

 AU9845 half title page 8/3/05 9:06 AM Page 1

Defining and
Deploying
Software

Processes

The Complete Project Management
Office Handbook

Gerard M. Hill
0-8493-2173-5

Complex IT Project Management:
16 Steps to Success

Peter Schulte
0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java

Charles W. Kann
0-8493-1499-2

The Hands-On Project Office:
Guaranteeing ROI and On-Time Delivery

Richard M. Kesner
0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

ISO 9001:2000 for Software and Systems
Providers: An Engineering Approach

Robert Bamford and William John Deibler II
0-8493-2063-1

The Laws of Software Process:
A New Model for the Production
and Management of Software

Phillip G. Armour
0-8493-1489-5

Real Process Improvement Using
the CMMI®

Michael West
0-8493-2109-3

Six Sigma Software Development

Christine Tayntor
0-8493-1193-4

Software Architecture Design Patterns
in Java

Partha Kuchana
0-8493-2142-5

Software Configuration Management

Jessica Keyes
0-8493-1976-5

Software Engineering for Image
Processing

Phillip A. Laplante
0-8493-1376-7

Software Engineering Handbook

Jessica Keyes
0-8493-1479-8

Software Engineering Measurement

John C. Munson
0-8493-1503-4

Software Metrics: A Guide to Planning,
Analysis, and Application

C.R. Pandian
0-8493-1661-8

Software Testing: A Craftsman’s
Approach, Second Edition

Paul C. Jorgensen
0-8493-0809-7

Software Testing and Continuous Quality
Improvement, Second Edition

William E. Lewis
0-8493-2524-2

IS Management Handbook, 8th Edition

Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures

Fenix Theuerkorn
0-8493-2114-X

Outsourcing Software Development
Offshore: Making It Work

Tandy Gold
0-8493-1943-9

Maximizing ROI on Software Development

Vijay Sikka
0-8493-2312-6

Implementing the IT Balanced Scorecard

Jessica Keyes
0-8493-2621-4

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401

E-mail: orders@crcpress.com

Other Auerbach Publications in Software Development,
Software Engineering, and Project Management

Series_AU_001 Page 1 Thursday, April 21, 2005 3:24 PM

TE
AM
 F
LY

 AU9845 title page 8/3/05 9:05 AM Page 1

Boca Raton New York

F. Alan Goodman

Defining and
Deploying
Software

Processes

Published in 2006 by
Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-9845-2 (Hardcover)
International Standard Book Number-13: 978-0-8493-9845-2 (Hardcover)
Library of Congress Card Number 2005045280

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Goodman, F. Alan.
Defining and deploying software processes / F. Alan Goodman.

p. cm.
Includes index.
ISBN 0-8493-9845-2
1. Computer software--Development. I. Title.

QA76.76.D47G653 2005

005.1--dc22 2005045280

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Publications Web site at
http://www.auerbach-publications.com

Taylor & Francis Group
is the Academic Division of T&F Informa plc.

AU9845_Discl.fm Page 1 Wednesday, August 3, 2005 10:22 AM

v

Contents

List of Figur es and T able ... ix

Preface ... xi

Acknowledgments .. xiii

Intr oduction .. xv

SECTION I: The Software Process Model

1

Origins of the Softwar e Pr ocess Model 3

What I Will Cover... 8
Process Terminology... 12

2

Defining the Real-W orld Pr ocess Connection 19

3

The Softwar e Pr ocess Model Pyramid 27

Side 1 of the Software Process Model Pyramid... 28
Side 2 of the Software Process Model Pyramid... 29
Side 3 of the Software Process Model Pyramid... 30
Side 4 of the Software Process Model Pyramid... 30

4

The Softwar e Pr ocess Model Overview 33

The Software Process Model Concept .. 33
The Key Process Element: The Activity.. 43

5

Side 1 — Level 1 Authority Level .. 49

Authority Level .. 49

6

Side 1 — Level 2 Repeatable Level .. 53

End-to-End Life-Cycle Diagram (Repeatable Level — Side 1) 53
Process Activity Diagrams (PADs) (Repeatable Level — Side 1) 58

vi

�

Defining and Deploying Software Processes

Event-Driven Procedures (EDP) Lists (Repeatable Level — Side 1)........... 59
End-to-End Life Cycle of Activities.. 59
Activities... 73
Mandatory Activity Topics.. 79

Predecessor/Successor Activities ... 79
Activity Name ... 79
Activity Description.. 79
Activity Dependencies ... 79
Activity Inputs .. 80
Activity Steps .. 80
Activity Outputs.. 82
Activity Metrics ... 82
Activity Training ... 83

Possible Extension Activity Topics .. 83
Activity Group .. 83
Activity Roles .. 83
How Selectors Are Used by the Activity ... 84
Activity Estimations .. 84

Activities in General ... 84

7

Side 1 — Level 3 Implementation Level 87

How Selectors ... 87
Procedures ... 91

8

Side 1 — Level 4 Support Level .. 95

Work Products... 95
Work Product Template... 97
Work Product Inspection Checklist .. 98

Suggested Roles — Criteria .. 100
Entry Criteria.. 101
Inspection Criteria ... 101

Work Product Guidelines .. 102
Work Product Example(s) ... 103

Forms ... 103
Form Template ... 105
Form Inspection Checklist... 105
Form Guideline .. 105
Form Example(s).. 105

Project Records.. 106

9

Side 2 — T raining ... 107

Training Packages ... 107
General Training .. 108
Functional Area Training ... 109
Authority-Level Training .. 109
Repeatable-Level Training ... 109
Implementation-Level Training.. 110
Support-Level Training... 110

Contents

�

vii

10

Side 3 — Pr ocess T raceability ... 113

Process Traceability for Compliance ... 113

SECTION II: IMPLEMENTING THE SOFTWARE PROCESS
MODEL

11

Side 4 — Pr ocess Repository Implementation 119

Web-Based Version-Control Process Repository... 119
Separate Master Control from Web Presentation 119
Integrated Master Control with Web Presentation 120

12

Side 4 — Intranet W eb Implementation 125

Intranet Basics ... 125
Major Functional Breakdown for Process — Don’t Do This.................... 131
Multi-Life Cycles for Process.. 133
Top-Level Root Web Page.. 133

Identification Portion ... 134
Schedulable Portion ... 135
Nonschedulable Portion .. 136

Segment Top-Level Web Page ... 136
Identification Portion ... 138
Schedulable Portion ... 138
Nonschedulable Portion .. 139

Phase Top-Level Web Page.. 139
Identification Portion ... 141
Schedulable Portion ... 141
Nonschedulable Portion .. 142

Activity Web Page ... 142
How Selector Web Page... 144
Work Product Selector Web Page.. 145
Form Selector Web Page .. 146
Procedures ... 146

SECTION III: USING THE SOFTWARE PROCESS MODEL

13

Users of the Softwar e Pr ocess Model 151

Classes of Customers Using This Model ... 151
General Customer .. 151
Line/Project Management Customer ... 152
Lead/Practitioner Customer ... 153
Quality/Process-Group Customer ... 153

14

Metrics Collection Using This Softwar e Pr ocess Model 155

Metrics Collection versus Presentation.. 155
Metrics Data Collection .. 155
Metrics Information Presentation... 156

viii

�

Defining and Deploying Software Processes

15

Schedule Management Using This Softwar e Pr ocess
Model ... 159

Schedule Planning versus Execution... 159
Schedule Planning... 160
Schedule Execution... 162

16

Project Estimation Using This Softwar e Pr ocess Model 165

General Project Estimation ... 165
Manual Estimation by Activity Lead .. 167

17

Time-Car d Char ging Using This Softwar e Pr ocess Model 171

18

Subcontract Management Using This Softwar e Pr ocess
Model ... 175

Subcontractor Management Components.. 175
Supplier Selection ... 176
Supplier Agreement Management.. 177

19

Integrated T eams Using This Softwar e Pr ocess Model 179

Integrated Teaming Concepts .. 179

SECTION IV: DEPLOYING THE SOFTWARE PROCESS MODEL

20

Deployment Foundation Issues .. 185

Establish Key Roles/Charter for Deployment ... 185
Ensure an Inspection Procedure Is in Place .. 188
Get at Pain Issues ... 190
An Implementation Technique for Getting at Pain Issues 191
Develop a Top-Level Life-Cycle Framework .. 195

21

Deployment Issues ... 197

General Deployment Issues ... 197
Deployment Issues for This Model ... 199
Identify Candidate Projects .. 200
Train Candidate Personnel ... 200
Assist Candidate Personnel .. 201
Conduct Postmortem — Candidate Projects... 201
Rollout to Organization .. 201

22

Post-Deployment Issues ... 203

Assist Organization Personnel.. 203
Collect Process Metrics ... 204

Inspection Procedure ... 204
Time-Card Association for Actual Charges .. 204

Conduct Postmortems — Organization... 205

Index .. 207

ix

List of Figures and Table

Figures

1.1 Process stakeholders ..9

1.2 Process ingredient ordering... 10

3.1 Process framework architecture pyramid 28

4.1 Process activity diagram (PAD) ... 40

4.2 Event-driven procedures (EDP) lists ... 41

4.3 Activity drill-down .. 45

6.1 End-to-end life-cycle diagram.. 54

6.2 Partial process activity diagram (PAD) ... 60

6.3 Up to and including the integration plan 66

6.4 Unit A schedule thread .. 67

6.5 Unit B schedule thread .. 68

6.6 Unit C schedule thread .. 69

6.7 Integration set 1 schedule thread ... 69

6.8 Unit D schedule thread.. 70

6.9 Unit E schedule thread .. 71

6.10 Integration set 2 schedule thread ... 72

6.11 Unit F schedule thread .. 72

6.12 Integration set 3 schedule thread ... 73

6.13 Activity analysis form ... 75

x

�

Defining and Deploying Software Processes

6.14 Tabular format .. 76

6.15 Graphical format... 77

6.16 Activity format... 78

7.1 How selector format... 88

7.2 Connecting how-tos to a how selector .. 91

8.1 Work product selector format ... 96

8.2 Inspection checklist format.. 100

8.3 Form selector format.. 104

12.1 Top-level Web page ... 134

12.2 Segment top-level Web page... 137

12.3 Phase top-level Web page ... 140

12.4 Activity Web page .. 144

12.5 How selector Web page .. 145

12.6 Work product selector Web page ... 146

12.7 Form selector Web page.. 147

12.8 Procedure header Web page ... 148

15.1 Estimation snippet .. 160

Table

2.1 Activity Approach versus Work Product Approach..................... 25

xi

Preface

For a long time, many people have urged me to write this book. Managers
and practitioners from four companies encouraged me to do this.

I really want to help software management personnel who know that
they need processes but have no idea how to go about creating them.
My objectives are to define a process architecture that makes sense,
connect it directly to real-world project tasking, provide implementation
guidance, talk about all the ways that you really get real-world use out
of it for your business, and, lastly, discuss how to deploy it in your
company culture. I want this to be an “easy read” — not an academia-
oriented book. You don’t need a computer science modeling background
to read this. You do need the will and desire to make process work for
your organization. If you want to create a process bureaucracy just for
that reason, you won’t like this book.

I have seen companies rush into creating process “stuff” with no rhyme
or reason to any architecture and end up with a pile of unusable (and
expensive) garbage. If you recognize this situation, it’s no wonder that
process gets a bad name! On the other hand, if you follow my lead on
developing process, it will open up all kinds of benefits, from people in
the trenches to any company’s bottom line and survivability in our global
economy. You can get measurable improvements with this model.

This book will definitely help implementation for those of you address-
ing SPEM (Software Process Engineering Meta-model). SPEM has a volu-
minous specification to understand and this specification is written as
most specifications are written: for technical readers. Whereas SPEM
focuses on modeling processes, my book gets into process definition,
implementation, usage, and deployment that can augment the SPEM
models to make this real. You don’t need UML (Universal Modeling
Language) training and background to read my book. I use a single UML
modeling diagram — the activity diagram. You will find out that it is

xii

�

Defining and Deploying Software Processes

central to defining the repeatable tasking world that shows up in process
and in project schedules.

I kept putting off writing this book from 1991 until now. Over that
period, I saw my wife’s health worsen because of Parkinson’s disease
until deep brain surgery stabilized her condition significantly. Her deteri-
orating condition consumed me and affected my life drastically. I really
feel that I could not have done justice to this book during those trying
times. I realize now that if I do nothing in two years I’ll only be two
years older. If I tackle this book, I can be a published author and be two
years older.

I am absolutely passionate about process. People who know me tell
me that that passion shows! That same passion can cause potential
employment issues when you’re trying to change company cultures and
may be perceived as a threat to entrenched managers. I believe as strongly
in this presented method today as I did when I first developed this process
architectural approach. I believe that any company that adopts this meth-
odology will achieve dramatic process improvements that will show up
as reduced time to market, reduced development costs, increased repeat-
ability, improved quality, improved employee job satisfaction, improved
customer satisfaction, and an overall better working environment through-
out the entire company.

I’ve often thought that the term “process improvement” is incorrect
because process is only one part (although an important part) of a more
comprehensive term: “operations efficiency.” If you can streamline busi-
ness operations to be more cost-effective, shorten time to market, achieve
repeatability, improve internal and external product quality, and increase
profitability, process improvement is merely one main way to get there.

I will discuss aspects of this software process method over and over
again from different perspectives. This method is very powerful and needs
such repetition to cement in these important concepts. So, for those of
you who are looking for real down-to-earth guidance in defining and
implementing processes, this book is for you.

xiii

Acknowledgments

I am indebted to several people who have, in one way or another, directly
or indirectly contributed to this book. I would like to thank Don Murphy
who introduced me to the 7 M (Management) Tools. Of these, I adapted
two of them (infinity brainstorming and interrelationship digraphs) in
implementing this process approach. We had spirited process-related
sessions over countless hours. I was fortunate to work with Jeff Herbert
(software director at one company) who was (and is) an incredible human
being and manager. Jeff always allowed me breathing space to talk about
processes. He was willing to take up the cause to upper management
when needed. It was Jeff who constantly reminded me that in the process
development world we are playing horseshoes, not golf. His point was
that to be close counts. For that, I thank him. I also thank Theresa Clowes
for being a consummate editor and a real “process person” as a manager.
There were times when I felt it was Theresa and me against the world.
She was “with me” a lot in her understanding of this process methodology.
I felt fortunate to work with and for this intelligent lady. While at a
commercial company, I had the opportunity to have Karla Nolan work
for me. We were an incredible team for process development. Karla
partially implemented one version of this process framework for me on
the company’s intranet and was my ardent supporter. I also wish to thank
Jim Vander Plaats whom I worked with (and for) at three different
companies and who supported my process approach throughout all the
periods of my employment. I would be remiss if I didn’t thank Chris Holl
and Dave Clinard of the San Diego chapter of the Society of Software
Quality (SSQ), who provided me with a forum to expound on my process
methodology at this professional society. I also want to thank John Barker,
who really understood the relationship of good processes to achieving
quality. While at a wireless telecommunication company in San Diego, I
worked for Jim Thayer (head of the Base Station Controller), who provided

xiv

�

Defining and Deploying Software Processes

an incredible level of support and understanding for what I was doing in
the process area. With Jim’s total support, I was able to accomplish much.
As a process guy, you simply cannot succeed without that top-level
support. I truly recognize these people because this book would not have
been possible without their support.

In addition, both my adult sons, Darin and Scott Goodman, have
encouraged me to go for it when I told them of my desire to write this
book. They’re proud of their old man.

I dedicate this book to my wife, Corinne. The debilitating progression
of her Parkinson’s disease has taken away any joy in this endeavor. I love
her dearly and I am thankful for the years we have shared when she had
good health. Lastly, I am enjoying being Grandpa to Chelsea and Anna
Corinne Goodman. They are the two daughters I never had. I have an
incredible new life viewpoint through these girls. Chelsea (now 14 years
old) thinks it’s real cool for Grandpa to write a book. I certainly can’t let
this important lady in my life down, eh?

xv

Introduction

Background for This Book

I gravitated into the process world several years ago after performing
almost all roles in the software engineering environment — both as a
programmer and in various management positions. That environment
covered both the commercial software development world and the gov-
ernment contracting software development world. I kept getting back to
a process focus after personally witnessing complete disasters with so-
called process-rich environments and alternatively process-sparse environ-
ments. I often ran into “process people” who lost sight of the fact that
processes were there to support the organization — not the other way
around! Frustrations at all levels have been enormous for software engi-
neering personnel.

I was in the trenches and in software management during the U.S.
government’s push for making Department of Defense (DoD) software
contractors conform to standards like MIL-Std-1679, DoD-Std-2167, and,
later, DoD-Std-2167A. The government’s zeal in getting pesky contractors
in line during that period resulted in vast documentation standards require-
ments throughout the development life cycle — even when those deliv-
erables were illogical at various times in the life cycle. Companies were
unsuccessfully trying to force a real-world development life cycle onto a
waterfall-based model from the government. The government openly
advocated tailoring the imposed model, but when you did just that,
government employees suspected you of trying to get away with some-
thing, and thus effective tailoring was not done. I was there and I know
what really went on to try to conform. The government related document
production to project progress regardless of document quality. Repeat-
ability translated into creating a standard set of documents with standard
formats. Software contractors ended up in the document business rather

xvi

�

Defining and Deploying Software Processes

than the software business to a large extent. The government alleged to
just describe “what” had to be done but the same government had all
kinds of “how-tos” included as well — including defining low-level
document formats via Data Item Descriptions (DIDs) for just about every-
thing. Woe betide anyone who deviated from any government DID —
even if it made sense! The cost of government-imposed “process” was
enormous with questionable value, in my opinion.

After this fiasco, add in all the variations of what gurus said you had
to have in order to be good at processes. These included the Software
Capability Model (SW-CMM), the System Engineering Capability Model
(SE-CMM), personal/team/acquisition models, and, later, the integrated
version of software/systems — the CMMI (Capability Maturity Model —
Integrated). The CMMI added an additional decision point of staged versus
continuous representations (over four model variations each) to provide
a forward path from the legacy software or systems capability maturity
model. When you throw in things like ISO 9001, ISO 9000-3, TickIT,
Malcolm Baldrige awards, Six Sigma, etc., it’s no wonder that the average
person views process with jaundiced eyes and considers the next thing
down the line as yet another “flavor of the month.” In the rush to get
with this program or that program, companies had lost sight of the very
reason that we need better processes! Good processes save time and
money, reduce life-cycle costs, reduce time to market, increase repeat-
ability, increase quality, improve competitiveness, and improve employee
and customer satisfaction — if done right! I’ve added that caveat because
I have seen horrible examples of processes that have succeeded in
achieving the opposite goal.

I wish to point out that no maturity model or standard addresses how
process elements are organized (process framework architecture) or how
they are accessible for real-world usage. They also don’t address how to
implement processes, value-added aspects, and deployment issues. This
is where this book fits in. This is a great adjunct book to developing those
CMMI/ISO-based processes so that all the pieces fit into the giant jigsaw
puzzle in an organized and modular fashion. Without clean process
architecture, you can end up with piles and piles of process “stuff” that
becomes useless real fast and is less and less maintainable. I have seen
that very condition. When companies get to that state, they may have
processes, but they really don’t because you end up with process varia-
tions, different process versions, and process inconsistencies. You get to
play the “which one do I believe” game or “which one is right” game. If
you are in this state, you need this book. If you are going to tackle CMMI
or ISO 9001 and don’t have processes, you need this book. My role is as
a process architect. My role is not being a domain-knowledgeable indi-
vidual for the way you do business. Because of this separation, I can

Introduction

�

xvii

apply this architectural model to any kind of business or any kind of
governmental entity. I have been involved already with hospital systems.
Even my eye doctor has recognized that he has a life cycle with process
elements to run his office. This supports my assumption that there are
domain people out there who can apply this architectural model to their
specific business or governmental system. For that reason, I go into a
company as a process architect, not as a domain expert in all types of
business. It would be vain of me to consider taking that approach (and
it would be disastrous to even think about it).

Being an internal CMM assessor and an internal ISO auditor, I have
encountered volumes of manual documents in people’s offices that are
purported to be processes. The sheer weight of these manuals tends to
discourage most people. I’ve even seen these artifacts with their plastic
wrap still on or with pristine pages; this has left me with the sense that
they have not even been looked at. The intranet can have a large process
repository, but allow usage to be focused on the part you really want —
usually on a single Web page! Notice the similarity to Web surfing, where
you get the information you want quickly. Paper, however, just sits there
in your bookcase. If I were to hand you one or more volumes of paper-
based processes, you would gulp and set it aside immediately. If I could
get you to what you were interested in — in three clicks (or less) — and
present you with a single Web page, you would be more likely to follow
it. If I provided you with a short list of standard process element types,
you would understand and use them.

Process is not unlike a résumé. You write a résumé on the assumption
that you have, at best, 30 seconds of time to grab the reader’s attention.
If you don’t, it gets discarded. Process has an even tighter time window.
If users cannot get to what they want in three clicks (or less), they get
frustrated and essentially discard it. This book is very conscious and aware
of this phenomenon for process success. My point is that you could have
the greatest process content in the world, but if you can’t get to it
efficiently, you lose. Conversely, you lose if you can get to process
elements efficiently but once there the content is crappy. You need both
elements in play for success. I deal with both of these worlds in this book.

It always amazed me that processes, even if they existed, were either
totally ignored, treated with disdain, or forced down people’s throats. I
have even been in companies where the word “process” couldn’t even
be spelled! One company thought that process meant only having some
forms. Another company considered process as only some templates! Yet
another company thought that process meant writing piles of stuff in the
hope that somebody finds something that he or she can use! We have a
problem when we can’t even define what this thing is and yet without
it, companies can fail and go bankrupt. Even for struggling companies,

xviii

�

Defining and Deploying Software Processes

employers can lose money while employees get ulcers and become
stressed, due to workplace chaos.

Just watch the daily TV news if you want to see how badly the
government deals with process! The government routinely mixes and
matches what you have to do with a one-size-fits-all mentality for how-
tos. I cringe when I hear U.S. senators and representatives misuse process
terms. I must admit, I’ve seen some attempts at the what/how separation
that are usually targeted at complex regulations that shouldn’t be that way
in the first place. A classic example is the IRS! The IRS tax rules and
regulations are so complicated that you can’t get consistent answers from
people within the IRS for the same question! The federal, state, and county
governments wonder why businesses go under when they stuff govern-
ment regulations down a company’s throat and treat a 5-person company
like a 5,000-person company! You would think that the government would
actually want to set up the environment for small businesses to exist and
grow — thus hiring people and contributing to the tax base. When small
business has to hire people just to deal with government regulations (the
same regulation as that 5,000-person company deals with), something is
wrong! These are process problems.

How many TV events and major issues are process-related? Try Middle
East issues, prisoner detainment issues, Iraq and Afghanistan transition
issues, stock transactions, troop training issues, 9/11 responses, mad cow
disease, wildfires, gasoline distribution and pricing, school district issues,
homeland security threat levels… Process is at the heart of all these major
issues. One manager told me that I totally destroyed his TV news viewing
because he saw process problems in just about everything he watched,
just like I did.

When politicians get involved with these monumental events and
issues, they say they are going to address process but invariably use
commissions and special bodies to be in the political partisan business
— not process solutions. You see political bashing or political supporting
based on party affiliations with no real attention to things like “what went
wrong?” or “how can we do better?” types of process focus. I have often
thought that if the 9/11 Commission had been staffed with process people,
the outcome would have been significantly different. The focus would
have been on process, roles, what was done or should be done, resource
management and allocation, training, etc. Process people are not in the
blame business at all, whereas politicians are in the blame business.
Process people know that blame is death to improving processes. Politi-
cians use blame to enhance themselves or deflect attention away from
themselves for votes.

Most governments are poor at process as most legislators are not
“process people.” Our government does not separate what you need to

Introduction

�

xix

do from how you need to do it, especially when it comes to regulating
business. I can’t tell you how many people I’ve talked to in our hospitals
that complain a lot about FDA regulations mixing “whats” and “hows” at
a high cost within those hospitals. At the how-to level, the government
does a poor job of process tailoring through alternative selections. This
lack of scalable solutions contributes to high costs, high overhead, unnec-
essary complexity, and low compliance. This alone causes many busi-
nesses to go under unnecessarily.

I have personally experienced incredible complexity in hiring a care-
giver for my wife just to comply with state and federal employer rules! I
get treated like a huge corporation rather than an individual. Equal
opportunity posters were sent to me for posting (along with warnings)
when I hired the caregiver. Do I tape these posters behind the toilet to
comply? My point here is that overbearing processes imposed by govern-
mental entities range from bizarre to oppressive. It’s no wonder there’s a
thriving underground economy that bypasses government processes! The
state and federal government only have themselves to blame for this state
of affairs. These are government process problems.

As a new Medicare recipient, have you tried reading the government
literature on this? I consider myself a fairly intelligent person but after
reading and rereading government materials, it’s almost like they have an
underlying motive of making things as complicated as possible. You read
terms like “Medigap” and “Medicare plus Choice” in government literature
with an “or” between them with no explanation supporting this “or.” It
took me several phone calls to understand this difference. My point here
is that the government does a poor job of separating “what” from “how.”
Also, the “how” part needs to have variations clearly spelled out so that
there is no single one-size-fits-all “how” described. I challenge anyone
out there to look at government documents from a process perspective
for complete understandability. You won’t get it.

The process approach basics described in this book could revolutionize
government at all layers and actually cause businesses to thrive and
succeed at the same time! I urge government personnel at all levels to
consciously separate “what you have to do” from “how you are to do it.”
Government regulations should exist at the “what” level with high-level
requirements. The government needs to recognize business scaling and
provide alternative how-to suggestions if they feel they need to be in the
how-to business. Never mix the “what” level and the “how” level. With
this separation, government could then provide a scalable set of “how-
tos” if they really wanted to provide guidance for differing-sized classes
of customers. A 5-person company would be treated more reasonably for
a small company rather than forcing it to behave like a 5,000-person
company. The small company could actually hire more people to

xx

�

Defining and Deploying Software Processes

contribute to the tax base rather than hiring people just to support
government overhead. What a concept!

The government is notorious for addressing problems where the cost
of solution is way out of proportion to the relativity of the problem. In
business, you want to use Pareto charts to tackle the big things first, to
get the biggest bang for the buck. As a process guy, I am well aware of
this focus point. In government, however, you may work on the 2 percent
items first because of various factors that have no basis in process. The
“pain” selection may be purely political with no rational basis for selection.
Can you imagine what the government would be like if spending was
based on process metrics? That is, you don’t get massive funding for the
little stuff first. The taxpayer dollars would be far better spent based on
some measurable basis of need — not special interest pressures.

It has been my experience that commercial companies will get serious
with process when they’re up against the wall and have to deal with
survivability from competition. Many U.S. companies will need to work
smarter to survive in a global economy. Government contractors get with
process because the government makes them (and for the company to
“stay in the game”). Ironically, process people tend to be the first to be
laid off when things get tough — even though they could be the very
people who can be instrumental in turning a company around. Addition-
ally, process people can be viewed as “making waves” or even as “trouble-
makers” when trying to get needed changes made in an organization.
During those tough times, executives go right to the “cutting heads”
solution and tend not to consider the process world as another huge
savings opportunity at all. Amazing! Process specialists are not that dif-
ferent from emergency room doctors. If you can get to the patient in time,
you can save the patient — if not, the patient dies. For process specialists,
that patient is the company. Companies can get real sick and die — just
like people. We all know of companies that used to exist that are no
longer around.

In all the process-based environments described above, you end up
with practitioners and managers who develop very negative opinions
about processes. It could be a nasty four-letter word to many people. If
you hear things like “What turkey dreamed this up?” in describing process
elements, you’ll have an awful time introducing any new (and what is
perceived to be the next “flavor”) processes. I know because I have
walked into environments just like that.

Add to all of this a potpourri of process terms that are inconsistent,
inaccurate, and wrong. It’s no wonder that the average person is totally
confused and irritated by this process stuff. Stay tuned — I hope to change
your opinion about the incredible value of doing process right.

Introduction

�

xxi

Purpose of This Book

With all this foundational background, I am going to turn my attention
to the very essence of this book. In all my years in the process world
having to deal with standards and maturity models, they focus on endgame
requirements (or perceived requirements) and don’t deal with process
architectural structures, presentation, usefulness, deployment, or people
aspects of process. The toughest aspect of defining and implementing
process is the people part. People resist change — even good change.
Some people will smile at you while stabbing you in the back behind
the scenes over process. I have experienced that personally and have
added a section of this book that will mitigate some of this.

I have consciously written this book from a lay perspective for a broad
reader base. If you really want to create processes in an organized fashion
that are absolutely useful and tie the process world to your project
schedules, you need this book. My objective was to provide guidance for
that definition and implementation of your processes. I also wanted to
show you why you get enormous value from this approach in running
your business. Lastly, I wanted to provide guidance on how to deploy
processes into your company culture. This is the toughest part of all. You
will end up with a Web-based process architecture that is completely
flexible and extensible where you need it. You will also end up with a
process approach that will be embraced by your employees because it is
sensible.

This book will address these four major sections:

�

Definition of the software process architectural model. This is the
jigsaw puzzle that describes what the pieces and parts are and
how they fit together in a cohesive way.

�

Implementation of the software process architectural model. This
addresses the importance of the Web to access process along with
the importance of a version-controlled repository tool for process
management. I provide implementation guidance to build the
process pieces and parts such that they fit into this jigsaw puzzle.

�

Using the software process model. This section addresses the
following topics:
– Classes of process users
– Metrics collection and presentation
– Schedule creation and management including earned value
– Project estimation
– Time-card charging
– Subcontract management
– Integrated teaming

xxii

�

Defining and Deploying Software Processes

�

Deploying this software process model into an organization. This
involves the following issues:
– Getting at pain issues rapidly
– Process group creation and charter
– Process champion development (domino theory)
– Piloting the software process model
– Measuring the software process model
– Preparing for an external model appraisal (like Standard CMMI

Appraisal Method for Process Improvement [SCAMPI])

All are important for process success. The first two bullets deal with
process structure and implementation of that structure. The third bullet
deals with how to use this software process method within your organi-
zation for those real benefits. The last bullet involves making sure that
this method stays in your organization and becomes part of your process
culture.

If I had a “wrapper” term for this software process model, it would
be called Selectable Process Architecture, or SPA. The heart and soul of
this SPA is the ability to pick and choose process elements at all levels
while balancing mandated repeatable elements with nonmandated proce-
dural elements. As you progress through this book, this process balance
will become more evident to you. Because of this built-in selectability,
this model is completely extensible for real-world process adaptability.
This software process model allows you to completely change your process
basis over time in an orderly fashion — discarding what doesn’t work
while retaining what does work. Over the years, I’ve hated it when I’m
told things like “that’s just the way it is” when describing process. With
this approach you are not stuck with archaic or nonsense solutions. With
this approach you can also expand tool support naturally.

I

THE SOFTWARE

PROCESS MODEL

3

Chapter 1

Origins of the Software

Process Model

Many years ago, I visited a large aerospace company complex in the
eastern United States. While there, I was introduced to their engineering
processes. They had many, many manuals of processes that were color
coded by functional area usage. This was their approach to functional
area separation. In the software volumes, they did one thing that was an
absolute revelation to me — they consciously separated “what you need
to do” from “how you need to do it.” It was such a fundamental concept
and yet it has not been done by many companies, even today! That
inspired the idea for this process framework architecture. You need to
consciously separate “what you do” from “how you do it.” The way they
approached the “what” level, however, was immersed in the Department
of Defense (DoD) 2167 standard of that day for terminology and document
deliverables. They only addressed what you had to do at high-level 2167
phases as described in that standard. The granularity of their “whats” was
at a real high level for the software engineering phase level. Their process
implementation paralleled the standard for phases and expected deliver-
ables within each phase. This means that their implementation was a
document-centric view of the “what you have to do” world. Their “how-
to” world” was a pile of process stuff (in how-to process element number
order) that was just “there.” You could not pull out a how-to process
element from the pile and get an answer to the question, “Where does
this fit?” I felt that this was a huge mistake. It became a requirement in

4

�

Defining and Deploying Software Processes

this proposed software process architecture that process elements had to
fit somewhere and that one should be able to answer that “where does
it fit” question. My impression was that this process mapping to the DoD
2167 standard did wonders for the government auditors and company
management but did little for the people actually doing the work — the
practitioners.

Because their process implementation was based at the phase level,
it separated the entire process world from the real world. What I mean
by that is that actual work to be done was shown on project schedules.
These “what you need to do” elements, when rolled up on a schedule,
become summary lines or phases. Their implementation only addressed
phase-based items or, in scheduling parlance, the summary line. There
was no connection to the task level of a schedule where real work is
mapped out. I determined this to be a problem and wanted to correct
that process/schedule connection to the lower granularity of the schedule
task. Let’s face it — the task is where the action is for process repeatability.

“Phases” in the real world are, at best, umbrella terms for a particular
set of schedule tasks. A traditional phase name is like a summary roll-up
term on a schedule. For the most part, actual tasks within each phase
were however anyone wanted to describe them. Task descriptions were
all over the place. Some were noun-based, some verb-based, and both
had huge variations related to levels of detail. Schedule tasks had no
connection to the process stuff on this earlier software process model.
You hoped that the actual day-to-day work made a “hit” with some of
the process items described in these traditional phase-based process
manuals. How all this happened on a day-to-day basis was that program-
mers would march through the software life cycle working tasks and
periodically hope that something out there in the process world would
help them. You could not take randomly selected schedule tasks and
connect them to discrete process items. It was this disconnect from the
real world that I also thought was a huge mistake. This also became a
cornerstone of my process architecture. The “whats” had to directly relate
to the real world of schedules. This meant that the granularity of each
“what you had to do” had to exactly map to schedule tasking. This was
a huge difference from their approach.

For this large company, the how-to process elements were placed in
a big pile of stuff. You could not relate any of these process elements to
a schedule task nor could you relate any of these process elements with
events or stimuli. You could not determine where something fit. The “fit”
selection was a hit-and-miss kind of thing based on a key word or phrase.
If you were doing an inspection or evaluation, was there something out
there that was called “evaluation” or “inspection” that might be useful to
you? If you picked the right word or term, you’d get a “hit” — if not, you

Origins of the Software Process Model

�

5

wouldn’t. In this software process architecture, each and every how-to
process element had to exist for a reason and had to be tied to asynchro-
nous events or stimuli or be tied to high-level steps within a scheduled
activity (task).

After looking at their phase-based processes and unconnected how-to
procedure piles, it became obvious to me that there should be clear-cut
mapping of both to real-world actions. Having said that, the real world
to me is as follows:

�

The set of tasks to be done in a project schedule. These are the
“what you have to do” process elements that address connected
actions based on stimuli/responses to or from other schedule tasks.
Schedule tasks are connected in the real world of actual work to
be done (i.e., you can’t do the successor task unless the predecessor
task is done). Another way of stating this is that the output from
one task becomes the input to another task. Also, each schedule
task should be treated as an uninterruptible element. These tasks
(or activities) contain the high-level steps that may (or may not)
have how-to elaborations. An implementation activity is done after
a low-level design activity and both can be placed on a project
schedule showing that predecessor/successor relationship. These
are schedulable process elements because they can be shown on
a project schedule.

�

The set of how-to process elements that have “scope.” The scope
of any how-to can be summarized as follows:
– A how-to process element can be an elaboration of one or

more high-level “what” steps within a schedulable activity or
task. These how-to process elements are connected to the
schedulable world of processes. An example of this how-to
would be the “end” procedure that is connected to the “end”
high-level step in each schedulable activity to notify activity
termination and pass off activity metrics.

– A how-to process element can be an asynchronous event (i.e.,
not schedulable) and can have a scope of a single phase in
the project life cycle. These how-to process elements are not
connected to the schedulable world of processes and are con-
sidered event-driven how-tos. These are how-to procedures that
are different based on which phase they get executed in. This
is the situation where a coding phase how-to is different from
an integration phase how-to for the same kind of how-to.

– A how-to process element can be an asynchronous event (i.e.,
not schedulable) and can have a scope of a single segment (a
collection of phases) in the project life cycle. These how-to

6

�

Defining and Deploying Software Processes

process elements are not connected to the schedulable world
of processes and are considered event-driven how-tos. An
example of this might be a requirements change procedure that
is different in the pre-execution (prior to project turn-on) seg-
ment than it is in the execution segment (after project turn-on).

– A how-to process element can be an asynchronous event (i.e.,
not schedulable) and can have effectively no scope. These how-
to process elements are not connected to the schedulable world
of processes and are considered event-driven how-tos that are
independent of phases or segments. An example of this might
be a quality-related corrective action how-to that is identical no
matter what phase or segment you are in.

In this same institution, I could take phase-based process elements
and clearly tie them to some phase in the life cycle. I could not tie actual
tasking elements that showed up on a schedule to anything within that
phase-based process element. This “what you have to do” level was merely
wording that collected dust. Their procedures were worse. I had no idea
where these fit in any life cycle or how they were connected within any
phase of that life cycle. In addition, they had different flavors of the same
procedure out there. Which one do you pick? Also, it appeared to me
that if you felt like writing a procedure, you just did! It became another
requirement in my software process model that all process elements have
to have some reason for being. Also, in my approach, if you feel like
writing a how-to, where’s the “what” that it’s connected to? The how-to
reasons for being break down into five fundamental categories:

�

To elaborate on a high-level “what” step within an activity

�

To satisfy a high-level “what” requirement (e.g., to satisfy an ISO
9001 standard requirement)

�

To satisfy a high-level “what” perceived requirement (e.g., to satisfy
a CMMI process maturity goal/standard practice)

� To satisfy implied industry best practices
� To satisfy some kind of stimulus

I did not include the need to satisfy the “process” person! I say this
because some process people seem to have the need to wallpaper the
walls with everything that moves. I am not advocating that at all. In fact,
not all things need process elements. We need to be sensible about this.
Keep in mind that process exists to support the organization, not the other
way around. I am not interested in creating a process bureaucracy just
for the sake of it.

Origins of the Software Process Model � 7

Another area of contention that I saw was in the compliance area.
There was no mapping of how-to procedural elements to anything. At
the phase-based process level, the best you could say was that one phase
equaled one DoD 2167 phase — as specified in this government standard.
The concept of mapping process elements to any standard or maturity
model was nonexistent. It became vital in this model to make sure that
you had complete traceability to these high-level requirements. High-level
process requirements external to your processes include such things as
company policies, government regulations, and international standards
(e.g., ISO 9001:2000). High-level perceived requirements include maturity
models like CMMI goals/process areas/practices and SW-CMM. Process
elements traced to these can be both activities (what you need to do)
and procedures (how you need to do it). High-level “whats” internal to
your processes include the high-level “what” steps within any schedulable
activity. Process elements traced to these high-level “what” steps are strictly
how-to procedures.

In addition to explicit requirements, I recognized that process ele-
ments and ordering of those elements are also based on the type of
business you have. It was important in this model to recognize the
existence of process elements that satisfy implied requirements as well.
Both activities and procedures can exist to satisfy an implied industry
best practice. For example, a software engineering company knows that
something needs to be coded before you test it. You need process
activities that relate to these schedulable tasks and show these prede-
cessor/successor relationships.

The earlier “what” level processes and procedures failed to communi-
cate the driver or stimulus that caused them to be executed. For the phase-
based processes, the only stimulus was that a phase was declared so we
must be in that phase’s processes. I could not clearly identify the
inputs/outputs that provided the thread of actions at all. It became impor-
tant that activities at the “what” level have clear drivers for execution.
Similarly, procedures have clear anchors for execution. Just as schedule
tasks are stimulus-driven as predecessor/successor tasks on a schedule,
process activities are similar and can also be mapped onto a schedule. In
the schedulable world, it is the process activity that is invoked as a result
of a stimulus. Procedures can also be stimulus-driven. If something hap-
pens, invoke a specific procedure.

One company where I worked (as well as the company mentioned at
the beginning of this chapter) felt that “tailoring” (especially at the how-
to level) involved writing all-inclusive process descriptions and physically
redlining out any excesses to make it more appropriate for smaller efforts.
This approach created a “one-size-fits-all” mentality for how-to process
element creation that targeted the largest possible scope of effort. When

8 � Defining and Deploying Software Processes

people tailored these process elements for smaller efforts, it was time-
consuming and error-prone, and the end result was useless as a process
to be followed. This tailoring approach became another cornerstone of my
approach. It became important that you mandate the “whats” but have
both flexibility and extensibility at the “how” level. Tailoring is to be done
by providing alternative selections (one aspect of the software process
model method) — not by redlining a single one-size-fits-all how-to process
element. If you’re in the process arena long enough, you realize that the
biggest arguments deal with how things are done. There are very few
arguments related to what needs to be done — particularly in an engi-
neering development environment. If you allow (and encourage) different
how-tos as part of your model, you get rid of most process-related
arguments! Another phenomenon happens over time: winning how-to
procedures survive and losing how-to procedures die naturally as part of
normal process improvement.

It is important to point out that many seed ideas in this process model
came out of my earlier experiences. For the first time, I clearly determined
what was wrong and what was right with what I saw.

I then embarked on preaching about this new approach both internally
via company lunchtime sessions, at company engineering forums, at local
San Diego Society for Software Quality (SSQ) chapter meetings, and by
speaking at the Software Engineering Process Group (SEPG) conference
in Atlantic City, New Jersey. My message regarding this new approach
has been totally consistent during all this time.

What I Will Cover
Given my personal experiences on both sides of the process fence and
seeing what worked and what didn’t work, I formed a process architecture
framework model that is both simple and yet profound on many levels
to really address a total software process solution to any company. I
wanted to provide a software process model that was rich enough to fully
address Design for Six Sigma (DFSS), the eight versions of CMMI across
two representations, and ISO 9001 certification with a simple practitioner
directive of “just follow the process!” without anyone really knowing
CMMI, ISO, Six Sigma, Malcolm Baldrige, or anything else. This process
model achieves just that.

