses (3.12 − 3.15). In the present context, the 
answer to the query will be true.                                                           
          
       To explain this, we need to introduce the principles of resolvability of two 
clauses. In order to explain resolvability of clauses we further need to introduce 
substitution sets and most general unifier.

Definition 3.6: A substitution represented by a set of ordered pairs s{t1/v1,
t2/v2,….., tn/vn}, is called the substitution set. The pair ti/vi means that the term ti is 
substituted for every occurrence of the variable vi throughout.

Example 3.7: There exists four substitution sets for the predicate P(a, Y, f(Z)) in 
the following instances: 

 P(a, X, f(W)) 
 P(a, Y, f(b)) 
 P(a, g(X), f(b)) 
 P(a, c, f(b)) 

      Substitution sets for the aforementioned examples are 

 s1 = {X/Y, W/Z} 
 s2 = {b/Z} 
 s3 = {g(X)/Y, b/Z} 
 s4 = {c/Y, b/Z}                                                                            
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      To denote a substitution instance of an expression w, using a substitution s we 
write ws. 

Example 3.8: Let the expression w = P(a, Y, f(Z)) and the substitution set s = 
{X/Y, W/Z}. Then the substitution instance ws = P(a, X, f(W)).                       

3.2.2 Properties of the Substitution Set 

Property 1: (ws1)∆s2 = w(s1∆s2) where w is an expression and s1∆s2 are two 
substitutions. 

Example 3.9: To illustrate the property 1, 

let,  
         w = P(X, Y), 

          s1 = {f(Y)/X} 

and    s2 = {a/Y}. 

 Now, (ws1)∆s2 = (P(f(Y), Y)){a/Y} 
            = (P(f(a), a)). 

Again, w(s1∆s2) = (P(X, Y)){f(a)/X, a/Y} 
             =  P(f(a), a). 

Therefore, (ws1)∆s2 = w(s1∆s2).                                                                                                        

      The composition of two substitutions s1 and s2 in order is denoted by s1∆s2,
which is the substitution obtained by first applying s2 to the terms of s1 and then 
adding the ordered pairs from s2 not occurring in s1. Example 3.10 illustrates the 
said concept. 

Example 3.10: Let s1 = {f(X, Y)/Z} and  s2 = {a/X, b/Y, c/W, d/Z}. 

Then s1∆s2 = {f(a, b)/Z, a/X, b/Y, c/W}.                                                    
Property 2: Composition of substitutions is associative i.e., 

                  (s1∆s2)∆s3 = s1∆(s2∆s3). 
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Example 3.11: To illustrate the associative property of composition in 
substitutions, 
let,
      s1 = {f(Y)/X} 
      s2 = {a/Y} 
      s3 = {c/Z} 
and w = P(X, Y, Z). 

Here, (s1∆s2)     = {f(a)/X, a/Y} 
         (s1∆s2)∆s3 = {f(a)/X, a/Y, c/Z} 

Again, (s2∆s3)   = {a/Y, c/Z} 
         s1∆(s2∆s3) = {f(a)/X, a/y, c/Z} 

Therefore, (s1∆s2)∆s3 = s1∆(s2∆s3).                                                                     

Property 3: Commutability fails in case of the substitutions i.e.,                    
                                                                                  
                   s1∆s2 ≠ s2∆s1.

Example 3.12: We can illustrate the third property following the substitution sets 
used in example 3.11.  

Here, 

       (s1∆s2) = {f(a)/X, a/Y}    and (s2∆s1) = {a/Y, f(Y)/X} 
       So, s1∆s2 ≠ s2 ∆s1.                                                                                                                                    

Definition 3.7: Given two predicates P(t1, t2, ....., tn) and P(r1, r2, ....., rn) and s = 
{ti/ri} is a substitution set, which on substitution in the predicates makes them 
identical (unifies them). Then the substitution set s is called a unifier. The most 
general unifier (mgu) is the simplest unifier g, so that any other unifier g  satisfies 
g  = g ∆ s  for some substitution s .     

Example 3.13: For the predicates P(X, f(Y), b) and P(X, f(b), b), g  = {a/X, 
b/Y}definitely is a unifier as it unifies the predicates to P(a, f(b), b), but the mgu 
in this case is g = {b/Y}. If is to be noted further that a substitution s  = {a/X} 
satisfies g  = g ∆ s .                                                                                               

Definition 3.8:  Let cli and clj be two clauses of the following form: 

     Cli ≡ Ai1 ∨ Ai2  ∨…..∨ Aix ∨…..∨ Aim  ←Bi1 ∧ Bi2  ∧…..∧ Bil                       (3.17) 
     Clj ≡ Aj1 ∨ Aj2  ∨…..∨ Ajm

/ ←Bj1  ∧ Bj2 ∧…..∧ Bjy ∧…..∧ Bjl
/                      (3.18) 

      

3 The Petri Net Model  A New Approach⎯



Parallel and Distributed Logic Programming                                                       115

and P be the common literal present in the head of cli and body of clj. For instance, 
let for a substitution s 

         [Aix]s = [Bjy]s = [P]s

      The resolvent of cli and clj, denoted by R(cli, clj) = clij (say), is computed as 
follows under the substitution s = sij, say. 

Clij =
 [(Ai1 ∨ Ai2 ∨…..∨ Ai(x-1) ∨ Ai(x+1) ∨…..∨ Aim)∨(Aj1 ∨ Aj2 ∨…..∨ Ajm

/) ←
  (Bi1 ∧ Bi2 ∧…..∧ Bil)∧(Bj1 ∧ Bj2  ∧…..∧ Bj(y-1)  ∧ Bj(y+1) ∧…..∧ Bjl

/ )]             (3.19) 

      If clij can be computed from the given cli and clj, we say that the clauses cli and 
clj are resolvable.

Example 3.14: The clauses given are as follows:

          Cli: Fly(X) ←Bird(X).                                                                            (3.20) 
          Clj: Bird(parrot) ←.                                                                                 (3.21) 
          Clij: Fly(parrot) ←.    where sij ={parrot/X}                                            (3.22) 

      The clauses cli and clj in this example, are resolvable with the substitution sij

yielding the resolvent clij.                                                                          

Definition 3.9: If in a set of clauses there is at least one clause clj for each clause 
cli such that resolution holds on cli and clj, producing a resolvent clij, then the set  
is called the set of resolvable clauses.

Example 3.15: In the following set of clauses each clause is resolvable with at 
least one other clause:

       Mother(Y, Z) ←Father(X, Z), Wife(Y, X).                                               (3.23) 
       Father(r, l) ←.                                                                                            (3.24) 
       Wife(s, r) ←.                                                                                             (3.25) 

      Here, clause number 3.23 is resolvable with clause number 3.24 and clause 
number 3.25. It is an example of the set of resolvable clauses.                                

Now, we briefly underline Select Linear Definite (SLD)-resolution. 

3.2.3   SLD Resolution 

To understand SLD resolution we first have to learn a few definitions. 
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Definition 3.10: A definite program clause is a clause of the form  

  A ←B1, B2, ...., Bn., 

which contains precisely one atom (viz. A) in its consequent (head) and may 
contain a null, one or more literals in its body (viz. B1 or B2 or …..or Bn). 

Definition 3.11: A definite program is a finite set of definite program clauses. 

Definition 3.12: A definite goal is a clause of the form 

←B1, B2, ....., Bn.

i.e., a clause with an empty consequent.

Definition 3.13: SLD resolution stands for SL resolution for definite clauses,
where SL stands for resolution with linear selection function.

Example 3.16: This example illustrates the linear resolution. Here, the following 
OR clauses (clauses connected by OR operator), represented by a set-like notation 
are considered. 

A1                                   A2

P(X) ←.              A3

Q(X) ←.             A4

←P(X).              P(X) ←.

∅

Fig. 3.1:  The linear selection of clauses in the resolution tree
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Let S = {A1, A2, A3, A4}, 
where  A1 = P(X), Q(X) ←.   
           A2 = P(X) ←Q(X).   
           A3 = Q(X) ←P(X). 
           A4 = ←P(X), Q(X).    

and goal = ←¬P(X).     

      By linear selection, a resolution tree can be constructed as shown in Fig. 3.1.                        

      It is clear that two clauses from the set S1 = S ∪{¬Goal} are first used for 
resolution with a third clause from the same set S1. The process is continued until 
a null clause is generated. In the linear selection process, one clause, however, can 
be used more than once for resolution.                                                                             

Definition 3.14: Let S = {cl1, cl2, ...., cln} be a set of resolvable clauses, and there 
exists one or more definite orders to select the clauses pair-wise for SLD 
resolution, without which the SLD resolution of all the n clauses fail to generate a 
resolvent. Under this circumstance, we say that an orderly resolution exists 
among the clauses in S.

      The resolvent of clauses cli and clj is hereafter denoted by clij or R(cli, clj), where R 
represents a binary resolution operator. The order of resolution in R (R (cli, clj), clk)  is 
denoted by i-j-k for brevity. It may be noted that i-j ≡ j-i and i-j-k ≡ k-i-j ≡ k-j-i. 

Example 3.17: Given the following clauses cl1 through cl3, we would like to 
illustrate the principle of orderly resolution with these clauses. 

      Cl1: Paternal-uncle(X, Y), Maternal-uncle(X, Y) ←Uncle(X, Y). 
      Cl2:¬Paternal-uncle(n, a) ←.   ≡ ←Paternal-uncle(n, a). 
      Cl3:¬Maternal-uncle(n, a) ←. ≡ ←Maternal-uncle(n, a). 

      We now demonstrate two different orders of resolution, and show that the 
result is unique in both the cases. One of the orders of resolution could be 1-2-3. 
This is computed as follows: 

        R(cl1, cl2): Maternal-uncle(n, a) ←Uncle(n, a).  with s12 = {n/X, a/Y} 
        R(R(cl1, cl2), cl3): ←Uncle(n, a).   ≡ ¬Uncle(n, a) ←.

      An alternative order of resolution is 3-1-2. To compute this, we proceed as 
follows:  

         R(cl3, cl1): Paternal-uncle(n, a) ←Uncle(n, a).  with s31 = {n/X, a/Y} 
         R(R(cl3, cl1), cl2): ←Uncle(n, a).   ≡ ¬Uncle(n, a) ←.



118                                                  

      So, both the orderly resolutions return the same resolvent: [¬Uncle(n, a) ←.] 
which means n is not the uncle of a. 

      It is important to note that resolution of multiple clauses by different orders 
always do not return unique resolvent.                                                                                                   

Definition 3.15: If there exists only one definite order of resolution among a set 
of resolvable clauses, it is said to have single sequence of resolution.  On 
occasions, we can obtain the same resolvent by taking a reversed order of 
resolution. For instance R( …(R(R(R(cl1, cl2), cl3), cl4)…..cln-1), cln) = 
R(…(R(R(cln, cln-1), …cl3),cl2),cl1) is valid if the resolvents can be computed for 
each resolution. We, however, consider it a single order of resolution.                                                    

Example 3.18: To understand the single sequence of resolution, let us take the 
following clauses.  

       Cl1: W(Z, X) ←P(X, Y), Q(Y, Z). 
       Cl2: P(a, b) ←S(b, a). 
       Cl3: S(Y, X) ←T(X). 
     
      The resolution of clauses in the present context follows a definite order: 1-2-3 
(or 3-2-1). It may be noted that 

         R(R(cl1, cl2), cl3) = R(R(cl3, cl2), cl1) = W(Z, a) ←Q(b, Z), T(a).   

      Consequently, a single sequence is maintained in the process of resolution of 
multiple program clauses.                                                                                                 

Definition 3.16: When in a set of resolvable clauses, resolution takes place 
following different orders, multiple sequence is said to be present. 

Example 3.19: The following clauses are taken to illustrate the multiple 
sequences in a set of resolvable clauses. 

 Given Cl1: S(Z, X) ←P(X, Y), Q(Y, Z), R(Z, Y). 
            Cl2: P(a, b) ←T(c, a), U(b). 
            Cl3: Q(b, c) ←V(b), M(c). 
            Cl4: R(Z, Y) ←N(Y), O(Z). 

Sequence 1:  Order: 1-2-3-4. 

R(cl1, cl2):S(Z, a) ←Q(b, Z), R(Z, b), T(c, a), U(b).⏐s12={a/X, b/Y} 

R(R(cl1, cl2), cl3): S(c, a) ←R(c, b), T(c, a), U(b), V(b), M(c).⏐s12,3={c/Z}
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R(R(R(cl1, cl2), cl3), cl4): 
S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).⏐s12,3,4={c/Z,b/Y} 

Sequence 2:  Order: 3-1-2-4. 

R(cl3, cl1): S(c, X) ←P(X, b), R(c, b), V(b), M(c).⏐s31={c/Z, b/Y} 

R(R(cl3, cl1), cl2): 
S(c, a) ←T(c, a), U(b), P(a, b),R(c, b), V(b), M(c).⏐s31,2={a/X} 

R(R(R(cl3, cl1), cl2), cl4): 
S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).⏐s31,2,4={c/Z, b/Y} 

Sequence 3:  Order: 1-2-4-3. 

R(R(cl1, cl2), cl4): 
S(Z, a) ←Q(b, Z), T(c, a), U(b), N(b), O(Z).⏐s12,4={b/Y} 

R(R(R(cl1, cl2), cl4), cl3): 
S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c).⏐s1,2,4,3={c/Z} 

The results of the above computation reveal that  

            R(R(R(cl1, cl2), cl3), cl4)
        =  R(R(R(cl3, cl1), cl2), cl4)
        =  R(R(R(cl1, cl2), cl4), cl3)
        =  S(c, a) ←T(c, a), U(b), V(b), M(c), N(b), O(c). 

      Consequently, multiple orders exist in the resolution of clauses.             

      Readers may please note that resolution between cl2 and cl3, cl3 and cl4, cl2 and 
cl4 are not possible.                                                                            

Definition 3.17: Let S = {cl1, cl2, ...., cln} be a set of resolvable clauses and the 
clis are ordered in a manner that cli and cli+1 are resolvable for i = 1, 2, ...., (n-1). 
If cln is also resolvable with cl1 we call it circular resolution. Circular resolution 
is not allowed as it invites multiple resolutions between two clauses. 

Example 3.20:  Consider the following propositional clauses. 

          Cl1: Q ←P. 
          Cl2: R ←Q. 
          Cl3: P ←R. 

Let Cl12 = R(Cl1, Cl2)
              = R ←P. 
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However, evaluation of R(Cl12, Cl3) cannot be performed as it invites more than 
one resolution between the two clauses[2].                                                                                     

Definition 3.18: Let S be a set of resolvable clauses such that their pair-wise 
selection for SLD resolution from S is random. Under this condition S is called the 
set of an order-less or order independent clauses.

Example 3.21: Let S be the set of the following clauses: 

Cl1: U ←P, Q, R. 
Cl2: S, M, P ←V. 
Cl3: Q ←W, M, T. 
Cl4: T ←U, S. 

      In this example, we attempt to resolve each clause with others. 

 Cl12: U, S, M ←V, Q, R. 
 Cl13: U ←P, R,W, M, T. 
 Cl14: T ←P, Q, R, S. 
 Cl23: S, P, Q ←V, W, T. 
 Cl34: Q ←W, M, U, S. 
 Cl24: M, P, T ←V, U. 

      As each of the clauses is resolvable with each other, order-less condition for 
resolution holds here.                                                                                   

3.3 Concurrency in Resolution 

To speed up the execution of logic programs, we in this section take a look at 
possible parallelism/concurrency in the resolutions involved in the program. 

3.3.1 Preliminary Definitions  

Definition 3.19: If S includes multiple ordered sequence of clauses for SLD 
resolution and for each such sequence the final resolvent is identical then the 
clauses in S are concurrently resolvable. Under this case resolution of all the 
clauses can be done concurrently yielding the same resolvent. 
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Example 3.22: In this example we consider concurrent resolution of propositional 
clauses.  

             Cl1: R ←P, Q. 
             Cl2 : P ←S.  
             Cl3 : Q ←T. 
             Cl4 : T ←U. 

Sequence 1: Order: 1-2-3-4.                             
                        

R(Cl1, Cl2): R ←Q, S. 
R(R(Cl1, Cl2), Cl3): R ←T, S. 
R(R(R(Cl1, Cl2), Cl3), Cl4): R ←U, S. 

Sequence 2: Order: 3-1-4-2.                                                                                                    

              R(Cl3, Cl1): R ←P, T. 
              R(R(Cl3, Cl1), Cl4): R ←P, U. 
              R(R(R(Cl3, Cl1), Cl4), Cl2): R ←U, S. 

Sequence 3: Order: 3-1-2-4.                                                                                                                                     

R(R(Cl3, Cl1), Cl2): R ←S, T. 
              R(R(R(Cl3, Cl1), Cl2), Cl4): R ←U, S. 

Sequence 4: Order: 3-4-1-2.                                                                                                                                     

              R(Cl3, Cl4): Q ←U. 
              R(R(Cl3, Cl4), Cl1): R ←P, U. 
              R(R(R(Cl3, Cl4), Cl1), Cl2): R ←U, S.  

      Illustration of concurrent resolution: 

  R ← P, Q. 
  P ← S. 
  Q ← T. 
                      T ← U. 
                     R ← U, S.  
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                          Fig. 3.2:  Concurrent resolution                                

For all the four sequences the resolvent is unique ‘R ←U, S.’, which is illustrated 
vide Fig. 3.2.   

Definition 3.20: In case multiple sequences exist in orderly resolution and the 
resolvent is not unique, then the substitutions used in resolution in each pair of 
clauses may be propagated downstream in the process of SLD resolution.  The 
composition of the substitution sets for every two sequential substitutions is also 
carried forward along the SLD tree until the final resolvent is obtained. The final 
substitution may now be used as the instantiation space of the resolvent and the 
resulting clause thus generated for each such sequence is compared. In case the 
instantiated resolvent generated following multiple sequences yields a unique 
result then the clauses in S are also called concurrently resolvable set of 
resolution. The final substitution set is called the deferred substitution set.

Example 3.23: To illustrate the aforementioned situation, let 

           Cl1: R(Z, X) ←P(X, Y), Q(Y, Z). 
           Cl2: P(a, b) ←S(b, a). 
           Cl3: Q(b, c) ←T(c, b). 
           Cl4: T(Z, Y) ←U(X, Y). 

Sequence 1: Order: 1-2-3-4. 

R(Cl1, Cl2): R(Z, a) ←Q(b, Z), S(b, a).⏐s12={a/X, b/Y}

R(R(Cl1, Cl2), Cl3): R(c, a) ←T(c, b), S(b, a).⏐s12,3={c/Z}  

R(R(R(Cl1, Cl2), Cl3), Cl4):R(c, a) ←S(b, a), U(X, b).⏐s12,3,4={c/Z,b/Y} 

      ∴Composition of the substitutions, s12 ∆ s12,3 = {a/X, b/Y, c/Z} and the final 
composition of the substitutions, s12 ∆ s12,3∆ s12,3,4 = {a/X, b/Y, c/Z}. 

R ←P, Q. 

P ←S. 

Q ←T. 

T ←U. 

Concurrent 
resolution R ←U,  S. 
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Sequence 2: Order: 3-1-2-4. 

R(Cl3, Cl1): R(c, X) ←P(X, b), T(c, b).⏐s31={b/Y, c/Z} 

R(R(Cl3, Cl1), Cl2): R(c, a) ←T(c, b), S(b, a).⏐s31,2={a/X} 

R(R(R(Cl3, Cl1), Cl2), Cl4):R(c, a) ←S(b, a), U(X, b).⏐s31,2,4={c/Z, b/Y} 

      ∴Composition of the substitutions, s31 ∆ s31,2 = {a/X, b/Y, c/Z} and the final 
composition of the substitutions, s31 ∆ s31,2∆ s31,2,4 = {a/X, b/Y, c/Z}. 

Sequence 3: Order: 3-4-1-2 

 R(Cl3, Cl4): Q(b, c) ←U(X, b).⏐s34={b/Y, c/Z} 

 R(R(Cl3, Cl4), Cl1): R(c, X) ←P(X, b), U(X, b).⏐s34,1={b/Y, c/Z} 

 R(R(R(Cl3, Cl4), Cl1), Cl2):R(c, a) ←S(b, a), U(a, b).⏐s34,1,2={a/X} 

      ∴Composition of the substitutions, s34 ∆ s34,1 = {b/Y, c/Z} and the final 
composition of the substitutions, s34 ∆ s34,1,2∆ s34,1,2 = {a/X, b/Y, c/Z}. 

      Now, if we compute the deferred substitution set for the three sequences, we 
find it to be equal, the value of which is given by s ={a/X, b/Y, c/Z}. When the 
resolvents are instantiated by this deferred substitution set, they become equal and 
the final resolvent is given by R(c, a) ←S(b, a), U(a, b).                                      

3.3.2 Types of Concurrent Resolution 

There are three types of concurrent resolution: 

(1) Concurrent resolution of a rule with facts, 
(2) Concurrent resolution of multiple rules, 
(3) Concurrent resolution of both multiple rules and facts. 

      Various well-known types of parallelisms are involved in the concurrent 
resolutions. 

      Whenever more than one variable in a rule are instantiated with the constants, 
Unification-Parallelism takes place. 

Definition 3.21: When the predicates of a rule are attempted for matching with 
predicates contained in the facts, concurrent resolution of the rule with facts is 
said to take place. 
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It can occur in two ways. In the first case, the literals present in the body part of 
a clause (AND-literals) may be searched against the literals present in the heads of 
the available facts, which is a special case of AND-Parallelism.

Example 3.24: To illustrate AND-parallelism let us consider the following 
clauses: 

Mother(Z, Y) ←Father(X, Y), Married-to(X, Z).                                      (3.26) 
Father(r, n) ←.                                                                                           (3.27) 
Married-to(r, t) ←.                                                                                     (3.28) 

      Here, predicates in the heads of the facts given by the clauses 3.27 and 3.28 
are concurrently resolved with the predicates in the body of the rule given by 3.26 
yielding the resolvent  

       Mother(t, n) ←.                                                                                  

Again, when a literal present in the body of one rule may be searched concurrently 
against the literals present in the heads of more than one fact OR-Parallelism is 
invoked. 

Example 3.25: We can illustrate OR-parallelism with the help of the following 
clauses: 

Son(X, Y) ←Father(Y, X).                                                                        (3.29) 
       Father(r, n) ← .                                                                                          (3.30) 

Father(n, a) ← .                                                                                           (3.31) 

Here, the variables present in the body of the rule given by equation number 
3.29 can be matched concurrently with the arguments in the heads of the facts 
given by equation numbers 3.30 and 3.31.                                                              

Definition 3.22: When more than one rule are resolved concurrently in a given set 
of resolvable clauses, we say that concurrent resolution of multiple rules has 
taken place. 

Example 3.26: The following clauses are considered to explain the concurrent 
resolution of multiple rules:

       Mother(Z, Y) ←Father(X, Y), Wife(Z, X).                                               (3.32) 
       Wife(Y, X) ←Female(Y), Married-to(Y, X).                                            (3.33) 
       Married-to(X, Y) ←Marries(X, Y).                                                           (3.34) 
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Here, the concurrent resolution can take place between the rules 3.32 and 3.33 
in parallel with the rules 3.33 and 3.34. Moreover, the above three rules can be 
concurrently resolved together yielding the resolvent 

       Mother(Z, Y) ←Father(X, Y), Female(Z), Marries(X, Z).                        (3.35) 
                                                                                                                    

A special kind of parallelism, known as Stream-parallelism can be encountered 
while discussing concurrent resolution of multiple rules. It is explained with the 
example 3.27. 

Example 3.27: Let us consider the following clauses: 

       Integer(X+1) ←Integer(X).                                                                        (3.36) 
       Evaluate-square(Z.Z) ←Integer(Z).                                                           (3.37) 
       Print(Y) ←Evaluate-square(Y).                                                                 (3.38) 
       Integer(0) ←.                                                                                              (3.39) 

Here, the resolvent obtained by resolving the rule 3.36 and the fact 3.39 is 
propagated to resolve the rule 3.37. The resolvent thus obtained is resolved further 
with 3.38. The process is repeated in a streamline for the integer sequence 0, 1, 2, 
…… up to infinity. After one result is printed, the pipeline becomes busy rest of 
the time, and resolution of three pairs of clauses take place.                         
                                                                                                                   
Definition 3.23: If more than one rule is resolved concurrently with more than 
one fact, concurrent resolution of both multiple rules and facts takes place. 

Example 3.28: To illustrate the concurrent resolution of multiple rules and facts, 
let us take the following clauses: 

R(Z, X) ←P(X, Y), Q(Y, Z).                                                                     (3.40) 
P(a, b) ←.                                                                                                   (3.41) 
Q(b, c) ←.                                                                                                  (3.42) 
S(U, V), T(U, V) ←R(U, V).                                                                     (3.43) 
←S(d, e).                                                                                                    (3.44) 
←T(d, e).                                                                                                    (3.45) 

Here, concurrent resolution can take place in several ways. At first, the rules 
given by (3.40) and (3.43) can resolve generating the resolvent S(Z, X),T(Z, X) 
←P(X, Y), Q(Y, Z). Again, the rule (3.40) is resolved with the facts given by 
(3.41) and (3.42) in parallel while the rule (3.43) is resolved with the facts given 
by (3.44) and (3.45). The resolvents in these two cases are, respectively: 

       R(c, a) ←Q(b, c). and ←R(d, e).                                                
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When the predicates present in the body of one rule does also occur in the head 
of a second rule the latter and the former rules are said to be in pipeline [9]. Rules 
in pipeline are resolvable. But in case there exists matching ground clause for the 
common literals of both the rules, it is preferred to resolve the ground clause with 
either of (or both) the rules. The Petri net model for extended logic programming 
that we would like to introduce shortly is designed based on the aforementioned 
concept. 

       The observations which can be made from example 3.28 are as follows: 

(1)  Resolution of a rule with one or more facts provides a scope for 
yielding intermediate ground inferences. 

          
            For instance, the rule (3.40) in example 3.28 when resolved with 

(3.41) and (3.42) yields a ground intermediate R (c, a) ←Q (b, c). 

(2) Resolution of two or more rules yields new rules containing literals 
with renamed variables. The effort in doing so, on many occasions, 
may be fruitless. 

              
            For instance, if rule (3.40) and (3.43) were resolved, a new rule 

would be generated with no further benefits of re-resolving the 
resulting rule with available facts. 

(3) In case there exist concurrently resolvable group of clauses, where 
each group contains a rule and a few facts, then the overall 
computational speed of the system can be significantly improved. 

Example 3.29 provides an insight to this issue.                                                                                                      

Example 3.29: Let us take the following clauses 

R(Z, X) ←P(X, Y), Q(Y, Z).                                                                     (3.46) 
P(a, b) ←.                                                                                                   (3.47) 
Q(b, c) ←.                                                                                                  (3.48) 
S(U, V), T(U, V) ←R(U, V).                                                                     (3.49) 
←S(c, a).                                                                                                    (3.50) 
←T(c, a).                                                                                                    (3.51) 

Unlike example (3.28), where the resulting resolvents after concurrent 
resolution of two groups of clauses could not participate in further resolution, here 
the resolvents due to concurrent resolution of (3.46 − 3.48) and (3.49 − 3.51) can 
also take part in the resolution game, resulting in a null clause. To have an idea of 
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speed-up, we construct a graph (vide Fig. 3.3) indicating the concurrency in 
resolution. 

It is apparent from the graph (Fig. 3.3) that the concurrent resolution of clauses 
(3.46-3.48) and (3.49-3.51) can take place in one unit time, and the resolution of 
the resulting clauses require one unit time. Thus, the time taken for execution of 
the logic program on a parallel engine is two unit times. The same problem, if 
solved by SLD tree, takes as many as five unit times to perform five resolutions of 
binary clauses (Fig. 3.4). 

              

0        R(Z,  X) ←P(X, Y), Q(Y, Z).            P(a, b) ← .

1                               R(Z, a) ←Q(b, Z).             Q(b, c) ←.

2                                     R(c, a) ←.            S(U, V), T(U, V) ←R(U, V). 

3                               S(c, a), T(c, a) ←.                ←S(c, a). 

4                                                        T(c, a) ←.       ←T(c, a). 

5                                                                         ∅

Fig. 3.4: The SLD Tree  

∅

R(Z, X) ←P(X,Y), Q(Y,Z). 

P(a, b) ←.     Q(b, c) ←.      

S(U, V), T(U, V) ←R(U, V). 

←S(c, a).       ←T(c, a).      

R(c, a) ←. ←R(c,a). 

