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Preface

This text collects the material delivered in the course “Electromagnetic Fields” that
I lectured starting from the academic year 2003–2004. This course was entitled with
a value of five credits for the Science for Engineering Master Degree.

The book was first written with the intention of producing a text of a small size
(compared to the reference book by G. Gerosa and P. Lampariello [1]) that would
retain most of the important application topics and, at the same time, a rigorous
analytic treatment of all the arguments exposed. This last requirement was partic-
ularly important as the Master Degree in Science for Engineering aimed at pro-
viding all students with a solid and rigorous background in physics and
mathematics.

Over time I tried to improve the text usability, keeping the information self-
consistent and reporting all the fundamental intermediate steps in analytical com-
putations. I now believe that, because of its conciseness, this book can be a very
useful aid for all Electromagnetism students.

My teaching experience makes me think that the objective was achieved, thanks
both to an increasing lecturer effort and to a certain diligence required in the exam
preparation, as students themselves recognized.

I found it very useful to make the text available on the Internet, for a long time.
This approach permitted to implement real-time corrections and additions, it was
very convenient for my students. Moreover, the interested reader can take a look at
the personal webpage reported in https://web.uniroma1.it/dip_diet/users/frezza,
which contains a considerable amount of informative and subsidiary material, as
well as details on the topics of this text; everything was personally supervised either
by me or by the talented colleagues and co-workers whom I also wish to thank.

The text starts with an introduction to the basic equations and theorems,
followed by general and fundamental classic electromagnetic arguments whose
value is both practical (for applications) and theoretical: plane waves, transmission
lines, waveguides and Green’s functions.
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I am beholden to my former student, and now Ph.D. in Engineering, Dr. Mauro
Mineo, who helped me in composing the text with dedication and expertise, tak-
ing care of the successive LATEX versions. I am also deeply indebted to my
Ph.D. student, Ing. Patrizio Simeoni, for his great help during the preparation of the
English version: without such support, this book could not have been written.

Fabrizio Frezza
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Chapter 1
Fundamental Theorems and Equations
of Electromagnetism

Abstract After some elements about differential operators and their analytical
properties, the general basic characteristics of electromagnetic fields are described,
both in time and in frequency domain. Maxwell’s equations, boundary conditions,
constitutive relations are treated. The material media properties are investigated and
an introductory treatment of dispersion is given. The fundamental Poynting and
uniqueness theorems are derived. The wave equation is obtained. Finally, electro-
magnetic potentials are introduced.

1.1 Properties of the Nabla Vector Linear Operator

∇ = xo
∂
∂x + yo

∂
∂y + zo

∂
∂z .

∇φ = xo
∂φ
∂x + yo

∂φ
∂y + zo

∂φ
∂z .

∇ · A =
(

∂
∂x

∂
∂y

∂
∂z

)
⎛
⎝

Ax

Ay

Az

⎞
⎠ = ∂ Ax

∂x + ∂ Ay
∂y + ∂ Az

∂z .

∇× A =

∣∣∣∣∣∣∣∣

x0 y
0

z0
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣∣
=
(

∂ Az
∂y − ∂ Ay

∂z

)
x0 +

(
∂ Ax
∂z − ∂ Az

∂x

)
y
0
+
(

∂ Ay
∂x − ∂ Ax

∂y

)
z0

∇×∇V = 0 ∇ ·∇× A = 0.

∇2 = ∇ ·∇, that’s the reason why the Laplacian is indicated with ∇2. Note that
such definition is also applicable to the vectorial case, exploiting the definition below
for the gradient of a vector and the divergence of a dyad.1

1 A dyad is defined in Sect. 1.7.
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∇2A = xo∇2Ax + yo∇2Ay + zo∇2Az, only in Cartesian coordinates.

∇×∇× A = ∇∇ · A − ∇2A =⇒ ∇2A = ∇∇ · A − ∇×∇× A.

∇ A =
⎛
⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎠( Ax Ay Az

) =

⎛
⎜⎜⎜⎝

∂ Ax
∂x

∂ Ay
∂x

∂ Az
∂x

∂ Ax
∂y

∂ Ay
∂y

∂ Az
∂y

∂ Ax
∂z

∂ Ay
∂z

∂ Az
∂z

⎞
⎟⎟⎟⎠ .

∇ · D = (∇ · Dx

)
xo +

(
∇ · Dy

)
yo + (∇ · Dz

)
zo, being Dx , Dy , Dz column

vectors of the dyad D.

1.2 Solenoidal and Irrotational Fields

Definition Avector field V is said solenoidal (or divergence free) in a region Swhen
its divergence is zero in all points belonging to S:

∇ · V = 0

Definition A vector field V is said irrotational in a region S if its curl is zero in S:

∇ × V = 0

Definition A simple linear connected region is a region of space where every simple
(i.e. devoid of multiple points) and closed curve contained in it is the edge of (at least)
one open surface fully contained in the same region.

Counterexample: both the open space deprived of a straight line and a torus (donut
shaped region) aren’t simple linear connected regions.

Theorem A vector field E irrotational in a simple linear connected region can
always be expressed as a gradient of a scalar field V:

∇×E = 0 =⇒ E = −∇V .

Such a field is said conservative.

Definition A region is simple surface connected when there are no gaps, i.e. when
every closed surface belonging to it contains only points belonging to the region.
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Theorem A vector field B solenoidal in a simple surface connected region can
always be expressed as a curl of a vector field.

∇ · B = 0 =⇒ B = ∇× A.

Definition A surface S is said to be simply connected when any simple and closed
curve drawn on it is the edge of a surface which completely belongs to S.

1.3 Fundamental Theorems of Vector Analysis

Gradient Theorem ∫

V
∇φ dV =

∮

S
n φ dS.

Divergence Theorem ∫

V
∇ · A dV =

∮

S
n · A dS

︸ ︷︷ ︸
flux of vector A

.

Curl Theorem ∫

V
∇× A dV =

∮

S
n × A dS.

Stokes Theorem ∫

S
n · ∇× A dS

︸ ︷︷ ︸
curl’s flux

=
∮

s
so · A ds

︸ ︷︷ ︸
vector’s circulation

.

Green’s Lemma (first form)

∮

S
φ∇ψ · n dS =

∮

S
φ

∂ψ

∂n
dS =

∫

V

(
∇φ · ∇ψ + φ∇2ψ

)
dV.

Green’s Lemma (second form)

∮

S
(φ∇ψ − ψ∇φ) · n dS =

∮

S
(φ

∂ψ

∂n
− ψ

∂φ

∂n
) dS =

∫

V
(φ∇2ψ − ψ∇2φ) dV.
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1.4 Physical Dimensions and Notation of the Quantities
Treated in the text

E(r ,t): Electric field (intensity) volt
meter

[V
m

]

H (r ,t): Magnetic field (intensity) ampere
meter

[A
m

]

D(r ,t): Electric induction (or electric displacement) coulomb
meter2

[
C
m2

]

B(r ,t): Magnetic induction
(or magnetic displacement)

weber
meter2

[
Wb
m2

]

J (r ,t): Electric current density ampere
meter2

[
A
m2

]

ρ(r ,t): Electric charge density coulomb
meter3

[
C
m3

]

where:

coulomb = ampere · second [A · s]

weber = volt · second [V · s]

1.5 Maxwell’s Equations and Continuity Conditions

First Maxwell’s Equation:

∇×E = −∂B

∂t
.

The above equation represents the differential or local form of the Faraday-
Neumann induction law (Integral, global or macroscopic form):

∮

s
so · E ds

︸ ︷︷ ︸
circulation of E

= − d

dt

∫

S
n · B d S

︸ ︷︷ ︸
flux of B

.

The differential relation may be derived from the integral form by applying the
Stokes theorem:

∮

s
s0 · E ds =

∫

S
n · ∇×E dS = −

∫

S
n · ∂B

∂t
dS,
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where the derivative with respect of the time is put inside the integral assuming that
the surface S is invariant over time. At this point for the arbitrariness of S and n the
following equation is obtained:

∇×E = −∂B

∂t
.

Second Maxwell’s Equation:

∇×H = J + ∂D

∂t
.

This is the differential or local form ofAmpère-Maxwell circulation law:

∮

s
so · H ds

︸ ︷︷ ︸
circulation of H

=
∫

S
n · J dS

︸ ︷︷ ︸
flux of J

+ d

dt

∫

S
n · D dS

︸ ︷︷ ︸
flux of D

.

The flux of J , in the above formula, is equal to the conduction or convection current
I . The equation can be switched from the integral relation to the differential one in
a similar way to what was done for the first Maxwell’s equation.

Continuity equation for the electric current:

∇ · J = −∂ρ

∂t
.

The formula above is the differential or local form of the electric charge conser-
vation law:

∮

S
n · J dS

︸ ︷︷ ︸
electric current

= − d

dt

∫

V
ρ dV

︸ ︷︷ ︸
total charge enclosed in V

.

The differential equation can be obtained from the integral relation by applying
the divergence theorem and assuming the invariance of the volume V over the time t:

∮

S
n · J d S =

∫

V
∇ · J dV = −

∫

V

∂ρ

∂t
dV,

Now, from the arbitrariness of V it follows:

∇ · J = −∂ρ

∂t
.

In all the cases shown the local formula was derived from the integral relation, but,
performing all the steps backwards, the opposite procedure could also be applied.



6 1 Fundamental Theorems and Equations of Electromagnetism

The three equations shown up to now are independent. The third and fourth
Maxwell’s equations can be derived from those, but only in the dynamic case (i.e.
when fields are variable in time). In fact, starting from the

∇×E = −∂B

∂t

and applying the divergence operator to both members the following is obtained:

0 = −∇ ·
(

∂B

∂t

)
.

At this point, assuming that the functions are of class C2, the Schwarz theorem, which
permits to interchange the order of taking partial derivatives of a function, can be
applied obtaining:

∂

∂t
(∇ · B) = 0 =⇒ ∇ · B = constant.

It follows that the constant is zero, assuming that B does not exist from an infinite
time, and therefore

∇ · B = 0︸ ︷︷ ︸
Third Maxwell’s equation

.

The fourthMaxwell’s equation canbeobtained starting from the secondMaxwell’s
equation, applying the divergence to both sides, using the continuity equation and
finally the Schwarz theorem as it is shown below:

0 = ∇ · J + ∇ ·
(

∂D

∂t

)
= ∂

∂t
(∇ · D − ρ),=⇒ ∇ · D = ρ︸ ︷︷ ︸

Fourth Maxwell’s equation

.

It should be noticed that ρ represents the density of the free charge, while the
polarization charge isn’t taken into account here.

The Gauss theorem can be simply derived from the fourth Maxwell’s equation by
applying the divergence theorem:

∮

S
n · D dS =

∫

V
ρ dV = Q,

being Q the electric charge contained in the volume V .
The third and fourth Maxwell’s equations are independent of the first two in the

static case, and therefore in this case all four Maxwell’s equations must be imposed.
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1.6 Duality Principle and Impressed Sources

The first two Maxwell’s equations are not formally symmetrical; in particular there
is a missing term in the first equation due to the fact that the magnetic charge, the
so-called magnetic monopole, hasn’t be discovered yet in nature and, consequently,
there isn’t any conduction or convection magnetic current. Some fictitious terms
are usually introduced so that the wished formal symmetry can be obtained, and,

in particular, a density of magnetic charge ρm , (measured in
[
Wb
m3

]
) and a density

of magnetic current Jm (measured in
[

V
m2

]
) are introduced. The two quantities are

related by the following (fictitious) continuity condition of the magnetic current:

∇ · Jm = −∂ρm

∂t
.

The introduction of ρm and Jm makes the first and the third Maxwell’s equations
formally symmetrical to the second and the fourth, respectively:

∇×E = −Jm − ∂B

∂t

∇ · B = ρm

Let us now operate the following substitutions in the above equations:

E −→ H , H −→ −E,

D −→ B , B −→ −D,

J −→ Jm , Jm −→ −J,

ρ −→ ρm , ρm −→ −ρ,

i.e. by replacing every electrical quantity with the corresponding magnetic one and
every magnetic quantity with the opposite of the corresponding electrical one, the
system of differential equations shown above is transformed into itself. This prop-
erty allows us to enunciate the so-called duality principle in the solutions of the
electromagnetic problems: starting from a solution for the electromagnetic field and
operating the substitutions above, a solution of another problem (called the dual
problem) is obtained. We will often use this principle, for example, to obtain certain
results for the magnetic field from analogous results for the electric field.

A final observation is needed on the densities of charge and current shown in the
previous equations. In general currents and charges2 are considered sources of the

2 For example, the current flowing in a transmitting antenna.
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electromagnetic field; however, the currents induced by the field on the conductors3

need to be considered as well. In the first case these quantities are considered known,
and therefore they constitute the known term of a non-homogeneous system of differ-
ential equations. In the second case, the quantities are, of course, unknown, because
they are depending on the unknown electromagnetic field. In certain problems only
terms of the second kind are present, in this case the differential problem is said
homogeneous. It is clear that a source for the field must be always present4 but in the
homogeneous case it is outside the region in which the solution is considered. It is
also true that the source itself is influenced by the field that it emits, but we neglect
these influences. At this point we can split the charges and currents in a part which
is impressed and one which is field-dependent in the following way:

ρ = ρi + ρc , ρm = ρmi + ρmc,
J = Ji + Jc , Jm = Jmi + Jmc.

Moreover, since magnetic charges and currents don’t exist in nature, we can impose
ρmc = 0 and Jmc = 0. Instead, we need to keep both ρmi and Jmi because there are
cases in which they can be used to represent different forms of excitation; in this case
they are called equivalent magnetic impressed charges and currents respectively. For
example, we talk about the so-called “magnetic dipole”, but it is actually a thin slot
on a thin metal plate, illuminated on one side and emitting on the other. Or, as it is
done by applying the so-called equivalence theorem (see by analogy the Huygens
principle), a field outside a closed surface can be considered as generated by electric
and magnetic equivalent currents placed on the surface itself. In conclusion, the first
two Maxwell’s equations take the form:

∇×E = −Jmi − ∂B

∂t
, ∇×H = Ji + Jc + ∂D

∂t
.

1.7 Constitutive Relations

The two curl Maxwell’s equations constitute a system of two vectorial equations (or
6 scalar equations) containing 5 unknown vectors (or 15 unknown scalars): E , D,
H , B, Jc (the reader should recall that Ji and Jmi are known). Nine scalar equations
more are needed in order to find a particular solution for the electromagnetic problem.
Moreover it needs to be observed that the introduction of the scalar current continuity
equation does not help, as it adds the additional unknown variable ρ.

The so-called constitutive relations need to be introduced to find the missing
nine scalar equations. Those relations bind together inductions D, B and the current
density Jc to the fields E and H . Those equations depend on the nature of themedium
in which we search our solutions.

3 For example, the current on the receiving antenna.
4 Even a resonator, which is the typical homogeneous system (the so-called free oscillations, i.e.
without forcing) actually has losses and requires excitation.
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The easiest case to treat is a vacuum (note that the air can typically be approximated
very well by vacuum), for which the following relationships are valid:

D = εo E B = μo H Jc ≡ 0,

recalling here the values of the magnetic permeability μo = 4π · 10−7 henry
meter

[H
m

]
(the

physical dimension is an inductance per unit length), and of the permittivity εo ∼=
10−9

36π
farad
meter

[ F
m

]
(the physical dimensions is a capacity per unit length). The approxi-

mation in the above relation is present because it is assumed that the speed of light in
vacuum is c = 1√

μo εo
∼= 3 · 108 [ms

]
, while the actual value is a bit lower than that.

The constitutive relations are more complicated in material media and they need
to involve two additional vectors, known as (intensity of) electric polarization P
and (intensity of) magnetic polarization or magnetization M (note the difference in
notation compared to some texts of Physics):

D = εo E + P,

B = μo H + M.

Moreover, Jc would be usually non-zero. Finally, apart from the case of specialmedia
(such as the so-called chiral media) or of media in motion, P and Jc depend only on
E and they don’t depend on H while M depends only on H and doesn’t depend on
E ; it is always assumed here that E , H are the fundamental vectors, (instead of E ,
B, as happens in some texts) so that in a sense they are considered causes, while the
other vectors are considered effects.

The general properties of the materials influence the mathematical nature of the
constitutive relations. In particular, it is usually considered the hypothesis of linearity,
in otherwords it is assumed the validity of the principle of superposition of the effects.
This assumption allows a mathematical matrix-formalism approach.

Another important property is stationarity, or permanency or time invariance:
this means that the characteristics of the medium do not vary over time. The third
important property is homogeneity or invariance in space: the characteristics of the
medium do not depend on the considered point in space.

The fourth fundamental property is isotropy, which essentially represents a
medium whose properties are independent of the direction (on the opposite a typical
case of non-isotropy or anisotropy, is represented by crystals, in which privileged
directions are apparent). This property can also be expressed in a more operational
way (i.e., more related to the mathematical form of the constitutive relations that
result from the definition) saying that the effect vector is parallel to the cause vector.

The fifth property is dispersivity, which can be either spatial or temporal. A
medium is said to be spatially dispersive if at a given point in space, the effect
depends on the value of the cause not only at that point, but also in the surrounding
area. Similarly, the medium is dispersive in time when the effect at a given time
depends on the value of the cause not only at that time, but also in the past instants
(the successive instants are excluded because of causality hypothesis). Note that a
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dispersive medium in space needs to be also dispersive in time because all physical
phenomena propagate with a finite speed. The temporal dispersion is generally more
significant than the spatial one in many applications.

Finally, a medium is said dissipative for conductivity if the electrical conductivity

σ
(

siemens
meter

[
�−1

m

])
is non-zero.

In the simplest possible medium, i.e. linear, stationary, homogeneous, isotropic
and non-dispersive in time nor in space, the following constitutive relations are valid:

P = εo χe E,

M = μo χm H,

where the two dimensionless scalars χe and χm are called electric and magnetic
susceptibility, respectively. It follows for the electric induction:

D = εo(1 + χe)E = εo εr E = ε E,

where ε = εo εr is the dielectric constant of the medium, while εr = 1+χe is called
relative dielectric constant, and for the magnetic induction it is:

B = μo(1 + χm)H = μo μr H = μ H,

where μ = μo μr is the magnetic permeability of the medium, while μr = 1 + χm

is called relative magnetic permeability.
If the medium is dissipative, then we have:

Jc = σ E → relation which represents Ohm’s law in local form.

In the case of a non-homogeneous medium, the only difference with respect to the
relationships seen is the dependence on the position r of at least one among the quanti-
ties ε,μ andσ. If we assume that themedium is anisotropic, andwe refer, for instance,
to the relation between D and E , the consequence is that the permittivity becomes a
dyad (i.e. a Cartesian tensor of second order, thus having nine components, being the
scalar a zero-order tensor, and the vector a first-order tensor: in a three-dimensional
space, in fact, a tensor of order n has 3n components); its mathematical representation
is a 3× 3 array. The particular instance of diagonal matrices containing all identical
values on the main diagonal coincides with the scalar which is on the diagonal.

So we have D = ε · E , where the scalar product between the dyad ε and the vector
E is the usual product between matrices. In Cartesian coordinates we can write:

ε = εxx xo xo + εxy xo yo + εxz xo zo+
+ εyx yo xo + εyy yo yo + εyz yo zo+ (1.1)

+ εzx zo xo + εzy zo yo + εzz zo zo,
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where the juxtaposition of the two unit vectors indicates the dyadic product, which
is the matrix product obtained by multiplying a column vector for a row vector; the
result of the multiplication is a 3 × 3 matrix. The constitutive relation in matrix
form is: ⎛

⎝
Dx

Dy

Dz

⎞
⎠ =

⎛
⎝

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠
⎛
⎝

Ex

Ey

Ez

⎞
⎠ .

Similar considerations apply to the permeability and conductivity. It results in
general:

B = μ · H Jc = σ · E .

When the medium is non-homogeneous, those dyads become point functions.
Now let us consider a medium which is linear, stationary or not, homogeneous or

not, isotropic or not, non-dispersive in space, but dispersive over time. Then the effect
at the generic instant t will depend on the value of the cause in all the previous instants
t ′. Note that in this specific situation, even in the isotropic case (scalar permittivity),
the two vector fields D(r, t) and E(r, t) won’t be generally parallel because E(r, t)
is not the only cause of D(r, t). We will have a constitutive relation of the type:

D(r, t) =
∫ t

−∞
ε(r; t, t ′) · E(r, t ′) dt′,

where the product symbol indicates the usual product between matrices.
In the particular stationary case the tensor ε doesn’t depend separately on t and

t ′, but it depends only on their difference t − t ′. The relation turns into a convolution
integral that exhibits the convenient property that its Fourier transform (the Fourier
transform of D in this case) is equal to the product (in this case scalar) of the Fourier
transform of ε(r, t − t ′), with respect to the variable t − t ′, and the one of E(r, t ′)
with respect to the variable t ′. Note that the convolution integral definition should
be extended between −∞ and +∞, but we can easily comply with this requirement
assuming that ε ≡ 0 when t ′ > t .

In the particular homogeneous case the dependence on r disappears, while in the
particular isotropic case the tensor turns into a scalar.

The case of spatial dispersion implies further integration of spatial type:

D(r, t) =
∫ t

−∞

∫

V
ε(r, r ′; t, t ′) · E(r ′, t ′) dV′ dt′.

and this is the most general linear constitutive relation. In the particular case of
homogeneous medium, ε doesn’t depend separately on r and r ′, but only on their
distance |r − r ′|. From this point of view, homogeneity, as it was already mentioned,
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can be seen as the counterpart of the spatial stationarity. Similar relationships apply
to B and Jc:

B(r, t) =
∫ t

−∞

∫

V
μ(r, r ′; t, t ′) · H(r ′, t ′) dV′ dt′,

Jc(r, t) =
∫ t

−∞

∫

V
σ(r, r ′; t, t ′) · E(r ′, t ′) dV′ dt′.

1.8 Boundary Conditions

The two curl Maxwell’s equations, along with the constitutive relations just seen,
which provide themissing nine scalar equations, can now be solved, but, assigned the
impressed sources, they will generally have a variety of solutions. In order to select
the solution of our particular problem it will be necessary to impose the appropriate
initial and boundary conditions, which will allow us to select, through a uniqueness
theorem, only one solution. The initial conditions involve the electromagnetic field
at a certain instant, in all the points of space. The boundary conditions are related to
the field on particular surfaces at any instant. For example, it is known (and it will
be shown later on) that on the surface of a perfect conductor (i.e. a medium having a
virtually infinite conductivity) the condition of cancellation of the tangential electric
field needs to be imposed at any instant. Another typical boundary condition is the
one at infinity which applies to unlimited regions.

Normally it is preferred to work with the Helmholtz or wave equation, which is
of the second order in one variable, instead of using Maxwell’s equations, which are
first-order coupled differential equations. The Helmholtz equation is derived from
Maxwell’s equations by imposing the requirement of the homogeneity of themedium.
In general, of course, it would be impossible to deal only with a single homogeneous
medium, but it will be more common to deal with a medium constituted by different
interleaved homogeneous media, that we could define “piecewise homogeneous”.
The wave equation would then be resolved in each homogeneous medium and then
the conditions at the interfaces between different media would be imposed. The latter
conditions are the so called continuity conditions.

It is well known, from basic physics courses, that the tangential component of E
and the normal component of D are preserved at the interface in the static case. The
same happens for the tangential component of H and for the normal component of
B. In the dynamic case the above relations are still verified, but prudence is required
for H in the case in which one of the two media is a perfect conductor, as in this case
surface distributions of charges and currents need to be considered.

Abrupt gaps in the characteristics of the media, which would result in discontinu-
ous functions, don’t exist in nature (macroscopically, i.e. where quantum effects can
be neglected), and so we can assume that the properties of the medium vary with
continuity in a thin, but finite, transition region, whose thickness is made tend to



1.8 Boundary Conditions 13

zero by means of a limit procedure; the separation surface is assumed stationary. It
needs to be observed, moreover, that the continuity conditions are not independent;
this is due to the fact that the relations for D and B are derived from the Maxwell’s
divergence equations, while those for E and H are obtained from the curl equations.
Therefore, in the dynamic case, it is necessary and sufficient to impose the latter
ones and the other two are derived as a result, just as it was done for the Maxwell’s
equations.

Let’s start from the condition for the field H , which is derived from

∇×H = J + ∂D

∂t
,

and let us consider a cylindrical region of transition having height 2h, total area St ,
unity normal (external) vector nt , lateral surface S3 and volume V , located on either
side of the interface. On the base surface S1 the characteristics are those of medium
1, on the other base S2 they are those of medium 2. By integrating the Maxwell’s
equation over the volume V and applying the curl theorem, it is obtained:

∫

V
∇× H dV =

∮

St

nt ×H dS =
∫

S1
n1×H1 dS +

∫

S2
n2×H2 dS +

∫

S3
n3×H3 dS =

=
∫

V
J dV +

∫

V

∂D

∂t
dV

which, applying the limit h −→ 0 brings to:

S1, S2 −→ S , H2 −→ H+ , H1 −→ H−,

where the positive side is pointed by the tip of the unit normal n. It can be further

assumed, as is reasonable, that H and ∂D
∂t are limited in the transition region, this

permits us to cancel both the integral extended to S3 and the integral of
∂D
∂t . The same

assumption can be applied to the integral of J only when none of the two media is
perfectly conducting (σ infinite).

Now let us suppose thatmedium1, for example, is a perfect conductor. In this case,
approaching the surface, the current density can assume values which are infinitely
high in infinitesimal thickness; it is known that the product of an infinitesimal times
an infinite can give a finite value, therefore it is obtained:

lim
h→0

∫

V
J dV = lim

h→0

∫

S

∫ +h

−h
J dh dS =

∫

S
( lim
h→0

∫ +h

−h
J dh) dS =

∫

S
JS dS,

having put JS = limh→0
∫ +h
−h J dh. JS is called surface current density and it is

measured in
[ A
m

]
.
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From the above it is obtained:
∫

S
n × (H+ − H−) dS =

∫

S
JS dS,

and because of the arbitrariness of S it follows

n × (H+ − H−) = JS .

Finally, by multiplying by n both sides of the equation it follows that:

[n × (H+ − H−)] × n = JS × n.

Reminding that:
A × (B × C) 
= (A × B) × C,

but when A ≡ C :

C × (B × C) = (C × B) × C = C × B × C,

and so parentheses are not required. In particular, when C is a unit vector vo we have:

vo × B × vo = B⊥,

where B⊥ is the vector component of B orthogonal to vo.
So

H+
τ − H−

τ = JS × n,

where the subscript τ indicates the tangential component, therefore the above formula
indicates that the tangentialmagneticfield has a discontinuity at the separation surface
between the two media, which is equal to the surface current density rotated by π/2
on the tangent plane.

Let us stress again that the discontinuity occurs only for perfect conductors which
can approximate well metals (gold, silver, copper,…) at microwave frequencies (e.g.
around 10GHz), but not at optical frequencies. Apart from perfect conductors, there
are good conductors for which the conduction current is prevalent (much greater) on
the displacement current, and good dielectrics for which the opposite occurs; in all
these cases the tangential component of H is continuous.

From the duality principle and from the fact that no induced magnetic surface
current exists in nature, it follows that the tangential electric field (in the absence of
impressed magnetic surface currents) is always continuous, i.e.:

n × (E+ − E−) = 0 JmS ≡ 0
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or
E+

τ − E−
τ = 0.

The conditions just presented are valid for every kind of medium as constitutive
relations are not involved.

Let us now, for example, suppose thatmedium1 is a perfect conductor (σ → ∞). It
is well known that the field E must be identically zero inside the perfect conductor,
otherwise a volumetric current J → ∞ should result from the local Ohm’s law
J = σE . The above assumption implies ∇×E = 0 so, in the absence of impressed
magnetic currents:

∂B

∂t
= 0 ⇒ B = constant ⇒ B = 0 ⇒ H = 0 , D = 0.

The following results are finally obtained:

• E− = 0 and n × E+ = 0, in other words it is E+
τ = 0 (that can be simply written

n × E = 0, Eτ = 0),
• n × H+ = JS , or H+

τ = JS × n (more easily we can write n × H = JS , Hτ =
JS × n),

where the electromagnetic field vectors are evaluated on the surface on the side of
medium 2 and the unit vector n is directed toward medium 2.

Let us now examine the condition for the electric induction D. This relation isn’t
independent of the previous ones, because it follows from the equation ∇ · D = ρ.
This time we are going to apply the divergence theorem to the cylinder, so that
we have ∮

St

nt · D dS =
∫

V
ρ dV,

i.e. as already seen

∫

S1
n1 · D1 dS +

∫

S2
n2 · D2 dS +

∫

S3
n3 · D3 dS =

∫

V
ρ dV.

Now the limh→0 is performed and it is assumed that D is limited in the transition
region. The same assumption cannot generally apply to ρ, as it wouldn’t be true when
one of the two medium is supposed perfectly conductor. In particular:

lim
h→0

∫

V
ρ dV = lim

h→0

∫

S

∫ +h

−h
ρ dh dS =

∫

S
( lim
h→0

∫ +h

−h
ρ dh) dS =

∫

S
ρS dS,

where ρS = limh→0
∫ +h
−h ρ dh is called the surface charge density and is measured

in
[

C
m2

]
.
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From steps already presented, it follows:

n · (D+ − D−) = ρS,

where, however, it is ρS ≡ 0 except in the case of the perfect conductor. By duality, in
the absence ofmagnetic charges, we immediately obtain (in the absence of impressed
surface magnetic charges):

n · (B+ − B−) = 0,

being ρmS ≡ 0.

1.9 Polarization of Vectors

In the case in which a vector quantity is a sinusoidal function of time, and its three
components all have the same angular frequency ω, we will write:

A(t) = xo Ax (t) + yo Ay(t) + zo Az(t),

Ax (t) = |Ax | cos(ωt + ϕx ) = Re
[

Ax e jωt
]
,

Ay(t) = |Ay | cos(ωt + ϕy) = Re
[

Ay e jωt
]
,

Az(t) = |Az| cos(ωt + ϕz) = Re
[

Az e jωt
]
,

having defined the complex scalar quantities (phasors):

Ax = |Ax | e jϕx = AxR + j Axj,

Ay = |Ay | e jϕy = AyR + j Ayj,

Az = |Az | e jϕz = AzR + j Azj.

Wecan introduce now the complex vector (phasor) A as the one having the phasors
of components as components:

A = xo Ax + yo Ay + zo Az = AR + j A j ,

where
AR = xo AxR + yo AyR + zo AzR,

A j = xo Axj + yo Ayj + zo Azj.
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The relationship between the complex vector and the one in the time domain is the
customary, since the space unit vectors are real quantities:

A(t) = Re
[

A e jωt
]

= Re
[

AR e jωt + j A j e jωt
]

= AR cos(ωt) − A j sin(ωt).

The vectors AR and A j , which do not depend on time, identify a plane in which
the tip of A(t) describes a geometric locus as time varies. It can be verified that this
locus is an ellipse. To show this, let us consider a Cartesian reference system x , y
on the the plane AR , A j and having its x axis coincident with the direction of AR .
Let us denote the oriented angle between the direction of AR and the one of A j as
θ. The coordinates of the tip of the vector A(t) are given by:

x(t) = AR cos(ωt) − A j cos θ sin(ωt),

y(t) = −A j sin θ sin(ωt),

which represent the parametric equations of the locus sought.
As usual the variable t needs to be removed in order to obtain the Cartesian

equation of the locus. Obtaining sin(ωt) from the second equation we have:

sin(ωt) = − y

A j sin θ
,

and substituting in the first equation we get:

AR cos(ωt) = x − y

sin θ
cos θ = x − y cot θ.

Squaring we get:

A2
R cos2(ωt)

= A2
R

[
1 − sin2(ωt)

]
= A2

R

(
1 − y2

A2
j sin

2 θ

)
= x2 − 2xy cot θ + y2 cot2 θ

and ordering the terms

x2 − 2xy cot θ + y2
(
cot2 θ + A2

R

A2
j sin

2 θ

)
= A2

R,

which is the equation of a conic section, in the form:

ax2 + bxy + cy2 = d
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whose discriminant b2 − 4ac results:

4 cot2 θ − 4

(
cot2 θ + A2

R

A2
j sin

2 θ

)
= − 4A2

R

A2
j sin

2 θ
< 0,

and hence it is an ellipse, as one could already guess, given that the coordinates of
the tip should always keep limited (assuming that A is the representative vector of a
physical quantity). It is then said that the vector A(t) is elliptically polarized.

There are two important special cases: when θ = ±π/2 (i.e. AR ⊥ A j ) and also
AR = A j it follows that the equation becomes x2 + y2 = A2

R which represents
a circumference. In this case A(t) is said circularly polarized. In particular, if θ =
+π/2, the tip of A(t) describes the circle in a clockwise direction, while if θ = −π/2
A(t) describes the circle counter-clockwise. In the literature this kind of polarization
is also referred, respectively, as left or right.

The other notable situation is verified when AR × A j = 0, i.e. when one of the
following conditions occurs: θ = 0, θ = π, AR = 0, or A j = 0 (in the latter
two cases θ is undetermined), in such cases, the tip of A(t) describes a straight line
segment (where the ellipse degenerates) and it is said that A(t) is linearly polarized.

Note that by multiplying the complex vector (phasor) A by a scalar quantity in
general complex C , we obtain the phasor of a vector function of time which has the
same polarization characteristics of A(t). In fact, assuming B = C A, we obtain:

B(t) = Re
[

B e jωt
]

= Re
[
|C | e jϕc A e jωt

]
= Re

[
|C | A e j (ωt+ϕc)

]
=

= |C |Re
[

A e jω(t+ϕc/ω)
]

= |C | A
(

t + ϕc

ω

)
.

Therefore B(t) is obtained from A(t) by multiplying it by a positive real factor |C |
and translating it over time of the amount ϕc/ω. These operations do not change,
obviously, the polarization characteristics of the vector. So it is always the vector
part (and not the scalar) of a certain quantity the responsible for the polarization.

It is worth noting that our considerations apply to vector fields which are functions
of space coordinates and time, so the phasor A and the vectors AR and A j are in
general functions of the point, e.g., there will be a locus in which the polarization
is circular and one in which it will be linear. In the important case of plane waves,
however, the polarization is the same in all points of space as will be shown in the
next chapter.

In the case of damped oscillatory phenomena (presence of loss mechanisms),
which can be represented by a complex angular frequency ω = ωR + jω j the tip of
A(t) describes a spiral in the plane defined by AR , A j . As for a more general time
dependence, the locus described is not even a plane curve.
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1.10 Maxwell’s Equations and Constitutive Relations
in Frequency Domain

Let us consider now a more generic, with respect to the sinusoidal one, time de-
pendence of our fields, i.e. let us require the only constraint of being Fourier-
transformable, so that we can consider the Fourier transformed fields in place of
the time-dependent fields, and therefore we can use the multiplication by the factor
jω instead of the time-domain derivative; this approach permits to turn differential
equations into algebraic ones or into differential equations on other variables. With
reference to the electric field, for example, we define the vector Fourier transform in
the following way:

E(r,ω) = � [E(r, t)
] =

∫ ∞

−∞
E(r, t) e− jωt dt ;

its inverse is:

E(r, t) = 1

2π

∫ ∞

−∞
E(r,ω) e jωt dω,

where the latter is actually an improper integral form (principal Cauchy integral).
With those transformations, Maxwell’s equations become:

{∇×E = −Jmi − jω B
∇×H = Ji + Jc + jω D

.

It should be noted that the same form for the equations is obtained in the particular
monochromatic case (phasors method); the quantities, however, are conceptually
different as they have, for example, different physical dimensions: in fact, while the
phasor of E has the same dimensions of the vector in time, the Fourier transform of
E is measured in [(V/m) · s], and so on for other quantities.