I realized very early that process has several classes of “customers.”
Process customers break down to direct customers and indirect customers
(beneficiaries). Each customer class has to be satisfied (what’s in it for
me?). The process approach needed to completely satisfy all classes of
customers from the executives down to the people in the trenches (prac-

Origins of the Software Process Model � 9

titioners). If you satisfy one group to the detriment of another group, you
lose. I’ve seen this in real life when you have marvelous, pretty, and
colorful high-level process graphics to satisfy executives but these graphics
are absolutely useless to the very people who need to follow them —
the practitioners.

I also realized that process success had as much to do with process
organization and accessibility as it had to do with process content. The
point here is that if it’s not fast and convenient for access, it doesn’t matter
what the actual process target is — because people will not use it.
Conversely, an efficient framework architecture tied to easy access facili-
tates institutionalization of processes.

Figure 1.1 depicts the classes of people who directly interface with
the core processes. These are the primary process customers. In addition
to these classes of people, there are others who are direct beneficiaries
of that core process as well. These are considered secondary process
customers. The combined set of people comprise all the stakeholders of
process. In one way or another, they are all affected by process.

Coming into an organization with a process framework architecture in
mind is not enough to make it successful. You need to have that process
model architecture “in your back pocket” and attack the company pain
issues or certification issues as your external thrust. If you solve the
organization’s problems and frustrations or department issues, that’s what
is considered a success. As an aside in addressing these pain issues, you

Figure 1.1 Process stakeholders.

Process
Framework
Architecture

Pra
cti

tio
ne

rs

Leads/M
anagers

Q
uality O

rganization

Process
Beneficiaries

Process
Customers

Customers

Auditors/Assessors

G
ov

’t
R

eg
ul

at
or

s

Quality/Process

10 � Defining and Deploying Software Processes

implement the process framework architecture! Organizations do not take
kindly to anyone coming in with any real or perceived magic bullet to
process organization or structure. I happen to believe strongly that I have
that magic bullet but I don’t advertise that. As a “process guy,” I had to
constantly fight managers who just wanted to add things to the process
pile with no thought to their usefulness.

Over the last few years, it became very clear to me that five elements
have to be in place to succeed in process:

� You need an overall process framework architectural approach into
which you implement your process solutions (back-pocket item).
This part addresses the process framework into which process
pieces or parts fit.

� You need to identify the company “pain” issues and tie process
progress to those pain issues. These become the process drivers
for the process framework architecture.

� You need a process environment for success. This includes man-
agement support and a commitment to addressing the process
drivers.

� You need a Web solution that specifically addresses usability and
access to the process world.

� You need a version-controlled process repository to maintain mul-
tiple versions and to provide a rapid change process.

From an ordering perspective, these three main ingredients look like
Figure 1.2.

Figure 1.2 Process ingredient ordering.

Precursor
Activities

Pain

Implementation
Activities

Process framework architecture/web
solution and process repository structure

Process environment

Origins of the Software Process Model � 11

I will cover how I have approached process framework architecture
deployment into an organization without the organization truly realizing
that this was the main event. The organization thought that I was only
solving their process pain issues whereas I was really addressing these
stakeholders:

� The practitioners want something useful: something that will work
for them on a day-by-day basis and something that frees them
from all the extraneous stuff beyond the very reason they were
hired. Average software programmers view this process stuff as
the BS aspect of their work.

� The management wants to see better quality, fewer costs, reduced
time to market, better repeatability, and improved customer product
satisfaction.

� The executives want to feel that we really have a handle on all
this. They want high-level pretty graphics to show prospective
customers how good we are at addressing processes or how we
get certified.

� The customers want to feel good about our ability to perform as
a consistent quality supplier.

� The quality management wants compliance to stated company
quality goals — i.e., CMMI, Six Sigma process foundation, ISO 9001,
etc.

� The quality engineers want a process methodology that is truly
auditable. Engineering is also interested in doing self-quality checks
in the true spirit of ISO 9001’s definition of “quality” without a
quality organization.

� The internal and external assessors want to see a comprehensive
approach to process that shows process compliance and a process
basis that is truly institutionalized.

I hope to show why this presented approach provides you with an
incredible solution to a plethora of company process problems. I also
hope to show government management and elected officials why the
basics of this approach directly provide a business-friendly solution to
government regulators.

In dealing with this topic, I have a chicken-and-egg issue. I need to
talk about the software process framework architecture first, yet the real
thrust is getting business pain issues inserted into that framework. In
addition, in discussing the main process architecture focus, I need to
quantify what the real world means. When discussing the process frame-
work, I need to touch on implementation and deployment topics. When

12 � Defining and Deploying Software Processes

I discuss the implementation and deployment topics, I need to talk about
the process framework architecture. I hope you will bear with me about
this dilemma.

Process Terminology
Before giving an overview of this process framework model, it is important
at this point to be very specific about the process terminology that I use
in describing the details of this process framework architecture.

I have heard it all for process terms. I have been amazed at what
people use throughout the industry for process terms — some terms are
incredibly bad. How many of you have heard the phrase “policies and
procedures” on the network news (usually after process disasters)? This
term is used as if it related to one thing — but it’s really two entirely
separate topics! Policies should be high-level assertive statements whereas
procedures should be implementation how-tos! In this process model, the
former is at the “authority” level whereas the latter is at the “implemen-
tation” level — these are separated by the “repeatability” level. Some think
work instructions are almost anything but that term is appropriate for very
low-level instructions that you might find in a manufacturing environment.
Some think “procedures” means almost anything whereas that term is
more appropriate for how-tos that can range from high-level through low-
level descriptions. Some use both terms where it is real fuzzy why
something is called one thing versus the other. In this model, I encourage
a high-level how-to (procedure) that may or may not have a low-level
elaboration counterpart (work instruction). This is to accommodate the
experienced user from the novice. It will be obvious why you make that
distinction if you’re an experienced user that’s irritated by too much detail.
I’ve seen so-called policies that contain what you should do, how to do
it, and that include company titles to do things. How’s that for creating
something that is guaranteed to be wrong over time! I’ve also seen ISO-
certified companies where company policies essentially replicate ISO 9001
requirements. In this last case, you have to question why the company
policy exists.

Given that backdrop, I am proposing the following terms that have
discrete meanings and have discrete places within the process framework
architecture where they reside. I realize that each company has built-in
cultures and built-in usage of terms that may not exactly agree with my
terms. In those instances, relate your terms with mine. I also realize that
you may need to revisit these terms as you get into the meat of the
process framework architecture. It is important that I be totally consistent

Origins of the Software Process Model � 13

with terms throughout this book for their semantics in the process repos-
itory and usage.

� Activity — A process element that corresponds to a schedule task
containing a series of high-level “what” steps that you need to do.
An instance of an activity becomes a schedule task. Some compa-
nies call these standard practices. This feature is an integral part
of the software process model.

� Activity group — A logical group of activities used for process
metrics purposes when executed on schedules. “Design” may be
the set of activities involved in design whether at the system,
subsystem, or component levels.

� Compliance matrix — A spreadsheet or database that maps require-
ments of the target compliance standard/model to process elements
that address those requirements. Quality/process groups for stan-
dards compliance, maturity model compliance, or regulation com-
pliance primarily use these artifacts.

� EDP lists (area) — Event-driven procedures lists area that is con-
nected to each and every Process Activity Diagram (PAD), showing
those how-to procedural elements that are stimulus- or event-driven
versus those connected to high-level steps within each activity.
These processes are nonschedulable.

� End-to-end life cycle — A pictorial view of activities showing
predecessor/successor relationships between those activities. The
end-to-end life cycle integrates roles at both the intra-activity and
inter-activity levels to support concurr ent engineering. An
expanded “morphed” view of this becomes the project schedule
showing activity instances (schedule tasks). The end-to-end life
cycle is made up of horizontal PADs.

� Form examples — Completed forms that are suitable to be used
as examples.

� Form guidelines — Optional and separate helpful hints to fill in a
complex form. Guidelines can also be embedded in the form
template as a visible aid or as a nonvisible aid (“hidden text”).

� Form inspection checklist — The optional quality checklist asso-
ciated with any particular (and usually complex) form. Most forms
do not need a form inspection checklist.

� Form matrix — A spreadsheet or database mapping forms to
process elements. This provides a form-centric view of the process
model showing where forms are created and updated by process
element.

� Form selector — An implementation that allows selection of forms
for form tailoring. It is a feature that is an integral part of this

14 � Defining and Deploying Software Processes

software process model and also provides the mechanism for
flexibility and extensibility regarding forms. Used primarily on a
Web-based implementation to map generic forms at the activity
level to specific forms used at execution time.

� Form set — Associated process elements for any form. These
include the form template, optional form inspection checklist,
optional form guidelines, and optional form examples.

� Form template — The skeleton form that is used as a basis for
filling in the form.

� Functional description — A process element that describes all
aspects of a functional topic in terms of pertinent process elements
to that functional area. “Requirements management” is a functional
area that has both activities and how-to elements that address that
functional area.

� Government regulations — Umbrella term for various governmen-
tal regulations to be followed in certain types of industries (e.g.,
FDA/FAA regulations). Government regulations are part of the
“authority” level in this process model.

� Government standards — Umbrella term for standards like MIL-
Std-498, 2167A, 12207, etc. Can also include standards from other
governmental agencies containing requirements to be followed.
Government standards are part of the “authority” level in this
process model.

� How selector — An implementation that allows selection of how-
to procedures and work instructions for how-to tailoring. A feature
that is an integral part of this software process model. Also provides
the mechanism for flexibility and extensibility for how-to process
elements.

� How-to process element — Umbrella term for a procedure or work
product.

� International standards — Umbrella term for standards like ISO
9001 that contain process requirements to be followed. Interna-
tional standards are part of the “authority” level in this process
model.

� Planning package — A term to describe a schedule plan or esti-
mation of work to be done. As visibility gets better and better as
a result of increasing design, planning packages are replaced with
work packages that reflect what really needs to be done.

� Policy — High-level, assertive, company-based process require-
ment. Policies should be short and unambiguous as to intent. These
should not replicate other authority-level requirements like
ISO 9001, government regulations, government standards, etc.

Origins of the Software Process Model � 15

� Procedure — A how-to process element that elaborates on either
a high-level step in an activity or a process requirement “what.”
A feature that is an integral part of this software process model.
All procedures are to be associated with a particular how selector.
A procedure can be a high-level how-to description, flowchart, or
mind-jogger checklist. This model’s Web implementation encour-
ages a short procedure as a single Web page and an associated
work instruction for those procedures where you want more ver-
bose descriptions. This separation accommodates experienced
users versus inexperienced users.

� Process activity diagram (PAD) — A subset pictorial representation
of the end-to-end story. A small set of PADs, usually representing
a project phase or major tollgate period and oriented to major
functional areas to form the total end-to-end story. Each PAD is a
single Web-page implementation oriented to major functional
groups. This is a similar concept in Rational’s Unified Modeling
Language (UML) for activity diagrams but specific to process ele-
ments.

� Process element — Umbrella term for an activity, procedure, or
work instruction.

� Response — The result of a stimulus. This is the major basis for
this process approach. Process elements do not exist unless there
is a transformation of a stimulus (input) to a response (output).

� Roles matrix — A spreadsheet or database mapping roles to process
elements. This provides a role-centric view of the process model
showing where roles are involved by process element.

� SPA — Selectable Process Architecture (method). A potential
umbrella term for this particular process architecture that promotes
selectability throughout the model for process efficiency and use-
fulness.

� Stimulus — The basis of a process action, which in turn causes a
response. This is the major basis for this process approach. Process
elements do not exist unless there is a transformation of a stimulus
(input) to a response (output).

� Training matrix — A spreadsheet or database mapping training to
process elements. This provides a training-centric view of the
process model showing where training is involved by process
element.

� Training package — Training for one or more process views.
Training can be specific to a single process element or can be
across process elements (vertically or horizontally).

16 � Defining and Deploying Software Processes

� Virtual document — A special wrapper-type of work product that
is essentially an outer document wherein a table of contents points
to other (and different) work products. The virtual document
producer makes no attempt to copy information into a single
document but produces a single top-level wrapper document that
references the set of work products that comprise it.

� Work breakdown structure (WBS) — A product-oriented, process-
oriented indentured tree composed of efforts expended in a project.
Project charges are based on the WBS breakdown. For this process
model, there is a direct correlation from process activities, schedule
tasking (instances of process activities), and time charging.

� Work instruction — A low-level (or verbose) procedural how-to
process element. A feature that is an integral part of this software
process model. In this model’s Web implementation, we encourage
a top-level mind-jogger checklist or flowchart as a procedure with
its elaborated counterpart as a work instruction. For those compa-
nies that only want verbose how-tos, they will probably only have
work instructions and no procedures. Work instruction elaborations
on any procedure are meant to satisfy the novice user.

� Work package — A synonymous term for a scheduled task or an
instance of a process activity. A work package is what gets executed
on a schedule and is the basis for any earned value calculation.

� Work product — Resultant product of executed activities that
signifies “done” for any activity. A feature that is an integral part
of this software process model. Work products are tangible artifacts
for any response.

� Work product examples — Real examples of completed work
products. Examples are a marvelous way to improve production
and reduce time to market.

� Work product guidelines — Optional and separate helpful hints to
creating any work product. Guidelines can also be embedded in
the work product template.

� Work product inspection checklist — The quality checklist associ-
ated with a particular work product. In this process model, this
artifact also includes entry criteria (for author) and role-based
criteria to aid in qualified inspector selection and focus.

� Work product matrix — A spreadsheet or database mapping work
products to process elements. This provides a work product-centric
view of the process model showing where work products are
created or updated by process elements.

� Work product selector — An implementation that allows selection
of work products for work product tailoring. A feature that is an
integral part of this software process model. Also provides the

Origins of the Software Process Model � 17

mechanism for flexibility and extensibility for work products. Used
primarily on a Web-based implementation to map generic work
products at the activity level to specific work products used at
execution time.

� Work product set — Associated process elements for any work
product. These include the work product template, work product
inspection checklist, optional work product guidelines, and
optional work product examples.

� Work product template — The skeleton work product that is used
as a basis for building the work product.

19

Chapter 2

Defining the Real-World
Process Connection

The very essence of this book deals with connecting the world of processes
to the real world of scheduling and life-cycle management. What is the
“real world”? I have seen all kinds of company processes that are not
connected to the real world. Many companies have piles of process stuff
out there and they hope that something out there might be useful if
someone remembers that a process element exists. If you have this
situation, put on your seat belts because I will directly tie processes to
the real world.

Initially, I considered the real world to be represented by the project
schedule that really needs that process connection. After all, isn’t the
project schedule a true reflection of actual tasks to be done? A schedule
task has these characteristics:

� It reflects work to be done (i.e., it is a set of actions).
� It reflects a transformation or some value-added activity that pro-

duces one or more results.
� It exists because of the result of a prior task (i.e., there is a

predecessor/successor relationship to other tasks based on rules
or life-cycle expectations).

� It has a responsible person (lead) assigned to that task and has
people resources assigned to that work effort.

20 � Defining and Deploying Software Processes

� A task completion results in earned value for any cost accounting
system.

� A task on a schedule is really an instance of a particular task being
performed on a different object (i.e., there is a small set of different
types of tasks invoked with different objects, such as coding certain
things one way and coding other things another way).

� A task “belongs” primarily to a functional thread (i.e., it is primarily
an engineering task or a manufacturing task, etc. — even though
different roles get involved).

� A task type can be identified statically (i.e., it is an analysis-type
task, or a design-type task, or a test-type task, etc.).

� A task type is reusable throughout a project schedule — for both
totally different objects and for progressions on the same object
(i.e., you can use the same task or activity instance at proposal
time and at execution time and leverage work based on that reuse).

In addition, the set of tasks collectively has these characteristics:

� The task instances on a schedule form the entire end-to-end life
cycle of work to be done.

� Task instances are really the same process task being performed
on different objects within and across project phases.

� Collections of horizontal tasks map to a functional business area
(i.e., engineering, manufacturing, management, etc.).

I realized that not all process elements fit nicely into schedulable tasks.
The real world must also include all the things that exist to satisfy events
that just happen when they happen. These process elements are how-tos
that get invoked based on an event or stimulus. Asynchronous events or
stimuli do not show up on project schedules. They just occur. The process
framework architecture must recognize that these asynchronous events
(with their associative how-to process elements) also need to be addressed.
You really need to pay attention to accessing these process elements either
by event/stimulus, by output/response, or by how-to process element
name.

These characteristics fit the process world very well as a basis for
connecting process to the real world. There was a problem, however,
with some companies (especially older companies) as follows:

� Schedule tasks reflected what the company did over a period of
time — regardless of whether the tasks made sense or not.

Defining the Real-World Process Connection � 21

� Schedule tasks produced things (documents or work products)
merely because of the “we’ve done that for 20 years” mentality.
This is the “tribal knowledge” syndrome.

� Schedule task connections were based on convoluted process
workflows, developed over years, that were not recognizable from
the way they started out.

� Schedule tasks were described as a mix of noun-based items and
verb-based items on a schedule (i.e., there was no consistency in
representing these activities).

Given these observations, I concluded that although the synchronized
real-world connection remained with the project schedule, you needed
to look at that schedule to make sure that you were not propagating bad
task flows into your process world. There are some interesting indicators
that may reflect this phenomenon:

� If the company is personality-driven, this is a good indicator that
you may have a process problem. Fred may have done something
a long time ago but got moved to another area (and still did
everything from before) — even though it is now convoluted. Fred
retires and Mary takes over and does what Fred did. After a while,
it is set in concrete that that’s what Mary does! The process person
who questions this is now considered the enemy within.

� Personnel at government contracting companies that have cut their
teeth on earlier government standards (like 1679, 2167A, etc.) are
so document oriented that this mentality is ingrained into their
processes — even though the government has moved on to looser
commercial standards! They have lost sight of the fact that engineers
produce work products — not documents! Engineers produce
things like use case diagrams, sequence diagrams, activity diagrams,
UML diagrams, tool-based designs, C++ coding, etc. That’s where
their training is. They are not English majors and are not good at
grammar. They are not document specialists for styles, formatting,
boilerplate insertions, and headers or footers. At two companies I
worked for, about two-thirds of the engineering workforce were
from other countries. English was not even their primary language
and yet these engineers found themselves in the (English) docu-
ment preparation business!

� Within these document-oriented companies described above,
another set of detrimental factors emerges that you definitely do
not want to continue. The minute you cut and paste a design or
other work product result into a document you now have two
places where that design resides. This is absolutely contrary to any

22 � Defining and Deploying Software Processes

basic database philosophy of a single location for entities! When
the main design gets changed (as it will), you now have to think
about where this design also exists. If you’re in this mode, you
are either guaranteeing extra work to keep things in synch or you
have a huge versioning problem where it is unclear which version
to trust. The former will add time and costs. The latter can introduce
errors and affect quality!

� Take a look at the existing schedule tasks. If you see a combination
of noun-based line items and verb-based line items, be suspicious
about the company’s real-world process flows. In my process
framework architecture, tasks are process activities and represent
verb-based actions period. The only noun-based schedule items
are summary (roll-up) lines that identify things like project spiral
identifiers, project increments, project phases, etc. If you see a
schedule line item that just has the document name (as a noun),
you have double trouble.

� If you have existing schedule tasks where it is undefined exactly
what is being produced, you also have an undefined role in how
to get there. What that means is that you have a company that is
engaging (or trying to engage) different roles in real time to
complete any task. As long as people are around and available,
that works. If they are not around or not available, you have a
real-world work problem and a real-world process problem.

Given all this, the process person still needs to connect processes to
the real world of schedules. The input grist for this effort is existing
schedules and availability to interview leads. The process person needs
to focus on producing work products and discarding document produc-
tion. Documents are merely a packaging of work products.

Think about any document. It has a table of contents that identifies
what kinds of things exist in each chapter. Typically, the contents of these
chapters are dissimilar — the same situation is true for contents in an
engineering environment. One section may be Word text, another may
be spreadsheet contents, another may be a design representation in
graphics, etc. To create a document, you have to package these dissimilar
data elements into that document — adding extra effort and costs and
replicating data, which can create errors. A far better process approach
is to really focus on work products (i.e., each document section) and
make no effort to package these data elements into a document. I advocate
a separate packaging process activity if you absolutely require a document
— that can be charged extra for the extra effort. If you adapt this work
product bias to processes, it is absolutely essential that you never get any
data from a produced document. You get it from the original work product

Defining the Real-World Process Connection � 23

or tool. I mention this because the amount of time spent producing
documents can be enormous. At one company, this effort also caused
errors because documents were looked at as gospel when the tool design
had moved on. Also, it was pathetic to see engineers who had expertise
in programming trying to get documents right with headers and footers,
fonts, styles, titles, etc., for which they had no expertise! I saw highly
paid people doing really bad jobs that could have been done better and
cheaper by others.

To summarize, make document production distinct activities predicated
on completion of the parts that make up that document. I am a great
believer in the “virtual document” concept where you try to convince
your customer to get the real parts directly rather than spending extra
effort (and money) in packaging those same parts into a single entity
called a document. If your customer insists on a document, the cost of
doing this extra (and no value-added) work needs to be factored into
your contractual costs. On one project, our financial deliverables were
stated as a single document deliverable but we delivered multiple (and
separate) files:

� Cover sheets (Word)
� Financial spreadsheet #1 (Excel)
� Financial spreadsheet #2 (Excel)
� Graphic presentation (PowerPoint)

We contacted our customer and said that we planned to send virtual
documents at no preparation cost. If he or she wanted real documents,
we added time (and costs) in packaging any document for additional
pass-on costs. The customer got his or her data at no additional cost and
was able to use MS Office applications to directly read these dissimilar
data elements. We retained a single data point rather than multiple data
sources for higher quality and it cost nothing extra to get the data to the
customer.

Having dealt with work products versus documents, here’s what you
need to do to connect processes to the real world:

� Identify the set of reusable tasks and provide a verb-based action
for this process activity. In reality, each activity is identified with
a verb-object pair.

� Identify the predecessor/successor types of activities for each
named activity. This information comes from both the schedule
itself and via lead interviews.

TE
AM
 F
LY

24 � Defining and Deploying Software Processes

� Map activities to functional threads and project management
phases. You want to end up with a clean mapping of activities
across the rows (functional areas) and columns (project phases).

� Identify the inputs and outputs for each activity. (This can be
gleaned from lead interviews.) Variations need to be ratified. These
become part of the stimulus/response story for this process entity.

� Roll up the major stimuli/responses to each Process Activity Dia-
gram (PAD). I talk at length about this later.

� Correlate PAD stimuli/responses to external stimuli/responses. We
attack this from middle-up and middle-down perspectives.

� Lastly, identify all the asynchronous events that just “happen” on
a get-started how-to process element list.

We have to normalize any existing set of schedules to a set of process
activities that are to be reused as different instances operating on different
objects on a process-connected schedule. We want to end up with a small
“pick list” of process activities whose instances show up on any project
schedule. The intent is to have all scheduled tasks be process activities.
We want the ability to hyperlink right from a schedule (in addition to
other ways of accessing) to a Web-based process activity that tells us our
inputs/outputs, our predecessor/successor relationships, our top-level
steps, our special training needs, roles involved, any metrics involved,
etc. We want to establish a deterministic process entity for each schedule
task. How’s that for repeatability!

If you haven’t realized it up to this point, this process model is based
on activities. Another process model is based on work products. This
activity-based model can coexist with any work product–based model or
tool. The biggest difference between these two fundamental approaches
is shown in Table 2.1.

This process model certainly recognizes that you could provide all the
lower-level workflows per work product as another process dimension to
this model. Whereas this model focuses on the various process elements
supporting activities (and their associated elaborated procedures), a work
product–based model can provide the low-level workflows per work
product. Both can coexist but my thrust is on the activity-based process
model.

This is the key to connecting process to the real world.

Defining the Real-World Process Connection � 25

Table 2.1 Activity Approach versus Work Product Approach

Activity Approach Work Product Approach

Focuses on tasks or activities that
relate to work done.

Focuses on work products that relate
to work done.

Separates “what you have to do”
from “how you are to do it” and
allows a mapping of process
elements to the model.

Has no such capability. Does support
workflows for any particular work
product at the work product low
level.

Relates one or more work products
to any activity.

Has no such connection to schedule
task instances.

Allows generic work product
terminology at the activity level to
support flexibility and extensibility
at the work product level.

Work products and their relationships
have to be determined up front.
There is no such capability of “or” for
work products. Extensibility can be
constrained.

Does not directly address
workflows per work product.
Considers this low level and
outside the model. This model will
support any work product
workflow management as an
adjunct to this model.

Does address workflows per work
product. Can support work product
“states” for work product
promotion/demotion.

Tight coupling of activities to work
products — built in to the model.

Tight coupling of work products to
workflow management. Can be set
up to tightly couple activities.

Does not require all work products
to be totally defined when
activities are defined.

Does require all work products to be
defined when activities are defined.

Supports the notion that activity
execution is more than producing
work products (e.g., metrics
collection by activity task and task
communication for earned value
calculation).

Assumes that work product
production and activity execution are
synonymous.

27

Chapter 3

The Software Process
Model Pyramid

I will address the totality of this pyramid by showing all the dimensions
(sides) of this process model beyond the obvious view that practitioners
use. I will defer actual implementation aspects (represented by side 4)
until Section II. I selected the pyramid to graphically represent the process
framework architecture for several reasons. The process architecture has
various views or perspectives — represented by the sides of the process
pyramid:

� Side 1 is the layered view as seen by day-to-day practition-
ers/leads/managers.

� Side 2 is the training view that can mirror or encapsulate layers
across the entire process repository.

� Side 3 is the process traceability view where we get to connect
process elements for compliance purposes.

� Side 4 represents the whole enchilada for the totality of the process
repository. It is this last view that gets manifested by the intranet
implementation. This gets covered in Section II.

28 � Defining and Deploying Software Processes

Side 1 of the Software Process Model Pyramid
The view used most by the organization is side 1 of the pyramid subdivided
into process layers. These process layers not only separate process types
but also separate process customer focus areas. I will discuss this at length
later.

The smallest “root node” of side 1 is represented at the top of the
pyramid, which I call the “authority” level of the model. This is the very
reason why everything else exists. It is this level that is most used by
executives to store company policies, maturity models, government reg-
ulations, and standards requirements to be followed. In addition to explicit
authority requirements, engineering processes have an implied authority
that reflects normal engineering life-cycle states. For example, you design
something before you code something before you test something. That
ordering is just understood in engineering.

The layer right under the authority level of side 1 is the “what you
need to do” level or what I call the “repeatable” level. This is bigger than
the authority level but smaller than the lower levels. It is this layer that
ties the entire process framework architecture to the real world of sched-
ules and project tasking. For this reason, it is appropriately represented
high up on the pyramid — but not at the very top. It is this level that is
most used by leads/project managers. It is also this level where we want
to mandate processes. This is the layer where you achieve process

Figure 3.1 Process framework architecture pyramid.

Authority
Level

Repeatable
Level

Implementation
Level

Support
Level

The Software Process Model Pyramid � 29

portability. This is the layer where there is a direct connection of scheduled
tasks to process activities. This is the layer where static process activity
predecessor/successor rules are manifested on a project schedule with
activity (task) instances.

The next layer of side 1 is where all the “how we do things” exist.
These “how we do things” process entities are called “procedures.” Please
note that I tend to use two terms interchangeably: “procedures” and “work
instructions.” In my mind, both are how-tos with work instructions being
low-level and detailed whereas procedures can be at any appropriate level
of detail. For simplicity, I will use the term “procedures” throughout this
book, but a low-level “procedure” can also be a “work instruction.”
Manufacturing how-tos tend to be called work instructions because they
tend to be very detailed. I call this layer the “implementation” level because
this is where the “rubber meets the road” for processes. It is this level
that is the most used by practitioners. It is also the level where we want
extensibility and flexibility at the how-to level. I will show you why the
intranet implementation of this layer achieves this in a simple way. In
addition to these process artifacts, you place “how selectors” here to
support that extensibility and flexibility for procedures. It is this layer that
addresses all the supporting procedures from the repeatable level and
addresses the event-driven procedural elements.

The last layer of side 1 is what I call the “support” level. This is where
all the work product templates, work product inspection checklists, work
product guidelines, work product examples, form templates, form inspec-
tion checklists, form guidelines, and form examples exist in support of
the process elements. You place work product selectors and form selectors
here for your Web-based solution. In addition to these process usage
records, you also place project-related performance records here to assist
in future estimations. Many companies may want to place tools here that
support process elements.

Side 2 of the Software Process Model Pyramid
This side is the training view that relates to discrete layers and elements
of side 1. Training can exist at the:

� Interprocess layers (e.g., interconnection of one layer to another)
� Process layer level (e.g., end-to-end process repeatability training)
� Individual process element level (e.g., inspection how-to process

element training)
� Functional area level (e.g., requirements management that spans

layers)

30 � Defining and Deploying Software Processes

Side 3 of the Software Process Model Pyramid
This side is the process traceability view that covers side 1 layers and side
1 elements along with side 2 training elements. These are the process
elements that you show external assessors and auditors. Examples are:

� Company policy compliance matrix
� ISO 9001 compliance matrix
� CMMI compliance matrix
� Government standard compliance matrix
� Government regulation compliance matrix

Some of these compliance matrices also provide an opportunity to
map generic compliance roles to your company role equivalents. Similarly,
you can map generic compliance work products to your company work
product equivalents. A robust compliance mapping of requirements, roles,
and objects is an awesome artifact to provide to any external assessor or
auditor! You are almost certain to have complete compliance certification!
Compliance reaches into various process elements on side 1 of the pyramid
and various training packages on side 2. Organizations that are regulated
have a potential twist here. If the regulations are true what-level require-
ments, you have some flexibility in how you satisfy that “what” regulation.
If the regulation is a “how,” you have no flexibility. In my experience,
government entities have a real problem with regulations. They tend to
not separate “what you have to do” with selectable how-tos based on
some criteria (like the size of a company). With regulated companies,
there’s a real gotcha in the term “guideline.” Some regulating agencies
consider this term as a true guide only (i.e., look at the guide but you
have the freedom to do something different) whereas others treat this
term as an ordained how-to with no variations during implementation.

Side 4 of the Software Process Model Pyramid
This is the side that is represented on the company’s intranet. This is the
side that has online access to everything represented on the other three
sides. This is the Web view of everything. It is here where we place the
top-level Web pages that tie all the parts together. It is here that we set
up a common accessibility throughout the Web implementation to get to
process elements in as many ways as possible. I will talk about this at
length in Section II of this book.

The Software Process Model Pyramid � 31

Keep this pyramid representation in mind as we proceed farther in
understanding this very robust and useful real-world process architecture
and methodology.

33

Chapter 4

The Software Process
Model Overview

The Software Process Model Concept
Selectability is a key concept throughout this book because it really
addresses tailoring of process entities at all levels of the process framework
architecture. Like any architecture design, this also has a “system” design
— except we’re dealing with process rather than software. Another big
aspect of this software process method is that it really is a framework
architecture into which process parts fit. The word “fit” is very important,
especially because I’ve seen process elements in place yet people don’t
know why they’re there or they don’t know where new process elements
fit in the overall scheme of things. Think of a framework as the bones
onto which we add the process meat. The beauty of this architectural
design is that it separates the framework architecture (in the process
specialist domain) from the actual process elements (in the organization’s
domain). This separation will become a powerful concept later when you
organize any process group to populate/control processes in any organi-
zation. As Software Engineering Process Group (SEPG) lead and process
architect, I concentrated solely on the integrity of the process model
whereas the SEPG members concentrated on the actual process elements
within that process framework. I have had very successful process groups
that have worked effectively and efficiently due to this work separation.
I have to admit I led one process group where I was not allowed to make
this work separation and it was less than successful — due to a boss who

34 � Defining and Deploying Software Processes

just didn’t “get it.” This guy was a “my way or the highway” type of
individual who had no process background and who insisted on making
bad decisions. Any suggestion from me was DOA (dead on arrival) by
virtue of it not coming from him. If you are a process person and get
into this situation, run fast. You will never succeed. This type of boss will
affix blame for all his bad calls on you.

My background (and thus the focus of this book) is software engi-
neering. My examples will draw from that background. I have also applied
this process framework model to non–software engineering areas, such
as hardware engineering, systems engineering, purchasing, contracts, and
human resources areas. The process principles apply just as well to other
parts of an organization as they do to the software engineering environ-
ment. The principles also apply to totally different organizations such as
hospitals, utility companies, and governmental agencies.

Being a software guy in a previous life, I addressed this process
architectural framework from a requirements perspective. Here are the
basic requirements in lay terms and in no particular order:

� The process approach shall separate what is needed from how
things are done.

� The “what is needed” portion of the process approach shall be
portable across groups, divisions, sites. (As you see this developed,
I maintain that it should even be portable to a subcontractor’s
process flow on government contracts!)

� The process approach shall directly relate to project or program
tasking (i.e., the process world must relate to the real world and
vice versa).

� The process “tasks” at the “what” level shall be considered atomic
elements with mandated high-level steps to be done (i.e., once a
task is selected for execution on a schedule, you do the whole
thing — not a part of it!). I say this because one commercial
company where I worked routinely ripped key people out of one
project to work on another project at the most inopportune times.
The resultant disruption was enormous. I also say this because if
an activity has eight high-level steps, you do all eight steps — not
just the first four or just the last six, etc.

� The process approach shall establish process tasks that are totally
selectable for executable instances on a schedule (i.e., schedule
task elements are to come from a process “pick list” of “what you
have to do” process elements). Your ideal end-position is that any
and all tasks on a schedule have process activity counterparts from
the process pick list.

The Software Process Model Overview � 35

� The process approach shall be totally independent of life-cycle
methods (i.e., the selection of process “tasks” determines the life-
cycle approach). This approach can be used for traditional waterfall
life cycles, incremental life cycles, spiral life cycles, or specialized
life cycles like the Rational Unified Process (RUP) approach. I do
need to point out that each process thread representing differing
life cycles may have different process activities pertinent only to
that life cycle. Within a life cycle, you should be able to pick and
choose process activities where the resultant project schedule
reflects a specific variation of that life cycle (spiral versus incre-
mental, for example, within a developmental life cycle).

� The process approach shall be target independent for computer
languages, design methodologies, and work products (i.e., you can
mix and match C++ programming efforts with C or Ada). You can
mix and match object-oriented approaches with functional decom-
position. You can get specific with actual work-product binding at
either the activity level or the how-to procedural level. I say this
because implementation language variations occur at the how-to
level. This software process model is great for language selectability
at the how-to level in a very natural way.

� The process approach shall recognize that there can be more than
one way to do things (i.e., it does not have a one-size-fits-all
mentality). This addresses flexibility and tailoring and also supports
various tool-set differences at the procedural level. Tools support
how-tos. How-tos in this software process model are selectable —
therefore, tool support is also selectable.

� The process approach shall inherently encourage better mousetraps
(i.e., it will aggressively allow for alternative approaches for exten-
sibility). Don’t make it difficult or impossible to consider another
way of doing business. Make it easy. With a built-in selectability
at the how-to level, it is simple to allow alternative approaches to
anything.

� How-to process elements shall be useful. Procedural elements
should not be constrained for format or level of detail. Recognize
that you don’t need how-tos for everything — only those instances
where a process element is useful. Please don’t wallpaper the
process walls with process elements to deal with everything that
moves! I must admit that my experience is showing here — people
get real upset with useless process elements. You can have low-
level equivalents (work instructions) for novices and high-level
equivalents (procedures) for knowledgeable users, but don’t have
process elements exist just for the sake of it.

36 � Defining and Deploying Software Processes

� The process approach shall have architecture such that process
elements have process “homes.” Everything has a place in this
software process framework architecture. Process names are to be
unambiguous as to what they are and where they fit in the process
repository. Here’s another pet peeve of mine: I’ve seen horrible
piles of process stuff with no rhyme or reason to anything. I may
touch a raw nerve here with some people because they will
recognize this situation at their workplaces. In these piles of stuff,
adding process elements to the pile causes more chaos and makes
the elements totally unmaintainable.

� The process approach shall build in traceability of process elements
(i.e., there should be no process element that just “floats”). There
are actual reasons why process elements exist! With this software
process model approach, connectability is built into the model at
the working level (pyramid side 1) as well as the training level
(pyramid side 2) and compliance level (pyramid side 3).

� Both “what you have to do” process elements and “how you do
it” process elements exist based on some inputs (or stimuli) and
produce one or more outputs as a response. In this software
process method, activities are driven by predecessor activities
where data is completed. Procedural elements in this software
process method support high-level steps (step stimuli) within any
activity or by either inputs or stimuli as asynchronous event-driven
process elements.

This chapter is meant to give you a taste of this process framework
architecture. Subsequent chapters will elaborate on all the process aspects
of this process model. If you don’t get it in this chapter, take heart — I
will tie all the ends together throughout the book.

This process framework has, at its very core, the separation of “what
you do” from “how you do it.” The “what you do” process elements are
called activities. Activities are schedulable process elements that produce
one or more outputs based on one or more inputs. These activities form
the entire set of scheduling tasks that appear on all project schedules,
which reflect what needs to be done. The “how you do it” process elements
are called procedures. I have made a concession in this software process
model to the possibility that novice users may need more detail in any
how-to than an experienced user. To that end, I have allowed work
instructions for that very detailed version of any procedure to recognize
these classes of users. Throughout this book, I use the term “procedure”
as a common term for a how-to process element. Be aware that some
procedures may need a work instruction counterpart. Having said that,
be aware that two variations of any how-to creates a potential maintenance

The Software Process Model Overview � 37

problem that needs to be taken into account. Procedures produce one or
more outputs as a response to address one of these conditions:

� To elaborate on high-level “what” steps within an activity
� To support a how-to from something in the authority level (policies,

standards, maturity models, regulations)
� To support asynchronous business events (or stimuli)

Activities are like scheduling tasks that have predecessor/successor
relationships. Each activity produces one or more work products. Because
of these traits:

� You can string activities together, showing that predecessor/suc-
cessor connection relationship.

� You can pick an activity from a process pick list when placing
activity task instances on a schedule.

� You have a tight relationship between work products (data) and
activities (actions).

� You can have both an activity-based view of the life cycle and
a work product–based view of the life cycle. You can even take
it to the next dimension by work product and support process
flows per work product for role-based involvements and authority
signatures.

These connected activities become the entire end-to-end life-cycle
story. You can also separate different end-to-end life-cycle stories into
major life-cycle approaches by accomodating multiple life cycles. Most
software companies need only one life-cycle representation. We’ll talk
about that later when Web implementation is covered in depth. The point
here is that a single company may have a development life cycle versus
a maintenance life cycle versus a customer support life cycle, etc. Each
life cycle is broken down into phases. One or more phases are life-cycle
segments — like the “execution” segment or the “close-down” segment.
You might have a development life cycle broken down by developmental
and support “swim lanes.” Swim lanes are visual aids separating engineer-
ing and nonengineering activities. Can you imagine the power of directing
users to a swim lane based on their project role? It gets rid of all ambiguity
of purpose. Each life-cycle phase has these top-level process entities:

� A process activity diagram, or PAD, that contains the schedulable
tasks (activities) within that phase. Each PAD has a specific subset
activity life-cycle story for a particular swim lane (e.g., software
development life cycle) in a particular life-cycle phase (e.g., imple-

38 � Defining and Deploying Software Processes

mentation phase). These connected activities form the basis for
tasks (activity instances) on any project schedule. The totality of
the process activities within all PADs becomes the basis for the
entire project schedule. I have purposely used “schedulable” (ver-
sus “scheduled”) because early in life cycles you may not actually
schedule an activity in any formal way on a project schedule.
Typically, formal project schedules show up after project turn-on
— whereas there may or may not be a formal schedule. Note that
supporting how-to procedures to activities shown in any PAD are
hidden from this layer representation. Only “what you have to do”
activities are shown within a PAD.

� The event-driven list of procedures pertinent to that phase. These
are the procedures that have unique how-to solutions based on
execution during this particular phase. I realized a long time ago
that how-to elements can cover the scope of a single phase and
you may need a different how-to for some other phase. This is to
address that process eventuality.

� The event-driven list of procedures that have unique “how” solu-
tions based on the segment that this phase belongs to. Just as
above, you need to allow for a segment-based how-to variation.
This software process model method accommodates this nicely.
For example, a customer requirement change procedure may have
a very different “how-to” in a pre-execution segment (proposal
time) than during the execution segment (program under contract
and live).

� The event-driven list of procedures that are phase and segment
independent. This is the simplest of how-to situations where you
have a single how-to regardless of when you execute this proce-
dure throughout any life cycle. An example would be a quality
corrective action procedure whose how-to would be the same no
matter when it is executed in the life-cycle swim lane.

Let’s look at possible process threads that reflect differing major life
cycles made up of different segments and phases. Some process life-cycle
possibilities might include:

� Project development life cycle for projects designed, implemented,
tested, etc., for the customer — to be used by project management,
development management, and engineering

� Product support life cycle for fielded products — to be used by
product support personnel

� Service life cycle where no products are developed — to be used
by service and customer support personnel

The Software Process Model Overview � 39

� Process development life cycle for process development — to be
used by process-group members

� Process support life cycle for process maintenance — to be used
by process-group members

I found it desirable to divide a process into subhorizontal subrows
(swim lanes) as a visual aid to categorize major organizational functional
areas into discrete (and visual) work such as:

� Engineering flow
� Supporting flow

You can accomplish this fundamental separation by color coding
process activities but I’m hoping you agree with me that any unambiguous
presentation of process is better. For example, you can direct tech writers
(support people) to a different swim lane than engineers, who use the
engineering swim lane.

