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Preface

by Gerard ‘t Hooft

No intellectual hero has been more inspiring to our imagination than Albert Einstein when he discovered 

Special and General Relativity. Not only physicists are charmed by these beautiful constructions of the 

human mind, but also young students and the public in general. The ingenuity of his ideas became pro-

verbial, even in Einstein’s own time. So much so that even he himself once quipped: “I’m no Einstein...!” 

One consequence of this phenomenon is that we physicists nowadays receive numerous letters from 

people who think that they can outsmart Einstein, by “improving on” or “disproving” his theories.

Science, however, progresses in a different way. We don’t really replace theories, we expand on them. 

A key element of science is that we also simplify. What looked complicated once is simple and straight-

forward now, and this is also what happened to Special Relativity. In a sense, it is just geometry. In com-

parison, the Euclidean geometry of triangles, spheres and cones is simple enough to visualize, so much 

so that it can be taught at high school. Special Relativity just happens to be the geometry of space and 

time. Simply add clocks to Euclidean geometry, and that’s it! Well, not quite – there is something funny 

about light rays that makes spacetime geometry counterintuitive, and to visualize this in our minds re-

quires a little more practice.

Many popular treatises on Special Relativity use words rather than diagrams or formulas. One would 

think that that would make things easier: People who are not accustomed to mathematics and geom-

etry should fi nd it easier to understand texts rather than equations. But that may not be true. When 

one hides the diagrams and the equations, talking about relativity becomes harder. So Sander Bais had 

the excellent idea to address the non-experts, the public, the young students, while making good use 

of geometric diagrams. The result was this marvelous little book. Once you understand how to read 



the diagrams, all of special relativity becomes beautifully clear. You can see at one glance that such a 

theory needs no “improvement” or “counter arguments”: It is as useful as Euclidean geometry was to 

the ancient Greeks, and they both still are, up to this day. Special relativity in pictures. If you once found 

triangles, spheres and cubes fun to play with, you will certainly appreciate what you find here.



To my children, my father, and Vera
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Introduction

No! Not another book on special relativity! Is my clock running slow? Is there any need for this book, 

so soon after the Centennial of the “Miracle Year” 1905, when the young Einstein brought all of physics 

into great disarray? 

The saying goes that a smart person may know all the right answers, but the wise person stands out be-

cause he or she knows how to ask the right questions. Special relativity is such a delight exactly because 

the problem was basically to ask the right questions. You are heading for the contents of two of the 

most infl uential papers in all of physics, papers that shattered the classical notions of space, time, mass 

and energy: ‘On the Electrodynamics of Moving Bodies’, and ‘Does the Inertia of a Body Depend on Its 

Energy Content?’ Right from its inception it has been a challenge to express relativity in an ever simpler 

language, and that is what I try to do here. 

This book is a “hands on” user manual aimed at an audience curious enough to want to know how 

relativity really works, with some knowledge of basic science and elementary highschool mathematics 

(in particular geometry). What is required more than anything else to enjoy this book is a playful mind. 

I have tried to make the content of the theory more accessible by presenting it in a “very special” way, 

using an easy-to-follow sequence of spacetime diagrams. I chose this particular geometric approach be-

cause images often speak for themselves and persist in memory, while algebra can be dense and easily 

forgotten. After all, “C’est le ton qui fait la musique.” 

We start our journey by explaining some of the basic principles of the theory, such as the notions of an 

event, a frame of reference, an inertial observer and a world line. Soon we come to the Einstein pos-

tulates. Subsequently we shall tackle a few well known paradoxes and their resolutions, encountering 

along the way simultaneity, causality, time dilation and space contraction, and the simple fact that there 10
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is such a thing as a universal maximal velocity. These examples highlight the counterintuitive nature of 

relativity. After a geometric intermezzo we move on to the notions of momentum and energy, culmi-

nating in the magnifi cent formula E = E = E mc2, which expresses the deep insight that mass and energy are 

equivalent. We even go beyond special relativity when we study the world of an accelerated observer 

who experiences a horizon. There we’ll catch a fi rst glimpse of the general theory of relativity, which Ein-

stein completed about ten years after special relativity. We conclude with an epilogue situating Einstein’s 

achievements in the greater context of physics as a whole.

Now let’s get to work. I hope you will have as much fun pursuing these chapters as I did putting them 

together. To encourage you I have included a quotation of Einstein at the beginning of each chapter.

Sander Bais

Amsterdam, 2007
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1  Basic principles

It is a miracle that curiosity survives formal education.*

Space + Time = Spacetime
 
We all agree that space and time are with us, that we are moving about in space and time: They 

constitute the arena in which our lives unfold. Nevertheless they are untouchable and we perceive 

them only indirectly through our senses, which make us aware of the things that are happening. Seeing 

objects at different distances gives us a spatial awareness, while observing change creates our notion 

of time. And as stars, golf balls and dogs move continuously, our perception is that space and time are 

continuous. We are not living in a stroboscopic disco-like reality.

In many ways the notions of space and time are fundamentally different. We cannot go back to the 

past and interfere with it, while the future is equally inaccessible. Our active being is confined to the 

fragile interface between the two, the present. In space we can only be in one place at a given time too 

(though many try to defy this basic law), yet we can choose to move from one place to another or to 

stay in a specific spot. Time is measured with a clock while space is measured with a meter stick, two 

entirely different kinds of instruments. 

These facts do not keep us from representing the notions of space and time in a simplifying picture, a map 

with space and time coordinates on it, shown in the figure. In the experts’ jargon this is called a Minkowski 

diagram; it is a kind of conceptual map, not of the world, but of what is going on in the world. 

This book is about what these spacetime maps mean and what they look like from the points of view 

of different observers.

* At the beginning of each chapter you will find a quoted text by Einstein.
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Events

We have only drawn a small piece of space and time; you should think of space and time as extending 

out to infi nity in both directions of the graph plane. We have chosen to put time along the vertical 

axis and space along the horizontal. This means that all of three-dimensional space – height, depth 

and width – has been reduced to a single space axis, implying that we can only discuss forward and 

backward motion in one spatial dimension, very much like a train on its track. Yet such a drastic 

amputation of space will not really affect our ability to convey the essentials of special relativity.

What can we do with a spacetime diagram? What do points, lines, curves and domains mean? Let’s 

start with the simplest ingredient, one point in spacetime. What does it correspond to? A point defi nes 

a particular place at a particular instant in time: It represents an event. You clapped your hands precisely 

there and then! You dropped something, you fi red a gun, or you ran into somebody. Our spacetime 

world is densely populated with events, and these correspond with points in our diagram. Conversely 

one could say that spacetime is the collection of all possible events. We see events as connected in time: 

We perceive the motion of a tennis ball not as a set of distinct events, but as a continuous sequence of 

events, called its motion. Things that move correspond to paths or curves in our spacetime diagram. 

Similar pictures can be used to represent the time development of virtually anything. If that thing is 

the profi t of a company, then time would run horizontally and the units along the vertical axis would 

typically be a million dollars, with the negative part of the axis taking care of the losses. To visualize the 

development of the population of various countries, we can draw curves with the number of people 

along the vertical axis. But before going into those curves, let me dedicate a few words to the scale of 

things.
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Setting the scale

We have drawn a grid of horizontal and vertical lines in spacetime. The grid provides us with a coor-

dinate system, a frame of reference, which allows us to conveniently label individual events indicating 

where and when they occurred. It is just like the grid on a city map, which allows you to localize yourself 

in space. You may also think of the way chess players talk: They use coordinates – e.g. “e2 to e4” – to 

describe their moves on the chessboard.

The mesh has a certain scale or unit for each of the axes. On a city map, steps of half a mile will typi-

cally label both axes. On a map of countries the unit is perhaps a hundred miles or so. Now we want 

to set the scales along our time and space axes, and we should choose a convenient measure so that 

the things that are relevant to us become clearly visible and distinct. The phenomena we are about to 

discuss are related to the relative proportion of distance and time – in other words, to the notion of 

distance per time, which is by defi nition velocity. So the relative scale between the time and space axis 

is set by the scale of the velocities that are relevant in the context of special relativity. 

We are about to learn that this is not our typical everyday human velocity scale, say of meters per sec-

ond or miles per hour. Not the speed of a car, of an airplane, or the speed of sound – no, it is a very 

unique and as we will see even universal velocity we will pick: the velocity of light, which is convention-

ally denoted by the letter c.

What is so special about the velocity of light? Well, at fi rst nobody realized there was anything special 

about it, until Einstein recognized it as a universal constant of nature. Before that, we only knew that 

the velocity of light was fi nite, just like any other velocity. Around 1850 its value was determined in 

a clever but simple experiment by the French physicist Fizeau (see box on page 19). He found the ve-

locity to be very close to 300,000 kilometers per second. Since October 21, 1983, c is actually exactly 16          
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299,792,458 meters per second, because c is now used to defi ne the meter. This is a huge number in-

deed, which explains why we perceive it as basically infi nite: if we turn on the light, it appears to fi ll the 

room “instantaneously”. But that is an illusion, because the light has to propagate from the light bulb to 

the walls and that takes some time, though it takes less than a millionth of a second. In most everyday 

circumstances, “instantaneous” is therefore not such a bad approximation.

To set the scale of our spacetime map we do the following. Suppose we use the second as unit along 

the time axis, then we put the distance light travels in one second as unit along the space axis. Now, if 

we send a very short pulse of light (or even better: a photon, a single quantum of light) in the space- or 

x-direction, it traces a path on our spacetime map that corresponds to the yellow arrow indicated in the 

fi gure. We can write this as x(t)= ct, which can be translated into proper English as: the position ct, which can be translated into proper English as: the position ct x at x at x

time t equals c times t. If t = 1 (sec) then x = x = x c km, if t = 4.5 then x = 4.5 times x = 4.5 times x c km, et cetera. Because 

the combination w = w = w ct will occur quite often, we will from now on defi ne w as the time coordinatewe will from now on defi ne w as the time coordinatewe will from now on defi ne w , 

and use w instead of w instead of w t. Note that if something moves with a constant velocity, it traces out a straight 

line in the diagram, because in twice the time it travels twice as far. And it is the slope of the line that 

determines the precise velocity, as we will see next.

Brainteasers: 1. What would a pulse of light which lasts one second look like in the diagram?

2. Draw the line of a photon wich moves to the left.
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Measuring the speed of light

The fi rst proposals for determining the velocity of 

light go back to the Dutchman Isaac Beeckman

in 1629. Ole Rømer made the fi rst quantitative 

determination using astronomical observations in 

1676. The French physicists Fizeau and later Fou-

cault performed the fi rst earthbound experiments 

around 1850. A schematic of a typical experiment 

is given in the fi gure. An incoming light ray is 

refl ected off a mirror that rotates with a given 

angular velocity of w degrees per second. After 

continuing over a fi xed distance d (in the original d (in the original d

experiment about 10 miles), the ray gets refl ected 

by a fi xed mirror. When after a time Dt the light 

returns to the rotating mirror, the latter will have 

rotated over an angle f = wDt and therefore the 

refl ected beam will have an angular defl ection of 

2f, which is measured. The velocity of light is then 

simply given by c = 2d/d/d D/D/ t = 2dw /f.

In 1886, before the advent of relativity, Michelson 

and Morley conducted another very important 

experiment concerning light, which showed that 

the velocity of light was independent of the direc-

tion in which the light beam traveled. This result 

implied the absence of an ether – a background ether – a background ether

cosmic fl uid – completely consistent with a basic 

postulate of special relativity, as will be discussed 

later.
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World lines

We alluded previously to the fact that objects trace out a continuous path or curve in spacetime. Now 

the word path has a strong connotation with a path through the woods or the city, a path through 

space. Therefore when we talk about a path through spacetime it is customary to call that path a world 

line. In the fi gure we have depicted various world lines. They all start at time zero at the point marked 

x = 0, which is referred to as the x = 0, which is referred to as the x origin. (There is no deep meaning attached to this point: it is not that 

space and time originate there, but rather a quite arbitrarily chosen reference point in our coordinate 

system.) Of course, these world lines move forward in time, which is refl ected by the fact that they 

never bend down. 