Now let’s see how the constitutive relations change in the transformed domain.
In the case of a medium non-dispersive in time, but in general dissipative, non-
homogeneous and anisotropic, we have the relations:

D(r,ω) = ε(r) · E(r,ω),

B(r,ω) = μ(r) · H(r,ω),

Jc(r,ω) = σ · E(r,ω),

where the dyads ε, μ and σ are real quantities and independent of ω. It is also verified

that ε and μ are symmetric tensors, and it can be demonstrated that the same property

is valid for σ due to symmetry properties of the crystalline media. In the particular
case of homogeneity the dependence on r disappears, while tensors disappear in the
isotropic case.
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Let us now consider the case of a medium dispersive in time, it occurs that
constitutive relations are much simpler in the transformed domain than in the time
domain when the stationarity hypothesis is assumed. In fact, considering for example

D(r, t) =
∫ ∞

−∞
ε(r, t − t ′) · E(r, t ′) dt′,

which represents a convolution integral (stationarymedium), andmoving to the trans-
formed domain, the above relation turns into a product of the transformed quantities:

D(r,ω) = ε(r,ω) · E(r,ω),

where it can be observed that ε(r,ω) is a complex dyadic function of the point r
and of the angular frequency ω, whose components are the Fourier transforms of the
components εij(r, t −t ′) of the tensor ε(r, t −t ′)with respect to the variable t −t ′. The
simplifications shown in the homogeneous and isotropic cases still occur but with
the essential difference that the dielectric constant is now complex and dependent on
ω. Of course, analogous considerations apply to the relations between B and H and
between Jc and E .

In the case of damped phenomena, the angular frequency becomes complex (as
we could easily guess) and this doesn’t permit the use of the Fourier transform (it
is known that the Fourier transform requires the transformed variable to be real).
However, in this case it is always possible a mathematical treatment with the use of
the Laplace transform, in which the transformed variable is complex.

1.11 Dispersive Media

The constitutive relations seen so far represent the result of the study on the cause-
effect relationship that exists between the physical entities. It is shown now a typical
example in which the direct examination of the phenomenon allows us to determine
the expression of the parameters and in detail of the dielectric constantwith reference,
therefore, to the relationship existing between D and E .

Let us consider, in particular, the so-called Lorentz model used in the study of
dielectric polarization. This model examines a non-polar dielectric medium in which
the centers of gravity of the bound electric charges (free charges generate the phenom-
ena of conductivity), both positive and negative, coincide in the absence of applied
electric field. Under the action of an electric field E = Eeo (where eo is the unit
vector of the electric field itself) the two centers of gravity move each from the other
up to a distance �. This displacement generates a dipole moment q�eo.

Assuming that there are N identical dipoles per unit volume, the vector intensity
of polarization P , which is the dipole moment per unit volume, is given by P =
Nq�eo = Peo. In order to derive the relation between P and E , we need to consider
the movement of the charge −q with respect to the charge +q. Such a movement



1.11 Dispersive Media 21

takes place in the opposite direction of the applied field (so the displacement of the
charge is � = −� eo) under the action of various forces, and in particular the Coulomb
force −q E = −q E eo, a restoring force that tends to take the two charges back in
the equilibrium position, in other words, it tries to make them coincide: this force is,
for small values of �, an increasing function of � which can be approximated (Taylor
series truncated at the first order, then linearisation) with −k � = k � eo, i.e. as an
elastic force. Finally it needs to be considered in general also a damping force due to
collisions (and thus a dissipative term, which indicates a transfer of energy from one
form to another). This damping force can be considered proportional to the velocity
d�

dt of the charge, and expressed as −β v = −β
d�

dt = β d�
dt eo (viscous friction).

At this point, by applying the second law of dynamics F = m a (where a =
d2 �

dt2
= − d2 �

dt2
eo) projected in the direction of eo we obtain:

−m
d2�

dt2
= −q E + k � + β

d�

dt
.

Multiplying by −N q and rearranging in terms of the function � and its derivatives,
we have:

m N q
d2 �

dt2
+ β N q

d �

dt
+ k N q � = N q2 E .

At this point we need to remember that P = N q �, so it follows:

m
d2P

dt2
+ β

dP

dt
+ k P = N q2 E,

which is a constitutive relation P = P(E) written in the form of a differential
equation. This means that if one wants to get the function P = P(E) directly in
the time domain one must solve this differential equation, and of course one has
to somehow integrate. That explains why the constitutive relations seen before are
expressed in integral form.

Here, however, we decide to move to the frequency domain so that our differential
equation becomes an algebraic equation

(−m ω2 + jβ ω + k)P = N q2 E,

being now P and E the transformed quantities. The solution now is straightforward:

P = N q2

k − m ω2 + jβ ω
E = N q2

m

1
k
m − ω2 + j β

m ω
E = N q2

m

1

(ω2
o − ω2) + 2 jαω

E,

having put

ωo =
√

k

m
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called resonance angular frequency (remember the theory of the harmonic oscillator)
and

2α = β

m

damping term due to the presence of dissipation (loss phenomena). It is typically
α < ωo.

Introducing the expression of P just found in the transformed constitutive rela-
tionship D = εo E + P we get:

D =
[
εo + N q2

m

1

(ω2
o − ω2) + 2 j α ω

]
E .

So, in the model considered, the medium is a dielectric which is dispersive in time
but stationary, whose dielectric constant is complex and dependent on ω:

ε(ω) = εo + N q2

m

(ωo + ω)(ωo − ω) − 2 j α ω

(ωo + ω)2(ωo − ω)2 + 4α2 ω2 = εR(ω) + jε j (ω),

with

εR(ω) = εo + N q2

m

(ωo + ω)(ωo − ω)

(ωo + ω)2(ωo − ω)2 + 4α2 ω2 ,

ε j (ω) = − N q2

m

2α ω

(ωo + ω)2(ωo − ω)2 + 4α2 ω2 .

After inverse transform of ε(ω) we could get the ε(t) to be used in

D(r, t) =
∫ t

−∞
ε(t − t ′) E(r, t ′) dt′.

We observe now that in the angular frequency range ω  ωo we have:

εR(ω) � εo + N q2

m

1

ω2
o

ε j (ω) � 0,

while for ω � ωo we have

εR(ω) = εo − N q2

m

1

ω2 ε j (ω) � 0,

and in particular limω→∞ ε(ω) = εo.

In the proximity of the resonance angular frequency ω � ωo it results:

εR(ω) � εo + N q2

m

1

2ωo

ωo − ω

(ωo − ω)2 + α2
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Fig. 1.1 εR
εo

in the Lorentz
model

εR(ωo) = εo,

ε j (ω) � − N q2

m

1

2ωo

α

(ωo − ω)2 + α2

ε j (ωo) = − N q2

m 2ωo α
.

The curve of εR
εo

as a function of ω
ωo

(we should always refer to normalized dimen-
sionless quantities, so that we can avoid dependence on units of measurement and
consider pure numbers that have some meaning in themselves) is represented in
Fig. 1.1.

εR and ε j are often named in the literature ε′ and −ε′′; usually ε is expressed as
ε(ω) = ε′(ω) − jε′′(ω) to highlight the presence of a negative imaginary part.

Regarding the imaginary part, changed in sign for simplicity in the picture shown
below (Fig. 1.2) it is a bell curve centered on ωo under the hypotheses made, which is
called Lorentzian and it is characterized by the fact that it becomes higher and thinner
when α (i.e. loss) decreases. This fact recalls us immediately the Dirac function, and

in fact we can show that limα→0[−ε j (ω)] = π Nq2

m2ωo
δ(ω − ωo). By the way, it needs

to be observed that the previous assumption is true only as a limit procedure, because
if α ≡ 0, it needs to be ε j (ω) ≡ 0.

It is worth noting a general feature: the presence of a non-zero imaginary part is
related to loss phenomena different from the ones due to conduction. As a typical
example, we can note that this kind of losses are exploited in the microwave-oven
heating of substances (for example, food). Moreover, the negative sign of the imag-
inary part means that there is a power loss, as it will become clear in the subsequent
discussion on the complex Poynting’s theorem. However, it could be shown that it
can never happen that ε j (ω) ≡ 0 (which is physically plausible because media with
no losses can never exist) due to the so-called Kramers-Krönig relationships, which
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Fig. 1.2 − ε j
εo

in the Lorentz
model

link the real and imaginary part of ε. Those relations state that if the imaginary part
were identically zero, then also the real part should be zero. These properties have
a very general validity, involving all frequency responses of linear and stationary
systems.

Finally, note that the behavior observed for ω → ∞ (εR → εo and ε j → 0,
so ε → εo) corresponds to the fact that at very high frequencies the elementary
dipoles are no longer able to follow the oscillations of the field and the behavior of
the dielectric medium tends to the one of a vacuum.

Regarding the magnetic permeability and the constitutive relation that links M to
H one can study for example a medium, said magnetized ferrite, which is anisotropic
and dispersive in time, i.e. the elements of the matrix μ = μoμ r or at least some of

them are in general complex functions of ω. It is in Cartesian coordinates:

μr (ω) =
⎛
⎜⎝

μ1(ω) jμ2(ω) 0

− jμ2(ω) μ1(ω) 0

0 0 1

⎞
⎟⎠ ,

with μ1, μ2 complex.
In the particular case of absence of losses the functions μ1(ω) and μ2(ω) become

real, and then the matrix μr becomes a so-called Hermitian matrix, i.e. the elements

symmetrical with respect to the main diagonal are complex conjugate (and thus the
diagonal elements must be real):

aij = a∗
ji

Note that in the particular case of realmatrices (i.e. the elements of thematrix are real)
symmetric and Hermitian matrix coincide. We will encounter again, many times, the
association between the hermitianity of the matrix and the absence of losses (this is
a general relation).

Just fewwords on the boundary conditions: they coincide with the ones in the time
domain, the only difference is that they are now applied to transformed quantities.



1.12 Poynting’s Theorem 25

1.12 Poynting’s Theorem

We will obtain now an integral relation that needs to be satisfied by any solution of
Maxwell’s equations: the Poynting’s theorem whose energetic interpretation makes
it a fundamental of electromagnetism. This theorem can be expressed in both time
and frequency domains.

1.12.1 Poynting’s Theorem in the Time Domain

Let us consider the time domain first. We start again from the Maxwell’s equations:

⎧
⎪⎨
⎪⎩

∇×E = −Jmi − ∂B
∂t

∇×H = Ji + Jc + ∂D
∂t

.

Let’s consider the scalar product of the first equation by H , the scalar product of the
second equation by E and let us subtract the two members. We obtain:

H · ∇×E − E · ∇×H = −Jmi · H − Ji · E − Jc · E − H · ∂B

∂t
− E · ∂D

∂t
.

Let us recall now the vectorial relation for the divergence of a vector product
∇ · (A × B) = B · ∇× A − A · ∇×B. The first member of the equality just seen is
then ∇ · (E × H). We can now integrate in a generic volume V , bounded by a closed
surface S, and then we can apply the divergence theorem to the first member of the
equation obtaining:

∮

S
n · E × H dS +

∫

V
Jc · E dV +

∫

V

(
E · ∂D

∂t
+ H · ∂B

∂t

)
dV =

= −
∫

V

(
Ji · E + Jmi · H

)
dV. (1.2)

The quantity E × H = P has the physical dimensions of
[

V · A
m2

]
= watt

meter2

[
W
m2

]
,

and hence of a power per unit area, i.e. a surface power density: this is the so-called
Poynting vector.

The quantity Jc · E physically represents the power per unit volume (power den-

sity,
[

W
m3

]
) provided by the electromagnetic field to the conduction current density

Jc. This power is dissipated by Joule effect, and then converted into heat. In fact, let
us recall here the expression of the Lorentz force acting on a point charge q, which
moves with velocity v:

F = q (E + v × B).

The power delivered to the charge by the electromagnetic field is given by the product
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P = F · v = q (v · E + v · v × B) = q v · E,

having applied the mixed product property: a · b × c = a × b · c. In a similar way,
the charge density ρ will be subject to a force density f (force per unit volume)
given by ρ(E + v × B), which corresponds to the power density provided by the
electromagnetic field: pc = ρ v · E = Jc · E being Jc = ρ v the current density
(convection) represented by the charge density in motion.

Similarly, the term pi = −Ji · E expresses, for the action-reaction-law (by virtue
of the minus sign), the power density supplied to the field from the impressed electric
current density.And for duality the term pmi = −Jmi · H represents the power density
supplied to the field from the impressed magnetic current density.

In the case of an isotropicmedium, non-dispersive, but dissipative for conductivity,
we have:

pc = σ E · E = σ E2 = σ(E2
x + E2

y + E2
z ).

So pc is a positive definite quadratic form in the components of E . Indeed, for a
passive medium (i.e. which does not simulate a generator, for which σ > 0) we have
pc > 0 and pc = 0 ⇔ Ex = Ey = Ez = 0.

In the case of an anisotropic medium the conductivity is a tensor and so we have:

pc = (σ · E) · E =
3∑

i=1

(

3∑
j=1

σij E j ) Ei =
3∑

i=1

3∑
j=1

σij Ei E j ,

pc is again a quadratic form in the components of E , which must necessarily be
positive definite for a passive medium. This is equivalent, because of the properties
of quadratic forms, to require that all the eigenvalues of the matrix σ are positive
(and therefore first of all real) in passive media.

Let’s now consider the term pE = E · ∂D
∂t . For non-dispersive and isotropic media

we have:

pE = ε E · ∂E

∂t
= ∂

∂t

(
1

2
ε E · E

)
= ∂

∂t

(
1

2
E · D

)
= ∂

∂t

(
1

2
ε E2

)
.

The quantity wE = 1
2 E · D represents, as it is well known from the basic physics

courses, the density of electrical energy
(

joule
meter3

) [
J
m3

]
stored, i.e., the electrical

energy stored in a unit volume. Note that wE depends only on the present value of E
(so it is a state function) and it is a positive definite quadratic form in the components
of E . It follows:

pE = ∂wE

∂t
,

and therefore pE represents the density of stored electrical power.
From the duality relations, the term
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pH = H · ∂B

∂t

is the stored magnetic power density. For non-dispersive and isotropic media we
have:

pH = μ H · ∂H

∂t
= ∂

∂t

(
1

2
μ H · H

)
= ∂

∂t

(
1

2
H · B

)
= ∂

∂t

(
1

2
μ H2

)
.

The quantity wH = 1
2 H · B represents the stored magnetic energy density. It de-

pends only on the present value of H (it is again a state function) and it is a positive
definite quadratic form in the components of H . We have therefore:

pH = ∂wH

∂t
.

All relations seen continue to be valid in the anisotropic case, but we need to insert
the relevant tensors:

wE = 1

2
E ·
(
ε · E

)
= 1

2

3∑
i=1

Ei

⎛
⎝

3∑
j=1

εij E j

⎞
⎠ = 1

2

3∑
i=1

3∑
j=1

εij Ei E j ,

and similarly:

wH = 1

2
H ·

(
μ · H

)
= 1

2

3∑
i=1

3∑
j=1

μij Hi Hj .

These quadratic forms must still be positive definite, due to their physical meaning
of energy, and this assumption puts constraints on the tensors ε, μ, since it is required

that their eigenvalues must all be positive.
In addition, it can be shown that these tensors must be symmetric (i.e. symmetric

real matrices, and therefore real eigenvalues), so that the energies become in fact state
functions (dependenceonly on the initial andfinal states, but not on the transformation
applied, or, the absence of hysteresis phenomena).

In dispersive media, finally, it is not possible to define energy as a state function.
It remains to interpret the meaning of the term that expresses the flux of the Poynt-

ing vector through a closed surface S. Given the interpretation of the other terms,
actually, the Poynting’s theorem expresses the power balance of the electromagnetic
field. The right member of the equality represents the power provided by impressed
currents (i.e. by the sources) to the electromagnetic field. For the principle of energy
conservation the various terms of the left member express the uses or destinations of
such power. In particular the flux of P represents the outgoing (or incoming) power
through the closed surface S.

Note that, however, it is wrong in general to attribute to the quantity n · P the
meaning of power that passes through the unit area perpendicular to the direction
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of n. In order to show this, it is sufficient to consider a static field generated by
permanent magnets and electrostatic charges (hence no current). In this case fields
E , H will generally be non-zero and non-parallel. Therefore, the flux of P through
an open unit surface will be generally different from zero. This does not, however,
correspond to a radiated power, as the origin of the field is static. The flux of P
through a closed surface is in fact zero. We have:

∇×E = 0 ∇×H = 0 ⇒ ∇ · P = 0 ⇒
∮

S
n · P dS = 0.

Finally note that:
n · P = n · E × H = n · Eτ × Hτ ,

so there can be no power flux inside a perfect conductor (Eτ = 0). The role of
conductors in electrical power lines is, as known, only to guide the energy, which is
actually transmitted through the interposed dielectric.

1.12.2 Poynting’s Theorem in the Frequency Domain

Let us now consider the Poynting’s theorem in thefrequency domain. We start this
time from the transformed Maxwell’s equations:

{∇×E = −Jmi − jω B
∇×H = Ji + Jc + jω D

.

We scalar multiply the first equation by H∗, while we conjugate the second5 and
then multiply it by E :

H∗ · ∇×E = −H∗ · Jmi − jω H∗ · B,

E · ∇×H∗ = E · J ∗
i + E · J ∗

c − jω E · D∗.

Subtracting member to member, we have:

H∗ · ∇×E − E · ∇×H∗ = −Jmi · H∗ − J ∗
i · E − J ∗

c · E − jω B · H∗ + jω E · D∗.

5 Note that ∇ is an operator called real, as it consists of derivations with respect to real variables
and real unit vectors, and so if it operates on a real-valued function, then the result also is a real
function. It is also said that ∇ commutes with the operation of conjugation:

(∇×H
)∗ = ∇×H∗ = J ∗

i + J ∗
c − jω D∗.

.
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At this point, we proceed as we did for the analogous theorem in the time domain
and then divide by a factor of two, obtaining:

1

2

∮

S
n · (E × H∗) d S + 1

2

∫

V
J ∗

c · E dV + jω

2

∫

V
(B · H∗ − E · D∗) dV

= −1

2

∫

V
(J ∗

i · E + Jmi · H∗) dV.

Let’s now impose:

P = 1

2
E × H∗ pi = −1

2
J ∗

i · E

pc = 1

2
J ∗

c · E pmi = −1

2
Jmi · H∗

pH = jω

2
B · H∗

pE = − jω

2
E · D∗

,

obtaining the more compact form:

∮

S
n · P dS +

∫

V
pc dV +

∫

V
(pH + pE ) dV =

∫

V
(pi + pmi) dV.

The above relation, the complex Poynting’s Theorem, is valid both in the case of
sinusoidal quantities (phasors) and in the Fourier transform domain. Instead, the
interpretation of the theoremwhich follows is valid only in harmonic regime, because
it involves phasors formulas.

We concentrate now, for example, on the term relevant to the flux of the Poynting

vector in the time domain
∮

S
n · E × HdS and we consider its average value on the

period T = 2π
ω , defining it as usual,

1

T

∫ T

o
f (t) dt = f (t)

t
for a generic function of

time f (t). Assuming that the volume V and the surface S are at rest, we can reverse
the integrals in space and time, and then carry on the mean operation on the product
E(r, t) × H(r, t). Exploiting now the phasor relationship we obtain:

E(r, t) × H(r, t) = Re
[

E(r) e jωt
]

× 1

2

[
H(r) e jωt + H∗(r) e− jωt

]

= Re

[
1

2
E(r) × H(r) e2 jωt

]
+ Re

[
1

2
E(r) × H∗(r)

]
,

where we put a real quantity (half the sum of two complex conjugates) inside the
brackets of the real part and we used the linearity property of the “real part” operator.
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Calculating now the average it is obtained:

E(r, t) × H(r, t)
t = Re

[
1

2
E(r) × H∗(r)

]
,

as the factor e2 jωt has zero mean. We then found that the real part of the complex
Poynting vector is equal to the average over a period of the Poynting vector in the
time domain. Note, however, that the complex Poynting vector isn’t the phasor of
the corresponding vector in the time domain.

In a similar way one can prove the same result for all the other terms with no
derivatives:

−Ji (r, t) · E(r, t)
t = Re

[
− 1

2 J ∗
i (r) · E(r)

]
,

−Jmi(r, t) · H(r, t)
t = Re

[
− 1

2 Jmi(r) · H∗(r)
]
,

Jc(r, t) · E(r, t)
t = Re

[
1
2 J ∗

c (r) · E(r)
]
.

Now we consider the terms with derivatives. For example:

E(r, t) · ∂D(r, t)

∂t
= Re

[
E(r) e jωt

]
· 1

2

∂

∂t

[
D(r) e jωt + D∗(r) e− jωt

]
=

= Re
[

E(r) e jωt
]
· 1
2

jω
[

D(r) e jωt − D∗(r) e− jωt
]

=

= Re

[
1

2
jω E(r) · D(r) e2 jωt

]
+ Re

[
− 1

2
jω E(r) · D∗(r)

]
,

and so:

E(r, t) · ∂D(r, t)

∂t

t

= Re

[
− 1

2
jω E(r) · D∗(r)

]
.

In a similar way, or in a dual way:

H(r, t) · ∂B(r, t)

∂t

t

= Re

[
− 1

2
jω H(r) · B∗(r)

]
= Re

[
1

2
jω B(r) · H∗(r)

]
,

because complex conjugate numbers have same real part.
We can conclude then that the real part of the equality expressing Poynting’s

theorem in the frequency domain coincides with the average value on the period
of the equality expressing the same theorem in the time domain, and therefore it
represents the average value on a period of the power balance in the considered
region.
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Let us now review some types of materials and let us see the particular expressions
obtained for pc in the frequency domain. In the case of non-dispersive and isotropic
medium it is Jc = σE with σ real, then: pc = 1

2 σE∗ · E is a non-negative real
quantity, according to its physical meaning of power transferred and not exchanged.6

In the anisotropic case (still non-dispersive) we have:

pc = 1

2
(σ · E∗) · E .

In order to find the conditions under which this quantity is real, let’s consider first
the more general case of a dispersive anisotropic medium, in which the tensor σ is
in general complex. We then have:

pc = 1

2
(σ∗ · E∗) · E .

Assuming pc real implies that the difference between pc and its conjugate must be
zero:

1

2
(σ∗ · E∗) · E − 1

2
(σ · E) · E∗ = 0,

i.e., developing the scalar products:

3∑
i=1

Ei

3∑
j=1

σ∗
ij E∗

j −
3∑

j=1

E∗
j

3∑
i=1

σji Ei =
3∑

i=1

3∑
j=1

(σ∗
ij − σji) Ei E∗

j = 0.

The previous relation must be valid for any electric field propagating in that
medium. Therefore, the only possibility is that σ∗

ij = σji i.e. σ is a so-called Her-
mitian dyadic. In particular, σ becomes real in the non-dispersive case and the above
condition coincides with that of symmetry, already verified due to the properties of
the crystal lattice. If moreover the medium is passive, then, must also be pc > 0:
this means that the matrix has positive eigenvalues.

Let us now consider the power density pE , starting from the case of the non-
dispersive medium, in which it was possible to define a function of state in the time

6 Recall that for real vectors the quantity:

A2 = A · A = A2
x + A2

y + A2
z ,

can be defined as the square of a vector and so it is defined as positive, and its square root
|A| = +√A · A can be assumed as the modulus of the vector. In the case of complex vectors,
A2 = A · A is not even real in general. To obtain a positive real quantity the modulus is defined as:

|A| = +√A · A∗ = +
√

Ax A∗
x + Ay A∗

y + Az A∗
z = +

√
|Ax |2 + |Ay |2 + |Az |2.

Often in the literature we talk about “amplitude” instead of the “modulus” although, however,
the term amplitude may also sometimes denote a multiplicative complex factor.
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domain for the density of electric energy:

wE (r, t) = 1

2
E(r, t) · D(r, t).

Let us now put in the transformed domain:

wE (r) = 1

4
E(r) · D∗(r) ⇒ pE (r) = −2 jω wE (r).

Exploiting again the phasor relations we obtain:

wE (r, t) = Re

[
1

4
E(r) · D(r) e2 jωt

]
+ Re

[
1

4
E(r) · D∗(r)

]
.

By averaging with respect to time, we have:

wE (r, t)
t = Re[wE (r)].

Let us now consider the expression of wE (r). It was, for an isotropic medium:
D = εE , with ε real (and positive) independent of ω. Therefore

wE (r) = 1

4
ε E · E∗ = 1

4
ε |E |2

is a real quantity, so we can omit the real part in the previous relation. This is also a
positive definite quantity, in agreement with its physical meaning of energy density.
It follows that the power density pE (r) is purely imaginary, and therefore:

pE (r, t)
t = Re

[
pE (r)

] = 0,

according to its physical meaning of exchanged power. As seen in circuit-theory
courses, when a complex power is purely imaginary then the active power (which is
the real part) is zero, and then the power is all reactive, which means it is stored and
exchanged,7 actually neither carried nor dissipated.

If the medium is anisotropic (still non-dispersive) we have D = ε · E with ε real,
independent of ω and symmetrical. We then have that:

wE (r) = 1

4
E · (ε · E∗)

is still a real quantity, in a similar way to what we have previously seen for pc. It
follows again that pE (r) is purely imaginary. It will follow that, for physical reasons,
wE (r) > 0 and this implies positive eigenvalues.

7 Power that goes back and forth in capacitors and inductors.
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In the case of dispersive medium, instead, a function of state density of electric
energy8 can no longer be defined. In the isotropic case the constitutive relation was:

D = ε(ω) E = [εR(ω) + jεJ (ω)]E .

This implies, for the power density:

pE (r) = − jω

2
E · (εR − jεJ ) E∗ = − jω

2
εR E · E∗ − ω

2
εJ E · E∗,

and:
pE (r, t)

t = Re[pE (r)] = −ω

2
εJ (ω) E · E∗.

So both active power and dielectric losses are null if εJ (ω) ≡ 0. On the other
hand, if the medium is dissipative (as it is imposed by Kramers-Krönig relations)
and passive, active power will have to be positive and therefore εJ (ω) < 0.

In the anisotropic case the power density is:

pE = − jω

2
E · (ε∗ · E∗).

The active power is null9 if the quantity E · (ε∗ · E∗) is real, i.e. if the tensor ε is
Hermitian. This is demonstrated in a way similar to what we have seen for the tensor
σ. If instead ε is not Hermitian and the medium is passive, the active power will have
to be positive.

For duality same considerations apply to pH , and to the corresponding density of
magnetic energy:

wH = 1

4
B · H∗.

In particular the following relation applies to the case of a non-dispersive medium:

pH (r) = 2 jω wH (r).

In the previous discussion we had to deal with quantities of the following type:

E · (σ∗ · E∗) E · (ε∗ · E∗) H∗ · (μ · H).

They are, in matrix formalism, structures of the type shown below, e.g. considering
the conductivity:

(
E
)
⎛
⎝ σ∗

⎞
⎠
⎛
⎝ E∗

⎞
⎠ ,

8 This case corresponds as already seen to the possible presence of dielectric losses.
9 And so there are no dielectric losses.
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which is a homogeneous polynomial of second degree in multiple (complex)
variables. But this is just one of the ways to describe a quadratic form of the compo-
nents of E . In other words, the matrix uniquely represents the quadratic form.

If the matrix is Hermitian, the quadratic form will be also called Hermitian. In
this case, the determinant of the matrix itself and all the eigenvalues are real numbers
(recall the general property which states that the determinant is the product of the
eigenvalues, each taken with its multiplicity). As we have already seen, if the matrix
is Hermitian, whatever the values of the variables are (in our case, the components
of the fields), the value assumed by the form is always real, and viceversa.

Furthermore, it is shown that a necessary and sufficient condition for theHermitian
form to be defined positive (which is important for us for physical reasons when we
consider the dissipated power and the energy density) is that the (real) eigenvalues
of the matrix are all positive.

In the case of dispersive media matrices ε, μ are complex. Note that any complex

matrix can be written as follows10:

ε = ε′ − j ε′′ , where

ε′ = ε + εT ∗

2
,

ε′′ = j
ε − εT ∗

2
.

as can be easily verified. It is noted that ε′ and ε′′ are in general complex too, i.e. they
are not the real and imaginary parts of ε. However, this decomposition is important
because both ε′ and ε′′ are Hermitian matrices (whereas the real matrices real part
and imaginary part are not generally symmetrical and thus are not Hermitian). Indeed
saying that a matrix is Hermitian is equivalent to saying that the matrix coincides
with its conjugate transpose (like saying that a matrix is symmetric is equivalent
to state that the matrix coincides with its transpose). Taking into account that the
transpose of a sum is equal to the sum of the transposes (and the same thing is true
for conjugates), the above-mentioned property can be immediately verified. As a
Hermitian matrix is in some way a generalization of a real scalar, these two matrices
are in a sense generalizations of the real part and the imaginary part (changed in
sign) of a scalar. In the case of ε, μ the imaginary part is related (as already seen

for the scalar case) to losses phenomena, and must be negative, hence the matrices
ε′′ and μ′′ must be positive defined, that is, they need to have positive eigenvalues

(assuming a passive medium).

10 With εT ∗ we mean the conjugate transpose of ε.
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1.13 Uniqueness Theorem

The Poynting’s theorem just seen can be used to prove the uniqueness theorem,which
provides a sufficient condition for the electromagnetic field in order to have a unique
solution.

Let us take a region in rest with volume V occupied by a medium (linear, station-
ary) non-dispersive, bounded by a closed surface S.

1.13.1 Uniqueness Theorem in the Time Domain

Consider first the problem in the time domain. Under the following conditions the
electromagnetic field is unique in any point of V and at all instants t > to where to
is an initial instant:

1. the field is a solution of Maxwell’s equations and satisfies the constitutive rela-
tions;

2. for t = to the electric field and the magnetic field are assigned at each point of V
(initial conditions);

3. for any instant t > to either the tangential electric field or the tangential magnetic
field is assigned at each point of S (boundary conditions).

Uniqueness theorems are usually proved by indirect proof (reductio ad absur-
dum), assuming that there are two different electromagnetic fields that both satisfy
conditions above; it is then shown that they must necessarily be equal. We will de-
note the two field solutions with a prime and with a double prime respectively. The
impressed currents (field sources) must obviously be the same in both cases. It can
then be written:

⎧
⎪⎨
⎪⎩

∇×E ′ = −Jmi − ∂B′
∂t

∇×H ′ = Ji + J ′
c + ∂D′

∂t

,

⎧
⎪⎨
⎪⎩

∇×E ′′ = −Jmi − ∂B′′
∂t

∇×H ′′ = Ji + J ′′
c + ∂D′′

∂t

.

Defining now some “difference” fields and currents:

Ed = E ′ − E ′′, Bd = B ′ − B ′′,

Hd = H ′ − H ′′, Jcd = J ′
c − J ′′

c ,

Dd = D′ − D′′.

Subtracting member to member the Maxwell’s equations for the two cases, homo-
geneous Maxwell’s equations are obtained for the difference field:
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⎧⎪⎨
⎪⎩

∇×Ed = −∂Bd
∂t

∇×Hd = Jcd + ∂Dd
∂t

.

The difference field also meets the constitutive relations, by virtue of the linearity of
the medium, as for example:

Dd = D′ − D′′ = D(E ′) − D(E ′′) = D(E ′ − E ′′) = D(Ed).

Since the Poynting’s theorem is a consequence of Maxwell’s equations, we can
apply it to the difference field in the volume V , taking into account the non-dispersive
nature of the medium and the fact that no impressed sources are present here:

∮

S
n · Ed × Hd d S +

∫

V
pcd dV + d

dt

∫

V

(
WEd + WHd

)
dV = 0

(taking the time derivative out of the integral, being the volume V at rest).
Let us observe now that the flux of the Poynting vector for the difference field is

null for our hypotheses, as on the surface S: either the tangential component of the
electric field is assigned, hence n × E ⇒ n × E ′ = n × E ′′ ⇒ n × Ed = 0 and
n · Ed ×Hd = n×Ed · Hd = 0 using the properties of themixed product according to
whichwe can exchange the scalar and the vector product; or the tangential component
of the magnetic field is assigned, hence n × H ⇒ n × H ′ = n × H ′′ ⇒ n × Hd = 0
and n · Ed × Hd = −n · Hd × Ed = −n × Hd · Ed = 0. At the end the following
relation remains:

d

dt

∫

V

(
WEd + WHd

)
dV = −

∫

V
pcd dV .

Now the twomembers are integrated in time on the interval [to; t], and the internal
variable is assumed t ′ to avoid confusion. We remember that the definite integral of
a derivative is equal to the function to be differentiated, calculated in its extremes.
Hence:

∫ t

to

[
d

dt′
∫

V

(
WEd + WHd

)
dV

]
dt′

=
[∫

V

(
WEd + WHd

)
dV

]

t
−
[∫

V

(
WEd + WHd

)
dV

]

to

= −
∫ t

to

(∫

V
pcd dV

)
dt′.

Let us exploit at this point the initial conditions, not yet used, according to which
for t = to are assigned E and H in V ⇒ E ′ ≡ E ′′ ⇒ Ed ≡ 0 and H ′ ≡ H ′′ ⇒
Hd ≡ 0 in V ⇒ at the initial time WEd = WHd ≡ 0 in V. For this reason it remains:
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[∫

V

(
WEd + WHd

)
dV

]

t
= −

∫ t

to

(∫

V
pcd dV

)
dt ′.

We can observe that WEd and pcd are positive definite quadratic forms of the com-
ponents of Ed while WHd is a positive definite quadratic form of the components of
Hd . So the equality written just now is possible only if the two integrals are both
zero. Considering the first integral, and this being the integral of the sum of two pos-
itive quantities, it follows that both quantities WEd and WHd vanish, and so it results
Ed = Hd ≡ 0 ⇒ E ′ ≡ E ′′ and H ′ ≡ H ′′ in each point in V and ∀ t > to. So the the-
orem is demonstrated, even if the medium is not dissipative (pcd ≡ 0 being σ = 0).

1.13.2 Uniqueness Theorem in the Frequency Domain

We are now going to use the complex Poynting’s theorem to derive the uniqueness
theorem in the frequency domain. In this case, having eliminated the time depen-
dence, there are no initial conditions but only boundary conditions. Referring to the
usual volume V enclosed by a closed surface S and with outward normal unit vec-
tor n, it is unique in any point of V the electromagnetic field which is solution of
Maxwell’s equations and constitutive relations, and whose is assigned in any point of
S either the tangential component of the electric field or the tangential component of
the magnetic field. We are also going to assume that the medium inside the volume
V is non-dispersive.

Also in this case the theorem is demonstrated by indirect proof (reductio ad ab-
surdum) proceeding in a similar manner as before, so by assuming the existence
of two solutions that both satisfy the conditions imposed, and then considering a
“difference” electromagnetic field that would be the solution of the homogeneous
Maxwell’s equations in the frequency domain. Finally, the complex Poynting’s the-
orem is applied to the difference field obtaining:

1

2

∮

S
n · Ed × H∗

d d S +
∫

V
pcd dV + 2 jω

∫

V
(wHd − wEd) dV = 0.

The first integral vanishes due to the boundary conditions, in a similar way to
what happened in the time domain, as n × Hd = 0 implies n × H∗

d = 0.
There are two integrals remaining, the first of which is purely real, the second

purely imaginary (assuming of course that ω is real, that is true in the absence of
damping phenomena). It is therefore necessary that both are zero. From the relation:

∫

V
pcd dV = 0
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in the case of dissipative medium (non-zero conductivity) it follows that, since pcd is
a positive definite quadratic form of the components of the difference electric field,
such field must be null in the volume V . wEd is also null, so it remains now:

2ω
∫

V
wHd dV = 0 ⇒ Hd ≡ 0 in V ,

beingwHd a positive definite quadratic form of the components of the magnetic field.
It is ultimately in V :

E ′ ≡ E ′′ , H ′ ≡ H ′′,

and the theorem is finally proved.
In the case of non-dissipative medium (null conductivity), instead, the first inte-

gral disappears even if no conditions are imposed on the electric field; since in the
second integral there is a difference of quantities depending in general on the angular
frequencyω, so it represents an equation inω which, resolved, provides the particular
values of frequency at which the uniqueness theorem is not valid. They are called
resonant frequencies of the system, which correspond to particular pairs Ed , Hd not
identically zero, representing the electromagnetic field of free oscillations, i.e., not
identically zero solutions of the system of homogeneous Maxwell’s equations.