Phases in different life cycles may be totally different from other process
life cycles or may have the same name. Don’t get hung up on this right
now. It will become apparent what phases are for any given life-cycle
approach. I don’t advocate using the same name for segments or phases
if the contents of each are significantly different from another same-name
entity. That will confuse your process users. I am probably doing a good
job of confusing people already without adding software process practi-
tioners to the confusion pool.

I will now show you what a specific PAD might look like. This is
depicted in Figure 4.1. The top section of this PAD identifies:

� Which phase we’re talking about. It provides a visual indicator
showing you where you are in this particular life cycle.

� Horizontal traversal assists to predecessor or successor PADs for
the same major life cycle. These are circular buffer pointers where
first- and last-phase PADs point to the first and last PADs in the
same life cycle. I have not shown vertical traversal in any PAD
because that implies traversal to a totally different process life
cycle’s PAD, which logically does not happen.

� Major inputs to this phase as a one-stop shopping place showing
phase-based stimuli. For a process person, these inputs are to show
up as activity inputs and vice versa within that PAD. In the Web
implementation section, I also advocate tying each phase input to
the activity (or activities) that can execute that input as a direct
aid to the process user who knows the input but is not aware of
where it’s processed.

40 � Defining and Deploying Software Processes

� Major outputs from this phase as a one-stop shopping place,
showing phase-based responses. For a process person, these out-
puts are to show up as activity outputs and vice versa within that
PAD. Just as for inputs, I will also advocate tying each phase output
to the activity (or activities) that can produce or update that output.
This is also a direct aid to the process user who knows an output
but is not aware of which activity (or activities) produced or
updated it.

The bottom section of the PAD depicts the schedulable process ele-
ments and shows two main swim lanes of process information:*

� The engineering process swim lane showing engineering activities
� The supporting process swim lane showing a single support (non-

engineering) activity

The end-to-end activities not only tie functional activities together
within a PAD but also identify connections to other (horizontal) PADs
where other integrated roles are involved at the activity level. It is important
to point out that even though an activity inherently “belongs” to a
functional thread area, integrated roles can occur within that activity at
the high-level step to help produce that activity’s outputs. These role

Figure 4.1 Process activity diagram (PAD).

* I have shown two swim lanes being engineering and support. You may have a
different number of swim lanes to reflect your major functional areas of interest.

Inputs <PHASE NAME> Outputs

Activity Activity

Activity

Activity

Activity
To
next
PAD

The Software Process Model Overview � 41

connections will not show up in the PAD but do show up within the
activity’s description.

Under each PAD that shows the schedulable process activities, I show
the asynchronous or event-driven process elements in the nonschedulable
portion. I have called this associative process element the Event-Driven
Procedures Lists or EDP lists. There is a one-to-one relationship of any
PAD consisting of schedulable tasks to an EDP list consisting of nonsched-
ulable procedures. Let’s stop here for a moment to remember what the
real world means for process. For any given life-cycle phase, we need to
show:

� Schedulable process elements showing predecessor/successor rela-
tionships. These show up on project schedules as activity instances
or tasks. The PAD represents this.

� Nonschedulable process elements showing the event-driven or
asynchronous procedures involved while in this phase time frame.
This is the EDP lists area. We show three types of procedural
elements in the EDP lists area:
– Those that have a unique how-to solution if executed during

this phase that is different from execution in any other phase.
– Those that have a unique how-to solution if executed in the

life-cycle segment to which this phase is connected. Remember
a segment is made up of one or more phases.

– Those event-driven procedures that are phase independent.

I have shown you what a PAD looks like in Figure 4.1. Lets see what
a typical EDP lists area looks like that goes with each PAD. This is depicted
in Figure 4.2.

Figure 4.2 Event-driven procedures (EDP) lists.

Phase-Dependent Event-Driven Procedures Lists

Segment-Dependent Event-Driven Procedures Lists

Phase/Segment-Independent Event-Driven Procedures Lists

42 � Defining and Deploying Software Processes

When we get into the Web implementation section, I will also show
where it is desirable to have a variation of this EDP lists area at the top-
level life-cycle Web page to aid Web traversal.

These three lists provide multiple ways to find all the asynchronous,
event-driven process elements that can occur during that life-cycle phase
time frame. The ultimate goal is to quickly locate any event-driven how-
to process element.

The very essence of this process approach is shown in the above
named figures, namely connecting schedulable processes (activities) to
the real world and connecting asynchronous event-based process elements
(procedures) to the real world. There are some important points to be
made when looking at these depictions:

� Schedules are made up of instances of process activities with the
same predecessor/successor relationships as shown in all the PADs.
This is an important point because the activity flows on a PAD
provide excellent insight into mapping instances of these activities
(called tasks) on any project schedule. If done right, a project
schedule is merely a morphed version of a PAD and vice versa.
How about that for connecting the real world to the process world!

� Process activities, once placed on a schedule, bind two more pieces
of information to make it a real-world schedule task:
– The target of the task (activity object)
– The responsible person (activity lead for this instance)
Let this sink in. A project schedule line item has three essential
elements: the activity name (whose instance is showing up on this
schedule); the object (usually the system part) being worked on
for this instance; and who’s in charge of this project task execution
(or activity lead). These three pieces of information uniquely
identify the task on a project schedule — even when you have to
rework it. In the implementation section, I advocate these three
informational elements be three separate columns in your MS
Project (or similar) application software to identify the task. By
separating these by column, you can hyperlink the activity name
directly to the process activity — thus directly connecting project
tasking to process activities.

� With any activity connection to a schedule, you can now get to
the associated how-to procedures (via how selectors), work prod-
uct sets (via work product selectors), and form sets (via form
selectors) for that process activity. The activity reflects the “what
you have to do” process element. The how-to procedural elements
that support high-level steps inside the activity are hyperlinked
directly from that how selector that in turn is hyperlinked from

The Software Process Model Overview � 43

pertinent high-level steps within any activity. In the implementation
section, you’ll see that the high-level verbs (that have a how-to
elaboration) connect to a how selector that in turn is connected
to the how-to selectable process procedures. A similar connect-
ability is seen for work products and forms. The point here is that
most things are a click away from references within an activity.

� All the nonschedulable event-driven procedures are also captured
in the EDP lists area by phase, by segment, and by life cycle. The
combination of these nonschedulable processes (event procedures)
and schedulable process elements (activities) forms the totality of
processes needed for any given life-cycle phase.

� Finally, all process elements exist because:
– One or more authority-level process directives or requirements

require a process element
– There is an implied authority-level process directive based on

type of business and industry best practices.

The Key Process Element: The Activity
I will talk about the core aspect of this software process model method
framework first — the “activity.” Activities are schedulable process ele-
ments that contain a few high-level steps indicating what needs to be
done (not how they are done). Activity instances show up on project
schedules as tasks of what needs to be done and are connected to other
activity instances showing predecessor/successor relationships shown in
the PAD. After giving you a sense of why this is the most important aspect
of this software process approach, I will then drill down to the how-to
world and the supporting process elements.

First, I have purposely color coded activities in yellow (rather than
any other color) to be compatible with a particular project management
life-cycle model called PROPS (a general project management model).
Yellow was reserved for company processes in that model’s “big U.” The
big U is merely another representation of an entire project management
development life cycle. In PROPS, you decompose things down the left
side of the U and build things up the other side of the U. Here I merely
treated the big U as a bendable coat hanger and straightened it out into
a sequence of PADs. It is beyond the scope of this book to describe that
particular life-cycle model.

After a complete analysis of schedule tasks, you develop a complete
end-to-end story, broken down by phases, where you string together all
the activities pictorially showing predecessor/successor relationships
among activities. It is this static end-to-end life-cycle story in each PAD

44 � Defining and Deploying Software Processes

that becomes the project schedule, showing the same predecessor/suc-
cessor relationships between the activity instances to be executed. The
activity instances are the schedule tasks of “what needs to be done.” You
want to end up by closing your eyes, pointing to a schedule task on a
schedule, and connecting that task to one of the process activities in the
process world.

If you have done your analysis correctly, outputs from one activity
should become inputs to another activity. As a process person, I always
asked these questions: “Why are you creating some work product?” and
“Where does it get used?” In my analysis, I have experienced some work
products that were produced with no known consumer. Disconnects like
this should provide a red flag that you have a process problem. At one
company where I worked early in my career, several listings were routinely
produced that had a reason at one point in time but that reason disap-
peared. At another company, stuff was being sent to someone because
his predecessor had needed them in a different role! In both cases, the
work products still kept on being produced. You can dig out these kinds
of things with this analysis. You will be amazed at how convoluted
processes can become over time. I had the dubious honor of producing
a “spaghetti chart” for a company’s subcontract management processes at
one place where I worked. Connectivity between process elements
became a big blob over time. I shocked the executives when I showed
them this summarized one-pager and defied anyone to follow this mess.
The term “spaghetti chart” stuck as part of their culture and was attributed
to me.

On a Web implementation, a hyperlink click on any particular activity
reference takes you to that activity. I represented that association in the
figure by a dotted line in Figure 4.3. This is merely the end-to-end life-
cycle way to traverse the Web to get to a particular activity. On my
software process method implementations, you can get to this same activity
as follows:

� From any activity name list via the common Web “button” on all
Web pages

� From the named activity in the phase-based PAD end-to-end life-
cycle story (this traversal method)

� From any activity that shows other predecessor/successor activities
� From any activity reference wherever it is

Once at any given activity, you can get to a variety of things as shown
in Figure 4.3. At this point, it is merely sufficient to show these associations
graphically. In later chapters, each of these process elements will be
described fully.

The Software Process Model Overview � 45

There’s a top-level world above the process activity. I’ll discuss these
kinds of things below:

� Any company has one or more major life cycles relevant to their
business. In this software process model, each major life cycle is
treated as a distinct and separate set of process elements. I have
dealt mostly with a development life cycle relevant to software
design and development.

� There is an end-to-end process story by major life-cycle phase.
This end-to-end story is represented by connected process activi-
ties.

� Each major life cycle is divided into segments that in turn are
subdivided into one or more phases, which in turn are made up
of one or more activities. In the PROPS project management model,
an example of a life cycle would be the pre-study segment, the
feasibility segment, and the execution segment.

� Each phase contains one or more activities that can be executed
in that phase. The depiction of each phase in any life cycle is
called a PAD.

Figure 4.3 Activity drill-down.

Role
Descriptions Estimates Notify

List
Metrics

Database

Guidelines Guidelines

Example(s)

Form
Template

Inspection
Checklist

Activity

oooo

WP
Template

Inspection
Checklist

Example(s)

How
Selector

Procedure
#1

Procedure
#n

46 � Defining and Deploying Software Processes

� Each PAD shows the connecting activities associated with that PAD
along with interfaces to activities in other PADs. Each PAD’s activity
set is truly a subset to the entire end-to-end life-cycle story and
associates activities to a PAD. From an implementation perspective,
each PAD becomes a Web page. Each PAD shows the phase inputs
and outputs at the PAD level.

� For some project management process models, the between-PAD
world is where the major tollgates, major customer reviews, or
go/no-go decision points are placed to proceed (or not). Collec-
tively, these types of events are called “major quality gates.” The
major quality gates themselves become the stimuli to proceed with
the next PAD or phase in the life-cycle thread of activities. I worked
at one place where the term “gate” almost resulted in fistfights and
where we ended up calling these things “control points.” I still
think that “gate” is an appropriate term because it implies an open
or shut condition for these go/no-go situations — but you call
them whatever you want. In this software process model, these
go/no-go gates occurred at the end of the appropriate PAD.

� Each activity (schedulable task item) is “owned” by a predominant
functional area (e.g., an engineering activity) within a PAD and
may be reused in different phases (PADs) but still “owned” by the
predominant functional area. An example of this process reuse
occurs when you need to do a first cut analysis and design to do
a proposal in the feasibility segment and then reuse the same
activities, building on the proposal effort, in the execution segment!

This is one area of this process framework architecture where I have
jumped in to focus on the important role of the activity in this software
process model methodology. If you are somewhat lost, I will revisit this
topic throughout the book.

To relate the figure to the pyramid model, here’s how the following
elements relate to the various layers:

� Activities, being “what you have to do,” are in the repeatability
level of side 1 of the pyramid representation. The end-to-end life-
cycle story of activities made up of PADs and individual activity
descriptions are all included at that level.

� The how selectors select any procedure and the procedures address
“how you do things” — once selected. This software process
method feature provides the selectability of how-to procedural
elements. These exist at the implementation level of side 1 of the
pyramid representation. Remember, because the how-tos are where
the “rubber meets the road,” we placed them in the implementation

The Software Process Model Overview � 47

level to reflect that real-world effort. Remember, how-to procedural
elements exist to either support high-level steps within any activity
or to support asynchronous event-driven events.

� The work product selectors and form selectors select any work
product and form respectively. This software process method fea-
ture provides the selectability of work products and forms. Once
selected, you get the variation of the work product or form desired.
Both the work product sets and form sets exist at the support level
of side 1 of the pyramid representation. Each set includes a
template, an inspection checklist, guidelines, and example(s). Note:
I have shown graphically which ones are mostly optional by using
color striping versus solid colors in the figure. Please note that this
method associates the inspection checklist with the work product
(or form) rather than with the inspection procedure itself! I could
never understand why some companies placed these quality check-
lists with the procedure versus the artifact under inspection. Think
about it — if you change the artifact to be inspected, you need
to change the inspection checklist. That’s why it makes sense to
connect these together as part of the set.

� Things like role descriptions tend to be global in nature and have
a scope beyond any one activity. For that reason, these go in the
support level of side 1 of the pyramid representation. When we
get to the implementation section, you will see that a very simple
alphabetically ordered Word file of roles with associated descrip-
tions is what’s needed. By placing anchors for each role you can
easily hyperlink every role reference to this simple text file. Those
process users who need that role description will click on any role
name. Those who don’t need that information won’t bother. The
beauty of doing this in a single file is that all roles are in one file
for auditing and maintenance purposes.

� Metrics collections are done by activity. Both collected data and
resulting useful information need to be captured. For that reason,
these go in the support level of side 1 of the pyramid represen-
tation. Please note that any how-to procedure that converts metric
data into useful information is like any other how-to procedure
and exists at the implementation level. We are talking about the
metric data and resulting graphs here that need to be captured for
any project and across projects. I talk about this later in the Web
implementation section.

� Estimates, like metrics, need to be collected by project and across
projects. I have often thought that the absolute best way of doing
this is by directly tying activity instances (tasks) and activity objects
to your time-card charging system. This way, you can query your

48 � Defining and Deploying Software Processes

time-card charging system at any time and create resultant useful
information in this area. Unlike metrics, you only need the resultant
useful information because the data is embedded in your time-
card charging system. If you don’t tie this software process method
of activities to your time-card charging system, you’ll need manual
data as well. I devote a large part of this book to this area. This
is an aspect of the method that is awesome. By doing what I
suggest, you can capture how long activities take; create pie graphs
showing percentage of time spent in design versus coding versus
test, etc.; and you can know the totality of activities spent on any
part of your system, etc. You have an incredible database of actuals
on which to base future estimations. Companies lose tons of money
with bad estimates. This software process model approach
addresses this directly.

� The notify list is a very special and tailored list based on your
company’s organization and the level of intelligence you want in
this list. This is the part of the software process method that allows
you to select who to contact when any activity terminates execu-
tion. Some examples are:
– Next activity lead (responsible person) as shown in the project

schedule
– Project manager
– Development manager
– Earned value collection person
– Quality (for metrics processing)
– Accounting (for charge number assignments)
– SCM (for SCM repository expansion)
This list can be generic (preferred) or can be quite specific (con-
tinuous maintenance issue). You have some choices as follows:
– You can establish a notify list per activity
– You can establish a global notify list

If you have a list per activity, it makes sense to associate this list at
the repeatability level of side 1 of the pyramid representation to go with
the activity definition. If you have a global list, it makes sense to associate
this list at the support level of side 1 of the pyramid representation. You
get to this list via the high-level “end” step in all activities. To be consistent
with the software process model, “end” takes you to a how selector that
in turn takes you to a how-to procedure that has your contact list.

49

Chapter 5

Side 1 — Level 1
Authority Level

Authority Level
The basic questions to be answered are “why is this process element
there?” and “what does it fulfill?” in your organization.

The point here is that process elements should have a reason for being.
These reasons usually include:

� Fulfilling that industry’s developmental life cycle
� Fulfilling company policies
� Complying with international standards like ISO 9001
� Meeting maturity models like the CMMI
� Complying with government regulations
� Complying with industry regulations

There should be no process elements that are just there and serve no
purpose other than that someone felt the urge to write them. There is a
huge caveat when dealing with implied authority requirements. These
implied directives are based on the type of business you’re in. All process
elements should be there to directly support one (or more) authority-level
element.

50 � Defining and Deploying Software Processes

The authority level is where you place all the reasons why:

� Activities exist in the repeatable level (side 1)
� Procedures exist in the implementation level (side 1)
� Work products/forms exist in the support level (side 1)
� Training packages exist (side 2)

You connect the dots for total connectivity from the authority level to
any process element in the compliance portion of this software process
model methodology (side 3).

Given that explanation, you place all the top-level “what” requirements
or process bases in this level. These are the types of things that go in
this authority level:

� Company policies
� ISO 9001
� Government/industry regulations
� CMM or CMMI
� Six Sigma (DMAIC/DMADV)

Of this list, all of them are external documents except company policies.
Try to get electronic copies of all external documents so that you can
extrapolate compliance matrices for them.

A company policy should be a short high-level assertive statement that,
from a process perspective, is a high-level “what” requirement. In one
implementation, I had suggested that an ISO 9001–certified company
consider the ISO standard requirements as the foundational basis whereas
company policies supplemented those ISO 9001 requirements. It is a
mistake to have any company policy replicated in any ISO 9001 require-
ment. If this supplement approach were followed, the company policies
would be small in number and be organized in the same areas as ISO
9001. At one company, I felt their policies, which numbered in the
hundreds, could be condensed down to two pages given this philosophy
of allowing ISO 9001 to be the foundation. For ISO 9001–compliant
companies, your company policies should:

� Elaborate on an existing ISO 9001 requirement for a company-
specific directive

� Supplement ISO 9001 requirements for company-specific topics

One place where I worked mixed up their company policies with
procedures and titles. Some policies weren’t even high-level assertive state-
ments! They mixed “whats” and “hows” and committed the cardinal sin of

Side 1 — Level 1 Authority Level � 51

placing titles in a process artifact. This same company routinely reorga-
nized every few years so the embedded titles were almost always wrong
or nonexistent. When you write a company policy statement, keep in
mind that it is a 40,000-foot level requirement with no how-to connotation.
The end result should conjure up “what part of this don’t you understand?”
in your mind. Write each policy statement as a “shall” statement.

In all instances, we will end up with a collection of authority-based
process elements that we must “answer the mail” about. Side 3 of this
process model is where we make that connection between the authority
level and the process elements that meet those requirements. These
connections in side 3 take the form of compliance matrices to show senior
management, auditors, and assessors that we have complete traceability
throughout the process repository. In one company, I actually had to
argue the case that compliance matrices made sense and should be
provided to external ISO 9001 auditors and others. They wanted to keep
this under wraps. Hard to believe, eh? If you really want to be certified,
this will do it in spades!

This level is important to tie all the ends together throughout the
process world but typically is unused by the process practitioners and
leads. They will use the other levels of side 1. This authority level
associated with side 3 (all the compliance matrices) is primarily maintained
by the process group and used for certification, external auditors, external
CMMI assessors, and government regulators.

I would be remiss if I did not mention that the reasons why processes
exist fall into two general categories:

� To support the very essence of your day-to-day business
� To be compliant with imposed or necessary standards/maturity

models that support new business acquisition (and make your
company run better)

The former is an implied authority; the latter is an explicitly stated
authority. There is no specific authority beyond company policies. You
will see only company policies in this authority level.

As your business develops, the way you do things as a garage shop
operation is radically different from when your staff grows and grows.
I know of one company chairman of a fairly large company who still
has the same mindset as when the company was small. You constantly
run into “why can’t you just get five people in a room, bang heads to
solve any problem, and get it all fixed tomorrow?” kind of thinking.
Can you imagine trying to be a successful process person in that
environment?

53

Chapter 6

Side 1 — Level 2
Repeatable Level

End-to-End Life-Cycle Diagram (Repeatable
Level — Side 1)
Any end-to-end life-cycle diagram is really a set of conjoined phases
represented as horizontal process activity diagrams (PADs). On the upward
side, one or more contiguous phases can also be grouped together as
life-cycle segments that in turn become the entire life cycle. On the
downward side, each PAD contains a partial life cycle represented by
process activities showing predecessor/successor relationships among
activities.

More than one life-cycle representation is merely another row of
consecutive PADs. If you’re really smart about this, any and all alternative
life cycles can be mapped onto a common set of segments. If not common,
each alternative life cycle has a different segment mapping. Any entire
end-to-end life-cycle story would be overwhelming on a single, large,
long sheet of paper. Multiple life cycles would be even worse. In the
software process method, we subdivide any entire end-to-end story into
manageable chunks (called PADs), which can also be individual Web
pages for visibility. An example of a single PAD can be seen in Figure 4.1.
Figure 6.1 is merely another view of this from a large piece of paper
perspective.

54 � Defining and Deploying Software Processes

Any end-to-end life-cycle diagram can be thought of conceptually as
a large piece of butcher paper showing all the activities with their
predecessor/successor relationships for all functional areas from cradle
to grave. You address all the concurrent engineering aspects of integrated
roles when mapping out these end-to-end tasks. Each PAD is organized
such that certain major functions like engineering versus support (see
Figure 4.1) can further be shown as threads of activities that go across
the paper (rows). This software process model method calls these sub-
rows process “swim lanes” to provide a visual aid to these major engi-
neering and support functions. Each PAD has these additional pieces of
information:

� Inputs (i.e., stimuli to the phase or PAD)
� Outputs (i.e., responses from this phase or PAD)
� PAD-to-PAD traversal aids

In addition to a PAD per phase to encapsulate all the schedulable
tasking activities, each phase also has an EDP (event-driven procedures)
lists area. These contain the asynchronous events that are not schedulable
tasks but processes that can be executed based on some stimuli and that
produce some responses.

The combination of the PAD and EDP per phase contains all the
processes that you need and serves as the high-level or phase-based Web
page for our process engine. It also serves as a one-stop shopping location
for your major inputs and outputs, schedulable tasks, and asynchronous
events — thus treating the entire life-cycle diagram as a black box.

If you now step back and look at segments across a life cycle, these
are the major columns of your high-level Web page. To remind you about
segments, these are things like “pre-planning,” “feasibility,” “execution,”
and “maintenance” in one model or “pre-proposal,” “proposal,” “execu-
tion,” and “close-out” in another model. Each segment can be made up
of one or more phases and are thus merely segment columns subdivided
further into subcolumns. If you look at individual life cycles, these are
the major rows of your high-level Web page. Functional areas within a
life cycle are merely major rows subdivided into subrows.

Figure 6.1 End-to-end life-cycle diagram.

Side 1 — Level 2 Repeatable Level � 55

Depending on the project management model for a single life-cycle
representation, you may end up with four to six major segments (or
columns) for each company or enterprise. The major row heading would
be the name of the specific life cycle broken into two schedulable swim
lanes, for example:

� Engineering
� Support

Notice the use of the word “schedulable.” Engineering and support
can both have schedulable tasks across life-cycle segments and phases.
They can also have nonschedulable process procedural elements that we
can show in the appropriate EDP. The CMMI also talks about project
management. Typically, project management–related processes are not
schedulable but show up wholly in the EDP areas. For that reason, I have
excluded project management as a schedulable swim lane.

I do want to point out that some companies might like to break
“engineering” into “system engineering,” “software engineering,” and
“hardware engineering.” Also “support” can be “quality,” “documentation,”
and “configuration management.” My take on this is that this further
breakdown merely complicates your Web presentation with little to no
value. I recommend you don’t make that further breakdown. I found that
two major swim lanes were sufficient for the most part. As you increase
these functional area subrows, you get more and more sparseness in each
PAD. All the functional areas have asynchronous aspects to them beyond
any schedulable tasking. We can handle all those types of things under
the EDP lists for each phase, segment, or life cycle. General management
processes tend to be exclusively asynchronous by nature rather than
schedulable by nature. These get handled under the EDP for the appro-
priate phase, segment, or life cycle.

The major top-level column headings should mirror the project man-
agement life-cycle model that your company is following. For one com-
pany where I worked, the PROPS project management model was followed
— so the column headings were:

� Pre-study segment
� Feasibility segment
� Execution segment
� Conclusion segment

Each segment above is made up of one or more phases. In a Depart-
ment of Defense (DoD) contracting environment, the life-cycle model may
be something like:

56 � Defining and Deploying Software Processes

� Pre-proposal segment
� Proposal segment
� Start-up segment
� Execution segment
� Close (or wrap up) segment

If you do this correctly, the following items are true:

� Life-cycle phased tollgates, major reviews, or major go/no-go deci-
sion points occur at the end of any PAD or phase and prior to the
following PAD or phase (i.e., these are essentially between-PAD
decision points in this software process model method). For con-
sistency, I advocate that we show these decision points at the end
of a PAD rather than at the front of the next one. In the programming
world, this is analogous to the “Do <PAD activities> while” statement.

� Any PAD is composed of a set of 1…n connected activities (i.e.,
the process activity is the atomic element where any activity output
is an input to another activity). Ideally, each activity within a PAD
is noninterruptible when executed on a project schedule. At one
company, they routinely ripped out key people from one project
to bolster another project right in the middle of a scheduled activity
and then wondered why they had huge problems with process
integrity.

� Interfunctional area inputs and outputs have connections from
activities in one functional area (swim lane subrow) to the same
or another functional area (swim lane subrow) within any PAD.
This is a visual way to connect support activities with nonsupport
activities where it is absolutely clear what drives what.

� The project schedule, made up of activity instances, should track
to the appropriate end-to-end life cycle showing predecessor/suc-
cessor relationships across a series of PADs. The project schedule
should further track process swim lanes as depicted in each PAD
to clearly show main activity tasking from supporting activities. If
done correctly, each PAD depiction provides an incredible road
map to develop any project schedule.

From a mapping perspective:

� A PAD is made up of 1…n schedulable activities connected as
predecessor/successor activities.

� Horizontal PADs represent an end-to-end story for any given life-
cycle model.

� Major go/no-go decision points or major reviews effectively occur
between PADs but are shown at the back end of any PAD.

Side 1 — Level 2 Repeatable Level � 57

� All asynchronous process aspects by phase, segment, or life cycle
show up in the appropriate EDP list connected to each PAD.

� Global asynchronous process aspects show up at the high level
where all PAD references exist.

� Each and every activity can belong to an activity group to get
metrics on how efforts are being spent, regardless of where the
activity shows up on the end-to-end process depiction. Examples
may be activities called “design down” (for system and subsystem
designs) and “design unit” (for end-unit design) that are all part
of the design activity group for metrics purposes. If it’s not obvious
by now, these activity groups are statically determined by type of
activity. Another type of metric is gathered when you apply the
activity object at execution time to determine total effort for a
specific piece of the system.

� Project schedule tasks should map directly to process activities in
each PAD. There should be no schedule task that is not a process
activity. Predecessor/successor relationships on a project schedule
should exactly match those relationships shown on any PAD.

� All activities can map directly to your time-charging system. This
is where you really get tremendous power with this software
process model method. Consider a time-card charging number that
is composed of these subelements:
– <Project ID> part — one unique number for each active project
– <Process Activity ID> part — one unique number for each

process activity
– <Process Activity Object ID> part — one unique part number

per system
– <Rework ID> part — defaulted at “0” for initial work, 1…9 for

reworked efforts in a circular fashion

With this charge number you can get incredible metrics gathered
directly from your time-card system that can provide pie graphs and actuals
for any piece of your total system. When estimating effort for future
contracts, you now have a real basis from which to develop new estimates.
Also, you get more and more robust at little to no cost — because your
time-card system can always reestablish valuable metric information.

Ideally, you want your time-card charging system aligned with activities
in this model. Because instances of activities are schedule tasks, you can
get a lot of mileage out of this time-card alignment.

Without that accounting support, you can do a poor man’s version of
this by setting up a catchall document per activity for actuals to be saved.
This would require the responsible person to add something to that

58 � Defining and Deploying Software Processes

document after any activity is done to capture certain actuals that might
be useful for future estimations:

� Number of people doing the task (i.e., team size)
� Experience levels involved
� Elapsed time to do the activity
� Actual time elements to do in total (hours/weeks)
� What object you were working on

This metrics capture does not need to be a work of art, just useful.

Process Activity Diagrams (PADs) (Repeatable
Level — Side 1)
There is exactly one PAD for each phase in each life cycle. As a reminder,
a PAD shows the schedulable tasks in any project schedule.

The concept behind the PAD is that people get overwhelmed with too
much information all at once — if you only had the entire end-to-end
diagram. If you’re an engineering lead or in a management role, you
mainly need to look at the engineering swim lane of any PAD. If you’re
a project manager, you need to look at all swim lanes in all PADs. If
you’re in a particular phase, you only need to look at that phase’s activities.

The human pitfall of the PAD swim-lane concept in this method is that
people tend to think “organization,” rather than functional area. Your
company organizational structure may or may not line up with a particular
swim lane within a PAD. You may have multiple organizations share a
swim lane. For example, system engineering, hardware engineering, and
software engineering may all share the engineering swim lane. This
software process model is very much against any stove piping related to
organizations and emphasizes integrated role involvement by functional
area topic. The reason for this is simple: Organizations come and go
whereas functions exist as constants. The beauty of the PAD concept from
a presentation perspective is that one PAD equals one Web page.

Each PAD has these pieces of information:

� External inputs to this whole PAD
� External outputs from this whole PAD
� Left/right traversal to other PADs in the life cycle — as a circular

horizontal buffer
� A mini–life cycle showing a partial end-to-end story related to that

life-cycle phase divided into functional swim lanes
� Connections to other PADs where hand-offs occur to other PADs

Side 1 — Level 2 Repeatable Level � 59

Event-Driven Procedures (EDP) Lists (Repeatable
Level — Side 1)
There is a one-to-one mapping of an EDP lists area per PAD. The lists
themselves are part of the repeatable level because things show up during
places in the life cycle. The referenced procedures are at the implemen-
tation level. These lists show all the asynchronous process how-tos or
procedures by phase, segment, or life cycle. A major part of this software
process method is to recognize that not all process elements are sched-
ulable! You may have to follow a process at one phase or segment that
is different in another phase or segment. The software process method
provides total flexibility and selectability to address all the permutations
and combinations necessary for process compliance.

For each phase, you’ll see an EDP lists area composed of:

� Phase-based procedures list. These are procedures that apply only
to this phase.

� Segment-based procedures list. These are procedures that apply
only to this segment.

� Life cycle–based procedures list. These are procedures that are
phase/segment independent and apply to the entire life cycle.

This is the part of the software process method where I advocate
replication of event-driven procedural references. A procedure that is to
apply to a given segment will show up in all phases for that segment as
a replicated procedure reference. A procedure that is to apply to the entire
life cycle will show up in all phases or segments as a replicated procedure
reference. You want to set these lists up so that it is absolutely clear which
flavor of procedure is involved at this part of the life cycle. Never introduce
ambiguity by presenting two (or more) flavors of a procedure to the
process user.

End-to-End Life Cycle of Activities
The primary focus in developing this end-to-end approach centers on the
activities. The entire set of activities, once strung together showing pre-
decessor/successor relationships and portioned into PADs, becomes the
“end-to-end life cycle.” Activities are predetermined process “what you
have to do” tasks whose instances are placed on a schedule and become
schedule tasks. Schedule tasks, like process activities, have predeces-
sor/successor relationships to each other. I will show an example of the
kind of end-to-end life-cycle process story that I’m talking about and its

60 � Defining and Deploying Software Processes

associated schedule. I will show just the end-to-end life-cycle portion
(snippet) related to the example in Figure 6.2. The full end-to-end life
cycle is the one that you need to show on the intranet.

Figure 6.2 is a partial representation of a PAD that you would see on
the process Web site. I have purposely omitted nonactivity information
you would see in any PAD and concentrated just on the activities them-
selves. There are some general points to be made about these activities:

� The diagram shows which activities can exist before and after other
activities. For example, “create/update integration test” has to be
done prior to “integrate units.” Also, “test unit” can have the
predecessor activities “implement unit” and “create/update unit
test” both done as precursor activities. These same two activities
can be done in parallel.

� What is not explicitly shown but implied in this software process
model approach is that any process activity can be bypassed totally
— when it makes sense to do so. Remember that an activity is
an indivisible atomic element. Once selected for a schedule, you
execute the whole thing, not a part of it. For example, if you
have truly reused units (produced and tested before), you can
bypass “implement unit,” “create/update unit test,” and “test unit”
activities. You would still want to integrate any reused unit,
however. In the real world, some reusable code does in fact need
tweaking. In that instance, all these activities would exist to handle
the “tweaked” portion of the coding. This process framework

Figure 6.2 Partial process activity diagram (PAD).

Design Down (to
Next Level)

Create/Update
Integration

Plan

Design Unit

Implement
Unit Test Unit

Create/Update
Integration

Test

Integrate
Units

Create/Update
Unit Test

o o o

Side 1 — Level 2 Repeatable Level � 61

architecture makes no effort to show all the combinations and
permutations of activity bypasses that address all the variations to
the theme. I leave that up to the project manager or development
manager as a commonsense issue.

This static representation shows several things to aid predecessor/suc-
cessor placement of activities when placed on a schedule for execution
as follows:

� “Design Down (to next level)” is done before “Create/Update
integration plan.” I purposely did not call this activity “Design Down
(to some name)” because a decomposing type of design activity
is the same process element whether you go from systems to
subsystems or subsystems down to units, etc. By implying “next
level,” I do not need nomenclature for all the decomposed parts
of the system. Also, whenever you get better visibility on any level
of design, you need to revisit the integration plan and revisit the
program schedule. Think about it — you can’t integrate parts of
the system until you know what they are. You don’t know that
until after you do a design activity. In other words, the output of
the “design down” type activity is an input to any integration plan.
There’s another extremely important aspect of any design type of
activity that is not evident. Once you execute a “design down”
type of activity that gives additional visibility to the lower-level
decomposed parts, you can use this output to dictate the activity
instances on a schedule! If you execute a “Design Down” activity
at the system level, the resultant design will tell you how many
subsystems you have exactly. You now know for sure how many
more “Design Down” activities you’ll need on your schedule (i.e.,
one per designed subsystem). If you execute a “Design Down”
activity on subsystem ABC and determine there are three (not two
or four) decomposed units (or components), you know for sure
that you’ll need three schedule threads of activities related to those
units as a result of the design. Think about what I just said about
a design type of activity that provides additional visibility on the
parts. You get a 3-for-1 deal out of it: The design is used as input
to lower-level design or implementation, real insight into what the
enfolding schedule looks like, and expands your charge number
assignment. You want the actual project schedule tasks to be true
to the real world. This process method provides that process
connection to ensure that reality. Your original plan (based on
estimations) may have (and usually does have) a different part
story than what your real designs are calling for on this process-

62 � Defining and Deploying Software Processes

based schedule. To the project managers out there, don’t get
wrapped around the axle about this discrepancy between plan
(estimated schedule) and actual (real schedule). I actually experi-
enced a project manager going berserk when the estimated part
story was different than what the design actually called out! This
software process method advocates delaying schedule tasks (pro-
cess activity instances) until you know the results of your decom-
posed design and your integration plans. We want the instance
count of any process activity to be based on reality.

� “Create/update integration plan” is probably the most important
activity — next to the design activities mentioned above. You’ll
notice that I used both “Create” and “Update” as the action verb
choices. That was done on purpose. This activity can be executed
to create an integration plan and it can be executed to update an
existing integration plan. With this activity you should consciously
plan out how you’re going to integrate all the parts of the system
ahead of time. This integration plan work product drives the imple-
mentation order of units and integration testing of those units. The
software process method allows scheduling to be very intelligent
and allows for just-in-time tasking based on developed plans.
Existing designs can also be fed into the creation/updating of any
integration plan. It is desirable to execute this activity after each
execution of any “Design Down” type of activity — especially the
last instance that identifies the unit “leaves”. The reason for this is
simple: You have better visibility of the parts story after you execute
any “Design Down” activity. Execution of any “Design Down”
activity provides better visibility on low- and lower-level parts. If
you don’t execute, you have an integration plan that does not keep
up with your design and is wrong or incomplete at any given point
in time. Keep your integration plan as close to the real time of
your design as possible. From a “process guy” perspective, failing
to do this can cause process errors.

� The “Design Unit” activity is the low-level design that does not
result in any lower-level design. It is the end-design type of activity.
I took the liberty of using the term “unit” to reflect the lowest level
of design that needs coding. You may use another term if that
does not agree with your company terminology for end units. Your
top-level designs (from “Design Down” activities) should specify
both the unit count and which ones are reused versus which ones
are to be built. I mention this because the “Design Down” type
activity also specifies clearly which units require a “Design Unit”
(to-be-built units) and which ones don’t (reused units). This process
method’s “Design Down” work products provide not only that

Side 1 — Level 2 Repeatable Level � 63

end-target system design but also provide intelligence related to
scheduling “Design Unit” activities (or not) based on that design.

� The “Implement Unit” activity is where you actually code these
low-level components. Because each activity has a built-in inspec-
tion step, the completed code is inspected before you can finish
it. This model always inspects the completed work products,
whether documents or code or whatever, as part of completion.
For code, this means that you have inspected code as a minimum
before entering unit test or integration test. I mention this because
unit testing may not be done for embedded coding or for fast-
paced commercial coding environments. The successor activity is
the “Test Unit” activity. The “Create/Update Unit Test” activity is
shown as being a possible concurrent activity. For schedule exe-
cutions, you will need one “Implement Unit” for each unit that is
to be code touched, whether full implementation or partial imple-
mentation on legacy/reused code units. You get the number of
possible units from your “Design Down” activities. You also get
which are reused totally or partially or are new coding from these
same designs. Designs drive the look and feel of the schedule.

� The “Create/Update Unit Test” activity is where you develop the
unit test driver/harness to do any unit test. The term “unit” may
be “classes” for C++, or “Ada Packages” for Ada development, or
“components,” etc. You only need these types of activities on those
units that will undergo unit testing. Notice that the “Test Unit”
successor activity requires both code to be there and the test driver
to be there before you can do any unit test. If you don’t do a unit
test for any unit, you don’t need this activity as well. If you are
panicking now, remember that this software process method has
a built-in inspection step in all activities as part of declaring it
“done.” Any implemented unit will have undergone a code inspec-
tion whether tested or not. I can personally attest to certain classes
of software that definitely do not lend themselves to unit testing
(with all the accompanying costs and efforts) but do require code
inspections.

� The “Test Unit” activity is where you actually run the (inspected)
unit test driver against the (inspected) unit code. This kind of low-
level test can be instrumented as white-box or black-box testing
to make sure the unit of coding is behaving as it should. Unit
testing is expensive and should be restricted to mission-critical
units, customer-focused units of concern, and possibly reused units
for confirmation purposes. With this method you can forego unit
testing and still achieve high quality by virtue of inspections built
into all activities.

64 � Defining and Deploying Software Processes

� The “Create/Update Integration Test” activity is where you actually
develop the integration tests as determined by the integration plan.
You will have deduced by now that if you have a unified target
design work product, and integration planning is tied to design,
you can also include that integration plan with your design as an
integrated work product (i.e., the integration plan and your sys-
tem/subsystem design can be one and the same as a work product).
Also notice that this activity is connected to the “Integrate Units”
activity. You can’t actually test any sets of units until you have the
integration test approaches done. You will have both of these on
a schedule for as many integration sets of units as described in
the integration plan. For example, if the integration plan lays out
that we will integrate units A, B, and C first, then integrate that
base with units D and E, and finally integrate that base with unit
F — then you will have three instances of this activity on a
schedule. The first instance shows up after units A, B, and C are
ready to be integrated; the second after units D and E are ready
to be integrated and the base is ready; and the third after unit F
is ready to be integrated along with the expanded base. This is
yet another reason why the integration plan is really important.
You can intelligently implement and test the earlier needed units
early and defer implementation and test of later needed units to
later — all based on information gleaned in the integration plan.
By being smarter about this, you can actually shorten the time to
market and reduce the life cycle’s elapsed time by intelligently
allowing this activity-based software process model to manage your
execution schedules.

� The “Integrate Units” activity is where you perform integration
testing on the integration sets specified by the integration plan. The
exact number of these instances on a project schedule is described
in the integration plan. This software process method has a very
interesting notion about plans — you actually follow them by having
the project schedule reflect any plan. Unlike the 2167A world I was
in for a hunk of my life, plans were considered as mere deliverables
to the government and were not necessarily followed.

To really cement this in, let’s play “small project” right now. Here’s
the scenario:

My design calls out that I have six units identified as units A, B,
C, D, E, and F.
My software plan calls out that Unit B does not have to be
implemented or tested because I have legacy coding that can be

Side 1 — Level 2 Repeatable Level � 65

used as is. Unit C also exists but needs tweaking and unit testing.
Units A, D, E, and F all need to be totally implemented but only
unit A is considered critical for unit testing whereas units D, E,
and F will just be integrated as inspected code.
My integration plan calls out that I will integrate these units as
follows:

Integrate A, B, and C as one integration set.
Once that is done, integrate units D and E as the second
integration set.
Once that is done, integrate the last unit F into that base. This
third integration set is made up of a single unit to be integrated.

Notice that I have used my project plans and designs to actually drive
the schedule! What a concept to actually use these work products beyond
something to satisfy management or contract demands!