First look at the black arrow which coincides with the time axis. It simply depicts somebody or some-

thing at rest, sitting at x = 0 and staying there forever, immobile. The yellow arrow is the familiar world x = 0 and staying there forever, immobile. The yellow arrow is the familiar world x

line of a light pulse or photon. The other straight lines correspond to objects that move with other 

constant velocities – constant, because the distance traveled is always proportional to the time the 

object has been traveling. The red arrow could be somebody who travels at a velocity v which equals v which equals v

v = 3/4 c, because at any given time he has traveled 3/4th of the distance that the light pulse has cov-

ered during that same time. This is particularly clear at time t = 4, where the red traveler has moved 

three units of distance while the light pulse has traveled four. By the same reasoning one concludes that 

the green traveler (called “the phantom”) must be traveling at twice the velocity of light. Finally there 

is that wiggly blue world line. It describes a traveler who moves back and forth with varying velocity: 

she is speeding up and slowing down, as you can see. At each given instant she has a velocity which is 

determined by the slope of the tangent to her curve at that very instant. So the world line provides an 

accurate account of the history of the motion of a traveler.
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The postulates

What we really want to know is where Einstein took us. Therefore I am going to present you with a 

straight statement of the facts, not a long-winded story of how it came about and what profound 

debates the scientists of that era had to go through before they could handle the theory and convince 

themselves of its profound meaning. This book is not a biography; I merely want to convey the essen-

tials in a “do it yourself” fashion. In our presentation we will rather dogmatically stick to the language 

of spacetime diagrams. This rendering should allow you to deal with some of the questions that cer-

tainly will arise along your world line and to answer them yourself by tinkering with the diagrams.

We will take a minimal formulation as our starting point, and from there extend our understanding of 

what it all means and why relativity is so special and shocking at the same time. This basically means 

that we are going to start where Einstein ended his story of special relativity, when he summarized the 

theory very effi ciently in two postulates, two fundamental assumptions about nature.

The fi rst postulate concerns two frames of reference or two (collections of) observers traveling with 

a constant speed with respect to each other. Such frames are called constant speed with respect to each other. Such frames are called constant speed inertial frames. That’s what the 

‘special’ means: no accelerations, only constant relative speeds. The postulate then says that if those 

different observers each do experiments in their own frame of reference, they will discover the same 

laws of physics (if they are smart enough); they will arrive at the same equations describing the laws of 

motion, gravity, electromagnetism, and the other forces. That does not sound too alarming, does it? 

It sounds perfectly reasonable, and indeed Einstein was not even the fi rst to make such a statement. 

Galileo Galilei made a similar observation some three hundred years earlier, when considering “fi sh and 

ships” in his Dialogue concerning the two chief world systems: 

22
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For observers moving with constant velocity with respect to each 

other, the following postulates hold:

1  The laws of physics are the same.

2  The velocity of light in vacuo is the same.



“Shut yourself up… in the main cabin below decks on some large ship... Take a large bowl of water 

with some fish in it… While the ship is motionless… the fish swim indifferently in all directions… 

When you have observed all these things carefully…, have the ship proceed with any speed you 

like, so long as the motion is uniform and not fluctuating this way and that. You will discover not 

the least change…, nor could you tell… whether the ship was moving or standing still.” 

Later we will see that Einstein’s postulate is far from straightforward if we critically analyze the similari-

ties and differences between the Newtonian laws of mechanics and the laws of electromagnetism as 

expressed by the Maxwell equations, focusing on what they look like in different frames of reference. 

The second postulate states that the velocity of light in vacuum (i.e. in “empty space” – not in some me-

dium where there may be all kinds of complicated interactions going on), is the same for every observer, 

irrespective of with what (constant) velocity he or she moves. Now that is strange, if you think about it. 

It goes right against our intuition about velocities, and for that matter right against Newton’s theory. 

If I am riding a bike at 10 miles an hour, and I throw a candy bar forward to my wife with a velocity of 

15 miles an hour, then my wife, who is standing on the sidewalk, will catch the bar and say that she 

received it with a velocity of 10 + 15 = 25 miles an hour. We are happy to agree, because that’s just the 

way it is. Excuse me, let’s be precise: that’s the way it was…

What Einstein tells us is that if I am riding a very fast train that is traveling at half the speed of light, 

v = 1⁄2 c, and with my laser flashlight I send a short pulse to my partner at a station far away, sure 

enough the pulse is moving with the velocity of light with respect to me. Therefore by our previous 

intuitive reasoning we would expect my partner on the platform at the station, if she were to measure 

the velocity of the pulse, to find the answer u = c + 1⁄2 c = 11⁄2 c. But now Einstein comes along and 24



bluntly says: No! She also measures u = c. That is strange indeed, strongly counter to our intuition to 

say the least.

How can this be? How can such a simple argument fail to be correct? That’s how most of the physi-

cists at the time also reacted. If Einstein is right, then the price we have to pay will be high – and that 

is indeed the way it was. You see, velocity is distance (space) divided by time, and to implement the 

equality of the speed of light for all observers we have to go deep in a conceptual sense and reconsider 

our notions of space and time at the most basic level. This is what we’ll want to come to terms with. It 

is hard to defeat prejudices, and we will have to work through some diagrams to rid ourselves of some 

very persistent but wrong intuitions. 

25
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2  The relativity of simultaneity

The whole of science is nothing more than a refinement of everyday thinking.

Frames of reference

First we want to know how different observers who are at rest with respect to each other, set up a 

frame of reference or coordinate system. In fact a frame of reference corresponds to a large number of 

“observers” who are at rest with respect to each other, such as the passengers sitting in a moving train 

or the collection of people standing on the platform. They all have clocks and meter sticks and are so 

kind as to do measurements if we ask them to do so, and willing to very obediently report their findings 

to us: They are perfect subordinates. 

We start with two observers who are given identical clocks and rulers. They are indicated in the figure 

by two black arrows: apparently they sit still and are some (large) distance apart. They want to calibrate 

their clocks so that they can share their time measurements in a sensible way. How should they go 

about it? That is depicted in the next figure.
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Calibration of clocks

It is best to think about the calibration as a real physical experiment. In later chapters we will often 

encounter “thought experiments”, which make complete sense theoretically but would be hard to per-

form in real life. In this case Einstein gave a simple recipe that makes complete sense: at time wA = 0, 

observer Apollo sends a light signal to observer Bacchus, who clocks it at time wB = w1 and with a mirror 

reflects the signal back to Apollo, who clocks its arrival at time wA = w2. 

Now the time which is simultaneous to w1 for Apollo is the time instant halfway between the sending 

and arrival of the light signal, i.e. w1 = 1⁄2 w2. This is not surprising, because it confirms what we already 

knew from the grid we had drawn. Furthermore, because we know the total time a signal takes to travel 

forth and back is proportional to the distance between the two observers, this approach can be used 

by a larger set of observers to set up the whole grid this way. 

Note, however, that the notion of simultaneity for a group of observers who are at rest with respect to 

each other does not imply that they would all observe simultaneous events at the same time! One has 

to take into account the difference in the time the signal takes to travel from the event to the different 

observers. This means that different synchronized observers can take down pretty dissimilar times, yet 

after adjustment for the signal’s traveling time they will all ascribe the same moment in time to the 

event.
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Moving frames

Now that we have set up one frame of reference, we will use the same recipe to set up another inertial 

frame that belongs to a set of observers who all move with the same (non-zero) velocity. Accelerated 

frames or rotating frames are not inertial frames , because the velocity is not constant – even when a 

ball attached to a string moves in a circular orbit with fi xed orbital velocity, that velocity is not constant 

because its direction changes continuously. In those cases the relativity postulate  does not hold. This 

is why it is necessary that the red world lines of Arnold and Britney are straight lines. They too want to 

calibrate their clocks, to set up the red frame, accurately following Einstein ’s instructions. 

So Arnold and Britney do the same experiment. When depicting this in a diagram we have to adhere to 

Einstein’s second postulate, which says that the velocity of light  is the same for all observers. This means 

that the world lines of the light emitted by the moving observers Arnold and Britney should appear in 

the spacetime diagram  under the same angle (45 degrees) with the axes as in the rest frame. (Just like 

in the next fi gure.)

30
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The relativity of simultaneity

Arnold sends the light signal at time zero, Britney receives and reflects it at time w’B = w’1 and Arnold 

welcomes the signal back at w’A= w’2. To find out which time on Arnold’s world line coincides with w’1 

on Britney’s, we have to apply the same logic, leading to the instant halfway: w’A= 1⁄2 w’2. This is nice: 

we apply the same procedure as for Apollo and Bacchus and thereby act in agreement with the “relativ-

ity” principle.

However, now something drastic has happened, which becomes evident if we look at the dotted red 

lines. These lines are per definition the lines of “equal time” in the red frame: they connect events that 

are simultaneous for the red observers. We could also say that these are the lines along which red peo-

ple measure distances, and the dotted line through the origin is nothing but the new space or x’-axis, 

where the prime refers to the red frame. In some sense, the meaning of length presupposes the notion 

of simultaneity. If we want to measure the length of a table, we put a meter stick alongside it, and if 

we want to do the measurement properly we have to read the stick off at both ends of the table at the 

same time – otherwise the table (or the meter stick) could have moved between the reading off at one 

end and at the other, and the measurement would be meaningless. 

The startling fact illustrated by the picture is that the space axes for the rest frame and the moving 

frame are not parallel, so things that are simultaneous (i.e. happen at the same time) in the black frame, 

connected by a horizontal black line, are generally not simultaneous in the red frame! A first important 

lesson to be learned from this is that the notion of simultaneity or “at equal time” is frame dependent: 

whether or not two events take place at the same time depends on which set of observers is measuring 

them. Simultaneity is a relative concept.

32



�

� �
�

��

��

� �

��
�

�

��
�

33



One spacetime, many inertial frames

We arrive at the following picture: Spacetime can be covered with all kinds of grids, but the grids of the 

inertial frames that move with respect to our black frame are oblique, like the red one in the figure. We 

see that the angles the two new (moving time and space) axes make with the old ones are equal, and 

so are their angles with the world line of a light signal. Therefore a point on this world line will again 

have equal components along the x’- and w’-axis. We are not yet worrying about what scale to put 

along these oblique axes. 

Now we see what happened: with Einstein’s second postulate, we have lost the absolute separation of 

space and time! Their relationship turns out to be dependent on the velocity one is moving at, so that it 

is better to refer to one entity that is the same for all observers: not space, not time, but spacetime. 

It is gratifying to see that we can gain these rather surprising insights just by using qualitative argu-

ments. Even so, at this point it is good to add a quantitative remark concerning the angles and slopes of 

the red grid. If the red travelers move with velocity v, the distance traveled during time t equals x = vt, 

and with the aforementioned w = ct this becomes x = vw/c. This can also be written as x/w = v/c, 

which is by definition the tangent of the angle between the w-axis and the w’-axis. The relative velocity 

parameter v/c is usually denoted by b (beta), and it will be used extensively in the rest of this book. As a 

ratio of two velocities, b has no physical units: it is just a number. Note that also the slope of the angle 

between the x-axis and the x’-axis is equal to b.

Brainteaser: The figure suggests that the rest frame is very special. Draw another figure with black and 

red grids, where the red observers have the perpendicular grid.
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What’s new?

This change in the very structure of space and time is so important that before discussing more of the 

consequences, we shall sit back for a moment for a comparison with the Newtonian theory, or should 

I say ‘frame of mind’. To make a clear distinction I will consistently give these non-relativistic figures a 

grey background. We see that the rest frame looks the same, and in this frame the lines representing 

the red observer and the light pulse are also the same. But according to Newton a light pulse is nothing 

special: if the moving Arnold flashes his laser pointer, the signal moves with respect to him with the 

velocity of light c, but for the observer at rest that signal will move with velocity c’ = c + v, represented 

by the second yellow/red arrow on the right. With Newton the velocity of light is not universal and its 

world line depends on who sent the signal. Now we see that the equal time lines are horizontal for all 

frames: in Newton’s theory it is time that is universal, and not the velocity of light.

From this figure one may also infer how the coordinates (w,x) of an event in the rest frame are related 

to the coordinates (w’,x’ ) of that same event in the moving frame. We see that w’ = w, and x’ = x – vt = 

x – (v/c)w. This is the so-called Galilean transformation, which links the coordinates of two frames that 

move with velocity v with respect to each other. The word “transformation” indicates a sort of “transla-

tion” between the primed and unprimed quantities. Further on we will set out to find a similar relation 

between different frames in Einstein’s theory. 

Brainteaser: Use the same recipe as before to show that due to the non-uniqueness of the velocity of 

light, equal time lines for the red observers do become horizontal.
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3  Causality

I never think of the future – it comes soon enough. 

Causality lost?