Let us finally highlight three points. The first is that the theorem is still valid if the
following condition, called impedance condition, is valid in place of the boundary
conditions for the tangential components of E or H on S:

Eτ = ζS Hτ × n,

where Eτ and Hτ are tangential fields and ζS is a complex quantity, called surface
impedance, which is zero in the particular case of perfect conductor and whose real
part is positive (for passive media). This boundary condition is commonly used to
characterize media between the perfect conductor and perfect dielectric, hence the
real media.

The second observation is that when ω is a complex quantity, i.e. in the presence
of damping, the theorem is not valid for particular values of ω even for dissipative
media. Damped free oscillations appear for these values of ω.

The third observation is that the theorem is also valid for null conductivitymedium,
if in place of the dissipation due to the Joule effect other types of losses come into play,
in particular when dielectric and magnetic losses, related to the dielectric constant
and the permeability, appear. The medium is dispersive in such cases and either ε or
μ are characterized by an imaginary part with negative sign. In the expression of the
uniqueness theorem the following term survives:

1

2
jω
∫

V
(H∗

d · Bd − Ed · D∗
d) dV,

in which it is now possible to separate a real term (related to the imaginary part),
which allows us to set to zero separately the electric field (or the magnetic field). It
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can be concluded therefore that the uniqueness is valid whenever there is some loss
mechanism, and then in the more realistic scenarios. Remember, finally, that in the
time domain, instead, the uniqueness is always verified.

1.14 Wave Equation

The electromagnetic field can be determined solving the two coupled Maxwell’s
differential equations of the first order (along with the constitutive relations), but it is
usually preferred to solve a second-order differential equation, but in only one vector
variable, i.e. one of the two vector fields. The equation obtained is the so-called wave
equation and can be considered in both time and frequency domains.

The wave equation in time domain and in the absence of sources is usually shown
in the basic physics courses. It is obvious that in practice sources are always present,
but they are considered outside the region of interest. Starting from the Maxwell’s
equations in an isotropic and non-dispersive medium:

⎧⎪⎨
⎪⎩

∇×E = −μ
∂H

∂t

∇×H = σ E + ε
∂E

∂t

.

By applying the curl to the first equation we obtain:

∇×∇×E = ∇∇ · E − ∇2E = −∇×
(

μ
∂H

∂t

)
.

Let us suppose now that the medium be homogeneous (this is a hypothesis always
necessary in order to derive thewave equation), and let us apply the Schwarz theorem,
obtaining:

∇∇ · E − ∇2E = −μ
∂

∂t
(∇×H).

Now, by inserting the second Maxwell’s equation, we get:

∇∇ · E − ∇2E = −μ
∂

∂t

(
σE + ε

∂E

∂t

)
.

On the other hand (again in the assumption of homogeneity of the medium):

∇ · E = ρ

ε
.

Then:

∇2E − μσ
∂E

∂t
− με

∂2E

∂t2
= ∇ρ

ε
.
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Assuming the absence of free charges the following homogeneous equation is
obtained:

∇2E − μσ
∂E

∂t
− με

∂2E

∂t2
= 0.

The well-known d’Alembert equation follows in the particular case of non-
dissipative medium (σ = 0):

∇2E − με
∂2E

∂t2
= ∇2E − 1

v2

∂2E

∂t2
= 0,

having introduced the light speed in the medium:

v = 1√
με

.

Sometimes is also used the so-called d’Alembert operator:

� = ∇2 − 1

v2

∂2

∂t2
,

so that the equation becomes simply:

� E = 0.

Operating the Fourier transform (with respect to time) of the d’Alembert equation,
the following is obtained:

∇2E + ω2μεE = ∇2E + k2E = 0,

with k2 = ω2με, being k = ω
√

με = ω
v
the so-called wave number (in the medium)

or the propagation constant, or the propagation wave number in the medium. This
equation is the well-known Helmholtz equation and we will see shortly how its
validity is quite general, as it is valid even for dispersive (in time) media.

The wave number is related to the wavelength λ of the medium by the relation:

k = 2π

λ
.

There is also another fundamental relation:

v = λ f.

Note that λ plays the role of the spatial period of the field, while k is a kind of space
angular frequency.
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In a vacuum, in particular:

ko = ω

c
= 2π

λo
,

being11:

c = 1√
μoεo

, v = c√
μrεr

, λ = λo√
μrεr

.

This means that in a material medium it is like if the field is “compressed” with
respect to a vacuum, since the wavelength decreases.12 Very often we can assume
μr = 1 in the media that we consider in practice. The frequency instead does not
depend on the medium.

1.14.1 Helmholtz Equation

We derive now the non-homogeneous Helmholtz equation starting from the
Maxwell’s equations in the transformed domain. Let us consider again a homo-
geneous, isotropic, but also generally dispersive medium

{∇×E = −Jmi − jωμ H
∇×H = Ji + σ E + jωε E = Ji + (σ + jωε)E

.

For compactness of notation it is usually put:

jωεc = σ + jωε ⇒ ∇×H = Ji + jωεc E,

with:
εc = ε + σ

jω
= ε − j

σ

ω

equivalent dielectric constant (complex in general). Note that the duality principle is
still valid for the new pair of equations using the transformations:

εc → μ μ → εc.

Taking the divergences we have, in the usual assumption of homogeneous
medium:

0 = −∇ · Jmi − jωμ∇ · H ⇒ ∇ · H = −∇ · Jmi

jωμ
,

0 = ∇ · Ji + jωεc ∇ · E ⇒ ∇ · E = −∇ · Ji

jωεc
.

11 Then the light in material media is slower than in a vacuum.
12 So, for example, using dielectrics with high εr we can miniaturize components, such as for
example resonators.
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At this point we apply the curl to the first equation and then we substitute the second:

∇×∇×E = ∇∇ · E − ∇2E = −∇× Jmi − jωμ (Ji + jωεc E).

By substituting the obtained expression for the divergence of E :

∇2E + k2E = ∇× Jmi + jωμ Ji − ∇∇ · Ji

jωεc
,

having placed k2 = ω2μεc.
The above equation has a source term which is rather complicated (in particular,

it also requires the derivability of impressed sources). Applying again the duality
principle, taking the curl of the second Maxwell’s equation and substituting the first
one, we obtain the equation for the magnetic field:

∇2H + k2H = −∇× Ji + jωεc Jmi − ∇∇ · Jmi

jωμ
.

Note that a solution of the Helmholtz equation is not necessarily a solution of
Maxwell’s equations, as the condition on the divergence also must be imposed. Once
one of the two vector fields is found, the other one can be obtained from the curl
Maxwell’s equation of the known vector field.

Finally, note that Fourier transforming the equation:

∇2E − μσ
∂E

∂t
− με

∂2E

∂t2
= 0

it is obtained:

∇2E − jωμσ E + ω2με E = 0 ⇒ ∇2E + ω2μ

(
ε − j

σ

ω

)
E = 0,

from which, replacing εc:
∇2E + k2 E = 0.

1.15 Electromagnetic Potentials

It is sometimes useful to solve the electromagnetic problem, not directly in terms of
electromagnetic fields, but making use of auxiliary scalar and vector functions (in
the same way as already seen in electrostatics and magnetostatics), representing the
electromagnetic field through such functions which take the name of electrodynamic
or electromagnetic potentials. There are different kinds of potentials that can be
considered. We will present the most commonly used: in order to do so, we firstly
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need, assuming the validity of linearity, to apply the principle of superposition of
effects to the non-homogeneous Maxwell’s equations. Then we suppose firstly the
absence of the impressed magnetic currents, then the absence of impressed electrical
currents, and finally we sum the two results in order to deal with the general case.

Let’s start from the frequency domain. By imposing Jmi ≡ 0 we get:

{∇×E = − jωμ H
∇×H = Ji + jωεc E

.

Assuming a homogeneousmedium, and applying the divergence to the first equation,
it is obtained:

∇ · H = 0,

in the assumption that the domain is simple surface connected, it can be imposed:

H = ∇× A,

where A is the vector potential, defined apart from the gradient of a scalar function
�, i.e. assuming:

A′ = A + ∇� ⇒ H = ∇× A′.

The non-uniqueness of the vector field A derives from the fact that its curl is
assigned while its divergence is not. There is in fact a theorem of vector analysis,
the Helmholtz theorem, which states that a vector field is uniquely determined when
both curl and divergence are assigned.

Substituting H = ∇× A in the first Maxwell’s equation it is obtained:

∇×E = − jωμ∇× A ⇒ ∇×(E + jωμ A) = 0,

from which, if the domain is simple linear connected, it follows:

E + jωμ A = −∇V ⇒ E = − jωμ A − ∇V .

The quantity V is said scalar potential. We therefore expressed the electromagnetic
field in terms of a pair of potentials. This is not the only possible choice: for example,
the so-called Hertz potentials can also be used.

Note now that if one changes the vector potential according to the transformation
A′ = A +∇� (which leaves unchanged the magnetic field, as it should be) then one
has to change the scalar potential in order to maintain the electric field unchanged
too. In fact it follows:

E = − jωμ (A′ − ∇�) − ∇V = − jωμ A′ + jωμ∇� − ∇V =

= − jωμ A′ − ∇(V − jωμ�) = − jωμ A′ − ∇V ′
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having put V ′ = V − jωμ�. The transformation:

{
A′ = A + ∇�

V ′ = V − jωμ�

is called gauge transformation, where � is an arbitrary scalar function.
At this point, the problem moves to the evaluation of the pair A, V . In order to

reach our objective, we insert H = ∇×A in the second Maxwell’s equation, and so
we have:

∇×∇× A = Ji + jωεc E,

from which:

∇∇ · A − ∇2A = Ji + jωεc (− jωμ A − ∇V ) = Ji + ω2μεc A − jωεc ∇V .

The above equation, in which both potentials are present, can be much simplified
if A and V satisfy the Lorenz condition (or gauge):

∇ · A = − jωεc V,

(note that it is not the only choice: for example, also the so-called Coulomb condition
could be applied) for which we obtain the non-homogeneous Helmholtz equation in
one unknown variable A:

∇2A + k2A = −Ji .

As shown, the source term of this equation is much simpler than the one for the
corresponding equation for E (or for H ), and in particular it does not require differ-
entiability of the impressed sources. This equation is solved bymeans of the so-called
Green’s function.

Let us suppose now that we have a pair Ao, Vo of potentials that do not meet
the Lorenz condition. It is then possible, using the gauge transformations, to get a
new pair A, V that satisfies it, through an appropriate choice of the function �. On
the other hand this means, with reference again to the Helmholtz theorem, that is
assigned the divergence of A, whose curl was already assigned. Starting from:

A = Ao + ∇�,

V = Vo − jωμ�,

it will now be:
∇ · (Ao + ∇�) = − jωεc (Vo − jωμ�)

⇒ ∇ · Ao + ∇ · ∇� = − jωεc Vo − ω2μεc �

⇒ ∇2� + k2 � = −∇ · Ao − jωεc Vo,
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which is still a non-homogeneous Helmholtz equation in the variable �, since the
known term (source) is different from zero by assumption.

Once the Lorenz condition is met, the scalar potential can be expressed as a
function of the vector potential:

V = ∇ · A

− jωεc
,

and we can then express the electric field in terms of the only variable A:

E = − jωμ A + ∇∇ · A

jωεc
.

Let us consider finally the dual case in which Ji ≡ 0 and Jmi 
= 0. Then, applying
the divergence to the second Maxwell’s equation it follows, again assuming the
homogeneity of the medium:

∇ · E = 0 ⇒ E = −∇×F

where the minus sign has been introduced because F results the dual quantity of A,
having:

A → F , F → −A.

The equation for H is obtained again by using the duality principle:

H = − jωεc F − ∇U = − jωεc F + ∇∇ · F

jωμ
,

being the scalar potential U the dual of V . We have:

V → U , U → −V .

The equation to be solved in this case is:

∇2F + k2F = −Jmi.

Let us mention now the corresponding procedure in the time domain. Let us sup-
pose, for simplicity, that the medium is isotropic non-dispersive and non-dissipative.
In the case Jmi = 0, it follows:

⎧
⎪⎨
⎪⎩

∇×E = −μ
∂H

∂t

∇×H = Ji + ε
∂E

∂t

.
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Applying again the divergence to the first equation for homogeneous media and
then using the Schwarz theorem, we obtain:

∂

∂t
(∇ · H) = 0

⇒ ∇ · H = constant ⇒ ∇ · H = 0 ⇒ H = ∇× A

⇒ ∇×
(

E + μ
∂ A

∂t

)
= 0 ⇒ E = −μ

∂ A

∂t
− ∇V .

Then, from the second equation:

∇×∇× A = ∇∇ · A − ∇2A = Ji + ε
∂

∂t

(
− μ

∂ A

∂t
− ∇V

)

= Ji − με
∂2A

∂t2
− ε∇ ∂V

∂t
.

By imposing the Lorenz condition:

∇ · A = −ε
∂V

∂t

follows the non-homogeneous d’Alembert equation for the vector potential:

∇2A − με
∂2A

∂t2
= −Ji .

Once we have solved this equation, we obtain A, then H and finally E by the
Lorenz13 condition, which yields:

V = −1

ε

∫ t

to
∇ · A dt ′

⇒ E = −μ
∂ A

∂t
+ 1

ε

∫ t

to
∇∇ · A dt ′.

The other case follows from duality.

13 Note that in frequency domain the corresponding formula shows a division by jω instead of an
integration with respect to t .



Chapter 2
Properties of Plane Electromagnetic Waves

Abstract After introducing some general features of wave functions (equiphase
and equi-amplitude surfaces, phase vector, phase velocity), the treatment is partic-
ularized to the fundamental (for theory and applications) case of plane waves: the
general properties and the various wave types are reviewed. The important concept
of plane-wave spectrum is investigated. Non-monochromatic fields and the concept
of group velocity are considered. Moreover, the fundamental reflection and trans-
mission properties at plane interfaces are examined in detail, for normal and oblique
incidence, horizontal and vertical polarization. Fresnel coefficients are derived, total
reflection and total transmission are explained, good conductors are included.

2.1 Wave Functions

Let us consider now the homogeneous Helmholtz equation for a generic vector wave
function A (not necessarily an electromagnetic field):

∇2A + k2A = 0 .

We can project this equation on the three Cartesian axes x , y, z recalling that, in these
coordinate system, the components of the vector Laplacian are the scalar Laplacian
of the components, and so we obtain, for example, in the x direction:

∇2Ax + k2Ax = 0 .

Therefore we can refer to scalar wave functions A(x, y, z) satisfying the ∇2A +
k2A = 0.

The generic scalar complex wave function can always be written as follows:

A(x, y, z) = M(x, y, z) e− j �(x,y,z) ,

having highlighted magnitude and phase. We are usually interested in phase changes
rather than in the phase value: in other words, the function � is typically defined
apart from an additive constant.

© Springer International Publishing Switzerland 2015
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In the particular case in which �(x, y, z) = constant in a certain region of space,
the wave is said to be stationary in that region. When this is not the case, the wave is
said to be progressive and the previous relation, for different values of the constant,
defines a family of surfaces which are called equiphase surfaces. The particular shape
of these surfaces (e.g. planes, cylinders, spheres) is used to name the wave (plane,
cylindrical, spherical).

The phase vector is defined as β = ∇�. It can be shown that, as for any gradient,
its direction is the direction in which the phase variation is maximum; moreover β
is orthogonal to equiphase surfaces; finally, obviously, β ≡ 0 for a standing wave.

As it should be known, the superposition of two progressive waves having same
module and of opposite phases generates a standing wave. To show this, let us write:

A1(x, y, z) = M(x, y, z) e− j �(x,y,z) ,

A2(x, y, z) = M(x, y, z) e j �(x,y,z) ,

it follows:

A1(x, y, z) + A2(x, y, z) = M(x, y, z)
[
e j �(x,y,z) + e− j �(x,y,z)

]

= 2 M(x, y, z) cos
[
�(x, y, z)

]
,

which is a real function. Therefore, its phase is zero (or π) in the whole space and
so the wave is stationary.

The equation M(x, y, z) = constant defines, if not identically verified, a family
of surfaces which are called equi-amplitude surfaces. A wave is said to be uniform
(more often referred in the literature as homogeneous) if the amplitude is constant on
the equiphase surfaces. This occurs, either when the previous relation is identically
verified, or when the equi-amplitude surfaces coincide with equiphase surfaces.

Returning now to the time domain, in monochromatic regime we have:

A(x, y, z, t) = Re
[

A(x, y, z) e jωt
]

= M(x, y, z) cos
[
ωt − �(x, y, z)

]
.

The function �(x, y, z, t) = ωt −�(x, y, z) represents the phase variation in space
and time. The phase velocity vr in the direction of the unit vector ro is defined as the
speed of a hypothetical observer which moves in that direction in such a way that he
does not observe phase variations. For such observer therefore it is:

d� = 0 ⇒ ω dt − d� = 0

⇒ ω dt − ∂�

∂r
dr = ω dt − ∇�·rodr =

= ω dt − β·rodr = ω dt − βr dr = 0

⇒ vr = dr

dt
= ω

βr
.
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Note that a phase-velocity vector v is not defined: the phase velocity is essentially
a scalar quantity, i.e. vr can not be the component of a hypothetical vector v along
the direction r0. In fact, the existence of such a vector should imply:

v = xo
ω

βx
+ yo

ω

βy
+ zo

ω

βz
,

with v·ro �= ω

β·ro
= vr .

2.2 Plane Waves

We will study now a particular solution of the homogeneous Helmholtz equation
in free space (i.e., no discontinuity surfaces) in a homogeneous, isotropic, possibly
dispersive medium. The equation for the electric field is the following:

∇2E + k2E = 0 .

Weproceed now according to the technique of the so-called separation of variables
considering solutions of the form (in Cartesian coordinates):

E(x, y, z) = Eo X (x) Y (y) Z(z) ,

being Eo a constant vector (in general complex) and X , Y , Z three scalar functions
(in general complex). Let us introduce this form of solution in the equation above,
obtaining1:

Eo

(
d2X

dx2
Y Z + X

d2Y

dy2
Z + XY

d2Z

dz2

)
+ k2Eo XY Z = 0 .

Collecting Eo as a common factor (being this certainly different from zero, otherwise
only the trivial solution identically zero, obviously always present in homogeneous
equations, would be obtained) and applying the zero-product property, it follows:

d2X

dx2
Y Z + X

d2Y

dy2
Z + XY

d2Z

dz2
+ k2 XY Z = 0 .

Assuming XYZ �= 0 and dividing everything by this quantity:

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2
+ k2 = 0 ,

1 Note that ∇2E = Eo ∇2(XY Z).
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where the first term depends only on x , the second only on y, the third only on z,
while the fourth is constant.

Differentiating with respect to x , then we obtain:

d

dx

[
1

X

d2X

dx2

]
= 0 ⇒ 1

X

d2X

dx2
= constant = −k2x ,

kx being a generic complex constant. Similarly, differentiating with respect to y and
with respect to z, we obtain:

1

Y

d2Y

dy2
= constant = −k2y ,

1

Z

d2Z

dz2
= constant = −k2z .

i.e. three equations of harmonic motions. The three constants in the above equations
are not independent, since it must be:

−k2x − k2y − k2z + k2 = 0 ⇒ k2 = k2x + k2y + k2z .

The previous relation, called separability condition, should be imposed to ensure
that the three equations of harmonic motions are equivalent to the initial equation.
In particular, the three constants kx , ky and kz can not be simultaneously zero, being
k2 = ω2μεc �= 0.

Let us now examine the first equation:

d2X

dx2
+ k2x X = 0 .

The general solution is obtained considering separately the two cases kx �= 0 and
kx = 0. We have in the first case:

X (x) = X+
o e−jkx x + X−

o ejkx x ,

with X+
o and X−

o arbitrary complex constants. We could alternatively write the solu-
tion in terms of sinusoidal functions, but the actual choice is more convenient to
describe progressive waves in free space, in the absence of obstacles that can gener-
ate reflections and standing waves. In particular, the first term represents a wave that
propagates in the direction of the positive x , while the second one is the wave that
propagates in the direction of negative x , as highlighted by using the apexes “+” and
“−”. Assuming kx = 0, we have instead:

X (x) = X01 x + X02 ,

where X01 and X02 are generic complex constants. Analogous expressions are
obtained for Y (y) and Z(z).
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Now we are going to specialise further our particular solution by assuming X−
o =

0 when kx �= 0 (i.e. we are going to consider only terms which propagate in the
direction of the positive x) and, analogously, Y −

o = Z−
o = 0. On the other hand

if kx = 0 we assume X01 = 0, so that X (x) = constant, and this constant can be
included in the other equation, described by the exponential term, allowing it to cover
the case kx = 0. In the same way we put Y01 = Z01 = 0. Finally, joining all parts
together and embedding all the remaining X+

o , Y +
o and Z+

o constants in the constant
vector Eo, we have:

E(x, y, z) = Eo e− j (kx x+ky y+kz z) .

There are two parts in the above expression. The vector factor (constant) deter-
mines the characteristics of polarization, while the exponential scalar factor (depen-
dent on the coordinates) determines the propagation characteristics.

Defining the complex propagation vector:

k = kx xo + ky yo + kz zo ,

and recalling that:
r = x xo + y yo + z zo ,

we have:
kx x + ky y + kz z = k·r .

So the electric field ultimately assumes the following expression:

E(x, y, z) = E(r) = Eo e− jk·r .

There are two conditions that need to be added to this solution in order to be
valid: the condition of separability2 since we are describing a wave, i.e. a solution of
the Helmholtz equation; and the condition ∇·E = 0, which was used to derive the
Helmholtz equation from Maxwell’s equations.

It is important to point out that for a functional form of the type E = Eo e− jk·r
the operator ∇ coincides with the vector − jk: this is due to the form assumed in this
case by the spatial derivatives. In fact, we have:

∇ = xo(−jkx ) + yo(−jky) + zo(−jkz) = − jk ,

from which
∇(e− jk·r ) = − jk e− jk·r ,

∇·(Eo e− jk·r ) = − jk·Eo e− jk·r ,

2 k·k = k2x + k2y + k2z = ω2μεc .



52 2 Properties of Plane Electromagnetic Waves

∇×(
Eo e− jk·r ) = − jk × Eo e− jk·r ,

and moreover:
∇2 e− jk·r = ∇·∇(

e− jk·r ) = −k·k e− jk·r

⇒ (∇2 + k2) e− jk·r = 0 if k·k = k2 ,

as it should be. And finally:

∇2 (Eo e− jk·r ) = ∇·∇(Eo e− jk·r ) =

= −k·(k Eo) e− jk·r = −(k·k) Eo e− jk·r

⇒ (∇2 + k2)(Eo e− jk·r ) = 0 if k·k = k2 .

as it should be.
We can now come back to the condition ∇·E = 0, which, from what we have

seen, assumes the following form:

− jk·Eo e− jk·r = 0 .

The value of the exponential term is always different from 0, even in the complex
field, so the zero-product property implies:

k·Eo = 0 .

This is the condition forwhich our planewave is also solution ofMaxwell’s equations.
Separating the real and the imaginary parts of the k components, we have:

kx = βx − jαx ,

ky = βy − jαy ,

kz = βz − jαz ,

and by defining the two real vectors:

β = xo βx + yo βy + zo βz ,

α = xo αx + yo αy + zo αz ,

which are named respectively phase vector and attenuation vector, we have:

E(x, y, z) = E(r) = Eo e− jβ·r e−α·r .

Let us now consider the case of a general vector wave function to acquire a better
understanding on themeaning of the vectorsβ andα. If the three components have the
same phase (apart from a constant), we can generalize directly and unequivocally
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the concepts of equiphase surface, phase vector and phase velocity (in sinusoidal
regime). In addition, if the three components present a common amplitude factor
(containing the dependence on coordinates), it is possible to extend the concept of
equi-amplitude surface and uniform wave. Well, this is exactly the case of our plane
waves in free space. There is a common phase factor e− jβ·r , so:

�(x, y, z) = β·r = βx x + βy y + βz z .

Therefore the phase vector for a generic wave

∇� = xo
∂�

∂x
+ yo

∂�

∂y
+ zo

∂�

∂z
= βx xo + βy yo + βz zo

coincides with the β. Moreover, there is a common amplitude factor e−α·r .
In order to determine the equiphase surfaces, let us observe that if the two points

P and P ′, identified by the vectors r and r ′, belong to an equiphase surface, then it
must be �(r) = �(r ′), and therefore:

β·r = β·r ′ ⇒ β·(r − r ′) = 0 .

It follows that the vector r − r ′ = −−→
P ′ P must be orthogonal to β, i.e. it must lie on

a plane orthogonal to β. We conclude that the equiphase surfaces are planes normal
to β and defined by the equation β·r = constant. Our solution is therefore a plane
wave. The direction of the vector β is called direction of propagation.

Similarly, the equi-amplitude surfaces are planes normal to α. In particular, a
plane wave is uniform when α and β are parallel, or when α = 0 (whereas it can
never be β = 0, as we will see shortly).

The phase velocity in the direction of β is given by:

vβ = ω

β
.

while, in a given direction ro, which forms an angle θ <
π

2
with β, the phase

velocity is:

vr = ω

βr
= ω

β cos θ
= vβ

cos θ
� vβ .

2.3 General Properties of Plane Waves

Let’s consider again the separability condition:

k·k = k2 = ω2μ εc = ω2μ
(
ε − j

σ

ω

)
= ω2μ ε − jωμσ ,
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in the case in which the medium is non-dispersive, so ε, μ are real and positive and
σ is real and non-negative. Therefore k2 is a complex number with positive real part
and negative (or zero) imaginary part: i.e. k2 is located in the fourth quadrant (or it
lies on the real positive semi-axis) on the complex plane. k, the square root of k2, will
have two (opposite) possible positions, one being in the fourth quadrant (or lying on
the positive real semi-axis) and the other being in the second quadrant (or lying on
the negative real semi-axis). By convention the first determination is chosen, so we
can put:

k = kR − jkJ con kR > 0 and kJ � 0 .

Recalling now that k = β − jα we obtain:

(β − jα)·(β − jα) = β2 − α2 − 2 jβ·α = ω2μ ε − jωμσ ,

being β2 = β·β and α2 = α·α as usual. Equating real parts and imaginary parts we
have: {

β2 − α2 = ω2μ ε

β·α = ωμσ

2
.

β �= 0 and β > α result from the first equation. Moreover, the angle formed by β
and α is acute, being their scalar product positive.

Let us now consider the particular case of a non-dissipative medium (σ = 0). In
this case it is β·α = 0. This condition can be verified either when α = 0, or when α
is orthogonal to β. Therefore, even in the absence of losses it may exist a non-null
attenuation vector α, provided it is orthogonal to the phase vector β. The plane wave
is uniform and not attenuated in the first case (α = 0), and:

k ≡ β = β βo = ω
√

με βo = k βo ,

being βo the unit vector in the direction of β. Thus, in this particular case k represents
the modulus of the propagation vector k, however this property is not true in general.
Moreover, the phase velocity in the direction of β is in this case:

vβ = ω

β
= ω

k
= 1√

με
= v ,

which coincides with the speed of light in the medium.3 In a vacuum, as we have
already seen, it is c 	 3 × 108 [m/s]. In directions different from the one of β the
phase velocity is larger than v.

The other possibility for lossless media, i.e. β ⊥ α, describes a plane wave which
is not uniform and attenuated in the direction perpendicular to the propagation direc-
tion, and with:

3 Note that in our hypothesis of non-dispersive medium the phase velocity does not depend on ω.
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β =
√

ω2μ ε + α2 = ω

√
με + α2

ω2 > k ,

and so:

vβ = ω

β
= 1√

με + α2

ω2

< v .

Here, moreover, the phase velocity depends on ω even though the medium is not
dispersive. In this case, the phase velocity is lower than v inside a cone around the
direction of β. In general, when the phase velocity is lower than the speed of light, the
wave is said slow. Along the directions outside the cone, instead, the phase velocity
is larger than v and so the wave is called fast.

Let us consider now the case in which the medium is dissipative and therefore
σ �= 0. In such a situation the vector α must certainly be non-zero and β and α must
not be perpendicular. However, β and α may be parallel and therefore in this case
the wave is uniform and attenuated, with β = ββo and α = αβo. In conclusion:

k = β − jα = (β − jα)βo .

Moreover from the general equation:

k2 = β2 − α2 − 2 j β·α

it follows, in this case:

k2 = β2 − α2 − 2 j βα = (β − jα)2 ⇒ k = β − jα ⇒ k = k βo .

The condition k = kβo with k real or complex, is therefore typical of uniform
waves.

At this point, after considering the propagation properties, we begin to examine
the polarization properties of a single plane wave, which are related, as already
mentioned, only to the vector part Eo. Let’s start from the following relation:

k·Eo = 0 .

Putting:
k = β − jα ,

Eo = EoR + j EoJ ,

it is:
(β − jα)·(EoR + j EoJ) = 0

⇒ (β·EoR + α·EoJ) + j (β·EoJ − α·EoR) = 0 .
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Separating the real and the imaginary parts it is obtained:

{
β·EoR + α·EoJ = 0
β·EoJ − α·EoR = 0

.

Actually, these conditions are not very meaningful, at least in the general form, but
they can be very significant in specific cases.

When the electric field of a plane wave is known, then the correspondingmagnetic
field can be determined from the first Maxwell’s equation:

∇×E = − jωμ H ⇒ − j k × E = − jωμ H

⇒ H = k × E

ωμ
= k × Eo

ωμ
e− j k·r = Ho e− j k·r ,

having set Ho = k × Eo

ωμ
. Hence the magnetic field is expressed by a wave function

of the same type as the one of the electric field and so it will be a solution of the
equation ∇2H + k2H = 0.

We are going to check now that ∇·H = 0, which coincides, in our hypothesis,
with k·Ho = 0:

k·Ho = k·k × Eo

ωμ
= k × k·Eo

ωμ
= 0 .

Now let us also verify the second Maxwell’s equation ∇×H = jωεc E . It is:

∇×H = − j k × H = − j k × (k × Eo)

ωμ
e− j k·r =

= − j

ωμ

[
k (k·Eo) − Eo (k·k)

]
e− j k·r =

= j

ωμ
k2Eo e− j k·r = jωεc Eo e− j k·r = jωεc E .

When H is known, the field E is given by:

∇×H = jωεc E ⇒ E = 1

jωεc
(− jk) × H = − 1

ωεc
k × Ho e− j k·r

⇒ Eo = −k × Ho

ωεc
.
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2.3.1 Uniform Non-attenuated Plane Wave

It is studied now the particular situation of a non-dispersive and non-dissipative
medium (ε and μ real positive and σ = 0), then either α = 0 or β ⊥ α must occur.
In the first case k ≡ β and the general system of equation previously seen reduces
to:

β·EoR = 0 , β·EoJ = 0 .

Using the duality for H :

β·HoR = 0 , β·HoJ = 0 .

In addition, from H = k × E

ωμ
it follows, being k real:

HoR = β × EoR

ωμ
, HoJ = β × EoJ

ωμ
,

and the dual ones

EoR = −β × HoR

ωε
, EoJ = −β × HoJ

ωε
.

Some definitions widely used for electromagnetic waves are now introduced. A
wave is said transverse electric (TE, also known as H) with respect to a certain
direction, if the electric field is orthogonal to that direction. Instead, a wave is called
transverse magnetic (TM, also known as E) with respect to a direction when the
magnetic field is orthogonal to that direction. Finally, a wave is said TEMwhen both
the electric and the magnetic fields are orthogonal with respect to that direction. For
what seen before, then, the non-attenuated uniform plane wave is TEM with respect
to the propagation direction.

From the above formulas, we notice that we have two groups of relations that
contain either just the vectors EoR and HoR or the vectors EoJ and HoJ only, i.e.,
in essence, the wave can be decomposed into two independent linearly polarized
waves. The wave resulting from the superposition of the two is generally elliptically
polarized.

Let’s consider one of the two linearly polarized waves presented, for example the
first, and let’s assume:

EoR = EoR eo , HoR = HoR ho .

From β·EoR = 0 it follows:
βo·eo = 0 ,
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so that βo × eo is a unit vector (unitary modulus), and, moreover:

HoR ho = β EoR

ωμ
βo × eo ,

from which we get:
ho = βo × eo ,

so the three unit vectors eo, ho, βo form in this order a right tri-rectangular triad, and:

HoR = β EoR

ωμ
= ω

√
με

ωμ
EoR =

√
ε

μ
EoR ,

EoR =
√

μ

ε
HoR .

As you can see the relationship between the amplitudes of the electric field and
the magnetic field is a quantity (having physical dimensions of an impedance) that
depends only on the characteristics of the medium. The quantity:

ζ =
√

μ

ε
,

is called characteristic impedance of the medium and it is measured in ohm [�]. Its
particular value in a vacuum is:

ζo =
√

μo

εo
	 120 π [�] 	 377 [�] .

It is clearly ω μ = k ζ, and thus:

H = 1

ζ
β0 × E , (2.1)

E = −k × H

ωε
= − k

ωε
βo × H = k

ωε
H × βo .

Now let us observe that:
k

ωε
= ω

√
με

ωε
=

√
μ

ε
= ζ

⇓

E = ζ H × βo . (2.2)
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Note that (2.2) could also be obtained from (2.1) multiplying by βo to the right
and recalling that since E is transversal with respect to βo, it results

βo × E × βo = E .

Or we could proceed by multiplying to the left (2.1) by βo, having:

βo × H = 1

ζ
βo ×

(
βo × E

)
= −1

ζ
E ,

i.e.
E = ζ H × βo .

In fact in general it is (note that in this case the brackets at the first member are
required)

vo × (
vo × A

) = vo
(
vo·A

) − A
(
vo·vo

) = − (
A − Av vo

) = −A⊥

(being A⊥ the orthogonal component of A with respect to the direction of vo).
Finally, let us consider the expression of the Poynting vector for this kind of wave:

P = 1

2
E × H∗ = 1

2
Eo e− jβ·r × H∗

o e jβ·r = 1

2
Eo × β × E∗

o

ωμ
=

= 1

2ωμ
[β (Eo·E∗

o ) − E∗
o (Eo·β)] = 1

2ωμ
β |Eo|2 = 1

2 ζ
|Eo|2βo .

Therefore P is a real and constant vector directed along β.
Similar considerations apply to the other wave associated with EoJ and HoJ.

2.3.2 Non-uniform Plane Wave Attenuated Perpendicularly
to the Direction of Propagation

Let us consider now the case of the other wave seen, the one with β ⊥ α. Let us
suppose first that the electric field is linearly polarized; EoR and EoJ are parallel in
this case, and therefore they are represented by the same unit vector, which can be
taken as the unit vector of the complex vector, which is multiplied by a complex
amplitude.4 It is:

Eo = (EoR + j EoJ) eo .

4 In fact, you can verify that this property characterizes the linearly polarized vectors.
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Let us now come back to the general condition k·Eo = 0 that becomes:

(
β − j α

)
· (EoR + j EoJ) eo = 0 .

We suppress EoR + j EoJ, which is certainly non-zero, and then separate the real
and the imaginary part obtaining

β·eo = 0 , α·eo = 0 .

Therefore eo , α , β form, in order, a right tri-rectangular triad. Moreover the rela-
tion β·eo = 0 indicates that the wave is TE with respect to the direction of propaga-
tion.

As regards the magnetic field, by applying the general relation for plane waves:

Ho = 1

ωμ

(
β − j α

)
× (EoR + j EoJ) eo =

= EoR + j EoJ

ωμ
β × eo − j

EoR + j EoJ

ωμ
α × eo = Hoα + Hoβ ,

being:

Hoα = EoR + j EoJ

ωμ
β × eo = EoR + j EoJ

ωμ
β αo ,

and

Hoβ = − j
EoR + j EoJ

ωμ
α × eo = j

EoR + j EoJ

ωμ
α βo .