You need to execute certain activities before you really know what
successor activities exist. This is contrary to most project management
thinking where you lay out all activities at once, whether it’s true or not.
I separate out “planning packages” from “work packages” on schedules.
Planning packages are merely estimates on what the schedule may look
like — usually shown as large summary blocks to reflect planned effort.
Work packages in this model are instances of activities on a schedule and
are only placed there when you know for sure that they are to exist. This
means that you simply cannot place all work package activities on a
schedule until plans and designs say so. Project managers have a real
problem here in separating planned versus actual depictions of schedules,
because the schedules may look different. A project manager once came
unglued when the actual number of units turned out to be different than
what was estimated. This project manager was so irate that the developers
forced their design into the “right” number even though it was a bad
decision and created havoc later in good design, test, performance, and
documentation.

Let’s see what our schedule would look like at different times in this
life cycle — just by using the activities described above. We’ll look at the
schedule progression at these points in time:

� Up to and including creating the integration plan (see Figure 6.3).
We will know the units from the design and will know how to
integrate those units. We also know that we have to create that
integration plan after design anyhow.

� The balance of the schedule. This schedule story unfolds as a direct
result of our design and plan.

66 � Defining and Deploying Software Processes

After executing the “Design Down (to next level)” activity, we now
understand that we have six units named A, B, C, D, E, and F. Planning
package estimations may have predicted five or seven — but our design
knows for sure now that it’s six. We can use that intelligence to expand
our actual (work packages) schedule. We know we’ll have six unit-related
threads on the schedule. We should know which require unit designs,
which require unit tests, which are legacy/reused units, which need
tweaking, etc.

After executing “Create/Update Integration Plan,” we now complete
that schedule story for each unit. We also know how many integration
sets we have and the order of integration. Can you imagine the power
this gives you?

� Order implementation of units to match the plan (i.e., place units
early that are to be implemented early in the schedule). Delay
implementation of units to be integrated to later in the schedule.
You can actually accomplish “just-in-time” scheduling to really
shorten your schedule with this software process model!

� Know exactly when integration happens for maximization and
concurrency of integration efforts.

Let’s now turn our attention to the schedule thread for unit A. I will
repeat here what we know about unit A:

� It is to be totally designed and implemented.
� It needs to be unit tested because it’s a critical unit.
� It is part of the first integration set.

Based on that information, our schedule thread for unit A now looks
like Figure 6.4.

Please note the following about this portion of the schedule related
to unit A:

� I’ve added “(A)” to the schedule instances to bind the activity to
the object (in this case, “unit A”) for this graphical depiction. In
reality, I have had three schedule columns in tools like MS Project
for each schedule task (process activity instance) that show:

Figure 6.3 Up to and including the integration plan.

Design Down
(to Next Level)

Create/Update
Integration Plan

Side 1 — Level 2 Repeatable Level � 67

– Activity name (e.g., “Implement Unit”). This is where I can
hyperlink the activity name directly to the process activity on
the intranet. This is an incredible coupling of schedule tasking
to the process activity for that real-world connection.

– Activity object name (e.g., “A”). This is a variant at process
activity execution time that uniquely ties the activity to what
it’s working on — primarily the part of the system. This separate
piece of information accommodates interesting metrics on var-
ious efforts applied to those parts of the system.

– Activity responsible person (e.g., “Mary Green”). Like the object
above, this identifies the lead for this schedule task to aid
uniqueness and to provide interesting metrics by person. This
field also provides a real person’s name for activity initiation
notification.

� This representation shows that the actual unit test driver develop-
ment can happen concurrently with unit development if you have
the resources to do this. If you don’t have the people resources,
these may need to be executed serially with the unit test driver
developed after unit implementation. Remember the process depic-
tion is ideal by definition. Real-world resources (or a lack of
resources) may cause parallel activities to be done one after the
other instead, in reality.

� This representation clearly tells you that to actually test the unit,
you need both the unit code under test and the unit driver (i.e.,
the “Test Unit (A)” schedule task [or activity instance] has two
predecessor tasks). Because inspections happen in all activities,
you have a high degree of quality of both the unit test harness
and the coding under test — before you even do any testing.

Figure 6.4 Unit A schedule thread.

Design Unit (A)

Implement
Unit (A)

Create/Update
Unit Test (A)

Test Unit (A)

TE
AM
 F
LY

68 � Defining and Deploying Software Processes

� This whole thread completion for unit A is one of three predecessor
thread efforts that need to occur before you can do any integration
type of activity. The later integration requires units A, B, and C all
to be complete before execution.

Let’s now look at the schedule thread for unit B. I will repeat here
what we know about unit B:

� It is legacy coding.
� It can be used as is with no unit design, coding, or testing.
� It is part of the first integration set.

Based on that information, our schedule thread for unit B now looks
like Figure 6.5 (i.e, null).

Please note the following about this portion of the schedule related
to unit B:

� This (null) representation merely notes that unit B is part of the
first integration set but has no unit level efforts involved. Real-
world projects may not show a null line but may reflect the end
result that unit B is good-to-go for integration. Having said that, I
can make the case that a null representation explicitly shows that
unit B is considered, rather than wondering about it.

Let’s now turn our attention to the schedule thread for unit C. I will
repeat here what we know about unit C:

� It is legacy coding.
� It needs additional code tweaking that does not affect design.
� It needs to be unit tested.
� It is part of the first integration set.

Based on that information, our schedule thread for unit C now looks
like Figure 6.6.

Figure 6.5 Unit B schedule thread.

Side 1 — Level 2 Repeatable Level � 69

Please note the following about this portion of the schedule related
to unit C:

� I’ve added “(C)” to the schedule instances to bind the activity to
the object (in this case, “unit C”) for this graphical depiction.

� This representation shows that the actual unit test driver develop-
ment can happen concurrently with unit development if you have
the resources to do this. If you don’t have the resources, these
will need to be serially developed with the unit test driver after
unit implementation.

� This representation clearly tells you that to actually test the unit,
you need both the unit code under test and the unit driver (i.e.,
the “test unit C” schedule task [or activity instance] has two pre-
decessor tasks).

� This whole thread completion for unit C is one of three predecessor
thread efforts that need to occur before you can do any integration
type of activity. The later integration requires units A, B, and C all
to be complete before execution.

Depending on whether units A or C get implemented and tested first
or second, you will now be able to place the first integration-type activity
on the schedule as shown in Figure 6.7.

Figure 6.6 Unit C schedule thread.

Figure 6.7 Integration set 1 schedule thread.

Implement
Unit (C)

Create/Update
Unit Test (C)

Test Unit (C)

Unit A Schedule Thread
Create/Update
Integration Test
(Integration Set 1)

Integrate Units
(Integration Set 1)

Unit B ready to be integrated

Unit C Schedule Thread

70 � Defining and Deploying Software Processes

There are several points to be made about this segment of the schedule:

� To provide a big-picture view, I purposely used single boxes
to represent units A and C threads rather than clutter up this
figure.

� You can’t do the “Create/Update Integration Test” activity until all
elements of the first integration set are “done.” The integration
plan specified all this.

� Notice the object specified in the integration-type activities is
“Integration Set 1.” This should exactly match what was specified
in the integration plan. Also, the schedule reader will get a visual
insight into the integration plan by clearly showing that units A,
B, and C are indeed integration set 1.

I haven’t talked about units D, E, and F yet. Because our integration
plan clearly spelled out that units A, B, and C are to be in integration set
1, we know that we can tackle those units early in the schedule. We also
know that units D and E are to be in integration set 2 and therefore we
can defer those unit threads on a schedule until after units A, B, and C
are done. Unit F is not needed until even later, so it can be deferred.
Let’s now take a look at units D and E that make up integration set 2.

I will repeat here what we know about unit D:

� It is to be totally designed and implemented.
� It does not need to be unit tested.
� It is part of the second integration set.

Based on that information, our schedule thread for unit D now looks
like Figure 6.8.

Figure 6.8 Unit D schedule thread.

Design Unit (D) Implement
Unit (D)

Side 1 — Level 2 Repeatable Level � 71

Please note the following about this portion of the schedule related
to unit D:

� I’ve added “(D)” to the schedule instance to bind the activity to
the object (in this case, “unit D”) for this graphical depiction.

� There is no unit test or test driver activity needed — just the
implementation. You are reminded that this process architecture
has a built-in inspection in each and every activity. This means
that even though there is no unit test, you do have the implemented
code inspected.

� This whole thread completion for unit D is one of two predecessor
thread efforts that need to occur before you can do any integration
type of activity for integration set 2. Integration set 2 requires units
D and E both to be complete before execution.

Let’s now turn our attention to the schedule thread for unit E. Unit E
is very similar to unit D. Based on that information, our schedule thread
for unit E now looks like Figure 6.9.

Please note the following about this portion of the schedule related
to unit E:

� I’ve added “(E)” to the schedule instance to bind the activity to
the object (in this case, “unit E”) for this graphical depiction.

� There is no unit test or test driver activity needed — just the
implementation. The code has been inspected, however.

� This whole thread completion for unit E is one of two predecessor
thread efforts that need to occur before you can do any integration
type of activity for integration set 2. Integration set 2 requires units
D and E both to be complete before execution.

Depending on whether units D or E get implemented first or second,
you will now be able to place the second integration-type activity on the
schedule as shown in Figure 6.10.

Figure 6.9 Unit E schedule thread.

Design Unit (E) Implement
Unit (E)

72 � Defining and Deploying Software Processes

It is important to note that you can’t integrate set 2 until integration
set 1 has been integrated and tested. I could have shown a third box as
a dependent schedule thread (“Integration Set 1 Thread”) to show this
but chose not to for simplicity of presentation.

There are several points to be made about this segment of the schedule:

� To provide a big-picture view, I purposely used single boxes to
represent units D and E schedule threads rather than clutter up
this figure.

� You can’t do the “create/update integration test” activity until all
elements of integration set 2 are “done.” The integration plan
specified all this.

� The object specified in the integration-type activities is “Integration
Set 2.” This should exactly match what was specified in the inte-
gration plan. Also, the schedule reader will get a visual insight into
the integration plan by clearly showing that units D and E are
indeed integration set 2.

I will now deal with unit F. I will repeat here what we know about
unit F:

� It is to be totally designed and implemented.
� It does not need to be unit tested.
� It is the only part of the third integration set.

Based on that information, our schedule thread for unit F now looks
like Figure 6.11.

Figure 6.10 Integration set 2 schedule thread.

Figure 6.11 Unit F schedule thread.

Unit D Schedule Thread

Unit E Schedule Thread

Create/Update
Integration Test
(Integration Set 2)

Integrate Units
(Integration Set 2)

Design Unit (F) Implement
Unit (F)

Side 1 — Level 2 Repeatable Level � 73

Please note the following about this portion of the schedule related
to unit F (Figure 6.1):

� I’ve added “(F)” to the schedule instance to bind the activity to
the object (in this case, “unit F”) for this graphical depiction.

� There is no unit test or test driver activity needed — just the design
and implementation.

� Integration set 3 requires:
– Both integration sets 1 and 2 to be completed
– Unit F thread to be complete

When unit F gets implemented, you will be able to place the third
integration-type activity on the schedule as shown in Figure 6.12.

It is important to note that you can’t integrate set 3 until integration
sets 1 and 2 have been integrated and tested. I could have shown these
integration threads as dependent schedule threads but chose not to for
simplicity of presentation.

I am hoping that you now clearly get the connection of schedule tasks
to process activities and the connection from activities to schedule tasks.
You should have a one-to-one relationship of schedule task instances to
process activities. The schedule predecessor/successor relationships
should be exactly the same as depicted in the end-to-end life-cycle story
of activities. You should be able to morph the end-to-end life-cycle process
story to the project schedule and vice versa. This is the essence of con-
necting processes to the real world in this software process model approach.

Activities
The collective set of activities is located in the second layer of the process
pyramid. I will be using the term “activity” throughout this book because
that term is appropriate for the “what you have to do” process elements.
At two different divisions of the same company, process elements were
called standard practices and operating procedures. Of these terms, I really
objected to “operating procedures” but was overridden by a vice president
who had no clue about processes. We call this the repeatable level because
activities are “what you have to do” — not “how you are to do it.” In

Figure 6.12 Integration set 3 schedule thread.

Unit F Schedule Thread
Create/Update
Integration Test
(Integration Set 3)

Integrate Units
(Integration Set 3)

74 � Defining and Deploying Software Processes

this software process model, we may have more than one way of fulfilling
a how-to due to scaling, tool variations, site variations, etc. — but we
have a single “what” to be done to get that important repeatability aspect
addressed.

The activity is the major aspect of this process model and for that
reason I will address this part of the process model right now before
dealing with other layers of the pyramid model.

There are several rules for determining whether something qualifies
as an activity:

� Is it schedulable? Can it be placed on a schedule with predeter-
mined successors/predecessors?

� Can a verb or object form describe it? Is it a self-contained action?
� Can it be described with a set of high-level steps? If there are any

if-then-else connotations, you are too low!
� Can you place an instance of this on a schedule with different

objects on which to execute? That is, can you place multiple
versions of this (same verb) on a schedule with different objects
involved?

� Can your life cycle be expressed by a set of activities? This is where
you achieve repeatability at the activity level.

� Can you identify a small set of high-level “what” steps for the
activity? This is where you achieve repeatability within an activity.

� Does it produce one or more work products to signify that it is
“done”?

� Can it be selected in total or not? Is it the lowest selectable process
element at the “what you do” level?

The heart of determining what that activity set is starts with schedule
analysis and lead interviews.

By merely analyzing schedules, you can quickly determine a get-started
set of activities. This effort takes all the variations to the theme for
schedules and condenses them down to a pick list of process activities.
In software engineering environments, this pick list of activities tends to
be about 40 items for all scheduled activities or tasks. The resultant set
reflects the engineering tasks to be done.

My experience with schedule development indicates a total free-for-
all in the way traditional schedules get developed. Some task items are
noun-based, some are verb-based, some describe the same thing differ-
ently (based on who submitted it), and, finally, the level of detail is all
over the map. We want to get total consistency for schedules and, at the
same time, directly tie the real work of schedules to the process world.

Side 1 — Level 2 Repeatable Level � 75

Once a proposed set of activities is developed, simply ask the leads
about:

� Inputs and outputs to address the key data drivers
� Predecessor/successor relationships to other activities

I’ve had some interviews where separate leads have given me dissimilar
inputs and outputs for the same activity! When you run into this problem,
you are looking at embedded process problems that will need sorting
out. A worse process problem can surface if you are told that any particular
input can be obtained from one of several work products. This raises the
question of what input source to trust. The leads will readily tell you that
you can’t execute this kind of activity until some other activity (or set of
activities) terminates. Again, if you get differing answers about the same
activity, you have a process problem to sort out. The goal is to end up
with a set of activities that can be connected to one another (called the
“end-to-end life cycle”) and whose inputs and outputs are clearly defined.

If, after this analysis, you end up with designated inputs and outputs
that are just there (i.e., no connectivity to anything), you have a serious
process problem to sort out before going much further. Over time,
company processes can reach this abnormal state.

I used the simple form shown in Figure 6.13 to fill out with lead
interviews to get this kind of data.

Once defined, you should be able to “morph” the end-to-end life cycle
of the process world onto activity instances as shown on project schedules
— and vice versa. If you do this right, you should be able to take a
project schedule and condense activity instances to single-instance views
and recreate the end-to-end process life-cycle story. Conversely, you
should be able to take the end-to-end process life-cycle story and create

Figure 6.13 Activity analysis form.

ACTIVITY

INPUTS OUTPUTS

76 � Defining and Deploying Software Processes

project schedules with differing instances of each activity. Then you have
a powerful real-world connection of processes to schedules. You no longer
have the notion that processes are over there and scheduling tasking is
over here. The “here” and “there” are one and the same thing.

From an implementation perspective, I have represented the activity
as both a simple table format and a graphical step-based format. The
biggest difference in format presentation is in the way high-level steps
are presented. The table format in Figure 6.14 shows the high-level steps
embedded in that table. The graphical format in Figure 6.15 shows the
high-level steps as separate graphical entities.

In an earlier implementation, we went to elaborate lengths to connect
the steps with various forms of arrows to indicate such things as:

� Must follow prior step
� Can overlap prior step
� Can be concurrent with prior step

Figure 6.14 Tabular format.

<ACTIVITY NAME>

Activity
Steps:

Verb-object step #1
Verb-object step #2
.
.
Verb-object step #n

Side 1 — Level 2 Repeatable Level � 77

In a later implementation, we merely asserted that if the inputs were
there, you could do the step! That was much simpler. This input presence
assertion became the later rule for high-level steps no matter which
representation was presented. In both representations, you hyperlink off
the verb for those high-level steps that have a how-to (procedure or work
instruction) elaboration. The hyperlink goes to the “how selector,” which
will be described later. Those verbs not hyperlinked represent high-level
“what” steps with no how-to process elements. Again, not all “whats”
need a “how.” Every “how” does need a “what,” however.

For this book, I will use the tabular form for simplicity. However, the
graphical-based representation has a tighter level of work-product gran-
ularity at each high-level “what you have to do” step that, for some
companies, is too detailed. The tabular form deals with activity work
products at the activity level and does not have tight connectivity and
data flows for each step. The tabular form had an unexpected surprise
in that you could create a very simple HTML format that could be modified
by any standard Word application. Word allows “save as HTML” as one
of the “save as” options. This really opened up the number of people
who could maintain this process model.

Figure 6.16 shows what an activity looks like. The figure will be the
basis of discussion for the rest of the chapter.

The text shown in this figure is constant text (i.e., use “as is”). You
personalize the yellow-filled boxes and the right column for each activity.
The intent is to have an activity representation that:

� Will fit on a single Web page for the most part
� Will be simple to read and maintain

Figure 6.15 Graphical format.

Step #1
inputs

Step #2
inputs

Step #n
inputs

Step #1
outputs

Step #2
outputs

Step #n
outputs

Verb-object
Step #1

Verb-object
Step #2

Verb-object
Step #n

o
o
o

78 � Defining and Deploying Software Processes

Once at the actual activity, you now have a one-stop shopping display
of all the pertinent information you need to execute that schedule task
instance. I will describe the activity informational topics as two lists:
mandatory activity topics and possible extension activity topics.

Figure 6.16 Activity format.

Predecessor Activities: Successor Activities:

<ACTIVITY NAME>

Activity Description:

(Generic Object Name)

2005/10/01

Activity Dependencies:

Activity Inputs:

Activity Steps:

Activity Outputs:

Activity Metrics:

Activity Training:

Activity Group:

Activity Roles:

How Selectors Used
by This Activity:

Activity Estimations:

Side 1 — Level 2 Repeatable Level � 79

Mandatory Activity Topics

Predecessor/Successor Activities

This is shown “outside” the activity to indicate which activity comes before
this activity (predecessor links) and which activity comes after this activity
(successor links). You can traverse activities in a horizontal fashion across
the end-to-end life cycle when these activity references are hyperlinks to
other activities.

Activity Name

You place the activity name here along with its generic object name at
the very top to clearly identify the activity. You could attach a date to the
name so that the reader will identify the version of this process element.
In this software process model, the term “version” is strictly by date. You
will notice that I’ve used the European way of displaying the date (year,
month, and day) on purpose. I am setting this up for script processing
to pull out the HTML tag for date to establish the process basis for any
project. With a single tagged date field in all the process elements, I only
need a single start date on any project to select all the project elements
that are candidates for that project’s process basis. The date equal to or
closest to that start date is part of the process basis for that project. The
HTML-tagged date field is important throughout this model. I am describing
just the activity date field here. Because activities are all candidates for
use, all activities are part of the process basis for any project.

Activity Description

This is a short description of what this activity is all about. Some companies
may want to have a “more” hyperlink added to the end here to get verbose
about what this activity is all about outside this Web page. I cannot
overemphasize that the main description is a short summary-type of
description. I like to keep this to a single line with the “more” hyperlink.
The intent is to encapsulate this activity on a single Web page if at all
possible.

Activity Dependencies

This is your chance to identify external dependencies — beyond precursor
activity execution. Examples might involve a test type of activity that has
a dependency of a test lab environment being set up and in place. All

80 � Defining and Deploying Software Processes

activities have dependencies on having input work products being “there”
and ready to use. This field is geared to dependencies beyond the explicit
process-based dependencies.

Activity Inputs

All work product inputs are shown here. The line items must be outputs
from some other activity. It is acceptable to use generic terms here if
there are variations of any work product. On one implementation, I
showed the hyperlinked name (or names) of the activities in parentheses
following the work product name to clearly identify where any input came
from. Users found this helpful.

Activity Steps

This is a short list of high-level steps that are in a verb/object form of
“what has to be done.” The steps are the heart of any activity. Although
shown in a linear fashion, any step can be executed if its inputs are there.
This rule allows for concurrency at the step level. This is where we connect
the high-level “what” steps (via each verb) to the how selectors — for
those “whats” that require a “how.” There are two rules to be a high-level
step. It must be:

� Something that you absolutely, positively want done (somehow).
� A “what” anchor to an important how-to process element. Config-

uration management–type operations are examples of this in a
software engineering environment. This is where you get a link to
important configuration management (CM) procedures for control
of those work products. You want them mandated as high-level
steps. Depending on the work product, you can perform formal
CM or informal developmental CM via this mechanism.

There are certain high-level steps that exist in all activities as part of
this model. These steps are as follows:

� “Begin” step. This hyperlinked verb is executed by the activity lead
and is intended to inform the activity team what charge numbers
are involved for this schedule task (if applicable). The activity lead
(or responsible person) may also use this mechanism to notify
people like the project manager or development manager that this
activity has started. If your company has no need for charge number

Side 1 — Level 2 Repeatable Level � 81

assignments or to let anyone know that an activity is starting, you
may delete this step.

� “Get” step. This hyperlinked verb is there as an anchor to support
an important CM procedural how-to. The activity team members
use this step. This is a great place to hook your mandated what-
you-have-to-do world to your CM system. If your inputs are infor-
mal work products, you would direct the process practitioner to
the CM how-to process element to “get” what the practioner wants
from that developmental repository — using whatever CM tool is
involved.

� “Inspect” step. This hyperlinked verb is there to mandate inspec-
tions on all work products prior to hand-off. The work product
leads and designated inspectors use this step. A key aspect of this
process model is that we place the monkey on the producer’s back
for quality prior to passing it on to the next activity in the life
cycle. A lot of companies seem to have the opposite philosophy
on pass-off as being a “good luck to you” attitude. The “inspect”
step is our quality gate within each activity and it gets us to the
inspection how-to process element.

� “Put” step. This hyperlinked verb is there as an anchor to support
an important CM procedural how-to. The activity team members
use this step. If your outputs are informal work products, you
would direct the process practitioner to the CM how-to process
element to “put” what has been inspected into the developmental
repository — using whatever CM tool is involved. If the work
product requires a more formal CM method, then we will point
the practitioner to a more formal CM how-to process element.

� “End” step. This hyperlinked verb is executed by the activity lead
and is intended to notify people like the project manager, devel-
opment manager, schedulers (for earned value), activity team mem-
bers (for ending time charges), estimators (to collect actuals), and
the next activity lead that this activity has ended. The hyperlinked
verb “notify” is also there to support metrics data hand-off by the
activity lead to whatever group gets this data. For “Design Down”
activities, this is where you notify SCM to expand the SCM devel-
opmental repository and accounting to expand your project’s
charge numbers. This step is essential to this model.

I have suggested the above list of verbs. Each company that implements
this process model may choose alternative verbs that are more suitable
to their culture. Some companies use “evaluate” versus “inspect,” for
example. I do recommend that these steps exist in some form.

82 � Defining and Deploying Software Processes

I have found it useful to associate a role with each and every step.
On one implementation, the roles were encapsulated in square brackets
for each high-level step. This opens the door to having a script go through
all the process activities to generate any role-to-activity matrix. It also
opens the door to clearly specify what each role is expected to do. Can
you imagine what this can do for employee promotions when training
can be clearly identified for each role? All this comes from this software
process model.

Activity Outputs

All the work product outputs are shown here. It is important to hyperlink
each and every output to the work product set (described later in the
support layer). Each work product set includes:

� Work product template
� Work product inspection checklist
� Work product guideline (optional)
� Work product example(s) (optional)

Think about it — wouldn’t it be great to point a developer-author to
all this if we’re asking someone to create any work product! I found that
the practitioners loved this aspect of the software process model as it
“holds their hand” and allows them to concentrate on the reasons why
they were hired. The mentioned work products must be inputs to some
other activity. It is acceptable to use generic terms here if there are
variations of any work product. On one implementation, I showed the
hyperlinked name (or names) of the activities in parentheses following
the work product name to clearly identify where any output went.

Activity Metrics

Identify what metrics are involved with this activity execution. Per the
roles above, it opens the door to having a script go through all the process
activities to generate any metrics-to-activity matrix. For metrics, it’s impor-
tant to note that those activities marked for metrics just collect metrics
data. They do not convert metrics data to useful information. Any metrics
data is passed to whatever group is designated to receive metrics data via
the “End” step in all activities. If you find it complicated to gather metrics
data, this is a great place to hyperlink to the data collection procedural
how-to.

Side 1 — Level 2 Repeatable Level � 83

Activity Training

In order to execute this activity, are there any special training requirements
needed for success? These are specialized training requirements beyond
hire expertise. For example, a design-type activity may require the designer
to have specialized requirements database tool training to deal with
allocated requirements coming out of the design. This is part of the
software process model that directly addresses training needs to process
activities, which in turn identifies training needs to execute schedule tasks
successfully! This also opens the door to have a script to create a training-
needs matrix by activity or by role.

Possible Extension Activity Topics

Activity Group

This binds a particular activity to a preset list of umbrella terms used for
project management metrics and project estimations. This will work if an
individual activity is associated with one and only one activity group. If
you want to create a pie chart showing the percentage of time spent on
things like requirements analysis, design, coding, engineering testing,
system testing, etc., then relate each and every activity to one of these
topics. You should be able to map one or more activities to an activity
group. If you wanted to capture efforts involved in unit testing, then
“Create/Update Unit Test” and “Test Unit” would be marked with the same
activity group as unit testing. You can achieve this same mapping outside
this process element and will need to do this mapping externally if any
activity belongs to more than one activity group. Once executed as an
instance on a schedule, you can capture actuals and add it to that activity
group “bin” of effort. You can actually compare your life-cycle percentages
with industry norms using this feature.

Activity Roles

Show all the roles involved in the execution of this activity as a one-stop
shopping list. This information is also used to produce the roles matrix
later on. It is important to use role names and not titles, because roles
tend to be static whereas titles come and go with each reorganization.
This same information can be gleaned from each and every step if you
choose not to summarize roles at the activity level. Some found it useful
to summarize this here even though it was a potential maintenance issue

84 � Defining and Deploying Software Processes

if this summarized list did not keep in synch with the roles specified per
step.

How Selectors Are Used by the Activity

This option provides a quick summary of all the procedures (via their
how selectors) used by this activity. This can be deduced by the hyperlink
destinations of the verb-based hyperlinks in the high-level steps. For some
implementations, that might suffice. Like summarized activity roles, this
could be a maintenance problem if this list did not agree with those in
the steps. This opens the door to a script to create a how selector usage
matrix by activity.

Activity Estimations

On one implementation, I found it useful to provide a place where actuals
are captured from history to assist the planners in the future to estimate
activity efforts. Although not absolutely essential, you may agree with me
that this is useful. At one company, we ended up with a hyperlinked
“container” document per subsystem where each subsystem lead could
retain useful (and real) information to assist in future estimations.

Activities in General
Now that we have explained each activity field in great detail, there are
some comments that need to be made about each activity:

� Tasks are placed on a project schedule from a predetermined set
of process activities. This provides the real-world connection to
processes. At one place where I worked, we placed the set of
process activity names right on the project schedule template. Each
process activity name was hyperlinked right to the activity Web
page. Setting up a project schedule became a select-and-copy
operation (with a mouse) to set up each schedule task. This way,
each schedule task was directly hyperlinked to the process activity
that described exactly what had to be done.

� Predecessor/successor rules on a project schedule come directly
from the end-to-end life-cycle process story. This is another key
aspect of this software process model method. The contents of
each PAD gave incredible guidance to anyone setting up a project
schedule.

Side 1 — Level 2 Repeatable Level � 85

� The activity is designed to be totally auditable. High-level steps
can be validated. Inspections can be validated. Notifications can
be validated. Metrics can be validated. Auditing can be done by
anyone — not just by quality personnel. Auditing can be performed
offline (and after the fact) so that there is no auditing impact! This
is another key aspect of this software process method. Auditing
can be done by anyone in line with the ISO 9001 notion of “quality
is everyone’s responsibility” and it’s totally noninvasive. You can
achieve this without impacting the main development effort! You
can even make this auditing function close to real time and make
it an integral part of your “End” high-level step to ensure process
compliance before going to the next activity as yet another aspect
of being done. The software process method is that flexible in this
area.

� You don’t place an instance of an activity on a schedule unless
you know for sure that it is to be executed. I distinguish between
schedule planning packages and schedule work packages. Planning
packages are best-guess estimates for what needs to be done in
whatever granularity is appropriate. Once you get better visibility,
you convert planning packages to work packages. It is the work
package that is the activity instance. These are the schedule tasks
that need to be executed. It is the work package that is the basis
for earned value calculations. The term “work package” is synon-
ymous with the term “schedule task,” which is synonymous with
a “process activity instance.” The software process method abso-
lutely aligns the process world with the real world of schedules.

� Although an activity can be selected for an instance execution on
a project schedule, you can also choose not to have an activity
instance on a schedule. Selection granularity is at the activity level.
This is an important aspect of the software process method. The
activity itself is selectable based on your designs and plans.

� Once selected, all the high-level steps in an activity are required
to be complete as part of schedule execution. This gives total
repeatability at each activity level. This is a powerful concept built
into the software process model approach. This ensures that each
and every activity instance on a schedule of the same process
activity in the process world has absolute repeatability.

� Execution of some activities provides that extended visibility for
further activity instances. For example, higher-level design types
of activities not only design to the next lower level of decompo-
sition but also provide real insight into what and how many certain
follow-on activities should be placed on the schedule. The same
is true of activities that generate plans. (I have determined that the

86 � Defining and Deploying Software Processes

integration plan is probably the most important plan for this emerg-
ing activity instance schedule formation.) These are examples
where some activity executions perform a dual role: one as part
of the target life cycle and one as a process activity schedule
instance selector. The software process model approach recognizes
this duality and reinforces the value of good designs and plans.

� Each high-level step in an activity is not bound by similar weighting.
Some high-level steps are trivial steps and some are not. All steps
are to be executed by the role (or roles) designated for that step.

By breaking the entire life cycle down into phase-based chunks called
PADs that in turn contain executable elements called “activities,” we can
instantiate these activities on a project schedule, thus connecting processes
to the real world. Work products are directly connected to activities. You
execute an activity instance (or task), and you get one or more work
products associated with that activity. Because of this mapping, you can
relate work product production with activity instance execution on a
project schedule. This work product/activity connection allows this soft-
ware process model approach to work directly with any work prod-
uct–based tools that have low-level processes per work product production
cycle. These tools quite often have built-in promotion/demotion processes
to reflect a mini–life cycle for any given work product. This process
approach is not at odds with these tools.

The activity is thus the centerpiece of this software process model.
Let’s turn our attention to the how-to world in the next section.

87

Chapter 7

Side 1 — Level 3
Implementation Level

How Selectors
How selectors are intermediate Web pages between the activity’s high-
level step verbs and the how-to procedures. How selectors also exist for
asynchronous event-based procedures. In general, I do not allow a direct
reference to any how-to procedure without going through a how selector.
This is the software process model mechanism where we achieve exten-
sibility and flexibility at the how-to level. Procedural how-to process
elements require a “what” to exist. The “what” options can be:

� Any high-level “what” step verb inside an activity that has a how-
to connection.

� A high-level “what” requirement in the authority level. These can
be company policy requirements, ISO 9001 requirements, regula-
tory requirements, or maturity model goals and practices. These
reflect a direct how-to solution to that high-level “what.”

� An implied “what” based on the nature of your business, accepted
business norms, or standard engineering practices. These reflect a
direct how-to solution to aspects of your business that have no
explicit “what.”

88 � Defining and Deploying Software Processes

If you feel the need to write a how-to process element (procedure or
work instruction), where’s the “what” requirement that is its reason for
being? Another way of saying this is that every “how” requires a “what”
but not every “what” requires one or more “how-tos.” To illustrate this
point, I will now show (see Figure 7.1) what one of these how selectors
would look like as an example.

Figure 7.1 shows that procedure #1 has a corresponding work instruc-
tion whereas procedure #2 does not. This model encourages a short mind-
jogger single Web page presentation as the procedure with a side link to
its more verbose and detailed work instruction. The work instructions
give you an excruciating level of detail whereas the procedure does not.
You could skip the procedure and go right to the verbose and detailed
work instruction. It has been my experience that process users don’t take
too well to poring over pages and pages of process stuff to get to what
they want. Take my advice and have both how-to elements to satisfy the
experienced process user and the novice process user where it makes
sense to do so. They will love you for it.

You get to these how selectors from the following “what” places:

� Hyperlinked high-level requirements found in company policies.
This is how you connect policy statements with how-to procedures.

� A hyperlinked verb in any high-level step within an activity that
requires a how-to elaboration. This is how you connect “what you
have to do” steps inside any activity with “how you are to do it”
procedures.

� A hyperlinked reference from international standards (e.g., an ISO
9001 requirement). Each ISO 9001 requirement is a high-level
“what.” The ISO 9001 requirement that states, “The supplier shall
have a corrective action system” can serve as the high-level “what”
to connect to the “corrective action” how selector. This connectivity
can be directly shown to any ISO 9001 auditor in the ISO 9001

Figure 7.1 How selector format.

<HOW SELECTOR NAME>

If you have <this situation>, select Procedure #1: Work Instruction #1
If you have <that situation>, select Procedure #2
…..

Side 1 — Level 3 Implementation Level � 89

compliance matrix. I recommend directly placing a hyperlink on
the “shall” verb right to the appropriate how selector.

� A hyperlinked reference from government regulations (e.g.,
FAA/FDA regulations). Each regulation is a high-level “what” to
connect to the how selector that answers the regulatory mail. This
connectivity can be directly shown to any government auditor for
compliance. It is important to connect the regulatory verb to the
appropriate how selector.

In addition to these connections, we need traversal and accessibility
ease on the Web. For that reason, we can also get to how selectors by:

� A how selector list accessed via a hyperlink button on all process
Web pages

� A how selector summarized list within an activity — if you choose
to have this optional field

In the body of the how selector, you specify the selection criteria to
select any of the how-to procedural elements. The selection criteria can be:

� Project specific. “If it is project ABC, select Procedure #1. If it is
project DEF, select Procedure #2: Work Instruction #2.” You would
use these selection criteria when tool sets are different or when
one project has “a better mousetrap.” One has just a procedure
and one has a two-layered how-to as a procedure and correspond-
ing work instruction.

� Site specific. “If San Diego projects, select Procedure #1. If Dallas
projects, select Procedure #2: Work Instruction #2.” Typically, sites
do have variances in tools and almost certainly will on business
acquisitions. This process model handles this very nicely.

� Scope specific. “For internal company projects, select Procedure #1.
For external projects, select Work Instruction #2.” Internal projects
may not need the same rigor as external projects.

� Tool specific. “For tool ABC, use Procedure #1. For tool DEF, use
Procedure #2: Work Instruction #2.”

� Scale specific. “For small projects (less than six months), select
Procedure #1. For medium projects (six months through two years),
select Procedure #2. For large projects (more than two years), select
Procedure #3: Work Instruction #3.” These selection criteria recog-
nize that shorter-duration projects do things differently than longer-
duration projects.

90 � Defining and Deploying Software Processes

� Specific. “The only selection allowed is Procedure #1: Work Instruc-
tion #1.” This is where the organization wants one and only one
way of performing the how-to procedure. It clearly states that
alternative selections are not allowed.

The underlined portions above represent hyperlinks to that designated
procedure or work instruction.

In all instances, the how selector exists as a front end to its proce-
dure/work instruction selection set. Even if there is one and only one
how-to option, the how selector still exists and states the one selection.
For my implementations, I have insisted on having a how selector —
even for a single selection. This was done for process consistency, rec-
ognizing that a slight indirection is not a big deal for process selection.
Over time, when you have variations at the how-to level to add, this is
where you get to add that new procedural how-to approach. If you get
a “better mousetrap” procedural element, you merely add it as an addi-
tional option in the how selector. This is how you accomplish flexibility
and extensibility at the how-to procedural level.

The how selector is the mechanism to produce procedural tailoring.
You tailor by selection rather than by modifying that one-size-fits-all
procedural element. An important notion of this software process model
is that procedural tailoring is done by selection — not by corrupting any
one-size-fits-all procedure to force it to fit all your situations.

An interesting side issue occurs by allowing different how-to solutions
to use this how selector approach: Good procedural elements survive
naturally whereas bad ones die naturally. As a process guy, I can easily
set up usage counters on Web sites to get a handle on which ones are
truly used and which ones aren’t! If you’re seeing that option #1 is used
10,000 times and option #2 is used six times, it’s probably an indicator
that option #1 is good whereas option #2 is bad.

The directional flow is from the how selector to the procedural how-
to elements. This software process model disallows any reverse directional
flow. The rationale for this is simple: Once at a procedure selection, you
know where you are and you can always get back to the how selector
via the standard Web “back” capability. I do allow a hyperlink from the
one-page procedure to a more detailed work instruction as a lateral link
for Web usability. This last link connects any procedure with its work
instruction counterpart.

We will now look at the wonderful world of procedural how-to
elements. This is where “the rubber meets the road” for process prac-
titioners.

Side 1 — Level 3 Implementation Level � 91

Procedures
A procedure is also a how-to process element suitable for your experienced
process user. If you feel the need to write any procedural element, ask
where the “what” is. If you can’t answer that question, get rid of your urge!

In this software process model, a procedure is a how-to process
element that is directly connected to a how selector Web page. You can
have 1…n procedure options (or selections) per how selector. This looks
like Figure 7.2.

Any and all variations of a procedural how-to (via the how selector)
are elaborations of one or more of the following “what” items:

� High-level “what” step (verb) within an activity
� High-level “what” requirement of an international standard (e.g.,

ISO 9001)
� High-level “what” compliance of a maturity model (e.g., CMMI)
� High-level “what” compliance of a government regulation (e.g.,

FDA regulation)
� Any implied “what” compliance to your type of business
� Any “what” compliance from an asynchronous event-driven stim-

ulus

Every how selector should map to one or more of the above anchors.
For example, “the supplier shall have a corrective action system” is an
ISO 9001 requirement. This is an example of a high-level “what” anchor
(in the authority level) that connects to a how selector — for one or more

Figure 7.2 Connecting how-tos to a how selector.

How
Selector

Procedure
#1

Procedure
#2

Procedure
#3

Work
Instruction
#2

92 � Defining and Deploying Software Processes

variations of any “corrective action” procedure (in the implementation
level).

You don’t need a how-to procedure for all “whats.” Having said this,
a procedure can be:

� A simple checklist of mind-jogger things to do
� A simple flowchart
� A combination of text and flow to convey how things are to be

done

In this software process model, a procedure is an elaboration of a
“what.” Don’t call something a procedure if it doesn’t satisfy that basic
understanding.

I would stay away from embedding names or titles in any process
element — especially a procedure. That guarantees a maintenance prob-
lem. I would also stay away from linking a procedure to lower-level
procedures. Consider the procedure as the lowest “leaf” of the process
tree. I would not make this more complex than it needs to be.

The procedure is an important process element to connect work
products and forms to support the how-to. References to work products
and forms hyperlink from the procedure (in the implementation level) to
the work product and form sets (in the support level). Tools and tool
variations show up in the procedural how-to level. These tool variations
are addressed directly in the procedural selections. In one implementation,
we used a product called LiveLink for document version control and used
ClearCase for software version control. You might see something like the
following in the how selector to address this as a tool-specific selection
criterion:

� For LiveLink, use procedure #1
� For ClearCase, use procedure #2

This way, we directly address tool variations in performing version
control.

It is desirable to have a standard header format that states that it really
is a procedure and has a date stamp as a version. Standard header things
like page counts are also desirable. Like other process elements, proce-
dures should be HTML elements such that the HTML date tag can be used
intelligently to determine which procedural versions apply to any project.
I am not big on complex (and long) headers. Keep in mind that these
procedures are primarily viewed on a computer screen via the Web. Don’t
squander valuable screen space with headers. Keep it short. Companies

Side 1 — Level 3 Implementation Level � 93

that come from a paper document culture tend to forget that we only
print things out for reference and the real usage is via the display mode
on-screen.

There is one particular procedure that is critical to the success of this
software process model: the inspection procedure. Because this process
model has built-in inspections within all activities, it becomes crucial that
this particular procedure is efficient and has broad buy-in by the practi-
tioners. This particular procedure has a tight coupling with the inspection
checklist described later in the support level. Make this as simple as
possible out of the box and get people to really use it first before any
embellishments are made. On one successful implementation, I created
an inspection procedure that had these characteristics:

� An intranet-based tool where findings were entered online and
accessible to all employees (local or remote). All inspectors could
see all findings, and there is a total auditable database of inspec-
tions performed, when performed, against what work products,
for which activity, and who participated.

� Three roles only were defined: work product lead, work product
author, and work product inspector.

� Based on the fundamental FAGAN defect focus on the inspection
meeting (i.e., the meeting dealt with defects and not solutions).

� Redlines covered by a single finding, “redlines as noted,” with
details passed back to the author for resolution. These redlines
can really be redlines or “track changes” for a document. This is
done to ensure real findings get covered at the meeting while the
author does all the minute stuff offline.

� Activity work products predefined for process metrics. I allowed
free-form data entry of work product type beyond the standard
set. With a drop-down list of predetermined work products, you
can get some marvelous inspection defect metrics by work product
and by activity.