Let us now consider two events, labeled 1 and 2 in the figure. Imagine 1 to be naughty Nigel carrying 

a gun entering a room, and 2 Auntie Augusta getting killed. From the point of view of the black frame 

there is nothing implausible about the hypothesis that naughty Nigel killed Auntie Augusta, because 

the diagram shows us that 1 happened after two time units and 2 after three. But now look at the 

sequence of events from the point of view of the red observers. First they see Auntie getting killed 

(after one time unit), and then they see Nigel entering the room (after two time units). The sequence 

of events is reversed. At first sight this appears to be a fatal inconsistency in the theory: how can the 

time ordering of events be relative? Doesn’t that mean that Einstein went a bridge too far, and with his 

second postulate sacrificed the cherished notion of causality? Causality is not negotiable, because the 

whole of physics rests on it. We don’t like to think of effects followed by causes. Not because of some 

narrow-minded scientific prejudice, but rather because it would lead to disastrous contradictions that 

violate any sense of reality. Imagine somebody firing a gun and killing somebody else. If we reverse the 

situation so we first see the person being killed and only at a later instant see the firing of the gun, we 

could in principle interfere in order to “prevent” the fatal shot, but the victim is already dead… This is 

nonsensical. 

To appreciate what is going on in special relativity, where apparently we are faced with a demise of 

causality, we first must make a digression to gain another deep insight. It concerns the properties of 

velocities which follow from Einstein’s postulates. 
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Adding velocities a la Newton

We start with describing the Newtonian perspective on the problem of how to add velocities from the 

point of view of different observers. We consider the following thought experiment. In the fi gure the 

red arrow describes a red (Super Shinkansen) bullet train moving with 2/7 c – two-sevenths of the ve-

locity of light. In the train a blue-eyed girl runs forward, also with 2/7 c (i.e. two-sevenths of the speed 

represented by the yellow/red arrow on the right for observers within the red frame). The result is the 

blue arrow, and indeed in the black frame this arrow corresponds with a velocity of 2/7 c + 2/7 c + 2/7 c c = 4/7 c = 4/7 c c

(with respect to the yellow arrow, which represents the speed of light in the black frame). This is in perfect 

agreement with our naive (Newtonian) expectations. 

Let us now turn to the same exercise with Einstein’s point of view.
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Adding velocities a la Einstein

We consider a similar experiment. This time the red train moves with a velocity of v = 1⁄2 c, and the 

blue-eyed girl moves forward in the train also with u’ = 1⁄2 c. The red world line of the train is straight-

forward: because it travels at half the speed of light, the two lower black double-pointed arrows must 

be of equal length. We also know that the velocity of light  is the same in the red train and for us (the 

observers in black), so there is only one yellow arrow representing the light pulse. Now where should 

we draw the girl’s blue world line?

If in the red frame something moves at half the velocity of light, then at any given time that object will 

have traveled half the distance the light pulse has covered in the meantime in that frame. In the train 

distances are measured along the red x’ direction, not along the black horizontal lines. This is why the 

blue arrow has been drawn in such a way that the two red double pointed arrows have equal length, 

implying that along the x’ direction the blue object at any given time has indeed traveled half the dis-

tance of the light pulse. The question we have to answer now is: to what velocity does the blue arrow 

correspond in the black frame, i.e. for the observers at rest? From the picture we can immediately draw 

some qualitative yet fi rm conclusions. The velocity of the blue arrow is not equal to the naively expected 

1⁄2 c + 1⁄2 c = c: it is clearly less than the velocity of light. In fact it is quite obvious from our construction 

that if the blue-eyed girl runs with any velocity smaller than c in the train, she will always move with a 

velocity smaller than c for the observers in black as well! Conversely, if she would move with the veloc-

ity of light, then she would move at that speed for all observers, in complete accordance with Einstein  ’s 

second postulate .
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We can go one step further and ask what would happen if the blue-eyed girl would throw a green 

baseball forward with a velocity smaller than c. Exactly the same reasoning can be applied, leading to 

the conclusion that the velocity of the ball will always be smaller than c for the black observers too. 

These observations lead to the startling conclusions that by adding an arbitrary number of velocities, 

each of which is smaller than c, one can never obtain a velocity larger or even equal to c. Briefly stated: 

relativity decrees that there is a maximum speed at which objects can move, and that is the velocity of 

light. This maximum speed is universal in the sense that it is equal for all observers. It is relatively simple 

to demonstrate, as we have; yet at the same time it is one of the most surprising and counterintuitive 

consequences of the Einstein postulates. After all, imagine a particle moving almost at the velocity of 

light – can we not give it a small kick to boost it past the velocity of light? The answer is negative. In 

chapter 6 we shall return to this apparent contradiction.

Let us finally return to the blue-eyed girl and read off from the picture which velocity she has in the 

black frame. We can determine the answer by comparing the lengths of the horizontal black arrows 

ending on the blue world line. These indicate that the velocity must be equal to 4/5 c. So the relativistic 

law for the addition of velocities should be consistent with 1⁄2 c <+> 1⁄2 c = 4/5 c, from which we can 

already draw the firm conclusion that this physical addition here indicated by “<+>” does not corre-

spond to the standard mathematical “+” operation. 

Thus far we have obtained all the important qualitative features of velocity which set special relativity 

so dramatically apart from the Newtonian theory. Next, you might like to learn the general formula that 

quantitatively describes the effects we have just discussed. 
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A brief chronology of Einstein up to the “Miracle Year” 1905

1879 Born in Ulm, Germany.

1888 Enters the Luitpold Gymnasium (high school) in Munich.

1895 Leaves the Gymnasium without diploma.

1896 Obtains a diploma from Cantonal Schule in Aarau, Switzerland.

 Enters ETH (Federal Institute of Technology) in Zürich.

1900 Graduates from ETH, but cannot find a teaching job.

1902 Starts working at the patent office in Bern as technical expert.

1903  Marries Mileva Marić.
1905  March 17: Paper on existence of light quanta (photoelectric effect).

 May 11: Paper on Brownian motion.

 June 30: Paper on special relativity.

 September 27: Second paper on special relativity, containing E = mc2.

 December 19: Second paper on Brownian motion.



A magic addition formula

In this section we are going to answer in precise quantitative terms the following question: If a red 

train travels along the platform with a given velocity v, and in the train a blue-eyed girl is running with v, and in the train a blue-eyed girl is running with v

a given velocity u’, what then is the velocity u’, what then is the velocity u’ u of the girl with respect to the platform? In order to fi nd 

the answer, we will make use of some rather elementary plane geometry involving the properties of 

similar triangles.

To obtain the general expression for u in terms of u’ and u’ and u’ v, we take a series of 5 steps, exploiting the v, we take a series of 5 steps, exploiting the v

similarity of the two green triangles in the picture, where similarity means that the triangles have the similarity of the two green triangles in the picture, where similarity means that the triangles have the similarity

same shape but not the same size. A typical property of two similar triangles is that the ratios of the 

lengths of corresponding edges are equal. I hope you are ready for some algebraic exercise. If you 

aren’t, don’t worry: you are welcome to skip the derivation (in light print) and move on to the resulting 

formula given below and the comments that follow it. 

1. The two green triangles are similar because they can be obtained from each other by a sequence of 

two simple transformations. One is a refl ection in a line which runs perpendicular to the yellow line and 

through the point where the three triangles meet, and the other is just a rescaling.

2. In the large green triangle the ratio of the two perpendicular sides s /a is equal to the distance 

traveled by the train, s = vt, divided by the distance traveled by the light pulse in the same time, vt, divided by the distance traveled by the light pulse in the same time, vt a = ct. 

This ratio therefore equals v/v/v c = b, which is independent of the particular instant in time. 

3. Now the ratios of the corresponding sides of the two green triangles are equal, so r/r/r a = b/s. This ratio 

can be determined by comparing the two long sides, which also form part of the red triangle. Arguing 

from the red frame, one sees that the ratio of the short to the long red side is by defi nition u’/u’/u’ c. This 46
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follows from the same argument as given under 2, but now for the red frame. The long side in the red 

triangle represents the distance the light has covered in the red frame; it is equal to the sum of the two 

short red double-pointed arrows. The short side or left red double arrow, is the distance traveled in the 

same time by the girl inside the train. So b/s = u’/ u’/ u’ c and also r/r/r a = u’/u’/u’ c. Multiplying both sides of the fi rst 

equation by s and of the second by a yields b = u’s /c and r = u’a/c.

4. The velocity u which we want to determine also satisfi es a simple relation in the black frame. From 

an argument completely parallel to that given in step 2, we conclude that in the triangle involving the 

black w-axis, the black double-pointed arrow and the blue arrow, u/c = (s + r)/(a + b).

5. We are done! Just substitute the expressions for b and r found in step 3 into the equation from step r found in step 3 into the equation from step r

4, and then use the result from step 2 that s /a = v/v/v c to reproduce the famous result fi rst obtained by 

Einstein.

This is Einstein’s beautiful formula for the addition of velocities.

48
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Having done all this geometric labor, let us not forget to contemplate the result by checking whether it 

satisfies the qualitative statements made in the previous section. 

If we substitute the special values v = 1⁄2 c and u’ = 1⁄2 c, which were used in the previous example, we 

see that the graph did not betray us: we obtain u = 4/5 c as we did before by direct visual inspection.

If u’ and v are both much smaller than the velocity of light, so that u’/c and v/c are both much smaller 

than unity, we should of course recover the good old Newtonian result. With small values for u’ and v 

the term u’v/c2 in the numerator will be a lot smaller than unity, and therefore can safely be neglected 

with respect to the 1 that appears next to it. This leaves us with what Newton told us to expect: 

u = u’ + v. This underscores the fact that Newton’s physics is in a sense a special case of Einstein’s and 

not the other way around.

If we set u’ equal to c, then the formula yields u = c for any value of v. This is just a rephrasing of the 

statement that the velocity of light is the same for all observers. Even adding two times c still yields 

u = c. 

Why is the addition rule for velocities just a simple addition in the Newtonian situation and so com-

plicated with Einstein? The reason is basically that a velocity is by definition a space difference Dx (a 

distance) divided by (per) Dt (time elapsed). For Newton, time is universal, so Dt does not change and 

only Dx is affected by switching frames. In Einstein’s theory both x and t transform nontrivially, which 

is what causes the nonlinearities in the addition formula.

•

•

•



Causality regained 

Armed with the dictum that no velocity can exceed the speed of light, we can now return to our con-

troversial murder case (on page 38), which we left unsolved. The fact that nothing can move faster 

than light implies that the effects of a certain event can never propagate through spacetime at a veloc-

ity higher than c. In the fi gure we have indicated what this means in our simple world of one spatial 

direction and one time direction. Event 1 can only causally affect subsequent events situated within 

the yellow wedge, which is delimited by the world lines of two light pulses moving in the positive and 

negative x direction (which are equal for all observers). After all, the speed at which the event’s effects 

propagate will always be lower than c. Since in reality we are dealing with three spatial dimensions 

instead of one, you should actually think of the wedge as (a higher dimensional analogue of) a cone. 

The wedge is therefore usually called the forward or future light cone. If on the other hand we ask the 

question which events could have an effect on a given event – say event 2 – then by the same reason-

ing these have to be situated in its backward or past light cone, indicated in dark yellow. Note that the 

future and past light cones are identical in all inertial frames. The cones are universal: they are attached 

to an event, not to a specifi c observer. However, any point P located outside the light cones of (say) 1 

may, dependent on the particular velocity of an observer passing through 1, lie in the future, the past 

or the present for that observer. But that ambiguity in the time ordering is innocuous, because there is 

no signal which can travel between point 1 and point P. There can be no causal relation between events 

at points 1 and P.

Now if we return to our causality problem on pages 38-39, we see that the events 1 and 2 are outside 

each other’s light cone. Causality is thus rescued from its demise. In case it bothered you: naughty Nigel 

cannot have killed Auntie Augusta!
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4  Dilations and contractions

Everything should be made as simple as possible, but not one bit simpler.

Excuse me, can you tell me what time it is?