Fig. 3.3: A graph illustrating concurrency in resolution
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The example shows that definitely there is a scope in speed-up due to 
concurrent resolution at the cost of additional expenses for hardware resources. 

The most important problem in concurrent resolution is the identification of the 
clauses that participate in the resolution process. When there exist groups of 
concurrently resolvable clauses, search cost to detect the participating clauses in 
each group sometimes is too high to be amenable in real time. A specialized data 
structure, capable of performing concurrent resolution of multiple groups of 
clauses, thus is recommended. In fact, we are in search of a suitable structure 
where participating facts and rules under one group of resolvable clauses can be 
represented by neighboring structural units. The search cost needed in concurrent 
resolution thus can be saved by the above mentioned data structure. 

Petri nets which have already proved itself successful in solving many complex 
problems of knowledge engineering, can equally be used in the present context to 
efficiently handle the problems of concurrent resolution. Let us for example 
consider a clause ‘P (X, Y), Q (X, W) ←R (X, Y), S (Y, W).’, which is
represented in a Petri net by a transition and four associated places, where P and Q 
are represented by output places, and R and S are denoted by input places of the 

Place 
R

Place
P

(Y, W)                               ¬(X, W) 
Arc function                 Arc function 

Arc function                 Arc function   
(X, Y)                                  ¬(X, Y) 

Place 
S

Place
Q

<a, b>

<b, c>

¬<a, b>

Transition 

transition. The argument of each literal in a rule is represented by a specialized
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function, called arc function, which is associated with the arc connecting the 
transition with the respective places. The arc functions are needed for generation 
of variable bindings in the process of resolution of clauses. If ‘¬P (a, b) ←.’, ‘R 
(a, b) ←.’ and ‘S (b, c) ←.’ are supplied as additional facts then they could be 
mapped in the places connected with the proposed transition, and the arguments 
¬<a, b>, <a, b> and<b, c> of the facts are saved as tokens of the respective places 
P, R and S. Such neighbourhood mapping of the rule and facts described in Fig. 
3.5 help concurrent resolution with no additional time for searching the 
concurrently resolvable clauses. 

Reasoning in Logic program with Petri nets was first proposed by Murata [11]. 
In this chapter, we extended Murata’s model on the following counts.

♦ In Murata’s model arc functions associated with the arcs of a Petri net are 
positive irrespective of the type1 of the arcs. The model to be proposed 
shortly, however, assigns a positive sign to the arc function attached with a 
place-to-transition connective arc, and a negative sign to the arc function 
attached with a transition-to-place connective arc. The attachment of sign 
with the arc functions facilitates the scope of matching of signed tokens of 
the respective places with the arc functions of the connected arcs following 
the formalisms of predicate logic. 

♦ Unlike Murata’s model, where the arguments of body-less clauses were 
also represented as arc functions, in the present model these are 
represented as tokens of the appropriate places. Thus in the present model, 
we can save additional transition firings for all those arc functions 
corresponding to the body-less clauses. 

♦ The extension of Murata’s model presented here allows AND-, OR-, 
Unification- and   Stream-parallelism in a logic program. 

      The chapter takes into account the aforementioned features and presents a new 
algorithm for automated reasoning, capable of handling parallelisms in a logic 
program. The definitions which are needed to design the algorithm for automated 
reasoning are given in the following section. 

3.4. Petri net Model for Concurrent Resolution 

This section provides a new algorithm for concurrent resolution of program 
clauses using a specialized model of extended Petri net. 

1 The directed arcs in a Petri net denote connectivities from: (i) places to 
transitions, and (ii) transitions to places, and thus are of two basic types. 
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3.4.1 Extended Petri Net 

Definition 3.24: An Extended Petri Net (EPN), which will be used here for reasoning with 
a First Order Logic (FOL) program, is a 9-tuple, given by 

 EPN = {P, Tr, D, f, m, A, a, I, O} 

where 
 P = {p1, p2, ...., pm} is a set of places; 
 Tr = {tr1, tr2, ...., trn} is a set of transitions; 
 D = {d1, d2, ...., dm} is a set  predicates; 
 P ∩ Tr ∩ D = ∅; Cardinality of P = Cardinality of  D; 
 f: D → P∝ represents a mapping from the set of predicates to the set  of places; 
 m: P → < xi, ...,yi, X, ....,Y,f, ....,g > is an association function, represented by the 

mapping from places to terms, which may include signed constant(s) like xi, ...., 
yi, variable(s) like X, ....,Y and function f, ....,g of variables; 

 A ⊆ (P × Tr) ∪ (Tr × P) is the set of arcs, representing the mapping from the 
places to the transitions and vice versa; 
a: A → (X, Y, ...., Z) is an association function of the arcs, represented by the 
mapping from the arcs to terms. For arcs A ∈ (P × Tr) the arc functions a are 
positively signed, while for arcs A ∈ (Tr × P) the arc functions a are negatively 
signed; 

 I: Tr → P∝ is a set of input places, represented by the mapping from the 
transitions to their input places; 

 O: Tr → P∝ is a set of output places, represented by the mapping from the 
transitions to their output places.

3.4.2 Mapping a Clause onto Extended Petri Net 

Consider a first order clause cli where the arguments of the predicates contain 
variables/constants only. 

 Cli: pm+1(Z, X),  ….., pm+n (Z, Y) ←p1(X, Y), ….., pm(Y, Z). 

To construct a Petri net corresponding to the above clause we use the following 
procedure.  

Procedure Petri net construction for a rule 

Input: A given first order clause with predicates containing variables and 
constants. 
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Output: An extended Petri net. 

Begin 

1. Construct a transition and label it as tri corresponding to clause cli.

2. Check whether any place pk, ∃k already exist in the so far constructed net. 
If yes, construct places p1 through pm excluding pk. Else draw m places and 
arcs emanating from those places to the transitions. Attach labels p1, p2,
….., pm to designate the places. Attach the argument of the predicate pi as 
the arc function in the arc connected between place pi and the given 
transition. Repeat it for all i from 1 to m.  

3. Check whether any place pj already exists in the so far constructed net. If 
yes, construct places pm+1 through pm+1 through pm+n excluding pj. Else 
construct n number of places and connect these places from the transition 
by outgoing arcs. Label the places as pm+1, pm+2, ….., pm+n. Attach negated 
argument of predicate pj in the arc connected between the given transition 
and place pj. Repeat at for all j between m+1 to m+n. 

End.   

3.4.3 Mapping a Fact onto Extended Petri Net 

Procedure mapping fact onto EPN 

Begin 
If the predicate name used to denote the fact is already existing in a given 
EPN  
Then  

If the fact occurs in the body of the given clause 
Then the negated argument of the clause is used as token and inserted 
into the corresponding place of the EPN. 
Else the positive argument of the clause is used as token and inserted into 
the corresponding place of the EPN. 
Endif 

Endif 
End. 

The algorithms introduced above can be used to map all the rules and facts on to 
an EPN. 
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Example 3.30: Mapping of the aforementioned parameters onto an EPN is 
illustrated (vide Fig. 3.6) in this example with the following FOL clauses: 

       Son(Y, Z), Daughter(Y, Z) ←Father(X, Y), Wife(Z, X).                          (3.52) 
       Father(r, l) ←.                                                                                            (3.53) 
       Wife(s, r) ←.                                                                                              (3.54) 
       ¬Daughter(l, s) ←.                                                                                     (3.55) 

Here,  P = {p1, p2, p3, p4}; 
          Tr = {tr1}; 
          D = {d1, d2, d3, d4} with d1 = Father, d2 = Wife, d3 = Son and d4 = Daughter; 
          f(Father) = p1, f(Wife) = p2, f(Son) = p3, f(Daughter) = p4;
          m(p1) = <r, l>, m(p2) = <s, r>, m(p3) = < ∅ >, m(p4) = ¬<l,s> initially and   

can be computed subsequently by resolution of clauses on the EPN; 
          A = {A1, A2, A3, A4}, and 
          a(A1) = (X, Y), a(A2) = (Z, X), a(A3) = ¬(Y, Z), a(A4) = ¬(Y, Z) are the arc 

functions; 
          I(tr1) = {p1, p2}, and O(tr1) = { p3, p4}. 

It is to be noted that if-then operator of the knowledge has been represented in the 
Fig. 3.6 by tr1 and the antecedent-consequent pairs of knowledge have been 
denoted by input(I)-output(O) places of tr1. Moreover, the arguments of the 
predicates have been represented by arc functions.                                                            
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3.5 Concurrent Resolution on Petri Nets 

The enabling and firing conditions of transitions are explained below to describe 
the resolution principles on an EPN.       

3.5.1 Enabling and Firing Conditions of a Transition         

In order to determine the enabling and firing conditions of a transition we need to 
define the following items: 

Consistent bindings 
Let aj ∃j be an arc function of arc Aj associated with a transition tri in an EPN, 
and m(pj) denotes the token at place pj where  

Aj ∈ {pj} × {tri} ∪ {tri} × {pj}. 

1. If number of elements in aj is equal to that of m(pj), then we assign the kth 
element of m(pj) to aj∀k.

2. The assignment of step 1 is repeated for all j. 

3. Let X, Y, …., Z be the list of variables present in ∪aj, ∀j. If X = k is present 
in all excluding at most one aj, then variable X is said to have a consistent 
value. 

      If all the variables X, Y, …., Z have consistent values, then we say that the arc 
function variables associated with a transition have consistent bindings.

Current-bindings (c-b) denote the set of instantiation of all the variables 
associated with the transitions.

Used-bindings (u-b) denote the set of union of the current-bindings up to the last 
transition firing. 

Properly signed token means tokens with proper signs, i.e., positive tokens for 
input places and negative tokens for output places of a transition.

Inactive arc functions represent the arc functions associated with a transition, which 
do not participate in the process of generation of consistent bindings of variables. 

Inert place represent the place connected with the inactive arc function. 

Enabling Conditions: A transition is enabled, if i) all excluding at most one inert 
place associated with the transition tri possesses properly signed tokens and ii) the 
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variables associated with the arc functions of the transition have consistent 
bindings. 

Firing Condition: A transition is fired if it is enabled and the current-bindings is 
not a subset of used-bindings.

3.5.2 Algorithm for Concurrent Resolution

The algorithm for automated reasoning to be presented shortly allows concurrent 
firing of multiple transitions. The algorithm in each pass checks the enabling 
conditions of all the transitions. If one or more transitions are found enabled, the 
unifier (here referred to as current-bindings) for each transition is searched against 
the union of the preceding unifiers (used-bindings) of the said transition. If the 
current-bindings are not members of the respective used-bindings, then the 
enabled transitions are fired concurrently. The tokens for the inert places are then 
computed following the current-bindings of the fired transitions.  

One question that naturally arises: how long should we continue firing of the 
transitions? The firing may continue until no new inferences are derived. This is 
taken into account in the procedure Automated-Reasoning. 

Procedure Automated-reasoning  

Begin 
For each transition do 

Par Begin
used-bindings:= Null; 
Flag:= true; // transition not  firable.//  

Repeat 
If (a transition is enabled) AND (current-bindings is not a member of 
used-bindings) 

   Then do Begin
   Fire the transition and send tokens to the inert place
   using the set current-bindings and following the  
   inactive arc function with a presumed opposite sign; 
   Update used-bindings by taking union with current-bindings; 
   Flag:= false; //record of transition firing// 
   Increment no-of-firing by 1; 
   End 
   Else Flag:= true; 
End; 
Until no transition fires; 

Par End; 
End. 
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The algorithm is now verified taking the following rules with the help of Fig. 3.7. 

      

Rules: 
Father (Y, Z), Uncle (Y, Z) ←Father (X, Y), Grandfather (X, Z).            (3.56) 
Paternal-uncle (X, Y), Maternal-uncle (X, Y) ←Uncle (X, Y).                (3.57) 
Father (r, n) ←.                                                                                          (3.58) 
Father (r, d) ←.                                                                                          (3.59) 
¬Father (d, a) ←.                                                                                  (3.60) 
Grandfather (r, a) ←.                                                                                 (3.61) 
¬ Paternal-uncle (n, a) ←.                                                                         (3.62) 
¬Maternal-uncle (n, a) ←.                                                                         (3.63) 
¬Maternal-uncle(d, a) ←.                                                                         (3.64) 

       Grandfather 

   Father 

tr1

¬ (Y,Z) 

< r, n > 
< r, d > 

¬< d, a> 

< r, a>

¬<n, a> ¬<n, a> 
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        p4

p5

tr2

p3

p2

p1

Uncle 

¬(Y, Z)

(X, Z) (X, Y) 

¬(X, Y) ¬(X, Y) 

Fig. 3.7: An illustrative Petri net with initial assignment of tokens used to 

(X, Y)

verify the procedure automated-reasoning
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Table 3.1: Trace of the algorithm on example net of Fig. 3.7. 

The Petri net shown in Fig. 3.7 is constructed with a set of rules (3.56 − 3.64). 
The reasoning algorithm presented earlier is then invoked and the trace of the 
algorithm thus obtained is presented in Table 3.1. It is clear from the table that the 
current-bindings (c-b) are not members of used bindings (u-b) in the first two 
Firing Criteria Testing (FCT) iterations. Therefore, flag = 0. Thus following the 
algorithm, transitions tr1 and tr2 both fire concurrently. In the third iteration 
current-bindings become members of used-bindings, and consequently flag = 1; so 
no firing takes place during the third iteration. Further, number of transition in the 
Petri net (vide Fig. 3.7) being two only, control exits the repeat-until loop in 
procedure Automated-reasoning after two FCT iterations. 

3.5.3 Properties of the Algorithm 

Theorem 1 is provided to demonstrate that the proposed algorithm includes all 
types of parallelisms and theorem 2 shows the completeness of the same.

THEOREM 1: The procedure Automated-reasoning supports AND, OR and 
Stream-parallelisms. 

Proof: Let 
pi ∈ I(trk) for i =1,2,…..,m                                                                  (3.65) 

and po∈ O(trk) for o =m+1, m+2,….., m+n.                                              (3.66)  

Time 
slot 

Tran. Set of c-b Set of u-b Flag = 0, if c-b ∉ u-b 
        = 1, if c-b ∈ u-b   

≠{φ}
                or c-b={φ}

First 
cycle 

tr1

tr2

{r/x,d/y,a/z} 

{n/x,a/y} 

{{φ}}

{{φ}}

0

0

Second 
cycle 

   tr1

tr2

{r/x,n/y,a/z} 

{d/x,a/y} 

{{r/x,d/y,a/z}} 

{{n/x, a/y}} 

0

0

tr1 {r/x,d/y,a/z}
/
{r/x,n/y,a/z} 

{{r/x,d/y,a/z}, 
{r/x,n/y,a/z}} 

1
Third 
cycle 

tr2 {n/x, a/y}/ 
{d/x, a/y} 

{{n/x, a/y}, 
{d/x, a/y}} 

1
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pj ∈ I(trk+1) for  ∃j, where {pj}∩{po}≠∅,i.e., there exists some common place 
between the output place of transition trk and input place of transition trk+1. So the 
two transitions trk and trk+1 are in pipeline. 

      Let pl∈{pj}∩{po} for  ∃l.

From (A) and (B), we obtain the general clause represented by the predicates 
mapped at the input and the output places of the transition trk. If di denotes the 
predicates corresponding to place pi ∀I, then the rule under consideration is given 
by (C). 

dm + 1(.), …., dm + n (.) ←d1(.), …., dm(.).                                             (3.67) 

Now assume that the knowledge base includes the following excluding at most 
one fact. 

 d1(.) ← . 
 d2(.) ← . 
 . 
 . 
 dm(.) ← . 
         ¬dm+1(.) ← . 
         ¬dm+2(.) ← . 
 . 
 . 
         ¬dm+n(.) ← . 

Further, let trk+l be another transition where for ∃u, pu∈ I(trk)∩O(trk)∩I(trk+1), 
i.e., pu is a common input-output place of the transition trk. Without any loss of 
generality, let us assume that, p1 = pm+n = pu. In case new stream of tokens are 
generated by p1-trk-pm+n, then the transition trk+1 under favorable condition of 
consistent binding will also fire concurrently with transition trk but on new sets of 
data. Thus stream-parallelism if exists in the logic program, can definitely be 
realized with our proposed algorithm.   

Note: It is to be noted that unification-parallelism can always be maintained in a 
Petri net model with additional resources for concurrent instantiation of variables 
with tokens. 

Example 3.31: If we consider the clauses given in (3.56-3.64), we can find out 
that AND-parallelism takes place when (3.59) and (3.61) are resolved together 
with (3.56). OR-parallelism takes place when (3.58) and (3.59) are tried for 
resolution together with (3.56). Also OR-parallelism takes place when (3.63) and 
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(3.64) are resolved together with (3.57). In each case whenever a variable is being 
matched with a constant or another variable, unification–parallelism takes place. 

In this book we consider Petri net models capable of representing multiple 
antecedent and multiple consequent clauses. Usually the commas present in the 
antecedent clauses denote conjunction and in consequent clauses denote 
disjunction. Thus in presence of tokens at all but one input/output places of an 
enabled transition, the transition will fire generating a new token. Such firing of 
transition includes typical AND- and a different type of OR-parallelism. Here, 
independent facts mapped at the output places of the transition behave like typical 
OR-clauses, and a set of concurrent resolution takes place between the OR-clauses 
and a given rule containing those literals present in the OR-clauses as 
consequents. 

Unification-parallelism can always be maintained in the Petri net model, and 
Stream-parallelism exists only when the network includes pipelined transitions 
where a transition in the pipeline waits for the other to generate a sequence of 
tokens.                                                                                                          

THEOREM 2: The procedure Automated-reasoning is complete. 

Proof: When a transition in procedure Automated-reasoning fires, concurrent 
resolution takes place among a number of tokens with the main clause represented 
by the transition and its input-output places. It is important to note that the 
concurrent resolution mentioned above is similar with a number of binary 
resolutions of clauses following SLD resolution technique. Secondly when two 
transitions having common input places are enabled they can fire, since the 
concurrent firing of transitions in the present context is conflict-free. Thus firing 
of one transition does not present another to fire. Thirdly, after firing of one 
transition, tokens are entered into an inert place connected with the transition, and 
the old tokens in the places associated with the transition are not removed. This 
ensures that the tokens non utilised in one transition firing may be utilized in 
subsequent firing of the same and other transition(s). Consequently, all possible 
inferences that can be derived from the given set of clauses using SLD resolution, 
can also be derived by procedure Automated-reasoning. Since SLD resolution is 
complete, the proof of completeness of the procedure Automated–reasoning 
naturally follows.                                                                                     

3.6 Performance Analysis of Petri Net-based Models 

In this section we outline two important issues: the speed-up factor and the 
resource utilization rate of the proposed algorithm when realized on a parallel 
architecture.  
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3.6.1 The Speed-up

A complexity analysis of a logic program of n clauses comprising of predicates of 
arity p reveals that the time Tu required for execution of the program by SLD- 
resolution on a uniprocessor architecture is given by               

       Tu = O(p.n).                                                       (3.68) 

The product (p.n) in the order of complexity appears because of SLD-resolution 
of n clauses with p sequential matching of arguments of predicates involved in the 
resolution process.  

The same program comprising of m1, m2, …, mk number of concurrently 
resolvable clauses is executed2 on a pipelined (multiprocessor) architecture, 
capable of resolving max {mi: 1≤ i ≤ k} number of clauses in a unit time. Let mi

include si number of supplied clauses and di number of derived clauses. Thus Σmi

= Σsi +Σdi. Under this circumstance the total computational time Tm for execution 
of the logic program is given by 

        Tm =  O [p (n – ( s1+ s2+ s3 +…..+sk) -1 + 1 × k)]                                      
              
             = O[p(n- i

k
=1 si + k-1)] 

              ≈ O[p (n- i
k
=1 si + k)]                                                                         (3.69) 

When Σsi approaches Σmi, Tm is maximum. 

The above result presumes a k-stage pipeline of the k-sets of concurrently 
resolvable clauses. If the k-sets of clauses are independent, then the concurrent 
resolution of all the k-set of clauses can be accomplished within a unit time, and 
thus the computational complexity further reduces to O[p(n - i

k
= 1 si)]. Thus 

irrespective of a program, it can easily be ascertained that the computational time 
Tm of a typical logic program always lies in the interval: 

       O[p(n - i
k
=1 si )] ≤≤≤≤ Tm ≤≤≤≤ O [p (n - i

k
=1 si +k)]                                        (3.70)   

2

resolution of one concurrent set of clause is dependent on a second set, and thus 
all sets of concurrent clauses cannot be resolved in parallel. 

The k sets of concurrent clauses here is assumed to be resolved in sequence, i.e., 
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      Thus, Speed-up3 in the worst case is found to be 

S = Tu/Tm

   = (p.n)/ [p( n - i
k

=1 si +k)] 

   = n / [n- i
k
=1 si + k)]                                                                              (3.71) 

      In case all the n number of program clauses are exhausted by resolution, i.e. 
i
k
=1 mi approaches n, then S is maximized, and the speed-up factor, Smax is given 

by 

       Smax  = n / k.                                                                                               (3.72) 

      The last expression reveals that smaller is the k, larger is the Smax. The best 
case corresponds to k =1, when there is a single set of concurrently resolvable 
clauses.  But since i

k
=1 si = n and k =1 in the present context, i

k
=1 si = i

1
=1 si = 

s1 = n, which means all the n set of clauses are resolvable together. Consequently 
the speed-up factor is n.  

      On the other extreme end, when k = n, i.e., there are s1, s2, …, sn number of 
concurrently resolvable sets of clauses, then Smax = n/n = 1, and there is no speed-
up. In fact this case corresponds to typical SLD-resolution and the number of 
clauses s1 = s2 = … = sn = 2.   

3.6.2 The Resource Utilization Rate 

Let us assume that the number of resources available for concurrent resolution in 
the present context is max {sk : 1 ≤ k ≤ n}. Thus maximum degree of parallelism 
[5] P is given by

     
       P = max {sk : 1 ≤ k ≤ n}.                                                                            (3.73) 

      The average degree of parallelism Pav is defined below following Hwang and 
Briggs [5] as 

       Pav = ( i
k
=1 si)/ k.                                                                                        (3.74) 

3 In case of unification-parallelism (realized in our architecture, vide chapter 4), 
Tm reduces to O[ (n- i

k
=1 si + k)]  and consequently the worst-case speed-up 

factor becomes Smax  = (p. n) / (n- i
k
=1 si + k). 
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      The Resource Utilization Rate µµµµ thus is found to be 

       µ = Pav / P 

          = ( i
k
=1 si)/  [k. max {sk : 1 ≤ k ≤ n}].                                                    (3.75) 

      When si for all i approaches to max {sk : 1 ≤ k ≤ n}, i
k

=1 si = k. max{sk: 1 ≤ k ≤
n}, and consequently, µ approaches 1.

3.6.3 Resource Unlimited Speed-up and Utilization Rate 

Suppose the number of resources ≥ n, the no. of program clauses. Then the 
concurrent resolution of different sets of clauses may take place in parallel. 
Suppose, out of s1, s2, …,sk number of concurrent sets of resolvable clause, r-sets 
of clauses on an average can participate in concurrent resolutions at the same time. 
Then the average time TRU required to execute the program = O[p (n- i

k
=1 si + 

k/r)]. Then, Resource Unlimited Speed-up

       
 SRU = Tu / TRU

        = (p.n)/ [p( n - i
k
=1 si +k/r)] 

        = n / (n- i
k
=1 si + k/r)                                                                        (3.76) 

      Consequently, maximum speed-up occurs when i
k

=1 si approaches n, and the 
result is  

       (SRU)max =  (n/k)r.                                                                                       (3.77) 

      Further, maximum degree of parallelism in a resource unlimited system is PRU 

= i
k
=1 si, and the average degree of parallelism Pav = i

r
=1si. Thus Resource 

Utilization Rate is given by 

      µ  =  Pav / PRU

          = ( i
r
=1 si)/ ( i

k
=1 si)                                                                               (3.78) 

      
       In a special case, when si = s for all i = 1 to k, the above ratio reduces to (r / 
k). It is to be noted that when more than one group of concurrently resolvable 
clauses participate in the resolution process at the same time, max{sk: 1 ≤ k ≤ n} 
assumes the maximum of the sum of the concurrently resolvable group of clauses. 
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Example 3.32: Let s1 and s5 be two groups of clauses that can independently be 
resolved at the same time. Further, if we assume that s1 + s5 ≥ s2, s3, s4,….. 
Consequently max{sk} will take the value s1 + s5.                                    

3.7 Conclusions 

The chapter presented a new algorithm for automated reasoning in a logic program 
using extended Petri net models. Because of the structural advantage of Petri net 
models, the proposed algorithm is capable of handling AND-, OR-, unification- 
and stream-parallelisms in a logic program. A complexity analysis of a logic 
program with n number of clauses and k sets of concurrently resolvable clauses 
reveals that the maximum speed-up factor of the proposed algorithm in the worst 
case is O (n/k). Under no constraints on resources, the speed-up factor is improved 
further by an additional factor of r, where r denotes an average number of the 
concurrent sets of resolvable clauses. In absence of any constraints to resources, 
the maximum resource utilization rate for the proposed algorithm having s1 = s2 = 
… = sn is O(r/k). With limited resource architecture, the proposed algorithm can 
execute safely at the cost of extra computational time. The selection of dimensions 
of such limited resource architecture depends greatly on the choice of r. Selection 
of r in typical logic programs, in turn, may be accomplished by running Monte 
Carlo simulations for a large set of programs. A complete study of this, however, 
is beyond the scope of the present work. 

With the increasing use of logic programs in data modeling, its utility in the 
next generation commercial database systems will also increase in pace. Such 
systems require specialized engine that supports massive parallelisms. The 
proposed computational model, being capable of handling all possible parallelisms 
in a logic program, is an ideal choice for exploration in commercial database 
systems. To meet up this demand, a hardware realization of the proposed 
algorithm is needed. The next chapter of the thesis extends the theoretical EPN 
model of automated reasoning to a specialized MIMD architecture of a central 
processing unit to be explored in the next generation database machines.  

Exercises 

1. Given below a set of clauses: 

(i) r ∨ s ←p ∧ q. 
(ii) R(Z, f(X)) ←P(X, Y), Q(Y, Z). 
(iii) Above(a, c) ←Above(a, b), Above(b, c). 
(iv) N(f(Y), X) ←L(X, Y, Z), M(f(X), Z). 
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(a) Identify the literals in the head part, 
(b) Identify the literals in the body part, 
(c) List the functions, 
(d) List the arguments of the head literals, 
(e) List the arguments of the body literals. 

      [Answer:  

(a) The literals in the head part: 
(i) r, s;  
(ii) R(Z, f(X));  
(iii) Above(a, c);  
(iv) N(f(Y), X).  

(b) The literals in the body part: 
(i) p, q; 
(ii) P(X, Y), Q(Y, Z); 
(iii) Above(a, b), Above(b, c); 
(iv) L(X, Y, Z), M(f(X), Z). 

(c)  The functions: 
(i) Nil; 
(ii) f(X); 
(iii) Nil; 
(iv) f(Y), f(X). 

(d) The arguments of the head literals: 
(i) Nil;  
(ii) Z, f(X); 
(iii) a, c; 
(iv) f(Y), X. 

(e)  The arguments in the body literals: 
(i) Nil; 
(ii) X, Y and Y, Z; 
(iii) a, b and b, c; 
(iv) (X, Y, Z) and f(X), Z.] 

2.  Identify the following from the given set of clauses 

(i) ground literal, 
(ii) goal clause or query, 
(iii) fact, 
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(iv) Horn clause, 
(v) Non-Horn clause, 
(vi) Propositional clause. 

(a) Boy(X) ←Male-child(X), Non-adult(X). 
(b) Boy(X), Girl(X) ←Male-child(X), Non-adult(X). 
(c) S ←P, Q, R. 
(d) Boy(X) ←.
(e) Boy(ram) ←.
(f) ←Boy(Y). 

[Answer:

(i)    Ground literal: Boy(ram) 

(ii)  Goal clause or query: ←Boy(Y). 

(iii)  Fact: Boy(ram) ←.

(iv)  Horn clause: Boy(X) ←Male-child(X), Non-adult(X). 
                                      S ←P, Q, R. 
                            Boy(X) ←.
                         Boy(ram) ←.
                                         ←Boy(Y). 

(v) Non-Horn clause: Boy(X), Girl(X) ←Male-child(X), Non-adult(X). 

(vi) Propositional clause: S ←P, Q, R.] 

3.  Translate the following clauses into English: 

                Mother (Z, Y) ←Father (X, Y) ∧ Wife (Z, X). 
                Mother (s, l) ←.
                Wife (s, r) ←.
                Query: ←Father (r, l). 