In general, therefore, the vector Ho is elliptically polarized in the plane defined
by α and β, then the wave is not TM with respect to the direction of propagation.

The Poynting vector for this TE wave is:

P = 1

2
Eo e− j k·r × H∗

o e j k∗·r = 1

2
Eo × k∗ × E∗

o

ωμ
e− j (k−k∗)·r =

= 1

2ωμ

[
k∗ (

Eo·E∗
o

) − E∗
o

(
Eo·k∗)] e− j (k−k∗)·r

= 1

2ωμ

∣∣Eo
∣∣2 e−2α·r (β + j α) ,

since, being eo·k = 0 it follows that eo·k∗ = 0, from which Eo·k∗ = 0. In this case,
therefore, the Poynting vector is complex, its real component is directed along β
and its imaginary one is directed along α. Moreover, P is no longer constant, but it
decays exponentially in the direction of α.



2.3 General Properties of Plane Waves 61

We can now for duality assume that the magnetic field is linearly polarized:

Ho = (HoR + j HoJ) ho ,

and from the general relation k·Ho = 0 it follows that β·ho = 0 and α·ho = 0. This
time ho , α , β form a right tri-rectangular triad and the wave is TM with respect to
the direction of propagation.

For the electric field, we have:

Eo = − 1

ωε

(
β − j α

)
× (HoR + j HoJ) ho =

= − HoR + j HoJ

ωε
β × ho + j

HoR + j HoJ

ωε
α × ho = Eoα + Eoβ ,

being

Eoα = − HoR + j HoJ

ωε
β × ho = − HoR + j HoJ

ωε
β αo ,

and

Eoβ = j
HoR + j HoJ

ωε
α × ho = − j

HoR + j HoJ

ωε
α βo .

So in general the electric field is elliptically polarized in the plane defined by α and
β, this means that the wave is not TE with respect to the direction of propagation.

The Poynting vector is:

P = 1

2
Eo e− j k·r × H∗

o e j k∗·r =

= − 1

2ωε

(
k × Ho

) × H∗
o e− j (k−k∗)·r

= 1

2ωε

[
k

(
H∗

o ·Ho
) − Ho

(
H∗

o ·k)]
e− j (k−k∗)·r =

=
∣∣Ho

∣∣2
2ωε

e−2α·r k =
∣∣Ho

∣∣2
2ωε

e−2α·r (
β − j α

)
.

Also in this case, therefore, the Poynting vector has a real part directed along β
and an imaginary part directed along α; moreover, P decays exponentially in the
direction of α.

2.3.3 Uniform Attenuated Plane Waves

Finally, we are going to consider the case of a plane wave which is uniform, but this
time attenuated, thus the medium is dissipative. In this case:
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k = (β − jα)βo = kβo = ω
√

μεc βo .

We have already seen that the condition k = kβo is the one that characterizes
uniform plane waves.

From the general relation k·Eo = 0 it follows that βo·Eo = 0. In addition, it is:

Ho = k

ωμ
βo × Eo ⇒ Ho·βo = 0 ,

therefore, even if the medium is dissipative, the uniform plane wave is TEM with
respect to the propagation direction.

It should be observed that assuming the electric field linearly polarized, i.e.
Eo = Eo eo where Eo is a scalar quantity in general complex, it is, from the general
condition, βo·eo = 0 and it is, for the magnetic field:

Ho = k Eo

ωμ
βo × eo = Hoho ,

where ho = βo × eo is a unit vector, being βo orthogonal to eo, while:

Ho = k

ωμ
Eo = ω

√
μεc

ωμ
Eo =

√
εc

μ
Eo

⇓

Eo =
√

μ

εc
Ho = ζ Ho .

Hence, from the hypothesis of linear polarisation of the vector field E , it follows that
the magnetic field must be linearly polarized, too. In addition, the three unit vectors
eo, ho, βo form, in the order, a right tri-rectangular triad.

The quantity ζ =
√

μ
εc

represents the most general (complex) expression of the

characteristic impedance of the (dissipative) medium. The following expressions are
still valid for the general case of ζ complex:

Ho = 1

ζ
βo × Eo , Eo = ζ Ho × βo .

The Poynting vector is expressed by the formula:

P = 1

2
Eo eo e− jββo·r e−αβo·r × H∗

o ho e jββo·r e−αβo·r = 1

2
ζ |Ho|2 e−2αβo·r βo .

It is a complex vector directed as βo and which is attenuated exponentially in the
same direction.
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The initial hypothesis of linearly polarized electric field actually does not affect the
generality of the treatment, because any uniform plane wave, elliptically polarized in
general, can be expressed as the sum of two linearly polarized waves. Establishing,
for example, a Cartesian system xy on an equi-phase surface, we can consider a first
wave having E polarized along xo (and then necessarily with H along yo), and a
second wave with E polarized along yo (and H necessarily polarized along xo).

2.4 Spectrum of Plane Waves

We are going to show now, explicitly, the importance of plane waves as building
blocks that canbeused, by superposition, to express anykindofwave (e.g. cylindrical,
spherical and so on).

We will consider a simple, homogeneous, isotropic, non-dispersive and
non-dissipative medium. We have already seen how the Helmholtz equation could
be obtained by a Fourier transformation of the d’Alembert equation with respect to
time. It follows naturally to extend the procedure to the other (spatial) coordinates,
too. For example, with respect to the variable x , it is:

E(kx , y, z,ω) = Fx
[
E(x, y, z,ω)

] =
∫ +∞

−∞
E(x, y, z,ω) e jkx x dx ,

and the inverse:

E(x, y, z,ω) = 1

2π

∫ +∞

−∞
E(kx , y, z,ω) e−jkx x dkx .

The Helmholtz equation is written in Cartesian coordinates:

∂2E

∂x2
+ ∂2E

∂y2
+ ∂2E

∂z2
+ k2E = 0

⇓

−k2x E + ∂2E

∂y2
+ ∂2E

∂z2
+ k2E = 0 .

The second derivative with respect to x is transformed, as it is well known, in a
multiplication by −k2x . We need to apply the double inverse transformation with
respect to kx and ω in order to get back the field in the time domain.

At this point we transform with respect to y, too, and the differential equation
becomes ordinary:

d2E

dz2
+ (k2 − k2x − k2y) E = 0 .
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where E(kx , ky, z,ω) is the unknown field from which we can recover the field in
time domain through a triple anti-transformation:

E(x, y, z, t) = 1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
E(kx , ky, z,ω) e j (ωt−kx x−ky y) dkx dky dω .

By transforming with respect to the variable z, too, it is obtained:

(k2 − k2x − k2y − k2z ) E = 0 ,

where E(kx , ky, kz,ω), four time transformed, is unknown, and from which the
actual field might be obtained by

E(x, y, z, t) = 1

(2π)4

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
E(kx , ky, kz,ω)

e j (ωt−kx x−ky y−kz z) dkx dky dkz dω .

This is the expression of the spectrum of plane waves, which shows how a generic
electric field, provided four times Fourier transformable with respect to spatial vari-
ables and time, may be expressed as a superposition (integral) of plane waves of
infinitesimal amplitude:

1

(2π)4
E(kx , ky, kz,ω)dkx dky dkz dω ,

constant, obviously, with respect to x, y, z, t .
We note, however, that such a generic electric field must not only be a function

four times Fourier transformable, but it must also be a wave, i.e. a solution of the
Helmholtz equation, so the quadruple Fourier transform needs to satisfy the

(k2 − k2x − k2y − k2z )E = 0 ,

which admits solutions different from the trivial one identically zero only if

k2 − k2x − k2y − k2z = 0 ⇒ ω2με = k2 = k2x + k2y + k2z .

Hence we found again, in this four times transformed domain, the condition of
separability which resulted, in the case of a single plane wave, from the assumption
of separation of variables for the Helmholtz equation.

It would therefore be amistake applying the Fourier inverse transformwith respect
to the four variables, because they are not independent. For example, we can choose
not to transform with respect to the variable z. In this case we can solve the ordinary
differential equation previously seen, which, in case of

(k2 − k2x − k2y) �= 0,
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admits the general solution

E(kx , ky, z,ω) = E1(kx , ky,ω) e
− j

√
k2−k2x −k2y ·z + E2(kx , ky,ω) e

j
√

k2−k2x −k2y ·z ,

which can be put in the triple integral seen before to obtain the field E(x, y, z, t).
We need to recall that it is not allowed to have kx , ky, kz,ω all real in dissipative

media, as it is required by the definition of the Fourier transform. Therefore the
Laplace transform needs to be used in place of the Fourier transform.

It is also evident that not all the plane waves of the spectrum are uniform: in fact,
outside the so-called circle of “visibility” k2x +k2y = ω2με the waves are not uniform
and they are attenuated along zo. It is kz = − jαz and therefore

β = kx xo + ky yo , α = αz zo , β ⊥ α .

However, for large values of z the non-uniform (non-homogeneous, or evanescent,
as it is called in the literature) portion is attenuated to negligible levels.

The plane-wave spectrum considered is also said angular spectrum, because the
angle of the elementary plane wave of the spectrum changes when the wave num-
bers change.

2.4.1 Electric Field of a Monochromatic Wave in a Half-Space

Let us suppose that we want to find the expression for the electric field of a mono-
chromatic wave in a half-space (z ≥ 0). In this case the triple integral, seen for the
general case, becomes a double integral with respect to a pair of wave numbers,
for example kx and ky . Moreover, since the region of interest is infinite, only the
elementary plane waves traveling in the positive z direction can be considered for
z ≥ 0. For the phasor of the electric field it is:

E(x, y, z) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
E(kx , ky) e− j (kx x+ky y) e−jkz z dkx dky ,

with kz =
√

ω2με − k2x − k2y . On the plane z = 0:

E(x, y, 0) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
E(kx , ky) e− j (kx x+ky y) dkx dky ,

i.e. the electric field on the plane z = 0 is the double inverse Fourier transform of
the spectrum amplitude function E(kx , ky). Reversing the transformation we have:

E(kx , ky) = F
[
E(x, y, 0)

] =
∫ ∞

−∞

∫ ∞

−∞
E(x, y, 0) e j (kx x+ky y) dx dy .



66 2 Properties of Plane Electromagnetic Waves

Essentially then, to obtain the electric field in a half-space it is sufficient to know
the field itself on the plane z = 0 (compare to the Huygens principle for the elemen-
tary spherical waves, which as the plane waves constitute a so-called complete set
which can express any field). We therefore have:

E(x, y, z) = 1

(2π)2

∫∫ ∞

−∞

[∫∫ ∞

−∞
E(x ′, y′, 0) e j(kx x ′+ky y′)dx ′ dy′

]

e− j(kx x+ky y)e− jkz zdkx dky .

Rearranging the previous expression:

E(x, y, z) = 1

(2π)2

∫∫ ∞

−∞
E(x ′, y′, 0)

{∫∫ ∞

−∞
e− j [kx (x−x ′)+ky (y−y′)+kz z] dkx dky

}
dx ′ dy′ .

The quantity in brackets is said direct propagator hz(x−x ′, y−y′). It then results:

E(x, y, z) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
hz(x − x ′, y − y′) E(x ′, y′, 0) dx ′ dy′ ,

i.e. the propagated field is expressed by a double convolution between the field on
the plane z = 0 and the hz propagator.

So the process of propagation from the plane z = 0 up to a generic plane z =
constant > 0 has, on the field E(x ′, y′, 0), the same effect produced by the passage
through a linear stationary system characterized by an impulse response hz . From
the impulse response in time domain we can derive a transfer function H z(kx , ky). In
order to determine its expression we write E(x, y, z) too as a double inverse Fourier
transform, in the form:

E(x, y, z) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
E(kx , ky) e−jkz z

]
e− j (kx x+ky y) dkx dky =

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ez(kx , ky) e− j (kx x+ky y) dkx dky ,

having written Ez(kx , ky) = E(kx , ky) e−jkz z . This choice is equivalent to a
reference-plan translation from z = 0 to z = constant > 0. The transfer function is
therefore:

H z(kx , ky) = e−jkz z .
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2.5 Non-monochromatic Plane Waves

We previously introduced the concept of phase velocity for a generic wave. We then
presented in detail the plane waves. In the case of a uniform plane wave in a non-
dissipative medium the phase constant (modulus of the phase vector) is β = ω

√
με

that is a linear function of frequency in the case of non-dispersive medium. The
phase velocity in the direction of β coincides with the speed of light in the medium

(vβ = ω
β = 1√

με = v), which in the given hypothesis is a constant.
In the general case of dispersive medium suitable diagrams, called dispersion

diagrams or Brillouin diagrams (in honor of the French physicist who studied these
phenomena), are usually considered. They normally show the angular frequency
(or the frequency) as the abscissa, and the wave number or phase constant as the
ordinate, alternatively the wave number is the abscissa and the angular frequency is
the ordinate: the latter is the classic version.

It is clear that in the case of non-dispersive medium the diagram above is a straight
line with a certain slope φ with respect to the abscissa axis, and it is clearly:

vβ = ω

β
= tan φ .

In the case of dispersive medium, instead, the diagram is a curve and the angle
φ in the previous relation (and hence the phase velocity) depends on ω. As already
mentioned, the consequence of this relation is that the individual frequency compo-
nents of a non-monochromatic electromagnetic field (like a modulated signal used
in telecommunications) propagate with different phase velocities, and therefore the
field configuration changes in general during propagation.

2.5.1 Beat Velocity

The previous considerations may be clarified by considering at first the beat phenom-
enon, i.e. looking at the field which results from the superposition of two monochro-
matic uniform plane waves having different frequency but equal amplitude and both
propagating in the z direction. The instantaneous electric fields of this configuration
are:

E1(z, t) = Re[Eoe j (ω1t−β1z)] ,

E2(z, t) = Re[Eoe j (ω2t−β2z)] .

At this point we can put:

ω = ω1 + ω2

2
,

�ω = ω2 − ω1 .
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It follows:

ω1 = 1

2
(ω1 + ω2) − 1

2
(ω2 − ω1) = ω − �ω

2
,

ω2 = 1

2
(ω1 + ω2) + 1

2
(ω2 − ω1) = ω + �ω

2
.

Then we can assume:

β = β1 + β2

2
,

�β = β2 − β1 .

β1 = β − �β

2
,

β2 = β + �β

2
.

Observe that, in general, β �= β(ω), because the dispersion law is not generally
linear.

For the total field, we have:

E(z, t) = E1(z, t) + E2(z, t)

= Re{Eo e j[(ω− �ω
2 )t−(β− �β

2 )z] + Eo e j[(ω+ �ω
2 )t−(β+ �β

2 )z]} =
= Re{Eo e j (ωt−βz) [e− j ( �ω

2 t− �β
2 z) + e j ( �ω

2 t− �β
2 z)]}

= 2 cos

(
�ω

2
t − �β

2
z

)
Re[Eo e j (ω t−β z)] .

The resulting field can then be seen as a plane wave having angular frequency equal
to the average of the two angular frequencies and phase constant equal to the average
of the two phase constants. Moreover, the field amplitude (real) is not constant, but
it is modulated by a 2 cos(�ω

2 t − �β
2 z) factor. The described effect is named beat.

The phase velocity of this wave in the z direction is ω/β. The amplitude of the
wave constitutes the envelope of the beat and varies in space and time, but it moves
in the z direction in a rigid shape fashion. We can define the envelope speed as the
speed of a hypothetical observer who moves in the z direction in such a way that he
does not observe amplitude variations. Hence, for this observer it must be:

�ω

2
t − �β

2
z = constant

⇓

�ω dt − �β dz = 0
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⇓

�ω dt = �β dz

⇓
dz

dt
= �ω

�β
= vb .

The quantity vb is named beat velocity.

2.5.2 Group Velocity of a Wave Packet

Let us consider now the more general case of a field depending on the variables z and
t represented, as inverse Fourier transform, by a spectrum of uniform plane waves
propagating in the z direction:

E(z, t) = 1

2π

∫ +∞

−∞
Eo(ω) e− jβ(ω) ze jωt dω

(This is a particular case of the spectra previously seen in the absence of the wave
numbers kx and ky ; we chose to integrate with respect to ω, but of course we could
have integrated with respect to β).

Let us make the further assumptions that the amplitude Eo(ω) is different from
zero only in the range ω1 ≤ ω ≤ ω2 and that the field is a so called “wave packet”,
i.e. the following condition holds:

ω2 − ω1 � ωo with ωo = ω1 + ω2

2
.

Let us now expand the (dispersion) function β = β(ω) as a Taylor’s series of
initial point ωo truncated to the first-order term:

β(ω) 	 β(ωo) + dβ

dω

∣∣∣
ωo

(ω − ωo) = βo + dβ

dω

∣∣∣
ωo

�ω ,

having assumed

βo = β(ωo) , different from
β(ω1) + β(ω2)

2

�ω = ω − ωo ⇒ ω = ωo + �ω .
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Introducing the result into the integral above it is obtained:

E(z, t) = 1

2π

∫ ω2

ω1

Eo(ω) e
− j (βo+ dβ

dω

∣∣
ωo

�ω)z
e j (ωo+�ω)t dω =

=
[
1

2π

∫ ω2

ω1

Eo(ω)e
j�ω(t− dβ

dω

∣∣
ωo

z)
dω

]
e− jβoze jωot .

This expression can once again be seen as a uniform plane wave having angular
frequency equal to the center value of the band, phase constant corresponding to
such angular frequency and phase velocity equal to ωo/βo, but having non-constant
(and complex) amplitude. The complex amplitude factor represents the complex
modulation envelope.

We can define again, as for the case of the beat, a velocity of the envelope that
moves as in a rigid shape fashion, i.e. the speed at which a hypothetical observer
must move in the direction of z in order to observe no variations in the (complex)
amplitude. It must therefore be (varying z and t),

t − dβ

dω

∣∣∣
ωo

z = constant ⇒ dt − dβ

dω

∣∣∣
ωo

dz = 0 ⇒

⇒ dt = dβ

dω

∣∣∣
ωo

dz ⇒ dz

dt
= 1

dβ
dω

∣∣∣
ωo

= vg .

This speed is called group velocity of the wave packet. If the function β = β(ω) is

invertible, ω = ω(β) being the inverse function, it is vg = dω
dβ

∣∣∣
βo

(Fig. 2.1).

Note that in a non-dispersive medium the speed vg is independent of ωo and
coincides with the phase velocity in the z direction. In fact, when all the component
waves propagate at the same speed, their envelope propagates at that speed, too.

Fig. 2.1 Group velocity

�
�

�
�

�
�

�
��

φ ψ

�
P

ωo

βo

ω

β

φ = arctan ω
β

, ψ = arctan dω
dβ

∣
∣
∣
βo
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Note that if the band is not narrow, the Taylor expansion of the dispersion function
can no longer be truncated to the first order, the packet is therefore deformed during
propagation. Other speeds need to be introduced in this case (theory of Brillouin’s
precursors).

When the propagation phenomenon is no longer unidirectional, i.e. when the
direction of propagation of the waves constituting the packet varies, it is necessary
to generalize the treatment. Let us recall the spectrum of plane waves represented by
a triple integral, but this time we choose not to integrate with respect to the angular
frequency, but with respect to the three wave numbers. It is obtained:

E(x, y, z, t) = 1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Eo(k) e j[ω(k)t−k·r ] dkx dky dkz .

Now let us suppose that the amplitude Eo(k) = Eo(kx , ky, kz) results different
from zero only for

kx1 ≤ kx ≤ kx2 , ky1 ≤ ky ≤ ky2 , kz1 ≤ kz ≤ kz2 ,

and let us assume, moreover:

kx2 − kx1 � |kxo| ,

being:

kxo = kx1 + kx2

2
;

it is assumed, similarly:

ky2 − ky1 � |kyo| , kz2 − kz1 � |kzo| ,

with

kyo = ky1 + ky2

2
, kzo = kz1 + kz2

2
.

The described field is a plane-wave packet, and so the function of the three
variables ω(k) = ω(kx , ky, kz) can be expressed as a Taylor series of initial point
ko = xo kxo + yo kyo + zo kzo truncated at the first order:

ω(k) 	 ω(ko) + ∂ω

∂kx

∣∣∣
ko

(kx − kxo) + ∂ω

∂ky

∣∣∣
ko

(ky − kyo) + ∂ω

∂kz

∣∣∣
ko

(kz − kzo) .

Defining now the vector �k = k − ko = xo(kx − kxo) + yo(ky − kyo) + zo(kz − kzo)

⇒ k = ko + �k we obtain:

ω(k) 	 ω(ko) + ∂ω

∂kx

∣∣∣
ko

xo·�k + ∂ω

∂ky

∣∣∣
ko

yo·�k + ∂ω

∂kz

∣∣∣
ko

zo·�k .
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Let us also define the operator (nabla in the space of wave numbers):

∇k = xo
∂

∂kx
+ yo

∂

∂ky
+ zo

∂

∂kz
,

obtaining the compact notation:

ω(k) 	 ω(ko) + ∇kω
∣∣∣
ko

·�k.

We can then rewrite the exponential that appears in the spectral integral, using the
above notation, as:

e j[ω(k) t−k·r ] 	 e j[ω(ko) t−ko·r ] e j (∇kω|ko ·�k t−�k·r)

= e j[ω(ko) t−ko·r ] e j (∇kω|ko t−r)·�k
.

Finally, the field in the time domain is:

E(x, y, z, t) =
[

1

(2π)3

∫ kx2

kx1

∫ ky2

ky1

∫ kz2

kz1

Eo(k)e j (∇kω|ko t−r)·�k dkx dky dkz

]

e j[ω(ko) t−ko·r ] .

We obtained again a modulated uniform plane wave having wave vector ko and

angular frequency ω(ko). The phase velocity in a certain direction ro is
ω(ko)

k0r
, as

usual.
The envelope speed can again be defined as the speed of a hypothetical observer

who does not see changes in amplitude while varying r and t . It needs to be

∇kω
∣∣∣
ko

t − r = constant, from which differentiating, it is obtained:

∇kω
∣∣∣
ko

dt − dr = 0 ⇒ dr = ∇kω
∣∣∣
ko

dt ⇒ dr

dt
= ∇kω

∣∣∣
ko

,

which represents the group velocity of the plane-wave packet just considered. Dif-
ferently from the phase velocity, the group velocity is defined in general as a vector.

2.5.3 Bandwidth Relation

We are going to demonstrate now the following relation between a certain frequency
range � f and the corresponding variation of wavelength �λ: � f

f = �λ
λ . We know

that ω = 2π f ⇒ �ω = 2π� f . On the other hand v = λ f , and setting � f =
f2 − f1 assuming f2 > f1 , �λ = λ1 − λ2 with λ1 > λ2
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� f

f
= f2 − f1

f1
=

v
λ2

− v
λ1

v
λ1

=
λ1v−λ2v

λ1λ2
v
λ1

= λ1 − λ2

λ2
= �λ

λ
.

The ratio � f
f is important for evaluating the performances of a resonator, defined by

the so-calledmerit factor or quality factorQ, a parameter that is inversely proportional
to � f

f , where � f is, in this case, the conventional width of the resonance peak (for
example the 3-decibels width from the maximum or from the minimum, or the half-
height width). The higher the Q, the narrower the peak and thus the resonance curve
is selective. The ideal case would be the Dirac delta function, the more realistic case
is the Lorentzian curve, such as the one previously seen for ε j (ω), which in fact
represents loss phenomena due to resonance absorption.

2.6 Reflection and Transmission of Plane Waves at a Plane
Interface: Normal Incidence

So far we considered the propagation of plane waves in free space. Let us now review
the effects of the presence of a flat surface which separates two half-spaces occupied
by different media, both supposed homogeneous, isotropic, generally dispersive and
dissipative. We start from the simpler case of normal incidence along the z (posi-
tive) direction. A uniform plane wave, coming from a medium 1 having constants
ε1,μ1,σ1 and directed to a medium 2 having constants ε2,μ2,σ2 is considered.

We limit the study to the case of linear polarization, as the most general elliptical
polarization can be expressed as a superposition of two linear polarizations. There-
fore, we can consider the electric field of the incident wave polarized along the x
direction (or we can rather choose the x direction as coincident with the polarization
direction of the electric field).

In all the problems in presence of obstacles, called scattering (diffusion) or dif-
fraction problems, we always refer to the incident field as the field that wewould have
in absence of obstacles. This field is assumed known. So in some way the incident
field is an ideal field: the presence of an obstacle, which in this very simple case is an
infinite flat interface, imposes additional conditions (boundary conditions) that can
not be satisfied by the incident field only and that require the presence of another
portion of the total field in medium 1, in addition to the incident wave: the so-called
reflectedwave. The field inmedium2 is called transmitted field and assumes different
characteristics.

Therefore, for the incident electric field we have:

Ei (x, y, z) = Ei
o e− jki ·r ,

with
Ei

o = Ei
o ei

o = Ei
o xo ,

ki = k1β
i
o = k1zo = ω

√
μ1εc1 zo .
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It follows, as previously discussed, that also the incident magnetic field must be
linearly polarized and so:

Hi = Hi
o e− jki ·r ,

with
Hi

o = Hi
o hi

o ,

hi
o = βi

o × ei
o = zo × xo = yo .

Moreover, the impedance relation between the amplitudes holds, i.e.:

Ei
o = ζ1 Hi

o =
√

μ1

εc1
Hi

o .

In the hypothesis of absence of surface currents on the z = 0 plane (assuming
that none of the two media is perfect conductor), the boundary conditions require the
continuity of the tangential components of both the electric and the magnetic fields
and thus it is possible to determine the electromagnetic field of the two unknown
waves (the reflected and the transmitted ones).

Let us suppose, for the sake of symmetry, that such waves are plane. We can write
the reflected field as follows:

Er (x, y, z) = Er
o e− jkr ·r ,

Hr (x, y, z) = Hr
o e− jkr ·r ,

and the transmitted field:

Et (x, y, z) = Et
o e− jkt ·r ,

Ht (x, y, z) = Ht
o e− jkt ·r .

Note that the existence itself of the boundary conditions for z = 0

n × (E2 − E1) = 0 ,

n × (H2 − H1) = 0 ,

(n directed from medium 1 to medium 2, i.e. n ≡ zo), which need to be satisfied for
all the points of the plane (and at any instant), implies that the law of spatial variation
(and also the angular frequency, in the case of sinusoidal regime) is the same for
z = 0. So it will be:

kr
x = kt

x = ki
x ,

kr
y = kt

y = ki
y ;
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hence, from ki
x = ki

y = 0 it follows that the reflected and transmitted waves travel in
z direction and that they are uniform (plane) waves (and therefore TEM with respect
to z direction). We therefore have:

kr = k1β
r
o = −k1zo ,

because the reflected wave propagates in the direction of negative z. For the trans-
mitted wave we have:

kt = k2β
t
o = k2zo = ω

√
μ2εc2 zo .

With the previous assumptions, the boundary conditions become:

zo × [Et
o − (Ei

o + Er
o)] = 0 ,

zo × [Ht
o − (Hi

o + Hr
o )] = 0 .

As regards the polarization of the reflected and transmitted fields, being null the
component along y of the electric field of the incidentwave, there is no reasonwhy the
electric fields of the reflected and transmitted waves may have non-zero components
along y, so:

Er
o = Er

o xo ,

Et
o = Et

o xo ,

and hence the reflected and transmitted waves are linearly polarized, too. The
boundary condition for the electric field becomes:

zo × xo [Et
o − (Ei

o + Er
o)] = 0

⇓

Et
o = Ei

o + Er
o .

As for the magnetic field, the unit vectors are:

hr
o = βr

o × er
o = −zo × xo = −yo ⇒ Hr

o = −Hr
o yo ,

ht
o = βt

o × et
o = zo × xo = yo ⇒ Ht

o = Ht
o yo .
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The boundary condition for the magnetic field then becomes:

zo × yo [Ht
o − (Hi

o − Hr
o )] = 0

⇓

Ht
o = Hi

o − Hr
o .

Using the impedance relation it results:

Et
o

ζ2
= Ei

o

ζ1
− Er

o

ζ1
.

We have finally obtained a linear system of two linear equations in the two
unknowns Er

o and Et
o, which allows us to fully determine the reflected and transmitted

amplitudes; it is obtained, by combining the two equations:

Ei
o − Er

o

ζ1
= Ei

o + Er
o

ζ2

⇒ Er
o

(
1

ζ1
+ 1

ζ2

)
= Ei

o

(
1

ζ1
− 1

ζ2

)
.

Defining the reflection coefficient of the electric field �E as the ratio between the
electric-field (complex) amplitudes of the reflected wave and the incident one, it is
obtained:

�E = Er
o

Ei
o

=
1
ζ1

− 1
ζ2

1
ζ1

+ 1
ζ2

= ζ2 − ζ1

ζ2 + ζ1
=

ζ2
ζ1

− 1
ζ2
ζ1

+ 1

⇓

Er
o = �E Ei

o and Et
o = (1 + �E ) Ei

o .

We therefore conclude that, in the case of normal incidence, reflection always occurs
if the two media are different. In the case of oblique incidence, however, as we will
see shortly, there is a condition in which total transmission occurs (the Brewster
angle).

Similarly a transmission coefficient for the electric field can be defined:

TE = Et
o

Ei
o

= 1 + �E = 1 + ζ2 − ζ1

ζ2 + ζ1
= ζ2 + ζ1 + ζ2 − ζ1

ζ2 + ζ1
= 2ζ2

ζ2 + ζ1

= 2

1 + ζ2
ζ1

ζ2

ζ1
= 2

1 + ζ1
ζ2

.
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and analogous coefficients are defined for the magnetic field:

�H = Hr
o

Hi
o

=
Er

o
ζ1

Ei
o

ζ1

= Er
o

Ei
o

= �E ,

TH = Ht
o

Hi
o

=
Et

o
ζ2

Ei
o

ζ1

= ζ1

ζ2

Et
o

Ei
o

= ζ1

ζ2
TE = ζ1

ζ2
(1 + �H ) = 2ζ1

ζ2 + ζ1
= 2

1 + ζ2
ζ1

.

As a final remark it should be noted that the expressions obtained for the reflection
and transmission coefficients are valid independently of the polarization of the inci-
dent wave. In the case of oblique incidence, however, we will see that the expressions
of the coefficients will depend on the polarization.

Consider now the particular case of non-dispersive media, in which medium 1
is a non-dissipative dielectric (σ1 = 0) and the medium 2 is a good conductor
(σ2 � ωε2). Note that σ2 � ωε1, too, because the dielectric constants of common
materials differ by at most one or two orders of magnitude. Finally, let us suppose
that neither of the two media is ferromagnetic ⇒ μ2 	 μ1. It follows:

ζ1 =
√

μ1

ε1
,

ζ2 =
√

μ2

εc2
=

√
jωμ2

jωεc2
=

√
jωμ2

σ2 + jωε2
	

√
jωμ1

σ2
= √

j

√
ωμ1

σ2
.

Let’s now remember that:

√
j = j

1
2 = (e j π

2 )
1
2 = e j π

4 = cos
π

4
+ j sin

π

4
=

√
2

2
+ j

√
2

2
= (1 + j)√

2

⇓

ζ2 	 (1 + j)

√
ωμ1

2σ2
.

So the impedance ratio can be expressed in magnitude:

∣∣∣ζ2
ζ1

∣∣∣ 	
∣∣∣(1 + j)

√
ωμ1

2σ2

√
ε1

μ1

∣∣∣ = √
2

√
ωε1

2σ2
=

√
ωε1

σ2
� 1 .

It is then valid the approximation:

�E = �H 	 −1 ,
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and
TE 	 0 , TH 	 2 .

However, it is important to observe that it would be wrong to extrapolate such
relations for the perfect conductor (σ2 → ∞) as in that case the presence of sur-
face current density invalidates the boundary conditions previously imposed for the
tangential components. The case of the perfect conductor must therefore be studied
separately.

Let us then consider a non-dissipative dielectric (σ1 = 0) as medium 1 and a
perfect conductor (σ2 → ∞) as medium 2. Consequently, the electric and magnetic
fields in the region 2 are null everywhere (TE = TH = 0). The boundary conditions
simply become:

−zo × xo (Ei
o + Er

o) = 0 ⇒ Er
o = −Ei

o and Er
o = −Ei

o

⇓

�E = −1 .

In this case we talk about total reflection as the modulus of the reflected field is equal
to the one of the incident field. This condition, for normal incidence, occurs only in
the presence of perfect conductors, while for oblique incidence can also occur for
two dielectric media, if the angle of incidence is suitably chosen in a certain region
and medium 1 is denser than medium 2.

For the magnetic field, using the impedance relation, we have:

{
Hr

o = −Hi
o

�H = −1
⇒ Hr

o = −Hr
o yo = Hi

o yo = Hi
o .

The situation is graphically represented in the Fig. 2.2.
From the boundary condition for the tangential component of the magnetic field

we can now determine the extent of the surface currents:

JS = −zo × yo

(
Hi

o − Hr
o

)
= 2 Hi

o xo = 2
Ei

o

ζ1
xo .

In region 1, therefore, the total electric field and the total magnetic field are
expressed by:
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Fig. 2.2 Total reflection in
the case of normal incidence

E1 (z) = Ei (z) + Er (z) = Ei
o xo

(
e−jk1z − ejk1z

)
= −2 j Ei

o sin (k1z) xo ,

H1 (z) = Hi (z) + Hr (z) = Hi
o yo

(
e−jk1z + ejk1z

)
=

= 2 Hi
o cos (k1z) yo = 2

Ei
o

ζ1
cos (k1z) yo .

Therefore, the total electromagnetic field represents a stationary wave, since its
phase does not vary with the coordinates.

To better understand the nature of the fields, we calculate them in the time domain,
too. Assuming a sinusoidal steady state, and putting Ei

o = |Ei
o| e jϕ, it is obtained:

E1 (z, t) = Re
[

E1 (z) e jωt
]

= Re
[
−2 j |Ei

o| sin (k1z) xo e j(ωt+ϕ)
]

=

= 2 |Ei
o| sin (k1z) sin (ωt + ϕ) xo ,

H1 (z, t) = Re
[

H1 (z) e jωt
]

= Re

[
2
|Ei

o|
ζ1

cos (k1z) yo e j(ωt+ϕ)

]
=

= 2
|Ei

o|
ζ1

cos (k1z) cos (ωt + ϕ) yo .

The electric and magnetic fields are then orthogonal in space and in quadrature
(π
2 phase shift) in time. This resulted also from the phasor expressions (presence

of a factor j = e j π
2 ). It is therefore the typical standing-wave behavior, with the
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separation of the spatial and temporal dependences and the presence of nodes at a
distance:

1

2

2π

k1
= λ1

2
.

The nodes of the magnetic field correspond to the anti-nodes of the electric field.
Finally, let’s consider the expression of the complex Poynting vector for the total
field. It is:

P1 (z) = 1

2
E1 (z) × H∗

1 (z) = −1

2
2 j Ei

o sin (k1z) xo × 2
Ei

o
∗

ζ1
cos (k1z) yo =

= −2 j
|Ei

o|2
ζ1

sin (k1z) cos (k1z) zo = − j
|Ei

o|2
ζ1

sin (2k1z) zo .

It is a purely imaginary quantity, therefore it doesn’t represent a transfer of active
power: the power, instead, is purely reactive. This is clearly typical of standingwaves,
for which actually there isn’t a wave propagation.

2.7 Reflection and Transmission (Refraction) of Plane Waves
at a Plane Interface: Oblique Incidence

Let us now consider the case of oblique incidence of a uniform plane wave. We
immediately note that in this case the obtained results will be dependent on the
polarization, which didn’t occur for normal incidence.Wewill initially assumemedia
at both side of the plane as isotropic, non-dispersive and non-dissipative, so that the
incident uniform plane wave will be non-attenuated. We will also indicate as zx
the plane of incidence, i.e. the plane containing both the normal to the separation
surface and the direction of the incident plane wave. Consequently, it will be: ki

y = 0
(Fig. 2.3).

It will be also:
ki

x = k1 sin θi , ki
z = k1 cos θi .