Simultaneity is relative: which events occur at equal times depends on your frame of reference, which is 

determined by your velocity. Looking at the fi gure one might ask the following question: What time is it 

at the point w’ ? For the black observers w’ is simultaneous with w’ is simultaneous with w’ w = 5 units, and for the red observers w = 5 units, and for the red observers w

it is simultaneous with w = 3.3 units. Another conundrum, it seems. We should not be surprised – after w = 3.3 units. Another conundrum, it seems. We should not be surprised – after w

all simultaneity is relative, and in the above example all observers are referring to the black watch. The 

interesting question of course is what time it is on the red watch at w’, and how this is related to the w’, and how this is related to the w’

time assigned to the same event in the black frame. We can be sure about one thing: supposing the red 

observer has set her watch to zero at the origin, it will indicate one particular time at w’. To fi nd out 

what time, we shall make deliberate use of the relativity postulate.
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Time dilation

The problem raised in the previous section can be resolved by applying the relativity principle to the 

clock rates of the two inertial observers moving with a velocity v with respect to each other. The two v with respect to each other. The two v

observers in question carry identical clocks set to zero at the origin and each mark the time units on 

their own world line. We shall see that the clock rates must differ by some factor g (gamma), which 

depends on the relative velocity v, or rather on the dimensionless parameter v, or rather on the dimensionless parameter v b = v/v/v c. We also know that 

the rates should become equal as v tends to zero.v tends to zero.v

Referring to the fi gure, let us set w’ = w’ = w’ gw*. Now relativity dictates that it should also be true that w*. Now relativity dictates that it should also be true that w*

w = w = w gw’, since there is only one relative velocity and the situation should be entirely symmetrical for 

the two observers. Substituting the expression for w’ into that for w’ into that for w’ w, we obtain the relation w, we obtain the relation w w = w = w g2w*, w*, w*

where both w and w and w w* refer to the same clock in the black frame. There is one fi rm conclusion we can 

already draw at this point: because it is obvious in the fi gure that w is larger than w is larger than w w*, it follows that g2

and therefore also g itself has to be larger than unity. From w’ = w’ = w’ w/w/w g it follows that w’ must be smaller w’ must be smaller w’

than w. This means that w. This means that w a moving clock runs more slowly; a result that is rather bizarre and very im-

portant. Indeed, from the fi gure one would rather infer that w’ > w’ > w’ w, and the fact that that is not true w, and the fact that that is not true w

literally means that we have to rescale the units along the oblique axes of the moving frame. 

If you are a diehard, of course you now want to know how much more slowly the moving clock is 

running. Again this can be calculated using some elementary plane geometry, as we will now demon-

strate. 

54
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If you do not want to plough through the detailed steps of the derivation, you can go straight to the 

resulting formula and the comments that follow it.

In the fi gure on the previous page there are two green rectangular triangles: a big one, ABO, and partly 

overlapping it a smaller one of a darker color, ABC. 

1. These triangles are again similar, so the ratios of corresponding sides are equal. From this observation 

it follows that AB/AO = AC/AB. 

2. First note that AB/AO = v/c = b  and AO = w, so that AB = wv/c = bw. In the picture we can also 

directly see that AC = w – w*. Putting these expressions back into the equation from step 1, we get 

b = (w – w*)/bw.

3. We can solve for w by multiplying both sides of the equation by bw, moving all terms containing w to 

one side and taking w outside the brackets. We then obtain the formula w = w*/(1 – b2).

4. Recalling that w = g2w*, we fi nd that the scaling factor g is given by the (positive) square root of the 

fraction 1/(1 – b2). 

We conclude that the relation between the clock rates  is given by:

56
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Let us now comment on some of the salient features of this remarkable formula. We see, as argued 

before, that indeed w’ is always smaller than w because the factor under the root is always smaller than 

unity (because v is of course smaller than c). It is comforting to see that w’ = w if v = 0, and maybe less 

comforting to see that w’ approaches 0 as v gets close to c. In other words, a clock that moves with the 

velocity of light  does not run at all! In that unique frame the notion of time is lost: The “oblique” frames 

for moving observers we have been drawing so nicely collapse to a single line, on which the distinction 

between space and time is entirely lost.

Note: All along, we have been using good old Euclidean plane  geometry  for our calculations. One 

might worry about whether it is correct to use the notions of Euclidean similarity in the present context, 

where we are comparing different spacetime frames. Are the rules of Euclidean geometry valid in the 

spacetime plane? As a matter of fact, not really. The reason is not that the red frame appears as oblique, 

but rather that the units along the red axes have to be rescaled. However, the corresponding sides of 

the triangles we have been comparing always belonged to the same frame. In the ratios of edges of the 

same color the scaling factor will cancel out, and hence these ratios can be equated without harm. 

We have seen that spacetime diagrams are an extremely powerful aid in order to gain understanding 

of relativity. Even so, they never make the equivalence of inertial frames manifest directly, in a single 

picture. But a similar asymmetry between frames also exists in the algebraic framework, where one uses 

a single formula like the one we have obtained for time dilation .
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The Doppler effect

If we put a brass band playing “Oh when the Saints…” on a truck, the pitch of the tune will be higher 

when the truck is moving towards us, and lower when the truck is moving away. This change in tone 

height or frequency depending on the relative velocity of the source and observer is called the Doppler 

effect. It applies to all wave phenomena, water waves and sound as well as light. And in all cases the 

effect depends on the difference in speed between the source and the observer.

In the fi gure we have depicted a moving light source that fl ashes with frequency fs. As you can see, the 

observer at rest receives the light signals with a different frequency, and the question is what frequency 

fo she will measure. The frequency is just the number of pulses per second. So from the fi gure we see 

that fs = 4/w’0w’0w’  and that fo = 4/w1. This means the ratio of the observed to the emitted frequency is 

fo / fs = w’0w’0w’ /w1. The time dilation formula tells us that w0 = gw’0w’0w’ . From the fi gure we can read off that 

w1 – w0 = bw0, because this distance equals the length of the horizontal arrow, which is the distance 

traveled by the source in time w0 at velocity bc. We conclude from this that w1 = (1 + b) w0 = (1 + 

b)gw’0w’0w’ . Hence the relativistic Doppler effect is given by:

Brainteaser: Show that we obtain the nonrelativistic case by setting g = 1 in the formula above, 

which may then also be used for the brass band if in the expression for b we replace c by the speed of 

sound.

1ƒo 

ƒs 
=

(1+b)g
= 1- b

1+b
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The twin paradox

The twin paradox  shows that the time dilation  effect, the fact that moving clocks run at a slower rate, is 

real. Time dilation as a real physical effect appears to be yet another paradox. After all, doesn’t relativity 

say that motion is relative? If A’s clock runs more slowly than B’s because A is moving with respect to B, 

shouldn’t we also require that B’s clock run more slowly than A’s, as B is moving with respect to A just 

as well? This is the paradox underlying the following thought experiment . 

Nora and Vera, two identical twins, are given identical, perfectly calibrated clocks. Vera then goes on a 

space trip, moving through the galaxy at great velocity, to return home after a long journey. Nora stays 

at home. At a certain time Vera comes back. Because she has been moving, her clock has been running 

more slowly and therefore for her less time has elapsed since she left. She will fi nd her sister much more 

aged then herself. Depending on the length of her trip and the relative velocity she traveled at, she may 

even fi nd that Nora has died long ago! Now that is drama.

Is this brilliant fi ction or harsh reality? And if it is for real, how can we reconcile this asymmetry with the 

basic postulate of relativity? That is the question! Well, it is true. The asymmetry becomes clear if we 

look carefully at the schematically depicted travel adventure in the fi gure. The observer moving along 

the black w-axis must clearly be Nora, who stays home at rest waiting for her sister to return. Vera’s 

rather boring journey in the red space ship consists of two symmetric parts: fi rst she moves away with 

a velocity v, and then she turns around (instantly) to go home with velocity –v.

Since the time dilation only depends on the velocity squared, her clock runs more slowly by the same 

amount on the way out and on the way back. According to the time dilation formula from the previous 

section, when according to Nora’s clock at rest say t1 = 30 years have elapsed, for Vera only t1’ years have 

passed, where t1’ = t1 (1–b2). By setting v appropriately, the traveling twin can make t1‘ as small as she 60
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wishes. For example choosing v = 4/5 c yields t1’ = 3/5 t1 = 18 years!

The picture reveals where the asymmetry arises. Just before the turning point, Vera considers wa to be 

simultaneous to her time, but an infi nitesimally small amount of time later she sees wb as simultane-

ous. So somehow she has jumped instantaneously from wa to wb – or more realistically, if the curve is 

smoothened out a little, she sweeps extremely rapidly through the time period between wa and wb. This 

is not a relative statement, because Vera’s velocity changes. She goes through a very rapid deceleration, 

and that is something that she can objectively determine, just as you feel it right away when in a car 

that suddenly brakes. Her sister Nora does not experience any of those decelerations  and this is where 

an objective asymmetry arises – and that difference is what resolves the paradox . 

Clearly this dramatic asymmetry is unavoidable if one sister is to stay at rest and we insist that the two 

sisters have to meet again to compare their actual ages. Some experts therefore say that the time dif-

ference is caused by the acceleration and is not just an effect due to special relativity. Yet the overall 

effect depends directly on the relative velocity of the two observers and the duration of the trip. We 

can approximate this effect arbitrarily the accumulation of smaller segments where the traveling twin 

moves with different constant velocities in relation to the sister at rest. Furthermore the smoothening 

of the sharp corner has an effect that has nothing to do with the length of the trip and can therefore 

be made arbitrary small. 

Most important is the fact that the twin paradox  is an entirely real physical effect, of which there are di-

rect experimental verifi cations. In 1971 experiments have been performed where a very accurate atomic 

clock was sent around the earth in a jet plane with an average velocity of about 600 miles per hour. The 

result was a tiny but signifi cant difference in time measurements with the identical clocks that stayed 62
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behind in the lab, in full agreement with Einstein’s formula. The calculation of this special case also 

serves to illustrate the paradoxical general property that if two people travel along arbitrary world lines 

that part and meet again, then the traveler who took the “longest” world line  will be the youngest.

The effect of time dilation can be verifi ed in a very basic way using unstable elementary particles  like 

muons, which decay spontaneously and have a fi nite (average) lifetime. This lifetime has indeed been 

found to depend on the velocity of the decaying particles in relation to the laboratory in which their 

lifetime was determined. These experiments provide a very precise confi rmation of Einstein’s predic-

tion . They also underline the fact that the effect does indeed belong to the realm of special relativity, 

as in this experiment there are no accelerations  and yet the lifetime differs in the different frames. This 

can be done because in fact time and distance measurements are made in the lab, which are compared 

to a time measurement in the frame of the decaying particle (for which the particle itself acts as clock). 

So time dilation effects as a consequence of special relativity, and of the relativity of simultaneity  in 

particular, are just as real as the law of nature that states that a particle will accelerate when a force is 

exerted on it. 

Brainteasers: 1. Imagine that Nora and Vera both send light signals to each other at a rate of one per 

second. Draw the light rays in the diagram and discuss how the sisters perceive each other’s sequence 

of signals. Now the “real” asymmetry will show up. 

2. Draw a diagram for the experiment with the decaying muon, to show that it allows for a verifi cation 

of the time dilation effect. Assume the muon’s velocity is 1⁄2 c.
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Lorentz transformations

We have been talking all along about different frames of reference, which are related to different 

coordinate systems like the black or the red grid. With two coordinate systems belonging to two sets 

of inertial observers (moving at a constant velocity with respect to each other), there is an important 

general question one might ask.

 

Given an event P, which has coordinates (w,x) in the black (rest) system and coordinates (w’,x’ ) in a 

frame moving with velocity parameter b = v/c, what is the general relation between the coordinates 

(w,x) and (w’,x’ ) in the two frames? In other words, we are looking for the expression of w and x in 

terms of w’ and x’ (or the other way around). If somebody tells us the “when and where” of some event 

in one frame, we can then directly calculate its “when and where” in the other frame. Not surprisingly, 

this relation will depend on b. It can be obtained from the pictures we have been drawing, using similar 

geometric arguments to the ones we have been using, and that is what we are going to do now. 

The relations we are looking for are the renowned Lorentz transformations , which allow you to trans-

form or translate expressions from one inertial frame to another. We have already encountered a simple 

example of this in the section on time dilation, which involved a relation between w’ and w. A deriva-

tion of the relations between the two coordinate systems is given on the next page. It can of course be 

skipped if you are merely interested in the result and its implications.
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We can quite easily obtain the desired relations from the fi gure, using the proportionality and in certain 

cases equality of the edges of the green triangles.

1. The event P is marked in blue, and along the red coordinate axis we have indicated that it has coordi-

nates w’ and w’ and w’ x’. Along the black axes we have marked its coordinates in the rest frame as x’. Along the black axes we have marked its coordinates in the rest frame as x’ w and w and w x. 