[Hints:  If X is the father of Y and Z is the wife of X, then Z is the mother of   
Y. 

                     s is the mother of l.
                     s is the wife of r. 
                     Whether r is the father of l?] 

4.  Construct an Extended Logic Program from the following statements: 
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    The animals that eat plants are herbivorous, the animals that eat animals are           
    carnivorous and the animals that eat plants and animals both are omnivorous. 

    [Hints: Herbivorous (X) ←Animals (X)∧Plant (Y)∧Eats (X, Y). 
                 Carnivorous (X) ←Animals (X)∧Plant (Z)∧Eats (X, Z). 
                 Omnivorous (X) ←Animals (X)∧Plant (Y)∧Animals (Z)∧
                                                      Eats (X, Y)∧Eats (X, Z).] 

5.  Given an expression  
                            w = P (X, f (Y, Z), d)  
    and three substitution sets 
                             s1 = {a/X, b/Y, c/Z} 
                             s2 = {g(Y)/X} 
                             s3 = {g(W)/X, b/Y, c/Z}. 
    Evaluate ws1, ws2 and ws3.

    [Answer: ws1 = P(a, f(b, c), d), 
                     ws2 = P(g(Y), f(Y, Z), d) and 
                     ws3 = P(g(W), f(b, c), d). ] 
         

6.  Let w be an expression and ws be an expression after substitution, what is   
      the substitution set? 

                              w: M(Z, Y) ←F(X, Y), K(Z, X). 
                              ws: M(s, j) ←F(r, j), K(s, r). 

    [Answer: s:{r/X, j/Y, s/Z}.] 

7.  Let s1 and s2 be two substitutions such that  
                s1: { r/X }, and 
                s2: {u(X)/Y}. 
     

Evaluate the composition of the substitutions: 
(a) s1∆s2,

      and  (b)   s2∆s1.

    [Answer:  The composition of the substitutions: 

(a) s1∆s2 = {r/X, u(X)/Y}, 
(b) s2∆s1 ={u(r)/Y, r/X}.]                                       
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8.  Verify the substitution set property 1, i.e., (ws1)∆s2 = w(s1∆s2) using the          
      following items: 

 Let the expression w:  P(X, Y, Z) 
 And the substitution sets s1: {u(X)/Y, v(X)/Z}, 
                                         s2: {r/X}.   

    [Answer:   (ws1)∆s2 = P(X, u(X), v(X)){r/X} 
                          = P(r, u(r), v(r)). 
         
                      w(s1∆s2) = (P(X, Y, Z)){r/X, u(r)/Y, v(r)/Z} 
                                     = P(r, u(r), v(r)). 
       ∴ (ws1)∆s2 = w(s1∆s2).] 

9.  Verify the substitution set property 2, i.e., (s1∆s2)∆s3 = s1∆(s2∆s3) using the          
      following items: 

 Let the substitution sets s1: {r/X }, 
                                        s2: {u(X)/Y} and 
              s3: {l/Z}.   

    [Answer:    s1∆s2 = {r/X, u(X)/Y} 
    (s1∆s2)∆s3 = {r/X, u(X)/Y, l/Z}. 

            s2∆s3 = {u(X)/Y, l/Z} 
    s1∆(s2∆s3) = {r/X, u(X)/Y, l/Z}. 
            ∴(s1∆s2)∆s3 = s1∆(s2∆s3).] 

10.  Verify the substitution set property 3, i.e., s1∆s2 ≠ s2∆s1 using the          
        following items: 

 Let the substitution sets s1: {r/X }, and 
                                                      s2: {u(X)/Y}. 

      [Answer:
            s1∆s2 = {r/X, u(X)/Y} and  

                  s2∆s1 = {u(r)/Y, r/X}. 
                    ∴  s1∆s2 ≠ s2∆s1.] 

11.  Which of the following clauses are resolvable and what is the resolvent? 

(i)  Cl1: R(Y, X) ←P(X, Y). 
(ii)  Cl2:  P(r, n) ← . 
(iii)  Cl3:  R(n, r) ←.

3 The Petri Net Model  A New Approach⎯
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[Hints: As the same predicate is present in the head and the body part of the 
clause number cl2 and cl1 respectively, they are resolvable whereas due to 
presence of the same predicate in the head part of the clauses, cl1and cl3, they 
are not resolvable.] 

12.  By definition 3.9, show that the following is a set of resolvable clauses. 

(i) Cl1:        R(Z, X) ←P(X, Y), Q(Y, Z). 
(ii) Cl2:  P(r, s) ← . 
(iii) Cl3: ¬R(l, r) ←.
(iv) Cl4:  Q(s, l) ←.

[Hints:  Cl12:  R(Z, r) ←Q(s, Z). 
        Cl13:        ←P(r, Y), Q(Y, l). 
        Cl14:  R(l, X) ←P(X, s).  

As each of the clauses is resolvable with at least one of the set of clauses, 
producing a resolvent, according to definition 3.9, it is a set of resolvable 
clauses. ]                                                                                               

13.  Identify the definite program clause with definite goal. 

 Cl1: R, S ←P, Q. 
 Cl2: R ←P, Q. 
 Cl3: ←P, Q. 

[Hints:  According to definition 3.10, Cl2: R ←P, Q. is a definite clause 
containing one atom in its head and Cl3: ←P, Q. is a definite goal with empty 
consequent (see definition 3.12).] 

14.  Construct the resolution tree for linear selection, 

 R ←P, Q. 
 S ←R. 
 T ←S. 
 Q ←.
 P ←.

 Goal: ←T. 

        [Answer: The resolution tree is constructed vide Fig. 3.8. 
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15.  Determine whether the following are orderly or order independent clauses? If 

orderly, verify whether single or multiple sequence? Determine the various 
orders of resolution in the following set of clauses. 

          Cl1: R(Z, X) ←P(X, Y), Q(Y, Z). 
          Cl2: P(r, a) ←.
          Cl3: Q(a, k) ←.
          Cl4: ¬R(k, r) ←.

[Hints: The clauses are to be selected pair-wise according to some definite 
order from the set of resolvable clauses. Otherwise they fail to generate a 
solution. As for example, cl2, cl3 or cl3, cl4 cannot be resolved. But, we can get 
results by resolving the clauses following some definite orders. 

      The multiple orders are: 

Sequence 1:  Order 1: 1-2-3-4/ 2-1-3-4 
                       Cl12-3-4: ∅

 R ←P, Q.           S ←R. 

S ←P, Q.         T ←S.      

T ←P, Q.            Q ←.     

T ←P.         P ←.

T ←.            ←T. 

∅

3 The Petri Net Model  A New Approach⎯

Fig. 3.8: The SLD resolution tree ]
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Sequence 2:  Order 2: 1-2-4-3/ 2-1-4-3 
   Cl12-4-3: ∅

Sequence 3:  Order 3: 1-3-2-4/ 3-1-2-4 
   Cl13-2-4: ∅

Sequence 4:  Order 4: 1-3-4-2/ 3-1-4-2 
   Cl13-4-2: ∅

Sequence 5:  Order 5: 1-4-2-3/ 4-1-2-3 
   Cl14-2-3: ∅

Sequence 6:  Order 6: 1-4-3-2/ 4-1-3-2 
   Cl14-3-2: ∅ ] 

   
16. Determine the final resolvent from the given set of clauses. If not possible, 
      indicate why. 

  Cl1:  Son(Y, X) ←Father(X, Y). 
  Cl2:  Mother(i, a) ←Son(a, n), Husband(n, i). 
  Cl3:  Father(Z, Y) ←Mother(X, Y), Wife(X, Z). 

[Hints: Here, 

Cl12:  Mother(i, a) ←Father(n, a), Husband(n, i). 
  Cl12-3 is not possible as double resolution takes place.] 

17.  Show that the following clauses are order independent. Explain the reason  
 for non-validity. 

 Cl1:  Boy(X), Girl(X) ←Child(X). 
 Cl2:  Likes-to-play-indoor(X) ←Boy(X), Introvert(X). 
 Cl3:  Likes-to-play-doll(X) ←Girl(X), Likes-to-play-indoor(X),  
   Has-doll(X). 

      [Hints: Each clause is resolvable with any other clause. 
                   Non-validity: Ultimately double resolution takes place.] 

18. Show whether the following set of clauses are concurrently resolvable. 

                           Cl1:  R(Z, X) ←P(X, Y), Q(Y, Z). 
                           Cl2:  P(r, a) ←.
                           Cl3:  Q(a, k) ←.
                           Cl4: ¬R(k, r) ←.
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[Hints: As the instantiated resolvent generated following multiple sequences 
yields a unique result, the set includes a concurrent set of resolution.] 

19.  Test whether the following clauses are concurrently resolvable. 

(a) Cl1:  Mother(Z, Y) ←Father(X, Y), Son(Y, Z), Married-to(X, Z). 
       Cl2:  Father(r, l) ←Has-one-son(r, l), Male(r). 
       Cl3:  Female(Z) ←Mother(Z, Y). 
       Cl4:  Son(l, s) ←.

(b)  Cl1:  Mother(Z, Y) ←Father(X, Y), Son(Y, Z), Married-to(X, Z). 
    Cl2:  Father(r, l) ←Has-one-son(r, l), Male(r). 
    Cl3:  Female(Z) ←Mother(Z, Y). 
    Cl4:  Son(k, s) ←.

[Hints: 

(a) As the set includes multiple ordered sequence of clauses for SLD 
resolution and for each such sequence the final resolvent is identical, then 
the orderly resolution is concurrent resolution. 

(i) Sequence 1: Order 1: 1-2-3-4. 

    Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),  
            Married-to(r, Z). 
    Cl12-3: Female(Z) ←Son(l, Z), Has-one-son(r, l), Male(r),  
            Married-to(r, Z). 
    Cl12-3-4: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s). 

(ii) Sequence 2: Order 2: 1-2-4-3. 

     Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),  
             Married-to(r, Z). 
     Cl12-4: Mother(s, l) ←Has-one-son(r, l), Male(r),  
             Married-to(r, s). 
     Cl12-4-3: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s). 

(iv) Sequence 3: Order 3: 1-3-4-2. 

                     Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z). 
   Cl13-4: Female(s) ←Father(X, l), Married-to(X, s).  

          Cl13-4-2: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s). 

3 The Petri Net Model  A New Approach⎯
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(v) Sequence 4: Order 4: 1-3-2-4. 

       Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z). 
       Cl13-2: Female(Z) ←Male(r), Has-one-son(r, l), Son(l, Z),       
                  Married-to(r, Z). 
       Cl13-2-4: Female(s) ←Male(r), Has-one-son(r, l), Son(l, s),  
                    Married-to(r, s). 

(vi) Sequence 5: Order 5: 1-4-2-3. 

    Cl14: Mother(s, l) ←Father(X, l), Married-to(X, s). 
    Cl14-2: Mother(s, l) ←Has-one-son(r, l), Male(r), Married-to(r, s). 
    Cl14-2-3: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s). 

(vii) Sequence 6: Order 6: 1-4-3-2. 

              Cl14: Mother(s, l) ←Father(X, l), Married-to(X, s). 
       Cl14-3: Female(s) ←Father(X, l), Married-to(X, s). 
       Cl14-3-2: Female(s) ←Has-one-son(r, l), Male(r), Married-to(r, s). 

(b)  As the final resolvent is not identical, the clauses are not concurrently 
resolvable. 

(i) Sequence 1: Order 1: 1-2-3-4. 

Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),  
         Married-to(r, Z). 
Cl12-3: Female(Z) ←Son(l, Z), Has-one-son(r, l), Male(r),  
          Married-to(r, Z). 
Cl12-3-4: Not possible. 

(ii) Sequence 2: Order 2: 1-2-4-3. 

Cl12: Mother(Z, l) ←Son(l, Z), Has-one-son(r, l), Male(r),  
         Married-to(r, Z). 
Cl12-4: Not possible. 

(iii) Sequence 3: Order 3: 1-3-4-2. 

Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z). 
Cl13-4: Female(s) ←Father(X, k), Married-to(X, s).  
Cl13-4-2: Not possible. 
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(iv) Sequence 4: Order 4: 1-3-2-4. 

Cl13: Female(Z) ←Father(X, Y), Son(Y, Z), Married-to(X, Z). 
Cl13-2: Female(Z) ←Male(r), Has-one-son(r, l), Son(l, Z),       
           Married-to(r, Z). 
Cl13-2-4: Not possible. 

(v) Sequence 5: Order 5: 1-4-2-3. 

Cl14: Mother(s, k) ←Father(X, k), Married-to(X, s). 
Cl14-2: Not possible. 

(vi) Sequence 6: Order 6: 1-4-3-2. 

Cl14: Mother(s, k) ←Father(X, k), Married-to(X, s). 
Cl14-3: Female(s) ←Father(X, k), Married-to(X, s). 
Cl14-3-2: Not possible. 

So, we can easily find out that the clauses are not concurrently resolvable in 
case of (b) as there is no unique result after the resolution following different 
sequences.] 

20. Indicate (a) the AND-parallel clauses and (b) the OR-parallel clauses, to 
concurrently resolve the rule cl1 with the rest of the clauses cl2 through cl5.

 Cl1: Likes-to-play(X, Y) ←Child(X), Game(Y). 
 Cl2: Child(r) ←.
 Cl3: Child(t) ←.
 Cl4: Game(c) ←.
 Cl5: Game(l) ←.

       [Answer:

 (a) The AND-parallel clauses: 
(i) Cl1, Cl2, Cl4,
(ii) Cl1, Cl2, Cl5,
(iii) Cl1, Cl3, Cl4,
(iv) Cl1, Cl3, Cl5.

 (b) The OR-parallel clauses: 
(i) Cl1, Cl2 and Cl1, Cl3,
(ii) Cl1, Cl4 and Cl1, Cl5.] 

3 The Petri Net Model  A New Approach⎯
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21.  (a)  Verify whether concurrent resolution is valid for the following clauses: 

  Cl1: Game(Y) ←Child(X), Likes-to-play(X, Y). 
  Cl2: Outdoor-game(Y), Indoor-game(Y) ←Game(Y). 
  Cl3: Child(X) ←Boy(X).  
  Cl4: Child(X) ←Girl(X). 

Cl5: Boy(X) ←Likes-to-play(X, Y), Outdoor-game(Y). 
  Cl6: Girl(X) ←Likes-to-play(X, Y), Indoor-game(Y). 
  Cl7: Likes-to-play(t, c) ←.
  Cl8: Likes-to-play(r, l) ←.
  Cl9: Outdoor-game(c) ←.
  Cl10:¬ Indoor-game(c) ←.

(b) If yes, then identify the types of the concurrent resolution for the 
following sequences: 

(i) Cl5, Cl7, Cl9,
(ii) Cl1, Cl2, Cl5,
(iii) Cl3, Cl5, Cl7, Cl9,
(iv) Cl1, Cl2, Cl6,
(v) Cl1, Cl2, Cl3, Cl7.

      [Hints:  

(a) For the following ordered sequence of clauses for SLD resolution, the 
final resolvent is identical. So, concurrent resolution is possible in the 
following cases: 

   
(i) Sequence 1: Order 1: 1-3-7. 
          Sequence 2: Order 2: 1-7-3. 

(ii) Sequence 3: Order 3: 1-3-8. 
          Sequence 4: Order 4: 1-8-3. 

(iii) Sequence 5: Order 5: 1-4-7. 
          Sequence 6: Order 6: 1-7-4. 

(iv) Sequence 7: Order 7: 1-4-8. 
          Sequence 8: Order 8: 1-8-4. 

(v) Sequence 9: Order 9: 5-8-9. 
          Sequence 10: Order 10: 5-9-8.
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 (b)  
(i) Concurrent resolution between a rule and facts, 
(ii) Concurrent resolution between rules, 

(iii) Concurrent resolution between rules and facts, 
(iv) Concurrent resolution between rules, 
(v) Concurrent resolution between fact and rules.] 

22. Map the following FOL clauses on to an EPN and state the result after 
resolution. 

  Cl1: Game(Y) ←Child(X), Likes-to-play(X, Y). 
  Cl2: Outdoor-game(Y), Indoor-game(Y) ←Game(Y). 
  Cl3: Child(t) ←.
  Cl4: Likes-to-play(t, c) ←.
  Cl5:¬ Indoor-game(c) ←.

 [Hints: An EPN is constructed with the FOL clauses vide Fig. 3.9. 

Child 
p1    d1

<t>

<t, c>

Likes-to-play 
   p2         d2

(X)   tr1

(X, Y) 

¬(Y) 

Game
p3  d3

(Y) 

 tr2 ¬(Y) 

Outdoor-game 
p4                d4

¬(Y)

Indoor-game 
p5            d5

¬<c>
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Fig. 3.9: Mapping on to an Extended Petri net
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           Here, P = {p1, p2, p3, p4, p5}; 
         Tr = {tr1, tr2}; 
              D = {d1, d2, d3, d4, d5}; 
              f(Child) = p1, f(Likes-to-play) = p2, f(Game) = p3,
           f(Outdoor-game) = p4, f(Indoor-game) = p5;
         m(p1) = < t >, m(p2) = <t, c>, m(p3) = <∅>, m(p4) = <∅>,
              m(p5) = ¬< c > initially and can be computed in the process of                            

resolution; 
         A = {A1, A2, A3, A4, A5, A6}; and 
              a(A1) = (X), a(A2) = (X, Y), a(A3) = ¬(Y), a(A4) = (Y), a(A5) =  

¬(Y) and a(A6) = ¬(Y) are the arc functions; 
         I(tr1) = {p1, p2}, I(tr2) = {p3}; 
         O(tr1) = {p3}, O(tr2) = {p4, p5}. 

      Resolution between the rules cl1, cl2 and the facts cl3, cl4, cl5 takes place 
concurrently yielding resulting token at the place ‘Outdoor-game’: ‘<c>’.] 

23. Map the given program clauses onto an EPN. What result do you obtain   after 
execution of the program by the algorithm: ‘Procedure Automated- 
Reasoning’. 

 The program clauses are: 

Cl1: Reproduce-by-laying-eggs(X) ←Build-nests(X), Lay-eggs(X). 
Cl2: Has-wings(X) ←Can-fly(X), Has-feather(X). 
Cl3: Bird(X) ←Reproduce-by-laying-eggs(X), Has-beaks(X),  
           Has-wings(X). 
Cl4: Build-nests(p) ←.
Cl5: Lay-eggs(p) ←.
Cl6: Can-fly(p) ←.
Cl7: Has-feather(p) ←.
Cl8: Has-beaks(p) ←.

 [Hints: An EPN vide Fig. 3.10 is constructed with the given program clauses.  
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Here,     P = {p1, p2, p3, p4, p5, p6, p7, p8}; 
 Tr = {tr1, tr2, tr3}; 
  D = {d1, d2, d3, d4, d5, d6, d7, d8}; 

 f(Build-nests) = p1, f(Lay-eggs) = p2, f(Can-fly) = p3,
  f(Has-feather) = p4, f(Reproduce-by-laying-eggs) = p5,
  f(Has-beaks) = p6, f(Has-wings) = p7, f(Bird) = p8;

 m(p1) = <p>, m(p2) = <p>, m(p3) = <p>, m(p4) = <p>, m(p5)  = <∅>,
 m(p6) = <p>, m(p7) = <∅>, m(p8) = <∅> initially; 
A = {A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8 }; 

 a(A1) = (X), a(A2) = (X), a(A3) = (X), a(A4) = (X), a(A5) = ¬(X),     
 a(A6) = ¬(X), a(A7) = (X), a(A8) = (X), a(A9) = (X), a(A10) = ¬(X); 

  I(tr1) = {p1, p2}, I(tr2) = {p3, p4}, I(tr3) = {p5, p6, p9}; 
             O(tr1) = {p5}, O(tr2) = {p7}, O(tr3) = {p8}. 
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At first the transitions tr1 and tr2 will fire satisfying the three conditions 
required for transition firing. Then after firing of tr3, the resultant token will 
be obtained at the place p8 : <p>.] 

24. Given a set of clauses(Cl1-Cl13): 
   

Cl1: Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z). 
Cl2: Paternal-uncle(X, Y), Maternal-uncle(X,Y) ←Uncle(X, Y). 
Cl3: Mother(Z, Y) ←Father(X, Y), Married-to(X, Z). 
Cl4: Father(X, Y) ←Mother(Z, Y), Married-to(X, Z). 
Cl5: Father <r, n> ←.
Cl6: Father <r, d> ←.
Cl7: ¬ Father <d, a> ←.
Cl8: Grandfather <r, a> ←.
Cl9: ¬Paternal-uncle <n, a> ←.
Cl10: ¬Maternal-uncle <n, a> ←.
Cl11: ¬Maternal-uncle <d, a> ←.
Cl12: Married-to <r, t> ←.
Cl13: Married-to <n, i> ←.

(a) List the possible resolutions that take place in the network. 
(b) Identify the concurrent resolutions among those in the above list. 
(c) Represent the concurrent resolutions in tabular form like Table 2.1. 

       [Hints: 
(a) The possible resolutions are: 

             1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 2-9, 2-10, 2-11, 3-12, 3-13, 4-12, 4-13. 

(b)  The concurrent resolutions are: 

    Sequence 1: Order 1: 1-6-7-8. 
        Cl1-6-7-8 = Uncle(d, a) ←.

    Sequence 2: Order 2: 2-9-10. 
        Cl2-9-10 = ←Uncle(n, a). ≡ ¬ Uncle(n, a) ←.

     Sequence 3: Order 3: 3-5-12. 
        Cl3-5-12 = Mother(t, n) ←.

Sequence 4: Order 4: 3-6-12. 
        Cl3-6-12 = Mother(t, d) ←.
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(c) The concurrent resolutions are given in Table 3.2. 
                 

Table 3.2: Trace of the algorithm on example net of Fig. 3.12. 

                                                                                                                              ] 
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25.  (a)   For answering the goal(←M(t, n).), draw the SLD-tree from the given set 
of clauses,  

      (b)   Use ‘Procedure Automated-Reasoning’ to verify the goal, 

      (c)  Assuming unit time to perform a resolution, determine the computational   
time involved for execution of the program by SLD-tree approach, 

(d)  Compute the computational time required for execution of the program 
clauses on EPN using ‘Procedure Automated-Reasoning’,  

(e)  Determine the percentage time saved in the EPN approach ((a-b)/a × 100) 
where ‘a’ stands for SLD, ‘b’ for EPN. 

     [Hints: (a) We obtain the result as M(t, n) ←. From the SLD-tree given below 
vide Fig.3.11.

Mother(Z, Y) ←Father(X, Y), Married-to(X, Z). Married-to <r, t> ←.

M(t, Y) ←F(r, Y). 

0

X = r 
Z = t 

1

M(t, n) ←.

Y = n 

2

Father <r, n> ←.

Fig. 3.11: The SLD-tree for answering the goal: ←M(t, n) 
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(b) After mapping onto the Extended Petri net as in the Fig. 3.12, we can 
easily find out that in the pass 1, all three transitions (tr1, tr2 and tr3)
satisfy the three conditions for transition firing: 

Token at place p1 = <r, n>, <r, d>, ¬<d, a>,
Token at place p2 = <r, a>,
Token at place p4 = ¬<n, a>,
Token at place p5 = ¬<n, a>, ¬<d, a>,
Token at place p6 = <r, t>, <n, i>.

           Fig.  3.12: The set of given clauses mapped onto an Extended Petri Net  

(X, Y) 

Maternal-uncle  
p5

Paternal-uncle  
                   p4

                   

              ¬(Y, Z)                     (X, Y)                        
  (X, Z)   tr1                                            tr2 ¬(X, Y)  

                      (Z, Y) 

      ¬(Z, Y) 

 (X, Z) 

   (X, Y)

               ¬(X, Y) 
                                                       

Married-to                         (X, Z) 
      p6

Grandfather   
p2    

    tr3

        
        ¬(Y, Z) 
               Uncle                      ¬(X, Y)
                  p3                    
                            
                                                           

Father
p1

  Mother 
  p7

tr4
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(i) All but one input and output places contain properly signed 
tokens, 

(ii) The variables in the arguments of the arc functions contain 
consistent bindings, 

(iii) The current bindings are not the sub set of the used bindings. 

Therefore, the transitions tr1, tr2 and tr3 fires concurrently yielding tokens at 
the places: 

<d, a> at p3,
¬<n, a> also at p3 and 
<t, n>, <t, d> at p7.

 From the above we can see that the required goal (←M(t, n).) can be 
obtained by the algorithm ‘Procedure Automated-Reasoning’. 
                
(c) Assuming unit time to perform a resolution, the computational time 

involved for execution of the program by SLD-tree approach can easily 
be found out from the Fig. 3.11 and is found to be 2. 

(d) The computational time required for execution of the program clauses on 
EPN (Fig. 3.12) using ‘Procedure Automated-Reasoning’ to obtain the 
required goal (as only one pass is required for one set of concurrent 
resolution) is found out to be 1. 

(e) The percentage time saved in the EPN approach: 
           ((a-b)/a ×100), where ‘a’ stands for SLD, ‘b’ for EPN  

        = ((2-1)/2) ×100 % 
            = 50 %.  ] 

26. (a) Show that after complete execution of the algorithm ‘Procedure 
Automated-Reasoning’ on the given EPN (Fig. 3.12) the following 
conclusions are obtained, 

(i) Mother(i, a) ←.
(ii) Paternal-uncle(d, a) ←.
(iii) Mother(t, n) ←.
(iv) Mother(t, d) ←.

       (b) Assuming the above four predicates as four independent goals,   construct   
SLD-tree for each case, 

       (c) Compute the computational time involved in part (a) and part (b) and 
hence determine the computational time saved by EPN approach. 
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[Hints:  

(a) After mapping on to the Extended Petri net as in the Fig. 3.12, we can 
easily find out that in the pass 1, all three transitions satisfy the three 
conditions for transition firing: 

(i) All but one input and output places contain properly signed tokens, 
(ii) The variables in the arguments of the arc functions contain 

consistent bindings, 
(iii) The current bindings are not the subset of the used bindings. 

Therefore, the transitions tr1, tr2 and tr3 fire concurrently yielding tokens at the 
places: 

 For tr1: <d, a> at p3,
 For tr2: ¬<n, a> also at p3 and 
 For tr3: <t, n> (i.e., Mother(t, n) ←.), <t, d> (i.e., Mother(t, d) ←.) at   p7.

 In the pass 2, only tr1 and tr2 fires satisfying the required conditions 
generating the tokens: 

 For tr1: <n, a> at p1,
 For tr2: <d, a> (i.e., Paternal-uncle(d, a) ←.) at p4.
 In the final pass 3, tr3 fires only yielding the token: 
 For tr3: <i, a> (i.e., Mother(i, a) ←.) at p7.

(b) (i) The SLD-tree for generating the goal ‘Mother(i, a) ←.’ is constructed 
in Fig. 3.13.  

3 The Petri Net Model  A New Approach⎯
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Fig. 3.13: The SLD-tree for generating the goal Mother(i, a) ←.

Paternal-uncle(X, Y), Maternal-uncle(X, Y) 
                                              ←Uncle(X, Y).           ¬Paternal-uncle <n, a> ←.

0
X = n 
Y = a 

1 Maternal-uncle(n, a) ←Uncle(n, a).      ¬Maternal-uncle <n, a> ←.

2

←Uncle(n, a).       Father(Y, Z), 
Uncle(Y,Z)←Father(X, Y), 
Grandfather(X, Z). 

Y = n 
Z = a 

3 Father(n, a) ←Father(X, n), Grandfather(X, a).     
                                                           Grandfather <r, a> ←.

X = r 

4   Father <r, n> ←.                    Father(n, a) ←Father(r, n). 

5                                               Father(n, a) ←.      Mother(Z, Y) ←Father(X, Y),  
                                                                                                    Married-to(X, Z). 

X = n 
Y = a 

6
Mother(Z, a) ←Married-to(n, Z).    Married-to <n, i> ←.   

Mother(i, a) ←.
7
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(ii) The SLD-tree for generating the goal ‘Paternal-uncle(d, a) ←.’ is  
constructed in Fig. 3.14. 

              Fig. 3.14: The SLD-tree for generating the goal: Paternal-uncle(d, a) ←.

(iii)  Same as the Fig.3.11. 

(iv)  The SLD-tree for generating the goal ‘Mother(t, d) ←.’ is constructed      
in Fig. 3.15. 

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), 
Grandfather(X, Z). 

Grandfather <r, a> ←.

Father(Y, a), Uncle(Y, a) ←Father(r, Y).

O
X = r 
Z = a 

1    ¬Father(d, a) ←.