� Findings became the inspection meeting agenda (i.e., if you don’t
submit a finding, you don’t get to discuss things at the meeting).

� Meeting participation and availability used standard Microsoft Out-
look.

� Disagreement findings were handled first at the meeting, followed
by discussion findings, followed by agreed-to findings. This results
in short, cost-effective meetings.

� Automatic tool notification to the inspectors provided the URL for
finding submissions.

� Automatic e-mail notification to author on submitted findings.

94 � Defining and Deploying Software Processes

� Automatic email notification back to inspector when author did
not agree with finding. This allowed one-on-one resolution prior
to inspection meeting.

� Finding tied to activity in the end-to-end life cycle for process
metrics on where defect was really caught.

� Finding tied to suggested activity in the end-to-end life cycle for
defect prevention (i.e., where it should have been caught).

� No inspection meeting when author totally agreed with all findings
(i.e., no wasted time on pre-agreed items). I realize that there is
value in the “invisible inspector” to have a real meeting and that
group dynamics can indeed create additional findings beyond any
inspector’s inputs. In the commercial environment at the time, the
tight schedules had precedence.

� Built-in quick-press reports to get all findings for any given inspec-
tion (i.e., this is used as the common sheet of music that all meeting
participants work from).

� Emphasis on author/lead to process the findings with no verifica-
tion. This not only saves time but also squarely places the monkey
on the lead’s back to make sure that all findings were addressed
before marking “done.”

� Optionally, add inspection metrics at the end as to how long the
inspection itself took, etc., in hours. The work product lead fills
this in.

When implementing this process framework architecture, this particular
procedure deserves high priority.

Having discussed procedures, let’s now look at the supporting process
players: the work products and forms.

95

Chapter 8

Side 1 — Level 4 Support
Level

Work Products
It should be intuitively obvious by now that if you break down your life
cycle into schedulable activities, develop a set of procedures that elaborate
on those activity steps, fill in procedural holes beyond that to satisfy
authority-level things (policies, ISO 9001, CMMI goals and activities, reg-
ulations), and fill in procedural holes for asynchronous event-driven tasks,
you not only will have a complete process set but you’ll also have a
defined set of work products for your complete process support!

What are work products? These could be Word documents, PowerPoint
presentations, Excel spreadsheets, source code, XML figures, UML dia-
grams, VISIO charts, requirements databases, etc.

With this software process model, you should be able to take any
work product and identify:

� Which activity (at the repeatable level) created, used, or updated it
� Which procedure (at the implementation level) created, used, or

updated it

Anyone using this software process model method should be able to
create a work product–centric matrix that provides that story.

96 � Defining and Deploying Software Processes

This software process model tightly couples work products with activ-
ities. You can’t declare any activity “done” until all the work products
associated with that activity are inspected and placed under configuration
management (CM) control. The sheer presence of any inspected and
controlled work product is one piece of auditable evidence that the activity
was indeed “done.”

I realized a long time ago that when you talk about a “work product”
you really have:

� Variations of work products consistent with how-to variances.
� An associative set of things that collectively go with each work

product. I call this group of things the “work product set.”

To address work product variances, this process model has a similar
method to the how selector, called a work product selector. This provides
the needed flexibility and extensibility at the work product level by
selecting the appropriate work product. A work product selector looks
like Figure 8.1.

You will find this particularly useful when you really want work product
variances to provide work products in a single class.

Once at a particular work product, the work product set is composed
of the following:

� The work product template
� The work product inspection checklist
� The work product guidelines
� The work product example(s)

The first two bullet items should always be there (initially, you’ll have
template and inspection checklist holes until your process repository
becomes more robust). The last two bullet items tend to be optional. I
found that examples, however, are a great way to shorten time to market

Figure 8.1 Work product selector format.

<WORK PRODUCT SELECTOR NAME>

If you have <this situation>, select Work Product #1
If you have <that situation>, select Work Product #2
…..

Side 1 — Level 4 Support Level � 97

and rapidly get up on deliverable expectations. I don’t know about you
but I learn more from an example than anything else. This software
process model recognizes this and flaunts it by building it into the
selectable process elements.

You get to a work product set:

� From a hyperlinked work product reference within activities or
procedures

� From a Web page reference to a list of work product sets — which
in turn hyperlinks to any particular work product set

The work product set is an important concept. You will find that
changes to a work product template invariably change other members of
the set. For example, a template change could af fect the inspection
checklist, optional guidelines, and posted examples. A lesser effect is
when you update the inspection checklist to make it more complete
without impacting other members of the set. I have seen software leads
compete to place their best work products into the process repository.
The human side of this encouraged high-quality examples and pride of
ownership.

Work Product Template

For a lot of tools, there is no need for a template because the template
is tool-generated. For example, if you use Rational Rose and Unified
Modeling Language (UML), the nine diagrams (work products) are created
by the tool; therefore, there is no need for a template.

For non-tool work products, this first member of the work product set
is absolutely essential to the success of your process execution. Think
about it — if you ask someone to produce a document called a software
design document (SDD), the first question is “what is it?” before you get
started. A template can rapidly provide that answer and provide a frame-
work in which you can add documentation “meat” to the template “bones.”
Having been a software programmer for many years and subsequently
working with software engineers, I know that anything you can do to help
them with getting a deliverable out will make you a friend of the troops.

The intent of the template within the support level is to:

� Deal with the entire formatting overhead once offline for consis-
tency with other company deliverables.

� Provide a table of contents and structure to be followed.
� Provide all boilerplate text including legal and contractual wording.

98 � Defining and Deploying Software Processes

I can tell you from firsthand experience that software engineers don’t
create templates well. They are typically not English majors and sometimes
English may not be their first language! A template gets all the extraneous
(but important) stuff done and is ready to go to achieve work product
consistency by your process practitioners. This separation of skills is
important to this process model. Software engineers should concentrate
on the computer science stuff — not header and footer formats, cover
pages, revision pages, etc. Leave that work to your technical editors.

Work Product Inspection Checklist

This second member of the work product set is also essential to the
success of your process execution. This process model insists on built-in
inspections of most work products prior to handing them off to the next
person or group in the end-to-end life cycle. I say “most” because not all
work products are created equal. Some definitely need to be inspected
prior to handoff (e.g., a design work product) whereas some don’t (e.g.,
status report work product). If there’s any doubt, inspect.

This is to place the monkey on the producer’s back rather than to
pass stuff off to the next fellow with a “good luck to you” mentality!
These built-in inspections are quality gates for produced work products.
With inspections, you can achieve better quality at all links in the end-
to-end life-cycle chain. This also supports the notion that earlier inspec-
tions eliminate defects being found at the back end of the life cycle. We
want higher inspection findings (which are cheap) rather than higher
problem reports at system testing time (which are expensive) or cus-
tomer-found problems (which are astronomical and could cost you your
business).

Having said all this, your company’s inspection procedure itself could
make or break this process model. I have personally seen horrible exam-
ples of this. I am a big believer in tailoring this particular procedure to
the process maturity of the organization. This is similar to talking to
children at an age-appropriate level. One company tried a full-blown
FAGAN inspection technique for an organization that was barely paper
trained in process. It didn’t go over at all — even though the FAGAN
approach is very good. You are far better off at a “subcompact” level of
procedure rather than a “luxury” version out of the box. You can improve
your procedure naturally over time to better meet the increasing maturity
level of the organization. I have been guilty of saying “that’s a great idea”
to someone who has suggested a more robust procedure — even though
I felt we should have been there all along! It’s amazing how much better
processes get followed when it comes from “them” versus “you.” Your

Side 1 — Level 4 Support Level � 99

customer’s comments count a lot. It’s also in keeping with basic Six Sigma
concepts of making sure you understand your customer’s needs.

These procedures may be called “inspection procedures,” “evaluation
procedures,” or “review procedures.” At this point, I want to get on a
soapbox about a fundamental difference between the terms “inspection”
and “review.”

� The point of an inspection is to find defects.
� The point of a review is to externalize your target work product

to a group of people (for educational purposes), and you might
uncover defects as a secondary consideration.

In the DoD contracting world, they talk about SRRs (software require-
ments reviews), PDRs (preliminary design reviews), and CDRs (critical
design reviews). They all externalize the target of the review to an
audience. You may find defects — but that’s not the main objective of
the review.

We want inspections within each activity. We want to dig out defects
at each and every task in the end-to-end life cycle. We also want to
address both defect detection and defect prevention. Defect detection
happens at each and every inspection. Defect prevention occurs at (or
after) each and every inspection when we consciously ask, “Where should
these defects have been found” in the activity end-to-end life cycle? On
one implementation of an inspection procedure, I had a pull-down list
of activities for just that purpose. I asked inspectors, authors, and leads
to take a shot at where they thought these defects should have been
found. The process group took this as input and used that information
as a feedback loop to upgrade inspection checklists in earlier activities.
We used the inspection checklist itself as the mechanism to constantly
improve quality at the activity places where they should be picked up!
This way, we kept improving earlier inspection quality and reduced
findings in later inspections. This software process model approach directly
addresses continuous process improvement through this mechanism.

The problem I’ve run into is an “inspect-this” kind of handoff. How
many of you have been thrown a document and told to review it? This
open-ended assignment is an open invitation to:

� Misuse people’s expertise
� Waste time
� Encourage formatting-only findings

The inspection checklist organization coupled with the inspection
procedure can eliminate all this.

100 � Defining and Deploying Software Processes

Having said all this, let’s turn our attention to the inspection checklist
itself. See Figure 8.2 for an inspection checklist format.

Here’s a breakdown of the parts of this checklist.

Suggested Roles — Criteria

This is for the work product lead (i.e., the person calling the inspection).
This is meant to provide guidance on what types of people should
participate in this inspection and how to apportion inspection focus. On
one implementation, the process group created this part of the inspection
checklist for all the leads. It also allowed the process group to revisit this
for process improvement purposes. Because there is a 1:1 relationship of
inspection checklist to work product, you can tailor this for any particular
work product.

Figure 8.2 Inspection checklist format.

INSPECTION CHECKLIST for
<WORK PRODUCT>

Suggested Roles Criteria:

Entry Criteria (Author):

Inspection Criteria (<Role A>):

Inspection Criteria (<Role B>):

Side 1 — Level 4 Support Level � 101

Entry Criteria

This is for the author. Because inspection checklists are tightly coupled
to a particular work product, place all the mind-jogger items that the
author needs to address in each and every inspection checklist prior to
inspection submittal. For documents, you might see things like:

� “Check header format for correct fields”
� “Make sure TOC updated”
� “Check footer”
� “Has document been spell-checked?”
� “Were new acronyms added and included in acronym list?”

For coding, you might see things like:

� “Has Lint been run?”
� “Has coding header been checked and updated?”

These are all the kinds of things that the author needs to do before
an inspection. You can tailor these mind-jogger items based on the
individual work product. This is a powerful pre-inspection quality gate
by the author that is totally integrated into the inspection checklist.

Inspection Criteria

Subdivide all your inspection checklist items by roles. Consciously think
about what kinds of inspectors will participate in this inspection and what
questions and statements apply best to them versus questions and state-
ments for other types of inspectors. For example, it makes no sense for
technical people to look at portions of a document that are not technical!
You can assign a nontechnical person to do that. The point here is that
you can significantly improve the quality of the inspection itself by
matching roles to inspection topics. Tailor this criteria segregation by the
target work product. With this separation, the inspection lead can now
assign certain criteria to certain inspectors — not just adopt an “inspect
this” mentality. For critical sections, the lead can assign multiple sets of
eyes to go over that same section. The lead can also instruct inspector A
to apply those checklist items to one section while instructing inspector
B to apply those same checklist items to another section. If the lead
adheres to the role-criteria guidelines, an inspector can be directed to that
part of the inspection checklist for instructions. I am a great believer in
including your internal customer as part of the inspection team. What
better way is there to address customer concerns directly and, at the same

102 � Defining and Deploying Software Processes

time, improve quality? If your customer is saying things like “if only George
had checked for this, I wouldn’t have to keep fixing this!” the customer
now can directly get that inspection checklist upgraded for this continuing
defect.

I want to point out that, in the real world, you will start out with a
sparse population of inspection checklists. You will develop these over
time, reaching the goal of having an inspection checklist per work product
in your end-to-end life cycle. You will start out with inspections where
there are no inspection checklists. In that event, work product leads make
their best judgments about who become inspectors and what they are to
inspect.

Work Product Guidelines

This third member of the work product set is optional. For complex work
products, you might need some helpful hints to help that developer or
author to create or update that work product. Work product guidelines
are particularly helpful when you definitely do not want any embedded
guidelines in the main template.

Document work products quite often embed the guidelines in the
template in the form of hidden text or italicized colored text. For docu-
ments, placing those helpful hints right where real information is to go
makes a lot of sense. Separate guidelines may be more appropriate for
some documents.

It is a great area to place coding guidelines or standards for coding
work products. If you have a C++ coding work product, then C++ coding
guidelines are appropriate here. Coding work products are such that
embedded guidelines are not welcome. I want to diverge a little here and
get on another soapbox related to the terms “guidelines” versus “stan-
dards.” I have heard many who use these terms interchangeably. They
are very different process elements. Guidelines are helpful hints and
recommended approaches to doing things. They do not represent absolute
requirements that must be followed. Standards are requirements that must
be followed. This distinction is important for this process model:

� Guidelines or standards that are associated with a particular work
product go with that work product’s set in the support level.

� Guidelines that go beyond any particular work product are phys-
ically placed in one of the work product sets affected while aliases
are placed in any other work product affected. This ties all the
affected work products to the common guidelines while retaining
one copy of the guidelines.

Side 1 — Level 4 Support Level � 103

� Standards that go beyond any particular work product are part of
the authority level. These requirements will require traceability to
process elements and have a traceability matrix like other authority-
level elements.

For the reasons stated above, I am a great believer in choosing
“guidelines” versus “standards” when talking about coding. In my expe-
rience, many coding standards are truly coding guidelines anyway.

Work Product Example(s)

This fourth member of the work product set is optional. I really believe
that people learn rapidly from seeing examples. In my implementations,
I encouraged leads to provide me with examples that they were proud
of. I would place these examples on the process intranet within minutes
of receiving them. I noticed some rather interesting people-related aspects
related to examples. Leads vied to get their examples included in the
process world. Leads made extra efforts to produce quality products for
an expanding presence in the process repository. We could add examples
or replace better examples with lesser ones. In a nutshell, our examples
became better and better very naturally. As more things showed up in
the process world that were “owned” by people, the higher probability
you had that people would continue building quality products. There was
pride of ownership by allowing this. Other leads subconsciously pushed
for their examples to also show up. They made extraordinary efforts to
produce quality products because their visibility became greater than they
could achieve otherwise. I learned a long time ago that my customer’s
comments and inputs were important whereas mine didn’t count. In the
process world, my customers are also my practitioner users. This software
process model capitalizes on this concept.

Forms
Forms are process elements that are primarily associated with procedures.
In this software process model, variations of procedural solutions quite
often have associative differences in the supporting forms. You might run
into a form usage that is invoked directly from an activity. These are rare
— but can happen.

With this process model, you should be able to take any form and
identify which procedure or activity created, used, or updated it. I should
be able to create a form-centric matrix that provides that story.

104 � Defining and Deploying Software Processes

The sheer presence of any form is yet another piece of auditable
evidence that something was “done.”

Just like work products, I realized a long time ago that when talking
about this thing called a “form,” you really have:

� Variations of forms consistent with how-to variances.
� An associative set of things that collectively go with each form. I

call this group of things the “form set.”

To address form variances, this software process model has a similar
method to the work product selector called a form selector. This provides
the needed flexibility and extensibility at the form level by selecting the
appropriate form. A form selector looks like Figure 8.3.

Like work products, you will find this particularly useful when you
really want form variances to provide forms in a single class.

The form set is composed of the following:

� The form template
� The form inspection checklist
� The form guidelines
� The form example(s)

The first bullet item should always be there unless your form is a built-
in tool-based form. (Initially, you’ll have form template holes until your
process repository becomes more robust.) The last three bullet items are
optional.

Figure 8.3 Form selector format.

<FORM SELECTOR NAME>

If you have <this situation>, select Form #1
If you have <that situation>, select Form #2
…..

Side 1 — Level 4 Support Level � 105

You get to a form set:

� From a hyperlinked form reference within procedures or activities
� From a Web page reference to a list of form sets — which in turn

hyperlink to any particular form set

The form set, like the work product set, is an important concept in
this software process model. You will find that changes to a form template
invariably change other members of the set. For example, a form template
change could affect the optional inspection checklist, optional guidelines,
and form examples.

Form Template

This first member of the form set is absolutely essential to the success of
your process execution. Like the work product, the form template may
be implied if you are using a professional tool. For other cases, you’ll
need to create a form template. If you’re asking someone to fill in a form,
you need to supply what the form looks like. That’s where the form
template comes in.

Form Inspection Checklist

This second member of the form set is only needed when you have
complex forms requiring a quality inspection. Simple forms really don’t
need a form inspection checklist.

Form Guideline

This member of the form set may be needed for complex forms. Typically,
most forms do not need a form guideline.

Form Example(s)

This last member of the form set comes into play when it is useful to
actually have filled-in forms as examples.

106 � Defining and Deploying Software Processes

Project Records
The final part of this layer contains the metadata related to project
performance. This is also an important aspect of CMMI compliance. The
types of records stored here are meant for easy access. You store actual
data from your financial systems related to:

� Actuals by executed activities
� Actuals by executed activity groups
� Actuals by executed phase
� Actuals by system parts across all activities based on all executed

activities related to those parts, etc.

You can do this easily with this software process model because there
is a direct correlation of schedule tasking to process activities to time
charging. They are all aligned totally for that real-world connection.

If you are building a program made up of certain software subsystems,
wouldn’t it be nice to know your previous costs related to similar parts?
Notice that I use the term “costs,” because accurate pricing is based on
accurate cost estimates. Costing and pricing are two different things. It
can be disastrous to base a price of $8 million on a declared cost of
$10 million (taking a known $2 million loss for new entry into a business
area) when the actual cost is $18 million (losing $10 million versus
$2 million). Businesses that do this will surely die. You simply can’t survive
basing price on bad cost estimates. This is why this part of this layer is
critical and is built into this software process model method.

Before I go on, I want to make it clear that we are not storing project
records here that make up all the delivered and nondelivered artifacts for
any and all projects. These types of records belong with the project —
usually in a configuration management repository. What we are storing
here are project metarecords related to process performance (i.e., to
capture the cost of executing activities and the cost of creating a system
part, etc.). These rightly belong in the process repository.

107

Chapter 9

Side 2 — Training

Training Packages
Having discussed the four main layers of side 1 of the pyramid, we now
turn our attention to side 2 of the pyramid — the training aspect of this
model.

Just like our original assertion that not all “whats” need “how-tos,” not
all process elements or areas need training packages. I found that training
packages were needed:

� For an understanding of this process model
� For an understanding of the end-to-end process story
� For critical process elements (e.g., your inspection procedure)
� For complex process elements
� For role-specific training
� For functional area training (e.g., requirements management, sub-

contract management, and business development)
� For external standard requirements compliance (e.g., ISO 9001)
� For regulation compliance
� When the organization felt it was necessary

I may be at odds with many people, but I consider “awareness training”
as merely covering the summary or introduction of a regular training
package. If you consider a training package as being an overview or
summary portion and an elaboration portion, then awareness training just

108 � Defining and Deploying Software Processes

covers the first portion. This separation addresses an internal customer
(company) need to have both light training and in-depth training. Training
budgets can be tight and this allows flexibility for training.

PowerPoint is a marvelous office tool to address training packages.
Once a PowerPoint presentation is produced, you can set it up for a slide-
show display, you can hyperlink to it, and you can create instructor notes
pages. You can even set up hyperlinks within the presentation to the real
process item and allow normal “back” traversal to occur when using it.
All in all, this basic MS Office tool can be a powerful partner to an
understanding of this process world.

How do we get to all this training? Before answering this question,
we need to go back to the basic organization of our software process
model organized over four layers in side 1 of the pyramid. Training
packages are associated with various process elements, layers, or views.
That association has a direct bearing on how you get to these training
packages and where they reside on side 2. Here’s that breakdown.

General Training

� Process framework architecture training. This training provides the
big picture to the entire process framework architecture. This
training package is reached from:
– Top-level process Web page (“general training”)
– Web-based training list

� General metric collection process framework architecture training.
This training is aimed at how the entire process framework archi-
tecture deals with metrics collection and how it is passed off to
metrics folks who convert data into useful information. This training
package is reached from:
– Top-level process Web page (“general training”)
– Web-based training list

� General scheduling process framework architecture training. This
training is aimed at a project manager, development manager, or
lead to relate how the static process activities relate to project
schedule task instances. Topics like work breakdown structures
and time charging are also part of this course. This training package
is reached from:
– Top-level process Web page (“general training”)
– Web-based training list

Side 2 — Training � 109

Functional Area Training

� Functional area training. These areas can be topic-based functional
areas or role-based functional areas. Training can cover topics like
“requirements management,” “new business acquisition,” and “con-
figuration management.” These kinds of training packages are
reached from:

– Web-based training list

Authority-Level Training

� Company policy awareness training. This training is suitable for
new hires or transferred personnel to make everyone aware of the
company policies and their associated process elements that deal
with those policies. This training package is reached from:
– Authority-level hyperlink from “company policies”
– Web-based training list

� International standards training. This training is suitable at two
levels. Awareness training is suitable for all hands whereas an in-
depth training is more suitable for process groups, quality folks,
and internal auditors. This training package is reached from:
– Authority-level hyperlink from “ISO 9001 standard,” etc.
– Web-based training list

� Maturity model training. This training is also suitable at two levels.
Awareness training is suitable for everyone whereas an in-depth
training is more suitable for process groups, quality folks, and
internal auditors. This training package is reached from:
– Authority-level hyperlink from “CMM,” “SE-CMM,” or “CMMI,”

etc.
– Web-based training list

Repeatable-Level Training

� Business-area (horizontal end-to-end) process framework architec-
ture training. This training provides the major business-area end-
to-end activity story as shown in the top-level Web page. This
training package is reached from:
– Top-level process Web page (“general training”)
– Web-based training list

110 � Defining and Deploying Software Processes

� Life-cycle phase (including “swim lanes”) framework architecture
training. This training takes a horizontal view of the major life-
cycle phases as shown on the top-level Web page and addresses
all the interdisciplinary roles and functions for that phase. This
training package is reached from:
– Top-level process Web page (“general training”)
– Web-based training list

� Activity-based training. This training is specific training required to
be successful at executing a particular activity. Typically, these
training packages point to commercial offerings in addition to
company offerings. This type of training can directly relate to
specific roles and thus can be part of anyone’s expertise. This
training package is reached from:
– Training portion of the activity requiring that training
– Web-based training list

Implementation-Level Training

� Procedure training. Not all procedures need training packages. I
would certainly have training for broad-based procedures like the
inspection procedure, the corrective action procedure, the focus
group procedure, the postmortem procedure, etc. These training
packages are reached from:
– The procedure where training is needed
– Web-based training list

Support-Level Training

� Work product training. I would limit work product training to just
the complex work products, tool-based work products, or critical
work products. Not all work products need training packages.
Examples and templates can suffice. These training packages are
reached from:
– Work product set area
– Work product guidelines
– Web-based training list

� Forms training. Very few forms need training packages. A good
form should be self-explanatory. If needed, these training packages
are reached from:
– Form set area
– Form guidelines
– Web-based training list

Side 2 — Training � 111

Although the various training packages should be organized in one
area, it can be desirable to subdivide the training package locations to
the general breakdown described above. For our implementations, we
always wanted a single Web “button” to get to all the training packages
displayed in an alphabetized list — no matter where you were in the
process hierarchy.

Not all process elements or process areas require training packages.
The best process element of all is totally self-sufficient and is self-evident
as to its usage. Training packages are really needed to tie things together
for that big-picture perspective and understanding. Classic examples are
things like “requirements management.” This is an umbrella term for a
whole host of schedulable things (activities) and includes procedural how-
tos and shows up as part of other activities (like allocation of requirements
as part of design decomposition). If you want people to really understand
this thing called requirements management, you’ll cover all aspects of this
term. Another great place where training packages exist is role-based
training. Think about it — if we identify roles per activity, then we can
identify all the things that we expect that role to do! This kind of training
package is absolutely marvelous for new hires, transferred employees,
and newly promoted employees who take on new roles.

TE
AM
 F
LY

113

Chapter 10

Side 3 — Process
Traceability

Process Traceability for Compliance
This side of the pyramid is particularly important for your process group
and for external auditors and assessors. It is where we place all the various
compliance matrices to demonstrate that our processes meet those require-
ments, goals, and maturity model key practices.

Examples are:

� Company policy compliance matrix
� ISO 9001 standard compliance matrix
� CMMI compliance matrix
� Government standard compliance matrix
� Government regulation compliance matrix

A company should not write company policies unless they have some
assurance that these policies are translated into actions. These actions are
the process elements such as activities and procedures. The beauty of this
software process model is simple: Follow the process and you follow
policies.

114 � Defining and Deploying Software Processes

The Software Productivity Consortium (SPC) produced a comprehen-
sive spreadsheet to focus on the SW-CMM. This spreadsheet allowed users
to:

� Map process compliance to the key practices and goals of the key
process areas (KPAs) of the SW-CMM

� Relate generic work product names to your specific company work
product equivalents

� Relate generic roles to your specific company role equivalents
� Tailor the SW-CMM to your business

This completed spreadsheet is a great artifact to present to any external
SW-CMM assessors to show how your processes address the SW-CMM.
You can also produce your own compliance matrix. Adding formulas in
columns allows you to fold up compliance percentages to each process
area, for each goal, and for all maturity levels automatically as process
evidence artifacts are identified against the model statements. Compliance
matrices make getting that successful appraisal or assessment a slam dunk.

As of this writing, there are equivalent compliance matrices for the
various models of the CMMI (staged and continuous) in the form of
spreadsheets, databases, and tool offerings. I prefer a spreadsheet to keep
things simple. The spreadsheet has the added advantage that more people
know Excel than Access and may not have specific tool knowledge. In
addition, you can send an Excel spreadsheet as an attachment to any
auditor or assessor and it is readable by a standard MS Office application.
The KISS (Keep It Simple, Stupid) principle is great here.

If you are ISO 9001 certified (or want to be), create a spreadsheet
with the ISO standards requirements down one side with a single column
and mark which process elements work for each and every requirement.
Again, this is a powerful artifact to give your external ISO 9001 auditor
for standards compliance. A robust spreadsheet will almost certainly
translate into success for certification or recertification.

For those companies that have to comply with government regulations,
create a compliance matrix for each and every set of regulations. The
regulators will love it.

All of these compliance matrices are to be created and maintained by
your process group. These allow you to have a single directive to your
practitioners “following the process.” The average practitioner does not
need to know all the authority-level stuff because of these compliance
matrices.

Side 3 — Process Traceability � 115

I did work at one company that had a real problem with this concept.
Supplying compliance matrices to external auditors and assessors was a
foreign concept. This company came from the position that you don’t
give anything out voluntarily! That same company had an awful time
getting a successful CMM assessment rating. These compliance matrices
are just that important.

IIIMPLEMENTING
THE SOFTWARE
PROCESS MODEL

119

Chapter 11

Side 4 — Process
Repository
Implementation

Web-Based Version-Control Process Repository
Before getting into the Web implementation, a key part of this software
process method is the makeup of the process repository itself.

Separate Master Control from Web Presentation

You can place all the process elements in a conventional Configuration
Management Library (CML) for the standard master repository. This master
repository can be version controlled manually via folder names or via a
version-controlled tool for automatic version control. If you’re interested
only in master storage, almost any CML tool will do for master process
repository storage. Tools like ClearCase will do just fine for a straight
master repository where:

� Master storage is the focus, not direct Web access.
� You’re not interested in direct application accessibility on stored

CML files.

120 � Defining and Deploying Software Processes

This CML approach ends up with two process repositories:

� Master storage
� Active Web storage

You need to manage the master process repository and make sure that
updates show up in the active Web area on those updates. One place I
worked chose this approach and had the quality organization (ugh)
manage this. This particular place had territorial wars over control of this
area. Should control reside with:

� The quality organization?
� The configuration management organization?
� The process group?

The correct answer, in my opinion, is the last one. The same group
that creates the process elements and controls all changes to that base
should manage the process repository. The CM group can fit here if, and
only if, it is a service function to the process group.

The downsides of this process repository duality are:

� You have two areas that will always need to be synchronized.
� You can introduce errors by updating the master and failing to

update the current Web version. This could be a monumental
maintenance problem unless discipline is used.

� There is a built-in delay to process updates as seen on the Web.
That is, a crucial update has been made on the master but the
Web does not reflect the change yet.

� You can’t directly update the artifact actually presented on the
Web. You have to update the master and then update the Web
version.

Integrated Master Control with Web Presentation

A far better approach is to integrate the master repository with your Web
presentation. Have one and only one repository that:

� Provides a process structure for process elements
� Provides Web access capability
� Provides versioning control
� Provides access rights and privileges
� Provides an alias capability

Side 4 — Process Repository Implementation � 121

I have personally used two tools that fit the bill very nicely for this
process repository:

� LiveLink
� SharePoint

Both are Web-based versioning control tools that allowed various
accessibility rights. LiveLink was a whole lot easier to set up structures
with than SharePoint. LiveLink allowed aliases to files whereas SharePoint
appeared not to be able to do that (as of this writing). This alias capability
allowed one physical file with pointers to that file in other areas of the
structure. This is a fundamental database concept to have one and only
one file structure — not replications elsewhere. I was not able to get
SharePoint to do this. SharePoint did allow me to set up my top-level
Web page on their home page so that a SharePoint user would see the
same view as a direct Web user (not via SharePoint).

The beauty of both of these product offerings is that any update
automatically goes live on your intranet. Think about it:

� You can maintain all your versions in the repository. This is critical
for any process repository because different projects may have
different process bases on which they’re operating. Maintaining
different versions is absolutely critical in the process world. In the
software process model method, versions are identified by a single
date — hopefully via a tag in the markup language embedded in
your files. For those of you that came from a paper document
environment, get rid of the notion that you have to have revision
letters, etc. You just need a single date. There are some good
reasons for this:
– If you format your dates as YYYY/MM/DD, you can really

simplify date searches. This is a natural sort order rather than
the American way of having the MM/DD/YYYY format. If your
date-based software is smart, go ahead and use the American
form — otherwise, go with the YYYY/MM/DD format. Make it
easy on yourself.

– You can create a script to search on date tags that automatically
identify the process basis for any project. Every project has a
start date. You use this single piece of information to identify
the latest date to this start date without exceeding it to get the
process basis for any project.

– You want to change process elements at will. Standard revision
letters get absurd in the process world. Do you really want
your revisions to start at “A” and go to “Z,” then “AA” through

122 � Defining and Deploying Software Processes

“ZZ,” etc.? I don’t think so. I’ve been in businesses that have
restricted changes solely because of revision numbers cycling
too much for documents. This is a case of the tail wagging the
dog. We don’t want these restrictions for process elements. We
want to make process changes rapidly.

� Non-tip (or the latest version) is in the repository — not displayed
on the Web. You need to be able to get to older versions, but
don’t make it so easy. Dates will identify any older version quite
nicely. There will be a natural incentive to step up to the latest
version as the latest version is the one on your intranet Web site.
I have always advocated that projects should not automatically
chase the tail of process improvement. Trying to keep current on
an ever-changing process basis just creates chaos.

� The latest version or “tip” is the version presented on your intranet
Web for instant Web access. This allows standard “check-out” and
“check-in” operations to get Web updates done. You can always
know the official Web version. It’s the “tip” version of any file
within the process repository. Look at how simple the change
control becomes for process changes by the process group:
– Identify the process element for change.
– Check out the process element to be changed.
– If it is a cosmetic change, make the change and conduct a

simplified review of the change. If it is a substantial change,
make the change and conduct an inspection of the changes.

– Change the displayed date.
– Make the “saved-as” HTML version if you are operating at the

standard MS Office suite level. You won’t need to do this if
directly changing the HTML version.

– Check in the updated process element (or elements). This
automatically updates both the repository and the Web.

� You can use standard MS Office work products to produce your
HTML files. This allows almost anyone in your organization to
maintain your process repository. No special Web master is needed.
The latest MS Office products have built-in “save as HTML” or
“save as a single Web page” features. What this means is that you
can create all your process elements using your favorite application.
This could be ideal for small companies. You don’t need a Web
guru to implement this software process method at all.

� You can readily embed hyperlinks throughout your process ele-
ments to other process elements — using standard MS Office
products. I used Word, Excel, and PowerPoint extensively for
process elements. You can embed hyperlinks in these standard
files and the links get activated once files are saved as Web pages.

Side 4 — Process Repository Implementation � 123

In SharePoint, I saved both the “.doc” files and their “.htm” equiv-
alents. This allowed me to change the standard file in Word, Excel,
PowerPoint, etc., update the standard file and then “save as a single
Web page” for the Web-based file. For user visibility, I kept the
file name prefix the same and added “.doc” for the standard file
and “.web” for the Web equivalent. This provided yet another
visual marker to distinguish them. Do what makes sense to you.

� The latest version of anything is automatically what is “on the
Web.” There’s no misunderstanding at all about this.

125

Chapter 12

Side 4 — Intranet Web
Implementation

Intranet Basics
Before I get into this topic in earnest, I want to make a big point about
the process world. There are two aspects of processes that are equally
important:

� Content integrity
� Presentation/access integrity

This reminds me of constant bickering while I was in the military about
whether the air crew is more or less important than the ground crew.
The answer is that both are equally important. You simply can’t have one
without the other.

I mention this because (believe it or not) there are people out there
who seem to think that if you write a process-related sentence somewhere
in a document or place a bulleted line item in a training package, you
somehow have that process topic covered. Workers at one company
actually felt that if they merely added these process statements to a pile
of other process stuff they were finished. Somehow, process practitioners
would hopefully find these magic statements and all would be well with
the world. At one workplace, my boss did not understand this critical
aspect for success. I was ordered to remove this aspect when trying to

126 � Defining and Deploying Software Processes

run a process group. The order was to just write process stuff and forget
all the other garbage. I had to become very creative to work around this
ignorance. It was extremely difficult to get anything developed in the
process world that would end up in the success column because of this
management stance. People who know me know that I’m passionate
about process and I’m not willing to purposely create process disasters.

This book primarily addresses the presentation/access part of this via
this process framework architecture. You can have absolutely wonderful
process content but if people can’t find that content or can’t be bothered
to scroll down voluminous documents, etc., to find anything, it doesn’t
matter what you have. Conversely, if you provide easy access to process
elements but they are considered poor for content, you don’t have
anything. Remember, both are important and need equal attention from
your process group.

I have to remind process-group members that we should not treat
process as a holy relic. The antiquity professionals go over lots and lots
of ancient texts to find that gem of wisdom buried somewhere in that
input. Process users do not want to go through tons and tons of “chaff”
words to find those important “kernel” gems of wisdom. They want the
opposite. They want to get to what they want in as few clicks as possible
and have the whole thing on one Web page with minimal to no scrolling.
Over the years, I have observed that this is probably the biggest reason
why the best of process solutions fail. They do not address ease of use
and don’t connect processes to the real world — hence, this book.

A poorly written résumé will get discarded if it doesn’t grab someone’s
attention within 20 seconds. The same phenomenon occurs in the process
world. Go right to what people want and provide a rapid access to the
process “meat.” Off-load the process chaff for those who really want to
take a trip through memory lane for extra elaborations. If you don’t do
this, process practitioners will simply discard or not use your process.
Keep in mind that process is there to support the organization, not the
other way around! I’ve run into process people who have lost sight of
this important concept. In those environments, process has taken on a
life of its own with a full bureaucracy to support process. I am a firm
believer that “small is beautiful” for process — don’t get carried away
with writing process for the sheer sake of writing process.

The Web format provides an incredible opportunity to rapidly get to
things and off-load verbose things via hyperlinks. With simple Web-page
access counts, you can even do fairly sophisticated process improvement
based on real data. If you exist in a document-centric company, you’ll
have huge difficulties with a Web solution, because such a culture insists
on document headers on the Web — which wastes valuable screen display

Side 4 — Intranet Web Implementation � 127

space. People used to documents cannot make the distinction between
paper documents and Web representations. I know because I have been
in these environments. If you question this way of thinking, you’ll get
attacked.

Side 4 provides the total enchilada view of the selective processes in
this software process model. A Web-based, version-controlled process
environment really “makes it” for implementation.

On one implementation, we were able to use a product called LiveLink
for our process elements repository. LiveLink is a Web-based versioning
control tool that allows:

� Direct URL hyperlinking into LiveLink to access the latest version
of anything. This is a powerful capability to be able to pick up
the latest process element instantly on “check in.”

� Simple “check in/check out” for process element updates. This
allows a simple process-group capability to “check out” process
elements, update them, and, on “check in,” have that same element
go “live” on the process intranet.

� Versioned Word and PowerPoint objects. This allows all the activ-
ities, procedures, work products, forms, training, and compliance
matrices to be versioned and directly accessible on the intranet.
The Word files can be standard Word files or HTML files (because
Word can “save as HTML”).

� Direct access to LiveLink directories and subdirectories. This allows
direct hyperlink capability to the internal LiveLink structures. This
became particularly useful for Web-based lists because the list
contents always reflected reality and the lists were always in
alphabetical order naturally.

There are some important aspects of the intranet presentation that
need to be in place:

� Make sure that all process Web pages have an HTML-tagged date
field. I’ve had a huge problem with various companies about this
aspect of process element identification. In the process world, you
want things to change for process improvement purposes. I’ve
worked for companies that have insisted on revisions, headers,
and dates on process elements as if they were documents. Can
you imagine the problems of going from Rev A…Z, AA…ZZ,
AAA…ZZZ, etc., for process elements? If you use a single date
field as the “version,” you can readily identify the entire process
basis for any project by merely supplying a start date for that
project. Any process element closest to (but not later than) that

128 � Defining and Deploying Software Processes

date is that project’s process basis. Even a script can do this. HTML
is a tagged language that can readily do this.

� Make sure that all process Web pages have a common set of traversal
buttons to get to various process areas. One implementation had
that common set along the side and another implementation had
it across the top of each Web page. My personal preference was
across the X-axis — either the top or bottom but not along the
side. That set of traversal buttons needs to be absolutely consistent
across the Web displays. These traversal areas point to ordered lists:
1. Process “Home” — Top-level root node for life-cycle Process

Activity Diagrams (PADs) and Event Driver Procedures (EDP)
lists. You always need a way to get to the absolute top of the
process area.

2. Phases list. This is a list of the same Phases found in that top-
level Web page. Always provide multiple ways of getting at
things. Ideally, the hyperlink will take you inside the versioning
control tool to the Phases folder where all PADs and EDP lists
reside.

3. Inputs/stimuli list. This provides yet another way to find the
correct process element if you just select the correct input or
stimulus. Ideally, the hyperlink will take you inside the ver-
sioning control tool to the inputs/stimuli folder where all
inputs/stimuli are listed. Each input/stimulus can be further set
up to hyperlink to the correct process element that acts on
that item.

4. Outputs/responses list. Like the inputs/stimuli list, this provides
yet another way to find the correct process element if you just
know the output side of that process element. Ideally, the
hyperlink will take you inside the versioning control tool to
the outputs/responses folder where all outputs/responses are
listed. Each output/response can be further set up to hyperlink
to the correct process element that produced that item.

5. Activity list. An alphabetized list of all the activities in the
software process repository. Ideally, the hyperlink will take
you inside the versioning control tool to the activities folder
where all activities reside.

6. Roles list. Ideally, the hyperlink will take you inside the ver-
sioning control tool to the roles folder where all roles involved
with process are listed. On one implementation, this roles list
was really an Excel spreadsheet that showed “roles” down one
side and “process elements” across the other. This shows where
certain roles show up and can be invaluable for role-based
training.

Side 4 — Intranet Web Implementation � 129

7. How selectors list. An alphabetized list of how selectors in the
software process repository. Ideally, the hyperlink will take
you inside the versioning control tool to the how selectors
folder where all how selectors reside.

8. Procedures list. An alphabetized list of all the procedures in
the software process repository. Ideally, the hyperlink will take
you inside the versioning control tool to the procedures folder
where all procedures reside. Work instructors can also be
placed here.

9. Work product selectors list. An alphabetized list of all the work
product selectors in the software process repository. Ideally,
the hyperlink will take you inside the versioning control tool
to the work product selectors folder where all work product
selectors reside.

10. Work product sets list. An alphabetized list of work product
sets in the software process repository. Ideally, the hyperlink
will take you inside the versioning control tool to the work
product sets folder where all work product sets reside. A work
product set includes up to four kinds of things: the work
product template, the work product inspection checklist, the
work product guideline, and the work product example(s).

11. Form selectors list. An alphabetized list of all form selectors in
the software process repository. Ideally, the hyperlink will take
you inside the versioning control tool to the form selectors
folder where all form selectors reside.

12. Form sets list. An alphabetized list of form sets in the software
process repository. Ideally, the hyperlink will take you inside
the versioning control tool to the form sets folder where all
form sets reside. A form set includes up to four kinds of things:
the form template, the form inspection checklist, the form
guideline, and the form example(s).

13. Training packages list. An alphabetized list of all the training
packages in the software process repository. Ideally, the hyper-
link will take you inside the versioning control tool to the
training packages folder where all training packages reside. (I
found it more useful to place all the training packages in a
single folder rather than segregate them by process level
scope.)

14. Compliance matrices list. An alphabetized list of all compliance
matrices in the software process repository. Ideally, the hyper-
link will take you inside the versioning control tool to the
compliance matrices folder where all compliance matrices
reside.