2. From the rectangular triangles in the fi gure we learn that w = w = w a + b and x = x = x r + r + r s. 

3. We have made extensive use before of the fact that s /a = b/r = r = r v/v/v c = b. In the section on time dilation 

we also demonstrated that a = gw’, where w’, where w’ g stands for the expression given on page 56. Substitution 

into s /a = b yields s = bgw’. From the similarity of the big and small triangles it also follows that w’. From the similarity of the big and small triangles it also follows that w’ r = r = r gx’gx’g

and b = br = bgx’x’.x’

4. Now all we have to do is substitute some of the expressions derived in step 3 into those from step 2. 

We directly obtain w = w = w a + b = gw’ + bgx’, and similarly we get x’, and similarly we get x’ x = x = x r + r + r s = gx’ + bgw’. These simple w’. These simple w’

transformation rules for switching from spacetime coordinates (w’,x’ ) to coordinates (w,w,w x) do indeed 

exhibit all the expected symmetry properties suggested by the picture. They also show the correct be-

havior if we take the limit v → 0 (so that b → 0 and g → 1). 

We have now arrived at the well-known Lorentz transformation rules:

w= gw ’+bgx ’
x= gx ’+bgw ’



67

This is a fundamental result of great generality.

There is a mathematical property to the transformation rules. This transformation is called linear, be-

cause the new w and x are expressed as linear combinations of the old w’ and x’. (This means no higher 

powers are involved.) The coeffi cients b and bg are of course dependent on the relative velocity of the 

two observers. Note also that the nonrelativistic limit is the equally linear Galilean transformation: 

w = w’ and x = x’ + bw’.

The linearity of the transformation refl ects a property of spacetime itself which we have tacitly as-

sumed. We have stated that the properties of the frames of reference were homogeneous meaning that 

they do not depend on where or when you are, that empty spacetime looks the same around any point. 

It allowed us to arbitrarily choose an origin. This can be shown more explicitly as follows. Assume we 

choose a point (a,b) as a new origin, this corresponds to the point (a’,b’) in the moving frame. Homo-

geneity is the requirement that the transformation from (w’,x’) to (w,x) is the same as from (w’-a’,x’-b’) 

to (w-a,x-b), and it leads to the condition that the transformation is linear.

This linearity is a very pleasant property, it ensures for example that if we apply two or more of such 

transformations sequentially, the combined effect is again a linear transformation. For example fi rst we 

transform from the frame of people on the platform to the frame of the red train with parameter b = b1 

then we transform from the train to the frame of the blue-eyed girl with a parameter b2. If we perform 

the transformations after each other you can show that the overall result is the same as a single trans-

formation with a parameter b3 given by the Einstein formula for the addition of velocities of page 48, 

so, b3 = (b1+ b2)/(1+ b1 b2). Hidden under the complicated nonlinear addition formula are the simple 

linear Lorentz transformations.



In many textbooks the Lorentz transformations are actually taken as the starting point for an explana-

tion of relativity. This makes sense from a historical point of view, because of the remarkable fact that 

these transformation formulas had already been written down by the Dutch physicist Hendrik Antoon 

Lorentz around 1900 prior to the emergence of relativity. They followed from his analysis of Maxwell’s 

theory, the set of equations that give a unifi ed description of electromagnetic phenomena. Lorentz 

made the remarkable discovery that the Maxwell equations look exactly the same if one changes the 

coordinates from primed to unprimed variables according to the above transformation. In physics and 

math jargon the appropriate statement is that the equations are invariant under the Lorentz transfor-

mations.

It is fascinating to realize that the fundamental equations of relativity had somehow already been writ-

ten down before Einstein got to them. Apparently the problem here was not so much fi nding the right 

answer as asking the right question about their meaning. Indeed, the initial interpretation of the invari-

ance was entirely different. It was believed that the Maxwell equations took their simple and beautiful 

form only in a particular rest frame, which was at rest with respect to the “ether ”, an elusive substance 

that was supposed to fi ll all of space. It was the medium that was believed to be necessary for the 

transmission of electromagnetic waves (such as light or radio waves). The profound and radical turn 

in interpretation due to Einstein was that there was no such thing as an ether, and as a consequence 

no such thing as a “preferred” frame of reference. This view was in line with the fi ndings of a famous 

experiment, actually performed prior to the advent of relativity, by Michelson and Morley, in which they 

demonstrated that light propagated at the same speed in all directions. This contradicted the widely 

accepted idea that the earth was in motion with respect to the ether. It provided strong experimental 

support for Einstein’s second postulate, though it is not entirely clear to what extent Einstein was fully 

aware of this.68
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The crucial observation was that while Newtonian mechanics was “invariant“ under the Galilean trans-

formations, which we just mentioned, Maxwell’s theory of electromagnetism was invariant under the 

very different set of Lorentz transformations. For the relativity postulate to hold, namely that all physi-

cal equations should look the same for any observer moving at a constant speed in relation to another 

observer, one of the two theories would have to be changed. It was this insight which brought Einstein 

to his bold revision of Newtonian mechanics, once thought to be invincible, while he left Maxwell’s 

theory untouched.

Brainteasers: 1. Show that the relations giving x’ and w’ in terms of x and w can be obtained from the 

above relations by replacing b by –b. Exactly what one would expect from relativity.

2. Show that two subsequent Lorentz transformations with parameters b1 and b2, amount to the same 

as a single transformator with parameter b3 given by the Einstein formule.



Does the pole fi t in the barn?

Looking at the expressions for the Lorentz transformations , you may have noticed that space and time 

appear on an equal footing in relativity. As we have already encountered the physical effect of time 

dilation, it is natural to ask whether there exists a similar physical effect associated with the space 

coordinate. Indeed, there is such an effect and it is called the “FitzGerald-Lorentz contraction ”. Briefl y 

stated it asserts that the length of an object moving at constant speed will be observed as contracted 

(in the direction of motion).* 

Let us briefl y illustrate this effect in the context of another paradox  which arises when one wants to 

answer the question whether a pole fi ts in a barn. The paradox involves a barn at rest and a pole moving 

through it. For the observer at rest the pole is contracted, and he observes that it just fi ts in the barn. 

For an observer who is moving quickly while carrying the stick, the barn is contracted and the stick is 

not, so according to her the stick does not fi t in the barn. How do we decide who is right? Does the pole 

fi t or does it not, that’s the question. 

In the fi gure we have depicted the situation. Firstly, there is the black rest frame . The light green area is 

the barn, being at rest; the two black arrows pointing up correspond to the world lines of the front and 

back doors of this (one-dimensional) barn. The pole, the double-pointed arrow, is moving with a con-

stant velocity in the positive x-direction and it is at rest with respect to the red frame. The two red ar-

rows pointing diagonally upward on the right represent the world lines of the endpoints of the pole. 

70

* In case you are wondering, the corresponding formula is: x = x’ (1 – b 2). Note that the x and x’ appear in the opposite places 

compared to the time dilation formula on page 56.
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In the fi gure the resolution of the paradox  is clear. In the black frame the length is measured along 

horizontal equal time lines, and we see that the pole fi ts exactly in the barn: at a given instant w = w0, 

both endpoints are inside the barn. For the red observers the story is very different: at time w0,  when 

the front end of the pole reaches the back door, the other endpoint of the pole has not yet entered the 

barn. The moving observer concludes correctly that the pole does not fi t in the barn. The clue is thus 

that length measurements by defi nition involve the notion of simultaneity . As this is frame-dependent, 

consequently, so is any statement comparing the lengths of objects moving with different velocities.

 

The answer to the question “Does the pole fi t in the barn or not?” must be: “That depends.” Not only 

on the pole, but also on the observer. Both observers spoke the truth, or at least, they spoke their own 

truth. 

Brainteaser: Consider the following thought experiment , suggested by Taylor and Wheeler: A train is 

moving along a wall on which a blue line has been painted, exactly two meters above the ground. In 

the train a man with a paintbrush is leaning out the window. He intends to paint a red line on the wall, 

also exactly two meters above the ground. Will the red line end up below or above the blue one? Argue 

that if there is more than one space dimension, the dimensions perpendicular to the direction of motion 

are not contracted.Start out by assuming that the vertical dimension of the moving frame will also be 

contracted, and use the relativity postulate to argue that this leads to a contradiction. 

72
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Einstein  the man

Einstein was the freest man I have known. By that 

I mean that, more than anyone else I have encoun-

tered, he was the master of his own destiny. If he 

had a God, it was the God of Spinoza . Einstein was 

not a revolutionary, as the overthrow of author-

ity was never his prime motivation. He was not a 

rebel, since any authority but the one of reason 

seemed too ridiculous to him to waste effort 

fi ghting against. He had the freedom to ask scien-

tifi c questions, the genius to so often ask the right 

ones. He had no choice but to accept the answer. 

His deep sense of destiny led him farther than any-

one before him. It was his faith in himself which 

made him persevere. Fame may on occasion have 

fl attered him. He was fearless of time and to an 

uncommon degree fearless of death. I cannot fi nd 

tragedy in his later attitude to the quantum theory  

or in his lack of fi nding a unifi ed fi eld theory, espe-

cially since some of the questions he asked remain 

a challenge to this day – and since I never read 

tragedy in his face. An occasional touch of sadness 

in him never engulfed his sense of humor.

Abraham Pais 

in his Einstein biography

Subtle is the lord…
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5  A geometric interlude

Do not worry about your diffi culties in mathematics. I can assure you mine are greater still.

The spacetime interval 

We have seen that there are two aspects in which the coordinate grids we have been drawing differ. The 

fi rst difference is that in one of them the axes are perpendicular (the black frame) and for the others, the 

time and space axis are oblique and not perpendicular. The second difference is that we have to rescale 

the units along the axes by the velocity-dependent factor g = 1/ (1 – b2). 

Let us now consider the collection of all observers who move through the origin at time zero, but at 

different velocities. We ask all of them to mark on their world line the event  where for them, on their 

clock, a given fi xed time – say, s units – has elapsed. One might wonder what the resulting set of events 

would look like in a spacetime diagram. The time dilation formula tells us that (w’ ) 2 = (1 – b2)w2, so 

setting w’ = s we obtain the expression (1 – b2)w2 = w2 – (bw) 2 = s2. We also know that in the rest 

frame the distance x the moving observer has moved away from the origin, equals x = vt = vw/c = bw. 

So the result is that the points where each observer measures his time equal to s, form a curve in the 

(x,w)-plane described by the following, strikingly simple formula: 

What does this curve look like? Well, you might be familiar with the same equation, only with a plus 

instead of a minus sign. Then the curve would be a circle with radius s, centered at the origin. With 

the minus sign we do not get a circle, but another celebrated mathematical curve called a hyperbola . 

w2 – x2 = s2
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Just like a circle is completely characterized by its radius, our hyperbola is characterized by its intersec-

tion point with the w-axis, which is the number s. Using the formula one can just plug in values for x, 

calculate the corresponding w values, and then plot the points in the spacetime diagram. Connecting 

those points one gets curves like the dark blue one in the fi gure on the previous page. The ”horizontal” 

hyperbola is characterized by s = 4; it intersects the black, red and light blue w-axes in points where 

w = 4, w’ = 4 and w” = 4 successively.

Of course we can play the same game with meter sticks, where the different observers mark a dis-

tance x’ = s at time zero on their world line. This yields the formula with x and w interchanged, which 

amounts to replacing s2 by –s2 in the formula above. Drawing the corresponding curve yields the other 

blue hyperbola  in the fi gure, which intersects the x-axis in point s. The hyperbolas are often called the 

spacelike  and the timelike  hyperbola. The case in between, with s = 0, is somewhat degenerate: the 

hyperbolas turn into the lines w = +x and w = –x, the world lines of a forward and backward moving 

photon. These two lines are also the asymptotes of the space- and timelike hyperbolas, because if w and 

x get very much larger than s, the curves approach the straight lines ever more closely.

What is the geometric meaning of these beautiful curves? What do they express? A good way to fi nd 

out is by applying the Lorentz transformation  formulas. If you take the formula for the hyperbola  and 

for x and w you substitute the corresponding expressions in terms of w’, x’, and b = v/c from the trans-

formation rules on page 67, you will after some shuffl ing obtain the equation w’ 2  – x’ 2  = s2. Which is 

exactly the same equation, but now in terms of the primed coordinates. This means that the curve for 

a fi xed value of s is invariant under the Lorentz transformations! The transformations may move par-

ticular points back and forth on the curve, but the continuous set of points, the hyperbola as a whole, 

does not change. 76



In mathematics and physics we talk a lot about vectors . These are very much like arrows: they have 

a length and a direction. In Euclidean geometry   – and therefore in ordinary space – the length r of a 

vector pointing from the origin to the point (x,y) squared is equal to the sum of the squares of its com-

ponents, r2 = x2 + y2, and the length is preserved under rotations . For a spacetime  vector (w,x) we can 

defi ne a similar quantity, namely the spacetime interval  s, but its square is equal to the difference of 

the squares of the time and space components: s2 = w2 – x2. The important point is that in relativity, it 

is the spacetime interval between two events that is preserved under the Lorentz transformations; it is 

the same for all inertial observers. Because of the minus sign in the defi nition, the square of the interval 

can be positive, negative or zero, in which cases we speak of a timelike , a spacelike  or a null interval. 