Also in this case we must admit that the incident wave excites a reflected wave
in region 1 and a transmitted, or refracted, wave in region 2. We suppose, moreover,
that these waves are plane.

Again, from the continuity of the tangential components of the electric and mag-
netic fields, the equality of the tangential wave numbers follows:

kr
x = ki

x , kt
x = ki

x

kr
y = ki

y = 0 , kt
y = ki

y = 0
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Fig. 2.3 Reflection and
transmission (refraction) in
the case of oblique incidence

So also the reflected and transmitted wave vectors lie in the zx plane. Then:

kr
x = k1 sin θr , kt

x = k2 sin θt

kr
z = −k1 cos θr , kt

z = k2 cos θt

Note that θi , θr and θt angles are considered in
[
0; π

2

]
, so their both cosine and

sine are positive.
From the relation kr

x = ki
x it follows then:

k1 sin θr = k1 sin θi ⇒ sin θr = sin θi ⇒ θr = θi ,

which is the well-known reflection law. From kt
x = ki

x it follows instead:

k2 sin θt = k1 sin θi , (2.3)

which is the well-known refraction or Snell’s law. The refraction angle can then be
obtained:

sin θt = k1
k2

sin θi = ω
√

μ1ε1

ω
√

μ2ε2
sin θi = μ1

μ2

√
μ2ε1

μ1ε2
sin θi = μ1

μ2

ζ2

ζ1
sin θi .

Note that real solutions are possible for the transmission angle only when:

√
μ1ε1

μ2ε2
sin θi ≤ 1 ,

so initially we will have to assume that both the incidence angle and the parameters
of the two media satisfy this relationship.
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Summarizing, we have just seen how the “kinematic” characteristics of the so-
called geometrical optics (or ray optics, which essentially involves the wave vectors
and not the amplitudes), i.e.:

• the three wave vectors must lie on the same plane,
• the angles of incidence and reflection are equal,
• Snell’s law,

simply derive from the existence of boundary conditions valid in all points of the
z = 0 plane. The so-called “dynamic” properties, i.e., the amplitudes of the reflected
and transmitted fields derive, instead, from the various conditions. Other dynamic
properties, related to the complex amplitudes, are the phase and polarization changes
in reflection and transmission. The dynamic properties are then specified by appro-
priate reflection and transmission coefficients which are generalizations of the sim-
ilar ones considered for normal incidence; the difference is that such coefficients,
named Fresnel coefficients, depend on the type of incident-wave (linear) polarization
assumed.

As already seen, the incident wave, generally elliptically polarized, can always be
decomposed into two linear polarizations. It will be seen that the Fresnel coefficients
for the two polarizations are different. In particular, we choose now the one with
the electric field directed along yo. The E field is then parallel to the separation
surface and orthogonal to the plane of incidence (while the magnetic field will lie
on the plane of incidence). With reference to the case of the ground, this type of
polarization is called horizontal; it is also called TE with respect to z direction. The
other polarization will instead have the magnetic field oriented along yo, and the
electric field lying on the plane of incidence: E will then have a vertical component,
and therefore this type of polarization is called vertical, it is also called parallel (to
the plane of incidence) or TM with respect to z direction.

2.7.1 Horizontal Polarization

We are going to consider first the case of horizontal polarization. It is:

Ei
o = Ei

o yo ,

and therefore:

Hi
o = 1

ωμ1
ki × Ei

o = k1
ωμ1

(
sin θi xo + cos θi zo

)
× Ei

o yo =

= Ei
o

ζ1

(
sin θi zo − cos θi xo

)
,
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Fig. 2.4 Reflection and
transmission in the case of
horizontal polarization

obviously, also Hi
o is linearly polarized and lies in the plane of incidence. Since

the incident electric field is tangential and directed along y, for symmetry, we can
also assume Er

o and Et
o directed along y and then Er

o = Er
o yo, Et

o = Et
o yo. For the

respective magnetic fields, we have (Fig. 2.4):

Hr
o = 1

ωμ1
kr × Er

o = k1
ωμ1

(
sin θr xo − cos θr zo

) × Er
o yo =

= Er
o

ζ1

(
sin θr zo + cos θr xo

)
,

Ht
o = 1

ωμ2
kt × Et

o = k2
ωμ2

(
sin θt xo + cos θt zo

) × Et
o yo =

= Et
o

ζ2

(
sin θt zo − cos θt xo

)
.

These two fields, too, are linearly polarized on the plane of incidence.
At this point we apply the continuity condition for the tangential electric field.

This condition is identical to the one seen for normal incidence:

Et
o = Ei

o + Er
o . (2.4)

Regarding the continuity condition for the tangential magnetic field:

zo ×
[

Ht
o −

(
Hi

o + Hr
o

)]
= 0 ,
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the only meaningful components are the ones along x , and here angles appear:

− Et
o

ζ2
cos θt −

(
− Ei

o

ζ1
cos θi + Er

o

ζ1
cos θr

)
= 0 ,

and, taking into account that θr = θi ,

Et
o

ζ2
cos θt − Ei

o − Er
o

ζ1
cos θi = 0 .

Using (2.4) it is obtained:

Ei
o + Er

o

ζ2
cos θt = Ei

o − Er
o

ζ1
cos θi ,

Er
o

(
cos θt

ζ2
+ cos θi

ζ1

)
= Ei

o

(
cos θi

ζ1
− cos θt

ζ2

)
.

For the reflection coefficient of the electric field it is therefore:

�h
E = Er

o

Ei
o

=
cos θi

ζ1
− cos θt

ζ2

cos θi

ζ1
+ cos θt

ζ2

= ζ2 cos θi − ζ1 cos θt

ζ2 cos θi + ζ1 cos θt
=

ζ2
ζ1
cos θi − cos θt

ζ2
ζ1
cos θi + cos θt

. (2.5)

For the transmission coefficient of the electric field, it is:

T h
E = Et

o

Ei
o

= Ei
o + Er

o

Ei
o

= 1 + �h
E ,

as in the case of normal incidence. For themagnetic field, from the impedance relation
it follows, in a similar way to the case of normal incidence:

�h
H = Hr

o

Hi
o

=
Er

o
ζ1

Ei
o

ζ1

= �h
E ,

T h
H = Ht

o

Hi
o

=
Et

o
ζ2

Ei
o

ζ1

= ζ1

ζ2

Et
o

Ei
o

= ζ1

ζ2
T h

E .

A less general but significant expression can be obtained in the case of non-
ferromagnetic media (μ2 	 μ1) for which we have:

ζ2

ζ1
= μ2

μ1

sin θt

sin θi
	 sin θt

sin θi
,
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and then (2.5) becomes5:

�h
E 	

sin θt

sin θi cos θi − cos θt

sin θt

sin θi cos θi + cos θt
= sin θt cos θi − cos θt sin θi

sin θt cos θi + cos θt sin θi
= sin

(
θt − θi

)

sin
(
θt + θi

) ,

which is never zero for θi ≤ π
2 (apart from the trivial case θt = θi that occurs only

if the two media are actually the same medium. So reflection always occurs, as was
for the case of normal incidence. We will see instead that this is not the case for the
other polarization.

2.7.2 Vertical Polarization

Let us consider now the (dual) case of vertical polarization, the situation is shown in
Fig. 2.5.

For the electric field of the incident wave as a function of the magnetic field
Hi

o = Hi
o yo it is:

Ei
o = − 1

ωε1
ki × Hi

o = − k1
ωε1

(
sin θi xo + cos θi zo

)
× Hi

o yo =

= −ζ1 Hi
o

(
sin θi zo − cos θi xo

)
.

For the same reasons seen in the case of horizontal polarization, we assume:

Hr
o = Hr

o yo , Ht
o = Ht

o yo .

We derive the corresponding electric fields:

Er
o = − 1

ωε1
kr × Hr

o = − k1
ωε1

(
sin θr xo − cos θr zo

) × Hr
o yo =

= −ζ1 Hr
o

(
sin θr zo + cos θr xo

)
,

Et
o = − 1

ωε2
kt × Ht

o = − k2
ωε2

(
sin θt xo + cos θt zo

) × Ht
o yo =

= −ζ2 Ht
o

(
sin θt zo − cos θt xo

)
.

5 Recalling that:
sin (α ± β) = sinα cosβ ± cosα sin β .
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Fig. 2.5 Reflection and
transmission in the case of
vertical polarization

At this point we impose the continuity condition for the magnetic field, which is
simply:

zo ×
[

Ht
o −

(
Hi

o + Hr
o

)]
= 0 ⇒ Ht

o = Hi
o + Hr

o . (2.6)

The condition for the electric field is instead:

zo ×
[

Et
o −

(
Ei

o + Er
o

)]
= 0 ;

considering that only the components along xo give contribution this becomes:

ζ2 Ht
o cos θt − ζ1 Hi

o cos θi + ζ1 Hr
o cos θr = 0 ,

and taking into account that θr = θi :

ζ2 Ht
o cos θt − ζ1 cos θi

(
Hi

o − Hr
o

)
= 0 . (2.7)

Combining (2.6) and (2.7) together we obtain:

ζ2

(
Hi

o + Hr
o

)
cos θt = ζ1 cos θi

(
Hi

o − Hr
o

)
,

Hr
o

(
ζ2 cos θt + ζ1 cos θi

)
= Hi

o

(
ζ1 cos θi − ζ2 cos θt

)
,

�v
H = Hr

o

Hi
o

= ζ1 cos θi − ζ2 cos θt

ζ2 cos θt + ζ1 cos θi
= cos θi − ζ2

ζ1
cos θt

cos θi + ζ2
ζ1
cos θt

.
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The transmission coefficient of the magnetic field T v
H is obtained, taking (2.6)

into account:

T v
H = Ht

o

Hi
o

= 1 + �v
H .

As regards the electric-field coefficients, it is:

�v
E = Er

o

Ei
o

= ζ1 Hr
o

ζ1 Hi
o

= �v
H ,

T v
E = Et

o

Ei
o

= ζ2 Ht
o

ζ1 Hi
o

= ζ2

ζ1
T v

H = ζ2

ζ1

(
1 + �v

E

)
.

In the particular case θi = 0 and hence θr = θt = 0, it is:

�v
H = 1 − ζ2

ζ1

1 + ζ2
ζ1

= ζ1 − ζ2

ζ2 + ζ1
.

Note that the change of sign with respect to the formula for normal inci-
dence simply derives because in that case we used a different convention assuming
Hr

o = −Hr
o yo, obviously we need in any case to establish the actual signs of these

quantities.

2.7.2.1 Total Transmission, Brewster Angle

In absence of ferromagnetic materials, i.e. μ2 	 μ1 and therefore:

ζ2

ζ1
	 sin θt

sin θi
,

the following expression is obtained for �v
E and �v

H :

�v
E = �v

H 	 cos θi − sin θt

sin θi cos θt

cos θi + sin θt

sin θi cos θt
= sin θi cos θi − sin θt cos θt

sin θi cos θi + sin θt cos θt
=

= sin
(
2θi

) − sin
(
2θt

)

sin
(
2θi

) + sin (2θt )
.

Then applying the trigonometry formula:

sinα − sin β

sinα + sin β
=

tan
(

α−β
2

)

tan
(

α+β
2

) ,
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we obtain:

�v
E 	 tan

(
θi − θt

)

tan
(
θi + θt

) .

Pay attention to the fact that now there exists a value of the incidence angle for
which �E = 0 (total transmission), different from the trivial case θt = θi . This
happens if the denominator goes to infinity, that is:

θi + θt = π

2
⇒ θt = π

2
− θi ⇒ sin θt = cos θi ,

and then:

sin θt

sin θi
= cos θi

sin θi
= 1

tan θi
	 ζ2

ζ1
	

√
ε1

ε2
⇒ θi 	 arctan

√
ε2

ε1
= θi

B .

This particular incidence angle takes the name of Brewster angle θi
B ; it is also

called angle of (linear) polarization because when a uniform plane wave, in general
elliptically polarized, impinges on the separation surface at this angle, the reflected
wave results linearly horizontally polarized, because the vertical polarization is com-
pletely transmitted. This is a typical example of how, in the case of oblique incidence,
the polarization characteristics of the incident wave may be radically changed in
reflection and transmission.

2.7.3 Total Reflection

Let us recall now that the transmission angle resulted real (regardless of the polar-
ization type) when: √

μ1ε1

μ2ε2
sin θi ≤ 1 . (2.8)

Being sin θi ≤ 1, the above condition is always satisfied when μ2ε2 ≥ μ1ε1. In
this case medium 2 is said denser than medium 1, and from (2.3) it follows θt < θi .
On the contrary, if medium 1 is denser than medium 2, as for example it happens if
the electromagnetic wave is propagating within an optical fiber and the interface is
with the air outside, it is θt > θi and it will certainly happen that for suitable values
of the incidence angle θi the first member of (2.8) will be larger than 1. In particular,
the transition occurs for sin θt = 1 (and then θt = π

2 ) in correspondence to a certain
limit angle of incidence θi

L . So we have:

√
μ1ε1

μ2ε2
sin θi

L = 1 ⇒ θi
L = arcsin

√
μ2ε2

μ1ε1
.
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θt is not real anymore when θi > θi
L . In particular, we obtain a purely imaginary

value for:

cos θt =
√
1 − sin2 θt ,

and the angle θt results complex.
In this angular region, in order to resolve this contradiction keeping θt real, we

must assume that the reflected and transmitted plane waves can’t be both uniform: in
particular, the transmitted wave is assumed non-uniform. Being medium 2 lossless
by hypothesis, this wave can only be evanescent, i.e. α ⊥ β. Therefore the wave
vector is complex in medium 2:

kt = βt − jαt ,

with:
βt ·αt = 0 , βt 2 − αt 2 = k22 = ω2μ2ε2 .

From the general continuity condition (which is still valid, of course):

kt
x = ki

x = k1 sin θi ;

it follows:

βt
x − jαt

x = k1 sin θi ⇒ αt
x = 0 , βt

x = k1 sin θi ,

kt
y = ki

y = 0 ⇒ βt
y = αt

y = 0 ⇒ αt = αt zo , βt = βt xo = k1 sin θi xo .

It can be observed that k1 > k2 becauseμ1ε1 > μ2ε2. In the hypothesis of uniform
transmitted wave, the (2.3) should hold, which can not be verified for θi large enough
to have k1 sin θi > k2, i.e. for θi > θi

L . On the other hand, the condition k1 sin θi = βt

must be verified for the non-uniform wave, where:

βt =
√

k
2

2 + αt2 > k2 ,

and this relation can be satisfied by:

αt =
√

βt 2 − k22 =
√

k21 sin2 θi − k22 = ω

√
μ1ε1 sin2 θi − μ2ε2 .

The situation is shown in Fig. 2.6, fromwhich we can understand why the evanes-
centwave is also called surfacewave in the literature, as it is confined to the separation
surface. About this evanescent wave it can be written:
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Fig. 2.6 Total reflection in
the case of oblique incidence

Et (x, z) = Et
o e− jβt x e−αt z ,

Ht (x, z) = Ht
o e− jβt x e−αt z .

In the case of horizontal polarization we had Et
o = Et

o yo, and the transmitted
wave was TE with respect to the propagation direction while, when the polarization
is vertical, it is Ht

o = Ht
o yo, and the transmitted wave is TM with respect to the

propagation direction.
We could arrive at the same result by using the general formulas and accepting

from the beginning that the transmission angle θt might be complex. It is anyway
kt

x = k2 sin θt . Then, for the separability condition:

kt
z =

√
k22 − kt

x
2 = k2

√
1 − sin2 θt = k2 cos θt .

It is clear, however, that the geometric interpretation of the components of a real
vector loses its validity now, as they were related to real angles. In any case it is:

k2 sin θt = k1 sin θi ,

where:
θt = θt

R + jθt
J

is the complex angle; it follows:

k1 sin θi = k2 sin
(
θt

R + jθt
J

) = k2
[
sin θt

R cos
(

jθt
J

) + cos θt
R sin

(
jθt

J

)]
.
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Fig. 2.7 Graph of the
hyperbolic sine function
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Let’s now recall the following formulas:

cos ( j z) = e j( j z) + e− j( j z)

2
= e−z + ez

2
= cosh z ,

sin ( j z) = e j( j z) − e− j( j z)

2 j
= e−z − ez

2 j
= −1

j
sinh z = j sinh z ,

k1 sin θi = k2
(
sin θt

R cosh θt
J + j cos θt

R sinh θt
J

)
,

from which, equating the real and imaginary parts, the following is obtained:

k1 sin θi = k2 sin θt
R cosh θt

J ,

0 = k2 cos θt
R sinh θt

J .

From the hyperbolic sine graph shown in Fig. 2.7, and having to be θt
J �= 0

(otherwise we have again a refraction phenomenon), it follows:

cos θt
R = 0 ⇒ θt

R = π

2
⇒ sin θt

R = 1 ,
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θt
J is then obtained from:

k1 sin θi = k2 cosh θt
J ⇒ θt

J = cosh−1
(√

μ1ε1

μ2ε2
sin θi

)
.

kt
z is computed as follows6:

kt
z = k2 cos θt = k2 cos

(
θt

R + jθt
J

) =

= k2
[
cos θt

R cos
(

jθt
J

) − sin θt
R sin

(
jθt

J

)] = − jk2 sinh θt
J .

Imposing then:

βt = k2 cosh θt
J = kt

x , αt = k2 sinh θt
J

we obtain:
kt = βt xo − jαt zo ,

getting the same result as with the other method.
It is clear that since the transmission angle is complex, the reflection coefficients

are in general complex, too. Let us recall the expressions:

�h
E =

ζ2
ζ1
cos θi − cos θt

ζ2
ζ1
cos θi + cos θt

,

�v
E = cos θi − ζ2

ζ1
cos θt

cos θi + ζ2
ζ1
cos θt

.

Note that, in both cases, being cos θt purely imaginary, we have two complex
conjugate quantities at the numerator and denominator. So the magnitude of the ratio
is unitary, and therefore the magnitude of the reflected wave is equal to the one of
the incident wave. When this occurs, it is said that there is total reflection.

6 Recalling that:
cos (α ± β) = cosα cosβ ∓ sinα sin β .
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2.7.4 Reflection and Transmission from Conductors,
Leontovich’s Condition

The last case that we wish to consider concerns a uniform plane wave coming from
a medium having null conductivity, which hits obliquely a conductor.

We can still suppose that the reflected wave is uniform, and the condition θr =
θi still holds. Moreover, since medium 2 is dissipative, the attenuation vector will
certainly be different from zero. On the other hand, since there is no wave attenuation
in medium 1, from the continuity of the tangential wave numbers it follows that the
attenuation in the secondmedium can be directed only along the z axis, and therefore
it must be αt = αt zo. The phase vector βt , instead, can never be directed along z,
because again from the continuity condition it follows that the component along
x needs to be non-zero. Therefore, the transmitted wave cannot be uniform, and
neither can be βt ⊥ αt since σ2 �= 0. The condition on the magnitudes below is still
valid:

βt 2 − αt 2 = ω2μ2ε2 , (2.9)

and it is also:
βtαt cos θt = ωμ2σ2

2
, (2.10)

being evidently θt the angle between βt and the normal.
From the continuity condition for kx it is:

k1 sin θi = βt sin θt . (2.11)

From the three Eqs. (2.9)–(2.11) the three unknown quantities βt , αt and θt can
be obtained. In general it is βt > αt , so the following inequality holds:

βtαt cos θt < βtαt < βt 2 ,

then:

βt >
√

βtαt cos θt =
√

ωμ2σ2

2
,

and for the transmission angle is:

sin θt = k1
βt

sin θi <
ω
√

μ1ε1 sin θi

√
ωμ2σ2

2

=
√
2ωμ1ε1

μ2σ2
sin θi =

√
2μ1

μ2

√
ωε1

σ2
sin θi .
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Let us suppose now that the second medium is a good conductor (σ2 � ωε2 and
hence also σ2 � ωε1, because the orders of magnitude of ε1 and ε2 are comparable).
In addition, if we assume (as it is often the case) μ1 	 μ2, it results:

sin θt � 1 ⇒ θt 	 0 .

In essence, the transmitted wave is almost uniform, and therefore practically TEM
in the z direction, no matter what the incidence angle θi and the type of polarization
are. If the incident field is generic, it can still be considered as a superposition of plane
waves, so the transmitted field will be the one just seen for every component wave,
and therefore also the resulting field will be practically tangential. At this point we
can write the relationship between the tangential fields (which is the one for uniform
plane waves):

E+
τ 	 ζ2

(
H+

τ × n
)

,

where the unit vector n enters in medium 2 and the + superscript indicates that we
are just below the separation surface. However, since the considered medium is not
a perfect conductor, both tangential fields are continuous and the same relation can
be written from the side of the dielectric medium:

E−
τ 	 ζ2

(
H−

τ × n
)

, (2.12)

where we have seen (in Sect. 2.6) that for a good conductor it is:

ζ2 =
√

μ2

εc2
	 (1 + j)

√
ωμ2

2σ2
.

Hence the relation (2.12) can be taken as an approximate boundary condition
for the separation surface between a non-dissipative medium and a good conductor,
and it is named Leontovich’s condition or Schelkunoff’s condition. This relation also
applies when the separation surface is not plane, as long as its curvature is not very
large. In the limit σ2 → ∞ (2.12) tends regularly to:

E−
τ = 0 ,

that is the condition for a perfect conductor.
Finally, it should be noticed that for this quasi-uniform wave it is:

k2 = ω
√

μ2εc2 = ω

√
μ2

(
ε2 − j

σ2

ω

)
= ω

√
μ2

jω
( jωε2 + σ2) 	 ω

√
μ2σ2

jω
=

= √− jωμ2σ2 . (2.13)
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Remember that:

− j = e− j π
2 ⇒ √− j = e− j π

4 = cos
π

4
− j sin

π

4
= (1 − j)√

2
,

and so (2.13) becomes (for a generic medium):

k = β − jα 	 (1 − j)

√
ωμσ

2
,

with:

β ∼= α ∼=
√

ωμσ

2
.

It is seen that the attenuation α increases with frequency. For example for copper
it is σ 	 5.8 × 107

[
�−1/m

]
, μ 	 μo = 4π × 10−7 [H/m] and then:

α 	 15
√

f
[
m−1

]
.

The penetration (or skin) depth δ is conventionally computed as the distance at
which the modulus of the field is reduced by a factor 1/e (	37%) with respect to
the initial value at the interface. It is therefore equal to:

δ = 1

α
	

√
2

ωμσ
	 0.07√

f

for copper. For example, for f = 1MHz at the distance of 0.3mm thewave is already
attenuated to 1/100 of the initial value. Then a high-frequency electromagnetic field
is very quickly attenuated within a metal (skin effect). The skin depth is just a
characteristic parameter of a material at a given frequency and is useful not only for
planar configurations, as far as the calculated value of δ is much smaller than the
radius of curvature at all points of the surface. Furthermore, note that the assumption
of infinite depth of medium 2 is not totally unrealistic, because, with such levels of
attenuation, the field “visibility” can easily be smaller than the material thickness,
which then appears virtually infinite to the field.



Chapter 3
Introduction to Transmission Lines

Abstract Transmission lines are introduced, emphasizing their fundamental role of
simple mathematical and circuital mono-dimensional model, to describe the propa-
gation phenomenon. The basic equations and properties are derived, and the various
relevant quantities (impedance, admittance, reflection coefficient, standing-wave ra-
tio) are examined. Finally, basic matching techniques are presented.

3.1 Transmission Line Equations, Primary and Secondary
Constants, Boundary Conditions

Let us consider now a mathematical model for the study of propagation phenom-
ena that was historically introduced for application to telegraph and telephone lines
(the so-called telegrapher’s and telephonist’s equations) later generalized to many
problems of guided propagation and to high-frequency circuits, where the geomet-
ric dimensions are larger than the wavelength. Such circuits are named distributed
circuits or transmission lines. Let us start with an introductory example applying the
described model to the propagation of uniform plane waves in a layered indefinite
medium, in the direction orthogonal to the stratification.

Without loss of generality we can consider a linearly polarized plane wave prop-
agating in a medium assumed initially homogeneous, isotropic, non-dispersive, but
dissipative. The chosen reference system is such that the z axis coincides with the
propagation direction, the x axis with the polarization direction of the electric field
and consequently the y axis with the polarization direction of the magnetic field. We
therefore have:

E = Ex (z) xo

H = Hy(z) yo
, where

Ex (z) = Eo e− jkz

Hy(z) = Ho e− jkz .

The complex Poynting vector is given by:

P = 1

2
Ex (z) H∗

y (z) zo = P(z) zo.
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In essence then, the field is described by the scalar functions Ex (z) and Hy(z). Let
us now introduce the above assumptions into the homogeneousMaxwell’s equations.
Since:

∂

∂x
= 0 and

∂

∂y
= 0 ⇒ ∂

∂z
= d

dz
,

the first equation becomes:

(
zo

d

dz

)
×

(
Ex xo

)
= − jωμ Hy yo,

(
zo

d

dz

)
×

(
Hy yo

)
= jωεc xo Ex ,

⇒
d Ex

dz
= − jωμ Hy

d Hy

dz
= − jωεc Ex

.

Assuming:
V (z) = Ex (z)
I (z) = Hy(z)

,
ZS = jωμ
YP = jωεc

,

we obtain the two equations:

⎧⎪⎪⎨
⎪⎪⎩

dV (z)

dz
= −ZS I (z)

d I (z)

dz
= −YP V (z)

,

and:

P(z) = 1

2
V (z) I ∗(z).

The two quantities V (z) and I (z) are respectively named equivalent voltage and
equivalent current (recall that the electric andmagnetic field physical dimensions are,
respectively,

[ V
m

]
and

[ A
m

]
). The ZS and YP quantities are called series impedance

per unit length
[

�
m

]
and shunt admittance per unit length

[
�−1

m

]
. The obtained equa-

tions are called transmission line or telegrapher’s equations as they were historically
introduced while studying the voltage and current evolution in a two-wire line, which
is a line formed by two parallel straight conductors immersed in a dielectric. In that
case the voltages and currents represented the actual difference of potential between
two conductors and current in the conductors.
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Fig. 3.1 Diagram of
two-wire line � �

��

I(z)

V (z)

I(z) + dI(z)

V (z) + dV (z)

+

−

+

−
dz

The physical circuit dimension can no longer be considered punctiform when the
dimensions of the line are comparable with the wavelength (i.e., not much smaller,
as it happens for low-frequency electronic circuits); in this case both the voltage and
the current vary along the line (Fig. 3.1).

Note, finally, that the correspondence between voltage and current in the equiva-
lent line and the components of the electric and magnetic field, respectively, trans-
verse to the direction of the line is quite general.

Let us then consider two sections of a two-wire line separated by a distance dz.
We assume that R, L , G, C are, respectively, the resistance (series) per unit length
of the non-perfect conductors, the inductance (series) per unit length of the circuit
formed by the two conductors, the conductance (shunt) per unit length due to the
non-zero conductivity of the interposed dielectric, and the capacitance (shunt) per
unit length between the conductors. It is obtained a distributed or non-lumped circuit,
because the characteristic parameters such as resistance, inductance, conductance and
capacitance are distributed along the line and they accumulate along it, so they are not
concentrated in a single point (which happens instead in the case of low-frequency
electronics which is modeled by lumped circuits).

The output voltage V (z + dz) = V (z)+ dV (z) is equal to the input voltage V (z)
reduced by the voltage drop in dz due to the series resistance R and inductance L . It
follows:

V (z) + dV (z) = V (z) − (R + jω L) dz I (z)

⇒ dV (z)

dz
= −(R + jω L) I (z) = −ZS I (z),

having assumed:
ZS = R + jω L .

The output current I (z + dz) = I (z) + d I (z), similarly, is equal to the input
current I (z) reduced by the current drop in dz caused by the presence of the shunt
conductance G and capacitance C . We therefore have:

I (z) + d I (z) = I (z) − (G + jω C) dz V (z)

⇒ d I (z)

dz
= −(G + jω C) V (z) = −YP V (z),
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having assumed:
YP = G + jω C.

Note that the physical meaning of ZS is different from the one of YP , as they depend
on uncorrelated quantities, it follows therefore that ZS �= 1

YP
.

Let us apply the model just shown to uniform plane waves in non-dispersive
media; being in this case ZS = jωμ it follows R = 0, L = μ, so the resistance per
unit length is zero and the inductance per unit length is μ (recall that its physical
dimensions are

[ H
m

]
). Moreover we have YP = jωεc = σ + jωε and so G = σ and

C = ε (which in fact have the physical dimensions of
[

�−1

m

]
and

[ F
m

]
).

The obtained two-wire line equations are therefore identical to the ones describing
the uniform plane wave propagation in unbounded space. It is then possible to name
transmission line every physical systemwhose behavior, in respect of certain aspects,
is described by the telegrapher’s equations. Of course in different physical systems
the quantities V (z), I (z), ZS andYP assume differentmeaning and they are in general
equivalent quantities. The constants ZS and YP are also called primary constants of
the line.

Note how, in some ways, the telegrapher’s equations represent a simplified, one-
dimensional and scalar version of the Maxwell’s equations. Let’s see how to solve
them: the procedure has been already applied, in this case we are going to obtain the
Helmholtz equation in one dimension, i.e. the equation of harmonic motion. To this
aim, let us derive the first equation of the lines with respect to z; then, substituting
the second:

d2V

dz2
= −ZS

d I

dz
= −ZS (−YP V ) = ZS YP V .

Assuming:
ZS YP = −k2z ⇒ √

ZS YP = jkz,

it follows:

d2V

dz2
+ k2z V = 0.

Once solved this, the current simply follows from:

I (z) = − 1

ZS

dV

dz
.

The kz constant is (apparently) called propagation constant, and it is a complex
quantity in general. Let us choose the square root determination that satisfies

kz = βz − jαz with
βz > 0 if βz �= 0
αz > 0 if βz = 0

.
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It is:

k2z = −ZS YP = −(R + jω L)(G + jω C) =

= −RG − jω RC − jω LG + ω2 LC =

= (ω2 LC − RG) − jω (LG + RC),

that becomes k2z = ω2 LC , which is real and positive, in the absence of losses
(R = G = 0).

Applying the formalism to our uniform plane waves, it follows:

k2z = − jωμ jωεc = ω2μεc = k2.

So, the propagation constant of the mathematical model is numerically coincident
with the propagation constant of the medium. We could have proceeded in a dual
manner, of course, obtaining an equation of harmonic motion for the current first,
and then obtaining the voltage from the current. It is well known that in the case
kz �= 0 the general solution of the equation of harmonic motion can be written as
traveling-wave superposition:

V (z) = V +
o e− jkz z + V −

o e jkz z = V +(z) + V −(z),

being V +(z) = V +
o e− jkz z the wave traveling in the positive z direction, or direct

wave, and V −(z) = V −
o e jkz z the wave traveling in the negative z direction, or

reflected wave.
Let us now compute the current:

I (z) = − 1

ZS

dV

dz
= jkz

ZS

(
V +

o e− jkz z − V −
o e jkz z

)
=

= I +
o e− jkz z + I −

o e jkz z,

having assumed:

I +
o = jkz

ZS
V +

o = V +
o

Zc
,

I −
o = − jkz

ZS
V −

o = − V −
o

Zc
,

where:

Zc = ZS

jkz
= ZS√

ZS YP
=

√
ZS

YP
.
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Similarly:
I (z) = I +(z) + I −(z),

where:

I +(z) = V +(z)

Zc
, I −(z) = − V −(z)

Zc

⇒ I (z) = 1

Zc
[V +(z) − V −(z)].

Zc constant defined above is said characteristic impedance of the transmission
line and its physical dimensions are [�]; its inverse Yc = 1

Zc

[
�−1

]
is called char-

acteristic admittance. It is, for the two-wire line:

Zc =
√

R + jω L

G + jω C
,

which reduces to Zc =
√

L
C in the absence of losses. We have:

Zc =
√

jωμ

jωεc
=

√
μ

εc
= ζ,

in our example of application to uniform plane waves; in other words the characteris-
tic impedance of the transmission-line model matches the characteristic impedance
of the medium.

The kz and Zc quantities are called secondary constants of the line. Note that,
in the absence of losses, the primary constants of the line are purely imaginary
while the secondary constants are purely real in both examples of transmission lines
considered. The equations of the lines can be rewritten using secondary constants in
place of primary ones. The two constant pairs are related by the following:

ZS = jkz Zc and jkz Yc = √
ZS YP

√
YP

ZS
= YP ,

so the equations become:

⎧⎪⎪⎨
⎪⎪⎩

dV (z)

dz
= − jkz Zc I (z)

d I (z)

dz
= − jkz Yc V (z)

,

which are called telephonist’s equations.
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The general solution, as it is well known, can be written also in terms of standing
waves. For example, we can write for the voltage:

V (z) = A cos(kz z) + B sin(kz z).

The expression for the current follows:

I (z) = − 1

ZS
kz

[
− A sin(kz z) + B cos(kz z)

]
=

= 1

j Zc

[
A sin(kz z) − B cos(kz z)

]
.

The constants A and B can be expressed as a function of voltage and current in a
particular section of the line, for example in the z = 0 section,which is usually chosen
to coincide with the terminal section of the line, closed on a certain load impedance.
We have essentially to impose the boundary conditions for our one-dimensional
scalar model. We then have:

V (0) = A − j Zc I (0) = B.

The same result could obviously be achieved expressing the solution in terms of
traveling waves, obtaining

V (0) = V +
o + V −

o Zc I (0) = V +
o − V −

o .

Adding the two equations:

V (0) + Zc I (0) = 2V +
o ⇒ V +

o = 1

2
[V (0) + Zc I (0)].

When the second equation is subtracted from the first, it is obtained instead:

V (0) − Zc I (0) = 2V −
o ⇒ V −

o = 1

2
[V (0) − Zc I (0)].

Let us consider the particular case of a line closed on a short circuit, i.e. V(0)=0;
in our application to the propagation of uniform plane waves, this short circuit cor-
responds to the presence in z = 0 of a perfectly conducting plane transverse to the
z direction. It follows then:

V +
o = 1

2
Zc I (0) , V −

o = −V +
o ,



104 3 Introduction to Transmission Lines

⇒ V (z) = V +
o

(
e− jkz z − e jkz z

)
= V +

o (−2 j) sin(kz z) =

= − j Zc I (0) sin(kz z),

⇒ I (z) = 1

Zc
V +

o

(
e− jkz z + e jkz z

)
= 2V +

o

Zc
cos(kz z) =

= I (0) cos(kz z).

Clearly V (z) and I (z) have the typical configuration of stationary waves in the case
of a lossless line (kz and Zc real), moreover they are in quadrature in time (presence
of a factor j , i.e. π

2 phase shift). The complex power of the line, which corresponds to
the amplitude of the complex Poynting vector for our plane wave problem, is purely
imaginary (reactive):

P(z) = 1

2
V (z) I ∗(z) = − j

2
Zc I (0) sin(kz z) I ∗(0) cos(kz z) =

= − j

4
Zc |I (0)|2 sin(2kz z);

we obtained an analogous result in the case of normal incidence of uniform plane
waves on a perfect conductor.

Let us consider now the dual case of an open line, i.e. such that I (0) = 0. We
then have:

V +
o = 1

2
V (0) , V −

o = V +
o ,

and so:

V (z) = V +
o

(
e− jkz z + e jkz z

)
= 2 V +

o cos(kz z) = V (0) cos(kz z),

I (z) = 1

Zc
V +

o

(
e− jkz z − e jkz z

)
= −2 j

V +
o

Zc
sin(kz z) = − j

V (0)

Zc
sin(kz z).

Again, if the line is lossless, a standing-wave configuration is found.

3.2 Impedance, Admittance, Reflection Coefficient

We define, along the transmission line, two functions of the variable z that are called
impedance and admittance along the line1 (to be not confused with the impedance
and admittance constants per unit length, and with the characteristic impedance and
admittance), defined by:

1 Using the one or the other depending on convenience, such as components in series for impedances,
shunt components for admittances.
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Z(z) = V (z)

I (z)
,

Y (z) = I (z)

V (z)
= 1

Z(z)
.

