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Foreword to Earlier Series Editions

More than a generation of German-speaking students around the world have worked
their way to an understanding and appreciation of the power and beauty of modern
theoretical physics – with mathematics, the most fundamental of sciences – using
Walter Greiner’s textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of sci-
ence in a series of closely related textbooks is not a new one. Many older physicists
remember with real pleasure their sense of adventure and discovery as they worked
their ways through the classic series by Sommerfeld, by Planck and by Landau and
Lifshitz. From the students’ viewpoint, there are a great many obvious advantages to
be gained through use of consistent notation, logical ordering of topics and coherence
of presentation; beyond this, the complete coverage of the science provides a unique
opportunity for the author to convey his personal enthusiasm and love for his subject.

The present five-volume set, Theoretical Physics, is in fact only that part of the
complete set of textbooks developed by Greiner and his students that presents the
quantum theory. I have long urged him to make the remaining volumes on classical
mechanics and dynamics, on electromagnetism, on nuclear and particle physics, and
on special topics available to an English-speaking audience as well, and we can hope
for these companion volumes covering all of theoretical physics some time in the
future.

What makes Greiner’s volumes of particular value to the student and professor alike
is their completeness. Greiner avoids the all too common “it follows that . . . ” which
conceals several pages of mathematical manipulation and confounds the student. He
does not hesitate to include experimental data to illuminate or illustrate a theoretical
point and these data, like the theoretical content, have been kept up to date and top-
ical through frequent revision and expansion of the lecture notes upon which these
volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including
something like one hundred completely worked examples in each volume. Nothing
is of greater importance to the student than seeing, in detail, how the theoretical con-
cepts and tools under study are applied to actual problems of interest to a working
physicist. And, finally, Greiner adds brief biographical sketches to each chapter cov-
ering the people responsible for the development of the theoretical ideas and/or the
experimental data presented. It was Auguste Comte (1798–1857) in his Positive Phi-
losophy who noted, “To understand a science it is necessary to know its history”.
This is all too often forgotten in modern physics teaching and the bridges that Greiner
builds to the pioneering figures of our science upon whose work we build are welcome
ones.

Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, their completeness and for the effort that he has devoted to making physics an
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VI Foreword to Earlier Series Editions

integral whole; his enthusiasm for his science is contagious and shines through almost
every page.

These volumes represent only a part of a unique and Herculean effort to make all
of theoretical physics accessible to the interested student. Beyond that, they are of
enormous value to the professional physicist and to all others working with quantum
phenomena. Again and again the reader will find that, after dipping into a particular
volume to review a specific topic, he will end up browsing, caught up by often fasci-
nating new insights and developments with which he had not previously been familiar.

Having used a number of Greiner’s volumes in their original German in my teach-
ing and research at Yale, I welcome these new and revised English translations and
would recommend them enthusiastically to anyone searching for a coherent overview
of physics.

Yale University D. Allan Bromley
New Haven, CT, USA Henry Ford II Professor of Physics
1989



Preface to the Fourth Edition

We are pleased by the positive resonance of our book which now necessitates a fourth
edition. We have used this opportunity to implement corrections of misprints and
amendments at several places, and to extend and improve the discussion of many of
the exercises and examples. We hope that our presentation of the method of equivalent
photons (Example 3.17), the form factor of the electron (Example 5.7), the infrared
catastrophe (Example 5.8) and the energy shift of atomic levels (Example 5.9) are now
even better to understand. The new Exercise 5.10 shows in detail how to arrive at the
non-relativistic limit for the calculation of form factors. Moreover, we have brought
up-to-date the Biographical Notes about physicists who have contributed to the devel-
opment of quantum electrodynamics, and references to experimental tests of the the-
ory. For example, there has been recent progress in the determination of the electric
and magnetic form factors of the proton (discussed in Exercise 3.5 on the Rosenbluth
formula) and the Lamb shift of high-Z atoms (discussed in Example 5.9 on the energy
shift of atomic levels), while the experimental verification of the birefringence of the
QED vacuum in a strong magnetic field (Example 7.8) remains unsettled and is a topic
of active ongoing research.

Again, we thank all colleagues and readers for their comments and information
about misprints in the book, and are grateful to the team at Springer-Verlag and es-
pecially to Dr. Stefan Scherer for smoothly handling the preparation of this fourth
edition.

Frankfurt am Main, Walter Greiner
October 2008 Joachim Reinhardt
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Preface to the Third Edition

Since the need for a third edition of this book has arisen, we have endeavoured to
improve and extend it in several ways. At many places small changes were made,
misprints have been corrected, and references have been added. In Chap. 5 new the-
oretical and experimental results on the Lamb shift in heavy atoms and on the anom-
alous magnetic moment of the muon are reported. We have also added a number of
new topics in Chaps. 3, 5, and 7 in the form of examples and exercises. Example 3.19
contains a detailed treatment of electron–positron pair production in the collision of
a high-energy photon with a laser beam. This is supplemented by Exercise 3.20 where
a closed solution of the Dirac equation in the field of a plane wave is derived. Fur-
thermore, Example 5.3 on the running coupling constant in QED and Example 7.5 on
the supercritial point charge problem have been added. Finally, Example 7.8 treats the
birefringence of the QED vacuum in a strong magnetic field.

We thank all colleagues and readers who have informed us about misprints in the
book and are grateful to the team at Springer-Verlag for expertly handling the prepa-
ration of this new edition.

Frankfurt am Main, Walter Greiner
August 2002 Joachim Reinhardt
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Preface to the Second Edition

The need for a second edition of our text on Quantum Electrodynamics has given us
the opportunity to implement some corrections and amendments. We have corrected
a number of misprints and minor errors and have supplied additional explanatory re-
marks at various places. Furthermore some new material has been included on the
magnetic moment of the muon (in Example 5.7) and on the Lamb shift (in Exam-
ple 5.9). Finally, we have added the new Example 3.17 which explains the equivalent
photon method.

We thank several colleagues for helpful comments and also are grateful to
Dr. R. Mattiello who has supervised the preparation of the second edition of the book.
Furthermore we acknowledge the agreeable collaboration with Dr. H.J. Kölsch and
his team at Springer-Verlag, Heidelberg.

Frankfurt am Main, Walter Greiner
July 1994 Joachim Reinhardt
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Preface to the First Edition

Theoretical physics has become a many-faceted science. For the young student
it is difficult enough to cope with the overwhelming amount of new scientific
material that has to be learnt, let alone obtain an overview of the entire field,
which ranges from mechanics through electrodynamics, quantum mechanics, field
theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and
solid-state theory to elementary-particle physics. And this knowledge should be ac-
quired in just 8–10 semesters, during which, in addition, a Diploma or Master’s
thesis has to be worked on or examinations prepared for. All this can be achieved
only if the university teachers help to introduce the student to the new disciplines
as early on as possible, in order to create interest and excitement that in turn set
free essential new energy. Naturally, all inessential material must simply be elimi-
nated.

At the Johann Wolfgang Goethe University in Frankfurt we therefore confront the
student with theoretical physics immediately, in the first semester. Theoretical Me-
chanics I and II, Electrodynamics, and Quantum Mechanics I – An Introduction are
the basic courses during the first two years. These lectures are supplemented with
many mathematical explanations and much support material. After the fourth semester
of studies, graduate work begins, and Quantum Mechanics II – Symmetries, Statis-
tical Mechanics and Thermodynamics, Relativistic Quantum Mechanics, Quantum
Electrodynamics, the Gauge Theory of Weak Interactions, and Quantum Chromo-
dynamics are obligatory. Apart from these a number of supplementary courses on
special topics are offered, such as Hydrodynamics, Classical Field Theory, Special
and General Relativity, Many-Body Theories, Nuclear Models, Models of Elemen-
tary Particles, and Solid-State Theory. Some of them, for example the two-semester
courses Theoretical Nuclear Physics or Theoretical Solid-State Physics, are also oblig-
atory.

This volume of lectures deals with the subject of Quantum Electrodynamics. We
have tried to present the subject in a manner which is both interesting to the student
and easily accessible. The main text is therefore accompanied by many exercises and
examples which have been worked out in great detail. This should make the book
useful also for students wishing to study the subject on their own.

When lecturing on the topic of quantum electrodynamics, one has to choose be-
tween two approaches which are quite distinct. The first is based on the general meth-
ods of quantum field theory. Using classical Lagrangian field theory as a starting point
one introduces noncommuting field operators, builds up the Fock space to describe
systems of particles, and introduces techniques to construct and evaluate the scatter-
ing matrix and other physical observables. This program can be realized either by the
method of canonical quantization or by the use of path integrals. The theory of quan-
tum electrodynamics in this context emerges just as a particular example of the general
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Preface to the First Edition XI

formalism. In the present volume, however, we do not follow this general but lengthy
path; rather we use a “short cut” which arrives at the same results with less effort, and
which has the advantage of great intuitive appeal. This is the propagator formalism,
which was introduced by R.P. Feynman (and, less well known, by E.C.G. Stückelberg)
and makes heavy use of Green’s functions to describe the propagation of electrons and
photons in space–time.

It is clear that the student of physics has to be familiar with both approaches to
quantum electrodynamics. (In the German edition of these lectures a special volume
is dedicated to the subject of field quantization.) However, to gain quick access to the
fascinating properties and processes of quantum electrodynamics and to its calcula-
tional techniques the use of the propagator formalism is ideal.

The first chapter of this volume contains an introduction to nonrelativistic propa-
gator theory and the use of Green’s functions in physics. In the second chapter this is
generalized to the relativistic case, introducing the Stückelberg–Feynman propagator
for electrons and positrons. This is the basic tool used to develop perturbative QED.
The third chapter, which constitutes the largest part of the book, contains applications
of the relativistic propagator formalism. These range from simple Coulomb scatter-
ing of electrons, scattering off extended nuclei (Rosenbluth’s formula) to electron–
electron (Møller) and electron–positron (Bhabha) scattering. Also, processes involv-
ing the emission or absorption of photons are treated, for instance, Compton scattering,
bremsstrahlung, and electron–positron pair annihilation. The brief fourth chapter gives
a summary of the Feynman rules, together with some notes on units of measurement
in electrodynamics and the choice of gauges.

Chapter 5 contains an elementary discussion of renormalization, exemplified by
the calculation of the lowest-order loop graphs of vacuum polarization, self-energy,
and the vertex correction. This leads to a calculation of the anomalous magnetic mo-
ment of the electron and of the Lamb shift. In Chap. 6 the Bethe–Salpeter equation is
introduced, which describes the relativistic two-particle system.

Chapter 7 should make the reader familiar with the subject of quantum electrody-
namics of strong fields, which has received much interest in the last two decades. The
subject of supercritical electron states and the decay of the neutral vacuum is treated
in some detail, addressing both the mathematical description and the physical implica-
tions. Finally, in the last chapter, the theory of perturbative quantum electrodynamics
is extended to the treatment of spinless charged bosons.

An appendix contains some guides to the literature, giving references both to books
which contain more details on quantum electrodynamics and to modern treatises on
quantum field theory which supplement our presentation. We should mention that in
preparing the first chapters of our lectures we have relied heavily on the textbook
Relativistic Quantum Mechanics by J.D. Bjorken and S.D. Drell (McGraw-Hill, New
York, 1964).

We enjoyed the help of several students and collaborators, in particular Jürgen Au-
gustin, Volker Blum, Christian Borchert, Snježana Butorac, Christian Derreth, Bruno
Ehrnsperger, Klaus Geiger, Mathias Grabiak, Oliver Graf, Carsten Greiner, Kordt
Griepenkerl, Christoph Hartnack, Cesar Ionescu, André Jahns, Jens Konopka, Georg
Peilert, Jochen Rau, Wolfgang Renner, Dirk-Hermann Rischke, Jürgen Schaffner,
Alexander Scherdin, Dietmar Schnabel, Thomas Schönfeld, Stefan Schramm, Eckart
Stein, Mario Vidovic, and Luke Winckelmann.
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We are also grateful to Prof. A. Schäfer for his advice. The preparation of the
manuscript was supervised by Dr. Béla Waldhauser and Dipl. Phys. Raffaele Mattiello,
to whom we owe special thanks. The figures were drawn by Mrs. A. Steidl.

The English manuscript was copy-edited by Mark Seymour of Springer-Verlag.

Frankfurt am Main, Walter Greiner
March 1992 Joachim Reinhardt
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Propagators and Scattering Theory 1

1.1 Introduction

In this course we will deal with quantum electrodynamics (QED), which is one of the
most successful and most accurate theories known in physics. QED is the quantum
field theory of electrons and positrons (the electron–positron field) and photons (the
electromagnetic or radiation field). The theory also applies to the known heavy leptons
(μ and τ ) and, in general, can be used to describe the electromagnetic interaction of
other charged elementary particles. However, these particles are also subject to non-
electromagnetic forces, i.e. the strong and the weak interactions. Strongly interacting
particles (hadrons) are found to be composed of other particles, the quarks, so that new
degrees of freedom become important (colour, flavour). It is believed that on this level
the strong and weak interactions can be described by “non-Abelian” gauge theories
modelled on QED, which is the prototype of an “Abelian” gauge theory. These are the
theories of quantum chromodynamics (QCD) for the strong interaction and quantum
flavourdynamics for the weak interaction. In this course we will concentrate purely
on the theory of QED in its original form. Quantum electrodynamics not only is the
archetype for all modern field theories, but it also is of great importance in its own
right since it provides the theoretical foundation for atomic physics.

There are two approaches to QED. The more formal one relies on a general ap-
paratus for the quantization of wave fields; the other, more illustrative, way origi-
nates from Stückelberg and Feynman, and uses the propagator formalism. Nowa-
days a student of physics has to know both, but it is better, both in terms of the
physics and teaching, if it is obvious at an early stage why a formalism was de-
veloped and to what it can be applied. Almost everyone is keen to see as early
as possible how different processes are actually calculated. Feynman’s propaga-
tor formalism is the best way to achieve this. Consequently, it will be central to
these lectures. References to the less intuitive but more systematic treatment of
QED based on the formalism of quantum field theory are given in the appen-
dix.

For the moment we turn to a more general discussion of scattering processes. The
aim here is to calculate transition probabilities and scattering cross sections in the
framework of Dirac’s theory of electrons and positrons. These calculations will be
exact in principle; practically, however, they will be carried out using perturbation
theory, that is an expansion in terms of small interaction parameters. Because we have
to describe the creation and annihilation processes of electron–positron pairs, the for-
malism has to be relativistic from the beginning.

In Feynman’s propagator method, scattering processes are described by means of
integral equations. The guiding idea is, that positrons are to be interpreted as elec-
trons with negative energy which move in the reverse time direction. This idea was

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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2 1. Propagators and Scattering Theory

first formulated by E.C.G. Stückelberg and was used extensively by R. Feynman.1

Feynman was rewarded with the Nobel price for his formulation of quantum elec-
trodynamics, together with J. Schwinger and S. Tomonaga in 1965. The latter gave
alternative formulations of QED, that are mutually equivalent. In the following we
want to convince ourselves of the power of Feynman’s formulation of the theory. The
more or less heuristic rules obtained in this way fully agree with the results that can
be obtained with much more effort using the method of quantum field theory.

1.2 The Nonrelativistic Propagator

First it is useful to remember the definition of Green’s functions in nonrelativistic
quantum mechanics. The concepts and methods to be acquired here are then easily
transferred to relativistic quantum mechanics.

Fig. 1.1. Schematic repre-
sentation of an experimental
arrangement to measure
a scattering process. Colli-
mators D ensure that, at the
position of the detector no
interference occurs between
incoming and scattered waves

We shall mainly consider quantum-mechanical scattering processes in three di-
mensions, where one particle collides with a fixed force field or with another particle.
A scattering process develops according to the scheme outlined in Fig. 1.1. In prac-
tice, one arranges by means of collimators D that the incoming particles are focussed
in a well-defined beam. Such a collimated beam is in general not a wave, which ex-
tends to infinity, e.g. of the form exp(ikz), but a superposition of many plane waves
with adjacent wave vectors k, i.e. a wave packet. Nevertheless, in the stationary for-
mulation of scattering theory for simplicity one often represents the incoming wave
packet by a plane wave. Then one has only to ensure that interference between the
incoming wave packet and the scattered wave is impossible at the position of the de-
tector which is far removed from the scattering center. If plane waves are used in
calculations, therefore one has to exclude this interference explicitly.2

In scattering processes we consider wave packets, which develop in time from ini-
tial conditions, which were fixed in the distant past. So in general, one does not con-
sider stationary eigenstates of energy (i.e. stationary waves). A typical question for
a scattering problem is then: What happens to a wave packet that represents a par-
ticle in the distant past and approaches a center of scattering (a potential or another
particle)? What does this wave look like in the distant future?

Here the generalized Huygens’ principle helps us to answer these questions. If
a wave function ψ(x, t) is known at a certain time t , then its shape at a later time t ′

1 See for example R.P. Feynman: Phys. Rev. 76, 749 (1949).
2 For a more detailed discussion of the wave-packet description see for example M.L. Goldberger
and K.M. Watson: Collision Theory (Wiley, New York, 1964), Chap. 3, or R.G. Newton: Scattering
Theory of Waves and Particles (McGraw-Hill, New York, 1966), Chap. 6.
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can be deduced by regarding every spatial point x at time t as a source of a spherical
wave that emerges from x. It is plausible to assume that the intensity of the wave,
which emerges from x and arrives at x′ at time t ′, is proportional to the initial exciting
wave amplitude ψ(x, t). Let us call the constant of proportionality

iG(x′, t ′;x, t) . (1.1)

The factor i is convention. The generalized Huygens’ principle can thus be expressed
in the following terms:

ψ(x′, t ′) = i
∫

d3x G(x ′, t ′;x, t)ψ(x, t) , t ′ > t . (1.2)

Here ψ(x′, t ′) is the wave that arrives at x′ at time t ′. The quantity G(x′, t ′;x, t)

is known as the Green’s function or propagator. It describes the effect of the wave
ψ(x, t), which was at point x in the past (at time t < t ′), on the wave ψ(x′, t ′), which
is at point x′ at the later time t ′. If the Green’s function G(x′, t ′;x, t) is known, the
final physical state ψ(x′, t ′), which develops from a given initial state ψ(x, t), can be
calculated using (1.2). Knowing G therefore solves the complete scattering problem.
Or, in other words: Knowing G is equivalent to the complete solution of Schrödinger’s
equation. First, however, we want to gain some mathematical insight and discuss the
various ways of defining Green’s functions.

1.3 Green’s Function and Propagator

To explain the mathematical concepts it is best to start with Schrödinger’s equation,

i�
∂ψ(x, t)

∂t
= Ĥψ(x, t) =

(
Ĥ0 + V (x, t)

)
ψ(x, t) ,

Ĥ0 = − �
2

2m
∇2 , (1.3)

which describes the interaction of a particle of mass m with a potential source fixed
in space. If we replace m by the reduced mass μ = m1m2/(m1 + m2), (1.3) remains
valid for the (nonrelativistic) two-body problem. The differential equation (1.3) is of
first order in time, i.e., there are no higher-order time derivatives. Therefore, the first
derivative with respect to time, ∂ψ(x, t)/∂t , can always be expressed by ψ(x, t),
which is obviously the meaning of (1.3). From this, in turn, it follows that, if the value
of ψ(x, t) is known at one certain time (e.g. t0) and at all spatial points x, i.e. if
ψ(x, t0) is known, one can calculate the wave function ψ(x, t) at any point and any
times (at earlier times (t < t0) as well as at later times (t > t0)). Furthermore, since
Schrödinger’s equation is linear in ψ , the superposition principle is valid, i.e. solutions
can be linearly superposed and the relation between wave functions at different times
(ψ(x, t) and ψ(x, t0)) has to be linear. This means that ψ(x, t) has to satisfy a linear
homogeneous integral equation of the form

ψ(x′, t ′) = i
∫

d3x G(x ′, t ′;x, t)ψ(x, t) , (1.4)

where the integration extends over the whole space. This relation also defines the func-
tion G, which is called the Green’s function corresponding to the Hamiltonian Ĥ . It
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is important to note that relation (1.4) – in contrast to (1.2) – makes no difference
between a propagation of ψ forward in time (t ′ > t) or backward in time (t ′ < t).
However, in most cases it is desirable to distinguish clearly between these two cases.
For forward propagation one therefore defines the retarded Green’s function or prop-
agator by

G+(x′, t ′;x, t) =
{

G(x′, t ′;x, t) for t ′ > t

0 for t ′ < t
. (1.5)

It is now useful to introduce the step function Θ(τ) (Fig. 1.2):

Fig. 1.2. The unit step func-
tion

Θ(τ) =
{

1 for τ > 0

0 for τ < 0
. (1.6)

With this the causal evolution of ψ(x′, t ′) from ψ(x, t), with t ′ > t , can be formu-
lated as follows:

Θ(t ′ − t)ψ(x′, t ′) = i
∫

d3x G+(x′, t ′;x, t)ψ(x, t) . (1.7)

For t ′ < t this relation is trivial because of (1.5) and (1.6), which together give 0 = 0,
and for t ′ > t it is identical with (1.4). Equation (1.7) ensures that the original wave
packet ψ(x, t) develops into a later ψ(x′, t ′) with t ′ > t . Hence there exists a causal
connection between ψ(x′, t ′) and ψ(x, t). We will return to this question in Sect. 1.6
and Exercise 1.1. If one wants to describe the evolution backwards in time, it is useful
to introduce the advanced Green’s function G−:

G−(x′, t ′;x, t) =
{

−G(x′, t ′;x, t) for t ′ < t

0 for t ′ > t
. (1.8)

Then the determination of the former wave packet ψ(x′, t ′) from the present one
ψ(x, t), with t ′ < t , proceeds according to the relation

Θ(t − t ′)ψ(x′, t ′) = −i
∫

d3x G−(x′, t ′;x, t)ψ(x, t) , (1.9)

which is again trivial for t ′ > t because of (1.6) and (1.8) and is identical with (1.4)
for t ′ < t .

EXERCISE

1.1 Properties of G

Problem. Show the validity of the following relations:
a) if t ′ > t1 > t :

G+(x′, t ′;x, t) = i
∫

d3x1G
+(x′, t ′;x1, t1)G

+(x1, t1;x, t) ,



Exercise 1.1

1.3 Green’s Function and Propagator 5

b) if t ′ < t1 < t :

G−(x′, t ′;x, t) = −i
∫

d3x1G
−(x′, t ′;x1, t1)G

−(x1, t1;x, t) ,

c) if t > t1:

δ3(x − x′) =
∫

d3x1G
+(x′, t;x1, t1)G

−(x1, t1;x, t) ,

d) if t < t1:

δ3(x − x′) =
∫

d3x1G
−(x′, t;x1, t1)G

+(x1, t1;x, t) .

Solution. a) The first two assertions (a) and (b) are readily understood because of
relations (1.7) and (1.9), respectively. If we consider the propagation of an arbitrary
wave packet ψ(x, t) into the future, we are able to conclude that

ψ(x′, t ′) = i
∫

d3x G+(x′, t ′;x, t)ψ(x, t) (1)

if t ′ > t . ψ(x, t) can be chosen at any arbitrary time t . Thus we can also insert an
intermediate step:

ψ(x′, t ′) = i
∫

d3x1G
+(x′, t ′;x1, t1)ψ(x1, t1)

= i
∫

d3x1G
+(x′, t ′;x1, t1)i

∫
d3x G+(x1, t1;x, t)ψ(x, t)

= i
∫

d3x i
∫

d3x1G
+(x′, t ′;x1, t1)G

+(x1, t1;x, t)ψ(x, t) . (2)

If we compare relations (1) and (2), assertion (a) follows.
b) The proof of case (b) proceeds along similar lines:

ψ(x′, t ′) = −i
∫

d3x G−(x′, t ′;x, t)ψ(x, t) (3)

if t ′ < t . Again we insert an intermediate step:

ψ(x′, t ′) = −i
∫

d3x1G
−(x′, t ′;x1, t1)ψ(x1, t1)

= −i
∫

d3x1G
−(x′, t ′;x1, t1)(−i)

∫
d3x G−(x1, t1;x, t)ψ(x, t)

= −i
∫

d3x (−i)
∫

d3x1G
−(x ′, t ′;x1, t1)G

−(x1, t1;x, t)ψ(x, t) (4)

if t ′ < t1 < t . Comparing relations (3) and (4) assertion (b) follows.
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c) The proof of relations (c) and (d) proceeds similarly. We first write

ψ(x′, t) = i
∫

d3x1G
+(x′, t;x1, t1)ψ(x1, t1)

= i
∫

d3x1G
+(x′, t;x1, t1)(−i)

∫
d3x G−(x1, t1;x, t)ψ(x, t)

=
∫

d3x

∫
d3x1G

+(x′, t;x1, t1)G
−(x1, t1;x, t)ψ(x, t) (5)

if t > t1. For a constant time t , ψ(x, t) can be expressed with the help of the δ function
as

ψ(x′, t) =
∫

d3xδ(x − x′)ψ(x, t) . (6)

The comparison of relations (5) and (6) yields assertion (c).
d) The proof of (c) can be exactly copied

ψ(x′, t) = −i
∫

d3x1G
−(x′, t;x1, t1)ψ(x1, t1)

=
∫

d3x

∫
d3x1G

−(x′, t;x1, t1)G
+(x1, t1;x, t)ψ(x, t) (7)

if t < t1. Comparing (7) with the integral representation (6) proves (d).

1.4 An Integral Equation for ψ

Now we aim for a formal definition of the Green’s function. To this end we still want
to proceed in a physical, illustrative manner to ensure that the propagator method is
understood. Since the motion of a free particle is completely known, the free Green’s
function G0(x

′, t ′;x, t) can be explicitly constructed (see Example 1.3). However, if
we switch on a potential V (x, t), then G0 is modified to G(x′, t ′;x, t) and the question
arises how the Green’s function G (including the interaction) is calculated from the
free Green’s function G0.

To answer this we assume that the interaction potential V (x, t) acts at time t1 for
a short time interval �t1. The potential during this interval is then V (x1, t1). For times
preceding t1 the wave function is that of a free particle, i.e. for t < t1 the particle prop-
agates according to the free propagator G0. At t = t1, V (x1, t1) acts, and a scattered
wave is created, which can be calculated from Schrödinger’s equation
(

i�
∂

∂t1
− Ĥ0

)
ψ(x1, t1) = V (x1, t1)ψ(x1, t1) . (1.10)

As already mentioned, V (x1, t1) acts only during the time interval �t1. We denote the
resulting wave with the help of the free wave φ as

ψ(x1, t1) = φ(x1, t1) + �ψ(x1, t1) , (1.11)
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where φ solves the free Schrödinger equation

(
i�

∂

∂t1
− Ĥ0

)
φ(x1, t1) = 0 (1.12)

and where the scattered wave �ψ(x1, t1) is zero for t < t1. Note that �ψ(x, t) means
an increment of the function ψ(x, t); here, � is not the Laplacian. Inserting (1.11)
into (1.10) and taking into account (1.12), we find

(
i�

∂

∂t1
− Ĥ0

)
�ψ(x1, t1) = V (x1, t1) (φ(x1, t1) + �ψ(x1, t1)) (1.13)

and, neglecting the small term V �ψ on the right-hand side,

(
i�

∂

∂t1
− Ĥ0

)
�ψ(x1, t1) = V (x1, t1)φ(x1, t1) . (1.14)

This differential equation can be integrated in the time interval t1 to t1 + �t1. Taking
into account that �ψ(x1, t1) = 0 we get

i��ψ(x1, t1 + �t1) =
t1+�t1∫

t1

dt ′
(
Ĥ0�ψ(x1, t

′) + V (x1, t
′)φ(x1, t

′)
)

. (1.15)

The first term on the right-hand side is of second order with respect to the small quan-
tities �ψ and �t1. Then in first-order accuracy the scattered wave is given by

�ψ(x1, t1 + �t1) = −i

�
V (x1, t1)φ(x1, t1)�t1 . (1.16)

Since the potential V (x1, t1) is assumed to vanish after the time interval �t1, the
scattered wave propagates according to the free propagator G0 too, and we obtain at
the later time t ′ > t1

�ψ(x′, t ′) = i
∫

d3x1 G0(x
′, t ′;x1, t1)�ψ(x1, t1)

=
∫

d3x1 G0(x
′, t ′;x1, t1)

1

�
V (x1, t1)φ(x1, t1)�t1 . (1.17)

Here we have replaced t1 + �t1 by t1 which is justified in the limit of infini-
tesimal time intervals. Note that φ(x1, t1) is the wave that arrives at space–time
point (x1, t1) before it is scattered at the potential V (x1, t1). Then the poten-
tial V (x1, t1) acts for a short time period �t1. It modifies the incoming wave to
1/�V (x1, t1)φ(x1, t1)�t1 and this “perturbed” wave propagates freely, described by
the propagator G0(x

′, t ′;x1, t1) from (x1, t1) to (x′, t ′). The total wave ψ(x′, t ′),
which originates from an arbitrary wave packet φ in the distant past by scattering
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once at the potential V (x1, t1) during the time period �t1, is then given by

ψ(x′, t ′) = φ(x′, t ′) + �ψ(x′, t ′)

= φ(x′, t ′) +
∫

d3x1 G0(x
′, t ′;x1, t1)

1

�
V (x1, t1)φ(x1, t1)�t1

= i
∫

d3x

(
G0(x

′, t ′;x, t)

+
∫

d3x1�t1G0(x
′, t ′;x1, t1)

1

�
V (x1, t1)G0(x1, t1;x, t)

)
φ(x, t) .

(1.18)

Comparing this with (1.2) or (1.4) we can identify the expression in brackets as the
propagator G(x′, t ′;x, t):

G(x′, t ′;x, t) = G0(x
′, t ′;x, t)

+
∫

d3x1 �t1G0(x
′, t ′;x1, t1)

1

�
V (x1, t1)G0(x1, t1;x, t) . (1.19)

Now we have achieved our goal of calculating the propagator G from the free prop-
agator G0 – at least for the simple case of an interaction V (x1, t1), which is turned
on only during the short time interval �t1. The various terms in (1.19) can be illus-
trated in space–time diagrams, as in Fig. 1.3. The first term of (1.19) corresponds

Fig. 1.3. Graphs illustrating
scattering processes. (a) de-
scribes the free motion (prop-
agation) of a particle from
space–time point (x, t) to
(x′, t ′). In (b) the particle
moves from (x, t) to (x′, t ′)
too, but is scattered once at the
intermediate point by poten-
tial V (x1, t1). Graph (c)
shows the same as graph (b),
but the scattering now takes
place at (x2, t2) instead of
(x1, t1). Finally, (d) repre-
sents a double scattering event
at (x1, t1) and (x2, t2)

to the free propagation of the wave packet from space–time point (x, t) to (x′, t ′).
This is represented Fig. 1.3a. The second term in (1.19) describes the free propagation
from space–time point (x, t) to (x1, t1). Here the particle is scattered at the poten-
tial V (x1, t1) during the time interval �t1. Afterwards it propagates again freely to
space–time point (x ′, t ′). This process is illustrated in Fig. 1.3b.

If we switch on a second potential (x2, t2) at time t2 > t1 for a time interval �t2,
then an additional scattering wave is created, whose contribution �ψ(x′, t ′) to the
total wave ψ(x′, t ′) at time t ′ > t2 can immediately be written down according to
(1.17):

�ψ(x′) =
∫

d3x2 G0(x
′;x2)V (x2)ψ(x2)�t2

= i
∫

d3x d3x2 �t2G0(x
′;x2)V (x2)

×
(

G0(x2;x) +
∫

d3x1 �t1G0(x2;x1)V (x1)G0(x1;x)

)
φ(x) . (1.20)

From (1.18) we have substituted the scattering wave ψ(2), which arrives at space–time
point (x2, t2). In addition we have introduced the obvious abbreviations

(x, t) = x ,

1

�
V (xi , ti ) = V (xi) . (1.21)

Note that we have absorbed the factor 1/� in the potential, since the two always
appear together according to (1.16). The first term in (1.20), which is proportional



1.4 An Integral Equation for ψ 9

to G0(x
′;x2)V (x2)G0(x2;x)φ(x), represents a single scattering event at space–time

point 2 and is illustrated in Fig. 1.3c. The second term in (1.20) is proportional to

G0(x
′;x2)V (x2)G0(x2;x1)V (x1)G0(x1;x)φ(x)

and represents a double scattering event at the potential at space–time points x1 and x2.
This process is illustrated in Fig. 1.3d.

Now the total wave, which arrives at space–time point (x′, t ′) after free propagation
and single plus double scattering, is simply the sum of the partial waves (1.18) (this
is the wave originating from free propagation and single scattering at (x1, t1)) and
(1.20) (this is the wave originating from single scattering at (x2, t2) as well as double
scattering at (x1, t1) and (x2, t2)). This yields

ψ(x′) = φ(x′) +
∫

d3x1 �t1G0(x
′;x1)V (x1)φ(x1)

+
∫

d3x2 �t2G0(x
′;x2)V (x2)φ(x2)

+
∫

d3x1 �t1

∫
d3x2 �t2G0(x

′;x2)V (x2)G0(x2;x1)V (x1)φ(x1) .

(1.22)

If we now switch on the potential V at n times t1 < t2 < t3 < . . . < tn for time intervals
�t1,�t2, . . . , then (1.22) must obviously be generalized to yield

ψ(x′) = φ(x′) +
∑

i

∫
d3xi �tiG0(x

′;xi)V (xi)φ(xi)

+
∑

i, j ; ti>tj

∫
d3xi �ti d3xj �tj G0(x

′;xi)V (xi)G0(xi;xj )V (xj )φ(xj )

+
∑

i, j, k; ti>tj >tk

∫
d3xi �ti d3xj �tj d3xk �tk G0(x

′;xi)V (xi)

× G0(xi;xj )V (xj )G0(xj ;xk)V (xk)φ(xk)

+ . . . . (1.23)

Note that one integrates over three-dimensional spatial coordinates in (1.22) and
(1.23), e.g.

∫
d3xi . The summation runs over a grid of time values ti ,

∑
i

∫
d3xi �ti =∑

i �ti
∫

d3xi . This is used in the following, when we take the limit �ti → 0 and
n → ∞ so that

∑
i

∫
d3xi �ti becomes a four-dimensional volume integral

∫
d4xi . If

we express φ(x′) and φ(xi) in (1.23) by

φ(x′) = i
∫

d3x G0(x
′;x)φ(x) ,

φ(xi) = i
∫

d3x G0(xi;x)φ(x) , (1.24)
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we finally get

ψ(x′) = i
∫

d3x

(
G0(x

′;x) +
∑

i

∫
d3xi �tiG0(x

′;xi)V (xi)G0(xi;x)

+
∑

i,j ;ti>tj

∫
d3xi�tid

3xj�tjG0(x
′;xi)V (xi)G0(xi;xj )V (xj )G0(xj , x)

+
∑

i,j,k;ti>tj >tk

∫
d3xi �ti d3xj �tj d3xk �tk G0(x

′;xi)V (xi)

× G0(xi;xj )V (xj )G0(xj ;xk)V (xk)G0(xk;x) + . . .

)
φ(x)

≡ i
∫

d3x G(x′;x)φ(x) . (1.25)

The complete expression for the Green’s function G(x′, x) including interactions re-
sults by comparing (1.25) with (1.2) or (1.4). Expanded in terms of the free Green
function G0(x

′;x) the full Green’s function reads

G(x′;x) = G0(x
′;x) +

∑
i

∫
d3xi �ti G0(x

′;xi)V (xi)G0(xi;x)

+
∑

i,j ;ti>tj

∫
d3xi �ti d3xj �tj G0(x

′;xi)V (xi)G0(xi;xj )V (xj )G0(xj , x)

+
∑

i,j,k;ti>tj >tk

∫
d3xi �ti d3xj �tj d3xk �tk G0(x

′;xi)V (xi)

× G0(xi;xj )V (xj ) × G0(xj ;xk)V (xk)G0(xk;x) + . . . . (1.26)

We have been careful to respect strict time ordering in the preceding expression. How-
ever it is possible to get rid of the constraints for the multiple sums if we introduce the
retarded Green’s function G+(x′;x) (see (1.5)), which fulfills

G+
0 (x′, t ′;x, t) =

{
0 for t ′ < t

G0(x
′, t ′;x, t) for t ′ > t

,

G+(x′, t ′;x, t) =
{

0 for t ′ < t

G(x′, t ′;x, t) for t ′ > t
. (1.27)

Furthermore, in the continuum limit �ti → 0 etc., we can replace the sums over time
intervals in (1.25) and (1.26) by time integrals

∫
dt . . . . This leads to the following

series expansion for the retarded interacting Green’s function

G+(x′;x) = G+
0 (x′;x) +

∫
d4x1 G+

0 (x′;x1)V (x1)G
+
0 (x1;x)

+
∫

d4x1 d4x2 G+
0 (x′;x1)V (x1)G

+
0 (x1;x2)V (x2)G

+
0 (x2;x)

+ . . . , (1.28)
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where we used the abbreviation

d4x = d3x dt = d3x dx0 . (1.29)

In (1.28) the Green’s function G with interaction is expanded as a series of multi-
ple scattering events, where the propagation between single scattering events is deter-
mined by the free Green’s function G0. This multiple scattering series will be assumed
to converge. We have also ignored complications arising from the possibility of bound
states in the potential V .

It is possible to write down a closed expression for the interacting Green’s function.
This is achieved by formally summing the series (1.28) which leads to

G+(x′;x) = G+
0 (x′;x) +

∫
d4x1 G+

0 (x′;x1)V (x1)G
+(x1;x) . (1.30)

This is an integral equation for G+. It is often called the Lippmann–Schwinger equa-
tion. As can be seen immediately, the multiple scattering series (1.28) can be gener-
ated by iterating the integral equation (1.30). Similarly the series (1.25) for the wave
function ψ(x′) can be summed, resulting in

ψ(x′) = lim
t→−∞ i

∫
d3x G+(x′;x)φ(x)

= lim
t→−∞ i

∫
d3x

(
G+

0 (x′;x) +
∫

d4x1G
+
0 (x′, x1)V (x1)G

+(x1;x)

)
φ(x)

= φ(x′) + lim
t→−∞

∫
d4x1 G+

0 (x′, x1)V (x1) i
∫

d3x G+(x1;x)φ(x)

= φ(x′) +
∫

d4x1G
+
0 (x′, x1)V (x1)ψ(x1)

︸ ︷︷ ︸
scattered wave

. (1.31)

This is an integral equation for ψ(x′). One should realize that up to now nothing is
solved, since one has to integrate over a still-unknown wave function ψ . However, in
some sense the integral equations (1.30, 1.31) are more useful than the original dif-
ferential equation (1.3). They allow a systematic approximation in the case of weak
perturbations (that is a small perturbation potential V ). Moreover, one can easily im-
pose the correct boundary conditions (cf. the discussion in Sect. 1.5).

It should be noted that not only G+
0 (x′;x) vanishes for t ′ < t , but also G+(x′;x).

This property of the retarded Green’s functions expresses the principle of causality
in an elementary way through (1.31) and (1.25). For example, the expansion (1.26)
means that an interaction with the potential V at time tk can influence additional scat-
tering interactions only if these occur later in time (tk < ti, tj ).

Let us return to the scattering expansion (1.28). If the infinite series is truncated
after a finite number of terms (1.28) allows us to calculate G+ as a functional of V

and G0. Given G+ one can immediately solve the initial value problem. The wave
function ψ(x′, t ′) is obtained by a simple integration according to (1.31) if it is known
at some former point in time.
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1.5 Application to Scattering Problems

Let us consider a scattering problem. We know the incoming wave packet φ(x, t); it
describes a particle in the distant past moving towards the scattering center. We want
to construct the wave that originates from the interaction with the potential V (x, t), as
it looks in the distant future. We idealize the scattering problem by assuming that no
interaction is present at the initial time, i.e.

V (x, t) → 0 for t → −∞ ,

the initial wave φ is therefore a solution of the Schrödinger equation for free particles,
which fulfills certain initial conditions.3 The exact wave ψ(x, t) then approaches the
incoming wave φ(x, t) in the limit t → −∞:

lim
t→−∞ψ(x, t) = φ(x, t) . (1.32)

In the distant future the exact wave ψ(+) is, according to (1.25, 1.31) given by

ψ(+)(x ′, t ′) = lim
t→−∞ i

∫
d3x G+(x′, t ′;x, t)φ(x, t)

= φ(x′) +
∫

d4x1 G+
0 (x′;x1)V (x1)ψ

(+)(x1)

︸ ︷︷ ︸
scattered wave

. (1.33)

The ψ(+)(x1) appearing in this equation is the exact wave that originates from the
initial wave packets (1.32). The superscript (+) over ψ is meant to express the fact
that we are dealing with a wave which propagates into the future. As has already
been mentioned the second term in (1.33) represents the scattered wave. It includes
all single and multiple scattering events. Now we assume that the potential V (x, t)

vanishes after a certain time, i.e.

lim
t ′→∞

V (x′, t ′) = 0 . (1.34)

If the interaction potential has a short range this condition will be met: Consider for
example the mutual scattering of two particles, where the interaction increases from
zero during their approach and decreases to zero when they depart (Fig. 1.4). If this
condition is not fulfilled one may take recourse to the prescription ofadiabatic switch-

Fig. 1.4. The scattering of two
particles: the interaction in-
creases as they approach each
other and decreases as they
depart

3 The so-defined adiabatic approximation assumes that the solutions of Schrödinger’s equation can
be approximated by the stationary eigenfunctions of the instantaneous Hamiltonian, so that a certain
eigenfunction at time t1 transforms continuously into the corresponding eigenfunction at a later time.
If we can solve the equation

H(t)φn(t) = En(t)φn(t)

at any time, then we expect that a system that assumes a discrete nondegenerate state φm(t) with
energy Em(0) at time t = 0 will be in the state φm(t) with energy Em(t) at time t , provided that H(t)

varies slowly with time. However, this means that switching on or off H(t) cannot cause excitations
to other states φk(t)(k �= m)! The validity of the adiabatic approximation can be readily checked: if
the typical excitation energies of a system are given by �E ≈ Em − Ek , then the corresponding time
scale is of the order �t ≈ �/�E. The switch-on time must be large compared to �t !



1.5 Application to Scattering Problems 13

ing. This means that the potential is forced to vanish asymptotically, e.g. by replac-
ing

V (x, t) → e−λ|t |V (x, t) .

The cutoff parameter λ has to be chosen small enough that the switching does not
introduce spurious transient excitations.

We are now able to consider the exact wave ψ(+)(x′, t ′) in the distant future, i.e.
in the limit t ′ → ∞. All information about the scattered wave can be summarized in
the probability amplitudes. Their squares express the probability that a particle from
a given, free, initial state φi will be scattered into various final states φf in the limit
t ′ → +∞. Since the potential is assumed to vanish for t → −∞ as well as for t →
+∞, we can consider the φ’s as plane waves.

φf (x′, t ′) = 1√
(2π�)3

exp
[
i
(
kf · x′ − ωf t ′

)]
. (1.35)

The plane wave (1.35) is subjected to the continuum normalization (or δ-function
normalization). Alternatively one may use the box normalization, where the particle
is confined to a box of volume V . Then the momentum variable becomes discretised
and one has to replace

1√
(2π�)3

→ 1√
V

. (1.36)

Dirac’s δ function δ3(kf − ki ) is then replaced by Kronecker’s delta

δkf ,ki
=
⎧⎨
⎩

1 for kf = ki

0 for kf �= ki

.

The probability amplitudes are elements of Heisenberg’s scattering matrix or
S matrix4

Sf i = lim
t ′→∞

〈
φf (x′, t ′) ψ

(+)
i (x ′, t ′)

〉

= lim
t ′→∞

∫
d3x′φ∗

f (x′, t ′)ψ(+)
i (x′, t ′)

= lim
t ′→∞

lim
t→−∞ i

∫
d3x′

∫
d3xφ∗

f (x′, t ′)G+(x′, t ′;x, t)φi(x, t)

= lim
t ′→∞

∫
d3x′φ∗

f (x′, t ′)
(

φi(x
′, t ′) +

∫
d4xG+

0 (x′, t ′;x, t)V (x, t)ψ
(+)
i (x, t)

)

= δ3(kf − ki ) + lim
t ′→∞

∫
d3x′ d4xφ∗

f (x′, t ′)G+
0 (x′, t ′;x, t)V (x, t)ψ

(+)
i (x, t) .

(1.37)

4 W. Heisenberg: Zeitschrift f. Naturforschung 1, 608 (1946), see also C. Møller: Kgl. Danske Viden-
skab Selskab, Mat.-Fys. Medd. 23, 1 (1948) and J.A. Wheeler: Phys. Rev. 52, 1107 (1937).
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ψ
(+)
i is the solution (1.33) of the wave equation, which develops from the plane wave

that emerges at t → −∞ and carries momentum ki during the scattering process. The
limit t → ±∞ always means

t → large finite time T ,

at which the particles cease to interact. Typical times are, for example, the collision
time or the production or detection time for particles.

Finally, if we insert ψ+
i from the iterated solution (1.33), we get an expansion of

the S matrix in terms of multiple scattering events, namely

Sf i = δ3(kf − ki ) + lim
t ′→∞

∫
d3x′ d4x φ∗

f (x′, t ′)G+
0 (x ′, t ′;x, t)V (x, t)φi(x, t)

+ lim
t ′→∞

∫
d3x′d4x1 d4x φ∗

f (x′, t ′)

× G+
0 (x′, t ′;x1, t1)V (x1, t1)G

+
0 (x1, t1;x, t)V (x, t)φi(x, t)

+ · · · . (1.38)

The first term (the δ function) does not describe scattering but characterizes the par-
ticle flux without scattering. The second term represents single scattering, the third
term double scattering, etc. Some of these contributions to the S matrix are illustrated
in Fig. 1.3: they are coherently summed to give the total S matrix element.

One can obtain alternative expressions for the S matrix if one starts in a simi-
lar way to the above procedure, from the advanced Green’s functions G−

0 and G−,
cf. (1.8) and (1.9). For example, the state φf (x, t) corresponds to that wave function

ψ
(−)
f (x, t), which becomes φf (x, t) in the distant future (t → ∞) after the interaction

V (x, t) has vanished

lim
t→∞ψ

(−)
f (x, t) = φf (x, t) . (1.39)

Starting from (1.9) we can formulate this boundary condition precisely (now the
primed (x′, t ′) and unprimed (x, t) are exchanged):

ψ
(−)
f (x, t) = lim

t ′→∞
−i
∫

d3x′G−(x, t;x′, t ′)φf (x′, t ′) . (1.40)

We expect the S-matrix element for the transition i → f , i.e. Sf i , to be given by the

scalar products of ψ
(−)
f (x, t) and φi(x, t), calculated at a time t in the distant past(

lim
t→−∞

)
:

Sf i = lim
t→−∞

〈
ψ

(−)
f (x, t) φi(x, t)

〉

= lim
t→−∞ lim

t ′→∞
i
∫∫

d3xd3x′G−∗(x, t;x′, t ′)φ∗
f (x′, t ′)φi(x, t) . (1.41)
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The equivalence with the previous definition of the S matrix is indeed immediately
proved by means of the relation

G+(x′, t ′;x, t) = G−∗(x, t;x′, t ′) (1.42)

(see Exercise 1.2), since then (1.41) becomes

Sf i = lim
t→−∞ lim

t ′→∞
i
∫∫

d3xd3x′G+(x ′, t ′;x, t)φ∗
f (x′, t ′)φi(x, t)

= lim
t ′→∞

〈
φf (x′, t ′) ψ

(+)
i (x ′, t ′)

〉
, (1.43)

which agrees with the first line of (1.37). Here it is of crucial importance that the poten-
tial is real, which was used in the derivation of Exercise 1.2. The fact that (1.41) does
not equal (1.37) for a complex potential V is easily understood physically, since an ab-
sorptive potential (having a negative imaginary part of V (x, t)) causes a reduction in
the probability of finding the particle in a certain state. This means that |ψ(+)

i (x′, t ′)|2
for t ′ → ∞ is in general smaller than |φi(x, t)|2 for t → −∞, where φi is the state
from which ψ

(+)
i originates. On the other hand, |ψ(−)

f (x, t)|2 for t → −∞ is in gen-
eral larger than |φf (x′, t ′)|2 for t ′ → ∞. Here φf is the state into which ψ

(−)
i (x, t)

changes for t → ∞. Hence we expect that for absorptive potentials (1.41) is larger
than (1.37).

Let us finally remark that the S matrix instead of using (1.37) or (1.43) can also be
expressed in the following symmetrical way

Sf i =
〈
ψ

(−)
f (x, t)

∣∣∣ψ(+)
i (x, t)

〉
. (1.44)

Sf i thus represents the overlap between the solutions ψ
(+)
i satisfying the incoming

and ψ
(−)
f satisfying the outgoing boundary condition. The result is independent of the

moment in time t at which the overlap is evaluated.

EXERCISE

1.2 Relation Between G+ and G−

Problem. a) Show the validity of the relation

G+(x′, t ′;x, t) = G−∗(x, t;x′, t ′) .

b) Prove the validity of (1.44).

Solution. a) We start from the integral equation (1.30) for G+. In complete anal-
ogy to its derivation from Schrödinger’s equation (cf. (1.10–1.19)) and considering
the definition of G− in (1.8) and (1.9), we find the integral equation for G− which
corresponds to (1.30), namely

G−(x′, t ′;x, t) = G−
0 (x′, t ′;x, t) +

∫
d4x1G

−
0 (x′;x1)V (x1)G

−(x1, x) . (1)
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Here the Green’s functions G+ and G+
0 have obviously been replaced by G− and G−

0 ,
respectively, in contrast to (1.30). In Example 1.3 we show the validity of the relation

G+
0 (x′, t ′;x, t) = G−∗

0 (x, t;x′, t ′) (2)

for the free Green’s functions. If we iterate the integral equation (1), i.e.

G−(x′;x) = G−
0 (x′;x) +

∫
d4x1 G−

0 (x′;x1)V (x1)G
−
0 (x1;x)

+
∫

d4x1 d4x2 G−
0 (x′;x1)V (x1)G

−
0 (x1;x2)V (x2)G

−
0 (x2;x) + · · · , (3)

it is obvious that by complex conjugation of (3) the following relation also holds:

G−∗(x′;x) = G+
0 (x;x′) +

∫
d4x1 G+

0 (x1;x′)V (x1)G
+
0 (x;x1)

+
∫

d4x1d4x2G
+
0 (x1;x′)V (x1)G

+
0 (x2;x1)V (x2)G

+
0 (x;x2) + · · ·

= G+
0 (x;x′) +

∫
d4x1 G+

0 (x;x1)V (x1)G
+
0 (x1;x′)

+
∫

d4x1d4x2G
+
0 (x;x2)V (x2)G

+
0 (x2;x1)V (x1)G

+
0 (x1;x′) + · · ·

= G+(x;x′) . (4)

We have assumed here, that the potential V is real: V (x) = V ∗(x). This proves the
validity of the assumption.

b) The claimed expression for the S-matrix element can be expressed in terms of
the advanced and retarded propagators as follows

Sf i =
∫

d3x
[

lim
t ′→+∞

i
∫

d3x′G−∗(x, t;x′, t ′)φ∗
f (x′, t ′)

]

× [ lim
t→−∞ i

∫
d3x′′G+(x, t;x′′, t ′′)φi(x

′′, t ′′)
]

. (5)

The spatial integral over d3x can be solved using (4) and Exercise 1.1(a)
∫

d3xG−∗(x, t;x′, t ′)G+(x, t;x′′, t ′′)

=
∫

d3xG+(x′, t ′;x, t)G+(x, t;x′′, t ′′)

= −iG+(x′, t ′;x′′, t ′′). (6)

Thus (5) becomes

Sf i = lim
t ′→+∞

lim
t ′′→−∞

i
∫∫

d3x′d3x′′φ∗
f (x′, t ′)G+(x ′, t ′;x′′, t ′′)φi(x

′′, t ′′) , (7)

which agrees with the third line of (1.37).
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EXAMPLE

1.3 The Free Green’s Function and Its Properties

One can deduce an explicit expression for the free Green’s function, i.e. in the case
where V = 0.

As above, we denote the free Green’s function by G0(x
′, t ′;x, t) and remark that,

according to the defining relation (1.2), arbitrary wave packets ψ(x, t) develop in
space and time corresponding to force free quantum-mechanical motion:

ψ(x′, t ′) = i
∫

d3x G0(x
′, t ′;x, t)ψ(x, t) . (1)

Initially we want to derive a general expression for the Green’s function G(x′, t ′;x, t)

in the case of an arbitrary time-independent potential V (x). Let us consider the com-
plete and orthonormal set (UE(x′)) of eigensolutions of the stationary Schrödinger
equation

(
− �

2

2m
∇′2 + V (x′)

)
UE(x′) = EUE(x′) . (2)

If the potential V (x′) is time-independent, and provided that we know the solution of
the following time-dependent Schrödinger equation

i�
∂ψ(x ′, t ′)

∂t ′
=
(

− �
2

2m
∇′2 + V (x′)

)
ψ(x′, t ′) (3)

at a certain time t , we can write down a formal expression for the solution ψ(x′, t ′) at
any time t ′. To this end we expand ψ(x′, t ′) at time t ′ in terms of the basis of energy
eigenfunctions UE(x′), using the closure relation

ψ(x′, t ′) =
∑
E

AE(t ′)UE(x′) , (4a)

AE(t ′) =
∫

d3x′U∗
E(x′)ψ(x′, t ′) . (4b)

Of course, the expansion coefficients AE(t ′) are time dependent. If we insert expan-
sion (4) in (3) and consider (2), we find

i�
∑
E

UE(x′) d

dt ′
AE(t ′) =

∑
E

AE(t ′)EUE(x′) ,

and, because of the orthonormality of the wave functions UE(x′),

i�
d

dt ′
AE(t ′) = EAE(t ′) .

This equation is solved by

AE(t ′) = AE(t) exp
[−iE(t ′ − t)/�

]
. (5)

It is well known that the probability P(E) of finding the state UE(x′) as a part of
ψ(x′, t ′), P(E) = |AE(t)|2 is not dependent on time.
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Hence, if ψ(x′, t ′) is known at time t ′ = t , then the admixture coefficient AE(t)

can be determined according to (4b) and its time dependence is given by (5). Then
ψ(x′, t ′) is known at any time t ′. We obtain

ψ(x′, t ′) =
∑
E

AE(t ′)UE(x′)

=
∑
E

AE(t) exp
[−iE(t ′ − t)/�

]
UE(x′)

=
∫

d3x

(∑
E

U∗
E(x)UE(x′)

)
exp
[−iE(t ′ − t)/�

]
ψ(x, t) . (6)

Comparing (6) with (1) yields the eigenmode expansion of the Green’s function

G(x ′, t ′;x, t) = −i
∑
E

U∗
E(x)UE(x′) exp

[−iE(t ′ − t)/�
]

. (7)

For t ′ = t the right-hand side becomes −iδ3(x′ − x) according to the completeness
relation for the states UE . Note that we derived the full Green’s function G and not
just G0, since the above expression is valid if any time-independent potential V (x) is
present. As a special case for V = 0 we get the free Green’s function G0 if we insert
the free stationary solutions (i.e. plane waves for UE(x). Using nonrelativistic plane
waves for UE(x), i.e.

UE(x) = 1

(2π�)3/2
exp(ik · x) (8)

with wave vector k = p/� and E = p2/2m leads to

G0(x
′, t ′;x, t) = − i

(2π�)3

∫
exp
[
ik · (x′ − x)

]
exp

[
− i

�
E(t ′ − t)

]
d3p

= − i

(2π�)3

∫
exp

{
i

�

[
px(x

′ − x) + py(y
′ − y) + pz(z

′ − z)
]

− i

�

(p2
x + p2

y + p2
z )

2m
(t ′ − t)

}
dpx dpy dpz , (9)

where we have used the Cartesian representation of the integral over d3p. Further
evaluation requires the elementary Gaussian integral formula
∫ ∞

−∞
dx exp

(−ia x2)=
√

π

ia
. (10)

First we consider the integration over px and complete the square of the exponent:

− i

�

[
p2

x(t
′ − t)

2m
− px(x

′ − x)

]

= − i

�

[
px

√
t ′ − t√
2m

−
√

2m(x′ − x)

2
√

t ′ − t

]2

+ i

�

m(x′ − x)2

2(t ′ − t)

= − i

�

t ′ − t

2m
ξ2 + i

�

m(x′ − x)2

2(t ′ − t)
, (11)
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where

ξ = px − m(x′ − x)

t ′ − t
. (12)

With a = (t ′ − t)/2m� we consequently obtain for the first integral

∫ ∞

−∞
dpx exp

{
i

�

[
px(x

′ − x) − p2
x

2m
(t ′ − t)

]}

= exp

[
i

�

m(x′ − x)2

2(t ′ − t)

] ∞∫

−∞
dξ exp

[
− i

�

(t ′ − t)

2m
ξ2
]

= exp

[
i

�

m(x′ − x)2

2(t ′ − t)

]√
2πm�

i(t ′ − t)
(13)

and finally, after triple application of the integral formula (10),

G0(x
′, t ′;x, t) = −i

(2π�)3

[
2πm�

i(t ′ − t)

]3/2

exp

[
i|x′ − x|22m�

4�2(t ′ − t)

]

= −i

(
m

2π i�(t ′ − t)

)3/2

exp

[
im|x′ − x|2
2�(t ′ − t)

]
. (14)

This is the unrestricted, free Green’s function G0 that describes the propagation into
the future as well as back into the past. The retarded and advanced Green’s functions
are readily derived from (14) as follows:

G+
0 (x′, t ′;x, t) = +G0(x

′, t ′;x, t)Θ(t ′ − t)

= −i

[
m

2π i�(t ′ − t)

]3/2

exp

[
im|x′ − x|2
2�(t ′ − t)

]
Θ(t ′ − t) (15)

and

G−
0 (x′, t ′;x, t) = −G0(x

′, t ′;x, t)Θ(t − t ′)

= +i

[
m

2π i�(t ′ − t)

]3/2

exp

[
im|x′ − x|2
2�(t ′ − t)

]
Θ(t − t ′) . (16)

The relation

G+
0 (x′, t ′;x, t) = G−∗

0 (x, t;x′, t ′) (17)

follows directly from (15) and (16). By the way, the result of Exercise 1.2 for the full
Green’s functions follows straight from the expansion (7).

In Example 1.5 we will get acquainted with the Green’s function for diffusion and
notice that this function is equivalent to the above Green’s function (14) for the free
motion of a quantum particle if we substitute t ′ → −it ′, t → −it . This result is quite
plausible because of the similarity between the diffusion equation and Schrödinger’s
equation.
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1.6 The Unitarity of the S Matrix

An important property of the S matrix is its unitarity, provided that the Hamiltonian
operator is hermitian. To prove this we have to show that

ŜŜ † = 1 = Ŝ †Ŝ , (1.45)

where Ŝ = {Sik} denotes the full S matrix. We may use any of the above-discussed
forms of Sf i = 〈f |Ŝ|i〉 for the S matrix. In particular, we could base the proof on
(1.41), which was established with the advanced Green’s function G−. However, we
will use the form (1.37), where the retarded Green’s function G+ appears. An arbitrary
matrix element of ŜŜ † then reads, inserting 1 =∑γ |γ 〉〈γ |
〈
β

∣∣∣ŜŜ †
∣∣∣α
〉
=
∑
γ

〈
β

∣∣∣Ŝ
∣∣∣γ
〉 〈

γ

∣∣∣Ŝ †
∣∣∣α
〉

=
∑
γ

〈
β

∣∣∣Ŝ
∣∣∣γ
〉 〈

α

∣∣∣Ŝ
∣∣∣γ
〉∗

= lim
t ′→∞

lim
t→−∞

∑
γ

∫∫
d3xd3x′φβ

∗(x′, t ′)G+(x′, t ′;x, t)φγ (x, t)

×
∫∫

d3x′′d3x′′′φα(x′′, t ′)G+∗(x′′, t ′;x′′′, t)φ∗
γ (x′′′, t) .

We used S† = (ST)∗, where T denotes transposition, and therefore 〈γ |S†|α〉 =
〈α|S|γ 〉∗. Furthermore, it is advantageous to use the same time arguments t ′ and t in
the matrix elements of both Ŝ and Ŝ †, respectively. As previously mentioned, S ma-
trix elements do not depend on these times in the limit t ′ → +∞, t → −∞, since the
potential is assumed to decrease sufficiently fast. Since the φγ form a complete set of
states,
∑
γ

φγ (x, t)φ∗
γ (x′′′, t) = δ3(x − x′′′) , (1.46)

(1.45) transforms into

〈
β

∣∣∣ŜŜ †
∣∣∣α
〉
= lim

t ′→+∞
lim

t→−∞

∫∫∫
d3xd3x′d3x′′

× φβ
∗(x′, t ′)G+(x′, t ′;x, t)G−(x, t;x′′, t ′)φα(x′′, t ′) . (1.47)

Here we have exploited (1.42). Since
∫

d3x1G
+(x′, t ′;x1, t1)G

−(x1, t1;x′′, t ′) = δ3(x′ − x′′)

(see Exercise 1.1), it follows that

〈
β

∣∣∣ŜŜ †
∣∣∣α
〉
= lim

t ′→+∞

∫∫
d3x′d3x′′φβ

∗(x′, t ′)δ3(x′ − x′′)φα(x′′, t ′)

= lim
t ′→+∞

∫
d3x′φβ

∗(x ′, t ′)φα(x′, t ′)

= δβα . (1.48)
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Similarly one can show Ŝ †Ŝ = 1, which proves the unitarity of the S matrix.5 Of
course, S†S = 1 can be deduced directly from SS† = 1, because S−1SS† = S−1 and
thus S† = S−1, and in turn S−1S = 1 = S†S.

1.7 Symmetry Properties of the S Matrix

The S matrix possesses symmetries that reflect the symmetries of the corresponding
Hamiltonian operator. In this context we refer to the detailed discussion in Quantum
Mechanics – Symmetries, 2nd rev. ed., by W. Greiner, B. Müller (Springer, Berlin,
Heidelberg, 1994). We recognized there that symmetry operations can be represented
by unitary operators Û which act on the states of the Hilbert space. Let Û be such an
operator, which transforms the state of a free particle φβ(x, t) into another state

φβ ′(x, t) = Ûφβ(x, t) . (1.49)

Then φβ ′ has to describe a possible free motion of the particles in the system,
too, since Û commutes with Ĥ0. Moreover, if Û also commutes with Ĥ , then the
state ψα

(+) is transformed into ψα′ (+) by means of Û :

ψα′ (+)(x, t) = Ûψα
(+)(x, t) , (1.50)

where ψα′ (+) is also a possible state of the system including the interaction V (x, t).
Indeed from

i�
∂

∂t
ψ(+) =

(
Ĥ0 + V

)
ψ(+)

follows

i�
∂

∂t
Ûψ(+) = Û

(
Ĥ0 + V

)
ψ(+) =

(
Ĥ0 + V

)
Ûψ(+) ,

and therefore, Ûψ(+) is also a possible state of the system. The plus sign (+) char-
acterises the development of the state into the future. We now obtain for the S matrix
element between such transformed states, according to (1.37):
〈
β ′
∣∣∣Ŝ
∣∣∣α′〉= 〈φβ ′ ψα′ (+)

〉
=
〈
Ûφβ Ûψα

(+)
〉

=
〈
φβ Û †Ûψα

(+)
〉
=
〈
φβ ψα

(+)
〉
=
〈
β

∣∣∣Ŝ
∣∣∣α
〉

. (1.51)

5 This proof of the unitarity of the S matrix rests on the assumption that the potential V (x) is switched
on in the distant past and switched off in the distant future. The situation becomes more complicated
if V (x) is completely constant in time. In this case one has to work with wave packets. The switching
on or off of the potential is caused by the fact that the wave packet is beyond the range of influence of
the potential, when it is in the distant past and distant future. Further complications arise because the
Hamiltonian might possess bound states. In this case one can show that the wave packets are orthog-
onal to these bound states and the set of wave packets is not closed. However, one can nevertheless
demonstrate the unitarity of the S matrix for real potentials V , since bound states cannot be occupied
because of energy conservation (therefore they are also called “closed channels”). These problems
are discussed in texts on the formal theory of scattering, see e.g. M.L. Goldberger and K.M. Watson:
Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).
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The limit t ′ → ∞ is implied for all these matrix elements. This equation means that
the scattering amplitude between an arbitrary pair of states φα,φβ and caused by, e.g.,
a spherically symmetric potential is numerically identical with the scattering ampli-
tude between the “rotated” states φα′ = Ûφα and φβ ′ = Ûφβ . It is self-evident that
both states have to be rotated by the same amount. If we explicitly insert the rotated
states on the left-hand side of (1.51), we get
〈
β

∣∣∣Ŝ
∣∣∣α
〉
=
〈
Ûφβ

∣∣∣Ŝ
∣∣∣ Ûφα

〉
=
〈
β

∣∣∣Û†ŜÛ

∣∣∣α
〉
=
〈
β

∣∣∣Ŝ
∣∣∣α
〉

, (1.52)

i.e.

Û †ŜÛ = Ŝ or [ Û , Ŝ ]− = 0 (1.53)

has to be valid. We therefore have the important statement: if the symmetry transfor-
mation operator Û commutes with Ĥ , then Û also commutes with the Ŝ operator.

For the anti-unitary operation of time-reversal6 T̂ the situation is more compli-
cated. The time-reversal operator T̂ can be written as T̂ = ÛK̂ where Û is a unitary
operator and K̂ stands for complex conjugation. T̂ transforms a free state φβ(x, t)

into another free state with reversed momentum and reversed angular momentum.
The time-reversed state will be symbolically denoted by φ−β . However, one still has
to pay attention to the fact that the operator T̂ reverses the direction of time too, i.e.
instead of (1.49) the transformation reads

T̂ φβ(x, t) = φ−β(x,−t) . (1.54)

If, for example,

φβ(x, t) = N exp
[
i(kβ · x − ωβt)

]

is a plane wave for a spin-0 particle, then the state φ−β(x, t), according to (1.54), is
given by

φ−β(x, t) = N∗ exp
[
i(−kβ · x − ωβt)

]
.

Note that φ−β(x, t) �= T̂ φβ(x, t), but rather φ−β(x, t) = T̂ φβ(x,−t). This follows
immediately from (1.54). Now let us consider the case of the time-reversal operator
commuting with the Hamiltonian operator, i.e.

[ T̂ , Ĥ ]− = 0 . (1.55)

Then we speak of a time-reversal-invariant system. A simple example is a potential
V (x) that is constant in time but is switched on and off at times −t0 and t0, re-
spectively, in a manner symmetrical in time (cf. Fig. 1.5). The time-reversal opera-
tor T̂ then transforms the state ψα

(+)(x, t) into another state that is also a possible
state of motion of the system (because of its time-reversal invariance). This state will
have reversed momentum and reversed angular momentum compared to ψα

(+). In
the distant future it converges towards φ−α(x,−t), in contrast to ψα

(+)(x, t), which
originated from φα(x, t) in the distant past. We therefore call this time-reversed state

Fig. 1.5. A potential essential-
ly constant in time, which
is switched on and off at
times ±t0

6 See W. Greiner, B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Heidel-
berg, 1994), Chap. 11 and W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed.
(Springer, Berlin, Heidelberg, 2000), Chap. 12.
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ψα
(−)(x,−t) and are able to write, because of (1.54),

T̂ ψα
(+)(x, t) = ψ−α

(−)(x,−t) . (1.56)

The time-reversal operation T̂ therefore reverses the direction of the time evolution
(t → −t), as we already know from (1.54). For a system invariant under time reversal
and having a hermitian Hamiltonian, from (1.41):

〈
−α

∣∣∣Ŝ
∣∣∣− β

〉
= lim

t→−∞
〈
ψ−α

(−)(x, t) φ−β(x, t)
〉

= lim
t→+∞

〈
ψ−α

(−)(x,−t) φ−β(x,−t)
〉

= lim
t→∞

〈
T̂ ψα

(+)(x, t) T̂ φβ(x, t)
〉

,

because of (1.54) and (1.56), and using T̂ = ÛK̂

〈
−α

∣∣∣Ŝ
∣∣∣− β

〉
= lim

t→∞
〈
ÛK̂ψα

(+)(x, t) ÛK̂φβ(x, t)
〉

= lim
t→∞

〈
K̂ψα

(+)(x, t) K̂φβ(x, t)
〉

= lim
t→∞

〈
φβ(x, t) ψα

(+)(x, t)
〉
=
〈
β Ŝ α

〉
. (1.57)

Equation (1.57) states that the scattering amplitude Sβα from an initial state |α〉 into
a final state |β〉 is numerically equal to the scattering amplitude from state |−β〉 (with
momentum reversed compared to |β〉) into the state | − α〉 (with momentum reversed
as compared to |α〉). This is, of course, only valid if the system is invariant under
time reversal, since only then are the states T̂ ψα possible states of the system. The
interesting relationship (1.57) is called the reciprocity theorem. One can even show its
validity for complex potentials V (x, t).7

1.8 The Green’s Function in Momentum Representation
and Its Properties

Until now we have emphasized the physical uses of the Green’s functions. Now we
want to develop the mathematical apparatus for practical calculations. We aim first
at a differential equation for the Green’s function and begin our discussion with the
defining relation (1.7):

Θ(t ′ − t)ψ(x′) = i
∫

d3x G+(x′;x)ψ(x) , (1.58)

where x = {x0,x} abbreviates the position 4-vector, and Θ(t ′ − t) is the step function
introduced in (1.6). For further analysis it is useful to know the following integral

7 Cf., for example, L. Schiff: Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968),
Chap. 20.
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representation of the step function:

Θ(τ) = − 1

2π i
lim
ε→0

∞∫

−∞
dω

e−iωτ

ω + iε
, (1.59)

which we prove in Exercise 1.4.

EXERCISE

1.4 An Integral Representation for the Step Function

Problem. Show that

Θ(τ) = − 1

2π i
lim
ε→0

∞∫

−∞
dω

e−iωτ

ω + iε
(1)

is an integral representation of Heaviside’s step function.

Solution. We perform the ω-integral as a contour integral in the complex ω plane
(Fig. 1.6). There is a pole of first order at ω = −iε. For τ < 0 we close the contour in
the upper half plane, since the contribution from the upper, infinitely distant half circle
vanishes in this case. With ω = �eiφ the integrand reads

f (�,φ) = e−iωτ

ω
= e−i�τ(cosφ+i sinφ)

�eiφ
= e−i�τ cosφ e+�τ sinφ

�eiφ
.

For τ < 0 the contribution from the upper half circle to the integral becomes smaller
Fig. 1.6. Integration contours
for τ < 0 and τ > 0

than

π�|f (�,φ)| = π�e−�τ sinφ

�
→ 0 (� → ∞) .

According to Cauchy’s integral theorem the complete integral over the contour closed
in the upper half plane thus vanishes, since the pole lies outside the region enclosed
by the integration boundaries. In the case τ > 0 for similar reasons one can close the
contour by means of an infinitely large half circle below the real axis. Then Cauchy’s
integral theorem states that the residue of the integrand at the pole determines the value
of the integral. The clockwise direction of integration leads to a minus sign. Therefore,
we obtain

Θ(τ > 0) = − 1

2π i
(−1)2π i lim

ε→0
Res

[
e−iωτ

ω + iε

]
ω=−iε

= e−iωτ |ω=0 = 1 . (2)
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From this we get directly, by differentiating,

dΘ(τ)

dτ
= − 1

2π i
lim
ε→0

∞∫

−∞

d

dτ

e−iωτ

ω + iε
dω = − 1

2π i
lim
ε→0

∞∫

−∞

−iω

ω + iε
e−iωτ dω

= 1

2π

∞∫

−∞
e−iωτ dω = δ(τ ) . (1.60)

So the derivative of the step function yields Dirac’s δ function. With the help of
this relation one can specify a differential equation for the retarded Green’s function
G+(x′;x) from (1.58) and deduce some of its other formal properties. We know that
ψ(x′) fulfills Schrödinger’s equation
(

i�
∂

∂t ′
− Ĥ (x′)

)
ψ(x′) = 0 . (1.61)

Therefore, we apply the operator
(
i�(∂/∂t ′) − Ĥ (x′)

)
to (1.58) from the left and get

(
i�

∂

∂t ′
− Ĥ (x′)

)
Θ(t ′ − t)ψ(x′)

= i
∫

d3x

(
i�

∂

∂t ′
− Ĥ (x′)

)
G+(x′;x)ψ(x) . (1.62)

The left-hand side is expanded to yield
(

i�
∂

∂t ′
Θ(t ′ − t)

)
ψ(x′) + Θ(t ′ − t)

(
i�

∂

∂t ′
− Ĥ (x′)

)
ψ(x′)

=
(

i�
∂

∂t ′
Θ(t ′ − t)

)
ψ(x′) = i�δ(t ′ − t)ψ(x′) (1.63)

so that (1.62) becomes

i
∫

d3x

[(
i�

∂

∂t ′
− Ĥ (x′)

)
G+(x′;x) − �δ3(x′ − x)δ(t ′ − t)

]
ψ(x) = 0 .

Since this equation has to be satisfied for arbitrary solutions ψ(x), the term in square
brackets must vanish, i.e.
(

i�
∂

∂t ′
− Ĥ (x′)

)
G+(x′;x) = �δ4(x′ − x) , (1.64)

where we have replaced δ3(x′ − x)δ(t ′ − t) by the four-dimensional δ function,
δ4(x′ − x). This differential equation determines, together with the boundary con-
dition for propagation forward in time, the retarded Green’s function G+(x′;x):

G+(x′;x) = 0 for t ′ < t . (1.65)

Obviously the Green’s function is exactly the wave emitted from a point-like space–
time source of strength

�δ4(x′ − x) = �δ3(x′ − x)δ(t ′ − t) .
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Equation (1.64) clearly illustrates how the Green’s function technique can be used to
solve an inhomogeneous linear differential equation. Given the Schrödinger equation

(
i�

∂

∂t
− Ĥ (x)

)
ψ(x) = �(x) , (1.66)

with the source term �(x), we can immediately write down a solution

ψ(x) = ψ0(x) + 1

�

∫
d4x′G+(x, x′)�(x′) for t > t ′ . (1.67)

Here ψ0(x) is a solution of the homogeneous differential equation. Let us now cal-
culate once more the propagator for free particles, but this time with the help of the
differential equation (1.64) and the boundary condition (1.65). For free, nonrelativistic
particles the Hamiltonian is

Ĥ0(x
′) = − �

2

2m
∇′2 . (1.68)

In addition we note that G0
+(x′;x) will depend only on the difference of the coordi-

nates, x′ − x = {x′, t ′} − {x, t}. This is because a wave emitted from the source at x

at time t and arriving at x′ at time t ′ depends only on the distance {x′ −x, t ′ − t}. The
Green’s function, however, is precisely such a wave. Thus we are able to write

G0
+(x′;x) = G0

+(x′ − x) . (1.69)

Mathematically one readily appreciates this fact, since one can easily rewrite the dif-
ferential equation analogous to (1.64) for the free propagator in a differential equation
involving relative coordinates z = x′ − x = {x′ − x, t ′ − t}, because the Hamiltonian
operator Ĥ0 is homogeneous in spatial and time coordinates.

To proceed with the solution of (1.64) for free particles we consider the Fourier
representation

G0
+(x′ − x) =

∫
d3p dE

(2π�)4
exp

[
i

�
p · (x′ − x)

]

× exp

[
− i

�
E(t ′ − t)

]
G0

+(p;E) (1.70)

and determine with (1.68) and (1.64) the relation for the Fourier transform G0
+(p;E):

(
i�

∂

∂t ′
+ �

2

2m
∇′2
)

G0
+(x′ − x)

=
∫

d3 pdE

(2π�)4

(
E − p2

2m

)
G0

+(p;E) exp

[
− i

�
E(t ′ − t)

]
exp

[
i

�
p · (x′− x)

]

!= �

∫
d3p dE

(2π�)4
exp

[
− i

�
E(t ′ − t)

]
exp

[
i

�
p · (x′ − x)

]
. (1.71)

The last term is the right-hand side of (1.64), i.e. �δ4(x′ − x) in energy–momentum
representation. Obviously one can immediately give the solution of the differential
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equation (1.64) in Fourier representation. For E �= p2/2m one obtains

G0
+(p;E) = �

E − p2

2m

. (1.72)

This expression is still incomplete, since the treatment of the singularity at E = p2/2m

has not yet been determined. This is done using the retardation condition (1.65). We
proceed as in Exercise 1.4 with the Fourier representation of the step function and add
an infinitesimal, positive imaginary part iε to the denominator of (1.72) and perform
first of all the E integration in (1.70). As illustrated in Fig. 1.7 the singularity then lies
below the real E axis. We obtain

Fig. 1.7. The position of the
singularity of G+(p;E) and
the integration contour along
the E axis

G0
+(x′ − x) = �

∫
d3p

(2π�)3
exp

[
i

�
p · (x′ − x)

]

×
∞∫

−∞

dE

2π�

exp
[
− i

�
E(t ′ − t)

]

E − p2/2m + iε
. (1.73)

With the substitution E′ = E − p2/2m the last integral changes into

∞∫

−∞

dE′

2π�

exp
[
− i

�
(E′ + p2/2m)(t ′ − t)

]

E′ + iε

= exp

[
− i

�

p2

2m
(t ′ − t)

]∫ ∞

−∞
dE′

2π�

exp
[
− i

�
E′(t ′ − t)

]

E′ + iε

= exp

[
− i

�

p2

2m
(t ′ − t)

][
− i

�
Θ

(
t ′ − t

�

)]

= − i

�
exp

[
− i

�

p2

2m
(t ′ − t)

]
Θ(t ′ − t) .

In the last two steps we have exploited (1.59) and the property of the step function that
Θ(αx) = Θ(x) for positive α. Now (1.73) transforms into

G0
+(x′ − x) = −i

∫
d3p

(2π�)3
exp

{
i

�

[
p · (x′ − x) − p2

2m
(t ′ − t)

]}
Θ(t ′ − t)

= −iΘ(t ′ − t)

∫
d3p φp(x ′, t ′)φp

∗(x, t) . (1.74)

Here we have denoted the eigenfunctions of the free Hamiltonian Ĥ0, i.e. the plane
waves, by

φp(x, t) = 1√
(2π�)3

exp

[
i

�

(
p · x − p2

2m
t

)]

= 1√
(2π�)3

exp
[
i(k · x − ωt)

]
,�ω = p2/2m,�k = p . (1.75)



28 1. Propagators and Scattering Theory

Equation (1.74) is identical with the result of Example 1.3, (9) and (15). Further eval-
uation of the integral (1.74) proceeds then as above.

From this example we realize how useful it is to express the Green’s function as
a sum over a complete set of eigenfunctions of the corresponding Schrödinger equa-
tion. For such a set of functions ψn(x, t) the closure relation reads

∑
n

ψn(x
′, t)ψ∗

n (x, t) = δ3(x′ − x) . (1.76)

Note that the same time t appears in ψn(x
′, t) and in ψ∗

n (x, t).
Now one can easily verify that (1.64) together with boundary condition (1.65) is

solved by

G+(x′;x) = −iΘ(t ′ − t)
∑
n

ψ∗
n (x)ψn(x

′) , (1.77)

since
(

i�
∂

∂t ′
− Ĥ (x′)

)
G+(x′;x) = �δ(t ′ − t)

∑
n

ψn(x
′, t)ψ∗

n (x, t)

− iΘ(t ′− t)
∑
n

[(
i�

∂

∂t ′
− Ĥ (x′)

)
ψn(x

′)
]

︸ ︷︷ ︸
=0

ψ∗
n (x)

= �δ(t ′ − t)δ3(x′ − x)

= �δ4(x′ − x) . (1.78)

Next, we point out another important relationship: the same Green’s function
G+(x′;x) that describes the evolution of a solution ψn(x, t) of Schrödinger’s equa-
tion forward in time also describes the propagation of the complex-conjugate solution
ψ∗

n (x, t) backward in time. From (1.77) we obtain on the one hand

i
∫

d3x G+(x′;x)ψn(x) = Θ(t ′ − t)
∑
m

ψm(x′)
∫

d3xψ∗
m(x)ψn(x)︸ ︷︷ ︸

δnm

= Θ(t ′ − t)ψn(x
′) (1.79a)

and on the other hand

i
∫

d3x′ ψ∗
n (x′)G+(x′;x) = Θ(t ′ − t)

∑
m

∫
d3x′ψm(x′)ψ∗

n (x′)︸ ︷︷ ︸
δnm

ψ∗
m(x)

= Θ(t ′ − t)ψ∗
n (x) . (1.79b)

As stated above, (1.79a) expresses the propagation of ψn(x) forward in time and
(1.79b) the corresponding backward propagation of ψ∗

n (x′). The latter results may
also be obtained by complex conjugating (1.9) and using Exercise 1.2. Conversely,
starting from (1.9) and (1.79b) one easily proves the relations between G+ and G−
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outlined in Exercise 1.2. The following steps verify this statement: (1.79b) can be
written as

Θ(t ′ − t)ψ∗
n (x) = i

∫
d3x′G+(x′;x)ψ∗

n (x′) .

Complex conjugation yields

Θ(t ′ − t)ψn(x) = −i
∫

d3x′G+∗(x′;x)ψn(x
′) ≡ −i

∫
d3x′G−(x;x′)ψn(x

′) ,

and therefore,

G−(x;x′) = G+∗(x′;x). (1.79c)

1.9 Another Look at the Green’s Function for Interacting Particles

Here we want to reconsider the iteration method for the Green’s function G+(x′;x)

(cf. (1.28)) from a slightly different point of view. The starting point of our present
discussion is the differential equation (1.64) for G+(x′;x), which can be formulated
with Ĥ = Ĥ0 + V :
(

i�
∂

∂t ′
− Ĥ0(x

′)
)

G+(x′;x) = �δ4(x′ − x) + V (x′)G+(x′;x) . (1.80)

The right-hand side can be interpreted as the source term in an inhomogeneous
Schrödinger equation as in (1.66):

(
i�

∂

∂t ′
− Ĥ0(x

′)
)

ψ(x′) = �(x′) . (1.81)

Using the free Green’s function G0 the solution of (1.81) is given by

ψ(x′) = 1

�

∫
d4x1G

+
0 (x′;x1)�(x1) . (1.82)

Replacing ψ(x′) by G+(x′, x) this leads immediately to the following integral equa-
tion for the interacting Green’s function

G+(x′;x) =
∫

d4x1 G+
0 (x′;x1)

(
δ4(x1 − x) + V (x1)G

+(x1;x)
)

= G+
0 (x′;x) +

∫
d4x1 G+

0 (x′;x1)V (x1)G
+(x1;x) . (1.83)

Here we again replaced V (x)/� → V (x) as in (1.21). Equation (1.83) is identical
with our earlier result (1.30); it is the Lippmann–Schwinger equation. The iteration
of (1.83) leads to the multiple scattering expansion (1.28) for the Green’s function.
This can be used to construct the S matrix (1.37)

Sf i = lim
t→−∞ lim

t ′→+∞
i
∫

d3x′d3xφ∗
f (x′)G+(x′;x)φi(x) . (1.84)
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Using the equations (1.79a,b) for free particles

∫
d3xG+

0 (x1, x)φi(x) = −iφi(x1) for t1 > t , (1.85a)

∫
d3x′φ∗

f (x′)G+
0 (x′, x1) = −iφ∗

f (x1) for t ′ > t1 , (1.85b)

the x and x′ integrations can be carried out and (1.28) leads to

Sf i = δf i − i
∫

d4x1 φ∗
f (x1) V (x1) φi(x1)

− i
∫

d4x1 d4x2 φ∗
f (x1) V (x1)G

+
0 (x1;x2)V (x2) φi(x2)

− i
∫

d4x1d4x2d4x3 φ∗
f (x1)V (x1)G

+
0 (x1;x2)V (x2)G

+
0 (x2;x3)V (x3)φi(x3)

+ · · · . (1.86)

This is the perturbation expansion of the S matrix in terms of multiple scattering
events. δf i describes the absence of scattering, the second term where V appears once
describes single scattering, the next term double scattering, etc.

EXAMPLE

1.5 Green’s Function for Diffusion

Typical diffusion phenomena, e.g. heat conduction or two mutually permeating fluids,
are determined solely by the gradients of the density. For example, a fluid of density
�(x, t) tends to flow from a point, where the density is high, towards a region of low
density. The current J is therefore assumed to be proportional to the gradient of the
density:

J = −D∇� , (1)

where the constant D is called the diffusion constant. If we combine (1) with the
continuity equation

∂�

∂t
= −∇ · J , (2)

we obtain the diffusion equation

∂�

∂t
= D∇2� . (3)

In the case of heat conduction, � is the “heat contents” per unit volume and is propor-
tional to the temperature: � = CT . The constant C is the specific heat capacity of the
material. For later considerations we note that the transformation t → −it changes the
diffusion equation (3) into a differential equation of Schrödinger type.
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Now we want to construct explicitly the Green’s function G+(x′, t ′;x, t) of the
diffusion in an infinite three-dimensional region. Again we start with the defining
differential equation

∇′2G − a2 ∂G

∂t ′
= −4π δ3(x′ − x) δ(t ′ − t) , (4)

with the constants a2 = 1/D. The factor 4π on the right-hand side (instead of � as
in (1.64)) is a matter of convention. This changes the Green’s function only by a factor
of 4π/�. Since the Green’s function depends only on the time difference t ′ − t and the
spatial difference x′ − x, we introduce the following abbreviations:

τ = t ′ − t ,

R = x′ − x . (5)

As an ansatz for the Green’s function we write down the Fourier transform

G(x′, t ′;x, t) = 1

(2π)3

∫
d3p eip·(x′−x) g(p, τ ) , (6)

where the function g(p, τ ) is not yet known. We insert (6) into the defining equa-
tion (4) and once again use the following three-dimensional Fourier representation of
the δ function:

δ3(R) = 1

(2π)3

∫
d3p eip·R . (7)

The left-hand side of (4) becomes

∇′2G − a2 ∂G

∂τ
= 1

(2π)3

∫
d3p eip·R

(
−p2g − a2 ∂g

∂τ

)
. (8)

This results in a differential equation in time for g:

a2 ∂g

∂τ
+ p2g = 4π δ(τ) . (9)

This differential equation has the following causal solution:

g = 4π

a2
e−(p2τ/a2) Θ(τ) . (10)

To prove this we insert solution (10) into (9) and use the relation

dΘ(τ)

dτ
= δ(τ ) (11)

between the step function Θ and the δ function:

a2 4π

a2

(−p2

a2

)
e−(p2τ/a2) Θ(τ) + a2 4π

a2
e−(p2τ/a2) dΘ

dτ

+ p2 4π

a2
e−(p2τ/a2) Θ(τ) = 4πδ(τ) . (12)
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Summarizing, we get

G(x ′, t ′;x, t) =
(

4π

(2π)3a2

)
Θ(τ)

∫
d3p exp(ip · R) exp

(
−p2τ

a2

)
(13)

or explicitly in Cartesian coordinates

G(x ′, t ′;x, t) =
(

4π

(2π)3a2

)
Θ(τ)

∞∫

−∞
dpxeipx(x′−x) e−(p2

x/a2)τ

×
∞∫

−∞
dpyeipy(y′−y) e−(p2

y/a2)τ

∞∫

−∞
dpzeipz(z

′−z) e−(p2
z /a2)τ . (14)

Let us consider the exponent in the first integral:

ipxRx − p2
x

a2
τ = −

(
px

a

√
τ − iaRx

2
√

τ

)2

− a2R2
x

4τ

= − τ

a2
ξ2 − a2R2

x

4τ
, (15)

with

ξ = px − ia2Rx

2τ
. (16)

With this transformation the first integral in (14) can be rewritten as

∞∫

−∞
dpx exp

(
−τξ2

a2
− a2R2

x

4τ

)
dpx = exp

(
−a2R2

x

4τ

) ∞∫

−∞
dξ exp

(
−τξ2

a2

)

= exp

(
−a2R2

x

4τ

)
a

√
π

τ
. (17)

In the derivation for the result (17) we have exploited the following elementary
Gaussian integration formula:

∞∫

−∞
dx exp(−p2x2) =

√
π

p
. (18)

After performing all three integrals of (14) we obtain the Green’s function for diffusion

G(x ′, t ′;x, t) = 1

2π2a2
Θ(τ)

(
a

√
π

τ

)3

exp

(
−a2R2

4τ

)

= a

2τ 3/2
√

π
exp

(
−a2R2

4τ

)
Θ(τ) . (19)

Remember: τ = t ′− t according to (5). The transformation t ′ → it ′ and t → it changes
the Green’s function (19) into the free Green’s function for Schrödinger’s equation.



Exercise 1.6

1.9 Another Look at the Green’s Function 33

This was already expected according to the relationship between both differential
equations.

The Green’s function for diffusion has a Gaussian shape with a maximum at R = 0.
The width of the distribution grows with increasing τ . The quantity

√
4τ/a2 is a mea-

sure of this width. For τ = 0 the width is still zero. In the case of heat conduction
this means that all the heat is focussed at a point. As soon as τ becomes larger than
zero, the temperature increases at R > 0 while it decreases continuously at R = 0.
Eventually (for τ → ∞) the heat is uniformly distributed over the whole space.

EXAMPLE

1.6 Kirchhoff’s Integral as an Example of Huygens’ Principle in Electrodynamics

We start our examination with the solution of the wave equation in classical elec-
trodynamics and the derivation of the corresponding Green’s function. The defining
equation for the potential follows from Maxwell’s inhomogeneous equations:

∇2Φ + 1

c

∂

∂t
∇ · A = −4π� (1)

and

∇2A − 1

c2

∂2A

∂t2
− ∇

(
∇ · A + 1

c

∂Φ

∂t

)
= −4π

c
J . (2)

Here Φ denotes the scalar potential, A the vector potential, � a given charge distri-
bution and J the current. In Lorentz gauge (∇ · A + (1/c) (∂Φ/∂t) = 0) these
differential equations decouple:

∇2Φ − 1

c2

∂2Φ

∂t2
= −4π� , (3)

∇2A − 1

c2

∂2A

∂t2
= −4π

c
J . (4)

On the other hand we get in Coulomb gauge (∇ · A = 0)

∇2Φ = −4π� (5)

with the solution

Φ(x, t) =
∫

d3x′ �(x′, t)
|x − x′| (6)

and

∇2A − 1

c2

∂2A

∂t2
= −4π

c
J + 1

c
∇ ∂Φ

∂t
. (7)
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All of the wave equations (3), (4), and (7) have the form

(
∇2 − 1

c2

∂2

∂t2

)
ψ = −4πf (x, t) , (8)

where f (x, t) is a given source distribution. To solve (8) it is useful to introduce the
Green’s function G for the wave equation which is defined by

(
∇2

x − 1

c2

∂2

∂t2

)
G(x, t;x′, t ′) = −4πδ3(x − x′)δ(t − t ′) . (9)

The Green’s function depends only on the difference of the coordinates (x − x′) and
times (t − t ′). In further calculations we use the δ function in the Fourier representa-
tion:

δ3(x − x′)δ(t − t ′) = 1

(2π)4

∫
d3k

∫
dω eik·(x−x′) e−iω(t−t ′) . (10)

First, we introduce the Fourier transform

G(x, t;x′, t ′) =
∫

d3k

∫
dω g(k,ω) eik·(x−x′) e−iω(t−t ′) (11)

as an ansatz for G, where g(k,ω) is not yet known. We insert the transform (11) into
the defining equation (9) to obtain

(
∇2

x − 1

c2

∂2

∂t2

)∫
d3k

∫
dω g(k,ω) eik·(x−x′) e−iω(t−t ′)

= −4π
1

(2π)4

∫
d3k

∫
dω eik·(x−x′) e−iω(t−t ′) . (12)

Application of the differential operators yields

−
∫

d3k

∫
dω

(
k2 − ω2

c2

)
g(k,ω) eik·(x−x′) e−iω(t−t ′)

= − 1

4π3

∫
d3k

∫
dω eik·(x−x′) e−iω(t−t ′) . (13)

Hence, g(k,ω) is determined as

g(k,ω) = 1

4π3

1

k2 − ω2/c2 − iε
, (14)

and we can express the Green’s function as

G(x, t;x′, t ′) =
∫

d3k

∫
dω

1

4π3

1

k2 − ω2/c2 − iε
eik·(x−x′) e−iω(t−t ′) . (15)

Using Cauchy’s theorem the integrals can be solved in closed form with the result

G(x, t;x′, t ′) = δ(t ′ − t + |x − x′|/c)
|x − x′| . (16)

This is the retarded Green’s function which describes the propagation of a wave on the
light cone |x′ −x| = c(t ′ − t) forward in time, t > t ′. Causality was enforced by intro-
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ducing the negative imaginary part −iε in (14). The solution of the wave equation (8)
can now be written as

Ψ (x, t) =
∫

d3x′dt ′G(x, t;x′, t ′) f (x ′, t ′) . (17)

Indeed it follows that

∇Ψ − 1

c2

∂2Ψ

∂t2
=
∫ (

∇2
x − 1

c2

∂2

∂t2

)
G(x, t;x′, t ′) f (x′, t ′) d3x′ dt ′

= −
∫

4π δ3(x − x′)δ(t − t ′) f (x′, t ′) d3x′ dt ′

= −4π f (x, t) . (18)

With the Green’s function (16) we obtain for Ψ

Ψ (x, t) =
∫

δ(t ′ + |x − x′|/c − t)

|x − x′| f (x′, t ′)d3x′ dt ′ . (19)

The integration over t ′ can be performed and the result is the retarded solution

Ψ (x, t) =
∫

d3x′
[
f (x′, t ′)

]
ret

|x − x′| , (20)

where [ ]ret means t ′ = t − |x − x′|/c. Hence we can specify the potentials A and Φ

in closed form.
For further discussions we use Green’s second theorem and integrate over time

from t ′ = t0 to t ′ = t1:

t1∫

t0

dt ′
∫

V

d3x′ (Φ∇′2Ψ − Ψ ∇′2Φ
)

=
t1∫

t0

dt ′
∮

S

da′
(

Φ
∂Ψ

∂n′ − Ψ
∂Φ

∂n′

)
, (21)

where Φ and Ψ are – for the present – arbitrary scalar fields and ∂Ψ/∂n′ is the normal
derivative of Ψ on the surface S. For Ψ we now insert relation (20) and for Φ Green’s
function (16). Now we can rewrite the left-hand side of (21):

L =
t1∫

t0

dt ′
∫

V

d3x′ (G∇′2Ψ − Ψ ∇′2G
)

=
t1∫

t0

dt ′
∫

V

d3x′
[
G

(
−4πf (x′, t ′) + 1

c2

∂2Ψ

∂t ′2

)

− Ψ

(
−4π δ3(x ′ − x)δ(t ′ − t) + 1

c2

∂2G

∂t ′2

)]

=
t1∫

t0

dt ′
∫

V

d3x′
[

4π Ψ (x′, t ′) δ3(x′ − x)δ(t ′ − t) − 4πf (x′, t ′)G

+ 1

c2

(
G

∂2Ψ

∂t ′2
− Ψ

∂2G

∂t ′2

)]
, (22)
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where we have used the defining equations (8) and (9). The first term reduces to
4π Ψ (x, t), the second term will be kept, and the last two terms are integrated by
parts with respect to time. This yields

L = 4π Ψ (x, t) − 4π

t1∫

t0

dt ′
∫

V

d3x′ f (x′, t ′)G

+ 1

c2

∫

V

d3x′
(

G
∂Ψ

∂t ′
− Ψ

∂G

∂t ′

)∣∣∣∣
t ′=t1

t ′=t0

− 1

c2

∫

V

d3x′
t1∫

t0

dt ′
(

∂Ψ

∂t ′
∂G

∂t ′
− ∂G

∂t ′
∂Ψ

∂t ′

)
. (23)

The last term in (23) is zero. Since the retarded Green’s function vanishes for t ′ =
t1 > t , the integral in the third term of (23) vanishes at the upper integration boundary.
Now we combine (21) and (23) to get

Ψ (x, t) = 1

4πc2

∫
d3x′

(
G

∂Ψ

∂t ′
− Ψ

∂G

∂t ′

)∣∣∣∣
t ′=t0

+ 1

4π

t1∫

t0

dt ′
∮

S

da′
(

G
∂Ψ

∂n′ − Ψ
∂G

∂n′

)

+
t1∫

t0

dt ′
∫

V

d3x′f (x′, t ′) δ(t ′ + |x − x′|/c − t)

|x − x′|

=
∫

V

d3x′
[
f (x′, t ′)

]
ret

|x − x′| + 1

4πc2

∫

V

d3x′
(

G
∂Ψ

∂t ′
− Ψ

∂G

∂t ′

)∣∣∣∣
t ′=t0

+ 1

4π

t1∫

t0

dt ′
∮

S

da′
(

G
∂Ψ

∂n′ − Ψ
∂G

∂n′

)
. (24)

Let us consider the so-called Kirchhoff representation of a field, which is expressed
by the values of Ψ and ∂Ψ/∂n′ in a surface S. To this end we assume that there are
no sources inside the volume V and that the initial values of Ψ and ∂Ψ/∂t ′ vanish at
t ′ = t0. Then according to (24) the field is given by

Ψ (x, t) = 1

4π

t1∫

t0

dt ′
∮

S

da′
(

G
∂Ψ

∂n′ − Ψ
∂G

∂n′

)
. (25)

We put

R = x − x′ (26)

with

∇′R = − R

R
. (27)
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We use the explicit form of the Green’s function (16) to obtain, with

∂

∂n′ = n · ∇′ , (28)

∇′G = ∂G

∂R
∇′R = −R

R

∂

∂R

(
δ(t ′ + R/c − t)

R

)

= −R

R

(
−δ(t ′ + R/c − t)

R2
+ δ′(t ′ + R/c − t)

cR

)
. (29)

n is the unit vector normal to the surface S. Here we have used the following relation:

∂

∂R
δ

(
t ′ + R

c
− t

)
= 1

c
δ′
(

t ′ + R

c
− t

)
, (30)

where the prime denotes the derivative of the δ function with respect to its arguments.
Furthermore, we make use of the relation for the derivative of the δ function

∫
f (x) δ′(x − a)dx = −f ′(a) , (31)

which helps to give as a partial result

∮

S

da′ n · R
cR2

t1∫

t0

dt ′ Ψ δ′
(

t ′ + R

c
− t

)
= −

∮

S

da′ n · R
cR2

Ψ ′
(

x′, t ′ = t − R

c

)

=
⎡
⎣−

∮

S

da′ n · R
cR2

Ψ ′(x′, t ′)

⎤
⎦

ret

. (32)

It follows in conclusion that

Ψ (x, t) = 1

4π

∮

S

da′ n ·
[∇′Ψ (x′, t ′)

R
− R

R3
Ψ (x′, t ′) − R

cR2

∂Ψ (x′, t ′)
∂t ′

]
ret

.

(33)

We emphasize that this is not a solution for the field Ψ . It is only an integral repre-
sentation for Ψ , expressing Ψ in terms of Ψ and its corresponding spatial and time
derivatives on the surface S. However, these quantities cannot be chosen indepen-
dently.

Kirchhoff’s integral (33) is the mathematical expression of Huygens’ principle
which postulates that any point on a wave front behaves like a pointlike source that
emits a spherical wave moving at the speed of light. Then the field at a given point
and at a later time is a superposition of all fields emerging from these sources. The en-
velope of all these waves forms the next wave front. Kirchhoff’s integral (33) serves,
e.g., as the starting point for the discussion of problems related to optical diffraction.
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In the following we will generalize the nonrelativistic propagator theory developed

Fig. 2.1. Illustration of the
nth-order contribution to the
Green’s function G+(x′;x)

which describes the probabil-
ity amplitude for multiple scat-
tering of a particle

in the previous chapter to the relativistic theory of electrons and positrons. We will be
guided by the picture of the nonrelativistic theory where the propagator G+(x′;x) is
interpreted as the probability amplitude for a particle wave originating at the space–
time point x to propagate to the space–time point x′. This amplitude can be decom-
posed as in (1.28) into a sum of partial amplitudes, the nth such partial amplitude
being a product of factors illustrated in Fig. 2.1. According to (1.28), the probabil-
ity amplitude consists of factors that describe the propagation of the particle between
the particular scattering events (caused by the interaction V (x)) and when integrated
over the space–time coordinates of the points of interaction represent the nth-order
scattering process of the particle.

Each line in Fig. 2.1 represents a Green’s function; e.g. the line xi−1 xi signifies
the Green’s function G+

0 (xi, xi−1), i.e. the amplitude that a particle wave originat-
ing at the space–time point xi−1 propagates freely to the space–time point xi . The
space–time points where an interaction occurs (vertices) are represented by small cir-
cles (•). At the point xi the particle wave is scattered with the probability amplitude
V (xi) per unit space–time volume. The resulting scattered wave then again propa-
gates freely forward in time from the space–time point xi towards the point xi+1 with
the amplitude G+

0 (xi+1, xi) where the next interaction happens, and so on. The total
amplitude is then given by the sum over contributions from all space–time points at
which an interaction occurs. The particular space–time points at which the particle
wave experiences an interaction are termed vertices. One may also describe the indi-
vidual scattering processes by saying that the interaction at the i’th vertex annihilates
the particle that has propagated freely up to xi , and creates a particle that propagates
on to xi+1, with ti+1 ≥ ti .

This latter interpretation of scattering events is well suited for a generalization to
relativistic hole theory since it contains the overall space–time structure of the scatter-
ing process and the interaction.

Our aim is now to develop, by analogy with the nonrelativistic propagator the-
ory, methods to describe and calculate scattering processes mathematically within the
framework of the Dirac hole theory. We need to focus on the new feature of pair cre-
ation and annihilation processes that are now contained in our relativistic picture of
scattering processes. We shall adopt many of the calculation rules intuitively by requir-
ing them to be consistent with the dynamics of the Dirac equation. A more rigorous
mathematical justification of these rules can be given using the methods of quantum
field theory. Some references on this subject are given in the appendix. In the follow-
ing we shall use mainly heuristic arguments.

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 2.2. Some examples
of processes encountered
within the electron–positron
theory. The diagrams repre-
sent: (a) electron scattering;
(b) positron scattering;
(c) electron–positron pair
creation; (d) pair annihila-
tion; (e) electron scattering
that in addition includes an
electron–positron pair cre-
ation process; and (f) a closed
loop describing vacuum
polarization

Let us now take a look at the typical processes that must be described within the
relativistic theory. These are collected in Fig. 2.2, illustrated by diagrams that we shall
learn to understand in the following.

In addition to the ordinary scattering processes of an electron (Fig. 2.2a) or
a positron (Fig. 2.2b) there are also pair production and annihilation processes
(Fig. 2.2c–f). Let us first take a look at the pair production illustrated in Fig. 2.2c:
The electron–positron pair is created by a potential acting at space–time point x1. The
two particles then propagate freely forward in time, the positron to x′ and the electron
to x. Similarly, Fig. 2.2d shows the trajectories of an electron and a positron which
start from the points x and x′, respectively, and meet at the point x1 where they anni-
hilate.

Diagram 2.2e represents the scattering of an electron originating at x moving for-
ward in time, experiencing several scatterings, and ending up at x′. Along its way
from x to x′ a pair is produced by a potential acting at x1; the two created particles
propagate forward in time. The positron of this pair and the initial electron converge
at x3 and are annihilated. The surviving electron of the pair then propagates to x′.

Diagram 2.2f shows a pair produced at x1, propagating up to x2, and being anni-
hilated in the field there. It was only “virtually” present for a short intermediate time
interval. Below we will recognize this process as the polarization of the vacuum.

These simple considerations already show that the relativistic electron–positron
theory contains more ingredients than its nonrelativistic counterpart: we need to de-
scribe not only the amplitude for a particle (electron) to propagate from x1 to x2 but
also the amplitude for the creation of a positron that propagates from one space–time
point to another, where it is destroyed again. It is this positron amplitude we have to
construct in the first place, enabling us then to find the total amplitude for the vari-
ous processes illustrated in Fig. 2.2 by summing, or integrating, over all intermediate
points (interaction events) that can contribute to the total process. In a scattering event
(e.g. Fig. 2.2e) in general both electron and positron amplitudes will contribute.

The Dirac hole theory (see Theoretical Physics, by W. Greiner: Relativistic Quan-
tum Mechanics – Wave Equations, hereon referred to as RQM ) interprets a positron
as a hole in the Dirac sea, i.e. the absence of an electron with negative energy from the
filled sea. Thus we may view the destruction of a positron at some space–time point as
equivalent to the creation of an electron with negative energy at this point. This sug-
gests the possibility, e.g. in Fig. 2.2e, that the amplitude for creating the positron at x1
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and destroying it at x3 is related to the amplitude for creating a negative-energy elec-
tron at x3 and destroying it at x1 where t1 < t3. In this picture a pair creation process
such as in Fig. 2.2e,c therefore leads to the following definition of positrons: Positrons
with positive energy moving forward in space–time are viewed within the propagator
theory as electrons with negative energy travelling backward in space–time.

Fig. 2.3. Electron scattering with
involving an intermediate pair
creation process

This is the Stückelberg–Feynman definition of positrons, which we already encoun-
tered in the discussion of the time reversal and PCT symmetries (see RQM, Chap. 12).
Electrons are represented by particle waves with positive energy propagating forward
in space–time. A process such as in Fig. 2.3 can therefore be interpreted using two
different but equivalent languages as follows.

An electron originating at x propagates forward in time, is scattered into a state
of negative energy at x2 by the interaction V (x2), propagates backward in time to x1,
where it is scattered again into a state of positive energy, and finally propagates for-
ward in time to x′. Alternatively one may say that an electron originating at x moves
forward in time up to x2, where it is destroyed by the interaction V (x2) together with
the positron of the e+ − e− pair that has been created earlier at x1 by V (x1). The
electron of this pair propagates forward in time to x′.

Fig. 2.4. A loop diagram

Processes that are represented by closed loops as illustrated in Fig. 2.4 are inter-
preted in terms of an e+ − e− pair being produced at x1 by V (x1) that propagates
forward in time to x2, where it is destroyed again by V (x2). Equivalently, within the
picture of the hole theory, we can say that the potential V (x1) at x1 scatters an elec-
tron from the sea of negative-energy states into a state of positive energy leaving a hole
behind; it is then scattered back into the sea, recombining with the hole at x2 under
the action of V (x2). Or, in propagator language, the electron created at x1 is scattered
back in time at x2 to destroy itself at x1.

Our next aim is to find a unified mathematical description for the various processes
making use of the relativistic propagator formalism. The first step is to construct the
Green’s function for electrons and positrons. It is known as the relativistic propagator1

SF(x′, x;A) (2.1)

and is required in analogy to the nonrelativistic propagator (1.64), to satisfy the fol-
lowing differential equation:

4∑
λ=1

[
γμ

(
i�

∂

∂x′
μ

− e

c
Aμ(x′)

)
− m0c

]

αλ

(SF)λβ(x′, x;A) = �δαβδ4(x′ − x) ,

(2.2)

which is the Dirac equation with a pointlike inhomogeneous term. By means of this
definition the propagator SF(x′, x;A) is a 4×4 matrix corresponding to the dimension
of the γ matrices. The third argument of SF serves as a reminder that the propagator
defined by (2.2) depends on the electromagnetic field Aμ.

1 The symbol SF has been aptly chosen, bearing in mind that the originators of the relativistic prop-
agator formalism were Stückelberg and Feynman: the propagator is commonly called the Feynman
propagator. The original references are E.C.G. Stückelberg and D. Rivier: Helv. Phys. Acta 22, 215
(1949) and R.P. Feynman: Phys. Rev. 76, 749 (1949).
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It is useful to remember from relativistic quantum mechanics the standard repre-
sentation of the γ μ matrices and their commutation relations:

γ 0 =
(

1 0
0 1

)
, γ i =

(
0 σ̂ i

−σ̂ i 0

)
, (2.3a)

and

γ μγ ν + γ νγ μ = 2gμν14×4 . (2.3b)

Here, σ̂ i are the 2 × 2 Pauli matrices, obeying

σ̂i σ̂j + σ̂j σ̂i = 2δij12×2 . (2.3c)

In relativistic quantum theory usually one employs “natural units” and sets
� = c = 1, implying the substitutions

e

�c
→ e ,

m0c

�
→ m0 . (2.3)

Thus in matrix notation with indices suppressed (2.2) becomes

(i/∇ ′ − e /A′ − m0)SF(x′, x;A) = δ4(x′ − x)1 . (2.4)

Note that the definition of the relativistic propagator (2.2, 2.4) differs from the non-
relativistic counterpart (1.64): the differential operator i∂/∂t ′ − Ĥ (x′) occurring in
(1.64) has been multiplied by γ 0 in (2.2, 2.4) in order to form the covariant operator
(i/∇ ′ − e /A′ − m0). The unit matrix in spinor space on the right-hand side of (2.4) is
most commonly suppressed, i.e.

(i/∇ ′ − e /A′ − m0)SF(x′, x;A) = δ4(x′ − x) . (2.5)

However, it must be kept in mind that (2.5) is a matrix equation so that the delta
function in (2.5) is meant to be multiplied by 1.

The free-particle propagator must satisfy (2.5) with the interaction term e /A′ ab-
sent, i.e.

(i/∇ ′ − m0)SF(x′, x) = δ4(x′ − x) . (2.6)

As in the nonrelativistic case we compute SF(x′, x) in momentum space, using the fact
that SF(x′, x) depends only on the distance vector x′ − x. This property is a manifes-
tation of the homogeneity of space and time and in general would not be valid for the
interacting propagator SF(x′, x;A). Fourier transformation to four-dimensional mo-
mentum space then yields for the free propagator

SF(x′, x) = SF(x′ − x) =
∫

d4p

(2π)4
exp

[−ip · (x′ − x)
]
SF(p) . (2.7)

Inserting (2.7) into (2.6) we obtain an equation that determines the Fourier amplitude
SF(p), namely

∫
d4p

(2π)4
( /p − m0)SF(p) exp

[−ip · (x′ − x)
] =

∫
d4p

(2π)4
exp

[−ip · (x′ − x)
]

,
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which implies that

( /p − m0)SF(p) = 1 (2.8)

or, in detail, restoring the indices,

4∑
λ=1

( /p − m0)αλ(SF(p))λβ = δαβ . (2.9)

Equation (2.8) can be solved for the Fourier amplitude SF(p) by multiplying with
( /p + m0) from the left:

( /p + m0)( /p − m0)SF(p) = ( /p + m0) . (2.10)

Since

/p /p = γμγνp
μpν = 1

2
(γμγν + γνγμ)pμpν = gμνp

μpν = pμpμ = p2 , (2.11)

(2.10) becomes

(p2 − m2
0)SF(p) = ( /p + m0) (2.12)

or

SF(p) = /p + m0

p2 − m2
0

for p2 �= m2
0 . (2.13)

In order to complete the definition of SF(p) we must give a prescription to handle
the singularities at p2 = m2

0 which is just the mass-shell condition p2
0 − p2 = m2

0 or

p0 = ±
√

m2
0 + p2 = ±Ep . From the foregoing discussion of the nonrelativistic prop-

agator formalism we know that this additional information comes from the boundary
conditions that are imposed on SF(x′ − x). We will now put into practice the previous
interpretation of positrons as negative-energy electrons moving backwards in time. In
order to implement this concept we return to the Fourier representation (2.7) and the
Fourier amplitude (2.13) and perform the energy integration (dp0 integration) along
the special contour CF shown in Fig. 2.5.

Fig. 2.5. Integration con-
tour CF that defines the
Feynman propagator. The
singularities are located on
the real p0 axis at p0 = −Ep

and p0 = +Ep
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We obtain

SF(x′ − x) =
∫

d4p

(2π)4
SF(p) exp

[−ip · (x′ − x)
]

=
∫

d4p

(2π)4
SF(p) exp

{−i
[
p0(t

′ − t) − p · (x′ − x)
]}

=
∫

d3p

(2π)3
exp

[
ip · (x′ − x)

]

×
∫

CF

dp0

2π

exp
[−ip0(t

′ − t)
]

p2 − m2
0

( /p + m0) . (2.14)

For t ′ > t we close the integration contour in the lower half plane, since in this case
the integral along the lower semicircle, parametrized by p0 = �eiφ , does not contribute
for � → ∞. By means of the residue theorem then only the positive energy pole at

p0 = Ep = +
√

p2 + m2
0

contributes to the p0 integration. Hence, we obtain

∫

CF

dp0

2π

exp
[−ip0(t

′ − t)
]

p2
0 − p2 − m2

0

( /p + m0)

=
∫

CF+C1

dp0

2π

exp
[−ip0(t

′ − t)
]

(p0 − Ep)(p0 + Ep)
(p0γ

0 + piγ
i + m0)

= −2π i
exp

[−iEp(t ′ − t)
]

2π2Ep

(Epγ 0 − p · γ + m0) , (2.15)

so that (2.14) yields

SF(x′ − x) = −i
∫

d3p

(2π)3
exp

[
ip · (x′ − x)

]
exp

[−iEp(t ′ − t)
]

× (Epγ 0 − p · γ + m0)

2Ep

for t ′ > t . (2.16)

The minus sign in (2.15) results from integrating along the contour in a mathematically
negative (clockwise) sense. This propagator describes particle motion from x to x′
forward in time (t ′ > t). At x′ = (x′, t ′) SF contains positive-energy components only,
since the energy factor occurring in the exponent of exp(−iEp(t ′ − t)) is defined to

be positive, Ep = +
√

p2 + m2
0.

On the other hand, considering the particle propagation backward in time implies
that t ′ − t is negative so that the p0 integration must be performed along the contour
closed in the upper half plane in order to give a zero contribution along the semicircle
for � → ∞. Then only the negative-energy pole at

p0 = −Ep = −
√

p2 + m2
0
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contributes (Fig. 2.5). This yields

∫

CF+C2

dp0

2π

exp
[−ip0(t

′ − t)
]

(p0 − Ep)(p0 + Ep)
(p0γ

0 + piγ
i + m0)

= 2π i
exp

[−i(−Ep)(t ′ − t)
]

2π(−2Ep)
(−Epγ 0 − p · γ + m0) . (2.17)

Thus the propagator (2.14) for the case t ′ < t reads

SF(x′ − x) = −i
∫

d3p

(2π)3
exp

[
ip · (x′ − x)

]
exp

[+iEp(t ′ − t)
]

× (−Epγ 0 − p · γ + m0)

2Ep

for t ′ < t . (2.18)

This propagator describes the propagation of negative-energy particle waves back-
ward in time, as can be read off the factor exp

(−i(−Ep)(t ′ − t)
)
. These negative-

energy waves are absent in the nonrelativistic theory, since no solution of the energy–

momentum relation at p0 = −Ep = −
√

p2 + m2
0 exists. Here, in the relativistic case,

they are unavoidable owing to the quadratic form of the energy–momentum dispersion
relation.

We note that other choices of the integration contour CF, e.g. as in Fig. 2.6, would
lead to contributions from negative-energy waves propagating into the future (case a)
or positive-energy waves into the past (case b). As we can see, the choice of the con-
tour CF according to Fig. 2.5 results in positive-energy waves moving forward in time
and negative-energy waves backward in time, just as we required. These negative-
energy waves propagating backward in time we identify with positrons.

Fig. 2.6. Possible alternative
choices for the integration
contour that lead to propaga-
tors with the wrong asymp-
totic behaviour

As we recall from hole theory it is the definition of the vacuum (specified by the
position of the Fermi surface EF) that prescribes which of the particle-wave states
are to be interpreted as electrons and which as positrons. It is assumed that particle
states with E < EF are occupied and that the absence of a particle in such a state
is interpreted in terms of a positron. The choice of the propagator is based on this
definition of the vacuum, which determines the choice of the integration contour C,
i.e. the transition of C from the lower to the upper complex p0 half plane. For example,
in supercritical fields (see Chap. 7) the vacuum carries charge. Consequently, some of
the negative-energy states are to be interpreted as electrons propagating forward in
time. For an atom the Fermi surface is usually located at a bound state. Hence, in this
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case the propagator is required to be evaluated along an integration contour that passes
over from the lower half plane to the upper half plane at an energy slightly above the
highest occupied bound state. Another example of a modified ground state (and thus
a modified propagator) is the Fermi gas of electrons, which will be introduced in
Exercise 2.2 below.

The integration contour CF determining the propagator SF (x′ − x) may be alterna-
tively characterized by adding a small positive imaginary part +iε to the denominator
in (2.14), where the limit ε → 0 is to be taken at the end of the calculation:

SF (x′ − x) =
∫

d4p

(2π)4

exp
[−ip · (x′ − x)

]
p2 − m2

0 + iε
( /p + m0) . (2.19)

Then the singularities corresponding to positive-energy states,

p0 = +
√

p2 + m2
0 − iε = +

√
p2 + m2

0 − iη(ε) , (2.20a)

lie below the real p0 axis while the poles corresponding to negative-energy states,

p0 = −
√

p2 + m2
0 − iε = −

√
p2 + m2

0 + iη(ε) , (2.20b)

are located above the p0 axis, just as required for the contour CF. The prescription of
(2.19) is most easily remembered in the form of a rule: To ensure the correct boundary
conditions, the mass has to be given a small negative imaginary part. The two prop-
agators describing positive-energy particle waves (2.16) and negative-energy particle
waves (2.18) moving forward and backward in time, respectively, may be combined
by introducing the energy projection operators Λ̂±(p) (see RQM, Chap. 7)

Λ̂r (p) = εr /p + m0

2m0
,

εr =
{+1 for waves of positive energy

−1 for waves of negative energy
. (2.21)

Then, by changing the three–momentum p to −p in the propagator for negative-
energy waves (2.18), which does not alter the result since the integral

∫
d3p includes

all directions of the three–momentum, we can write

SF(x′ − x) = −i
∫

d3p

(2π)3

{
exp

[−i(+Ep)(t ′ − t)
]

exp
[+ip · (x′ − x)

]

× (+Epγ 0 − p · γ + m0)

2Ep

Θ(t ′ − t)

+ exp
[−i(−Ep)(t ′ − t)

]
exp

[−ip · (x′ − x)
]

× (−Epγ 0 + p · γ + m0)

2Ep

Θ(t − t ′)
}

= −i
∫

d3p

(2π)3

m0

Ep
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×
(

p0γ
0 + piγ

i + m0

2m0
exp

{−i
[
p0(t

′ − t) − p · (x′ − x)
]}

Θ(t ′ − t)

+−p0γ
0 − piγ

i + m0

2m0
exp

{+i
[
p0(t

′ − t) − p · (x′ − x)
]}

Θ(t − t ′)
)

= −i
∫

d3p

(2π)3

m0

Ep

{
/p + m0

2m0
exp

[−ip · (x′ − x)
]
Θ(t ′ − t)

+− /p + m0

2m0
exp

[+ip · (x′ − x)
]
Θ(t − t ′)

}

= −i
∫

d3p

(2π)3

m0

Ep

{
Λ̂+(p) exp

[−ip · (x′ − x)
]
Θ(t ′ − t)

+Λ̂−(p) exp
[+ip · (x′ − x)

]
Θ(t − t ′)

}
. (2.22)

Equivalently, by means of the normalized Dirac plane waves (see RQM, Chap. 6)

ψr
p(x) =

√
m0

Ep

1
√

2π
3

ωr(p) exp (−iεrp · x) , (2.23)

with the normalization
∫

d3xψr†
p (x)ψr ′

p′(x) = δrr ′δ3(p − p′). (2.23a)

SF(x′ − x) can be transcribed to the following form (cf. Exercise 2.1):

SF(x′ − x) = − iΘ(t ′ − t)

∫
d3p

2∑
r=1

ψr
p(x′)ψ̄r

p(x)

+ iΘ(t − t ′)
∫

d3p

4∑
r=3

ψr
p(x′)ψ̄r

p(x) . (2.24)

This result is the relativistic generalization of the nonrelativistic Green’s func-
tion (1.77). The propagator SF now consists of two parts: the first describes the
propagation of positive-energy states forward in time, the latter the propagation of
negative-energy states backward in time. With the aid of (2.24) the following rela-
tions for positive-energy solutions (ψ(+E)) and negative-energy solutions (ψ(−E)) are
easily verified:

Θ(t ′ − t)ψ(+E)(x′) = i
∫

d3xSF(x′ − x)γ0ψ
(+E)(x) , (2.25)

Θ(t − t ′)ψ(−E)(x′) = −i
∫

d3xSF(x′ − x)γ0ψ
(−E)(x) . (2.26)

In analogy to the nonrelativistic propagator theory (cf. (1.7) and (1.9)) the occur-
rence of an additional minus sign in (2.26) results from the difference of the direction
of propagation in time between (2.25) and (2.26) corresponding to propagation of
positive-energy solutions forward in time and negative-energy solutions backward in
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time, respectively. The validity of (2.25) can be seen by writing

i
∫

d3xSF(x′ − x)γ0ψ
(+E)(x)

= Θ(t ′ − t)

∫
d3p

2∑
r=1

ψr
p(x′)

∫
d3x ψr†

p (x)ψ(+E)(x)

− Θ(t − t ′)
∫

d3p

4∑
r=3

ψr
p(x′)

∫
d3x ψr†

p (x)ψ(+E)(x) (2.27)

and expanding the general positive-energy solution ψ(+E)(x) in terms of Dirac plane
waves

ψ(+E)(x) =
∫

d3p

4∑
r=1

ar(p)ψr
p(x) . (2.28)

The coefficients ar(p) vanish except for r = 1,2, since by definition ψ(+Ep) describes
a wave packet containing only positive energies or “frequencies”. By means of the or-
thonormality relations of the ψr

p(x)

ar(p) =
∫

d3xψ(+E)(x)ψr†
p (x) �= 0 (r = 1,2) , (2.29)

ar(p) =
∫

d3xψ(+E)(x)ψr†
p (x) = 0 (r = 3,4) , (2.30)

the second term in (2.27) vanishes, while the first term gives

Θ(t ′ − t)

∫
d3p

2∑
r=1

ar(p)ψr
p(x′) = Θ(t ′ − t)ψ(+E)(x′) . (2.31)

Thus we have proved the relation (2.25).
Equation (2.26) can be verified in similar manner. Equations (2.25) and (2.26)

explicitly express our interpretation of electrons and positrons in terms of positive-
energy solutions propagating forward in time and negative-energy solutions moving
backward in time, respectively.

EXERCISE

2.1 Plane-Wave Decomposition of the Feynman Propagator

Problem. Prove that the Stückelberg–Feynman propagator

SF(x′ − x) = − i
∫

d3p

(2π)3

m0

Ep

{
Λ̂+(p) exp

[−ip · (x′ − x)
]
Θ(t ′ − t)

+ Λ̂−(p) exp
[
ip · (x′ − x)

]
Θ(t − t ′)

}
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may equivalently be represented as

SF(x′ − x) = − iΘ(t ′ − t)

∫
d3p

2∑
r=1

ψr
p(x′)ψ̄r

p(x)

+ iΘ(t − t ′)
∫

d3p

4∑
r=3

ψr
p(x′)ψ̄r

p(x) .

Solution. As we recall from RQM, Chap. 6, the Dirac plane waves (2.23) satisfy the
following relations (� = c = 1!):

( /̂p − m0)ψ
r
p(x) = 0 , (1)

(εr /p − m0)ω
r(p) = 0 or ( /p − εrm0)ω

r(p) = 0 , (2)

ω̄r (p)( /p − εrm0) = 0 where ω̄r (p) = ωr(p)†γ 0 , (3)

ω̄r (p)ωr ′
(p) = δrr ′εr , (4)

4∑
r=1

εrω
r
α(p)ω̄r

β(p) = δαβ , (5)

ωr†(εrp)ωr ′
(εr ′p) = Ep

m0
δrr ′ . (6)

Remember also that γ 0γ μ† = γ μγ 0. Here r and r ′ can take on the values 1,2,3,4.
With the aid of (2.23) we find that (bearing in mind that ε1 = ε2 = +1, ε3 = ε4 = −1)

2∑
r=1

ψr
p(x′)ψ̄r

p(x) = 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] 2∑
r=1

ωr(p)ω̄r (p)

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] 4∑
r=1

ωr(p)ω̄r (p)
/p + m0

2m0

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] 4∑
r=1

εrω
r(p)ω̄r (p)

︸ ︷︷ ︸
=1 (because of (5))

/p + m0

2m0

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

] /p + m0

2m0

= 1

(2π)3

m0

Ep

exp
[−ip · (x′ − x)

]
Λ̂+(p) .