Y = d 

2 Uncle(d, a) ←Father(r, d).

Paternal-uncle(X, Y), Maternal-
uncle(X, Y) ←Uncle(X, Y).          

Father(r, d) ←.

Uncle(d, a) ←.
3

X = d 
Y = a 

4
Paternal-uncle(d, a), Maternal-uncle(d, a) ←. ¬Maternal-uncle <d, a> ←.

Paternal-uncle <d, a> ←. 5 

3 The Petri Net Model  A New Approach⎯
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                        Fig. 3.15: The SLD-tree for evaluating the goal M(t, d) ←.

(c) For part (a), assuming unit time to perform a resolution, computational 
time involved for execution of the program by SLD-tree approach will be 
seen as seven steps are needed according to the SLD tree shown in the Fig. 
3.13. 

      But, for part (b), only three passes are needed for execution of the 
program on EPN using Procedure ‘Automated Reasoning’. Therefore, the 
computational time required for execution of the program on EPN using 
‘Procedure Automated-Reasoning’ is found to be three. 

∴The percentage time saved in the EPN approach: 
    ((7-3)/7) × 100 = 57.14%. ] 

27. Point out in the Fig. 3.12 when the AND/OR/Unification-parallelism takes 
place. 

      [Hints: AND-parallelism takes place when cl6 and cl8 are resolved together 
with cl1.

       OR-parallelism takes place when cl5 and cl6 are tried for resolution 
together with cl1.

Mother(Z, Y) ← Father(X, Y), Married-to(X, Z). Married-to <r, t> ←.

M(t, Y) ← F(r, Y).

0
X = r 
Z = t 

1

M(t, d) ←.

Y = d

2

Father <r, d> ←.
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       Also OR-parallelism takes place when cl10 and cl11 are resolved together 
with cl2 and when cl12 and cl13 are resolved together with cl14.

       In each case whenever an variable is being matched with a constant or 
another variable, unification-parallelism takes place.] 

28. From the given clauses of Fig. 3.7 draw the SLD-tree. 

       Cl1: Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z). 
       Cl2: Paternal-uncle(X, Y), Maternal-uncle(X,Y) ←Uncle(X, Y). 

Cl3: Father <r, n> ←.
Cl4: Father <r, d> ←.
Cl5: ¬ Father <d, a> ←.
Cl6: Grandfather <r, a> ←.
Cl7: ¬Paternal-uncle <n, a> ←.
Cl8: ¬Maternal-uncle <n, a> ←.
Cl9: ¬Maternal-uncle <d, a> ←.

[Hints: Here, two parallel SLD-trees will be formed vide Figs. 3.16 and  3.17. 

(i) 

3 The Petri Net Model  A New Approach⎯
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Fig. 3.16: One SLD-tree  

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), Grandfather(X, Z). 

Father <r, d> ←.

Father(d, Z), Uncle(d, Z) ←Grandfather(r, Z). 

Grandfather <r, a> ←.

Father(d, a), Uncle(d, a) ←.

←Father(d, a). 

Uncle(d, a) ←.

Paternal-uncle(X, Y), 
Maternal-uncle(X,Y) 
←Uncle(X, Y). 

Paternal-uncle(d, a), Maternal-uncle(d, a) ←.

←Maternal-uncle(d, a). 

Paternal-uncle(d, a) ←.
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(ii)

                          

Paternal-uncle(X, Y), Maternal-uncle(X, Y) ←Uncle(X, Y). 

←Paternal-uncle(n, a). 

Maternal-uncle(n, a) ←Uncle(n, a). 

←Maternal-uncle(n, a). 

←Uncle(n, a). 

Father(Y, Z), Uncle(Y, Z) ←
Father(X, Y), Grandfather(X, Z). 

Father(n, a) ←Father(X, n), Grandfather(X, a). Grandfather <r, a> ←.

Father(n, a) ←Father(r, n). Father(r, n) ←.

       Father(n, a) ←.

3 The Petri Net Model  A New Approach⎯

Fig. 3.17: Another SLD-tree  ]
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29.  Represent the concurrently resolvable clauses in the EPN in Fig. 3.7 for the 
following clauses by a tree structure. 

      [Hints: Two parallel reasoning will take place giving rise to two parallel tree-
like structures vide Fig. 3.18 and Fig. 3.19.

   

One tree: 

Fig. 3.18: SLD-tree for one set of concurrently resolvable clauses  

Another tree: 

Father(Y, Z), Uncle(Y, Z) ←Father(X, Y), 
Grandfather(X, Z). 

Father <r, d> ←.   
            ¬ Father <d, a> ←.       
                                 Grandfather <r, a> ←.

Paternal-uncle(X, Y), 
Maternal-uncle(X,Y) 
←Uncle(X, Y). 

Uncle(d, a) ←.¬Maternal-uncle <d, a> ←.

Paternal-uncle(d, a) ←.
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30. From the given Petri nets (vide Fig. 3.20 and Fig. 3.21), calculate the speed-up 
and the Resource utilization rate from the definition given in the equation no. 
(3.71) and (3.75). 

Paternal-uncle(X, Y), 
Maternal-uncle(X,Y) 
←Uncle(X, Y). 

¬Paternal-uncle <n, a> ←.
                         ¬Maternal-uncle <n, a> ←.

←Uncle(n, a) .Father(Y, Z), Uncle(Y, Z) 
←Father(X, Y), 
Grandfather(X, Z). 

Grandfather <r, a> ←.

Father(n, a) ←.

3 The Petri Net Model  A New Approach⎯

Fig. 3.19: SLD-tree for another set of concurrently resolvable clauses  ]
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Token at the place p1 = <a, b>, Token at the place p2 = <b, c>,
    Token at the place p 3 = <c, a>, Token at the place p 5 = <c, d>,

                                                                        Token at the place p7 = <e, d>.

Fig. 3.20: A Petri net. 

Token at the place p1 = <a, b>, Token at the place p2 = <b, c>, Token at the place 
p3 = <c, a>,
Token at the place p5 = <c, d>, Token at the place p7 = <e, d>, Token at the place 
p8 = ¬<a, e>.

[Hints: The pipelining of transitions for the first and the second case are 
given in Fig. 3.22 and Fig. 3.23 respectively. 

        tr3

(Y, Z)

  (X, Y)                   p8

            ¬(Z,X)       
p7

(X, Y)

 (Y, Z)    tr2 ¬(Z, X)    p6

p5

(Z, X)    tr1   

(Y, Z) 

p1

p2

p3

(X, Y)              p4

           ¬(X, Z)            

        tr3

(Y, Z)

  (X, Y)                    p8

            ¬(Z,X)       
p7

(X, Y) 

(Y, Z)  tr2 ¬(Z, X)      p6

p5

(Z, X)    tr1   

(Y, Z) 

p1

p2

p3

(X, Y)               p4

         ¬(X, Z)      

Fig. 3.21: A Petri net 
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Here, in the case of the first Petri net, as per definition:  

                                      n = 8,  
                si = s1 + s2 + s3 = 4 + 2 + 2 = 8, 
               mi = si + di = 8 + 3 = 11, 
                   k = 3 

∴Speed-up factor S = Tu/Tm  = n /(n − si +k) = 8/3 = 2⋅66. 
& Resource utilization rate µ = si /[k⋅max {sk: 1≤k≤n}] 
               = 8/(3 × 4) = 8/12 = 0⋅66.  

     

                                               tr3

                       tr2

tr1

Time 

    tr3           

                                  tr2

    tr1

Time 

3 The Petri Net Model  A New Approach⎯

Fig. 3.22: Diagram showing pipelining of transitions for the first case 

  Fig. 3.23: Diagram showing pipelining of transitions for the second case 
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       Now, for the second case,  

          n = 9, 
       si = 4+2+3 = 9, 
          k = 2. 

∴ The speed-up factor S = Tu/Tm = n /(n − si+k)  
                                               = 9/(9 − si +k) = 9/2 = 4⋅5. 
and Resource utilization rate µ = si /[k⋅max {sk: 1 ≤ k ≤ n}] 
         = 9/(2 × 7) = 9/14 = 0⋅64.] 

31. The Petri net shown in Fig. 3.12 includes sets of concurrently resolvable  
clauses.  

(a) Using  the proposed algorithm  ‘Procedure Automated-Reasoning’, 
identify the transitions where concurrent resolutions take place in 
parallel. 

(b)  Also show in the diagram the pipelining of transitions where 
concurrent resolution takes place. 

(c)  Assume that  the time required  for concurrent resolution in a 
transition is proportional to the number of input and output 
concurrently resolvable clauses and hence determine the overall 
time of execution of the given logic program. 

 [Hints: 

(a) If we use the proposed algorithm ‘Procedure Automated-Reasoning’, we 
can easily observe that in the first pass through the algorithm the transitions 
tr1, tr2 and tr3 are concurrently resolvable as all those three transitions 
satisfy the three conditions required for firing according to the proposed 
algorithm. In the second pass, the transitions tr1 and tr2 are concurrently 
resolvable as can be easily found out. Then in the final third pass only the 
transition tr3 resolves followed by the stopping condition of the algorithm.

(b) Figure 3.24 shows the pipelining of transitions where concurrent 
resolution takes place. 
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Time to fire a transition which has been taken to be equal to the number 
of the clauses involved in the resolution process. 

(c)  Assuming that the time required for concurrent resolution in a transition is 
proportional to the number of input concurrently resolvable clauses, the 
overall time of execution of the given logic program becomes: 

      11t, where t = time taken for each input clause consideration for 
resolution.] 
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for the Petri Net Model 

The chapter provides hardwired design of a parallel computational engine for 
logic programming based on the reasoning algorithm outlined in chapter 3. The 
proposed engine takes care of the following two architectural considerations: (i) 
concurrent resolutions of multiple program clauses mapped onto a transition and 
its associated places, and (ii) concurrent resolution of several groups of program 
clauses distributed throughout the Petri net. Such concurrent resolution ensures 
AND-, OR-, Stream- and Unification-parallelisms of a logic program. The 
proposed architecture includes several stages of pipelines and thus supports 
massive parallelism among the modules within a pipelined stage. It also provides 
parallelism among the modules of different stages. A timing analysis of pipelining 
in the proposed architecture reveals that one complete transition firing cycle, that 
begins with a system reset and continues till writing of tokens onto an inert place, 
is approximately 100 Tc, where Tc denotes the time period of the system clock. A 
typical logic program that requires several transition firing cycles thus consumes 
a time proportional to 100 Tc. The constant of proportionality is fixed by the 
degree of parallelism of the proposed program and available system resources. 
The higher is the degree of parallelism, the lower is the proportional constant. 
Further, a reduction in system resources requires mapping part of the program 
onto same resources in real time, causing an increase in execution time.  

4.1 Introduction 

Chapter 1 introduced four ideal machines of parallel architecture depending on the 
instruction and data flow in a computer. The computational engines of these 
machines are popularly referred to as SISD, SIMD, MISD and MIMD 
architectures [1].  In this chapter we propose a new architecture for parallel 
processing, useful for logic programming applications. The architecture to be 
proposed shortly includes different control and data paths among its constituent 
modules, and thus it falls within the category of MIMD machines. 

A typical logic program comprises of a set of clauses. Chapter 3 has 
demonstrated the scope of concurrent resolution of multiple program clauses on a 

4 

Realization of a Parallel Architecture  

A. Bhattacharya et al.: Realization of a Parallel Architecture for the Petri Net Model, Studies in 
Computational Intelligence (SCI) 24, 177–210 (2006) 
www.springerlink.com               © Springer-Verlag Berlin Heidelberg 2006 



graphical engine like Petri nets. The current chapter provides an architectural 
framework for realization of the concurrent resolution of the program clauses. 
Since the framework is designed following the algorithm for automated reasoning 
presented in chapter 3, it ensures the concurrent execution of the four possible 
types of parallelisms in a logic program.  

Before closing this section, we briefly address some important and essential 
issues related to syntax. Logic programs, like any other programs, first needs to be 
compiled and the object codes may be run on a given machine. The source code in 
our system is a pseudo PROLOG program with all syntax identical, excluding the 
:- symbol, which we have intentionally replaced by ←, where A← B, C has a 
conventional meaning, as discussed in chapter 3. After the given program passes 
the compilation phase, a task allocation unit is employed to distribute and map the 
program clauses and data clauses onto different units of the architecture. The 
architecture is then ready to function. When the execution of the program is 
terminated, the control returns the response to the users. In this chapter, we, 
however, restrict our discussion to the architecture only. 

The chapter is categorized into ten sections. Section 4.2 provides an overview 
to the overall architecture with special reference to six typical modules embedded 
therein. The detailed design of the individual modules is presented in Sections 4.3 
through 4.8. The timing analysis of the proposed architecture is covered in Section 
4.9.  Conclusions are listed in Section 4.10. 

4.2 The Modular Architecture of the Overall System 

The proposed architecture consists of six major modules: 

(i) Transition History File (THF)  for transition trj, 1≤ ∀ j ≤ n; 
(ii) Place Token Variable Value Mapper (PTVVM) for place pi,

              1≤ ∀i ≤ m; 
(iii) Matcher (M)  for transition trj, 1≤ ∀j ≤ n; 

178

An examination of logic programs used in commercial database systems 
reveals that typical program clauses usually do not have more than five 
predicates/literals. Further, most applications employ binary predicates,  
i.e. predicates having two arguments. Taking into consideration of the degree of 
parallelism and utilization of hardwired resources, we restricted the number  
of predicates per clause = 5 and number of arguments per predicate = 2 in the 
proposed architecture. For practical reasons of resource limits, we consider at 
most two arcs a1 and a2 between a given place pi and a transition trj, such that a1 ∈
(pi × trj) and a2 ∈ (trj × pi). Thus, multiplicity of parallel arcs directed similarly 
between a given place and a transition is not allowed.   We further presumed that 
one place may be connected with at most two transitions. Extension of any of the 
above system resources, however, is permissible with minor changes in the system 
design. 

4 Realization of A Parallel Architecture for the Petri Net Model
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(iv) First Pre-condition Synthesizer (FPS), realized with  AND-OR Logic 
for transition trj, 1≤ ∀j ≤ n; 

(v) Transition Status File (TSF)  for transition trj, 1≤ ∀j ≤ n; 
(vi) Firing Criteria Testing Logic (FCTL) for transition trj, 1≤ ∀j ≤ n. 

Before execution of a logic program, a compiler, specially constructed for this 
purpose, is employed to parse the given program for syntax analysis.  On 
successful parsing, the variables used in the programs are mapped onto a 
specialized hardwired unit, called Transition History File (THF) register.  The 
compiler assigns the value of the variables, hereafter called tokens, at specialized 
hardwired units, called Place Token Variable Value Mapper (PTVVM). The sign 
of the arc function variables is assigned to the PTVVM by the compiler. The 
compiler also constructs logic function for First Pre-condition Synthesizer (FPS)
and assigns null value in the current and used binding fields of Transition Status 
File (TSF), the details of which will be discussed in chapter 5. The functional 
behavior of the modules in the proposed architecture is outlined here. 

On reset the THF for each transition activates the PTVVMs for the places 
associated with the given transition through appropriate place-name lines. 
Consequently, the activated PTVVMs address their internal place buffers for 
initiating the matching of arc function variables with the tokens already saved in 
the place buffers (places in Petri net terminology). These tokens are now 
compared with arc functions mapped at the arcs connected between one place and 
one transition (hereafter, referred to as adjacent place/ transition of an arc) to 
check consistency of variable bindings. The process of determining the 
consistency of the variable bindings of arc functions connected between an 
adjacent place/transition pair with the tokens residing at the said place is called 
local matching. Thus in case there exists two arc functions between a place and a 
transition, then the same initial token values of the adjacent place will be loaded 
into two place buffers (vide Fig. 4.4) for possible local matching of the two arc 
function variables. To maintain the identity of these two buffers, arc function tags 
are required.  The THF generates these arc function tags through its control lines 
for subsequent labeling of the signed arc function variables in the place buffers. 
The detail of the labeling process, which is omitted here to avoid complexity, is 
covered in section 4.4.1.  When there exists a single arc function between a place 
and a transition, the two arc function tags will have the same value; consequently 
the arc function variables will have an identical binding with respect to the tokens 
residing at the buffers inside the PTVVM. 

Since a transition may have a number of associated places, the variable 
bindings generated for the arc functions connected between the given transition 
and its associated places need further to be compared to determine the consistent 
bindings (most general unifier [5] of the clauses participating in the resolution 
process). This is referred to as global matching. For global matching of the arc 
function variables, say X, Y, Z, a matcher circuit M is employed with each 
transition. This circuit receives the local variable bindings of the arc functions, 
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associated with all the arcs connected with the transition from the PTVVMs, and 
then determines the global consistency of the variables present in the arc 
functions.  

The PTVVM for each place associated with a transition generates a flag signal, 
indicating existence of tokens at that place. The FPS circuit for each transition 
grabs these flags from the PTVVMs to determine whether all excluding at most 
one place contains tokens of same arity as that of the respective arc functions. In 
our implementation, we consider all arc functions comprising of two variables, 
and thus we need to check only the presence of tokens at all places, leaving at 
most one, and need not bother on arity matching. 

On reset, the TSF for trj checks whether the current set of binding received 
from the matcher M for trj is a member of the used (cumulative) set of binding for 
the same transition. It also issues a single bit flag signal to represent the status of 
the condition referred to above. The Firing Criteria Testing Logic (FCTL) circuit 
is employed for each trj to test the joint occurrence of the three preconditions 
received from FPS Logic, the matcher M and the TSF. If all these three conditions 
are jointly satisfied, the FCTL issues a ‘fire trj’ command, indicating the right time 
of firing the transition.  

The PTVVM of the inert place associated with the fired transition on receiving 
this signal saves the new (signed) token at its internal buffer.   The value of the 
consistent current-bindings set generated at the matcher M is sent to the TSF of 
the corresponding trj. The process is continued until no new consistent bindings 
are generated. It may be added here that a number of transitions that jointly satisfy 
all the three pre-conditions, fire concurrently (vide chapter 3) and the complete 
control of token generation and their placement at the inert places is taken care of 
by the proposed architecture. 

4.3 Transition History File 

The Transition History File (THF) keeps track of the histories for all transitions in 
the Petri net. It is realized with a register file comprising of n registers, where the 
register rj, 1≤ j ≤n, contains the history of transition trj. For instance, the THF in 
Fig. 4.2 has two registers corresponding to the transitions tr1 and tr2 in the Petri net 
of Fig. 3.7 (vide chapter 3). Each register comprises of three distinct types of 
fields namely (i) transition name trj, (ii) place pi associated with the transition 
denoted by APpi and (iii) arc function associated with pi denoted by AFAWpi.

For simplicity and convenience, the fields of the registers in Fig. 4.2 have been 
designated with reference to the Petri net in Fig. 3.7. Since tr1 in Fig. 3.7 has three 
associated places p1, p2, p3, the respective APpk, APpl and APpm fields contain p1,
p2 and p3 respectively. In general, we consider at most five places associated with 
the transition, the last two been APpr and APpo respectively. In the present context 
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neatness and clarity of presentation. These additional fields should be assigned 
with null values. 

The arc functions corresponding to the five places called AFAWpk, AFAWpl,
AFAWpm, AFAWpr, AFAWpo presume values A, B, C, ∅ and ∅ respectively. 
The details of A, B and C are presented in the label of Fig. 4.2 itself. The control 
lines that carry the signals for the signed arc functions, such as +XY¬YZ for the 
label A in Fig. 4.2 corresponds to the two arc functions associated with place p1

and transition tr1 in Petri net of Fig. 3.7. The sub-field definitions of label A must 
be ordered to ensure the variables in an arc function occupy the next immediate 
position of its sign bit, as shown in the last example. The other arc functions 
AFAWpr have similarly been constructed and shown in Fig. 4.2 accordingly.  

When a logic HIGH level appears at the input of all the registers, the associated 
place fields (APpi), having non-null values, yield a HIGH logic level for activation 
of the appropriate PTVVM for a place.  Thus when p1 line from register for tr1 in 
Fig. 4.2 is HIGH, the PTVVM for place p1 is activated.  

The control signals AFAWpi are also generated concurrently with the place 
fields APpi just after power-on. The AFAWpi fields are thus transferred as the 
control signals to the PTVVM for subsequent actions.  

4.4 The PTVVM 

The PTVVM comprises of three main sub-units (vide Fig.4.3). The first sub-unit 
holds the data in its internal buffers to initiate the local token matching. It also 
controls the mode selection to initiate either of the following two alternatives: i) 
local token matching and ii) generation of signed token for the inert place. The 
second sub-unit performs the local token matching, while the third sub-unit 
determines the existence of tokens in the concerned place, and submits the status 
to the FPS by a flag. The design of these modules is presented as follows.

4.4.1 The First Sub-Unit of the PTVVM 

While designing the architecture, two arcs between a place and a transition is 
presumed to limit system resources. Since the variables in the arc function of these 
two arcs might have different bindings, two place buffers are needed to realize 
this, which is depicted in the first module of the PTVVM in Fig. 4.4.  It is 
assumed here that there is a provision for a maximum of five tokens in a place, 
accordingly, the place buffers (vide grid-like units in Fig. 4.4) are designed to 
have five accessible locations. Further, for limiting the width of a signed token to 
a maximum of three, the words of the place buffers are presumed to have three 
fields. The first field of the token holds the sign of the token, while the last two 
fields stand for the constant bindings of the variables in the arc function. When 
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there exists only one arc between a place and a transition, the contents of the two 
place buffers are made identical for the generalization of the system design.  It 
may further be noted that arc function tags are also recorded in separate registers.  

The arc function tags (AFT1 and AFT2) shown in the Fig. 4.4 correspond to the 
signed arc functions associated with the arcs connected between a place and a 
transition. For instance, the arc function tags AFT1 and AFT2 hold  + X Y and ¬
Y Z (not shown for lack of space) respectively corresponding to the arc functions 
for the arcs connected between transition tr1 and place p1 of Fig. 3.7 (vide chapter 
3). It may be emphasized here again that the signed arc functions are received 
from the THF through control lines after power-on.  Since the design allows a 
connectivity of at most two transitions with a place, two more arc function tags for 
the second transition are needed. These arc function tags are not shown in the 
figure to avoid clumsiness in the drawing. 

The following three major tasks are required to be performed with the help of 
the place buffers. First, the place buffers are needed to hold the initial tokens like 
the markings recorded in a place. Secondly, the place buffers play an important 
role in local token matching, which, however, is executed in the second sub-unit 
of the PTVVM. Lastly, consequent to firing of a transition, the resulting new 
tokens may be saved in the place buffers of the place associated with the 
transition. The control logic circuit, shown at the right bottom part of Fig. 4.4,
generates the necessary control commands to execute the last two tasks. 

For enabling the local token matching to be executed in the second sub-unit of 
the PTVVM, a mode selector logic (MSL) (vide bottom part of Fig. 4.4) resets the 
flip flop FF, which subsequently activates both the switches S2 (located near FF) 
and S2

/ (located at left top corner).  On closure of the switch S2, the synchronous 
clock source (SCS) activated by the logic HIGH signal APX received from the 
THF resets counter C3 (located close to the OR-gate) to initiate counting. The 
switch S2

/ being closed, the counter C2 also gets reset for subsequent counting.   It 
needs mention that the clock rate for the counter C2 is 1/5th of the clock rate for 
the counter C3. The counters C2 and C3 are used for generating the address of the 
place buffers PB1 and PB2 respectively. The speed of the counter C2 being 1/5th of 
the speed of C3, the contents of all the five locations of PB2 are compared with 
each content of PB1. This is needed to test the consistency in local token matching. 

To store a new value in the place buffer, the MSL in bottom of Fig. 4.4 presets 
the flip flop FF for subsequent comparison of the content of the matched value 
register (MVR) (located at top of Fig. 4.4) with the content of place buffer PB2.
On presetting, the flip flop FF closes the switch S1 to initiate counting at the 
counter C3. The content of the MVR, assuming switch S3 is closed, is compared 
with the token of the place buffer PB2 from the location addressed by the counter 
C3. A control circuit, not shown in Fig. 4.4, is needed to match the respective 
fields of the MVR and the PB2. The objective of the comparison is to determine 
whether the content of the MVR already resides in place buffer PB2. If the result is 
in the negative, the contents of the MVR needs to be saved in one blank location 
within the place buffer PB2.This has been realized here by generating a control 
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command (zz) at the output of the comparator. A value of zz = 1 indicates that the 
content of the MVR is different from that of the current value of place buffer PB2.
This control command enables a null register R2 to output a null value designated 
by a 4-bit data-stream 1111 for comparison with the current content of the place 
buffer PB2 via register R1 with the help of the null checker circuit NC.  

If R1 (beside TSB) contains a null value 1111, the NC issues a HIGH control 
command to close the switch S4 (near TSB), which establishes a data path from the 
MVR to the register D in the second sub-unit of the PTVVM, provided S3 is still 
closed.  If at least one transition associated with the place of the corresponding 
PTVVM fires, the switch S3 gets closed. In order to prevent the scrambling of new 
token values entering a common place through multiple firable transitions, AND 
gates are used to steer the value of the variables to the Local Token Matcher 
(LTM) circuit of the second sub-unit for the respective firable transitions. 

The counter C3 is also used in the third sub-unit of the PTVVM for flag 
generation signifying existence of tokens at a place. 

4.4.2 The Second Sub-Unit of the PTVVM   

The second sub-unit of the PTVVM (vide Fig. 4.5) comprises of separate Local 
Token Matcher circuits (LTM) for different transitions associated with the place 
corresponding to the PTVVM (vide Fig. 4.6). The signs of the arc functions are 
stored in the arc function registers AF1 and AF2 (vide Fig. 4.6) in the respective 
fields of the arc functions A and C of the LTM in the second sub-unit. Using the 
control lines 1 and 2, the signed tokens are stored in the appropriate fields (Sign, 
X, Y and Z) of the registers B and D associated with AF1 and AF2 respectively in 
accordance with the tags such as AFT1 and AFT2 of the place buffers (vide Fig. 
4.4).  The sign comparators together with the value comparators followed by the 
AND logic determine the consistent bindings of X, Y, Z which are transferred to 
the matcher circuit. For a common place pi connected to a number of transitions 
the appropriate hardware are replicated. 

A little thought will reveal that only one out of all the places associated with a 
transition, will be prevented from generating variable bindings of the arc function. 
The arc function unsuccessful in the variable binding process is called the inactive 
arc function. A token while entering a place takes the opposite sign of the inactive 
arc function that steers it to the place.  Sign complementers and additional 
registers R3 and R4 are employed in Fig. 4.6 to ensure this during the traversal of 
the signed tokens to the place buffers. The tri-state buffers, incorporated in the 
circuit, have their generic use of prohibiting signal flow in undesirable directions.  

When an arc-function-register, AF contains a null value or no appropriately 
matched (signed) token, a control command is issued for transferring the properly 
signed token to the place buffers following the inactive arc function.  The control 
logic is governed by two issues: first it checks whether the incoming token-stream 
at the arc function register is null (1111) and whether there already exist a 
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matching token in the place buffer corresponding to the arc function.  If the former 
condition is found true and the latter is false, then the signed token held by the 
additional registers R3 or R4 are passed on to the place buffers. The control logic 
circuit includes a null checker (NC) and a few logic gates to identify the inactive 
arc function in each PTVVM module. It also allows the relevant bus lines to 
transmit the signed tokens to the place buffers. Otherwise the transmission of the 
signed tokens is aborted. 

The tokens held by the place buffers are transferred to the third sub-unit one by 
one as addressed by the first sub-unit for subsequent checking of the existence of 
at least one token at the place.  The existence of tokens at the places associated 
with a transition is required for testing one pre-condition of firing of the transition. 

4.4.3 The Third Sub-Unit of the PTVVM 

The status Flag Generating Circuits (FGC), incorporated in the third sub-unit of 
the PTVVM (vide Fig. 4.7), checks if there exists at least one non-null token in 
place pi.. This circuit receives the content of all the locations of place buffer PB2

(copy of which is retained in place buffer PB1) with the help of a counter (vide 
Fig. 4.4) and a decoder. The decoder activates the switches S6 to S10 in sequence, 
so as to get the proper contents from each locations of the place buffer PB2 in 
corresponding registers of FGC. The AND gates connected with this register 
checks whether the content of the location is null (1111). Thus a ZERO in the 
output of any one AND gate will propagate as a ZERO through next level AND 
gates making the output status line of FGC to be ONE indicating that at least one 
of the tokens in place pi is non-null.  