130 � Defining and Deploying Software Processes

15. Authorities list. An alphabetized list of all the authorities (at
the authority level) in the software process repository. Ideally,
the hyperlink will take you inside the versioning control tool
to the authorities folder where all subfolders reside for things
like ISO 9001, CMMI, company policies, etc.

For the LiveLink implementation, we were able to point directly to the
appropriate LiveLink structure to pick all this up knowing that it is totally
correct all the time.

I determined a long time ago that users get very upset if they can’t
escape out of where they are in a convenient fashion. Having to press
“back,” “back,” “back”… is not a good Web traversal practice.

� Make sure that most process Web pages can be seen on a single
monitor display screen. The following should all be single Web
pages without scroll bars (or minimal scroll bars):
– Top-level Web page
– PADs and EDPs
– Activities
– How selectors
– Work product selectors
– Form selectors

The other process elements may need scroll bars. These often need
to be printed out:

– Any list
– Procedures and work instructions
– Work product templates
– Work product checklists
– Work product guidelines
– Work product example(s)
– Form templates
– Form checklists
– Form guidelines
– Form example(s)
– Full training packages
– Compliance matrices

� Color code process elements for a direct and quick confirmation
of those process elements that have standard forms. These include:
– Activities. I used yellow to agree with the general-purpose

project management PROPS life-cycle model. You may use any
color. You may also color code “swim lane” activity differences.

Side 4 — Intranet Web Implementation � 131

– How selectors. Select a color.
– Work product selector. Select a color.
– Form selector. Select a color.

Once selected, color gives a powerful visual confirmation to the process
Web user that they have what they want. Over time, the color will become
institutionalized in people’s thinking about processes.

Now that I have described the basics of a Web implementation, you
should have a good feel for what common traversals are needed on all
process Web pages.

Major Functional Breakdown for Process — Don’t Do
This
Before organizing your repeatable level of activities or PADs, I need to
steer you away from organizing all your processes into major company
functions. It’s a huge mistake.

I had one experience where leads at a company took a look at their
business and determined that the top-level Web process breakdown should
be topics like:

� Manage the enterprise
� Support the enterprise
� Manage the product
� Build the product
� Support the product
� Manufacture the product

At first glance, you could look at this list and tell yourself that you
could take all parts of your business and probably find a home for one
of these categories. A closer look at this list reveals that only two items
(“Build the product” and “Manufacture the product”) have life cycles; the
remainders are essentially asynchronously driven based on those life
cycles! In other words, you mix apples and oranges right off the bat. I
will now describe why this process division is bad and how you can
achieve the same end result with a life-cycle process approach using this
software process model.

Even though this company had a what/how separation, they actually
created stovepipes of process. The term “stovepipe” is used to signify that
process elements are “owned” by an organizational element in a vertical
fashion — as if they were jammed into a stovepipe. This division created:

132 � Defining and Deploying Software Processes

� Wholly owned activities by one company entity (e.g., this is an
engineering activity, that one is a manufacturing activity, etc.). The
big problem here is that, in the real world, other roles may be
affected when executing process activities.

� Wholly owned activities can have outputs that go to another wholly
owned activity in another part of the company. This company
ended up with transfer of data flows that went into the ether
because the two process elements were not engaged. There were
process disconnects all over the place. The problems here are
obvious — you cannot have disconnected processes and win.

� From an enterprise perspective, it might be clear that process
changes need to be made in one area, but workarounds are
introduced because of the immovable position of the first area’s
process owner. Again, you end up with no enterprise-level arbiter
to make sure that process changes occur where they should occur.

� This mapping creates a set of “process owners” — one per process
breakdown. You see things like the engineering VP in charge of
“Build the product,” for example. You have now created a com-
mittee with none of them wearing the enterprise hat. They will all
be protecting their own power and territory! The problem here is
that you have fragmented ownership of your processes. No one
is in charge.

My message is clear: Don’t do this. Don’t have organizational process
owners, but do have a process group that has an enterprise perspective
on process.

I have walked into an environment like this. The processes were useless
and not followed but the various process owners defended their turf to
the death. When I basically told this company “the emperor has no clothes
on” for process, I immediately became a target for removal. I became a
threat to those who invested their time and money in this awful way to
subdivide process ownership.

What the company really wanted was to identify where certain roles
(associated with organizational elements) fit. The software process model
is role-based in a real-world integrated team sense. Using my model, you
can readily determine where certain roles fit in, no matter who the
predominant “owner” of the activity or procedure is.

You need to map your process world onto one or more life cycles.
That is the only way you really connect your processes to the real world
and make that process/tasking connection. Let’s proceed to what you
need to do.

Side 4 — Intranet Web Implementation � 133

Multi-Life Cycles for Process
Some companies have more than one life cycle in which processes are
involved. Examples might be a development life cycle and a service life
cycle. In this software process model approach, we recognize this fact by
segregating each life-cycle root node Web page as separate and distinct
process mappings. When this happens, I suggest you provide hyperlinks
from your company intranet home page to the appropriate process root
Web page. To make absolutely sure that your process users get to the
correct Web page, identify projects or organizational entities as one or
the other.

The software process model approach really starts at these process
root node Web pages but does recognize that you might have more than
one life-cycle model for processes. For that reason, this multi–life cycle
top-level connection is outside the bounds of this book.

Top-Level Root Web Page
A top-level root Web page exists for each life-cycle model in which you
wish to map processes. This Web page provides an entire end-to-end
process story for any given life cycle.

This process approach subdivides any life cycle into two main hori-
zontal slices:

� Schedulable process world
� Nonschedulable process world.

We break down the former into PADs. We break down the latter into
event-driven procedures, or EDPs. On drill-downs, when you see any
PAD, you also see an EDP because both exist at any given point in time
along the life-cycle time-line.

From a vertical perspective, the software process model approach
divides the entire end-to-end life cycle first into segments and then into
phases. As you will see, a segment is composed of one or more phases.
The phase is the lowest software process entity to represent any PAD.

Given this general description, the top-level page should look some-
thing like Figure 12.1.

From this life-cycle process home page (and all other process Web
pages), you can traverse to any of the selections on the top traversal bar.
The traversal bar is common to all process Web pages in this software
process method.

134 � Defining and Deploying Software Processes

All the input and output hyperlinks in the traversal bar should ideally
link right to the version-controlled process repository in the appropriate
folder where these list files reside. Once there, the standard Web-based
“back” button will return you to your original Web page.

After the common top portion, the life-cycle root Web page is divided
into three main horizontal sections:

� The life-cycle identification section — along with the major
inputs/outputs for this life cycle

� The schedulable processes for this life cycle
� The nonschedulable processes for this life cycle

Identification Portion

When Web users traverse Web pages, it is real important to identify where
they are. The intent of this portion of the top-level process Web page is
to do just that — identify which life cycle we’re talking about. For those

Figure 12.1 Top-level Web page.

External
Inputs Life Cycle ZZZ External

Outputs

Segment Segment Segment Segment

Side 4 — Intranet Web Implementation � 135

enterprises that map out more than one life cycle, it becomes even more
important to identify which life cycle we’re traversing.

In addition to naming the life cycle, this portion can also provide some
very important input/output information at a very high level. As a process
person, you really need to know what triggers this life cycle to be
implemented. You also need to be clear on what happens after execution
— at a very high level. Again, as a process person, you have established
anchors from which you can flow down all work products produced as
you traverse this life cycle. It provides the basis for complete data-based
traceability.

You will notice later that as we drill down from this root-level process
Web page, we have almost identical identification portions at the segment
and phase Web pages. The differences at the lower levels are:

� Addition of the segment/phase name to the life-cycle name
� Specific inputs/stimuli to that segment/phase (versus the entire life

cycle)
� Specific outputs/responses from that segment/phase (versus the

entire life cycle)

Schedulable Portion

At the root Web-page level, this schedulable portion shows an entire end-
to-end graphical picture subdivided into segments and then finally into
phases. This is the one-stop shopping page showing the whole enchilada
for this life cycle.

I would advocate actually stating “schedulable processes” on the side
of this portion as a visual reinforcement of what we’re talking about. At
the risk of repeating myself, notice I used “schedulable” versus “sched-
uled.” It has been my experience that early life-cycle tasks may or may
not show up on a real schedule. This is particularly true for the DoD
contracting companies where the real project schedule only showed up
after contract award. Prior to contract award, you may or may not see a
precontract schedule — even though schedulable tasks really do exist.

If you do this correctly, you will be very robust on this Web page
related to hyperlinks to the drill-down Web pages. If you want to get to
a specific segment, you hyperlink on that segment name. If you want to
get to a specific phase, you hyperlink on that phase name. On Figure 12.1,
I did not show segment and phase names. In reality, this 40,000-foot view
may allow you to directly embed segment names but not embed phase
names. Embedding phase names might cause the text to be so small that
you create an eye chart. Process users will get real upset if they strain
their eyes, so don’t do this. Web designers can be very creative here by

136 � Defining and Deploying Software Processes

merely numbering phases to provide something from which to hyperlink.
You can set up “pass-over” pop-ups to see the real phase names. Keep
your users in mind. Remember, “process” is a four-letter word to many
people. Anything you can do to make the process experience pleasant
and useful for practitioners will be appreciated.

Nonschedulable Portion

At the root Web-page level, this nonschedulable portion shows the same
segment/phase mapping as the schedulable portion does. It’s like you
took the schedulable picture, folded it over, and placed it in the non-
schedulable portion for two of the three layers. Like the schedulable
portion, this is the one-stop shopping page showing the whole enchilada
for event-driven or asynchronous process elements for this life cycle. The
three layers shown here represent:

� Phase-based EDP lists where phases are exact replicas of the
schedulable phases

� Segment-based EDP lists where segments are exact replicas of the
schedulable segments

� Phase/segment-independent EDP lists

Like the presentation issues for the schedulable portion, the same
problems exist here. I found that you could directly name (and thus
hyperlink) the global lists and segment lists — but not the phase-based
lists. Adopt the same solution here as for the schedulable portion: number
the phases for hyperlinks and allow pass-over pop-ups for list names.

Like the schedulable portion, I would advocate stating “nonschedulable
processes” on the side of this portion as a visual dif ference from the
schedulable portion.

Segment Top-Level Web Page
If you select a segment name from the top-level root page, you get to
this segment Web page. This is the Web page that provides one-stop
shopping for any and all processes involved with any particular segment.
I will remind you that a segment is that portion of any life cycle that is
an umbrella term for one or more phases. Examples of segments include
“pre-contract” and “contract execution” segments. Both of these segments
contain several phases.

Side 4 — Intranet Web Implementation � 137

From a usability perspective, this second-level Web page will probably
not be used much by the average process practitioner. It provides a logical
drill-down from the root page that provides that segment view of the
process world. I found that different types of managers had a real interest
in this view as follows:

� Proposal managers have a real interest in the “pre-contract” seg-
ment. That’s where a proposal manager’s scope lies.

� Project managers have a real interest in the “contract execution”
segment. That’s where a project manager’s scope lies.

Both can see the big picture as to what tasks need to be considered
to complete these segments from a scheduling perspective. This view also
shows what event-driven procedures can be invoked during this segment.
You get to see both the synchronous and asynchronous process world
with this view.

Figure 12.2 shows what a segment Web page would look like.

Figure 12.2 Segment top-level Web page.

Segment
Inputs

Segment YYY
Life Cycle ZZZ

Segment
Outputs

Segment XXX for Life Cycle YYY

138 � Defining and Deploying Software Processes

Just like the root Web page, you can traverse to any of the selections
on the top traversal bar. Like the root Web page, the segment Web page
is divided into three main horizontal sections:

� The segment identification section — along with the major
inputs/outputs for this segment

� The schedulable processes for this segment
� The nonschedulable processes for this segment

Identification Portion

The intent of this portion of the second-level process Web page is to
identify which segment we’re talking about. For those enterprises that
map out more than one life cycle, it becomes even more important to
identify which segment of which life cycle we’re traversing.

In addition to naming the segment, this portion can also provide some
very important input/output information at the segment level. Just as
before, you really need to know what triggers this segment to be imple-
mented. You also need to be clear on what happens after segment
execution. Like the top-level Web page, you have established anchors
from which you can flow down all work products produced as you traverse
this life cycle. It provides the basis for complete data-based traceability.

One other piece of information is added here — the left/right traversal
arrows. This allows rapid traversal to the previous segment and subsequent
segment to ease Web traversal.

As we drill down from this segment process Web page, we have almost
identical identification portions at the phase Web pages. The differences
at the phase level are:

� Addition of the phase name to the segment name
� Specific inputs/stimuli to that phase (versus the entire segment)
� Specific outputs/responses from that phase (versus the entire seg-

ment)

Schedulable Portion

At the segment Web page level, this schedulable portion shows an entire
end-to-end segment-based graphical picture subdivided into phases.

You would link on one of these phase PADs if you wanted to see:

� The specific (external) PAD’s inputs/outputs.
� The specific PAD’s end-to-end activities for that part of the life cycle.

Side 4 — Intranet Web Implementation � 139

� A repeat of the global event-driven processes (for ease of usage)
� A repeat of the phase-based event-driven processes (for ease of

usage)
� The specific event-driven stimuli, procedures, and responses for

that PAD’s scope. These event-driven procedures along with their
corresponding stimuli/responses are specific for this phase for that
life cycle.

Just as before, I would advocate actually stating “schedulable processes”
on the side of this portion as a visual reinforcement of what we’re talking
about.

If you do this segment Web page correctly, you will have robust
hyperlinks to the drill-down phase-based Web pages. If you want to get
to a specific phase, you hyperlink on that phase name.

Nonschedulable Portion

At the segment Web-page level, this nonschedulable portion shows the
same phase mapping as the schedulable portion. Like before, it’s like you
took the schedulable picture, folded it over, and placed it in the non-
schedulable portion for two of the three layers. Like the schedulable
portion, this is the one-stop shopping page showing the whole process
picture of event-driven or asynchronous process elements for this segment.
The three layers shown here represent:

� Phase-based EDP lists where phases are exact replicas of the
schedulable phases

� Segment-based EDP lists where segments are exact replicas of the
schedulable segments

� Phase/segment-independent EDP lists

Adopt the same solution here as for the schedulable portion: number
the phases for hyperlinks and allow pass-over pop-ups for list names.

Like the schedulable portion, I would advocate actually stating “non-
schedulable processes” on the side of this portion as a visual difference
from the schedulable portion.

Phase Top-Level Web Page
If you select a phase name from either the top-level root page or segment
Web page, you get to this phase Web page. This is the Web page that

140 � Defining and Deploying Software Processes

provides the synchronous and asynchronous process information involved
with any particular phase. I will remind you that a phase shows:

� The PAD of synchronous schedulable tasks
� The EDP lists of asynchronous procedures

Figure 12.3 shows what a phase Web page would look like.
Just as before, you can traverse to any of the selections on the top

traversal bar. Like all the top-level Web pages, the phase Web page is
divided into three main horizontal sections:

� The phase identification section — along with the major inputs
and outputs for this phase

� The schedulable processes for this phase — the PAD
� The nonschedulable processes for this phase — the EDP list

Figure 12.3 Phase top-level Web page.

Phase
Inputs

Phase XXX
Segment YYY
Life Cycle ZZZ

Phase
Outputs

Side 4 — Intranet Web Implementation � 141

Identification Portion

The intent is to identify which phase we’re talking about. For those
enterprises that map out more than one life cycle, it becomes even more
important to identify which phase of which segment of which life cycle
we’re traversing.

In addition to naming the phases, this portion can also provide some
very important inputs and outputs information at the phase level. For this
Web page at the phase level, we not only identify inputs and outputs for
the synchronous tasks but also identify the stimuli/responses for the
asynchronous procedures. That’s the big difference between this Web
page and the life-cycle Web page or segment Web page. In the real world,
people may be aware of what is causing a process action (stimulus) but
don’t know the name of the procedure, etc. Conversely, they may know
the procedure name only and not know the input stimulus. Finally, they
may know what the output response is and that’s all. I provide multiple
ways to get to the procedural element needed for this event-driven
procedure to aid process usage by adding stimuli/responses to this phase-
based Web page.

One other piece of information is added here — the left/right traversal
arrows. This allows rapid traversal to the previous phase and subsequent
phase to ease Web traversal.

Just as before, you really need to know what triggers process elements
in this phase to be implemented. You also need to be clear about what
happens after phase execution. As mentioned, you have established
anchors from which you can flow down all work products produced as
you traverse this phase, and this provides the basis for complete data-
based traceability.

As we drill down from this phase process Web page, we leave the
top-level summary Web pages and get to the process “meat.” The “meat”
may be the process activities (schedulable tasks) or the event-driven
procedures (nonschedulable tasks).

Schedulable Portion

At the phase Web-page level, this schedulable portion shows an entire
end-to-end phase-based graphical picture showing the predecessor/suc-
cessor relationships of the process activities involved in this phase. This
graphical picture is the PAD.

There will be one PAD per life-cycle phase. In Figure 12.3, activities
within the PAD are shown in the center box. The PAD is further subdivided
into “swim lanes” to separate engineering from support activities.

142 � Defining and Deploying Software Processes

I would advocate stating “schedulable processes” on the side of this
portion as a visual reinforcement of what we’re talking about.

If you do this phase Web page correctly, you will have robust hyper-
links to the drill-down activities and EDP lists.

Nonschedulable Portion

At the phase Web-page level, this nonschedulable portion shows just three
layers of EDP lists. The three layers represent:

� Phase-based EDP lists for this phase
� Segment-based EDP lists for the segment in which this phase

belongs
� Phase/segment-independent EDP lists

You may notice that I did not include a business-functional area (or
horizontal) set of event-driven processes. You can certainly add this if
you feel it’s necessary. I purposely did not include this horizontal view
of event-driven tasks because I want to encourage processes that are not
“stovepiped” by business area.

Like for the schedulable portion, I would state “nonschedulable pro-
cesses” on the side of this portion to create a visual difference from the
schedulable portion.

Activity Web Page
The activity Web page is the heart and soul of this process framework
model. This is the process element that deals with high-level tasks and
can be scheduled. Notice I use the words “can be” because a schedulable
task may or may not exist on a real schedule. In this model, I emphasize
that we want activity instances on a schedule, however. This is one place
where we connect the process world to the real world. We really want
that schedule to be the real-world tasking representation or roadmap for
work progress.

You want to end up where all schedule tasks have their process
counterpart as represented by the process activity. If you had an “Imple-
ment Unit” activity in the process world, you may end up with 100
instances of this process element on a project schedule if you had 100
units to be implemented (coded). On a schedule, we use the same reusable
(and single) process element targeted to different units and led by different
people possibly.

Side 4 — Intranet Web Implementation � 143

This activity Web page is where you would go if you were “working”
that schedule task instance on a project schedule. This one-stop shopping
provides you with everything you want to successfully execute that task.
The intent is to provide robust hyperlinks to how you do things, from
the high-level activity steps, to information about what work products you
want produced, and to other useful links.

Stop here and think about how powerful this is. You get total repeat-
ability and a one-click access to all (or most) of the ancillary things that
drive most developers crazy without this capability. Having been there, I
can attest to the fact that practitioners love this. They can concentrate on
what they were hired for — namely computer science, etc. Can you
imagine the time saved by showing work product templates and examples
right there — rather than hunting for this stuff and possibly getting the
wrong one?

The activity page should look something like Figure 12.4. From this
page (and all other process Web pages), you can traverse to any of the
selections on the top traversal bar.

The activity Web page is the lowest “leaf” of the repeatable level. This
page identifies all the predecessor/successor activity relationships relevant
to this particular activity. These are shown as hyperlinks to provide that
important end-to-end traversal.

The main activity is shown in a tabular form with the activity name
shown at the top, with a list of standard identifiers in column 1, and with
information specific to this activity in column 2. You can certainly get
fancy here and have a graphical representation. I purposely chose this
form because:

� It’s easy
� You can create a standard table via Word
� More people can maintain your software model–based processes

The real value of this Web page is to provide one-stop shopping related
to this activity. We want to embed a lot of hyperlinks here to make this
implementation very useful. Here’s what I mean:

� Provide a “more” hyperlink after a one-line description.
� Provide hyperlinks from each verb in each step (that has a how-

to elaboration) to get you to all the how-to options that you need.
� Provide hyperlinks from work product references to get you to

things like templates, inspection checklists, guidelines, and exam-
ples. As a process guy, I encouraged better and better examples
for the process world. The suppliers of these examples had pride

144 � Defining and Deploying Software Processes

of ownership and really paid attention to quality to get this visibility
privilege.

� Provide hyperlinks on roles to get to any role description.
� Provide hyperlinks on metrics to get to metric collection how-to

selectors if needed.
� Provide hyperlinks on training packages needed for activity exe-

cution.

How Selector Web Page
The how selector Web page is the way in which we achieve flexibility
and extensibility in the how-to procedural world. This software process

Figure 12.4 Activity Web page.

Predecessor
Activities

Successor
Activities

ACTIVITY NAME

Description

Dependencies

Inputs

Steps

Outputs

Training

Roles

Metrics

…

(<Generic Object>)

Side 4 — Intranet Web Implementation � 145

model encourages “better mousetraps” via this selection capability — a
cornerstone of this process approach. I set this model up to always get
to a specific procedure through a how selector. I realize there is this one
level of indirection — but for process traversal and execution, it is quite
acceptable. It is via this mechanism that we get to determine the rationale
for selecting this how-to procedure versus that how-to procedure, etc. For
those instances where the enterprise wants one and only one procedure
selection, we can make that clear, too! I found that this is an incredible
mechanism for dealing with multisite differences, scaling differences, etc.

Figure 12.5 shows what a how selector Web page looks like.
You may not realize this but there are more arguments at the how-to

level than anywhere else. I’ve actually seen fistfights over this in the halls
of companies. You get into “we do it this way” or “we don’t want to do
what you do” or “we have a better way” kinds of dialogues. The software
process model approach recognizes that there is rarely one and only one
way of doing things. This process approach recognizes that the real world
needs to deal with different sites, different scaled projects, and different
tool sets. This how selector provides all the flexibility you need to select
the how-tos appropriate for these differences. The software process model
method wants you to have a common, portable “what” level across your
projects and divisions while enabling different how-to procedures to allow
for site/scope/tool differences.

Work Product Selector Web Page
The work product selector Web page is the way in which we achieve
flexibility and extensibility in the work product world. This software

Figure 12.5 How selector Web page.

<HOW SELECTOR NAME>

If you have <this situation>, select Procedure #1: Work Instruction #1
If you have <that situation>, select Procedure #2
…..

146 � Defining and Deploying Software Processes

process model recognizes that, like with procedural differences, there may
be variances at the work product level. This is yet another key concept
within this software process model approach that allows selectability of
those work product variances.

Figure 12.6 shows what a work product selector Web page looks like.
You will find this particularly useful when you want work product

variances to provide work products in a single class.

Form Selector Web Page
The form selector Web page is the way in which we achieve flexibility
and extensibility in the form world. This software process model recog-
nizes that, like with work product differences, there may be variances at
the form level. This is yet another key concept within this software process
model approach that allows selectability of those form variances.

Figure 12.7 shows what a form selector Web page looks like.
Like work products, you will find this particularly useful when you

want form variances to provide forms in a single class.

Procedures
I need to make sure you are aware that the software process method
defines the look and feel at the activity or “what” level. The software
process method does not define what a procedure looks like. This was
done on purpose as follows:

Figure 12.6 Work product selector Web page.

<WORK PRODUCT SELECTOR NAME>

If you have <this situation>, select Work Product #1
If you have <that situation>, select Work Product #2
…..

Side 4 — Intranet Web Implementation � 147

� Procedures can range from high-level procedures to low-level
procedures.

� The method of getting across any how-to can come in a variety
of ways: a flowchart, a checklist, straight verbiage, or a combination
of all of these.

In my opinion, a simple mind-jogger checklist describes the most
effective procedure. The technical people, with whom I’ve interfaced, hate
piles and piles of words. Keep it simple if possible. If the flowchart
effectively represents that how-to, so be it. If a checklist will suffice, so
be it.

Having said all that, it is desirable to identify these “leaf” process
elements in some consistent fashion — even though the contents vary. I
recommend a standard (ideally color coded) header format that clearly
identifies this process element as a procedure. Like other process elements
in the software process method, I would advocate a date only to identify
a procedure version. Get away from using revisions, because it does
nothing to connect a process element to a project’s process basis. A
common procedure header on a Web page could look like Figure 12.8.

Like all other process elements, you just need an identifying name
(reinforced with a particular color) and a date.

For those instances where a corresponding low-level work instruction
exists, it would be helpful to indicate this and to hyperlink to that
corresponding process element. The software process model approach
recognizes that we have experienced process users and novice process
users. This method promotes procedures for experienced users and work
instructions for novice users. The software process model method also
recognizes that portions of your business require just low-level instructions

Figure 12.7 Form selector Web page.

<FORM SELECTOR NAME>

If you have <this situation>, select Form #1
If you have <that situation>, select Form #2
…..

148 � Defining and Deploying Software Processes

(e.g., a manufacturing environment). In these instances, you may want
only a work instruction and no procedure. The how selector should make
this clear. Conversely, engineering how-to process elements tend to be
procedures and not work instructions. This software process approach
has total flexibility to address the variations needed in businesses.

Figure 12.8 Procedure header Web page.

<PROCEDURE NAME>
dated yyyy/mm/dd

For the corresponding Work Instruction go here.

However, you want to show a procedure here…

IIIUSING THE
SOFTWARE
PROCESS MODEL

151

Chapter 13

Users of the Software
Process Model

Classes of Customers Using This Model
To get an overall feel for the software process model, we need to look
at the parts of this process model that are the most applicable to different
classes of process customers:

� The general customer
� The line/project management customer
� The lead/practitioner customer
� The quality/process-group customer

The specified parts are not mutually exclusive to each type of customer.
Each part certainly has a predominant use for a particular class of customer.

General Customer

All people who have any connection with or are users of the process
framework architecture will use the following parts:

� Training — side 2
– Software process model method overview
– Process intranet training

152 � Defining and Deploying Software Processes

– Standards/maturity model/regulations compliance awareness
training

� General time-card charging method related to the process activities
(only if your time-card system supports this process connection)

General customers would be candidates for new-hire orientation train-
ing (or employee transfer training) in addition to any standard human
resources–type of orientation training. Everyone needs this training once
the software process framework architecture is in place.

Line/Project Management Customer

Because line management and project management personnel are involved
in project planning for estimation, project tracking for planned versus
actuals, and project execution for earned value, the following parts of the
process model are particularly important to this class of customer:

� Repeatable level — side 1:
– End-to-end life-cycle diagram
– Process activity diagrams (PADs) within that end-to-end life

cycle
� Support level — side 1:

– Activity actuals (for future estimations, but only if the time-card
charging system cannot get this)

� Training — side 2:
– End-to-end life-cycle training (including PADs)
– Activity overview training
– Project planning training with this software process method
– Project tracking training with this software process method
– Project metrics training with this software process method

The practitioners rarely need to look at the repeatable-level items
mentioned above except perhaps their own functional PADs. Only respon-
sible people shown on schedule tasks (activity instances) need to add
data to the support-level item if the time-card charging system doesn’t
map to this process methodology. Leads may find overview (or awareness)
training helpful for project planning and tracking — but only at the cursory
level.

Users of the Software Process Model � 153

Lead/Practitioner Customer

Because leads and practitioners are involved in the real process work,
the following parts of the process model are particularly important to this
class of customer:

� Repeatable level — side 1:
– PADs for their own functional areas
– Activities

� Implementation level — side 1:
– How selectors
– Procedures and work instructions

� Support level — side 1:
– Work product selectors
– Work product sets
– Form selectors
– Form sets
– Activity actuals (for future estimations — for leads only and

only if the time-card charging system cannot get this)
� Training — side 2:

– End-to-end life-cycle training (including PADs)
– Activity overview training
– Specific life-cycle PAD “swim lane” training (e.g., software

engineering)
– Inspection procedure training
– Configuration management (CM) interface training from activi-

ties
– Specific functional area training (e.g., requirements management

— for those who need it)

Quality/Process-Group Customer

Quality and process-group customers certainly need an overall knowledge
of the entire process repository. They do not need to have intimate
knowledge of all process elements — particularly those that are domain-
specific. I would expect this class of customer to really know the inspection
procedure, configuration management procedural “hooks” from any activ-
ity, and metrics-collection aspects of this model. These are common to
all activities and have universal applicability. I would also expect this class
of customer to have awareness knowledge of all process elements. For

154 � Defining and Deploying Software Processes

these reasons, the level of training is really a superset of all training with
particular emphasis on the following topics:

� Repeatable level — side 1:
– PADs relevant to their own “swim lane” if pertinent
– Activities

� Implementation level — side 1:
– How selectors
– Procedures and work instructions

� Support level — side 1:
– Work product selectors
– Work product sets
– Form selectors
– Form sets

� Training — side 2:
– End-to-end life-cycle training (including PADs)
– Activity overview training
– Specific functional area PAD “swim lane” training (e.g., software

engineering — at an awareness level)
– Inspection procedure training
– Configuration management (CM) inter face training from

activities

155

Chapter 14

Metrics Collection Using
This Software Process
Model

Metrics Collection versus Presentation
There is a wise saying that says, “You can’t improve what you can’t
measure.” The software process model is very cognizant of the importance
of metrics data collection and metrics information presentation. I make a
distinction between metrics “data” and metrics “information.” Metrics data
is not that interesting but is a snapshot of a target area of interest. Metrics
information is the summation or trends of that metrics data in a form that
is useful to the viewer. That informational form could be a pie graph, a
bar chart, a scatter chart, or a table. Metrics data is that which is collected
as a byproduct of an activity execution using this software process model.
Metrics information is a work product produced either by a metrics-related
event-driven procedure or a schedulable activity.

Metrics Data Collection
Metrics data collection follows the same premise at the very essence of
this process model — i.e., separate “what you need to do” from “how
you are to do it.” Metrics data collection is a “what you have to do” item

TE
AM
 F
LY

156 � Defining and Deploying Software Processes

that is built into each and every activity that requires metrics data collec-
tion. Each activity is made up of a small set of high-level steps that you
absolutely, positively want done. One of the final steps that is advocated
in this software process model is the “End” step in all activities. The “End”
step is there to:

� Notify various roles that this activity has been executed and is
“done.” As stated before, these roles could include:
– The next activity leads shown in the project schedule
– The project manager
– The development manager
– The scheduling folks for “earned value”
– The accounting folks for charge number elaborations.
– SCM for expansion of the developmental repository.

� If this activity is designated as an activity that has metrics data
collection involved, then this same step notifies the metrics group
(and passes on) metrics data. In your organization, a “metrics
group” could be:
– A discrete metrics presentation group
– Your quality organization
– Your process group

There is much to be said for a discrete group responsible for receiving
metrics data and turning it into useful information. These folks should be
skilled in graphical representation of that metrics data.

If you have a complex metrics data–collection procedure, I recommend
that you include a high-level step within that activity as an important how-
to anchor for that metrics collection procedural world. Like all other how-
to procedures and procedural elements, any how-to goes through a how
selector. The software process model treats any metrics-collection how-to
like any other how-to.

Metrics Information Presentation
Metrics information presentation can be:

� An event-driven procedure when metrics information is asynchro-
nous in nature

� An activity on your project schedule when metrics information is
schedulable on a periodic calendar

Metrics Collection Using This Software Process Model � 157

There is much to be said for creating a process element for metrics
presentation. Like other process elements in this software process model,
you get to hyperlink to the metrics work product via a work product
selector. This follows the model for metrics just like any other work
product, in that it:

� Allows for metrics work product variability via selection
� Allows for metrics work product templates
� Allows for metrics work product inspection checklists
� Allows for metrics work product guidelines
� Allows for metrics work product example(s)

This software process model is good at getting rid of any ambiguities
by using the selectability built into the model to specific end items.

If you are gathering metrics data on an asynchronous basis but pro-
ducing metrics information presentations on a scheduled basis, you will
want an activity on your schedule that converts the metrics data into
useful information. If you do this correctly, you will place this metrics-
based activity in the swim lane for your support folks versus the main
engineering swim lane. It makes it adamantly clear that there are linkages
from mainstream activities to this one. It also shows that this particular
activity is a support-type activity. The software process model handles
this very well on a practical level and at a visual level.

159

Chapter 15

Schedule Management
Using This Software
Process Model

Schedule Planning versus Execution
Before going further, I really want to differentiate between planning a
schedule and executing a schedule. These are two separate things. I
mention this because I have run into my fair share of project managers
who have not understood this! They have mistakenly mapped out a
planned (estimated) schedule and then held people’s feet to the fire when
executing that schedule! They seem to feel that a planned schedule is “set
in concrete” for execution rather than an execution estimation. Sometimes
an estimate is just that and does not reflect reality. You may estimate 50
units to be coded in a subsystem and at execution time, that number is
57. If you were that close for estimation, I’d be a happy camper as a
project manager! I saw a project manager throw a fit over this discrepancy
and force the actual number to be as estimated — even though it was
wrong. The project manager had erroneously tried to map the actual
execution schedule story to the estimation schedule story. This skewed
view of schedules caused bad products just to placate this project man-
ager’s tirade.

The intersection of these two worlds is where you use the estimating
schedule as a planning baseline and compare the execution actual

160 � Defining and Deploying Software Processes

mapping to that baseline. When an execution schedule starts out, all future
planned events are planning packages from the planning schedule. As
execution progresses, we replace the planning packages of the planning
schedule with the actual execution activity instances (tasks). At any given
point in time, you have the real picture of process activity instances and
yet-to-do planning packages from the planning schedule. When the project
execution is totally done, all the planning packages of the original planning
schedule have been replaced with actual activity (task) instances showing
what actually happened.

Schedule Planning
Planning schedules can be done quite easily using this process framework
architecture by:

� Estimating the parts story
� Estimating the integration planning story
� Mapping the appropriate activities on your planning schedule to

match that estimation
� Adding in the prior actuals for resources
� Rolling up to summary line items for duration and costs

The parts estimation story gives you the basic building blocks for
mapping out the planning schedule. For example, if you estimate that
you have three subsystems to be designed for your system, you know
you have something like Figure 15.1 on your planning schedule.

You know you have a system-level design activity. You know you
have three subsystem designs to do. If you know these are totally separate
teams, then the subsystem designs can be truly concurrent — as shown.
If the people resources are limited, these subsystem designs need to be
somewhat serial in nature rather than concurrent.

Figure 15.1 Estimation snippet.

Design Down
(System)

Design Down
(Subsystem 1)

Design Down
(Subsystem 2)

Design Down
(Subsystem 3)

Schedule Management Using This Software Process Model � 161

If you estimate 50 units for subsystem 1, 75 units for subsystem 2, and
100 units for subsystem 3, then you have a tremendous amount of planning
knowledge to map all these out. If you estimate that 20 percent of the
units are reused coding, you know that you just need to integrate those
units and that’s it. Use the software process model to create that planning
schedule.

If you estimate that you need a foundation of work done in subsystem
1 for anything else to be tested, that would give you a strong clue that
you need a foundation integration-type of activity. If you estimate ten
other integration sets, then you know you have ten integration activities
to plan.

At this point, all planning activities are presumed to be of equal
duration, etc. You now replace the default duration with actuals from
previous work. At this stage, you can replace the defaults with averages
for estimation purposes. You can also do resource loading on your
planning schedule to make sure that you’re not overbooking people.

With normal scheduling rollups, you can now estimate the total project
schedule for duration and costs by just using this software process model.
If you’re smart, you will compare this with other estimation techniques
like function points or lines of code to get a sanity check on these
estimates.

The key to planning a schedule is to:

� Use the activity PADs to get to that end-to-end planning story first.
You use past experience or rough design to arrive at the parts
story and map that to the process world shown in each PAD.

� Place the atomic activities on the planning schedule following the
predecessor/successor rules in each PAD. This provides the basis
or underlying foundation to all your planning packages.

� Use the software process model’s activity groups by part and roll
up the activities to create the high-level planning packages. Plan-
ning packages, by definition, are high-level and reflect roll-ups of
lower-level details. In the software process model, the lower-level
details are at the activity level. You will also find it useful to have
multiple layers of roll-ups. For example, “Subsystem A Design”
may represent the first roll-up while that planning package along
with “Subsystem B Design” can be further rolled up to “Subsystems
Design.” Note that planning packages are noun-based in this model
whereas activities are verb-based, indicating an action.

� Use the roll-ups as the planning schedule and hide the supporting
activity details. You will need the supporting details afterward for
that important sanity check at postmortem time to ratify schedule
estimates versus schedule actuals.

162 � Defining and Deploying Software Processes

In summary, use the software process model to do a bottoms-up
development of your planning packages. As we execute a schedule, we
do exactly the same with real schedule tasks.

Schedule Execution
For those of you who have project management experience, this section
will be very different from what you have done before. Don’t put work
package tasks on a schedule until you absolutely know that they are to
exist. This means that you do not place tasks on a schedule unless the
model or model execution tells you to do this. Project managers get very
nervous about not laying the whole thing out all at once. I am saying the
opposite — you treat the schedule as you would for spiral development.
For software spiral development, you design a little, code a little, etc. In
this model, you do exactly the same except the model itself calls the shots
on schedule tasking.

How do you know when they are to exist? I am making the claim that
several things provide that direction:

� The process end-to-end activity diagrams in the model provide the
predecessor/successor relationships allowable on any schedule as
a foundation.

� The execution of design decomposition types of activities not only
provides further visibility on the design but also identifies elabo-
ration threads for schedule execution. For example, a completed
execution of a system-level design activity lets you know exactly
how many subsystems you have. A completed execution of a
subsystem design activity lets you know exactly how many units
you have. In this software process model you drive the execution
schedule from this known information.

� The execution of any activity that creates or updates the integration
plan provides the integration strategy for the project schedule. The
same integration plan also provides marvelous insight into which
implementations can be prioritized for just-in-time integrations. This
is why I consider the integration plan to be the most important
plan in the life cycle. You not only know the road map to the
parts but you also know what items can be deferred to achieve
major cost savings for time-to-market.

The combinations of these factors provide the project manager with
the identification of what activities to place on a schedule and when to

Schedule Management Using This Software Process Model � 163

place them on a schedule. Any execution schedule that is developed using
this software process model reflects absolute reality at all times!

At various points in a schedule life cycle, the project manager will
need to reconcile the work packages (actual work performed) with the
planning packages (planned or estimated work to be performed). The
ideal situation is to have the actuals be close to what was estimated. If
they are far apart, use this opportunity to determine the reasons why you
have this discrepancy. As you use this model, you will find that you can
collect actuals over time that will produce better and better estimates for
future projects.

When you align all the project management scheduling with this
process model, you get a powerful connection of processes to the real
world. When you further align your time-card reporting system to that
same process model, the whole world of powerful metrics opens up
related to both the target product for estimations and actuals and to process
improvement.

I make a huge connection of activity instances to project schedules.
You may conclude that I am also suggesting that project schedules cover
high-level summaries all the way down to individual task items per unit
to be coded. But the level of detail that you want in your main project
schedules is up to you. A user-friendly project management tool is ideal
to provide a selected granularity of that project’s schedule where low-
level task elements naturally roll up to higher-level elements and so on.
Several companies where I have worked made a conscious separation of
project line items as follows:

� High-level representation for the project manager and senior man-
agement (typically done using a project management tool)

� Low-level representation for the lead to manage (typically done
with a simple table or spreadsheet)

I must admit that the driving force for this separation (with accompa-
nying disconnects) was rooted in the tool being unwieldy and not suitable
for this. People get real good at work-arounds even though the ideal is
to not do work-arounds but deal with the tool issue directly. A bad side
issue in separation is that you can produce serious disconnects (i.e., which
form do you believe?). For that reason, I advocate using a single scheduling
tool and hiding the level of detail needed as appropriate. You maintain
schedule integrity that way.

Whether you place all schedule tasks in one tool or not, this model
still pushes for that direct connection of process activities. You still want
to get earned value on any activity instance completion no matter how
you show work to be done.

165

Chapter 16

Project Estimation Using
This Software Process
Model

General Project Estimation
This is the one topic that can make or break any company. If you are
not good at project cost estimation, you may lose your shirt pricing things!
Conversely, if you really understand your costs, you can price your work
to be profitable. This software process model is very aware of and
supportive of gaining the following estimation data:

� Financial costs
� Durations
� Resources
� Special needs (e.g., labs, training)

Having worked in the DoD contracting business for many years, I
know that the days of putting in low bids to get work and then adjusting
costs later have long gone. I worked at one place where the submitted
bid was so out-of-bed with costs that the company lost a ton of money.
I realize that there are times when you might want to purposely have a
“loss leader” to:

166 � Defining and Deploying Software Processes

� Expand your customer base
� Get inroads into some industry
� Cultivate a particular important customer
� Introduce a new product, etc.

This decision should be made with your eyes wide open — not as an
estimation surprise.

The software process model supports two ways of providing that
important estimation data. You can use one or both as adjuncts to each
other:

� A runtime postactivity explicit manual act by the activity lead:
– Upside: You can capture experience levels of your people

resources involved for any given activity.
– Upside: You can capture actual activity duration.
– Upside: You can record special circumstances and notes perti-

nent to any estimate.
– Downside: It is manual and requires the discipline of each

activity lead to document these kinds of things.
– Downside: It requires explicit data extraction by named parts

as determined by your organization.
� A byproduct of your time-charging system that uses the software

process model:
– Upside: True actual costs are by activity.
– Upside: True duration is by activity.
– Upside: True actual resources used are by activity.
– Upside: True part costs breakdown is by activity.
– Upside: Data can be retrieved at will at any time.
– Downside: It can only relate real people’s names — not classes

of experience levels.
– Downside: It cannot capture special circumstances or notes

pertinent to any actual — unless schedule variances are used
for that purpose.

