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PREFACE

H. F. Harmuth is no newcomer to these Advances, for his early work on
Maxwell’s equations, which was highly controversial at the time, formed Supple-
ments 14 (1981) and 15 (1984) to the series; an earlier study on sequency theory
was published in 1977 as Supplement 9.

Some consequences of that work on Maxwell’s equations have led H.F. Harmuth
and B. Meffert to enquire how the discrete nature of many scientific phenomena could
be incorporated in the theory. For this, the familiar differential equations must be
replaced by difference equations; this in itself is a far from trivial task and it is not
at all easy to draw general conclusions from difference equations even though all
numerical work of course depends on them.

In this volume, the authors first introduce the basic differential equations in-
volved and then examine two very important cases in detail. Two chapters are
devoted to the pure radiation field (Maxwell’s equations), one on the differential
equations, the other on the corresponding difference equations. Two further chapters
are devoted to the differential and difference equations for the Klein-Gordon field.

These studies raise important and fundamental questions concerning some of the
basic ideas of physics: electromagnetic theory and quantum mechanics. They deserve
careful study and reflection for although the authors do not attempt to provide the
definitive answer to the questions, their work is undoubtedly a major step towards
such an answer. I am delighted that this work will be presented to the scientific
public in these Advances.

Peter Hawkes

vii
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FOREWORD

It is about 20 years since it was found that Maxwell’s equations generally cannot
have solutions that satisfy the causality law. The problem was overcome by adding a
term for magnetic dipole currents that are produced by rotating magnetic dipoles. Six
books have been published on this topic since 1986. The most recent one, “Modified
Maxwell Equations in Quantum Electrodynamics,” shows that the problem of infinite
zero-point energy and renormalization disappears if the corrected Maxwell equations
are used.

Three more changes had to be made in addition to the modification of Maxwell’s
equations: a) Dipole currents – either electric or magnetic ones – can flow in vacuum
even though monopole currents are prohibited by the conservation of charge; this is
why an electric current can flow through a capacitor whose dielectric is vacuum. b)
The quantization is applied to a wave that satisfies the causality law as well as the
conservation law of energy, rather than to a field for which the meaning of these
laws is not clear. c) Infinite space and time intervals were replaced by arbitrarily
large but finite intervals.

The last point may be seen as nothing more than a physical explanation of the
traditional box normalization. However, the elimination of infinite space and time
intervals raises the question why infinitesimal space and time intervals should not
be replaced by arbitrarily small but finite intervals. Since we can neither observe
infinite nor infinitesimal intervals it would be inconsistent to eliminate the one but
not the other.

The elimination of infinite intervals required no more than the replacement
of the Fourier integral by a Fourier series with denumerable functions orthogonal
in a finite interval and undefined outside that interval. If one wants to eliminate
infinitesimal intervals one must replace the differential calculus by the calculus of
finite differences, which is a much more demanding task. We will show for the
pure radiation field and the Klein-Gordon field that one obtains significantly but not
catastrophically different results with the calculus of finite differences. A particularly
interesting result will be that a basic difference equation of quantum electrodynamics
yields the same (energy) eigenvalues as the corresponding differential equation but
quite different eigenfunctions.

Let us consider the replacement of differentials dx by arbitrarily small but finite
differences x from a more general point of view. Elementary particles within the
framework of the differential calculus must be treated as point-like, since by physical
definition they should not have any spatial structure. The extension of such particles
is of the order of dx. The mathematical method is chosen first and the physical
features are matched to the mathematical requirements.

Assume now that the best available instruments for spatial measurements have
a resolution x, which means we can distinguish something at the location x from
something at the location x + x. A particle smaller than x cannot be resolved,

xv
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which implies we cannot claim anything more about its spatial features than that
it is smaller than x. The calculus of finite differences is a mathematical method
that matches the physical situation. Since a finite interval x can be subdivided
into nondenumerably many intervals dx we are a long way from defining elementary
particles as point-like.

What we have said about elementary particles raises the question whether
physics is a branch of mathematics or mathematics a tool for physics. This was
a serious question for the ancient Greeks. Today we recognize mathematics as a
science of the thinkable and physics as a science of the observable. The one can
never be more than a tool or a source of inspiration for the other. Physics inspired
the enormous development of the differential calculus in mathematics compared with
the calculus of finite differences. Physics is used as a tool in mathematics whenever
a few more digits of the numbers or e are obtained with a computer. This book is
an example how mathematics is used as a tool and a source of inspiration in physics.

The authors want to thank Humboldt-Universität in Berlin for providing com-
puter and library services.

This is the fourteenth scientific book the lead-author wrote either alone or –
after age 65 – with co-authors and it will probably be the last one. The following
observations of a lifetime of scientific publishing may help young scientists.

Scientific advancement is universally based on the concept of many small steps
or incremental science. This approach founders when one tries to introduce the
causality law into electrodynamics in many small steps. Some new ideas cannot be
advanced incrementally. They are extremely difficult to publish.

Perhaps the most important human idea ever was to climb out of the trees and
to live on the ground. It was, no doubt, strongly opposed by the leading experts of
tree-climbing who feared for their status. This principle has not changed. The peer
review for scientific publications may or may not weed out publications that are below
the level of the reviewing peers, but there is no such doubt about the elimination
of anything above that level. Bulldozing through this barrier requires good health,
long life, great tolerance for abuse, as well as a dedication to the advancement of
knowledge.

It is much easier to publish books than journal articles since book publishers
must publish to stay in business and books with new ideas are good for their rep-
utation. This is not so for journals of scientific societies financed by membership
dues. Dominant journals of large scientific societies are at the forefront of the battle
against non-incremental science and the protection of the status of the leading experts
of current activities. It would be practically impossible to publish non-incremental
science if there were not some editors who understand the limitations of the peer
review and make it their life’s goal to overcome this barrier. They are among the
few who will support ideas that contradict accepted ones. Finding such editors is
difficult and time-consuming but essential.



FOREWORD xvii

From my own experience I rate the contribution of these editors as important
as that of the authors. Science that is not published is no better than science that is
not done. We have no way to estimate how much scientific progress is lost because
authors were not able to overcome the barrier of the peer review. I want to use this
opportunity to thank four editors who have helped me: The late Ladislaus L. Marton
(Academic Press), the late Richard B. Schulz (IEEE Transactions on Electromagnetic
Compatibility), Peter W. Hawkes (Academic Press), and Myron W. Evans (World
Scientific Publishers).

Henning F. Harmuth
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2], Eq. (2.2-11)
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Continued
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1 Introduction

1.1 Modified Maxwell Equations

Maxwell’s equations dominated electrodynamics in the twentieth century
like Newton’s theory dominated mechanics in the eighteenth and nineteenth
centuries. Relativistic mechanics was developed when Newton’s mechanics
failed at velocities close to the velocity of light. The discovery of this fail-
ure required an improvement of experimental techniques far beyond what was
available at the time of Newton (1642—1727). No such advance in technology
was required to find a basic problem of Maxwell’s equations. Strictly theoreti-
cal studies led to the discovery that Maxwell’s equations generally did not yield
solutions that satisfied the causality law. This law was, of course, known at the
time of Maxwell. Indeed it is by far the oldest, generally recognized physical
law. The Greeks philosophized a great deal about it. The conservation laws of
physics were recognized much later, none of them being accepted before 1800.

Two scientists working independently and using di erent approaches re-
alized the problem of Maxwell’s equations with the causality law at about the
same time, which gave the result great credibility (Harmuth 1986a, b, c; Hillion1

1991; 1992a, b; 1993). Many attempts to derive causal solutions from Maxwell’s
equations were made from 1986 on, but did not and could not succeed.

Once the problem of Maxwell’s equations with the causality law was rec-
ognized the question arose what modification would resolve the problem. The
addition of a magnetic current density term in 1986 was a strictly pragmatic
solution based on mathematics rather than physics. Several years passed be-
fore the physical meaning of such a term was understood (Harmuth 1991).
It only permitted but did not demand the existence of magnetic monopoles.
Rotating magnetic dipoles produce magnetic dipole currents just as rotat-
ing electric dipoles produce electric dipole currents, e.g., in a material like
Barium-Titanate. Electric dipoles–either induced by an electric field strength
or inherent–were always part of Maxwell’s equations. They produce electric

1Hillion obtained his results earlier than suggested by the dates of his publications, but
it was next to impossible to publish anything questioning Maxwell’s equations, particularly
in the journals of the leading physical societies. The editors Peter W.Hawkes of Advances in
Electronics and Electron Physics (Academic Press) and the late Richard B.Schulz of IEEE
Transactions on Electromagnetic Compatibility deserve the credit for upholding the freedom
of scientific publishing.

1



2 1 introduction

dipole currents either by induced polarization or by orientation polarization.

A group of 15 scientists cooperating under the title “Alpha Foundation”
arrived at the same modified Maxwell equations using a quite di erent approach
(Anastasovski et al. 2001).

An unforeseen result of the use of the modified Maxwell equations was the
elimination of the divergencies known as infinite zero-point energy in quan-
tum field theory (Harmuth, Barrett, Me ert 2001); this problem had plagued
quantum electrodynamics since 1930 and could previously be overcome only by
renormalization, a method generally considered unsatisfactory.

Let us see how certain physical concepts enter a mathematical theory of a
physical system or process. To this end we first spell out the causality law in
the following form preferred if the transmission of information is important:

Every e ect requires a su cient cause that occurred a finite time earlier.

The words ‘a finite time earlier’ serve here two purposes. First, they mean that
the e ect comes after the cause, which introduces the universally observed dis-
tinguished direction of time. Second, the use of the term ‘time’ makes clear
that we deal with a law of physics, not an axiom of mathematics, since the con-
cept of time does not exist in pure mathematics. There are no space and time
variables in pure mathematics but complex variables, real variables, random
variables, prime variables, etc.

To see how physical laws or conditions can be imposed on a physical process
that is described by a partial di erential equation or a system of such equations
in a coordinate system at rest we note that in this case one must find a function
that satisfies three requirements:

1. The function satisfies the partial di erential equation(s).

2. The function satisfies an initial condition that holds at a certain time t0
for all values of the spatial variable(s).

3. The function satisfies a boundary condition that holds at all times t for
certain values of the spatial variable(s).

The first condition is a purely mathematical requirement. The second
and third condition permit the introduction of physical requirements. If we
use initial and boundary conditions with finite energy and momentum we can
expect results with finite energy and momentum. It has been shown with the
help of group theory that in this case Maxwell’s equations will conserve energy,
linear momentum, angular momentum, and center of energy (Fushchich and
Nikitin 1987, p. 98). Of course, if we use periodic, infinitely extended sinusoidal
functions as solutions of Maxwell’s equations we have infinite energy and the
conservation law of energy becomes meaningless.

A solution that satisfies the causality law requires that the initial condition
at the time t = t0 is independent of the boundary condition at the times t > t0.
Without this requirement a cause at a time t > t0 could have an e ect at the
earlier time t = t0. Only the initial and boundary conditions are of interest
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but not what their processing by the partial di erential equation does. The
symmetries of the equations have no e ect.

The causality law is of little interest for steady state solutions that describe
typically the transmission of power and energy. The opposite is true for signal
solutions that describe the transmission of information; the energy is of lesser
interest as long as it is su cient to make the signal detectable. We define a
classical electromagnetic signal as an EM wave that is zero before a certain
time and has finite energy. Signals are usually represented by field strengths,
voltages or currents2. All produced or observed waves are of this type. This
includes standing and captive waves since they must be excited before they
can reach the steady state. Mathematically a signal is represented by a time
function that is zero before a certain time and quadratically integrable3. If a
signal is used as boundary condition we obtain signal solutions. They always
satisfy both the causality law and the conservation law of energy.

There is a class of partial di erential equations that does not permit inde-
pendent initial and boundary conditions and thus do not have solutions that
satisfy the causality law. Hillion (1991; 1992a, b; 1993) showed that Maxwell’s
equations belong to this class. The other proof for the failure of Maxwell’s
equations grew out of an attempt to develop a theory of the distortions and the
propagation velocity of electromagnetic signals in seawater (Harmuth 1986a, b,
c). It turned out that the electric field strength due to an electric excitation
as boundary condition could be obtained but the associated magnetic field
strength could not. This explains why it took so long to recognize the problem
of Maxwell’s equations with causality. Anyone satisfied with the electric field
strength due to electric excitation never noticed that something was amiss.

We write the modified Maxwell equations in a coordinate system at rest
using international units. The old-fashioned notation curl ×, div · and
grad is used since this notation was used when the lack of causal solutions
was discovered; it may be that the notation curl, div and grad helps one grasp
the physics underlying the mathematical manipulations:

curlH =
D

t
+ ge (1)

curlE =
B

t
+ gm (2)

divD = e (3)

divB = 0 or divB = m (4)

Here E and H stand for the electric and magnetic field strength, D and B for
the electric and magnetic flux density, ge and gm for the electric and magnetic

2In the case of the Aharonov-Bohm e ect the signal is represented by the magnetic
vector potential (Aharonov-Bohm 1959, 1961, 1962, 1963).

3We generally think of signals as functions of time t at a fixed location x, but a signal
could also be a function of location x at a fixed time t.
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current density, e and m for the electric and a possible magnetic charge
density. We note that gm does not have to be zero if m is zero, since only
a monopole current requires charge densities e or m while dipole and higher
order multipole currents exist for e = 0 or m = 0.

The modified Maxwell equations di er definitely by the term gm in Eq.(2)
from the original Maxwell equations. The condition divB = m in Eq.(4) is
only permitted but not required. Hence, there is no requirement that magnetic
charges must or must not exist.

Equations (1)—(4) are augmented by constitutive equations that connect
D with E, B with H, ge with E and gm with H. In the simplest case this
connection is provided by scalar constants called permittivity , permeability μ,
electric conductivity and magnetic conductivity s. The electric and magnetic
conductivities may be monopole current conductivities as well as dipole or
higher order multipole current conductivities:

D = E (5)

B = μH (6)

ge = E (7)

gm = sH (8)

In more complicated cases , μ, and s may vary with location, time, and
direction, which requires tensors for their representation or the equations may
be replaced by partial di erential equations.

The term gm in Eq.(2) was originally added strictly for mathematical rea-
sons, although with its physical implications in mind (Harmuth 1986a, b, c).
From 1990 on it was understood that this term did not imply the existence
of magnetic charges or monopoles. Rotating magnetic dipoles can cause mag-
netic dipole currents just as rotating electric dipoles in a material like Barium-
Titanate can cause electric dipole currents. Hence, the term gm in Eq.(2) is now
based on the existence of rotating magnetic dipoles, which means on physics
rather than mathematics.

The electric current density term ge in Eq.(1) has always represented elec-
tric monopole currents carried by charges and dipole currents carried by in-
duced or inherent dipoles; the di erence between induced and inherent dipoles
will be discussed presently. Maxwell called the dipole currents polarization
currents since today’s atomistic thinking did not exist in his time. Without a
polarization or dipole current one cannot explain how an electric current can
flow through the dielectric of a capacitor, which is an insulator for monopole
currents.

For a brief discussion of dipole currents as well as induced and inherent
dipoles consider Fig.1.1-1. On the left in Fig.1.1-1a we see a positive and a
negative charge carrier between two metal plates, one with positive the other
with negative voltage. The charge carriers move toward the plate with opposite
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FIGURE 1.1-1. Current carried by independent positive and negative charges (a). Dipole
current due to an induced dipole (b). Dipole current due to orientation polarization of
inherent dipoles (c).

polarity. An electric monopole current is flowing as long as the charge carriers
move.

An induced electric dipole is shown in Fig.1.1-1b. A neutral particle, such
as a hydrogen atom, is not pulled in any direction by voltages at the metal
plates. Instead, the positive nucleus moves toward the plate with negative
voltage and the negative electron toward the plate with positive voltage. A
restoring force, symbolized by a coil spring, will pull nucleus and electron to-
gether once the voltage at the plates is switched o . An electric dipole current
is flowing as long as the two charge carriers are moving either apart or back
together again. The lucidity of this simple model is lost if we say that the
probability density function for the location of the electron loses its spherical
symmetry and is deformed into the shape of an American football with the
nucleus o -center in the elongated direction.

An induced dipole current can become a monopole current if the field
strength between the metal plates exceeds the ionization field strength. One
cannot tell initially whether an induced dipole current will become a monopole
current or not, since this depends not only on the magnitude of the field
strength but also on its duration. As a result a term in an equation repre-
senting an electric dipole current must be so that it can change to a monopole
current. Vice versa, a term representing monopole currents must be so that it
can change to a dipole current, since two particles with charges of opposite po-
larity may get close enough to become a neutral particle. The current density
term ge in Eq.(1) satisfies this requirement.

Most molecules, from H2O to Barium-Titanate, are inherent dipoles while
their atoms are inducible dipoles. Figure 1.1-1c shows two inherent electric
dipoles represented by two electric charges with opposite polarity at the ends
of rigid rods. A positive and a negative voltage applied to the metal plates
will rotate these inherent dipoles to line up with the electric field strength.
Dipole currents 2iv in the direction of the field strength are carried by each
rotating dipole. There are also dipole currents 2ih perpendicular to the field
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FIGURE 1.1-2. Ferromagnetic bar magnet in an homogeneous magnetic field (a) and its
representation by a thin rod with hypothetical magnetic charges ±qm at its ends (b).

strength, but they compensate each other if there are counterrotating dipoles
as shown. Only the currents in the direction of the field strength will re-
main observable if there are many dipoles with random orientation. Dipole
currents due to orientation polarization exist for magnetic dipoles too. Such
dipoles range from the hydrogen atom to the magnetic compass needle and the
Earth.

Rotating magnetic dipoles behave very much like the rotating electric
dipoles of Fig.1.1-1 if the electric quantities are replaced by magnetic quan-
tities. This is made clear by Fig.1.1-2 which shows a ferromagnetic bar magnet
on the left and its idealized representation by a thin rod with hypothetical
magnetic charges on the right. There is no magnetic equivalent to the in-
duced dipole of Fig.1.1-1b unless we find magnetic charges or monopoles. This
explains why magnetic dipole currents are not part of Maxwell’s equations. Be-
fore the arrival of atomistic thinking it was not possible to distinguish induced
polarization due to induced dipoles and orientation polarization due to inher-
ent dipoles. The concept of orientation polarization of inherent dipoles was
not recognized and the lack of induced magnetic dipoles eliminated magnetic
dipole currents.

In order to include magnetic dipole current densities one must use a term
gm in Eq.(2). Equation (4) may be left unchanged in the form divB = 0 of
Maxwell’s equations for dipole currents, but the zero must be replaced by m

if there are magnetic monopoles. The existence of magnetic monopoles has
been a matter of contention for almost 70 years. We do not have an acceptable
explanation for the quantization of electric charges without admitting magnetic
monopoles, but we do not have a direct and convincing experimental proof for
the existence of magnetic monopoles either. Fortunately, the choice divB = 0
or divB = m has no e ect on the covariance of the modified Maxwell equations
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or the conservation of energy and momentum by these equations (Harmuth,
Barrett, Me ert 2001, Sections 2.4 and 2.5).

1.2 Summary of Results in Classical Physics

Let us obtain the field strengths E and H of the modified Maxwell equa-
tions (1.1-1)—(1.1-8) for a planar TEM wave excited by an electric excitation
function E(0, t) at the plane y = 0 and propagating in the direction y. We must
write Eqs.(1.1-1)—(1.1-8) in Cartesian coordinates, make all derivates / x and
/ z zero to obtain the planar wave and choose Ey = 0, Hy = 0 to obtain a
TEM wave1. With the substitutions

E = Ex = Ez, H = Hx = Hz (1)

one obtains in the end the following two equations:

E/ y + μ H/ t+ sH = 0 (2)

H/ y + E/ t+ E = 0 (3)

The original Maxwell equations have gm = 0 in Eq.(1.1-2) and s = 0 in
Eq.(1.1-8). Instead of Eqs.(2) and (3) one obtains:

E/ y + μ H/ t = 0 (4)

H/ y + E/ t+ E = 0 (5)

The elimination of H from Eqs.(2) and (3) yields the following second
order partial di erential equation for E alone

2E/ y2 μ 2E/ t2 (μ + s) E/ t s E = 0 (6)

while the elimination of H from Eqs.(4) and (5) yields a di erent partial dif-
ferential equation:

2E/ y2 μ 2E/ t2 μ E/ t = 0 (7)

The term s E makes Eq.(6) significantly di erent from Eq.(7). Even if we
solve Eq.(6) and then take the limit s 0 we may and actually do get a result
di erent from the one provided by Eq.(7). We may say that Eqs.(1.1-1)—(1.1-8)
have a singularity for gm = 0, which prevents us from choosing gm = 0 at the
beginning rather than at the end of the calculation, or we may say the original
and the modified Maxwell equations have a di erent group symmetry. The
important fact is that Eqs.(6) and (7) are significantly di erent.

1Harmuth 1986a, b, c; Harmuth and Hussain 1994; Harmuth, Boules and Hussain 1999;
Harmuth and Lukin 2000; Harmuth, Barrett and Me ert 2001.
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Let us assume the electric field strength E = E(y, t) has been derived from
Eq.(6) for certain initial and boundary conditions. We may then obtain the
associated magnetic field strength H(y, t) from either Eq.(2) or (3):

H(y, t) =
1

μ
e st/μ E

y
est/μdt+Ht(y)e

st/μ (8)

H(y, t) =
E

t
+ E dy +Hy(t) (9)

The two equations must yield the same value for H(y, t). This requirement
determines the integration constants Ht(y) and Hy(t).

If we obtain E = E(y, t) for certain initial and boundary conditions from
Eq.(7), derived from the original Maxwell equations, we may substitute it either
into Eq.(4) or Eq.(5) to obtain the associated magnetic field strength H(y, t):

H(y, t) =
1

μ

E

y
dt+Ht(y) (10)

H(y, t) =
E

t
+ E dy +Hy(t) (11)

Again, the requirement that both equations must yield the same field strength
H(y, t) should determine the integration constants.

We introduce the normalized time and space variables and using a time
interval t that is finite but has no other restrictions:

= t/ t, = y/c t, t > 0 (12)

Equations (6), (8) and (9) become

2E/ 2 2E/ 2 ( + μ) E/ μE = 0

+ μ = c
2 t(μ + s), μ = c

2( t)2s

= t/ , μ = s t/μ (13)

H( , ) =
1

Z
e μ

E
e μ d +H ( )e μ (14)

H( , ) =
1

Z

E
+ E d +H ( ) (15)

while Eqs.(7), (10) and (11) assume the form
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2E/ 2 2E/ 2 E/ = 0, = t/ (16)

H( , ) =
1

Z

E
d +H ( ) (17)

H( , ) =
1

Z

E
+ E d +H ( ) (18)

An electric force function with the time variation of a step function is
introduced as boundary condition for the solution of Eq.(13):

E(0, ) = E0S( ) = 0 for < 0

= E0 for 0 (19)

As initial condition we choose that the electric field strength shall be zero
for all locations > 0 at = 0:

E( , 0) = 0 for > 0 (20)

For = 0 the value of E(0, 0) is already defined by the boundary condition of
Eq.(19).

For the calculation we refer the reader to previous publications2. The
choice t = 2 / yields = 2, μ = 2s / μ and the equations are greatly
simplified. At the end of the calculation we make a further simplification by
the trasition s 0, which implies that the magnetic dipole current gm in
Eq.(1.1-2) approaches zero. We obtain the following electric field strength for
Eq.(13):

E( , ) = E0 1
2
e

×
1

0

ch (1 2)1/2 +
sh (1 2)1/2

(1 2)
1/2

sin
d

+

1

cos ( 2 1)1/2 +
sin ( 2 1)1/2

( 2 1)
1/2

sin
d (21)

Plots of E( , )/E0 are shown in Fig.1.2-1 for the locations = 0, 1, 2,
. . . , 10 in the time interval 0 60 by the solid lines. The boundary
condition of Eq.(19) is represented by the plot for = 0.

2Harmuth 1986c, Secs. 2.1, 2.4; Harmuth, Barrett, Me ert 2001, Secs. 1.3, 1.4, 6.1, 6.2.
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FIGURE 1.2-1. Electric field strengths E( , )/E0 according to Eq.(21) as function of the
normalized time with the normalized distance as parameter. The solid lines represent
Eq.(21), the stars at = 1, 5, 10 the solutions of Eq.(16).

FIGURE 1.2-2. Plots of the electric field strength E( , )/E0 according to Eq.(21) in the
vicinity of = with a large scale for ; = 1, 2, 4, 8.

For E( , )/E0 close to the jumps at = the same plots are shown for
= 1, 2, 4, 8 with much enlarged time scale in Fig.1.2-2. We recognize decaying

oscillations for times slightly larger than .
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FIGURE 1.2-3. Normalized magnetic field strengths H( , )Z/E0 associated with the electric
field strengths of Fig.1.2-1; = t/ t = t/s ; = y/c t = yZ/s , s 0.

The solution of Eq.(16) yields the points indicated by stars on the plots
for = 1, 5, 10 in Fig.1.2-1. There appears to be perfect equality between the
solutions of Eqs.(13) and (16). But this is not so in the vicinity of = . The
decaying oscillations of Fig.1.2-2 are not provided by Eq.(16).

We turn to the associated magnetic field strengths of Eqs.(14), (15) and
(17), (18). Equations (15) and (18) are equal but Eqs.(14) and (17) are not.
As a result, Eq.(14) converges but Eq.(17) does not. Since Eq.(18) converges
we get a defined result for H( , ) but Eq.(17) yields an undefined result. Since
Eqs.(17) and (18) were derived from the original Maxwell equations we must
conclude that these equations have no solution for the step function excitation
of Eq.(19) while the modified Maxwell equations have a solution. This result
has been generalized from the step excitation to the general excitation3

E(0, ) = E0
nS( ) = 0 for < 0

= E0
n for 0, n = 0, 1, 2, . . . (22)

Let us emphasize that this result does not depend in any way on the
method of solution of the di erential equations (13) and (16). Only the deriva-
tion of the associated magnetic field strengths H( , ) from the electric field
strength E( , ) in Eqs.(14), (15) and (17), (18) is used. Nothing can be gained
by developing fancier methods for the solution of the di erential equation (16).

Substitution of Eq.(21) di erentiated with respect to or into Eqs.(14)
and (15) yields for t = 2 / , μ = 2s / μ, and s 0 an equation for H( , )
that is rather long4. Hence, we show in Fig.1.2-3 only plots for = 0, 1, 2, 3 in
the time interval 0 25. The plots for = 1, 4 are shown once more close

3Harmuth and Hussain 1994, Sec. 1.1; Harmuth, Barrett, Me ert 2001, Sec. 1.4.
4Harmuth 1986c, Sec. 2.4; Harmuth, Barrett, Me ert 2001 , Sec. 6.2.



12 1 introduction

FIGURE 1.2-4. Magnetic field strengths as in Fig.1.2-3 for = 1, 4 but with a much larger
time scale in the vicinity of = .

to = with a much larger time scale in Fig.1.2-4. We see again the decaying
oscillations observed in Fig.1.2-2 for the electric field strength E( , ).

The step function excitation of Eq.(19) runs sometimes into problems of
poor convergence if particles with mass are interacting with the electromagnetic
wave. There is a second distinguished excitation function that rises gradually
rather than with a discontinuity and yields better convergence. We call this
excitation function the exponential ramp function:

E(0, ) = E1S( )(1 e ) = 0 for < 0

= E1(1 e ) for 0 (23)

We obtain as solution5 of the di erential equation (13) for an initial condition
E( , 0) = 0 and t = 2 / , = 2, μ = 2s / μ, s 0 the function

E( , ) = E1 1 e 2(1+ 2) e 2

4
e

1

0

sh(1 2)1/2

(1 2)
1/2

sin
d +

1

sin( 2 1)1/2

( 2 1)
1/2

sin
d

2 = s/μ (24)

Plots of E( , )/E1 are shown in Fig.1.2-5 for various values of and the time
interval 0 10. The associated magnetic field strengths are shown in
Fig.1.2-6.

The excitation functions E(0, ) in Eqs.(19) and (23) are extended to
. This may readily be improved by subtracting an equal function with time

delay :

5Harmuth 1986c, Secs. 2.3, 2.9; Harmuth, Barrett, Me ert 2001, Secs. 1.5, 6.4, 6.5.
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FIGURE 1.2-5. Electric field strengths E( , )/E1 due to electric exponential ramp function
excitation according to Eq.(24) as function of the normalized time and with the normalized
distance = 0, 1, 2, 3, 4 as parameter.

FIGURE 1.2-6. Associated magnetic field strengthsH( , )Z/E1 for the electric field strengths
of Fig.1.2-5 as functions of the normalized time and with the normalized distance = 0,
1, 2, 3, 4 as parameter.

E(0, ) = E0[S( ) S( )] (25)

E(0, ) = E1 S( ) 1 e S( ) 1 e ( ) (26)

The resulting electric field strengths E( , ) are obtained from Eqs.(21) or (24)
by subtracting the time-delayed function E( , ).

The function of Eq.(25) has a beginning at = 0 and an end at = .
But Eq.(26) and the equations for E( , ) obtained from Eqs.(21) or (24)
go from = 0 or = to . This is of no more physical importance
than the infinite time required by a capacitor to discharge through a resistor.
However, it is the reason why we defined a signal as an electromagnetic wave
that is zero before a finite time and has finite energy rather than a wave that
is zero before and after two finite times.

Since Eqs.(21) and (24) would be twice as long if written for the excitation
functions of Eqs.(25) and (26) we usually write them for the excitation functions
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of Eqs.(19) and (23) only. But one should keep in mind that Eqs.(25) and (26)
can yield unexpected results6.

1.3 Basic Relations for Quantum Mechanics

A number of basic relations derived from the modified Maxwell equations
will be needed. They are listed here without derivation. References for their
derivation are given.

The electric and magnetic field strength in Maxwell’s equations are related
to a vector potential Am and a scalar potential e:

E =
Am

t
grad e (1)

H =
c

Z
curlAm (2)

For the modified Maxwell equations we have to add a vector potential Ae and
a scalar potential m. Equations (1) and (2) are replaced by the following
relations1:

E = Zc curlAe
Am

t
grad e (3)

H =
c

Z
curlAm

Ae

t
grad m (4)

The vector potentials are not completely specified since Eqs.(3) and (4)
only define curlAe and curlAm. Two additional conditions can be chosen that
we call the extended Lorentz convention:

divAm +
1

c2
e

t
= 0 (5)

divAe +
1

c2
m

t
= 0 (6)

The potentials of Eq.(3) and (4) then satisfy the following inhomogeneous
partial di erential equations:

2Ae
1

c2

2Ae

t2
Ae =

1

Zc
gm (7)

2Am
1

c2

2Am

t2
Am =

Z

c
ge (8)

2
e

1

c2

2
e

t2
e = Zc e (9)

2
m

1

c2

2
m

t2
m =

c

Z
m (10)

6Harmuth, Barrett, Me ert 2001, Sec. 4.6.
1Harmuth and Hussain 1994, Sec. 1.7; Harmuth, Berrett, Me ert 2001, Sec. 1.6.



1.3 basic relations for quantum mechanics 15

Particular solutions of these partial di erential equations may be repre-
sented by integrals taken over the whole space. We note that the magnetic
charge density m may be always zero, which implies m 0:

Ae(x, y, z, t) =
1

4 Zc

gm( , , , t r/c)

r
d d d (11)

Am(x, y, z, t) =
Z

4 c

ge( , , , t r/c)

r
d d d (12)

e(x, y, z, t) =
Zc

4
e( , , , t r/c)

r
d d d (13)

m(x, y, z, t) =
c

4 Z
m( , , , t r/c)

r
d d d (14)

Here r is the distance between the coordinates , , of the current and charge
densities and the coordinates x, y, z of the potentials:

r = (x )2 + (y )2 + (z )2
1/2

(15)

If there is no magnetic charge m, the scalar potential m drops out; if in
addition there are no magnetic dipole current densities gm, the vector potential
Ae drops out too. Equations (3) and (4) are then reduced to the conventional
Eqs.(1) and (2). In the text before Eq.(1.2-22) we have pointed out thatH( , )
does not have defined values but E( , ) has. This implies that Am in Eq.(2)
is undefined but Am/ t in Eq.(1) must be defined to yield defined values for
E( , ). Hence, Eqs.(1) and (2) contain a contradiction and cannot be used2.

We note that only Eqs.(1.1-1)—(1.1-4) are needed to derive Eqs.(3)—(14),
the constitutive equations (1.1-5)—(1.1-8) are not used.

The Lagrange function and the Hamilton function shall be needed of a
particle with mass m, charge e, and velocity v in an electromagnetic field.
From the Lorentz equation of motion

t
(mv) = eE+

Ze

c
v ×H (16)

one can derive for v c from the original Maxwell equations the Lagrange
function3 LM:

LM =
1

2
m(ẋ2 + ẏ2 + ż2) + e( e +Amxẋ+Amyẏ +Amz ż) (17)

The modified Maxwell equations yield a Lagrange function represented by a
vector4 L:

2For a more detailed discussion of this contradiction see Harmuth, Barrett, Me ert
2001, Sec. 3.1.

3The subscript M refers to ‘Maxwell’.
4The subscript c refers to ‘correction’.
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L = LM +Lc = (LM + Lcx)ex + (LM + Lcy)ey + (LM + Lcz)ez (18)

The term LM is the same as in Eq.(17) while Lcx is defined by

Lcx =
Ze

c
(Aez ẏ Aey ż)ẋ+

m

z
ẏ

m

y
ż +Aez ÿ Aey z̈

c2
Aez
y

Aey
z

+ ẏ
y
+ ż

z
(Aez ẏ Aey ż) dx (19)

The terms Lcy and Lcz are obtained from Lcx by the cyclical replacements
x y z x and x z y x.

The derivatives ẋ, ẏ, ż in Eq.(19) should and can be replaced by the
components of the moment p:

p = pxex + pyey + pzez (20)

px =
Lx

ẋ
=

(Lm + Lcx)

ẋ
= mẋ+ eAmx +

Ze

c
(Aez ẏ Aey ż) (21)

py =
Ly

ẏ
= mẏ + eAmy +

Ze

c
(Aexż Aezẋ) (22)

pz =
Lz

ż
= mż + eAmz +

Ze

c
(Aeyẋ Aexẏ) (23)

This is a major e ort and we rewrite only the first component of Lcx, denoted
Lcx1, in this form

5:

Lcx1 =
Ze

c
(Aez ẏ Aey ż)ẋ =

Ze

m2c2
Aex(p eAm)y Aey(p eAm)z

+
Ze

mc
Aez[Ae × (p eAm)]y Aey[Ae × (p eAm]z

× (p eAm)x +
Ze

mc

2

AexAe · (p eAm)

+
Ze

mc
[Ae × (p eAm)]x 1 +

Ze

mc

2

A2
e

2

(24)

The Hamilton functionH derived from the Lagrange function L of Eq.(18)
is a vector too. If either the energy mc2 is large compared with the energy due

5For the other components see Harmuth, Barrett, Me ert 2001, Sec. 3.2.
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to the potential Ae or the magnitude of the potential Am is large compared
with the magnitude of Ae we obtain the following simple equations:

H = Hxex +Hyey +Hzez (25)

Hx =
1

2m
(p eAm)

2 + e e Lcx (26)

Hy =
1

2m
(p eAm)

2 + e e Lcy (27)

Hz =
1

2m
(p eAm)

2 + e e Lcz (28)

The terms (1/2m)(p eAm)
2 + e e equal the conventional one derived from

Maxwell’s original equations.
If the simplifying assumptions made for the derivation of Eqs.(26)—(28)

are not satisfied one obtains the following exact but much more complicated
Hamilton function:

H =
1

2m
(p eAm)

2+
Ze

mc

2

2 Ae · (p eAm)
2
+ Ae× (p eAm)

2

+
Ze

mc

4

A2
e Ae · (p eAm)

2
1 +

Ze

mc

2

A2
e

2

+ e e Lc (29)

Terms multiplied by (ZecAe/mc
2)2 or (ZecAe/mc

2)4 have been added to the
simplified terms of Eqs.(26)—(28).

Dropping the simplifying restriction v c we obtain more complicated
expressions. In particular, the Hamilton function can be written with the
help of series expansions only6. The relativistic generalization of the Lagrange
function of Eq.(18) is:

L = m0c
2(1 v2/c2)1/2 + e( e +Am · v) +Lc (30)

In analogy to Eqs.(26)—(28) we write first an approximation for the three
components of the Hamilton function that holds if the energy due to the po-
tential Ae is small compared with the energy m0c

2/(1 v2/c2)1/2 and the
magnitude of Ae is small compared with the magnitude of Am:

Hx = c (p eAm)
2 +m2

0c
2 1/2

+ e e Lcx (31)

Hy = c (p eAm)
2 +m2

0c
2 1/2

+ e e Lcy (32)

Hz = c (p eAm)
2 +m2

0c
2 1/2

+ e e Lcz (33)

6Harmuth, Barrett, Me ert 2001, Sec. 3.3.
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If we leave out the correcting terms Lcx, Lcy, Lcz we have the conventional
relativistic Hamilton function for a charged particle in an electromagnetic field,
written with three components rather than one. We call these equations the
zero order approximation in e = e(r, t) = ZecAe/m0c

2. Let us note that e

is a diminsion-free normalization of the magnitude of the potential Ae(r, t). A
first order approximation in e is provided by the following equations:

Hx = c (p eAm)
2 +m2

0c
2 1/2

(1 + eQ) + e e Lcx (34)

Hy = c (p eAm)
2 +m2

0c
2 1/2

(1 + eQ) + e e Lcy (35)

Hy = c (p eAm)
2 +m2

0c
2 1/2

(1 + eQ) + e e Lcy (36)

Q =
1

m2
0c
2

(p eAm)
2[Ae · (p eAm)]

2

[1 + (p eAm)2/m2
0c
2]
3/2
A2
e (p eAm)

2

e = e(r, t) =
ZecAe
m0c2

= 2
Ze2

2h

h

m0c

Ae
e
= 2

CAe
e

=
Ze2

2h
7.297 535× 10 3 fine structure constant, C =

h

m0c

e = 2.210× 105Ae for electron, e = 1.204× 102Ae for proton (37)

The fine structure constant is a universal constant of quantum physics. The
factor (h/c)Ae/m0e normalizes the magnitude Ae of the potential Ae by the
mass and charge of a particle interacting with the field; the factor h/c makes

e dimension-free.

The correcting terms Lcx, Lcy, Lcz are defined by Eq.(19) and the text
following it. The first term Lcx1 of Lcx is shown by Eq.(24). In first order
approximation in e it becomes:

Lcx1 =
Ze

c
(Aez ẏ Aey ż)ẋ =

e

Aem0

Aez(p eAm)y Aey(p eAm)z

[1 + (p eAm)2/m2
0c
2]
1/2

× (p eAm)x

[1 + (p eAm)2/m2
0c
2]
1/2

+O( 2
e) (38)

The good news about this series expansion in e is that it provides an unlimited
number of topics for PhD theses. The bad news is the term Q of Eq.(37).
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1.4 Dipole Currents

An electric charge density e moving with the velocity v produces a mono-
pole current density ge:

ge = ev (1)

If the monopoles carrying the current have no mass, the current will follow any
change of the electric field strength E instantly and we obtain Ohm’s law

ge = E (2)

A mass m0 of the monopoles will change Eq.(2) for v c to

ge + mp
dge
dt

= E (3)

If E has the time variation of a step function, E = E0S(t), we get the
same time variation for ge in Eq.(2) but ge according to Eq.(3) becomes

ge(t) = E0(1 e t/ mp)S(t) = E0(1 e /p)S( ), = t/ , p = mp/ (4)

Plots of ge(t) according to Eqs.(2) and (3) are shown in Fig.1.4-1.
In addition to the step function E0S(t) we use frequently the exponential

ramp function

E(t) = E0(1 e t/ )S(t) (5)

The current density ge according to Eq.(3) becomes in this case

ge = E0 1 e t/ mp +
mp

e t/ mp e t/ for mp =

= E0 1 1 +
t

mp
e t/ mp , for mp = (6)

Plots of the exponential ramp function of Eq.(5) and representative current
densities according to Eq.(6) are shown in Fig.1.4-2. The di erence between
the plot of the field strength E(t)/E0 and the plots for the current densities is
never as large as in Fig.1.4-1 for the step function.

Equation (3) is replaced for dipoles by the following equation1:

ge + mp
dge
dt

+
mp

2
p

ge dt = pE, p =
ee mp

m0
=
N0e

2
mp

m0
(7)

1Harmuth, Boules, Hussain 1999, Secs. 1.2—1.6; Harmuth, Barrett, Me ert 2001, Secs.
2.1—2.3.
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FIGURE 1.4-1. The step function excitation E/E0 = S( ) (solid line) and the lagging current
densities ge/ E0 according to Eq.(4) due to a finite mass of the charge or current carriers
for p = 1/4, 1/2, 1, 2, 4.

FIGURE 1.4-2. The exponential ramp function excitation according to Eq.(5) (solid line) and
current densities ge/ E0 according to Eq.(6) for p = 1/4, 1/2, 1, 2, 4.

The notation p rather than is used to emphasize that it is the conductivity
of dipole currents. Excitation of the dipole current ge by a step function

E(t) =
2p

q
E0S(t) (8)

with a factor 2p/q that will be explained presently yields the following current
densities for various values of the parameter p = mp/ p:

ge = 2 pE0
1

q2
e /q for p =

1

2
(9)

= 2 pE0
p(e / 1 e / 2)

q (1 4p2)
1/2

for p <
1

2
(10)

= 2 pE0
2pe /2pq

q (4p2 1)
1/2

sin
(4p2 1)1/2

2pq
for p >

1

2
(11)
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FIGURE 1.4-3. Time variation of dipole current densities according to Eq.(9) for p = 1/2 and
q = 1/4, 1/2, 1, 2 4 in the interval 0 10.

1 = q[1 + (1 4p2)1/2]/2p, 2 = q[1 (1 4p2)1/2]/2p

= t/ , q = p/ , p = mp/ (12)

The use of the factor 2p/q in Eq.(8) is explained by the three integrals

1

q2
0

e /qd = 1

p

q (1 4p2)
1/2

0

e / 1 e / 2 d = 1

2p

q (4p2 1)
1/2

0

e /2pq sin
(4p2 1)1/2

2pq
d = 1 (13)

The same charge will pass through a certain cross section of the path for the
current density during the time 0 < t < .

The time variations of the current densities ge according to Eqs.(9)—(11)are
shown in Figs.1.4-3 to 1.4-5 for p = 1/2, 1/4, and 1. These are typical time
variations of dipole currents while Figs.1.4-1 and 1.4-2 show typical time varia-
tions of monopole currents. We see, however, that for q = 2, 4 and small values
of the time the dipole currents vary quite similarly to the monopole currents.

We replace the step function excitation of Eq.(8) by an exponential ramp
function excitation in analogy to Eq.(5)

E =
q 2p

q2
E0(1 e t/ )S(t) =

q 2p

q2
E0(1 e /q)S( )

= t/ p, q = / p (14)
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FIGURE 1.4-4. Time variation of dipole current densities according to Eq.(10) for p = 1/4
and q = 1/4, 1/2, 1, 2, 4 in the interval 0 10.

FIGURE 1.4-5. Time variation of dipole current densities according to Eq.(11) for p = 1 and
q = 1/4, 1/2, 1, 2, 4 in the interval 0 10.

FIGURE 1.4-6. Electric exponential ramp function q2E/2(q 2p)E0 according to Eq.(14) for
p = 3/8 (solid line) and dipole current densities ge/ pE0 according to Eq.(16) for p = 3/8,
1/4, 1/8.
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where the factor (q 2p)/q2 will be explained presently. Substitution of E into
Eq.(7) yields a resonant solution for = 1 or = 2:

1

p
=
1

2p
1 + (1 4p2)1/2

2

p
=
1

2p
1 (1 4p2)1/2 , p =

mp

p
(15)

We pursue only this resonant solution and restrict it further to values of p <
1/2. The current density according to Eq.(7) becomes:

ge = pE0
1

q2
e /q

q =
1

2p
1 + (1 4p2)1/2 for = 1,

1

2p
< q <

1

p

1

q2
0

e /qd = 1 (16)

Figure 1.4-6 shows plots of q2E/2(q 2p)E0 according to Eq.(14) for p =
3/8 and ge/ pE0 according to Eq.(16) for various values of p. A comparison
with Fig.1.4-2 shows that the dipole current densities vary quite similarly to
the monopole current densities for small times, particularly for small values
of p. For larger times all the dipole current densities drop to zero while the
monopole current densities in Fig.1.4-2 approach a constant value shown there
as 1.

For the extension of our results to velocities v that are not restricted by
the condition v c introduced with Eq.(3) we use the notation2

=
ge
gec

=
ge
gec

=
N0ev

N0ec
=

ev

ec
=
v

c
(17)

where gec is a limiting current density of the charge e if its velocity v ap-
proaches the velocity c of light; N0 is the density of the charge carrier with
the charge e. Such a relativistic extension is evidently of interest only if the
number of charge carriers or their density is limited. Otherwise a larger current
density can be achieved by increasing the density of charge carriers rather than
their velocity. Since the current density has always the same direction as the
field strength E in Eq.(3) we may replace the vectors by their magnitudes. The
relativistic generalization of Eq.(3) becomes:

2Harmuth, Barrett, Me ert 2001, Sec. 2.3; Harmuth, Boules, Hussain 1999, Sec. 1.5.
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FIGURE 1.4-7. Plots of the normalized electric monopole current density = ge/N0ec for
E/E0 = S( ), pq = 1, and 0 = 1/8, 1/4, 1/2, 1, 2, 4, 8 according to Eq.(18).

(1 2) 1/2 1

1 2

d

d
+
1

pq
=

eE

E0

= v/c = N0ev/N0ec = e/ ec = ge/gec, gec = N0ec = ec

e = mpeE0/m0c, q = p/ , p = mp/ p, pq = mp/ , = t/ (18)

To make the connection of Eq.(18) with Eq.(3) more recognizable we
rewrite Eq.(18) for small values of :

d

d
+
1

pq
=

eE

E0
or mp

dge
dt
+ ge = E

=
N0e

2
mp

m0
, ge = N0ec = N0ev = ev (19)

Although the square root in Eq.(18) makes its analytical solution impossi-
ble it is not di cult to produce plots of as functions of time. Such plots are
shown in Fig.1.4-7 for excitation by a step function E/E0 = S( ), pq = 1, and
various values of e. The normalized current density = ge/gec never exceeds
one.

We are used to thinking of electric dipole currents as the weak currents
flowing in the capacitors of radio and television receivers, while monopole cur-
rents drive the motors, the water heaters, and the light bulbs. However, very
large dipole currents occur in capacitive phase compensators used in electric
power distribution grids to combat the phase shift between voltage and current
due to inductive loading.

We turn to Eq.(7) for dipole current densities. Here we run into an im-
portant di erence between monopole and dipole currents. If there is a fixed
density N0 of charge carriers in vacuum, the monopole current can be increased
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FIGURE 1.4-8. Plots of the normalized electric dipole current density ( ) according to
Eq.(21) for step function excitation, E = E0S( ), q = 1, p = 1/4, and e = 1/8, 1/4, 1/2, 1,
2, 4 8.

only by increasing the velocity of the charge carriers. This is di erent for dipole
currents. A fixed density of hydrogen atoms seems to call for an increase of the
velocity of the electrons to increase the dipole current density. However, dipole
currents can be produced in vacuum by the creation of electric dipoles without
violating the conservation of charge. In this case a larger current density can
be achieved by the creation of more dipoles rather than by an increase of the
velocity of their positive and negative charge components. Only experimental
work can decide whether the density of electric dipoles is ever limited.

Let us introduce the normalized time = t/ into Eq.(7) and di erentiate
with respect to . The vectors ge and E are replaced by their magnitudes:

d2ge
d 2

+
1

pq

dge
d

+
1

q2
ge =

p

pq

dE

d

p = mp/ p, q = p/ , pq = mp/ , = t/ (20)

Using the definitions of Eq.(18) we obtain the following relativistic form
of Eq.(20):

(1 2) 1/2 1

1 2

d2

d 2
+
1

pq

d

d
+

3

(1 2)
2

d

d

2

+
1

q2

=
e

pq

1

E0

dE

d
(21)

For 2 0 and (d /d )2 0 the nonrelativistic limit of this equation is
obtained and Eq.(20) is regained:

d2

d 2
+
1

pq

d

d
+
1

q2
=

e

pq

1

E0

dE

d
=

p

N0ecpq

dE

d
(22)
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For the numerical evaluation of Eq.(21) we assume the current density is
zero for = 0, which yields (0) = 0. A second initial condition is needed. We
rewrite Eq.(21) for = 0

d2

d 2
+
1

pq

d

d
=

e

pq

1

E0

dE

d
(23)

and integrate:

d

d
+
1

pq
=

e

pq

1

E0
E( ) (24)

Since (0) is zero due to the first initial condition we get

d (0)

d
=

e

pq

1

E0
E( ), e =

mpeE0
pq

(25)

and a step function excitation E( ) = E0S( ) yields e/pq on the right side of
Eq.(25) as the second initial condition. Figure 1.4-8 shows plots of = ge/N0ec
for q = 1, p = 1/4, and various values of e. The limitation of the current
density at = 1 is conspicuous.

For–hypothetical–induced magnetic dipoles we get essentially the same
equations as for induced electric dipoles. More important are inherent magnetic
dipoles as the one shown in Fig.1.1-2. Consider this dipole or ferromagnetic bar
magnet of length 2R in a homogeneous magnetic field of strength H and flux
density B. We introduce the magnetic dipole moment mmo with dimension

3

Am2 and the mechanical moment of inertia J with dimension Nms2 of the bar
magnet. The equation of motion becomes:

J
d2

dt2
= mmoB sin (26)

where is the angle between the field strength H and the bar magnet. The
velocity of the end points of the bar has the value

v(t) = R
d

dt
(27)

which suggests to introduce a velocity dependent attenuation term with the
coe cient m into Eq.(26):

J
d2

dt
+ mR

d

dt
+mmoB sin = 0 (28)

3If we write mmoB = mmoμH, the term mmoμ has the dimension Vsm and the sym-
metry with the electric dipole moments eR [Asm] is maintained, if the electric charge ±e
replaces ±qm in Fig.1.1-2. The product (eR)E [Asm×V/m] is then in complete analogy to
the product mmoμH [Vsm×A/m].
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FIGURE 1.4-9. The function vy( ) /R according to Eq.(31) for p = 1/4, q = 1, and n =
n /8 with n = 1, 2, 3, 4, 5, 6, 7, 7.8. The plot becomes zero for any finite value of for
n = 8.

The term sin makes an analytical solution of this di erential equation gener-
ally impossible. Solutions for small angles

.
= sin were already studied by

Gauss. The computer enables us to represent solutions by plots. We rewrite
Eq.(28) in normalized form:

d2

d 2
+
1

pq

d

dt
+
1

q2
sin = 0

=
t
, q =

1 J

mmoB
=

p
, p =

J

mR p
=

JmmoB

mR
=

mp

p

p = J/mmoB, mp = J/ mR, pq = mp/ = J/ mR (29)

This di erential equation can be solved numerically for the initial condition
(0) = n 0 = n and d (0)/d = 0. The numerical values obtained for ( )
and d /d may then be used to calculate the velocities v( ) and vy( ) of Fig.1.1-
2:

v( ) = R
d

dt
=

R d

d
(30)

vy( ) = v( ) sin =
R d

d
sin (31)

Plots of vy( ) are shown in Fig.1.4-9 for p = 1/2, q = 1, and various values of

n.
In order to connect the velocity v(t) with the current density gm(t) of a

magnetic dipole current we replace the bar magnet in Fig.1.1-2a by a thin rod
with fictitious magnetic charges ±qm at its ends as shown in Fig.1.1-2b. The
magnetic dipole moment mmo equals 2qmR. The charge qm must be connected
with the magnetic dipole moment by the relation



28 1 introduction

FIGURE 1.4-10. Dumbbell model of a rotating dipole with two masses m at the ends of a
thin rod of length 2R.

qm [Vs] =
μmmo

2R

Vs

Am

Am2

m
(32)

where μ is the magnetic permeability, to obtain the dimension of qm. The
magnetic dipole current 2qmvy(t) = μmmovy(t)/R is produced by such a bar
magnet.

Just as in the case of the electric dipole we do not know whether a relativis-
tic limitation exists for magnetic dipole currents since there is no conservation
law for magnetic dipoles either. For a relativistic extension of Eq.(29) we must
specify the moment of inertia J in more detail. We assume the bar magnet can
be represented by a dumbbell shown in Fig.1.4-10 with the masses m at the
end of a thin rod of length 2R. Substitution of J = 2mR2 into Eq.(28) yields:

2mR2
d2

dt2
+ mR

d

dt
+mmoB sin = 0 (33)

The relativistic generalization of this equation has the following form4:

1 2 d

d

2 1/2
1

1 2 (d /d )
2

d2

d 2
+
1

pq

d

d
+
1

q2
sin = 0

=
t
, =

R

c
, q =

R 2m0

mmoB
=

p
, p =

2m0mmoB

m
=

mp

p

pq =
mp

=
2Rm0

m
, p = R

2m0

mmoB
, mp =

2m0R

m
(34)

For 2(d /d )2 0 one obtains from Eq.(34) the nonrelativistic limit of
Eq.(29).

The initial conditions of Eq.(34) are ( ) = n 0 = n and d (0)/d = 0
just as for Eq.(29). The velocities v( ) and vy( ) of Eqs.(30) and (31) become:

v( )

c
=

R

c

d
=

d

d
(35)

vy( )

c
=

d

d
sin (36)

4Harmuth, Boules, Hussain 1999, Sec. 1.6; Harmuth, Barrett, Me ert 2001, Sec. 2.3.
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FIGURE 1.4-11. The normalized velocity vy( )/c according to Eq.(36) for p = 1/4, q = 1,
= 4, and (0) = n = n /8 with n = 1, 2, 3, 4, 5, 6, 7, 7.8.

Plots of vy( )/c are shown in Fig.1.4-11 for p = 1/4, q = 1 or = p, = 4,
and various values of (0) = n = n /8. The relativistic limitation v/c < 1 is
not conspicuous but a comparison with Fig.1.4-9 shows how the peaks of the
plots for n = 5, 6, 7 have been flattened.

1.5 Infinitesimal and Finite Differences for Space and Time

The discussion of finite or infinite divisibility of space and time has been
going on for some 2500 years. Zeno of Elea (c. 490 — c. 430 B.C.) advanced
the paradoxes of the race between Achilles and the turtle or the arrow which
cannot fly that were supposed to show that infinite divisibility of space and time
was not possible. A quote from Aristotle (384 — 322 B.C.) shows that infinite
divisibility and thus the concept of the continuum was a matter of discussion
before he wrote his Physica:

Now a motion is thought to be one of those things which are contin-
uous, and it is in the continuous that the infinite first appears; and for
this reason, it often happens that those who define the continuous use the
formula of the infinite, that is, they say that the continuous is that which
is infinitely divisible [Apostle 1969, Book III ( ), 1, § 2].
Aristotle argued the concept of the continuum for space, time and motion

so convincingly1 that it does not seem to have been challenged until Max Planck
introduced quantum mechanics. Newton (1971) took this concept apparently
so much for granted that he did not even mention it, even though he was very
meticulous in listing and elaborating his assumptions. The di erential calculus
of Leibnitz and Newton made us carry the concept of infinite divisible one step
further since we distinguish now between dividing a finite interval X into
denumerable or non-denumerable many intervals.

1Book V(E) 3, § 5 defines continuous, Book VI(Z) 1, 2 elaborates the concept of the
continuum further; Zeno of Elea is refuted in Book VI(Z) 2 and 9 (Apostle 1969, Aristotle
1930).
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A widely held view of a space-continuum is summed up in a quote by Weyl
that emphasizes that this concept came from mathematics:

From the essence of space remains in the hands of the mathemati-
cian, using such abstraction, only one truth: that it is a three-dimensional
continuum (Weyl 1921; 1968, vol. II, p. 213).

The following two quotes give a good summary of our currently accepted
thinking about space and time:

So let us conclude that space has a definite real intrinsic structure in
its metric, a nity, and topology. This means it has a shape and size in a
way I have tried at length to make clear. It shows just how much space is
a particular thing (Nehrlich 1976, p. 211).

It is now generally taken for granted that public time is both infinitely
divisible, or “dense” as the mathematician terms it, and continuous; that
is, not only can we always consider any interval as made up of smaller ones,
but we are entitled to apply even irrational numbers to the measurement of
time . . . Our concepts are not immune to revision; and in the case of time,
we are already prepared, in some locations, to speak of it as though it were
discrete. But to do so consistently would require a fairly radical revision
of the concept. We should have to unthink as far back as Aristotle (Lucas
1973, pp. 29, 32, 33).

We avoid all questions of how spatial and time distances can be divided
indefinitely since we never find a hint how such a division can be carried out
experimentally or can be observed. Instead we replace the di erentials dx, dt by
arbitrarily small but finite di erences x, t. They can always be equal or even
smaller than the shortest observable distance. The di erence between a finite
distance of 10 100m and an infinitesimal distance dx is not directly observable.
The question arises whether such small values of x would not have to yield
the same results as di erentials dx. This question was answered by Hölder
(1887) who showed that di erence equations and di erential equations define
di erent classes of functions. In particular the Gamma function satisfies the
algebraic di erence equation

(X + 1) = X (X), X = x/ x (1)

but no algebraic di erential equation.
The example of the Gamma function shows that di erence equations can

define continuous and di erentiable functions. The use of finite di erences x,
t does not imply that only discrete functions defined at integer multiples of
x and t can be obtained as solution of a partial di erence equation.
Although this result may be of limited interest to the practical physicist

it contributes to the philosophy of science. Our inability to make observations
at x and x + dx or t and t + dt prevents any proof that there is a physical
space-time continuum, but it also prevents a proof that there is NO physical
space-time continuum. The question whether there is or is not a space-time
continuum is no more answerable within the confines of a science based on
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observation than the question how many angels can dance on the point of a
needle. We can use mathematics as a tool in physics, but we cannot use it as
a source of concepts that are beyond observation.

Let us take one more step in the direction of philosophy of science and
quote from Einstein and Infeld (1938, p. 311):

The psychological subjective feeling of time enables us to order our
impressions, to state that one event precedes another. But to connect ev-
ery instant of time with a number, by the use of a clock, to regard time as
an one-dimensional continuum, is already an invention. So also are the con-
cepts of Euclidean and non-Euclidean geometry, and our space understood
as a three-dimensional continuum.

When we use di erential calculus and then permit this mathematical
method to define physical space and space-time we make physics a special
branch of mathematics. Since mathematics is a science of the thinkable while
physics is a science of the observable, mathematics can never be more than
a tool in physics or provide inspiration. The succesful solution of a physical
problem by means of di erential calculus only implies that the assumption of
a mathematical continuum can yield results that correspond with physical ob-
servation, it does not imply the existence of a physical space-time continuum.

Let us see how this principle works for finite di erences. We know from
observation that we can only resolve finite space and time di erences x and
x + x or t and t + t. If we look what mathematical tools are available
that satisfy this requirement we find the calculus of finite di erences. This
calculus does not define any physical concept of space or space-time. It works
for continuous functions, like the Gamma function, but does not suggest any
particular topology of space or space-time. We could go one step further and
require that x and t are integer multiples of x and t: x = n x, t = m t. If
we did this we would introduce a cellular space or space-time into physics; we
would repeat the mistake we made with di erential calculus and the space-time
continuum. There is no physical reason to do so.

The use of the calculus of finite di erences reduces the concepts of space
and space-time to coordinate systems and moving coordinate systems, which
are obviously human constructs in line with the quote of Einstein and Infeld
above. This is discussed in some detail in a book by Harmuth (1989). Long
term the most important result of the use of the calculus of finite di erences
may be that it removes the mathematical concepts imposed on physics by the
di erential calculus. This would free our thinking to search for observations
that can be associated with physical concepts of space and time, other than
distances relative to a standard distance such as the meter and changes relative
to a standard change, such as the one produced by a clock.

We shall forgo philosophy from here on and concentrate on more practical
problems. The partial di erential equations of the pure radiation field and
the Klein-Gordon field will be replaced by di erence equations. Solutions will
be derived and represented by computer plots that show definite deviations of
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the results derived from the di erence equations and the di erential equations.
The deviations will be small, but quantum electrodynamics is known to produce
results corresponding very closely to observation. Large deviations would make
one doubt the results of the di erence theory. In Section 3.6 we will see that a
basic di erence equation of quantum electrodynamics yields the same (energy)
eigenvalues as the corresponding di erential equation but significantly di erent
eigenfunctions.