Similarly if we draw an arrow between two events in spacetime, we speak of a timelike, spacelike or 

null vector. Indeed the vectors in the fi gure labeled x, x’ and x” are spacelike, while those labeled w, w’ 

and w” are timelike.

The timelike hyperbola (cutting through the x-axis like the time axis does) turns out to be interesting for 

another reason too. If you look at the timelike hyperbola, you see that it can in fact be interpreted as 

an entirely bona fi de world line  of some observer. That person is not traveling at a constant speed, but 

instead is continuously accelerating in the positive x direction. Though a full understanding of acceler-

ated observers lies outside the scope of special relativity, we will nevertheless return to this particular 

observer towards the end of the book, exactly because we run into her world line here so naturally.

77
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Circles and hyperbolas

In this section we further explore the hyperbola  by comparing its properties with those of the circle. To 

do this, instead of considering Lorentz transformations we start out with ordinary rotations  in the plane 

around the origin – which by defi nition leave a circle centered at the origin invariant. If we take a vector 

(say the red/blue arrow in the fi gure) of length r and rotate it, its endpoint traces a circle with radius r. In 

the fi gure for the red circle r = 4. Under rotations the endpoint of the vector moves around on the circle, 

but the circle as a whole remains unchanged. As we saw before, under the Lorenz transformations  the 

head of the red/blue arrow will move along the blue hyperbola with s = r, and the latter too is invariant 

as a whole. For that reason the Lorentz transformations are sometimes called “hyperbolic rotations”, as 

they leave the spacetime interval invariant.

In spite of the fact that we are working in a planar, two-dimensional world, there turns out to be 

something peculiar about the geometry underlying special relativity, originating in the minus sign be-

tween the time and space dependent terms in the defi nition of the invariant interval. I could indeed 

have chosen to confront you right from the start with a planar geometry where the “invariant length 

squared” of a vector is not defi ned as the sum of the squares of its components, but as the difference. 

This hyperbolic geometry  is called Minkowski space, and that is the space we have tacitly been working 

in all along. 
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Constructing a hyperbola

It should be clear by now that hyperbolas are of great importance in relativity, being closely connected 

to the Lorentz transformations linking the inertial frames of different observers. This is why we shall 

explore the hyperbola  a little more before we proceed with the physics of relativity. 

You may have wondered why we are not getting rid of the minus sign by rewriting the equation w2 – x2 

= s2 in the form:

With this formula we can indeed conveniently construct the desired hyperbola , using a pair of com-

passes and the Pythagorean theorem. As you may recall, that theorem says that if s and x are the per-

pendicular edges of a rectangular triangle, then the long side of the triangle equals w, as defi ned by the 

equation above. But that is exactly the situation we are in: if in the fi gure we choose s as fi xed along the 

vertical w-axis and we pick some point x along the horizontal axis, then the points x and s together with 

the origin defi ne a rectangular triangle. The long side connecting x and s must then have the length w 

given by the formula above. If we now draw a circle centered at x with radius w, arching upward until it 

hits the vertical line through point x, we will have constructed a point (w,x) of the hyperbola. Different 

points of the hyperbola can thus be obtained from different points on the x-axis, as indicated in the 

fi gure. We see that one can indeed construct a hyperbola with ruler and compass, though it is admit-

tedly more work than just drawing a circle. 

w 2 = s 2 + x 2
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Wisdom on vectors

We have introduced the arrow-like vectors  in ordinary Euclidean space  and in spacetime . The normal 

space vectors, indicating a position or a velocity, have a length that is preserved under ordinary rota-

tions . These rotations correspond with transformations from the frame of one stationary observer to 

the frame of another stationary observer, rotated with respect to the original one. In the context of 

relativity we are of course interested in spacetime vectors and their properties from the points of view 

of different inertial observers. We have distinguished two cases: in the non-relativistic case the coordi-

nate frames and thus the vectors are related by the Galilean transformations , and in the relativistic case 

they are related by the Lorentz transformations . Furthermore the latter two are related, in the sense 

that the Lorentz transformations reduce to the Galileo ones for small values of b. We know that under 

the Lorentz transformations the time and space components of a vector transform in such a way that 

the endpoint of the resulting vector ends up on the same hyperbola. Both the direction and the length 

change, but the spacetime interval is invariant.

What does this mean? Let us start with the simple vector (s,0) of length s pointing along the time axis, 

and transform it by the Lorentz transformations to the frame of an observer moving with a velocity for 

which b = v/c. By substituting (w’,x’ ) = (s,0) into the transformation rules on page 67, we obtain the 

resulting vector (w,x) = (gs,bgs) = gs (1,b). So the fi nal expression is a kind of spacetime velocity vec-

tor (1,b), multiplied by a factor gs, which itself is velocity dependent (because g depends on b). It looks 

rather complicated, but what is important is the fact that the resulting vector does satisfy the relation 

w2 – x2 = s2, and therefore the transformation is in a sense simple. What I mean by “simple” in this con-

text deserves some explanation. 

Transformations such as rotations in the plane or Lorentz transformations in spacetime share the con-

venient property that the components of a vector, i.e. the w and x components, transform linearly 
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into each other. The new x and w components are linear combinations of the old w’ and x’ component 

– and the converse is also true: it is a property of the transformation, not of a particular vector. If the 

transformation would involve, say, the squares or another function of the old components, then the 

transformation would not be linear. We have encountered a very nonlinear transformation already in 

the context of special relativity. Think of how the velocity parameter b1 transforms when viewed from a 

frame moving with velocity parameter b2; the resulting velocity factor is then given by Einstein’s veloc-

ity addition formula   as b = (b1 + b2) /(1 + b1b2). I already pointed out on page 49 that the Einstein 

addition formula is nonlinear, in contrast to the Newtonian addition formula, which would just read 

b = b1 + b2. 

Why make such a fuss about nonlinear versus linear? Surely nonlinearities make life more complicated, 

but as long as we have the formula, who cares? In our blessed days, we can after all ask a computer to 

perform the hairy algebra for us. It would be happy to do so! All of this being true, there is nevertheless 

an important physical reason why we really would like to somehow maintain linearity. This is why in the 

next chapter we return to physics, to discuss familiar concepts such as momentum and energy.



6  Energy and momentum

Once we accept our limits, we go beyond them.

A moving particle

We shall now discuss the notion of momentum for a moving particle, and in particular the differences 

between the classical Newtonian theory and special relativity.

In Newtonian mechanics the state of motion of a particle is characterized by its mass m and its velocity 

v or momentum p=mv. Newton came to the essential insight that a force causes a proportional ac-

celeration a, where the proportionality constant is by defi nition the inertial mass m. His famous force 

law F = ma basically states that force equals the change in momentum (per unit time). Velocity and 

momentum are vectors (as are force and acceleration); they have a direction and a length. In a three-

dimensional world we think of vectors as arrows having three components, along the x-, y- and z-axes. 

In our toy world containing only one spatial dimension they can only point in the positive or negative 

x direction.

It should be clear by now that in relativity, space and time get mixed up in an essential way. This implies 

that we should not expect the conventional Newtonian velocity or momentum vector, which has only 

spatial components, to be adopted directly into relativity. We should look for a natural time component 

of the momentum vector, which allows us to defi ne a spacetime momentum vector that transforms 

under either Lorentz or Galilean transformations like the spacetime position vector (x,t). To keep the 

discussion maximally transparent I will treat the two cases in parallel.

Our starting point is a particle at rest, and we ask ourselves what it looks like in a moving frame. The 84



85

��

��

���

�
�

�
��

��

�
�

�

��

���



Newtonian (or Galilean) case is shown on the previous page. In the left fi gure the state of the particle 

has been depicted in terms of two parameters that characterize its motion (at a certain time): its mass 

and its momentum. Along the vertical axis we have put the quantity mc (a mass parameter), and along 

the horizontal axis the momentum p = mv = bmc. If we start with a particle of mass m at rest (so 

p = 0), its state is represented by the vector (arrow) along the vertical axis. We have also drawn a red 

frame in this same fi gure, corresponding to Newtonian observers moving with a velocity v. For them 

the particle moves with velocity –v, so, the momentum of the particle is –mv. It is crucial to observe that 

the picture of the frames is identical to the fi gures for the coordinates w and x. The reason is that they 

are related in exactly the same way through the Galilean transformation: for the spacetime position 

vector (w,x) we have w’ = w and x’ = x – vt = x – bw, while for the spacetime momentum vector (mc,p) 

we have (mc)’ = mc (because the mass doesn’t change) and p’ = p – mv = p – bmc = –bmc. The vec-

tor representing the particle in the moving frame is shown in the right fi gure on page 85. To make the 

conceptual difference clear we now do exactly the same exercise for the relativistic case.

We start on the left again with the particle at rest; in the rest frame it is characterized by the vector 

whose time component equals mc and whose momentum is vanishing, p = 0. Now we would like to 

learn the magnitude of the components in the red frame. We could use the Lorentz transformation, or 

read it from the fi gure where we know that (mc)’ = gmc and p’ = –bgmc, because of the rescaling of the 

red axes by the factor g. The situation in the moving frame is represented in the fi gure on the right, where 

we see a relativistic spacetime momentum vector whose space component equals –bgmc and whose 

time component is gmc. This differs notably from the Newtonian result by the overall factor of g, which 

implies that both the space and time components of the momentum vector go to infi nity when the ve-

locity of the moving frame approaches c. This also follows directly from the left fi gure: the components 

become increasingly parallel. At this point it is illuminating to refl ect on the properties of light itself.86
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A photon or light particle by defi nition propagates with the speed of light, so its spacetime momentum 

is directed along the light-like world line and therefore has an equal space and time component for 

each observer. Maxwell’s theory of electromagnetism tells us that light carries energy and momentum, 

and furthermore that their ratio is constant and universal. This ratio equals the velocity of light: E/p = c 

for all observers. These remarks imply that the time component of the spacetime momentum vector 

should be identifi ed with E/c. A photon travels at the speed of light, but even so it can have a fi nite 

momentum and energy, in contrast to the massive particles discussed above. In the fi gure the photon’s 

energy-momentum vector is depicted in yellow. Note the unique feature that its components in all mov-

ing frames are located on the line perpendicular to the vector.

Contrary to a massive particle, whose momentum continues to increase without limit, light behaves 

nicely. The only way to understand the photon as a particle whose two components remain fi nite while 

g is infi nite, is to assign it a mass equal to zero, so we can replace the ill defi ned quantity gmc by the well 

defi ned energy E/c. This way, as a massless particle, the photon fi ts perfectly into the theory.

Brainteaser: Show that if the energy of a photon equals E in the rest frame, it equals E’ = (1 – b)gE in a 

moving frame. Do this using the diagram on the right, and verify it by the applying a Lorentz transfor-

mation to the energy-momentum vector (E/c,p) = (E/c,E/c). Compare the result also with that for the 

Doppler effect on page 58.
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E= mc2  

In the previous section we introduced a “spacetime” momentum  vector (gmc, bgmc) for massive par-

ticles, which followed quite naturally from the relativistic relations between different frames. The per-

spective also accommodates photons, by assigning them an energy-momentum vector (E/c,p), where 

E/c = ±p.

The massive particles’ space component bgmc should be interpreted as their physical momentum p, 

because in the limit b = v/c → 0 we have g → 1, and thus (gmc, bgmc) → (mc, bmc). In this perspective 

the quantity gm gets the natural physical interpretation as the relativistic generalization of the mass 

m, and that is exactly what Einstein proposed. He defi ned the relativistic mass  as mrel= gm (which as 

you can see depends on the velocity). Comparing the time component to the photon’s, we arrive at 

the startling conclusion which Einstein  had to draw in 1905, namely that E = mrelc
2. This is the famous 

equation expressing the equivalence of energy and mass, celebrated because of its unequalled simplic-

ity, power and beauty. 