This result is just the first term of the propagator SF(x′ − x) in its representation in
terms of the projection operators Λ̂±. Similarly, for the second part one obtains

4∑
r=3

ψr
p(x′)ψ̄r

p(x) = 1

(2π)3

m0

Ep

exp
[
ip · (x′ − x)

] 4∑
r=3

ωr(p)ω̄r (p)
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= 1

(2π)3

m0

Ep

exp
[+ip · (x′ − x)

] 4∑
r=1

−( /p − m0)

2m0
ωr(p)ω̄r (p)

= 1

(2π)3

m0

Ep

exp
[+ip · (x′ − x)

] 4∑
r=1

(− /p + m0)

2m0
(−εr )ω

r(p)ω̄r (p)

= − 1

(2π)3

m0

Ep

exp
[
ip · (x′ − x)

] (− /p + m0)

2m0

= − 1

(2π)3

m0

Ep

exp
[
ip · (x′ − x)

]
Λ̂−(p) .

Thus we have verified the proposed equivalence between the two representations of
SF(x′ − x).

Equations (2.22) or (2.24) determine the free-particle propagator of the electron–
positron theory. In analogy to (1.83) and (1.86), respectively, we may now formally
construct the complete Green’s function and the S matrix for the electron–positron
field interacting with an electromagnetic potential A. This will then enable us to cal-
culate various scattering processes of electrons and positrons in the presence of exter-
nal fields, as will be demonstrated in the following chapter. To accomplish the aim of
constructing the exact propagator SF(x′, x;A) we start from the differential equation
(2.5) that determines SF(x′, x;A) and transcribe it, paraphrasing the nonrelativistic
treatment (cf. (1.80)), to the following form:

(i/∇ ′ − m0)SF(x′, x;A) = δ4(x′ − x) + e /A(x′)SF(x′, x;A) . (2.32)

This can be viewed as an inhomogeneous Dirac equation of the form

(i/∇ − m0)Ψ (x) = �(x) , (2.33)

which is solved by the Green’s function technique as follows

Ψ (x) = Ψ0(x) +
∫

d4ySF(x − y)�(y) , (2.34)

Ψ0(x) solves the homogeneous equation. In this way (2.32) leads to an integral equa-
tion for the Stückelberg–Feynman propagator

SF(x′, x;A) =
∫

d4ySF(x′ − y)
[
δ4(y − x) + e /A(y)SF(y, x;A)

]

= SF(x′ − x) + e

∫
d4ySF(x′, y)/A(y)SF(y, x;A) . (2.35)

Note that the homogeneous solution of (2.32) is a superposition of plane waves with
an arbitrary constant factor which is set to zero because the solution of the homoge-
neous equation is not a Green’s function. Equation (2.35) is the relativistic counterpart
of the Lippmann–Schwinger equation (1.83). This integral equation determines the
complete propagator SF(x′, x;A) in terms of the free-particle propagator SF(x′, x).
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Proceeding in analogy to the nonrelativistic treatment (cf. (1.28)) the iteration of the
integral equation yields the following multiple scattering expansion:

SF(x′, x;A) = SF(x′ − x) + e

∫
d4x1SF(x′ − x1) /A(x1)SF(x1 − x)

+ e2
∫

d4x1d4x2SF(x′ − x1) /A(x1)SF(x1 − x2) /A(x2)SF(x2 − x)

+ . . . . (2.36)

In analogy to (1.31) the exact solution of the Dirac equation

(i/∇x − m0)Ψ (x) = e /A(x)Ψ (x) (2.37)

is completely determined in terms of SF if one imposes the boundary condition of
Feynman and Stückelberg, namely

Ψ (x) = ψ(x) +
∫

d4ySF(x − y)e /A(y)Ψ (y) . (2.38)

Here ψ(x) is a solution of the free Dirac equation, i.e. of the homogeneous version
of (2.37). The potential V (x) occurring in (1.31) is now replaced by e /A(x). The sec-
ond term on the right-hand side represents the scattered wave. In accordance with the
properties of the Stückelberg–Feynman propagator (2.24) this scattered wave contains
only positive frequencies in the distant future and only negative frequencies in the
distant past, since

Ψ (x) − ψ(x) ⇒
∫

d3p

2∑
r=1

ψr
p(x)

(
−ie

∫
d4y ψ̄r

p(y)/A(y)Ψ (y)

)
for t → +∞

(2.39)

and

Ψ (x) − ψ(x) ⇒
∫

d3p

4∑
r=3

ψr
p(x)

(
+ie

∫
d4y ψ̄r

p(y)/A(y)Ψ (y)

)
for t → −∞ .

(2.40)

Notice that here x and y are to be identified with x′ and x, respectively, in (2.24), and t

in (2.39, 2.40) corresponds to t ′ in (2.24).
The result (2.39) expresses our formulation of the relativistic scattering problem,

which is consistent with the requirements of hole theory. These requirements have
been essentially built into the Stückelberg–Feynman propagator by the special choice
of the integration contour and thus take into account the location of the Fermi border
(cf. Fig. 2.5 and Exercise 2.2). Furthermore, according to (2.39), an electron cannot
“fall into the sea” of (occupied) negative-energy states after scattering by an external
field /A(y), since only the unoccupied positive-energy states are available. In contrast,
positrons interpreted in terms of negative-energy electrons travelling backward in time
are scattered back to earlier times into other negative-energy states according to (2.40).

The S-matrix elements are defined in the same manner as in the nonrelativistic
case (1.37). Terming ψf (x) the final free wave with the quantum numbers f that is
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observed at the end of the scattering process, we infer from (2.38)–(2.40) with the aid
of (2.24) that

Sf i = lim
t→±∞

〈
ψf (x) Ψi(x)

〉

= lim
t→±∞

〈
ψf (x) ψi(x) +

∫
d4ySF(x − y)e /A(y)Ψi(y)

〉
. (2.41)

Here the limit t → +∞ is understood if ψf (x) describes an electron and t → −∞
if ψf (x) means a positron, since the latter is considered a negative-energy electron
moving backward in time. For electron scattering we have

Sf i = δf i − ie lim
t→+∞

〈
ψf (x)

∫
d3p

2∑
r=1

ψr
p(x)

∫
d4y ψ̄r

p(y)/A(y)Ψi(y)

〉
,

(2.41a)

while positron scattering is described by

Sf i = δf i + ie lim
t→−∞

〈
ψf (x)

∫
d3p

4∑
r=3

ψr
p(x)

∫
d4y ψ̄r

p(y)/A(y)Ψi(y)

〉
.

(2.41b)

The
∫

d3x integral implied by the brackets projects out just that state ψr
p(x) whose

quantum numbers agree with ψf (x). All other terms of the integral-sum
∫

d3p
∑

r do
not contribute. This yields for (2.41a)

Sf i = δf i − ie
∫

d4y ψ̄f (y)/A(y)Ψi(y)

and a similar expression for positron scattering. Both results can be combined by
writing (εf = +1 for positive-energy waves in the future and εf = −1 for negative-
energy waves in the past)

Sf i = δf i − ieεf

∫
d4y ψ̄f (y)/A(y)Ψi(y) . (2.42)

Depending on whether ψf (x) represents an electron or a positron, the first or the
second term, respectively, is nonzero. In (2.42) Ψi(x) stands for the incoming wave,
which either reduces at y0 → −∞ to an incident positive-frequency wave ψi(x) car-
rying the quantum numbers i or at y0 → +∞ to an incident negative-frequency wave
propagating into the past with quantum numbers i, according to the Stückelberg–
Feynman boundary conditions.

To elucidate how the various scattering processes are contained in (2.42) we first
consider the “ordinary” scattering of electrons. In this case

Ψi(y)
y0→−∞=⇒ ψ

(+E)
i (y) =

√
m0

E−
1

(2π)3/2
u(p−, s−) exp(−ip− · y), (2.43)

with u(p−,1/2) ≡ w1(p−), u(p−,−1/2) ≡ w2(p−) reduces to an incoming electron
wave with positive energy E−, momentum p− and spin s−. The minus sign here desig-
nates the negative charge of the electron. The nth order contribution to the perturbation
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expansion of the S-matrix element (2.42) is then

Fig. 2.7. Two graphs for third-
order electron scattering. The
lower graph involves an in-
termediate electron–positron
pair

S
(n)
f i = −ien

∫
d4y1 . . .d4yn ψ̄

(+E)
f (yn)/A(yn)SF(yn − yn−1) /A(yn−1) . . .

× SF(y2 − y1) /A(y1)ψ
(+E)
i (y1) . (2.44)

This expression contains both types of graphs shown in Fig. 2.7: That is, in addition
to ordinary scattering intermediate pair creation and pair annihilation are included in
the series, since the various d4y integrations also allow for a reverse time ordering,
y0
n+1 < y0

n . We therefore recognize that, inevitably, the second part of the propagator
(2.24) also contributes.

Next we consider the pair production process. In accordance with the developed
formalism, Ψi(y) in this case at y0 → +∞ reduces to a plane wave with negative
energy. This particle state propagating backward in time then represents a positron. We
use the notation p−, s− for three–momentum and spin corresponding to the physical
electron and p+, s+ for the physical positron where p0± > 0. The physical positron
state at t → ∞ is described by a plane wave of negative energy with quantum numbers
−p+,−s+, ε = −1. This wave propagating backward in time enters into the vertex.
That is,

Ψi(y)
y0→∞=⇒ ψ

(−E)
i (y) =

√
m0

E+
1

(2π)3/2
v(p+, s+) exp (ip+ · y) . (2.45)

This form of the wave function explicitly exhibits the negative energy and negative
three–momentum of the particle wave. The positive sign in the exponent in (2.45) ob-
viously expresses this property since a wave with positive energy and positive three–

Fig. 2.8. First- and second-order
Feynman diagrams for electron–
positron pair creation

momentum carries a phase factor exp(−ip− · y). The fact that the spin direction is
reversed, i.e. −s+, is taken into account by the definition of the spinor v(p+, s+). As
we recall from RQM, Chap. 6, the spinors have been defined according to

v(p+,+1/2) = ω4(p+) and v(p+,−1/2) = ω3(p+) ,

where ω4 is the spinor corresponding to a negative-energy electron with spin up
and ω3 a negative-energy electron with spin down.

The final wave function ψf in the case of the pair creation process is a positive-
energy solution carrying the quantum numbers p−, s−, ε = +1 and describes the elec-
tron.

To resume our previous considerations, from hole theory (see RQM, Chap. 12) we
know that the absence of a negative-energy electron with four–momentum −p+ and
spin −s+ is interpreted in terms of a positron with four–momentum +p+ and po-
larization +s+. Within the framework of the propagator formalism the probability
amplitude for the creation of a positron at x propagating forward in space–time and
emerging out of the interaction region into the final free state (p+, s+) at x′ is calcu-
lated by the probability amplitude for the propagation of a negative-energy electron
(four–momentum −p+, spin −s+) backward in time entering into the interaction re-
gion. Then, being scattered by the force field, it emerges out of the interaction volume
as a positive-energy state propagating forward in time. The diagrams for the pair cre-
ation are illustrated in Fig. 2.8. We emphasize that the second-order amplitude con-
sists of two diagrams corresponding to the second scattering of the positron. These
two second-order diagrams are said to differ in the time ordering of the two scattering
processes.
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Since the Feynman propagator according to (2.24) consists of two parts there is no
need to deal explicitly with time orderings when calculating any process. The formula
for the S matrix automatically contains them all.

Now let us consider pair annihilation. This process in lowest order is represented
by the graph of Fig. 2.9. In this case we insert for Ψi(y) a solution of (2.38) that

Fig. 2.9. The graph for pair
annihilation

reduces to ψ
(+E)
i (y) at t → −∞. This positive-energy solution represents an electron

that propagates forward in time into the interaction volume, to be scattered backward
in time and emerges into a negative energy state. According to (2.42) the nth-order am-
plitude that the electron scatters into a given final state ψ

(−E)
f , labelled by the physical

quantum numbers p+, s+, εf = −1 (the corresponding formal quantum numbers en-
tering the wave function, however, are −p+,−s+; cf. the discussion following (2.45)),
is given by

S
(n)
f i = ien

∫
d4y1 . . .

∫
d4ynψ̄

(−E)
f (yn)/A(yn)SF(yn − yn−1) . . . /A(y1)ψ

(+E)
i (y1) .

(2.46)

In the language of hole theory this is the nth-order amplitude that a positive-
energy electron is scattered into an electron state of negative energy, negative three–
momentum −p+, and spin −s+. This state must of course have been empty at
t → −∞. That is, there must have been a hole or positron present with four–
momentum p+ and spin or polarization s+.

Finally let us turn to positron scattering, which (in lowest order) is represented
by either of the two equivalent graphs of Fig. 2.10. The incident wave is an elec-
tron of negative frequency (negative energy) labelled by the quantum numbers
−p+,−s+, εf = −1. The final state (outgoing wave) is represented as a negative-
energy electron too. Notice that the incoming electron of negative energy character-
izes the outgoing positron of positive energy, and similarly the incoming positron is
represented as an outgoing negative-energy electron. In Sect. 3.4 we will elaborate
this explicitly.

Fig. 2.10. Positron scattering in lowest order. The emerging positron (ψpositron
f

, in (b)) corre-

sponds to an incoming negative-energy electron (ψ(−E)
i

in (a)). Similarly, the incident positron

(ψpositron
i

in (b)) is represented in terms of an outcoming negative-energy electron (ψ(−E)
f

in (a)). In other words, (a) describes the scattering process in accordance with our calculational
techniques, whereas (b) illustrates the real physical picture of positron scattering
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EXERCISE

2.2 Feynman Propagator for a Fermi Gas

Problem. Suppose in our formalism we replace the vacuum by a noninteracting
Fermi gas of electrons with Fermi momentum kF. How is the Stückelberg–Feynman
propagator modified? Evaluate SF in the low-density limit.

Solution. In a degenerate Fermi gas the levels in the positive-energy electron con-
tinuum are occupied up to the Fermi momentum kF. These occupied states have to be
treated like the negative-energy states of the Dirac sea. That is, the Feynman propaga-
tor is modified according to

iSG
F (x′ − x) = Θ(t ′ − t)

∑
k

r=1,2

ψr
k(x′)ψ̄r

k(x)Θ(k − kF)

− Θ(t − t ′)
∑
k

⎛
⎝ ∑

r=3,4

ψr
k(x′)ψ̄r

k(x)

+
∑

r=1,2

ψr
k(x′)ψ̄r

k(x)Θ(kF − k)

⎞
⎠ , (1)

where

ψr
k(x) = (m0/Ek)

1/2 (2π)−3/2 ωr(k) exp (−iεrk · x) , (2)

with k0 = Ek =
√

k2 + m2
0 are the normalized Dirac plane waves. For the special case

kF = 0 this expression reduces to the ordinary Feynman propagator. We recall the
following representations of the Θ function:

Θ(t ′ − t) = i

+∞∫

−∞

dp′
0

2π
exp

[−ip′
0(t

′ − t)
] 1

p′
0 + iε

, (3a)

Θ(t − t ′) = −i

+∞∫

−∞

dp′
0

2π
exp

[−ip′
0(t

′ − t)
] 1

p′
0 − iε

, (3b)

where the second expression is obtained from the first by complex conjugation. Fur-
thermore we need the relations

∑
r=1,2

ωr(k)ω̄r (k) = /k + m0

2m0
= Λ̂+(k) ,

∑
r=3,4

ωr(k)ω̄r (k) = /k − m0

2m0
= −Λ̂−(k) . (4)
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With the aid of (4), (1) yields

iSG
F (x′ − x) = Θ(t ′ − t)

∫
d3k

(2π)3

m0

Ek

Λ̂+(k) exp
[−ik · (x′ − x)

]
Θ(k − kF)

+ Θ(t − t ′)
∫

d3k

(2π)3

m0

Ek

Λ̂−(k) exp
[
ik · (x′ − x)

]

− Θ(t − t ′)
∫

d3k

(2π)3

m0

Ek

Λ̂+(k) exp
[−ik · (x′ − x)

]
Θ(kF − k)

≡ I1 + I2 + I3 . (5)

Substituting the representation (3a) of the Θ function we find that

I1 = i
∫

d3k

(2π)3

m0

Ek

Λ̂+(k) exp
{−i

[
Ek(t

′ − t) − k · (x′ − x)
]}

×
∫

dk′
0

2π
exp

{−i
[
k′

0(t
′ − t)

]} 1

k′
0 + iε

Θ(k − kF)

= i
∫

d3k dk′
0

(2π)4

1

2Ek

exp
{−i

[
(Ek + k′

0)(t
′ − t) − k · (x′ − x)

]}

× Ekγ0 − k · γ + m0

k′
0 + iε

Θ(k − kF) . (6a)

Similarly, using (3b), we get

I2 = −i
∫

d3k dk′
0

(2π)4

1

2Ek

exp
{
i
[
(Ek − k′

0)(t
′ − t) − k · (x′ − x)

]}

× −Ekγ0 + k · γ + m0

k′
0 − iε

, (6b)

I3 = i
∫

d3k dk′
0

(2π)4

1

2Ek

exp
{−i

[
(Ek + k′

0)(t
′ − t) − k · (x′ − x)

]}

× Ekγ0 − k · γ + m0

k′
0 − iε

Θ(kF − k) . (6c)

In order to evaluate these integrals, we introduce the following substitutions:

k0 = k′
0 + Ek in I1 and I3 , (7a)

k0 = k′
0 − Ek and k → −k in I2 . (7b)

In addition, in the integral I2 we make use of the identity

1 = Θ(k − kF) + Θ(kF − k) (8)

so that (6) becomes

I1 = i
∫

d4k

(2π)4

1

2Ek

exp
[−ik · (x′ − x)

] Ekγ0 − k · γ + m0

k0 − Ek + iε
Θ(k − kF) ,
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I2 = −i
∫

d4k

(2π)4

1

2Ek

exp
[−ik · (x′ − x)

] −Ekγ0 − k · γ + m0

k0 + Ek − iε

× [Θ(k − kF) + Θ(kF − k)] ,

I3 = i
∫

d4k

(2π)4

1

2Ek

exp
[−ik · (x′ − x)

] Ekγ0 − k · γ + m0

k0 − Ek − iε
Θ(kF − k) . (9)

In the next step we add I1 to that part of I2 which contains Θ(k − kF). The combined
denominator of the two integrands is

(k0 − Ek + iε)(k0 + Ek − iε) = k2
0 − E2

k + 2iεEk + ε2

= k2
0 − E2

k + iε′ = k2 − m2
0 + iε′ , (10)

since ε is an infinitesimal quantity and Ek > 0. This results in

Ekγ0 − k · γ + m0

k0 − Ek + iε
− −Ekγ0 − k · γ + m0

k0 + Ek − iε

= (Ekγ0 − k · γ + m0)(k0 + Ek) − (−Ekγ0 − k · γ + m0)(k0 − Ek)

k2 − m2
0 + iε′

= 2Ek(k0γ0 − k · γ + m0)

k2 − m2
0 + iε′

= 2Ek(k · γ + m0)

k2 − m2
0 + iε′ . (11)

Similarly the second part of I2 is added to I3. The combined denominator in this case
is

(k0 + Ek − iε)(k0 − Ek − iε) = k2
0 − E2

k − 2iεk0

= k2 − m2
0 − iε′k0 . (12)

Proceeding as in (11), we find that

Ekγ0 − k · γ + m0

k0 − Ek − iε
− −Ekγ0 − k · γ + m0

k0 + Ek − iε

= (Ekγ0 − k · γ + m0)(k0 + Ek) − (−Ekγ0 − k · γ + m0)(k0 − Ek)

k2 − m2
0 − iε′k0

= 2Ek(k · γ + m0)

k2 − m2
0 − iε′k0

. (13)

We insert these expressions into (5) and obtain

SG
F (x′ − x) =

∫
d4k

(2π)4

γ · k + m0

k2 − m2
0 + iε

exp
[−ik · (x′ − x)

]
Θ(k − kF)

+
∫

d4k

(2π)4

γ · k + m0

k2 − m2
0 − iεk0

exp
[−ik · (x′ − x)

]
Θ(kF − k) . (14)

Instead of adding an infinitesimal iε to the denominator of the propagators (14),
one may alternatively perform the integrations along the contours in the complex k0
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Fig. 2.11. The integration
contours which define the
Feynman propagator (CF)

and the advanced propaga-
tor (CA)

plane as shown in Fig. 2.11:

SG
F (x′ − x) =

∫

CF

d4k

(2π)4

exp
[−ik · (x′ − x)

]
k · γ − m0

Θ(k − kF)

+
∫

CA

d4k

(2π)4

exp
[−ik · (x′ − x)

]
k · γ − m0

Θ(kF − k) , (15)

where we have introduced the symbolic notation

γ · k + m0

k2 − m2
0

= γ · k + m0

(γ · k + m0)(γ · k − m0)
= 1

γ · k − m0
. (16)

For t ′ > t the second integral in (15),

∫

CA

d4k

(2π)4

exp
{−i

[
k0(t

′ − t) − k · (x′ − x)
]}

k · γ − m0
Θ(kF − k) (17)

is evaluated along the contour CA closed in the lower half plane so that it vanishes.
This procedure yields the advanced propagator that transforms all solutions below the
Fermi surface (k < kF) backward in time. The integration contour CF in Fig. 2.11 is
the ordinary contour in the vacuum, since the old vacuum remains unchanged above
the Fermi momentum kF. The corresponding “causal” propagator transforms particles
(positive-energy solutions) to propagate forward in time. In Fig. 2.12 we have illus-
trated these properties:

Fig. 2.12. The integration
contour CkF crosses the real
k0 axis at the border between
occupied and empty states

Solutions with a momentum k < kF, i.e. with an energy below the corresponding

Fermi energy EF =
√

k2
F + m2

0, propagate backward in time and are pictured as holes
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(hatched region). Particles, on the other hand, have energies larger than EF and prop-
agate forward in time.

We summarize the steps that led to this result. For particles of a Fermi gas the
integration contour cuts the real k0 axis just above the Fermi energy EF. In the ordinary
vacuum only the negative energy states are occupied. In this case one chooses kF = 0,
that is, EF ≤ |Ek| for all k, and the point where the contour cuts the real k0 axis lies
somewhere in the interval [−Ek,Ek], the precise position being irrelevant. In the case
of the Fermi gas (kF > 0) we have to distinguish between two alternatives. For k > kF

the integration contour passes the same interval because EF < |Ek|. In both cases
the contour agrees with CF. On the other hand, at low momenta k < kF, implying
EF > |Ek|, i.e. EF > Ek > −Ek , the integration has to be performed along the dashed
contour, which is equivalent to CA! This prescription is symbolically expressed as

SG
F (x′ − x) =

∫

CkF

d4k

(2π)4

exp
[−ik · (x′ − x)

]
k · γ − m0

, (18)

where the contour CkF crosses the real axis at k0 = EF.
The extension of this prescription to the case of the Feynman propagator in the

presence of an external field Aμ(x) is straightforward. For example, consider an atom
with bound states (located within the interval −m0 < E < m0). In this case the inte-
gration contour in the complex k0 plane has to be chosen such that it passes below the
occupied and above the empty states.

For practical purposes it is convenient to split the propagator into a free and
a density-dependent part. In momentum space the result takes the simple form

SG
F (k) = SF(k) + (γ · k + m0)δ(k0 − Ek)Θ(kF − k) . (19)

This can be easily derived from (14) by using the identity

1

z − iε
= 1

z + iε
+ 2π iδ(z) . (20)

In the low-density limit the Fermi momentum kF is directly related to the density
of the electron gas. That is, with the normalization condition for a box of volume V

the particle number is given by

N =
2∑

r=1

∑
k

Θ(kF − k) → 2V

∫
d3k

(2π)3
Θ(kF − k) = V

3π2
k3

F , (21)

where the factor 2 accounts for the spin degeneracy. Thus in the low-density limit,
� = N/V = k3

F/3π3 → 0, the Fermi momentum kF approaches 0, so that the propa-
gator SG

F reduces to SF.

Supplement. Finite Temperatures. The result (14) can be generalized to the case of
a free-electron gas at finite temperature T . From statistical mechanics it is well known
that a quantum-mechanical state with an energy E cannot definitely be said to be oc-
cupied or empty. Instead an occupation probability function f (E) is introduced. The
explicit form of this function depends on the type of particle considered; for particles
with half-integer spin, Fermi–Dirac statistics requires f (E) to be of the form

f (E) ≡ f (E,T ,μ) = 1

exp
[
(E − μ)/kBT + 1

] , (22)
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where kB is the Boltzmann constant kB = 8.62 × 10−11 MeV/K. The Fermi function
contains two free parameters, the temperature T and the chemical potential μ. The

latter is a generalization of the Fermi energy EF =
√

k2
F + m2

0, as becomes obvious in
the limit T → 0, when the Fermi function approaches the Θ function,

f (E,T ,μ) → Θ(μ − E) . (23)

That is, below the chemical potential μ all states are occupied, whereas above μ all
states are empty.

To generalize (1) to the case of finite temperature, we therefore replace the Θ func-
tions Θ(k − kF) = Θ(Ek − EF) and Θ(kF − k) = Θ(EF − Ek) by the occupation
function (23). However, we must be careful to distinguish four different contributions:
free-electron states (r = 1,2) and occupied positron states (r = 3,4) propagating for-
ward in time, as well as occupied electron states and free-positron states, propagating
backward in time. In contrast to (1), where all positron states were assumed empty,
the electron gas also contains positrons owing to thermal excitation, as expressed by
the Fermi function (22). This is depicted in Fig. 2.13. However, the temperature at
which these contributions become important, i.e. where kBT ≈ 2m0c

2, is quite large,
T ≈ 10−10 K.

Fig. 2.13. The occupation
probability for a hot electron
gas. The hatched regions
mark the occupied electron
and positron states

According to these considerations the temperature-dependent Feynman propagator
must be of the following form:

iSG
F (x′ − x) =

⎡
⎣∑

k

∑
r=1,2

(1 − f (Ek))ψr
k(x′)ψ̄r

k(x)

+
∑
k

∑
r=3,4

(1 − f (−Ek))ψr
k(x′)ψ̄r

k(x)

⎤
⎦Θ(t ′ − t)

−
⎡
⎣∑

k

∑
r=3,4

f (−Ek)ψ
r
k(x′)ψ̄r

k(x)

+
∑
k

∑
r=1,2

f (Ek)ψ
r
k(x′)ψ̄r

k(x)

⎤
⎦Θ(t − t ′) . (24)
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With the aid of the integral representation of the Θ function (3) and by employing (2)
and (4), (24) yields

iSG
F (x′ − x) = i

∫
dk′

0

(2π)

1

k′
0 + iε

exp
[−ik′

0(t
′ − t)

]

×
{∫

d3k

(2π)3 (1 − f (Ek))
m0

Ek

/k + m0

2m0
exp

[−ik · (x′ − x)
]

−
∫

d3k

(2π)3 (1 − f (−Ek))
m0

Ek

−/k + m0

2m0
exp

[+ik · (x′ − x)
]}

+ i
∫

dk′
0

(2π)

1

k′
0 − iε

exp
[−ik′

0(t
′ − t)

]

×
{
−

∫
d3k

(2π)3
f (−Ek)

m0

Ek

−/k + m0

2m0
exp

[−ik · (x′ − x)
]

+
∫

d3k

(2π)3
f (Ek)

m0

Ek

/k + m0

2m0
exp

[−ik · (x′ − x)
]}

. (25)

To evaluate the four integrals we proceed as before by shifting the frequency variables
and inverting the momentum variables, i.e. by carrying out the substitution (7a) in the
first and last integrals and the substitution (7b) in the second and third integral. This
gives

SG
F (x′ − x) =

∫
d4k

(2π)4
SG

F (k) exp
[−ik · (x′ − x)

]
, (26)

where

SG
F (k) = 1

2Ek

[
(1 − f (Ek))

Ekγ0 − k · γ + m0

k0 − Ek + iε

− (1 − f (−Ek))
−Ekγ0 − k · γ + m0

k0 + Ek + iε

− f (−Ek)
−Ekγ0 − k · γ + m0

k0 + Ek − iε
+ f (Ek)

Ekγ0 − k · γ + m0

k0 − Ek + iε

]
. (27)

We combine the four terms into two using the identity

1

x − iε
= 1

x + iε
+ 2π iδ(x) (28)

and obtain

SG
F (k) = /k + m0

k2 − m2
0 + iεk0

+ 1

2Ek

(/k + m0)2π i
[
f (Ek)δ(k0 − Ek)

−f (−Ek)δ(k0 + Ek)
]

. (29)
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Finally, employing the relations

Θ(k0)δ(k
2 − m2

0) = 1

2Ek

δ(k0 − Ek) ,

Θ(−k0)δ(k
2 − m2

0) = 1

2Ek

δ(k0 + Ek) (30)

we find that

SG
F (k) = /k + m0

k2 − m2
0 + iεk0

+ 2π i(/k + m0)δ(k
2 − m2

0)

× [
f (Ek)Θ(k0) − f (−Ek)Θ(−k0)

]
. (31)

This expression may be transformed to a more symmetric form by separating off the
free Feynman propagator according to the following identity:

/k + m0

k2 − m2
0 + iεk0

= /k + m0

k2 − m2
0 + iε

+ 2π i(/k + m0)δ(k
2 − m2

0)Θ(−k0) . (32)

Hence, we have the final result

SG
F (k) = SF(k) + 2π i(/k + m0)δ(k

2 − m2
0)

×
{

Θ(k0)

exp
[
(Ek − μ)/kBT + 1

] + Θ(−k0)

exp
[
(Ek + μ)/kBT

] + 1

}
. (33)

In the low-temperature limit T → 0 and μ = EF > 0, (33) reduces to the previous
expression (14) for the electron gas. This is easily proved by inserting (32) into (14).

EXERCISE

2.3 Nonrelativistic Limit of the Feynman Propagator

Problem. Show that SF(x′, x) reduces to the free retarded propagator for the
Schrödinger equation in the nonrelativistic limit.

Solution. To solve the problem it is advantageous to change to momentum space. The
representation of the propagators in configuration space is then obtained by Fourier
transformation. However, to determine the propagators uniquely we need to give a pre-
scription how the singularities have to be treated.

The Feynman propagator is

SF(x′ − x) =
∫

d4p

(2π)4
exp

[−ip(x′ − x)
]
SF(p) (1)
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and the nonrelativistic retarded propagator is

G+
0 (x′ − x) =

∫
d3p

(2π)3
exp

[
ip · (x′ − x)

]

×
∫ +∞

−∞
dω

2π
exp

[−iω(t ′ − t)
]
G+

0 (p,ω) . (2)

From the previous discussion of the Feynman propagator we have learnt that the ap-
propriate boundary conditions correspond to shifting the poles by adding an infinites-
imal imaginary constant, such that

SF(p) = /p + m0

p2 − m2
0 + iε

. (3)

This form implies positive-energy solutions propagating forward in time and negative-
energy solutions backward in time. In order to find the nonrelativistic limit of SF we
consider (3) in the approximation |p|/m0  1 and investigate the vicinity of the poles.
We write

/p + m0

p2
0 − p2 − m2

0 + iε
= p0γ0 − p · γ + m0(

p0 −
√

p2 + m2
0

)(
p0 +

√
p2 + m2

0

)
+ iε

(4)

and obtain, using the approximation
√

p2 + m0 = m0 + p2/2m0 + O(p4/m4
0),

SF(p) ≈ p0γ0 − p · γ + m0(
p0 − m0 − p2

2m0

)(
p0 + m0 + p2

2m0

)
+ iε

. (5)

Now we study the behaviour of the propagator in the vicinity of its positive-frequency
pole. Introducing ω = p0 − m0 we can reduce (5) to

SF(p) ≈ (ω + m0)γ0 − p · γ + m0(
ω − p2

2m0

)(
ω + 2m0 + p2

2m0

)
+ iε

. (6)

For the positive-frequency pole, ω lies in the vicinity of p2/2m0. Therefore we have
ω > 0 and (ω + 2m0 + p2/2m0) ≈ 2m0 > 0. Thus, within the approximation of small
momenta, (5) can be transformed into

SF(p) ≈ 1

2m0

m0(γ0 + 1) − p · γ(
ω − p2

2m0

)
+ iε

2m0

=
1
2 (γ0 + 1) − p·γ

2m0(
ω − p2

2m0

)
+ iε′

, (7)

where also ε′ is a small imaginary constant. The first term

1

2
(γ0 + 1) =

⎛
⎜⎜⎝

1 0
1

0
0 0

⎞
⎟⎟⎠
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selects the two upper components of a given bispinor. Since we have restricted our
consideration to positive energy solutions by choosing the positive-energy pole, the
two large spinor components are extracted. The second matrix

−p · γ
2m0

=
(

0 − p·σ
2m0

p·σ
2m0

0

)
(8)

mixes the upper and lower components of the bispinor Ψ = (
ϕ
χ

)
. Since |χ |  |ϕ| the

contribution of this term is quadratic in p/m0, however, and can therefore be neglected
within our small–momentum approximation. Thus the numerator of (7) reduces to
unity (or, more precisely, to the unit matrix in spin space). We therefore have the
result

SF(p) → 1

ω − p2/2m0 + iε
= G+

0 (p,ω) . (9)

Fourier transforming (8) back to coordinate space then yields the retarded propagator
of the Schrödinger theory.

Remark. In the vicinity of the pole p0 = −
√

p2 + m2
0 the procedure outlined above,

but with the substitution ω = −p0 − m0, would yield the same result (8). How-
ever, when Fourier transforming back to configuration space the energy-dependent
exponent exp

(
ip0(t

′ − t)
) = exp

(
im(t ′ − t)

)
exp

(+iω(t ′ − t)
)

produces a time de-
pendence Θ(t − t ′). Thus, for antiparticles the Feynman propagator reduces to the
advanced Green’s function in the nonrelativistic limit.

EXERCISE

2.4 Time-Evolution of Dirac Wave Functions

Problem. Prove the following identities:

Θ(t ′ − t)ψ(+E)(x′) = i
∫

d3xSF(x′ − x)γ0ψ
(+E)(x) , (1)

Θ(t − t ′)ψ(−E)(x′) = −i
∫

d3xSF(x′ − x)γ0ψ
(−E)(x) , (2)

and deduce similar relations for the adjoint solutions ψ̄(+E) and ψ̄(−E).

Solution. A wave packet of positive energy may be expressed in terms of a superpo-
sition of normalized plane waves:

ψ(+E)(x) =
∫

d3p

(2π)3/2

√
m0

Ep

2∑
r=1

b(p, r)ωr(p) exp (−iεrp · x) , (3)
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where Ep =
√

p2 + m2
0 and ε1 = ε2 = +1. Similarly, for negative-energy wave pack-

ets we write ε3 = ε4 = −1.

ψ(−E)(x) =
∫

d3p

(2π)3/2

√
m0

Ep

4∑
r=3

d∗(p, r)ωr(p) exp (−iεrp · x) . (4)

In order to make use of the orthogonality condition for spinors

ωr†(εrp)ωr ′
(εr ′p) = Ep

m0
δrr ′ (5)

we employ the plane-wave representation of the Feynman propagator

SF(x′ − x) = − iΘ(t ′ − t)

∫
d3p

2∑
r=1

ψr
p(x′)ψ̄r

p(x)

+ iΘ(t − t ′)
∫

d3p

4∑
r=3

ψr
p(x′)ψ̄r

p(x) , (6)

where the ψr
p(x) are given by

ψr
p =

√
m0

Ep

1

(2π)3/2
ωr(p) exp (−iεrp · x) . (7)

Inserting (3), (6) and (7) into the right-hand side of (1) we then obtain

i
∫

d3x SF(x′ − x)γ0ψ
(+E)

=Θ(t ′ − t)

∫
d3x

∫
d3p

(2π)3

m0

Ep

×
2∑

r=1

ωr(p)ω̄r (p)γ0 exp
[−iεrp · (x′ − x)

] ∫ d3p′

(2π)3/2

√
m0

Ep′

×
2∑

r ′=1

b(p′, r ′)ωr ′
(p′) exp

(−iεr ′p′ · x)

− Θ(t − t ′)
∫

d3x

∫
d3p

(2π)3

m0

Ep

4∑
r=3

ωr(p)ω̄r (p)γ0 exp
[−iεrp · (x′ − x)

]

×
∫

d3p′

(2π)3/2

√
m0

Ep′

2∑
r ′=1

b(p′, r ′)ωr ′
(p′) exp

(−iεrp
′ · x)

=Θ(t ′ − t)

∫
d3p d3p′

(2π)3/2

m0

Ep

√
m0

Ep′
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×
∑
r=1,2
r′=1,2

ωr(p)ωr†(p)ωr ′
(p′)b(p′, r ′) exp

(−iεrp · x′)

×
∫

d3x

(2π)3
exp

[
i(εrp − εr ′p′) · x] − Θ(t − t ′)

∫
d3p d3p′

(2π)3/2

m0

Ep

√
m0

Ep′

×
∑
r=3,4
r′=1,2

ωr(p)ωr†(p)ωr ′
(p′)b(p′, r ′) exp

(−iεrp · x′)

×
∫

d3x

(2π)3
exp

[
i(εrp − εr ′p′) · x] . (8)

Performing the x integration in the Θ(t ′ − t) term yields

exp
[
i(Ep − Ep′)t

]
δ3(p − p′) , (9)

where we have used εr = εr ′ = 1, since r, r ′ = 1,2. The Θ(t − t ′) term in the last line
of (8) on the other hand produces a factor

exp
[−i(Ep + Ep′)t

]
δ3(p + p′) , (10)

since in this case εr = −1 (r = 3,4) and εr ′ = +1 (r ′ = 1,2). Integrating over d3p

and relabelling p′ as p we find that

i
∫

d3x SF(x′ − x)γ0ψ
(+E)(x)

= Θ(t ′ − t)

∫
d3p

(2π)3/2

(
m0

Ep

)3/2

×
∑
r=1,2
r′=1,2

ωr(p)ωr†(p)ωr ′
(p)b(p, r ′) exp

(−iεrp · x′)

− Θ(t − t ′)
∫

d3p

(2π)3/2

(
m0

Ep

)3/2 ∑
r=3,4
r′=1,2

ωr(−p)ωr†(−p)ωr ′
(+p)b(p, r ′)

× exp
(−iεr p̃ · x′) exp

(−i2Ept
)

(11)

where p̃ = (p0,−p). Now we make use of the orthogonality relation (5), which reads,
for r, r ′ = 1,2,

ωr†(p)ωr ′
(p) = ωr†(εrp)ωr ′

(εr ′p) = Ep

m0
δrr ′ (12)

and, for r = 3,4 and r ′ = 1,2,

ωr†(−p)ωr ′
(p) = ωr†(εrp)ωr ′

(εr ′p) = 0 , (13)
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i.e. the second term in (11) vanishes. The remaining first term gives

i
∫

d3x SF(x′ − x)γ0ψ
(+E)(x)

= Θ(t ′ − t)

∫
d3p

(2π)3/2

√
m0

Ep

2∑
r=1

b(p, r)ωr(p) exp
(−iεrp · x′)

= Θ(t ′ − t)ψ(+E)(x′) , (14)

completing the proof of (1). The relation (2) is verified in an analogous manner. In this
case, since ψ(−E) consists of spinors with r = 3,4 only, the second part of SF(x′ − x)

contributes while the first term vanishes, thus yielding −Θ(t − t ′)ψ(−E)(x′).
Very similar relations can also be deduced for the propagation of the adjoint spinors

ψ̄(+E)(x), ψ̄(−E)(x). Since the ordering of operators is inverted when performing
Hermitian conjugation, the propagator SF should now stand to the right of ψ̄ . There-
fore we study the following integral

i
∫

d3x ψ̄(+E)(x)γ0SF(x − x′)

= i
∫

d3x

∫
d3p′

(2π)3/2

m0

Ep

√
m0

Ep′

∫
d3p

(2π)3

×
2∑

r=1

b∗(p′, r ′)ω̄r ′
(p′) exp

(
ip′x

)
γ0

×
{

−iΘ(t − t ′)
2∑

r=1

ωr(p)ω̄r (p) exp
[−ip · (x − x′)

]

+ iΘ(t ′ − t)

4∑
r=3

ωr(p)ω̄r (p) exp
[+ip · (x − x′)

]}
. (15)

Now the calculation that led from (8) to (14) can be repeated, i.e. the x integration
can be performed and the orthogonality relations for the unit spinors used. Then (15)
reduces to the simple expression

Θ(t − t ′)
∫

d3p

(2π)3/2

√
m0

Ep

2∑
r=1

b∗(p, r)ω̄r (p) exp (ip · x) . (16)

This is the expansion of the adjoint spinor ψ̄(+E)(x′). Thus the ansatz (15) has indeed
led to a propagation equation for the adjoint wave function, namely

Θ(t − t ′)ψ̄(+E)(x′) = i
∫

d3x ψ̄(+E)(x)γ0SF(x − x′) . (17)

In a similar manner one derives the relation

Θ(t ′ − t)ψ̄(−E)(x′) = −i
∫

d3x ψ̄(−E)(x)γ0SF(x − x′) . (18)



68

Exercise 2.4

2. The Propagators for Electrons and Positrons

A comparison of (17, 18) with (1, 2) reveals that the order of the time arguments
t and t ′ is interchanged. This is not surprising, since ψ(x) describes an incoming
wave and ψ̄(x) an outgoing wave.

EXERCISE

2.5 The Explicit Form of SF(x) in Coordinate Space

Problem. Derive a closed expression for the Feynman propagator in configuration
space. How does it behave on the light cone, x2 → 0, and at large spacelike or timelike
separations x2 → ±∞?

Solution. Our starting point is the integral representation of the Feynman propagator
of the Dirac equation. The integral can be simplified by factorizing out the Dirac
differential operator:

SF(x) =
∫

CF

d4p

(2π)4

e−ip·x

p2 − m2
( /p + m)

=
∫

d4p

(2π)4

i∂μγ μ + m

p2 − m2 + iε
e−ip·x

= (iγ · ∂ + m)

∫
d4p

(2π)4

e−ip·x

p2 − m2 + iε

= (iγ · ∂ + m)�F(x) . (1)

Fig. 2.14. The integration
contour CF

Figure 2.14 illustrates the integration contour CF. Alternatively, the integration may
be performed by shifting the poles by an infinitesimal constant iε. The integral

�F(x) ≡
∫

d4p

(2π)4

e−ip·x

p2 − m2 + iε
=

∫

CF

d4p

(2π)4

e−ip·x

p2 − m2
, (2)

which we introduced for the sake of mathematical simplification, also has a physical
meaning. It is the Feynman propagator of the Klein–Gordon field!
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Fig. 2.15. Definition of the in-
tegration contours C− and
C+

The p0 integration in �F(x) can be evaluated by using the residue theorem, which
determines the values of integrals along closed contours in the complex plane. Since
the integrand carries a factor exp(−ip0x0 + ip ·x), it is obvious that for x0 > 0 the in-
tegrand vanishes asymptotically for large |p0| in the lower half plane. Thus, for x0 > 0
an “infinite” semicircle in the lower half plane can be appended to the contour CF with-
out affecting the value of the integral. Since the integrand is regular everywhere except
for the two poles, the path of integration can be contracted to a contour C+ which en-
circles the point p0 = +Ep , as shown in the Fig. 2.15. Conversely, for x0 < 0 the
contour CF needs to be closed in the upper half plane and we may integrate along the
contour −C− (the direction of integration is essential). Thus, we obtain

�F(x) = Θ(x0)�
+(x) − Θ(−x0)�

−(x) , (3)

where

�±(x) =
∮

C±

d4p

(2π)4

e−ip·x

p2 − m2
. (4)

We proceed by rewriting the denominator as

1

p2 − m2
= 1

2Ep

(
1

p0 − Ep

− 1

p0 + Ep

)
(5)

where Ep = +√
p2 + m2 to isolate the two poles and obtain

�±(x) =
∫

d3p

(2π)3
exp (ip · x)

× 1

2Ep

∮

C±

dp0

2π
exp (−ip0x0)

(
1

p0 − Ep

− 1

p0 + Ep

)

= ∓ i
∫

d3p

(2π)3

1

2Ep

exp
[−i(±Epx0 − p · x)

]
. (6)

Notice that the contours C± are directed in a negative mathematical sense.
Using this result both contributions to �F(x) in (3) can be combined into a single

expression

�F(x) = −i
∫

d3p

(2π)3

1

2Ep

exp
(−iEp|x0| + ip · x) . (7)
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In order to evaluate this three-dimensional integral we introduce spherical polar coor-
dinates. The angular integrations can be carried out immediately

�F(x) = − i

(2π)3

∞∫

0

dp

+1∫

−1

d cos θ

2π∫

0

dφ
p2

2Ep

exp
(−iEp|x0| + ipr cos θ

)

= − i

(2π)3
2π

∞∫

0

dp
p2

2Ep

1

ipr
exp

(−iEp|x0|
) (

exp (ipr) − exp (−ipr)
)

= − 1

8π2r

∞∫

0

dp
p

Ep

exp
(−iEp|x0|

) (
exp (ipr) − exp (−ipr)

)
, (8)

where we have written |p| = p and |x| = r . Substituting p → −p in the second term
the two contributions in (8) can be combined into a single expression. Furthermore,
the factor p under the integral can be replaced by a differentiation with respect to the
parameter r

�F(x) = − 1

8π2r

∞∫

−∞
dp

p

Ep

exp
(−iEp|x0|

)
exp (ipr)

= i

8π2r

∂

∂r

∞∫

−∞
dp

exp
[−i(Ep|x0| − pr)

]
Ep

. (9)

This integral can be brought into a more convenient form using the substitution

Ep = m coshη , p = m sinhη , (10)

which obviously satisfies the relativistic energy momentum relation E2
p − p2 = m2.

Now (9) takes the form

�F(x) = i

8π2r

∂

∂r

∞∫

−∞
dη

dp

dη

exp
[−im(coshη|x0| − sinhηr)

]
m coshη

= i

8π2r

∂

∂r

∞∫

−∞
dη exp

[−im(|x0| coshη − r sinhη)
]

. (11)

The further evaluation of this integral depends on the relative size of the time and
space arguments, |x0| and r . We will separately discuss the three possible cases.

Case 1: Timelike separation x2 > 0, i.e. |x0| > r . We substitute

|x0| =
√

x2
0 − r2 cosh θ ,

r =
√

x2
0 − r2 sinh θ , (12)
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and use one of the addition theorems for the hyperbolic functions

|x0| coshη − r sinhη =
√

x2
0 − r2(cosh θ coshη − sinh θ sinhη)

=
√

x2
0 − r2 cosh(η − θ) . (13)

Thus we have

�F(x) = i

8π2r

∂

∂r

∫ ∞

−∞
dη exp

(
−im

√
x2

0 − r2 cosh(η − θ)

)

= i

8π2r

∂

∂r

∫ ∞

−∞
dη exp

(
−im

√
x2

0 − r2 coshη

)
. (14)

This integral can be solved in terms of Bessel functions2 of zeroth order:

∞∫

−∞
dη exp (−iz coshη) = 2

∞∫

0

dη cos(z coshη) − 2i
∫ ∞

0
dη sin(z coshη)

= −iπJ0(z) − πN0(z) = −iπH
(2)
0 (z) . (15)

Fig. 2.16. Bessel function J0
and Neumann function N0 of
zeroth order

J0 and N0 are the Bessel functions of first kind (often simply called the Bessel func-
tion) and of second kind (also known as the Neumann function). Both can be combined
to yield the complex Hankel function H

(2)
0 (z) (Bessel function of third kind). The

functions J0(z) and N0(z) are sketched in the Fig. 2.16. At z → 0 J0(z) approaches 1
while N0(z) has a logarithmic singularity. Using the identity

d

dz
H

(2)
0 (z) = −H

(2)
1 (z) (16)

we obtain the scalar Feynman propagator for |x0| > r

�F(x) = 1

8πr

d

(
m

√
x2

0 − r2

)

dr

[
−H

(2)
1

(
m

√
x2

0 − r2

)]

= m

8π

√
x2

0 − r2
H

(2)
1

(
m

√
x2

0 − r2

)
. (17)

Case 2: Spacelike separation x2 < 0, i.e. |x0| < r . Here we substitute

|x0| =
√

r2 − x2
0 sinh θ ,

r =
√

r2 − x2
0 cosh θ , (18)

and use the addition theorem

sinh θ coshη − cosh θ sinhη = − sinh(η − θ) . (19)

2 See e.g. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover, New York,
1965), Chap. 9.
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This leads to

�F(x) = i

8π2r

∂

∂r

∫ ∞

−∞
dη exp

(
im

√
r2 − x2

0 sinhη

)

= i

8π2r

∂

∂r
2
∫ ∞

0
dη cos

(
m

√
r2 − x2

0 sinhη

)
. (20)

The sin term does not contribute, being an odd function in η. Here we encounter
the integral representation of the modified Bessel function K0(z) (also known as the
MacDonald function) which is related to the Hankel function of imaginary argument

2
∫ ∞

0
dη cos(z sinhη) = 2K0(z)

= −iπH
(2)
0 (−iz) . (21)

Fig. 2.17. Modified Bessel func-
tion of zeroth order K0(x)

The MacDonald function has a logarithmic singularity at z → 0 and falls off like√
π/2z exp (−z) at z → ∞, see Fig. 2.17. Using (21) we obtain for r > |x0|

�F(x) = 1

8πr

d

(
−mi

√
r2 − x2

0

)

dr

[
−H

(2)
1

(
−im

√
r2 − x2

0

)]

= im

8π

√
r2 − x2

0

H
(2)
1

(
−im

√
r2 − x2

0

)
. (22)

Obviously this is the analytical continuation of the result of case 1, (17).

Case 3: Lightlike separation x2 = 0, i.e. |x0| = r . This case has to be treated with
special care since here the integral (8) is divergent. For large values of p the integrand
approaches

lim
p→∞

p

Ep

exp
(−iEpr

) (
exp (ipr) − exp (ipr)

)

= lim
p→∞

(
1 − exp (−2ipr)

)
. (23)

Since the first term approaches a constant (instead of oscillating, which would be the
case for |x0| �= r) the integral will diverge. A certain singular behaviour of SF(x) is
already apparent when the results (17) or (22) are continued to the argument |x0| → r .
In addition, however, also a singular distribution might contribute which has its sup-
port solely on the light cone |x0| = r and thus does not emerge when one studies the
limit just mentioned.

It is easy to see that this indeed is the case. Let us study the divergent part of the
integral (8) explicitly. For this it is justified to replace Ep → p. Then we find

�F(x)|x0→r � − 1

8π2r

∫ ∞

0
dp

{
exp

[−ip(|x0| − r)
] − exp

[−ip(|x0| + r)
] }

� − 1

8π2r

(
1

2
2πδ(|x0| − r) − 1

2
2πδ(|x0| + r)

)
. (24)
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This calculation has taken into account only the delta-function contribution. Both
terms in (24) can be combined to yield

�F(x)|x0→r � − 1

4π
δ(x2

0 − r2) . (25)

We have to add this singular contribution to our earlier result. The final result for the
Feynman propagator �F for the Klein–Gordon field then reads (using x2 = x2

0 − r2)

�F(x) = − 1

4π
δ(x2) + mΘ(x2)

8π
√

x2
H

(2)
1

(
m
√

x2
)

+ imΘ(−x2)

8π
√−x2

H
(2)
1

(
−im

√
−x2

)
. (26)

As an important special case of �F(x), let us consider the limit m → 0. Since
H

(2)
1 (z) ∼ 2i/πz for z → 0 (Abramowitz, Stegun, p. 360, No. 9.1.9) it follows that

DF(x) ≡ lim
m→0

�F(x)

= − 1

4π
δ(x2) + lim

m→0

(
Θ(x2)2im

8π2mx2
+ Θ(−x2)2imi

8π2imx2

)

= − 1

4π
δ(x2) + i

4π2

1

x2

= i

4π2

1

x2 − iε
. (27)

Up to a constant factor this agrees with the photon propagator, which will be discussed
in Sect. 3.2.

Let us return to the Feynman propagator of the Dirac equation SF(x) which is
related to �F(x) by (1)

SF(x) = (iγ · ∂ + m)�F(x) = m�F(x) + iγ · ∂�F(x) , (28)

where the first term tacitly contains the unit matrix in spinor space. Often it is sufficient
to work with this representation of the propagator. For completeness, however, we will
derive the explicit form of SF(x) which calls for an evaluation of the derivative of
�F(x) given in (26). We proceed by employing the following identities:

∂μΘ(x2) = 2xμδ(x2) = −∂μΘ(−x2) , (29)

∂μ(x2)1/2 = xμ(x2)−1/2 ,

∂μ(x2)−1/2 = −xμ(x2)−3/2 , (30)

and also (Abramowitz, Stegun, p. 361, No. 9.1.27)

d

dz
H

(2)
1 (z) = 1

2

(
H

(2)
0 (z) − H

(2)
2 (z)

)
. (31)
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The last term in (28) has the form

iγ · ∂�F(x) = −i
1

4π
γ · ∂δ(x2) + m

8π
iγ · ∂

[
Θ(x2)√

x2
H

(2)
1

(
m
√

x2
)

+ iΘ(−x2)√−x2
H

(2)
1

(
−im

√
−x2

)]
. (32)

We evaluate the derivative of the term in square brackets by using (29)–(31) and obtain

m

8π
iγ μxμ

{
2

δ(x2)

(x2)1/2
H

(2)
1

(
m
√

x2
)

− Θ(x2)

(x2)3/2
H

(2)
1

(
m
√

x2
)

+ mΘ(x2)

2x2

[
H

(2)
0

(
m
√

x2
)

− H
(2)
2

(
m
√

x2
)]

− 2i
δ(x2)

(−x2)1/2
H

(2)
1

(
−im

√
−x2

)
+ iΘ(−x2)

(−x2)3/2
H

(2)
1

(
−im

√
−x2

)

+ mΘ(−x2)

2x2

[
H

(2)
0

(
−im

√
−x2

)
− H

(2)
2

(
−im

√
−x2

)] }
. (33)

The two factors that are multiplied by δ(x2) can be combined. Then we have

lim
|x2|→0

⎡
⎣H

(2)
1

(
m
√|x2|

)
√|x2| − i

H
(2)
1

(
−im

√|x2|
)

√|x2|

⎤
⎦

= lim
|x2|→0

⎡
⎢⎣ i

π

2

m
(√|x2|

)2
− i

π

2i

(−im)
(√|x2|

)2

⎤
⎥⎦

= lim
|x2|→0

[
4i

πm

1

|x2|
]

, (34)

where we have used the asymptotic expansion of the Hankel functions for small argu-
ments

H(2)
ν (z) ∼ i

π
Γ (ν)

(
2

z

)ν

, ν > 0 . (35)

Thus the explicit expression for the Feynman propagator in coordinate space reads

SFαβ (x) = mδαβ�F(x) − i

4π
γ

μ
αβ∂μδ(x2) − 1

π2
γ

μ
αβ xμ

δ(x2)

|x2|
+ im

8π
γ

μ
αβ xμ

{
Θ(x2)

[
− 1

(x2)3/2
H

(2)
1

(
m
√

x2
)

+ m

2x2

(
H

(2)
0

(
m
√

x2
)

− H
(2)
2

(
m
√

x2
))]

+ iΘ(−x2)

[
1

(−x2)(3/2)
H

(2)
1

(
−im

√
−x2

)

− i
m

2x2

(
H

(2)
0

(
−im

√
−x2

)
− H

(2)
2

(
−im

√
−x2

))]}
, (36)
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where �F(x) is given by (26). We emphasize that propagators like �F(x) and SF(x),
looked upon mathematically are distributions, that is, they only make sense in integrals
when multiplied with suitable “well-behaved” test functions.

Asymptotic Behaviour.
1) x2 small: �F(x) and – even more so – SF(x) exhibit several kinds of singularities

on the light cone x2 → 0. A study of the asymptotic behaviour of the scalar Feynman
propagator, (26), leads to

�F(x) ≈ − 1

4π
δ(x2) + i

4π2

1

x2
− im2

8π2
ln

(
m
√|x2|

2

)
+ m2

16π
Θ(x2) . (37)

The leading singularity is contained in the first two terms, namely

�F(x) ≈ i

4π2

1

x2 − iε
+ O(m2) . (38)

Note that this result agrees with the massless propagator �F(x) given in (27). This
coincidence is quite reasonable since the singularity at x2 → 0 in momentum space
is related to the divergence of integrals at p → ∞. In this region the mass can be
neglected. The singular nature of the propagators is the cause of great concern when
integrals involving the product of several propagators have to be evaluated. In gen-
eral the “collision” of singularities will render the integral divergent. The elaborate
formalism of renormalization theory is required to extract meaningful results from
these infinite quantities, see Chap. 5. These calculations, however, are more easily
performed using momentum space propagators �F(p).

2) x2 large: The Hankel function behaves for large arguments |z| as

H(2)
ν (z) ∼

√
2

πz
exp

[
−i

(
z − πν

2
− 1

4
π

)]
for |z| → ∞ . (39)

Applying this relation to (26) we deduce the following asymptotic behaviour of the
scalar Feynman propagator

�F(x) → const.
(
x2

)− 3
4

exp
(
−im

√
x2

)
for x2 → ∞ , (40a)

�F(x) → const. |x2|− 3
4 exp

(
−m

√
|x2|

)
for x2 → −∞ . (40b)

Thus for large timelike distances (x2 → +∞) the propagator is an oscillating function
slowly decreasing in amplitude owing to the power-law factor. On the other hand, for
large spacelike distances (x2 → −∞) the propagator rapidly falls to zero according to
the exponential function in (40b). The scale is set by the inverse mass of the particle,
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Fig. 2.18. The propagators
�F(x) and SF(x) are oscillat-
ing functions inside the light
cone and fall off outside the
light cone. On the light cone
they are singular distributions

i.e. by its Compton wavelength. These conclusions remain valid also for the spin-1/2
Feynman propagator SF(x) given in (36).

Figure 2.18 illustrates the qualitative behaviour of the propagators. This result can
be understood quite easily if one thinks of the propagation of a wave Ψ (x) → Ψ (x′) in
terms of Huygens’ principle. Classically, from each point x elementary waves emanate
which can propagate with velocities up to the velocity of light, i.e. inside the forward
light cone (x′ − x)2 ≥ 0. The fact that the propagator is nonzero (albeit rapidly de-
creasing) also in the region of spacelike distances is a quantum mechanical tunnelling
phenomenon caused by the difficulty to localize a particle on a scale smaller than its
Compton wavelength. This apparent violation of causality vanishes in the classical
limit m → ∞ (or, formally, � → 0).



Quantum-Electrodynamical Processes 3

In this chapter we will gain some practical abilities in calculating various interesting
quantum-electrodynamical processes that are of great importance. Thus the follow-
ing chapter consists mainly of examples and problems. First, we start by applying the
propagator formalism to problems related to electron–positron scattering. We shall
proceed by considering more complicated processes including photons and other par-
ticles. As in the original publications of Feynman1 we shall derive general rules for
the practical calculation of transition probabilities and cross sections of any process
involving electrons, positrons, and photons. These rules, although derived in a non-
rigorous fashion, provide a correct and complete description of QED processes. The
same set of “Feynman rules” results from a systematic treatment within the framework
of quantum field theory.

3.1 Coulomb Scattering of Electrons

We calculate the Rutherford scattering of an electron at a fixed Coulomb potential. The
appropriate S-matrix element is given by (2.41a) and (2.42) and can be used directly.
For f �= i and renaming the integration variable y → x one gets

Sf i = −ie
∫

d4x ψ̄f (x)/A(x)Ψi(x) (f �= i) . (3.1)

Here e < 0 is the charge of the electron. In order to discuss (3.1) in an approximation
that is solvable in practice we calculate the process in lowest order of perturbation
theory. Then Ψi(x) is approximated by the incoming plane wave ψi(x) of an electron
with momentum pi and spin si :

ψi(x) =
√

m0

EiV
u(pi, si)e

−ipi ·x . (3.2)

V denotes the normalization volume, i.e. ψi is normalized to probability 1 in a box
with volume V . Similarly ψ̄f (x) is given by

ψ̄f (x) =
√

m0

Ef V
ū(pf , sf ) eipf ·x . (3.3)

1 R.P. Feynman: Phys. Rev. 76, 749 and 769 (1949).

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 3.1. Scattering of an elec-
tron at an external potential
(×) to lowest order

The Coulomb potential A0(x) is generated by a static point charge −Ze; thus we have

A0(x) = A0(x) = −Ze

|x| , A(x) = 0 . (3.4)

This scattering process is described by the graph of Fig. 3.1. With these assumptions
the S-matrix element (3.1) reads

Sf i = iZe2 1

V

√
m2

0

EfEi

ū(pf , sf ) γ
0 u(pi, si)

∫
d4x ei(pf −pi)·x 1

|x| . (3.5)

The integral over the time coordinate can be separated yielding

∞∫

−∞
dx0 ei(Ef −Ei)x0 = 2π δ(Ef −Ei) . (3.6)

This result expresses the fact that energy is conserved for the scattering in a time-
independent potential. The remaining three-dimensional Fourier transform of the
Coulomb potential (3.4)

A0(q) = −Ze

∫
d3x

1

|x| e−iq·x ,

with the momentum transfer q = pf − pi , can easily be solved with the help of the
following trick based on partial integration:
∫

d3x
1

|x| e−iq·x = − 1

q2

∫
d3x

1

|x| � e−iq·x

= − 1

q2

∫
d3x

(
�

1

|x|
)

e−iq·x

= − 1

q2

∫
d3x (−4πδ3(x )) e−iq·x = 4π

q2
. (3.7)

Thus the S-matrix element (3.5) follows:

Sf i = iZe2 1

V

√
m2

0

EfEi

ū(pf , sf ) γ
0 u(pi, si)

4π

q2
2πδ(Ef −Ei) . (3.8)

Now we need the number of final states dNf within the range of momentum d3pf . It
is given by

dNf = V
d3pf

(2π)3
. (3.9)

This can be understood by considering the following inset.

Standing waves in a cubical box of volume V = L3 (Fig. 3.2) require

kxL = nx 2π ,
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kyL = ny 2π ,

kzL = nz 2π ,

with integer numbers nx , ny , nz. For large L the discrete set of k values approaches

Fig. 3.2. Wave functions are
normalized within a cubic box
of side length L

a continuum. The number of states is

dN = dnxdnydnz

= 1

(2π)3
L3 dkxdkydkz

= V

(2π)3
d3k = V

(2π)3
d3p

(� set to 1).

At this point we can already state the transition probability per particle into these
final states which is obtained by multiplying the squared S-matrix element by the
density of final states

dW = |Sf i |2 V d3pf

(2π)3

= Z2 (4πα)2 m2
0

EiV

|ū(pf , sf ) γ
0 u(pi, si)|2

|q|4
d3pf

(2π)3Ef

(2πδ(Ef −Ei))
2 .

(3.10)

Here we have set e2 = e2/�c = α, α � 1/137 being the fine-structure constant. In
Sect. 4.2 the system of units we employ will be discussed in more detail.

In (3.10) the square of the δ function enters. This is a mathematically not well
defined divergent quantity and has to be specified by a limiting procedure. Instead of
(3.6) which refers to an infinite time interval −∞ ≤ t ≤ ∞ we now assume that the
transition takes place only within a finite time interval −T

2 ≤ t ≤ T
2 . Then, instead of

a δ function we get a function that is ‘smeared out’ in energy:

2πδ(Ef −Ei) =⇒
T/2∫

−T/2

dt ei(Ef −Ei)t

= 1

i(Ef −Ei)
ei(Ef −Ei)t

∣∣∣∣
T/2

−T/2
= 2 sin(Ef −Ei)T /2

Ef −Ei

.

(3.11)

Thus the square of the δ function is replaced by

(2πδ(Ef −Ei))
2 =⇒ 4

sin2(Ef −Ei)T /2

(Ef −Ei)2
. (3.12)

In Exercise 3.1 we show that the area under this function is

∞∫

−∞
dEf 4

sin2(Ef −Ei)T /2

(Ef −Ei)2
= 2πT . (3.13)



80 3. Quantum-Electrodynamical Processes

This result can be understood by inspecting the graph of the function 4 sin2(xT /2)/x2

(see Fig. 3.3). The area can be approximated by a triangle with height T 2 and length

Fig. 3.3. The function under
the integral of (3.13)

of the basis 4π/T :

∞∫

−∞
dx 4

sin2(x T /2)

x2
� 1

2
T 2 4π

T
= 2πT , (3.14)

which incidentally gives the exact result. For increasing T the shape of the function
4 sin2(xT /2)/x2 approaches a δ function, the area under the function having the value
2πT . Therefore we may give meaning to the square of the energy-preserving δ func-
tion:

(2πδ(Ef −Ei))
2 = 2πδ(0)2πδ(Ef −Ei)

!= 2π T δ(Ef −Ei) . (3.15a)

This identification ensures that the integration over dEf yields 2πT according to
(3.13), and we are led to the following rule of replacement

2πδ(0) ⇒ T . (3.15b)

This result can be made plausible by another approach. It is

2πδ(Ef −Ei) = lim
T→∞

T/2∫

−T/2

dt ei(Ef −Ei)t .

For Ef = Ei it follows that

2πδ(0) = lim
T→∞

T/2∫

−T/2

dt = lim
T→∞T . (3.16)

Inserting (3.15) into the expression for the transition probabilities per particle (3.10),
we can now state the transition probabilities per particle and per unit of time with
final states within the momentum range d3pf .

We denote this rate dR,

dR = dW

T
= 4Z2α2m2

0

EiV

|ū(pf , sf ) γ
0 u(pi, si)|2

|q|4
d3pf

Ef

δ(Ef −Ei) . (3.17)

The scattering cross section can be defined as the transition probability per particle
and per unit of time divided by the incoming current of particles

J a
inc. = c ψ̄i(x)γ

aψi(x) . (3.18)

The upper index ‘a’ determines the component of the current vector in the direction of
the velocity of the incoming particles

vi = pi

Ei

. (3.19)
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Taking the spinors (3.2) with spin polarization in the direction of the z axis and using
(6.30) from RQM we can determine the current:

J a
inc. = c ψ̄i(x)γ

aψi(x) = c
m0c

2

EiV
ū(pi, si) γ

3 u(pi, si)

= c
m0c

2

EiV

(Ei +m0c
2)

2m0c2

(
1 0 pic

Ei+m0c
2 0
)
γ 0 γ 3

⎛
⎜⎜⎝

1
0
pic

Ei+m0c
2

0

⎞
⎟⎟⎠

= c
m0c

2

EiV

(Ei +m0c
2)

2m0c2

(
1 0 pic

Ei+m0c
2 0
) ( 0 σ3

σ3 0

)
⎛
⎜⎜⎝

1
0
pic

Ei+m0c
2

0

⎞
⎟⎟⎠

= c
m0c

2

EiV

(Ei +m0c
2)

2m0c2

(
1 0 pic

Ei+m0c
2 0
)
⎛
⎜⎜⎝

pic

Ei+m0c
2

0
1
0

⎞
⎟⎟⎠

= pic
2

Ei

1

V
. (3.20)

(3.20) is just the ratio of velocity and volume (remember we put c = 1, therefore
Ei = mc2 ⇒ m)

|J inc.| = |vi |
V

. (3.21)

Performing the calculation in (3.20) we assumed without restriction of generality the
direction of velocity to be parallel to the z axis. Further we used the relation γ 0γ 3 =
α3 =

(
0 σ 3

σ 3 0

)
. The result (3.21) is plausible and could have been written down

without any calculation. It can also be derived in a simple way for velocities whose
direction is not parallel to the z axis. In this case one has to take the more general
spinors ((6.32) in RQM). The differential cross section dσ can now be determined
with the help of (3.21) and (3.17)

dσ = dR

Jinc.
= 4Z2α2m2

0

EiV
|vi |
V

|ū(pf , sf ) γ
0 u(pi, si)|2

|q|4
p2
f d|pf |
Ef

dΩf δ(Ef −Ei) .

(3.22)

The differential cross section per unit solid angle dΩf of the scattered particle follows:

dσ

dΩf

=
∫
�pf

4Z2α2m2
0

Ei |vi |
|ū(pf , sf ) γ

0 u(pi, si)|2
|q|4

p2
f d|pf |
Ef

δ(Ef −Ei) . (3.23)

Here the momentum space volume element d3pf = p2
f d|pf |dΩf was used. We in-

troduced the integral since in every practical case one has to integrate over a small
interval �pf (uncertainty of measurement). The integration has the effect that the
apparently singular behaviour arising from the δ(Ef − Ei) function (being infinitely
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large for Ei = Ef ) vanishes. Because

E2
f = p2

f +m2
0

we get

Ef dEf = |pf |d|pf |

and thus

dσ

dΩf

= 4Z2α2m2
0

|q|4 |ū(pf , sf ) γ
0 u(pi, si)|2

∫

�pf

|pf |Ef δ(Ef −Ei)

Ei |vi |Ef

dEf

= 4Z2α2m2
0

|q|4 |ū(pf , sf ) γ
0 u(pi, si)|2 . (3.24)

Here we used the relation |pf |/Ei |vi | = |pi |/Ei |vi | = |vi |/|vi | = 1 resulting from
(3.19) and the δ function. In the nonrelativistic limit it holds that

|ū(pf , sf ) γ
0 u(pi, si)|2 →

∣∣∣∣
(
1 0

)(1 0
0 1

)(
1
0

)∣∣∣∣
2

= 1 ,

and (3.24) reduces to the well-known Rutherford scattering cross section.
The differential cross section (3.24) can in principle be applied to calculate the scat-

tering of a particle from the initial polarization (si ) to the final (sf ). This will be treated
in Sect. 3.5. However, in most experiments neither the polarization sf of the scattered
particle nor the initial polarization si is measured. Therefore the various possible ini-
tial polarization states have the same probability. That is, the actually measured cross
section is given by summing the cross section (3.24) over the final polarizations sf and
then averaging over the initial polarizations si . Thus the unpolarized scattering cross
section reads

dσ̄

dΩ
= 4Z2α2m2

0

|q|4
1

2

∑
sf ,si

|ū(pf , sf ) γ
0 u(pi, si)|2 . (3.25)

The problem of calculating polarization sums of this kind is very frequently encoun-
tered when dealing with processes involving Dirac particles. Fortunately an elegant
mathematical technique has been developed which avoids the explicit handling of the
unit spinors u(p, s). The double sum over the polarizations (spins) can be rewritten as

∑
sf ,si

ūα(pf , sf ) γ
0
αβ uβ(pi, si) u

†
λ(pi, si) γ

0†
λδ γ

0†
δσ uσ (pf , sf )

=
∑
sf ,si

ūα(pf , sf ) γ
0
αβ uβ(pi, si) ūδ(pi, si) γ

0
δσ uσ (pf , sf ) , (3.26)

using the Hermiticity γ 0† = γ 0. Here the summation over doubly occurring Dirac
indices is implied. For an arbitrary operator Γ̂ we have the general rule

|ū(f ) Γ̂ u(i)|2 = (ū(f ) Γ̂ u(i)
) (

ū(i) ˆ̄Γ u(f )
)
, (3.27)
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with the “barred” operator

ˆ̄Γ = γ 0Γ̂ †γ 0 . (3.28)

This can be easily shown:

(
ūα(f ) Γ̂αβ uβ(i)

) (
u†
γ (i) Γ̂

†
γ δ γ

0†
δτ uτ (f )

)

= (ūα(f ) Γ̂αβ uβ(i)
) (

u†
γ (i) γ

0
γ ε γ

0
εμΓ̂

†
μδ γ

0†
δτ uτ (f )

)

= (ū(f ) Γ̂ u(i)
) (

ū(i) ˆ̄Γ u(f )
)
.

Here we used γ 0† = γ 0, (γ 0)2 = 1, and, further, the identity of the conjugate com-
plex and the Hermitian conjugate of the number (matrix element)

(
ū(f ) Γ̂ u(i)

)∗ =(
ū(f ) Γ̂ u(i)

)†. The barred matrices ˆ̄Γ can be directly calculated for a number of

operators Γ̂ , for instance

γ̄ μ = γ 0γ μ†γ 0 = γ μ (3.29a)

because γ 0γ 0†γ 0 = γ 0γ 0γ 0 = γ 0 and γ 0γ i†γ 0 = −γ 0γ iγ 0 = γ iγ 0γ 0 = γ i , since
γ 0 is Hermitian and γ i is anti-Hermitian. For the γ 5 matrix we find

iγ 5 = iγ 5 , (3.29b)

because

iγ 5 = −γ 0γ 1γ 2γ 3

and

iγ 5 = −γ 0γ 3†γ 2†γ 1†γ 0†γ 0 = +γ 0γ 3γ 2γ 1 = −γ 0γ 1γ 2γ 3 = iγ 5 .

In a similar way we get

γ μγ 5 = γ μγ 5 (3.29c)

and from (3.29a)

/a /b /c · · · /p = /p · · ·/c /b /a . (3.29d)

In order to calculate the sum over spins in expressions like (3.26) or (3.27) in a direct
and simple way we have to learn some new calculational techniques. These sums can
be reduced to calculating traces.2 Here we use the energy projection operators (see
RQM , Chap. 7)

Λ̂± = ± /p +m0

2m0
or Λ̂r = εr /p +m0

2m0
. (3.30)

2 This elegant technique was introduced in H.B.G. Casimir, Helv. Phys. Acta 6, 287 (1933).
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As an example we calculate

∑
si

uβ(pi, si) ūδ(pi, si) =
4∑

γ,r=1

εr ω
r
β(pi ) ω̄

r
γ (pi )

(
/pi +m0

2m0

)
γ δ

=
(

/pi +m0

2m0

)
βδ

=
(
Λ̂+(pi)

)
βδ

. (3.31)

We have used here the relation (cf. RQM , (6.33))

ω̄r ( /p − εrm0) = 0 (3.32a)

to extend the range of summation to r = 1, . . . ,4. Subsequently we used

4∑
r=1

εr ω
r
β(pi ) ω̄

r
γ (pi ) = δβγ . (3.32b)

The last expression is the completeness relation (RQM , (6.41)). Similarly we calculate
the spin sum in (3.26). We write explicitly

∑
α,σ,β,δ

∑
sf

ūα(pf , sf ) γ
0
αβ

(∑
si

uβ(pi, si) ūδ(pi, si)

)

︸ ︷︷ ︸(
/pi+m0
2m0

)
βδ

because of (3.31)

γ 0
δσ uσ (pf , sf )

=
∑
α,σ

∑
sf

ūα(pf , sf )

(
γ 0 /pi +m0

2m0
γ 0
)
ασ

uσ (pf , sf )

=
∑
α,σ

2∑
r=1

ω̄r
α(pf )

(
γ 0 /pi +m0

2m0
γ 0
)
ασ

ωr
σ (pf )

=
∑
α,σ,τ

4∑
r=1

εr ω̄
r
α(pf )

(
γ 0 /pi +m0

2m0
γ 0
)
ασ

(
/pf +m0

2m0

)
στ

ωr
τ (pf )

=
∑
α,σ

(
γ 0 /pi +m0

2m0
γ 0
)
ασ

(
/pf +m0

2m0

)
σα

= Tr

[
γ 0 /pi +m0

2m0
γ 0 /pf +m0

2m0

]
. (3.33a)

In the last line but two we used the relation (cf. RQM , (6.33))

( /p − εrm0)ω
r(p) = 0 . (3.32c)

The reasoning leading to (3.33a) equally applies to the spin summation of the general
squared matrix element (3.27). The result is

∑
sf si

|ū(pf , sf ) Γ̂ u(pi, si)|2 = Tr

[
Γ̂

/pi +m0

2m0

ˆ̄Γ /pf +m0

2m0

]
, (3.33b)
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where the barred operator ˆ̄Γ has been introduced in (3.28). Using this result the un-
polarized differential cross section (3.25) can be elegantly written as

dσ̄

dΩf

= 4Z2α2m2
0

2|q|4 Tr

[
γ 0 /pi +m0

2m0
γ 0 /pf +m0

2m0

]
. (3.34)

To proceed in the calculation we now use several relations that will be discussed in
Mathematical Supplement 3.3. Since the trace of an odd number of γ matrices van-
ishes (Theorem 1, Mathematical Supplement 3.3), (3.34) can be reduced to

dσ̄

dΩf

= Z2α2

2|q|4
[
Tr(γ 0 /piγ

0 /pf )+m2
0 Tr
(
γ 0)2] . (3.35)

With Tr (γ 0)2 = Tr 1 = 4 and Tr(γ 0 /piγ
0 /pf ) = Tr(/a /pi /a /pf ) for a = (1,0,0,0) and

furthermore using Theorem 3, Mathematical Supplement 3.3,

Tr(γ 0 /piγ
0 /pf ) = a · pi Tr /a /pf − a · a Tr /pi /pf + a · pf Tr /pi /a .

Using Tr /a /b = 4a · b (Theorem 2, Mathematical Supplement 3.3) we get

Tr(γ 0 /piγ
0 /pf ) = 4 (a · pi)(a · pf )− (a · a)4 (pi · pf )+ 4 (a · pf )(a · pi)

= 4EiEf − 4 (EiEf − pi · pf )+ 4EiEf

= 8EiEf − 4pi · pf = 4EiEf + 4pi · pf . (3.36)

The δ(Ei − Ef ) function in (3.23) ensures energy conservation Ei = Ef and thus
E2

i = E2
f , yielding

m2
0 + p2

i = m2
0 + p2

f or |pi | = |pf | = |p| .

As a function of the scattering angle θ we can write for the scalar product of initial
and final momentum

pi · pf = |p|2 cos θ = |p|2
(

cos2 θ

2
− sin2 θ

2

)
= |p|2

(
1 − 2 sin2 θ

2

)

= β2 E2
(

1 − 2 sin2 θ

2

)
, (3.37)

with |p| = |v|E = βE.
Taking this result and the momentum transfer (see Fig. 3.4)

|q| = |pf − pi | = 2 |p| sin
θ

2
, (3.38)

the differential cross section (3.35) can be written in the form
Fig. 3.4. Sketch of the momen-
tum transfer q

dσ̄

dΩf

= Z2α2

2(q2)2

[
8EiEf − 4pi · pf + 4m2

0

]

= Z2α2

2 × 16|p|4 sin4 θ
2

[
8EiEf − 4pi · pf + 4m2

0

]
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= Z2α2

32|p|4 sin4 θ
2

[
4EiEf + 4pi · pf + 4m2

0

]

= Z2α2

8|p|4 sin4 θ
2

[
E2 + |p|2

(
1 − 2 sin2 θ

2

)
+m2

0

]

= Z2α2
[
E2 − β2E2 sin2 θ

2

]
4β4E4 sin4 θ

2

= Z2α2
(
1 − β2 sin2 θ

2

)
4β4E2 sin4 θ

2

= Z2α2
(
1 − β2 sin2 θ

2

)
4β2|p|2 sin4 θ

2

. (3.39)

Here we used β2E2 = m2c2v2 = c2|p|2 with β = v/c, yielding β2E2 = |p|2 for
c = 1. Equation (3.39) is just the well-known Mott scattering formula, which reduces
to Rutherford’s scattering formula in the limit β → 0 (small velocities)

dσ̄

dΩf

= Z2α2

4β2|p|2 sin4 θ
2

. (3.40)

In addition to the correct treatment of the relativistic kinematics, (3.39) differs from
the Rutherford formula for another reason: the Dirac electron has a magnetic moment
interacting with the magnetic field of the scattering center (viewed in the rest frame of
the electron!). For small velocities this effect is negligible.

EXERCISE

3.1 Calculation of a Useful Integral

Problem. Show that

I =
∞∫

−∞
dEf

4 sin2(Ef −Ei)T /2

(Ef −Ei)2
= 2πT .

Solution. In a first step we introduce the variable x := (Ef −Ei)
T
2 ; then

I =
∞∫

−∞
dx 4

sin2 x

4
T 2 x

2

2

T
= 2T

∞∫

−∞
dx

sin2 x

x2
. (1)

Since sin2 x/x2
∣∣
x=0 = 1, the integrand is continuous and bounded everywhere. By

partial integration this expression can be simplified to

I = 2T

[
− sin2 x

1

x

]∞
−∞

+ 2T

∞∫

−∞
dx

2 sinx cosx

x

= 2T

∞∫

−∞
dx

sin 2x

x
= 2T

∞∫

−∞
dy

siny

y
. (2)
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Fig. 3.5. Integration contours
in the complex plane

This is the so-called ‘Dirichlet integral’. It can be easily calculated using the residue
theorem. The function siny/y with the extension siny/y|y=0 = 1 is holomorphic in
the finite plane. The integral I does not change its value if the path of integration is
deformed near the origin to the contour C (dashed line in Fig. 3.5). It follows that

I = 2T

⎛
⎝
∫

C

dz
eiz

2iz
−
∫

C

dz
e−iz

2iz

⎞
⎠ . (3)

The first integral can be performed by closing the path of integration in the upper half
plane, the second in the lower half plane:

I = 2T

⎛
⎜⎝
∫

C1

eiz

2iz
dz −

∫

C2

e−iz

2iz
dz

⎞
⎟⎠ . (4)

The residue theorem states that

I = 2T 2π i

(
e0i

2i
− 0

)
= 2π T . (5)

EXERCISE

3.2 Lorentz Transformation of Plane Waves

Problem. The plane waves in box normalization are given by

ψ(x) =
√

m0

EV
u(p, s) e−ip·x ,

ψ̄(x) =
√

m0

EV
ū(p, s) eip·x . (1)
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V is the normalization volume and

u(p, s) =
√

E +m0

2m0

(
χs

σ ·p
E+m0

χs

)
,

χ1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
. (2)

Show that ψ(x) has the right properties under Lorentz transformations, i.e. that the
bilinear quantity ψ̄(x)ψ(x) is a Lorentz scalar and ψ†(x)ψ(x) is the time component
of a four-vector.

Solution. The action of a Lorentz transformation on the box volume V has to be
taken into account. The length contraction is a simple kinematical consequence of the
Lorentz transformation yielding a modification of the observed volume.

First a measuring unit in the rest frame S′ of the electron is given with end points
on the z axis z′

1 and z′
2; the length of the unit is l0 = z′

2 − z′
1. An observer in frame S

measures its length at time t . Without restriction of generality we choose the z axis
in the S frame, moving with the velocity −v with respect to S′, to coincide with the
z′ axis.

With γ = (1 − v2)−1/2 it follows that

z′
2 = γ (z2 − vt) , (3a)

z′
1 = γ (z1 − vt) , (3b)

and thus

l0 = z′
2 − z′

1 = γ (z2 − z1) = γ l , (4)

which gives the length l measured in the observer’s frame S,

l = 1

γ
l0 (5)

(length contraction). The invariant volume V0 as ‘seen’ by an electron in its rest frame
changes to

V = 1

γ
V0 (6)

in the observer’s frame depending on the relative velocity of observer and electron.
The coordinate x of the wave function (1) refers to a specific choice of the origin

– here given by the observer’s position. The normalization volume as seen by the
observer

V =
∫

d3x , (7)

thus depends on the velocity of the electron. However,

V0 = V γ (8)

is independent of the velocity, and thus it is invariant.
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Using (1) and (2) we get for the scalar density

ψ̄(x)ψ(x) = E +m0

2EV

[
χ†
s χs − χ†

s

(σ · p)† (σ · p)

(E +m0)2
χs

]
. (9)

We write explicitly

(σ · p)† (σ · p) =
(

p3 p1 − ip2

p1 + ip2 −p3

)†(
p3 p1 − ip2

p1 + ip2 −p3

)

=
(
p2

3 + p2
1 + p2

2 0
0 p2

1 + p2
2 + p2

3

)
= p2 1 , (10)

which can be used to simplify (9) to the result

ψ̄(x)ψ(x) = E +m0

2EV

[
1 − p2

(E +m0)2

]

= 1

2EV

E2 + 2Em0 +m2
0 −E2 +m2

0

E +m0

= 2m0 (E +m0)

2EV (E +m0)
= m0

E

1

V
. (11)

Since E/m0 is just the Lorentz factor γ we find

ψ̄(x)ψ(x) = 1

γV
= 1

V0
, (12)

which is a Lorentz-invariant expression. On the other hand the 0 component of the
4-current density is

ψ†(x) ψ(x) = E +m0

2EV

[
χ†
s χs + χ†

s

(σ · p)† (σ · p)

(E +m0)2
χs

]

= E +m0

2EV

[
1 + p2

(E +m0)2

]

= 1

2EV

E2 + 2Em0 +m2
0 +E2 −m2

0

E +m0

= 2E (E +m0)

2EV (E +m0)
= 1

V
= γ

V0
. (13)

Since γ is the time component of the four-velocity, the transformation properties of
the result are obvious.

MATHEMATICAL SUPPLEMENT

3.3 Traces and Identities Involving γ Matrices

When calculating Feynman diagrams and the resulting physically measurable cross
sections, one is confronted with the task of evaluating traces of special combinations



90

Mathematical Supplement 3.3

3. Quantum-Electrodynamical Processes

of γ matrices. In Sect. 3.1 the importance of calculating traces has already been dis-
cussed, and this will be a recurring theme also in the following examples. Very useful
techniques have been developed to simplify these calculations. It is not necessary to
use the explicit form of the γ matrices; usually it is sufficient to exploit the commuta-
tor algebra of the γ matrices. We collect these properties in several theorems.

Theorem 1. The trace of an odd number of γ matrices vanishes.

Proof. We make use of the matrix γ5 which anticommutes with all other γ matrices
and satisfies γ5γ5 = 1. For arbitrary four-vectors a1, . . . , an we have

Tr /a1 · · · /an = Tr /a1 · · · /an γ5γ5 = Tr γ5 /a1 · · · /an γ5

because of the cyclic permutation within a trace, i.e. Tr AB = Tr BA. We use the
relation γμγ5 + γ5γμ = 0 and commute the first γ5 to the right. This yields n minus
signs, and thus we get

Tr /a1 · · · /an = (−1)n Tr /a1 · · · /anγ5γ5

= (−1)n Tr /a1 · · · /an .

Obviously the trace vanishes for odd n.

Theorem 2. Tr /a/b = 4a · b .

Proof.

Tr /a/b = Tr /b/a = 1
2 Tr (/a/b + /b/a)

= 1

2
Tr (γ μγ ν + γ νγ μ) aμbν

= aμbν Tr gμν1

= a · b Tr 1 = 4 a · b .

Theorem 3.

Tr /a1 · · · /an = a1 · a2 Tr /a3 · · · /an − a1 · a3 Tr /a2/a4 · · · /an + . . .

+ a1 · an Tr /a2 · · · /an−1 .

This theorem is very useful in calculating traces involving many γ matrices. A special
case is

Tr /a1/a2/a3/a4 = 4
(
a1 · a2 a3 · a4 − a1 · a3 a2 · a4 + a1 · a4 a2 · a3

)
.

Proof. By using /a1/a2 = − /a2/a1 + 2a1 · a21 we shift /a1 to the right-hand side of /a2,
that is

Tr /a1 · · · /an = 2a1 · a2 Tr /a3 · · · /an − Tr /a2 /a1 /a3 · · · /an .
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Repeating this procedure we get (remember that n must be even according to Theo-
rem 1)

Tr /a1 · · · /an = 2a1 · a2 Tr /a3 · · · /an − . . .+ 2a1 · an Tr /a2 · · · /an−1

− Tr /a2 · · · /an/a1 .

Finally we use the invariance of the trace under cyclic permutations to move /a1 back
to the left-hand side of the expression. This yields our theorem. In particular, we get

Tr /a1/a2 /a3/a4 = a1 · a2 Tr /a3/a4 − a1 · a3 Tr /a2/a4 + a1 · a4 Tr /a2/a3

= 4a1 · a2 a3 · a4 − 4a1 · a3 a2 · a4 + 4a1 · a4 a2 · a3 .

Here we have applied Theorem 2.

Theorem 4. Tr γ 5 = 0 .

Proof. In our representation the matrix

γ5 = γ 5 = iγ 0γ 1γ 2γ 3

has the explicit form

γ5 =
(

0 1
1 0

)
,

which is obviously traceless.
The same result can be derived from the algebra of the γ matrices without using

any special representation. With γ μγ 5 + γ 5γ μ = 0 and thus in particular γ 0γ 5 =
−γ 5γ 0 we get

Tr γ 5 = Tr γ 5 (γ 0)2 = − Tr γ 0 γ 5 γ 0

= − Tr γ 5 (γ 0)2 = − Tr γ 5 = 0 .

We again used the cyclic permutation of matrices in a trace.

Theorem 5. Tr γ 5 /a /b = 0.

Proof. We have to show that Tr(γ 5γ μγ ν) = 0. If the indices are equal, μ = ν, the
assertion follows from Theorem 4 since (γ μ)2 = gμμ1. In the case μ �= ν we choose
an index λ that differs from μ and from ν and proceed as follows

Trγ 5γμγν = Trγ 5γμγνγ
−1
λ γλ = Trγλγ

5γμγνγ
−1
λ

= (−1)3 Trγ 5γμγνγλγ
−1
λ

= −Trγ 5γμγν = 0 .

Theorem 6. Tr γ 5/a/b/c/d = −4i εαβγ δ aαbβcγ dδ .

Here ε is the completely antisymmetric unit tensor: εαβγ δ = +1 if (α,β, γ, δ) is an
even permutation of (0,1,2,3), εαβγ δ = −1 for an odd permutation, and εαβγ δ = 0 if
any two indices are identical.



92

Mathematical Supplement 3.3

3. Quantum-Electrodynamical Processes

Proof. We have to evaluate

Trγ 5/a /b /c /d = aαbβcγ dδ Trγ 5γ αγ βγ γ γ δ ,

where summation over all repeated indices is implied. Most of the 44 = 256 terms in
this sum do not contribute. Indeed, if any two of the indices α,β, γ, δ take on equal
values, the trace will vanish. Let, say, the first and third indices be equal. Using the
commutation relations the number of γ matrices under the trace can be reduced by
two:

Trγ 5γ αγ βγ αγ δ = Trγ 5γ α(−γ αγ β + 2gαβ1)γ δ

= Trγ 5(−γ αγ αγ β + 2γ αgαβ1)γ δ

= −gαα Trγ 5γ βγ δ + 2gαβ Trγ 5γ αγ δ

= 0

using Theorem 5.
Thus only indices (α,β, γ, δ) that are a permutation of the numbers (0,1,2,3) can

contribute. We only have to evaluate the trace

Trγ 5γ 0γ 1γ 2γ 3 =Trγ 5(−iγ 5) = −i Tr1

= − 4i = −4iε0123 .

Since the four γ μ matrices are mutually anticommuting, an odd permutation of the
indices (0,1,2,3) introduces an additional minus sign, which completes the proof of
the theorem.

Theorem 7. Tr /a1/a2 · · · /a2n = Tr /a2n · · · /a1 .

Proof. We take advantage of the matrix Ĉ = iγ 2γ 0, which was introduced in the dis-
cussion of charge conjugation – see RQM, Chap. 12.1. Ĉ has the property Ĉ γμ Ĉ−1 =
−γ T

μ . It follows that

Tr /a1/a2 · · · /a2n = Tr Ĉ /a1Ĉ
−1 Ĉ /a2 Ĉ

−1 · · · Ĉ /a2n Ĉ
−1

= (−1)2n Tr /aT1 /aT2 · · · /aT2n
= Tr [/a2n · · · /a1]T
= Tr /a2n · · · /a1 .

Theorem 8. The following useful identities hold for contracted products of γ matri-
ces:

a) γμγ
μ = 41 ,

b) γμ/aγ
μ = − 2/a ,

c) γμ/a/bγ
μ = 4a · b1 ,

d) γμ/a/b/cγ
μ = − 2/c/b/a ,

e) γμ/a/b/c/dγ
μ = 2/d/a/b/c + 2/c/b/a/d .
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Proof. These identities all follow from the anticommutation relations of the
γ -matrices.

a) γμγ
μ = 1

2
(γμγ

μ + γμγ
μ) = 1

2
2gμμ1 = 41 ,

b) γμ/aγ
μ = γμγ

νaνγ
μ = aνγμ(2g

μν1 − γ μγ ν)

= 2/a − 4/a = −2/a ,

c) γμ /a /bγ μ = γμγ
ν aν γ

λ bλγ
μ

= γμ /a 2gλμ bλ − γμ /a γ μ/b = 2/b/a + 2/a/b

= 4a · b1 − 2/a/b + 2/a/b = 4a · b1 ,

d) γμ /a /b /c γ μ = γμ /a /b 2gνμ cν − γμ /a /b γ μ /c

= 2/c /a /b − 4a · b /c
= 4/c a · b − 2/c /b /a − 4a · b /c
= − 2/c /b /a ,

e) γμ /a /b /c /d γ μ = γμ /a /b /c 2gνμ dν − γμ /a /b /c γ μ /d

= 2 /d /a /b /c + 2/c /b /a /d .

EXAMPLE

3.4 Coulomb Scattering of Positrons

In the discussion of electron scattering at a Coulomb potential we found that the scat-
tering matrix element depends quadratically on e. Therefore we expect the Coulomb
scattering of positrons to yield the same result in that order of e. This can be seen by
denoting the matrix element explicitly

Sf i = ie
∫

d4x ψ̄f (x) /A(x)Ψ
(−E)
i (x) . (1)

Here the overall sign is positive, because we scatter waves with negative frequency
(cf. (2.39) and (2.40)). The incoming state corresponds to the future and is treated
as an electron with negative energy and four–momentum −pf . This electron moves
backward in time. The scattering process is illustrated in Fig. 3.6. If as a lowest-order
approximation we insert a plane-wave solution, the corresponding wave function (in-
coming electron with negative energy) is

ψ
(electron)
i (−pf , −sf ) =

√
m0

Ef V
v(pf , sf ) e+ipf ·x . (2a)

Fig. 3.6. Scattering of a posi-
tron at an external potential
(×) to lowest order. The in-
coming positron with momen-
tum pi and spin si is described
by an outgoing electron with
negative energy, with momen-
tum −pi and spin −si . For the
outgoing positron the treatment
is analogous
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For the outgoing state we write equivalently (outgoing electron with negative energy)

ψ
(electron)
f (−pi, −si) =

√
m0

EiV
v(pi, si) e+ipi ·x . (2b)

Here we have adopted the language of electrons on the left-hand side and the language
of positrons on the right-hand side. An incoming electron with negative energy moving
backward in time corresponds to an outgoing positron with positive energy moving
forward in time (ψ (electron)

i (−pf , −sf ) ↔ v(pf , sf )). Similarly an outgoing electron
with negative energy moving backward in time corresponds to an incoming positron
with positive energy moving forward in time.

By using the spinors v(p, s) we have taken care of the fact that the spin of elec-
trons with negative energy is −s. Here s denotes the spin of the positron. This re-
definition, which we performed in RQM , Chap. 6, is now obvious. A positron is de-
scribed by an electron with negative energy, negative momentum, and negative spin
as demanded by the hole theory. The negative momentum is automatically included
in the spinors ωr(p) with r = 3,4, since these solutions belong to the plane waves
ψr(x) = ωr(p) exp (−iεrp · x). (For further information we refer to RQM , Chap. 6).
We always construct the appropriate graph in terms of electrons. By doing this we re-
tain the clarity of our calculations and attain a well-defined procedure to treat electrons
with positive and negative energies avoiding possible errors.

As a consequence of our considerations we arrive at a result that is completely
analogous to electron scattering:

Sf i = −iZe2 1

V

√
m2

0

EfEi

v̄(pi, si) γ
0 v(pf , sf )

∫
d4x ei(pf −pi)·x 1

|x| . (3)

Differences only occur regarding the total sign and the spinors v. We do not have to
repeat the steps leading to the cross section since they have already been presented for
the case of electron scattering. The unpolarized differential cross section follows as

dσ̄e+

dΩ
= 2Z2α2m2

0

|q|4
∑
sf ,si

|v̄(pi, si) γ
0 v(pf , sf ) |2 . (4)

Again the sums over the spins can be reduced to a trace. We rewrite

∑
si

vα(pi, si) v̄β(pi, si) =
4∑

r=1

εr ω
r
α(pi ) ω̄

r
γ (pi ) (−)

(− /pi +m0

2m0

)
γβ

. (5)

This follows from the Dirac equation for the adjoint spinor ω̄r(p)( /p − εrm0)= 0,
which for r = 1,2 gives

ω̄r (pi ) ( /pi −m0) = 0 , (6)

whereas for r = 3,4 we have

εr ω̄
r (pi )

(
/pi −m0

2m0

)
= ω̄r (pi) . (7)

We make use of the following closure relation:

4∑
r=1

εr ω
r
α(p) ω̄r

β(p) = δαβ (8)
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and derive from (5) and (8) the result

∑
si

vα(pi, si)v̄β(pi, si) = −δαγ

(− /pi +m0

2m0

)
γβ

=
(

/pi −m0

2m0

)
αβ

= (Λ−(pi)
)
αβ

. (9)

Thus we finally get the scattering cross section

dσ̄e+

dΩ
= Z2α2

2|q|4 Tr
[
γ 0 ( /pi −m0) γ

0 ( /pf −m0)
]

= Z2α2

2|q|4
(

Tr
[
γ 0 /pi γ

0 /pf

] + m2
0 Tr (γ 0)2

)
. (10)

This result is identical with the formula for electron scattering, (3.31), and thus yields
the same angular distribution. As is the case in the classical theory the cross section
for Coulomb scattering is independent of the sign of the charge.

Yet, if we take care of higher terms in the expansion of the S matrix, this statement
is no longer valid. The first-order (proportional to e(−Ze)) and second-order (propor-
tional to e2(−Ze)2) contributions to the transition amplitude have different signs for
electron and positron scattering, resulting in differing cross sections. The source of
this interference term, which gives a contribution to the cross section proportional to
e3(−Ze)3 is schematically illustrated in Fig. 3.7.

Fig. 3.7. The first-order and
second-order scattering am-
plitudes can interfere

Owing to the infinite range of the Coulomb interaction, a more complicated cal-
culation has to be done, since higher-order contributions to the S matrix diverge. Yet
a thorough analysis3 shows how to collect the divergent parts in a physically irrel-
evant phase factor, which drops out when squaring the S-matrix element. Instead of
using plane waves for describing the charged particle one can employ Coulomb waves
which include the distortion caused by the 1

r
potential. The asymptotic form of these

distorted waves is

e−ip·r+iη ln(pr−p·r) = e−ipr cos θ+iη ln(2pr sin2 θ/2) , (11)

where η = Zα/β . The calculation using Coulomb waves in principle is exact, i.e. it
is equivalent to summing up all orders of the perturbation series. However, no closed
analytical expression can be given for the scattering cross section.

In the nonrelativistic limit (β → 0) the exact cross section (in all orders) reduces
to Rutherford’s result again! It is interesting to study the next order of the expansion

3 R.H. Dalitz: Proc. Roy. Soc. A206, 509 (1951).
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Fig. 3.8. Differential cross
section (12) for the scattering
of electrons (left) and posi-
trons (right) off a nucleus
with charge Z = 40, normal-
ized to the Rutherford cross
section. The values of the
incident kinetic energies are
Ekin = 0.1, 0.5, 1, 10 MeV

in Zα. Without presenting the lengthy calculation we just quote the result4

dσ̄e∓

dΩf

= Z2α2

4|p|2β2

1

sin4 θ/2

[
1 − β2 sin2 θ

2
± πZαβ sin

θ

2

(
1 − sin

θ

2

)]
. (12)

The effect of the interference term can be seen immediately. It leads to an increase
of electron scattering at the positively charged nucleus (upper sign) and a decrease of
positron scattering. As expected the term contains the factor e(Ze)e2(Ze)2 = (Zα)3.
As an illustration of (12) Fig. 3.8 shows the differential cross section for scattering
of electrons (left) and positrons (right) divided by the Rutherford cross section. The
charge number is Z = 40, for still higher charges the truncation of the series expansion
in Zα becomes noticeable, i.e. (12) deviates considerably from the exact results.

3.2 Scattering of an Electron off a Free Proton: The Effect of Recoil

In contrast to Sect. 3.1, where the scattering center was assumed to be fixed, we now
consider electron scattering off a freely moveable nucleus. To be specific we choose
a proton as the target, i.e. a spin- 1

2 particle. In a first approximation this will be treated
as a structureless Dirac particle. One should expect a result different to the one derived
in Sect. 3.1, since now also recoil effects are present.

In order to solve this problem we proceed in two steps. Let us assume we know the
proton current Jμ(x). Then, with the help of the Maxwell equations we can determine

4 W.A. McKinley and H. Feshbach: Phys. Rev. 74, 1759 (1948); for a compact derivation see
M.K.F. Wong: Phys. Rev. D26, 927 (1982).
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the electromagnetic field Aμ(x) produced by the current. This field Aμ(x) can be
inserted into the S matrix (3.1)

Sf i = −ie
∫

d4x ψ̄f (x)/A(x)Ψi(x) . (3.41)

If we replace Ψi and ψf by the plane Dirac waves, (3.2), we have constructed the
scattering amplitude of the electron in the field produced by the proton to lowest order
of α. Analogously to Sect. 3.1 this result leads to the lowest-order transition amplitude
and cross section.

In the first step we calculate the four-potential Aμ(x) produced by the Dirac proton.
This is achieved by solving the inhomogeneous wave equation with the proton current
Jμ(x) as a source term,

�Aμ(x) = 4πJμ(x) (3.42a)

with the wave operator � = ∂μ∂
μ = ∂2/∂t2 − ∇2. One should keep in mind that

for this equation to be valid the Lorentz gauge ∂μA
μ(x) = 0 has to be chosen. As

we know from classical electrodynamics otherwise the differential operator would be
more complicated, namely

�Aμ(x)− ∂μ∂νA
ν(x) = 4πJμ(x) . (3.42b)

Since we are free to choose the most convenient gauge, the following calculations
will be based on (3.42a).5 The solution of this equation again can be most clearly
and systematically formulated by using the appropriate Green’s function (propagator)
which will be called DF(x − y). As in the electron case the photon propagator is
defined by the equation

�DF(x − y) = 4πδ4(x − y) . (3.43)

The Fourier-transformed propagator is defined by

DF(x − y) =
∫

d4q

(2π)4
exp
[−iq ·(x − y)

]
DF(q

2) . (3.44)

Using

δ4(x − y) =
∫

d4q

(2π)4
exp
[−iq ·(x − y)

]
(3.45)

we obviously get

DF(q
2) = −4π

q2
for q2 �= 0 . (3.46)

As in the fermionic case (cf. (2.9)–(2.19)) the pole of DF(q
2) at q2 = 0 has to be

treated carefully. As before we add an infinitesimally small positive imaginary number

5 Other gauges will be briefly discussed in Chap. 4.
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iε, i.e. we write6

DF(q
2) = − 4π

q2 + iε
. (3.47)

We may also say that we provide the photon with a small negative imaginary mass.
This prescription of treating the pole guarantees the causality principle. Photons with
positive frequency (i.e. positive energy) only can propagate forward in time. Contri-
butions to the Aμ field which have negative frequency move backward in time. Since
the photon (in contrast to the electron) carries no charge and “is its own antiparticle”
these two processes are physically identical. There is no need to speak of photons with
negative energy.

The causal behaviour of DF(q
2) (3.47) can be seen mathematically by substituting

(3.47) into (3.44). This yields

DF(x−y) = −4π
∫

d3q

(2π)3
exp
[+iq ·(x − y)

] ∫ dq0

(2π)

exp[−iq0(x0 − y0)]
q2

0 − q2 + iε
. (3.48)

The path of integration in the complex q0 plane (see Fig. 3.9) has to be closed in the
lower half plane for x0 > y0, which yields a contribution at

q0 = +|q| . (3.49a)

This result simply states that only waves with positive energy (q0 > 0) move into the
future (from y0 to x0). Similarly for y0 > x0 the pole at

q0 = −|q| (3.49b)

contributes to the photon propagator. This can be interpreted as a positive energy pho-
ton (−q0 > 0) moving from x0 to y0.

Fig. 3.9. Integration contour
in the complex q0 plane used
to evaluate the Feynman prop-
agator in the case x0 > y0

With the help of the Feynman propagator for photons,

DF(x − y) =
∫

d4q

(2π)4
exp
[−iq ·(x − y)

]( −4π

q2 + iε

)
, (3.50)

the four-potential Aμ(x) solving (3.42a) is

Aμ(x) =
∫

d4y DF(x − y)Jμ(y) . (3.51a)

Note that in more general gauges (3.51a) will be replaced by

Aμ(x) =
∫

d4y D
μν
F (x − y)Jν(y) . (3.51b)

In our case the tensor Dμν
F is just proportional to gμν so that the tensor indices can be

discarded for convenience, Dμν
F = gμν DF.

Using (3.51a) in lowest order the S-matrix element (3.41) is given by

Sf i = −i
∫

d4xd4y
[
eψ̄f (x)γμψi(x)

]
DF(x − y)Jμ(y) . (3.52)

6 The factor of 4π arises from our use of the Gaussian system of units. When ‘rationalized’ units are
used the numerator in (3.47) is replaced by 1, see Sect. 4.2.
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The term inside the brackets represents the current of the electron. It is a matrix el-
ement of the current operator between an initial and a final state and thus is called
a transition current.7 Up to now nothing is known about the proton’s current. How-
ever, since the electron and the proton play equivalent roles in the scattering process,
the proton’s current has to be of the same form as the electronic current. Therefore we
make the replacement

Jμ(y) → J
μ
f i(y) = epψ̄

p
f (y)γ

μψ
p
i (y) . (3.53)

ep = −e > 0 is the proton’s charge and ψ
p
f (y) and ψ

p
i (y) are the free final and initial

states (i.e. plane Dirac waves) of the proton. They have the same form as the electron
waves (3.2) and (3.3):

ψ
p
i (y) =

√
M0

E
p
i V

u(Pi, Si) exp (−iPi ·y) ,

ψ
p
f (y) =

√
M0

E
p
f V

u(Pf ,Sf ) exp
(−iPf ·y) . (3.54)

Here Pi and Pf denote the four–momentum of the proton, Si, Sf and E
p
i ,E

p
f denote

its spin and energy, respectively. M0 is the rest mass of the proton. Thus the proton’s
transition current can be written in the form

J
μ
f i(y) = −

√√√√ M2
0

E
p
f E

p
i

e

V
exp
[
i(Pf − Pi)·y

]
ū(Pf , Sf )γ

μu(Pi, Si) . (3.55)

Insertion of the transition current (3.53) or (3.55) into equation (3.41) defines the so-
called Møller potential8 of the Dirac proton.

Now we insert (3.55) and the analogous expression for the electronic current into
(3.52) and get

Sf i = + i
e2

V 2

√
m2

0

EfEi

√√√√ M2
0

E
p
f E

p
i

[
ū(pf , sf )γμu(pi, si)

]

×
∫

d4xd4y
d4q

(2π)4
exp
[−iq ·(x − y)

]

× exp
[
i(pf − pi)·x

]
exp
[
i(Pf − Pi)·y

]

×
(

− 4π

q2 + iε

)[
ū(Pf , Sf )γ

μu(Pi, Si)
]
. (3.56)

The x- and y-integrations can be performed immediately yielding
∫

d4x exp
(
i(pf − pi − q)·x)= (2π)4δ4(pf − pi − q) ,

7 As a historical remark we mention that already Heisenberg, developing his formulation of nonrela-
tivistic quantum mechanics, used the transition matrix element of the current as a source for Aμ(x).
In particular, he adopted this procedure for describing electronic transitions entering the calculations
of atomic spectra in the framework of his matrix mechanics.
8 C. Møller: Ann. Phys. 14, 531 (1932).
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∫
d4y exp

(
i(Pf − Pi + q)·y)= (2π)4δ4(Pf − Pi + q) . (3.57)

Now the q-integration is easily done:

∫
d4q

(2π)4
(2π)4δ4(pf − pi − q)(2π)4 δ4(Pf − Pi + q)

[
− 4π

q2 + iε

]

= (2π)4δ4(Pf − Pi + pf − pi)

(
− 4π

(pf − pi)2 + iε

)
, (3.58)

and the total S-matrix element (3.56) reads

Sf i = −ie2

V 2
(2π)4δ4(Pf − Pi + pf − pi)

√
m2

0

EfEi

√√√√ M2
0

E
p
f E

p
i

× [ū(pf , sf )γμu(pi, si)
] 4π

(pf − pi)2 + iε

[
ū(Pf , Sf )γ

μu(Pi, Si)
]
. (3.59)

We notice that the electron and proton enter this equation in a completely symmet-
ric way. This symmetry is necessary, since there is no physical difference between
electron scattering at a proton field and proton scattering at a field generated by the
electronic current.

If we compare this expression with the result (3.8) of Sect. 3.1, we recognize the
difference between electron scattering at an external Coulomb field and at a proton. It
is given by the substitutions

Zγ 0

|q|2 ⇒ γμ

( −1

q2 + iε

)√√√√ M2
0

E
p
f E

p
i

ū(Pf , Sf )γ
μu(Pi, Si) (3.60a)

and

V ⇒ (2π)3δ3(P f − P i + pf − pi ) . (3.60b)

The last replacement guarantees momentum conservation which was not accounted
for in the earlier calculation.

The S-matrix element (3.59) describes electron–proton scattering in lowest order;
for higher orders the currents in (3.59) would change. Figure 3.10 shows the process
(3.50) graphically. The electromagnetic interaction is expressed by a wavy line. It
enters the matrix element (3.59) as the inverse square of the transferred momentum,
1/q2 = 1/(pf − pi)

2. This can be viewed as the reciprocal � operator (3.42) in mo-
mentum space. We note that the wavy line represents a virtual photon being exchanged
between electron and proton. The four–momentum of the photon is

q = pf − pi = Pi − Pf (3.61)

(compare the δ functions in (3.58)). It is perhaps helpful to note here that for a real

Fig. 3.10. Graph of lowest-or-
der electron–proton scattering.
The thin line represents the
electron, the double line rep-
resents the proton. The wavy
line symbolizes the exchanged
photon

photon, i.e. a photon observable in a detector, q2 = 0. For a virtual photon, i.e. a
photon exchanged between two charged particles, q2 �= 0 in general.

The factor

− 4π

q2 + iε
(3.62)
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appearing in (3.60a) in a way represents the amplitude for the propagation of a photon
with momentum q . The points where the photon starts and ends are called vertices.
According to (3.59) the factors eγμ act at these points, enclosed between spinors of
the form

√
m0/E u(p, s). The spinors describe the free, ingoing and outgoing Dirac

particles, which can be observed as real particles. As we see, each line and vertex
of the graph corresponds to a specific factor in the S-matrix element. In addition,
the S-matrix element (3.59) contains the four-dimensional δ function, ensuring the
conservation of total energy and momentum in the scattering process.

Now we calculate the scattering cross section, beginning with the transition rate
per unit volume. To that end we divide |Sf i |2 by the time interval T of observation
and by the space volume of the reaction (normalization volume of Dirac waves), which
gives

Wfi = |Sf i |2
V T

= [(2π)4δ4(Pf + pf − Pi − pi)]2

V T

1

V 4

m2
0

EfEi

M2
0

E
p
f E

p
i

|Mfi |2 .

(3.63)

Here,

Mfi = [ū(pf , sf )γμu(pi, si)
] 4πeep

q2 + iε

[
ū(Pf , Sf )γ

μu(Pi, Si)
]

(3.64)

is the so-called invariant amplitude. The choice of this name is quite natural since
the matrix element (3.64) consists of a scalar product of 4-vectors which is Lorentz
invariant.

As in Sect. 3.1 we have to consider the square of the δ4 function. Again we will
make use of the relation (3.15a)

(2πδ(Ef −Ei))
2 = 2πδ(0) 2πδ(Ef −Ei) ⇒ T 2π δ(Ef −Ei) . (3.65)

This is valid for the one-dimensional δ function. The four-dimensional δ function

δ4(x − y) = δ(x0 − y0) δ(x1 − y1) δ(x2 − y2) δ(x3 − y3) (3.66)

is just the product of four one-dimensional δ functions. By denoting the time and spa-
tial intervals by T and L – or L3 = V , respectively – the following four-dimensional
generalization of (3.65) suggests itself:

[(2π)4δ4(pf −pi)]2 = (2π)4δ4(0)(2π)4δ4(pf −pi) = (2π)4T L3 δ4(pf −pi)

⇒ T V (2π)4δ4(pf − pi) . (3.67)

In the case of the δ4 function occurring in (3.63) we get

[(2π)4δ4(Pf + pf − Pi − pi)]2 = (2π)4δ4(0) (2π)4 δ4(Pf + pf − Pi − pi)

⇒ T V (2π)4δ4(Pf + pf − Pi − pi) . (3.68)

With that result the transition rate per unit volume (3.63) reads

Wfi = (2π)4δ4(Pf + pf − Pi − pi)
1

V 4

m2
0

EfEi

M2
0

E
p
f E

p
i

|Mfi |2 . (3.69)
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In order to determine the cross section we have to divide Wfi by the flux of the incom-
ing particles |J inc.| and by the number of target particles per unit volume.

The latter is given by 1/V , since the normalization of the wave functions was
performed in such a way that there is just one particle in the normalization volume V .
Furthermore we have to sum (integrate) over the possible final states of the electron
and the proton to obtain the cross section. For a given spin the number of final states
in the momentum interval d3pf d3Pf is given by

V 2 d3pf

(2π)3

d3Pf

(2π)3
(3.70)

(cf. the discussion of Sect. 3.1, (3.9)). Now we can write down the sixfold differential
scattering cross section

dσ = V 2 d3pf

(2π)3

d3Pf

(2π)3

1

|J inc.|
1

1/V
Wf i

=
(
m0

Ei

M0

E
p
i

1

|J inc.|V

)
|Mfi |2 (2π)4δ4(Pf + pf − Pi − pi)

× m0

Ef

d3pf

(2π)3

M0

E
p
f

d3Pf

(2π)3
. (3.71)

To compare with measurements (3.71) has to be integrated over an appropriate range
of the momentum variables determined by the experimental setup. E.g., if only the
scattered electron is observed, one has to integrate over all values of the proton mo-
mentum d3Pf . In the cross section (3.71) the initial and final polarizations (spin di-
rections) of the scattering particles are fixed. This can be seen directly in the invariant
amplitude (3.64). If polarizations are not measured, i.e. if one determines the cross
section using an unpolarized beam and detectors not sensitive to polarization, one has
to sum over the final spin states and to average over the spin states of the initial parti-
cles. The expression (3.71) for the cross section exhibits some general features, which
are worth discussing. These general features are common to all scattering processes.

The square of the invariant amplitudes |Mfi | incorporates the essential physics of
the process. The conservation of total energy and momentum is guaranteed by the
factor (2π)4δ4(Pf + pf − Pi − pi). Furthermore there are exactly four factors of
the type m0/E. In general there occurs a factor m0/E for every external fermion line
of the corresponding graph of the process. Since these factors result from the Dirac
particles involved in the process (compare e.g. (3.54)), every Dirac particle entering
and leaving the interaction yields such a factor in the cross section. In addition each
particle yields a phase-space factor d3pf /(2π)3. We can say each particle leaving
the scattering contributes a factor

m0

Ef

d3pf

(2π)3
(3.72)

to the cross section. This factor is Lorentz-invariant. It is just the three-dimensional
Lorentz-invariant volume in momentum space which can be written in four-dimension-
al form as

d3p

2E
=

∞∫

0

dp0 δ(p2 −m2
0) d3p . (3.73)
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This is derived as follows
∞∫

0

dp0 δ(p
2
0 − p2 −m2

0) d3p =
∞∫

0

dp0 δ(p
2
0 −E2) d3p

=
∞∫

0

dp0 δ
[
(p0 −E)(p0 +E)

]
d3p = d3p

2E
.

Here we used the well-known formula
∫

dx δ(f (x)) =∑k 1/| df
dx |xk , xk being the roots

of f (x) within the interval of integration. The right-hand side of (3.73) can further be
transformed to

d3p

2E
=

∞∫

−∞
d4p δ(p2 −m2

0)Θ(p0) , (3.74)

with

Θ(p0) =
{

1 for p0 > 0

0 for p0 < 0

being the Lorentz-invariant step function with respect to energy. Θ(p0) is Lorentz-
invariant since Lorentz transformations always transform time-like four-vectors
(like pμ) into time-like vectors, and correspondingly for space-like vectors. In our
case p is a time-like four-vector in the forward light cone (because p2 = m2

0 and
therefore p2

0 > p2) independent of the specific Lorentz frame. Thus it is obvious that
because of (3.74) d3p/2E is a Lorentz-invariant factor.

Now we have to consider the factor in brackets in (3.71). The flux is given by the
number of particles per unit area that come together in a unit of time. Denoting the
velocities of electrons vi and protons V i we see that (cf. Fig. 3.11)

|J inc.| = 1

V
|vi − V i | = particle density × relative velocity . (3.75)

We will now show that the factor 1/V |J inc.| when combined with the remaining fac-
tors m0/Ei , M0/E

p
i is nearly – but not exactly – Lorentz-invariant. However, the cor-

rect Lorentz-invariant flux factor can then be guessed easily. With

Fig. 3.11. The relative veloc-
ity vi −V i is the relevant quan-
tity determining the incoming
particle current

vi = pi

Ei

and V i = P i

E
p
i

the intuitive expression (3.75) leads to

m0

Ei

M0

E
p
i

1

V |J inc.| = m0M0

EiE
p
i |vi − V i |

= m0M0

EiE
p
i

√
v2
i + V 2

i − 2vi ·V i

= m0M0√
p2
i E

p2
i + P 2

i E
2
i − 2pi ·P iEiE

p
i

. (3.76)

As we will see in the following this result is nearly identical to the Lorentz scalar

m0 M0√
(pi ·Pi)2 −m2

0M
2
0

,
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because

m0 M0√
(pi ·Pi)2 −m2

0M
2
0

= m0 M0√
(Ei E

p
i − pi ·P i )2 −m2

0M
2
0

= m0 M0√
E2

i E
p2
i − 2EiE

p
i pi ·P i + (pi ·P i )2 −m2

0M
2
0

= m0 M0√
(m2

0 + p2
i )(M

2
0 + P 2

i )− 2EiE
p
i pi ·P i + (pi ·P i )2 −m2

0M
2
0

= m0 M0√
p2
i E

p2
i +m2

0P
2
i − 2EiE

p
i pi ·P i + (pi ·P i )2

≈ m0 M0√
p2
i E

p2
i +m2

0P
2
i − 2EiE

p
i pi ·P i + p2

i P
2
i

= m0 M0√
p2
i E

p2
i + P 2

i E
2
i − 2EiE

p
i pi ·P i

. (3.77)

In the last step but one we had to assume that (pi ·P i )
2 = p2

i P
2
i which requires that

the velocity vectors are collinear. Thus we have deduced the relation

m0M0

EiE
p
i |vi − V i |

= m0M0√
(pi ·Pi)2 −m2

0M
2
0

(3.78)

which is only valid for collinear collisions. However, Lorentz invariance has the
higher priority. Consequently the naive flux factor (3.76) in the cross section (3.71)
has in general to be replaced by the Lorentz-invariant flux factor (3.77). In the case of
collinear collisions both results are identical.

By using the just-derived Lorentz-invariant flux factor the total cross section (3.71)
becomes Lorentz-invariant. We write it in an invariant form:

dσ = m0M0√
(pi ·Pi)2 −m2

0M
2
0

× |Mfi |2(2π)4 δ4(Pf − Pi + pf − pi)
m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E
p
f

. (3.79)

Every factor that occurs has a general meaning and has always to appear in this form:
the first factor represents the reciprocal incoming particle flux per unit area and time,
the second is the squared invariant amplitude (which describes the physics involved
beyond pure kinematics), the third incorporates energy and momentum conservation,
and the last factor describes the densities of the final states. Note that the normalization
volume V in the final result (3.79) has disappeared, as it should.

In a short excursion we shall discuss how to treat noncollinear collisions, which, for
instance, occur in scattering processes in a plasma. In this case it is most convenient
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to calculate the number of events per unit time dN/dt directly. Using (3.69) we get

dN

dt
=
∫

d3x �e(x, t)�p(x, t)

×
∫

m0

Ei

M0

E
p
i

|Mfi |2 (2π)4 δ4(Pf − Pi + pf − pi)
m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E
p
f

.

(3.80)

�e(x, t) and �p(x, t) denote the densities of the electrons and protons, respectively.
They both contain a factor 1/V , while two additional powers of 1/V have cancelled
after multiplication with the final state densities (3.70).

As mentioned before we have to sum over the final states and to average over the
initial ones if we do not consider polarization effects. Since in (3.79) the spin quan-
tum numbers occur solely in the squared invariant amplitude, we define the average
squared invariant amplitude

|Mfi |2 = 1

4

∑
Sf ,Si ,sf ,si

∣∣∣ū(pf , sf )γ
μu(pi, si)

eep(4π)

q2 + iε
ū(Pf ,Sf )γμu(Pi, Si)

∣∣∣2 .

(3.81)

This expression can be calculated in the same way as (3.25) in Sect. 3.1, yet one has
to take into account that according to Einstein’s sum convention (3.81) contains a sum
over μ which has to be squared. Therefore we cannot directly take over (3.33). We
discuss the right-hand side of (3.81) in more detail by explicitly distinguishing the
terms that occur. Terms with the form adjoint spinor × matrix × spinor are complex
numbers for which the operations of complex conjugation and taking the adjoint are
identical:

[
ū(pf , sf ) γ

μ u(pi, si)
]∗ = [ū(pf , sf ) γ

μ u(pi, si)
]†

= [u†(pf , sf ) γ
0γ μ u(pi, si)

]†

= u†(pi, si)γ
μ†γ 0†u††(pf , sf )

= ū(pi, si)γ
0γ μ†γ 0u(pf , sf )

= ū(pi, si)γ
μu(pf , sf )

=
4∑

δ,ε=1

ūδ(pi, si) γ
μ
δε uε(pf , sf ) . (3.82)

This yields for the spin sum in (3.81)

∑
Sf ,Si ,sf ,si

∣∣ 3∑
μ=0

[
ū(pf , sf ) γ

μ u(pi, si)
] [

ū(Pf , Sf ) γμ u(Pi, Si)
] ∣∣2

=
∑

Sf ,Si ,sf ,si

⎧⎨
⎩

3∑
μ=0

[
ū(pf , sf ) γ

μ u(pi, si)
] [

ū(Pf , Sf ) γμ u(Pi, Si)
]
⎫⎬
⎭
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×
{

3∑
ν=0

[
ū(pf , sf ) γ

ν u(pi, si)
]∗ [

ū(Pf , Sf ) γν u(Pi, Si)
]∗
}

=
3∑

μ,ν=0

∑
Sf ,Si ,sf ,si

[
ū(pf , sf ) γ

μ u(pi, si)
] [

ū(pf , sf ) γ
ν u(pi, si)

]†

× [ū(Pf , Sf ) γμ u(Pi, Si)
] [
ū(Pf , Sf ) γν u(Pi, Si)

]†

=
3∑

μ,ν=0

∑
Sf ,Si ,sf ,si

4∑
α,β,δ,ε=1

ūα(pf , sf ) γ
μ
αβ uβ(pi, si) ūδ(pi, si) γ

ν
δε uε(pf , sf )

×
4∑

�,σ,τ,λ=1

ū�(Pf ,Sf ) γμ�σ uσ (Pi, Si) ūτ (Pi, Si) γν τλ uλ(Pf ,Sf )

=
3∑

μ,ν=0

4∑
α,β,δ,ε=1

∑
sf

ūα(pf , sf ) γ
μ
αβ

∑
si

uβ(pi, si)ūδ(pi, si)

︸ ︷︷ ︸(
/pi+m0
2m0

)
βδ

γ ν
δε uε(pf , sf )

×
4∑

�,σ,τ,λ=1

∑
Sf

ū�(Pf ,Sf )γμ�σ

∑
Si

uσ (Pi, Si)ūτ (Pi, Si)

︸ ︷︷ ︸(
/Pi+M0

2M0

)
στ

γν τλ uλ(Pf ,Sf )

=
3∑

μ,ν=0

4∑
α,ε=1

∑
sf

ūα(pf , sf )uε(pf , sf )

(
γ μ /pi +m0

2m0
γ ν

)
αε

×
4∑

�,λ=1

∑
Sf

ū�(Pf ,Sf )uλ(Pf ,Sf )

(
γμ

/P i +M0

2M0
γν

)
�λ

=
3∑

μ,ν=0

4∑
α,ε=1

(
/pf +m0

2m0

)
εα

×
(
γ μ /pi +m0

2m0
γ ν

)
αε

4∑
�,λ=1

(
/P f +M0

2M0

)
λ�

(
γμ

/P i +M0

2M0
γν

)
�λ

=
3∑

μ,ν=0

Tr

[
/pf +m0

2m0
γ μ /pi +m0

2m0
γ ν

]
Tr

[
/P f +M0

2M0
γμ

/P i +M0

2M0
γν

]
.