2 Di erential Equations for the Pure Radiation Field

2.1 Pure Radiation Field

Equations (1.3-7)—(1.3-10) define the potentials by means of the current
and charge densities. We specify that there shall be neither electric nor mag-
netic charge densities e and m. According to Eqs.(1.3-13) and (1.3-14) we
get:

e(x, y, z, t) 0, m(x, y, z, t) 0 (1)

Only Eqs.(1.3-7) and (1.3-8) remain:

2Ae
1

c2

2Ae

t2
=

1

Zc
gm (2)

2Am
1

c2

2Am

t2
=

Z

c
ge (3)

Since we excluded charge densities the current densities gm and ge can refer
to dipole or higher order multipole currents only. The absence of monopole
currents and charges is a characteristic feature of a pure radiation field in
vacuum. We derived Eq.(1.4-7) for electric dipole currents due to induced
dipoles:

ge + mp
dge
dt

+
mp

2
p

ge dt = pE (4)

We have shown in Figs.1.4-1 to 1.4-6 that for small values of = t/ , small
values of p = mp/ , and large values of q = p/ one may approximate the
dipole current of Eq.(4) by a monopole current defined in the simplest case by
Ohm’s law of Eq.(1.4-2):

ge = E (5)

The situation is much worse if we want analytical results that apply to magnetic
dipole currents. Equation (1.4-29) and equations derived from it can be used
for numerical solutions, as we did in Figs.1.4-9 and 1.4-10, but the term sin

33
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makes it useless for analytical solutions. In order to obtain some theoretical
understanding we have little choice but to assume induced magnetic dipoles
and look for results where the e ect of magnetic dipoles is small compared
with the e ect of the electric dipoles. Exact results must be left to numerical
evaluations. If we use an approximation of magnetic dipole current densities
in analogy to Eq.(5)

gm = sH (6)

we obtain from Eqs.(1.3-3) and (1.3-4) the following result:

ge = E = Zc curlAe +
Am

t
(7)

gm = sH = s
c

Z
curlAm

Ae

t
(8)

The current densities in Eqs.(2) and (3) can be eliminated. Two equations
containing the vector potentials Am and Ae only are obtained:

2Ae
1

c

2Ae

t2
+
s

Zc

c

Z
curlAm

Ae

t
= 0 (9)

2Am
1

c2

2Am

t2
Z

c
Zc curlAe +

Am

t
= 0 (10)

The potentials Ae and Am are connected in these two equations even in
the limit s 0, with which we may eliminate the induced magnetic dipoles at
the end of the calculation. On the other hand, the assumption that the current
densities gm and ge in Eqs.(1.3-7) and (1.3-8) are zero leads to = s = 0 in
Eqs.(9) and (10), which eliminates any connection between Ae and Am. This
would lead to separate electric and magnetic theories with features such as
independent electric and magnetic photons.

We want to derive solutions of Eqs.(7) and (8) for planar waves. To this
end we write the vectors A, curlA and 2A in Cartesian coordinates using
the unit vector ex, ey and ez:

A = Axex +Ayey +Azez (11)

curlA =
Az
y

Ay
z

ex+
Ax
z

Az
x

ey+
Ay
x

Ax
y

ez (12)

2A =
2Ax
x2

+
2Ax
y2

+
2Ax
z2

ex+
2Ay
x2

+
2Ay
y2
+

2Ay
z2

ey

+
2Az
x2

+
2Az
y2
+

2Az
z2

ez (13)
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These relations permit us to write Eqs.(9) and (10) in Cartesian coordinates:

2Aex
x2

+
2Aex
y2

+
2Aex
z2

1

c2

2Aex
t2

+
s

Zc

c

Z

Amz
y

Amy
z

Aex
t

= 0 (14)

2Aey
x2

+
2Aey
y2

+
2Aey
z2

1

c2

2Aey
t2

+
s

Zc

c

Z

Amx
z

Amz
x

Aey
t

= 0 (15)

2Aez
x2

+
2Aez
y2

+
2Aez
z2

1

c2

2Aez
t2

+
s

Zc

c

Z

Amy
x

Amx
y

Aez
t

= 0 (16)

2Amx
x2

+
2Amx
y2

+
2Amx
z2

1

c2

2Amx
t2

Z

c
Zc

Aez
y

Aey
z

+
Amx
t

= 0 (17)

2Amy
x2

+
2Amy
y2

+
2Amy
z2

1

c2

2Amy
t2

Z

c
Zc

Aex
z

Aez
x

+
Amy
t

= 0 (18)

2Amz
x2

+
2Amz
y2

+
2Amz
z2

1

c2

2Amz
t2

Z

c
Zc

Aey
x

Aex
y

+
Amz
t

= 0 (19)

These equations are simplified for a planar wave propagating in the direction
of y. All derivatives with respect to x and z must be zero:

Aex
x
=

Aey
x
=

Aez
x
=

Aex
z
=

Aey
z
=

Aez
z
= 0 (20)

Amx
x

=
Amy
x

=
Amz
x

=
Amx
z

=
Amy
z

=
Amz
z

= 0 (21)

Equations (14)—(19) are reduced to the following form:
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2Aex
y2

1

c2

2Aex
t2

+
s

Zc

c

Z

Amz
y

Aex
t

= 0 (22)

2Aey
y2

1

c2

2Aey
t2

s

Zc

Aey
t
= 0 (23)

2Aez
y2

1

c2

2Aez
t2

s

Zc

c

Z

Amx
y

+
Aez
t

= 0 (24)

2Amx
y2

1

c2

2Amx
t2

Z

c
Zc

Aez
y
+

Amx
t

= 0 (25)

2Amy
y2

1

c2

2Amy
t2

Z

c

Amy
t

= 0 (26)

2Amz
y2

1

c2

2Amz
t2

+
Z

c
Zc

Aex
y

Amz
t

= 0 (27)

A further simplification is achieved by specifying a transverse electromag-
netic (TEM) wave with the components Ey and Hy equal to zero. The fol-
lowing relations for the potentials Ae and Am are obtained in this case from
Eqs.(1.3-3) and (1.3-4) for e = m = 0:

Ey = Zc
Aex
z

Aez
x

Amy
t

= 0 (28)

Hy =
c

Z

Amx
z

Amz
x

Aey
t
= 0 (29)

These two equations are simplified with the help of Eqs.(20) and (21):

Amy
t

= 0,
Aey
t
= 0 (30)

Substitution into Eqs.(23) and (24) brings

2Aey
y2

1

c2

2Aey
t2

= 0 (31)

2Amy
y2

1

c2

2Amy
t2

= 0 (32)

since the vanishing of the first partial derivatives of Eq.(30) does not mean that
the second partial derivatives with respect to time must be zero.
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The following substitution brings a further simplification; the subscript v
alludes to ‘variable’:

Aex = Aez = Aev, Amx = Amz = Amv (33)

The four Eqs.(22) and (24) as well as (25) and (27) are reduced to two equations
with the variables Aev and Amv:

2Aev
y2

1

c2

2Aev
t2

s

Zc

c

Z

Amv
y

+
Aev
t

= 0 (34)

2Amv
y2

1

c2

2Amv
t2

Z

c
Zc

Aev
y
+

Amv
t

= 0 (35)

Instead of using the substitutions of Eq.(33) we may make the more
general substitutions

Aex = Ae cos , Aez = Ae sin

Amx = Am sin , Amz = Am cos

where is the polarization angle1 measured from the positive x-axis to the
vector Ae or from the negative z-axis to the vector Am to obtain Eqs.(34)
and (35). The physical meaning of Aev and Amv in Eqs.(34) and (35) is
thus that of the magnitude of Ae and Am. Since the polarization angle
is constant, the time variation of Ae and Am is the same as that of their
magnitudes Aev and Amv. Hence, we may write our equations for Ae and
Am rather than for Ae and Am.

Circularly polarized waves can be obtained by replacing the constant
polarization angle by a time-variable angle :

Aex = Ae cos t, Aez = Ae sin t

Amx = Am sin t, Amz = Am cos t

Substitution into Eqs.(22), (24) and (25), (27) yields again Eqs.(34) and
(35). In this form one emphasizes functions with sinusoidal time variation.
This restriction vanishes if one does not choose as a linear function of
time, = t, but as a general function = f(t):

Aex = Ae cos[f(t)], Aez = Ae sin[f(t)]

Amx = Am sin[f(t)], Amz = Am cos[f(t)]

1Some authors distinguish between a polarization angle and a rotation angle. They
would call a rotation angle.
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The substitution of Aex, Aez, Amx, Amz into Eqs.(22), (24) and (25), (27)
produces once more Eqs.(34) and (35).

The two wave equations (31) and (32) have the general d’Alembert solution
for y 0 and t 0, where fe0, fe1, fm0, and fm1 denote arbitrary functions:

Aey(y, t) = Ae0fe(y ct), y 0, t 0 (36)

Amy(y, t) = Am0fm(y ct) (37)

These solutions hold for excitation functions or boundary conditions fe(0, t)
and fm(0, t) at the plane y = 0 for all times t 0 as well as initial conditions
fe(y, 0) and fm(y, 0) for t = 0 at all locations y 0.

The variables Aev and Amv in Eqs.(34) and (35) can be separated with
some e ort. One di erentiates Eq.(35) with respect to y, expresses Amv/ y
by Eq.(34), di erentiates as often as needed with respect to t and y, and sub-
stitutes into the di erentiated Eq.(35). Eventually one obtains the following
two equations:

2Ve
y2

1

c2

2Ve
t2

1

c
Z +

s

Z

Ve
t

sVe = 0 (38)

2Aev
y2

1

c2

2Aev
t2

= Ve(y, t) (39)

The dimension of Aev is As/m, which is a linear electric charge density,
while the dimension of Ve is As/m

3, which is an electric charge density. We
note the term sVe. It becomes zero for either s = 0 or = 0 and one
obtains a di erent di erential equation that in turn yields di erent solutions.
This is why it is important not to make or s zero before the end of the
calculation. In essence, the current densities ge and gm cannot be ignored at
the beginning of a calculation even if they turn out to be zero in the end. The
term ( Z + s/Z) Vm/ t is less sensitive. It does not become zero for s = 0 or
= 0, only for s = 0 and = 0.
With the substitutions Aev Amv, c/Z Zc, s one may transform

Eq.(34) into Eq.(35) and vice versa. Equations (38) and (39) are then replaced
by:

2Vm
y2

1

c2

2Vm
t2

1

c
Z +

s

Z

Vm
t

sVm = 0 (40)

2Amv
y2

1

c2

2Amv
t2

= Vm(y, t) (41)
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The dimension of Amv is Vs/m, which is a hypothetical linear magnetic
charge density, while the dimension of Vm is Vs/m3, which is a hypothetical
magnetic charge density.

At this point we switch from the time and space variables t and y with
dimensions s and m to normalized variables and :

= t/ , = y/c (42)

Equations (38) and (39) are rewritten:

2Ve
2

2Ve
2 1

Ve 2
2Ve = 0

1 = c ( Z + s/Z) = c
2 ( μ+ s ), 2

2 = c
2 2 s, 2

1 4 2
2 0 (43)

2Aev
2

2Aev
2
= c2 2Ve( , ) (44)

Equation (44) is the inhomogeneous wave equation with one spatial vari-
able. Its solution is known2:

Aev( , ) =
c2 2

2
0

+( )

( )

Ve( , )d d (45)

The variables and of Ve( , ) in Eq.(44) have to be replaced by and
when Eq.(45) is used.

In analogy to Eqs.(43)—(45) one obtains for the variable Vm(y, t) of Eqs.(40)
and (41) the following three equations:

2Vm
2

2Vm
2 1

Vm 2
2Vm = 0 (46)

2Amv
2

2Amv
2

= c2 2Vm( , ) (47)

Amv( , ) =
c2 2

2
0

+( )

( )

Vm( , )d d (48)

As before, the variables and in Eqs.(46) and (47) must be replaced by
and when Eq.(48) is used.

2Smirnov 1961, vol. II, Cha.VII, § 1, Sec. 174, Eq. 95
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One may obtain the component Amv( , ) of an associated potential from
either Eq.(34) or (35), if Aev( , ) is found from Eq.(45). Consider first Eq.(34):

Amv( , ) = Z s

2Aev
2

2Aev
2

1

s

Aev
d

s =
Z

sc
=

μ

s
=

1

2 2
2

1 ± ( 2
1 4 2

2)
1/2 (49)

Equation (35) yields a second expression for Amv( , ) if we treat this equation
as an inhomogeneous equation for Amv with a known term Aev/ y or Aev/ :

2Amv
2

2Amv
2

Amv
= Z

Aev
(50)

= Z c = , s =
Z

sc
=

μ

s
, s =

μ

s
=
1
2

(51)

It is easier to integrate Eq.(49) than Eq.(50), but we cannot ignore Eq.(50).
Since Eqs.(47) and (48) must yield the same result for Amv( , ) we generally
need the solution of Eq.(50) to determine integration constants.

Alternately, if Amv( , ) is found from Eq.(48) for certain boundary and
initial conditions one may obtain an associated potential Aev( , ) from either
Eq.(34) or (35). First we get from Eq.(35):

Aev( , ) =
1

Z

2Amv
2

2Amv
2

Amv
d (52)

The second expression for Aev( , ) is obtained from Eq.(34) by treating it as
an inhomogeneous equation for Aev with a known term Amv/ y or Amv/ :

2Aev
2

2Aev
2

1

s

Aev
=

1

Z s

Amv
(53)

Again, one must generally obtain Aev( , ) from both Eq.(52) and (53) in order
to determine the integration constants.

If we denote the solution of Aev derived from Eq.(45) by Aeve and the
associated solution obtained from Amv via Eqs.(52) and (53) by Aevm we obtain
the general solution of Aev as the sum

Aev( , ) = Aeve( , ) +Aevm( , ) (54)

Similarly, if we denote the solution derived for Amv from Eq.(48) by Amvm and
the associated solution obtained from Aev via Eqs.(49) and (50) by Amve we
obtain the general solution of Amv as the sum
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Amv( , ) = Amvm( , ) +Amve( , ) (55)

This means we can choose initial and boundary conditions independently for
Aeve and Amvm, but the associated potentials Amve and Aevm are always auto-
matically excited with Aeve or Amvm. We can never excite Aev without exciting
Amv and vice versa.

So far we have followed closely previously published results3. From here
on we shall deviate. For a first solution of Eq.(43) we assume as boundary
condition at = 0 a step function:

Ve(0, ) = Ve0S( ) = 0 for < 0

= Ve0 for 0 (56)

At large distances we want Ve( , ) to be finite. We write for a large
distance but this notation will be made more specific later on:

Ve( , ) = finite (57)

The boundary condition of Eq.(56) uses a step function that is not quadrat-
ically integrable. This may cause concern that an infinite energy is introduced
but there is no such problem. The boundary condition of Eq.(56) excites an
electromagnetic wave with finite energy. Of course, one may eliminate the
concern about quadratical integrability by subtracting from Ve0S( ) a delayed
step function Ve0S( 1) and thus replacing the step function of Eq.(56) by
a rectangular pulse4.

Let us consider the initial condition(s). As initial condition at = 0 we
assume the relation

Ve( , 0) = 0 (58)

but observe that this condition implies Ve( , ) = 0 for < 0 due to Eq.(56).
Hence, the potential Ae derived from Aev will be zero for < 0. We note that
a function of time that describes a physical process subject to the causality law
must be zero before a finite time. The term causal function is sometimes used
by mathematicians for such functions.

If Ve( , 0) is zero for all values > 0, its derivatives with respect to must
be zero too:

nVe( , 0)/
n = 0 (59)

With the help of Eqs.(58) and (59) we obtain from Eq.(43) for = 0:

3Harmuth, Barrett, Me ert 2001, Sec. 4.1
4Harmuth, Barrett, Me ert 2001, Sec. 4.6



42 2 differential equation for the pure radiation field

Ve( , )
+ 1Ve( , ) = 0 (60)

This equation is satisfied by Ve( , 0) = 0 of Eq.(58) and the additional condi-
tion:

Ve( , )/ = 0 for = 0 (61)

We assume the general solution of Eq.(43) can be written as the sum of a
steady state solution F ( ) plus a deviation w( , ) from it (Habermann 1987):

Ve( , ) = Ve0[F ( ) + w( , )] (62)

Substitution of F ( ) into Eq.(43) yields a di erential equation with the one
variable only:

d2F/d 2 2
2F = 0

F ( ) = A10e 2 +A11e 2 (63)

The boundary condition of Eq.(57) demands A11 = 0. From Eq.(56) fol-
lows then A11 = 1:

F ( ) = e 2 (64)

The introduction of F ( ) transforms the boundary condition of Eq.(56)
for Ve into a homogeneous boundary condition for w, which is the reason for
using Eq.(62):

Ve(0, ) = Ve0[F (0) + w(0, )] = Ve0 for 0 (65)

w(0, ) = 0 for 0 (66)

The boundary condition of Eq.(57) for great distances becomes

w( , ) = finite (67)

The initial conditions of Eqs.(58) and (61) yield:

F ( ) + w( , 0) = 0 w( , 0) = e 2 (68)

w( , )/ = 0 for = 0, > 0 (69)

Substitution of Eq.(62) into Eq.(43) yields for w( , ) the same equation as for
Ve( , ):
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2w/ 2 2w/ 2
1 w/

2
2w = 0 (70)

Particular solutions of this equation denoted w ( , ) are obtained by means
of Bernoulli’s product method for the separation of variables:

w ( , ) = ( ) ( ) (71)

1 2

2
=
1 2

2
+

1
+ 2

2 = (2 /N )2

N 1, = 1, 2, . . . , (72)

We write (2 /N )2 rather than the usual (2 )2 as separation constant
in order to obtain later on an orthogonality interval of length N rather than
1. Two ordinary di erential equations are obtained

d2 /d 2 + (2 /N )2 = 0 (73)

d2 /d 2 + 1d /d + [(2 /N )2 + 2
2] = 0 (74)

with the solutions

( ) = A20 sin
2

N
+A21 cos

2

N
(75)

( ) = A30 exp( 1 ) +A31 exp( 2 ) (76)

The coe cients 1 and 2 are the roots of the equation

2 + 1 + [(2 /N )2 + 2
2] = 0

1 =
1

2
[ 1 + (

2
1 d2)1/2] for d2 < 2

1

2 =
1

2
[ 1 ( 2

1 d2)1/2]

1 =
1

2
[ 1 + i(d

2 2
1)
1/2] for d2 > 2

1

2 =
1

2
[ 1 i(d2 2

1)
1/2]

1 = c ( Z + s/Z) = c
2 ( μ+ s ), d2 = 4[(2 /N )2 + 2

2],
2
2 = c

2 2 s (77)

The boundary condition of Eq.(66) requires A21 = 0 in Eq.(75) and the
particular solution w ( , ) becomes:
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w ( , ) = [A1 exp( 1 ) +A2 exp( 2 )] sin
2

N
(78)

The solution w is usually generalized by making A1 and A2 functions of
and integrating over all values of from zero to infinity. This would imply non-
denumerably many oscillators or photons. It is usual in quantum field theory
to reduce the non-denumerably many oscillators to denumerably many, using
box normalization to accomplish this reduction. We shall follow the spirit of
this reduction without recourse to box normalization.

To generalize w of Eq.(78) one may make A1 and A2 functions of and
take the sum of denumerably many values of = 1, 2, . . . . The Fourier
integral is replaced by the Fourier series. In the specific case of Eq.(78) we
have only the function sin(2 /N ). The constant term of the Fourier series
and the terms multiplied by cos(2 /N )–which is shown in Eq.(75)–have
been eliminated by the boundary condition of Eq.(66). Hence, the solution w
of Eq.(78) is generalized by a Fourier sine integral or a Fourier sine series.

A Fourier series requires a finite interval for in Eq.(78) which we must
define. The creation of a finite interval is, of course, the goal of box normal-
ization. This problem of having to define a finite interval does not occur if the
Fourier integral is used for the generalization of Eq.(78) since the interval for
the integral always runs from zero to infinity for both and . We choose the
finite interval for to be

0 = y/c T/ , T/ = N 1 (79)

where the finite time interval T is arbitrarily large but finite. The boundary
condition of Eq.(57) should be written

Ve(T/ , ) = finite, = T/ = N 1 (80)

but there is no great di erence between the usual mathematical way of writing
and the more physical way of writing N 1.

It is common practice to continue a Fourier series outside its finite interval
of definition periodically to ± . There is no need to do so. We may just as well
claim that the series is continued as zero outside the interval of definition or
simply avoid any claim about what is outside this interval. Inherently a finite
value of T and cT is preferable in physics since one cannot make observations
at infinite distances in space or time.

We generalize Eq.(78) by a sum of denumerably many terms of the variable
and a finite interval for the variable :

w( , ) =
=1

[A1( ) exp( 1 ) +A2( ) exp( 2 )] sin
2

N
(81)
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Since is a continuous variable with non-denumerably many values but has
only denumerably many values, the sum of Eq.(81) can represent w( , ) only
in the sense of a vanishing mean-square error.

The normalization constant may have any value. A logical choice would
be to use for an arbitrarily small but finite di erence t

= t (82)

but this will not work until we introduce di erence equations in Chapter 3.
The di erentials dt, dy, d and d will there be replaced by finite di erences
t, y, and . The variables t, y, and remain continuous variables

with an upper limit:

0 t T, 0 y cT

0 N, 0 N, N = T/ t (83)

In the following sections we shall work out the solution defined by Eq.(81).
This is mainly for the purpose of comparison. There is an inconsistency if one
solves the di erential equation (43) and then replaces the di erentials d , d by
finite di erences , . One should replace Eq.(43) by a di erence equation
and see where this leads. The calculations from Eq.(1) to Eq.(43) are of a form
that a mathematician should be able to rewrite from di erential to di erence
form without reference to their physical significance.

The importance of distinguishing between di erential and di erence equa-
tions is due to the theorem of Hölder, cited in connection with Eq.(1.5-1). It
states that di erential and di erence equations define di erent classes of func-
tions.

The use of di erentials in physics has been questioned for a long time.
Zeno of Elea objected already to the notion of infinite divisibility of space and
time. Pauli (1933) as well as Landau and Peierls (1931) pointed out that the as-
sumption of arbitrarily accurate position and time measurements was probably
unjustified in relativistic quantum mechanics, since the Compton e ect limits
the accuracy of the position measurement of a particle. However, Pauli con-
cluded that there was no such limitation in nonrelativistic quantum mechanics.
Today, as a result of the development of information theory, we must reject
any assumption of measurements with unlimited accuracy, since they imply
gathering and processing infinite information. In particular, non-denumerably
infinite information is implied by ‘di erentially accurate’ or infinitesimally ac-
curate measurements. March (1948, 1951) postulated that the distance of two
particles could only be measured with an error that was at least equal to an ele-
mentary unit of length. Such elementary units are di cult to reconcile with the
special theory of relativity. No such di culties arise if one assumes an arbitrar-
ily small but finite distance between adjacent marks of a ruler. Such a distance
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does not have to be 10 18m, it is still finite if it is 10 100m. Many papers have
been published on the use of finite di erences in quantum physics. We list in
chronological sequence Snyder (1947a, b), Flint (1948), Schild (1949), Hellund
and Tanaka (1954), Hill (1955), Das (1960, 1966a, b, c), Yukawa (1966), Atkin-
son and Halpern (1967), Cole (1970, 1971, 1972a, b; 1973a, b), Hasebe (1972),
Welch (1976), and Harmuth (1989).

We emphasize that the use of the finite di erences t, y used from
Chapter 3 on does not imply a quantized or cellular space-time. It strictly
replaces di erential equations by di erence equations. As the Gamma function
demonstrates a function defined by a di erence equation can be continuous and
di erentiable except at certain poles.

2.2 Differential Solution for w( , )

Equations (2.1-68) and (2.1-69) define initial conditions for w( , ) and
w( , )/ at = 0. The derivative w( , )/ follows from Eq.(2.1-81):

w
=

=1

[A1( ) 1 exp( 1 ) +A2( ) 2 exp( 2 )] sin
2

N

0 t T, 0 y cT

0 t/ = T/ = N , 0 y/c = T/ = N (1)

With Eqs.(2.1-81) and (1) we may write the initial conditions of Eqs.(2.1-68)
and (2.1-69) in the following form:

w( , 0) =
=1

[A1( ) +A2( )] sin
2

N
= e 2 (2)

w( , 0)
=

=1

[A1( ) 1 +A2( ) 2] sin
2

N
= 0 (3)

In order to solve these two sets of equations for A1( ) and A2( ) we con-
sider the Fourier series. Since only sin(2 /N ) but not cos(2 /N ) occurs
in Eqs.(2) and (3) it is su cient to use the Fourier sine series, which we write
in the following form:

gs( ) =
2

N

N

0

fs( ) sin
2

N
d , fs( ) =

=1

gs( ) sin
2

N
(4)

We note that the variable /N is used rather than . Figure 2.2-1 shows
that this produces one cycle of the sinusoidal function sin 2 ( /N ) for = 1
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FIGURE 2.2-1. Sinusoidal function sin 2 ( /N ) with the lowest number = 1 of cycles in
the interval 0 N = 10 and with the highest number = N = 10 if = T/N is the
smallest observable time resolution in the time interval of duration T .

in the interval 0 N = 10 and N = 10 cycles for = N = 10. There is
no inherent reason for not to assume values larger than N . The number of
cycles of sin 2 ( /N ) in the interval 0 N = 10 can increase without
bound as shown by the limit of the sum in Eq.(4).

The situation changes if we postulate that is the shortest time and
c the shortest distance that can be resolved by the available instruments of
observation. There is no need to claim a certain minimal value for . It may
be arbitrarily small but must be finite. A value = 10 100 s will satisfy this
condition. It is an uncontested principle that we cannot observe di erential–or
infinitesimal–space and time di erences dx and dt, we can only calculate as if
we were able to observe that accurately. The introduction of arbitrarily small
but finite values of works the limited practical resolution into the di erential
theory using dx and dt. In Chapter 3 we will extend our results by means of the
calculus of finite di erences using arbitrarily small but finite di erences x and
t. We will obtain results that di er significantly–but not excessively–from

the di erential theory.
If we have an interval of length T and if is the smallest observable time we

can distinguish T/ = N sinusoidal functions and N cosinusoidal functions.
The value of in Eq.(4) runs then from = 1 to = N rather than to infinity.
In place of Eq.(4) we get:

gs( ) =
2

N

N

0

fs( ) sin
2

N
d , fs( ) =

N

=1

gs( ) sin
2

N

0 N , N = T/ (5)

We identify gs( ) first with A1( ) +A2( ) of Eq.(2) and obtain
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A1( ) +A2( ) =
2

N

N

0

e 2 sin
2

N
d (6)

Then we identify gs( ) with A1( ) 1 +A2( ) 2 in Eq.(3) to obtain

A1( ) 1 +A2( ) 2 = 0 (7)

The integral in Eq.(6) may be found in a table (Gradshtein and Ryzhik 1980,
p. 196, 2663/1):

epx sin qx dx =
epx(p sin qx q cos qx)

p2 + q2
(8)

We obtain from Eqs.(6) and (8):

A1( ) +A2( ) =
1

N

(4 /N )(1 e N 2)

(2 /N )
2
+ 2

2

.
=

2N 2

2
=

2 2

2 /N
for N 2 1

.
=

1

N

4 /N

(2 /N )
2
+ 2

2

for N 2 1 (9)

The parameters 1 and 2 are defined in Eq.(2.1-77). The solution of
Eqs.(7) and (9) for A1( ) and A2( ) yields:

A1( ) =
1

N

(4 /N )(1 e N 2)

(2 /N )
2
+ 2

2

2

2 1

=
1

N

(2 /N )(1 e N 2)

(2 /N )
2
+ 2

2

1
i 1

(d2 2
1)
1/2

for d2 > 2
1

=
1

N

(2 /N )(1 e N 2)

(2 /N )
2
+ 2

2

1 +
1

( 2
1 d2)

1/2
for 2

1 > d
2 (10)

A2( ) =
1

N

(4 /N )(1 e N 2)

(2 /N )
2
+ 2

2

1

1 2

=
1

N

(2 /N )(1 e N 2)

(2 /N )
2
+ 2

2

1 +
i 1

(d2 2
1)
1/2

for d2 > 2
1

=
1

N

(2 /N )(1 e N 2)

(2 /N )
2
+ 2

2

1
1

( 2
1 d2)

1/2
for 2

1 > d
2

1 = c ( Z + s/Z),
2
2 = (c )

2 s, d2 = 4[(2 /N )2+ 2
2] (11)
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Substitution of A1( ), A2( ) as well as of 1, 2 from Eq.(2.1-77) into
Eq.(2.1-81) and observing the limit N of the sum according to Eq.(5) yields
the following equation for w( , ):

w( , )=
e 1 /2(1 e N 2)

N

<K

=1

1+
1

( 2
1 d2)

1/2
exp

( 2
1 d2)1/2

2

+ 1
1

( 2
1 d2)

1/2
exp

( 2
1 d2)1/2

2

2 /N

(2 /N )
2
+ 2

2

sin
2

N

+

N

>K

1
i 1

(d2 2
1)
1/2

exp
i(d2 2

1)
1/2

2

+ 1 +
i 1

(d2 2
1)
1/2

exp
i(d2 2

1)
1/2

2

2 /N

(2 /N )
2
+ 2

2

sin
2

N

K = N ( 2
1 4 2

2)
1/2/4 = c N |( Z s/Z)|/4 , 2

1 4 2
2

d2 = 4[(2 /N )2 + 2
2] (12)

Here < K and > K in the limits of the two sums mean the largest integer
smaller than K or the smallest integer larger than K.

With the help of hyperbolic and trigonometric functions we may simplify
the exponential terms in Eq.(12) and eliminate the imaginary terms:

w( , ) =
2

N
e 1 /2(1 e N 2)

<K

=1

ch[( 2
1 d2)1/2 /2]

+
1 sh[(

2
1 d2)1/2 /2]

( 2
1 d2)

1/2

2 /N

(2 /N )
2
+ 2

2

sin
2

N

+

N

>K

cos[(d2 2
1)
1/2 /2]

+
1 sin[(d

2 2
1)
1/2 /2]

(d2 2
1)
1/2

2 /N

(2 /N )
2
+ 2

2

sin
2

N

1 = c ( Z + s/Z),
2
2 = c

2 2 s, d2 = 4[(2 /N )2 + 2
2]

K = N ( 2
1 4 2

2)
1/2/4 = c N |( Z s/Z)|/4 (13)

The function Ve( , ) of Eq.(2.1-45) is defined by F ( ) of Eq.(2.1-64) and
w( , ) of Eq.(13). One obtains Aev( , ) by the integrations of Eq.(2.1-45).
The variables , of F ( ) and w( , ) are replaced by , and the integration
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is carried out over , . We integrate first over and denote the result by
Aev( , )/ :

Aev( , )
=

c2 2Ve0
2

+( )

( )

[F ( ) + w( , )]d (14)

Two integrals must be evaluated:

+( )

( )

F ( ) d =

+( )

( )

e 2 d =
1

2
(e 2( + )e 2 e 2( )e 2 ) (15)

+( )

( )

sin
2

N
d

=
sin(2 /N )

/N
sin

2

N
cos

2

N
cos

2

N
sin

2

N
(16)

We obtain for Aev( , )/ :

Aev( , )
=
c2 2Ve0
2

1

2
(e 2( + )e 2 e 2( )e 2 )

+
4

N
e 1 /2(1 e N 2)

<K

=1

ch[( 2
1 d2)1/2 /2]+

1 sh[(
2
1 d2)1/2 /2]

( 2
1 d2)

1/2

× sin(2 /N )

(2 /N )
2
+ 2

2

sin
2 k

N
cos

2 k

N
cos

2

N
sin

2

N

+

N

>K

cos[(d2 2
1)
1/2 /2] +

1 sin[(d
2 2

1)
1/2 /2]

(d2 2
1)
1/2

× sin(2 /N )

(2 /N )
2
+ 2

2

sin
2

N
cos

2

N
cos

2

N
sin

2

N
(17)

The integration of Eq.(17) over produces Aev( , ):

Aev( , ) =

0

Aev( , )
d (18)

The following integrals are obtained by the substitution of Eq.(17) into Eq.(18):
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1

2
0

e 2( + )e 2 e 2( )e 2 d =
2
2
2

e 2 (1 ch 2 ) (19)

L11( , ) =

0

e 1 /2 sh[( 2
1 d2)1/2 /2] cos

2

N
d (20)

L12( , ) =

0

e 1 /2 sh[( 2
1 d2)1/2 /2] sin

2

N
d (21)

L13( , ) =

0

e 1 /2 ch[( 2
1 d2)1/2 /2] cos

2

N
d (22)

L14( , ) =

0

e 1 /2 ch[( 2
1 d2)1/2 /2] sin

2

N
d (23)

L15( , ) =

0

e 1 /2 sin[(d2 2
1)
1/2 /2] cos

2

N
d (24)

L16( , ) =

0

e 1 /2 sin[(d2 2
1)
1/2 /2] sin

2

N
d (25)

L17( , ) =

0

e 1 /2 cos[(d2 2
1)
1/2 /2] cos

2

N
d (26)

L18( , ) =

0

e 1 /2 cos[(d2 2
1)
1/2 /2] sin

2

N
d (27)

The integrals L11( , ) to L18( , ) are either tabulated or can readily be rewrit-
ten into a tabulated form. The function Aev( , ) of Eq.(18) assumes the fol-
lowing form:

Aev( , ) = c
2 2Ve0

1
2
2

e 2 (1 ch 2 )

+
2

N
(1 e N 2)

<K

=1

L13( , ) +
1L11( , )

( 2
1 d2)

1/2
sin

2

N
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L14( , ) +
1L12( , )

( 2
1 d2)

1/2
cos

2

N

sin(2 /N )

(2 /N )
2
+ 2

2

+

N

>K

L17( , ) +
1L15( , )

(d2 2
1)
1/2

sin
2

N

L18( , ) +
1L16( , )

(d2 2
1)
1/2

cos
2

N

sin(2 /N )

(2 /N )
2
+ 2

2

(28)

All terms of the two sums in Eq.(28) contain products that represent propa-
gating sinusoidal waves:

sin
2

N
sin

2

N
=
1

2
cos

2 ( )

N
cos

2 ( + )

N

cos
2

N
sin

2

N
=
1

2
sin

2 ( )

N
+ sin

2 ( + )

N

The integrals L15( , ) to L18( , ) of Eqs.(24)—(27) can be written explic-
itly with the help of two new auxiliary variables q1 = q1( ) and q2 = q2( ):

q1 =
1

2
(d2 2

1)
1/2 +

2

N
, q2 =

1

2
(d2 2

1)
1/2 2

N
, d2 2

1 > 0 (29)

One obtains:

L15( , ) = L15A( ) + e 1 /2L15B( , )

=
1

2

q1
( 1/2)2 + q21

+
q2

( 1/2)2 + q22
e 1 /2

× ( 1/2) sin q1 + q1 cos q1
( 1/2)2 + q21

+
( 1/2) sin q2 + q2 cos q2

( 1/2)2 + q22
(30)

L16( , ) = L16A( ) + e 1 /2L16B( , )

=
1

2
1

2

1

( 1/2)2 + q21

1

( 1/2)2 + q22
+ e 1 /2

× ( 1/2) cos q1 q1 sin q1
( 1/2)2 + q21

( 1/2) cos q2 q2 sin q2
( 1/2)2 + q22

(31)

L17( , ) = L17A( ) + e 1 /2L17B( , )

=
1

2
1

2

1

( 1/2)2 + q21
+

1

( 1/2)2 + q22
e 1 /2

× ( 1/2) cos q1 q1 sin q1
( 1/2)2 + q21

+
( 1/2) cos q2 q2 sin q2

( 1/2)2 + q22
(32)
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L18( , ) = L18A( ) + e 1 /2L18B( , )

=
1

2

q1
( 1/2)2 + q21

q2
( 1/2)2 + q22

e 1 /2

× ( 1/2) sin q1 + q1 cos q1
( 1/2)2 + q21

( 1/2) sin q2 + q2 cos q2
( 1/2)2 + q22

(33)

For the explicit form of the integrals L11( , ) to L14( , ) of Eqs.(20)—(23)
we introduce two more auxiliary variables q3 = q3( ) and q4 = q4( ):

q3 =
1

2
[( 2

1 d2)1/2 1], q4 =
1

2
[( 2

1 d2)1/2 + 1],
2
1 d2 > 0 (34)

The integrals L11( , ) to L14( , ) may then be written explicitly in the fol-
lowing form:

L11( , ) = L11A( ) + e 1 /2L11B( , )

=
1

2

q3

q23 + (2 /N )
2

q4

q24 + (2 /N )
2 + e

1 /2

× exp[( 2
1 d2)1/2 /2][q3 cos(2 /N ) + (2 /N ) sin(2 /N )]

q23 + (2 /N )
2

+
exp[ ( 2

1 d2)1/2 /2][q4 cos(2 /N ) (2 /N ) sin(2 /N )]

q24 + (2 /N )
2 (35)

L12( , ) = L12A( ) + e 1 /2L12B( , )

=
1

2

2 /N

q23 + (2 /N )
2

2 /N

q24 + (2 /N )
2 + e

1 /2

× exp[( 2
1 d2)1/2 /2][q3 sin(2 /N ) (2 /N ) cos(2 /N )]

q23 + (2 /N )
2

+
exp[ ( 2

1 d2)1/2 /2][q4 sin(2 /N ) + (2 /N ) cos(2 /N )]

q24 + (2 /N )
2 (36)

L13( , ) = L13A( ) + e 1 /2L13B( , )

=
1

2

q3

q23 + (2 /N )
2 +

q4

q24 + (2 /N )
2 + e

1 /2

× exp[( 2
1 d2)1/2 /2][q3 cos(2 /N ) + (2 /N ) sin(2 /N )]

q23 + (2 /N )
2

exp[ ( 2
1 d2)1/2 /2][q4 cos(2 /N ) (2 /N ) sin(2 /N )]

q24 + (2 /N )
2 (37)
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L14( , ) = L14A( ) + e 1 /2L14B( , )

=
1

2

2 /N

q23 + (2 /N )
2 +

2 /N

q24 + (2 /N )
2 + e

1 /2

× exp[( 2
1 d2)1/2 /2][q3 sin(2 /N ) (2 /N ) cos(2 /N )]

q23 + (2 /N )
2

exp[ ( 2
1 d2)1/2 /2][q4 sin(2 /N ) + (2 /N ) cos(2 /N )]

q24 + (2 /N )
2 (38)

Equation (28) may be written in the following form:

Aev( , ) = c
2 2Ve0

1
2
2

e 2 (1 ch 2 )

+
2

N
(1 e N 2)

<K

=1

L13A( ) +
1L11A( )

( 2
1 d2)

1/2
sin

2

N

L14A( ) +
1L12A( )

( 2
1 d2)

1/2
cos

2

N

+ e 1 /2 L13B( , ) +
1L11B( , )

( 2
1 d2)

1/2
sin

2

N

L14B( , ) +
1L12B( , )

( 2
1 d2)

1/2
cos

2

N

sin(2 /N )

(2 /N )
2
+ 2

2

+
2

N
(1 e N 2)

N

>K

L17A( ) +
1L15A( )

(d2 2
1)
1/2

sin
2

N

L18A( ) +
1L16A( )

(d2 2
1)
1/2

cos
2

N

+ e 1 /2 L17B( , ) +
1L15B( , )

(d2 2
1)
1/2

sin
2

N

L18B( , ) +
1L16B( , )

(d2 2
1)
1/2

cos
2

N

sin(2 /N )

(2 /N )
2
+ 2

2

(39)

We recognize that the terms L..A( ) do not contain the variable and are
connected with and only via the products with sin(2 /N ), cos(2 /N ),
and sin(2 /N ). These terms have been quantized successfully (Harmuth,
Barrett, Me ert 2001, Cha. 4). The terms L..B( , ) contain and they are mul-
tiplied in addition by e 1 /2. If we succeed in eliminating from L..B( , )
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and further eliminate e 1 /2 we can use the previously developed quantiza-
tion process. This elimination is possible by means of Fourier series expan-
sions. The calculations are straight forward but lengthy. They will be found in
Section 6.1. We recognize in Eq.(6.1-43) the last two lines of Eq.(39), and in
Eq.(6.1-60) lines 4 and 5 of Eq.(39). The whole Eq.(39) is shown in Eq.(6.1-61),
still with the factors e 1 /2 and other features that need reworking. The re-
quired changes are carried out in the calculations that lead from Eq.(6.1-61) to
(6.1-109) and its radically simplified form shown by Eq.(6.1-110). We copy this
equation without the term Ae0( , ). If we did not ignore this term we would
get terms [ 2

2 exp( 2 )]
2 and 2

2 exp( 2 ) sin(2 /N ) in ( Aev/d )
2 in

Eq.(2.3-16) in the following Section 2.3. The integrals of these terms over
would be small compared with those of terms not containing exp( 2 ):

Aev( , ) = c
2 2Ve0

<K

=1

Ce ( ) sin
2

N
+

N

>K

Ce ( ) sin
2

N

= c2 2Ve0

N

=1

Ce ( ) sin
2

N

Ce ( ) =
2

N
Aes( ) sin

2

N
+Aec( ) cos

2

N

+

N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
(40)

We write Aev( , ) both as two sums from = 1 to < K and from > K to
N as well as a single sum from = 1 to N . The single sum is shorter to write
but the two sums emphasize that the function Ce ( ) is calculated di erently
in the two intervals 1 < K and K < N .

Let us turn to the potential Amv( , ) that is associated with Aev( , )
according to Eq.(2.1-49). Three integrals have to be evaluated. Here is the
first one:

Amv1( , ) = Z s

2Aev( , )
2

d = Z s
Aev( , )

= c2 2Ve0Z s

N

=1

Ce ( ) sin
2

N

= c2 2Ve0Z s

N

=1

2

N
Ce ( ) cos

2

N
(41)

The third integral in Eq.(2.1-49) yields:
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Amv3( , ) = Z
Aev

d

= c2 2Ve0Z

N

=1

Ce ( )
cos(2 /N )

2 /N

= c2 2Ve0Z

N

=1

Ce ( ) cos(2 /N )

2 /N

Ce ( )
=

2

N

2

N
Aes( ) cos

2

N
Aec( ) sin

2

N

+

N

=1

2

N
Bes( , ) cos

2

N
Bec( , ) sin

2

N
(42)

The second integral in Eq.(2.1-49) calls for a second di erentiation of Amv3( , )
with respect to :

Amv2( , ) = Z s

2Aev( , )
2

d

= c2 2Ve0Z s

2

2

N

=1

Ce ( )
cos(2 /N )

2 /N

= c2 2Ve0Z s

N

=1

2Ce ( )
2

cos(2 /N )

2 /N

2Ce ( )
2

=
2

N

2

N

2

Aes( ) sin
2

N
+Aec( ) cos

2

N

+

N

=1

2

N

2

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
(43)

The potential Amv( , ) = Amve( , ) associated with Aev( , ) of Eq.(40) is
the sum of Amv1, Amv2, and Amv3:

Amv( , ) = Amv1( , ) +Amv2( , ) +Amv3( , )

= c2 2Ve0Z

N

=1

Cm ( ) cos
2

N
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Cm ( ) =
2 s

N
Ce ( ) +

1

2 /N

Ce ( )
+

s

2 /N

2Ce ( )
2

=
2

N
Aec( ) sin

2

N
+Aes( ) cos

2

N

+

N

=1

Ces( , ) sin
2

N
+ Cec( , ) cos

2

N

Ces( , ) =
2 s

N
1

(2 )2

(2 )2
Bes( , )

2

2
Bec( , )

Cec( , ) =
2 s

N
1

(2 )2

(2 )2
Bec( , ) +

2

2
Bes( , ) (44)

We emphasize that the coe cients Aec( ), Aes( ), Bes( , ) and Bec( , )
are calculated di erently in the two intervals 1 < K and K < N .

2.3 Hamilton Function for Planar Wave

The use of the Fourier series expansion in Eq.(2.2-4) permits a largest
time t = T and a largest distance y = cT , where T is arbitrarily large but
finite. In the directions x and z, which are perpendicular to the direction y
of propagation, we have not specified any intervals. We chose them L/2
x L/2, L/2 z L/2. For L/2 = cT no point on the y-axis can be
reached during the time interval 0 t T from a point outside the area
L/2 x L/2, L/2 z L/2 by a wave and thus cannot a ect what is

being observed along the y-axis. The energy U of the electric and magnetic field
strength within the volume 0 y cT , L/2 x L/2, L/2 z L/2 is
defined by the integral1:

U =
1

2

L/2

L/2

L/2

L/2

cT

0

1

Zc
E2 +

Z

c
H2 dy dx dz (1)

E2 = Zc curlAe
Am

t

2

(2)

H2 =
c

Z
curlAm

Ae

t

2

(3)

Using Eqs.(2.1-33), (2.1-36), and (2.1-37) we obtain the following values
for the components of Ae and Am in Eqs.(2) and (3):

1Harmuth, Barrett, Me ert 2001, Sec 4.3
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Aex( , ) = Aev( , ) Amx( , ) = Amv( , )

Aey( , ) = Ae0fe( ) Amy( , ) = Am0fm( )

Aez( , ) = Aev( , ) Amz( , ) = Amv( , ) (4)

The functions Aev( , ) and Amv( , ) are defined by Eqs.(2.2-40) and (2.2-44),
while fe( ) and fm( ) are arbitrary functions of .

The next task is to write the vector components on the right sides of
Eqs.(2) and (3) in terms of Aev( , ) and Amv( , ):

Zc curlAe
Am

t

2

=Z2c2 curl2Ae+2Zc curlAe · Am

t
+

Am

t

2

(5)

c

Z
curlAm

Ae

t

2

=
c2

Z2
curl2Am

2c

Z
curlAm · Ae

t
+

Ae

t

2

(6)

With the help of Eqs.(2.1-20), (2.1-21), (2.1-30), and (2.1-33) we obtain
the following relations:

= t/ , = y/c , T/ = N

curl2Ae = 2
Aev
y

2

=
2

c2 2

Aev
2

(7)

curlAe · Am

t
= 2

Aev
y

Amv
t

=
2

c 2

Aev Amv
(8)

Am

t

2

= 2
Amv
t

2

=
2
2

Amv
2

(9)

curl2Am = 2
Amv
y

2

=
2

c2 2

Amv
2

(10)

curlAm · Ae

t
= 2

Amv
y

Aev
t
=

2

c 2

Amv Aev
(11)

Ae

t

2

= 2
Aev
t

2

=
2
2

Aev
2

(12)

The squares E2 and H2 of the field strengths in Eqs.(2) and (3) assume the
following form:
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E2 =
2
2
Z2

Aev
2

+ 2Z
Aev Amv

+
Amv

2

=
2
2
Z
Aev

+
Amv

2

(13)

H2 =
2

Z2 2

Amv
2

+ 2Z
Amv Aev

+ Z2
Aev

2

=
2

Z2 2

Amv
+ Z

Aev
2

(14)

The energy U of Eq.(1) is rewritten into the following form:

U =
c2

Z

L/2c

L/2c

L/2c

L/2c

N

0

Z
Aev

+
Amv

2

+
Amv

+ Z
Aev

2

d d
x

c
d

z

c

=
c2

Z

L

c

2
N

0

Z2
Aev

2

+ Z2
Aev

2

+ 2Z
Aev Amv

+
Amv Aev

+
Amv

2

+
Amv

2

d (15)

For Aev( , ) and Amv( , ) we use Eqs.(2.2-40) and (2.2-44). Their substitution
into Eq.(15) yields the following integrals:

N

0

Aev
2

d = (c2 2Ve0)
2

N

0

N

=1

2

N
Ce ( ) cos

2

N

2

d

=
N

2
(c2 2Ve0)

2
N

=1

2

N

2

C2e ( ) (16)

N

0

Aev
2

d = (c2 2Ve0)
2

N

0

N

=1

Ce ( )
sin

2

N

2

d

=
N

2
(c2 2Ve0)

2
N

=1

Ce ( )
2

(17)
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N

0

Aev Amv
d =(c2 2Ve0)

2Z

N

0

N

=1

2

N
Ce ( )

Cm ( )
cos2

2

N
d

=
N

2
(c2 2Ve0)

2Z

N

=1

2

N
Ce ( )

Cm ( )
(18)

N

0

Amv Aev
d =(c2 2Ve0)

2Z

N

0

N

=1

2

N
Cm ( )

Ce ( )
sin2

2

N
d

=
N

2
(c2 2Ve0)

2Z

N

=1

2

N
Cm ( )

Ce ( )
(19)

N

0

Amv
2

d = (c2 2Ve0Z)
2

N

0

N

=1

2

N
Cm ( ) sin

2

N

2

d

=
N

2
(c2 2Ve0Z)

2
N

=1

2

N

2

C2m ( ) (20)

N

0

Amv
2

d = (c2 2Ve0Z)
2

N

0

N

=1

Cm ( )
cos

2

N

2

d

=
N

2
(c2 2Ve0Z)

2
N

=1

Cm ( )
2

(21)

Substitution of Eqs.(16) to (21) into Eq.(15) yields the energy U of the
planar wave as sum of the energy of the components Ce ( ) and Cm ( ):

U =
1

2
ZV 2e0L

2T 3c4
1

N2

N

=1

2

N

2

C2e ( ) +
Ce ( )

2

+
4

N
Ce ( )

Cm ( )
Cm ( )

Ce ( )

+
2

N

2

C2m ( ) +
Cm ( )

2

(22)
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No function of in Eq.(22) has a physical dimension. All dimensions are
contained in the factor ZV 2e0L

2T 3c4, which has the dimension VAs as required
for an electromagnetic energy. The text following Eq.(2.1-39) gives the dimen-
sion of Ve as As/m

3; the constant Ve0 has the same dimension according to
Eq.(2.1-62).

Equation (22) can be rewritten into the form of a sum of two quadratic
expressions:

U =
1

2
ZV 2e0L

2T 3c4
1

N2

N

=1

2

N
Ce ( ) +

Cm ( )
2

+
2

N
Cm ( )

Ce ( )
2

(23)

In order to derive the Hamilton function for U we must work out the time
variation of Ce ( ) and Cm ( ) explicitly. The functions Ce ( ) and Cm ( )
are shown in Eq.(2.2-40) and (2.2-44). Their substitution into the two terms
with large parentheses in Eq.(23) yields:

2

N
Ce ( ) +

Cm ( )
=

2

N

N

=1

2

N
Bes( , )

2

N
Cec( , ) sin

2

N

+
2

N
Bec( , ) +

2

N
Ces( , ) cos

2

N
(24)

2

N
Cm ( )

Ce ( )
=

2

N

N

=1

2

N
Bec( , ) +

2

N
Ces( , ) sin

2

N

2

N
Bes( , )

2

N
Cec( , ) cos

2

N
(25)

The sum of the squares of these two expressions yields a very long formula
that must be broken into parts to become printable:

2

N
Ce ( ) +

Cm ( )
2

+
2

N
Cm ( )

Ce ( )
2

= UcN ( ) + UvN ( , ) (26)

The energy U of Eq.(23) consists of the sum of a constant part UcN ( )
and a time-variable part UvN ( , ) with time-average zero:
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U =
1

2
ZV 2e0L

2T 3c4
1

N2

N

=1

[UcN ( ) + UvN ( , )] (27)

Considerable e ort is required to work out UcN ( ) and UvN ( , ) from
Eqs.(24) to (26):

UcN ( ) =
2(2 )2

N4
[U2cs( ) + U

2
cc( )] (28)

We replace the variable UcN( ) by a new variable Uc which makes the
results very similar to previously derived ones2 except that N is now finite
rather than infinite and is finite rather than infinitesimal:

Uc ( ) = N
4UcN( ) = 2(2 )2[U2cs( ) + U

2
cc( )] (29)

The functions U2cs( ) and U
2
cc( ) may be written with the help of Bec, Bes, Cec,

and Ces as follows:

U2cs( )=

N

=1

Bec( , )+ Ces( , )
2

+ Bes( , ) Cec( , )
2

(30)

U2cc( )=

N

=1

Bec( , )+Ces( , )
2

+ Bes( , ) Cec( , )
2

(31)

In analogy to Eq.(29) we replace the variable UcN( , ) in Eq.(27) by a new
variable Uv ( , ):

Uv ( , ) = N
4UvN( , ) =

N

=1

Uv1( , ) cos
4

N

+

N

=1
=

N

=1

Uv2( , , ) sin
2

N
sin

2

N
+Uv3( , , ) cos

2

N
cos

2

N

+

N

=1

N

=1

Uv4( , , ) sin
2

N
cos

2

N
(32)

The four functions Uv1( , ) to Uv4( , , ) also may be written in terms of
Bec, Bes, Cec, and Ces:

2Harmuth, Barrett, Me ert 2001, Eqs.4.3-28 to 4.3-46.
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Uv1( , ) = 2(2 )2 B2ec( , ) B2es( , ) + C
2
ec( , ) C2es( , )

+
2

2
[B2es( , ) B2ec( , ) + C

2
es( , ) C2ec( , )] (33)

Uv2( , , ) = 4(2 )2 Bes( , )Bes( , ) + Ces( , )Ces( , )

+ [Bec( , )Ces( , ) Bes( , )Cec( , )]

+ [Bec( , )Ces( , ) Bes( , )Cec( , )]

+
2
[Bec( , )Bec( , ) + Cec( , )Cec( , )] (34)

Uv3( , , ) = 4(2 )2 Bec( , )Bec( , ) + Cec( , )Cec( , )

+ [Bec( , )Ces( , ) Bes( , )Cec( , )]

+ [Bec( , )Ces( , ) Bes( , )Cec( , )]

+
2
[Bes( , )Bes( , ) + Ces( , )Ces( , )] (35)

Uv4( , , ) = 4(2 )2 Bec( , )Bes( , ) + Ces( , )Cec( , )

+ [Bes( , )Ces( , ) Bes( , )Ces( , )]

+ [Bec( , )Cec( , ) Bec( , )Cec( , )]

2
[Bec( , )Bes( , ) + Cec( , )Ces( , )] (36)

The term Uc ( ) in Eq.(29) does not depend on the time . It represents
what we usually call the energy U of the wave in the volume L2cT defined by
Eq.(15). The term Uv ( , ) of Eq.(32) varies with time but its time average
is zero. If we write Uv ( , t)/T instead of Uv ( , ) we have a time variable
power with average power or energy equal to zero. No widely accepted inter-
pretation of this result exists yet, but it cannot be dismissed easily since it
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is a generally encountered result of the theory. For a physical interpretation
consider two plates of a capacitor with vacuum between them. An electric
field strength drives an electric dipole current through this vacuum. It could
be that the dipoles are created by the field strength. But it is also possible
that the dipoles are constantly created and annihilated even in the absence
of a field strength. The random orientation of the dipoles would prevent any
macroscopic e ect. An applied electric field strength would orient the dipoles
and produce a macroscopic e ect in the form of a dipole current. From this
point of view an electromagnetic wave propagating in vacuum has an energy
due to its excitation, but a fluctuating power with time average zero is created
by its interaction with the continuously created and annihilated electric and
magnetic dipoles.

We denote the time-independent component of U in Eq.(27) by UNc:

UNc =
1

2
ZV 2e0L

2T 3c4
1

N2

N

=1

UcN( )

= ZV 2e0L
2T 3c4

1

N2

N

=1

2

N

2

[U2cs( ) + U
2
cc( )] (37)

In analogy to Eq.(29) we introduce then a new variable Uc in order to eliminate
N4 from Eq.(37):

Uc = N
4UNc

= ZV 2e0L
2T 3c4

N

=1

(2 )2[Ucs( ) + U
2
cc( )] (38)

The new function Uc equals the previously derived function Uc in Eq.(4.3-33) of
the reference of footnote 2, except that the sum runs from = 1 to N rather
than to . Hence, we may follow the procedure used there for the derivation
of the Hamilton function and the quantization. First we normalize the energy
Uc of Eq.(38):

H = Uc/ZV
2
e0L

2T 3c4

=

N

=1

H =

N

=1

(2 )2[U2cs( ) + U
2
cc( )] (39)

It is shown in Section 6.1, Eq.(6.1-136), that H decreases proportionate to
1/ 2 for 1:
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H = (2 )2[U2cs( ) + U
2
cc( )] 1/(2 )2 for 1 (40)

This decrease implies that the sum of Eq.(39) is absolutely convergent if N is
permitted to go to infinity.

For the fluctuating power we see from Eqs.(6.1-143) and (6.1-144) that
the slowest decreasing terms are Uv1( , ) and Uv3( , , ), which decrease pro-
portionate to 1/(2 )2. Hence, Uv ( ) of Eq.(32) decreases proportionate to
1/(2 )2

Uv ( , ) 1/(2 )2 for 1 (41)

and the sum of Eq.(27) over would be absolutely convergent for any value of
and unbounded values of N .
The concept of absolute convergence is a carryover from the di erential

theory with infinite time or space intervals and infinitesimal resolution in time
or space. In a theory with finite intervals T or cT and finite resolution or c
the concept of convergence is of little meaning. In such a theory every term
of a sum is either defined as well as finite and the sum exists or at least one
term is infinite or undetermined and the sum does not exist. The computer
plots in Section 2.5 will show immediately that everything is defined and finite.
Of course, writing the program for the computer plots is as much trouble as
analyzing convergence.

Having satisfied ourselves that everything is indeed finite for unbounded
values of N we may derive the Hamilton formulas in the usual way. We rewrite
H as follows:

H =(2 )2 U2cs( ) + U
2
cc( ) sin

2 2 + U2cs( ) + U
2
cc( ) cos

2 2

=(2 )2 [Ucs( ) + iUcc( )] (sin 2 i cos 2 )

× [Ucs( ) iUcc( )] (sin 2 + i cos 2 )

= 2 i p ( )q ( ) (42)

For p ( ) and q ( ) we get:

p ( ) = (2 i )1/2[Ucs( ) + iUcc( )](sin 2 i cos 2 )

= (2 i )1/2[Ucc( ) iUcs( )]e
2 i (43)

ṗ =
p ( )

= (2 i )3/2[Ucc( ) iUcs( )]e
2 i (44)

q ( ) = (2 i )1/2[Ucs( ) iUcc( )](sin 2 + i cos 2 )

= (2 i )1/2[Ucc( ) + iUcs( )]e
2 i (45)
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q̇ =
q ( )

= (2 i )3/2[Ucc( ) + iUcs( )]e
2 i (46)

The derivatives H / q and H / p equal:

H

q
= 2 i p ( ) = (2 i )3/2[Ucc( ) iUcs( )]e

2 i (47)

H

p
= 2 i q ( ) = (2 i )3/2[Ucc( ) + iUcs( )]e

2 i (48)

The comparison of Eqs.(47) and (48) with Eqs.(44) and (46) yields the
proper relations for the components H of the Hamilton function:

H

q
= ṗ ,

H

p
= q̇ (49)

Equation (42) may be rewritten as done previously3 by means of the defi-
nitions

a = [Ucc( ) iUcs( )]e
2 i

a = [Ucc( ) + iUcs( )]e
2 i (50)

to yield:

H = i

N

=1

2 p q =

N

=1

(2 )2a a =

N

=1

2

T
b b =

N

=1

H

b =
2 T

1/2

a , b =
2 T

1/2

a (51)

We shall want the relative frequency r( ) or the probability of the energy
Uc ( ) of Eq.(29). It is defined by the fraction

r( ) =
Uc ( )

Sc1
, Sc1 =

N

=1

Uc ( ) (52)

r( )
.
=
Uc ( )

ScK
, ScK =

N

>K

Uc ( ), K = N ( 2
1 4 2

2)
1/2/4 (53)

3Harmuth, Barrett, Me ert 2001, Eq.(4.4-44)
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We note that the term probability rather than probability density must be used
due to the finite value of terms with the variable , 1 N orK N .

2.4 Quantization of the Differential Solution

Equation (2.3-51) is written in a form that permits us to follow the stan-
dard ways of quantization. It works both for the Heisenberg and the Schrödinger
approach. Consider the Heisenberg approach first. The complex terms b and
b are replaced by operators b and b+:

b b+ =
1

2

1
, b b =

1

2
+
1

(1)

Alternately one may interchange b and b :

b b+ =
1

2

1
, b b =

1

2
+
1

(2)

The two ways of quantization are a well known ambiguity of the theory (Becker
1963, 1964, vol. 2, § 52; Heitler 1954, p. 57). We use first Eq.(1) and obtain for
H of Eq.(2.3-51):

b b+ =
H T

2

E T

2
(3)

Equation (1) applied to a function yields:

1

2
+
1 1

2

1
=
E T

2

1

2
2 2 1

2

2

2
+
1

2
=
E T

2
(4)

If we use Eq.(2) rather than Eq.(1) we obtain the following equations
instead of Eqs.(3) and (4):

b+b =
E T

2
(5)

1

2

1 1

2
+
1

=
E T

2

1

2
2 2 1

2

2

2

1

2
=
E T

2
(6)
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Becker (1964, vol. II, § 15) shows in some detail that the energy eigenvalues

E = E n =
2

T
n+

1

2
, n = 0, 1, 2, . . . , N (7)

are obtained from Eq.(4) by means of Heisenberg’s matrix method while Eq.(6)
yields

E = E n =
2

T
n

1

2
, n = 0, 1, 2, . . . , N (8)

We turn to the Schrödinger approach. The products b b+ or b+b are
applied to a function :

(b b+) =
1

2
2 2 1

2

d2

d 2
=
E T

2
=

=
E T

2
(9)

We are going to use the Schrödinger approach here since we know how to
rewrite a di erential equation into a di erence equation and we know how to
solve the obtained di erence equation. The substitution

= (10)

produces a standard form of the di erential equation of the parabolic cylinder
functions

2

2
+ (2 2) = 0 (11)

The further substitution

= e
2/2 ( ) (12)

leads to the di erential equation of the Hermite polynomials1 for :

2

2
2 + (2 1) = 0 (13)

We show in a few steps the solution of Eq.(13) since we will need it for
comparison with the corresponding di erence equation in Section 3.6. One
starts with a power series

1Becker 1964, vol. II, § 15; Landau and Lifschitz 1966, vol. III, § 23; Abramowitz and
Stegun 1964; Smirnov 1961, Part III,2, § 3/156.
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FIG.2.4-1. With N + 1 points one can define N intervals.