Please note that I qualified the time-card charging system as one that
uses this method. The ideal situation is when your time-card charging is
totally aligned with the software process model’s activities. (See the
following chapter on time-card charging for a suggested approach to
achieve this goal.)

I have worked at companies that have gone to great lengths to come
up with a standardized work breakdown structure (WBS) for scheduling.
The trouble is that you can end up with a WBS that is not aligned with
this activity-based process model. The ideal WBS has a direct mapping

Project Estimation Using This Software Process Model � 167

of activities to WBS line items. Another way of saying this is that if you
do this right, activity group names can be inferred as your WBS line items.
If you achieve this mapping, you now have a powerful mapping of your
process world to your WBS world.

Manual Estimation by Activity Lead
You can do this regardless of your time-card system. It works the best
when used in conjunction with your process model–based time-card
charging system. I found that the best approach for collecting manual
estimates was by important parts of your system. The level of granularity
should be at the level of your components that could be reused or are
marketed at that level. For most companies, the subsystem level is appro-
priate. For those companies that are in the lower-level component busi-
ness, component units might be more appropriate.

One commercial company had organized the software labor pool by
subsystem. Because of this division, each subsystem had a subsystem lead
in charge of that part of the system. You can do this only if the subsystems
are well defined and relatively static. For that commercial company, this
organization worked well by having subsystem expertise concentrated in
that subsystem group. In that environment, collecting estimations at the
subsystem level made a lot of sense. The subsystem lead had a vested
interest in collecting estimation data pertinent to his or her subsystem.

In the DoD contracting environment, this doesn’t work as well unless
you have a high degree of reusable software components in different
contracts. Most companies talk about reusability, but they seldom achieve
any degree of true reuse. In this climate, each project (or contract) has a
project manager. This organization works against reuse because project
managers do not want additional costs on their watch for the good of the
enterprise. Having said all this, it is still reasonable to collect estimation
data by parts because all delivered systems are made up of parts. Unlike
the commercial environment above, more pressure is on each activity lead
to “do the right thing” related to capturing estimation data. There is no
subsystem lead to enforce this. The project manager is typically not
interested in this at all and prefers it not be done on his or her dime.

Having said all this, how does the software process model help to do
all this data capture to aid future estimations? Here’s how this works:

� Each activity has a small set of high-level steps with certain high-
level steps in all activities.

� One mandated step is for the activity lead to execute the “End” step.

168 � Defining and Deploying Software Processes

� In addition to notifying various roles on being “done” and passing
metrics off to the metrics group, this step could be used to add
capturing actual data for future estimations.

� Collect actuals and notes in a file associated with the activity object
as shown on the schedule. If you are coding a unit within a
subsystem, you capture actuals by activity names in that sub-
system’s estimation file. You can do this because this model can
associate any activity to a part.

When you think about it, this is an ideal time to capture this type of
information because it’s fresh in the activity lead’s mind.

At “End” time, the activity lead:

� Looks at the activity object on the schedule
� Relates the object to the appropriate part
� Goes to the collection container file for that part (a hyperlink to

the set of files would be useful here)
� Goes down to the activity section of this collection file
� Fills in information that will help future estimations:

– How many people worked that activity
– Makeup of the group (novices, experienced, etc.)
– Duration of the activity
– Lowest and highest estimations depending on whether expe-

rienced workers, novices, or a mixture were used for that
estimation

– Special notes

The lowest and highest piece of data will be very useful for future
estimations because it came from the activity lead involved. On future
projects, the project manager will be able to take this activity-based data
and project estimates when developing the lower-level foundations to get
to the planning packages. If you know you have a bad resource situation
from before, use the pessimistic data as the estimate. If you have a richer
resource situation, use the optimistic data as the estimate.

Every time an activity lead executes his or her activity against any
particular part of the system, you will add to the actuals database for
future estimations. Over time, you will be able to normalize this estimation
data to compensate for optimistic activity leads versus pessimistic activity
leads. In other words, your estimations will get better and better over
time. Also, the estimates are activity based within a part and are totally
aligned with the software process model.

The beauty of this approach is that you can take any part of your
system and determine the set of activities that could have that part as an

Project Estimation Using This Software Process Model � 169

activity object on a schedule. Once you determine the granularity of your
collection files, you create one file per selected part. You then include a
section for each activity name within that file. These files could be Word
files.

On one implementation, I simply pointed all activities to that list of
files and had the activity lead determine which one applied. You can do
this quicker by just pointing to a subset list of files where this activity can
apply. The software process model can be that flexible.

171

Chapter 17

Time-Card Charging
Using This Software
Process Model

You want to get to the point where your time-card reporting system is
totally aligned with this process approach. You want people to charge to
a number that ties the work performed to the execution of activity instances
on a schedule.

A charge number is made up of:

� A project identification part
� The WBS structure
� Rework indicator of null

For schedulable WBS elements, the breakdown is further subdivided
into:

� Activity being worked
� Object of the activity being worked followed by a rework counter

Nonschedulable WBS elements have no rework counter (i.e., null)
since these items tend to be equipment, software, lab costs, etc.

172 � Defining and Deploying Software Processes

Let’s look at the hierarchy of information that you need on a time-
card charge number for schedulable work:

� Project being worked. This should be a predetermined list of pos-
sibilities. This list is mostly static with revisions as needed for new
projects added and old projects dropped.

� Activity being worked. This is the specific activity (within the
project) from the activity pick list that now shows up as a schedule
instance. This list is virtually static with changes occurring only
when new activities are added in the process world.

� Object of the activity being worked. This object can be a part
identifier or a test set. The part list is derived directly from the
project’s design decomposition activities. The part list is project-
specific and can certainly reflect the indentured parts list for any
given system. The test set is derived directly from the project’s
integration plan. The test sets are project-specific.*

� Activity rework counter. This is merely a zero (original effort) versus
a non-zero (rework effort) tacked on the time-card charge number.
The non-zero number is circular from 1…9 and back to 1.

For nonschedulable work, the time card number breakdown is:

� Project being worked. This is the same as before.
� Zeros. An “activity” of all zeros indicates all the nonschedulable

aspect of the WBS.
� All the nonschedulable line items. It is beyond the scope of this

book to describe these other than the state that these are static
line items.

� A null rework counter. The focus of this book is on the schedulable
charge number method.

* We use this process model’s design and planning work products to not only feed
into the target life cycle but also to use the information directly for project manage-
ment purposes. I’m only establishing the known parts up front and allowing the
project’s design itself to elaborate on subsequent parts. This is a radical departure
from traditional charge-number schemes. My approach is to expand the parts list, as
we know for sure that they are to exist. We don’t second-guess this list at all. We
use the same technique for integration set objects. We wait until our integration plan
spells what these integration sets are and then we include them in our time-card
charging method. If you haven’t realized it yet, I am using design decompositions
and plans to also manage the project via activities and time charging. Historically,
plans were things that the customer wanted and you produced them because you
had to contractually. I’m using these plans to drive the project via process activities.
What a concept! I’m also using design decompositions to drive the project via process
activities — beyond actually externalizing a design. This is a veritable two-for-one
sale. In this model, plans and designs are real and actually utilized.

Time-Card Charging Using This Software Process Model � 173

I will map all this out onto a hypothetical nine-digit charge-number
system as follows:

PPAAOOOOR

Where
PP = Project identifier
AA = Activity identifier
OOOO = Activity object. Part or test set identifier for project

PP above
R = Rework counter 0…9

For project “03,” all charge numbers would start with “03.” If the
“Design Down” activity was identified as “07,” then all charge numbers
of this particular activity would start with “0307.” If the system was
identified as “10” and the 3 subsystems were identified as “11,” “12,” and
“13” respectively, then for people doing those designs, they would charge
to “030710” for top-level system design, “030711” for subsystem #1 design,
“030712” for subsystem #2 design, and finally, “030713” for subsystem #3
design. Zeros are filled out to normalize your total charge number. You
place a zero at the end when you do this design for the first time. If you
have to do this design again, you place a 1 at the end. If you have to
do it yet again, you place a 2 at the end, etc. Rework happens due to
two major events:

� Customer-driven changes requiring schedule rework
� Process deficiencies requiring schedule rework

The former cannot be controlled; however, the latter indicates serious
process issues that need to be addressed. When you get customer-driven
changes, you need to “prune” one or more branches of a schedule “tree”
of activities and rework them. When you do that, the charge number for
each activity is the same as before but with a rework counter (non-zero)
at the end. If you are forced to rework activities on a schedule due to
process problems, this is a huge red flag to your process group to analyze
and fix the process problem so that you don’t have this rework showing
up again.

With this charge-number scheme being tied into process activities, you
can readily get metrics on a variety of things:

� All project PP charges by querying the PPxxxxxxx portion of the
charge number

� All specific activity charges for activity AA across all projects by
querying the xxAAxxxxx portion of the charge number

174 � Defining and Deploying Software Processes

� All specific activity charges for activity AA for project PP by
querying the PPAAxxxxx portion of the charge number

� Analysis/design/code/test view for project PP by querying all the
PPAAxxxxx portions that make up that view

� All charges for a particular part of the indentured parts list (for
example, all costs related to a subsystem identified by object “13xx”
within project PP can be achieved by querying the PPxx13xxx
portion of the charge number)

� All rework costs for project PP by querying the PPxxxxxxN portion
of the charge number where “N” is not zero

In addition, because activities belong to activity groups, you can create
pie charts showing the percentage effort spent on analysis versus design
versus coding versus testing, etc. You can now compare your actuals with
industry standards to find out how you stand relative to your competition!

From a process improvement perspective, you can create Pareto charts
showing activities along one side and execution time along the other to
determine where your time is being spent! Because schedule tasks come
from an activity pick list, we can now do this. Just like dynamic analyzers
of coding, we can determine which activity is used the most on a schedule
and the amount of time spent doing that activity in total. You can readily
see that a small process improvement in the most used activity will produce
enormous results. Pareto analysis will direct you to the activity of interest
for process improvement. After tackling the topmost activity, you can
tackle the next–most used activity, etc. If you execute a single system
design activity but execute the “implement” activity 2,000 times, a small
change in the “implement” activity has a large impact. You will actually
be able to shorten your life-cycle costs and reduce your time-to-market
for any product by focusing on your process elements.

In general, processes of interest to optimize are:

� All procedural elaborations of the common activity high-level steps
— particularly the inspection procedure

� Highest instance count of any activity as determined by a Pareto
chart

175

Chapter 18

Subcontract Management
Using This Software
Process Model

Subcontractor Management Components
There is an incredible aspect of this software process model relating to
subcontract management.

Certainly, in the DoD contracting world, the prime contractor can be
required to flow down certain things to a subcontractor. Process is usually
high on the requirement for flow-down.

Subcontractor management involves:

� Supplier selection
� Supplier agreement management

It is no accident that the CMMI covers both of these topics as capability
model process areas (PAs). The former deals with how you go about
selecting your subcontractors whereas the latter deals with managing
subcontractors once they are onboard. This process model addresses both
of these PAs very nicely.

You need to check out subcontractors ahead of time (supplier selection,
or SS) and you need to manage them as they execute the terms of the
subcontract (supplier agreement management, or SAM).

176 � Defining and Deploying Software Processes

Supplier Selection
Sometimes international proposals require in-country subcontractors
where that first level of selection is predetermined by the foreign govern-
ment. At an extreme, the prime contractor may be told what in-country
subcontractor to select — which effectively negates the SS portion. Most
of the time, you are in charge of selecting and managing subcontractors.

If you are truly in the SS business, you will need to determine these
things:

� Validation of the supplier as a potential subcontractor (i.e., are they
in the right business?)

� Can they perform in the proposed time frame?
� Where are they for their processes? (i.e., what is their process

maturity?)

These questions often require an onsite visit and audit.
As a rule, you don’t want a subcontractor who has no track record of

producing on-time quality products. If their deliverable target is part of
your delivered target to the customer, you don’t want a failure traced to
the subcontracted part. That’s where process comes in.

Let’s turn our attention to how this process framework architecture
helps supplier selection. The software process model helps in the following
areas:

� You can establish a complete mini–life cycle of activities in the
preproposal section of your life cycle specifically addressing sub-
contractor selection. This eliminates any ambiguity as to what is
needed.

� You can provide a predetermined list of approved suppliers refer-
enced from activities within this mini–life cycle for both domestic
and foreign subcontractors. These are preapproved based on pro-
cess maturity and market niche products.

� Like all other activities, you can associate how-to selections via
how selectors from these activities. Variations related to parts
suppliers versus service suppliers are readily handled by the soft-
ware process model approach.

� You can provide the subcontractor with a list of schedulable
activities and end-to-end processes early for them to connect their
own procedural how-tos (and tool-set differences) to these activ-
ities. The what–how separation of this software process model
provides tremendous portability at the “what” level (activities) while
allowing a plug-and-play for their how-to elaborations. This allows

Subcontract Management Using This Software Process Model � 177

for subcontractor configuration management differences and yet
requires CM control equivalents based on work products. This
early visibility for the subcontractor provides them with a real-
world road map for process compliance.

� You can provide quality inspection checklists on specific work
products early. This software process model specifies acceptance
criteria for delivered work products that are “done.” This accep-
tance criterion is identical for internal suppliers as it is for external
suppliers. This model supports quality audits because quality gates
are built into the process approach. Although used at execution
time, it is desirable to let your subcontractors know upfront how
acceptance will be performed on all work products.

� You can provide the mini–life cycle for SS to the subcontractor to
allow that subcontractor to meet or exceed any stated requirements.

Supplier Agreement Management
When you have an agreed-upon contract with your customer, you now
need to pay attention to managing any and all subcontractors during
execution of this contract.

I want to make a big point about the software process model and its
treatment of parts to be ultimately delivered to the customer. If you did
this right, you would have a macro-level picture of the deliverable parts
as a result of the proposal process. Think about the totality of all parts
as a big pie that is cut up into slices. Some slices are done in-house and
some are done by subcontracted labor. From a schedule and project
management perspective, you don’t care what color badges people are
wearing to do work — you just want quality work performed on or before
time. Your schedules need to show all parts involved in the whole pie
— no matter who is working on them.

Regardless of the particular slice of work, you have dependencies
involved — such as people resources and work product availability. This
is no difference for slices marked for subcontracting versus slices done
in-house. Your schedules should reflect these predecessor/successor rela-
tionships no matter what.

This is where the process model shines:

� The basic what–how separation provides both a pick list of sched-
ulable activities and an end-to-end representation of those activities
showing predecessor/successor relationships. When following this
software process model, the project schedule reflects instances of
these same activities — regardless of who does what. You flow

178 � Defining and Deploying Software Processes

down the activities to your subcontractors. You don’t flow down
your procedural elaborations. They (the subcontractors) provide
their own ways (or how-tos) of doing things.

� The project manager can choose to track subcontractor progress
at the same level as internal employees or can choose to track
subcontractors at a higher level, with the subcontractors themselves
tracking at the same level as internal employees. The model
supports both notions. No matter what, all progress (and thus
earned value) is based on the identical activities — whether they
are done in-house or by subcontractors.

� Each software process model activity requires all high-level steps
to be done. There is no distinction between an activity assigned
to a subcontractor versus an activity assigned to an in-house lead.
All steps are auditable. Audits can be done by anyone. No work
product can be promoted to the next activity without quality
inspection records to signify “done.” That is just as true for a
subcontractor as it is for an in-house lead.

� Configuration management is built into the process model —
including levels of control based on an individual work product
and phase. The identical requirements are levied on all activities
being executed — whether in-house or subcontracted. Because of
this aspect of the process model, CM is totally auditable.

� Metrics data collection is built into the process model. The identical
requirements are levied on all activities being executed where
metrics are called out — whether in-house or subcontracted.
Because of this aspect of the process model, metrics data collection
is totally auditable — no matter where the activity is executed.

The software process model makes no distinction with the “who does
what” question. The model recognizes that we need acceptance criteria
for all work products — regardless of the “who” question. This funda-
mental notion makes subcontract management no different from in-house
team management. If you manage one, you manage both. We want
producers of work products to be accountable for quality.

179

Chapter 19

Integrated Teams Using
This Software Process
Model

Integrated Teaming Concepts
This is a topic that warrants some discussion. When companies use the
term “integrated,” it can mean many things to many people — such as:

� A team composed of different disciplines necessary to achieve a
stated effort or goal. A surgical team comes to mind as a real-world
example. This team is totally integrated, with different people
taking different roles.

� A team composed of a single predominant discipline that has access
to other disciplines as needed to achieve a stated effort or goal.
A process group comes to mind as a real-world example, where
“process people” bring in domain specialists as needed via subor-
dinate process action teams to solve specific process problems.

� One or the other of the above, but with customer involvement as
part of the integration. Large DoD contracts sometimes specify
these types of teams — usually called integrated product teams.
The idea here is that the customer is represented throughout and
thus has ongoing visibility into all aspects of the developmental
life cycle.

180 � Defining and Deploying Software Processes

In all instances, we have the situation where different roles are involved
to get work done. To be effective, you need to make sure there’s a high
level of communication between these different roles so that the left hand
knows what the right hand is doing.

You can complicate accomplishing any form of integrated team by
how the company is organized. Product-based functional organizations
may not have (or control) all the necessary disciplines needed to support
this notion. Matrix-type organizations may not be able to support all matrix
demands as well. Some companies have a mix-and-match of matrix groups
for technical stuff (e.g., software engineers) and a cadre of corporate
groups (e.g., technical publications) that become additional matrix orga-
nizations for other nontechnical stuff.

Add the process world to all this. If you have processes as follows,
you are at odds with any kind of successful integrated teaming:

� Stovepiped processes by functional area or department. This pro-
vides a total disconnect between disciplines and roles beyond the
stovepipe.

� Process elements that are “owned” by a function within the com-
pany. Multiple process owners are a clue that you have a problem.

� Process elements that do not address or recognize the importance
of multiple roles in an end product. Roles connectivity to tasks
may or may not exist.

� Process elements created in a vacuum with no connectivity to other
process elements — which is key to deterministic handoffs and
interfaces.

� Lack of communication steps in your process elements — which
is a key ingredient to integrated teaming.

The software process model is excellent for integrated teams because:

� Activities have a built-in notion that multiple roles can be involved
in each and every step. The software process method discourages
the notion of stovepiping process elements by organizational
element.

� Work products are data that flow between activities and are well
defined — no matter who executes the receiving activity.

� Roles can be predetermined for each and every activity, thus
solidifying successful teaming arrangements.

Integrated Teams Using This Software Process Model � 181

� Software process model inspections encourage work product con-
sumer involvement as part of the inspection team. This includes
both internal and external customer involvement as necessary. For
key deliverables, the external customer (or designated representa-
tive) can readily be included in the inspection process.

� The software process model activity is the atomic process element
for earned value. That same activity team can readily be an inte-
grated team to support the stated roles.

IVDEPLOYING
THE SOFTWARE
PROCESS MODEL

185

Chapter 20

Deployment Foundation
Issues

Establish Key Roles/Charter for Deployment
The very first order of business is to firmly establish “who’s on first” for
getting deployment done. Senior management is crucial at this point for
making sure all their direct reports and managers are on board with this
and that it comes from the top. I mention this because at one place I
worked, we immediately got into interdepartment squabbling due to a
lack of senior management support and direction. If you hear a manager
say things like “do what you want — but don’t touch my area,” you will
have deployment problems.

I strongly recommend the formation of a process group as the focal
point for all matters related to process and process deployment. This
group has to have both the authorization and responsibility for process.
If you have a distributed set of “process owners,” consolidate that respon-
sibility and authority to this new group. My requirements for membership
in this process group are:

� Six to eight people. Larger process groups tend to be less efficient
and more cumbersome. A smaller group tends to be ineffective.
It is not necessary to have representatives from all corners of your
organization. It is important that these domain experts get called
in as necessary for process development and inspection. One
company had a 15-person process group established by a

186 � Defining and Deploying Software Processes

non–process-oriented vice president. It was a disaster to get a
repeatable quorum present for any meeting. We spent subsequent
meetings repeating stuff from earlier meetings to accommodate a
different set of participants at every meeting.

� Process-group commitments. My most successful process group was
when I insisted that members commit 5 percent of their workweek
to process-group meetings. Group members and their managers
had to sign the commitment. The 5 percent figure is doable —
even for busy people. Two one-hour meetings per week reflect
that percentage. I also had fixed time meetings both by time and
day of week. It became automatic to show up. To make this really
work, I was the process-group lead and I dedicated 100 percent
to this effort. I had clerical support services available to me. The
most effective process-group meetings are concentrated sessions
with a time-stamped agenda and where my support staff and I do
all extracurricular activities. You want to restrict extra time (beyond
actual process-group meeting time) needed by your key process
participants because they tend to be super busy.

� Showing up on time. We could not tolerate people wandering in
five or ten minutes late. We started promptly on the hour and
stopped promptly on the hour. At one company, I removed a
person for being late because it held everyone up. Promptness
became so important at one commercial company that other pro-
cess-group members would be “all over” tardy people. The tardi-
ness stopped quickly when peers got involved in any discipline.

� People who are process oriented. Do not have people in this group
who don’t fit this requirement! At one company, a vice president
insisted on naming people to the group (which became double
the size I had wanted) who were almost completely ignorant about
process. We spent almost all our precious process-group time just
getting these people to understand the most fundamental aspects
of process. It was painful. The VP wondered why progress was
slow. Duh!

� People who are opinionated — i.e., not afraid to speak up on issues.
You cannot afford to have people just show up and suck air out
of the room and not participate. The best processes I’ve developed
came from sessions where it was not clear who would walk out
alive after spirited process discussions.

� People that others look up to. They may be leads or workers. Every
organization has these types of people and they may not be in
the management ranks. The reason for this requirement is to form
an initial set of process champions right out of the box. These
initial process champions will develop more champions.

Deployment Foundation Issues � 187

� People who are willing to have an enterprise perspective versus an
organizational perspective. This could be a huge problem if pro-
cess-group discussions degenerate into preservation of turf — no
matter what. At one place, I actually went to a paint store, bought
disposable painting hats, placed a big “E” for enterprise on the
hats, and made process-group members wear the hats at our
meetings to reinforce that enterprise focus. It got a few laughs and
some grumbles but it worked.

� People who are not “who” oriented. A process group avoids the
“who” question and concentrates on the “whats.” Once the “what
you have to do” is addressed, the “who” looks after itself. When
process-group meetings degenerated into discussing “who does
this” and “who does that,” I routinely stopped the meeting and
reminded everyone that when you have a hole in the bottom of
the boat, this is not the time to discuss whose hole it is! I got
laughs but my point was taken.

This is your key group for process development and deployment.
It’s obvious, but if you have this marvelous group put together without

regard to an overall process architectural goal, you will fail. This is where
this software process model will help you enormously. Ideally, the process-
group lead has an in-depth knowledge of the targeted process architecture
with an initial goal to get the process group up to speed on this aspect
first — before any company processes are tackled. If you are under
pressure to “just get on with it” (without getting all process members up
on the target process architecture), you will fail. You will end up flailing
around for a large amount of time. You will also end up with a hodgepodge
of process elements and no encompassing architecture.

You want to end up with a hierarchy of goals supported by tasks that
are measurable for earned value and progress reporting by the process
group itself. Essentially, you want to create a balanced scorecard for
process progress. This makes your process group accountable for progress
just like any other project team.

For deployment success, I will repeat an important division of labor
within the process group itself. You absolutely need to develop advocates
for the process framework architecture itself and make sure the integrity
of the process model is maintained. This book will be invaluable for that
aspect. These people are very different from most process-group members,
who should be domain experts. The process framework advocates are
the folks that put the “meat on the bone” for process and they will make
sure that the process parts all fit within that framework architecture,
whereas the domain folks make sure to develop process elements that
are useful and make sense.

188 � Defining and Deploying Software Processes

I make this point because uneducated management personnel may
pressure you to “just get on with it” without considering the importance
of making sure that all process elements fit within a framework architec-
ture. The worst thing you can do is crank out process into an ever larger
pile of stuff that increasingly gets more and more useless for the organi-
zation. The main litmus test for process is that it is useful. I have run into
managers who seem to think that bigger piles mean success. In reality,
you may have just the opposite result. Resist those who are pushing you
in that direction for success.

The most successful process group I led was when I was not only the
lead but also the process architect and had management backing to do
what was needed. I mention management backing because at another
place, I had the exact same situation but had a boss who was so insecure
that all my suggestions and recommendations were either ignored or
rejected because they didn’t come from him! Anything from me was dead
on arrival. If you’re ever in that position, run, don’t walk! You cannot
succeed. There are people like that out there and (sadly) some are in
senior management positions. I simply didn’t want to manipulate him to
have him believe that all ideas were his ideas. That’s what it would take
to deal with this kind of person.

Ensure an Inspection Procedure Is in Place
When actually doing process deployment for the software process model,
there is one how-to procedure that absolutely needs to be addressed early
on: the inspection procedure. This particular procedure is fundamental to
all the activities within this software process model as a quality gate. If
you have a lousy how-to procedure here, you will have an awful time in
getting people to buy into this model. Conversely, a good how-to will
take off like wildfire and become engrained in an organization real fast.
The software process model wants quality built in the “what you have to
do” world by placing the quality responsibility on the producer’s back.
The inspection procedure is critical to this end goal.

I worked at one place that had a “review” procedure in place. It was
hardly used, did not work well, and the management protected it with
their lives. I had the gall to suggest a better way of doing things. I had
to present this new way at three different hearings to this management
group, finally receiving a disposition of “rejected.” They could not handle
the fact that this software process model allows for better mousetraps.
Both methods could coexist in this model. I knew that once the better
way was an option, the bad way would drop off for usage very naturally.
These managers had a personal and vested interest in preserving the status

Deployment Foundation Issues � 189

quo — regardless of usefulness. They had invested time in the existing
process element. They wanted no interlopers on their possessive world.
This company was very closed in their thinking. Consequently, we had
no effective inspection procedure at this company and had a huge
management barrier to ever getting a better way proposed or deployed.
This same company has the same ineffectual review procedure in place
today that is really bad and is barely used. Go figure!

In another job, I had the privilege of working for a section of a very
large company and had incredible support from the head person. In that
environment, I was able to provide this part of the company with a slick,
efficient, Web-based inspection procedure that was up to ten times faster
than the existing inspection procedure. My new inspection procedure also
produced higher-quality inspections and had built-in defect prevention to
boot. What happened was incredible. The word spread like wildfire within
my own group about how great this procedure was. That worker enthu-
siasm spilled over to other organizational elements that clamored to get
onboard with our solution. I was deluged with training requests and guest
appearances to various “all-hands” meetings regarding this way of doing
things. I didn’t have to do a thing to sell this. It sold itself. I knew that
the software process model approach encourages better ways of doing
things and encourages variances in scale or location quite naturally.

Why is the inspection procedure so critical to this software process
model?

� Every activity at the “what you need to do” level has built-in
inspections across the board (i.e., the inspection procedure is a
how-to elaboration on all the “Inspect” verbs in all activities).

� A bad inspection procedure can have a huge detrimental effect on
all activities’ elapsed completion times. Conversely, an efficient
inspection procedure can vastly improve activity execution times
across the board.

� A good inspection procedure increases work product quality and
reduces rework. Rework is expensive and should be avoided at
all costs.

� A good inspection procedure gives you the basis for defect pre-
vention — in addition to defect detection. With the software
process model, you now have the ability to ask, “Where should
this defect have been found?” This provides the mechanism to
improve any earlier inspection checklist associated with any earlier
work product. With this inspection procedure you have a built-in
process-improvement mechanism in this software process model.

� Finally, an efficient inspection procedure will be used and will
become part of the company culture. A bad one will not be used.

190 � Defining and Deploying Software Processes

Get at Pain Issues
To be successful with process deployment, you really want to keep coming
back to pain issues for any organization. The big question is, how do
you do that? And how do you do it so that the data is believable? This
is independent of the type of process model you’re using.

You will achieve higher levels of buy-in from all levels of the company
if the perception is that you’re solving real-world problems. If you separate
process initiatives from “pain” issues, you will get a lot of cold shoulders
about this process stuff. An absolute killer is to tie process initiatives to
a maturity model (like CMMI) in a vacuum. As I mentioned before, a
particular model or standard can be viewed as the flavor of the month.
Some people may view all this with an “if I keep a low profile, this too
shall pass” attitude. There’s nothing like solving real problems — especially
if people can reduce their 60-hour weeks to something more reasonable.
I learned one big lesson when I got married — don’t discount the power
of a spouse! As Dr. Phil has said repeatedly, “If Mom’s not happy, no one
is happy.” For most employees, you really have a shadow employee to
deal with as well — the employee’s spouse. If the employee can get
home earlier, play with the kids more, do family things more, etc., how
do you think that family unit is going to support you? Do you think you’ll
get early support for your next process initiative? The people part of
process improvement can be enormous as a huge positive factor or a
huge negative factor. The process group needs to come to grips with this
aspect of deploying new processes in an organization. It is not enough
to have a marvelous process framework architecture into which all the
process parts fit nicely.

Personal interviews have mixed results for actually getting at pain
issues. Can you be trusted as an interviewer? Will the person being
interviewed be forthright or will he or she give you politically correct
data? Will there be retribution if he or she dares to be totally honest? For
these reasons, I would not get process problem data this way.

Two companies where I worked tried the survey route. In my opinion,
surveys are best suited for getting simple check-off answers to specific
questions. They are not suitable for open-ended responses. I still laugh
at a British sitcom called “Yes, Prime Minister,” where you can organize
sets of questions and get a totally opposing poll result based on the
question set — even by surveying the same people. My point here is that
polls and surveys can be manipulated. Busy people tend to kick and
scream about surveys and certainly want to get them off their plates as
fast as possible. This means that open-ended surveys don’t end up with
a lot of useful data. For these reasons, surveys are not the way to go.

As an adjunct for getting at pain issues, always leave the door open
for having process practitioners critique or suggest things directly or via

Deployment Foundation Issues � 191

the Web. It’s a good idea to set up a “contact us” kind of Web capability
so that anyone can submit issues, complaints, or recommendations directly
to the process-group members. It is absolutely true that the people closest
to the action are also the best ones to suggest improvements. If someone
is taking the time to vent about something, it is probably important. For
process people, the entire organization population is your customer.
Remember that.

An Implementation Technique for Getting at Pain Issues
I have used two of the 7 M tools (modified somewhat) very successfully
to get at both enterprise process pain issues and project pain issues (as
a project postmortem). These two techniques have fancy names:

� Infinity brainstorming
� Interrelational digraphs

I don’t use these terms when I conduct these techniques — I just call
them “focus groups,” “action groups,” or “postmortem.” Using fancy terms
will turn people off. Don’t do it. A focus group is fast (it usually takes
less than two hours) and is totally anonymous (no retribution). This
particular technique levels the playing field for quiet, introverted people
versus loud, dominant people. That quiet, shy person may be the very
person with a lot to express anonymously.

The most successful focus group in my experience was done with
about 35 people in a single session of about an hour and a half. At this
point, you’re probably thinking it’s impossible to have a successful session
with 35 people. Conventional wisdom says the success of any meeting is
conversely proportionate to the number of attendees. The higher number
of people produces lower success. The lower number of people produces
the higher success. This technique is just the opposite. You need at least
12 people to be successful. A small group simply won’t work for this
technique.

Here are the supplies needed to conduct these sessions:

� Large Post-it notes — enough for about 20 Post-its minimum per
participant.

� Butcher paper or flip-chart paper — these are taped to three walls
of the conference room. Four or five charts are taped to one wall.
Five to six charts are taped to the opposite wall. One chart is taped
on a third wall (for infinity brainstorming rules). One chart will be
used to capture the major impact analysis after we collect the data

192 � Defining and Deploying Software Processes

from the infinity brainstorming part of the session. The size of the
room will affect how many walls are actually used. No matter what,
you need two walls for charts.

� Masking tape for the large paper sheets above.
� Fine-point felt pens — enough for participants and facilitator.

You need a large conference room that will hold all the participants
and has wall space onto which you can tape large paper charts on three
walls.

Reserve this room for about two and a half to three hours to allow
time for the facilitator to set up, for the actual session, and for wrapping
up. The participants show up about half an hour after the room’s reserved
start time. At that point, all supplies should be out and the paper should
be up on the walls.

This is what you need to do ahead of time:

� Write down the session rules on a single chart. The rules are:
– One finding per Post-it
– You can write as many Post-its as you want within the allotted

time
– Use only the supplied fine-point felt pen for writing
– No handwriting — print your finding
– No names (i.e., anonymous)
– Don’t get personal — it’s process related
– Be businesslike (not crude) in your remarks
– Make finding clear as to your intent: Can another person under-

stand your point?
– Be quiet when writing findings

� Take a few minutes to explain what you will be doing to the
assembled group. Make sure the group knows about your expec-
tations and desired results. I have even put this in written form
and sent it to the group ahead of time to make sure that everyone
is onboard with this technique. This sets the foundation. (5 minutes
maximum)

� Announce that participants are to write one finding per Post-it note
on as many Post-it notes as they want — within a ten-minute time
frame. This is a totally quiet part of the technique. After writing,
participants take their individual Post-its and stick them onto one
wall’s paper charts. Random placement is in order. This part actually
creates all the pain issues as experienced by the participants in a
nonretributional way because no names are used. (10 minutes
maximum)

Deployment Foundation Issues � 193

� Explain that the findings should be placed into “like” groupings
by placing Post-its from one wall into Post-it groupings on another
wall. Like things should be clustered together; some adjustments
may need to be made later. Also point out that there is a prede-
termined category called “orphans.” (When conducting a project
postmortem, I add a “good” category for the things we did right
on a project.) Forget trying to establish any category names. (About
1 minute)

� Have everyone stand up, grab a pile of Post-its from one wall, and
place them on another wall as Post-it clusters. Remind them that
once a finding is placed, it can’t be removed. Some talk among
people can happen at this point. If you do this correctly, you will
try to limit the category clusters to about 10–12 groups at a
maximum. Have orphaned Post-its be placed under “orphans.”
(About 10–12 minutes)

� Identify a “reader” from the group. This individual will read the
Post-its to the entire group and possibly rearrange some Post-its.
(About 1-2 minutes)

� Have the reader stand up and read each Post-it finding in each
cluster out loud. This accomplishes the following:
– Everyone gets to hear all the findings.
– Everyone gets a chance to persuade the reader to remove a

Post-it if it is not in a “like” group.
– Finally, the group establishes a mailbox name for each cluster

of Post-its. Keep the name short if possible. (For project post-
mortems, I found that using the names from one project as
predetermined names for subsequent postmortems was helpful
for metrics data. However, one group disagreed with this and
felt it was stifling to have a set of mostly predetermined names,
especially when they disagreed with an earlier group over those
names.)

� The reader repeats this for all Post-it clusters until all cluster groups
have category names. During this time frame, some Post-it notes
may be moved from one group to another. Finally, an attempt is
made to place any and all orphaned Post-it notes into a named
category. If not, they stay as orphans. This part takes the findings
and attempts to categorize them for the interrelational digraph part
of this technique. (15–20 minutes)

� The moderator takes a large blank matrix and writes all the category
names down the left side of the matrix and then writes the same
set across the top of the matrix. The moderator shades out where
each category intersects with itself. You should end up with a
diagonal line of shaded boxes from the top left down to the bottom

194 � Defining and Deploying Software Processes

right in that matrix. This is the foundation for the interrelationship
digraph. We want to end up with some idea of what we need to
work on first, second, third, etc., to get the biggest bang for the
buck in process. (About 2 minutes)

� The moderator reads each category name down the left side of
the matrix, and asks for each, “For this category, what are the
other categories that have a major impact on it?” The group
participates in identifying other categories that have that major
impact. The moderator simply places an “X” across the row for
that targeted category. This gets repeated for each category name
down the left until done. (10 minutes maximum)

� The moderator tallies up the number of “X” marks per column and
writes the totals at the bottom of each column. This provides a
good idea of what categories should be attacked first that have
the most impact on other things. (About 2 minutes)

� Thank the group for their time and dismiss them.

Is this a perfect technique? No. Is it fast? Yes. Does it get at process
pain issues? You bet. By spending about one and a half to two hours on
this, you will extract pain issues from everybody. There is no retribution
because there are no names involved. The quiet person can write stuff
down anonymously just like the extroverted person can. The inputs come
from the very people seeing and suffering from those pain issues.

What I have done after the session is to record all the findings by
category into an Excel spreadsheet. This is a great application for counting
things and coming up with percentages. This completed spreadsheet gets
sent back to all the participants immediately. I have cautioned this group
to keep this data under wraps because it is confidential.

The next step is to convene a senior management meeting to go over
the findings and categories. The senior staff needs an understanding of
what went on and that this technique gathers data rapidly. As a moderator,
I take the top three categories in particular and concentrate on those for
this senior management group. This is done to:

� Acquaint the senior management on pain issues “from the trenches”
and in a written form (not sanitized)

� Identify the top three categories that, if worked, should give the
biggest bang for the buck in improving or removing pain issues

� Have this top-level management group develop an initial plan to
attack the top three categories (or a subset of them)

Finally, I arrange for a feedback meeting with all the participants, so
that a member of senior staff:

Deployment Foundation Issues � 195

� Tells participants that management has heard their pain issues
� Informs participants on the plan to attack pain issues

This feedback meeting can be powerful to all involved. It closes the
loop with participants and makes them feel like they have not wasted
their time. It involves senior management directly with unsanitized pain
issues. They can’t say they didn’t know about this or that. There’s no
place to hide. They have to do something about it. It does cause action.

When any improvements are made, you will keep going back to these
pain issues. You don’t tell the rank and file that you’ve now satisfied the
first goal of some part of the CMMI! They will not relate to that at all.
Tell them that these processes directly address the pain issues that were
established. When regular folks get to see less pain, you will rapidly
develop more and more champions to your cause. If upper management
sees smoother operations, better quality, smaller time-to-market costs,
better repeatability, etc., which all contribute to a healthier bottom line,
you will get more champions at that level.

You can do this periodically to see how you’re doing. You can do this
as part of a preappraisal drill for process maturity. You can do this as a
preaudit drill. The periodic approach will give you some powerful metrics
related to pain issues. There’s nothing like solid numbers to show your
workforce that you are serious about reducing workforce pain.

Develop a Top-Level Life-Cycle Framework
This may be obvious but you really need to provide that top-level life-
cycle framework into which to fit all the process pieces being developed.
Without that top-level picture, there is no cohesive way of creating process
elements that “fit” into anything. One vice president I worked for insisted
on forming various Process Action Teams (PATs) to get some deployment
items done without this in place. I was even ordered to get these groups
going despite my strong objections. The results of this VP’s order were
absolute chaos and a huge waste of time. I sure hope none of you will
deal with some of the characters I’ve had to endure for process develop-
ment and improvement! People like that are out there. Some of them
even get promoted!

Hopefully, the top-level life cycle has been developed before insertion
takes place. You can do a subset top-level life cycle if your initial
deployment efforts only deal with that part of the overall life cycle. For
example, if you are attacking proposal-related processes, you can get
away with just developing the proposal part of your life cycle. The bottom

196 � Defining and Deploying Software Processes

line is that you absolutely need a framework into which to fit any process
elements, so that you develop once and don’t need rework.

With that top-level life cycle laid out with PADs per life-cycle phase,
you now have the ability to tie your pain issues to activities and to
associative procedures. You also have the ability to tie event-driven
procedures to any and all life-cycle phases.

197

Chapter 21

Deployment Issues

General Deployment Issues
Deployment problems are independent of process models. The software
process model deployment has some unique challenges to overcome that
I’ll cover later. In general, deploying processes is the most difficult thing
to do because it involves:

� Changing a company culture
� Fighting company inertia
� Fighting company politics
� Attacking sanctity of existing processes
� Overcoming possessiveness of certain individuals about any exist-

ing process basis — whether the process is working or not
� Fighting company fiefdoms
� Fighting company tribal knowledge
� Challenging people’s positions

These issues manifest themselves with overt and not-so-overt back-
stabbing, character assassinations, and even sabotage. I know because I
have run into all this personally. You can walk into a company that is in
total disarray for processes and people will fight you for trying to put in
a successful process architectural model. The company can be in a death
spiral and you can still experience people who will defend their turf no
matter what. The politics of this can be fierce. At one company I was

198 � Defining and Deploying Software Processes

fired for trying to fix their major process issues. The managers viewed
me as a threat to their existence. One vice president wanted a “yes man”
and was horrified when I wasn’t one. I had the audacity to question things
and suggest improvements for the good of the enterprise.

My experience has shown that you’ll have the biggest conflicts over
any deployment effort with middle and upper management. Senior man-
agement is notorious for not even understanding this whole area at all.
Practitioners and leads will follow process if it is simple to use and is
considered helpful. The software process model certainly meets that
criterion. At another place where I worked, I had top-level support and
massive low-level support that collectively put the squeeze on all the
middle managers from both directions. It was an awesome thing to
experience personally. Those foot-dragging middle managers were beaten
up from both sides. Some management holdouts were forced out over this.

In addition, the process person who questions existing situations is
considered the enemy within. I have been in that very position. People
have looked at me with a “who is this person” look when I dared to
question the norm. You run into people that will tell you things like “that’s
just the way we do it here” as if that’s an over-and-out statement. You
will be extremely lucky if you are doing deployment in an organization
that is embracing it and totally supporting your efforts.

All in all, people really fight you when you try to deploy the process
model. You can be viewed as a threat to people’s livelihood. The manager
or director may be at that position level based on a responsibility head
count. Pity the person who suggests doing things more efficiently if that
level in life is threatened. I have run into whole sections that had a role
once and are only there because of the “we’ve always done it that way”
mentality. The government is notorious for this with overlapping (and
opposing) agencies and responsibilities. Trade unions are also notorious
for keeping the status quo — even when it makes no sense at all, such
as when there were railroad union fights to keep firemen on locomotives
long after steam engines went away. Once certain ways of doing things
are established, it literally takes an act of Congress to remove them. The
process person cannot assume that company goals for process improve-
ment align with individual goals. There will be winners and losers. It
helps to develop a thick skin as a process person because of all of this.