(3.83)

This calculation, which we have spelled out in great detail, thus leads to the following
result for the averaged squared matrix element

|Mfi |2 = 1

4

e2e2
p(4π)

2

(q2)2
Tr

[
/pf +m0

2m0
γ μ /pi +m0

2m0
γ ν

]

× Tr

[
/P f +M0

2M0
γμ

/P i +M0

2M0
γν

]
. (3.84)
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Note that the squaring of the amplitude which contained the scalar product of two
Lorentz scalars has lead to the contraction of two tensors, i.e. a double sum. One often
abbreviates this as

|Mfi |2 = e2e2
p(4π)

2

(q2)2
LμνHμν , (3.85)

where Lμν is the lepton (i.e. electron) tensor and Hμν the hadron (i.e. proton) tensor.

Lμν = 1

2

∑
si sf

ū(pf , sf )γ
μu(pi, si) ū(pi, si)γ

νu(pf , sf )

= 1

2
Tr

[
/pf +m0

2m0
γ μ /pi +m0

2m0
γ ν

]
, (3.86a)

and similarly

Hμν = 1

2
Tr

[
/P f +M0

2M0
γμ

/P i +M0

2M0
γν

]
. (3.86b)

The factorisation of (3.85) remains meaningful as long as a single virtual photon is ex-
changed in the scattering process, even if the transition currents becomes more com-
plicated than those used in (3.86). By applying the theorems derived in Mathematical
Supplement 3.3 we can quite easily evaluate the lepton tensor (3.86a) since traces of
odd numbers of γ matrices vanish it immediately is simplified to

Lμν = 1

2

1

4m2
0

Tr
[
/pf γ

μ /piγ
ν + m2

0 γ
μγ ν
]
. (3.87)

This result can be written in the ‘slash’ notation used by the above-mentioned theo-
rems. We introduce two unit four-vectors with a 1 in the component μ and ν respec-
tively. The other components are zero:

A = (0, 1︸︷︷︸
comp. μ

,0, 0) and B = (0, 0, 1︸︷︷︸
comp. ν

,0) .

We can now write

Tr /pf γ
μ /piγ

ν = Tr /pf /A /pi /B

= pf ·A Tr /pi /B − pf ·pi Tr /A/B + pf ·B Tr /A /pi

= 4pf ·Api ·B − 4pf ·pi A ·B + 4pf ·BA ·pi

= 4pμ
f pν

i − 4pf ·pi g
μν + 4pν

f p
μ
i , (3.88)

and

Tr γ μγ ν = Tr /A/B = 4A ·B = 4gμν . (3.89)

Then the lepton tensor (3.87) reads

Lμν = 1

2

1

m2
0

[
p
μ
f p

ν
i + p

μ
i p

ν
f − gμν(pf ·pi − m2

0)
]

(3.90)
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and analogously for the hadron tensor Hμν (3.86b). In this case we just have to replace
the small letters by capitals and exchange covariant by contravariant indices. Multi-
plying both and summing over μ and ν yields the squared invariant amplitude (see
(3.85))

|Mfi |2 = e2e2
p(4π)

2

4m2
0M

2
0 (q

2)2

[
p
μ
f p

ν
i + p

μ
i p

ν
f − gμν(pf ·pi −m2

0)
]

×
[
PfμPiν + PiμPf ν − gμν(Pf ·Pi −M2

0 )
]

= e2e2
p(4π)

2

4m2
0M

2
0 (q

2)2

[
(pf ·Pf )(pi ·Pi) + (pf ·Pi)(pi ·Pf )

+ (pf ·Pi)(pi ·Pf ) + (pi ·Pi)(pf ·Pf )− 2(pi ·pf )(Pf ·Pi − M2
0 )

− 2(Pi ·Pf )(pf ·pi − m2
0)+ 4(pf ·pi −m2

0)(Pf ·Pi −M2
0 )
]

= e2e2
p(4π)

2

4m2
0M

2
0 (q

2)2

[
2(pi ·Pi)(pf ·Pf ) + 2(pi ·Pf )(pf ·Pi)

− 4(pi ·pf )(Pi ·Pf )+ 2(pi ·pf )M
2
0 + 2(Pi ·Pf )m

2
0 + 4(pi ·pf )(Pi ·Pf )

+ 4m2
0M

2
0 − 4(pi ·pf )M

2
0 − 4(Pi ·Pf )m

2
0

]

= e2e2
p(4π)

2

2m2
0M

2
0 (q

2)2

[
(pi ·Pi)(pf ·Pf ) + (pi ·Pf )(pf ·Pi)

− (pi ·pf )M
2
0 − (Pi ·Pf )m

2
0 + 2m2

0M
2
0

]
. (3.91)

This average squared invariant amplitude has to be inserted into (3.79). To evaluate
the scattering cross section any further the frame of reference has to be specified.
Usually calculations take their simplest form in the center-of-mass system. However,
electron–proton scattering experiments mostly are performed using a fixed target in
the laboratory frame. Therefore we will evaluate (3.79) in the rest frame of the incom-
ing proton. We define

pf = (E′,p′) ≡ p′ ,

pi = (E,p) ≡ p ,

Pi = (M0,0) . (3.92)

We want to calculate the differential cross section for electron scattering into a given
solid-angle element dΩ ′ centered around the scattering angle θ (cf. Fig. 3.12). There-
fore the differential quantity (3.79) has to be integrated over all momentum variables
except for the direction of pf . The volume element can be written as

d3pf = d3p′ = |p′|2 d|p′|dΩ ′ = |p′|E′ dE′ dΩ ′ (3.93)

because E′2 = p′2 + m2
0 and thus |p′|d|p′| = E′dE′. Using (3.92) the invariant flux

Fig. 3.12. The electron is scat-
tered into a solid-angle ele-
ment dΩ ′
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factor reduces to

m0M0√
(pi ·Pi)2 −m2

0M
2
0

= m0M0√
E2M2

0 −m2
0M

2
0

= m0√
E2 −m2

0

= m0

|p| , (3.94)

and with the help of (3.74) we get

dσ̄ = m0

|p| |Mfi |2
∫

(2π)4 δ4(Pf + p ′ − Pi − p)

× m0

(2π)3
|p ′|dE′ dΩ ′ 2M0

(2π)3
d4Pf δ(P 2

f −M2
0 )Θ(P 0

f ) . (3.95)

Thus by integrating over dE′ and d4Pf the differential cross section becomes

dσ̄

dΩ ′ = 2

|p|
∫

m2
0M0|p′|dE′

(2π)2
|Mfi |2 d4Pf δ(P 2

f −M2
0 )

×Θ(P 0
f ) δ

4(Pf + p′ − Pi − p)

= 2m2
0M0

|p|4π2

∫
|p′|dE′ |Mfi |2 δ

(
(p′ − Pi − p)2 −M2

0

)
Θ (P 0

i +E −E′)

= m2
0M0

|p|2π2

M0+E∫

m0

|p′|dE′ |Mfi |2

× δ
(
2m2

0 − 2(E′ −E)M0 − 2E′E + 2|p||p′| cos θ
)
. (3.96)

In the last step we used the fact that the energy E′ of the scattered electron is bounded
by E′ ≤ M0 + E because of the step function. The argument of the step function
has to be larger than zero, otherwise the integrand vanishes, i.e. E′ ≤ P 0

i + E =
M0 + E. Of course E′ also has to be larger or equal to m0. Furthermore the argu-
ment of the δ function in (3.96) was expressed in terms of the kinematical variables in
the laboratory frame:

(p′ − Pi − p)2 −M2
0 = p′2 + P 2

i + p2 − 2p′ ·Pi − 2p′ ·p + 2Pi ·p −M2
0

= m2
0 +M2

0 +m2
0 − 2E′M0 − 2(E′E − p′ ·p)+ 2M0E −M2

0

= 2m2
0 − 2M0(E

′ −E)− 2E′E + 2|p||p′| cos θ . (3.97)

The remaining integral over E′ in (3.96) can be solved by using the familiar formula

δ
(
f (x)

) =
∑
k

δ(x − xk)∣∣∣ dfdx
∣∣∣
xk

, (3.98)

xk being the roots of f (x) contained in the interval of integration. Thus we get

dσ̄

dΩ ′ = m2
0M0

4π2

|p′|
|p|

|Mfi |2
M0 +E − |p|(E′/|p′|) cos θ

, (3.99)

where we have used |p′|d|p′| = E′dE′. The argument of the δ function in (3.96) leads
to the following condition for energy conservation:

E′(M0 +E) − |p||p′| cos θ = EM0 +m2
0 . (3.100)
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For a given scattering angle θ the final energy E′ of the electrons can be determined
as a function of E and θ using (3.100) which is a quadratic equation in E′. The re-
sulting E′ and the corresponding |p′|2 = E′2 − m2

0 have to be inserted into (3.99).
In order to understand the scattering formula (3.99) we check the limit E/M0 � 1,
where the electron energy is small compared to the rest mass of the proton. In this
limit we should approach the limiting case of scattering at a fixed Coulomb potential
(Sect. 3.1). Applying this approximation we can reduce (3.100) to

E′M0 = EM0 , and thus E′ = E , (3.101)

implying completely elastic scattering of the electron. Because E2 = |p|2 + m2
0 =

E′2 = |p′|2 +m2
0 it follows that |p| = |p′| and (3.99) yields

dσ̄

dΩ ′ = m2
0

4π2
|Mfi |2 for

E

M0
� 1 . (3.102)

This result corresponds to Mott’s scattering cross section known from Sect. 3.1, (3.25).
To see the complete agreement we consider the square of the invariant amplitude
(3.91) in the same approximation. The exact expression evaluated in the laboratory
frame is

|Mfi |2 = e2e2
p(4π)

2

2m2
0M

2
0 (q

2)2

×
{
(M0E)

[
pf ·(Pi + pi − pf )

]+ [pi ·(Pi + pi − pf )(E
′M0)
]

− (pi ·pf )M
2
0 −M0(M0 +E −E′)m2

0 + 2m2
0M

2
0

}

= e2e2
p(4π)

2

2m2
0M

2
0 (q

2)2

×
{
M0E

[
M0E

′ + pf ·pi −m2
0

]+M0E
′[M0E +m2

0 − pf ·pi

]

− M2
0pf ·pi −M2

0m
2
0 −M0Em2

0 +M0E
′m2

0 + 2m2
0M

2
0

}

= e2e2
p(4π)

2

2m2
0M

2
0 (q

2)2

{
2M2

0EE′ − pf ·pi

[
M2

0 +M0(E
′ −E)

]+m2
0M

2
0

}
.

(3.103)

In the limit E/M0 � 1 only the terms proportional to M2
0 have to be kept. With

E = E′ this leads to

|Mfi |2 ≈ e2e2
p(4π)

2

2m2
0(q

2)2

(
2E2 − pf ·pi +m2

0

)
, for

E

M0
� 1 . (3.104)

Inserting the result into (3.102) and taking into account that in the limit considered the
momentum transfer q has no 0-component, i.e. q2 = −q2, we finally get

dσ̄

dΩ ′ = 2α2

(q2)2

(
2E2 − pf ·pi +m2

0

)
,

E

M0
� 1 . (3.105)
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This is just the expected result we derived in Sect. 3.1, (3.39). In that limit the proton
does not recoil. It can be considered as the source of a static external field. Remember
that we have chosen units such that � = c = 1, e2 = e2/�c = α.

Another interesting limit in which the quite complicated general expression for
the scattering cross section simplifies is the case of ultrarelativistic electrons. In this
case m0/E � 1, and the recoil of the proton should modify the scattering formula
considerably. Inspecting (3.99) we note that

|p′|
|p| =

√
E′2 −m2

0√
E2 −m2

0

→ E′

E
for

m0

E
,
m0

E′ � 1 ,

and thus (3.99) becomes

dσ̄

dΩ ′ ≈ m2
0

4π2

E′
E

1 + E
M0

− E
M0

cos θ
|Mfi |2

= m2
0

4π2

E′
E

1 + 2E
M0

sin2 θ
2

|Mfi |2 ,
m0

E
� 1 . (3.106)

In order to calculate |Mfi |2 we consider (3.103) and express the scalar product pf ·pi

in terms of the squared momentum transfer through

q2 = (pf − pi)
2 = p2

f + p2
i − 2pf ·pi = 2

[
m2

0 − pf ·pi

]
. (3.107)

This yields

|Mfi |2 = (4π)2α2

2m2
0M

2
0 (q

2)2

×
{

2M2
0EE′ + q2

2

[
M2

0 +M0(E
′ −E)

]
−m2

0M0(E
′ −E)

}

= (4π)2α2EE′

m2
0(q

2)2

{
1 + q2

4EE′
(

1 + E′ −E

M0

)
− m2

0

2EE′
(E′ −E)

M0

}
, (3.108)

which is still exact. In the ultrarelativistic limit E/m0, E′/m0 � 1, energy and mo-
mentum become equal and the squared momentum transfer (3.107) is related to the
scattering angle in a simple way

q2 = 2 (m2
0 −EE′ + p′ ·p) = 2 (m2

0 −EE′ + |p′||p| cos θ)

≈ −2EE′(1 − cos θ) = −4EE′ sin2 θ

2
. (3.109)

Furthermore, the condition of energy conservation (3.100) simplifies to

M0(E −E′) = E′E − |p||p′| cos θ − m2
0

≈ EE′(1 − cos θ) = 2EE′ sin2 θ

2
(3.110)
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or, using (3.109)

E′ −E

M0
≈ −2EE′

M2
0

sin2 θ

2
≈ q2

2M2
0

. (3.111)

Thus (3.108) can be reduced to

|Mfi |2 ≈ π2α2

m2
0EE′ sin4 θ

2

⎛
⎜⎜⎜⎝1 + q2

4EE′︸ ︷︷ ︸
1−sin2(θ/2)

− q2

4EE′
2EE′

M2
0

sin2 θ

2

⎞
⎟⎟⎟⎠

= π2α2

m2
0EE′ sin4 θ

2

(
cos2 θ

2
− q2

2M2
0

sin2 θ

2

)
, E,E′ � m0 . (3.112)

We insert this result into (3.106) and get

dσ̄

dΩ ′ = α2

4E2

1

sin4 θ
2

cos2 θ
2 − q2

2M2
0

sin2 θ
2

1 + 2E
M0

sin2 θ
2

for E,E′ � m0 . (3.113)

This formula determines the scattering cross section in the ultrarelativistic case under
the assumption that the proton behaves like a heavy electron with mass M0. Equa-
tion (3.113) can be compared with the Mott scattering formula (3.39) in the limit
β → 1. Two deviations are found. The denominator in (3.113) originates from the
recoil of the target as we see from (3.110) which can be written as

E′ = E
1

1 + 2E
M0

sin2 θ
2

. (3.114)

Furthermore the angular dependence of the numerator in (3.113) is more involved
compared to Mott scattering. The q2-dependent second term is found to originate
from the fact that the target is a spin- 1

2 particle. This term is absent when the collision
of electrons with spin-0 particles is considered.

We finally remark that (3.113) does not provide a realistic description of electron–
proton collisions at high energies since the de Broglie wavelength of the electron then
is so small that the substructure of the proton becomes detectable. This fact has not
been considered in (3.113), where we assumed the proton to be a point-like Dirac
particle without internal structure. In addition the proton’s anomalous magnetic mo-
ment has to be considered in that case. We remark, then, that in a complete treatment
for very high energies (several 100 MeV) formula (3.113) has to be modified by in-
troducing electric and magnetic form factors representing the internal structure of
the proton. This yields the so-called Rosenbluth formula (see Exercise 3.5). Equa-
tion (3.113) would apply with great accuracy, however, to the scattering of electrons
and muons, which both are structureless Dirac particles, at least upto present-day en-
ergies of about 100 GeV. Then, however, also the weak interaction between electrons
and muons plays a role.9

9 W. Greiner, and B. Müller: Gauge Theory of Weak Interactions, 3rd ed. (Springer, Berlin, Heidel-
berg, 2000).
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EXERCISE

3.5 Rosenbluth’s Formula
The realistic description of the scatteringof an electron at a spin- 1

2 hadron has to take
into account the internal structure and anomalous magnetic moment of the hadron. To
that end one replaces the transition current in momentum space which originates from
the Dirac equation with the more general bilinear expression

ū(P ′)γμu(P ) → ū(P ′)Γμ(P
′,P )u(P ) . (1)

Problem. (a) Show that the most general expression for a transition current that
fulfils the most important conditions of Lorentz covariance, Hermiticity, and gauge
invariance can be written as

ū(P ′)Γμ(P
′,P )u(P ) = ū(P ′)

(
γμF1(q

2)+ i
1

2M0
F2(q

2)qνσμν

)
u(P ) . (2)

Here q = P ′ − P is the momentum transfer and F1(q
2), F2(q

2) are unspecified real
functions (“form factors”), cf. Fig. 3.13.

Fig. 3.13. Feynman diagram
for the scattering of a point-
like Dirac particle at an ex-
tended target, symbolized by
the hatched blob

(b) What is the physical meaning of F1(0) and F2(0)? This can be deduced by studying
the interaction energy with static electromagnetic fields in the nonrelativistic limit.
(c) Calculate the unpolarized cross sections of electron scattering at a hadron with the
vertex function (2) in the ultrarelativistic limit.

Solution. (a) In order to construct the vertex function Γμ(P
′,P ) we have at our dis-

posal the two kinematic quantities Pμ and P ′μ. Since the proton moves freely before
and after the collision (it is “on the mass shell”), there is only a single independent
scalar variable, because P 2 = P ′2 = M2

0 , which we choose as the square of momen-
tum transfer q2 = (P ′ − P)2. Since Γμ(P

′,P ) has to be a Lorentz vector the most
general ansatz can be directly noted with the help of the known bilinear convariants of
the Dirac theory (cf. RQM , Chap. 5) :

ū(P ′)Γμ(P
′,P )u(P ) = ū(P ′)

(
A(q2)γμ +B(q2)P ′

μ +C(q2)Pμ

+ iD(q2)P ′νσμν + iE(q2)P νσμν
)
u(P ) . (3)

A(q2), . . . ,E(q2) are undetermined scalar functions of the variable q2 and σνμ =
(i/2)(γμγν − γνγμ). Since we demanded Hermiticity, they are real functions. Her-
meticity for matrix elements implies Lik = L∗

ki . With that in mind we check e.g.

(
ū(P ′)γμu(P )

)† = u(P )†γ
†
0 γ

†
μγ

†
0 u(P

′) = ū(P )γ0γ
†
μγ0u(P

′) = ū(P )γμu(P
′) .
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Similarly one concludes that the functions A(q2) . . .E(q2) have indeed to be real
functions. Further restrictions follow from our requiring gauge invariance, which takes
the form

qμ ū(P ′)Γμ(P
′,P )u(P ) = 0 . (4)

This follows from the condition of current conservation applied to the electromagnetic
transition current of the hadron, i.e. ∂μJ

μ

P ′,P (x) = 0. In momentum space the operator
∂μ is replaced by a factor −iP ′

μ or iPμ, respectively, when acting on the final (initial)
wavefunction. This leads to the condition (4).

A short reminder on gauge invariance and current conservation: Gauge invariance
implies
∫

d4x jμ(x)A
μ(x) =

∫
d4x jμ(x)(A

μ(x)− ∂μχ(x))

which means
∫

d4x jμ(x)∂
μχ(x) = 0. Assuming that surface terms do not contribute

(the function χ(x) can be chosen appropriately) the latter condition can be rewritten as∫
d4x∂μjμ(x)χ(x) = 0. Since χ(x) is an arbitrary function this implies ∂μjμ(x) = 0.
The first term in (3) is just the usual Dirac current, which obviously fulfils condi-

tion (4). This can be easily shown with the help of the Dirac equation. Indeed,

ū(P ′)qμγ μu(P ) = ū(P ′)/qu(P ) = ū(P ′)( /P ′ − /P )u(P )

= ū(P ′)(m0 −m0)u(P ) = 0 .

Here we used the relations known from Exercise 2.1. For the subsequent terms we get

(P ′μ − Pμ)(BP ′
μ +CPμ) = (B −C)(M2

0 − P ′ ·P) = 0 (5)

and

i(P ′μ − Pμ)(DP ′ν +EPν)σμν = −iDPμP ′νσμν + iEP ′μP νσμν

= i(D +E)P ′μP νσμν = 0 , (6)

taking into account the antisymmetry of the tensor σμν . Thus we deduce that C = B

and E = −D, i.e.

ū(P ′)Γμ(P
′,P )u(P ) = ū(P ′)

[
A(q2)γμ +B(q2)(P ′ + P)μ

+ iD(q2)(P ′ − P)νσμν
]
u(P ) . (7)

Because of the Gordon decomposition (cf. RQM , Chap. 8)

ū(P ′)γμu(P ) = 1

2M0
(P ′ + P)μū(P

′)u(P )+ i

2M0
qνū(P ′)σμνu(P ) (8)

these three terms are not linearly independent. Therefore one of the terms, for instance
B(q2)(P ′ + P)μ, can be eliminated. This yields (2) as the most general structure for
the transition current.
(b) In order to understand the significance of the form factors F1(0) and F2(0) we
consider the energy of a nonrelativistic hadron with charge ep in a static external elec-
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tromagnetic field Aμ(x). The energy density is epA
μ(x)Jμ(x). Hence, the interaction

energy is given by the volume integral

W = ep

∫
d3x Aμ(x)Jμ(x)

= ep

∫
d3x Aμ(x) ψ̄P ′(x)Γμ(P

′,P )ψP (x)

= ep

V

√
M2

0

EP ′
EP

∫
d3x e−i(P ′−P )·x Aμ(x)ū(P ′)Γμ(P

′,P )u(P ) . (9)

In the case of a pure electrostatic field A0(x) it is advantageous to rewrite the vertex
function Γμ(P

′,P ) of (2) using the Gordon decomposition (8), i.e. we replace

i

2M0
F2(q

2)qνσμν −→ γμF2(q
2)− 1

2M0
(P ′ + P)μF2(q

2)

and obtain for (2):

Γμ(P
′,P ) = γμ

(
F1(q

2)+ F2(q
2)
)− 1

2M0
(P ′ + P)μ F2(q

2) . (10)

This leads to the following expression for the integrand of (9), given in the rest frame
of the hadron

A0(x)ū(P ′)Γ0(P
′,P )u(P )

= A0(x) ū(P ′)
[
γ0(F1(q

2)+ F2(q
2))− 1

2M0
(P ′ + P)0F2(q

2)
]
u(P )

= A0(x) ū(P ′)
[
γ0F1(q

2)+ 2M0γ0 −EP ′ −M0

2M0
F2(q

2)
]
u(P ) . (11)

In the nonrelativistic limit the lower components of the Dirac spinors can be neglected
and ūu ≈ ūγ 0u = u†u = 1, which leads to

A0(x) ū(P ′)Γ0(P
′,P )u(P ) ≈ A0(x)

(
F1(q

2)+ q2

4M2
0

F2(q
2)

)
. (12)

Here the identity

q2 = (P ′ − P)2 = 2M2
0 − 2P ′ ·P = 2M0(M0 −EP ′

) (13)

and therefore q2/(4M2
0 ) = (M0 − EP ′

)/(2M0) was used. In the static limit q2 → 0
(considering an external potential which is constant or slowly varying) the interaction
energy (9) simply becomes

W ≈ epF1(0)
1

V

∫
d3x e−iq·xA0(x) = epF1(0)A

0 1

V

∫
d3x

︸ ︷︷ ︸
1

= epF1(0)A
0. (14)

Note that in the static limit, EP ′ = EP = M0. Therefore, the normalization factor

in (9) is

√
M2

0

EP ′
EP

= 1. The result (14) is obviously the electrostatic energy of a particle

with charge epF1(0) in a potential A0, from which we conclude that for the proton

F1(0) = 1 . (15)
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In the case of a magnetic field described by the vector potential Ak(x) we use (2) and,
utilizing the Gordon decomposition (8), get

Ak(x)ū(P ′)Γk(P
′,P )u(P )

= Ak(x)ū(P ′)
[

1

2M0
(P ′

k +Pk)F1(q
2)+ i

2M0

(
F1(q

2)+F2(q
2)
)
qlσkl

]
u(P )

� −ū(P ′)
[
A · P

M0
F1(q

2)+ i

2M0

(
F1(q

2)+ F2(q
2)
)
q × A ·Σ

]
u(P ) , (16)

because AkPk = A0P0 −A ·P = −A ·P (because A0 = 0) and, furthermore, AkP ′
k =

AkPk +Akqk = AkPk (in the limit q → 0) and

σkl = εklm Σm with Σ =
(

σ 0
0 σ

)
.

The first term in (16) just describes the interaction of a moving charge with the mag-
netic field yielding W � −epF1(0)v·A ūu. The second term yields (again considering
the limit q → 0)

W � ep

V

∫
d3x e−iq·x 1

2M0

(
F1(q

2)+ F2(q
2)
)(−iq × A(x)

) · ū(P ′)Σu(P )

� −ep
1

2M0

(
F1(0)+ F2(0)

)(
ūΣu
) 1

V

∫
d3x e−iq·x ∇ × A(x)

� − ep

2M0

(
1 + F2(0)

)
2〈s〉·B . (17)

This is the energy of a particle with spin- 1
2 having the gyromagnetic ratio g =

2(1 +F2(0)) in a homogeneous magnetic field. The number F2(0) therefore describes
the anomalous magnetic moment of the particle. In the case of proton and neutron
experiment gives the following form factors at zero momentum transfer:

F
p
1 (0) = 1 , F n

1 (0) = 0 ,

F
p
2 (0) = 1.79284 , F n

2 (0) = −1.91304 . (18)

This is an indication that the nucleons are complex particles, i.e. Dirac particles with
an internal structure. Indeed, we know (see the lectures on Symmetries in Quantum
Mechanics) that nucleons are built up by three quarks.
(c) The calculation of the electron–hadron cross section can be done as in Sect. 3.2; we
just have to insert the more complex vertex operator (2). In fact, the calculation sim-
plifies if we use the equivalent expression (10). The squared spin-averaged transition
matrix element is

|Mfi |2 = 1

4

∑
spin

∣∣∣ū(p′, s′)γ μu(p, s)
4πeep

q2

× ū(P ′, S′)
[
γμ(F1 + F2)− 1

2M0
(P ′ + P)μF2

]
u(P,S)

∣∣∣2

= (4π)2e2e2
p

(q2)2

1

4

∑
spin

u†(P,S)
[
γ †
μ(F1 + F2)
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− 1

2M0
(P ′ + P)μF2

]
γ0u(P

′, S′)

× u†(p, s)γ μ†γ 0u(p′, s′) ū(p′, s′)γ νu(p, s)

× ū(P ′, S′)
[
γν(F1 + F2)− 1

2M0
(P ′ + P)νF2

]
u(P,S) . (19)

With the help of (3.29) and (3.31) of Sect. 3.1 this expression can be rewritten as
a product of two traces. As in Sect. 3.2, (3.85), it is given by

|Mfi |2 = (4π)2e2e2
p

(q2)2
LμνHμν , (20)

with the lepton tensor (see (3.86a))

Lμν = 1

2
Tr

[
γ μ /p +m0

2m0
γ ν /p′ +m0

2m0

]
(21)

and the hadron tensor (see (3.86b))

Hμν = 1

2
Tr

[(
γμ(F1 + F2)− F2

2M0

(
P ′
μ + Pμ

)) /P +M0

2M0

×
(
γν(F1 + F2)− F2

2M0

(
P ′
ν + Pν

)) /P ′ +M0

2M0

]

= 1

4M2
0

1

2
Tr

[
( /P +M0)

(
γμ(F1 + F2)− F2

2M0

(
P ′
μ + Pμ

))

× ( /P ′ +M0)

(
γν(F1 + F2)− F2

2M0

(
P ′
ν + Pν

))]
. (22)

Here we employed Theorem 7 of the Mathematical Supplement 3.3 and the fact that
TrABCD = TrCDAB . Expanding the product we get 16 traces from which 8 vanish,
since they contain an odd number of γ matrices. The remaining terms are

8M2
0Hμν = (F1 +F2)

2 Tr
[
/Pγμ /P ′γν

]−(F1 +F2)M0
F2

2M0
(P ′

ν +Pν)Tr
[
/Pγμ
]

+ F2

2M0
(P ′

μ + Pμ)
F2

2M0
(P ′

ν + Pν) Tr
[
/P /P ′]

− F2

2M0
(P ′

μ + Pμ) M0 (F1 + F2) Tr
[
/Pγν
]

−M0(F1 + F2)
F2

2M0
(P ′

ν + Pν) Tr
[
γμ /P ′]

[−3pt] +M0(F1 + F2) M0 (F1 + F2) Tr
[
γμγν

]

−M0
F2

2M0
(P ′

μ + Pμ)(F1 + F2) Tr
[
/P ′γν
]

+M0
F2

2M0
(P ′

μ + Pμ) M0
F2

2M0
(P ′

ν + Pν) Tr[1] . (23)

After inserting the values of all these traces we can sum the result to the form

Hμν = 1

8M2
0

{
4(F1 + F2)

2[PμP
′
ν + P ′

μPν − (P ·P ′ −M2
0 ) gμν

]

+ [− 4(F1 + F2)F2 + F 2
2 (P ·P ′/M2

0 + 1)
]
(Pμ + P ′

μ)(Pν + P ′
ν)
}

≡ H(1)
μν +H(2)

μν . (24)
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H
(1)
μν is already known from previous discussions and apart from the factor (F1 + F2)

2

it again yields the cross section of (3.113) when inserted into (20). In addition we get

|Mfi(2)|2 = (4π)2e2e2
p

(q2)2

1

16M2
0m

2
0

[
pμp′ν + p′μpν − [−1pt](p ·p′ −m2

0) g
μν
]

× [(Pμ + P ′
μ)(Pν + P ′

ν)
][− 4(F1 + F2)F2 + F 2

2 (P ·P ′/M2
0 + 1)

]
, (25)

where we have taken the lepton tensor from (3.90). Using energy–momentum conser-
vation

p + P = p′ + P ′ , (26)

we will now eliminate the final momentum of the hadron and collect the momentum
dependent terms in (25). In the ultrarelativistic approximation (neglecting the electron
rest mass) we simply get

[. . .][. . .] = 2p′ ·(P + P ′) p ·(P + P ′)− (P + P ′)·(P + P ′)(p ·p′ −m2
0)

≈ 4(2p′ ·P p ·P −M2
0 p ·p′)

≈ 4
[
2E′M0 EM0 −M2

0 |p||p′|(1 − cos θ)
]

≈ 8M2
0E

′E cos2 θ

2
(27)

in the laboratory system. Further, using (3.111) the product P ·P ′ in (23) can be ex-
pressed in terms of the momentum transfer q

P · P ′ = P · (P + p − p′) = M2
0 +M0(E −E′) � M2

0

(
1 − q2

2M2
0

)
. (28)

q2 is related to the scattering angle θ through (3.109)

q2 ≈ −4EE′ sin2 θ

2
. (29)

By adding |Mfi(1)|2 from (3.112) we finally get

|Mfi |2 = (4π)2e2e2
p

(q2)2

E′E
m2

0

{
(F1 + F2)

2

[
1 − sin2 θ

2

(
1 + q2

2M2
0

)]

+1

2
cos2 θ

2

[
−4(F1 + F2)F2 + 2F 2

2

(
1 − q2

4M2
0

)]}

= (4π)2e2e2
p

(q2)2

E′E
m2

0

[(
F 2

1 − q2

4M2
0

F 2
2

)
cos2 θ

2

−(F1 + F2)
2 q2

2M0
sin2 θ

2

]
. (30)
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With (3.106) the spin-averaged scattering cross section in the laboratory system results
as

dσ̄

dΩ
= e2e2

p

4E2 sin4 θ
2

(
1 + 2E

M0
sin2 θ

2

)

×
[(

F 2
1 − q2

4M2
0

F 2
2

)
cos2 θ

2
− (F1 + F2)

2 q2

2M2
0

sin2 θ

2

]
. (31)

This result is known as Rosenbluth’s formula.10

Additional Remarks. Instead of the functions F1(q
2) and F2(q

2) one often intro-
duces the so-called electric and magnetic “Sachs form factors”

GE(q
2) = F1(q

2)+ q2

4M2
0

F2(q
2) ,

GM(q2) = F1(q
2)+ F2(q

2) . (32)

These combinations emerge in a natural way from the interaction energy with
electric and magnetic fields, (12) and (17). Indeed, (12), describing an electric
(Coulomb) interaction, contains exactly the combination of F1(q

2) and F2(q
2) con-

tained in GE(q
2). The same is true for (17), which describes a magnetic interaction and

contains the combination of F1(q
2) and F2(q

2) as it appears in GM(q2). Expressed in
terms of the Sachs form factors the Rosenbluth formula (31) becomes

dσ̄

dΩ
=
(

dσ̄

dΩ

)
Mott

[
G2

E(q
2)+ τG2

M (q2)

1 + τ
+ 2τG2

M (q2) tan2 θ

2

]
(33)

with the abbreviation τ = −q2/(4M2
0 ) > 0. Experimentally the two form factors can

be determined by varying E and θ at a given momentum transfer

q2 = −4EE′ sin2 θ

2
= −4E2 sin2 θ

2

1 + 2E
M0

sin2 θ
2

. (34)

Figure 3.14 shows some experimental data11 on the form factors GE(q
2) and GM(q2)

for protons. It was found that at not too large values of q2 a good description of
both GE and 1

κ
GM (κ is the magnetic moment of the proton) is given by the so-called

“dipole fit” formula

GD(q
2) = 1(

1 + |q2|
Q2

)2
, (35)

10 M.N. Rosenbluth: Phys. Rev. 79, 615 (1950).
11 G. Simon, Ch. Schmitt, F. Borkowski, V.H. Walther: Nucl. Phys. A333, 381 (1980); for a recent
overview see J. Arrington, W. Melnitchouk, J.A. Tjon: Phys. Rev. C76, 035205 (2007).
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Fig. 3.14. The electric and
the normalized magnetic form
factor of the proton as a func-
tion of the squared momen-
tum transfer q2. The experi-
mental data are well described
by the “dipole fit” (35). It
is surprising, nevertheless an
experimental fact, that both
GE(q

2) and GM(q2)/κ are
equal within a few percent

with the empirical parameter (remember the choice of units �c = 0.197 GeV fm = 1)

Q2 = 0.71 GeV2 = 18.2 fm−2 . (36)

In nonrelativistic quantum mechanical scattering theory a form factor F(q) is intro-
duced which relates the scattering at extended and point-like targets:
(

dσ

dΩ

)
extended

=
(

dσ

dΩ

)
point

|F(q)|2 . (37)

F(q) has a simple interpretation:12

It is the spatial Fourier transform of the density distribution �(x) of the extended
scattering center

F(q) =
∫

d3x �(x) eiq·x . (38)

By analogy one may identify GE(q
2) and GM(q2) with the Fourier transforms of the

hadron’s charge and magnetic moment density distribution. At relativistic energies
this interpretation becomes problematic since it depends on the frame of reference. It
is valid in the so called “Breit frame” where no energy is transferred to the nucleon,
q0 = 0, which means P = (E,P ), P ′ = (E,−P ).

With this caveat, the density distribution of the proton charge derived from the
dipole formula (35) by inverse Fourier transformation is simply

�p(x) =
∫

d3q

(2π)3
GD (−q2) e−iq·x = Q3

8π
e−Q|x| . (39)

12 See W. Greiner, Quantum Mechanics – An Introduction, 3rd ed. (Springer, Berlin, New York,
1994), Exercise 11.8 and e.g. R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
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The size of the nucleon may be defined by the second moment of this distribution

〈R2〉 =
∫

d3x |x|2�p(x) = 12

Q2
. (40)

This gives the mean proton radius

Rp =
√

〈R2〉 =
√

12

18.2 fm−2
= 0.81 fm . (41)

More detailed information on the internal structure of hadrons can be obtained from
the study of inelastic electron scattering. In this way the presence of pointlike con-
stituents (partons) inside the hadrons was revealed. This will be discussed in the lec-
tures on Quantum Chromodynamics.13

EXAMPLE

3.6 Higher-Order Electron–Proton Scattering

In Sect. 3.2 we calculated electron–proton scattering to lowest order in α = e2. Now
we shall discuss corrections arising at the next higher order of the perturbation expan-
sion. To that end we refer to the general expression of the nth order contribution to
the electron scattering matrix (2.44). The amplitude of second-order electron–proton
interaction is given by

S
(2)
f i = −ie2

∫
d4x d4y ψ̄f (x)/A(x)SF(x − y)/A(y)ψi(y) . (1)

As in Sect. 3.2, the electromagnetic potential A(x) is produced by the proton current.
However, for us to be consistent the proton current has also to be treated in second or-
der. To do this we again consider (1), describing the interaction of the electron current
with the Aμ(x) Aν(y) fields in second order. Again, we require the total expression

for S(2)
f i to be symmetric with respect to the electron and proton currents. From (1), it

is obvious that the second-order electron current is given by

J (2)
μν (x, y) = ie2 ψ̄f (x) γμSF(x − y)γν ψi(y) . (2)

13 See W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics (Springer, Berlin, Tokyo, New
York, 2002).
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The factor i here has been introduced for convenience. Namely, inserting the electron
propagator SF(x − y) – see (2.24) – explicitly this becomes

J (2)
μν (x, y) = e2ψ̄f (x)γμ

⎛
⎝ ∑

n;p0>0

Θ(x0 − y0)ψn(x)ψ̄n(y)

−
∑

n;p0<0

Θ(y0 − x0)ψn(x)ψ̄n(y)

⎞
⎠γνψi(y) . (3)

The two indices (and the two arguments x, y) indicate the second-order structure of the
transition current. Here we used the Stückelberg–Feynman propagator (2.24). The fac-
tor i introduced in (2) cancels the factor minus i included in the propagator SF(x − y),
enabling us to represent the second-order current Jμν(x, y) as a sum (

∑
n) of products

consisting of first-order transition currents (cf. Sect. 3.2, (3.53)) of the form

(
Jμ(x)

)
f n

= e ψ̄f (x) γμ ψn(x) , (4)

which yields

J (2)
μν (x, y) =

∑
n,p0>0

(
Jμ(x)

)
f n

(
Jν(y)

)
ni

Θ(x0 − y0)

−
∑

n,p0<0

(
Jμ(x)

)
f n

(
Jν(y)

)
ni

Θ(y0 − x0) . (5)

The single index and the single argument express the first-order structure of these
transition currents Jμ(x). According to Sect. 3.2, (3.51), each first-order transition
current produces a vector potential

Aμ(x) =
∫

d4y DF(x − y) Jμ(y) .

Generalizing this relation we can conjecture that the following expression describes
the electromagnetic fields produced by the proton:

Aμ(x)Aν(y)

=
∫

d4X d4Y DF(x −X)DF(y − Y)J
p(2)
μν (X,Y )

=
∑

n;P0>0

∫
d4X d4Y DF(x−X)DF(y−Y)

(
J

p
μ(X)

)
f n

(
J

p
ν (Y )

)
ni
Θ(X0 −Y0)

−
∑

n;P0<0

∫
d4X d4Y DF(x−X)DF(y−Y)

(
J

p
μ(X)

)
f n

(
J

p
ν (Y )

)
ni
Θ(Y0 −X0)

= e2
p

∫
d4X d4Y DF(x −X)DF(y − Y)

× ψ̄
p
f (X)γμ

⎛
⎝ ∑

n;P0>0

Θ(X0 − Y0) ψ
p
n(X) ψ̄

p
n(Y )
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−
∑

n;P0<0

Θ(Y0 −X0) ψ
p
n(X) ψ̄

p
n(Y )

⎞
⎠ γνψ

p
i (Y )

= ie2
p

∫
d4X d4Y DF(x −X)DF(y − Y)ψ̄

p
f (X)γμS

p
F(X − Y)γνψ

p
i (Y ) . (6)

Each single first-order transition current occurring in the products (5) creates a pho-
ton field like the one produced by the transition current in (3.51). Note the factor +i
occurring in the last step that cancels the factor −i contained in the proton propagator
S

p
F(X − Y). Equation (6) can be substantiated by considering the differential equation

for the two-photon field Aμν(x, y) :

�x�y Aμν(x, y) = (4π)2 J
p(2)
μν (x, y) , (7)

which is analogous to (3.42). The expression (6) obviously fulfils this differential
equation. This result can be represented graphically as shown in Fig. 3.15.

Fig. 3.15. The second-order
proton transition current in-
volves two photons. One prop-
agates between the space–time
points x and X, the second
one between y and Y . Depend-
ing on the time ordering of the
arguments of DF(x − X) and
DF(y −Y ) the photons are ei-
ther absorbed or emitted. The
propagation of the proton be-
tween the vertices at X and Y

is described by the Feynman
propagator Sp

F(X − Y )

The two photons are emitted at the space–time points Y,X. At each vertex a factor
epγμ or epγν , respectively, enters into the calculation of the fields. The proton line
between Y and X is called an internal proton line. It represents the propagation of
the proton between the points of interaction with the photons according to the proton
propagator S

p
F(X − Y). The photons emitted by the proton at Y and X travel to the

electron which absorbs them at the space–time points y and x. This process is shown
in Fig. 3.16. It represents the second-order S-matrix element obtained by inserting (6)
into (1), i.e.

S
(2)
f i (dir.) = e2e2

p

∫
d4x d4y d4X d4Y

[
ψ̄f (x) γ

μ SF(x − y)γ ν ψi(y)
]
,

×DF(x −X)DF(y − Y)
[
ψ̄

p
f (X)γμ S

p
F(X − Y)γν ψ

p
i (Y )
]

, (8)

which for reasons to become clear soon is called the direct amplitude. Here, in contrast
to (1), no factor (−i) occurs, because it is compensated by the factor +i of the last
expression in (6).

Fig. 3.16. The graph for the
direct second-order electron–
proton scattering

We see very clearly how to translate the various lines in the graph directly into
mathematical expressions. However, (8) does not yet represent the full second-order
scattering amplitude, since the two photons emitted by the proton current cannot be
distinguished. The electron at x does not “know” whether the photon being absorbed
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Fig. 3.17. The exchange
graph corresponding to
Fig. 3.16. The photon lines
are crossed

at that point has been emitted at space–time point Y or X. The indistinguishability of
the photons then implies the contribution of a second graph (see Fig. 3.17). According
to the principles of quantum mechanics the complete electron–proton scattering am-
plitude is then given by coherently adding the contribution of an exchange diagram
shown in Fig. 3.17. This yields

S
(2)
f i = S

(2)
f i (dir.)+ S

(2)
f i (exch.)

= e2e2
p

∫
d4x d4y d4X d4Y

[
ψ̄f (x) γ

μ SF(x − y)γ ν ψi(y)
]
,

×
{
DF(x −X)DF(y − Y)

[
ψ̄

p
f (X)γμ S

p
F(X − Y)γν ψ

p
i (Y )
]

+DF(x − Y)DF(y −X)
[
ψ̄

p
f (X)γν S

p
F(X − Y)γμ ψ

p
i (Y )
]}

. (9)

The second term in the curly brackets is the exchange term. We notice also that the
indices μ and ν are exchanged with respect to the direct term. This can be easily
understood, because the photon at Y propagates to x and thus the γ μ at x has to have
a corresponding γμ at Y . The current–current interaction enforces this structure. This
point can also be understood by adding the exchange term to the direct term of the
two-photon field in (6):

Aμ(x)Aν(y) = Aμ(x)Aν(y)|dir +Aμ(x)Aν(y)|exch , (10)

where the first contribution agrees with (6). The second contribution arises from the
possibility that the photon described by the vector potential Aμ(x) originates from
the proton at a point Y prior to the interaction point X of the second photon which
produces the field Aν(y). Of course the names given to the coordinates X and Y are
unimportant and could be interchanged since these are integration variables. What
does matter, however, is the sequential ordering of the two interaction vertices. There-
fore the exchange contribution

Aμ(x)Aν(y)|exch = ie2
p

∫
d4X d4Y DF(x − Y)DF(y −X)

× ψ̄
p
f (X)γν S

p
F(X − Y)γμ ψ

p
i (Y ) (11)

differs from the “direct” term (6) in that the matrices γμ and γν are interchanged. Both
contributions have been added in (9).
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Note that (9) contains an integration over four time variables x0, y0, X0, Y0, each
integration extending over the whole real axis. This means that all 4! = 24 possible
time orderings are allowed and will contribute to the amplitude. This is automatically
taken care of by the use of the covariant Feynman propagators SF and DF which
describe the propagation in both directions of the relative time.

As an example let us look at the special time ordering X0 > y0 > x0 > Y0. The cor-
responding exchange graph is depicted in Fig. 3.18. The first photon is emitted by the
proton at Y and travels to point x where it creates an e+e− pair.14 The second photon
originates from pair annihilation at point y and later is absorbed by the proton at X.
In all one could draw 2 · 24 = 48 different graphs which, however, can be condensed
in one direct and one exchange graph. Thus it is clear that the absolute positions of
the vertices when drawing a Feynman diagram in coordinate space is not intended
to imply a specific time ordering. All that matters is the topological structure of the
graph.

In order to develop a generalrule we will now consider the factors i that occur in

Fig. 3.18. One of several time
orderings of the general ex-
change graph depicted
in Fig. 3.17. In contrast to the
usual convention for Feynman
graphs here the relative posi-
tion of the vertices has been
assumed to have a physical
meaningthe S-matrix elements. The nondiagonal S-matrix elements generally contain a fac-

tor −i (cf. (1.86) and (2.42)). Also, we introduced a factor i in the expression of
the electron propagator in (2) in order to factorize the second-order transition cur-
rents. This should also be valid in higher orders, and therefore we generally associate
a factor i with the electron propagator, writing iSF(x − y). For the proton propaga-
tor we do the same, i.e. Sp

F(x − y) → iSp
F(x − y). In order to preserve symmetry we

require this procedure for every fermion propagator. This can in fact be done if we
substitute simultaneously iSF(x − y) for each electron line and (−i/A) for each pho-
ton field /A. Then the total nth order scattering amplitude does not change, because
(cf. e.g. (1) or (2.44)) when following an electron line in a Feynman graph we may
write

−ie /ASF e /ASF . . . e /A = (−ie /A) iSF (−ie /A) . . . (−ie /A) . (12)

Note, that the overall factor (−i) is included in the extra factor /A in the first position
of the amplitude. Alternatively we may say, that at every electron vertex (point of
creation or absorption of a photon A) we write a factor −i in addition to γμ. For
symmetry reasons we will have to attach factors −i also to each proton vertex and
factors i to each proton propagator S

p
F. This will lead to a consistent description if

a factor i is attached also to each photon propagator DF. We can easily check that this
procedure indeed gives the right overall factor for the two-photon field of (6):

Aμ(x)Aν(y)|dir =
∫

d4X d4Y iDF(x −X) iDF(y − Y)

× ψ̄f (X)(−iep)γμ iSp
F(X − Y)(−iep)γν ψ

p
i (Y ) . (13)

Generalizing from this result we arrive at a general rule for the i factors: At every
vertex in a graph (electron or proton vertex) there is a factor −i, for every line (no
matter whether electron, proton, or photon line) we have a factor +i. It can be easily
seen that this rule does not change the amplitude S

(2)
f i in (9).

14 Also graphs involving the virtual production of proton–antiproton pairs will occur. However, this
implies energies where it is not justified to treat the proton as an elementary Dirac particle.
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We shall apply this rule in all forthcoming calculations, so we do not have to bother
any more about the i factors and thus about the phase of the graph.

In practice it is convenient to calculate in momentum space. Therefore we deter-
mine the Fourier transforms of the expressions occurring in (8). The external particles
(i.e. the incoming and outgoing electron and proton) are described by plane waves, as
we did before (cf. (3.2), (3.3) and (3.54)). The first term of (9) becomes

S
(2)
f i (dir.) = (4π)2e4

V 2

∫
d4x d4y d4X d4Y

×
√

m2
0

EfEi

√√√√ M2
0

E
p
f E

p
i

∫
d4q1

(2π)4

d4q2

(2π)4

d4p

(2π)4

d4P

(2π)4

e−iq1·(x−X)

q2
1 + iε

e−iq2·(y−Y)

q2
2 + iε

×
[

eipf ·x ū(pf , sf ) γ
μ e−ip·(x−y)

/p −m0 + iε
γ ν u(pi, si) e−ipi ·y

]

×
[

eiPf ·Xū(Pf ,Sf )γμ
e−iP ·(X−Y)

/P −M0 + iε
γνu(Pi, Si)e

−iPi ·Y
]

. (14)

Here we have used the expressions for electron and proton propagators from (2.7),
(2.13) and (2.19) and further the Fourier representation of the photon propagators
known from (3.50). We can easily perform the integration over the space coordinates:

∫
d4x d4y d4X d4Y e−iq1·(x−X) e−iq2·(y−Y) eipf ·x

× e−ip·(x−y)e−ipi ·y eiPf ·X e−iP ·(X−Y) e−iPi ·Y

= (2π)4 δ4(q1 + p − pf ) (2π)
4 δ4(q2 − p + pi)

× (2π)4δ4(−q2 − P + Pi)(2π)
4δ4(−q1 + P − Pf ) . (15)

Each δ4 function expresses the energy–momentum conservation at one of the four
vertices. Now we can integrate over the momentum variables q2, p, and P occurring
in (14):

∫
d4q1

(2π)4

d4q2

(2π)4

d4p

(2π)4

d4P

(2π)4
(2π)4 δ4(q1 + p − pf )

× (2π)4 δ4(q2 − p + pi)(2π)
4 δ4(−q2 − P + Pi)

× (2π)4δ4(−q1 + P − Pf )
1

q2
1 + iε

1

q2
2 + iε

×
[
ū(pf , sf ) γ

μ 1

/p −m0 + iε
γ ν u(pi, si)

]

×
[
ū(Pf , Sf ) γμ

1

/P −M0 + iε
γν u(Pi, Si)

]

= (2π)4 δ4(Pf + pf − Pi − pi)

∫
d4q1

(2π)4

1

q2
1 + iε

1

(q − q1)2 + iε



Example 3.6

3.2 Scattering of an Electron off a Free Proton: The Effect of Recoil 127

×
[
ū(pf , sf ) γ

μ 1

/pf − /q1 −m0 + iε
γ ν u(pi, si)

]

×
[
ū(Pf , Sf ) γμ

1

/P f + /q1 −M0 + iε
γν u(Pi, Si)

]
, (16)

with

q ≡ pf − pi = − (Pf − Pi) (17)

being the fixed momentum transfer to the electron. According to (14) the contribution
to the second-order S-matrix element in the direct scattering graph is given by

S
(2)
f i (dir.) = (4π)2e4

V 2

√
m2

0

EfEi

√√√√ M2
0

E
p
f E

p
i

(2π)4δ4(Pf + pf − Pi − pi)

×
∫

d4q1

(2π)4

1

q2
1 + iε

1

(q − q1)2 + iε

×
[
ū(pf , sf ) γ

μ 1

/pf − /q1 −m0 + iε
γ ν u(pi, si)

]

×
[
ū(Pf , Sf ) γμ

1

/P f + /q1 −M0 + iε
γν u(Pi, Si)

]
. (18)

Again δ4(Pf + pf − Pi − pi) guarantees energy–momentum conservation. It is very
satisfying to recognize that these conservation laws follow automatically. We have
further to consider the integral

∫
d4q1/(2π)4 . . . over the four–momentum q1. q1 rep-

resents the four–momentum “circling around” in a closed loop, which appears in the
graph (see Fig. 3.19) corresponding to the process (18) in Fourier space. As we have
seen in (15), energy–momentum conservation is fulfilled at each vertex, for instance
the upper right vertex yields

Pf + q1 − q1 = Pf ,

the upper left

Fig. 3.19. The second-order di-
rect graph for electron–proton
scattering in momentum space

pf − q1 + q1 = pf ,

the lower left

pi + (q − q1) = pf − q1 ,

and finally the lower right

Pi − (q − q1) = Pf + q1 .

According to (18) we have to integrate over all intermediate momenta q1. The inter-
mediate momenta in the loop of Fig. 3.19 have just the appropriate value to conserve
the total momentum relation

Pf + pf = Pi + pi

for every value of q1.
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Fig. 3.20. The exchange
graph in momentum space

In addition each vertex contributes a factor of the form −ieγμ to (18), whereas each
external particle yields a factor

√
m0/E. Note the matrix factors in (18) of the form

i

/p − m + iε

being inserted between the γ matrices that represent the vertices. These factors repre-
sent the propagator of the internal virtual fermionic lines.

We shall soon have had enough practice to be able to write down directly the correct
mathematical expressions corresponding to a given Feynman diagram. For instance,
we can easily draw the exchange graph corresponding to the direct graph (Fig. 3.19).
Formulated in momentum space it is depicted in Fig. 3.20. It contributes to the same
amplitude as the direct graph. Again we have individual energy–momentum conser-
vation at each vertex, which leads to conservation of total energy–momentum. We can
write down at once the contribution of this graph to the amplitude S

(2)
f i according to

the rules we just derived:

S
(2)
f i (exch.) = (4π)2e4

V 2

√
m2

0

EfEi

√√√√ M2
0

E
p
f E

p
i

(2π)4δ4(Pf + pf − Pi − pi)

×
∫

d4q1

(2π)4

1

q2
1 + iε

1

(q − q1)2 + iε

×
[
ū(pf , sf ) γ

μ 1

/pf − /q1 −m0 + iε
γ ν u(pi, si)

]

×
[
ū(Pf , Sf ) γν

1

/P i − /q1 −M0 + iε
γμ u(Pi, Si)

]
. (19)

Performing the four-dimensional integrals occurring in (18) and (19) is a difficult task.
In the limit of a static point-like charged proton at rest this was done by Dalitz15 for
the first time. We shall discuss this problem further in Exercise 3.7, but we remark
here that even in this special case problems occur owing to the infinite range of the
Coulomb potential.

15 R.H. Dalitz: Proc. Roy. Soc. (London) A206, 509 (1951).



3.2 Scattering of an Electron off a Free Proton: The Effect of Recoil 129

EXERCISE

3.7 Static Limit of the Two-Photon Exchange

Problem. Write down the scattering amplitude of a two-photon exchange between
electron and proton corresponding to the two graphs of Fig. 3.21. Show that in the
static limit (the proton has infinite mass) the result coincides with the amplitude of
electron scattering at a Coulomb potential in second order Born approximation.

Fig. 3.21. The direct and ex-
change two-photon scattering
graphs

Solution. By use of the Feynman rules the sum of both graphs can be written as (the
phase factor resulting from four internal lines and four vertices is (i)4(−i)4 = +1)

S
(2)
f i = e4

V 2

√
m2

0

EfEi

√√√√ M2
0

E
p
f E

p
i

(2π)4 δ4(Pf + pf − Pi − pi)

×
∫

d4q1

(2π)4

4π

(q1 − pf )2 + iε

4π

(pi − q1)2 + iε

×
[
ū(pf , sf ) γμ

1

/q1 −m0 + iε
γν u(pi, si)

]

× ū(Pf , Sf )

[
γ μ 1

/P i + /pi − /q1 −M0 + iε
γ ν

+γ ν 1

/P f − /pi + /q1 −M0 + iε
γ μ

]
u(Pi, Si) , (1)

where the capital letters refer to the proton and the lower-case ones to the electron. (1)
differs from the corresponding expressions (16) and (17) in Example 3.6 in the way
the momentum variables are labeled. Both results agree if q1 is replaced by pf − q1,
which is admissible since q1 is only an integration variable. In the limit of very large
proton mass (M0 � Ei,Ef ) the recoil energy becomes negligible, i.e.,

E
p
f ≈ E

p
i → M0 ,

M2
0

E
p
f E

p
i

→ 1 ,

δ(E
p
f +Ef −E

p
i −Ei) → δ(Ef −Ei) ,
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u(Pf ,Sf ) → u(0, Sf ) ,

u(Pi, Si) → u(0, Si) .

Taking only the leading powers of M0 the matrix element involving the proton spinors
(1) reduces to

Pμν → ū(0, Sf )

[
γ μ M0γ0 + /pi − /q1 +M0

(Pi + pi − q1)2 −M2
0 + iε

γ ν

+ γ ν M0γ0 − /pi + /q1 +M0

(Pf − pi + q1)2 −M2
0 + iε

γ μ

]
u(0, Si)

→ ū(0, Sf )

[
γ μ M0(γ0 + 1)

M2
0 + 2M0(Ei − q0

1 )−M2
0 + iε

γ ν

+ γ ν M0(γ0 + 1)

M2
0 − 2M0(Ei − q0

1 )−M2
0 + iε

γ μ

]
u(0, Si)

= ū(0, Sf )

[
γ μ γ0 + 1

2(Ei − q0
1 )+ iε

γ ν + γ ν γ0 + 1

−2(Ei − q0
1 )+ iε

γ μ

]
u(0, Si) .

(2)

Now we have

γ0 + 1 = 2

(
1 0
0 0

)
,

and u(0, S) has just upper components. Therefore,

u(0, S) =
(
χs

0

)
, γ0 u(0, S) = u(0, S) .

On the other hand,

γ u(0, S) =
(

0
−σχs

)

has only nonvanishing lower components, and thus

(γ0 + 1) γ u(0, S) = 0 .

Therefore, the only non vanishing term in Pμν is

Pμν = gμ0gν0u†(0, Sf ) u(0, Si)

(
1

Ei − q0
1 + iε

− 1

Ei − q0
1 − iε

)
. (3)

The two pole terms can be combined to yield a delta function which is seen from the
identity

1

x ± iε
= P

(
1

x

)
∓ iπδ(x) . (4)
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Two proofs of this relation are given in Exercise 7.3, equation (6) ff. We apply (4) to
(3) and finally get

Pμν = −2π i gμ0gν0δSf Si δ(Ei − q0
1 ) . (5)

By inserting P into Sf i and considering that the proton’s degrees of freedom (spin,
momentum) are not to be observed and thus in the cross section can be summed over
(final values P f , Sf ) or averaged (initial spin Si ), we can substitute

(2π)3δ3(P f + pf − P i − pi ) → V .

δSf Si → 1 . (6)

This can be understood by applying the heuristically deduced relation (2π)3δ3(0) →
V (Sect. 3.2) to determine the cross section. Namely, the spin averaging and momen-
tum integration yields

1

2

∑
SiSf

∫
V

d3Pf

(2π)3

[
(2π)3δ3(P f + pf − P i − pi )

]2
δSiSf

= 1

2
2
∫

V
d3Pf

(2π)3
(2π)3δ3(P f + pf − P i − pi )[(2π)3δ3(0)︸ ︷︷ ︸

V

] → V 2 .

The same effect is achieved if one substitutes (6) in the scattering matrix element and
forgets about the proton altogether. After integrating over q0

1 we get

S
(2)
f i → −ie4

V

√
m2

0

EfEi

2πδ(Ef −Ei)

∫
d3q

(2π)3

4π

|q − pf |2
4π

|q − pi |2

×
[
ū(pf , sf )

Eiγ0 + q · γ +m0

|pi |2 − |q|2 + iε
u(pi, si)

]
, (7)

which is valid in the limit M0 → ∞. In the electron matrix element use was made of
q0
i =Ei and thus q2−m2

0+iε=(E2
i −m2

0)−|q|2+iε=|pi |2−|q|2+iε. (7) is just the
amplitude of electron scattering at a Coulomb potential with charge e in second-order
Born approximation. As mentioned in Example 3.4 the integral is divergent owing to
the long range of the Coulomb interaction.

3.3 Scattering of Identical Fermions

Using the example of electron–electron and electron–positron scattering we shall dis-
cuss the general aspects of scattering of identical fermions and particle–antiparticle
scattering. To this end we can take over many of the results of electron–proton scat-
tering (Sect. 3.2). However, slight complications arise from the fact that the scattering
particles are of the same type. There is no way to tell which of the two emerging elec-
trons is the “incident” and which is the “target” particle. This ambiguity is present
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already in classical mechanics as depicted in Fig. 3.22. Classically, however, one can
trace the trajectories and distinguish between the two alternatives. In quantum physics
this is no longer possible and therefore the two processes can interfere. Therefore the
amplitudes of two indistinguishable processes, which differ in the association of mo-
mentum and spin variables (p′

1, s
′
1) and (p′

2, s
′
2) with the outgoing electron lines, have

to be added coherently.
Figure 3.23 shows the two lowest order Feynman graphs for electron–electron scat-

tering. The figure also illustrates the kinematic conditions for this scattering process.
We note the scattering amplitude of electron–electron scattering in momentum space
directly (compare (3.59) in Sect. 3.2)

Fig. 3.22. Classical scattering
trajectories of two identical par-
ticles leading to the same fi-
nal state. In quantum theory
both processes cannot be dis-
tinguished

Sf i = Sf i(dir.)+ Sf i(exch.)

= − e2 1

V 2

√
m2

0

E1E2

√
m2

0

E′
1E

′
2
(2π)4δ4(p1 + p2 − p′

1 − p′
2)

×
{
+ [ū(p′

1, s
′
1)(−iγμ)u(p1, s1)

] i4π

(p1 − p′
1)

2

× [ū(p′
2, s

′
2)(−iγ μ)u(p2, s2)

]

− [ū(p′
2, s

′
2)(−iγμ)u(p1, s1)

] i4π

(p1 − p′
2)

2

× [ū(p′
1, s

′
1)(−iγ μ)u(p2, s2)

]}
. (3.115)

Compared to electron–proton scattering there is a change of sign because ep=−e. The
overall minus sign stems from the photon propagator −4π/q2. Since electrons obey

Fig. 3.23. Direct and exchange
graph for the scattering of two
electrons in lowest order

Fermi statistics, the exchange graph has a minus sign. This yields an antisymmetric
scattering amplitude with respect to electron exchange in the final state (p′

1 ↔ p′
2)

or the initial state (p1 ↔ p2). If we were to calculate the scattering of identical Bose
particles, the total amplitude would be symmetric with respect to exchange of these
identical bosons. Section 3.7 will illustrate this, since there the amplitude for Compton
scattering is symmetric with respect to photon exchange, photons of course being
bosons.

Important remarks: (i) The matrix elements ūγμu are numbers (one for every μ)
and thus their order can be exchanged

ū(1)γμu(1) ū(2)γμu(2) = ū(2)γμu(2) ū(1)γ
μu(1) .

(ii) There are no additional normalization factors in (3.115). In principle one could
think of factors like 1√

2
or 1

2 – they do not enter here. Also the rules of calculating
the differential cross section are not changed by the occurrence of identical particles.
We have merely to take care of introducing a factor 1

2 in the calculation of the total
cross section in order to prevent double-counting of the identical particles in the final
state. On the other hand, there is no further factor due to the presence of identical
particles in the initial state, because the incident flux stays the same whether there
are identical particles or not. We can control the validity of our considerations in the
case of electron–electron scattering by considering the scattering amplitude (3.115) for
forward scattering. Forward scattering implies small momentum transfer (p1 − p′

1)
2.

Therefore in (3.115) the direct term is large compared to the exchange term so that the
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latter can be neglected. In this case (3.115) is reduced to the amplitude of electron–
proton scattering (to lowest order) already derived in Sect. 3.2, (3.59).

Now we determine the differential cross section of scattering of unpolarized elec-
trons. We start with

dσ =
∫ |Sf i |2

T · V · 1
V

· 1
1
V
vrel

V d3p′
1

(2π)3

V d3p′
2

(2π)3
. (3.116)

The first factor denotes the transition rate per unit volume and time per electron
(1/V )−1, the second one describes the division by the incident electron flux, and
the last two factors give the number of final states in phase space. We will calculate
dσ in the center-of-mass frame of the incoming electrons. In this frame both particles
have the same energy E1 = E2 = E. The center-of-mass energy does not change in
the collision, i.e. it is E′

1 = E′
2 = E. Indeed, in the center-of-mass frame momentum

conservation yields

p1 + p2 = p′
1 + p′

2 = 0 , and thus p′
1 = −p′

2 .

From this the energies follow:

E′
1 =
√
m2

0 + p′2
1 = E′

2 =
√
m2

0 + p′2
2 .

Energy conservation demands that

E1 +E2 = E′
1 +E′

2 ,

which gives

E1 = E2 = E′
1 = E′

2 ≡ E .

With β being the velocity of one electron with respect to the center-of-mass frame,
the relative velocity of the colliding electrons in the center-of-mass frame is given by

vrel = 2β . (3.117)

For relativistic energies this relative velocity approaches twice the velocity of light.
On first sight one might suspect a contradiction with special relativity. This, in fact, is
not the case, because the velocity v of one electron as seen from the other one is given
by the well-known equation for the addition of velocities:

v = v1 + v2

1 + v1v2/c2
= β + β

1 + β · β c ,

which can at best reach the velocity of light (v → c) for β → 1. By observing the
electrons from the center-of-mass frame, however, their relative velocity is just the
difference of their velocities in this system, which is expressed by (3.117). This also
follows from the covariant flux factor which was introduced in (3.77)

m0

E1

m0

E2

1

|vrel| = m2
0√

(p1 ·p2)2 −m4
0

= m2
0√

(E2 + p2)2 −m4
0

= m2
0√

(E2 + p2)2 − (E2 − p2)2
= m2

0

E2

1

2|p|/E . (3.118)
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From (3.115) and (3.116) and utilizing [(2π)4δ4(p1 +p2 −p′
1 −p′

2)]2 = V T (2π)4 ×
δ4(p1 + p2 − p′

1 − p′
2) we get the spin-averaged differential scattering cross section

(see also (3.79))

dσ̄ = m4
0

(2π)2E42β

∫
|Mfi |2 δ4(p′

1 + p′
2 − p1 − p2)d

3p′
1 d3p′

2 , (3.119)

with the squared invariant matrix element

|Mfi |2 = e4(4π)2 1

4

∑
s′
1s1

∑
s′
2s2

∣∣∣∣ū(p′
1, s

′
1)γμu(p1, s1)

× 1

(p1 − p′
1)

2
ū(p′

2, s
′
2)γ

μu(p2, s2)

−ū(p′
2, s

′
2)γμu(p1, s1)

1

(p1 − p′
2)

2
ū(p′

1, s
′
1)γ

μu(p2, s2)

∣∣∣∣
2

. (3.120)

The averaging over the initial spins s1 and s2 is responsible for the factor 1
4 . We can

easily determine the sums over the spins and convert them into traces with the help of
the identity (3.33) in Sect. 3.1. Since γ̄μ = γμ (3.29a), we obtain

|Mfi |2 = e4(4π)2 1

4

{
1

(p1 − p′
1)

4
Tr

[
/p′

1 +m0

2m0
γμ

/p1 +m0

2m0
γν

]

× Tr

[
/p′

2 +m0

2m0
γ μ /p2 +m0

2m0
γ ν

]
− 1

(p1 − p′
1)

2(p1 − p′
2)

2

× Tr

[
/p′

1 +m0

2m0
γμ

/p1 +m0

2m0
γν

/p′
2 +m0

2m0
γ μ /p2 +m0

2m0
γ ν

]
+ (p′

1 ↔ p′
2)

}
.

(3.121)

By writing (p′
1 ↔ p′

2) we have abbreviated the terms that can be generated from those
written down by exchanging p′

1 and p′
2. (3.121) contains a sum of four trace terms

which are produced by squaring an amplitude consisting of two terms. Let us consider
these traces, their origin, and their evaluation in more detail. We start with the first
trace term in (3.121) which already was encountered in Sect. 3.2, (3.33). We will
repeat the calculation here to gain familiarity with the trace technique. The spin sum
to be calculated to obtain the first contribution to (3.121) obviously is
∑
s′
1s1

∑
s′
2s2

(
ū(p′

1, s
′
1)γμu(p1, s1) ū(p

′
2, s

′
2)γ

μu(p2, s2)
)

× (ū(p′
1, s

′
1)γνu(p1, s1) ū(p

′
2, s

′
2)γ

νu(p2, s2)
)∗

=
⎡
⎣∑

s′
1s1

(
ū(p′

1, s
′
1)γμu(p1, s1)

) (
ū(p′

1, s
′
1)γνu(p1, s1)

)∗
⎤
⎦

×
⎡
⎣∑

s′
2s2

(
ū(p′

2, s
′
2)γ

μu(p2, s2)
) (

ū(p′
2, s

′
2)γ

νu(p2, s2)
)∗
⎤
⎦ . (3.122)
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It is sufficient to consider just the first sum over s′
1, s1, since the second sum s′

2, s2 has
the same structure. The complex conjugate product of spinors can be rewritten as
(
ū(p′

2, s
′
2)γνu(p2, s2)

)† = u†(p2, s2)γ
†
ν γ

†
0 u(p

′
2, s

′
2)

= ū(p2, s2)γ0γ
†
ν γ0u(p

′
2, s

′
2)

= ū(p2, s2)γ̄νu(p
′
2, s

′
2) , (3.123)

with the barred gamma matrix γ̄ν = γν (see (3.29a)). The evaluation of the spin sum-
mation as usual makes use of the projection operators (3.31):

∑
s1

uβ(p1, s1)ūλ(p1, s1) =
(

/p1 +m0

2m0

)
βλ

. (3.124)

The sum over s1 and s′
1 in this way leads to

∑
s1s

′
1

(
ū(p′

1, s
′
1)γμu(p1, s1)

)(
ū(p′

1, s
′
1)γνu(p1, s1)

)∗

=
∑
s′
1s1

(
ū(p′

1, s
′
1)γμu(p1, s1)

)(
ū(p1, s1)γ̄νu(p

′
1, s

′
1)
)

=
∑
s′
1

ū(p′
1, s

′
1)γμ

(
/p1 +m0

2m0

)
γ̄νu(p

′
1, s

′
1)

=
∑
αβ

(
γμ

/p1 +m0

2m0
γ̄ν

)
αβ

∑
s′
1

uβ(p
′
1, s

′
1)ūα(p

′
1, s

′
1)

= Tr

[
γμ

/p1 +m0

2m0
γ̄ν

/p′
1 +m0

2m0

]
. (3.125)

Analogously the sum
∑

s′
2s2

in (3.122) can be calculated yielding the total result

∑
s′
1s1

∑
s′
2s2

∣∣(ū(p′
1, s

′
1)γμu(p1, s1)

) (
ū(p′

2, s
′
2)γ

μu(p2, s2)
)∣∣2

= Tr

[
γμ

/p1 +m0

2m0
γ̄ν

/p′
1 +m0

2m0

]
Tr

[
γ μ /p2 +m0

2m0
γ̄ ν /p′

2 +m0

2m0

]
. (3.126)

Since γ̄ν = γν , this is just the result stated in (3.121). Now we consider the more
complicated mixed terms in the square | · · · |2 of (3.120). The first of these is∑

s′
1s1

∑
s′
2s2

[(
ū(p′

1, s
′
1)γμu(p1, s1)

) (
ū(p′

2, s
′
2)γ

μu(p2, s2)
)]

× [(ū(p′
2, s

′
2)γνu(p1, s1)

) (
ū(p′

1, s
′
1)γ

νu(p2, s2)
)]∗

=
∑
s′
1s1

∑
s′
2s2

(
ū(p′

1, s
′
1)γμu(p1, s1)

) (
ū(p1, s1)γ̄νu(p

′
2, s

′
2)
)

× (ū(p′
2, s

′
2)γ

μu(p2, s2)
) (

ū(p2, s2)γ̄
νu(p′

1, s
′
1)
)

=
∑
s′
1

∑
s′
2

(
ū(p′

1, s
′
1)γμ

/p1 +m0

2m0
γ̄νu(p

′
2, s

′
2)

)
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×
(
ū(p′

2, s
′
2)γ

μ /p2 +m0

2m0
γ̄ νu(p′

1, s
′
1)

)

=
∑
s′
1

ū(p′
1, s

′
1)γμ

/p1 +m0

2m0
γ̄ν

/p′
2 +m0

2m0
γ μ /p2 +m0

2m0
γ̄ νu(p′

1, s
′
1)

= Tr

[
γμ

/p1 +m0

2m0
γ̄ν

/p′
2 +m0

2m0
γ μ /p2 +m0

2m0
γ̄ ν /p′

1 +m0

2m0

]
. (3.127)

In the course of this derivation the identity (3.124) has been used four times. With
γ̄ν = γν we see that this trace is identical with the second trace in (3.121). It represents
the interference term of direct and exchange scattering.

In order to evaluate the traces we refer to the theorems we proved in the Mathemat-
ical Supplement 3.3. Let us consider the trace containing eight γ -matrices originating
from the interference term in (3.121). To make life easier here we consider only the
ultrarelativistic limit where E � m0 (the complete result is derived in Exercise 3.8).
Then we may neglect terms proportional to m2

0 and only one term in the expansion of
(3.127) remains. Using γ ν /p′

1γμ /p1γν = −2 /p1γμ /p′
1 (cf. Mathematical Supplement 3.3,

Theorem (8d)) this trace becomes

Tr
[
/p′

1γμ /p1γν /p
′
2γ

μ /p2γ
ν
]= −2 Tr

[
/p1γμ /p′

1 /p
′
2γ

μ /p2
]

= −8p′
1 ·p′

2 Tr
[
/p1 /p2
]

= −32(p′
1 ·p′

2)(p1 ·p2) , (3.128)

where we have applied Theorems (8c) and (2) in the last steps. In the same ultra-
relativistic approximation the traces occurring in the direct term in (3.121) can be
simplified to

Tr
[
/p′

1γμ /p1γν
]

Tr
[
/p′

2γ
μ /p2γ

ν
]

= 4
[
(p′

1)μ(p1)ν + (p′
1)ν(p1)μ − p′

1 ·p1gμν
]

× 4
[
(p′

2)
μ(p2)

ν + (p′
2)

ν(p2)
μ − p′

2 ·p2g
μν
]

= 32
[
(p′

1 ·p′
2)(p1 ·p2)+ (p′

1 ·p2)(p1 ·p′
2)
]
. (3.129)

This is a repetition of the calculation in Sect. 3.2, (3.91). The traces were converted
to the “slash” notation by introducing two unit vectors Aσ = gσ μ and Bσ = gσ ν so
that γμ = /A and γν = /B . This gives p′

1 · A = (p′
1)σA

σ = (p′
1)μ etc. and A · B =

AσBσ = gμν . Furthermore, in the calculation of (3.129) we used Theorems 2 and 3 of
Mathematical Supplement 3.3.

Putting together (3.128) and (3.129) the squared invariant matrix element (3.121)
reads in the ultrarelativistic limit

|Mfi |2UR

= e4(4π)2 1

4

{
32
[
(p′

1 ·p′
2)(p1 ·p2)+ (p′

1 ·p2)(p1 ·p′
2)
]

(p1 − p′
1)

4(2m0)4

−
[−32(p′

1 ·p′
2)(p1 ·p2)

]
(p1 − p′

2)
2(p1 − p′

1)
2(2m0)4

+ 32
[
(p′

1 ·p′
2)(p1 ·p2)+ (p′

2 ·p2)(p
′
1 ·p1)

]
(p1 − p′

2)
4(2m0)4

−
[−32(p′

1 ·p′
2)(p1 ·p2)

]
(p1 − p′

2)
2(p1 − p′

1)
2(2m0)4

}
. (3.130)
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The two interference terms, being complex conjugates of each other and at the same
time real-valued, are found to agree. The scattering cross section in the center-of-mass
frame is given by (3.119):

dσ̄UR = m4
0

(2π)2E42β

∫
|Mfi |2UR δ4(p′

1 + p′
2 − p1 − p2)4E′

1E
′
2

d3p′
1

2E′
1

d3p′
2

2E′
2

.

(3.131)

In the integral we introduced the factor 4E′
1E

′
2 in order to get the usual invariant

phase-space factor d3p′/2E′.
In the center-of-mass frame we have

p1 = (E1,p1) = (E,p) , p2 = (E2,p2) = (E,−p) ,

p′
1 = (E′

1,p
′
1) = (E′,p′) , p′

2 = (E′
2,p

′
2) = (E′,−p′) . (3.132)

In the second line we already made use of momentum conservation which gives
p′

1 = −p′
2. In the ultrarelativistic limit E � m0, i.e. p2 = E2 − m2

0 ≈ E2, the scalar
products needed in (3.130) are

p1 ·p2 = E2 − p1 ·p2 = E2 + p2 ≈ E2 +E2 = 2E2 ,

p′
1 ·p′

2 = E′2 − p′
1 ·p′

2 = E′2 + p′2 ≈ E′2 +E′2 = 2E′2 ,

p1 ·p′
2 = EE′ − p1 ·p′

2 = EE′ + p ·p′ = EE′ + |p|·|p′| cos θ

≈ EE′(1 + cos θ) = 2EE′ cos2 θ

2
,

p′
1 ·p2 = EE′ − p1

′ ·p2 = EE′ + p ·p′ ≈ 2EE′ cos2 θ

2
,

p1 ·p′
1 = EE′ − p1 ·p′

1 = EE′ − |p|·|p′| cos θ ≈ 2EE′ sin2 θ

2
, (3.133)

where θ denotes the scattering angle (cf. Fig. 3.24).
Fig. 3.24. Definition of the scat-
tering angle

The integral in (3.131) has the structure

I =
∫

d3p′
1

2E′
d3p′

2

2E′ δ4(p′
1 + p′

2 − p1 − p2) f (p′
1,p

′
2) , (3.134)

with f (p′
1,p

′
2) containing the squared invariant matrix element (3.130) and the factor

4E′2. According to Sect. 3.2, (3.74), the integral over p′
2 can be extended from three

to four dimensions:

∫
d3p′

2

2E′ =
∞∫

−∞
d4p′

2 δ(p′
2 ·p′

2 −m2
0)Θ
(
(p′

2)0
)
. (3.135)

This integration “eats” the four-dimensional delta function in (3.134) leading to

I =
∫ |p′

1|2d|p′
1|dΩ ′

1

2E′ δ
[
(p1 + p2 − p′

1)
2 −m2

0

]

×Θ(2E −E′)f (p′
1,p

′
2 = p1 + p2 − p′

1)
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=
2E∫

0

1

2
|p′

1|dE′dΩ ′
1δ
[
(p1 +p2)

2 −2(p1 +p2)·p′
1

]
f (p′

1,p
′
2 = p1 +p2 − p′

1)

= dΩ ′
1

2

2E∫

0

|p′
1|dE′ δ

[
(2E)2 − 2(2E)E′]f (p′

1,p
′
2 = p1 + p2 − p′

1)

= dΩ ′
1

2

|p′
1|

| − 4E|f (p′
1,p

′
2 = p1 + p2 − p′

1)

∣∣∣
E′=E

. (3.136)

If we insert this intermediate result into (3.131) we get the differential cross section in
the ultrarelativistic limit:
(

dσ̄

dΩ ′
1

)
UR

= m4
0

4π2E42β

|p′
1|

E

1

8
4E2 |Mfi |2UR

= e4(4π)2

4π2E42

1

16

1

8
E232

[
(p′

1 ·p′
2)(p1 ·p2)+ (p′

1 ·p2)(p1 ·p′
2)

(p1 − p′
1)

4

+ (p′
1 ·p′

2)(p1 ·p2)+ (p′
2 ·p2)(p

′
1 ·p1)

(p1 − p′
2)

4

+ 2
(p′

1 ·p′
2)(p1 ·p2)

(p1 − p′
2)

2(p1 − p′
1)

2

] ∣∣∣∣
p′

2=p1+p2−p′
1,E

′=E

. (3.137)

For an explicit evaluation of this result in terms of the scattering angle θ we insert
the scalar products of (3.133) and at various places neglect terms proportional to the
electron mass m0 � E. In particular, the momentum-transfer denominators are given
by

(p1 − p′
1)

2 = p2
1 + p′2

1 − 2p1 ·p′
1

= 2m2
0 − 2(E2 − p ·p′) ≈ −4E2 sin2 θ

2
,

(p1 − p′
2)

2 = p2
1 + p′2

2 − 2p1 ·p′
2

= 2m2
0 − 2(E2 + p ·p′) ≈ −4E2 cos2 θ

2
. (3.138)

This leads to the final expression

(
dσ̄

dΩ ′
1

)
UR

= (4π)2e4

(4π)2E22

[
2E22E2 + (2E2 cos2 θ

2

)2
(
4E2 sin2 θ

2

)2

+ 2E22E2 + (2E2 sin2 θ
2

)2
(
4E2 cos2 θ

2

)2 + 2
2E22E2

4E2 cos2 θ
2 4E2 sin2 θ

2

]

= α2

8E2

(
1 + cos4 θ

2

sin4 θ
2

+ 1 + sin4 θ
2

cos4 θ
2

+ 2

sin2 θ
2 cos2 θ

2

)
. (3.139)

The first and second terms originate from the squares of the direct matrix element and
the exchange matrix element, respectively, whereas the last term is the interference
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contribution. The elastic scattering of electrons is known as Møller scattering, named
after the author who first treated this process correctly using the Dirac equation.16

Thus (3.139) represents the ultrarelativistic limit of the Møller formula in the center-
of-mass frame.

The trigonometric expressions can be combined into the simpler formula

(
dσ̄

dΩ ′
1

)
UR

= α2

4E2

(3 + cos2 θ)2

sin4 θ
.

3.4 Electron–Positron Scattering:
Bhabha Scattering and Muon Pair Creation

The scattering of particles and antiparticles is closely related to the process of particle–
particle scattering. In fact, we will find that the knowledge of the scattering cross
section for one of the processes is sufficient to deduce the corresponding other cross
section.

In Example 3.4 we have obtained the amplitude for positron scattering at
a Coulomb potential. It was related to the corresponding process of electron
scattering by the replacement of an incoming electron spinor u(pi, si) with an
outgoing positron spinor v̄(pf , sf ) and vice versa. In the same way the am-
plitude for electron–positron scattering can be constructed. Written in momen-
tum space the direct amplitude (compare (3.115) in the previous section) be-
comes

Sf i(dir.) = +e2 1

V 2

√√√√ m2
0

E1Ē
′
2

√√√√ m2
0

E′
1Ē2

(2π)4 δ4(p1 − p̄′
2 − p′

1 + p̄2)

× [ū(p′
1, s

′
1)(−iγμ)u(p1, s1)

]

× i4π

(p1 − p′
1)

2

[
v̄(p̄2, s̄2)(−iγ μ)v(p̄′

2, s̄
′
2)
]
, (3.140)

where the bar over a variable is meant to indicate that this quantity refers to an an-
tiparticle. I.e. (p̄2, s̄2), (p̄′

2, s̄
′
2) are the momentum and spin of the incoming (outgoing)

positron. The additional overall minus sign relative to (3.115) stems from the factor εF

in (2.42), i.e., from the positron wave. The corresponding Feynman graph (Fig. 3.25a)
contains the labels −p̄′

2 and −p̄2 at the positron line which is drawn in the reversed
direction when compared to Fig. 3.23. As in the case of electron–electron scattering
there also exists an exchange amplitude. The corresponding Feynman graph is shown
in Fig. 3.25b).

Here the outgoing electron (p′
1) with positive energy is exchanged with the out-

going electron (−p̄2) with negative energy. Graph (b) can also be drawn as shown
in (c). Thus it can be interpreted as representing an incoming electron (p1) with
positive energy which by emitting a photon is scattered into an electron (−p̄2)

Fig. 3.25. Direct (a) and ex-
change (b) diagrams describ-
ing electron–positron scatter-
ing (“Bhabha scattering”). The
indices −p̄′

2 and −p̄2 of the
positron lines show that we
treat the positrons in the lan-
guage of electrons. Then the
positron is an electron with
negative four–momentum, in
particular with negative energy.
The exchange graph usually is
drawn as in part (c)

16 C. Møller: Ann. Phys. 14, 531 (1932).
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with negative energy moving backwards in time. The photon is absorbed by a neg-
ative energy electron (−p̄′

2) moving backwards in time. This electron is scattered
into a state with positive energy moving forwards in time. This is the interpreta-
tion purely in terms of electrons. Adopting the picture involving both electrons and
positrons we may say that an incoming electron (p1) and an incoming positron (p̄2)
are annihilated into a photon; the photon is again annihilated (“leptonized”) by cre-
ating an electron (p′

1)–positron (p̄′
2) pair. Both nomenclatures, the one using posi-

tive and negative energy electrons and the other using electrons and positrons, are
equivalent.

The exchange diagram translates into the following ‘annihilation amplitude’ in mo-
mentum space

Sf i(exch.) = −e2 1

V 2

√√√√ m2
0

E1Ē
′
2

√√√√ m2
0

E′
1Ē2

(2π)4 δ4(p1 − p̄′
2 − p′

1 + p̄2)

× [v̄(p̄2, s̄2)(−iγμ)u(p1, s1)
]

× i4π

(p1 + p̄2)2

[
ū(p′

1, s
′
1)(−iγ μ)v(p̄′

2, s̄
′
2)
]
, (3.141)

which has a relative minus sign compared with the direct amplitude (3.140). This
can be understood in the following way. The initial state (before interaction) consists
of an electron (p1) with positive energy and a sea of electrons with negative energy
containing a hole with four–momentum −p̄2. The occupied Dirac sea contains an
electron with four–momentum −p̄′

2. According to Fermi statistics, the initial state,
containing the electrons p1 and −p̄′

2, has to be antisymmetric with respect to the
exchange p1 ↔ −p̄′

2. In the final state we have the analogous antisymmetry concern-
ing p′

1 ↔ −p̄2. In other words: Within our adopted “electron language” the outgoing
electrons in Fig. 3.25a with momenta p′

1 and −p̄2 have to be antisymmetric. We can
immediately check that this antisymmetry is fulfilled by the amplitude (3.141). Of
course there is also antisymmetry with respect to all other particles in the Dirac sea,
but these do not show up in the scattering process. Thus we can forget them in our
considerations. Again this discussion demonstrates the advantage and clarity of the
electron formalism.

Apart from the exchange of spinors, the annihilation amplitude corresponding to
Fig. 3.25c has one qualitative difference compared to the scattering processes we have
studied up to now: The virtual photon is timelike, i.e. its momentum has the property
q2 > 0. This is most easily seen in the center-of-mass frame where p1 = (E,p), p̄2 =
(E,−p), q = (2E,0). In ordinary scattering processes the exchanged photons are
spacelike, q2 < 0. Although being closely related to each other, processes involving
timelike and spacelike photons may have quite different properties.

To evaluate the cross section for elastic electron–positron scattering we can proceed
exactly as in Sect. 3.3. Equation (3.119) remains valid and (3.121) for the squared
spin-averaged invariant matrix element becomes

|Mfi |2 = e4(4π)2 1

4

{
1

(p1 − p′
1)

4

× Tr

[
/p′

1 +m0

2m0
γμ

/p1 +m0

2m0
γν

]
Tr

[
− /̄p2 +m0

2m0
γ μ− /̄p

′
2 +m0

2m0
γ ν

]
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− 1

(p1 − p′
1)

2(p1 + p̄2)2

× Tr

[
/p′

1 +m0

2m0
γμ

/p1 +m0

2m0
γν

− /̄p2 +m0

2m0
γ μ− /̄p

′
2 +m0

2m0
γ ν

]

+ (p′
1 ↔ −p̄2)

}
. (3.142)

Here we can make a very important observation. The result (3.142) could have been

Table 3.1. Electron–electron
scattering and electron–posit-
ron scattering are related by
crossing symmetry

e− + e− e− + e+

p1 p1

p′
1 p′

1

p2 −p̄′
2

p′
2 −p̄2obtained from the corresponding expression (3.121) for electron–electron scattering

simply by using the translation Table 3.1 for the momentum variables. This substitu-
tion rule has very general validity. It is a special case of the law of crossing symmetry.

Fig. 3.26. Three processes
which are related by crossing
symmetry

This tells us that the S-matrix elements of the processes which are related to each other
by an exchange of incoming particles and outgoing antiparticles etc. are essentially the
same. One only has to exchange the corresponding momentum variables in the expres-
sion for the S-matrix element. For example from the amplitude of a two-body reaction
A+B → C +D we can obtain the corresponding expression involving antiparticles,
e.g. A+ D̄ → C + B̄ (see Fig. 3.26) by simply exchanging the momentum variables
pB → −pD , pD → −pB . This rule holds for the exact amplitudes as well as in any
order of perturbation theory. Also processes which differ in the grouping of incoming
and outgoing particles are related to each other. E.g. the matrix element of the three-
body decay A → B̄ + C + D can be derived from that of the two-body scattering
process.17

If we have obtained an expression for one of the matrix elements we get the corre-
sponding results for the other processes related by crossing symmetry for free, i.e. by
an analytic continuation in the momentum variables.

Using the substitution rule (p2 → −p̄′
2, p′

2 → −p̄2) the results from electron–
electron scattering can be immediately translated to the case of electron–positron
scattering. Thus the cross section for unpolarized elastic e+e− scattering in the ul-
trarelativistic limit (see (3.137)) becomes
(

dσ̄

dΩ ′
1

)
UR

= e4

2E2

[
(p′

1 ·p̄2)(p1 ·p̄′
2)+ (p′

1 ·p̄′
2)(p1 ·p̄2)

(p1 − p′
1)

4

+ (p′
1 ·p̄2)(p1 ·p̄′

2)+ (p̄2 ·p̄′
2)(p

′
1 ·p1)

(p1 + p̄2)4

+ 2
(p′

1 ·p̄2)(p1 ·p̄′
2)

(p1 + p̄2)2(p1 − p′
1)

2

] ∣∣∣∣
p̄′

2=p1+p̄2−p′
1,E

′=E

= α2

8E2

(
1 + cos4 θ

2

sin4 θ
2

+ 1 + cos2 θ

2
− 2 cos4 θ

2

sin2 θ
2

)
. (3.143)

We have used p1 · p̄2 = p1
′ · p̄′

2 = 2E2, p1 · p̄′
2 = p1

′ · p̄2 = 2E2 cos2 θ
2 , and p1 ·p1

′ =
p̄2 · p̄′

2 = 2E2 sin2 θ
2 . The full result18 valid for arbitrary energies will be derived in

Exercise 3.8.

17 Note, however, that a process may be forbidden by the energy–momentum conservation law. I.e. the
delta function by which the squared amplitude is multiplied to get the cross section (or decay rate)
may vanish.
18 H.J. Bhabha: Proc. Roy. Soc. (London) A154, 195 (1936).
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Fig. 3.27. The differential
cross section for Bhabha
scattering as a function of the
cosine of the scattering angle.
The measurements were
performed at five different en-
ergies

√
s =
√
(p1 + p2)

2 =
2E between 14 GeV and
43.6 GeV. The solid curves
are the prediction of QED,
(3.143)

The process of elastic electron–positron scattering is also known under the name of
Bhabha scattering. The validity of the Bhabha formula has been verified in many ex-
periments, mainly at high energies. It describes the “elastic background” in all exper-
iments performed at electron–positron colliders. An example19 is shown in Fig. 3.27.
It is essential to include all three contributions (the direct, annihilation and interference
terms) to get agreement with the measurements.

There are, however, processes where only the annihilation diagram can contribute.
This is the case if the initial and final states consist of particle–antiparticle pairs of
different type. The simplest example is the process of muon pair creation e+ + e− →
μ+ + μ−. Since muons differ from electrons just by their much higher mass (mμ =
105.6584 MeV compared to me = 0.510999 MeV) we can simply take that part of the
Bhabha formula which originates from the annihilation diagram. In the ultrarelativistic
limit (E � mμ) the differential cross section for muon pair creation thus becomes

(
dσ̄

dΩ ′
1

)
e++e−→μ++μ−

= α2

16E2

(
1 + cos2 θ

)
. (3.144)

Integration over the solid angle gives the total cross section

σ̄e++e−→μ++μ− = π

3

α2

E2
. (3.145)

Finally we note that Quantum Electrodynamics no longer gives a correct description
of annihilation processes of the type e+ + e− → l+ + l− (where l refers to any lep-
tons) if the available energy comes close to the mass of the neutral intermediate vector
boson Z, which is mZ = 91.16 GeV. This particle can be produced “on the mass shell”

19 TASSO Collaboration, W. Braunschweig et al.: Z. Physik C37, 171 (1988).
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Fig. 3.28. (a) Total cross sec-
tion for the process e+ + e−
→ μ+ + μ− as a function of
the squared center-of-mass
energy s = (2E)2, com-
pared with the prediction
of (3.145). (b) Differential
cross section for muon pair
creation at center-of-mass
energy s = 44.8 GeV. The
angular distribution deviates
from the QED prediction of
(3.144) (dashed line). The fit
to the data (solid line) shows
an asymmetry which results
from the influence of the
weak interaction

as a resonance (the width is ΓZ = 2.53 GeV) and then completely dominates over the
contribution from the virtual photon.20 The theory of electroweak interactions gives
a unified description of both contributions. (See W. Greiner and B. Müller: Theoreti-
cal Physics, Vol. 5, Gauge Theory of Weak Interactions (Springer, Berlin, Heidelberg,
New York, 2000).)

Figure 3.28 shows the measured total muon pair cross section21 which agrees well
with the prediction of (3.145). Already well below the Z-resonance energy, however,
the measured angular distribution22 shows a notable deviation from the prediction of
pure QED (dashed line).

If the theoretically well understood contribution from the weak interaction is in-
cluded the predictions of QED compare well with experimental data. (In order to get
quantitative agreement radiative corrections of the order α3 have to be taken into ac-
count). From this we conclude that the electron is a pointlike elementary particle.
An extended composite object would be described by a momentum-dependent form-
factor F(q2) as discussed in Exercise 3.5 for the case of electron–nucleon scattering.

20 The search for new particles via their signature as resonances in Bhabha scattering in the MeV
energy region has been reviewed in A. Scherdin, J. Reinhardt, W. Greiner, B. Müller: Rep. Prog.
Phys. 54, 1 (1991).
21 TASSO Collaboration, W. Braunschweig et al.: Z. Physik C40, 163 (1988).
22 JADE Collaboration, W. Bartel et al.: Z. Physik C30, 371 (1986).
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Experiments tell us that for the electron F(q2) = F(0) up to momentum transfers
of several hundred GeV. This implies that the electron is a pointlike object down to
a distance of at least re < 10−16 cm! The same conclusion also holds for the heavy
leptons μ and τ .

EXERCISE

3.8 Mandelstam Variables Applied to Møller and Bhabha Scattering

Problem. (a) Show that the kinematics of any binary scattering process A + B →
C +D can be expressed in terms of the three Lorentz-invariant Mandelstam variables

s = (pa + pb)
2 = (pc + pd)

2 ,

t = (pc − pa)
2 = (pd − pb)

2 ,

u = (pc − pb)
2 = (pd − pa)

2 . (1)

Prove the identity

s + t + u = m2
a +m2

b +m2
c +m2

d . (2)

(b) Derive the differential cross sections for electron–electron and electron–positron
scattering in terms of the Mandelstam variables. Do not neglect the electron mass in
this calculation.
(c) Write down explicit results for the Møller and Bhabha cross sections in the center-
of-mass system and in the laboratory system.

Solution. (a) The two-body scattering process is described by the 16 four–momentum
variables pa , pb , pc, pd . The equivalence principle of special relativity demands that
observable quantities can be expressed in terms of Lorentz invariants. Out of the four
Lorentz vectors pi(i = a, b, c, d) one can construct 10 scalar products pi · pj where
j ≥ i. Four of these are constrained by the relativistic energy–momentum relations

p2
i = m2

i , (i = a, b, c, d) . (3)

The remaining six degrees of freedom still are interdependent since energy–momentum
conservation must be satisfied by any scattering process

pa + pb = pc + pd . (4)

This gives four additional constraints, leading to the conclusion that two indepen-
dent kinematic variables are sufficient to describe a two-body scattering process (if
no polarizations are involved). From (1) it is obvious that any of the 6 scalar prod-
ucts pi ·pj can be expressed in terms of one of the Mandelstam variables, e.g.
pa ·pb = (1/2)(s − m2

a − m2
b) etc. (Fig. 3.29). The equivalence of the two expres-

sions given for each of the Mandelstam variables (1) is an immediate consequence of
(4). The relation (2) between s, t , and u follows from

Fig. 3.29. Definition of the
Mandelstam variables s, t , u
in a two-body scattering pro-
cess

s + t + u = (pa + pb)
2 + (pc − pa)

2 + (pd − pa)
2

= 3p2
a + p2

b + p2
c + p2

d + 2pa ·(pb − pc − pd)
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= 3p2
a + p2

b + p2
c + p2

d − 2p2
a

= m2
a +m2

b +m2
c +m2

d . (5)

Although the third variable can be eliminated by means of (2), results often take a more
symmetric form if s, t , and u are used simultaneously.
(b) In the center-of-mass frame of two equal-mass particles (e.g. e− + e− → e− + e−)
the momenta are p1 = (E,p), p2 = (E,−p), p′

1 = (E,p′), p′
2 = (E,−p′), and thus

the Mandelstam invariants have the values

s = (p1 + p2)
2 = 4E2 , (6a)

t = (p′
1 − p1)

2 = −(p′ − p)2

= −2|p|2(1−cos θ) = −4|p|2 sin2 θ

2
, (6b)

u = (p′
2 − p1)

2 = −(−p′ − p)2

= −2|p|2(1+cos θ) = −4|p|2 cos2 θ

2
, (6c)

which obviously satisfies (2).
According to (3.137) in Sect. 3.3 the Møller cross section in the center-of-mass

frame reads (this is valid for arbitrary velocities)

(
dσ̄

dΩ

)
cm

= m4
0

16π2E2

∣∣Mfi

∣∣ 2 = m4
0

4π2s

∣∣Mfi

∣∣ 2 . (7)

A Lorentz-invariant differential scattering cross section dσ̄ /dt can be defined if we
express the angle between p1 and p′

1 (the scattering angle θ ′
1) in terms of the squared

momentum transfer t=q2. In the center-of-mass frame the transformation is given by
(writing θ ′

1 = π − θ ′
2 = θ )

d cos θ

dt
=
(

dt

d cos θ

)−1

= (2|p|2)−1 = 2

s − 4m2
0

(8)

so that (7) becomes

dσ̄

dt
= d cos θ

dt

(
dσ̄

d cos θ

)
cm

= 2

s − 4m2
0

2π

(
dσ̄

dΩ

)
cm

= m4
0

π(s − 4m2
0)s

∣∣Mfi

∣∣ 2 . (9)

We have made use of the fact that the spin-averaged cross section does not depend
on the azimuthal angle ϕ. This would not in general be true in the case of polarized
scattering. Although the derivation of (9) was made in the center-of-mass frame the
result is expressed in terms of Lorentz-invariant quantities only and thus is valid in
any frame of reference.

Let us evaluate the invariant matrix element |Mfi |2 for electron–electron scattering
explicitly, expressed in terms of the Mandelstam variables. According to (3.121) in
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Sect. 3.3 we have

∣∣Mfi

∣∣2
Møller = e4(4π)2 1

4

1

2m4
0

(
1

t2
Adir + 1

u2
Aex − 2

tu
Aint

)
, (10)

where the direct, exchange and interference terms Adir, Aex, Aint are functions of the
variables s, t , and u. They are given by the traces (see (3.121))

Adir = 1

8
Tr
[
( /p′

1 +m0)γμ( /p1 +m0)γν

]
Tr
[
( /p′

2 +m0)γ
μ( /p2 +m0)γ

ν
]
,

Aex = 1

8
Tr
[
( /p′

2 +m0)γμ( /p1 +m0)γν

]
Tr
[
( /p′

1 +m0)γ
μ( /p2 +m0)γ

ν
]
,

Aint = 1

8
Tr
[
( /p′

1 +m0)γμ( /p1 +m0)γν( /p
′
2 +m0)γ

μ( /p2 +m0)γ
ν
]
. (11)

According to (3.90) we find for the direct term

Adir = 1

8
4
[
p′

1μp1ν + p1μp
′
1ν − gμν

(
p1 ·p′

1 −m2
0

)]

× 4
[
p′

2
μp2

ν + p2
μp′

2
ν − gμν

(
p2 ·p′

2 −m2
0

)]

= 4
[
(p1 ·p2)

2 + (p1 ·p′
2

)2 − 2m2
0 p1 ·p′

1 + 2m4
0

]
. (12)

Here we used p1 · p2 = p′
1 · p′

2, p1 · p′
1 = p2 · p′

2 and p1 · p′
2 = p′

1 · p2. These scalar
products can be expressed in terms of the Mandelstam variables according to

p1 ·p2 = p′
1 ·p′

2 = 1
2

(
s − 2m2

0

)
,

p1 ·p′
1 = p2 ·p′

2 = − 1
2

(
t − 2m2

0

)
,

p1 ·p′
2 = p′

1 ·p2 = − 1
2

(
u− 2m2

0

)
. (13)

Therefore,

Adir = (s − 2m2
0

)2 + (u− 2m2
0

)2 + 4m2
0t . (14a)

The exchange term results from the replacement p′
1 ↔ p′

2 which corresponds to the
exchange of the variables u ↔ t , i.e.

Aex = (s − 2m2
0

)2 + (t − 2m2
0

)2 + 4m2
0u . (14b)

The interference term consists of a long trace (involving 8 gamma matrices) which can
be evaluated using the theorems of the Mathematical Supplement 3.3. Without writing
out all intermediate steps the result is

Aint = 1

8

[
−32(p1 ·p2)(p

′
1 ·p′

2)− 32m4
0

+ 16m2
0

(
p1 ·p2 + p1 ·p′

1 + p1 ·p′
2 + p′

1 ·p2 + p′
1 ·p′

2 + p2 ·p′
2

)]
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= −(s2 − 8m2
0s + 12m4

0

)

= −(s − 2m2
0

)(
s − 6m2

0

)
. (14c)

Using the crossing symmetry it is very simple to obtain the corresponding results for
electron–positron scattering. All we have to do is to replace p2 → −p̄′

2, p′
2 → −p̄2.

This means for the Mandelstam variables:

s = (p1 + p2)
2 → (p1 − p̄′

2)
2 = u ,

t = (p′
1 − p1)

2 unchanged ,

u = (p′
2 − p1)

2 → (p̄2 + p1)
2 = s . (15)

The Mandelstam variables on the r.h.s. refer to “antiparticle language” where p̄2 is the
physical four–momentum of the incoming positron and thus the center-of-mass energy
variable s in Bhabha scattering is identified with s = (p1 + p̄2)

2. Thus according
to (15) the transition from particle–particle to particle–antiparticle scattering simply
amounts to the exchange of the variables s and u. One often refers to these processes
as scattering “in the s channel” (Møller) and “in the u channel” (Bhabha).

Thus the invariant matrix element becomes (the bar denotes Bhabha scattering)

∣∣Mfi

∣∣2
Bhabha = e4(4π)2 1

4

1

2m4
0

(
1

t2
Ādir + 1

s2
Āex − 2

st
Āint

)
, (16)

with

Ādir = (u− 2m2
0

)2 + (s − 2m2
0

)2 + 4m2
0t = Adir , (17a)

Āex = (u− 2m2
0

)2 + (t − 2m2
0

)2 + 4m2
0s , (17b)

Āint = −(u− 2m2
0

)(
u− 6m2

0

)
. (17c)

Using the redefinition (15) the relation between s, t , u and the variables E and θ is
restored, i.e. (6a–6c) remains true for both particle–particle and particle–antiparticle
scattering. Note that the formula relating the cross section to the invariant matrix ele-
ment does not undergo the exchange s ↔ u, i.e. (7) remains unchanged.
(c) Using (6), (7), and (14) the complete Møller cross section in the center-of-mass
frame is(

dσ̄

dΩ

)
cm

= α2

8E2

(
1

t2
Adir + 1

u2
Aex − 2

tu
Aint

)

= α2

8E2p4

×
{

1

(1−cos θ)2

[(
2E2−m2

0

)2 + (p 2(1+cos θ)+m2
0

)2 − 2m2
0p

2(1−cos θ)
]

+ 1

(1+cos θ)2

[(
2E2−m2

0

)2 + (p2(1−cos θ)+m2
0

)2 − 2m2
0p

2(1+cos θ)
]

+ 2

(1−cos θ)(1+cos θ)

(
2E2−m2

0

)(
2E2−3m2

0

)}
. (18)
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A more compact expression can be deduced with the help of a few elementary trigono-
metric transformations:

(
dσ̄

dΩ

)
cm

= α2

4E2

1(
E2−m2

0

)2
[

4
(
2E2−m2

0

)2
sin4 θ

− 8E4−4E2m2
0−m4

0

sin2 θ
+ (E2−m2

0

)2]
. (19)

In the ultrarelativistic limit E � m0 this can be shown to approach the result (3.139)
of Sect. 3.3. In the nonrelativistic limit E � m0,p

2 � m2
0 (18) approaches

(
dσ̄

dΩ

)
nr

= α2

m2
0

1

16β4

( 1

sin4 θ/2
+ 1

cos4 θ/2
− 1

sin2 θ/2 cos2 θ/2

)
. (20)

This is a symmetrized version of the Rutherford cross section, including an interfer-
ence term.

The cross section for Bhabha scattering in the center-of-mass frame follows from
(16), (17). Contrary to (19) it cannot be expressed in terms of powers of 1/ sin2 θ .
This is plausible since now it is possible to distinguish between forward (θ < π/2)
and backward (θ > π/2) scattering so that the cross section will not be symmetric
under the exchange θ → π − θ . The Bhabha cross section can be written as

(
dσ̄

dΩ

)
cm

= α2

16E2

{
1

p4 sin4 θ/2

[
m4

0 + 4p2m2
0 cos2 θ

2
+ 2p4

(
1 + cos4 θ

2

)]

+ 1

E4

[
3m4

0 + 4p2m2
0 + p4(1 + cos2 θ

)]

− 1

E2p2 sin2 θ/2

(
3m4

0 + 8p2m2
0 cos2 θ

2
+ 4p4 cos4 θ

2

)}
. (21)

The ultrarelativistic limit ((3.143) in Sect. 3.4) can be read off immediately. The non-
relativistic limit is
(

dσ̄

dΩ

)
nr

= α2

m2
0

1

16β4

1

sin4 θ/2
, (22)

which just agrees with the Rutherford cross section. The contribution of the annihila-
tion graph is suppressed by a factor O(β2) at low energies.

In the laboratory system the target particle is initially at rest, i.e.

p1 = (E,p) , p2 = (m0,0) ,

p′
1 = (E′

1,p
′
1) , p′

2 = (E′
2,p

′
2) . (23)

The Mandelstam invariants take the form

s = (p1 + p2)
2 = 2m2

0 + 2p1 ·p2 = 2m0(E +m0) , (24a)

t = (p′
1 − p1)

2 = 2m2
0 − 2p′

1 ·p1 = 2m2
0 − 2E′

1E + 2|p′
1||p| cos θ ′

1 , (24b)

u = (p′
1 − p2)

2 = 2m2
0 − 2p′

1 ·p2 = −2m0(E
′
1 −m0) . (24c)
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Since the scattering process is uniquely specified by fixing the incident energy E and
the scattering angle θ ′

1 the variable E′
1 is redundant and can be expressed as a function

of E and θ ′
1. We can make use of the relation (2) which can be solved for E′

1

0 = s + t + u− 4m2
0

= −2(E +m0)(E
′
1 −m0)+

√
E′

1
2 −m2

0

√
E2 −m2

0 cos θ ′
1 , (25)

with the result

E′
1 = m0

E +m0 + (E −m0) cos2 θ ′
1

E +m0 − (E −m0) cos2 θ ′
1

(26)

and consequently

|p′
1| =

2|p|m0 cos θ ′
1

E +m0 − (E −m0) cos2 θ ′
1

. (27)

This leads to the following explicit expressions for the Mandelstam variables

t = − 2m0
(
E2 −m2

0

)
sin2 θ ′

1

E +m0 − (E −m0) cos2 θ ′
1

, (28a)

u = − 4m2
0(E −m0) cos2 θ ′

1

E +m0 − (E −m0) cos2 θ ′
1

. (28b)

We also can derive an explicit expression for the scattering angle in the center-of-mass
frame which now will be denoted by θ∗. Using (6) we get

cos θ∗ = t − u

4
√
E∗2 −m2

0

, (29)

which becomes, after inserting (28),

cos θ∗ = −(E +m0)+ (E + 3m0) cos2 θ ′
1

E +m0 − (E −m0) cos2 θ ′
1

. (30)

The center-of-mass energy E∗ is related to the laboratory energy E through (equating
the expressions for s)

E∗ =
√

1
2m0(E +m0) . (31)

The scattering cross section in the laboratory frame follows from the invariant cross
section by
(

dσ̄

dΩ

)
lab

= 1

2π

dt

d cos θ ′
1

dσ̄

dt
. (32)

Differentiating (28a) with respect to cos θ ′
1 we get

dt

d cos θ ′
1

= 2 cos θ ′
1

dt

d cos2 θ ′
1
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= 8m2
0

(
E2 −m2

0

)
cos θ ′

1[
E +m0 − (E −m0) cos2 θ ′

1

]2 . (33)

Using (9) this leads to

(
dσ̄

dΩ

)
lab

= m4
0

π2

cos θ ′
1[

E+m0−(E −m0) cos2 θ ′
1

]2
∣∣Mfi

∣∣2 . (34)

The invariant matrix elements have been constructed earlier in terms of the Mandel-
stam variables, which in turn have been expressed through the laboratory variables E

and θ ′
1. The results (10) with (14) for Møller scattering and (16) with (17) for Bhabha

scattering are quite complicated expressions which cannot be simplified significantly
when laboratory variables are used.

3.5 Scattering of Polarized Dirac Particles

Up to now all calculations have been performed under the assumption that the spin of
the electron (or positron) is not observed. In this example we will learn a technique
to calculate the scattering of polarized fermions. This will be applied to the simplest
possible case, i.e. Coulomb scattering of electrons as discussed in Sect. 3.1.

First let us briefly review the description of spin polarization (see Chaps. 6 and 7
in RQM for details). Free electrons with momentum p and spin s are described by
spinors u(p, s). sμ is a Lorentz vector which is properly defined in the rest system of
the particle where it reduces to a spatial unit vector

(
sμ
)

R.S. =
(
0, s′) . (3.146)

The components of sμ in a frame in which the particle moves with momentum p

are obtained by a Lorentz boost with the result

sμ =
(

p ·s′

m0
, s′ + s′ ·p

m0(E +m0)
p

)
. (3.147)

It is easily checked that (3.147) satisfies the normalization and orthogonality relations

s2 = −1 , p · s = 0 , (3.148)

which in the rest frame are trivially fulfilled. In the rest frame the unit spinors are
eigenstates of the operator Σ · s′:

Σ ·s′u(0,±s′) = ±u(0,± s′) . (3.149)

Here Σ = γ5γ
0γ which in the standard representation is the “double” Pauli matrix

Σ =
(

σ 0
0 σ

)
. (3.150)
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The condition (3.149) has the covariant generalisation

γ5/s u(p,±s) = ±u(p,±s) . (3.151)

Here an extra factor γ 0 was included in order to make (3.151) valid also for positron
spinors v(p,±s). Using (3.151) one introduces the spin projection operator

Σ̂(s) = 1

2
(1 + γ5/s) (3.152)

with the property

Σ̂(s) u(p,+s) = u(p,+s) , Σ̂(s) u(p,−s) = 0 . (3.153)

The formalism also applies to helicity states where the spin points in the direction of
the momentum. Here one has to choose

s′
λ = λ

p

|p| , where λ = ±1 , (3.154)

which according to (3.147) leads to the spin 4-vector

s
μ
λ = λ

( |p|
m0

,
p

|p| + p2

m0(E +m0)

p

|p|
)

= λ

( |p|
m0

,
E

m0

p

|p|
)

. (3.155)

We call an electron with spin s parallel to p right-handed and conversely one with spin
direction opposite to the momentum left-handed. Alternatively one speaks of positive
and negative helicity (λ = +1 or λ = −1).

After these preliminary remarks we look at the cross section for Coulomb scattering
of an electron of momentum pi and initial spin si . If also the final spin sf is measured
the result is (see Sect. 3.1, (3.25)):

dσ

dΩ
(si, sf ) = 4Z2α2m2

0

|q|4
∣∣∣ū(pf , sf )γ

0u(pi, si)

∣∣∣2 . (3.156)

This expression in principle can be evaluated by choosing a particular representa-
tion of the Dirac matrices and inserting the corresponding explicit expressions for the
spinors u(p, s). However, there is a more elegant way to proceed. We can make use
of the trace techniques developed in the previous sections by introducing auxiliary
summations over the spin orientations si and sf . This can be done with the help of
the spin projection operator Σ(s) which according to (3.153) suppresses the “wrong”
spin state u(p,−s). By use of these operators the Coulomb scattering cross section
(3.156) can be expressed as follows:

dσ

dΩ
(si, sf ) = 4Z2α2m2

0

|q|4
(
ū(pf , sf )γ0u(pi, si)

)(
u†(pi, si)γ

†
0 γ

†
0 u(pf , sf )

)

= 4Z2α2m2
0

|q|4
∑
s′
f ,s

′
i

(
ū(pf , s

′
f )γ0Σ̂(si)u(pi, s

′
i )
)

×
(
ū(pi, s

′
i )γ0Σ̂(sf )u(pf , sf )

)
. (3.157)
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The projection Σ̂(si)u(pi, s
′
i ) = δsi s′

i
u(pi, si) ensures that the sum over s′

i yields just
one term with s′

i = si . The same holds true for the sum over s′
f . It is obviously suf-

ficient to introduce the projection operators into one of the two matrix elements. The
double sum (3.157) can be transformed into a trace as in Sect. 3.1, (3.33). Thus we get

dσ

dΩ
(si, sf ) = 4Z2α2m2

0

|q|4 Tr

[
γ0Σ̂(si)

/pi +m0

2m0
γ0Σ̂(sf )

/pf +m0

2m0

]

= 4Z2α2m2
0

|q|4 Tr

[
γ0

1 + γ5/si

2

/pi +m0

2m0
γ0

1 + γ5/sf

2

/pf +m0

2m0

]
.

(3.158)

Before discussing this result let us look at a scattering process where either
the incoming beam is unpolarized or the polarization of the outgoing particles
is not observed. Then only one of the projection operators will be present in
the trace. E.g. if the incoming beam is unpolarized (3.158) has to be replaced
by

dσ

dΩ
(sf ) = 1

2

4Z2α2m2
0

|q|4 Tr

[
γ0

/pi +m0

2m0
γ0

1 + γ5/sf

2

/pf +m0

2m0

]
. (3.159)

The factor 1/2 originates from averaging over the initial spins.
In the last step the traces containing γ5/sf are found to vanish. From Theorem 1 of

Mathematical Supplement 3.3 we know that the trace of a product of γ5 and an odd
number of /a matrices vanishes:

Tr
[
γ5/a1 · · · /an

]= (−1)n Tr
[
/a1 · · · /anγ5

]

= (−1)n Tr
[
γ5/a1 · · · /an

]= 0 for odd n . (3.160)

After expanding (3.159) two traces containing γ5 remain, which can be easily trans-
formed by anticommutation of the matrix γ0 into terms of the form (Theorem 5)

Tr
[
γ5/a /b

]= 0 . (3.161)

Thus the cross section (3.159) is independent of the final spin and agrees with half the
unpolarized Mott scattering cross section of (3.39), Sect. 3.1,

dσ

dΩ
(sf ) = 1

2

dσ̄

dΩ
. (3.162)

Thus it appears that Coulomb scattering of electrons does not lead to a polarization
of the beam. It has to be stressed, however, that this is true only in the lowest order
of perturbation theory! If Coulomb–Dirac wave functions are used instead of plane
waves one finds that the outgoing particles are polarized in the direction orthogonal to
the scattering plane.23 The degree of polarization is of the order Zα and can become
quite large for heavy nuclei.

Even in a first-order calculation we may expect that an incident polarized electron
escapes the scattering process with a final polarization depending on its scattering

23 N.F. Mott: Proc. Roy. Soc. A124, 425 (1929).
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angle. We shall now calculate these final polarizations. We assume the spin of the in-
coming electron to be parallel to its direction of motion i.e. we start from a state with
a well-defined helicity λi = +1. In the final state with some specific probability the
spin of the particle will be parallel or antiparallel to its direction of motion (helicity
λf = ±1) (see Fig. 3.30). Thus (3.158) has to be evaluated inserting the polarization
4-vectors

siλi = λi

( |p|
m0

,
E

m0

pi

|p|
)

≡ λisi ,

sfλf
= λf

( |p|
m0

,
E

m0

pf

|p|
)

≡ λf sf . (3.163)

The polarized scattering cross section then takes the form

Fig. 3.30. A scattering process
with positive helicities in the
initial and final channel

dσ

dΩ
(λf ,λi) = 4Z2α2m2

0

|q|4 Tr

[
γ0

1+λiγ5/si

2

/pi +m0

2m0
γ0

1+λf γ5/sf

2

/pf +m0

2m0

]

= 4Z2α2m2
0

|q|4
1

4

1

(2m0)2

{
Tr
[
γ0( /pi +m0)γ0( /pf +m0)

]

+ λiλf Tr
[
γ0γ5/si( /pi +m0)γ0γ5/sf ( /pf +m0)

]}
. (3.164)

Here we dropped those terms which contain only a single γ5/s factor since the
traces vanish, see (3.159–3.162). As a consequence the scattering cross section de-
pends on the product of helicities λiλf . In many experiments the degree of polar-
ization of the scattered particles is measured. It is defined as the difference between
counting rates for positive and negative helicities, normalized to the total counting
rate:

P = dσ(λf = +1)− dσ(λf = −1)

dσ(λf = +1)+ dσ(λf = −1)
. (3.165)

If the initial state is fully polarized, e.g. λi = +1, the final degree of polarization
becomes, using (3.164)

P = Tr
[
γ0γ5/si( /pi +m0)γ0γ5/sf ( /pf +m0)

]
Tr
[
γ0( /pi +m0)γ0( /pf +m0)

] . (3.166)

The evaluation of the traces (see Exercise 3.9) leads to the result

P = 1 − 2 sin2 θ
2(

E
m0

)2
cos2 θ

2 + sin2 θ
2

. (3.167)

In the nonrelativistic limit E → m0 this reduces to

P � 1 − 2 sin2 θ

2
= cos θ . (3.168)

This is just the geometric overlap between the initial and final quantization axes,
cos θ = pi · pf /|p2|, and indicates, that the spin is not influenced at all by the colli-
sion, when viewed from a fixed system. When the collision becomes relativistic the
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Fig. 3.31. The degree of po-
larization according to (3.167)
for various incident kinetic
energies E/m0 of the electron

degree of polarization becomes less strongly angle dependent and approaches a con-
stant value at P = 1 as E → ∞. This is shown in Fig. 3.31.

EXERCISE

3.9 Degree of Polarization

Problem. Calculate the differential scattering cross section (dσ/dΩ)(λf ,λi) for
Coulomb scattering of electrons with longitudinal polarization. Derive the degree of
polarization P as a function of the scattering angle.

Solution. According to Sect. 3.5, (3.164) the polarized Coulomb scattering cross
section is given by

dσ

dΩ
(λf ,λi) = 4Z2α2m2

0

|q|4
1

16m2
0

(T1 + λiλf T2) (1)

with the traces

T1 = Tr
[
γ0( /pi +m0)γ0( /pf +m0)

]
,

T2 = Tr
[
γ0γ5/si( /pi +m0)γ0γ5/sf ( /pf +m0)

]
. (2)

The first trace can be easily determined (cf. Sect. 3.1, (3.36)):

T1 = Tr
[
γ0 /piγ0 /pf

]+m2
0 Tr
[
γ0γ0
]

= 4 EiEf + 4EfEi − 4(pi ·pf )+ 4m2
0

= 4
(
E2 + p2 cos θ +m2

)

= 4
(
E2(1 + cos θ)+m2

0(1 − cos θ)
)

= 8

(
E2 cos2 θ

2
+m2

0 sin2 θ

2

)
, (3)
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where we have taken care of energy conservation in Mott scattering, i.e. Ei =
Ef = E and |pi | = |pf | = |p|. Since γ5 anticommutes with all gamma matrices γ μ,
and since γ 2

5 = 1, the second trace can be written in the form

T2 = Tr
[
γ0/si(− /pi +m0)γ0/sf ( /pf +m0)

]

= −Tr
[
γ0/si /piγ0/sf /pf

]+ Tr
[
γ0/siγ0/sf

]
m2

0 . (4)

Again, all other traces vanish since they contain an odd number of γ -matrices. Theo-
rem 3 of Mathematical Supplement 3.3 implies that

Tr
[
/a1/a2/a3/a4/a5/a6

]
= 4
[
(12)(34)(56) + (12)(36)(45) − (12)(35)(46)

− (13)(24)(56) − (13)(26)(45) + (13)(25)(46)

+ (14)(23)(56) + (14)(26)(35) − (14)(25)(36)

− (15)(23)(46) − (15)(26)(34) + (15)(24)(36)

+ (16)(23)(45) + (16)(25)(34) − (16)(24)(35)
]
, (5)

with (ij) denoting ai · aj . The 4-spin vectors for positive helicity are given by (see
(3.163) in Sect. 3.5)

si =
( |p|
m0

,
E

m0

pi

|p|
)

,

sf =
( |p|
m0

,
E

m0

pf

|p|
)

. (6)

The following scalar products are needed in (5)

pi ·si = pf ·sf = 0 , (7a)

pi ·sf = pf ·si = |p|
m0

(1 − cos θ) , (7b)

si ·sf = 1

m2
0

(
p2 −E2 cos θ

)
, (7c)

pi ·pf = E2 − p2 cos θ . (7d)

Inserting the vectors a1 = a4 = (1, 0, 0, 0), a2 = si , a3 = pi , a5 = sf , a6 = pf the
result of the first term of the sum (4) is

Tr
[
γ0/si /piγ0/sf /pf

]

= 4
[
s0
i Ei(sf ·pf )+ s0

i (pi ·pf )s
0
f − s0

i (pi ·sf )Ef

−Eis
0
i (sf ·pf )−Ei(si ·pf )s

0
f +Ei(si ·sf )Ef

+ (si ·pi)(sf ·pf )+ (si ·pf )(pi ·sf )− (si ·sf )(pi ·pf )

− s0
f (si ·pi)Ef − s0

f (si ·pf )Ei + s0
f s

0
i (pi ·pf )

+Ef (si ·pi)s
0
f +Ef (si ·sf )Ei −Ef s

0
i (pi ·sf )

]
. (8)
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Because sf ·pf = si ·pi = 0, in every line the first term of the sum vanishes. Inserting
the scalar products from (7) the remaining part yields

Tr
[
γ0/si /piγ0/sf /pf

]= 4

[
p2

m2
0

(
E2 − p2 cos θ

)
− p2E2

m2
0

(1 − cos θ)

− p2E2

m2
0

(1 − cos θ)+ E2

m2
0

(
p2 −E2 cos θ

)
+ p2E2

m2
0

(1 − cos θ)2

− 1

m2
0

(
p2 −E2 cos θ

)(
E2 − p2 cos θ

)
− p2E2

m2
0

(1 − cos θ)

+ p2

m2
0

(
E2 − p2 cos θ

)
+E2

m2
0

(
p2 −E2 cos θ

)
− p2E2

m2
0

(1 − cos θ)

]

= 4

[
2p2

m2
0

(
E2 − p2 cos θ

)
− 4p2E2

m2
0

(1 − cos θ) + 2E2

m2
0

(
p2 −E2 cos θ

)

+ p2E2

m2
0

(1 − cos θ)2 − 1

m2
0

(
p2 −E2 cos θ

)(
E2 − p2 cos θ

)]

= 4

m2
0

(
−p4 cos θ −E4 cos θ + 2p2E2 cos θ

)

= − 4

m2
0

(
p2 −E2

)2
cos θ = −4m2

0 cos θ . (9)

With the abbreviation s̃i = (s0
i ,−si ) the second trace in (4) yields

Tr
[
γ0/siγ0/sf

]
m2

0 = m2
0 Tr
[
/̃si/sf
]= 4m2

0(s̃i ·sf ) = 4
(
p2 +E2 cos θ

)
. (10)

The sum of the traces in (4) then is

T2 = 4m2
0 cos θ + 4

(
p2 −E2 cos θ

)= 4E2(1 + cos θ)− 4m2
0(1 − cos θ)

= 8

(
E2 cos2 θ

2
−m2

0 sin2 θ

2

)
. (11)

The polarized scattering cross section (1) thus becomes

dσ

dΩ
(λf ,λi) = 4Z2α2m2

0

|q|4
1

2

[
E2 cos2 θ

2
+m2

0 sin2 θ

2

+ λiλf

(
E2 cos2 θ

2
−m2

0 sin2 θ

2

)]
. (12)

Special cases are the helicity-flip cross section λf = −λi

(
dσ

dΩ

)
flip

=
(

dσ

dΩ

)
Ruth

m2
0

E2
sin2 θ

2
, (13)
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and the non-flip cross section λf = +λi

(
dσ

dΩ

)
non-flip

=
(

dσ

dΩ

)
Ruth

cos2 θ

2
. (14)

We have factorized out the Rutherford cross section
(

dσ

dΩ

)
Ruth

= 4Z2α2E2

|q|4 = Z2α2

4p2β2 sin4 θ
2

. (15)

The unpolarized Mott cross section derived in Sect. 3.1, (3.39), is given by the sum of
(13) and (14)
(

dσ

dΩ

)
Mott

=
(

dσ

dΩ

)
flip

+
(

dσ

dΩ

)
non-flip

=
(

dσ

dΩ

)
Ruth

(
1 − β2 sin2 θ

2

)
. (16)

The correction factor obviously results from the suppression of helicity–flip transitions
at high energies in (13).