( ) =
j=0

aj
j (14)

with the two choosable coe cients a0 and a1. Substitution of Eq.(14) into
Eq.(13) brings

(j + 2)(j + 1)aj+2 2jaj + (2 1)aj = 0

aj+2 =
2j (2 1)

(j + 2)(j + 1)
aj (15)

A polynomial solution with the highest power j = n is obtained for

2j = 2n = 2 1, = n+
1

2
, n = 0, 1, 2, . . . (16)

If n is even one chooses a0 = 0, a1 = 0. For odd values of n one chooses a0 = 0,
a1 = 0. The first three Hermite polynomials obtained from Eqs.(15) and (16)
are:

H0( ) = 1, H1( ) = 2 , H2( ) = 4
2 2 (17)

The energy eigenvalues E = E n of Eq.(9) follow from Eq.(16):

E = E n =
2

T
n+

1

2
, n = 0, 1, 2, . . . , N (18)

The variable in Eq.(18) runs from 1 to N as discussed in the text
following Eq.(2.2-4). We introduced for an arbitrarily large but finite interval
0 T/ = N in Eq.(2.2-4). The transformation = of Eq.(10) does
not change the number N of units of the intervals of or . Hence, there are
N unit intervals for the variable and N + 1 points for as explained by
Fig.2.4-1. The N +1 points permit us to define N +1 orthogonal functions–
parabolic cylinder functions in our case–and n in Eq.(18) can run from 0 to
N .

We obtain only one solution for the energy eigenvalues instead of the two
solutions of Eqs.(7) and (8). This is a known problem that will not be discussed
here.

The period number = 1, 2, 3, . . . , N assumes all positive integer
values up to N . The restriction to integers is due to the postulate that in an
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experimental science all distances in space or time must be finite, even though
they can be arbitrarily large or small. Without the requirement for finite large
or small distances, the period number would be a real, positive number. The
number denotes the number of periods in the time interval T . If we replaced
/T by a frequency f we would immediately face the problem that a frequency
is defined strictly for an infinitely extended periodic sinusoidal function. If we
use only a finite number of periods of such a function we get a sinusoidal pulse
that may be represented by a superposition of non-denumerably many infinitely
extended, periodic sinusoidal functions with frequencies in the whole interval
0 < f < . One would have to explain which of these many frequencies should
be used, a problem not encountered with the period number . The restriction
of to values N = T/ is due to the introduction of the finite resolution
or c of any measurement. Waves with periods too short to be observable

are excluded.

A second deviation from the conventional theory is caused by the increase
of the energy E n in Eq.(18) proportionately to . This is so even for n = 0 and
we get the famous or rather infamous infinite zero-point energy that in the past
could be overcome only by renormalization. We have pointed out in Eq.(2.3-39)
that the component H of the Hamilton function used in Eq.(9) decreases with
like 1/ 2. If the energy of one photon increases proportionately to in

Eq.(18), the number of photons must decrease like 1/ 3. In classical physics
that would mean that there is no photon with more than a certain finite energy.
In quantum physics we must modify this statement to say that the probability
of observing a photon with infinite energy is zero. The introduction of the
finite resolution or c yields a second limit on the possible values of , since
cannot exceed the arbitrarily large but finite number N .

So far we have emphasized that we deviate from the conventional theory
by using (a) a modification of Maxwell’s equations that generally permits so-
lutions that satisfy the causality law, (b) arbitrarily large but finite distances
in space or time, and (c) finite resolution in space and time. But there is
a fourth di erence. The solution Aev( , ) of Eq.(2.2-28) of the inhomoge-
neous wave equation of Eq.(2.1-45) is represented by a sum of sinusoidal pulses
sin(2 /N ) sin(2 /N ). The individual pulses as well as their sum have
a finite energy. We replace this representation of a wave by a superposition
of sinusoidal pulses by a superposition of di erential operators representing
photons. The energy of the photons must equal the energy of the individual
pulses with period number as well as the energy of all the pulses or the wave.
Hence, there is nothing surprising if no infinite energy is encountered. If there
are N (N + 1) finite energies E n their sum must be finite too. The possi-
bility of infinitely many finite energies yielding an infinite sum never arises.
The conventional quantization refers to a field rather than to a superposition
of pulses representing a wave. It is not obvious how the conservation law of
energy applies to a field.

A comprehensive historical review of the infinities of quantum field theory
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is provided by Weinberg (1995, pp. 31—48). The renowned book by Berestezki,
Lifschitz, and Pitajewski (1970, 1982; § 3. Photons, second paragraph) has the
following to say about the infinite zero point energy of the conventional theory:
But already in this state each oscillator has the ‘zero-point energy’ 2 f /2,
which di ers from zero. The summation over the infinitely many oscillators
yields an infinite result. We meet here one of the ‘divergencies’ that the existing
theory contains because it is not complete and not logically consistent.

At another location in the same book we find the following statement
(§ 1.Uncertainty Relations in the Relativistic Theory, second paragraph from
the end): The lack of complete logical consistency shows in this theory by the
existence of divergent expressions when the mathematical methods are directly
applied; however, there are unambiguous methods for the removal of these
divergencies. Nevertheless, these methods have largely the character of semi-
empirical recipes and our belief in the correctness of the result obtained in this
way is based in the end on their excellent agreement with experiment, but not
on the inner consistency and the logic lucidity of the basic principles of the
theory.

Becker writes the following (Becker 1964, vol. II, § 52): The ground state
represented by [n=0] corresponds to vacuum; it still contains zero-point vibra-
tions, however, as in the case of the linear oscillator. Since we are dealing with
an infinite number of oscillators the mean-square values of the field strengths
E2, H2, must also be infinitely great. A completely satisfactory treatment
of this anomaly does not yet exist (footnote p. 311). The anomaly is directly
associated with divergent integrals. This divergence has for long been an insu-
perable di culty of quantum theory; it has not yet been completely overcome,
but has been ingeniously circumvented through the concept of the mass renor-
malization of the electron (Kramer, 945) (small print following Eq. 53.9).

2.5 Computer Plots for the Differential Theory

The energy Uc ( ) is represented in Eq.(2.3-29) by a function of the period
number . The function is defined for all integer values of in the interval
1 N . We want to produce plots of Uc ( ). This requires 34 core
equations for the interval 1 < K and equally many equations for the
interval K < N . The value of K will turn out to be 1.19366 so that the
interval 1 < K contains only the one value = 1. We shall ignore this one
value and plot Uc ( ) only in the interval 2 N , which covers upward of
99% of all values of . In addition to the 34 core equations one needs additional
equations for checking the program and plotting the final result. We explain
in some detail how the computer program is written to facilitate checking by
readers.

As a compromise between precision and computing time we choose N =
100. The further choice 1 = 1/4 yields according to Eq.(2.1-43):
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(1 s/ Z2) = 1/cZ = 1/4× 3 · 108 × 377 = 2.2 · 10 12 [As/Vm] (1)

The second choice 2 = 1/10 < 1/2 yields according to Eq.(2.1-43):

s = 2/c = 1/10× 3 · 108 = 3.3 · 10 10 [s/m] (2)

For s we get from Eq.(2.1-49) two values:

s1 = 20, s2 = 5 (3)

The choice 1 = 1/4 and 2 = 1/10 is made primarily to obtain simple
numbers for s and to avoid very small or very large numbers that might in-
crease the computing time. Whether the choice is physically reasonable cannot
be discussed until we have some values for the electric and magnetic dipole
conductivities and s.

Following the text of the last paragraph of Section 2.3 we are going to plot
r( ) = Uc ( )/ScK according to Eq.(2.3-53). Table 2.5-1 gives step by step
instructions for the writing of the computer program. First we write d = d( )
according to Eq.(6.1-1), then q1 = q1( ) according to Eq.(6.1-2), and so on
until r( ) is written according to Eq.(2.3-53). These are our 34 core equations.

All entries in Table 2.5-1 except for ScK are functions of or and .
To check the program one must make in principle 33 plots for d to r( ), since
ScK is only one number. The computation of the 29 plots from d to Cec( , )
requires seconds or fractions of seconds.

The equations with the one variable are plotted by the following instruc-
tions written in the programming language Mathematica:

= k, x = 2 for A57( ) to F68( ), x =N otherwise

f1 := If[k < 2, True, #]

p1 := Plot[f1, {k, 0, x}, PlotRange > All] (4)

The terms d, q1, . . . , F68( ) in their computer language representation d[k],
q1[k], . . . , f68[k] must be substituted for #.

The equations with two variables , are displayed by a three-dimensional
plot:

= k, = nu, N = n

f1 := If[k < 2, True, #]

p1 := Plot3D[f1, {k, 1, n}, {nu, 1, n}, PlotRange > All] (5)

The terms I9( , ), I10( , ), . . . , Cec( , ) in their computer language repre-
sentation i9[k,nu], i10[k,nu], . . . cec[k,nu] must be substituted for #.
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TABLE 2.5-1
THE 34 CORE EQUATIONS REQUIRED FOR A COMPUTER PROGRAM THAT PRO-
DUCES A PLOT OF r( ) ACCORDING TO EQ.(2.3-53).

d Eq.(6.1-1) q1 Eq.(6.1-2) q2 Eq.(6.1-3)
A57( ) Eq.(6.1-16) B68( ) Eq.(6.1-31) C57( ) Eq.(6.1-18)
C68( ) Eq.(6.1-32) D57( ) Eq.(6.1-19) D68( ) Eq.(6.1-33)

E57( ) Eq.(6.1-39) E68( ) Eq.6.1-40) F57( ) Eq.(6.1-41)
F68( ) Eq.(6.1-42) I9( , ) Eq.(6.1-91) I10( , ) Eq.(6.1-92)
I11( , ) Eq.(6.1-93) I12( , ) Eq.(6.1-94) I13( , ) Eq.(6.1-97)

I14( , ) Eq.(6.1-98) I15( , ) Eq.(6.1-99) I16( , ) Eq.(6.1-100)
I17( , ) Eq.(6.1-103) I18( , ) Eq.(6.1-104) I19( , ) Eq.(6.1-105)
I20( , ) Eq.(6.1-106) Bes( , ) Eq.(6.1-107) Bec( , ) Eq.(6.1-107)

Ces( , ) Eq.(2.2-44) Cec( , ) Eq.(2.2-44) U2cs( ) Eq.(2.3-30)
U2cc( ) Eq.(2.2-31) Uc ( ) Eq.(2.3-29) ScK Eq.(2.3-53)
r( ) Eq.(2.3-53)

The final plot of r( ) is produced by two more equations:

= k, r( )= r[k], K= k0, ScK = scK

f01[k ] := If[0 <= k < k0, 0.81, uck[k]/scK]

t01 := Table[{k, f01[k]}, {k, 0, 100}]
p01 := ListPlot[t01, Prolog > AbsolutePointSize[5],

PlotRange > All, AxesOrigin > {0, 0}] (6)

Figure 2.5-1 shows a plot of r( ) for 1 = 1/4, 2 = 1/10 s = 20, and
K = 1.19366 according to Eq.(2.3-53) in the interval 2 100 = N .
Practically all energy is concentrated below = 6. The function drops so fast
with increasing values of that it appears to be negligible compared with r(2)
almost everywhere. One cannot see whether r( ) drops proportionate to 1/ 2

as demanded by Eq.(2.3-40), but the finite number of values = 2, 3, . . . , N
makes it possible to use a numerical plot as proof that r( ) is defined and finite
for every value of . This would be, of course, not possible for denumerable or
non-denumerable values of .

The range 2 10 of Fig.2.5-1 is shown expanded in Fig.2.5-2. The
rapid drop of r( ) makes only the points for = 2, 3, 4, 5 visible above zero.
The semilogarithmic plot of Fig.2.5-3 improves the presentation drastically. We
note that the amplitude of r( ) drops essentially from 1 to 10 8. The drop is
not as fast as that of an exponential function e .

We had obtained the two values s1 = 20 and s2 = 5 in Eq.(3). Figures
2.5-1 to 2.5-3 hold for s = 20. In Figs.2.5-4 to 2.5-6 we show the corresponding
plots for s = 5. The plots of Figs.2.5-4 to 2.5-6 look identical to those of
Figs.2.5-1 to 2.5-3.
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FIGURE 2.5-1. Point-plot of r( ) according to Eq.(2.3-53) for 1 = 1/4, 2 = 1/10, s = 20,
N = 100, and K = 1.19366 for = 2, 3, . . . , 100; ScK = 4.78874× 1012.

FIGURE 2.5-2. Point-plot of r( ) according to Eq.(2.3-53) for N = 100, 1 = 1/4, 2 = 1/10,
s = 20 and K = 1.19366 for = 2, 3, . . . , 10; ScK = 4.78874× 1012.

FIGURE 2.5-3. Semilogarithmic point-plot of r( ) according to Fig.2.5-1 or Eq.(2.3-53) for

1 = 1/4, 2 = 1/10, s = 20, N = 100 and K = 1.19366 for = 2, 3, . . . , 100;
ScK = 4.78874× 1012.
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FIGURE 2.5-4. Point-plot of r( ) according to Eq.(2.3-53) for N = 100, 1 = 1/4, 2 = 1/10,
s = 5 and K = 1.19366 for = 2, 3, . . . , 100; ScK = 2.99773× 1011.

FIGURE 2.5-5. Point-plot of r( ) according to Eq.(2.3-53) for N = 100, 1 = 1/4, 2 = 1/10,
s = 5 and K = 1.19366 for = 2, 3, . . . , 10; ScK = 2.99773× 1011.

FIGURE 2.5-6. Semilogarithmic point-plot of r( ) according to Fig.2.5-4 or Eq.(2.3-53) for

1 = 1/4, 2 = 1/10, s = 5, N = 100 and K = 1.19366 for = 2, 3, . . . , 100; ScK =
2.99773× 1011.
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FIGURE 2.5-7. Semilogarithmic point-plot of r( ) according to Eq.(2.3-53) for 1 = 1/8,

2 = 1/20, s = 40, N = 200 and K = 1.19366 for = 2, 3, . . . , 100; ScK = 9.06075×1015.

A further semilogarithmic plot for N = 200, 1 = 1/8, 2 = 1/20, s =
40, K = 1.19366 is shown in Fig.2.5-7. The di erent scale for r( ) shows a
di erence compared with Figs.2.5-3 and 2.5-6 that would not show up in a
linear plot.



3 Di erence Equations for the Pure Radiation Field

3.1 Basic Difference Equations

In order to derive a di erence equation we rewrite the di erential equation
(2. -43)

2Ve
2

2Ve
2 1

Ve 2
2Ve = 0

= y/c t, = t/ t, 0 N, 0 N, N = T/ t

1 = c t( Z + s/Z) = c2 t( μ+ s ), 2
2 = (c t)2 s ( )

replacing by t. The symmetric di erence quotient with respect to time is
used to replace the first order di erential1:

Ve( , ) ˜Ve( , )
˜

=
Ve( , + ) Ve( , )

2
(2)

To simplify writing it is usual to choose = :

Ve( , )

2
[Ve( , + ) Ve( , )] (3)

The choice = does not reduce the generality of the calculation since one
may define a new variable = / and then leave out the prime.

The second order di erence quotient is practically always used in the sym-
metric form. The simplified notation ˜2/( ˜ )2 = ˜2/ ˜ 2 and ˜2/( ˜ )2 =
˜2/ ˜ 2 is introduced:

1See Harmuth 1989, Sec. 12.4 why the symmetric di erence quotient is chosen over the
right or left di erence quotient. Note that an italic Delta with tilde ˜ is used for operators
like ˜Ve( , )/ ˜ but a roman Delta for a di erence + .

77
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2Ve
2

˜2Ve

( ˜ )2
=

˜2Ve
˜ 2

=
Ve( , + ) 2Ve( , ) + Ve( , )

( )2

= Ve( , + ) 2Ve( , ) + Ve( , ) for =

2Ve
2

˜2Ve

( ˜ )2
=

˜2Ve
˜ 2

=
Ve( + , ) 2Ve( , ) + Ve( , )

( )2

= Ve( + , ) 2Ve( , ) + Ve( , ) for = (4)

Equation ( ) assumes the following form as di erence equation:

[Ve( + , ) 2Ve( , ) + Ve( , )]

[Ve( , + ) 2Ve( , ) + Ve( , )]

2
1[Ve( , + ) Ve( , )] 2

2Ve( , ) = 0 (5)

We look for a solution excited by a step function as boundary condition
as in Eq.(2. -56):

Ve(0, ) = Ve0S( ) = 0 for < 0

= Ve0 for 0 (6)

The boundary condition of Eq.(2. -57) and the initial condition of Eqs.(2. -58)
become:

Ve(N, ) = finite for N (7)

Ve( , 0) = 0 (8)

Equations (2. -59) to (2. -6 ) show that in the di erential case the initial
condition Ve( , 0) = 0 leads to a second initial condition Ve( , 0)/ = 0. The
derivation of the equivalent condition for the di erence equation (5) for = 0
proceeds as follows:
. The three terms of the di erence quotient of second order with respect to

in the first line of Eq.(5) are all equal to zero for = 0 due to Eq.(8).
2. The di erence quotient of second order with respect to in the second line
does not exist for = 0 since the functional value Ve( , ) does not exist.
A di erence quotient of second order exists only for .

3. The last term 2
2Ve( , 0) in the third line is zero due to Eq.(8).

4. What remains of Eq.(5) for = 0 is the first order di erence quotient
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2
[Ve( , ) Ve( , )] = 0

This di erence quotient does not exist either but it can be replaced by the
non-symmetric di erence quotient

Ve( , + ) Ve( , ) = 0 for = 0 (9)

Let us observe that the di erential quotient Ve( , )/ for = 0 in
Eq.(2. -6 ) is derived from the non-symmetric di erence quotient

lim
0

[Ve( , + ) Ve( , )] for = 0

while for > 0 it may be derived from any one of the following three di erence
quotients:

lim
0 2

[Ve( , + ) Ve( , )]

lim
0

[Ve( , + ) Ve( , )]

lim
0

[Ve( , ) Ve( , )]

The method of obtaining a general solution of a partial di erential equation
as the sum of a steady state solution F ( ) plus a deviation w( , ) used in
Eq.(2. -62) is extended to partial di erence equations:

Ve( , ) = Ve0[F ( ) + w( , )] ( 0)

Substitution of F ( ) into Eq.(5) yields:

[F ( + ) 2F ( ) + F ( )] 2
2F ( ) = 0 ( )

The usual method of solution of Eq.( ) is by means of the ansatz

F ( ) = A1v , F ( + ) = A1v
+1, F ( ) = A1v

1 ( 2)

which yields an equation for v:

v2 (2 + 2
2)v + = 0

v1 = +
2

2
2 + 2 +

4
2
2

1/2

>

v2 = +
2

2
2 2 +

4
2
2

1/2

< ( 3)
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The solution v1 grows beyond all bounds for large values of and is discarded.
From Eq.(6) then follows A1 = and we obtain a result that approaches for

2 that of Eq.(2. -64):

F ( ) = v2 = e
ln v2 .= e 2

ln v2 = ln +
2

2
2 2 +

4
2
2

1/2
.
= ln( 2)

.
= 2 ( 4)

The substitution of F ( ) into Eq.( 0) transforms the boundary condition
of Eq.(6) for Ve into a homogeneous boundary condition for w, which is the
purpose of Eq.( 0):

Ve0[ + w(0, )] = Ve0 for 0 ( 5)

w(0, ) = 0 for 0 ( 6)

The boundary condition of Eq.(7) becomes:

w(N, ) = finite for N ( 7)

The initial conditions of Eqs.(8) and (9) yield:

F ( ) + w( , 0) = 0, w( , 0) = v2
.
= e 2 ( 8)

w( , + ) w( , ) = 0 for = 0 ( 9)

Substitution of w( , ) into Eq.(5) yields the same equation with Ve replaced
by w:

[w( + , ) 2w( , ) + w( , )]

[w( , + ) 2w( , ) + w( , )]

2
1[w( , + ) w( , )] 2

2w( , ) = 0 (20)

Particular solutions w ( , ) of this equation can be obtained by the extension
of Bernoulli’s product method for the separation of variables from di erential
to di erence equations:

w ( , ) = ( ) ( ) (2 )
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Substitution of Eq.(2 ) into Eq.(20) yields:

[ ( + ) ( ) 2 ( ) ( ) + ( ) ( )]

[ ( ) ( + ) 2 ( ) ( ) + ( ) ( )]

2
1[ ( ) ( + ) ( ) ( )] 2

2 ( ) ( ) = 0 (22)

Multiplication with / ( ) ( ) and separation of the variables yields in analogy
to the procedure used for di erential equations the following equation:

( )
[ ( + ) 2 ( ) + ( )]

=
( )

[ ( + ) 2 ( ) + ( )] +
2

1[ ( + ) ( )]

+ 2
2 = (2 /N)2 (23)

We have written a constant (2 /N)2 at the end of the equation since a
function of can be equal to a function of for any and only if they are
equal to a constant. The constant N will permit the use of an orthogonality
interval of length N rather than later on, in analogy to the use of N in
Eq.(2. -72). Two ordinary di erence equations are obtained from Eq.(23):

[ ( + ) 2 ( ) + ( )] + (2 /N)2 ( ) = 0 (24)

[ ( + ) 2 ( ) + ( )] +
2

1[ ( + ) ( )]

+ [(2 /N)2 + 2
2] ( ) = 0 (25)

For the solution of Eq.(24) we proceed in analogy to Eq.( 2) by making
the following substitutions

( ) = A2v , ( + ) = A2v
+1, ( ) = A2v

1 (26)

and obtaining an equation for v:

v2 [2 (2 /N)2]v + = 0 (27)

We shall need the solution for (2 /N)2 4 only:

for (2 /N)2 4

v3 =
2

2

N

2

+
2i

N

(2 /N)2

4

1/2

(28)

v4 =
2

2

N

2
2i

N

(2 /N)2

4

1/2

(29)
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For small values of 2 /N we may use the following approximations:

for /N

v3
.
=

2

2

N

2

+
2i

N

(2 /N)2

8
(30)

v4
.
=

2

2

N

2
2i

N

(2 /N)2

8
(3 )

Using the exact Eqs.(28) and (29) we observe the relation

2

2

N

2 2

+
2

N

2
(2 /N)2

4
= (32)

which permits us to write v3 and v4 as follows:

v3 = 2

2

N

2 2

+
2

N

2
(2 /N)2

4

/2

ei

= ei = cos + i sin (33)

v4 = e
i = cos i sin (34)

= arctg
(2 /N)[ (2 /N)2/4]1/2

(2 /N)
2
/2

(35)

The angle in Eq.(35) will be of interest and we develop three approximations:

= arctg x
.
=
x
=
(2 /N)[ (2 /N)2/4]1/2

(2 /N)
2
/2

(36)

.
=
2

N

(2 /N)2

8
+
(2 /N)2

2
.
=
2

N
+
3(2 /N)2

8
(37)

.
=
2

N
(38)

The real term cos and the imaginary term i sin in Eqs.(33) and
(34) are both solutions. We obtain for ( ) the general solution

( ) = A20 cos +A21 sin (39)

with defined by Eq.(35). Since we will use Eq.(39) for a Fourier series we
must choose = ( ) so that we get an orthogonal system of sine and
cosine functions with a maximum of N periods; the variable varies from 0
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FIGURE 3.1-1. Plots of / according to Eq.(43) (solid line 1), Eq.(36) (dashed line 2),
Eq.(37) (dotted line 3), and Eq.(38) (dashed-dotted line 4) in the interval 2 2 /N 2
or 0 (2 /N)2 4.

to N = T/ t. For an orthogonal system of functions one must choose as
follows:

N = 0, ± · 2 , ±2 · 2 , . . . , ±N
2
· 2

= 2
N
, = 0, ± , ±2, . . . , ±N/2
0 N = T/ t (40)

We get N + values of . There are N orthogonal sine and N orthogonal
cosine functions. For = 0 we get sin = 0 and cos = , which is the
constant in a Fourier series that is orthogonal to all sine and cosine functions
with = 0. The function ( ) = constant is evidently a solution of Eq.(24) for
= 2 /N = 0.
In order to obtain the eigenvalues (2 /N)2 associated with the angles
we must solve Eq.(35) for (2 /N)2. Observing the relation

+ tg2 =
cos2

we readily obtain two solutions:

2

N

2

= 2( + cos ) = 4 cos2
2

(4 )

= 2( cos ) = 4 sin2
2

(42)

In order to see which solution to use we take the inverse of Eq.(42) and
write / instead of :

=
2
arcsin

2 /N

2
(43)
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FIGURE 3.1-2. Exact plot of 2 /N according to Eq.(44) (solid line) and its approximation
by (dashed line) in the interval 2 / 2.

A plot of Eq.(43) is shown by the solid line in Fig.3. - . In essence this equation
is the same as Eq.(35) but the multiple values of inverse trigonometric functions
make Eq.(43) produce a simpler plot than Eq.(35). The approximations of
Eqs.(36)—(38) are also shown in Fig.3. - . The simplest function provided by
Eq.(38) yields the best approximation in the interval 2 2 /N 2.

Since is defined by Eq.(40) we are more interested in 2 /N as func-
tion of than in as function of 2 /N . Using Eq.(42) and making a
series expansion for small values of yields:

2

N

2

= 2( cos )
.
= 2( + 2/2 . . . ) = 2

2

N
= 2 sin

2
.
= (44)

The same value is obtained for / as in Eq.(38). Hence, we shall use
Eq.(44).

Plots of Eq.(44) for the exact values of 2 and their approximation
by are shown in Fig.3. -2. For small values of / the exact plot and
its approximation 2 /N = match well. But for / = we obtain
2 /N = 2 sin /2 = 2 for the exact plot and 2 /N = for the approxima-
tion. Hence, there is a significant di erence between the result obtained from
the di erence equation and the di erential equation in Section 2. . Whether
this di erence leads to an improvement of the theory remains to be shown.

3.2 Time Dependent Solution of Ve( , )

We turn to the time dependent di erence equation of ( ) shown by
Eq.(3. -25) and the value of (2 /N)2, which is defined by Eqs.(3. -4 ) and
(3. -42):
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( + ) 2 ( ) + ( ) +
2

1[ ( + ) ( )]

+ [(2 /N)2 + 2
2] ( ) = 0

2

N

2

=4 sin2
2
, =2

N
, =0, ± , . . . , ±N

2
, =

N
sin

2
( )

Using the ansatz ( ) = A3v yields an equation for v:

v2
2 (2 /N)2 2

2

+ 1/2
v +

1/2

+ 1/2
= 0 (2)

v =
+ 1/2 2

2

N

2

2
2
2

±
2

2(2 2
2)

2

N

2

(4 2
2)

2
2 +

2

N

4

+ 2
1

1/2

(3)

We neglect 2
2 compared with 2 or 4. Furthermore, /( + 2/2) is replaced by

1/2:

v =
1

2 2

2

N

2

±
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

(4)

The relation

4 2
2 +

2
1 0 (5)

follows from Eq.(3. - ):

(c t)2( 4 s+ 2Z2 + 2 s+ s2/Z2) = (c t)2( Z s/Z)2 0 (6)

Hence, we get from Eq.(4) a complex solution

for 4(2 /N)2 > (2 /N)4 4 2
2 +

2
1

v5,6=
1

2 2

2

N

2

± 2 i
N 4

2

N

2

+
4 2
2

2
1

4(2 /N)2

1/2

(7)

and a real solution:
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for 4(2 /N)2 (2 /N)4 4 2
2 +

2
1

v7,8=
1

2 2

2

N

2

±
2

2

N

2
4

(2 /N)
2

4 2
2

2
1

(2 /N)
4

1/2

(8)

The conditions that make either Eq.(7) or Eq.(8) apply are rewritten as an
equation:

(2 /N)4 4(2 /N)2 4 2
2 +

2
1 = 0

(2 /N)2
.
= 2± 2( + 2

2
2
1/4)

1/2 .= 4 ( 2
2 +

2
1/4) for +

.
= 2

2 +
2
1/4 for (9)

Hence, if (2 /N)2 is in the interval

2
2 +

2
1/4 (2 /N)2 4 ( 2

2 +
2
1/4) ( 0)

the complex solution of Eq.(7) will apply while Eq.(8) applies for smaller or
larger values of (2 /N)2. The solutions for (2 /N)2 > 4 have been elimi-
nated by Eq.(3. -27) and the text following Eq.(3. -44). But the case

0 (2 /N)2 < 2
2 +

2
1/4 ( )

is important and will be investigated presently. First we turn to Eqs.(7) and
( 0).

We assign the positive sign of 2 i /N in Eq.(7) to v5 and the negative
sign to v6. One may then write v5 as follows for 1

2
2,

2
1:

for 2
2 +

2
1/4 < (2 /N)2 < 4 ( 2

2 +
2
1/4)

v5=
1

2 2

2

N

2 2

+
2

N

2
(2 /N)2

4
+

4 2
2

2
1

4(2 /N)2

1/2

ei

.
=

1

2
ei

.
= e 1/2ei ( 2)

tg =
2

N 4

2

N

2

+
4 2
2

2
1

4 (2 /N)
2

1/2

2

2

N

2 1

( 3)
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FIGURE 3.2-1. Plot of according to Eq.(21) (solid line) and according to Eq.(22) (dashed
line).

For v6 one must replace exp(i ) by exp( i ). We obtain for v5 :

v5
.
= e 1 /2ei ( 4)

Using the relations

tg2 =
sin2

cos2
, cos2 = sin2 , 2

2,
2
1

we obtain the formula

sin2 =
2

N

2

4

2

N

2

+ 2
2 4

2
1

= arcsin 4 sin2
2

sin2
2
+ 2

2 4
2
1

1/2

= 2 /N, = 0, ± , ±2, . . . , ±N/2, 2 /N = 2 sin( /2) ( 5)

Let us emphasize that the terms 2
2

2
1/4 in this equation and the following

Eqs.( 6)—( 8) should only be used when 4[ sin2( /2)] sin2( /2) is close to
zero, which means for close to 0 or 2 . For small values of we get the
approximations

.
= 4 sin2

2
sin2

2
+ 2

2 4
2
1

1/2

, ( 6)

.
= 4 sin2

2
+ 2

2 4
2
1

1/2

( 7)

.
= 2 + 2

2 4
2
1

1/2

=
2

N

2

+ 2
2 4

2
1

1/2

( 8)
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FIGURE 3.2-2. Plots according to Eq.(15) in the neighborhood of / = 0 for 2
2

2
1/4 =

0.01.

For a comparison with the results of the di erential theory we return to
Eq.(2. -76) and write exp( 1 ) in more detail:

e 1 = e 1 /2ei(d
2 2

1)
1/2 /2 = e 1 /2ei ( 9)

=
2
(d2 2

1)
1/2 =

2
4

2

N

2

+ 2
2

2
1

1/2

=
2

N

2

+ 2
2 4

2
1

1/2

(20)

Equations (20) and ( 8) are equal for N = N if one uses = for the
di erential theory.

If in Eq.( 5) is in the order of 2 /N we cannot ignore 2
2 and

2
1, but

for larger than 0.0 we can. Hence, we plot in Fig.3.2- according to
the formula

= arcsin 4 sin2
2

sin2
2

1/2

(2 )

which turns out to consist of two triangles. The approximation according to
Eq.( 8)

.
= for 2 2

2
2
1/4 (22)

is plotted too. Equation (22) also represents Eq.(20) of the di erential theory
for = and 2

2
2
1/4 (2 )2. There is a perfect fit between Eqs.(2 )

and (22) in the interval /2 /2 but a significant deviation outside
this interval.

If 2
2

2
1/4 is not zero we get in Fig.3.2- deviations near / = 0 and

/ = ± . We note Eq.(5) that shows 2
2

2
1/4 is never larger than zero.
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FIGURE 3.2-3. Plots according to Eq.(15) for 2
2

2
1/4 = 0.01 in the neighborhood of

/ = 1 (a) and / = +1 (b).

Figures 3.2-2 and 3.2-3 show plots of Eq.( 5) for 2
2

2
1/4 = 0.0 and

close to 0 or ± .
We turn to Eqs.( ) and (8) to obtain the solutions v7 and v8 for the real

values of the square root in Eq.(3) for v:

for 4(2 /N)2 (2 /N)4 4 2
2 +

2
1

v7=
1

2 2

2

N

2

+
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

(23)

v8=
1

2 2

2

N

2

2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

(24)

Figures 3.2-4 and 3.2-5 show plots of v7/( 1/2) and v8/( 1/2) for various
values of 2

2+
2
1/4 as function of / . The functions for 2

2+
2
1/4 = 0.0

fit into the interval ( 2
2 +

2
1/4)

1/2 = 0. / = 0.03 8 / +0.03 8
in Fig.3.2-2. All values of v7/( 1/2) are larger than and all values of
v8/( 1/2) are smaller than .

We are more interested whether v7 and v8 are larger or smaller than
rather than v7/( 1/2) and v8/( 1/2). Since the largest values of v7/(

1/2) occur for / = 0 we investigate Eq.(23) for / = 0:

v7 = ( 1/2)[ + (
2
2 +

2
1/4)

1/2]

+ ( 2
2 +

2
1/4)

1/2 + 1/2 (25)

We may subtract from both sides and compare the squares of the remaining
terms:



90 3 difference equations for the pure radiation field

FIGURE 3.2-4. The function v7/(1 1/2) according to Eq.(23) for 2
2+

2
1/4 = 0.002 (solid

line), 0.005 (dashed line), 0.01 (dotted line), and 0.02 (dashed-dotted line) in the intervals

( 2
2 +

2
1/4)

1/2/ ( 2
2 +

2
1/4)

1/2/ .

FIGURE 3.2-5. The function v8/(1 1/2) according to Eq.(24) for 2
2+

2
1/4 = 0.002 (solid

line), 0.005 (dashed line), 0.01 (dotted line), and 0.02 (dashed-dotted line) in the intervals

( 2
2 +

2
1/4)

1/2/ ( 2
2 +

2
1/4)

1/2/ .

2
2 +

2
1/4 <

2
1/4 (26)

Since 2
1/4 is always larger than

2
1/4

2
2 we conclude that v7 is always smaller

than . Hence, both solutions v7 and v8 can be used without violating the
conservation law of energy. We get:

for 4(2 /N)2 (2 /N)4 4 2
2 +

2
1

v7=e
1 /2

2

2

N

2

+
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

(27)
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v8=e
1 /2

2

2

N

2

2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

(28)

In order to be able to write the general solution of ( ) in a form that
resembles Eq.(2. -76) of the di erential theory we may use the definitions

5 =
2

1 + i (29)

6 =
2

1 i (30)

The function of Eq.( 5) can then be rewritten as follows:

= arcsin
2
(d2 2

1)
1/2

d2 = 4 4 sin2
2

sin2
2
+ 2

2
2
1

.
= 4 (2 /N)

2
+ 2

2 for 2 = (2 /N)
2

(3 )

Using this notation one obtains for 5 and 6 the following relations:

5 =
2

1 + 2i arcsin
2
d2 2

1
1/2

for d2 > 2
1

.
=
2

1 + i d
2 2

1
1/2

, d2 2
1

6 =
2

1 2i arcsin
2
d2 2

1
1/2

.
=
2

1 i d2 2
1
1/2

, d2 2
1

1 = c t( Z + s/Z) = cT ( Z + s/Z)/N
2
2 = (c t)2 s = (cT/N)2 s (32)

The relations for 5 and 6 should be compared with those for 1 and 2 in
Eq.(2. -77) for the di erential theory.

From Eqs.(7) and (8) we obtain for the time-variable part ( ) of our
solution:

( ) = A5v5 +A6v6 +A7v7 +A8v8

A5 = A6 = 0 for 4(2 /N)2 (2 /N)4 2
2 +

2
1/4

A7 = A8 = 0 for 4(2 /N)2 > (2 /N)4 2
2 +

2
1/4 (33)
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FIGURE 3.2-6. Continuous function f(x) in the interval 0 x < N/2 (a) and the correspond-
ing step function with = 0, 1, 2, . . . , N/2 1 having N/2 steps of width 1 (b).

The solution w ( , ) according to Eq.(3. -2 ) is the product of Eqs.(3. -39)
and (33). The boundary condition of Eq.(3. - 6) demands the coe cient A20 =
0 in Eq.(3. -39):

w ( , ) = (A5v5 +A6v6 +A7v7 +A8v8) sin
2

N

= e 1 /2 A5 exp(i ) +A6 exp( i )

+A7
2

2

N

2

+
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

+A8
2

2

N

2

2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

× sin 2
N

(34)

The generalization of Eq.(34) in analogy to Eq.(2. -8 ) is achieved by mak-
ing A5 to A8 functions of and summing over the values of defined by
Eqs.(3. -40) or ( 5) and permitted by Eq.(33). To determine the summa-
tion limit for small values of we use the approximation 2 /N = of
Eq.(3. -44):

= 2 /N = 2 /N, = , a = 1N, b = 2N

2
2 +

2
1/4 (2 /N)2 = (2 /N)2

K0 =
4

2
a 4 2

b
1/2

=
N

4
( 2
1 4 2

2)
1/2 = ±Nc t

4
Z

s

Z
(35)
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FIGURE 3.2-7. Symmetric generalization of Fig.3.2-6b from the interval 0 < N/2 to the
interval N/2 < < N/2.

Hence, Eq.(34) has to be summed with a change of variable at = ±K0. We
still have to decide what lower and upper limit should be used for the sum.
If we used the Fourier integral rather than the sum in Eq.(2. -8 ) we would
calculate the area of a function f(x) as shown in Fig.3.2-6a in the interval
0 x N/2. A sum replaces this continuous function by a step function as
shown in Fig.3.2-6b. The area of this step function is represented by the sum of
the functional value f(x) for x = 0, , 2, . . . , , . . . N/2 multiplied by the
width x = of the steps. Since the area of the step + is given by the step
in the interval x < + we must sum from 0 to N/2 rather than from
0 to N/2. This appears to be a trivial distinction. However, we shall encounter
results that are convergent in the half open interval 0 x < N/2 or = 0,
, 2, . . . , N/2 but not at x = = N/2. The generalization of Fig.3.2-6
from the interval 0 < N/2 to the interval N/2 < < N/2 is shown
in Fig.3.2-7. This generalization makes = 0 count twice. The contribution
of a particular interval is of little interest for large values of N as long as no
convergence problem is introduced. Using Fig.3.2-7, Eq.(34) has to be summed
from = N/2 + to N/2 with a change of variable at = ±K0, if K0

is an integer. Non-integer values of K0 and other refinements will be discussed
later on in this section. Here we write

w( , ) =

N/2 1

= N/2+1

w ( , )

A5 = A6 = 0 for K0 < < K0

A7 = A8 = 0 for N/2 < < K0, K0 < < N/2 (36)

The main di erence between Eqs.(2. -8 ) and (36) is that has no longer
denumerably many values; instead it has an arbitrarily large but finite number
of values that is smaller than N . Hence, the time interval T , the space interval
cT , and can be arbitrarily large but finite while the time interval t and the
space interval c t can be arbitrarily small but finite.

For the determination of A5( ) and A6( ) we have the two initial condi-
tions of Eqs.(3. - 8) and (3. - 9). We note that Eq.(3. - 8) equals Eq.(2. -68)
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but the di erential equation (2. -69) is replaced by the di erence equation
(3. - 9). For Eq.(3. - 8) we obtain:

w( , 0) =

N/2 1

= N/2+1

[A5( ) +A6( ) +A7( ) +A8( )] sin
2

N
= e 2 (37)

Equation (3. - 9) yields:

w( , ) w( , 0) =

N/2 1

= N/2+1

A5( )(e 5 ) +A6( )(e 6 )

+A7( ) e 1/2

2

2

N

2

+
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

+A8( ) e 1/2

2

2

N

2

2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

× sin 2
N

= 0 (38)

For small values of 5 and 6 we obtain the approximations

e 5
.
= 5, e 6

.
= 6 (39)

and Eq.(38) assumes the form of Eq.(2.2-3) plus the additional terms with
A7( ) and A8( ).

The Fourier series of Eq.(2.2-4) is rewritten in the following form for
t and T/ T/ t = N :

gs( ) =
2

N

N

0

fs( ) sin
2

N
d , fs( ) =

N/2 1

= N/2+1

gs( ) sin
2

N

0 t T, 0 y cT

0 t/ t = T/ t = N, 0 y/c t = N (40)

In analogy to Eqs.(2.2-6) and (2.2-7) we obtain from Eqs.(37) and (36):

A5( ) +A6( ) +A7( ) +A8( ) =
2

N

N

0

e 2 sin
2

N
d (4 )
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A5( )(e 5 ) +A6( )(e 6 )

+A7( ) e 1/2

2

2

N

2

+
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

+A8( ) e 1/2

2

2

N

2

2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

= 0 (42)

With the help of Eq.(2.2-8) we get:

2

N

N

0

e 2 sin
2

N
d =

N

(4 /N)( e N 2)

(2 /N)
2
+ 2

2

, N 2 = cT s

=
N

4 /N

(2 /N)
2
+ 2

2

for N 2 (43)

It seems that Eqs.(4 ) and (42) are two equations with four unknowns A5( ) to
A8( ), but this is not so. According to Eq.(36) either A5( ) and A6( ) are zero
or A7( ) and A8( ) are zero, depending on the value of . Hence, Eqs.(4 ) and
(42) can be rewritten as two systems of two equations, each with two variables:

for K0 < < K0

A7( ) +A8( ) =
N

4 /N

(2 /N)2 + 2
2

(44)

A7( ) e 1/2

2

2

N

2

+
2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

+A8( ) e 1/2

2

2

N

2

2

2

N

4

4
2

N

2

4 2
2+

2
1

1/2

= 0 (45)

for N/2 < < K0, K0 < < N/2

A5( ) +A6( ) =
N

2 /N

(2 /N)2 + 2
2

(46)

A5( )(e 5 ) +A6( )(e 6 ) = 0 (47)
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We solve first Eqs.(46) and (47). The exponents 5 and 6 are defined by
Eq.(32):

A5( ) =
N

(4 /N)( e N 2)

(2 /N)
2
+ 2

2

e 6

e 6 e 5
d2 > 2

1

=
N

(2 /N)( e N 2)

(2 /N)
2
+ 2

2

× 2i
e 1/2 cos{arcsin[(d2 2

1)
1/2/2]}

e 1/2 (d2 2
1)
1/2

.
=

N

(2 /N)( e N 2)

(2 /N)
2
+ 2

2

i 1

(d2 2
1)
1/2

, | 5|, | 6| (48)

A6( ) =
N

(4 /N)( e N 2)

(2 /N)
2
+ 2

2

e 5

e 5 e 6
d2 > 2

1

=
N

(2 /N)( e N 2)

(2 /N)
2
+ 2

2

× + 2i
e 1/2 cos{arcsin[(d2 2

1)
1/2/2]}

e 1/2 (d2 2
1)
1/2

.
=

N

(2 /N)( e N 2)

(2 /N)
2
+ 2

2

+
i 1

(d2 2
1)
1/2

, | 5|, | 6| (49)

The solution of Eqs.(44) and (45) yields A7( ) and A8( ):

A7( ) =
N

2 /N

(2 /N)2 + 2
2

× [2 sin( /N)]2 1/2

{[2 sin( /N)]4 4[2 sin( /N)]2 4 2
2 +

2
1}1/2

.
=

N

2 /N

(2 /N)2 + 2
2

(2 /N)2 1/2

[(2 /N)4 4(2 /N)2 4 2
2+

2
1]
1/2

(50)

A8( ) =
N

2 /N

(2 /N)2 + 2
2

× +
[2 sin( /N)]2 1/2

{[2 sin( /N)]4 4[2 sin( /N)]2 4 2
2 +

2
1}1/2

.
=

N

2 /N

(2 /N)2+ 2
2

+
(2 /N)2 1/2

[(2 /N)4 4(2 /N)2 4 2
2+

2
1]
1/2

(5 )
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We must revisit the question for which values of one must use A5( ),
A6( ) and for which A7( ), A8( ). From Eq.(9) or the definition of d2 in
Eq.(3 ) we obtain for d2 2

1 = 0 the following equation:

sin4
2

sin2
2 4

2
2 + 6

d2 = 0

sin
2
= sin

N
= ±

2
±
2

+ 2
2 4

d2
1/2 1/2

= K = ±N arcsin
2
±
2

+ 2
2 4

2
1

1/2 1/2

for d2 = 2
1 (52)

The positive sign +N/ holds for > 0 or / = 2 /N according to Eq.( 5)
and Fig.3.2- while N/ holds for < 0. We may use the series expansion
arcsinx

.
= x for the negative sign /2 in Eq.(52):

K = K0 = ±N arcsin
2 2

+ 2
2 4

2
1

1/2 1/2

= ±N
4
( 2
1 4 2

2)
1/2 = ±

4
( 2
a 4 2

b)
1/2

= ±cT
4

Z
s

Z
= ±Nc t

4
Z

s

Z
(53)

These two values of K0 correspond to the values in Eq.(2.2- 2) and (35). But
we get a second value for K by using the positive sign + /2 in Eq.(52):

K = KN/2 = ±N arcsin
2
+
2

+ 2
2 4

2
1

1/2 1/2

(54)

It is evident that K equals about N/2. The more detailed calculation with
series expansions yields for even values of N :

KN/2 = ± N

2 4
( 2
a 4 2

b)
1/2 = ± N

2
K0

= ± N

2

cT

4
Z

s

Z
= ±N

2

c t

2
Z

s

Z
(55)

There is no equivalent in the di erential theory. The deviation is due to the
decrease of the plot shown with a solid line in Fig.3.2- for / > 0.5, which
makes / zero for both / = 0 and / = ± .

Using the limits KN/2 and KN/2 we modify Eq.(36) as follows:
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w( , ) =

N/2 1

= N/2+1

w ( , ), N = even

A5=A6=0 for N/2 < < KN/2, K0< <K0, KN/2< <N/2

A7=A8=0 for KN/2< < K0, K0< <KN/2 (56)

The values of K0 and KN/2 in Eqs.(53) and (55) would not deviate from
0 or N/2 in the case

Z s/Z = 0 or / μ/s = 0 (57)

A corresponding relation

CR LG = 0 (58)

is known from the telegrapher’s equation, where C, L, R, G are capacitance,
inductance, resistance and (trans)conductance per unit length of a transmission
line. A transmission line satisfying Eq.(58) is called distortion-free. In the
design of transmission lines one can control the parameters C, R, L, G to
satisfy Eq.(58), practically by increasing L. We have no such control over the
wave impedance Z or the electric and magnetic dipole conductivities and s
of vacuum.

We adopt the following notation for the sum of Eq.(56) to avoid repeated
writing of the terms of the sum:

< KN/2

= N/2+1

+

< K0

> KN/2

+

<K0

> K0

+

<KN/2

>K0

+

N/2 1

>KN/2

=

N/2 1
<K0

< KN/2

= N/2+1
> K0
>KN/2

+

<KN/2

< K0

> KN/2

>K0

=

N/2 1
KN/2,K0

= N/2+1
K0,KN/2

+

<KN/2

< K0

> KN/2

>K0

(59)

The notation < K0, < K0, < KN/2, < KN/2 and > K0, > K0, > KN/2,
>KN/2 means the largest integer smaller than K0, K0, KN/2, KN/2 and
the smallest integer larger than K0, K0, KN/2, KN/2.

Substitution of 5, 6 from Eq.(32), w ( , ) from Eq.(34), as well as of
A5( ), A6( ), A7( ), and A8( ) from Eqs.(48) to (5 ) into Eq.(36) yields the
following equation for w( , ):
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w( , ) =
e 1 /2

N

N/2 1
KN/2,K0

= N/2+1
K0,KN/2

2 /N

(2 /N)
2
+ 2

2

sin
2

N

× 4[sin( /N)]2 1/2

h( /N)
2[sin( /N)]2 +

2
h( /N)

+
4[sin( /N)]2 1/2

h( /N)
2[sin( /N)]2

2
h( /N)

2( e N/ 2)

<KN/2

< K0

> KN/2

>K0

2 /N

(2 /N)
2
+ 2

2

sin
2

N

× cos a +
2( e 1/2 cos a)

e 1/2 (d2 2
1)
1/2

sin a

h( /N) = { 6[sin( /N)]4 6[sin( /N)]2 4 2
2 +

2
1}1/2

a = = arcsin
2
(d2 2

1)
1/2

d2 see Eq.(3 ), see Eq.( 5) (60)

This equation looks quite di erent from Eq.(2.2- 3) but we may show the
similarity by rewriting it. With the definitions

u( /N) =
4[sin( /N)]2 1/2

h( /N)
, v( /N) = 2[sin( /N)]2

A1 = ln v( /N) +
2
h( /N) , A2 = ln v( /N)

2
h( /N) (6 )

we may write the kernel of the first sum of Eq.(60) in the following form:

[ u( /N)]e A1 [ + u( /N)]e A2
2 /N

(2 /N)
2
+ 2

2

sin
2

N

= e A1 e A2 u( /N)(e A1 + e A2 )
2 /N

(2 /N)2 + 2
2

sin
2

N
(62)

For small values of /N we obtain:
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v( /N)
.
= , h( /N)

v( /N) +
2
h( /N)

.
=
v( /N) h( /N)/2

A2
.
= A1 (63)

and the right side of Eq.(62) assumes the form:

2u( /N) ch A1
sh A1

u( /N)

2 /N

(2 /N)
2
+ 2

2

sin
2

N
(64)

The kernel of the second sum in Eq.(60) may be rewritten with the following
approximations

a
.
=
(d2 2

1)
1/2

2
, e 1/2 .=

1

2

2( e 1/2 cos a)

e 1/2 (d2 2
1)
1/2

.
=

1

(d2 2
1)
1/2

(65)

into the form

2e 1 /2( e N 2) cos[(d2 2
1)
1/2 /2]

+
1 sin[(d

2 2
1)
1/2 /2]

(d2 2
1)
1/2

2 /N

(2 /N)
2
+ 2

2

sin
2

N
(66)

and Eq.(60) becomes for N 2 :

w( , ) =
2

N
e 1 /2

N/2 1
KN/2,K0

= N/2+1
K0,KN/2

u( /N) ch A1
sh A1

u( /N)

× 2 /N

(2 /N)
2
+ 2

2

sin
2

N

+

<KN/2

< K0

> KN/2

>K0

cos[(d2 2
1)
1/2 /2]

+
1 sin[(d

2 2
1)
1/2 /2]

(d2 2
1)
1/2

2 /N

(2 /N)
2
+ 2

2

sin
2

N
(67)
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The oscillating terms in Eq.(67) are quite similar to the oscillating terms of
Eq.(2.2- 3). The non-oscillating terms di er more, but a study of the limits of
the two sums of Eq.(67) shows that w( , ) consists mainly of oscillating terms.

3.3 Solution for Aev( , )

In the di erential theory we can obtain Aev( , ) from Ve( , ) by solving
the inhomogeneous wave equation defined by Eq.(2. -44). Smirnov gave us the
very simple and elegant solution of Eq.(2. -45). Nothing comparable exists
for the calculus of finite di erences. Hence, we must develop the generaliza-
tion of the required mathematical methods from the inhomogeneous di erential
wave equation to the inhomogeneous di erence wave equation. This is done in
Section 6.2.

We start with Ve( , ) of Eq.(3. - 0). The function F ( ) is defined in
Eq.(3. - 4) and w( , ) is defined in Eq.(3.2-67):

Ve( , ) = Ve0[F ( ) + w( , )] ( )

If we write Eq.(6.2- ) with the indices ev, e, and the constant c2 2 we obtain
Eq.(6.2-23) in the form

˜2Aev
˜ 2

˜2Aev
˜ 2

= c2 2Ve( , ) (2)

At this point the solution for finite di erences , begins to deviate
decisively from the solution for di erentials d , d . Let us compare the solution
Ve( , ) of Eq.(2. -62) for di erentials with that of Eq.( ) for finite di erences.
For Eq.(2. -62) the components F ( ) and w( , ) were derived in Eqs.(2. -64)
and (2.2- 3). Their derivation is quite similar to the derivation of F ( ) in
Eq.(3. - 4) and of w( , ) in Eq.(3.2-60). The next step is to obtain Aev from
Eq.(2. -44) as done by Eq.(2. -45) for the di erential theory. This solution by
Smirnov depends on several results of the di erential theory that we cannot
expect to derive here for finite di erences. A less demanding solution of Eq.(2. -
44) than Eq.(2. -45) is derived in Section 6.3. But it is still too demanding for
an easy rewrite in terms of finite di erences. The reason is that the variables
and in Eq.(6.3- ) are first replaced by the variables = + and =
from Eq.(6.3-2) on. The integration of Eq.(6.3-7) is done with and , but
Eqs.(6.3-38) to (6.3-40) return to the original variables and . No doubt this
transformation of integration variables can be rewritten for the summation
variables of Eq.(6.2-47), but this is a task for authors who want to advance the
calculus of finite di erences for its own sake. The calculus of finite di erences
is in a state of development that is well below the state of di erential calculus
and this fact will only be changed through applications in physics that are of
comparable importance. We shall use an approach that requires a minimum
of mathematical refinement for the calculus of finite di erences. Equation ( )
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is rewritten for the variables = + and = , the whole calculation–
including two summations–is done in terms of and , and only at the very
end do we return from , to , :

Ve( , ) = Ve0[F ( , ) + w( , )] (3)

We want to use Eq.(6.2-47). To do so we observe that a = c becomes
a = c t since was replaced by t in Eq.(3. - ). Furthermore, we simplify
Eq.(6.2-47) by leaving out the constants c1 and c2. This simplification will be
explained presently:

˜Aev( , )
˜

=
4
c2( t)2 Ve( , + )

=
4
Ve0c

2( t)2 [F ( , + ) + w( , + )] (4)

Aev( , ) =
4
Ve0(c t)2 [F ( + , + )

+ w( + , + )] (5)

= + , = , =
2
( + ), =

2
( ) (6)

The functions F ( ) of Eq.(3. - 4) and w( , ) of Eq.(3.2-60) must be
rewritten as functions F ( , ) and w( , ):

F ( )
.
= e 2 = F ( , ) = e 2 /2e 2 /2 (7)

The factor e N 2 in Eq.(3.2-60) is left out due to the relation N 2 =
Tc/ s :

w( , ) = w( , ) =
N
e 1 /4e 1 /4

×

N/2 1
KN/2,K0

= N/2+1
K0,KN/2

D0( )[D1( )G
( )/2
1 ( ) D2( )G

( )/2
2 ( )] sin

( + )

N

2

<KN/2

< K0

> KN/2

>K0

D0( ) cos[ a( )/2]

+D3( ) sin[ a( )/2] sin
( + )

N
(8)
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D0( ) =
2 /N

(2 /N)2 + 2
2

(9)

D1( ) =
4[sin( /N)]2 1/2

h( /N)
( 0)

G1( ) = 2[sin( /N)]2 +
2
h( /N) ( )

D2( ) = +
4[sin( /N)]2 1/2

h( /N)
( 2)

G2( ) = 2[sin( /N)]2
2
h( /N) ( 3)

h( /N) = { 6[sin( /N)]4 6[sin( /N)]2 4 2
2 +

2
1}1/2 ( 4)

D3( ) =
2( e 1/2 cos a)

e 1/2 (d2 2
1)
1/2
D0( ) ( 5)

N, 1,
2
2 see Eq.(3. - ); d

2 see Eq.(3.2-3 ); a see Eq.(3.2-60)

K0, KN/2 see Eqs.(3.2-53)—(3.2-55), e
N 2

.
=

The function w( , ) must be written in a form that separates and :

w( , ) =
N

N/2 1
KN/2,K0

= N/2+1
K0,KN/2

e 1 /4e 1 /4D0( ) D1( )G
/2
1 ( )G

/2
1 ( )

D2( )G
/2
2 ( )G

/2
2 ( ) sin

N
cos

N
+ cos

N
sin

N

2

N

<KN/2

< K0

= KN/2

>K0

e 1 /4e 1 /4 D0( ) sin
N
+

a

2
cos

N
a

2

+cos
N
+

a

2
sin

N
a

2
+sin

N
a

2
cos

N
+

a

2

+ cos
N

a

2
sin

N
+

a

2

D3( ) cos
N
+

a

2
cos

N
a

2

+sin
N
+

a

2
sin

N
a

2
cos

N
a

2
cos

N
+

a

2

+ sin
N

a

2
sin

N
+

a

2
( 6)
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For the evaluation of the sum of F ( , + ) in Eq.(4) we need the sum of
exp( 2 /2) in Eq.(7). We obtain it with the help of e

x in Table 6.2- . The
constants c used in Table 6.2- are left out for two reasons. First, according
to Eq.(2.3- 5) only the derivatives of Aev and Amv are of interest and any
summation constant will be eliminated. Second, if the summation of Eq.(4)
yields a constant a it will become a function a( c ) according to Table
6.3- . The product a(c+ ) is a constant and may be ignored. The product a =
a( + ) is a solution of the homogeneous di erence wave equation according to
Eq.(6.2-52). Since the general solution of the homogeneous equation has to be
added to the solution of the inhomogeneous equation by Eq.(5) we may ignore
a in the inhomogeneous solution. Hence, we get:

S00 = e 2( +1)/2 =
e 2 /2

sh( 2/2)
( 7)

For the summation of w( , + ) in Eq.(4) we introduce the following
notation for the terms G1( ) and G2( ) of the first sum of Eq.( 6):

A1 = lnG1( ) = ln 2[sin( /N)]2 +
2
h( /N)

A2 = lnG2( ) = ln 2[sin( /N)]2
2
h( /N)

G1( ) = e A1 , G2( ) = e A2 , G
/2

1 = e A1 /2, G
/2

2 = e A2 /2 ( 8)

The first sum in Eq.( 6) requires the summation of the following four terms:

exp[( 1/2 A1) /2] cos( /N)

exp[( 1/2 A1) /2] sin( /N)

exp[( 1/2 A2) /2] cos( /N)

exp[( 1/2 A2) /2] sin( /N)

Such summations have also been worked out in Table 6.2- . Here is a list of
all summations needed for Eq.( 6). Four are obtained from the first sum in
Eq.( 6):

S01 = e( 1/2 A1)( +1)/2 cos
( + )

N

=
e( 1/2 A1) /2

[( 1/2 A1)/2]2 + ( /N)2
01 cos

N
+ 01 sin

N
( 9)
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S02 = e( 1/2 A1)( +1)/2 sin
( + )

N

=
e( 1/2 A1) /2

[( 1/2 A1)/2]2 + ( /N)2
01 sin

N
01 cos

N
(20)

01 =
2{[( 1/2 A1)/2]

2+( /N)2} sh[( 1/2 A1)/2] cos( /N)

cos(2 /N) ch( 1/2 A1)
(2 )

01 =+
2{[( 1/2 A1)/2]

2+( /N)2} ch[( 1/2 A1)/2] sin( /N)

cos(2 /N) ch( 1/2 A1)
(22)

S03 = e( 1/2 A2)( +1)/2 cos
( + )

N

=
e( 1/2 A2) /2

[( 1/2 A2)/2]2 + ( /N)2
03 cos

N
+ 03 sin

N
(23)

S04 = e( 1/2 A2)( +1)/2 sin
( + )

N

=
e( 1/2 A2) /2

[( 1/2 A2)/2]2 + ( /N)2
03 sin

N
03 cos

N
(24)

03=
2{[( 1/2 A2)/2]

2+( /N)2} sh[( 1/2 A2)/2] cos( /N)

cos(2 /N) ch( 1/2 A2)
(25)

03=+
2{[( 1/2 A2)/2]

2+( /N)2} ch[( 1/2 A2)/2] sin( /N)

cos(2 /N) ch( 1/2 A2)
(26)

The second sum in Eq.( 6) requires four summations that all follow the pattern
of S01 to S04:

S05 = e 1( +1)/4 cos
N

a

2
( + )

=
e 1 /4

( 1/4)2 + ( /N a/2)2
05 cos

N
a

2

+ 05 sin
N

a

2
(27)
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S06 = e 1( +1)/4 sin
N

a

2
( + )

=
e 1 /4

( 1/4)2 ( /N a/2)2
05 sin

N
a

2

05 cos
N

a

2
(28)

05 =
2[( 1/4)

2 + ( /N a/2)
2] sh( 1/4) cos( /N a/2)

cos(2 /N a) ch( 1/2)
(29)

05 = +
2[( 1/4)

2 + ( /N a/2)
2] ch( 1/4) sin( /N a/2)

cos(2 /N a) ch( 1/2)
(30)

S07 = e 1( +1)/4 cos
N
+

a

2
( + )

=
e 1 /4

( 1/4)2 + ( /N + a/2)2
07 cos

N
+

a

2

+ 07 sin
N
+

a

2
(3 )

S08 = e 1( +1)/4 sin
N
+

a

2
( + )

=
e 1 /4

( 1/4)2 + ( /N + a/2)2
07 sin

N
+

a

2

07 cos
N
+

a

2
(32)

07 =
2[( 1/4)

2 + ( /N + a/2)
2] sh( 1/4) cos( /N + a/2)

cos(2 /N + a) ch( 1/2)
(33)

07 = +
2[( 1/4)

2 + ( /N + a/2)
2] ch( 1/4) sin( /N + a/2)

cos(2 /N + a) ch( 1/2)
(34)

Before we rewrite Eq.(4) with the help of the summations of Eqs.( 9) to
(34) we show some intermediate steps since few readers will be well versed with
the calculus of finite di erences. First we obtain from Eqs.(4), (7), and ( 7):



3.3 solution for Aev( , ) 107

F ( , + ) = e 2 /2 e 2( +1)/2 = S00e 2 /2 (35)

Then we write the kernel of the first sum in Eq.( 6) with the help of Eq.( 9):

N
e 1 /4e 1 /4D0(D1G

/2
1 G

/2
1 D2G

/2
2 G

/2
2 )

× sin
N

cos
N

+ cos
N

sin
N

=
D0
N

D1e
( 1/2 A1) /2 sin

N
e( 1/2 A1) /2 cos

N

+D1e
( 1/2 A1) /2 cos

N
e( 1/2 A1) /2 sin

N

D2e
( 1/2 A2) /2 sin

N
e( 1/2 A2) /2 cos

N

D2e
( 1/2 A2) /2 cos

N
e( 1/2 A2) /2 sin

N
(36)

For the summation over one must replace by + . Doing so in the last four
lines of Eq.(36) produces the kernels of the summations S01 to S04 in Eqs.( 9)
to (26). The kernel of the second sum of Eq.( 6) can be rewritten in analogy
to Eq.(36) but we get twice as many terms. We write only the first one:

2

N
e 1 /4D0 sin

N
+

a

2
e 1 /4 cos

N
a

2

The relation with S05 in Eq.(27) is evident.
After these preliminaries we may return Eq.(4) and rewrite it into the

following form:

˜Aev( , )
˜

=
4
Ve0(c t)2 F ( , + ) + w( , + )

=
4
Ve0(c t)2 S00e 2 /2

+
N

N/2

N/2,K0

= N/2
K0,KN/2

D0 D1e
( 1/2 A1) /2 S01 sin

N
+ S02 cos

N
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D2e
( 1/2 A2) /2 S03 sin

N
+ S04 cos

N

2

N

< KN/2

< K0

> KN/2

>K0

(D0S05 D3S06)e 1 /4 sin
N
+

a

2

+ (D0S06 D3S05)e 1 /4 cos
N
+

a

2

+ (D0S07 D3S08)e 1 /4 sin
N

a

2

+ (D0S08 +D3S07)e 1 /4 cos
N

a

2
(37)

To obtain Aev( , ) from Aev( , )/ we must sum each term in Eq.(37)
that contains the variable . This means in essence a repetition of Eqs.( 7)
and ( 9) to (34):

S10 = e 2( +1)/2 =
e 2 /2

sh( 2/2)
(38)

The first sum in Eq.(37) requires four summations S11 to S14:

S11 = e ( 1/4 A1/2)( +1) sin
( + )

N

=
e ( 1/4 A1/2)

( 1/4 A1/2)2 + ( /N)2
11 sin

N
11 cos

N
(39)

S12 = e ( 1/4 A1/2)( +1) cos
( + )

N

=
e ( 1/4 A1/2)

( 1/4 A1/2)2 + ( /N)2
11 cos

N
+ 11 sin

N
(40)

11=+
2[( 1/4 A1/2)

2+( /N)2] sh( 1/4 A1/2) cos( /N)

cos(2 /N) ch( 1/2 A1)
(4 )

11=+
2[( 1/4 A1/2)

2+( /N)2] ch( 1/4 A1/2) sin( /N)

cos(2 /N) ch( 1/2 A1)
(42)
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S13 = e ( 1/4 A2/2)( +1) sin
( + )

N

=
e ( 1/4 A2/2)

( 1/4 A2/2)2 + ( /N)2
13 sin

N
13 cos

N
(43)

S14 = e ( 1/4 A2/2)( +1) cos
( + )

N

=
e ( 1/4 A2/2)

( 1/4 A2/2)2 + ( /N)2
13 cos

N
+ 13 sin

N
(44)

13 = +
2[( 1/4 A2/2)

2 + ( /N)2] sh( 1/4 A2/2) cos( /N)

cos(2 /N) ch( 1/2 A2)
(45)

13 = +
2[( 1/4 A2/2)

2 + ( /N)2] ch( 1/4 A2/2) sin( /N)

cos(2 /N) ch( 1/2 A2)
(46)

The second sum in Eq.(37) requires four more summations:

S15 = e 1( +1)/4 sin
N
+

a

2
( + )

=
e 1 /4

( 1/4)2 + ( /N + a/2)2
15 sin

N
+

a

2

15 cos
N
+

a

2
(47)

S16 = e 1( +1)/4 cos
N
+

a

2
( + )

=
e 1 /4

( 1/4)2 + ( /N + a/2)2
15 cos

N
+

a

2

+ 15 sin
N
+

a

2
(48)
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15 = +
2[( 1/4)

2 + ( /N + a/2)
2] sh( 1/4) cos( /N + a/2)

cos(2 /N + a) ch( 1/2)

= 07 (49)

15 = +
2[( 1/4)

2 + ( /N + a/2)
2] ch( 1/4) sin( /N + a/2)

cos(2 /N + a) ch( 1/2)

= + 07 (50)

S17 = e 1( +1)/4 sin
N

a

2
( + )

=
e 1 /4

( 1/4)2 + ( /N a/2)2
17 sin

N
a

2

17 cos
N

a

2
(5 )

S18 = e 1( +1)/4 cos
N

a

N
( + )

=
e 1 /4

( 1/4)2 + ( /N a/2)2
17 cos

N
a

2

+ 17 sin
N

a

2
(52)

17 = +
2[( 1/4)

2 + ( /N a/2)
2] sh( 1/4) cos( /N a/2)

cos(2 /N a) ch( 1/2)

= 05 (53)

17 = +
2[( 1/4)

2 + ( /N a/2)
2] ch( 1/4) sin( /N a/2)

cos(2 /N a) ch( 1/2)

= + 05 (54)

With the help of Eqs.(37) to (54) we may write Aev( , ) of Eq.(5) in the
following form:
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Aev( , ) =
4
Ve0(c t)2 S00S10

+
N

N/2 1
KN/2,K0

= N/2+1
K0,KN/2

D0( ) D1( )(S01S11 + S02S12) D2( )(S03S13 + S04S14)

2

N

<KN/2

< K0

= KN/2

>K0

[D0( )S05 D3( )S06]S15 + [D0( )S06 D3( )S05]S16

+ [D0( )S07 D3( )S08]S17 + [D0( )S08 +D3( )S07]S18 (55)

We have succeeded in eliminating the summation signs of finite di erence
mathematics from Eq.(4). What remains to be done is to write Eq.(55) in terms
of functions of and , and to substitute and for and . Furthermore, we
want to write in analogy to Eq.(2.2-40) all functions of in terms of sinusoidal
functions, which is possible by means of Fourier expansions. The calculations
are carried out in Section 6.4 and the following representation of Aev( , ) =
Aev( , ) is obtained in Eq.(6.4-83):

Aev( , ) = (c t)2Ve0
e 2

4 sh2( 2/2)

+

N/2 1,=0

= N/2+1

Cec( , ) cos
2

N
+ Ces( , ) sin

2

N

+Caec( , ) cos a + Caes( , ) sin a (56)

The coe cients Cec( , ) to C
a
es( , ) are shown in Eqs.(6.4-84) and (6.4-85).