To understand why the time component of the energy momentum vector corresponds to the relativistic 

energy of a massive particle, it is illuminating to look at the expression at small velocities. We may then 

approximate the expression for g, assuming that b is very small, to obtain:

The fi rst term on the right hand side is just the mass, as expected. The second term contains b2, and the 

dots represent terms containing higher powers of b, which are negligible because we assume b to be 90

mg=
1- b2

m
= m+   mb2+ ...1

2



91

�

��

� ��

�
��

�



small. The second term can also be given as 1⁄2 mv2 /c2, which is (up to a factor c2) exactly the expression 

for the kinetic energy  of a particle of mass m and velocity v in the Newtonian theory. So we fi nd that the 

relativistic mass  of a massive particle at reasonably low speed can be approximated by its Newtonian 

mass plus its kinetic energy divided by c2. The time component of the relativistic momentum vector is 

entwined indeed with the particle’s energy; hence the term energy-momentum vector.

I fi nd it quite exciting to see how elementary reasoning, consistently carried through, can lead to such 

a revolutionary insight as ‘mass is just a particular form of energy’. One gram of any kind of matter cor-

responds roughly to 1017 Joules, comparable to the energy released during the bombing of Hiroshima. 

Nowadays physicists actually prefer a slightly different terminology when talking about the formula 

above: they speak about the invariant or rest mass m corresponding to the invariant length of the rela-

tivistic momentum vector (E,pc). As a formula: E2 – p2c2 = m2c4 . This expression applies to photons and 

other massless particles as well: if we set m = 0, it correctly yields E = ±pc. 

The fi gure on the previous page elegantly summarizes all features of energy and momentum as they 

appear in different frames. Note that the picture is very similar to the one for the relativistic position 

vector (w,x) on page 79.

In the following chapter we will look at the cherished conservation laws for energy and momentum and 

consider systems of two colliding particles. If you prefer, you can also skip ahead to chapter 8 where 

we discuss accelerated observers.
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Fusion and fi ssion

The equivalence of mass and energy, so concisely 

expressed by the equation E = mrelc
2, has tre-

mendous applications. These are most dramatic 

in the realm of nuclear fusion  and fi ssion . Nuclei 

are tightly bound systems composed of a total 

number of protons and neutrons. Because these 

“nucleons” are held together by the strong force, 

each nucleus has a characteristic binding energy  

per nucleon. The fi gure shows the binding energy 

per nucleon as a function of the total number of 

nucleons or the atomic number N. On the left we 

see that for small atomic numbers we may lower 

the binding energy per nucleon by fusing simple 

nuclei into more stable composites, such as in 

the reaction: D + T → 4He + n + energy. The 

difference in binding energy is released, and the 

amount is typically a million times larger than in 

an elementary chemical reaction. On the other 

side of the mass scale we fi nd heavy nuclei like 

Uranium, which may be metastable and decay 

into nuclei of lower mass, thereby also producing 

extra energy. This process of fi ssion is the working 

principle of our present nuclear reactors. In the 

long term fusion reactors are expected to become 

technically feasible, which would be a preferable 

option from the point of view of safety and ra-

dioactive waste management. As fuel for fusion is 

cheaply available in virtually unlimited amounts, 

this may be the ultimate solution for global energy 

needs in the long run. 
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7  The conservation laws

The law of conservation of mass lost its sovereignty and was absorbed into the law of energy conservation. 

Total momentum 

We speak of a conservation law if in some process certain quantities do not change. In an electric cir-
cuit, charge moves around freely, but cannot get lost. If we burn something, than the law of Lavoisier 
tells us that the total mass in a closed system will not change. In a building lots of people may move 
around, yet the total number of people in the building will not change (except of course if they are in 
a birth clinic). You see that there are all kinds of conservation laws. Here we focus on what happens to 
the conservation laws for mass, momentum and energy which hold in Newtonian particle dynamics, if 
we look at them from a relativistic point of view.

To understand the conservation of momentum in Newtonian mechanics, we fi rst look at the simplest 
case: a single particle on which no force is working. When we apply Newton’s second law F = ma to 
this system and set F = 0, mass times acceleration vanishes: ma = 0. As force equals the change of 
momentum per unit time, we conclude that when no force is applied to a particle, its momentum is 
conserved. The next step is to consider systems consisting of two colliding particles. Although the par-
ticles will exert a force on each during the collision, there is no external force. Since no external force 
is applied to the system as a whole, the total momentum – which is simply the sum of the individual 
particle momenta – is conserved.

We start by graphically representing the situation before the collision. In the fi gure on the previous 
page we have drawn the incoming momentum vectors of the type we introduced in the previous sec-
tion, and also their sum, the total incoming momentum vector p. Its time component is given by the 
sum of the masses, which amounts to the total mass of the system. In the sort of (one-dimensional) 
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billiard we are talking about here, mass is a conserved quantity. Note that particle 1 has the largest 
velocity, so it better be on the left of particle 2: otherwise no collision will occur.

The total momentum vector has a direct physical interpretation: it represents the situation where the 
colliding particles stick together and move forward as a single particle with mass m = m1 + m2 and mo-
mentum p. This is called a completely inelastic collision, because momentum and mass are conserved 
but (kinetic) energy is not, as will become clear shortly.

Because we already know what a relativistic energy-momentum vector looks like from the previous 
chapter, it is not hard to generalize the fi gure to the relativistic case. We replace the mass component 
by an energy component that is dependent on the momentum, so that we obtain the characteristic 
hyperbolic curves on which the momenta live.

Observe that the time component of the total momentum is still the sum of the two individual time 
components: the total energy is just the sum of the energies of the individual particles. However, the 
invariant mass associated with the total momentum, given by the point where the upper hyperbola for 
the total momentum intersects the energy axis, is not equal to the sum of the rest masses of the indi-
vidual particles – It is in fact larger! A possible example of this is the decay of a particle into two lighter 
particles. Total energy is conserved but mass is not: It is partially converted to kinetic energy.
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Momentum in a moving frame

The fi gures we presented on page 85, with the mass parameter mc as the time component of momen-

tum , are not standard in any treatment of classical mechanics, but they are extremely useful in visual-

izing the basic discrepancy between classical and relativistic mechanics. Before getting into a discussion 

of momentum conservation  let us see what the situation of two colliding particles looks like in a moving 

frame, say a frame that moves with a velocity u. For the Newtonian version, all we have to do is apply 

the Galilean transformation to all velocities and see how the momenta change. The particles’ velocities 

will change according to v’ = v – u, and thus p’ = p –mu. The fi gure shows the effect from the point 

of view of a moving (Newtonian) observer. We see that the changes in the momenta can be read off 

very easily. The red line for the moving observer is the same as it would be in the spacetime diagram. 

Referring to the light blue arrows, it is obvious from the fi gure that also in the moving frame the total 

momentum is just the sum of the two particle momenta. After all, the change of frame has not affected 

their mass and the arrows still add up correctly. 

The freedom to analyze the situation in any frame allows us to pick a particularly convenient frame to do 

so. One such frame is the so-called “zero momentum frame”: the frame in which the space component 

of the system’s total momentum is zero. This is the frame in which the red line coincides with the total 

momentum arrow. To see what the situation looks like in that frame, we move to the next fi gure.
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Energy and momentum conservation

In this fi gure we see both the incoming and the outgoing momentum vectors (the solid arrows p1 and p2, 

and the dashed arrows P1 and P2 respectively) for the collision experiment discussed before. In the zero 

momentum frame the total incoming spatial momentum p is zero, and its time component equals the 

sum of the masses. Observe that in this frame one particle moves to the right and the other one to the left. 

Momentum conservation is the statement that the total momentum vector must be the same before and 

after the collision. Its spatial component thus remains p = P = 0, while the vertical component is again 

just the sum of the masses mc = m1c+ m2c. The restriction of momentum conservation translates into the 

requirement that the horizontal components must be equal and opposite, both before and after the colli-

sion, and we have drawn one particular instance of that. If we combine this picture with the previous one, 

it is evident that if momentum conservation holds in one (Newtonian) frame, it also holds in any other. 

Switching frames only amounts to drawing some red line representing the relative velocity.

Note that the conservation of momentum does not fi x the outgoing momenta of the individual particles 

completely, but only their sum. In our one-dimensional situation, one more relation would suffi ce to fi x 

them completely – such as an energy condition, and we will return to this option shortly.

Now, you may wonder why we are spending so much effort on this issue of momentum conservation. The 

answer is that we want to understand what will happen to these very simple pictures, in which we can 

easily move from one frame to another, if we consider the situation not from the Newtonian perspective, 

but from Einstein’s.
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What happens if we replace the Galilean transformation rule by its Lorentzian counterpart? Well, then 

the whole thing falls apart, because we have to replace the simple transformation of velocities v’ = v – u 

by Einstein’s formula v’ = (v – u)/(1 – vu/c2). This transformation is very nonlinear, causing the sum of 

the momenta before and after the transformation to differ. If we were to take Newton’s defi nition of 

momentum and then apply the Lorentz transformations to it, we would come to the atrocious conclusion 

that the conservation of momentum no longer holds for all observers. So Einstein was faced with a simple 

choice: either give up the sacred law of momentum conservation, or come up with a different defi nition 

of momentum. As we saw in the previous chapter, he chose the second option. It was a choice with dra-

matic implications, which have however been substantiated experimentally. Having brought together the 

notions of space and time, he now had to do the same for energy and momentum. 

Another very basic conservation law, cherished in all areas of physics, is the conservation of energy . Let us 

briefl y recall what it means in the Newtonian framework. If we look at the collision  of two billiard balls, 

the collision will be (almost) “elastic”, meaning that the total kinetic energy (motion energy) of both balls 

together is strictly conserved. The kinetic energy E of an object is quadratic in the velocity (or the mo-

mentum), namely for the fi rst ball E1 = 1⁄2 m1v1
2 = p1

2 /2m. Plotting E1 as a function of p1 gives the dashed 

parabolic curve as shown in the fi gure. 

If instead we allow two balls of clay to collide, clearly they would stick together and after the collision  they 

would both continue with the same velocity: v’1 = v’2. In the zero momentum frame the resulting velocity 

is zero and all kinetic energy gets lost. Such a collision is called completely inelastic. It is not hard to imag-

ine many cases in between these two extremes. Actually we know that in an inelastic collision the energy 

does not really get lost: it is converted into internal motion of the molecules in the ball, which heats up or 

gets permanently deformed, changing its internal energy. 
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In the fi gure on the previous page we have put the momentum of a particle along the horizontal axis, and 

the corresponding energy along the vertical axis. You can see how the various energies (E1 and E2) depend 

on the respective momenta in the zero total momentum frame. (The total momentum vector points along 

the time axis and p1 = –p2.) The energy-momentum vectors of the two incoming particles are the solid 

arrows; those of the outgoing particles, the dashed arrows. The total kinetic energy according to Newton 

is obtained by adding the corresponding energies of the individual particles, or for that matter by adding 

the incoming or outgoing vectors. In the fi gure we show a completely elastic collision, for which the total 

energy before and after the collision is the same. It is immediately clear from the fi gure that (in one spatial 

dimension) the only solution is now the situation where the particles exchange momenta, so, P1 = p2 = 

–p1 and P2 = p1 = –p2. That is why the two E1 curves in the fi gure coincide, just like those E2.

The conservation law for energy and momentum  is the relativistic equivalent of the classical conservation 

laws for momentum, mass and energy. Note that mass apparently is no longer conserved independently, 

because it forms part of the total relativistic energy. We arrive at the single relativistic fi gure on the facing 

page. You can see that for small momenta it can be approximated by “adding” the previous two non-

relativistic diagrams of pages 101 and 103. A synthesis of sublime simplicity. 

Brainteaser: A pion is a particle with a mass of 273 times the electron mass. It is unstable: it decays into 

a muon, with a mass of 207 times the electron mass, and an antineutrino, with a negligible mass. Sketch 

the energy-momentum diagram for this decay reaction in the rest frame of the pion. Algebra lovers 

should also use the conservation of energy and momentum to calculate the energies of the two decay 

products.
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Large colliders

There are a few places in the world where relativity is bread and butter business. In the US, Europe and 

Japan large accelerators  have been built in order to give elementary particles extremely high energies, 

meaning their speed approaches the velocity of light. A common design for an accelerator is to have a 

large circular ring in which the particles are accelerated and “stored”. Usually there are two beams run-

ning in opposite directions, consisting of particles that have the same mass and often opposite charge. 

Because the momenta of the particles in the two beams are equal and opposite, the lab is exactly in the 

zero momentum frame. The particles are made to collide head-on in certain interaction regions, releas-

ing enormous amounts of energy, which can then be converted into new types of matter such as very 

heavy particles. For instance, physicists are hoping to encounter the so far hypothetical Higgs particle.