The voltage reflection coefficient 2 along the line is also defined as follows:

�V (z) = V −(z)

V +(z)
,

In particular, in the section z = 0 where the ZL load impedance is usually put we
have:

Z(0) = V (0)

I (0)
= ZL , �V (0) = V −

o

V +
o

= �L .

The reflection coefficient is:

�V (z) = V −
o e jkz z

V +
o e− jkz z

= �V (0) e2 jkz z,

for a generic section z. The reader needs to pay attention to the fact that, when kz is
real (lossless line), the magnitude of the reflection coefficient keeps constant along
the line:

|�V (z)| = |�V (0)| =
∣∣∣∣
V −

o

V +
o

∣∣∣∣ = |�V | .

The Z(z) and �V (z) functions are not independent of each other, it is in fact:

Z(z) = V (z)

I (z)
= V +(z) + V −(z)

1

Zc
[V +(z) − V −(z)]

=

= Zc
V +(z) + V −(z)

V +(z) − V −(z)
= Zc

1 + V −(z)

V +(z)

1 − V −(z)

V +(z)

=

= Zc
1 + �V (z)

1 − �V (z)
.

2 A current reflection coefficient �I can also be defined, but the voltage one is usually employed
unless the subscript “I” is specified.
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The relation shown can also be reversed:

Z(z) [1 − �V (z)] = Zc [1 + �V (z)]

⇒ Z(z) − Zc = �V (z) [Z(z) + Zc]

⇒ �V (z) = Z(z) − Zc

Z(z) + Zc
.

In particular, for z = 0 (i.e. on the load):

Z(0) = ZL = Zc
1 + �V (0)

1 − �V (0)
= Zc

1 + �L

1 − �L
,

�V (0) = �L = Z(0) − Zc

Z(0) + Zc
= ZL − Zc

ZL + Zc
.

Note that �L = �V (0) can be calculated starting from the impedance ZL and,
obviously, from the line characteristic impedance Zc. Moreover, assuming the direct-
wave amplitudeV +

o known, the amplitude of the reflectedwaveV −
o can also be found,

and so V (z) and I (z) are fully characterized.
We now continue the examination of various types of line terminations. An in-

teresting case is found when ZL = Zc, i.e. the load impedance coincides with the
characteristic impedance. In this case, the line is said matched, because there are no
reflections. In fact, it is �V (0) = 0 and therefore �V (z) ≡ 0. The line impedance
is equal to the characteristic impedance in any section of the line: Z(z) ≡ Zc. The
matching condition is very important in many applications, a typical case is observed
when the presence of a reflected wave may disturb or damage a generator; the pro-
tection of the generator is so important that often the generator itself is followed
by a special component, said insulator (made by magnetized ferrite, for example)
which lets the direct wave pass undisturbed, while the reflected wave is blocked.
Another case of matching occurs when the line can be considered virtually infinite
and uniform, because in that case no reflection occurs. Finally, a highly lossy portion
of line can be considered matched, as high losses make the reflections negligible.

We have already seen that, in the case of line terminated on a short circuit, we
have ZL = 0, and therefore �L = �V (0) = −1 and |�V (z)| ≡ 1 when kz is real3; in
the case of open line (open-circuit termination) it is ZL = ∞, so �L = �V (0) = 1
and again |�V (z)| ≡ 1 for kz real. Whenever the condition |�V | = 1 is verified, we
say that we are in the presence of a total reflection. Besides the two cases seen, there
is also a third situation of total reflection that appears when the load impedance ZL

is purely imaginary (pure reactance), i.e. ZL = j X L (there is no dissipation of active

3 Remember that in the case of normal incidence of uniform plane waves on a perfect conductor it
was �E = −1.
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or real power, but only accumulation of reactive power takes place), and when, at the
same time, the characteristic impedance Zc is real. We have:

�V (0) = �L = j X L − Zc

j X L + Zc
= − Zc − j X L

Zc + j X L
,

being �V (0) the ratio of two conjugate quantities, then |�V (0)| = 1 and if kz is real,
it follows: |�V | ≡ 1.

We have already introduced the formula used to obtain the reflection coefficient
of a line at any section once its load is known. Now we are going to find a similar
formula (less immediate) for the impedance. Starting from the relationship between
reflection coefficient and impedance:

Z(z) = Zc
1 + �V (z)

1 − �V (z)
= Zc

1 + �V (0) e2 jkz z

1 − �V (0) e2 jkz z
=

= Zc

1 + ZL − Zc

ZL + Zc
e2 jkz z

1 − ZL − Zc

ZL + Zc
e2 jkz z

,

and multiplying numerator and denominator by (ZL + Zc) e− jkz z :

Z(z) = Zc
(ZL + Zc) e− jkz z + (ZL − Zc) e jkz z

(ZL + Zc) e− jkz z − (ZL − Zc) e jkz z
=

= Zc
ZL (e jkz z + e− jkz z) − Zc (e jkz z − e− jkz z)

Zc (e jkz z + e− jkz z) − ZL (e jkz z − e− jkz z)
=

= Zc
ZL cos(kz z) − j Zc sin(kz z)

Zc cos(kz z) − j ZL sin(kz z)
.

The above formula allows, for example, to obtain the input impedance Zi =
Z(−�) of a line section with length � terminated on a given load ZL

4 in z = 0
(Fig. 3.2):

Zi = Z(−�) = Zc
ZL cos(kz �) + j Zc sin(kz �)

Zc cos(kz �) + j ZL sin(kz �)
,

that simply follows from the fact that cosine is an even function and sine is an odd
function. In particular, assuming ZL = Zc (matching), Z(−�) = Zc is obtained. In
particular, assuming ZL = 0 (short circuit), we have:

4 The formula for the admittance is identical, as long as each impedance is replaced with the
corresponding admittance.
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Fig. 3.2 Line length � ended
on a load ZL

� z

ZLkz Zo

0−�

Zi

��

Zi = j Zc tan(kz �),

which is purely imaginary (reactive) if Zc and kz are real. In particular the reactance
Xi = Zc tan(kz �) assumes alternatively positive (inductive reactance) or negative
(capacitive reactance) values and it presents periodicity:

π

kz
= π

2π
λz

= λz

2
,

being λz the wavelength of the line. In the case of open-circuit termination, or ZL =
∞, it is:

Zi = − j Zc cot(kz �).

Finally, note that the input impedance yields the same value of the load one for
any portion of line which is λz

2 long (or multiples of this value). It is in fact, for

� = λz
2 and kz real:

kz � = 2π

λz

λz

2
= π ⇒ Zi = ZL .

On the other hand, a portion of line of length λz
4 or odd multiples of this value (for

even multiples obviously the previous case applies) presents an input impedance:

Zi = Zc
2

ZL
⇒ Zc = √

Zi ZL ,

and the characteristic impedance results the geometric mean between the load im-
pedance and the input impedance. This case is usually saidquarter-wave transformer,
also called impedance inverter: to understand why, let us introduce normalized im-
pedances (dimensionless) with respect to the characteristic impedance:

Ẑ(z) = Z(z)

Zc
Ŷ (z) = Y (z)

Yc
.
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It is indeed:
Zi

Zc
= Zc

ZL
⇒ Ẑi = 1

Ẑ L
.

3.3 Standing-Wave Ratio

We now introduce another parameter, useful for the analysis of the reflection phe-
nomena in a transmission line, which is called standing-wave ratio and is commonly
denoted as SWRor as VSWR to clarify that it is referred to a voltage. Its definition is:

SWR = |V (z)|max

|V (z)|min

where |V (z)|max and |V (z)|min denote respectively the maximum and the minimum
values of the voltage magnitude along the line. The ratio is therefore a real quantity
independent of z.

Evidently, there must be a relation between this parameter and the reflection coef-
ficient (in voltage) because the voltage magnitude is also related to such coefficient:

|V (z)| = ∣∣V +(z) + V −(z)
∣∣ = ∣∣V +(z)

∣∣ |1 + �V (z)| ,

and, assuming kz real:

|V (z)| = ∣∣V +
o

∣∣
∣∣∣1 + �V (0) e2 jkz z

∣∣∣ =

= ∣∣V +
o

∣∣ ∣∣∣1 + |�V | e j {2kzz + arg[�V (0)]}∣∣∣ ,

where |�V (0)| = |�V | .

Note that the voltage magnitude is a periodic function of z with periodicity:

2π

2kz
= π

2π
λz

= λz

2
.

The maximum and minimum can therefore be found just investigating (for example
with a field probe) a section of line long λz

2 . We can obtain the plot drawn in the

picture below representing |V (z)|∣∣V +
o

∣∣ on the complex plane (Fig. 3.3).
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Fig. 3.3 Representation in
the complex plane

���������

�
�
���

��
2kzz + arg[ΓV (0)]

Re

Im

10

|ΓV |
�

A circumference, centered in (1, 0), and having |�V | radius, is described varying
z. Note that if the load impedance ZL = RL + j X L is passive, i.e. its real part is
non-negative (RL � 0), and Zo is real and positive, then we obtain:

|�V | = |RL − Zc + j X L |
|RL + Zc + j X L | =

√
(RL − Zc)2 + X2

L

(RL + Zc)2 + X2
L

� 1.

At this point, it follows from Fig. 3.3 inspection:

|V (z)|max∣∣V +
o

∣∣ = 1 + |�V | ,

|V (z)|min∣∣V +
o

∣∣ = 1 − |�V | .

So:

SWR = 1 + |�V |
1 − |�V | .

Note that it is always SWR � 1. In particular, SWR = 1 when the line is matched
(�V = 0, no reflection, pure traveling wave) as the voltage magnitude is in this
case constant along the line. In the opposite case of total reflection, we have instead
SWR = ∞ (|�V | = 1, pure standing wave): this corresponds to the fact that in this
case the magnitude of the voltage is zero in some sections of the line (nodes), and
therefore |V (z)|min = 0. The inverse relation permits to get the magnitude of the
reflection coefficient starting from the SWR:

(1 − |�V |) SWR = 1 + |�V | ,

|�V | (1 + SWR) = SWR − 1 ⇒ |�V | = SWR − 1

SWR + 1
.

The SWR can be easily measured by applying its definition, i.e. just finding the
maximum and the minimummagnitude of the voltage, for example, by using a probe
sliding along the line, arranged in such a way that the perturbation on the field
configuration is negligible.
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Fig. 3.4 Anti-reflective
layer (characterized by Zc2,
kz2 and �) interposed
between two media �

�1 �2 �3

�

−�
�

0

� �

� �

z

kz1 Zc1 kz2 Zc2 kz3 Zc3

3.4 Anti-reflective Layers

It will be shown in this section how the transmission-line formalism can be used to
resolve problems of transmission and reflection of uniform plane waves normally
incident on layered planar structures. Every layer will be considered isotropic, non-
dispersive and homogeneous, possibly lossy. An equivalent transmission line will
be associated to each homogeneous layer, this line will have propagation constant,
characteristic impedance and wavelength equal to the propagation constant, the char-
acteristic impedance and the wavelength of that medium.

The tangential components of electric and magnetic fields, related to the voltage
and current, respectively, must be continuous at the interface of two media, and so at
the interface of two lines; it follows that voltage and currentmust be preserved passing
through an interface as well. This means that two contiguous lines must be directly
juxtaposed,without interposing any component in series or shunt (whichwould break
the continuity of the voltage and current, respectively). From the continuity of the
voltage and current the continuity of the impedance follows, and therefore the output
impedance of the line on the left must coincide with the input impedance of the line
on the right. The reflection coefficient, instead, is not continuous at the interface
between two transmission lines.

Let us consider the so-called anti-reflective layer as a first example (Fig. 3.4). In
this application a layer is interposed between two different media to suppress the
reflections that would necessarily arise in correspondence to a transition section.
This suppression is obtained by destructive interference between the reflected fields
from the two faces of the layer.

Region 3 is supposed to be of infinite length, and then matched, it follows that
its input impedance coincides with the characteristic impedance Zc3, which is the
output impedance for the line representing medium 2. At this point we can calculate
the input impedance of line 2, which will be the load for the line 1. We have already
seen the formula for this input impedance:

Zi2 = Zc2
Zc3 cos(kz2 �) + j Zc2 sin(kz2 �)

Zc2 cos(kz2 �) + j Zc3 sin(kz2 �)
.
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When this impedance Zi2 = ZL1 is equal to the characteristic impedance Zc1 of the
line representing medium 1, it is for the output impedance of line 1:

�V (−�) = Zi2 − Zc1

Zi2 + Zc1
= 0.

Suppose now that the three media are not dissipative, and that in particular kz2 is

real. Assuming also � = λz2

4
, it will be:

kz2 � = 2π

λz2

λz2

4
= π

2
,

i.e. a quarter-wave transformer is implemented, for which, as we have already seen:

Zi2 = Zc2
2

Zc3
= ζ2

2

ζ3
.

If medium 2 is chosen so that it is:

ζ2
2

ζ3
= Zc1 = ζ1 ⇒ ζ2 = √

ζ1 ζ3

then�V (−�) = 0, i.e. therewill be no reflectedwave inmedium1. The anti-reflective
layer 2 provides therefore the impedance matching between medium 1 and medium
3. This technique is used to achieve maximum transparency in photographic lenses.
In such application medium 1 is air, medium 3 glass.

The anti-reflective layer can be dimensioned once λz2 = λo√
εr2

is known and so

εr2 can be obtained (in the assumption that μr � 1 for all involved media) starting
from the impedances condition:

ζ2
2 = ζ1 ζ3 ⇒ μo

εo εr2

∼=
√

μo

εo εr1

√
μo

εo εr3
,

⇒ 1

εr2
= 1√

εr1 εr3
⇒ εr2 = √

εr1 εr3.

As a second example a structure applicable when building an anechoic chamber
(i.e. a chamber with non-reflective walls), or when hiding metal objects from a radar,
is presented. A four-layer structure is considered in particular (Fig. 3.5).

The last layer is assumed excellent conductor (representing for example the shield-
ing wall of the anechoic chamber or the outer wall of the radar target), hence its
impedance is:

ζ4 �
√

jωμ4

σ4
� 0.
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Fig. 3.5 The multilayer structure

In addition, if the thickness of region 4 is (realistically) finite, but the direct wave is
sufficiently attenuated, we can assume line 4 matched and therefore line 3 terminates
on ZL3 = Zc4 = ζ4 � 0. So line 3 is practically short-circuited, and its input
impedance is:

Zi3 = j Zc3 tan(kz3 �).

Now let us suppose that medium 3 is not dissipative (kz3 real) and also that line 3

is a quarter-wave transformer (� = λz3

4
⇒ kz3 � = π

2
). It is then Zi3 = ZL2 = ∞

and line 2 is terminated on an open circuit. At this point the input impedance of
medium 2 is:

Zi2 = − j Zc2 cot
(
kz2 �′) .

Let us then assume that medium 2 has very small thickness (when compared, as
usual, to the wavelength), so that it is:

|kz2| �′ � 1 ⇒ cos
(
kz2 �′) � 1

sin
(
kz2 �′) � kz2 �′ ,

and so:

Zi2 ∼= − j Zc2
1

kz2 �′ = Zc2

jkz2 �′ =

=

√
ZS2

YP2√
ZS2 YP2 �′ = 1

YP2 �′ = 1

(σ2 + jωε2) �′ .

Finally, if we assume that medium 2 is a good conductor, we get:

Zi2 = ZL1 � 1

σ2 �′ .
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Then by appropriately choosing σ2 and �′ the following condition can be verified:

ZL1 � 1

σ2 �′ = Zc1 = ζ1,

and so �V (−� − �′) = 0, which means no reflected wave in medium 1.
In practice, the medium that occupies region 2 can be realized by coating, using a

conductive substance (for example, a suspension containing graphite powder): this
allows to vary both σ2 and �′ in an easy way. It is possible therefore to prevent the
reflection of electromagnetic waves from ametallic object with the method just seen.

It should be observed that both examples considered took advantage from the
properties of quarter-wave transformer.5 The working condition for both is said
narrow-band, because when the frequency of incident radiation is changed, the wave-
length also changes and therefore (for the structure already realized) � = λz

4 is no
longer valid and the reflection coefficient is not zero. However, in practice, the reflec-
tion coefficient will be very small (almost zero) for a (narrow) band of frequencies.
Many more layers would be necessary in order to obtain matching conditions for a
broadband application. The theory of such structures is strongly linked to the the-
ory of filters as they are essentially filtering structures (the signal passes for certain
frequencies and it is reflected for others).

5 � = λz

4
.



Chapter 4
Guided Electromagnetic Propagation

Abstract The broad and fundamental topic of guided propagation is treated in depth,
starting from general relations and introducing the important concept of guided
modes (TE, TM, TEM). The relevant mathematical eigenvalue problem is examined,
the various properties of operators, eigenvalues, eigenfunctions are reviewed, and
the cut-off phenomenon is explained. The practical rectangular, circular and coaxial
guides are treated. Some basic elements about cavity resonators are presented.

4.1 General Relations of Waveguides

We are going to study now particular solutions of homogeneousMaxwell’s equations
in structures called waveguides, which can be either dielectric or hollow metallic
having cylindrical symmetry, i.e. for which the normal sections (called transverse)
with respect to a given direction said axis of symmetry (also called longitudinal), are
identical (both in shape and in size).

It is natural, and helpful, the use of a generalized cylindrical orthogonal coordinate
system to impose the boundary conditions on this kind of structures. This coordinate
system is specified with q1, q2 and z, in particular the Cartesian z axis is placed along
the longitudinal direction, and the system of orthogonal curvilinear coordinates q1,
q2 is established in all planes normal to z, and it will be chosen according to the
shape of the transverse section. These coordinates will be, for example, the usual xy
Cartesian coordinates in the case of a rectangular-section waveguide, or the polar ρϕ
coordinates for a circular cross section waveguide (such as a metal coaxial cable, or
a dielectric optical fiber).

A generic vector, for example the electric field E , can be expressed as follows in
the chosen reference system:

E = Et + zo Ez,

where Et is the vector component of E in the transverse plane. In a similar way it is
possible to decompose the ∇ operator and the Laplace operator in a transverse and
a longitudinal component:

∇ = ∇t + zo
∂

∂z
,
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∇2 = ∇2
t + ∂2

∂z2
.

In the particular case of Cartesian coordinates it is for example:

∇t = xo
∂

∂x
+ yo

∂

∂y
,

∇2
t = ∂2

∂x2
+ ∂2

∂y2
.

Let us consider the region of space with cylindrical symmetry in the absence
of impressed sources, (i.e. in the absence of electrical and magnetic currents).
The medium which occupies the region is, moreover, supposed homogeneous and
isotropic. It is known that in these conditions the electric field satisfies, with the
appropriate boundary conditions imposed by the structure (which we shall see later),
the homogeneous Helmholtz equation:

∇2E + k2E = 0,

which, with the assumptions made, becomes:

(
∇2

t + ∂2

∂z2

) (
Et + zo Ez

) + k2
(
Et + zo Ez

) = 0.

The above equation can be modified recalling that zo is a constant vector:

∇2
t Et + zo ∇2

t Ez + ∂2Et

∂z2
+ zo

∂2Ez

∂z2
+ k2Et + zo k2 Ez = 0.

Now there are only either longitudinal (parallel to zo) or transverse (orthogonal
to zo) terms. By separating the two kinds of contributions it must be:

⎧⎨
⎩

∇2
t Et + ∂2Et

∂z2
+ k2 Et = 0

∇2
t Ez + ∂2Ez

∂z2
+ k2 Ez = 0

,

equivalent to the wave equation in generalized cylindrical coordinates. The second
equation of the system could also be simply obtained by projecting the vectorial
Helmholtz equation on the (Cartesian) z axis. The equations obtained here for the
electric field can also be obtained for the magnetic field (duality). We need to write
the homogeneous Maxwell’s equations, too, in generalized cylindrical coordinates,
in order to make them more suitable for the study of guiding structures. The first
Maxwell’s equation becomes therefore:
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(
∇t + zo

∂

∂z

)
× (

Et + zo Ez
) = − jωμ

(
Ht + zo Hz

)
.

⇒ ∇t × Et + ∇t × (
Ez zo

) + zo × ∂Et

∂z
= − jωμ Ht − jωμ Hz zo. (4.1)

At this point we apply the following vector identity:

∇×(
� A

) = �∇× A − A × ∇�,

from which, in the two-dimensional case, it is:

∇t × (
Ez zo

) = Ez ∇t × zo − zo × ∇t Ez = −zo × ∇t Ez,

being zo a constant vector. From (4.1) it is then obtained:

∇t × Et − zo × ∇t Ez + zo × ∂Et

∂z
= − jωμ Ht − jωμ Hz zo.

In order to obtain the first Maxwell’s equation we split the above equation in
components parallel and orthogonal to zo, obtaining:

{
∇t × Et = − jωμ Hz zo

−zo × ∇t Ez + zo × ∂Et
∂z = − jωμ Ht

.

The second Maxwell’s equation is obtained by duality:

{
∇t × Ht = jωεc Ez zo

−zo × ∇t Hz + zo × ∂Ht
∂z = jωεc Et

.

Note that the equations written so far have retained very general validity.
We are going now to consider a particular class of solutions, characterized by a

separation of variables, i.e., solutions which satisfy:

Et (q1, q2, z) = et (q1, q2) V (z) ,

Ht (q1, q2, z) = ht (q1, q2) I (z) ,

in which the transversal component is characterized by the product of a vectorial
factor depending only on transverse coordinates and a scalar factor depending only
on the longitudinal coordinate. Evidently not all the solutions can be put into this
form, but if we are able to demonstrate that these solutions form a complete set then
any solution could be written in terms of them. Such a decomposition will allow us
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to associate an equivalent transmission line to the propagation along the longitudinal
z direction.

Three classes of fields of the above type are considered: those for which Ez ≡ 0
(transverse electric fields, or TE); those forwhich Hz ≡ 0 (transversemagnetic fields,
or TM); and those that satisfy Ez = Hz ≡ 0 (transverse electromagnetic fields, or
TEM). These particular waves are in effect extensively used in the applications. Let
us examine them separately.

4.1.1 TE Fields

In the TE case the two Maxwell’s equations become:

{
∇t × Et = − jωμ Hz zo

zo × ∂Et
∂z = − jωμ Ht

, (4.2)

{
∇t × Ht = 0

−zo × ∇t Hz + zo × ∂Ht
∂z = jωεc Et

. (4.3)

Introducing the hypothesis of variables separability in the first equation, we have:

V (z) ∇t × et (q1, q2) = − jωμ Hz (q1, q2, z) zo.

Given the form of the first member, it can be deducted that Hz , too, can be written
in separated form, i.e.:

Hz (q1, q2, z) = hz (q1, q2) V (z) .

So the transverse component of E and the longitudinal component of H have the
same dependence on z. Simplifying, it must be:

∇t × et = − jωμ hz zo.

Now, taking the second equation of the (4.2) and vector multiplying by zo on the
right side, we obtain:

zo × ∂Et

∂z
× zo = ∂Et

∂z
= − jωμ Ht × zo,

then:
dV

dz
et = − jωμ I (z) ht × zo. (4.4)
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The first of (4.3) becomes:
∇t × ht = 0,

and the second becomes:

− V (z) zo × ∇t hz + d I

dz
zo × ht = jωεc V (z) et . (4.5)

Ifwe assume that et = ht ×zo (which implies that ht = zo×et , simplymultiplying
on the left by zo) in (4.4), it follows:

dV

dz
= − jωμ I (z) = − jkz

ωμ

kz
I (z) ,

which coincides with the first transmission line equation, having defined:

ZTE
S = jωμ ZTE

c = ωμ

kz
.

On the other hand, starting from (4.5) we get:

d I

dz
zo × ht = d I

dz

(−et
) = (

jωεc et + zo × ∇t hz
)

V (z) .

At this point, similarly to what we have seen before:

d I

dz
= − jkz Y TE

c V (z) = − jkz
kz

ωμ
V (z) = − j

k2z
ωμ

V (z) ,

and eliminating V (z) from the equation we get:

− j
k2z
ωμ

(−et
) = jωεc et + zo × ∇t hz,

from which, developing:

et

(
jωεc − j

k2z
ωμ

)
= et

−ω2μεc + k2z
jωμ

= −zo × ∇t hz .

Now we put k2t = k2 − k2z = ω2μεc − k2z and then:

et
−k2t
jωμ

= −zo × ∇t hz,
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et = jωμ

k2t
zo × ∇t hz,

i.e. we have just expressed et as a function of hz . It follows:

ht = zo × et = − jωμ

k2t
∇t hz,

so we have finally expressed ht as a function of hz , too. The important result we
obtained so far is that the whole TE field can be expressed as a function of the only
longitudinal component hz , and in particular as a function of ∇t hz .

Now let’s seewhat equation hz(q1, q2)must satisfy.We know, from theHelmholtz
equation:

∇2
t Hz + ∂2Hz

∂z2
+ k2 Hz = 0,

that becomes, with the assumptions made:

V (z) ∇2
t hz + hz

d2V

dz2
+ k2 hz V (z) = 0.

Introducing the equations of the lines, i.e.:

d2V

dz2
= −k2z V (z) ,

the following is obtained:

V (z) ∇2
t hz − k2z V (z) hz + k2 V (z) hz = 0,

and eliminating V (z) we get:

∇2
t hz + k2t hz = 0,

which is a two-dimensional Helmholtz equation.

4.1.2 TM Fields

We illustrate now the case of TM fields (Hz ≡ 0). The two Maxwell’s equations can
be dually written:

∇t × Et = 0 ⇒ ∇t × et = 0,
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− zo × ∇t Ez + zo × ∂Et

∂z
= − jωμ Ht , (4.6)

∇t × Ht = jωεc Ez zo, (4.7)

zo × ∂Ht

∂z
= jωεc Et . (4.8)

The (4.7) can be re-written in the following way, introducing the assumption of
separability:

I (z) ∇t × ht (q1, q2) = jωεc Ez (q1, q2, z) zo.

Given the separated form of the first member, it can be deduced that:

Ez (q1, q2, z) = ez (q1, q2) I (z) .

So the transverse component of H and the longitudinal component of E have the
same dependence on z. After a simplification, the following can be obtained:

∇t × ht = jωεc ez zo.

Executing a vector product of the (4.8) by zo (on the right side), we have:

zo × ∂Ht

∂z
× zo = ∂Ht

∂z
= jωεc Et × zo,

d I

dz
ht = jωεc V (z) et × zo.

Now let us assume again ht = zo × et as it was done in the TE case, it follows:

d I

dz
= − jωεc V (z) = − jkz

ωεc

kz
V (z) ,

which after imposing:

Y TM
P = jωεc Y TM

c = ωεc

kz
⇒ ZTM

c = kz

ωεc
.

coincides with the second transmission-line equation.
On the other hand from (4.6) we can obtain:

−I (z) zo × ∇t ez + dV

dz
zo × et = − jωμ I (z) ht ,
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then:
dV

dz
ht = (− jωμ ht + zo × ∇t ez

)
I (z) .

Putting now:

dV

dz
= − jkz ZTM

c I (z) = − jkz
kz

ωεc
I (z) = − j

k2z
ωεc

I (z) ,

and eliminating I (z), we get the relation:

− j
k2z
ωεc

ht = − jωμ ht + zo × ∇t ez,

ht
k2z − ω2μεc

jωεc
= ht

−k2t
jωεc

= zo × ∇t ez,

ht = − jωεc

k2t
zo × ∇t ez,

in which ht is expressed as a function of ez . Then we have:

et = ht × zo = − jωεc

k2t
∇t ez

and so et is also expressed as a function of ez (more precisely, as a function of
∇t ez). So the whole TM field can be expressed as a function of the only longitudinal
component ez .

Note that also ez(q1, q2) must satisfy the two-dimensional homogeneous
Helmholtz equation. In fact, from:

∇2
t Ez + ∂2Ez

∂z2
+ k2 Ez = 0,

we have, with the assumptions made,

I (z) ∇2
t ez + ez

d2 I

dz2
+ k2 ez I (z) = 0,

and so:
I (z) ∇2

t ez − k2z I (z) ez + k2 I (z) ez = 0,

that can be simplified by removing the common factor I (z) obtaining:

∇2
t ez + k2t ez = 0.
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Note that an alternative approach which takes advantage of the use of the vector
potential can be adopted. In particular, a purely longitudinal potential A = Az zo

gives rise to a TM(z) field, and therefore Az results proportional to Ez , while a purely
longitudinal potential F = Fz zo gives rise to a TE(z) field, and therefore Fz is
proportional to Hz .

4.1.3 TEM Fields

Finally, TEMfields (Ez = Hz ≡ 0) are considered. TheMaxwell’s equations become

∇t × Et = 0,

∇t × Ht = 0,

zo × ∂Et

∂z
= − jωμ Ht ,

zo × ∂Ht

∂z
= jωεc Et .

Using again the conditions on the separability of the transverse fields it is obtained:

∇t × et = 0,

∇t × ht = 0,

dV

dz
zo × et = − jωμ I (z) ht , (4.9)

d I

dz
zo × ht = jωεc V (z) et . (4.10)

The (4.9) becomes the first transmission line equation through the usual position
et = ht × zo:

dV

dz
= − jωμ I (z),

while (4.10) becomes:
d I

dz
= − jωεc V (z).

From the first, recalling the equations of the lines in their two possible forms, it
results:

ZTEM
S = jωμ ZTEM

c = ωμ

kz
;
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from the second it is:

Y TEM
P = jωεc Y TEM

c = ωεc

kz
.

From the condition ZTEM
c · Y TEM

c = 1 it follows:

ωμ

kz

ωεc

kz
= 1,

k2z = ω2μεc ⇒ kz = k ⇒ k2t = 0,

and it is finally:

ZTEM
c =

√
μ

εc
= ζ Y TEM

c =
√

εc

μ
= 1

ζ
.

This is essentially a characteristic property of TEM waves that has also occurred in
the case of uniform plane waves: the propagation constant of a TEM field in a guide
coincides with the one of a uniform plane wave that propagates in a free space filled
with the same medium.

It should be observed that (4.9) and (4.10) don’t give information related to the
vectorial part. In order to add this kind of information we need to use different field
properties, particularly∇ · D = ρ is used, from which, considering a region of space
with no free charges andfilledwith a homogeneousmedium, it follows∇ · E = 0. So:

(
∇t + zo

∂

∂z

)
· (

Et + Ez zo
) = 0;

and since Ez = 0, it follows:
∇t · et = 0.

On the other hand we have already seen that:

∇t × et = 0 ⇒ et = −∇t�(q1, q2).

et is both irrotational and solenoidal, therefore we can write:

∇t · et = ∇t · (−∇t�) = 0 ⇒ ∇2
t � = 0;

the latter is a two-dimensional Laplace equation.
The same considerations, of course, could be applied to the magnetic field, this

time starting from ∇ · B = 0. Once one field is known, the other follows easily.
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4.2 Boundary Conditions for Metallic Waveguides.
Propagation Modes

Let us now consider the case of metal waveguides cables, virtually perfect con-
ductors, and let us see how the boundary conditions can be expressed in terms of
the formalism introduced above for the three considered cases TE, TM and TEM.
Henceforth we will speak about propagation modes to indicate the possible solutions
of the differential electromagnetic-field equations which satisfy the boundary condi-
tions imposed by the guiding structure and therefore are effectively able to propagate
(even alone) in such a structure.

Let’s start from the TE field (Ez ≡ 0). The boundary condition requires that
et · so = 0 on the edge s of the cross section S of the guide. Let us recall that the
field et was actually related to:

zo × ∇t hz = 0 ⇒ zo × ∇t hz · so = so × zo · ∇t hz = no · ∇t hz = 0 su s,

then:
∂hz

∂n
= 0 su s.

In the case of TM fields (Hz ≡ 0) the condition requires ez ≡ 0 on s, and also
et · so = 0 on s, therefore:

∇t ez · so = 0 ⇒ ∂ez

∂s
= 0 on s.

It is clear, however, that the second condition found is included in the first. The
reference system is shown in Fig. 4.1.

Finally, the case of TEM fields (Ez = Hz ≡ 0) is considered. The requirement is
et · so = 0 on s and then:

Fig. 4.1 Reference system
for cylindrical waveguides
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(−∇t�) · so = 0 ⇒ ∂�

∂s
= 0 on s,

i.e. �(q1, q2) is constant on s. On the other hand � appeared to be a solution of
Laplace equation, and it is known that the solutions of this equation present the
maximum and minimum values on the boundary of the relevant domain. But, since
� results constant on the border, then � must be constant over the entire S cross
section: it follows that ∇t� ≡ 0, and as a consequence et ≡ 0 ⇒ ht ≡ 0 and so
only the identically zero trivial solution is found, of no physical interest. Therefore,
if the boundary is a single line, i.e. the section is simply connected, TEM waves
cannot propagate; while, if the region is a multi-connected section (for example, a
coaxial cable), then the (constant) values of � on the various edges can be different
from one another and therefore the condition � = constant on the whole S is no
longer necessary. So, for example, TEM waves can propagate in a coaxial cable.
In particular, in this case only a single TEM wave can propagate: in fact it can be
demonstrated that n − 1 distinct TEM waves can propagate in a waveguide whose
cross-section is n-times connected (i.e., the contour is constituted by n separated
parts).

It is worth recalling that the boundary conditions, in general, determine the values
of k2t depending on the particular shape and size of the guiding structure. In particular,
the differential equation is the same for TE and TM modes, but the solutions can
be very different for different boundary conditions; instead, in the TEM case the
differential equation itself is different.

4.3 The Guided Propagation as an Eigenvalue Problem

The typical form of a two-dimensional Helmholtz equation for TE and TM modes
is the following:

∇2
t T (q1, q2) + k2t T (q1, q2) = 0,

where T ≡ ez in the TM case, T ≡ hz in the TE case. This equation assumes the
typical form of an eigenvalue problem as Lϕ = λϕ:

−∇2
t T = k2t T,

where the L operator is represented by −∇2
t , the eigenvalue λ by k2t and the eigen-

function ϕ by T . It is known that this problem admits non-trivial solutions only for
a particular set of k2t values and that at least one eigenfunction T (not identically
zero by definition) corresponds to any eigenvalue, and the eigenfunctions are defined
apart from a multiplicative arbitrary constant.

It can be shown that the eigenvalues of the−∇2
t operator form a countable infinite

set (the so-called discrete spectrum) in the case of closed metal guides, and that the
corresponding eigenfunctions represent a complete set, i.e. a representation base for
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the L2 vector space of the functions square summable, that is, for the functions whose
square modulus is integrable and the integral has finite value. Such representations
are in general called spectral representations.

In the case of metal structures with openings, or of dielectric waveguides, the
discrete spectrum (guided modes) is joined by a continuous spectrum (radiation
modes). The latter eigenfunctions correspond to the possibility that there is emission
of energy from the guide towards the outside, as opposite to the guided modes for
which the field is evanescent (attenuates) outside the guide.

Here some reminders of functional analysis are helpful. Let us start with some
definitions: given any operator L , is called adjoint La of L (when it exists) an operator
such that:

< L f, g >=< f, Lag >,

where the brackets indicate a scalar product of (in general) complex functions, that
is defined in our case as follows:

< f, g >=
∫

S
f g∗ d S,

being S the cross section of the waveguide. When La ≡ L , i.e., when

< L f, g >=< f, Lg >,

the operator is said self-adjoint or Hermitian.
From the definition of scalar product introduced before, and more generally from

the axioms of its algebraic structure, it follows that:

< f, g >=< g, f >∗ .

In the case of a self-adjoint operator then, if f ≡ g, we have:

< L f, f >=< f, L f >=< L f, f >∗,

and therefore the quantity < L f, f > is real, and so it makes sense to study its
sign. In particular, if < L f, f > is always ≥ 0, and < L f, f >= 0 (if and) only if
f ≡ 0, the operator is said positive definite. Instead, if < L f, f > may be zero also
for functions f not identically zero, the operator is said positive semidefinite. In a
similar way is defined the operator negative definite or negative semidefinite.