3.4 Magnetic Potential Amv( , )

In Section 3. we obtained a di erence equation (3. -5) for Ve by rewriting
the di erential equation (2. -43) as a di erence equation. After solving it for Ve
we obtained the electric potential Aev( , ) by means of Eq.(3.3-5), which is a
finite di erence substitute for Eq.(2. -45). The electric potential was eventually
brought into the form of Eq.(3.3-56).

To obtain a di erence equation for the magnetic potential Amv( , ) we
rewrite the di erential equation (2. -34) as a di erence equation and treat the
electric potential Aev( , ) as known according to Eq.(3.3-56).
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Equation (2. -34) is rewritten in normalized form and the terms are rear-
ranged:

Amv
= Z s

2Aev
2

2Aev
2

ŝ

Aev

=
t

t
, =

y

c t
, s =

Z

sc t
=

μ

s t
=
2 2
2

[ 1 ± ( 2
1 4 2

2)
1/2] ( )

Using Eqs.(3. -2) to (3. -4) we obtain from Eq.( ) the following di erence
equation:

˜Amv( , )
˜

= Z s Aev( + , ) 2Aev( , ) +Aev( , )

[Aev( , + ) 2Aev( , ) +Aev( , )]

2 s
[Aev( , + ) Aev( , )] (2)

Summation of Amv( , )/ with respect to produces Amv( , ) just as the
integration of Amv/ with respect to in Eq.(2. -49) produced the di eren-
tial magnetic potentialAmv( , ). We obtain the first order di erence quotient
from the second order di erence quotient by comparing Eqs.(3. .2) and (3. -4):

Amv( , ) =Amv1( , ) +Amv2( , ) +Amv3( , )

=
2
Z s[Aev( + , ) Aev( , )]

Z s

c

[Aev( , + ) 2Aev( , ) +Aev( , )]

Z

2
c

[Aev( , + ) Aev( , )] (3)

In Eq.(2. -49) we had ignored an integration constant since only derivatives
of Amv( , ) are used in Eq.(2.3- 5). Equation (3) still contains the summation
constant c but we simplify the calculation by leaving it out from here on.

Since Amv( , ) will be integrated later on with respect to we must write
the first two terms Aev( ± , ) in some detail using Eq.(3.3-56). This is done
in Section 6.5. Equation (6.5- ) shows Aev( ± , ) while Eq.(6.5-2) shows
Aev( + , ) Aev( , ).

The summations in Eq.(3) are obtained by evaluating the summation of
Aev( , ) and substituting ± for to obtain the summations of Aev( , + )



3.4 magnetic potential Amv( , ) 113

and Aev( , ). According to Eq.(3.3-56) we need five summations that can
all be obtained with the help of Table 6.2- :

e 2 =
e 2

sh 2
, 2 > 0 (4)

cos a =
sin a

sin a
, | a| < (5)

sin a =
cos a

sin a
, | a| < (6)

cos
2

N
=
sin(2 /N)

sin(2 /N)
, | | < N

2
(7)

sin
2

N
=

cos(2 /N

sin(2 /N)
, | | < N

2
(8)

Substitution of Eqs.(4) to (8) into Eq.(3.3-56) yields the summation of
Aev( , ) with respect to . We see from Eqs.(7) and (8) that the exclusion
of the limits = N/2 and = +N/2 in Eqs.(3.3-55) and (3.3-56) avoids
a problem of divergence and that Eqs.(5), (6) may require further exclusions.
More details may be found in the text before Eq.(3.2-36). We obtain the
following formula from Eq.(3.3-56):

Aev( , ) = (c t)2Ve0
e 2

4 sh2( 2/2) sh 2

+

N/2 1,=0

= N/2+1

Cec( , )
sin(2 /N)

sin(2 /N)
Ces( , )

cos(2 /N)

sin(2 /N)

+ Caec( , )
sin a

sin a
Caes( , )

cos a

sin a
(9)

The summations of Aev( , + ) and Aev( , ) in Eq.(3) are ob-
tained from this formula by substituting ± for . This is done in Sec-
tion 6.5. Equation (6.5- 4) shows Amv( , ) in the following relatively compact
form:
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Amv( , ) = Z(c t)2Ve0
sh 2 e 2

4 sh2( 2/2)

+

N/2 1,=0

= N/2+1

Cmc( , ) cos
2

N
+ Cms( , ) sin

2

N

+ Camc( , ) cos a + Cams( , ) sin a ( 0)

The functions Cmc( , ) to C
a
ms( , ) are listed in Eqs.(6.5- 5) and (6.5- 6).

3.5 Hamilton Function for Finite Differences

With Aev( , ) of Eq.(3.3-56) and Amv( , ) of Eq.(3.4- 0) in a form com-
parable to Aev( , ) and Amv( , ) of Eqs.(2.2-40) and (2.2-44) derived by in-
finitesimal mathematics we may follow the procedure of Section 2.3 to obtain a
Hamilton function. One question arises immediately: Should we use integrals
as in Eq.(2.3- ) or should we use summations instead? The advantage of the
integrals is the simpler calculation but the finite di erences used by summa-
tions are better in the representation of physical observability. In the end one
has no choice but to try both methods. If the di erence between the results
obtained by integration or by summation is significant, one knows that summa-
tion has to be used–if one wants to use the mathematics of finite di erences
at all. Unfortunately, the reverse is not true. An insignificant di erence in one
example does not prove there will never be another example with significant
di erence.

We choose integration. Since our functions Aev( , ) and Amv( , ) of
Eqs.(3.3-56) and (3.4- 0) are di erentiable with respect to and it is consis-
tent to use di erentiation as well as integration. Hence, we may use Eq.(2.3- )
as our starting point:

U =
2

L/2

L/2

L/2

L/2

cT

0
Zc
E2 +

Z

c
H2 dy dx dz ( )

In Eqs.(2.3-7) to (2.3- 2) we used = T/N . Now we use = T/N = t
and the normalizations = t/ t and = y/c t instead of = t/ and
= y/c :

= t, = t/ t, = y/c t, T/ t = N

curl2Ae = 2
Aev
y

2

=
2

(c t)2
Aev

2

(2)
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curlAe · Am

t
= 2

Aev
y

Amv
t

=
2

c( t)2
Aev Amv

(3)

Am

t

2

=
Amv
t

2

=
2

( t)2
Amv

2

(4)

curl2Am =
Amv
y

2

=
2

(c t)2
Amv

2

(5)

curlAm · Ae

t
= 2

Amv
y

Aev
t
=

2

c( t)2
Amv Aev

(6)

Ae

t

2

= 2
Aev
t

2

=
2

( t)2
Aev

2

(7)

The squares of the field strengths E and H in Eqs.(2.3-2) and (2.3-3) have
the following values:

E2 =
2

( t)2
Z2

Aev
2

+ 2Z
Aev Amv

+
Amv

2

=
2

( t)2
Z
Aev

+
Amv

2

(8)

H2 =
2

Z2( t)2
Amv

2

+ 2Z
Amv Aev

+ Z2
Aev

2

=
2

Z2( t)2
Amv

+ Z
Aev

2

(9)

The energy U of Eq.( ) is rewritten as follows:

U =
c2 t

Z

L/2c t

L/2c t

L/2c t

L/2c t

N

0

Z
Aev

+
Amv

2

+
Amv

+ Z
Aev

2

d d
x

c t
d

z

c t

=
c2 t

Z

L

c t

2
N

0

Z2
Aev

2

+ Z2
Aev

2

+ 2Z
Aev Amv

+
Amv Aev

+
Amv

2

+
Amv

2

d

c2 t/Z = c2T/ZN. L/c t = LN/cT ( 0)
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In order to evaluate Eq.( 0) we need Aev/ , Aev/ , Amv/ , and
Amv/ from Eqs.(3.3-56) and (3.4- 0):

Aev( , )
= (c t)2Ve0

2

4 sh2( 2/2)
e 2

+

N/2 1,=0

= N/2+1

Ces( , ) cos
2

N
+ Cec( , ) sin

2

N

+Caes ( , ) cos a + Caec ( , ) sin a ( )

Ces( , ) =
2

N
Ces( , )

Cec( , ) =
2

N
Cec( , )

Caes ( , ) = aC
a
es( , )

Caec ( , ) = aC
a
ec( , ) ( 2)

Aev( , )
=(c t)2Ve0

N/2 1,=0

= N/2+1

Cec( , )
cos

2

N
+

Ces( , )
sin

2

N

+
Caec( , ) cos a +

Caes( , ) sin a ( 3)

Amv( , )
= Z(c t)2Ve0

2

4 sh2( 2/2) sh 2

e 2

+

N/2 1,=0

= N/2+1

Cms( , ) cos
2

N
+ Cmc( , ) sin

2

N

+Cams( , ) cos a + Camc( , ) sin a ( 4)

Cms( , ) =
2

N
Cms( , )

Cmc( , ) =
2

N
Cmc( , )

Cams( , ) = aC
a
ms( , )

Camc( , ) = aC
a
mc( , ) ( 5)
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Amv( , )
= Z(c t)2Ve0

×
N/2 1,=0

= N/2+1

Cmc( , )
cos

2

N
+

Cms( , )
sin

2

N

+
Camc( , ) cos a +

Cams( , ) sin a ( 6)

The square of Aev/ in Eq.( ) is required for the first term in Eq.( 0).
Since Aev/ has 5 terms, its square has 5 terms. A simplification is
needed. We ignore the terms exp( 2 ) in Eqs.( ) and ( 4), just as we did
in Eqs.(2.2-40) and (2.2-44) of the di erential theory1.

U1=
L2Z

t

N

0

Aev
2

d =L2c4( t)3ZV 2e0

N/2 1,=0

= N/2+1

N

0

Ces
2
( , ) cos2

2

N

+ Cec
2
( , ) sin2

2

N
+ Caes

2
( , ) cos2 a + Caec

2
( , ) sin2 a

+ 2Caes ( , ) cos a Ces( , ) cos
2

N
+ Cec( , ) sin

2

N

+ 2Caec ( , ) sin a Ces( , ) cos
2

N
+ Cec( , ) sin

2

N

+ 2Ces( , )Cec( , ) cos
2

N
sin

2

N

+ 2Caes ( , )C
a
ec ( , ) sin a cos a d ( 7)

We have now 9 terms rather than 5, which is more manageable. The remaining
5 terms in Eq.( 0) are written with the same approximation:

U2 =
L2Z

t

N

0

Aev
2

d = L2c4( t)3ZV 2e0

N/2 1,=0

= N/2+1

N

0

Cec( , )
2

cos2
2

N
+

Ces( , )
2

sin2
2

N

1From Eq.(17) to (36) we have to write some very long equations. On first reading one
may want to read the text but glance over the equations.
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+
Caec( , )

2

cos2 a +
Caes( , )

2

sin2 a

+ 2
Caec( , ) cos a

Cec( , )
cos

2

N
+

Ces( , )
sin

2

N

+ 2
Caes( , ) sin a

Cec( , )
cos

2

N
+

Ces( , )
sin

2

N

+ 2
Cec( , ) Ces( , )

cos
2

N
sin

2

N

+ 2
Caec( , ) Caes( , ) sin a cos a d ( 8)

The following expressions for U3 and U4 are very long:

U3 =
2L2

t

N

0

Aev Amv
d = 2L2c4( t)3ZV 2e0

N/2 1,=0

= N/2+1

N

0

Ces( , )
Cmc( , )

cos2
2

N
+ Cec( , )

Cms( , )
sin2

2

N

+ Caes ( , )
Camc( , ) cos2 a + Caec ( , )

Cams( , ) sin2 a

+ Caes ( , ) cos a
Cmc( , )

cos
2

N
+

Cms( , )
sin

2

N

+ Caec ( , ) sin a
Cmc( , )

cos
2

N
+

Cms( , )
sin

2

N

+
Camc( , ) cos a Ces( , ) cos

2

N
+ Cec( , ) sin

2

N

+
Cams( , ) sin a Ces( , ) cos

2

N
+ Cec( , ) sin

2

N

+ Ces( , )
Cms( , )

+ Cec( , )
Cmc( , )

cos
2

N
sin

2

N

+ Caes ( , )
Cams( , ) + Caec ( , )

Camc( , ) cos a sin a d ( 9)

U4 =
2L2

t

N

0

Amv Aev
d = 2L2c4( t)3ZV 2e0

N/2 1,=0

= N/2+1

N

0

Cms( , )
Cec( , )

cos2
2

N
+ Cmc( , )

Ces( , )
sin2

2

N
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+ Cams( , )
Caec( , ) cos2 a + Camc( , )

Caes( , ) sin2 a

+ Cams( , ) cos a
Cec( , )

cos
2

N
+

Ces( , )
sin

2

N

+ Camc sin a
Cec( , )

cos
2

N
+

Ces( , )
sin

2

N

+
Caec( , ) cos a Cms( , ) cos

2

N
+ Cmc( , ) sin

2

N

+
Caes( , ) sin a Cms( , ) cos

2

N
+ Cmc( , ) sin

2

N

+ Cms( , )
Ces( , )

+ Cmc( , )
Cec( , )

cos
2

N
sin

2

N

+ Cams( , )
Caes( , ) + Camc( , )

Caec( , ) cos a sin a d (20)

The expressions for U5 and U6 are no longer than for U1 and U2:

U5 =
L2

Z t

N

0

Amv
2

d = L2c4( t)3ZV 2e0

N/2 1,=0

= N/2+1

N

0

Cms
2
( , ) cos2

2

N
+ Cmc

2
( , ) sin2

2

N

+ Cams
2
( , ) cos2 a + Camc

2
( , ) sin2 a

+ 2Cams( , ) cos a Cms( , ) cos
2

N
+ Cmc( , ) sin

2

N

+ 2Camc( , ) sin a Cms( , ) cos
2

N
+ Cmc( , ) sin

2

N

+ 2Cms( , )Cmc( , ) cos
2

N
sin

2

N

+ 2Cams( , )C
a
mc( , ) cos a sin a d (2 )

U6 =
L2

Z t

N

0

Amv
2

d = L2c4( t)3ZV 2e0

N/2 1,=0

= N/2+1

N

0

Cmc( , )
2

cos2
2

N
+

Cms( , )
2

sin2
2

N
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+
Camc( , )

2

cos2 a +
Cams( , )

2

sin2 a

+ 2
Camc( , ) cos a

Cmc( , )
cos

2

N
+

Cms( , )
sin

2

N

+ 2
Cams( , ) sin a

Cmc( , )
cos

2

N
+

Cms( , )
sin
2

N

+ 2
Cmc( , ) Cms( , )

cos
2

N
sin

2

N

+ 2
Camc( , ) Cams( , ) cos a sin a d (22)

The following 0 integrals are required for Eqs.( 7) to (22):

N

0

sin2
2

N
d =

N

0

cos2
2

N
d =

N

2
,

N

0

sin
2

N
cos

2

N
d = 0 (23)

N

0

sin2 a d =
N

2
+
sin 2N a

4 a
,

N

0

cos2 a d =
N

2

sin 2N a

4 a

N

0

sin a cos a d =
cos 2N a

4 a
(24)

N

0

sin a sin
2

N
d =

N

2

sin(N a 2 )

N a 2

sin(N a + 2 )

N a + 2

N

0

sin a cos
2

N
d =

N

4

sin2(N a/2 )

N a/2
+
sin2(N a/2 + )

N a/2 +

N

0

cos a sin
2

N
d =

N

4

sin2(N a/2 )

N a/2

sin2(N a/2 + )

N a/2 +

N

0

cos a cos
2

N
d =

N

2

sin(N a 2 )

N a 2
+
sin(N a + 2 )

N a + 2
(25)

The energy U of Eq.( 0) is the sum of the energies U1 to U6 of Eqs.( 7)
to (22). Since the variable has been eliminated we may drop the argument
( , ) in the following formula in order to shorten it.



3.5 hamilton function for finite differences 121

U =
6

i=1

Ui =
2
ZV 2e0L

2T 3c4
N2

N/2 1,=0

= N/2+1

Ces
2
+ Cec

2
+

Cec
2

+
Ces

2

+ Ces
Cmc

+ Cec
Cms

+ Cms
Cec

+ Cmc
Ces

+ Cms
2
+ Cmc

2
+

Cmc
2

+
Cms

2

+
sin 2N a

2N a
Caes

2
+

Caec
2

+ Caes
Camc

+ Cams
Caec + Cams

2
+

Camc
2

+ +
sin 2N a

2N a
Caec

2
+

Caes
2

+ Caec
Cams

+ Camc
Caes + Camc

2
+

Cams
2

+2
sin(N a 2 )

N a 2

sin(N a + 2 )

N a + 2
Caes Ces+

Caec Cec
+
2
Caes

Cmc

+
CamcCes + C

a
ms

Cec
+

CaecCms + CamsCms +
Camc Cmc

sin2(N a/2 )

N a/2

sin2(N a/2+ )

N a/2 +
Caes Cec+

Caec Ces
+
2
Caes

Cms

+
CamsCec + C

a
ms

Ces
+

CaecCmc + CamsCmc +
Camc Cms

sin2(N a/2 )

N a/2
+
sin2(N a/2 + )

N a/2 +
Caec Ces+

Caes Cec
+
2
Caec

Cmc

+
CamsCes + C

a
mc

Cec
+

CaesCms + CamcCms +
Cams Cmc

+2
sin(N a 2 )

N a 2

sin(N a + 2 )

N a + 2
Caec Cec+

Caes Ces
+
2
Caec

Cms

+
CamsCec + C

a
mc

Ces
+

CaesCmc + CamcCmc +
Cams Cms

+
cos 2N a

N a
Caes C

a
ec +

Caec Caes +
2
Caes

Cams + Caec
Camc

+ Cams
Caes + Camc

Caec + CamsC
a
mc +

Camc Cams (26)

In analogy to Section 2.3 from Eq.(2.3-23) on we must work out the time
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variation of the functions C···· = C
··
·· ( , ) in Eq.(26). Consider first the terms

with subscript es or ec in Eq.(26). We obtain with the help of Eqs.( 2), (6.4-84),
and (6.4-85):

for K0 < < K0, = 0 or | | > KN/2

Cec = Cec( , ) = (2 /N)Cec( , )

=
2

N 4N
Lc0( , 0) +

N/2 1

=1

Lcs ( , ) sin
2

N
+ Lcc ( , ) cos

2

N

Ces = Ces( , ) = (2 /N)Ces( , )

=
2

N 4N
Ls0( , 0) +

N/2 1

=1

Lss ( , ) sin
2

N
+ Lsc ( , ) cos

2

N

Caec = C
a
ec ( , ) = aC

a
ec( , ) = 0

Caes = C
a
es ( , ) = aC

a
es( , ) = 0 (27)

for K0 < | | < KN/2

Cec=Cec( , ) = (2 /N)Cec( , )

=
2

N 2N
L0c( , 0) +

N/2 1

=1

Lsc( , ) sin
2

N
+ Lcc( , ) cos

2

N

Ces=Ces( , ) = (2 /N)Ces( , )

=
2

N 2N
L0s( , 0) +

N/2 1

=1

Lss( , ) sin
2

N
+ Lcs( , ) cos

2

N

Caec =C
a
ec ( , ) = aC

a
ec( , )

=
a

2N
La0c( , 0) +

N/2 1

=1

Lasc( , ) sin
2

N
+ Lacc( , ) cos

2

N

Caes =C
a
es ( , ) = aC

a
es( , )

=
a

2N
La0s( , 0) +

N/2 1

=1

Lass( , ) sin
2

N
+ Lacs( , ) cos

2

N

(28)

for K0 < < K0, = 0 or | | > KN/2

Cec
=

Cec( , )
=

4N

N/2 1

=1

2

N
Lcs ( , ) cos

2

N
Lcc ( , ) sin

2

N
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Ces
=

Ces( , )
=
4N

N/2 1

=1

2

N
Lss ( , ) cos

2

N
Lsc ( , ) sin

2

N

Caec =
Caec( , ) = 0

Caes =
Caes( , ) = 0 (29)

for K0 < | | < KN/2

Cec
=

Cec( , )
=
2N

N/2 1

=1

2

N
Lsc( , ) cos

2

N
Lcc( , ) sin

2

N

Ces
=

Ces( , )
=
2N

N/2 1

=1

2

N
Lss( , ) cos

2

N
Lcs( , ) sin

2

N

Caec =
Caec( , ) =

2N

N/2 1

=1

2

N
Lasc( , ) cos

2

N
Lacc( , ) sin

2

N

Caes =
Caes( , ) =

2N

N/2 1

=1

2

N
Lass( , ) cos

2

N
Lacs( , ) sin

2

N

(30)

Next come the terms with subscript ms or mc in Eq.(26). Using Eqs.( 5)
and (6.5- 7) to (6.5-22) we obtain the following relations:

for K0 < < K0, = 0 or | | > KN/2

Cmc = Cmc( , ) = (2 /N)Cmc( , )

=
2

N 4N
L00( , 0)+

N/2 1

=1

L01( , ) sin
2

N
+L02( , ) cos

2

N

Cms = Cms( , ) = (2 /N)Cms( , )

=
2

N 4N
L03( , 0)+

N/2 1

=1

L04( , ) sin
2

N
+L05( , ) cos

2

N

Camc = C
a
mc( , ) = aC

a
mc( , ) = 0

Cams = C
a
ms( , ) = aC

a
ms( , ) = 0 (3 )
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for K0 < | | < KN/2

Cmc = Cmc( , ) = (2 /N)Cmc( , )

=
2

N 2N
L00( , 0)+

N/2 1

=1

L01( , ) sin
2

N
+L02( , ) cos

2

N

Cms = Cms( , ) = (2 /N)Cms( , )

=
2

N 2N
L03( , 0)+

N/2 1

=1

L04( , ) sin
2

N
+L05( , ) cos

2

N

Camc = C
a
mc( , ) = aC

a
mc( , )

=
a

2N
La00( , 0)+

N/2 1

=1

La01( , ) sin
2

N
+La02( , ) cos

2

N

Cams = C
a
ms( , ) = aC

a
ms( , )

=
a

2N
La03( , 0)+

N/2 1

=1

La04( , ) sin
2

N
+La05( , ) cos

2

N
(32)

for K0 < < K0, = 0 or | | > KN/2

Cmc
=

Cmc( , )
=
4N

N/2 1

=1

2

N
L01( , ) cos

2

N
L02( , ) sin

2

N

Cms
=

Cms( , )
=
4N

N/2 1

=1

2

N
L04( , ) cos

2

N
L05( , ) sin

2

N

Camc =
Camc( , ) = 0

Cams =
Cams( , ) = 0 (33)

for K0 < | | < KN/2

Cmc
=

Cmc( , )
=
2N

N/2 1

=1

2

N
L01( , ) cos

2

N
L02( , ) sin

2

N

Cms
=

Cms( , )
=
2N

N/2 1

=1

2

N
L04( , ) cos

2

N
L05( , ) sin

2

N
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Camc =
Camc( , ) =

2N

N/2 1

=1

2

N
La01( , ) cos

2

N
La02( , ) sin

2

N

Cams =
Cams( , ) =

2N

N/2 1

=1

2

N
La04( , ) cos

2

N
La05( , ) sin

2

N

(34)

In order to bring Eq.(26) into a more lucid form we rewrite the first term

Ces
2
= Ces

2
( , ) with the help of Eq.(27) and (28):

for K0 < < K0, = 0 or | | > KN/2

Ces
2
( , )=

2

N

2

4N

2

Ls0
2
( , 0) +

2

N/2 1

=1

[Lss
2
( , ) + Lsc

2
( , )]

N/2 1

=1

[Lss
2
( , ) Lsc

2
( , )] cos

4

N

+ 2Ls0( , 0)

N/2 1

=1

Lss ( , ) sin
2

N
+ Lsc ( , ) cos

2

N

+

N/2 1,=

=1

N/2 1

=1

Lss ( , )L
s
s ( , ) cos

2 ( )

N
cos

2 ( + )

N

+ 2Lss ( , )L
s
c ( , ) sin

2 ( )

N
+ sin

2 ( + )

N

+ Lsc ( , )L
s
c ( , ) cos

2 ( )

N
+ cos

2 ( + )

N

=U1( ) + V1( , ) (35)

for K0 < | | < KN/2

Ces
2
( , )=

2

N

2

2N

2

L20s( , 0) + 2

N/2 1

=1

[L2ss( , ) + L
2
cs( , )]

N/2 1

=1

[L2ss( , ) L2cs( , )] cos
4

N

+ 2L0s( , 0)

N/2 1

=1

Lss( , ) sin
2

N
+ Lcs( , ) cos

2

N
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+

N/2 1,=

=1

N/2 1

=1

Lss( , )Lss( , ) cos
2 ( )

N
cos

2 ( + )

N

+ 2Lss( , )Lcs( , ) sin
2 ( )

N
+ sin

2 ( + )

N

+ Lcs( , )Lcs( , ) cos
2 ( )

N
+ cos

2 ( + )

N

=U1( ) + V1( , ) (36)

Let us return to Eq.(26). The energy U01 of the sum over the first term

Ces
2
( , ) consists of the sum of the constant part U1( ) and the time-variable

part V1( , ):

U01 =
2
ZV 2e0L

2T 3c4
N2

N/2 1,=0

= N/2+1

[U1( ) + V1( , )] (37)

The equations corresponding to Eqs.(35) and (36) for the terms Cec
2
,

( Cec/ )2, . . . , ( Cms/ )2 in Eq.(26) are all listed in Section 6.6. They
yield energies of the form Uj( ) + Vj( , ) as in Eqs.(35) and (36):

U0j =
2
ZV 2e0L

2T 3c4
N2

N/2 1,=0

= N/2+1

[Uj( ) + Vj( , )]

j = , 2, . . . , 2 (38)

There are 52 more terms Caes
2
to ( Camc/ )( Cams/ ) in Eq.(26) that are

multliplied by functions of a and may be written in the form of Eq.(36) too.
We show only the first example:

sin 2N a

2N a
Caes

2
= U13( ) + V13( , ) (39)

With this notation we may expand Eq.(38) from 2 to 64 terms:

U0j =
2
ZV 2e0L

2T 3c4
N2

N/2 1,=0

= N/2+1

[Uj( ) + Vj( , )]

j = , 2, . . . , 64 (40)

The total energy U of Eq.(26) may then be written in the following concentrated
form:
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U = UNc + UNv( ) =
2
ZV 2e0L

2T 3c4
N2

N/2 1,=0

= N/2+1

[UcN( ) + UvN( , )]

UcN( ) =
64

j=1

Uj( ), UvN( , ) =
64

j=1

Vj( , ) (4 )

The constant normalized energy UcN( ) is worked out in detail in Section 6.6.
The normalized variable energy UvN( , ) with time-average zero is not elab-
orated since it is not needed; in case of need one may obtain it in analogy to
Eqs.(35) and (36). Following Eq.(2.3-28) we write UcN( ) in the form

UcN( ) = N
4Uc ( ) =

2(2 )2

N4
[U2cs( ) + U

2
cc( )] (42)

without actually working out U2cs( ) and U
2
cc( ). The non-fluctuating part UNc

of U in Eq.(4 ) becomes:

UNc =
2
ZV 2e0L

2T 3c4
N2

N/2 1,=0

= N/2+1

UcN( )

= ZV 2e0L
2T 3c4

N2

N/2 1,=0

= N/2+1

2

N

2

[U2cs( ) + U
2
cc( )] (43)

The normalized energy Uc = N
4UNc is the Hamilton function H:

H = Uc/ZV
2
e0L

2T 3c4, N = N

=

N/2 1,=0

= N/2+1

H =

N/2 1,=0

= N/2+1

(2 )2[U2cs( ) + U
2
cc( )] (44)

H = (2 )2[U2cs( ) + U
2
cc( )] = N

4UcN( )/2 = Uc ( )/2 (45)

Equations (44) and (45) are equal to Eq.(2.3-39). Our next task is to
rewrite the Hamiltonian formalism of Eqs.(2.3-42) to (2.3-49) with finite dif-
ferences rather than di erentials. We start with Eq.(2.3-42), which remains
unchanged. The following derivation is done in some detail due to its basic
significance:

H = (2 )2 U2cs( ) + U
2
cc( ) sin

2 2 + U2cs( ) + U
2
cc( cos2 2

= (2 )2 [Ucs( ) + iUcc( )] (sin 2 i cos 2 )

× [Ucs( ) iUcc( )] (sin 2 + i cos 2 )

= 2 i p ( )q ( ) (46)
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Using di erence rather than di erential operators we obtain for p ( ) and q ( ):

p ( ) = (2 i )1/2 [Ucs( ) + iUcc( )] sin(2 i cos 2 )

= (2 i )1/2[Ucc( ) iUcs( )]e
2 i (47)

ṗ =
˜p ( )
˜

=
p ( + ) p ( )

2

= (2 i )1/2[Ucc( ) iUcs( )]
2

e2 i ( + ) e2 i ( )

=
i sin 2

(2 i )1/2[Ucc( ) iUcs( )]e
2 i

.
= (2 i )3/2[Ucc( ) iUcs( )]e

2 i , (48)

q ( ) = (2 i )1/2[Ucs( ) iUcc( )](sin 2 + i cos 2 )

= (2 i )1/2[Ucc( ) + iUcs( )]e
2 i (49)

q̇ =
˜q ( )
˜

=
q ( + ) q ( )

2

= (2 i )1/2[Ucc( ) + iUcs( )]
2

e 2 i ( + ) e 2 i ( )

=
i sin 2

(2 i )1/2[Ucc( ) + iUcs( )]e
2 i

.
= (2 i )3/2[Ucc( ) + iUcs( )]e

2 i , (50)

The finite derivatives ˜H / ˜q and ˜H / ˜p equal:

˜H
˜q

=
˜[ 2 i p ( )q ( )]

˜q ( )
= 2 i p ( )

˜q ( )
˜q ( )

= 2 ip ( )
q ( ) + q ( ) [q ( ) q ( )]

2 q ( )

= 2 i p ( ) = (2 i )1/2[Ucc( ) iUcs( )]e
2 i (5 )

˜H
˜p

=
˜[ 2 i p ( )q ( )]

˜p ( )
= 2 i q ( )

˜p ( )
˜p ( )

= 2 i q ( ) = (2 i )3/2[Ucc( ) + iUcs( )]e
2 i (52)

The comparison of Eqs.(5 ) and (52) with Eqs.(48) and (50) yields the following
relations for the components H of the Hamilton function in terms of the
calculus of finite di erences:
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˜H
˜q

=
˜p
˜

= ṗ (53)

˜H
˜p

= +
˜q
˜

= +q̇ (54)

The calculus of finite di erences yields the same result for as the
di erential calculus.

Equation (46) may be rewritten in analogy to Eqs.(2.3-50) and (2.3-5 ).
Since these equations contain no di erentials we obtain no change for Eq.
(2.3-50) for the calculus of finite di erences:

a = [Ucc( ) iUcs( )]e
2 i

a = [Ucc( ) + iUcs( )]e
2 i (55)

Equation (2.3-5 ) is only modified by the change of N to N and the di erent
summation limits:

H =

N/2 1,=0

= N/2+1

H = i

N/2 1,=0

= N/2+1

2 p q =

N/2 1,=0

= N/2+1

(2 )2a a

=

N/2 1,=0

= N/2+1

2

T
b b

b =
2 T

1/2

a , b =
2 T

1/2

a (56)

3.6 Quantization of the Difference Solution

Equation (3.5-56) permits us to follow the standard way of quantization
of Eq.(2.3-5 ) in Section 2.4 following the Schrödinger approach that led to
Eq.(2.4-9). We start by writing di erence operators for the di erential oper-
ators of Eq.(2.4- ). An italic Delta with tilde ˜ is used for operators and a
roman Delta for di erences:

b b+ =
2

˜

˜
, b b =

2
+

˜

˜
( )

The operator ˜/ ˜ applied to a function Ve( , ) follows from Eq.(3. -2)
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˜Ve( , )
˜

=
Ve( + , ) Ve( , )

2
(2)

and can be simplified like Eq.(3. -3) by choosing = :

˜Ve( , )
˜

=
2
[Ve( + , ) Ve( , )], = (3)

The second order di erence quotient of Ve( , ) is defined by Eq.(3. -4).
The product b b+ according to Eq.( ) becomes

b b+ =
2

2 2
2

˜2

˜ 2
(4)

and yields an equation similar to Eq.(2.4-9):

2
2 2

2

˜2

˜ 2
=
E T

2
=

=
E T

2
(5)

The substitution

= , = ,
˜2

˜ 2
= 2

˜2

˜ 2
(6)

produces a di erence equation similar to the di erential equation (2.4- ):

˜2

˜ 2
+ (2 2) = 0 (7)

We can again use the substitution of Eq.(2.4- 2):

= e
2/2 ( ) (8)

The derivation of ˜2 / ˜ 2 for is shown in detail:
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˜2

˜ 2
=
( )2

exp[ ( + )2/2] ( + ) 2 exp( 2/2) ( )

+ exp[ ( )2/2] ( )

= e
2/2

( )2
exp [2 + ( )2]/2 ( + ) 2 ( )

+ exp [ 2 + ( )2]/2 ( )

= e
2/2

( )2 2
( )2 +

2
2( )2 ( + )

2 ( ) + +
2
( )2 +

2
2( )2 ( )

= e
2/2 ( + ) 2 ( )+ ( )

( )2
( + ) ( )

2
( 2)[ ( + ) + ( )]

= e
2/2

˜2 ( )
˜ 2

2
˜ ( )
˜

+ ( 2 ) ( ) (9)

Equation (7) becomes:

˜2 ( )
˜ 2

2
˜ ( )
˜

+ (2 ) ( ) = 0 ( 0)

Written explicitly this equation assumes the form

( + ) 2 ( ) + ( )

( )2
2

( + ) ( )

2

+ (2 ) ( ) = 0 ( )

and the substitution

x = / , = ( 2)

brings:

(x+ ) 2 (x)+ (x ) x[ (x+ ) (x )]+(2 ) ( )=0 ( 3)

For the solution of a di erential equation with variable coe cients, like
Eq.(2.4- 3), one starts with a power series (2.4- 4) and develops a recursion
formula (2.4- 5) for the coe cients of the power series. A similar approach ex-
ists for di erence equations but the power series is replaced by a factorial series
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(of the second kind). Assume that (x) can be represented by the following
series:

(x) = b0+b1
x

!
+b2

(x )(x 2)

2!
+ · · ·+bj (x )(x 2) . . . (x j)

j!
+ . . .

= b0 + b1g1(x) + b2g2(x) + · · ·+ bjgj(x) + . . . ( 4)

Each term gj(x) must satisfy Eq.( 3) independently. In order to obtain Eq.( 3)
for the particular solution (x) = gj(x) we write gj(x), gj(x+ ) and gj(x ):

gj(x) =
j!
(x )(x 2) . . . (x j)

=
j!
(x 2)(x 3) . . . (x j)[x (j + ) + j]

=
j!
{(x 2) . . . [x (j + )] + j(x 2) . . . (x j)} ( 5)

gj(x+ ) =
j!
x(x ) . . . [x (j )] =

j!
(x ) . . . [x (j )](x j+j)

=
j!
{(x ) . . . (x j) + j(x ) . . . [x (j )]}

=
j!
{(x 2) . . . (x j)[x (j + ) + j]

+ j(x 2) . . . [x (j )][x j + (j )]}
=
j!
{(x 2) . . . [x (j + )] + 2j(x 2) . . . (x j)

+ j(j )(x 2) . . . [x (j )]} ( 6)

gj(x ) =
j!
(x 2)(x 3) . . . [x (j + )] ( 7)

Next we write xgj(x+ ) and xgj(x ) for the fourth and fifth term in Eq.( 3):

xgj(x+ ) =
j!
{x(x 2) . . . [x (j + )] + 2jx(x 2) . . . (x j)

+ j(j )x(x 2) . . . [x (j )]}
=
j!
{(x 2) . . . [x (j + )][x (j + 2) + (j + 2)]

+ 2j(x 2) . . . (x j)[(x (j + ) + (j + )]

+ j(j + )(x 2) . . . [x (j )](x j + j)}
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=
j!
{(x 2) . . . [x (j + 2)] + (3j + 2)(x 2) . . . [x (j + )]

+ 3j(j + )(x 2) . . . (x j)

+ j2(j + )(x 2) . . . [x (j )]} ( 8)

xgj(x ) =
j!
x(x 2) . . . [x (j + )]

=
j!
(x 2) . . . [x (j + )][x (j + 2) + (j + 2)]

=
j!
{(x 2) . . . [x (j+2)]+(j+2)(x 2) . . . [x (j+ )]} ( 9)

From Eqs.( 5)—( 7) we get the second order di erence quotient in Eq.( 3) for
gj(x) rather than (x):

gj(x+ ) 2gj(x) + gj(x ) =
(j 2)!

(x 2) . . . [x (j )] (20)

The first order di erence quotient multiplied by x in Eq.( 3) becomes with the
help of Eqs.( 8) and ( 9) for gj(x):

x[gj(x+ ) gj(x )] =
(j )!

{2(x 2) . . . [x (j + )]

+ 3(j + )(x 2) . . . (x j) + j(j + )(x 2) . . . [x (j )]} (2 )

The whole di erence equation ( 3) written for bjgj(x) becomes:

bj{gj(x+ ) 2gj(x) + gj(x ) x[gj(x+ ) gj(x )] + (2 )gj(x)}
=
bj
j!
{ j(j2 + )(x 2) . . . [x (j )]

+ j[2 3(j + )](x 2) . . . (x j)

+ (2 2j)(x 2) . . . [x (j + )]} (22)

We still need to write this equation for bj+1gj+1(x) and bj+2gj+2(x). This
requires replacement of j by j + and j + 2 in Eq.(22):

bj+1{gj+1(x+ ) 2gj+1(x) + gj+1(x ) x[gj+1(x+ ) gj+1(x )]

+ (2 )gj+1(x)}
=

bj+1
(j + )!

{ (j + )[(j + )2 + ](x 2) . . . (x j)

+ (j + )[2 3(j + 2)](x 2) . . . [x (j + )]

+ [2 2(j + )](x 2) . . . [x (j + 2)]} (23)
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bj+2{gj+2(x+ ) 2gj+2(x) + gj+2(x ) x[gj+2(x+ ) gj+2(x )]

+ (2 )gj+2(x)}
=

bj+2
(j + 2)!

{ (j + 2)[(j + 2)2 + ](x 2) . . . [x (j + )]

+ (j + 2)[2 3(j + 3)[(x 2) . . . [x (j + 2)]

+ [2 2(j + 2)](x 2) . . . [x (j + 3)]} (24)

Consider line 4 in Eq.(22), line 4 in Eq.(23) and line 3 in Eq.(24). They all
show terms multiplied by (x 2) . . . [x (j+ )]. If the sum of these three lines
vanishes, each term gj(x ) = ĝj(x) in Eq.( 4) will vanish and the factorial
series of Eq.( 4) will be a solution of the di erence equation ( 3):

j!
(2 2j)bj +

j +

(j + )!
[2 3(j + 2)]bj+1

j + 2

(j + 2)!
[(j + 2)2 + ]bj+2 = 0

bj+2 =
j +

(j + 2)2 +
{(2 2j)bj + [2 3(j + 2)]bj+1} (25)

Let us see whether there are polynomial solutions corresponding to the
Hermite polynomials that satisfy Eq.(2.4- 3). Let bn for 2j = 2n = 2 be
the last coe cient of the polynomial that is unequal to zero:

bn =
n

n2 +
{[2 2(n 2)]bn 2 + (2 + 3n)bn 1} (26)

If we succeed in making bn+1 and bn+2 equal to zero the recursion formula of
Eq.(25) will make bn+3, bn+4, . . . zero too:

bn+1 =
n

(n+ )2 +
{[2 2(n )]bn 1 + [2 3(n+ )]bn} = 0

(27)

bn+2 =
n+

(n+ 2)2 +
{(2 2n)bn + [2 3(n+ 2)]bn+1} = 0

(28)

Equation (28) is satisfied for

2n = 2 , n = 0, , 2, . . . (29)
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since bn+1 is zero due to Eq.(27). To see whether Eq.(27) can be satisfied we
observe that the recursion formula of Eq.(25) is a di erence equation of second
order. If we solve such an equation by the series of Eq.( 4) we can choose two
coe cients. First we choose b0 without specifying its value to leave b0 available
as a normalization constant. The second choice is bn+1 = 0, which is Eq.(27).
Let us show by example how this works. For a reason soon to be evident we
write bn,j rather than bj . First we choose n = 0 and obtain:

n = 0, bn,0 = b0,0, bn,1 = b0,1 = 0

bn,2 = b0,2 =
5
{(2 0)b0,0 + (2 6)b0,1} = 0 for 2 = 0

(30)

This first example is not quite representative. We add a second and third
example:

n = , b1,0, b1,2 = 0

b1,3 =
2

0
{(2 k 2)b1,1 + (2 9)b1,2} = 0 for 2 = 2 (3 )

The missing constant b1,1 follows from Eq.(25) for j = 0 and n = :

b1,2 = 0 =
0
{(2 0)b1,0 + (2 6)b1,1}

b1,1 =
2
b1,0 for 2 = 2 (32)

The third example shows how the coe cients bn,1, bn,2, . . . , bn,n are obtained
in the general case:

n = 2, b2,0, b2,3 = 0

b2,4=
3

7
{(2 4)b2,2+(2 2)b2,3}=0 for 2 = 4 (33)

The two missing constants b2,1 and b2,2 follow from Eq.(25) for j = 0, j =
and 2 = 4:

b2,2=
5
{(4 0)b2,0+(4 6)b2,1}, b2,3=0= 2

0
{(4 2)b2,1+(4 9)b2,2}

b2,1 = b2,0, b2,2 =
2

5
b2,0 (34)
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FIGURE 3.6-1. Plots of the functions gn(x) of Eq.(37). The constants bn,0 are chosen equal
to 1.

For n = 3 and 4 we only state the result:

n = 3, b3,0, b3,4 = 0

b3,1 =
7

5
b3,0, b3,2 =

6

5
b3,0, b3,3 =

2

5
b3,0 (35)

n = 4; b4,0, b4,5 = 0,

b4,1 =
269

54
b4,0, b4,2 =

77

77
b4,0, b4,3 =

26

77
b4,0, b4,4 =

36

77
b4,0 (36)

The resulting polynomials are written with the help of Eq.( 4):

n=0, g0(x)/b0,0=

n= , g1(x)/b1,0= +
2

x

!

n=2, g2(x)/b2,0= +
x

!
+
2

5

(x )(x 2)

2!

n=3, g3(x)/b3,0= +
7

5

x

!
+
6

5

(x )(x 2)

2!
+
2

5

(x )(x 2)(x 3)

3!

n=4, g4(x)/b4,0= +
269

54

x

!
+
77

77

(x )(x 2)

2!
+
26

77

(x )(x 2)(x 3)

3!

+
36

77

(x )(x 2)(x 3)(x 4)

4!
(37)

Figure 3.6- shows plots of the functions gn(x) of Eq.(37). The system of
functions {exp( x2/2)gn(x)} is not orthogonal. But the polynomials gn(x) are
linearly independent. The solution of 0 linear equations with 0 variables will
orthogonalize the first five functions of the system {exp( x2/2)gn(x)}. There
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is also the question of uniqueness for the solutions of Eq.(37). We can only
hope that mathematicians will address these problems. The calculus of finite
di erences is very poorly developed due to the lack of a use that would motivate
mathematicians to elaborate it. The success of the calculus of finite di erences
in quantum electrodynamics would provide such a motivation1.

The substitution of Eq.(29) into Eq.(5) yields energy eigenvalues equal to
those of the di erential theory in Eq.(2.4- 8):

E = E n =
2

T
n+

2
, n = 0, , 2, . . . , N (38)

The comparison of the results obtained in this section with those of Section
2.4 shows the following:

. The eigenvalues = n+ /2 are the same in Eqs.(2.4- 6) and (29).

2. The recursion formula (25) has three terms while the recursion formula of
Eq.(2.4- 5) for the Hermite polynomials has only two terms.

3. The polynomials of Eq.(37) are significantly di erent from those of Eq.
(2.4- 7).

What we have learned is that a di erence equation obtained by rewriting
a di erential equation can yield some results that are equal and others that
are completely di erent. This is in line with Hölder’s theorem published in the
late 9th century (Hölder 887).

3.7 Computer Plots for the Difference Theory

The variable UcN( ) in Eq.(3.5-4 ) represents energy as function of the
period number . Its components Uj( ) are listed for j = to 32 and j = 49
to 56 in Eqs.(6.6- )—(6.6- 5). The terms with other values of j have been
eliminated by the approximation of Eq.(6.6-9). Our goal is to produce plots
of UcN( ) according to Eq.(6.6- 7) in the form of r( ) of Eq.(6.6- 8) which
is normalized to yield the probability fo UcN( ). We explain in some detail
how the computer program is written since it requires more than 00 equa-
tions.

The parameters N , 1 and 2 have to be specified. As a compromise
between precision and computing time we choose N = 00 for the beginning.
The choice 1 = /4 yields according to Eqs.(2.5- ) or (3. - ) for = t:

t( s/ Z) = 1/cZ = /(4× 3 · 08 × 377) = 2.2 · 0 12 [As/Vm] ( )

1Only seven books seem to have been published on the calculus of finite di erences dur-
ing the whole 20th century: Nörlund (1924, 1929), Milne-Thomson (1951), Gelfond (1958),
Levy and Lessmann (1961), Smith (1982), Spiegel (1994). Originally one had to be able to
read heavy mathematics in English, French, German and Russian, but Gelfond’s book was
translated into French and German which eliminated the Russian language requirement.
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TABLE 3.7-
THE 108 CORE EQUATIONS REQUIRED FOR A COMPUTER PROGRAM THAT PRO-
DUCES A PLOT OF UcN( ) ACCORDING TO EQ.(6.6-17) FOR THE INTERVAL K0

| | KN/2.

K0 Eq.(3.2-53) KN/2 Eq.(3.2-55) d ( ) Eq.(6.4-4) a( ) Eq(3.2-60)
D0( ) Eq.(3.3-9) D3( ) Eq.(3.3-15) 05( ) Eq.(3.3-29) 05( ) Eq.(3.3-30)

07( ) Eq.(3.3-33) 07( ) Eq.(3.3-34) 15( ) Eq.(3.3-49) 15( ) Eq.(3.3-50)

17( ) Eq.(3.3-53) 17( ) Eq.(3.3-54) R15( ) Eq.(6.4-15) 50( ) Eq.(6.4-16)

51( ) Eq.(6.4-16) 52( ) Eq.(6.4-16) 53( ) Eq.(6.4-16) 70( ) Eq.(6.4-21)

71( ) Eq.(6.4-21) 72( ) Eq.(6.4-21) 73( ) Eq.(6.4-21) G01( ) Eq.(6.4-48)

G02( ) Eq.(6.4-48) G03( ) Eq.(6.4-48) G04( ) Eq.(6.4-48) J11( , ) Eq.(6.4-66)
J12( , ) Eq.(6.4-67) J13( , ) Eq.(6.4-68) J14( , ) Eq.(6.4-69) J15( , ) Eq.(6.4-70)
J16( , ) Eq.(6.4-71) J17( , ) Eq.(6.4-72) J18( , ) Eq.(6.4-73) J19( , ) Eq.(6.4-74)

J20( , ) Eq.(6-4-75) J21( , ) Eq.(6.4-76) J22( , ) Eq.(6.4-77) La0c( ) Eq.(6.4-79)
Lasc( , ) Eq.(6.4-79) Lacc( , ) Eq.(6.4-79) La0s( ) Eq.(6.4-80) Lass( , ) Eq.(6.4-80)
Lacs( , ) Eq.(6.4-80) L0c( ) Eq.(6.4-81) Lsc( , ) Eq.(6.4-81) Lcc( , ) Eq.(6.4-81)

L0s( ) Eq.(6.4-82) Lss( , ) Eq.(6.4-82) Lcs( , ) Eq.(6.4-82) La00( ) Eq.(6.5-21)
La01( , )Eq.(6.5-21) La02( , )Eq.(6.5-21) La03( ) Eq.(6.5-22) La04( , )Eq.(6.5-22)
La05( , )Eq.(6.5-22) L00( ) Eq.(6.5-19) L01( , )Eq.(6.5-19) L02( , )Eq.(6.5-19)

L03( ) Eq.(6.5-20) L04( , )Eq.(6.5-20) L05( , )Eq.(6.5-20) U1( ) Eq.(6.6-11)
U2( ) Eq.(6.6-11) U3( ) Eq.(6.6-11) U4( ) Eq.(6.6-11) U5( ) Eq.(6.6-11)
U6( ) Eq.(6.6-11) U7( ) Eq.(6.6-11) U8( ) Eq.(6.6-11) U9( ) Eq.(6.6-11)

U10( ) Eq.(6.6-11) U11( ) Eq.(6.6-11) U12( ) Eq.(6.6-11) U13( ) Eq.(6.6-12)
U14( ) Eq.(6.6-12) U15( ) Eq.(6.6-12) U16( ) Eq.(6.6-12) U17( ) Eq.(6.6-12)
U18( ) Eq.(6.6-12) U19( ) Eq.(6.6-13) U20( ) Eq.(6.6-13) U21( ) Eq.(6.6-13)

U22( ) Eq.(6.6-13) U23( ) Eq.(6.6-13) U24( ) Eq.(6.6-13) U25( ) Eq.(6.6-14)
U26( ) Eq.(6.6-14) U27( ) Eq.(6.6-14) U28( ) Eq.(6.6-14) U29( ) Eq.(6.6-14)
U30( ) Eq.(6.6-14) U31( ) Eq.(6.6-14) U32( ) Eq.(6.6-14) U49( ) Eq.(6.6-15)

U50( ) Eq.(6.6-15) U51( ) Eq.(6.6-15) U52( ) Eq.(6.6-15) U53( ) Eq.(6.6-15)
U54( ) Eq.(6.6-15) U55( ) Eq.(6.6-15) U56( ) Eq.(6.6-15) UcN ( ) Eq.(6.6-17)
UcN1( ) Eq.(6.6-17) UcN2( ) Eq.(6.6-17) r1( ) Eq.(6.6-18) r2( ) Eq.(6.6-18)

The further choice 2 = / 0 < 1/2 yields according to Eqs.(2.5-2) or (3. - ):

t s = 2/c = /( 0× 3 · 08) = 3.3 · 0 10 [s/m] (2)

For s we get from Eqs.(2. -49) or (3.4- ):

s1 = 20, s2 = 5 (3)

Whether the choices of Eqs.( )—(3) are physically reasonable or not cannot
be discussed until we have some values for the electric and magnetic dipole
conductivities and s. At this time the choice of 1 = /4 and 2 = / 0 is
primarily motivated by the desire to use numbers that reduce computing times.

We have used consistently the two intervals
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K0 < | | < KN/2, = 0 or | | > KN/2, 0

For N = 00, 1 = /4, 2 = / 0 we obtain from Eqs.(3.2-53) and (3.2-55)
the limits K0 = . 9366 and KN/2 = 48.80633. Since | | is in the interval

| | N/2 = 49 the interval K0 | | KN/2 covers the fraction
47/49 or 96% of the total interval | | 49. This is the important interval
and we compute the functions Uj( ) for this interval.

Table 3.7- gives step by step instructions for the writing of a computer
program. First we write K0 according to Eq.(3.2-53), then KN/2 according to
Eq.(3.2-55), and so on until U56( ) is written according to Eq.(6.6- 5). Then
comes the equation for UcN( ) according to Eq.(6.6- 7) and r( ) of Eq.(6.6- 8).
These are our 08 core equations.

Except for the constants K0, KN/2, ScK1, ScK2 and ScK all entries in Table
3.7- are functions of or and . To check the program we must in principle
make 03 plots from d ( ) to UcN( ). Actually, four less are required due
to the relations 15( ) = 07( ), 15( ) = 07( ), 17( ) = 05( ), and

17( ) = 05( ).
The equations with the one variable are plotted by the following instruc-

tions shown in the programming language Mathematica:

= k, K0 = k0, KN/2 = kN

f1:=Which[ kN<k< k0, #[k], k0<=k<=k0, True, k0<k<kN, #[k]]

p1:=Plot[f1, {k, kN, kN}, PlotRange > All] (4)

The terms d , a, . . . , U56 in their computer representation must be substi-
tuted for #.

The equations with two variables , are displayed by a three-dimensional
plot:

= nu, N = n

f1:=Which[ kN<k< k0, #[k, nu], k0<k<k0, True, k0<k<kN, #[k, nu]]

p1:=Plot3D[f1, {k, n/2+1, n/2 1}, {nu, 1, n/2 1}, PlotRange >All] (5)

Two equations produce the sums UcN1( ) and UcN2( ) representing the
two sums of Eq.(6.6- 7):

Uj( ) = uj[k], UcN1( ) = ucN1[k], UcN2( ) = ucN2[k]

ucN1[k ] :=u1[k] + u2[k] + · · ·+ u32[k] + u49[k] + · · ·+ u56[k]
u1[ k] + u2[ k] + · · ·+ u32[ k] + u49[ k] + · · ·+ u56[ k]

ucN2[k ] :=u1[k] + u2[k] + · · ·+ u24[k]
+u1[ k] + u2[ k] + · · ·+ u24[ k] (6)

A plot of r( ) = UcN( )/ScK according to Eq.(6.6- 8) is produced by two
more equations:
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FIGURE 3.7-1. Point-plot of r( ) according to Eq.(6.6-18) for N = 100, 1 = 1/4, 2 = 1/10,
s = 20, and K0 = 1.19366 for = 2, 3, . . . , 48; ScK = 59516.8.

FIGURE 3.7-2. Point-plot of r( ) according to Eq.(6.6-18) for N = 100, 1 = 1/4, 2=1/10,
s=20, and K0=1.19366 for =2, 3, . . . , 10; ScK = 59516.8.

FIGURE 3.7-3. Semilogarithmic plot of r( ) according to Fig.3.7-1 and Eq.(6.6-18) for N =
100, 1 = 1/4, 2 = 1/10, s = 20, K0 = 1.19366 for = 2, 3, . . . , 50; ScK = 59516.8. The
dashed line representsthe plot of Fig.2.5-3 for = 2, 3, . . . , 48.
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FIGURE 3.7-4. Point-plot of r( ) according to Eq.(6.6-18) for N = 100, 1 = 1/4, 2 = 1/10,
s = 5, and K0 = 1.19366 for = 2, 3, . . . , 48; ScK = 3732.64.

FIGURE 3.7-5. Point-plot of r( ) according to Eq.(6.6-18) for N = 100, 1 = 1/4, 2 = 1/10,
s = 5, and K0 = 1.19366 for = 2, 3, . . . , 10; ScK = 3732.64.