In 2007/2008 the largest accelerator ever built, the Large Hadron Collider (LHC ), will come in opera-

tion at the accelerator laboratory CERN in Geneva, Switzerland. It has a circumference of 27 kilometers 

and will accelerate protons to energies that are equivalent to about 7,000 times their mass, so that E = 

gmc2 = 7,000 mc2. Thus we have g = 7 × 103, and using the defi nition of g one easily calculates that 

b is about 1 – 10–8 = 0.99999999. So the velocity of these protons is amazingly close to the speed of 

light. This is very much out of scale with the pictures we have been drawing so far. In the fi gure on the 

previous page there would be only one hyperbola for a pair of colliding protons, as they have huge but 

opposite momenta. The point E would be 14,000 times higher than the intersection of the hyperbola 

with the vertical axis! An extremely relativistic situation.
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Tachyons

In chapter 3 we argued that particles could not move faster than the speed of light, which saved the 

sacred notion of causality. Still one may ask whether it is admissible to a priori introduce particles that 

move faster than light. Such hypothetical particles are called tachyons , and what relativity has to say 

about them can be readily understood using a spacetime diagram. From relativity it follows that the 

tachyon is a particle with a spacelike energy-momentum vector having negative mass squared m2 = 

-µ2.. Its invariant energy-momentum relation reads E2+µ2c4=p2c2, and the corresponding curve in the 

(E,pc) plane is a timelike hyperbola (crossing the x- or p -axis) like the one depicted in the fi gure on page 

75. Observe that for all points on that curve the momentum p is larger or equal to µc, in other words 

v is never smaller than c. For other inertial observers the energy momentum vector of the tachyon will 

move over the entire hyperbola and one is forced to accept negative energy states. The conclusion is 

that the existence of tachyons is not excluded by relativity, but if they can interact with ordinary matter, 

the fact that they move faster than light allows for violations of causality, while their negative energy 

states will cause instability of matter. It is comforting to know that so far they have only been encoun-

tered in science-fi ction novels.

Brainteaser: Assume that tachyons exist and do interact with ordinary particles. Show in a diagram 

similar to the one on page 105, combining the energy-momentum vectors of a spacelike and a timelike 

hyperbola, that the conservation of total energy and momentum would allow for processes where an 

ordinary particle could emit a tachyon. Check that such processes are not allowed with the emission 

of an ordinary particle or photon. This signals that tachyons can cause matter instability – a signifi cant 

argument against their existence.



8  Beyond special relativity

The important thing is to not stop questioning.

Tensions

Having mastered some special relativity, we now are ready for yet another challenge, where the velocity 

of observers will not remain constant. Imagine two rockets, Apollo and Sputnik, fl ying one behind the 

other. They are moving with the same velocity, so they are at rest with respect to each other. Between 

them there is a tight inelastic rope. The pilots have agreed that on a predetermined time they both will 

accelerate at exactly the same rate. As they intend to do that at exactly the same time, you might think 

nothing will happen to the rope. However, contrary to what you might expect, something surprising 

does happen. 

Again it is profi table to analyze the situation in a spacetime diagram. The fi gure depicts the situation in 

a somewhat idealized form. First we see A and S at rest (with respect to a conveniently chosen frame of 

reference); then at time w0 they both change velocity. Viewed from the moving red frame, the distance 

between the two rockets fi rst corresponds to the double arrow labeled 1, which is also the length of the 

rope as viewed from this frame. Then S takes off fi rst, and the distance increases to the longer double 

arrow labeled 2. The rope however –being inelastic – keeps the same length 1 in its rest frame (the red 

frame), and will therefore break. For the black observers at rest both rockets do change velocity at the 

same time and the distance between them remains constant indeed (see the black arrows in the fi gure), 

but for them the rope is Lorentz-contracted once it moves. A moving rope of length 1 takes on the 

contracted length of the dashed black arrow in the rest frame, which for the observers at rest explains 

why the rope will break.
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An accelerated observer with horizon

We are approaching the almost-happy end of our story. I should tell you that after the papers on special 

relativity, Einstein kept quiet for quite some years and then came back with another theory that shocked 

the world, called general relativity . In that theory he showed how his idea of relativity could be gener-

alized to situations where observers move arbitrarily with respect to one another. Stated differently, it 

extended the notion of Lorentz invariance to an invariance under arbitrary coordinate transformations. 

This theory turned out to be a new theory of gravity and is considered one of the greatest achievements 

in all of science. 

Here we will only touch on some elementary aspects of it superfi cially, by considering an accelerated 

observer. And not any observer: We choose a particular example, namely the traveler whose world line 

is the red hyperbola in the fi gure. This is in fact nothing but the timelike hyperbola we discussed on 

page 75. Clearly the forward velocity of this traveler is increasing steadily. We see that her velocity for 

large times tends to the velocity of light, while the acceleration keeps decreasing. At any given point on 

her world line her frame is formed by the ray from the origin through her position as the space axis, and 

the tangent to the hyperbola at her position as the time axis (not drawn, except in the origin). Therefore 

the velocity parameter b = v/c will depend on time: b = b (w). Since the velocity parameter is just the 

tangent of the angle between the moving frame axes and the corresponding axes of the rest frame, we 

immediately conclude that at each point (w,x) on the world line of our observer we have b = w/x. Com-

bining this with the defi ning equation of the timelike hyperbola, x2 – w2 = s2, we obtain immediately 

that b (w)= w / (w 2 + s2), which indeed tends to unity if w approaches infi nity. We also derive that 

the scale factor g equals g = 1/ (1 – b2) = (1/s) (w 2 + s2).
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Clearly our observer is in a special situation. What is so special about it is most easily seen if we look at 

the relativistic force law, F = dp/dt = dpc/dw = d(bgmc2)/dw where p is the relativistic momentum. 

In this case the calculation becomes utterly trivial because after substituting the values for b and g, we 

obtain that the momentum is bgmc = wmc/s, which is just w multiplied by a fi xed number. The fact that 

the momentum increases linearly with w means that the force F is constant: F = mc2 /s, which does not 

depend on w at all. The conclusion is elegant and simple: a timelike hyperbola  corresponds to the world 

line of an observer on whom a constant force is exerted! The parameter s characterizing the hyperbola 

equals s = mc2 /F and is basically fi xed by the force to mass ratio.

A typical physical realization of the situation we are describing is a charged particle traveling in a con-

stant electric fi eld (in the x direction). In relativity the constant force does not lead to a constant ac-

celeration , because the mass is no longer constant but increases with velocity, so that the velocity can 

never exceed the speed of light.

 

How will the observer, who is by defi nition at rest in her own frame, experience this constant force? For 

her the situation is very similar to standing in an elevator, which is accelerating, and she will interpret 

the force as a kind of gravitational force, because accelerating upward makes you feel heavier. Here we 

catch a glimpse of the general theory of relativity, based on the equivalence of accelerated observers 

and the effect of a gravitational fi eld, or in other words between inertial and gravitational mass.

We have found a physical interpretation for the timelike hyperbola by exploiting our knowledge of 

geometry which we built up step by step in the previous sections. Now we should look at the fi gure 

once more, because there is yet another surprise in store. What happens to all observers who have 

stayed behind in the rest frame, corresponding to strictly vertical world lines? We can imagine them 112



113

exchanging messages with our traveler in order to keep her posted on the situation back home. Let us 

say that they have wireless communication using signals that travel with the speed of light. What do we 

infer from the diagram? We see that the signals from a given stationary observer (say, the one moving 

straight upward along the black line x = s) will reach her without problem until the stationary observer 

“enters” the dark region (at w = s). From that moment onward his messages will no longer reach her, 

even after an arbitrarily long time. The future light cones  of events in the dark region lie entirely within 

the dark region. On the other hand, the messages that the traveler sends to him will reach him without 

problem at all times. This drastic phenomenon is typical for situations involving accelerated observers. 

Spacetime gets divided up into distinct regions, which are separated by an event horizon . The traveler 

outside it will never know about the events that take place behind this horizon, as for her those events 

stay hidden in the dark forever. The fi gure also shows the blue region in the past, consisting of events 

that never could have been affected by the traveler: it is the region outside the future light cones of all 

points on the traveler’s world line. 

These examples are a rather innocuous prelude to the mind-boggling physics of curved spacetime 

geometry, which also includes black holes. It took Einstein about ten years till 1915 to complete this 

second masterpiece, general relativity – one of the greatest intellectual achievements in the history of 

physics. It is surprising, to say the least, that although Einstein did receive a Nobel prize (in 1921), it was 

not for his theories of relativity. Such is the relativity of Nobel prizes! However, even without it Einstein 

stands out as one of the brightest, most creative and most fearless scientists ever.



Epilogue

The signifi cant problems we have cannot be solved at the same level of thinking with which 

we created them.

Our visual journey through the landscape of space and time, which offered us a close view of the young 

Einstein’s revolutionary insights, has come to an end. Isn’t it remarkable that elementary reasoning, 

carefully carried through, can lead to such a counterintuitive, radically novel interpretation of physical 

reality? We have emphasized a geometric rather than an algebraic approach throughout, by consistent-

ly framing our explanations in the pictorial language of spacetime diagrams. This allowed us to tackle 

a number of famous paradoxes and to arrive at their sometimes surprising resolutions. If this method 

has allowed you to share some of the deeper views on nature relativity has to offer, then it has served 

its purpose. It is not accidental that the geometric approach works so well, because the theories of rela-

tivity drove a large part of physics into the arena of geometry, albeit a more general kind of geometry 

then the ancients dreamed of.

The roots of special relativity point through the work of Lorentz to Maxwell’s theory of electromagnet-

ism, which was completed around 1865. You may have wondered what happens to electromagnetic 

phenomena in relativity. Maxwell’s theory is by construction already Lorentz invariant, and so are the 

descriptions it provides of electromagnetic phenomena. Still, it would be interesting to consider for 

example what electric and magnetic fi elds look like for different observers. I have refrained from dis-

cussing this subject because it requires a fair amount of knowledge of electromagnetism to start with.

After completing his theory of special relativity, Einstein moved on to other scientifi c questions. As we 

mentioned before, only later he returned to the problem of relativity, culminating in his general theory 

of relativity, which was completed in 1915. In this theory the notion of a fl at spacetime, with which we 114



were concerned in this book, was further generalized to curved spacetimes. The equivalence of inertial 

frames was extended to arbitrary frames, and the invariance under Lorentz transformations extended to 

invariance under general coordinate transformations. This mighty theory also introduced a radically new 

interpretation of the force of gravity as a manifestation of spacetime curvature. It suggested the existence 

of a number of astounding new physical effects and phenomena, which in the meantime have been vindi-

cated by experiment. The most dramatic predictions are probably the existence of an expanding universe, 

black holes, and a cosmological constant or non-vanishing vacuum energy which permeates all of space. 

The theory of relativity underscores the importance of the realization that our perceptions are by no 

means absolute. During our journey we have had to give up absolute notions of time, space, mass and 

energy. Yet this dependence of perspective on the observer is far from arbitrary; it is not the type of 

subjectivity we refer to when we say something is “a matter of taste”. The theory of relativity provides 

us with an intersubjective meta-perspective, which transcends the single observer’s viewpoint to hold 

for the collection of all observers. In that way relativity expresses a deep sense of universality.

Not long after Einstein’s breakthrough, the foundations of physics were deeply shaken once more with 

the advent of quantum theory . Surprisingly, in that drastic revision of Newtonian physics the role of 

observers and the act of measurement lost even more of their objective meaning, to the extent that 

the strict separation between object and subject, which was still applicable in Einstein’s theory, had 

to be given up. The new cornerstones of modern physics – relativity and quantum theory – had a deep 

and lasting impact on the philosophy of science and knowledge. They represent crucial turning points 

in our thinking that could not have been guessed from general considerations or philosophical inquiry: 

one had to go and study the actual physics itself in detail, like those great men did in the fi rst quarter 

of the twentieth century. 115



About the scientifi c search for these fundamental laws, Einstein said: “There is no logical path that 

leads to these elementary laws, only an intuitive one, based on creativity and experience.” He also ob-

served cannily that “with such a methodological uncertainty, one would think that an arbitrary number 

of equally valid systems would be possible. However, history shows that of all conceivable construc-

tions, always one stood out as absolutely superior to all others.” 

Retracing Einstein’s steps in our very special way has hopefully given you a fl avor of how exciting and 

rewarding it can be to be the fi rst person to enter an unfamiliar territory of deep knowledge. Even to-

day, vast but hidden domains of nature remain to be discovered. I can only hope that in generations to 

come, many will have the inspiration and courage to further explore the heart of this great domain full 

of secrets we call Nature. 
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