Finally the degree of polarization can be obtained by taking the difference between
the non-flip and flip cross sections and dividing by the sum of both quantities. This
leads to the result

P = E2 cos2 θ/2 −m2
0 sin2 θ/2

E2 cos2 θ/2 +m2
0 sin2 θ/2

= 1 − 2m2
0 sin2 θ/2

E2 cos2 θ/2 +m2
0 sin2 θ/2

. (17)

3.6 Bremsstrahlung

When electrons scatter at protons or in the field of a nucleus, they can emit real pho-
tons. This process is called bremsstrahlung because it involves an acceleration or de-
celeration (in German: “bremsen”) of the projectile. The emitted real photons fulfill
the Einstein relation

q2 = 0 . (3.169)

Bremsstrahlung can be described by Feynman graphs, similar to those we have already
encountered, with the difference that now the photon line does not end at a vertex.
In this case the corresponding particle either travels into the future as a free photon
(emission) or it emerges from the past (absorption). Generally the difference between
real and virtual particles is given by the fact that the graphical lines of the former have
an open end which signals an emission or absorption process whereas those of the
latter both start and end at a vertex (see Fig. 3.32).
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Fig. 3.32. A Feynman graph
involving several real and vir-
tual particles

In order to study the interaction of particles with the electromagnetic field in the
case of bremsstrahlung we start with the four-potential of “one” photon with momen-
tum kμ = (ω

c
,k) and polarization εμ. The vector potential Aμ is given by a plane

wave:

Aμ(x, k) = Nkε
μ
(
e−ik·x + eik·x) , (3.170)

where the normalization constant Nk will be determined later. With � = c = 1 we have
ω = |k| and the dispersion relation reads

kμk
μ = 0 . (3.171)

In order to understand the polarization vector εμ(k, λ) we have to study the gauge
dependence of the Aμ field more closely. In an arbitrary gauge the vector potential of
the free electromagnetic field satisfies the wave equation

�Aμ − ∂μ(∂νA
ν) = 0 , (3.172)

which is a consequence of Maxwell’s equations. Aμ is a four-dimensional vector field
and thus appears to have four degrees of freedom. However, all observables are invari-
ant under gauge transformations Aμ → Aμ+∂μΛ(x) with an arbitrary function Λ(x).
It is always possible to find a function such that the transformed potential satisfies the
Lorentz gauge

∂μA
μ = 0 (3.173)

so that the second term in (3.172) vanishes. Even within this restricted class it is still
possible to make further gauge transformations, provided that the function Λ(x) sat-
isfies the d’Alembert equation �Λ(x) = 0. One possible choice is to set

A0 = 0 , ∇ ·A = 0 , (3.174)

which is called the “radiation gauge”. In this way the number of degrees of freedom
has been reduced twice by imposing constraints on the Aμ field. Thus we have derived
the well-known fact that photons can have only two polarization states, λ = 1,2, which
both are transversal. The condition (3.174) of course is not covariant and will be valid
only in one particular Lorentz frame. In this frame the polarization vectors are purely
spacelike.

εμ = (0,ε(k, λ)) , λ = 1,2 , (3.175)
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with the two transverse three-vectors

k ·ε(k, λ) = 0 , (3.176)

which are normalized to unit length

ε ·ε = 1 . (3.177)

By performing a Lorentz boost transformation the three-vectors ε can be generalized
into four-vectors εμ which satisfy the covariant conditions

εμεμ = −1 , (3.178)

kμεμ = 0 . (3.179)

Let us discuss the normalization of the photon field in (3.170). The constant Nk will
be chosen in such a way that the energy of the wave Aμ is just equal to ω (� = 1!), i.e.
it is equal to the energy of a single photon. The energy of the electromagnetic field in
Gaussian units is given by

Ephoton = 1

8π

∫
d3x 〈E2 + B2〉 = 1

4π

∫
d3x 〈B2〉 , (3.180)

since E2 = B2 on the average. As

B = ∇ × A = iNk k × ε
(
e−ik·x − eik·x)= 2Nk k × ε sin(k ·x) . (3.181)

The square of the cross product becomes

(k × ε) · (k × ε) = ε · ε k · k − (k · ε)2 = (ε2
0 − ε · ε)k2 − (k0ε0 − k · ε)2

= ε2
0k

2 + k2 − ε2
0k

2
0 = k2 = ω2 , (3.182)

where the conditions (3.178) and (3.179) have been used. We find the energy (3.180)
to be

Ephoton = 4ω2

4π
N2

k

∫
d3x 〈sin2(ω·t − k ·x)〉 = 2ω2

4π
N2

k V . (3.183)

The condition Ephoton = ω leads to the normalization constant24

Nk =
√

4π

2ωV
. (3.184)

Now, our task is to determine the scattering amplitude for emitting such a photon
during electron scattering. In order to simplify this problem we first consider the elec-
tron scattering at an external (static) Coulomb field as in Sect. 3.1. The correspond-
ing Feynman diagrams for emitting a photon in lowest-order scattering are shown in
Fig. 3.33.

As we can see, bremsstrahlung is a second-order process. The emission of a pho-

Fig. 3.33. The two Feynman
diagrams describing the emis-
sion of a photon in lowest-
order electron scattering at a
static Coulomb field (brems-
strahlung)ton by a free electron in the presence of an external field to first order does not happen,

24 When rationalized instead of Gaussian units are used the factor 4π in (3.184) is absent.
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since in that case energy and momentum conservation could not be fulfilled simulta-
neously. The graph of this forbidden process is shown in Fig. 3.34. The conservation
law in this case would require

Fig. 3.34. Fictitious graph of
first order bremsstrahlung.
This process is forbidden (the
corresponding amplitude van-
ishes, because energy and mo-
mentum conservation cannot
be fulfilled simultaneously)

k = pf − pi , i.e. k2 = (pf − pi)
2 . (3.185)

For a real photon, k2 = 0. On the other hand, it follows that

(pf − pi)
2 = pf

2 + pi
2 − 2pf · pi = 2m2

0 − 2EfEi + 2pf · pi

= 2

(
m2

0 + pf · pi −
√
m2

0 + p2
f

√
m2

0 + p2
i

)
< 0 . (3.186)

Thus (3.185) yields a contradiction.
The S-matrix element of the 2nd order processes shown in Fig. 3.33 can be directly

noted by applying our rules deduced before:

Sf i = e2
∫

d4xd4y ψ̄f (x)
[(−i/A(x, k)

)
iSF(x − y)

(−iγ 0)Acoul
0 (y)

+ (−iγ 0)Acoul
0 (x)iSF(x − y)

(−i/A(y, k)
)]
ψi(y) , (3.187)

with

Acoul
0 (x) = −Ze

|x| (3.188)

being the Coulomb potential known from Sect. 3.1. Since it is impossible to distin-
guish whether the photon is emitted from the incoming or outgoing electron both
amplitudes have been added coherently in (3.187).

As before, it is convenient to transform the S-matrix element (3.187) into momen-
tum space. We use the Fourier representation of the Coulomb potential

−Ze

|x| = −Ze 4π
∫

d3q

(2π)3

1

|q|2 e+iq·x (3.189)

taken from Sect. 3.1, (3.7). With this we get

Sf i = −Ze34π

V 3/2

√
4π

2ω

√
m2

0

EfEi

∫
d4xd4y

d3q

(2π)3

d4p

(2π)4

× ū(pf , sf ) eipf ·x
[
−i/ε
(
e−ik·x + e+ik·x) ie−ip·(x−y)

/p −m0 + iε

(−iγ 0)e+iq·y

|q|2

− iγ 0 e+iq·x

|q|2
ie−ip·(x−y)

/p −m0 + iε
(−i/ε)

(
e−ik·y + eik·y)]u(pi, si) e−ipi ·y

= −Ze34π

V 3/2

√
4π

2ω

√
m2

0

EfEi

∫
d3q

(2π)3

d4p

(2π)4

×
{[

(2π)4δ4(pf − k − p)+ (2π)4δ4(pf + k − p)
]
(2π)4δ4(p − q − pi)
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× ū(pf , sf )(−i/ε)
i

/p −m0 + iε
(−iγ 0)

1

|q|2 u(pi, si)

+ [(2π)4δ4(p − k − pi)+ (2π)4δ4(p + k − pi)
]
(2π)4δ4(pf − q − p)

× ū(pf , sf )(−iγ 0)
1

|q|2
i

/p −m0 + iε
(−i/ε)u(pi, si)

}
. (3.190)

Here we have introduced the four-vector q = (0,q) into the arguments of some of
the δ functions. We recognize that in the direct as well as in the exchange term two
contributions appear originating from the factors e−ik·x and e+ik·x in the photon field
(3.170). Let us first consider the direct term. The d4p and d3q integrations break down
leading to

∫
d3q

(2π)3

d4p

(2π)4
(2π)4δ4(pf ± k − p) (2π)4δ4(p − q − pi)f (p, |q|)

=
∫

d3q

(2π)3
(2π)4δ4(pf ± k − q − pi)f (p, |q|)

= 2πδ(Ef −Ei ±ω)f (p, |q|) , (3.191)

where q = pf ± k − pi and p = pf ± k.
Equation (3.190) contains a sum over two contributions where the photon either has

momentum +k or −k. However, for a given process the energies Ef and Ei are fixed
and therefore only one of the two delta functions in (3.191) will contribute. Since we
want to describe photon emission the electron looses energy, Ef <Ei , and the positive
sign has to be taken in (3.191) which corresponds to Ef = Ei − ω. The alternate
possibility Ef = Ei + ω corresponds to a process where the electron gains energy
from the radiation field during the scattering. This process of photon absorption can
be represented by the Feynman graph in Fig. 3.35.

Fig. 3.35. Absorption of a real
photon during scattering

In a bremsstrahlung-type process there are no incoming photons and the emitted
photons are observed. Therefore we take only these parts of the scattering amplitude
into account. Equation (3.190) gives

Sf i = −Ze32πδ(Ef +ω −Ei)

√
4π

2ωV

√
m2

0

EfEiV 2

4π

|q|2 ū(pf , sf )

×
[
(−i/ε)

i

/pf + /k −m0
(−iγ0)+ (−iγ0)

i

/pi − /k −m0
(−i/ε)

]
u(pi, si) .

(3.192)

Here,

q = pf + k − pi

is the momentum transfer to the nucleus. Since the vectors pi , pf , and k are fixed
experimentally also q is a fixed vector. There is no energy transfer to the nucleus since
the latter was assumed to be infinitely heavy.

Guided by the construction of the bremsstrahlung amplitude (3.192) we adopt the
following general rule: at each vertex, where a free photon with polarization vector εμ
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is emitted, a factor (−i/ε) occurs and the normalization factor (3.184) of the photon,
i.e.

√
4π/2ωV enters.

To simplify the notation we split off the normalization and kinematical factors in
(3.192) according to

Sf i = iZe3 2πδ(Ef +ω −Ei)

√
4π

2ωV

√
m2

0

EfEiV 2

4π

|q|2 εμMμ(k) , (3.193)

with the matrix element

Mμ(k)= ū(pf , sf )

[
γμ

1

/pf +/k −m0 + iε
γ0 +γ0

1

/pi −/k −m0 + iε
γμ

]
u(pi, si) .

(3.194)

Using the energy–momentum relations p2
i = p2

f = m2
0, k2 = 0, this can be rewritten

as

Mμ(k) = ū(pf , sf )

[
γμ

/pf + /k +m0

2pf ·k + iε
γ0 + γ0

/pi − /k +m0

−2pi ·k + iε
γμ

]
u(pi, si) . (3.195)

The cross section of bremsstrahlung is given by the square of the scattering amplitude
|Sf i |2 per incoming electron flux (vi/V ) and time (T = 2πδ(0)), cf. (3.16). Fur-
thermore we have to sum over the final states of the photons (V d3k/(2π)3) and the
electrons (V d3pf /(2π)3). This yields the total phase-space factor

V 2 d3k

(2π)3

d3pf

(2π)3
. (3.196)

Thus the bremsstrahlung cross section is given by

dσ = 1
|vi |
V

T
|Sf i |2 V d3k

(2π)3

V d3pf

(2π)3

= Z2e6

|vi |
4π

2ω

m2
0

EfEi

(4π)2

|q|4
∣∣εμMμ(k)

∣∣2 2πδ(Ef +ω −Ei)
d3k

(2π)3

d3pf

(2π)3
.

(3.197)

In the following we want to evaluate this expression. We restrict ourselves to the case
k → 0, i.e. we consider the emission of very soft photons. The general case is known
as the Bethe–Heitler formula25 which we discuss in Example 3.11.

In the limit k → 0 the matrix element εμMμ in (3.193) can be approximated in the
following manner:

εμMμ(k) � ū(pf , sf )

[
2ε ·pf − ( /pf −m0)/ε

2k ·pf + iε
γ0

+γ0
2ε ·pi − /ε( /pi −m0)

−2k ·pi + iε

]
u(pi, si) . (3.198)

25 See e.g. Walter Heitler: The Quantum Theory of Radiation (Oxford University Press, Oxford,
1957).



3.6 Bremsstrahlung 163

Here we have suppressed terms linear in /k in the numerator. Furthermore the order of
the /p and /ε factors has been changed using the anticommutation relation

/ε /p = εμγ
μpνγ

ν = εμpν

(
2gμν1 − γ νγ μ

)= 2ε ·p − /p/ε . (3.199)

This makes it possible to simplify (3.198) since the unit spinors satisfy the free Dirac
equation

ū(pf , sf ) ( /pf −m0) = 0 and ( /pi −m0)u(pi, si) = 0 . (3.200)

Thus the term in brackets occurring in (3.198) can be reduced to

εμMμ � ū(pf , sf )γ0u(pi, si)

(
ε ·pf

k ·pf

− ε ·pi

k ·pi

)
. (3.201)

The first factor is just the elastic scattering amplitude (see (3.8)). Thus in the
limit k → 0 we get the plausible result that the matrix element describing soft
bremsstrahlung is proportional to the elastic scattering amplitude. Using (3.197) and
(3.201) the cross section for bremsstrahlung becomes

dσ = Z2e6(4π)3m2
0

2ω|vi |EfEi

(
ε ·pf

k ·pf

− ε ·pi

k ·pi

)2
∣∣ū(pf , sf )γ0u(pi, si)

∣∣2
|q|4

× 2πδ(Ef +ω −Ei)
d3kd3pf

(2π)6
. (3.202)

This result can be compared to the cross section for elastic electron scattering
(Sect. 3.1, (3.23)):

dσelastic = 4Z2e4m2
0

|vi |EfEi

∣∣ū(pf , sf )γ0u(pi, si)
∣∣2

|q|4 δ(Ef −Ei)d3pf , (3.203)

which is obviously contained as a factor in (3.202). Thus neglecting the effect of the
soft photon’s energy and momentum in (3.202), q = pf − pi + k ≈ pf − pi , Ef =
Ei −ω ≈ Ei , the differential cross section for bremsstrahlung can be written as

dσ

dΩf dΩkdω
=
(

dσ

dΩf

)
elastic

e2ω

(2π)2

(
ε ·pf

k ·pf

− ε ·pi

k ·pi

)2

Θ(Ei −m0 −ω) . (3.204)

This is the cross section of bremsstrahlung for an electron scattered into the solid angle
dΩf . The soft photons (k → 0) with polarization ε and momentum k are observed in
the interval dωdΩk . It is very natural that the bremsstrahlung of soft photons is propor-
tional to the scattering cross section of the decelerating electrons at the same energy
and scattering angle. Indeed, the amount of energy and momentum carried off by the
photon is so small that the “trajectory” of the electron remains nearly undisturbed.

If the cross section of unpolarized electrons is to be calculated, one has to sum over
the final spin states of the electrons and to average over the initial spin states. Owing to
the factorisation property (3.204) this is easily achieved. One merely has to replace the
elastic cross section by the unpolarized expression (dσ̄ /dΩf )elastic which was derived
in Sect. 3.1, (3.39).
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The result of (3.204) is more general than one might expect. It has been shown that
in the limit k → 0 the amplitude for any process leading to photon emission can be
factorized according to

lim
k→0

M(k) = √
4πe

(
ε ·pf

k ·pf

− ε ·pi

k ·pi

)
M0 , (3.205)

where M0 is the amplitude for the same process without photon emission. This result is
true for any kind of process, irrespective of the spin or internal structure of the charged
particle! The expression (3.205) is divergent in the limit k → 0. It can be viewed as the
leading term of an expansion in powers of k. According to the soft-photon theorem26

the first two terms of this expansion are universal expressions which depend only on
the charge, mass, and magnetic moment of the particle. Loosely speaking one may
say that photons with a long wavelength cannot resolve the detailed structure of the
radiating source. Similar low-energy theorems also hold for the emission of other kinds
of bosonic field quanta, in particular for pion emission in nuclear collisions.

Let us consider in more detail the energy spectrum of the photons emitted according
to (3.204). The probability that soft quanta are emitted is obviously proportional to

dWphoton

dΩk

∼ d |k|
|k| , (3.206)

which tends to infinity for k → 0. This behaviour is known as the infrared catastrophe.
In the following we will discuss how to cure this unphysical divergence by a detailed
examination of the measuring process of bremsstrahlung. It is important to realize that
the electron and photon detectors have only a finite energy resolution. Therefore, if
photons with momenta |k| ≈ 0 are measured, not only inelastically but also elastically
scattered electrons (|k| = 0) are detected. In a comparison of theory and experiment
we have consequently to consider elastic and inelastic cross sections, both up to or-
der e2. In other words, since the bremsstrahlung cross section (3.204) is of the order e2

with respect to the elastic scattering cross section of electrons, one has also to include
the so-called radiative corrections to (dσ/dΩf )elast. up to the same order. There exist
two types of corrections shown in Fig. 3.36.

Fig. 3.36. The two types of
lowest-order radiative correc-
tions that occur in the Cou-
lomb scattering of electrons

Both diagrams in the figure contain a virtual photon being emitted and reabsorbed
by the same electron. This differs from the two-photon exchange we considered in
Example 3.6. There both photons are emitted by the electron and both are absorbed by
the proton. In contrast in the case of Fig. 3.36 the electron interacts with itself via the
radiative field. Later on in Example 5.8 within the (quite complicated) calculation of
these processes we shall see that these graphs produce a divergent contribution which
just cancels the infrared divergence (3.206).

For the time being we shall continue the calculation of the cross section for emitting
soft bremsstrahlung and ignore the infrared divergence. First we sum over the different
polarizations of the photon. This can be done very elegantly27 if one makes use of the
gauge invariance property of the electromagnetic field. The interaction of any electro-
magnetic current Jμ(x) with the vector potential Aμ(x) is given by

∫
d4x Jμ(x)A

μ(x).

26 F.E. Low: Phys. Rev. 96, 1428 (1954) and Phys. Rev. 110, 974 (1958).
27 R.P. Feynman: Phys. Rev. 76, 769 (1949).
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This integral must be invariant under the gauge transformation

Aμ(x) → Aμ(x)+ ∂Λ(x)

∂xμ
. (3.207)

Integrating by part this implies the condition

∫
d4x Jμ(x)

∂Λ(x)

∂xμ
= 0 =

∫
d4x

∂Jμ(x)

∂xμ
Λ(x) . (3.208)

Since Λ(x) is an arbitrary function this yields the condition of current conservation

∂Jμ(x)

∂xμ
= 0 , (3.209)

which can be written in momentum space as

kμJ
μ(k) = 0 , (3.210)

since Jμ(x) = ∫ d4x Jμ(k)e−ik·x . This property is shared also by quantum mechanical
transition currents. Thus we can expect that the matrix element Mμ(k) introduced in
(3.194) satisfies

kμMμ(k) = 0 , (3.211)

since Mμ(x) up to a numerical factor is the transition current for bremsstrahlung
in lowest order perturbation theory. Using /k /p = − /p/k + 2p ·k and the Dirac equa-
tion (3.200) this is easily verified explicitly:

kμMμ(k) = ū(pf , sf )

[
/k
/pf + /k +m0

2pf ·k + iε
γ0 + γ0

/pi − /k +m0

−2pi ·k + iε
/k

]
u(pi, si)

= ū(pf , sf )

[
−( /pf −m0)/k + 2pf ·k + k2

2pf ·k + iε
γ0

+γ0
−/k( /pi −m0)+ 2pi ·k − k2

−2pi ·k + iε

]
u(pi, si)

= ū(pf , sf )

[
2pf ·k

2pf ·k + iε
γ0 + γ0

2pi ·k
−2pi ·k + iε

]
u(pi, si)

= 0 . (3.212)

Now we are ready to perform the summation over the photon polarizations character-
ized by the polarization vectors εμ(k, λ) with λ = 1,2. The quantity of interest is

|ε ·M|2 =
∑
λ=1,2

|εμ(k, λ)Mμ(k)|2

=
∑
λ=1,2

εμ(k, λ)ε
∗
ν (k, λ)M

μ(k)M∗ν(k) . (3.213)
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To simplify the following calculation the coordinate system will be chosen such that
the momentum vector k points into the z direction

kμ = ω(1 , 0 , 0 , 1) . (3.214)

The two transverse polarization vectors have to satisfy (3.178) and (3.179). We choose
them to be the purely spatial real unit vectors

ε(k,1) = (0 , 1 , 0 , 0) ,

ε(k,2) = (0 , 0 , 1 , 0) . (3.215)

Of course this choice is valid only in a particular Lorentz frame and it also implies
a particular gauge for the vector potential, namely the “radiation gauge”

A0(x) = 0 . (3.216)

However, this is no serious drawback since the final result will be Lorentz and gauge
invariant. Using (3.215) we obtain

|ε ·M|2 = M1M∗1 +M2M∗2 . (3.217)

Now we make use of the condition of current conservation (3.210) which reduces to

kμM
μ = ω(M0 −M3) = 0 , (3.218)

and thus implies M0 = M3. Then we can transform (3.217) into a four dimensional
scalar product by adding a vanishing contribution

|ε ·M|2 = M1M∗1 +M2M∗2 +M3M∗3 −M0M∗0 = −MμM
∗μ . (3.219)

Obviously this result is covariant. Comparing this with (3.213) we see that mathemat-
ically what we have proven is the completeness relation of the polarization vectors
which can be written as

∑
λ=1,2

εμ(k, λ)εν(k, λ) = −gμν + gauge terms . (3.220)

The additional gauge terms need not to be specified in detail. They are proportional
to kμ or kν and thus do not contribute to any observable quantity since (3.220) will be
multiplied with conserved currents which satisfy k · J = 0. Nevertheless these terms
have to be present in (3.220) since a complete basis in the 4-dimensional space of
Lorentz vectors has to contain 4 elements. The contributions of longitudinal, εμ(k,3),
and scalar, εμ(k,0), photons to the completeness relation make their appearance on
the r.h.s. of (3.220). They do not correspond to physical photons, however.

We apply the completeness relation (3.220) to the cross section of bremsstrahlung
(3.204), which we integrate over the photon angle dΩk and photon energies in the
interval

0 <ωmin ≤ ω ≤ ωmax � Ei (3.221)
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in order to circumvent the infrared catastrophe. The summation over the polarization
states of the photon leads to

∑
λ=1,2

(
ε · pf

k · pf

− ε · pi

k · pi

)2

= −
(

pf

k · pf

− pi

k · pi

)2

. (3.222)

This yields

dσ̄

dΩf

=
(

dσ̄

dΩf

)
elastic

4πα

2 · (2π)3

ωmax∫

ωmin

ωdω
∫

dΩk

×
[

2pf · pi

(k · pf )(k · pi)
− m2

0

(k · pf )2
− m2

0

(k · pi)2

]

=
(

dσ̄

dΩf

)
elastic

4πα

(2π)2
ln

(
ωmax

ωmin

)∫
dΩk

4π

×
[

2(1 − βf · βi )

(1 − k̂ · βf )(1 − k̂ · βi )
− m2

0

E2
f (1 − k̂ · βf )

2
− m2

0

E2
i (1 − k̂ · βi )

2

]
.

(3.223)

We have (remember c = 1)

β i = vi = pi

Ei

and βf = vf = pf

Ef

, (3.224)

which are the initial and final velocities of the electron, k̂ = k/|k| being the unit vector
in the direction of the photon momentum. If the emitted bremsstrahlung photons are
very soft, the initial and final energies of the electron are almost the same and we get

|βi | = |βf | ≡ β (3.225)

and thus

β i · βf = β2 cosΘ , (3.226)

with the scattering angle Θ of the electrons (see Fig. 3.37). The angular integrations
of the last two terms in (3.223) can be performed by elementary means:

Fig. 3.37. Θ is the angle be-
tween the initial and final di-
rection of the electron

∫
dΩk

4π

m2
0

E2
(
1 − β · k̂)2 = m2

0

E2

1∫

−1

d cos θ ′

2(1 − β cos θ ′)2
= m2

0

E2

1∫

−1

dz

2(1 − βz)2

= m2
0

E2

(
− 1

β

) 1−β∫

1+β

dx

2x2
= − m2

0

βE2

1

2

(
− 1

x

)∣∣∣∣∣
1−β

1+β

= m2
0

1 − β2

1

E2
= 1 . (3.227)

Here, θ ′ is the angle between electron and photon. The first integral in (3.223) is more
difficult to evaluate. It can be calculated with the help of a trick also developed by
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Feynman. The two factors in the denominator of the integrand can be combined by
introducing the following auxiliary integral

1∫

0

dx[
ax + b(1 − x)

]2 =
1∫

0

dx[
(a − b)x + b

]2 = 1

a − b

a∫

b

dz

z2

= 1

a − b

(
−1

a
+ 1

b

)
= 1

a b
. (3.228)

Expressing the denominator through this identity we see that the first integral in
(3.223) follows as

I =
∫

dΩk

4π

1(
1 − k̂ · βf

)(
1 − k̂ · βi

)

=
1∫

0

dx
∫

dΩk

4π

1[(
1 − k̂ · βf

)
x + (1 − k̂ · β i

)
(1 − x)

]2

=
1∫

0

dx
∫

dΩk

4π

1[
1 − k̂ · (βf x + βi (1 − x)

)]2

=
1∫

0

dx

1∫

−1

dϕd cosϑ

4π

1[
1 − |βf x + βi (1 − x)| cosϑ

]2

=
1∫

0

dx
1

2

(−1

u

) 1−u∫

1+u

dz

z2

(
where u = |βf x + β i (1 − x)|)

=
1∫

0

dx
1

1 − u2
=

1∫

0

dx

1 − ∣∣βf x + β i (1 − x)
∣∣2

=
1∫

0

dx

1 − β2x2 − β2(1 − x)2 − 2β2x(1 − x) cos2 Θ

=
1∫

0

dx

1 − β2 + 2β2x − 2β2x2 − 2β2x(1 − x) cos2 Θ

=
1∫

0

dx

1 − β2 + 2β2x(1 − x)− 2β2x(1 − x) cos2 Θ

=
1∫

0

dx

1 − β2 + 4β2x(1 − x) sin2(Θ/2)
. (3.229)
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We used (3.225) and 1 − cos2 Θ = 2 sin2(Θ/2). The integral (3.229) with a quadratic
polynomial in the denominator can be solved in closed form with the result

I = 1

2β sin(Θ/2)
√

1−β2 cos2(Θ/2)
ln

(√
1−β2 cos2(Θ/2)+β sin(Θ/2)√
1−β2 cos2(Θ/2)−β sin(Θ/2)

)
.

(3.230)

This expression simplifies in the nonrelativistic limit (β � 1) where the Taylor series
has the leading terms

INR ≈ 1 + β2 − 2

3
β2 sin2 Θ

2
+O
(
β4) . (3.231)

In the opposite ultrarelativistic limit (β = 1 − δ, δ � 1) the Taylor expansion with
respect to the small parameter δ leads to

IUR ≈ 1

2 sin2 Θ
2

ln

(
2 sin2 Θ

2

δ

)(
1 +O(δ)

)
. (3.232)

Using E = m0γ = m0(1 − β2)−1/2 ≈ m0/
√

2δ the argument of the logarithm can be
expressed in terms of the momentum transfer (cf. (3.109) in Sect. 3.2)

q2 = (pf − pi)
2 � −4E2 sin2 Θ

2
= −m2

0

(
2 sin2 Θ

2

δ

)
. (3.233)

Using these results (3.223) leads to the following cross section of soft bremsstrahlung
in the nonrelativistic and ultrarelativistic limit

dσ̄

dΩf

=
(

dσ̄

dΩf

)
elastic

α

π
ln

ωmax

ωmin

[
2
(
1 − β2 cos θ

)
I − 2

]

=
(

dσ̄

dΩf

)
elastic

2α

π
ln

ωmax

ωmin

⎧⎨
⎩

4
3β

2 sin2 Θ
2 nonrelativistic limit

ln
(−q2

m2
0

)
− 1 ultrarelativistic limit

.

(3.234)

As explained above, the infrared divergence has been cut off by using ωmin as the
lower limit in the momentum integration. In the limit ωmin → 0 we have to include the

radiative corrections entering the calculation of electron scattering, i.e.
(

dσ
dΩf

)
elastic

,

in order to get a finite result.

EXERCISE

3.10 Static Limit of Bremsstrahlung

Problem. Derive the S-matrix element for bremsstrahlung in electron–proton colli-
sions treating the target as a finite-mass Dirac particle. Show that in the static limit it
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is reduced to the amplitude given in (3.192)

Sf i = ie3

V 3/2
2πδ(Ef +ω −Ei)

√
4π

2ω

√
m2

0

EiEf

4π

|pf + k − pi |2

× ū(pf , sf )

[
/ε

1

/pf + /k −m0
γ0 + γ0

1

/pi − /k −m0
/ε

]
u(pi, si) , (1)

which describes electron bremsstrahlung in an external Coulomb field. Further show
that the same relation between the two problems holds as in the case of elastic scatter-
ing, i.e. that the replacements

γ μ

( −1

q2 + iε

)√
M2

0

EfEi

ū(pf , sf )γμu(pi, si) → γ0
1

|q|2 , (2a)

where q = pf + k − pi and

(2π)3δ3(P f + pf + k − P i − pi ) → V (2b)

have to be made when going to the static limit.

Solution. The amplitude to be determined is represented by the two graphs of
Fig. 3.38. Graph (a) yields

S
(a)
f i = 1

V 2

√
m2

0

EiEf

√√√√ M2
0

E
p
i E

p
f

(2π)4δ4(Pf + pf + k − Pi − pi)

×
[
ū(pf , sf )(−ieγ ρ)

i

/pf + /k −m0 + iε
(−ieγ ν)u(pi, si)

]

× [ū(Pf , Sf )(+ieγ μ)u(Pi, Si)
] (−igμν)4π

(Pf − Pi)2 + iε

√
4π

2ωV
ερ(k, λ) (3a)

and graph (b) yields

S
(b)
f i = 1

V 2

√
m2

0

EiEf

√√√√ M2
0

E
p
i E

p
f

(2π)4δ4(Pf + pf + k − Pi − pi)

×
[
ū(pf , sf )(−ieγ ρ)

i

/pi − /k −m0 + iε
(−ieγ ν)u(pi, si)

]

× [ū(Pf , Sf )(+ieγ μ)u(Pi, Si)
] (−igμρ)4π

(Pf − Pi)2 + iε

√
4π

2ωV
εν(k, λ) . (3b)
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Fig. 3.38. The two Feynman
diagrams describing brems-
strahlung in electron–proton
collisions

The sum of both terms is

Sf i = −ie3

V 5/2

√
m2

0

EiEf

√√√√ M2
0

E
p
i E

p
f

√
4π

2ω
(2π)4

× δ4(Pf + pf + k − Pi − pi)
[
ū(Pf , Sf )γ

μu(Pi, Si)
]

×
[
ū(pf , sf )

(
/ε

1

/pf +/k−m0 + iε
γμ+γμ

1

/pi −/k−m0 + iε
/ε

)
u(pi, si)

]

× 4π

(pf + k − pi)2 + iε
. (4)

If we compare (4) and (1) the relation of the factors is obvious.
Note that in principle there are two additional bremsstrahlung graphs in which the

photon is emitted by the proton instead of the electron. The corresponding amplitudes,
however, involve the propagator of the proton and are suppressed by the large proton
mass in the denominator. This corresponds to the fact that classically the acceleration
of the recoiling proton is smaller by a factor m0/M0 compared to that of the electron.

Now we assume that the proton mass M0 is large compared to the kinetic energies.
In the rest frame of the proton we have Pi = (M0,0) and P 0

f ≈ M0, i.e. M0 = E
p
i ≈

E
p
f and thus

√√√√ M2
0

E
p
i E

p
f

≈ 1 . (5)

Furthermore,

(2π)4δ4(Pf + pf + k − pi − Pi)

= (2π)δ(Ef +ω −Ei)(2π)
3δ3(P f + pf + k − pi ) , (6)

with P f being the final momentum of the proton. The δ function contributes only
for P f + pf + k − pi = 0. If the proton is infinitely heavy it can gain an arbitrary
high momentum without violating energy conservation. Then the momentum balance
P f = pi −pf − k puts no constraint on the vectors pi , pf and k. In this case we can
make the replacement

(2π)3δ3(P f + pf + k − pi ) = (2π)3 δ3(0) = V . (7)
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As in Exercise 3.7 in the infinite-mass limit, inner degrees of freedom of the proton,
e.g. spin-flip transitions, can be neglected, which leads to

lim
M0→∞ ū(Pf , Sf )γ

μu(Pi, Si) = ū(0, S)γ μu(0, S) = gμ0 . (8)

Inserting (5)–(8) into (4) yields

Sf i = −ie3

V 3/2

√
m2

0

EiEf

√
4π

2ω
(2π)δ(Ef +ω −Ei)

× 4π

(Ef +ω −Ei)2 − |pf + k − pi |2 + iε

× ū(pf , sf )

[
/ε

1

/pf + /k −m0 + iε
γ0 + γ0

1

/pi − /k −m0 + iε
/ε

]
u(pi, si) .

(9)

The δ function makes the energy part of the photon propagator vanish. The result is
identical with (1).

EXAMPLE

3.11 The Bethe–Heitler Formula for Bremsstrahlung

We shall determine the unpolarized differential cross section of bremsstrahlung emis-
sion in electron scattering at a fixed Coulomb potential up to order α(Zα)2. According
to Sect. 3.6, (3.197) the unpolarized bremsstrahlung cross section is given by

dσ̄ = Z2e6(4π)3m2
0

2ω|vi |EfEi

∫
d3k

(2π)3

d3pf

(2π)3
2πδ(Ef +ω −Ei)

1

|q|4 F(pi,pf ; k) , (1)

with the abbreviation

F = 1

2

∑
λ

∑
si ,sf

∣∣∣∣∣ū(pf , sf )

[
/ε

/pf + /k +m0

(pf + k)2 −m2
0

γ0

+ γ0
/pi − /k +m0

(pi − k)2 −m2
0

/ε

]
u(pi, si)

∣∣∣∣∣
2

. (2)

The differential cross section with respect to the solid angle of the scattered electron
and the photon energy and solid angle can be determined by integrating over dEf :

dσ̄ = Z2e6m2
0

π2

|pf |
|pi |

ωdωdΩkdΩe Θ(Ei −m0 −ω)
1

|q|4 F(pi,pf ; k) . (3)

The averaging over the initial spin si and the summation over the final electron spin sf
can be reduced to the calculation of a trace in the usual manner. In order to sum over
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the two polarizations of the photon we use the completeness relation (3.220) for the
photon polarization vectors εμ(k, λ). From this it follows that

F = −1

2
Tr

[(
γ μ /pf + /k +m0

2pf · k γ 0 + γ 0 /pi − /k +m0

−2pi · k γ μ

) (
/pi +m0

2m0

)

×
(
γ 0 /pf + /k +m0

2pf · k γμ + γμ
/pi − /k +m0

−2pi · k γ 0
) (

/pf +m0

2m0

)]
. (4)

We introduce the more convenient notation

F = − 1

32m2
0

(
1

(pf · k)2
F1 + 1

(pi · k)2
F2 + 1

−(pi · k)(pf · k)
(
F3 +F4

))
. (5)

with

F1 = Tr
[
γ μ( /pf + /k +m0)γ

0( /pi +m0)γ
0( /pf + /k +m0)γμ( /pf +m0)

]
,

F2 = Tr
[
γ 0( /pi − /k +m0)γ

μ( /pi +m0)γμ( /pi − /k +m0)γ
0( /pf +m0)

]
,

F3 = Tr
[
γ 0( /pi − /k +m0)γ

μ( /pi +m0)γ
0( /pf + /k +m0)γμ( /pf +m0)

]
,

F4 = Tr
[
γ μ( /pf + /k +m0)γ

0( /pi +m0)γμ( /pi − /k +m0)γ
0( /pf +m0)

]
. (6)

It suffices to calculate two of these complicated traces. That is, by substituting
pi ↔ −pf and cyclic permutation in the trace we get

F1(pi ↔ −pf ) = Tr
[
γ 0(− /pi + /k +m0)γμ(− /pi +m0)

× γ μ(− /pi + /k +m0)γ
0(− /pf +m0)

]

= Tr
[
γ 0( /pi − /k −m0)γ

μ( /pi −m0)

× γμ( /pi − /k −m0)γ
0( /pf −m0)

]
= F2 . (7)

Here we made use of the fact that the Fi have to be functions even in m0. It can be
easily seen that contributions with m0 and m3

0 contain an odd number of γ matrices in
the trace and therefore vanish. Analogously we find

F3(pi ↔ −pf ) = F4 (8)

by applying Theorem 7 from Mathematical Supplement 3.3 permitting the reversal of
the γ matrices in a trace

Tr [/a1 · · · /an] = Tr [/an · · · /a1] .

In order to determine F1 we introduce

γ 0/a γ 0 = /̃a with /̃a = a0γ0 + a · γ = 2a0γ
0 − /a (9)

and use

γ μγμ = 4 , (10)

γ μ/aγμ = −2/a , (11)
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yielding

F1 = Tr
[
( /pf + /k +m0)( /̃pi +m0)( /pf + /k +m0)(−2 /pf + 4m0)

]
. (12)

This expression can be split up into a sum of traces containing 0, 2, and 4 γ matrices,
respectively. Using

Tr{/a/b} = 4 a · b , (13)

Tr{/a/b/c/d} = 4[a · b c · d − a · c b · d + a · d b · c] (14)

we finally get

F1 = 16
(
m2

0 pi · p̃f − k · p̃i k · pf +m2
0 k · p̃i +m2

0 k · pf +m4
0

)
. (15)

The calculation of the interference term F3 is more complicated. With the help of (11)
and

γ μ/a/bγμ = 4a · b (16)

as well as

γ μ/a/b/cγμ = −2/c/b/a (17)

we find

γ μ( /pi +m0)γ
0( /pf + /k +m0)γμ

= −2( /pf + /k)γ 0 /pi + 4m0
(
p0
i + p0

f + k0)− 2m2
0γ

0 .

Applying (9) we can eliminate the γ 0-factors giving

F3 = Tr

{
( /pi − /k +m0)

[
− 2( /pf + /k) /̃pi

+ 4m0
(
p0
i + p0

f + k0)γ 0 − 2m2
0

]
( /̃pf +m0)

}
. (18)

This expression expands into a sum of traces which contain at most four γ matrices
and can be calculated using (13) and (14). The result is

F3 = 8
[
− (pi · pf )

2 + k · pf pi · pf − k · pi pi · pf

+ pi · p̃i pf · p̃f − 2E2
f k · p̃i + 2E2

i k · p̃f

− (pi · p̃f )
2 + k · p̃f pi · p̃f − pi · p̃f k · p̃i

− 2pi · p̃f m
2
0 −m4

0 + 2m2
0

(
(Ei +Ef )

2 −ω2)] . (19)

This expression is invariant with respect to the exchange pi ↔ −pf (note that a · b̃ =
ã · b), so it follows that F4 = F3 from (8).

Now we can add the various contributions according to (5) in order to get the com-
plete trace TrF . Further we notice that owing to energy conservation (the Coulomb
center does not absorb energy) the relation

ω ≡ k0 = Ei −Ef (20)
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is valid, and we introduce the momentum transfer

q = pf + k − pi , (21)

with the square

q2 = 2
(
m2

0 + pf · k − pi · k − pi · pf

)= −|q|2 . (22)

After some lengthy rewriting we get

F = − 1

4m2
0

1

(pi · k)2(pf · k)2

[
4m2

0(pf · k Ef − pi · k Ei)
2

+ ((pf · k)2 + (pi · k)2)(2pi · k pf · k + q2m2
0

)

+ 2pi · k pf · k q2(E2
i +E2

f − pi · pf

)]
. (23)

Inserting this result into (3) yields the bremsstrahlung cross section. For a comparison
with experimental data it is convenient to put in the scalar products of the four-vectors
explicitly. As variables we use the absolute values of the electron and photon momenta
(or energies) before and after the scattering, the polar angle of pi and pf with respect
to the direction k of the photon, and the angle φ between the planes (pi ,k) and (pf ,k)

(see Fig. 3.39). From a formula from spherical geometry the angle between pi and pf

is given by

Fig. 3.39. The three momen-
tum vectors pi , pf and k form
a spherical triangle

cos(pi ,pf ) = cos θi cos θf + sin θi sin θf cosφ .

Then the square of the momentum transfer follows as

q2 = −q2

= −p2
i − p2

f −ω2 − 2ω|pf | cos θf + 2ω|pi | cos θi

+ 2|pi ||pf |(cos θi cos θf + sin θi sin θf cosφ) . (24)

Furthermore,

pi · k = ω(Ei − |pi | cos θi) ,

pf · k = ω(Ef − |pf | cos θf ) . (25)

Together with (3) and (23) this finally yields the Bethe–Heitler formula28 for the
bremsstrahlung cross section:

dσ̄ = Z2α3

(2π)2

|pf |
|pi |

dω

ω

dΩedΩk

|q|4 Θ(Ei −m0 −ω)

×
[

p2
f sin2 θf

(Ef − |pf | cos θf )2

(
4E2

i − q2)+ p2
i sin2 θi

(Ei − |pi | cos θi)2

(
4E2

f − q2)

28 H. Bethe and W. Heitler: Proc. Roy. Soc. A146, 83 (1934).
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+ 2ω2
p2
i sin2 θi + p2

f sin2 θf

(Ei − |pi | cos θi)(Ef − |pf | cos θf )

− 2
|pi ||pf | sin θi sin θf cosφ

(Ei − |pi | cos θi)(Ef − |pf | cos θf )

(
2E2

i + 2E2
f − q2)] . (26)

The validity of this formula can most easily be shown by tracing it back to (23). An
extended discussion of (26) can be found in Heitler’s book.29 There also the analytical
result of the integration over electron and photon angles, Ωe and Ωk , is stated.

In Exercise 3.16 we shall show that the Bethe–Heitler formula with some minor
modifications also applies to the creation of electron–positron pairs.

Although the steps leading from the basic S-matrix element to the Bethe–Heitler
formula have been “exact” one should keep in mind that the result has its limitations
before comparing with experiments.30

i) The derivation is based on perturbation theory using plane waves for the electron.
If the criterion for the validity of the Born approximation

Ze2

�|v| � 1 (27)

is violated for the initial and/or final velocity, Coulomb waves should be used instead
of plane waves.

ii) The nuclear Coulomb potential in a neutral atom is screened by the electron
cloud. This will lead to a reduction of the bremsstrahlung cross section in such cases
where a significant contribution would arise from distances larger than the atomic
radius. This happens at high electron energies as can be seen from the following qual-
itative argument. In momentum space the largest contribution to the radiation cross
section originates from the region where the momentum transfer q = pf + k − pi is
smallest. This happens at

|qmin| = |pi | − |pf | − |k| . (28)

Insertion of the relativistic energy–momentum relation yields in the limit Ei/m0 � 1,
Ef /m0 � 1

|qmin| =
√
E2

i −m2
0 −
√
E2

f −m2
0 −ω

≈ Ei

(
1 − m2

0

2E2
i

)
−Ef

(
1 − m2

0

2E2
f

)
−ω

= m2
0

2

(
1

Ef

− 1

Ei

)
= m2

0ω

2EfEi

. (29)

In coordinate space this corresponds to a distance from the nucleus of the order

R = 1

|qmin|
= 2EfEi

m2
0ω

. (30)

29 W. Heitler: The Quantum Theory of Radiation, (Oxford University Press, Oxford, 1957); see also
H.W. Koch, J.W. Motz: Rev. Mod. Phys. 31, 920 (1959).
30 For a review see, e.g., R.H. Pratt and I.J. Feng in Atomic Inner-Shell Physics, Ed. B. Craseman
(Plenum Publishing Corporation, New York, 1985).
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This value has to be compared with the extension of the atomic shell a(Z). According

to the Thomas–Fermi model a(Z) is of the order Z− 1
3 times the hydrogenic Bohr

radius:

a(Z) = 1

m0α
Z− 1

3 . (31)

From (30) and (31) one deduces that atomic screening will significantly reduce the
radiation intensity at energies exceeding

E >
m0

Z
1
3 α

(32)

taking Ei ∼ Ef ∼ ω.

3.7 Compton Scattering – The Klein–Nishina Formula

The name Compton scattering refers to the scattering of photons by free electrons. In
the language of quantum electrodynamics an incoming photon with four–momentum k

and polarization vector ε is absorbed by an electron (or another charged particle) and
a second photon with four–momentum k′ and polarization vector ε′ is emitted. The
corresponding Feynman diagrams are shown in Fig. 3.40.

We describe the incoming photon as a plane wave (see Sect. 3.6, (3.170)):

Aμ(x, k) =
√

4π

2ωV
εμ(k, λ)

(
e−ik·x + eik·x) , (3.235)

and the outgoing (scattered) photon by

A′
μ(x

′, k′) =
√

4π

2ω′V
εμ(k

′, λ′)
(
e−ik′·x′ + eik′·x′)

. (3.236)

Figure 3.40 shows that the Compton process is of second order and differs from brems-
strahlung by the fact that here we have an incoming real photon instead of the virtual
photon exchanged with a recoiling charged particle. As a consequence the ampli-
tude for Compton scattering can be obtained from that of bremsstrahlung (Sect. 3.6,
(3.187)) just by the replacement γ0A0(y) → γ μAμ(y, k

′). In coordinate space the
S-matrix element of Compton scattering is therefore given by

Sf i = e2
∫

d4xd4y ψ̄f (x)
[(−i/A(x, k′)

)
iSF(x − y)

(−i/A(y, k)
)

+ (−i/A(x, k)
)
iSF(x − y)

(−i/A(y, k′)
)]
ψi(y) . (3.237)

Also in momentum space the amplitude can be directly written down with the help of
the Feynman rules:

Fig. 3.40. The direct and ex-
change diagram describing
Compton scattering

Sf i = e2

V 2

√
m2

0

EiEf

√
(4π)2

2ω2ω′ (2π)
4δ4(pf + k′ − pi − k)
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× ū(pf , sf )

[
(−i/ε ′) i

/pi + /k −m0
(−i/ε)

+ (−i/ε)
i

/pi − /k′ −m0
(−i/ε ′)

]
u(pi, si) . (3.238)

Here we have chosen the appropriate boundary conditions for the photon field. Owing
to the plane wave factors exp (±ik · x) and exp (±ik′ · x′) in (3.235), (3.236) there are
four possible sign combinations when passing from (3.237) to (3.238). Each of them
gives rise to a delta function which constrains the four–momenta of the particles:

+k + pi = +k′ + pf , (3.239a)

−k + pi = +k′ + pf , (3.239b)

+k + pi = −k′ + pf , (3.239c)

−k + pi = −k′ + pf . (3.239d)

(3.239a) describes the correct conservation relation for energy and momentum in
Compton scattering. The energy–momentum conditions of processes b) and c) can-
not be fulfilled; therefore their contributions vanish (see Problem 3.12, where this is
shown in case c); the argument for b) is similar). Physically (3.239b) and (3.239c)
describe the emission or absorption of two photons by a free electron which is kine-
matically impossible. In process d) the photons k and k′ are exchanged with respect to
the process a) discussed here. This corresponds to an incoming photon with momen-
tum k′ and a scattered (outgoing) photon with momentum k. The kinematical condi-
tions fixed by the experiment are those noted in (3.239a). Thus the relation (3.239d)
is not compatible with the prescribed experimental conditions, i.e. process (3.239d)
does not have to be considered.

Here the situation is similar to the bremsstrahlung case (cf. the discussion in
Sect. 3.6, (3.191)). Not every term that occurs in the scattering amplitude is physically
relevant for the process considered. The remaining term in the Compton scattering
amplitude stems from the part exp (−ik · x) of the photon field in (3.235) describing
the absorption of a photon with four-momentum kμ by the electron at x and from the
part exp (+ik′ · x′) of the photon field in (3.236). The latter describes a photon with
four–momentum k′

μ emitted by the electron at x′.
Inspecting (3.238) we note that the scattering amplitude has a symmetry property:

obviously it is invariant under the exchange

k, ε ↔ −k′, ε′ . (3.240)

This is a new example for the crossing symmetry which we first encountered in
Sect. 3.4. In our case the crossing symmetry implies that the amplitude for absorbing
the photon k, ε and emitting the photon k′, ε′ is the same as that for absorbing a photon
k′, ε′ and emitting a photon with k, ε. In general crossing relates ingoing particles to
outgoing antiparticles and vice versa. In the case of photons this distinction does not
arise since the photon “is its own antiparticle”.

It is useful to split the S-matrix element (3.238) into two parts:

Sf i = − i
e2

V 2

√
m2

0

EiEf

√
(4π)2

2ω2ω′ (2π)
4δ4(pf + k′ − pi − k)

× εμ(k′, λ′)εν(k, λ) Mμν . (3.241)
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Here we have introduced the Compton tensor

Mμν = ū(pf , sf )

[
γμ

1

/pi + /k −m0
γν + γν

1

/pi − /k′ −m0
γμ

]
u(pi, si) , (3.242)

which is a function of the four–momenta pi , pf , k, k′ subject to the condition
k + pi = k′ + pf . Using the on-shell conditions for the momentum vectors (3.242)
can be written as

Mμν = ū(pf , sf )

[
γμ

/pi + /k +m0

2pi · k γν + γν
/pi − /k′ +m0

−2pi · k′ γμ

]
u(pi, si) . (3.243)

The tensor Mμν is an obvious generalization of the matrix element Mμ that we in-
troduced when discussing bremsstrahlung in Sect. 3.6, (3.194). The relation between
both quantities is given by

Mμ0(pi,pf ; k, k′) = Mμ(pi,pf ; k′) . (3.244)

Since both photons interact with conserved currents the Compton tensor is a gauge-
invariant object, characterized by the property

k′μMμν = kνMμν = 0 . (3.245)

The proof of these two relations can be copied from the analogous case of bremsstrah-
lung, (3.212), and will not be repeated here.

Now we shall calculate the photon scattering cross section using the rules we have
derived; only the spinor algebra will be somewhat more complicated than in the pre-
vious examples. The cross section results as

dσ =
∫ |Sf i |2

T |vrel|/V V
d3pf

(2π)3
V

d3k′

(2π)3
, (3.246)

with

|Sf i |2
T

= |Sf i |2
V T/V

= |Sf i |2
(2π)4δ4(0)1/V

being the transition rate per volume and normalized to one electron per volume (see
(3.63)–(3.71)). |vrel|/V is the incoming photon flux. vrel = c − ve is the relative ve-
locity of the photons with respect to the electron and 1/V is again the number of
electrons per unit volume. An additional factor 1/V originates from the number of
photons per unit volume. The phase space volume elements of the final electron and
photon in (3.246) are been given by V d3pf /(2π)3 and V d3k′/(2π)3. This yields:

dσ = e4

V 4

m2
0

EiEf

1

(|vrel|/V )(1/V )

×
∫

(2π)4δ4(pf + k′ − pi − k)
(4π)2

2ω2ω′
∣∣ε′μMμνε

ν
∣∣2 V 2 d3pf

(2π)3

d3k′

(2π)3

= e4

(2π)2

m0(4π)2

Ei |vrel|2ω

×
∫

δ4(pf + k′ − pi − k)
∣∣ε′μMμνε

ν
∣∣2 m0d3pf

Ef

d3k′

2ω′ . (3.247)
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In the following we want to evaluate this expression in the laboratory frame where the
electron is at rest initially, pi = (m0,0). Hence we have Ei = m0 in that frame and
also |vrel| = |c − ve| = |c| = 1. Now we use the covariant expression for the density
of final states known from Sect. 3.2, (3.74),

d3p

2E
=

+∞∫

−∞
d4p δ

(
p2 −m2

0

)
Θ(p0) , (3.248)

and perform the integral over the recoil electrons (d3pf ) and the absolute value of the
photon momentum |k′| = ω′.
∫ |k′|2d|k′|

2|k′|
∫

m0d3pf

Ef

δ4(pf + k′ − pi − k)

= m0

∞∫

0

|k′|d|k′|
∫

d4pf δ
(
p2
f −m2

0

)
Θ(pf0) δ

4(pf + k′ − pi − k)

= m0

∞∫

0

ω′dω′ δ
(
(pi + k − k′)2 −m2

0

)
Θ(m0 +ω −ω′)

= m0

ω+m0∫

0

ω′dω′ δ
(
2m0(ω −ω′)− 2ωω′(1 − cos θ)

)

= m0
ω′

| − 2m0 − 2ω(1 − cos θ)| = ω′

2
∣∣∣1 + ω

m0
(1 − cos θ)

∣∣∣

= ω′2

2ω
. (3.249)

Here we have used

(k + pi − k′)2 = k2 + k′2 + p2
i + 2k · pi − 2k · k′ − 2k′ · pi

= m2
0 + 2m0(ω −ω′)− 2ωω′(1 − cos θ) (3.250)

and we applied the familiar formula

∫
dx δ(f (x))g(x) =

∑ g(x)∣∣∣ dfdx
∣∣∣

∣∣∣∣∣∣
zero of f (x)

. (3.251)

θ is the scattering angle of the photon, see Fig. 3.41. The energies of the incident and

Fig. 3.41. The outgoing pho-
ton (k′) is scattered with re-
spect to the incoming one (k′)
by an angle θ into the spheri-
cal angle element dΩk′

scattered photons are connected by

ω′ = ω

1 + ω
m0

(1 − cos θ)
. (3.252)

This relation follows from the root of the delta function that occurred in the derivation
of (3.249) and thus is a simple consequence of the laws of energy and momentum
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conservation. Equation (3.252) takes a particularly simple form if one looks at the
wavelength λ = 2π/ω which leads to Compton’s formula

λ′ = λ+ 2π
1

m0
(1 − cos θ) . (3.253)

The wavelength of the scattered photon is increased by an amount of the order 1/m0

which, of course, is the Compton wavelength �/m0c.
From (3.243) and (3.247) the differential photon scattering cross section results as

dσ

dΩk′
= α2 ω

′2

ω2

∣∣ε′μMμνε
ν
∣∣2

= α2 ω
′2

ω2

∣∣∣∣ū(pf , sf )

(
/ε ′( /pi + /k +m0)/ε

2pi · k + /ε( /pi − /k′ +m0)/ε
′

−2pi · k′

)
u(pi, si)

∣∣∣∣
2

.

(3.254)

In the following we will be interested in the case of unpolarized electrons31 but keep,
for the time being, the photon polarizations λ and λ′. Thus (3.254) has to be averaged
over the initial spin and summed over the final spin of the electron:

dσ̄

dΩk′
(λ′, λ) = 1

2

∑
si ,sf

dσ

dΩk′

(
sf , si;λ′, λ

)
. (3.255)

Using the familiar trace technique to eliminate the electron spinors this leads to

dσ̄

dΩk′
(λ′, λ) = α2 ω

′2

ω2

1

2
Tr

[
/pf +m0

2m0
Γ

/pi +m0

2m0
Γ̄

]
, (3.256)

where

Γ = /ε ′( /pi + /k +m0)/ε

2pi · k + /ε ( /pi − /k′ +m0)/ε
′

−2pi · k′ (3.257)

and

Γ̄ = γ 0Γ †γ 0 = Γ (ε ↔ ε′) (3.258)

using γ̄ μ = γ μ. The expression for Γ can be simplified by anticommuting the fac-
tor /pi to the right:

Γ = 2pi · ε/ε ′ + /ε ′/k/ε − /ε ′/ε( /pi −m0)

2pi · k + 2pi · ε′/ε − /ε/k′/ε ′ − /ε/ε ′( /pi −m0)

−2pi · k′ . (3.259)

The last term in the numerators can be discarded since it is orthogonal to the energy
projection operator in (3.256):

( /pi −m0)( /pi +m0) = p2
i −m2

0 = 0 . (3.260)

31 Polarization effects in Compton scattering have been discussed by F.W. Lipps and H.A. Tolhoek:
Physica 20, 85 (1954).
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Thus instead of (3.257) we will use

Γ → 2pi · ε/ε ′ + /ε ′/k/ε
2pi · k + 2pi · ε′/ε − /ε/k′/ε ′

−2pi · k′ (3.261a)

and similarly (commuting /pi to the left)

Γ̄ → 2pi · ε/ε ′ + /ε/k/ε ′

2pi · k + 2pi · ε′/ε − /ε ′/k′/ε
−2pi · k′ . (3.261b)

The Dirac matrices (3.261) are still quite complicated expressions. The following cal-
culations can be simplified considerably, however, if we choose a convenient gauge in
which the polarization vectors are orthogonal to the initial electron momentum pi :

ε · pi = 0 , ε′ · pi = 0 . (3.262)

In the laboratory frame where p
μ
i = (m0,0) this amounts to the “radiation gauge” in

which the electromagnetic potential has no 0-component, i.e. εμ = (0,ε). However,
the condition (3.262) can be imposed in any given frame of reference. Starting from
an arbitrary set of polarization vectors ε, ε′ we can perform a gauge transformation

ε̃μ = εμ − pi · ε
pi · k kμ ,

ε̃′μ = ε′μ − pi · ε′

pi · k′ k
′μ , (3.263)

so that the new polarization vectors ε̃ are orthogonal to pi . The normalization
and transversality conditions (3.178), (3.179) are not affected by the transformation
(3.263):

ε̃ · ε̃ = ε̃′ · ε̃′ = −1 ,

ε̃ · k = ε̃′ · k′ = 0 , (3.264)

which immediately follows from k2 = k′2 = 0. Thus without restricting the general-
ity of our calculation we will impose the condition (3.262). In the remainder of this
section for simplicity we will continue to write ε instead of ε̃.

Using (3.262) we finally have to evaluate the trace in (3.256) with

Γ = /ε ′/k/ε
2k · pi

+ /ε/k′/ε ′

2k′ · pi

(3.265a)

and

Γ̄ = /ε/k/ε ′

2k · pi

+ /ε ′/k′/ε
2k′ · pi

. (3.265b)

The calculation of the trace in (3.256) is not easily done since products of up to 8 γ ma-
trices are involved. Two terms are identical, that is the two mixed terms with a denom-
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inator proportional to (k · pi)(k
′ · pi):

1

16m2
0(k ·pi)(k′ ·pi)

Tr
[
( /pf +m0)

(
/ε ′/k/ε( /pi +m0)/ε

′/k′/ε + /ε/k′/ε ′( /pi +m0)/ε/k/ε
′)]

= 2

16m2
0(k ·pi)(k′ ·pi)

Tr
[
( /pf +m0)/ε

′/k/ε( /pi +m0)/ε
′/k′/ε
]
.

(3.266)

This follows from Theorem 7 in the Mathematical Supplement 3.3 according to which
the trace remains unchanged when the order of the factors is reversed.

We have to evaluate

dσ̄

dΩk′
(λ′, λ) = α2 ω

′2

ω2

1

2
Tr

[
/pf +m0

2m0

(
/ε ′/ε/k

2k ·pi

+ /ε/ε ′/k′

2k′ ·pi

)

× /pi +m0

2m0

(
/k/ε/ε ′

2k ·pi

+ /k′/ε ′/ε
2k′ ·pi

)]

= α2 ω
′2

ω2

1

2

1

4m2
0

(
S1

(2k ·pi)2
+ S2

(2k′ ·pi)2
+ 2S3

(2k ·pi)(2k′ ·pi)

)
.

(3.267)

Note that in (3.267) the factors have been slightly reordered using /k/ε = −/ε/k, /k′/ε ′ =
−/ε ′/k′. Each of the terms S1, S2, S3 contains a trace involving 8 gamma matrices.32

Without further simplification each trace would evaluate to a sum over 3 · 5 · 7 = 105
terms, each consisting of a product of four scalar products. This follows from the
expansion rule for traces, Theorem 3 in the Mathematical Supplement 3.3. Fortunately
the final result of the calculation will be much simpler since in our case many of the
scalar products vanish

k · k = k′ · k′ = ε · k = ε′ · k′ = ε · pi = ε′ · pi = 0 (3.268a)

or are trivial

ε · ε = ε′ · ε′ = −1 . (3.268b)

Thus we might write down the fully expanded trace and then simplify the general
expression with the help of (3.268). However, we can avoid this tedious calculation by
making use of the fact that the arguments of the traces contain repeated factors (like /ε

in (3.266). We shall anticommute these factors until they stand next to each other. In
this way two gamma matrices are eliminated since /a/a = a · a is proportional to the
unit matrix. Let us apply this strategy to the evaluation of the three traces in (3.267).

(a) The first trace can be expressed by

S1 = Tr
[
( /pf +m0)/ε

′/ε/k( /pi +m0)/k/ε/ε
′]

= Tr
[
/pf /ε

′/ε/k /pi/k/ε/ε
′]+m2

0 Tr
[
/ε ′/ε/k/k/ε/ε ′]

32 Complicated trace calculations in QED and other field theories nowadays are routinely performed
with the help of the computer, using symbolic-algebra programs like REDUCE, MACSYMA, FORM,
Mathematica, and others.
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= 2k · pi Tr
[
/pf /ε

′/ε/k/ε/ε ′]− Tr
[
/pf /ε

′/ε /pi/k/k/ε/ε
′]

= −2k · pi Tr
[
/pf /ε

′/k/ε/ε/ε ′]= 2k · pi Tr
[
/pf /ε

′/k/ε ′]
= 2k · pi

{
2(k · ε′)Tr

[
/pf /ε

′]− Tr
[
/pf /ε

′/ε ′/k
]}

= 2k · pi

[
2(k · ε′)4(pf · ε′)+ 4pf · k]

= 8(k · pi)
[
k · pf + 2(k · ε′)(pf · ε′)

]
. (3.269)

In the course of these transformations we have used k2 = 0, ε2 = ε′2 = −1, ε · k = 0.
To eliminate the dependence on the final momentum pf we use

k · pf = k′ · pi , ε′ · pf = ε′ · k . (3.270)

The first identity follows from squaring the four-momentum conservation relation in
the form pf − k = pi − k′ and using p2

i = p2
f = m2

0 and k2 = k′2 = 0. Similarly the
second identity (3.270) is obtained by multiplying the energy–momentum relation by
ε′ and using ε′ · pi = ε′ · k′ = 0. Thus the final result for the first trace is

S1 = 8(k · pi)
[
k′ · pi + 2(k · ε′)2

]
. (3.271)

(b) Now we calculate the second trace in (3.267):

S2 = Tr
[
( /pf +m0)/ε/ε

′/k′( /pi +m0)/k
′/ε ′/ε
]
. (3.272)

The comparison with (3.269) shows that S2 results from S1 if we replace ε ↔ ε′ and
k ↔ k′. Thus from (3.271) the result is

S2 = 8(k′ · pi)
[
k · pi − 2(k′ · ε)2

]
. (3.273)

(c) Finally we have to calculate the trace S3:

S3 = Tr
[
( /pf +m0)/ε

′/ε/k( /pi +m0)/k
′/ε ′/ε
]

= Tr
[
( /pi +m0)/ε

′/ε/k( /pi +m0) /k
′/ε ′/ε
]+ Tr

[
(/k − /k′)/ε ′/ε/k /pi/k

′/ε ′/ε
]

≡ Sa
3 + Sb

3 (3.274)

(since pf = pi + k − k′).
In the first trace, Sa

3 , we can anticommute the factor ( /pi + m0) to the right. This
leads to

( /pi +m0)/ε
′/ε/k = /ε ′/ε( /pi +m0)/k = 2pi · k /ε ′/ε + /ε ′/ε/k(− /pi +m0) .

The second term drops out since (− /pi +m0) ( /pi +m0) = p2
i −m2

0 = 0 so that we are
left with

Sa
3 = 2pi · k Tr

[
/ε ′/ε /pi/k

′/ε ′/ε
]

= 2pi · k
{

2ε · ε′ Tr
[
/pi/k

′/ε ′/ε
]− Tr

[
/ε/ε ′ /pi/k

′/ε ′/ε
]}

= 2pi · k
{

2ε · ε′ Tr
[
/pi/k

′/ε ′/ε
]− Tr

[
/pi/k

′]} . (3.275)
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The second term in (3.274) can be simplified in the following way:

Sb
3 = Tr

[
(/k − /k′)/ε ′/ε/k /pi/k

′/ε ′/ε
]

= 2ε′ · k Tr
[
/ε/k /pi/k

′/ε ′/ε
]− Tr

[
/ε ′(/k − /k′)/ε/k /pi/k

′/ε ′/ε
]

= 2ε′ · kTr
[
/ε/ε/k /pi/k

′/ε ′]− Tr
[
/ε ′(−/ε/k − /k′/ε)/k /pi/k

′/ε ′/ε
]

= −2ε′ · k Tr
[
/k /pi/k

′/ε ′]+ Tr
[
/ε ′/k′/ε/k /pi/k

′/ε ′/ε
]

= −2ε′ · k Tr
[
/k /pi/k

′/ε ′]+ Tr
[
/k′/ε ′/ε/k /pi/ε

′/k′/ε
]

= −2ε′ · k Tr
[
/k /pi/k

′/ε ′]+ 2k′ · ε Tr
[
/k′/ε ′/ε/k /pi/ε

′]− Tr
[
/k′/ε ′/ε/k /pi/ε

′/ε/k′]
= −2ε′ · k Tr

[
/k /pi/k

′/ε ′]− 2k′ · ε Tr
[
/ε ′/k′/ε/k /pi/ε

′]
= −2ε′ · k Tr

[
/k /pi/k

′/ε ′]+ 2k′ · ε Tr
[
/k′/ε/k /pi

]
. (3.276)

The remaining traces in (3.275) and (3.276) cannot be simplified further and have to
be expanded explicitly. This leads to

S3 = 8pi · k
[
2ε · ε′((pi · k′)(ε′ · ε)− (pi · ε′)(k′ · ε)+ (pi · ε)(k′ · ε))− pi · k′]

− 8k · ε′[(k · pi)(k
′ · ε′)− (k · k′)(pi · ε′)+ (k · ε′)(pi · k)

]

+ 8k′ · ε
[
(k′ · ε)(k · pi)− (k′ · k)(ε · pi)+ (k′ · pi)(ε · k)

]

= 8(k · pi)(k
′ · pi)

[
2(ε′ · ε)2 − 1

]
− 8(k · ε′)2(pi · k′)+ 8(k′ · ε)2(pi · k)

(3.277)

where again k · ε = k′ · ε′ = ε · pi = ε′ · pi = 0 has been used.
Now we can finally construct the differential photon scattering cross section (3.267)

using the three traces just calculated, i.e. S1 (3.271), S2 (3.273), and S3 (3.277). We
arrive at

dσ̄

dΩk′
(λ′, λ) = 1

2
α2 ω

′2

ω2

1

4m2
0

(
8(k · pi)

[
k′ · pi + 2(k · ε′)2

]
4(k · pi)2

+ 8(k′ · pi)
[
k · pi − 2(k′ · ε)2

]
4(k′ · pi)2

+2
{
8(k ·pi)(k

′ ·pi)
[
2(ε′ ·ε)2 − 1

]− 8(k ·ε′)2(pi ·k′)+ 8(k′ ·ε)2(pi ·k)
}

4(k ·pi)(k′ ·pi)

)

= 1

2
α2 ω

′2

ω2

1

4m2
0

2

[
k′ · pi

k · pi

+ k · pi

k′ · pi

+ 4(ε′ · ε)2 − 2

]
, (3.278)

where some of the terms have cancelled each other pairwise. While the trace calcula-
tion has been fully covariant we now insert the kinematics of the laboratory frame, i.e.
k ·pi = ωm0, k′ ·pi = ω′m0. This leads to the well-known Klein–Nishina formula 33

33 O. Klein and Y. Nishina: Z. Phys. 52, 853 (1929).
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which describes Compton scattering of photons:

dσ̄

dΩk′
(λ,λ′) = α2 1

4m2
0

ω′2

ω2

[
ω′

ω
+ ω

ω′ + 4(ε · ε′)2 − 2

]
. (3.279)

ω′ depends on ω and on the photon scattering angle according to (3.252). For small
energies (ω → 0) we have ω′ = ω and the photon scattering cross section (3.279) is
reduced to the cross section of Thomson’s scattering formula:
(

dσ̄

dΩk′
(λ′, λ)

)
ω→0

= α2 1

m2
0

(ε · ε′)2 . (3.280)

This result contains no quantum effects, it can be derived from classical electrody-
namics. The classical nature of the cross section (3.280) is rather obvious since it does
not depend on Planck’s constant �. Writing out the constants � and c we find that the
cross section is proportional to the square of the length

r0 = α
1

m0
= e2

�c

�

m0c
= e2

m0c2
� 2.8 × 10−13 cm . (3.281)

This quantity sometimes is called the “classical radius of the electron”. This name
originates from the (incorrect) notion that the rest mass of the electron can be ex-
plained in terms of the electrostatic energy of an extended charged sphere. Equation
(3.280) can be written in the form
(

dσ̄

dΩk′
(λ′, λ)

)
ω→0

= r2
0 (ε · ε′)2 . (3.282)

Equation (3.252) shows that the classical limit ω′ = ω also applies if the photon scat-
tering angle becomes small. In forward scattering (θ → 0), therefore, the exact Comp-
ton cross section reduces to the Thomson cross section (3.282).

Finally, we shall sum over the polarizations λ′ of the scattered photon and average
over the initial polarizations λ of the incoming photon thus obtaining the unpolarized
cross section:

dσ̄

dΩk′
= 1

2

2∑
λ,λ′=1

dσ̄

dΩk′
(λ′, λ) . (3.283)

We could have performed these summations from the outset, i.e. by applying the com-
pleteness relation (3.220) of the photon polarization vectors to the squared matrix
element in (3.254). This would have eliminated the dependence on the ε vectors, thus
slightly simplifying the trace calculations.

Instead we will start from the polarization dependent result (3.279) and explicitly
sum over λ and λ′. We will use the radiation gauge where the polarization vectors are
purely space-like, ε = (0,ε), so that

ε · ε′ = εμ(k, λ)εμ(k
′, λ′) = −ε(k, λ) · ε(k′, λ′) . (3.284)

The spatial vectors ε(k,1), ε(k,2), k form an orthogonal system, the same holds
for the primed quantities. Now without restricting generality we can choose ε(k,1)
and ε′(k′,1) to lie in the plane spanned by k and k′, see Fig. 3.42. Then ε(k,2) and

Fig. 3.42. The angle between
the vectors of polarization ε(1)

and ε′(1) is the same as the
one between k and k′. All four
vectors ε(1), ε′(1), k and k′
are chosen to lie in the same
plane. ε(2) = ε′(2) is a unit
vector orthogonal to this plane
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ε′(k′,2) are perpendicular to this plane and thus identical. We have

ε(1) · ε′(1) = cos θ ,

ε(2) · ε′(2) = 1 ,

ε(1) · ε′(2) = ε(2) · ε′(1) = 0 . (3.285)

The averaged polarization dependent term in (3.279) becomes

1

2

2∑
λ,λ′=1

∣∣ε(λ) · ε′(λ′)∣∣2 = 1

2

(
cos2 θ + 1

)
. (3.286)

Using this result and (3.279) the unpolarized cross section for Compton scattering
becomes

dσ̄

dΩk′
= α2 1

2m2
0

ω′2

ω2

(
ω′

ω
+ ω

ω′ − sin2 θ

)
. (3.287)

The classical limit of this result (ω → 0 or θ → 0) is the unpolarized Thomson cross
section(

dσ̄

dΩk′

)
class

= r2
0

1

2

(
1 + cos2 θ

)
. (3.288)

In the ultrarelativistic limit ω,ω′ � m0 Compton’s formula (3.252) reduces to

ω′ = ω

1 + ω
m0

(1 − cos θ)
� m0

1 − cos θ
= m0

2 sin2 θ
2

, (3.289)

which is valid for not too small scattering angles θ2 � 2m0
ω

. In this limit the Klein–
Nishina cross section approaches
(

dσ̄

dΩk′

)
UR

= r2
0
m0

ω

1

4

1

sin2 θ
2

for θ2 � 2m0

ω
. (3.290)

Figure 3.43 shows how the exact result (3.287) with (3.252) interpolates between the

Fig. 3.43. The differential
cross section of unpolarized
Compton scattering as a func-
tion of the scattering angle θ

for various photon energies ω



188 3. Quantum-Electrodynamical Processes

limiting cases (3.288) and (3.290). At high energies the angular distribution gets con-
centrated in a narrow cone in the forward direction.

Lastly we integrate over the photon solid angle dΩk′ in order to derive the total
cross section. Here we have to take into account relation (3.252), because a depen-
dence on the scattering angle of the photon is also hidden in ω′. This yields

σ̄ = α2 1

2m2
0

∫
sin θdθdφ

1(
1 + ω

m0
(1 − cos θ)

)2

{
1

1 + ω
m0

(1 − cos θ)

+
[

1 + ω

m0
(1 − cos θ)

]
− sin2 θ

}

= α2 π

m2
0

1∫

−1

dz

⎧⎪⎨
⎪⎩

1[
1+ ω

m0
(1−z)

]3 + 1[
1+ ω

m0
(1−z)

] − (1−z2)[
1+ ω

m0
(1−z)

]2
⎫⎪⎬
⎪⎭ ,

(3.291)

where we have set z = cos θ . This integral can be calculated in a closed form. Simple
expressions can be derived for high and low photon energies.

(a) Small photon energies (ω � m0):

σ̄ � α2 π

m2
0

[
z + z −

(
z − z3

3

)]1

−1
= α2 8π

3

1

m2
0

= 8π

3
r2

0 . (3.292)

This is just the classical Thomson cross section.
(b) High photon energies (ω � m0):

σ̄ � α2 π

m2
0

1−m0/ω∫

−1

dz

⎡
⎢⎣ 1(

ω
m0

)3
(1 − z)3

+ 1
ω
m0

(1 − z)
−

(
1 − z2

)
(

ω
m0

)2
(1 − z)2

⎤
⎥⎦

� α2 π

ωm0

[
ln

2ω

m0
+ 1

2
+O

(
m0

ω
ln

ω

m0

)]
. (3.293)

In order to estimate the value of the integral the 1 in the denominators of (3.291)
was neglected compared to (ω/m0)(1−z), which is valid if z<1−m0/ω. This was
accounted for by lowering the upper boundary of integration. The dominating loga-
rithm in (3.293) results from the second term in the integrand.

For completeness we also quote the result of the exact angular integration (3.291).
This leads to the total Klein–Nishina cross section, valid for all values of ω

σ̄ = 2π
α2

m2
0

[
1+γ

γ 3

(
2γ (1+γ )

1+2γ
− ln(1+2γ )

)
+ 1

2γ
ln(1+2γ )− 1+3γ

(1+2γ )2

]
,

(3.294)

with the abbreviation.
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EXERCISE

3.12 Relations of Energy and Momentum

Problem. Assume that the four–momenta pi,pf of an electron and k, k′ of photons
satisfy the relation

pf = pi + k + k′ . (1)

Show that this can only be satisfied by the trivial solution

pf = pi and k = k′ = 0 (2)

if the momenta are on the mass shell.

Solution. Equation (1) is equivalent to pf − pi = k + k′. Squaring this relation and
splitting it up into space and time parts we get

ωω′ +EiEf −m2
0 = pi · pf + k · k′ , (3)

where we used the on-shell conditions

p2
i = p2

f = m2
0 , k2 = k′2 = 0 . (4)

The absolute value of the r.h.s. of (3) is limited by the following inequality

|pi · pf + k · k′| ≤ |pi ||pf | + |k||k′| =
√
E2

i −m2
0

√
E2

f −m2
0 +ωω′ . (5)

We insert this result into (3):

EiEf −m2
0 ≤
√
E2

i −m2
0

√
E2

f −m2
0 . (6)

Squaring yields (since EiEf −m2
0 ≥ 0)

E2
i E

2
f − 2m2

0EiEf +m4
0 ≤ E2

i E
2
f −m2

0(E
2
i +E2

f )+m4
0 . (7)

which rewritten is

(Ei −Ef )
2 ≤ 0 . (8)

This implies that

Ei = Ef (9)

and, owing to the time component of (1),

ω = −ω′ , (10)

which means that ω = ω′ = 0. Since ω = |k| and ω′ = |k′|, also the photon momentum
four-vectors vanish and (2) is proven.
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3.8 Annihilation of Particle and Antiparticle

The annihilation of matter and antimatter is a conceptually very interesting process.
We shall study the process by considering the example of the annihilation of an
electron–positron pair into two photons. The corresponding Feynman graphs are
shown in Fig. 3.44.

We immediately notice that these graphs are very similar to those describing Comp-
ton scattering. In fact, Fig. 3.44 becomes identical to Fig. 3.40 in Sect. 3.7, if the di-
rection of the time axis is rotated by 90◦! In the experiment, of course, both processes
appear to be quite different. In pair annihilation two photons are emitted, whereas
in Compton scattering one photon is absorbed and one is emitted, together with an
electron.

The S-matrix element, which corresponds to the processes in Fig. 3.44, can be eas-
ily written down by applying the usual rules. We have to consider the correct kinemat-
ics: two particles (electron and positron) enter and two photons leave. In coordinate
space the S-matrix element reads

Sf i = e2
∫

d4xd4y ψ̄+(x)
[(−i/A(x, k2)

)
iSF(x − y)

(−i/A(y, k1)
)

+ (−i/A(x, k1)
)
iSF(x − y)

(−i/A(y, k2)
)]
ψ−(y) , (3.295)

which leads to the following expression in momentum space:

Sf i = e2

V 2

√
m2

0

E+E−

√
(4π)2

2ω12ω2
(2π)4δ4(k1 + k2 − p+ − p−)

× v̄(p+, s+)

[
(−i/ε2)

i

/p− − /k1 −m0
(−i/ε1)

+ (−i/ε1)
i

/p− − /k2 −m0
(−i/ε2)

]
u(p−, s−) . (3.296)

Here for the description of both photons outgoing plane waves have been used. Obvi-

Fig. 3.44. Graph and exchange
graph of pair annihilation into
two photons. The incoming
positron with four-momentum
p+ and spin s+ is interpreted
as an outgoing electron with
four-momentum −p+ and
spin −s+

ously the S-matrix element is symmetric with respect to photon exchange, as it should
be according to Bose statistics. The coherent summation of both graphs is necessary
to preserve this symmetry. We will first interpret this process.

An electron with positive energy and momentum and spin (p−, s−) was produced
in the past and moves forward in time. It is scattered into a state with negative energy
and four–momentum −p+ moving backwards in time. The wave function of an elec-
tron with negative energy and momentum −p+ is given by v(p+, s+) exp (ip+·x) (see
RQM , Chap. 6). During the scattering it converts its energy into radiation by emitting
two photons.

As usual the δ4 function in (3.296) expresses energy–momentum conservation be-
tween ingoing and outgoing particles. Only the electron enters the reaction: the two
photons and the positron exit the zone of reaction. However, the positron has a four–
momentum −p+ because it is represented by an electron with negative energy. There-
fore

p− = k1 + k2 + (−p+) = k1 + k2 − p+ . (3.297)
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It can be easily understood that the annihilation of an electron–positron pair into a sin-
gle photon is kinematically forbidden. This hypothetical process is shown in Fig. 3.45,
which gives p− = k+ (−p+) or p− +p+ = k and, conclusively, (p− +p+)2 = k2 = 0.
This, however, is not possible, as can be seen most easily by going to the center-of-
mass frame where p+ +p− = 0. Note that this argument is only valid if the electron is
a free particle. The one-photon annihilation of positrons and bound atomic electrons
is indeed possible. In this case the second photon is absorbed by the nucleus.

Fig. 3.45. The annihilation of
a free electron–positron pair
into a single photon is kine-
matically forbidden

Before beginning with the evaluation of the annihilation cross section we come
back to the close relation between pair annihilation and Compton scattering (Ta-
ble 3.2). Both processes are related by the crossing symmetry which we first en-
countered when we compared electron–electron and electron–positron scattering in
Sect. 3.4. There we noted that processes of the type A+B → C +D and A + D̄ →
C + B̄ are related to each other by a substitution rule, i.e. by replacing the mo-
mentum variables pB → −pD and pD → −pB . In the case of pair annihilation,
e+ + e− → γ + γ , we can identify A with the electron, B with the positron, and
C,D with the two photons. Then crossing leads to the process of Compton scattering,
e− + γ → γ + e−. We can identify D = D̄ since the photon is its own antiparti-
cle.

To complete the picture we note that the crossing symmetry can be applied a sec-
ond time. The Compton process thus is related to C̄ + D̄ → Ā + B̄ which means
γ + γ → e+ + e−. This is the process of electron–positron pair creation by two pho-
tons (see Exercise 3.15). The corresponding Feynman graphs are shown in Fig. 3.46.

Fig. 3.46. The process of pair
production by photons is close-
ly related to that of pair anni-
hilation into photons, Fig. 3.44

Table 3.2 summarizes how these three processes are related to each other according
to the substitution rule. Thus all of the three processes essentially are governed by the
same physics. Only the kinematical conditions are different. We again stress that the
crossing symmetry is exact, not being restricted to a particular order of perturbation
theory.

We now will determine the cross section for pair annihilation. As usual it is related
to the S-matrix element by

dσ =
∫ |Sf i |2

T · V · |v|
V

· 1
V

V
d3k1

(2π)3
V

d3k2

(2π)3
. (3.298)

Insertion of (3.296) leads to

dσ = e4

(2π)2

m2
0

E+E−

(4π)2

|vrel|
∫

δ4(k1 +k2 −p+ −p−)
∣∣εμ2 Mμνε

ν
1

∣∣2 d3k1

2ω1

d3k2

2ω2
.

(3.299)

Table 3.2. Three processes which are related by crossing symmetry

Pair annihilation Compton scattering Pair creation
e− + e+ → γ + γ e− + γ → γ + e− γ + γ → e+ + e−

p− pi −p+
p+ −pf −p−
k1 −k −k1
k2 k′ −k2
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Here we have introduced the tensor

Mμν = v̄(p+, s+)
[
γμ

1

/p− − /k1 −m0
γν + γν

1

/p− − /k2 −m0
γμ

]
u(p−, s−)

= v̄(p+, s+)
[
γμ

/p− − /k1 +m0

−2p− · k1
γν + γν

/p− − /k2 +m0

−2p− · k2
γμ

]
u(p−, s−) . (3.300)

In accordance with crossing symmetry we note that this “annihilation tensor” is iden-
tical with the “Compton tensor” defined in Sect. 3.7, (3.242) when the replacements
indicated in the Table are made. Therefore most of the calculations in Sect. 3.7 can be
taken over. The kinematics of the collision, however, is different since we now have
two photons in the final state and two massive particles in the incoming channel.

The six-dimensional two-body phase space is reduced to two dimensions because
of the delta function. Let us consider the integral

I =
∫

d3k1

2ω1

d3k2

2ω2
δ4(k1 + k2 − p+ − p−) f (k1, k2) , (3.301)

where f (k1, k2) stands for the momentum-dependent integrand of (3.299). We now
integrate out the variable k2, once again making use of the formula (3.74)

d3k2

2ω2
=

∞∫

−∞
d4k2 δ(k2 · k2 − 0)Θ

(
k20

)
. (3.302)

Equation (3.301) becomes

I =
∞∫

0

1

2
ω1dω1dΩk1δ

[
(p+ + p− − k1)

2
]

×Θ(E+ +E− −ω1) f (k1, k2 = p+ + p− − k1)

= dΩk1

2

E++E−∫

0

ω1dω1δ
[
(p+ + p−)

2 − 2k1 · (p+ + p−)
]

× f (k1, k2 = p+ + p− − k1) . (3.303)

To evaluate this integral we have to specify the frame of reference. The following
calculation will be done in the rest frame of the electron where p− = (m0,0). In this
frame (3.303) becomes

I = dΩk1

2

E++m0∫

0

ω1dω1 δ
(

2m2
0 + 2m0E+ − 2ω1(m0 +E+ − |p+| cos θ)

)

× f (k1, k2 = p+ + p− − k1)

= dΩk1

2

ω1f (k1, k2 = p+ + p− − k1)

2|m0 +E+ − |p+| cos θ |
∣∣∣∣
ω1

= dΩk1

4

m0(m0 +E+)f (k1, k2 = p+ + p− − k1)

[m0 +E+ − |p+| cos θ ]2
, (3.304)
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where the photon energy ω1 = |k1| is determined by

ω1 = m0(m0 +E+)

m0 +E+ − |p+| cos θ
. (3.305)

Here θ denotes the angle between the momenta of the first photon k1 and the incoming
positron p+ (compare with Fig. 3.47). In (3.304) the photon energy ω1 occurring in
the function f (k1, . . .) is replaced by (3.305).

Fig. 3.47. Definition of the
angle θ

In the laboratory frame where |vrel| = |v+| = |p+|/E+ the differential cross section
(3.299) for pair annihilation becomes

dσ

dΩk1

= α2 ω2
1

m0(m0 +E+)

m0

|p+|
∣∣εμ2 Mμν ε

ν
1

∣∣2 , (3.306)

with ω1 given by (3.305). Note the different kinematical dependence when comparing
(3.306) with the corresponding formula for Compton scattering (3.254).

The further evaluation of (3.306) is straightforward. Averaging over the electron
and positron spins

dσ̄

dΩk1

(λ2, λ1) = 1

4

∑
s−,s+

dσ

dΩk1

(s+, s−;λ2, λ1) (3.307)

leads to

dσ̄

dΩk1

(λ2, λ1) = 1

4
α2 ω2

1

m0(m0 +E+)

m0

|p+|
(−)

× Tr

[− /p+ +m0

2m0

(
/ε2/k1/ε1

2p− · k1
+ /ε1/k2/ε2

2p− · k2

)
/p− +m0

2m0

(
/ε1/k1/ε2

2p− · k1
+ /ε2/k2/ε1

2p− · k2

)]
.

(3.308)

The trace in this expression coincides with the result for Compton scattering if the
translation of the momentum variables according to the substitution rule is made (see
(3.256) and (3.265)). Note the extra minus sign in (3.308) which arises from the sum-
mation over positron spinors

∑
s

vα(p, s)v̄β(p, s) = −
(− /p +m0

2m0

)
αβ

. (3.309)

As in Sect. 3.7 the special transverse gauge condition

ε1 · p− = ε2 · p− = 0 (3.310)
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has been imposed to simplify (3.308). According to (3.278) the calculation of the trace
leads to

Tr
[· · ·]= 1

4m2
0

2

[
k2 · p−

−k1 · p−
+ −k1 · p−

k2 · p−
+ 4(ε2 · ε1)

2 − 2

]
, (3.311)

where the substitution pi → p−, k → −k1, k′ → k2 has been performed. Then the
cross section for pair annihilation in the electron rest frame becomes

dσ̄

dΩk1

(λ2, λ1) = 1

8

α2

m2
0

ω2
1

m0(m0 +E+)

m0

|p+|
[
k2 · p−
k1 · p−

+ k1 · p−
k2 · p−

−4(ε2 · ε1)
2 +2

]

= 1

8

α2

m2
0

m0(m0 +E+)

(m0 +E+ −|p+| cos θ)2

m0

|p+|
[
ω2

ω1
+ ω1

ω2
+2−4(ε2 · ε1)

2
]

,

(3.312)

where p− = (m0,0). The photon energy ω1 depends on the photon angle θ according
to (3.305) while ω2 follows from energy conservation:

ω2 = m0 +E+ −ω1 = m0 +E+ − m0(m0 +E+)

m0 +E+ − |p+| cos θ

= (m0 +E+)

(
1 − m0

m0 +E+ − |p+| cos θ

)

= E+ − |p+| cos θ

m0
ω1 . (3.313)

If the photon polarizations are not observed (3.312) has to be summed over λ1, λ2.
Using (3.286) this leads to the unpolarized cross section for pair annihilation

dσ̄

dΩk1

=
2∑

λ1,λ2=1

dσ̄

dΩk1

(λ2, λ1)

= 1

2

α2

m2
0

m0(m0 +E+)

(m0 +E+ − |p+| cos θ)2

m0

|p+|
(
ω2

ω1
+ ω1

ω2
+ sin2 θ̃

)
. (3.314)

Here θ̃ is the angle between the momentum vectors k1 and k2 of the two photons. In
the case of Compton scattering θ̃ happened to coincide with the scattering angle θ .

In the nonrelativistic limit E+ − m0 � m0 the created photons have equal ener-
gies ω1 → m0, ω2 → m0 and are emitted back-to-back, θ̃ → π . Since the incoming
positron momentum is negligible in this case the angular distribution of photons be-
comes isotropic and (3.314) reduces to

(
dσ̄

dΩk1

)
nr

= 1

2

α2

m2
0

1

β+
, (3.315)

where β+ = |p+|/m0 is the positron velocity. If the incoming positron has a large
momentum the angular distribution (3.314) becomes peaked in the forward direction.
In this case nearly all the energy E+ is carried by the photon that is emitted in the beam
direction. Figure 3.48 shows the differential cross section (3.314) for some typical
values of the positron energy.
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Fig. 3.48. Logarithmic plot of
the differential pair annihila-
tion cross section in units of
r2
0 = α2/m2

0 as a function of
the photon angle θ , drawn for
various values of the positron
energy E+

The total annihilation cross section is obtained by integrating (3.314) over the solid
angle dΩk1 . When performing this integration we have to keep in mind that there are
two identical particles in the final state. This point is already implemented in the cross
section (3.314) originating from the symmetry of the scattering amplitude (3.296)
with respect to the exchange of two photons (k1, ε1 ↔ k2, ε2). Thus (3.314) gives the
cross section that one of the photons is scattered into the angle dΩk1 . Owing to the
indistinguishability of the photons either of them could be so scattered. We therefore
double-count the photons when we integrate dσ̄ /dΩk1 over the full solid angle 4π ;
i.e., we would count four – not two – photons per scattering event. To correct for this
double counting the cross section has to be multiplied by 1/2:

σ̄ = 1

2

∫
dΩk1

dσ̄

dΩk1

. (3.316)

This integration is carried out in Exercise 3.13.

EXERCISE

3.13 The Total Cross Section of Pair Annihilation

Problem. An unpolarized positron with four–momentum (E, p) hits an equally un-
polarized electron at rest, annihilating into two photons with momenta k1 and k2 and
polarizations λ1 and λ2. The angle between positron momentum and k is denoted
by θ , the angle between k1 and k2 by θ̃ (see Fig. 3.49). Determine the total cross
section of pair annihilation.

Solution. The differential cross section for pair annihilation has been given in (3.314)

Fig. 3.49. Definition of the an-
gles θ and θ̃

dσ̄

dΩ
= α2

2|p|
m0 +E

(x +m0)2

(
m2

0 + x2

m0x
+ sin2 θ̃

)
. (1)
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Here we have introduced the variable x which depends on the photon angle and is

defined by

x = p · k1

|k1| = E − |p| cos θ or cos θ = E − x

|p| . (2)

From kinematics we get the photon energies

ω1 = m0
E +m0

x +m0
and ω2 = x

m0
ω1 . (3)

To evaluate (1) the dependence θ̃ = θ̃ (θ) is needed. The sine rule applied to the trian-

gle spanned by k1, k2, and p leads to

sin θ

|k2| =
sin
(
π − θ̃

)

|p| = sin θ̃

|p| (4)

and thus, using (3)

sin θ̃ = |p|
E +m0

x +m0

x
sin θ . (5)

From

sin2 θ = 1 − cos2 θ = 1 − (E − x)2

|p|2 = −x2 − 2Ex +m2
0

|p|2 (6)

it follows that

sin2 θ̃ = − 1

(E +m0)2

(
x2 − 2Ex +m2

0

)(m0 + x

x

)2

. (7)

The total cross section, corrected for the presence of two identical particles in the final

state, is given by

σ̄ = 1

2

∫
dΩ

dσ̄

dΩ
= π

+1∫

−1

d cos θ
dσ̄

dΩ
= π

|p|

E+|p|∫

E−|p|
dx

dσ̄

dΩ
. (8)

We insert (1) and (7) into (8) and obtain

σ̄ = α2π

2m0|p|2
E+|p|∫

E−|p|
dx

[
(E+m0)

m2
0 +x2

x(m0 +x)2
− m0

m0 +E

1

x2

(
x2 −2Ex +m2

0

)]
. (9)

We can immediately derive an asymptotic expression for the nonrelativistic limit from

this integral. Replacing the variable x by the constant value x ∼ E ∼ m0 everywhere

in the integral yields the estimate

σ̄nr � α2π

2m0|p|2 2|p|
[

2
2

22
− 1

2
(1 − 2 + 1)

]
= α2π

m0|p| . (10)

This can also be written as

σ̄nr � πr2
0

1

β
, (11)

where r0 = e2/m0c
2 � 2.8 fm is the “classical radius of the electron” and β = |v|/c

denotes the incoming positron velocity.
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It is not difficult to go beyond this approximation and solve the integral (9) exactly.
We write

σ̄ = α2π

2m0|p|2 (I1 + I2) , (12)

with

I1 = (E +m0)

E+|p|∫

E−|p|
dx

m2
0 + x2

x(m0 + x)2
(13)

and

I2 = − m0

m0 +E

E+|p|∫

E−|p|
dx

(
1 − 2E

x
+ m2

0

x2

)
. (14)

The integrals can be calculated analytically:

I1 = (E +m0)

(
2m0

m0 + x
+ ln

x

m0

)∣∣∣∣
E+|p|

E−|p|

= (E +m0)

(
2m0

m0 +E + |p| − 2m0

m0 +E − |p| + ln
E + |p|
E − |p|

)

= (E +m0)

[
2m0(−2|p|)

(m0 +E)2 − |p|2 + ln
(E + |p|)2

E2 − |p|2
]

= −2|p| + 2(E +m0) ln
E + |p|

m0
(15)

and

I2 = m0

m0 +E

(
−x + 2E lnx + 1

x

)∣∣∣∣
E+|p|

E−|p|

= 4m0

m0 +E

(
E ln

E + |p|
m0

− |p|
)

. (16)

This leads to the following exact expression for the total pair annihilation cross sec-
tion34

σ̄ = α2π

m0|p|2(E +m0)

[(
E2 + 4m0E +m2

0

)
ln

E + |p|
m0

− (E + 3m0)|p|
]

. (17)

Now we derive two limiting cases.
(a) The nonrelativistic limit (|p| → 0, E → m0). In the case |p|/m0 � 1 we have

the expansions

E
(|p|)= m0 +O

(
p2) ,

m0

E +m0
= 1

2

1

1 + E−m0
2m0

= 1

2
+O
(
p2) ,

ln
E + |p|

m0
= 1

2
ln

1 + |p|/E
1 − |p|/E = |p|

E
+O
(|p|3)= |p|

m0
+O
(|p|3) ,

34 P.A.M. Dirac: Proc. Camb. Phil. Soc. 26, 361 (1930).
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yielding

σ̄nr = α2π

m0|p|
(

1 +O
(
p2)) (18)

in accordance with (11).
(b) The ultrarelativistic limit (|p| → ∞, E → ∞). For E/m0 � 1 we approximate

|p| = E

√
1 − m2

0

E2
= E +O

(
E−1) ,

m2
0

p2
= m2

0

E2

1

1 −m2
0/E

2
= m2

0

E2
+O
(
E−4) ,

m0

m0 +E
= m0

E

1

1 +m0/E
= m0

E
+O
(
E−2) .

Furthermore, the Taylor expansion of the logarithm gives

ln
E + |p|

m0
= ln

2E + (|p| −E
)

m0
= ln

2E

m0
+O

(
1

E

(|p| −E
))

= ln
2E

m0
+O
(
E−2) .

Thus we get the asymptotic formula for the cross section

σ̄ur = α2π

m0E

[
ln

2E

m0
− 1 +O

(
ln 2E/m0

E/m0

)]
. (19)

EXERCISE

3.14 Electron–Positron Annihilation in the Centre-of-Mass Frame

Problem. Derive the differential and total unpolarized cross section for pair annihi-
lation e+ + e− → γ + γ in the center-of-mass frame.

Solution. The general expression for the differential cross section of pair annihilation
has been given in (3.299), (3.300):

dσ̄ = α2

|vrel|
m0

E+

m0

E−

∣∣ε2 ·Mfi · ε1
∣∣2

× (2π)4δ4(k1 + k2 − p+ − p−)
4πd3k1

(2π)32ω1

4πd3k2

(2π)32ω2
(1)
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where

∣∣ε2 ·Mfi · ε1
∣∣2 = 1

4

∑
s+,s−

∑
λ1,λ2

∣∣ε2 ·Mfi · ε1
∣∣2

= 1

2

1

4m2
0

∑
λ1,λ2

(
k2 · p−
k1 · p−

+ k1 · p−
k2 · p−

− 4(ε̃2 · ε̃1)
2 + 2

)
. (2)

In the derivation of (2) the special gauge condition ε̃1 · p− = ε̃2 · p− = 0 was chosen,
which we indicate by the tilde. This was convenient for calculations in the electron
rest frame where p− = (m0,0). Here the polarization vectors could be chosen to be
purely spacelike vectors ε = (0,ε) transverse to the photon momentum k and the
λ summation was easily performed. In an arbitrary frame of reference the special
gauge condition loses its simplicity and complicated ε̃-vectors have to be constructed.
It would be more appealing to use the general completeness relation (3.220) for photon
polarization vectors

2∑
λ=1

εμ(k,λ)εν(k, λ) → −gμν . (3)

This replacement, however, may be applied only to gauge invariant expressions,
a condition which is not fulfilled by (2). Nevertheless we can use (3) if we reinstall the
gauge invariance of (2). This is achieved by going back from the special polarization
vectors ε̃ to the general case ε with the help of

ε̃1 = ε1 − ε1 · p−
k1 · p−

k1 ,

ε̃2 = ε2 − ε2 · p−
k2 · p−

k2 , (4)

see (3.263) in Sect. 3.7. It is obvious that the expression

ε̃1 · ε̃2 =
(
ε1 − ε1 · p−

k1 · p−
k1

)
·
(
ε2 − ε2 · p−

k2 · p−
k2

)
(5)

is invariant with respect to gauge transformations of the form ε1 → ε′
1 + f1(k)k1,

ε2 → ε′
2 +f2(k)k2. Thus (2) has been made gauge-invariant so that (3) can be applied.

We introduce the abbreviations

∑
λ1,λ2

(ε̃1 · ε̃2)
2 = AμνBμν , (6)

where

Aμν =
∑
λ1

(
ε1 − ε1 · p−

k1 · p−
k1

)μ(
ε1 − ε1 · p−

k1 · p−
k1

)ν
(7)
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and a similar expression defines Bμν . Using (3) we get

Aμν =
∑
λ1

(
ε
μ
1 ε

ν
1 − εα1 ε

ν
1
p−αk

μ
1

k1 · p−
− ε

μ
1 ε

α
1
p−αk

ν
1

k1 · p−
+ εα1 ε

β

1

p−αp−βk
μ
1 k

ν
1

(k1 · p−)2

)

= −gμν + k
μ
1 p

ν
− + p

μ
−kν1

k1 · p−
− m2

0k
μ
1 k

ν
1

(k1 · p−)2
(8a)

and

Bμν = −gμν + k2μp−ν + p−μk2ν

k2 · p−
− m2

0k2μk2ν

(k2 · p−)2
. (8b)

The contraction of these tensors leads to (using the on-shell condition k2
1 =k2

2 =0)

∑
λ1,λ2

(ε̃1 · ε̃2)
2 = 2 − 2m2

0
k1 · k2

k1 · p− k2 · p−
+m4

0
(k1 · k2)

2

(k1 · p−)2(k2 · p−)2
. (9)

Inserting this into (2) leads to the unpolarized squared invariant matrix element

∣∣ε2 ·Mfi · ε1
∣∣2 = 1

2

1

4m2
0

4

(
k2 · p−
k1 · p−

+ k1 · p−
k2 · p−

+ 2m2
0

k1 · k2

k1 · p− k2 · p−

−m4
0

(k1 · k2)
2

(k1 · p−)2(k2 · p−)2

)
. (10)

The differential cross section dσ̄ /dΩ1 is obtained by integrating (1) over d3k2 and
dω1. With the help of

∫
d3k2

2ω2
=
∫

d4k2 δ(k
2
2)Θ(k20) (11)

a brief calculation similar to that in Sect. 3.7 leads to

dσ̄

dΩ1
= α2

|vrel|
m2

0

E+E−
2

E++E−∫

0

dω1 ω1 δ
[
(p++p−−k1)

2
] ∣∣ε2 ·Mfi · ε1

∣∣2 (12)

to be evaluated at k2 = p+ + p− − k1.
While (12) is still completely general we now select the center-of-mass system

where p+ = (E,p), p− = (E,−p). Then the delta function becomes

δ
[
(p+ + p− − k1)

2]= δ
[
(2E −ω1)

2 − k2
1

]

= δ
[
4E(E −ω1)

]
(13)

so that (12) reads

dσ̄

dΩ1
= α2

|vrel|
m2

0

E2
2
E

4E

∣∣ε2 ·Mfi · ε1
∣∣2 . (14)

The scalar products of (10) in the center-of-mass frame reduce to

k1 · p− = E2(1 − v cos θ) ,
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k2 · p− = E2(1 + v cos θ) ,

k1 · k2 = 2E2 , (15)

with the velocity v = |p|/E =
√
E2 −m2

0/E. θ is the angle between the incoming
and outgoing momenta p and k. With |vrel| = 2v the final result for the differential
cross section of pair annihilation in the center-of-mass frame is

dσ̄

dΩ1
= 1

8

α2

m2
0

m2
0

E2

1

v

(
1 + v cos θ

1 − v cos θ
+ 1 − v cos θ

1 + v cos θ

+ 4
m2

0

E2

1

1 − v2 cos2 θ
− 4

m4
0

E4

1(
1 − v2 cos2 θ

)2
)

. (16)

Using m2
0/E

2 = 1 − v2 this result can also be written as

dσ̄

dΩ1
= 1

4

α2

m2
0

m2
0

E2

1

v

1 + 2v2 − 2v4 − 2v2
(
1 − v2

)
cos2 θ − v4 cos4 θ(

1 − v2 cos2 θ
)2 . (17)

It is an elementary task to integrate this expression over d cos θ to obtain the total cross
section for pair annihilation. The result is

σ̄ = 1

2

∫
dΩ1

dσ̄

dΩ1

= π

4

α2

m2
0

1 − v2

v2

[
(3 − v4) ln

1 + v

1 − v
− 2v

(
2 − v2)] . (18)

Since the total cross section is invariant under Lorentz transformations (in the beam
direction) (18) should agree with the result of Exercise 3.13 which was derived in the
rest frame of the electron.

σ̄ = πα2

m0|pL|2(EL+m0)

[(
E2

L+4m0EL+m2
0

)
ln

EL+|pL|
m0

−(EL+3m0)|pL|
]

, (19)

where the subscript L refers to the laboratory frame. To express EL in terms of the
center-of-mass velocity v we relate both quantities to the Mandelstam invariant s, i.e.

s = (p+L + p−L)
2 = (EL +m0,pL)

2

= E2
L + 2m0EL +m2

0 − p2
L = 2m0(EL +m0) (20)

and

s = (p+ + p−)
2 = (E +E,0)2 = 4E2 . (21)

The velocity is given by

v = |p|
E

=
√

s − 4m2
0

s
, thus s = 4m2

0

1 − v2
. (22)
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Fig. 3.50. The differential
cross section dσ̄ /dΩ1 for the
process e+ +e− →γ +γ for
three different center-of-mass
energies

√
s. The experimen-

tal data are in good agreement
with the QED prediction
of (24)

This leads to

EL = s

2m0
−m0 = m0

1 + v2

1 − v2
, |pL| = m0

2v

1 − v2
. (23)

Inserting (23) into (19) confirms the result (18).
Finally we come back to (17) and note the ultrarelativistic limit of the cross section,

v → 1:

( dσ̄

dΩ1

)
ur

� 1

4

α2

E2

1 − cos4 θ

sin4 θ
= α2

s

1 + cos θ

sin2 θ
. (24)

This result has been tested experimentally at various electron–positron storage-ring
accelerators. As an example Fig. 3.50 shows data taken with the JADE detector at the
PETRA collider.35 Within the experimental accuracy the prediction of QED is fully
confirmed.

EXERCISE

3.15 Pair Creation by Two Photons

Problem. Derive the total unpolarized cross section for the creation of an electron–
positron pair by two colliding photons, γ + γ → e+ + e−. Express the result in terms

35 W. Bartel et al. (JADE collaboration): Z. Physik C19, 197 (1983).
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of the velocity of the produced particles in the center-of-mass frame. Hint: Use the
result of Exercise 3.13 for the pair annihilation cross section.

Solution. The differential cross section for pair creation according to the graphs of
Fig. 3.46 is given by

dσpair = α2

2

4π

2ω1

4π

2ω2

∣∣Mpair
f i

∣∣2(2π)4δ4(p++p−−k1−k2)
m0d3p+
(2π)3E+

m0d3p−
(2π)3E−

, (1)

where the factor 1/2 results from the photon flux factor 1/|v1 − v2|. The relative ve-
locity of two collinearly colliding photons is 2 in any frame of reference. The invariant
amplitude is given by

M
pair
f i = ū(p−, s−)

[
/ε2

1

− /p+ + /k1 −m0
/ε1 + /ε1

1

− /p+ + /k2 −m0
/ε2

]
v(p+, s+) . (2)

The corresponding expressions for pair annihilation e+ + e− → γ + γ was derived in
Sect. 3.8:

dσanni = α2

|vrel|
m0

E+

m0

E−

∣∣Manni
f i

∣∣2

× (2π)4δ4(k1 + k2 − p+ − p−)
4πd3k1

(2π)32ω1

4πd3k2

(2π)32ω2
, (3)

with

Manni
f i = v̄(p+, s+)

[
/ε2

1

/p− − /k1 −m0
/ε1 + /ε1

1

/p− − /k2 −m0
/ε2

]
u(p−, s−) . (4)

According to the principle of crossing symmetry the invariant amplitudes can be
transformed into each other if the momenta are substituted according to the Table
in Sect. 3.8, namely k1 → −k1, k2 → −k2, p− → −p+, p+ → −p−. In fact the values
of (2) and (4) are equal in magnitude

∣∣Mpair
f i

∣∣= ∣∣Manni
f i

∣∣ . (5)

This is easily verified by calculating
(
M

pair
f i

)∗ =
(
M

pair
f i

)†
. Using γ 0/a†γ 0 = /a,

−p+ + k2 = p− − k1, −p+ + k1 = p− − k2 this quantity is found to agree with Manni
f i .

Thus the differential cross sections (1) and (3) are equal, except for the phase space
volumes and the flux factor.

To get the total cross section for pair creation (1) will be integrated over d3p− and
subsequently over dE+. Using the familiar identity

d3p−
2E−

=
∫

d4p− δ
(
p2

−−m2
0

)
Θ(p−0) (6)

we obtain

σpair = 1

2

∫
d3p+d3p− δ4(p++p−−k1−k2)F

= 1

2

∫
d3p+ 2E−δ

[
(k1+k2−p+)

2−m2
0

]
F (7)
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to be evaluated at the electron momentum p− = k1 + k2 − p+. F ≡ F(p+,p−; k1, k2)

is an obvious abbreviation for the factors which are common to (1) and (3). The anal-
ogous expression for the total annihilation cross section reads

σanni = 1

2

1

|vrel|
∫

d3k1d3k2 δ[k1+k2−p+−p−]F

= 1

2

1

|vrel|
∫

d3k1 2ω2 δ
(
(p++p−−k1)

2)F (8)

to be taken at k2 = p++p−−k1. The factor 1/2 was introduced in (7) to account for
the presence of two identical particles in the final states (see the discussion at the end
of Sect. 3.8).

The results (7) and (8) are most easily compared in the center-of-mass frame. Since
the total cross section is Lorentz-invariant this choice does not restrict generality. In
this frame we have p+ = (E,p), p− = (E,−p), and k1 = (ω,k), k2 = (ω,−k) where
energy conservation demands ω = E.

The delta function in (7) becomes

δ
(
(k1 + k2 − p+)

2 −m2
0

)= δ
(
(2ω −E+)

2 − p2
+ −m2

0

)

= δ
(
4ω(ω −E+)

)

= 1

4ω
δ(ω −E+) (9)

leading to

σpair = 1

2

∫
dΩ+ 2E−

1

4ω
|p+|E+ F

= 1

2

1

2
E|p|

∫
dΩ+ F . (10)

The same reasoning leads to the total cross section for two-photon annihilation

σanni = 1

2

1

|vrel|
∫

dΩ1 2ω2
1

4E
ω2

1 F

= 1

2

1

|vrel|
1

2
E2
∫

dΩ1 F . (11)

The angular integrals in (10) and (11) are identical since both extend over the
relative angle θ between p and k, see Fig. 3.51. Inserting |vrel| = |v+ − v−| =
2v where v = |p|/E, the comparison of (10) and (11) leads to the simple rela-
tion

σanni = 1

2v2
σpair . (12)

Therefore, we can use the result for the total unpolarized cross section for pair
annihilation from Exercise 3.14, (18) and obtain the cross section for pair cre-
ation

σ̄pair = π

2

α2

m2
0

(
1 − v2)[(3 − v4) ln 1 + v

1 − v
− 2v

(
2 − v2)] . (13)
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Fig. 3.51. The momentum
balance of two-photon pair
annihilation (a) and pair
production by two photons
(b) in the center-of-mass
frame

This result is known as the Breit–Wheeler formula.36 The nonrelativistic limit
(v � 1) is

σ̄ nr
pair � π

α2

m2
0

v (14)

and the ultrarelativistic limit v =
√
(E2 −m2

0)/E
2 → 1 becomes

σ̄ ur
pair � π

α2

m2
0

(m0

E

)2(
2 ln

2E

m0
− 1
)

. (15)

The pair production cross section thus is suppressed at the threshold (owing to the van-
ishing phase space volume), rises to a maximum (at v � 0.701), and at high energies
falls of again according to (15).

Remark. The cross section (13) is reasonably large, being of the order of the squared
“classical electron radius” r0 as in the case of, e.g., Compton scattering. However,
pair production by two real photons has not been observed experimentally since it
is difficult to prepare two colliding beams of high-energy photons. Pair production
involving laser photons will be discussed in Example 3.19.

Furthermore, the graph of Fig. 3.46 can be tested in the collision of charged par-
ticles. The graph of Fig. 3.52a can be interpreted as describing the collision of two
virtual photons which produce an electron–positron pair.37 Note that this process
competes with the graph in Fig. 3.52b where a single virtual bremsstrahlung photon
can be split into an e+e− pair since its momentum is off the mass shell.

Fig. 3.52. Lowest-order Feyn-
man graphs for pair produc-
tion in the collision of charged
particles (thick lines). (a) Col-
lision of two virtual photons.
(b) Pair conversion of a virtual
bremsstrahlung photon

36 G. Breit and J.A. Wheeler: Phys. Rev. 46, 1087 (1934).
37 See e.g. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975);
C. Bottcher, M.R. Strayer: Phys. Rev. D39, 1330 (1989).
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EXERCISE

3.16 Pair Creation in the Field of an Atomic Nucleus

Problem. Calculate the cross section of electron–positron pair creation by an incom-
ing photon in the field of a heavy nucleus with charge −Ze. Hint: The calculation can
be considerably simplified by exploiting crossing symmetry which relates pair cre-
ation and bremsstrahlung. After a simple substitution the results from Sect. 3.6 and
Example 3.11 can be used.

Solution. To lowest order the pair creation can be represented by the graphs of
Fig. 3.53. They differ from the graphs of bremsstrahlung (Fig. 3.33, Sect. 3.6) just
by the interpretation of the external lines (incoming photon ↔ outgoing photon, in-
coming electron ↔ outgoing positron).

Fig. 3.53. The graphs for pair
production by a photon in an
external Coulomb field

The second-order S-matrix element in coordinate space reads

Sf i = − e2
∫

d4x d4y

√
m2

0

E+E−V 2

√
4π

2ωV
ū(p−, s−)e

ip−·x

×
[
(−i/ε)

(
e−ik·x+eik·x) iSF(x − y)(−iγ 0)Acoul

0 (y)

+ (−iγ 0)Acoul
0 (x)iSF(x − y)(−i/ε)

(
e−ik·y+e+ik·y)]v(p+, s+)e

ip+·y . (1)

Using the static Coulomb potential of the nucleus

Acoul
0 (x) = −Ze

|x| = −4πZe

∫
d3q

(2π)3

e−iq·x

|q|2 (2)

and performing the Fourier integrations we get the S-matrix element

Sf i = Ze32πδ(E−+E+−ω)

√
4π

2ωV

√
m2

0

E+E−V 2

4π

|q|2

× ū(p−, s−)

[
(−i/ε)

i

/p− − /k −m0

(−iγ 0)

+(−iγ 0) i

− /p+ + /k −m0
(−i/ε)

]
v(p+, s+) . (3)
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Here p+ = (E+,p+), p− = (E−,p−) and k = (ω,k) denote the four–momenta of
positron, electron and photon, respectively.

q = p+ + p− − k (4)

is the momentum transferred to the nucleus.
Apart from the sign, (3) is identical with (3.192) if we substitute

pi, si → − p+, s+ ,

pf , sf → p−, s− ,

k, λ → − k,λ , (5)

and if we replace the electron spinor u(pi, si) by the positron spinor v(p+, s+). All
further calculations can be traced back to the case of bremsstrahlung. There is a slight
difference when noting the cross section. One has to divide by the flux of the incoming
photons c

V
≡ 1

V
instead of |vi |

V
. In addition the phase space is changed, since a positron

is emitted instead of a photon. Thus we get the cross section

dσ =
∫ |Sf i |2

T 1
V

V
d3p+
(2π)3

V
d3p−
(2π)3

. (6)

Integration over the electron energy E− gives the cross section, which is five-fold
differential with respect to positron energy and solid angles dΩ+ and dΩ−. Averaging
over the photon polarization λ and summing over the spin directions s+ and s− we
obtain the unpolarized cross section

dσ̄ = Z2α3

(2π)2

m2
0

ωE+E−
4

1

|q|4 |p+|2 d|p+|dΩ+ |p−|E− dΩ−

×Θ(ω −E+ −m0)F
′(p+,p−; k) . (7)

Here the function

F ′ = 1

2

∑
λ

∑
s+,s−

∣∣∣∣ū(p−, s−)

[
/ε

1

/p− − /k −m0
γ0 + γ0

1

− /p− + /k −m0
/ε

]
v(p+, s+)

∣∣∣∣
2

(8)

was introduced which can be expressed as a trace over up to 8 gamma matrices. We do
not have to evaluate this complicated expression because F ′(p+,p−; k) is connected
with the function F(pi,pf ; k) known from (2), Example 3.11 (bremsstrahlung),
namely

F ′(p+,p−; k) = −F(−p+,p−;−k) , (9)

the sign originating from the sum over the spin of the positron, since

∑
s+

vα(p+, s+)v̄β(p+, s+) = −
(− /p+ +m0

2m0

)
αβ

. (10)
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The final result can again be expressed as a function of the angle between the momen-
tum vectors. Let θ+ (θ−) be the angle between p+ (p−) and k, and φ the angle between
the planes (p+, k) and (p−, k). Then our rule of substitution (5) yields the relation

θi → θ+ , θf → π − θ− , φ → φ − π , (11)

with the angles as defined in Example 3.11. Then the explicit cross section of pair
creation follows from (26) in Example 3.11 (the Bethe–Heitler formula):

dσ̄ = Z2α3

(2π)2

|p+||p−|
|q|4

dE+ dΩ+ dΩ−
ω3

Θ(ω −E+ −m0)

×
[
− p2− sin2 θ−(

E− −|p−| cos θ−
)2
(
4E2+−q2)− p2+ sin2 θ+(

E+ −|p+| cos θ+
)2
(
4E2−−q2)

+ 2ω2 p2+ sin2 θ+ + p2− sin2 θ−(
E+ − |p+| cos θ+

)(
E− − |p−| cos θ−

)

+ 2
|p+||p−| sin θ+ sin θ− cosφ(

E+ − |p+| cos θ+
)(
E− − |p−| cos θ−

) (2E2+ + 2E2− − q2)] . (12)

To get the signs right, note that the substitution k → −k implies ω → −ω but of course
|k| → | − k| = +|k|. Therefore the denominators in (12) should be treated as follows:
pf · k = ωEf − |k| |pf | cos θf = ω(Ef − |pf | cos θf ) → −ωE− − |k| |p−| cos(π −
θ−) = −ω(E− − |p−| cos θ−) = −p− · k.

One should mention that the result (12), being based on the lowest-order graphs
(the plane wave Born approximation) has only a limited range of validity. For high
nuclear charges Z or low velocities v+, v− the interaction of the produced charged
particles with the nuclear Coulomb field becomes important. This can be taken into
account by replacing the plane waves by Coulomb distorted waves. This calculation,
however, can no longer be performed fully analytically. The criterion of validity of the
Born approximation is

Ze2

�|v±| � 1 .

For heavy nuclei this condition is no longer satisfied and the cross section changes. In
particular the complete symmetry of (12) with respect to the interchange e+ ↔ e− will
be lost since the electrons (positrons) feel the attraction (repulsion) by the Coulomb
potential of the nucleus.

Additional Remarks. Despite its complicated appearance the differential cross sec-
tion (12) can be integrated analytically with respect to the electron and positron solid
angles dΩ−, dΩ+. Since this calculation is lengthy and not very illuminating we
merely quote the result which already was derived by Bethe and Heitler in their origi-
nal publication:

dσ̄

dE+
= Z2α3

m2
0

|p+| |p−|
ω3

{
−4

3
− 2E+E−

p2
+ + p2

−
p2

+p2
−

+ m0E+η−
p2

−
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+ m0E−η+
p2

+
− η+η− +L

[
ω2

|p+|3|p−|3
(
E2

+E
2
− + p2

+p2
−
)− 8

3

E+E−
|p+||p−|

− m2
0ω

2|p+||p−|
(
E+E− − p2

−
p2

−m0
η− + E+E− − p2

+
p2

+m0
η+ + 2ωE+E−

p2
+p2

−

)]}
, (13)

where the abbreviations

η± = 2
m0

|p±| ln
E± + |p±|

m0
,

L = 2 ln
E+E− + |p+||p−| +m2

0

m0ω
(14)

have been introduced. Figure 3.54 shows the energy distribution of created positrons
as a function of the kinetic energy E+ − m0, normalized to the total available energy
ω−2m0. The cross section dσ̄ /dE+ was multiplied by ω − 2m0 so that the area under
the curve represents the total cross section σ̄ . The latter is found to rise slowly with
energy.

Fig. 3.54. The differential
cross section for pair pro-
duction by photons with
energy ω according to the
Bethe–Heitler formula (13)

In the ultrarelativistic limit ω � m0 (13) simplifies and can be integrated over dE+
analytically, leading to a logarithmically rising cross section

σ̄ur � Z2α3

m2
0

(
28

9
ln

2ω

m0
− 218

27

)
. (15)

If the target consists of neutral atoms, electron screening will lead to a saturation of the
pair production cross section: The rise of (15) at high photon energies is caused by the
creation of pairs at increasingly larger distances from the nucleus. Electron screening
acts to suppress these contributions.
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EXAMPLE

3.17 The Method of Equivalent Photons

Throughout this chapter we have studied QED processes in which charged particles
interact through the exchange of virtual photons. This terminology, however, has been
somewhat artificial since we nowhere encountered true physical photons in these cal-
culations. However, conditions can be found under which these virtual photons behave
like ordinary real photons to a good approximation. Under these conditions the collid-
ing charged particles can be replaced by an equivalent bunch of incoming photons with
a certain energy distribution which can be calculated. This approximation serves two
purposes: it can be used to simplify the description of various processes, and it also
helps to visualize and understand qualitatively how high-energy scatterings proceed.

A very interesting application was already mentioned at the end of Exercise 3.15:
By colliding charged particles at high energy the process of photon–photon scattering
can be studied, even though no intense colliding beams of real photons are available
to the experimentalist. In this example we will derive the method of equivalent pho-
tons and subsequently use it to calculate the cross section for the production of muon
pairs through the reaction e+ + e− → e+ + e− + μ+ + μ−. We will discover that
at high collision energies this process dominates over the pair annihilation reaction
e+ + e− → μ+ +μ− which we studied in Sect. 3.4.

Derivation of the Equivalent Photon Spectrum. For a start we will study reactions
in which a single virtual photon is exchanged. A high-energy electron having initial
momentum p = (E,p ) is scattered into the final state p′ = (E′,p′) while emitting
a virtual photon with momentum k = p−p′. This photon strikes a target where it gives
rise to a reaction which produces a (possibly complex) many-particle final state X, see
Fig. 3.55. The details of this reaction are not important for our study. As an example,
the target might be a heavy nucleus and the final state an electron–positron pair pro-
duced in its Coulomb field.

Our goal is to find a relation between the process shown in Fig. 3.55a and the analo-
Fig. 3.55. Feynman graphs de-
scribing a scattering process
initiated by a virtual photon (a)
or a real photon (b)

gous reaction which is triggered by an incoming real photon shown in Fig. 3.55b. Thus
let us investigate the unpolarized cross section for the Feynman graph of Fig. 3.55a
which is given by (see (4.3) in the next chapter)

dσ̄ = mM√
(p · P)2 −m2M2

|Mfi|2

× (2π)4δ4(PX + p′ − P − p)
md3p′

(2π)3E′
N∏

n=1

mnd3P ′
n

(2π)3E′
n

, (1)

where the target is assumed to be a fermion of mass M and the final state X consists
of N fermions (this assumption only affects the normalization factors). The invariant
matrix element in (1) reads

Mfi = j
μ
fi (p

′,p)DFμν(k)J
ν
fi (P

′
n,P )

= 4π

k2
j
μ
fi (p

′,p)Jfiμ(P
′
n,P ) . (2)
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Here j
μ
fi = e ūγ μu is the familiar transition current of the electron and J

μ
fi is the tran-

sition current of the target which may have a complex structure and possibly is not
known in detail. For the evaluation of (1) we need the squared and spin-averaged in-
variant matrix element (2). This will be written as in Sect. 3.2 in the form

|Mfi|2 = (4π)2 e2

(
k2
)2 LμνHμν . (3)

Here Lμν is the lepton tensor which we encountered several times before:

Lμν = 1

2
Tr

(
/p′ +m

2m
γμ /p +m

2m
γ ν

)

= 1

2

1

m2

(
p′μpν + p′νpμ − gμν

(
p′ · p −m2)) . (4)

Out of habit we will call the object Hμν the hadron tensor although this may be
slightly misleading since the derivation also remains valid if no hadrons are involved
in the reaction. The hadron tensor is obtained from

Hμν =
∑
Spin

J
μ∗
fi (P ′

n,P )J ν
fi (P

′
n,P ) . (5)

In general not much is known about the current J
μ
fi . However, we can rely on the

principle of gauge invariance which implies electromagnetic current conservation. The
hadron tensor therefore satisfies the four-dimensional transversality condition

kμH
μν = Hμνkν = 0 . (6)

This helps to simplify the expression (4) for the lepton tensor a bit. Use of p′ = p − k

and k2 = (p − p′)2 = 2m2 − 2p · p′ leads to

Lμν = 1

2

1

m2

(
2pμpν + 1

2
gμνk2

)
− 1

2

1

m2

(
kμpν + kνpμ

)
, (7)

where the second term can be discarded because of (6). The scattering cross section,
integrated over the final state of the electron, then reads

dσ̄ =
∫

d3p′

|p |E′
α

2π2

(
1

k2

)2(
2pμpν + 1

2
gμνk2

)
Hμν 2π dΓ , (8)

where the target has been assumed to be at rest, P = (M,0), leading to the flux factor
m/|p|. The symbol dΓ designates the phase space volume of the target final state:

dΓ = (2π)4δ4(PX − P − k)

N∏
n=1

mnd3P ′
n

(2π)3E′
n

. (9)

Now let us investigate the cross section for the analogous photon induced pro-cess
according to Fig. 3.55b (again, a look at (4.3) is useful):

dσ̄γ = 2M 4π

4
√
(k · P)2

|ε · Jfi|2 (2π)4δ4(PX − P − k)

N∏
n=1

mnd3P ′
n

(2π)3E′
n
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= 1

2ω
4π
∑
Spin

1

2

∑
λ

ε∗
μ(k, λ)εν(k, λ)J

μ∗
fi J ν

fi dΓ

= 1

2ω
2π
(−H 0μ

μ

)
dΓ , (10)

where we have used the completeness relation of the photon polarization vectors∑
λ ε

∗
μεν = −gμν .