FIGURE 3.7-6. Semilogarithmic plot of r( ) according to Fig.3.7-4 and Eq.(6.6-18) for 1 =
1/4, 2 = 1/10, s = 5, N = 100 and K0 = 1.19366 for = 2, 3, . . . , 48; ScK = 59516.8.
The dashed line represents the plot of Fig.2.5-6 for = 2, 3, . . . , 50.
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FIGURE 3.7-7. Semilogarithmic plot of r( ) according to Eq.(6.6-18) for N = 200, 1 = 1/8,

2 = 1/20, s = 40, K0 = 1.19366 for = 2, 3, . . . , 50; ScK = 7.50154 × 106. The dashed
line represents the plot of Fig.2.5-7 for = 2, 3, . . . , 50.

f01 :=Which[0 <= k < k0, True, k0 <= k <= n/4, r1[k], n/4 < k <= kN,

r2[k], kN < k <= n/2, True]

t01 :=Table[{k, f01[k]}, {k, 0, 50}]
p12 :=ListPlot[t01, Prolog > AbsolutePointSize[5],

AxesOrigin > {0, 0}] (7)

Figure 3.7- shows the plot for r( ) with N = 00, 1 = /4, 2 = / 0,

s = 20. There is a very fast drop close to = 2 and the function is essentially
zero for > 5. This is quite similar to Fig.2.5- .

The range 2 0 of Fig.3.7- is shown expanded in Fig.3.7-2 for the
range = 2, 3, . . . , 0. The drop from = 2 to = 3 and 4 is much faster
than in Fig.2.5-2. The semilogarithmic plot of Fig.3.7-3 gives a much better
representation than Figs.3.7- and 3.7-2.

We had obtained the two values s1 = 20 and s2 = 5 in Eq.(3). Figures
3.7- to 3.7-3 hold for s = 20. In Figs.3.7-4 to 3.7-6 we show the corresponding
plots for s = 5. The plots look identical to those in Figs.3.7- to 3.7-3.

The three semilogarithmic plots of Figs.3.7-3, 3.7-6 and 3.7-7 show that the
dotted plots of the theory of finite di erences drop significantly faster than the
dashed plots of the di erential theory for small values of . But the dotted plots
show strange peaks at = N/4 and = N/2. We note that the largest value
r(2) in Fig.3.7- has the approximate value 0.92 while the peak at = N/4 = 25
in Fig.3.7-3 is somewhat larger than 0 5, which is more than four orders of
magnitude less than 0.92. Our computation is based on Eq.(6.6-9) which has 40
summands and is specifically called “shorter form” of Eq.(3.5-26) which has 64
summands. This simplification was done with the goal of keeping computation
errors to less than the linewidth of a plot with linear scale. The plots of
Figs.3.7- and 3.7-4 show that this goal was indeed achieved. The much more
demanding semilogarithmic plots of Figs.3.7-3, 3.7-6 and 3.7-7 show the error
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introduced by using the approximation of Eq.(6.6-9) instead of Eq.(3.5-26).
The 08 equations of Table 3.7- exceeded the capabilities of the program
Mathematica 2.2 that was originally used and could only be processed by going
to Mathematica 4. . The use of Eq.(3.5-26) instead of Eq.(6.6-9) would increase
the number of core equations in Table 3.7- to more than 75. We did not want
to face this task.

Figures 3.7-8 to 3.7- 2 on the following five pages display 40 plots of
U1( ) = u1[k] to U56( ) = u56[k] of Table 3.7- to show the relative im-
portance of these terms and also to help anyone who wants to write a program
according to Table 3.7- with the tracking of errors in the program.
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FIGURE 3.7-8. Plots of U1( ) = u1[k] to U8( ) = u8[k] according to Eq.(6.6-11) forN = 100,

1 = 1/4, 2 = 1/10, s = 20, and K0 = 1.19366 in the intervals 48 2 and
2 48.
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FIGURE 3.7-9. Plots of U9( ) = u9[k] to U16( ) = u16[k] according to Eqs.(6.6-11) and
(6.6-12) for N = 100, 1 = 1/4, 2 = 1/10, s = 20, and K0 = 1.19366 in the intervals
48 2 and 2 48.



146 3 difference equations for the pure radiation field

FIGURE 3.7-10. Plots of U17( ) = u17[k] to U24( ) = u24[k] according to Eqs.(6.6-12) and
(6.6-13) for N = 100, 1 = 1/4, 2 = 1/10, s = 20, and K0 = 1.19366 in the intervals
48 2 and 2 48.
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FIGURE 3.7-11. Plots of U25( ) = u25[k] to U32( ) = u32[k] according to Eq.(6.6-14) for
N = 100, 1 = 1/4, 2 = 1/10, s = 20, and K0 = 1.19366 in the intervals 48 2
and 2 48.
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FIGURE 3.7-12. Plots of U49( ) = u49[k] to U56( ) = u56[k] according to Eq.(6.6-15) for
N = 100, 1 = 1/4, 2 = 1/10, s = 20, and K0 = 1.19366 in the intervals 48 2
and 2 48.



4 Di erential Equation for the Klein-Gordon Field

4.1 Klein-Gordon Equation With Magnetic Current Density

We begin with a summary of the derivation of the Klein-Gordon equation
using Maxwell’s equations with a term for magnetic (dipole) currents added. A
detailed derivation may be found in Section 5.1 of a book by Harmuth, Barrett
and Me ert (2001). From Eq.(18) on we shall deviate from the old text.

The usual Klein-Gordon equation without allowance for magnetic dipole
currents can be derived from the following Hamilton function:

H = c[(p eAm)
2 +m2

0c
2]1/2 + e e (1)

This equation is rewritten into the following form:

(p eAm)
2 1

c2
(H e e)

2 = m2
0c
2

(px eAmx)
2 + (py eAmy)

2 + (pz eAmz)
2 1

c2
(H e e)

2 = m2
0c
2 (2)

The following substitutions are made:

px
i x

, py
i y

, pz
i z

, H
i t

(3)

Equation (2) assumes the form of the usual Klein-Gordon equation if these
operators are substituted and applied to a function :

3

j=1
i xj

eAmxj

2
1

c2 i t
+ e e

2

= m2
0c
2 (4)

In order to allow for magnetic dipole currents we must generalize Eq.(1)
by the introduction of a Hamilton function with three components Hx, Hy,
Hz. A first order approximation in e of this Hamilton function is given by
Eqs.(1.3-34) to (1.3-36). We write the component Hx once more:

149
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Hx = c[(p eAm)
2 +m2

0c
2]1/2(1 + eQ) + e e Lcx (5)

(Hx e e + Lcx)
2 = c2[(p eAm)

2 +m2
0c
2](1 + eQ)

2 (6)

The terms e and Q are defined in Eq.(1.3-37), the term Lcx in Eq.(1.3-19),
and the potentials Ae, Am, e, m in Eqs.(1.3-7) to (1.3-14).

Since Eqs.(5) and (6) hold only in first order of e we write (1+ eQ)
2 .= 1+

2 eQ. Furthermore, we leave out the term L2cx since it is multiplied according
to Eq.(1.3-19) by

Ze

c

2

= 2
e

m0

Ae

2

(7)

Equation (6) becomes in first order of e:

(p eAm)
2 1

c2
(H e e)

2 + e 2[(p eAm)
2 +m2

0c
2]Q

1

c2
(Hx e e)

Lcx

e
+
Lcx

e
(Hx e e) = m2

0c
2

e =
ZecAe
m0c2

=
Ze

c

Ae
m0

= 2
CAe
e

1 (8)

In order to obtain a solution as an expansion in powers of e we replace
the function in Eq.(4) by the function x:

x = x0 + e x1 (9)

Equation (8) assumes the following form when applied to the function x:

(p eAm)
2 1

c2
(Hx e e)

2 + e 2[(p eAm)
2 +m2

0c
2]Q

1

c2
(Hx e e)

Lcx

e
+
Lcx

e
(Hx e e) ( x0 + e x1)

= m2
0c
2( x0 + e x1) (10)

Since Lcx in Eq.(1.3-19) is in essence multiplied by e according to Eq.(7) we
may separate Eq.(10) into one equation of order O(1) and a second one of order
O( e):

(p eAm)
2 1

c2
(Hx e e)

2 +m2
0c
2

x0 = 0 (11)
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(p eAm)
2 1

c2
(Hx e e)

2 +m2
0c
2

x1 = 2[(p eAm)
2 +m2

0c
2]Q

1

c2
(Hx e e)

Lcx

e
+
Lcx

e
(Hx e e) x0 (12)

Equation (11) is the usual Klein-Gordon equation of Eq.(4) while Eq.(12) is
the same equation with an added inhomogeneous term.

The factor Q in Eq.(12) contains a term [1+(p eAm)
2/m2

0c
2] 3/2 accord-

ing to Eq.(1.3-37). If we want to replace the momentum p by the di erential
operators of Eq.(3) we must explain what the resulting operators mean. One
may multiply Eq.(12) with [1 + (p eAm)

2/m2
0c
2]3/2, accumulate all terms

multiplied with a square root on one side and square both sides of the equation
to resolve the problem. This approach is made more complicated by the terms
Lcx as will soon be seen. A simplification is possible if we restrict the calcula-
tion to su ciently small values of (p eAm)

2/m2
0c
2 1 and use the following

series expansion; the factor k is written instead of 3/2 since the same series
expansion will be needed later on for k = 1/2:

[1 + (p eAm)
2/m2

0c
2]k

.
= 1 + k(p eAm)

2/m2
0c
2 (13)

We still have to explain or eliminate the factor

Q02 =
[Ae · (p eAm)]

2

A2
e(p eAm)2

(14)

of Q in Eq.(1.3-37). This is possible by replacing the vectors Ae and (p eAm)
in Eq.(14) by matrices of rank 3 whose components are vectors:

Ae =
Aexex 0 0
0 Aeyey 0
0 0 Aezez

(15)

p eAm =
(px eAmx)ex 0 0

0 (py eAmy)ey 0
0 0 (pz eAmz)ez

(16)

Substitution of Eqs.(15) and (16) into Eq.(14) yields Q02 = 1.
With Q02 = 1 the term Q of Eq.(1.3-37) is reduced to

Q =
1

m2
0c
2

(p eAm)
2

[1 + (p eAm)2/m2
0c
2]
3/2

(17)

Using Eq.(13) we may eliminate the denominator and bring Q into a form that
permits the substitution of the operators of Eq.(3). A new problem arises.
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Shall we write (p eAm)
2 as the first factor or shall we write 1 + k(p

eAm)
2/m2

0c
2 as the first factor? This is the perennial problem when one wants

to replace commuting factors by non-commuting operators. There is no actual
problem with Eq.(17) since (p eAm)

2 only has to commute with a constant
or with itself. However, the problem will occur again in a non-trivial form. We
must introduce an assumption or a postulate to make the replacement of two
commuting factors by non-commuting factors unique. Any new theory requires
a new assumption. If the assumption is successful it becomes eventually a law
of nature. We shall replace a commuting product ab by

ab
1

2
(ab+ ba) (18)

to make the transition from a commuting product ab to a non-commuting one
unique. Equation (18) has the features of symmetry and simplicity.

From Eqs.(13) and (17) we obtain a unique form for Q if p eAm is
replaced by an operator:

Q
.
= (p eAm)

2 m2
0c
2 3

2
(p eAm)

2 (19)

The potential Ae that comes from the magnetic current density term gm
in the modified Maxwell equations, Eq.(1.1-2), has disappeared from Eq.(19)
due to the relation Q02 = 1. But its influence has not disappeared because
p eAm is now the matrix of Eq.(16) that was forced on us by Ae in order to
obtain a usable form of Q.

A further term needing explanation is Lcx of Eqs.(12) and (1.3-19). We
break it into five components. In order to avoid a long calculation we must
refer to previously derived equations1.

1

e
Lcx1 =

m0

Ae
(Aexẏ Aey ż)ẋ

=
1

Aem0

[Aez(p eAm)y Aey(p eAm)z](p eAm)x

1 + (p eAm)
2
/m2

0c
2

+O( 2
e)

.
=

1

2Aem0
[Aez(p eAm)y Aey(p eAm)z](p eAm)x

× 1
(p eAm)

2

m2
0c
2

+ 1
(p eAm)

2

m2
0c
2

× [Aez(p eAm)y Aey(p eAm)z](p eAm)x (20)

1Harmuth, Barrett, Me ert (2001), Eqs.(3.3-53) to (3.3-57).
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1

e
Lcx2 =

m0

Ae

m

y
ż

m

z
ẏ dx

=
1

Ae

m

y
(p eAm)z

m

z
(p eAm)y

× 1 +
(p eAm)

2

m2
0c
2

1/2

dx

.
=

1

2Ae

m

y
(p eAm)z

m

z
(p eAm)y

× 1
(p eAm)

2

2m2
0c
2

+ 1
(p eAm)

2

2m2
0c
2

× m

y
(p eAm)z

m

z
(p eAm)y dx (21)

1

e
Lcx3 =

m0

Ae
(Aez ÿ Aey z̈)dx

=
1

Ae
Aez

t

(p eAm)y

[1 + (p eAm)2/m2
0c
2]
1/2

Aey
t

(p eAm)z

[1 + (p eAm)2/m2
0c
2]
1/2

dx

.
=

1

2Ae
Aez

t
1

(p eAm)
2

2m2
0c
2

(p eAm)y

+ (p eAm)y 1
(p eAm)

2

2m2
0c
2

Aez
t

1
(p eAm)

2

2m2
0c
2

(p eAm)z

+ (p eAm)z 1
(p eAm)

2

2m2
0c
2

dx (22)

1

e
Lcx4 =

m0c
2

Ae

Aey
z

Aez
y

dx (23)

1

e
Lcx5 =

m0

Ae
ẏ
y
+ ż

z
(Aez ẏ Aey ż)dx

=
1

4Aem0
1

(p eAm)
2

2m2
0c
2

(p eAm)y
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+ (p eAm)y 1
(p eAm)

2

2m2
0c
2 y

+ 1
(p eAm)

2

2m2
0c
2

(p eAm)z

+ (p eAm)z 1
(p eAm)

2

2m2
0c
2 z

× 1
(p eAm)

2

2m2
0c
2

[Aez(p eAm)y Aey(p eAm)z]

+ [Aez(p eAm)y Aey(p eAm)z] 1
(p eAm)

2

2m2
0c
2

dx (24)

We substitute the four operators of Eq.(3) into Eq.(11) but write matrices
according to Eq.(16):

i x
eAmx

2

0 0

0
i y

eAmy

2

0

0 0
i z

eAmz

2

1

c2

i t
+ e e

2

0 0

0
i t

+ e e

2

0

0 0
i t

+ e e

2

+m2
0c
2

1 0 0

0 1 0

0 0 1

x0x 0 0

0 x0y 0

0 0 x0z

= 0 (25)

This is essentially three times Eq.(4) without the summation sign but with the
index j retaining the values j = 1, 2, 3:

i xj
eAmxj

2
1

c2 i t
+ e e

2

+m2
0c
2

x0xj = 0 (26)
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Using the notation of Eq.(26) we may write Eq.(12) with the help of Eq.(19)
for Q. There is no problem of commutability of Q with the factor in front of it
in Eq.(12) and we get for that part of Eq.(12) the following result:

2[(p eAm)
2 +m2

0c
2](p eAm)

2 m2
0c
2 3

2
(p eAm)

2

= 2(p eAm)
2[m2

0c
2 + (p eAm)

2] m2
0c
2 3

2
(p eAm)

2 (27)

Equation (12) becomes:

i xj
eAmxj

2
1

c2 i t
+ e e

2

+m2
0c
2

x1xj

= 2
i xj

eAmxj

2

m2
0c
2 +

i xj
eAmxj

2

× m2
0c
2 3

2 i xj
eAmxj

2

+
1

c2 i t
+ e e (Lcx1j + Lcx2j + Lcx3j + Lcx4j + Lcx5j)

+ (Lcx1j + Lcx2j + Lcx3j + Lcx4j + Lcx5j)
i t

+ e e x0xj (28)

The operators Lcx1j to Lcx5j follow from Eqs.(20)—(24) with the help of Eq.(3)
and the substitution

1

e
Lcxkj Lcxkj , k = 1, 2, 3, 4, 5 (29)

Note that L uses the font Euler Script medium while L uses Euler Fraktur
medium. The matrix Lcx1 has the terms Lcx1j along its main diagonal and
zeroes everywhere else:

Lcx1j =
1

2Aem0
Aez

i y
eAmy Aey

i z
eAmz

×
i x

eAmx 1
1

m2
0c
2 i xj

eAmxj

2

+ 1
1

m2
0c
2 i xj

eAmxj

2

Aez
i y

eAmy

Aey
i z

eAmz
i x

eAmx

j = 1, 2, 3; x1 = x, x2 = y, x3 = z (30)
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For clarification of the notation we observe that the terms

i xj
eAmxj

2

are the terms of a matrix with rank 3 like the first matrix in Eq.(25) with the
terms along the main diagonal varying according to j = 1, 2, 3. On the other
hand, the terms

Aez
i y

eAmy , Aey
i z

eAmz ,
i x

eAmx

form matrices of rank 3 with equal values for all elements in the main diagonal
like the second and third matrix in Eq.(25).

Lcx2j =
1

2Ae

m

y i z
eAmz

m

z i y
eAmy

× 1
1

2m2
0c
2 i xj

eAmxj

2

+ 1
1

2m2
0c
2 i xj

eAmxj

2

× m

y i z
eAmz

m

z i y
eAmy dx (31)

Lcx3j =
1

2Ae
Aez

t
1

1

2m2
0c
2 i xj

eAmxj

2

i y
eAmy

+
i y

eAmy 1
1

2m2
0c
2 i xj

eAmxj

2

Aez
t

1
1

2m2
0c
2 i xj

eAmxj

2

i z
eAmz

+
i z

eAmz 1
1

2m2
0c
2 i xj

eAmxj

2

dx (32)

Lcx4j =
m0c

2

Ae

Aey
z

Aez
y

dx (33)
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Lcx5j =
1

4Aem0
1

1

2m2
0c
2 i xj

eAmxj

2

i y
eAmy

+
i y

eAmy 1
1

2m2
0c
2 i xj

eAmxj

2

y

+ 1
1

2m2
0c
2 i xj

eAmxj

2

i z
eAmz

+
i z

eAmz 1
1

2m2
0c
2 i xj

eAmxj

2

z

× 1
1

2m2
0c
2 i xj

eAmxj

2

× Aex
i y

eAmy Aey
i z

eAmz

+ Aex
i y

eAmy Aey
i z

eAmz

× 1
1

2m2
0c
2 i xj

eAmxj

2

dx (34)

Equations (30) to (34) make all terms in Eq.(28) defined for known values
of the potentials Am, Ae, m, e and the rest mass m0 of a charged particle. A
similar but not unique result has been derived previously (Harmuth, Barrett,
Me ert 2001, Eqs.5.1-37 to 5.1-43). We have now a unique result provided we
accept Eq.(18) as necessary. Only success of the derived equations can prove the
necessity of Eq.(18). At this time it is perfectly possible that another relation
than Eq.(18) yields unique and better results. The complexity of Eqs.(30) to
(34) strongly suggests not to replace Eq.(18) by a more complex relation.

Equation (26) can be solved for certain initial and boundary conditions
just like partial di erential equations for the field strengths E and H or the
potentials Am, Ae, m, e derived from the modified Maxwell equations can be
solved. We note that a vector with three components that are scalars is formally
similar to a matrix of rank 3 with three components in the main diagonal that
are vectors. If the solution is done by Fourier’s method of standing waves we
are led to a quantization procedure as in Section 2.4 for the pure radiation
field.

The solution of Eq.(28) requires a particular solution of the inhomogeneous
equation since the homogeneous equation is the same as in Eq.(26).
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4.2 Step Function excitation

For the pure radiation field we developed Eqs.(2.1-38) and (2.1-39) as so-
lutions for electric excitation while Eqs.(2.1-40) and (2.1-41) hold for magnetic
excitation. The associated potentials were derived for the normalized variables
and in Eqs.(2.1-49) and (2.1-52). Here we have to develop solutions for

Eqs.(4.1-26) and (4.1-28). To simplify the notation we write

xj = y, x0xj = x0y = (1)

The two terms in the squared parentheses in Eq.(4.1-26) are expanded:

i y
eAmy

2

= 2
2

y2
+ 2i eAmy

y
+ e2A2my + i e

Amy
y

(2)

i t
+ e e

2

= 2
2

t2
2i e e

t
+ e2 2

e i e
e

t
(3)

Substitution of these two equations into Eq.(4.1-26) yields:

2

y2
1

c2

2

t2
2i
e
Amy

y
+
1

c2
e
t

e2

2
A2my

e2

c2
2
e + i e

Amy
y

+
1

c2
e

t
+
m2
0c
2

e2
= 0 (4)

The component Amy of the vector potential and the scalar potential e are gen-
erally functions of location and time. This means Eq.(4) is a partial di erential
equation of with variable coe cients. The di erential equation (2.1-43) was
rewritten in Eqs.(3.1-1) to (3.1-5) into a di erence equation. We want to do
the same eventually with Eq.(4). Equation (3.1-5) has constant coe cients but
its solution was quite a challenge. The mathematics of di erence calculus will
need a good deal of further development before we can hope to solve a partial
di erence equation with variable coe cients corresponding to Eq.(4). At this
time we have little choice but to assume that Amy and e can be represented
by a series expansion. We have used the constant e of Eq.(1.3-37) for series
expansions in Eqs.(1.3-34) to (1.3-36) and again in Eq.(4.1-5). Hence, we shall
use it here too in order to make Eq.(4) an equation with constant coe cients:

Am = Am0 + eAm1(r, t), Amxj = Am0xj + eAm1xj (xj , t)

e = e0 + e e1(xj , t), xj = x, y, z; x = x0 + e x1 (5)

With the approximations of first order in e
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(p eAm)
2 .=(p eAm0)

2
ee[Am1 ·(p eAm0)+(p eAm0)·Am1] (6)

(Hx e e)
2 .=(Hx e e0)

2
ee[ e1(Hx e e0) + (Hx e e0) e1] (7)

we obtain the following equation instead of Eq.(4.1-10):

(p eAm0)
2 1

c2
(Hx e e0)

2 + e 2[(p eAm0)
2 +m2

0c
2]Q

1

c2
(Hx e e0)

Lcx

e
+
Lcx

e
(Hx e e0) e[Am1 ·(p eAm0)+(p eAm0)·Am1]

+
e

c2
[ e1(Hx e e0) + (Hx e e0) e1] ( x0 + e x1)

= m2
0c
2( x0 + e x1) (8)

The separation of this equation into two equations of order O(1) and O( e) as
in the case of Eqs.(4.1-11) and (4.1-12) yields:

(p eAm0)
2 1

c2
(Hx e e0)

2 +m2
0c
2

x0 = 0 (9)

(p eAm0)
2 1

c2
(Hx e e0)

2+m2
0c
2

x1= 2[(p eAm0)
2+m2

0c
2]Q

1

c2
(Hx e e0)

Lcx

e
+
Lcx

e
(Hx e e0) e[Am1 · (p eAm0)

+ (p eAm0) ·Am1] +
e

c2
[ e1(Hx e e0) + (Hx e e0) e1] x0 (10)

Equation (9) equals Eq.(4.1-11) if Am and e are replaced by Am0 and e0.
Equation (4) may be simplified with the approximations of Eq.(5):

2

y2
1

c2

2

t2
2i
e
Am0y

y
+
1

c2
e0

t

e2

2
A2m0y

1

c2
2
e0 +

m2
0c
2

e2
= 0, = x0 (11)

From Eq.(10) we obtain a modification of Eq.(4.1-28):
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i xj
eAm0xj

2
1

c2 i t
+ e e0

2

+m2
0c
2

x1xj

= 2
i xj

eAm0xj

2

m2
0c
2 +

i xj
eAm0xj

2

× m2
0c
2 3

2 i xj
eAm0xj

2

+
1

c2 i t
+ e e0 (Lcx1j + Lcx2j + Lcx3j + Lcx4j + Lcx5j)

+ (Lcx1j + Lcx2j + Lcx3j + Lcx4j + Lcx5j)
i t

+ e e0

e Am1xj i xj
eAm0xj +

i xj
eAm0xj Am1xj

e

c2
e1

i t
+ e e0 +

i t
+ e e0 e1 x0xj (12)

The homogeneous part of Eq.(12) is the same as that of Eq.(4.1-28) if Amxj
and e are replaced by Am0xj and e0. Hence, this part is again represented
by Eq.(11). The inhomogeneous part has four terms added to Eq.(4.1-28). We
observe that Am . must be replaced by Am0 . in Eqs.(4.1-30) to (4.1-34) for Lcx1j
to Lcx5j .

Equation (11) as well as the homogeneous part of Eq.(12) are now partial
di erential equations with constant coe cients. Only the inhomogeneous part
of Eq.(12) contains variable components of the potentials Am, Ae, m and e.

We make the transition from the non-normalized variables y, t to the
variables normalized by as in Eq.(2.1-42):

= t/ , = y/c (13)

Substitution into Eq.(11) yields:

2

2

2

2
2i 1 + 3

2
2 = 0

1 =
ec Am0y

, 3 =
e0

cAm0y
, N =

T

2
2=

2
1 1

2
e0

c2A2m0y
+
m2
0c
2

e2A2m0y
=

2

2
(m2

0c
4 e2 2

e0+e
2c2A2m0y)

2
2

2
1 =

2

2
(m2

0c
4 e2 2

e0) > 0 for m0c
2 > e e0

2
1
2
3 +

2
2 =

2

2
(m2

0c
4 + e2c2A2m0y),

2
1
2
3 +

2
2

2
1 =

2m2
0c
4

2
(14)



4.2 step function excitation 161

Equation (14) is similar to Eqs.(2.1-43) and (2.1-46). This suggests ob-
taining a solution of Eq.(14) by means of Fourier’s method of standing waves
that satisfies the causality law and the conservation law of energy. In analogy
to Eq.(2.1-56) we try the ansatz

(0, ) = 0S( ) = 0 for < 0

= 0 for 0 (15)

As in the case of Eq.(2.1-57) there is a problem with a boundary condition
( , ) that has to be resolved later on. The comments following Eq.(2.1-57)

apply again.
For the initial condition at the time = 0 we follow Eq.(2.1-58) and

observe the comments made there:

( , 0) = 0 (16)

If ( , 0) is zero for all values > 0, all its derivatives with respect to
will be zero too:

n ( , 0)/ n = 0 (17)

Equation (14) yields with the help of Eqs.(16) and (17) for = 0 another
initial condition:

( , )
2i 1 3 ( , )

=0

= 0 (18)

This equation is satisfied by Eq.(16) and the additional condition

( , )/ = 0 for = 0 (19)

We assume the general solution of Eq.(14) can be written as the sum of a
steady state solution F ( ) plus a deviation w( , ) from it (Habermann 1987):

( , ) = 0[F ( ) + w( , )] (20)

Substitution of F ( ) into Eq.(14) yields an ordinary di erential equation with
the variable :

d2F/d 2 2i 1dF/d
2
2F = 0 (21)

Its general solution is:

F ( ) = A10 exp{[( 2
2

2
1)
1/2+ i 1] }+A11 exp{[ ( 2

2
2
1)
1/2+ i 1] } (22)
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According to Eq.(14) the di erence 2
2

2
1 will be positive except for extremely

large values of 2
e0. We restrict ourselves to the case

2
2

2
1 > 0. Furthermore,

we want F (0) to be 1. This can be achieved by choosing A11 = 1 and A10 = 0.
Hence we obtain for F ( ):

2
2

2
1 > 0, F (0) = 1, A10 = 0, A11 = 1

F ( ) = exp[ ( 2
2

2
1)
1/2 ]ei 1 (23)

Substitution of Eq.(20) into the boundary condition of Eq.(15) yields the
boundary condition for w(0, ):

(0, ) = 0[F (0) + w(0, )] = 0 for 0

w(0, ) = 0 for 0 (24)

We have achieved the homogeneous boundary condition w(0, ) = 0. The choice
of A10 and A11 in Eq.(23) is justified. There are other choices for A10 and A11
that also yield w(0, ) = 0 but this would simply mean that both F ( ) and
w( , ) in Eq.(20) are modified so that their sum remains unchanged. Only the
sum is of interest.

Let us turn to the initial conditions of Eqs.(16) and (19). We obtain an
equation for w( , 0):

F ( ) + w( , 0) = 0, w( , 0) = F ( ) (25)

w( , )/ = 0 for = 0, > 0 (26)

Substitution of Eq.(20) into Eq.(14) yields for w( , ) the same equation
as for , but we have now the homogeneous boundary condition of Eq.(24) for
w( , ):

2w
2

2w
2

2i 1
w
+ 3

w 2
2w = 0 (27)

Separation of the variables yields particular solutions of this equation which
we denote w ( , ):

w ( , ) = ( ) ( ) (28)

1 2

2
2i 1 =

1 2

2
+ 2i 1 3 + 2

2 = (2 /N )2 + 2
1

N 1, = 1, 2, . . . (29)
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As in Eq.(2.1-72) we write (2 /N )2 rather than the usual (2 )2 as sep-
aration constant in order to obtain later on an orthogonality interval of length
N rather than 1. The reason for the additional constant 2

1 will be seen
presently. Two ordinary di erential equations are obtained:

d2 /d 2 2i 1d /d + [(2 /N )2 2
1] = 0 (30)

d2 /d 2 + 2i 1 3d /d + (2 /N )2 2
1 +

2
2 = 0 (31)

The solutions are:

( ) = ei 1 (A20e
2 i /N +A21e

2 i /N ) (32)

( ) = A30e
i( 1 3+ ) +A31e

i( 1 3 )

= (2 /N )2 + 2
1
2
3 +

2
2

2
1
1/2

= (2 /N )2 +m2
0c
4 2/ 2 1/2

= real (33)

The boundary condition w(0, ) = 0 in Eq.(24) requires in Eq.(32) the
relation

A21 = A20

( ) = 2iA20e
i 1 sin(2 /N ) (34)

and the particular solution w ( , ) assumes the following form:

w ( , ) = A1 exp[ i( 1 3 + ) ] +A2 exp[ i( 1 3 ) ]

× ei 1 sin(2 /N ) (35)

The usual way to generalize Eq.(35) is to make A1 and A2 functions of
and integrate over all values of . We deviate and follow the text between

Eqs.(2.1-78) and (2.1-79) in Section 2.1. Our finite time and space intervals
are chosen to be 0 t T and 0 y cT , where T is arbitrarily large but
finite. The variables and cover the intervals

0 = t/ T/ , 0 = y/c T/ , T/ = N 1 (36)

Instead of the Fourier sum of Eq.(2.1-81) we get the following sum if the upper
summation limit is replaced by = N according to Eq.(2.2-5):
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w( , ) =

N

=1

{A1( ) exp[ i( 1 3 + ) ] +A2( ) exp[ i( 1 3 ) ]}

× ei 1 sin(2 /N ) (37)

The derivative of w( , ) with respect to will be needed:

w
=

N

=1

i A1( )( 1 3 + ) exp[ i( 1 3 + ) ]

+A2( )( 1 3 ) exp[ i( 1 3 ) ] ei 1 sin(2 /N ) (38)

With the help of Eqs.(25) and (26) we get from Eqs.(37) and (38) two equations
for the determination of A1( ) and A2( ):

w( , 0) =

N

=1

[A1( ) +A2( )]e
i 1 sin(2 /N ) = F ( ) (39)

w( , 0)
=

N

=1

i[A1( )( 1 3 + ) +A2( )( 1 3 )]

× ei 1 sin(2 /N ) = 0 (40)

In analogy to the solution of Eqs.(2.2-2) and (2.2-3) we use the Fourier
series expansion of Eq.(2.2-4). The factors i and ei 1 can be moved in front
of the summation sign since they do not contain :

N

=1

[A1( ) +A2( )] sin(2 /N )

= F ( )e i 1 = exp[ ( 2
2

2
1)
1/2 ] (41)

N

=1

[A1( )( 1 3 + ) +A2( )( 1 3 )] sin(2 /N ) = 0 (42)

Multiplication of Eqs.(41) and (42) with sin 2 j /N followed by integration
over the orthogonality interval 0 < < N yields:
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A1( ) +A2( ) =
2

N

N

0

F ( )e i 1 sin
2

N
d = IT( /N ) (43)

IT( /N ) =
2

N

N

0

exp[ ( 2
2

2
1)
1/2 ] sin

2

N
d

=
2

N

(2 /N ){1 exp[ ( 2
2

2
1)
1/2N ]}

2
2

2
1 + (2 /N )2

(44)

A1( )( 1 3 + ) +A2( )( 1 3 ) = 0 (45)

Equation (43) and (45) are solved for A1( ) and A2( ):

A1( ) = +IT( /N )
1 3

2
(46)

A2( ) = IT( /N )
1 3 +

2
(47)

Substitution of A1( ) and A2( ) brings Eq.(37) into the following form:

w( , ) =

N

=1

IT( /N )

2
( 1 3 )e i ( 1 3 + )ei

× ei 1( 3 ) sin
2

N
(48)

4.3 Exponential Ramp Function Excitation

The step function excitation of Eq.(4.2-15) is replaced by an exponential
ramp function excitation in order to produce a linear variation of the excitation
at = 0:

(0, ) = 1S( )(1 e ) = 0 for < 0

= 1(1 e ) for 0 (1)

The initial conditions are the same as in Eqs.(4.2-16), (4.2-17) and (4.2-19):
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( , 0) = 0 (2)

( , 0)/ = 0 (3)

( , )/ = 0 for = 0, 0 (4)

Instead of Eq.(4.2-20) we use the following ansatz to solve Eq.(4.2-14):

( , ) = 1[(1 e )F ( ) + u( , )] (5)

Substitution of 1(1 e )F ( ) into Eq.(4.2-14) yields the following result:

(1 e )
2F
2
+ 2e F 2i 1 (1 e )

F
+ 3 e F

2(1 e )F = 0 (6)

This equation will vanish if the terms with di erent functions of vanish sepa-
rately. We obtain one ordinary di erential equation and one algebraic equation:

d2F/d 2 2i 1dF/d
2
2F = 0 (7)

2 2i 1 3 = 0 (8)

Equation (8) has a non-trivial solution:

= 2i 1 3 (9)

Equation (7) equals Eq.(4.2-21). We use again the solution of Eq.(4.2-23):

F ( ) = exp[ ( 2
2

2
1)
1/2 ]ei 1 (10)

Equation (5) must satisfy the boundary condition of Eq.(1). Since Eq.(10)
yields F (0) = 1 we get:

1[1 e + u(0, )] = 1(1 e ), 0

u(0, ) = 0 (11)

We have again a homogeneous boundary condition for u(0, ). The initial
conditions of Eqs.(2) and (4) yield with F (0) = 1:

( , 0) = 1u( , 0) = 0 (12)

e F ( ) + u/ = 0, u/ = F ( ) for = 0, 0 (13)
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The calculation of u( , ) proceeds like that of w( , ) in Section 4.2 until
Eqs.(4.2-37) and (4.2-38) are reached. We replace w( , ) by u( , ) in these
two equations:

u( , ) =

N

=1

A1( ) exp[ i( 1 3 + ) ] +A2( ) exp[ i( 1 3 ) ]

× ei 1 sin(2 /N ) (14)

u( , )
=

N

=1

i A1( )( 1 3 + ) exp[ i( 1 3 + ) ]

+A2( )( 1 3 ) exp[ i( 1 3 ) ] ei 1 sin(2 /N ) (15)

The substitution of u( , 0) and u/ of Eqs.(12) and (13) yields equations for
the determination of A1( ) and A2( ). The factor e

i 1 in Eq.(15) is moved to
the right side since it does not depend on :

u( , 0) =

N

=1

[A1( ) +A2( )] sin(2 /N ) = 0 (16)

u( , = 0)
=

N

=1

i[A1( )( 1 3 + ) +A2( )( 1 3 )] sin(2 /N )

= F ( )e i 1 = 2i 1 3F ( )e
i 1 (17)

Using once more the Fourier series expansion we obtain from Eqs.(16) and (17):

A1( ) +A2( ) = 0 (18)

A1( )( 1 3 + ) +A2( )( 1 3 ) =
4 1 3

N

N

0

F ( )e i 1 sin
2

N
d

= 2 1 3IT( /N ) (19)

Equations (18) and (19) are solved for A1( ) and A2( ):

A1( ) = A2( ) =
1 3IT( /N )

(20)

Substitution of A1( ) and A2( ) brings Eq.(14) into the following form:
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u( , ) = 2i

N

=1

1 3
IT( /N ) sin e i 1 3 ei 1 sin(2 /N ) (21)

Substitution of Eqs.(21) and (10) into Eq.(5) brings the result:

( , ) = 1 (1 e 2i 1 3 )ei 1 exp[ ( 2
2

2
1)
1/2 ]

2i

N

=1

1 3
IT( /N ) sin e i 1 3 ei 1 sin(2 /N ) (22)

In order to see how ( , ) rises at = 0 we use the approximations

e 2i 1 3
.
= 1 2i 1 3 , e

i 1 3
.
= 1 i 1 3 , sin

.
= (23)

and obtain in first order of :

( , )
.
= 2i 1 1 3 e

i 1 exp[ ( 2
2

2
1)
1/2 ]

N

=1

IT( /N ) sin(2 /N ) (24)

Hence, ( , ) rises proportionate to from = 0. The imaginary unit i is of
no consequence since the factor 1 can still be chosen.

4.4 Hamilton Function and Quantization

The Klein-Gordon equation defines a wave. Its energy density is given by
the term T00 of the energy-impulse tensor

1:

T00 =
1

c2 t t
+ · +

m2
0c
2

2
(1)

The dimension of T00 is J/m
3 and the dimension of must thus be J/m or

VAs/m in electromagnetic units for the energy. In the case of Eq.(4.2-4) for a
planar wave propagating in the direction y we have = / y.

The Fourier series expansion of Eq.(4.2-37) permits an arbitrarily large
but finite time T and a corresponding spatial distance cT in the direction of
y, using the intervals 0 t T and 0 y cT . In the directions x and z

1Berestezki, Lifschitz, Pitajewski 1970, 1982; § 10, Eq.10.13.
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we have not specified any intervals. We shall follow Eq.(2.3-1) and make them
L/2 x L/2, L/2 z L/2, with L = cT . The Klein-Gordon wave has

the energy U in this interval:

U =

L/2

L/2

L/2

L/2

cT

0

1

c2 t t
+

y y
+
m2
0c
2

2
dy dx dz (2)

Since the dimension of is VAs/m one obtains for U the dimension VAs.
We turn to the normalized variables according to Eq.(4.2-13)

t t/ = , y y/c = , x x/c , z z/c (3)

and rewrite U in the form of Eq.(2.3-15):

U = c

L/2c

L/2c

L/2c

L/2c

N

0

+ +
m2
0c
4 2

2
d

× d x

c
d

z

c

=
L2

c

N

0

+ +
m2
0c
4 2

2
d (4)

We use ( , ) of Eqs.(4.3-5) and (4.3-22) to produce the product . The
constant 2

1 has the dimension VAs/m:

= 2
1 (1 e2i 1 3 )F ( ) + u ( , ) (1 e 2i 1 3 )F ( ) + u( , )

= 2 2
1 (1 cos 2 1 3 ) exp[ 2(

2
2

2
1)
1/2 ]

2(1 cos 2 1 3 ) 1 3 sin 1 3

×
N

=1

IT( /N )
sin exp[ ( 2

2
2
1)
1/2 ] sin(2 /N )

+ 2

N

=1

1 3IT( /N )
sin sin

2

N

2

1, 2, 3 Eq.(4.2-14), Eq.(4.2-33), IT( /N ) Eq.(4.2-44) (5)

Di erentiation of ( , ) of Eq.(4.3-22) with respect to or yields:



170 4 differential equation for the klein-gordon field

= 1 2i 1 3e
2i 1 3 ei 1 exp[ ( 2

2
2
1)
1/2 ] +

u

u
= 2ei 1( 3 )

N

=1

1 3IT( /N )

× ( 1 3 sin + i cos ) sin
2

N
(6)

= 1 [ ( 2
2

2
1)
1/2 + i 1](1 e 2i 1 3 )ei 1

× exp[ ( 2
2

2
1)
1/2 ] +

u

u
= 2ei 1( 3 )

N

=1

1 3IT( /N )
sin

× 1 sin
2

N

2 i

N
cos

2

N
(7)

The first term in Eq.(4) becomes:

= 2
1 2i 1 3e

2i 1 3 e i 1 exp[ ( 2
2

2
1)
1/2 ] +

u

× 2i 1 3e
2i 1 3 ei 1 exp[ ( 2

2
2
1)
1/2 ] +

u

= 4 2
1
2
3

2
1 exp[ 2( 2

2
2
1)
1/2 ]

2

N

=1

IT( /N ) cos cos 1 3

+
1
sin sin 1 3 exp[ ( 2

2
2
1)
1/2 ] sin

2

N

+

N

=1

1 3IT( /N )
sin sin

2

N

2

+

N

=1

IT( /N ) cos sin
2

N

2

(8)

For the second term in Eq.(4) we obtain:
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= 2
1 [ ( 2

2
2
1)
1/2 i 1](1 e2i 1 3 )e i 1

× exp[ ( 2
2

2
1)
1/2 ] +

u

× [ ( 2
2

2
1)
1/2 + i 1](1 e 2i 1 3 )ei 1

× exp[ ( 2
2

2
1)
1/2 ] +

u

= 2 2
1

2
2(1 cos 2 1 3 ) exp[ 2(

2
2

2
1)
1/2 ]

4 sin 1 3 exp[ ( 2
2

2
1)
1/2 ]

N

=1

1 3IT( /N )
sin

× 2
1 sin

2

N

2 ( 2
2

2
1)
1/2

N
cos

2

N

+ 2

N

=1

2
1 3IT( /N )

sin sin
2

N

2

+ 2

N

=1

2 1 3IT( /N )

N
sin cos

2

N

2

(9)

Equations (8), (9), and (5) have to be substituted into Eq.(4). The inte-
gration with respect to is straight forward but lengthy. The calculations may
be found in Section 6.7. The energy U of Eq.(4) is separated into a constant
part Uc and a time-variable part Uv( ) that depends on sinusoidal functions of
and has the time-average zero:

U = Uc + Uv( ) (10)

For Uc we copy the three components of Eqs.(6.7-16), (6.7-20), and (6.7-12).
The factor 2

1 has the dimension J/m=VAs/m:

Uc = Uc2 + Uc3 + Uc1

=
L2

c
2
1N 2 2

1
2
3 +

2
2 +

m2
0c
2

2

1 exp[ 2( 2
2

2
1)
1/2N ]

( 2
2

2
1)
1/2
N

+ 2
1
2
3

N

=1

I2T( /N )
2

1 + 2
1
2
3 +

2
1 +

2

N

2

+
m2
0c
4 2

2
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.
=
L2

c
2
1N

2
1
2
3

N

=1

I2T( /N )
2

× 2 + 2
1
2
3 +

2
1 +

2

N

2

+
m2
0c
4 2

2
, for N 1

IT( /N ) Eq.(4.2-44); 1, 2, 3 Eq.(4.2-14); Eqs.(4.2-33) (11)

For the time-variable energy Uv( ) we obtain from Eqs.(6.7-17), (6.7-21) and
(6.7-13) a very complicated expression that is greatly simplified for N 1.
We write it only for this case:

Uv( ) = Uv2( ) + Uv3( ) + Uv1( )

=
L2

c
2
1N

2
1
2
3

N

=1

I2T( /N )
2

× 2 2
1
2
3

2
1

2

N

2
m2
0c
4 2

2
cos 2 , for N 1 (12)

For the derivation of the Hamilton functionH we need the constant energy
Uc only since the average of the variable energy Uv( ) is zero. We normalize
Uc in Eq.(11):

c Uc
L2 2

1N
=

cT Uc
L2 2

1TN
=
cTUc
L2 2

1

1

N2
=
H

N2
(13)

cTUc
L2 2

1

= H = N2 2
1
2
3

N

=1

I2T( /N )
2

2+ 2
1
2
3+

2
1+

2

N

2

+
m2
0c
4 2

2

H =

N

=1

H =

N

=1

d2( )

d( ) = N 1 3
IT( /N ) 2+ 2

1
2
3+

2
1+

2

N

2

+
m2
0c
4 2

2

1/2

(14)

The component H of the sum is rewritten as in Eq.(2.3-42):

H = (2 )2
d( )

2
(sin 2 i cos 2 )

d( )

2
(sin 2 + i cos 2 )

= 2 i p ( )q ( ) (15)
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p ( ) = 2 i
d( )

2
e2 i (16)

ṗ =
p
= (2 i )3/2

d( )

2
e2 i = 2 i p ( ) (17)

q ( ) = 2 i
d( )

2
e 2 i (18)

q̇ =
q
= (2 i )3/2

d( )

2
e 2 i = 2 i q ( ) (19)

The derivatives of H with respect to q and p produce the proper relations
for the components H of the Hamilton function of Eq.(15):

H

q
= 2 i p = ṗ (20)

H

p
= 2 i q = +q̇ (21)

Equation (14) may be rewritten into the form of Eq.(2.3-51) by means of
the following definitions that replace Eqs.(2.3-50)

a =
d( )

2
e2 i , a =

d( )

2
e 2 i (22)

and we obtain:

H = i

N

=1

2 p ( )q ( ) =

N

=1

(2 )2a a =

N

=1

2

T
b b =

N

=1

H (23)

b =
2 T

1/2

a , b =
2 T

a , T = N (24)

For the quantization we follow Section 2.4 and the conventional procedure
for quantization. Using the Schrödinger approach we obtain in analogy to
Eqs.(2.4-9) and (2.4-18):

(b+b ) =
1

2
2 2 1

2

d2

d 2
=
H T

2
=
E T

2
=

E = E n =
2

T
n+

1

2
, n = 0, 1, 2, . . . , N (25)
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The upper limit N for n was discussed in connection with Eq.(2.4-18). Again,
there is no need for renormalization.

The energies E n in Eqs.(2.4-18) and (25) are the same since the photons
of a pure EM wave are the same as that of an EM wave interacting with bosons.
What di ers is the fraction of photons with a certain energy Uc ( ) in Section
2.3 or with energy Uc ( ) derived from Eq.(11):

Uc ( ) =
L2 2

1

cT
N2 2

1
2
3

I2T( /N )
2

2+ 2
1
2
3+

2
1+

2

N

2

+
m2
0c
4 2

2
(26)

The term m2
0c
4/ 2 shows that one must get results di erent from those of the

pure radiation field since a mass m0 does not occur in the equations of a pure
radiation field.

4.5 Plots for the Differential Theory

The energy Uc ( ) as function of the period number is defined by Eq.
(4.4-26) with from Eq.(4.2-33), IT( /N ) from Eq.(4.2-44) and 2

1,
2
2,

2
3

from Eq.(4.2-14):

Uc ( ) =
L2 2

1

cT
N2 2

1
2
3

I2T( /N )
2

2 + 2
1
2
3 +

2
1 +

2

N

2

+
m2
0c
4 2

2

= (2 /N )2 +m2
0c
4 2/ 2 1/2

IT( /N ) =
2

N

(2 /N ){1 exp[ ( 2
2

2
1)
1/2N ]}

2
2

2
1 + (2 /N )2

2
2

2
1 =

2(m2
0c
4 e2 2

e0)/
2, 2

1 = e
2c2 2A2m0y/

2

2
1
2
3 = e

2 2 2
e0/

2, N = T/ (1)

From Eq.(4.4-25) we get the energy of a photon with period number and a
certain value of n:

E n =
2

T
n+

1

2
, n = 0 . . . N (2)

The average value of E n for all N + 1 values of n becomes:

E =
2

T

1

N + 1

N

n=0

n+
1

2
=
1

2
(N + 1)

2

T
.
=
1

2
N
2

T
(3)

For a specific value of n the energy Uc ( ) requires the number Uc ( )/E n of
photons:
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FIGURE 4.5-1. Plot of p( ) according to Eq.(14) for N = 100. The variable is treated as
a continuous variable.

Uc ( )

E n
= Crnr( )

r( ) =
I2T( /N )

2

1

2
2 + 2

1
2
3 +

2
1 +

2

N

2

+
m2
0c
4 2

2

Crn =
L2 2

1N
2 2
1
2
3

c
n+

1

2

1

(4)

If photons with various values of n are equally frequent we obtain the following
relation instead of Eq.(4):

Uc ( )

E
= Crr( )

Cr =
2L2 2

1N
2
1
2
3

c
(5)

The total number of photons is the sum over of Eqs.(4) or (5):

srn =

N

=1

Uc ( )

E n
= Crn

N

=1

r( ) (6)

sr =

N

=1

Uc ( )

E
= Cr

N

=1

r( ) (7)

The probability p( ) of a photon with period number is the same for Eqs.(4)
and (5) since the constants Crn and Cr drop out:
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FIGURE 4.5-2. Plot of p( ) for = 1, 2, 3, 4, 5 according to Eq.(14) for N = 100.

FIGURE 4.5-3. Plot of p( ) for = 5, 6, . . . , 50 according to Eq.(14) for N = 100. The
vertical scale is enlarged by almost a factor of 100 compared with Figs.4.5-1 and 4.5-2. The
points for = 1, 2, 3, 4 are outside the plotting range.

FIGURE 4.5-4. Plot of p( ) for = 10, 11, . . . , 50 according to Eq.(14) for N = 100. The
vertical scale is enlarged by a factor of 10 compared with Fig.4.5-3. The points for = 1, 2,
. . . , 9 are outside the plotting range.
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FIGURE 4.5-5. Plot of p( ) for = 1, 2, 3, 4, 5 according to Eq.(14) for N = 50. The plot
di ers from Fig.4.5-2 but the di erence is not visible without magnification.

FIGURE 4.5-6. Plot of p( ) for = 5, 6, . . . , 49 according to Eq.(14) for N = 50. The
vertical scale is enlarged by almost a factor of 100 compared with Fig.4.5-5. The values of
p( ) for = 1, 2, 3, 4 are outside the plotting range.

FIGURE 4.5-7. Plot of p( ) for = 10, 11, . . . , 49 according to Eq.(14) for N = 50. The
vertical scale is enlarged by a factor of 10 compared with Fig.4.5-6 and the points for = 1,
2, . . . , 9 are outside the plotting range.
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p( ) =
r( )
N
=1 r( )

(8)

Various simplifications can be made for the computation of r( ) and p( ).
We develop a few approximations for 1:

.
= 2 /N for

2

N m0c2
<

h

m0c2
(9)

( 2
1

2
2)
1/2N = N (m2

0c
4 e2 2

e0)
1/2/ 1

for T
(m2

0c
4 e2 2

e0)
1/2

.
=
1

2

h

m0c2
(10)

IT( /N )
.
=

1
(11)

r( )
.
=

1
3

(12)

N

=1

1
3

=
1
3

N

=1

1
3

.
=
1.20205

3
, N 1 (13)

p( ) =
1

3 3

1.20205
=

1

1.20205 3
(14)

We note that Eq.(9) states that can be arbitrarily small but finite while
Eq.(10) states that T can be arbitrarily large but finite. These are two assump-
tions introduced in Section 2.1 from Eqs.(2.1-79) to (2.1-83). The Compton
period h/m0c

2 equals 2.96241× 10 23 s for the pions + and .
The results of Chapter 4 may now be represented by a number of plots.

Figure 4.5-1 shows p( ) according to Eq.(14) for N = 100. This plot treats
as a continuous variable.

A better representation is used in Fig.4.5-2 that shows p( ) only for = 1,
2, 3, 4, 5 but not for continuous values of in the same range.

Figure 4.5-3 extends the discrete representation of p( ) to the range = 5,
6, . . . , 50. The vertical scale is enlarged by almost a factor 100 compared with
Figs.4.5-1 and 4.5-2. This larger scale puts p(1) to p(4) outside the plotting
range.

A further enlargement of the vertical scale by a factor 10 is shown in
Fig.4.5-4. The probabilities p(1) to p(9) are now outside the plotting range.
The need for the enlargements of the vertical scale in Figs.4.5-3 and 4.5-4 will
be explained in Section 5.5.

Figures 4.5-5, 4.5-6 and 4.5-7 are almost a repetition of Figs.4.5-2, 4.5-3
and 4.5-4, but the parameter N = 100 has been replaced by N = 50 and only
the probabilities p( ) for = 1, 2, . . . , 49 are plotted. There is a di erence
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between Figs.4.5-2 to 4.5-4 and Figs.4.5-5 to 4.5-7, but it is too small to be
recognizable without magnification. The main reason for showing the plots for
N = 50 will be explained in Section 5.5. Here, we only note that the finer
resolution of the plots with N = 100 compared with the plots for N = 50 has
a minimal e ect.



5 Di erence Equation for the Klein-Gordon Field

5.1 Klein-Gordon Difference Equation

For the derivation of the Klein-Gordon di erence equation we start from
Eq.(4. -2):

(p eAm)
2

c2
(H e e)

2 = m2
0c
2

(px eAmx)
2 + (py eAmy)

2 + (pz eAmz)
2

c2
(H e e)

2 = m2
0c
2 ( )

Instead of the di erential operators of Eq.(4. -3) we use di erence operators.
Since the transition from first to second order di erence operators is not as sim-
ple as in the case of di erential operators we must define them both according
to Eqs.(3. -2) to (3. -4):

pxj i

˜

˜xj
=
i

(xj + xj) (xj xj)

2 xj
(2)

H
i

˜

˜t
=

i

(t+ t) (t t)

2 t
(3)

p2xj
2
˜2

˜x2j
= 2 (xj + xj) 2 (xj) + (xj xj)

( xj)2
(4)

H2 2
˜2

˜t2
= 2 (t+ t) 2 (t) + (t t)

( t)2
(5)

For the normalized variables

= t/ t, j = xj/c t, N = T/ t (6)

we follow the simplified notation of Eqs.(3. -3) and (3. -4):

180
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i

˜

˜
j

=
2i
[ ( j + ) ( j )] (7)

i

˜

˜
=

2i
[ ( + ) ( )] (8)

2
˜2

˜ 2
j

= 2[ ( j + ) 2 ( j) + ( j )] (9)

2
˜2

˜ 2
= 2[ ( + ) 2 ( ) + ( )] ( 0)

These definitions su ce to rewrite all equations in Section 4. from Eq.(4. -
3) to Eq.(4. -20). From Eq.(4. -2 ) on we encounter integrations in addition
to di erentiations. To remain consistent we have no choice but to substitute
summations for integrations as shown in Table 6.2- :

(x)dx =

x

( )d

x

( + ) ( )

There are now enough substitutions to be able to rewrite all of Section 4. in
terms of the calculus of finite di erences. We may write the matrix equation
(4. -25) by substituting ˜/ ˜x for / x to ˜/ ˜t for / t, but must observe
that the squares ˜2/ ˜x2 to ˜2/ ˜t2 are replaced according to Eqs.(4) and (5).
Instead of doing this rewriting we go directly to Section 4.2 and reduce the
number of spatial variables to one as in Eq.(4.2- ):

xj = y, x0xj = x0y = ( 2)

Next we rewrite Eq.(4.2-2) for finite di erences y and t. To simplify the
notation we do not write a variable that is not being changed, e.g, we write
(y + y) (y y) rather than (y + y, t) (y y, t):

i y
eAmy

2

i

˜

˜y
eAmy

2

= 2
˜2

˜y2
+ 2i eAmy

˜

˜y
+ e2A2my + i e

˜Amy
˜y

= 2 (y+ y) 2 (y)+ (y y)

( y)2
+2i eAmy

(y+ y) (y y)

2 y

+ e2A2my + i
Amy(y + y) Amy(y y)

2 y
( 3)

Equation (4.2-3) is also rewritten:
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i t
+ e e

2

i

˜

˜t
+ e e

2

= 2
˜2

˜t2
2i e e

˜

˜t
+ e2 2

e i e
˜

e

˜t

= 2 (t+ t) 2 (t)+ (t t)

( t)2
2i e e

(t+ t) (t t)

2 t

+ e2 2
e i e

e(t+ t) e(t t)

2 t
( 4)

Substitution of these two equations into Eq.(4. -26) yields a di erence
equation instead of the di erential equation (4.2-4). We write here both vari-
ables y and t of , Amy and e:

(y + y, t) 2 (y, t) + (y y, t)

( y)2

c2
(y, t+ t) 2 (y, t) + (y, t t)

( t)2

2i
e
Amy(y, t)

(y + y, t) (y y, t)

2 y

+
c2

e(y, t)
(y, t+ t) (y, t t)

2 t

e2

2
A2my(y, t) c2

2
e(y, t) + i e

Amy(y + y, t) Amy(y y, t)

2 y

+
c2

e(y, t+ t) e(y, t t)

2 t
+
m2
0c
2

e2
(y, t) = 0 ( 5)

Equation ( 5) is a partial di erence equation of with variable coe cients
since e and Amy are generally functions of location and time. A great deal
of e ort went into the solution of this and related di erence equations. A
number of interesting results were obtained but the calculations could never be
carried through to the end because of mathematical di culties (Harmuth 977,
436-482; 989, 269-328 [Russian edition], 230-296 [English edition]). We follow
the text after Eq.(4.2-4) and restrict ourselves to potentials Amy and e that
depend on location and time only in first or higher order of the dimension-free
constant e of Eq.( .3-37). We may again use Eqs.(4.2-5) to (4.2- 0) since
they are written with operators that may explicitly contain either di erentials
or finite di erences. If we use again the representation of Am and e as the
sum of a constant and a variable term multiplied by e as in Eq.(4.2-5) we get:
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Am = Am0 + eAm1(r, t), Amxj = Am0xj + eAm1xj (xj , t)

e = e0 + e e1(xj , t), xj = x, y, z; x = x0 + e x1 ( 6)

With the help of Eqs.(4.2-6) to (4.2-8) we obtain again Eqs.(4.2-9) and (4.2- 0):

(p eAm0)
2

c2
(Hx e e0)

2 +m2
0c
2

x0 = 0 ( 7)

(p eAm0)
2

c2
(Hx e e0)

2 +m2
0c
2

x1 = 2[(p eAm0)
2 +m2

0c
2]Q

c2
(Hx e e0)

Lcx

e
+
Lcx

e
(Hx e e0) e[Am1 · (p eAm0)

+ (p eAm0) ·Am1] +
e

c2
[ e1(Hx e e0) + (Hx e e0) e1] x0 ( 8)

We only need to rewrite the di erential equations (4.2- ) and (4.2- 2) as
di erence equations to obtain Eqs.( 7) and ( 8) expressed as di erence equa-
tions:

(y + y, t) 2 (y, t) + (y y, t)

( y)2

c2
(y, t+ t) 2 (y, t) + (y, t t)

( t)2

2i
e
Am0y

(y + y, t) (y y, t)

2 y

+
c2

e0
(y, t+ t) (y, t t)

2 t

e2

2
A2m0y c2

2
e0 +

m2
0c
2

e2
(y, t) = 0, = x0 ( 9)

The di erence equation representing Eq.( 8) is written in a more compact
form corresponding to Eq.(4.2- 2) by means of the definitions of Eqs.(3. -2)
and (3. -4):



184 5 difference equation for the klein-gordon field

i

˜

˜xj
eAm0xj

2

c2 i

˜

˜t
+ e e0

2

+m2
0c
2

x1

= 2
i

˜

˜xj
eAm0xj

2

m2
0c
2 +

i

˜

˜xj
eAm0xj

2

× m2
0c
2 3

2 i

˜

˜xj
eAm0xj

2

+
c2 i

˜

˜t
+ e e0 (Lcx1j + Lcx2j + Lcx3j + Lcx4j + Lcx5j)

+ (Lcx1j + Lcx2j + Lcx3j + Lcx4j + Lcx5j)
i

˜

˜t
+ e e0

e Am1xj i

˜

˜xj
eAm0xj +

i

˜

˜xj
eAm0xj Am1xj

e

c2
e1

i

˜

˜t
+ e e0 +

i

˜

˜t
+ e e0 e1 x0 (20)

If we substitute Eqs.( 3) and ( 4) in the first line of Eq.(20) and write xj = y,
Am0y for Amy, e0 for e, and x1 for = x0 we obtain again Eq.( 9). Hence,
both the general solution of x0 and the homogeneous solution of x1 are
represented by the same partial di erence equation with constant coe cients.
We need only a particular solution of the inhomogeneous equation with variable
coe cients represented by Eq.(20).

We make the transition from the non-normalized variables y, t to the
variables normalized by t rather than as in Eq.(4.2- 3):

= t/ t, = y/c t (2 )

This rewriting is most easily done by starting from Eq.(4.2- 4), using Eqs.(3. -
3), (3. -4) and the modification

Ve
2
[Ve( + , ) Ve( , )] (22)

of Eq.(3. -3). The following normalized partial di erence equation is obtained:

[ ( + , ) 2 ( , )+ ( , )] [ ( , + ) 2 ( , )+ ( , )]

i 1 [ ( + , ) ( , )]+ 3[ ( , + ) ( , )] 2
2 ( , )=0
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1 =
ec tAm0y

, 3 =
e0

cAm0y
, N =

T

t

2
2=

2
1

2
e0

c2A2m0y
+
m2
0c
2

e2A2m0y
=
( t)2

2
(m2

0c
4 e2 2

e0+e
2c2A2m0y)

2
2

2
1 = ( t/ 2)2(m2

0c
4 e2 2

e0) > 0 for m0c
2 > e e0

2
1
2
3+

2
2=( t/ )2(m2

0c
4+e2c2A2m0y),

2
1
2
3+

2
2

2
1=(m0c

2 t/ )2

2
1
2
3

2
2 = ( t/ )2(m2

0c
4 2e2 2

e0 + e
2c2A2m0y) (23)

We look for a solution excited by a step function as boundary condition
as in Eqs.(4.2- 5) or (3. -6):

(0, ) = 0S( ) = 0 for < 0

= 0 for 0 (24)

The boundary condition of Eq.(3. -7) is not needed if N is finite. Any value of
( , ) must be finite, not only (N, ). The initial condition of Eq.(3. -8) is

needed:

( , 0) = 0 (25)

In order to obtain a second initial condition we proceed according to the text
following Eq.(3. -8):

. The three terms ( + , ), ( , ), ( , ) of the di erence quotient
of second order with respect to in Eq.(23) must be zero for = 0 due to
Eq.(25).