4.5 The Matcher 

The matcher circuit M receives signal for a single variable, say X, from different 
places associated with a given transition trj. Since the value of the variable X 
could assume either a constant or null bindings, an arrangement has been made to 
ensure consistency among these possible bindings. For instance, if the value of a 
variable X obtained from one place associated with the transition is “a” and the 
value of X obtained from the remaining places connected with the transition is 
“null”(denoted by 1111), then the resulting binding for X is “a”.  However, if 
value of X obtained from the places associated with a transition is “a”, “b” and 
“null values” respectively, no consistent bindings can be formed. On evaluation of 
a consistent binding for a variable, the Matcher circuit (vide Fig. 4.8) generates a 
logic level HIGH signal at its output for subsequent activation of the FCTL circuit. 
This is realized in the Matcher circuit of Fig. 4.8 in two phases. 

In the first phase the value of variable X, denoted by 4-bit strings, are received 
from the PTVVM of the respective places at the Xp1, Xp2,…,Xp5 lines of the 
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Matcher (Fig. 4.8). These values are stored in the internal registers R1, R2,…, R5 
of the Matcher respectively. The Matcher in the first phase checks whether the 
contents of the registers are null. If yes, the AND gates below the matcher yields a 
logic value HIGH, else it is ZERO. The OR gates above the MOS switches control 
the closure/opening of the switches based on the output of the AND gates below 
the registers. If a register contains a null value (i.e., 1111), and its right neighbor 
contains a constant (non-null) value (other than 1111), then the OR gate activates 
the MOS switches to short-circuit their drain-source terminals, thereby  providing 
a wired-ANDing [3] of 4-bit contents of a register with its right neighbor. In case 
two successive registers contain different non-null values, the OR-gates’ both 
input being ZERO, it remains inactive, and thus the MOS switches remain open. 

The Matcher circuit in the second phase is engaged to compare the contents of 
each two successive registers. This is realized by using 4-bit comparators employing 
XOR gates. Since similar inputs of a XOR gate results in ZERO at its output, we 
need to invert them and AND the resulting signals to describe the results of 
comparison of two registers’ contents by a single bit. An AND tree employed in Fig. 
4.8 finally determines whether a variable X has any consistent bindings. 

It may be added here that one of the pre-conditions for firing a transition is to 
determine a consistent binding of all variables associated with its arc functions. 
Assuming that arc functions contain three variables: X, Y, and Z, we need to 
determine the consistent bindings for all the three variables X, Y and Z. A 
transition can fire only after determining a consistent binding of all the three 
variables associated with its arc functions. This has been realized in the circuit 
diagram presented in Fig. 4.9 by employing three Matcher circuits for the three 
variables, and by one AND gate. The AND gate checks whether the outputs of 

Fig. 4.9 ensures satisfaction of all the three pre-conditions of firing (see chapter 3 
for details) a transition trj. The latter AND gate is referred to as the Firing Criteria 
Testing Logic (FCTL). 

4.6 The Transition Status File 

On reset, the Transition Status File (TSF) for each transition begins checking 
whether the set of current binding is a member of the set of used binding. In Fig. 
4.10 we kept provision for four such X-Y-Z triplet fields that hold the used 
bindings and one additional triplet to represent the current binding.  To test the 
existence of the current triplet in the used four triplets, a counter (C), an address 
decoder and a multiplexure (MUX) are needed. The MUX on receiving an address 
i, 0≤  i  ≤3, from the counter transfers the i-th triplet of the used binding to the 
three step comparator (3SC). The 3SC compares the respective X-, Y- and Z- 
fields of the current and used binding space. In case the current set is not a 
member of the used bindings, then the current set should be placed in an empty 
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slot of the used bindings. The empty slots actually contain a null value (1111) and 
thus we can easily check its status by employing a null checker NC2 that works in 
parallel with the 3SC. It is clear from the Fig. 4.10 that both NC2 and the 3SC 
receive common input from the MUX.  Now, suppose at count = j, the current set is 
detected not to be a member of the used bindings, and the j-th slot has been found 
empty (denoted by a null value). Consequently, the counter remains held up at count 
= j, and the j-th slot of the set of used binding is filled in with the current value.  

It may be noted that initially the current triplet and the used four triplets are all 
initialized to be null (1111) by the compiler. The circuit thus starts functioning 
with null values, until a new value is received at the current triplet field from the 
matcher M. The fields of current binding are subsequently updated by the 
respective contents of the matcher M. 

A flag is used to indicate two special circuit conditions: (i) whether the set of 
current binding is non-null and (ii) whether the set of current binding is available 
in one of the fields of the used binding. When any of the aforementioned 
conditions are found to be true, the flag is HIGH, else it remains LOW. Thus in 
case all transitions’ current binding are members of a corresponding set of used 
binding, the flag signal for each transition will be 1. An AND-gate (vide Fig. 4.11) 
is used to test the joint occurrence of all the HIGH flags.  The resulting output of 
the AND-gate needs to be inverted to pass it on to a Low logic level message to 
the FCTL, signifying that all transitions’ current bindings are members of their 
used bindings, and consequently firing of transitions are no longer needed. 

4.7 The First Pre-condition Synthesizer 

One important prerequisite for firing a transition is the existence of tokens at all 
places barring at most one.  This has subsequently been referred to as the first pre-
condition for firing a transition. To illustrate this principle, let us consider a 
transition having a total of five input and/or output places. Let a, b, c, d and e be 
five Boolean variables designating presence/ absence of tokens at those five 

denotes its complementation. 

                    abcde + acbcde +abccde+ abccde+ abcdce+ abcdec                          (4.1) 

      The expression (4.1) can be simplified easily to the following form by ORing 
abcde to each term of (4.1) starting from the second term. 

                   bcde+ acde+ abde+ abce+ abcd.                                                      (4.2) 
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be described by Boolean expression (4.1), where the superscript “c” over a variable 
places. Thus the condition that all except at most one place possess tokens can  
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The Petri net we used in Fig. 3.7, however, has three places associated with 
each transition. Thus expression (4.1) reduces to a three-variable Boolean 
function, described by 
                    abc + ac bc+ abcc+ abcc

                                                                                                        (4.3) 

which can be simplified to 
    
                    ab +ac+ bc.                                                                                      (4.4) 

The Boolean variables in the present context are flags generated by the 
PTVVM, indicating whether the place contains any tokens. For convenience in 
understanding, we denote the flags generated by a place by the place name itself. 
Thus the Boolean function for tr1 and tr2 (vide Fig. 3.8) are given by 

                   p1p2 + p2p3 + p3p1                                                                                                                        (4.5) 
                   p3p4 + p4p5 + p5p3                                                                                  (4.6) 
    

Figure 4.12 presents a logic circuit for the above two Boolean expressions. The 
circuit receives flags from the respective PTVVMs of places p1, p2, p3, p4 and p5

respectively, and communicates the status of presence/ absence of tokens at all 
excluding one input/output places of a transition to the Firing Criteria Testing 
Logic (FCTL). It is to be noted that the FPS includes the logic circuitry 
corresponding to all the transitions in the Petri net.  

4.8 The Firing Criteria Testing Logic 

The Firing Criteria Testing Logic (FCTL), vide Fig. 4.9, is needed to decide the 
possible firing of a transition based on the joint occurrence of the following three 
criteria.  

(1)   All excepting at most one place associated with the transition possess 
tokens; 

(2)  All the variables in the arc functions associated with a transition yields a 
globally consistent value; and 

(3)  The current binding is not a member of the used binding or the current 
binding is a null vector. 

For each of the aforementioned three conditions one flag is generated, the joint 
occurrence of which is tested by the FCTL. The circuit is simple. It just includes a 
3-input AND gate for each transition. The output of the AND gate carries the 
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current status of firing of the corresponding transition. The status signal thus 
generated is carried to the PTVVM for requisite subsequent actions. 
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Fig 4.2: Transition History File
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Fig 4.4: First sub-unit of the PTVVM 
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Fig 4.6: Local Token Matcher for trj in 2nd subunit of PTVVM for pi
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Fig 4.7: Third sub-unit of the PTVVM for p
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4.9 Timing Analysis for the Proposed Architecture 

For the determination of the execution time of logic programs on the proposed 
architecture, we need to identify pipelined stages embedded therein, and estimate 
the computational time required for each stage within the pipeline. Figure 4.13 
provides a schematic diagram of the pipelined stages in the proposed architecture. 
A look at Fig. 4.13 reveals that the architecture offers three main pipelines.  The 
first one comprises of the THF, the PTVVM, the Matcher and the TSF.  The 
second one comprises of the THF, the PTVVM and the Matcher, while the third 
one includes the THF, the PTVVM and the FPS in order. It is also evident from 
Fig. 4.14 that the Matcher and the FPS both work in parallel, but the FPS 
completes its task earlier than the Matcher. The TSF, which is employed to test the 
firability of an enabled transition, works in two phases. The first phase, which is 
activated on system reset, is a waste phase (cycle) [4].  It is incorporated 
intentionally to avoid complexity in designing the control logic for the TSF. The 
second phase, which is initiated on receiving current-bindings from the Matcher, 
is an effective component of a transition firing cycle1. The FCTL, shown in Fig. 
4.13, starts functioning on receiving the pre-conditions for firing from the 
Matcher, the FPS and the TSF. 

PTVVM THF 

TSF 

Matcher 

FPS 

FCTL 

Fig. 4.13: Pipelining among the major modules of the architecture for the 
execution of FOL programs. The solid bold line denotes data lines, the solid thin 
line denotes data line for transmission of data for the next cycle, and the dotted 
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A timing analysis of the proposed architecture reveals that maximum time of a 
transition firing cycle is consumed by the PTVVM. An insight view of Fig. 4.3 
and 4.5 further reveals that local matching of tokens in a PTVVM is primarily 
accomplished by determining the common variable bindings of two arc functions 
associated with one place and a transition. In our architectural realization, we 
presumed that a place contains at most five tokens. Thus, the variables in an arc 
function can have at most five bindings. Consequently, to determine the common 
variable bindings of two arc functions connected between a place and a transition, 

1  A transition firing cycle is defined as the interval of time between the issue of a system 
reset signal to placement of tokens at an inert place after firing of a transition.  
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Fig. 4.14: Gantt chart showing concurrent and pipelined activation of 
different units in one transition firing cycle for evaluation of the cycle 
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we need (5 × 5) = 25 comparisons. Assuming that the place buffers in the PTVVM 
(Fig. 4.4) are realized with RAMs driven by a system clock of time period Tc, it 
can easily be ascertained that 25 memory read cycles 2 (or 75 Tc) are needed to 
complete the local matching of tokens. Further, for storing an inferred token into a 
place buffer (Fig. 4.4) we need to compare the content of Matched Value Register
(MVR) with the content of one place buffer. Since a place buffer contains 5 
tokens, we need 5 comparisons and consequently 5 memory read cycles in the 
worst case for matching. One memory write cycle is also employed (time slot g to 
h in Fig. 4.14) to enter the inferred token into the blank place of the place buffer. 
The time consumed for 5 memory read and memory write cycles is 15 + 4 = 19 
clock cycles. Thus PTVVM approximately requires (75 + 19) Tc = 94 Tc.

Among the other modules in Fig. 3.13, the THF requires 1 register access cycle, 
and the FPS, the FCTL and the Matcher consume approximately 2, 1 and 10 gate 
delays respectively. Assuming that the TSF circuit  (Fig. 4.10)  is realized with 
register files, a simple analysis shows that the TSF approximately consumes 4 
clock cycles (or 4 Tc), 1 register write cycle (or 1 Tc),1 MUX-delay, 1 comparison 
and 3 gate delays.  

Thus ignoring gate delays and other switching delays involved in comparison, 
the time incurred in a transition firing cycle, starting from reset to token placement 
at a place is approximately (94 + 4 + 1)Tc = 99 Tc ≈ 100 Tc. Since a number of 
transitions are concurrently firable, it is expected that the execution of a complete 
logic program will require an integer multiple of this transition firing cycles. 
Assuming that a logic program requires p transition firing cycles, the time needed 
for execution of the program thus is approximately 100 p Tc. Further, assuming a 
1000M-Hz clock frequency, the time required for execution of a logic program on 
the proposed architecture is (100 × p × 10-9) = 0.1 p µ-sec (microsecond). To have 
an idea about the execution time of commercial programs on the proposed 
architecture, let us consider a database program containing 2000 rule clauses and 
8000 data clauses. Such programs can be configured on a Petri net with 2000 
transitions3 and approximately 2000 places4, each place been mapped with 4 data 

program on the proposed architecture = 0.1 × 2000 µ-sec = 200 µ-sec only. 

4.10 Conclusions 

This chapter presented a parallel architecture for logic programming based on the 
reasoning formalisms of Petri net discussed in the last chapter. The proposed 
architecture supports concurrent resolution of multiple program clauses associated 

2 Memory read and write cycle require 3 and 4 clocks respectively.  
3 No. of transitions = No. of rule clauses. 
4 Usually number of places in a Petri net is approximately equal to the number of 
transitions [2]. 
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with each transition. Thus groups of concurrently resolvable clauses mapped at 
transitions and their adjacent input/output places can be resolved concurrently, 
thereby increasing the throughput to a great extent. An analysis of the proposed 
architecture reveals that there exist two multi-stage pipelines and parallelism 
among the modules of the architecture. Consequently with number of program 
clauses equal to the number of transitions, the architecture achieves a high degree 
of parallelism. The Gantt chart [6] shown in section 4.9 (vide Fig. 4.14) reveals 
that the time required for execution of a logic program on the proposed 
architecture is approximately 100 p Tc,, where p and Tc denote the number of 
concurrent transition firing cycles and  time period of the system clock 
respectively.  Since p usually is of the order of 1000s, and Tc is of the order of 
microseconds, the resulting time is only of the order of one tenth of a second. 
Thus the proposed architecture will find massive applications in the database 
systems realized with Datalog programs. 

Exercises 

1. Given a Petri net with necessary labels of arc functions and associated places 
of transitions. Construct the Transition History Files. You need not show the 
input and output lines of the register files.

[Hints: The Transition History File for the Petri net given in Fig. 4.15 is 
constructed in the next page vide Fig. 4.16.

p2

(X, Y)                   p5    

                  
                
                ¬(X, Z) 
 (Z, Y)  tr2

(X, Y) 

                 ¬(Z, X) 

(Y, Z)   tr1

p1

p3

p4
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2. Suppose the place/transition names and arc functions are coded as binary 
strings of 3 and 12 bits respectively in a Transition History File register 
(THF).  

(a) Determine the word-length of the Transition History File registers.  

(b) Using flip-flops as the basic elements, design a complete register to realize 
the THF. 

Transition APpk AFAWpk APpl AFAWpl APpm AFAWpm

tr1 p1 A p2 B p3 C

tr2 p3 D p4 E p5 F 

Where, 

A ≡
+ X Y ∅ ∅ ∅

B ≡
+ Y Z ∅ ∅ ∅

C ≡
¬ Z X ∅ ∅ ∅

D ≡
+ X Y ∅ ∅ ∅

E ≡
+ Z Y ∅ ∅ ∅

F ≡
¬ X Z ∅ ∅ ∅
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[Hints: 

(a) Word-length of transition history file register = Word-length for one 
transition + Word-length for 3 place-names + Word-length for 3 
associated arc functions = (3 + 3 × 3 + 3 × 12) bits = 48 bits.   

(b) To design the THF register the following points may be taken into 
account. 

(i) All flip-flops in each register should be activated simultaneously by 
the same clock. 

(ii) Except transition-name, other information of the THF need to be 
transferred to other units of the circuit, all in the same time.] 

3. Suppose the predicates in a logic program include only three variables X, Y 
and Z. Assuming a ‘+’ signed arc function corresponds to the input arc 
function and a ‘¬’ signed arc function corresponds to the output function of a 
transition, determine the word-length required to represent the ‘AFAWpi’ in 
THF. Note that an arc function contains only two variables out of X, Y and Z. 

[Hints: AFAWpi includes 2 arc functions, the format of which is given 
below. 

                                           

where (X, Y) and (Y, Z) denote the input and the output arc functions 
respectively of the given transition. 

      To represent three variables we, minimally require two bits. Thus, let X, 
Y and Z be denoted by 00, 01 and 10 respectively. The ‘+’ and the ‘¬’ and 
‘don’t care’ sign requires two bits, say, ‘00’ for ‘+’, ‘11’ for ‘¬’ and ‘01’ for 
‘don’t care’. Thus the word-length becomes 

Bit requirement:  2  +  2  +  2  +  2  +  2  +  2  

Thus, summing the bit requirements for individual bit we get the result to be 
12 bits. 

X Y+ ¬ Y Z

X Y+ ¬ Y Z
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The individual numbers in the last expression corresponds to the bit 
requirement for the respective element in the given string. 

It is to be noted that a null variable and sign can be denoted by “11’ and ‘01’ 
respectively.] 

4. Consider the Petri net shown in Fig. 3.7. Given the time required for the 
following operations: 

Determine the overall time required for firing transition tr1.

[Hints: The order of execution at the modules inside the PTVVM given in the 
timing diagram (Fig. 4.17). It is clear from the diagram that the total time 
consumed = (30 + 10 + 20) µS = 60 µS. 

Operations Time required for the 
operation 

Local Token matching 30 µS 

Testing the first and the third 
precondition 

20 µS 

Global token matching at the 
Matcher unit 

10 µS 
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5.   Given the following timings in connection with transition firing in a Petri net. 
Assuming that the LTMs and Matchers of transitions tr1 and tr2 work in 
parallel, determine the total time needed for firing of both the transitions in 
Fig. 3.7. 

Time 
consumed 
by 

LTM      

 30 µS 10
µS 

20 µS

60 µS

Time 

Token matching

Second firing 
condition testing

First and 
third firing 
condition 

testing 

Fig. 4.17: Timing diagram describing order of execution at the modules 

Matcher
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[Hints: The local token matching of the arc functions (X, Y), (X, Z) and ¬(Y, 
Z) can be done concurrently and the time needed for doing so 

= (5 µS/variable) × 2 variables 
= 10 µS. 

      The variable bindings thus obtained are transmitted to the Matcher for 
global token matching. It is indeed important to note that the three tokens of 
place p1 require 3 × 3 = 9 matching cycles for instantiation of (X, Y) and  
¬(Y, Z). Naturally the total time consumed for transition tr1 includes these 9 
matching cycles at the LTM. Therefore the total time consumed for firing of 
tr1

= Time required for 9 matching cycles at LTM + Time required 
for   1 matching cycle at the Matcher  

= Time required for (9 × 2) = 18 variable matchings  
= (18 × 5) µS + 1 × 10 µS 
= 90 µS + 10 µS 
= 100 µS. 

      Since the preprocessing for firing at tr2 works in parallel to that of tr1, tr2

does not consume any additional time. Thus the time required for firing tr1and 
tr2 together 
              
                  = 100 µS.] 

Operations Time required for the 
operation 

Matching a single variable in 
an arc function 

5 µS 

Testing the first and the third 
precondition for firing 20 µS 

Global token matching at the 
Matcher unit 10 µS 
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6. Consider the Local Token Matcher in Fig. 4.6. The doted box in the Fig. 4.6 
against which the label is attached, contains two components A and B. A 
denotes the sign of the arc function variables and the first component of B 
denotes the sign of the token in the associated place of the transition. The last 
three components of B contains the values of variables X, Y and Z 
respectively. 

      Let AF1 and AF2 denote the registers containing respective sign and value 
of arc functions (X, Y) and ¬(Y, Z) respectively. Assuming that the time 
required for sign matching is 2 µS, value matching is 3 µS and propagation 
delay for 1 AND gate is 1 µS, determine the time needed to obtain a 
consistent binding of the two arc function variables. 

[Hints: The sign and value matching here can be done in parallel in Fig. 4.6. 
We note that the time needed for value matching is more than that of sign 
matching, the total detrimental factor in timing is given by the values only. 
Hence the time needed to generate a consistent binding, if possible 

= Max (time required for sign matching and value matching) 
   + (3 AND-delay) 
= Max (3 µS, 2 µS) + 3 × 1 µS 
= 3 µS + 3 µS 
= 6 µS.] 

7. Consider the TSF in Fig. 4.10. The set of the current and the used bindings for 
transition tr1 of Fig. 3.7 in the second firing cycle is listed below. 

Set of current bindings: {(r/X, n/Y, a/Z)/(r/X, d/Y, a/Z)} 
Set of used bindings: {{r/X, d/Y, a/Z}, {r/X, n/Y, a/Z}} 

The time required for matching of three variables X, Y and Z in parallel = 3 
µS, determine (a) the master clock frequency. Also (b) determine the time 
required for generating the flag from the TSF. 

[Hints: 

(a) The master clock should be sufficiently wide to hold the address at the 
input of the MUX for comparison of its corresponding content with the 
Set of current bindings (SOCB). 

Given the time required for concurrent matching of three variables, we 
can determine the clock frequency  

= 1/ (3 µS) 
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= 0.33 × 106 Hz 
= 0.33 MHz. 

(b) For the generation of the flag it is needed to check whether the current 
binding is a subset of used bindings. In the present context it requires two 
matching cycles of three variables. Thus the time needed for generation 
of flag = (2 × 3) µS = 6 µS.] 
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Parsing and Task Assignment on  
to the Proposed Parallel Architecture 

5.1 Introduction 

This chapter provides details of the pre-processing needed prior to execution of a 
pseudo PROLOG program. Classical PROLOG programs like programs in 
traditional languages such as C or Pascal are first compiled to obtain the target 
object code for running them on a given processor. The processor in turn generates 
its micro-codes for execution of the object codes from a micro-programmable 
ROM, and issues appropriate control signals for bus opening and closing for data 
transfer and execution. A number of alternative execution models of PROLOG 
programs (vide Fig. 5.1) are prevalent in the current realm of Artificial 
Intelligence. Most of the models, however, include transformation of a PROLOG 
program into an intermediate code suitable for Warren Abstract Machine (WAM) 
[5,7], and then translation of the WAM code into the object code of the host 
machine. The WAM provides a framework for automatic detection of concurrency 

codes on a parallel architecture.  

5  

The chapter provides an outline to parsing users’ pseudo PROLOG codes and 
mapping segments of the program onto the parallel architecture introduced in the 
last chapter. To avoid online mapping of the program segments onto the 
architecture, we presume no constraints on system resources. If the situation is 
different, then a specially designed task-assignment policy is needed to identify the 
usable (non-utilized) hardwired resources and a dynamic task assignment 
program is to be invoked for mapping the non-executed program modules onto  
the usable system resources. It is indeed important to note that such type of online 
mapping of system resources causes a significant delay in the execution of the 
program. A speed-size tradeoff is commonly used to optimize the size of  
the architecture and minimize the execution time of the program. The architecture 
we presented in the last chapter is economized based on the resource demand in 
the execution phase of the program. Consequently, no online mapping of 
resources is needed in the present context.  

in a PROLOG program, thereby facilitating the users to run the concurrent object 

A. Bhattacharya et al.: Parsing and Task Assignment on to the Proposed Parallel Architecture, Studies
in Computational Intelligence (SCI) 24, 211–228 (2006) 
www.springerlink.com    © Springer-Verlag Berlin Heidelberg 2006 



The chapter proposes a new model for execution of a pseudo PROLOG 
program (vide rightmost part of Fig. 5.1). Here, the program is first passed on to 
parser for lexical analysis and syntax checking. An emulation program then 
transforms the bug-free source code into a Petri net. Hardware resource 
requirements for execution of the program thus can be traced from the emulated 
Petri net model. A task assignment program then determines the hardware 
requirements from the emulation model and maps the program resources onto the 
hardwired system resources. For instance, the binary coded place names are 
mapped to the associated place fields (APpi) of the Transition History File (THF).  
The signed arc functions detected from the Petri net model of the pseudo 
PROLOG program are also mapped to the arc function associated with a place 
(AFAWpi) of the THF. The signed tokens are mapped at the place buffers of the 
appropriate Place Token Variable Value Mappers (PTVVMs). The current and 
used binding fields of the Transition Status File (TSF) are assigned null values 
prior to execution of the program. 

One point that needs to be addressed here is whether to add flavor to static or 
dynamic assignments. In case of static assignments, the program resources can be 
mapped onto the architecture once only and prior to the execution of the program.  
Dynamic assignment [4] on the other hand is complex as it involves many issues 

Compilencr Compile68000 DEL8600 DelPLM 

General 
Host 
µcode

General  
Host 

Transformation 
into Petri nets WAM 

Classical  
model 

Optimal Proposed  
execution model

8600
µcode 
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µcode

Optimal 
Host 
µcode 

Gates 

Prolog/ 
Pseudo
-Prolog

Parsing 

Task 
assignment 

Execution on 
the proposed 
parallel 
architecture 

Fig. 5.1: A comparison of various alternative execution models of PROLOG 

212                                                                           5 Parsing and Task Assignment

including the proposed model 



Parallel and Distributed Logic Programming                                                       213

like deciding usability of system resources and their dynamic interconnectivity. 
On occasions, there exist options in resource assignments, and consequently an 
optimal policy in assignment strategy is framed to resolve the issue. Both 
deterministic and stochastic models [2] are employed in policy design, and the 
choice of the policy greatly depends on usable resource count, their type and the 
user resources such as arc function variables, tokens and predicates. To keep our 
design simplified, we in this chapter do not consider dynamic assignment of 
program resources onto the proposed architecture.  

It also needs mention here that the First Pre-condition Synthesizer (FPS) 
introduced in the last chapter generates a flag based on the existence of tokens at all 
the places, excepting at most one. The pre-processor provides the necessary logic 
function to the FPS to check the above status, which is subsequently synthesized by 
the FPS for its realization. The flag to indicate the status of the FPS is then generated 
for satisfying the subsequent firing condition of the transition under reference. 

5.2 Parsing and Syntax Analysis 

Parsing is a fundamental step in the process of translation/compilation of a source 
code to a target code. It ensures correctness in the source code and performs 
lexical and syntactic analysis to detect the bugs in the source codes. The program 
that is used for parsing is called a Parser.  Parsers usually require a grammar to 
check the correctness of the source codes. The source code in the present context 
is in pseudo PROLOG format of the following type. 

Sample Program 

Symbols X, Y, Z, a, b, c. 
Predicates P (X, Y), Q (Y,Z), R (X, Y, Z). 
Clauses 
             P (a, b) ←.                                                                                              (5.1) 
             Q (b, c) ←.                                                                                             (5.2) 
             R (X, Y, Z) ←P (X, Y), Q (Y, Z).                                                          (5.3) 
             P (X, Z), Q (X, Y) ←R (X, Y, Z).                                                          (5.4) 

It is clear from the sample pseudo PROLOG program presented above that the 
symbols including variables X, Y, Z and constants like a, b and c are separated by 
commas and terminated by a period (.). Further, the predicates are also separated 
by commas and the last predicate is identified from the period following it. The 
clauses are separated by a period, and literals in the body of a clause are separated 
by comma. Each clause is terminated by a period. The main difference of the 
present pseudo code with respect to a PROLOG code is that the current coding 
allows more than one literal in the head. 

Quite a large number of parsing techniques is available in the current literature of 
compilation [1, 3]. Among these parse tree- and deterministic finite automata (DFA)–
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parsing is presented in Fig. 5.2. Given a pseudo PROLOG statement, a parse tree 
is constructed by gradually expanding a clause using the re-write rules. Usually 
the re-write rules are constructed judiciously to describe all possible vocabulary of 
a given language, and they together are called the grammar of the language. A 
simple grammar to test the syntax of a pseudo PROLOG language is presented as 
follows: 

       Grammar 

               Symbols  X⏐Y⏐Z⏐a⏐b⏐c                                                                (5.5) 
               Predicates (Pre (arg1, arg2)) (,Pre (arg1, arg2))*                             (5.6) 
               arg1 Symbols                                                                                    (5.7) 
               arg2 Symbols                                                                                    (5.8) 
               Pre P⏐Q⏐R                                         (5.9) 
               Head ∈⏐Pre (arg1, arg2)⏐Pre                                      (5.10) 
               Tail Pre⏐Pre (arg1, arg2) ⏐Predicates                                            (5.11) 
               Clause Head ←Tail Period ⏐Head ←Period                                  (5.12) 
               Query ←Tail Period                                                                  (5.13)   

      where the upper case letters like X, Y and Z stand for variables, and lower 
case letters like a, b, c represent constants;  

           “|” denotes an OR operator;  

           “ ” sign stands for a replacement operator. This in other words means that 
the left hand side of the re-write rule can be replaced by its right hand side; 

           “*” above a symbol here denotes one or more number of occurrences of the 
symbol, and 
                 
           “∈” denotes a null string.