Note that if the f function is an eigenfunction ϕ, it is:

< Lϕ,ϕ >=< λϕ,ϕ >= λ < ϕ,ϕ > ⇒ λ = < Lϕ,ϕ >

< ϕ,ϕ >
.
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Therefore, the eigenvalues λ are real if the operator L is self-adjoint. Note in
fact that:

<ϕ,ϕ >=
∫

S
ϕϕ∗ d S =

∫

S
|ϕ|2 d S > 0.

Moreover, if the operator L is also positive definite or positive semidefinite, the
eigenvalues are > 0 or ≥ 0, respectively.

In addition to having real eigenvalues, a self-adjoint operator has also the property
that eigenfunctions corresponding to different eigenvalues are orthogonal to one
another, i.e. their scalar product, defined in a vector space of functions, is zero. In
fact, given two eigenfunctions ϕi , ϕ j corresponding to distinct (real) eigenvalues λi ,
λ j , it is:

< Lϕi ,ϕ j >= λi < ϕi ,ϕ j >=< ϕi , Lϕ j >= λ j < ϕi ,ϕ j >

⇓
(
λi − λ j

)
< ϕi ,ϕ j >= 0,

so:
λi �= λ j ⇒ < ϕi ,ϕ j >= 0.

In the case of multiple eigenvalues, i.e. eigenvalues corresponding to n > 1 dis-
tinct (linearly independent) eigenfunctions, such eigenfunctions (which are called
degenerate) are not necessarily orthogonal. However, it is possible to apply an alge-
braic procedure called Gram-Schmidt orthogonalization, which permits to pass from
these n eigenfunctions to a new set of n eigenfunctions that, instead, are mutually
orthogonal (and then, through the division by their modulus

√
< ϕ,ϕ > they can

become orthonormal, i.e. orthogonal with unitary modulus). The procedure uses
linear combinations, and of course such combinations are also eigenfunctions asso-
ciated to the same eigenvalue. In conclusion, then, if the operator is self-adjoint it
is possible to find a basis for the function space consisting of (infinite, in general)
orthogonal eigenfunctions.

The advantage of having an orthogonal basis (with respect to a base simply con-
stituted by linearly independent functions) resides in the immediate possibility to
compute the coefficients of the linear combination. It is in fact, for a generic function
of the space (recalling that we are dealing with infinite-dimensional spaces):

f (P) =
∞∑

n=1

cn ϕn (P) .

Multiplying both sides by the scalar function ϕm (P), it follows:
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< f,ϕm >=<

∞∑
n=1

cn ϕn,ϕm >=
∞∑

n=1

cn < ϕn,ϕm >=

=
∞∑

n=1

cn δn m = cm m = 1, 2, . . . ∞,

having used the orthonormality in the last step and having introduced the Kronecker
symbol:

< ϕn,ϕm >= δn m =
{
1 if m = n
0 if m �= n

.

The coefficients cn are generally called Fourier coefficients as the expression seen
generalizes the formula which describes the Fourier series.

Using the premises shown above, we can now demonstrate that −∇2
t operator is

self-adjoint for boundary conditions relevant to perfectly conducting walls. Let us
remember first the Green’s lemma in its second form:

∮

S

(
f

∂g

∂n
− g

∂ f

∂n

)
d S =

∫

V

(
f ∇2g − g ∇2 f

)
dV,

where S is, as usual, the closed surface that bounds the volume V , and where the
direction of the normal n is outgoing the volume. This formulamust be particularized
to our two-dimensional space, obtaining:

∮

s

(
f

∂g

∂n
− g

∂ f

∂n

)
ds =

∫

S

(
f ∇2

t g − g ∇2
t f

)
d S,

being s a closed line which bounds the open surface S, which represents the cross
section of the guide, while ∇ is replaced by ∇t .

The operator L is self-adjoint if the following requirement is met:

< L f, g > − < f, Lg >= 0,

i.e. in our case:

< −∇2
t f, g > − < f,−∇2

t g >=
∫

S

(
−∇2

t f g∗ + f ∇2
t g∗) d S =

=
∮

s

(
f

∂g∗

∂n
− g∗ ∂ f

∂n

)
ds,

having applied the Green’s lemma to the functions f and g∗, and ∇2
t being a real

operator (i.e. when operating on a real function, it yields another real function).
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Let us observe now that, in our application to the perfectly conductingwaveguides,
the functions f and g∗, to which the operator −∇2

t is applied, must satisfy the
boundary conditions for TE and TM modes, for example, with reference to the
function f :

∂ f

∂n
= 0 on s , f = 0 on s,

respectively. So, in these two cases, the circulation is zero and the operator results
self-adjoint.

This example shows us clearly that is not an intrinsic property for the operator to
be self-adjoint (or not), but it depends on the particular boundary conditions, which
actually determine the so-called domain of the operator itself, i.e. the particular set
of functions on which it operates.

From the fact that the eigenvaluesλ = k2t are real, it follows that the eigenfunctions
T can be considered real. In fact, a generic complex eigenfunction can always be
written T = TR + jTJ , where TR and TJ are real. But then, by separating the real and
imaginary parts of the differential equation and knowing that k2t is real, it follows:

∇2
t TR + k2t TR = 0 , ∇2

t TJ + k2t TJ = 0.

Moreover, boundary conditions also hold separately for the real and the imaginary
part for the various types of modes. So TR and TJ are separately eigenfunctions
related to the same eigenvalue, and the eigenfunction T can be regarded as their
linear combination.

On the other hand if the eigenfunction is real, and therefore has a constant phase,
the variability of the phase resides only in the V (z) and I (z) longitudinal functions,
and so the z = constant planes are equiphase surfaces, on which, however, the
field amplitude generally changes. It follows that the modes of the waveguides with
perfectly conducting walls are non-uniform plane waves.

It should be noted, finally, that, in the case of the closed metal guides filled with
a homogeneous material, the k2t eigenvalues and the T eigenfunctions depend only
on the geometry (shape and size) of the guide cross section and they are independent
of frequency and of the medium parameters (ε, μ, σ).

We can now observe that the operator −∇2
t is substantially positive definite when

assuming those boundary conditions. We need to analyze the sign, as already seen,
of the quantity:

< L f, f >=< −∇2
t f, f >=

∫

S
− f ∗ ∇2

t f d S.

This time we apply the first form of Green’s lemma which was already presented
in its three-dimensional version reported here again for simplicity:

∮

S
f

∂g

∂n
d S =

∫

V

(
∇ f · ∇g + f ∇2g

)
dV .
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In the two-dimensional case the Green’s lemma becomes:
∮

s
f

∂g

∂n
ds =

∫

S

(
∇t f · ∇tg + f ∇2

t g
)

d S.

Now we can apply the lemma to the f ∗ and f functions, obtaining:

∫

S
− f ∗ ∇2

t f d S =
∫

S
∇t f ∗ · ∇t f d S −

∮

s
f ∗ ∂ f

∂n
ds =

∫

S
|∇t f |2 d S,

since the boundary integral is null for perfectly conductingwall boundary conditions.
Note now that the quantity:

∫

S
|∇t f |2 d S =< L f, f > results ≥ 0

We must now find the condition for which it is zero. This happens if and only if
∇t f ≡ 0 on S, i.e. f = constant on S. Hence, in the case of TM modes it must
be f ≡ 0 on S for the continuity of f , since we saw that in this case f = 0 on s;
therefore the operator is positive definite. Instead in the case of TE modes, from:

∂ f

∂n
= 0 on s,

it does not necessarily follow that f ≡ 0 on S, and therefore the operator is positive
semidefinite. The solution T = constant on S is an eigenfunction associated to the
eigenvalue k2t = 0, as can be seen from

λ = < Lϕ,ϕ >

< ϕ,ϕ >
.

This solution, however, is only possible when the electromagnetic field is iden-
tically zero, because it is ∇t hz ≡ 0 in the expressions for the components of the
transverse field. Therefore the domain of the operator could be redefined in order to
exclude the constant solutions, so that the operator becomes positive definite on this
new domain.

The direct consequence is that the eigenvalues λ = k2t are real and positive, in
confirmation of their formal quadratic expression.

After reviewing the transverse eigenvalue problem, we are going to analyze the
propagation features in the longitudinal z direction. Let us assume that the medium
filling the guide is non-dispersive and non-dissipative. In this case, the separability
condition implies:

k2z = k2 − k2t = ω2με − k2t ,
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which is a real quantity, therefore

kz =
√

ω2με − k2t

can be either purely real if ω2με > k2t , or purely imaginary if ω2με < k2t . The
first case corresponds to a mode propagation with no attenuation along z and with a
behavior of the type e− jβz z . The second case corresponds to an exponential attenu-
ation of the field along z with no propagation, i.e., with no phase change, and so its
behavior is expressed by e−αz z . The two cases are separated by a particular value of
ω, called ωc (cut-off angular frequency), such that:

ω2
c με = k2t ⇒ ωc = kt√

με
= kt v.

For ω = ωc it is kz = 0. The cut-off frequency:

fc = ωc

2π
,

and cut-off wavelength:

λc = 2π

kt
,

are also defined to describe the cut-off condition. Note that each mode has its own
eigenvalue k2t , and therefore its own cut-off frequency, but it may happen that two
(degenerate) eigenfunctions have the same eigenvalue and therefore the two corre-
sponding (degenerate) modes have the same cut-off frequency.

Propagation without attenuation occurs when ω > ωc, while for ω < ωc there
is attenuation with no propagation, it follows that the waveguide behaves as a high-
pass filter. Themodewith the lowest eigenvalue, and therefore with the lowest cut-off
frequency, is called the dominant or fundamental mode; all other modes are called
higher-order modes or simply higher modes. To understand the reason for such
name let us suppose to operate the waveguide in a frequency band between the cut-
off frequency of the dominant mode and the cut-off frequency of the second mode,
i.e. the first higher-order mode. It is clear that the dominant mode will propagate with
no attenuation in this band, while all higher modes will be attenuated and they won’t
propagate. Assuming that a generator excites in the waveguide a generic field (that
can always be expressed as a series expansion of the complete set of modes), it will
happen that at a certain distance from the section of the excitation, the electromagnetic
field will be in practice represented by the only term associated with the dominant
mode. In the case in which the cylindrical structure of the waveguide is perturbed
by the presence of an obstacle (discontinuity, bend), all the infinite higher attenuated
modes will again appear in the vicinity of such obstacle, but at a certain distance they
will be again negligible.
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So a single transmission line, corresponding to the dominant mode, can be asso-
ciated to the waveguide of our example, while any effect due to the discontinuity is
“concentrated” near the discontinuity itself and therefore representable, in the equiv-
alent circuit, as a concentrate component, i.e. an impedance (or admittance) that will
be purely imaginary, i.e. of reactive type, in the absence of losses and that will take
into account the reactive power of all attenuated modes, concentrated in the vicinity
of the obstacle.

Note also that, if the guiding structure supports a TEM mode, this is certainly
the dominant mode because it is characterised by k2t = 0 and therefore by fc = 0.
The field can then propagate in such structures up to arbitrarily low frequencies, so
it propagates even in fairly static conditions.

A guide wavelength:

λz = 2π

βz
,

and a guide phase velocity:

vz = ω

βz
,

are defined in a waveguide; these quantities are related to those of free space (filled
with the same medium that fills the guide) by the following relations:

λz = 2π

βz
= 2π√

k2 − k2t

= 2π

k

√
1 − k2t

ω2με

= λ√
1 −

(
fc
f

)2 ,

vz = ω

βz
= ω

ω
√

με

√
1 −

(
fc
f

)2 = v√
1 −

(
fc
f

)2 .

Note that for f > fc, i.e. in propagation, it is λz > λ and vz > v (fast wave).
Finally, the group velocity in the waveguide is expressed by:

vgz = 1
dβz
dω

.

On the other hand, we have:

dβz

dω
= d

dω

√
ω2με − k2t = ωμε√

ω2με − k2t

= με

√
με

√
1 −

(
fc
f

)2 = 1

v

√
1 −

(
fc
f

)2 ,
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then:

vgz = v

√
1 −

(
fc

f

)2

,

it is vgz < v, as it should be, in case of propagation.
Now let us assume that themedium filling the guide is still non-dispersive (ε andμ

real), but dissipative (σ �= 0), the propagation constant kz will certainly be complex
and it will be:

k2z = ω2μεc − k2t = ω2με − jωμσ − k2t =
(
ω2με − k2t

)
− jωμσ.

It can be seen that the complex number k2z belongs to the fourth quadrant of the
complex plane for f > fc, while it belongs to the third for f < fc. If we extract
the square root with the usual determination kz R > 0, it results in both cases that kz

belongs to the fourth quadrant. So one can always put kz = βz − jαz being βz and
αz both positive. Moreover, it results that for f > fc, βz > αz , while for f < fc the
attenuation prevails as is reasonable, i.e. αz > βz . At the cut-off condition (which,
however, no longer corresponds to a sharp cut) it is k2z = − jωμσ, so kz lies on the
bisector of the second and fourth quadrants (βz = αz).

4.4 Rectangular Waveguide

We are going to consider now a rectangular waveguide of internal dimensions a and
b as a first simple example. In this case, it is convenient to work in xy Cartesian
coordinates to facilitate the imposition of the boundary conditions; moreover, the
differential equation is easier to solve in rectangular coordinates. It is therefore:

T (q1, q2) = T (x, y),

and the two-dimensional Helmholtz equation becomes:

∂2T

∂x2
+ ∂2T

∂y2
+ k2t T = 0.

We are going to use the separation of variables as a solutionmethod, as we already
did for plane waves. So, assuming:

T (x, y) = X (x) Y (y),

and substituting it in the equation:

Y (y)
d2X

dx2
+ X (x)

d2Y

dy2
+ k2t X (x) Y (y) = 0,
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and finally dividing the three addends by the term X (x) Y (y) which is clearly not
identically zero we obtain:

1

X (x)

d2X

dx2
+ 1

Y (y)

d2Y

dy2
+ k2t = 0.

In the above equation the first term depends only on x , the second depends only on
y, and the third is independent of both x and y. Then, by deriving the equation with
respect to x and y, we obtain:

d

dx

[
1

X (x)

d2X

dx2

]
= 0,

d

dy

[
1

Y (y)

d2Y

dy2

]
= 0,

from which:

1

X (x)

d2X

dx2
= constant = −k2x ⇒ d2X

dx2
+ k2x X (x) = 0,

1

Y (y)

d2Y

dy2
= constant = −k2y ⇒ d2Y

dy2
+ k2y Y (y) = 0,

where the constants are in general complex, and cannot be completely arbitrary as
usual, having to satisfy the condition of separability:

k2x + k2y = k2t .

In particular, these constants cannot be both zero, otherwise we would have k2t = 0
and so the TEM mode, which cannot exist since the section is simply connected.

Assuming kx �= 0 in the first equation, the general solution (written in the form
of standing waves, which is convenient in limited structures):

X (x) = C1 sin(kx x) + C2 cos(kx x).

Similarly, assuming ky �= 0 in the second equation, it is:

Y (y) = D1 sin(ky y) + D2 cos(ky y).

Instead X (x) = C1 x + C2 and, similarly, Y (y) = D1 y + D2 follow respectively
from kx = 0 and ky = 0.

Let us now impose the boundary conditions in the presence of perfectly conducting
walls, starting from the TM case, for which the condition T = 0 on s holds. The four



136 4 Guided Electromagnetic Propagation

conditions X (0) = 0, X (a) = 0, Y (0) = 0, Y (b) = 0 must be imposed on x = 0,
x = a, y = 0, y = b respectively. From the first condition, and in the case kx �= 0,
it follows:

C2 = 0 ⇒ X (x) = C1 sin(kx x).

Imposing the second condition we get:

C1 sin(kx a) = 0 ⇒ kx a = mπ,

⇒ kx = mπ

a
m = 1, 2, 3, . . . .

In the case kx = 0 it is, instead, C2 = 0 from the first condition, and then C1 a =
0 ⇒ C1 = 0 for the second condition; this leads to the trivial solution identically
zero. The third and fourth conditions are treated in a similar manner.

So the following expressions were found for TM modes:

X (x) = C1 sin
(mπ

a
x
)

m = 1, 2, 3, . . . ,

Y (y) = D1 sin
(nπ

b
y
)

n = 1, 2, 3, . . . ,

and in conclusion the following eigenfunction is found for TM modes:

T (x, y) = C sin
(mπ

a
x
)
sin

(nπ

b
y
)

m, n = 1, 2, 3, . . . ,

associated to the eigenvalue:

k2t =
(mπ

a

)2 +
(nπ

b

)2
.

Note that the eigenvalues are real and positive, as it is in general demonstrated
for metal guides. The remaining arbitrary constant C , typical of the homogeneous
problems, can be determined using a suitable normalization condition.

The generic modal solution is then characterised by the pair (m, n) of indexes,
for this reason we usually talk about TMmn mode. Let us now impose the boundary
conditions for the TE modes. On the x = 0 side we must have:

−d X

dx

∣∣∣∣
x=0

= 0;

on the x = a side it must be:
d X

dx

∣∣∣∣
x=a

= 0;
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on the y = 0 side it must be:

−dY

dy

∣∣∣∣
y=0

= 0;

and in conclusion on the y = b side it has to be:

dY

dy

∣∣∣∣
y=b

= 0.

Assuming that kx �= 0, then:

d X

dx
= C1 kx cos (kx x) − C2 kx sin (kx x) .

From the first condition it follows:

C1 kx = 0 ⇒ C1 = 0,

being kx �= 0 for hypothesis. At this point, from the second condition it follows:

−C2 kx sin (kx a) = 0 ⇒ kx = mπ

a
m = 1, 2, 3, . . . ⇒ X (x) = C2 cos

(mπ

a
x
)

.

Let us consider now the case in which kx = 0:

d X

dx
= C1 ⇒ C1 = 0 ⇒ X (x) = C2.

The above solution may be unified in the:

X (x) = C2 cos
(mπ

a
x
)

,

permitting also the m = 0 value.
In a similar way, imposing the boundary conditions on Y (y), we get:

Y (y) = D2 cos
(nπ

b
y
)

ky = nπ

b
n = 0, 1, 2, 3, . . . .

It should be noted, however, that kx and ky cannot be both zero having to be, as
already seen, k2x + k2y = k2t �= 0; so also m and n cannot be both zero.

The eigenfunction results:

T (x, y) = C cos
(mπ

a
x
)
cos

(nπ

b
y
)

,
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associated to the eigenvalue

k2t [mn] =
(mπ

a

)2 +
(nπ

b

)2
,

corresponding to the longitudinal wave number:

kz [mn] =
√

k2 −
(mπ

a

)2 +
(nπ

b

)2
.

Here the mode is characterized by two indices and is denoted as TEmn . Note that
eigenvalues have the same expression for both TM and TE modes, so the TMmn and
the TEmn have the same eigenvalue, i.e. they are degenerate.

It can be shown that in general the eigenvalues of a guide, having generic cross-
section as long as limited, form a countable set superiorly unlimited for both mode
types. Considering now the modes TEm0 we have:

k2t [m0] =
(mπ

a

)2 ⇒ kt [m0] = mπ

a
.

The interval between this value and the next one (which is (m+1)π
a ) is equal to π/a, so

it decreases as a increases. Basically for a → ∞ the structure tends to the so-called
metallic parallel-plate guide and the eigenvalues are transformed from a countable
infinity to a continue infinity. It is possible to demonstrate also that for a guide with
any cross-section limited and simply connected, the dominant mode is always a TE
mode.

The smallest TM eigenvalue is for TM11 mode and its value is:

k2t [11] =
(π

a

)2 +
(π

b

)2
.

The smallest eigenvalue for TE modes corresponds instead to TE01 or TE10. In
particular, the dominant mode is TE10 if a > b (as it is generally assumed): the
eigenvalue is

k2t [10] =
(π

a

)2
,

and the longitudinal wave number is:

kz [10] =
√

k2 −
(π

a

)2
.

In the case of a lossless dielectric the cut-off angular frequency is:

ωc [10] = π

a
√

με
;
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so the cut-off frequency is:

fc [10] = 1

2a
√

με
= v

2a
;

and the cut-off wavelength is λc [10] = 2a. The propagation condition f > fc [10]
can be also written λ < λc [10] i.e. λ < 2a ⇒ a > λ

2 . In essence, a guide doesn’t
contain any mode if it is too narrow and it contains more modes as it becomes larger
(increasing the size has the same effect as increasing the frequency, from this point
of view).

The eigenfunction of the dominant mode is:

T (x, y) = T (x) = C cos
(π

a
x
)

= hz(x),

from which it follows:

∇t hz = xo
dhz

dx
= −xo C

π

a
sin

(π

a
x
)

∝ ht = hx xo,

∇t hz × zo = yo C
π

a
sin

(π

a
x
)

∝ et = ey yo.

The configuration of the fields in the guide section has been therefore determined
(Fig. 4.2).

It is important to highlight that such shape does not change varying frequency,
and therefore it does not change even under the cut-off condition.

Finally, we can easily show that along z the propagation of the TE10 mode is
equivalent to the one of two uniform plane waves traveling obliquely in the guide
and havingwave vector k lying on the zx horizontal plane (being ky = 0) and forming
an angle θ with the x axis, having then kx = kt = π

a = k cos θ, kz = k sin θ. These
waves are totally reflected from the vertical metal walls present at x = 0 and x = a,
transforming each into the other (Fig. 4.3).

Fig. 4.2 Configuration of
the transverse electric field in
rectangular waveguide for
the mode TE10
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Fig. 4.3 Plane-wave
decomposition of mode TE10
in rectangular waveguide
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The angle of incidence θ is given by:

tan θ = kz

kx
=

√
k2 − (

π
a

)2
π
a

=
√(

f

fc

)2

− 1 =

=
√(

f 2a

v

)2

− 1 =
√(

2a

λ

)2

− 1,

so it depends on the frequency and on the width a of the guide. Hence θ increases
with the increase of the frequency or the guide width (the tangent is a monotonically
increasing function), and when f → ∞ it follows θ → π/2 i.e. the wave incidence
tends to the so-called grazing incidence in the axial direction, analogous to the wave
propagation in free space (kx = π

a  kz , kz → k), in other words it tends to a pure
traveling wave along z. Instead, when f = fc, i.e. when we are at cut-off, it is θ = 0,
kx = k and kz = 0, thus there is no longer propagation along z, but a pure standing
wave along x . A progressive component along z and a stationary component along
x are present instead in all intermediate cases.

These considerations could be extended to all TM and TE modes propagating
in a rectangular waveguide, and they demonstrate that the propagation angles of
the equivalent plane waves inside the guides cannot be arbitrary, but they need to
constitute a discrete set, so that each mode has its own angle, corresponding to its
eigenvalue.

4.5 Waveguides of Circular Section

Let us now consider two metallic structures, the circular waveguide and the coaxial
cable, characterized by (cylindrical) circular geometry. In this case it is convenient
to work in polar coordinates q1 = ρ, q2 = ϕ, to have an easier boundary conditions
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imposition on the circumferences. So, it is: T (q1, q2) = T (ρ,ϕ). Note that the con-
siderations that follow, until explicit imposition is made of the boundary conditions,
are also valid in dielectric structures, such as optical fibers, consisting of a central
kernel (core) and a surrounding mantle (cladding).

We need to recall first the expression of the transverse Laplacian in polar coordi-
nates, which is:

∇2
t = 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2
∂2

∂ϕ2 .

The Helmholtz differential equation is thus:

1

ρ

∂

∂ρ

(
ρ

∂T

∂ρ

)
+ 1

ρ2
∂2T

∂ϕ2 + k2t T = 0.

We apply again the method of separation of variables, seeking solutions of the
type T (ρ,ϕ) = P(ρ)φ(ϕ). By inserting this solution in the previous equation, it
becomes:

φ

ρ

d

dρ

(
ρ

d P

dρ

)
+ P

ρ2
d2φ

dϕ2 + k2t P φ = 0.

Multiplying both sides by ρ2

P φ , where neither the numerator nor the denominator can
be identically zero, we get:

ρ

P

d

dρ

(
ρ

d P

dρ

)
+ 1

φ

d2φ

dϕ2 + k2t ρ2 = 0,

where the first and third addend depend only on the ρ variable while the second
depends only on the ϕ variable. Deriving the obtained expression with respect to ϕ
it is obtained:

d

dϕ

(
1

φ

d2φ

dϕ2

)
= 0 ⇒ 1

φ

d2φ

dϕ2 = constant = −k2ϕ ⇒ d2φ

dϕ2 + k2ϕ φ = 0.

As usual, if kϕ �= 0, the general solution φ(ϕ) = C1 sin(kϕϕ) + C2 cos(kϕϕ) is
obtained. Instead when kϕ = 0 we have φ(ϕ) = C1 ϕ+C2. At this point we observe
that the φ(ϕ) function must be periodic of period 2π for the geometric meaning of
the variable ϕ (increasing it of 2π we come back to the same point in the plane). This
implies that from kϕ = 0 it follows necessarilyC1 = 0 andφ(ϕ) = C2.When kϕ �= 0
instead, the period of the sinusoidal functions, i.e. 2π

kϕ
, has to be 2π or a submultiple

of 2π, so it must be kϕ = n = 1, 2, 3,⇒ φ(ϕ) = C1 sin(n ϕ)+ C2 cos(n ϕ). If n is
allowed to assume the zero value, too, it must be φ(ϕ) = C2 and then we can include
the solution for kϕ = 0 (these are modes independent of ϕ, that show interesting
properties in terms of loss in the guide, i.e. when the guide walls are not perfectly
conductive).
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At this point we step back to the differential equation and we insert the constant
−n2 in place of the second addend, obtaining:

ρ

P

d

dρ

(
ρ

d P

dρ

)
− n2 + k2t ρ2 = 0.

Now let us multiply by P(ρ) and perform the derivative:

ρ
d P

dρ
+ ρ2

d2P

dρ2
+

(
k2t ρ2 − n2

)
P = 0.

Assuming k2t �= 0 (so the TEM mode which may exist in the coaxial cable, but not
in the circular waveguide isn’t considered, and it will be considered separately) and
making the assumption ξ = kt ρ ⇒ ρ = ξ/kt :

d P

dρ
= d P

dξ

dξ

dρ
= kt

d P

dξ
,

d2P

dρ2
= d

dρ

(
d P

dρ

)
= d

dρ

(
kt

d P

dξ

)
= kt

d

dξ

(
kt

d P

dξ

)
= k2t

d2P

dξ2
.

Executing all the proper substitutions in the equation we get:

ξ
d P

dξ
+ ξ2

d2P

dξ2
+ (ξ2 − n2) P = 0,

which dividing by ξ2 becomes

d2P

dξ2
+ 1

ξ

d P

dξ
+

(
1 − n2

ξ2

)
P = 0.

This well-known differential equation, having variable coefficients, is called
Bessel’s equation of order n (n = 0, 1, 2, . . .). Like any second-order differen-
tial equation, its general solution can be expressed as a linear combination of two
independent particular solutions: one possible choice is represented by the so-called
Bessel functions of order n of the first kind Jn(ξ) and of the second kind Yn(ξ). It is
therefore

P(ρ) = D1 Jn(ktρ) + D2 Yn(ktρ).

The following figures represent the Bessel functions behavior (Figs. 4.4 and 4.5).
They asymptotically, i.e. for large values of the argument, are similar to damped
sinusoidal functions and in fact they are the standing-wave solutions of theHelmholtz
equation in cylindrical coordinates:



4.5 Waveguides of Circular Section 143

Fig. 4.4 Bessel Jn functions

Fig. 4.5 Bessel Yn functions

We need to observe that the circular guide section includes the origin ρ = 0; all
the Yn(ktρ) diverge at the origin, and since the values of the function T are assumed
to be limited at any point of the section for physical reasons, we need to impose
D2 = 0 ⇒ P(ρ) = D1 Jn(ktρ) for the circular waveguide. In the case of metallic
coaxial cable, however, the origin is not part of the domain of interest, then both
functions appear. The same observations apply respectively to the core and cladding
of the optical fiber.

4.5.1 TE and TM Modes in Circular Metallic Waveguides

Let’s impose the boundary conditions for the circular metallic guide having radius
a. For TM modes it must be T = 0 on s:

φ(ϕ)P(a) = 0 ⇒ P(a) = 0 ⇒ Jn(kt a) = 0.

The roots of the Bessel function Jn(ξ) must be known to solve the equation. There
is an infinite countable number of roots for Jn(ξ), denoted with ξnm where n =
0, 1, 2, . . .; m = 1, 2, 3, . . . ⇒ k2tnm

=
(

ξnm
a

)2
.
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For TE modes, the condition ∂T
∂n = ∂T

∂ρ = 0 for ρ = a ⇒ d P
dρ

∣∣
ρ=a =

D1 kt J ′
n(kt a) = 0 ⇒ J ′

n(kt a) = 0 leads to search all zeros of the J ′
n(ξ) deriva-

tive (note that usually the literature indicates the derivative with respect to the whole
argument with the prime).

k2tnm
=

(
ξ′

nm

a

)2

,

having indicated with ξ′
nm the zeros. The fundamental mode, which corresponds to

the smallest eigenvalue, is in this case the TE11.
In the case of the metallic coaxial cable (of internal radius a and external radius b)

and for TM modes it must be P(a) = 0 and P(b) = 0, so:

{
D1 Jn(kt a) + D2 Yn(kt a) = 0
D1 Jn(kt b) + D2 Yn(kt b) = 0

.

This is a homogeneous linear system in the two unknowns D1, D2, and as such it
admits eigensolutions, i.e. solutions other than the trivial D1 = D2 = 0, if and only
if the determinant of the coefficients is zero, i.e. if

Jn(kt a) Yn(kt b) − Yn(kt a) Jn(kt b) = 0.

This procedure has a very general applicability and the equation obtained is called
the characteristic equation of the structure, or dispersion equation (because it allows

to obtain the eigenvalues k2t , and then kz =
√

k2 − k2t as a function of frequency).
The cases previously presented are very simple, actually to obtain the eigenvalues we
need usually to numerically solve a transcendental equation similar to the one just
written. The TE modes are treated in a similar way, but in this case the derivatives
of Jn and Yn are involved.

4.5.2 TEM Mode for the Coaxial Metallic Cable

Let us study now the TEMmode for a coaxial cable of inner radius a and outer radius
b, for which the functional dependence is quite different. In this case the transverse
Laplace equation, in polar coordinates needs to be processed, which, separating the
variables becomes:

ρ

P

d

dρ

(
ρ

d P

dρ

)
+ 1

φ

d2φ

dϕ2 = 0.

The boundary condition is ∂T
∂s = 0 on s, where ds = a dϕ or ds = b dϕ, respectively

on the inner and outer circumference, so



4.5 Waveguides of Circular Section 145

P(a)

a

dφ

dϕ
= 0

P(b)

b

dφ

dϕ
= 0,

The previous equations might be satisfied if P(a) = P(b) = 0, but this would mean
T = 0 on the whole contour, while a TEM mode can propagate only if T assumes
(constant) different values on the two contours. This means that either P(a) or P(b)

must be non-zero, and then it must be dφ
dϕ ≡ 0, φ(ϕ) = C2, and the differential

equation becomes:
ρ

P

d

dρ

(
ρ

d P

dρ

)
= 0,

⇒ ρ
d P

dρ
= constant = D ⇒ d P

dρ
= D

ρ
,

⇒ dT

dρ
= C2

D

ρ
= C

ρ
,

(so the function T (ρ) is a natural logarithm).
At this point let us recall the expression of the transverse gradient in polar coor-

dinates:

∇t = ρo
∂

∂ρ
+ ϕo

1

ρ

∂

∂ϕ
,

that becomes in our case ∇t = ρo
d

dρ , so:

∇t T = ρo
C

ρ
∝ et ,

∇t T × zo = −C

ρ
ϕo ∝ ht .

In conclusion, the electric field in the cable section is purely radial, and its amplitude
is inversely proportional to the distance from the center: it is the same behavior of the
electrostatic field in a cylindrical infinite capacitor. On the other hand, the magnetic
field is purely circumferential, and its amplitude is again inversely proportional to
the distance from the center: it is the same behavior of the magnetostatic field in
the region between two cylindrical coaxial conductors in which opposite constant
currents flow.

4.6 Cavity Resonators

Let us now briefly discuss the fields that can exist in closed regions, limited by
perfectly conductive (metal) walls and filled with a homogeneous, isotropic and non-
dispersive, but generically dissipative medium and in the absence of sources. These
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regions are called cavity resonators (note that there are also open dielectric resonators:
there is the same relationship as between closedmetalwaveguides and open dielectric
waveguides). The electromagnetic field solutions, satisfying the boundary conditions,
form the free oscillations of the system and they are called resonant or oscillation
modes of the cavity.

From a mathematical point of view this is still an eigenvalue problem, but this
time three-dimensional, represented by the Helmholtz equation (for example for
the electric field) ∇2E + k2 E = 0 ⇒ −∇2E = k2 E . This time, pay attention,
k2 = ω2μεc = ω2με − jωμσ is considered an eigenvalue to be determined, and not
an assigned quantity, as it was in waveguide analysis. Now, in fact, the frequency is
the unknown of the problem, while it was kz for waveguides.

Note that, since the walls are perfectly conductive, the tangential component of
the electric field over the whole surface S of the resonator is assigned (and it is
zero). However, we have seen that the uniqueness theorem is not valid (and therefore
different solutions, besides the trivial one identically zero, could also exist), in two
situations:

1. when the medium is non-dissipative and the frequency assumes certain particular
values, which are solutions of

∫

V
(wH − wE ) dV = 0;

2. when the medium is dissipative, for certain complex values of ω.

It is possible to demonstrate that −∇2 operator is self-adjoint and positive semi-
definite (the zero eigenvalue corresponds to static solutions, ω = 0). The eigenvalues
are also here a countable infinity (characteristic of closed regions), to which corre-
sponds a countable infinite number of oscillation modes, each with its own resonant
frequency, although theremay exist different, but degenerate, modes having the same
resonance frequency.

In the case of a non-dissipative medium it is simplyω = k/
√

με; in the dissipative
case, known k2, which is always real since the operator is self-adjoint, the complex
ω = ωR + jω j can be calculated from ω2με − jωμσ − k2 = 0:

⇒ ω2 − j
σ

ε
ω − k2

με
= 0,

ω =
j σ

ε ±
√

−σ2

ε2
+ 4 k2

με

2
= j

σ

2ε
±

√
− σ2

4ε2
+ k2

με
.

However, in general the values of practical interest are the ones satisfying:

k2

με
� σ2

4ε2
⇒ ωR =

√
k2

με
− σ2

4ε2
→ e jωRt ,
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w j = σ

2ε
→ e−ω j t ;

in which the last term represents the oscillation damping resulting from the power
dissipation.

The figure of merit or quality factor Q is a dimensionless parameter that is usually
introduced in the presence of damped oscillations, and defined by:

Q = ωR

2ω j
= ωRε

σ
,

it follows that Q → ∞ for σ → 0. Note that the Q definition just presented is very
general, and it is applicable also when losses of different type lead to a complex
angular frequency, for example losses due to the finite conductivity of the walls (in
this case the boundary conditions on the walls change and in general k2 is no longer
real), or due to openings in the walls (radiation losses, which always exist in the case
of open dielectric resonators). In this case the expression of ω j is more complicated
and requires the determination of the flux of the Poynting vector through the walls
(power dissipated in the walls themselves or radiated through the openings).

The expression of the Poynting’s theorem takes the following form for a complex
ω and in the frequency domain:

1

2

∮

S
n · (E × H∗) d S + 1

2

∫

V
J ∗

c · E dV + j
1

2

∫

V
(ωB · H∗ − ω∗E · D∗) dV =

= −1

2

∫

V
(J ∗

i · E + Jmi · H∗) dV .