2. The di erence quotient of second order with respect to in Eq.(23) does
not exist for = 0 since the functional value ( , ) does not exist. A
di erence quotient of second order exists only for .

3. The terms ( + , ) and ( , ) of the first order di erence quotient
with respect to in Eq.(23) are zero for = 0 due to Eq.(25).

4. The last term ( , ) in Eq.(23) is also zero for = 0 because of Eq.(25).
5. What remains of Eq.(23) for = 0 is the first order di erence quotient
with respect to :

2
[ ( ,+ ) ( , )] = 0

This di erence quotient does not exist either but it can be replaced by the
non-symmetric di erence quotient

( , + ) ( , ) = 0 for = 0, 0 (26)
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The two non-symmetric di erence quotients of first order have been discussed
in the text following Eq.(3. -9).

We use again the ansatz of Eq.(3. - 0) to find a general solution from a
steady state solution F ( ) plus a deviation w( , ) from F ( ):

( , ) = 0[F ( ) + w( , )] (27)

Substitution of F ( ) into Eq.(23) yields an ordinary di erence equation with
the variable :

[F ( + ) 2F ( ) + F ( )] i 1[F ( + ) F ( )] 2
2F ( ) = 0 (28)

Following Eq.(3. - 2) we use again the ansatz

F ( ) = A1v , F ( + ) = A1v
+1, F ( ) = A1v

1 (29)

and obtain an equations for v:

( i 1)v
2 (2 + 2

2)v + + i 1 = 0

v1,2 =
+ i 1

2( + 2
1)

2 + 2
2 ± [4( 2

2
2
1) +

4
2]
1/2

.
= ( + i 1) ± ( 2

2
2
1)
1/2 , 2

2,
2
1 (30)

We get two complex solutions:

v1 = ( 2
2

2
1)
1/2 + i 1 ( 2

2
2
1)
1/2

.
= exp ( 2

2
2
1)
1/2 ei 1 (3 )

v2 = + ( 2
2

2
1)
1/2 + i 1 + ( 2

2
2
1)
1/2

.
= exp ( 2

2
2
1)
1/2 ei 1 (32)

Following Eqs.(4.2-22) and (4.2-23) we choose again the values of Eq.
(4.2-23) and obtain:

F ( ) = A10v1 +A20v2
F (0) = A10 +A11 = , 2

2
2
1 > 0

F ( ) = exp ( 2
2

2
1)
1/2 ei 1 (33)
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The substitution of F ( ) into Eq.(27) transforms the boundary condition
of Eq.(24) for into a homogeneous boundary condition for w, which is the
purpose of Eq.(27):

0[ + w(0, )] = 0 for 0

w(0, ) = 0 for 0 (34)

The initial conditions of Eqs.(25) and (26) yield:

F ( ) + w( , 0) = 0, w( , 0) = F ( ) for 0 (35)

w( , + ) w( , ) = 0 for = 0 (36)

Substitution of w( , ) into Eq.(23) yields the same equation with re-
placed by w:

[w( + , ) 2w( , )+w( , )] [w( , + ) 2w( , )+w( , )]

i 1 [w( + , ) w( , )]+ 3[w( , + ) w( , )] 2
2w( , )=0 (37)

Particular solutions w ( , ) of this equation can be obtained by the exten-
sion of Bernoulli’s product method for the separation of variables from partial
di erential equations to partial di erence equations:

w ( , ) = ( ) ( ) (38)

Substitution of w ( , ) for w( , ) in Eq.(37) yields:

[ ( + ) ( ) 2 ( ) ( ) + ( ) ( )]

[ ( ) ( + ) 2 ( ) ( ) + ( ) ( )]

i 1 [ ( + ) ( ) ( ) ( ] + 3[ ( ) ( + ) ( ) ( )]

2
2 ( ) ( ) = 0 (39)

Multiplication with / ( ) ( ) and separation of the variables yields in analogy
to the procedure used for partial di erential equations the following equation:

( )
[ ( + ) 2 ( ) + ( )] i 1[ ( + ) ( )]

=
( )

[ ( + ) 2 ( ) + ( )] + i 1 3[ ( + ) ( )] + 2
2

= (2 /N)2 (40)
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We have written a constant (2 /N)2 at the end of the equation since a
function of can be equal to a function of for any and only if they are
equal to a constant. The division by N will permit the use of an orthogonality
interval of length N rather than later on, in analogy to the use of N in
Eq.(4.2-29). We obtain two ordinary di erence equations from Eq.(40):

[ ( + ) 2 ( ) + ( )] i 1[ ( + ) ( )]

+ (2 /N)2 ( ) = 0 (4 )

[ ( + ) 2 ( ) + ( )] + i 1 3[ ( + ) ( )]

+ [(2 /N)2 + 2
2] ( ) = 0 (42)

For the solution of Eq.(4 ) we proceed in analogy to the ansatz for F ( )
in Eq.(29)

( ) = A2v , ( + ) = A2v
+1, ( ) = A2v

1 (43)

and obtain an equation for v:

( i 1)v
2 [2 (2 /N)2]v + + i 1 = 0

v3,4 =
+ i 1

2( + 2
1)

2
2

N

2

± 2i 2
N 4

2

N

2

+
2
1

(2 /N)2

1/2

(44)

This equation equals Eq.(3. -27) for 1 = 0. We obtain the following solutions
of Eq.(44) in first order of t. As in Eqs.(3. -28) and (3. -29) only the range
(2 /N)2 4 is of interest. The term containing 2

1 is of order O( t)2 and
thus of no consequence:

for (2 /N)2 < 4 +
4 2

1

(2 /N)2

v3 =
2

2

N

2

1
2

N

(2 /N)2

4

1/2

+i
2

N

(2 /N)2

4

1/2

+ 1
(2 /N)2

4
+O( t)2 (45)

v4 =
2

2

N

2

+ 1
2

N

(2 /N)2

4

1/2

i
2

N

(2 /N)2

4

1/2

1
(2 /N)2

4
+O( t)2 (46)
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With the help of Eqs.(44), (45) and (46), which ignore only terms of order

O( t)2, we may write v3 and v4 as follows:

for (2 /N)2 < 4 +
4 2

1

(2 /N)2

v3,4 = ( + i 1)
2

2

N

2

± i2
N 4

2

N

2 1/2

(47)

v3 = ( +i 1)
2

2

N

2 2

+
2

N

2

4

2

N

2 /2

ei

= ( + i 1) { } /2 ei
.
= ( + i 1 )e

i .
= ei( + 1)

= cos( + 1) + i sin( + 1) (48)

v4
.
= ( + i 1) e

i = e i( 1)

.
= cos( 1) i sin( 1) (49)

= arctg
(2 /N)[ (2 /N)2/4]1/2

(2 /N)2/2
, 1 =

ecAm0y t
(50)

We write ( ) in complex form as the sum of Eqs.(48) and (49), with
and 1 defined by Eq.(50):

( ) = A30v3 +A31v4 = A30e
i( + 1) +A31e

i( 1) (5 )

The boundary condition w(0, ) = 0 in Eq.(34) requires in Eq.(5 ) the relation

A31 = A30

( ) = A30 ei( + 1) e i( 1) = 2iA30e
i 1 sin (52)

Equation (3. -39) contains only but not 1. Equations (4.2-32) and
(52) become equal if N is replaced by N as will be seen presently.

Since Eqs.(5 ) and (52) will be used for a Fourier series we must choose
= ( ) so that we get an orthogonal system of sine and cosine functions

in an interval 0 N = T/ t with a maximum of N periods. One must
choose as follows:

= 0, ± · 2 , ±2 · 2 , . . . , ±N
2
· 2

= 2 /N, = 0, ± , ±2, . . . , ±N/2
0 N = T/ t (53)
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There are N + values of which yield N orthogonal sine functions and
N orthogonal cosine functions. For = 0 one gets sin = 0 and cos = ,
which is the constant in a Fourier series. The function ( ) = constant is a
solution of Eq.(4 ) for = 2 /N = 0.

In order to obtain the eigenvalues (2 /N)2 associated with the angles
we must solve Eq.(50) for (2 /N)2. This was already done for Eq.(3. -35).
The results of Eqs.(3. -4 ) to (3. -44) as well as Figs.3. - and 3. -2 apply
again. We only copy Eq.(3. -44) in a modified form:

=
N
sin

2
.
=
N

2
= 2 /N, = 0, ± , ±2, . . . , ±N/2 (54)

5.2 Time Dependent Solution of ( , )

We turn to the time dependent di erence equation of ( ) shown by
Eq.(5. -42) and the value of (2 /N)2 defined by Eq.(5. -54):

( + ) 2 ( ) + ( ) + i 1 3[ ( + ) ( )]

+[(2 /N)2 + 2
2] ( ) = 0

=
2

N
, = 0, ± , ±2, . . . , ±N

2

2

N

2

= 4 sin2
2
, =

N
sin

2
( )

Substitution of

( ) = v (2)

into Eq.( ) yields the following equation for v that equals Eq.(3.2-2) for i 1 3 =

1/2 and
2
2 =

2
2:

( + i 1 3)v
2 [2 (2 /N)2 2

2]v + i 1 3 = 0 (3)

It has the solutions:

v5,6 =
i 1 3

+ 2
1
2
3 2

2

N

2

+ 2
2

±
2

2

N

2

+ 2
2

2

4
2

N

2

+ 2
2 4 2

1
2
3

1/2

(4)
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We do not make the simplifications that led from Eq.(3.2-3) to (3.2-4). The
square root is imaginary if the condition

4[(2 /N)2 + 2
2] + 4

2
1
2
3 > [(2 /N)2 + 2

2]
2 (5)

is satisfied. If the sign > is replaced by = we may work out the following
quadratic equation

2

N

2

+ 2
2

2

4
2

N

2

+ 2
2 4 2

1
2
3 = 0 (6)

with the solutions

(2 /N)2 = 2 2
2 ± 2( + 2

1
3
3)
1/2 .= 2 2

2 ± (2 + 2
1
2
3)

.
= 4 2

2 +
2
1
2
3 for +

.
= 2

2
2
1
2
3 for (7)

Hence, the square root in Eq.(4) is imaginary if the following two conditions,
derived with the help of Eq.(5. -23), are satisfied

4 2
2 +

2
1
2
3 > (2 /N)2 = 4 sin2( /2)

4
t

2

(m2
0c
4 2e 2

e0 + e
2c2A2m0y) > (2 /N)2

=
2

N
< 2 arcsin

2
2

2
1
2
3

4

1/2

< 0 =
N
arcsin

2
2

2
1
2
3

4

1/2

(8)

2
2

2
1
2
3 < (2 /N)2 = 4 sin2( /2)

t
2

(m2
0c
4 + e2c2Am0y) < (2 /N)2 (9)

The condition of Eq.(9) is always satisfied since the range of interest of
(2 /N)2 = 4 sin2( /2) is defined by

N/2 N/2, / + , 0 4 sin2( /2) 4 ( 0)

but the condition of Eq.(8) may or may not be satisfied. We must investigate
both the real and the imaginary root of v5,6. Consider the imaginary root first.
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v5,6 =
i 1 3

+ 2
1
2
3 2

2

N

2

+ 2
2 ± i 2

N

2

+ 2
2

1/2

×
4

2

N

2

+ 2
2 +

2
1
2
3

(2 /N)2 + 2
2

1/2

( )

Using the relation

2

2

N

2

+ 2
2

2

+
2

N

2

+ 2
2

×
4

2

N

2

+ 2
2 +

2
1
2
3

(2 /N)2 + 2
2

= + 2
1
2
3 ( 2)

we may write

v5,6 =
i 1 3

+ 2
1
2
3

( + 2
1
2
3)e

±i = ( i 1 3)e
±i .

= e i 1 3e±i ( 3)

tg =
[(2 /N)2+ 2

2]
1/2{ [(2 /N)2+ 2

2]/4+
2
1
2
3/[(2 /N)2+ 2

2]}1/2
[(2 /N)2 + 2

2]/2
( 4)

This equation should be compared with Eq.(3.2- 3). We recognize that
follows from Eq.(3.2- 3) by the substitutions

(2 /N)2 (2 /N)2 + 2
2,

2
2

2
1/4

2
1
2
3 ( 5)

The range of interest of 2 /N is defined by Eq.( 0).
Equation ( 4) for can be simplified by substituting it into the following

identity

+ tg2 =
cos2

( 6)

and solving for / cos2 . Substituting 2 /N from Eq.( ) and calculating
for a while one obtains:

= arcsin
[ 2

2/2 2 sin2( /2)]2

+ 2
1
2
3

1/2

( 7)

For small values of 2
1 and

2
2 we get again Eq.(3.2-2 ) written here in a modified

form and with replacing :
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FIGURE 5.2-1. Plot of / according to Eq.(18).

= arcsin 2 sin2
2

2 1/2

( 8)

Equation ( 8) is plotted in Fig.5.2- . In this approximation the plot is equal
to the plot shown with solid line in Fig.3.2- .

The plot of Fig.5.2- assumes that 2
2/2 can be ignored compared with

2 sin( /2). Hence, the plot needs to be analyzed in more detail in the neigh-
borhood of / = 0, , . Consider / close to zero first. From Eq.( 7)
we get:

= arcsin
( 2

2/2)
2

+ 2
1
2
3

2

= 0.0225 for 2
2 = 0.005,

2
1
2
3 = 0 ( 9)

A plot of / for 2
2 = 0.005,

2
1
2
3 = 0 is shown for the interval 0.04 <

< 0.04 according to Eq.( 7) in Fig.5.2-2. This plot should be compared
with the one of Fig.3.2-2. The important feature of Fig.5.2-2 is that / does
not become zero for / = 0 but assumes a value defined by Eq.( 9):

arcsin
( 2

2)
2

+ 2
1
2
3

1/2
.
= ( 2

2 +
2
1
2
3)
1/2 .=

2
(20)

For the neighborhood of / = we obtain from Eq.(8)

2 sin
2
< (4 2

2 +
2
1
2
3)
1/2 .= 2

8
( 2
2

2
1
2
3)

2
< arcsin 2

8
( 2
2

2
1
2
3)

<
2
arcsin 2

8
( 2
2

2
1
2
3) = 0.9775

for 2
2 = 0.005,

2
1
2
3 = 0 (2 )
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FIGURE 5.2-2. Plot of / according to Eq.(17) in the neighborhood of / = 0 for
2
2 = 0.005,

2
1

2
3 = 0.

FIGURE 5.2-3. Plots of / according to Eq.(17) in the neighborhood of / = 1 (a)
and / = +1 (b) for 2

2 = 0.005,
2
1

2
3 = 0.

Plots of Eq.( 7) for / close to ± are shown in Figs.5.2-3a and b. They
should be compared with those of Fig.3.2-3.

The function v5,6 according to Eq.( 3) may be written as follows if the
conditions of Eqs.(8) and (9) are satisfied:

v5 = e
i( 1 3+ ) (22)

v6 = e
i( 1 3 ) (23)

The solution of Eq.( ) becomes:

( ) = A40v5 +A41v6 = A40e
i( 1 3+ ) +A41e

i( 1 3 ) (24)

The particular solution w ( , ) of Eq.(5. -38) assumes the following form with
the help of Eqs.(5. -52), (22) and (23):
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w ( , )= A1 exp[ ( 1 3+ ) ]+A2 exp[ i( 1 3 ) ] ei 1 sin (25)

The usual way to generalize Eq.(25) is to make A1 and A2 functions of
and integrate over all values of . As before we deviate and follow the text

between Eqs.(2. -78) and (2. -79) in Section 2. . Our finite time and space
intervals are chosen to be 0 t T and 0 y cT , where T is arbitrarily
large but finite. The variables and cover the intervals

0 = t/ t T/ t, 0 = y/c t T/ t, T/ t = N (26)

Instead of the Fourier sum of Eq.(4.2-37) we obtain for N N and the
definition of 0 in Eq.(8) the following sum from Eq.(25), where > 0

means the smallest integer larger than 0 and < 0 the largest integer
smaller than 0:

w( , ) =

< 0

> 0

A1( ) exp[ i( 1 3 + ) ] +A2( ) exp[ i( 1 3 ) ]

× ei 1 sin (27)

We note that the summation is symmetric over negative and positive values of
just like in Eq.(3.2-60). The di erential theory always yielded non-symmetric

sums over positive values of , e.g., in Eqs.(2. -8 ) and (4.2-37).
For the initial condition of Eq.(5. -35) we obtain from Eq.(27) the following

relation for = 0:

w( , 0) =

< 0

> 0

[A1( ) +A2( )]e
i 1 sin = F ( ) (28)

The second initial condition of Eq.(5. -36) yields with = 0:

w( , ) w( , 0) =

< 0

> 0

A1( ) e i( 1 3+ )

+A2( ) e i( 1 3 ) ei 1 sin = 0 (29)

We use again the Fourier series of Eq.(3.2-40) to obtain A1( ) and A2( ) from
Eqs.(28) and (29). The factor ei 1 in Eqs.(28) and (29) can be taken in front
of the summation sign and cancelled:
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FIGURE 5.2-4. Plot of IT( /N) according to Eq.(32) for N = 100, 2
1 = 0 and

2
2 = 0.005 in

the interval 0.5 /N 0.5.

A1( ) +A2( ) =
2

N

N

0

F ( )e i 1 sin
2

N
d = IT (30)

A1( ) e i( 1 3+ ) +A2( ) e i( 1 3 ) = 0 (3 )

Equation (5. -33) defines the function F ( ). We obtain for the integral IT
the following expression:

IT( /N)=
2

N

N

0

F ( )e i 1 sin
2

N
d =

2

N

N

0

exp[ ( 2
2

2
1)
1/2 ] sin

2

N
d

=
2

N

(2 /N){ exp[ ( 2
2

2
1)
1/2N ]}

2
2

2
1 + (2 /N)2

(32)

A plot of IT( /N) for N = 00, 2
1 = 0 and

2
2 = 0.005 is shown in Fig.5.2-

4 in the interval 0.5 /N 0.5. The same plot is shown expanded in the
interval 0.05 /N 0.05 in Fig.5.2-5.

From Eqs.(30) and (3 ) one obtains the two complex variables A1( ) and
A2( ):

A1( ) =
i

2
IT( /N)

ei ei 1 3

sin

=
2
IT( /N)

sin sin 1 3 i(cos cos 1 3)

sin
(33)
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FIGURE 5.2-5. Plot of IT( /N) according to Eq.(32) for N = 100, 2
1 = 0 and

2
2 = 0.005 in

the interval 0.05 /N 0.05.

A2( ) =
i

2
IT( /N)

e i ei 1 3

sin

=
2
IT( /N)

sin + sin 1 3 + i(cos cos 1 3)

sin
(34)

Substitution into Eq.(27) yields after summing the real and the imaginary
parts:

for 0 4 sin2( /2) < 4 2
2 +

2
1
2
3

w( , ) =
2

< 0

> 0

IT( /N)

sin

× [sin + cos (sin 1 3 + cos 1 3)] sin[ 1 ( 1 3 + ) ]

+[sin cos (sin 1 3 cos 1 3)] cos[ 1 ( 1 3 + ) ]

+[sin cos + (sin 1 3 + cos 1 3)] sin[ 1 ( 1 3 ) ]

+[sin + cos + (sin 1 3 cos 1 3)] cos[ 1 ( 1 3 ) ]

× sin 2
N

(35)

We observe that the term / sin does not become infinite at / = 0
according to Fig.5.2-2. The situation is more critical close to ± / = 0/ .
For = ± 0 we would get sin = 0 but is an integer either larger than

0 or smaller than + 0. If 0 happens to be an integer the square root in
Eq.(4) would become zero for | | = 0. Hence, the largest value of | | yielding
an imaginary root would be | | = 0 . Since all terms of the sum w( , )
are finite and there is a finite number of close to 2 0 + terms the whole
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FIGURE 5.2-6. The function V7( ) of Eq.(37) for 2
1 = 0 and 2

2 = 0.005 in the interval

(2/ ) arcsin(1 2
2 +

2
1

2
3)
1/2 < / 1.

sum w( , ) must be finite for any value of and . Note that the concept of
convergence does not enter due to the finite value of N .

We turn to the case 4 sin2( /2) > 4 2
2+

2
1
2
3 of Eq.(8). A new solution

is required to close the gaps

N/2 < 0, 0 < N/2

0 =
N
arcsin

2
2

2
1
2
3

4

1/2

(36)

in Fig.5.2-3. We write v7,8 in Eq.(4) if the square root is real and obtain the
following two solutions:

v7 = V7( )( i 1 3)
.
= V7( )e i 1 3 , 2

1
2
3

V7( ) =
2

2

N

2

+ 2
2

+
2

2

N

2

+ 2
2

2

4
2

N

2

+ 2
2 4 2

1
2
3

1/2

(2 /N)2 = 4 sin2( /2) (37)

v8 =V8( )e i 1 3 , 2
1
2
3

V8( ) =
2

2

N

2

+ 2
2

2

2

N

2

+ 2
2

2

4
2

N

2

+ 2
2 4 2

1
2
3

1/2

(38)
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FIGURE 5.2-7. The function V8( ) of Eq.(38) for 2
1 = 0 and 2

2 = 0.005 in the interval

(2/ ) arcsin(1 2
2 +

2
1

2
3)
1/2 < / 1.

Plots of V7( ) and V8( ) are shown in Figs.5.2-6 and 5.2-7 for 2
1 = 0

and 2
2 = 0.005. The negative values of both V7( ) and V8( ) suggest to use

the notation

V7( ) = |V7( )|ei , v7 = |V7( )|ei( 1 3) (39)

V8( ) = |V8( )|ei , v8 = |V8( )|ei( 1 3) (40)

Hence, v7 represents a damped oscillation and v8 an amplified oscillation:

v7 = |V7( )| ei( 1 3) (4 )

v8 = |V8( )| ei( 1 3) (42)

The solution of Eq.(2) for the interval 0 < N/2 becomes

( ) = A7|V7( )| ei( 1 3) +A8|V8( )| ei( 1 3)

V7( ) = V7( ), V8( ) = V8( ) (43)

and the particular solution w ( , ) of Eq.(5. -38) assumes the following form
with the help of Eqs.(5. -52), (37) and (38):

w ( , ) = [A7|V7( )| +A8|V8( )| ]ei( 1 3) ei 1 sin(2 /N) (44)

The generalization by means of a Fourier series yields:
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w( , )=

N/2
< 0

= N/2
> 0

[A7( )|V7( )| +A8( )|V8( )| ]ei( 1 3) ei 1 sin
2

N
(45)

The first initial condition of Eq.(5. -35) demands

w( , 0) =

N/2
< 0

= N/2
> 0

[A7( ) +A8( )]e
i 1 sin

2

N
= F ( ) (46)

and the second initial condition of Eq.(5. -36) demands:

w( , ) w( , 0) =

N/2
< 0

= N/2
> 0

[A7( )|V7( )|+A8( )|V8( )|]ei( 1 3)

[A7( ) +A8( )] e
i 1 sin

2

N
= 0 (47)

Multiplication with sin(2 /N) and integration over from 0 to N brings
Eqs.(46) and (47) into the following form:

A7( ) +A8( ) =
2

N

N

0

F ( )e i 1 sin
2

N
d = IT( /N) (48)

A7( )[|V7( )|ei( 1 3) ] +A8( )[|V8( )|ei( 1 3) ] = 0

A7( )[V7( )e
i 1 3 ] +A8( )[V8( )e

i 1 3 ] = 0
(49)

One obtains for A7( ) and A8( ) if 1 3 is small compared with :

A7( ) = +
IT( /N)

V7( ) V8( )
[V8( ) ei 1 3 ]

.
= +

IT( /N)[V8( ) ]

V7( ) V8( )
(50)

A8( ) =
IT( /N)

V7( ) V8( )
[V7( ) ei 1 3] .=

IT( /N)[V7( ) ]

V7( ) V8( )
(5 )

Substitution of A7( ) and A8( ) into Eq.(45) yields a function with a largest
term of magnitude A8( )|V8( )|N for = N . This is of no concern since Eq.(36)



5.3 exponential ramp function as boundary condition 201

shows that small values of 2
2

2
1
2
3 produce 0

.
= N/2 or N/2 < 0 < N/2.

Small values of 2
2

2
1
2
3 can be achieved by choosing t su ciently small

according to Eq.(5. -23). Hence, only one arbitrarily large term |V8( )|N can
occur in the sum of Eq.(45). We have discussed with the help of Fig.3.2-7 that
the sum from N/2 to N/2 only adds the areas from N/2 + to N/2 .
Hencxe, Eq.(45) is never needed and we may change the summation limits in
Eq.(27) to = N/2 + and = N/2 . The value = 0 is excluded.

5.3 Exponential Ramp Function as Boundary Condition

In Section 5.2 we used the step function excitation of Eq.(5. -24). A less
sudden excitation is desirable when dealing with a particle of finite mass m0.
We use again the exponential ramp function excitation of Eq.(4.3- ):

(0, ) = 1S( )( e ) = 0 for < 0

= 1( e ) for 0 ( )

The initial conditions of Eqs.(5. -25) and (5. -26) are used again:

( , 0) = 0 (2)

( , + ) ( , ) = 0 for = 0, 0 (3)

Equation (5. -27) is modified according to Eq.(4.3-5) and the following
ansatz is used:

( , ) = 1[( e )F ( ) + u( , )] (4)

Substitution of 1( e )F ( ) into Eq.(5. -23) produces the following rela-
tions:

( , ) = ( e )F ( ), ( , ± ) = ( e ( ±1))F ( )
( ± , ) = ( e )F ( ± )

( e )[F ( + ) 2F ( ) + F ( )] + e (e 2 + e )F ( )

i 1 ( e )[F ( + ) F ( )] 3e (e e )F ( )

2
2( e )F ( ) = 0 (5)

A su ciently general solution is obtained if we let the terms multiplied
with e and e vanish separately:
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F ( + ) 2F ( ) + F ( ) i 1[F ( + ) F ( )] 2
2F ( ) = 0 (6)

e 2 + e + i 1 3(e e ) = 0 (7)

Equation (6) equals Eq.(5. -28). We get again F ( ) according to Eq.(5. -33):

F ( ) = exp[ ( 2
2

2
1)
1/2 ]ei 1 (8)

Equation (7) yields a quadratic equation for e

( i 1 3)e
2 2e + + i 1 3 = 0 (9)

with the solution

e =
( + i 1 3)( ± i 1 3)

+ 2
1
2
3

.
= + i( 1 3 ± 1 3) ( 0)

As in the case of Eq.(4.3-8) we obtain a trivial solution e = , = 0 and a
non-trivial solution

e = + 2i 1 3,
.
= 2i 1 3 ( )

Equation (4) must satisfy the boundary condition of Eq.( ). Since Eq.(8)
yields F (0) = we get

1[ e + u(0, )] = 1( e ), 0

u(0, ) = 0 ( 2)

The boundary condition for u(0, ) is once more homogeneous. The initial
conditions of Eqs.(2) and (3) yield with F (0) = :

( , 0) = 1u( , 0) = 0, 0 ( 3)

1[( e )F ( ) + u( , )] 1u( , 0) = 0

u( , ) u( , 0) = ( e )F ( ), 0 ( 4)

The calculation of u( , ) proceeds like the one of w( , ) in Sections 5.
and 5.2 from Eq.(5. -37) on until Eq.(5.2-27) is reached. We replace w( , ) by
u( , ) in this equation:
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u( , ) =

< 0

> 0

A1( ) exp[ i( 1 3 + ) ] +A2( ) exp[ i( 1 3 ) ]

× ei 1 sin ( 5)

With the help of Eqs.(5.2-28) and (5.2-29) we obtain for the initial conditions
of Eqs.( 3) and ( 4) the following relations:

u( , 0) =

< 0

> 0

[A1( ) +A2( )]e
i 1 sin = 0 ( 6)

u( , ) u( , 0) =

< 0

> 0

A1( ) e i( 1 3+ ) +A2( ) e i( 1 3 )

× ei 1 sin = ( e 2i 1 3)F ( )
.
= 2i 1 3F ( ) ( 7)

Once more we use the Fourier series of Eq.(3.2-40) to obtain A1( ) and A2( )
from Eqs.( 6) and ( 7). The factor ei 1 can be taken in front of the summation
sign. With = 2 /N we get:

A1( ) +A2( ) = 0 ( 8)

A1( ) e i( 1 3+ ) +A2( ) e i( 1 3 )

=
4i 1 3

N

N

0

F ( )e i 1 sin
2

N
d = 2i 1 3IT( /N) ( 9)

The function IT = IT( /N) is defined by Eq.(5.2-32). One obtains for
A1( ) and A2( ):

A1( ) = A2( ) =
1 3IT( /N)

sin
ei 1 3 (20)

Substitution of A1( ) and A2( ) into Eq.( 5) yields:

u( , ) = 2i 1 3e
i 1 3ei 1( 3 )

< 0

> 0

IT( /N)
sin

sin
sin

2

N
(2 )

Substitution of F ( ) of Eq.(8) into Eq.(4) brings Eq.(4) into the following
form:
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for 0 4 sin2( /2) < 4 2
2 +

2
1
2
3

( , ) = 1 ( e 2i 1 3 )F ( ) + u( , )

= 1 ( e 2i 1 3 ) exp[ ( 2
2

2
1)
1/2 ]ei 1

2i 1 3e
i 1 3ei 1( 3 )

< 0

> 0

IT( /N)
sin

sin
sin

2

N

0 =
N
arcsin

2
2

2
1
2
3

4

1/2

(22)

To see how ( , ) rises at = 0 we use the following approximations:

e 2i 1 3
.
= 2i 1 3 , e

i 1( 3 ) .= ei 1 ( i 1 3 ), sin
.
= (23)

and obtain in first order of :

( , )
.
= 2i 1 3 exp[ ( 2

2
2
1)
1/2 ]ei 1

ei 1 3ei 1

< 0

> 0

IT( /N)

sin
sin

2

N
(24)

Hence, the real as well as the imaginary part of ( , ) rise proportionate to
from = 0.

For the gaps N/2 < 0 and 0 < N/2 we need again the real
solutions V7( ) and V8( ) of Eqs.(5.2-37) and (5.2-38). Equation (5.2-4 )
for w( , ) is obtained but w( , ) is replaced by u( , ). The initial conditions
of Eqs.(5.2-46) and (5.2-47) must be modified according to Eqs.( 6) and ( 7):

u( , 0) =

N/2
< 0

= N/2
> 0

[A7( ) +A8( )]e
i 1 sin

2

N
= 0 (25)

u( , ) u( , 0) =

N/2
< 0

= N/2
> 0

{A7( )[|V7( )| ] +A8( )[|V8( )| ]}

× ei 1 sin
2

N
= ( e 2i 1 3)F ( ) (26)
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In analogy to Eqs.(5.2-48) and (5.2-49) we get:

A7( ) +A8( ) = 0 (27)

A7( )[|V7( )| ] +A8( )[|V8( )| ] =
2

N
( e 2i 1 3)

×
N

0

F ( )e i 1 sin
2

N
d = ( e 2i 1 3)IT( /N) (28)

If we use 1 from Eq.(5. -23) we get A7( ) = A8( ) = O( t), which is much
smaller than A7( ) and A8( ) of Eqs.(5.2-50) and (5.2-5 ). The comments
following Eq.(5.2-5 ) apply again. Hence, we may replace the summation limits
in Eqs.( 5), (2 ), (22) and (24) by = N/2 + , = N/2 and ignore
V7( ), V8( ).

5.4 Hamilton Function for Difference Equation

Our goal is to derive the Hamilton function for Eq.(5.3-22) and quantize it
in analogy to what was done in Section 4.3 with Eq.(4.3-22) of the di erential
theory. Equations (4.4- ) and (4.4-2) continue to apply. But in Eq.(4.4-3) we
replace by t:

t t/ t = , y y/c t = , x x/c t, z z/c t

N N = T/ t ( )

Equation (4.4-4) becomes:

U = c t

L/2c t

L/2c t

L/2c t

L/2c t

N

0

+ +
m2
0c
4( t)2

2
d

× d x

c t
d

z

c t

=
L2

c t

N

0

+ +
m2
0c
4( t)2

2
d (2)

Equation (4.4-5) is replaced by an equation derived from Eq.(5.3-22):
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= 2
1[( e2i 1 3 ))F ( ) + u ( , )][( e 2i 1 3 ))F ( ) + u( , )]

= 4 2
1 2

( cos 2 1 3 ) exp[ 2(
2
2

2
1)
1/2 ]

2 1 3 cos 1 3 sin 1 3 exp[ ( 2
2

2
1)
1/2 ]

×
< 0

> 0

IT( /N)

sin
sin sin

2

N

+ 2
1
2
3

< 0

> 0

IT( /N)

sin
sin sin

2

N

2

(3)

This equation should be compared with Eq.(4.4-5).
Di erentiation of ( , ) of the first line of Eq.(5.3-22) with respect to

or produces with the help of Eqs.(5.3-8) and (5.3-2 ) the following results:

= 1 2i 1 3e
2i 1 3 ei 1 exp[ ( 2

2
2
1)
1/2 ] +

u

u
= 2 1 3e

i 1 3( 1)ei 1

×
< 0

> 0

IT( /N)

sin
( 1 3 sin + i cos ) sin

2

N
(4)

= 1 ( e 2i 1 3 )[ ( 2
2

2
1)
1/2 + i 1]

× exp[ ( 2
2

2
1)
1/2 ]ei 1 +

u

u
= 2 1 3e

i 1 3( 1)ei 1

< 0

> 0

IT( /N)

sin
sin

× 1 sin
2

N

2 i

N
cos

2

N
(5)

The first term in Eq.(2) becomes:

= 2
1 2i 1 3e

2i 1 3 e i 1 exp[ ( 2
2

2
1)
1/2 ] +

u

× 2i 1 3e
2i 1 3 ei 1 exp[ ( 2

2
2
1)
1/2 ] +

u
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= 4 2
1
2
3

2
1 exp[ 2( 2

2
2
1)
1/2 ]

2 exp[ ( 2
2

2
1)
1/2 ]

< 0

> 0

IT( /N)

sin
[ 1 3 sin 1 3( + ) sin

+ cos 1 3( + ) cos ] sin
2

N

+

< 0

> 0

IT( /N) 1 3

sin
sin sin

2

N

2

+

< 0

> 0

IT( /N)

sin
cos sin

2

N

2

(6)

For the second term in Eq.(2) we get:

= 2
1 ( e2i 1 3 )e i 1 [ ( 2

2
2
1)
1/2 i 1]

× exp[ ( 2
2

2
1)
1/2 ] +

u

× ( e 2i 1 3 )ei 1 [ ( 2
2

2
1)
1/2 + i 1]

× exp[ ( 2
2

2
1)
1/2 ] +

u
(7)

The evaluation of this equation is a challenge. In the end one obtains the
following result:

= 2
1 2 2

2( cos 2 1 3 ) exp[ 2(
2
2

2
1)
1/2 ]

8 1 3 sin 1 3 exp[ ( 2
2

2
1)
1/2 ]

< 0

> 0

IT( /N)

sin
sin

× cos 1 3
2
1 sin

2

N

2 ( 2
2

2
1)
1/2

N
cos

2

N

+ sin 1 3 1(
2
2

2
1)
1/2 sin

2

N
+
2 1

N
cos

2

N

+ 4 2
1
2
3

< 0

> 0

1IT( /N)

sin
sin sin

2

N

2

+

< 0

> 0

2 IT( /N)

N sin
sin cos

2

N

2

(8)
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Equations (6), (8) and (3) have to be substituted into Eq.(2). The integra-
tion with respect to is straightforward but lengthy. The reader will find the
calculations in Section 6.8. The energy U of Eq.(2) is separated into a constant
part Uc and a time variable part Uv( ) that depends on sinusoidal functions of
and has the time-average zero:

U = Uc + Uv( ) (9)

We copy for Uc the three components of Eqs.(6.8- 0), (6.8- 4) and (6.8-6):

Uc = Uc2 + Uc3 + Uc1 =

N/2 1

= N/2+1

Uc ( )

=
L2

c t
2
1N

2
1
2
3

< 0

> 0

IT( /N)

sin

2
2+ 2

1
2
3+

2
1+

2

N

2

+
m2
0c
4( t)2

2

1, 2, 3 Eq.(5. -23), IT( /N) Eq.(5.2-32), Eq.(5.2- 7) ( 0)

For the derivation of the Hamilton function H we need only the constant
energy Uc since the average of the variable energy Uv( ) is zero. We normalize
Uc in Eq.( 0):

c tUc
L2 2

1N
=
cT tUc
L2 2

1TN
=

cTUc
L2 2

1N
2
=
H

N2
( )

cTUc
L2 2

1

= H =

< 0

> 0

H =

< 0

> 0

d2( )

d( ) = 1 2N
IT( /N)

sin
2 + 2

1
2
3 +

2
1 +

2

N

2

+
m2
0c
4( t)2

2

1/2

( 2)

The component H of the sum is rewritten as in Eq.(3.5-46):

H = (2 )2
d( )

2
(sin 2 i cos 2 )

d( )

2
(sin 2 + i cos 2 )

= 2 i p ( )q ( ) ( 3)

p ( ) = 2 i
d( )

2
e2 i ( 4)

ṗ =
˜p
˜

= (2 i )3/2
d( )

2
e2 i = 2 i p ( ) ( 5)



5.4 hamilton function for difference equation 209

q ( ) = 2 i
d( )

2
e 2 i ( ) ( 6)

q̇ =
˜q
˜

= (2 i )3/2
d( )

2
= 2 i q( ) ( 7)

As in Section 3.5 from Eq.(3.5-5 ) on we get again the proper relations for the
finite derivatives ˜H / ˜q and ˜H / ˜p :

˜H
˜q

=
˜p
˜

= ṗ ( 8)

˜H
˜p

= +
˜q
˜

= +q̇ ( 9)

Equation ( 3) may be rewritten into the form of Eq.(3.5-56) by means of the
following definitions that replace Eqs.(3.5-55)

a =
d( )

2
e2 i , a =

d( )

2
e 2 i (20)

and we obtain

H = i
N

=0

2 p q =
N

=0

(2 )2a a =
N

=0

2

T
b b =

N

=0

H (2 )

b =
2 T

1/2

a , b =
2 T

1/2

a , T = N t (22)

For the quantization we follow the finite di erence Schrödinger approach
worked out in Section 3.6. We obtain in analogy to Eqs.(3.6-5) and (3.6-38):

2
2 2

2

˜2

˜ 2
=
HT

2
=
E T

2
=

E = E n =
2

T
n+

2
, n = 0, , 2, . . . , N (23)

The upper limit N for n in Eq.(4.4-25) is replaced by N . There is no need for
renormalization.
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The energies E n in Eq.(3.6-38) and (23) are equal since the photons of a
pure EM wave are the same as of an EM wave interacting with bosons. What
di ers is the fraction of photons with a certain energy Uc ( ) according to
Eq.(3.5-45) and one term of Eq.( 0):

Uc ( )=
L2 2

1

cT
N2 2

1
2
3

I2T( /N)

sin2
2+ 2

1
2
3+

2
1+

2

N

2

+
m2
0c
4( t)2

2
(24)

The term m2
0c
4/ 2 shows as at the end of Section 4.4 that one must get results

di erent from those of the pure radiation field since a mass m0 does not occur
in the equation for a pure radiation field.

5.5 Plots for the Difference Theory

The energy Uc ( ) of the di erence theory as function of the period number
is defined by Eq.(5.4-24) with from Eq.(5.2- 7), IT( /N) from Eq.(5.2-32),

1, 2, 3 from Eq.(5. -23) and 0 from Eq.(5.2-8):

Uc ( ) =
L2 2

1N
2 2
1
2
3

cT

I2T( /N)

sin2
2+ 2

1
2
3+

2
1+

2

N

2

+
m0c

2 t
2

= arcsin
[ 2

2/2 2 sin2( /N)]2

+ 2
1
2
3

1/2

sin2 =
[ 2

2/2 2 sin2( /N)]2

+ 2
1
2
3

IT( /N) =
2

N

(2 /N){ exp[ ( 2
2

2
1)
1/2N ]}

2
2

2
1 + (2 /N)2

2
2

2
1 = ( t)2(m2

0c
4 e2 2

e0)/ ,
2
1 = e

2c2( t)2A2m0y/
2

2
1
2
3 = e

2( t)2 2
e0/

2, 0 < 0 =
N
arcsin

2
2

2
1
2
3

4

1/2

2
2

2
1
2
3 = ( t)2(m2

0c
4 2e2 2

e0 + e
2c2A2m0y)/

2, N = T/ t ( )

The energy of a photon with period number and a certain value of n is defined
like in the di erential theory by Eq.(5.4-23):

E n =
2

T
n+

2
, n = 0, , . . . , N (2)

The average value of E n for all N + values of n is the same as in Eq.(4.5-3)
but N must be replaced by N :
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E =
2

T N +

N

=0

n+
2

=
2
(N + )

2

T
.
=
2
N
2

T
(3)

For a specific value of n the energy Uc ( ) requires the number Uc ( )/E nof
photons:

Uc ( )

E n
= Drnr ( )

r ( ) =
I2T( /N)

sin2 2
2 + 2

1
2
3 +

2
1 +

2

N

2

+
m2
0c
4( t)2

2

Drn =
L2 2

1N
2 2
1
2
3

c
n+

2

1

(4)

If photons with various values of n are equally frequent we obtain the following
relation in place of Eq.(4):

Uc (

E
= Drr ( )

Dr =
2L2 2

1N
2
1
2
3

c
(5)

The total number of photons equals the sum over in Eqs.(4) or (5):

srn =

< 0

=0

Uc ( )

Ec
= Drn

< 0

=0

r ( ) (6)

sr =

< 0

=0

Uc ( )

E
= Dr

< 0

=0

r ( ) (7)

The probability p ( ) of a photon with period number is the same for Eqs.(4)
and (5) since the constants Drn and Dr drop out:

p ( ) =
r ( )
< 0

>0 r ( )
(8)

For the computation of r ( ) and p ( ) one can make several simplifica-
tions in Eqs.(4) and (8). First we deal with the special case = 0. We see
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FIGURE 5.5-1. Plot of p ( ) according to Eq.(15) for N = 100 or N/2 1 = 49. The variable
is treated as a continuous variable. Note the slight increase of the function at = 49.

from Fig.5.2-2 that and thus sin is not zero at = 2 /N = 0 or = 0.
The function I2T( /N) decreases like

2, the factor /2 increases like / ,
and the terms in brackets become constant. Hence, r (0) and p (0) approach
zero. For discrete values of we get IT( /N)

2/2 = 02/0 for = 0, which
makes r (0) and p (0) undefined. We leave out the terms = 0 in Eqs.(6)
to (8). This was alredy pointed out in the last sentence of Section 5.2. The
following approximations hold for < 0:

0 =
N
arcsin

2
2

2
1
2
3

4

1/2

<
N

2
=
N

2

N/2 < 0 for 2
2

2
1
2
3 (9)

2
2

2
1
2
3 for t /m0c

2 ( 0)

( 2
1

2
2)
1/2N = N t(m2

0c
4 e2 2

e0)
1/2/ , for T /m0c

2 ( )

r ( ) =
2 /N

2
2 + (2 /N)2

2

sin2 2
2 +

2

N

2

( 2)

2 = 2 q/N, 0 < q < ( 3)

N/2 1

=1

r ( )
.
= 98.743 for N = 00, q = 0. ( 4)

p ( ) = r ( )/98.743 ( 5)

Equation ( 0) states that t can be arbitrarily small but finite while Eq.( )
states that T can be arbitrarily large but finite. This is in line with our as-
sumptions. We have the numerical value h/m0c

2 = 2.9524 × 0 23 s for pions
+ and .
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FIGURE 5.5-2. Plot of p ( ) for = 5, 6, . . . , 49 according to Eq.(15) for N = 100.

FIGURE 5.5-3. Plot of p ( ) for = 5, 6, . . . , 49 according to Eq.(15) for N = 100. The
vertical scale is enlarged by almost a factor of 100 compared with Figs.5.5-1 and 5.5-2. The
points for = 1, 2, 3, 4 are outside the plotting range.

FIGURE 5.5-4. Plot of p ( ) for = 10, 11, . . . , 49 according to Eq.(15) for N = 100. The
vertical scale is enlarged by a factor of 10 compared with Fig.5.5-3. The points for = 1, 2,
. . . , 9 are outside the plotting range.
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FIGURE 5.5-5. Plots of p ( ) for = 10, 11, . . . , 99 according to Eq.(8) for N = 200,

2 = 5× 10 5, 1 3 = 0.1 2 for the plot range 0 p ( ) 0.001.

FIGURE 5.5-6. Plot of p ( ) for = 10, 11, . . . , 249 according to Eq.(8) for N = 500,

2 = 2× 10 5, 1 3 = 0.1 2 for the plot range 0 p ( ) 0.001.

FIGURE 5.5-7. Plot of p ( ) for = 10, 11, . . . , 499 according to Eq.(8) for N = 1000,

2 = 10 5, 1 3 = 0.1 2 for the plot range 0 p ( ) 0.001.
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Figure 5.5- shows p ( ) according to Eq.( 5) for N = 00 or N/2 =
49 plotted as function of a continuous variable . We note the similarity to
Fig.4.5- ; the only recognizable di erence is the slight increase of the function
in Fig.5.5- at the extreme right.

A discrete representation of p ( ) for = , 2, 3, 4, 5 is shown in Fig.
5.5-2. The extension of the discrete representation of p ( ) to the range = 5,
6, . . . , 49 is shown in Fig.5.5-3. The vertical scale in Fig.5.5-3 is enlarged by
almost a factor 00 compared with Figs.5.5- or 5.5-2. The larger scale puts
p ( ) to p (5) outside the plotting range.

A further enlargement of the vertical scale by a factor 0 is shown for p ( )
in Fig.5.5-4. The probabilities p ( ) to p (9) are now outside the plotting
range.

Let us compare the computer plots of Section 4.5 with the ones obtained
here. In the di erence theory the summation is symmetric, 0 < < 0,
as in Eq.(5.2-27), but the plotting is non-symmetric, 0 < < 0. Hence, for
N = 00 we sum 98 values from = N/2 + > 0 to = N/2 < 0,
but we plot 49 values from = to = N/2 < 0. In the di erential
theory the summation is non-symmetric, N , as in Eq.(4.2-37) and
the plotting is also non-symmetric, N . This di erence turns out
to be unimportant but in order to demonstrate this result we show plots for
N = 00 in the range 50 in Figs.4.5-3 and 4.5-4, but plots for N = 50
in the range 49 in Figs.4.5-6 and 4.5-7; the upper limit 49 rather than
50 was chosen to increase the similarity with the plots of Figs.5.5-3 and 5.5-4.

The plots of Figs.4.5- and 5.5- are practically equal. Only a very keen
observer will note the increase of p ( ) at = 49 in Fig.5.5- that does not
exist close to = 00 in Fig.4.5- . The enlarged vertical scale in Figs.4.5-3,
4.5-4 or 4.5-6, 4.5-7 and 5.5-3, 5.5-4 makes the deviation between the plots
of the di erential theory and the di erence theory visible. We note that the
largest value of p( ) in Figs.4.5-2 and 4.5-5 is about 0.8, just as in Fig.5.5-2 for
p ( ). On the other hand, the smallest value of p( ) in Figs.4.5-4 and 4.5-7 is
essentially zero while it is about p (33)

.
= 0.000 in Fig.5.5-4.

The question arises which features of Figs.5.5-2 to 5.5-4 are true results of
the calculus of finite di erences and which are only due to the choice N = 00.
We show in Figs.5.5-5 to 5.5-7 plots like the one in Fig.5.5-4 but for larger
values of N . We see that the center section of the plots becomes quite flat for
increasing values of N . On the other hand, the increase of p ( ) in the range
40 49 in Fig.5.5-4 becomes an increase with about the same amplitudes
but in the reduced range 490 499 in Fig.5.5-7. This appears more likely
to be a true result of the use of finite di erences.

To make this point more evident we show in Fig.5.5-8 the plot of Fig.5.5-7
but with the plot range reduced to / 0. The idea is that an increase of N
from 00 in Fig.5.5-4 to 000 in Fig.5.5-8 should decrease the values of p ( )
by essentially a factor / 0. Figure 5.5-8 shows a very flat center section and
an increase of p ( ) restricted to about the interval 480 499.
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FIGURE 5.5-8. Plot of p ( ) for = 19, 20, . . . , 499 according to Eq.(8) for N = 1000,

2 = 10 5, 1 3 = 0.1 2 for the plot range 0 p ( ) 0.0001.



6 Appendix

6.1 Calculations for Section 2.2

The auxiliary variables d2, q1, q2, q3 and q4 are used extensively. Here are
some relations that simplify their use:

d2 = 4[(2 /N )2 + 2
2] (1)

q1 = +
1

2
(d2 2

1)
1/2 + 2 /N , d2 > 2

1 (2)

q2 = +
1

2
(d2 2

1)
1/2 2 /N , d2 > 2

1 (3)

q3 = +
1

2
( 2
1 d2)1/2

1

2
1, d2 < 2

1 (4)

q4 = +
1

2
( 2
1 d2)1/2 +

1

2
1, d2 < 2

1 (5)

q2 = q1 4 /N , q4 = q3 + 1 (6)

q1 = 2 /N + [(2 /N )2 + 2
2

2
1/4]

1/2 (7)

q2 = 2 /N + [(2 /N )2 + 2
2

2
1/4)

1/2 (8)

(d2 2
1)
1/2=2(q1 2 /N ) = 2(q2 + 2 /N ), d2 > 2

1 (9)

( 2
1 d2)1/2=2q3 + 1 = 2q4 1, d2 < 2

1 (10)

q21+
1

2

2

=2
2

N

2

+ 2
2+2

2

N

2

1+
2
2

2
1/4

(2 /N )2

1/2

, d2> 2
1 (11)

q22+
1

2

2

=2
2

N

2

+ 2
2 2

2

N

2

1+
2
2

2
1/4

(2 /N )2

1/2

, d2> 2
1 (12)

We start with the second sum holding for > K in Eq.(2.2-28). Later we
shall extend the investigation to the whole of Eq.(2.2-28). Equation (2.2-28) is
shown once more in Eq.(2.2-39) with the terms L15( , ) to L18( , ) broken
up into L15A( ), L15B( , ), . . . , L18B( , ). We denote part of the first and
second term of the second sum of Eq.(2.2-39) by Aes( ) and Aec( ):

217
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Aes( ) =
1

(2 /N )
2
+ 2

2

L17A( ) +
1L15A( )

(d2 2
1)
1/2

=
1

(2 /N )
2
+ 2

2

1

2(q1 2 /N )

× q1 /N

q21 + ( 1/2)
2 +

q2 + /N

q22 + ( 1/2)
2 (13)

Aec( ) =
1

(2 /N )
2
+ 2

2

L18A( ) +
1L16A( )

(d2 2
1)
1/2

=
1

(2 /N )
2
+ 2

2

1

2(q1 2 /N )

× q1(q1 2 /N ) 2
1/4

q21 + ( 1/2)
2

q2(q2 + 2 /N ) 2
1/4

q22 + ( 1/2)
2

> K = N ( 2
1 4 2

2)
1/2/4

= c N |( Z s/Z)|/4 if used for Eq.(2.2-28) (14)

For the third term of the second sum in Eq.(2.2-39) we obtain with Eqs.
(2.2-30)—(2.2-33):

(d2 2
1)
1/2L17B( , )+ 1L15B( , )

(d2 2
1)
1/2

(2 /N )
2
+ 2

2

=
1

2 (2q1 2 /N ) (2 /N )
2
+ 2

2

× [ 1(q1 2 /N ) + 1q1] cos q1 [2q1(q1 2 /N ) 2
1/2] sin q1

2 q21 + ( 1/2)
2

+
[ 1(q1 2 /N ) + 1q2] cos q2 [2q2(q1 2 /N ) 2

1/2] sin q2

2 q22 + ( 1/2)
2

= A57( ) cos q1 +B57( ) sin q1 + C57( ) cos q2 +D57( ) sin q2 (15)

A57( ) =
1(2q1 2 /N )

4(q1 2 /N ) (2 /N )
2
+ 2

2 q21 + ( 1/2)
2

(16)

B57( ) = +
2q1(q1 2 /N ) 2

1/2

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q21 + ( 1/2)
2

(17)
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C57( ) =
1(q1 + q2 2 /N )

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(18)

D57( ) = +
2q2(q1 2 /N ) 2

1/2

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(19)

The third term of the second sum in Eq.(2.2-39) may now be written as follows:

L17B( , ) +
1L15B( , )

(d2 2
1)
1/2

sin(2 /N )

(2 /N )
2
+ 2

2

= A57( ) cos q1 sin
2

N
+B57( ) sin q1 sin

2

N

+ C57( ) cos q2 sin
2

N
+D57( ) sin q2 sin

2

N
(20)

Using the changed wavenumbers 2 /N ± q1 and 2 /N ± q2

2 /N q1 = /N ( 2 2/N2 + 2
2

2
1/4)

1/2 (21)

2 /N + q1 = 3 /N + ( 2 2/N2 + 2
2

2
1/4)

1/2 (22)

2 /N q2 = 3 /N ( 2 2/N2 + 2
2

2
1/4)

1/2 (23)

2 /N + q2 = /N + ( 2 2/N2 + 2
2

2
1/4)

1/2 (24)

we obtain for the products of sine and cosine functions in Eq.(20):

sin(2 /N ) cos q1 =
1

2
[sin(2 /N q1) + sin(2 /N + q1) ] (25)

sin(2 /N ) sin q1 =
1

2
[cos(2 /N q1) cos(2 /N + q1) ] (26)

sin(2 /N ) cos q2 =
1

2
[sin(2 /N q2) + sin(2 /N + q2) ] (27)

sin(2 /N ) sin q2 =
1

2
[cos(2 /N q2) cos(2 /N + q2) ] (28)

We turn to the fourth term of the second sum in Eq.(2.2-39). Instead of
Eqs.(15)—(19) one obtains:
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(d2 2
1)
1/2L18B( , )+ 1L16B( , )

(d2 2
1)
1/2

(2 /N )
2
+ 2

2

=
1

2 (q1 2 /N ) (2 /N )
2
+ 2

2

× [ 1(q1 2 /N ) + 1q1] sin q1 + [2q1(q1 2 /N ) 2
1/2] cos q1

2 q21 + ( 1/2)
2

[ 1(q1 2 /N ) 1q2] sin q2 + [2q2(q1 2 /N ) + 2
1/2] cos q2

2 q22 + ( 1/2)
2

= A68( ) sin q1 +B68( ) cos q1 + C68( ) sin q2 +D68( ) cos q2 (29)

A68( )=+
1(q1 2 /N ) + 1q1

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q21+( 1/2)
2
= A57( ) (30)

B68( )=+
2q1(q1 2 /N ) 2

1/2

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q21+( 1/2)
2
=+B57( ) (31)

C68( )=
1(q1 2 /N ) 1q2

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(32)

D68( )=
2q2(q1 2 /N ) + 2

1/2

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(33)

The fourth term of the second sum in Eq.(2.2-39) may be written as follows:

L18B( , ) +
1L16B( , )

(d2 2
1)
1/2

cos(2 /N )

(2 /N )
2
+ 2

2

= A68( ) sin q1 cos
2

N
+B68( ) cos q1 cos

2

N

+ C68( ) sin q2 cos
2

N
+D68( ) cos q2 cos

2

N
(34)

Using the changed wavenumbers of Eqs.(21)—(24) we obtain for the products
of sine and cosine functions in Eq.(34):

cos(2 /N ) sin q1 =
1

2
[ sin(2 /N q1) + sin(2 /N + q1) ] (35)

cos(2 /N ) cos q1 =
1

2
[+ cos(2 /N q1) + cos(2 /N + q1) ] (36)

cos(2 /N ) sin q2 =
1

2
[ sin(2 /N q2) + sin(2 /N + q2) ] (37)

cos(2 /N ) cos q2 =
1

2
[+ cos(2 /N q2) + cos(2 /N + q2) ] (38)
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We introduce four more auxiliary variables:

E57( ) =
1

2
[C57( ) C68( )]

=
1q1

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(39)

E68( ) =
1

2
[C57( ) + C68( )]

=
1(2q1 2 /N )

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(40)

F57( ) =
1

2
[D57( ) +D68( )]

=
2
1/2

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(41)

F68( ) =
1

2
[D57( ) D68( )]

=
2q2(q1 2 /N )

4 (q1 2 /N ) (2 /N )
2
+ 2

2 q22 + ( 1/2)
2

(42)

The third and fourth terms of the second sum of Eq.(2.2-39) become:

L17B( , ) +
1L15B( , )

(d2 2
1)
1/2

sin(2 /N )

(2 /N )
2
+ 2

2

L18B( , ) +
1L11B( , )

(d2 2
1)
1/2

cos(2 /N )

(2 /N )
2
+ 2

2

= A57( ) sin(2 /N q1) +B68( ) cos(2 /N q1)

+E57( ) sin(2 /N q2) +E68( ) sin(2 /N + q2)

+ F57( ) cos(2 /N q2) + F68( ) cos(2 /N + q2) (43)

We turn to the first sum in Eq.(2.2-28) that contains more complicated
terms. With the help of Eqs.(2.2-35)—(2.2-38) we obtain:

Aes( ) =
( 2
1 d2)1/2L13A( ) + 1L11A( )

( 2
1 d2)

1/2
(2 /N )

2
+ 2

2

=
q3q4

(2q3+ 1) (2 /N )
2
+ 2

2

1

(2 /N )
2
+q23

1

(2 /N )
2
+q24

(44)
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Aec( ) =
( 2
1 d2)1/2L14A( ) + 1L12A( )

( 2
1 d2)

1/2
(2 /N )

2
+ 2

2

=
2 /N

(2q3 + 1) (2 /N )
2
+ 2

2

q4

(2 /N )
2
+ q23

+
q3

(2 /N )
2
+ q24

< K = N ( 2
1 4 2

2)
1/2/4

= c N |( Z s/Z)|/4 if used for Eq.(3.2-28) (45)

The terms with the subscript B rather than A are more complicated:

( 2
1 d2)1/2L13B( , )+ 1L11B( , )

( 2
1 d2)

1/2
(2 /N )

2
+ 2

2

=
1

(2q3+ 1) (2 /N )
2
+ 2

2

× q4e
(2q3+ 1) /2

q3 cos(2 /N ) (2 /N ) sin(2 /N )

(2 /N )
2
+ q23

q3e
(2q3+ 1) /2

q4 cos(2 /N ) (2 /N ) sin(2 /N )

(2 /N )
2
+ q24

= e(2q3+ 1) /2 A13( ) cos
2

N
+B13( ) sin

2

N

+ e (2q3+ 1) /2 C13( ) cos
2

N
+D13( ) sin

2

N
(46)

A13( ) = +
q3q4

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q23

(47)

B13( ) =
(2 /N )q4

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q23

(48)

C13( ) =
q3q4

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q24

(49)

D13( ) = +
(2 /N )q3

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q24

(50)

We still need the terms with subscripts 14B and 12B:
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( 2
1 d2)1/2L14B( , )+ 1L12B( , )

( 2
1 d2)

1/2
(2 /N )

2
+ 2

2

=
1

(2q3+ 1) (2 /N )
2
+ 2

2

× q4e
(2q3+ 1) /2

q3 sin(2 /N ) (2 /N ) cos(2 /N )

(2 /N )
2
+ q23

q3e
(2q3+ 1) /2

q4 sin(2 /N ) + (2 /N ) cos(2 /N )

(2 /N )
2
+ q24

= e(2q3+ 1) /2 A24( ) sin
2

N
+B24( ) cos

2

N

+ e (2q3+ 1) /2 C24( ) sin
2

N
+D24( ) cos

2

N
(51)

A24( ) =
q3q4

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q23

(52)

B24( ) = +
(2 /N )q4

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q23

(53)

C24( ) = +
q3q4

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q24

(54)

D24( ) = +
(2 /N )q3

(2q3 + 1) (2 /N )
2
+ 2

2 (2 /N )
2
+ q24

(55)

The comparison of Eqs.(52) to (55) with Eqs.(47) to (50) provides the following
relations:

A24( ) = A13( ) (56)

B24( ) = B13( ) (57)

C24( ) = +C13( ) (58)

D24( ) = +D13( ) (59)

The sum of Eq.(46) multiplied by sin(2 /N ) and of Eq.(51) multiplied
by cos(2 /N ) yields:
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L13B( , ) +
1L11B( , )

( 2
1 d2)

1/2

sin(2 /N

(2 /N )
2
+ 2

2

L14B( , ) +
1L12B( , )

( 2
1 d2)

1/2

cos(2 /N )

(2 /N )
2
+ 2

2

= e(2q3+ 1) /2B13( ) cos
4

N

+ e (2q3+ 1) /2 C13( ) sin
4

N
+D13( ) (60)

Substitution of Eqs.(13), (14), (43)—(45), and (60) into Eq.(2.2-28) yields:

Aev( , ) = c
2 2Ve0

1
2
2

e 2 (1 ch 2 ) +
2

N
(1 e N 2)

×
<K

=1

Aes( ) sin
2

N
+Aec( ) cos

2

N
sin

2

N

+e 1 /2

×
<K

=1

e(2q3+ 1) /2B13( ) cos
4

N

+
<K

=1

e (2q3+ 1) /2 C13( ) sin
4

N
+D13( ) sin

2

N

+

N

>K

Aes( ) sin
2

N
+Aec( ) cos

2

N
sin

2

N

+e 1 /2

×
N

>K

[A57( ) sin(2 /N q1) +B68( ) cos(2 /N q1) ] sin
2

N

+

N

>K

[E57( ) sin(2 /N q2) + F57( ) cos(2 /N q2) ] sin
2

N

+

N

>K

[E68( ) sin(2 /N + q2) + F68( ) cos(2 /N + q2) ] sin
2

N

= 1, 2, . . . , < K, > K, . . . , N (61)

The term e(2q3+ 1) /2 may cause concern but it is multiplied with e 1 /2.
The exponent of the product equals:
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FIGURE 6.1-1. Three-dimensional plot of the function exp( 2 )(1 ch 2 ) for 0
in the interval 0 2 8, 0 2 8.