5.2.1 Parsing a Logic Program using Trees 

This section provides a discussion on the construction of parse trees for 
statements in a pseudo-PROLOG program. As already discussed, the parse tree is 
constructed by expanding a clause using the grammar supplied. The left-hand side 
of the re-write rules is compared with the available string or its part located at a 
node (initially at the root) of tree. A rule whose left hand side matches with the 
given clause is selected, and the matched clause in the source code is replaced by 
the right-hand side of the selected rule. The updated clause is placed in the tree as 
an offspring of its previous form. The nodes in the parse tree are thus expanded until 
the whole source code appears at the leaves in the left-to-right traversal of the tree.   

5 Parsing and Task Assignment

based schemes need special mention. An illustrative tree based scheme for 
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Both top-down1 and bottom-up parsing can be employed for the construction of 
parse trees. In this section, we illustrate top-down parsing (vide Fig. 5.2) with 
respect to the following pseudo PROLOG statement. 

           Grandfather (X, Z) ←Father (Y, Z), Father (X, Y).                              (5.14) 

      In fact any typical top-down parser such as L-R parser [1] that offers 
predictive matching capability and is free from back-tracking is suitable for our 
purpose. Since the algorithms for such parsers are available in any standard text on 
compiler [1, 3], we for the sake of brevity omit its discussion here. 

1 In top-down (bottom-up) parsing, the tree is expanded from the root (leaves) and 

parsed. 

  Clause 

     Head       ←←←←          Tail       Period

Pre      (   arg1      ,   arg2       )  Predicates 

Grandfather  X Z      Pre  ( arg1  , arg2  )   ,   Pre (  arg1  , arg2  ) 

Father    Y    Z Father    X     Y

Fig. 5.2: Parse tree used to analyze the syntax of a user defined clause:     

construction of the tree is continued until the whole expression is completely 

Grandfather (X, Z) ←Father (Y, Z), Father (X, Y) 
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5.2.2 Parsing using Deterministic Finite Automata 

Instead of a parse tree, a DFA can equally be used to handle the parsing problem 
of the pseudo PROLOG codes. A DFA is defined as a 5-tuple, denoted by 

      DFA = {S, N, A, T, E} 

where     
                   S is the start symbol denoted by an arrow to a state,  
                  N is the set of states denoted by circles, 
                  A is the set of arcs, 

transition of states, and  
                  E is the termination/ end symbol, denoted by 2 concentric circles.  

      The DFAs presented in Fig. 5.3 to Fig. 5.9 are designed using the grammar 
defined earlier.  

   

    )   , 

1 2 3 4 5 6 7 8

  Pre 

  (   arg1   arg2 ∈

∈
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                 T is the set of transition symbols marked against the arcs that cause a           

Fig. 5.3: A finite automation for tail part of a given clause 
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period 

1 2 3 4 5

head ←←←← tail period 

1 2 3 4 5 6 7

Pre   ( arg1 , arg2 

∈

∈

)

P

Q

R

1 2

Fig. 5.4: A DFA for the head part of a clause 

Fig. 5.5: A DFA of a goal / general clause 

Fig. 5.6: Finite automation of Pre following definition (5.9) 
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1 2

a

b

c

X

Y

Fig. 5.7: A DFA for symbols like constants a, b, c and variables like X and Y  

1 2

Symbols 

Fig. 5.9: The Argument-DFA for the rules: arg1  Symbols and arg2  Symbols  

← Tail Period 

Fig. 5.8: A DFA for a query  

1 2 3 4
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To illustrate the implication of the above automata in parsing a given statement, 
let us consider the following pseudo PROLOG query: 

              Query: ←P (X, Y), Q (Y, Z).                                                             (5.15) 

Now when the query (5.15) is submitted in runtime, the control automatically 
consults the automation of a standard query (Fig. 5.8). The implication sign (←)
is matched with the arc connected between state 1 and state 2 of Fig. 5.8. If a 
successful match occurs, then a DFA for tail matching is explored. So, a 
switching, demonstrated by a dotted line, occurs from state 2 of a query-DFA to 
state 1 of the tail-DFA. Again, when a Pre is encountered in the tail-DFA, a 
transition takes place following state 1 of tail-DFA to state 1 of Pre-DFA, and 
on matching of the appropriate predicate symbol in the Pre-DFA, a further 
transition to state 2 of tail-DFA takes place. The left parenthesis “(” of the input 
string automatically matches in the arc between state 2 and 3 of the tail-DFA. 
Then on encountering an argument in the input string, a transition following 
state 3 of tail-DFA to the argument-DFA (for lack of space in Fig. 5.10) takes 
place. The argument-DFA calls the symbol-DFA for term (variables/ constants) 
matching of the input string with those enlisted in the symbol-DFA. The control 
then returns from the symbol-DFA to Argument–DFA (not shown) and from the 
argument-DFA to state 4 of the tail-DFA. The rest of the matching in the tail 
part of the input string is obvious. If the tail matching is alright, a transition 
from the end state of the tail-DFA to state 3 of query-DFA takes place.  
On finding a successful match of a period of the input query with the same in 
the query-DFA, the parser accepts the query for subsequent evaluation.  The 
method of testing any other clause is analogous and thus is not discussed  
in detail. 

5.3 Resource Labeling and Mapping 

Prior to initiate reasoning on the architecture proposed in chapter 4, the resources 
of the architecture should be properly labeled.  The resources in the present 
context are of two distinct types: (i) hardwired resources, and (ii) simulated Petri 
net resources such as arc function variables and constants. The hardwired 
resources include PTVVM, TSF, MATCHER, FPS and THF and Firing Criteria 
Testing Logic (FCTL). The modules of the simulated Petri net are mapped onto 
appropriate hardwired resources. For convenience in subsequent operations, 
hardwired and arc function resources are named in binary codes before the 
mapping is accomplished.
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Fig.5.10: A complete DFA for testing the syntax of a query statement



Parallel and Distributed Logic Programming                                                       221

5.3.1 Labeling of System Resources 

Once parsing is over and the logic program is detected to be free from syntactical 
errors, the pre-processing program starts labeling the system resources. In order to 
label the places and transitions, we need to construct a pseudo Petri net from the 
given program clauses. The number of places found in the Petri net is first 
counted, and consequently the places are named by binary numbers. In case there 
are n places in the pseudo Petri net, the places are numbered from 0 to (n –1) in 
binary code, so that all places have a distinct place name. The number of 
transitions in the Pseudo Petri net are also counted and numbered similarly.

For identifying the variables in an arc function, the arguments of each predicate 
are identified separately in the process of parsing.  A buffer is then initialized with 
each transition, and the variables associated with a transition are saved in the 
buffer in a manner so that the buffer does not contain the multiplicity (multiple 
copies) of a variable. The variables thus saved in the buffer are counted and 
named in binary code so that all of them have a distinct binary variable name. 
Suppose there are altogether m buffers. Once the naming of variables of the first 
buffer is over, the variable naming of the second buffer starts. Thus if the last 
variable taken from buffer 1 is given a variable name r (in binary code), then the 
first element of the second buffer will have a variable name r + 1. The rest of the 
variables of the buffer 2 will thus have distinct variable names r + 2, r + 3, etc. 
The process of variable naming is thus continued until the last variable of the last 
buffer is exhausted. 

5.3.2 The Petri Net Model Construction 

Petri net model construction is an intermediate step in mapping program clauses 
on to the hardwired resources. In fact this intermediate step has a number of 
advantages, specially in planning and organizing the hardwired resources 
according to the user’s need. The construction of Petri net is accomplished first by 
transforming head ←tail period type program clauses on to a sub-net. The 
algorithm used for the above mapping is trivial. It checks, whether there exists any 
transition in the net with input places corresponding to the enlisted predicates in 
the tail, and output places describing the literal present in the head. If no such 
transition is found, a new is created. Places labeled with a predicate name same as 
in the head or tail are then searched in the existing sub-net so far created. If one or 
more predicates enlisted in the clause are absent, new places are created and the 
places are labeled with appropriate predicate names following the current list of 
unfound literals associated with the given program clause. When all literals of the 
given clauses are available as places, the places are attached to the transition as 
input or output places depending on their presence in the body or head parts of the 
clause respectively. Arguments of each predicate are then labeled as arc functions 
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against the arcs connected between the appropriate place containing the same label 
and the transition under reference.  

The process of mapping program clauses on to the Petri net is continued until 
the whole set of clauses, described above, are transformed into Petri net 
construct. The atomic program clauses, having only a head literal, are now 
searched in the Petri net, and the arguments of such clause are mapped as token 
at the appropriate place containing the same predicate label.  The sign of arc 
functions are also labeled, depending on their association with the arc types such 
as place to transition arcs or transition to place arcs of the selected clause.  
For the former type the sign should be positive, and for the latter case it is 
negative. 

On completion of the Petri net construction, the hardwired resources can 
directly be mapped from the simulation model of the Petri net, rather than 
mapping the same from the user-supplied source code.

5.3.3 Mapping of System Resources 

The register files in the architecture of the proposed scheme needs to be initialized 
before the hardwired execution of the reasoning program starts. For instance, the 
place names are initialized at the appropriate register file associated with a 
transition. In other words place names are mapped to the APpi fields of the 
transition history register files.  

The signed arc functions are first detected from the program clauses in the 
process of parsing, and saved in temporary buffers. Later these signed arc 
functions are transferred from the temporary buffer to the appropriate AFAWpi

fields of the transition history file.   
For determining the signed constants in the given clauses, the parser should 

identify the body-less clauses (i.e. clauses with a head, an arrowhead and a period 
only) and the sign of the tokens, which is explicitly available within the program 
clause. For example, the signed token part in the body-less program clause: 
¬Likes (r, l) ←.  is ¬<r, l>. These signed tokens are mapped at the place buffers 
of the PTVVM.  

The current and used instantiation fields of the TSF are also initialized with null 
values prior to initiate the execution of the program. 

The compiler also synthesizes the logic for testing one of the firing conditions 
of a transition. The condition in the present context refers to checking whether all 
but one place associated with a transition possess tokens. As an example, let a 
transition tri has r number of input places p1, p2,…., pr and s number of output 
places pr+1, pr+2 r+s. Then the condition that ensures tokens at all but one place 
is presented below.  

5 Parsing and Task Assignment

,…, p
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(p2 p3…..pr) (pr+1 pr+2….pr+s) + (p1 p3…..pr) (pr+1 pr+2….pr+s) + (p1p2 p4…..pr)
(pr+1 pr+2….pr+s) + ….+ (p1p2p3…..pr – 1) (pr+1 pr+2….pr+s) + (p1p2 p3….pr)
(pr+2….pr+s) + (p1p2p3….pr) (pr+1pr+3 ….pr+s) + ……+ (p1p2 p3….pr) (pr+1

pr+2….pr+s-1)=True                                                                                      (5.16)  

In the above Boolean condition, pi = 1denotes that the place pi possesses tokens, 
and obviously pi = 0 indicates that place pi has no tokens. Sum and product operators 
in the last condition represent Boolean OR and AND operations respectively. 

After the compiler generates the above condition, it is passed on to the First 
Pre-condition Synthesizer (FPS) logic that implements the above logic for 
verifying the pre-condition for transition firing.  In fact thope FPS includes a set of 
logic gates that is automatically configured to satisfy the desired logic function. 

5.4 Conclusions

Prior to execution of a pseudo PROLOG program on the proposed architecture, 
the source code needs to be parsed and the symbols extracted from the source code 
are required to be mapped onto the said architecture. In the present context, a 
deterministic finite automation was employed to check the syntactical errors in the 
source code during the process of parsing. In case the source code is free from 
syntactical error, the pertinent parameters of the program such as arc function 
variables are represented by distinct binary numbers and mapped at the 
appropriate units in the architecture. In fact a pseudo Petri net is created by the 
compiler to trace the places and transitions in the architecture with respect to those 
in the Petri net. Such correspondence helps in identifying the fired transition and 
the resulting bindings easily for answering a user’s query. In our elementary 
design, we do not consider construction of a symbol table to hold the program 
variables, as we have a limited number of variables in example programs. 
However, for practical systems, symbol tables [6] need to be constructed to 
determine the location of the symbols in the memory. Symbol table construction is 
not discussed here as we worked with limited number of variables. 

Exercises 

1. Construct the grammar and build a parse tree using the grammar for the 
following logic program:  

Variable : X, Y; 
Constant : a, b, c; 
Predicates: P( , ), Q( , ); 
Clauses : P(X, Y) ← Q(Y, X).;  
    Q(a, b) ←.; 
    Q(b, c) ←.; 

Query  : ← P(a, c).;
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[Hints:  

Grammar:  

Symbols  X⏐Y⏐a⏐b⏐c
Predicates  (Pre(arg 1, arg 2))(, Pre(arg 1, arg 
2))*
arg 1  Symbols
arg 2  Symbols 
Pre  P⏐Q
Head ∈⏐Pre(arg 1, arg 2)⏐Pre 
Tail ∈⏐Pre(arg 1, arg 2)⏐Pre⏐ Predicates 
Clause  Head ←Tail Period⏐Head ←Period 
Query ← Tail Period 

P          X            Y 

Clauses

Head ← Period Head            ←                  Tail       Period 

Pre (  arg 1   ,   arg 2   ) Predicates 

Pre    ( arg 1   ,    arg 2  )

Q                   Y                X

Predicates

Pre   (   arg 1 ,  arg 2   ) 

Q               a              c 

Fig. 5.11: A parse tree  

5 Parsing and Task Assignment

A parse tree is constructed using the grammar vide Fig. 5.11 ]
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2. Using the deterministic finite automata for clause, head/tail part of clauses, 
predicates, variables/constants, queries and symbols, as given in the text 
represent the following clause by deterministic finite automata.  

 P(X, Y) ←Q(Y, X). 

[Hints: A deterministic finite automata is constructed to represent the given 
clause vide Fig. 5.12.  

                                                                                                 

3. (a)   Given a set of clauses and facts, construct an algorithm for representing 
them using a Petri net. 

    (b)  Defining the necessary parameters of a given program, evaluate the 
complexity of your algorithm. 

   

[Hints: 

(a) The algorithm for Petri net construction greatly depends on the list of 
rules and facts. The algorithm begins with scanning literals and operators 
in the rule one by one, until the rule is terminated by a period or 
semicolon. Since the rules are scanned following the grammar, the types 
of the literals such as predicates, arguments etc. can easily be identified. 
After detection of each predicate, the same is searched as a place name in 

Expand the tail 
from the text 

Head                 ←                Tail                  Period

51 2 3 4

Expand the head 
from the text 

Fig. 5.12: A DFA for a clause  ]
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the Petri net so far constructed. If the place of the desired name is not 
available in the Petri net, then the Petri net is augmented with the new 
place name. When all the predicates of the rule are found to be available 
on the Petri net, a transition is constructed to connect the predicates in the 
antecedent part to the predicates in the consequent part by placing one 
transition in between. A simple algorithm that serves the above need is 
presented below. 

Procedure EPN-construction 
Begin 

While no-of –rules is not exhausted do 
Begin 
For each rule  

If the predicates found in the rule is not 
available in the Petri net 
Then construct the place and label it to augment 
the Petri net 
If the predicate corresponding to the place now 
constructed belongs to the antecedent part of the 
rule 
Then mark the place as the input place 
Else mark the place as the output place 
Place a transition to connect the input places to 
the output places of the transition and attach a 
label to the transition 
Attach Arc-function 

End-for;
End-while; 

End. 

Now to attach the arc functions with the arc and to map the tokens in the places, 
we need to consider the facts available in the system. The following procedure 
may then be invoked to attach arc functions and map tokens in the places. 

Function Attach Arc-function 

Begin  
Identify the tokens associated with the predicates and according to the type of 
the corresponding places attach a suitable sign (+ for arc function 
corresponding to the input places and − for the arc function corresponding to 
the output places); 
Also attach the arguments of the predicates in order with the arc containing 
the place and the transition under reference. 

End.

5 Parsing and Task Assignment
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Function Attach Tokens 

For each fact 
Repeat

Isolate the argument of the predicate representing the fact and map it with the 
given sign at the corresponding place in the EPN. 

End. 

(b) Let ai be the no. of predicates in the antecedent part and ci be the no. of 
predicates in the consequent part of the ith rule. Let the maximum no. of 
places in the EPN be N. Now to map a place into the EPN, we atmost 
need N comparisons. Thus to map ai + ci no. of places, we require (ai + ci)
N number of searches in the worst case. Let the number of rules be M. 
Thus for mapping M rules on to the EPN we need at most  

M
 (ai + ci) N comparisons. 

i = 1  

Let ai ≤ A and ci ≤ C for all i =1 to M.  
Thus the above result reduces to 

 MN (A + C). 

Thus the complexity is  

                            O (MN). 

      To identify an arc for mapping an arc function we need MN searches. 
Thus for all clauses together the total search cost will be MN (A + C). 

      For mapping the tokens we need to identify the place on the EPN. Since 
there N places, the total search cost for mapping (A + C) no. of tokens we 

      Summing up the three search costs we find the order of complexity 
remains MN (A + C) ≈ O(MN) since (A + C) is much negligible in 
comparison with MN. ] 

4. For the following logic program,  

(A+ C). 
need N(A + C) search cost. Thus for M rules the search cost becomes MN



228                                                       

(a) Encode the system resources into appropriate binary strings, and outline 
the mapping of these strings on to appropriate modules of the 
architecture. 

(b) Which information during the execution of the program are mapped online 
onto the architecture?

Logic Program:  

Son(Y, X) Father(X, Y). 
Father(d, r) .     

[Hints:  

(a) The number of places and transitions required to realize the given logic 
program are first determined. The necessary word-length of the 
appropriate units is then fixed in the respective architecture. The 
variables, arc functions and their signs are encoded into binary strings of 
appropriate length. These are then mapped onto appropriate modules of 
the architecture for initialization of the execution process. 

(b) The current variable bindings and the set of used bindings which are 
computed online are also mapped onto appropriate registers in real time.]
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Logic Programming in Database Applications 

The chapter addresses the scope of logic programs in database systems. It begins 
with syntax and semantics of the Datalog language, and highlights the special 
features of the language in answering database queries. The LDL system 
architecture, which until this date is the most popular system for execution of 
Datalog programs, is then briefly introduced. Next the scope of Petri net models 
in designing database systems is examined. The techniques to overcome the 
limitations of the LDL system architecture by Petri net models are also presented. 
The chapter ends with a discussion on the use of Petri net based models in Data 
Mining applications.  

6.1 Introduction 

The book introduces the scope of parallel and distributed logic programming with 
a special emphasis on the architectural issues of logic program machines. This 
chapter deals with Datalog language, which has proved its significance in database 
applications. The chapter attempts to justify the significance of the proposed logic 
programming machine for realization of Datalog programs. 

The chapter begins with an introduction to Datalog language. The semantics of 
Datalog program and the principles of answering user-made queries in Datalog 
language have been outlined and illustrated with many examples. The 
representational benefit of integrity constraints in Datalog programs is also 
illustrated. The LDL system architecture is taken as a case study to understand the 
execution of a Datalog program on a practical system. The scope of Petri net 
models in designing database machines is also outlined in this chapter. Finally the 
chapter stresses the need of data mining on the modified architecture supported by 
Petri nets.

6.2 The Datalog Language 

Datalog [1-25] is one typical logic program based query language that supports the 
formalisms of Horn clause based logic programs. The syntax of Datalog resembles 

6
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the syntax of Prolog. This section presents the basic structure of Datalog programs 
and the principles by which the answer to a query is determined. 

Consider for instance an account relation consisting of three attributes branch-
name, account-number and balance, as shown in table 6.1.  

Suppose, we design a view relation: view1 that contains account-number and 
balances for the accounts at the Park Circus branch with a balance more than Rs 
7000. The following rule is a representative description of the given problem: 

view1(A, B) account(Park Circus, A, B), B > 7000.                        (6.1) 

To retrieve the balance of account-number 0201 we use the following query: 

view1(0201, B).                                                                                (6.2) 

      The answer to the above query can automatically be generated by resolution of 
the clauses (6.1) and (6.2), which yields: 

account(Park Circus, 0201, 8500).                        

Table 6.1: The ‘account’ relation. 

       

Branch-name 
(N) 

Account-number 
(A) 

Balance in 
rupees 

(B)

Jadavpur  0101 5000 

Sodpur  0215 1000 

Maniktala  0102 9000 

Park Circus 0322 6500

C R Avenue 0305 4500

Park Circus 0201 8500

Park Street 0222 7500

 6 Logic Programming in Database Applications
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Thus account-number 0201 in Park Circus branch has a balance of Rs 8500. 

Now suppose we want to identify the account numbers whose balance is > 
7500. This can be represented by the following query: 

view1(A, B), B > 7500. 

The owner to the above query can directly be obtained from the account 
relation. The answers to the query are given below:  

account(Maniktala, 0102, 9000). 
account(Park Circus, 0201, 8500). 

The Datalog programs are also capable to compute answers of a query not 
directly available in the given relation (table 6.1). For example, let us consider the 
problem of computing interest of an account using the following rule: 

Rule1: If balance < 2000, then interest-rate = 0%. 

Rule2: If balance  2000, then interest-rate = 4%. 

These types of rules can be coded in Datalog program as outlined below: 

interest-rate(A, 0) account(N, A, B), B < 2000. 
interest-rate(A, 4) account(N, A, B), B  2000. 

Using the above rule, we can evaluate interest of all the account numbers cited 
in the account relation. 

Sometimes negation is also used in a Datalog program [20]. For example, let us 
try to construct a Datalog program to identify all customers in a bank who have a 
deposit but have no loans. The following Datalog program serves the purpose: 

customer(N) depositor(N, A), not is-borrower(N). 
is-borrower(N) borrower(N, L). 

where N, A, L denote customer-name, customer account-number and customer 
loan-number respectively. 

We have presumed that the relations depositor(N, A) and borrower(N, L) are 
available in table 6.2 and 6.3 respectively.       
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Table 6.2: The ‘depositor’ relation. 

Table 6.3: The ‘borrower' relation. 

        

      The answer to the given query: 

customer(N). 

      with respect to the above relation are presented below: 

customer(madhu), 
customer(ganga), 
customer(hari). 

6.3 Some Important Features of Datalog Language 

From a syntactic point of view the positive and negative literals are represented in 
the following format 

Name 
(N) 

Loan 
(L)

ram  0101 

shyam  0200 

jadu  0021 

sita  0012 

mira  0002 

kali  0202 

Name 
(N) 

Account-number 
(A)

ram  0101 

shyam 0200 

jadu  0021 

madhu 0201 

ganga  0120 

hari  0221 

 6 Logic Programming in Database Applications
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                        p(t1, t2, ……, tn)

                  not p(t1, t2, ……, tn)

where the relation p has n attributes: t1, t2, ……, tn.

      Algebraic operations such as summation or subtraction can be represented in 
the Datalog language as relations. For example,  

                        X = Y + Z          can be represented in Datalog as 

                        + (Y, Z, X). 

where the ‘+’ denotes a relation of three attributes X, Y and Z. 

      Datalog language supports Boolean conditions using >, =, < relations. One 
example program indicating the use of algebraic and Boolean relation is presented 
below to illustrate the computation of banking-interest in a given branch of a bank. 

Example 6.1: Consider the relations given in connection with accounts and 
interest for each account in a given bank. 

Relations 

interest(A, I) represents the interest I for the account-number A. 
account-status(A, B) indicates the balance B for the given account-number A. 
interest-rate(A, R) denotes the rate of interest R over an account-number A. 
account(N, A, B) denotes an account of person N having account-number A  
with a balance B. 

      The logic program below is developed to determine the interest of all the 
accounts in the “Jadavpur” branch.         
                                                                       
 interest(A, I) account-status(A, B), interest-rate(A, R), I = B * R/100. 
 account-status(A, B) account(“Jadavpur”, A, B). 
 interest-rate(A, 0) account(N, A, B), B < 5000. 
 interest-rate(A, 4) account(N, A, B), B >= 5000.                           

      Another interesting feature of Datalog program is recursive use of relations in 
the same clause. Example 6.2 illustrates the aforementioned principles. 

Example 6.2: Consider the following relations describing employers and 
managers. 
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Relations 

emp(X, Y) denotes X is an employer of Y. 
manager(X, Y) denotes X is a manager of Y. 

      The following two rules together represent the linkage between employer and 
manager relations. 

 emp(X, Y) manager(X, Y). 
 emp(X, Y) manager(X, Z), emp(Z, Y). 

      Here, the employer relation appears in both the left and right hand side of the 
“ ” in the second clause, and hence we say that employer is a recursive relation 
in the given rule.                                                                                        

      One important use of recursion in a Datalog program is the generation of 
numbers or sequences. For example, the following program generates all even 
numbers counting from zero. 

 even-number(2) .
 even-number(A) even-number(B), A = B + 2. 

      Given a query 

 ‘ even-number(N).’, 

the above program generates the sequence 2, 4, 6, 8, ……., . i.e., the whole set 
of even numbers.                                                                                                  

6.4 Representational Benefit of Integrity Constraints  
in Datalog Programs   

Integrity constraints are usually introduced in a database system to guard or 
protect accidental damage to the database [22-23]. Representation of integrity 
constraints in a relational database is not as easy as in logic program based 
database. The reason behind it lies in the representational advantage of 
rules/constraints by logic programming languages. Consider for instance, a 
supplier database consisting of the following relations 

supplier(S-no, Name, City-address) indicating the supplier’s number, his 
name and the city-address.   
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spj(S-no, P-no, J-no, Q) indicating a relation of supplier, part, job and the 
quantity of part supplied. 
job(J-no, J-name, J-city) denotes that a job having number J-no and name J-
name has a demand in city J-city. 
local-supplier(S) denotes the name of local-supplier, S. 

      Suppose we want to construct integrity constraints in connection with a 
supplier-database by suitable Datalog statements. 

Statement 1: No local-supplier supplies part p3.

not spj( S, p3, _ , _ ) local-supplier(S). 

Statement 2: Supplier s3 supplies every job in Calcutta. 

 spj( s3, _ , j, _ ) job( j, _ , Calcutta). 

Statement 3: Supplier s4 supplies job in Calcutta only. 

 job( j, _ , Calcutta) spj( s4, _ , j, _ ). 

6.5 The LDL System Architecture

The current expert database systems are usually realized on loosely coupled 
architecture [21]. Such systems consist of a front end and a back end, where the 
front end includes domain-specific knowledge and the back end contains general-
purpose DataBase Management Systems (DBMS). Users submit queries to the 
front end. The queries in direct or indirect form then look for the appropriate data 
on the database through the back end. The results of the queries are transferred 
back to the users through the front end. A schematic view of a typical loosely 
coupled architecture is given in Fig. 6.1.  

Queries 

Results 
User Front end 

Domain-
specific 

Knowledge 

Back end

General-
purpose 
DBMS 

Database 

Fig. 6.1: A loosely coupled expert Database system
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The loosely coupled architecture introduced earlier suffers from a number of 
limitations: 

(1) There always exists a semantic mismatch between the front-end 
programming language and the back-end database systems. Usually the 
front-end language embodies a procedural programming paradigm in 
which the solution to a problem is expressed as a sequence of operations 
on a global state. The back-end database system, in contrast, embodies a 
declarative programming paradigm in which the solution is expressed in 
a fashion that describes the problem without specifying the intermediate 
steps to obtain the results. 

(2) The level of granularity of the data objects in the front end and the back 
end may also have a mismatch in Fig. 6.1. The front-end usually specifies 
a computation on tuples of data values, while the back end does 
computation on a set of tuples. 

(3) In the realization of the overall system, the implementer is bounded by 
the data model of the back-end database system. Thus, the front end must 
be ‘tailored’ to complement the limitation of the back end. 

To overcome the aforementioned limitations, the Microelectronics and 
Computer Technology Corporation (MCC) provided a new approach to design a 
tightly coupled architecture for logic programming database system. A schematic 
view of a tightly coupled system is given in Fig. 6.2. 

The system described in Fig. 6.2 does not have clearly defined front-end and 
back-end components. The mismatch in the object granularity of loosely coupled 
system is thus removed from Fig. 6.2. Here, a single programming paradigm 
instead of two paradigms, as in loosely coupled system, is used for query 
generation and obtaining results from the database. Logic Data Language (LDL), 

                                                                                                                                                    

Sets

Queries 

Compiler + Optimizer 

Database 

User 
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proposed by MCC is one typical language, capable of performing both query 
generation and management and extraction of results from the database. Some 
typical characteristics of the LDL are given in order: 

(1) The LDL is a declarative language that employs logic programming for 
data manipulations and management. 

(2) The LDL has a fixed point semantics based on the notion of bottom-up 
query computation. 

(3) The data-model in LDL is quite rich as it includes atoms, complex 
objects, lists and sets of objects. 