The expression (10) contains the trace of the hadron tensor. The index 0 is meant
to imply that the involved photon is real, i.e. it satisfies the mass-shell condition k2 =
ω2 − k2 = 0. In contrast, in (5) there is no fixed relation between the frequency ω and
the momentum k of the photon. We only know that the virtual photon has a space-like
momentum k2 < 0. This can be easily deduced from k2 = (p −p′)2 = 2m2 − 2p ·p′.
The squared momentum k2 is sometimes called the virtuality of the photon. Except
for this difference the tensors Hμν and H 0

μν have exactly the same structure.
Now let us try to express the electron cross section (8) in terms of the photon cross

section (10).38 For this purpose it is helpful to choose a suitable gauge in which the
transverse degrees of freedom, corresponding to physical photons, can be most easily
singled out. This is achieved in the Coulomb gauge defined by the condition ∇ ·A = 0.
In the absence of charges one has, furthermore, A0 = 0 and the polarization vectors
are of the form εμ = (0,ε) with

∑
λ=1,2

ε∗
i (λ)εj (λ) = δij . (11)

The choice of this gauge also affects the photon propagator, a topic which we will
discuss in more detail in Sect. 4.2. The covariant Feynman propagator

DFμν = −4πgμν
k2

(12a)

in this way will be replaced by the propagator in the Coulomb gauge which has the
components

DC
00 = 4π

k2
, DC

ij = 4π

k2

(
δij − kikj

k2

)
, DC

0i = DC
i0 = 0 , (12b)

where the latin indices as usual run over space coordinates i = 1,2,3. Note: we will
also use the summation convention for repeated spatial indices, but in this case no
distinction between covariant and contravariant indices will be made.

The photo-production cross section (10) in Coulomb gauge attains the following
form

dσ̄γ = 1

2ω
2πH 0⊥

ii dΓ , (13)

since, according to (12a),
∑

λ ε
∗
μενH

0μν =∑λ ε
∗
i εjH

0ij = H⊥
ii . The ⊥ sign indicates

that because of the Coulomb gauge condition the hadron tensor is transverse (in three
dimensions).

38 S.J. Brodsky, T. Kinoshita, H. Terazawa: Phys. Rev. D4, 1532 (1971).
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For a photon propagator in an arbitrary gauge the electron cross section reads

dσ̄ =
∫

d3p′

|p|E′
α

2π2

[
2pμpν + 1

2
gμνk2 − (kμpν + kνpμ

)]

× 1

4π
Dμμ′

1

4π
Dνν′Hμ′ν′

2πdΓ . (14a)

This becomes, in the Coulomb gauge,

dσ̄ =
∫

d3p′

|p|E′
α

2π2

[(
2pμpν + 1

2
gμνk2

)
1

4π
DC

μα

1

4π
DC

νβH
αβ

−k0pν 1

4π
DC

00
1

4π
DC

νν′H 0ν′ − pμk0 1

4π
DC

μμ′
1

4π
DC

00H
μ′0
]

2πdΓ , (14b)

where kiDiμ = 0 has been used. Now we introduce a crucial approximation and dis-
card the contribution of the “scalar” propagator DC

00. As a motivation for this step
we note that its contribution cannot be related to the interaction of transverse photons.
Thus we are left with the approximate cross section

dσ̄ =
∫

d3p′

|p |E′
α

2π2

(
1

k2

)2(
2pipj − 1

2
δij k

2
)
H⊥

ij 2π dΓ . (15)

The transverse hadron tensor is obtained by applying two transverse projection oper-
ators which originate from the photon propagator (12b):

H⊥
ij =
(
δik − kikk

k2

)(
δjl − kj kl

k2

)
Hkl . (16)

The integrand of (15) contains a contraction which appears to be more involved than
the simple trace of the tensor which had entered (13). However, closer inspection
reveals that the additional term pipjH

⊥
ij in fact also can be reduced to the trace H⊥

ii

when the integration over the azimuthal angle of the final electron momentum p′ is
performed. In Exercise 3.18 the following relation between these two expressions will
be shown
∫ 2π

0
dϕ pipjH

⊥
ij � E2E′2

2k2
sin2 θ

∫ 2π

0
dϕ H⊥

ii . (17)

Here θ is the angle between p and p′, i.e. the scattering angle of the electron. Relation
(17) is valid only for the case of forward scattering (small scattering angles) and all
the following results will be restricted to this case. Furthermore we will make the
ultrarelativistic approximation E � m, |p | � E and thus will neglect the electron
mass wherever possible.

Using (17) the electron scattering cross section becomes

dσ̄ = α

2π2

∫
d3p′

EE′

(
1

k2

)2(
−k2

2
+ E2E′2

k2
sin2 θ

)
H⊥

ii 2π dΓ . (18)

In the last approximation step we now identify

H⊥
ii � H⊥0

ii , (19)
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i.e. we use k2 = 0 for the photon momentum, thus neglecting the fact that the transition
current H⊥

ii strictly speaking has to be evaluated for off-shell photons. Under this
condition the integral in (18) is found to contain the photon cross section (13) as
a factor:

dσ̄ = α

2π2

∫
d3p′

EE′

(
1

k2

)2(
−k2

2
+ E2E′2

k2
sin2 θ

)
2ω dσ̄γ . (20)

The integration over the final electron momentum can be rewritten as follows:

∫
d3p′ =

∫ |p |

0
d|p′| |p′|2

∫ +1

−1
d cos θ

∫ 2π

0
dϕ � 2π

∫ E

0
dE′ E′2

∫ +1

−1
d cos θ

� 2π
∫ E

0
dE′ E′2 1

2EE′

∫ k2−

k2+
dk2 , (21)

where we have used

k2 = (p − p′)2 = 2m2 − 2p · p′ = 2m2 − 2EE′ + 2|p ||p′| cos θ . (22)

The maximum squared momentum transfer (at θ = π ) in the ultrarelativistic limit is
given by

k2+ = 2m2 − 2EE′ − 2|p ||p′| � −4EE′ . (23)

For the minimum momentum transfer (at θ = 0) the same approximation would give
zero. This would make the integral diverge because of the pole originating from the
photon propagator. Thus we must be more careful and take into account the finite elec-
tron mass. Inserting the Taylor expansion of |p | = √

E2 −m2 � E(1 − m2/(2E2))

into (22) gives

k2 = 2m2 − 2EE′ + 2|p ||p′| cos θ

� 2m2 − 2EE′ + 2EE′
(

1 − m2

2E2

)(
1 − m2

2E′2

)
cos θ

� 2m2 − 2EE′(1 − cos θ)−m2 E
2 +E′2

EE′ cos θ . (24)

Considering forward scattering (θ = 0) this leads to the minimum squared momentum
transfer

k2− = 2m2 −m2 E
2 +E′2

EE′ � −m2 ω2

EE′ , (25)

the scale of which is set by the squared electron mass. As a consequence the inte-
gral will be dominated by contributions from photons with small virtuality k2 � k2− =
O(m2) being close to the mass shell. These photons originate mostly from periph-
eral collisions. Equation (24) allows us to estimate that the largest contribution to the
scattering cross section arises from an angular region around

θ ∼ mω

EE′ � 1 . (26)
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Using (21) the scattering cross section (20) can be written as follows:

dσ̄ = α

π

∫ E

0
dE′ E′2 2ω

2(EE′)2

∫ k2−

k2+
dk2
(

1

k2

)2(
−k2

2
+ E2E′2

k2
sin2 θ

)
dσ̄γ (ω)

=
∫ E

0

dω

ω
N(ω) dσ̄γ (ω) . (27)

The integration extends over the energy ω of the photon and the function N(ω)/ω can
be interpreted as the energy spectrum of equivalent photons emitted by the scattering
electron. This equation is at the heart of the method of equivalent photons which also is
known by the name Weizsäcker–Williams approximation39 . Originally the equivalent
photon spectrum N(ω) was obtained classically by Fourier transforming the Poynting
vector of the electromagnetic field generated by a fast moving charge. Above we have
deduced N(ω) from the transition current given by quantum electrodynamics. The
result reads

N(ω) = α

π

ω2

E2

∫ k2−

k2+
dk2
(

1

k2

)2(
−k2

2
+ E2E′2

k2
sin2 θ

)

= α

π

ω2

E2

∫ k2−

k2+
dk2
(

1

k2

)2
(

−k2

2
+ −m2ω2 − 1

4k
4 − k2EE′

ω2 − k2

)
. (28)

To verify this relation one has to show that

E2E′2 sin2 θ = −m2ω2 − 1

4
k4 − k2EE′

where according to (22) k2 = 2m2 − 2EE′ + 2pp′ cos θ with p ≡ |p|. One has

E2E′2 sin2 θ = E2E′2(1 − cos θ2) = E2E′2
[

1 −
(
k2 − 2m2 + 2EE′

2pp′

)2]

= E2E′2

4p2p′2
[
4p2p′2 − (k2 − 2m2 + 2EE′)2

]

= E2E′2

4p2p′2
[
4(E2 −m2)(E′2 −m2)− k4 − 4m4 − 4E2E′2

+4k2m2 − 4k2EE′ + 8m2EE′]

= E2E′2

4p2p′2
[
−4m2(E2 +E′2 − 2EE′)− k4 − 4k2(EE′ −m2)

]

= E2E′2

p2p′2

[
−m2ω2 − 1

4
k4 − k2(EE′ −m2)

]
.

39 The basic idea was formulated by Fermi already in 1924 to describe the energy loss of α particles
in matter, E. Fermi: Z. Physik 29, 315 (1924). Later the method was formulated in general terms by
C.F. v. Weizsäcker: Z. Physik 88, 612 (1934) and E.J. Williams: Phys. Rev. 45, 729 (1934). A detailed
derivation with special emphasis on relativistic heavy ion collisions can be found in M. Vidović,
M. Greiner, C. Best, G. Soff: Phys. Rev. C47, 2308 (1993); A useful review article is C.A. Bertulani,
G. Baur: Phys. Rep. 161, 299 (1988).
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In the relativistic approximation with m � EE′, p2 � E2, p′2 � E′2 this simplifies to
the claimed relation. The first term in the integrand of (28) leads to a logarithm

∫ k2−

k2+
dk2
(

1

k2

)2(
−k2

2

)
= −1

2
ln

k2−
k2+

= −1

2
ln

−m2ω2/EE′

−4EE′

= ln
2EE′

mω
. (29)

The remainder of the integral can also be solved in closed form. The resulting equiv-
alent photon spectrum can be written as (remember E = E′ +ω)

N(ω) = α

π

1

E2

[(
E2 +E′2) ln 2E

m
+ 1

2

(
E −E′)2 ln

E′

E −E′

+1

2

(
E +E′)2 ln

E′

E +E′ −EE′
]

. (30)

In the ultrarelativistic limit this result is dominated by the logarithmic increase with
energy E. The remaining terms in (30) only depend on E′/E, i.e. on the energy loss
of the electron.

Photon–Photon Collisions. The method of equivalent photons can also be applied if
the target is not a charged particle but a second virtual photon which itself originates
from a transition current. Here we will not repeat the derivation which is very similar to
the case of a single virtual photon, and shall instead immediately present the plausible
result. In complete analogy with (27) the approximate cross section for the creation
of a final state X in electron–electron scattering according to the graph of Fig. 3.56a
reads

σ̄ee→eeX =
∫ E1

0

dω1

ω1
N(ω1)

∫ E2

0

dω2

ω2
N(ω2) σ̄γ γ→X(ω1,ω2) . (31)

Here σ̄γ γ→X is the cross section for the creation of X in a collision of two real photons
with energies ω1 and ω2, respectively.

Now we will apply (31) to calculate the cross section for muon pair creation
through the process e+ + e− → e+ + e− + μ+ + μ−. To achieve this we need the
two-photon pair creation cross section for γ + γ → μ+ + μ−, which has been cal-
culated in Exercise 3.15. We will use the Breit–Wheeler formula derived in (13) of this

Fig. 3.56. Feynman graphs for
two-photon scattering involv-
ing two virtual photons (a) or
two real photons (b)
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exercise and express it in terms of the Mandelstam variable s = (k1 + k2)
2, i.e. the

invariant mass of the created pair (which should not be confused with the Mandelstam
variable s0 = (p1 +p2)

2 of the whole collision). The variable v used in Exercise 3.15
is the velocity of the muons in the center of momentum system which is related to
s = (2Eμ)

2 through

v = |pμ|
Eμ

=
√

s/4 −M2
μ

s/4
=
√

s − 4M2
μ

s
. (32)

In terms of the variable s the Breit–Wheeler formula takes the form

σ̄γ γ→μ+μ− = 4πα2

s

⎡
⎣
(

2 + 8M2
μ

s
− 16M4

μ

s2

)
ln

√
s +
√
s − 4M2

μ

2Mμ

−
√

1 − 4M2
μ

s

(
1 + 4

M2
μ

s

)⎤
⎦ . (33)

We are left with the task to solve the double integral in (31). To achieve this we trans-
form to the set of variables

s = 4ω1ω2 , ω = ω1 +ω2 . (34)

Actually the variable s defined in (34) coincides with the Mandelstam s only under
the condition that the momentum vector of the scattered electrons p′

1 and p′
2 are an-

tiparallel. In the center of momentum frame of the electrons, p1 + p2 = 0, we have

s = (k1 + k2)
2 = (ω1 +ω2)

2 − (p1 − p′
1 + p2 − p′

2)
2

= (ω1 +ω2)
2 − (p′

1 + p′
2)

2 � (ω1 +ω2)
2 − (|p′

1| − |p′
2|)2

� (ω1 +ω2)
2 − (E′

1 −E′
2)

2 = (ω1 +ω2)
2 − (E −ω1 −E +ω2)

2

= (ω1 +ω2)
2 − (ω1 −ω2)

2 = 4ω1ω2 . (35)

Since peripheral collisions with small scattering angles θ1, θ2 make the dominant con-
tribution this approximation is well justified.

The Jacobian of the transformation (34) reads

∂(s,ω)

∂(ω1,ω2)
=
∣∣∣∣4ω2 4ω1

1 1

∣∣∣∣= 4 |ω2 −ω1| = 4
√
ω2 − s . (36)

Using this result the pair production cross section (31) takes the following form

σ̄ee→eeμμ = 2
∫ 4E2

4M2
μ

ds
1

s

∫ E+s/4E

√
s

dω
1√

ω2 − s
N(ω1)N(ω2) σ̄γ γ→μμ(s) , (37)

where ω1,2 = 1
2

(
ω ± √

ω2 − s
)
. The limits of integration in (36) need some further

consideration. The transformation (34) maps the quadratic range of integration in the
ω1 − ω2 plane to the acutely shaped area in the s − ω plane shown in the bottom
part of Fig. 3.57. This region is bounded from below by the curve ω(s) = √

s which

Fig. 3.57. The kinematically
allowed regions of integration
in the ω1 − ω2 plane (a) and
the s −ω plane (b)corresponds to equal photon energies ω1 = ω2 = ω/2. The upper boundary is given by
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the straight line ω(s) = E + s/4E where one of the electrons is completely stopped,
ω1 = E,ω2 = s/4E or ω2 = E,ω1 = s/4E. Obviously each point in the s − ω plane
can be reached twice, corresponding to either ω1 > ω2 or ω2 > ω1. This explains the
extra factor of 2 in (37). Both boundary lines intersect at the point of total energy
transfer s = 4E2,ω = 2E.

We now evaluate the ω integral in (37), restricting our attention to the leading
logarithmic term in the photon spectrum (30):

∫ E+s/4E

√
s

dω
1√

ω2 − s
N(ω1)N(ω2)

�
(

ln
2E

m

)2 ∫ E+s/4E

√
s

dω
1√

ω2 − s

×
E2 +

(
E − 1

2 (ω + √
ω2 − s)

)2

E2

E2 +
(
E − 1

2 (ω − √
ω2 − s)

)2

E2

≡ f

(√
s

2E

)
. (38)

With some effort this integral can be solved exactly. The result reads, expressed in
terms of the parameter κ = √

s/2E:

f (κ) = (2 + κ2)2 ln
1

κ
− (1 − κ2)(3 + κ2) . (39)

This finally allows us to evaluate the total cross section for muon pair creation as
a function of the invariant mass s of the pair:

σ̄ee→eeμμ = α2

π2

(
ln

2E

m

)2 ∫ 4E2

4M2
μ

ds
1

s
f

(√
s

2E

)
σ̄γ γ→μμ(s)

= 2α4

π

1

M2
μ

(
ln

2E

m

)2 ∫ (E/Mμ)
2

1
dx f

(
Mμ

E

√
x

)

× 1

x

[(
2 + 2

x
− 1

x2

)
ln
(√

x + √
x − 1

)
−
√

1 − 1

x

(
1 + 1

x

)]
.

(40)

In the last step we have transformed to the dimensionless variable x = s/4M2
μ and

used formula (33) for the photon-induced production process. While the integral in
(40) in general has to be solved numerically, in the ultrarelativistic limit an analytical
approximation can be found. An inspection of the integrand reveals that for E � Mμ

the function f (
√
xMμ/E) falls off more slowly than the remaining factors. Therefore

we replace this function by the value it takes at the lower boundary f (Mμ/E) �
4 ln(E/Mμ). If the upper boundary is extended to infinity the remaining integral can
be solved in closed form, leading to the numerical factor 14/9.
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Thus the total cross section for the production of muon pairs in electron collisions
at high energies is given by

σ̄ee→eeμμ � 2α4

π

1

M2
μ

(
ln

2E

m

)2

4 ln
E

Mμ

14

9

= 112α4

9π

1

M2
μ

(
ln

2E

m

)2

ln
E

Mμ

. (41)

This result is valid in logarithmic accuracy, i.e. terms of the order unity are neglected
compared to the logarithms in (41). Note that for the two-photon mechanism it does
not matter whether an electron and a positron or two electrons are colliding.

The rise of the cross section with incident energy is very interesting. For compar-
ison we refer to the result (3.145) for the annihilation cross section of an electron
positron pair into muons:

σ̄e+e−→μ+μ− = π

3

α2

E2
, (42)

which falls off with energy. This difference in behaviour has a simple qualitative ex-
planation: The reaction (42) requires that electron and positron meet and annihilate
at the same point in space and time, a process which becomes less probable with in-
creasing energy. On the other hand the pair creation according to (41) mainly occurs
in peripheral collisions; viewed classically, for increasing incident energy collisions
at larger and larger distances (impact parameters) contribute so that the cross section
is enhanced. As an interesting consequence at sufficiently high energy (41) will be
the dominant process for muon pair production, although it arises from a fourth order
graph which should be suppressed by a factor α2 compared to the annihilation graph.

Figure 3.58 shows experimental results obtained at the PETRA collider at DESY
for muon pair creation40 which nicely show the increase of the cross section. The data
points refer to an “untagged” experiment in which the scattered electrons (positrons)

Fig. 3.58. Energy dependence
of the total cross section for
muon pair production by the
process e+ + e− → e+ +
e− + μ+ + μ−. The data
points agree with the QED
prediction if the detector re-
sponse is taken into account
(shaded area). For compari-
son also the cross section for
the process e+ + e− → μ+ +
μ− is shown which falls off
with energy

40 B. Adeva et. al. (Mark J Collaboration): Phys. Rev. D38, 2655 (1988).
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are not detected and mostly remain in the beam pipe, being deflected only by a very
small angle. Experiments are also performed under single or double tagging conditions
where the collisions partners are observed at finite deflection angles. In this case the
equivalent photon spectrum gets modified.41

We remark that the processes e+ + e− → e+ + e− + μ+ +μ− and e+ + e− →
μ++μ− can be clearly separated in the experiment since the muon pairs in the former
case are produced with rather low energy while in the latter case they carry the whole
collision energy.

The method of equivalent photons provides fairly accurate values for cross sections
in high-energy collisions. To make precise checks of QED predictions, however, the
Feynman graphs should be evaluated exactly,42 also taking into account interference
terms. When evaluating the results from high-energy experiments the numerically ob-
tained predictions are used as an input for Monte-Carlo simulations which also take
into account the response of the detector system. In this way the theoretical curve in
Fig. 3.58 was generated.

Two-photon collisions of the type we discussed in this exercise have several uses.
They can serve to check quantum electrodynamics and to study predictions on the
“photon structure function”. Furthermore they provide a comparatively “clean” source
for the creation of new particles, e.g. Higgs bosons, supersymmetric particles, glue-
balls, heavy mesons, etc.43

EXERCISE

3.18 Angular Integration of the Hadron Tensor

Problem. Show the validity of (17) in Example 3.17

∫ 2π

0

dϕ

2π
pipjH

⊥
ij � p2p′2

2k2
sin2 θ

∫ 2π

0

dϕ

2π
H⊥

ii , (1)

where the integration runs over the azimuthal angle of the scattered electron.

Solution. The object H⊥
ij is obtained from the hadron tensor by applying two trans-

verse projection operators according to

H⊥
ij =
(
δik − kikk

k2

)(
δjl − kj kl

k2

)
Hkl . (2)

Hkl is a three-dimensional tensor which can be constructed from the momentum vec-
tors of the incoming and outgoing particles. The vectors available are the momentum k

41 J.H. Field: Nucl. Phys. B168, 477 (1980).
42 Pioneering works on the two-photon process are V.M. Budnev, I.F. Ginzburg, G.V. Meledin,
V.G. Serbo: Phys. Rep. 15, 181 (1975); G. Bonneau, M. Gourdin, F. Martin: Nucl. Phys. B54, 573
(1973).
43 See Martin Greiner, M. Vidović, G. Soff: Phys. Rev. C47, 2288 (1993).
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of the incoming photon and the initial and final target momenta. In the following
we use only a single target momentum vector � but this can be generalized to more
involved cases. We adapt the following general approach for the hadron tensor

Hkl = Aδkl +B kk l +C kkl +D k l +E kkkl . (3)

Here A, . . . ,E are yet unspecified functions which can depend on the scalar quanti-
ties k2,�2,k · �. After transverse projection according to (2) only the A and D terms
survive:

H⊥
ij = A

(
δik − kikk

k2

)
+D

(
 i − k · �

k2
ki

)(
 j − k · �

k2
kj

)
. (4)

The functions under the integrals in (1) therefore are given by

H⊥
ii = 2A+D

(
�2 − (k · �)2

k2

)
, (5a)

pipjH
⊥
ij = A

(
p2 − (p · k)2

k2

)
+D

(
p · � − k · �

k2
p · k
)2

. (5b)

In order to perform the azimuthal integration we introduce the following coordinate
system: The z axis points in the direction of the incident electron, i.e. the vector p,
and the orientation is chosen such that � lies in the xz plane. Expressed in terms of
spherical coordinate the vectors of interest are given by

p = p (0,0,1) , (6a)

� =  (sinβ, 0, cosβ) , (6b)

p′ = p′(sin θ cosϕ, sin θ sinϕ, cos θ) , (6c)

k = p − p′ = (−p′ sin θ cosϕ, −p′ sin θ sinϕ, p − p′ cos θ) , (6d)

leading to the scalar products

p · � = p  cosβ , (7a)

p · k = p(p − p′ cos θ) , (7b)

k 2 = p′2 sin2 θ + (p − p′ cos θ)2 , (7c)

k · � = − p′ sin θ cosϕ sinβ +  (p − p′ cos θ) cosβ . (7d)

We notice that the only quantity which depends on the angle ϕ is k · �. As a conse-
quence the coefficients of the A terms in (5) are isotropic with respect to the azimuthal
angle. Using (7a–d) the factors appearing in (5) are given as follows

p2 − (p · k)2

k2
= p2p′2

k2
sin2 θ , (8a)

 2 − (k · �)2

k2
=  2

k2

[
p′2sin2 θ(1−cos2 ϕ sin2β)+(p−p′ cos θ)2 sin2β

− 2p′(p − p′ cos θ) sin θ cosϕ sinβ cosβ
]
, (8b)
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(
p · � − k · �

k2
p · k
)2

=  2

k2

p2p′2

2k2
sin2 θ

[
2p′2 sin2 θ cos2 β

+ 4p′(p − p′ cos θ) sin θ cosϕ sinβ cosβ

+ 2(p − p′ cos θ)2 cos2 ϕ sin2 β
]
. (8c)

The angular averaging leads to the replacements
〈
cosϕ

〉 = 0 and
〈
cos2 ϕ

〉 = 1
2 . Thus

(5a) becomes

∫ 2π

0

dϕ

2π
H⊥

ii = 2A+D
 2

k2

[
p′2 sin2 θ

(
1 − 1

2
sin2 β

)
+ (p − p′ cos θ

)2 sin2 β

]

(9)

while (5b) leads to

∫ 2π

0

dϕ

2π
pipjH

⊥
ij = p2p′2

2k2
sin2 θ 2A+ p2p′2

2k2
sin2 θ D

 2

k2

[
2p′2 sin2 θ cos2 β

+ (p − p′ cos θ)2 sin2 β
]
. (10)

A comparison of these two expressions essentially confirms that they are proportional
to each other, as claimed in (1). This is not exactly true, since the first terms in the
square brackets do not agree. However, these terms are proportional to sin2 θ and
therefore are suppressed if the scattering angle is small. This argument also applies to
the ϕ dependence of the functions A and D: The term cosϕ in the scalar product k · �
which gives rise to a possible azimuthal dependence of these functions is suppressed
by the small factor sin θ .

EXAMPLE

3.19 Electron–Positron Pair Production in Intense Laser Fields

The creation of massive particles starting from massless photons (i.e. electromagnetic
waves) is a conceptually interesting process. Although the inverse process of pair an-
nihilation into photons is well known, the Breit–Wheeler process γ + γ → e+ + e−
still has not been directly observed because of the difficulty in preparing colliding
beams of gamma rays. However, a related and even more interesting process has re-
cently been observed by using the intense electromagnetic field of a laser beam. Here
a high-energy gamma ray collides with a number n of optical photons of energy �ω to
form an electron–positron pair:

γ + nω → e+ + e− . (1)

The theory of this process was worked out long ago44 but only recently did it become
experimentally accessible.

44 H.R. Reiss, J. Math. Phys. 3, 59 (1962); A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 19, 529 (1964).
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Laser technology has rapidly progressed and sophisticated methods for the am-
plification and compression of wave trains have made possible the construction of
tabletop laser systems with powers in the terawatt (1012 W) region. These devices
generate short (typically in the picosecond region or below) light pulses with high
energy density and electromagnetic field strength. This allows the study of nonlinear
QED processes, characterized by the simultaneous interaction of charged particles
with a large number of photons.

Let us first consider the properties of an electromagnetic homogeneous plane wave.
One should bear in mind, however, that this may be an oversimplification for the de-
scription of very short or highly focussed light pulses. To be specific, we consider
a wave with circular polarization (this choice will simplify some of the calculations),
described by the vector potential Aμ in the Lorentz gauge k ·A = 0:

Aμ(x) = a
(
ε
μ
1 cosk · x + ε

μ
2 sin k · x) . (2)

Here k · x = ωt − k · x and ε1, ε2 are two transverse and orthogonal polarization
vectors, i.e.

k2 = 0 ,

k · ε1 = k · ε2 = 0 , ε2
1 = ε2

2 = −1 , ε1 · ε2 = 0 . (3)

One can choose a special coordinate frame in which these vectors become particularly
simple:

k = ω

c
(1,0,0,1) , ε1 = (0,1,0,0) , ε2 = (0,0,1,0) . (4)

The squared electric and magnetic field strengths resulting from (2) are

E2 = B2 = a2ω2

c2
, (5)

so that the energy density becomes

w = 1

8π

(
E2 + B2)= 1

4π

a2ω2

c2
. (6)

The number density of photons is given by

ρω = w

�ω
= 1

4π

a2ω

�c2
. (7)

It is customary to define a Lorentz-invariant dimensionless strength parameter

η = e
√|〈AμAμ〉|

mc2
= ea

mc2

= e|E|
ωmc

(8)

which will determine the importance of multiphoton processes.
The strength of a laser beam is characterized by its power density (energy flux per

area and time)

I = wc
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which can be maximized by focussing the beam to an area limited by the laws of
optical diffraction, i.e., of the order of the squared wavelength. As a typical value,
taken from the SLAC experiment to be discussed below, power densities of the order
I = 1019 W/cm2 are readily available using tabletop terawatt lasers. The resulting
electric field strength is |E| = √

4πI/c � 1011 V/cm. Still much higher intensities can
be expected in the future. E.g., the free-electron X-ray laser LCLS (Linac Coherent
Light Source) at SLAC may reach power densities of I = 1019 W/cm2 at a wavelength
at 0.15 nm and a field strength of the order 1015 V/cm.45

The calculation of elementary QED processes like Compton scattering or pair pro-
duction in laser fields can take advantage of the fact that exact solutions of the Dirac
equation describing electrons in the presence of a travelling electromagnetic wave are
known.46 They are called Volkov states. Thus, if the plane wave (2) is taken as a clas-
sical external potential and electron scattering processes in this potential are calculated
at lowest order using these exact Dirac solutions, higher-order (nonlinear) effects in
the laser field are included automatically.

In the following, we will treat electron–positron pair production of the type (1),
a process first discussed by Reiss.47 We will follow the treatment of Narozhnyi
et al.48

The Volkov wave function of an electron in the field of a circularly polarized plane
electromagnetic wave is derived in Exercise 3.20 (from now on we set � = c = 1):

ψp(x) =
√

m

q0V

(
1 + e

2k · p /k /A

)
u(p)

× exp

(
iea

ε1 · p
k · p sin k · x − iea

ε2 · p
k · p cosk ·x − iq · x

)
(9)

where u(p) is a Dirac unit spinor (we suppress the spin index s). The plane-wave part
of this solution is characterized by an “effective momentum”

qμ = pμ + e2a2

2k · pkμ = pμ + η2 m2

2k · pkμ , (10)

which satisfies the dispersion relation

q2 = m2 + e2a2 = m2∗ , m∗ = m

√
1 + η2 . (11)

This is an expression of the fact that the “quivering motion” forced upon the electron
by the presence of the wave increases its inertia and leads to a higher effective mass m∗.
Solutions of the type (9) are called dressed states since the electron (in quantum lan-
guage) continuously interacts with the surrounding cloud of laser photons.

The process of e+e− pair creation by a high-energy photon of momentum k′ mov-
ing through a laser field characterized by wave vector k is easily formulated. We sim-
ply have to write down the amplitude for the first-order graph of Fig. 3.59, using

Fig. 3.59. Pair production by
a high-energy photon. The dou-
ble lines refer to exact Dirac
states in the field of a plane
wave

45 P. Chen, C. Pellegrini in Quantum Aspects of Beam Physics, P. Chen, ed., World Scientific, 1999,
p. 571.
46 D.M. Volkov, Z. Physik 94, 250 (1935).
47 H.R. Reiss, J. Math. Phys. 3, 59 (1962).
48 N.B. Narozhnyi, A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 20, 622 (1965).
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the wave function (9) for an electron of momentum p′ and a positron of momentum p

(here we have to insert the negative momentum −p and use the antiparticle unit spinor
v(p)). The S-matrix element is

Sf i = −ie

√
4π

2ω′V

∫
d4x eik′·x ψ̄p′/εψ−p , (12)

where ε is the polarization vector of the incoming high-energy photon. Inserting (9),
the matrix element reads

Sf i = −ie
√

m

q0V

√
m

q ′
0V

√
4π

2ω′V

∫
d4x e−i(q+q ′−k′)·x ū(p′)Mv(p) eiΦ (13)

with the Dirac matrix

M =
(

1 + e /A/k

2k · p′

)
/ε′
(

1 − e/k /A

2k · p
)

(14)

and the phase (we abbreviate ϕ ≡ k · x)

Φ = ea

(
ε1 · p
k · p − ε1 · p′

k · p′

)
sinϕ − ea

(
ε2 · p
k · p − ε2 · p′

k · p′

)
cosϕ . (15)

The matrix M takes the form

M = /ε′ − e2a2

2k · pk · p′ ε
′ · k /k

+ cosϕ ea

(
/ε1/k/ε

′

2k · p′ − /ε′/k/ε1

2k · p
)

+ sinϕ ea

(
/ε2/k/ε

′

2k · p′ − /ε′/k/ε2

2k · p
)

, (16)

where the conditions k2 = ε1 · k = ε2 · k = 0 were used to simplify some terms.
Without the extra phase factor, the integration in (13) would be trivial. To make

this term manageable, we combine the two terms in (15) into a single trigonometric
function. Introducing the vector (note that k · p = k · q , ε1 · p = ε1 · q etc.)

Q = q

k · q − q ′

k · q ′ , (17)

the phase can be written as

Φ = ea(ε1 ·Q sinϕ − ε2 ·Q cosϕ)

= z sin(ϕ − ϕ0) , (18)

where

z = ea
√
(ε1 ·Q)2 + (ε2 ·Q)2 ,

cosϕ0 = ea
ε1 ·Q

z
, sinϕ0 = ea

ε2 ·Q
z

. (19)



226

Example 3.19

3. Quantum-Electrodynamical Processes

The expression for the variable z can be further simplified as

z = ea
√

−Q2 . (20)

This is most easily derived using the special choice of polarization and wave vectors
(4). In this case the obvious transversality condition k · Q = 0 implies Q0 = Q3 and
we have −Q2 = (Q1)2 + (Q2)2 = (ε1 ·Q)2 + (ε2 ·Q)2.

The phase factor eiΦ is a periodic function of the variable ϕ and thus can be ex-
panded into a discrete Fourier series. With the ansatz

eiz sin(ϕ−ϕ0) =
∞∑

n=−∞
cnein(ϕ−ϕ0) (21)

the Fourier coefficients are given by

cn = 1

2π

∫ π

−π

dϕ eiz sinϕe−inϕ

= Jn(z) , (22)

since this is just the integral representation of the Bessel function Jn(z). Thus we have

eiΦ =
∞∑

n=−∞
Bn(z) einϕ

with Bn(z) = Jn(z) e−inϕ0 . (23)

Similarly, using cosϕ = (eiϕ + e−iϕ
)
/2 we find

cosϕ eiΦ =
∞∑

n=−∞
Cn(z) einϕ

with Cn(z) = 1

2

(
Jn−1(z) e−i(n−1)ϕ0 + Jn+1(z) e−i(n+1)ϕ0

)
(24)

and

sinϕ eiΦ =
∞∑

n=−∞
Dn(z) einϕ

with Dn(z) = 1

2i

(
Jn−1(z) e−i(n−1)ϕ0 − Jn+1(z) e−i(n+1)ϕ0

)
(25)

Using these Fourier decompositions the S-matrix element (13) becomes

Sf i = −ie

√
m

q0V

√
m

q ′
0V

√
4π

2ω′V

∞∑
n=−∞

∫
d4x e−i(q+q ′−k′−nk)·xu(p′)Mnv(p) , (26)

where (16) is replaced by

Mn = Bn

(
/ε′ − e2a2

2k · pk · p′ ε
′ · k /k

)
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+Cnea

(
/ε1/k/ε

′

2k · p′ − /ε′/k/ε1

2k · p
)

+Dnea

(
/ε2/k/ε

′

2k · p′ − /ε′/k/ε2

2k · p
)

. (27)

The space–time integration now simply reduces to
∫

d4x e−i(q+q ′−k′−nk)·x = (2π)4δ4(q + q ′ − k′ − nk) . (28)

Clearly, the summation variable n can be viewed as the (net) number of laser photons
which are absorbed (n > 0) or emitted (n < 0) in the process. This is an interest-
ing result, because originally the electromagnetic wave was introduced as a classical
external field. The discretization of four-momentum evident in (28) arises from the
periodicity of the plane wave in space and time.

The transition rate per unit volume is given by

Wfi = |Sf i |2
V T

. (29)

We tacitly assume that the laser field is switched off adiabatically, so that particles
described by the wave function (9) go over into free plane-wave states asymptotically.
The differential cross section for pair creation is obtained by multiplying with the
density of final states and dividing by the incoming photon flux |J in| = 2(1/V ) and
the laser photon density ρω:

dσ = Wfi

1

|J in|
1

ρω
V 2 d3q

(2π)3
V 2 d3q ′

(2π)3

= 1

2

m2

q0q
′
0

e2

2ω′
4π

(2π)2

1

ρω
d3qd3q ′

∞∑
n=1

δ4(q+q ′−k′−nk)
∣∣ū(p′)Mnv(p)

∣∣2 . (30)

Note that the summation does not contain interference terms since the product of two
delta functions with different values of n vanishes. At least one laser photon is required
to create a pair. In (30) we have integrated over the quasimomentum variables since
the wave function ψp has been normalized “on the q scale”, cf. the denominator in (9).
The difference amounts to a factor d3q = (q0/p0)d3p.

The evaluation of the squared matrix element in (30) is somewhat laborious and
we will only sketch the intermediate steps. We are interested in the unpolarized cross
section, averaging over the photon polarization λ′ and summing over the lepton spins s
and s′:

|Mfi,n|2 = 1

2

∑
λ

∑
s,s′

∣∣ū(p′)Mnv(p)
∣∣2

= 1

2

∑
λ

Tr

(
/p′ +m

2m
Mn

/p −m

2m
γ0M

†
nγ0

)
. (31)

With the abbreviation

/e = Cn/ε1 +Dn/ε2 , /̃e = γ0/e
†γ0 = C∗

n/ε1 +D∗
n/ε2 (32)
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this reads explicitly, after summation over the polarizations with the help of (3.220),

|Mfi,n|2 = 1

8m2
Tr

{(
/p′ +m

)[
Bn

(
γμ − e2a2

2k · pk · p′ kμ/k
)

+ ea

(
/e/kγμ

2k · p′ − γμ/k/e

2k · p
)]

× (− /p +m
)[

B∗
n

(
γ μ − e2a2

2k · pk · p′ k
μ/k

)

+ ea

(
γ μ/k/̃e

2k · p′ − /̃e/kγ μ

2k · p

)]}
. (33)

Sorting the terms with respect to powers of the prefactor ea, it is found that the con-
tributions with powers higher than two vanish. One obtains

|Mfi,n|2 = 1

m2

(
p · p′ + 2m2)|Bn|2

+ ea

m2
Re

[
B∗
n

(
e · p′

k · p′ − e · p
k · p
)
k · k′
]

+ e2a2

m2

[
|Bn|2 − (|Cn|2 + |Dn|2

)(
1 − k · k′

2k · pk · p′

)]
. (34)

Note that each of these terms, because of the z dependence, contains an infinite series
of powers of ea, cf. (20). In fact, the term in the second line of (34) can be eliminated
by using the following recursion relation between Bessel functions:

Jn−1(z)+ Jn+1(z) = 2n

z
Jn(z) . (35)

Using (17), (19) and (23)–(25), from this the following identity can be derived

e · p′

k · p′ − e · p
k · p = − n

ea
Bn . (36)

The momentum balance q + q ′ = k′ + nk or

p + p′ = k′ + nk + e2a2 k · k′

2k · pk · p′ k (37)

leads to

p · p′ = nk · k′ − e2a2 (k · k′)2

2k · pk · p′ −m2 (38)

and one finds that the first term in (38) cancels with (36). Finally, inserting

|Bn|2 = J 2
n (z) ,

|Cn|2 + |Dn|2 = 1

2
J 2
n−1(z)+ 1

2
J 2
n+1(z) , (39)
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we arrive at the following expression for the unpolarized differential cross section for
pair creation:

dσ = e2

4π

m2

q0q
′
0ω

′
1

ρω

∞∑
n=1

δ4(q + q ′ − k′ − nk)d3qd3q ′

×
[
J 2
n + η2

(
J 2
n − 1

2
Jn−1 − 1

2
J 2
n+1

)(
1 − (k · k′)2

2k · pk · p′

)]
. (40)

The total cross section is obtained by a sixfold momentum integration. Owing to the
delta function and to azimuthal symmetry around the beam axis this reduces to a sin-
gle integral. We use spherical coordinates |q|, θ and ϕ for the electron (or positron)
vector q . In the center-of-momentum frame, where q ′ = −q and q ′

0 = q0, the integral
becomes∫

d3q

∫
d3q ′ δ4(q + q ′ − k′ − nk)

1

q0q
′
0

=
∫

dϕ
∫

d cos θ
∫

d|q||q|2 δ(2q0 −ω′ − nω)
1

q2
0

= 2π
1

2

∫
d cos θ

|q|
q0

. (41)

It is useful to express (40) in terms of Lorentz invariants. The Mandelstam variable
expressing the collision energy depends on the number of absorbed laser photons

sn = (q + q ′)2 = (k′ + nk)2 = 2nk · k′ = ns , (42)

defining s ≡ s1 = 2k · k′. Instead of the lepton angle θ we introduce the invariant
variable

u = (k · k′)2

4k · qk · q ′ . (43)

The connection with θ will be expressed in the center-of-momentum frame in which

k′ + nk = 0 , q + q ′= 0 , nω = ω′ ,

s = 4nωω′ = 4ω′2 , q0 = ω′ , |q|=
√
ω′2 −m2∗ .

One finds

u = (ωω′ − k · k′)2

4(ωq0 − k · q)(ωq0 + k · q) = s

4
(
q2

0 − q2 cos2 θ
) (44)

or

cos θ = q0

|q|
√

1 − 1

u
. (45)

The function u(θ) is symmetric with respect to θ = π/2, reflecting the interchange-
ability of electron and positron. It takes the maximum and minimum values

θ = 0,π : u = un = ns

4m2∗
, (46a)
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θ = π/2 : u = 1 . (46b)

The differential in (41) transforms as

d cos θ = 1

2

q0

|q|
du

u
√
u(u− 1)

. (47)

The argument z of the Bessel functions is given by (17) and (20). After a brief calcu-
lation using the 4-momentum balance one finds

z =
√

−Q2 = 8m2

s
η

√
1 + η2

√
u(un − u) . (48)

The final expression for the pair-production cross section, expressed as an integral
over the variable u, reads

σ = 2πα2

s

1

η2

∞∑
n>n0

∫ un

1
du

1

u
√
u(u− 1)

×
[
2J 2

n (z)+ η2
(
J 2
n+1(z)+ J 2

n−1(z)− 2J 2
n (z)
)
(2u− 1)

]
. (49)

To arrive at the prefactor, we have inserted ρω = (η2m2ω)/(4πe2) and s = 4ωω′. The
summation extends over photon numbers above the threshold for pair creation, defined
by un > 1, so that

n0 = 4m2∗
s

. (50)

An expression similar to (49), but slightly more complicated, can be derived for the
case of a linearly polarized wave.

As far as the electromagnetic wave field is concerned, (49) is an exact result.
In addition to allowing for the absorption of an arbitrary number of laser photons
(cf. Fig. 3.60), each of the terms in the series is nonperturbative in character, since the

Fig. 3.60. Feynman graph de-
scribing pair production by the
collision of one high-energy
and n laser photons in pertur-
bation theory calculation was based on the “dressed” electron wave functions (9).

Of course, the perturbative result is contained in (49) as a limiting case. With the
help of

Jn(z) � 1

n!
( z

2

)n
(51)

the expansion of (49) with respect to the parameter η � 1 in lowest order leads to
a solvable integral. The n = 1 term dominates:

σ � 2πα2

s
2

⎡
⎢⎣ln

1 + √
1 − 1/u1

1 − √
1 − 1/u1

(
1 + 1

u1
− 1

2u2
1

)
−
(

1 + 1

u1

)√
1 − 1

u1

⎤
⎥⎦ . (52)

In the center-of-momentum frame we have u1 � ω2/m2 and v = √
1 − 1/u1, were v is

the lepton velocity. With this substitution, (52) is seen to agree with the Breit–Wheeler
formula for pair production by two colliding photons, see (13) in Exercise 3.15.

If η becomes comparable to unity, nonlinear effects, arising from the higher-order
terms which were dropped in the derivation of (52), become important. Figure 3.61
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Fig. 3.61. The cross section
of (49) for electron–positron
pair creation by a high-energy
photon interacting with a laser
field. Left: Fixed strength pa-
rameter η = 1. Right: Fixed
energy

√
s = 2m. The contri-

butions of up to n = 10 laser
photons are drawn separately

shows on the left the pair cross section as a function of the normalized energy vari-
able

√
s/2m obtained from (49). A value of η = 1 was chosen for the field strength

parameter. Contributions arising from the absorption of n = 1 up to 10 photons are
displayed (solid lines), together with the summed value (dashed line).

For a given number n of photons, the nonlinearities tend to lower the cross section.
One reason for this is the increase in the effective mass m∗. The threshold for pair
production, which is determined by the condition un > 1 or

s >
1

n
4m2∗ = 1

n
4m2(1 + η2) , (53)

in this way is shifted higher. This effect is visible when comparing the Breit–Wheeler
cross section (dotted line) with the exact n = 1 result which starts to rise at an energy√

1 + η2 = √
2 times higher. Compensating for this effect is the growing contribution

of multiphoton terms, leading to a sizable cross section for pair creation even below
the Breit–Wheeler threshold. Apart from threshold effects, in the perturbative regime
the n-photon process is suppressed by a factor of η2n.

In a recent experiment49 performed at SLAC (Stanford), multiphoton pair produc-
tion of the type (1) was observed. The experiment was based on a two-step mechanism.
By colliding an intense laser beam of green light (λ = 527 nm, ω=2.35 eV) nearly
head-on with a high-energy electron beam (Ee =46.6 GeV), energetic back-scattered
Compton photons were produced. The process

e− + nω → e− + γ (54)

is closely related to that of (1). According to the principle of crossing symmetry, the
cross section for nonlinear Compton scattering can be obtained from nonlinear pair
production by a simple replacement of momentum variables p → −p and k → −k

and a change of integrations, resulting in a formula similar to (49).

49 D. Burke et al., Phys. Rev. Lett. 79, 1626 (1997); C. Bamber et al., Phys. Rev. D60, 092004 (1999).
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Fig. 3.62. Experimental yield
of electron–positron pairs pro-
duced by photons as a func-
tion of the field strength pa-
rameter η

In a second step the high-energy photons created in this way can collide with further
laser photons to produce pairs through the process (1). Detailed investigation have
shown that in the discussed experiment the n = 1 term of the Compton process (54)
was dominant. A simple kinematical calculation then leads to the following expression
for the maximum energy (at angle θ = 180◦) of the backscattered photon

ω′
max = ω

Ee + pe

2ω +Ee − pe
� ω

2Ee

2ω +m2/2Ee
(55)

which amounts to ω′
max = 29.1 GeV. Then the maximum center-of-momentum energy

available for pair creation is
√
smax = √4ωω′

max = 0.52 MeV, which is well below
threshold for two-photon pair creation. According to (50), at least n = 4 laser photons
are needed.

Nonlinear pair production was clearly seen in the experiment. Its rise with laser
field intensity, depicted in Fig. 3.62, is in good agreement with the predictions of
a numerical simulation of the experiment based on the predictions of QED (full line).

The Static Limit:

An interesting limit of the general result for pair creation (49) applies to the case
in which the frequency ω of the wave is small. If the field strength E is kept fixed,
according to (8) the strength parameter becomes large, η � 1, and a large number n
of photons is required to produce a pair. In this situation, the Bessel functions Jn(z)

in (49) can be replaced by an expression which is valid if both the order and the
argument are large (known as Debye’s asymptotic expansion). The integral and sum
can be solved approximately, leading to a simple analytic formula. Here we quote only
the result of this calculation.50

50 A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 25, 1135 (1967).
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The rate for pair creation W is obtained from the cross section formula by multi-
plication with 2ρωρ′ where ρ′ is the density of high-energy photons (we have used
ρ′ = 1/V up to now). The result reads

W = 3

16

√
3

2

αm2ρ′

ω′ κ e−8/3κ . (56)

Here the dimensionless Lorentz-invariant parameter κ is defined as

κ = k · k′

m2
η = sη

2m2
. (57)

This invariant also can be expressed as a product of the field strength tensor of the
wave and the momentum vector k′:

κ = e

m3

√〈|Fμνk′ν |2〉 , (58)

which is best verified in the special coordinate frame (4).
The asymptotic expression (56) was derived under the assumptions

κ � 1 and η � 1/
√
κ . (59)

According to (50) the minimum number of photons

n0 = 2η(1 + η2)

κ
(60)

becomes large under these conditions; the main contribution to the n summation arises
from a narrow region around n = 2n0.

It is interesting to express (56) in terms of the field strength E of the electromag-
netic wave. Assuming antiparallel momenta k and k′ so that s = 4ωω′ we have

κ = 2ωω′η
m2

= 2ωω′

m2

eE

ωm
= 2ω′eE

m3
= 2

ω′

m

E

Ecr
. (61)

Here the “critical” field strength

Ecr = m2

e
= m2c3

e�
= 1.3 × 1016 V

cm
(62)

was introduced. Ecr is a “typical scale” for the field strength in QED. Its role will be
discussed in detail in Chap. 7. Equation (56) can be written as

W = 3

8

√
3

2
αmρ′ E

Ecr
exp

(
−4

3

m

ω′
Ecr

E

)
. (63)

Note the characteristic dependence on the field strength: The function W(E) has an
essential singularity at the point E = 0, i.e., it is not possible to obtain (63) through
a perturbation expansion in powers of E. Such behaviour also will be found to govern
the process of pair creation in strong static electric fields, cf. (7.104).

The result (63) does not depend on ω and thus also applies to pair production
by a photon interacting with a wave field of infinite wavelength, i.e., with a static
electromagnetic field. Such a “frozen-in” wave consists of orthogonal crossed electric
and magnetic fields of equal magnitude, |E| = |B| and E · B = 0.
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EXERCISE

3.20 Exact Solution of the Dirac Equation in the Field of a Travelling Wave

Problem. Consider an electromagnetic potential Aμ(x) which moves with the ve-
locity of light in a fixed direction, specified by the wave vector k. The potential is
assumed to depend on the space–time coordinates x only through the scalar product
ϕ = k · x, i.e. Aμ = Aμ(k · x) where k2 = 0.

(1) Show that an exact solution of the Dirac equation for an electron in such a field
is given by51

ψp = Np

(
1 + e

2k · p /k /A

)
u(p) e−iΦ−ip·x (1)

with the phase

Φ(k · x) =
∫ k·x

0
dϕ

(
eA · p
k · p − e2A2

2k · p
)

. (2)

Here u(p) is the familiar unit spinor of a free electron and Np is a normalization
constant. The Lorentz gauge condition

k ·A = 0 (3)

has been assumed.
(2) Calculate the current density jμ = ψ̄γ μψ for the wave function (1). Determine

the normalization constant Np .
(3) Write down the solution (1) for the special case of a plane wave with circular

polarization, i.e.

Aμ(k · x) = a
(
ε
μ
1 cosk · x + ε

μ
2 sin k · x) (4)

with

ε2
1 = ε2

2 = −1 , ε1 · ε2 = 0 , ε1 · k = ε2 · k = 0 . (5)

Solution. (1) We want to solve the Dirac equation

(
γμi∂

μ − eγμA
μ −m

)
ψp(x) = 0 (6)

with Aμ = Aμ(k · x). It is easy to verify that the function (1) solves (6) by direct
insertion. However, here we will follow a route to derive the solution systematically.
For this we introduce the technique of light-cone variables which is useful in problems
involving motion at the speed of light. For motion in the z = x3 direction, the light
cone coordinates (see Fig. 3.63) are defined byFig. 3.63. Definition of the

light cone variables. Along the
dashed lines (fixed x−) the po-
tential Aμ is constant

x± = 1

2
(t ± z) , x⊥ = (x, y) . (7)

51 D.M. Volkov, Z. Physik 94, 250 (1935).
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Similarly, any vector aμ can be expressed in terms of its light-cone components

a± = 1

2

(
a0 ± a3) , a⊥ = (a1, a2) (8)

and scalar products take the form

a · b ≡ aμb
μ = 2a+b− + 2a−b+ − a⊥ · b⊥ . (9)

We also introduce the light-cone Dirac matrices

γ± = γ 0 ± γ 3 , γ ⊥ = (γ 1, γ 2) , (10)

which leads to

/a ≡ γ · a = γ+a− + γ−a+ − γ ⊥ · a⊥ . (11)

The matrices γ± satisfy the following identities which will be used heavily in subse-
quent calculations

γ±γ± = 0 , (12a)

γ±γ∓ = 2γ0γ∓ , (12b)

γ0γ± = γ∓γ0 , (12c)

γ±γ ⊥ = −γ ⊥γ± . (12d)

These relations follow immediately from (10) and the anticommutation properties of
the Dirac matrices γ μ. Note that (12a) implies that the γ± have vanishing determinant
and thus are not invertible.

Without loss of generality one can assume that the wave moves in the x3 direction,
i.e., kμ = ω(1,0,0,1) which means

k+ = ω , k− = 0 , k⊥ = 0 . (13)

Then the Lorentz condition k ·A = 2k+A− + 2k−A+ − k⊥ · A⊥ = 0 implies

A− = 0 . (14)

Expressing the gradients in terms of light-cone coordinates

∂0 = 1

2
(∂+ + ∂−) , ∂3 = 1

2
(∂+ − ∂−) , (15)

the Dirac equation (6) takes the form
(

i
1

2
γ+∂++ i

1

2
γ−∂−+ iγ ⊥ · ∇⊥−eγ−A++eγ ⊥ · A⊥−m

)
ψ(x) = 0 . (16)

The potential is assumed to move with the velocity of light in the x3 direction and will
depend only on the variable x−, i.e., A+ = A+(x−) and A⊥ = A⊥(x−). As a conse-
quence, the motion of the electron in the x+ and x⊥ directions can be described by an
ordinary plane wave. The full solution will have the following structure:

ψ(x) ≡ ψ(x+, x−,x⊥) = Np e−ip·x φ(x−) , (17)
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where the 4-momentum p is chosen to satisfy p2 = m2. The action of the Dirac oper-
ator on (17) leads to a one-dimensional ordinary differential equation for the function
φ(x−):
(
i
1

2
γ−∂−+γ+p−+γ−p+−γ ⊥· p⊥−eγ−A++eγ ⊥· A⊥−m

)
φ(x−) = 0 . (18)

The matrix structure of this equation can be simplified by splitting the wave function
into its light-cone projections

φ = 1

2
(φ+ + φ−) with φ± = γ0γ±φ . (19)

According to (12) these components satisfy

γ±φ∓ = 0 , γ±φ± = 2γ0φ± . (20)

The Dirac equation (18) then contains two contributions
[
γ+p− − γ ⊥· (p⊥ − eA⊥

)−m

]
φ+

+
[

i
1

2
γ−∂− + γ−

(
p+ − eA+

)− γ ⊥· (p⊥ − eA⊥
)−m

]
φ− = 0 . (21)

This can be further simplified by projecting with the matrices γ+ and γ−. Upon mul-
tiplication with γ− the derivative term drops out, leaving an algebraic equation which
can be used to express the component φ+ in terms of φ−:

φ+ = 1

2p−
γ0
[
γ ⊥ · (p⊥ − eA⊥)+m

]
φ− . (22)

Multiplication of (21) with γ+ leads to
[
i∂− + 2(p+ − eA+)

]
φ− + [γ ⊥ · (p⊥ − eA⊥)γ0 −mγ0

]
φ+ = 0 . (23)

With the help of (22) the component φ+ can be eliminated. Making use of γ ⊥γ0 =
−γ0γ ⊥ and of the identity (γ ⊥· v⊥)2 = −v2⊥ for any vector v⊥ we find
[
γ ⊥· (p⊥ − eA⊥)−m

][
γ ⊥ · (p⊥ − eA⊥)+m

]

= (γ ⊥· (p⊥ − eA⊥)
)2 −m2 = −(p⊥ − eA⊥)2 −m2 (24)

so that (23) becomes
[

i∂− − 1

2p−

(
−4p+p− + 4eA+p− + (p⊥ − eA⊥)2 +m2

)]
φ− = 0 . (25)

Using (9) for the squared momentum vector, as well as p2 = m2 and

A2 = 4A+A− − A2⊥ = −A2⊥ (26)

we finally obtain the greatly simplified Dirac equation
[

i∂− − 1

2p−

(
2eA · p − e2A2

)]
φ− = 0 . (27)



Exercise 3.20

3.8 Annihilation of Particle and Antiparticle 237

We notice that all Dirac matrices have dropped out! Equation (27) can be solved im-
mediately by integration:

φ−(x−) = e−iΦ(x−)φ0 (28)

with the phase

Φ(x−) =
∫ x−

0
dx′−
(
eA · p
p−

− e2A2

2p−

)
. (29)

φ0 is a constant spinor satisfying γ+φ0 = 0. We choose it to be

φ0 = γ0γ−u(p) , (30)

where u(p) is a unit spinor satisfying the free Dirac equation

(γ · p −m)u(p) = 0 . (31)

Finally, the wave function φ has to be constructed from its light-cone components
according to (19). Using (28) with (30) and (22) this results in

φ = 1

2
(φ− + φ+)

= 1

2

[
1 + 1

2p−
γ0
(
γ ⊥· (p⊥ − eA⊥)+m

)]
γ0γ−u(p) e−iΦ . (32)

Commuting γ0γ− to the left and using the free Dirac equation (31) in the form

(γ ⊥ · p⊥ +m)u(p) = (γ−p+ + γ+p−)u(p) , (33)

(32) becomes

φ = 1

2

[
γ0γ− + 1

2p−
γ−
(
γ−p+ + γ+p− − eγ ⊥ · A⊥

)]
u(p) e−iΦ

= 1

2

[
γ0γ− + 1

2
γ−γ+ − 1

2p−
eγ−γ ⊥ · A⊥

]
u(p) e−iΦ . (34)

With the help of (12b) the first two terms are seen to reduce to the unit matrix, the
third term can be transformed using γ−γ ·A = −γ−γ ⊥ · A⊥ to yield the result

φ =
(

1 + e

4p−
γ−γ ·A

)
u(p) e−iΦ . (35)

The solution found can be immediately generalized to an arbitrary direction of the vec-
tor k by replacing p− and γ− in (35) and (29) in terms of the corresponding covariant
expressions

2ωp− = ω(p0 − p3) = k · p ,

ωγ− = ω(γ 0 − γ 3) = k · γ ≡ /k , (36)

which completes the derivation of (1).
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(2) The Dirac current density jμ associated with the wave function (1) is easily
evaluated:

jμ = ψ̄pγ
μψ

= N2
pū(p)

(
1 + e

2k · p /A/k

)
γ μ

(
1 + e

2k · p /k /A

)
u(p)

= N2
pū(p)

[
γ μ + e

2k · p
(
/A/kγ μ + γ μ/k /A

)+
(

e

2k · p
)2

/A/kγ μ/k /A

]
u(p) .

(37)

Anticommuting the Dirac matrices and making use of /k2 = k2 = 0, /A2 = A2, and
k ·A = 0 one finds

jμ = N2
pū(p)

[
γ μ − e

k · p /kAμ + e

k · pkμ /A−
(

e

2k · p
)2

2kμ/kA2

]
u(p) . (38)

The Dirac unit spinors of momentum p satisfy the relation

ū(p)γ μu(p) = pμ

m
(39)

so that (38) can be rewritten as

jμ = N2
p

1

m

[
pμ − eAμ + kμ

(
eA · p
k · p − e2A2

2k · p
)]

. (40)

Obviously, the presence of the electromagnetic field modifies the particle momen-
tum. In the case of a periodically oscillating wave field the linear terms average out,
〈Aμ〉 = 0, but the quadratic correction term contributes to the mean value. One may
define an effective momentum

qμ = pμ − e2
〈
A2
〉

2k · p kμ . (41)

Note that qμ satisfies a modified energy–momentum relation

q2 = p2 − e2〈A2〉= m2

(
1 − e2

〈
A2
〉

m2

)
= m2∗ (42)

The electron thus acquires an effective mass m∗ which is increased compared to the
free mass m (since for a wave field A2 = −A2⊥ is negative).

To impose the box normalization condition we demand that the average electron
density 〈j0〉 amounts to one particle in the volume V which leads to

Np =
√

m

q0V
. (43)

(3) For the circularly polarized plane wave (4) the squared vector potential is con-
stant:

A2 = a2
(
ε2

1 cos2 k · x + ε2
2 sin2 k · x

)
= −a2 . (44)
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The phase integration in (2) is elementary and leads to

ψp =
√

m

q0V

(
1 + e

2k · p /k /A

)
u(p)

× exp

[
iea

ε1 · p
k · p sin k · x − iea

ε2 · p
k · p cosk · x − iq · x

]
(45)

with the effective momentum

qμ = pμ + e2a2

2k · pkμ . (46)

3.9 Biographical Notes

BETHE, Hans Albrecht, German–American physicist. "2.7.1906 in Straßburg, †6.3.2005 in
Ithaka, NY. B. studied physics at Frankfurt and Munich. He was research assistant and Pri-
vatdozent at the Universities of Frankfurt (1928), Stuttgart, Munich (1930–32), Tübingen,
Manchester and Bristol. Since 1935 he has been professor for physics at Cornell University
(Ithaka, NY). In WW II he was leader of the theoretical physics division of the Manhattan
project at Los Alamos. B. has made numerous essential contributions to various areas such
as nuclear physics, atomic structure physics, solid state spectroscopy, Quantum Electrodynam-
ics. For his explanation of the nuclear fusion processes in the interior of main sequence stars
B. received the Nobel price for physics in 1967. C.F. von Weizsäcker, who also explained these
processes, was left out.

BHABHA, Homi Jehangir, Indian physicist. "30.10.1909 in Bombay, †24.1.1966 at Mont
Blanc in an airplane accident. B. studied physics at Bombay and Cambridge (PhD 1932). Since
1945 he was professor for theoretical physics and director of the Tata Institute for Fundamental
Research at Bombay. He was president of the Indian Atomic Energy Commission and of the
IUPAP. B. gave the first relativistic description of electron–positron scattering. B. also worked
in the fields of nuclear physics and cosmic radiation.

BREIT, Gregory, American physicist. "14.7.1899 in Nikolaev (Russia), †13.9.1981 in Salem
(Oregon). B. emigrated to the U.S. in 1915. He was educated at Johns Hopkins University
(Baltimore) where he received his PhD in electrical engineering in 1921. He was professor of
physics at the Universities of Minnesota, Wisconsin, New York University, Yale University (for
21 years) and finally the State University of New York at Buffalo. B. made important contribu-
tions in various areas of physics. With M. Tuve he demonstrated the existence of the Heaviside
layer by reflecting radar pulses from the ionosphere. He worked on the theory of molecular
beam interaction (the Breit–Rabi equation) and proposed the method of optical pumping (the
basis for laser radiation). In the field of nuclear reactions B. developed the description of res-
onances (the Breit–Wigner formula), worked on the charge independence of nucleon–nucleon
scattering and initiated the study of heavy-ion reactions. He also developed the basic principles
of various particle accelerators.

DALITZ, Richard Henry, British physicist. "28.2.1925 in Dimboola (Australia), †13.1.2006
in Oxford. D. studied physics at the Universities of Melbourne and Cambridge (PhD 1950). He
worked as research assistant and lecturer at Bristol and Birmingham. He became professor at
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the University of Chicago (1956) and at Oxford (1963). His main research contributions have
been in hadronic physics, where he studied the decay and reaction properties of mesons (Dalitz
decay of neutral pions) and baryons, the interaction of Λ-hyperons etc. He introduced the Dalitz
plot for the analysis of the many-particle phase space.

MØLLER, Christian, Danish physicist. "22.12.1904 in Notmark (Denmark), †14.1.1980.
M. studied physics in Copenhagen (with N. Bohr), Rome and Cambridge. He spent his sci-
entific career at the University of Copenhagen (1933–75). M. worked on scattering theory (the
Møller operators) and S-matrix theory. Later his main interest was directed to the theory of
relativity. In particular he addressed the question of conservation and localization of energy and
momentum in general relativity.

MOTT, Sir Nevill Francis, British physicist. "30.9.1905 in Leeds. †8.8.1996 in Milton Keynes
(England). M. received his education at Cambridge University where he graduated with a mas-
ter degree in 1930. He was lecturer of mathematics at Cambridge and became professor of
theoretical physics at the University of Bristol (1933). In 1954 he went back to Cambridge
and became head of the Cavendish Laboratory. M. developed the quantum theory of atomic
collisions on which he wrote an influential monograph in 1933 (with H.S.M. Massey). His sub-
sequent work concentrated on solid state physics where he made important contributions to
various subjects, e.g. the band structure model, dislocations, defects, the theory of plasticity,
metal-insulator transitions (the Mott transition) etc. In 1977 he was awarded the Nobel prize for
physics (with J.H. van Vleck and P.W. Anderson).

NISHINA, Yoshio, Japanese physicist. "6.12.1890 in Okayama, †10.1.1951 in Tokyo. N. stud-
ied physics at Tokyo University and did his postgraduate work in Europe. He became a collabo-
rator of N. Bohr in Copenhagen. After returning to Japan he was appointed one of the leaders of
the Institute of Physico-Chemical Research in Tokyo. During his stay at Copenhagen N. derived
the theory of the Compton effect (with O. Klein). Later he became the founder of experimental
nuclear and cosmic ray research in Japan. He supervised the construction of several particle
accelerators. N. was the academic mentor of S. Tomonaga and H. Yukawa.

ROSENBLUTH, Marshal N., American physicist. "5.2.1927 in Albany (NY). R. studied at
Harvard and at the University of Chicago where he got his PhD in 1949 under the direction of
E. Teller and E. Fermi. He worked at Los Alamos and at the General Atomics Laboratory and
in 1960 went to the University of California at San Diego. In 1967 he went to Princeton Uni-
versity and to the Institute for Advanced Studies. Since 1980 he is director of the Institute for
Fusion Studies at the University of Texas in Austin. R. worked on the analysis of the scattering
of relativistic electrons to study the charge distribution within nuclei. His main area of research
is plasma physics where he developed the theory of inhomogeneous plasmas. He made sug-
gestions to avoid plasma instabilities which were essential for the development of the tokamak
reactors for controlled thermonuclear fusion. In 1985 R. received the Fermi prize.

WEIZSÄCKER, Carl Friedrich Freiherr von, German physicist and philosopher. "28.06.1912
in Kiel, †28.04.2007 in Söcking near Starnberg. W. studied physics, astronomy and mathemat-
ics in Berlin, Göttingen, and Leipzig with Werner Heisenberg and Friedrich Hund and obtained
his Ph.D. in Leipzig in 1933 and his habilitation in 1936. Subsequently he worked at the Kaiser
Wilhelm Institute for Physics in Berlin. In 1946 he became director at the Max Planck Institute
for Physics in Göttingen and in 1957 took up a professorship for philosophy at the University
of Hamburg. From 1970 until his retirement in 1980 W. was director of the “Max Planck Insti-
tute for research on the conditions of life in the scientific-technical world” in Starnberg, which
was especially tailored for him. W.’s most important research in physics dealt with the binding
energy of atomic nuclei (the Bethe–Weizsäcker formula, 1935) and the nuclear reactions re-
sponsible for the energy production in stars (the Bethe–Weizsäcker cycle, 1937/38). Since 1939
W. was member of the German “uranium project” which carried out research on the feasibility
of nuclear reactors, isotope separation and nuclear explosives. After the second world war W.’s
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interest increasingly turned to questions of the philosophy of science, the foundations of quan-
tum mechanics, ethics and the role of science in society. Among many other prizes W. received
the Max Planck medal of the German physical society in 1957.

WHEELER, John Archibald, American physicist. "9.7.1911 in Jacksonville (Florida),
†13.4.2008 in Higstown, NJ. W. studied physics at Johns Hopkins University (PhD 1933).
He was a postdoctoral fellow at the Universities of Copenhagen and North Carolina. In 1938 he
joined the faculty of Princeton University. After retirement he went to the University of Texas in
Austin (1976). W. made important contributions in various fields of theoretical physics. In 1939
together with Niels Bohr he developed the droplet model for nuclear fission. Later his main
interests were in gravitation theory and cosmology and in the quantum theory of measurement.



Summary: The Feynman Rules of QED 4

In the last chapter we analysed a variety of scattering processes. In this way we have
gained enough experience to extract a set of rules – the Feynman rules – which in
principle will allow the calculation of any QED process no matter how complicated it
is.

Let us consider the most general elastic or inelastic scattering of two particles of
the type

1 + 2 → 1′ + 2′ + . . . + n ,

which includes the possibility of pair creation and photon emission. The matrix ele-
ment Sf i can be written as

Sf i = i(2π)4δ4
(

p1 + p2 −
n∑

i=1

p′
i

)
Mf i

2∏
i=1

√
Ni

2EiV

n∏
i=1

√
N ′

i

2E′
iV

, (4.1)

where the essential physics is contained in the Lorentz covariant amplitude Mf i . The
square root factors are due to the normalization of the incoming and outgoing plane
waves. Within the conventions we use they are different for fermions and photons; this
is expressed by the normalization factor Ni :

Ni =
{

4π for photons

2m0 for spin- 1
2 particles

. (4.2)

These factors become clear for spin- 1
2 particles, e.g., from (3.2) in Sect. 3.1 and for

photons from (3.170), (3.184) in Sect. 3.6.
From (4.1) one can derive the general expression for the differential cross section:

dσ = 1

4
√

(p1 · p2)2 − m2
1m

2
2

N1N2(2π)4δ4

(
p1 + p2 −

n∑
i=1

p′
i

)
S

× ∣∣Mf i

∣∣2 N ′
1 d3p′

1

2E′
1(2π)3

· · · N ′
n d3p′

n

2E′
n(2π)3

. (4.3)

The square root in the denominator originates from the incoming particle current writ-
ten in a Lorentz-invariant way, see (3.79) in Sect. 3.2. The factor 1/4 stems from the
normalization

√
Ni/(2EiV ) of the incoming particles – see also (3.76) and (3.78) in

this context.
The degeneracy factor S becomes important when the final state contains identical

particles. Since configurations differing only by a permutation of the particles describe
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the same quantum-mechanical state, the phase-space is reduced in this case. This is
taken into account by the statistical factor

S =
∏
k

1

gk! , (4.4)

if there are gk particles of the kind k in the final state.
In the case of electron–electron scattering this means that the cross section is re-

duced by a factor of 1/2. Another example of practical importance is the process of
multiple photon bremsstrahlung, where the factor gk! can become very large. This fac-
tor arises because for gk identical particles in the final state there are exactly gk! pos-
sibilities of arranging (counting) these particles, but only one such arrangement is
measured experimentally!

To compare (4.3) with experiment one has to integrate the differential cross section
dσ over the phase-space intervals which are not distinguished in the measurement.
In addition one has to average over the initial polarization and to sum over the final
polarizations, if these polarizations are not measured.

The invariant amplitude Mf i can be expanded into a perturbation series in powers
of the coupling constant e using the propagator method. The following rules allow the
calculation of the expansion coefficients. They are given below in the form which is
most useful for practical calculations, namely in momentum space.

4.1 The Feynman Rules of QED in Momentum Space

1) In the nth order of perturbation theory one has to draw all possible topologically
distinct Feynman diagrams with n vertices that have the prescribed number of par-
ticles in the initial and final states (external lines).

2) With each external line one has to associate the following factors:

a) incoming electron: u(p, s)

b) incoming positron: v̄(p, s)

(outgoing electron with negative energy)

c) incoming photon: εμ(k, λ)

d) outgoing electron: ū(p, s)

e) outgoing positron: v(p, s)

(incoming electron of negative energy)

f) outgoing photon: ε∗
μ(k, λ)

3) Each internal line connecting two vertices has to be associated with a propagator

a) electron: iSF(p) = i( /p+m0)

p2 − m2
0 + iε

b) photon: iDμν
F (k) = −i 4π gμν

k2 + iε
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4) Each vertex is associated with a factor

−ieγμ

The index μ has to be multiplied with that of the photon line and summed over.
5) The conservation of four-momentum holds at each vertex. One has to integrate

over all momentum variables p that cannot be fixed (internal loops):
∫

d4p

(2π)4

6) The amplitudes of all graphs have to be added coherently, taking into account the
following phase factors:
a) a factor of −1 for each incoming positron (outgoing electron with negative

energy);
b) a factor of −1 in the case that two graphs differ only by the exchange of two

fermion lines – this also holds for the exchange of an incoming (outgoing) par-
ticle line with an outgoing (incoming) antiparticle line, since the latter is an
incoming (outgoing) particle line with negative energy;

c) a factor of −1 for each closed fermion loop.

Here we add the following remarks:
To 1: For the construction of Feynman graphs, only the topological structure is

important. Since the theory was formulated in a relativistically covariant way, all pos-
sible time orderings are automatically taken into account. As long as the ordering of
the vertices along the fermion lines is kept, the graphs can be arbitrarily deformed
without changing their meaning.

To 2f : In the examples of Chap. 3 only real-valued polarization vectors were con-
sidered. If εμ is complex the plane wave has to be written as

Aμ(x, k) = Nk

(
εμ e−ik·x + ε∗μ eik·x)

instead of (3.170) in order to make Aμ real. The second term, which describes photon
emission, contains the complex conjugate polarization vector. This becomes important
if photons with circular polarization are considered. Using the radiation gauge, the
basis vectors for left/right-handed circular polarization are

Fig. 4.1. A graph of eighth or-
der with 10 internal lines. One
must integrate over 10 − (8 −
1) = 3 momenta of internal
loops

ε(k,±) = 1√
2

(e1 ± ie2) ,

where e1 and e2 are unit vectors orthogonal to the direction of propagation,
e1 · k = e2 · k = e1 · e2 = 0.

To 5: First one associates a four-momentum δ-function to each vertex and then
integrates over the momenta of all internal lines. Since one δ-function is needed for
the conservation of the total momentum, for a graph of order n with I internal lines
there remain I − (n − 1) integrations over internal lines. We illustrate this for a graph
of eighth order (Fig. 4.1).
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Fig. 4.2. In graph (b) the lines
(1) and (2) of graph (a) are
exchanged explaining the mi-
nus sign which accompanies
closed fermion loops

To 6: The sign factor in a) was discussed for the S matrix of (2.42). There it is de-
noted by εf. The minus sign in b) was explained in the examples of electron–electron
and electron–positron scatterings calculated in first order. It originates from the an-
tisymmetry of the wave function required by Fermi–Dirac statistics. Rule 6c is new.
Nevertheless, it can be derived directly from 6b. Let us consider, e.g., the graph of
Fig. 4.2a which contains an electron loop and may be part of a bigger graph. Ex-
changing the two electron lines one gets the diagram 4.2b, which can also be drawn
in the way shown in 4.2c. Consequently the graph with the closed loop gets a phase
factor of −1 compared to 4.2c.

A further very useful statement, which can be derived from the other rules, applies
to graphs with closed electron lines.

Furry’s Theorem: Graphs which contain electron loops with an odd number of
photon vertices can be omitted in the expansion of Mf i . This will be shown in Exer-
cise 4.1.

EXERCISE

4.1 Furry’s Theorem

Fig. 4.3. Two graphs with op-
posite directions of the inter-
nal fermion loop

Problem. Show that Feynman diagrams containing a closed electron loop with an
odd number of photon vertices can be omitted in the calculation of physical processes.

Solution. Consider a process that can be described by a graph containing an electron
loop with n vertices. According to Fig. 4.3a and 4.3b for each diagram there is another
one where the direction of circulation within the loop is reversed. We shall show that
the contribution from each cancels the other for odd n.

The relevant contribution to the S-matrix element describing the loop (a) has the
form

Ma = (−ieγμ1)αβ

(
iSF(x1 − xn)

)
βγ

(−ieγμn)γ δ

(
iSF(xn − xn−1)

)
δε

× . . .

× (
iSF(x3 − x2)

)
ρκ

(−ieγμ2)κτ

(
iSF(x2 − x1)

)
τα

= Tr
[
(−ieγμ1)

(
iSF(x1 − xn)

)
(−ieγμn)

(
iSF(xn − xn−1)

) × . . .

× (
iSF(x3 − x2)

)
(−ieγμ2)

(
iSF(x2 − x1)

)]
. (1)

The trace originates from the fact that the first γ matrix is multiplied with the last
propagator SF since the loop closes here. Owing to the Feynman rules each γ matrix
is multiplied with the propagator following it. Since the starting point is arbitrary, the
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last propagator has to be multiplied with the first γ matrix, leading to a trace. In an
analogous manner the contribution from the graph (b) reads

Mb = Tr
[
(−ieγμ1)

(
iSF(x1 − x2)

)
(−ieγμ2)

(
iSF(x2 − x3)

)× . . .

× (
iSF(xn−1 − xn)

)
(−ieγμn)

(
iSF(xn − x1)

)]
. (2)

The traces in (1) and (2) are closely related to each other. To see this we make use of
the charge conjugation matrix Ĉ = iγ 2γ 0 with the property1

ĈγμĈ−1 = −γ T
μ . (3)

Applied to the Feynman propagator in position space this transformation yields

ĈSF(x)Ĉ−1 =
∫

d4p

(2π)4
e−ip·x pμĈγμĈ−1 + m01

p2 − m2
0 + iε

=
∫

d4p

(2π)4
e−ip·x −pμγ T

μ + m01

p2 − m2
0 + iε

= ST
F (−x) . (4)

Note the index T at the propagator in the last step, which indicates that SF has to be
transposed! Now we insert factors of Ĉ−1Ĉ = 1 in (2):

Mb = Tr
[
Ĉ−1Ĉ (−ieγμ1) Ĉ−1Ĉ

(
iSF(x1 − x2)

)
Ĉ−1Ĉ (−ieγμ2) Ĉ−1Ĉ

× (
iSF(x2 − x3)

) × · · · × Ĉ−1Ĉ
(
iSF(xn−1 − xn)

)
Ĉ−1Ĉ

× (−ieγμn) Ĉ−1Ĉ
(
iSF(xn − x1)

)]
. (5)

The first factor Ĉ−1 under the trace is permuted to the right side (using Tr[AB] =
Tr [BA]). Furthermore we use (3) and (4), yielding

Mb = (−1)n Tr
[(−ieγ T

μ1

) (
iST

F (x2 − x1)
)(−ieγ T

μ2

) (
iST

F (x3 − x2)
) × · · ·

×(
iST

F (xn − xn−1)
) (−ieγ T

μn

) (
iST

F (x1 − xn)
)]

= (−1)n Tr
[(

iSF(x1 − xn)
)
(−ieγμn)

(
iSF(xn − xn−1)

) × · · ·
× (−ieγμ2)

(
iSF(x2 − x1)

)
(−ieγμ1)

]T
= (−1)nMa . (6)

Therefore the sum Ma + Mb vanishes if n is an odd number! There is a plausible ex-
planation for this result. In a closed loop there can be an electron as well as a positron
“circling around”. These particles interact with the electromagnetic field with an op-
posite sign of the charge. Thus their contributions cancel each other for an odd number
of vertices.

1 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000), Sect. 12.1.
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Fig. 4.4. Two equivalent ways
to draw a loop diagram with
two external lines. (c): The
tadpole diagram

Additional Remark: The existence of two contributions Ma and Mb having equal
absolute value has the consequence that for even values of n the contribution to the
amplitude made by a loop graph is doubled. One has to be careful, however, in the
case n = 2. Here one might also be tempted to add two contributions, cf. Fig. 4.4a
and 4.4b. This idea is incorrect, however, since both graphs represent exactly the same
Feynman graph which has merely been drawn in two different fashions! In the case
n > 2, on the other hand, this argument does not apply since the loops turning left and
turning right lead to topologically distinct graphs which differ in the ordering of the
vertices.

The case of a loop with a single vertex, n = 1, is somewhat pathological. Obvi-
ously there is no cancellation and Furry’s theorem does not apply. The contribution
of the diagram in Fig. 4.4c (which is known as the tadpole graph) does not van-
ish automatically. Clearly the photon line cannot refer to a free photon since this
cannot simply disappear, violating energy and momentum conservation. The tad-
pole graph will emerge, however, in higher orders of perturbation theory where the
loop is coupled via a virtual photon (with momentum k = 0) to an electron line in
some more complicated graph. This leads to a contribution to the “self-energy of the
electron” which we will treat in the next chapter. It turns out that the tadpole con-
tribution has no physically observable consequence since its size is independent of
the momentum of the electron, in contrast to the self energy correction to be dis-
cussed in Sect. 5.3. It can be fully absorbed into a (divergent) renormalization con-
stant which at the end drops out of any calculation. The same effect can be achieved
more economically by simply leaving out any tadpole contributions from the out-
set.2

4.2 The Photon Propagator in Different Gauges

The form of the photon propagator DF which was introduced in Sect. 3.2 cannot be
determined uniquely. Until now we have chosen the form (in momentum space)

DFμν = − 4π

k2 + iε
gμν , (4.5)

which is only one of many ways of defining the photon propagator. The origin of
this ambiguity becomes clear if one takes into account that the photon propagator

2 The formal way to do this in quantum field theory consists in the prescription of “normal ordering”
of the interaction Hamiltonian.
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is always sandwiched between two transition-current elements when one constructs
S-matrix elements, e.g.

j
μ
43(p4,p3)DFμν(k) jν

21(p2,p1) , (4.6)

where p2 = p1 − k and p4 = p3 + k. Now, the transition currents obey the equation
of continuity. Their four-divergences vanish, i.e. in momentum space (in this context
see also (3.210) in Sect. 3.6)

kν jν
12(p1 − k,p1) = 0 , (4.7a)

kμ j
μ
43(p3 + k,p3) = 0 (4.7b)

holds. Therefore one can add to DFμν the expression kμfν(k)+kνgμ(k) with arbitrary
functions fν(k) and gμ(k) without changing the result of the calculation. A somewhat
restricted generalization of (4.5) keeping the symmetry between the two currents in
(4.6) reads

Dμν(k) = − 4π

k2 + iε
gμν + kμfν(k) + kνfμ(k) , (4.8)

with an arbitrary function fμ(k) of dimension [k−3]. The origin of this ambiguity of
the photon propagator is the gauge degree of freedom of the electromagnetic field.
Because of this there are no observable changes if the potential Aμ is subjected to the
transformation

Aμ(x) → Aμ(x) + ∂

∂xμ
χ(x) . (4.9)

Therefore the propagator of the photon field becomes ambiguous too. The special
choice we have made in (4.5) is called the Feynman gauge. This is the most common
choice. We now introduce two other gauges which prove useful in some applications.

I) The Landau Gauge. If one chooses

fμ(k) = 1

2

4πkμ(
k2 + iε

)2
(4.10)

for the function fμ(k) in (4.4), then the propagator reads as follows:

DLμν(k) = − 4π

k2 + iε

(
gμν − kμkν

k2 + iε

)
. (4.11)

In this form the propagator obeys the condition

kμDLμν(k) = 0 (4.12)

in analogy to the Lorentz gauge

kμAμ(k) = 0

of the potential in momentum space.
II) The Coulomb Gauge. For this we choose

f0 = 1

2

4π

k2 + iε

k0

k2
, fi = −1

2

4π

k2 + iε

ki

k2
, (4.13)
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where the latin indices i denote the space components (i = 1,2,3). Then the propaga-
tor takes the form

DCij (k) = 4π

k2 + iε

(
δij − kikj

k2

)
, (4.14a)

DC0i (k) = DCi0(k) = 0 , (4.14b)

DC00 (k) = 4π

k2
. (4.14c)

We verify briefly the last equation:

DC00 = − 4π

k2 + iε
+ 4π k2

0

k2 + iε

1

k2

= 4π

k2 + iε

(
−1 + k2

0

k2

)

= 4π

k2 + iε

(
−k2 + k2

0

k2

)

= 4π

k2 + iε

(
k2

k2

)
= 4π

k2
.

In (4.14c) we have used k2
0 − k2 = k2 so that one factor k2 in the denominator is

cancelled. This gauge obeys the condition

kiDCiμ (k) = 0 , (i = 1,2,3) , (4.15)

which corresponds to the Coulomb gauge of the potential, ∇ · A(x) = 0 or kiAi(k) =
0. The component DC00 is just the Fourier transform of the electrostatic potential 1/r .

EXERCISE

4.2 Supplement: Systems of Units in Electrodynamics
In electrodynamics traditionally several different systems of units are used,3 which

may lead to confusion if they are mixed up. In this volume we use Gaussian units,
which we shall now compare with other systems of units. As a starting point we shall
use the force laws for electrostatics and magnetostatics. Coulomb’s law for the force
between two charges e1 and e2 reads

F = k1
e1e2

r3
r , (1)

where k1 is a constant of proportionality that is still arbitrary at the moment.
The constant k1 defines the unit of charge. One usually assigns an independent
basic unit to the charge (e.g. 1 Coulomb = 1 A s). Then k1 has the dimension

3 See also J.D. Jackson: Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), Appendix;
W. Greiner: Classical Electrodynamics (Springer, Berlin, Heidelberg, 1998), Appendix.
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[mass][length]3[charge]−2[time]−2. In the MKSA system, which is part of the legally
adopted SI system of units, this is achieved with the dielectric constant ε0 by defining

kMKSA
1 = 1

4πε0
. (2)

In the Gaussian system one simply chooses

kG
1 = 1 . (3)

Charge is then a unit that can be derived from mechanical quantities. The system that
is probably used most frequently in the literature of theoretical physics takes

kHL
1 = 1

4π
(4)

and is called the “rationalized Gaussian system” or Heaviside–Lorentz system.
For the magnetostatic interaction Ampère’s force law is valid

F = k2

∫ ∫
d3r1d3r2

j1 × (j2 × r12)

r3
12

, (5)

where

kMKSA
2 = μ0

4π
(6)

in the MKSA system. The units of charge density and current density are always re-
lated to each other by the continuity equation

∇ · j + ∂ρ

∂t
= 0 , (7)

which implies that the ratio of k1 and k2 has the dimension of a squared velocity. We
identify this velocity with the velocity of light, which is characteristic for electrody-
namics:

k1

k2
= c2 . (8)

Furthermore one can introduce a proportionality factor, k3, in the definition of the
magnetic field strength B , so that the Lorentz force on a moving charge e reads

F = e
(
E + k3

v

c
× B

)
. (9)

In the Gaussian system and in the Heaviside–Lorentz system one chooses

kG
3 = kHL

3 = 1 , (10)

whereas

kMKSA
3 = c . (11)

Through (9) the definition of the field strengths E and B also depends on the choice
of unit for charge.
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Summarizing all this, Maxwell’s equations read (in vacuum)

∇ · E = 4πk1ρ , (12a)

∇ · B = 0 , (12b)

∇ × E = −k3

c

∂B

∂t
, (12c)

k3∇ × B = 4πk1

c
j + 1

c

∂E

∂t
. (12d)

For a point charge (12a) leads to Coulomb’s law (1) because F = eE. In the same
way one recognizes that the inhomogeneous term in (12d) together with (9), namely
F = k3/c

∫
d3rj × B , leads to Ampère’s law (5). Maxwell’s equations take the sim-

plest form in the rationalized Heaviside–Lorentz system, since all factors 4π vanish in
this case. On the other hand they reappear elsewhere, e.g. in Coulomb’s law (1). This
is quite reasonable because 4π is a “geometrical factor” that depends on the dimen-
sionality of space. As such it should preferably not appear in the field equations but
rather in their solutions.

Of course it is quite easy to see that physical observables do not depend on the
choice of units. Especially in the calculation of S-matrix elements the combination
1/c(jμAμ) always appears which is the interaction energy density. This combination
is invariant since the current density transforms in the same way as the charge, i.e.
because of (1) it is multiplied by a factor

√
k1. Simultaneously the potential because

of

E = −∇φ − k3

c

∂A

∂t
(13)

is multiplied by 1/
√

k1. Therefore, it follows that

eGAG =
(√

4πeHL
) (

1√
4π

AHL
)

= eHLAHL . (14)

When Heaviside–Lorentz units are used, the Feynman rules change in the following
way:

1) There is no factor Ni = 4π for external photon lines.
2) For each vertex there is a factor −ieHLγμ.
3) The photon propagator does not contain the factor 4π , i.e. it reads D

μν
F =

−gμν/(k2 + iε).

The final result of any calculation can always be expressed in terms of the dimen-
sionless fine-structure constant α ≈ 1/137.036. This constant, however, is related in
different ways to the elementary charge:

α =

⎧⎪⎨
⎪⎩

e2/�c Gauss

e2/4π�c Heaviside–Lorentz

e2/4πε0�c MKSA

. (15)
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4.3 Biographical Notes

FURRY, Wendell Hinkle, American physicist. �18.2.1907 in Prairieton (Indiana), †1984.
F. received his PhD at the University of Illinois in 1932. Subsequently he went to Caltech
and in 1934 to Harvard where he became professor of physics. F. worked on positron theory,
quantum field theory, the theory of molecular energies and the quantum theory of measurement.



The Scattering Matrix in Higher Orders 5

In Chap. 3 many scattering processes were calculated to the lowest nonvanishing order
of perturbation theory. Because of the small value of the coupling constant α ≈ 1/137
the first term alone frequently gives reliable results. Within a satisfactory theory, how-
ever, one should be able to calculate the contributions of higher orders too. As we
shall see in QED – and the same is true in all quantum field theories – this leads
to characteristic difficulties: some of the “small corrections” become infinitely large!
Surmounting this problem has been an essential step in the development of the the-
ory. In what follows we shall discuss “renormalization” in the lowest nontrivial order
of perturbation theory. The finite theory obtained in this way can then be applied to
calculate measurable effects of vacuum fluctuations, i.e. the interaction with virtually
created particles.

5.1 Electron–Positron Scattering in Fourth Order

To survey the possible processes that occur in the higher orders of the perturbation
expansion, we consider as an example the process of electron–positron scattering in
fourth order. According to the general Feynman rules we must construct all topo-
logically different graphs that have four vertices and the prescribed configuration of
exterior lines. They are collected in Fig. 5.1. As one can see, a rather imposing list
of 18 different diagrams results. The graphs (e–h) occur in different versions, being
distinguished by the position of the photon loop, which for brevity have not all been
drawn here.

Fig. 5.1. Survey of all Feyn-
man graphs of fourth order for
electron–positron scattering

As an exercise we write down the invariant matrix elements for some of the di-
agrams. We already encountered a diagram similar to Fig. 5.1a when we dealt with
electron–proton scattering (Example 3.6). The invariant matrix element correspond-
ing to Fig. 5.2 has the value

M
(a)
f i = −e4

∫
d4q1

(2π)4
ū
(
p′

1, s
′
1

)(−iγμ

) i

/p1 − /q1 −m+ iε

(−iγν

)
u
(
p1, s1

) −4π i

q2
1 + iε

× v̄
(
p2, s2

)(−iγ ν
) i

−/p2 − /q1 −m+ iε

(−iγ μ
)
v
(
p′

2, s
′
2

) −4π i

(q+q1)2 + iε
.

(5.1)

Here we have introduced the momentum transfer q = p′
1 − p1 = p2 − p′

2; the fac-
tors (i)4(−i)4 cancel. The resulting minus sign arises because of Feynman rule 6a in
Chap. 4 since there is an incoming positron.

Fig. 5.2. The graph of Fig. 5.1a
in momentum space

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 5.3. The graph of Fig. 5.1f
in momentum space

Next we study the new diagram (f) which is shown in Fig. 5.3. Its matrix element
is

M
(f )
f i = +e4ū

(
p′

1, s
′
1

)[∫ d4k

(2π)4
(−iγν)

i

/p′
1 + /k − m + iε

(−iγμ)

× i

− /p′
2 + /k − m + iε

(−iγ ν)
−4π i

k2 + iε

]
v
(
p′

2, s
′
2

)

× v̄(p2, s2)(−iγ μ)u(p1, s1)
−4π i

(p1 + p2)2 + iε
. (5.2)

The brackets enclose that part of the graph, which the momentum integration ranges
over. The sign of (5.2) relative to (5.1) is explained by Feynman rule 6b. Namely,
graph (f) is obtainable from graph (a) by an exchange of two electron lines. To see
this, one only needs to choose a convenient time ordering by deforming the diagram
(we pass over to configuration space for this purpose), as indicated in Fig. 5.4. Then
for a certain time interval one has a virtual electron which has to be antisymmetrized
with the incoming real electron, to satisfy Fermi statistics. This explains the relative
minus sign between (5.1) and (5.2).

Fig. 5.4. The graphs (a) and
(f) are exchange graphs. This
explains the relative minus-
sign between (5.1) and (5.2)

The matrix element for graph (g), Fig. 5.5, reads

M
(g)
f i = −e4ū

(
p′

1, s
′
1

)[∫ d4k

(2π)4
(−iγμ)

i

/p′
1 − /k − m + iε

(−iγ μ)
−4π i

k2 + iε

]

× i

/p′
1 − m + iε

(−iγν)u(p1, s1) v̄(p2, s2)(−iγ ν) v
(
p′

2, s
′
2

) −4π i

q2 + iε
, (5.3)

where again the loop integration extends only over some of the factors.
Fig. 5.5. The graph of Fig. 5.1g
in momentum space

Let us finally consider graph (i) shown in Fig. 5.6. Because of the closed electron
line it has an additional minus sign. The matrix element is

M
(i)
f i = +e4ū

(
p′

1, s
′
1

)
(−iγ μ)u(p1, s1)

−4π i

q2 + iε

×
[

Tr
∫

d4k

(2π)4

i

/k − m + iε
(−iγν)

i

/k − /q − m + iε
(−iγμ)

]

× −4π i

q2 + iε
v̄(p2, s2)(−iγ ν)v

(
p′

2, s
′
2

)
. (5.4)Fig. 5.6. The graph of Fig. 5.1i

in momentum space
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The trace results from the fact that one multiplies the different matrices −ieγμ

and iSF in the electron loop cyclically when one follows the electron line (compare
also Exercise 4.1). This also ensures that the product of the 4 × 4 matrices γμ and SF

becomes a pure number.
An inspection of Fig. 5.1 shows that there are three characteristic subgraphs, which

can occur at various places in a diagram. These subgraphs are sketched separately in
Fig. 5.7.

Fig. 5.7. The three basic
subgraphs involving a loop.
(a) vertex correction, (b) self
energy, (c) vacuum polariza-
tion

These three diagrams are termed vertex correction, self-energy of the electron, and
vacuum polarization. Mathematically they show up in the occurrence of the four-
dimensional momentum integrals (loop integrals) that were emphasized by the square
brackets in (5.2–5.4).

Unfortunately all of these integrals are divergent as k → ∞. This can be seen im-
mediately by counting the powers of k in the integrand. While the four-dimensional
volume element in the numerator grows like k3, the denominators for the three
processes of Fig. 5.7 are proportional to k4, k3, and k2, respectively, so that we ex-
pect a logarithmic divergence for the vertex correction, a linear divergence (for the
time being) for the electron self-energy, and a quadratic divergence for the vacuum
polarization. In the following sections we will consider these problems separately.

We finally remark that in the systematic construction of all Feynman graphs of
fourth order we kept silent about some terms. Figure 5.8 shows two examples of
graphs that separate into two disconnected parts.

In Fig. 5.8a, for instance, a scattering in lowest order takes place, while indepen-
dently in the vacuum a virtual pair is created and annihilated some time later. The
S-matrix element for a process like that of Fig. 5.8a separates into a product of the
matrix elements for the “connected” part, which contains the external lines, and the
“disconnected” vacuum bubble. These “vacuum fluctuations”, however, take place all
the time, independent of whether there are real particles present or not. Thus every
graph is multiplied by a factor of the kind

S′
f i = Sf i

[
1 + + + . . .

]

= Sf iC .

However, the constant C must have absolute value 1, because the “background noise”

Fig. 5.8. Two examples of dis-
connected graphs of fourth or-
der

of the vacuum is always present, even in the absence of real particles. Thus the
S-matrix element for vacuum–vacuum transitions is

S′
0,0 = S0,0C .

Since the vacuum – regardless of whether we take into account the electromagnetic
interaction – must be conserved, |C|2 = 1 follows and C is only a phase factor without
physical significance. Disconnected graphs can therefore be neglected in the expan-
sion of the S matrix.

5.2 Vacuum Polarization

In this section we will calculate the influence of the creation of a virtual electron–
positron pair (Fig. 5.7c) on the propagation of a photon. To do this we investigate how
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the unperturbed photon propagator

iDFμν(q) = −4π i

q2 + iε
gμν (5.5)

is modified by the correction of the order of e2

iD′
Fμν(q) = + + . . .

= iDFμν(q) + iDFμλ(q)
iΠλσ (q)

4π
iDFσν(q) + . . . . (5.6)

Here the polarization tensor

iΠλσ (q)

4π
= −e2

∫
d4k

(2π)4
Tr

[
γλ

1

/k − m + iε
γσ

1

/k − /q − m + iε

]
(5.7)

was introduced (cf. (5.4)). As already mentioned, counting of the powers of k in the in-
tegrand reveals that the integral is quadratically divergent. Before we embark on a cal-
culation, in spite of this problem, we first examine some general features of Πμν(q).
Since it is a Lorentz tensor, Πμν can be constructed out of the parts gμν and qμqν and
scalar functions of q2. We write

Πμν(q) = Dgμν + gμνq
2Π(1)

(
q2)+ qμqνΠ

(2)
(
q2) , (5.8)

where the constant term Dgμν is the value of the polarization tensor for vanishing
momentum transfer, q → 0. The existence of D has unpleasant consequences. We
now use the very generally valid identity for operators

1

X̂ + Ŷ
= 1

X̂
− 1

X̂
Ŷ

1

X̂
+ 1

X̂
Ŷ

1

X̂
Ŷ

1

X̂
± . . . , (5.9)

which can be easily verified by multiplication with (X̂ + Ŷ ), and rewrite (5.6) by use
of it. In the limit q2 → 0 and up to terms of higher order in α = e2 this yields

iD′
Fμν(q

2 → 0) = −4π i

q2 + iε
gμν + −4π i

q2 + iε
gμλ

iD

4π
gλσ −4π i

q2 + iε
gσν + . . .

=
( −4π i

q2 + iε
+ −4π i

q2 + iε

iD

4π

−4π i

q2 + iε
+ . . .

)
gμν

= −4π igμν

q2 + iε

(
1 + D

q2
+
(

D

q2

)2

+ . . .

)

� −4π igμν

q2 − D + iε
. (5.10)

This is just the propagator of a boson with mass
√

D (a “heavy photon”). Thus the
value of Πμν(0) must equal zero, since we know the photon to be massless. The
reason this is true has a profound root, namely the required gauge invariance of the
theory.

Equation (5.10), by the way, is valid even more generally, because every term in
the expansion (5.9) has its counterpart in a Feynman diagram with one more electron
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Fig. 5.9. Equation (5.10) sums
up all graphs of part (a). More
complex graphs (part (b)),
however, are not included

loop (see Fig. 5.9a). For obvious reasons summing up these graphs is called the chain
approximation. However, the infinite series generated in this way sums up only a cer-
tain class of diagrams. There is still any number of more complex “bubbles”, which
also must be taken into account in the calculation of the exact photon propagator (see
Fig. 5.9b).

To see how the constant D is connected with gauge invariance, we consider, for
instance, the scattering of an electron at an external potential with the Fourier trans-
form Aμ(q), see Fig. 5.10. The corresponding matrix element for the direct scattering
is proportional to

Mf i ∼ eūf γ μuiAμ(q) . (5.11)

To account for the vacuum polarization of the exchanged photon the following correc-
tion must be added

MVP
f i ∼ eūf γ μui

−4π i

q2 + iε

iΠμν(q)

4π
Aν(q) . (5.12)

The principle of gauge invariance requires this expression to be invariant under a trans-
formation

Fig. 5.10a,b. The interaction
of an electron with an exter-
nal potential (c) is modified by
vacuum polarization (d)

Aμ(x) −→ Aμ(x) − ∂

∂xμ
χ(x) or Aμ(q) −→ Aμ(q) + iqμχ(q) . (5.13)

Obviously this implies that

Πμν(q)qν = 0 . (5.14)

Because of the symmetry of Πμν (cf. (5.8)),

qμΠμν(q) = 0 (5.15)

is valid too. This can also be interpreted as the condition of current conservation
qμJ VP

μ (q) for a polarization current

J VP
μ (q) = 1

4π
iΠμν(q)Aν(q) (5.16)

induced by the external field. Equations (5.14) and (5.15) applied to (5.8) yield

D + q2
(
Π(1)

(
q2)+ Π(2)

(
q2))= 0 . (5.17)

Since the equation has to be fulfilled for all q2, the constant D must equal zero (as-
suming the functions Π(i) have no pole at q2 = 0 !) and the polarization tensor must
assume the simple form

Πμν

(
q2)= (q2gμν − qμqν

)
Π
(
q2) , (5.18)

where we have introduced the polarization function Π
(
q2
)≡ Π(1)

(
q2
)= −Π(2)

(
q2
)
.
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The direct calculation of D, however, seems to contradict this conclusion. Accord-
ing to (5.8) and (5.7) we get

D = 1

4
Πμ

μ(0)

= 1

4
4π ie2

∫
d4k

(2π)4
Tr

[
γ μ /k + m

k2 − m2 + iε
γμ

/k + m

k2 − m2 + iε

]

= 8π ie2
∫

d4k

(2π)4

2m2 − k2

(k2 − m2 + iε)2
, (5.19)

where the trace was calculated in the usual way (see Theorem 8 of the Mathematical
Supplement 3.3):

Tr
[
γ μ(/k + m)γμ(/k + m)

]= Tr
[
(−2/k + 4m)(/k + m)

]= 4
(−2k2 + 4m2) .

The expression (5.19) does not vanish at all, but represents a quadratically diver-
gent integral. Since the original theory was gauge invariant, the result D 
= 0 is ob-
viously due to the fact that the defining equation (5.7) for Πμν is an ambiguous
mathematical expression. There are different ways of avoiding this problem and of
forcing the convergence of these integrals by “regularization”. So, for instance, one
can simply cut off the k integration at a large momentum value Λ, or one can intro-
duce a damping factor, which for k � Λ continuously approaches zero, for instance
Λ2/(k2 + Λ2).

We want to use the regularization prescription devised by Pauli and Villars.1 It can
be applied relatively simply and has the advantage that it conserves all invariances of
the theory. The idea is to subtract from the integrand a function which has the same
asymptotic behaviour, in order for the resulting integrand to fall off fast enough with
increasing k. More precisely, a set of N (large) auxiliary masses Mi and constants Ci

is introduced and the integrand is replaced as follows:

Πμν(q) =
∫

d4k fμν

(
q, k,m2)

−→ Π̄μν(q) =
∫

d4k
(
fμν

(
q, k,m2)+

N∑
i=1

Cifμν

(
q, k,M2

i

))
. (5.20)

The constants Ci , Mi are then determined such that the regularized polarization tensor
Π̄μν(q) is given by a convergent integral. Through this procedure it is possible to treat
the integral with common methods (e.g. to interchange the order of integrations and
summations etc.). At the end of the calculation the limit Mi → ∞ must be performed.
Since the cutoff procedure was chosen at will, the calculation makes sense only if
physical observables do not depend on the parameters Ci , Mi . This can be achieved,
as we shall see.

Now we explicitly calculate the regularized polarization tensor.

1 W. Pauli and F. Villars: Rev. Mod. Phys. 21, 434 (1949).
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Π̄μν(q) = 4π ie2
∫

d4k

(2π)4

{
Tr
[
γμ(/k + m)γν(/k − /q + m)

]
(
k2 − m2 + iε

)[
(k − q)2 − m2 + iε

]

+
N∑

i=1

Ci

Tr
[
γμ(/k + Mi)γν(/k − /q + Mi)

]
(
k2 − M2

i + iε
)[

(k − q)2 − M2
i + iε

]
}

= 16π ie2
∫

d4k

(2π)4

×
{

kμ(k − q)ν + kν(k − q)μ − gμν

(
k2 − q · k − m2

)
(
k2 − m2 + iε

)[
(k − q)2 − m2 + iε

] + reg

}
,

(5.21)

where the trace identities 2 and 3 of the Mathematical Supplement 3.3 have been used
and “reg” stands for the regularization term. The calculation of momentum integrals
of this type is rather difficult. Several techniques have been devised for this purpose
which all depend on the introduction of new integrals over auxiliary variables and thus
make the d4k integration simple. We make use of the following integral representation
of the causal propagator in momentum space:

i

k2 − m2 + iε
=

∞∫

0

dα exp
[
iα
(
k2 − m2 + iε

)]
. (5.22)

In this way the momentum integration becomes Gaussian and can be readily solved.
For convenience we will drop the term iε, which makes the integral convergent, in
what follows and consider the mass as a complex number with a small negative imag-
inary part. Then we obtain

Π̄μν = −16π ie2
∫

d4k

(2π)4

([
kμ(k − q)ν + kν(k − q)μ − gμν

(
k2 − q · k − m2)]

×
∞∫

0

dα1

∞∫

0

dα2 exp
{

i
[
α1
(
k2 − m2)+ α2

(
(k − q)2 − m2)]}+ reg

)
.

(5.23)

To get rid of the polynomial in k and k − q , one can introduce two vectorial auxiliary
variables z1 and z2 into the exponential factor and make use of the identity

ikμ = ∂

∂z
μ
1

exp (ik · z1)

∣∣∣∣
z1=0

. (5.24)

Thus (5.23) can be written as

Π̄μν = −16π ie2
∫

d4k

(2π)4

([
− ∂

∂z
μ
1

∂

∂zν
2

− ∂

∂zν
1

∂

∂z
μ
2

−gμν

(
− ∂

∂z1
· ∂

∂z2
−m2

)]

×
∞∫

0

dα1

∞∫

0

dα2 exp
{

i
[
α1
(
k2 − m2)+ α2

(
(k − q)2 − m2)

+ z1 · k + z2 · (k − q)
]}

+ reg

)∣∣∣∣
z1=z2=0

. (5.25)
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After the order of the integrations has been exchanged the k integral is easy to solve.
According to the Mathematical Supplement 5.6, (6), the Gaussian momentum integral
is solved by

∫
d4k

(2π)4
exp
[
i
(
ak2 + b · k)]= −i

(4π)2a2
exp
(
−ib2/4a

)
, (5.26)

and thus

∫
d4k

(2π)4
exp
{

i
[
k2(α1 + α2) + k · (−2α2q + z1 + z2)

+(−m2(α1 + α2) + q2α2 − q · z2
)]}

= −i

(4π)2(α1 + α2)2
exp

{
i

[
−m2(α1 + α2) + q2α2 − α2

2q2

α1 + α2

]}

× exp

{
−i

[
q ·z2 + z2

1 + 2z1 · z2 + z2
2 − 4α2q · z1 − 4α2q · z2

4(α1 + α2)

]}
. (5.27)

The required derivatives are easy to perform. One obtains

∂

∂zν
2

exp(. . .) = −i

[
qν + z1ν + z2ν − 2α2qν

2(α1 + α2)

]
exp(. . .) ,

∂

∂z
μ
1

exp(. . .) = −i

[
z1μ + z2μ − 2α2qμ

2(α1 + α2)

]
exp(. . .) ,

∂

∂z
μ
1

∂

∂zν
2

exp(. . .) =
{
−i

gμν

2(α1 + α2)

−
[
qν + z1ν + z2ν − 2α2qν

2(α1 + α2)

]
z1μ + z2μ − 2α2qμ

2(α1 + α2)

}
exp(. . .)

z1=z2=0−→ −i
gμν

2(α1 + α2)
+ α1α2

(α1 + α2)2
qνqμ .

Contraction of the indices μ and ν leads to

∂

∂z1
· ∂

∂z2
exp(. . .) −→ − 2i

α1 + α2
+ α1α2

(α1 + α2)2
q2 .

Using this we get

Π̄μν(q) = +16π ie2

∞∫

0

dα1

∞∫

0

dα2

×
( −i

(4π)2(α1 + α2)2
exp

{
i

[
−m2(α1 + α2) + α1α2

α1 + α2
q2
]}

×
{

2α1α2

(α1 + α2)2
qμqν − gμν

[
α1α2

(α1 + α2)2
q2 − i

α1 + α2
+ m2

]}
+ reg

)
.

(5.28)
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The polynomial in the integrand is split into a gauge-invariant part of the form (5.18)
and a remainder
{
. . .

}
= 2α1α2

(α1 + α2)2

(
qμqν − gμνq

2)+ gμν

[
α1α2q

2

(α1 + α2)2
+ i

α1 + α2
− m2

]
(5.29)

so that

Π̄μν(q) = (qμqν − gμνq
2)Π(q2) + Π̄μν. (5.29a)

We can show that the offending non-gauge-invariant part – we will call it Π̄μν –
vanishes in the regularized theory. With the convention C0 = 1, M0 = m the non-
gauge-invariant part reads

Π̄μν = e2

π
gμν

∞∫

0

∞∫

0

dα1dα2

(α1 + α2)2

N∑
i=0

Ci

[
α1α2q

2

(α1 + α2)2
+ i

α1 + α2
− M2

i

]

× exp

{
i

[
−M2

i (α1 + α2) + α1α2

α1 + α2
q2
]}

. (5.30)

We note that the terms in the square brackets look quite similar. This can be exploited
to simplify the integral. Again, an auxiliary variable � is introduced and the expression
is calculated at the point � = 1:

Π̄μν = −e2

π
gμν i�

∂

∂�

∞∫

0

∞∫

0

dα1dα2

(α1 + α2)3

1

�

×
N∑

i=0

Ci exp

{
i�

[
−M2

i (α1 + α2) + α1α2

α1 + α2
q2
]}∣∣∣∣

�=1

. (5.31)

Moving the differentiation before the integrals is allowed here, because the con-
stants Ci can be chosen such that the integral converges absolutely (at αi → 0). Now
we perform a scale transformation α′

i = �αi in the integral. As one can see, this has
the effect of completely eliminating �! Thus the integral does not depend on � at all,
so the derivative ∂/∂� acting on it vanishes. This proves the gauge invariance of the
regularized polarization tensor Π̄μν .

Let us proceed with the calculation of the gauge-invariant polarization operator
from (5.18). According to (5.28, 5.29) its regularized version is determined by

Π̄(q2) = −2e2

π

∞∫

0

dα1

∞∫

0

dα2
α1α2

(α1 + α2)4

×
N∑

i=0

Ci exp

{
i

[
−M2

i (α1 + α2) + α1α2

α1 + α2
q2
]}

. (5.32)

Here we introduce a factor

1 =
∞∫

0

d� δ(� − α1 − α2) (5.33)
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and then, again, perform a scale transformation αi = �βi :

Π̄
(
q2)= −2e2

π

∞∫

0

dα1

∞∫

0

dα2

∞∫

0

d� δ(� − α1 − α2)
α1α2

�4

×
N∑

i=0

Ci exp

[
i

(
−M2

i � + α1α2

�
q2
)]

= −2e2

π

∞∫

0

d�

∞∫

0

� dβ1

∞∫

0

� dβ2 δ(� − �β1 − �β2)

× �2β1β2

�4

N∑
i=0

Ci exp
[
i
(−M2

i + β1β2q
2)�]

= −2e2

π

1∫

0

dβ1

1∫

0

dβ2 β1β2δ(1 − β1 − β2)

×
∞∫

0

d�

�

N∑
i=0

Ci exp
[
i�
(−M2

i + β1β2q
2)]

︸ ︷︷ ︸
≡I

. (5.34)

The range of the β integrations can be restricted to the interval 0 ≤ βi ≤ 1 because of
the δ function.

Without regularization the integral I = ∫∞
0 d�/� . . . would be logarithmically di-

vergent. The gauge invariance of the polarization tensor which allowed factoring out
two powers of momentum in (5.18) has thus reduced the degree of divergence by two.
How do we have to choose now the values of Ci and Mi in order to obtain a finite
result? Let us consider the � integral and let us deform the contour of integration to
the negative imaginary axis. Since the product β1β2 = β1(1 − β1) never exceeds the
value 1/4, this leads to an exponentially decreasing integrand as long as the condition
q2 < 4m2 is fulfilled.2 If we introduce a lower integration boundary η and consider
the limit η → 0, we get, using the substitution t = i�(M2

i − β1β2q
2), according to

Exercise 5.1

I = lim
η→0

−i∞∫

−iη

d�

�

N∑
i=0

Ci exp
[
−i�
(
M2

i − β1β2q
2)]

= lim
η→0

N∑
i=0

Ci

∞∫

η
(
M2

i −β1β2q
2
)

dt

t
exp (−t)

2 The value q2 = 4m2 is the threshold for the production of real electron–positron pairs as will be
discussed in Exercise 5.2.
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and with integration by parts

I = − lim
η→0

(
N∑

i=0

Ci lnη

)
−

N∑
i=0

Ci ln
(
M2

i −β1β2q
2)+

N∑
i=0

Ci

∞∫

0

dt ln t exp(−t) .

(5.35)

With this we have reached our goal: by the choice of the constants

N∑
i=0

Ci = 0 (5.36)

the first and the last term of (5.35) are made to vanish and we obtain a finite result:

I = −
[

ln
(
m2 − β1β2q

2)+
N∑

i=1

Ci ln
(
M2

i − β1β2q
2)]

= −
[

ln

(
1 − β1β2

q2

m2

)
+

N∑
i=1

Ci ln
M2

i

m2
+

N∑
i=0

Ci lnm2

︸ ︷︷ ︸
=0

]

= −
[

ln

(
1 − β1β2

q2

m2

)
− ln

Λ2

m2

]
, (5.37)

where the term q2 has been neglected compared to the large masses Mi , and the ab-
breviation

N∑
i=1

Ci ln
M2

i

m2
≡ − ln

Λ2

m2
(5.38)

has been introduced defining an averaged cutoff momentum Λ.3 With (5.37) the po-
larization function finally (5.34) reads

Π̄(q2 ) = 2e2

π

1∫

0

dβ β(1 − β)

{
− ln

Λ2

m2
+ ln

[
1 − β(1 − β)

q2

m2

]}

= 2e2

π

{
−1

6
ln

Λ2

m2
+

1∫

0

dβ β(1 − β) ln

[
1 − β(1 − β)

q2

m2

]}

≡ − e2

3π
ln

Λ2

m2
+ ΠR(q2) . (5.39)

The remaining one-dimensional integral in ΠR
(
q2
)

can be solved analytically. We
shall not give the exact result here (this will be deferred to Exercise 5.2) and consider

3 We remark that the regularization of Π̄
(
q2
)

could have been achieved with a single subtraction
term (N = 1), namely C1 = −1, M1 = Λ. This would not, however, have been enough to cancel the
quadratically divergent, non-gauge-invariant term Πμν(q).
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only the limit q2/m2  1. In this case one can expand the logarithm into a Taylor
series,

ln(1 − z) = −
(
z + z2

2
+ . . .

)
, (5.40)

and obtains after an elementary integration

ΠR(q2 ) = −e2

π

q2

m2

(
1

15
+ 1

140

q2

m2
+ . . .

)
. (5.41)

Thus the regularized vacuum-polarization tensor according to (5.39) consists of a con-
stant term (up to a coefficient gμνq

2 − qμqν ) that diverges logarithmically with the
cutoff momentum Λ, and a well-defined finite momentum-dependent part ΠR

(
q2
)
.

What is the significance of these terms? In order to understand them we go back to the
modified photon propagator (5.6) and consider its influence in a scattering process.
For instance, the amplitude of Møller scattering reads

M
(2)
f i = +

= (−ieū′
1γ

μu1
)−4π i

q2

[
gμν + i

4π
Π̄μτ (q)

−4π igτ
ν

q2

](−ieū′
2γ

νu2
)

= (−ieū′
1γ

μu1
)
iD(0)

F (q)

[
gμν +(gμτ q

2−qμqτ

)
Π̄
(
q2)gτ

ν

q2

](−ieū′
2γ

νu2
)

= (−ieū′
1γ

μu1
)
iD(0)

F (q)

[
1 − e2

3π
ln

Λ2

m2
+ ΠR(q2)

](−ieū′
2γμu2

)
, (5.42)

where in the last transformation we used the gauge invariance of the transition cur-
rents, qνj

ν
f i = 0. In this way the term proportional to qμqν drops out. One can prove

this explicitly by considering that the u1 are free Dirac spinors, namely

( /p1 − m)u1 = 0
ū′

1( /p′
1 − m) = 0

}
and thus qνū

′
1γ

νu1 = ū′
1( /p′

1 − /p1)u1 = 0 , (5.43)

because q = (p′
1 − p1). Since (5.42) is to be valid only to the order of α2, it can also

be written as

M
(2)
f i = (−ieū′

1γ
μu1
) [

Z3

(
1 + ΠR(q2)) iD(0)

F (q)
] (−ieū′

2γμu2
)

, (5.44)

with the constant factor

Z3 = 1 − e2

3π
ln

Λ2

m2
. (5.45)

The expressions (5.44) and (5.42) differ by a term of the order of α3 which is beyond
the presently required accuracy. Compared to the matrix element in lowest order, the
consideration of vacuum polarization thus yields a constant correction factor Z3 and
a momentum-dependent modification ΠR

(
q2
)
. The latter approaches zero for small q2

according to (5.41). Thus if one performs a scattering experiment with small q2 (this
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corresponds classically to a “peripheral” scattering between two charges that are sep-
arated by a large distance), then the scattering amplitude in second order is simply
given by

M
(2)
f i = Z3M

(1)
f i .

The value of the electric charge, however, is empirically determined just by such ex-
periments. A particle with the “bare” charge e for a distant observer seems to carry
the “renormalized” charge eR, with

eR =√Z3 e . (5.46)

The bare charge e, however, in principle is not observable, since the interaction be-
tween electron and photon fields cannot be “switched off”. In this manner we have
circumvented the problem of the dependence on the cutoff Λ in a most elegant way:
only the renormalized charge is relevant for physical observations; it is experimentally
determined to be e2

R � 1/137. The magnitude of the renormalization constant Z3 and
the bare charge e do not matter at all. To calculate any process one simply uses the
charge eR and then has to deal only with well-defined finite quantities!

Of course this argument is nevertheless a little unsatisfactory. If divergences oc-
cur in the calculation of the renormalization constant, this is a hint that the theory is
fundamentally not entirely consistent. For very large momenta, or, which is the same,
for very small distances it breaks down. We can, however, convince ourselves that the
region of validity will be very large. Since the divergence in (5.45) is only logarithmic,
Z3 will be significantly different from unity only if

Λ � e3π/2α m = 10280 m . (5.47)

According to the uncertainty relation this corresponds to a length of x = h/Λ �
10−293 cm! In practice this is completely irrelevant, because the existence of other
quantum fields limits the validity of pure QED anyway. For instance, as soon as there
occur momenta in the region of the pion mass mπ � 270me, the strong interaction
must be taken into account. On a still higher scale the weak interaction becomes
important. According to present-day understanding both phenomena are unified in
a single framework, i.e. the theory of electroweak interaction. However, in this more
general theory, also, divergent renormalization integrals do occur (see W. Greiner and
B. Müller: Theoretical Physics, Vol. 5, Gauge Theory of Weak Interaction).

It might well be possible that space and time are not continuous but consist of tiny
space–time cells. Then no momenta would occur that correspond to lengths smaller
than the size of a cell. The loop integrals (which are divergent in the case of continuous
space–time) in this case would have their natural “cutoff parameter” at the maximum
momentum. Renormalization would still be necessary, but the need for an artificial
regularization would not arise.

Up to now the influence of vacuum polarization on internal photon lines has
been examined. This leads to the occurrence of a modified photon propagator
Z3(1 + ΠR)D

(0)
F in (5.44). Corrections of external photon lines must certainly be

considered as well. These lines represent a potential Aμ(q) with a momentum on the
“mass shell” q2 = 0. The potential satisfies the Laplace equation, which in momentum
space reads

q2Aμ(q) = 0 , (5.48)
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Fig. 5.11. Renormalization of
an external photon line

and the Lorentz gauge condition,

qμAμ(q) = 0 . (5.49)

According to Fig. 5.11 one could try to form a renormalized potential AR
μ out of the

free A0
μ by the prescription

AR
μ = A0

μ + iDFμν(q)
iΠνσ (q)

4π
A0

σ = A0
μ + −4π i

q2

i

4π
q2Π̄

(
q2)A0

μ . (5.50)

Unfortunately the second term is an undefined expression because it yields either
Π̄A0

μ or the value zero (because of (5.48)), depending on how the factors are com-
bined. A definite result is obtained from the following consideration. From (5.44) we
know that the modified photon propagator D

(1)
F

(
q2
)

emerges from the free one by
multiplication with the constant Z3. The propagator of a field, however, is always
a quadratic function of the wave function. Therefore it appears natural to renormalize
the photon wave function and thus the potential by4

AR
μ =√Z3A

0
μ . (5.51)

This is also plausible because a photon never is really free, but at some time it has
been emitted from a source at a large distance (or will be absorbed by an observer
at a large distance). The charge of this source, however, must also be renormalized,
according to eR = √

Z3 e. The argument again leads to (5.51). According to (5.51)
it is thus sufficient just to drop the contribution of the vacuum polarization bubbles
in the calculation of a graph with external photon lines and instead at the vertex use
the charge eR. By this procedure the bare charge e is completely eliminated from
the matrix element: in the case of internal photon lines by using DR

F = Z3DF, which
renormalizes two factors e at the two ends, and in the case of external photon lines by
the replacement AR

μ = √
Z3A

0
μ.

Thus we have learnt that according to the renormalization procedure the value of
the polarization function at zero momentum transfer Π̄(0) = −(e2/3π

)
ln
(
Λ2/m2

)
has no physical significance at all, because it is absorbed in the coupling constant. The
momentum-dependent contribution ΠR

(
q2
)
, however, leads to well-defined measur-

able effects. As has already been shown in (5.44), for instance, the scattering cross
section of two electrons or other charged particles will be influenced. The binding
energy of an electron in an atom is also affected.

One can understand this effect most clearly if one considers the Coulomb poten-
tial of an external static source of charge5 −Ze, i.e. A0(x) = −Ze/|x|, A(x) = 0.

4 The finite part ΠR
(
q2
)

does not contribute to external lines because according to (5.41) it is pro-
portional to q2 and thus vanishes because of (5.48).
5 In the following calculation we assume that charge renormalization has already been performed;
however, we drop the index eR for convenience.
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According to (5.50) the modified potential in momentum space reads

A′
0(q) = A0(q) + ΠR (−q2)A0(q) (5.52)

or in coordinate space

A′
0(x) =

∫
d3q

(2π)3
exp (iq · x)

(
1 + ΠR (−q2))A0(q) . (5.53)

Since a stationary source can absorb momentum but not energy we have set q0 = 0
and thus q2 = −q2. In Exercise 5.4, (7) this is demonstrated explicitly. The original
Coulomb potential in momentum space is

A0(q) =
∫

d3x exp (−iq · x)
−Ze

|x| = −4π
Ze

|q|2 . (5.54)

The Fourier integral in (5.53) can be approximately solved if one uses the Taylor series
expansion (5.41) in lowest order in q2:

A′
0(x) �

∫
d3q

(2π)3
exp (iq · x)

(
1 + e2

15πm2
q2
)

A0(q)

= A0(x) + e2

15πm2

(−∇2)∫ d3q

(2π)3
exp (iq · x)A0(q)

=
(

1 − e2

15πm2
∇2
)

A0(x) , (5.55)

where the fact has been taken into account that the momentum transfer is purely space-
like, q2 = −q2. Starting with a pointlike charge −Ze, the potential energy reads

eA′
0(x) = −Zα

|x| − αZα
4

15m2
δ3(x) ≡ eA0(x) + eδA0(x) , (5.56)

because of ∇2(1/|x|) = −4πδ3(x). In addition to the Coulomb potential a short-
range attractive additional potential acts. This result was found very early on. It
is only valid for low momentum transfer, i.e. in lowest approximation for ΠR

(
q2
)

in (5.41). After Dirac and Heisenberg had discussed the effect of vacuum polariza-
tion a short time after the discovery of the positron, the resulting modification of the
electromagnetic interaction was derived by Uehling6 in 1935. Expression (5.53) is
therefore often called the Uehling potential.