[(2q3 + 1) 1] /2 = [(
2
1 d2)1/2 1] /2

= {[ 21 4(2 /N )2 4 2
2]
1/2

1} /2 (62)

The relation

( 2
1 d2)1/2 = [ 21 4(2 /N )2 4 2

2]
1/2 > 0

implies

[ 21 4(2 /N )2 4 2
2] 1 < 0 (63)

and the terms in Eq.(61) multiplied with e 1 /2e(2q3+ 1) /2 become very small
for large values of .

Consider the very first term in Eq.(61). To recognize what values it may
assume we rewrite it as follows:

1
2
2

e 2 (1 ch 2 ) =
1
2
2

e 2
1

2
e 2( ) 1

2
e 2( + )

.
=

1

2 2
2

e 2( ) for , 1 (64)

The constraint 0 ensures that this term will vary only in the interval
from 0 to 1/2 2

2. Figure 6.1-1 shows this variation in detail.
Equation (61) contains functions like e 1 /2 and e(2q3+ 1) /2 that rep-

resent attenuation due to losses. Such terms have no meaning in quantum
mechanics since photons are never attenuated. To eliminate these attenuation
terms, as well as the phase shifted arguments 2 /N q1 and 2 /N ± q2 of
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some of the sine and cosine functions we resort to the Fourier series. Following
Fig.2.2-1 and Eq.(2.2-5) we replace by and write as follows:

f ( ) = g0 +

N

=1

gs ( ) sin
2

N
+ gc ( ) cos

2

N

gs ( ) =
2

N

N

0

f ( ) sin
2

N
d , gc ( ) =

2

N

N

0

f ( ) cos
2

N
d

g0 =
1

N

N

0

f ( ) d , 0 = t/ T/ = N (65)

We apply this series expansion to the second sum in Eq.(61):

f 1( ) = e
q3 B13( ) cos

4

N
(66)

gs 1( ) =
2

N

N

0

eq3 B13( ) cos
4

N
sin

2

N
d (67)

gc 1( ) =
2

N

N

0

eq3 B13( ) cos
4

N
cos

2

N
d (68)

g0 = 0 (69)

The following integrals are required to evaluate gs 1( ) and gc 1( ):

I1( , ) = 2

N

0

eq3 cos
4

N
sin

2

N
d = I31( , ) + I32( , ) (70)

I2( , ) = 2

N

0

eq3 cos
4

N
cos

2

N
d = I41( , ) + I42( , ) (71)

I31( , ) =

N

0

eq3 sin
2 (2 + )

N
d = +

2 [(2 + )/N ](1 eN q3)

q23 + [2 (2 + )/N ]2
(72)

I32( , ) =

N

0

eq3 sin
2 (2 )

N
d =

2 [(2 )/N ](1 eN q3)

q23 + [2 (2 )/N ]2
(73)
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I41( , ) =

N

0

eq3 cos
2 (2 + )

N
N d =

q3(1 eN q3)

q23 + [2 (2k + )/N ]2
(74)

I42( , ) =

N

0

eq3 cos
2 (2 )

N
d =

q3(1 eN q3)

q23 + [2 (2 )/N ]2
(75)

We obtain for gs 1( ), gc 1( ), and f 1( ):

gs 1( ) = B13( )[I31( , ) + I32( , )] (76)

gc 1( ) = B13( )[I41( , ) + I42( , )] (77)

f 1( ) =

N

=1

B13( ) [I31( , ) + I32( , )] sin
2

N

+ [I41( , ) + I42( , )] cos
2

N
(78)

The second sum in Eq.(61) becomes:

<K

=1

eq3 B13( ) cos
4

N
sin

2

N

=
<K

=1

N

=1

B13( ) I1( , ) sin
2

N
+ I2( , ) cos

2

N
sin

2

N
(79)

I1( , ) = (1 eN q3)
2 (2 + )/N

q23 + [2 (2 + )/N ]2
2 (2 )/N

q23 + [2 (2 )/N ]2
(80)

I2( , ) = (1 eN q3)
q3

q23 + [2 (2 + )/N ]2
+

q3
q23 + [2 (2 )/N ]2

(81)

We turn to the third sum in Eq.(61):

f 2( ) = e
(q3+ 1) C13( ) sin

4

N
+D13( ) (82)

Following the steps from Eq.(66) to (77) we get:
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<K

=1

e (q3+ 1) C13( ) sin
4

N
+D13( ) sin

2

N

=
<K

=1

N

=1

C13( )I5( , ) +D13( )I6( , ) sin
2

N

+ C13( )I7( , ) +D13( )I8( , ) cos
2

N
sin

2 k

N
(83)

The four integrals I5( , ) to I8( , ) are defined as follows:

I5( , ) = 2

N

0

e (q3+ 1) sin
4

N
sin

2

N
d = (q3+ 1) 1 e N (q3+ 1)

× 1

(q3 + 1)
2
+ [2 (2 + )/N ]

2

1

(q3 + 1)
2
+ [2 (2 )/N ]

2 (84)

I6( , ) = 2

N

0

e (q3+ 1) sin
2

N
d

= 2 1 e N (q3+ 1)
2 /N

(q23 + 1)
2
+ (2 /N )

2
(85)

I7( , ) = 2

N

0

e (q3+ 1) sin
4

N
cos

2

N
d = 1 e N (q3+ 1)

× 2 (2 + )/N

(q3 + 1)
2
+ [2 (2 + )/N ]

2 +
2 (2 )/N

(q3 + 1)
2
+ [2 (2 )/N ]

2 (86)

I8( , ) = 2

N

0

e (q3+ 1) cos
2

N
d

= 2 1 e N (q3+ 1)
q3 + 1

(q3 + 1)
2
+ (2 /N )

2 (87)

The first three sums in Eq.(61) may now be combined:
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<K

=1

Aes( ) sin
2

N
+Aec( ) cos

2

N

eq3 B13( ) cos
4

N

+ e (q3+ 1) C13( ) sin
4

N
+D13( ) sin

2

N

=
<K

=1

Aes( ) sin
2

N
+Aec( ) cos

2

N

+

N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
sin

2

N

Bes( , ) = B13( )I1( , ) + C13( )I5( , ) +D13( )I6( , )

Bec( , ) = B13( )I2( , ) + C13( )I7( , ) +D13( )I8( , ) (88)

We turn to the last three sums in Eq.(61). They are all multiplied by
e 1 /2 and they all have a shift q1 or ±q2 in the arguments of the sine and
cosine functions. Following Eq.(82) we write:

f 3( ) = e 1 /2[A57( ) sin(2 /N q1) +B68( ) cos(2 /N q1) ] (89)

Following the steps from Eq.(66) to (77) we get:

e 1 /2
N

>K

A57( ) sin
2

N
q1 +B68( ) cos

2

N
q1 sin

2

N

=

N

>K

N

=1

[A57( )I9( , ) +B68( )I10( , )] sin
2

N

+ [A57( )I11( , ) +B68( )I12( , )] cos
2

N
sin

2

N
(90)

The integrals I9( , ) to I12( , ) are more complicated than the previous in-
tegrals I1( , ) to I8( , ):



230 6 appendix

I9( , ) = 2

N

0

e 1 /2 sin
2

N
q1 sin

2

N
d

=
e N 1/2{( 1/2) cos q1N + [2 ( + )/N q1] sin q1N } 1/2

( 1/2)
2
+ [2 ( + )/N q1]

2

e N 1/2{( 1/2) cos q1N + [2 ( )/N q1] sin q1N } 1/2

( 1/2)
2
+ [2 ( )/N q1]

2 (91)

I10( , ) = 2

N

0

e 1 /2 cos
2

N
q1 sin

2

N
d

=
e N 1/2{( 1/2) sin q1N [2 ( + )/N q1] cos q1N }+2 ( + )/N q1

( 1/2)
2 + [2 ( + )/N q1]

2

e N 1/2{( 1/2) sin q1N [2 ( )/N q1] cos q1N }+2 ( )/N q1

( 1/2)
2
+ [2 ( )/N q1]

2

(92)

I11( , ) = 2

N

0

e 1 /2 sin
2

N
q1 cos

2

N
d

=
e N 1/2{( 1/2) sin q1N [2 ( + )/N q1] cos q1N }+2 ( + )/N q1

( 1/2)
2
+ [2 ( + )/N q1]

2

+
e N 1/2{( 1/2) sin q1N [2 ( )/N q1] cos q1N }+2 ( )/N q1

( 1/2)
2
+ [2 ( )/N q1]

2

(93)

I12( , ) = 2

N

0

e 1 /2 cos
2

N
q1 cos

2

N
d

=
e N 1/2{( 1/2) cos q1N + [2 ( + )/N q1] sin q1N } 1/2

( 1/2)
2
+ [2 ( + )/N q1]

2

e N 1/2{( 1/2) cos q1N + [2 ( )/N q1] sin q1N } 1/2

( 1/2)
2
+ [2 ( )/N q1]

2 (94)

The second sum from the end in Eq.(61) is written in analogy to Eq.(82)
as follows:

f 4( ) = e 1 /2 E57( ) sin
2

N
q1 + F57( ) cos

2

N
q2 (95)
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Again we follow the steps from Eq.(66) to (77) and obtain:

e 1 /2
N

>K

E57( ) sin
2

N
q2 + F57( ) cos

2

N
q2 sin

2

N

=

N

>K

N

=1

[E57( )I13( , ) + F57( )I14( , )] sin
2

N

+ [E57( )I15( , ) + F57( )I16( , )] cos
2

N
sin

2

N
(96)

The integrals I13( , ) to I16( , ) can be written with the help of the integrals
I9( , ) to I12( , ):

I13( , ) = 2

N

0

e 1 /2 sin
2

N
q2 sin

2

N
d

= I9( , ) with q1 replaced by q2 (97)

I14( , ) = 2

N

0

e 1 /2 cos
2

N
q2 sin

2

N
d

= I10( , ) with q1 replaced by q2 (98)

I15( , ) = 2

N

0

e 1 /2 sin
2

N
q2 cos

2

N
d

= I11( , ) with q1 replaced by q2 (99)

I16( , ) = 2

N

0

e 1 /2 cos
2

N
q2 cos

2

N
d

= I12( , ) with q1 replaced by q2 (100)

We turn to the last sum in Eq.(61). In analogy to Eq.(82) we write it in
the following form:

f 5( ) = e 1 /2 E68( ) sin
2

N
+ q2 + F68( ) cos

2

N
+ q2 (101)

Following the steps from Eq.(66) to (77) a final time we obtain:
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e 1 /2
N

>K

E68( ) sin
2

N
+ q2 + F68( ) cos

2

N
+ q2 sin

2

N

=

N

>K

N

=1

[E68( )I17( , ) + F68( )I18( , )] sin
2

N

+ [E68( )I19( , ) + F68( )I20( , )] cos
2

N
sin

2

N
(102)

The integrals I17(k, ) to I20(k, ) can be written with the help of the integrals
I9(k, ) to I12(k, ):

I17( , ) = 2

N

0

e 1 /2 sin
2

N
+ q2 sin

2

N
d

= I9( , ) with q1 replaced by q2 (103)

I18( , ) = 2

N

0

e 1 /2 cos
2

N
+ q2 sin

2

N
d

= I10( , ) with q1 replaced by q2 (104)

I19( , ) = 2

N

0

e 1 /2 sin
2

N
+ q2 cos

2

N
d

= I11( , ) with q1 replaced by q2 (105)

I20( , ) = 2

N

0

e 1 /2 cos
2

N
+ q2 cos

2

N
d

= I12( , ) with q1 replaced by q2 (106)

The sums 4 to 7 of Eq.(61) may be combined:

N

>K

Aes( ) sin
2

N
+Aec( ) cos

2

N

+ e 1 /2 A57( ) sin
2

N
q1 +B68( ) cos

2

N
q1

+E57( ) sin
2

N
q2 + F57( ) cos

2

N
q2
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+E68( ) sin
2

N
+ q2 + F68( ) cos

2

N
+ q2 sin

2

N

=

N

>K

Aes( ) sin
2

N
+Aec( ) cos

2

N

+

N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
sin

2

N

Bes( , ) = A57( )I9( , ) +B68( )I10( , ) +E57( )I13( , )

+ F57( )I14( , ) +E68( )I17( , ) + F68( )I18( , )

Bec( , ) = A57( )I11( , ) +B68( )I12( , ) +E57( )I15( , )

+ F57( )I16( , ) +E68( )I19( , ) + F68( )I20( , ) (107)

The very first term e 2 (1 ch 2 ) in Eq.(61) can be represented by a
product of Fourier series with and as the transformed variables. We shall
not do so now in order to preserve the compactness and clarity of the notation
e 2 (1 ch 2 ) compared with its Fourier representation. Equation (61) is
written in the following form with the help of Eqs.(88) and (107):

Aev( , ) = c
2 2Ve0

1
2
2

e 2 (1 ch 2 ) +
2

N
(1 e N 2)

×
<K

=1

Aes( ) sin
2

N
+Aec( ) cos

2

N

+

N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
sin

2

N

+

N

>K

Aes( ) sin
2

N
+Aec( ) cos

2

N

+

N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
sin

2

N
(108)

A radical simplification of the writing of this equation is necessary to make it
usable:

Aev( , ) =c
2 2Ve0 Ae0( , )

+
<K

=1

Ce ( ) sin
2

N
+

N

>K

Ce ( ) sin
2

N
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= c2 2Ve0 Ae0( , ) +

N

=1

Ce ( ) sin
2

N

Ae0( , ) =
1
2
2

e 2 (1 ch 2 )

Ce ( ) =
2

N
(1 e N 2) Aes( ) sin

2

N
+Aec( ) cos

2

N

+

N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N

K = N ( 2
1 4 2

2)
1/2/4 = c N |( Z s/Z)| (109)

We may make two simplifications that hold generally by using the relation
N 2 = cT s 1 of Eq.(2.2-9). First the factor 1 exp( N 2) is essentially
equal to 1. Second, the absolute value of Ae0( , ) is less than 0.5/

2
2 according

to Fig.6.1-1. Hence, we write:

Aev( , ) = c
2 2Ve0

<K

=1

Ce ( ) sin
2

N
+

N

>K

Ce ( ) sin
2

N

= c2 2Ve0

N

=1

Ce ( ) sin
2

N

Ce ( ) =
2

N
Aes( ) sin

2

N
+Aec( ) cos

2

N

+
N

=1

Bes( , ) sin
2

N
+Bec( , ) cos

2

N
(110)

We want approximations for large values of . Since the largest value of
equals N we could write N rather than . It seems better to

generally use the notation 1, which means that becomes arbitrarily large
but finite, since actually can equal N but can only approach . Those who
are not satisfied with the approximations derived from here to the end of Section
6.1 are referred to Section 2.5 that shows computer plots of the energy density
Uc ( ) and makes the approximation of H in Eq.(136) below unnecessary.

for d2 = 4[(2 /N )2 + 2
2] >

2
1 and 1

d2 4(2 /N )2, 2
1,

2
2 (2 )2 (111)

q1
4

N
+

2
2

2
1/4

4 /N
, q2

2
2

2
1/4

4 /N
(112)
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(d2 2
1)
1/2 4 /N (113)

q21 +
1

2

2

4
2

N

2

+ 2 2
2

1

4
2
1 (114)

q22 +
1

2

2 1

4
2
1 (115)

q1
2

N

2

N
+

2
2

2
1/4

4 /N
(116)

q2 +
2

N

2

N
+

2
2

2
1/4

4 /N
(117)

Starting with Aes( ) of Eq.(13) we follow the listing and obtain for the limit
1 the following results:

Aes( )
1

(2 /N )2 1
Aec( )

1

(2 /N )3
1

2
2
2
1

(118)

A57( )
3 1

16(2 /N )4
B57( )

1

4(2 /N )3
(119)

C57( )
3

(2 /N )2 1
D57( )

3

4(2 /N )3
1

4 2
2

3 2
1

(120)

A68( )
3 1

16(2 /N )4
A57( ) B68( )

1

4(2 /N )3
B57( ) (121)

C68( )
1

(2 /N )2 1
D68( )

2
2 +

2
1/4

(2 /N )3 2
1

(122)

E57( )
1

(2 /N )2 1
E68( )

2

(2 /N )2 1
(123)

F57( )
1

2(2 /N )3
F68( )

1

4(2 /N )3
1 4

2
2
2
1

(124)

The integrals I1( , ) to I8( , ) are not needed for the limits 1, but
the integrals I9( , ) to I20( , are:

I9( , )
4 1 /N

(2 /N )3
I10( , )

4 /N

(2 /N )2
(125)

I11( , )
2

2 /N
I12( , )

1

(2 /N )2
(126)

I13( , ) 2 1
2 /N

(2 /N )3
I14( , )

4 /N

(2 /N )2
(127)

I15( , )
2

2 /N
I16( , )

1

2(2 /N )2
(128)
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I17( , ) 2 1
2 /N

(2 /N )3
I18( , )

2 /N

(2 /N )2
(129)

I19( , )
2

2 /N
I20( , )

1

2(2 /N )2
(130)

We may now produce the functions Bes( , ) and Bec( , ) of Eq.(107).
Since we do not want to evaluate the sums over we cannot write (approx-
imately) but must write (proportionate):

Bes( , )
1

(2 )5
Bec( , )

1

(2 )3
(131)

The functions Ces( , ) and Cec( , ) of Eq.(2.2-44) vary for 1 as
follows:

Ces( , )
2 s

N
Bes( , )

2

2
Bec( , )

1

(2 )4
(132)

Cec( , )
2 s

N
Bec( , ) +

2

2
Bes( , )

1

(2 )2
(133)

For U2cs( ) and U
2
cc( ) in Eqs.(2.3-30) and (2.3-31) we get:

U2cs( ) Bec( , ) + Ces( , )
2

+ Bes( , ) Cec( , )
2

1

(2 )6
(134)

U2cc( ) Bec( , ) + Ces( , )
2

+ Bes( , ) Cec( , )
2

1

(2 )4
(135)

The normalized energy of the component of the wave represented by the
sinusoidal pulse with cycles in the interval 0 y cT or by all the photons
with the period number varies for 1 as follows:

H = (2 )2[U2cs( ) + U
2
cc( )]

1

(2 )2
for 1 (136)

The following products are needed to determine the decrease of Uv ( ) of
Eq.(2.3-32) for 1:
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(2 )2B2ec( , )
1

(2 )4
(2 )2B2es( , )

1

(2 )8
(137)

(2 )2C2ec( , )
1

(2 )2
(2 )2C2es( , )

1

(2 )6
(138)

2 Bec( , )Ces( , )
1

(2 )6
2 Bes( , )Cec( , )

1

(2 )6
(139)

2 Bec( , )Cec( , )
1

(2 )4
2 Bes( , )Ces( , )

1

(2 )8
(140)

(2 )2Bes( , )Bec( , )
1

(2 )6
(141)

(2 )2Ces( , )Cec( , )
1

(2 )4
(142)

One obtains for Uv1( , ) to Uv4( , , ) of Eqs.(2.3-32) to (2.3-36) the
following relations for 1:

Uv1( , )
1

(2 )2
Uv2( , , )

1

(2 )6
(143)

Uv3( , , )
1

(2 )2
Uv4( , , )

1

(2 )4
(144)

6.2 Inhomogeneous Difference Wave Equation

The inhomogeneous di erential wave equation (2.1-44) has Smirnov’s sim-
ple and elegant solution of Eq.(2.1-45). No comparable solution has been de-
rived for the corresponding di erence equation. In order to find a solution we
first develop a solution for the di erential equation (2.1-44) that will serve as
a guide. We write Eq.(2.1-44) in simplified form:

2A
2

2A
2
= a2V ( , ), A = Aev, V = Ve, a

2 = c2 2 (1)

Following d’Alembert we introduce new variables and

= + , = , =
1

2
( + ), =

1

2
( )

/ = 1, / = 1, / = 1, / = 1 (2)

and obtain:
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A
=

A
+

A
=

A
+

A
(3)

A
=

A
+

A
=

A A
(4)

A second di erentiation yields:

2A
2
=

A
+

A
+

A
+

A

=
2A
2
+ 2

2A
+

2A
2

(5)

2A
2
=

A A
+

A A

=
2A
2

2
2A

+
2A
2

(6)

Substitution into Eq.(1)

4
2A

= a2V ( , ) (7)

and integration with respect to yields:

A
=
1

4
a2 V ( , )d + C1( ) (8)

A further integration with respect to provides a solution for Eq.(1):

A( , ) =
1

4
a2 V ( , )d + C1( ) d + C2 (9)

The integration constants C1( ) and C2 can still be chosen and a solution of
the homogeneous Eq.(7) can be added.

We want to rewrite these calculations for finite di erences. This requires
some definitions of di erence operators that go beyond Eqs.(3.1-2) to (3.1-4).
A first order symmetric di erence operator

˜V ( )
˜

=
V ( + ) V ( )

2

=
1

2
[V ( + 1) V ( 1)] for = 1 (10)
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and a second order di erence operator

˜2V ( )
˜ 2

=
˜

˜

˜V ( )
˜

=
V ( + ) 2V ( ) + V ( )

( )
2

= V ( + 1) 2V ( ) + V ( 1) for = 1 (11)

are defined. The choice = 1 simplifies the relations without reducing the
generality since we may define a new variable = / and then leave out
the prime.

The second order di erence quotient does not formally follow from using
twice the first order symmetric di erence quotient:

˜

˜

˜V ( )
˜

=
1

2

1

2
[V ( + 2) V ( )]

1

2
[V ( ) V ( 2)]

=
1

4
[V ( + 2) 2V ( ) + V ( 2)] (12)

One may get around this di culty by defining a right and a left first order
di erence operator

˜
rV ( )
˜

= V ( + 1) V ( )

˜
lV ( )
˜

= V ( ) V ( 1) (13)

and then the second order di erence operator

˜
r

˜

˜
lV ( )
˜

=
˜
l

˜

˜
rV ( )
˜

=
˜
r

˜
[V ( ) V ( 1)] =

˜
l

˜
[V ( + 1) V ( )]

= [V ( + 1) V ( )] [V ( ) V ( 1)]

= V ( + 1) 2V ( ) + V ( 1) (14)

Mathematicians are usually satisfied with the right di erence quotient. But
its use in physics introduces an unsymmetry that is strictly due to mathemat-
ics and which may lead to divergencies avoided by the symmetric di erence
quotient1. Hence, we use the definitions of Eqs.(10) and (11) for the first and
second order di erence quotient.

1Harmuth 1989, Sec. 8.2
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The formulas for the derivatives in Eq.(1) are replaced by the following
formulas for finite di erences:

˜

˜
=
1

2
[ ( + 1) ( 1)] =

1

2
[ + 1 + ( 1 + )] = 1 (15)

˜

˜
=
1

2
[ ( + 1) ( 1)] =

1

2
[ + + 1 ( + 1)] = 1 (16)

˜

˜
=
1

2
[ ( + 1) ( 1)] =

1

2
[ + 1 ( 1 )] = 1 (17)

˜

˜
=
1

2
[ ( + 1) ( 1)] =

1

2
{ ( + 1) [ ( 1)]} = 1 (18)

Instead of Eqs.(3) and (4) we obtain:

˜A
˜

=
1

2
[A( + 1) A( 1)] =

˜A
˜

˜

˜
+
˜A
˜

˜

˜
=

˜A
˜
+
˜A
˜

=
1

2
[A( + 1, ) A( 1, )] +

1

2
[A( , + 1) A( , 1)] (19)

˜A
˜

=
1

2
[A( + 1) A( 1)] =

˜A
˜

˜

˜
+
˜A
˜

˜

˜
=

˜A
˜

˜A
˜

=
1

2
[A( + 1, ) A( 1, )]

1

2
[A( , + 1) A( , 1)] (20)

The second order di erence quotient becomes:

˜2A
˜ 2

=
˜

˜

˜A
˜
+
˜A
˜

˜

˜
+

˜

˜

˜A
˜
+
˜A
˜

˜

˜

=
˜2A
˜ 2

+ 2
˜2A
˜ ˜

+
˜2A
˜ 2

(21)

˜2A
˜ 2

=
˜

˜

˜A
˜

˜A
˜

˜

˜
+

˜

˜

˜A
˜

˜A
˜

˜

˜

=
˜2A
˜ 2

2
˜2A
˜ ˜

+
˜2A
˜ 2

(22)

We write Eq.(1) as di erence equation and substitute Eqs.(21), (22):

˜2A
˜ 2

˜2A
˜ 2

= a2V ( , ) (23)

4
˜2A
˜ ˜

= a2V ( , ) (24)
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FIGURE 6.2-1. The di erence of the averages of A taken at the points + 1, + 1 and
1, 1 as well as at + 1, 1 and 1, + 1 divided by 2 yields ˜2A/ ˜ ˜ .

This is the equivalent of Eq.(7) for finite di erences , . Since Eq.(11) only
defines the operator ˜2/ ˜ 2 we still have to explain the operator ˜2/ ˜ ˜ :

˜2A
˜ ˜

=
˜

˜

˜A
˜

=
1

2

˜

˜
[A( , + 1) A( , 1)]

=
1

4
{A( + 1, + 1) A( 1, + 1)

[A( + 1, 1) A( 1, 1)]}

=
1

2

1

2
[A( + 1, + 1) +A( 1, 1)]

1

2
[A( + 1, 1) +A( 1, + 1)] (25)

In the last two lines of Eq.(25) we have the averages 0.5[A( +1, +1)+A(
1, 1)] and 0.5[A( + 1, 1) +A( 1, + 1)]. Their first order di erence
yields ˜2A/ ˜ ˜ . Figure 6.2-1 shows the geometric meaning of this di erence
of two averages.

Equation (24) looks very similar to Eq.(7) and we will expect that a solu-
tion similar to Eq.(9) can be found. To obtain this solution we follow closely
Nörlund and Milne-Thomson2. They use the notation

˜u(x) =
u(x+ ) u(x)

= (x) (26)

2Nörlund 1924, Ch. 3; Milne-Thomson 1951, Ch.VIII
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for an inhomogeneous di erence equation of first order, where stands for
in Eq.(10) and the symmetric di erence quotient ˜/ ˜ is replaced by the right
di erence quotient ˜r/ ˜ of Eq.(13). To connect Eq.(26) with our notation
we can choose = 2

1

2
[u(x+ 2) u(x)] = (x), = 2 (27)

and substitute x = x 1:

˜u(x ) =
1

2
[u(x + 1) u(x 1)] = (x 1), x = x+ 1 (28)

Consider the function

f(x) = C0 [ (x) + (x+ ) + (x+ 2 ) + . . . ]

= C0
s=0

(x+ s ) (29)

and the shifted function f(x+ ):

f(x+ ) = C0
s=0

[ (x+ ) + (x+ 2 ) + . . . ] (30)

Substitution of f(x) for u(x) in Eq.(26) satisfies that equation and we have
found a formal solution of Eq.(26). The constant C0 may be replaced by a
definite integral

C0 =

c

( )d (31)

and the Hauptlösung or principal solution of Eq.(26)–also called the sum of
the function (x)–may be written in the form

F (x | ) =
c

( )d
s=0

(x+ s ) (32)

The integral is introduced for the constant C0 because a divergency of
this integral may compensate a divergency of the sum, which a constant C0
in Eq.(29) could not do. The principal solution of Eq.(26) is thus obtained by
summing the function (x). In analogy to the notation of integral calculus
Nörlund introduced the notation
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F (x | ) =
c

x

( ) =

c

( )d
s=0

(x+ s ) (33)

The function F (x | ) is obtained by summing (x) from c to x. The inte-
gral in Eq.(33) represents an ‘integration’ or ‘summing’ constant like the c in
x

c
f(x )dx if it and the sum converge. In this case one may write a constant

C0 for the integral rather than evaluate Eq.(31).

Let us mention that Nörlund’s definition of the sum of a function is
more general than Eq.(32):

F (x | ) = lim
μ 0

c

( )e μ ( )d

s=0

(x+ s )e μ (x+s )

This more general definition is required here only to obtain the sum of the
constant a in Table 6.2-1 (Milne-Thomson 1952, p. 203).

We rewrite F (x | ) for the symmetric di erence quotient on the left side
of Eq,(28) with the substitutions x = x 1 and = 2:

F (x 1 | 2) =
c

x 1

( ) =

c

( )d 2
s=0

(x 1 + 2s)

G(x) = F (x | 2) =
c

x

( ) =

c

( )d 2
s=0

(x+ 2s)

= for = 2 (34)

As an example let (x) in Eq.(26) be the exponential function e x and let
as well as x be real and positive:

u(x) = F (x | ) =
c

x

e =

c

e d
s=0

e (x+s )

= e c e x

1 e
(35)

In order to see what the symmetric di erence quotient and the choice
= 2 do to this result we consider the di erence equation

˜v(x ) =
1

2
[v(x + 1) v(x 1)] = e x = (x ), u(x ) = v(x )e

=
1

2
[u(x + 1) u(x 1)] = e (x 1) = (x 1) (36)
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The equation for v(x ) equals Eq.(28). We get with the help of Eq.(34) and
x = x+ 1:

v(x ) =e 1u(x )=e 1G(x )=

c

x

e ( +1) =e 1

c

e d 2
s=0

e (x +2s)

=e 1 e c 2e x

1 e 2
=e (c+1) 2

e e 1
e x =

2

e e 1
(C e x ) (37)

The integral exp( x )dx yields C e x . Equation (37) di ers by a factor
2/(e e 1)

.
= 0.85092 from this result.

It has been shown3 that Eq.(35) not only holds for the exponential function
(x) = e x in Eq.(26) but generally for the exponential function e x in the
complex plane as long as the condition | | < 2 /| | is satisfied:

c

x

e =
e c e x

1 e
, | | < 2

| |

c

x

e ( +1) =
e (c+1) 2e x

e e
, | | < (38)

This relation makes it possible to solve Eq.(26) for (x) = sin x:

1
[u(x+ ) u(x)] = sin x =

1

2i
ei x e i x

u(x) =
1

2i
c

x

ei e i

=
1

2i

ei c

i

ei x

1 ei
+
e i c

i
+

e i x

1 e i

=
cos c

2

cos (x /2)

sin( /2)
, | | < 2

| | (39)

We need the corresponding result for Eq.(36). Intermediate steps are given to
help with verification:

˜v(x ) =
1

2
[v(x + 1) v(x 1)] = sin x =

1

2i
ei x e i x (40)

3Nörlund 1924, p. 81; Milne-Thomson 1951, p. 231
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1

2
[v1(x + 1) v1(x 1)] =

1

2i
ei x , u1(x ) = 2ie

i v1(x )

1

2
[u1(x + 1) u1(x 1)] = ei (x 1) = (x 1) (41)

1

2
[v2(x + 1) v2(x 1)] =

1

2i
e i x , u2(x ) = 2iei v2(x )

1

2
[u2(x + 1) u2(x 1)] = e i (x 1) = (x 1) (42)

v(x ) = v1(x ) + v2(x ) =
1

2i
ei u1(x )

1

2i
e i u2(x )

=

c

x

sin ( + 1) =
1

2i
ei

c

x

ei
1

2i
e i

c

x

e i

=
1

2i

ei (c+1)

i

2ei (x +1)

1 e2i
+
e i (c+1)

i
+
2e i (x +1)

1 e 2i

=
cos[ (c+ 1)] cos x

sin
, | | < (43)

The integral sin x dx yields (cos x )/ +C. Equation (43) has the factor
1/ sin rather than 1/ .

We shall need a few more results like Eqs.(37) and (43). Since there is
no table of sums corresponding to the tables of integrals, except for the few
examples provided by Nörlund, one must calculate these sums. Table 6.2-1
shows a collection of sums needed in this book. Except for the last two sums
they are all due to Nörlund.

We have developed su cient mathematical tools and return to Eq.(24).
Let us use the notation

˜A( , )
˜

= v( , ) (44)

to obtain from Eq.(24) the relation

˜v( , )
˜

=
1

2
[v( , + 1) v( , 1)] =

a2

4
V ( , ) (45)

With the help of Eq.(33) we obtain a solution for v( , ):
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TABLE 6.2-1
SUMS v(x ) = v(x) OF CERTAIN FUNCTIONS (x ) = (x) ACCORDING TO EQ.(36)
FOR = 2. THE INTEGRALS OF (x) ARE SHOWN FOR COMPARISON.

(x) v(x) =

c

x

( + 1) (x)dx

a a(x c 1) ax+ C

e x e x

sh 1
+ e (c+1) e x + C

e x e x

sh

e (c+1)

+
e x

+ C

complex, | | <

sin x
cos x

sin
+
cos[ (c+ 1)]

, | | < cos x
+ C

cos x
sin x

sin
+
sin[ (c+ 1)]

, | | < +
sin x

+ C

e x sin x
e x

2 + 2
( 0 sin x 0 cos x) + C0

e x

2 + 2
( sin x cos x) + C

0 =
2( 2 + 2) sh cos

cos 2 ch 2

0 =
2( 2 + 2) ch sin

cos 2 ch 2

C0 =
e (c+1)

2 + 2
{ sin[ (c+ 1)]

cos[ (c+ 1)]}

e x cos x
e x

2 + 2
( 0 cos x+ 0 sin x) + C1

e x

2 + 2
( cos x+ sin x) + C

0 and 0 are shown above

C1 =
e (c+1)

2 + 2
{ cos[ (c+ 1)]

sin[ (c+ 1)]}

v( , ) =
a2

4
c1

V ( , + 1) (46)

Next we write

˜A( , )
˜

=
1

2
[A( + 1, ) A( 1, )] =

1

2
[v( + 1, ) v( 1, )]
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=
a2

4
c1

V ( , + 1)

A( , ) =
a2

4
c2 c1

V ( + 1, + 1) (47)

This is a particular solution of Eq.(24). To obtain the general solution we must
add the general solution of the homogeneous equation

˜2A( , )
˜ ˜

= 0 (48)

We rewrite this equation

˜

˜

˜A
˜

=
1

2

˜A( + 1)
˜

˜A( 1)
˜

= 0 (49)

This equation implies that ˜A/ ˜ does not vary with and thus must be a
function of only:

˜A
˜

= f0( )

If we sum over according to Eq.(34) we get

A =

c

f0( ) + f2( ) (50)

where f2( ) is an arbitrary function of for which holds ˜f2( )/ ˜ = 0. The
first term on the right of Eq.(50) represents an arbitrary function of plus a
constant. We denote the arbitrary function with f1( ) and the constant with
C:

A = f1( ) + f2( ) + C (51)

Substitution of and from Eq.(2) yields:

A( , ) = f1( ) + f2( + ) + C (52)

Hence, d’Alembert’s general solution of the di erential wave equation also ap-
plies to the di erence wave equation. Let us find its solution for the usual two
initial conditions. First we have for = 0

A( , )| =0 = 1( ) (53)
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FIGURE 6.2-2. The average slope [A(2) A(0)]/2 defined by the symmetric di erence quotient
of first order for = 1 starts at = 0.

The condition for the first derivative at = 0 is replaced by

˜A
˜

=
1

2
[A( , + 1) A( , 1)] =1 = 2( ) (54)

We have to take this condition for = 1 rather than for = 0 to avoid a value
1 smaller than 0. This is strictly a notational problem since the average

slope [A(2) A(0)]/2 at = 1 begins at = 0 according to Fig.6.2-2.
We take the symmetric first order di erence quotient of Eq.(52) and use

partial di erenciation4 according to Eq.(20):

˜A
˜

=
˜f1( )
˜( )

˜( )
˜

+
˜f2( + )
˜( + )

˜( + )
˜

(55)

With

˜( )
˜

=
1

2
{ ( + 1) [ ( 1)]} = 1

˜( + )
˜

=
1

2
[( + 1) ( 1)] = +1 (56)

we obtain

˜A
˜

=
˜f1( )
˜( )

+
˜f2( + )
˜( +

(57)

Equations (52) and (53) yield

f1( ) + f2( ) + C = 1( ) for = 0 (58)

while Eqs.(54) and (57) produce:

4The word di erenciation is used for finite di erences, the word di erentiation for in-
finitesimal di erences.
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˜f1( )
˜( )

+
˜f2( + )
˜( + )

= 2( ) for = 0 (59)

Summation of Eq.(59) and multiplication with 1 brings:

f1( ) f2( ) =

c

2( + 1) (60)

From Eqs.(58) and (60) we obtain f1( ) and f2( ):

f1( ) =
1

2
1( )

1

2
c

2( + 1)
1

2
C (61)

f2( ) =
1

2
1( ) +

1

2
c

2( + 1)
1

2
C (62)

Substitution of f1( ) and f2( ) into Eq.(52) brings:

A( , ) =
1

2
1( )

1

2
c

2( + 1)

+
1

2
1( + ) +

1

2
c

+

2( + 1) (63)

Using a notation analogous to that used for integrals we may rewrite Eq.(63):

A( , ) =
1

2
[ 1( ) + 1( + )] +

1

2

+

2( + 1) (64)

This is the di erence equivalent to the “classical solution” of the di erential
wave equation.

6.3 Differential Derivation of Aev( , )

The derivation of Aev( , ) in Eq.(2.2-40) used Eqs.(2.2-14) and (2.2-18)
which come from the double integral of Eq.(2.1-45). This very elegant solu-
tion of the inhomogeneous wave equation (2.1-44) was derived by Smirnow
(1961, Vol. II, VII, § 1, 175). The derivation of Smirnow’s solution uses Pois-
son’s formula (Smirnow, Vol. II, VII, § 1, 171). An extension of this formula
from di erential to di erence mathematics does not seem to exist. We must
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either develop this extension or find a new solution of the inhomogeneous wave
equation that is easier to extend to the mathematics of finite di erences. The
new solution is chosen here. Certain intermediate steps will be shown that one
would usually leave out but these steps will help with the extension to finite
di erences.

We start with the inhomogeneous di erential equation (2.1-44) for the
potential Aev( , ) but write it in simplified notation:

2A
2

2A
2
= a2V ( , ), A = Aev, V = Ve, a

2 = c2 2 (1)

Following the general solution of the wave equation by d’Alembert we introduce
new variables and

= + , = , =
1

2
( + ), =

1

2
( )

/ = 1, / = 1, / = 1, / = 1 (2)

and obtain:

A
=

A
+

A
=

A
+

A
(3)

A
=

A
+

A
=

A A
(4)

A second di erentiation yields:

2A
2
=

A
+

A
+

A
+

A

=
2A
2
+ 2

2A
+

2A
2

(5)

2A
2
=

A A
+

A A

=
2A
2

2
2A

+
2A
2

(6)

Substitution of Eqs.(5) and (6) into Eq.(1) yields:

2A
=
a2

4
V ( , ) (7)

Integration with respect to brings:
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A
=
a2

4
V ( , )d + F ( ) (8)

A further integration with respect to provides a general solution of Eq.(7):

A( , ) =
a2

4
V ( , )d + F ( ) d + C

=
a2

4
V ( , )d d + F ( ) + C (9)

The integration constants F ( ) and C must still be determined. To this end
we substitute = + and = in Eq.(9):

A( , ) =
a2

4

+

V ( , )d d + F ( ) + C (10)

It is evident from Eq.(1) that the addition of a constant C to A leaves the
equation unchanged. Since A( , ) represents a potential we always use its
derivatives either with respect to or to and the constant C disappears.
Hence, there is no need to determine C .

The function F ( ) added to Eq.(1) also makes no di erence since it
is one half of d’Alembert’s general solution of the homogeneous wave equation.
If we want the other half we may integrate Eq.(7) first with respect to and
then with respect to :

A
=
a2

4
V ( , )d + F ( ) (11)

A( , ) =
a2

4
V ( , )d + F ( ) d + C

=
a2

4
V ( , )d d + F ( ) + C (12)

The substitutions = + and = bring:

A( , ) =
a2

4

+

V ( , )d d + F ( + ) + C (13)
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A comparison with Eq.(10) shows that the double integral is the same since
the sequence of integrations can be interchanged. Equation (13) contains the
second half F ( + ) of d’Alembert’s general solution of the homogeneous
wave equation. Equation (10) describes waves that propagate in the direction
of increasing values of the spatial variable while Eq.(13) applies to waves
propagating in the direction of decreasing values of . The sum of Eqs.(10)
and (13) is also a solution of Eq.(1) and permits solutions of the homogeneous
equation of the form F ( ) + F ( + ):

A( , ) =
a2

8
2

+

V ( , )d d + F ( + ) + F ( ) (14)

A constant (C +C )a2/4 has been chosen to be zero in Eq.(14) in accordance
with the text following Eq.(10).

We denote the double integral of Eq.(14) as a particular inhomogeneous
solution Ai( , ) of Eq.(1)

Ai( , ) =
a2

4

+

V ( , )d d =
a2

4

+

V ( , )d d (15)

and

Ah( , ) =
a2

8
[F ( + ) + F ( )] (16)

as the general homogeneous solution:

A( , ) = Ai( , ) +Ah( , ) (17)

For the determination of the functions F and F we need two initial
conditions. We choose them to be:

A( , 0) = 0, A( , )/
=0
= Ȧ( , )

=0
= Ȧ( , 0) = 0 (18)

Ah( , 0) = Ai( , 0) (19)

Ȧh( , 0) = Ȧi( , 0) (20)

Equation (15) and (19) yield Ah( , 0) as function of the inhomogeneous
term V ( , ):

Ah( , 0) = Ai( , 0) =
a2

4
V ( , )d d (21)



6.3 differential derivation of Aev( , ) 253

In order to write Ȧh of Eq.(20) as function of V ( , ) we must di erentiate
Eq.(16) with respect to . From Eq.(2) we obtain the di erential relations

/ = 1/2, / = 1/2, / = 1/2, / = 1/2 (22)

and Eq.(15) yields:

Ai
=

Ai
+

Ai
=
1

2

Ai Ai

Ai Ai
=
a2

2

+

V ( , )d (23)

In order to be able to separate Ai/ and Ai/ we di erentiate Eq.(15)
with respect to :

Ai
=

Ai
+

Ai
=
1

2

Ai
+

Ai

Ai
+

Ai
=
a2

2
V ( + , )d (24)

Subtraction of Eq.(23) from Eq.(24) yields Ȧi:

Ȧi =
Ai
=
a2

4
V ( + , )d

+

V ( , )d (25)

In addition to Eq.(21) we have now a second initial condition for the homoge-
neous Eq.(16):

Ȧh( , 0) = Ȧi( , 0) =
a2

4
V ( , )d V ( , )d (26)

Let us return to the homogeneous solution Ah( , ) of Eq.(16) and di er-
entiate it with respect to :

Ȧh( , ) =
a2

8
[F ( + ) F ( )] (27)

For = 0 we use Eqs.(16) and (26) as initial conditions:

F ( ) + F ( ) =
8

a2
Ai( , 0) = 2 V ( , )d d (28)

F ( ) F ( ) =
8

a2
Ȧi( , 0) = 2 V ( , )d V ( , )d (29)
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Equation (27) is integrated with respect to :

F ( ) F ( ) =
8

a2
Ȧi( , 0)d + C1 =

8

a2
Ȧh( , 0)d + C1

= 2 V ( , )d V ( , )d d + C1 (30)

The sum and di erence of Eqs.(28) and (30) yield:

F ( ) =
4

a2
Ai( , 0) + Ȧi( , 0)d + C1

= V ( , )d d

+ V ( , )d V ( , )d d +
C1
2

(31)

F ( ) =
4

a2
Ai( , 0) Ȧi( , 0)d C1

= V ( , )d d

V ( , )d V ( , )d d
C1
2

(32)

The homogeneous solution of Eq.(16) becomes:

a2

8
[F ( + )+F ( )]=

a2

8

+ +

V ( , )d d + V ( , )d d

+

+

V ( , )d V ( , )d d (33)

Equation (14) may be rewritten as follows:
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A( , ) =
a2

8

+ +

V ( , )d V ( , )d d

+

+

V ( , )d V ( , )d d

+

V ( , )d V ( , )d d (34)

Substitution of A = Aev, V = Ve, and a
2 = c2 2 according to Eq.(1) brings

Eq.(34) into the following form:

Aev( , ) =
c2 2

8

+ +

Ve( , )d d

+ Ve( , )d Ve( , )d d (35)

Let us use the function Ve = Ve0F ( ) = Ve0e 2 of Eqs.(2.1-62) and (2.1-
64). For simplification we choose c2 2Ve0 = 1. We get from Eq.(2) for the last
two terms:

2 = 2( + )/2 = 2( + )/2 for =

= 2( + )/2 for =

e 2( + )/2d e 2( + )/2d = 0 (36)

The first term in Eq.(35) yields:

Aev( , ) =
1

8

+ +

e 2( + )/2d d

=
2
2
2

e 2 sh2( 2 /2) (37)

This worked quite well. However, if we use the function w( , ) of Eqs.(2.1-62)
and(2.2-13) we realize that the substitutions = + and = lead to
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FIGURE 6.3-1. a) Integration limits for the variables and in the first integral of Eq.(35).
b) Transformation of the integration limits from the coordinates , to the coordinates ,
in Eqs.(38) and (40).

more complicated integrals. This suggests to replace and in Eq.(35) by
and or rather by and . For the first term we obtain with = and
= + :

+ +

Ve( , )d d = Ve( , )Dd d

= 2 Ve( , )d d (38)

D =
/ /
/ /

=
1 1
1 1

= 2 (39)

The interval + , + is shown in Fig.6.3-1a. The
function Ve( , ) is defined for every pair of points , in this interval. Hence,
the left side of Eq.(38) represents the volume of Ve( , ) over the area defined
by the integration limits. The transformation = , = + rotates
the coordinate system , by /4 relative to the coordinate system , , as
shown in Fig.6.3-1b. The volume of the function Ve( , ) on the left in Eq.(38)
becomes the volume of the function Ve( , )D = 2V ( , ) on the right. To
obtain the same volume on both sides we must contract the coordinates and
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by a factor 1/ 2. The reduced lengths are used in Fig.6.3-1b. We obtain
the following integration limits in Eq.(38) on the right:

2 Ve( , )d d

= 2

0 +( + )

( + )

Ve( , )d d +

0

+( )

( )

Ve( , )d d (40)

Consider the example of Eq.(37):

Aev( , ) =
1

8

+ +

e 2( + )/2d d

=
1

4

0 +( + )

( + )

e 2 d d +

0

+( )

( )

e 2 d d

=
2
2
2

e 2 sh2( 2 /2) (41)

Alternately to Eqs.(37) and (41) we may use Eq.(2.1-45):

Aev( , ) =
1

2
0

+( )

( )

e 2 d d =
2
2
2

e 2 sh2( 2 /2) (42)

Equations (42) and (2.1-45) are much more desirable than Eqs.(37) and
(41)–which require that the last two terms of Eq.(35) vanish as shown by
Eq.(36)–but extending Eqs.(37) and (41) from di erential calculus to the cal-
culus of finite di erences appears to be a great deal easier than the correspond-
ing extensions of Eqs.(2.1-45) and (42).

6.4 Calculations for Section 3.3

We start with a collection of auxiliary variables that will be used exten-
sively. From Eqs.(3.1-1), (3.2-15), (3.2-31), (3.2-61), and (3.2-60) we get:
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N = T/ t, 2
2 = (c t)2 s (1)

1 = c t( Z + s/Z) = c2 t( μ+ s ) (2)

= 2 /N, = 0, ±1, ±2, . . . , ±N/2 (3)

d2 = 4 4 1 sin2
2

sin2
2
+ 2

2 (4)

A1 = ln 1 2[sin( /N)]2 +
1

2
h( /N)

A2 = ln 1 2[sin( /N)]2
1

2
h( /N)

a = arcsin
1

2
(d2 2

1)
1/2 (5)

= , = + , = 2 , + = 2 (6)

ik, ik, Sik, Di( ), h( /N) see Section 3.3

Equation (3.3-55) must be written so that the functions of and are
clearly shown. We note that D0( ) to D3( ) are not functions of or , but
the products S00S10 to S08S18 contain these variables. We postpone rewriting
the product S00S10, since it is done in a way di erent from the rest, and start
with S01S11. Equations (3.3-19), (3.3-39) and (3.3-20), (3.3-40) yield:

S01S11 =
e( 1/2 A1) /2

[( 1/2 A1)/2]2 + ( /N)2
e ( 1/2 A1) /2

[( 1/2 A1)/2]2 + ( /N)2

× 01 11 sin
N

sin
N

01 11 cos
N

cos
N

01 11 sin
N

cos
N

+ 01 11 cos
N

sin
N

= R11e
( 1/2 A1)

10 cos
2

N
11 cos

2

N

12 sin
2

N
+ 13 sin

2

N
(7)

S02S12 =
e( 1/2 A1) /2

[( 1/2 A1)/2]2 + ( /N)2
e ( 1/2 A1) /2

[( 1/2 A1)/2]2 + ( /N)2

× 01 11 sin
N

sin
N

01 11 cos
N

cos
N

+ 01 11 sin
N

cos
N

01 11 cos
N

sin
N
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= R11e
( 1/2 A1)

10 cos
2

N
11 cos

2

N

+ 12 sin
2

N
+ 13 sin

2

N
(8)

R11 =
1

{[( 1/2 A1)/2]2 + ( /N)2}2 (9)

10 =
1

2
( 01 11 01 11), 11 =

1

2
( 01 11 + 01 11)

12 =
1

2
( 01 11 + 01 11), 13 =

1

2
( 01 11 01 11) (10)

Furthermore, we get from Eqs.(3.3-23), (3.3-43) and (3.3-24), (3.3-44):

S03S13 = R13e
( 1/2 A2)

30 cos
2

N
31 cos

2

N

32 sin
2

N
+ 33 sin

2

N
(11)

S04S14 = R13e
( 1/2 A2)

30 cos
2

N
31 cos

2

N

+ 32 sin
2

N
+ 33 sin

2

N
(12)

R13 =
1

{[( 1/2 A2)/2]2 + ( /N)2}2 (13)

30 =
1

2
( 03 13 03 13), 31 =

1

2
( 03 13 + 03 13)

32 =
1

2
( 03 13 + 03 13), 33 =

1

2
( 03 13 03 13) (14)

The terms in the second sum of Eq.(3.3-55) are more complicated and
there are eight of them rather than four. With the following five auxiliary
variables

R15 =
1

( 1/4)2 + ( /N a/2)2
1

( 1/4)2 + ( /N + a/2)2
(15)

50 =
1

2
( 05 15 05 15), 51 =

1

2
( 05 15 + 05 15)

52 =
1

2
( 05 15 + 05 15), 53 =

1

2
( 05 15 05 15) (16)



260 6 appendix

we obtain expressions for S05S15, S06S15, S05S16, S06S16 with and shown
explicitly:

S05S15 =
e 1 /4

( 1/4)2 + ( /N a/2)2
e 1 /4

( 1/4)2 + ( /N a/2)2

× 05 15 sin
N

a

2
sin

N
+

a

2

05 15 cos
N

a

2
cos

N
+

a

2

05 15 sin
N

a

2
cos

N
+

a

2

+ 05 15 cos
N

a

2
sin

N
+

a

2

= R15e 1 /2
50 cos

2

N
cos a sin

2

N
sin a

51 cos
2

N
cos a sin

2

N
sin a

+ 52 sin
2

N
cos a + cos

2

N
sin a

53 sin
2

N
cos a + cos

2

N
sin a (17)

S06S15 = R15e 1 /2
52 cos

2

N
cos a sin

2

N
sin a

+ 53 cos
2

N
cos a sin

2

N
sin a

50 sin
2

N
cos a + cos

2

N
sin a

51 sin
2

N
cos a + cos

2

N
sin a (18)

S05S16 = R15e 1 /2
52 cos

2

N
cos a sin

2

N
sin a

53 cos
2

N
cos a sin

2

N
sin a

50 sin
2

N
cos a + cos

2

N
sin a

+ 51 sin
2

N
cos a + cos

2

N
sin a (19)
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S06S16 = R15e 1 /2
50 cos

2

N
cos a sin

2

N
sin a

+ 51 cos
2

N
cos a sin

2

N
sin a

+ 52 sin
2

N
cos a + cos

2

N
sin a

+ 53 sin
2

N
cos a + cos

2

N
sin a (20)

For the products S07S17, S08S17, S08S18, S07S18 we may again use the
auxiliary variable R15 of Eq.(15) but the auxiliary variables of Eq.(16) must be
replaced:

70 =
1

2
( 07 17 07 17), 71 =

1

2
( 07 17 + 07 17)

72 =
1

2
( 07 17 + 07 17), 73 =

1

2
( 07 17 07 17) (21)

The following four products are obtained from Eq.(3.3-55):

S07S17 =
e 1 /4

( 1/4)2 + ( /N + a/2)2
e 1 /4

( 1/4)2 + ( /N a/2)2

× 07 17 sin
N
+

a

2
sin

N
a

2

07 17 cos
N
+

a

2
cos

N
a

2

07 17 sin
N
+

a

2
cos

N
a

2

+ 07 17 cos
N
+

a

2
sin

N
a

2

= R15e 1 /2
70 cos

2

N
cos a + sin

2

N
sin a

71 cos
2

N
cos a + sin

2

N
sin a

+ 72 sin
2

N
cos a cos

2

N
sin a

73 sin
2

N
cos a cos

2

N
sin a (22)
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S08S17 = R15e 1 /2
72 cos

2

N
cos a + sin

2

N
sin a

+ 73 cos
2

N
cos a + sin

2

N
sin a

70 sin
2

N
cos a cos

2

N
sin a

71 sin
2

N
cos a cos

2

N
sin a (23)

S07S18 = R15e 1 /2
72 cos

2

N
cos a + sin

2

N
sin a

73 cos
2

N
cos a + sin

2

N
sin a

70 sin
2

N
cos a cos

2

N
sin a

+ 71 sin
2

N
cos a cos

2

N
sin a (24)

S08S18 = R15e 1 /2
70 cos

2

N
cos a + sin

2

N
sin a

+ 71 cos
2

N
cos a + sin

2

N
sin a

+ 72 sin
2

N
cos a cos

2

N
sin a

+ 73 sin
2

N
cos a cos

2

N
sin a (25)

We turn to the term S00S10 in Eq.(3.3-55). Equations (3.3-17) and (3.3-38)
yield:

S00S10 =
e 2 /2

sh( 1/2)

e 2 /2

sh( 2/2)
=

e 2

sh2( 2/2)
(26)

The term for = 0 of the first sum in Eq.(3.3-55) might still have to be added
to S00S10. We obtain from Eq.(3.2-15):

= 2 /N = 0 for = 0 (27)
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From Eq.(3.3-14) we get

h(0) = ( 4 2
2 +

2
1)
1/2, 4 2

2 +
2
1 0 (28)

and Eq.(3.3-18) yields:

A1 = ln[1 + ( 4 2
2 +

2
1)
1/2]

.
= ( 4 2

2 +
2
1)
1/2

A2 = ln[1 ( 4 2
2 +

2
1)
1/2]

.
= ( 4 2

2 +
2
1)
1/2 (29)

Further, we obtain from Eqs.(3.3-9), (3.3-10), (3.3-12), (3.3-19)—(3.3-26), and
(3.3-39)—(3.3-46) for = 0:

D0(0) = 0 (30)

D1(0) = 1
1 1/2

( 4 2
2 +

2
1)
1/2

(31)

D2(0) = 1 +
1 1/2

( 4 2
2 +

2
1)
1/2

(32)

S01 =
e( 1/2 A1) /2

01

[( 1/2 A1)/2]
2

01 =
2[( 1/2 A1)/2]

2 sh[( 1/2 A1)/2]

1 ch( 1/2 A1)
(33)

S02 =
e( 1/2 A1) /2

01

[( 1/2 A1)/2]
2 , 01 = 0 (34)

S03 =
e( 1/2 A2) /2

03

[( 1/2 A2)/2]
2

03 =
2[( 1/2 A2)/2]

2 sh[( 1/2 A2)/2]

1 ch( 1/2 A2)
(35)

S04 =
e( 1/2 A2) /2

03

[( 1/2 A2)/2]
2 , 03 = 0 (36)

S11 =
e ( 1/4 A1/2)

11

( 1/4 A1/2)
2 , 11 = 0 (37)

S12 =
e ( 1/4 A1/2)

11

( 1/4 A1/2)
2

11 =
2( 1/4 A1/2)

2 sh( 1/4 A1/2)

1 ch( 1/2 A1)
(38)

S13 =
e ( 1/4 A2/2)

13

( 1/4 A2/2)
2 , 13 = 0 (39)
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S14 =
e ( 1/4 A2/2)

13

( 1/4 A2/2)
2

13 =
2( 1/4 A2/2)

2 sh( 1/4 A2/2)

1 ch( 1/2 A2)
(40)

We obtain for = 0:

S01S11 = 0, S02S12 = 0, S03S13 = 0, S04S14 = 0 (41)

With D1(0) and D2(0) finite in all cases except the distortion-free case men-
tioned after Eq.(3.2-58) we obtain zero for the term = 0 in the first sum of
Eq.(3.3-55).

Using S00S10 of Eq.(26) wew may rewrite the first line of Eq.(3.3-55) into
the following form

1

4
Ve0(c t)2S00S10 =

1

4
Ve0(c t)2

e 2

sh2( 2/2)

.
= Ve0(c t)2

1
2
2

e 2

2 = (c t) s 1 (42)

which di ers from the first line of Eq.(2.2-39):

L1 = Ve0(c )
2 1

2
2

e 2 (1 ch 2 ) (43)

One may add the general solution of the homogeneous di erence wave equation
of Eq.(6.2-52) to Eq.(42). If one chooses

f1( ) + f2( + ) =
Ve0(c t)2

2 2
2

e 2( ) + e 2( + )

= Ve0(c t)2
1
2
2

e 2 ch 2 (44)

and adds Eq.(44) to Eq.(42) one obtains Eq.(43) for = t. There is no
incentive to do so. This term of the di erential theory was ignored according to
Eq.(6.1-64) and Fig.6.1-1 in order to save a Fourier series expansion of 1 ch 2 .
We are glad this term does not occur in Eq.(42) of the finite di erence theory.