It is desirable to have both senior management and the process group
take leadership change training. This kind of training really focuses on
the change model, leadership actions needed when people are traversing
the change model states, and specific tools to help that cultural change.

Deployment Issues � 199

Deployment Issues for This Model
Remember that you need a what–how separation as a root goal. You need
to mandate the “what” level while allowing flexibility and extensibility at
the “how” level. I am also a big proponent that not every “what” needs
a “how.” Be sensible about this. Remember that success is not based on
the number of process elements but on how easy it is to get to the process
element of interest. Think about the Internet — you have a huge pile of
potential Web pages out there but you want to get to what you want in
the least amount of clicks. You want robustness behind the scenes. You
want conciseness for any target Web page. An organization gets very upset
if you present the process practitioners with huge scrollable lists of things.
You want to head toward a very distributed Web-based solution that pays
attention to process usability. Most process elements should have no (or
limited) scrolling views.

These are some general things to keep in mind. The software process
model brings some other aspects that you might encounter as “push back”
issues:

� If piles and piles of processes are the existing base, you will
encounter massive resistance to any restructuring of the existing
process elements into a cohesive architecture — even when it
makes sense. You may find existing “process owners” who are not
about to have you mess with their “babies.” It doesn’t matter if
their “babies” are totally useless!

� If you have process owners per part of an organization, they will
resist giving up power in favor of transferring this process owner-
ship to a process group.

� You will run into the “one-size-fits-all” people who do not under-
stand that this model allows (and encourages) different ways of
doing things. This will be a direct threat to them when alternative
ways are introduced into the model.

� If Web control is vested in one part of the enterprise, you will
encounter resistance to an alternative top-level life cycle–based
Web page presentation versus what is there now. You will also
get into power and control issues unless you have incredible senior
management support.

� If you are in a paper document–oriented company, you will have
a fight on your hands over the use of a single date as the version
identification on your software process elements. There are people
out there who are “stuck” in the ’70s thinking that you have to
have revision letters and numbers in order to identify any version.
Stay the course on this issue.

TE
AM
 F
LY

200 � Defining and Deploying Software Processes

Identify Candidate Projects
This is probably the most critical aspect of doing any kind of process
deployment. When selecting candidate projects, don’t ignore the people
aspect involved in those projects. I mention this because at one company,
the project selection was ideal; however, the people involved actually
sabotaged much of the deployment efforts due to their personal biases
and agendas.

Candidate projects should:

� Be at a point in the life cycle ahead of where you want to do
process deployment ideally. For example, if you were addressing
test-related processes, a project at the early implementation stage
would be ideal.

� Have leads and managers who are process oriented and actually
want success in the deployment effort.

� Be small in scope and size for deployment manageability. Don’t
take on huge projects as candidates if at all possible.

� Be small in number. You just need some projects as guinea pigs.
Don’t take on the entire enterprise for deployment.

Train Candidate Personnel
You have your candidate projects selected and you have leads and
managers who are at least supportive of what you’re trying to do. Now
you need to make sure that affected personnel are trained in the new
processes. You can’t assume that they will “pick up” the new stuff. If you
do, deployment will probably fail.

Training should cover:

� Overview training on the software process model approach to
process

� Life-cycle training with a specific emphasis on PADs involved
� Specific procedures needed on drill-down
� Inspection procedure training in particular

Your staff might have had some of this earlier. I have found that it
doesn’t hurt to hit these topics again to give an edge to deployment
success.

Deployment Issues � 201

Assist Candidate Personnel
You can’t just train people on these candidate projects and then say “good
luck” to them. Make sure that your process-group members are geared
up to assist these folks. That assistance might be:

� Embedding process people in the project during the deployment
time frame

� Establishing a process “help” line
� Just-in-time training of key personnel related to process usage

Conduct Postmortem — Candidate Projects
After each candidate project “passes through” the deployment process
usage time frame, take the time to conduct a postmortem with the project
personnel related to the newly deployed processes.

You can use the same technique for getting at process pain issues as
you do for getting postmortem results. The postmortem should be done
as soon as possible after the deployment period so that everything is fresh
in people’s minds. You want honest inputs on what worked and what
didn’t work, etc. The beauty of the technique I have described is you’ll
get more honesty than you could ever want. As before, gather the findings,
place them in a spreadsheet, and make sure the process group addresses
the findings and reports back to the participants.

The result of any postmortem is some form of action. It is useless to
conduct any postmortem if you’re not willing to do anything about it. I
mention this because a postmortem requires the process group to make
necessary changes based on these inputs. It is not good enough to make
process modifications. You may need to adjust training and actually retrain
people related to the changes.

Rollout to Organization
After getting some real-world experience with some candidate projects,
the time has come to roll out the processes throughout the entire orga-
nization. That’s easier said than done. A complete rollout requires a rollout
plan. Most companies have a set of projects that have different needs and
are at different places in the life cycle. People involved in project main-
tenance may be deferred for process training if processes are develop-
mental in nature. Some may be critical. For example, requirements

202 � Defining and Deploying Software Processes

management processes require new or upcoming projects to be done first.
You might decide on just-in-time rollouts throughout the organization for
your rollout plan. There’s a lot to be said for just-in-time training because
most of us forget items if we don’t use them in a timely fashion.

Publicity is great during this period. Advertise what you are doing and
how you plan to do it. A process-group bulletin or newsletter can be
effective. All-hands sessions can also be effective related to rollout plans
being disseminated to the troops.

203

Chapter 22

Post-Deployment Issues

Assist Organization Personnel
Just as with candidate projects, be prepared to assist people in becoming
successful using any new processes. During rollout, the process group
may get stretched thin doing this. I found that mobilizing candidate project
personnel who are “sold” on what you are trying to do is far better than
being one of those pesky “process people.” You’ll get a higher success
rate when one practitioner can assist another practitioner.

The beauty of a rolling rollout approach is that you get more and
more trainers and champions from earlier rollout projects than later ones.
There’s a certain amount of synergy and energy generated naturally if
people are truly excited about what they are seeing and using. You will
not have problems in spreading new processes throughout the organiza-
tion. The reverse is also true. If the practitioners consider any process
element a dog, that word will also spread.

I go back to a basic tenet that any process person needs to keep in
mind — process is there to support the organization, not the other way
around! Not every “what” needs a “how” procedure. Process people need
to be sensible about this. I have dealt with highly technical engineering
staffs who get very upset with low-level processes that they feel insult
their intelligence. I have a solution here — don’t do it. Leave processes
at the high-level “what you have to do” steps and don’t bother with any
“how-to” elaboration. The software process model is flexible about this.

204 � Defining and Deploying Software Processes

Collect Process Metrics
The software process model collects process metrics in a nonintrusive
way via the inspection procedure and time-card association.

Because an “Inspect” step exists in all software process model activities
and is done on all work products in your life cycle, you have a marvelous
way of getting some real insight into the execution of this model approach.
In addition, if you tie your time-card system to your software process
model activities, you tie process execution to actual costs. We’ll look at
each for metrics collection value.

Inspection Procedure

Here’s what can be derived from this procedure:

� Number of defects by activity
� Number of defects by work product
� Number of defects by life-cycle phase
� Number of defects by activity group (e.g., design, test, etc.)
� Number of defects that should have been caught earlier in the life

cycle
� Cost of inspections as a quality gate
� Graph of early life-cycle defects versus testing defects
� Percentage change in inspection checklists by phase from defect

prevention aspects of the inspection procedure

Time-Card Association for Actual Charges

Here’s what can be derived from this connection:

� Actual costs per activity execution
� Actual costs per activity group
� Actual costs per life-cycle phase
� Actual costs of all activities related to a specific part of the system

The former provides metrics related to the targeted system. The latter
provides metrics on the software process model execution itself.

Post-Deployment Issues � 205

Conduct Postmortems — Organization
It is vital that postmortems be conducted across the organization on the
rollout processes.

The easiest way of doing this is by project, using the technique
described for getting at issues (and what went right) and summarizing
across these projects for an organizational perspective. For this kind of
postmortem, you will find it useful to have a mostly common set of
category names to compare apples to apples. I use the term “mostly”
because the real world is almost never that clean. You may run into issues
in one project that didn’t show up in other projects.

207

Index

7 M (Management) Tools, xiii
getting at pain issues with, 191–195

A
Accessibility

to how selectors, 89
importance to process success, 126
integrity of, 125

Active Web storage repository, 120
Activities, 73–78

actual costs of, 204
aligning with project estimations,

166–167
auditability of, 85
as centerpiece of software process

model, 86
connection to authority level, 50
create/update integration plan, 62
create/update integration test, 64
create/update unit test, 63
criteria for, 74
defined, 13
design down, 61–62
design unit/low-level design, 62
graphical step-based format, 76–77
implement unit, 63
inspections built into, 71
integrate units, 64
as key process element, 43–48
linking work products to, 95

mapping to functional threads, 24
predecessor/successor relationships to,

75
production of work products by, 74
on repeatable level, 50, 73
as self-contained actions, 74
similarities to scheduling tasks, 37
tabular format, 76
targeting highest instance count for

process improvement, 174
test unit, 63
time-card charges for, 174
training for, 110
as verb-based items, 22
vs. work products, 25
as what-level process elements, 36

Activities lists, in Web implementations, 128
Activity dependencies, 79–80
Activity description, 79
Activity diagrams, xi

activity format, 78
graphical format, 77
tabular format, 76

Activity drift-down, 45
Activity estimations, 84
Activity groups, 13, 57, 83

actual costs per, 204
Activity inputs, 80
Activity metrics, 82
Activity name, 79
Activity objects, 42
Activity outputs, 82

208 � Defining and Deploying Software Processes

Activity ownership, 46
Activity roles, 83–84
Activity steps, 80–82
Activity Web page, 142–144
Actual costs

associating with time-card charges, 204
capturing by activity names, 168
comparing with industry standards, 174
training for leads and practitioners in,

153
tying to process execution, 204
use in future project estimations, 168

Anonymity, benefits for process
improvement, 192–195

Architectural models, xvii
Assessors, process needs of, 11
Asynchronous events, 5, 54

disconnection from project schedules, 20
in EDP lists, 59
identifying, 24
mapping of, 57
by PAD level, 41
procedures as elaborations of stimuli

from, 91
Auditability

of activities, 85
of subcontract management steps, 178

Authorities lists, in Web implementations,
130

Authority level, 49–51
government regulations as, 14
and how selectors, 87
in software process model pyramid, 28
training for, 109

Authority-level process directives, 43
Awareness training, 152

B
Backstabbing, 197
Base Station Controller, xiii
Begin steps, 80–81
Best practices, 6, 43
Boilerplate text, in work product templates,

97

C
Candidate personnel

assisting, 201
training, 200

Candidate projects
conducting postmortems for, 201
identifying, 200

Capability Maturity Model--Integrated
(CMMI), xvi, 8, 11

subcontract management in, 175
Charge numbers

components of, 171
example breakdown, 173–174
hierarchy of information on, 172

Checklists, procedures as simple, 92, 147
Cinard, Dave, xiii
ClearCase

process repository management with,
119

for software version control, 92
Clowes, Theresa, xiii
CMMI. See Capability Maturity Model--

Integrated (CMMI)
CMMI compliance matrix, 30, 113
Color coding, of process elements, 130
Colored text, embedding work product

guidelines as, 102–103
Commercial software development, xv

and competition/survivability issues, xx
Company inertia, fighting, 197
Company policies

compliance matrix for, 113
fighting, 197
role of process elements in, 49
titles inappropriate in, 51
training for, 109

Compliance
as need of internal and external

assessors, 11
as need of quality management, 11
process traceability for, 113–115

Compliance mapping, 30
Compliance matrices lists, in Web

implementations, 129
Compliance matrix, 13, 51, 114
Compliance problems

and failure to map procedural elements,
7

with government-imposed process, xix
Computer languages, target independence

of process approach from, 35
Conclusion segment, 55
Configuration management, and

subcontract management, 178

Index � 209

Configuration Management Library (CML),
119

Connectability, 36
Connecting activities, in PADs, 46
Consistency of representation, 21
Content integrity, 125
Corporate culture changes, 197
Corporate inspection procedures, 98
Cost estimates, 47–48
Cost reductions, 11
Create/update integration plan activities,

62, 66
Create/update integration test activities, 64
Create/update unit test activity, 63
Critical design reviews, 99
Customer classes, 8–9, 151

general customers, 151–152
leads and practitioners, 153
line and project management, 152
quality and process groups, 153–154

Customer-driven changes, 173
Customer involvement, in integrated teams,

179
Customer needs, 11
Customer satisfaction

improved through good process, xvi
management desires for, 11

D
Data Item Descriptions (DIDs), xvi
Database philosophy, 22
Date fields

for procedures, 147
version control in process Web pages

with, 127
Date formats, for process versions, 121
Defect prevention, 189
Defects, deriving from inspection

procedure, 204
Deliverables, 23
Department of Defense (DoD) contract

environment, xv
customer involvement in, 179
inspection procedures in, 99
lack of reusable software components

in, 167
life-cycle model representation, 55–56
project estimation concerns, 165
subcontract management in, 175

Dependencies, and supplier management,
177

Deployment issues, xxi, xxii, 185, 197–198
accessing pain issues, 190–191
assisting candidate personnel, 201
conflicts with middle management, 198
failure of maturity models to address, xvi
identifying candidate projects, 200
implementation technique for accessing

pain issues, 191–195
in-place inspection procedures, 188–189
key roles establishment, 185–188
postmortem-candidate projects, 201
rollout to organization, 201–202
and software process model, 199
top-level life-cycle framework

development, 195–196
training candidate personnel, 200

Design decomposition, 162
Design down activities, 57, 61–62
Design methodologies, target

independence of process
approach from, 35

Design unit activities, 62–63
Detail, work instructions vs. procedures, 88
Development costs, reduced through

process improvements, xii
Developmental life cycle

customer visibility in, 179
role of process elements in, 49

Document orientation
difficulties with Web solutions, 126
in government contracting companies,

21
Document production

equating to project progress, xv
predicating on completion of tasks, 23

Document version control, LiveLink for, 92
DoD-Std-2167, xv, 3, 4
DoD-Std-2167A, xv
Driver, relationship to what-level processes,

7
Durations, in project estimation, 165
Dynamic analyzers, 174

E
Earned value, xxi

activity as software process element for,
181

as result of schedule task completion, 20

210 � Defining and Deploying Software Processes

Ease of use. See Accessibility
EDP lists, 13
Elaboration threads, 162
Elapsed completion times, 189
Embedded guidelines, 102
Employee job satisfaction, improved

through process improvements,
xii, xvi

Employee promotions, role-based training
for, 111

End steps, 81
role in metrics collection, 156
role in project estimation, 167–168

End-to-end life cycles, 13, 20, 37, 45, 59–73,
75

diagram, 53–58
Endgame requirements, xxi
Engineering flows, 39, 40, 54, 55
Engineers, 39
Enterprise perspective, vs. organizational

perspective, 187
Entry criteria, for inspection checklists, 101
Estimates, 47–48, 84

and activity groups, 83
PADs as aid to, 57
process training for, 153

Estimation data, 165
Evaluation procedures, 99
Event-driven procedures (EDPs), 13, 38, 41,

54
nonschedulable, 43
phase-dependent, 41
phase-independent, 41
in repeatable level, 59
segment-dependent, 41

Excel spreadsheets
embedding hyperlinks in, 122
use in traceability matrices, 114
using for postmortem meetings/pain

issue findings, 194
as work products, 95

Execution estimation, 159
Execution segment, 55
Extensibility, 17

in how selector Web pages, 144–145
via how selectors, 87
in work product selector Web pages,

145–146
External model appraisal, xxii

F
FAGAN inspection technique, 98
FDA regulations, lack of what/how

separation in, xix
Feasibility segment, 55
Fiefdoms, fighting, 197
Financial costs, in project estimation, 165
Findings

in postmortem meetings, 192–195
using spreadsheets to organize, 201

Flexibility, 17, 35
in how selector Web pages, 144–145
through work product selector Web

pages, 145–146
via how selectors, 87

Flowcharts, procedures as, 92
Focus groups, 191–195
Form examples, 13, 105

at support level of pyramid, 29
Form guidelines, 13, 105

at support level of pyramid, 29
Form inspection checklists, 13, 105
Form matrix, 13
Form selector Web page, 146–147
Form selectors, 13, 47

color coding, 131
format of, 104

Form selectors lists, in Web
implementations, 129

Form sets, 14, 42, 104
Form sets lists, in Web implementations,

129
Form templates, 14, 105
Forms, 103–105

association with procedures, 103
form examples, 105
form guidelines, 105
form inspection checklists, 105
form templates, 105

Forms training, 110
Framework, 33. See also Process framework

architecture
separating from process elements, 33

Functional business areas, 58
activity ownership by, 46
mapping horizontal task collections to,

20
repeatable-level training for, 109
representation in Web implementations,

54
separation of, 3

Index � 211

in software process model pyramid, 29
training for, 108, 153–154

Functional descriptions, 14
Functional threads, 20

mapping activities to, 24

G
Gate concept, 46
General training, 108
Get steps, 81
Global asynchronous processes, mapping

of, 57
Global notify lists, 48
Go/no-go decision points, PAD locations,

56
Government contracting software

development, xv, 21
Government-imposed process, xv, xvi, xvii
Government regulations, xviii

as authority level in process model, 14
compliance matrix, 30, 113
as high-level requirements, 7
hyperlinked references to how selectors

from, 89
need to address only high-level

requirements, xix
procedures as elaborations of, 91
as process stakeholders, 9
role of process elements in, 49

Government standards, 14, 21
compliance matrix, 30, 113

Graphical activity format, 76–77
Guidelines

embedding in templates, 102
vs. standards, 102–103
for work products, 102–103

H
Headers, avoiding in Web pages, 92
Hidden text, embedding work product

guidelines as, 102
High-level requirements, 3, 13

on authority level, 50
how-tos and, 5
policies as, 14
vs. low-level work instructions, xix, 12

High-level steps, 84
and how selectors, 87
procedures as elaborations of, 91

requirements for, 80
tabular and graphical presentations of,

76–77
Highest instance count, targeting process

improvement from, 174
Holl, Chris, xiii
Horizontal traversal assists, 39
Hospital systems, xix

process elements in, xvii
How-level processes

flexibility and extensibility in, 8
need for what-level processes, 77
separating from what-level, 34

How selector Web page, 129, 144–145
How selectors, 14, 46, 77, 87–90

color coding, 131
as front ends to procedures/work

instructions, 90
at implementation level, 29
use by activities, 84

How-to process elements, 5, 14, 42
asynchronous events and, 5
creating scalable, xix
rationales for, 6–7
selection criteria for, 89–90
unique vs. phase independent, 41
usefulness of, 35

HTML files, saving from Word, 127
HTML-tagged date fields, 127
Hyperlinks

embedding in MS Office products, 122
for how selectors, 88–89
to metrics, 144
more-based, 143
offloading verbose information via, 126
to roles, 144
to training packages, 144
for work product sets, 97

I
Implement unit activity, 63
Implementation

of software process architectural model,
xxi

in software process model pyramid, 28
Implementation level, 87

how selectors in, 87–90
procedures in, 91–94
training for, 110

212 � Defining and Deploying Software Processes

Implied directives, 49, 51
and how selectors, 87

In-country subcontractors, 176
Industry regulations, role of process

elements in, 49
Inertia, fighting corporate, 197
Infinity brainstorming, for pain issues,

191–195
Input-output transformations, 15, 24, 58
Input sources, trustworthiness of, 75
Inputs, to PAD phase, 39
inputs/stimuli lists, in Web

implementations, 128
Inspect steps, 81

consumer involvement encouraged in,
181

Inspection checklist format, 100
Inspection criteria, 101–102
Inspection meeting agenda, 93
Inspection procedures, 99

characteristics, 93–94
deriving number of defects from, 204
establishing for deployment, 188–189
optimizing process for, 174
in post-deployment phase, 204
training in, 154, 200

Inspections
built into process architecture, 71, 98,

189
validation of, 85
vs. reviews, 99

Integrate units activities, 64
Integrated teams, 179–181
Integration plans, 62, 86

importance in life cycle, 162
scheduling to level of, 66

International proposals, supplier selection
in, 176–177

International standards
as authority level in process model, 14
as high-level requirements, 7
hyperlinked references to how selectors

from, 88
procedures as elaborations of, 91
role of process elements in, 49
training for, 109

Interprocess layers, 29
Interrelational diagraphs, in pain issue

research, 191–195
Intranet implementation, 27. See also Web

implementations

activity Web pages, 142–144
avoiding breakdown by company

functions, 131–132
basics of, 125–131
form selector Web pages, 146–147
how selector Web pages, 144–145
multi-life cycles for process in, 133
phase top-level Web pages, 139–142
segment top-level Web pages, 136–139
top-level root Web pages, 133–136
work product selector Web pages,

145–146
ISO 9001, xvi, 7, 111

compliance matrix for, 30, 113
use of traceability matrix spreadsheets

for auditors, 114
ISO 9000-3, xvi
ISO 9001 certification, 8

J
Just-in-time integrations, 162

in rollouts, 202
Just-in-time training, 201, 202

K
Key roles, establishing for deployment,

185–188

L
Leadership change training, 198
Leads

assignments to schedule tasks, 19
documenting in schedules and activities,

42
interviewing for input-output

relationships, 24
interviewing for predecessor/successor

relationships, 23
manual project estimations by, 166,

167–169
on notify lists, 48
as process stakeholders, 9
in project example, 67
selection of inspectors by, 102
training needs of, 153

Legacy coding, 68

Index � 213

Life cycle-based procedures lists, 59
Life-cycle concepts, 38–39

PROPS, 43
Life-cycle costs, reduced through good

process, xvi, 174
Life-cycle framework, developing for

deployment, 195–196
Life-cycle management, 19
Life-cycle methods, independence of

process approach from, 35
Life-cycle phases

actual costs per, 204
process entities for, 37–38
training for, 110

Life-cycle segments, 37, 45, 53, 55
Life-cycle training, 200
Line management, training needs of, 152
LiveLink, 121

for document version control, 92
for process elements repositories, 127

Low-level how-tos, 16

M
Malcolm Baldridge awards, xvi
Management

process needs of, 11
as process stakeholders, 9

Management support, 10
and conflicts over deployment, 198
importance for deployment success, 185
for pain issue findings, 194
for process groups, 188

Mandatory activity topics
activity dependencies, 79–80
activity description, 79
activity inputs, 80
activity metrics, 82
activity name, 79
activity outputs, 82
activity steps, 80–82
activity training, 83
predecessor/successor activities, 79

Manuals, 3
failures as process, xvii

Mapping, process elements to
standards/maturity models, 7

Master storage repository, 120
automatically updating Web

presentation of, 120–123

Maturity models, xvi, xxi
avoiding tying process initiatives to, 190
mapping process elements to, 7
procedures as elaborations of, 91
role of process elements in, 49
training for, 109

Medicare literature, xix
Medicare plus Choice, xix
Medigap, xix
Meetings, scheduling for process groups,

186
Methodology, need for auditable, 11
Metrics collection, xxi, 47, 82

by charge number system, 173–174
general training for, 108
hyperlinks to, 144
for in-house vs. subcontracted work, 178
inspection-related, 94
navigation of work products from, 157
PADs as aids to, 57–58
in post-deployment phase, 204
presentation of information from,

156–157
using software process model, 155–157
vs. presentation, 155

Microsoft Office, producing HTML files for
process repositories, 122

Microsoft Outlook, use for inspection
meetings, 93

Middle management, conflicts over
deployment, 198

MIL-Std-1679, xv
More hyperlinks, 143
Multi-life cycles, 133
Multiple data sources, 23
Murphy, Don, xiii

N
Names, avoiding embedding in procedures,

92
Navigation

to form sets, 105
to how selectors, 88–89
to work product sets, 97

New hires, role-based training for, 111
Nolan, Karla, xiii
Nonschedulable process elements, 41, 43

charge number breakdown for, 171, 172
in segment top-level Web page, 139
in top-level root Web page, 133, 136

214 � Defining and Deploying Software Processes

Notify lists, 48
use with inspection procedures, 93–94
validation of, 85

Noun-based items, 21, 22, 74
Null rework indicators, 171, 172

O
Object of activity, in time-card charge

numbers, 172
On-time quality, subcontractor record for,

176
One-size-fits-all process creation, 7–8

resistance to changes in, 199
vs. flexibility and tailoring of process

approach, 35
Operating procedures, activities as, 73
Operations efficiency, process

improvement as, xii
Organization rollouts, 201–202
Organizational perspective, vs. enterprise

perspective, 187
Outputs

mandatory in activity descriptions, 82
by phase, 40

Outputs/responses list, in Web
implementations, 128

Overview training, 200

P
Pain issues, 11

accessing for deployment, 190–191
avoiding personal interviews to

investigate, 190
identifying for company, 10
implementation technique for

identifying, 191–195
importance of spouse factor, 190
infinity brainstorming for, 191
interrelational diagraphs for, 191, 194
tying to specific activities and

procedures, 196
Web “contact us” capability for, 191

Paper-based processes, xvii
resistance to changes in, 199

Pareto charts, xx
time-card charging and process

improvement using, 174
Parts suppliers, 176

Percentage efforts, using charge number
systems, 174

Personality-driven companies, 21
Phase-based EDP lists, 136, 139, 142
Phase-based procedures lists, 59
Phase-independent procedures, 41
Phase top-level Web page, 139–140

identification portion, 141
nonschedulable portion, 142
schedulable portion, 141–142

Phases
correlation to PADs, 58
as horizontal PADs, 53
identification in PADs, 39
relationship to schedule tasks, 4
Web-based content of, 140

Phases lists, in Web implementations, 128
Planning packages, 14

bottoms-up development of, 162
Policies

compliance matrix, 30
defined, 14
differentiation from procedures, 12
as high-level requirements, 7, 50
navigating to how selectors from, 88
role of process elements in, 49

Post-deployment issues, 203
assisting personnel, 203
collecting process metrics, 204
conducting postmortems, 205
inspection procedures, 204
time-card association for actual charges,

204
Postmortems

delineating “orphans” in, 193–195
how to conduct for pain issues, 191–195
in post-deployment phase, 205

PowerPoint presentations
embedding hyperlinks in, 122
for training packages, 108
version control with, 127
as work products, 95

Practitioners
as process stakeholders, 9
training needs of, 153
usefulness desired by, 11

Pre-study segment, 55
Predecessor/successor relationships, 7, 13,

19, 23, 41, 53, 54, 84
for activities, 37, 43
in activity Web pages, 143

Index � 215

in example project, 64–73
as mandatory activity topic, 79
in process approach, 36
role in schedule planning, 161
in schedules, 42

Preliminary design reviews, 99
Presentation, xxi
Presentation integrity, 125
Primary process customers, 9
Procedural tailoring, 90
Procedure header Web page, 148
Procedure training, 110
Procedures, 91–94

checklists as, 92
connection to authority level, 50
defined, 14, 15
differentiating from policies, 12
flowcharts as, 92
as high-level responses, 37
as how-level process elements, 29, 36
hyperlinked form references from, 105
on implementation level, 50, 91–94
inspection-related, 93–94
level of detail in, 88
linking work products to, 95
links to how selector Web pages, 91
mapping to real-world actions, 5
phase-independent, 41
stimulus-driven, 7
vs. work instructions, 12
in Web implementations, 146–148

Procedures lists, in Web implementations,
129

Process
attacking sanctity of existing, 197
basis in activities, 24
content integrity, 125
customer classes and, 8–9
multi-life cycles for, 133
people aspects of, xxi
poor reputation of, xx
presentation/access integrity, 125
purpose in supporting organizations, 6,

203
Process Action Teams (PATs), 195
Process Activity Diagrams (PADs), 13, 24,

37, 60
defined, 15
diagram, 49
elements of, 39–40
within end-to-end life cycles, 53

inputs, outputs, and traversal aids in, 54
mapping of, 56–57
necessary content of, 58
in schedulable portions of phase top-

level Web pages, 141–142
use in schedule planning, 161

Process approach
independence from life-cycle methods,

35
separation of what/how levels in, 34

Process architects, xvi
as troublemakers, xx

Process architectural goals, importance of,
187

Process bureaucracy, 6
Process champion development, xxii, 186

in post-deployment phase, 203
Process deficiencies, 173
Process definition, xi
Process deployment, xi
Process development life cycles, 39
Process elements, 29

activities as key to, 43
color coding of, 130
defined, 15
mapping work products to, 16
procedures as, 15
rationales for, 49
separating from framework, 33
tailoring of, 33
updating with LiveLink, 127

Process environment, 10
Process framework architecture, xi, xvi, xxi,

8, 10, 34
definition of, xxi
measuring, xxii
training for, 108

Process-group bulletins/newsletters, 202
Process groups

enterprise perspective in, 187
as focal point for deployment issues, 185
ideal number of members, 185
importance of time commitments, 186
training needs of, 153–154
value of opinionated members, 186

Process help lines, 201
Process implementation, xi

at phase level, 4
Process improvement, xii

inspection procedures, 174
people aspects of, 190, 200

216 � Defining and Deploying Software Processes

prioritizing, 194–195
retribution and anonymity in, 191–195
techniques for eliciting, 190–191
using time-card charging and Pareto

charts, 174
Process ingredient ordering, 10
Process layers, 29
Process maintenance, 39
Process maturity, 98

of subcontractors, 176
Process names, unambiguity of, 36
Process ownership

caveats, 131–132
consolidating to process groups, 185
overcoming corporate possessiveness

with, 197
resistance to changes in, 199
and resistance to integrated teaming,

180
Process portability, 28–29, 34
Process repository implementation,

119–123
Process stakeholders, 9–10

needs of, 11
Process support life cycles, 39
Process terminology, 12–17
Process usage, xi
Process users, classes of, xxi
Product support life cycles, 38
Profitability, and project estimation, 165
Project costs, reduced through virtual

documents, 23
Project development life cycles, 38
Project duration, and how-to selection

criteria, 89
Project estimation, xxi

manual estimation by activity leads,
167–169

using software process model, 165–167
Project example, 64–73
Project identification

by charge numbers, 171
example charge numbers for, 173

Project management, 137
inability to schedule, 55
and schedule execution, 162
training needs of, 152

Project management models, 43
Project performance, 106
Project progress, equating to document

production, xv

Project records, 106
Project schedules, 13

relationship to real world, 19
Project-specific selection criteria, 89
Promptness, in process group meetings,

186
Proposal managers, 137
PROPS life-cycle model, 43, 55, 130
Publicity, for process improvement, 202
Push back issues, 199
Put steps, 81
Pyramid. See also Software process model

pyramid
authority level, 49–51
implementation level, 87–94
layered view, 27
process traceability view, 27, 30
repeatable level, 53–86
software process model, 27–28
support level, 95–106
training view, 27, 29, 107–111

Q
Quality checklists, 16

providing subcontractors with, 177
Quality control, 11

training needs of, 153–154
Quality management, process needs of, 11
Quality organizations, as process

stakeholders, 9

R
Rational Rose, 97
Real-world project tasking, xi, 73

connection to process, 19–25
mapping to procedures, 5
vs. process world, 4

Redlines, in inspection procedures, 93
Reduced time to market, through process

improvements, xii
Repeatability, xii, 46

basis in task level, 4
increased through process

improvements, xii, xvi
management needs for, 11
in software process model pyramid, 28
training for, 109–110
and what-level instructions, 28

Index � 217

Repeatable level, 53
activities, 73–78
end-to-end life cycle diagrams, 53–58
end-to-end life cycle of activities, 59–73
event-driven procedures (EDP) lists, 59
process activity diagrams (PADs), 58

Requirements databases, as work products,
95

Requirements management, 14
Resistance to change, 199
Resources, in project estimation, 165
Response, defined, 15
Retribution, avoiding in postmortems,

191–195
Reusability, of tasks, 20
Reusable tasks, 23
Review procedures, 99
Reviews, vs. inspections, 99
Revision letters/numbers, 199
Rework, reduced by good inspection

procedures, 189
Rework indicators, 172, 174

in charge numbers, 171
Role descriptions, 47

associating with each activity step, 82,
83–84

establishing for deployment, 185–188
in inspection checklist items, 191
and specific training, 107, 111

Role-to-activity matrix, 82, 83, 180
Roles lists

hyperlinks to, 144
in Web implementations, 128

S
Sabotage issues, 197
Scalable solutions, xix
Scale specific selection criteria, 89
Schedulable process elements, 41, 59

activities as, 74
charge number breakdown for, 171
providing subcontractors with, 176–177
in segment top-level Web pages,

138–139
in top-level root Web page, 133, 135–136

Schedule creation and management, xxi
free-for-all traditional methods of, 74
general training for, 108
high-level vs. low-level representations,

163

null representation in, 68
using software process model, 159–163

Schedule execution, 162–163
effect of bad inspection procedures on,

189
Schedule planning, 160–162

vs. schedule execution, 159–160
Schedule planning packages, vs. schedule

work packages, 85
Schedule tasks, 13, 19

direct mapping to process activities, 57
equivalence with work packages, 85
relationship to project phases, 4

Schedule threads, 67, 69, 70, 71, 72
Schedules, predecessor/successor

relationships in, 42
Scope specific selection criteria, 89
Scroll bars, for process elements, 130
Secondary process customers, 9
Segment-based EDP lists, 136, 139, 142
Segment-based procedures lists, 59
Segment top-level Web page, 136–138

identification portion, 138
nonschedulable portion, 139
schedulable portion, 138–139

Selectability, 33
built-in in process approach, 35
of process tasks, 34

Selectable Process Architecture (SPA), xxii
defined, 15

Selection granularity, 85
Senior management

and deployment conflicts, 198
importance for deployment success, 185
support for pain issue findings, 194

Service life cycles, 38
Service suppliers, 176
SharePoint, 121, 123
Single data point, for documentation, 23
Site specific selection criteria, 89
Six Sigma, xvi, 8, 11

understanding of customer’s needs per,
99

Society for Software Quality (SSQ), xiii, 8
Software Capability Model (SW-CMM), xvi
Software design documents (SDDs), 97
Software development, commercial vs.

government contracting, xv
Software engineering, author’s background

in, 34

218 � Defining and Deploying Software Processes

Software Engineering Process Group
(SEPG), 8, 33

Software engineers, poor template creation
ability of, 98

Software Process Engineering Meta-model,
xi

Software process model. See also Process
framework architecture

concept of, 33–43
integrated teams using, 179–181
origins of, 3–12
project estimation with, 165–169
schedule management using, 159–163
subcontract management using, 175–178
time-card charging using, 171–174
users of, 151–154

Software process model pyramid, 27–31
authority level, 49–51
implementation level, 87–94
intranet Web implementation, 125–131
process repository implementation,

119–123
repeatable level, 53–86
support level, 95–106
traceability in, 113–115
training in, 107–111

Software Productivity Consortium, 114
Software requirements reviews, 99
Software version control, ClearCase for, 92
Source code, as work products, 95
Spaghetti charts, 44
Special needs, in project estimation, 165
Spiral development, 162
Spouse factor, in process improvement, 190
Spreadsheets

organizing postmortem findings with,
201

prioritizing pain issues with, 194
use in traceability matrices, 114–115
as work products, 95

Standard practices, activities as, 13, 73
Standards, xxi

mapping process elements to, 7
vs. guidelines, 102–103

Status quo, fighting, 198
Stimulus

defined, 15
relationship to what-level processes, 7
transformation to response, 15

Stovepipes of process, 131
and resistance to integrated teaming,

180
Subcontract management, xxi

using software process model, 175–178
Subcontractor management components,

175
Successor activities, determination of, 65
Suggested roles criteria, 100
Supplier agreement management, 175,

177–178
Supplier selection, 175, 176–177
Supplier validation, 176
Support flows, 39, 40, 54, 55
Support level, 95

forms, 103–105
project records, 106
in software process model pyramid, 28
training for, 110–111
work product templates at, 29
work products, 95–103

Surveys, inappropriateness for pain issue
research, 190–191

Swim lanes concept, 37, 40, 54–58
training in, 153–154

System Engineering Capability Model (SE-
CMM), xvi

T
Table of contents, in work product

templates, 97
Tabular activity format, 76–77
Tailoring concept, 33, 35

how selectors and procedures, 90
Target independence, of process approach,

35
Targets, 42
Task level

connecting process to, 4
connection to process approach, 34

Tasks
as real-world elements, 5
selectability of, 34

Technical writers, 39
Test unit activity, 63
Thayer, Jim, xiii
TickIT, xvi
Time-card charging, xxi, 47–48

associating with actual charges, 204

Index � 219

correlation of schedule tasking and
process activities to, 106

mapping activities directly to, 57
project estimation using, 166, 167
training in process methods for, 152
using software process model, 171–174

Time to market
management desires for reduced, 11
reduced through good process, xvi
reductions through good process, xii
shortening with work product examples,

96–97
Titles

avoiding embedding in procedures, 92
inappropriateness in company policy

statements, 51
using role names rather than, 83

Tollgates, 56
Tool-generated items, work product

templates, 97
Tool specific selection criteria, 89
Top-level life-cycle framework, developing

for deployment, 195–196
Top-level root Web page, 133–136

life-cycle identification section, 134–135
nonschedulable portion, 136
schedulable portion, 135–136

Traceability, 51, 135
built into process elements, 36
in software process model pyramid, 30

Track changes, in inspection procedures, 93
Training matrix, 15
Training needs

for general customers, 151–152
leads and practitioners, 153
line and project management, 152
quality and process groups, 153–154

Training packages, 15, 107–108
association with process elements,

layers, views, 108
authority-level training, 109
connection to authority level, 50
functional area training, 109
general training, 108
hyperlinks to, 144
implementation-level training, 110
repeatable-level training, 109–110
support-level training, 110–111

Training packages lists, in Web
implementations, 129

Training view, of software process model
pyramid, 29, 107

Transferred employees, role-based training
for, 111

Traversal aids

in activity Web pages, 143

Escape methods, 130

in how selectors, 89

in PADs, 58

in phase top-level Web pages, 141

in segment top-level Web pages, 138

in top-level root Web page, 133

in Web implementations, 128

Tribal knowledge syndrome, 21

fighting, 197

U
UML programs, as work products, 95

Unified Modeling Language (UML), xi, 15,
97

Usability, in Web solutions, 10

Usefulness issues, xxi

how-to process elements, 35

as litmus test for process value, 188

User classes, 151

general customers, 151–152

lead/practitioners, 153

line/project managers, 152

quality/process groups, 153–154

V
Vander Plaats, Jim, xiii

Verb-based items, 21, 74

activities as, 74

as hyperlinks, 84

tasks as, 22

Version-controlled process repositories, 10,
119–123

benefits for implementation, 127

Version identification, use of dates in, 199

Versioning problems, 22

Virtual documents, 16, 23

VISIO charts, as work products, 95

220 � Defining and Deploying Software Processes

W
Web-based versioning control tools,

121–123
Web control, 199
Web implementations, 44

activities lists in, 128
activity Web page in, 142–144
authorities lists in, 130
compliance matrices lists in, 129
don’ts list for, 131–132
form selector Web page in, 146–147
form sets lists in, 129
how selectors in, 87, 129, 144–145
inputs/stimuli lists in, 128
intranet basics for, 125–131
life-cycle segment representation in, 54
multi-life cycles for process, 133
one page per activity format, 77
outputs/responses list in, 128
PAD equivalency to Web pages in, 58
phase top-level Web pages, 139–142
phases lists in, 128
procedures in, 146–148
procedures lists in, 129
Process Home pages, 128
roles lists in, 128
segment top-level Web page, 136–139
single pages for process elements, 130
in software process model pyramid,

30–31
top-level root Web page, 133–136
training packages lists in, 129
usability and access to process in, 10
version-control process repositories,

119–123
work product selector Web page,

145–146
work product selectors lists in, 129
work product sets in, 129

What anchors, for high-level steps, 80
What/how separation, 3, 5, 50–51, 203

and deployment issues, 199
and differentiating policies from

procedures, 12
failure of government-imposed process

to address, xix, xviii
in process approach, 34, 36

What-level processes
relationship to driver or stimulus, 7
and repeatability, 28

Who orientation, danger in process groups,
187

Word documents
embedding hyperlinks in, 122
version control with, 127
as work products, 95

Work breakdown structure (WBS), 16
aligning with activities and project

estimation, 166–167
use in time-card charge numbers, 171

Work instructions, 15, 36
defined, 16
level of detail in, 88
vs. high-level how-tos, 12
vs. procedures, 12

Work packages, 16
as activity instances, 85
integrating with planning packages, 163

Work product availability, 177
Work product examples, 16, 96, 103

at support level of pyramid, 29
Work product guidelines, 16, 96, 102–103

at support level of pyramid, 29
Work product inspection checklists, 16, 96,

98–100
entry criteria in, 101
inspection criteria in, 101–102
suggested roles criteria in, 100
at support level of pyramid, 29

Work product matrix, 16
Work product selector Web page, 145–146
Work product selectors, 16–17, 47

color coding, 131
format for, 96

Work product selectors lists, in Web
implementations, 129

Work product sets, 17, 42
components of, 82, 96
navigation to, 97
in Web implementations, 129

Work product templates, 17, 96, 97–98
at support level of pyramid, 29

Work product training, 110
Work products, 16, 95–107

connection to authority level, 50
defined, 14
linking to activities and procedures, 95
mapping to process elements, 16
process model based on, 24
providing subcontractors with quality

checklists for, 177
relationship to activities, 37

Index � 221

on support level, 50
target independence of process

approach from, 35
vs. activities, 25, 74
work product guidelines, 102–103
work product inspection checklists,

98–102
work product templates, 97–98

X
XML figures, as work products, 95