Since the motion of an electron in the field of a nucleus can be very accurately
described by a static potential A0(x), one can immediately determine the change of
atomic binding energies by means of (5.56). To calculate the expectation value of the
additional potential A0, it is obviously sufficient to know the density of the elec-
tron wave function at the position of the nucleus. Nonrelativistic quantum mechanics
yields for the hydrogen wave function with principal quantum number n and angular
momentum l

|�nl(0)|2 = m3(Zα)3

πn3
δl0 . (5.57)

6 E.A. Uehling: Phys. Rev. 48, 55 (1935).
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The energy shift due to vacuum polarization in first-order perturbation theory then
simply reads

EVP
nl = 〈�nl |eδA0|�nl〉 = −α(Zα)

4

15m2
|�nl(0)|2

= − 4m

15πn3
α(Zα)4δl0 . (5.58)

Because of the short range of A0(x) only s states (l = 0) are influenced, since all
other wave functions have a node at the nucleus (owing to the angular-momentum
barrier).

The historically most important example is the 2s state in hydrogen (Z = 1,
n = 2, l = 0), which should be energetically degenerated with the 2p state for a pure
Coulomb potential. Equation (5.58) on the other hand predicts an energy shift of

EVP
2s = −1.122 × 10−7 eV . (5.59)

In spite of its tiny magnitude a shift like this is very precisely measurable by inves-
tigation of the energy difference to the nonshifted 2p1/2 state. In the hydrogen atom
transitions between these states can be stimulated by electromagnetic fields in the
radio-frequency region. According to (5.59) we would expect a resonance effect at the
frequency

ν = E2s − E2p

2π�
= −27.1 MHz . (5.60)

Experimentally, however, it was found by Lamb and collaborators7 using microwave
techniques that the 2s state lies above the 2p1/2 state, namely by (we quote the modern
value)

νexp = +1057.8 MHz . (5.61)

Later we shall see that the “Lamb shift” in hydrogen is mainly caused by the other
two radiative corrections of Fig. 5.7. Experimental and theoretical precision are, how-
ever, by far sufficient to confirm the presence of the vacuum polarization energy shift
according to (5.60).

To increase the effect according to (5.58) it is necessary to increase the density of
the wave function at the nucleus. This can be achieved by increasing the nuclear charge
number Z. In the nonrelativistic approximation the shift (5.58) increases like Z4,
while the binding energy increases only in proportion to Z2. Actually the increase
of EVP is even larger, because one must use the bound-state solutions of the Dirac
equation, which are much more strongly localized at the nucleus than the Schrödinger
wave functions (5.57). This is partly offset by the necessity of taking into account the
finite extension of the nucleus.

For the extreme example of a hypothetical atom with Z = 170 the calculated vac-
uum polarization energy shift of the lowest bound state is EVP

1s = −8 keV. This
amounts to about 1% of the binding energy, up from a fraction of 10−7 in hydro-
gen. Experimentally the effect of vacuum polarization is most clearly seen in muonic
atoms. This is explained in Example 5.5.

7 W.E. Lamb and R.C. Retherford: Phys. Rev. 72, 241 (1947).
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The short-range delta-function polarization potential δA0(x) in (5.56) rests on the
approximation ΠR

(
q2
) � −(e2/15π

)(
q2/m2

)
for the polarization function (5.41).

The task of Exercise 5.4 is to investigate the polarization potential induced by the
charge of a nucleus more exactly.

EXERCISE

5.1 Evaluation of an Integral

Problem. Perform the steps leading from the integral

I :=
∞∫

0

d�

�

N∑
i=0

Ci exp
[
i�
(
−M2

i + β1β2q
2
)]

(1)

in (5.34) to (5.35) in detail.

Solution. Since the sum in the integrand is finite, we write, with the abbreviation
M2

i − β1β2q
2 =: Bi

I =
N∑

i=0

Ci

∞∫

0

d�

�
e−i�Bi =:

N∑
i=0

CiIi . (2)

The integral Ii is not well defined mathematically since the integrand diverges at the
lower boundary. For this reason we replace Ii by

Ii = lim
η→0

∞∫

η

d�

�
e−i�Bi (3)

with the understanding that the limit η → 0 is to be taken only at the end of the
calculation.

For further evaluation we now consider the following contour integral in the com-
plex plane:

Ji :=
∫

C

dz

z
e−izBi , (4)

which is extended along the curve C , as shown in Fig. 5.12. Obviously this integral
can be split into four parts:

Ji =
R∫

η

d�

�
e−i�Bi +

−iη∫

−iR

d�

�
e−i�Bi +

∫

C1

dz

z
e−izBi +

∫

C2

dz

z
e−izBi , (5)

where the last two integrals are extended along the quarter circles C1 and C2 as in-
dicated in Fig. 5.12. Now according to the theorem of residues the integral vanishes,

Fig. 5.12. The integration con-
tour in the complex z plane
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Ji = 0, because in the region enclosed by the curve C the integrand is a regular func-
tion. This is validfor arbitrary positive real values of η and R. We may therefore per-
form the limits R → ∞ and η → 0 and obtain

0 = Ii + lim
η→0

lim
R→∞

−iη∫

−iR

d�

�
e−i�Bi + lim

R→∞

∫

C1

dz

z
e−izBi + lim

η→0

∫

C2

dz

z
e−izBi . (6)

Using the parametrization z = Reiφ we can rewrite the integral along C1 in the follow-
ing way:

∫

C1

dz

z
exp (−izBi) = i

3π/2∫

2π

dφ exp (−iR cosφ Bi) exp (R sinφ Bi) . (7)

We now assume that the masses M2
i can be chosen larger than β1β2q

2, i.e. Bi > 0.
While the absolute value of the oscillating factor exp(−iR cosφBi) has the value 1,

in the limit R → ∞ the second factor is exponentially suppressed (except for a narrow
region close to φ = 2π which can be neglected since its extension is of the order of
1/R). Consequently the whole integral along C1 equals zero. Similar considerations
for the integral along C2 yield the value iπ/2 (after the limit η → 0 !). Thus we finally
get

Ii = − lim
η→0

lim
R→∞

−iη∫

−iR

d�

�
e−i�Bi − i

π

2

= lim
η→0

−i∞∫

−iη

d�

�
e−i�Bi − i

π

2
, (8)

where convergence at the upper boundary is unproblematic. With the substitution
t = i�Bi the integral reads

Ii = lim
η→0

∞∫

ηBi

dt

t
e−t − i

π

2
(9)

with a positive lower boundary because Bi > 0 was assumed. Integration by parts
yields

Ii = lim
η→0

⎛
⎜⎝ln te−t

∣∣∣∞
ηBi

+
∞∫

ηBi

dt ln te−t

⎞
⎟⎠− i

π

2

= lim
η→0

⎡
⎢⎣−e−ηBi

(
lnη + lnBi

)+
∞∫

ηBi

dt ln te−t

⎤
⎥⎦− i

π

2

= − lim
η→0

lnη − ln
(
M2

i − β1β2q
2)+

∞∫

0

dt ln te−t − i
π

2
. (10)
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Summation over all i from 0 to N yields (5.35) up to the constant term −iπ/2, which
can be neglected because of the choice

∑N
i=0 Ci = 0, cf. (5.36).

EXERCISE

5.2 The Photon Polarization Function

Problem. (a) Derive an explicit expression for the renormalized photon polarization
function ΠR

(
q2
)

given in (5.39) which is valid for all values of q2. Show that ΠR
(
q2
)

obtains an imaginary part in the region q2 > 4m2 and give an explanation of this
observation.

(b) Prove that the photon polarization function can be expressed in terms of its
imaginary part alone according to the “subtracted dispersion relation”

ΠR (q2)= 1

π
q2

∞∫

0

dq ′2 ImΠR
(
q ′2)

q ′2(q ′2 − q2 − iε
) . (1)

Solution. (a) The polarization function is given by the integral representation

ΠR (q2)= 2α

π

1∫

0

dββ(1 − β) ln

[
1 − β(1 − β)

q2

m2

]

= −2α

π

1∫

0

dβ

(
1

2
β2 − 1

3
β3
)

1

1−β(1−β)
q2

m2

[
− q2

m2
(1−2β)

]
, (2)

where in the second line the logarithm has been eliminated through integration by
parts. The denominator in (2) can be simplified by transforming to the new integration
variable v = 2β − 1, i.e. β(1 − β) = 1

4

(
1 − v2

)
:

ΠR (q2)= 2α

π

q2

m2

+1∫

−1

dv 1
4 (1 + v)2( 1

2 − 1
6 − 1

6v
) −v

1 − q2

4m2

(
1 − v2

)

= −α

π

q2

4m2

+1∫

−1

dv

1
3v + 1

2v2 − 1
6v4

1 − q2

4m2

(
1 − v2

)

= −α

π

1∫

0

dv
v2
(

1 − 1
3v2
)

v2 + 4m2

q2 − 1
. (3)

In the last step use has been made of the symmetry of the integrand. The integral
(2) can be solved by elementary means. We remind the reader of the basic indefinite
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integral

∫
dv

v2 − c
=

⎧⎪⎪⎨
⎪⎪⎩

1

2

1√
c

ln

∣∣∣∣v − √
c

v + √
c

∣∣∣∣ for c > 0

1√−c
arctan

v√−c
for c < 0

. (4)

Identifying c = 1 − 4m2/q2 we have to distinguish three separate regions of the
squared momentum

Region I −∞ < q2 < 0 : 1 < c < ∞ ,

Region II 0 < q2 ≤ 4m2 : −∞ < c ≤ 0 ,

Region III 4m2 < q2 < ∞ : 0 < c < 1 .

Region III is of particular interest since here one of the two poles of the integrand
enters the integration interval v ∈ [0,1]. To get a well-defined result we have to re-
member that there is a general prescription for treating such poles, going back to the
definition of the Feynman propagator. By giving a small negative imaginary part to
the mass m → m − iε, the pole in (2), (3) is shifted into the upper half of the complex
plane. Equivalently the integration contour can be modified by inserting an infini-
tesimal half-circle extending into the negative half plane. Then the definite integral
consists of the principal part integral plus half the residue of the pole at v0 = √

c:

I0 =
1∫

0

dv
1

v2 − c − iε
=
⎡
⎣

v0−ε∫

0

+
1∫

v0+ε

⎤
⎦dv

1

v2 − c
+ 1

2
2π i Res

1

v2 − c

∣∣∣∣
v0

= P

1∫

0

dv
1

v2 − c
+ π i

1

2v0
. (5)

This corresponds to the well-known identity

1

x − iε
= P

1

x
+ iπδ(x) . (6)

Thus we obtain in the three regions of interest

I0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
c

1
2 ln

√
c−1√
c+1

for 1 < c < ∞
1√−c

arctan 1√−c
for − ∞ < c ≤ 0

1√
c

1
2 ln 1−√

c

1+√
c

+ i π
2
√

c
for 0 < c < 1

. (7)

The integrals of the class

In =
1∫

0

dv
vn

v2 − c − iε
(8)
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needed in (3) can be traced back to I0 using the following obvious recursion relation

In − cIn−2 =
1∫

0

dvvn−2 = 1

n − 1
. (9)

Using (7) and (9) we obtain the following result for the polarization function

ΠR (q2)= α

π

[
−5

9
− 4

3

m2

q2
+ 1

3

(
1 + 2m2

q2

)
f
(
q2)] , (10)

with the abbreviation

f
(
q2)=

√
1 − 4m2

q2
ln

√
1 − 4m2

q2 + 1√
1 − 4m2

q2 − 1
, q2 < 0

= 2

√
4m2

q2
− 1 arctan

1√
4m2

q2 − 1
, 0 <q2≤ 4m2

=
√

1− 4m2

q2
ln

1+
√

1− 4m2

q2

1−
√

1− 4m2

q2

− iπ

√
1− 4m2

q2
, 4m2 < q2 . (11)

Figure 5.13 shows the function ΠR
(
q2
)

multiplied by π/α. The function is smooth at
q2 = 0 but shows an algebraic singularity at the momentum q2 = 4m2. At this point
of discontinuity an imaginary part ImΠR

(
q2
)

emerges.

Fig. 5.13. The real part (solid
line) and imaginary part
(dashed line) of the pho-
ton polarization function
ΠR (q2) in units of α/π

drawn as a function of the
squared momentum q2

At large momentum the polarization function rises logarithmically:

ΠR (q2)� α

π

(
−5

9
+ 1

3
ln

∣∣q2
∣∣

m2
− 1

3
iπΘ

(
q2 − 4m2

))
. (12)
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The imaginary part of ΠR can be understood as follows: The value q2 = 4m2 is the
threshold for the production of real electron–positron pairs by the electromagnetic
field. The quantity 1 + ΠR plays the role of the dielectric function of the vacuum. As
in the case of macroscopic polarizable media a negative imaginary part of the dielectric
function signals the absorption of electromagnetic radiation. In our case the intensity
of the Aμ field is diminished while at the same time e+e− pairs are produced.

(b) The validity of (1) is easily verified. We insert

ImΠR (q ′2)= −α

π

1

3

(
1 + 2m2

q ′2

)√
1 − 4m2

q ′2 πΘ
(
q ′2 − 4m2

)
(13)

from (10) and perform the variable transformation q ′2 = 4m2/
(
1 − v2

)
i.e.

v =√1 − m2/q ′2. This immediately leads to

1

π
q2

∞∫

4m2

dq ′2 ImΠR
(
q ′2)

q ′2(q ′2 −q2 − iε
) =−α

π

1∫

0

dv
v2
(
1− 1

3v2
)

v2 + 4m2

q2 −1− iε
= ΠR (q2) (14)

according to (3). The name subtracted dispersion relation derives from the fact that
(1) can be decomposed into partial fractions as follows

ΠR (q2)= 1

π

∞∫

0

dq ′2 ImΠR (q ′2)( 1

q ′2 − q2 − iε
− 1

q ′2

)
. (15)

Here a q2-independent term is subtracted in order to make the integral finite. Without
this subtraction the integral would diverge logarithmically. The dispersion relation (1)
can be deduced from Cauchy’s integral formula, taking proper account of the behav-
iour of ΠR

(
q2
)

in the complex q2 plane.

EXAMPLE

5.3 The Running Coupling Constant

The modification of the photon propagator brought about by vacuum polarization
changes the way charged particles interact, which can be expressed in terms of a mod-
ified electrical charge e. The “on-shell” contribution at q2 = 0 accounts for the transi-
tion from the (unobservable) bare charged to the measurable renormalized charge eR.
However, this is only the “trivial” part of the story. Since the vacuum polarization
function Π(q2) is momentum dependent one has to conclude that also the effective
value of the electrical charge depends on the transferred momentum, eR = eR(q2).
This is the concept of the running coupling constant which was first encountered in
QED but plays an important role in all interacting quantum field theories, in particular
in quantum chromodynamics (QCD), which describes the strong interaction.

Using the result for the photon polarization function from Exercise 5.2 we can
immediately quantify the size of this effect. While we could use (5.42), valid in lowest-
order perturbation theory, it is advantageous to sum up the whole series of the “chain
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diagram” depicted in part (a) of Fig. 5.9. Making use of gauge invariance this series
for the modified photon propagator can be written simply as

Dchain
F (q) = D

(0)
F (q)

[
1 + Π(q2) + Π(q2)Π(q2) + . . .

]
(1)

with the regularized photon polarization function Π(q2). Summation of this geometric
series leads to

Dchain
F (q) = D

(0)
F (q)

1

1 − Π
(
q2
)

= D
(0)
F (q)

1

1 − Π(0) − ΠR
(
q2
)

= D
(0)
F (q)

1

1 − Π(0)

1

1 − ΠR(q2)

1−Π(0)

. (2)

In the lowest-order (one-loop) approximation the constant is given by Π(0) =
− e2

3π
ln Λ2

m2 . Since each photon line is coupled to two charges we can eliminate the

second factor in (2) by introducing the renormalized charge eR = √
Z3 e with

Z3 = 1

1 − Π(0)
= 1

1 + e2

3π
ln Λ2

m2

, (3)

which is equivalent to (5.45) to lowest order. The last factor in (2) can be absorbed in
the definition of a momentum-dependent effective charge

eR
(
q2) := eR(0)

√
1

1 − ΠR
(
q2
) . (4)

The denominator 1 − Π(0) in the last term of (2) drops out since ΠR(q2) is quadratic
in e, and it should be expressed in terms of eR(0), which we have tacitly assumed to be
the case in (4). To be specific, the function ΠR(q2), as given in (5.39), is proportional
to e2. Denoting it as ΠR(q2) = e2F(q2), the last factor of (2) reads

1

1 − ΠR(q2)

1−Π(0)

= 1

1 − e2

1−Π(0)
F
(
q2
) = 1

1 − e2
R(0)F

(
q2
) ≡ 1

1 − Π ′R(q2
) . (5)

The polarization function Π ′R = e2
R(0)F (q2) is now calculated using the renormalized

charge eR(0). For convenience the prime has been dropped in (2), but we have to keep
in mind that it is the measured value of the electric charge which enters the calculation
of the polarization function.

Although in QED vacuum polarization is a small effect, the modification of the
coupling constant is observable in experiments at high-energy accelerators since the
function ΠR(q2) grows with momentum transfer. Before discussing such an experi-
mental result we have to discuss some further refinements of (4). Namely, at high q2

not only electron–positron pairs can be produced in the “vacuum bubble” but also
other particles. Here the heavy leptons myon (with a mass mμ � 105.6 MeV) and tau
(mτ � 1777 MeV) immediately come to mind, but also hadronic vacuum polariza-
tion will contribute. This leads to the following expression for the squared coupling
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constant:

αR
(
q2)= α

1 −∑l=e,μ,τ ΠR
(
q2,ml

)− Πhad
(
q2
) , (6)

where α ≡ e2
R(0).

Note that the contributions from different polarization loops simply add up in the
denominator of (6). It is easy to see that in this way all possible combinations of
polarization loops are generated. E.g., if there are two types of polarization functions,
ΠA and ΠB , the geometric series in (6) expands to

1

1 − ΠA − ΠB

= 1+ΠA+ΠB +(ΠA+ΠB

)2 + . . .

= 1+ΠA+ΠB +ΠAΠA+ΠBΠB +ΠAΠB +ΠBΠA+ . . . . (7)

Thus the second and higher orders of the expansion contain also mixed terms, as de-
picted in Fig. 5.14.

Fig. 5.14. Second-order dia-
grams taking into account two
different types of vacuum po-
larization loops The leptonic part of the photon polarization function ΠR in the one-loop approx-

imation is given by an analytically known function, cf. (10) in Exercise 5.2, which
depends only on the ratio q2/m2

l . The hadronic polarization function Πhad is difficult
to calculate since it involves the strong interaction for which perturbation theory is not
applicable. Fortunately, however, the size of Πhad can be inferred from experimental
data, i.e. from measurements of the reaction e+ + e− → hadrons, using dispersion
theory. At q2 comparable to the Z0 boson mass (mZ0 � 91.18 GeV) also the weak
interaction would have to be considered.

The running coupling constant of QED recently has been measured8 in exper-
iments at the TRISTAN electron–positron collider at KEK in Japan. By compar-
ing the cross sections for the reactions e+ + e− → μ+ + μ− and e+ + e− →
e+ + e− +μ+ +μ−, which proceed at different values of q2, at a timelike momentum
of q2 = (57.77 GeV)2 a value of α−1(q2) = 128.6 ± 1.6 was found. This differs ap-
preciably from the free value of the inverse fine structure constant α−1 � 137.036.
Figure 5.15 shows the measured value together with the prediction for the running
coupling constant in a large range of momentum transfers, according to (6). The full
curve shows the pure QED prediction, taking into account vacuum polarization by the
leptons l = e,μ, τ . The pair-production thresholds at q2 = 4m2

l are visible as small
kinks in this curve. Obviously, QED vacuum polarization accounts for only about half
of the observed effect. However, also the hadronic contribution9 has to be included,
which leads to the dashed curve, in full agreement with the measurement. We should
add that in another experiment10 the running of α has been verified also for spacelike
momentum transfers q2 < 0.

8 I. Levine et al. (TOPAZ collaboration), Phys. Rev. Lett. 78, 424 (1997).
9 H. Burkhardt, F. Jegerlehner, G. Penso, C. Verzegnassi, Z. Physik C42, 497 (1989).
10 S. Odaka et al. (VENUS collaboration), Phys. Rev. Lett. 81, 2428 (1998).
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Fig. 5.15. The running cou-
pling constant of QED as
a function of momentum
transfer. Solid line: pure QED
prediction. Dotted line: had-
ron-ic corrections included

Finally, let us consider the asymptotic behaviour of the running coupling constant.
We consider pure QED (no weak or hadronic contributions) and insert the leading log-
arithmic term of the polarization function, cf. (12) in Exercise 5.2. Taking the inverse
of (6) this gives

1

αR(q2)
= 1

α
− 1

3π

∑
l=e,μ,τ

ln

∣∣q2
∣∣

m2
l

. (8)

(Note: Often the coupling constant on the r.h.s. is taken at a “renormalization point”
q2 = m2

0 instead of q2 = 0, which, however, does not change the conclusions.) We
observe that αR(q2) increases without bound and will even diverge at a certain value
of q2 (when the r.h.s. of (8) vanishes). This behaviour, which was first noticed by
L.D. Landau, tells us that perturbation theory breaks down in the high-momentum
(small-distance) regime and it may indicate that QED, when treated in isolation, is not
a consistent theory.

The running coupling constant plays an important role in attempts to construct
unified models of the electromagnetic, weak and strong interactions. The strong cou-
pling constant αs(q

2) of quantum chromodynamics (QCD) shows just the opposite
behaviour, i.e. it decreases with q2 (this property is called “asymptotic freedom”).
Thus α and αs become equal at a certain momentum (which is very large, of the
order 1015 GeV), pointing to a common origin of the forces, see, e.g., W. Greiner,
B. Müller: Gauge Theory of Weak Interactions, 3rd ed. (Springer, Berlin, Heidelberg,
2000), Chap. 9.

EXERCISE

5.4 The Uehling Potential

Problem. Calculate the potential generated by a given external point charge −Ze,
taking into account the polarizability of the vacuum. What are the deviations from
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the Coulomb potential close to the charge center and at a large distance? Find the
polarization charge density induced in the vacuum. Hint: Use the identity

(
∇2 − μ2

)e−μr

r
= −4πδ3(x) . (1)

Solution. The potential is generated by a stationary external charge of density

jμ(x) = −Ze δ3(x) δμ0 . (2)

With the aid of the modified photon propagator D′
F from (5.6) this can be used to

calculate the potential, taking into account the effect of vacuum polarization. It is
again convenient to work in momentum space:

A′
μ(x) =

∫
d4y D′

Fμν(x − y) jν(y)

=
∫

d4q

(2π)4
e−iq·xD′

Fμν(q)jν(q) . (3)

The modified photon propagator can be expressed in terms of the renormalized vac-
uum polarization function. In momentum space this reads

D′
Fμν(q) = DFμν(q) − DFμλ(q)

Πλσ (q)

4π
DFσν(q)

= −4πgμν

q2
− −4πgμλ

q2

q2gλσ − qλqσ

4π
ΠR (q2)−4πgσν

q2

= −4πgμν

q2

(
1 + ΠR (q2)) . (4)

Thus the modified potential (3) is

A′
μ(x) =

∫
d4q

(2π)4
e−iq·x(1 + ΠR (q2))DFμν(q)jν(q)

=
∫

d4q

(2π)4
e−iq·x(1 + ΠR (q2))Aμ(q) (5)

since the unmodified potential in momentum space is related to the current through
Aμ(q) = DFμν(q)jν(q). If the current source is stationary, jν(x) = jν(x), the q0 de-
pendence in (5) drops out according to

jν(q) =
∫

d4y eiq·yjν(y) =
∫

dy0 eiq0y0

∫
d3y e−iq·yjν(y)

= 2πδ(q0)j
ν(q) . (6)

Thus (5) is reduced to

A′
μ(x) =

∫
d3q

(2π)3
eiq·x(1 + ΠR (−q2))DFμν(0,q)jν(q)

=
∫

d3q

(2π)3
eiq·x(1 + ΠR (−q2))Aμ(q) . (7)
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In the case of the electrostatic point charge (2) we have

jν(q) =
∫

d3y e−iq·y (−Ze δν0 δ3(y)
)

= −Ze δν0 , (8)

so that (7) becomes

A′
μ(x) = −Ze

∫
d3q

(2π)3
eiq·x(1 + ΠR (−q2))DFμ0(0,q) (9)

or, with the insertion of the polarization function (5.39),

A′
0(x) = −Ze

∫
d3q

(2π)3
eiq·x 4π

q2

×
⎡
⎣1 + 2α

π

1∫

0

dβ β(1 − β) ln

(
1 + q2

m2
β(1 − β)

)⎤
⎦ . (10)

Here we have tacitly assumed that charge renormalization has already been performed,
i.e. e is the renormalized charge. From the identity (with r ≡ |x|)
∫

d3q

(2π)3

exp (iq · x)

q2
= 1

4πr
(11)

the Fourier transform of the first term of course yields just the ordinary Coulomb po-
tential. When evaluating the correction term it is convenient to eliminate the logarithm
by partial integration and to introduce the new variable of integration v = 2β − 1. Ac-
cording to (3) in Exercise 5.2 this leads to

ΠR (−q2)= α

π

q2

4m2

1∫

0

dv
v2
(

1 − 1
3v2
)

1 + q2

4m2

(
1 − v2

) . (12)

After exchanging the order of integration in (10) the Fourier integral can be solved.
To do this we make use of the formula

∫
d3q

(2π)3

exp (iq · x)

q2 + a2
= 1

4π

exp (−ar)

r
, (13)

which is easily proved by residue integration. The potential then reads

A′
0(x) = −Ze

⎡
⎣1

r
+ 2α

π

4π

8m2

1∫

0

dv v2(1 − 1
3v2)∫ d3q

(2π)3

exp (iq · x)

1 + q2

4m2

(
1 − v2

)
⎤
⎦

= −Ze

r

⎡
⎣1+ α

π

1∫

0

dv
v2
(

1 − 1
3v2
)

1 − v2
exp

(
− 2m√

1 − v2
r

)⎤
⎦ . (14)

A further transformation ζ = (1 − v2
)−1/2 or v2 = 1 − 1/ζ 2 with vdv = ζ−3dζ sim-

plifies the exponent:
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A′
0(r) = −Ze

r

⎡
⎣1 + α

π

1

3

∞∫

1

dζ

ζ 3
v
(
3 − v2)e−2mζr

⎤
⎦

= −Ze

r

⎡
⎣1 + 2α

3π

∞∫

1

dζ

(
1 + 1

2ζ 2

) √
ζ 2 − 1

ζ 2
e−2mζr

⎤
⎦ . (15)

This is the commonly used integral representation for the Uehling potential. The in-
tegral cannot be evaluated in closed form but is easily solved numerically. To get an
impression of the behaviour of the correction term one can obtain asymptotic expres-
sions for the cases mr  1 and mr � 1.

mr  1. We first split the integral (15) at the point τ into two parts:

∞∫

1

dζ e−2mrζ

√
ζ 2 − 1

ζ 2
=

τ∫

1

· · · +
∞∫

τ

· · · ≡ I1 + I2 , (16)

where we choose 1/mr � τ � 1. Then in I1 the exponential can be assumed constant
(exp(−2mrζ) ≈ 1),

I1 �
τ∫

1

dζ

√
ζ 2 − 1

ζ 2
=
[
−
√

ζ 2 − 1

ζ
+ ln

(
ζ +√ζ 2 − 1

)]τ

1

� ln(2τ) − 1 . (17)

In the second integral one can approximate
√

ζ 2 − 1 � ζ , and thus

I2 �
∞∫

τ

dζ

ζ
e−2mrζ . (18)

After partial integration the integral becomes convergent at the lower boundary:

I2 � e−2mrζ ln ζ
∣∣∞
τ

+ 2mr

∞∫

τ

dζ ln ζ e−2mrζ

= − e−2mrτ ln τ +
∞∫

2mrτ

du ln
u

2mr
e−u

� − ln τ +
∞∫

0

du lnu e−u + ln
1

2mr

∞∫

0

du e−u

= − ln τ − C − ln 2 + ln
1

mr
. (19)

Here the well-known definite integral
∫∞

0 du lnu exp (−u) occurs, the value of which
is equal to the negative of Euler’s constant C = 0.5772 . . . , and thus

I2 � − ln 2τ + ln
1

mr
− C . (20)
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As intended, the dependence on the value of τ cancels when I1 and I2 are added.
The second integral in (15), which has not yet been taken into account in (16), does
not cause any trouble, because it converges for large ζ even without help from the
exponential function. One can then approximate as follows:

∞∫

1

dζ e−2mrζ

√
ζ 2 − 1

2ζ 4
�

∞∫

1

dζ

√
ζ 2 − 1

2ζ 4
= 1

2

(ζ 2 − 1)3/2

3ζ 3

∣∣∣∣
∞

1
= 1

6
. (21)

Then the asymptotic approximation for the potential reads

A′
0(r) � −Ze

r

[
1 + 2α

3π

(
ln

1

mr
− 5

6
− C

)]
(22)

for mr  1.
mr � 1. Here only the region 0 ≤ ζ −1  1/mr contributes to the integral, so that

one can approximate ζ � 1 at various places:

∞∫

1

dζ

(
1 + 1

2ζ 2

) √
ζ 2 − 1

ζ 2
e−2mrζ �

∞∫

1

dζ
3
√

2

2

√
ζ − 1 e−2mrζ

= 3
√

2

2
e−2mr

∞∫

0

dζ ′√ζ ′ e−2mrζ ′
. (23)

By use of the integral representation of the gamma function,

∞∫

0

dt e−at tz−1 = a−zΓ (z) , (24)

and Γ (3/2) = √
π/2 we get

A′
0(r) � −Ze

r

[
1 + α

4
√

π

e−2mr

(mr)3/2

]
(25)

for mr � 1.
We have thus found that an electron in the field of a pointlike positive charge feels

the interaction

eA′
0(r) = −Zα

r
Q(r) , (26)

where Q(r) is a function which tends to 1 very quickly for large distances, according
to (25). The deviations are perceptible only if r is smaller than about one Compton
wavelength of the electron. The approximation (5.56) used earlier describes this effect
only in the mean. The function eQ(r) can be considered as an effective coupling
“constant”, which increases at small distances. It is also known by the name running
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Fig. 5.16. The effective cou-
pling strength Q(r) as a func-
tion of distance r in units
of the Compton wavelength
λ̄c = 1/m = �/mc ≈ 386 fm

coupling constant. Figure 5.16 shows the function Q(r), obtained by numerical inte-
gration of (15). The logarithmic increase of the effective interaction strength at small r

is clearly visible. However, only at extremely small distances does the function Q(r)

deviate considerably from the value 1.
From the knowledge of the potential A0(x) the corresponding polarization charge

density can be calculated using Poisson’s equation. Using the integral representation
(15) of the Uehling potential the vacuum polarization charge distribution is found to
be

ρVP(x) = − 1

4π
∇2AVP

0

= − 1

4π
(−Ze)

2α

3π

∞∫

1

dζ

(
1 + 1

2ζ 2

) √
ζ 2 − 1

ζ 2
∇2
(

e−2mζr

r

)
. (27)

Employing the identity (1) we find

ρVP(x) = −Ze
2α

3π

∞∫

1

dζ

(
1+ 1

2ζ 2

) √
ζ 2 −1

ζ 2

[
δ3(x)− m2

π
ζ 2 e−2mζr

r

]
. (28)

The induced vacuum charge thus consists of two components: There is a positive
charge localized at x = 0 and a negative charge cloud which extends over a region
of the size of the Compton wavelength 1/m. This is shown in Fig. 5.17a. Figure 5.17b
shows a schematic representation of the distribution of e+e− pairs induced in the vac-
uum. The behaviour of the induced charge cloud thus is just opposite to what one
is used from the case of ordinary polarizable media! One would expect that a di-
pole layer is formed in which the opposite (i.e. negative) charge is located at the
inside and the like (i.e. positive) charge at the outside. We will come back to the
apparently paradoxical behaviour of the vacuum polarization charge at the end of
Sect. 7.1.
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Fig. 5.17. (a) The vacuum
polarization charge density
ρVP(r) induced by a positively
charged external point source.
It consists of a positive part
localized at the position of
the source and a negatively
charged extended polarization
cloud. (b) Schematic draw-
ing of the electron–positron
pairs induced in the vacuum
around an extended positive
source

The total induced vacuum charge is found to vanish. This is immediately seen using
the Poisson equation and Gauss’ theorem

QVP =
∫

d3x ρVP(x) = − 1

4π

∫
d3x ∇ · (∇AVP

0

)

= − 1

4π

∫
do · ∇AVP

0 = 0 , (29)

since according to (25) AVP
0 falls off faster than 1/r at large distances.

The result (28) has to be interpreted with care since the two contributions which
cancel each other when calculating the total charge are divergent when taken sepa-
rately. The δ3(x) term is multiplied by an integral which diverges logarithmically at
the upper boundary ζ → ∞. The negative charge cloud at small distances behaves as

ρ(−)

VP (r) = Ze
2α

3π

m2

π

1

r

∞∫

1

dζ

(
1 + 1

2ζ 2

)√
ζ 2 − 1 e−2mζr

� Ze
2α

3π

m2

π

1

r

∞∫

1

dζ ζ e−2mζr

= Ze
2α

3π

1

4π

1

r3
, (30)

which also can be deduced by applying the radial Laplace operator to (22). The inte-
gral of ρ

(−)

VP (r) thus diverges logarithmically.

Additional Remarks. The Uehling potential and the corresponding vacuum charge
distribution can also be calculated for an extended source. In this case ρVP is a smooth
function and no divergent quantities are found. We consider an electrostatic spherically
symmetric source

j0(x) ≡ ρ(r) = −Zeh(r) , (31)
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where h(r) is a smooth distribution function which is normalized according to

∫
d3x h(r) = 4π

∞∫

0

dr r2h(r) = 1 . (32)

The vacuum polarization potential at x then is obtained by folding the point-source
Uehling potential with the extended source distribution. In momentum space this fold-
ing corresponds to a simple multiplication. According to (7) we have

AVP
0 (x) =

∫
d3q

(2π)3
eiq·xΠR (−q2) 4π

q2
ρ̃(q) , (33)

where

ρ̃(q) =
∫

d3xe−iq·xρ(x) (34)

is the Fourier transform of the charge distribution of the source. If ρ(x) is spherically
symmetric ρ̃(q) will depend only on the absolute value of the momentum and the
angular integration in (33) can be carried out:

AVP
0 (r) = 2

π

∫
d|q| sin |q|r

|q|r ΠR (−q2) ρ̃(|q|) . (35)

The renormalized polarization function ΠR
(−q2

)
is known analytically (see (10) in

Exercise 5.2), the remaining one-dimensional integral (35) in general has to be inte-
grated numerically.

As an example let us consider the charge distribution of an extended atomic nucleus
which can be approximated by the Fermi distribution function11

ρ(r) = ρ0

1 + e(r−R)/c
. (36)

The parameter R characterizes the radius of the nucleus while c describes the “smear-
ing” of its surface (the limit c → 0 leads to a sharp surface). The function (36) cannot
be Fourier transformed in closed form but ρ̃(q) can be expressed in terms of a rapidly
converging series expansion.12

11 If a box distribution ρ(r) = ρ0Θ(R − r) is used instead of (36) the induced vacuum charge turns
out to be divergent at the nuclear surface.
12 V. Hnizdo: J. Phys. A21, 3629 (1988).
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Fig. 5.18. The Uehling poten-
tial eAVP

0 (r) induced by an
208Pb nucleus (dashed line).
The solid lines show the cor-
responding vacuum polariza-
tion charge density ρVP(r). It
is positive inside the nucleus
and negative outside

Figure 5.18 shows the Uehling potential induced by the extended source (36) for
the example of the nucleus 208Pb. The following values for the parameters were used:
Z = 82, R = 6.62 fm, c = 0.549 fm. The dashed line shows the Uehling potential
eAVP

0 in units of MeV, the full line is the induced vacuum charge deduced with the
help of Poisson’s equation. The result is consistent with the earlier discussed case
of a pointlike source (see Fig. 5.16): In the interior of the source the charge den-
sity is enhanced by vacuum polarization. In the exterior there is a negative charge
cloud (to make this better visible the curve has been multiplied by a factor 30 in
the figure). Figure 5.19 shows the radial vacuum charge density r2ρVP. The area
under this curve vanishes when one integrates up to a distance of a few Compton
wavelengths. Owing to the small value of α the total positive and negative induced
charges are very small (Q−

VP = −Q+
VP = 0.037e compared to the charge of the source

Q = −82e).

Fig. 5.19. The vacuum polar-
ization charge density shown
in Fig. 5.18 here is multiplied
by the radial volume element,
r2ρVP. The total area under
the curve has to vanish
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EXAMPLE

5.5 Muonic Atoms
A very effective method to increase the strength of vacuum polarization is to use

negative muons (μ−) instead of electrons as test charges. These particles obey – as
far as we know – QED as strictly as electrons, differing from them, however, by their
mass, which is larger by a factor mμ/me = 206.77. They decay by weak interaction13

(μ− → e− + νμ + ν̄e), but can be regarded as nearly stable, if one deals with electro-
magnetic processes, because of their long lifetime of 2.2 × 10−6 s.

Today muon beams can be produced in particle accelerators without great effort.
Bombarding a target with high-energy protons produces π mesons, which decay into
muons and neutrinos (π− → μ− + νμ) after about 2 × 10−8 s. Afterwards the muons
are decelerated by collisions in matter. Finally a muon that has become sufficiently
slow can be “captured” by an atom. Usually it is first captured in one of the outer shells
(the main quantum number n is typically 14), from where it then goes down to the
1s level by a cascade of radiative transitions. In contrast to the free decay mentioned
above it is then mostly captured by a proton of the nucleus (μ− + p+ → n + νμ).
The cascade only needs a time of about 10−9 . . .10−12 s, which is very fast compared
to the lifetime of the muon. In the transitions between the outer shells predominantly
electrons are emitted (Auger transitions) while the transitions between inner shell or-
bits occur via photon emission. The X-rays that are emitted by these processes can be
measured with high precision.

Muonic atoms are of particular interest for QED because the bound states are highly
localized owing to the large muon mass. Indeed, the Bohr radius (with � = c = 1),

a
(μ)
B = n

mμ(Zα)
, (1)

is by a factor me/mμ smaller than that of electronic atoms. It can therefore easily
become smaller than the Compton wavelength of the electron −λe = 1/me, which is the
typical scale of vacuum fluctuations. Figure 5.20 gives an impression of the relevant
scales in a heavy muonic atom. Here rn stands for the nuclear radius; a

(μ)
B and a

(e)
B are

the Bohr radii of muons and electrons, respectively.

Fig. 5.20. The relevant length
scales in a muonic atom

Muonic atoms therefore are the ideal tool for examining vacuum polarization. The
simple estimate of the energy shift (5.58) is modified to

EVP
nl = −α(Zα)4 4me

15πn3
δl0

(
mμ

me

)3

. (2)

This follows immediately from (5.57). This simple approximation is not, however,
sufficient to obtain adequate precision; one must use the exact form of the Uehling
potential of Exercise 5.4, which requires a numerical integration.

13 This is fully discussed in W. Greiner and B. Müller: Gauge Theory of Weak Interactions, 3rd ed.
(Springer, Berlin, Heidelberg, 2000).
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Table 5.1. Contributions to the 5g9/2 − 4f7/2
energy difference in eV in muonic lead

Dirac energy 429 339±2
VP αZα Uehling 2105±1
VP α2Zα 15
VP α(Zα)n≥3 −43
VP α2(Zα)2 1
other corrections 0±2
electronic shielding −82±4

sum theory 431 336±6
experiment∗ 431 331±8
∗ T. Dubler et al.: Nucl. Phys. A294,
397 (1978).

Interestingly it turns out that the energy shift in muonic atoms is nearly exclusively
due to vacuum polarization, in contrast to the Lamb shift in (electronic) hydrogen.
The high precision of measurement even makes it possible to see contributions of
higher order in Zα. This is demonstrated in Table 5.1 for the example of a transi-
tion in muonic lead for the 5g9/2 − 4f7/2 transition. The transition energies between
the lower-energy levels (e.g., 2p3/2 − 1s1/2) in addition to QED effects are also in-
fluenced by the fact that the nucleus is a deformable object. The resulting nuclear
polarization14 can be calculated by utilizing nuclear models. Therefore QED effects
in those inner transitions are masked to some extent. This is not the case for outer
transitions like the one shown in Table 5.1.

The excellent agreement between theory and experiment is remarkable. This does
not only confirm the (dominating) contribution of the Feynman graph of Fig. 5.10b,
which is of the order of magnitude of αZα: additionally, higher-order corrections to
the photon propagator are confirmed, the graphs of which are displayed in Fig. 5.21.
Note that the particles generated in the loops are electron–positron pairs. The contri-
bution of μ+μ− pairs is much smaller. (If there were only muons, we would of course
have the same situation – except for the finite nuclear radius rn! – as in electronic
atoms, only the scale of energy would be enlarged by a factor of mμ/me.)

The dominant higher-order contributions are due to the graphs that describe the
multiple interaction of the e+e− loop with the field of the nucleus, i.e. α(Zα)3,

Fig. 5.21. Typical higher-
order vacuum polarization
graphs contributing to the bin-
ding energy in muonic atoms

14 See, e.g., W. Greiner: Z. Physik 164, 377 (1961); W. Pieper and W. Greiner: Nucl. Phys. A109,
539 (1968). For a recent reference on the effect of nuclear polarization on atomic binding energies
see G. Plunien and G. Soff: Phys. Rev. A51, 1119 (1995).
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α(Zα)5, etc. (because of Furry’s theorem only odd powers contribute). Very extensive
calculations are required to determine these higher-order contributions.

We remark finally that in heavy muonic atoms it is essential to take into account the
finite extension of the nucleus. In particular, the lower orbitals do indeed pass through
the interior of the nucleus to a large degree. Muons are therefore a sensitive probe for
determining nuclear charge distributions and deformations.

MATHEMATICAL SUPPLEMENT

5.6 Gaussian Integrals

In the following we prove an integral formula needed in the calculation of radiative
corrections:
∫

d4k exp
[
i
(
ak2 + 2b · k)]= π2

ia2
exp
(
−ib2/a

)
(1)

for a > 0. Equation (1) is split into four Cartesian single integrals. The one-
dimensional integral

∞∫

−∞
dx exp

[
i
(
ax2 + 2bx

)]
(a > 0) (2)

is subject to the transformation

x = 1 + i√
2

u − b

a
, i

(
ax2 + 2bx

)= −au2 − ib2

a
, (3)

i.e. a rotation by the angle −π/4 and a shift of the origin, which transforms (2) into
a standard Gaussian integral:

∞∫

−∞
dx exp

[
i
(
ax2 + 2bx

)]= 1 + i√
2

exp
(
−ib2/a

) ∞∫

−∞
du exp

(
−au2

)

= 1 + i√
2

√
π

a
exp
(
−ib2/a

)
. (4)

Owing to the Minkowski metric in (1) we also need the complex conjugate relation

∞∫

−∞
exp
(
−i
(
ax2 + 2bx

))
dx = 1 − i√

2

√
π

a
exp
(
+ib2/a

)
. (5)

The four-dimensional integral (1) then reads
∫

d4k exp
[
i
(
ak2 + 2b · k)]
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=
∞∫

−∞
dk0 exp

[
i
(
ak2

0 + 2b0k0
)] 3∏

i=1

∞∫

−∞
dki exp

[
−i
(
ak2

i + 2biki

)]

= 1 + i√
2

(
1 − i√

2

)3
π2

a2
exp
[
−i
(
b2

0 − b2)/a]

= π2

ia2
exp
(
−ib2/a

)
. (6)

5.3 Self-Energy of the Electron

Just as the propagator of the photon was modified by the creation and subsequent
annihilation of a pair, so also will the electron propagator be modified by the process
where by a virtual photon is emitted and reabsorbed. We want to calculate how the
undisturbed electron propagator

iSF(p) = i

/p − m + iε
(5.62)

is modified by the Feynman graph of Fig. 5.7b. In order e2 we obtain

iS′
F(p) = +

= iSF(p) + iSF(p)(−iΣ(p)) iSF(p) + . . . . (5.63)

Here the self-energy function

−iΣ(p) = (−ie)2
∫

d4k

(2π)4

−4π i

k2 + iε
γ μ i

/p − /k − m + iε
γμ (5.64)

has been introduced (compare (5.3)). Σ(p) is a 4×4 matrix in spinor space, in contrast
to the polarization Lorentz tensor Πμν(q). One can decompose it into terms propor-
tional to the unit matrix 1 and to /p. However, the following decomposition is more
convenient:

Σ(p) = A + B(/p − m) + ΣR(p)( /p − m)2 , (5.65)

which in a sense corresponds to a Taylor expansion about the point /p = m. The con-
stants A, B and the residual term ΣR(p) should not contain any γ matrices. The last
term in (5.65) contains terms proportional to /p /p = p2, proportional to /p, and propor-
tional to m2. Such terms do of course already occur in the first two terms of (5.65).
What is new about the third term is that these factors are multiplied with a momentum-
dependent function (residual function) ΣR(p). Before we perform the explicit calcu-
lation of (5.64) we examine the meaning of the first two contributions in (5.65). Using
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the identity (5.9), the “chain approximation” of (5.63) can be immediately summed up
as a geometrical series. Similar to the photon propagator (5.10) this yields

iS′
F(p) = i

/p − m − Σ(p) + iε
. (5.66)

We verify the steps, making use of the fact that Σ and SF commute:

iS′
F = iSF

(
1 + ΣSF + (ΣSF)2 + . . .

)

= iSF
1

1 − ΣSF
= i

S−1
F − S−1

F ΣSF

= i

/p − m + iε − ( /p − m)Σ(/p − m)−1

= i

/p − m + iε − Σ
.

Not only is (5.66) approximately valid up to order e2, but it exactly sums up all graphs
with arbitrarily many single photon lines put one after the other (the “chain approxi-
mation”).

Let us now have a look at the modified propagator in the vicinity of /p = m. This
loose manner of speaking means that actually we are looking at matrix elements of S′

F
between spinor wave functions that are on mass shell p2 = m2. Since the free spinors
obey the Dirac equation ( /p−m)u(p) = 0, in the transition operator one can set /p = m,
if /p acts directly on a free spinor. This replacement would not be allowed for bound
electrons, for which /pu(p) 
= mu(p).

From (5.66), together with (5.65), we get

iS′
F(p) = i

/p − m − A − B(/p − m) − ( /p − m)2ΣR(p) + iε

� i

( /p − m − A)(1 − B)(1 − ( /p − m)ΣR(p)) + iε

� (1 + B)i

( /p − m − A)(1 − ( /p − m)ΣR(p)) + iε
. (5.67)

Here A, B , ΣR were treated as small quantities of order e2, and terms of higher order
were neglected in several instances. In the first transformation, for instance, products
like AB etc. have been dropped, and in the last line we have set
(1 −B)−1 � 1 +B . Near the mass shell we can obviously neglect the momentum-
dependent correction ( /p − m)ΣR(p). Then the modified electron propagator reads
simply

iS′
F(p) � i(1 + B)

/p − m − A + iε
(5.68)

or

iS′
F(p) � Z2 iSF(p,m → m + δm) , (5.69)

where the electron renormalization constant

Z2 ≡ 1 + B (5.70)
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and the self-energy

δm ≡ A (5.71)

have been introduced. The latter shifts the pole of the electron propagator from the
value m to m + δm. This means that the electron, which originally had the bare mass
m, now moves with the physical mass

mR = m + δm , (5.72)

if one takes into account the interaction with the self-generated electromagnetic field.
Since it is completely impossible to switch off this interaction, the quantities m and
δm separately do not have any physical significance, just as the bare charge had no
physical significance in the case of charge renormalization (5.46). All observables,
i.e. S-matrix elements, contain the renormalized mass mR � 0.511 MeV. Thus we
need not worry too much about the fact that δm will again prove to be a divergent
expression. An analogous role is played by the factor Z2 given by (5.70). It multiplies
all electron propagators that occur in a diagram. Since internal electron lines are al-
ways located between two vertices with the factor (−ieγμ) one can perform a charge
renormalization to absorb the factors Z2, namely

e′
R = Z2e . (5.73)

In contrast to (5.46) there is no square root involved here, because there are always
two electron lines that share a factor of e. The renormalization of the external lines
again requires special consideration. Application of Feynman’s rules to an external
electron line of an arbitrary graph causes the self-energy replacement

u′(p) = u(p) + iSF(p)(−iΣ(p)) u(p) (5.74)

according to the graphs of Fig. 5.22. The direct application of this formula results
in an undefined expression of the form ( /p − m)−1( /p − m)u(p). However, since we
know how to renormalize the propagator S′

F(p), and since according to (2.24) the
latter is a quadratic function of the field amplitudes, we must perform a wave-function
renormalization,

u′(p) =√Z2 u(p) . (5.75)

Fig. 5.22. Renormalization of
an external fermion line

We illustrate this once more in the following way:
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In the calculation of the matrix element of any Feynman diagram of arbitrary complex-
ity the renormalization constant cancels out. Let us consider a graph of order n con-
taining ne external electron (or positron) lines. It is easy to see that there are n − ne/2
internal electron lines, each of which must be renormalized according to (5.69), taking
into account the electron self-energy. This yields the renormalized matrix element

M ′
f i ∼ (Z2)

n−ne/2
√

Z2
ne

Mf i = Zn
2Mf i , (5.76)

which coincides exactly with the result one obtains by the renormalization of the elec-
tron charge according to (5.73) at each of the n vertices. This is illustrated in the
following complex graph:

It is a graph of order n = 5 with ne = 2 external lines. It has n − ne/2 = 5 − 1 = 4
internal lines.

After these general considerations we are left with the task of explicitly calculating
the self-energy function Σ(p) and of identifying the terms of the expansion (5.65). As
already mentioned, by counting the powers of k the integral (5.64) is linearly diver-
gent; it must thus be regularized. However, (5.64) has the further problem of diverging
at small values of k, too. For the time being this is not obvious; however, it will become
clear in the following. To avoid this so-called infrared divergence we (just formally)
attach a small mass μ to the photon. With this modification the self-energy function
reads

Σ(p,μ) = −4π ie2
∫

d4k

(2π)4

1

k2 − μ2 + iε
γ μ /p − /k + m

(p − k)2 − m2 + iε
γμ . (5.77)

(In the end, physical observables have to be calculated in the limit μ → 0. A detailed
discussion of this problem will follow later.) In this way we will be prepared to face
possible problems with the integrand of (5.77) for k → 0.

To calculate (5.77) we again introduce the parameter representation (5.22) of the
propagators. The numerator can be simplified according to the rules of the Mathemati-
cal Supplement 3.3, γ μ( /p − /k +m)γμ = −2 /p +2/k +4m. We remind the reader again
of the idea of that short calculation: γ μ /pγμ = pνγ μγνγμ = pνγ μ(−γμγν + 2gμν) =
−γ μγμ /p + 2 /p = −4 /p + 2 /p = −2 /p. If we again replace the factor proportional to k

by a differentiation according to (5.24), we finally get the self-energy function, regu-
larized by the Pauli–Villars method:

Σ̄(p,μ) = 4π ie2

∞∫

0

dα1

∞∫

0

dα2

(
−2 /p − 2iγ μ ∂

∂zμ
+ 4m

)

×
∫

d4k

(2π)4

(
exp
{

i
[
α1
(
k2 − μ2)+ α2

(
(p − k)2 − m2)

+ z · k
]}

+ reg
) ∣∣∣∣

z=0
(5.78)

Evaluation of the k integration is possible with Gauss’ formula (5.26):∫
d4k

(2π)4
· · · = exp

[
i
(−α1μ

2 + α2p
2 − α2m

2)] −i

(4π)2(α1 + α2)2

× exp
[
−i(−2α2p + z)2/4(α1 + α2)

]
.
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After having performed the z differentiation and a trivial transformation we get
for (5.78)

Σ̄(p,μ) = e2

2π

∞∫

0

dα1

∞∫

0

dα2
1

(α1 + α2)2

{(
2m − α1

α1 + α2
/ /p

)

× exp

[
i

(
α1α2

α1 + α2
p2 − α1μ

2 − α2m
2
)]

+ reg

}
. (5.79)

If we introduce again the factor 1 = ∫∞
0 d�δ(�−α1 −α2) of (5.33) and perform a scale

transformation according to αi = �βi , we get

Σ̄(p,μ) = e2

2π

∞∫

0

d�

∞∫

0

dα1

∞∫

0

dα2 δ(� − α1 − α2)
1

�2

×
{(

2m − α1

�
/p

)
exp

[
i
(α1α2

�
p2 − α1μ

2 − α2m
2
)]

+ reg

}

= e2

2π

1∫

0

dβ1

1∫

0

dβ2 δ(1 − β1 − β2)

×
{
(2m−β1 /p)

∞∫

0

d�

�
exp
[
i�
(
β1β2p

2 −β1μ
2 −β2m

2)]+ reg

}
.

(5.80)

Obviously the � integral is logarithmically divergent at the lower boundary. To regu-
larize it, it is sufficient to subtract a single term in the integrand (C1 = −1), in which
the photon mass μ is replaced by the large cutoff momentum μ1 = Λ, i.e.

I =
∞∫

0

d�

�

{
exp
[
i�
(
β1β2p

2 −β1μ
2 −β2m

2)]−exp
(
−i�β1Λ

2
)}

, (5.81)

where in the second exponent all other terms have been neglected compared to the
large Λ2. The integral can be solved by use of the formula

∞∫

0

d�

�

(
ei�(z1+iε) − ei�(z2+iε)

)
= ln

z2

z1
. (5.82)

In connection with (5.35) we showed how this result can be obtained by performing
the limit lim

η→0

∫∞
η

· · · . Then the regularized self-energy function reads

Σ̄(p,μ,Λ) = e2

2π

1∫

0

dβ(2m−β /p) ln

[
βΛ2

(1 − β)m2 + βμ2 − β(1 − β)p2

]
. (5.83)

If the momentum vector is time-like an effect that already showed up in the polariza-
tion function ΠR(q) of (5.39) occurs here again: If p2 is sufficiently large, the argu-
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ment of the logarithm in (5.83) obtains a zero, which moves into the region of integra-
tion β ∈ [0,1]. An examination of the quadratic form (1 −β)m2 +βμ2 −β(1 −β)p2

shows that this happens if p2 > (m + μ)2. If the squared momentum passes over this
threshold, Σ̄(p,μ,Λ) gets an imaginary part. Physically this must be understood as
the possibility of a virtual electron decaying into a real electron and a real photon,
just like in Sect. 3.4 (Bhabha scattering), where a virtual photon turned into a real
electron–positron pair. At p2 = (m+μ)2, therefore, Σ̄(p,μ,Λ) is a nonregular func-
tion. Thus the expansion intended in (5.65) is only possible if the fictitious photon
mass μ is not set equal to zero! The reason for the difficulties in the case μ = 0 is ob-
viously due to the fact that an electron that is arbitrarily close to the mass shell is still
able to emit real photons (with accordingly large wavelengths) and that for this reason
it is not at all possible to consider an isolated electron without a radiation cloud. We
will therefore keep μ finite and only at the very end will we perform the limit to the
physical value μ = 0.

The complete solution of the integral (5.83) is rather difficult.15 We want only
to identify the constants A and B of (5.65). The mass correction δm results from the
calculation of the self-energy function on the mass shell, /p = m,p2 = m2 (in the sense
discussed above: sandwiching between free spinors u(p)):

δm ≡ A = Σ̄(p,μ,Λ)

∣∣∣
/p=m,p2=m2

= e2m

2π

1∫

0

dβ (2 − β) ln
βΛ2

(1 − β)m2 + βμ2 − β(1 − β)m2

= e2m

2π

1∫

0

dβ (2 − β) ln
βΛ2

m2(1 − β)2 + βμ2
. (5.84)

In the limit μ → 0 this integral converges to a finite value, so that we can set μ = 0.
Splitting the logarithm yields

δm = e2m

2π

1∫

0

dβ (2 − β)

[
lnβ − 2 ln(1 − β) + ln

Λ2

m2

]
. (5.85)

With the aid of the elementary integral

1∫

0

dx xn lnx = − 1

(n + 1)2
(5.86)

it follows immediately that

δm = m
3α

4π
ln

(
Λ2

m2
+ 1

2

)
. (5.87)

15 It can be found in R. Karplus and N.M. Kroll: Phys. Rev. 77, 536 (1950).
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The renormalization constant B results as the first term in the Taylor expansion of Σ̄ .

With (5.83) and p2 = /p2

B ≡ Z2 − 1 = ∂Σ̄

∂ /p

∣∣∣∣
/p=m,p2=m2

= e2

2π

1∫

0

dβ

[
−β ln

βΛ2

(1 − β)m2 + βμ2 − β(1 − β)p2

− (2m − β /p)(−)
β(1 − β)2 /p

m2(1 − β) + βμ2 − β(1 − β)p2

]
/p=m,p2=m2

= −e2

2π

1∫

0

dβ β

[
ln

βΛ2

(1 − β)2m2 + βμ2
− 2m2(2 − β)(1 − β)

m2(1 − β)2 + βμ2

]
. (5.88)

The first integral is solved just like (5.85); here we can set μ = 0 without penalty:

I1 =
1∫

0

dβ β
[
lnβ − 2 ln(1 − β) + lnΛ2/m2

]
= +5

4
+ 1

2
ln

Λ2

m2
.

Without the μ-dependent term in the denominator the second integral would be diver-

gent. In logarithmic accuracy, the action of this term can be replaced by introducing

a sharp cutoff.

I2 = −2

1∫

0

dβ β
(2 − β)(1 − β)

(1 − β)2 + βμ2/m2
≈ −2

1−μ/m∫

0

dβ β
(2 − β)(1 − β)

(1 − β)2
.

Indeed, the integrand of the first integral is sharply peaked at β = 1− μ
m

(see Fig. 5.23).

This position of the maximum follows from setting the derivative

d

dβ

1 − β

(1 − β)2 + βμ2/m2

= −(1 − β)2 − βμ2/m2 − (1 − β)[−2(1 − β) + μ2/m2]
[(1 − β)2 + βμ2/m2]2

.

to zero (the omitted factor β(2 − β) is slowly varying in the vicinity of β � 1). This

leads to (1 − β)2 − μ2

m2 = 0 and thus β = 1 − μ
m

as claimed.



298 5. The Scattering Matrix in Higher Orders

Fig. 5.23. The integrand as a
function of β , drawn for the
value μ/m = 0.05

The reduced boundary 1 − μ/m corresponds to the maximum of the function
(1 − β)/[(1 − β)2 + βμ2/m2]. With the substitution t = 1 − β we get

I2 ≈ −2

1∫

μ/m

dt

(
1

t
− t

)
� ln

μ2

m2
+ 1

and thus

Z2 = 1 + B = 1 − e2

2π

(
1

2
ln

Λ2

m2
+ ln

μ2

m2
+ 9

4

)
. (5.89)

We finally remark that the mass renormalization δm (5.87) and the renormalization Z2

of the electron propagator (5.89) are only weakly, that is, logarithmically, divergent.
The counting of the powers of k had led to the overly pessimistic prediction of a linear
divergence.

Except for that, the renormalization constant Z2 has very unpleasant features. It is
infrared divergent for zero photon mass and in addition depends on the gauge of the
photon field. If we had used instead of the “Feynman gauge” another form of the pho-
ton propagator (cf. Chap. 4), we would have got a result for Z2 different from (5.89).
This is not true for the mass renormalization δm, which is gauge invariant. In the next
section we shall see that this twofold ambiguity of Z2 has no harmful consequences.

5.4 The Vertex Correction

As the last of the radiative corrections fundamental for renormalization we examine
the change of the vertex due to a virtual photon as depicted in Fig. 5.7a. According to
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the Feynman rules the factor −ieγμ is replaced by

−ieΛμ(p′,p) = +

= −ieγμ − ieΓμ(p′,p) (5.90)

with the vertex function (cf. (5.2))

Γμ(p′,p) = −4π ie2
∫

d4k

(2π)4

1

k2 − μ2 + iε

×
(

γ ν 1

/p′ − /k − m + iε
γμ

1

/p − /k − m + iε
γν

)
. (5.91)

This momentum loop again leads to a (logarithmically) divergent integral and must be
renormalized. Additionally we have providently introduced once more the fictitious
photon mass μ, in order to be able to handle a possible infrared divergence.

Although a complete evaluation of the vertex function Γμ(p′,p) is feasible, it is
quite demanding. We therefore restrict ourselves to the important special case that the
electron lines of the vertex “lie on the mass shell”. By this we mean that at the end
of the calculations a matrix element of the form ū′(p′)Γμ(p′,p)u(p) between free
spinors is to be formed. The following calculation is valid only under this condition,16

although we will not always write down these spinors in what follows. This condition
permits us to replace /p′ → m when acting to the left and /p → m when acting to the
right.

Now we decompose Γμ(p′,p) into a sum of the limit for zero momentum transfer
q = p′ − p = 0 (“forward scattering”) and the remainder

Γμ(p′,p) = Γμ(p,p) + (Γμ(p′,p) − Γμ(p,p)
)

,

≡ Γμ(p,p) + Γ R
μ (p′,p) . (5.92)

When constructing the forward-scattering part we do not have the vector qμ at our
disposal (it is equal to zero); therefore Γμ(p,p) can only be proportional to γμ or pμ.
The matrix elements between free spinors of both of these operators are, however,
simply proportional to each other, if the momentum transfer vanishes, and can thus be
transformed into each other. This follows from the Gordon decomposition of the Dirac
current

ū(p′)γμu(p) = 1

2m
ū(p′)

[
(p + p′)μ + iσμν(p

′ − p)ν
]
u(p) . (5.93)

It is thus sufficient to use only γμ. This leads us to the ansatz

Γμ(p,p) = Lγμ . (5.94)

L will soon prove to be a constant that diverges logarithmically in the cutoff momen-
tum Λ, while the remainder of the vertex function, namely Γ R

μ (p′,p) is a well-defined

16 Explicit expressions for Γμ assuming that one or both electrons are on the mass shell are given in
A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics, Wiley-Interscience, New York, 1965.



300 5. The Scattering Matrix in Higher Orders

finite expression. One can easily understand this assertion if one expands the first elec-
tron propagator in the integral (5.91) at fixed momentum p according to the operator
identity (5.9), that is,

1

/p′ − /k − m + iε
= 1

/p − /k − m + ( /p′ − /p) + iε

= 1

/p − /k − m + iε

− 1

/p − /k − m + iε
( /p′ − /p)

1

/p − /k − m + iε
+ . . . . (5.95)

The first term, which is independent of p′, is proportional to |k|−1 for large values of k

and is the reason for the logarithmic divergence of the integral (5.91). On the other
hand, the following terms of the series, which vanish as p′ → p and therefore lead
to Γ R

μ (p′,p), have higher powers of k in the denominator and render the momentum
integration convergent. Since the electric charge is measured by scattering with low
momentum transfer, the replacement

−ieγμ → −ieγμ − ieLγμ + O(q) (5.96)

makes us expect that one further charge renormalization will be necessary, namely

e′′
R = Z−1

1 e , (5.97)

where by convention the renormalization constant Z1 has been introduced;

Z1 = (1 + L)−1 � 1 − L . (5.98)

The divergent part Γμ(p,p), however, can be traced back to an already familiar
result without any calculation. To do this, we differentiate the electron propagator
SF = ( /p − m + iε)−1 with respect to momentum. Because of SF (p)S−1

F (p) = 1 we
obtain, according to the product rule,

∂

∂pμ
SF (p) · S−1

F (p) + SF(p)
∂

∂pμ
( /p − m) = 0 ,

or

∂

∂pμ
SF (p) = −SF (p)γμSF(p) . (5.99)

The differentiation of the electron propagator with respect to momentum thus corre-
sponds to the introduction of a vertex with zero momentum transfer, as indicated in
Fig. 5.24a. Obviously it is then also possible, according to Fig. 5.24b, to relate the
vertex correction with q = 0 to the diagram of self-energy through a simple differen-
tiation:

Fig. 5.24. Illustration of the
Ward identity



5.4 The Vertex Correction 301

Γμ(p,p) = − ∂

∂pμ
Σ(p) . (5.100)

This follows immediately by application of (5.99) to the self-energy function (5.77).
Equation (5.100), which is called the Ward identity,17 has far-reaching consequences.

If one differentiates the expansion of the self-energy function (5.65) with respect
to the momentum vector, one gets

Lγμ = Γμ(p,p) = − ∂

∂pμ
Σ(p) = −Bγμ + O(/p − m) . (5.101)

On the mass shell

L = −B , and thus Z1 = Z2 . (5.102)

Remember that Z1 = 1 − L = 1 + B and Z2 = 1 + B according to (3.70). The renor-
malization constants of self-energy and vertex correction are thus exactly equal and
simply cancel each other! According to (5.46), (5.73) and (5.97) the final charge renor-
malization is

eR = Z−1
1 Z2

√
Z3 e =√Z3 e , (5.103)

which includes the effects of vacuum polarization, self-energy, and vertex correction.
Since we consistently include only corrections of order e2, the multiplicative treatment
of the individual corrections is justified, because in lowest order (1 + ε1 + ε2 + · · · +
εn) � (1 + ε1)(1 + ε2) · · · (1 + εn).

The result (5.103), which states that charge renormalization is solely due to vac-
uum polarization, is most satisfactory. This is because the resulting renormalization of
charge (5.103) in contrast to (5.73) and also to (5.97) does not depend on the fictitious
photon mass μ and the gauge chosen, which indeed were both chosen at will. Yet
the Ward identity has a much more fundamental significance: it ensures the univer-
sality of the electromagnetic interaction. The reason for this is that self-energy (Z2)
and vertex correction (Z1) will look different for each charged particle (e, μ, p, · · · ).
Equation (5.103), however, ensures that the renormalization of charge does not de-
pend on what species of particle one is dealing with, but that it is only a consequence
of the photon propagator being modified by virtual pair creation. Thus if the bare
charges e of two elementary particles are equal, the Ward identity (5.103) ensures that
the physically observable charges eR are equal too. If the Ward identity did not hold
the bare charges would have to differ by exactly the amount which ensures that the
difference due to renormalization is cancelled. This is absurd! The measured elemen-
tary charge e is a universal constant. A remarkable result of quantum electrodynamics
is the fact that this property remains true in all orders of perturbation theory (we have
restricted ourselves to the lowest nontrivial order e2).

17 J.C. Ward, Phys. Rev. 78, 182 (1950).
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EXAMPLE

5.7 The Form Factor of the Electron

We want to study those physically observable consequences arising from the replace-
ment of the vertex factor −ieγμ by the complex expression (5.90), which has the form
−ie(γμ + Γμ(p′,p)). As we did in our general considerations of the previous section
here the electron will be approximately regarded to be free (i.e. on the mass shell).

To evaluate the momentum integral (5.91) we first simplify the numerator which
will be called X. Since the vertex function is to be located between free spinors, we
have ū(p′)( /p′ − m) = 0, ( /p − m)u(p) = 0 and can replace /p′ → m, /p → m. To be
able to do this, however, one must place the matrix /p′ totally at the left and the ma-
trix /p totally to the right, so that each stands adjacent to its eigenspinor. Using the
commutation rules of the Dirac matrices we get

X = γ ν( /p′ − /k + m)γμ( /p − /k + m)γν

= [(− /p′ + /k + m)γ ν + 2(p′ − k)ν
]
γμ

[
γν(− /p + /k + m) + 2(p − k)ν

]
= [/kγ ν + 2(p′ − k)ν

]
γμ

[
γν/k + 2(p − k)ν

]
. (1)

This expression can be transformed into

X = 4
{
γμ

[
(p′ − k) · (p − k) − k2/2

]
+ (p′ + p − k)μ/k − mkμ

}
. (2)

The detailed calculational steps leading to this result are as follows: Using γ νγμγν =
−2γμ and /k/k = k2 one finds

X = /kγ νγμγν/k + /kγ νγμ2(p − k)ν + 2(p′ − k)νγμγν/k + 2(p′ − k)νγμ2(p − k)ν

= −2/kγμ/k + 2/k( /p − /k)γμ + 2γμ( /p′ − /k)/k + 4(p′ − k) · (p − k)γμ

= 2k2γμ − 4/kkμ + 2/k /pγμ − 2k2γμ + 2γμ /p′/k − 2γμk2

+ 4(p′ − k) · (p − k)γμ .

Using again the Dirac equation gives

2/k /pγμ = 2/k(2pμ − γμ /p) → 4/kpμ − 2m/kγμ ,

2γμ /p′/k = 2(2p′
μ − /p′γμ)/k → 4/kp′

μ − 2mγμ/k .

The two mass terms can be combined into −2m(/kγμ + γμ/k) = −4mkμ which leads
to the final result (2). The vertex function thus reads

Γμ(p′,p) = −4 × 4π ie2
∫

d4k

(2π)4

× γμ

[
(p′ − k) · (p − k) − k2/2

]+ (p′ + p − k)μ/k − mkμ(
k2 − μ2 + iε

) (
k2 − 2p′ · k + iε

) (
k2 − 2p · k + iε

) , (3)

where in the denominator again the mass-shell condition p2 = p′2 = m2 and k2 = μ2

was used. Obviously the evaluation of this integral is rather laborious. However, one
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can employ the methods already used in the calculation of vacuum polarization and
self-energy. For this reason we shall pass more quickly over the intermediate steps.

Again one can introduce the integral representation of the propagator (5.22), where
now because of the three propagators in (3) three parameter integrations are required.
Using the Gaussian integral (5.26) we get the identity

∫
d4k

(2π)4
exp (ik · z) 1(

k2 − μ2 + iε
) (

k2 − 2p′ · k + iε
) (

k2 − 2p · k + iε
)

= 1

(4π)2

∞∫

0

dα1dα2dα3

(α1 + α2 + α3)2
exp

{
−i

[
(z/2 − p′α2 − pα3)

2

α1 + α2 + α3
+ μ2α1

]}
. (4)

The momentum factors k in the numerator (3) can be converted into a differentiation
of the exponent with respect to the auxiliary variable z, as in (5.24). Thus one may
replace k exp (ikz) = −i∂/∂z exp (ik · z), which leads to

k → −z/2 + p′α2 + pα3

α1 + α2 + α3
. (5)

Finally the integral (3) assumes the form

Γμ(p′,p) = −i
e2

π

∞∫

0

dα1dα2dα3

(α1 + α2 + α3)3

{
γμ

[
(α1 + α2 + α3)p · p′

+ 1

2
(α2 + α3)(p + p′)2 + 1

2

m2(α2 + α3)
2 − α2α3q

2

α1 + α2 + α3
+ i

2

]

+ m

2
(p + p′)μ

α1(α2 + α3)

α1 + α2 + α3

}

× exp

{
− i

[
μ2α1 + m2(α2 + α3)

2 − α2α3q
2

α1 + α2 + α3

]}
. (6)

Here q = p′ − p denotes the momentum transfer. In the derivation of (6) we used
p2 = p′2 = m2,p′ · p = m2 − q2/2 several times, for instance in order to obtain

(p′α2 + pα3)
2 = m2(α2 + α3)

2 − q2α2α3 .

In addition we replaced /p → m, /p′ → m. A further trick was to make use of the
symmetry of the integrand under the exchange of α2 and α3. Terms like

∞∫

0

dα2dα3(α2 − α3)f (α2, α3) ,

with a symmetric function f (α2, α3) = f (α3, α2), are equal to zero. The term i/2
in the second line of (6) is due to the factor k2, because in the twofold differentiation
(−i∂/∂z) of (4) the product rule must be applied. The argument of the exponential can
be made real and negative by a rotation about −π/2 in the complex αi plane. To this
end we take into account that the momentum transfer to a free particle is space-like,
q2 < 0. One can thus substitute

αi → −iαi (7)
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and afterwards have the integration extend to +∞ again on the real axis. Addition-
ally, as in (5.33), we introduce an auxiliary integration with respect to a variable �

according to

∞∫

0

d� δ(� − α1 − α2 − α3) = 1 . (8)

The vertex function (6) then reads

Γμ(p′,p) = −e2

π

∞∫

0

dα1dα2dα3

∞∫

0

d� δ(� − α1 − α2 − α3)
1

�3

×
(

γμ

{
�p · p′ − 1

2
(α2 + α3)(p + p′)2

+ 1

2�

[
m2(α2 + α3)

2 − α2α3q
2
]
− 1

2

}

+ m

2
(p + p′)μ

α1(α2 + α3)

�

)

× exp

{
− 1

�

[
−α2α3q

2 + (α2 + α3)
2m2 + α1�μ2

]}
. (9)

Now an exchange of the order of integrations follows, and afterwards a scale transfor-
mation αi = �βi , so that we finally get

Γμ(p′,p) = − e2

π

∞∫

0

dβ1dβ2dβ3δ(1 − β1 − β2 − β3)

×
∞∫

0

d�

(
γμ

{
p · p′ − 1

2
(β2 + β3)(p + p′)2

+ 1

2

[
m2(β2 +β3)

2 −β2β3q
2
]
− 1

2�

}
+ m

2
(p+p′)μβ1(β2 +β3)

)

× exp
{
−�
[
−β2β3q

2 + (β2 + β3)
2m2 + β1μ

2
]}

. (10)

The � integral has a part that is logarithmically divergent because of the term
γμ(−1/(2�)). We know from (5.102) that such a divergence occurs. Regularization is
performed according to (5.92) by subtracting the term for forward scattering (q = 0):

Γ R
μ (p′,p) = Γμ(p′,p) − Γμ(p,p) . (11)

Strictly speaking we would have already been obliged to take this into account in the
derivation of (10), in order to justify the formal manipulations.
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We want to represent the regularized vertex function in a more clearly arranged
form. Therefore we write

Γ R
μ (p′,p) = γμF1

(
q2)+ i

2m
σμνq

νF2
(
q2) . (12)

This is exactly the ansatz we had found in Exercise 3.5 by general considerations on
the interaction of a photon with a spin-1/2 particle. This term is obviously contained
in (10) if the term proportional to (p + p′)μ is replaced according to the Gordon
decomposition (5.93) by the sum of a term proportional to γμ and one proportional
to σμνq

ν . The functions F1
(
q2
)

and F2
(
q2
)

are called form factors. Obviously the
electron gets an apparent internal structure by the interaction with the virtual radiation
field and differs in its behaviour from a pure Dirac particle. The form factors in (12)
can be re-expressed by integrals over the β variables. As already mentioned, to obtain
the form given in (12) we use the Gordon decomposition

u(p′)γμu(p) = 1

2m
u(p′)

[
(p + p′)μ + iσμνq

ν
]
u(p) . (13)

The integration over � is easily done. For the first form factor we obtain

F1
(
q2)= − e2

π

∞∫

0

dβ1dβ2dβ3 δ(1 − β1 − β2 − β3)

×
{[

m2 − q2

2
− (β2 + β3)

(
2m2 − q2

2

)

+ 1

2
m2(β2 + β3)

2 − β2β3q
2 + m2β1(β2 + β3)

]

×
[
m2(β2 + β3)

2 + β1μ
2 − β2β3q

2
]−1

+ 1

2
ln
[
m2(β2 + β3)

2 + β1μ
2 − β2β3q

2
]
− · · ·︸︷︷︸

(q=0)

}
. (14)

The logarithmic integral originates from the 1/� term in the integrand. We used

∞∫

0

d�

�

(
e−�A − e−�B

)
:= lim

η→0

∞∫

η

d�

�

(
e−�A − e−�B

)

= lim
η→0

⎛
⎜⎝

∞∫

ηA

−
∞∫

ηB

⎞
⎟⎠ d�

�
e−� = lim

η→0

ηB∫

ηA

d�

�
e−�

= lim
η→0

ηB∫

ηA

d�

�
= lnB − lnA . (15)

In a similar form this integral occurred in (5.35) and (5.82). The product p′ · p

has been replaced by m2 − q2/2, because q2 = (p′ − p)2 = p′2 + p2 − 2p′ ·
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p = 2m2 − 2p′ · p. The term m2β1(β2 + β3) in the numerator of the first term
of (14) follows from (m/2)(p + p′)μβ1(β2 + β3) by replacing (p + p′)μ =
2mγμ − iσμνq

ν .
The result for the second form factor is less involved. There is no need to regularize

and the result is

F2
(
q2)= e2

π

∞∫

0

dβ1dβ2dβ3δ(1 − β1 − β2 − β3)

× m2β1(β2 + β3)

m2(β2 + β3)2 + β1μ2 − β2β3q2
. (16)

We do not want to go into the details of the general evaluation of the integrals (14) and
(16), which is rather difficult. A simple result is obtained in the limit of low momen-
tum transfer, q2 → 0, which is also of special physical significance. The form factor
F2
(
q2
)

can be calculated immediately. Since no infrared divergence occurs, we set
μ2 = 0. Equation (16) then reads

F2(0) = e2

π

1∫

0

dβ2

1−β2∫

0

dβ3
1 − β2 − β3

β2 + β3

= e2

π

1∫

0

dβ2
[
ln(β2 + β3) − β3

]1−β2
0

= e2

π

[
(−β2 lnβ2 + β2) − β2 + 1

2
β2

2

]1

0

= α

2π
. (17)

In the limit q2 → 0 the function F1
(
q2
)

contains a divergent part, which leads to
charge renormalization and which is eliminated by the regularization in (14). We ob-
tain in the lowest nonvanishing order

F1
(
q2)� α

3π

q2

m2

(
ln

m

μ
− 3

8

)
, (18)

which can be checked by the elementary but rather lengthy integration of (14). Thus
a logarithmic divergence occurs, similar to the case of the self-energy graph (5.89).
The regularized vertex function Γ R

μ (p′,p) for free spinors and low momentum trans-
fer is now completely determined by (12), (17), and (18).

To understand the physical consequences of this result, we examine the interac-
tion energy of an electron with a static external electromagnetic field Aext

μ , just as in
Exercise 3.5:

W =
∫

d3x jμA
μ
ext

= e

∫
d3xψ̄p′

(
γμ + Γ R

μ (p′,p) + iΠR
μν

4π
iDνσ

F γσ

)
ψpA

μ
ext . (19)
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Fig. 5.25. The graphs (a–c)
contribute to the interaction
of a fermion with an external
field

Here the graphs (a), (b) and (c) of Fig. 5.25 were added. They all contribute to the
interaction of a fermion with an external field.

The self-energy correction can be left out, because for free particles it only con-
tributes to charge and mass renormalization. This is so because free particles are
on the mass shell, so that the term ΣR(p)( /p − m)2 in (5.65) does not contribute
because of /p = m. Insertion of (17) and (18) as well as (5.16), (5.18), (5.41), and
Dνσ

F = −4πgνσ /q2 yields for small values of q2

W � e

∫
d3xψ̄p′

{
γμ

[
1 + α

3π

q2

m2

(
ln

m

μ
− 3

8
− 1

5

)]

+ α

2π

i

2m
σμνq

ν

}
ψpA

μ
ext , (20)

where the term −1/5 results from vacuum polarization (5.41). Using the Gordon de-
composition this can be written as

W � e

∫
d3xψ̄p′

{
1

2m
(p + p′)μ

[
1 + α

3π

q2

m2

(
ln

m

μ
− 3

8
− 1

5

)]

+
(

1 + α

2π

) i

2m
σμνq

ν

}
ψpA

μ
ext . (21)

Since we are interested only in slowly varying (“quasistationary”) fields, the correc-
tion proportional to q3 in the last term was dropped. The momentum factors can be
transformed to gradients in configuration space: qμ → i∂μ acts on the photon field

and p′
μ = −i

←
∂ μ, pμ = i∂μ act on the spinor field to the left and the right, respectively.

This leads to

W � e

∫
d3x

{
i

2m
ψ̄p′(x)

↔
∂ μ ψp(x)

[
1 − α

3π

1

m2

(
ln

m

μ
− 3

8
− 1

5

)
�
]

A
μ
ext

−
(

1 + α

2π

) 1

2m
ψ̄p(x)σμνψp(x) ∂νA

μ
ext

}
. (22)

The first term contains the “convection current” of the electron, which interacts with
the potential. In the special case of a purely magnetic field the second part can be iden-
tified as the magnetic dipole energy. To see this, we introduce the electromagnetic field
strength tensor Fμν = ∂μAν − ∂νAμ and use the antisymmetry of σμν = i/2 [γμ, γν];
thus, using σμν∂

νAμ = − 1
2σμνF

μν ,

Wmag � e
(

1 + α

2π

) 1

4m

∫
d3x ψ̄(x)σμνψ(x)Fμν . (23)
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In the case of a purely magnetic field F 12 = −B3, σ12 = Σ3 and cyclic permutations.
Thus the interaction energy becomes

Wmag � − e

4m

(
1 + α

2π

)
2
∫

d3x ψ̄(x)Σψ(x) · B

= −〈μ〉 · B , (24)

with the magnetic moment (〈S〉 = 〈Σ〉/2)

〈μ〉 = e�

2mc

(
1 + α

2π

)
2〈S〉

= 2
(

1 + α

2π

)
μB〈S〉 = gμB〈S〉 . (25)

Here we have for once also written down the natural constants � and c. The factor �

is due to q → i�∂x and the c is due to the Gordon decomposition, which strictly
speaking contains the factor 1/2mc. As is to be expected, the magnetic moment is
thus proportional to the spin expectation value of the electron. In units of the Bohr
magneton μB = e�/2mc the proportionality factor (Landé’s g factor) is

g = 2

(
1 + 1

2

α

π

)
� 2(1 + 0.001 161 41) . (26)

The difference of the g factor from 2 is called the anomaly a = (g − 2)/2 of the elec-
tron. It is one of the most important predictions of quantum electrodynamics and since
its first calculation by Schwinger18 it has been measured with impressive accuracy.
A modern experimental value is19

gexp = 2(1 + 0.001 159 652 193) , (27)

where only the last digit is uncertain.
Obviously Schwinger’s prediction is perfectly confirmed within the range of va-

lidity of second order perturbation theory. To understand the result (27) completely,
higher-order terms must be taken into account. In Fig. 5.26 we show the graphs of
fourth order (α2). One finds that only the five diagrams (a–e) contribute to the mag-
netic moment. In sixth order 72 Feynman diagrams contribute. With increasing ac-
curacy of measurement 891 Feynman diagrams of order α4 have to be calculated
and a number of further corrections (virtual hadron creation!) must be taken into ac-
count.

18 J. Schwinger: Phys. Rev. 73, 416 (1948) and 76, 790 (1949).
19 R.S. Van Dyck, Jr., P.B. Schwinberg, H.G. Dehmelt: Phys. Rev. Lett. 59, 26 (1987).
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Fig. 5.26. The radiation cor-
rections of fourth order to
photon–electron interaction

The pure-QED contributions usually are represented by the coefficients Ci of
a power series in α/π which turns out to be the natural expansion parameter for this
problem:

gtheor = 2

[
1 + C1

(α

π

)
+ C2

(α

π

)2 + C3

(α

π

)3 + . . .

]
. (28)

Above we have evaluated Schwinger’s second-order term C1 = 1/2. It took nearly
a decade to obtain the correct analytical expression for the fourth-order coefficient
which reads20

C2 = 197
144 +

(
1
2 − 3 ln 2

)
ζ(2) + 3

4ζ(3)

= −0.328 478 965 . . . . (29)

Here ζ(n) = 1 + 2−n + 3−n + . . . is Riemann’s zeta function. At the time of writing
many, but not all, of the sixth-order graphs have been calculated analytically. For the
remaining graphs (involving overlapping photon loops) one has to solve multidimen-
sional integrals numerically. This is also true for the eighth-order contributions. The
following values for the coefficients C3 and C4 have been found21

C3 = 1.176 11 ± 0.000 42 ,

C4 = −1.434 ± 0.138 , (30)

where the errors result from the statistical uncertainty of the Monte-Carlo integrations.
Using these coefficients the theoretical g factor is

gtheor = 2(1 + 0.001 159 652 140 ± 0.000 000 000 028) . (31)

The largest part of the error is caused by the uncertain knowledge of the fine-structure
constant α. Equation (31) is in remarkably good agreement with the experimental
result (27). This proves most clearly that the “bare” electron is an ideal pointlike Dirac
particle. There are indeed deviations, but they are solely due to the interaction with

20 A. Peterman: Helv. Phys. Act. 30, 407 (1957); C.M. Sommerfield: Ann. Phys. (N.Y.) 5, 26 (1958).
21 Many of these very sophisticated and laborious calculations have been worked out by T. Kinoshita
and collaborators. The subject is extensively reviewed in the book T. Kinoshita: Quantum Electrody-
namics (World Scientific, Singapore, 1990).
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the radiation field, which can be calculated with arbitrary accuracy. The observable
extended structure is thus no “intrinsic” property of the electron.

The same conclusion is true for the muon. Its (g−2) anomaly is slightly larger than
that of (27). This is, however, well understood, because in graphs with virtual fermion
loops, for instance (a) in Fig. 5.26, e+e− pairs are preferentially created by the muon.
Therefore the result of the sum is no longer independent of the lepton mass. The
theoretical prediction is somewhat less precise since the hadronic corrections make
a larger contribution, owing to the higher energy scale, i.e. smaller length scale, of the
vacuum fluctuations probed by the muon.

The muonic g factor has been measured at the storage rings at CERN22 and more
recently at Brookhaven.23 The presently available theoretical24 and experimental val-
ues for the anomalous magnetic moment of the muon are

g
μ
th = 2(1 + .001 165 917 7 ± .000 000 000 7) , (32)

gμ
exp = 2(1 + .001 165 920 2 ± .000 000 001 5) . (33)

The theoretical value, in addition to the QED radiative correction, also contains a con-
tribution caused by the virtual creation of hadrons

aμ(hadr.) = (691 ± 7) × 10−10 . (34)

The two graphs responsible for this contribution are shown in Fig. 5.27. Here the
hatched blobs stand for a multitude of complicated hadronic states coupling to the
virtual photons. While it is impossible to calculate these processes from first princi-
ples, their contribution nevertheless can be deduced quite reliably using experimental

Fig. 5.27. Hadronic corrections
to the anomalous magnetic mo-
ment of the muon

Fig. 5.28. In the standard mod-
el of electroweak interaction
the virtual creation of neutri-
nos, intermediate vector bos-
ons (W±,Z0), and Higgs par-
ticles φ contributes to the ver-
tex function of the muon

data on the electromagnetic production of hadrons. A further correction to the g fac-
tor of the muon is caused by the weak interaction. In the Glashow–Salam–Weinberg
standard model which unifies electromagnetic and weak interaction there are three
(lowest-order) additional graphs involving vertex corrections, see Fig. 5.28. Their
combined contribution has been calculated as

aμ(weak) = (15.1 ± 0.4) × 10−10 . (35)

At present, according to (32) and (33) there is a marginal difference of aμ =
(25 ± 16) × 10−10 between the experimental and theoretical values for the muon
anomalous magnetic moment. A further increase in the accuracies will clarify whether
there is a real discrepancy. The comparison of g

μ
th and g

μ
exp has the potential to yield

valuable information on physics beyond the standard model, e.g., the existence of new
particles,25 supersymmetry, the dimensionality of space–time, the mass of the Higgs
boson, etc.

22 J. Bailey et al., Nucl. Phys. B 150, 1 (1979).
23 H.N. Brown et al. (Muon g − 2 Collaboration): Phys. Rev. Lett. 86, 2227 (2001).
24 The theoretical value has been corrected for a recently discovered sign error in one of the hadronic
contribution terms, see M. Knecht, A. Nyffeler: Phys. Rev. D 65, 077901 (2002).
25 J. Reinhardt, A. Schäfer B. Müller, W. Greiner, Phys. Rev. C 33, 194 (1986).
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EXAMPLE

5.8 The Infrared Catastrophe

The result (18) of Example 5.7 for the form factor F1
(
q2
)

of the electron is obvi-
ously incomplete. The expression is infrared divergent, i.e. it increases infinitely if the
fictitious photon mass μ tends to zero. In order to understand this apparently absurd
behaviour we recall another process, in which an infrared divergence occurred: The
process of bremsstrahlung, discussed in Sect. 3.6. The scattering cross section for the
emission of photons calculated there diverges, too, if the emission of arbitrarily soft
photons is taken into account. We shall now show that these two divergences cancel
each other and that the result is independent of the photon mass μ, which had been
introduced, after all, only as a means of computation.

Indeed, it is not sufficient to sum up only the graphs of Fig. 5.25 in order to de-
scribe the scattering process of the electron. In addition to the purely elastic scattering
there is also the possibility of inelastic scattering, in which a photon of frequency ω is
emitted, and the outgoing electron correspondingly has a somewhat reduced energy.
The crucial point is now that every experimental apparatus has only a finite energy res-
olution E. The emission of a photon with ω < E thus cannot be detected. Purely
elastic collisions and collisions in which photons with a very long wavelength are
emitted are nondistinguishable, and consequently their cross sections must be added.
This is sketched in Fig. 5.29. The scattering amplitudes of the graphs correspond-
ing to elastic scattering as well as to the bremsstrahlung of a photon are summed
up coherently, while both contributions must then be added incoherently (because the
quantum-mechanical final states are different). The sum must then be taken over all
photon energies from the lower bound μ up to the value E.

Fig. 5.29. Processes in which
photons with long wave-
lengths are emitted which
cannot be distinguished from
elastic scattering

To describe the correction quantitatively we compare the S-matrix element for elas-
tic scattering at a Coulomb potential (3.8) to the corresponding result for the emission
of bremsstrahlung, (3.193) and (3.201) in Sect. 3.6. In the limit ω → 0 we find

SBr
f i = e

√
4π

2ωV

(
ε · p′

k · p′ − ε · p
k · p

)
Selast

f i . (1)

Thus the S-matrix element for elastic scattering at the Coulomb potential for photons
of long wavelength separates into an expression for the elastic scattering and a factor
that depends on the photon energy. We can include the latter as a correction to the form
factor of the electron. To do this we must first sum over the photon polarizations λ that
are not observed and integrate over the energy:

∫

ω<E

dNk

∑
λ

∣∣F Br
1

∣∣2 =
∫

ω<E

V |k|2d|k|dΩk

(2π)3

e24π

2ωV

∑
λ

∣∣∣∣∣
ε(λ) · p′

k · p′ − ε(λ) · p
k · p

∣∣∣∣∣
2

.

(2)
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The polarization sum can be evaluated with the aid of (3.220) from Sect. 3.6:∑
λ

(
ε(λ) · a

)(
ε(λ) · b

)
= −a · b , (3)

and thus
∑
λ

∣∣F Br
1

∣∣2 = 4π

2ωV
e2
[ −m2

(k · p′)2
+ −m2

(k · p)2
+ 2p · p′

(k · p)(k · p′)

]
. (4)

Now we restrict ourselves to the nonrelativistic limit |p|, |p ′|  m. Noting that

p · k = Eω − p · k = m

√
1 + |p|2/m2 ω − p · k

� mω + |p|2ω
2m

− p · k

and analogously for p′ · k, we neglect terms of higher than second order in |p|. With
the momentum transfer q = p ′ − p (4) reduces to

∑
λ

∣∣F Br
1

∣∣2 = 4π

2ωV

e2|q|2
m2ω2

[
1 − (q · k)2

|q|2ω2

]
. (5)

The details of this calculation are exhibited in Exercise 5.10. Now the integration
over the photon energy in (2) is performed, taking into account |k|2 = ω2 − μ2 and
|k|d|k| = ωdω:∫

ω<E

dNk

∑
λ

∣∣F Br
1

∣∣2

= 4π

(2π)3

e2|q|2
2m2

E∫

μ

dω

ω2

√
ω2 − μ2

∫
dΩk

[
1 − (q · k)2

|q|2ω2

]

= e2|q|2
πm2

E∫

μ

dω

ω2

√
ω2 − μ2

(
1 − 1

3

ω2 − μ2

ω2

)
. (6)

This integral can be evaluated with the aid of
∫

dx

√
x2 − a2

x2
= −

√
x2 − a2

x
+ ln

(
x +

√
x2 − a2

)
,

∫
dx

√
x2 − a2

x4
= 1

3a2

(x2 − a2)3/2

x3
.

We find for the integral

I =
∫ E

μ

dω

(
2

3

√
ω2 − μ2

ω2
+ μ2

3

√
ω2 − μ2

ω4

)

= 2

3

[
−
√

ω2 − μ2

ω
+ ln

(
ω +

√
ω2 − μ2

)]E

μ

+ μ2

3

1

3μ2

[
(ω2 − μ2)3/2

ω3

]E

μ

= 2

3

[
−
√

E2 − μ2

E
+ ln

(
E +

√
E2 − μ2

)
− lnμ

]
+ 1

9

(E2 − μ2)3/2

E3
.
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Because of the condition μ  E we may replace
√

E2 − μ2 → E and arrive at

I = 2

3

(
−1 + ln

2E

μ

)
+ 1

9
= 2

3

(
ln

2E

μ
− 5

6

)
.

This leads to
∫

dNk

∑
λ

∣∣F Br
1

∣∣2 = 2e2|q|2
3πm2

(
ln

2E

μ
− 5

6

)
. (7)

This result has to be combined with the form factor due to the virtual radiation cor-
rections according to Fig. 5.29. Denoting by F̃1

(
q2
)

the square-bracket factor from
Example 5.7, (20) and utilizing q2 = q2

0 − �q2 because q0 = 0 for elastic scattering, we
get

∣∣∣F ′
1

(
q2)∣∣∣2 :=

∣∣∣F̃1
(
q2)∣∣∣2 +

∫
dNk

∣∣∣F Br
1

(
q2, k

)∣∣∣2

=
∣∣∣∣1 + αq2

3πm2

(
ln

m

μ
− 3

8
− 1

5

)∣∣∣∣
2

+ 2α
(−q2

)
3πm2

(
ln

2E

μ
− 5

6

)

or

F ′
1

(
q2)� 1 + α

3πm2
q2
(

ln
m

2E
+ 5

6
− 3

8
− 1

5

)
. (8)

In the last step only the contribution of lowest order in α has been taken into account,
to generate the “infrared-corrected” form factor F ′

1

(
q2
)
. The momentum dependent

part of this function modifies the strength of the interaction at the vertex according to
γμ → F ′

1

(
q2
)
γμ.

As we have already said, this expression for the form factor of the electron is
independent of the photon mass μ. In a careful analysis the problem of the in-
frared catastrophe has turned out to be fictitious. It arises if one does not account
for the fact that the electron is always surrounded by a “cloud” of photons of
long wave-lengths, which can be virtual (vertex correction) as well as real (soft
bremsstrahlung). Inconsistent results are obtained if one tries to separate the elec-
tron from its radiation cloud, for instance by insisting on a final state without pho-
tons. It can be shown, in fact, that in every scattering process of charged particles
an arbitrary number of photons with long wavelengths is emitted. Purely elastic scat-
tering does not exist in a theory with massless particles. This origin of the infrared
catastrophe was recognized very early on.26 In higher orders of perturbation the-
ory the catastrophe can also be removed by combining internal and external radiation
corrections.

The energy E in (8) is determined by the experimental arrangement and the result
depends on the resolution one has achieved. In particular, in the study of high-energy
collisions in elementary-particle physics, radiation corrections must be carefully eval-
uated and taken into account in the interpretation of experimental results.

26 F. Bloch and A. Nordsieck: Phys. Rev. 52, 54 (1937); D.R. Yennie, S.C. Frautschi, H. Suura: Ann.
Phys. (NY) 13, 379 (1961).
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EXAMPLE

5.9 The Energy Shift of Atomic Levels

Besides the (g − 2) anomaly of the magnetic moment, the “vacuum fluctuations” pre-
dicted by QED show up most clearly in their influence on the energy of bound states
in atoms. Since atomic transition energies can be measured by spectroscopic methods
with extreme accuracy, the calculation of level shifts provides a sensitive touchstone
for the theory. The exact treatment of this problem is, however, very difficult. After
all, we are dealing with bound states, which can interact with the charge Ze of the
atomic nucleus any number of times. Therefore one must not use free plane waves, as
was done in the preceding scattering problems, but one has to use the solutions of the
Dirac equation in the Coulomb field. This is depicted in terms of graphs in Fig. 5.30,
where the double lines stand for the exact electron propagator in the Coulomb field.
(a) shows the self-energy (which now automatically contains the vertex correction).
(b) denotes the vacuum polarization. Both sketched graphs are of first order in α with
respect to the emission of the virtual photon, but they take into account the interaction
with the nuclear charge in any order. The corresponding calculation can be performed
with the aid of the exact Feynman propagator of the Dirac equation in the Coulomb
field, see (49) and (50). This is a rather difficult task and can be handled only with the
help of numerical calculations.

Fig. 5.30. Graphs for self-
energy and vacuum polariza-
tion in an atom

Fortunately the circumstances in light atoms (Zα  1) allow for an approximative
method of high accuracy. Its basis is the fact that the atomic binding energies are of
the order of magnitude of (Zα)2m, and thus electron states in light atoms are highly
nonrelativistic. One can thus split the evaluation of the graph (a) into two steps.

(i) If virtual photons of high energy ω ≥ K � (Zα)2m are emitted, the effect of the
Coulomb potential can be neglected and one may use free states for the calculation.

(ii) If the virtually emitted photon has low energy ω ≤ K  m on the other hand,
then the initial, intermediate and final states are all nonrelativistic. Remember, we are
treating very small atoms with binding energy (Zα)2m  K ; atoms like hydrogen,
lithium, etc. Thus one can simply use ordinary quantum-mechanical perturbation the-
ory for the Schrödinger equation.

This procedure will work successfully if one can choose the separating energy K

such that

(Zα)2m  K  m (1)

is valid. In light atoms this poses no problem. Adding the energy shifts obtained in
both regions must yield a result independent of K , as long as (1) can be fulfilled

The Contribution of High Frequencies. We shall calculate the energy shift of an
atomic state ψν due to the emission of virtual photons of high frequency ω � K .
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ν denotes the quantum numbers (njlm) of the state. We use the form factors F1
(
q2
)
,

F2
(
q2
)

for free states, calculated in Example 5.7. In first-order perturbation theory the
energy shift then assumes the form (cf. Example 5.7, (20))

δE>
ν = e

∫
d3x ψ†

ν (x)

×
[

α

3πm2

(
ln

m

μ
− 3

8
− 1

5

)
A0(x) + α

2π

i

2m
γ · E

]
ψν(x) . (2)

Here we have used q2 = q2
0 − q 2 → (i∇μ)(i∇μ) = −(∂2/∂t2 − ) and ψ̄ν = ψ†

ν γ0.
Since we are dealing with a static potential A0(x), only the space-like part, i.e. +,
contributes.

A0(x) = −Ze

|x| (3)

is the Coulomb potential of the nucleus. Only this component of the four-potential
is different from zero in our case. E = −∇A0 is the corresponding field strength.
We have used γ 0σ0k∂A0/∂xk = −γ 0σ0k∂A0/∂xk = γ 0(i/2)(γ0γk − γkγ0)E

k =
i
2 (γ 2

0 γk − γ0γkγ0)E
k = i

2 (γk + γk)E
k = iγkE

k = −iγ · E. The term −1/5 is due
to vacuum polarization; the term proportional to γ · E describes the effect of the
anomalous magnetic moment.

In order to ensure that only high-frequency photons are considered, we would have
to perform the derivation of the form factor F1

(
q2
)

once more, with the restriction
that the region of integration extends over frequencies ω > K , but without the photon
mass μ. In the expression (2) the infrared divergence has been handled by introducing
a photon mass μ, which automatically ensures a lower limit for the photon frequency

ω =
√

k2 + μ2 > μ. However, μ enters not only as an integration limit but also at
other places of the calculation. This would make it difficult to join the high- and low-
frequency parts of the energy shift since the latter has to be calculated without the
photon mass. Therefore we would have to perform the derivation of the form factor
F1(q

2) once more, this time with a pure frequency cutoff, ω ≥ K , but without photon
mass, μ = 0. We will not go through this calculation in detail, but there is a simple
way to arrive at the correct result. We refer to the treatment of the infrared catastrophe
in Example 5.8 which also was formulated in terms of a photon mass μ for cutting off
the contributions from low-frequency photons.

According to (6) in Example 5.8 the radiative correction to the squared form factor,
regularized by a photon mass μ, is given by

Iμ = e2|q|2
πm2

∫ E

μ

dω

ω2

√
ω2 − μ2

(
1 − 1

3

ω2 − μ2

ω2

)

= 2e2|q|2
3πm2

(
ln

2E

μ
− 5

6

)
. (4)

Now we can easily repeat this calculation setting the photon mass to zero, μ = 0, and
introducing a sharp frequency cutoff at K instead. This leads to

IK = e2|q|2
πm2

2

3

∫ E

K

dω

ω
= 2e2|q|2

3πm2
ln

E

K
. (5)
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Equating the two results, Iμ = IK , leads to

ln
2E

μ
= ln

E

K
+ 5

6
(6)

which allows to express μ in terms of K , independent of the value E which plays
no role in the calculation of the Lamb shift. This motivates us to replace

ln
m

μ
→ ln

m

2K
+ 5

6
(7)

in (2).
With this the energy shift reads

δE>
ν = δE(1)

ν + δE(2)
ν , (8)

where

δE(1)
ν = eα

3πm2

(
ln

m

2K
+ 5

6
− 3

8
− 1

5

)〈
ν
∣∣∇2A0

∣∣ν〉 (9a)

and

δE(2)
ν = −ieα

4πm

〈
ν
∣∣γ · ∇A0

∣∣ν〉 , (9b)

and where we have used the bracket notation for the expectation values. The contribu-
tion (9b) of the anomalous magnetic moment can be further transformed. To do this
we notice that γ is an odd operator, which connects the large and small components
of the wave function ψν . To get a nonzero result, one must use the nonrelativistic
approximation (for brevity we drop the index ν)

ψ =
(

φ

χ

)
(10a)

with

χ = − i

2m
σ · ∇φ . (10b)

With (10) and γ =
(

0 σ

−σ 0

)
the matrix element in (9b) reads

〈
ν
∣∣γ · ∇A0

∣∣ν〉=
∫

d3x
[
φ∗(σ · ∇A0)χ−χ∗(σ · ∇A0)φ]

= − i

2m

∫
d3x
[
φ∗(σ ·∇A0)(σ ·∇φ)+(σ ·∇φ∗)

(
σ ·∇A0)φ] .

(11)

Now we can simply use the Schrödinger wave function for φ. The second term in (11)
we transform by partial integration

− i

2m

∫
d3x(σ · ∇φ∗)

(
σ · ∇A0)φ = + i

2m

∫
d3x φ∗σ · ∇

[(
σ · ∇A0)φ] . (12)
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Inserting this into (11), and using twice the identity

σ · A σ · B = A · B + iσ · (A × B) (13)

for the integrand of (11) we find:

φ∗(σ · ∇A0)(σ · ∇φ) − φ∗σ · ∇
[(

σ · ∇A0)φ]

= φ∗ [(∇A0) · (∇φ) + iσ · (∇A0)× (∇φ)
]

− φ∗{[(∇2 + iσ · ∇×∇)A0
]
φ +

[
(∇φ) · (∇A0)+ iσ · (∇φ)×(∇A0)]}

= −φ∗(∇2A0)φ + 2iφ∗σ · (∇A0)× (∇φ) . (14)

In the last term of (11) the angular-momentum operator L = −ir × ∇ can be intro-
duced if one takes into account the spherical symmetry of the spherical potential and
thus ∇A0 = (r/r)(dA0/dr):

2iφ∗σ · (∇A0) × (∇φ) = −2φ∗ 1

r

dA0

dr
σ · Lφ . (15)

With (9b), (11), (14), and (15) the energy shift thus reads (remember S = 1
2σ !)

δE(2)
ν = eα

8πm2

(〈
ν

∣∣∣∇2A0
∣∣∣ν
〉
+ 4

〈
ν

∣∣∣∣1r
dA0

dr
S · L

∣∣∣∣ν
〉)

. (16)

The explicit calculation of the expectation values occurring in (9a) and (16) provides
no difficulties.

The Contribution of Low Frequencies. We want to evaluate the energy shift δE<

due to emission and reabsorption of soft photons with frequency ω < K in nonrela-
tivistic perturbation theory in the sense of the approximation scheme discussed at the
beginning. The unperturbed problem is described by the Schrödinger equation

Ĥ0ψν =
(

−∇2

2m
+ eA0(x)

)
ψν = Eψν . (17)

In addition, there is the perturbation operator describing the interaction of the electron
with the photon field A

Ĥ ′ = 2
ie

2m
A · ∇ . (18)

Here A is the potential of the radiation field in transverse gauge. Since Ĥ ′ creates and
annihilates photons, the energy shift in second-order perturbation theory results as

δE<
ν =

∑
ν′,k,λ

∣∣〈ν′,k, λ
∣∣Ĥ ′∣∣ν〉∣∣2

Eν − (Eν′ + ω)
. (19)

Here one must sum or integrate over all electron states ν′ and over the momenta k

and the polarizations λ of the virtual photon. With the normalization and phase-space
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factors of the photon field (19) becomes

δE<
ν =

∑
ν′

∑
λ

∫

ω<K

d3k

2ω(2π)3

4πα

(2m)2

∣∣〈ν′|2i eik·xε(k, λ) · ∇|ν〉∣∣2
Eν − Eν′ − ω

. (20)

The photon field is introduced according to Sect. 3.6, (3.170). The normalization fac-
tor of this plane wave is just

√
4π/2ωV . For a further simplification we now make

the “long-wavelength approximation” and replace exp(ik · x) by 1. This is justi-
fied because the typical length scale of the state φν is given by the Bohr radius
aB = 1/(Zαm). This leads to k · x ≤ KaB = K/(Zαm) and one can choose K such
that the exponent remains small in the region allowed by (1).

Generally for the transverse polarization vectors, the following “completeness re-
lation” holds:

∫
dΩk

2∑
λ=1

ε∗
i (k, λ)εj (k, λ) = 2

3
4πδij . (21)

This can be checked by using the polarization vectors

ε(k,1) = (cos θ cosϕ, cos θ sinϕ,− sin θ) ,

ε(k,2) = (− sinϕ, cosϕ,0) (22)

and integrating over
∫

d(cos θ)dϕ. One verifies easily that ε(k, i) · ε(k, j) = δij and
ε(k,1) × ε(k,2) = k/|k|, i.e. ε(k,1), ε(k,2) and k/|k| form an orthonormal system.

The summation over polarizations and the integration over the photon solid angle
are easily performed:

∫
dΩk

∑
λ

∣∣〈ν′|iε(λ) · ∇|ν〉∣∣2 = 2

3
4π
∣∣〈ν′|i∇|ν〉∣∣2 . (23)

Then (20) reads

δE<
ν = 2α

3π

K∫

0

ωdω
∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2
Eν − Eν′ − ω

, (24)

with the velocity operator v̂ = p̂/m = −i∇/m. Equation (24), however, does not yet
correctly describe the physically observable energy shift, because it contains the con-
tribution of the low-energy photons to the mass renormalization. On can realize this
by recognizing that there is also a shift for free states. For free electrons the velocity
operator is diagonal, i.e., 〈ν′|v̂|ν〉 = vδνν′ , and the shift simply reads

δE<
free = 2α

3π

K∫

0

ωdω
v2

−ω
. (25)

One gets the physical energy shift by subtracting expression (25 from (24). With
〈ν|v2|ν〉 = Σν′ |〈ν′|v|ν〉|2 the expression renormalized in this way reads
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(δE<
ν )ren = δE<

ν − δE<
free

= 2α

3π

K∫

0

ωdω
∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2
(

1

Eν − Eν′ − ω
+ 1

ω

)

= 2α

3π

K∫

0

dω
∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2 Eν − Eν′

Eν − Eν′ − ω
. (26)

If we bear in mind that K is to be large compared to all energy differences Eν′ − Eν ,
the integration over ω yields for (a) Eν′ − Eν > 0

−
K∫

0

dω

ω + (Eν′ − Eν)
= − ln

K + (Eν′ − Eν)

Eν′ − Eν

� − ln
K

Eν′ − Eν

(27)

and for (b) Eν − Eν′ > 0

−
K∫

0

dω

ω − (Eν − Eν′)
= −

⎡
⎢⎣

Eν−Eν′−ε∫

0

· · · +
K∫

Eν−Eν′+ε

· · ·
⎤
⎥⎦

= −
[

ln
ε

Eν − Eν′
+ ln

K − (Eν − Eν′)

ε

]

� − ln
K

Eν − Eν′
. (28)

This leads to

(δE<
ν )ren = 2α

3π

∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2(Eν′ − Eν) ln
K

|Eν′ − Eν | . (29)

The evaluation of this sum cannot be done analytically. It is useful, however, to rescale
the logarithm according to

ln
K

|Eν′ − Eν | = ln
2K

m
− 2 ln(Zα) + ln

(Zα)2m/2

|Eν′ − Eν | , (30)

where in the last term the energy differences are referred to the unit of binding energy
(the Rydberg). The first two terms are independent of ν′. The corresponding sum over
intermediate states reads

S =
∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2(Eν′ − Eν)

=
∑
ν′

〈
ν|v̂|ν′〉 〈ν′|v̂|ν〉(Eν′ − Eν) . (31)

This expression can be evaluated by a commutator trick frequently used for “sum
rules” of this kind. Because of (17) we can replace the energy eigenvalues by the
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Hamiltonian Ĥ0

S = 1

2

∑
ν′

(〈
ν|v̂Ĥ0|ν′〉 〈ν′|v̂|ν〉+ 〈ν|v̂|ν′〉 〈ν′|Ĥ0v̂|ν〉

− 〈ν|Ĥ0v̂|ν′〉 〈ν′|v̂|ν〉− 〈ν|v̂|ν′〉 〈ν′|v̂Ĥ0|ν
〉)

= 1

2m2

〈
ν|2p̂Ĥ0p̂ − Ĥ0p̂p̂ − p̂p̂Ĥ0|ν

〉

= 1

2m2

〈
ν
∣∣[p̂, Ĥ0

]
p̂ − p̂

[
p̂, Ĥ0

]∣∣ν〉

= − 1

2m2

〈
ν
∣∣[p̂,

[
p̂, Ĥ0

]]∣∣ν〉 , (32)

where the closure relation has been used. Because of
[
p̂, Ĥ0

]= −ie
[∇,A0]= −ie

(∇A0)

we get

S = e

2m2

〈
ν
∣∣(∇2A0)∣∣ν〉 . (33)

The energy shift due to long-wavelength photons is thus

(δE<
ν )ren = eα

3πm2

〈
ν
∣∣(∇2A0)∣∣ν〉

[
ln

2K

m
− 2 ln(Zα)

]

+ 2α

3π

∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2(Eν′ − Eν) ln
(Zα)2m/2

|Eν′ − Eν | . (34)

The Total Energy Shift. Now the contributions of (9a), (16), and (34) must be
summed up. As one can see, the logarithmic terms with ln(2K/m) just cancel each
other. As intended the result is therefore independent of the choice of the separating
energy K ! The total energy shift is thus given by the following well-defined result:

δEν = eα

3πm2

(
5

6
− 3

8
− 1

5
+ 3

8
− 2 ln(Zα)

) 〈
ν
∣∣∇2A0

∣∣ν〉

+ eα

2πm2

〈
ν

∣∣∣∣1r
dA0

dr
S · L

∣∣∣∣ν
〉

+ 2α

3π

∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2(Eν′ − Eν) ln
(Zα)2m/2

|Eν′ − Eν | . (35)

Now we want to evaluate the matrix elements of (35) as far as possible. The potential
for point nuclei (3) satisfies

∇2A0 = 4πZeδ3(x) (36)

and thus
〈
ν|∇2A0|ν〉= 4πZe|ψν(0)|2 . (37)
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The density of the nonrelativistic wave function in a hydrogenlike atom at the origin
has the value

|ψn(0)|2 = (Zα)3m3

πn3
δl0 . (38)

This means that the first term in (35) contributes only for s states (l = 0).
For the second matrix element we use the squared expression for the total angular

momentum, J = L + S, and thus

〈L · S〉 = 1

2

[
j (j + 1) − l(l + 1) − 3

4

]
= 1

2

(
l

−l − 1

)
, (39)

where the upper (lower) expression is valid for the case j = l+1/2 (j = l−1/2). For
s waves (39) vanishes. Because of (1/r)(dA0/dr) = +Ze/r3 the expectation value
of the operator 1/r3 is required. Nonrelativistic quantum mechanics yields for this
problem, which is in principle elementary,

〈
ν

∣∣∣∣ 1

r3

∣∣∣∣ν
〉
= 2(Zα)3m3

l(l + 1)(2l + 1)n3
. (40)

Finally, we define the quantity

Lnl = n3

2m(Zα)4

∑
ν′

∣∣〈ν′|v̂|ν〉∣∣2 (Eν′ − Eν) ln
(Zα)2m/2

(Eν′ − Eν)
, (41)

which is also known as the Bethe logarithm and must be evaluated numerically.
Inserting (37–41) into (35) we finally end up with the expression for the energy

shift of an atomic level,

δEnjl = 4m

3πn3
α(Zα)4

{
Lnl +

[
19

30
− 2 ln(Zα)

]
δl0

± 3

4

1

(2j + 1)(2l + 1)
(1 − δl0)

}
(42)

for states with j = l ± 1/2. The factor (1 − δl0) expresses the fact that s-states have
no �L · �S-force (no orbital angular momentum). Compared to the unperturbed binding
energies

En � − (Zα)2m

2n2
(43)

(without spin–orbit splitting) the energy shift is suppressed by a factor α(Zα)2 and
thus is very small. Nevertheless the influence of δEnjl can be experimentally measured
with very high accuracy. In particular (42) predicts that the degeneracy of states with
equal total angular momentum j , which is still valid in the Dirac theory for pointlike
nuclei, is broken. The classical example of this is the energy splitting between the
states 2s1/2 and 2p1/2 in the hydrogen atom. It was measured for the first time by
Lamb and collaborators27 with newly developed methods of microwave spectroscopy
and is called the Lamb shift.

27 W.E. Lamb and R.C. Retherford: Phys. Rev. 72, 241 (1947).
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Fig. 5.31. The QED correc-
tions to the energy levels of
the K and L shell in the
hydrogen atom. The dashed
lines indicate the position of
the unshifted Dirac levels.
The heavy line marks the
Lamb shift

Figure 5.31 shows a drawing (not a scale) of the innermost energy levels of the
hydrogen atom. For each of the states 1s1/2, 2s1/2, 2p1/2, 2p3/2 the QED shift δEnjl

with respect to the Dirac energies (dashed lines) is shown. One should note that in
reality there is additional structure arising from the interaction of the electron with
the magnetic moment of the proton (spin S = 1/2). As a result the hyperfine splitting
transforms each energy level into a doublet of states with different values of the total
spin F . When quoting the Lamb shift one always refers to the central energies of the
doublets, tacitly removing the hyperfine structure.28

To calculate the value of the Lamb shift, the sum Lnl of (41) must be evaluated
numerically. The result is

L20 � −2.811 77 ,

L21 � +0.030 02 . (44)

Thus we get in hydrogen (Z = 1)

δE2s1/2 = 4m

3π23
α(Zα)4

[
−2.811 77 − 2 ln(Zα) + 19

30

]

= m

6π
α(Zα)4(+7.662 05)

= +4.298 28 ×−6 eV

= +1039.3 MHz , (45a)

28 The hyperfine splitting of the hydrogenic ground state (δEhfs
1s = 1.420405751766 GHz which gives

rise to the famous 21 cm hydrogen line) is one of the best studied physical observables (known to an
accuracy of 10−12). Unfortunately theory is not on a par with this experimental achievement since
predictions depend on the detailed internal structure of the proton which is not known well enough.
Therefore the last 6 digits in the quoted number have to remain unexplained.
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where in the last step the energy was converted into a frequency using δE = 2π�ν

(� = 6.582 12 × 10−16 eV sec). Analogously it follows that

δE2p1/2 = 4m

3π23
α(Zα)4

(
+0.030 02 − 1

8

)

= m

6π
α(Zα)4(−0.094 98)

= −5.328 × 10−8 eV

= −12.9 MHz . (45b)

The resulting hydrogenic Lamb shift is thus

Ltheor = δE2s1/2 − δE2p1/2 = +1052.2 MHz . (46)

This contains a contribution of −27.1 MHz due to vacuum polarization (the term
−1/5 in (2)). The prediction in (46) is in quite good agreement with todays measured
value29

Lexp = +1057.845 ± 0.009 MHz . (47)

To understand the order of magnitude of L the nonrelativistic calculation (34) is quite
sufficient. The latter was performed by Bethe30 immediately after the discovery of the
effect by Lamb and Retherford. With the quite arbitrary choice of the cutoff energy
K = m he obtained the value L = 1040 MHz. To understand the experimental value
(47) fully, however, the contribution of the high-energy photons must be taken into ac-
count. To achieve a still better quantitative agreement, several contributions of higher
order must be included,31 in particular α(Zα)5 and α2(Zα)4, as well as recoil cor-
rections due to the finite nuclear mass; see Table 5.2. The result is today’s theoretical
value for the Lamb shift32

Ltheor = +1057.855 ± 0.014 MHz , (48)

Table 5.2. Contributions to the energy splitting
E2s1/2 − E2p1/2 in the hydrogen atom

Contribution E [MHz]

α(Zα)4 +1050.559
α(Zα)5 +7.129
α(Zα)6 −0.419
α2(Zα)4 +0.101
recoil +0.358
finite nuclear radius +0.127

sum 1057.855

29 S.R. Lundeen and F.M. Pipkin: Phys. Rev. Lett 46, 232 (1981).
30 H.A. Bethe: Phys. Rev. 72, 339 (1947).
31 For example B.E. Lautrup, A. Peterman, E. de Rafael: Phys. Rep. 3, 193 (1972).
32 See the review J.R. Sapirstein and D.R. Yennie in T. Kinoshita: Quantum Electrodynamics (World
Scientific, Singapore, 1990).
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which is in excellent agreement with the experiment. The binding energies in hydrogen
in the framework of quantum electrodynamics are thus understood with a relative
accuracy of 1011, a remarkable success! The achievable agreement is limited by the
uncertainty in the knowledge of the proton radius.

Using the method of recoilless two-photon laser spectroscopy it has become
possible to directly measure the energy difference E2s1/2 − E1s1/2 to a high preci-
sion.33 The results are in full agreement with QED predictions. Note that the ac-
curacy of these measurements in principle can be increased nearly without bound.
In contrast, the original Lamb shift measurements encounter a natural limit since
the 2p1/2 state has a short life time leading to an energy broadening of the order
100 MHz. Thus modern measurements of the Lamb shift already determine the po-
sition of the resonance signal to an accuracy of 10−4 of the line width. The di-
rect measurement of the 1s − 2s energy difference, on the other hand, is not ham-
pered by this problem: the ground state of course is completely stable and the
2s1/2 level is metastable (life time ∼1/7 s) so that line broadening of this transition is
negligible.

Today’s efforts aim at the determination of level shifts in hydrogen-like ions with
high atomic numbers Z. Such highly charged ions up to U91+ can be generated in
heavy-ion accelerators or in electron beam ion traps (EBIT). The relative strength of
the radiative corrections should be much larger in such systems than in hydrogen. For
an adequate theoretical understanding it is necessary, however, to avoid the approxi-
mations we made in calculating the Lamb shift but to use instead the full propagator
of the Dirac equation with Coulomb potential.34

For details of this procedure we have to refer the reader to the literature.35 Here
we quote only the basic equations for the radiative corrections, which have a rather
intuitive form. The electron self-energy of a bound state with quantum numbers n, l,
j is described by the Feynman diagram of Fig. 5.30a. The corresponding algebraic
expression is

δESE
nlj = 4π iα

∫
d(ty − tx)

∫
d3x

∫
d3y�nlj (x)γμSF(x, y)γ μ�nlj (y)DF(x − y)

− δm

∫
d3x �nlj (x)�nlj (x) . (49)

Here SF(x, y) is the full electron Feynman propagator in the external electromagnetic
field generated by the nucleus (double line in the graph). The last contribution in (49) is
a renormalization term which cancels the (divergent) mass shift of the bound electron.

Similarly, the vacuum polarization graph of Fig. 5.30b is described by the formula

δEVP
nlj = 4π iα

∫
d(ty − tx)

∫
d3x

∫
d3y

× �nlj (x)γμ�nlj (y)DF(x − y) Tr
[
γ μSF(y, y)

]
. (50)

33 R.G. Beausoleil, D.H. MacIntyre, C.J. Fort, E.A. Hildum, C. Couillard, T.W. Hänsch, Phys. Rev.
A35, 4878 (1987).
34 P.J. Mohr: Ann. Phys. (NY) 88, 26 and 52 (1974); P.J. Mohr: in Physics of Strong Fields, W. Greiner
(ed.) (Plenum, London, New York, 1987).
35 A comprehensive review of QED corrections in heavy atoms is P.J. Mohr, G. Plunien, G. Soff:
Physics Reports 293, 227 (1998).
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Equations (49) and (50) describe the “one loop” energy corrections, i.e., they are of
first order with respect to α (there is a single internal photon line) but exact with
respect to an expansion in the parameter Zα. Several techniques have been developed
to bring these expressions into a manageable form, making skillful use of partial wave
expansions and Fourier transformations. The resulting formulae have to be evaluated
numerically.

To understand level shifts in high-Z atoms quantitatively, this nonperturbative
approach has to be used. It is customary to factorize out the dependence on the
fourth power of the nuclear charge (cf. (45)) and to define a rescaled function F(Z)

through

δE = α

π

(Zα)4

n3
mF(Z) . (51)

Figure 5.32 shows the function F(Z) for the 1s shift in various one-electron atoms.
The measured values are in good agreement with the curve representing the theoretical
prediction. The heaviest ion studied is hydrogenlike uranium, U91+. A group working
at the ESR heavy ion storage ring at GSI (Darmstadt)36 has measured a value of
δE1s = 460.2 ± 4.6 eV which agrees well with the theoretical value37 of δE1s =
464.26 ± 0.5 eV. The main contributions to the shift are the one-loop self-energy
δESE

1s = +355.05 eV and the one-loop vacuum polarization δEVP
1s = −88.60 eV. In

addition, the reduction of the binding energy caused by
the finite size of the nucleus δEFS

1s = +198.83 eV by definition also is counted as part
of the energy shift. Two-loop QED corrections are of the order of 1 eV and will be
accessible to the next generation of experiments.

QED energy shifts, of course, also are present in many-electron ions or atoms and
much effort has been devoted to study heliumlike or lithiumlike ions. Here compli-
cations arising from the problem implementing a correct relativistic description of
many-body effects presently still limit the accuracy of predictions.

Fig. 5.32. Comparison of the
experimental and theoretical
results for the energy shift of
the 1s state in single-electron
atoms drawn as a function of
the of nuclear charge Z

36 Th. Stöhlker et al.: Phys. Rev. Lett. 85, 3109 (2000); A Gumberidze et al.: Phys. Rev. Lett. 94,
223001 (2005).
37 V.A. Yerokhin, P. Indelicato, V.M. Shabaev: Phys. Rev. Lett. 91, 073001 (2003).
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EXERCISE

5.10 Calculational Detail

Problem. Fill in the steps leading from (4) to (5) in Example 5.8.

Solution. We want to derive the nonrelativistic limit of the expression

X = −m2

(k · p′)2
+ −m2

(k · p)2
+ 2p · p′

k · p k · p′ (1)

where k = (ω,k) and p = (E,p), p′ = (E′,p′). The nonrelativistic approximation of
the scalar products in the denominators

k · p = Eω − p · k �
(
m + p2

2m

)
ω − p · k , (2)

k · p′ = Eω − p′ · k �
(
m + p′2

2m

)
ω − p′ · k . (3)

Utilizing the Taylor expansions (1+x)−1 � 1−x +x2 and (1+x)−2 � 1−2x +3x2

one finds for the denominators up to quadratic order in p, p′

1

k · p = 1

mω

1

1 + p2

2m2 − p·k
mω

� 1

mω

(
1 − p2

2m2
+ p · k

mω
+
(p · k

mω

)2)
, (4)

1

k · p′ � 1

mω

(
1 − p′2

2m2
+ p′ · k

mω
+
(p′ · k

mω

)2)
, (5)

1

(k · p)2
= 1

(mω)2

1(
1 + p2

2m2 − p·k
mω

)2

� 1

m2ω2

(
1 − 2

p2

2m2
+ 2

p · k
mω

+ 3
(p · k

mω

)2)
, (6)

1

(k · p′)2
� 1

m2ω2

(
1 − 2

p′2

2m2
+ 2

p′ · k
mω

+ 3
(p′ · k

mω

)2)
, (7)

so that

X = m2

m2ω2

(
−1 + 2

p2

2m2
− 2

p · k
mω

− 3
(p · k

mω

)2

−1 + 2
p′2

2m2
− 2

p′ · k
mω

− 3
(p′ · k

mω

)2)

+2p · p′

m2ω2

(
1 − p2

2m2
+ p · k

mω
+
(p · k

mω

)2)

×
(

1 − p′2

2m2
+ p′ · k

mω
+
(p′ · k

mω

)2)
. (8)

For the scalar product between the momentum vectors we find from q2 = (p′ −p)2 the
result 2p · p′ = 2m2 − q2 � 2m2 + q2 where in the last step the time-like component

was neglected since q0 = E′ −E � m+ p′2
2m

−m− p2

2m
= p′2−p2

2m
so that q2

0 is of quartic
order.
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Multiplying out the last contribution in (8), inserting the expression for p · p′ and
dropping terms of higher than quadratic order a number of terms cancel out and we
arrive at

X = q2

m2ω2
+ 1

m2ω2

(
− (p · k)2

ω2
− (p′ · k)2

ω2
+ 2p · k p′ · k

ω2

)

= q2

m2ω2
−
(
(p − p′) · k)2

m2ω4
= q2

m2ω2

(
1 − (q · k)2

q2ω2

)
(9)

which confirms the expression (5) of Example 5.8.