With the help of Eqs.(7)—(14) we may combine the terms of the first sum
in Eq.(3.3-55):

D0[D1(S01S11 + S02S12) D2(S03S13 + S04S14)]

= e 1 /2 G11e A1 cos
2

N
G12e A1 sin

2

N

+G13e A2 cos
2

N
G14e A2 sin

2

N
(45)
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G11( ) = 2D0D1R11 11 G12( ) = 2D0D1R11 13

G13( ) = 2D0D2R13 13 G14( ) = 2D0D2R13 33 (46)

The second sum of Eq.(3.3-55) can be rewritten correspondingly with the
help of Eqs.(17)—(25):

(D0S05 D3S06)S15 + (D0S06 D3S05)S16

+ (D0S07 D3S08)S17 + (D0S08 +D3S07)S18

= e 1 /2 G01( ) cos
2

N
G03( ) sin

2

N
cos a

+ G03( ) cos
2

N
+G01( ) sin

2

N
sin a

+ G02( ) cos a G04( ) sin a cos
2

N

+ G04( ) cos a +G02( ) sin a sin
2

N
(47)

G01( ) = 2R15D3 52

G02( ) = 2R15[D0( 51 + 71) +D3 73]

G03( ) = 2R15D3 50

G04( ) = 2R15[D0( 53 + 73) D3 71] (48)

Using Eqs.(42), (45), and (47) we may write the potential Aev( , ) =
Aev( , ) of Eq.(3.3-55) in the form of Eq.(6.1-61) of the di erential theory:

Aev( , ) =
1

4
(c t)2Ve0

e 2

sh2( 2/2)

1

N
e 1 /2

N/2 1
KN/2,K0,=0

= N/2+1
K0,KN/2

(G11e A1 +G13e A2 ) cos
2

N

(G12e A1 +G14e A2 ) sin
2

N
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+
2

N
e 1 /2

<KN/2

< K0

> KN/2

>K0

G01( ) cos
2

N
G03( ) sin

2

N
cos a

+ G03( ) cos
2

N
+G01( ) sin

2

N
sin a

+ (G02( ) cos a G04( ) sin a ) cos
2

N

+ (G04( ) cos a +G02( ) sin a ) sin
2

N
(49)

Following the spirit of Section 6.1 starting after Eq.(6.1-64) we use Fourier
series expansions to eliminate all terms in Eq.(49) with a time variation other
than sin(2 /N) or cos(2 /N). But a change is required. The summation
over in Eq.(6.1-61) ran from = 1 to = N and we chose the limits of the
sum in Eq.(6.1-65) as = 1 and = N . In Eq.(3.3-56) the summation is from
= (N/2 1) to = N/2 1. This suggests to use the same limits for our

Fourier series expansion. Since negative values = 1 to = (N/2 1) add
nothing new to what is obtained from positive values = 1 to = N/2 1 we
restrict the range of summation to 1 N/2 1. The exclusion of = N/2
is important. With = N/2 we get sin for sin(2 /N). Table 6.2-1 shows
that the summation of sin and cos exists only for | | < . Hence, the
exclusion of N/2 and larger values is a must. We choose the following form of
the Fourier series:

f ( ) = g0 +

N/2 1

=1

[gs ( ) sin(2 /N) + gc ( ) cos(2 /N)]

gs ( ) =
2

N

N

0

f ( ) sin(2 /N)d gc ( ) =
2

N

N

0

f ( ) cos(2 /N)d

g0 =
1

N

N

0

f ( )d , 0 = t/ t T/ t = N (50)

We apply this series expansion to the time-variable factors exp[( 1/2+ A1 ]
and exp[( 1/2 + A2) ] in the first sum in Eq.(49):

f 1( ) = e
( 1/2 A1) = g01 +

N/2 1

=1

[gs 1( ) sin(2 /N)

+ gc 1( ) cos(2 /N)] (51)
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gs 1( ) =
2

N

N

0

e ( 1/2 A1) sin
2

N
d

=
1

N

4 /N

( 1/2 A1)2 + (2 /N)2
(1 e ( 1/2 A1)N ) (52)

gc 1( ) =
2

N

N

0

e ( 1/2 A1) cos
2

N
d

=
1

N
1 2 A1

( 1/2 A1)2 + (2 /N)2
(1 e ( 1/2 A1)N ) (53)

g01 =
1

N

N

0

e ( 1/2 A1) d =
1

N

1

1/2 A1
(1 e ( 1/2 A1)N ) (54)

f 2( ) = e
( 1/2 A2) = g02 +

N/2 1

=1

[gs 2( ) sin(2 /N)

+ gc 2( ) cos(2 /N)] (55)

gs 2( ) =
1

N

4 /N

( 1/2 A2)2 + (2 /N)2
(1 e ( 1/2 A2)N ) (56)

gc 2( ) =
1

N
1 2 A2

( 1/2 A2)2 + (2 /N)2
(1 e ( 1/2 A2)N ) (57)

g02 =
1

N

1

1/2 A2
(1 e ( 1/2 A2)N ) (58)

The terms of the first sum in Eq.(49) are rewritten with the help of
Eqs.(51)—(58):

e 1 /2

N
(G11e A1 +G13e A2 ) cos

2

N
(G12e A1 +G14e A2 ) sin

2

N

=
1

N
Lc0( , 0) +

N/2 1

=1

[Lcs ( , ) sin(2 /N)

+ Lcc ( , ) cos(2 /N)] cos
2

N

+
1

N
Ls0( , 0) +

N/2 1

=1

[Lss ( , ) sin(2 /N)

+ Lsc ( , ) cos(2 /N)] sin
2

N
(59)
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for K0 < < K0 or | | > KN/2

Lc0( , 0) = G11( )g01 +G13( )g02

Lcs ( , ) = G11( )gs 1( ) +G13( )gs 2( )

Lcc ( , ) = G11( )gc 1( ) +G13( )gc 2( ) (60)

Ls0( , 0) = G12( )g01 +G14( )g02

Lss ( , ) = G12( )gs 1( ) +G14( )gs 2( )

Lcc ( , ) = G12( )gc 1( ) +G14( )gc 2( ) (61)

We turn to the second sum in Eq.(49). All terms of the sum are multiplied
by exp( 1 /2). There are four di erent functions for which we need Fourier
expansions:

e 1 /2 cos(2 /N)

= J13( , 0) +

N/2 1

=1

[J11( , ) sin(2 /N) + J12( , ) cos(2 /N)] (62)

e 1 /2 sin(2 /N)

= J16( , 0) +

N/2 1

=1

[J14( , ) sin(2 /N) + J15( , ) cos(2 /N)] (63)

e 1 /2 cos A

= J19( , 0) +

N/2 1

=1

[J17( , ) sin(2 /N) + J18( , ) cos(2 /N)] (64)

e 1 /2 sin A

= J22( , 0) +

N/2 1

=1

[J20( , ) sin(2 /N) + J21( , ) cos(2 /N)] (65)

The following twelve integrals are obtained with the help of a table (Grad-
shtyn and Ryzhik 1980, 2.663/1, 2.663/3, 2.664/1):



6.4 calculations for section 3.3 269

J11( , ) =
2

N

N

0

e 1 /2 cos(2 /N) sin(2 /N)d =
1

N
1 e 1N/2

× 2 ( + )/N

( 1/2)2 + [2 ( + )/N ]2
2 ( )/N

( 1/2)2 + [2 ( )/N ]2
(66)

J12( , ) =
2

N

N

0

e 1 /2 cos(2 /N) cos(2 /N)d =
1

2N
1 e 1N/2

× 1

( 1/2)2 + [2 ( + )/N ]2
+

1

( 1/2)2 + [2 ( )/N ]2
(67)

J13( , ) =
1

N

N

0

e 1 /2 cos(2 /N)d =
1

2N

1 e 1N/2

( 1/2)2 + (2 /N)2
(68)

J14( , ) =
2

N

N

0

e 1 /2 sin(2 /N) sin(2 /N)d =
1

2N
1 e 1N/2

× 1

( 1/2)2 + [2 ( + )/N ]2
1

( 1/2)2 + [2 ( )/N ]2
(69)

J15( , ) =
2

N

N

0

e 1 /2 sin(2 /N) cos(2 /N)d =
1

N
1 e 1N/2

× 2 ( + )/N

( 1/2)2 + [2 ( + )/N ]2
+

2 ( )/N

( 1/2)2 + [2 ( )/N ]2
(70)

J16( , 0) =
1

N

N

0

e 1 /2 sin(2 /N)d =
1

N

(2 /N) 1 e 1N/2

( 1/2)2 + (2 /N)2
(71)

J17( , ) =
2

N

N

0

e 1 /2 cos a sin(2 /N)d =
1

N
1 e 1N/2

× a + 2 /N

( 1/2)2 + ( a + 2 /N)2
a 2 /N

( 1/2)2 + ( a 2 /N)2
(72)

J18( , ) =
2

N

N

0

e 1 /2 cos a cos(2 /N)d =
1

2N
1 e 1N/2

× 1

( 1/2)2 + ( a + 2 /N)2
+

1

( 1/2)2 + ( a 2 /N)2
(73)
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J19( , 0) =
1

N

N

0

e 1 /2 cos a d =
1

2N

1 e 1N/2

( 1/2)2 + 2
a

(74)

J20( , ) =
2

N

N

0

e 1 /2 sin a sin(2 /N)d =
1

2N
1 e 1N/2

× 1

( 1/2)2 + ( a + 2 /N)2
1

( 1/2)2 + ( a 2 /N)2
(75)

J21( , ) =
2

N

N

0

e 1 /2 sin a cos(2 /N)d =
1

N
1 e 1N/2

× a + 2 /N

( 1/2)2 + ( a + 2 /N)2
+

a 2 /N

( 1/2)2 + ( a 2 /N)2
(76)

J22( , 0) =
1

N

N

0

e 1 /2 sin a d =
1

N
1 e 1N/2 a

( 1/2)2 + 2
a

(77)

The terms in the second sum of Eq.(49) are rewritten with the help of
Eqs.(62)—(77):

2

N

<KN/2

< K0

> KN/2

>K0

e 1 /2 G01( ) cos
2

N
G03( ) sin

2

N
cos a

+ G03( ) cos
2

N
+G01( ) sin

2

N
sin a

+ (G02( ) cos a G04( ) sin a ) cos
2

N

+ (G04( ) cos a +G02( ) sin a ) sin
2

N

=
2

N

<KN/2

< K0

> KN/2

>K0

La0c( , 0)+

N/2 1

=1

Lasc( , ) sin
2

N
+Lacc( , ) cos

2

N
cos a

+La0s( , 0)+

N/2 1

=1

Lass( , ) sin
2

N
+Lacs( , ) cos

2

N
sin a

+L0c( , 0)+

N/2 1

=1

Lsc( , ) sin
2

N
+Lcc( , ) cos

2

N
cos

2

N
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+L0s( , 0)+

N/2 1

=1

Lss( , ) sin
2

N
+Lcs( , ) cos

2

N
sin

2

N

(78)

for K0 < | | < KN/2

La0c( , 0) = [G01( )J13( , 0) +G03( )J16( , 0)]

Lasc( , ) = [G01( )J11( , ) +G03( )J14( , )]

Lacc( , ) = [G01( )J12( , ) +G03( )J15( , )] (79)

La0s( , 0) = [G03( )J13( , 0) G01( )J16( , 0)]

Lass( , ) = [G03( )J11( , ) G01( )J14( , )]

Lacs( , ) = [G03( )J12( , ) G01( )J15( , )] (80)

L0c( , 0) = [G02( )J19( , 0) +G04( )J22( , 0)]

Lsc( , ) = [G02( )J17( , ) +G04( )J20( , )]

Lcc( , ) = [G02( )J18( , ) +G04( )J21( , )] (81)

L0s( , 0) = [G04( )J19( , 0) G02( )J22( , 0)]

Lss( , ) = [G04( )J17( , ) G02( )J20( , )]

Lcs( , ) = [G04( )J18( , ) G02( )J21( , )] (82)

The sum of exp( 2 )/
2
2, Eqs.(59) and (78) yields Aev( , ) of Eq.(49).

We write this sum in a compacted form that shows only the variable explicitly:

Aev( , ) = (c t)2Ve0
e 2

4 sh2( 2/2)

+

N/2 1,=0

= N/2+1

Cec( , ) cos
2

N
+ Ces( , ) sin

2

N

+Caec( , ) cos a + Caes( , ) sin a (83)

for K0 < < K0, = 0 or | | > KN/2

Cec( , ) =
1

4N
Lc0( , 0)

+

N/2 1

=1

Lcs ( , ) sin
2

N
+ Lcc ( , ) cos

2

N
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Ces( , ) =
1

4N
Ls0( , 0)

+

N/2 1

=1

Lss ( , ) sin
2

N
+ Lsc ( , ) cos

2

N

Caec( , ) = 0

Caes( , ) = 0 (84)

for K0 < | | < KN/2

Cec( , ) =
1

2N
L0c( , 0)

+

N/2 1

=1

Lsc( , ) sin
2

N
+ Lcc( , ) cos

2

N

Ces( , ) =
1

2N
L0s( , 0)

+

N/2 1

=1

Lss( , ) sin
2

N
+ Lcs( , ) cos

2

N

Caec( , ) =
1

2N
La0c( , 0)

+

N/2 1

=1

Lasc( , ) sin
2

N
+ Lacc( , ) cos

2

N

Caes( , ) =
1

2N
La0s( , 0)

+

N/2 1

=1

Lass( , ) sin
2

N
+ Lacs( , ) cos

2

N
(85)

Equation (83) has the form of Eq.(6.1-109). But the time variable term
ch 2 of Ae0( , ) in Eq.(6.1-109) does no longer occur. Furthermore, the two
spatial terms exp( 2 ) and sin 2 in Eq.(6.1-109) have been replaced by
five spatial terms exp( 2 ), cos(2 /N), . . . , sin a ) in Eq.(83).

6.5 Calculations for Section 3.4

The first two terms Aev( ± 1, ) of Eq.(3.4-1) follow from Eq.(3.3-56) by
the substitution of ± 1 for :
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Aev( ± 1, ) = (c t)2Ve0
e 2( ±1)

4 sh2( 2/2)

+

N/2 1,=0

= N/2+1

Cec( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N

+ Ces( , ) sin
2

N
cos

2

N
cos

2

N
sin

2

N

+ Caec( , )(cos a cos a sin a sin a)

+ Caes( , )(sin a cos a ± cos a sin a) (1)

The di erence (Z s/2)[Aev( + 1, ) Aev( 1, )] becomes:

Amv1( , ) =
1

2
Z s[Aev( + 1, ) Aev( 1, )]

= Z s(c t)2Ve0
sh 2

4 sh2( 2/2)
e 2

+

N/2 1,=0

= N/2+1

sin
2

N
Cec( , ) sin

2

N
Ces( , ) cos

2

N

+sin a[C
a
ec( , ) sin a Caes( , ) cos a ] (2)

We turn to Eq.(3.4-9) and substitute ± 1 for to obtain the summation
of Aev( , ± 1):

Aev( , ±1) = (c t)2Ve0
e 2

4 sh2( 2/2) sh 2

+

N/2 1,=0

= N/2+1

Cec( , ± 1)sin(2 /N)

sin(2 /N)
Ces( , ± 1)cos(2 /N

sin(2 /N)

+Caec( , ± 1)sin a

sin a
Caes( , ± 1)cos a

sin a
(3)

The term Amv2( , ) in Eq.(3.4-3) becomes with the help of Eqs.(3.4-1)
and (3):
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Amv2( , ) = Z s [Aev( , + 1) 2Aev( , ) +Aev( , 1)]

= Z s(c t)2Ve0

N/2 1,=0

= N/2+1

[Cec( , + 1) 2Cec( , ) + Cec( , 1)]
sin(2 /N)

sin(2 /N)

[Ces( , + 1) 2Ces( , ) + Ces( , 1)]
cos(2 /N)

sin(2 /N)

+[Caec( , + 1) 2Caec( , ) + C
a
ec( , 1)]

sin a

sin a

[Caes( , + 1) 2Caes( , ) + C
a
es( , 1)]

cos a

sin a
(4)

For Amv3( , ) in Eq.(3.4-3) we obtain:

Amv3( , ) =
1

2
Z [Aev( , + 1) Aev( , 1)]

=
1

2
Z(c t)2Ve0

N/2 1,=0

= N/2+1

[Cec( , + 1) Cec( , 1)]
sin(2 /N)

sin(2 /N)

[Ces( , + 1) Ces( , 1)]
cos(2 /N)

sin(2 /N)

+[Caec( , + 1) Caec( , 1)]
sin a

sin a

[Caes( , + 1) Caes( , 1)]
cos a

sin a
(5)

The time functions Cec( , + 1) to Caes( , 1) follow from Eqs.(6.4-84)
and (6.4-85) by the substitution of ± 1 for :

for K0 < < K0, = 0, or | | > KN/2

Cec( , ± 1) = 1

4N
Lc0( , )

+

N/2 1

=1

Lcs ( , ) sin
2 ( ± 1)

N
+ Lcc ( , ) cos

2 ( ± 1)
N
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=
1

4N
Lc0( , 0)

+

N/2 1

=1

Lcs ( , ) sin
2

N
cos

2

N
± cos 2

N
sin

2

N

+ Lcc ( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N

Ces( , ± 1) = 1

4N
Ls0( , 0)

+

N/2 1

=1

Lss ( , ) sin
2 ( ± 1)

N
+ Lsc ( , ) cos

2 ( ± 1)
N

=
1

4N
Ls0( , 0)

+

N/2 1

=1

Lss ( , ) sin
2

N
cos

2

N
± cos 2

N
sin

2

N

+ Lsc ( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N

Caec( , ± 1) = 0
Caes( , ± 1) = 0 (6)

for K0 < | | < KN/2

Cec( , ± 1) = 1

2N
L0c( , 0)

+

N/2 1

=1

Lsc( , ) sin
2 ( ± 1)

N
+ Lcc( , ) cos

2 ( ± 1)
N

=
1

2N
L0c( , 0)

+

N/2 1

=1

Lsc( , ) sin
2

N
cos

2

N
± cos 2

N
sin

2

N

+ Lcc( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N

Ces( , ± 1) = 1

2N
L0s( , 0)

+

N/2 1

=1

Lss( , ) sin
2 ( ± 1)

N
+ Lcs( , ) cos

2 ( ±1)
N
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=
1

2N
L0s( , 0)

+

N/2 1

=1

Lss( , ) sin
2

N
cos

2

N
± cos 2

N
sin

2

N

+ Lcs( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N

Caec( , ± 1) = 1

2N
La0c( , 0)

+

N/2 1

=1

Lasc( , ) sin
2 ( ± 1)

N
+ Lacc( , ) cos

2 ( ± 1)
N

=
1

2N
La0c( , 0)

+

N/2 1

=1

Lasc( , ) sin
2

N
cos

2

N
± cos 2

N
sin

2

N

+ Lacc( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N

Caes( , ± 1) = 1

2N
La0s( , 0)

+

N/2 1

=1

Lass( , ) sin
2 ( ± 1)

N
+ Lacs( , ) cos

2 ( ± 1)
N

=
1

2N
La0s( , 0)

+

N/2 1

=1

Lass( , ) sin
2

N
cos

2

N
± cos 2

N
sin

2

N

+ Lacs( , ) cos
2

N
cos

2

N
sin

2

N
sin

2

N
(7)

Using Eqs.(6) and (7) we may simplify the four terms in brackets of Eq.(4).
The variables C are replaced by new variables D:

for K0 < < K0, = 0, or | | > KN/2

Dec( , ) = Cec( , + 1) 2Cec( , ) + Cec( , 1)

=
1

N

N/2 1

=1

sin2
N

Lcs ( , ) sin
2

N
+ Lcc ( , ) cos

2

N
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Des( , ) = [Ces( , + 1) 2Ces( , ) + Ces( , 1)]

=
1

N

N/2 1

=1

sin2
N

Lss ( , ) sin
2

N
+ Lsc ( , ) cos

2

N

Da
ec( , ) = 0

Da
es( , ) = 0 (8)

for K0 < | | < KN/2

Dec( , ) = Cec( , + 1) 2Cec( , ) + Cec( , 1)

=
2

N

N/2 1

=1

sin2
N

Lsc( , ) sin
2

N
+ Lcc( , ) cos

2

N

Des( , ) = [Ces( , + 1) 2Ces( , ) + Ces( , 1)]

=
2

N

N/2 1

=1

sin2
N

Lss( , ) sin
2

N
+ Lcs( , ) cos

2

N

Da
ec( , ) = C

a
ec( , + 1) 2Caec( , ) + C

a
ec( , 1)

=
2

N

N/2 1

=1

sin2
N

Lasc( , ) sin
2

N
+ Lacc( , ) cos

2

N

Da
es( , ) = [Caes( , + 1) 2Caes( , ) + C

a
es( , 1)]

=
2

N

N/2 1

=1

sin2
N

Lass( , ) sin
2

N
+ Lacs( , ) cos

2

N
(9)

The terms of Amv3( , ) in Eq.(5) may also be simplified significantly with
the help of Eqs.(6) and (7) using new variables E instead of C:

for K0 < < K0, = 0, or | | > KN/2

Eec( , ) = Cec( , + 1) Cec( , 1)

=
1

2N

N/2 1

=1

sin
2

N
Lcs ( , ) cos

2

N
Lcc ( , ) sin

2

N

Ees( , ) = [Ces( , + 1) Ces( , 1)]

=
1

2N

N/2 1

=1

sin
2

N
Lss ( , ) cos

2

N
Lsc ( , ) sin

2

N

Eacc( , ) = 0

Eaes( , ) = 0 (10)
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for K0 < | | < KN/2

Eec( , ) = Cec( , + 1) Cec( , 1)

=
1

N

N/2 1

=1

sin
2

N
Lsc( , ) cos

2

N
Lcc( , ) sin

2

N

Ees( , ) = [Ces( , + 1) Ces( , 1)]

=
1

N

N/2 1

=1

sin
2

N
Lss( , ) cos

2

N
Lcs( , ) sin

2

N

Eaec( , ) = C
a
ec( , + 1) Caec( , 1)

=
1

N

N/2 1

=1

sin
2

N
Lasc( , ) cos

2

N
Lacc( , ) sin

2

N

Eaes( , ) = [Caes( , + 1) Caes( , 1)]

=
1

N

N/2 1

=1

sin
2

N
Lass( , ) cos

2

N
Lacs( , ) sin

2

N
(11)

Equation (4) for the component Amv2( , ) may be rewritten into the fol-
lowing form using the six equations of Eqs.(8) and (9):

Amv2( , ) = Z s(c t)2Ve0

N/2 1,=0

= N/2+1

Dec( , )
sin(2 /N)

sin(2 /N)
+Des( , )

cos(2 /N)

sin(2 /N)

+Da
ec( , )

sin a

sin a
+Da

es( , )
cos a

sin a
(12)

The component Amv3( , ) of Eq.(5) may be rewritten with the help of the
six equations of Eqs.(10) and (11):

Amv3( , ) =
1

2
Z(c t)2Ve0

N/2 1,=0

= N/2+1

Eec( , )
sin(2 /N)

sin(2 /N)
+Ees( , )

cos(2 /N)

sin(2 /N)

+Eaec( , )
sin a

sin a
+Eaes( , )

cos a

sin a
(13)
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Wemay combine Amv1( , ) of Eq.(2), Amv2( , ) of Eq.(12) and Amv3( , )
of Eq.(13) according to Eq.(3.4-3):

Amv( , ) = Amv1( , ) +Amv2( , ) +Amv3( , )

= Z(c t)2Ve0
sh 2

4 sh2( 2/2)
e 2 +

N/2 1,=0

= N/2+1

Cmc( , ) cos
2

N
+ Cms( , ) sin

2

N

+ Camc( , ) cos a + Cams( , ) sin a (14)

The functions Cmc( , ) to C
a
ms( , ) have the following values:

for K0 < < K0, = 0, or | | > KN/2

Cmc( , ) = + s Ces( , ) sin
2

N

Des( , )

sin(2 /N)
+

Ees( , )

2 sin(2 /N)

Cms( , ) = s Cec( , ) sin
2

N
+

Dec( , )

sin(2 /N)

Eec( , )

2 sin(2 /N)

Camc( , ) = 0

Cams( , ) = 0 (15)

for K0 < | | < KN/2

Cmc( , ) = + s Ces( , ) sin
2

N

Des( , )

sin(2 /N)
+

Ees( , )

2 sin(2 /N)

Cms( , ) = s Cec( , ) sin
2

N
+

Dec( , )

sin(2 /N)

Eec( , )

2 sin(2 /N)

Camc( , ) = + s Caes( , ) sin a
Da
es( , )

sin a
+
Eaes( , )

2 sin a

Cams( , ) = s Caec( , ) sin a +
Da
ec( , )

sin a

Eaec( , )

2 sin a
(16)

Equations (15) and (16) will be needed in a form that shows the time
variation explicitly. Using Eqs.(6.4-84), (8), and (10) we obtain from Eq.(15):

for K0 < < K0, = 0, or | | > KN/2

Cmc( , )=
1

4N
L00( , 0)+

N/2 1

=1

L01( , ) sin
2

N
+L02( , ) cos

2

N
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L00( , 0)= s sin
2

N
Ls0( , 0)

L01( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lss ( , )+

sin(2 /N)

sin(2 /N)
Lsc ( , )

L02( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lsc ( , )

sin(2 /N)

sin(2 /N)
Lss ( , )

(17)

Cms( , )=
1

4N
L03( , 0)+

N/2 1

=1

L04( , ) sin
2

N
+L05( , ) cos

2

N

L03( , 0)= s sin
2

N
Lc0( , 0)

L04( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lcs ( , )+

sin(2 /N)

sin(2 /N)
Lcc ( , )

L05( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lcc ( , )

sin(2 /N)

sin(2 /N)
Lcs ( , )

(18)

We turn to Eq.(16). To show the time variation explicitly we use again
Eq.(6.4-84) as well as Eqs.(9) and (11):

for K0 < | | < KN/2

Cmc( , )=
1

2N
L00( , 0)+

N/2 1

=1

L01( , ) sin
2

N
+L02( , ) cos

2

N

L00( , 0)= s sin
2

N
L0s( , 0)

L01( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lss( , )+

sin(2 /N)

sin(2 /N)
Lcs( , )

L02( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lcs( , )

sin(2 /N)

sin(2 /N)
Lss( , )

(19)

Cms( , )=
1

2N
L03( , 0)+

N/2 1

=1

L04( , ) sin
2

N
+L05( , ) cos

2

N

L03( , 0)= s sin
2

N
L0c( , 0)

L04( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lsc( , )+

sin(2 /N)

sin(2 /N)
Lcc( , )
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TABLE 6.5-1
LOCATION OF THE DEFINITION OF VARIOUS CONSTANTS AND FUNCTIONS.

constant or function equation

d2 3.2-31
R11, R13, R15 6.4-9, -13, -15

a 3.2-60

A1, A2 3.2-61

1 3.1-1

2 3.1-1

s 2.1-49, 3.4-1
2.1-51
3.2-15

3.2-15, -16, -22

01, 03, 05, 07 3.3-22, -26, -30, -34

11, 13, 15, 17 3.3-42, -46, -50, -54

01, 03, 05, 07 3.3-21, -25, -29, -33

11, 13, 15, 17 3.3-41, -45, -49, -53

10, 11, 12, 13 6.4-10

30, 31, 32, 33 6.4-14

50, 51, 52, 53 6.4-16

70, 71, 72, 73 6.4-21

Caec( , ), C
a
es( , ), Cec( , ), Ces( , ) 6.4-85

Camc( , ), C
a
ms( , ), Cmc( , ), Cms( , ) 6.5-15 to -22

D0( ), D1( ), D2( ), D3( ) 3.3-9, -10, -12, -15

Dec( , ), Des( , ) 6.5-8
Da
ec( , ), D

a
es( , ), Dec( , ), Des( , ) 6.5-9

Eec( , ), E
a
es( , ) 6.5-10

Eaec( , ), E
a
es( , ), Eec( , ), Ees( , ) 6.5-11

G01( ), G02( ), G03( ), G04( ) 6.4-48
G11( ), G12( ), G13( ), G14( ) 6.4-46

Lc0( , 0), L
c
s ( , ), L

c
c ( , ) 6.4-60

Ls0( , 0), L
s
s ( , ), L

s
c ( , ) 6.4-61

La0c( , 0),L
a
sc( , ),L

a
cc( , ),L

a
0s( , 0),L

a
ss( , ),L

a
cs( , ) 6.4-79, -80

L0c( , 0),Lsc( , ),Lcc( , ),L0s( , 0),Lss( , ) ,Lcs( , ) 6.4-81, -82
La00( , ),L

a
01( , ),L

a
02( , ),L

a
03( , ),L

a
04( , ),L

a
05( , ) 6.5-21, -22

L00( , ),L01( , ),L02( , ),L03( , ),L04( , ),L05( , ) 6.5-19, -20
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L05( , )= s sin
2

N

4 sin2( /N)

sin(2 /N)
Lcc( , )

sin(2 /N)

sin(2 /N)
Lsc( , )

(20)

Camc( , )=
1

2N
La00( , 0)+

N/2 1

=1

La01( , ) sin
2

N
+La02( , ) cos

2

N

La00( , 0)= s sin aL
a
0s( , 0)

La01( , )= s sin a
4 sin2( /N)

sin a
Lass( , )+

sin(2 /N)

sin a
Lacs( , )

La02( , )= s sin a
4 sin2( /N)

sin a
Lacs( , )

sin(2 /N)

sin a
Lass( , )

(21)

Cams( , )=
1

2N
La03( , 0)+

N/2 1

=1

La04( , ) sin
2

N
+La05( , ) cos

2

N

La03( , 0)= s sin aL
a
0c( , 0)

La04( , )= s sin a
4 sin2( /N)

sin a
Lasc( , )+

sin(2 /N)

sin a
Lacc( , )

La05( , )= s sin a
4 sin2( /N)

sin a
Lacc( , )

sin(2 /N)

sin a
Lasc( , )

(22)

In order to help find all the constants and functions required for repeated
substitutions to obtain Cmc( , ) to Cms( , ) we provide a listing in Table
6.5-1.

6.6 Calculations for Section 3.5

According to Eq.(3.2-60) we have the relation a = . A good approx-
imation of is provided by Eq.(3.2-21). Figure 6.6-1 shows a as function
of for this approximation. We may represent a by the following simpler
functions:

a = 2 /N for N/4 N/4, = 0

= 2 /N for N/4 < < N/2

= 2 /N for N/2 < < N/4 (1)

We note that the points = N/2, 0, N/2 are excluded in Eq.(1). The
representation of Eq.(1) is applied to certain of the integrals of Eqs.(3.5-24)
and (3.5-25) that are used in Eq.(3.5-26). The number N in the following
formulas is even.
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1 cos 2N a = 1 cos 4 = 0 for N/4 N/4

= 1 cos 2 (N + 2 ) = 0 for N/4 < < N/2

= 1 cos 2 (N + 2 ) = 0 for N/2 < < N/4 (2)

N

2
1

sin 2N a

2N a
=
N

2
1

sin 4

4
=
N

2

for N/4 N/4, = 0

=
N

2
1

sin 2 (N 2 )

2 (N 2 )
=
N

2

for N/4 < < N/2, = N/2

=
N

2
1

sin 2 (N + 2 )

2 (N + 2 )
=
N

2

for N/2 < < N/4, = N/2 (3)

N

2
1 +

sin 2N a

2N a
=
N

2
1 +

sin 4

4
=
N

2

for N/4 N/4, = 0

=
N

2
1 +

sin 2 (N 2 )

2 (N 2 )
=
N

2

for N/4 < < N/2, = N/2

=
N

2
1 +

sin 2 (N + 2 )

2 (N + 2 )
=
N

2

for N/2 < < N/4, = N/2 (4)

sin(N a 2 )

N a 2
=
sin 2 ( )

2 ( )
= 1 for N/4 N/4, = 0

=
sin (N 4 )

(N 4 )
=0 for N/4 < < N/2, = N/4

=
sin (N+4 )

(N + 4 )
=0 for N/2 < < N/4, = N/4 (5)
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FIGURE 6.6-1. Plot of a as function of using the approximation of Fig.3.2-1.

sin(N a + 2 )

N a 2
=
sin 4

4
= 0 for N/4 N/4, = 0

=
sin N

N
= 0 for N/4 < < N/2

=
sin( N)

N
= 0 for N/2 < < N/4 (6)

sin2(N a/2 )

N a/2
=
sin2 ( )

( )
= 0 for N/4 N/2, = 0

=
sin2 (N/2 2 )

(N/2 2 )
= 0 for N/4 < < N/2

=
sin2 (N/2 + 2 )

(N/2 + 2 )
= 0 for N/2 < < N/4 (7)

sin2(N a/2 + )

N a/2 +
=
sin2 2

2
= 0 for N/4 N/4

=
sin2 N/2

N/2
= 0 for N/4 < < N/2

=
sin2 N/2

N/2
= 0 for N/2 < < N/4 (8)

Using Eqs.(2) to (8) we reduce Eq.(3.5-26) to the following shorter form:
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U =
6

i=1

Ui =
1

2
ZV 2e0L

2T 3c4
1

N2

N/2 1,=0

= N/2+1

Ces
2
+ Cec

2
+

Cec
2

+
Ces

2

+ Ces
Cmc

+ Cec
Cms

+ Cms
Cec

+ Cmc
Ces

+ Cms
2
+ Cmc

2
+

Cmc
2

+
Cms

2

+ Caes
2
+

Caec
2

+ Caes
Camc + Cams

Caec + Cams
2
+

Camc
2

+ Caec
2
+

Caes
2

+ Caec
Cams + Camc

Caes + Camc
2
+

Cams
2

+ 2S1( ) C
a
es Ces +

Caec Cec
+
1

2
Caes

Cmc

+
CamcCes + C

a
ms

Cec
+

CaecCms + CamsCms +
Camc Cmc

+ 2S1( ) C
a
ec Cec +

Caes Ces
+
1

2
Caec

Cms

+
CamsCec + C

a
mc

Ces
+

CaesCmc + CamcCmc +
Cams Cms

(9)

Some of the brackets are retained in this equation to facilitate comparison with
Eq.(3.5-26). The newly introduced function S1( ) is defined as follows:

S1( ) = 1 for N/4 N/4, = 0

= 0 for N/2 < < N/4, N/4 < < N/2, = 0 (10)

The functions Cec to Cams/ are listed in Eqs.(3.5-27) to (3.5-34). Fur-

thermore, the first square Ces
2
in Eq.(9) has been worked out in Eqs.(3.5-35) and

(3.5-36). There are 39 more such squares or products in Eq.(9) that still have to
be elaborated. We simplify this task by writing only the constant part but not
the time variable part - meaning the terms containing sine or cosine functions
of . We have learned in Section 3.5 that the approximation of Fig.6.5-1 fails
close to = N/2, 0 and N/2. Hence the interval K0 < | | < KN/2 for which
Eq.(3.5-36) holds is of more interest than the interval for which Eq.(3.5-35)
holds. It will be used for Eqs.(11)—(15):
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for K0 < | | < KN/2

Ces
2
( , ) = U1( ) + V1( , )

U1( ) =
2

N

2
1

2N

2

L20s( , 0) +
1

2

N/2 1

=1

[L2ss( , ) + L
2
cs( , )]

Cec
2
( , ) = U2( ) + V2( , )

U2( ) =
2

N

2
1

2N

2

L20c( , 0) +
1

2

N/2 1

=1

[L2sc( , ) + L
2
cc( , )]

Cec( , )
2

= U3( ) + V3( , )

U3( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[L2sc( , ) + L
2
cc( , )]

Ces( , )
2

= U4( ) + V4( , )

U4( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[L2ss( , ) + L
2
cs( , )]

Ces( , )
Cmc( , )

= U5( ) + V5( , )

U5( )=
N

1

2N

2 N/2 1

=1

2

N
[Lcs( , )L01( , ) Lss( , )L02( , )]

Cec( , )
Cms( , )

= U6( ) + V6( , )

U6( )=
N

1

2N

2 N/2 1

=1

2

N
[Lsc( , )L05( , ) Lcc( , )L04( , )]

Cms( , )
Ces( , )

= U7( ) + V7( , )

U7( )=
N

1

2N

2 N/2 1

=1

2

N
[Lss( , )L05( , ) Lcs( , )L04( , )]
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Cmc( , )
Ces( , )

= U8( ) + V8( , )

U8( )=
N

1

2N

2 N/2 1

=1

2

N
[Lcs( , )L01( , ) Lss( , )L02( , )]

Cms
2
( , ) = U9( ) + V9( , )

U9( ) =
2

N

2
1

2N

2

L203( , 0) +
1

2

N/2 1

=1

[L204( , ) + L
2
05( , )]

Cmc
2
( , ) = U10( ) + V10( , )

U10( ) =
2

N

2
1

2N

2

L200( , 0) +
1

2

N/2 1

=1

[L201( , ) + L
2
02( , )]

Cmc( , )
2

= U11( ) + V11( , )

U11( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[L201( , ) + L
2
02( , )]

Cms( , )
2

= U12( ) + V12( , )

U12( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[L204( , ) + L
2
05( , )] (11)

Caes
2
( , ) = U13( ) + V13( , )

U13( ) =
2
a

1

2N

2

La0s
2
( , 0) +

1

2

N/2 1

=1

[Lass
2
( , ) + Lacs

2
( , )]

Caec( , )
2

= U14( ) + V14( , )

U14( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[Lasc
2
( , ) + Lacc

2
( , )]

Caes ( , )
Camc( , ) = U15( ) + V15( , )

U15( ) =
a

2

1

2N

2 N/2 1

=1

2

N
[La01( , )L

a
cs( , ) La02( , )L

a
ss( , )]
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Cams( , )
Caec( , ) = U16( ) + V16( , )

U16( ) =
a

2

1

2N

2 N/2 1

=1

2

N
[L05( , )L

a
ss( , ) L04( , )L

a
cc( , )]

Cams
2
( , ) = U17( ) + V17( , )

U17( ) =
2
a

1

2N

2

La03
2
( , 0) +

1

2

N/2 1

=1

[La04
2
( , ) + La05

2
( , )]

Camc( , )
2

= U18( ) + V18( , )

U18( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[La01
2
( , ) + La02

2
( , )] (12)

Caec
2
( , ) = U19( ) + V19( , )

U19( ) =
2
a

1

2N

2

La0c
2
( , 0) +

1

2

N/2 1

=1

[Lasc
2
( , ) + Lacc

2
( , )]

Caes( , )
2

= U20( ) + V20( , )

U20( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[Lass
2
( , ) + Lacs

2
( , )]

Caec ( , )
Cams( , ) = U21( ) + V21( , )

U21( ) =
a

2

1

2N

2 N/2 1

=1

2

N
[La05( , )L

a
sc( , ) La04( , )L

a
cc( , )]

Camc( , )
Caes( , ) = U22( ) + V22( , )

U22( , ) =
a

2

1

2N

2 N/2 1

=1

2

N
[La01( , )L

a
cs( , ) La02( , )L

a
ss( , )]

Camc
2
( , ) = U23( ) + V23( , )

U23( ) =
2
a

1

2N

2

La00
2
( , 0) +

1

2

N/2 1

=1

[La01
2
( , ) + La02

2
( , )]
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Cams( , )
2

= U24( ) + V24( , )

U24( ) =
1

2

1

2N

2 N/2 1

=1

2

N

2

[La04
2
( , ) + La05

2
( , )] (13)

The following terms are needed in the interval N/4 N/4 only.
We continue to determine them for the interval K0 < | | < KN/2 but terms
multiplied by S1( ) in Eq.(9) are summed only from N/4 to N/4 rather than
from N/2 + 1 to N/2 1; the value = 0 remains excluded:

for K0 < | | < KN/2

2Caes ( , )Ces( , ) = U25( ) + V25( , )

U25( ) =
4 a

N

1

2N

2

L0s( , 0)L
a
0s( , 0)

+
1

2

N/2 1

=1

[Lss( , )L
a
ss( , ) + Lcs( , )L

a
cs( , )]

2
Caec( , ) Cec( , )

=U26( ) + V26( , )

U26( )=
1

2N

2 N/2 1

=1

2

N

2

[Lsc( , )L
a
sc( , )+Lcc( , )L

a
cc( , )]

Caes ( , )
Cmc( , )

=U27( ) + V27( , )

U27( )=
a

2

1

2N

2 N/2 1

=1

2

N
[L01( , )L

a
cs( , ) L02( , )L

a
ss( , )]

Camc( , )Ces( , )=U28( ) + V28( , )

U28( )=
2

N

1

2N

2 N/2 1

=1

2

N
[La01( , )Lcs( , ) La02( , )Lss( , )]

Cams( , )
Cec( , )

=U29( ) + V29( , )

U29( )=
a

2

1

2N

2 N/2 1

=1

2

N
[La05( , )Lsc( , ) La04( , )Lcc( , )]

Caec( , )Cms( , )=U30( ) + V30( , )



290 6 appendix

U30( )=
N

1

2N

2 N/2 1

=1

2

N
[L05( , )L

a
sc( , ) L04( , )L

a
cc( , )]

2Cams( , )Cms( , ) = U31( ) + V31( , )

U31( ) =
4 a

N

1

2N

2

L03( , 0)L
a
03( , 0)

+
1

2

N/2 1

=1

[L04( , )L
a
04( , )+L05( , )L

a
05( , )]

2
Camc( , ) Cmc( , )

= U32( ) + V32( , )

U32( ) =
1

2N

2 N/2 1

=1

2

N

2

[L01( , )L
a
01( , ) + L02( , )L

a
02( , )]

(14)

The terms U33( ), V33( , ) to U48( ), V48( , ) in lines 10 to 13 of Eq.
(3.5-26) do not occur in the approximation of Eq.(9). Hence, we jump from
U32( ) in Eq.(14) to U49( ):

for K0 < | | < KN/2

2Caec ( , )Cec( , ) = U49( ) + V49( , )

U49( ) =
4 a

N

1

2N

2

La0c( , 0)L0c( , 0)

+
1

2

N/2 1

=1

[Lasc( , )Lsc( , ) + L
a
cc( , )Lcc( , )]

2
Caes( , ) Ces( , )

=U50( ) + V50( , )

U50( )=
1

2N

2 N/2 1

=1

2

N

2

[Lss( , )L
a
ss( , )+Lcs( , )L

a
cs( , )]

Caec ( , )
Cms( , )

=U51( ) + V51( , )

U51( )=
a

2

1

2N

2 N/2 1

=1

2

N
[L05( , )L

a
sc( , ) L04( , )L

a
cc( , )]

Cams( , )Cec( , )=U52( ) + V52( , )
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U52( )=
N

1

2N

2 N/2 1

=1

2

N
[La05( , )Lsc( , ) La04( , )Lcc( , )]

Camc( , )
Ces( , )

=U53( ) + V53( , )

U53( )=
a

2

1

2N

2 N/2 1

=1

2

N
[La01( , )Lcs( , ) La02( , )Lss( , )]

Caes( , )Cmc( , )=U54( ) + V54( , )

U54( )=
N

1

2N

2 N/2 1

=1

2

N
[L01( , )L

a
cs( , ) L02( , )L

a
ss( , )]

2Camc( , )C
a
mc( , ) = U55( ) + V55( , )

U55( ) =
4 a

N

1

2N

2

L00( , 0)L
a
00( , 0)

+
1

2

N/2 1

=1

[L01( , )L
a
01( , )+L02( , )L

a
02( , )]

2
Cams( , ) Cms( , )

=U56( ) + V56( , )

U56( )=
1

2N

2 N/2 1

=1

2

N

2

[L04( , )L
a
04( , )+L05( , )L

a
05( , )]

(15)

In analogy to Eq.(3.5-41) we may write:

for K0 | | N/4

UcN( ) =
32

j=1

Uj( ) +
56

j=49

Uj( ), UvN( , ) =
32

j=1

Vj( , ) +
56

j=49

Vj( , )

for N/4 < | | KN/2

UcN( ) =
24

j=1

Uj( ), UvN( , ) =
24

j=1

Vj( , ) (16)

Since we are usually not interested in distinguishing between positive and
negative period numbers we may replace Uj( ) in Eq.(16) by Uj( )+Uj( )
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and write UcN( ) for the interval 0 < N/2 1 rather than N/2 + 1
N/2 1:

for K0 N/4

UcN( ) =
32

j=1

[Uj( ) + Uj( )] +
56

j=49

[Uj( ) + Uj( )] = UcN1( )

for N/4 < KN/2

UcN( ) =
24

j=1

[Uj( ) + Uj( )] = UcN2( ) (17)

If we want to extend the range for in Eq.(16) to the interval N/2+1 <
< N/2 1 we must write the 40 equations of Eq.(11) to (15) for the intervals
K0 < < K0, = 0 and KN/2 < | | < N/2 1.

We want the relative frequency r( ) or the probability of the energy
UcN( ). If we ignore the intervals K0 < < K0, = 0 and KN/2 < | | <
N/2 1 we obtain in analogy to Eq.(2.3-53):

r( ) = r1( ) + r2( ), r1( ) =
UcN1( )

ScK
, r2( ) =

UcN2( )

ScK

ScK = ScK1 + ScK2, ScK1 =

N/4

>K0

UcN1( ), ScK2 =

<KN/2

>N/4

UcN2( )

K0 = N(
2
1 4 2

2)
1/2/4 , KN/2 = (N/2 K0) (18)

Equation (18) is formally equal to Eq.(2.3-53) except for the upper limit KN/2

rather than N/2 of the sum.

6.7 Calculations for Section 4.4

The evaluation of Eq.(4.4-4) calls for the integration with respect to of
the expressions for , ( / )( / ) and ( / )( / ) in Eqs.(4.4-
5), (4.4-8) and (4.4-9). A large number of simple steps is required. We write
them in some detail since it is di cult to make so many steps without mistake
even though each one is simple. First we rewrite the squared sums in these
equations:
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N

=1

1 3IT( /N )
sin sin

2

N

2

=
1

2

N

=1

2
1
2
3I
2
T( /N )
2

(1 cos 2 ) sin2
2

N

+

N ,=j

=1

N

j=1

2
1
2
3IT( /N )IT(j/N )

j
sin sin j sin

2

N
sin

2 j

N
(1)

N

=1

IT( /N ) cos sin
2

N

2

=
1

2

N

=1

I2T( /N )(1 + cos 2 ) sin2
2

N

+

N ,=j

=1

N

j=1

IT( /N )IT(j/N ) cos cos j sin
2

N
sin

2 j

N
(2)

N

=1

2 1 3IT( /N )

N
sin cos

2

N

2

=
1

2

N

=1

2 1 3IT( /N )

N

2

(1 cos 2 ) cos2
2

N

+

N ,=j

=1

N

j=1

2 1 3

N

2
jIT( /N )IT(j/N )

j

× sin sin j cos
2

N
cos

2 j

N
(3)

The following integrals will be needed:

N

0

exp[ ( 2
2

2
1)
1/2 ]d = N

1 exp[ ( 2
2

2
1)
1/2N ]

( 2
2

2
1)
1/2
N

(4)

N

0

exp[ 2( 2
2

2
1)
1/2 ] d = N

1 exp[ 2( 2
2

2
1)
1/2N ]

2 ( 2
2

2
1)
1/2
N

(5)
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N

0

exp[ ( 2
2

2
1)
1/2 ] sin(2 /N ) d

= N
(2 /N ){1 exp[ ( 2

2
2
1)
1/2N ]}

[ 2
2

2
1 + (2 /N )2]N

(6)

N

0

exp[ ( 2
2

2
1)
1/2 ] cos(2 /N ) d

= N
( 2
2

2
1)
1/2{1 exp[ ( 2

2
2
1)
1/2N ]}

[ 2
2

2
1 + (2 /N )2]N

(7)

N

0

sin(2 /N ) sin(2 j /N ) d =
N

2
for = j

= 0 for = j (8)

N

0

cos(2 /N ) cos(2 j /N ) d =
N

2
for = j

= 0 for = j (9)

According to Eq.(4.4-4) we need the integral of with respect to . We
obtain from Eq.(4.4-5) with the help of Eq.(1):

N

0

d = 2 2
1 (1 cos 2 1 3 )

N

0

exp[ 2( 2
2

2
1)
1/2 ]d

2(1 cos 2 1 3 ) 1 3 sin 1 3

×
N

=1

IT( /N )
sin

N

0

exp[ ( 2
2

2
1)
1/2 ] sin

2

N
d

+

N

=1

2
1
2
3I
2
T( /N )
2

(1 cos 2 )

N

0

sin2
2

N
d
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+ 2

N ,=j

=1

N

j=1

2
1
2
3IT( /N )IT(j/N )

j

× sin sin j

N

0

sin
2

N
sin

2 j

N
d (10)

The integrals are listed in Eqs.(5), (6) and (8):

N

0

d = 2
1N 2(1 cos 2 1 3 )

1 exp[ 2( 2
2

2
1)
1/2N ]

2 ( 2
2

2
1)
1/2
N

4(1 cos 2 1 3 ) 1 3 sin 1 3

×
N

=1

IT( /N )
sin

(2 /N ){1 exp[ ( 2
2

2
1)
1/2N ]}

[ 2
2

2
1 + (2 /N )2]N

+

N

=1

2
1
2
3I
2
T( /N )
2

(1 cos 2 ) (11)

We recognize that there are some terms in Eq.(11) that do not depend on
while most vary according to sinusoidal functions of . We denote these

constant terms with a subscript c:

Uc1 =
L2

c

N

0

m2
0c
4 2

2
d

c

=
L2

c

m2
0c
4 2

2
2
1N

× 1 exp[ 2( 2
2

2
1)
1/2N ]

( 2
2

2
1)
1/2
N

+

N

=1

2
1
2
3I
2
T( /N )
2

.
=
L2

c

m2
0c
4 2

2
2
1N

N

=1

2
1
2
3I
2
T( /N )
2

for N 1, 2
1 =

2
2 (12)

The remaining terms with sinusoidal functions of and time-average equal to
zero are denoted with a subscript v:

Uv1( ) =
L2

c

m2
0c
4 2

2
2
1N 2

1 exp[ 2( 2
2

2
1)
1/2N ]

2 ( 2
2

2
1)
1/2
N

cos 2 1 3
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4(1 cos 2 1 3 ) 1 3 sin 1 3

×
N

=1

IT( /N ) (2 /N ){1 exp[ ( 2
2

2
1)
1/2N ]}

[ 2
2

2
1 + (2 /N )2]N

sin

N

=1

2
1
2
3I
2
T( /N )
2

cos 2

.
=

L2

c

m2
0c
4 2

2
2
1N

N

=1

2
1
2
3I
2
T( /N )
2

cos 2 , N 1 (13)

We turn to the integral over ( / )( / ) in Eq.(4.4-4). Equation
(4.4-8) yields with the help of Eqs.(1) and (2) the following result:

N

0

d = 4 2
1
2
3

2
1

N

0

exp[ 2( 2
2

2
1)
1/2 ]d

2

N

=1

IT( /N ) cos cos 1 3

+
1
sin sin 1 3

N

0

exp[ ( 2
2

2
1)
1/2 ] sin

2

N
d

+
1

2

N

=1

2
1
2
3I
2
T( /N )
2

(1 cos 2 )

N

0

sin2
2

N
d

+

N ,=j

=1

N

j=1

2
1
2
2IT( /N )IT(j/N )

j
sin sin j

N

0

sin
2

N
sin

2 j

N
d

+
1

2

N

=1

I2T( /N )(1 + cos 2

N

0

sin2
2

N
d

+

N ,=j

=1

N

j=1

IT( /N )IT(j/N ) cos cos j

N

0

sin
2

N
sin

2 j

N
d (14)

We substitute the integrals from Eqs.(4), (5) and (8):

N

0

d = 2
1N

2
1
2
3 4

1 exp[ 2( 2
2

2
1)
1/2N ]

2 ( 2
2

2
1)
1/2
N
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8

N

=1

IT( /N ) cos cos 1 3 +
1
sin sin 1 3

× (2 /N ){1 exp[ ( 2
2

2
1)
1/2N ]}

[ 2
2

2
1 + (2 /N )2]N

+

N

=1

2
1
2
3I
2
T( /N )
2

(1 cos 2 ) +

N

=1

I2T( /N )(1 + cos 2 ) (15)

As in the case of Eq.(11) there are terms that do not depend on and
others that vary with sinusoidal functions of . We denote the constant terms
again with a subscript c:

Uc2 =
L2

c

N

0

d
c

=
L2

c
2
1N

2
1
2
3

× 4
1 exp[ 2( 2

2
2
1)
1/2N ]

2 ( 2
2

2
1)
1/2
N

+

N

=1

I2T( /N )
2
1
2
3

2
+ 1

.
=
L2

c
2
1N

2
1
2
3

N

=1

I2T( /N )
2
1
2
3

2
+ 1 , N 1 (16)

The remaining terms with sinusoidal functions of and time-average zero are
denoted with a subscript v:

Uv2( ) =
L2

c
2
1N

2
1
2
3

× 8

N

=1

IT( /N )
(2 /N ){1 exp[ ( 2

2
2
1)
1/2N ]}

[ 2
2

2
1 + (2 /N )2]N

× cos cos 1 3 +
1
sin sin 1 3

N

=1

I2T( /N )
2
1
2
3

2
1 cos 2

.
=
L2

c
2
1N

2
1
2
3

N

=1

I2T( /N ) 1
2
1
2
3

2
cos 2 , N 1 (17)

The final integral over ( / )( / ) in Eq.(4.4-4) yields with the help
of Eqs.(4.4-9), (1) and (3) the following expression:
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Substitution of the integrals of Eqs.(5) to (9) brings:
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As before in Eqs.(11) and (15) there are terms that do not depend on
while others have sinusoidal functions of . The constant terms are denoted by
a subscript c:
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The terms with sinusoidal functions of and time-average zero are denoted
with a subscript v:
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(21)

6.8 Calculations for Section 5.4

The evaluation of Eq.(5.4-2) requires the integration with respect to
of the expressions for , ( / )( / ) and ( / )( / ) in Eqs.
(5.4-3), (5.4-6) and (5.4-8). Many simple steps are required. We write them
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in some detail to make it easier to check their correctness. We start with
Eq.(5.4-3), go to Eq.(5.4-6) and end with Eq.(5.4-8):
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According to Eq.(5.4-2) we need the integral of with respect to . We
obtain it from Eq.(5.4-3) with the help of Eq.(1):
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The integrals are evaluated in Eqs.(6.7-5), (6.7-6) and (6.7-9) if we substitute
= 2 /N , j = 2 j/N and N = N :
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Some terms in Eq.(5) do not depend on while most vary according to sinu-
soidal functions of . The constant terms are denoted with a subscript c:
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The terms with sinusoidal functions of and time-average equal to zero in
Eq.(5) are denoted with a subscript v. We obtain:
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We turn to the integral over ( / )( / ) in Eq.(5.4-2). Equation
(5.4-6) yields with the help of Eqs.(1) and (2):
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Using Eqs.(6.7-5) to (6.7-9) brings:
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As in the case of Eq.(5) there are terms that do not depend on and others
that vary with cos 2 . We denote the constant terms again with a subscript
c:

Uc2 =
L2

c t

N

0

d
c

.
=
L2

c t
2
1N

2
1
2
3

< 0

> 0

IT( /N)

sin

2

( 2
1
2
3 +

2), N 1 (10)

The remaining terms with functions having sinusoidal time variation and time-
average zero are denoted with a subscript v:
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The final integral over ( / )( / ) in Eq.(5.4-2) yields with the help
of Eqs.(5.4-8), (1) and (3) the following expression:
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The required integrals are listed in Eqs.(6.7-5) to (6.7-9):
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As before in Eqs.(5) and (9) there are terms that do not depend on while
others have a sinusoidal function of with time-average zero. The constant
terms are denoted with the subscript c:
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The terms with sinusoidal function of and time-average zero are denoted with
a subscript v:
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Pauli, W. (1933). Die verallgemeinerten Prinzipien der Wellenmechanik, in Handbuch der
Physik, 2nd ed., Geiger and Scheel eds., vol. 24, part 1. Reprinted in Handbuch der
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Smirnov, W.I. (1961). Lehrgang der höheren Mathematik, 4th ed. (transl. of the 12th Russian
edition). Deutscher Verlag der Wissenschaften, Berlin. English edition: A Course in
Higher Mathematics. Pergamon Press, Oxford 1964.

Smith, G.D. (1982). Theory and Problems of Calculus of Finite Di erences and Di erence
Equations. McGraw-Hill, New York.

Snyder, H.S. (1947a). Quantized space—time. Phys. Rev., vol. 71, 38—41.
Snyder, H.S. (1947b). The electromagnetic field in quantized space-time. Phys. Rev., vol. 72,
68—71.

Spiegel, M.R. (1994). Theory and Problems of Calculus of Finite Di erences and Di erence
Equations; reprint of edition of 1971. McGraw-Hill (Schaum’s Outline Series), New York.
Endliche Di erenzen und Di erenzengleichungen; transl., McGraw-Hill, New York 1982.
A basic introduction containing useful formulas.

Tsevelik, A.M. (1996). Quantum Theory in Condensed Matter Physics. Cambridge Univer-
sity Press, Cambridge.

Weyl, H. (1921). Das Raumproblem. Jahresberichte der Deutschen Mathematikervereini-
gung, vol. 30, 92—93.

Weyl, H. (1968). Gesammelte Abhandlungen. Springer-Verlag, Berlin.
Weinberg, S. (1995). The Quantum Theory of Fields: I. Introduction. Cambridge University
Press, Cambridge.

Weinberg, S. (1996). The Quantum Theory of Fields: II. Modern Applications. Cambridge
University Press, Cambridge.

Weinberg, S. (2000). The Quantum Theory of Fields: III. Supersymmetry. Cambridge
University Press, Cambridge.

Welch, L.C. (1976). Quantum mechanics in a discrete space—time. Nuovo Cimento, vol. 31B,
279—288.

Yukawa, H. (1966). Atomistics and the divisibility of space and time. Suppl. Prog. Theor.
Phys., vol. 37—38, 512—523.



Index

A
Abramowitz 68
Aharonov-Bohm 3
Alpha Foundation 2
Anastasovski 2
annihilation/creation of dipoles 69
Apostle 29
Aristotle 29, 30
associated magnetic field streength 3, 8
Atkinson 45

B
Barium-Titanate 1, 4, 5
Barrett 2, 7, 9, 11, 12, 14, 15, 16, 17, 19,
23, 28, 41, 54, 57, 62, 66, 149, 152, 157
Becker 67, 68, 71
Berestezki 71, 168
Boules 7, 19, 23, 28
boundary condition 2, 9
box normalization 44

C
causal function 41
causality law 1, 2, 3, 41
cellular space 31
circular polarization 37
Cole 45
commuting product 152
Compton e ect 45
conservation of energy 3
constant energy 127
constitutive equations 4
continuum 29
creation/anihilation of dipoles 64

D
d’Alembert 251
Das 45
di erence equation 30, 45, 77, 78
di erenciation 248
di erential calculus 30, 31
di erential di erences 47
di erentiation 248
dipole current 4, 5, 6, 19
dipole current density 24
dipoles 5, 6
distortion-free 98
divergencies 77
dumb-bell 28

E
Einstein 31
electric field strengths 10, 13
elementary unit of length 45
Euclidean geometry 31
Evans 307
exponential ramp function 12
extended Lorentz convention 14

F
fine structure constant 18
Flint 45
frequency 70
Fushchich 2

G
Gamma function 30
Gauss 26
Gelfond 137
Gradshtein 48, 268

H
Habermann 42
Halpern 45
Hamilton function 15, 17, 18, 57, 66, 70,
114, 129, 149
Harmuth 1, 2, 3, 4, 7, 9, 11, 12, 14, 15, 16,
17, 19, 23, 28, 31, 41, 45, 54, 57, 62, 66,
77, 149, 152, 157, 182, 239
Hasebe 45
Hawkes 1, 307
Heisenberg 67
Heitler 67
Hellund 45
Hermite polynomials 68
Hill 45
Hillion 1, 3
Hölder 30, 45
Hussain 7, 14, 19, 23, 28

I
incremental science 307
induced dipole 4
induced magnetic dipoles 26
Infeld 31
infinitesimal di erences 47
information theory 45
inherent dipole 4
initial condition 2, 9

311



312 index

K
Kramer 71
Klein-Gordon equation 149, 180

L
Lagrange function 15
Landau 45, 68
Lessmann 137
Levy 137
Lifschitz 68, 71, 168
Lorentz convention 14
Lucas 30
Lukin 7

M
magnetic charge 4
magnetic field strength 11, 12, 13
magnetic monopoles 6
March 45
Marton 307
Mathematica 72, 139
Maxwell 1, 2, 3, 4, 6, 15
Me ert 2, 7, 9, 11, 12, 14, 15, 16, 17, 19,
23, 28, 41, 54, 57, 62, 66, 149, 152, 157
Milne-Thomson 137, 241, 243, 244
modified Maxwell equations 3, 11
moment of inertia 26, 28
monopole current 4, 5, 23
multipole current 4

N
Nehrlich 30
Nikitin 2
Nörlund 137, 241, 244
Newton 29

O
observable 31
orientation polarization 6
original Maxwell equations 11

P
parabolic cylinder functions 68
Pauli 45
peer review 307
Peierls 45
physical laws 2
Pitajewski 168
Poisson 249
polarization angle 37

polarization current 4
potentials 14, 15
pure mathematics 2

Q
quadratically integrable 41

R
renormalization 70
rotation angle 37
Ryzhik 48, 268

S
Schild 45
Schrödinger 67, 68, 129, 173
Schulz 1, 307
separation of variables 80
signal 3
signal solution 3
signal, electromagnetic 3
Smirnov 39, 68, 249
Smith 137
Snyder 46
space-time continuum 30
Spiegel 137
Stegun 68
steady state solution 3
step function 9
summation introduced 102

T
Tanaka 45
telegrapher’s equation 98
TEM wave 7
thinkable 31
time resolution 47

V
variable energy 127

W
Weinberg 71
Welch 45
Weyl 30

Y
Yukawa 45

Z
Zeno of Elea 29. 45
zero-point energy 70


	Advances in Imaging and Electron Physics
	Copyright Page
	Contents
	Preface
	Future Contribution
	Dedication
	Foreword
	List of Frequently Used Symbols
	Chapter 1. Introduction
	1.1 Modified Maxwell Equations
	1.2 Summary of Results in Classical Physics
	1.3 Basic Relations for Quantum Mechanics
	1.4 Dipole Currents
	1.5 Infinitesimal and Finite Differences for Space and Time

	Chapter 2. Differential Equations for the Pure Radiation Field
	2.1 Pure Radiation Field
	2.2 Differential Solution for w (Ç,ø)
	2.3 Hamilton Function for PlanarWave
	2.4 Quantization of the Differential Solution
	2.5 Computer Plots for the Differential Theory

	Chapter 3. Difference Equations for the Pure Radiation Field
	3.1 Basic Difference Equations
	3.2 Time Dependent Solution of Ve (Ç,ø)
	3.3 Solution for Aev (Ç,ø)
	3.4 Magnetic Potential Amv (Ç,ø)
	3.5 Hamilton Function for Finite Differences
	3.6 Quantization of the Difference Solution
	3.7 Computer Plots for the Difference Theory

	Chapter 4. Differential Equation for the Klein-Gordon Field
	4.1 Klein-Gordon Equation with Magnetic Current Density
	4.2 Step Function Excitation
	4.3 Exponential Ramp Function Excitation
	4.4 Hamilton Function and Quantization
	4.5 Plots for the Differential Theory

	Chapter 5. Difference Equation for the Klein-Gordon Field
	5.1 Klein-Gordon Difference Equation
	5.2 Time Dependent Solution for Psi (Ç,ø)
	5.3 Exponential Ramp Function as Boundary Condition
	5.4 Hamilton Function for Difference Equation
	5.5 Plots for the Difference Theory

	Chapter 6. Appendix
	6.1 Calculations for Section 2.2
	6.2 Inhomogeneous Difference Wave Equation
	6.3 Differential Derivation of Aev (Ç,ø)
	6.4 Calculations for Section 3.3
	6.5 Calculations for Section 3.4
	6.6 Calculations for Section 3.5
	6.7 Calculations for Section 4.4
	6.8 Calculations for Section 5.4

	References and Bibliography
	Index