(4) The LDL is enriched by full negation support and constraint specification 
capability in the form of equality and inequality predicates. 

(5) The LDL also supports compilation techniques for semantic analysis and 
optimization of user-supplied queries. 

(6) A procedural capability for updating is an inherent feature of the LDL 
system. 

(7) The LDL system provides a convenient interface for higher application 
specific interfaces.          

In the next section we examine some of the interesting features of the LDL 
system. 

6.5.1 Declarative Feature of the LDL

As already introduced earlier, the LDL system provides a declarative linguistic 
support, i.e., user need not specify the detail steps in solving a problem, but needs 
to mention the problem only using relational constraints [8]. Example 6.3 
illustrates the declarative feature of the LDL. 

Example 6.3: Consider, for instance, an employee-relation given by 

 employee(Name, SSN, Age, Department)              

where SSN denotes Social-Security-number.             
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Suppose that the user generates a query: Determine all employee-names 
working in the hardware department having age below 30 years.  

The above query can be represented in a declarative manner as 

?{employee.Name employee.Department = hardware, employee.Age < 30} 

The procedure to evaluate the query is left to the system and hence the LDL 
system is said to be declarative.                                                                     

It is indeed important to note that the basic Horn clause-based programming 
style of PROLOG has been extended in the LDL system from the given viewpoint. 

A Prolog program just mentions the rules and the facts but leaves the control of 
program execution with the programmer. In LDL, the control program is 
automatically invoked to identify the order of selection of the program clauses. 

6.5.2 Bottom-up Query Evaluation in the LDL 

The answer to a query in a PROLOG program is generated in a top-down left to 
right order. On the contrary, the query evaluation in the LDL system is 
accomplished in a bottom-up fashion, starting from the stored database through 
the relevant rule-bodies to the rule-heads until no new results are produced in the 
head corresponding to the queries. This form of computation can be formally 
described as the fixpoint operator [21]. The semantics of LDL is described in 
terms of such fixpoints. Example 6.4 briefly illustrates the comparative merits of 
the bottom-up evaluation over top-down evaluation. 

Example 6.4: Consider the following program clauses describing the definitions 
of ancestor using the definition of parent. 

Cl1: ancestor(X, Y) parent(X, Y). 
Cl2: ancestor(X, Y) parent(X, Z), ancestor(Z, Y). 
Cl3: parent(jk, jl) .
Cl4: parent(jk, je) .
Cl5: parent(jl, pr) .
Cl6: parent(jl, my) .
Cl7: parent(my, jn) .

The Prolog equation of the above program for the query 

 ?ancestor(jk, X). 
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can be described as a top-down evaluation following the formalisms of SLD-tree. 
The SLD-tree shown in Fig. 6.3 presents all the solutions to the problem at the 
leaves of the tree. On occasions, the tree may be repeatedly expanded by invoking 
the same rule. To overcome the problem of infinite expansion, the bottom-up 
approach is adopted in LDL. 

Cl6

Z = my

Cl2

X = my 
Y = X 

Cl2

X = je
Y = X

Cl1

Z = X
X = Y

Cl1

Z = X
X = Y

Cl1

X = je
Y = X

Cl4

Z = je 
Cl3

Z = jl 

Cl2

X = jn 
Y = X 

Cl1

X = jn
Y = X

Cl7

Z = jn

Cl7

X = jn 

Cl1

X = my 
Y = X 

Cl2

X = pr 
Y = X 

Cl1

X = pr 
Y = X 

Cl5

Z = pr 

Cl2

X = jl
Y = X

Cl6

X = my
Cl5

X = pr

Cl1

X = jl
Y = X

Cl4

X = je 
Cl3

X = jl 

Cl2

X = jk 
Y = X 

Cl1

X = jk
Y = X

ancestor(jk, X). 

parent(jk, X). parent(jk, Z), ancestor(Z, X).

Ø Ø ancestor(jl, X). ancestor(je, X).

parent(jl, X).

Ø Ø

parent(jl, Z), ancestor(Z, X).

ancestor(pr, X). 

parent(pr, X).

parent(pr, Z), ancestor(Z, X). 

Fail 

Fail

ancestor(my, X). 

parent(my, X). parent(my, Z), ancestor(Z, X).

Ø
ancestor(jn, X).

parent(jn, X). parent(jn, Z), ancestor(Z, X). 

Fail Fail

parent(je, X). 

parent(je, Z), ancestor(Z, X). 

Fail

Continues as before 

Fig. 6.3: Top-down evaluation 
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In the bottom-up approach, (Fig  6.4 (a) and (b)) we satisfy the rules by 
instantiating with the ground literals. The process is repeated until no new 
solutions are produced.  

Cl7

X = my 
Y = jn 

Cl6

X = jl 
Y = my

Cl5

X = jl 
Y = pr 

Cl4

X = jk 
Y = je 

Cl3

X = jk 
Y = jl 

Cl1

ancestor(X, Y) parent(X, Y). 

Cl13 

ancestor(jk, jl) .
Cl17 

ancestor(my, jn) .

Cl14

ancestor(jk, je) .
Cl16 

ancestor(jl, my) .

Cl15 

ancestor(jl, pr) .

 (a) 
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6.5.3 Negation by Failure Computational Feature 

The LDL also supports the well known Closed World Assumption (CWA) [13], 
where literals not supplied as facts are presumed to be false to answer a query. 
Example 6.5 provides an insight to this problem. 

Example 6.5: Given below a logic program, where person (b) is not clearly 
defined. We thus following CWA presume that ¬person (b) to be true. 

Cl16

Y = my 

Cl15

Y = pr 

Cl3

X = jk 
Z = jl 

Cl2

ancestor(X, Y) parent(X, Z), ancestor(Z, Y). 

                      Cl23

ancestor(jk, Y) ancestor(jl, Y). 
                      Cl17, 2 

ancestor(X, jn) parent(X, my). 

Cl23, 15 

ancestor(jk, pr) .
Cl23, 16 

ancestor(jk, my) .
Cl17, 2, 6 

ancestor(jl, jn) .

Y = jn 

Cl23, 17, 2, 6 

ancestor(jk, jn) .

Cl17

Y = jn 
Z = my 

Cl6

X = jl

(b) 

Fig. 6.4: Bottom-up approach
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Logic Program: 

 mammal (X) person (X). 
 mammal (b) .

 person (a) .

     Now suppose user makes the following queries:  

Query 1: ? ¬ person(b). 

      The answer to the query definitely is true. 

Query 2: ? mammal (X), ¬ person (X). 

The answer to the query definitely is X = b, which is obtained from the direct 
specification of mammal (b) and absence of person (b).                          

6.5.4 The Stratification Feature 

The stratification feature ensures that every predicate used in the program in its 
negated form will first be computed in its positive form. Consider, for example, a 
logic program with stratification over reachability [21]  between two nodes in a 
given graph. Example 6.6 illustrates the stratification used in LDL. 

Example 6.6:  Consider the following logic program: 

 reachable (X, Y) edge (X, Y). 
 reachable (X, Y) edge (X, Z), reachable (Z, Y). 
 exclusive-pairs (X, Y, Z) reachable (X, Y), ¬ reachable (Z, Y). 

a

b

e

dc

Fig. 6.5: A sample graph  
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where edge (X, Y) denotes that there is a directed edge from node X to node Y,  
reachable (X, Y) means Y is reachable from node X along some path, and 
exclusive-pairs derives all pairs of nodes (X, Y) such that Y can be reached from 
X except for all those pairs that can be reached from node Z. 

Figure 6.5 describes a sample graph over which the aforementioned logic 
program is applied. Suppose we are interested to compute exclusive-pairs (X, Y, 
d). To answer the query, we first determine edge and reachable relations. By 
inspection on the graph, the edge relation is found to be  

 edge = {(a, b), (a, c), (a, d), (b, c), (d, e), (e, b), (e, c)} 
     and reachable = edge U {(a, e), (d, b), (d, c)}. 

      It is important to note that exclusive-pairs include all reachable relations 
except {(d, e), (d, b)}. Thus, 

             exclusive-pairs = reachable – {(d, e), (d, b)}.                               

6.6 Designing Database Machine Architectures using 
Petri Net Models 

The LDL language provides a historical landmark on logic program based data 
language [26-27] for efficient execution of database programs on specialized 
database machines. Undoubtedly LDL on many circumstances could outperform 
the traditional PROLOG based logic program machines. The Petri net approach to 
logic programming introduced in the text, however, provides a more elegant 
architecture for high performance database machines. Here, unlike Horn clauses, 
we can directly execute predicate logic based syntax with multiple literals in the 
head of a clause. The top-down or bottom-up approach for execution of a program 
is irrelevant in the proposed architecture. The most interesting feature of the Petri 
net based architecture is that the program clauses need not wait for resolution, 
rather when suitable data clauses are available concurrent resolution takes place 
among all the clauses associated with a transition. This particular feature of Petri 
net based machine significantly enhances the computational speed for the next 
generation database machines. The negation by failure and stratification feature 
can easily be implemented in the proposed Petri net based database machines. To 
illustrate the computational power of a database program on a Petri net based 
architecture, let us consider, example 6.7. 

Example 6.7: The ancestor finding problem introduced in example 6.4 is solved 
here using the Petri net approach (vide Fig. 6.6). 
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Here, following Procedure Automated-Reasoning of chapter 3, we first fire 
transition tr1 generating the following tokens in place p2:

 ancestor (jk, jl), 
 ancestor (jk, je), 
 ancestor (jl, pr), 
 ancestor (jl, my), 
 ancestor (my, jn). 

      Next, transition tr2 fires generating the following tokens as the solution to the 
goal 

 ‘ ancestor (X, Y).’: 

 ancestor (jk, pr), 
 ancestor (jk, my), 
 ancestor (jl, jn). 

<jk, jl>, <jk, je>, 
<jl, pr>, <jl, my>, 
<my, jn> 

parent ancestor

(X, Y) ¬(X, Y) tr1

(X, Z) (Z, Y)tr2

¬(X, Y)
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Thus only two firing cycles are required to execute the logic program. It may be 
noted that both top-down approach of PROLOG and the bottom-up approach of 
LDL requires significant computational time to execute the aforementioned 
program.                                                                                                            

Example 6.8: In this example we consider a practical database problem with 
respect to a banking system.  

      Given the following relations: 

account (branch-name, account-number, balance) 
interest-rate (account-number, percentage-rate) 

      Suppose the following Datalog rules are given 

 interest-rate (A, 0) account (N, A, B), B < 2000. 
 interest-rate (A, 5) account (N, A, B), B >= 2000. 

The aforementioned rules and facts, as given in table 6.4, are mapped onto a 
Petri net (before firing Fig. 6.7 (a) and after firing Fig 6.7 (b)) and the ‘Procedure 
Automated-reasoning’ (vide chapter 3) is invoked to answer the user-made query:  

? interest-rate (A, I).  

Table 6.4: The ‘account’ relation. 

The machine in turn responds with table 6.5. 
                        

Branch-name 
(N) 

Account-
number 

(A)

Balance in 
Rupees 

(B) 
Sodpur 0215 1000 

C R Avenue 0305 4500 

Park Circus 0201 8500
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Table 6.5: The ‘interest-rate’ relation. 

The Petri net after firing is presented in Fig. 6.7 (b)). 

Account-number 
(A) 

Interest-rate in 
percentage 

(I) 

0215 0 

0305 5 

0201 5 

<B, 2000> 

<S, 0215, 1000> 
<C, 0305, 4500> 
<P, 0201, 8500> 

<B, 2000>

(B, X)

(N, A, B)

(N, A, B) 

(B, X) 

tr1

tr2

¬(A, 0)

¬(A, 5)

Less-than 

Account

Greater-or-equal-to 

Interest-rate 

Fig. 6.7 (a):  The Petri net before firing  

S = Sodpur
C = C R Avenue 
P = Park Circus 
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6.7 Scope of Petri Net-based Model in Data Mining 

The term Data Mining loosely refers to discovering knowledge from a large 
volume of data. It has similarity with knowledge discovery in artificial intelligence 
[3]. There are many methods of data mining. Some of them include statistical 
techniques, clustering, Bayessian scheme, neural net approach and many others. In 
recent times, researchers are taking keen interest to automatically extract 
knowledge from a given set of first order rules and facts. This is well known as 
Inductive Logic Programming (ILP). In ILP, the well-known resolution theorem is 
employed in a backward sense. To illustrate the scope of ILP in data mining let us 
consider example 6.9. 

<B, 2000> 

<S, 0215, 1000> 
<C, 0305, 4500> 
<P, 0201, 8500> 

<B, 2000> 

(B, X)

(N, A, B)

(N, A, B)

(B, X)

tr1

tr2

¬(A, 0) 

¬(A, 5)

Less-than 

Account 

Greater-or-
equal-to 

Interest-rate 

Fig. 6.7 (b):  The Petri net after firing       

< 0215, 0 > 
< 0305, 5 > 
< 0201, 5 > 

S = Sodpur
C = C R Avenue 
P = Park Circus
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Example 6.9: Consider the following facts: 

 Grandfather (janak, lab) .
 Father (janak, sita) .
 Mother (sita, lab) .

We are interested to construct any new knowledge by applying resolution 
theorem in an inverted manner onto the above clauses. Figure 6.8 presents a 
schematic view of the knowledge generation process in two discrete steps. 

                                                                                                                        

                                                                                                                                                    

                                                                                                  

The same scheme can also be realized using Petri net model with a slight 
modification in the nomenclature of the Petri net model introduced earlier. A 
simple scheme illustrating the procedure of knowledge extraction using Petri net is 
introduced here. The Petri net in the present context needs to be fired in backward 
direction. In other words given one fact located at the input place of a transition  

Grandfather (X, Z) ∨ ¬ Mother (Y, Z) ∨ ¬ Father (X, Y) 

Mother (sita, lab) 

Grandfather (X, lab) ∨ ¬ Father (X, sita) 

Father (janak, sita) 

Grandfather (janak, lab) 

{Y / sita, Z/ lab}

{X /  janak} 

Fig. 6.8: An inverse resolution procedure applied to the given facts finally to 
derive a knowledge: Grandfather (X, Z) Mother (Y, Z) ∧ Father (X, Y)
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and a resulting inference located at the output place of the transition, we can 
always generate a rule at the other input place of the same transition. Here the 
resulting rule is generated by oring the negation of the input fact and the inferred 
fact at the input place denoted by a box. For generalization, the common value of 
tokens at the given input and the output place may be replaced by a variable.  

Example 6.10: Given the same knowledge base as introduced in example 6.9. We 
in the present example discuss the scope of Petri nets to extract the same 
knowledge (vide Fig. 6.9). 

<s, l>

<j, s>

<j, l>

p1

Mother 

Father 

p5

Grandfather 

tr1

tr2

(a) 

p2

p3

p4
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<j, s>

Grandfather (X, l)

∨ ¬ Father (X, s) 

<s, l>

<j, l>

p1

Mother

p5

Grandfather 

tr1

(b) 

p2

p3

p4

Father 

{X/j}   tr2

{Y / s, Z / l}

Grandfather (X, Z) 
∨ ¬ Mother (Y, Z) ∨
¬ Father (X, Y) 

<j, s>

Grandfather (X, l)

∨ ¬ Father (X, s) 

<s, l>

<j, l>

p1

Mother

p5

Grandfather 

tr1

(c )

p2

p3

p4

Father 

{X / j}   tr2

Fig. 6.9: The order of transition firing to generate the knowledge: 
            Grandfather (X, Z) ∨ ¬ Mother (Y, Z) ∨ ¬ Father (X, Y). 
                        where s = sita, l = lab, j = janak  

(a) Initial configuration of the extended Petri net 
(b) After firing of transition tr2

         (c)   After firing of transition tr1                                             
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Data mining using Petri nets can also be extended for general predicate logic 
based system. Under this circumstance a transition can have more than one output 
place and tokens must conform with the respective arc function variables at all 
input and output places excluding only one input place of the transition. The 
process of backward transition firing will be continued from the concluding place 
until no further transition firing is possible. The sequential firing of transitions in a 
backward sense, supporting the rules of resolution theorem, thus ensures 
soundness of the derived knowledge. 

6.8 Conclusions 

Typical database programs are executed on loosely coupled system architecture, 
where the front-end and the back-end can be easily isolated from each other. Such 
architectures have several limitations, which can be overcome by realizing database 
programs on a tightly coupled system. The LDL is one such tightly coupled data 
language that supports logic programming for data manipulation and management. 
The LDL system has a number of advantages over other traditional logic program 
systems, but it is incapable to detect all possible parallelisms in a logic program. 
Petri net based models for logic programming is introduced in chapter 3 of the 
book, however, provide a framework for massive parallelism of logic programming 
and can ensure the execution of all possible parallel resolutions in the logic 
program. Thus in absence of any constraint on hard ware resources, Petri net based 
model is the ideal choice for logic program based database machines.  

Exercises 

1. Consider the following two relations: 

      supervises (X, Y) and superior (X, Y). 

 The following facts and rules are given in a database. 

 Cl1: supervises (f, n) .
 Cl2: supervises (f, r) .
 Cl3: supervises (f, b) .
 Cl4: supervises (e, k) .
 Cl5: supervises (e, h) .
 Cl6: supervises (a, f) .
 Cl7: supervises (a, e) .
 Cl8: superior (X, Y) supervises (X, Y). 
 Cl9: superior (X, Y) supervises (X, Z), superior (Z, Y). 
 Cl8: subordinate (X, Y) superior (Y, X). 
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Given the query:  

? superior (a, Y) .

Construct a top-down traversal tree to answer the query. 

[Hints: A top-down traversal tree is constructed with the facts and rules given 
in the database vide Fig. 6.10. 

Here, the answers to the query are: 

  superior (a, f) .
superior (a, e) .
superior (a, n) .

  superior (a, r) .
  superior (a, b) .
  superior (a, k) .
  superior (a, h) .          ]

Cl5

Y = h 
Cl2

Y = r

Cl1

Y = n 
Cl3

Y = b
Cl4

Y = k

Cl6

Z = f

Fig. 6.10: The supervisory-tree based on the given facts  

superior (a, Y).

Cl8

X = a 
Cl9

X = a

supervises (a, Y). supervises (a, Z), superior (Z, Y).

Ø Ø superior (f, Y). superior (e, Y).

Cl6

Y = f 
Cl7

Y = e 
Cl7

Z = e 

Ø Ø Ø Ø Ø
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2. Consider the following relations in a banking system: 

account (branch-name, account-number, customer-name, balance), 
depositor (customer-name, account-number), 
borrower (customer-name, loan). 

Construct the following queries using the above relations. 

(a) Identify the account-number whose balance is above Rs 10000 and is not 
enlisted in the borrower relation. 

(b) Determine the account-number whose balance is above Rs 1500 and has 
taken a loan less than Rs 5000. 

(c) Also construct necessary tables to describe the relations and answer the 
aforementioned queries using the tables. 

[Hints: Let us abbreviate the attributes of the relations as follows: 

 N for branch-name, 
 A for account-number, 
 C for customer-name, 
 B for balance, 
 L for loan. 

a) account (N, A, C, B) B > 10000, not-is –borrower (C, L). 
b) account (N, A, C, B) B > 1500, borrower (C, L), L < 5000. 
c) Representative Tables 6.6 to 6.8 have been constructed to answer the 

queries listed in parts (a) and (b).  
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Table 6.6: The ‘account’ relation. 

Table 6.7: The ‘depositor’ relation. 

Branch-name 
(N) 

Account-
number 

(A) 

Customer-name 
(C) 

Balance in 
rupees 

(B)

Jadavpur  0101 ram 19000 

Sodpur 0215 sabi 1000 

Maniktala  0102 rai 9000 

Park Circus 0322 ali 26500

C R Avenue 0305 sush 4500

Park Circus 0201 madhu 8500

Park Street 0222 john 7500

Customer-name 
(N) 

Account-number 
(A)

ram  0101 

shyam 0200 

jadu 0021 

madhu 0201 

ganga 0120 

hari  0221 
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Table 6.8: The ‘borrower' relation. 
        

                                                                                           

The answer to the first query: account (Park Circus, 0322, ali, 26500). 
The answer to the second query: account (Jadavpur, 0101, ram, 19000).] 

3. Consider the following rules and facts: 

Herbivore (X) Lives-on-grass (X), Four-footed (X). 
Lives-on-grass (cow) .
Lives-on-grass (buffalo) .
Four-footed (cow) .

      Using closed-world assumption and negation by failure answer the 
following three queries: 

(a) Query 1: ? Herbivore (cow). 
(b) Query 2: ? Four-footed (buffalo). 
(c) Query 3: ? Herbivore (buffalo). 

[Hints: By closed-world assumption we state that ¬Four-footed (buffalo) is 
true. Consequently answer to part (b) and (c) are false. The answer to part (a), 
however, is true as the premises to derive Herbivore (cow) are supplied in the 
database.]  

Customer-name 
(N) 

Loan 
(L)

ram 4000 

shyam 500 

jadu 2000 

sita  5000

mira 3000 

rai 7000

kali 1200 
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4. Use stratification strategy of LDL to answer query for the given logic 
program: 

Rules:  One-way-route (X, Y) Route (X, Y), ¬Destination (X). 
  Two-way-route (X, Y) Route (X, Y). 

Query:  ? One-way-route (X, Y). 

Facts: Route (a, b) .
 Route (b, d) .
 Route (c, d) .
 Route (d, a) .
 Destination (a) .
 Destination (c) .
 Destination (d) .

[Hints: First identify X, for which destination X is not available in the 
database. The routes thus generated using the first rule yield one-way-route. 
The remaining routes are two-way.] 

References 

1. Aho, A. and Ullman, J., “Universality of Data Retrieval Languages,” 
proceedings of the POPL conference, San Antonio Tx, ACM, 1979.

2. Bancilhon, F. and Ramakrishnan, R., “An Amateur’s Introduction to 
Recursive Query Proceeding Strategies,” in proceedings of the ACM 
SIGMOD International Conference on Management of Data, 1986. 

3. Bry, F., “Query Evaluation in Recursive Databases: Bottom-up and Top-
down reconciled,” IEEE Transactions on Knowledge and Data Engineering,
2, 1990. 

4. Ceri, S., Gottlob, G., Tanca, L., Logic Programming and Databases,
Springer-Verlag, 1990. 

5. Chang, C., “ On the Evaluation of Queries containing Derived Relations in a 
Relational Database,” in Advances in Database Theory, Gallaire, H., Minker, 
J. and Nicolas, J. (Eds.), vol. 1, Plenum press, 1981. 

6. Chimenti, D. et al., “An Overview of the LDL System,” MCC Technical 
Report # ACA-ST-370-87, Austin, Tx, November 1987.  

7. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S. and 
Zaniolo, C., “The LDL system Prototype,” IEEE Trans. on Knowledge and 
Data Engineering, vol. 2, no. 1, pp. 76-90,  March 1990. 

8. Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The 
Benjamin/Cummings, CA, 1994. 

 6 Logic Programming in Database Applications



Parallel and Distributed Logic Programming                                                       257 

9. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (Eds.), 
Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT 
Press, Menlo Park, CA, pp. 117-152, 1996. 

10. Gallaire, H., Minker, J. (Eds.), Logic and Databases, Plenum press, 1978. 
11. Gallaire, H., Minker, J. and Nicolas, J., “Logic and Databases: A Deductive 

Approach,” ACM Computing Surveys, 16:2, June1984. 
12. Kifer, M. and Lozinskii, E., “A Framework for an Efficient Implementation of 

Deductive Databases,” proceedings of the sixth Advanced Database 
Symposium, Tokyo, Japan, August 1986. 

13. Konar, A., Artificial Intelligence and Soft Computing: Behavioral and 
Cognitive Modeling of the Human Brain, CRC Press, Boca Raton, Florida, 
1999. 

14. Krishnamurthy, R. and Naqvi, S., “Database Updates in Logic Programming, 
Rev. 1,” MCC Technical Report # ACA-ST-010-88, Rev. 1, September 1988. 

15. Krishnamurthy, R. and Naqvi, S., “Non-Deterministic Choice in Datalog,” 
proceedings of the 3rd International Conference on Data and Knowledge 
Bases, June 27-30, Jerusalem, Israel, 1989.

16. Levesque, H., “The Logic of Incomplete Knowledge Bases,” in On 
Conceptual Modeling,  Broadie, M., Mylopoulos, J., and Schmidt, J. (Eds.), 
SpringerVerlag, 1984. 

17. Ramkrishnan, R., Srivastava, D. and Sudarshan, S., “{CORAL}: {C}ontrol, 
{R}elations and {L}ogic,” in proceedings of the International Conference on 
Very Large Data Bases, 1992. 

18. Ramkrishnan, R., Srivastava, D.,  Sudarshan, S., and Sheshadri, P., 
“Implementation of the {CORAL} deductive database system,” in 
proceedings of the ACM SIGMOD International Conference on Management 
of Data, 1993. 

19. Reiter, R., “Towards a Logical Reconstruction of Relational Database 
Theory,” in On Conceptual Modeling,  Broadie, M., Mylopoulos, J., and 
Schmidt, J. (Eds.), SpringerVerlag, 1984. 

20. Silberschatz, A., Korth, H. F. and Sudarshan, S., Database System Concepts,
McGraw-Hill, Singapore, 1997. 

21. Tsur, S., “LDL – A Technology for the Realization of Tightly Coupled Expert 
Database Systems,” IEEE Expert Magazine, pp. 41-51, Fall 1988. 

22. Ullman, J., Principles of Database and Knowledge-Base Systems, vol. 1, 
Computer Science Press, 1988.  

23. Ullman, J., Principles of Database and Knowledge-Base Systems, vol. 2, 
Computer Science Press, 1989.  

24. Vielle, L., “Recursive Axioms in Deductive Databases: The Query-Subquery 
Approach,” in proceedings of the International Conference on Expert 
Database Systems, 1986. 

25. Vielle, L., “Database Complete Proof Production based on SLD-resolution,” 
in proceedings of  the 4th International Conference on Logic Programming,
1987. 



258                            

26. Whang, K. and Navathe, S., “Integrating Expert Systems with Database 
Management Systems- an Extended Disjunctive Normal Form Approach,” in 
Information Sciences, 64, March 1992. 

27. Zaniolo, C., “Design and Implementation of a Logic Based Language for Data 
Intensive Applications,” MCC Technical Report # ACA-ST-199-88, June 
1988. 

 6 Logic Programming in Database Applications



Simulation of the Proposed Modular Architecture 

This appendix provides an outline to the simulation aspects of the proposed 
architectures using VHDL. The VHDL source codes for all the modules are too 
large to be included in this appendix. For convenience of the readers, we provide 
the source code for the matcher circuit only. 

A.1 Introduction 

The architecture proposed in chapter 4 was simulated in both C and VHDL1

languages. The C-realization was necessary to verify the functional behavior of 
the individual modules. The VHDL-realization, on the other hand, provides a 
detailed implementation of the modules with logic gates. The timing details of the 
proposed functional architecture was also tested and verified using the VHDL 
simulation.  

The VHDL language benefits the users on the following counts: (i) simplicity 
in submission of a formal description of the structure to be designed, (ii) the scope 
of decomposition of a design into sub-designs and (iii) simplicity in establishing 
interconnections among the sub-designs. The advantage of VHDL simulation lies 
in testing and verifying the logic implementation without the expense of hardware 
prototyping. 

The sub-units, such as Transition History File (THF), Place Token Variable 
Value Mapper (PTVVM), etc., presented in chapter 4 have been developed under 
separate projects. The different entities of each sub-unit were coded either by 
structures or functional behaviors in one or two modules under the specific 
project. The port connections among the entities were accomplished through 
signals in a different module, referred to as the top-level module, containing the 
top-level entity. To test the correctness of realization, the top-level entity that 
represents a sub-unit of the architecture was simulated. The simulation was 
performed on a module called the test-bench. The test-bench was excited with 

1 VHDL is a language for describing digital electronic systems. It arose out of the 
United States Government’s Very High-Speed Integrated Circuits (VHSIC) 
Program. The VHSIC Hardware Description Language (VHDL) was developed 
for testing and verifying the structure and function of Integrated Circuits. 

Appendix A  
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sample inputs and its logical output waveforms were verified through VHDL 
simulation. 

The VHDL implementation of one typical circuit (the Matcher) is presented 
below for convenience. The complete code for the VHDL-implementation is 
available in one recent undergraduate thesis [1], prepared under the active co-
ordination by the authors. 