5.5 Biographical Notes

BLOCH, Felix, Swiss–American physicist. �13.10.1905 in Zurich, †10.9.1983 in Zurich.
B. studied physics at the Universities of Zurich and Leipzig where he obtained his PhD in
1928 under the direction of W. Heisenberg. After stays at Copenhagen (with N. Bohr) and vari-
ous other places he became Privatdozent in Leipzig (1932). In 1934 he emigrated to the US and
joined the department of physics at Stanford University. In 1954 B. became the first director of
CERN (Geneva). B. worked on the quantum theory of metals (his PhD thesis) and ferromag-
netism where he established the nature of the boundaries between magnetic domains (Bloch
walls). He also studied the stopping of energetic particles in matter. In Stanford he worked
on neutron polarization, the magnetic scattering of neutrons, and the magnetic moment of nu-
clei. For his discovery of nuclear magnetic induction B. was awarded the 1952 Nobel Prize for
physics (with E. Purcell).

LAMB, Willis Eugene, American physicist. �12.7.1913 in Los Angeles, †19.5.2008 in Tuc-
son. L. studied physics at the University of California (PhD in 1938 under the supervision
of J.R. Oppenheimer). He became research assistant and later professor at Columbia Univer-
sity (1938–1952), Stanford, Oxford and Yale University (1962–74) and the University of Ari-
zona. L. worked in atomic and solid state physics, microwave spectroscopy, laser physics and
the quantum theory of measurement. In 1955 he received the Nobel prize for physics (with
P. Kusch) for the measurement of the fine structure splitting of the atomic levels in hydrogen
(the Lamb shift) using radiofrequency resonance techniques.

UEHLING, Edwin Albrecht, American physicist. �27.01.1901 in Lowell (Wisc.), †18.5.1985.
Ue. studied physics at the University of Wisconsin and worked as a radio engineer for Bell Tele-
phone Labs and other companies. In 1932 he obtained his PhD at the University of Michigan
under the direction of G. Uhlenbeck. Subsequently he was a postdoctoral fellow at the insti-
tutes for theoretical physics at Copenhagen and Leipzig (with W. Heisenberg), Berkeley, and
Pasadena (with J.R. Oppenheimer). Since 1936 Ue. was professor of physics at the University
of Washington. Ue. worked on the quantum theory of transport processes and on the effect of
vacuum polarization. He also made contributions to condensed matter physics, in particular the
theory of ferroelectricity.
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WARD, John Clive, British physicist. �1.8.1924 in London, †6.5.2000 on Vancouver Island.
W. studied mathematics and physics at Oxford (DPhil in 1949). He taught at the Universi-
ties of Maryland, Miami, and Johns Hopkins University. From 1967 to 1984 he was profes-
sor of physics at Macquarie University (Australia). W. has worked on renormalization the-
ory and the effect of gauge invariance in a field theory (the Ward identities). With A. Salam
he has investigated the connection between the weak, electromagnetic and strong interac-
tions, preparing the way for unified field theories. W. also contributed to statistical mechan-
ics, working on the two-dimensional Ising model and on the theory of many-particle sys-
tems.



Two-Particle Systems 6

6.1 The Bethe–Salpeter Equation

For many purposes it is necessary to have a better description for the interaction of two

Fig. 6.1. The particles in
a bound state can interact infi-
nitely often

particles than the perturbation theory we have discussed so far. This is particularly so
if we deal with bound states: the particles stay together infinitely long and they can
therefore interact arbitrarily often as depicted in Fig. 6.1.

It is clear that this situation cannot be described by the summation of a few Feyn-
man diagrams. If one of the particles is much heavier than the other the problem can
be considerably simplified: one solves the Dirac equation for the light particle with
an additional external potential, which is produced by the heavier particle. Because
of the large mass ratio the influence of the lighter particle on the heavier one can be
neglected.

The interaction of two particles with equal or comparable masses is much more
difficult to describe since the “recoil effects” cannot be neglected. The most famous
example of this is positronium, i.e. the bound system of an electron and a positron.
Here one cannot distinguish between the source of the field and the test particle. One
must rather treat both particles on an equal footing. There is a further complication due
to the fact that the interaction propagates with finite velocity, leading to “retardation
effects”. In a correct relativistic theory there is no preferred common time coordinate.
The wave function of the two-particle system depends on two time coordinates and
therefore its interpretation is difficult.

In the following we want to write down an exact equation for the two-particle sys-
tem, at least in principle, even if it turns out that it is too difficult to find an exact
solution for this equation. Then we shall study an approximation that again leads to
a kind of Dirac equation with an interaction potential (the Breit interaction, see Exam-
ple 6.4).

In order to study the behaviour of two equal particles a and b, we generalize the de-
finition of the propagator. Looking only at one particle, the wave function of that parti-
cle is described by a spinor ψ(x) with four components. As shown in Exercise 6.1 the
corresponding initial value problem is solved by the Feynman propagator SF (x2, x1):

ψ(x2) = −i
∫

dσ(x1) SF (x2, x1)γ
μnμ(x1)ψ(x1) , (6.1)

where we have to integrate over a closed three-dimensional hypersurface that includes
the space–time point x2; nμ(x1) is the exterior normal vector of this hypersurface.

This relation can be extended to the two-particle case. Obviously such a system
must be described by a wave function ψab(x1, x2) that depends on eight coordi-
nates: six space coordinates (x1,x2) and two time coordinates (t1, t2). Furthermore

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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ψab(x1, x2) has two spinor indices, i.e. 4 × 4 = 16 components! The indices a and b

refer to the spinor spaces of the two particles. The appearance of two time coordinates,
in contrast to the nonrelativistic many-particle theory, makes the interpretation of this
wave function more difficult. Alas, this cannot be avoided if one wants to treat space
and time coordinates in the same way.

In analogy to (6.1) we can define a propagator for the two-particle wave function

ψab(x3, x4) =
∫

dσ(x1)dσ(x2) Sab(x3, x4;x1, x2) /n(x1)/n(x2)ψab(x1, x2) , (6.2)

where one now has to integrate over two three-dimensional hypersurfaces which in-
clude the points x3 and x4. As in Exercise 6.1, (6.2) can be specialized to the case of
two space-like hypersurfaces, i.e. to an integration over d3xn at a fixed time coordi-
nate tn.

If the two particles do not interact, the wave function simply is given by a product

ψ0
ab(x1, x2) = ψa(x1)ψb(x2) (6.3)

so that (6.2) factorizes into two integrals of the form (6.1) if one sets

S0 ab(x3, x4;x1, x2) = iSa
F(x3, x1) iSb

F(x4, x2) . (6.4)

Going beyond this trivial case we have to consider what happens if the two particles
interact electromagnetically. In perturbation theory (expanding in powers of the cou-
pling constant e) the first correction to (6.4) can be found easily,1 it is given by the
one photon exchange diagram

= + + . . . . (6.5)

The bubble denoted by S represents the full two-particle propagator whereas the un-
connected fermion lines represent the free two-particle propagator S0 given in (6.4).
Using the Feynman rules we can translate (6.5) into the formula

Sab(x3, x4;x1, x2)= iSa
F(x3, x1) iSb

F(x4, x2)

+
∫

d4x5 d4x6 iSa
F(x3, x5) iSb

F(x4, x6)

×
[
(−iea)γ

a
μ iDμν

F (x5,x6)(−ieb)γ
b
ν

]
iSa

F(x5,x1) iSb
F(x6,x2)

+ . . . . (6.6)

Note that in this and the following equations there are two independent spinor in-
dices. For example the 4 × 4 matrix γ a

μ gets multiplied by the matrices Sa
F(x3, x5) and

Sa
F(x5, x1), whereas γ b

ν is multiplied by Sb
F(x4, x6) and Sb

F(x6, x2). The two-particle
propagator therefore has the character of a 16 × 16 matrix. In (6.5) and (6.6) we have

1 For simplicity we assume that particles a and b are distinguishable, since otherwise exchange graphs
would appear. The case of a particle interacting with its antiparticle will be considered in Exercise 6.2.
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written down only the first term of an infinite series. The result of the infinite series
can be represented in terms of a “black box” by a function K(x3, x4;x1, x2) which is
called the interaction kernel. The exact form of (6.5) then reads

= + (6.7)

or, written out explicitly,

Sab(x3, x4;x1, x2) = iSa
F(x3, x1) iSb

F(x4, x2)

+
∫

d4x5 d4x6 d4x7 d4x8 iSa
F(x3, x5) iSb

F(x4, x6)

× Kab(x5, x6;x7, x8) iSa
F(x7, x1) iSb

F(x8, x2) . (6.8)

We have not gained much by doing this since K is an extremely complicated function.
Only in first-order perturbation theory does the kernel become very simple, that is,
according to (6.6)

Kab
0 (x5,x6;x7,x8) = (−iea)γ

a
μ iDμν

F (x5,x6)(−ieb)γ
b
ν δ4(x5 −x7)δ

4(x6 −x8) . (6.9)

Fig. 6.2. A few typical
graphs contributing to the
perturbation series for the
interaction kernel K

Fig. 6.3. Examples for a re-
ducible (a) and an irreducible
(b) third-order interaction

The complete function K is a sum over infinitely many graphs of arbitrarily high or-
der. Some examples are shown in Fig. 6.2. To go beyond perturbation theory one can
apply some cunning and combine at least a certain subset of the terms contributing to
the infinite sum K . To that end we define the notion of a reducible interaction kernel.
It is characterized by the fact that it can be split into two unconnected parts by cutting
two fermion lines. Correspondingly a kernel is called irreducible if it is so densely
interwoven that such a dissection is not possible.2 Examples of reducible and irre-
ducible graphs are shown in Fig. 6.3. In Fig. 6.2 only graphs d, f, and h are reducible.
We shall denote the sum of all irreducible contributions to K as the irreducible inter-
action kernel K .

It is obvious that each reducible graph can be described by joining together several
irreducible graphs from the set which contributes to the kernel K . But this can be

2 The cut has to be applied in the “horizontal” direction. The graph (a) to (c) in Fig. 6.2 thus are not
reducible.
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obtained by a simple modification of (6.7):

= + (6.10)

or, written out explicitly

Sab(x3, x4;x1, x2) = iSa
F(x3, x1) iSb

F(x4, x2)

+
∫

d4x5 d4x6 d4x7 d4x8 iSa
F(x3, x5) iSb

F(x4, x6)

× K
ab

(x5, x6;x7, x8)S
ab(x7, x8;x1, x2) . (6.11)

In this equation the complete kernel K has been replaced by the irreducible kernel K ,
but in return for that we have also replaced two independent one-particle propagators
by the complete two-particle propagator. The fact that (6.10) is equivalent to (6.7)
becomes immediately clear if one solves (6.10) iteratively, i.e. if one repeatedly inserts
the left-hand side of (6.10) into the right-hand side:

= + + + . . . . (6.12)

Therefore the iteration of (6.10) ensures that all possible combinations of irreducible
Feynman graphs are combined and in this way one gets the complete sum K from K .

The irreducible kernel K contains an infinite number of Feynman graphs as well
and cannot be calculated exactly. Nevertheless, compared to (6.7), (6.10) has a deci-
sive advantage: looking at (6.12) one sees that the solution automatically contains an
infinite series of interaction, even if K itself is calculated within perturbation theory
at low order! As we have discussed at the beginning of this section the inclusion of an
infinite number of interactions is necessary if one is interested in bound systems.

For many practical purposes one restricts oneself to the lowest order of the irre-
ducible kernel K (Fig. 6.2a), i.e. to the one-photon exchange

K
ab

(x5, x6;x7, x8) ≈ Kab
0 (x5, x6;x7, x8) (6.13)

given in (6.9). This prescription is called the ladder approximation. This name sug-
gests itself if we look at the iterated equation (6.12):

≈ + + + + . . . . (6.14)

In this approximation a Lorentz frame can be found in which only one photon is
exchanged at a given time, but this process can be repeated an arbitrary number of
times. Nevertheless, one has to be aware that there is a multitude of possible graphs.
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Within the ladder approximation one considers only a very special class of them owing
to the restriction of K , even though this class contains an infinite number of graphs.
The quality of this approximation can only be proved by its success.

We want to remark that in principle one should not use the free Feynman propa-
gators SF when calculating (6.11). Instead one should use “dressed” propagators that
contain the interaction with their own photon field to all orders (cf. Chap. 5). Then
one has taken into account all self-interaction graphs in (6.10). In the same way one
should use the exact photon propagators and vertex functions when calculating K . The
renormalization problems related to that will not be discussed here.

In order to get an equation for the two-particle wave function we insert (6.11)
into (6.2):

ψab(x3,x4) =
∫

dσ(x1)dσ(x2) iSa
F(x3,x1) iSb

F(x4,x2) /n(x1) /n(x2)ψab(x1,x2)

+
∫

dσ(x1)dσ(x2)

∫
d4x5 d4x6 d4x7 d4x8 iSa

F(x3,x5) iSb
F(x4,x6)

×K
ab
(x5, x6;x7, x8)S

ab(x7, x8;x1, x2) /n(x1) /n(x2)ψab(x1, x2) ,

(6.15)

or, if we abbreviate the first term by φab(x3, x4), insert (6.2) in the second term and
rename some indices,

ψab(x1, x2) = φab(x1, x2) +
∫

d4x3 d4x4 d4x5 d4x6 iSa
F(x1, x5) iSb

F(x2, x6)

× K
ab

(x5, x6;x3, x4)ψab(x3, x4) . (6.16)

This is the Bethe–Salpeter equation.3 It is a complicated inhomogeneous integral
equation of the Fredholm type. Its mathematical structure is the price we have to pay
in order to go beyond perturbation theory.

φab(x1, x2) is the free two-particle wave function. If one is interested in bound
states, i.e. localized states, φab(x1, x2) drops out of (6.16) and the integral equation
becomes homogeneous (see the supplementary remarks at the end of this section). The
Bethe–Salpeter equation (6.16) can also be written in another form if one multiplies
with the free Dirac operators (i /∇1 − ma) and (i /∇2 − mb) on the left-hand side. Since
the one-particle propagators obey the relations

(i /∇1 − ma)S
a
F(x1, x5) = δ4(x1 − x5) ,

(i /∇2 − mb)S
b
F(x2, x6) = δ4(x2 − x6) , (6.17)

it follows that

(i /∇1 − ma)(i /∇2 − mb)ψab(x1, x2)

= −
∫

d4x3 d4x4 K
ab

(x1, x2;x3, x4)ψab(x3, x4) . (6.18)

In this form the Bethe–Salpeter equation is an integro-differential equation (in eight
variables). For practical purposes there is another useful form of this equation, ob-
tained by transforming it into momentum space.

3 H.A. Bethe and E.E. Salpeter: Phys. Rev. 82, 309 (1951) and 84, 1232 (1951).
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If we define the wave function in momentum space as

χab(p1,p2) = 1

(2π)4

∫
d4x1 d4x2 ei(p1·x1+p2·x2)ψab(x1, x2) , (6.19)

then the Fourier transform of (6.18) reads

1

(2π)4

∫
d4x1 d4x2 ei(p1·x1+p2·x2)(i /∇1 − ma)(i /∇ − mb)ψab(x1, x2)

= − 1

(2π)4

∫
d4x1 d4x2 d4x3 d4x4 ei(p1·x1+p2·x2)K

ab
(x1, x2;x3, x4)ψab(x3, x4) .

(6.20)

On the left-hand side we integrate by parts so that the gradient operators act on the
exponential function, and on the right-hand side we insert two delta functions δ4(x′

3 −
x3), δ4(x′

4 − x4):

1

(2π)4

∫
d4x1 d4x2

[
(−i /∇1 − ma)(−i /∇2 − mb) ei(p1·x1+p2·x2)

]
ψab(x1, x2)

= − 1

(2π)4

∫
d4x1 d4x2 d4x3 d4x4 d4x′

3 d4x′
4 δ4(x′

3 − x3) δ4(x′
4 − x4)

× ei(p1·x1+p2·x2)K
ab

(x1, x2;x3, x4)ψab(x
′
3, x

′
4) . (6.21)

Using the integral representation of the delta function,

δ4(x′
3 − x3) = 1

(2π)4

∫
d4p′

1 eip′
1·(x′

3−x3) , (6.22)

one can express the right-hand side of (6.21) as a product of momentum-space wave
functions and the interaction kernel in momentum space:

K
ab

(p1,p2;p3,p4)

= 1

(2π)8

∫
d4x1 d4x2 d4x3 d4x4 ei(p1·x1+p2·x2−p3·x3−p4·x4)K

ab
(x1, x2;x3, x4) .

(6.23)

The Bethe–Salpeter equation in momentum space then reads

( /p1 − ma)( /p2 − mb)χab(p1,p2)

= −
∫

d4p′
1 d4p′

2 K
ab

(p1,p2;p′
1,p

′
2)χ(p′

1,p
′
2) . (6.24)

When treating a two-particle system it is always advantageous to transform to absolute
and relative coordinates. For simplicity we assume that both particles have the same
mass m = ma = mb , and we define

P = p1 + p2 , p = 1

2
(p1 − p2) , (6.25)
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or

p1 = 1

2
P + p , p2 = 1

2
P − p . (6.26)

Since the interaction described by the kernel K
ab

must conserve momentum, i.e. p1 +
p2 = p′

1 + p′
2, one can make the ansatz

K
ab

(p1,p2;p′
1,p

′
2) = δ4(P − P ′)Kab

(p,p′;P) . (6.27)

Using (6.26) and (6.27), (6.24) then reads
(

1

2
/P a + /pa − m

)(
1

2
/P b − /pb − m

)
χab(p,P )

= −
∫

d4p′ d4P ′
∣∣∣∣∂(p′

1,p
′
2)

∂(p′,P ′)

∣∣∣∣Kab
(p,p′;P ′) δ4(P − P ′)χab(p

′,P ′) (6.28)

or
(

1

2
/P a + /pa − m

)(
1

2
/P b − /pb − m

)
χab(p,P )

= −
∫

d4p′ Kab
(p,p′;P)χab(p

′,P ) , (6.29)

since the Jacobian determinant for the transformation of the volume element in (6.27)
is equal to one. In (6.29) P plays only the role of a parameter. One can look at a wave
function with a given value K of the “center-of-mass momentum”

χab(p,P ) = δ4(P − K)χab(p) . (6.30)

Integrating (6.29) over P and defining p′ = p + k, one gets the final result
(

1

2
/Ka + /pa − m

)(
1

2
/Kb − /pb − m

)
χab(p)

= −
∫

d4k K
ab

(p,p + k;K)χab(p + k) . (6.31)

This integral equation has discrete eigensolutions for K and – in principle – it al-
lows us to determine the spectrum of a bound system of two fermions. The binding
energy EB can be read off from the eigenvalue K in the “center-of-mass system”
defined by p1 + p2 = 0, where it takes the form

K = (2m − EB,0) . (6.32)

Unfortunately the interaction kernel K
ab

is very complicated and cannot be written
down in a closed form. But even if one restricts oneself to the simplest case of the
ladder approximation (6.13), the structure of (6.31) is still so complicated that one will
not succeed in finding exact solutions. Only a simplified problem, the binding of two
spin-0 particles with a scalar interaction,4 can be solved completely. It turns out that

4 G.C. Wick: Phys. Rev. 96, 1124 (1954); R.E. Cutkosky, ibid. p. 1135.
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the Bethe–Salpeter equation is beset with a number of serious difficulties (unphysical
states, wrong limit mb/ma → ∞, etc.). For problems within the framework of QED,
especially those concerning the spectrum of positronium, perturbative approximation
techniques are adequate (however, the ladder approximation does not suffice, one must
take into account also the graph from Fig. 6.2e). Furthermore the numerical solution
of the Bethe–Salpeter equation is an important tool for calculating bound states in the
realm of elementary particle physics (quark–antiquark systems, i.e. mesons).5

Supplement. In the following we want to justify our assertion that the free solution
φab(x1, x2) of the Bethe–Salpeter equation drops out if one studies bound states. The
argument is based on the energy and momentum balance.

For the integration limits σ(x′
1) and σ(x′

2) of the initial value integral (6.15) we
choose space-like hypersurfaces with t ′1 = t ′2 = t in the distant past:

φab(x1, x2) =
∫

d3x′
1

∫
d3x′

2 iSa
F(x1;x′

1, t) iSb
F(x2;x′

2, t)

× γ a
0 γ b

0 ψab(x
′
1, t;x′

2, t) . (6.33)

Because of t1 > t and t2 > t only that part of the Feynman propagator contributes
which propagates forward in time, namely (cf. Problem 2.1)

iSF (x′, x) −→
∫

d3p
m

E
Λ+(p) e−ip·(x′−x) . (6.34)

The two-particle wave function ψab with equal time argument t should have the fol-
lowing form:

ψab(x
′
1, t;x′

2, t) = e−iK0t eiK·(x′
1+x′

2)/2 χab(x
′
1 − x′

2) . (6.35)

Here the first factor describes the time development with the total energy K0, whereas
the second factor describes the motion of the center of mass with momentum K .
χab(x

′
1 − x′

2) is the wave function of the relative motion of the bound state.
K0 and K have to satisfy the usual dispersion relation

K2
0 − K2 = M2 , (6.36)

i.e. seen from the outside, with respect to the center-of-mass motion, the bound sys-
tem behaves like a single particle. However, its mass M is reduced by the binding
energy EB (the mass defect):

M = 2m − EB . (6.37)

Now we insert (6.34) and (6.35) into (6.33)

φab(x1, x2) =
∫

d3x′
1 d3x′

2

∫
d3p′ m

E′ Λ+(p′) e−ip′
0(t1−t) e+ip′·(x1−x′

1)

×
∫

d3p
m

E
Λ+(p) e−ip0(t2−t) e+ip·(x2−x′

2)

× e−iK0t eiK·(x′
1+x′

2)/2 γ a
0 γ b

0 χab(x
′
1 − x′

2) . (6.38)

5 An extensive bibliography on the Bethe–Salpeter equation and its applications can be found in:
N. Nakanishi: Prog. Theor. Phys. Suppl. 95, 78 (1988).
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Next it is useful to transform this to center-of-mass coordinates and relative coordi-
nates:

x = x′
1 − x′

2 , X = 1

2
(x′

1 + x′
2) , (6.39a)

or

x′
1 = X + 1

2
x , x′

2 = X − 1

2
x . (6.39b)

This yields

φab(x1, x2) =
∫

d3p′ m

E′ Λ+(p′) e−ip′·x1

×
∫

d3p
m

E
Λ+(p) e−ip·x2 ei(p′

0+p0−K0)t (2π)3 δ3(K− p − p′)

×
∫

d3x ei 1
2 x·(p′−p) γ a

0 γ b
0 χab(x) . (6.40)

Therefore, the relation

K = p + p′ (6.41a)

must hold. On the other hand (6.40) leads to an analogous condition for K0. This is
because φab is only independent of the arbitrary choice of the starting time t if the
oscillating factor vanishes,

K0 = p0 + p′
0 . (6.41b)

For a somewhat more rigorous derivation of this argument one could take the average
over some time interval, in order to eliminate strongly oscillating contributions, e.g.
by the prescription

φab(x1, x2) = lim
T →−∞

T∫

2T

dt . . . .

Using (6.41) the dispersion relation (6.36) takes the form

(p0 + p′
0)

2 − (p + p′)2 = M2 ,

or

2m2 + 2p0p
′
0 − 2p · p′ = M2 ,

√
m2 + p2

√
m2 + p′2 − p · p′ = m2 − 1

2

(
4m2 − M2) . (6.42)

This equation cannot be satisfied if there is a mass defect due to binding, M2 < (2m)2,
for the following reasons. For p = p′ = 0 the left-hand side is larger than the right-
hand side, and this also remains true for finite momenta (where p ‖ p′ is the most
favourable case), since

√
(1 + x2) (1 + y2) − xy ≥ 1, which can be verified immedi-

ately by taking the square of this expression. Thus we have proved that the inhomo-
geneous term of the Bethe–Salpeter equation, φab from (6.33), vanishes for bound
states.
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EXERCISE

6.1 Solution of the Initial-Value Problem for Fermions

Problem. Using Gauss’ theorem in four dimensions determine the wave function

Fig. 6.4. A four-dimensional
space–time volume V with sur-
face S

ψ(x) at points x within a space–time volume V provided that its value is known on
a closed surface S, see Fig. 6.4. Derive an analogous relation also for the adjoint spinor
ψ̄(x).

Solution. Gauss’ theorem in four dimensions takes the form
∫

V

d4x
∂Fμ

∂xμ

(x) =
∫

S

dσ(x)Fμ(x)nμ(x) . (1)

Here Fμ is a vector field and nμ(x) is the exterior normal on the surface element
dσ(x). We choose the function Fμ(x′) ≡ iSF (x − x′)γμψ(x′). Then the divergence
entering the volume integral is given by

∂

∂x′
μ

(
iSF (x − x′)γμψ(x′)

)

=
(

i
∂

∂x′
μ

SF (x − x′)
)

γμψ(x′) + SF (x − x′)γμ

(
i

∂

∂x′
μ

ψ(x′)
)

=
(

i
∂

∂x′
μ

SF (x − x′)
)

γμψ(x′) + mSF (x − x′)ψ(x′)

=
⎡
⎣SF (x − x′)

⎛
⎝iγμ

←
∂

∂x′
μ

+ m

⎞
⎠
⎤
⎦ψ(x′) . (2)

Here we have made use of the fact that ψ(x) fulfills the free Dirac equation. The
expression in square brackets reduces to a delta function, since the equation

(
iγμ

∂

∂xμ

− m

)
SF (x − x′) = δ4(x − x′) (3)

defining the Feynman propagator is equivalent to

SF (x − x′)

⎛
⎝iγμ

←
∂

∂x′
μ

+ m

⎞
⎠= −δ4(x − x′) , (4)

which can be shown using the momentum space representation (2.19). Therefore the
left-hand side of (1) becomes

∫

V

d4x′ ∂Fμ

∂x′
μ

(x′) =
∫

V

d4x′ (−δ4(x − x′)
)

ψ(x′)

= −ψ(x) (5)
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if x ∈ V . The right-hand side of (1) becomes

∫

S

dσ(x′)Fμ(x′)nμ(x′) = i
∫

S

dσ(x′) SF (x − x′)γμnμ(x′)ψ(x′) , (6)

with the result

ψ(x) = −i
∫

S

dσ(x′) SF (x − x′)/n(x′)ψ(x′) . (7)

This result can be specialized by choosing a four-dimensional volume V delimited by
two flat hypersurfaces at constant times, e.g. t1 and t2, see Fig. 6.5. The side faces
are assumed to lie infinitely far away, so that the volume V comprises the whole
three-dimensional space but only a restricted time interval. The normal vectors are
n1 = (−1,0) and n2 = (1,0). Then (7) takes the form

ψ(x) = i
∫

t1

d3x′ SF (x − x′)γ0ψ(x′) − i
∫

t2

d3x′ SF (x − x′)γ0ψ(x′) , (8)

with t1 < t < t2.

Fig. 6.5. A special choice
for the space–time volume
bounded by flat hypersurfaces
at constant times t1 and t2

If the wave function has only components with positive (negative) frequencies, then
it follows from the properties of the propagator (see (2.25, 2.26)) that only the integral
at the time t1 (t2) contributes so (8) is in agreement with the result of Exercise 2.4.
Therefore (7), which solves the boundary-value problem for a spinor field, is the co-
variant generalization of the former result of Chap. 2.

The calculation for the adjoint spinor ψ̄(x) proceeds in an analogous fashion. We
now choose the vector field as Fμ(x′) = −iψ̄(x′)γμSF(x′ − x). Using the Dirac equa-
tion for the adjoint spinor

ψ̄(x)

(
iγμ

∂

∂xμ

+ m

)
= 0 (9)

and (3) the left-hand side of (1) can be reduced to −ψ(x). Thus in analogy to (7) the
adjoint spinor satisfies

ψ̄(x) = i
∫

dσ(x′) ψ̄(x′) /n(x′) SF (x′ − x) . (10)
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EXERCISE

6.2 The Bethe–Salpeter Equation for Positronium

Problem. Until now we have assumed that the interacting particles a and b are not
related to each other. What will change in the case of a particle–antiparticle system
such as positronium (e+e−)? Derive the Bethe–Salpeter equation in momentum space
(6.31) considering the interaction kernel K in lowest order.

Solution. The electron–positron system can be treated in very much the same way
as the electron–electron problem. In the expansion in terms of Feynman graphs the
direction of the arrow of one fermion is inverted. As we have already discussed in con-
nection with Bhabha scattering (Sect. 3.4) the exchange graph describes the process
of virtual pair annihilation.

= + + + . . . . (1)

Constructing the corresponding two-particle wave function we take into account the
antiparticle character of the positron by choosing an adjoint spinor (incoming elec-
tron ↔ outgoing positron). For the case of no interaction this means

ψ0
μσ (x1, x2) = ψμ(x1) ψ̄σ (x2) . (2)

Without interaction the explicit form of the electron spinor would be a plane wave
ψ(x1) = u(p, s) e−ip·x1 . In the same way the positron spinor would be given by
ψ̄(x2) = v̄(p′, s′) e+ip′·x2 . In accordance with the Feynman rules the incoming elec-
tron is thus described by u(p, s) and the incoming positron by v̄(p′, s′). The propaga-
tion of an adjoint spinor was derived in Exercise 6.1, (10):

ψ̄(x) = i
∫

dσ(x′) ψ̄(x′) /n(x′) SF (x′, x) . (3)

For the two-particle wave function this means

ψμσ (x3, x4) =
∫

dσ(x1)dσ(x2) Sμσντ (x3, x4;x1, x2)

× /nνν′(x1)/nτ ′τ (x2)ψν′τ ′(x1, x2) . (4)

Note the reversed order of the primed and unprimed indices of the matrices /n. This
becomes clear by writing /nνν′(x1)ψν′τ ′(x1, x2) /nτ ′τ (x2) and is related to the reversed
order of /nψ in (6.1) and ψ̄ /n in (3), respectively. The two-particle propagator reads as
follows:

Sμσντ (x3, x4;x1, x2)

= −iSFμν(x3, x1) iSFτσ (x2, x4) −
∫

d4x5 d4x6 d4x7 d4x8 iSFμμ′(x3, x5)

× iSFσ ′σ (x6, x4)Kμ′σ ′ν′τ ′(x5, x6;x7, x8)iSFν′ν(x7, x1)iSFττ ′(x2, x8) . (5)
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Equation (5) differs from (6.8) only by the “reversed” Feynman propagators for the
positron. This shows up especially in the exchanged primed and unprimed indices of
the matrices SFν′ν(x7, x1) and SFττ ′(x2, x8) for electrons and positrons, respectively.
This has the same origin as the change of the positions of the indices in both matrices /n

in (4). Here one must observe carefully the ordering of S, /n, and ψ in (6.1) and (3).
The positron propagators always have “exchanged” indices.

Now one can again introduce an irreducible interaction kernel K and iterate (5).

Sμσντ (x3, x4;x1, x2)

= −iSFμν(x3, x1) iSFτσ (x2, x4) +
∫

d4x5d4x6d4x7d4x8 iSFμμ′(x3, x5)

× iSFσ ′σ (x6, x4)Kμ′σ ′ν′τ ′(x5, x6;x7, x8)Sν′τ ′ντ (x7, x8;x1, x2) . (6)

Inserting this into (4) yields the integral form of the Bethe–Salpeter equation

ψμσ (x1, x2) = φμσ (x1, x2) +
∫

d4x3 d4x4 d4x5 d4x6

× iSFμμ′(x1, x5)iSFσ ′σ (x6, x2)Kμ′σ ′ν′τ ′(x5, x6 ;x3, x4)ψν′τ ′(x3, x4) .

(7)

For bound states (i.e. localized states) the free solution φμσ (x1, x2) can again be omit-
ted.

In order to get an integro-differential equation like (6.18) we make use of

(i /∇1 − m)μν SFνμ′(x1, x5) = δ4(x1 − x5) δμμ′ (8a)

and

(i /∇2 + m)τσ SFσ ′τ (x6, x2) = −δ4(x2 − x6) δσσ ′ . (8b)

Equation (8b) can be derived immediately from the integral representation of the Feyn-
man propagator in momentum space. Applying the Dirac operators from (8) to (7) and
renaming some indices yields

(i /∇1 − m)μμ′ (i /∇2 + m)σ ′σ ψμ′σ ′(x1, x2)

=
∫

d4x3 d4x4 Kμσντ (x1, x2 ;x3, x4)ψντ (x3, x4) (9)

in analogy to (6.18).
This result can be transformed into momentum space, too. Again defining the in-

teracting kernel as

Kμσντ (p1,p2 ;p3,p4) = 1

(2π)8

∫
d4x1 d4x2 d4x3 d4x4

× ei(p1·x1+p2·x2−p3·x3−p4·x4)Kμσντ (x1, x2 ;x3, x4) (10)
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we can directly use the previous calculation with the result

(
1

2
/P + /p − m

)
μμ′

(
1

2
/P − /p + m

)
σ ′σ

χμ′σ ′(p,P )

=
∫

d4p′ Kμσντ (p,p′;P)χντ (p
′,P ) . (11)

This equation differs from (6.29) only by the second Dirac operator and the plus sign
in the interaction term.

Fig. 6.6. The lowest-order di-
rect and exchange graphs.
The fermion lines are “ampu-
tated”, i.e. they do not enter
the expression for the integral
kernel K

In order to write down the kernel K in lowest order of the perturbation series in e

the contributions from direct scattering and virtual annihilation must be taken into ac-
count. The corresponding Feynman graphs of Fig. 6.6 can be translated into formulae:

K
0
μσντ (p1,p2 ;p′

1,p
′
2)

= 1

(2π)8

∫
d4x1 d4x2 d4x′

1 d4x′
2 ei(p1·x1+p2·x2−p′

1·x′
1−p′

2·x′
2)(−ie)2

×
(
γ α
μν iDFαβ(x1, x2) γ β

τσ δ4(x1 − x′
1) δ4(x2 − x′

2)

− γ α
μσ iDFαβ(x1, x

′
1) γ β

τν δ4(x1 − x2) δ4(x′
1 − x′

2)
)

= 1

(2π)8

∫
d4x1 d4x2 ei[(p1−p′

1)·x1+(p2−p′
2)·x2](−ie)2γ α

μνγ
β
τσ iDFαβ(x1, x2)

− 1

(2π)8

∫
d4x1d4x′

1ei[(p1+p2)·x1−(p′
1+p′

2)·x′
1](−ie)2γ α

μσ γ β
τν iDFαβ(x1, x

′
1) .

(12)

In the first integral we now substitute u = x1 − x2, v = x1 + x2 and in the second
u = x1 − x′

1, v = x1 + x′
1. After ordering the terms in the exponent we find that the

integration over v breaks down and yields a delta function of 4-momentum conserva-
tion. The integration over u yields the Fourier transform of the photon propagator. The
result is

K
0
μσντ (p1,p2 ;p′

1,p
′
2) = δ4(P − P ′) (−ie)2

(2π)4
γ α
μνγ

β
τσ iDFαβ(p − p′)

− δ4(P − P ′) (−ie)2

(2π)4
γ α
μσ γ β

τν iDFαβ(P ) , (13)
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with

P = p1 + p2 , P ′ =p′
1 + p′

2 ,

p = 1

2
(p1 − p2) , p′ = 1

2
(p′

1 − p′
2)

or

K
0
μσντ (p,p′;P) = −ie2

(2π)4
γ α
μνγ

β
τσ DFαβ(p − p′) + ie2

(2π)4
γ α
μσ γ β

τνDFαβ(P ) . (14)

As in (6.30) we now separate off the center-of-mass momentum P . After integrating
over P in analogy to (6.31) one gets the Bethe–Salpeter equation for the electron–
positron system in the ladder approximation:

(
1

2
/K + /p − m

)
μμ′

(
1

2
/K − /p + m

)
σ ′σ

χμ′σ ′(p) = [(Vdir + Vanni)χ(p)
]
μσ

,

(15)

with the direct interaction

[
Vdir χ(p)

]
μσ

= −ie2

(2π)4
γ α
μνγ

β
τσ

∫
d4p′ DFαβ(p − p′)χντ (p

′) , (16a)

and the annihilation interaction

[
Vanni χ(p)

]
μσ

= ie2

(2π)4
γ α
μσ γ β

τνDFαβ(K)

∫
d4p′ χντ (p

′) . (16b)

In the Feynman gauge the photon propagator is

DFαβ(q) = −4πgαβ

q2
(17)

and the interaction terms take the form

Vdir χ(p) = ie2

4π3

∫
d4p′

(p − p′)2
γ αχ(p′)γα , (18a)

Vanni χ(p) = − ie2

4π3

1

K2
γ α

∫
d4p′ Tr

[
γαχ(p′)

]
, (18b)

where we have not written out the Dirac indices. The direct term (18a) has exactly the
same form as for a system of two particles of different kinds with opposite charges,
eb = −ea , (cf. (5) in Example 6.3). The annihilation interaction enters with the same
power of e, but nevertheless it is much weaker since the denominator is very large,
namely K2 ≈ (2m)2 for weakly bound systems. In practice one therefore first solves
(15) without the annihilation interaction and then treats (18b) as a perturbation.

Supplement. One can bring the Bethe–Salpeter equation (15) into a form that is sym-
metric with respect to particles and antiparticles by using the charge conjugation trans-
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formation. The charge conjugated wave function reads6

ψc = Ĉψ̄T = Ĉγ0ψ
∗ . (19)

The transformation matrix Ĉ satisfies the condition

Ĉγ μĈ−1 = −γ μT (20)

and furthermore

ĈT = Ĉ† = Ĉ−1 = −Ĉ . (21)

We apply the charge conjugation matrix Ĉ on the right index of the two-particle wave
function χ and introduce a transformed wave function ψ :

ψμσ (p) = Cσσ ′χμσ ′(p) (22)

or in compact notation

ψ(p) = χ(p) ĈT . (23)

In turn we can use (21) and get

χ(p) = ψ(p) (ĈT )−1 = ψ(p) Ĉ . (24)

This transformation is inserted into (15) and the equation is multiplied by Ĉ−1 from
the right-hand side. Because of (20) only the relative sign between momentum and
mass terms in the Dirac operator is changed. After some manipulation one gets
(

/K

2
+ /p − m

)
1

(
/K

2
− /p − m

)
2
ψ(p)

= ie2

4π3

∫
d4p′

(p − p′)2

(
γ α
)

1 (γα)2 ψ(p′)

− ie2

4π3

1

K2
γ αĈ

∫
d4p′ Tr

[
γαψ(p′) Ĉ

]
. (25)

EXAMPLE

6.3 The Nonretarded Limit of the Bethe–Salpeter Equation

We continue to study the Bethe–Salpeter equation in the form (6.31) within the
ladder approximation and introduce an approximation in which it takes the form of
a simple Dirac equation with an interaction potential.

6 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000), Chap. 12.
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To this end we first have to determine the interaction kernel K
ab

(p,p′;P) in mo-
mentum space. In the ladder approximation (6.9) according to (6.23) one essentially
has to take the Fourier transform of the photon propagator DF(x − x′):

K
ab

0 (p1,p2;p′
1,p

′
2)

= 1

(2π)8

∫
d4x1 d4x2 d4x′

1 d4x′
2 ei(p1·x1+p2·x2−p′

1·x′
1−p′

2·x′
2)

× (−iea) (−ieb) γ μ
a γ b

μ iDF(x1 − x2)δ
4(x1 − x′

1) δ4(x2 − x′
2) . (1)

Transforming to the new variables u = x1 − x2 and v = x1 + x2 yields

K
ab

0 (p1,p2;p′
1,p

′
2) = (−iea) (−ieb)

(2π)4
γ a
μγ b

ν δ4[(p1 + p2) − (p′
1 + p′

2)
]

× iDμν
F

(
1

2
(p1 − p2) − 1

2
(p′

1 − p′
2)

)
(2)

or, according to (6.27),

K
ab

0 (p,p′;P) = −ieaeb

(2π)4
γ a
μ D

μν
F (p − p′) γ b

ν . (3)

In Feynman gauge, which we have used so far, the momentum-space representation
of the photon propagator reads

D
μν
F (q) =

∫
d4x eiq·x D

μν
F (x) = − 4πgμν

q2 + iε
. (4)

Thus in momentum space the Bethe–Salpeter equation (6.31) in the ladder approxi-
mation takes the form
(

1

2
/Ka + /pa − m

) (
1

2
/Kb − /pb − m

)
χab(p)

= ieaeb

∫
d4k

(2π)4
γ a
μ D

μν
F (k) γ b

ν χab(p + k) . (5)

The integration kernel in (5) is still too complicated for practical purposes. The prob-
lem can be simplified if one neglects the frequency dependence, i.e. if one replaces

D
μν
F (k0,k) → D

μν
F (0,k) . (6)

As we shall examine further in Example 6.4 this means that one neglects the retarda-
tion of the interaction. If we multiply (5) by γ a

0 γ b
0 , we get

F̂ χab(p) = ieaeb

(2π)4

∫
d4k γ a

0 γ a
μγ b

0 γ b
ν D

μν
F (0,k)χab(p + k) (7)

with the abbreviation

F̂ = γ a
0

(
1

2
γ a
μKμ + γ a

μpμ − m

)
γ b

0

(
1

2
γ b
ν Kν − γ b

ν pν − m

)
. (8)
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In the center-of-mass system characterized by p1 + p2 = 0 the vector K representing
the total momentum is purely time-like, that is

K = (2m − EB,0) = (E,0) , (9)

so that we get

F̂ (p) =
(

1

2
E − αa · p − βam + p0

) (
1

2
E + αb · p − βbm − p0

)

=
(

1

2
E − Ĥa(p) + p0

) (
1

2
E − Ĥb(p) − p0

)
, (10)

with the free Dirac Hamiltonians

Ĥa(p) = αa · p + βam , (11a)

Ĥb(p) = −αb · p + βbm . (11b)

Using the approximation (6) it is possible to separate the frequency integration. We
define a new wave function that depends only on the spatial components of the mo-
mentum vector:

φab(p) =
∫

dp0 χab(p0,p) . (12)

After performing the k0 integration on the right-hand side of (7) we thus get the ap-
proximate result

F̂ (p)χab(p) = ieaeb

2π

∫
d3k

(2π)3
γ a

0 γ a
μγ b

0 γ b
ν D

μν
F (0,k)φab(p + k) , (13)

or, written in a shorthand notation,

F̂ (p)χab(p) = Γ (p) . (14)

To make use of this equation one must integrate over the variable p0 on the left-hand
side of (13) according to (12). To this end we invert the operator F̂ (p), i.e. we bring
it to the right-hand side. This can be done by the following trick: introduce projec-
tion operators for the components of the wave function with positive and negative
frequency, namely

Λ̂n±(p) = ω(p) ± Ĥn(p)

2ω(p)
with n = a, b , (15)

where ω(p) = +√m2 + p2. Because of Ĥ 2
n (p) = ω2(p) one can verify right away

that the operators (15) fulfill the usual rules for orthogonal projection operators:

(Λ̂n±)2 = Λ̂n± , Λ̂n+Λ̂n− = 0 , Λ̂n+ + Λ̂n− = 1n . (16)

Furthermore there is the important relation

Ĥn(p)Λ̂n±(p) = Λ̂n±(p)Ĥn(p) = ±ω(p)Λ̂n±(p) . (17)
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After applying the projection operator (15) the Hamiltonians in (10) can thus be re-
placed by the frequency ω (times the unit matrix):

Λ̂a± (p)Λ̂b±(p)F̂ (p)χab(p)

=
(

1

2
E ∓ ω(p) + p0

)(
1

2
E ∓ ω(p) − p0

)
Λ̂a±(p)Λ̂b±(p)χab(p) , (18)

where all of the four combinations of signs are admitted. The Bethe–Salpeter equation
(14) then becomes a system of four projected equations:
(

1

2
E∓ω(p)+p0

)(
1

2
E∓ω(p)−p0

)
χ±±(p) = Λ̂a±(p)Λ̂b±(p)Γ (p) , (19)

with the projected wave functions

χ±±(p) = Λ̂a±(p)Λ̂b±(p)χab(p) . (20)

In a completely analogous way one defines the projected wave functions φ±±(p) =
Λa±(p)Λb±(p)φab(p) by integrating over p0 (cf. (12)). Making use of (17) the operator
on the left-hand side of (13) has been replaced by a simple number, which can be
brought to the right-hand side by division. Thus it is also possible to eliminate the
frequency variable p0 on the left-hand side of (19) by integrating according to (12),
i.e.

φ±±(p) =
∫

dp0χ±±(p)

=
∫

dp0
1

1
2E ∓ ω(p) + p0

1
1
2E ∓ ω(p) − p0

Λ̂a±(p)Λ̂b±(p)Γ (p) . (21)

To make (21) unique we have to determine how to treat the poles when integrating
over p0. In this context we remember the rule that we have already used frequently,
which states that the condition of causality can be fulfilled by giving the particle mass
a small negative imaginary part, i.e. m → m − iε, and consequently also ω(p) →
ω(p) − iδ. This means that

φ±±(p) =
(∫

dp0
1

1
2E ∓ ω(p) + p0 ± iδ

1
1
2E ∓ ω(p) − p0 ± iδ

)
Γ±±(p) , (22)

where

Γ±±(p) = Λ̂a±(p)Λ̂b±(p)Γ (p) .

The p0 integration can be performed using the theorem of residues, where the inte-
gration path is closed by a half circle in the upper or lower half plane. This is possible
because the integrand falls off like 1/|p0|2 for large p0 and therefore does not con-
tribute to the integral. The integrand has two poles at

p0 = 1

2
E ∓ ω(p) ± iδ , (23a)

p0 = −1

2
E ± ω(p) ∓ iδ . (23b)
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As we have already emphasized, both signs in (22) can be chosen independently. If
both signs of δ in (23a) and (23b) are equal, then both poles are in the same half plane.
Since one can close the integration path in the other half plane, where the integrand is
regular, the theorem of residues yields

φ+−(p) = φ−+(p) = 0 . (24)

In the opposite case one gets

∞∫

−∞
dz

1

z − a ∓ iδ

1

z + b ± iδ
= ± 2π i

a + b
(25)

and therefore

φ++(p) = − 2π i

E − 2ω(p)
Γ++(p) , (26a)

φ−−(p) = 2π i

E + 2ω(p)
Γ−−(p) . (26b)

Owing to (24) and (26) the complete wave function φ(p) = φ++ +φ+− +φ−+ +φ−−
then obeys the integral equation

φ(p) = 2π i

(
Λ̂++(p)

2ω − E
+ Λ̂−−(p)

2ω + E

)
Γ (p) . (27)

We eliminate the denominators in (26) and subtract the resulting equations:

(
E − 2ω(p)

)
φ++(p) + (E + 2ω(p)

)
φ−−(p)

= −2π i
(
Γ++(p) − Γ−−(p)

)
. (28)

According to (17) the frequency ω(p) can be replaced by the Hamiltonians Ĥn. To do
this in a symmetric fashion we identify

−2ωφ++ + 2ωφ−− = (−ωΛ̂a+Λ̂b+ − Λ̂a+ωΛ̂b+ + ωΛ̂a− Λ̂b− + Λ̂a−ωΛ̂b−
)
φ

= (−Λ̂a+Λ̂b+Ĥa − Λ̂a+Λ̂b+Ĥb − Λ̂a−Λ̂b−Ĥa − Λ̂a−Λ̂b−Ĥb

)
φ

= (Λ̂a+Λ̂b+ + Λ̂a−Λ̂b−
) (−Ĥa − Ĥb

)
φ

= (1 − Λ̂a+Λ̂b− − Λ̂a−Λ̂b+
) (−Ĥa − Ĥb

)
φ

= (−Ĥa − Ĥb

)
φ .

In the last step the contributions from the mixed projection operators Λ̂a±Λ̂b∓ have
vanished since, because of (16), one can replace Ĥn by ±ω and then use (24). If we
now define a mixed projection operator

Λ̂(p) = Λ̂++(p) − Λ̂−−(p) = Λ̂a+Λ̂b+(p) − Λ̂a−Λ̂b−(p) , (29)
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then the right-hand side of (28) simply becomes −2π iΛ̂(p)Γ (p). Equation (28) then
becomes the Bethe–Salpeter equation in the nonretarded approximation:7

(
E − Ĥa(p) − Ĥb(p)

)
φ(p) = −2π iΛ̂(p)Γ (p) , (30)

where in the ladder approximation Γ (p) is given by the right-hand side of (13).
Equation (30) can also be brought into a more familiar form if one assumes that the

solutions with negative energy can be neglected, i.e. if one makes the approximation

Λ̂(p) → 1 (31)

in (30). Equation (30) will now be transformed into coordinate space according to

φ(r) =
∫

d3p

(2π)3
e−ip·r φ(p) , (32)

i.e. using Γ (p) defined in (13), (14)
∫

d3p

(2π)3
e−ip·r (E − Ĥa(p) − Ĥb(p)

)
φ(p)

= eaeb

∫
d3p

(2π)3
e−ip·r

∫
d3k

(2π)3
γ a

0 γ a
μγ b

0 γ b
ν D

μν
F (0,k)φ(p + k) , (33)

or, with (32),
(
E − Ĥa(i∇) − Ĥb(i∇)

)
φ(r)

=
(

eaeb

∫
d3k

(2π)3
eik·r γ a

0 γ a
μγ b

0 γ b
ν D

μν
F (0,k)

)
φ(r)

= U(r)φ(r) . (34)

To arrive at this result the integration variable p was shifted to p + k in (33). Equa-
tion (34) has the same form as the ordinary Dirac equation with an effective interaction
potential U(r). In order to calculate this potential it is advantageous to use the pho-
ton propagator in the Coulomb gauge (cf. Chap. 4, (4.13–4.15)). In this gauge D00

F
depends only on the spatial components k, so that here the approximation (6) (ne-
glecting the frequency dependence) has a less drastic effect than in the commonly
used Feynman gauge of (4). Thus we insert

D
ij
F (k) = −4π

k2

(
kikj

|k|2 − δij

)
→ 4π

|k|2
(

kikj

|k|2 − δij

)
, (35a)

D00
F (k) = + 4π

|k|2 , (35b)

D0i
F (k) = Di0

F (k) = 0 . (35c)

The interaction potential then reads

U(r) = eaeb4π

∫
d3k

(2π)3
eik·r

[
1

|k|2
(

αa · k αb · k
|k|2 − αa · αb

)
+ 1

|k|2
]

. (36)

7 E.E. Salpeter: Phys. Rev. 87, 328 (1952).
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One of the Fourier integrals we need,

∫
d3k

(2π)3

eik·r

|k|2 = 1

4πr
, (37)

is the familiar Coulomb potential. The other one can be derived from this with a few
tricks. Using ∇k

(
1/|k|2)= −2k/|k|4 we write

I ≡
∫

d3k

(2π)3
eik·r (a · k) (b · k)

|k|4 = −i(a · ∇r)

∫
d3k

(2π)3
eik·r

(
b · k

|k|4
)

= i

2
(a · ∇r)

∫
d3k

(2π)3
eik·r (b · ∇k)

1

|k|2 , (38)

or, after partial integration,

I = − i

2
(a · ∇r)

∫
d3k

(2π)3

(
b · ∇k eik·r) 1

|k|2

= 1

2
(a · ∇r) (b · r)

∫
d3k

(2π)3

eik·r

|k|2 = 1

2
(a · ∇r) (b · r)

1

4πr
. (39)

On evaluating the gradients we have

I = 1

4π

1

2r

(
a · b − (a · r) (b · r)

r2

)
. (40)

Thus the effective potential reads

U(r) = eaeb

[
1

2r

(
αa · αb − (αa · r) (αb · r)

r2

)
− αa · αb

r
+ 1

r

]

= eaeb

[
1

r
− 1

2r

(
αa · αb + (αa · r) (αb · r)

r2

)]
. (41)

This potential is known as the Breit interaction. We shall derive it in an alternative
way in Example 6.4.

EXAMPLE

6.4 The Breit Interaction

The interaction between two Dirac particles is described covariantly by the exchange
of virtual photons. We will attempt to describe this interaction in a nonrelativistic
approximation by a potential U(r) (which does not depend on the time coordinate).
Of course this should lead to the Coulomb potential in the static limit. In addition we
want to calculate the relativistic corrections up to the order (v/c)2.

We shall proceed as follows. First we shall calculate the S-matrix element for the
one-photon exchange and then we shall examine which potential U(r) yields the same
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result in the desired approximation. As we have discussed in Exercise 3.2 the S-matrix
element for the graph

has the form

Sf i = −i
∫

d4x

∫
d4y j

(2)
f i (y)DF(y − x) j

(1)
f i (x) (1)

with the photon propagator DF and the two transition currents

j
(n)
f i (x) = enψ̄

(n)
f (x)γψ

(n)
i (x)

= j
(n)
f i (x) eiω(n)

f i tx , n = 1,2 . (2)

In the second line the time dependence has been separated off, thus defining the tran-
sition frequency ω

(n)
f i = E

(n)
f − E

(n)
i . The 4-vector index has been omitted for brevity.

If the particles are not distinguishable one must subtract the exchange term in (1).
Inserting (2) and the Fourier representation of the propagator (in Feynman gauge)

into (1) yields

Sf i = −i
∫

d4x

∫
d4y

∫
d4k

(2π)4
j

(2)
f i (y) eiω(2)

f i ty −4πe−ik·(y−x)

k2 + iε
j

(1)
f i (x) eiω(1)

f i tx . (3)

The ty integration yields a δ function. With k = (ω,k) we get

Sf i = 4π i
∫

d3x

∫
d3y

∫
dtx

∫
dω

2π
2πδ

(
ω − ω

(2)
f i

)
ei
(
ω

(1)
f i +ω

)
tx

× j
(2)
f i (y) j

(1)
f i (x)

∫
d3k

(2π)3

e+ik·(y−x)

ω2 − k2 + iε
. (4)

After introducing spherical coordinates we can carry out the integration over the mo-
mentum with residue integration:

∫
d3k

(2π)3

e+ik·r

ω2 − k2 + iε
= 1

(2π)3

∞∫

0

k2dk

1∫

−1

d cos θk

2π∫

0

dφk

e+ikr cos θk

ω2 − k2 + iε

= i

(2π)2

1

r

∞∫

0

dk
k

k2 − ω2 − iε

(
eikr − e−ikr

)

= i

(2π)2

1

r

∞∫

−∞
dk

k

k2 − ω2 − iε
eikr . (5)
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The poles are located at k = ±(ω + iε′sgn(ω)). The residue integral (which must be
closed in the upper half plane) thus encircles only one pole yielding
∫

d3k

(2π)3

e−ik·r

ω2 − k2 + iε
= − e+i|ω|r

4πr
. (6)

If one also carries out the integrations over ω and tx , then the S-matrix element reads

Sf i = −2π iδ
(
ω

(1)
f i + ω

(2)
f i

)∫
d3x

∫
d3yj

(2)
f i (y)

ei|ωf i |·|y−x|

|y − x| j
(1)
f i (x) . (7)

As usual the δ function ensures the conservation of energy. Apart from that, the mag-
nitude of Sf i is determined by a coupling between the transition currents j

(1)
f i and j

(2)
f i

with a frequency-dependent interaction.
In order to understand this more deeply we go back one step and keep the time

integration. Using
∣∣ω(2)

f i

∣∣= ∣∣ω(1)
f i

∣∣, which follows from (7), we get

Sf i = −i
∫

d3y

∫
dt j

(2)
f i (y) eiω(2)

f i t

∫
d3x

ei
(
ω

(1)
f i t+|ω(1)

f i |·|y−x|
)

|y − x| j
(1)
f i (x) . (8)

If we consider a scattering process in which the energy of particle 1 is transferred to
particle 2, then ω

(1)
f i < 0, and

∣∣ω(1)
f i

∣∣= −ω
(1)
f i , so that, with (2), (8) can be cast in the

form

Sf i = −i
∫

dt

∫
d3y j

(2)
f i (y, t)A

(1)
f i (y, t) , (9)

where

A
(1)
f i (y, t) =

∫
d3x j

(1)
f i (x)

eiω(1)
f i (t−|y−x|)

|y − x|
=
∫

d3x
1

|x − y| j
(1)
f i (x, t − |y − x|) . (10)

Thus (9) implies that the transition current j
(2)
f i (y) interacts with the electromagnetic

field that was emitted by the current j
(2)
f i (x) of the other particle at an earlier time,

where the time difference is given by |y − x| ≡ |y − x|/c. Therefore (10) is just the
retarded potential. The frequency-dependent factor in (7) is thus responsible for the
retardation due to the finite propagation velocity of the interaction. For small particle
velocities (v/c � 1) we are therefore justified in replacing the exponential by the
lowest-order terms of its Taylor expansion:

ei|ωf i |·|y−x|/c

|y − x| ≈ 1

|y − x| + i

c
|ωf i | − 1

2c2
|ωf i |2|y − x| . (11)

In the following we will write out the powers of the velocity of light c explicitly. The
approximated S-matrix element reads

Sf i = −2π iδ
(
ω

(1)
f i + ω

(2)
f i

)
e1e2

∫
d3x

∫
d3y

× ψ̄
(2)
f (y)ψ̄

(1)
f (x)γ (1)

μ γ (2)μ ei|ωf i |·|y−x|

|y − x| ψ
(2)
i (y)ψ

(1)
i (x)
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� −2π iδ
(
ω

(1)
f i + ω

(2)
f i

)
e1e2

∫
d3x

∫
d3y

× ψ
(2)†
f (y)ψ

(1)†
f (x)

(
1(1)1(2) − α(1) · α(2)

)

×
(

1

|y − x| + i
|ωf i |

c
− 1

2c2
ω2

f i |y − x|
)

ψ
(2)
i (y)ψ

(1)
i (x) . (12)

In (12) only the terms of lowest order in v/c are to be taken into account. Since cα is
the velocity operator in the Dirac theory the consistent approximation is

(
1(1)1(2) − α(1) · α(2)

)( 1

|y − x| + i
|ωf i |

c
− 1

2c2
ω2

f i |y − x|
)

≈ 1(1)1(2)

|y−x| + i

c
1(1)1(2)|ωf i |− α(1) · α(2)

|y−x| − 1

2c2
ω2

f i |y−x|1(1)1(2) , (13)

up to the order 1/c2. If this is inserted into (12) the contribution of the term of or-
der 1/c obviously vanishes owing to the orthogonality of the wave functions ψ

(n)
f

and ψ
(n)
i . The last quadratic correction term in (13) looks somewhat unpleasant, since

it contains ωf i and thus depends on the initial and final states. Here one can take
advantage of a commutator trick. The wave functions are assumed to be stationary
eigenstates of a Hamiltonian, so that

Ĥ (1)(x)ψ
(1)
i (x) = E

(1)
i ψ

(1)
i (x) ,

Ĥ (1)(x)ψ
(1)
f (x) = E

(1)
f ψ

(1)
f (x) , (14)

and analogously the equation involving Ĥ (2)(x). Therefore, one can replace in (13)
each energy by the corresponding Hamiltonian, if one makes sure that it acts immedi-
ately on the wave function. With ω

(1)
f i = −ω

(2)
f i one gets

−ω2
f i |x − y| =

(
E

(1)
f − E

(1)
i

) (
E

(2)
f − E

(2)
i

)
|x − y|

= |x − y|Ĥ (1)Ĥ (2) − Ĥ (1)|x − y|Ĥ (2)

− Ĥ (2)|x − y|Ĥ (1) + Ĥ (1)Ĥ (2)|x − y|
=
[
Ĥ (1),

[
Ĥ (2), |x − y|]] . (15)

Thus one has to evaluate the double commutator of the distance function |x − y| with
the Hamiltonians of the two particles. These Hamiltonians are of the form

Ĥ (1) = cα(1) · p̂x + β(1)m1c
2 + Ĥ

(1)
ext (x) , (16)

where only the momentum operator does not commutate with |x − y|. Ĥext here de-
notes the interaction with a possibly present (stationary) external potential, which does
not change the following considerations. Using [p̂, f (x)] = −i∇f (x) we get

[
Ĥ (1),

[
Ĥ (2), |x − y|]]= c2α(1) · (−i∇x)

[
α(2) · (−i∇y)|x − y|

]
. (17)
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The differentiation of |x − y| =
√∑

k(xk − yk)2 does not present any difficulties and
leads to

[
Ĥ (1),

[
Ĥ (2), |x − y|]]= c2

[
α(1) · α(2)

|x − y| − α(1) · (x − y)α(2) · (x − y)

|x − y|3
]

. (18)

Obviously the third term in (13) and the first term in (18) can be combined. The final
result reads

Sf i = − 2π iδ
(
ω

(1)
f i + ω

(2)
f i

)
e1e2

∫
d3x d3y ψ

(2)†
f (y)ψ

(1)†
f (x)

×
[

1(1)1(2)

|x − y| − α(1) ·α(2) + (α(1) ·n) (α(2) ·n)

2|x − y|

]
ψ

(2)
i (y)ψ

(1)
i (x) , (19)

with the direction vector n = (x −y)/|x −y|. Equation (19) can be interpreted in such
a way that the particles scatter at each other via a (nonretarded) effective interaction
U(x − y), namely

Sf i = −2π iδ
(
ω

(1)
f i + ω

(2)
f i

)∫
d3x

∫
d3y

× ψ
(2)†
f (y)ψ

(1)†
f (x)U(x − y)ψ

(2)
i (y)ψ

(1)
i (x) . (20)

The effective interaction operator has the form

U(x − y) = e1e2

|x − y| − e1e2

2

α(1) ·α(2) + (α(1) ·n) (α(2) ·n)

|x − y|
≡ UC(x − y) + UB(x − y) . (21)

As expected the first term is the Coulomb potential between the particles. Additionally
one gets a correction term UB, quadratic in the velocity, which is known as the Breit
interaction. It is interesting to note that (21) agrees with the retarded interaction of
two classical particles if one replaces the Dirac matrices by the classical velocity
α(i) → vi/c.

If one makes the nonrelativistic approximation also for the wave functions ψ
(n)
i,f ,

(21) can be reduced to a sum of contributions that one recognizes as spin–orbit and
spin–spin interactions. For further information see e.g. H.A. Bethe and E.E. Salpeter:
Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957), and
Example 6.5.

The Breit interaction is very useful for the calculation of energy shifts in many-
particle systems and in positronium (where one also has to take into account the Feyn-
man graph for virtual pair annihilation). However, one must keep in mind that (21) is
only an approximation. Its use is strictly justified only in perturbation theory. If one
simply includes the potential U in the Dirac equation as an interaction potential, this
can lead to wrong results. In particular one has to avoid the mixing of solutions with
positive and negative energies, which can be done by the introduction of projection
operators.8

8 J. Sucher: Phys. Rev. A22, 348 (1980).
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EXAMPLE

6.5 Nonrelativistic Reduction of the Two-Body Equation Applied to Positronium

We have learnt earlier in this chapter that a two-fermion system within QED has a for-
mally exact description in terms of the Bethe–Salpeter equation. One has to construct
a 4 × 4 = 16-component two-body wave function and a two-body propagator Sab

F . For
an exact description one would need to know the interaction kernel Kab , which is for-
mally represented by an infinite sum over all possible Feynman graphs. In practice,
however, this is too demanding and the Bethe–Salpeter equation can be applied only
in a simplified form, i.e. the ladder approximation. In this example we will use the
ladder approximation to sketch the derivation of a nonrelativistic Hamiltonian for the
positronium system, which is one of the cornerstones of QED.

Although we shall start from the full two-body problem, it is reasonable to reduce
the corresponding 16-component equation to those components which are largest in
the nonrelativistic limit. This both helps in practical calculations and leads to an equa-
tion that has a clear physical interpretation. The justification for this procedure, of
course, rests on the fact that positronium is a very weakly bound system. The electron
and positron are localized in orbitals having twice (owing to the reduced mass) the
hydrogen Bohr radius, which is large compared to the Compton wavelength

r0 ≈ 2

mα
� 1

m
.

The binding energy is of the order α2m, which is very small compared to the rest
mass 2m. In the ordinary single-particle Dirac theory the nonrelativistic approximation
leads from the 4-component Dirac equation to the 2-component Pauli equation. In an
elegant and systematic way this reduction is achieved using the Foldy Wouthuysen
technique.9

The idea of this method is to apply a unitary transformation ÛF which eliminates
the “odd” operators O contained in the Hamiltonian. The name odd is given to those
operators which couple the large and small components of the Dirac spinor; typical
examples are the matrices α and γ . Correspondingly those operators which are diag-
onal with respect to the large and small components are called “even”, designated by
the letter E . Examples of this class of operators are 1, β , Σ . The task then is to con-
struct a unitary operator ÛF such that the odd parts of the Hamiltonian are eliminated.
If the original Hamiltonian is written in the form

H = βm + E + O , (1)

according to Foldy and Wouthuysen the transformed Hamiltonian reads

H̃ = Û−1
F HÛF

= βm + E + β

2m
O2 + 1

8m2

[
[O,E ] ,O

]− β

8m3
O4 + . . . . (2)

9 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000), Chap. 11.
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This procedure has been generalized by Chraplyvy10 in such a way that it can be
applied to the two-body problem.

The principal idea of the method remains unchanged. However, the Hamiltonian H

now consists of 16 × 16 matrices, which are constructed from direct products of the
4 × 4 one-body Dirac matrices referring to particles 1 and 2. Generalizing the notion
of even and odd operators we now have to distinguish between four cases:

even even operators (EE); e.g. 1, β(1), β(2), Σ (1), Σ (1) · Σ (2);
even odd operators (EO), e.g. α(2), γ (2);
odd even operators (OE), e.g. α(1), γ (1);
odd odd operators (OO), e.g. α(1) · α(2), γ (1) · γ (2).

Here we have used the shorthand notation

α(1) ≡ α ⊗ 1 and α(2) ≡ 1 ⊗ α . (3)

The operators of type (EO), (OE), (OO) couple between the 16 components of the
two-body equation, while (EE) operators are diagonal with respect to large and small
components. Thus if we are able to find a unitary transformation Û12 that eliminates
the operators (OE), (EO), (OO) then the 16-component equation will decouple into
a set of four independent 4-component equations. One of them will contain the Pauli
approximation to the two-body equation while the remaining three equations describe
the admixture of negative-energy states and can be shown to vanish in the nonrelativis-
tic limit. In analogy to the Foldy Wouthuysen transformation operator ÛF, a unitary
operator Û12 can also be constructed for the 16-component two-body equation that
decouples the large components to any chosen order in 1/m.

We start from the general two-body Hamiltonian

H12 = β(1)m1 + β(2)m2 + (EE) + (EO) + (OE) + (OO) . (4)

As shown by Chraplyvy in a lengthy calculation, which we will not reproduce here,
the transformed Hamiltonian has the form

H̃12 ≡ Û−1
12 H12Û12

= β(1)m1 + β(2)m2 + (EE) + β(1)

2m1
(OE)2 + β(2)

2m2
(EO)2

− β(1)

8m3
1

(OE)4 − β(2)

8m3
2

(EO)4 + 1

8m2
1

[
[(OE), (EE)]− , (OE)

]
−

+ 1

8m2
2

[
[(EO), (EE)]− , (EO)

]
−+ β(1)β(2)

4m1m2

[
[(OE), (OO)]+ , (EO)

]
+

+ β(1) + β(2)

4(m1 + m2)
(OO)2 + . . . . (5)

In principle H̃12 still acts on a 16-component wave function. However, now it is pos-
sible to separate off a 4-component equation that contains “large components” only.

10 Z.V. Chraplyvy: Phys. Rev. 91, 388 (1953) and 92, 1310 (1953).
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In the case of the ordinary single-particle Foldy Wouthuysen transformation this is
achieved by replacing each 4 × 4 Dirac matrix

M =
(

a b

c d

)
4×4

simply by a, which is a 2 × 2 matrix, e.g.

β =
(

1 0
0 −1

)
4×4

→ 1 2×2 .

The analogous replacement in the two-body case reads, e.g.

β(1) =

⎛
⎜⎜⎝

1
1

−1
−1

⎞
⎟⎟⎠

16×16

→ 1 4×4 ,

β(2) =

⎛
⎜⎜⎝

1
−1

1
−1

⎞
⎟⎟⎠

16×16

→ 1 4×4 .

Application to the Positronium System. We start from (34), Example 6.3, which was
derived from the Bethe–Salpeter equation
(
E − H(1)(i∇) − H(2) (i∇)

)
Φ(r) = U(r)Φ(r) , (6)

where U(r) is the Breit interaction defined in (41), Example 6.3. Here

H(1) = α(1) · p + β(1)m1 ,

H (2) = −α(2) · p + β(2)m2 .

Written out explicitly (6) reads

HΦ(r) =
{
α(1) · p − α(2) · p + β(1)m1 + β(2)m2 + e1e2

r

[
1 − α(1) · α(2)

2

− (α(1) · r)(α(2) · r)

2r2

]}
Φ(r) = EΦ(r) . (7)

The positronium system is described if we set m1 = m2 ≡ m, e1 = −e2 ≡ e. To apply
the reduction method discussed above we have to identify the various types of even
and odd operators in the Hamiltonian:

(EE) = −e2

r
1 ,

(EO) = −α(2) · p ,

(OE) = +α(1) · p ,

(OO) = + e2

2r

[
α(1) · α(2) + (α(1) · r)(α(2) · r)

r2

]
. (8)
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From this the following ingredients entering (5) can be deduced:

(OE)2 = (EO)2 = p2 , (9a)

(OE)4 = (EO)4 = p4 , (9b)
{[

[(OE), (EE)]− , (OE)
]
− + [[(EO), (EE)]− , (EO)

]
−
}

= 2e2
[(

α(1) + α(2)
)

·
( r

r3
× p

)
+ 4πδ3(r)

]
, (9c)

[
[(OE), (OO)]+ , (EO)

]
+

= −2e2
[
p2

r
+ r

( r

r3
· p
)

p −
(
α(1) + α(2)

)( r

r3
× p

)]

− e2
[
α(1) · α(2)

r3
− 3

(
α(1) · r) (α(2) · r)

r5
− 8π

3
α(1) · α(2)δ3(r)

]
, (9d)

and

(OO)2 = e4

2r2

[
3 − 2α(1) · α(2) +

(
α(1) · r) (α(2) · r)

r2

]
. (9e)

We insert these expressions into (5) and perform the replacement β(1) → 1, β(2) → 1,
etc., as discussed above. The wave function consists of a direct product of two Pauli
spinors. This corresponds to the approximation that both particles are described by the
two upper components of their original bispinor. Thus the generalized Pauli equation
reads

H Pauli
12 ψ12(r) = Eψ12(r) , (10)

where

H Pauli
12 ≡ H0 + H1 + H2 + H3 + H4

and

H0 = −e2

r
+ p2

m
,

H1 = − 1

4m3
p4 ,

H2 = − e2

2m2

[
p2

r
+ r

( r

r3
· p
)

p

]
+ e2

m2
πδ3(r) ,

H3 = 3e2

4m2

( r

r3
× p

)(
σ (1) + σ (2)

)
,

H4 = − e2

4m2

[
σ (1) · σ (2)

r3
− 3(σ (1) · r)(σ (2) · r)

r5
− 8π

3
(σ (1) · σ (2))δ3(r)

]
. (11)

Terms of the order e4 have been neglected. The various parts of the two-body Pauli
Hamiltonian have an intuitive interpretation. H0 is the nonrelativistic Schrödinger op-
erator (the rest mass has been subtracted from (10)). H1 describes the first-order cor-
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rections due to the velocity dependence of the mass. H2 contains the classical relativis-
tic correction to the interaction of two charged particles due to the effect of retardation
and the Darwin term due to Zitterbewegung. H3 is the interaction between the total
spin s = s(1) + s(2) = 1

2 (σ (1) + σ (2)) and the relative orbital angular momentum of
the particle, L = r × p. H4 is the magnetic dipole interaction between the magnetic
moments of the electron and positron (spin–spin interaction).

With some more thought we come to the conclusion that the Hamiltonian (11) does
not contain the whole truth about the positronium system. We have treated the two
particles as independent objects having opposite charge. Because we are dealing with
a particle antiparticle system, however, the process of virtual pair annihilation also has
to be taken into account. Thus the annihilation interaction introduced in Exercise 6.2
has to be included. We will not go through the steps leading to the nonrelativistic limit
of this interaction but only quote the resulting additional contribution to the Hamil-
tonian:

H5 = e2π

2m2

(
3 + σ (1) · σ (2)

)
δ3(r) .

Note that this interaction only contributes for states with angular orbital momentum
L = 0 (because of the delta function) and total spin S = 1 (since σ (1) · σ (2) = −3 for
singlet states).

Including the Hamiltonians H1 to H5 as perturbations to the H0 problem will lead
to the energy levels of positronium11 correct to order α4.

6.2 Biographical Notes

SALPETER, Edwin Ernest, American physicist. �3.12.1924 in Vienna. S. studied at Sydney
University (Australia) and at the University of Birmingham where he got his PhD in 1948. He
became research associate and later professor at Cornell University and Director of Cornell’s
Center of Radiophysics and Space Research. S. worked with H. Bethe on few-electron systems
and the quantum mechanical two-body problem (the Bethe–Salpeter equation). S.’s main field
of research has been astrophysics where he worked on nuclear fusion mechanisms in stars, the
structure of collapsed stars, interstellar matter, clusters of galaxies etc.

11 See for example M.A. Stroscio: Phys. Rep. 22, 215 (1975). For the calculation of radiative correc-
tions up to the order α6 see G.S. Adkins, R.N. Fell, P.M. Mitrikov: Phys. Rev. A65, 042103 (2002).



Quantum Electrodynamics of Strong Fields 7

Up to now, our considerations in this book have mainly treated the behaviour of elec-
trons (or positrons) under the influence of weak perturbations. In this chapter we want
to deal with phenomena that occur in the presence of strong electromagnetic fields.1

We shall see that a novel “effect of zeroth order” occurs in this case which cannot
be described by perturbation theory as usual: the ground state (the “vacuum”) of the
theory becomes unstable and changes at a certain strength of the potential. At first, we
shall discuss the process qualitatively.

Normally, i.e. in weak fields, the energetically lowest stable state is characterized
by the fact that no (real) particles are present; in the case of QED this means neither
electrons nor positrons. In the absence of an external field the Dirac equation possesses
only continuum solutions with energies Ep = ±

√
m2

0c
4 + p2c2. The vacuum state is

determined by the requirement that all positive energy states are empty and all negative
energy states are occupied (see Fig. 7.1).

Fig. 7.1. The vacuum of the
Dirac theory in the absence of
an external field

In Dirac’s hole picture this means that neither free electrons nor free positrons (i.e.
holes in the lower continuum) are present. The formally infinitely large energy and
charge of the “Dirac sea” are unobservable in principle and are “renormalized away”.
Therefore, the physically observable vacuum (without electromagnetic field) is free
of particles and is electrically neutral. We now switch on an external electromagnetic
field Aμ(x). The approximation of an external field means that Aμ(x) is assumed to
be given classically and that it is not influenced by the electrons. In reality such a field
is very well represented by that of an atomic nucleus with charge −Ze since its mass is
extremely large compared to the electron mass (mp/me ∼ 2000). Macroscopic fields
and coherent electromagnetic radiation can also be described in terms of an external
field.

1 Detailed presentations may be found in W. Greiner, B. Müller, J. Rafelski: Quantum Electrodynam-
ics of Strong Fields (Springer, Berlin, Heidelberg, 1985).

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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In order to realize the essential effect we consider an electrostatic potential well
A0(x) of finite extent. If the potential is positive, electrons can be bound in the well.

Fig. 7.2. The spectrum of the
Dirac equation in the presence
of a weak external binding po-
tential

This means that one or more electronic levels E1,E2, . . . are lowered into the energy
gap between E = +m0c

2 and E = −m0c
2. The corresponding wave functions are

spatially localized in the region of the potential well. The basic structure of the vacuum
will not be changed, however, because it is still energetically favourable to have the
lowered states unoccupied (Fig. 7.2).

This seems to change if the potential is so strong that E1 becomes negative, i.e. if
the binding energy EB = m0c

2 − E1 surpasses the value m0c
2. By adding one elec-

tron to the system, more energy can be emitted than is contained in the rest mass of
the electron. This leads to the curious phenomenon that according to mass–energy
equivalence the system becomes lighter than it would be without the electron! How-
ever, since charge conservation must be fulfilled rigorously there is no way to produce
a single electron; only electron–positron pairs can be created. The energy threshold
for this is 2m0c

2 and hence a system with empty energy levels remains stable also in
the range −m0c

2 < E1 < 0 (Fig. 7.3a).

Fig. 7.3. The vacuum of the
Dirac theory in the case of
a strong external potential.
(a) Subcritical: the vacuum is
neutral. (b) Supercritical:
a positron is emitted sponta-
neously and the vacuum gets
charged

Things change, however, as soon as a state falls below the threshold E = −m0c
2.

An electron–positron pair can then be created without the need to expend additional
energy (e.g. from an incoming photon). There is even a surplus which is available
as kinetic energy, namely Ekin = EB − 2m0c

2 = |E1| − m0c
2. When passing beyond

a certain critical potential strength the following will happen: An e+e− pair is created
spontaneously. The electron is attracted and stays inside the potential well, whereas
the positron is repelled and thus escapes with kinetic energy Ekin (Fig. 7.3b).

This process may also be interpreted in the following way: as the potential strength
is increased the state E1 “dives into the lower continuum” and merges with it. If it
has been empty previously then the Dirac sea now contains an additional hole which
physically corresponds to a positron. After a certain length of time (we shall calculate
this time more precisely) a new stable ground state is formed: the previously empty (in
the subcritical case) potential well is now filled with one electron or, in other words,
the previously neutral vacuum has decayed into a charged vacuum. Of course, global
charge conservation is not violated by this. The emitted positron carries a positive
unit of charge to infinity, i.e. it escapes from any arbitrarily large but finite volume
surrounding the potential well.

The charge Qvac which the supercritical vacuum assumes depends on the strength
of the potential, namely on the number of levels E1,E2, . . . that have passed below
the threshold −m0c

2 and are thus submerged. If there is no magnetic field present, all
levels are twofold degenerate (equal energy for both spin orientations sz = ±1/2), so
that Qvac runs over the values 2e,4e, . . . with increasing potential strength.

Before we give a quantitative description it is useful to consider qualitatively the
structure of the quantum-mechanical wave functions in the various cases. We are look-
ing for eigensolutions ψ of the stationary Dirac equation with a scalar electromagnetic
potential A0(x) such that
(
cα · p + βm0c

2 + eA0(x)
)

ψ(x) = Eψ(x) . (7.1)

Here it is essential that the energy E and potential V (x) = eA0(x) occur in the com-
bination E − V (x). This means that the boundaries of the energy gap (which is in
the range between +m0c

2 and −m0c
2 in the field-free case) are shifted locally by the

potential. This is shown in Fig. 7.4 for the case of an attractive potential well.
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Fig. 7.4. The energy gap of
the Dirac equation in the pres-
ence of an electrostatic poten-
tial well

Inside the energy gap is the classically forbidden region, where only exponentially
decaying wave functions are possible. Outside the gap, i.e. for |E − V | > m0c

2, there
are oscillating solutions. Since V (x) is assumed to vanish asymptotically, we obtain
for E > m0c

2 and E < −m0c
2 oscillating continuum wave functions that extend to

infinity. The effect of the potential well is to deform these wave functions. In ordinary
weak potentials this distortion does not lead to a qualitative change of the character of
the wave function. In Fig. 7.5 two typical wave functions of the upper (a) and lower (b)
continuum are sketched. (The picture is somewhat schematic since strictly we have to
deal with four-component spinor functions.) It is the attractive potential which makes
it possible that there are spatially localized bound wave functions at discrete energies
in the region −m0c

2 < E < +m0c
2 (case (c) in Fig. 7.5). However, if the potential

well is deep enough one (or more) of the bound states can fall below the threshold
−m0c

2. The wave function then necessarily has to change its character, because it can
no longer decay exponentially but extends to infinity. Its shape is displayed as case (d)
in Fig. 7.5.

Fig. 7.5. Schematic represen-
tation of the Dirac wave func-
tions of a deep potential well:
(a) free electron state, (b) free
positron state, (c) bound elec-
tron state, (d) resonance in the
lower continuum

We can now distinguish three regions: in the interior of the potential well the wave
function resembles that of an ordinary bound state; outside it oscillates as a continuum
wave. Both regions are connected by a zone in which the energy is in the “forbidden”
energy gap.

This situation strongly reminds us of a process familiar from nonrelativistic quan-
tum mechanics, namely the tunnel effect that occurs, for example in α decay or in
solid-state physics. Tunneling is possible whenever a particle must pass through a re-
gion of space without having the classically required energy as, for example shown in
Fig. 7.6 for a potential barrier.
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Fig. 7.6. Illustration of the
tunnel effect in nonrelativistic
quantum mechanics

A particle sitting in the potential well is in a “quasi-bound” state. It can tunnel
through the energetically forbidden region of the potential barrier with a certain decay
rate (probability per time). We can now say in full analogy that a hole in the super-
critical bound state tunnels through the energy gap between the upper and the lower
continuum in order to escape as a positron.

It is well known that the decay rate in a tunnel process decreases exponentially
with the width and height of the barrier to be passed (the “Gamow factor”). This is
also valid for the decay of the neutral vacuum. This explains why spontaneous pair
production is not observed in macroscopic electrostatic fields. Potential differences of
several megavolts can be easily produced but typically they extend over a range of
meters which makes the pair production rate extremely small. A rough estimate tells
us that pair production becomes considerable if the potential �V = e�A0 changes by
the value of the rest-mass m0c

2 over a characteristic length scale which is set by the
Compton wavelength of the electron λ̄ = �/m0c. Because of E = −∇A0 this leads to
a critical field strength of the order of magnitude of

Ecr ∼ �A0

�x
= m0c

2

e�/m0c
= m2

0c
3

e�
= 1

e

511 keV

386 fm
= 1.3 × 1016 V

cm
. (7.2)

We shall encounter this critical field strength once again in Sect. 7.3 where a homo-
geneous electric field will be studied. Field strengths of magnitude Ecr occur only
in microscopic systems.2 On the other hand the size of the potential region has to
be large enough that (by the uncertainty relation) localization of the wave function is
possible. There is only one experimentally accessible system in which the decay of
the vacuum may be examined: a heavy atom with very high nuclear charge number Z.

7.1 Strong Fields in Atoms

Nature provides atomic nuclei as an almost ideal source of strong external electric
fields. A nucleus of charge Z and mass number A produces a spherically symmetric
electric potential of the form

V (r) = ZU(r) =
{−Ze2/r for r > R

−(Ze2/R)f (r) for r < R
, (7.3)

where the charge radius R of the nucleus is given approximately by

R = 1.2A1/3 f m . (7.4)

2 We shall not take up here the matter of possible laser fields of very high intensity.
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If one models the nucleus as a homogeneously charged sphere with a sharp edge,
which is sufficient for most purposes, then the bottom of the potential well is parabolic,
i.e.

Fig. 7.7. The Coulomb poten-
tial of a point nucleus (solid
line), of a homogeneously
charged sphere (dashed line)
and of a charged spherical shell
(dotted line)

f (r) = 1

2

(
3 − r2

R2

)
. (7.5)

As a crude but simple approximation one sometimes uses f (r) = 1, corresponding to
a charged spherical shell. The three cases are shown in Fig. 7.7.

The potential in the interior and the maximum electric field strength (at the nuclear
surface), e.g. for a uranium nucleus (Z = 92,A = 238), are very large, namely

|Vmax| = 3

2

Ze2

R
� 26.7 MeV � 52 m0c

2

and

|Emax| = Ze

R2
� 2.4 × 1019 V

cm
� 1800 Ecr .

While these numbers by far exceed the values of 2m0c
2 and Ecr one cannot call the

electric field of a uranium nucleus supercritical. In addition the region of space over
which the field extends has to be large enough to make the localization of a quantum-
mechanical wave function possible. This condition is not met in ordinary atoms. In
contrast to the situation shown in Fig. 7.5 the electronic levels here are not bound very
deeply.

In order to investigate the behaviour of the states the Dirac equation (7.1) has to
be solved for the central potential (7.3). The procedure is described extensively in
Chap. 9 of the volume RQM and we shall only briefly repeat it here.

The angular-momentum operator and the parity operator commute with the Dirac
Hamiltonian HD = α · p + βm0 + V (r) for a potential of the form (7.3). Hence the
wave functions can be classified according to their angular momentum j and parity π .
The ansatz for the bispinor wave function is

ψjm(x) = 1

r

(
u1(r)χκm(Ω)

iu2(r)χ−κm(Ω)

)
, (7.6)

with the two-component spherical spinors

χκm(Ω) =
∑

μ=±1/2

(
l 1

2 j
∣∣m − μμm

)
Ylm−μ(Ω)χμ , (7.7)

where χ1/2 = (10
)
, χ−1/2 = (01

)
. κ is the eigenvalue of the operator K̂=β(σ ·L+1) and

has the value

κ =
⎧⎨
⎩

−(l + 1) = −
(
j + 1

2

)
for j = l + 1

2

l = +
(
j + 1

2

)
for j = l − 1

2

.
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The Dirac equation (7.1) reduces to a system of two coupled ordinary differential
equations of first order (� = c = 1)

d

dr
u1 = −κ

r
u1 + (E + m0 − V (r)

)
u2 , (7.8a)

d

dr
u2 = −(E − m0 − V (r)

)
u1 + κ

r
u2 . (7.8b)

For all energies E > m0, E < −m0, (7.8) possesses continuum solutions which are
regular at the origin (r = 0) and oscillate asymptotically (r → ∞). In the energy gap
−m0 < E < m0 only at certain discrete energy eigenvalues Enj are solutions found
that fulfill the regularity requirement at r → 0 and r → ∞ simultaneously and are
thus normalizable:

∞∫

0

dr
(
u2

1 + u2
2

)
= 1 . (7.9)

The system (7.8) can be solved numerically without difficulty in order to determine
the solutions for arbitrary potentials. For some potentials the solution may also be
found analytically. For this purpose it is useful to rewrite the system (7.8) into a single
differential equation of second order.

A closed solution is obtained in the case of a pure Coulomb potential, V (r) =
−Zα/r for all r . It is composed essentially of confluent hypergeometric functions.
The energy eigenvalues satisfy Sommerfeld’s well-known fine-structure formula, see
RQM

Enj = m0

[
1 +

(
Zα

n − |κ| + √
κ2 − Z2α2

)2
]− 1

2

, (7.10)

with the principal quantum number n = 1,2, . . . . Obviously this formula is no longer
valid for charges Zα > |κ|, because then the root γ = √

κ2 − Z2α2 becomes imagi-
nary. This is seen especially clearly for the most deeply bound 1s state (κ = −1, n = 1)
whose energy is E1s = m0

√
1 − (Zα)2. The function E1s(z) breaks off with vertical

tangent dE1s/dZ → −∞ as Zα → 1.
We recognize the reason for this behaviour in the shape of the wave function near

the origin. For r → 0 the Coulomb potential dominates: | V |� E,m0. By elimination
of u2 in the system (7.8) (cf. Exercise 7.1), we get the differential equation for u1

(r → 0):

u′′
1 + 1

r
u′

1 + (Zα)2 − κ2

r2
u1 = 0 . (7.11)

The regular solution of (7.11) is

u1(r) ∼ r

√
κ2−(Zα)2

for r → 0 . (7.12)

The exponent becomes imaginary in the case Zα >| κ |. If we construct a real solution
it will oscillate with infinite frequency like sin(

√
(Zα)2 − κ2 ln r + δ). Since such

a singular wave function is not acceptable, there is no solution of the problem of an
electron in a pure Coulomb potential for Zα >| κ |.3

3 For a resolution of this problem see Example 7.5.
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This is because we did not formulate the problem correctly. In reality the source of
the Coulomb field has finite extension so that the potential V remains finite as given
in (7.3). In this case the singular behaviour (7.12) of the wave function at the origin
does not arise. The energy levels can then be traced continuously beyond the point
Zα =| κ |.

Solving the Dirac equation with the truncated Coulomb potential (7.3) is more
involved compared to the case of the pure Coulomb potential. A way to do this is
to construct at first separately solutions u

(i)
1 , u

(i)
2 in the inner region and u

(a)
1 , u

(a)
2 in

the outer region. In each region there are two linearly independent solutions of the
system (7.8) of differential equations of first order. The inner solution is required to be
regular at the origin, r → 0, whereas the outer solution should decay exponentially at
infinity, r → ∞. Both solutions have to be matched at a point R0 that can in principle
be chosen arbitrarily. We can do this by making the ratios of the large to the small
component of the wave function equal,

u
(i)
1 (R0)

u
(i)
2 (R0)

= u
(a)
1 (R0)

u
(a)
2 (R0)

. (7.13)

This condition is not fulfilled in general. The two solutions can be joined continuously
to a total wave function regular at both boundaries only for certain discrete energy
eigenvalues (which can be determined by iteration). In contrast to (7.10) this procedure
normally cannot been done analytically.

EXERCISE

7.1 The Wave Function at the Diving Point

Problem. The Dirac wave function at the diving point (where the energy eigenvalue
is E = −m0) can be determined analytically with relative ease.

a) Write the radial Dirac equation (7.8) as a differential equation of second order
for u1 by elimination of u2.

b) Show that, in the case of the Coulomb potential V (r) = −Zα/r , at the peculiar
energy E = −m0 the wave function u1 satisfies Bessel’s differential equation, and find
the solution regular at infinity.

Hint: use the substitution  = √
8m0Zαr .

c) Find an equation which determines the critical charge Zcr of the 1s state for the
truncated Coulomb potential (V (r) = −Zα/R for r ≤ R,V (r) = −Zα/r for r ≥ R)
by matching the solutions in the inner and outer regions according to (7.13).

Solution. a) We differentiate the differential equation (7.8a) with respect to r , which
gives

u′′
1 = κ

r2
u1 − κ

r
u′

1 − V ′u2 + (E + m0 − V )u′
2 . (1)

Applying (7.8a) once again we can eliminate u2 from this equation,

u2 = u′
1 + κ

r
u1

E + m0 − V
. (2)
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By use of the second differential equation (7.8b) we eliminate u′
2,

u′
2 = −(E − m0 − V )u1 + κ

r
u2 . (3)

The result from (1), (2), and (3) is

u′′
1 + V ′

E + m0 − V
u′

1

+
[
(E − V )2 − m2

0 − κ(κ + 1)

r2
+ κ

r

V ′

E + m0 − V

]
u1 = 0 . (4)

b) At the special energy E = −m0 (4) reduces by use of the Coulomb potential
V = −Zα/r to

u′′
1 + 1

r
u′

1 −
(

2m0Zα

r
− (Zα)2 − κ2

r2

)
u1 = 0 . (5)

The suggested substitution

2 = 8m0Zαr (6)

leads to

d

dr
= 4m0Zα



d

d
, (7a)

d2

dr2
= (4m0Zα)2

2

(
− 1



d

d
+ d2

d2

)
. (7b)

Insertion into (5) and multiplication by 2/(4Zα)2 leads to

d2

d2
u1 + 1



d

d
u1 −

{
1 − 4

[
(Zα)2 − κ2

]
2

}
u1 = 0 . (8)

This is just the differential equation obeyed by the modified Bessel functions

f ′′ + 1


f ′ −

(
1 + μ2

2

)
f = 0 . (9)

This differential equation is solved by the linearly independent solutions Kμ() and
Iμ(). The function Iμ() is to be rejected since it increases exponentially at infinity,
therefore the normalizable solution of the Dirac equation at the critical point reads

u1(r) = cKiν

(√
8m0Zαr

)
, (10)

with a normalising constant c that is of no interest here. The index of the modified
Bessel function (Mc Donald function) is purely imaginary in the case Zα >| κ |, being
given by

ν = 2
√

(Zα)2 − κ2 . (11)
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The lower component of the wave function follows from (2)

u2 = c

Zα

[
1

2

√
8m0Zαr K ′

iν

(√
8m0Zαr

)
+ κKiν

(√
8m0Zαr

)]
, (12)

where K ′
iν denotes the derivative of the Bessel function with respect to its argument

and (7a) has been used. Remarkably, the “critical wave function” decays exponentially
as a function of

√
r for large values of r , since4

Kiν(z) →
√

π

2z
e−z for z → ∞ . (13)

The limit r → 0 is more involved. By use of the (9.6.7), and (6.1.31) of Abramowitz
we get

Kiν(z) →
√

π

ν sinhπν
sin

(
ν ln

2

z
+ argΓ (1 + iν)

)
. (14)

As we have already discussed in connection with (7) this means that the wave function
oscillates like sin

(√
(Zα)2 − κ2 ln r + δ

)
.

c) In order to obtain a wave function regular also at the origin the solutions (10),
(12) have to be matched to an inner solution u(i) at the nuclear radius R. Since the
potential in this region is constant, V0 = −Zα/R the free spherical solutions of the
Dirac equation can be taken (RQM , Chap. 9). They are

u
(i)
1 = c′ βr jl(βr) ,

u
(i)
2 = c′ sgnκ

β

E − V0 + m0
βr jl(βr) , (15)

where jl denotes the spherical Bessel function and β =
√
(E − V0)

2 − m2
0. The order

of the Bessel functions is l = −κ − 1, l = −κ for κ < 0 and l = κ, l = κ − 1 for κ > 0.
In the special case κ = −1 (s1/2 states) (15) reads

u
(i)
1 = c′ sinβr ,

u
(i)
2 = −c′ β

E − V0 + m0

(
sinβr

βr
− cosβr

)
. (16)

The matching condition (13) for the inner and outer solutions then has the form

− sinβR

sinβR
βR

− cosβR

E − V0 + m0

β
= ZαKiν

1
2

√
8m0ZαR K ′

iν − Kiν
(17)

to be evaluated at the energy E = −m0c
2. The second factor on the left-hand side can

be approximated by 1 because of | V0 |� m0. By the same reason β �| V0 |= Zα/R.
Then (17) may be rewritten

K ′
iν()

Kiν()
= 2(Zα) cot(Zα) (18)

4 M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover), Chap. 9.7.
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Fig. 7.8. Graphical determi-
nation of the critical nuclear
charge for s-states. The solid
(dashed) curve is the left-
(right-) hand side of (18).
The curves intersect at Zcr =
172,242,324, . . .

where  = √
8m0ZαR. This is a transcendental equation for Z. Its solutions are the

critical charges for the states 1s1/2,2s1/2 etc. Figure 7.8 displays the graphical solution
of (18). To obtain reasonably realistic values of Zcr the following assumption was
made for the nuclear radius R as a function of Z:

R = (2.5Z)1/3 × 1.2 fm .

Figure 7.9 displays the result of numerical calculations for the energies of several
bound states as a function of nuclear charge Z. The energy levels descend progres-
sively with increasing Z. The energy of the lowest state (1s,κ =−1) becomes nega-
tive when Z > 150. The 1s level finally reaches the value E1s = −m0c

2 at a critical

Fig. 7.9. The lowest bound states of the Dirac equation for atoms with nuclear charge Z. The
Sommerfeld energies of the states with κ = −1 (ns1/2) and κ = +1 (np1/2) break off with
a vertical tangent at Zα = 1 (dotted curve). With the finite nuclear radius taken into account all
levels reach the edge of the lower continuum E = −m0c2 at a corresponding critical charge Zcr.
The bound states can be followed into the lower continuum as resonances (the energy width is
magnified by a factor of 10)
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charge Z1s
cr � 173. The same happens for the 2p1/2 state with κ = +1 at Z

2p1/2
cr � 185,

whereas higher states reach the lower continuum at much larger nuclear charges.
How sure can one be that this picture is not qualitatively changed by radiative QED

corrections which, after all, also will grow with nuclear charge? This problem was in-
vestigated by performing calculations of vacuum polarization and electron self-energy
taking into account the exact wave functions in the nuclear Coulomb potential, cf. the
discussion at the end of Sect. 5.4. In this way the perturbation expansion with respect
to the parameter Zα is summed to all orders. The vacuum polarization correction is
attractive and at the diving point Z = Zcr was found5 to lead to a shift of the 1s energy
of �EVP

1s (Zcr) = −10.68 keV. The self-energy correction6 is nearly equal in size but
has the opposite sign, �ESE

1s (Zcr) = +10.99 keV. Thus the total shift in the K-shell
energy due to quantum corrections (of first order in α but exact with respect to Zα)
is only �E1s(Zcr) = +0.31 keV, less than 0.1% of the binding energy. It therefore
seems clear that the transition to a charged vacuum will occur at the critical nuclear
charge Zcr = 173.

The large gain in binding energy of the levels having κ = ±1 is accompanied by
drastic changes in the wave functions. The radial density r2ψ†(r)ψ(r) of the 1s wave
function is plotted in Fig. 7.10 for the three nuclear charges Z = 100,135, and 170.
A scaled representation has been chosen that does already account for the “trivial”
shrinking of the atomic radius like 1/Z. As is well known the non-relativistic 1s

Fig. 7.10. The radial electron
density r2ψ†ψ of the 1s

state divided by Z as a func-
tion of the radial distance
times Z. The nonrelativistic
density is independent of Z

in this scaled representation.
In contrast, we see that the
Dirac wave functions shrink
strongly in the range Zα ≥ 1.
The inset displays the electron
density at the origin scaled
by Z−3 as a function of Z

5 M. Gyulassy: Nucl. Phys. A244, 497 (1975).
6 G. Soff, P. Schlüter, B. Müller, W. Greiner: Phys. Rev. Lett. 48, 1465 (1982).
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hydrogen wave function is of the form

ψ1s = 2

(
Z

aB

)3/2

e−rZ/aB ,

with Bohr’s radius aB = λ̄e/α = 52918 fm. The corresponding density is independent
of Z in the representation used in Fig. 7.10. We see that the influence of relativistic
effects is still rather small in normal atoms (Z ≤ 100). If one proceeds into the range
Zα > 1, the wave function entirely changes its shape and shrinks to a fraction of
its normal extent aB/Z. A total “collapse” of the wave function is avoided only by
the finite nuclear radius R. The strong increase of the electron density at the origin
ψ(0)†ψ(0) as a function of Z can be seen even more distinctly in the inset of Fig. 7.10.
The nonrelativistic Z dependence again has been factored out by scaling with Z−3.
The Dirac 1s wave function increases in density by a factor of about 1000 at large Z

compared to the nonrelativistic value. This effect is even more drastic in the case
of the 2p1/2 state which nonrelativistically has a node at r = 0 but whose density
progressively resembles that of the 1s state at large Z. This increase is effected by the
lower component u2 of the wave function which normally is small.

The physically most interesting effect occurs if the critical nuclear charge Zcr is
surpassed. As we have discussed in the previous section, the bound state “dives” into
the lower continuum of the Dirac equation and two (because of the spin degener-
acy, m = ±1/2) positrons can be emitted spontaneously. This shows up mathemat-
ically by the fact that the continuum contains a resonance. The previously bound
state does no longer exist as a discrete eigensolution of the Dirac equation but is
mixed with the continuum. This admixture is concentrated around a mean reso-
nance energy Er in a narrow region with width Γ . This is shown schematically in
Fig. 7.11.

Fig. 7.11. A state that is dis-
crete in the subcritical case
Z < Zcr becomes distributed
with a certain width over
many neighbouring contin-
uum states in a supercritical
potential Z > Zcr

The figure illustrates how a state that has been discrete in the subcritical poten-
tial (a) is spread over a large number of neighbouring continuum states in the super-
critical case (b). The continuum has been discretized for better illustration in Fig. 7.11.
We achieve this by a trick: we enclose the system into a box and impose a boundary
condition at the surface that is fulfilled only for discrete energy values (which are,
however, very dense in the limit V → ∞).

For a quantitative description of the resonance the Dirac equation (7.8) with the
supercritical potential has to be solved for various energy values E in the lower con-
tinuum. An inner solution u

(i)
1 , u

(i)
2 regular at the origin can again be given similar

to the case of bound states. The outer solution u
(a)
1 , u

(a)
2 is not determined uniquely,

however, because the two linearly independent solutions are both bounded at r → ∞
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and thus both are admissible. Therefore the matching condition (7.13) does not give
a restriction for the energy E, i.e. we obtain a continuum. The condition (7.13)
now determines the asymptotic behaviour of the solution. We will not carry out
explicitly the construction of the continuum solutions here but refer to the litera-
ture.7

One can construct real wave functions whose radial part displays the asymptotic
behaviour (r → ∞)

(
u1

u2

)
∼ 1√

πp

( √
E + m0 cos(pr + �)

−√
E − m0 sin(pr + �)

)

for E > m0 and

(
u1

u2

)
∼ 1√

πp

(√−E − m0 cos(pr + �)√−E + m0 sin(pr + �)

)
(7.14)

for E < m0. Here p =
√

E2 − m2
0, � = δE + δlog with

δlog = y

(
ln

2pr

| y | + 1

)
− π

4
, (7.15)

where y = ZαE/p. δlog is a phase shift growing logarithmically with r . It occurs also
in nonrelativistic quantum mechanics and is due to the long range of the Coulomb po-
tential. δE is the physical phase shift which is determined by the shape of the potential
in the inner region. The wave function (7.14) is normalised “on the energy scale”, that
means

∫
d3x Ψ

†
E′(x)ΨE(x) = δ(E − E′) .

Normally the phase shift δE is a function only slowly varying with energy (its value
is zero at the edge of the continuum, E = ±m0). When calculating the wave function
of the lower continuum in the case Z > Zcr, however, we find that there is an energy
region where the phase shift δE suddenly varies strongly. δE rises about a value of π

in a narrow energy range Er −Γ ≤ E ≤ Er +Γ . This is the characteristic signature of
a resonance. Inspection of the space dependence of the corresponding wave function
shows that the probability density at small distances is strongly enhanced compared to
the off-resonance case (| E −Er |� Γ ). Quantitative values are shown in Fig. 7.12 for
nuclear charge number Z = 184. In the displayed case the 1s resonance has a width
of Γ � 0.004 m0c

2 � 2 keV. The wave function u1 in the inner region is enhanced by
a value of 50 corresponding to a factor of 2500 in density.

7 B. Müller, J. Rafelski, W. Greiner: Nuovo Cim. 18, 551 (1973).
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Fig. 7.12. Resonance en-
hancement of the s1/2 lower
continuum wave function
(u1 component) and rise of
phase shift δ displayed for
a supercritical nucleus with
Z = 184. δ̃ is the scattering
phase without resonance

A phase analysis of the continuum enables us to follow the 1s state having turned
into a resonance as a function of Z also in the supercritical case. We already encoun-
tered this result in Fig. 7.9: the state moves even deeper into the continuum and its
width increases rapidly starting from a value Γ = 0 at Z = Zcr. However, Γ always
remains very small compared to m0 in the physically accessible range of Z values.

Since the exact continuum solutions of the Dirac equation are rather inconvenient
it is useful for our physical understanding to have an analytic model of the resonance.
In Example 7.2 we shall present a formalism that yields an easily interpretable closed
expression for the wave function ΨE .

EXAMPLE

7.2 Fano’s Formalism for the Description of Resonances

It is a common problem in applications of quantum mechanics that an initially stable
system becomes unstable and can decay if a small perturbation is switched on. Mathe-
matically speaking one starts with a system characterized by a Hamiltonian H0 which
possesses (at least) one discrete and normalisable eigenstate φ0 with energy E0, i.e.

H0φ0 = E0φ0 . (1)

Furthermore, H0 is assumed to have a continuous spectrum, i.e.

H0ψE = EψE (2)

for a certain range of energy values. (In the case of spontaneous positron production,
which is of interest here, this range is −∞ < E < −m0c

2). We require that the wave
functions ψE asymptotically (r → ∞) are stationary standing waves. The following
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orthonormality conditions hold:

〈φ0|φ0〉 = 1 , (3a)

〈ψE |φ0〉 = 0 , (3b)

〈ψE′ |ψE〉 = δ(E′ − E) . (3c)

The continuum thus is normalised “to a delta function”. An additional interaction is
added now, in the form of a perturbation potential V ′:

H = H0 + V ′ . (4)

Here it can happen that the discrete state φ0 is “lost” under the influence of the in-
teraction. It amalgamates with the continuum (it is “embedded” into it) which is now
described by the equation

HΨE = EΨE (5)

again with the normalization

〈ΨE′ |ΨE〉 = δ(E′ − E) . (6)

If this occurs it will be no longer possible to keep the system in a localised station-
ary state. Physically, the following happens: The previously stable system decays by
emission of one of its constituents (since a continuous spectrum is always related to
a motion to infinity). In a time-dependent description it can actually be shown that the
probability to encounter the state φ0 decreases to zero exponentially in time after the
perturbation V ′ has been switched on (cf. Exercise 7.4).

From the point of view of quantum mechanical scattering theory the presence of
a previously bound state φ0 manifests as a resonance with its well known signatures:
The scattering cross section grows in the vicinity of the resonance energy, the scatter-
ing phase varies rapidly as a function of E, the density of the wave function |ΨE(x)|2
is strongly enhanced at small distances. We now want to examine the properties of
the solution of (5) making use of the solutions of the unperturbed problem (1), (2).
To achieve this we employ a method that was developed by U. Fano for the case of
autoionisation of excited states in atomic physics.8

The new continuum wave function is expanded as

ΨE(x) = a(E)φ0(x) +
∫

dE′hE′(E)ψE′(x) , (7)

with unknown functions a(E) and hE′(E) that have to be determined. The integral
extends over the entire range of the continuum. Note: In (7) it was assumed that ΨE is
in that Hilbert space that is spanned by the set {φ0,ψE′ } . If the spectrum of H0 does
contain additional (discrete or continuous) parts, these states could also be admixed
by the action of V ′. Equation (7) will still be a useful ansatz, however, as long as the
other states are “sufficiently far away” and couple only weakly.

8 U. Fano: Phys. Rev. 124, 1866 (1961). The cases of several bound states or several continua are also
treated here. The application to QED resonances was developed in B. Müller, J. Rafelski, W. Greiner:
Z. Physik 257, 62 and 183 (1972).
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The expansion coefficients are given by

a(E) = 〈φ0|ΨE〉 , (8a)

hE′(E) = 〈ψE′ |ΨE〉 , (8b)

but this does not help us much as long as ΨE is unknown. We now use (5) and project
onto 〈φ0| and 〈ψE′ |. By use of (3) and (7) the system of equations

(E − E0 − �E)a(E) =
∫

dE′ V ∗
E′hE′(E) (9a)

and

(E − E′)hE′(E) = VE′a(E) +
∫

dE′′UE′E′′hE′′(E) (9b)

is obtained. The abbreviations used are:

E0 + �E = 〈φ0|H |φ0〉
= 〈φ0|H0|φ0〉 + 〈φ0|V ′|φ0〉 , (10a)

VE = 〈ψE |H |φ0〉 = 〈ψE |V ′|φ0〉 , (10b)

UE′E′′ = 〈ψE′ |V ′|ψE′′ 〉 . (10c)

E0 is the original energy of the bound state of H0. The expectation value �E of
H − H0 = V ′ in this state is equal to the energy shift in first-order perturbation theory.
The matrix element VE specifies how strongly the bound state couples to the contin-
uum, and UE′E′′ describes the mixing among the continuum states. Additionally, there
is the normalization condition (6), namely

a∗(E)a(E′) +
∫

dE′′h∗
E′′(E)hE′′(E′) = δ(E − E′) . (11)

In total the coupled system of integral equations (9a, 9b) and (11) has to be solved. An
analytic solution may be found if the coupling term UE′E′′ in (9b) is neglected,

∫
dE′′UE′E′′hE′′(E) � 0 . (12)

This could in principle be achieved by “prediagonalizing” the continuum ψE , which
means by a unitary transformation

χE =
∫

dE′ MEE′ ψE′ , (13)

with suitably chosen coefficients MEE′ , such that 〈χE′ |H |χE〉 becomes diagonal. This
is, however, difficult to perform practically. On the other hand the distortion of the
continuum by UE′E′′ does not change the solution of the problem qualitatively so that
we shall use the approximation (12) in the following. In order to solve the system of
(9) and (11) we split the expansion coefficient hE′(E) into

hE′(E) = CE′(E)a(E) . (14)
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In this way a(E) is eliminated from (9a) and (9b), i.e.

E − E0 − �E =
∫

dE′ V ∗
E′CE′(E) (15a)

and

(E − E′)CE′(E) = VE′ . (15b)

Equation (15b) may be immediately solved formally,

CE′(E) = VE′

E − E′ . (16)

Here the question arises how to treat the pole at E = E′. In the treatment of scattering
problems usually such poles are shifted by a small imaginary part into the complex
plane and the requirement of causality is used. Following Fano we want to go a differ-
ent way, however, that is adapted to the chosen boundary conditions (standing waves).
Therefore we replace (16) by

CE′(E) = P
VE′

E − E′ + g(E)VEδ(E − E′) , (17)

where P means that Cauchy’s principal value is to be taken in the energy integration.
CE′(E) (17) solves (15b) for any arbitrary function g(E) because of xδ(x) = 0. The
unknown function g(E) may now be determined by insertion into (15a),

E − E0 − �E = P

∫
dE′ |VE′ |2

E − E′ + g(E)|VE |2 (18)

or

g(E) = 1

|VE |2
[
E − E0 − �E − F(E)

]
, (19)

where F(E) is the abbreviation of

F(E) = P

∫
dE′ |VE′ |2

E − E′ . (20)

a(E) has to be determined from the normalization condition (11). Remembering (19),
insertion of (17) yields

a∗(E)a(E′)
[

1 +
∫

dE′′ V ∗
E′′

(
P

1

E − E′′ + g(E)δ(E − E′′)
)

×
(

P
1

E′ − E′′ + g(E′)δ(E′ − E′′)
)

VE′′
]

= δ(E − E′) , (21)

or

a∗(E)a(E′)
(

1 +
∫

dE′′|VE′′ |2P 1

E − E′′ P
1

E′ − E′′

+ g(E′)|VE′ |2P 1

E − E′ + g(E)|VE |2P 1

E′ − E

+ g2(E)|VE |2δ(E − E′)
)

= δ(E − E′) , (22)
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where we have used the following properties of the delta function:

δ(E − E′′)δ(E′ − E′′) = δ(E − E′)δ(E − E′′) , (23)∫
dE′f (E′)δ(E − E′) = f (E) . (24)

The product of the two principle-value factors in (22) is troublesome if the poles co-
incide, i.e. E = E′. In Exercise 7.3 we shall show that

P
1

E − E′′ P
1

E′ − E′′

= −P
1

E − E′

(
P

1

E − E′′ − P
1

E′ − E′′

)
+ π2δ(E − E′′)δ(E′ − E′′) (25)

holds for such an expression. Inserting this into (22) together with definition (20)
yields

a∗(E)a(E′)
[
1 − P

1

E − E′
(
F(E) − F(E′)

)

+ g(E′)|V ′
E |2P 1

E − E′ − g(E)|VE |2P 1

E − E′

+ π2|VE |2δ(E − E′) + g2(E)|VE |2δ(E − E′)
]

= δ(E − E′) . (26)

We now collect the principal-value terms

−P
1

E − E′
[(

F(E) + g(E)|VE |2
)

−
(
F(E′) + g(E′)|VE′ |2

)]

= −P
1

E − E′ (E − E′) = −1 ,

where (19) has been used for g(E). Obviously all terms without the factor δ(E − E′)
cancel out in (26) such that a consistent equation remains:

a∗(E)a(E′)
(
π2|VE |2 + g2(E)|VE |2

)
δ(E − E′) = δ(E − E′) , (27)

or

|a(E)|2 = 1

|VE |2(g2(E) + π2
) = |VE |2(

E − E0 − �E − F(E)
)2 + π2|VE |4

= ΓE/2π

(E − Er)2 + Γ 2
E/4

, (28)

with the abbreviations

ΓE = 2π |VE |2 , (29a)

Er = E0 + �E + F(E) . (29b)

The expansion coefficient a(E) can be written as

a(E) = 1

VE

√
g2(E) + π2

= V ∗
E√

(E − Er)2 + Γ 2
E/4

. (30a)
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If the matrix element VE is real we obtain

a(E) =
√

ΓE/2π

(E − Er)2 + Γ 2
E/4

. (30b)

Because of (14), (17) and (18)

hE′(E) = V ∗
E√

(E − Er)2 + Γ 2
E/4

(
P

VE′

E − E′ + E − Er

V ∗
E

δ(E − E′)
)

(31)

holds. This completes the solution of the system of (9a, b) and (11). Let us now con-
sider the structure of the newly constructed continuum wave function ΨE(x) from (7).
ΨE is a superposition of unperturbed continuum waves ψE′ with maximum weight at
E = E′ as well as of the bound state φ0. The latter is characterized by a wave function
which is localized at a finite distance, e.g. Bohr’s radius, and decays rapidly in the
asymptotic region. The strength of this localized contribution to ΨE(x),

|〈φ0|ΨE〉|2 = |a(E)|2 = ΓE/2π

(E − Er)2 + Γ 2
E/4

, (32)

has a maximum at the resonance energy E = Er. (Rigorously this is an implicit equa-
tion, because Er itself depends (weakly) on E through the principal value integral
F(E)! F(E) describes the additional level shift due to the coupling to the contin-
uum.) If one moves away from Er in energy the admixture (32) falls off on a scale
determined by the resonance width ΓE . Equation (32) has the shape of a Breit–Wigner
curve characteristic of resonances. The enhancement of the wave function ΨE near the
resonance is displayed schematically in Fig. 7.13 for the case of an attractive potential

Fig. 7.13. The wave function
ΨE(r) in the vicinity of the
resonance and far away from
it

well.
The asymptotic behaviour of the wave function ΨE for r → ∞ may be examined

using (7), (30), and (31). For simplicity, we restrict ourselves to the nonrelativistic
case (the Schrödinger equation) with a rapidly decreasing central potential. The un-
perturbed continuum wave ψE then behaves like

ψE(r) → NE sin(pr + δE) , (33)

with momentum p = √
2mE and a normalization constant NE , which is of no interest

here. The information about the effective scattering potential is contained in the phase
shift δE . The new continuum wave function ΨE depends on r like

ΨE(r) = a(E)φ0 +
∫

dE′hE′(E)ψE′(r)

−→
r→∞ a(E)

∫
dE′

(
P

VE′

E − E′ + E − Er

V ∗
E

δ(E − E′)
)

NE′ sin(p′r + δE′) ,

(34)

where we have used the fact that φ0(r) asymptotically approaches zero. By use of the
identity

P
1

x
= 1

2

(
1

x + iε
+ 1

x − iε

)
(35)



380

Example 7.2

7. Quantum Electrodynamics of Strong Fields

the principal-value integral in (34) reads

∫
dE′P VE′

E − E′ NE′ sin(p′r + δE′)

= i

4

∫
dE′VE′NE′

(
1

E′ − E − iε
+ 1

E′ − E + iε

)

×
(

ei(p′r+δE′ ) − e−i(p′r+δE′ )
)

. (36)

This integral has simple poles at E′ = E ± iε. It can easily be solved by use of the
theorem of residues if the limits of integration are extended to infinity, see Fig. 7.14.
(This is an approximation since in reality the continuous spectrum is bounded on one
side, e.g. 0 < E′ < ∞ in the nonrelativistic case or mc2 < |E′| < ∞ for the Dirac
equation.) The integration contour then can be closed by a semicircle at infinity. If the
principal value of the square root in the complex plane is chosen for p′ = √

2mE′,
Fig. 7.14. Integration contours
in (36)

sgn(Im{p′}) = sgn(Im{E′}) , (37)

then the contour has to be closed in the upper (lower) half plane for the case
eip′r (e−ip′r ). Two of the four integrals in (36) vanish provided that VE′NE′ is holo-
morphic; the remaining two integrals yield

± i

4

∞∫

−∞
dE′ VE′NE′

e±i(p′r+δE′ )

E′ − E ∓ iε
= −π

2
VENE e±i(pr+δE) . (38)

This leads to
∫

dE′P VE′

E − E′ NE′ sin(p′r + δE′) = −πVENE cos(pr + δE) . (39)

Hence (34) combined with (30a) reads

ΨE(r) → a(E)
[
− πVENE cos(pr + δE) + ((E − Er)/V ∗

E

)
NE sin(pr + δE)

]

= NE√
(E−Er)2 +Γ 2

E/4

[−(ΓE/2) cos(pr +δE)+(E−Er)sin(pr +δE)
]

= NE sin(pr + δE + �E) , (40)

with the phase shift

�E = −arctan
ΓE/2

E − Er
. (41)

The modified continuum wave ΨE(r) thus displays exactly the same asymptotic be-
haviour as ψE(r) but it is shifted by an angle �E . As Fig. 7.15 shows, the phase shift
is nearly constant for |E − Er| � ΓE ∼ ΓEr and has no effect in (40). In the vicin-
ity of Er, however, it “jumps” very rapidly by an angle of π . This behaviour is well
known from the quantum-mechanical theory of resonant scattering.
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Fig. 7.15. The additional
phase shift �E in the vicinity
of the resonance

Finally, we express the expansion coefficients a(E), hE′(E) in terms of the phase
shift. Equation (30b) yields

a(E) = 1

πVE

ΓE/2√
(E − Er)2 + Γ 2

E/4

= 1

πVE

√
tan2 �E

1 + tan2 �E

= sin�E

πVE

(42)

and (31) becomes

hE′(E) = sin�E

πVE

P
VE′

E − E′ + sin�E

E − Er

π |VE |2 δ(E − E′)

= sin�E

πVE

P
VE′

E − E′ − cos�Eδ(E − E′) . (43)

EXERCISE

7.3 The Product of Two Principal-Value Poles

Problem. Prove the identity

P
1

E − E′′ P
1

E′ − E′′

= P
1

E − E′

(
P

1

E′ − E′′ − P
1

E − E′′

)
+ π2δ

(
E − E′′)δ(E′ − E′′) , (1)

which displays the behaviour of the product of two principal-value singularities as
a function of E′ − E.

Solution. A formal proof can be easily given by use of the identity

1

x ± iε
= P

1

x
∓ iπδ(x) , (2)
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which holds in the limit ε → +0. For a proof see (6)–(9) below. The left-hand side
can then be written as

(
1

E − E′′ + iε
+ iπδ

(
E − E′′))( 1

E′ − E′′ − iε′ − iπδ
(
E′ − E′′))

= 1(
E − E′′ + iε

)(
E′ − E′′ − iε′) + iπ

δ
(
E − E′′)(

E′ − E′′ − iε′) − iπ
δ
(
E′ − E′′)(

E − E′′ + iε
)

+ π2δ
(
E − E′′)δ(E′ − E′′) . (3)

The relation

P
1

E − E′

(
P

1

E′ − E′′ − P
1

E − E′′

)

=
(

1

E − E′ + iε
+ iπδ

(
E − E′))

×
(

1

E′ − E′′ − iε′ − iπδ
(
E′ − E′′)− 1

E − E′′ + iε′′ − iπδ
(
E − E′′)) (4)

holds for the first term on the right-hand side of the conjecture. The delta function in
the first factor can be omitted, because the second factor vanishes for E = E′,

1

E − E′ + iε

(
1

E′ − E′′ − iε′ − 1

E − E′′ + iε′′

)

+ iπ
δ
(
E − E′′)

E′ − E′′ − iε
− iπ

δ
(
E′ − E′′)

E − E′′ + iε

=
(
E − E′′ + iε′′)− (E′ − E′′ − iε′)(

E − E′ + iε
)(

E′ − E′′ − iε′)(E − E′′ + iε′′)

+ iπ
δ
(
E − E′′)

E′ − E′′ − iε
− iπ

δ
(
E′ − E′′)

E − E′′ + iε
. (5)

Keeping in mind that ε, ε′, ε′′ are infinitesimal quantities whose value does not matter,
the first factor can be cancelled in the denominator. Comparison of (5) and (3) proves
the conjecture (1).

It is perhaps helpful to remember the proof of (2), i.e.

1

z − z0 + iε
= P

1

z − z0
− iπ δ(z − z0) . (6)

It has to be shown that in the limit ε → 0

I =
∫ ∞

−∞
dz

f (z)

z − z0 + iε
=
[∫ z0−ε

−∞
dz +

∫ ∞

z0+ε

dz

]
f (z)

z − z0
− iπ f (z0) (7)
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holds. Now, for ε → 0 the integration paths,

and

are equivalent. Therefore

I =
∫

C
dz

f (z)

z − z0 + iε
=
[∫ z0−ε

−∞
dz +

∫
C2

dz +
∫ ∞

z0+ε

dz

]
f (z)

z − z0
. (8)

The sum of the first and third term in the brackets defines the principal-value integral.
Assuming that the test function f (z) is regular at z = z0 the remaining integral over
the semicircle C2 yields

∫
C2

dz
f (z)

z − z0 + iε
� f (z0)

∫
C2

dz
1

z − z0 + iε
= 1

2
f (z0)

∮
dz

1

z − z0 + iε

= 1

2
f (z0) (−2π i) (9)

which completes the proof of (11).
Remark: A less formal proof can be given by use of the integral representation of

the principal-value distribution

P
1

x
= i

2

∞∫

−∞
du sgnu e−ixu . (10)

The validity of (10) can be shown by performing the limit

lim
ε→0

i

2

∞∫

−∞
du sgnu e−ixu−ε|u|

= lim
ε→0

i

2

⎛
⎝−

0∫

−∞
duu e−(ix−ε)u +

+∞∫

0

duu e−(ix+ε)u

⎞
⎠

= lim
ε→0

i

2

(
1

ix − ε
+ 1

ix + ε

)
= lim

ε→0

x

x2 + ε2
= P

1

x
. (11)

The proof of (1) using this representation can be found in the work by U. Fano quoted
at the beginning of Example 7.2.
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EXERCISE

7.4 Time-Dependent Decay of the Vacuum

Problem. In order to describe the decay of a supercritical system as a function of
time, we make the following gedanken experiment. The potential strength is increased
suddenly at the time t = 0 so that the state which previously was bound slightly sub-
critically becomes a resonance in the lower continuum. The subcritical system is re-
stored at t = T by reducing the potential strength. By use of Fano’s formalism (Ex-
ample 7.2), calculate the final hole probability in the bound state and the spectrum of
the emitted positrons depending on the “diving duration”.

Solution. We use the notation of Example 7.2. The Hamiltonian is now a function of
time, namely

H(t) =

⎧⎪⎨
⎪⎩

H0 , for t < 0

H = H0 + V ′ , for 0 ≤ t ≤ T

H0 , for t > T

. (1)

A time-dependent wave function Ψ (t) has to be constructed in such a way that it
describes a bound hole state φ0 for t < 0. A piecewise ansatz can be made for Ψ (t) in
the three regions:

Ψ (t) =

⎧⎪⎨
⎪⎩

φ0e−iE0t for t < 0∫
dEc̃(E)ΨE e−iEt for 0 ≤ t ≤ T

c0φ0e−iE0(t−T ) + ∫ dE c(E)ψE e−iE(t−T ) for t > T

. (2)

The expansion coefficients c̃(E) or c0 and c(E) are independent of time since by
assumption the wave functions ΨE or ψE and φ0 are eigenstates of the Hamilto-
nians H or H0, respectively. Hence they develop freely with a time dependence
exp(−iEt). Ψ (t) is required to be continuous at t = 0 and t = T . This means
that

φ0 =
∫

dE c̃(E)ΨE (3)

and∫
dE c̃(E)ΨEe−iET = c0φ0 +

∫
dE c(E)ψE . (4)

By projection onto 〈ΨE | or 〈φ0| and 〈ψE |, equations determining the coeffi-
cients c̃(E) and c(E) are obtained using (3a, 3b, 3c) and (8a, 8b) of Exam-
ple 7.2:

c̃(E) = 〈ΨE |φ0〉 = a∗(E) (5)

(see (8a) of Example 7.2) and

c0 =
∫

dE c̃(E)a(E) e−iET =
∫

dEa∗(E)a(E)e−iET , (6a)

cE =
∫

dE′ c̃
(
E′)hE

(
E′) e−iE′T =

∫
dE′a∗(E′)hE(E′)e−iE′T . (6b)
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Here two Fourier integrals over Fano’s expansion coefficients |a(E)|2 or a∗(E)hE(E′)
have to be calculated. The integration interval extends from E = −∞ to E = −m0c

2.
In order to be able to proceed with an analytical calculation we make an approxi-
mation9 and replace the upper limit by E = +∞. The integrals can be solved by
residue integration with the assumption that the matrix element VE = 〈ψE |V ′|φ0〉 is
an analytic function of energy.