In the case of a dissipative homogeneous isotropic and non-dispersive cavity, and
in the hypothesis of absence of impressed electric and magnetic currents, taking the
real part, it is:

Re

[∮

S

1

2
n · (E × H∗) d S

]
+

∫

V

1

2
σ E · E∗ dV −2ω j

∫

V

1

4
(μ H · H∗+ε E · E∗) dV = 0,

⇒ 2ω j = Re
[∮

S
1
2 n · (E × H∗) d S

] + ∫
V

1
2 σ E · E∗ dV∫

V
1
4 (μ H · H∗ + ε E · E∗) dV

.

In the assumptionω j  ωR the term in square brackets represents the average power
flowing in a quasi-period (we are dealing with a damped phenomenon, so not exactly
periodic) T = 2π

ωR
(for t = 0) through the cavity walls (such power is dissipated in

the non-perfectly conductive walls or radiated through the openings). The second
term at the numerator represents the average power dissipated in the medium (which
is not perfect dielectric) that fills the cavity. Therefore, the numerator represents
the total average power P lost by the resonator. On the other hand the denominator
represents the average energy (magnetic and electric) W stored in the resonator. We
therefore have:
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2ω j = P

W
⇒ Q = ωR W

P
.

Note that both variables W and P vary over time as e−2ω j t .

4.6.1 Cylindrical Resonator

We are going to consider now a particularly simple case of resonator, the so-called
cylindrical resonator, obtained by closing a stretch of metallic waveguide of length
l with two transverse metallic plates (Fig. 4.6).

The simplicity of the problem lies in the fact that one can use the results obtained
when studying thewaveguide problem. In fact, the oscillationmodes of the cylindrical
resonator can be obtained from the propagation modes in the guide imposing the
additional boundary conditions required by the presence of the two transverse plates,
i.e. imposing: Et = 0 for z = 0 and z = l.

Let us consider first TM modes in the guide, for which we had:

Ez(q1, q2, z) = ez(q1, q2) I (z),

it follows

Et (q1, q2, z) = et (q1, q2) V (z) ∝ et
d I

dz
.

So d I
dz = 0 must be imposed for z = 0 and z = l, where, for kz �= 0:

I (z) = I +
o e− jkz z + I −

o e jkz z

while for kz = 0:
I (z) = I01 z + I02.

So if kz �= 0 we have:

d I

dz
= jkz (−I +

o e− jkz z + I −
o e jkz z) = 0

Fig. 4.6 Cylindrical
resonator
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when z = 0, l. Assuming kz = 0 we have instead:

d I

dz
= I01 = 0 ⇒ I (z) = I02.

In the first case it is obtained, for z = 0, I −
o = I +

o

⇒ d I

dz
= jkz I +

o 2 j sin(kzz),

and so we have, for z = l:
−2kz I +

o sin(kzl) = 0

⇒ kz = pπ

l
p = 1, 2, 3, . . . ,

⇒ I (z) = 2I +
o cos(

pπ

l
z) p = 1, 2, 3, . . . .

Finally the case kz = 0 can be included in the kz �= 0 one allowing the index p
to assume also the zero value.

In the case of TE modes it is:

Hz(q1, q2, z) = hz(q1, q2) V (z),

which yields then:
Et (q1, q2, z) = et (q1, q2) V (z).

We must impose V (z) = 0 for z = 0, z = l, in V (z) = V +
o e− jkz z + V −

o e jkz z if
kz �= 0, and in V (z) = V01 z + V02 if kz = 0. In the latter case it follows V02 = 0
and V01 = 0, i.e. the trivial solution is obtained. In the case kz �= 0 for z = 0 it is
instead:

V −
o = −V +

o ,

⇒ V (z) = −V +
o 2 j sin(kzz), and for z = l we have sin(kzl) = 0 ⇒ kz = pπ

l p =
1, 2, 3, . . .. This time the null value, as said, cannot be taken.

The eigenvalue k2 is now given by k2 = k2t + k2z = k2t + ( pπ
l

)2 where the k2t was
already found when studying the analogous problem in the guide. For example, for
a parallelepiped resonator with a, b and l sides it is:

k2mnp =
(mπ

a

)2 +
(nπ

b

)2 +
( pπ

l

)2
,

where, as we have seen, one of the three indices can be zero at most (m or n in TE
case, p in TM case).



Chapter 5
Green’s Functions

Abstract The solution of Helmholtz equation with a source term is faced,
introducing the fundamental concept of Green’s function. The basic definitions and
algebraic properties are reported, inverse and adjoint operators and eigenfunction
expansions are introduced. For the important case of free space, the relevant bound-
ary conditions at infinity are discussed, the Sommerfeld radiation condition described
and the scalar Green’s functions obtained. Finally, some elements about the presence
of metal bodies are given.

5.1 Non-homogeneous Helmholtz Equation, Deterministic
Problem

Let us recall the electromagnetic potential concepts exposed previously, in the
absence of impressed magnetic currents:

J mi = 0 =⇒ ∇2A + k2A = −J i .

We use Cartesian coordinates and project the above equation on the x , y and z axes,
obtaining:

∇2Ax + k2 Ax = −Jix

∇2Ay + k2 Ay = −Jiy

∇2Az + k2 Az = −Jiz .

Therefore the vector differential equation is converted into three scalar equations,
in each of them only one component appears. Note that Az only could be separated
using cylindrical coordinates, and no components could be separated using spherical
coordinates. The above separation permitted us to break the vectorial problem into
three independent scalar problems.

Such problems present the mathematical form of the so-called deterministic prob-
lem:

L f = h ,
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being in our case, e.g. for the x component:

L = −
(
∇2 + k2

)
, f = Ax , h = Ji x .

Ax needs to satisfy boundary conditions which define the domain of the linear opera-
tor L . The solution of the deterministic problem is essentially given by the inversion
of the L operator:

f = L−1h

having defined the inverse operator with L−1, it follows L−1L = L L−1 = I where
I is called identity operator, because, when applied to any function, it returns as a
result the function itself.

It can be demonstrated that necessary and sufficient condition for the problem
to have a unique solution is that the corresponding homogeneous problem L f = 0
has no eigensolutions (i.e., not identically zero solutions which are eigenfunctions
of the zero eigenvalue, and which constitute a vectorial space called kernel of the
L operator). In fact, assuming the existence of two distinct solutions f1 and f2 it
follows:

L f1 = h , L f2 = h =⇒ L( f1 − f2) = 0

and hence an eigenfunction (not identically zero) associated with the eigenvalue zero
exists, i.e. the zero eigenvalue is present. If, conversely, there is an eigenfunction (not
identically zero) associated with the zero eigenvalue, i.e., such that L fo = 0 , then
for linearity:

L( f + fo) = h

is another solution, different from f , of our deterministic problem.
This condition can also be expressed with reference to the adjoint operator, being

the eigenvalues of the adjoint operator the complex conjugate of the ones of the L
operator. In fact, if we consider the following two eigenvalue problems:

Lϕi = λi ϕi

Laϕa
j = λa

j ϕa
j ,

we have, from the definition of adjoint operator:

〈
Lϕi ,ϕ

a
j

〉
= λi

〈
ϕi ,ϕ

a
j

〉
=

〈
ϕi , Laϕa

j

〉
= λa

j
∗ 〈

ϕi ,ϕ
a
j

〉

⇓
(λi − λa

j
∗
)

〈
ϕi ,ϕ

a
j

〉
= 0 .

Now, if it was λa∗
j �= λi for any choice of i , it would result that the corresponding

eigenfunction ϕa
j would be orthogonal to all the ϕi , which form, as we already
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showed, a complete set. So ϕa
j would be identically zero, against the hypothesis that

it is an eigenfunction of La . Hence there must be a value of i for which λa∗
j = λi . It

has also been shown that the eigenfunctions of the operator and those of its adjoint
are orthogonal when the corresponding eigenvalues are not conjugated.

Then we can also write:
La f a

o = 0

to express the condition of uniqueness of the deterministic problem, because, as
already pointed out, the operator L has the zero eigenvalue if and only if La has that
eigenvalue, too.

5.2 Definition and Properties of the Green’s Function

Assuming that the deterministic problem has a unique solution, we will solve it using
the method of the so-called Green’s function.

Let us start from the scalar problem, for simplicity, defining the Green’s function
as follows:

L G(r , r ′) = δ
(
r − r ′) ,

where the expression of the Dirac function δ in Cartesian coordinates is:

δ(r − r ′) = δ(x − x ′) δ(y − y′) δ(z − z′)

(physical dimensions of the inverse of a volume). The function G must belong to the
domain of the operator L , i.e. must satisfy the boundary conditions of the problem.
The r and r ′ points are in general called observation point and source point.

G is therefore the spatial impulse response of our electromagnetic system (defined
by the differential equation and associated boundary conditions), i.e., in our case,
the component of vector potential in a certain direction, produced by a spatial pulse
of current in the same direction.

Let us define the Green’s function Ga for the adjoint operator La too, such that:

LaGa(r , r ′) = δ(r − r ′).

Note that theGreen’s function cannot exist if the solutionof the deterministic problem
is not unique. In fact, in case of existence of the Green’s function, we would have:

〈
L G(r , r ′), f a

o (r)
〉 = 〈

δ(r − r ′), f a
o (r)

〉 = f a
o

∗
(r ′) =

= 〈
G(r , r ′), La f a

o (r)
〉 =

= 〈
G(r , r ′), 0

〉 ≡ 0
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against the hypothesis that f a
o is not identically zero. The two functions G(r , r ′) and

Ga(r , r ′) are not independent because each of them may be derived from the other.
In fact, let us consider the relations:

L G(r , r1) = δ(r − r1)

La Ga(r , r2) = δ(r − r2) ,

where r1 and r2 are source points of L and La respectively. Let us demonstrate that
G(r , r ′) = Ga∗(r ′, r):

〈
L G(r , r1), Ga(r , r2)

〉 = 〈
δ(r − r1), Ga(r , r2)

〉 = Ga∗
(r1, r2) =

= 〈
G(r , r1), La Ga(r , r2)

〉 =
= 〈

G(r , r1), δ(r − r2)
〉 =

= G(r2, r1)

being the function δ real.
One way to compute the Green’s function is to integrate directly the differential

equation, this method will be shown later. Another way to deal with the problem is
to represent G by a series expansion of the eigenfunction set

G(r , r ′) =
∞∑

n=1

cn(r ′)ϕn(r) ,

where the cn coefficients are generally functions of r ′. It follows:

L G(r , r ′) = L
∞∑

n=1

cn(r ′)ϕn(r) =
∞∑

n=1

cn(r ′) L ϕn(r) =

=
∞∑

n=1

cn(r ′)λn ϕn(r) = δ(r − r ′)

assuming the possibility of permuting the operator L with the series, i.e. of deriving
the series term by term.

Now let’s consider the following scalar product in which ϕa
m is an eigenfunction

of La , corresponding to the λa
m = λ∗

m eigenvalue and normalized with respect to ϕm

(i.e., such that
〈
ϕm,ϕa

m

〉 = 1):

〈
L G(r , r ′),ϕa

m(r)
〉 =

〈∑
n

cn(r ′)λn ϕn(r),ϕa
m(r)

〉

=
∑

n

cn(r ′)λn
〈
ϕn(r),ϕa

m(r)
〉 =

= cm(r ′)λm
〈
ϕm(r),ϕa

m(r)
〉 = cm(r ′)λm =
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= 〈
δ(r − r ′),ϕa

m(r)
〉 =

= ϕa∗
m (r ′) ,

so:

cm(r ′) = ϕa∗
m (r ′)
λm

=⇒ G(r , r ′) =
∞∑

n=1

ϕn(r)ϕa∗
n (r ′)

λn
.

Moreover, the δ function can be also expressed as:

δ(r − r ′) =
∞∑

n=1

ϕn(r)ϕa∗
n (r ′) .

The two previous series expansions are called spectral representations of the Green’s
function and of the δ function respectively.

From the knowledge of the Green function of the adjoint operator, it is possible to
compute the inverse of the operator L and then to solve the deterministic problem.
Let us consider the following scalar product:

〈
f (r), La Ga(r , r ′)

〉 = 〈
f (r), δ(r − r ′)

〉 = f (r ′) =
= 〈

L f (r), Ga(r , r ′)
〉 = 〈

h(r), Ga(r , r ′)
〉 =

=
∫

V
h(r) Ga∗

(r , r ′) dV =
∫

V
h(r) G(r ′, r) dV ,

and exchanging the role of the variables with and without prime

f (r) =
∫

V
G(r , r ′) h(r ′) dV ′ .

This resolutive solution could also be found by applying the superposition prin-
ciple, starting from

L G(r , r ′) = δ(r − r ′) ,

multiplying by h(r ′) and then integrating on V with respect to the variable r ′:
∫

V
h(r ′) L G(r , r ′) dV ′ =

∫

V
h(r ′) δ(r − r ′) dV ′ .

Now L can be taken out of the integral, because it does not operate on r ′:

L
∫

V
G(r , r ′) h(r ′) dV ′ = h(r) ,

but being L f = h, it is:
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f (r) =
∫

V
G(r , r ′) h(r ′) dV ′ .

Hence:

L−1[ ] =
∫

V
G(r , r ′)[ ] dV ′ .

In the case in which the problem is inherently vectorial (because the boundary
conditions can not be separated for the various components), we need to introduce a
dyadic Green’s function: G(r , r ′) such that:

L G(r , r ′) = I δ(r − r ′) ,

the unit dyad being defined by I =
(
1 0 0
0 1 0
0 0 1

)
, so that, when applied to a vector A or a

dyad D it is:
I · A = A · I = A and I · D = D · I = D

respectively. Moreover, the unit dyad in Cartesian coordinates assumes the form

I = xoxo + y
o

y
o
+ zozo .

Proceeding in amanner conceptually similar to the scalar case, the resolutive solution
of the vectorial deterministic problem can be obtained:

f (r) =
∫

V
G(r , r ′) · h(r ′) dV ′ .

5.3 Boundary Conditions at Infinity for Free Space

We now want to determine the vector potential produced by a space-limited distri-
bution of currents in free space occupied by a linear, stationary, homogeneous and
isotropic medium.

We need to assume boundary conditions in free space too, called conditions at
infinity. So, said r the radius in spherical coordinates, it must be, e.g. for the Ax

component of the potential vector:

lim
r→∞(r |Ax |) = � < ∞ ,

and the same for Ay and Az components. This means that, for r → ∞, |Ax | goes
to zero as fast as 1

r at minimum. This follows on the hypothesis that the impressed
currents do not extend to infinity.
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Let us impose nowanadditional constraint, saidSommerfeld conditionor radiation
condition, assuming that the field is analogous to a sphericalwave expanding in space,

i.e. we assume a radial dependence e−jkr

r (field energy keeps finite), hence the wave
is propagating radially away from the sources which are space-limited. It is then:

lim
r→∞

[
r

(
∂ Ax

∂r
+ jk Ax

)]
= 0

and similar relations for Ay and Az . The Sommerfeld condition is more restrictive
than the former one: in fact, it can be shown that any solution of the differential
equation that satisfies the Sommerfeld condition also satisfies the other one, and
therefore it is sufficient to impose the Sommerfeld condition.

Since the boundary conditions seen are separated for the various components, the
deterministic problemassumes a scalar form.The domain of the operator (fromwhich
some of the operator properties depend) is determined by the boundary conditions.
In the examined case the operator

L = −(∇2 + k2)

is not self-adjoint. This is due essentially to the presence of the constant k2, which
is in general complex, and to the factor j in the Sommerfeld condition. It can be
demonstrated the existence of an adjoint operator La , expressed by:

La = −(∇2 + k2
∗
)

and its domain is defined by the g functions such that:

lim
r→∞(r |g|) = � < ∞

and

lim
r→∞

[
r

(
∂g

∂r
− jk∗g

)]
= 0 .

In fact it is:

〈L f, g〉 = −
∫

V
(∇2 f + k2 f ) g∗ dV =

=
∫

V
∇ f · ∇g∗ dV −

∮

S

∂ f

∂n
g∗ d S − k2

∫

V
f g∗ dV ,

having applied the first form of Green’s lemma. On the other hand, it is:

〈
f, La g

〉 = −
∫

V
f

(
∇2g + k2

∗
g
)∗

dV =
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= −
∫

V
f

(
∇2g∗ + k2 g∗) dV =

=
∫

V
∇ f · ∇g∗ dV −

∮

S
f

∂g∗

∂n
d S − k2

∫

V
f g∗ dV .

Therefore, it is finally:

〈L f, g〉 − 〈
f, La g

〉 =
∮

S

(
f

∂g∗

∂n
− ∂ f

∂n
g∗

)
d S .

Let us perform now, for simplicity, the surface integral on a sphere having center at
the origin and radius going to infinity, the area element is in spherical coordinates:

d S = r2 sin θ dθ dϕ .

Moreover, the normal derivative coincides with the radial derivative:

∫ 2π

0

∫ π

0

(
f

∂g∗

∂r
− ∂ f

∂r
g∗

)
r2 sin θ dθ dϕ .

Let us observe now that from the condition for the adjoint operator it follows, con-
jugating:

lim
r→∞

[
r

(
∂g∗

∂r
+ jk g∗

)]
= 0

⇓
lim

r→∞

(
∂g∗

∂r
+ jk g∗

)
= 0

⇓
lim

r→∞
∂g∗

∂r
= lim

r→∞ − jk g∗ ,

and multiplying by r2 f :

lim
r→∞

(
r2 f

∂g∗

∂r

)
= lim

r→∞(− jk r2 f g∗) .

Moreover, from the boundary condition on the operator L , written for the function
f , it follows in a similar manner, multiplying by r2 g∗:

lim
r→∞

(
r2

∂ f

∂r
g∗

)
= lim

r→∞(− jk r2 f g∗)
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and since such limits are finite for the condition on the magnitudes of f , g (so that it
is avoided the occurrence of ∞ − ∞ indeterminate form), the integrand is zero for
r → ∞ and therefore La is the adjoint of L as assumed.

The fact that the expression for the adjoint operator and its condition at infinity
are obtained from the corresponding ones for the operator L , simply by replacing the
complex constants with their conjugates, is of general validity (it is worth recalling
that ∇2 operator is real, and therefore it returns real functions when it is applied to
real functions).

5.4 Green’s Function Calculation for the Helmholtz
Equation in Free Space

The differential equation to be solved is:

−(∇2 + k2) G(r , r ′) = δ(r − r ′)

with the boundary condition at infinity.
Let us choose the source point r ′ (in which the impulsive source is centered) in the

origin of our reference system for simplicity and symmetry (and, moreover, without
loss of generality), then we have:

−(∇2 + k2) G(r) = δ(r) .

Assuming now a spherical reference system r, θ,ϕ, with the origin in the above
source point r ′, we have, for the spherical symmetry of both free space and the
source δ(r) = δ(r), that Green’s function depends only on r , and therefore we have:

∂G

∂θ
= ∂G

∂ϕ
= 0 =⇒ G(r) = G(r) .

The Green’s function is therefore a uniform spherical wave, because both the
equiphase and the equiamplitude surfaces are represented by spheres (r = constant).

Let us consider now the expression of ∇2 operator in spherical coordinates:

∇2G = 1

r2
∂

∂r

(
r2

∂G

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
+ 1

r2 sin2 θ

∂2G

∂ϕ2 ,

where the second and third terms cancel out for the assumptions made above, so:

−
[
1

r2
d

dr

(
r2

dG

dr

)
+ k2 G

]
= δ(r) .
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We are initially searching for a solution for r �= 0 ⇒ δ(r) = 0. Multiplying the
equation by r , we obtain:

1

r

d

dr

(
r2

dG

dr

)
+ k2 r G = 0 .

Let’s consider now the auxiliary function: G̃(r) = r G(r)

⇒ dG̃

dr
= G + r

dG

dr
=⇒ r

dG

dr
= dG̃

dr
− G

and, multiplying by r :

r2
dG

dr
= r

dG̃

dr
− r G = r

dG̃

dr
− G̃ .

Recalling the starting equation:

1

r

d

dr

(
r

dG̃

dr
− G̃

)
+ k2 G̃ = 0

and performing the derivative we obtain:

1

r

(
dG̃

dr
+ r

d2G̃

dr2
− dG̃

dr

)
+ k2 G̃ = 0

⇓

d2G̃

dr2
+ k2 G̃ = 0 .

It is apparent that we have once again obtained the one-dimensional Helmholtz
equation. Therefore, when k �= 0:

G̃(r) = C1 e− jkr + C2 e jkr =⇒ G(r) = C1
e− jkr

r
+ C2

e jkr

r
.

The Sommerfeld boundary condition is imposed now, so:

r
dG

dr
+ jkr G = dG̃

dr
− G + jk G̃ =

= jk
(
−C1 e− jkr + C2 e jkr

)
−

(
C1

e− jkr

r
+ C2

e jkr

r

)
+
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+ jk
(

C1 e− jkr + C2 e jkr
)

=

= −C1
e− jkr

r
+ C2 e jkr

(
2 jk − 1

r

)
.

Assuming k = β− jα it will be α ≥ 0 for passive media and then the above quantity
will go to zero when r → ∞, satisfying the condition, only if C2 = 0

⇒ G(r) = C1
e− jkr

r
.

The source term needs now to be examined to compute the C1 constant, still
undetermined in the above formula. Let us come back to the:

−(∇2 + k2) G = δ(r)

and let us integrate on the spheric V volume centered in the origin:

−
∫

V
∇2G dV − k2

∫

V
G dV = 1 .

The divergence theorem is then applied, and recalling that ∇2G = ∇ ·∇G:

−
∮

S
n · ∇G d S − k2

∫

V
G dV = 1

⇓

−
∮

S

∂G

∂n
d S − k2

∫

V
G dV = 1 .

Assuming that ro is the sphere radius:

− dG

dr

∣∣∣∣
r=ro

∮

S
d S − k2

∫ 2π

0

∫ π

0

∫ ro

0
G r2 sin θ dr dθ dϕ = 1

having expressed the volume element dV in spherical coordinates.

⇒ −4π r2o
dG

dr

∣∣∣∣
r=ro

− k2 C1

∫ 2π

0
dϕ

∫ π

0
sin θ dθ

∫ ro

0
r e− jkr dr = 1 .

Now let us perform the derivative and the first two integrals, obtaining:

−4π r2o C1
− jkro e− jkro − e− jkro

r2o
− 4π k2 C1

∫ ro

0
r e− jkr dr = 1 .
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The last integral can be solved by parts, obtaining:

∫ ro

0
r e− jkr dr =

∫ ro

0

r(− jk)

− jk
e− jkr dr =

= r e− jkr

− jk

∣∣∣∣
ro

0
−

∫ ro

0

1

− jk
e− jkr dr =

= ro e− jkro

− jk
−

∫ ro

0

− jk

(− jk)2
e− jkr dr =

= ro e− jkro

− jk
+ 1

k2
e− jkr

∣∣∣∣
ro

0
=

= ro e− jkro

− jk
+ 1

k2

(
e− jkro − 1

)
=

= jkro e− jkro + (
e− jkro − 1

)

k2

⇒ 4π C1 e− jkro ( jkro + 1) − 4π C1

[
e− jkro ( jkro + 1) − 1

]
= 1

⇒ 4π C1 = 1 ⇒ C1 = 1

4π
=⇒ G(r) = e− jkr

4πr
.

If the source point does not coincide with the origin, i.e. r ′ �= 0, r must be replaced
with |r −r ′|, i.e. with the distance between the observation point and the source point.
In fact, the Green’s function in free space is a function of r −r ′ and it is not a function
of r and r ′ taken separate, because free space is a homogeneous structure and so it
is invariant to translations. We therefore have:

G(r , r ′) = e− jk|r−r ′|

4π|r − r ′| .

Note the important property G(r , r ′) = G(r ′, r).
At this point we can write, for example for the Ax component:

Ax (r) =
∫

V

e− jk|r−r ′|

4π|r − r ′| Jxi (r
′) dV ′ ;

similar formulas, as usual, can be written for Ay(r) and Az(r) . Multiplying each
component by the corresponding Cartesian unit vector, which can be led into the
integral as a constant vector, we have the vectorial relation:

A(r) =
∫

V

e− jk|r−r ′|

4π|r − r ′| J i (r
′) dV ′ .
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Themagnetic field H = ∇×A can then be derived from this expression obtaining:

H(r) = ∇×
∫

V
G(r , r ′) J i (r

′) dV ′ =

=
∫

V
∇×[G(r , r ′) J i (r

′)] dV ′ .

Now we apply the vector identity

∇×( f v) = f ∇×v − v × ∇ f ,

where in our case the vector does not depend on r , so the integrand becomes

∇G(r , r ′) × J i (r
′) ;

this result could also be quickly obtained just moving the Green’s function (scalar)
to the other side of the vector product.

The electric field can be computed using the formula:

E = − jωμ A + ∇∇ · A

jωεc
.

The gradient of the divergence can be taken into the integral also in this case, then
the following vector identity can be used:

∇ · ( f v) = v · ∇ f + f ∇ · v .

The term v · ∇ f , i.e. J i · ∇G is not zero in this case, and its gradient needs to be
calculated. To this aim the following identity is exploited:

∇(A · B) = B × (∇× A) + (B · ∇)A + A × (∇×B) + (A · ∇)B .

In our case, the first vector does not depend on r , and then only the third and fourth
term of the identity remain. In particular the nabla operates on the second vector
in both terms. Therefore the following integrand is obtained in the second addend
providing the electric field:

J i (r
′) × (∇×∇G) + [

J i (r
′) · ∇] ∇G = [

J i (r
′) · ∇] ∇G(r , r ′) .

It is apparent from the above formulas for the evaluation of the electromagnetic
field the importance of the computation of the gradient, and of the gradient of the
gradient, of the Green’s function.
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5.5 Electromagnetic Field Produced by a Distribution
of Impressed Currents in the Presence of a Metallic Body

Any perfectly conducting body present in a space region adds a further boundary
condition on its surface S: n × E = 0.

This condition can not be generally decomposed into separate conditions for the
E components when the shape of S is arbitrary, so the problem must be assumed
inherently vectorial. It is convenient in this case the direct usage of the electric field,
without passing through a vector potential, as this choice permits to impose more
easily the boundary condition on the perfect conductor.

Let us take the curl of the first Maxwell’s equation (assuming μ constant):

∇×∇×E = −∇× J mi − jωμ∇×H ;

the second Maxwell’s equation can be substituted in the second term on the right,
obtaining:

∇×∇×E = −∇× J mi − jωμ (J i + jωεc E) ,

from which:
∇×∇×E − k2E = −∇× J mi − jωμ J i .

This is a form of the wave equation in the frequency domain more general than
Helmholtz equation, and the operator is L = ∇×∇×(·) − k2(·) with the boundary
conditions on the conducting body and at infinity.

The condition at infinity for the amplitude of the field can be written in this case
(assuming that the impressed currents do not extend to infinity):

lim
r→∞

(
r

∣∣E∣∣) = � < ∞ .

The radiation condition practically assumes that the field is analogous to a radial
plane wave at a great distance from the source, it follows that it is E = ζ H × ro . It
is assumed therefore:

lim
r→∞

[
r (ζ H × ro − E)

] = 0 .

The above condition can be rewritten using homogeneous Maxwell’s equations
(because it is assumed that there are no currents in the far region), so that only the
electric field E appears. Hence, recalling that ωμ = k ζ:

H = −∇×E
jωμ

⇒ lim
r→∞

{
r

[
ro×(∇×E)

jk − E
]}

= 0

⇒ lim
r→∞

{
r

[
ro × (∇×E) − jk E

]} = 0 .
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Scalar multiplying by ro we get for the radial component Er :

lim
r→∞(r Er ) = 0 the wave is TE in the radial direction.

It can be verified that in this vector case, too, the Sommerfeld radiation condition
implies the condition on the magnitudes, so it is sufficient to impose just the former.

The operator L defined above, with the boundary conditions seen, admits the
adjoint operator La = ∇×∇×(·) − k2

∗
(·) with boundary conditions n × g = 0 on

the conductor surface and

lim
r→∞

{
r

[
ro × (∇×g) + jk∗g

]}
= 0 .

The problem can be solved through a dyadic Green’s function, which has as columns
three vector Green’s functions which satisfy the boundary conditions of the L oper-
ator.



Bibliography

1. G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, 2nd edn. (Edizioni Ingegneria
2000, Roma, 2006)

2. G. Franceschetti,Electromagnetics: Theory, Techniques, and Engineering Paradigms, 2nd edn.
(Springer, Berlin, 2013)

3. C.G. Someda, Electromagnetic Waves, 2nd edn. (CRC, Boca Raton, 2006)
4. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
5. C.A. Balanis, Advanced Engineering Electromagnetics, 2nd edn. (Wiley, New York, 2012)
6. D.S. Jones, Acoustic and Electromagnetic Waves (Oxford University Press, Oxford, 1989)
7. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd

edn. (Wiley, New York, 1994)
8. L.D. Landau, E.M. Lifsits, Electrodynamics of Continuous Media, 2nd edn. (Butterworth-

Heinemann, Oxford, 1984)
9. G. Barzilai, Fondamenti di elettromagnetismo (Siderea, Roma, 1975)
10. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)
11. I. Cattaneo Gasparini, Strutture algebriche lineari (Masson, Milano, 1998)
12. G.C. Corazza, C.G. Someda, Elementi di calcolo vettoriale e tensoriale (Pitagora, Bologna,

1982)
13. K. Kurokawa, An Introduction to the Theory of Microwave Circuits (Academic Press, New

York, 1969)
14. R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961)
15. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)
16. C.T. Tai,Generalized Vector and Dyadic Analysis: Applied Mathematics in Field Theory (IEEE

Press, New York, 1996)

© Springer International Publishing Switzerland 2015
F. Frezza, A Primer on Electromagnetic Fields,
DOI 10.1007/978-3-319-16574-5

167



Index

A
Admittance

along the line, 104
characteristic, 102
shunt (per unit length), 98

Ampère-Maxwell circulation law, 5

B
Beat velocity, 67–69
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Brewster angle, 76, 87, 88, 90, 92
Brillouin

diagrams, 67
precursors, 71

C
Cavity resonator, 115, 145–148

cylindrical, 148
dielectric, 147
modes

TE, 149
TM, 148, 149

Coaxial cable, 115, 140, 142–145
TEM mode, 144, 145

Continuity
conditions, 4, 7, 12, 13, 83, 86, 89, 93
equations, 5, 6, 8

Curl, 1
Cut-off

condition, 132, 139
frequency, 132
wavelength, 132, 139

D
D’Alembert

equation, 40, 46
operator, 40

Dispersion
diagrams, 67
equation, 144
function, 71
law, 68
spatial, 11
temporal, 10

Divergence, 1
Duality, 16, 26, 33, 46, 57, 61, 116, 117

principle, 7, 14, 41, 42, 45

E
Eigenfunctions, 126–128, 130–132, 136,

137, 139, 151–154
Eigenvalues, 26, 27, 31, 32, 34, 115, 126–

132, 134, 136, 138, 144, 146, 152,
153

Electric
charge density, 4
current density, 4
field, 4
induction, 4

Electromagnetic potentials, 1, 42–46, 151
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F
Faraday-Neumann induction law, 4
Fast wave, 55, 133
Fields

conservative, 2
irrotational, 2, 124
solenoidal, 2, 3, 124
TE, 57, 60, 61, 82, 90, 165
TEM, 57, 62, 75, 94
TM, 57, 60, 61, 82, 90

Fresnel coefficients, 47, 82

G
Gauss theorem, 6
Gradient, 1, 2
Green’s function, 44, 151–155, 159, 162,

163, 165
Green’s Lemma, 3, 129–131, 158
Group velocity, 47, 69, 70, 72, 133

H
Helmholtz equation, 41, 42, 51, 126, 142,

164
Helmholtz theorem, 43
Hermitian

dyadic, 31, 33
matrix, 24, 34
Operator, 128
operator, 127–130, 146, 157
quadratic form, 34
tensor, see dyadic

I
Impedance

along the line, 104, 106
characteristic, 58, 62, 102, 106–108, 111,
112

condition, 38, 112
input, 107, 108, 111, 113
inverter, 108
load, 103, 105, 106, 108, 110
matching, 112
output, 111, 112
relation, 74, 76, 78, 84
series (per unit length), 98
surface, 38

Impressed charges, 8, 16
Impressed current density, 26
Impressed currents, 8, 14, 15, 26, 27, 35, 43,

147, 151, 156, 164
Impressed sources, 7, 8, 12, 42, 44, 116

L
Laplace operator, 115
Laplacian, 1
Leontovich-Schelkunoff condition, 93, 94
Longitudinal wave number, 138
Lorentz

curve (Lorentzian), 23, 73
force, 25
model, 20, 23

Lorenz
gauge, 44–46

M
Magnetic

field, 4
induction, 4

Maxwell’s equations, 1, 4–7, 12, 13, 19, 25,
28, 35–37, 39, 41–45, 51, 52, 56, 100,
115–117, 120, 123, 164

curl equations, 7, 8, 12, 42, 118
divergence equations, 6, 13
homogeneous equations, 35, 37, 38, 98,
164

Monochromatic wave, 65

N
Nabla operator, 1, 51, 115

O
Optical fiber, 143

dielectric, 115

P
Phase velocity, 67
Plane waves, 47, 49–56, 60, 63–68, 73, 74,

80, 134
attenuated, 95
evanescent wave, 89
incident, 73, 75–78, 80, 82, 85, 88, 92
non-monochromatic, 67–70, 72, 73
non-uniform, 59, 65, 89, 130
radial, 164
reflected, 73–76, 78, 80–82, 88, 89, 92,
93

refracted, 80
superposition, 94
surface wave, 89
transmitted, 74–76, 80–82, 89, 90, 93, 94
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uniform, 48, 53–55, 57, 61–63, 69, 70,
72, 75, 80, 88, 93, 94, 97, 100–104, 106,
111, 124, 139

Plane-wave packet, 69–72
Plane-wave spectrum, 47, 63–65, 71
Poynting

theorem, 1, 23, 25, 35
complex, see frequency domain
frequency domain, 28–31, 33, 34, 37,

147
time domain, 25–28

vector, 25, 27, 29, 30, 36, 59–62, 80, 97,
104, 147

Progressive waves, 48, 50

Q
Quarter-wave transformer, 108, 112–114
Quasi-uniform wave, 94

R
Reactance, 106
Reductio ad absurdum, 35, 37
Reflection coefficient, 97, 104–111, 114

S
Schwarz theorem, 6, 39, 46
Self-adjoint operator, seeHermitian operator
Skin

depth, 95
effect, 95

Slow wave, 55
Snell’s law, 81, 82
Sommerfeld condition, 151, 157, 160, 165
Spherical waves, 66, 157, 159
Standing waves, 48, 50, 79, 80, 103, 104,

110, 135, 140, 142
Standing-wave ratio (SWR), 97, 109, 110
Stationary waves, 48, 79, 104

T
Telegrapher’s equations, 97, 98, 100
Telephonist’s equations, 97, 102
Total reflection, 47, 78, 88–92, 106
Total transmission, 76. see also Brewster an-

gleTransmission line, 97–112, 114,
118, 119, 121, 123, 133

direct wave, 101, 106, 113
matched, 106, 110, 111, 113
reflected wave, 101, 106, 112, 114

Traveling waves, 101, 103, 110, 140

U
Uniqueness theorem, 1, 12, 35

frequency domain, 37–39, 146
time domain, 35–37

V
Vector potential, 123, 153, 156, 164

W
Wave equation, 1, 12, 39, 40

frequency domain, 39–41, 116, 164
time domain, 39, 40

Wave function, 47–49, 52, 56
Wave number, 65, 67, 69, 71, 72, 80, 93
Wave vector, 72, 81, 82, 89, 139
Waveguides, 115, 116, 118, 124, 127, 132,

133, 146, 148
circular, 140–143
dielectric, 127
metallic, 125, 126, 146
modes

TE, 118, 120, 121, 125, 126, 130,
131, 136, 138, 140, 144
TEM, 118, 123–126, 133, 135, 142
TM, 118, 120, 122, 125, 126, 130,

131, 135, 136, 138, 140, 143, 144
perfectly conducting, 130
rectangular, 134, 135, 137–140
wavelength, 133

Wavelength, 72, 97, 99, 108, 111, 113
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