A.2 VHDL Code for Different Entities in Matcher 

library ieee; 

use ieee.std_logic_1164.all; 

----------ENTITY TWO INPUT AND GATE----------
entity and_2_gate is 
   port(A:in std_ulogic; 
        B:in std_ulogic;
        C:out std_ulogic); 

end and_2_gate; 

architecture behaviour of and_2_gate is 
 begin
   C <= A and B after 10ns; 
 end behaviour;

----------ENTITY FIVE INPUT AND GATE----------
use ieee.std_logic_1164.all; 

entity and_5_gate is 
 port( A : in std_ulogic; 
       B : in std_ulogic; 
       C : in std_ulogic; 
       D : in std_ulogic; 
       E : in std_ulogic; 
       F : out std_ulogic ); 
end and_5_gate; 

architecture behaviour of and_5_gate is 
 begin 
  F <= A and B and C and D and E after 10 ns; 
 end behaviour; 
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----------ENTITY XNOR GATE----------

use ieee.std_logic_1164.all; 

entity not_xor is 
 port ( I1 : in std_ulogic_vector( 4 downto 0); 

   I2 : in std_ulogic_vector( 4 downto 0); 
   X1 : out std_ulogic_vector( 4 downto 0)); 
 end not_xor; 

architecture behaviour of not_xor is 
 signal temp_X1 : std_ulogic_vector( 4 downto 0); 
 begin 
   temp_X1 <= I1 xor I2; 
   X1 <= not temp_X1; 
 end;

----------ENTITY AND TREE----------

use ieee.std_logic_1164.all; 

entity AND_TREE is 
 port ( TI1 : in std_ulogic_vector (4 downto 0); 
   TI2 : in std_ulogic_vector (4 downto 0); 
   TI3 : in std_ulogic_vector (4 downto 0); 
   TI4 : in std_ulogic_vector (4 downto 0); 
   TI5 : in std_ulogic_vector (4 downto 0); 
   TO1 : out std_ulogic); 
 end AND_TREE; 

architecture structure of AND_TREE is 
 component and_2_gate
   port(A:in std_ulogic; 
        B:in std_ulogic;
        C:out std_ulogic); 
 end component; 

 component and_5_gate
 port( A : in std_ulogic; 
       B : in std_ulogic; 
       C : in std_ulogic; 
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       D : in std_ulogic; 
       E : in std_ulogic; 
       F : out std_ulogic ); 
 end component; 

component not_xor
 port ( I1 : in std_ulogic_vector( 4 downto 0); 
   I2 : in std_ulogic_vector( 4 downto 0); 
   X1 : out std_ulogic_vector( 4 downto 0)); 
 end component;

 signal Q1,Q2,Q3,Q4:std_ulogic_vector ( 4 downto 0); 
 signal TEMP_0_1,TEMP_0_2,TEMP_0_3,TEMP_0_4 : 
std_ulogic;
 signal TEMP_1_1,TEMP_1_2,TEMP_1_3,TEMP_2_1,TEMP_2_2:
std_ulogic;

 begin 

 INST1_not_xor : not_xor port map ( I1 => TI1 , I2 => 
TI2 , X1 => Q1 ); 
 INST2_not_xor : not_xor port map ( I1 => TI2 , I2 => 
TI3 , X1 => Q2 ); 
 INST3_not_xor : not_xor port map ( I1 => TI3 , I2 => 
TI4 , X1 => Q3 ); 
 INST4_not_xor : not_xor port map ( I1 => TI4 , I2 => 
TI5 , X1 => Q4 ); 
 INST1_and_5_gate:and_5_gate port 
map(A=>Q1(0),B=>Q1(1),C=>Q1(2),D=>Q1(3),E=>Q1(4),F=>TEM
P_0_1);
 INST2_and_5_gate:and_5_gate 

      port map ( 
A=>Q2(0),B=>Q2(1),C=>Q2(2),D=>Q2(3),E=>Q2(4),F=>TEMP_0_
2);
 INST3_and_5_gate:and_5_gate

      port map ( 
A=>Q3(0),B=>Q3(1),C=>Q3(2),D=>Q3(3),E=>Q3(4),F=>TEMP_0_
3);
 INST4_and_5_gate:and_5_gate

      port map ( 
A=>Q4(0),B=>Q4(1),C=>Q4(2),D=>Q4(3),E=>Q4(4),F=>TEMP_0_
4);
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 INST1_and_2_gate:and_2_gate port map( 
A=>TEMP_0_1,B=>TEMP_0_2,C=>TEMP_1_1);
 INST2_and_2_gate:and_2_gate port map( 
A=>TEMP_0_2,B=>TEMP_0_3,C=>TEMP_1_2);

INST3_and_2_gate:and_2_gate port map( 
A=>TEMP_0_3,B=>TEMP_0_4,C=>TEMP_1_3);
 INST4_and_2_gate:and_2_gate port map( 
A=>TEMP_1_1,B=>TEMP_1_2,C=>TEMP_2_1);
 INST5_and_2_gate:and_2_gate port map( 
A=>TEMP_1_2,B=>TEMP_1_3,C=>TEMP_2_2);
 INST6_and_2_gate:and_2_gate port map( 
A=>TEMP_2_1,B=>TEMP_2_2,C=>TO1);

 end structure;

   
----------ENTITY REGISTER MATCH----------

         
 library ieee; 
use ieee.std_logic_1164.all; 

 entity register_match is 
   port( A1 :in std_ulogic_vector (4 downto 0); 
    A2 :in std_ulogic_vector (4 downto 0); 
    A3 :in std_ulogic_vector (4 downto 0); 
    A4 :in std_ulogic_vector (4 downto 0); 
    A5 :in std_ulogic_vector (4 downto 0); 
         C1 :out std_ulogic_vector (4 downto 0); 
    C2 :out std_ulogic_vector (4 downto 0); 
    C3 :out std_ulogic_vector (4 downto 0);  
    C4 :out std_ulogic_vector (4 downto 0); 
    C5 :out std_ulogic_vector (4 downto 0));     
 end register_match; 
 architecture behaviour of register_match is 

   signal 
reg_val1,reg_val2,reg_val3,reg_val4,reg_val5:std_ulogic
_vector (4    downto 0); 
   signal AND1,AND2,AND3,AND4,AND5:std_ulogic; 
   signal check:std_ulogic := 'X'; 
     begin 

               reg_val1<= A1; 
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               reg_val2<= A2; 
               reg_val3<= A3; 
               reg_val4<= A4; 

           reg_val5<= A5; 
          
  LOADPROCESS:process 

       begin 

        AND1 <= reg_val1(0) and reg_val1(1) and 
reg_val1(2) and reg_val1(3) and reg_val1(4);

        AND2 <= reg_val2(0) and reg_val2(1) and 
reg_val2(2) and reg_val2(3) and reg_val2(4);-- after 10 
ns;
        wait for 10 ns; 
        if ( AND1 = '1') then 
               reg_val1 <= reg_val2; 
         end if; 
        if ( AND2 = '1') then 
               reg_val2 <= reg_val1; 
         end if;
        AND2 <= reg_val2(0) and reg_val2(1) and 
reg_val2(2) and reg_val2(3) and reg_val2(4) ;--after 10 
ns;
        AND3 <= reg_val3(0) and reg_val3(1) and 
reg_val3(2) and reg_val3(3) and reg_val3(4) ;--after 10 
ns;
        wait for 10 ns; 

        if ( AND2 = '1') then 
               reg_val2 <= reg_val3; 
         end if; 
        if ( AND3 = '1') then 
               reg_val3 <= reg_val2; 
         end if;

        AND3 <= reg_val3(0) and reg_val3(1) and 
reg_val3(2) and reg_val3(3) and reg_val3(4) ;--after 10 
ns;
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        AND4 <= reg_val4(0) and reg_val4(1) and 
reg_val4(2) and reg_val4(3) and reg_val4(4) ;--after 10 
ns;
        wait for 10 ns; 

        if ( AND3 = '1') then 
               reg_val3 <= reg_val4; 
         end if; 
        if ( AND4 = '1') then 
               reg_val4 <= reg_val3; 
         end if;

        AND4 <= reg_val4(0) and reg_val4(1) and 
reg_val4(2) and reg_val4(3) and reg_val4(4) ;--after 10 
ns;
        AND5 <= reg_val5(0) and reg_val5(1) and 
reg_val5(2) and reg_val5(3) and reg_val5(4) ;--after 10 
ns;
        wait for 10 ns; 

        if ( AND4 = '1') then 
               reg_val4 <= reg_val5; 
         end if; 
        if ( AND5 = '1') then 
               reg_val5 <= reg_val4; 
         end if;
                check <= '1';
         wait for 10 ns; 
        if ( check ='1') then 
        C1 <= reg_val1;
        C2 <= reg_val2;
        C3 <= reg_val3;
        C4 <= reg_val4;
        C5 <= reg_val5;
        end if; 
      end process; 
  end behaviour;

library ieee; 

use ieee.std_logic_1164.all; 
use work.all; 

of Matcher
A.3 VHDL Code to Realize the Top Level  Architecture 
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----------ENTITY TOP LEVEL ARCHITECTURE----------

entity TOP is 
       port(X1 : in std_ulogic_vector ( 4 downto 0 ); 
     X2 : in std_ulogic_vector ( 4 downto 0 );            
     X3 : in std_ulogic_vector ( 4 downto 0 ); 
     X4 : in std_ulogic_vector ( 4 downto 0 ); 
     X5 : in std_ulogic_vector ( 4 downto 0 ); 
      OUTFINAL: out std_ulogic_vector ( 4 downto 0 );
    OUTBIT: out std_ulogic); 
end TOP ; 

architecture STRUCTURE of TOP is 

component register_match 
      port( A1 :in std_ulogic_vector (4 downto 0); 
     A2 :in std_ulogic_vector (4 downto 0); 
     A3 :in std_ulogic_vector (4 downto 0); 
     A4 :in std_ulogic_vector (4 downto 0); 
        A5 :in std_ulogic_vector (4 downto 0); 
            C1 :out std_ulogic_vector (4 downto 0); 
     C2 :out std_ulogic_vector (4 downto 0); 
     C3 :out std_ulogic_vector (4 downto 0);  
     C4 :out std_ulogic_vector (4 downto 0); 
     C5 :out std_ulogic_vector (4 downto 0));     
end component; 

component AND_TREE 
    port ( TI1 : in std_ulogic_vector (4 downto 0):= 
"XXXXX";
    TI2 : in std_ulogic_vector (4 downto 0):= 
"XXXXX";
    TI3 : in std_ulogic_vector (4 downto 0):= 
"XXXXX";
    TI4 : in std_ulogic_vector (4 downto 0):= 
"XXXXX";
    TI5 : in std_ulogic_vector (4 downto 0):= 
"XXXXX";
    TO1 : out std_ulogic); 
 end component; 

signal t_TI1,t_TI2,t_TI3,t_TI4,t_TI5 : 
std_ulogic_vector (4 downto 0); 
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SIGNAL t_OUTBIT : std_ulogic ; 

begin

 INST_REGISTER_MATCH:register_match 
         port map(A1 => X1,   
             A2 => X2,   
             A3 => X3,     
             A4 => X4,   
             A5 => X5,   
             C1 => t_TI1, 
                C2 => t_TI2, 
             C3 => t_TI3, 
             C4 => t_TI4, 
             C5 => t_TI5); 

  INST_AND_TREE: AND_TREE
         port map( TI1 => t_TI1, 
            TI2 => t_TI2, 
            TI3 => t_TI3, 
            TI4 => t_TI4, 
            TI5 => t_TI5, 
           TO1 => t_OUTBIT); 

 INST : process(t_outbit) 
  begin 
   if (t_OUTBIT = '1' ) then
      OUTBIT <= t_OUTBIT ; 
   elsif (t_OUTBIT = '0') then
            OUTBIT <= t_OUTBIT ; 
   else
          OUTBIT <= 'X'; 
      end if; 
  if ( t_OUTBIT = '1' ) then 
     OUTFINAL <= t_TI5; 
  elsif ( t_OUTBIT = '0' ) then 
     OUTFINAL <= "XXXXX";
  end if;
  end process; 
end STRUCTURE;  
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A.4 VHDL Code of Testbench to Simulate the Matcher

library ieee; 

use ieee.std_logic_1164.all; 
use std.textio.all; 
use work.all; 

--------ENTITY TESTBENCH OF MATCHER-------- 
entity test is 
end test; 

architecture matcher_stimulus of test is 

 component TOP
      port( X1 : in std_ulogic_vector ( 4 downto 0 ); 
     X2 : in std_ulogic_vector ( 4 downto 0 ); 
         X3 : in std_ulogic_vector ( 4 downto 0 ); 
     X4 : in std_ulogic_vector ( 4 downto 0 ); 
     X5 : in std_ulogic_vector ( 4 downto 0 ); 
      OUTFINAL : out std_ulogic_vector ( 4 downto 0); 
    OUTBIT: out std_ulogic); 
 end component; 

 signal T_TI1X,T_TI2X,T_TI3X,T_TI4X,T_TI5X,MATCHOUTX: 
std_ulogic_vector (4 downto 0); 
 signal RESULTX: std_ulogic; 
 signal T_TI1Y,T_TI2Y,T_TI3Y,T_TI4Y,T_TI5Y,MATCHOUTY: 
std_ulogic_vector (4 downto 0); 
 signal RESULTY: std_ulogic; 
 signal T_TI1Z,T_TI2Z,T_TI3Z,T_TI4Z,T_TI5Z,MATCHOUTZ: 
std_ulogic_vector (4 downto 0); 
 signal RESULTZ: std_ulogic; 
 signal ANDMATCH : std_ulogic; 

begin

  INST1_TOPX :         TOP port map(X1 => T_TI1X, 
             X2 => T_TI2X, 
            X3 => T_TI3X, 
            X4 => T_TI4X, 
             X5 => T_TI5X, 
                             OUTFINAL => MATCHOUTX,
          OUTBIT => RESULTX); 
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  INST1_TOPY :         TOP port map(X1 => T_TI1Y, 
             X2 => T_TI2Y, 
             X3 => T_TI3Y, 

            X4 => T_TI4Y, 
            X5 => T_TI5Y, 
                               OUTFINAL => MATCHOUTY,
            OUTBIT => RESULTY); 

  INST1_TOPZ :         TOP port map(X1 => T_TI1Z, 
                X2 => T_TI2Z, 
             X3 => T_TI3Z, 
             X4 => T_TI4Z, 
                X5 => T_TI5Z, 
                               OUTFINAL => MATCHOUTZ,
          OUTBIT => RESULTZ); 

 ANDMATCH <= RESULTX and RESULTY and RESULTZ; 
 MATCHER_PROCESS: process
   Begin 

        T_TI1X <= "10001"; 
        T_TI2X <= "11111"; 
        T_TI3X <= "10001"; 
           T_TI4X <= "11111"; 
        T_TI5X <= "10001"; 
        T_TI1Y <= "10001"; 
        T_TI2Y <= "11111"; 
        T_TI3Y <= "10001"; 
           T_TI4Y <= "11111"; 
        T_TI5Y <= "10001"; 
        T_TI1Z <= "10001"; 
        T_TI2Z <= "11111"; 
        T_TI3Z <= "10001"; 
           T_TI4Z <= "11111"; 
        T_TI5Z <= "10001"; 

     wait for 200 ns; 
           T_TI1X <= "10101"; 
        T_TI2X <= "10001"; 
           T_TI3X <= "10001"; 
           T_TI4X <= "11111"; 
        T_TI5X <= "11111"; 
           T_TI1Y <= "10101"; 
        T_TI2Y <= "10001"; 
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           T_TI3Y <= "10001"; 
           T_TI4Y <= "11111"; 
        T_TI5Y <= "11111"; 
           T_TI1Z <= "10101"; 
        T_TI2Z <= "10001"; 
           T_TI3Z <= "10001"; 
           T_TI4Z <= "11111"; 
        T_TI5Z <= "11111"; 

    wait for 200 ns; 
        T_TI1X <= "10001"; 
        T_TI2X <= "10001"; 
        T_TI3X <= "10011"; 
        T_TI4X <= "11111"; 
        T_TI5X <= "11111"; 
        T_TI1Y <= "10001"; 
        T_TI2Y <= "10001"; 
        T_TI3Y <= "10011"; 
        T_TI4Y <= "11111"; 
        T_TI5Y <= "11111"; 
        T_TI1Z <= "10001"; 
        T_TI2Z <= "10001"; 
        T_TI3Z <= "10011"; 
        T_TI4Z <= "11111"; 
        T_TI5Z <= "11111"; 

     wait for 200 ns; 
   end process; 
end matcher_stimulus ; 

Reference 

1. Mukherjee, R. and Mukhopadhyay, S., VHDL-implementation for a parallel 
architecture for logic programming, undergraduate thesis, Jadavpur University, 
2000.  



Open-ended Problems for Dissertation Works 

B.1 Problem 1: The Diagnosis Problem

There exist two alternative approaches to solve a diagnosis problem. The first 
approach, well known as model-based approach [1] attempts to develop a forward 
(simulation) model of the system to be diagnosed, and then employs a diagnostic 
algorithm on this model to determine the abnormal behavior in the systems, if any. 
The cause of abnormality is diagnosed at a later stage to identify the system 
components responsible for the abnormality. 

Unlike the model-based approach, an alternative approach to handle the 
diagnosis problem is to construct a set of diagnostic rules, depicting the 
knowledge of a skilled engineer, to correctly detect the defective components in a 
system, if any. The rule-based paradigm can directly be realized on Petri nets for 
automated reasoning in a diagnosis problem. 

In this section, we illustrate the scope of Petri net models in solving diagnosis 
problems [2]. The diagnostic rules for a full wave two-diode rectifier system are 
given below. 

Rule 1: Transformer-output (0V), Open ( one-half-of-secondary-coil )    
←Defective (transformer), Primary (230V). 

Rule    2:   Defective (one-diode) ←Defective (rectifier). 

Rule    3:   Defective (two-diodes) ←Defective (rectifier). 

Rule    4:   Rectifier-output (0V) ←Transformer-output (0V). 

Rule    5:   Rectifier-output (6V) ←Open (one-half-of-secondary-coil). 

Rule    6:   Rectifier-output (6V) ←Defective (one-diode).  

This appendix provides some open-ended problems of common interest and  
is recommended for extension by graduate students, pursuing their research in 
 the area of parallel and distributed logic programming. Research directions to 
solve these problems are also provided to motivate young researchers to 
undertake these problems for their research.  

Appendix B  
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Rule    7:   Rectifier-output (0V) ←Defective (two-diodes). 

      The diagnostic knowledge given by Rules 1 to 7 can be represented in a 
structured manner by a Petri net model shown in Fig. B.1. 

d1 = Defective (transformer), d2 = Primary (230V), d3 = Defective (rectifier), d4 =
Transformer-output (0V), d5 = Open (one-half-of-secondary-coil), d6 = Defective (one-
diode), d7 = Defective (two-diodes), d8 = Rectifier-output (0V), d9 = Rectifier-output (6V)

Fig. B.1: A Petri net representing diagnostic knowledge of a two-diode full wave                   
rectifier  

                   
      Show various steps of forward and backward chaining when the tokens are 
given in the places p2, p5 and p8, and hence comment on the solution to the 
problem. 

[Hints: First fire transitions tr4 and tr7 in parallel both and in backward manner. 
Then fire transitions tr3 and tr1 both in backward manner. Thus we obtain the truth 
value of the predicates: Defective-rectifier (place p3) and Defective-transformer 
(place p1).]  

p1

p2

p3

p4

p5

p6

p7

p8

p9

d1

d3

d2

d4

d5

d6

d7

d8d9

tr1

tr3

tr2

tr4

tr7

tr6

tr5
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B.2 Problem 2:  A Matrix Approach for Petri Net 
Representation 

The classical models of modus ponens informally described by the following two 
rules:  

 q ←p. 

 p ←.

            q ←.

           

where p and q denotes two propositions. We can represent the same concept by 
vector-matrix approach as follows.  

      Let R (p, q) denotes a binary implication relation between the propositions p 
and q. Assuming ‘q ←p.’ to be equivalent to ¬p ∨ q,  where ‘¬’ and ‘∨’ have 
usual meanings, we can represent R (p, q) by 

R (p, q) =  

where the elements of the matrix are evaluated by the formula ¬p ∨ q. 

      Suppose, p is true, and we need to evaluate the truth value of q by vector-
matrix approach, satisfying modus ponens. Since we do not know the truth value 
of q beforehand. We consider it as don’t care (d). Thus the initial value of [p q] is 
given by 

                                              p    q                                              

                                              1    d 

      The inferred value of q now is obtained by taking max-min composition [3] of 
the above vector with the matrix R (p, q). 

      The inferred value of [p q] is thus given by 

p

0

1

q   
           0     1 

1     1

0     1 
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                                                                             q→
                                              p    q               p↓           0           1                

                                              1    d      ο        0            1            1 
                                                                      
                                                                      1            0           1 

                                 p    q 
  = [1    1], 

which yields the inferred value of q to be 1. 

      The same principle can be extended for Petri net models by using two binary 
matrices P and Q where P denotes a connectivity from transition to places and Q
denotes a connectivity from places to transitions respectively. 

             Fig. B.2: A Petri  net  to illustrate the construction of P and Q matrices

      For illustration, we consider an arbitrary Petri net (Fig. B.2) and evaluate its 
corresponding P and  Q  matrices for the convenience of the readers. 

p1

p4

tr5

p2

tr2

tr1

p3

p5

tr3

tr4

tr6
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                  From trans.                         
To                tr1       tr2        tr3         tr4         tr5              tr6

places                                                
          p1       0          1           0          1           1           0         
     
      
          p2       1          0           0           0          0           0           
    
P =     
          p3       0          0           0           0          0           1      

           
         p4        0          0           0            1         0           0        
        
           
         p5        0          0           1            0         0           0               
                                                               

                      From   places 
   To              p1         p2         p3            p4        p5

   trans.      

              tr1      1          0           0            0            0 

              tr2      0          1           0            0            0 

Q =       tr3       0          1          1             0            0 

             tr4       0          0          0             0            1 

             tr5       0          0          0             1            0 

             tr6       0          0           0             1           0 
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      Since the modus ponens of propositional logic is similar with forward firing of 
a Petri net, we can evaluate the next token in each place when the current token of 
their predecessors are given. 

      One general rule for computing binary tokens at the places is given by [2] 

N (t + 1) = P ° [Q ° Nc (t)]c                                                                                (B.1) 

where N (t) = [n1(t) n2 (t)…..nm (t) ] denotes the tokens (truth/falsehood) n1(t), 
n2(t), …….., nm (t) at respective places p1, p2, ……, pm at time t. The ‘c’ above a 
vector denotes its binary complement. 

      Graduate students are advised to construct a forward chaining model of Petri 
net and verify that the given equation (B.1) supports modus ponens in a transitive 
sense for a sequence of forward firable transitions.  

Example B.1: Consider a Petri net model as shown in Fig. B.3. Given the N (0) 
vector, determine N (1) and N (2) and notice the changes in the places p3 and p5 in 
two successive iterations of computing N.

p4

• 1 

0

• 1 

0

• 1 

p1

p2

tr1

tr2

p3

p5

                         Fig. B.3: An illustrative Petri  net  
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              n1   n2   n3  n4   n5

N (0) = [1    1    0    1    0] 

                                 From transitions 

                                  tr1                          tr2

       To places 

P1                          0                  0 

P2                           0             0 

P =

p3                           1                  0 

 p4                           0                  0 

 p5                           0                   1 

                                   From places 

                                   p1                 p2            p3            p4           p5

      To transitions 

tr1                           1            1             0             0            0 

Q = 

tr2                           0       0             1              1            0 

N (1) = P ο (Q ο NC(0))C
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         =                                                                                                         

                                                                                               

                                                                                                                                                              

                                                                            

=                  

          = 

          =  

1    1    0    0    0
0    0    1    1    0

ο
1
1
0
1
0

C

C

0    0 
0    0 
1    0 
0    0 
0    1 

ο

1    1    0    0    0
0    0    1    1    0

ο
0
0
1
0
1

C

0    0 
0    0 
1    0 
0    0 
0    1 

ο

0    0 
0    0 
1    0 
0    0 
0    1 

ο 0
1

C

0    0 
0    0 
1    0 
0    0 
0    1 

ο 1
0
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           =         

which indicates that firing of transition tr1 generates a token at place p3. In the 
second iteration, we can generate token at place p5. This can be accomplished by 

N (2) = P ο (Q ο NC (1))C

              

                  

                 =

          =   

0    0    1    0    0 

T

1    1    0    0    0
0    0    1    1    0

ο
0
0
1
0
0

C

C

0    0 
0    0 
1    0 
0    0 
0    1 

ο

1    1    0    0    0
0    0    1    1    0

ο
1
1
0
1
1

C

0    0 
0    0 
1    0 
0    0 
0    1 

ο
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           = 

           = 

           =   

      We are afraid! What is this? 

      The aforementioned experiment shows that after the second firing, the token at 
place p5 is zero, but by modus ponens we should expect it to be one. The 
aforementioned problem occurs as the starting places of the network such as p1, p2

and p4 cannot hold the tokens forever. In fact they loose their tokens only after 
corresponding transition firing. In order to restore the tokens at the starting places 
even after transition firing, we have to provide self-loops around the starting 
places through virtual transitions [1]. Fig. B.4 provides the corresponding network 
of Fig. B.3 with virtual transitions.  

0    0 
0    0 
1    0 
0    0 
0    1 

ο 1
1

C

0    0 
0    0 
1    0 
0    0 
0    1 

ο 0
0

0    0    0    0    0 

T
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      The P and Q matrices for the given Fig. B.4 are changed as follws  

                               

p4

• 1 

0

• 1 

0

• 1 

p1

p2

tr1

tr2

p3

p5

Fig. B.4: Modified Fig. B.3 with virtual transitions around places p1, p2 and p4

tr5

tr3

tr4



282                               Appendix B: Open-ended Problems for Dissertation Works 

                          From transitions 

                                  tr1                          tr2                tr3                tr4              tr5

       To places 

p1                          0                  0                  1                 0                0 

p2                          0             0                  0                 1                0 

P =

p3                           1                  0                  0                 0                0 

 p4                          0                  0                  0                 0                 1 

 p5                          0                   1                  0                0                 0

                                        From places 

                                   p1                 p2            p3            p4           p5

      To transitions 

tr1                           1            1             0              0            0 

tr2                           0       0              1              1            0 

Q =

tr3                  1           0              0              0            0 

tr4                  0            1              0              0            0 

tr5                  0           0              0               1           0 
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 N (0) =  [     1       1       0        1        0     ] 

      Here, N (1) =  P ο (Q ο NC (0))C

                                    n1      n2      n3      n4       n5

                         =  [     1       1       1        1        0     ]         

                N (2) =  P ο (Q ο NC (1))C

                                                        n1      n2      n3      n4       n5

                         =   [     1       1       1        1        1     ]         

which indicates that the new tokens at places p3 and p5 after firing of two 
transitions are one. Further, places p1, p2 and p4 hold their tokens forever, without 
being hampered by transition firing. 

1. Extend the aforementioned idea  for backward chaining using classical modus 
tollens and combine both forward and backward chaining on Petri net models 
for reasoning in a logic program.  

2. Assuming that the tokens may be non-binary with real values in [0, 1], use 
equation (B.1) for generating fuzzy inferences in a cycle-free Petri net. 

3. Let P−1 and Q−1 be the inverses [4] of matrices P and Q with respect to max-
min composition operation. Assuming that P−−−−1 = PT and Q−−−−1 = QT, we obtain 
a backward reasoning formalism as follows: 

             

                        N (t + 1)  = P ο (Q ο NC (t))C

                  P−−−−1 ο N (t + 1) = (Q ο NC (t))C

(P−−−−1 ο N (t + 1))C = Q ο NC (t) 

Q ο NC (t) = (P−−−−1 ο N (t + 1))C

T

T

Exercises 

             n1      n2      n3      n4       n5



284                               Appendix B: Open-ended Problems for Dissertation Works 

NC (t) = Q−−−−1 ο  (P−−−−1 ο N (t + 1))C

N (t) = [Q−−−−1 ο  (P−−−−1 ο N (t + 1))C]C                               (B.2) 

Given the token vector N (t + 1), we can obtain N (t) by using Q−−−−1 = QT and  
P−−−−1 = PT.

Construct a Petri net without cycles (loops) and submit token vector N (0). 
Consider self-loop around the starting places through virtual transitions. Now, 
construct P and Q matrices, make several forward passes by iteratively updating 
equation (B.1) until N (t + 1) = N (t) at some time t = t*. 

Now use equation (B.2) to retrieve N (0) by backward computation of N vector. 
Check whether the computed N (0) is same as the submitted N (0). 
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