Using Example 7.2, (32) the discrete expansion coefficient follows as

c0 =
+∞∫

−∞
dE

ΓE/2π

(E − Er)2 + Γ 2
E/4

e−iET = e−iErT e−Γ0T/2 , (7)

where Γ0 = ΓE=Er is the width ΓE at the resonance energy Er. Here the integration
path has been closed in the lower half-plane. The relevant quantity is the squared
absolute value of c0,

P0(T ) = |c0|2 = e−Γ0T . (8)

This is the probability of finding a hole in state φ0 after a time T . It thus decreases
exponentially as determined by the decay width Γ0 = ΓEr . In order to see how the
positron probability correspondingly builds up with time, the integral (see (6b), (14)
and (21) of Example 7.2 for hE(E′))

c(E) �
+∞∫

−∞
dE′ |VE′ |2

(E′ − Er)2 + Γ 2
E′/4

(
P

VE

E′ − E
+ E − Er

V ∗
E

δ
(
E − E′)) e−iE′T (9)

has to be solved using Example 7.2, (30a) and (31). We reformulate the principal-value
term:

P
VE

E′ − E
= VE

E′ − E − iε
− iπVEδ

(
E − E′) , (10)

which is useful because a pole in the upper half-plane does not contribute. Equation (9)
then reads

c(E) �
+∞∫

−∞
dE′ |VE′ |2

(E′ − Er)2 + Γ 2
E′/4

VE

E′ − E − iε
e−iE′T

+ VE

(E − Er)2 + Γ 2
E/4

(
E − Er − iπ |VE |2

)
e−iET . (11)

Only the pole at the point E′ = Er − iΓ0/2 contributes in the residue integration. The
second term in (11) can be simplified since |VE |2 = ΓE/2π . We then obtain

c(E) � VE

E − Er + iΓE/2
e−iET − VEr

E − Er + iΓ0/2
e−iErT e−Γ0T/2 . (12)

9 A finite integration interval leads to a nonexponential decay law. In relation to this problem see
L. Fonda et al.: Rep. Progr. Phys. 41, 587 (1978).
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The energy spectrum of the produced positrons is given by the absolute squared of the
expansion coefficient c(E). With the assumption that ΓE depends only weakly on E

and can be replaced by Γ0 we obtain

dP

dE
= |c(E)|2 = Γ0/2π

(E − Er)2 + Γ 2
0 /4

∣∣1 − ei(E−Er)T e−Γ0T/2
∣∣2 . (13)

It can be checked that the norm of the wave function Ψ (t) is conserved in spite of the
diverse approximations, i.e.

+∞∫

−∞
dE

dP

dE
= 1 − e−Γ0T = 1 − P0(T ) . (14)

To see this we evaluate the integral

∫ ∞

−∞
dE

dP

dE
= Γ0

2π

∫ ∞

−∞
dE

1 − 2 cos[(E − Er)T ]e−Γ0T/2 + e−Γ0T

(E − Er)2 + Γ 2
0 /4

= 1

π

∫ ∞

−∞
dx

1 − 2 cos
(

Γ0T
2 x
)

e−Γ0T/2 + e−Γ0T

1 + x2
(15)

where the variable transformation x = 2(E − Er)/Γ0 was performed. Employing the
standard integral

∫ ∞

−∞
dx

cos(ax)

1 + x2
= π e−|a| (16)

we find
∫ ∞

−∞
dE

dP

dE
= 1

π

(
1 − 2e−Γ0T/2e−Γ0T/2 + e−Γ0T

)

= 1 − e−Γ0T = 1 − P0(T ) . (17)

This assures the conservation of probability:

P0(T ) +
∫ ∞

−∞
dE

dP

dE
= 1 or |c0|2 +

∫ ∞

−∞
dE |c(E)|2 = 1 (18)

for all times T .
Two limiting cases of the spectrum (13) can be discussed, see Fig. 7.16.

Fig. 7.16. The spectra of emit-
ted positrons in the limits of a
large (a) and small (b) time of
supercriticality T
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a) Γ0T � 1: If the ‘diving time’ is large compared to the natural decay time 1/Γ0,
a Breit–Wigner spectrum with line width Γ0 results:

dP

dE
= Γ0/2π

(E − Er)2 + Γ 2
0 /4

. (19)

b) Γ0T � 1: If the potential is supercritical only during a short time interval T ,
then

dP

dE
= Γ0

2π

∣∣1 − ei(E−Er)T
∣∣2

(E − Er)2
= Γ0T

2

2π

[
sin(E − Er)T /2

(E − Er)T /2

]2

. (20)

This is an oscillating function with maximum at E = Er having a width decreasing
with the inverse of T . The peak height increases quadratically and it contents linearly
in T until saturation is reached at T > 1/Γ0.

The method presented in Example 7.2 can be immediately applied to the case of a su-
percritical atom. The eigenstates of the subcritical Hamiltonian (Z < Zcr) can be used
as a basis for the expansion of the supercritical wave functions

ΨE = a(E)φ0 +
∫

dE′hE′
(
E′)ψE′ . (7.16)

The perturbative potential V ′ then is of the form

V ′ = V (Z) − V (Zcr) ≈ (Z − Zcr)U(r) , (7.17)

where U(r) depends on the shape of the truncated Coulomb potential according to
(7.3). The bound state “dives” into the continuum with a linear dependence on the
charge excess Z′ = Z − Zcr because of (29b) and (10a) of Example 7.2. A value of
about E1s � −m0c

2 − Z′ × 30 keV is found numerically. The width Γ grows about
quadratically with Z′ according to (29a), (10b). At small diving energies (near the
threshold), however, it is strongly suppressed owing to the Coulomb repulsion of the
wave function ψE in (10b).

In Exercise 7.4 we showed with the help of Fano’s formalism that a hole in the
1s state decays by positron emission if the potential is made supercritical. An expo-
nential decay law holds; (inserting �)

P1s(t) = P1s(0)e−Γ t/� . (7.18)

The lifetime τ of the hole is determined by the inverse of the width

τ = �/Γ . (7.19)

Typical decay times are of the order τ = 10−19 s. A stable state is reached after the
positron emission (or if the 1s state had been occupied right from the beginning).
The K shell of the supercritical atom is now filled with two electrons; hence, the new
vacuum state has a double negative charge. The resonance property of the K shell of
a stable supercritical atom could be noticed only in the following situation: in positron
scattering on such an atom a sudden strong increase of the cross section should occur
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at the energy Ekin
e+ = |E1s | − m0c

2 since the positron can penetrate into the potential
well and stay there for some time.

We still have to demonstrate that the supercritical continuum ΨE does in fact con-
tain the charge distribution of the K shell. To this end we calculate the total charge
density ρ(r,Z) of the lower continuum assuming that all of its states are occupied by
electrons with charge e. This is of course a mathematically undefined and badly diver-
gent quantity. However, we obtain a meaningful expression if we subtract the charge
density of the continuum in the subcritical case from it:

�ρ(r) = ρ(r,Z)−ρ(r,Zcr) = 2e

(∫
dE Ψ

†
E(r)ΨE(r)−

∫
dE ψ

†
E(r)ψ(r)

)
,

(7.20)

where the integrals extend from −∞ to −m0c
2. With the wave function (7.16) we get

�ρ(r) = 2e

[(∫
dE|a(E)|2

)
φ

†
0φ0 +

∫
dE′

(∫
dE a∗(E)hE′(E)

)
φ

†
0ψE′

+
∫

dE′
(∫

dE a(E)h∗
E′(E)

)
ψ

†
E′φ0

+
∫

dE′
∫

dE′′
(∫

dE h∗
E′′(E)hE′(E)

)
ψ

†
E′′ψE′ −

∫
dE ψ

†
EψE

]
.

(7.21)

The factor 2 takes account of the spin degeneracy. The integrals over the expansion
coefficients (in brackets) can be evaluated approximately with residue integration. As
is calculated in Exercise 7.4 (set T = 0 there!) the following relations hold:
∫

dE |a (E)|2 = 1 ,

∫
dE a∗(E)hE′(E) = 0 .

Similarly it can be shown that
∫

dE h∗
E′′(E)hE′(E) = δ

(
E′ − E′′) .

Using these relations the incremental charge density is:

�ρ(r) = 2e

(
|φ0(r)|2 +

∫
dE |ψE(r)|2 −

∫
dE |ψE(r)|2

)

= 2e |φ0(r)|2 . (7.22)

The “excess charge” of the supercritical vacuum thus corresponds exactly to a doubly
occupied 1s state!

This result has a further very profound interpretation. The virtual particles which
occupy the “empty” states of the Dirac equation are responsible for the effect of vac-
uum polarization. Using tools from quantum field theory it can be argued that the
corresponding charge distribution has the form

ρVP(r) = e

2

⎛
⎝∑

n<F

|φn(r)|2 −
∑
p>F

|φp(r)|2
⎞
⎠ . (7.23)
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Here we sum over all states of the spectrum. The “Fermi surface” F denotes the border
between occupied and empty levels. The first sum extends over all states of the “Dirac
sea” with the energy eigenvalues E < −m0c

2. A charge e = −|e| is attributed to them
(“occupied by electrons”). The second sum runs over all levels of the upper continuum
and the bound states that evolved from it. These levels are assigned a charge of −e =
|e| (“occupied by positrons”). Equation (7.23) takes an average value of both pictures,
thus taking account of the equivalence of electrons and positrons which is required by
charge conjugation symmetry. In the field-free case the two sums cancel. For weak po-
tentials a displacement charge distribution ρVP(r) remains but the integral over it still
vanishes. Since the wave functions φp are pulled closer to the nucleus by the Coulomb
field and the φn are pushed out (7.23) explains the apparently paradoxical sign of the
vacuum-polarization charge cloud encountered in Sect. 5.3, see e.g. Fig. 5.17.

The case is entirely different for Z > Zcr. The 1s state then moves from the second
sum in (7.23) into the first sum. Because of (7.22) ρVP in this case equals

ρVP(r) = 2e|φ0(r)|2 , (7.24)

which means that a real vacuum polarization does occur. This is another way of de-
scribing the charged vacuum.

EXAMPLE

7.5 The Supercritical Point Charge

As discussed at the beginning of Sect. 7.1 in connection with Sommerfeld’s fine struc-
ture formula, (7.10), the solutions of the Dirac equation for a Coulomb potential break
down if the central charge exceeds the value Z = 137. More specifically, all states for
which the criterion Zα > |κ| is fulfilled abruptly vanish from the spectrum of bound
states. The subsequent discussion has made it clear that this behaviour is an artefact
caused by the singular nature of the Coulomb potential which can be remedied by
taking into account the finite spatial extension of the nuclear charge. However, it is
an interesting, if academic, problem to investigate the properties a “supercritical point
charge” in the light of the concept of the charged vacuum. This was worked out by
P. Gärtner et al.10 where a more detailed discussion can be found.

What happens if one starts with a high-Z nucleus of ordinary size and lets its ra-
dius R gradually shrink to zero? It can be easily shown that in this limit all bound
states which satisfy Zα > |κ| one after the other reach the border of the lower Dirac
continuum, En = −m and become supercritical. The radius for which this happens
can be deduced from (18) in Exercise 7.1. This equation describes the matching of
interior and exterior solutions of the radial Dirac equation at the nuclear radius R,
assuming an energy eigenvalue E = −m. In the limit of a small nuclear radius, i.e.,
ρ = √

8mZαR � 1, the asymptotic expression (14) – Exercise 7.1 – for the modified
Bessel function Kiν(ρ) can be used, leading to the equation (for κ = −1)

cot

[
ν ln

2

ρ
+ argΓ (1 + iν)

]
= −1

ν
2Zα cot(Zα) , (1)

10 P. Gärtner, U. Heinz, B. Müller, W. Greiner, Z. Physik. A 300, 143 (1981); W. Greiner, B. Müller,
J. Rafelski: Quantum Electrodynamics of Strong Fields (Springer, Berlin, Heidelberg, 1985), p. 448.
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where ν = 2
√

(Zα)2 − κ2. Equation (1) can be solved for the critical nuclear radii Rn.
If the charge Z is only slightly supercritical, ν � 1, the solution becomes particularly
simple. The argument of the complex gamma function is approximately argΓ (1 +
iν) � −γ ν, where γ � 0.5772 is Euler’s constant, and one can use arccot (−∞) = nπ ,
n = 1,2, . . . . This leads to

Rn � 1

2mZα
e−2(nπ/ν+γ ) , n = 1,2, . . . (2)

so that indeed with shrinking nuclear radius an infinite number of s1/2 states becomes
supercritical. In the approximation employed to derive (2) the detailed form of the
interior solution (r.h.s. of (1)) does not matter, so that the states with both signs of κ

(equal total angular momentum j ) are degenerate. Note that the successive critical
radii Rn form a geometric series and will rapidly become very small if Zα is not
much larger than |κ|.

The full spectrum of bound solutions of the Dirac equation in dependence of the
nuclear radius is depicted in Fig. 7.17, taking the example Z = 150. One observes the
“diving” of the first four states with κ = ±1 (corresponding to n = 1,2 in (2)).

Fig. 7.17. Energy eigenvalues
of the Dirac equation for a hy-
pothetical nucleus with charge
Z = 150 as a function of the
nuclear radius R

Once a state has entered the lower Dirac continuum as a resonance, its energy
begins to scale as E � −const/R (note the doubly logarithmic scale in the figure)
which is quite natural, since R is the only dimensional parameter in the problem,
apart from the electron mass.

The wave functions of these “collapsed” states have a simple structure: outside the
nucleus they oscillate periodically with fixed amplitude on a logarithmic r scale. The
charge density ρ multiplied by the volume element r2 has the structure

r2ρ(r) = c1 sin
(
ν ln

r

R
+ φ

)
+ c2 . (3)

For deeply bound states the phase φ turns out to be independent of the sign of κ and
the states ns1/2 and (n + 1)p1/2 have identical density distributions.
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Fig. 7.18. Electron densities
multiplied by r2 of the most
deeply bound states for a hy-
pothetical nucleus with charge
Z = 150 and radius R =
10−5 fm

The numerically calculated electron densities for a nucleus with Z = 150 and
R = 10−5 fm are shown in Fig. 7.18. The regular oscillations describe by (3) are
clearly visible. Because of the logarithmic r scale, nearly the whole charge is lo-
cated in the outermost maximum of the oscillating density distribution ρ(r). The
electron cloud around a nearly pointlike supercritical nucleus then has a characteristic
onion-shell structure consisting of successive layers containing four electrons each
(degenerate s1/2 and p1/2 states with two spin orientations).

The key to understanding the supercritical point nucleus problem lies in the fact
that these concentric electron layers lead to a partial screening of the central nuclear
charge. In contrast to the case of ordinary atoms, this screening cannot be removed; it
is an essential property of the stable ground state of the system, the charged vacuum.

In the point-nucleus limit, R → 0, the screening electron shell shrinks together
with the nucleus to form a singular charge distribution. The outside observer simply
sees a Coulomb-type potential with a central charge Zlim = 137 � 1/α.

Of course, the problem has to be treated self-consistently, i.e., the Dirac wave func-
tion describing electron number i has to take into account the potential generated by
all the other electrons (constituting the charged vacuum) j �= i. This problem was
treated by Gärtner et al. using the Hartree approximation. Here one solves the Dirac
equation for the set of occupied electron states (i.e. those making up charged vacuum,
En < −m) under the influence of a screened potential V (r). The potential solves the
Poisson equation

�V = 4πα (ρN + ρocc) , (4)

where ρN is the nuclear charge distribution and ρocc that of the vacuum electrons

ρocc(r) =
∑

En<−m

ρn(r) . (5)

Retardation, magnetic interactions and the effects of electron exchange are neglected
in this approach. Equation (4) can be solved either by directly integrating the differ-
ential equation or with the help of the Greensfunction of the Laplacian. Taking into
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account the spherical symmetry of the problem the latter method leads to

V (r) = − Zα

r
+ α

∫
d3r ′ 1

|r − r ′| ρocc(r
′)

= − Zα

r
+ 4πα

∫ ∞

0
dr ′ r ′2 1

r>
ρocc(r

′) , (6)

where r> = min(r, r ′). In the region outside the electronic charge distribution this
potential approaches

V (r) → − Zα

r
+ 4πα

1

r

∫ ∞

0
dr ′ r ′2ρocc(r

′)

= − (Z − Qvac)α

r
≡ −Zeff α

r
. (7)

The self-consistent solution of the coupled system of differential equations, which
was obtained by Gärtner et al. using a semiclassical approximation, leads to the result
already discussed: as R approaches zero the vacuum charge Qvac grows until Zeff =
Z − Qvac drops to the value 137 � 1/α. This is demonstrated in Fig. 7.19 for the two
cases Z = 150 and Z = 180.

Fig. 7.19. The screened
charge Zeff of a supercritical
nucleus which shrinks to
a point, drawn as a function
of the radius R

The resolution of the supercritical point-nucleus problem was formulated entirely
within the framework of QED. Of course, at the extremely small length scales in-
volved, additional physics exceeding the validity of quantum electrodynamics will
come into play.

7.2 Strong Fields in Heavy Ion Collisions

As we have seen in the previous section the decay of the neutral vacuum in an atom is
expected to occur only if the nuclear charge number exceeds the value of Zcr ≈ 173.
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Since the stable nuclei found in nature, as well as the superheavy elements produced
synthetically, have much smaller charge numbers the quantum electrodynamics of
strong fields might appear to be a purely academic problem. However, the following
considerations open the possibility of an experimental access to the field. To examine
the effect of a strong field it is not absolutely necessary to maintain the field for an
infinitely long time. The supercritical source of charge only has to be concentrated
for a certain time in a sufficiently small region of space to allow the electron–positron
field to adapt itself to this situation.

A possible experimental way of producing strong fields is given by collisions of
heavy ions. A beam of heavy ions is accelerated to an energy of several MeV per
nucleon and is shot onto a target of an element that also has a high charge number.
The high kinetic energy of the projectile makes it possible to overcome the Coulomb
repulsion and to put both nuclei close together. In the supercritical systems which
are of interest here, the Coulomb barrier which has to be surmounted to put the nu-
clei into contact amounts to an energy of about 6 MeV/nucleon, corresponding to
a projectile velocity of about vion = 0.1c. In comparison to this the bound electrons
in the inner shells move with relativistic velocity, vel ≈ c. We can conclude from the
ratio

vel/vion � 1 (7.25)

that the electrons in the inner shells will be able to adapt themselves at any time
to the Coulomb field of two nuclei of charge number Z1,Z2 at distance R(t) act-
ing at that moment. If R were constant with time we would have to deal with
a stationary molecule. But since the corresponding electron orbitals can be formed
only temporarily and imperfectly in the collision the system is called a quasi-
molecule.

It is useful for the understanding of this term to consider first the ‘adiabatic ap-
proximation’. For arbitrarily slow nuclear motion R (the extreme limit of (7.25)) the
electron wave functions φn would be described by the solution of the stationary two-
center Dirac equation,

HTCD(R)φn = (α · p + βm0 + VTC(r,R)
)
φn = En(R)φn . (7.26)

Here VTC is the combined Coulomb potential of both nuclei. If we approximate them
to be pointlike then

VTC(r,R) = − Z1α

|r − R1| − Z2α

|r − R2| , (7.27)

with the distance vectors R1,R2 of the nuclei with respect to the origin and R =
R2 − R1. The potential (7.27) is not spherically symmetric. Therefore the angular
momentum operator Ĵ does not commute with HTCD and the solutions cannot be
classified by their angular momenta. The only valid quantum numbers are the pro-
jection m of the angular momentum onto the internuclear axis R (since (7.27) has
cylindrical symmetry) and parity in the special case Z1 = Z2. In contrast to the spher-
ical case (7.6) the partial differential equation (7.26) cannot be separated into a “radial
part” and an “angular part”, i.e. split into three one-dimensional ordinary differential
equations. Therefore the solution of the two-center Dirac equation is possible only
numerically and with great effort.
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Fig. 7.20. The binding ener-
gies of the most deeply bound
states of the quasimolecule
U + Cm plotted as function
of the distance between the
nuclei R. The finite radius
of both nuclei is taken into
account with the dot-dashed
curves

We do not want to treat the problem in more detail here but cite only the essen-
tial result. It is contained in the correlation diagram, which depicts the eigenenergies
En(R) as functions of nuclear distance R. The curves vary continuously between the
limiting cases R → 0 (unified atom) and R → ∞ (two separate atoms). As an exam-
ple, Fig. 7.20 shows the correlation diagram of the heaviest experimentally accessible
system, uranium + curium with total charge Z = Z1 + Z2 = 92 + 96 = 188.

As expected (we already know the limiting case of the unified system) some of
the energy levels drop down steeply when the nuclei are put closely together. For the
lowest state 1sσ (the Greek letters σ,π, δ, . . . denote the magnetic quantum numbers
|m| = 1/2,3/2,5/2, . . . in the molecular nomenclature) there is a critical distance Rcr

at which the binding energy exceeds the threshold 2m0c
2. The vacuum becomes un-

stable if the two nuclei approach one another any further, and spontaneous emission of
two positrons (m = ±1/2) is possible. The critical distance has the value Rcr = 43 fm
in the considered case (U + Cm). The region in which such a quasi-molecule can be
supercritical is thus rather small, which will turn out to be a serious problem. The mo-
tion R(t) along the trajectory is strongly accelerated by the mutual Coulomb repulsion
of the nuclei. Hence the colliding nuclei can only approach close enough to cross the
critical distance in a short time interval �t . The correlation diagram Fig. 7.20 can im-
mediately be translated into a representation of the energies with respect to the time
axis since the function R(t) is known (it is a Rutherford hyperbola in the force field
F(R) = Z1Z2e

2/R2). Figure 7.21 shows the result. We can easily estimate that the
“dive” of the 1s level into the Dirac sea lasts only for about

�t ∼ 2Rcr

vion
∼ 2 × 10−21 s . (7.28)

This value is smaller by about two orders of magnitude than the decay time of the
resonance. Hence we can only expect that at most a small fraction of the existing
holes in the 1sσ state leads to spontaneous positron emission. This process is labeled
by arrow c in Fig. 7.21.
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Fig. 7.21. The time depen-
dence of the quasi-molecular
energy levels in a supercrit-
ical heavy ion collision. The
arrows denote various excita-
tion processes which lead to
the production of holes and
positrons

The fact that the orbital motion R(t) is rather fast compared to the “typ-
ical length scale” of the superheavy quasi molecule also has another signifi-
cant consequence: the electron wave function does not develop fully adiabati-
cally in the sense described above. An electron (or hole) which was in a cer-
tain molecular eigenstate φi at the beginning of the collision can be transferred
with a certain probability into different states φk by the “collision dynamics”.
This can lead to the following physical processes as indicated by the arrows in
Fig. 7.21:
(a) hole production in an inner shell by excitation of an electron to a higher state;
(b) hole production by ionization of an electron to the continuum; (d) and (e) induced
positron production by excitation of an electron from the lower continuum to an empty
bound level; (f) direct pair production.

In all these processes kinetic energy can be transferred from the nuclear motion to
the electrons.

The dynamical production of positrons (d, e, f) superposes with the sponta-
neous decay of the 1s resonance (c) and cannot be separated from this contri-
bution. The observation of positron emission in heavy ion collisions therefore
does not automatically mean the confirmation of the predicted vacuum decay.
On the other hand, excitations of the kind (a, b) provide a good opportunity
to create holes in the 1sσ level in the incoming phase of the collision which
are then available for positron production. Otherwise one would have to deal
with bare, i.e. fully ionized, atoms which is much more difficult experimen-
tally.

We now want to move (very briefly) to the field of atomic scattering theory and
discuss how the various excitation processes of electrons and positrons in the heavy
ion collision may be calculated.11 Because of the very large nuclear masses it is al-
lowed to treat the scattering in the semiclassical approximation (which we already did
implicitly in the qualitative discussion). Here, the nuclear motion is given classically
as a function of time. The time-dependent two-center Dirac equation is then solved,

i
∂

∂t
ψi = HTCD

(
R(t)

)
ψi . (7.29)

11 See J. Reinhardt, W. Greiner: Heavy ion atomic physics, in Heavy Ion Science, Vol. 5, edited by
D.A. Bromley (Plenum, New York, 1984).
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In contrast to (7.26) the Hamiltonian here depends parametrically on time via the
given trajectory R(t). The index of the wave function ψi indicates that it evolves from
a well-defined initial state φi in the limit t → −∞. Direct solution of the system of
partial differential equations (7.30) is a very difficult task. The problem becomes more
tractable if the time-dependent wave function is expanded with respect to a complete
set of basis wave functions φk chosen as suitably as possible:

ψi(t) =
∑

k

aik(t)φk(R)e−iχk(t) . (7.30)

The sum extends over the entire discrete and continuous spectrum here. χk(t) is an
arbitrary phase factor which can be freely chosen. We assume for simplification that
the basis wave functions φk form an orthonormal system,

〈φk|φl〉 = δkl . (7.31)

Inserting the expansion (7.30) into (7.29) leads to

i
∑

l

(
ȧilφl + ail φ̇l − iχ̇lailφl

)
e−iχl =

∑
l

ailHTCD φl e−iχl . (7.32)

Because of the orthogonality (7.31), projection on 〈φk| and multiplication by −i yields

ȧik = −
∑

l

ail

(〈
φk

∣∣∣∣ ∂

∂t

∣∣∣∣φl

〉
− i〈φk|HTCD|φl〉 + iχ̇lδkl

)
e−i(χl−χk) . (7.33)

The contribution of 〈φk|φ̇k〉 vanishes because of the normalization 〈φk|φk〉 = 1 and
〈φk|φ̇k〉+ 〈φ̇k|φk〉 = 0. The remaining diagonal term l = k in (7.33) can be eliminated
by the choice of phase

χk(t) =
t∫

t0

dt ′〈φk|HTCD|φk〉 , (7.34)

with arbitrary t0; hence

ȧik = −
∑
l �=k

aik

(〈
φk

∣∣∣∣ ∂

∂t

∣∣∣∣φl

〉
− i〈φk|HTCD|φl〉

)
e−i(χl−χk) . (7.35)

The partial differential equation (7.29) now has been reduced to a set of coupled or-
dinary differential equations. The dimension of this system is infinite, however! With
a suitable choice of the basis φk it may be sufficient to include only a few terms in
the expansion to achieve convergence. If the coupling matrix elements in (7.35) are
small, then the aik vary only a little with time and we can set them to be approximately
constant on the right-hand side. Equation (7.35) then leads to a simple integral over
time and we obtain the well-known formula of time-dependent perturbation theory.

If the condition of adiabaticity (7.25) is fulfilled approximately, it is most
favourable to use quasi-molecular states as the basis, i.e. the solutions of (7.26). The
system of coupled-channel equations then reads

ȧik = −
∑
l �=k

ail

〈
φk

∣∣∣∣ ∂

∂t

∣∣∣∣φl

〉
exp

[
−i

t∫

t0

dt ′(El − Ek)

]
, (7.36)



7.2 Strong Fields in Heavy Ion Collisions 397

since the matrix element of the Hamiltonian,

〈φk|HTCD|φl〉 = Ekδkl , (7.37)

vanishes between two orthogonal eigenstates. In order to calculate excitation proba-
bilities, the differential equations of system (7.36) are truncated to a finite number of
channels and are integrated starting from the boundary condition aik(t → −∞) = δik .
The quantity |aik(t → +∞)|2 specifies the probability for an electron to be trans-
ferred from state i to state k in the course of the collision. We now have to take into
account that, in general, several electrons are present. If we neglect the (comparatively
weak) mutual interactions among the electrons, their contributions can be summed up
independently. The number of electrons Nk in a level k which was empty before the
collision is then

Nk =
∑
i<F

|aik(∞)|2 , (7.38)

where the sum extends over all levels occupied before the collision. This is in-
dicated by i < F with F denoting the “Fermi surface” up to which the elec-
tronic levels are filled. The entire lower continuum is also included in this set of
states.

The number of holes N̄l in an originally occupied state l can be calculated in a sim-
ilar way leading to the result

N̄l =
∑
i>F

|ail |2 . (7.39)

This expression is also valid for the production of positrons (i.e. holes in the lower
continuum).

All atomic excitation processes in heavy ion collisions at incident energies around
the Coulomb barrier can be calculated using the formalism of (7.26), (7.36), (7.38) and
(7.39). It is found that the transition rates are very large. The probability of knocking
an electron out of the K shell in a close collision of two very heavy atoms exceeds
10%. Higher levels become almost fully ionized. Measurements of K-hole production
and of the energy distribution of the ionized electrons (which are called δ electrons)
give important insights about the action of the strong field. The predictions of the the-
ory (and thus the concept of the formation of quasi-molecules according to Fig. 7.21,
which is basic to it) have been confirmed to a large degree. In particular we can clearly
conclude from the measurements that in a Coulomb potential with Zα ≥ 1, (1) elec-
tronic binding energies of magnitude m0c

2 and beyond can be reached, and (2) the
wave functions shrink very much, as was shown in Fig. 7.10.

It proves to be very difficult, however, to give evidence about the process of spon-
taneous positron production. To begin with, the formalism has to be extended in order
to describe supercritical collisions, i.e. Z1 + Z2 > Zcr and Rmin < Rcr. As we have
seen, the 1s state vanishes out of the bound spectrum beyond the critical point. In-
stead it is hidden as a narrow time-dependent resonance structure in the continuum
states ΨE . A straightforward solution of (7.36) is thus made almost impossible. This
difficulty can be overcome if we analyse the wave function ΨE at the resonance en-
ergy Er in more detail, see Fig. 7.5d. Besides a localized part at small distances an
oscillating tail with small amplitude extends to infinity. If we cut off this tail, i.e. ar-
tificially forbid tunnelling through the particle–antiparticle gap, it should be possible
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to construct a “1s-like” bound wave function φ̃1s . This new state φ̃1s is of course not
linearly independent from the states ΨE of the lower continuum. Hence, it must not be
inserted into the basis expansion (7.30) of the time-dependent wave function. Rather,
the bound-state contribution first has to be projected out of the continuum. This is
done using the projection operator

P̂ = 1 − ∣∣φ̃1s

〉〈
φ̃1s

∣∣ . (7.40)

A modified continuum φ̃E can then be defined which does not possess the resonance
property any more. φ̃E is an eigenstate of the projected Hamiltonian

(
E − P̂H P̂

) ∣∣φ̃E

〉= 0 . (7.41)

If we assume orthogonality to the higher electron states φn (with En > −m0c
2), (7.41)

can be written as

(E − H)
∣∣φ̃E

〉= −〈φ̃1s

∣∣H ∣∣φ̃E

〉∣∣φ̃1s

〉
. (7.42)

Instead of ΨE the states φ̃1s and φ̃E can now be inserted in the expansion (7.30). This
does not change the formalism in principle, but it has an important consequence: Since
the modified states φ̃1s and φ̃E are not exact eigenstates of the Hamiltonian H (7.37)
is no longer valid. Therefore we have to perform the following replacement in the
differential equations (7.36):

〈
φE

∣∣∂/∂t
∣∣φ1s

〉→ 〈
φ̃E

∣∣∂/∂t
∣∣φ̃1s

〉+ i
〈
φ̃E

∣∣H ∣∣φ̃1s

〉
. (7.43)

The second matrix element plays exactly the role of VE in Fano’s formalism,
Example 7.2. It is responsible for the decay of a 1s hole by spontaneous positron
production with a width

Γ1s = 2π
∣∣〈φ̃E

∣∣H ∣∣φ̃1s

〉∣∣2 . (7.44)

The first matrix element in (7.43) is effective only if the colliding nuclei are in motion.
It describes the “induced” positron emission.

If the positron emission is calculated using the formalism developed above, the
result, however, is somewhat disappointing. Figure 7.22 shows the predicted distribu-
tion of emitted positrons dPe+/dEe+ as a function of their kinetic energy for central
collisions at 5.9 MeV/nucleon projectile energy.12

12 J. Reinhardt, B. Müller, W. Greiner: Phys. Rev. A24, 103 (1981).
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Fig. 7.22. The calculated en-
ergy distribution of the posi-
trons emitted in various heavy
ion collisions. The intensity
increases strongly with the
charge of the participating nu-
clei. The predictions shown
in this figure have been fully
confirmed by experiment

Different collision systems (Z = Z1 + Z2 = 164,174,184,188) are compared.
A striking increase in the positron yield with charge Z is seen. One finds, approxi-
mately

Pe+ ∝ Z20 = (Z1 + Z2)
20 . (7.45)

This is clear evidence that the strong combined Coulomb field of the two nuclei is
active here. It must be kept in mind that from a treatment by perturbation theory only
an increase with Z2

1Z2
2 is to be expected (compare the Feynman graphs of lowest

order for pair production in the collision of two charged particles, Fig. 7.23a). The
result (7.45) stresses the importance of the exchange of very many photons as depicted
symbolically in Fig. 7.23b.

This nonperturbative effect in pair production has been fully confirmed by the re-
sults of experimental groups around P. Kienle, H. Backe, E. Kankeleit and J.S. Green-
berg working at the heavy ion accelerator of the Gesellschaft für Schwerionen-
forschung (GSI, Darmstadt).13

Fig. 7.23. Pair production in
the collision of two nuclei:
(a) Feynman graph of lowest
order; (b) exchange of many
photons at large Z. This non-
perturbative way of pair cre-
ation can be interpreted as
a shake-off of the vacuum po-
larization cloud in the colli-
sion of two heavy nuclei

13 H. Backe, L. Handschug, F. Hessberger, E. Kankeleit, L. Richter, F. Weik, R. Willwater, H. Boke-
meyer, P. Vincent, J. Nakayama, J.S. Greenberg: Phys. Rev. Lett. 40, 1443 (1978); C. Kozhuharov,
P. Kienle, E. Berdermann, H. Bokemeyer, J.S. Greenberg, Y. Nakayama, P. Vincent, H. Backe,
L. Handschug, E. Kankeleit: Phys. Rev. Lett. 42, 376 (1979).
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Fig. 7.24. Positron energy spectra measured in collisions of Th + Ta, Th + Th, and U + Cm
at energies of about 6 MeV per nucleon. The QED predictions (dashed lines) and the experi-
mentally determined background from nuclear pair conversion (dotted lines) add up to the full
lines which are in close agreement with experiment. Figure adapted from K. Sakaguchi (EPOS
collaboration), GSI report 90-05 (1990)

Comparing positron production in various systems of colliding heavy ions, a strong
rise above the background was observed once the combined nuclear charge exceeded
Z1 +Z2 � 160. The background in these experiments is caused by nuclear pair conver-
sion, i.e., the creation of e+e− pairs in the course of the deexcitation of nuclei, which
are left in excited states after the collision, and is quite well understood. The excess of
measured positrons over this background was found to be in quantitative agreement
with the theoretical predictions from QED based on the quasimolecular picture. This
is demonstrated in Fig. 7.24 where the measured energy spectra of positrons emitted
in three different heavy ion collision systems (Z = 163, 180, and 188) are compared
with the predictions. The QED positrons (dashed lines) clearly begin to dominate as
Z increases. Note that in the figure the curves have been scaled to equal height and
that the spectral shapes have not been corrected for the response function of the detec-
tor.

Besides the strong increase with Z the positron spectra shown in Fig. 7.22 give
no clear evidence of spontaneous pair production. This should not come as a surprise
since due to the short collision time �t � 10−21 s the occurrence of narrow structures
in the emission spectrum would be in conflict with Heisenberg’s uncertainty relation.

The situation would change if there were a mechanism leading to a time delay in
the collision. Such an effect could be imagined to happen if the nuclei have enough
energy to surmount the Coulomb repulsion and touch each other so that the attractive
nuclear force sets in, see Fig. 7.25. Let us suppose that the nuclei “stick together” for
a time T and separate again subsequently. Spontaneous positron production should
then be enhanced in supercritical systems. The holes present in the 1s level are emitted
as positrons owing to the decay coupling of (7.43) with a lifetime τ = �/Γ . If the time
delay T is comparable to τ , a sharp line will build up in the positron spectrum whose
position is determined by the diving depth of the submerged 1s state. We already
discussed this in Exercise 7.4. Figure 7.26 shows this effect very clearly for various
assumed values of the delay time T to 10−20 s in U + U

Fig. 7.25. The attractive nu-
clear force may produce
a “pocket” in the internuclear
potential V (r)
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Fig. 7.26. (a) Two heavy ions
are assumed to stick together
for some time T . During this
time the Coulomb potential
is supercritical and positrons
can be emitted spontaneously
from the 1s level. (b) A line
builds up in the spectrum of
the emitted positrons with in-
creasing time T

However, it is not clear whether this gedanken experiment has a real counterpart
in nature. Although the formation of long-lived nuclear molecules has been observed
in the collision of light nuclei, like 12C + 12C, the existence of such an effect in very
heavy systems is uncertain because of the strong Coulomb repulsion of the nuclei.
Therefore, at present it is unclear whether a direct observation of spontaneous positron
creation in heavy ion collisions is possible.

Some time ago there were indications for the experimental discovery of the effect.
Two groups at GSI reported narrow line structures in the positron spectrum of, for
example, U + Cm collisions. At first, these lines could apparently be explained in
terms of spontaneous positron creation occurring in a small fraction of collisions with
a long time delay. However, this explanation soon ran into conflict with the subsequent
discovery of line structures also in collisions with subcritical charge Z < Zcr. More
confusion was added by the reported discovery of correlated electron–positron pairs
with sharp energies. This led to a flurry of speculations ranging from new elementary
particles to phase transitions of the QED vacuum. However, in subsequent experiments
with improved detector systems, the earlier observations could not be reproduced.
Now there appears to be consensus that the reported effects were caused by statistical
fluctuations which had not been ruled out judiciously enough.14

While these studies may have led to a dead end, new experimental developments
promise a fresh look at the problem of supercritical binding and pair creation in strong
fields. This refers to the possibility to study collisions of bare nuclei, which can be
produced when fast ions moving through a thin target foil are stripped of all of their
electrons. Complete stripping only works at ion energies much higher than those of
interest in the present context. Therefore, two techniques have been proposed to cir-
cumvent this problem: either the fast ions may be decelerated again, thus reducing
their velocity in the laboratory frame, or two beams of ions may be brought to col-
lision under an acute angle so that the relative velocity of two ions in their common
center-of-mass frame is small.

14 Today this development is mostly of interest to historians of physics, see A. Franklin: Arch. Hist.
Exact Sci 53, 399 (1998) where further references can be found.



402 7. Quantum Electrodynamics of Strong Fields

Collisions of bare nuclei offer the great advantage that no electrons are around that
could block pair production into the bound states. In ordinary collisions the Fermi level
in (7.39) typically lies at F = 3sσ so that the inner-shell states are “Pauli-blocked”.
Pair production with the electron ending in the 1sσ state is possible only through
multi-step processes in which the bound electron first has to be removed by excitation
or ionization. In contrast, in collisions of bare nuclei, direct bound-free pair production
(“electron capture from the vacuum”) is possible15 and indeed is expected to become
the dominant source of positrons. The positron production rate in such experiments
will be enhanced by up to two orders of magnitude.16

Since they offer direct access to the quasimolecular 1sσ level, studying the col-
lisions of bare nuclei or few-electron ions will provide information on supercritical
binding. By precisely measuring the bound-free pair-production rates and their de-
pendence on nuclear charge, energy, impact parameter and final-state distributions it
will be possible to draw conclusions on the quasimolecular energies. Pair produc-
tion is very sensitive to the strong binding force and an agreement between theory
and experiment would confirm the validity of QED of strong fields in a quantitative
way.

7.3 The Effective Lagrangian of the Electromagnetic Field

If we consider the electromagnetic field in isolation, it satisfies the linear Maxwell
equations, and the superposition principle holds. There are no charges in empty space
in the classical theory, and since the photons also do not bear charge, and thus do not
interact among themselves, their field is described by the free noninteracting Lagrange
function (more precisely, the Lagrange density)

L0 = 1

8π

(
E2 − B2

)
, (7.46)

where E and B denote the electric and magnetic field strengths. Since L0 depends
quadratically on E and B , it is ensured that the ensuing field equations are linear.

The situation changes, however, when we move to quantum theory. Now the pos-
sibility exists of creating virtual particles, in particular electron–positron pairs, by
a photon. Since they are charged they can interact with further photons (before they
annihilate). In particular two photons can scatter off one another. The correspond-
ing Feynman graph of lowest order is displayed in Fig. 7.27a. In the same way it is
possible to scatter photons off an external electromagnetic field, (cf. Fig. 7.27b). The
crosses denote the external field, which may be provided e.g. by a heavy nucleus of
charge −Ze.

Fig. 7.27. (a) Photon–photon
scattering. (b) Delbrück scat-
tering. (c) Photon splitting

In the construction of these diagrams it has been taken into account that according
to Furry’s theorem (see Exercise 4.1) electron loops with an odd number of photon ver-
tices do not contribute. Hence the process of the scattering of light on light, Fig. 7.27a,

15 Such a process was first observed at the BEVALAC accelerator (Berkeley) in collisions at rela-
tivistic energies: A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof: Phys. Rev.
Lett. 71, 1514 (1993).
16 U. Müller, Th. deReus, J. Reinhardt, B. Müller, W. Greiner, G. Soff: Phys. Rev. C37, 1449 (1988).
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is of fourth order; its cross section has to be proportional to α4 and thus is so small
that it could not be verified experimentally yet.

The situation is more favourable for the scattering of photons off the electromag-
netic field of a nucleus, Fig. 7.27b. This process, which is known as Delbrück scatter-
ing,17 scales with (Zα)4α2 and has been found experimentally18 using high-energy
photons (several MeV). We also mention the “splitting” of a photon into two owing
to the scattering at a nucleus19 (cf. Fig. 7.27c), as another interesting process that has
been observed experimentally.

The vacuum of QED is a polarizable medium owing to virtual processes and ob-
tains novel physical properties. One may try to describe this effect by replacing the
Lagrangian L0 of the electromagnetic field by an effective Lagrangian Leff. This will
contain corrections in higher orders in E and B and lead to nonlinear field equations.
In the limiting case of a stationary and homogeneous electromagnetic field an “exact”
closed expression can be given for Leff. This result was found in a pioneering work by
Heisenberg and Euler.20 We shall follow in part a derivation given by Weisskopf .21

To begin with we recall that there are two Lorentz-invariant quantities that charac-
terize the electromagnetic field, namely

I1 = B2 − E2 ,

I2 = B · E . (7.47)

The effective Lagrangian can thus be expressed as a function of these invariants

Leff(B,E) = Leff(I1, I2)

= Leff(B
2 − E2,B · E) . (7.48)

We remind the reader that the scalars I1 and I2 can be obtained by contraction of the
electromagnetic field tensor Fμν , which is defined by

Fμν = ∂μF ν − ∂νFμ

=

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞
⎟⎟⎠ . (7.49)

We also introduce the dual-field tensor obtained by contraction of Fμν with the com-
pletely antisymetric unit tensor (the Levi–Civita tensor)

∗Fμν = 1

2
εμνλσ Fλσ = Fμν(E ↔ B) (7.50)

17 M. Delbrück: Z. Physik 84, 144 (1933); P. Papatzacos and K. Mork: Phys. Rep. 21, 81 (1975).
18 See e.g. S. Kahane and R. Moreh: Phys. Lett. 47B, 351 (1973); P. Rullhusen et al.: Phys. Rev. C27,
559 (1983).
19 G. Jarlskog et al.: Phys. Rev. D8, 3813 (1973).
20 W. Heisenberg and H. Euler: Z. Physik 38, 314 (1936).
21 V. Weisskopf: Kgl. Dankse Vid. Selskab., Math.-fys. Medd. XIV, 166 (1936); for a modern treat-
ment see, e.g., W. Dittrich, M. Reuter: Effective Lagrangians in Quantum Electrodynamics (Springer,
Berlin, Heidelberg, 1985).
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=

⎛
⎜⎜⎝

0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0

⎞
⎟⎟⎠ .

We may construct two scalars by contraction of these tensors, namely

FμνFμν = 2(B2 − E2) = 2I1 , (7.51a)

Fμν ∗Fμν = −4B · E = −4I2 . (7.51b)

The Lagrange function is gauge invariant because it depends only on the field
strengths. Let us calculate the energy W0 of the vacuum per unit volume as a func-
tion of the field strength. Proceeding quite naively we sum up the energy eigenvalues
εpσ < −m of all the electrons in the “Dirac sea” to obtain the total energy E0. From
this value the potential energy U0 in the electric field has to be subtracted. The en-
ergy E0 contains the potential energy U0 of the electrons of the Dirac sea in the exter-
nal field in addition to the pure energy W0 of the vacuum. Since we are interested only
in the pure energy of the vacuum the contribution U0 has to be subtracted from E0:

W0 = E0 − U0 , E0 =
∑
pσ

ε(−)
pσ , (7.52)

U0 =
∑
pσ

∫
d3x ψ(−)†

pσ eA0(x)ψ(−)
pσ , (7.53)

where A0(x) is the electrostatic potential. Here the sum extends over all momenta p

and all spin directions; only the states with negative energy (−) are taken into account.
U0 may be expressed in terms of E0 by a trick. To do this, we make the following
general consideration valid in quantum mechanics.

Let Ĥ (λ) be a self-adjoint Hamiltonian that depends analytically on a parameter λ

and ψn(λ) a normalized eigenfunction

Ĥ (λ)ψn(λ) = εn(λ)ψn(λ) . (7.54)

The derivative of the energy eigenvalue with respect to the parameter λ then obeys

∂εn

∂λ
=
〈
ψn

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣ψn

〉
, (7.55)

since by differentiation of (7.54) and projection onto 〈ψn| we get

∂εn

∂λ
=
〈
ψn

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣ψn

〉
+
〈
ψn

∣∣∣∣
(
Ĥ − εn

) ∂

∂λ

∣∣∣∣ψn

〉
.

The last term is zero because of 〈ψn|Ĥ = 〈ψn|εn.
Now we use this general statement by writing for the potential of a stationary,

homogeneous E field

A0(x) = −E · x
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and use the field strength as the parameter λ. Thus

U0 = E ·
∑
pσ

∫
d3x ψ(−)†

pσ

∂Ĥ

∂E
ψ(−)

pσ = E · ∂E0

∂E
, (7.56)

and hence

W0 = E0 − U0 = E0 − E · ∂E0

∂E
. (7.57)

This relation serves to switch from the energy to the Lagrange function. The relation-
ship between the energy (Hamiltonian) and the Lagrangian for a system having the
generalized coordinates qi in general reads

W =
∑

i

q̇i

∂L
∂q̇i

− L . (7.58)

In electrodynamics the potentials A0 and A play the role of the generalized coordi-
nates qi . Because of the relation E = −Ȧ − ∇A0 and B = ∇ × A, there is a depen-
dence on a generalized velocity (q̇i) in the Lagrangian only in the time derivative of
the vector potential. But differentiation with respect to Ȧ is equivalent to differentia-
tion with respect to E. Hence (7.58) can also be written as

W = E · ∂L
∂E

− L . (7.59)

Thus we find that the change of the Lagrangian density of the electromagnetic field is
given, up to a sign, by the additional energy density E0:

Leff = L0 + L′ , (7.60a)

with

L′ = −E
(ren)
0 . (7.60b)

In (7.60b) we have indicated that the expression of (7.52) still has to be renormalized.
In particular the energy of the vacuum in the absence of the electromagnetic field has
to be subtracted, because it cannot be observed.

In order to calculate E0 we restrict ourselves for the beginning to the case of a pure
magnetic field, E = 0. The energy eigenvalues can be given exactly according to Ex-
ercise 7.7:

ε(−)
pσ = −

√
m2 + p2

z + |e|B(2n + 1 + σ) , (7.61)

where n = 0,1,2, . . . and σ = ±1. The density of states per momentum interval is
|e|B/2πdpz/2π ; cf. Exercise 7.7. Hence

L′ = −E0

=
+∞∫

−∞

dpz

2π

|e|B
2π

∑
nσ

√
m2 + p2

z + |e|B(2n + 1 + σ)

= |e|B
(2π)2

+∞∫

−∞
dpz

(√
m2 + p2

z + 2
∞∑

n=1

√
m2 + p2

z + 2|e|Bn

)
. (7.62)
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Here we have taken account of the fact that all states are doubly degenerate except
for the level with n = 0, σ = −1. The states with quantum numbers n,σ = +1 and
with n − 1, σ = −1 have the same energy. Only for the state n = 0, σ = −1 can such
a partner not be found.

Obviously (7.62) is highly divergent. As we shall see we can nevertheless split off
a physically meaningful finite expression. To this end we first regularize (7.62) by
introducing a suitably chosen cutoff factor. With the abbreviation

F(n,λ) =
∞∫

0

dpz

√
m2 + p2

z + 2|e|Bn e−λ
√

m2+p2
z+2|e|Bn (7.63)

the regularized equation (7.62) reads

L′(λ) = |e|B
π2

(
1

2
F(0, λ) +

∞∑
n=1

F(n,λ)

)
. (7.64)

λ is a cutoff parameter with dimension one over energy. The limit λ → 0 should be
taken at the end of the calculation. Physically meaningful quantities must no longer
depend on λ then. Hence they have to approach a finite limiting value. Equation (7.64)
may be rewritten using the summation formula of Euler and MacLaurin22

N∑
n=0

F(n,λ) = 1

2
F(0, λ) + 1

2
F(N,λ) +

N∫

0

dn F(n,λ)

+
∞∑

k=1

B2k

(2k)!
(
F (2k−1)(N,λ) − F (2k−1)(0, λ)

)
. (7.65)

Here F (k)(x,λ) denotes the kth derivative of the function F(x,λ) with respect to x.
The B2n are Bernoulli’s numbers B2 = 1/6,B4 = −1/30,B6 = 1/42, . . . . Because
of (7.63), F(n,λ) and all its derivatives decay exponentially at large n (for λ �= 0) so
that the limit N → ∞ can be taken in (7.65), leading to the result

∞∑
n=0

F(n,λ) = 1

2
F(0, λ) +

∞∫

0

dn F(n,λ) −
∞∑

k=1

B2k

(2k)!F
(2k−1)(0, λ) . (7.66)

Hence, (7.64) can be written as

L′(λ) = |e|B
π2

⎛
⎝

∞∫

0

dn F(n,λ) −
∞∑

k=1

B2k

(2k)!F
(2k−1)(0, λ)

⎞
⎠ . (7.67)

22 See for example G. Arfken: Mathematical Methods for Physicists (Academic Press, New York,
1970), Chap. 5.9.
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The integral in (7.63) defining the function F(n,λ) can be evaluated explicitly. Sub-

stituting x =
√

p2
z + a2/a and a2 = m2 + 2|e|Bn we obtain

F(n,λ) =
∞∫

0

dpz

√
p2

z + a2 e−λ
√

p2
z+a2 = a2

∞∫

1

dx
x2

√
x2 − 1

e−λax

= a2
(

1

−a

)2 d2

dλ2

∞∫

1

dx
e−λax

√
x2 − 1

= d2

dλ2
K0(λa) = a2 d2

dz2
K0(z) . (7.68)

Here K0(z) is the modified Bessel function of the second kind (the McDonald func-
tion) and we have substituted z = λa.

The derivative K ′′
0 (z) is evaluated by use of recursion relations for the Bessel func-

tions (see I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products,
Academic Press, 1965, no. 8.486). In particular, K ′

0 = −K1, K ′
1 = K1/z − K2, and

thus

F(n,λ) = −a2
(

1

λa
K1(λa) − K2(λa)

)

= − 1

λ2

(
zK1(z) − z2K2(z)

)
. (7.69)

In (7.67) we need the derivatives of this function with respect to n. Because of
z = λa = λ

√
m2 + 2|e|Bn, zdz = λ2|e|Bdn, the mth derivative may be written as

(
d

dn

)m

=
(
λ2|e|B

)m
(

1

z

d

dz

)m

. (7.70)

These derivatives lead just to simple modified Bessel functions (see Gradshteyn/

Ryzhik no. 8.486.14):
(

1

z

d

dz

)m (
zνKν(z)

)= (−1)mzν−mKν−m(z) . (7.71)

With z(n = 0) = λm the regularized Lagrangian (7.67) now reads

L′(λ) = − 1

π2

1

λ4

∞∫

λm

dz z2(K1(z) − zK2(z)
)

− |e|B
π2

∞∑
k=1

B2k

(2k)!
(

− 1

λ2

)(
λ2|e|B

)2k−1

× (−1)2k−1[(λm)2−2kK2−2k(λm)−(λm)3−2kK3−2k(λm)
]

. (7.72)

Let us now consider the structure of this expression. It is a power series in even powers
of the field strength B multiplied by the elementary charge e,

L′(λ) = C0(λ) + C2(λ)(eB)2 +
∞∑

k=2

C2k(λ)(eB)2k . (7.73)
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It turns out that the first two coefficients, C0(λ) and C2(λ), diverge if the cutoff pa-
rameter λ approaches 0. The higher coefficients C4,C6, . . . , however, are finite (see
below): The divergence of C0(λ) follows from

C0(λ) = − 1

π2

1

λ4

∞∫

λm

dz z2(K1(z) − zK2(z)
)= O

(
1

λ4

)
→ ∞ , (7.74)

because the integral converges at the lower bound. The term which is quadratic in the
field strength results from (7.72):

C2(λ) = − 1

π2

B2

2

(
K0(λm) − λmK1(λm)

)
. (7.75)

The asymptotic behaviour of the Bessel function for z → 0 is

Km(z) → (m − 1)! 2m−1z−m for m > 0 ,

K0(z) → − ln(z) . (7.76)

Hence C2(λ) diverges logarithmically as a function of the cutoff parameter λ

C2(λ) → 1

π2

1

12
ln(λm) . (7.77)

It has been clear from the beginning that divergence problems of this kind had to
occur. The energies of all states of the lower continuum were summed up in the
ansatz (7.72, 7.53). The constant C0 is just the “total energy of the Dirac sea” and
as such is not observable. This identification may be verified formally by converting
the expression for C0 into a three-dimensional momentum integral. The substitutions
p2⊥ = 2|e|Bn and d2p⊥ = p⊥dp⊥dϕ in cylindrical coordinates lead to

C0(λ) = |e|B
π2

∞∫

0

dnF(n,λ)

= |e|B
π2

∞∫

0

dn

∞∫

0

dpz

√
m2 + p2

z + 2|e|Bn e−λ
√

m2+p2
z+2|e|Bn

= 1

2π2

∞∫

−∞
dpz

∞∫

0

dp⊥p⊥
2π∫

0

dϕ

2π

√
m2 + p2

z + p2⊥e−λ

√
m2+p2

z+p2⊥

=
∫

d3p

(2π)3
2
√

m2 + p2 e−λ
√

m2+p2
. (7.78)

This is just the regularized expression for the negative of the energy of the lower
continuum in the absence of an external field. Thus we have to subtract C0 in (7.73) in
order to obtain a meaningful expression. Furthermore the term C2e

2B2 has exactly the
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form of the free Lagrangian (7.46) so that we can group the terms in the following way:

Leff = L0 + L′ − C0

= L0 + C2(eB)2 + [L′ − C0 − C2(eB)2]

= −(1 − 8πC2e
2)B2

8π
+

∞∑
n=2

C2n(eB)2n . (7.79)

Hence the free Lagrangian is multiplied by a constant (1 − 8πe2C2). Once again, the
presence of such a factor cannot be observed physically. Since it is effective in all
experiments, the constant factor only leads to a redefinition of the field strength and
the charge. We can formally define a renormalized elementary charge by

eR = e√
1 − 8πe2C2

(7.80)

and the corresponding renormalized field strength by

BR = e

eR
B =

√
1 − 8πe2C2 B . (7.81)

The Lagrangian of the magnetic field expressed in terms of these quantities reads

Leff = − 1

8π
B2

R +
∞∑

n=2

C2n(eRBR)2n = L0R + L′
R . (7.82)

This expression has the “correct” limit at small field strengths. Thus we may con-
sider BR and eR to be the physically observable quantities. In the following we shall
omit the index R for brevity.

The renormalized correction L′ to the Lagrangian then reads, because of (7.76)
(using K−n(z) = Kn(z)),

L′ = − 1

π2
lim
λ→0

∞∑
k=2

B2k

(2k)!
1

λ4

(
λ2|e|B

)2k

×
[
(λm)2−2kK2k−2(λm) − (λm)3−2kK2k−3(λm)

]

= − 1

π2
lim
λ→0

∞∑
k=2

B2k

(2k)!λ
4k−4(eB)2k(λm)2−2k(2k − 3)!22k−3(λm)−2k+2

= − 1

π2

∞∑
k=2

B2k

(2k)!
1

8
(2eB)2km4−4k(2k − 3)!

= − 1

8π2

∞∑
k=2

(2eB)2kB2km
4−4k Γ (2k − 2)

(2k)! . (7.83)

It is usual to express this result in terms of an integral representation. To this end we
write the gamma function as

Γ (z) =
∞∫

0

dη e−ηηz−1 (7.84)
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and obtain

L′ = − 1

8π2

∞∑
k=2

(2|e|B)2kB2km
4−4k 1

(2k)!
∞∫

0

dη e−ηη2k−3

= − 1

8π2
|e|Bm2

∞∫

0

dη
e−η

η2

∞∑
k=2

22k

(2k)!B2k

( |e|Bη

m2

)2k−1

. (7.85)

Careful inspection of the series in this expression reveals that it is identical to the
Taylor expansion of the hyperbolic cotangent function,

coth(x) = 1

x
+ x

3
+

∞∑
k=2

22k

(2k)!B2kx
2k−1 . (7.86)

Introducing the dimensionless field strength

B̃ = B

Bcr
= |e|

m2
B , (7.87)

with the critical magnetic field

Bcr = m2

|e| = m2c3

|e|� = 4.4 × 1013 Gauss = 4.4 × 109 Tesla

we get as the final result in compact form

L′(E = 0,B) = m4

8π2

∞∫

0

dη
e−η

η3

(
−B̃η coth

(
B̃η
)
+1+ 1

3

(
B̃η
)2
)

. (7.88)

The investigation is more difficult for general electromagnetic fields, because we can-
not find an expression analogous to (7.61). However, the case of a constant pure elec-
tric field (B = 0) can be reduced to (7.88) by a trick. To do this we note that the result
may be expressed as a function of the two invariants B2 − E2 and B · E according
to (7.48). Thus one immediately sees that

L′(E,B = 0) = L′(I1 = 0 − E2, I2= 0)

= L′(I1 = (iE)2, I2= 0)

= L′(E = 0,B = iE) . (7.89)

Hence one can use the solution for the pure magnetic field and replace B by iE!
Because coth(ix) = −i cot(x), this leads to

L′(E,B = 0) = m4

8π2

∞∫

0

dη
e−η

η3

[
−Ẽη cot

(
Ẽη
)

+ 1 − 1

3

(
Ẽη
)2
]

, (7.90)

with the reduced electric field strength

Ẽ = E

Ecr
= |e|

m2
E . (7.91)
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For the sake of completeness we also quote without proof the extension to the case of
constant parallel electric and magnetic fields. This is sufficient for a unique expansion
of L′ in the invariants I1 and I2 (7.47). The required calculation is quite lengthy; we
refer to the cited original publications. The result reads

L′(B||E) = m4

8π2

∞∫

0

dη
e−η

η3

×
[
−Ẽη cot

(
Ẽη
)
B̃η coth

(
B̃η
)
+1− 1

3

(
Ẽ2 −B̃2

)
η2
]

, (7.92)

which obviously contains (7.88) and (7.90) as limiting cases. L0 + L′ is the effective
Lagrangian of the electromagnetic field which dates back to Heisenberg and Euler
(1936). A formally more satisfying derivation based on the “proper time method” was
given later by Schwinger.23

We now examine some consequences of (7.92). First, let us consider the limiting
case of weak fields, i.e. Ẽ � 1, B̃ � 1. A Taylor expansion corresponding to (7.86)
up to the third term yields

L′ = m4

8π2

1

45

∞∫

0

dη ηe−η
(
Ẽ4 + B̃4 + 5Ẽ2B̃2

)

= 1

8π

e4

45πm4

[(
B2 − E2

)2 + 7 (E · B)2
]

. (7.93)

By the way, this result is valid in every frame of reference, because it has been ex-
pressed in terms of the invariants I1 and I2. Amongst other things, we conclude from
(7.93) that there are no nonlinear corrections for plane wave since both invariants then
vanish.

For the limiting case of strong magnetic fields, i.e. B̃ � 1, we will be satisfied
with a rough estimate in logarithmic approximation. With the substitution τ = ηB̃ ,
(7.88) can be written as

L′ = m4B̃2

8π2

∞∫

0

dτ
e−τ/B̃

τ

(
1

3
+ 1 − τ coth(τ )

τ 2

)
. (7.94)

For τ ≤ 1 the integrand is attenuated by the expression in parentheses (because
coth τ = 1/τ + τ/3− τ 3/45± . . .) and for large τ ≥ B̃ by the exponential factor. Thus
it is a reasonable approximation to replace the integration bounds by these values and
further neglect the variation of the second term in parentheses and of exp

(−τ/B̃
)

in
this range. Then we obtain

L′ � m4B̃2

8π2

B̃∫

1

dτ

τ

1

3
= m4B̃2

24π2
ln
(
B̃
)

. (7.95)

23 J. Schwinger: Phys. Rev. 82, 664 (1951).
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If we compare this to the free Lagrangian L0, we see that the nonlinear effects always
stay small in QED,

L′

L0
= e2

3π
ln

|e|B
m2

. (7.96)

In order to have L′ = L0 one would have to reach entirely unrealistic field strengths
with the order of magnitude

B = Bcr e3π/α = E560Bcr . (7.97)

Of course, this is due to the small electromagnetic coupling constant.
Finally we are led to the most interesting result by considering the Lagrangian of

strong electric fields. At first the result (7.90) is not well defined, because the cotangent
has poles on the real axis. The integral for the energy density,

E0 = m4Ẽ2

8π2

∞∫

0

dτ
eτ/Ẽ

τ 3

(
τ cot(τ ) − 1 + 1

3
τ 2
)

, (7.98)

can be given a value by choosing a contour in the complex τ plane. If the poles are

Fig. 7.28. The deformed inte-
gration contour to be chosen
in (7.98)

circumvented in the upper half plane, see Fig. 7.28, the energy obtains a negative
imaginary part (the sign will become clear later). We calculate its magnitude by taking
half of the negative residuum at each pole:

Im{E0} = −1

2
2π i

∞∑
n=1

Res|τ=nπ

= −1

2
2π i

m4Ẽ2

8π2

∞∑
n=1

e−nπ/Ẽ

(nπ)3
(nπ)

= −i
e2E2

8π3

∞∑
n=1

1

n2
e−nπm2/|e|E . (7.99)

In order to understand this result we recall that complex energies characterize the
decay of a quantum-mechanical state. In fact the probability of a time-dependent state
|Φ(t)〉 = e−iEt |φ〉 is

P(t) = 〈Φ(t)
∣∣Φ(t)

〉= e−i(E−E∗)t 〈φ∣∣φ〉= e2 Im(Et) . (7.100)

In our context this means that the vacuum state, which originally is free of particles,
decays spontaneously in a strong electric field by creation of electron–positron pairs.
The particle creation rate per unit volume and time is

w = 2 Im(L′)

= 1

4π3

(
eE�

m2c3

)2
mc2

�︸︷︷︸
1

time

(mc

�

)3

︸ ︷︷ ︸
1

volume

∞∑
n=1

1

n2
exp

(
−n

πm2c3

|e|E�

)
, (7.101)

where the constants � and c have been written out explicitly this time.
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It is very remarkable that the result (7.101) has an essential singularity in the limit
e → 0. Thus pair creation in a strong field is a nonperturbative effect which cannot
be calculated by a series expansion in the coupling constant.

Finally one has to keep in mind that (7.101) was calculated with the assumption
that no real particles are present. When the field strength E becomes large, this is no
longer justified and the back reaction of the created pairs on the electric field would
have to be taken into account by a self-consistent ansatz.24

At the beginning of this chapter we gave an intuitive interpretation of pair creation
in an electric field: in the vacuum continuously short-living “virtual” e+e− pairs are
created and annihilated again by quantum fluctuations. These pairs can be separated
spatially by the external electric field and converted into real particles by expenditure
of energy. For this to become possible the potential energy has to vary by an amount
�V = |e|E�l > 2mc2 in the range of about one Compton wavelength, �l � �/mc

which leads to the value of the critical field strength.
A more quantitative interpretation results from Dirac’s hole picture. Figure 7.29

shows the space dependence of the potential energy V (x) = eEx as well as the corre-
sponding energy gap of the Dirac equation between mc2 +V (x) and −mc2 +V (x). In
full analogy to Fig. 7.5 pair creation results from the tunnelling of an electron from the
“Dirac sea” through this classically forbidden zone. The probability for such a tunnel
process is described by a penetration factor (the “Gamow factor”) given by

P � exp

(
−2

�

x+∫

x−

q(x)dx

)
, (7.102)

with the imaginary momentum

q(x) =
√

m2c2 − (W − eEx)2/c2 . (7.103)

Fig. 7.29. e+e− pair creation
in a constant electric field can
be visualized as a tunneling
process through the mass gap
of the Dirac equation

24 A complete solution of this problem is still lacking, see Y. Kluger, J.M. Eisenberg, B. Svetitsky,
F. Cooper, E. Mottola, Phys. Rev. D45, 4659 (1992).
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x± denotes the classical turning points where q(x±) = 0, W is the energy. We find

P � exp

⎛
⎝− 2

�c

x+∫

x−

√
m2c4 − (W − eEx)2 dx

⎞
⎠

= exp

⎛
⎝− 2

�c

1

|e|E m2c4

+1∫

−1

√
1 − u2 du

⎞
⎠

= exp

(
−πm2c3

|e|E�

)
. (7.104)

This is exactly the exponential factor in (7.99) (for the one-pair term, n = 1)!

EXERCISE

7.6 An Alternative Derivation of the Effective Lagrangian

Problem. The effective Lagrangian of the electromagnetic field in the form (7.88) of
Sect. 7.3 may also be derived with less mathematical effort. In a first step differentiate
(7.62) twice with respect to the parameter m2 and sum up the series using the integral
representation

1

m2
=

∞∫

0

dη e−m2η (1)

and integrate the resulting function twice over m2. Finally a renormalization has to be
performed.

Solution. The following expression has to be calculated:

L′(E = 0,B) = |e|B
(2π)2

2

∞∫

0

dpz

(√
m2 + p2

z + 2
∞∑

n=1

√
m2 + p2

z + 2|e|Bn

)
. (2)

We formally treat this expression as if it were convergent, ignoring the need for a reg-
ularization prescription. Double differentiation by m2 leads to

Λ(H) := d2 L′
(
dm2

)2

= − |e|B
(2π)2

1

2

∞∫

0

dpz

⎡
⎣ 1(

m2 +p2
z

) 3
2

+2
∞∑

n=1

1(
m2 +2|e|Bn+p2

z

) 3
2

⎤
⎦ . (3)

The pz integral now is convergent and simply yields

∞∫

0

dpz

1(
p2

z + a2
)3/2

= pz

a2
√

p2
z + a2

∣∣∣∣
∞

0

= 1

a2
, (4)
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and hence

Λ(H) = −|e|B
8π2

(
1

m2
+ 2

∞∑
n=1

1

m2 + 2|e|Bn

)
. (5)

The integral representation (1) leads to

Λ(H) = −|e|B
8π2

∞∫

0

dη

(
e−m2η + 2

∞∑
n=1

e−(m2+2|e|Bn)η

)

= −|e|B
8π2

∞∫

0

dη e−m2η

(
2

∞∑
n=0

e−2|e|Bnη − 1

)
. (6)

The sum over n here is just a geometrical series! It can be summed in closed form to
yield

Λ(H) = −|e|B
8π2

∞∫

0

dη e−m2η

(
2

1 − e−2|e|Bη
− 1

)

= −|e|B
8π2

∞∫

0

dη e−m2η 1 + e−2|e|Bη

1 − e−2|e|Bη

= − 1

8π2

∞∫

0

dη
e−m2η

η
|e|Bη coth(|e|Bη) . (7)

Twofold integration over the variable m2 yields

L′ = − 1

8π2

∞∫

0

dη e−m2η 1

η3
|e|Bη coth(|e|Bη) + C2 + C1m

2 . (8)

The integration constants C1,C2 can in principle be arbitrary functions of B but they
must not depend on m2. This is a very strong restriction. From dimensional consider-
ations the Lagrange density L′ may depend only on the dimensionless ratio B/Bcr. In
more precise terms the functional dependence on B and m should read

L′(B,m) = m4f (B/Bcr) = m4f

( |e|B
m2

)

=
(mc

�

)3
mc2f

( |e|B
m2

�

c3

)
. (9)

The constants � and c have been inserted explicitly in the last step. This demon-
strates that the factor m4 indeed bears the correct dimension of the Lagrangian density,
namely energy per volume. Taking into account (9) the integration constants in (7) can
only have the form

C1 = C′
1 m2 |e|B

m2
, C2 = C′

2 e2B2 . (10)
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The effective Lagrangian is connected to L′ as follows (cf. (7.79)):

Leff = L0 + L′ − C0 = L0R + L′
R . (11)

L′ contains ill-defined contributions proportional to (eB)0 and (eB)2. The finite renor-
malized Lagrangian L′

R is obtained from L′ by

L′
R = L′ − C0 . (12)

Here the constants C0,C1,C2 have to be chosen such that the power series expansion
of L′

R with respect to the field strength B does not contain terms of the order ≤ 2.
To achieve this we have to choose the integration constant C1 = 0. Furthermore the
renormalization condition leads to

C0 = − 1

8π2
m4

∞∫

0

dη′ e−η′

η′3 (13a)

and

C2 = 1

8π2
e2B2 1

3

∞∫

0

dη′ e−η′

η′ , (13b)

because x coth(x) = 1+1/3x2+· · · , with the substitution of variables η′ = m2η. Since
we did not introduce a regularization prescription, these are divergent integrals.

Hence the renormalized effective Lagrangian of the electromagnetic field reads

L′
R = − m4

8π2

∞∫

0

dη′ e−η′

η′3

(
B̃η′ coth

(
B̃η′)− 1 − 1

3

(
B̃η′)2

)
, (14)

with B̃ = B/Bcr = |e|B/m2. This result is identical to (7.88).

EXERCISE

7.7 The Solution of the Dirac Equation in a Homogeneous Magnetic Field

Problem. Show that the energy of a Dirac particle in a homogeneous magnetic field
B = Bez is given by the expression

εpσ = ±
√

m2 + p2
z + |e|B(2n + 1 − σ) .

pz is the momentum in the z direction and σ = ±1 is the projection of the spin. Use
the Dirac equation for the bispinor ψ = (φ

χ

)
and reduce the problem to the differential
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equation of the harmonic oscillator by elimination of χ . Show that the density of states
per momentum interval in the volume V = 1 is given by

dN

dpz

= |e|B
(2π)2

.

Solution. According to in RQM , Chap. 2, the Dirac equation in two-component no-
tation reads (� = 1)

i
∂

∂t
φ = σ · (p̂ − eA)χ + eA0φ + mφ ,

i
∂

∂t
χ = σ · (p̂ − eA)φ + eA0χ − mχ . (1)

The stationary solutions for a constant purely magnetic field (A0 = 0,A independent
of time) are obtained from

(ε − m)φ = σ · (p̂ − eA)χ ,

(ε + m)χ = σ · (p̂ − eA)φ . (2)

We multiply the first equation by (ε + m) and eliminate χ ,

(
ε2 − m2)φ = σ · (p̂ − eA) σ · (p̂ − eA)φ . (3)

Next we use the identity

(σ · a)(σ · b) = a · b + iσ · a × b (4)

and the gradient property of the momentum operator p̂ = −i∇:

(ε2 − m2)φ =
[
(p̂ − eA)2 + iσ · (p̂ − eA) × (p̂ − eA)

]
φ

=
[
(p̂ − eA)2 − eσ ·B

]
φ

=
[
p̂2 − 2eA · p̂ + e2A2 − e σ · B

]
φ

=
[
p̂2 + e2B2x2 − eB(σz + 2xp̂y)

]
φ . (5)

The vector potential was chosen to be A = (0,Bx,0) in the last transformation, and
∇ · A = 0 and B = ∇ × A have been used. We notice that the right-hand side of (5)
obviously commutes with the components of the momentum operator p̂y and p̂z. Con-
sequently the ansatz

φσ (x) = ei(pyy+pzz)f (x)χσ (6)

presents itself where χσ is the unit spinor. Insertion into (5) immediately yields

(
ε2 −m2

)
f (x) =

(
− d2

dx2
+p2

y +p2
z +e2B2x2 −2eBxpy −eB σ

)
f (x) , (7)
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which can be written as
[
− d2

dx2
+ e2B2

(
x − py

eB

)2
]

f (x) =
(
ε2 − m2 − p2

z + eBσ
)

f (x) . (8)

This is just the Schrödinger equation of the harmonic oscillator in the variable ξ =
x − py/eB . The “oscillator energy” is �ω = 2|e|B . The eigenvalues thus are λn =
(n + 1/2)hω = (2n + 1)|e|B . Hence

ε2 − m2 − p2
z + eBσ = (2n + 1)|e|B ,

or

εpσ = ±
√

m2 + p2
z + |e|B(2n + 1 + σ) . (9)

This is the relativistic generalization of the Landau levels of a particle in a magnetic
field.

In order to determine the density of states we note that the energy levels (9) are
infinitely degenerate since the momentum py does not appear in the formula. In the
classical framework our solution describes helical motion of the electron with freely
chosen momentum components in y and z direction but orbiting around a fixed center,

x0 = py

eB
. (10)

If we put the particle into a box with dimensions Lx , Ly , Lz (Fig. 7.30), the y and
z motions are quantized by the boundary conditions and the number of states reads
(� = 1)

�N = Ly

2π
�py

Lz

2π
�pz . (11)

�py = eB�x0 holds because of (10). We sum over the allowed values 0 < x0 < Lx

and obtain, as conjectured above,
Fig. 7.30. Normalization box

�N = Ly

2π
|e|BLx

Lz

2π
�pz = |e|B

(2π)2
�pzV . (12)

EXAMPLE

7.8 Birefringence of the Vacuum in a Strong Magnetic Field

Because of the presence of quantum fluctuations the QED vacuum behaves like a po-
larizable medium and thus it should come as no surprise that it can exhibit interesting
optical properties. In the presence of a strong electromagnetic field the index of re-
fraction for the propagation of light will depart from unity25 and it will depend on the
polarization of the beam, leading to the phenomenon of optical birefringence.

25 S.L. Adler, Ann. Phys. (N.Y.) 87, 599 (1971); Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys.
Rev. D2, 2341 (1970).
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This phenomenon can be described by using the effective Lagrangian Leff of the
electromagnetic field, which in the weak-field case is given by (7.93):

Leff = 1

8π

(
E2 − B2)+ 1

8π

e4

45πm4

[(
E2 − B2)2 + 7

(
E · B)2] . (1)

Given the Lagrangian Leff(E,B) we can make use of the methods of electrody-
namics of continuous media (see W. Greiner: Classical Electrodynamics, Springer,
1998). One introduces the electric displacement field D and the magnetic field
strength H through

D = E + 4πP and H = B − 4πM (2)

where P and M are the induced electric and magnetic polarization. The fields
D and H can be obtained by differentiation of the Lagrangian (this can be de-
rived from the principle of least action applied to the electromagnetic field, see, e.g.,
V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii: Quantum Electrodynamics, Perga-
mon, Oxford, 1982)

D = 4π
∂L
∂E

, H = −4π
∂L
∂B

. (3)

While in the absence of vacuum polarization, L = L0, we simply get D = E and
H = B , the use of Leff leads to the presence of nonlinear and mixed terms:

D = E + κ
[
2
(
E2 − B2)E + 7

(
E · B)B] ,

H = B + κ
[
2
(
E2 − B2)B − 7

(
E · B)E] , (4)

with the abbreviation

κ = e4

45πm4
. (5)

The complicated field problem can be greatly simplified if the equations (4) are
linearized. This is justified for the description of a “weak” electromagnetic wave
(Ep,Bp) propagating in the presence of a “strong” constant external field (E0,B0)

E = E0 + Ep , B = B0 + Bp (6)

with the condition Ep � E0,Bp � B0 (but still E0 � Ecr and B0 � Bcr. For sim-
plicity the following discussion will be specialized to the case of a purely magnetic
field, i.e., E0 = 0. Keeping only linear terms in Ep,Bp , (4) then becomes

D = Ep + κ
[
−2B2

0 Ep + 7
(
Ep · B0

)
B0

]
,

H = B0 + Bp + κ
[
−2B2

0 B0 − 2B2
0Bp − 4B0 · BpB0

]
. (7)

The equation for the magnetic field contains two constant terms, B0 and −2κB2
0B0,

which can be dropped when considering the photon field Hp . The connection be-
tween Dp and Ep as well as Hp and Bp can be interpreted in terms of the constants
of dielectric permittivity ε and magnetic permeability μ. We notice that the fields in
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general do not point in the same direction, which implies that the constants ε and μ

are second-rank tensors. We will denote them by the boldface letters ε and μ:

Dp = ε Ep , Hp = μ−1Bp . (8)

The Cartesian components of the permittivity and inverse permeability tensors can be
read off from (7):

εij = δij

(
1 − 2κB2

0

)
+ 7κB0iB0j ,

μ−1
ij = δij

(
1 − 2κB2

0

)
− 4κB0iB0j . (9)

Thus we have found that in the presence of a magnetic field B0 (the case of an elec-
trical field is very similar) the vacuum becomes an anisotropic optical medium, quite
similar to a (uniaxial) crystal. To describe the propagation of light in such a medium
we have to solve the source-free Maxwell equations

∂tBp = −∇ × Ep ,

∇ · Bp = 0 ,

∂tDp = ∇ × Hp ,

∇ · Dp = 0 , (10)

taking the “material equations” (8) into account. For the fields Ep and Bp we make
the ansatz of a plane wave

Ep(x, t) = E e−i(ωt−k·x) ,

Bp(x, t) = B e−i(ωt−k·x) , (11)

so that the Maxwell equations become

ωB = k × E ,

k · B = 0 ,

ω ε E = −k ×
(
μ−1B

)
,

k · (ε E) = 0 . (12)

Without restricting generality we take the z axis as the direction of the magnetic field,
B0 = B0e3. The tensors (9) then are diagonal:

εij = diag
(
1 + a,1 + a,1 + b) , μ−1

ij = diag
(
1 + a,1 + a,1 + c) (13)

with the small parameters a = −2B2
0κ , b = 5B2

0κ , c = −6B2
0κ . For simplicity in the

following we assume that the light wave moves perpendicular to the magnetic field,
e.g., along the x axis, k = ke1. Then the components of the Maxwell equations (12)
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read

ωB2 = −kE3 , ωB3 = kE2 ,

B1 = 0 ,

ωε22E2 = kμ−1
33 B3 , ωε33E3 = kμ−1

22 B2 ,

E1 = 0 . (14)

We observe that the wave is still transverse, E,B ⊥ k. Insertion of B2 and B3 from the
first equation into the third equation leads to two decoupled equations for the electric
field strength:

(
k2

ω2
− ε22μ33

)
E2 = 0 ,

(
k2

ω2
− ε33μ22

)
E3 = 0 . (15)

Depending on which of the two bracket factors vanishes there are two nontrivial solu-
tions of these equations.

(a) Perpendicular polarization: E ⊥ B0

Here k2/ω2 = ε22μ33 and E3 = 0. With (13) the dispersion relation of the photon
reads

n⊥ ≡ k

ω
= √

ε22μ33 =√(1 + a)/(1 + c) � 1 + 1

2
(a − c)

= 1 + 2κB2
0 = 1 + 2α

45π

(
B0

Bcr

)2

. (16)

The field strength vectors are

E = {0,E,0} , B = {0,0, n⊥E} (17)

as depicted in Fig. 7.31a.

Fig. 7.31. The vectors of the
electric and magnetic photon
field for the perpendicular (a)
and parallel (b) polarization
modes
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(b) Parallel polarization: E ‖ B0

In this case k2/ω2 = ε33μ22 and E2 = 0. The index of refraction is

n‖ ≡ k

ω
= √

ε33μ22 =√(1 + b)/(1 + a) � 1 + 1

2
(b − a)

= 1 + 7

2
κB2

0 = 1 + 7α

90π

(
B0

Bcr

)2

. (18)

The field strength vectors are

E = {0,0,E} , B = {0,−n‖E,0
}

, (19)

see Fig. 7.31b.
Collecting these results, we have found that the index of refraction is larger than

one; thus in the presence of an external magnetic field light moves with a (slightly)
reduced speed.26 Comparing (16) and (18) we observe that the light wave moves at
a slower speed if its polarization is parallel to the B0 field, n‖ > n⊥. Such a polariza-
tion dependence of the index of refraction is encountered also in crystalline media and
leads to the phenomenon of birefringence. To study the observable consequences we
consider a light wave described by a superposition of the two eigenmodes considered
above:

E(x, t) = E
(

cos θ e‖ e−i(ωt−k⊥x) + sin θ e⊥ e−i(ωt−k‖x))
)

. (20)

At x = 0 this represents a wave with linear polarization, with a polarization vector
tilted by an angle θ with respect to the direction of B0. Moving along the direction of
propagation, however, the two eigenmodes develop a phase difference because k‖ �=
k⊥. Defining φ = ωt − kL with k = (k‖ + k⊥)/2 and δ = (1/2)(k‖ − k⊥)L the real
part of the electric field at the position x = L becomes

ReE(x, t) = E
(
cos θ cos(φ − δ) e‖ + sin θ cos(φ + δ) e⊥

)
. (21)

This is the parametric representation (parameter φ) of a tilted ellipse, see Fig. 7.32.
A somewhat lengthy but elementary calculation reveals that the angle χ of the major

Fig. 7.32. The birefringence
of the vacuum induces an el-
liptical polarization of light

26 There is no dispersion, i.e., the relation between wave number and frequency is linear. We should
keep in mind, however, that we are working in a low-frequency approximation. The use of the Euler–
Heisenberg Lagrangian is only appropriate if the variation of the electromagnetic field in space and
time can be neglected. This is well justified for macroscopic B0 fields and also for optical light waves,
since here λ = 2π/k is much larger than the Compton wavelength of the electron, which sets the scale
for vacuum polarization.
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axis with respect to B0 satisfies

tan(2χ) = cos(2δ) tan(2θ) , (22)

and for small δ is nearly unchanged, χ � θ . The degree of elliptical polarization ac-
quired by the light ray is described by the ellipticity parameter ψ , which is defined
as the ratio between the major and the minor axis of the ellipse minus one. For the
squared ellipticity one finds

ψ2 = 1 −
√

1 − sin2(2δ) sin2(2θ)

1 +
√

1 − sin2(2δ) sin2(2θ)
. (23)

For δ � 1 this expression simplifies to

ψ � δ sin(2θ) = 1

2
(k‖ − k⊥)L sin(2θ)

= π
L

λ
�n , (24)

taking θ = π/4 for maximum effect. Thus the ellipticity is determined by the ratio be-
tween path length L and wavelength λ = 2π/k and by the difference of the refractive
indices

�n ≡ n‖ − n⊥ = α

30π

(
B0

Bcr

)2

, (25)

which for laboratory magnetic fields is an exceedingly small number. Taking
B0 = 10 T, the highest static magnetic field strength presently attainable, we find
with Bcr = 4.4 × 109 T the value �n = 4 × 10−22.

In spite of the tiny magnitude of the effect, experiments are under way to measure
the birefringence of the vacuum. A laser beam is reflected back and forth between two
highly polished mirrors (forming a Perot–Fabry interferometer) so that the effective
path length the light travels in the magnetic field is drastically increased, e.g., from
1 m to about 100 km. According to (24) for λ = 1000 nm the expected ellipticity then
is of the order ψ � 10−10. As a static effect this is still too small to be measured, but
it helps to make the problem time dependent. In the PVLAS experiment27 at Legnaro
(Italy) a large superconducting magnet is rotated along a vertical axis, which produces
a periodically oscillating B0 field. By looking at the appropriate Fourier components
of the ellipticity the birefringence signal can be filtered out, using a heterodyne tech-
nique. It is hoped that in this way �n can be measured with such a high accuracy that
even radiative corrections to (25), which are of the relative order α, can be measured.
Up to now the required accuracy has not been reached.28

27 D. Bakalov et al.: Hyperfine Interactions 114, 103 (1998).
28 E. Zavattini: Phys. Rev. D77, 032006 (2008).
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cal Society and was an activist for nuclear disarmament. In 1956 W. received the Max Planck
Medal of the German Physical Society.



Quantum Electrodynamics
of Spinless Bosons 8

All considerations in this book so far have dealt with electrons (or muons) and their an-
tiparticles, i.e. particles with spin 1/2, which are described by the Dirac equation. The
theory of quantum electrodynamics describes the interaction of these particles with
each other and with the photon field in a very satisfying way. In principle, nothing
prevents us from trying to construct a similar theory also for other kinds of parti-
cles. The simplest case is scalar (or pseudoscalar) bosons, which have spin 0. In the
following we want to develop the theory of the electromagnetic interaction of these
particles, which is also known as “scalar electrodynamics”. We can take over many
ingredients of the theory from Chapters 2 and 3 either directly or with only marginal
modifications.

In contrast to the case of spinor electrodynamics, however, the importance of this
theory is limited, because there are no elementary charged scalar particles in nature.
The best candidates for this role are the pseudoscalar mesons, especially π and K .
They are unstable and decay by virtue of weak interaction. For example, most of the
charged pions decay through the channel

π± → μ± + νμ ,

with a lifetime of about 2.6 × 10−8 s. Since this lifetime is very long on a natural
time-scale, the pion can be considered stable with good approximation. The follow-
ing problem is more basic: Unlike elementary leptons (e,μ, τ ), which are point-like
particles, pions have an internal structure. As is well known, they are now regarded
as being composed of two quarks with spin 1/2. In Quantum Mechanics – Symme-

tries by W. Greiner and B. Müller we discussed this fact extensively. Since these are
subject to the strong interaction, there are massive effects of vacuum polarization, and
the physically observed pion is a complex “cloud” of virtual particles. Even if one
considers only the interaction with the electromagnetic field, one must not neglect
this inner structure. Obviously scalar electrodynamics is completely inadequate for
describing the coupling of mesons among each other, because this is dominated by the
strong interaction. Nevertheless, in spite of the limited applicability it is very instruc-
tive to transfer the theory of quantum electrodynamics from the spinor to the scalar
case.

W. Greiner, J. Reinhardt, Quantum Electrodynamics,
© Springer-Verlag Berlin Heidelberg 2009
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8.1 The Klein–Gordon Equation

First, let us recall some properties of the relativistic wave equation for spin-0 par-
ticles.1 The wave function φ(x) for free scalar particles obeys the Klein–Gordon
equation

(
∂μ∂μ + m2

0

)
φ(x) = 0 . (8.1)

The related current-density vector is2

jμ = ie(φ∗∂μφ − φ∂μφ∗)

≡ ieφ∗↔
∂μφ , (8.2)

which satisfies the continuity equation. In contrast to the Dirac case, here the charge-
density j0 can adopt both signs. The complete system of solutions of (8.1) consists of
two classes of plane waves with positive and negative eigenfrequencies and momenta,

ϕ(+)
p (x) = Np e−i(Ept−p·x) (8.3a)

and

ϕ(−)
p (x) = Np e+i(Ept−p·x) , (8.3b)

where

Ep = +
√

m2
0 + p2 . (8.4)

The normalization can be determined via the total charge Q = ∫
d3x j0(x, t), which is

a conserved quantity. The charge of the solutions with positive frequency is fixed to the
value Q = +e, whereas we require Q = −e for the solutions with negative frequency.
Thus, in general, a Klein–Gordon equation describes a superposition of particle and
antiparticle contributions with positive and negative charges, e.g. π− and π+ mesons.
(Neutral scalar particles will not be considered here.) Later on we shall return to the
physical interpretation of these contributions.

In the case of the continuum normalization “to a δ function” one has to choose

Np =
√

1

2Ep(2π)3
, (8.5)

and the orthonormality relationsfor the plane waves reads
∫

d3x ϕ
(±)∗
p′ (x) i

↔
∂0ϕ

(±)
p (x) = ±δ3(p ′ − p) , (8.6a)

∫
d3x ϕ

(±)∗
p′ (x) i

↔
∂0ϕ

(∓)
p (x) = 0 . (8.6b)

1 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000), Chap. 1.
2 Here we use a notation which is a bit different from that used in Relativistic Quantum Mechanics.
There the analog of (8.2) contains an additional factor 1/2m0, which is compensated by a different
normalization of the wave function.
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In general, (8.2) defines a modified “scalar product” (φ2|φ1) in the following way:

(φ2|φ1) :=
∫

d3x φ∗
2 (x) i

↔
∂0φ1(x) , (8.7)

for which the positivity condition (φ|φ) ≥ 0 is no longer valid.
The interaction with the electromagnetic field is introduced as usual by the minimal

coupling prescription

p̂μ → p̂μ − eAμ .

The Klein–Gordon equation in the presence of an electromagnetic field then reads

[(
p̂μ − eAμ

) (
p̂μ − eAμ

) − m2
0

]
φ(x) = 0 (8.8)

or
[
∂μ∂μ + m2

0

]
φ(x) = −V̂ φ(x) . (8.9)

Here we have formally introduced the potential operator V̂ . Explicitly it is given by

V̂ φ = ie
(
∂μAμ + Aμ∂μ

)
φ − e2AμAμφ . (8.10)

As the Klein–Gordon equation is of second order in the coordinates, the coupling
term in (8.9) has a quite complicated structure: It contains gradients ∂μ and moreover
is nonlinear in Aμ because of the quadratic last term.

In addition the current density of the scalar field is modified by the presence of an
electromagnetic potential, namely

jμ = ieφ∗↔
∂μφ − 2e2Aμφ∗φ . (8.11)

Equation (8.9) will be used to calculate the scattering of a scalar particle at a given
potential Aμ. Our experience with spinor QED suggests the development of a pertur-
bation theory based on the use of the propagator of the free Klein–Gordon equation.

8.2 The Feynman Propagator for Scalar Particles

In complete analogy to our considerations in Chap. 2 for the Dirac equation we define
a propagator 	F(x′ − x) that solves the Klein–Gordon equation with a point-like unit
source:(

∂ ′μ∂ ′
μ + m2

0

)
	F(x′ − x) = −δ4(x′ − x) . (8.12)

The choice of the minus sign of the source term on the right-hand side is natural since
the interaction term in (8.9) also has a negative sign. A solution of this differential
equation can be obtained, as usual, by Fourier transformation

	F(x′ − x) =
∫

d4p

(2π)4
e−ip·(x′−x) 1

p2 − m2
0 + iε

, (8.13a)
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i.e., in momentum space,

	F(p) = 1

p2 − m2
0 + iε

. (8.13b)

In this we have again used the Stückelberg–Feynman prescription for circumventing
the poles at p2 = m2

0. We shall soon convince ourselves that this means that the wave
functions with positive frequency +Ep propagate forward in time, while those with
negative frequency −Ep propagate backward in time. The relation to the spin-1/2
Feynman propagator SF is very simple, namely

SF(x′ − x) = (iγμ∂μ − m0)	F(x′ − x) . (8.14)

In order to investigate the action of the propagator on a wave function we first express
	F(x′ − x) as a sum over the complete set of solutions (8.3). For this purpose the
p0-integration in (8.13) is performed with the help of the theorem of residues, in the
course of which the contour for t ′ > t (t ′ < t) is to be closed in the lower (upper)
half-plane. This calculation proceeds exactly like that at the beginning of the second
chapter for the Feynman propagator of Dirac particles, and one obtains

	F(x′ − x) =
∫

d3p

(2π)3
eip·(x ′−x)

∫
dp0

2π

e−ip0(t
′−t)

p2
0 − E2

p + iε

= −i
∫

d3p

(2π)3

eip·(x ′−x)

2Ep

[
Θ(t ′ − t)e−iEp(t ′−t) + Θ(t − t ′)e+iEp(t ′−t)

]
.

(8.15)

Using (8.3) this can be written as

	F(x′ − x) = −iΘ(t ′ − t)

∫
d3p ϕ(+)

p (x′)ϕ(+)∗
p (x)

− iΘ(t − t ′)
∫

d3p ϕ(−)
p (x′)ϕ(−)∗

p (x) , (8.16)

where we have substituted p → −p in the second integral.
Now we consider a general wave function φ(x) composed of contributions with

positive and negative frequency,

φ(x) =
∫

d3p apϕ(+)
p (x) +

∫
d3p bpϕ(−)

p (x) ≡ φ(+)(x) + φ(−)(x) , (8.17)

and apply the propagator 	F(x′ −x). To make use of the modified scalar product (8.7)

the operator i
↔
∂0 is sandwiched between the propagator and the wave function

∫
d3x	F(x′ − x) i

↔
∂0φ(x)

= −i
∫

d3p

(
Θ(t ′ − t)ϕ(+)

p (x′)
∫

d3x ϕ(+)∗
p (x) i

↔
∂0φ(x)

+ Θ(t − t ′) ϕ(−)
p (x′)

∫
d3x ϕ(−)∗

p (x) i
↔
∂0φ(x)

)
. (8.18)
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If now φ(x) is decomposed into components according to (8.17), then the orthonor-
malization relations (8.6a,b) can be applied. As we had conjectured, the result is

∫
d3x 	F(x′ − x) i

↔
∂0φ(x) = −iΘ(t ′ − t)φ(+)(x′) + iΘ(t − t ′)φ(−)(x′) . (8.19)

This result is completely analogous to (2.25) and (2.26) of Chap. 2, which were de-
rived for Dirac spinors.

Fig. 8.1. Free propagation and
scattering of a boson

8.3 The Scattering of Spin-0 Bosons

Along the lines of Chap. 3 we can also treat scattering processes of spin-0 bosons with
the help of the propagator. Let us represent 	F(x′ − x) by a dashed line between x

and x′. In Fig. 8.1a, for example, a free boson runs from the point (x, t) to the point
(x ′, t ′) with t ′ > t . It is a particle with positive energy and thus charge Q = +e.
For the sake of simplicity we shall speak of a pion (that is to say π− because of the
convention e = −|e|). Under the influence of the perturbation potential V̂ the particle
can be scattered at (x1, t1) (Fig. 8.1b). It can also be scattered several times Fig. 8.1c.
However, in the latter case the propagator 	F(x2 − x1) also permits the time ordering
t2 < t1, which means that the π− propagates backward in time from x1 to x2, as in
Fig. 8.2a. But physically a particle π−, that is emitted backward in time at the point x1

renders the same effect as if an antiparticle π+ were absorbed. Hence one can also
draw the Feynman graph in the form of Fig. 8.2b so that particles with both signs of
charge that all propagate forward in time occur. In this language the process in Fig. 8.2
then means that a π− comes in and then at the point (x2, t2) a π−π+ pair is created;
later on, the π+ annihilates with the incoming π− at (x1, t1), whereas the other π−
keeps propagating into the future.

Fig. 8.2. A π− running back-
ward in time is a π+

This stands in complete analogy to the case of spinor electrodynamics; one just has
to change the names π± and e±. Nevertheless, there is one difference: As the bosons
do not obey Pauli’s exclusion principle, one cannot use Dirac’s hole picture; it does
not make sense to interpret the π+ as a vacancy in a sea of π− particles whose other
states are completely occupied.

Therefore, without having recourse to this auxiliary concept, we formulate Feyn-
man’s interpretation as a postulate for all particles (both bosons and fermions): The
emission (absorption) of a particle with 4-momentum pμ is physically equivalent to
the absorption (emission) of an antiparticle with 4-momentum −pμ.

Now we give a quantitative formulation of these considerations and calculate the
S matrix for scattering processes. For this purpose the Klein–Gordon equation (8.9)
for a wave function φ(x) with the perturbation “potential” V̂ (x) given by (8.10) is to
be solved. Using the Feynman propagator from (8.12) we get

φ(x) = ϕ(x) +
∫

d4y 	F(x − y)V̂ (y)φ(y) , (8.20)
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where ϕ(x) stands for a free wave satisfying (∂μ∂μ + m2
0)ϕ(x) = 0. In the case of

particle scattering pi → pf the wave function φ must satisfy the boundary condition

φ(x, t) → ϕ
(+)
pi

(x, t) for t → −∞. The S matrix results from a projection on the final

state ϕ
(+)
pf

(x, t) for t → +∞:

Sf i = lim
t→+∞

(
ϕ(+)

pf
(x)|φpi

(x)
)

= lim
t→+∞

∫
d3x ϕ(+)∗

pf
(x, t) i

↔
∂0φpi

(x, t) . (8.21)

With the representation (8.16) of the Feynman propagator and (8.20) we get for this
expression

Sf i = lim
t→∞

∫
d3xϕ(+)∗

pf
(x, t) i

↔
∂0

(
ϕpi

(x, t) +
∫

d4y	F(x − y)V̂ (y)φpi
(y)

)

= lim
t→∞

∫
d3x ϕ(+)∗

pf
(x, t) i

↔
∂0ϕpi

(x, t)

+ lim
t→∞

∫
d3x ϕ(+)∗

pf
(x, t) i

↔
∂0

×
∫

d4y d3p (−i)Θ(t − ty)ϕ
(+)
p (x, t)ϕ(+)∗

p (y)V̂ (y)φpi
(y)

= lim
t→∞

∫
d3x ϕ(+)∗

pf
(x, t) i

↔
∂0ϕ

(+)
pi

(x, t)

− i lim
t→∞

∫
d3p

(∫
d3xϕ(+)∗

pf
(x) i

↔
∂0ϕ

(+)
p (x)

)
︸ ︷︷ ︸

= +δ3(pf −p)

∫
d4y ϕ(+)∗

p (y)V̂ (y)φpi
(y) ,

(8.22)

which leads to

Sf i = δ3(pf − pi ) − i
∫

d4y ϕ(+)∗
pf

(y)V̂ (y)φpi
(y) (8.23)

because of the orthonormalization relation (8.6) for plane waves.
Whenever we are concerned with scattering of antiparticles pi → pf , we let a par-

ticle with negative 4-momentum −pf propagate backward into the past and project at

t → −∞ on ϕ
(−)
pi

(x, t):

Sf i = − lim
t→−∞

(
ϕ(−)

pi
(x)|φpf

(x)
)

= − lim
t→−∞

∫
d3x ϕ(−)∗

pi
(x, t) i

↔
∂0φpf

(x, t) , (8.24)

where the minus sign is only a convention. Here it becomes clear that – from a purely
calculational point of view – the antiparticle enters the interaction region with mo-
mentum pf and leaves with momentum pi . So we obtain

Sf i = δ3(pf − pi ) − i
∫

d4y ϕ(−)∗
pi

(y)V̂ (y)φpf
(y) . (8.25)

Pair annihilation and pair creation can be calculated in a completely analogous way.



8.3 The Scattering of Spin-0 Bosons 431

The expressions (8.23) and (8.25) together with the integral equation (8.20) for
φ(y) again suggest a perturbation expansion. For this one proceeds in an iterative way:
in the nth step of the iteration one inserts the expression for the wave function φ(n) into
the right-hand side of (8.20) in order to calculate the (n + 1)th approximation φ(n+1).
For particle scattering the (formal) perturbation series

Sf i =
∞∑

n=1

S
(n)
f i (8.26a)

=
∞∑

n=1

∫
d4x n . . .

∫
d4x 1ϕ

(+)∗
pf

(xn)

× (−i)V̂ (xn)i	F(xn − xn−1)(−i)V̂ (xn−1) . . . ϕ(+)
pi

(x1) (8.26b)

Fig. 8.3. The two vertices of
the coupling between photon
and spin-0 boson

is obtained. However, here an important difference to the analogous formula of the
spin-1/2 theory arises. Whereas there the expansion (8.26a) had the form of a power
series in the charge e, here this is no longer the case: every term S

(n)
f i contains a mix-

ture of powers between en and e2n. If one wants to keep an expansion in the coupling
strength e, which is the reasonable way to do perturbation theory, the various contri-
butions have to be rearranged and grouped together. The reason for this can be found
in the form of the interaction potential V̂ from (8.10), which contains both a linear
term eA and a quadratic term e2A2.

This feature of V̂ also has an important consequence whenever the terms of the per-
turbation series are represented by Feynman graphs. In scalar electrodynamics there
are two kinds of photon vertex, as represented in Fig. 8.3. According to the four-leg
vertex (Fig. 8.3b) (also known as the “seagull vertex” because of its shape) the boson
can absorb and/or emit two photons simultaneously. Hence in contrast to spinor QED
there is now a richer “zoology” of Feynman graphs contributing to a given process.
However, the two-photon vertex contains the factor e2; so if a calculation in lowest or-
der suffices, its contribution can, circumstances permitting, be left out (for an example
where this is not true see Exercise 8.2!).

Let us now investigate which mathematical factors are assigned to the vertices when
evaluating Feynman graphs. For this purpose we construct an S-matrix element of first
order (according to the expansion (8.26)):

S
(1)
f i =

∫
d4x ϕ

(+)∗
f (x)(−i)V̂ (x)ϕ

(+)
i (x)

=
∫

d4x

(2π)3

1√
2Ef 2Ei

e+ipf ·x[
e
(
∂μAμ+Aμ∂μ

)+ ie2gμνA
μAν

]
e−ipi ·x

≡ S
(1a)
f i + S

(1b)
f i . (8.27)

The contribution that is linear in e can be simplified by a partial integration:

S
(1a)
f i = 1√

2Ef 2Ei(2π)3

∫
d4x eipf ·xe

(
∂μAμ + Aμ∂μ

)
e−ipi ·x

= 1√
2Ef 2Ei(2π)3

∫
d4x e

[
−(

ipμ
f

) + (−ipμ
i

)]
Aμ(x)ei(pf −pi)·x

=
[
(−ie)

(
p

μ
f + p

μ
i

)] 1√
2Ef 2Ei(2π)3

Aμ(pf − pi) . (8.28)
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In the second line a surface integral at infinity, arising from the divergence
∂μ

(
ei(pf −pi)xAμ(x)

)
, was dropped. Therefore the one-photon vertex in Fig. 8.3a is

assigned a factor −ie
(
p

μ
f + p

μ
i

)
. This expression plays the same role as the factor

−ieγ μ at the electron–photon-vertex. In addition the S-matrix element contains a fac-
tor originating from the normalization of the plane waves and the Fourier-transformed
electromagnetic potential Aμ(q) at a momentum transfer q = pf − pi . The quadratic
coupling in (8.27) leads to

S
(1b)
f i = (

ie2gμν

) 1√
2Ef 2Ei(2π)3

∫
d4x ei(pf −pi)·xAμ(x)Aν(x) . (8.29)

The Fourier transform of the product of vector potentials can be changed into a con-
volution integral in momentum space:

S
(1b)
f i = (

ie2gμν

) 1√
2Ef 2Ei(2π)3

∫
d4k

(2π)4
Aμ(q − k)Aν(k) . (8.30)

One has to be careful with the interpretation of (8.29) and (8.30) because at this vertex
there are two separate photons to be emitted/absorbed. Thus the Aμ field contains two
parts, let us call them Aμ(1) and Aμ(2), and if one takes the square, only the mixed
terms are to be considered:

AμAμ = (
Aμ(1) + Aμ(2)

)(
Aμ(1) + Aμ(2)

)

→ Aμ(1)Aμ(2) + Aμ(2)Aμ(1) = 2Aμ(1)Aμ(2) , (8.31)

because a single photon cannot interact twice. This reasoning leads to an additional
factor of 2. So one has to assign a factor 2ie2gμν to the two-photon vertex from
Fig. 8.3b. It is multiplied with the familiar normalization factor and with the prod-
uct of the two photon fields.

The necessity for the additional factor 2 becomes even more obvious if one draws
all possible Feynman graphs for a process of second order in e, e.g. in the case of
pair annihilation. As one can see in Fig. 8.4, two photons are emitted. Since these
are indistinguishable Bose particles, the final state is to be symmetrized. In the case
of Fig. 8.4a with two separated emissions this leads to the exchange graph Fig. 8.4c.
Also in the case of a two-photon vertex the two photons can be related in different
ways. But as the exchange graph Fig. 8.4d has the same structure as Fig. 8.4b, it is
simply accounted for by doubling the vertex factor to a value of 2ie2gμν .

Fig. 8.4. The graphs of sec-
ond order for pair annihila-
tion (b) and (d) have the same
value
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Fig. 8.5. Symmetrization for
a graph with a closed photon
loop

Nevertheless, this rule, which can be generalized to arbitrary processes, has one
exception: graphs that contain a closed photon loop as in Fig. 8.5. Here a symmetriza-
tion has to be performed, too, which yields a factor 2. But if one uses 2ie2gμν for both
vertices, one will have double counted. Thus, to correct this, every closed photon loop
has to be multiplied by the factor 1/2.

The electromagnetic field Aμ in (8.27) can also have the transition current jf i of
a spin-0 boson as a source:

Aμ(x) =
∫

d4y DF(x − y)j
μ
f i(y) . (8.32)

Again here two terms of order e and e2 occur in the transition current according to
(8.11), which corresponds to the graphs in Fig. 8.3. This must be so, because the
result has to be symmetric under the exchange of absorption and emission of virtual
photons.

Except for the modified vertex factors and propagators, all further steps in the cal-
culation of cross sections proceed as in Chap. 3. Compared with the spin-1/2 theory,
the calculations are considerably simplified, because we no longer have to sum over
particle polarizations, and we do not need the algebra of γ matrices.

Let us now consider the case of the scattering of a (structureless) pion at a time-
independent external Coulomb potential. According to Sect. 3.1 the cross section is
given by

dσ = 1

jin

|Sf i |2
T

V d3pf

(2π)3
. (8.33)

The S-matrix element in first order was already given in (8.27). For the Fourier-
transformed Coulomb potential we have

Aμ(q) =
∫

d4x eiq·x −Ze

|x| gμ0 = 2πδ(q0)
−Ze4π

|q|2 gμ0 . (8.34)

If one uses a normalization of one particle per box with a finite volume V instead
of (8.5), i.e. Np = 1/

√
2EpV , the incoming (particle) current is given by

j in = −ϕ(+)
pi

i
↔∇ϕ(+)

pi
= −i

1

2EiV
(2ip) = 1

V

pi

Ei

= vi

V
. (8.35)
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With the usual replacement
(
2πδ(Ef − Ei)

)2 → T 2πδ(Ef − Ei) the cross section
reads

dσ = V

|vi |
1

T

∣∣∣∣∣∣(−ie)
(Ef + Ei)√
2Ef 2EiV 2

2πδ(Ef − Ei)
−Ze4π

|q|2

∣∣∣∣∣∣
2

V d3pf

(2π)3

= 4Z2e4

|q|4
d3pf

|vi | δ(Ef − Ei) . (8.36)

Thus we are led to the differential cross section for scattering into the solid angle
element dΩf :

dσ

dΩf

=
∫ |pf |2d|pf |

|vi | δ(Ef − Ei)
4Z2α2

|q|4 = 4Z2α2E2

|q|4 . (8.37)

With the momentum transfer |q|2 = 4|p|2 sin2 θ/2, cf. (3.38), we can rewrite (8.37) as
a function of the scattering angle θ in the center-of-mass system:

dσ

dΩf

= Z2α2

4|p|2v2 sin4 θ/2
. (8.38)

Comparing this result with that of Sect. 3.1 one notices that the cross section for
electron scattering contains an additional factor (1 − β2 sin2 θ/2). This discrepancy is
caused by the magnetic moment of the spin-1/2 particle; in the limit of low velocities
both results agree since then the magnetic interaction is negligible.

In Exercises 8.1 and 8.2 two more processes, Compton scattering and pair produc-
tion, will be calculated.

8.4 The Feynman Rules of Scalar Electrodynamics

The rules for calculating cross sections, which were compiled in Chap. 4, are to be
extended in the following way, if spin-0 bosons are involved.

The cross section is calculated according to (4.3). The normalization factor for
incoming or outcoming bosons is

Ni = 1 .

This corresponds to the normalization
√

1/(2EiV ) of the external boson lines (nor-
malization to one particle in a box with volume V ). To calculate the invariant ampli-
tude Mf i of a process the corresponding Feynman diagrams have to be drawn and
translated into algebraic expressions with the help of the following set of rules.

The Feynman Rules for Spin-0 Particles

1. The external lines

a) incoming boson
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b) outcoming boson

are assigned a factor 1.

2. Every internal boson line is assigned a factor

i	F(p) = i

p2 − m2
0 + iε

.

3. The vertices are described by the factors

a) one-photon vertex: −ie(p′
μ + pμ)

b) two-photon vertex: 2ie2gμν .

4. Every closed photon loop is assigned a factor 1/2.

5. There are no extra factors −1.

Rule 5 is evident because the changing of boson lines always yields a factor +1 ac-
cording to Bose statistics.

EXERCISE

8.1 Compton Scattering at Bosons

Problem. Calculate the cross section for photon scattering at spin-0 bosons in lowest
order, in analogy to Sect. 3.7. Check the gauge invariance of the scattering amplitude.

Solution. In lowest order (e2) there are three different graphs, which have to be added
coherently, see Fig. 8.6. The invariant amplitude can be easily constructed according
to the Feynman rules:

M
(a)
f i = (−ie)(pf + pf + k′)μ ε∗

μ(k′, λ′)i	F(pi + k)

× (−ie)(pi + pi + k)νεν(k, λ) , (1a)

M
(b)
f i = (−ie)(pf + pf − k)ν εν(k, λ)i	F(pf − k)

× (−ie)(pi + pi − k′)με∗
μ(k′, λ′) , (1b)

M
(c)
f i = 2ie2gμνε∗

μ(k′, λ′)εν(k, λ) . (1c)
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Fig. 8.6. The three second-
order Feynman diagrams for
Compton scattering on a spin-
less boson

The complete invariant amplitude can be written as

Mf i = ε∗
μ(k′, λ′) T μν εν(k, λ) . (2)

Here the Compton tensor T μν(pi,pf , k, k′) has been introduced. It has the form

T μν = −ie2

[
(2pf +k′)μ(2pi +k)ν

(pi +k)2 − m2
0

+ (2pi −k′)μ(2pf − k)ν

(pf −k)2 −m2
0

− 2gμν

]
. (3)

Let us first check the gauge invariance of this expression. As explained in Sect. 3.6,
the value of the amplitude must not change when the potential is re-gauged, εν(k) →
εν(k) + kνΛ(k), i.e.

T μνkν = 0 , kμT μν = 0 . (4)

Now we rewrite the denominators in (3):

(pi + k)2 − m2
0 = p2

i + 2k · pi + k2 − m2
0 = 2k · pi + k2 , (5a)

(pf − k)2 − m2
0 = p2

f − 2k · pf + k2 − m2
0 = −2k · pf + k2 . (5b)

Hence we find that

T μνkν = −ie2

[
(2pf +k′)μ(2pi · k+k2)

(pi +k)2 −m2
0

+ (2pi −k′)μ(2pf · k−k2)

(pf −k)2 −m2
0

−2kμ

]

= −ie2 [
(2pf + k′)μ − (2pi − k′)μ − 2kμ

]

= −ie22(pf + k′ − pi − k)μ = 0 . (6)

In the same way one can prove the second part of (4). Obviously the two-photon vertex
is indispensable for satisfying the condition of gauge invariance in a given order en of
the perturbation series.

According to the rules of Chap. 4 the cross section now reads

dσ = (4π)2

4
√

(pi · k)2 −0
(2π)4δ4(pf +k′−pi −k)|Mf i |2 d3pf

2Ef (2π)3

d3k′

2ω′(2π)3
, (7)

where ω′ = |k′| is the photon energy. The somewhat tedious integration over the final
momenta pf and k′ was performed in Sect. 3.7, (3.249), with the result

∫
d3pf

2Ef

d3k′

2ω′ δ4(pf + k′ − pi − k) = 1

2m0

∫
dΩk′

ω′2

2ω
. (8)
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Thus the differential cross section is

dσ

dΩk′
= 1

|pi · k|
1

2m0

ω′2

2ω
|Mf i |2 . (9)

In the laboratory system, where the particle is initially at rest, we have pi = (m0,0)

and therefore pi ·k = m0ω. In order to calculate |Mf i |2 we now choose, as in Sect. 3.7,
the following special gauge:

εμ(k, λ) = (
0,εμ(k, λ)

)
with ε(k, λ) · k = 0 , (10a)

εμ(k′, λ′) = (
0,εμ(k′, λ′)

)
with ε(k′, λ′) · k′ = 0 . (10b)

Because of the transversality of this gauge all terms with ε ·k and ε′ ·k′ vanish, and (2)
is simplified to

Mf i = −ie2
(

2ε′∗ · pf 2ε · pi

2m0ω
+ 2ε′∗ · pi 2ε · pf

−2m0ω′ − 2ε′∗ · ε
)

= −2ie2ε∗(k′, λ′) · ε(k, λ) . (11)

With the help of the gauge (10) the first two terms could be dropped, because ε · pi =
(0, ε) · (m0,0) = 0 and ε′ · pi = (0, ε′) · (m0,0) = 0. Thus the Compton scattering of
spin-0 bosons is completely described just by the graph (c)! The cross section from (9)
reads

dσ

dΩk′
= e4

m2
0

ω′2

ω2

∣∣ε∗(k′, λ′) · ε(k, λ)
∣∣2

. (12)

If one does not observe the polarization of the photons, one has to average over λ and
to sum over λ′. According to Sect. 3.7, (3.286) we have

1

2

∑
λ,λ′

∣∣ε∗(k′, λ′) · ε(k, λ)
∣∣2 = 1

2

(
1 + cos2 θ

)
, (13)

where θ is the angle between k and k′. The unpolarized Compton cross section then
becomes

dσ unpol

dΩk′
= 1

2
r2

0
ω′2

ω2

(
1 + cos2 θ

)
, (14)

with the classical electromagnetic radius of the particle r0 = e2/m0c
2. This result

is a bit simpler than that obtained for Compton scattering at spin-1/2 particles. The
Klein–Nishina formula of Sect. 3.7 is recovered by replacing

1 + cos2 θ →
(

ω′

ω
+ ω

ω′ − 1

)
+ cos2 θ (15)

in (14). In the limit of low photon energies where ω′ � ω the cross section thus is
independent of the spin of the particle.
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EXERCISE

8.2 The Electro-Production of Pion Pairs

Problem. Calculate the cross section for the process e+ + e− → π+ + π−, in the
course of which an electron–positron pair annihilates into a virtual photon, which then
decays into a pair of charged pions. The cross section was measured in accelerator ex-
periments and has a maximum of σ � 1.4 × 10−30 cm2 at the energy Etot = 770 MeV
(i.e. E = 385 MeV for particles and antiparticles if they collide with equal energy).
Compare this with the theoretical result.

Fig. 8.7. The lowest-order
graph for the electromag-
netic annihilation of an elec-
tron–positron pair into a pair
of spinless charged bosons

Solution. In lowest order the graph of Fig. 8.7 has to be calculated, where p1 and p2

denote the 4-momenta of the incoming electron and positron and p′
1 (p′

2) those of
the π− (π+). According to Chap. 4 the cross section is given by

dσ = 1

4
√

(p1 · p2)2 − m4
0

(2m0)
2(2π)4 δ4(p1 + p2 − p′

1 − p′
2

)|Mf i |2

× d3p′
1

2E′
1(2π)3

d3p′
2

2E′
2(2π)3

. (1)

Now we proceed with the calculation in the center-of-mass system (which is identi-
cal with the laboratory system in experiments with storage-ring colliders) so that we
have

p1 = (E,p) , p2 = (E,−p) , (2a)

p′
1 = (E,p′) , p′

2 = (E,−p′) . (2b)

The flux factor is√
(p1 · p2)2 − m4

0 =
√

(E2 + p2) − m4
0 = 2E|p| . (3)

For the calculation of the invariant matrix element Mf i we employ the Feynman rules
for scalar and spinor particles:

Mf i = −(−ie)
(
p′

1 − p′
2

)
μ

iDμν
F (p1 + p2)v(p2, s2)(−ieγν)u(p1, s1)

= ie2 4π

(p1 + p2)2
v(p2, s2)

(
/p′

1 − /p′
2

)
u(p1, s1) . (4)

With the total momentum

q = p1 + p2 = (2E,0) (5)

the differential cross section, averaged over the initial spins s1 and s2, now reads

dσ = 1

4

∑
s1s2

m2
0

2E3|p|δ
4(p1 + p2 − p′

1 − p′
2

) e4

q4

× ∣∣v(p2, s2)
(
/p′

1 − /p′
2

)
u(p1, s1)

∣∣2
d3p′

1 d3p′
2

= e4

q4

m2
0

2E3|p|δ
4(p1 + p2 − p′

1 − p′
2

)
S d3p′

1 d3p′
2 . (6)
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The calculation of the spin sum

S = 1

4

∑
s1s2

∣∣v(p2, s2)
(
/p′

1 − /p′
2

)
u(p1, s1)

∣∣2 (7)

is simplified if one rewrites

v(p2, s2)
(
/p′

1 − /p′
2

)
u(p1, s1)

= v(p2, s2)
[(

/p′
1 + /p′

2

) − 2 /p′
2

]
u(p1, s1)

= v(p2, s2)
(
/p1 + /p2

)
u(p1, s1) − 2 v(p2, s2) /p′

2u(p1, s1) . (8)

The first term of the sum vanishes because of

/p1u(p1, s1) = m0u(p1, s1) ,

v(p2, s2) /p2 = −m0v(p2, s2) .

According to the rules from Chap. 3 the spin sum can be rewritten as a trace:

S =
∑
s1s2

(
u(p1, s1) /p′

2v(p2, s2)
) (

v(p2, s2) /p′
2u(p1, s1)

)

= −Tr

(
/p′

2
− /p2 + m0

2m0
/p′

2
/p1 + m0

2m0

)
. (9)

The evaluation of this trace according to the rules from Chap. 3 yields

S = 1

4m2
0

(
Tr /p′

2 /p2 /p′
2 /p1 − m2

0 Tr /p′
2 /p′

2

)

= 1

m2
0

(
2p1 · p′

2 p2 · p′
2 − M2

0p1 · p2 − m2
0M

2
0

)
, (10)

where m0 is the rest mass of the electron and M0 that of the pion. So in the center-
of-mass system we obtain with (2) and the mass-shell constraints E2 = |p|2 +m2

0,

E2 =|p′|2 +M2
0

S = 1

m2
0

[
2
(
E2 + p · p′)(E2 − p · p′) − M2

0

(
E2 + |p|2) − m2

0M
2
0

]

= 2

m2
0

[
E2|p′|2 − (p · p′)2

]
. (11)

With that the total cross section (6) reads

σ = e4

q4

1

E3|p|
∫

d3p
′

1d3p′
2 δ4(p1 + p2 − p′

1 − p′
2

) [
E2|p′|2 − (p · p′)2

]

= e4

q4

1

E3|p|
∫

|p′|2d|p′|dφ′d cos θ ′δ(2E − 2E′)

×
(
E2|p′|2 − |p|2|p′|2 cos2 θ ′) . (12)

The δ function describing energy conservation can be rewritten as

δ(2E − 2E′) = 1

2

E

|p′|δ
(

|p′| −
√

E2 − M2
0

)
. (13)
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Providing the threshold condition E ≥ M2
0 is met (12) becomes

σ = e4

q4

1

E3|p|2π
1

2

E

|p′| |p
′|4

+1∫

−1

d cos θ ′ (E2 − |p|2 cos2 θ ′)

= πe4

q4

|p′|3
E2|p|

(
2E2 − 2

3
|p|2

)

= πα2

3q2

|p′|3
E3

E

|p|

(
1 + 1

2

m2
0

E2

)
. (14)

As the electron mass m0 is negligible compared with the incident energy E, the exact
result (14) can be simplified to

σ � πα2

3q2
β ′3 = πα2β ′3

12E2
, (15)

where β ′ = |p′|/E is the velocity of the pions.
In order to calculate the value of σ at the given energy E = 385 MeV, we have to

insert the appropriate powers of � and c into (15). Obviously one has to multiply by
�

2c2 � (197 MeV·fm)2 so that σ gets the dimension of an area:

σ = πα2β ′3

12E2
�

2c2

� π · 0.9323 · 1972

12 · 1372 · 3852
fm2 = 3 × 10−32 cm2 , (16)

with the pion velocity β ′ =
√
E2 − M2

0/E � 0.932. So the measured cross section for
pion pairs is much greater than what the result (14) predicts, almost by a factor 50.

It is evident that the assumption of structureless particles that interact only by virtue
of the electromagnetic field is not justified. The reason for the large cross section at
the given energy is that the virtual photon is first converted into a ρ0 meson with the
same quantum numbers (spin 1, negative parity), which then can decay into pions or
take part in other processes involving the strong interaction. This property of virtual
photons is described by the “vector dominance” model. The “resonance energy” is
equal to the mass of this particle, which amounts to Mρ = 770 MeV for the vector
meson ρ0. In fact, a whole family of shortliving mesons was observed as resonances
in the cross section for e+e− annihilation. The purely electromagnetic production
mechanism for pions only plays the role of a background process.



Appendix

In this appendix we collect a number of bibliographic references for the interested
reader who either wants to learn more about Quantum Electrodynamics or is interested
in the imbedding of QED in the more general framework of Quantum Field Theory.

1. Books which contain details on the formulation of QED and the calculation of
various processes:

• A. Akhiezer and V.B. Berestetskii: Quantum Electrodynamics (Interscience,
New York, 1965)

• J.M. Jauch and F. Rohrlich: The Theory of Photons and Electrons (Springer, New
York, Heidelberg, Berlin, 1976)

• G. Källen: Quantum Electrodynamics (Springer, Berlin, 1972)
• I. Bialynicki-Birula and Z. Bialynicka-Birula: Quantum Electrodynamics (Perg-

amon, Oxford, 1975)
• V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii: Relativistic Quantum The-

ory (Pergamon, Oxford, 1971)
• P.W. Milonni: The Quantum Vacuum – An Introduction to Quantum Electrody-

namics (Academic Press, San Diego, 1994)

2. Two books covering topics related to QED with strong external fields:

• W. Greiner, B. Müller, J. Rafelski: Quantum Electrodynamics of Strong Fields
(Springer, Berlin, 1985)

• V.L. Ginzburg (ed.): Issues in Intense-Field Quantum Electrodynamics (Nova
Science, Commack, New York, 1987)

3. The most recent information on the status of QED experiments contrasted with the-
ory has to be extracted from original research papers and from review articles pub-
lished in conference proceedings. In addition the following book provides a good
overview:

• T. Kinoshita (ed.): Quantum Electrodynamics (World Scientific, Singapore,
1990)

4. An old but still useful collection of reprints of many of the basic original papers
related to QED:

• J. Schwinger (ed.): Quantum Electrodynamics (Dover, New York, 1958)

5. An account of the history of QED:

• S.S. Schweber: QED and the Men Who Made It (Princeton University Press,
Princeton, 1994)
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6. Classical textbooks on Quantum Field Theory, in chronological order:

• N.N. Bogoliubov and D.V. Shirkov: Introduction to the Theory of Quantized
Fields (Interscience, New York, 1959)

• S.S. Schweber: An Introduction to Relativistic Quantum Field Theory (Harper &
Row, New York, 1962)

• J.D. Bjorken and S.D. Drell: Relativistic Quantum Mechanics, and Relativistic
Quantum Fields (McGraw-Hill, New York, 1964)

• D. Lurié: Particles and Fields (Interscience, New York, 1968)
• C. Itzykson, J.-B. Zuber: Quantum Field Theory (McGraw-Hill, New York,

1980)
• S. Weinberg: Quantum Theory of Fields I–III (Cambridge University Press,

Cambridge, 1995 ff.)

7. Some further references on quantum fields and gauge theories, which emphasize
the path integral formulation:

• L.H. Ryder: Quantum Field Theory (Cambridge University Press, Cambridge,
1985)

• D. Bailin and A. Love: Introduction to Gauge Field Theory (Adam Hilger, Bris-
tol, Boston, 1986)

• R.J. Rivers: Path Integral Methods in Quantum Field Theory (Cambridge Uni-
versity Press, Cambridge, 1987)

• S. Pokorski: Gauge Field Theories (Cambridge University Press, Cambridge,
1987)
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